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ABSTRACT 
 

The present dissertation focuses on and investigates the behaviour of the structural 

category referred to as tensile structures, paying particular attention to the cable ones. 

During the years the design of the structures has been conducted to lighter systems and 

the tensile structures rapidly increased thanks to their advantages as technical and time 

construction. To the other side, since the particular response to the external solicitation, 

the mechanical behaviour of these structures encouraged the researchers to find 

analytical and numerical methods proper to study, describe and analyze them. 

In this research, once identified and described the different typologies of tensile 

structures, specific issues related to the statics of cable ones are dealt with an enhanced 

analysis of the current methodologies used to solve and manage these structural 

systems.  

Composed of seven chapters, after an introduction about the issue and the main goal, 

the thesis starts from a recognization of the several types belonging to the analyzed 

structural categories, including cable, membrane, tensegrity and tensairity structures. 

One reports the features of each of them, highlighting the differences through some 

existing architectural examples, from the ancient to nowadays time. 

Subsequently, the attention is paid to statics of cable structures including simple cables, 

cables with opposite curvature and cable nets.  

Starting from a literature review, the selected approaches are analytically developed and 

demonstrated, focusing on both equilibrium and form-finding problems and 

highlighting advantages and disadvantages of each method, to have a suitable 

background to develop and introduce proper calculus models to solve the non-linear 

relationships characterizing these structures.  

The study aims to deal with the main problems concerning the cable systems, as find the 

equilibrated and compatible configuration under external loads’ action without the small 

displacements assumption, governing the non-linear relationship between forces and 

displacements, and taking into account the relevance of the deformations. Moreover, a 

fundamental scope of this research is to develop procedures suitable both in 2D and 3D 

cases, for several kinds of cable structures, and possible future computational 

implementation. 
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Related to these main goals, different procedures are proposed and described. Basing on 

the optimization approaches, one refers to the Total Potential Energy, finding the 

solution through a constrained minimization concerning the Kuhn-Tucker conditions. 

The method is applied to a 2D structure and a numerical example is reported to 

highlight the main features of the proposed methodology.  

Moreover, the static response of plane and three-dimensional structures is evaluated by 

a calculus model under large displacements and in matrix form.  

The non-linear relationship between forces and displacements is identified and then it is 

solved through a step by step procedure, linearizing the equation governing the problem 

at each infinitesimal load’s step.  

Firstly developed for a 2D structure, the approach is extended to a three-dimensional 

one highlighting its worth for several types of these systems.  

Finally, an overview of the dynamic effects of tensile cable structure is explained, 

applying a modal analysis to a study case. 
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1. INTRODUCTION 
 

In the last decades, the tensile structures application field has undergone a rapid spread. 

The requirement to realize functional buildings with less use of material and time has let 

to searching for and designing light constructions in order to overcome structural limits, 

thanks to the introduction and development of innovative materials and technologies 

both in temporary and permanent architectures (D.S. Wakefield,1999).  

The lightness is one of the features diversifying these structures from other types of 

structural systems and therefore the structural and unstructural elements are chosen in 

order to minimize the self-weight.  

Firstly, the constructions of big span roofs have been realized without intermediate 

supports (T.T. Lan,1999). During the years this type of structures have been used for 

smaller spaces as well as for vertical closings, floorings, canopies, and real buildings 

(hangars, arenas, exhibition pavilions), presenting a number of configurations and 

technologies.   

The particular features such as lightness, high resistance, elastic behaviour, and 

pretensioning possibility, allow some versatile applications (M. Salehi Ahmad Abas, 

2013) but, on the other side, show a high geometric non linearity that deeply affects 

their static behavior (L. Liao, 2010). Therefore, the detailed analysis of these structural 

systems is primary to ensure the stability of any component, in order to prevent the 

exceeding of admissible stresses during the pretension process and the overloads’ 

application. 

This is also the reason why many researches have been directing the gaze more and 

more to statics of these systems (A.S. Kwan, 1998), mainly framing behaviour models 

and methodologies within the two classes of force and displacements methods (T.T. 

Lan, 1999), under the understanding that, in these structures, the assumed 

configurations influence their equilibrium and that, therefore, finding the suitable 

geometry is fundamental.  

First studies refer to reinforced concrete shell structures aiming at optimizing their 

shape taking the maximum advantage of the material, minimizing or making null the 

bending forces; however, due to the impossibility to reduce the thickness without 
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activating instability phenomena, other structural typologies, like tensile structures, 

have been developed, with components subject only by axial forces, and null bending.  

Several typologies belong to this category of structures and are usually divided in plane 

(cable systems, cables with opposite curvature) and spatial (cable nets, membranes, 

tensegrity structures, tensairity structures). One may identify their evolution through 

three main historical periods (Fig. 1.1), according to Dong with special reference to 

spatial systems: ancient, pre-modern, and modern (Dong, 2012). 

 

 

 

Figure 1.1: Historical evolution of the structures.  

 

 

Cable structures are referred to when the cables or the cable systems represent the 

carrier elements (Y. Liu et al., 2015).  

Ropes were used since ancient times as structural components, when climbing plants 

and lianas were employed for building hammocks and suspended bridges (T. 

Kawada,2010), or again for realizing boats for over thousand years (R. Carter, 2006). 

The development of ropes as structural elements coincides with the evolution of 

construction materials, from the vegetable fibers to the modern high resistance steel for 

two main reasons: the first one concerns the will of overcoming increasingly larger 

spans, the second one, instead, is related to the need of new and complex configurations 
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(Y. Liu,2015), leading to the use of textile and plastic materials to build rooftops, 

facades and entire buildings (Fig. 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Some tensile structures’ typologies. 

 

 

Therefore, the interest about these structures has been strongly increasing both in the 

constructions and research field, where much attention has been paid also to the 

different behaviour under overloads and wind actions. To this regard some empiric 

studies have been conducted, in some cases underestimating the effects of the above-

mentioned actions but arriving, anyway, to some solutions that highlight the behavioural 

features of these structural systems, where the importance of the strains causes the 

impossibility of application of the principle of effects’ superposition.  

During the years, several approaches and methodologies have been developed mainly 

referring to the catenary, finite element methods or energy approaches (Y.C. Toklu, et 

al.,2017).  

The solving approaches for tensile structures’ problems have been evolving and 

changing, related to the computer advent, allowing to find procedures with easier 
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compilation and such as to have minimum computational weight in order to identify the 

solution of the static problem of the structure with reference also to wind actions. Two 

main typical features affect these problems: the first one concerns the lightness; since, 

often, the self-weight of the structure is of the same order as the wind thrust acting on it; 

the second one is concerned with the deformability. As for cables’ anchoring, the 

adoption of large spans and the use of pretensioning in cables also causes the increase of 

the drag value in the anchoring so that the boundary elements affect significantly the 

static operation of the whole structure. Within cable systems, the tensile ones are the 

most suitable to solve the problem of big span roofs, and the deformability can be 

considered a feature and a potentiality as well.  

Many important academic studies on tensile structure have been developed by Frei Otto 

also including complex systems aimed to contain an entire city.  Several types of tensile 

structures have been classified. With reference to cases where the carrier structure is 

represented only by cables (Fig. 1.3), one may distinguish simple cable systems, 

opposite curvature cable systems and cable nets.  

According to the definition given for the first time at the IASS symposium 2004 in 

France (IASS Symposium 2004, Montpellier,2004), tensile structures can be identified as 

textile or plastic membranes (Fig. 1.4), tensegrity structures (tension+integrity) (Fig. 

1.5), composed of tension (cables) and compression elements (struts), tesairity 

(tension+air+integrity) (Fig. 1.6) composed of beams, cables and membranes. 

 

 

  

Figure 1.3: Cable structure; Zubizuri Bridge, Bilbao (Spain), S. Calatrava. 
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Figure 1.4: Membrane Structure; Watercube, Pechino (China), PTW Architects. 

 

 

  

Figure 1.5: Tensegrity Structure; Kurilpa Bridge, Queensland (Australia), Ove Arup & 

Partners. 

 

 

  

Figure 1.6: Tensairity Structure; Garage di Montreux Station, Montreux (Swiss), R. 

Luscher. 
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1.1 Structural classifications and general features  

 

Cable systems represent a large variety of structures and some of them present features 

not too dissimilar from rigid covers. However, systems with cables as structural 

elements, can be considered one of the most important structural schemes within tensile 

components.  

The relevance of steel cables as structural elements has been highlighted in the design 

and building of suspended or cable stayed bridges (Fig. 1.7-8), whose structural and 

architectural model represents a reference for the design of several tensile structures.  

Many reinforced concrete or steel large span roofs, where the carrier parts are the 

cables, belong to the latter case.  

However, there are a number of issues to be accounted for, one also relevant to bridge 

structures, and in particular the problem of wind oscillations, leading to the need of 

bracings. This problem turns relatively important in suspended bridges, where, because 

of larger spans, wide oscillation phenomena may lead to the collapse of the structure, as 

in the famous event of Tacoma Narrow Bridge in Washington. 

Other problems concern the anchoring. Since the cables are the only structural elements, 

there is the need to fix the boundary with strong anchoring systems. For a long time, big 

supports have been realized in order to absorb the cables’ pull forces, causing some 

aesthetic problems and for this reason often they are arranged under the ground level. 

Further project benchmarks for the design of roofs concerns cable-stayed bridges 

(Fig.1.7-8), especially in the USA, where the ropes branch out from supporting 

elements that can be made of steel or reinforced concrete, and reach predefined 

locations at the extrados of the roof, also acting like bracings in most cases. Thanks to 

this solution, big overhangs with small thickness may be realized. 
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Figure 1.7: Cable-stayed bridge: Queen Elizabeth Quay Bridge; Perth (Australia), 

Arup Associates.  

 

 

 

Figure 1.8: Cable- stayed bridge: Milwaukee Museum, Milwaukee (Wisconsin), 

Santiago Calatrava. 

 

 

The static of these structures can be further improved building some double overhangs; 

in this way the cables’ drag force is balanced, and the supporting structures can be made 

smaller.  

In literature four main subclasses of cable structures are identified: 
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Cable systems: where the single element, or several elements are linked to each other in 

series or radially and the load acts in the plane. This type of structures is used for 

moorings, curtains or tower tie-rods, e.g. in a project for an archive in a mine in Croatia, 

by David Garcia Studio (Fig. 1.9).   

 

 

 

Figure 1.9: The Dead Websites Archive; Crnopac (Croatia), design of David Garcia 

Studio. 

 

 

Cable trusses: also known as cables with opposite curvature, where the elements 

present opposite concavities and they are linked to each other in the plane. The loads act 

in the same plane; usually the cable trusses are used as supporting roofs; an example is 

shown in Fig. 1.10 relevant to the roof built in Wainlin, (Belgium) for a gas station, 

designed by Philyppe Samyn and Associées.  
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Figure 1.10: Gas Station covering, Wanlin (Belgium), Philyppe Samyn and Associés 

(from “Atlante delle tensotrutture”, Schock, Hans-Joackim,Torino 2001) 

 

 

Cable-nets: the pretensioned elements are linked to each other to form a surface where 

the loads act orthogonally; these structures are typically used for roofs o suspended nets 

(Fig. 1.11). 

 

 

 

Figure 1.11: Maritime Museum, Lingang New City, (China), von Gerkan, Marg und 

Partner; SIAD. 
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Cable-nets system: the elements are linked to each other to develop a three-

dimensional structure, such as the “trawl nets”. These systems are mainly used in urban 

regeneration design or temporary buildings. Some examples are shown in Fig. 1.12-13. 

 

 

 

Figure 1.12: Harmonic Motion/Rete di draghi, Temporary artwork MACRO, Roma 

(Italy), Toshiko Horiuki MacAdams.  

 

 

 

Figure 1.13: Hamaca Dream, New York (USA), designed by R. C. Ramos, J. Del Valle. 

 

 

In the following Par.1.2-1.4 the features of the different categories are better described 

and deepened through examples of existing buildings in order to highlight the main 

differences, which are further analysed in the subsequent paragraphs.  
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1.2 Cable systems  

 

 

 

Figure 1.14: Representative scheme of the simple cable. 

 

 

In Par. 1.1 some features of suspended rigid roofs have been highlighted, considering, 

mainly, the cases where the cables act as supports, that are external in the mentioned 

cases. The roof is then basically hanging from the cables. In Fig. 1.14 a scheme of this 

structural system is represented. In this kind of structure, if the tilt of the cable is large, 

a high value of normal stress is attained compared to the pull axial component.  

There are many interesting cases where the cable is not external but integrated within 

the roof, thus acting as supporting element but also affecting its configuration, like in 

cases when one has a number of suspended cables, arranged in a modular sequence, and 

appropriately covered.  

These structural and architectural schemes, thus, differ from the previously described 

ones, also allowing to cover a number of spaces with different shapes, from the squared 

to circular, or elliptical ones. This can be done by adequate position and assemblage of 

the cables according to two main basic arrangements: 

Row scheme, typical of squared plants, where roofs present cylindrical shapes.  

 

Radius scheme, usually used for circular plant spaces and similar ones, thus allowing 

shapes with overturned shells. 

In the case of suspended cables, one should observe that the strain caused by the 

application of loads is relevant for two main reasons: the first one depends on the pull 

force endured by the cables; the second one, instead, depends on the circumstance that 

the loads’ funicular is very far from the original configuration, thus causing the cover to 

follow the cables’ deformation.  Furthermore, some oscillation phenomena may 
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superpose, like in case of vacuum of the superior surface of the roof with an upward lift, 

which is the most worrisome effect. In order to account for this, some ballasting may be 

placed on the roof to offset the wind effects and to stabilize the configuration of the 

roof. The ballasting weight, actually, is able to increase the pull of permanent loads 

compared to the overloads’ one, thus reducing at the same time the cable strain. 

However, even in this case there may be also some negative feature, since the response 

of the self-weight to the upward lift decreases with the increasing of the cause, 

producing a response which is no longer elastic.  

The other side, placing the ballasting on the structure, it gets heavier and diminishes its 

performance. 

To better understand the features and the behaviour of this kind of tensile structure, 

more details about the different arrangements are required. Starting from the row 

arrangements, other two subcategories can be identified. The first one is one of the most 

used schemes and it is characterized by the row arrangement of the cables where some 

transverse connection are introduced, helping the placement of the cover, increasing the 

distribution of the loads on the cables, and, thus, reducing the strains. 

In the second arrangement, besides the transverse connections, their fixing is provided 

at the ends by adopting some boundary trusses. In this way the connecting elements act 

as bracings making unnecessary the ballasting. Nevertheless, this may be added in order 

to increase the cables’ pull force even before the overloads’ application, allowing the 

strain reduction.  

Similar results may be obtained through the application of cables’ pretension. This 

technique makes an improvement with relation to the ballasting placement, but in the 

same time shows some limits with regards to external actions, which modify the state of 

the cables, thus affecting the structure configuration. To solve this problem, often, the 

cables are fixed through tie-rods at points at the interior or exterior to the covered space. 

As concerns radius tensile structures, the most important feature to deal with is 

concerned on how to find a way to absorb the high horizontal pull force transmitted by 

the cables to the external boundary. Since, if the boundary follows the loads’ funicular 

curve then it undergoes only to compressive forces, thus, the most common structural 

configuration in radius tensile structures is characterized by two rings placed on the 

inner and outer boundaries of the cables. The first ring is in compression and the second 
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one in tension. Moreover, the inner second ring may also act as lightening and 

ventilation element as well as separator of the cables anchoring that converge in it. 

These two typologies of cable arrangements fall within the general field of suspended 

shell roofs. Actually, in these kinds of roofs cables are immersed into concrete, making 

the structure monolithic, and accomplishing to the structural function, accounting both 

for compression and tangential stresses and moreover considerably containing the cable 

strains typical of suspended cables. Although some criticism was emerging in particular 

with reference to thin vaults, from the studies of Frei Otto, nevertheless, the advantages 

of suspended shells with respect to ordinary tensile structures have been largely 

demonstrated, since they reach the equilibrium conditions regardless of shape or 

overloads, with an elastic response. Moreover, thin vaults work only in compression and 

therefore they are dimensioned based on these stresses, whence, for large spans, the 

thicknesses result to be great, and the solutions are more expensive than in the case of 

the suspended shells, which allow to obtain thin thickness for significant spans.  

Much attention is to be paid to the particular precompressive technique of the examined 

roofs, which regards the cable ballasting through the application of overloads lightly 

greater than those ones predicted for the structure. The application of these loads 

induces a tension in the cables; then, the loads are removed when the concrete is stiffen 

and, through the subsequent shortening of the cables, some compression is generated in 

the concrete, allowing to finally reduce the risk of cracks.  

Since a problem may occur concerning boundary structures, that are solicited by the 

cable pull force, reaching maximum stresses, the boundary structures are required to 

assume with the shape of the loads’ funicular in such a way to mainly work in 

compression, and diminish bending stresses, which are dangerous for the entire 

structure. Although the risk of cracks’ occurrence may be then generally contained, this 

is not true for those shells following a negative Gauss shape, where more expensive 

solutions are often required with substitution of cable with steel profiles.  
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1.3 Opposite curvature cable systems 

 

 

 

Figure 1.15: Scheme of a tensile structure with opposite curvature. 

 

 

As above mentioned, a method for simple cable stiffening consists of fixing the 

structural cable to tie rods linked at defined points of the cover perimeter (Fig. 1.15). 

However, this operation may lead to some problems making hard its realization. An 

alternative has been proposed by Jawerth for the Ice Palace roof in Stockholm, where a 

plane system of cables with opposite curvatures is presented, linked to each other 

through diagonal elements. 

In particular, the system is composed by a structural cable with an upward concavity 

linked, through diagonal elements, to another cable with opposite curvature, belonging 

to the same plane. The latter is recognized as tension cable since it is in tension before 

the application of the loads, producing a pretension state.  

Consequently, when the overload acts, the additional load starts to decreases and thus 

the strain of the tension cable diminishes reducing the internal forces of the structural 

cable. In terms of equilibrium, the increase of internal stress is lower than that one that 

would occur under the only action of the overload.  

Thus, this system affects also the deformability of the structural cable, which is further 

reduced by the diagonal elements that balance also the horizontal components of the 

external load.  
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The effectiveness of these structures is even more appreciated when a total inversion of 

loads is achieved, which may occur e.g. for a vacuum on the external surface. In this 

case, a particular reticular structure forms whose elements are all in tension, thus 

removing instability problems. Hence, it is possible to reach large spans, although with 

some limits in the anchoring.  

Actually, upon changing of overloads, the pull horizontal component is constant and 

equal to the pretension one; increasing the overloads the cable undergoes an elongation 

and a decrease of the mutual action with the opposite cable, diminishing its tension. 

Whence the rise of the horizontal pull component is balanced by the decrease of the 

opposite cable tension. For this reason, the analyzed scheme may be considered a self-

stiffened system and hence heavy ballasting is not necessary. Nevertheless, some 

pretensioning may be still assumed. 

Starting from the Jawerth system, other schemes based on it have been proposed, 

basically diversified through different arrangements of the connecting elements, oblique 

or vertical ones.  

Nevertheless, the Jawerth system is more effectiveness than other proposed ones. 

As concerns the design, there are two main arrangements, as described in Par.1.1:  

Row represented in Fig.1.16. and Radius in Fig. 1.17. 

 

 

 

Figure 1.16: Tensile structure with opposite curvature in row arrangement. 
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Figure 1.17: Radius arrangement of tensile structure with opposite curvature. 

 

 

1.4 Cable nets and Cable-nets systems 

 

 

 

Figure 1.18: Cable-nets scheme. 

 

 

Another kind of cable structure is represented by a system of cable-nets as shown in 

Fig. 1.18. 

The cables have both structural and bracing function with all other components as 

coverings. In this case the optimal shape can be selected for optimal use of steel by 

removing compressive stresses and reducing the resisting section.  

The cable-nets tensile structure can be considered as derived from opposite curvature 

systems. Actually, as above specified in Par. 1.2, in plane structures with opposite 

curvatures, the carrying and tensioning cables are arranged in the same plane.  
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On the contrary, in cable-nets the elements belong to different planes, and most of times 

to vertical planes, orthogonal to each other, whence the cables show upward or 

downward concavities with mutual intersections. Actually, the described systems may 

be regarded as three-dimensional extensions of those ones proposed by Jawerth. Other 

advantages, from the static point of view, are related to the aesthetic feature, allowing to 

select many different shapes, such as the saddle one. 

Even in this kind of cable structure, the pretension is applied for stiffening., as proposed 

by Renè Sarger. Since cables intersect at certain points, the pretension of some cables 

leads to the pretension of the entire surface, and therefore, to the overall three-

dimensional stiffening. Actually, in the nets the stiffening is in all the directions. As 

concerns the boundary structures, as mentioned one tends to have their curved shape 

matching the funicular of cables’ drag forces.  

The most adopted cable-nets refer to two orders schemes, whence more articulated 

systems can be realized, e.g. tents. 

In Fig 1.18, typical cable-nets tents are shown, where it is possible to distinguish 

carrying and tensile cables, since cables with the same curvature belong to parallel 

planes. More complex situations are presented in Fig.1.19-20, where the same cable 

shows different curvatures, or the curvature of the same cable changes its sign and 

belongs to different planes. 

 

 

 

Figure 1.19: Scheme of different types of configurations of cable-nets. 
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Figure 1.20: Structural scheme of National Gymnasium for Tokyo Olympics- Kenzo 

Tange. 

 

 

Cable-nets can be also composed by several orders, for examples three, four and so on 

ones, moving more and more away from the basic configuration. Increasing the number 

of cables’ orders, it is possible identify a continuous scheme. This structural system 

leads to roofs characterized by textile materials tensioned at their ends by supporting 

elements, in such a way to generate at any point a negative Gauss curvature. 

The scientific and technological progress has pushed towards the use of less fleeting 

textile materials, gradually substituting the traditional sheets with materials with 

improved performance with regards also to environmental attacks. Particular attention 

on tends tensile structures was paid by Frei Otto, who proposed and showed several 

kinds and shapes of roofs in his opera “Tensile Structures”, obtained with these 

structural systems (F. Otto, 1972).  

In the design of tensile structures, a complex problem related to boundary structures 

must be dealt with, in particular concerning the transfer of stresses and external loads to 

the ground. However, there are several systems available, as shown in Fig. 1.21. One of 

the most used and simple ones is characterized by the vertical elements acting as struts 

transmitting the cables’ drag forces to the ground. This scheme mainly has been used in 

rectangular plant roofs. Other types are characterized by vertical elements linked to each 

other by transversal ones along the funicular of cables’ pull forces. Often these systems 

present angular points, in particular when the connecting elements are represented by 

two big arches.  
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Figure 1.21: Scheme of main types of anchoring for cable structures.   

 

 

Nevertheless, to obtain a more balanced system, a unique big ring may be chosen to 

replace the above-mentioned arches, avoiding the angular points and giving to vertical 



1.INTRODUCTION 

 
29 

elements the only role to transmit the external loads to the ground. Also, in this case, in 

order to have an optimal behaviour of the boundary ring, it should be shaped in order to 

follow the middle line of the pull forces’ funicular but thus risking changing the shape 

in plant from the one required for the roof.  
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2. STATICS OF TENSILE STRUCTURES 

 

2.1 Some historical background 

 

The growing up spread of tensile structures has been developing hand to hand with the 

search and study of rigorous calculus methods in order to deal with the problems related 

to their statics.  

As known, the rope is considered as an element without bending stiffness and incapable 

to resist compression and bending stresses. Therefore, to reach the equilibrium under 

tension stresses, the cable needs to adapt its shape to the acting loads.  

From the literature, these kinds of systems are referred as hypostatic since forces are 

depending on deformations. The relevant static calculus is hard to solve, because the 

small displacements hypothesis is not valid and consequently also the superposition 

effects principle does not hold since the displacement components affect the unknown 

forces.  

The case of the simple cable is one of the first problems rigorously treated by the 

modern mechanical studies and solved through the first elements of infinitesimal 

analysis (M. Quagliaroni, 2010). In Table 2.1 a number of studies are summarized, 

developed during the centuries. 
 

 

Table 2.1: Historical evolution of the rope studies  

Year  Author  

1452-1519 L. Da Vinci First studies about the ropes 

1614 Beeckman Suspended bridge with 

parabolic profile. 

1638 G. Galilei Unstretching parabola 

1646 Huygens Revaluation of the Galileo 

unstretching parabola 

1679 G. Pardies He considers that the Galileo 

parabola is wrong.  

1691 Huygens, Leibniz, Bernoulli Unstretching catenary  

1891 Routh Elastic Catenary 

1975 M. Irvine Elastic catenary under point 

loads 

In the following Par. 2.2 some analytical solutions of the problem are showed. 



2.STATICS OF TENSILE STRUCTURES  31 

2.2 Cables’equilibrium 

 

The similarity between the exact profile of the cable and the parabolic one is known 

and, in case of tensioned cables, the consequent approximation of the cable segment to 

the distance between the supports is quite intuitive (Fig. 2.1). 

 

 

 

Figure 2.1: Simple cable- approximation of the cable segment with the distance between 

the supports. 

 

 

Let consider the simple cable suspended from its two ends, identified in the points A 

and B, and subjected to the distributed vertical and horizontal loads, respectively P and 

Q. The self-weight is supposed negligible and H is the pull horizontal component of the 

drag force T (Fig. 2.2). Considering the reference system (Oyz) and the segment of the 

cable shown in Fig. 2.3, the equilibrium equations for vertical and horizontal 

translations are  

 

 

 

Figure 2.2: Simple cable. 
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Figure 2.3:  Cable segment. 

 

 

0







P

dz

dy
H

dz

d
 (2.2.1) 

0 Q
dz

dH
 (2.2.2)  

Assuming acting only the vertical loads (Fig.2.4), and constH  

 

 

 

Figure 2.4: Simple cable under the action of the vertical load P. 
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Eq. (2.2.1) turns into 

P
dz

yd
H 

2

2

  (2.2.3) 

and, assuming yet P = const, by integrating Eq. (2.2.3), one gets 

21

2

2
CzC

z
PHy   (2.2.4) 

Once computed the integration constants 1C  and 2C  , and imposed the passage of the 

cable through the A and B points, one may evaluate y 

)(
2

zLz
H

P
y    (2.2.5)  

Therefore, the H component can be computed after introducing the compatibility 

equation 

oo    (2.2.6) 

where 

  is the length of the cable in the deformed shape  

o  is the initial length of the cable  

o  is the length variation due to the load application 

L is the  cable supports’ distance.  

 

Moreover  the cable length   is defined by  

L
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
  



  (2.2.7) 

where f denotes the deflection. 

Assuming a very small tilt, one has  

EA

HL
HT o    



2.STATICS OF TENSILE STRUCTURES  34 

and therefore, from  Eq. (2.1.5) for 
2

L
z  , one gets 

H

PL
f

8

2

   (2.2.8) 

whence 

f

PL
H

8

2

   (2.2.9) 

Remembering Eq. (2.2.6) and Eq. (2.2.7) 













L

f
L

oo

3

8

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one gets 

L

f
Loo

2

3

8
    (2.2.10) 

with 
EA

HL
o   

By substituting H  obtained from Eq (2.2.9), one gets 

LEA

PL 23

0

f

3

8

f8
    (2.2.11) 
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and by multiplying for Lf
8

3
   

  0
64

3
fL

8

3
f

4
3 

EA

PL
Lo   (2.2.14) 

Hence 
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0
64

3
)(f
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3
f

4
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3 
EA

PL
LL    (2.2.15) 

Once identified the deflection f, H  can be computed by Eq. (2.2.9) and then y is 

obtained by substituting H  in Eq. (2.2.5). 

Let assume to apply a distributed vertical load P  added to the acting one, producing a 

pull increasing H . The cable points undergo other downward displacements in the y 

direction. 

These displacements are identified by v; to satisfy the equilibrium, Eq. (2.2.3) turns into  

PP
dz

vyd
HH 




2

2 )(
)(   (2.2.16) 

By developing the products and remembering Eq. (2.2.3), Eq. (2.2.16) can written again 

as 

  P
dz

vd
HH

dz

yd
H 

2

2

2

2

  (2.2.17) 

Eq. (2.2.17) is referred to the equilibrium configuration reached after the vertical load 

increasing. It is clear that, if  P is proportional to P, one may write the equilibrium 

referring to the undeformed configuration of the cable, because y = y(z) represents a 

funicolar curve of P .  

Eq. (2.2.17) can be written again as 

P
dz

yd
H 

2

2

  (2.2.18) 

Therefore, the variation of the produced horizontal component is 

f8

2PL
H


   (2.2.19) 

Analysing Eq. (2.2.17) one can put in evidence that the terms 
2

2

dz

yd
 and 

2

2

dz

vd
 are 

respectively the initial and final curvatures and to large H and 
2

2

dz

yd
 correspond small 

variations of 
2

2

dz

vd
.  
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By reporting the data on a graph, where P is reported on the x-axis and f on the y-axis, 

considering  

L0   (2.2.20) 

and hence  

3
4

64

3
f

EA

PL
   (2.2.21) 

it is clear that to the increasing of the load P a smaller increasing of the deflection 

corresponds (Fig. 2.5). 

 

 

 

Figure 2.5: Graph of deflection f vs load P. 

 

 

Therefore, it is clear that the ballasting cannot be chosen arbitrarily, but, on the contrary, 

it depends on the deflection of the roof established during the design phase.  

Given f, the load P can be defined  
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
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L

EA
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Considering Eq. (2.2.22), it is possible to compute the maximum value of P that is 

compatible with the assumed roof deflection, based on (2.2.20) 

3

4max f
3

64

L

EA
P    (2.2.23) 

Consequently, after identified maxP  according to Eq. (2.2.9), it is possible to determine 

the maximum value of H , substituting Eq. (2.2.23) into Eq. (2.2.9) 

2

22
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f

3
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f8
f

3

64

f8 L

EAL

L

EALP
H    (2.2.24) 

This limit condition occurs when the initial length oL  corresponds exactly to  , that is 

the distance between the two ends A and B. 

Increasing the load P and the component H in order to not change the deflection, it 

should be Lo  ; thus the ballasting should be associated to the preliminary 

tensioning of the cables 

o

oL
EAH




0

  (2.2.25) 

There are several advantages related to the pretensioning of cables. Let consider the 

case when the pretensioning is applied through some vertical cables suitably 

pretensioned. From a static point of view, this system behaves like a cable with opposite 

curvature. The vertical cables, if conveniently outdistanced from each other, are able to 

realize a parabolic shape of the cable where the deflection f is equal to the one derived 

from the application of a vertical load P equal to the action transmitted by the vertical 

elements to the cable. 

Moreover, when the external load is applied, the cable would tend to go downward 

diminishing the cables action and therefore behaving as if placed on an elastic ground. 

However, much attention should be paid to this feature, because it is possible that the 

actions of the vertical elements are nullified by the downward external load. To avoid 

this circumstance, the tensioning should be well calibrated in such a way to prevent 

waving phenomena of the cable for any intensity of the applied external load. 
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2.3 An approach to static analysis of cable systems and nets 

Cable systems are usually classified in simple cables and cable nets, with, in the latter 

case, the subcategories of plane and spatial nets.  

The first ones represent the carrying elements of suspended roofs and they are solicited 

in a unique direction (F. Otto, F.Schleyer, 1972).  

 

2.3.1 Single cable 

One considers the free simple cable in a three-dimensional reference system, as shown 

in Fig. 2.6, where the axes are identified through the unit vectors zyx eee ,, . 

Let suppose the examined cable without bending stiffness, and described by the curve  

zyx tztytxt eeer )()()(:)(   (2.3.1) 

where t is a scalar variable.  

In case of tensioned cables, it is convenient to select one of the fixed coordinates as 

variable; hence choosing x as scalar variable, Eq. (2.3.1) assumes the form 

zyx xzxyxx eeer )()(:)(   (2.3.2) 

 

 

Figure 2.6: Single unstiffened cable in (Oxyz)  

Therefore, one may consider the position vector r(x) of the cable in components   
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This vector must be unique and at least two times differentiable. Therefore, the initial 

unloaded configuration has been identified.  

Let assume that any overload or heat variation can act on the cable or that it may 

undergo some ends’ displacements, leading to a configuration change and therefore a 

position change of the cable.  

Thus, considering the displacement vector 
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the updated position is defined by  
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After first and second time derivation, one gets  
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One may recognize two cable states:  

The first state of initial pretension is described by )(xr  and identifies the curve under 

the self weight g(x) or any other dead load; in this case the generated stresses are 

marked by the  g subscript.   
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The second state is identified by  xr , and describes the curve also subject to the 

overloads (as shown in Fig. 2.7), that is under the load condition  

     xxx Pgq    (2.3.8) 

with 

g(x) the dead load  

P(x) the overload   

q(x) the total external load given by superposition of dead loads and overloads.  

 

Analogously, the q subscript identifies the dependence on this load condition.  

 

 

 

Figure 2.7: Free loaded cable in the space. 

 

Thus, omitting the explicit dependence on the variables, under the load conditions 

shown in Fig. 2.7, the equilibrium can be set in the form  
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  (2.3.9) 

with Fq the internal drag force in the cable generated by q. 
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Since no bending moments are admitted in the cable, it is necessary that 

0Fr  q'   (2.3.10) 

or, in other form, 

'

'

r
Fqq

r
F    (2.3.11) 

where Fq the intensity of Fq.  

These equilibrium conditions are imposed with reference to the deformed configuration.  

Let then consider only the horizontal component Hq of the drag force, anyway tilted on 

the x-axis, 

xqqH eF    (2.3.12) 

Therefore Eq. (2.3.12) can be rewritten as 
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Considering  

'1' ux er   (2.3.14) 

and being 1'u , one gets 
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Projecting on the axes Eq. (2.3.9), and taking into account Eq. (2.3.11) and Eq. (2.3.15), 

one gets 
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  (2.3.16) 

 The dead load at the initial state only in the z-direction should be applied, passing from 

the three-dimensional reference system (Oxyz) to the plane one (Oxz) (Fig.2.8). 
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Figure 2.8: The cable in the plane (Oxz). 

 

 

The cable position is identified through the position vector, given now  
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The dead load g is 



















g

0

0

g  (2.3.18) 

and Eq. (2.3.16) assumes the following expression  
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In the initial state P = 0 and Eq. (2.3.19) can be still simplified, considering only the 

component H depending on the dead load g 
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whence  

constgH   (2.3.21) 

 

2.3.2 Elasticity conditions  

 

Because of the effect of the overloads or of the heat loads, the cable length changes its 

initial state , which is described by the strain    
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Substituting Eq. (2.3.2) and Eq. (2.3.3), developing in series and neglecting the 

numerator greater than the second order, one gets  
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From Eq. (2.3.24) it is possible to omit the second addend. Referring to the monoaxial 

stress state in the cables, the linear elasticity relation is applied and, taking into account 

that the cable self-weight is neglected, one gets  

 t
EA

Fp
   (2.3.25) 

where 

pF  is the force (positive in tension) undergone by the cable under the overload 

application  

tt t   is the expansion undergone by the cable for heat variation 

t   is the linear expansion coefficient 

E  is the elasticity modulus.  

 



2.STATICS OF TENSILE STRUCTURES  44 

Substituting Eq. (2.3.24) into Eq. (2.3.25), it is possible to compute pF   
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  (2.3.26) 

and, thereafter,  the values of the pull horizontal components.  

After neglecting the term 
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Moreover 
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and, substituting Eq. (2.3.27) 
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wzyvuEA
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wzyvuEA
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p

p





















  (2.3.29) 

Being y = 0, in the plane (Oxz) one gets 

2
1

22
3

2 )'1()'1(

)'''(

z

EAt

z

wzuEA
H p







    (2.3.30) 

 

2.3.3 Cable length   

The cable length may be identified through arch length integration, distinguishing the 

initial state 
o

g  from the current state q  under the additional load and heat conditions  
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 

LLL

o

g dxzydxrds
0

2'2'

0

'

0

1  (2.3.31) 

dxzydxrsd

LLL

q  

'''

0

2'2'

00

1'   (2.3.32) 

Since the cable belongs to the plane (Oxz), 0y  and vy  .  

After computing the lengths into the two considered states, one may infer the variation  

o

gq     (2.3.33) 

Making the suitable substitutions and considering constant H, E, A and t , the length 

variation is given in the form 

g

p
tdxr

EA

H
  

2'   (2.3.34) 

whence the problem should be dealt with for the elastic and inelastic case.  

 

2.3.4 The inelastic cable 

Once defined the deformations from the initial state, one has to identify the shape and 

the cable forces H and F. The cable subject only to the vertical loads may be analysed 

through graph methods. Hence, to better understand the non-linear behaviour of the 

examined case, a number of load conditions are considered, and specifically: 

 

 i) Constant vertical dead load. In this case the self-weight of the cable is 

neglected. Actually, the cable is subject only to the dead load constzq , 

applied in the vertical direction. 

 ii) Self-weight.: The contribution of the self-weight is taken into account in 

order to find the forces and the equilibrium configuration of the cable. The self-

weight is assumed constant and referred to the unit length of the x-axis, 

const ox gg . 

 iii) Arbitrary vertical load. An arbitrary load is applied in the vertical direction 

on the cable, with 0xq  and H = const. 
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 iv) Arbitrary load. In this case an arbitrary load and H depending on x are 

considered. The application points are identified in function only of the x 

coordinate.  

 v) Combination of dead load and overload. The combination of the dead loads 

and the overloads is considered.  

The analysis of the load conditions leads to the solution of the problem, identifying the 

forces H and the shape of the cable.  

The first two cases refer to a well-known solving process and are here reported for 

completeness.  

Furthermore, when the ratio between the deflection and the span of the cable is small, 

the stretching due to the overload P can be neglected, compared to the initial 

configuration. This allows some simplifications on the study of the shape and the 

stresses of the cable, and consequently the behaviour of the elastic cable under the 

external load q is easier to be analysed. 

 i) Constant vertical dead load 

A uniform constant dead load is applied on the cable in the vertical direction, thus 

assuming  

const gqz   (2.3.35) 

The solution is identified in the parabolic equation 

 21
2

2
CxCx

H

g
z

g

   (2.3.36) 

where 1C  and 2C  are the integration constants and their value is identified by 

substituting the ends’ coordinates of the cable.  

In the plane (Oxz), the above mentioned coordinates are  

   

   LL z,,xz,,xK

,,z,,xK

00

0000

222

111




 

and such that 

012  Lxx   (2.3.37) 

Moreover the deflection is given in the form 
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 















2

2
2 4

2 L

x

L

x
fxLx

H

g
d

g

  (2.3.38) 

One assumes the maximum value of the middle term in order to calculate the pull 

horizontal component 

f

gL
Hg

8

2

   (2.3.39) 

One computes the length of the cable in the specific case when the angle a = 0 (Fig. 2.9) 

i.e. the cable ends are at the same height.  

 

 

Figure 2.9: Cable with supports at the same height.  

 

Comparing the deflection f with the span L, the cable length   may be inferred. 

Assuming 
L

f
n   , the cable length is expressed in function of n and, hence, of the 

supports distance as  









 narcsinn

L
4

4

1
161

2

2   (2.3.40) 

Eq. (2.3.38) allows to identify the exact length of a cable with the ends at the same 

height.  
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            ii) Self-weight  

Let consider the self-weight og  uniformly distributed along the cable curve referred to 

the x-axis unit length const ogg . 

Since  

1.   dxzydx'rdso
g

221   (2.3.41) 

and, since the cable belongs to the plane (Oxz), one has 02 y  

Then 

20 1 'zg    (2.3.42) 

whence 

2
0 1 'zgg    (2.3.43) 

Remembering that 

0 gzHg   (2.3.44) 

and making the appropriate substitutions, the following expression is obtained  

01 2
0  zgzHg   (2.3.45) 

whose general  solution (catenary) is  

  21 CCx
H

g
hcos

g

H
z

g

g
   (2.3.46) 

In case where  01 C and 02 C , one gets  

x
H

g
hcos

g

H
z

g

g
   (2.3.47) 

It follows that the origin of the cable is at a distance equal to 
g

H g , beneath the curve 

vertix. 

Therefore, the pull horizontal component can be obtained by the identified cable length 

once determined 
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 dxCx
H

g
hcos

x

x g
1

2

1

    (2.3.48) 

 

 iii) Arbitrary vertical load 

Under this load condition, still considering constant the pull horizontal component, one 

introduces the moments zy MM  e on the equivalent beam generated by the current load 

condition. 

If the deflection is known, the H calculus is not particularly complex. Actually, in order 

to compute the length of the cable, one considers the shear stresses Qy and Qz acting on 

the equivalent beam.  

With reference to Fig. 2.10, one infers 

 

 

Figure 2.10: Simple cable and equivalent beam tilted on  the horizontal axis in the 

plane (Oxz). 

 



h
tan    (2.3.49) 

tanxzd    (2.3.50) 

tanxzd    (2.3.51) 

yq MvH    (2.3.52) 

zq MdH    (2.3.53) 
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One should notice that the moments’ indexes in Eq. (2.3.52) – (2.3.53) do not identify 

the vector direction but the component of the load producing them. 

Moreover, knowing that 

'
yy

'
zz

MQ

MQ




 (2.3.54) 

one gets  

 tan
H

Q
'z z

  (2.3.55) 

and being 0yg  

H

Q
'y'y

y
  (2.3.56) 

the deformed cable length can be computed as 

 



















 dxtan

H

Q

H

Q
zy

22

1   (2.3.57) 

Therefore, in the search of the equilibrium shape, if the length is known and the 

deflection is unknown, H and the cable geometry can be arbitrarily fixed. If comparing 

the values of the length resulting from Eq. (2.3.57), Eq. (2.3.31) and Eq. (2.3.33) they 

largely differ from the given value, then H is to be set again in order to get as close as 

possible to the expected value. 

 

 iv) Arbitrary load 

One considers the load conditions zyx qqq ,, , whence H  const. 

The load is applied along the unknown cable line, and its application points are 

expressed only in function of x. 

Thus, one proceeds to identify the pull horizontal component by the first of Eq. (2.3.16) 

inferring  
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

x

xo dxPHH

0

  (2.3.58) 

where 

oH  is a value previously computed and then corrected if necessary.  

 

Once identified the horizontal component value of the stress in the beam, the new 

configuration assumed by the cable should be determined. For this reason, the 

remaining Eq. (2.3.16) are considered, where the ordinates along y and z are still 

expressed by their first derivatives. 

Therefore, after integration, it is possible to identify the cable shape and subsequently 

the length by Eq. (2.3.31)-(2.3.32). 

 

2.3.5 The elastic cable 

 

In the case of elastic cable, in the analysis of forces and displacements of the cable the 

elastic stretching should be accounted for. Since the cable may be stretched, the 

deflection assumes values greater than in the unstretched case, and consequently the 

tensile pull force decreases.  

The considered elasticity condition may be caused by the circumstance that the ends of 

the cable are blocked, preventing their displacements, or that they undergo some 

prefixed displacements or that the cable length changes according to its elongation. 

The length as additional condition  

As previously shown, the cable length, subject to dead loads, additional loads and heat 

variation, is given by  

 
rx

x

''
q dxzv



 221   (2.3.59) 

dxtan
H

Q

H

Q

q

zq

q

yq
q

22

1




























   (2.3.60) 
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Remembering that Eq. (2.3.59) depends on the deformed cable coordinates, that may be 

inferred through the equilibrium conditions, Eq. (2.3.60) is referred to the auxiliary 

beam taking into account also the shear forces, as already emphasized.  

Since in this case the cable is elastic, it undergoes a length variation   depending on 

the horizontal components pH , caused by the additional load and heat variation 

  o
gq   (2.3.61) 

And, after substitution of Eq. (2.3.34) 

g
p

tdx'r
EA

H
  

2   (2.3.62) 

    dxtdxz
EA

H po
gq

21   (2.3.63) 

or when 0xq , and EA and  t   are constant, one gets 

   dxz
EA

H
t

po
gq   

211   (2.3.64) 

In these conditions the pull component H may be computed directly, but through 

iteration. Therefore, the value 
)1(

pgq HHH   is fixed, assuming as known gH and  o
g .  

Starting from this value of  qH  the relevant length 1 q  is calculated throught the 

ordinates’ method described in the above. Hence a length value q1  different from 1 q  

is obtained. 

Thus, one proceeds by fixing subsequent values of H up to convergence, satisfying the 

condition 

n
qq

n    (2.3.65) 

In the case when H = const, it is possible to refer to Eq. (2.3.24), always proceeding by 

iteration. 
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 The span as additional condition    

Let now consider the case when only vertical loads act on the span of the cable. The pull 

horizontal component may be directly computed on the basis of the cable length by 

through a condition about displacements  

0 dx'u  (2.3.66) 

with 

tzz
EA

H
wzu

p
)1()1(''' 2'2

3
2'    (2.3.67) 

Eq. (2.3.67) is inferred quite easily from Eq. (2.3.29) 
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Hence by integrating on the length, one gets 

0)1()1('' 2'2
3

2'  dxtzz
EA

H
wz

rx

x

p



   (2.3.69) 

Decomposing the integral in Eq. (2.3.69) and assuming EA and  constant, one gets   

0)1()1('' 2'2
3

2'   dxztdxz
EA

H
dxwz

r rrx

x

x

x

x

x

p

 

   (2.3.70) 

where 

  dxz
rx

x

s  



 2
3

21   (2.3.71) 
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 dxz
rx

x

t  



 21  (2.3.72) 

0 

rx

x

ts
p

t
EA

H
dx'wz



   (2.3.73) 

Since   

  0 
r r

r

x

x

x

x

x
x

wdxzwzdx'wz

 


  (2.3.74) 

and remembering that 

0 gzHq   (2.3.75) 

one gets  

0
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
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HdxgM
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H
EA

H



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   (2.3.76) 

where   e zqzg MM  denote the bendig moments depending to the load conditions g and q.  

From Eq. (2.3.76), it is possible to achieve the horizontal tension component Hq.  

Considering constant applied loads, the integral can be easily computed. Actually, 

remembering that the deflection under the dead load is 

gH

g
f

8

2
 , 



f
n    (2.3.77) 

Eq. (2.3.78) can be written as  

0
3

2

3

162 







  fqt

EA
Hf

n
H

EA
H t

s
gq

s
q 


  (2.3.78) 

Eq. (2.3.71)-(2.3.72) in this case assume the value  









 22

3

16
1 tannLt  (2.3.79) 

and approximately 
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


















cos

tann
Ls

2281
  (2.3.80) 

Eq. (2.3.79)-(2.3.80) can be applied also for cable without a perfectly parabolic 

configuration. According to the above presented developments, the response of the 

cables, both in pretension state and under additional loads, is non-linear. The pretension 

represents a stress state, in equilibrium configuration, which the cable is subject to in 

order to make it stable and stiff under the overloads’ application (J.W. Leonard, 1988). 

The response of the element under pretension state is always non-linear, and the related 

equilibrium configuration depends on the applied pretension forces. The response to the 

overloads, instead, can be non-linear or almost-linear, according to the direction of 

application and the intensity of the load compared to the above-mentioned forces. 

Hence, ought to the not strictly linear response, the effects of the two load conditions 

cannot be superposed, as already specified. So far, analytical methodologies for the 

single cable have been presented, highlighting the nature of the nonlinear behaviour of 

these structural elements, and allowing to find solutions, in most case approximated, 

suitable and implementable for several kinds of cable structures. 

Therefore, it is important to understand how the cable geometry changes depending on 

the loads, not only because of their intensity, but also and especially of their application 

and arrangement.  

Essentially two cases of uniformly distributed loads are considered: the one applied on 

the cable chord L with the ends at the same height as shown in Fig. 2.11 (b), and the 

other one acting on the arch of the curve as depicted in Fig. 2.11 (a), leading, in this 

case, to the catenary equation, which, in the limit case when the tilt is very small, tends 

to the simplified solution relevant to the first case. 

 

 

(a)                                                                  (b) 

Figure 2.11: Uniform loads: (a) on the horizontal span and (b) along the length.  
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2.4 The cable as continuum or discrete element 

On the basis of the previously introduced analytical methods, and in particular on the 

one relevant to the elastic catenary, a number of more recent approaches to the analysis 

of complex structures as suspended bridge (D. Cobo Del Arco, A.C. Aparicio, 2001) or 

three-dimensional cable structures have been developed (Such et al, 2009). As 

previously highlighted, the advent of computer era has pushed towards the search of 

methods easy to compile. Matching the analytical solution of suspended cables with 

fixed ends with Finite Element methods (FE) formulations, and through the application 

of the Virtual Work Principle (VWP), a new formulation of catenary can be set up 

allowing to increase the solution accuracy and decrease the computational weight 

(C.Wang et al, 2003).  In order to simplify the governing problem equations and to 

allow easy CPU compilation, the cable can be modeled as continuous in Fig. 2.12 (a) or 

discrete element in Fig. 2.12 (b). In both cases, the equilibrium configuration is 

identified under the pretension state and as a consequence of the overloads’ application 

through the identification of the tangent stiffness matrix and the forces vector. 

 

 

 

                                    (a)                                                                    (b) 

Figure 2.12: (a) Continuous and (b) discrete cable model. 

It is easily perceivable that the cable discrete model can be obtained through the 

discretization of the continuous formulation, presenting a number of advantages such as 

to consider the nodal loads on the single cable segments, and to include both geometric 

and mechanical non linearity (A. Shoostari et al, 2013). 
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2.4.1 Continuum modelling of the cable (CCC-Continuum Catenary Cable) 

Let consider a perfectly flexible cable under a uniformly distributed load ( zyx PPP ,, ) 

applied along the three directions in the reference system (Oxyz), as shown in Fig.2.13. 

Moreover, the cable is subject to a heat load t  is assumed. 

Geometrically the cable presents a constant cross-section area, and it is suspended 

between the A and B points with coordinates 

),,(

)0,0,0(

zyxB

A




 

 

 

 

Figure 2.13: Continuous model of a cable under generic load conditions. 

 

 

Denoting by s and a the lagrangian coordinates respectively in the undeformed and 

deformed configurations, in the undeformed configuration 
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and in the deformed one  
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The equilibrium equations in the three directions are expressed by 
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FsP
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 (2.4.1) 

where 

A
z

A
y

A
x FFF ,,   are the beam force components along the three axes at the node A 

T  is the cable stress 

 

The stress T s given as a function of the lagrangian coordinate s by 

 
i

A

ii FsPsT 2)()(       with z,y,xi   (2.4.2) 

Furthermore, the stress T can be also expressed through the elasticity relation as a 

function of the strain, as 

 EAT  (2.4.3) 

where   

E is the elasticity modulus  

A is the cross-section area  
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 is the cable strain relevant to the component of the loads 






 


ds

dsda
c  and the one 

of the heat  tt  , with   denoting the thermal expansion coefficient.  

 

Then Eq. (2.4.3) turns into 

  
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EAT 1  (2.4.4) 

Linking the Cartesian and the lagrangian coordinates, 
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Eq. (2.4.1) and Eq. (2.4.2) are then substituted in Eq. (2.4.5) 
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Then the boundary conditions are applied 
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where 

o  is the cable initial length.  

 

By integrating along the element and using Eq. (2.4.7) and Eq. (2.4.8), the lengths’ 

projection ),,( zyx   are obtained  
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In order to solve Eq. (2.4.9), the differential components of the cable stresses in the 

three directions are introduced, which, denoting   
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are expressed in the form 
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and writing Eq. (2.4.11) in matrix form 
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one gets in compact vector form 

FQdd   (2.4.13) 
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where 

Q is the compliance matrix.  

The stiffness matrix K is got by  

1QK  (2.4.14) 

The stiffness matrix K in Eq. (2.4.14) is then embedded in the tangent stiffness matrix 

with six degrees of freedom 
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Finally, by identifying the force components at the B node  
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the internal forces vector with six components is identified 
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x FFFFFF ,,,,,F  (2.4.17)  

Then, once identified the tangent stiffness matrix and the internal forces vector, the 

cable length 222
zyx    is inferred. 

 

2.4.2 Discrete modelling of the cable (DCC-Discrete Catenary Cable) 

In discrete modelling, the cable is considered to be composed of several cable segments 

as shown in Fig. 2.14. 
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Figure 2.14: Discrete model of the cable with nodal load application. 

 

 

Once denoted by m the number of cable segments and by 
o  the initial length of the 

entire cable, then the undeformed length of each segment is marked by o
t  

m
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After denoting by j  the updated length of the jth element under the load k
ip  applied on 

the kth internal node in the ith direction, by j
ix  the jth component of the sub-element in 

the ith direction in the reference system, by jT  the jth sub-element stress, Eq. (2.4.1) 
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the j
ix components can be computed  







j

k

o
to

t

k

k

k
i

j

k

k
i

j
i

x
xx

11

  





    (2.4.20) 

Substituting Eq. (2.4.18), (2.4.19) and Eq. (2.4.20), one gets  
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After solving the system of equations in Eq.(2.4.21) by the differential components 

A
i

i

f

 , it is possible to identify the compliance matrix Q, besides the stiffness and 

tangent stiffness matrixes, in analogy with what reported in the previous Par.2.4.1. The 

internal forces vector F  is then identified, thus allowing to identify the cable length as 

well. 

In these first chapters, the main features of tensile structures have been highlighted, 

paying particular attention to the study of the simple cable. This problem has been dealt 

with a rigorous approach already during the XVII century with reference to the first 

elements of infinitesimal analysis, due to the non-linearity characterizing these 

structural elements that does not allow the application of effects’ superposition.  

Since then a number of solutions, mainly analytical, have been developed, such as those 

ones referring to the unstretchable catenary, unstretchable parabola, elastic catenary and 

overloaded catenary, and then considering the flexible cable. 

During years, cable structures have been spreading in the construction field, including 

suspended bridges, cable-stayed bridges, coverings of big areas, as far as to play an 

important role in the free-form design thanks to the advent of new materials. 

Thus, the interest in understanding their static behaviour, in addition to the dynamic 

one, has greatly increased. Starting from the solutions proposed from former mechanics, 

several approaches have been developed during years, also as a consequence of the 

advent of the computer era, aiming at simplifying the problem governing equations for 

allowing easy handling and computer programming. 
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New catenary cables have been considered as well, leading to the identification of the 

relevant entities, such as stiffness matrixes and internal forces vectors; cables have been 

modelled both as continuous or discrete elements, applying nodal loads. In this way, 

starting from these models, it is possible to analyse more complex structures, such as 

cable trusses or cable nets, that are deepened in Chapter 3. 
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3. 2D AND 3D SYSTEMS  

3.1 Plane systems with opposite curvature 

In this section, the static behaviour of plane systems with opposite curvature will be 

analysed. 

This structural system can be considered as an evolution of the simple cable one (K. 

Santoso, 2003) since it is characterized by two elements with opposite curvatures, 

linked to each other by either vertical or diagonal cables. The upward cable has the 

carrying function, while the downward cable has the role to tent it. The connecting 

elements can absorb also compressive forces when the carrying cable presents a 

downward concavity (Fig.3.1). 

 

 

Figure 3.1: Schemes of different configurations of cables with opposite curvature.  

 

 

The cable structures with opposite curvature can support loads that are directed in both 

the (upward and downward) directions in the plane, with the same stiffness (K. Santaso, 

2003). 
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Moreover, it has also been shown that these systems are able to give a greater stability 

to the structure, actually, being able, under the same load conditions, to decrease the 

upward displacements of about 63,1%, the downward ones of 1,8%, and the total 

displacements of 29,4% with respect to the simple ones (V. Goremikins, et al 2011) 

(Fig. 3.2). 

 

 

 

 

Figure 3.2: Cable systems with opposite curvature. 

 

  

Tensile element 

Tensile element 

Compressive element 
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These structural typologies present several advantages, and they are particularly used 

for big span roofs and suspended bridges (M. Raoof, T.J. Davies, 2004). 

A first example of cable structures with opposite curvature is represented by the Ice 

Palace in Stockholm by the Swedish engineer Jawerth (1960) (Z. Chen, et al 2014). 

Later, besides the applications for other roof systems, they be found in several 

engineering buildings (M. Majowiecki, 2005), and with different shapes. 

Recently new systems have been developed, also composed of the union of frames 

(beams and piles) with cables with two different curvatures, that are interconnected in 

such a way to stabilize the entire structure under the load action. 

Actually, thanks to the cables, the frame (Fig. 3.3) can resist both gravity overloads and 

wind pressure (S. Lee, et al 2019), compared to structures made of beams and single 

cables. 

 

 

 

Figure 3.3: Tensile structure scheme composed of tensile cables and frames (S. Lee, 

2019). 

 

 

Several methods have been developed, starting from the first approaches proposed by 

Schleyer and Jawerth.  

According to these studies, a methodology was developed based on the hypotheses of 

curtain behaviour and unextensibility of connecting cables, referring only to opposite 



3. 2D AND 3D SYSTEMS 69 

curvature systems linked by vertical elements, advantages of systems with diagonal 

connecting cables were highlighted by Jawerth.  

Since one deals with articulated structures characterized by high non linearity in their 

geometry (Z. Chen et al, 2014), the several analysis models developed during years 

have attempted to control the above-mentioned non linearity through different kinds of 

approaches.  

Nonlinear FE models have been frequently used to highlight their performances with 

and without the overloads (Huang et al,2007). Actually, these structural systems can be 

regarded as discretized structures (A. Sadaoui, et al., 2016) allowing the development 

and the large spread of the above-mentioned models (I. Talvik et al., 2001; Y. Kanno et 

al.,2002).   

To this regard a series of analyses has been led referring to bridge structures built with 

cables with opposite curvatures, considering also the non uniform load conditions, 

highlighting their deformation regime (M.H. Huang, et al. 2008). 

Beyond FE approaches, several calculus models based on exact mathematic form 

expressions have been developed with the adoption of some approximations,  such as: 

neglecting the second order terms in the equilibrium equations of the constituent cables 

in order to obtain the linearization of the problem and to solve the equilibrium under the 

overloads; or neglecting the self-weight of the cables and applying uniformly distributed 

loads along the span; or supposing the inclination of the chord very small and 

sometimes, assuming as continuous the connecting vertical elements (S. Kmet et al., 

2014) (Fig. 3.4). 

 

 

Figure 3.4: Biconcave (a) and Biconvex (b) geometric profiles with continuum 

modelling of the connection elements (S. Kmet et al., 2014). 
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Comparing the approaches, one may observe that in the case of the finite elements 

models some particular attention needs to be paid to the circumstance that some 

elements may be subject to compressive stresses; therefore, in this case the compressive 

stiffness of these elements must be deleted and the acting loads redistributed on the 

adjacent cables. However, if the number of compressed elements is high the structure is 

unstable, and the solution diverges. This case unlikely occurs in closed form models (A. 

Sadaoui et al, 2016).  

As mentioned, one of the main issues in setting up the calculus models is represented by 

the aim of handling them quite easily for computational purposes However, one of the 

first calculus programs both for the linear and nonlinear analysis of these cable 

structures, was developed by Broughton and Ndumbaro and it is based on the Newton -

Raphson technique taking into account both geometric and mechanical non linearity (P. 

Broughton, P. Ndumbaro,1999). The requested inputs concern the structural geometry, 

the elements’ stiffness, the loads arrangement, the boundary conditions, and the 

pretension value. 

Actually, the pretension plays a central role in tensile structures in general, and 

particularly in this type of structures because of lightness. The pretension represents the 

initial load that acts on the structure, and therefore on the cables, in order to have no 

elements in compression after the overloads’ action. 

Thus, the study of these structural typologies mainly concerns the geometry finding 

once known the pull forces, and the search and the identification of the static and 

deformative regime after the external loads’ application. 

It is important to remember that the pretensional forces must be identified with 

reference to the most dangerous load condition, checking that: the admissible stresses 

are not overpassed, the deflections respect the deformability of the material, and the 

internal forces in the cables is not null. 

Referring to the pretension geometry, one assumes that the self-weight is negligible 

compared to the applied loads. 

In the following, an analytical method for the analysis of plane structures with opposite 

curvature suitable for several typologies is described.  
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3.1.1 The pretension geometry 

 

One refers to the structural scheme given in Fig.3.5, supposed to be subject to the self-

stress state reached after the pretension. 

In the scheme 1,2,3,…,k,…n identify the n internal nodes, while A,B,C,D  the boundary 

ones. 

 

 

 

Figure 3.5: Scheme of a plane cable structure with opposite curvature- pretension 

geometry.  

 

 

The kth internal node is referred to with coordinates kz  and ky  , and interconnected with 

the ith. node with coordinates iz  and iy , through the cable segment with length ik . 

In synthesis 
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ik is the cable segment length with ends i-k 

22

ikikik zy   (3.1.1) 

with 

kiik yyy   (3.1.2) 

kiik zzz   (3.1.3)  
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Then, being 
o

ikT  the internal forces in the generic cable i-k, and ikA  the cross section 

area, the equilibrium of the generic kth node for the horizontal translation is 

 


i ik

iko
ik

z
T 0


  (3.1.4) 

and for the vertical one 
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i ik
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T
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 (3.1.5)  

One should consider that it is impossible to always arbitrarily fix the geometry of the 

structure in order to find the associated forces regime satisfying Eq. (3.1.4) and Eq. 

(3.1.5). Actually, the node equilibrium cannot be generalized for any configuration, 

since the internal forces must be in tension. 

Consequently, there is the requirement to find the configuration and therefore the 

pretensioned geometry respecting the above-mentioned conditions. 

The problem of  finding the pretensioned geometry can be dealt with in several modes: 

starting from the initial lengths o
ik  of the cable segments between the i th and kth node, 

and the internal forces at the ends, that is the connection cables with external restraints 

that apply the pretension to the structure. Therefore the non-linear system in 2n 

equations and 2n unknown variables  kk zy ,  is identified1, that is not homogeneus 

because the coordinates of the end nodes A,B,C and D are known. 

                                                           
1Due to the constitutive law(cont.): 
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Another method provides to write a system in 2n non-linear equations and in 2n 

unknown variables ky  and kz  to compute the initial length of the generic segment, by 

fixing the stresses o
ikT 2 and therefore the pretension. 
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o
ik  is the initial length of the generic cable segment i-k should have in order to achieve 

the final length ik under the o
ikT  force. 

In the above-described methods, one gets some systems that are quite difficult to solve 

because the systems are nonlinear with a large number of unknown variables.  

Considering and fixing the pull horizontal component 
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in such a way the equilibrium condition along the z-axis3 is satisfied by  
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while  the equilibrium along  the  y-axis4 should satisfy  
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In order to satisfy Eq. (3.1.11) it is sufficient that only the ordinates ky  are undtermined. 

Therefore kz  can be arbitrarly fixed, thus reducing the number of equations from 2n to 

n, and, hence, leading to the solution of a linear problem governed by n equations in n 

unknown variables ky . 
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Therefore, one writes Eq. (3.1.11) for any internal node and, once identified the 

unknown variables, the internal forces can be computed by  
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Subsequently, by Eq. (3.1.8) 
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the initial lengths of any cable segment composing the system can be determined in 

order to identify the equilibrated and compatible configuration.  

So far, the case where the examined structure is in a self-stress state has been supposed.  

In the following Par. 3.2, the behaviour of the above-mentioned structure under the 

overloads’ action is analysed. 

3.1.2 The overloads’ effect 

The problem of the structure under the overloads’ action is now dealt with. The loads 

act on the nodes in the same plane of the system as shown in Fig.3.6; therefore, the 

nodes undergo displacements in the reference axes directions (y, z).  

Let suppose the cable segment straight, even if it stretches of 
ik  due to the nodal 

displacements.  

 

 

Figure 3.6: Static scheme of a plane cable structure in (Oyz). 

 

Denoting by: 
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kyP ,  e kzP ,   the vertical and horizontal components of the applied nodal load 

respectively, assumed to be positive if their versus is concordant with the reference axes 

one.  

kv and kw  the vertical and horizontal components of the displacements respectively, 

assumed to be  positive if their versus is concordant with the reference axes one 

kiik vvv   

kiik www   

ik  the length variation of the cable segment starting from the length ik  

ikT  the pull in the cable due to the pretension and the applied overloads 

t  the heat variation;  

  the thermal expansion coefficient;  

 

Both t  and   depend on the cables’ materials. 

 

 

 

Figure 3.7: Deformed beam due to overloads. 

 

 

Fig. 3.7 shows the initial and the deformed configuration of the cable, for which the 

equilibrium equations in the horizontal and vertical direction are respectively 
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Let denote by ikH  the pull horizontal component 
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Substituting Eq. (3.1.12) in Eq. (3.1.9) and Eq. (3.1.10), the equilibrium equations to 

translation are 
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To identify the problem solution, the elastic-kinematic relations should be identified, 

that are the relations connecting the static components ikT  and ikH  with the kinematic 

ones ikv  and ikw  . 

Thus, with reference to Fig. 3.7, one can infer  
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Furthermore, since  

222
ikikik yz   (3.1.16) 

and then 

  0)(22 222  ikikikikikikikikik vywzvw  (3.1.17) 
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solving for ik 5and simplifying, one gets 
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Moreover, always referring to Fig. 3.7, ik  can be expressed as  
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Thus, Eq. (3.1.18) turns into 
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Because of the constitutive law 
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remembering Eq. (3.1.4) and Eq. (3.2.17), one gets 
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Taking into account Eq. (3.1.17), Eq. (3.1.18) and Eq. (3.2.10) and making the suitable 

substitutions in Eq. (3.1.19), one gets 
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To identify the searched elastic-kinematic relations, Eq.(3.1.17) is equalized to Eq. 

(3.1.22), obtaining ikH . Hence, set the problem, one can proceed to the search of the 

solution, that can be hard to compute in this way. Thus, remembering that 

kiik vvv   

kiik www   

ik  is the length variation of the cable segment obtained starting from the 

pretensioned length ik ,  

 

some simplifications may be applied, and in particular: 
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which means that these ratios can be considered negligible, allowing to introduce the 

relevant changes in Eq. (3.1.11), Eq. (3.1.12), Eq. (3.1.21), Eq. (3.1.22). 
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These equations then, after putting 
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Furthermore, the pretension forces have to oppose the deformations of the structure; 

therefore, they may be supposed greater than internal forces induced by the external 

loads 
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ik HH   (3.1.31) 

Taking into account Eq. (3.1.31), and Eq. (3.1.16)-(3.1.17), the translation equilibrium 

equations, respectively in the horizontal6 and vertical7 direction, turn into 
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Hence, now it is possible to write the two equilibrium equations for the n internal nodes, 

substituting the value of ikH  obtained from Eq. (3.1.30), into the above-mentioned 

expressions; then the problem in the 2n unknown variables kw  and kv  is solved. 
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One then proceeds by iteration, considering the terms 
ik

ik
ik

z

v
H




 , neglected in the 

previous calculus phase, and adding them as fictitious loads to the external loads. 

Therefore *
kv  and *

kw  are computed and one proceeds this way until the results from two 

subsequent iterations present approximatively coinciding values, that is up to 

convergence. 
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Once identified ikv , it is substituted in the first equilibrium equation obtaining the 

updated value of 
ikw . These values are denoted by *

ikv and *

ikw and the process is 

repeated up to convergence.  
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One should also consider that in the reported procedure, the displacement components 

of the connection nodes between the structure and the restraints are supposed known.  

Denoting by M the connection nodes with the restraints (Fig. 3.8), one may infer that,  

 

Figure 3.8: Cable structure with opposite curvature in the plane (Oyz), where M denote 

the connection nodes with the constrained ones.  

 

through these nodes, the structure transmits on the restraint the horizontal and vertical 

reactions, given by 
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where i is the ith internal node connected to the node M through a cable segment. 

If the fixed nodes are denoted by r, the displacements of M are 
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j
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'   (3.1.40) 

where 

'' ,,,
jMjM

vvww jMjM  are the influence coefficients.  
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These latter expressions, together with Eq. (3.1.32) and (3.1.33), complete the problem 

solution. 

3.2 Cable nets 

 

Spatial systems include a large range of structures; actually, referring to the literature, 

there are several definitions that can cause some confusion. However, among all, the 

definition given by the Working Group of the International Association on Spatial Steel 

Structures better describes these structures;  

 “A space frame is a structural system assembled of linear elements so arranged that 

forces are transferred in a three-dimensional manner. In some cases, the constituent 

element may be two-dimensional. Macroscopically a space frame often takes the form of 

a flat or a curved surface”.  

To this typology a number of structures belong, such as membrane structures, suspend-

domes, spatial structure presenting a dome shape and typical of gyms’ coverings. 

tensegrity structures, tensarity structures and cable nets, the latter defined as “a 

structure system in the form of a network of elements (as opposed to a continuous 

surface). Rolled, extruded or fabricated sections comprise the member elements. 

Another characteristic of latticed structural system is that their load-carrying 

mechanism is three dimensional in nature” (ASCE). 

According to Dong et al (S. Dong et al., 2012), the story of spatial structures can be 

divided into three main phases: ancient, pre-modern and modern. In particular, the first 

one refers to thin reinforced concrete shells, and the last one to cable nets, characterized 

by the use of light material and modern technologies: the combination of materials and 

different shapes, the application of the pretension and the new structural concepts are 

their fundamental features.  

Moreover, based on the component elements, one may distinguish stiff spatial 

structures, composed of stiff members like beams, and flexible structures, when the 

constitutive elements are cables or membranes. 

In this paragraph, with respect to flexible spatial structures, i.e. cable nets, that involve 

some additional complexity in the static calculus because of their geometric features, 

some examples are showed (Figs. 3.9-11).  
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Figure 3.9: Olympic Stadium, Monaco, Germany (1970); Frei Otto. 

 

  

Figure 3.10: Diplomatic club heart tent, Riad, Saudi Arabia (1980); Frei Otto. 

 

  

Figure 3.11: Tehran Birds Garde, Tehran, Iran (2017); Diba Group. 

 

Cable nets may be considered as a derivation of the systems with opposite curvature, 

where the cables (the carrying one and the stabilizing one) are arranged in different 

vertical planes that usually intersect with each other orthogonally. 
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Basically the net shows two or more series of cables that stretch out homogeneously the 

generated surface in all directions. Compared to plane structures, in the cable-nets the 

external loads act in a plane different from the one of the cable, thus introducing some 

complexity on the calculus also ought to the increasing of the unknowns’ number and 

therefore of the equations to solve. 

Thus, the study of these structures has been motivating several researches and it is 

constantly evolving (Such et al.,2009). A lot of methods and theories have been 

developed about the geometry finding both under pretension and overloads applications. 

The first solving approaches referred to two main theoretical approaches: the continuum 

and the discontinuous on., then modified during the years. 

The discontinuous approach, initially introduced by Bandel (H.K. Bandel, 1959), is 

based on the writing of equilibrium and compatibility equations for each node 

composing the structure, and then solving the system.  

The formulated equilibrium equations are linearized and controlled through 

compatibility ones, proceeding then to the application of iterative methods to find the 

solution. 

The studies of Siev and Eidelman (A. Siev, J. Eidelman, 1964), Mollman and Mortensen 

(H. Mollman, P.L. Mortensen, 1966) are based on these theories, where horizontal loads 

and displacements are considered. 

The continuous approach considers the structure as a membrane without stiffness for 

tangential stresses, reacting exclusively with normal tensile forces. Hence, it is 

supposed that the structure is characterized by a textile material obtained through the 

approach of the cables. Therefore, a continuum structure is achieved, involving 

differential equations and introducing the boundary equations.  

This theory has been at the basis of several studies, such as the Eras and Helze’s ones 

(G.Eras, H.Elze,1963), similar to the  Bandel’s discontinuous theory, that assumes only 

the action of vertical loads and therefore vertical nodal displacements to solve the 

problem; or to the Schleyer’s approach (F.K. Schleyer,1965), which considers also the 

horizontal displacements, but only in the second approximation. 
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Subsequently, the methods have been divided into two macro-categories, basically 

referring to the nonlinear displacement methods or force density methods (FDM), used 

both in the form-finding and in the static problems, and therefore for searching for the 

equilibrium conditions. 

Iterative methods which update the configuration at any step respecting the equilibrium 

conditions, belong to the first group. Argyris (J.H. Argyris,1974) was one of the first 

authors to use this method, for the design of the Olympic Stadium in Monaco; then it 

has been used also by Vilnay (O.Vilnay, 1990), and by Jayaraman and Knudson (H. 

Jayaramam, W. Knudson, 1981), who developed two-nodes finite elements on the basis 

of the elastic catenary equation. Finally, more recently, Andreu et al (A. Andreu et al, 

2006), instead, used the deformable catenary within a FE method. 

The FDM, originally developed by Scheck (H. Scheck, 1974) among others, has been 

widely used for several typologies of cable systems as far as for membranes. 

However, the beginning of the computer era in the early sixties, led changes on the 

solving approaches referring to the static problems of these structures. Actually, 

methods easy to computationally implement were developed, such as the FE method, 

firstly developed under small displacements. Since cable nets usually undergo large 

displacements under the overloads’ action, the FE method could not be used in its 

original formulation, but it was modified for structural nonlinear problem solutions, 

motivating a number of iterative methods for its application. Among these, the most 

suitable and reliable method for cable structures is the Newton-Raphson one (Tibert, 

1999). 

On the basis of these theories, a method for the nonlinear analysis of the examined 

structures has been proposed recently, referring to a variational formulation in 

curvilinear coordinates in the field of finite deformations. This study, after identifying 

the displacements as kinematic variables of the problem, through the Virtual Work 

Principle application (VWP) infers the relation between deformations and 

displacements, implementing, then, the finite elements method both for continuum 

elements and discontinuous ones (Miquel et al, 2017). 

Again always under the perspective of methods easy to be computationally 

implemented, matrix methods have been proposed where the structure is analysed as a 
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discrete system and the governing problem equations are written in matrix formulation. 

These approaches are based on the classical displacement formulation, where the 

unknown variables are the kinematic components, or on the force formulation where the 

variables are identified in the cable forces. For programming purposes the most adopted 

is the displacement approach, since it is very versatile and can applied to several cable 

structures typologies, load conditions, stiffness variations (Lan,1999). 

Other methods are based on the minimization of the Total Potential Energy through 

constrained procedures (Toklu et al, 2017). 

In Par. 3.3.1 a cable-nets system is analysed through an approach based on a membrane 

analogy, essentially based on writing the governing equilibrium and compatibility 

equations in an integral-differential form. Only at the second stage, some simplified 

hypotheses are introduced, in such a way to avoid neglecting some important 

parameters for the calculus and for the solution of the problem at the initial phase of the 

procedure. 

The adopted membrane analogy is basically founded on regarding the net as a 

continuum, which exhibits an equivalent behaviour both in terms of stiffness and 

resistance; in this way the mechanical properties (stiffness, elasticity modulus, thin, 

Poisson coefficient, etc.) of the system under analysis are calculated on the equivalent 

membrane, referring to the continuous theory. 

As for plane systems, starting from the pretensioned state, neglecting the self-weight, in 

the case of cable-nets the governing equilibrium equations are projected on the three 

axes, passing to a three-dimensional system. 

 

3.2.1 The pretension geometry 

With reference to the points in Fig. 3.12  
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Figure 3.12: Cable-nets tensile structure scheme. Pretension geometry with details of 

the cable segment i-k. 

 

Considering the pull horizontal components along the x and z axes 
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one has, for equilibrium to horizontal translation, 
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and, for vertical translation 
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The latter Eq. (3.2.8) turns into8 
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After Eq. (3.2.6), one can proceed fixing the initial length or forces, related to each 

other through the constitutive law 
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The system in 3n linear equations and in 3n unknown variables kkk zyx ,,  is obtained 
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The pretension configuration is identified subsequently based on the fixed values of the 

lengths and initial forces.  

The above introduced problem is hard to solve and moreover the forces cannot be 

computed by fixing arbitrarily the pretension geometry. 
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One proceeds fixing arbitrarily two of the unknown variables kx  and kz , and the 

horizontal components of the pull components 
o

ikxH ,  and 
o

ikzH , , in order to check the 

horizontal equilibrium Eq. (3.1.6) - (3.1.7) 
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In this way the number of unknown variables ky  is reduced from 3n to n, and they can be 

computed considering the third equilibrium equation for any internal node of the net  
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The scheme shown in Fig. 3.12 is referred to, composed by a cable net with a plant 

parallel to the x and z axes. The elements composing the net, in this specific case, 

belong to planes parallel to the coordinate ones and orthogonal with each other. 

In each node two cables belonging to different and orthogonal planes, interconnect; 

hence for any cable segment i-k, the contribute of only horizontal component of forces 

is different from zero. In order to satisfy Eq. (3.2.6) - (3.2.7), the horizontal component 

in each cable needs to be constant, because the force parallel to the z-axis does not 

contribute to balance the force parallel to the x one, being orthogonal to each other.  

Consequently, at each node two cables are intersected, belonging to different planes and 

reciprocally orthogonal; then for any cable segment i-k there is one contribution of a 

single horizontal stress component ( o
ikxH , or o

ikzH , ) different than zero. 

In order to satisfy the equilibrium equations Eq. (2.6.6)-(2.6.7), the horizontal 

component for any cable must be constant, since the internal force along z cannot 

contribute to the equilibrium of the internal force along x because they are orthogonal, 

and vice versa. 
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Therefore, at the interconnection node a vertical force acts, resulting by the mutual 

action of the mentioned internal forces. Thus, the resulting equilibrium equation is 

given by the expression, in pretension phase and without any vertical load on the kth 

node 
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One can be put in evidence that the values of 
o

ikzH ,  and 
o

ikxH ,  are fixed and chosen in 

order to satisfy Eq. (3.2.6) and (3.2.7), and considering the contribute of the unique 

horizontal component of the force, implying that it is constant for any cable segment. In 

this way the values of 
ky  are easily computable. 

Hence, once identified the unknown variables, one can compute the values of the pull 

and the initial length for any cable segment in order to obtain the equilibrated and 

compatible solution. 

 

3.2.2 The continuum approach and membrane analogy 

The method is now essentially based on the continuous theory of the static behaviour of 

tensile cable-nets structures. One assumes a membrane model of the structure in order to 

reduce the algebraic nonlinear equations to differential ones, compared to the 

discontinuous theory. 

With reference to Fig. 3.13, the surface element with dimensions xs , zs , whose plane 

projections are respectively x  and z , in the initial state is undergone by the tensile 
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forces o
xT  and 

o
zT  per unit length of the cable, whose plane projections 

o

xH  and o

zH  are 

the horizontal components of the pretension drag forces per unit length. One gets9 

 

Figure 3.13: Geometry of a cable net assimilable to a membrane where x  and z  are 

the projections in plant of the cables respectively along the x and z axes; y  the height 

variation  between the vertices A and B (similarly for D and C).  
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The pull forces per unit length of the cables along the z and x directions can be 

computed referring to the horizontal components in Eq. (3.2.14) 
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and substituting Eq. (3.2.16) in Eq. (3.2.15) 
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the forces can be expressed 
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Considering the infinitesimal surface equilibrium equation one gets10 
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Therefore, the problem of identifying the pretension geometry reduces to the integration 

of Eq. (3.3.18), after imposing the boundary conditions. If they are homogeneous, the 

solution is of the type y (x, z) = 0, highlighting the feature that, for the tensile cable net, 

without loads, where the ends are at the same height, then the equilibrium configuration 

is certainly plane. 

Another pretension geometric feature of nets can be deduced by Eq. (3.2.18), whence 
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Assuming o
xH  and 

o
zH  positive if in tension, the second derivatives, that are the 

curvatures presents opposite signs. This property clarifies the saddle configuration 

shown in Fig. 3.14 assumed by these structures. 
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Figure 3.14: Saddle configuration scheme of a cable-net. 

 

 

3.2.3 The overloads’ effect 

 

One considers the equivalent membrane and assumes the action of the external loads 

zyx PPP ,, applied per unit surface as shown in Fig. 3.15. Moreover, with reference to 

Fig. 3.15, '''''' ,,, wuwu  denote the horizontal differential displacements compared to 

the node A, and 'v  the vertical one. 

 

 

Figure 3.15: Cable nets tensile structures- external loads application. Deformed (in 

red) and undeformed (in black) configurations. '''''' ,,, wuwu  denote the 

displacements along x and z respectively, ''v the displacement along y compared to the 

height of point A. 
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Due to the action of the load the configuration changes, starting from the compatible 

and equilibrated one reached in the pretension phase. The surface element
zx ss  , with 

plant projection zx , turns into the surface element 
''

zx ss  , whose projections in plant 

are no longer parallel to the coordinate axes (Fig. 3.15). 

Consequently, the forces 
o

xT  and 
o

xT  assume the values xT  and zT  in order to balance 

the load and assume the new shape. 

Specifying that u, v, w denote the displacement components along the three reference 

axes, considered positive forwards positive axes 
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the forces are given by 
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where 

xH is the pull horizontal component, in the x direction, due to the loads’ application  















x

u

s

s
xTzH

x

z
xx 1

'

'




  (3.2.21) 

zH  is the pull horizontal component, in the z direction, due to the loads’application  
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 (3.2.23) 

Here the directions of the forces are not parallel to the x and z axes, because of 

deformation. The equilibrium equations for the new surface element, and therefore the 

elastic-kinematic equations are set in order to identify the unknown variables of the 

problem. 

Supposing negligible the first derivates compared to the unit, the equilibrium equations 

following the analytical developments 
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One highlights that the terms in Eq. (3.2.24) 

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H
z

x  are the aliquot of the 

load xP  absorbed respectively by the cables belonging to the planes parallel to the x and 

z axes. 

Assuming 
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as the aliquot of the load xP  absorbed by the cables in the z direction due to zH ,and 

similarly 
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the aliquot of the load zP  absorbed by the cables in the x direction due to xH , 

Eq.(3.2.24-3.2.25) turn into 
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Consequently, Eq. (3.2.26) 
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where 

xA  and zA   are the cross-section areas per unit length obtained by the vertical plane with 

equation z = const and x = const.   
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 (3.2.37) 

t  and   are the thermal variation and coefficient, referred to the environment and 

material of the cable.  

The formulated problem shows some calculus difficulties; thus, a number of simplified 

hypotheses are introduced in the first stage, neglecting some terms that are then 

reintroduced in the second phase.  
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This is because the load aliquot 
xP ( *

xP ) absorbed by the cables arranged in the planes 

parallel to the z axis is less than the one absorbed by the cables in the x direction. Then 

Eq. (3.2.38) holds. Similarly, the load aliquot zP ( *

zP ) absorbed by the cables arranged in 

the planes parallel to x is assumed less than the one absorbed by the cables arranged in 

planes parallel to z; hence, Eq.(3.2.39) holds. 

Then one can approximate 0**  zx PP . 

Moreover, as previously specified for the system of cables with opposite curvature 

0

0

zz

xx

HH

HH




 (3.2.40) 
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and being from Eq. (3.2.33) 
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The contribution of *
yP  can be neglected in Eq. (3.2.34) 

yy PP *  (3.2.42) 

and, then, in the first approximation 

0***  zyx PPP  (3.2.43) 

Hence the equilibrium equations turn into11 
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(cont.) 
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 (3.2.44) 

By integration of the first two Eq. (3.3.44) and carrying on with the relevant 

developments, one gets 

0)(

0)(
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  (3.2.45)  

Where )(zf   and )(xg  are two arbitrary functions to be identified through the boundary 

conditions, and x  and z  are the coordinates of the boundary points of the structure. 
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Actually, )(zf   and )(xg  are the values assumed by xH  and zH  at the boundary 

points with coordinates x  and z . 

 

 

 

Figure 3.16: Projection in plant of the boundary of cable-net. 

 

With reference to Fig. 3.16, it is possible to assume the above-mentioned coordinates in 

the following form 
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and in analogy 
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Taking into account Eq. (3.2.35) 
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one gets 

















































x

x

zz

z

z
z

x

x

xx

x

x
x

dzPxgtk
z

y

z

y

z

u

k

EA
H

dxPzftk
x

y

x

y

x

u

k

EA
H

'2
3

'2
3

)(

)(





 (3.2.46) 

that may be solved with reference to 
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Let assume now that ccc wvu ,,  are the displacements of the constrained points due to the 

actions undergone by the structure caused by the action of the cable nets on it  (that are 

assumed equal to zero). 

The functions u, v, w to be identified, should comply with the following boundary 

conditions 

         
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 (3.2.48) 

The equalities concerning the horizontal displacements can be easily verified, imposing  
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 (3.2.49) 

where 

''C
u is the horizzontal displacement of the point ''C  in the x direction 

''C
w  is the horizontal displacement of the point ''C in the z direction 
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)(zu  is the relative displacement of the connecting points at the end of the cable along 

x  

)(xw  is the relative displacement of the connecting points at the ends of the cables 

along z 

 

Eq. (3.3.49) impose that the relative displacement of the fixed points along x and z of 

the boundary cables are equal to the displacements in the same directions of the ends of 

the same cables, with the possibility of rigid horizontal displacements. 

To solve the problem for identifying the functions u, v, w, one assumes that the 

boundary is stiff, and therefore 0 CCC wvu , and one gets  
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Substituting 
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one may identify the unknown functions )(zf  and )(xg , )z(Hx , )x(H z  after some 

developments. Starting from 

0
)(

0)(

''

'

''

'

''

'

''

'

2
3

2
3

''

'

''

'

''

'

2
3

'

'

















































  

 

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

dx
x

v

x

y
dxtkdxdxP

EA

k
k

EA

zf

dxtkdx
x

v

x

y
dxdxPzf

EA

k





 

one assumes 
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and it is possible to get 
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and, for the hypothesis of stiff boundary, the displacements are null, then 
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getting 
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One finally infers 
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 (3.2.52) 

Substituting Eq. (3.2.52) in the third equation of vertical translation equilibrium of Eq. 

(3.2.44) , one gets12 
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By integrating Eq. 3.2.52, the unknown displacement v  is identified, which after 

substituted in Eq. (3.2.53), allows to identify zx HH  , .  

                                                           

12 

 

     

   

        0)()(),(

with

0),(

0)(

)(

2

2

2

2

2

2

2

2

2

2

2

2

2

2
0

2

2
0

2

2

2

2

2

2

2

2

2

2
0

2

2
0

''

'

''

'

''

'

''

'

''

'

''

'

''

'

''

'



















































































































































































yzx

z

z

z

x

x

x

z

z

x

x

zx

yzx

z

z

z

z

z

x

x

x

x

x

zx

P
z

y
P

x

y
P

z

y
dzPxNxG

x

y
dxPzMzFzxq

zxqvdz
z

y

z

y
xGvdx

x

y

x

y
zF

z

v
H

x

v
H

P
z

y
P

x

y
P

z

y
dzPvdz

z

y
xNxG

x

y
dxPvdx

x

y
zMzF

z

v
H

x

v
H





 



3. 2D AND 3D SYSTEMS 115 

Then the values of ccc wvu ,,  can be calculated, remembering that they were initially set 

equal to 0 in the first approximation. 

Integrating Eq. (3.2.47), once known the displacements, one may compute the loads 

***
zyx PPP  , neglected till now. Thus Eq. (3.2.48), considering the above-mentioned 

loads, turn into 
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Following the procedure developed in the above one gets  
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One go on to identify **, zx HH  , which, in analogy with what previously developed,  

are substituted in the vertical translation equilibrium equations, allowing to compute *v  

in the second approximation 
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One proceeds in this way up to convergence. 

 

3.3 Bidirectional systems  

 

Bidirectional structural schemes belong to the category of nets (Fig. 3.17-24), 

recognized in structural typologies characterized by two families of cables 

interconnected to each other, where the interconnection is exclusively between the ones 

belonging to different families. The scheme can be plane or spatial when the 

constitutive elements belong to different planes. 

The increasing wish to lighten the modern buildings, aiming at the maximum 

construction transparency, have been proceeding together with the search of adequate 

supporting structures for wide glass windows, in order to bear both vertical and 

horizontal actions, like the wind actions (Bedon, 2014). 

Hence, plane bidirectional schemes are usually adopted as supporting elements for 

glazed facades, minimizing the use of teel in order to maximize the lightness and 

transparency of the building. 

 

3.3.1 General features  

 

One of the first buildings with plane bidirectional scheme as support to the façade, was 

the Hotel Kempinski in Monaco (1989/1990) in Fig. 17, where the main structure 

consists of a net of two families of cables, with fixed nodes which bear the glass panels. 
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Figure 3.17: Hotel Kempinski Façade, Munich (Germany),(1989-1990). 

 

 

  

 
Figure 3.18: Protection system of ancient Roman ruins in Germany (2011): glazed 

façade supported by a plane bidirectional scheme. 
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Figure 3.19: Time Warner Center, New York (2003); the glazed facade is supported by a 

system of cables with springs at the base. They provide also a pretension state in the 

cables.  

 

 

One of the advantages of the use of these systems lies in their stiffness and stability, 

obtained by the pretension applied to the constitutive cables. As above-mentioned, 

bidirectional schemes can be spatial too, acting as supporting systems or covering 

buildings with large spans (Figs. 3.21-23), also adopted for temporary installations or 

design buildings (Fig. 3.24). Thanks to the characterizing lightness, these covering 

systems give the possibility to avoid the arrangement of supporting elements (i.e. piles) 

in the inner spaces. 

One of the first examples of spatial bidirectional schemes can be identified in the roof 

realized by Frei Otto, for the Munich Park (Fig. 3.20). 
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Figure 3.20: Olympic Park, Munich, Germany (1970); Frei Otto. 

 

  

 

Figure 3.21: Autostadt Roof and Service Pavilion, Wolfsburg, Germany; Graft 

Architects. 

 

 

  

Figure 3.22: Bidirectional covering to 

support a membrane system. 

Figure 3.23: Covering of an open theatre, 

Palma de Mallorca, Elias Torres, 

Martinez Lapena. 
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Figure 3.24: Rope and Sound; Squid-Lab. 

 

 

As it can be highlighted from Figs.3.21-24, cable-nets in general and spatial 

bidirectional schemes in particular, can assume several configurations. As known, these 

structures belong to the category of the tensile ones (M. Patelli, M. Quagliaroli, 2010) 

and therefore they work only with axial forces. Thus, the stress state and the geometry 

are strictly connected to each other. 

Hence, other problems concern the initial form-finding or the initial zero state, which 

requires the searching of the nodes position after the assembly of the structure, 

considering the cables forces or some related parameters as known. 

 

3.3.2 Equilibrium of bidirectional systems 

 

One of the most used approaches is represented by the FDM (Force Density Method), 

introduced by Scheck in the 1974 and then changed and conformed to the most modern 

typologies of structures as tensegrity (Zang e Ohsaky, 2006). 

Thus, in this paragraph, a methodology for searching for the points’ coordinates of a 

spatial bidirectional scheme, is described. 
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Figure 3.25: Plant of a bidirectional scheme with identification of two cables’ families. 

 

 

The method is based on the walkthrough technique13 for solving equilibrium equations 

system, for a net composed by n cables along one direction and m in the other one, 

allowing to reduce the number of the above -mentioned equations. 

On the basis of the methods available in literature about the initial configuration 

finding, one refers to those ones easier to be handled from a computational point of 

view, and in particular to the method developed by R.Avent  (R.R. Avent, 1969), which 

was then extended to several study cases, such as nets with non stiff boundaries or 

without rectangular plants for finding the initial configuration, i.e. the nodes’ 

coordinates under some identified conditions and under the pretension. 

The method, based on the Avent’s approach and on the walkthrough technique, solves 

the problem by reducing the number of equations, based on some simplified hypotheses:  

the cables composing the structure are defined as beams but are able to transmit only 

tensile forces; 

the nodes are point-like;  

the loads are considered nodal; 

                                                           
13 It consists of a technique, mostly used for algorithms’ checks, aimed at validating the accuracy of the 

analysis models, based on the identification of the error but not on its correction, in order to improve 

results. 
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the Hooke law is valid (linear elastic material); 

 

 

Figure 3.26: Nodal point in a bidirectional scheme.  

 

With reference to Fig. 3.26, denoting by i the interconnection node of the structure, by j 

the adjacent ones, by Pk,i the load acting on it in the k direction and by Tij the force in the 

ij beam, the following relations hold, respectively for the translation equilibrium and 

compatibility 

 
j

ikijkij PT ,,cos     (3.3.1) 

where 

ijk ,  is the inclination angle of the beam ij with respect to the k direction  

Pk,i is the component along the k direction of the load Pi acting on the node i 

 

Eq. (3.4.1) can be rewritten as follows, introducing the kth coordinates of the nodes i and 

j and the length assumed by the beam after the pretension 

  
j

ikikjk

ij

ij
Pxx

T
,,,


 (3.3.2) 

where 

jkx ,  is the x-coordinate of the node j 

ikx ,  is the x coordinate of the node i 

ij  is the length of the beam ij after the pretension 
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Due to compatibility, instead, and by the constitutive law,  

ij

ij

ij

ij

EA

T




  (3.3.3) 

with 

E     the Young modulus 

ijA    the beam cross section area 

ij  the length variation of the beam ij 

ij   the pretensioned length of the beam 

 

The equation highlights that the forces in the beams produce a length variation ij , 

because of the elasticity of the composing material. 

The solution of the linear equations system may be achieved by partial differences, 

where the equilibrium equations composing the system and written for any node, have 

as unknown variables the coordinates of the node and of the adjacent nodes. However, 

this approach shows some limits, mainly complying with the possibility of application 

only for cable-nets with rectangular plant and stiffened boundaries, and subject only to 

vertical loads.  

In the following one shows an approach aiming at accounting also for structures with 

non stiffened boundaries, without rectangular plant and with internal points at known 

height, but it is suitable only for bidirectional schemes. 

Let refer to Fig. 3.25 where the generic interconnection node of a bidirectional scheme 

and the adjacent nodes are shown. Moreover, the length and the tension forces of the 

beams are indicated. 

According to the Avent’s method, the equilibrium equations are written for the 

interconnected node, where the unknown variables are the coordinates of the node itself 

and of the adjacent nodes.  
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Figure 3.27: Plant details of a bidirectional scheme.  

 

Figure 3.26: Node of a bidirectional scheme, where the two families are parallel to the 

x and z axis, subject to overload. 

Denoting by  

 (i,j) the crossing point of the ith cable of the first family, with the jth of the second 

family 

x(i,j), y(i,j), z(i,j) the coordinates of the identified point by the ith  and jth  cables of the 

two families  

ijxT ,  the force in the beam of the first family 

ijx,  the length of the cable of the first family  

ijzT ,  the force in the cable of the second family 

ijz,  the length of the cable in the second family 
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ijx

ijx

x

T
D

,

,


  the density force in the x direction defined as the ratio between the length of 

the cable segment along the acting direction  

ijz

ijz

z

T
D

,

,


  the density force in z direction 

the equilibrium equation Eq. (3.3.2) is14 

        ijyijjijizijjijixijjiijzijjiijx PyyDyyDyyDyyD ,,1,1,1,1,,,1,1,,    (3.4.4) 

which is nonlinear, because ijx,  and ijy ,  depend on the points’ coordinates. 

The advantge of this approach is that the force density is assumed known rather than the 

pretension one. Hence, ijx

ijx

ijx
D

T
,

,

,



 and ijz

ijz

ijz
D

T
,

,

,
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
 are known and Eq. (3.4.4) have 
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only y as unknown variables and therefore one may infer a recursive equation for the 

node 1, jiy 15 
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Similar conclusions can be achieved for x(i,j+1) and z(i,j+1). 

Let anyway proceed with the y coordinate. 

To identify the actual solution of the problem, the particular ),( jiy  and homogeneous 

*
ky  solutions are searched for.  

To find the particular solution one considers Fig.3.27, where the external points and 

some internal ones are identified. 

 

 

 

Figure 3.28: Plant of a bidirectional scheme and identification of the nodes.  
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Starting from the boundary ones, for the cables in the x direction one attributes the 

coordinates only to the green nodes; while, for the cables in the z direction, the heights 

at both ends are assigned. One considers a sufficient number of internal points to which 

arbitrary coordinates are attributed and, through Eq. (3.3.6), the coordinates of all 

internal points and end ones along x are computed, thus composing the particular 

solution ),( jiy 16. 

Then one proceeds to identify the homogeneous solution ),(* jiyk .  

With reference to internal points (in black in Fig.3.27), the homogeneus solution is 

computed, nullyfing the heights of the boundary points and the contribution of the 

external load  
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Linearly independent heights are arbitrarily attributed in order to identify the heights of 

all points through Eq. (3.3.7). 

The solution is given by the following relationship 

),(),(),( *
2

1

jiyjiyjiy k

m

kk


 17 (3.3.8) 

with 

),( jiy  the complete solution (3.3.9) 

The values k  must be computed in order to identify the actual heights of the boundary 

points. Thus, denoted by ),( cc ji  one of these points  and by ),( ccc jiy  its height, one has 

),(),(),( *
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1
cck

m

kkccccc jiyjiyjiy 
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  (3.3.10) 

From Eq. (3.3.10), k  are inferred  
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  (3.3.11) 

which, once substituted in Eq. (3.3.10), allow to identify the solution ),( jiy . 

                                                           
16 The arbitrary values chosen to start the analysis do not satisfy the boundary conditions.   

17 m-2 because in the omgeneus solution the points belonging to the two boundary cables are not 

considered; “m” is the number of the cables.  
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In the following, one reports some examples of equilibrium shapes’ searches for 

bidirectional systems. Starting from defined topologies, several shapes are found 

considering different loads and density forces.  

 

3.3.2.1 Anticlastic three-dimensional nets 

One considers a squared grid firstly, without external loads with force densities varying 

at boundary and internal nodes with a ratio between 5:1-1:1. Then the effects of the 

external loads are evaluated.  

First cases concern a topology scheme composed by n = 36 nodes (fixed and free nodes) 

and m = 60 branches. 

Fig. 3.30 shows the anticlastic surface obtained considering null external loads and 

force densities ratio of 5:1 between external and internal branches. Then, the ratio has 

been modified to 2:1 in Fig. 3.31 and to 1:1 in Fig. 3.32. As one may notice, the 

curvature of the surface increases when the ratio diminishes.  

 

 

Figure 3.29: Topology scheme.  
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Figure 3.30: Equilibrium shape-ratio in edge to interior branches force densities is 5:1 

and without external loads. Anticlastic surface.  

(boundary branches q = 5; interior branches q = 1; external loads Px = 0; Py = 0; Pz = 

0)  

 

 

 

Figure 3.31: Equilibrium shape-ratio in edge to interior branches force densities is 2:1 

and without external loads. Anticlastic surface.  

(boundary branches q=2; interior branches q=1; external loads Px=0;Py=0;Pz=0).  
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Figure 3.32: Equilibrium shape-ratio in edge to interior branches force densities is 1:1 

and without external loads. Anticlastic surface.  

(boundary branches q=1; interior branches q=1; external loads Px=0;Py=0;Pz=0). 

 

3.3.2.2 Synclastic three-dimensional nets  

 

Here, the effects of the overloads are analysed and the shapes obtained are shown in 

Fig. 3.33-34, when considering a force densities ratio of q = 1:1, and vertical loads Pz = 

2 (Fig. 3.33) and Pz = 4 (Fig. 3.34) applied upward. One can notice that the surface turns 

into a Synclastic surface.  
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Figure 3.33: Equilibrium shape-ratio in edge to interior branches force densities is 1:1 

and subject to vertical load Pz. Synclastic surface.  

 

 

 

Figure 3.34: Equilibrium shape-ratio in edge to interior branches force densities is 1:1 

and subject to vertical load Pz. Synclastic surface.  

 

In Fig. 3.3 the four corners are fixed, keeping the ratio at q =1:1, under the upward load 

Pz = 4.  
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Figure 3.35: Equilibrium shape under vertical load Pz with unstraight edges. Ratio in 

the edge to the interior branches is 1:1.  

 

 

3.3.2.3 Other equilibrium shapes 

 

Considering the same topology (Fig. 3.29), in Fig. 3.34 the equilibrium shape of the 

structure is shown under a load condition Pz= 4 applied in the upward direction and with 

straight horizontal edges; the boundary straight branches are subject to force densities 

q=100, and the other ones to q = 1. 
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Figure 3.36: Equilibrium shape under vertical load Pz, with straight horizontal edges.   

 

 

In Fig. 3.37 is represented the equilibrium shape, instead, considering the straight 

horizontal and vertical edges with q=100 for the external branches and q=1 for the 

internal ones. The load condition is Pz=4 applied upward.  

 

Figure 3.37: Equilibrium shape applying a vertical load Pz, with straight edges.   
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With reference to the topology scheme in Fig. 3.38, the equilibrium shape is obtained 

under a load Pz = 1 applied upward, external branches with q = 100 and the internal one 

with q = 1. Moreover, the edges are considered fixed and straight (Fig. 3.39).  

 

 

                                         

 

Figure 3.38: Topology scheme. 

 

 

 

Figure 3.39: Equilibrium shape- fixed and straight edges under vertical loads Pz. 
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A scheme composed by n = 39 nodes and m = 98 branches is considered in Fig. 3.40. In 

this case the force densities ratio is 100:1 and the load applied is Pz=1 obtaining the 

equilibrium shape illustrated in Fig. 3.40. 

 

 

Figure 3.40: Equilibrium shape with fixed and straight edges. 

 

 

The case with Pz = -1 applied in the downward direction is shown in Fig. 3.41, with q = 

100 and q = 1 for the external and internal branches respectively.  
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Figure 3.41: Equilibrium shape with fixed and straight edges. 

 

Moreover the effects of the horizontal load Px = 1 (applied towards positive x axis) and 

Py = 1 (applied towards positive y axis) , and Pz = 0,  are shown in Fig. 3.42 and Fig. 

3.43 respectively. The ratio of force densities is 100:1.  

 

 

 

Figure 3.42: Equilibrium shape with fixed and straight edges.  
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Figure 3.43: Equilibrium shape with fixed and straight edges.  

 

Finally, the combination of loads Px = 1 (applied towards positive x axis) and Pz=1 

(applied upward), .and combination of Py = 1 (applied towards positive y axis)  and Pz = 

1 (applied upward) are highlighted in the equilibrium shapes shown respectively in Fig. 

3.44 and Fig. 3.45. 

 

 

 

Figure 3.44: Equilibrium shape with fixed and straight edges. 
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Figure 3.45: Equilibrium shape with fixed and straight edges.  

 

In Fig. 3.47 the equilibrium shape of the topology scheme in Fig. 3.46 are shown, with 

the application of Pz = 1 upward and the force densities ratio equal to 100:1.  

 

 

 

Figure 3.46:Topology scheme.  
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Figure 3.47: Equilibrium shape with fixed and straight edges.  
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4. ENERGY APPROACHES 
 

One of the most important problems in the study of cable structures consists of 

identifying the equilibrium configuration under the overloads’ application.  

Moreover, the behaviour of these structures is described through suitable mathematical 

models.  In most cases, they are formulated by differential equations solved by several 

approaches, such as the variational formulation belonging “to the branch of mechanics, 

usually called analytical mechanics, which bases the entire study of equilibrium and 

motion on two fundamental scalar quantities, the kinetic energy and the potential 

energy” (Lan, 86). 

The configuration change is governed by large displacements leading to a number of 

difficulties in the analysis of the behaviour of these structures, due to the geometric and 

possibly mechanical non-linearity.  

Therefore, the main approaches developed during the years can be divided into two 

types: the first ones are based mostly on the iterative processes, and the other ones are 

of the energetic kind. In this case, the minimum of the functional is searched for through 

constrained or unconstrained optimum methodologies.  

These methods have been widely used in several field, in particular in the structural one.  

Actually, they can be adopted both for geometric and mechanical non-linearity, under 

large displacements and large strains hypotheses (G.R. Monforton, N.M. El-Hakim, 

1980). 

Consequently, energy approaches have been widely used for the analysis of elastic 

beams, shell structures, i.e. systems undergone by finite displacements, such as in the 

studies by Brogner (F.K. Brogner,1965), Mallet and Schimdt (R.H. Mallet, L.A. 

Schimdt, 1967), which have been later modified by the same Brogner in order to extend 

the application also to tension structures cases (F.K. Brogner,1968). 

Then, Buchholdt, Das and Hill applied the approach on a cable-net structures referring 

to the Gradient Method (H.A. Buchholdt et al, 1974). 

Monforton and El-Hakim (Monforton and El-Hakim, 1980) proposed an energetic 

approach for the analysis of truss and cable systems considering the geometric and 

mechanical non-linearity, and based on the Minimum Total Potential Energy Principle 

(TPE).  

On this basis, new methods were developed by researchers during the years, such as 

those ones by Wang et al (Wang et al., 2003) where the authors implement the VWP for 



4.ENERGY APPROACHES  141 

a two nodes cable with a catenary profile, or that one by Kanno and Ohsaky (Y. Kanno, 

M. Ohsaki, 2005) who suggest a method based on the Minimum Complementary 

Energy Principle (CE), considering a cable-net structure with geometric and mechanical 

non-linearity.  

Recently, Toklu et al (Toklu et al, 2017) proposed an energy minimization method 

through a Total Potential Optimization (TPO) technique and making recourse to Meta-

Heuristic Algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO), Harmony Search Algorithm (HS), Firefly Algorithm 

(FA), Bat Algorithm (BA)), rather than to the classical ones (Gradient Method, Steepest 

Descent Method, Conjugate Gradient Method, Newton-Raphson, etc) to search for the 

functionals’ minimum.  

The method is implemented for cable nets systems, selecting Harmony Search 

algorithm (HS) (Geem et al.,2001), inspired by the music and used in several 

optimization problems in the engineering field.  

 

4.1 General Setup  

 

So far one has emphasized that cable structures have been interesting the researchers 

mainly about their particular performance under the action of external loads, 

withstanding large displacements (A. Pintea, G. Tarta, 2012) and making it necessary to 

analyse their non-linear response in order to thoroughly describe their behaviour. 

As well known, variational approaches are largely used in the engineering field because 

they allow to describe the mechanical principle by employing the mathematical 

variational problems.  

According to the TPE for an elastic structure under conservative forces, the functional is 

given by the sum Π of the external loads’ potential W and the strain energy U 

WUΠ   (4.1.1) 

It depends on the configuration and therefore on the lagrangian coordinates of the 

system ci  

 icΠΠ   (4.1.2) 

For a three-dimensional continuum, under the above-mentioned conditions, the strain 

energy is given by 
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 

V

dVU εσ
2

1
 (4.1.3) 

where 

σ is the stress tensor 

 is the strain tensor  

V is the volume of the body  

 

and the loads’ potential is given by  

    
S

zyx

V

zyx dSwPvPuPdVwFvFuFW  (4.1.4) 

where 

zyx PPP ,, are the load components along the three reference axes 

wvu ,, are the displacement components along the three reference axes 

Fx, Fy, Fz are the components of the mass forces 

S, V are the body surface and volume 

 

Hence, by substituting Eqs. (4.1.3)-(4.1.4) in Eq. (4.1.1), one gets 

    

S

zyx

V

zyx

V

dSwPvPuPdVwFvFuFdVΠ εσ    
2

1
 (4.1.5) 

For minimizing one writes down 

i
i

c
dc

dΠ
     0  (4.1.6) 

The fundamental problem about the cable structures consists of identifying the 

displacements undergone by the structure and the internal forces developed due to the 

action of the external loads, thus of identifying the equilibrium configuration.  

Nell’ambito dei metodi energetici il principio si basa sulla individuazione di un set di 

spostamenti che minimizzano l’energia potenziale totale.  
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The reference solution equation for these problems is typically given in the form 

* ZuKP  (4.1.7) 

where 

P      is the external load vector 

K      is the stiffness matrix 

u   is the displacements variation vector 

Z = BTC-1 is the distortion matrix 

* is the elongation distortion vector.  

 

Besides the more classical methodologies generally based on direct solving and 

handling of the mathematical relations, some additional paths have been outlined 

including the development of some special algorithms that allow to identify the 

solution, suitable both for linear and non linear problems.  

 

4.2 Metaheuristic Algorithms 

 

With the final objective of identifying a displacement set minimizing the energy 

functional, several methodologies have been developed over the years, some of them 

based on Metaheuristic Algorithms, where the TPE is assumed as objective functional 

and the displacements as unknown variables.  

Metaheuristic Algorithms are based on the observation of natural events such as the 

natural selection, whence the Genetic Algorithm is developed, the social animal 

behaviour which led to the Particle Swarm Optimization (PSO) or even the musicians’ 

method to compose the music, like for the Harmony Search (HS).  

Focusing on the latter, this approach can be applied both in linear and non-linear 

problems, and is inspired by the approach adopted by the musicians to compose the 

harmony, when several possible combinations of notes are considered to find the right 

one.  
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Firstly proposed by Geem (Geem et al., 2001), during the years the HS method has been 

applied in different fields, including the structural design one. The algorithm can be 

summarized as follows. It starts from initializing a matrix called Harmony Memory, 

including sets of possible solutions. The size of this matrix, or Harmony Memory Size 

(HMS), can range, usually, between 50 and 100 (X.Z. Gao et al, 2015).  

For example, considering a problem in N- dimension, the HM is set as follows 























HMS

n

HMSHMS

n

n

xxx

xxx

xxx









21

22

2

2

1

11

2

1

1

HM

 (4.2.1) 

where 

] ...  [ 11

2

1

1 nxxx   

] ...  [ 21

HMS

n

HMSHMS xxx  are the solutions arbitrarily computed 

  

The second step concerns the improvisation of a new solution given by 

 ''

2

'

1 nxxx  , where each element is obtained considering the Harmony Memory 

Considering Rate (HMCR), which is the probability to select an element of HM, as the 

element of a new solution. Furthermore, it can be modified taking into account the 

Pitching Adjust Rate (PAR), identifying the probability of a candidate from the HM to 

be mutated. Once a new solution is detected and evaluated, if its performances are better 

than the previous ones, then the worst element in the HM is replaced, otherwise it is 

cancelled. Finally, the previous steps are repeated until the convergence or the 

established criterion are reached. 

This method has been largely applied in optimization problems. However, most of these 

problems are constrained optimization problems, where the objective is to identify the 

solution accommodating the imposed constraint, represented by equalities or 

inequalities, or both of them. Nevertheless, the original version of the HS method 

presents some difficulties to solve the constrained problems, because the solution 

should be found in the HM and sometimes its elements cannot satisfy the imposed 

conditions. Hence several variations of this approach have been developed in order to 
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improve its implementation. For example, the Global-best Harmony Search (GHS) by 

Omaran and Mahdavi (M. Omaran, M. Mahdavi,2008), or the Dynamic Local Best 

Harmony Search (DLHS), developed by Pan et al. (Q.Pan. Et al, 2018), where the HM 

is subdivided in other independent sub-HMs; or even the new self-adaptive Harmony 

Search (HS) proposed by Wang and Huang (C.M. Wang,Y-F., Huang, 2009). Moreover, 

a modified HS are available for cable structures, as described in the following.  

The geometric features of the structures are defined, and in particular the number, the 

coordinates and the boundary conditions for each node; loads and pretension forces are 

applied.  Then, a range of possible displacements is identified and evaluated. Among 

them the unknown variables of the problem are searched for.  

 

 

 

Figure 4.1: Possible nodal displacements’ selection and relevant deformed 

configurations (in dashed line). 

 

 

Therefore, the HM is obtained from unifying the Harmony Vector (HV) and the 

Harmony Memory Size (HMS). Each vector includes the nodes coordinates arbitrarily 

obtained, each one representing a new structure configuration under defined load 

conditions. Hence the strain energy, the work and the TPE can be computed.  

Thus, the procedure consists of identifying several configurations, and computing the 

TPE for each one, up to determine the one who reaches the minimum energy value. 

Hence, with reference to the above-mentioned structure one proceeds to identify a set of 

possible deformed configurations that are arbitrarily generated. The node coordinates 

are assembled into the HM, as vectors 
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        
HMSjjjjjjjjjjjj zyxzyxzyxzyx ,,...,,,,,,

321
HM  (4.2.2) 

where 

 
1HV

1
,, jjj zyx

 

 
22

,, HVjjj zyx
 

 
HMSHMSjjj zyx HV,,

 

where  HV denotes the Harmony Vector. 

For each element of the structure the TPE is computed through the strain and loads’ 

potential energy. 

To this purpose one refers to the single kth element ij connecting the ith and the jth nodes, 

with the initial length 
o

ij  given by  

     222
ijijij

o
ij zzyyxx 

 (4.2.3) 

with  iii zyx ,,  and  jjj zyx ,, , respectively, the ends’ i and j coordinates in the three-

dimensional reference system (Oxyz). 

If one identifies  iii wvu ,,  and  jjj wvu ,,  as the displacements of the i and j nodes in 

(Oxyz), the updated length of the analysed beam is given by  

     222
ijijijijijijij wwzzvvyyuuxx 

  (4.2.4) 

whence, the stretching 
ij  is  

 ijijij    (4.2.5) 

and, therefore, the uniform strain of the element is given by the ratio  

o

ij

ij

ij



  (4.2.6) 

Generally speaking  ijijij  ; supposing that the material has an elastic-linear 

behaviour, one has 
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ijij E  (4.2.7) 

with E  the Young modulus, then the strain energy in the kth element ij is  

2

2

1
ijk Ee   (4.2.8) 

and, in case of nonlinear behaviour, coincides with the subtended area of the    

graph, and therefore it is obtained through integration.  

Then with reference to the global system, the TPE is given  

  
 


m

k

n

i
iziiyiixikkk wPvPuPAeΠ

1 1

  (4.2.9) 

where 

m is the number of beams  

n is the number of nodes  

and the index k is referred to the entities of the kth beam ij. 

Referring to the structure in Fig.4.2, the Harmony Vectors (HVs) are defined 

considering the several positions assumed by the free node D due to the external loads 

action.  

 

 

 

 

Figure 4.2: Undeformed cable system and deformed shape due the application of the 

external loads on the free node. 
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Hence the HVs are the following  

 

 

 
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
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HV

 (4.2.10) 

taking into account that  rDD z,y  denote the updated coordinates of the node D in any 

new configuration, respectively along the y and z reference axes, in the specific case 

with  r=1..5. 

Starting from the identified HVs, the initial Harmony Matrix (HM) and its size (HMS) 

can be assembled.  

Actually, the HM is composed by the HVs  

          

54321

14321

                                                           

,  , ,  ,  ,





HMS

DDDDDDDDDD zyzyzyzyzy

HVHVHVHVHV 

HM
 (4.2.11) 

hence, the TPE is computed for each beam of the system in the different configurations. 

Therefore, one starts from defining the geometrical properties, computing the initial 

length and the updates 

22 )()( ADAD

o

AD zzyy   (4.2.12) 

22 )()( BDBD

o

BD zzyy   (4.2.13) 

where 

 AA zy ,  are the coordinates of the node A in the plane system (Oyz) 

 BB zy ,  are the coordinates of the node B in (Oyz) 

 DD zy ,  are the coordinates of the node D in (Oyz) 
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Therefore, the deformed length is computed considering the displacement components 

of the free node D, in each new configuration. Thus denoting by   
rr DD w,v  with 

r=1,…,5 

respectively the vertical and horizontal components of the node D in the update 

configurations with r = 1…5, the final lengths of the beams are identified by  

   

   

   
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hence

 .conditionsboundary  for the A) node of components ntsdisplaceme  the(are 0,0,
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




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where    r
AD  with r = 1,…,5 denotes the updated length of the AD beam in each 

considered new configuration.  

In the same way the final lengths of the BD beam are calculated 
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Since the length variation is given as the difference between the final and initial length, 

one calculate the elongations r
AD  and 

r
BD   

o

ADADAD

o

ADADAD

o

ADADAD

o

ADADAD
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ADADAD





















55

44

33

22

11

 (4.2.14) 
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o
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 (4.2.15) 

and, then, the strains  

51   with  ...r
o
AD

r
ADr

AD 






 (4.2.16) 

51   with  ...r
o
BD

r
BDr

BD 






 (4.2.17) 

whence, with reference to the stress-strain curve, one identifies the coupled stresses. 

 

 

 

 

Figure 4.3: Stress-strain graph. 

 

 

By referring to the linear elastic behaviour of the beams (Fig. 4.3) in Eq.(4.2.7) 
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Figure 4.4: Stress-strain graph: linear-elastic behaviour.  

 

the strain energy in the elements are given by 
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 (4.2.18) 

where 

r
ADU   is the strain energy of the AD for each rth configuration 

r
BDU   is the strain energy of the BD for each rth configuration 

r
AD  is the stress of the AD coupled to strain 

r
AD  in each rth configuration 

r
BD  is the stress of the BD coupled to strain 

r
BD  in each rth configuration 

ADA  is the cross-section area of the beam AD 

BDA  is the cross-section of the beam BD 

r
AD  is the updated length of the AD beam at each rth configuration 

r
BD  is the updated length of the BD beam at each rth configuration 
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Therefore, it is possible to define the strain energy of the global system as the sum of 

the single contributions, previously identified at each rth configuration. 

51      with ...rUUU r
BD

r
AD

r   (4.2.19)  

As regards the loads’ potential relevant to the external loads applied on the joint D and 

the coupled nodal displacements, one has at any configuration  

r
D

r
zD

r
D

r
yD

r wPvPW   (4.2.20) 

where 

r
zD

r
yD P,P  are the external load components applied in D leading to the rth configuration 

r
D

r
D w,v   are the coupled nodal displacements at the rth configuration.  

 

Whence one infers the TPE for each HVs  

1,...,5=    with rWUΠ rrr   (4.2.21) 

Once computed the TPE for each HV, a new vector is searched for.  

As the music improvisation process is characterized by three possible options like the 

repetition of a known harmony by the musician’s memory, the adjustment of some 

pitches of an existing melody, or the reproduction of randomized notes, so in the 

analysed approach Geem et al. identified three possibilities to determine a new vector: 

harmony memory, pitches adjustment, and randomization.  

In the first option one refers to an assigned accepted parameter ]1,0[parr . If it is close 

to 0, then it has a slow convergence; on the other hand, if the parr is too close to 1, there 

is the possibility to have a wrong solution. Therefore, the accepted parameter is usually 

included between the values of 0,75-0,95. 

In the second one, the pitches’ adjustment, the new vector is determined through the 

generation of different solutions considering a bandwidth range rangeb and a pitch-

adjusting rate par , that is 

 rangeoldnew bxx   (4.2.22) 
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where 

newx  is the searched new vector 

oldx  is the existing vector  

  is a number arbitrarily generated between ]1,1[ . 

 

To obtain an accurate solution a pitch-adjusting rate is assigned. Finally, the third option 

is similar to the second one, but it allows to find several solutions in order to reach the 

global optimum.  

In this analysis, the new vector is generated starting from the existing ones in the HM.   

After that, the potential energy of the new vector is computed and evaluated. If it is 

better than that one of the corresponding starting vector, then it replaces the latter. The 

process is repeated up to convergence or as far as to achieve the imposed criterion. The 

new configuration is determined at the end of the iterative process. Subsequently the 

other unknown variables can be computed taking into account the equilibrium 

conditions, i.e. the stresses in the beams and the nodes reactions.  

It is also possible to refer to other kinds of approaches about the TPE minimization 

problem, such as the Sequential Quadratic Programming (S. Ohkubo et al., 1987), the 

Tree Search (A. Csebfalvi et al., 1999), and so on; some researchers have proposed 

different procedures like the arbitrary search and simulated annealing algorithm (Y.C. 

Toklu, 2004) and the adaptive local search process (Y.C. Toklu 2004). 

The report by Toklu et al. shows the algorithm developed and applied on a structure 

having geometric and mechanical non-linearity. The method is demonstrated to give 

good results also in case of instability phenomena and for several structures.  

Starting from the general formulation, the expression of the TPE is considered referring 

to a plane pin-jointed structure 

  



pn

i
ii

V

uPdVeΠ
1

 (4.2.23) 

remembering that  

   



0

de  (4.2.24) 

where  

   is the stress 
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 is the strain  

V is the volume of the element 

pn  is the number of applied loads 

iP  are the applied external loads 

iu are the displacements coupled to the above mentioned loads 

 

Eq. (4.2.23) represents the sum of the strain energy stored in the elements and the work 

produced by the applied loads for the coupled displacements, and is computed with 

reference to the deformed configuration.  

Now, let consider a plane cable structure composed by m elements and n nodes, under 

np external loads.  

Considering the element ij in the plane, where i and j denotes the ends with coordinates 

respectively given by  ii yx ,  and  jj yx , , the initial length 
o

ij  is 

   22

ijij

o

ij yyxx   (4.2.24) 

consequently, if  ii vu ,  and  jj vu ,  denote the ends displacement components along the 

reference axes, the final length is given by  

   22
ijijijijij vvyyuuxx   (4.2.25) 

The stretching ij  is obtained as the difference by final and initial length 

 ijijij    (4.2.26) 

Therefore, the strain can be computed by the ratio in Eq. (4.2.6)  

o

ij

ij

ij



  (4.2.27) 

Supposing known the ends, the strain can be easily identified and consequently the TPE  

 

can be computed for all elements as 
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Figure 4.5: Stress- strain diagrams considered in the analysis- Toklu 2014 

 

 

 
 


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n

i
iikkk

p

uPAeΠ
1 1

  (4.2.28) 

The problem then consists of determining the displacements vector minimizing Eq. 

(4.2.28), satisfying the boundary conditions, represented by the constraints. The 

mechanical nonlinearity is implicitly taken into account since one refers to the deformed 

configuration. Actually the material properties are accounted for through the 

constitutive relations and Eq.(4.2.24). Therefore if the equations are given for the 

selected material, the possible mechanical non linearity may be easily implemented in 

the above shown formulation. One should notice that these relations are valid either for 

NT (No-Tension) or for NC (No-Compression) material.  

Several combinations have been considered during experimental tests, allowing to 

identify materials that exhibit a symmetrical behaviour for both the solicitations (M1, 

M2, M5) and materials that, on the contrary, behave differently in tension (M3) and in 

compression (M4). In the latter case the different response of the tensile or compressive 

elements is considered.  

The optimum problem, as formulated in the above, may be solved through a number of 

techniques as already emphasized. The application of the Adaptive Local Search 

Method (ALSM) is based on the identification of a variable domain where the optimal 

solution is searched for. 

Starting from the assignment of a displacement field, applied on each node of the 

analysed structure and satisfying the boundary conditions, a new configuration is 
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identified, whence the elements’ stretching, strains, strain densities and the TPE are 

computed, determining the best solution.  

After this step a new displacement field is assigned, finding a new configuration and 

then the related TPE. The chosen displacement field during the process belongs to the 

previously defined domain. 

If the updated TPE gives a value less than the preceding one, it substitutes the previous 

one, which has been considered the best solution till now. Otherwise another 

displacement set is identified and applied. The procedure is repeated up to convergence.  

A critical issue lies in the arbitrariness in the displacement field selection.  

Therefore, to optimize the convergence, the following hypotheses can be made:  

- without suitable steps into a trials series, at the greatest step a reduction factor 

12 k  is applied. The process ends when the dimension of the step is smaller 

than the predefined one. 

- if the configuration is suitable within the defined domain, the multiplying factor  

22 k  is considered. 

The described methodology can be applied for structures with mechanical and 

geometrical nonlinearity, and for structures either statically determined or with some 

instability; the algorithm does not require to solve matrix equations, and gives 

acceptable results, although referred to a local minimum rather than to the global one.  

Some critical points are emerged, in particular referring to the relatively long execution 

times. 

For solving the above introduced minimum problem, as an alternative, a number of 

methodologies are available belonging to the gradient method, such as the Inverse 

Huang Algorithm (IHA) (S.T. Huang, 1989).  

The approach is based on two initial hypotheses:  

- the cable net is in the elastic field 

- the cable net is supposed anchored at supporting points that are perfectly fixed. 

The approach allows to identify firstly the shape of the net loaded after the pretension 

and anchoring operations, and then to compute the internal forces of each cable at the 

final state. Moreover, if needed, it allows to design the net in order to sustain the nodal 

loads and the stretching forces without overloading or loosening any beam.   

To determine the cable net configuration, one considers an ideal net having a linear-

elastic behaviour, with elements resisting tensile and compressive forces, and fictitious 
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constraints for preventing the internal nodes displacements. At the boundary each 

element is subjected to a tensile force for anchoring to the external supporting joints. 

Hence the external cables undergo some non-null forces, unlike the other ones, which 

are not stressed.  

 

 

 

Figure 4.6: Cable net structure;(a) undeformed configuration of the free net; (b) 

deformed configuration of the constrained net. 

 

 

 

Figure 4.7: Cable net released with redistribution of internal forces.  

 

Assuming that the beams are released then they endure a force redistribution obtaining a 

new equilibrium configuration of the entire system.  

Therefore, the TPE functional Π  is computed referring to the pretensioned system, and 

therefore the contribution of the pretension forces is considered 

uP
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
  (4.2.29) 

where 

m is the beams number 

U is the elastic energy of the beams  
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Uo is the elastic energy in the pretensioned cable 

o

iF are the pretensioned forces in the beams and it is  o

iio

i

iio

i

AE
F 


   

i  is the stretching in the ith stressed beam  

iE  is the Yong modulus in the ith beam 

iA  is the cross-section area of the ith beam  

o

i  is the length of the ith beam not stressed beam 

P  is the vector in n components of the nodal forces  

u is the column vector of the nodal displacements components 

 

The problem consists of finding the equilibrium configuration through the minimization 

of the energy by the IHA. 

The following condition is checked 

aΠΠ ji
T

ji    (4.2.30) 

where a  is an arbitrary value.   

The process is iterative up to the fitting of the criteria.  

Once identified the TPE stationary point, represented by  jzyx xxx ,...,, 11x , both the 

final configuration of the ideal net and the cables’ forces can be computed 










































































0

1

1

1

)1(

1

1

1

)1(

1

1

1



z

y

x

zj

z

y

x

zj

y

y

x

x

x

x

u

u

u

u

X

X

X

X

 (4.2.31) 

xuX


  (4.2.32) 
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where  

X is the points’ positions vector   zjyx X,...,X,X 111 X  related to the final 

configuration 

u  is the column vector   zjyx u,...,u,u 111 u  of the nodal displacement components 

 

Eq. (4.2.31). (4.2.32) identify the nodes’ coordinates of the net related to the assumed 

final configuration.   

The cables’ forces are given by  
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where m  ...1  are the admissible stretching or shortening depending on x .  

So far, some simplifying hypotheses have been considered for the ideal net, concerned 

with the linear elasticity of the material, the resistance to tensile and compressive 

stresses, the possibility of exceeding the admissible forces ( ipF , ).  

Since in the real net the forces in the cables cannot exceed the admissible ranges, the 

following inequality needs should be verified, under the hypothesis of pure tension in 

the cables 

bound)upper (bound)lower ( ,, ipgip fFF 
 (4.2.34) 

or, in alternative, the following equivalent condition must be verified 

ip, (lower bound) bound)upper (,0 ip

g

i 





  (4.2.35) 
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which means that the admissible limit ranges of a defining domain must be complied 

with (   is the admissible strain in the equivalent condition). 

In order to satisfy Eq. (4.2.34)-(4.2.42), the cables length of the ideal net is modified. 

The process is iterative, changing step by step the length until Eq. (4.2.35) is verified. 

The process stops when all the cables are in tension, and the obtained value belongs to 

the limits of the admissible range Eq. (4.2.34).  

 

4.3 Constrained minimization approaches 

4.3.1 Basic relationships 

 

Direct constrained optimization methodologies may be developed to evaluate the TPE 

minimum for a cable structure with m beams and t nodes, where n are free and s fixed 

respectively, and subject to loads applied only on the free nodes. 

Any beam is assumed straight both in its undeformed and deformed configuration, and 

it undergoes only axial forces (positive if tensile and negative if compressive), under the 

hypothesis of constant stress and strain in the beam.   

The structure (Fig. 4.8) is described in the plane reference system (Oyz), where the 

generalized nodal displacement components are identified, for the ith node, by iv  and 

iw , respectively along the y and z axes and the coupled applied load components are 

denoted by iyP , and izP , .  

 

 

 

Figure 4.8: Plane cable structure. 
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The behaviour of each beam is highlighted through the relationship between the axial 

force and the length variation, for calculating the relevant energy, and then passing to 

the assembled structure. 

 

4.3.1.1 Single beams’ analysis 

Let 
o

ij  be the initial length of the single beam ij connecting the i and j nodes shown in 

Fig.4.8 in its undeformed and deformed configurations. 

Applying the overload P, the beam undergoes a configuration change corresponding to 

the length variation 
o

ijijij   , where ij  is the updated length.  

Consequently, it undergoes an axial force ijF , supposed constant and positive in tension. 

 

 

Figure 4.9: Undeformed and deformed beam configuration. 

 

 

The following relations hold 

o

ji

o

ij    (4.3.1) 

o

ji

o

ij    (4.3.2) 

jiij    (4.3.3) 

jiij    (4.3.4) 

jiij    (4.3.5) 
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jiij    (4.3.6) 

In particular, the initial 
o

ij  and final lengths can be explicited in the form  

   22

ijij

o

ij zzyy   (4.3.7) 

         22

iijjiijjij wzwzvyvy   (4.3.8) 

where 

 ii zy ,  are the coordinates of the i node in the plane reference system 

 jj zy ,  are the coordinates of the j node in the plane reference system 

 ii wv ,  are the displacement components at the i node 

 jj wv ,  are the displacement components at the j node 

 

With reference to constitutive law of the considered material allowing to define the 

dependence of stress components on the strain ones  ijij  , one may write the strain 

energy cumulated in the beam 

  dVdU ijij

V

ijij

ij





 

0

 (4.3.9) 

which, in case of linear elastic material, turns into  

ijijijijijijijijij AEAU  2

2

1

2

1
      (4.3.10) 

where 

ijU is the strain energy in the deformed beam ij 

ij  is the uniform and constant stress related to the beam ij 

ij is the uniform and constant strain undergone by the beam ij after the load application 
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ijE  is the Young elasticity modulus of the beam ij depending on the material 

ijA  the area of the cross-section of the beam ij  

or 

2

2

1
ij

ij

ijij
ijijij

AE
FU 


   (4.3.11) 

where 

ijF is the internal force in the beam ij 

 

Finally, assuming h = ij, the strain energy globally cumulated in the m beams of the 

structure is given by the sum of the single contributions Uh=Uij  





m

h
hh

m

h
h FUU

11 2

1
  (4.3.12) 

The loads’ potential energy relevant to the applied nodal loads Pj and the coupled nodal 

displacements uj is globally for the n nodes 





n

j
jjuPW

1

 (4.3.13) 

 

4.3.1.2 Assembled structure’s energy 

 

The TPE specialized for the given structure is then  





n

j
jj

m

h
hh uPF

112

1
  (4.3.14) 

or in compact form  

uPF
TT  

2

1
 (4.3.15) 

where 
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 Tm...   1 is the vector of the length variations 

 TmF...F1F  is the internal force vector  

T

nuu ]...[ 1u is the displacement vector of the free nodes 

 TnP...P1P  is the applied force vector acting on the free nodes 

 

whence, since the compatibility relation holds uB , with B the compatibility 

matrix, and according to the principle of minimum TPE  

“in the set of displacement fields which satisfy the geometric compatibility, those which 

locally minimize the TPE also satisfy the equilibrium conditions and are stable 

equilibrium positions”(Monforton, 1987), one can formulate and solve the constrained 

optimization problem 

0uB

uPF
uu











Sub

Find TT

,, 2

1
MinMin

 (4.3.16) 

including the condition on the sign of the length variations, which are required to be non 

negative, thus involving pure stretching. 

 

4.3.2 Solution search 

 

There are many different approaches to solve the constrained optimization problem. 

Heuristic, meta-heuristic methods can be found in the literature, in order to deal with the 

high nonlinearity characterizing these kinds of problems in structural engineering field.  

Here, we focuse on the search of the solution through the Kuhn-Tucker conditions. The 

main goal is to minimize the objective function observing the chosen and imposed 

constrained conditions (Ohkbuco,1987).  

Usually the Kuhn-Tucker conditions are adopted for convex problems and convex 

constraints, represented by inequalities, equalities (Rockafeller, 1975) or both of them.  
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This approach can be considered as a generalization of the Lagrangian theory about the 

constrained optimization, and it is based on the use of linear relationship between 

objective and constraints (Hanson, Mond, 1987). 

Let consider the differentiable scalar function f(x) and g(x) the vector function in an 

open set x nR . Hence let set up the problem  

 

  0xg

x
x

Sub

fFind Min

 (4.3.17) 

A vector oλ  does exist for minimal ox , such that 

    
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oooo
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Jf

 (4.3.18) 

being   oJ xg  the Jacobian matrix of  g(xo) in xo.  

It is important to put in evidence that in the convex problem the local optimum implies 

the global one. 

 

4.3.3 The optimization problem and the Kuhn Tucker conditions 

 

Usually the design optimization is defined as the procedure adopted to find the optimal 

parameters in order to identify the minimum (or the maximum) of the objective 

function, in the respect of a set of identified constraints.  

In Eq.(4.3.16) the objective function identified in the energetic functional , the 

displacements as selected variables, and the imposed constraints are to be managed 

through Kuhn-Tucker conditions, which, in general yield necessary conditions for a 

minimum, but, if the involved functions are convex, then they are necessary and 

sufficient for a global minimum.   

The constraints can be represented by the inequalities  

pjxg j ,...,1  with           0)(   (4.3.19) 

and/or the equalities 
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 1 with            0)( ,...,qr=xhr   (4.3.20) 

where gj(x) and hr(x) are continuous functions endowed with first derivatives, 

representing the domain where the solution has to be searched for.  

As known, the Kuhn- Tucker conditions are based on the linear relationship between the 

objective function and the constraint functions chosen in order to find the optimum.  

These functions are combined in a Lagrangian Function L(x) defined as the sum of the 

objective function and the linear combination of the constrained conditions with 

unknown multipliers j, r. 

Hence, the Lagrangian can be set in the form 

        
r

rr
j

jj hgf,,L xxxμλx   (4.3.21) 

and, omitting the explicit dependence on the variables, the Kuhn-Tucker conditions are 

written as  
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being  j=1…p, r=1…q constraint conditions and i=1…n design variables.  

With reference to Eq. (4.3.16), where the objective functional written in function of the 

main variables u is 

      uPuuPBuFuu
T

m

j
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 (4.3.23) 

the constraint conditions  ujg  are represented by the following inequalities 

  m,...,juBg
n

s
sjsj 10

1




u  (4.3.24) 

Thus the Lagrangian Function L can be written again in the forms below 
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Now, following Eq. (4.3.22), the Kuhn-Tucker conditions can be applied as follows 
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  (4.3.26) 

by solving the problem, the design variables u  are computed.  

Consequently, by substitution, the stretching and the forces in the beams can be 

identified, in order to obtain the balanced and compatible configuration subjected to the 

load and constraint condition considered. 

 

4.4 An example 

 

4.4.1 Initial geometry 

 

With reference to the plane structure in Fig. 4.10, composed by m = 3 beams and  t = 4 

nodes, with s = 3 fixed and n = 1 free nodes, firstly the initial geometry is identified.    
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Figure 4.10: No-compression structure composed by m=3 beams, t=4 nodes with n=1 

free node and s=3 fixed nodes. The structure is shown in its undeformed configuration 

in the reference system (Oyz). 

 

 

The beams (AD, BD, CD), with the initial lengths 
o

CD

o

BD

o

AD  ,, , form the angles 

o

CD

o

BD

o

AD  ,,  with the horizontal axis, in the reference plane system (Oyz). 

The following geometric relations hold   

DAAD

DAAD

 

 
 (4.4.1 a) 

DBBD

DBBD

 

 
 (4.4.1 b) 

DCCD

DCCD

 

 
 (4.4.1.c) 

with 
o

CD

o

BD

o

AD  ,,  the beam vectors in the initial configuration respectively from A to 

D, B to D and C to D (and hence, by changing the subscripts’ positions, from D to A, D 

to B, D to C) and 
o

CD

o

BD

o

AD  ,,  the lengths of the beams AD, BD, CD in the initial 

configuration.  

Since 
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 
 

 

 DD

Cc

B

zyD

zyC

zB

A

;

;

;0

0;0









 (4.4.2) 

the length of each beam can be computed  

       2222

DDADAD

o

AD zyzzyy 
 (4.4.3 a)  

       2222

BDDBDBD

o

BD zzyzzyy 
 (4.4.3 b) 

   22

CDCD

o

CD yyyy   (4.4.3 c) 

The length vectors are then given  

o

AD

o

AD

o

AD α   (4.4.4 a) 

o

BD

o

BD

o

BD α   (4.4.4 b) 

o

CD

o

CD

o

CD α    (4.4.4 c) 

where 

o

CDy

o

BDy

o

ADy ,,, ,, ααα  are the (2×1) unit vectors of the beams in the reference system, with 

components 
o

CDy

o

BDy

o

ADy ,,, ,,   and 
o

CDz

o

BDz

o

ADz ,,, ,,  . 

Furthermore, the following boundary conditions hold 

























0

0

0

0

0

D

D

CC

BB

AA

w

v

wv

wv

wv

 (4.4.5) 

Moreover  

ADA  is the cross-section area of the AD beam  

BDA   is the cross-section area of the BD beam  
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CDA  is the cross-section area of the CD beam   

and   

ADE  is the Young elasticity modulus of the AD beam  

BDE  is the Young elasticity modulus of the BD beam  

CDE  is the Young elasticity modulus of the BD beam. 

 

4.4.2 Updated geometry and mechanical features 

 

The analysis is carried out considering the  load DP , with DzDy PP ,, ,  plane components, 

applied on the free node D, and modulus  

2

,

2

, DzDyD PPP 
 (4.4.6) 

Due to the overload, the structure undergoes a configuration change moving from the 

initial geometry to deformed one, as shown in the Fig. 4.11.  

 

 

 

 

Figure 4.11: Undeformed and deformed configuration of the structure after the load 

application. 

 

 

The free node displacement is identified by the vector Du  with modulus  
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22

DDD wvu 
 (4.4.7) 

where  

Dv  is the displacement component of the node D along the y axis  

Dw is the displacement component of the node D along the z axis 

 

Consequently the beams undergo the elongations ij (with ij =AD, BD, CD) given by 

the difference among the final lengths ( ij , with ij=AD, BD, CD) and the initial ones in 

Eq. (4.4.3 a-b-c). 

First of all, the updated lengths for each element are computed. Starting from AD 

   22

AADDAADDAD wzwzvyvy   (4.4.8)  

taking into account the boundary conditions (Eq. 4.4.4) and Eq. (4.4.2), Eq. (4.4.8) can 

be written again in the following form  

   22

DDDDAD wzvy   (4.4.9) 

Analogously, the final lengths of the other beams are defined 

   

   22

22

BDDDDBD

BBDDBBDDBD

zwzvy

wzwzvyvy








 

   22

BDDDDBD zwzvy   (4.4.10) 

   

   22

22

CDDCDDCD

CCDDCCDDCD

zwzyvy

wzwzvyvy








 

   22

CDDCDDCD zwzyvy   (4.4.11) 

The elongations of each beam are inferred 

o

ADADAD    (4.4.12) 

o

BDBDBD    (4.4.13) 
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o

CDCDCD    (4.4.14) 

and collected in the vector of variation lengths including the stretching of each beam 

composing the structure 

T

CDBDAD ],,[    (4.4.15) 

At the same time, the element is undergone by the axial forces  

DAAD

DAAD

FF 

 FF
 (4.4.16) 

DBBD

DBBD

FF 

 FF
 (4.4.17) 

DCCD

DCCD

FF 

 FF
 (4.4.18) 

being CDBDAD FFF ,, ( and hence DCDBDA FFF ,, ) the vectors of the axial forces in each 

beam and CDBDAD FFF ,,  the related intensities. Thus, a vector F including the axial 

forces is considered 

T

CDBDAD FFF ],,[F  (4.4.19) 

As for the mechanical properties of the elements assuming a linear-elastic behaviour, 

the strains  and the stresses are expressed as follows  

AD

AD
AD




  (4.4.20) 

BD

BD
BD




  (4.4.21) 

CD

CD

CD



  (4.4.22) 

and 

 
AD

AD
AD

A

F
  (4.4.23) 
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BD

BD

BD
A

F


 (4.4.24) 

CD

CD

CD
A

F


 (4.4.25) 

where 

CDBDAD  ,,  are the strains along the axis beams, respectively AD, BD, CD; 

CDBDAD  ,,  are the axial stresses in the beams respectively AD, BD, CD. 

Specializing the Hooke law for each one element, one gets 

ADADAD E    (4.4.26)  

BDBDBD E  
 (4.4.27)  

CDCDCD E  
 (4.4.28)  

hence, the axial forces can be expressed as  

AD

AD

ADAD
AD

AE
F 


  (4.4.29)  

BD

BD

BDBD
BD

AE
F 


  (4.4.30)  

CD

CD

CDCD

CD

AE
F 


  (4.4.31)  

 

4.4.3 Potential energy of the structure 

Following the procedure described in Par.4.4.1 to identify the strain energy, denoting by  

CDBDAD UUU ,,  respectively the strain energy of AD, BD and CD beams, and since 

ADADADAD AeU   (4.4.32) 

BDBDBDBD AeU   (4.4.33) 

CDCDCDCD AeU   (4.4.34)  
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being 

ADADAD de 


2

1

0

   the strain energy density of the beam AD 

BDBDBD de 


2

1

0

   the strain energy density of the beam BD  

CDCDCD de 


2

1

0

   the strain energy density of the beam CD  

or in equivalent form  

ADADAD FU 
2

1
 (4.4.35) 

BDBDBD FU 
2

1
 (4.4.36) 

CDCDCD FU 
2

1
 (4.4.37) 

The strain energy of the global structure is given by the sum of each contribution; hence 

CDBDAD UUUU 
 (4.4.38) 

 CDCDCDBDBDBDADADAD AeAeAeU    (4.4.39)  

or  

 CDCDBDBDADAD FFFU  
2

1
 (4.4.40) 

Eq. (4.4.40) can be written again in the following form considering Eq. (4.4.15) and 

(4.4.19) 

 TU F
2

1
 (4.4.41) 

Now let consider the loads’ potential energy. Being DP the load acting on the free node 

D, thus the loads’ potential is easily calculated  

D

T

DDWW uP  (4.4.42) 
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where Du  is previously defined as the vector of the free node displacement. 

Now the TPE equation for the global system is expressed by the sum of the global strain 

and loads’ potential energies. 

In particular, it is given by 

 WU   (4.4.43)  

Therefore, taking into account Eqs. (4.4.41)-(4.4.42), Eq. (4.4.43) turns into  

D

T

D

T
uPF  

2

1
 (4.4.44) 

where the main unknown variables are the stretching  and the displacement Du . 

Referring to the minimization of TPE, the variables  and Du can be identified by the 

minimization of the energetic function of the entire system, considering the 

compatibility equation expressed by the following relation 

DBu with Du  the displacement vector 









D

D
D

w

v
u  (4.4.45) 

















































D

D

CD

BD

AD

w

v

bb

bb

bb

2313

2212

2111

 

being B  the compatibility matrix of m×2n size. 

Furthermore, the final lengths can be expressed in the following form 

DD
o
CDCDCD

DD
o
BDBDBD

DD
o
ADADAD

wbvb

wbvb

wbvb

3231

2221

1211













 

Whence 

o
CDDDADD

o
CDCD

o
BDDDBDD

o
BDBD

o
ADDDADD

o
ADAD

wbvbub

wbvbub

wbvbub













323131

222121

121111

 

o

D  Bu  (4.4.46) 
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Then, considering Eq.(4.4.29-31), the vector F can be written as  

































CD
CD

CDCD

BD
BD

BDBD

AD
AD

ADAD

AE

AE

AE










F  

After introducing the axial stiffness vector R 



























CD

CDCD

BD

BDBD

AD

ADAD

AE

AE

AE







R   

Then  

    DRF diag  

 



























CD

CDCD

BD

BDBD

AD

ADAD

AE

AE

AE

diag







00

00

00

RD  

 

and  

DDBuF   (4.4.47) 

where 

F is the axial forces vector with  m×2 size 

B is the compatibility matrix with m×2n size 

Du is the nodal displacements with vector n×2 size 

D is the stiffness matrix with m×m size 
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Moreover, by Eq. (4.4.46), the stiffness matrix D is defined as  

































o

CDDD

CDCD

o

BDDD

BDBD

o

ADDD

ADAD

wbvb

AE

wbvb

AE

wbvb

AE







3231

2221

1211

00

00

00

D  (4.4.48) 

Thus, the optimization problem to find the unknown variables may be set as follows  

   

0uB

uPBuuFu
uu





D

D

T

DDD

T

D

D

D

Sub

Find
2

1
MinMin

 (4.4.49) 

Therefore, taking into account Eq. (4.4.47), and by substituting into  Eq. (4.4.49), one 

obtains the following expression of the  Du  

       D

T

DD

T

DD uPBuBuDu 
2

1
 (4.4.50) 

which is a non-linear equation in the displacements unknown variables.  

Hence, making it explicit, one gets 

 

 

 

 

 
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DDzDDy

DD
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DD
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BDBD
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D

DDzDDy

DD

DD

DD

T

DD

DD

DD

o
CDDD

CDCD

o
BDDD

BDBD

o
ADDD

ADAD

D

DDzDDy
D

D

T

D

D

o
CDDD

CDCD
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BDD

BDBD

o
ADDD

ADAD

D

WPvP

wbvb

wbvb

wbvb

wbvb
wbvb

AE

wbvb
wbvb

AE

wbvb
wbvb

AE

WPvP

wbvb

wbvb

wbvb

wbvb

wbvb

wbvb

wbvb
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wbvb
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w

v
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w

v
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 (4.4.51) 

 

With 

    0312111  o

CDD

o

BDD

o

ADD ububub  18 (4.4.52) 

By solving the inequalities, the range of the admissible values of the design variables is 

identified, also by applying Kuhn-Tucker conditions.  
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The results, with the horizontal force equal to 10.000 N, are illustrated in the following 

figures, where the displacements are plotted with a amplification factor set to 1020.  

Fig. 4.12a illustrates the system with all members fully reacting both in tension and 

compression, subject to the force PDx = 10 kN applied on node D, with the equilibrium 

configuration resulting from the small displacement analysis (Fig. 4.12b) and from 

iterated calculations converging towards true displacements results (Fig. 4.12c).  

         

(a)                                                           (b)                                                            (c) 
Figure. 4.12: Solutions with all bilaterally active members: a) The structural pattern; b) 

the small displacement solution; c) the iterated solution for effective, possibly large 

displacements. Amplifications of displacements are equal to 20. 

 

One should notice that the rods plotted in green are in tension while the rods in red are 

compressed. The solution for small displacements is practically coincident with the 

effective displacements’ one. 

The second set of results solves the problem set in Eq.(4.4.49) -(4.4.50), corresponding 

to the case when the system is composed of cables that cannot resist compression. The 

results are depicted in Fig. 4.13. 
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(a)                                                                              (b) 
Figure 4.13; Solutions with all members unable to resist compression. a) the small 

displacement solution; b) the iterated solution for effective displacements. The green 

rods are in tension and are selected  as effectively reactive. The red rod is acted on by a 

negligible force and does not actually contribute to equilibrium. Amplifications of 

displacements are equal to 10. 

 

The final set of results considers the system composed by rods that cannot resist tension, 

i.e. solves the problem minimizing the energy functional in Eq.(4.4.49) but with the 

reversed constraint Bu < 0. The relevant results are depicted in Fig. 4.14. 

            

(a)                                                                                   (b) 
Fig. 4.14: Solutions with all members unable to resist tension. a) the small displacement 

solution; b) the iterated solution for effective displacements. The red rods are 

compressed and are selected  as effectively reactive. The green rod is acted on by a 

negligible force and does not actually contribute to equilibrium. Amplifications of 

displacements are equal to 10. 

The equilibrium paths of the different structural patterns are summarized in the 

following table 
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TABLE 4.4.1 

Rods Bilateral  No-tension No-compression 

Geometry Small Actual Small Actual Small Actual 

sx (cm) 1.428 1.428 4.284 4.572 4.284 4.062 

sy(cm) ≈0 ≈0 1.427 1.557 1.427 1.326 

F1 (N) ≈0 ≈0 -10000 -10425 10000 9622 

F2 (N) -7071 -7042 -14142 -14549 ≈0 ≈0 

F3 (N) 7071 7099 ≈0 ≈0 14142 13784 

 

As one can deduct from the observation of the results, in the case of system unable to 

resist compression the change in the geometry improves the stiffness and the strength of 

the structure, so that in this case the small displacement analysis is on the safe side, 

while the opposite happens in the case of the no-tension system. 

 



5. CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES 

 
183 

5. CALCULUS MODEL UNDER LARGE DISPLACEMENTS 

FOR CABLE STRUCTURES 
 

5.1 Introduction 

 

As highlighted in Chapter 1, in recent years cables as structural elements have been 

largely employed in architectonical and engineering buildings, both for the aesthetic 

quality and structural advantages (Thai, Kim,2011) such as the lightness, the elastic 

behaviour, the possibility of pretensioning, covering large spans and using minimum 

amounts of material with the maximum exploitation of the mechanical properties. 

Cable systems are usually adopted as simple cables’ systems for supporting structures 

for membrane roofs, shells or cable stayed bridges, as opposite curvature cable 

structures for big spans, and as cable-nets systems again for large spans’ covering, as 

well as for supporting systems of glazed façades. 

As known, these systems belong to the macro-category of tensile structures where 

purely tensile forces are involved (cables, membranes, cable and membrane structures, 

tensairity). 

Although the many advantages, their geometric and/or mechanical non-linearity 

influences the response to the external actions making hard the static analysis. This is 

the main motivation of the increasing interest of researchers, who, starting from the 

identification of rigorous methods of modern mechanics for equilibrium, have been 

developing several approaches to identify the equilibrium shape of these structural 

systems both under the overloads and the pretension state.  

For computational purposes, novel models have been proposed as well in matrix 

formulation basically falling under the displacements’ and forces’ approaches. 

Usually, the most adopted models refer to the displacements’ method, where the 

stiffness matrix is obtained by the assemblage operation. One demonstrated that this 

approach is careful about the structural analysis and it can be used for several shapes, 

load and constraint conditions (Lan,1999). 
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Actually, the analysis models can be divided in two typologies; those ones based on the 

classical formulation of the elastic catenary and those ones based on the discretization 

of the structure in finite elements. 

In the first case, the equilibrium state of the continuum element suspended at the ends is 

mainly considered and analysed; it is important to highlight as the catenary approaches 

allow to identify the response of the structure also in case of seismic solicitations (Abad 

et al, 2012). One must put in evidence that the catenary approach is appropriate for very 

small curvatures (Thai, Kim,2011). 

As concerns the discrete approaches the basic idea is to model the cables as composed 

of many segments connected to each other by joints. Consequently, different loads can 

be applied along the single segments, or at the joints, also considering lateral or not 

uniformly distributed loads, taking into account the geometric and mechanical non 

linearity, like for example the cross-section variation and the material resistance. In this 

case a higher number of the elements is required with respect to the first formulation 

(Shoostari et al,2013). 

In the literature several approaches based on the catenary modelling of the cable can be 

found as for example the methods developed by O’Brien e Francis (O’ Brien e Francis, 

1964) and then by Jayaraman e Knudson (Jayaraman e Knudson, 1981);  

Recently some researchers have identified and characterized the tangent stiffness 

matrices and the internal forces vectors of the cables taking into account the self-weight 

of the cable, usually neglected both in the static and dynamic analyses.  

Many other similar methods have been adapted to the specific problems, based on and 

rielaborating the equations of elastic catenary, minimizing the computational time, as 

those ones developed by Whang (Whang et al, 2006), Andreu (Andreu et al, 2006), 

Yang e Tsay (Yang e Tsay, 2007), Such (Such et al, 2009).  

Other methodologies are based on FE approaches, refer to interpolation functions in 

order to describe the nonlinear behaviour of the structures both in continuum and 

discrete cases. 

The continuum approach is largely used for small deflection cables with high level of 

pretension; the discrete one, instead, is largely applicable and is based on the use of 
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higher degree polynomials for the interpolation functions (Chen et al., 2010). 

Nevertheless, the formulation is hardest and then the tangent stiffness matrix and the 

internal forces vectors are obtained through isoparametric interpolation functions, by 

using the same number of parameters to describe the geometry and to interpolate.  

The latter model is not properly appropriate to apply for great curvature cables, because, 

otherwise, it would imply a high number of elements increasing the computational 

effort (Thai, Kim,2011). 

To evaluate the static behaviour of plane cable structures with opposite curvature, one 

largely refers to the FEM modeling and analysis.  

In order to define the equilibrium configuration both in pretension and under the 

external loads, equilibrium and compatibility equations are solved by iterative 

processes, considering some simplifying hypotheses such as the possibility to neglect 

the terms with degree greater than one in the equilibrium equations and the self-weight 

of the beams.  

In case of cable nets, after identified the geometry, their behaviour is analized, or 

considering them as three-dimensional discrete elements composed by several cables 

connected to each other and subject to nodal loads, or approximating their behaviour to 

the membrane one. 

5.2 Plane systems 

 

Adapting the considerations presented in Par.3.3 to plane systems, one may search for 

equilibrium shapes under live loads acting in the plane. Some results are illustrated for 

the cable system with opposite curvature in Fig. 5.1 loaded by in-plane nodal forces, 

after implementation of the relevant problem in a calculus code. In Fig.5.2 - 5.3 

depicted results refer, respectively, to the application of the load components Py = 1 and 

Px = 1, with the force density ratio 1:1. 
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Figure 5.1: Topology scheme of a plane system. 

 

 

Figure 5.2: Equilibrium shape under the load Py=1. 

 

 

 

Figure 5.3: Equilibrium shape under the load Px=1. 
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Figure 5.4: Equilibrium shape under the load Px=20. 

 

One also considers the case when the load Px = 20 is applied on the node previously 

identified (node 5) determining the configuration shown in Fig.5.4. The ratio of the 

force density is 1:1.  

In Fig.5.5 the shape due to the application of the loads Pz=20 and it is applied in the 

positive direction of z axis) only on the free node 5. 

 

Figure 5.5: Equilibrium shape applying the load Pz=20  
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5.2.1 An overview of the basic approach 

 

In this context, for analysing the static response of cable structures under external 

solicitations, the study and development of a calculus model suitable for the several 

typologies of tensile structures is focused on.  

The approach is based on a matrix formulation in order to be then applied and 

developed, in the subsequent phase, on a structure composed by m cables, subject to the 

nodal loads and distorcing actions, where the self-weight of the elements is reported on 

the joints and the cables are considered straight both in the deformed and undeformed 

configurations.  

The analysis is conducted in elastic field, thus initially neglecting the mechanical non-

linearity of the elements, in order to identify the fundamental relationships in matrix 

form under large displacement. 

The problem is started from a known static regime configuration, whence variations to 

displacements and distortions are applied leading to updating the structural 

configuration.  

 

The first phase of this analysis is mainly devoted to the search and identification of the 

nonlinear geometric relation, in explicit form, between the balancing loads, necessary 

for the equilibrium in the varied configuration, and the applied displacements.  

Two subsequent steps follow, referred to the single elements and the global structure.  

In the single elements’ analysis, the local variables and the main relations are introduced 

and identified, and, in particular, the relationship is inferred between the variation of the 

internal forces and of the positions of the free nodes of the element, expressed through 

the identification of the secant stiffness matrix, the secant geometric matrix and the 

secant distortions vector.   

The second step concerns the transition to the global structure through an assembling 

procedure of the results from the first step, aiming at setting the relation of loads 
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ensuring the equilibrium in the deformed configuration, after the displacements’ and 

distortions’ application. 

It must be pointed out that the fundamental identified equation is geometrically 

nonlinear, therefore a step by step procedure is developed to solve it under small loads’ 

variations, that allow the linearization of the equation at any infinitesimal single step.  

 

First of all, let consider a plane structure composed by m segments and n free joints in a 

known static regime. Starting form this configuration, a displacement X  and 

distortion field D  are applied in order to determine a change in the configuration of 

the structure, that may occur under the following three conditions: 

 1






 , i.e. the deformations are very small 

 Any segment has a linear elastic behaviour, thus the Hooke law holds  

 The self-weight of the elements is neglected, and they are straight both in the 

undeformed and deformed configurations  

In this phase, the analysis focuses on the identification of the load variation )( XP   

that ensures the equilibrium in the deformed configuration.  

The single element is considered to identify the relation between internal forces and 

change of position at the free ends, through the introduction and definition of the 

stiffness secant elastic and geometric matrices19 and the secant distortion vector, at the 

local level of the cable segment.  

A non-linear equation is obtained, where the introduced entities depend on the imposed 

displacements. 

To obtain the balancing loads’ variation )( XP  , the assemblage of the system is 

performed introducing the Boolean matrix A depending only on the topology of the 

structure and where also the constraints are introduced.  

                                                           
19 The matrices are defined as secant to put in evidence the dependence of the forces amplitude on the elements’ 

stretching. 
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Finally, the relation between loads and displacements is identified 

DQUKUKP  **

GE  (5.2.1) 

where )(*
XK E  denotes the elastic and )(*

XK E  the geometric stiffness matrix, and 

distortional secant one )(*
XQ   of the global structure, depending on the imposed 

displacements. The identification of the mentioned matrixes and the solution procedure 

are illustrated in the following paragraphs. 

 

5.2.1.1 Fundamental relationships 

 

Let consider the plane cable structure shown in Fig.5.6, composed by m =11 cables and 

n = 6 free nodes, and four fixed ends; let assume that the structure is in a known static 

regime. 

 

 

 

Figure 5.6: Cable structure under the application of nodal loads, in its known 

configuration in the plane (Oyz). 

 

Let identify the following vectors in the place reference system (Oyz) 
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In the following the single cable segment is identified by the indexes of the end nodes ij 

(directed from i to j) rather than by the h index relevant to the hth element, that means 

for example F56 = F10, D56 = D10. 

Let Po, Xo, Fo, Do be the static and geometric entities describing the initial configuration 

One aims at finding the increment of the external loads  )( XP   necessary to keep 

the equilibrium in the new configuration, caused by the application of the geometry 

change X and possible additional distortions D.  

By assuming valid the hypotheses in Par. 5.2.120 , one denotes by   

ijf  the force transmitted by the node i to the end node j in the beam ij.   

jif  the force transmitted by the node j to the end node i of the beam ij, such that 

jiij ff   and jiij FF   

ijF  the component h  = ij of the vector hF , representing the intensity of the force jif  

o
ijf  the force transmitted by the node i to the end node j in the beam ij in 

o
jif  the force transmitted by the node j to the end node i of the beam ij in  , such that 

o
ij

o
ji ff   and o

ij
o
ji FF   

o
ijF   the component h = ij of the vector o

hF  , representing the intensity of the force o
ijf  

For solving the problem, let firstly consider the element ij shown in Fig. 5.7. 

 

                                                           

20 The deformations of all elements are small 1






   . 

The Hooke law is assumed valid; each cable segment is and keeps straight also in the deformed 

configuration.  
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Figure 5.7: Undeformed and deformed configuration of the single element in the plane 

(Oyz). 

 

The change of configuration from the initial known one  to the deformed one  is 

described by the difference vector  


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whence 

d

ij

o

ijij x   (5.2.5) 
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ijij

ij DRD
AE
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

 (5.2.6) 

where 

ij  is the length vector of the single cables in the deformed configuration directed from 

i to j 

ji  is the length vector of the single cable in the deformed configuration directed from 

j to i, and such that jiij    and jiij    

ij is the length of the beam ij in the deformed configuration 
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o

ij  is the length vector of the single cable in the initial configuration, directed from i to 

j 

o

ji  is the length vector of the single cable directed form j to i, in the undeformed 

configuration, such that 
o

ij

o

ij    and 
o

ij

o

ij    

o

ij is the initial length of the beam 

ijF is the intensity of  the force variation in the element 

ijE  is the elasticity modulus of the element 

ijA  is the cross section area of the element 

ij  is the length variation of the element 

ijD  is the intensity of the distortion variation in the element 

ijR  is the stiffness of the beam 

One highlights that dependence by d
ijx  is omitted.  

Let now consider the unit vector associated to the segment in the two configurations 
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whence the force vector ijf can be expressed in the form  

  

ijijij
o

ij
o
ijij

o
ijijij

ijijij
o

ij
o
ijij

o
ijij

o
ijij
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ijijijij

FFF

FFFFFF

αααfff

αααfαααf
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
 (5.2.8) 

Analogously Eq. (5.2.5) can be written again in the form 
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d
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And therefore the elongation is inferred 21  
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Taking into account Eq. (5.2.9), the variation of the versor is given by 
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According to the small deformations hypothesis, whence 



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1
 (5.2.12) 

Eq. (5.2.11) may be simplified 

                                                           

21 

 

  

 

ij

T

ij

d

ij

oT

ij

o

ijijij

d

ij

o

ij

o

ij

T

ij

d

ij

oT

ij

o

ijij

d

ij

T

ij

o

ij

o

ij

T

ij

d

ij

oT

ij

o

ij

o

ij

oT

ij

d

ij

o

ij

o

ij

T

ij

oT

ij

d

ij

T

ij

o

ij

o

ij

T

ijijij

T

ij

d

ij

T

ij

o

ij

o

ij

T

ijij

d

ij

T

ij

o

ij

o

ij

T

ij

o

ijij

d

ij

T

ij

o

ij

o

ij

T

ij

oT

ij

d

ij

T

ij

o

ij

o

ij

T

ijijij

T

ij

d

ij

o

ij

o

ijijij

d

ij

o

ijij





αxα

xααxα

xαααxααα

xαααxααααα

xααα

xααα

xααααxααααα

xαα

x



































:or  



 5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES 195 

   

 
   

 

 










 














































ijo

ij

ijd

ijo

ij

ijij

d

ijo

ij

ij

o

ij

d

ijij

o

ijij

d

ij

o

ijo

ij

o

ijij

d

ij

o

ijo

ij

o

ij

ij

d

ij

o

ij

o

ij

ij

o

ij

ij

d

ij

o

ij

o

ij

o

ij

o

ij

ij

o

ij

d

ij

o

ijo

ijijij























xxα

xx

x
x

α

xx
ααα

11

1

1
1

1

1

1

1

1










  













 
 ijo

ij

ijd
ijo

ij

ij 




xα

1
 (5.2.13) 

After substituting Eq. (3.2.13) in Eq. (5.2.10), one gets 
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Then, Eq. (5.2.14) is substituted in Eq.(5.2.13), whence  
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f  can be computed for any assigned 
d

x  using, in sequence,  Eq. (5.2.5) 

(5.2.14) (5.2.6) (5.2.15) (5.2.8)23 
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Eq. (5.2.16) refers to the action of the ij beam on the node j; to obtain the action on the 

node i by the same beam, one refers to Eq.(5.2.16) again and applies an indexes’ 

permutation, taking into account that 
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 (5.2.20) 

The variation of the internal forces of the ij beam can be completely represented by the 

vector ijn  that includes the variation of the internal forces at both the element ends  

   yjixjiyijxij
T
ji

T
ij

T
ij ffff ,,,,  ffn  (5.2.21) 

Anagously iju  denotes the vector that includes the 4 imposed displacements at both the 

ends, paying attention on Eq. (5.2.4) for that is 
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being jiij uu   

one has 
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The dependence of ijn  on iju  can be expressed by a single matrix relation, by 

assembling Eq. (5.2.16) relevant to ij to the analogous Eq. (5.2.20), and considering Eq. 

(5.2.21) and Eq. (5.2.22) 
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Eq. (5.2.23) can be synthetically written in the form 

ijijijGijijEijij D ***
qukukn   (5.2.24) 
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25 Elastic secant stiffness matrix of the beam ij; 
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The matrices included in the graph parentheses with 2x2 size in Eq. (5.2.5)-(5.2.26) are 

assumed as common multipliers of the identity sub-matrices in the right square 

parentheses. Understood the dependence on d
ijx  

  

 
  































T

ij

d

ij

T

ij

d

ij

T

ij

d

ij

T

ij

d

ijT

ijijij

T

ij

d

ij

T

ijijijEij

R

R

λxIλxI

λxIλxI
λ

II

II
λxIλk



*

   (5.2.25b) 

 
 

  





























T

ijij

T

ijij

T

ijij

T

ijij

o

ij

o

ijT

ijijo

ij

o

ij

Gij

FF

λIλI

λIλI

II

II
λIk







*  (5.2.26b) 

 

5.2.1.2 Assembled system 

Denoting by x  the vector in 4m components that includes the prefixed order sub-

vectors hij uu   

   .................... jijiijij
T
ij

T zyzy  ux  (5.2.28) 

and U  the vector that includes in 2n components the imposed displacements at the 

free nodes, allowing the configuration change o. 

After introducing the topological matrix A (4m×2n) whose elements are 0 or 1 

(Boolean matrix), according to compatibility  

UAx   (5.2.29) 

                                                           
26 Geometric secant stiffness matrix of the beam ij; 

27 Distortional secant vector of the beam ij. 
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The ground constraint of a structural element lead to nullify two components of the 

relevant x for each change of configuration. Thus, the two related rows of A are all 

made of zeros. 

Let consider the 4m components vector 

   .................... ,,,, zjiyjizijyij
T
ij

T nnnn  nN   (5.2.30) 

which includes as subvectors, in the same order of x , all the vectors hij nn  (h = 

1,…m) with reference to the different beams. 

Denoting by P the added external loads vector, requested for the configuration change 

owhich is the vector that, at each node, balances the vector sum of the forces ijn  

transmitted to the node by the beam here converging.  

One easily notes that the relation between forces and loads represents the equilibrium 

equation, where the equilibrium matrix is the transposed of A 

NAP  T
 (5.2.31) 

Denoting by  ijkdiag  the matrix made of all zeros except for the matrices ijk  placed in 

the diagonal positions, Eq. (5.2.24) is assembled in the unique relation referring to the 

definitions given in  Eqs. (5.2.28) – (5.2.29) and Eqs. (5.2.25)-(5.2.27) 

      DqdiagxkdiagxkdiagN  **
,

*
, ijijGijE  (5.2.32) 

Substituting Eq. (5.2.29) and Eq. (5.2.31) in Eq. (5.2.32), one gets 
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     
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 

 

 **

*

,

*

*

,

*

***

**

,

*

,

**

,

*

,

**

,

*

,

with

ij

T

ijG

T

G

ijE

T

E

GE

ij

T

ijG

T

ijE

TT

ijijGijE

ijijGijE

qdiagAQ

AkdiagAK

AkdiagAK

DQUKUKP

DqdiagAUAkdiagAUAkdiagANAP

DqdiagUAkdiagUAkdiagN

UAx

DqdiagxkdiagxkdiagN

















    

DQUKUKP  ***
GE   (5.2.33) 

By assuming  

   UKAkdiagAK  **
,

*
EijE

T
E

28  (5.2.34)   

   UKAkdiagAK  *
G

*
ij,G

T*
G

29 (5.2.35)  

   UQqdiagAQ  **
ij

T* 30 (5.2.36)  

Eq. (5.2.33) solves the problem formulated in Par.5.2.1.1 

One can observe that it is strongly non-linear because the introduced matrix depends on 

displacements, which implies that the problem cannot be solved for given loads’ P  

and  distortions’’ D  variations n order to obtain the relevant variation of configuration 

X  .  

Therefore a procedure to linearize Eq. (5.2.33) is adopted in order to get the change of 

configuration X  under given load variations P . 

 

                                                           
28 Global elastic secant stiffness matrix 

29 Global geometric secant stiffness matrix 

30 Global distortional secant matrix 
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5.2.2 Step by step approaches  

 

With reference to the know configuration, let consider some infinitesimal variations 

which allow to linearize Eq. (5.2.33) , and, then, to identify the tangent stiffness elastic 

and geometric matrices and the non-singular and invertible stiffness matrix 

GE
KKK  . 

 

The problem is solved by given infinitesimal load variations, identifying the coupled 

joints’ displacements and consequently the relevant change of configuration.  

Variations are considered arbitrarily small and the symbol  is substituted by d. 

The vector , Eq. (5.2.17) firstly, turn into, except for infinitesimals 

222222
;
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
λλ  (5.2.17) 
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oT
ijo

ij

T
ij

o
ijo

ij

ij αλαλ

1

;
1

  (5.2.37) 

Analogously, Eq. (5.2.24) can be written again  

ijijijGijijEijij D ***
qukukn  (3.2.24) 

ijijijGijijEijij dDdd qukukn   (5.2.38) 

where the matrices are independent of 
d
ijdx  and assume the form (with ()* denoting the 

quantities under large displacements) 
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31 Tangent elastic stiffness matrix 
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32 Geometric tangent stiffness matrix 
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Remembering Eq. (5.2.7) 
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one observes that 
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
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yijoT
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αα   (5.2.42) 

As for the global structure, the relation between loads and displacements Eq. (5.2.33) 

turns into 

DQUKUKP dddd GE   (5.2.43) 

where  

 AkdiagAK ijE
T

E ,
 

(5.2.44) 

 AkdiagAK ijG
T

G ,
 

 (5.2.45) 

 ij
T

qdiagAQ    (5.2.46) 

One gets the total tangent stiffness matrix 

    0;0det;  KKKKK eigGE  (5.2.47) 

which is assumed to be non singular and positive defined, as ordinarily usual under the 

assumed hypotheses.  

Finally, Eq. (5.2.43) can be solved by Ud  

                                                           
33 Distortional tangent stiffness vector 
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 DQPKU ddd 1    (5.2.48) 

The elongations of the single elements and therefore the increments of the internal 

forces are also to be considered. 

About the elongations, Eq. (5.2.14) is taken into account, remembering Eq. (5.2.37) and 

Eq. (5.2.20)  
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(5.2.37) 

    ij
d
jiij

d
ij uIIxuIIx  ;  (5.2.20) 
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ijij dddd uααuIIαxα    (5.2.49) 

one considers the m elongations’ vector 

 mhij dddd   .....1L  (5.2.50) 

By considering Eq. (5.2.27) 

UAx   (5.2.27)  

one can write again (remembering the definition in Eq. (5.2.26) of x, here dx) 
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T
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UBL dd   (5.2.51) 
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where B denotes the compatibility matrix (m×2n) depending on the geometry of the 

configuration o 

 AααB
oT
ij

oT
ijdiag   (5.2.52) 

The forces’ variations Fd are expressed in function of Ld and Dd , by assembling the 

m scalar equations Eq.(5.2.6) for ij = h =1,….m, and one gets 

  DLF ddRdiagd ij   (5.2.53) 

 

5.2.3 Solution procedure 

 

On the basis of the relations developed in the above, one sets up a calculus method for 

solving the main problem of these kind of structures, i.e. identifying the displacements 

for each given load condition.  

Actually, by starting from the known initial configuration o, its change into the new 

one occurs after the application of the loads P  and distortions D , which may be 

regarded as given by the sum of a number of load conditions: one considers. Then let 

consider a load story given by an additive sequence of s increments of loads and 

distortions. 
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(5.2.54) 

The final state can be reached going through a series of intermediate conditions 

     DPDDPPDP  ,......,, 21212111 so
 (5.2.55) 

Thus, once chosen rP sufficiently small, then the passage from the situation r-1 to the 

subsequent one r can be analized by the linear equations Eq.(5.2.48)-(5.2.53) in 

Par.5.2.1 

 DQPKU ddd  1
 (5.2.48) 
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(5.2.49) 
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 mhij1 dd.....dd L  (5.2.50) 

UBL dd   (5.2.51) 

 AααB
oT
ij

oT
ijdiag   (5.2.52) 

  DLF ddRdiagd ij    (5.2.53) 

After r steps, by summing up the partial results, one gets  
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(5.2.56) 

The final results identifying are obtained when r = s 

 

 

 s

s

s

LL

FF

UU







 (5.2.57) 
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5.2.4 Example  

 

In the following an example is presented for analytically treating the above illustrated 

theoretical calculus model. Let consider a plane structure composed by 2m  beams 

and 1n  free nodes (Fig.5.8), in a known static regime34 

 

 

Figure 5.8: Plane cable structure in the initial configuration loaded at the free node in 

the known static regime.  

 

Let consider the following entities in the initial configuration, where 

  is the vector of the initial loads applied on the free nodes, in 2n 

components, in the initial configuration 

 is the position vector of the free nodes in 2n components, in the initial 

configuration 

  is the vector of the forces in the m beams, in the initial configuration 

                                                           
34 In the following, the dependence on  in the analysis of the single beam, and on X  in the global 

structure aanalysis are omitted.  
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 is the vector of the distortions in the m beams in the initial 

configuration 

As shown in the previous paragraphs, after identifying the initial configuration in a 

static known regime, a change of position X of the free node is applied leading to a 

new geometry of the structure and consequently to new static conditions. Let also 

consider a variation of distortion in the beams (Fig.5.9).   

The transition from the undeformed to the deformed configuration occurs under the 

hypotheses (Par. 5.2.1): 

a. 1






 , which means that the deformations in any beam are very small  

b. Each beam has an elastic linear behavior  

c. Any cable segment is straight both in undeformed and deformed configurations.  

 

 

Figure 5.9: Deformed configuration (in red) due to the application of the position 

change of the free node. 

 

Hence, the variation of the external nodal load  )(ΔXP  is searched for, in order to 

ensure the equilibrium in the deformed configuration (Fig. 5.8). 
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Figure 5.10: Cable structure in the deformed configuration (continuous line). 

 

Denoted by   

PPP  o  the vector of the applied nodal load in the deformed configuration 

XXX  o  the vector of the updates position of the free node in the deformed 

configuration 

DDD  o  the vector of the distortions in the beams in the deformed configuration 

 

One follows the two steps of the analysis in Par. 5.2.1, hence, firstly, the study of the 

single elements with the identification of the relations between the internal forces’ 

variations and the free node position change, and, then, the study of the global structure, 

where the assemblage operation is dealt with by introducing the topological matrix A, 

finally, allowing to identify the relation between the load increments imposed position 

changes of the free node.  

 

5.2.4.1 Single elements’ analysis 

 

Let first of all consider the beam A1 in Fig.5.11 and its deformed configuration 

described by the vector  after the application of X  



 5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES 215 

 

 

Figure 5.11: A1 beam in its initial and deformed configuration. 
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x  (5.2.58) 

The boundary conditions in A, as a restrained node, are 

0

0

1

1





A

A

z

y
 

Consequently, by omitting the dependence of the following entities by , one gets 

 111

d

A

o

AA x   (5.2.59) 

)()( 11111

1

11
1 AAAAA

A

AA
A DRD

AE
F  


 (5.2.60) 

where 

1A  is the beam vector A1, directed from A to 1 in the deformed configuration 

o

A1  is the beam vector A1 directed from A to 1 in the initial configuration 
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1AF  is the magnitude of the force variation in the beam A1 

1AR is the axial stiffness in the beam A1 

1A  is the modulus of the length variation of the beam A1 

1AD is the modulus of variation of the distortions in the beam A1 

In this first step, one focuses on the identification of the variations of the internal forces  

)( 11

d

AA xf   (5.2.61) 

)( 11

d

BB xf   (5.2.62) 

whence, remembering Eq. (5.2.16) in Par. 3.2, 
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 (5.2.63) 

where 

Ι  is the identity matrix in 2×2 dimensions   

λ  is the vector  11

11

2

1

1
A

o

A

A

T

A

o

A







 

 

Hence, the variation of the internal force in the analysed beam A1 from the end 1 to A is 

inferred obtained through indexes’ permutation 

   
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  

Once determined the internal forces’ variations at the ends of the considered beam, one 

re-assembles the structure, in such a way to evaluate the variation of nodal load 

necessary for the equilibrium of the structure in the updated configuration.  
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One considers the 4m components vector 1An  that embeds the variations of the 

internal forces at the ends the beam A1 
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Since 
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 (5.2.66) 

  11 A

d

A uIIx    (5.2.67) 

  11 A

d

A uIIx    (5.2.68) 

with 1Au of the 4 components displacement vector. 

Thus the internal force vector can be written in the form 
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 (5.2.69) 

where one can identify the following matrices  
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 (5.2.70) 
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which are respectively the stiffness elastic and geometric secant matrices, and the secant 

distortion vector of the beam A1. 

By writing Eq. (5.2.69) in a compact form, it turns into  

1
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1,1
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1,1 AAAAGAAEA Dqukukn   (5.2.71) 

As concerns the other beam B1 of the structure, its change of geometry is given by 

 (5.2.72) 

with boundary conditions in B 
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Whence, 1Bf  is given in the form  
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and then, by permuting the indexes, one gets B1f  
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where 

Ι  is the identity matrix in 2×2 dimensions 

λ  is the vector  11
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. 

thus, the vector 1Bn is introduced  
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By considering the vector of displacements 1Bu  one gets 
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i.e.  
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In the compact form  
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which are, respectively, the stiffness elastic and geometric secant matrixes, and the 

secant distortion vector referred to the B1 beam.  

  

5.2.4.2 Global structure’s analysis: identification of the main entities 

 

To pass to the analysis of the entire structure, let now consider embedding the 

previously identified displacement and force vector of each cable segment 
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Two linear compatibility and equilibrium relations may be set through the Boolean 

matrix A (4m×2n), and its transposed one T
A  (2n×4m). A is made of 0 and 1 and 

depends on the topology, with 1 for the free nodes. 

Hence, by considering the structure shown in Fig. 5.12 and its constraint conditions 
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Figure 5.12: Deformed global structure. 

   

the A matrix is given by 



































00

00

10

01

00

00

10

01

A  (5.2.83) 

Thus the compatibility relation can be written  

UAx   (5.2.84) 

and, taking into account Eq. (5.2.82), the equilibrium is 

NAP  T
 (5.2.85) 

By remembering Eq. (5.2.32) 
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where  diag  denotes the matrix in the square parentheses arranged in diagonal position 
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Moreover, substituting Eq. (5.2.83) into Eq. (5.2.86), one gets 
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and one gets  
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where 

AkAK ][ *

,

*

ijE

T

E diag  (5.2.89a) 

AkAK ][ *

,

*

ijG

T

G diag  (5.2.89b) 

][ *

ijdiag qQ   (5.2.89c) 

Whence one can write  

DQUKUKP  ***

GE  (5.2.90) 

To solve the above equation, one assumes that the distortions are equal to 0  

0DQ

0D





*
 (5.2.91) 

Eq.(5.2.90) turns then into  

UKUKP  **

GE  (5.2.92) 

After identified the variation of the external load by Eq. (5.2.92), through a small 

incremental step (p) the first variaton of P is computed by  
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pPP 1d  (5.2.93) 

The trigger value is considered to proceed step by step, and then the coupled 

displacement can be identified by inverting the stiffeness matrix given by 

GE KKK   (5.2.94) 

finally obtaining 

111
PKU dd   (5.2.95) 

Eq. (5.2.95) denotes the infinitesimal step applied to the structure, repeating the above 

presented calculus procedure for then indivituating a new load condition. The procedure 

continues up to convergence, that is when the difference between two subsequent 

solutions is very small  

 tdd rr 
PP

1  (5.2.96)    

where 

 1rdP  is the load variation at the subsequent step r +1 

rdP  is the load variation at the preceding step r 

t is a tolerance value assumed for a valid solution. 
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5.3 Three-dimensional systems 

 

When referring to 3D structures, one may apply and extend to spatial schemes what 

developed in Par.3.3 for 2D structures, and one may, thus, develop the general setup for 

finding equilibrium shapes under different load conditions in the three-dimensional 

case. As an example one refers to the topology illustrated in Fig. 5.13 subject to out-of-

plane loads, and one synthetically presents in the following the relevant results, after 

suitably implementing the problem in the related calculus code. 

 

 

5.13: Topology scheme. 

 

 

In Fig. 5.14 the configuration is reported, due to the application of out-of-plane load Pz 

= 1 in the upward direction with a ratio in edge and internal branches equal to 1:1.  
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Figure 5.14 : Equilibrium shape under the out-plane load Pz=1 in the upward direction. 

The ratio in the edge to the internal branches is q=1:1. 

 

 

Fig. 5.15 depicts the shape assumed by the structure under the application of the out-of-

plane load Pz = 20 in the upward direction on a single free node (free node 5). 

 

 

Figure 5.15: Equilibrium shape under the load Pz=20 in the upward direction , applied 

only on the free node 5. 

The ratio in the edge to the internal branches is q=1:1.  
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5.3.1 Implementation  

In the following the methodology described for a plane cable system with opposed 

curvature is extended to a three-dimensional system case, shown in Fig.5.16-17, and we 

will demonstrate its validity. 

 

 

 Figure 5.16: 3D model of a cable system with opposite curvature. 

 

Thus, keeping the same definitions and symbols given for the plane case in the previous 

Par.(5.2.1)-(5.2.2), the problem is formulated for a cable structure in the three-

dimensional space (Fig.5.17).  

 

 

Figure 5.17 Lateral view of the Cable structure in the reference system Oxyz. 
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The entities introduced for a two-dimensional system are extended to the three-

dimensional one, referring to the system (Oxyz) 

 
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  (5.3.1) 
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D
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 (5.3.2) 

As seen, the change of configuration from  to for a single element ij Fig. 5.18) is 

described by the vector 




















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

jiij

jiij

jiij

d
ij

zz

yy

xx

x  (5.3.3) 

 

 

Figure 5.18: Undeformed and deformed configuration of the beam due to the change of 

configuration applied on the entire structure, in the reference system (Oxyz). 

 

 

The length vector of the element ij in the deformed shape and the entity of the force 

variation are given by 

d

ij

o

ijij x   (5.3.4) 



5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES  228 

   ijijijijij

ij

ijij

ij DRD
AE

F  


 (5.3.5) 

By introducing the versors  
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the force vector in ij can be written again  
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Similarly, Eq. (5.3.4) turns into 
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Hence, the length variation is computed 
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(5.3.9) 

Following the same developments like in the plane case, the variation of the versor is 

obtained by Eq. (5.3.8) 
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Because of small deformation hypothesis  
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Eq. (5.3.10) is simplified into 
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and Eq. (5.3.9) turns into 



5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES  230 

 

 

 

    d

ij

T

ij

oT

ij

ij

T

ij

o

ij

o

ijd

ij

T

ij

oT

ij

ij

T

ij

o

ij

o

ij

o

ij

ij

d

ij

T

ij

oT

ijo

ij

o

ij

ij

T

ij

o

ij

ijo

ij

ij

T

ij

ij

ij

T

ijo

ij

ijd

ij

T

ij

oT

ijo

ij

ijo

ij

ijd

ijo

ij

T

ij

d

ijo

ij

oT

ij

ijo

ij

ijd

ijo

ij

T

ij

d

ij

oT

ijij

ijo

ij

ijd

ijo

ij

ijij

d

ijo

ij

ij

ij

T

ij

d

ij

oT

ijij

T

ij

d

ij

oT

ij

o

ijijij

d

ij

o

ij

o

ijijij

d

ij

o

ijij

xx

x

x

xxxxα

xxα

αxααxα

xαα

x






















 































 












 












 






























22

2

2

2

2

2

1

1
1

1

11

11

















































 

  d

ij

T

ij

oT

ij

ij

T

ij

o

ij

o

ij

ij x


 
2


  (5.3.13) 

For removing the elongation in Eq. (5.3.12) by Eq. (5.3.13), one gets the new 

expression  
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The force variation in the element ij at the node j is  
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By remembering Eq. (5.3.17)  
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the action on the node i is obtained by the permutation of indexes 
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 (5.3.17) 

The vector of the internal force variation at the ends of the beam ij turns into  

   zjiyjixjizijyijxij
T
ji

T
ij

T
ij ffffff ,,,,,,  ffn  (5.3.18) 

Analogously uij denotes the vector of the 6 components of the imposed displacements 

at the ends.  Observing that for Eq. (5.3.3)  
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the dependence between nij and uij is inferred in the form 
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 (5.3.20) 

Taking into account that here the secant stiffness matrices and vector assume different 

dimensions, they are defined as 

ijijijGijijEijij D ***
qukukn

 
(5.3.21) 
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(5.3.24)  

Actually, the matrices appearing in the graph parentheses are with 3×3 size, and they 

have the same function as described in Par. 5.2.1. 

 

5.3.1 Assembled system 

 

In order to consider the global structure the vector x is introduced, which now includes 

the 6m components of the sub vectors uij uh 

   .....      ............... jijijiijijij
T
ij

T zyxzyx  ux  (5.3.25) 

and the vector U of the 3n imposed displacements at the free nodes. 

Hence the relation between x and U is expressed through the topological matrix A 

(6m×n), 

UAx   (5.3.26) 

At constrained nodes, the relevant components of x are zero in any change of 

configuration, and then the related rows in A are equal to 0 as well. 

Let considers the 6m components vector 

   .....       ...............
,,,,,, zijyjixjizijyijxij

T

ij

T nnnnnn  nN    (5.3.27) 

which includes the sub vectors nij nh (h = 1,…m) in the same order of x, related to 

the several segments. The variation of the external load P is inferred through 

equilibrium by the transpose of A 
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NAP  T
 (5.3.28) 

With reference to the definition of diag[kij]
35 and to Eq. (5.3.21), (5.3.25)-(5.3.27), 

(5.3.22)-(5.3.24), one gets  

      DqdiagxkdiagxkdiagN  **
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*
, ijijGijE  (5.3.29) 
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Whence the solving equation is identified  
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 (5.3.30) 

with 

   UKAkdiagAK  **
,

*
EijE

T
E  (5.3.31) 

   UKAkdiagAK  **
,

*
GijG

T
G  (5.3.32)  

   UQqdiagAQ  ***
ij

T  (5.3.33)  

Hence the step by step approach in Par.5.2.2 is applied, taking into account that  

1.   













II

II
ααk

oT
ij

o
ijijEij R  is the elastic tangent stiffness matrix of the element 

ij 

                                                           
35 The matrix is made by zeros except for the diagonal positions, where the sub-matrices  kij are placed. 



5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES  236 

    

 

   





















































































































































































2

,,,,,

2

,,,,,

,,

2

,,,,,

2

,,,

,,,,

2

,,,,,

2

,

2

,,,,,

2

,,,,,

,,

2

,,,,,

2

,,,

,,,,

2

,,,,,

2

,

2

,,,,,

,,

2

,,,

,,,,

2

,

,,,

,

,

,

**

       

11

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

xij

o

zij

o

xij

o

yij

o

xij

o

xij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

xij

o

zij

o

xij

o

yij

o

xij

o

xij

ij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

xij

ij

o

zij

o

yij

o

xij

o

zij

o

yij

o

xij

ij

oT

ij

o

ijijEij

oT

ij

o

ijijEij

oT

ijo

ij

d

ij

oT

ijo

ij

o

ijijEij

d

ijEij

T

ij

d

ij

T

ijijijEij

R

R

RR

R

dR

R



























II

II

II

II

II

II
ααk

II

II
ααk

II

II
αxIαk

xk
II

II
λxIλk






 

2.   













II

II
ααIk

oT

ij

o

ijo

ij

o

ij

Gij

F


is the eometric tangent stiffness matrix of the 

element ij 



5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES  237 

   

 

 
























































































































































































































































































)()(

)()(

)()(

)()(

)()(

)()(

)(

)(

)(

1

1

1

100

010

001

1

2

,

2

,,,,,

2

,

2

,,,,,

,,

2

,

2

,,,,,

2

,

2

,,,

,,,,

2

,

2

,,,,,

2

,

2

,

2

,

2

,,,,,

2

,

2

,,,,,

,,

2

,

2

,,,,,

2

,

2

,,,

,,,,

2

,

2

,,,,,

2

,

2

,

2

,

2

,,,,,

,,

2

,

2

,,,

,,,,

2

,

2

,

2

,,,,,

,,

2

,,,

,,,,

2

,

2

,,,,,

,,

2

,,,

,,,,

2

,

**

o

yij

o

xij

o

yij

o

zij

o

xij

o

zij

o

yij

o

xij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

zij

o

xij

o

xij

o

yij

o

zij

o

yij

o

zij

o

xij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

zij

o

yij

o

zij

o

xij

o

yij

o

xij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

zij

o

yij

o

xij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

zij

o

xij

o

xij

o

yij

o

zij

o

yij

o

zij

o

xij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

zij

o

yij

o

zij

o

xij

o

yij

o

xij

o

zij

o

yij

o

ij

o

ij

o

yij

o

xij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

zij

o

xij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

zij

o

yij

o

ij

o

ij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

xij

o

ij

o

ij

o

zij

o

yij

o

zij

o

xij

o

zij

o

zij

o

yij

o

yij

o

xij

o

yij

o

zij

o

xij

o

yij

o

xij

o

xij

o

ij

o

ij

oT

ij

o

ijo

ij

o

ij

Gij

oT

ij

o

ijo

ij

o

ij

Gij

oT

ijo

ij

o

ijo

ij

o

ij

Gij

d

ijGij

T

ijijo

ij

o

ij

Gij

F

F

F

F

F

F

F

F















































II

II

II

II

II

II

II

II
ααIk

II

II
ααIk

II

II
αIk

xk
II

II
λIk





 

3. 















oT

ij

oT

ij

ijij R
α

α
q  is the distortional tangent vector of the element ij 

   






















































































oT

ij

oT

ij

ijij

oT

ij

oT

ij

ijo

ij

o

ij

o

ij

ij

o

ij

o

ijd

ij

oT

ijo

ij

o

ij

ij

ij

d

ijij

ij

ijd

ij

T

ijo

ij

ij

ij

R

R
R

d
R

R

α

α
q

α

α

xαq

xqxλq



















1
1

1 **

 

 



5.CALCULUS MODEL UNDER LARGE DISPLACEMENTS FOR CABLE STRUCTURES  238 

Remembering Eq. (5.2.51)  

UBL dd   

with 

 AααB
oT
ij

oT
ijdiag  the compatibility matrix (m×3n) 
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5.3.2 The elastic and distortional stiffness matrix 

 

The distortional effects, which have been neglected in Par.5.2.3 in order to solve Eq. 

(5.2.33) in Par. 5.2.1.2, are considered in the following. 

Let consider Eq.(5.2.16) in Par. 5.2.1 
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 (5.2.16) 

By assembling all the terms depending on the axial stiffness R, one gets 
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Hence, by moving the terms independent by the 
d

ijx  to the left and by considering 

Eq.(5.2.5) in Par.5.2.1), Eq.(5.3.34) can be re-written  
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 (5.3.35) 

Whence 
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Setting 
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i.e. the axial distortional forces, Eq. (5.36) turns into 
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, IλxIλk    (5.3.38) 

the modified secant elastic stiffness matrix due to the effects of the distortions, one has 

d
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,

*

,   (5.3.39) 

Following the considerations made in the Par. 5.2.1, Eq.(5.2.33), one has 
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and  

DTD
NAP    (5.3.42) 
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which is the equilibrium equation between the variation of distortional loads and the 

distortional forces.  

For the entire structure one has  

    xkxkNN  *

,

*

, ijG

D
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D diagdiag
 

 (5.3.43) 

whence, because of compatibility 

UAx   
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,

*
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D diagdiag   (5.3.44) 

As regards the equilibrium, remembering that 

NAP  T  

one gets  
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,
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TD diagdiag   (5.3.45) 

By considering that 

 AkAK
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E diag *

,

*    (5.3.46) 

 AkAK
*

,

*

ijG

T

G diag
 

 (5.3.47) 

are respectively the secant elastic stiffness matrix with the distorting effects, and the 

secant geometric stiffness one, Eq. (5.3.45) can be written  

UKUKPP  **

G

D

E

D   (5.3.48) 

Assuming  
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D

Tot PPP 
 

 (5.3.49) 

Eq.(5.3.48) written including the distortional effects as distortional loads, turns into 

UKUKP  **

G

D

ETot   (5.3.50) 

The solving procedure previously described holds also for Eq. (5.3.50), and the same 

considerations are valid also in the 3D extension, taking into account the different size 

of the matrices.  
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6. AN OVERVIEW ON THE DYNAMIC BEHAVIOUR OF 

CABLE TENSILE SYSTEMS 

Aiming at emphasizing the dynamic behavior of tensile structures, in the following the 

performance of cable tensile roof is investigated through the analysis of a study case 

which is referred to. 

The executed investigation focuses on the vibration modes of the selected study case, 

paying attention, mainly, to the deformed configurations, frequencies and periods. The 

accidental loads referred to in the analysis are identified as concerns the Italian 

Instructions NTC2008. The analyzed structure is an open system, and, in this case, it is 

undergone by an asymmetrical load.  

6.1 General description of the study case 

Firstly, the geometry and the materials of the study case have been identified and 

described in the following. The structure refers to a tensile roof designed for covering a 

large space in Tokyo. It is an open system, as previously mentioned, and it is composed 

of steel frames and cables. Fig. 6.1 shows that it is a symmetrical cable structure with 

opposite curvature where the connecting cables are arranged along the vertical direction.  

 

 

Figure 6.1: Plan and vertical views of the structural scheme.  

The geometry is characterized by an arch structure composed by steel elements 

consisting of beams, piles and cables. The covering is in PVC material. It presents a 
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span of 40000 mm, a depth of 10000 mm, reaching a height of 13000 mm. For the piles 

HEM300 are used and IPE300 and IPE200 for the beams. The diameter of cables is 10 

mm or 40 mm based on their arrangement and structural function. In Fig.6.2 the lateral 

view is shown. 

 

 

Figure 6.2: Lateral view of the structural scheme. 

 

The distance between the cable elements amounts to 10000 mm, reaching a total depth 

of 20000 mm, as highlighted in Fig. 6.4. Moreover, the connecting cables present a 

different length along the arcade (Fig. 6.3).  

 

 

Figure 6.3: Plan and frontal views of the structural scheme.  
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Figure 6.4: Lateral view of the structural scheme. 

 

The analysis has been conducted according to the Italian Regulations, in particular:  

Law November, 5th 1971: “Norme per la disciplina delle opere di conglomerato 

cementizio armato, normale e precompresso ed a struttura metallica” (Regulation about 

the reinforced concrete, concrete and pre-pressed concrete buildings and steel frame 

structures);  

 

D.M. (Ministerial Decree) Transport Infrastructures January, 14th 2008 : “Norme 

tecniche per le Costruzioni” (Technical regulation about the buildings); 

 

Furthermore some indications belonging to the Circolare 2 febbraio 2009 n. 617 del 

Ministero delle Infrastrutture e dei Trasporti have been considered: 

“Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 14 

gennaio 2008”. (Instructions about the application of the Technical Regulation about the 

buildings; DM 2008/01/14). 

6.1.1 Materials 

Then the materials composing the elements have been identified, as follows:  

-S355 

-Stainless steel  

-PVC  

 

in order to evaluate the following mechanical properties:  
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- Weight per Unit of Volume  

- Mass per Unit of Volume 

-Young Modulus (E) 

- Coefficient of Poisson (ν)  

- Shear Modulus (G) 

- Coefficient of thermal expansion (α)   

- Yield tensile stress (fyk) 

 

The stress/strain graph is shown in Fig. 6.9.  

 

6.1.2 Regularity of the structure  

 

Table 6.1 summarizes the principal features of the plan and height regularity for the 

study case, according to Italian Regulations (Par.6.1).  

 

 

Table 6.1: Check of the plan regularity  

 

Plan regularity of the the structure 

The plan configuration appears 

symmetric along the two perpendicular 

directions, according to the mass and 

stiffness distribution. 

 

YES 

The ratio between the sides of a 

rectangle that inscribe the plan is less 

than 4. 

(btot = 68000 mm; htot = 20000 mm; 

btot/htot =3,4) 

 

 

YES 

No dimension of any recesses or 

protrusions exceeding 25% of the 

construction dimension in the 

corresponding direction. 

 

YES 

The horizontal elements can be 

considered infinitely rigid in their plane 

with respect to the vertical elements and 

sufficiently resistant. 

 

YES 
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Height regularity of the structure 

All the resistant vertical systems extend 

along all the height of the building. 

YES 

 

 

6.1.3 Load Conditions 

 

As concerns the loads applied on the structure, they are subdivided in permanent and 

accidental loads. 

To the first category the following loads belong:  

- G1: the structural elements self- weight (cables, beams, piles)  

- G2: the un-structural elements self-weight 

- T:  the pre- tension in the cables  

To the second one the following loads belong:  

- L: accidental loads. 

The considered load condition is given by  

   LTGG  21   (6.1) 

The loads evaluation has been made according to the DM 2008, except for the 

permanent ones, whose evaluation has been made according to the final dimensions of 

the structure.  

 

6.2 Modelling 

 

A FEM model has been developed for the study case, in order to evaluate its response 

under the accidental asymmetrical loads.  

After the definition of the geometry and materials of the elements, and the constraint 

conditions, the model has been realized with SAP2000 using frames, cables and shell 

elements. 

The lateral sloping and the vertical cables are modelled like a straight frame, divided in 

ten segments in correspondence of the nodes which link the cable to the vertical ones.  

The elements respect the number and the arrangement supposed in the design phase 

step. The roof surface has been modelled through shell elements with membrane 

behaviour. It has been divided in a regular mesh.  
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Moreover, the elements are linked to each other through joints, as shown in Table 6.2. 

 

Table 6.2: Main constraint conditions   

 

 Constraint 

[U=0;Ф=0]  

Hinge 

[U=0;Ф≠0]  

Joints 

 

 

 

 

  

  

 

  

 

 

  

 

 

  

 

 

In Fig. 6.5-8, one shows the model and the different elements distinguished by the 

different colors.  

 

Legend 

     Frame 

     Cable 

     Shell 

 

 

 

Figure 6.5: Model-Frontal view. 
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Figure 6.6: Model-Perspective view.  

 

 

 

Figure 6.7: Axonometric view.  

 

 

Figure 6.8: Model- Bird’s eye view.  

 

 

In Table 6.3 and Table 6.4 the number and type of elements and the number of the 

constrained points used in the model are shown respectively. 

 

Table 6.3: Type and number of elements   

ELEMENTS N° OF ELEMENTS 

Frames 46 
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For the piles the use of the HEM300 is adopted; instead for the principal beams the 

IPE300 and for the secondary beams IPE200 are used.  

In Table 6.5 the geometrical features of the above mentioned elements are shown. 

 

Table 6.5: Geometrical features of the frame elements    

 
 

 

  h B a e 

[mm] [mm] [mm] [mm] 

 

 

IPE300 

 

300 

 

150 

 

7,1 

 

10,7 

 

 

IPE200 

 

200 

 

100 

 

5,6 

 

8,5 

 

 

HEM300 

 

340 

 

310 

 

21 

 

39 

 

6.2.1 Materials’ properties 

 

Then the mechanical parameters of the materials have been considered, summarized in 

Tables 8 and 9. Moreover, in Fig. 6.9 the stress/strain graph of the steel material used in 

the model is shown. 

Cables 90 

Shell 80 

Nodes 131 
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Table 8: Weight and mass    

 

Material Weight per unit 

volume 

Mass per unit 

volume 

]/[ 3mkN  ]/[ 3mkN  

S355 77 7,849 

Steel 77,5 7,902 

  

 

Table 9: Properties Data    

 

Material E ν α G 

kN/m2 - °C kN/m2 

S355 2,1E+8 0,3 12E-6 80769231 

Steel 2E+8 0,3 16 76923077 

 

Legend 

 Axial Stress/Strain Curve 

 Share Stress/Strain Curve 

 

 
Figure 6.9: Stress/strain graph of adopted steel material.  

 

6.2.2 Load Conditions  

 

As concerns the load condition, the self-weight of the structure and the accidental loads 

have been considered.  
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The self-weight has been calculated by the program, by considering the self-weight of 

the roof like an overload on the structure and including the pretension in the cable in the 

class of the permanent loads.  

About the accidental loads, an asymmetrical load one has been applied on the structure, 

classified in the class of live loads.  

 

 

Figure 6.10: Accidental load condition. 

 

 

 

Table 6.10: Load condition 

Type of load  

Self- weight  The self-weight of the structure is calculated 

by the program 

G2 0,009 kN/m2 

Live qsk=1,30kN/m2 

 

The value of the accidental loads has been calculated according to the NTC2008.   

A snow load has been supposed on the roof.  

According to the NTC2008 for a snow load, considering the different zones, one has  

 

1. 
2/60.0200 mkNqa sks   (6.2) 

2. 
2

2

/
481

151.0200 mkN
a

qa s
sks 















  (6.3) 

where 

sa is the height of the zone 

skq is the snow load 
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Therefore, one has considered a snow load given by  

600sa  (6.4) 

   2
2

/30.1
481

600151.0 mkNqsk 




   (6.5) 

The uniform asymmetrical load has been applied on the model in terms of nodal loads.  

Fig. 6.11 shows how the asymmetrical loads have been calculated for each node of the 

roof surface. 

 

 

 

Figure 6.11: Nodal loads on the roof surface. 
 

 

 

 

Figure 6.12: Detail of the nodal loads condition.  

 

The value of the nodal loads has been analytically calculated as follows. 

Firstly, three types of nodes on the roof surface have been identified: 

1. External nodes  
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2.Longitudinal boundary nodes  

3. Transversal boundary nodes  

4. Inner nodes  

 

For each of them, the value of the load has been determined as follows:  

    21 ddp    

     32 ddp     

    14 ddp     

   42 ddp     

The roof overload has been considered also applied on the nodes, following the same 

procedure. 

 

6.3 Modal analysis 

 

The modal analysis of the structure has been developed under the given load conditions.  

In order to identify the different vibration modes of the structure, one has considered the 

following masses: 

1.  Self- weight of the structural elements (G1) 

2. Overload of the roof (G2) 

3. Accidental loads (L) 

Therefore, the total mass is:  

G1: 

Piles:  [kN]   nHAw   

Beams: [kN]   nAw    
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Cables: [kN]   nAw    

G2: 

Roof surface: [kN]A R g  

where:  

w: weight of the material of the element in kN/m3 

A: area of the element in m2 

H: height of the element in m 

n: number of the elements 

l: length of the elements in m 

gr: gravity load of the roof in kN/m2                            

In order to assign this mass to the structures, one has identified the different loads in the 

MASS SOURCE (M2), given by:  

Elements and additional masses (G1) 

From load (G2+L) 

After that, the number of modes according to the eigen vectors has been identified.  

 

6.4 Numerical results 

 

In Figs. 6.13-24, one reports the results obtained by the modal analysis in terms of 

deformed shapes (displacements in mm), frequencies(Cyc/sec) and periods (sec.).  
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Figure 6.13: Mode 1.  

 

 

Figure 6.14: Mode 2.  
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Figure 6.15: Mode 3. 

 

 

Figure 6.16: Mode 4. 
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Figure 6.17: Mode 5. 

 

 

Figure 6.18: Mode 6. 
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Figure 6.19: Mode 7. 

 

 

Figure 6.20: Mode 8.  
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Figure 6.21: Mode 9.  

 

 

Figure 6.22: Mode 10.  
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Figure 6.23: Mode 11.  

 

 

Figure 6.24: Mode 12.  
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In the modal analysis 24 vibration modes have been considered, here depicting the first 

12 modes.   

In Table 6.11 and Table 6.12 the obtained results are shown. 

Table 6.11: Modal Load Participation Ratios 

OutputCase ItemType Item Static Dynamic 

Text Text Text Percent Percent 

MODAL Acceleration UX 71,4232 99,3969 

MODAL Acceleration UY 96,5346 99,9492 

MODAL Acceleration UZ 65,9536 88,7967 

 

Table 6.12: Period and frequencies 

StepType StepNum Period Frequency CircFreq 

Text Unitless Sec Cyc/sec rad/sec 

Mode 1 0,557161 1,7948 11,277 

Mode 2 0,422132 2,3689 14,884 

Mode 3 0,32747 3,0537 19,187 

Mode 4 0,312177 3,2033 20,127 

Mode 5 0,283351 3,5292 22,175 

Mode 6 0,249995 4,0001 25,133 

Mode 7 0,198076 5,0486 31,721 

Mode 8 0,177829 5,6234 35,333 

Mode 9 0,161133 6,206 38,994 

Mode 10 0,136697 7,3154 45,964 

Mode 11 0,131833 7,5853 47,66 

Mode 12 0,120482 8,3 52,15 
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7 CONCLUSIONS 
 

Tensile structures represent special kinds of architectural and engineering systems. They 

had a rapid spread during the years due to their advantages as lightness, simple and fast 

installation, maximum use of the materials’ mechanical properties. These structures are 

mainly characterized by cables or cables systems as structural elements, and they can be 

classified in cable structures, including simple cable, cable with opposite curvature, and 

cable nets; membrane structures, tensegrity, and tesairity. Their application field is 

various and for the above-mentioned features, these structures require particular 

attention about the design and behaviour analysis comparing to the other ones 

typologies. It implicated an increasing interest of the researcher about their structural 

analysis. The form-finding process is a fundamental step in the design of these systems 

searching the equilibrium shape according to the load conditions. As known that the 

tensile structures are hypostatic systems, where the forces depend on the deformations; 

therefore, the small displacements hypothesis doesn’t hold, and the calculus gets 

complicated. 

Several approaches have been developed and improved in the years, starting from the 

results obtained by the study about the equilibrium of the rope. In particular, the 

methods can be divided into catenary, FEM, and energy approaches. 

Some procedures have been analyzed in this dissertation, investigating the current state 

of the art; theoretical description and calculus demonstration of the statements have 

been presented at the beginning chapters, to highlight the advantages and disadvantages 

of the methodologies available in the literature. 

Paying attention mainly to the cable structures, simple, with opposite curvature and 

cable-nets, the examined methods model the structural elements or as a continuum or a 

discrete one. The first case is referred to as the catenary approaches where the cable is 

considered as a continuum element suspended from the ends; it is demonstrated that this 

method is proposed for the cable with small curvature. 

The second one, instead, starts from the assumption that the cable can be divided into 

several segments linked to each other through joints; the loads are applied along each 

segment or on the nodes, taking into account the geometrical and/or mechanical non-

linearity. However, even if in this case some simplifications in the calculus can be 

obtained, the number of elements grows up, increasing the computational time. Hence, 
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to solve this aspect, several matrix methods have been proposed, searching for the 

tangent stiffness matrix and largely referring to FEM modeling. These two types of 

approaches (continuum or discrete) have been considered also for the cable nets 

systems; they can be considered or as a continuum approximating their behaviour to the 

membrane one, or considering the system composed by several segments interconnected 

to each other at the joints, and therefore considering the nodal solicitation.  

As concerns the energy approaches, they are widely used in the structural engineering 

field, mainly to describe the non-linear behaviour of these kinds of structures under the 

large displacements hypothesis and by employing the mathematical variational 

problems. Based on the Minimum Total Potential Energy Principle, several methods 

have been analyzed and demonstrated in this thesis, in particular ones referred to as 

Harmony search.  

After classified the different typologies of the tensile structures and the deep 

investigation performed about statics of these structural systems, in particular focusing 

on the cable ones, different procedures are proposed and described.  

Firstly, a constrained optimization methodology has been developed and explained for a 

2D cable system composed of m straight beams and t nodes, where n are free and s are 

fixed. It is loaded at the free nodes in a plane reference system; the analysis has been 

conducted first on the single beam composing the structure and then on the global 

system to identify the energy functional to minimize to obtain the equilibrated and 

compatible shape. The solution is founded through a constrained optimization problem 

solved by referring to the Kuhn-Tucker conditions, identifying the displacements as the 

unknown variables and the constraints conditions as the inequalities. The Lagrangian 

function has been obtained finding the global minimum of the energy functional. The 

approach has been applied to a simple structure to highlight the advantages of the 

described procedure.  

Successively, to evaluate the static response of the above-mentioned cable structure, 

both in 2D and 3D systems, the research is focused on the study and the development of 

a calculus model in large displacements and small deformations, considering the 

geometrical non-linearity and the elastic field. 

The method is in a matrix form and starts from a known static regime of the plane 

structure, on which a configuration change is applied, updating the structural shape.  
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Taking into account that the deformations are small, the self-weight of the element is 

neglected, and the Hooke law holds, the procedure is divided into two steps: the first 

one focuses on the analysis of the single beams leading to the identification of the 

relationship between variation of the internal forces and the position of the free nodes, 

through the secant stiffness matrices, elastic and geometric, and the distortion secant 

vector. 

The second phase is characterized by an assemblage operation, identifying the 

geometrical non-linear relationship of the loads ensuring the equilibrium in the 

deformed configuration, and the displacements, expressed by the secant stiffness 

matrices, elastic and geometric, and the distortion one. 

The problem has been solved through a step by step procedure allowing to linearize the 

equation at any infinitesimal single step, under small loads’ variation.  

Once the distorting variations have been neglected and then their contribution has been 

considered, identifying a distorting stiffness matrix, and considering the distortion as the 

distorting loads.  

The method has been applied to a simple structure and then extended to the three-

dimensional case confirming the expected results.  

Finally, an overview of the dynamic behaviour of the tensile structure has been dealt 

with, analyzing the vibration modes of a study case.  

Paying the base for future developments and improvements, this research is aimed to 

put in evidence the special behaviour of the tensile structure, with particular attention on 

statics of cables ones, proposing methodologies proper to their structural analysis and 

suitable to several typologies belonging to these structural categories
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