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ABSTRACT

The present dissertation focuses on and investigates the behaviour of the structural

category referred to as tensile structures, paying particular attention to the cable ones.

During the years the design of the structures has been conducted to lighter systems and
the tensile structures rapidly increased thanks to their advantages as technical and time
construction. To the other side, since the particular response to the external solicitation,
the mechanical behaviour of these structures encouraged the researchers to find

analytical and numerical methods proper to study, describe and analyze them.

In this research, once identified and described the different typologies of tensile
structures, specific issues related to the statics of cable ones are dealt with an enhanced
analysis of the current methodologies used to solve and manage these structural

systems.

Composed of seven chapters, after an introduction about the issue and the main goal,
the thesis starts from a recognization of the several types belonging to the analyzed
structural categories, including cable, membrane, tensegrity and tensairity structures.
One reports the features of each of them, highlighting the differences through some

existing architectural examples, from the ancient to nowadays time.

Subsequently, the attention is paid to statics of cable structures including simple cables,
cables with opposite curvature and cable nets.

Starting from a literature review, the selected approaches are analytically developed and
demonstrated, focusing on both equilibrium and form-finding problems and
highlighting advantages and disadvantages of each method, to have a suitable
background to develop and introduce proper calculus models to solve the non-linear

relationships characterizing these structures.

The study aims to deal with the main problems concerning the cable systems, as find the
equilibrated and compatible configuration under external loads’ action without the small
displacements assumption, governing the non-linear relationship between forces and
displacements, and taking into account the relevance of the deformations. Moreover, a
fundamental scope of this research is to develop procedures suitable both in 2D and 3D
cases, for several kinds of cable structures, and possible future computational

implementation.
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Related to these main goals, different procedures are proposed and described. Basing on
the optimization approaches, one refers to the Total Potential Energy, finding the
solution through a constrained minimization concerning the Kuhn-Tucker conditions.
The method is applied to a 2D structure and a numerical example is reported to

highlight the main features of the proposed methodology.

Moreover, the static response of plane and three-dimensional structures is evaluated by

a calculus model under large displacements and in matrix form.

The non-linear relationship between forces and displacements is identified and then it is
solved through a step by step procedure, linearizing the equation governing the problem

at each infinitesimal load’s step.

Firstly developed for a 2D structure, the approach is extended to a three-dimensional

one highlighting its worth for several types of these systems.

Finally, an overview of the dynamic effects of tensile cable structure is explained,

applying a modal analysis to a study case.
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1. INTRODUCTION

In the last decades, the tensile structures application field has undergone a rapid spread.
The requirement to realize functional buildings with less use of material and time has let
to searching for and designing light constructions in order to overcome structural limits,
thanks to the introduction and development of innovative materials and technologies

both in temporary and permanent architectures (D.S. Wakefield,1999).

The lightness is one of the features diversifying these structures from other types of
structural systems and therefore the structural and unstructural elements are chosen in

order to minimize the self-weight.

Firstly, the constructions of big span roofs have been realized without intermediate
supports (T.T. Lan,1999). During the years this type of structures have been used for
smaller spaces as well as for vertical closings, floorings, canopies, and real buildings
(hangars, arenas, exhibition pavilions), presenting a number of configurations and

technologies.

The particular features such as lightness, high resistance, elastic behaviour, and
pretensioning possibility, allow some versatile applications (M. Salehi Ahmad Abas,
2013) but, on the other side, show a high geometric non linearity that deeply affects
their static behavior (L. Liao, 2010). Therefore, the detailed analysis of these structural
systems is primary to ensure the stability of any component, in order to prevent the
exceeding of admissible stresses during the pretension process and the overloads’

application.

This is also the reason why many researches have been directing the gaze more and
more to statics of these systems (A.S. Kwan, 1998), mainly framing behaviour models
and methodologies within the two classes of force and displacements methods (T.T.
Lan, 1999), under the understanding that, in these structures, the assumed
configurations influence their equilibrium and that, therefore, finding the suitable

geometry is fundamental.

First studies refer to reinforced concrete shell structures aiming at optimizing their
shape taking the maximum advantage of the material, minimizing or making null the

bending forces; however, due to the impossibility to reduce the thickness without
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activating instability phenomena, other structural typologies, like tensile structures,
have been developed, with components subject only by axial forces, and null bending.

Several typologies belong to this category of structures and are usually divided in plane
(cable systems, cables with opposite curvature) and spatial (cable nets, membranes,
tensegrity structures, tensairity structures). One may identify their evolution through
three main historical periods (Fig. 1.1), according to Dong with special reference to

spatial systems: ancient, pre-modern, and modern (Dong, 2012).

(1900)- {1925 1950 1975 2000
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Figure 1.1: Historical evolution of the structures.

Cable structures are referred to when the cables or the cable systems represent the

carrier elements (Y. Liu et al., 2015).

Ropes were used since ancient times as structural components, when climbing plants
and lianas were employed for building hammocks and suspended bridges (T.

Kawada,2010), or again for realizing boats for over thousand years (R. Carter, 2006).

The development of ropes as structural elements coincides with the evolution of
construction materials, from the vegetable fibers to the modern high resistance steel for
two main reasons: the first one concerns the will of overcoming increasingly larger

spans, the second one, instead, is related to the need of new and complex configurations
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(Y. Liu,2015), leading to the use of textile and plastic materials to build rooftops,
facades and entire buildings (Fig. 1.2).

Figure 1.2: Some tensile structures’ typologies.

Therefore, the interest about these structures has been strongly increasing both in the
constructions and research field, where much attention has been paid also to the
different behaviour under overloads and wind actions. To this regard some empiric
studies have been conducted, in some cases underestimating the effects of the above-
mentioned actions but arriving, anyway, to some solutions that highlight the behavioural
features of these structural systems, where the importance of the strains causes the

impossibility of application of the principle of effects’ superposition.

During the years, several approaches and methodologies have been developed mainly
referring to the catenary, finite element methods or energy approaches (Y.C. Toklu, et
al.,2017).

The solving approaches for tensile structures’ problems have been evolving and
changing, related to the computer advent, allowing to find procedures with easier
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compilation and such as to have minimum computational weight in order to identify the
solution of the static problem of the structure with reference also to wind actions. Two
main typical features affect these problems: the first one concerns the lightness; since,
often, the self-weight of the structure is of the same order as the wind thrust acting on it;
the second one is concerned with the deformability. As for cables’ anchoring, the
adoption of large spans and the use of pretensioning in cables also causes the increase of
the drag value in the anchoring so that the boundary elements affect significantly the
static operation of the whole structure. Within cable systems, the tensile ones are the
most suitable to solve the problem of big span roofs, and the deformability can be
considered a feature and a potentiality as well.

Many important academic studies on tensile structure have been developed by Frei Otto
also including complex systems aimed to contain an entire city. Several types of tensile
structures have been classified. With reference to cases where the carrier structure is
represented only by cables (Fig. 1.3), one may distinguish simple cable systems,
opposite curvature cable systems and cable nets.

According to the definition given for the first time at the IASS symposium 2004 in
France (IASS Symposium 2004, Montpellier,2004), tensile structures can be identified as
textile or plastic membranes (Fig. 1.4), tensegrity structures (tension+integrity) (Fig.
1.5), composed of tension (cables) and compression elements (struts), tesairity

(tension+air+integrity) (Fig. 1.6) composed of beams, cables and membranes.

Figure 1.3: Cable structure; Zubizuri Bridge, Bilbao (Spain), S. Calatrava.
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Figure 1.5: Tensegrity Structure; Kurilpa Bridge, Queensland (Australia), Ove Arup &

Partners.

Figure 1.6: Tensairity Structure; Garage di Montreux Station, Montreux (Swiss), R.
Luscher.
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1.1 Structural classifications and general features

Cable systems represent a large variety of structures and some of them present features
not too dissimilar from rigid covers. However, systems with cables as structural
elements, can be considered one of the most important structural schemes within tensile

components.

The relevance of steel cables as structural elements has been highlighted in the design
and building of suspended or cable stayed bridges (Fig. 1.7-8), whose structural and

architectural model represents a reference for the design of several tensile structures.

Many reinforced concrete or steel large span roofs, where the carrier parts are the

cables, belong to the latter case.

However, there are a number of issues to be accounted for, one also relevant to bridge
structures, and in particular the problem of wind oscillations, leading to the need of
bracings. This problem turns relatively important in suspended bridges, where, because
of larger spans, wide oscillation phenomena may lead to the collapse of the structure, as

in the famous event of Tacoma Narrow Bridge in Washington.

Other problems concern the anchoring. Since the cables are the only structural elements,
there is the need to fix the boundary with strong anchoring systems. For a long time, big
supports have been realized in order to absorb the cables’ pull forces, causing some
aesthetic problems and for this reason often they are arranged under the ground level.

Further project benchmarks for the design of roofs concerns cable-stayed bridges
(Fig.1.7-8), especially in the USA, where the ropes branch out from supporting
elements that can be made of steel or reinforced concrete, and reach predefined
locations at the extrados of the roof, also acting like bracings in most cases. Thanks to

this solution, big overhangs with small thickness may be realized.
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Figure 1.7: Cable-stayed bridge: Queen Elizabeth Quay Bridge; Perth (Australia),

Arup Associates.

Figure 1.8: Cable- stayed bridge: Milwaukee Museum, Milwaukee (Wisconsin),

Santiago Calatrava.

The static of these structures can be further improved building some double overhangs;

in this way the cables’ drag force is balanced, and the supporting structures can be made
smaller.

In literature four main subclasses of cable structures are identified:
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Cable systems: where the single element, or several elements are linked to each other in
series or radially and the load acts in the plane. This type of structures is used for
moorings, curtains or tower tie-rods, e.g. in a project for an archive in a mine in Croatia,

by David Garcia Studio (Fig. 1.9).
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Figure 1.9: The Dead Websites Archive; Crnopac (Croatia), design of David Garcia
Studio.

Cable trusses: also known as cables with opposite curvature, where the elements
present opposite concavities and they are linked to each other in the plane. The loads act
in the same plane; usually the cable trusses are used as supporting roofs; an example is
shown in Fig. 1.10 relevant to the roof built in Wainlin, (Belgium) for a gas station,

designed by Philyppe Samyn and Associées.
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Figure 1.10: Gas Station covering, Wanlin (Belgium), Philyppe Samyn and Associés

(from “Atlante delle tensotrutture”, Schock, Hans-Joackim,Torino 2001)

Cable-nets: the pretensioned elements are linked to each other to form a surface where
the loads act orthogonally; these structures are typically used for roofs o suspended nets
(Fig. 1.112).

Figure 1.11: Maritime Museum, Lingang New City, (China), von Gerkan, Marg und
Partner; SIAD.
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Cable-nets system: the elements are linked to each other to develop a three-
dimensional structure, such as the “trawl nets”. These systems are mainly used in urban

regeneration design or temporary buildings. Some examples are shown in Fig. 1.12-13.

Figure 1.12: Harmonic Motion/Rete di draghi, Temporary artwork MACRO, Roma
(Italy), Toshiko Horiuki MacAdams.

"

Figure 1.13: Hamaca Dream, New York (USA), designed by R. C. Ramos, J. Del Valle.

In the following Par.1.2-1.4 the features of the different categories are better described
and deepened through examples of existing buildings in order to highlight the main

differences, which are further analysed in the subsequent paragraphs.
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1.2 Cable systems

M

L

Figure 1.14: Representative scheme of the simple cable.

In Par. 1.1 some features of suspended rigid roofs have been highlighted, considering,
mainly, the cases where the cables act as supports, that are external in the mentioned
cases. The roof is then basically hanging from the cables. In Fig. 1.14 a scheme of this
structural system is represented. In this kind of structure, if the tilt of the cable is large,

a high value of normal stress is attained compared to the pull axial component.

There are many interesting cases where the cable is not external but integrated within
the roof, thus acting as supporting element but also affecting its configuration, like in
cases when one has a number of suspended cables, arranged in a modular sequence, and

appropriately covered.

These structural and architectural schemes, thus, differ from the previously described
ones, also allowing to cover a number of spaces with different shapes, from the squared
to circular, or elliptical ones. This can be done by adequate position and assemblage of

the cables according to two main basic arrangements:

Row scheme, typical of squared plants, where roofs present cylindrical shapes.

Radius scheme, usually used for circular plant spaces and similar ones, thus allowing

shapes with overturned shells.

In the case of suspended cables, one should observe that the strain caused by the
application of loads is relevant for two main reasons: the first one depends on the pull
force endured by the cables; the second one, instead, depends on the circumstance that
the loads’ funicular is very far from the original configuration, thus causing the cover to

follow the cables’ deformation. Furthermore, some oscillation phenomena may
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superpose, like in case of vacuum of the superior surface of the roof with an upward lift,
which is the most worrisome effect. In order to account for this, some ballasting may be
placed on the roof to offset the wind effects and to stabilize the configuration of the
roof. The ballasting weight, actually, is able to increase the pull of permanent loads
compared to the overloads’ one, thus reducing at the same time the cable strain.
However, even in this case there may be also some negative feature, since the response
of the self-weight to the upward lift decreases with the increasing of the cause,

producing a response which is no longer elastic.

The other side, placing the ballasting on the structure, it gets heavier and diminishes its

performance.

To better understand the features and the behaviour of this kind of tensile structure,
more details about the different arrangements are required. Starting from the row
arrangements, other two subcategories can be identified. The first one is one of the most
used schemes and it is characterized by the row arrangement of the cables where some
transverse connection are introduced, helping the placement of the cover, increasing the
distribution of the loads on the cables, and, thus, reducing the strains.

In the second arrangement, besides the transverse connections, their fixing is provided
at the ends by adopting some boundary trusses. In this way the connecting elements act
as bracings making unnecessary the ballasting. Nevertheless, this may be added in order
to increase the cables’ pull force even before the overloads’ application, allowing the

strain reduction.

Similar results may be obtained through the application of cables’ pretension. This
technique makes an improvement with relation to the ballasting placement, but in the
same time shows some limits with regards to external actions, which modify the state of
the cables, thus affecting the structure configuration. To solve this problem, often, the

cables are fixed through tie-rods at points at the interior or exterior to the covered space.

As concerns radius tensile structures, the most important feature to deal with is
concerned on how to find a way to absorb the high horizontal pull force transmitted by
the cables to the external boundary. Since, if the boundary follows the loads’ funicular
curve then it undergoes only to compressive forces, thus, the most common structural
configuration in radius tensile structures is characterized by two rings placed on the

inner and outer boundaries of the cables. The first ring is in compression and the second
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one in tension. Moreover, the inner second ring may also act as lightening and

ventilation element as well as separator of the cables anchoring that converge in it.

These two typologies of cable arrangements fall within the general field of suspended
shell roofs. Actually, in these kinds of roofs cables are immersed into concrete, making
the structure monolithic, and accomplishing to the structural function, accounting both
for compression and tangential stresses and moreover considerably containing the cable
strains typical of suspended cables. Although some criticism was emerging in particular
with reference to thin vaults, from the studies of Frei Otto, nevertheless, the advantages
of suspended shells with respect to ordinary tensile structures have been largely
demonstrated, since they reach the equilibrium conditions regardless of shape or
overloads, with an elastic response. Moreover, thin vaults work only in compression and
therefore they are dimensioned based on these stresses, whence, for large spans, the
thicknesses result to be great, and the solutions are more expensive than in the case of

the suspended shells, which allow to obtain thin thickness for significant spans.

Much attention is to be paid to the particular precompressive technique of the examined
roofs, which regards the cable ballasting through the application of overloads lightly
greater than those ones predicted for the structure. The application of these loads
induces a tension in the cables; then, the loads are removed when the concrete is stiffen
and, through the subsequent shortening of the cables, some compression is generated in
the concrete, allowing to finally reduce the risk of cracks.

Since a problem may occur concerning boundary structures, that are solicited by the
cable pull force, reaching maximum stresses, the boundary structures are required to
assume with the shape of the loads’ funicular in such a way to mainly work in
compression, and diminish bending stresses, which are dangerous for the entire
structure. Although the risk of cracks’ occurrence may be then generally contained, this
is not true for those shells following a negative Gauss shape, where more expensive

solutions are often required with substitution of cable with steel profiles.
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1.3 Opposite curvature cable systems

Figure 1.15: Scheme of a tensile structure with opposite curvature.

As above mentioned, a method for simple cable stiffening consists of fixing the
structural cable to tie rods linked at defined points of the cover perimeter (Fig. 1.15).
However, this operation may lead to some problems making hard its realization. An
alternative has been proposed by Jawerth for the Ice Palace roof in Stockholm, where a
plane system of cables with opposite curvatures is presented, linked to each other

through diagonal elements.

In particular, the system is composed by a structural cable with an upward concavity
linked, through diagonal elements, to another cable with opposite curvature, belonging
to the same plane. The latter is recognized as tension cable since it is in tension before

the application of the loads, producing a pretension state.

Consequently, when the overload acts, the additional load starts to decreases and thus
the strain of the tension cable diminishes reducing the internal forces of the structural
cable. In terms of equilibrium, the increase of internal stress is lower than that one that

would occur under the only action of the overload.

Thus, this system affects also the deformability of the structural cable, which is further
reduced by the diagonal elements that balance also the horizontal components of the
external load.



1.INTRODUCTION 24

The effectiveness of these structures is even more appreciated when a total inversion of
loads is achieved, which may occur e.g. for a vacuum on the external surface. In this
case, a particular reticular structure forms whose elements are all in tension, thus
removing instability problems. Hence, it is possible to reach large spans, although with

some limits in the anchoring.

Actually, upon changing of overloads, the pull horizontal component is constant and
equal to the pretension one; increasing the overloads the cable undergoes an elongation
and a decrease of the mutual action with the opposite cable, diminishing its tension.
Whence the rise of the horizontal pull component is balanced by the decrease of the
opposite cable tension. For this reason, the analyzed scheme may be considered a self-
stiffened system and hence heavy ballasting is not necessary. Nevertheless, some

pretensioning may be still assumed.

Starting from the Jawerth system, other schemes based on it have been proposed,
basically diversified through different arrangements of the connecting elements, oblique

or vertical ones.
Nevertheless, the Jawerth system is more effectiveness than other proposed ones.
As concerns the design, there are two main arrangements, as described in Par.1.1:

Row represented in Fig.1.16. and Radius in Fig. 1.17.

Figure 1.16: Tensile structure with opposite curvature in row arrangement.
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Figure 1.17: Radius arrangement of tensile structure with opposite curvature.

1.4 Cable nets and Cable-nets systems

Figure 1.18: Cable-nets scheme.

Another kind of cable structure is represented by a system of cable-nets as shown in
Fig. 1.18.

The cables have both structural and bracing function with all other components as
coverings. In this case the optimal shape can be selected for optimal use of steel by
removing compressive stresses and reducing the resisting section.

The cable-nets tensile structure can be considered as derived from opposite curvature
systems. Actually, as above specified in Par. 1.2, in plane structures with opposite
curvatures, the carrying and tensioning cables are arranged in the same plane.
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On the contrary, in cable-nets the elements belong to different planes, and most of times
to vertical planes, orthogonal to each other, whence the cables show upward or
downward concavities with mutual intersections. Actually, the described systems may
be regarded as three-dimensional extensions of those ones proposed by Jawerth. Other
advantages, from the static point of view, are related to the aesthetic feature, allowing to
select many different shapes, such as the saddle one.

Even in this kind of cable structure, the pretension is applied for stiffening., as proposed
by René Sarger. Since cables intersect at certain points, the pretension of some cables
leads to the pretension of the entire surface, and therefore, to the overall three-
dimensional stiffening. Actually, in the nets the stiffening is in all the directions. As
concerns the boundary structures, as mentioned one tends to have their curved shape

matching the funicular of cables’ drag forces.

The most adopted cable-nets refer to two orders schemes, whence more articulated

systems can be realized, e.g. tents.

In Fig 1.18, typical cable-nets tents are shown, where it is possible to distinguish
carrying and tensile cables, since cables with the same curvature belong to parallel
planes. More complex situations are presented in Fig.1.19-20, where the same cable
shows different curvatures, or the curvature of the same cable changes its sign and

belongs to different planes.

A

7777
7L

Y%

Figure 1.19: Scheme of different types of configurations of cable-nets.
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Figure 1.20: Structural scheme of National Gymnasium for Tokyo Olympics- Kenzo
Tange.

Cable-nets can be also composed by several orders, for examples three, four and so on
ones, moving more and more away from the basic configuration. Increasing the number
of cables’ orders, it is possible identify a continuous scheme. This structural system
leads to roofs characterized by textile materials tensioned at their ends by supporting

elements, in such a way to generate at any point a negative Gauss curvature.

The scientific and technological progress has pushed towards the use of less fleeting
textile materials, gradually substituting the traditional sheets with materials with
improved performance with regards also to environmental attacks. Particular attention
on tends tensile structures was paid by Frei Otto, who proposed and showed several
kinds and shapes of roofs in his opera “Tensile Structures”, obtained with these
structural systems (F. Otto, 1972).

In the design of tensile structures, a complex problem related to boundary structures
must be dealt with, in particular concerning the transfer of stresses and external loads to
the ground. However, there are several systems available, as shown in Fig. 1.21. One of
the most used and simple ones is characterized by the vertical elements acting as struts
transmitting the cables’ drag forces to the ground. This scheme mainly has been used in
rectangular plant roofs. Other types are characterized by vertical elements linked to each
other by transversal ones along the funicular of cables’ pull forces. Often these systems
present angular points, in particular when the connecting elements are represented by

two big arches.
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Figure 1.21: Scheme of main types of anchoring for cable structures.

Nevertheless, to obtain a more balanced system, a unique big ring may be chosen to
replace the above-mentioned arches, avoiding the angular points and giving to vertical
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elements the only role to transmit the external loads to the ground. Also, in this case, in
order to have an optimal behaviour of the boundary ring, it should be shaped in order to
follow the middle line of the pull forces’ funicular but thus risking changing the shape

in plant from the one required for the roof.
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2. STATICS OF TENSILE STRUCTURES

2.1 Some historical background

The growing up spread of tensile structures has been developing hand to hand with the
search and study of rigorous calculus methods in order to deal with the problems related

to their statics.

As known, the rope is considered as an element without bending stiffness and incapable
to resist compression and bending stresses. Therefore, to reach the equilibrium under

tension stresses, the cable needs to adapt its shape to the acting loads.

From the literature, these kinds of systems are referred as hypostatic since forces are
depending on deformations. The relevant static calculus is hard to solve, because the
small displacements hypothesis is not valid and consequently also the superposition
effects principle does not hold since the displacement components affect the unknown

forces.

The case of the simple cable is one of the first problems rigorously treated by the
modern mechanical studies and solved through the first elements of infinitesimal
analysis (M. Quagliaroni, 2010). In Table 2.1 a number of studies are summarized,
developed during the centuries.

Table 2.1: Historical evolution of the rope studies

Year Author

1452-1519 L. Da Vinci First studies about the ropes

1614 Beeckman Suspended  bridge  with
parabolic profile.

1638 G. Galilei Unstretching parabola

1646 Huygens Revaluation of the Galileo
unstretching parabola

1679 G. Pardies He considers that the Galileo
parabola is wrong.

1691 Huygens, Leibniz, Bernoulli | Unstretching catenary

1891 Routh Elastic Catenary

1975 M. Irvine Elastic catenary under point
loads

In the following Par. 2.2 some analytical solutions of the problem are showed.
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2.2 Cables’equilibrium

The similarity between the exact profile of the cable and the parabolic one is known
and, in case of tensioned cables, the consequent approximation of the cable segment to

the distance between the supports is quite intuitive (Fig. 2.1).

AN A A e A Y A A A I A

~

f
N
! Az IO Az |

Figure 2.1: Simple cable- approximation of the cable segment with the distance between

the supports.

Let consider the simple cable suspended from its two ends, identified in the points A
and B, and subjected to the distributed vertical and horizontal loads, respectively P and
Q. The self-weight is supposed negligible and H is the pull horizontal component of the
drag force T (Fig. 2.2). Considering the reference system (Oyz) and the segment of the
cable shown in Fig. 2.3, the equilibrium equations for vertical and horizontal

translations are

— — »T

~_ 0 N e -

PO s

.

Figure 2.2: Simple cable.
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Figure 2.3: Cable segment.

i[H ﬂj+p=o 2.2.1)
dz dz

M o-0 (2.2.2)
dz

Assuming acting only the vertical loads (Fig.2.4), and H = const

.y e

He—— . G "H
| & f

L

Y vy vevvoy

T ,
\ s

H<

Figure 2.4: Simple cable under the action of the vertical load P.
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Eq. (2.2.1) turns into
H—2=-pP (2.2.3)

and, assuming yet P = const, by integrating Eq. (2.2.3), one gets

2
Hy=—P%+Clz+C2 (2.2.4)

Once computed the integration constants C; and C, , and imposed the passage of the

cable through the A and B points, one may evaluate y

P
y=ﬁZ(L—Z) (2.2.5)

Therefore, the H component can be computed after introducing the compatibility
equation

t=10,+Al, (2.2.6)
where
{ is the length of the cable in the deformed shape

£, is the initial length of the cable

Al is the length variation due to the load application

L is the cable supports’ distance.

Moreover the cable length / is defined by

L 2 L L A 2
o= [ 2 dz =[]1+ 2 D a2 = [dz+ 2 Dz =+ 215 2.2.7)
0 dz 0 2\ dz 9 2O dz 3L

where f denotes the deflection.

Assuming a very small tilt, one has

T2H Al =—
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L
and therefore, from Eq. (2.1.5) for z = Px one gets

_PL?

f-=
8H

whence

P2

H=——
8f

Remembering Eq. (2.2.6) and Eq. (2.2.7)

C=ly+Al,
8 f

{=L+—-—
3L

one gets

8 2
0o +Al=L+——
0 0 3 |_

with AZ, = HL
EA

By substituting H obtained from Eq (2.2.9), one gets

PL® 8 2
lot——— =l o
8fEA 3L

3 2
l,+ PL_ L+§f— =0
8fEA 3L

2 3
L+§f——£0— PL” _
3L 8fEA

3
and by multiplying for gfL

3 3 pLt
f3-(¢,-L)=fL-——=0
& )8 64 EA

Hence

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)
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4
f3—§fL(£0 —L)—ipl‘ =
8 64 EA

(2.2.15)

Once identified the deflection f, H can be computed by Eqg. (2.2.9) and then y is
obtained by substituting H in Eq. (2.2.5).

Let assume to apply a distributed vertical load AP added to the acting one, producing a
pull increasing AH . The cable points undergo other downward displacements in the y

direction.

These displacements are identified by v; to satisfy the equilibrium, Eq. (2.2.3) turns into

2
(H + AH)% — P_AP (2.2.16)
Z

By developing the products and remembering Eg. (2.2.3), Eq. (2.2.16) can written again
as

2 2
AHIY L an) Y - P (2.2.17)

dz? dz?

Eq. (2.2.17) is referred to the equilibrium configuration reached after the vertical load
increasing. It is clear that, if AP is proportional to P, one may write the equilibrium
referring to the undeformed configuration of the cable, because y = y(z) represents a

funicolar curve of AP.

Eq. (2.2.17) can be written again as

A 9Y - p (2.2.18)
dz?

Therefore, the variation of the produced horizontal component is

2
AH = APL (2.2.19)
8f
. . . d?y 2y
Analysing Eq. (2.2.17) one can put in evidence that the terms o and i are
d?y

respectively the initial and final curvatures and to large H and

=~ correspond small
z
2

- d’v
variations of —.
dz
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By reporting the data on a graph, where P is reported on the x-axis and f on the y-axis,

considering
l,=L (2.2.20)

and hence

4
o33P (2.2.21)
64 EA

it is clear that to the increasing of the load P a smaller increasing of the deflection

corresponds (Fig. 2.5).

0.9
0.8
0.7
0,6
0,5
04
03
02
0,1

0 0,2 0,4 0,6 08 P

Figure 2.5: Graph of deflection f vs load P.

Therefore, it is clear that the ballasting cannot be chosen arbitrarily, but, on the contrary,

it depends on the deflection of the roof established during the design phase.

Given f, the load P can be defined
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64 EA 3
P=——"|f3-SL(¢, —L)f 2222
3 L4[ 3 (¢, )} ( )

Considering Eq. (2.2.22), it is possible to compute the maximum value of P that is

compatible with the assumed roof deflection, based on (2.2.20)

Poax = — 4 f (2.2.23)

Consequently, after identified P, according to Eq. (2.2.9), it is possible to determine

the maximum value of H, substituting Eq. (2.2.23) into Eq. (2.2.9)

2 2 2
i _Pwl’ B4EA L’ _BEAf

mx T gf 3 L4 8f 3 L2

(2.2.24)

This limit condition occurs when the initial length L, corresponds exactly to ¢, that is

the distance between the two ends A and B.

Increasing the load P and the component AH in order to not change the deflection, it
should be ¢, <L; thus the ballasting should be associated to the preliminary

tensioning of the cables

L-7¢

H,=EA—_° (2.2.25)

There are several advantages related to the pretensioning of cables. Let consider the
case when the pretensioning is applied through some vertical cables suitably
pretensioned. From a static point of view, this system behaves like a cable with opposite
curvature. The vertical cables, if conveniently outdistanced from each other, are able to
realize a parabolic shape of the cable where the deflection f is equal to the one derived
from the application of a vertical load P equal to the action transmitted by the vertical

elements to the cable.

Moreover, when the external load is applied, the cable would tend to go downward
diminishing the cables action and therefore behaving as if placed on an elastic ground.
However, much attention should be paid to this feature, because it is possible that the
actions of the vertical elements are nullified by the downward external load. To avoid
this circumstance, the tensioning should be well calibrated in such a way to prevent

waving phenomena of the cable for any intensity of the applied external load.
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2.3 An approach to static analysis of cable systems and nets

Cable systems are usually classified in simple cables and cable nets, with, in the latter

case, the subcategories of plane and spatial nets.

The first ones represent the carrying elements of suspended roofs and they are solicited
in a unique direction (F. Otto, F.Schleyer, 1972).

2.3.1 Single cable

One considers the free simple cable in a three-dimensional reference system, as shown

in Fig. 2.6, where the axes are identified through the unit vectors e,,e e, .

Let suppose the examined cable without bending stiffness, and described by the curve
rt) : x(t)e, +y(te, +z(t)e, (2.3.1)
where t is a scalar variable.

In case of tensioned cables, it is convenient to select one of the fixed coordinates as

variable; hence choosing x as scalar variable, Eq. (2.3.1) assumes the form

r(x):xe, +y(x)e, +z(x)e, (2.3.2)

A ~ >

e«'

%

y
,
z v R
Y%
—— - F(1)+%dj
- =
F(x) &5

Figure 2.6: Single unstiffened cable in (Oxyz)

Therefore, one may consider the position vector r(x) of the cable in components
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r(x)=| y(x) 2.3.3)

This vector must be unique and at least two times differentiable. Therefore, the initial
unloaded configuration has been identified.

Let assume that any overload or heat variation can act on the cable or that it may
undergo some ends’ displacements, leading to a configuration change and therefore a
position change of the cable.

Thus, considering the displacement vector
(x

)
X) (2.3.4)

()

the updated position is defined by

[

U(x)=

s <

x+u(x) | [x(x)
F(x)=r(x)+ Ux)=| y(x)+v(x)|=| y(x) (2:35)
z2(x)+w(x)| | z(x)
After first and second time derivation, one gets
| 1+u'(x)
F(x)=|y(x)+v(x) (2.3.6)

(0= ¥ 0+ (00| 5'(1) 2a)

One may recognize two cable states:

The first state of initial pretension is described by r(x) and identifies the curve under

the self weight g(x) or any other dead load; in this case the generated stresses are
marked by the g subscript.
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The second state is identified by r(x), and describes the curve also subject to the

overloads (as shown in Fig. 2.7), that is under the load condition

a(x)=g(x)+P(x) (2.3.8)
with

g(x) the dead load

P(x) the overload

g(x) the total external load given by superposition of dead loads and overloads.

Analogously, the g subscript identifies the dependence on this load condition.

Figure 2.7: Free loaded cable in the space.

Thus, omitting the explicit dependence on the variables, under the load conditions

shown in Fig. 2.7, the equilibrium can be set in the form

dF,
—Fy+|Fy+——dx |+qdx=0
dx
(2.3.9)
—34+q=0
dx a

with Fq the internal drag force in the cable generated by q.
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Since no bending moments are admitted in the cable, it is necessary that
r'xF, =0 (2.3.10)

or, in other form,

(2.3.11)

-
Il
n
=l | =l

where Fq the intensity of Fq.
These equilibrium conditions are imposed with reference to the deformed configuration.

Let then consider only the horizontal component Hgq of the drag force, anyway tilted on

the x-axis,
Hq = Fq €y (2.3.12)

Therefore Eq. (2.3.12) can be rewritten as

F
Hq :F_gr-,ex (2.3.13)
Considering
fe, =1+U' (2.3.14)

and being u' <<1, one gets

n

H, =—3

—— (2.3.15)

Projecting on the axes Eqg. (2.3.9), and taking into account Eq. (2.3.11) and Eq. (2.3.15),
one gets

H',+0, =0
H,y +d, -0,y =0 (2.3.16)
HyZ +09,-0,Z =0

The dead load at the initial state only in the z-direction should be applied, passing from

the three-dimensional reference system (Oxyz) to the plane one (Oxz) (Fig.2.8).
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Figure 2.8: The cable in the plane (Oxz).

The cable position is identified through the position vector, given now

r=0 (2.3.17)

The dead load g is

g=|0 (2.3.18)
g

and Eq. (2.3.16) assumes the following expression

{H'q+PX =0

o o (2.3.19)
H,Z +q,-0,Z2'=0

In the initial state P = 0 and Eq. (2.3.19) can be still simplified, considering only the

component H depending on the dead load g

H' =0
v (2.3.20)
HyZ +9,=0
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whence

Hg = const (2.3.21)

2.3.2 Elasticity conditions

Because of the effect of the overloads or of the heat loads, the cable length changes its

initial state , which is described by the strain &

(2.3.22)

Substituting Eq. (2.3.2) and Eq. (2.3.3), developing in series and neglecting the
numerator greater than the second order, one gets

JA+u)2 +y? 427 — 1+ y?+z?

E= W (2.3.23)
+Vy“+z

o UVHZW vZ+w?
1+y?+z%  2(L+y?+z?)

(2.3.24)

From Eq. (2.3.24) it is possible to omit the second addend. Referring to the monoaxial
stress state in the cables, the linear elasticity relation is applied and, taking into account

that the cable self-weight is neglected, one gets

Fo

£=—+t, (2.3.25)
EA

where

F, is the force (positive in tension) undergone by the cable under the overload
application

t. = o, At is the expansion undergone by the cable for heat variation

a

. Is the linear expansion coefficient

E is the elasticity modulus.
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Substituting Eqg. (2.3.24) into Eqg. (2.3.25), it is possible to compute F,

CuwzZ'w o view? Ry

&= 2 o 2 o eat
1+y“+z 21+ y'“+z EA

Fo usyvez'w v'2 w2 ~
EA  1+y?+2%  2(1+y?+z?)

F, = EA{

t

&

(2.3.26)

&

1 1 1 1 l2 |2
u+yv2+zv2v+ v +;/v | -t,EA
1+y“+z°  2(1+y“+Z

and, thereafter, the values of the pull horizontal components.

12 12
After neglecting the term _ YW Eq. (2.6.26), it turns into
2L+ y?+2'%)

F, = CAWEWHZW) ey (2.3.27)
1+y“+27'

Moreover

T

_ P
Hy ==t (2.3.28)

and, substituting Eq. (2.3.27)

B EA(U'+yv'+z'wW') B EAt,
" A+ y?+2?)A+y?+z? )% (L+y?+z7? )%
_ EAQuty'+z'w) EAt,
B (1+ y'2+z'2)% (1+ y'2+z'2)}/2

H

(2.3.29)

Hp

Being y = 0, in the plane (Oxz) one gets

:EA(U'+Z'W')_ EAt,
Q+22)2  (@1+27)"

H, (2.3.30)

2.3.3 Cable length

The cable length may be identified through arch length integration, distinguishing the

initial state K‘; from the current state €q under the additional load and heat conditions
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0 :_Tds=.L[r'dx:JL‘ 1+y?+z%dx (2.3.31)
0

0 0

b=

ds = JL. rdx = j,/1+ V2 +7%dx (2.3.32)
0 0

Since the cable belongs to the plane (Oxz), y'=0 and y'=v'.

O e

After computing the lengths into the two considered states, one may infer the variation

A=, —1° (2.3.33)

Making the suitable substitutions and considering constant H, E, A and t,, the length

variation is given in the form
M:ﬂjr'zdxﬂg (2.3.34)
= Ly 3.

whence the problem should be dealt with for the elastic and inelastic case.

2.3.4 The inelastic cable

Once defined the deformations from the initial state, one has to identify the shape and
the cable forces H and F. The cable subject only to the vertical loads may be analysed
through graph methods. Hence, to better understand the non-linear behaviour of the

examined case, a number of load conditions are considered, and specifically:

e i) Constant vertical dead load. In this case the self-weight of the cable is
neglected. Actually, the cable is subject only to the dead load q, =const,

applied in the vertical direction.

e i) Self-weight.: The contribution of the self-weight is taken into account in
order to find the forces and the equilibrium configuration of the cable. The self-

weight is assumed constant and referred to the unit length of the x-axis,

Oy = o = cConst.

e iii) Arbitrary vertical load. An arbitrary load is applied in the vertical direction

on the cable, with g, =0 and H = const.
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e iv) Arbitrary load. In this case an arbitrary load and H depending on x are
considered. The application points are identified in function only of the x

coordinate.

e V) Combination of dead load and overload. The combination of the dead loads

and the overloads is considered.

The analysis of the load conditions leads to the solution of the problem, identifying the
forces H and the shape of the cable.

The first two cases refer to a well-known solving process and are here reported for
completeness.

Furthermore, when the ratio between the deflection and the span of the cable is small,
the stretching due to the overload P can be neglected, compared to the initial
configuration. This allows some simplifications on the study of the shape and the
stresses of the cable, and consequently the behaviour of the elastic cable under the

external load q is easier to be analysed.
i) Constant vertical dead load

A uniform constant dead load is applied on the cable in the vertical direction, thus

assuming
q; =g =const (2.3.35)

The solution is identified in the parabolic equation

z =ﬁ(x2+clx+cz) (2.3.36)

where C; and C, are the integration constants and their value is identified by

substituting the ends’ coordinates of the cable.

In the plane (Oxz), the above mentioned coordinates are

K1=(%.0,21)=(000)
Ky =(%.0,25)=(x0.,7,)

and such that
Xo—% =L>0 (2.3.37)

Moreover the deflection is given in the form



2.STATICS OF TENSILE STRUCTURES 47

2
d=-9 (x-x2)=af| XX (2.3.38)
2Hg L |2

One assumes the maximum value of the middle term in order to calculate the pull

horizontal component
2
L (2.3.39)

One computes the length of the cable in the specific case when the angle a =0 (Fig. 2.9)

I.e. the cable ends are at the same height.

%

Figure 2.9: Cable with supports at the same height.

Comparing the deflection f with the span L, the cable length ¢ may be inferred.
Assuming nz{ , the cable length is expressed in function of n and, hence, of the

supports distance as
0= %(\/1+16n2 + %arcsin4nj (2.3.40)

Eqg. (2.3.38) allows to identify the exact length of a cable with the ends at the same
height.
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ii) Self-weight
Let consider the self-weight g, uniformly distributed along the cable curve referred to

the x-axis unit length g =g, =const.

Since

1. 0y =[ds={[rjdx=[y1+ y'2 +72'2dx (2.3.41)

and, since the cable belongs to the plane (Oxz), one has y'2 =0

Then

0Q =V1+22 (2.3.42)

whence

g=0goVl+z? (2.3.43)

Remembering that

ng”+g =0 (2344)
and making the appropriate substitutions, the following expression is obtained
Hgyz"+goV1l+2'? =0 (2.3.45)

whose general solution (catenary) is

H

z=—Y9cosh- (x+Cy)+C, (2.3.46)
g Hg

In case where C; =0 and C, =0, one gets

Hyg g
Z=——=00Sh——Xx (2.3.47)
g Hg

- . . H
It follows that the origin of the cable is at a distance equal to —9, beneath the curve

vertix.
Therefore, the pull horizontal component can be obtained by the identified cable length

once determined
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X2
(= coshHi(x+Cl)dx (2.3.48)

X g

iii) Arbitrary vertical load

Under this load condition, still considering constant the pull horizontal component, one
introduces the moments M, e M, on the equivalent beam generated by the current load
condition.

If the deflection is known, the H calculus is not particularly complex. Actually, in order

to compute the length of the cable, one considers the shear stresses Qy and Q; acting on

the equivalent beam.

With reference to Fig. 2.10, one infers

THYN. ] > YN i

Z

v v

Figure 2.10: Simple cable and equivalent beam tilted on the horizontal axis in the

plane (Oxz).
tan o = % (2.3.49)
d=z-xtana (2.3.50)
d=z-xtana (2.3.51)
Hev=M, (2.3.52)
Hqd =M, (2.3.53)
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One should notice that the moments’ indexes in Eq. (2.3.52) — (2.3.53) do not identify
the vector direction but the component of the load producing them.

Moreover, knowing that

QZ:MZ

) (2.3.54)
Qy =My

one gets

z :Q—+tana (2.3.55)

A
H
and being g, =0

vy
y=y=1 (2.3.56)

the deformed cable length can be computed as

2 2
0| Jn(%} +(%+tana} dx (2.3.57)

Therefore, in the search of the equilibrium shape, if the length is known and the

deflection is unknown, H and the cable geometry can be arbitrarily fixed. If comparing
the values of the length resulting from Eq. (2.3.57), Eq. (2.3.31) and Eq. (2.3.33) they
largely differ from the given value, then H is to be set again in order to get as close as

possible to the expected value.

iv) Arbitrary load

One considers the load conditions q,,q,,q, , whence H = const.

The load is applied along the unknown cable line, and its application points are

expressed only in function of x.

Thus, one proceeds to identify the pull horizontal component by the first of Eq. (2.3.16)

inferring
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X
H =Ho + [ Pedx (2.3.58)
0

where

H, is a value previously computed and then corrected if necessary.

Once identified the horizontal component value of the stress in the beam, the new
configuration assumed by the cable should be determined. For this reason, the
remaining Eq. (2.3.16) are considered, where the ordinates along y and z are still

expressed by their first derivatives.

Therefore, after integration, it is possible to identify the cable shape and subsequently
the length by Eqg. (2.3.31)-(2.3.32).

2.3.5 The elastic cable

In the case of elastic cable, in the analysis of forces and displacements of the cable the
elastic stretching should be accounted for. Since the cable may be stretched, the
deflection assumes values greater than in the unstretched case, and consequently the

tensile pull force decreases.

The considered elasticity condition may be caused by the circumstance that the ends of
the cable are blocked, preventing their displacements, or that they undergo some

prefixed displacements or that the cable length changes according to its elongation.
The length as additional condition

As previously shown, the cable length, subject to dead loads, additional loads and heat
variation, is given by
X

lyg= I 1+v2+72%dx (2.3.59)

Xy

2 2
lq \/1{%] {%Hanaj dx (2.3.60)
Hq Hq
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Remembering that Eq. (2.3.59) depends on the deformed cable coordinates, that may be
inferred through the equilibrium conditions, Eq. (2.3.60) is referred to the auxiliary

beam taking into account also the shear forces, as already emphasized.

Since in this case the cable is elastic, it undergoes a length variation A/ depending on

the horizontal components H , caused by the additional load and heat variation
lq =103 +Al (2.3.61)

And, after substitution of Eq. (2.3.34)

Hp ¢
Al = n [redx+t.q (2.3.62)

H
=03+ Ef’(u 22 i+ [tedx (2.3.63)
orwhen q,=0,and EAand t; are constant, one gets

lq=05+t,) j(1+ 2'2)1 (2.3.64)

In these conditions the pull component H may be computed directly, but through

iteration. Therefore, the value H, =H, +H f)l) is fixed, assuming as known H and E% :

Starting from this value of H, the relevant length zlq is calculated throught the

ordinates’ method described in the above. Hence a length value 1¢ q different from Klq

is obtained.

Thus, one proceeds by fixing subsequent values of H up to convergence, satisfying the

condition
"0q=10q (2.3.65)

In the case when H = const, it is possible to refer to Eq. (2.3.24), always proceeding by

iteration.
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e The span as additional condition

Let now consider the case when only vertical loads act on the span of the cable. The pull
horizontal component may be directly computed on the basis of the cable length by

through a condition about displacements

Judx=0 (2.3.66)
with

Hp 2\ 2
u'= —z'w'+a(1+ 29) 2 +(1+z, (2.3.67)

Eq. (2.3.67) is inferred quite easily from Eq. (2.3.29)

_ EA@U+yv'+z'w') EAt,
H, = — _ PRI (2.3.68)
@+y“+z7) @+y“+z7)
H - u'EA Z'W'EA EAt,

= + — ‘ =
"arz)r ezt @ryrer?)”

Hp(1+z‘2)%
Su'=-z'w+—L—

+t (1+27)

Hence by integrating on the length, one gets

K H p 2 % 2

I—z'w‘+a(1+z ) 2+(@+z°)t.dx=0 (2.3.69)
Decomposing the integral in Eq. (2.3.69) and assuming EA and :, constant, one gets

Xf— z'w'dx+ﬂxf(1+ 22)’2dx +1 Xf(1+ 72)dx = 0 (2.3.70)
, EA 5 EX/

where

Xy 3
5= (1+ 2’2)/2dx (2.3.71)
Xy
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Xy

0y = j(1+ 2’2)1x (2.3.72)
Xy

o

—IWdx+—=/s+t./l; =0 (2.3.73)

Since

Xr Xr

[ 2w dx+ [Zw]yr - [ 2" wdx =0 (2.3.74)

X Xy

and remembering that

Hqz"+9=0 (2.3.75)
one gets

f 1 Xy f 1 Xp
HE ==+ H | — [gM  dx—H ==+t 0, [-—— [gM ,,dx =0 2.3.76

where M, e M, denote the bendig moments depending to the load conditions g and g.

From Eq. (2.3.76), it is possible to achieve the horizontal tension component Hy,

Considering constant applied loads, the integral can be easily computed. Actually,
remembering that the deflection under the dead load is
_ 9t

f =t (2.3.77)
8H, ¢

Eq. (2.3.78) can be written as

H

2 s 16n l 2
—S 4 Hg| = f —Hg =2+l |-=qtf =0 2.3.78
9 EA q{ 3 OEA E T30 (2379)

Eq. (2.3.71)-(2.3.72) in this case assume the value
0 = L(1+%n2 +tan? aj (2.3.79)

and approximately
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1+8n? +tan’
04~ L[ on ¥ O‘J (2.3.80)
cosa

Eq. (2.3.79)-(2.3.80) can be applied also for cable without a perfectly parabolic
configuration. According to the above presented developments, the response of the
cables, both in pretension state and under additional loads, is non-linear. The pretension
represents a stress state, in equilibrium configuration, which the cable is subject to in
order to make it stable and stiff under the overloads’ application (J.W. Leonard, 1988).

The response of the element under pretension state is always non-linear, and the related
equilibrium configuration depends on the applied pretension forces. The response to the
overloads, instead, can be non-linear or almost-linear, according to the direction of

application and the intensity of the load compared to the above-mentioned forces.

Hence, ought to the not strictly linear response, the effects of the two load conditions
cannot be superposed, as already specified. So far, analytical methodologies for the
single cable have been presented, highlighting the nature of the nonlinear behaviour of
these structural elements, and allowing to find solutions, in most case approximated,

suitable and implementable for several kinds of cable structures.

Therefore, it is important to understand how the cable geometry changes depending on
the loads, not only because of their intensity, but also and especially of their application

and arrangement.

Essentially two cases of uniformly distributed loads are considered: the one applied on
the cable chord L with the ends at the same height as shown in Fig. 2.11 (b), and the
other one acting on the arch of the curve as depicted in Fig. 2.11 (a), leading, in this
case, to the catenary equation, which, in the limit case when the tilt is very small, tends

to the simplified solution relevant to the first case.

(@) (b)

Figure 2.11: Uniform loads: (a) on the horizontal span and (b) along the length.
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2.4 The cable as continuum or discrete element

On the basis of the previously introduced analytical methods, and in particular on the
one relevant to the elastic catenary, a number of more recent approaches to the analysis
of complex structures as suspended bridge (D. Cobo Del Arco, A.C. Aparicio, 2001) or
three-dimensional cable structures have been developed (Such et al, 2009). As
previously highlighted, the advent of computer era has pushed towards the search of
methods easy to compile. Matching the analytical solution of suspended cables with
fixed ends with Finite Element methods (FE) formulations, and through the application
of the Virtual Work Principle (VWP), a new formulation of catenary can be set up
allowing to increase the solution accuracy and decrease the computational weight
(C.Wang et al, 2003). In order to simplify the governing problem equations and to
allow easy CPU compilation, the cable can be modeled as continuous in Fig. 2.12 (a) or
discrete element in Fig. 2.12 (b). In both cases, the equilibrium configuration is
identified under the pretension state and as a consequence of the overloads’ application
through the identification of the tangent stiffness matrix and the forces vector.

(@) (b)

Figure 2.12: (a) Continuous and (b) discrete cable model.

It is easily perceivable that the cable discrete model can be obtained through the
discretization of the continuous formulation, presenting a number of advantages such as
to consider the nodal loads on the single cable segments, and to include both geometric

and mechanical non linearity (A. Shoostari et al, 2013).
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2.4.1 Continuum modelling of the cable (CCC-Continuum Catenary Cable)

Let consider a perfectly flexible cable under a uniformly distributed load (P, P,,P,)

applied along the three directions in the reference system (Oxyz), as shown in Fig.2.13.
Moreover, the cable is subject to a heat load At is assumed.
Geometrically the cable presents a constant cross-section area, and it is suspended

between the A and B points with coordinates

A=(0,0,0)
B=((,,0y,0,)

Figure 2.13: Continuous model of a cable under generic load conditions.

Denoting by s and a the lagrangian coordinates respectively in the undeformed and

deformed configurations, in the undeformed configuration

 dx
X=X(s)=|—ds
s) lds
de
y=y(s)=|—~ds
;[ds
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and in the deformed one

a
X=x(@)= %da
da
0

a
d
y=y(e)=] > da
0 a

a
z=z(a)=j%da
1 da

The equilibrium equations in the three directions are expressed by

T % - —(Ps+F})
T[]+ (241)
T % - —(p,s+F/)

where

FXA, FyA,F Az\ are the beam force components along the three axes at the node A

T is the cable stress

The stress T s given as a function of the lagrangian coordinate s by

T(s)= /Z(Pis+ FA)?  with i=x,y,z (24.2)

Furthermore, the stress T can be also expressed through the elasticity relation as a

function of the strain, as

T = EAe (2.4.3)
where

E is the elasticity modulus

Ais the cross-section area
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da—ds
ds

g is the cable strain relevant to the component of the loads &, =( j and the one

of the heat & =—aAt, with o denoting the thermal expansion coefficient.

Then Eq. (2.4.3) turns into

T = EA(g, +& )= EA(da ds _ At) d—a—ﬁ— Atj

ds

T= EA(——l aAt) (2.4.4)

Linking the Cartesian and the lagrangian coordinates,

S dx s dx da

X = X(S) j—ds_({d—d—d

y=Yy(s)= Id— gd—yd—a (2.4.5)
| _ody g cdzda

z—z(s—g (j)d ™

Eq. (2.4.1) and Eq. (2.4.2) are then substituted in Eq. (2.4.5)

dx _ —(sz+ FXA): —(sz+ FXA)

da T \/Z(P' ot FIA)Z

dy —(Pys + FyA)_ —(Pys+ FyA)

da T _\/Z(HS"'EA)Z

with i=x,y,z

dz _ —(st + FZA): —(st+ FZA)

da T \/Z(P.H F.A)Z
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T= EA?— EA — EAcAt
S

EA? =T + EA+ EAQAt

S
da_ T EA+EAcAt

—=—
ds EA EA

% :L+1+ alt
ds EA
s s Z(Pis+ FiA)2
%%dS:J‘ _(PXS+FXA) ! +1+ aAt |ds
- da ds 5 Z(F)is+FiA)2 EA
s s _ A Z(Pis+ FiA)Z
j%% s :j Z(E)YH By ))2 ! X +1+ At [ds with i =x,y,z(2.4.6)
0 0 Ps+F"*
s s Z(F)is+ FiA)2
E%dszj. _(PZS+FZA) ! +1+ aAt |ds
, da ds 5 Z(RS+FiA)Z EA
Then the boundary conditions are applied
x(0)=y(0)=2z(0)=0 (2.4.7)
X(°)=r,
ylre)=1, (2.4.8)

)

where

/

z

(° is the cable initial length.

By integrating along the element and using Eq. (2.4.7) and Eq. (2.4.8), the lengths’

projection (¢4, /,,,) are obtained
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GRE RN M) =

b
In(—+Tj+
02 02 A 1 (2.4.9)
_EEAPi—KZEFAI +(1+O(3.At) WPi(Tl—T2)+W2FiA—bPX W b
W —In(£°w+—+T2j
w
with

- [SR% b=3 R T=T(0); T,=T()

In order to solve Eq. (2.4.9), the differential components

three directions are introduced, which, denoting
t,=f(FLFALED
=g(F R RS
¢, =h(FAFMNEDY
are expressed in the form

of of of

dty, =——drRS + dFA Z_dFA
TN B oFA T
og AL og AL a9 A
dfy =L dRA + 2 dF + 2L dF
8FA 6FA aFA
oh ..o oh A oh ,_a
de, =2 dFrA + L dFA + L dF
R A

and writing Eq. (2.4.11) in matrix form

o0, 0y ly |
EA JEA JEA
A sz aaéy ?%Z R
_ y y y A
dfy - A A A dFy
oF, oF ) oF,
dz, dFZA
o0, o, or,
oF oF oF;)

one gets in compact vector form

dZ = QdF

of the cable stresses in the

(2.4.10)

(2.4.11)

(2.4.12)

(2.4.13)
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where

Q is the compliance matrix.

The stiffness matrix K is got by

K=Q1 (2.4.14)

The stiffness matrix K in Eq. (2.4.14) is then embedded in the tangent stiffness matrix

with six degrees of freedom

« | K K
=l (2.4.15)

Finally, by identifying the force components at the B node

Fe=—(Pro +F2)
Fy = _(nyo + FyA) (2.4.16)
FE=—(p,r° +F))

the internal forces vector with six components is identified
F= [FXA’ I:yA’ I:ZA' I:xB’ I:yB1 FZB]T (2.4.17)

Then, once identified the tangent stiffness matrix and the internal forces vector, the

cable length ¢= /2 + (% + (2 is inferred.

2.4.2 Discrete modelling of the cable (DCC-Discrete Catenary Cable)

In discrete modelling, the cable is considered to be composed of several cable segments

as shown in Fig. 2.14.
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Figure 2.14: Discrete model of the cable with nodal load application.

Once denoted by m the number of cable segments and by ¢° the initial length of the
entire cable, then the undeformed length of each segment is marked by ¢°

EO
rp=t
m

After denoting by /; the updated length of the j'" element under the load pi" applied on
the k™ internal node in the i direction, by x! the j™ component of the sub-element in

the i direction in the reference system, by T the j™ sub-element stress, Eq. (2.4.1)

turns into

i k=1

([ Axd j
TJ[AEAJZ_(M?H +':|A+Zpikj (2.4.18)

and

AXd = x

j+1
i i

j
X

Considering that
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0o (o]
t t

C =102 Iz
T, =E;Ai(sl-¢!) = EjAj[ [ —aAtJ —E;A, (—J—l—aAtj (2.4.19)
the xij components can be computed

o I A
X =D A =) = (2.4.20)

Substituting Eq. (2.4.18), (2.4.19) and Eq. (2.4.20), one gets

. j 1 1+ ant
GRS A EA )= =02 jooP, + B2+ > pt + 2.4.21
|( X y z ) t(] t'x i kélpj EjAj Tj ( )
After solving the system of equations in Eq.(2.4.21) by the differential components

aLiA, it is possible to identify the compliance matrix Q, besides the stiffness and

o f;
tangent stiffness matrixes, in analogy with what reported in the previous Par.2.4.1. The
internal forces vector F is then identified, thus allowing to identify the cable length as

well.

In these first chapters, the main features of tensile structures have been highlighted,
paying particular attention to the study of the simple cable. This problem has been dealt
with a rigorous approach already during the XVII century with reference to the first
elements of infinitesimal analysis, due to the non-linearity characterizing these

structural elements that does not allow the application of effects’ superposition.

Since then a number of solutions, mainly analytical, have been developed, such as those
ones referring to the unstretchable catenary, unstretchable parabola, elastic catenary and

overloaded catenary, and then considering the flexible cable.

During years, cable structures have been spreading in the construction field, including
suspended bridges, cable-stayed bridges, coverings of big areas, as far as to play an
important role in the free-form design thanks to the advent of new materials.

Thus, the interest in understanding their static behaviour, in addition to the dynamic
one, has greatly increased. Starting from the solutions proposed from former mechanics,
several approaches have been developed during years, also as a consequence of the
advent of the computer era, aiming at simplifying the problem governing equations for

allowing easy handling and computer programming.
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New catenary cables have been considered as well, leading to the identification of the
relevant entities, such as stiffness matrixes and internal forces vectors; cables have been
modelled both as continuous or discrete elements, applying nodal loads. In this way,
starting from these models, it is possible to analyse more complex structures, such as

cable trusses or cable nets, that are deepened in Chapter 3.
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3. 2D AND 3D SYSTEMS

3.1 Plane systems with opposite curvature

In this section, the static behaviour of plane systems with opposite curvature will be
analysed.

This structural system can be considered as an evolution of the simple cable one (K.
Santoso, 2003) since it is characterized by two elements with opposite curvatures,
linked to each other by either vertical or diagonal cables. The upward cable has the
carrying function, while the downward cable has the role to tent it. The connecting
elements can absorb also compressive forces when the carrying cable presents a

downward concavity (Fig.3.1).

Figure 3.1: Schemes of different configurations of cables with opposite curvature.

The cable structures with opposite curvature can support loads that are directed in both
the (upward and downward) directions in the plane, with the same stiffness (K. Santaso,
2003).
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Moreover, it has also been shown that these systems are able to give a greater stability
to the structure, actually, being able, under the same load conditions, to decrease the
upward displacements of about 63,1%, the downward ones of 1,8%, and the total

displacements of 29,4% with respect to the simple ones (V. Goremikins, et al 2011)

(Fig. 3.2).

o A 2
/e

L

/o
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A A A A A £
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Tensile element
- / Je
Compressive element
Tensile element/ f,
. 7 -

Figure 3.2: Cable systems with opposite curvature.
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These structural typologies present several advantages, and they are particularly used
for big span roofs and suspended bridges (M. Raoof, T.J. Davies, 2004).

A first example of cable structures with opposite curvature is represented by the Ice
Palace in Stockholm by the Swedish engineer Jawerth (1960) (Z. Chen, et al 2014).
Later, besides the applications for other roof systems, they be found in several
engineering buildings (M. Majowiecki, 2005), and with different shapes.

Recently new systems have been developed, also composed of the union of frames
(beams and piles) with cables with two different curvatures, that are interconnected in

such a way to stabilize the entire structure under the load action.

Actually, thanks to the cables, the frame (Fig. 3.3) can resist both gravity overloads and
wind pressure (S. Lee, et al 2019), compared to structures made of beams and single

cables.

Trave

‘. Cavo-arco * Elementi _Cavo _

di collegamento

Figure 3.3: Tensile structure scheme composed of tensile cables and frames (S. Lee,
2019).

Several methods have been developed, starting from the first approaches proposed by

Schleyer and Jawerth.

According to these studies, a methodology was developed based on the hypotheses of
curtain behaviour and unextensibility of connecting cables, referring only to opposite
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curvature systems linked by vertical elements, advantages of systems with diagonal
connecting cables were highlighted by Jawerth.

Since one deals with articulated structures characterized by high non linearity in their
geometry (Z. Chen et al, 2014), the several analysis models developed during years
have attempted to control the above-mentioned non linearity through different kinds of

approaches.

Nonlinear FE models have been frequently used to highlight their performances with
and without the overloads (Huang et al,2007). Actually, these structural systems can be
regarded as discretized structures (A. Sadaoui, et al., 2016) allowing the development
and the large spread of the above-mentioned models (I. Talvik et al., 2001; Y. Kanno et
al.,2002).

To this regard a series of analyses has been led referring to bridge structures built with
cables with opposite curvatures, considering also the non uniform load conditions,

highlighting their deformation regime (M.H. Huang, et al. 2008).

Beyond FE approaches, several calculus models based on exact mathematic form
expressions have been developed with the adoption of some approximations, such as:
neglecting the second order terms in the equilibrium equations of the constituent cables
in order to obtain the linearization of the problem and to solve the equilibrium under the
overloads; or neglecting the self-weight of the cables and applying uniformly distributed
loads along the span; or supposing the inclination of the chord very small and
sometimes, assuming as continuous the connecting vertical elements (S. Kmet et al.,
2014) (Fig. 3.4).

-~ AN A
]m\//_\

- —~ T
1| [T

Figure 3.4: Biconcave (a) and Biconvex (b) geometric profiles with continuum

modelling of the connection elements (S. Kmet et al., 2014).
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Comparing the approaches, one may observe that in the case of the finite elements
models some particular attention needs to be paid to the circumstance that some
elements may be subject to compressive stresses; therefore, in this case the compressive
stiffness of these elements must be deleted and the acting loads redistributed on the
adjacent cables. However, if the number of compressed elements is high the structure is
unstable, and the solution diverges. This case unlikely occurs in closed form models (A.
Sadaoui et al, 2016).

As mentioned, one of the main issues in setting up the calculus models is represented by
the aim of handling them quite easily for computational purposes However, one of the
first calculus programs both for the linear and nonlinear analysis of these cable
structures, was developed by Broughton and Ndumbaro and it is based on the Newton -
Raphson technique taking into account both geometric and mechanical non linearity (P.
Broughton, P. Ndumbaro,1999). The requested inputs concern the structural geometry,
the elements’ stiffness, the loads arrangement, the boundary conditions, and the

pretension value.

Actually, the pretension plays a central role in tensile structures in general, and
particularly in this type of structures because of lightness. The pretension represents the
initial load that acts on the structure, and therefore on the cables, in order to have no

elements in compression after the overloads’ action.

Thus, the study of these structural typologies mainly concerns the geometry finding
once known the pull forces, and the search and the identification of the static and
deformative regime after the external loads’ application.

It is important to remember that the pretensional forces must be identified with
reference to the most dangerous load condition, checking that: the admissible stresses
are not overpassed, the deflections respect the deformability of the material, and the

internal forces in the cables is not null.

Referring to the pretension geometry, one assumes that the self-weight is negligible
compared to the applied loads.

In the following, an analytical method for the analysis of plane structures with opposite

curvature suitable for several typologies is described.
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3.1.1 The pretension geometry

One refers to the structural scheme given in Fig.3.5, supposed to be subject to the self-

stress state reached after the pretension.

In the scheme 1,2,3, ...,k ...n identify the n internal nodes, while A,B,C,D the boundary

ones.

Figure 3.5: Scheme of a plane cable structure with opposite curvature- pretension

geometry.

The k™ internal node is referred to with coordinates Z, and Y, , and interconnected with

the i"™ node with coordinates z; and V., through the cable segment with length ;.

In synthesis

K=Yk, 2)
i =(Yi,z)

£ is the cable segment length with ends i-k

0y =+JAYE + AZ2 (3.1.1)

with

AYi =Y = Y (3.1.2)

Az, =7,-1, (3.1.3)
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Then, being T”f the internal forces in the generic cable i-k, and Ay the cross section

area, the equilibrium of the generic k™ node for the horizontal translation is

510 8%k _g (3.1.4)
i Cik

and for the vertical one

sTo ik _ g (3.1.5)
i Cik

One should consider that it is impossible to always arbitrarily fix the geometry of the
structure in order to find the associated forces regime satisfying Eq. (3.1.4) and Eq.
(3.1.5). Actually, the node equilibrium cannot be generalized for any configuration,

since the internal forces must be in tension.

Consequently, there is the requirement to find the configuration and therefore the

pretensioned geometry respecting the above-mentioned conditions.
The problem of finding the pretensioned geometry can be dealt with in several modes:

starting from the initial lengths ¢5, of the cable segments between the i " and k™ node,

and the internal forces at the ends, that is the connection cables with external restraints
that apply the pretension to the structure. Therefore the non-linear system in 2n

equations and 2n unknown variables (y,,z,) is identified’, that is not homogeneus

because the coordinates of the end nodes A,B,C and D are known.

!Due to the constitutive law(cont.):
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1 1
ZEAikAZik — ZO
[ (i WMZiZk"‘Ayizk _
V internal node k (3.1.6)
1 1
D EAdyiy| —— ——F——=|=0
i Uk JAzb + 4%

O

|k—EA|

|k

Substituting in Eq.(3.1.4-3.1.5), the translation equilibrium equations, one has

ZEAI Ik AZIk O
ik

Ayik
EA| Ik 0
Z f ik

2
lig = \/Azik +AYik

hence forany internal node of the system, the equilibrium equation turns into

) VAZIK +Aylk 4 Azy
2. BA [2 2 =0
i Eik Zik + Yik
VAZS +AYE
> EA Zik[ e . L J:O
i

2 2 2 2
f?k\/AZik +AYik \/Azik +AYik

1 1
2 EA Zik| —- T 5 7 0
O JAzh+ayh
Similarly
S EA VAZE +AYR 0 Yk _p
i lik JAZE +AYE
[\)2 2
AZip +AY;
ZEAikyik[ I Tk . J=0
i

2 2 2 2
f(i)k\/AZik +AYik \/Azik +AYik

1 1
Z EAi Vik -—————|=0
& JAZE +AYE
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Another method provides to write a system in 2n non-linear equations and in 2n

unknown variables Y, and Z, to compute the initial length of the generic segment, by

fixing the stresses T, 2 and therefore the pretension.

Az,
ZTH? Z'k =0
i A h V internal node k (3.1.7)
ZTNS Yik ~0
i glk
0 — ik _ (3.1.8)
1+7T"‘
Ei A

£5, is the initial length of the generic cable segment i-k should have in order to achieve

the final length /; under the T; force.

In the above-described methods, one gets some systems that are quite difficult to solve
because the systems are nonlinear with a large number of unknown variables.
Considering and fixing the pull horizontal component

Az,
Hp = | ; 'k|TiE (3.1.9)

ik

in such a way the equilibrium condition along the z-axis® is satisfied by

o gi —f?
Tik = EAik %
ik
g?kTilt() = EAik(f ik _g(i)k)
f?anS + EAikg?k = EAikZik
CiTie
2 EA

T-O
f?k[ . +1J:£ik
EA

itis expressed
f ik

1+ Tic
EA,

in functionof T,

+ 05 =Ly

f(iJk =
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Az
Z - Hfi = (3.1.10)

while the equilibrium along the y-axis* should satisfy

Z AYik HY = (3.1.11)
|A lk|

In order to satisfy Eq. (3.1.11) it is sufficient that only the ordinates y, are undtermined.
Therefore z, can be arbitrarly fixed, thus reducing the number of equations from 2n to

n, and, hence, leading to the solution of a linear problem governed by n equations in n

unknown variables vy, .

o _ |8z,
H, » T
gikHicli = |Azik |Tn(<)

o _ CyHi
ik = |Azik|

3
Az
ZTH? SE
- Co
i Hy Az,

2| 1
ik o _
Z|Azik| Hi =0

[Az,|

H |(I)< - Tll?

ik
CuHi :|Azik|Til(<)
o LaHi
4 ik — |Azik|

ZT 0 Aylk —

l, H° AyIk

=0
Z Az, | ¢
Aylk 0 _
2 Jaz, |
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Therefore, one writes Eq. (3.1.11) for any internal node and, once identified the
unknown variables, the internal forces can be computed by

2
AV.
TO=H? 1+[%) (3.1.12)

Ly

Subsequently, by Eqg. (3.1.8)

o =tk (3.1.8)
1+ T
Eik A‘ik

the initial lengths of any cable segment composing the system can be determined in

order to identify the equilibrated and compatible configuration.
So far, the case where the examined structure is in a self-stress state has been supposed.

In the following Par. 3.2, the behaviour of the above-mentioned structure under the

overloads’ action is analysed.
3.1.2 The overloads’ effect

The problem of the structure under the overloads’ action is now dealt with. The loads
act on the nodes in the same plane of the system as shown in Fig.3.6; therefore, the

nodes undergo displacements in the reference axes directions (y, z).

Let suppose the cable segment straight, even if it stretches of A/, due to the nodal

displacements.

Figure 3.6: Static scheme of a plane cable structure in (Oyz).

Denoting by:
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Pik & P, the vertical and horizontal components of the applied nodal load

respectively, assumed to be positive if their versus is concordant with the reference axes
one.

Viand W, the vertical and horizontal components of the displacements respectively,

assumed to be positive if their versus is concordant with the reference axes one

AV =V; =V,
Al the length variation of the cable segment starting from the length £,

Ty the pull in the cable due to the pretension and the applied overloads

At the heat variation;

o the thermal expansion coefficient;

Both At and @ depend on the cables’ materials.

Z
y
V%
Ay’
Avy,

Az Awy

Figure 3.7: Deformed beam due to overloads.

Fig. 3.7 shows the initial and the deformed configuration of the cable, for which the

equilibrium equations in the horizontal and vertical direction are respectively
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AZ,, + AW;
T, —k k4 p =0 3.1.9
; PV (3.19)
AY;, + AV,
T, =2k """k 4y p =0 3.1.10
Ry an, o (3.1.10)

Let denote by H;, the pull horizontal component

Az + Awgy|
Lo + ALy
whence
O + AL
= ik T 7k (3.1.12)

B AZy + Awy | Ik

Substituting Eq. (3.1.12) in Eq. (3.1.9) and Eqg. (3.1.10), the equilibrium equations to

translation are

Az, + Aw,
Z N AZiy + AW P,=0 (3.1.13)
i Az + Aw '
S H AYi + AVy P, =0 (3.1.14)

~ Az, + Aw|

To identify the problem solution, the elastic-kinematic relations should be identified,

that are the relations connecting the static components T, and H, with the kinematic

ones Vi and W;, .
Thus, with reference to Fig. 3.7, one can infer

(fik + Mik)2 = (Azik + AWik)2 + (Ayik + AV )2 =

(3.1.15)
Furthermore, since

and then

DAL, 0y + A2 —|AWE + AVZ + 2(AZ, AW, + Ay, AV, )|=0 (3.1.17)
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solving for A, °and simplifying, one gets
Aly = {zik \/1+ %Z[Awﬁ( + AVE + 2(AZy AW, + AyikAvik)] —1} (3.1.18)
ik
Moreover, always referring to Fig. 3.7, ¢; can be expressed as
Ay )

Ui = 1Az | [1+] =K 3.1.19

ik | |k| (Azik J ( )
Thus, Eq. (3.1.18) turns into

2 2 2
sty <|o| Hm} L (AwikJ (AJ +2[Awik +AyikAvikj G120
Az (Ay. j Az, Az, Azy Az AZ;,
14| 2
AZik
Because of the constitutive law
Tic — T
Agik :—gik +0£Atfik (3121)
ik
remembering Eqg. (3.1.4) and Eq. (3.2.17), one gets
_ Ly + AL 314
ik |AZik+AWik| ik ( e )
Ay )

Ui = 1Az | [1+] =K 3.2.17

ik | |k| (Azik J ( )

(f i ALy )2 = (Azik + AW, )2 + (Ayik + AV, )2

DALy + A = [AW + AV +2(Az, AW, + Ay, AV, )|
200, 0y + A+ 05— 12 = [Awfk +AVE +2(AZ, AW, + Ay, AV, )]
(0 +A0, =22 =[AW2 + AV +2(Az, Aw, + Ay, AV, )]

Tty + AL, Y = [AWE 1 AVE +2(Az, Aw, + Ay, Avy )]+ 22

vV (f i T ALy )2 = \/[Awii + AV + 2(AZ, AW, + Ay, AV, )]"’ 03

ALy = J|AWE + AVZ + 2(Az, A, + Ay, AV, )+ 23— 1,

AL =1, { \/1+ ;2 [AW2 + AV2 +2(Az, Aw, + Ay, Av, )] —1}

ik
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2 2
T, = (i + ALy ) H, = Hi \/(Azik + AWikJ +(Ayik 4 AVikJ

|AZy + Aw| 1 AW Azy Az Azy Azy
2 2
T, = (gik+Mik)Hik: Hi (1+ AWikJ J{Ay"( +Avikj
Az + Awy | |, Ay AZ;, Az, Az,
AZ;,
2 2
T, = (¢ +ALy) H, = Hi \/(1+ AW J +(Ayik + Avy, J (3.1.21)
Az, + Aw, | ‘1+ AW, Az, Az, Az,
AZik

Taking into account Eq. (3.1.17), Eq. (3.1.18) and Eq. (3.2.10) and making the suitable
substitutions in Eqg. (3.1.19), one gets

2
Ay;
0 =|Az, | [1+] =LK 3.1.17
i =|Azy] [AziJ ( )
Ay, )
T =HO [1+| =2k 3.1.18
ik ik (AzikJ ( )
00+ AL
= ik Ak (3.1.10)

B |AZy + Awg | Tk

T, —Ti
Aly = %Eik +aAtl, (3.2.19)
ik

Agik =

2
Ay AYi
=|Az,| 1+(AZiJ

2 2 2
Hix 1+ AW n AYi + Avy | ik 1+ AYi + oAt
AW Az Azy Az EA Az,

1+

EA,

Zik
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AV
= Az | 1+(—y‘kJ (3.1.22)
AZiy
2 2 0 2
Hi (1+ AWikj +(Ayik +AvikJ _Hi 1+(AyikJ + At
E AL+ AWy Az, Azy Azy E Ay Az
Zi

To identify the searched elastic-kinematic relations, Eq.(3.1.17) is equalized to Eq.
(3.1.22), obtaining H;, . Hence, set the problem, one can proceed to the search of the

solution, that can be hard to compute in this way. Thus, remembering that
Avy =V, =V,

Aly is the length variation of the cable segment obtained starting from the

pretensioned length /5, ,

some simplifications may be applied, and in particular:

M <<le ﬂ <1,
Az, Az

which means that these ratios can be considered negligible, allowing to introduce the
relevant changes in Eq. (3.1.11), Eq. (3.1.12), Eq. (3.1.21), Eq. (3.1.22).
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Az, + Aw, Az
S H, A% p xS Dby 1P =0

b Az, + Aw, | ~|Az, |
AYi + AV AYy | AV
H, —% X =0z P, =0

Z‘ " |Az; + Aw, | Z“|Az,k| [Azik ! Az, j+ vk

(glk + Af |k Aylk

ik Hy =H,.1

Az + Awy|

Aly =
Hik \/[1+ AW, jz +(Ayik + AV, ]2 _
2 AZ; Az, AZy

|k Alk

0
H"‘ / ( j + aAt
|kA|k
(Aylk
2
| A
=Al, = |Azik|\/l+(iy”‘J kA'k

H — Ik ( ] + aAt
Ik AIk i

These equations then, after putting

2
ki =1+ (%]
AZik

AHik = Hik - i(l)<

assume the expressions

AZ;
Z ik
i Az |

ZAzik( o Al | Ak, AV | p Ly
i |AZ|k| : . AZik Azik rk

(HS +AH, )+ P, =0

Al = Az, (Awik + Avig AyikJ
I

Tik =H ikkiié

I

(3.1.23)

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)
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ik

Al :|Azik|( ik ?E:'k + Atk.kyJ i [Awik + AV Ayikj

whence
AH, = EA | [ AW, N AVy Ay — antk,, (3.1.30)
k% Az, Az, Az,

Furthermore, the pretension forces have to oppose the deformations of the structure;
therefore, they may be supposed greater than internal forces induced by the external
loads

Ho >>AH, (3.1.31)

Taking into account Eqg. (3.1.31), and Eq. (3.1.16)-(3.1.17), the translation equilibrium

equations, respectively in the horizontal® and vertical” direction, turn into

AZy o Az;,
ik —KAH, +P,, =0
iZ|Azik| ik +Z|A2ik| ik + z,k
but
AZik 0
Ho =
GZ‘|Azik| d

hence

Zﬁi—fk'AHik +P, =0

’(Cont.)
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Az,

K AH, +P,, =0 3.1.32

Zi:|AZik| ik z,k ( )
Az, Av, Ay;

Z ik ( icl)( ik 4 AHik Aj_p Py,k =0 (3.1.33)

i |Azik|k Az Az

Hence, now it is possible to write the two equilibrium equations for the n internal nodes,

substituting the value of AH, obtained from Eqg. (3.1.30), into the above-mentioned

expressions; then the problem in the 2n unknown variables W, and V, is solved.

N AZ
Z—wfk |AH « tP, =0 (3.1.34)
i
Z Az;, HO ﬂ*'AH.k A +P, =0 (3.1.35)
Az, | Az, Az,
k=1
with
AH EAIk AWik n AVik Ayik —(XAtkik (3136)
}/ Azy Az Azy

z Az ( AH,k(Ay”< +Avikj+ Pyk =0

~ |Aziy | Azy Az

Z Aziy ( ° AY. +HS Avig + AHy Ayik + AHy AVikJ_’_Py’k -0
\Azlk\k Az Az Aziy
but

Ayl — 0
‘A lk‘
and

HO

k <1

AH
|k Az|k

for the hypotheses
Avlk
AZIk
AHik << chl’(
Hence their product gives a neglegible quantity.
Therefore the equilibrium equation to vertical translation assumes the following expression
2 Ml (HO A"'k +AH; Ay'k} Py =0

Az

|k‘k kA Zik

<1
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One then proceeds by iteration, considering the terms AHik%, neglected in the
Zik

previous calculus phase, and adding them as fictitious loads to the external loads.

Therefore v, and w, are computed and one proceeds this way until the results from two

subsequent iterations present approximatively coinciding values, that is up to

convergence.

ZAZIKAHk-i-PZk—O
=

n Az,k( o AV AY; *
HY 'k +AH 2K P + Py =0
Z| o K g |+ Pyk Py

k=1
with
AH, = EAL | [ AW n AVi Ay — otk
k-% Azy Az Az,
P’ = AH, i o

ik

S A EAI [ AWy A Ay | oak, |+ P, =0
i |A2.k| ky Az Az AZy |
k 1

- Ay, .
H? +AH, —Z* 1+P  +P, =0
Z|Az ( b Az " Az J vk ook

i ik
k=
- Az, EA Aw, Az, EA | [ AVy Ay

—aAtk, |-
Z|Az,k| k2 Az, Z|Az,k| k.2 [(Azik Azik] “ 'k}
k=1

n o AI
Z|AZ {H,km AH,kAz"}LPkJrP =0

i ik
k=:

i

n n A : A : P
O | g e p— ——,
= i1 | \ Az Az, z Az, EA,
k=i k=i |A2,k| k}/

n

Z

s} Ay| *
i |(HIkA § AHikEkj—i_Py,k—}_Py,k:O

ik
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paying attention to the second equation

DAz ( o AViy Ayig -

Hik ! + AH;y P, P, =0
I—Zl |AZ|k|k A2|k Azlk * yk " yk
k=1

substituting

AHy = EAi HAWik . Avig AYik}_aAtkik}
k”}(é Azik Azik Azik

and

n D1 Avye Ay
AWy = — Tk 2K g Aty |+ 2 —
z Ik Z|:(A2|k Azlk] Ik

k=i k=i |Az,k|

w<:>

Z Az, J, AV EA-k l:[AWik + AV Ay ]_aAtkik:l Ay +P,, +P, =0
=) |Az,k|l ky Az, Az, Az, Az,

-~ AZy Az, EA || Avy Ay AY;,
> E - oAtk |[—*
= |Azik| Az |Az,k| ky l:[AZik Azik] “ 'k:IAzik "

- Az, EA, P, AVi N Az EA |:(Awik +Avik AyikJ ahtk } Yie _

E |Azlk| ky 0 Az, EA, Az, = Az, | kii/z Az, Az, Az, AZ,,
= |AZ,k| k}/ )
=-P,, - P;k

simplifying one obtains

Ay, *
p, Ye__p _p
Z|Az Az " Az, yk vk

C ylk * i
ZAvlk _[ g P Py,k] o
ik

i=
k 1

Once identified Av,, it is substituted in the first equilibrium equation obtaining the

updated value of Aw, . These values are denoted by v, and w; and the process is

repeated up to convergence.
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One should also consider that in the reported procedure, the displacement components

of the connection nodes between the structure and the restraints are supposed known.

Denoting by M the connection nodes with the restraints (Fig. 3.8), one may infer that,

Figure 3.8: Cable structure with opposite curvature in the plane (Oyz), where M denote

the connection nodes with the constrained ones.

through these nodes, the structure transmits on the restraint the horizontal and vertical
reactions, given by

Az.
R, = M AH. 3.1.37
z,M Zi:|AZiM| iM ( )
Ry = X A [ o AVi ppy o aH M Ay (3.1.38)
' |A ||v|| fAvATY AZiy

where i is the i internal node connected to the node M through a cable segment.

If the fixed nodes are denoted by r, the displacements of M are

Wy = Erjl(w R,i +WJM RVJ) (3.1.39)
J,
r 1

Vi = _Zl(va Ry +VimRo ,-) (3.1.40)
J:

where

W, , W _,V.,,V arethe influence coefficients.
JM M JM M
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These latter expressions, together with Eq. (3.1.32) and (3.1.33), complete the problem

solution.

3.2 Cable nets

Spatial systems include a large range of structures; actually, referring to the literature,
there are several definitions that can cause some confusion. However, among all, the
definition given by the Working Group of the International Association on Spatial Steel
Structures better describes these structures;

“A space frame is a structural system assembled of linear elements so arranged that
forces are transferred in a three-dimensional manner. In some cases, the constituent
element may be two-dimensional. Macroscopically a space frame often takes the form of

a flat or a curved surface”.

To this typology a number of structures belong, such as membrane structures, suspend-
domes, spatial structure presenting a dome shape and typical of gyms’ coverings.
tensegrity structures, tensarity structures and cable nets, the latter defined as “a
structure system in the form of a network of elements (as opposed to a continuous
surface). Rolled, extruded or fabricated sections comprise the member elements.
Another characteristic of latticed structural system is that their load-carrying

mechanism is three dimensional in nature” (ASCE).

According to Dong et al (S. Dong et al., 2012), the story of spatial structures can be
divided into three main phases: ancient, pre-modern and modern. In particular, the first
one refers to thin reinforced concrete shells, and the last one to cable nets, characterized
by the use of light material and modern technologies: the combination of materials and
different shapes, the application of the pretension and the new structural concepts are

their fundamental features.

Moreover, based on the component elements, one may distinguish stiff spatial
structures, composed of stiff members like beams, and flexible structures, when the

constitutive elements are cables or membranes.

In this paragraph, with respect to flexible spatial structures, i.e. cable nets, that involve
some additional complexity in the static calculus because of their geometric features,

some examples are showed (Figs. 3.9-11).
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Figure 3.11: Tehran Birds Garde, Tehran, Iran (2017); Diba Group.

Cable nets may be considered as a derivation of the systems with opposite curvature,
where the cables (the carrying one and the stabilizing one) are arranged in different

vertical planes that usually intersect with each other orthogonally.
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Basically the net shows two or more series of cables that stretch out homogeneously the
generated surface in all directions. Compared to plane structures, in the cable-nets the
external loads act in a plane different from the one of the cable, thus introducing some
complexity on the calculus also ought to the increasing of the unknowns’ number and

therefore of the equations to solve.

Thus, the study of these structures has been motivating several researches and it is
constantly evolving (Such et al.,2009). A lot of methods and theories have been

developed about the geometry finding both under pretension and overloads applications.

The first solving approaches referred to two main theoretical approaches: the continuum

and the discontinuous on., then modified during the years.

The discontinuous approach, initially introduced by Bandel (H.K. Bandel, 1959), is
based on the writing of equilibrium and compatibility equations for each node

composing the structure, and then solving the system.

The formulated equilibrium equations are linearized and controlled through
compatibility ones, proceeding then to the application of iterative methods to find the

solution.

The studies of Siev and Eidelman (A. Siev, J. Eidelman, 1964), Mollman and Mortensen
(H. Mollman, P.L. Mortensen, 1966) are based on these theories, where horizontal loads

and displacements are considered.

The continuous approach considers the structure as a membrane without stiffness for
tangential stresses, reacting exclusively with normal tensile forces. Hence, it is
supposed that the structure is characterized by a textile material obtained through the
approach of the cables. Therefore, a continuum structure is achieved, involving

differential equations and introducing the boundary equations.

This theory has been at the basis of several studies, such as the Eras and Helze’s ones
(G.Eras, H.Elze,1963), similar to the Bandel’s discontinuous theory, that assumes only
the action of vertical loads and therefore vertical nodal displacements to solve the
problem; or to the Schleyer’s approach (F.K. Schleyer,1965), which considers also the

horizontal displacements, but only in the second approximation.
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Subsequently, the methods have been divided into two macro-categories, basically
referring to the nonlinear displacement methods or force density methods (FDM), used
both in the form-finding and in the static problems, and therefore for searching for the

equilibrium conditions.

Iterative methods which update the configuration at any step respecting the equilibrium
conditions, belong to the first group. Argyris (J.H. Argyris,1974) was one of the first
authors to use this method, for the design of the Olympic Stadium in Monaco; then it
has been used also by Vilnay (O.Vilnay, 1990), and by Jayaraman and Knudson (H.
Jayaramam, W. Knudson, 1981), who developed two-nodes finite elements on the basis
of the elastic catenary equation. Finally, more recently, Andreu et al (A. Andreu et al,

2006), instead, used the deformable catenary within a FE method.

The FDM, originally developed by Scheck (H. Scheck, 1974) among others, has been
widely used for several typologies of cable systems as far as for membranes.

However, the beginning of the computer era in the early sixties, led changes on the
solving approaches referring to the static problems of these structures. Actually,
methods easy to computationally implement were developed, such as the FE method,
firstly developed under small displacements. Since cable nets usually undergo large
displacements under the overloads’ action, the FE method could not be used in its
original formulation, but it was modified for structural nonlinear problem solutions,
motivating a number of iterative methods for its application. Among these, the most
suitable and reliable method for cable structures is the Newton-Raphson one (Tibert,
1999).

On the basis of these theories, a method for the nonlinear analysis of the examined
structures has been proposed recently, referring to a variational formulation in
curvilinear coordinates in the field of finite deformations. This study, after identifying
the displacements as kinematic variables of the problem, through the Virtual Work
Principle application (VWP) infers the relation between deformations and
displacements, implementing, then, the finite elements method both for continuum

elements and discontinuous ones (Miquel et al, 2017).

Again always under the perspective of methods easy to be computationally
implemented, matrix methods have been proposed where the structure is analysed as a
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discrete system and the governing problem equations are written in matrix formulation.
These approaches are based on the classical displacement formulation, where the
unknown variables are the kinematic components, or on the force formulation where the
variables are identified in the cable forces. For programming purposes the most adopted
Is the displacement approach, since it is very versatile and can applied to several cable
structures typologies, load conditions, stiffness variations (Lan,1999).

Other methods are based on the minimization of the Total Potential Energy through

constrained procedures (Toklu et al, 2017).

In Par. 3.3.1 a cable-nets system is analysed through an approach based on a membrane
analogy, essentially based on writing the governing equilibrium and compatibility
equations in an integral-differential form. Only at the second stage, some simplified
hypotheses are introduced, in such a way to avoid neglecting some important
parameters for the calculus and for the solution of the problem at the initial phase of the

procedure.

The adopted membrane analogy is basically founded on regarding the net as a
continuum, which exhibits an equivalent behaviour both in terms of stiffness and
resistance; in this way the mechanical properties (stiffness, elasticity modulus, thin,
Poisson coefficient, etc.) of the system under analysis are calculated on the equivalent

membrane, referring to the continuous theory.

As for plane systems, starting from the pretensioned state, neglecting the self-weight, in
the case of cable-nets the governing equilibrium equations are projected on the three
axes, passing to a three-dimensional system.

3.2.1 The pretension geometry

With reference to the points in Fig. 3.12

kE(Xk’Yklk)
iE(Xi’yi’Zi)

One has as regards to equilibrium
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2 Tik ik _g
i Cik
> ik g (3.2.1)
i an
2 Tik Zi _
i Lik
where

(3.2.2)
and
Ci =JAXZ + Ay + AZ2 (3.2.3)

0
Hi 4
z

2

Figure 3.12: Cable-nets tensile structure scheme. Pretension geometry with details of

the cable segment i-k.

Considering the pull horizontal components along the x and z axes

o _ |Axik| 0
Hx ik le (324)
' fik
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Az,

Hzoik_
’ glk

T

one has, for equilibrium to horizontal translation,

HCe = |Axik|-|-_o N
X,ik f ik

ik

STo A

ik HO =O
Z|A | x,ik

Z|A ;Ik_o

and, for vertical translation

AY; o
2Ty

The latter Eq. (3.2.8) turns into®

Z| Ik|H?|k _0

since

8 With reference to

A
z ylk szk 0

since

H)O(,ik—| Ik|ngk
Az |

one gets

Z|Ay1k |Axlk| Ik =0 > z| ylk|H01k:0

AXlk'| |Azlk|

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)
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.o H)?ka
ik |AXik|
0 _ Hg,ikgik
ik |Azik|

H Zo,ikﬁ ik _ H S,ikﬁ ik

Az | - |AX,|
Az
H?Ik IA k|| H)(()Ik
|k
AXy|
HO | HO
Xk |A Ik| z,ik
Az,
H i = ZM H (3.2.10)
i ik

After Eqg. (3.2.6), one can proceed fixing the initial length or forces, related to each

other through the constitutive law

Ty = EAk i (3.2.11)
|k

The system in 3n linear equations and in 3n unknown variables X,,Y,,Z, is obtained

ZE L = L5 Ay
g(lnk gik
— 0% Ay
E ik ik TJik — 0
Z ﬁ?k 7, (3.2.12)
ZE A Ly =13 Az,
|k gik

The pretension configuration is identified subsequently based on the fixed values of the

lengths and initial forces.

The above introduced problem is hard to solve and moreover the forces cannot be

computed by fixing arbitrarily the pretension geometry.
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One proceeds fixing arbitrarily two of the unknown variables X, and Z,, and the

horizontal components of the pull components Hf(’yik and H f,ik , in order to check the

horizontal equilibrium Eq. (3.1.6) - (3.1.7)

Z | HY, =0 (3.1.6)

JAVAN
~H,., =0 .
iZ AZik| o 3.1.7)

In this way the number of unknown variables Y, is reduced from 3n to n, and they can be

computed considering the third equilibrium equation for any internal node of the net

k2| 'k| Hyy = (3.1.8)

The scheme shown in Fig. 3.12 is referred to, composed by a cable net with a plant
parallel to the x and z axes. The elements composing the net, in this specific case,

belong to planes parallel to the coordinate ones and orthogonal with each other.

In each node two cables belonging to different and orthogonal planes, interconnect;
hence for any cable segment i-k, the contribute of only horizontal component of forces
is different from zero. In order to satisfy Eq. (3.2.6) - (3.2.7), the horizontal component
in each cable needs to be constant, because the force parallel to the z-axis does not

contribute to balance the force parallel to the x one, being orthogonal to each other.

Consequently, at each node two cables are intersected, belonging to different planes and

reciprocally orthogonal; then for any cable segment i-k there is one contribution of a

single horizontal stress component (Hy; or Hy; ) different than zero.

In order to satisfy the equilibrium equations Eg. (2.6.6)-(2.6.7), the horizontal
component for any cable must be constant, since the internal force along z cannot
contribute to the equilibrium of the internal force along x because they are orthogonal,

and vice versa.
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Therefore, at the interconnection node a vertical force acts, resulting by the mutual
action of the mentioned internal forces. Thus, the resulting equilibrium equation is
given by the expression, in pretension phase and without any vertical load on the k™

node

ZAy'ka.k Z y'k|Hf.k (3.2.13)

One can be put in evidence that the values of H f,ik and H f,ik are fixed and chosen in
order to satisfy Eq. (3.2.6) and (3.2.7), and considering the contribute of the unique
horizontal component of the force, implying that it is constant for any cable segment. In

this way the values of y, are easily computable.

Hence, once identified the unknown variables, one can compute the values of the pull
and the initial length for any cable segment in order to obtain the equilibrated and

compatible solution.

3.2.2 The continuum approach and membrane analogy

The method is now essentially based on the continuous theory of the static behaviour of
tensile cable-nets structures. One assumes a membrane model of the structure in order to
reduce the algebraic nonlinear equations to differential ones, compared to the
discontinuous theory.

With reference to Fig. 3.13, the surface element with dimensions &5, , &, , whose plane

projections are respectively & and ¢z, in the initial state is undergone by the tensile
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forces T and T, per unit length of the cable, whose plane projections H; and H? are

the horizontal components of the pretension drag forces per unit length. One gets®

Figure 3.13: Geometry of a cable net assimilable to a membrane where s and & are
the projections in plant of the cables respectively along the x and z axes; & the height
variation between the vertices A and B (similarly for D and C).

HE = H2()

(3.2.14)
H; =H;(x)

The pull forces per unit length of the cables along the z and x directions can be

computed referring to the horizontal components in Eq. (3.2.14)

with referenceto the projectionin plant
oHY _0

OX
oH? _,

oz

9

2 2
Ho 2 Y e ZY o
oX oz
fromthe first two

H2(2)
HZ(x)
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TO =0 % B
Oy 3.2.15
0 0 X &, (3215
T, =H, ——=
OL &y
Taking into account
2
0By = \/5x2 +§y2 — By =X 1+(?J
X
& 2
&, = N2 +0° > &, =& 1*(3)
Z
2
By =X 1+(ﬂj
OX
> (3.2.16)
&5, =01 1+(§j
oL

and substituting Eq. (3.2.16) in Eq. (3.2.15)

TO = Ho 2 X

0 _ 40X

1+ —
V&)
X ox &
1+ =
1/1+ =

2 — Wz
oL X

]/1+ L

X

the forces can be expressed

:Hf(’

(3.2.17)
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Considering the infinitesimal surface equilibrium equation one gets*®

o2y o%y
HO =2 +H?Z—=-=0 3.2.18
ox? oz? ( )
Therefore, the problem of identifying the pretension geometry reduces to the integration
of Eq. (3.3.18), after imposing the boundary conditions. If they are homogeneous, the
solution is of the type y (X, z) = 0, highlighting the feature that, for the tensile cable net,
without loads, where the ends are at the same height, then the equilibrium configuration

is certainly plane.

Another pretension geometric feature of nets can be deduced by Eqg. (3.2.18), whence

oy
2 0
o __H, (3.2.19)
oy Hy
oz°

Assuming Hy and H; positive if in tension, the second derivatives, that are the

curvatures presents opposite signs. This property clarifies the saddle configuration

shown in Fig. 3.14 assumed by these structures.

10 Due to equilibrium to translation along vy is

E(T gjds
os\ &

expressing in function of the horizontal components of the thrust H? and H;
e A Y PR
X &5, o &5,
Swie S)eni( 3
OX oz
Y. o 0%y
) ()

62
X[ax

+
+H?
+H
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Figure 3.14: Saddle configuration scheme of a cable-net.

3.2.3 The overloads’ effect

One considers the equivalent membrane and assumes the action of the external loads
P, Py, P, applied per unit surface as shown in Fig. 3.15. Moreover, with reference to
Fig. 3.15, &u’,0w,du’, dw denote the horizontal differential displacements compared to

the node A, and &' the vertical one.

Figure 3.15: Cable nets tensile structures- external loads application. Deformed (in

red) and undeformed (in black) configurations. &u’,dw,du”, Sw denote the

displacements along x and z respectively, &v'the displacement along y compared to the

height of point A.
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Due to the action of the load the configuration changes, starting from the compatible

and equilibrated one reached in the pretension phase. The surface element s &,, with

plant projection k&z , turns into the surface element & &, , whose projections in plant

are no longer parallel to the coordinate axes (Fig. 3.15).

Consequently, the forces TX0 and T, assume the values T, and T, in order to balance

the load and assume the new shape.

Specifying that u, v, w denote the displacement components along the three reference

axes, considered positive forwards positive axes

T,(H,)

T,(H)=H, % %
(X+u) &,
T(H)=H, —
5x(1+j53Z

dx

T(H)=H,— L%
5x(1+uJ5SZ

OX
T(H)=H, S — B
5x55-z(1+uj

OX

T,(H,)

TZ(HZ)=HZ 5X é‘z
(62 + W) &,
(M) =H,— e
52(1+j X

dz
T(H)=H,—
52(1+j53x

0z

T.(H) = H, 5 —
Zés'x[l+j

0z

the forces are given by
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T, =H %L@
X 532(1+ uj
OX
, (3.2.20)
T =M. % > ow
. &X(1+j
0z
where

H is the pull horizontal component, in the x direction, due to the loads’ application

&, (, ou
Hoz =T X—+|1+— 221
&5 ( 6x) S )

X

H, is the pull horizontal component, in the z direction, due to the loads’application

&, ow
H,ox=T,dz—| 1+ — 2.22
1o ( azj S )

z

Moreover, one gets

= (S + Q)P+ (S + ) + (Y

ool (5] (25)

&, = J(80)7 + (3 + &) + (5 + Sw)?
TR
0z 07 01 /4

2 2

ds'xzdx\/(l+a—uj +(8—Wj +[@+@}
OX OX oX OX

2 2 2

ds, = dz (1+@j +(a—uj +(@+@j
074 074 0z oz

Here the directions of the forces are not parallel to the x and z axes, because of

ds

N

(3.2.23)

deformation. The equilibrium equations for the new surface element, and therefore the
elastic-kinematic equations are set in order to identify the unknown variables of the

problem.

Supposing negligible the first derivates compared to the unit, the equilibrium equations

following the analytical developments
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aH*(l—a—Wa—“j—H W yy O _p L p g
OX 0z “ ox? oz Yozt oz
OHyowou _y, owau 0 pdu b g
OX  OX OX oz * ox® oz ‘ot for
but
oH, ow du
X ox oz
d*w ou
“ox® oz
ou

P, —<<1
0z

<<1

<<1

2
a(';uHZZ—‘ZH P.=0 (3.2.24)
X Z

- ,——tH,—-P —+P, =0
0z 07 OX OX 0z 0z OX

H H 2 2

OH, OH duow | OWOU \ OW p W, p_g

0z 07 071 OX OX 0z 0z OX

but

oH, ou ow
—_— <<

07 071 OX

2 2
8HZ(1 auawj_H owolu . d'w_ L ow

assume the form

2
oH, +HX8_\2v+pZ ~0 (3.2.25)
oz oz
2 2
aHX(Q+@j+%(@+@j+mw+'ﬁw+%=0 (3.2.26)
OX \ OX OX 0z \o7 oz OX 0z

OAH,
OX

2
One highlights that the terms in Eq. (3.2.24) e HZLG—UJ are the aliquot of the

oz?

load P, absorbed respectively by the cables belonging to the planes parallel to the x and

Z axes.

Assuming
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. d%u
PX = HZ 62_2 (3227)

as the aliquot of the load P, absorbed by the cables in the z direction due to H, ,and

similarly

(o))

prop IW (3.3.28)

. 2w
X
Ox?

the aliquot of the load P, absorbed by the cables in the x direction due to H,,
Eq.(3.2.24-3.2.25) turn into

oH «

6xx +P +P, =0 (3.2.29)
oH .

axz +P,+P, =0 (3.2.30)
whence
a(;'(x ——(p,+P) (3.2.31)
oH «

- (p,+P)) (32.32)

Consequently, Eq. (3.2.26)
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2 2
OoH @+@ +8HZ @Jr@ +HX8 (y+v)+HZa (y+v)+Py:0
ox \ox ox) oz \oz oz ox2 022

OHy, oy oHyov oH oy oH, ov [azy+azv}H (azy 0% ]+P 0

+

OX X oOx ox oz oz oz oz | ox2 ox2 022 o672
but
%@<<l
OX OX
aHZ@«l
07 01
2 2 2 2
6HX@+8HZ@+HX M+ﬂ +H ﬂ_kaiv +Py:
oX OX oz oz ox%  ox2 2% 072

From Eq.(2.5.30)-(2.5.31=

2 2 2 2
—(P:+PX) + (P +P)@+H 63/ o +H, 673/+67\2/
x? ox? oz oz

}+Py=0

2 2
—(P:+Px)ay (P +P)6y (Ho + aH {aeravJ (MO + aH, {aerav] P, =0

x> ox? oz or?
2 2 2 2 2 2 2
ooy ;’JrHOa Y ol +H°a >+ AH, MJFAH 8—+AH M+AH a" (P, +P, )ay (P +P, )ay+Py:0
OX oz° ox? oz® X ox2 X ox? ‘622 ‘a2
From Eq. (2.5.17)
%y azy
HY =2 +H?=2 =0
6x2 oz°

2 2 2 2 2
Holov +H°8—+AH MJFAH QMH MJFAH O )Y (P +p )P ip -0
G a2 T T ta? Pa?2 Y M vt e Y

Denoting by
. o%v o%v
P, =AH, — +AH, — 3.2.33
y X ox? * oz2 ( )
One gets the following formulation
o%v o%v 0%y \oy oy .
H) “— +H) “—+AH =2 - (P, +P, )= (P, +P, )= +P,+P, =0 3.2.34
“ox? " ezt ox? (X X)éx (Z Z)az o ( )
with
AH, ( Gy 8V — aAtk )
k/ OX  OX OX
YR (3.2.35)
AH, EA ( +—= 2] aAtkzj
k/ oz oz oz
AH, =H, -H}
(3.2.36)

AH,=H, -H?
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where

A, and A are the cross-section areas per unit length obtained by the vertical plane with

equation z = const and x = const.

2
k, =1+ (gj
OX

, (3.2.37)
k, =1+ (@}

0z

At and ¢ are the thermal variation and coefficient, referred to the environment and

material of the cable.

The formulated problem shows some calculus difficulties; thus, a number of simplified
hypotheses are introduced in the first stage, neglecting some terms that are then

reintroduced in the second phase.

By definition, P, and P, are

« o%u

P, =H, 72 5 P, (3.2.38)
. o*w

P, =H,—5 <<P, (3.2.39)

OX

This is because the load aliquot P (P.) absorbed by the cables arranged in the planes
parallel to the z axis is less than the one absorbed by the cables in the x direction. Then
Eq. (3.2.38) holds. Similarly, the load aliquot P, (P,) absorbed by the cables arranged in

the planes parallel to x is assumed less than the one absorbed by the cables arranged in
planes parallel to z; hence, Eq.(3.2.39) holds.

Then one can approximate P, =P, =0.

Moreover, as previously specified for the system of cables with opposite curvature

AH, <<H’

3.2.40
AH, << H’ ( )
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and being from Eq. (3.2.33)

. o°v o°v
Py :AHX67+AHZ az—z (3241)

The contribution of Py* can be neglected in Eq. (3.2.34)

P, << P, (3.2.42)
and, then, in the first approximation

P =P =P =0 (3.2.43)

N

Hence the equilibrium equations turn into!!

11

§B+R+W=O
OX

@h+3:0
OX

but
H,=H?+AH,
hence

0

&(HS+AHX)+PX:O

oH: oMM,

=0
OX OX

however

oH, 0
oX

(cont.)
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8AHX+PX:O
OAH, +P, =0 (3.2.44)
dz
o%v o%v o%y o%y oy oy
H = +H) = +AH, —2 +AH, — - (P, )= -(P,) > +P, =0
“ox? oz * ox? L ox? (X)ax (Z)az y

By integration of the first two Eq. (3.3.44) and carrying on with the relevant

developments, one gets

AH, = f(2)- [Pdx =0
: (3.2.45)
AH, =g(X)- [P,dz=0

z

Where f(z) and g(x) are two arbitrary functions to be identified through the boundary

conditions, and x” and z’ are the coordinates of the boundary points of the structure.

hence the equilibrium equation to the translation along x axis is

OAH, +P =0
oX

@+PZ:O
OX

but
H, =H;+AH,
hence

9 (Ho+AH,)+P, =0
oz

OHP _0AH,
oz oz

+P,=0

however

oH;
oz

0

hence the equilibrium equation to the translation along the z axis is

9H, 1 p 9
oz

z
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Actually, f(z) andg(x) are the values assumed by AH, and AH, at the boundary

points with coordinates x” and z’.

Figure 3.16: Projection in plant of the boundary of cable-net.

With reference to Fig. 3.16, it is possible to assume the above-mentioned coordinates in

the following form

X' = x'(2)
7' =27'(x)

and in analogy

X" — X"(Z)
7" — Z"(X)

Taking into account Eq. (3.2.35)

Aszﬂ(a_uﬂ@_aAthJ
K Lox - ox
X

(D)
ké oz 0101

(3.2.35)
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one gets

AHX — EAX (a_u_ygﬂ—aAthj: f(Z)_ fPXdX

2 Lox ox ox :
E,XA oy oy (3.2.46)
u X
AH, =—2%| —+—=—=—0aAtk, |=g(x)- [P,dz
: k%(az o Zj () ;[Z
that may be solved with reference to au and ow
OX 0z
% « ]
MKty R |- XY aatk,
ox EA < OX OX
y - (3.2.47)
2 z
a—W: ki g(x)—- [P,dz —Q@+aAth
o0z EA, , 0z o0z

Let assume now that u_,v,,w, are the displacements of the constrained points due to the

actions undergone by the structure caused by the action of the cable nets on it (that are

assumed equal to zero).

The functions u, v, w to be identified, should comply with the following boundary

conditions
 y(x), 2(x)] (3.2.48)

The equalities concerning the horizontal displacements can be easily verified, imposing

X' ou
Ucr —Ue = Au(z) = jﬂa—dx
. OX
| (3.2.49)
Z oW
Wer —We = AW(X) = IE dz

z

where

u.-is the horizzontal displacement of the pointc" in the x direction

W, is the horizontal displacement of the point c"in the z direction
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Au(z) is the relative displacement of the connecting points at the end of the cable along

X

Aw(x) is the relative displacement of the connecting points at the ends of the cables

along z

Eq. (3.3.49) impose that the relative displacement of the fixed points along x and z of
the boundary cables are equal to the displacements in the same directions of the ends of

the same cables, with the possibility of rigid horizontal displacements.

To solve the problem for identifying the functions u, v, w, one assumes that the

boundary is stiff, and therefore u. =v, =w. =0, and one gets

.
ji—udx:o
" AX
X (3.2.50)
Z
;- dz
ou ow

Substituting — and — (Eqg. 3.2.47) in Eq. (3.2.42

9 pe (Eq ) in Eq. ( )
. A -
T X f(z)—fPde}—@@+aAtkdx:0
- EA, : OX OX
X L X (3.2.51)
g iPdz |- YV, qatkdz =0

z - P aAtkdz =

L g | 900 IRtz | =G, 5 raata

one may identify the unknown functions f(z) and g(x), AH,(z),AH,(x) after some

developments. Starting from
X" k%
Jen

|
f(z)j % X'{k J‘de} +XfaAtkd j ?d

[f(z) Ide:I ??dXJr]:aAtkdx:O

X'

one assumes
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o

M (2) = j[ j de}dx jaAtkdx

for the hypothesis of stiff boundary, the displacements are null, then

—— =— —J‘@vdx:—j@vdx
ax ax X |, 30X *. OX

FO T gy Mo [
EA j k. 2dx M(x)+£axvdx

and it is possible to get

f(2) :{M (z)—]:%vdx} XI,.EAX

[
Analogously

0y ov
P,dz |- Atkdz =
EA {g(X) J Z} 0z az+a tkdz=0
z z A z 7" 7"
909 iz — | K= [ paz fix+ [antidz— [ 2 Yz =0
EAZ z' 7' EAZ Z' ’ ). az az

one assumes

N (x) = j{ 2 j sz}dz jaAtkdz

and, for the hypothesis of stiff boundary, the displacements are null, then

z 7" 7"

— '[@vdz = —I%vdz

oy ov
.0z 01 , 5.0z

J: —dx=@v

(Z)jkédz N (X) +j—vdz

getting

113
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0(2) = {N(x) [ —vdz} EA,
=
Assuming
F(z )—
f k/
G(X) =+ EA
f [

One finally infers

XIl azy X'I
AH, =F(z)M(2)- | a—zvdx ~ [Pdx
' X 0

- ) " (3.2.52)
2

AH, =G(x N(x)—zj Z—Zvdz}—zj P,dz
' Z Zl

Substituting Eq. (3.2.52) in the third equation of vertical translation equilibrium of Eq.
(3.2.44) , one gets'?

o%v o%v o2y x 62y 0%y 2 a2y
HO Y L L HOZ Y _F(z vdx — G(x —vdz+ X,2) =0 3.2.53
x5 THi o2 ()ax v ()8 I q(x,z) = ( )

X

By integrating Eq. 3.2.52, the unknown displacement V is identified, which after
substituted in Eq. (3.2.53), allows to identify AH,,AH

2
8+H°+{ ){ dx} .[de]ay
0 OX
—y P)Y ()Y 1P, =0
oz° OX oz
H? 6—+H g— 8 ja—y 8—y a2’vdz+q(x 2)=0
with

X' 52y 7 azy ay ay
q(x,2) = F(z)[lvl (z)—;[Pde] 2 +G(X{N(x)—;[Pzdz]azz—(Px)ax—(P )5+ P, =0
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Then the values of Ug,V., W, can be calculated, remembering that they were initially set
equal to 0 in the first approximation.

Integrating Eq. (3.2.47), once known the displacements, one may compute the loads
P, =P, =P, neglected till now. Thus Eq. (3.2.48), considering the above-mentioned

loads, turn into

* % *
u_ ki [f(z)—}(PX+PX*)dx VN oatk,
X

ox EA, OX OX
y B (3.2.55)
ow _ kj? oy v
— P, ——= — +alik,
0z {Q(X) I( ! )dz 07 01 oAt
Following the procedure developed in the above one gets
* * X! av
f(z)= F(Z){I\/I (2)- v dX} (3.2.56)
x'aX
with
o 2l )y~ Tantk (3.2.57)
M’(z) = f A j P, + P, dx dX+[&jXXIVC—(&jH"VC— j antk dx+Au(z) 2.
9'(2) = { (- j@vdz} EA, (3.2.58)
7' z 7
Ji
with
%,
N"(x) = j{k i [P, +P;dz dz+(ayJ vc—(@j Ve — [aAtk,dz + Aw(x) (3.2.59)
EA, ; z 07 )y 07 ;g z

One go on to identify AH,,AH,, which, in analogy with what previously developed,

are substituted in the vertical translation equilibrium equations, allowing to compute v~

in the second approximation

AH, =F(z) M7 (z2) - j—v dx Xj P, + P, dx

X

- (3.2.60)
AH, =G(x) N"(x) - j —v dz] i [ P, +P,dz
d

2 2,742
v'd (x)d—zzji—g/v*dz +q(x,2)=0
dz

z

I
o
o
N

I
o
o
N
<
/—\
\_/
o
N

<
><~__><
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* X" * azy * Z” * azy
q(x,2) = F(z) M™(2) = [P, + PJdx | —2 +G(x) N"(x) - [P, + Pydz | —5 -
X OX 9 0z (3.2.61)

+(p, + P;)%—(PZ + PZ*)%+ P, + P} =0

One proceeds in this way up to convergence.

3.3 Bidirectional systems

Bidirectional structural schemes belong to the category of nets (Fig. 3.17-24),
recognized in structural typologies characterized by two families of cables
interconnected to each other, where the interconnection is exclusively between the ones
belonging to different families. The scheme can be plane or spatial when the
constitutive elements belong to different planes.

The increasing wish to lighten the modern buildings, aiming at the maximum
construction transparency, have been proceeding together with the search of adequate
supporting structures for wide glass windows, in order to bear both vertical and
horizontal actions, like the wind actions (Bedon, 2014).

Hence, plane bidirectional schemes are usually adopted as supporting elements for
glazed facades, minimizing the use of teel in order to maximize the lightness and

transparency of the building.

3.3.1 General features

One of the first buildings with plane bidirectional scheme as support to the facade, was
the Hotel Kempinski in Monaco (1989/1990) in Fig. 17, where the main structure
consists of a net of two families of cables, with fixed nodes which bear the glass panels.
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Figure 3.18: Protection system of ancient Roman ruins in Germany (2011): glazed

facade supported by a plane bidirectional scheme.
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..........

4528 m

Figure 3.19: Time Warner Center, New York (2003); the glazed facade is supported by a
system of cables with springs at the base. They provide also a pretension state in the
cables.

One of the advantages of the use of these systems lies in their stiffness and stability,
obtained by the pretension applied to the constitutive cables. As above-mentioned,
bidirectional schemes can be spatial too, acting as supporting systems or covering
buildings with large spans (Figs. 3.21-23), also adopted for temporary installations or
design buildings (Fig. 3.24). Thanks to the characterizing lightness, these covering
systems give the possibility to avoid the arrangement of supporting elements (i.e. piles)
in the inner spaces.

One of the first examples of spatial bidirectional schemes can be identified in the roof
realized by Frei Otto, for the Munich Park (Fig. 3.20).
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Figure 3.21: Autostadt Roof and Service Pavilion, Wolfsburg, Germany; Graft
Architects.

Figure 3.22: Bidirectional covering to Figure 3.23: Covering of an open theatre,
support a membrane system. Palma de Mallorca, Elias Torres,
Martinez Lapena.
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Figure 3.24: Rope and Sound; Squid-Lab.

As it can be highlighted from Figs.3.21-24, cable-nets in general and spatial
bidirectional schemes in particular, can assume several configurations. As known, these
structures belong to the category of the tensile ones (M. Patelli, M. Quagliaroli, 2010)
and therefore they work only with axial forces. Thus, the stress state and the geometry
are strictly connected to each other.

Hence, other problems concern the initial form-finding or the initial zero state, which
requires the searching of the nodes position after the assembly of the structure,

considering the cables forces or some related parameters as known.

3.3.2 Equilibrium of bidirectional systems

One of the most used approaches is represented by the FDM (Force Density Method),
introduced by Scheck in the 1974 and then changed and conformed to the most modern
typologies of structures as tensegrity (Zang e Ohsaky, 2006).

Thus, in this paragraph, a methodology for searching for the points’ coordinates of a

spatial bidirectional scheme, is described.
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Figure 3.25: Plant of a bidirectional scheme with identification of two cables’ families.

The method is based on the walkthrough technique®® for solving equilibrium equations
system, for a net composed by n cables along one direction and m in the other one,
allowing to reduce the number of the above -mentioned equations.

On the basis of the methods available in literature about the initial configuration
finding, one refers to those ones easier to be handled from a computational point of
view, and in particular to the method developed by R.Avent (R.R. Avent, 1969), which
was then extended to several study cases, such as nets with non stiff boundaries or
without rectangular plants for finding the initial configuration, i.e. the nodes’
coordinates under some identified conditions and under the pretension.

The method, based on the Avent’s approach and on the walkthrough technique, solves
the problem by reducing the number of equations, based on some simplified hypotheses:
the cables composing the structure are defined as beams but are able to transmit only
tensile forces;

the nodes are point-like;

the loads are considered nodal;

13 1t consists of a technique, mostly used for algorithms’ checks, aimed at validating the accuracy of the
analysis models, based on the identification of the error but not on its correction, in order to improve
results.
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the Hooke law is valid (linear elastic material);

Figure 3.26: Nodal point in a bidirectional scheme.

With reference to Fig. 3.26, denoting by i the interconnection node of the structure, by j
the adjacent ones, by P« the load acting on it in the k direction and by Tj; the force in the
ij beam, the following relations hold, respectively for the translation equilibrium and
compatibility

> T, cosa, ; =P, (3.3.1)
i

where

a,; is the inclination angle of the beam ij with respect to the k direction

Py.i is the component along the k direction of the load P; acting on the node i

Eq. (3.4.1) can be rewritten as follows, introducing the k™ coordinates of the nodes i and
j and the length assumed by the beam after the pretension

T.

Zl(xk,j - Xk,i): Pei (3.3.2)
j Eij

where

X ;j Is the x-coordinate of the node |

X, ;i s the x coordinate of the node i

£ is the length of the beam ij after the pretension
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Due to compatibility, instead, and by the constitutive law,

T; ~ Al
—_— = (3.3.3)
EAij Cy
with

E the Young modulus

A; the beam cross section area
Al the length variation of the beam ij

(i the pretensioned length of the beam

ij

The equation highlights that the forces in the beams produce a length variation Al

because of the elasticity of the composing material.

The solution of the linear equations system may be achieved by partial differences,
where the equilibrium equations composing the system and written for any node, have
as unknown variables the coordinates of the node and of the adjacent nodes. However,
this approach shows some limits, mainly complying with the possibility of application
only for cable-nets with rectangular plant and stiffened boundaries, and subject only to
vertical loads.

In the following one shows an approach aiming at accounting also for structures with
non stiffened boundaries, without rectangular plant and with internal points at known
height, but it is suitable only for bidirectional schemes.

Let refer to Fig. 3.25 where the generic interconnection node of a bidirectional scheme
and the adjacent nodes are shown. Moreover, the length and the tension forces of the
beams are indicated.

According to the Avent’s method, the equilibrium equations are written for the
interconnected node, where the unknown variables are the coordinates of the node itself
and of the adjacent nodes.
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‘:

Figure 3.27: Plant details of a bidirectional scheme.

Figure 3.26: Node of a bidirectional scheme, where the two families are parallel to the
x and z axis, subject to overload.

Denoting by

(i,j) the crossing point of the i cable of the first family, with the j" of the second
family

x(i.,j), y(i.j), z(i,j) the coordinates of the identified point by the i"" and j cables of the
two families

T, the force in the beam of the first family
C;j the length of the cable of the first family
T, the force in the cable of the second family

{,; the length of the cable in the second family
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Tx ij
D, = 6_1 the density force in the x direction defined as the ratio between the length of

X,

the cable segment along the acting direction

T .
D, =% the density force in z direction
z,ij

the equilibrium equation Eq. (3.3.2) is*
Dy (yi,j+1 —Yij )+ D.j (yi+1,j = Yij )+ Dx,i,j—l(yi,jfl = Yij )+ D.iaj (yi—l,j = Yij )= Py (3.4.4)
which is nonlinear, because /,; and £ ; depend on the points’ coordinates.

The advantge of this approach is that the force density is assumed known rather than the

) T .
pretension one. Hence, éx—’”: D,; and =

X,ij z,ij

=D, are known and Eq. (3.4.4) have

14

T . T, .. T ...
(yi,j+l - yij)+ EZ’” (yi+1,j - yij)+ EX]I'H (yi,j—l - yij)+ e (yi—l,j - yij)
ij z,i-1j

X,1j z,ij X,i, j-1

assuming

X,ij

Py,ij

—

— ~

X -1 D

X1, j-1

X1, j-1

z,i-1,j _ D

z,i-1,j
it obtains

D, i (yi,j+1 —Yij )+ D, (yi+1,j —Yij )"‘ Dx,i,j—l(yi,j—l —Yij )"‘ D,y (yi—l,j —Yi ): Pyi

~SlH S|4

z,i-1,j
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only y as unknown variables and therefore one may infer a recursive equation for the

15
node Y; .1

) D, . . D, . P,
Yi,ja =Y +ﬁ(yi+l,j —Yi )_[);;{_:L(yi,j—l =Y )+[Z)';_1_'J(Yi—1,j —Yi )+# (3.39)

X, X, X, X,
Similar conclusions can be achieved for x(i,j+1) and z(i,j+1).
Let anyway proceed with the y coordinate.

To identify the actual solution of the problem, the particular y(i, j) and homogeneous

y, solutions are searched for.

To find the particular solution one considers Fig.3.27, where the external points and

some internal ones are identified.

l“'"'

X H.(z)
>

Yyvyvyvyvyy

|

\J \J \J \j \J \/ \ \j \J

Figure 3.28: Plant of a bidirectional scheme and identification of the nodes.

15

Dyii (yi,j+1 — Vi )+ D, (yi+1,j —Yij )+ Dx,i,j—l(yi,j—l — Vi )+ D, (yi—l,j —Yij ): Pyii

Dyij Vi j+1 — DxijVij + Daiij Yisaj — Duij Vi + DxijaYi j1r — DxijaaYij + DzicajYicaj — Dzica i Vig = Py
D,ijVYiuj N D,iVi B DyijaVYija N Dy j-1Vij B D,ixjVYiuj N D,;i1jVij N Py

y.'. 1 = y —
AR o Dy Dy Dy Dy Dy Dy
Dz,ij Dx,i,j—l Dz,i—l,j Py,ij
Yijs = Yij +m(y”1,j —Yij )_Tﬂ(yi,jl —Yij )+ —Dx,ii (yi—l,j —Yij )+—vaij
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Starting from the boundary ones, for the cables in the x direction one attributes the
coordinates only to the green nodes; while, for the cables in the z direction, the heights
at both ends are assigned. One considers a sufficient number of internal points to which
arbitrary coordinates are attributed and, through Eg. (3.3.6), the coordinates of all
internal points and end ones along x are computed, thus composing the particular
solution y(i, j)*°.

Then one proceeds to identify the homogeneous solution vy, (i, j) .

With reference to internal points (in black in Fig.3.27), the homogeneus solution is
computed, nullyfing the heights of the boundary points and the contribution of the

external load

" D... D.... P .
Z,ij X1, j-1 z,i-1,j Y.
o=V +—=\VY. =V ) ——2 Y — Ve — Y, — s — 3.36
yl,J+1 le + Dx,ij (y|+l,1 yu) Dx,ij (yl,J—l yu )+ Dx,ij (yl—l,j yu )+ Dx,ij ( )
. D,... DI
Vi i = Yij +—DZ'U (yi+1,j - Yij)——[);l'J - (yi,j—l = Vi )+—SI - (yi—l,j - yij) (3.3.7)
X,ij X,ij X,ij

Linearly independent heights are arbitrarily attributed in order to identify the heights of
all points through Eg. (3.3.7).
The solution is given by the following relationship

.. vy m-2 E P
y(, j)=y@, )+ §kakyk(l, N (3.3.8)
with
y(i, j) the complete solution (3.3.9)

The values ¢, must be computed in order to identify the actual heights of the boundary

points. Thus, denoted by (i, J,) one of these points and by VY, (i., j.) its height, one has
. . . - . m-2 * . .
Ye(ic, Je) = Y(ic, Je) + gkak Vi (e Jc) (3.3.10)

From Eq. (3.3.10), ¢, are inferred

mizk a, = yc (ic’ j*c)__ y(lc’ Jc) (3311)
1 Y (IC’ Jc)
which, once substituted in Eqg. (3.3.10), allow to identify the solution y(i, j) .

16 The arbitrary values chosen to start the analysis do not satisfy the boundary conditions.

17m-2 because in the omgeneus solution the points belonging to the two boundary cables are not
considered; “m " is the number of the cables.
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In the following, one reports some examples of equilibrium shapes’ searches for
bidirectional systems. Starting from defined topologies, several shapes are found

considering different loads and density forces.

3.3.2.1 Anticlastic three-dimensional nets

One considers a squared grid firstly, without external loads with force densities varying
at boundary and internal nodes with a ratio between 5:1-1:1. Then the effects of the
external loads are evaluated.

First cases concern a topology scheme composed by n = 36 nodes (fixed and free nodes)
and m = 60 branches.

Fig. 3.30 shows the anticlastic surface obtained considering null external loads and
force densities ratio of 5:1 between external and internal branches. Then, the ratio has
been modified to 2:1 in Fig. 3.31 and to 1:1 in Fig. 3.32. As one may notice, the

curvature of the surface increases when the ratio diminishes.

E 1 E: w (3, (T i (3 n {x
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[; il &0 5 [ <]
oy
= ¥ £ 1 fh‘l:} u ."np ¥ .’rp l:]{l"
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'i'p 2 '1'53 1 G e u i:p 3 C!,
L} 43 [T & ]
{3 { = } ; ’
) = (3 SR G = ] G = C‘_P x Qc&.“-
1\ 47 a7 5
1
AT O ARG G R0 S
L)
mn 41 S -1 - ]
pu 1 - i i
F P P P F P

Figure 3.29: Topology scheme.
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Figure 3.30: Equilibrium shape-ratio in edge to interior branches force densities is 5:1
and without external loads. Anticlastic surface.

(boundary branches g = 5; interior branches g = 1; external loads Px= 0; Py=0; Pz =
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Figure 3.31: Equilibrium shape-ratio in edge to interior branches force densities is 2:1
and without external loads. Anticlastic surface.

(boundary branches q=2; interior branches q=1; external loads Px=0;Py=0;P,=0).
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Figure 3.32: Equilibrium shape-ratio in edge to interior branches force densities is 1:1
and without external loads. Anticlastic surface.

(boundary branches q=1; interior branches g=1; external loads Px=0;Py=0;P,=0).

3.3.2.2 Synclastic three-dimensional nets

Here, the effects of the overloads are analysed and the shapes obtained are shown in
Fig. 3.33-34, when considering a force densities ratio of g = 1:1, and vertical loads P; =
2 (Fig. 3.33) and P, = 4 (Fig. 3.34) applied upward. One can notice that the surface turns

into a Synclastic surface.
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Figure 3.33: Equilibrium shape-ratio in edge to interior branches force densities is 1:1

and subject to vertical load P,. Synclastic surface.
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Figure 3.34: Equilibrium shape-ratio in edge to interior branches force densities is 1:1

and subject to vertical load P,. Synclastic surface.

In Fig. 3.3 the four corners are fixed, keeping the ratio at q =1:1, under the upward load

P,=4.
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Figure 3.35: Equilibrium shape under vertical load P, with unstraight edges. Ratio in

the edge to the interior branches is 1:1.

3.3.2.3 Other equilibrium shapes

Considering the same topology (Fig. 3.29), in Fig. 3.34 the equilibrium shape of the
structure is shown under a load condition P;= 4 applied in the upward direction and with
straight horizontal edges; the boundary straight branches are subject to force densities

=100, and the other onesto q = 1.
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Figure 3.36: Equilibrium shape under vertical load P, with straight horizontal edges.

In Fig. 3.37 is represented the equilibrium shape, instead, considering the straight
horizontal and vertical edges with q=100 for the external branches and g=1 for the

internal ones. The load condition is P,=4 applied upward.
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Figure 3.37: Equilibrium shape applying a vertical load P, with straight edges.
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With reference to the topology scheme in Fig. 3.38, the equilibrium shape is obtained
under a load P, = 1 applied upward, external branches with g = 100 and the internal one

with g = 1. Moreover, the edges are considered fixed and straight (Fig. 3.39).
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Figure 3.39: Equilibrium shape- fixed and straight edges under vertical loads P;.
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A scheme composed by n = 39 nodes and m = 98 branches is considered in Fig. 3.40. In

this case the force densities ratio is 100:1 and the load applied is P,=1 obtaining the

equilibrium shape illustrated in Fig. 3.40.
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Figure 3.40: Equilibrium shape with fixed and straight edges.

The case with P, = -1 applied in the downward direction is shown in Fig. 3.41, with q =

100 and g = 1 for the external and internal branches respectively.
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Figure 3.41: Equilibrium shape with fixed and straight edges.

Moreover the effects of the horizontal load Px = 1 (applied towards positive x axis) and
Py =1 (applied towards positive y axis) , and P, = 0, are shown in Fig. 3.42 and Fig.

3.43 respectively. The ratio of force densities is 100:1.
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Figure 3.42: Equilibrium shape with fixed and straight edges.
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Figure 3.43: Equilibrium shape with fixed and straight edges.

Finally, the combination of loads Px= 1 (applied towards positive x axis) and P,=1
(applied upward), .and combination of Py= 1 (applied towards positive y axis) and P,=
1 (applied upward) are highlighted in the equilibrium shapes shown respectively in Fig.

3.44 and Fig. 3.45.
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Figure 3.44: Equilibrium shape with fixed and straight edges.
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Figure 3.45: Equilibrium shape with fixed and straight edges.

In Fig. 3.47 the equilibrium shape of the topology scheme in Fig. 3.46 are shown, with
the application of P, =1 upward and the force densities ratio equal to 100:1.
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Figure 3.46:Topology scheme.
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Figure 3.47: Equilibrium shape with fixed and straight edges.
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4. ENERGY APPROACHES

One of the most important problems in the study of cable structures consists of
identifying the equilibrium configuration under the overloads’ application.

Moreover, the behaviour of these structures is described through suitable mathematical
models. In most cases, they are formulated by differential equations solved by several
approaches, such as the variational formulation belonging “to the branch of mechanics,
usually called analytical mechanics, which bases the entire study of equilibrium and
motion on two fundamental scalar quantities, the kinetic energy and the potential
energy” (Lan, 86).

The configuration change is governed by large displacements leading to a number of
difficulties in the analysis of the behaviour of these structures, due to the geometric and
possibly mechanical non-linearity.

Therefore, the main approaches developed during the years can be divided into two
types: the first ones are based mostly on the iterative processes, and the other ones are
of the energetic kind. In this case, the minimum of the functional is searched for through
constrained or unconstrained optimum methodologies.

These methods have been widely used in several field, in particular in the structural one.
Actually, they can be adopted both for geometric and mechanical non-linearity, under
large displacements and large strains hypotheses (G.R. Monforton, N.M. EIl-Hakim,
1980).

Consequently, energy approaches have been widely used for the analysis of elastic
beams, shell structures, i.e. systems undergone by finite displacements, such as in the
studies by Brogner (F.K. Brogner,1965), Mallet and Schimdt (R.H. Mallet, L.A.
Schimdt, 1967), which have been later modified by the same Brogner in order to extend
the application also to tension structures cases (F.K. Brogner,1968).

Then, Buchholdt, Das and Hill applied the approach on a cable-net structures referring
to the Gradient Method (H.A. Buchholdt et al, 1974).

Monforton and El-Hakim (Monforton and El-Hakim, 1980) proposed an energetic
approach for the analysis of truss and cable systems considering the geometric and
mechanical non-linearity, and based on the Minimum Total Potential Energy Principle
(TPE).

On this basis, new methods were developed by researchers during the years, such as
those ones by Wang et al (Wang et al., 2003) where the authors implement the VWP for
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a two nodes cable with a catenary profile, or that one by Kanno and Ohsaky (Y. Kanno,
M. Ohsaki, 2005) who suggest a method based on the Minimum Complementary
Energy Principle (CE), considering a cable-net structure with geometric and mechanical
non-linearity.

Recently, Toklu et al (Toklu et al, 2017) proposed an energy minimization method
through a Total Potential Optimization (TPO) technique and making recourse to Meta-
Heuristic Algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Harmony Search Algorithm (HS), Firefly Algorithm
(FA), Bat Algorithm (BA)), rather than to the classical ones (Gradient Method, Steepest
Descent Method, Conjugate Gradient Method, Newton-Raphson, etc) to search for the
functionals’ minimum.

The method is implemented for cable nets systems, selecting Harmony Search
algorithm (HS) (Geem et al.,2001), inspired by the music and used in several

optimization problems in the engineering field.

4.1 General Setup

So far one has emphasized that cable structures have been interesting the researchers
mainly about their particular performance under the action of external loads,
withstanding large displacements (A. Pintea, G. Tarta, 2012) and making it necessary to
analyse their non-linear response in order to thoroughly describe their behaviour.

As well known, variational approaches are largely used in the engineering field because
they allow to describe the mechanical principle by employing the mathematical
variational problems.

According to the TPE for an elastic structure under conservative forces, the functional is
given by the sum 17 of the external loads’ potential W and the strain energy U

IT=U +W (4.1.1)

It depends on the configuration and therefore on the lagrangian coordinates of the

system c;
T=11(c;) (4.1.2)

For a three-dimensional continuum, under the above-mentioned conditions, the strain

energy is given by
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1
U :—jo-sdv (4.1.3)
2V

where
G is the stress tensor
¢ is the strain tensor

V is the volume of the body

and the loads’ potential is given by

W =—[(Fu+Fy+Fwhv —[(Pu+Py+Pwlds (4.1.4)
\Y

S

where

P..,P,, P, are the load components along the three reference axes

X! y!
u,v, ware the displacement components along the three reference axes

Fx, Fy, F; are the components of the mass forces

S, V are the body surface and volume

Hence, by substituting Egs. (4.1.3)-(4.1.4) in Eq. (4.1.1), one gets

H:% [o-edV — [(Feu+ Fyv+ Fwldv —[ (R + Ry + Pwhs (4.15)
V V S

For minimizing one writes down

g—gzo V¢ (4.1.6)
The fundamental problem about the cable structures consists of identifying the
displacements undergone by the structure and the internal forces developed due to the
action of the external loads, thus of identifying the equilibrium configuration.
Nell’ambito dei metodi energetici il principio si basa sulla individuazione di un set di

spostamenti che minimizzano I’energia potenziale totale.
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The reference solution equation for these problems is typically given in the form

P=KAU+ZAl (4.1.7)

where

P isthe external load vector

K is the stiffness matrix

Au is the displacements variation vector

Z = BTC1 is the distortion matrix

AL is the elongation distortion vector.

Besides the more classical methodologies generally based on direct solving and
handling of the mathematical relations, some additional paths have been outlined
including the development of some special algorithms that allow to identify the

solution, suitable both for linear and non linear problems.

4.2 Metaheuristic Algorithms

With the final objective of identifying a displacement set minimizing the energy
functional, several methodologies have been developed over the years, some of them
based on Metaheuristic Algorithms, where the TPE is assumed as objective functional
and the displacements as unknown variables.

Metaheuristic Algorithms are based on the observation of natural events such as the
natural selection, whence the Genetic Algorithm is developed, the social animal
behaviour which led to the Particle Swarm Optimization (PSO) or even the musicians’
method to compose the music, like for the Harmony Search (HS).

Focusing on the latter, this approach can be applied both in linear and non-linear
problems, and is inspired by the approach adopted by the musicians to compose the
harmony, when several possible combinations of notes are considered to find the right

one.
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Firstly proposed by Geem (Geem et al., 2001), during the years the HS method has been
applied in different fields, including the structural design one. The algorithm can be
summarized as follows. It starts from initializing a matrix called Harmony Memory,
including sets of possible solutions. The size of this matrix, or Harmony Memory Size
(HMS), can range, usually, between 50 and 100 (X.Z. Gao et al, 2015).

For example, considering a problem in N- dimension, the HM is set as follows

X; X; X:
P
XlHMS X;'MS L X:MS (421)
where
[X X; - X,
[x™ x™ ... x"™°] are the solutions arbitrarily computed

The second step concerns the improvisation of a new solution given by
[xi X, - xn] where each element is obtained considering the Harmony Memory

Considering Rate (HMCR), which is the probability to select an element of HM, as the
element of a new solution. Furthermore, it can be modified taking into account the
Pitching Adjust Rate (PAR), identifying the probability of a candidate from the HM to
be mutated. Once a new solution is detected and evaluated, if its performances are better
than the previous ones, then the worst element in the HM is replaced, otherwise it is
cancelled. Finally, the previous steps are repeated until the convergence or the
established criterion are reached.

This method has been largely applied in optimization problems. However, most of these
problems are constrained optimization problems, where the objective is to identify the
solution accommodating the imposed constraint, represented by equalities or
inequalities, or both of them. Nevertheless, the original version of the HS method
presents some difficulties to solve the constrained problems, because the solution
should be found in the HM and sometimes its elements cannot satisfy the imposed

conditions. Hence several variations of this approach have been developed in order to
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improve its implementation. For example, the Global-best Harmony Search (GHS) by
Omaran and Mahdavi (M. Omaran, M. Mahdavi,2008), or the Dynamic Local Best
Harmony Search (DLHS), developed by Pan et al. (Q.Pan. Et al, 2018), where the HM
is subdivided in other independent sub-HMs; or even the new self-adaptive Harmony
Search (HS) proposed by Wang and Huang (C.M. Wang,Y-F., Huang, 2009). Moreover,
a modified HS are available for cable structures, as described in the following.

The geometric features of the structures are defined, and in particular the number, the
coordinates and the boundary conditions for each node; loads and pretension forces are
applied. Then, a range of possible displacements is identified and evaluated. Among

them the unknown variables of the problem are searched for.

N 7
\_ (D) /
| {Dﬁ/ (D)

(D)
(D)
Figure 4.1: Possible nodal displacements ’ selection and relevant deformed

configurations (in dashed line).

Therefore, the HM is obtained from unifying the Harmony Vector (HV) and the
Harmony Memory Size (HMS). Each vector includes the nodes coordinates arbitrarily
obtained, each one representing a new structure configuration under defined load
conditions. Hence the strain energy, the work and the TPE can be computed.

Thus, the procedure consists of identifying several configurations, and computing the

TPE for each one, up to determine the one who reaches the minimum energy value.

Hence, with reference to the above-mentioned structure one proceeds to identify a set of
possible deformed configurations that are arbitrarily generated. The node coordinates

are assembled into the HM, as vectors
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HM =|x;y;.z5) (y525), (Gynzg) - (0y520),, ) (4.2.2)
where

(x;.¥;.2;) =HV,

(x;.3.2;), =HV,

05 Y52 s = HV s

where HV denotes the Harmony Vector.

For each element of the structure the TPE is computed through the strain and loads’

potential energy.

To this purpose one refers to the single k'™ element ij connecting the i*" and the j* nodes,

with the initial length /7 given by

% =G -xP+(yj—viP+(z; -] (4.2.3)

with (xi,yi,zi) and (xj,yj,zj), respectively, the ends’ i and j coordinates in the three-

dimensional reference system (Oxyz).

If one identifies (u,,v;,w;) and (u;,v;,w;) as the displacements of the i and j nodes in

(Oxyz), the updated length of the analysed beam is given by

Kij =\/(Xj = Xj +Uj —Ui)2 +(yJ =Y +Vj —Vi)z—i—(Zj —Zj -I—Wj —Wi>2 (424)
whence, the stretching A/, is
ALy =015 (4.2.5)

and, therefore, the uniform strain of the element is given by the ratio

i = T (4.2.6)
ij

Generally speaking oj; =cij(eij); supposing that the material has an elastic-linear

behaviour, one has
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Gij = Egij (4.2.7)

with E the Young modulus, then the strain energy in the k' element ij is

1
&%= Eeji (4.2.8)

and, in case of nonlinear behaviour, coincides with the subtended area of the o—¢

graph, and therefore it is obtained through integration.

Then with reference to the global system, the TPE is given
m n

1l = ZekAkﬂk —Z(Pxiui + PyiVi + PZiWi) (429)
k=1 i=1

where

m is the number of beams

n is the number of nodes

and the index k is referred to the entities of the k™ beam ij.

Referring to the structure in Fig.4.2, the Harmony Vectors (HVs) are defined
considering the several positions assumed by the free node D due to the external loads

action.

Figure 4.2: Undeformed cable system and deformed shape due the application of the
external loads on the free node.
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Hence the HVs are the following

HV; =(yp.zp )
HV, = yD'ZD)z
HV3 =(yp.2p)s (4.2.10)

taking into account that (yp,zp), denote the updated coordinates of the node D in any

new configuration, respectively along the y and z reference axes, in the specific case
with r=1..5.

Starting from the identified HVs, the initial Harmony Matrix (HM) and its size (HMS)
can be assembled.

Actually, the HM is composed by the HVs

HM = [(yD’ZD)l (ymzo)z (yD’ZD)S (yD’ZD)zl (yD’ZD)l] (4.2.11)
HV, HV, HV, HV, HV s s o
hence, the TPE is computed for each beam of the system in the different configurations.

Therefore, one starts from defining the geometrical properties, computing the initial
length and the updates

goAD = \/(yD - yA)2 +(2p - ZA)2 (4.2.12)
0% =Y — Ye)? +(2p — 25)? (4.2.13)
where

(yA, zA) are the coordinates of the node A in the plane system (Oyz)
(ys,25) are the coordinates of the node B in (Oyz)

(y,.2,) are the coordinates of the node D in (Oyz)
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Therefore, the deformed length is computed considering the displacement components

of the free node D, in each new configuration. Thus denoting by (VDr ,WDr) with

r=1,....5

respectively the vertical and horizontal components of the node D in the update
configurations with r = 1...5, the final lengths of the beams are identified by

~
)>H
lw)

Il

2
Yo = ¥Ya tVp, _VA) +(ZD —Zpt+Wp _WA)

~
>N
W)

I

Yo = Ya +VD2 —Va

~
> &
O
Il

Yo = Ya +VD4 —Va

(
(
(Vo = ¥a +Vo, =Va)
(
(

~
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Il
2 @92 =2 =2 =2

2
Yo = ¥Ya tVp, _VA) +(ZD —Zp+Wp, _WA)

S
> O
w)
I

but
(v,,w, )=(0,0)(are the displacements components of node A) for the boundary conditions.

hence

where ¢\p  with r = 1,...,5 denotes the updated length of the AD beam in each

considered new configuration.

In the same way the final lengths of the BD beam are calculated
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but

hence

Since the length variation is given as the difference between the final and initial length,

one calculate the elongations A, and Afgp

AglAD = flAD _é(,)AD
Afio :fiD — Lo
A£3AD = E?:AD — L% (4.2.14)
AE‘LD Zfio — L%

AESAD = ESAD _g?’-\D
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AzlBD = ElBD — Lo
AﬁaD :géD — Lo
Aly = Lgp — 50 (4.2.15)
Ag?aD = KAI;D — L%

AKEIJBD = EEI;D _KOBD

and, then, the strains

r A

€AD =0— with r=1..5 (4216)
CaD
ALY )

epp=—o22 With r=1..5 (4.2.17)
(8D

whence, with reference to the stress-strain curve, one identifies the coupled stresses.

>
7

stress O

Elastic Phase Plastic Phase .
- strain € >

Figure 4.3: Stress-strain graph.

By referring to the linear elastic behaviour of the beams (Fig. 4.3) in Eq.(4.2.7)
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stress O

SUain € —

Figure 4.4: Stress-strain graph: linear-elastic behaviour.

the strain energy in the elements are given by

1
r r r r
Uap = EGADSADAADf AD

(4.2.18)

U r _ 1 r r fl’

BD = °8DEBDABD! BD
where
Ul is the strain energy of the AD for each r'" configuration
Ugp is the strain energy of the BD for each r'" configuration
oy i the stress of the AD coupled to strain &y in each r' configuration
opp s the stress of the BD coupled to strain £pp in each r' configuration

A,p is the cross-section area of the beam AD

Agp is the cross-section of the beam BD

"\p is the updated length of the AD beam at each r" configuration

/5 is the updated length of the BD beam at each r'" configuration
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Therefore, it is possible to define the strain energy of the global system as the sum of
the single contributions, previously identified at each r' configuration.

U'=Upp +Ugp With r=1..5 (4.2.19)

As regards the loads’ potential relevant to the external loads applied on the joint D and

the coupled nodal displacements, one has at any configuration
W' =P)pvh +Ppwh (4.2.20)

where

PyrD ,P)5 are the external load components applied in D leading to the r' configuration

Vh,Wp are the coupled nodal displacements at the r'" configuration.

Whence one infers the TPE for each HVs
" =u"-w" with r=1,..5 (4.2.21)

Once computed the TPE for each HV, a new vector is searched for.

As the music improvisation process is characterized by three possible options like the
repetition of a known harmony by the musician’s memory, the adjustment of some
pitches of an existing melody, or the reproduction of randomized notes, so in the
analysed approach Geem et al. identified three possibilities to determine a new vector:

harmony memory, pitches adjustment, and randomization.

In the first option one refers to an assigned accepted parameter r,, €[01]. If it is close

to 0, then it has a slow convergence; on the other hand, if the r_, is too close to 1, there

par
is the possibility to have a wrong solution. Therefore, the accepted parameter is usually
included between the values of 0,75-0,95.

In the second one, the pitches’ adjustment, the new vector is determined through the

generation of different solutions considering a bandwidth range brangeand a pitch-

adjusting rate I, , thatis

Xnew = Xold + BrangeY (4.2.22)
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where

X.a IS the searched new vector

X1q IS the existing vector

y is a number arbitrarily generated between [-11].

To obtain an accurate solution a pitch-adjusting rate is assigned. Finally, the third option
Is similar to the second one, but it allows to find several solutions in order to reach the
global optimum.

In this analysis, the new vector is generated starting from the existing ones in the HM.
After that, the potential energy of the new vector is computed and evaluated. If it is
better than that one of the corresponding starting vector, then it replaces the latter. The
process is repeated up to convergence or as far as to achieve the imposed criterion. The
new configuration is determined at the end of the iterative process. Subsequently the
other unknown variables can be computed taking into account the equilibrium
conditions, i.e. the stresses in the beams and the nodes reactions.

It is also possible to refer to other kinds of approaches about the TPE minimization
problem, such as the Sequential Quadratic Programming (S. Ohkubo et al., 1987), the
Tree Search (A. Csebfalvi et al., 1999), and so on; some researchers have proposed
different procedures like the arbitrary search and simulated annealing algorithm (Y.C.
Toklu, 2004) and the adaptive local search process (Y.C. Toklu 2004).

The report by Toklu et al. shows the algorithm developed and applied on a structure
having geometric and mechanical non-linearity. The method is demonstrated to give
good results also in case of instability phenomena and for several structures.

Starting from the general formulation, the expression of the TPE is considered referring

to a plane pin-jointed structure
"p
11 = [e(e)V - " Ruj (4.2.23)
% i=1
remembering that
ec)= [ole)de (4.2.24)
0
where

o(e) is the stress
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& is the strain

V is the volume of the element

n, is the number of applied loads
P are the applied external loads

U, are the displacements coupled to the above mentioned loads

Eq. (4.2.23) represents the sum of the strain energy stored in the elements and the work
produced by the applied loads for the coupled displacements, and is computed with
reference to the deformed configuration.

Now, let consider a plane cable structure composed by m elements and n nodes, under

np external loads.

Considering the element ij in the plane, where i and j denotes the ends with coordinates

respectively given by (wai) and (xj,yj), the initial length /7 is

Uy = \/(Xj =% )2 _(yj —Yi )2 (4.2.24)

consequently, if (ui,vi) and (uj,vj) denote the ends displacement components along the

reference axes, the final length is given by

fijZ\/(XJ—Xi+Uj—Ui)2+(yj—yi+Vj—Vi)2 (4.2.25)
The stretching A/ is obtained as the difference by final and initial length
Aljj = tij — G (4.2.26)

Therefore, the strain can be computed by the ratio in Eq. (4.2.6)

Al
ij = /0 (4.2.27)
ij

Supposing known the ends, the strain can be easily identified and consequently the TPE

can be computed for all elements as
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Stress (MPa)
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Figure 4.5: Stress- strain diagrams considered in the analysis- Toklu 2014

m np
=Y eAlx - Ry (4.2.28)
k=1 i=1

The problem then consists of determining the displacements vector minimizing Eq.
(4.2.28), satisfying the boundary conditions, represented by the constraints. The
mechanical nonlinearity is implicitly taken into account since one refers to the deformed
configuration. Actually the material properties are accounted for through the
constitutive relations and Eq.(4.2.24). Therefore if the equations are given for the
selected material, the possible mechanical non linearity may be easily implemented in
the above shown formulation. One should notice that these relations are valid either for
NT (No-Tension) or for NC (No-Compression) material.

Several combinations have been considered during experimental tests, allowing to
identify materials that exhibit a symmetrical behaviour for both the solicitations (M1,
M2, M5) and materials that, on the contrary, behave differently in tension (M3) and in
compression (M4). In the latter case the different response of the tensile or compressive
elements is considered.

The optimum problem, as formulated in the above, may be solved through a number of
techniques as already emphasized. The application of the Adaptive Local Search
Method (ALSM) is based on the identification of a variable domain where the optimal

solution is searched for.

Starting from the assignment of a displacement field, applied on each node of the

analysed structure and satisfying the boundary conditions, a new configuration is
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identified, whence the elements’ stretching, strains, strain densities and the TPE are
computed, determining the best solution.

After this step a new displacement field is assigned, finding a new configuration and
then the related TPE. The chosen displacement field during the process belongs to the
previously defined domain.

If the updated TPE gives a value less than the preceding one, it substitutes the previous
one, which has been considered the best solution till now. Otherwise another
displacement set is identified and applied. The procedure is repeated up to convergence.

A critical issue lies in the arbitrariness in the displacement field selection.
Therefore, to optimize the convergence, the following hypotheses can be made:

- without suitable steps into a trials series, at the greatest step a reduction factor
k, <1 is applied. The process ends when the dimension of the step is smaller

than the predefined one.
- if the configuration is suitable within the defined domain, the multiplying factor

k, >2 is considered.

The described methodology can be applied for structures with mechanical and
geometrical nonlinearity, and for structures either statically determined or with some
instability; the algorithm does not require to solve matrix equations, and gives
acceptable results, although referred to a local minimum rather than to the global one.
Some critical points are emerged, in particular referring to the relatively long execution
times.
For solving the above introduced minimum problem, as an alternative, a number of
methodologies are available belonging to the gradient method, such as the Inverse
Huang Algorithm (IHA) (S.T. Huang, 1989).
The approach is based on two initial hypotheses:

- the cable net is in the elastic field

- the cable net is supposed anchored at supporting points that are perfectly fixed.
The approach allows to identify firstly the shape of the net loaded after the pretension
and anchoring operations, and then to compute the internal forces of each cable at the
final state. Moreover, if needed, it allows to design the net in order to sustain the nodal
loads and the stretching forces without overloading or loosening any beam.
To determine the cable net configuration, one considers an ideal net having a linear-

elastic behaviour, with elements resisting tensile and compressive forces, and fictitious
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constraints for preventing the internal nodes displacements. At the boundary each
element is subjected to a tensile force for anchoring to the external supporting joints.
Hence the external cables undergo some non-null forces, unlike the other ones, which

are not stressed.

Figure 4.6: Cable net structure;(a) undeformed configuration of the free net; (b)

deformed configuration of the constrained net.
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Figure 4.7: Cable net released with redistribution of internal forces.

Assuming that the beams are released then they endure a force redistribution obtaining a
new equilibrium configuration of the entire system.

Therefore, the TPE functional /7 is computed referring to the pretensioned system, and
therefore the contribution of the pretension forces is considered

m A
I=U+V = Z[UF + ROl +§'—®Mi2j— Py (4.2.29)
i=1 l

i
where
m is the beams number

U is the elastic energy of the beams
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U° is the elastic energy in the pretensioned cable

F.” are the pretensioned forces in the beams and it is F° = E A (zi —f‘?)

AL, is the stretching in the i stressed beam
E; is the Yong modulus in the i beam
A is the cross-section area of the i beam

(7 is the length of the i beam not stressed beam
P is the vector in n components of the nodal forces

U is the column vector of the nodal displacements components

The problem consists of finding the equilibrium configuration through the minimization
of the energy by the IHA.

The following condition is checked

VI, VL, <a (4.2.30)
where a is an arbitrary value.

The process is iterative up to the fitting of the criteria.

Once identified the TPE stationary point, represented by )‘(z()‘(lx,‘ly,..., )‘<jz), both the

final configuration of the ideal net and the cables’ forces can be computed

Xlx _ulx ] _)_(1x_
le uly _1y
Xy [=|U, |+ X, (4.2.31)
(j+D)2 | _u(i+1)z_ _0 i

X=u+¥% (4.2.32)
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where

Xis the points’ positions vector Y:(Xlx,ily X(j )Z) related to the final

configuration

U is the column vector u=(uyy Uy ... U(j;1), ) Of the nodal displacement components

Eq. (4.2.31). (4.2.32) identify the nodes’ coordinates of the net related to the assumed

final configuration.

The cables’ forces are given by

—_ — ElAl — -
'Rl |F 0, AL,
: EA :
Fo|=|F° |+ TA AL, (4.2.33)
P, _an’_ E. A, AL, ]
Con

where A/,..Al . are the admissible stretching or shortening depending on X .

So far, some simplifying hypotheses have been considered for the ideal net, concerned

with the linear elasticity of the material, the resistance to tensile and compressive

stresses, the possibility of exceeding the admissible forces (F,;).

Since in the real net the forces in the cables cannot exceed the admissible ranges, the
following inequality needs should be verified, under the hypothesis of pure tension in

the cables

F,i (lower bound) < F, < f,; (upper bound) (4.2.34)

or, in alternative, the following equivalent condition must be verified

€, (lower bound) < % < ¢, (upper bound) (4.2.35)

g
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which means that the admissible limit ranges of a defining domain must be complied

with (¢ is the admissible strain in the equivalent condition).

In order to satisfy Eq. (4.2.34)-(4.2.42), the cables length of the ideal net is modified.
The process is iterative, changing step by step the length until Eq. (4.2.35) is verified.
The process stops when all the cables are in tension, and the obtained value belongs to
the limits of the admissible range Eq. (4.2.34).

4.3 Constrained minimization approaches

4.3.1 Basic relationships

Direct constrained optimization methodologies may be developed to evaluate the TPE
minimum for a cable structure with m beams and t nodes, where n are free and s fixed
respectively, and subject to loads applied only on the free nodes.

Any beam is assumed straight both in its undeformed and deformed configuration, and
it undergoes only axial forces (positive if tensile and negative if compressive), under the
hypothesis of constant stress and strain in the beam.

The structure (Fig. 4.8) is described in the plane reference system (Oyz), where the

generalized nodal displacement components are identified, for the i"" node, by Vv, and
W;, respectively along the y and z axes and the coupled applied load components are

denoted by P, ;and P, ;.

Figure 4.8: Plane cable structure.



4.ENERGY APPROACHES 162

The behaviour of each beam is highlighted through the relationship between the axial
force and the length variation, for calculating the relevant energy, and then passing to

the assembled structure.

4.3.1.1 Single beams’ analysis

Let /7 be the initial length of the single beam ij connecting the i and j nodes shown in
Fig.4.8 in its undeformed and deformed configurations.
Applying the overload P, the beam undergoes a configuration change corresponding to

the length variation A/ = ¢, — (%, where /; is the updated length.

Consequently, it undergoes an axial force F;, supposed constant and positive in tension.

Figure 4.9: Undeformed and deformed beam configuration.

The following relations hold

0 =15 (4.3.1)
05 =15 (4.3.2)
zij = _zji (4.3.3)
li=1; (4.3.4)

A.. =—A0 .. (4.3.5)
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Al =AL, (4.3.6)

In particular, the initial /7 and final lengths can be explicited in the form

Cy = \/(yj —Yi )2 +(Zj - Zi)2 (4.3.7)

t; :\/[(yj +VJ)_(yi +V; )]2 +[(Zj +WJ)_(Zi W )]2

where

(4.3.8)

Vi, zi) are the coordinates of the i node in the plane reference system

(y 12 ) are the coordinates of the j node in the plane reference system
(Vi ,Wi) are the displacement components at the i node

(vj YW, ) are the displacement components at the j node

With reference to constitutive law of the considered material allowing to define the
dependence of stress components on the strain ones oj; (gij ) one may write the strain

energy cumulated in the beam

gij

Ui = [ [orj (e zav

(4.3.9)
VO

which, in case of linear elastic material, turns into

1 1_ >
Uij = oijeiiAjliy =5 Bijei Ayl (4.3.10)
where
U ; is the strain energy in the deformed beam ij

o is the uniform and constant stress related to the beam ij

&;1s the uniform and constant strain undergone by the beam ij after the load application
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E; is the Young elasticity modulus of the beam ij depending on the material
Ajj the area of the cross-section of the beam ij

or

Uij == FAl; :”—A‘JM% (4.3.11)
2 0

where

Fij is the internal force in the beam ij

Finally, assuming h = ij, the strain energy globally cumulated in the m beams of the

structure is given by the sum of the single contributions Un=Uj;

m m
U=YUp =23 Far, (4.3.12)
h=1 2 h=1

The loads’ potential energy relevant to the applied nodal loads Pjand the coupled nodal
displacements u; is globally for the n nodes

n
j=1

4.3.1.2 Assembled structure’s energy

The TPE specialized for the given structure is then
1 m n
H:EZFth—ZPjuj (4.3.14)
h=1 j=1

or in compact form

I =%FTA£— PTu (4.3.15)

where
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AL =[Aly..AL,, ] is the vector of the length variations
F=[F..F,] is the internal force vector
u=[u,..u,]" is the displacement vector of the free nodes

P=[R..P,]' is the applied force vector acting on the free nodes

whence, since the compatibility relation holds A¢=Bu, with B the compatibility

matrix, and according to the principle of minimum TPE

“in the set of displacement fields which satisfy the geometric compatibility, those which
locally minimize the TPE also satisfy the equilibrium conditions and are stable
equilibrium positions ’(Monforton, 1987), one can formulate and solve the constrained

optimization problem

Find Min(IT)= Min<1FTM—PTu>
AU A
Sub A¢l=Bu=0

(4.3.16)

including the condition on the sign of the length variations, which are required to be non

negative, thus involving pure stretching.

4.3.2 Solution search

There are many different approaches to solve the constrained optimization problem.
Heuristic, meta-heuristic methods can be found in the literature, in order to deal with the
high nonlinearity characterizing these kinds of problems in structural engineering field.
Here, we focuse on the search of the solution through the Kuhn-Tucker conditions. The
main goal is to minimize the objective function observing the chosen and imposed
constrained conditions (Ohkbuco,1987).

Usually the Kuhn-Tucker conditions are adopted for convex problems and convex

constraints, represented by inequalities, equalities (Rockafeller, 1975) or both of them.
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This approach can be considered as a generalization of the Lagrangian theory about the
constrained optimization, and it is based on the use of linear relationship between
objective and constraints (Hanson, Mond, 1987).

Let consider the differentiable scalar function f(x) and g(x) the vector function in an

open set xe R" . Hence let set up the problem
Find  Min( f(x))

(4.3.17)
Sub  g(x)<0
A vector A does exist for minimal X, such that
Vi, (X, )+ 2, 3[g(x, )] =0
diag[x, Jo(x,)=0 (4.3.18)
A, >0

0o

being J[g(x, )] the Jacobian matrix of g(xo) in Xo.

It is important to put in evidence that in the convex problem the local optimum implies

the global one.

4.3.3 The optimization problem and the Kuhn Tucker conditions

Usually the design optimization is defined as the procedure adopted to find the optimal
parameters in order to identify the minimum (or the maximum) of the objective
function, in the respect of a set of identified constraints.

In EqQ.(4.3.16) the objective function identified in the energetic functional IT, the
displacements as selected variables, and the imposed constraints are to be managed
through Kuhn-Tucker conditions, which, in general yield necessary conditions for a
minimum, but, if the involved functions are convex, then they are necessary and

sufficient for a global minimum.
The constraints can be represented by the inequalities

g;(x)<0 with j=1..,p (4.3.19)

and/or the equalities



4.ENERGY APPROACHES 167

h.(x) =0 with r=1,...q (4.3.20)

where gj(x) and he(x) are continuous functions endowed with first derivatives,
representing the domain where the solution has to be searched for.

As known, the Kuhn- Tucker conditions are based on the linear relationship between the
objective function and the constraint functions chosen in order to find the optimum.
These functions are combined in a Lagrangian Function L(x) defined as the sum of the
objective function and the linear combination of the constrained conditions with
unknown multipliers A;, z.

Hence, the Lagrangian can be set in the form

LOc )= £ (x)+ 35 2;95()+ s (x) (43.21)
J r

and, omitting the explicit dependence on the variables, the Kuhn-Tucker conditions are

written as

oL _
ax,

1 —
ax, ZJ: Jax, Zrl r X;
g;<0 Vi=1,..p (4.3.22)
ﬂJZO

h =0 Vr=1..q

being j=1...p, r=1...q constraint conditions and i=1...n design variables.
With reference to Eq. (4.3.16), where the objective functional written in function of the

main variables u is

f(u)=H(u)=%FTBu—PTu=iuj(u)—PTu (4.3.23)
j=1

the constraint conditions g ; (u) are represented by the following inequalities

n
gj(u)=Y.Bjsus =0 Vj=1..,m (4.3.24)

Thus the Lagrangian Function L can be written again in the forms below
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L(u,n)= ZU j(u)- PTu+ Zijgj(u)
=1 j=1 (4.3.25)

L(un)= ZZZC BjsBjtusut — ZPUS+ZZ/I BjsUs

j=1s=1t=1 j=1s=1

Now, following Eq. (4.3.22), the Kuhn-Tucker conditions can be applied as follows

al_ m n m

2 —=22C ijSBjkuS PkUk"'Zﬂijk:O ; k=1,...,n

U j=is=1 j=1

ZAJ jsUs =0
(4.3.26)
g,=ZBj5uszo Vj=1..m
s=1

ﬂ,j <0

by solving the problem, the design variables U are computed.

Consequently, by substitution, the stretching and the forces in the beams can be
identified, in order to obtain the balanced and compatible configuration subjected to the

load and constraint condition considered.

4.4 An example

4.4.1 Initial geometry

With reference to the plane structure in Fig. 4.10, composed by m = 3 beams and t =4

nodes, with s = 3 fixed and n = 1 free nodes, firstly the initial geometry is identified.
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(A",\ = ."l)) (,\‘n = ."l))

(1/) —1(')

Figure 4.10: No-compression structure composed by m=3 beams, t=4 nodes with n=1
free node and s=3 fixed nodes. The structure is shown in its undeformed configuration

in the reference system (Oyz).

0

The beams (AD, BD, CD), with the initial lengths ¢°,,/%,,/cp, form the angles

A ap»Agp , Aop With the horizontal axis, in the reference plane system (Oyz).

The following geometric relations hold

L, =—4

PR (4.4.1 a)
l AD ~ 4 DA
L. =—F

T (4.4.1b)
l BD — l DB
., =4

o (4.4.1.0)
KCD = EDC

with £5;,£%5, €% the beam vectors in the initial configuration respectively from A to
D, B to D and C to D (and hence, by changing the subscripts’ positions, from D to A, D
to B, D to C) and /%;,/%5, % the lengths of the beams AD, BD, CD in the initial

configuration.

Since
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0)

125

(0
(0

OO0 w >
i

(Vesze)
(

Z
YoiZp)

the length of each beam can be computed

K(;\D = \/(yD - yA)2 +(ZD _ZA)2 :\/(yD)2 +(ZD)2

EOBD =\/(yD _yB)Z +(ZD _ZB)2 :\/(yD)2 +(ZD *ZB)Z

0 =(yo = Yo +(¥o - Yo )
The length vectors are then given
o = Lapling
oo = Lap0gp
e = Leplep

where

(4.4.2)

(4.43 )

(4.4.3 b)

(44.3¢)

(4.4.4 )

(4.4.4)

(4.4.4¢)

o) Apr O gy, Oy o are the (2x1) unit vectors of the beams in the reference system, with

o] (o] [o] [o] o] [0}
COMPONENtS & pp, &y pp &y cp ANA A, pp s &y pp s Ay e -

Furthermore, the following boundary conditions hold

Vp=Wp =0

vg =wg =0

Ve =W =0

vp #0

wp =0
Moreover

A,p is the cross-section area of the AD beam

Agp s the cross-section area of the BD beam

(4.4.5)



4.ENERGY APPROACHES 171

A is the cross-section area of the CD beam

and
E,p is the Young elasticity modulus of the AD beam
Egp is the Young elasticity modulus of the BD beam

Ep is the Young elasticity modulus of the BD beam.

4.4.2 Updated geometry and mechanical features

The analysis is carried out considering the load Pp, with P, 5+ P,p plane components,

applied on the free node D, and modulus

Po = P> + P (4.4.6)

Due to the overload, the structure undergoes a configuration change moving from the

initial geometry to deformed one, as shown in the Fig. 4.11.

(yg+vg)-(yp+vp)

(va+va)- (4\‘1) +vp)

(yp+vp )% (ye+ve)

(za+wa)=(zp+wp)
(zp+wg)—(zp +wp)

(zp+wp)-(zc +we)

Figure 4.11: Undeformed and deformed configuration of the structure after the load

application.

The free node displacement is identified by the vector Uy with modulus
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[ 2
Up =+Vp +Wp (4.4.7)

where

Vp is the displacement component of the node D along the y axis

W, is the displacement component of the node D along the z axis

Consequently the beams undergo the elongations Ay (with ij =AD, BD, CD) given by

the difference among the final lengths (/; , with ij=AD, BD, CD) and the initial ones in

ijo

Eq. (4.4.3 a-b-c).

First of all, the updated lengths for each element are computed. Starting from AD

Cpo :\/(yD+VD_yA_VA)2+(ZD+WD_ZA_WA)2 (4.4.8)

taking into account the boundary conditions (Eq. 4.4.4) and Eq. (4.4.2), Eq. (4.4.8) can

be written again in the following form

gAD = \/(yD +VD )2 + (ZD + WD )2 (449)

Analogously, the final lengths of the other beams are defined

Lo :\/(yD +Vp =Yg _VB)2 +(ZD +Wp — Z3 _WB)2

Lep :\/(yD +VD)2 +(ZD +Wp _ZB)Z

lgp = \/(yD +Vp )2 +(ZD + Wp _ZB)Z (4.4.10)

Lep :\/(YD +Vp =Y _Vc)2 +(ZD +Wp —Z¢ _Wc)2

Lep =\/(yD+VD_yC)2+(ZD+WD_ZC)2

2

2
Cep :\/(yD+VD _yc) +(ZD +Wp _Zc) (4.4.11)
The elongations of each beam are inferred
Ay =L =L (4.4.12)

Mgy =Ly — L (4.4.13)
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AMep=Lep =L (4.4.14)

and collected in the vector of variation lengths including the stretching of each beam

composing the structure
M =[Al 5, Al o, AL 51T (4.4.15)

At the same time, the element is undergone by the axial forces

F,,=-F

e A (4.4.16)
FAD = FDA
F.. =-F

oo (4.4.17)
FBD = FDB
F..=-F

e (4.4.18)
FCD = FDC

being Fu5,Fep,Fop (and hence Fo,,Fos,Foc) the vectors of the axial forces in each
beam and F,,, Ry, Fop the related intensities. Thus, a vector Fincluding the axial
forces is considered

F=[Fu:Fap. Fep (4.4.19)

As for the mechanical properties of the elements assuming a linear-elastic behaviour,

the strains and the stresses are expressed as follows

Y

Ep=—"" (4.4.20)
f AD
Y

Egp = —2 (4.4.21)
f BD
Y

Ecp = —2 (4.4.22)
Cep

and

Orp = Fap (4.4.23)
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F
Opgp = ABD
BD (4.4.24)
F
O_CD — CD
Aco (4.4.25)
where
&1 EpprEcp are the strains along the axis beams, respectively AD, BD, CD;
O, 0gp1Ocp are the axial stresses in the beams respectively AD, BD, CD.
Specializing the Hooke law for each one element, one gets
Oap =Epéno (4.4.26)
Ogp = Egpéep (4.4.27)
Ocp =Ecpéen (4.4.28)
hence, the axial forces can be expressed as
F,, =R Ay (4.4.29)
AD
Fo, = ceofen £ (4.4.30)
BD
Foy = —cofeo pp (4.4.31)

Ceo

4.4.3 Potential energy of the structure

Following the procedure described in Par.4.4.1 to identify the strain energy, denoting by

U o Ugo:Ucp respectively the strain energy of AD, BD and CD beams, and since

U a0 = €ap AADK AD
U 80 — €gp ABDK BD

U co = €ep ACDECD

(4.4.32)

(4.4.33)

(4.4.34)



4.ENERGY APPROACHES 175

being

t 1 : .
€rp = _[a -ede =EGAD5AD the strain energy density of the beam AD
0

t 1 : .
€gp = ja -gde ZEO'BDEBD the strain energy density of the beam BD
0

t 1 : .
€cp = ja -ade :Eo-CDgCD the strain energy density of the beam CD
0

or in equivalent form

1

U = 5 FaoAl o (4.4.35)
1

Ug = 2 FepAlgp (4.4.36)
1

Uy = > FepAl cp (4.4.37)

The strain energy of the global structure is given by the sum of each contribution; hence

U=U,, +U,, +U

(4.4.38)
U= (eAD Aol o +€epAnl gp +EcpAcp! CD) (4.4.39)
or
1
U= E(FADAK o T FepAlgy + FopAl CD) (4.4.40)

Eq. (4.4.40) can be written again in the following form considering Eq. (4.4.15) and
(4.4.19)

1
U :EFTM (4.4.41)

Now let consider the loads’ potential energy. Being Py the load acting on the free node

D, thus the loads’ potential is easily calculated

W =W, =-Plu, (4.4.42)
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where Uy is previously defined as the vector of the free node displacement.

Now the TPE equation for the global system is expressed by the sum of the global strain

and loads’ potential energies.

In particular, it is given by

I=U+W (4.4.43)
Therefore, taking into account Egs. (4.4.41)-(4.4.42), Eq. (4.4.43) turns into

= % FTAC-P, U, (4.4.44)

where the main unknown variables are the stretching A¢ and the displacement U, .

Referring to the minimization of TPE, the variables A¢ and U can be identified by the

minimization of the energetic function of the entire system, considering the

compatibility equation expressed by the following relation

A =Bu,with Uy the displacement vector ugy = [VD j (4.4.45)
Wb

Algp |=| b by
Alcp big by

Alpp) (b by (v j
D
being B the compatibility matrix of mx2n size.
Furthermore, the final lengths can be expressed in the following form

Al ap =L ap —LAD =b11Vp +broWp

Algp ={gp—Bp =byVp +bywWp

Alcp =Lcp —(2p =h3Vp +bgyWp

Whence

0 0
Cap—CAp =biUup = £ op =by1Vp +b1oWp + L ap

0 0
{gp—{Bp =bpup = £ gp =byvp +bpoWp +/Bp

0 0
fcp —fcp =b3gup = £ aop =b3vp +b3owp + L cp

¢=Bu, +/£° (4.4.46)
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Then, considering Eq.(4.4.29-31), the vector F can be written as
e i}
ADTAD pp
N
£ _| EpABD Algp
£Bp
E
cpAcp Alep
fcp

After introducing the axial stiffness vector R
EapAaD

£ D

R —| EBDABD

£8p

EcpAco
Lcp

Then

F = diag[R]A? = DAY

EapAAD 0 0
! AD
D=diag[R]=| 0 % 0
BD
0 0 ECD ACD
i lcp

and
F=DBu, (4.4.47)
where

F is the axial forces vector with mx2 size

B is the compatibility matrix with mx2n size

U is the nodal displacements with vector nx2 size

D is the stiffness matrix with mxm size
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Moreover, by Eq. (4.4.46), the stiffness matrix D is defined as

EAD AAD - O O
bllvD + blZWD + f AD
E. A
D= 0 T 0 (4.4.48)
b21VD + b22WD + f BD
O O ECD ACD
L b31VD + bSZWD + E?:D _

Thus, the optimization problem to find the unknown variables may be set as follows

Find Min(II(u,))= Min<%FT(uD)BuD —PguD>
up up

(4.4.49)
Sub  Buy, =0

Therefore, taking into account Eq. (4.4.47), and by substituting into Eq. (4.4.49), one

obtains the following expression of the TI(up)

M1(u,)= lBuo 7 (Bus )Py u, (4.450)

which is a non-linear equation in the displacements unknown variables.

Hence, making it explicit, one gets

EAD AAD 0 0
0
L By1Vp +01oWp + LA EA by by v by by vo
(up)= 7 0 % 0 b, by [WDJ by by [WD) - PoyVp —PoWp
21°D T BD EcoAco b3 by bz b3
0 0 —_—
ba1Vp +bgoWp + £2p
T
EapAap 0 0
0
1 by +B12Wo + Lap EapAs by1Vp +biWp by1Vp +biWp
M(up )= 2 0 ﬁ 0 by1Vp +DyoWp | | b22Vp +booWp | = PoyVp — PoWp
21D T +227D TV BD EcoAcn b33V + b3oWp b33V + bgaWp
0 0 —_—
b3yVp +bgoWp +£2p
.
EArpA
%(%VD +by,wp )
by1Vp +b1oWp + £ ap
1 E_A by1vp +b1oWp
M(up )= ——B"8—(byvp, +byoWp ) [ | bpyVp +bpWp |~ PoyVp —PoWp
2 || byvp +byowp + 7
21VD : 22ACD BD bV + baoWip
v + b £ 5 20 220
| B31vp +b3aWp + Ccp
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- T

EApA
ADAD (braVp +b1pWp)
b11Vp +01oWp + £ap byyVp + bW
1 EspAep tpn e
M(up )= 3 5 (ba1vp +baoWip ) | | Ba1Vip +baaWp |~ PoyVp — PosWp
b1V +BooWp + (gp
EcoAc ba1Vp +b3Wp
DD — (bvp +bgpWp )
1Vp +Db3Wp
| b31vp +bspwp +£2p ]
EApA Egp A
ADAD o (bravp +bioWp )2 + 8D-ED ) (baavp +baoWp )2 +
_ 1] byyvp +bipwp + £ap ba1Vp +booWp + £p —PVe—_P
I(up)= DyVD ~ Fp:WD
2 EcpAcp (b 2
+ o \BVp + bsoWp )
ba1Vp +b3oWp +£cp
(4.4.51)
With
0 0 o 18
(bisup + 2% Nbyitip + 2% Nogp +£25 )% 0 (4.452)

By solving the inequalities, the range of the admissible values of the design variables is

identified, also by applying Kuhn-Tucker conditions.

18

0 o o
(blluD +£AD xb21uD + KBD Xb31uD +€CD)> 0

3 0 0 0 0 0 0 0 2
b11b21b31l"| o+ blluDg BDECD + b21uD£ ADKCD + bslqu ADE BD +1 ADb21b$1u o+

+ EOADK?BDK%D +£08Db3lblluzD +€0€Dbllb21u2D * 0

b11b21b31u 3D +u ZD (KOAD b21b31 + E%D bSlbll + f%Dbil.lel)—‘r_ uD (bllg?iiDéoCD + b21€ ?’-\DE%D + bSlgoADg%D )+

+ 050 5ol e # 0

uD [(b11b21b31u ZD) + (E?AD b21b31 + K?BD b31b11 + EOCDbllbﬂ)uD + (bllg [IJ?»DKOCD + b21’€ 0ADE%D + b31€1D£?3D )] +
+ 05 el ep 0

up =0

by assuming

h = (Esz21b3l + ZOBDb31bll + K%DblleI)
a= b11b21b31

C= (bllg?ingoCD + bZlfoADEOCD + bslfsfo%D)

2_
UD:hi wio
a
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The results, with the horizontal force equal to 10.000 N, are illustrated in the following

figures, where the displacements are plotted with a amplification factor set to 10+20.

Fig. 4.12a illustrates the system with all members fully reacting both in tension and
compression, subject to the force Ppx = 10 kN applied on node D, with the equilibrium
configuration resulting from the small displacement analysis (Fig. 4.12b) and from
iterated calculations converging towards true displacements results (Fig. 4.12c).

sx(1)=1.428571
T sy(1)=-4.023723E-10

sx(1)=1.428701
sy(1)=5.808965E-03

Elevation
Elevation
Elevation

Y Distance X Distance Y Distance X Distance Y Distance X Distance

(a) (b) (c)
Figure. 4.12: Solutions with all bilaterally active members: a) The structural pattern; b)
the small displacement solution; c) the iterated solution for effective, possibly large
displacements. Amplifications of displacements are equal to 20.

One should notice that the rods plotted in green are in tension while the rods in red are
compressed. The solution for small displacements is practically coincident with the

effective displacements’ one.

The second set of results solves the problem set in Eq.(4.4.49) -(4.4.50), corresponding
to the case when the system is composed of cables that cannot resist compression. The
results are depicted in Fig. 4.13.
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sx(1)=4.284505
sy(1)=-1.427967

sx(1)=4.062129
sy(1)=-1.326584

Elevation
Elevation

Y Distance X Distance Y Distance X Distance

(a) (b)
Figure 4.13; Solutions with all members unable to resist compression. a) the small
displacement solution; b) the iterated solution for effective displacements. The green
rods are in tension and are selected as effectively reactive. The red rod is acted on by a
negligible force and does not actually contribute to equilibrium. Amplifications of
displacements are equal to 10.

The final set of results considers the system composed by rods that cannot resist tension,
I.e. solves the problem minimizing the energy functional in Eq.(4.4.49) but with the

reversed constraint Bu < 0. The relevant results are depicted in Fig. 4.14.

sx(1)=4.284505

sy(1)=1.427967 sx(1)=4.572097

sy(1)=1557134

Elevation
Elevation

Y Distance X Distance Y Distance X Distance

(a) (b)
Fig. 4.14: Solutions with all members unable to resist tension. a) the small displacement
solution; b) the iterated solution for effective displacements. The red rods are
compressed and are selected as effectively reactive. The green rod is acted on by a
negligible force and does not actually contribute to equilibrium. Amplifications of
displacements are equal to 10.

The equilibrium paths of the different structural patterns are summarized in the
following table



4.ENERGY APPROACHES 182

TABLE 4.4.1

Rods— Bilateral No-tension No-compression
Geometry— Small | Actual | Small | Actual | Small | Actual

Sx (cm) 1428 | 1.428 | 4.284 | 4572 | 4.284 | 4.062

sy(cm) ~0 ~0 1427 | 1.557 | 1427 | 1.326

F1 (N) =0 ~0 -10000 | -10425 | 10000 | 9622

F2 (N) -7071 | -7042 | -14142 | -14549 =0 =0

Fs (N) 7071 7099 ~0 ~0 14142 | 13784

As one can deduct from the observation of the results, in the case of system unable to
resist compression the change in the geometry improves the stiffness and the strength of
the structure, so that in this case the small displacement analysis is on the safe side,

while the opposite happens in the case of the no-tension system.
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5. CALCULUS MODEL UNDER LARGE DISPLACEMENTS
FOR CABLE STRUCTURES

5.1 Introduction

As highlighted in Chapter 1, in recent years cables as structural elements have been
largely employed in architectonical and engineering buildings, both for the aesthetic
quality and structural advantages (Thai, Kim,2011) such as the lightness, the elastic
behaviour, the possibility of pretensioning, covering large spans and using minimum

amounts of material with the maximum exploitation of the mechanical properties.

Cable systems are usually adopted as simple cables’ systems for supporting structures
for membrane roofs, shells or cable stayed bridges, as opposite curvature cable
structures for big spans, and as cable-nets systems again for large spans’ covering, as

well as for supporting systems of glazed facades.

As known, these systems belong to the macro-category of tensile structures where
purely tensile forces are involved (cables, membranes, cable and membrane structures,

tensairity).

Although the many advantages, their geometric and/or mechanical non-linearity
influences the response to the external actions making hard the static analysis. This is
the main motivation of the increasing interest of researchers, who, starting from the
identification of rigorous methods of modern mechanics for equilibrium, have been
developing several approaches to identify the equilibrium shape of these structural

systems both under the overloads and the pretension state.

For computational purposes, novel models have been proposed as well in matrix

formulation basically falling under the displacements’ and forces’ approaches.

Usually, the most adopted models refer to the displacements’ method, where the
stiffness matrix is obtained by the assemblage operation. One demonstrated that this
approach is careful about the structural analysis and it can be used for several shapes,

load and constraint conditions (Lan,1999).
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Actually, the analysis models can be divided in two typologies; those ones based on the
classical formulation of the elastic catenary and those ones based on the discretization

of the structure in finite elements.

In the first case, the equilibrium state of the continuum element suspended at the ends is
mainly considered and analysed; it is important to highlight as the catenary approaches
allow to identify the response of the structure also in case of seismic solicitations (Abad
et al, 2012). One must put in evidence that the catenary approach is appropriate for very

small curvatures (Thai, Kim,2011).

As concerns the discrete approaches the basic idea is to model the cables as composed
of many segments connected to each other by joints. Consequently, different loads can
be applied along the single segments, or at the joints, also considering lateral or not
uniformly distributed loads, taking into account the geometric and mechanical non
linearity, like for example the cross-section variation and the material resistance. In this
case a higher number of the elements is required with respect to the first formulation
(Shoostari et al,2013).

In the literature several approaches based on the catenary modelling of the cable can be
found as for example the methods developed by O’Brien e Francis (O’ Brien e Francis,
1964) and then by Jayaraman e Knudson (Jayaraman e Knudson, 1981);

Recently some researchers have identified and characterized the tangent stiffness
matrices and the internal forces vectors of the cables taking into account the self-weight

of the cable, usually neglected both in the static and dynamic analyses.

Many other similar methods have been adapted to the specific problems, based on and
rielaborating the equations of elastic catenary, minimizing the computational time, as
those ones developed by Whang (Whang et al, 2006), Andreu (Andreu et al, 2006),
Yang e Tsay (Yang e Tsay, 2007), Such (Such et al, 2009).

Other methodologies are based on FE approaches, refer to interpolation functions in
order to describe the nonlinear behaviour of the structures both in continuum and

discrete cases.

The continuum approach is largely used for small deflection cables with high level of

pretension; the discrete one, instead, is largely applicable and is based on the use of
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higher degree polynomials for the interpolation functions (Chen et al., 2010).
Nevertheless, the formulation is hardest and then the tangent stiffness matrix and the
internal forces vectors are obtained through isoparametric interpolation functions, by

using the same number of parameters to describe the geometry and to interpolate.

The latter model is not properly appropriate to apply for great curvature cables, because,
otherwise, it would imply a high number of elements increasing the computational
effort (Thai, Kim,2011).

To evaluate the static behaviour of plane cable structures with opposite curvature, one

largely refers to the FEM modeling and analysis.

In order to define the equilibrium configuration both in pretension and under the
external loads, equilibrium and compatibility equations are solved by iterative
processes, considering some simplifying hypotheses such as the possibility to neglect
the terms with degree greater than one in the equilibrium equations and the self-weight

of the beams.

In case of cable nets, after identified the geometry, their behaviour is analized, or
considering them as three-dimensional discrete elements composed by several cables
connected to each other and subject to nodal loads, or approximating their behaviour to

the membrane one.

5.2 Plane systems

Adapting the considerations presented in Par.3.3 to plane systems, one may search for
equilibrium shapes under live loads acting in the plane. Some results are illustrated for
the cable system with opposite curvature in Fig. 5.1 loaded by in-plane nodal forces,
after implementation of the relevant problem in a calculus code. In Fig.5.2 - 5.3
depicted results refer, respectively, to the application of the load components Py = 1 and

Px = 1, with the force density ratio 1:1.
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@

Figure 5.1: Topology scheme of a plane system.
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Figure 5.2: Equilibrium shape under the load Py=1.
Perspective Plan
2 2
[ 3
>
YDistance  ° o I Di;mnce " Dtance
Elevation 1 Elevation 2
a
g g
1 3
W ez W <
" XDistance ¥ Distarce

Figure 5.3: Equilibrium shape under the load Py=1.
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Figure 5.4: Equilibrium shape under the load Px=20.

One also considers the case when the load Px = 20 is applied on the node previously

identified (node 5) determining the configuration shown in Fig.5.4. The ratio of the
force density is 1:1.

In Fig.5.5 the shape due to the application of the loads P,=20 and it is applied in the

positive direction of z axis) only on the free node 5.
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Figure 5.5: Equilibrium shape applying the load P,=20
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5.2.1 An overview of the basic approach

In this context, for analysing the static response of cable structures under external
solicitations, the study and development of a calculus model suitable for the several

typologies of tensile structures is focused on.

The approach is based on a matrix formulation in order to be then applied and
developed, in the subsequent phase, on a structure composed by m cables, subject to the
nodal loads and distorcing actions, where the self-weight of the elements is reported on
the joints and the cables are considered straight both in the deformed and undeformed

configurations.

The analysis is conducted in elastic field, thus initially neglecting the mechanical non-
linearity of the elements, in order to identify the fundamental relationships in matrix

form under large displacement.

The problem is started from a known static regime configuration, whence variations to
displacements and distortions are applied leading to updating the structural

configuration.

The first phase of this analysis is mainly devoted to the search and identification of the
nonlinear geometric relation, in explicit form, between the balancing loads, necessary

for the equilibrium in the varied configuration, and the applied displacements.
Two subsequent steps follow, referred to the single elements and the global structure.

In the single elements’ analysis, the local variables and the main relations are introduced
and identified, and, in particular, the relationship is inferred between the variation of the
internal forces and of the positions of the free nodes of the element, expressed through
the identification of the secant stiffness matrix, the secant geometric matrix and the

secant distortions vector.

The second step concerns the transition to the global structure through an assembling
procedure of the results from the first step, aiming at setting the relation of loads
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ensuring the equilibrium in the deformed configuration, after the displacements’ and

distortions’ application.

It must be pointed out that the fundamental identified equation is geometrically
nonlinear, therefore a step by step procedure is developed to solve it under small loads’

variations, that allow the linearization of the equation at any infinitesimal single step.

First of all, let consider a plane structure composed by m segments and n free joints in a
known static regime. Starting form this configuration, a displacement AX and
distortion field AD are applied in order to determine a change in the configuration of

the structure, that may occur under the following three conditions:
Al . .
o Ac= " <<1, i.e. the deformations are very small

e Any segment has a linear elastic behaviour, thus the Hooke law holds

e The self-weight of the elements is neglected, and they are straight both in the

undeformed and deformed configurations

In this phase, the analysis focuses on the identification of the load variation AP(AX)

that ensures the equilibrium in the deformed configuration.

The single element is considered to identify the relation between internal forces and
change of position at the free ends, through the introduction and definition of the
stiffness secant elastic and geometric matrices® and the secant distortion vector, at the
local level of the cable segment.

A non-linear equation is obtained, where the introduced entities depend on the imposed

displacements.

To obtain the balancing loads’ variation AP(AX), the assemblage of the system is

performed introducing the Boolean matrix A depending only on the topology of the

structure and where also the constraints are introduced.

19 The matrices are defined as secant to put in evidence the dependence of the forces amplitude on the elements’
stretching.
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Finally, the relation between loads and displacements is identified
AP = KLAU + K AU - QAD (5.2.1)

where K3 (AX) denotes the elastic and K (AX) the geometric stiffness matrix, and

distortional secant one Q*(AX) of the global structure, depending on the imposed

displacements. The identification of the mentioned matrixes and the solution procedure

are illustrated in the following paragraphs.

5.2.1.1 Fundamental relationships

Let consider the plane cable structure shown in Fig.5.6, composed by m =11 cables and
n = 6 free nodes, and four fixed ends; let assume that the structure is in a known static

regime.

Figure 5.6: Cable structure under the application of nodal loads, in its known

configuration in the plane (Oyz).

Let identify the following vectors in the place reference system (Oyz)

PT = [Pyl PZ]. Py2 PZZ Pyn Pzn ] (522)
X' :[yl Yy, Zy.. .Y, Zn]
Fr=[F, F, .. R, .. F,] (5.2.3)

D'=[D, D, .. D, .. D,]
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In the following the single cable segment is identified by the indexes of the end nodes ij
(directed from i to j) rather than by the h index relevant to the h™ element, that means

for example Fse = F10, Dsg = D1o.

Let P°, X° F° D°be the static and geometric entities describing the initial configuration

>°. One aims at finding the increment of the external loads AP(AX) necessary to keep

the equilibrium in the new configuration, caused by the application of the geometry

change AX and possible additional distortions AD.

By assuming valid the hypotheses in Par. 5.2.1%° , one denotes by

fij the force transmitted by the node i to the end node j in the beam ij.

fji the force transmitted by the node j to the end node i of the beam ij, such that

F;j the component h = ij of the vector F,, representing the intensity of the force f;

fi}’ the force transmitted by the node i to the end node j in the beam ij inXZ°

fii the force transmitted by the node j to the end node i of the beam ij in Z°, such that

F.> the component h = ij of the vector F; , representing the intensity of the force fj

ij

For solving the problem, let firstly consider the element ij shown in Fig. 5.7.

. Al
20 The deformations of all elements are small Ag = 7 <<1 .

The Hooke law is assumed valid; each cable segment is and keeps straight also in the deformed
configuration.
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Figure 5.7: Undeformed and deformed configuration of the single element in the plane
(Oy2).

The change of configuration from the initial known one X° to the deformed one X is

described by the difference vector

A = ﬁz i” 524

whence

£y = L5 + AX (5.2.5)

AF, = A (a0 ,—AD,)=R, (A, —AD, ) (5.2.6)
ij

where

£ ;; is the length vector of the single cables in the deformed configuration directed from
i 10 ]
£ ;; is the length vector of the single cable in the deformed configuration directed from

jtoi,andsuchthat £; =—£; and (;; =/

£; is the length of the beam ij in the deformed configuration
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£3, is the length vector of the single cable in the initial configuration, directed from i to

j

£5; is the length vector of the single cable directed form j to i, in the undeformed

configuration, such that £{ = £ and (5 = /7

0%, 1s the initial length of the beam

AF; is the intensity of the force variation in the element

E; is the elasticity modulus of the element

A; is the cross section area of the element

Ay is the length variation of the element

AD;; is the intensity of the distortion variation in the element
Ry is the stiffness of the beam

One highlights that dependence by Ax{} is omitted.

Let now consider the unit vector associated to the segment in the two configurations

2 g
;} :—;‘: 'j)'y in X°
Uy | % |
z (5.2.7)
BT
0;=—= in 2
Ui | e
whence the force vector fj; can be expressed in the form

Analogously Eqg. (5.2.5) can be written again in the form
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£y =105 +AX

_po0
lioy = E,Ja,J+Ax

And therefore the elongation is inferred 2!

Al =0. —0° = °TAx +Aa L.

ij ij ij ij™ij
Taking into account Eq. (5.2.9), the variation of the versor is given by

Ly = L5 +AX]
Cyay =505 + AX
£5 + AX 1| €5 +AX;
a. = = —
e ras) 0| Lt Asy)
0 HAX) £ 1 {z‘;j + AX{ }

ij = Oy — 0y =—5 o ° i
T e asy) s | rag) Y

0 +AX; 451 {E’;”J + AX] ]

Ag.. =0.. —d. = =
L+ Ag; )

ij ij ij 0 o 0
Ui il+ Ag; ) Ui Kij
According to the small deformations hypothesis, whence

1
1+ A¢

~1-A¢

Eq. (5.2.11) may be simplified

£y =45 +AX

[0}
(0 =Lhag + AX

T T po T T
uﬁuu” —auﬁuu” +a; Ax —( +Aa”)€”a” +a; Ax
0y =05 =AM lal +aTAx

Al =Aa’ /%0l +aTAX

ij i
21

or:

T T po
ol 0 =0 lha) +ag AX —(

+Aa,JX£ @ + AX! )

ijij

=] (a) +a) AX +Aa|TJ£?Ja” + Aaj AX

. :g?j +0z§]TAxij + A (£°a +Ax )

ij i

Ay =0y =05 =a) AX + Ao 4,

ij “ij

(5.2.9)

(5.2.10)

(5.2.11)

(5.2.12)
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05 +AX; L5 05 +AX;
AQ. =0.. —g° = = 0°
EO U]

i = O — O m gO i1+Agi

[¢] d
Aa, =ir” A%, —f‘-’} ; [(f" +AXS )(1 Ag; ) Z?j]=
ij

e L as)

= L [es s axt - e, 10 - As,AXE - £
Iz

i ij
1

Ag, =€10 [Axg - As, £, ]——{Ax - ;” zij}

i ij
ij ij

Aa; = flo {A d ;i)“ 2, } (5.2.13)

After substituting Eq. (3.2.13) in Eqg. (5.2.10), one gets
£ =45 + AX§

0 [0}
Cio =iy + Ax

Al =0y =05 =adl AX§ +Aaf €, =i AXS + €] Aa;
ij ij ij ij

1 ij™ij

1 ) Al
Aa; ZE_OI:AXU. —Ag; zu]_ (0 {AX B EOJ zil}

ij ij

0 go 1 go K

ij

Al £ Al
Mijzai’jTAxi‘}jLETjil:Axﬂ——”fi} —LAx§ + 0], [Ax;’.— — iy ]
E?j ] 5}

e e )Ax” - ” — e,

0 ij>ij
G 0%
e, i} i
Mij[u zg_z’JzM,j[T"]_go (€57 + 27 Jaxe
ij
Ay =2 L(f"T+zT)Ax ——O(e“ S0 =
g e T de, !
Al =—— (¢ + 4] JAX
1) 602 +€ E ( )A ij
EO
oT T
Al =—— (¢ + 01 JAXY (5.2.14)

VoL,

i ij
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Then, Eq. (5.2.14) is substituted in Eq.(5.2.13), whence

Al
Ao = 10 {AX > fu}
0o 0

b (E"T +L] )AxIJ

Al =———
A
057 + 07 JAX
A Z%{Axﬂ _(oz#h}
ls l +£,J£,J
KOT+£T X £
AdL. ziAXq_( )A i ~ij

! 5 ! £°2+zz 05

ij™ j

0T+ 4T A 2,

Aaij=iAxij ( 5 T)A vy (5.2.15)
o VT

Since %2

(Araxt e, = (£,a7 JAxE (5.2.15h)

Af can be computed for any assigned Ax® using, in sequence, Eq. (5.2.5)—

(5.2.14)— (5.2.6)— (5.2.15)— (5-2.8)23

22 Actually, once considered three vectors

()“TAxlj)elj ( )AXIJ
b
a b}° bl = (ayby +ayh, €1 _( Cadaby +Crazh;
C2) \Coayby +cCpazhy
and, on the other5|de
[caT }) _ K o J( y a )}(blj _ {clal C1as }(bl) _ [ Craghy +ciash, J
CZ b2 Czal CZaZ b2 C2a1b_l_ + 02a2b2
and therefore

fTop=lea' b

0. =102 +Ax (5.2.5)
ij ij

23
foT fT
T _ 1 1)
ij  ,02 ,T
flJ Euﬁlj
0

Al = %{zfﬁufj f' /?xITAx (5.2.14)
J((I)JJFZIJZIJ' IR TR T
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Af; =R, kT[I AXS xT]Ax + ( —0. XT)AX 7

ij

R..
— I AD(1-2IAxS ), (5.2.16)

A
AF., =01 (M —AD..):R..(M ~AD.. )(526)
i e ij i) T

ij

AF.. =R.. (/OxTAxd —AD.. j(5.2.15)
i

1 (Z?T ”U X 4

Afl-- :7qu ¥i
oo 02 T, 40
‘i ijoooitiy

‘.
Mg, = Axd T axd U
ij =0 i o
ij ij

Af.. =f.. —f0 =AF..a® + FOAq.. + AF..Aq.. (5.2.8)
ij i j ijoij iy ij=ij

I L
_ T axd of 1 ,.d T, d7i [ T Ay d ) 1 od T dlii
AfJ RJ( ”x” ij ADj)uj+FIj[ JAxJ AIJAXIJ éoj}rR” IJLIJAXIJ ADIJ f(i)j AxJ )MIJAXIl f?j =

0.0, TAd 0 oldeij onidei__ideiJ'
RIJ/IJLIJAx”aU RIJADIJaIJ+FIJ[p(JJAXJ XIJAXIJ JJ R'J[U IJAXIJ[ JAxJ A”Ax” J RIJ DIJ JAXJ )LUAXIJ /OJ

£ I3 L
T,d 0 dl 1 ,.d ,T,.d o 1l ,d .T,d _ 1 .d .T,.d”"i
RIJZULIJAx”u” + R”é” IJAXIJ[ /?j AxJ AIJAXIj /OJJ FIJ {[oj AxJ XIJAXIJ (OJ] RJAD”[ OJ Axj xlle” —/01 +u”

1957 Axd40 onldeIJoldelJ Rij x4 5T A 0.0
RIJ IJLIJAx”mU+RIJ IJXIJAXIJ[ J Ij LIJAXU (’OJ] FU[J ij A”Ax”ﬁ ”0 ADJ( ij xJAx”£”+/IJ ”)

£ F? -
0,TAd,0, 1o 0 d,d 0, T axd3 T ad 0, lJ(d Td)lj _(de
R”CIJAIJAXIJ(:”+ JRIJIUAUAXJAXJ RIJZIJAIJAXIJKIJAXIJ /oj ij xlex”e” 0 ADIJ 1 )»IJAXIJ eJ
= R..
T A d(,0 0 d TAyd, T A d 1) d_.T,d ] D T d
RIJAIJAXIJ(/”(;” +Ax”) RIJ}“IJAXIJ;"IJAXIJEIJ +— J (A ij AIJAXIJZIJ) (i' ADIJ(l AIJAXIJJZJ

U] U] ij — it i)

bok -

[o]
Hi Rji
d (4 T, d ij ( T d)(
AfJ = R”()\.UAX” )elj IJ()"I]AXI]))“UAXI][I] (AXIJ ;“Iijljllj) fTADIJ l_;“ijAXij ij =
VIJ ij

F.
T i (,d d)_Ri ( d)(
Rij(eij;‘ij)Axlj ("quuxfu Aj x”+ (AXIJ (elj;"lj Xij) e ADjj\1- xleXu ij =
i

|:0 R::
T.d d §(od aTad, VR an (1 T ad
=Ry (el M z”) ?J(A ZalAx z”) fij AD”(l Al axd )el

T |J d T d |J T, d
Rij(eij)"ij )AXIJ I ( I X}»IJAX XIJ (AXIJ (glj)"lj Xij) /(_J Dlj(l }"IJAXIJ )llj =
'J il

F Rii
T uf(,.d T d) "y T, d
Rij(eij}"ij )AX” ( XAX”)\. XI] (AXIJ (le}“lj Xij) [ Dlj(l }"IJAXIJ )ZIJ =
] i

o
Fi Rii
d d u( T)..d " ( d)(
Af” _RIJZIJA”[ AXIJA” x”+l9 fljku Xjj — [9_ DIJ 1- L”Ax” ij
1]
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with

A A A BRIRTERA L

i~ jo2 T — po2 2 ! ;"ij_ 2 T ~ po2 2 (5.2.17)
0+l 0+ O+l 0+

Eq. (5.2.16) refers to the action of the ij beam on the node j; to obtain the action on the
node i by the same beam, one refers to Eq.(5.2.16) again and applies an indexes’

permutation, taking into account that

Afy =-Af;
‘eij =4 ji
(5.2.18)
A=A
d d
AX = —AX5;
and
F=F;
05 =05
(5.2.19)
AD;; = ADy;
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2Tl d Rij ( AT )l u ( T d)(..
IJ 'J

L I S S SRS S d_ d . o 0. ,0_,0 .
Aflj——Afjl ; le—le ; flj——fjl ,)\.IJ __;\‘ji ; AXij——Ain ; FIJ Fjl ; fl] ZJI ;
ADjj = ADjj

ST ] d Fi A
- 0 il T
J J
definitively
Afji = Rjié jir T [I A x4 JI(I T xd R ap. (1 xTAx )é
ji = Rjit jitjj le jI Xgi T Ji* i AXGi — 0 ACii jif i
J' al
or,also,
FO
d J( STl IJ ( )é
'J 'J
or,asinEq. (5.2.18)
FO
d J( W IJ ( T d)é..
'J 'J
A, =R £ M1 - AxdaT axe i (12,37 AX® + 3 AD, (1-21Ax¢ (5.2.20)
ij =i ij i i o 0° ij i ji 0° ij ij /7 ij e

ij

The variation of the internal forces of the ij beam can be completely represented by the

vector An; that includes the variation of the internal forces at both the element ends

= |Af] o AFL = |Af AR AFL L AF (5.2.21)
] J ], X Yy

.y X

Anagously Au; denotes the vector that includes the 4 imposed displacements at both the

ends, paying attention on Eq. (5.2.4) for that is

Axﬂ :{Ayij _iji:|

one has
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Axg=[1i=1u, 5 AxS =[-111]Au,
AXiC} _ Ayij _iji : qui _ iji _Ay”
Az — Az, ! Az — Az,
AuiTj = [Ayij Az Ay Azji]
AY;;
1 0 -1 0| Az, AY.. — AV .
i -1]Au, = I A W
1001 0 -1]Ay, Az — Az ]
Az;
AY;;
-1 0 1 0| Az, AY.. —AY..
[ I]AUIJ _ ij _ yjl ylj :qui
-1 0 1Ay, Az — Az, !
Az

ji

The dependence of An; on Auj can be expressed by a single matrix relation, by

assembling Eq. (5.2.16) relevant to ij to the analogous Eg. (5.2.20), and considering Eq.
(5.2.21) and Eq. (5.2.22)

Al = [Af] D AFL = [Af,, ¢ AT, AT, AT,

1y JLx

Af, =Ry £, AT [1 - AX3AT

ij i ij ij

ij

:‘j (1-2,0] )Ax” — L AD, (1-2] Ax¢

ij i
'J

Af, =R £ A1 - Axa, ,J]ij,+ ( — £ +§ AD, (1- 2] AX¢

ij ™vij
ij
|
s AU+
11

R"I: i [I _AXIJ u] - 0 }+
{Af”} i 0 = axiT ]
An, = -

A ] R fi-epl i 0
+ .i...
49 0 il- AT

ij i
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2hy [l - axiat || 0

n, = = -
NS Fi;[l—zijx;é 0 }
+ e -

I Ry
R. £

——L(1-ajAx{ ) -2 |AD;
f?j ( ] U] {_Eij:| 1

Eqg. (5.2.23) can be synthetically written in the form

where?*

R T ey B S IR

24

T T . , :
Ak ; [Af” .Af“} [Af”x: fij,yfAfji,X:Afji’y}
.

R..
T T |J T d J]
AfJ—RIJKIJXIJ[ AXIJ)‘IJ}AXIJ J(I elj)”lj) ij FADJ(:L LIJAXIJ) ij

EO
T d,T T Tod | Rij T d
flI Rllellxll[ Ax”k”} i ™ (ij( EIJLIJJAXJ + [U AD](l kIJAxUjéJ
T d T
) e”x”[ ”xIJ 0
ij ) o d,T
- Af ] 3 i ij{ AXIJ’"IJ} EREIN
Nij Tt T ST A

.
RS gpf o
ol T
Gl oo |—e”x”

R.. 2

?; 1 xTAxd { J}

ij

x T ol

kEij_RJ{ZIJ RSN }[ } EIJ u)

* |J T -1

kGij - /(OJ élj;"lj}: | } k

%—ﬂmwm{g}qmw
ij

[0

25 Elastic secant stiffness matrix of the beam ij;

(5.2.23)

(5.2.24)

(5.2.25)
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Ky, (AXS) = EJ (I }[ '--I- ; - '} — ki (ax? )= (5.2.26)

ij I
) R P
q; (AX}) = E_"J(l_ A AXS {_[’} =q; (Axi‘} )27 (5.2.27)
i ij

The matrices included in the graph parentheses with 2x2 size in Eq. (5.2.5)-(5.2.26) are

assumed as common multipliers of the identity sub-matrices in the right square

parentheses. Understood the dependence on Axi‘j-'

Ky =Ry {eal[1 - Axial ]}{ 'I_I'} _

. 5.2.25b
oAy (- axiag) ( )
_Ruzu;“u ; jT JTJ
(N N I NP
. Fo L -1 FP[ -] i-(1-2]
Koy =iy Lo | <t -4 + ) (5.2.26b)
0 ol I I _(I_zij;"ij)' 1-¢, }‘

5.2.1.2 Assembled system

Denoting by Ax the vector in 4m components that includes the prefixed order sub-

vectors Auy = Auy,

AXT =[ AU ]:[ LAYy Azy Ay AZg ] (5.2.28)

and AU the vector that includes in 2n components the imposed displacements at the

free nodes, allowing the configuration change X°->X .

After introducing the topological matrix A (4mx2n) whose elements are 0 or 1

(Boolean matrix), according to compatibility

Ax = AAU (5.2.29)

2% Geometric secant stiffness matrix of the beam ij;

27 Distortional secant vector of the beam ij.
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The ground constraint of a structural element lead to nullify two components of the
relevant Ax for each change of configuration. Thus, the two related rows of A are all

made of zeros.

Let consider the 4m components vector

Angy Ang, b (5.2.30)

ANT =[ AN’ ..... ]=[ i An Anij’z ji,y

LY

which includes as subvectors, in the same order of Ax, all the vectors An; = Any (h =

1,...m) with reference to the different beams.

Denoting by AP the added external loads vector, requested for the configuration change

¥°—7%, which is the vector that, at each node, balances the vector sum of the forces An;

transmitted to the node by the beam here converging.

One easily notes that the relation between forces and loads represents the equilibrium
equation, where the equilibrium matrix is the transposed of A

AP = ATAN (5.2.31)

Denoting by diag[kijJ the matrix made of all zeros except for the matrices k;; placed in

the diagonal positions, Eq. (5.2.24) is assembled in the unique relation referring to the
definitions given in Egs. (5.2.28) — (5.2.29) and Egs. (5.2.25)-(5.2.27)

AN = diag|k}. ; Jax+ diag|k ; JAx — diagla]; JaD (5.2.32)

Substituting Eq. (5.2.29) and Eq. (5.2.31) in Eq. (5.2.32), one gets
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AN = diag[k} , ]Ax + diag[k}, , |Ax — diag|q; JaD

AX = AAU

AN = diaglk}. , JAAU + diaglk , JAAU — diag|q; ]AD

AP = ATAN = {A"diaglk} , JAJAU + {ATdiag|k; , JAJAU - {ATdiagq] [IAD
AP = KLAU + K AU - Q"AD

with

K; = ATdiaglk;, Ja

K = ATdiaglky, JA

Q" = A"diag[q; ]

AP = KEAU + K AU —Q AD (5.2.33)
By assuming

Ky = ATdiag|kp; JA = K5 (aU)? (5.2.34)
K5 = ATdiaglk j Ja = K (aU)= (5.2.35)
Q" = ATdiag|a}; |- Q"(au)® (5.2.36)

Eqg. (5.2.33) solves the problem formulated in Par.5.2.1.1

One can observe that it is strongly non-linear because the introduced matrix depends on
displacements, which implies that the problem cannot be solved for given loads’ AP
and distortions’” AD variations n order to obtain the relevant variation of configuration
AX .

Therefore a procedure to linearize Eq. (5.2.33) is adopted in order to get the change of

configuration AX under given load variations AP .

28 Global elastic secant stiffness matrix
29 Global geometric secant stiffness matrix

30 Global distortional secant matrix
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5.2.2 Step by step approaches

With reference to the know configuration, let consider some infinitesimal variations
which allow to linearize Eq. (5.2.33) , and, then, to identify the tangent stiffness elastic

and geometric matrices and the non-singular and invertible stiffness matrix

K=K, +K,.

The problem is solved by given infinitesimal load variations, identifying the coupled

joints’ displacements and consequently the relevant change of configuration.

Variations are considered arbitrarily small and the symbol A is substituted by d.

The vector A, Eq. (5.2.17) firstly, turn into, except for infinitesimals

R T R Lo bty ey (5.2.17)
1] o] o ’ ij o ° L.
A N N A P &
0 0 0
! f?f +£i2j 26?1.2 f‘i’j K‘i’j f‘i’j !
T T T
T _E(i)j +£ij _Zﬂ?j _ 1 o
i T 02 L2 op02 o il
G+l 205 L
1 1
hi =—@ ; )\'T :_QQT 5.2.37
ij E?J ij ij E?J ij ( )
Analogously, Eq. (5.2.24) can be written again

where the matrices are independent of dxﬂ and assume the form (with ()* denoting the

quantities under large displacements)
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Koy =Ry g1 - i ]>[; ot f,--'} =Kz ()

-1
kEij =R; f(-)-i(l?T |—dX5 ia?jT {}
g

% 0 i ,
0 IR
=1
_ o o | 0
Kej = Rij{“u‘“ij }{—I T
developing
-1 a; I =1
— o of A ij.y [ 0 0 _
kE'J RJ {allal #:_ 11 o Ri] a’ iy | Fijz | | -
! ij,z
B 02 :
—R.|- Gy a” yauz [I_I}_
ij 0T 07T 02 ; -
| i %y - Fje -1
02 i ! 02 ! 0 0
Ty a'l yalj z __ alj y alj yau z
o o 0 02 02
-R alj Zalj y - alj z _ aij,z
ij 02 o "o
ey e iy Xy
(o] (o] , 02 02
L alj zau y _aij,z aij,z
k _ R { 0, ,0T __I__ __;__?__I 31
Eij — "Njj ”11” ] X |

31 Tangent elastic stiffness matrix

(5.2.39)
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R = ]
kGu EO { ’elj}“uﬂ: ! | :|_kGij(AXij)

Fy o L ol 1 i)
kG'l fo { K'l go 'l H:_ i | :|

F? Ii—1]
i :
]| (IO(IOT

kGij :T?j{ _||

developing

Fe ([
i ]
(lD(IOT et | =

kG”:T%j{ —1i 1

¢} 02 ' o ¢} !
I | e O e P { By '} _
0 o] o ! 02 :
fij —oy, Ay 1-ay; -1l
0 02 ' o 0 ]
_Fi { I _aij,yaii,z:l {' . "}_
~ po 0 o ! 02 _ -
fij Fij, Lijy iy .
02
- ,,Of,,ijj,z,,
0 0
. a'JZa'JV
62
. ,,C{ij:,z,, .
0 0
Qi Xijy

V4
* i d 1 * d
q; = —0(1 M A “p |7 Y (Axij)
ij 1
N °
Gy =— iomﬂdxi o |7
EU ﬂij —f.,
0 o] 1) oT
Klj gij 0y
a’’
o =R.|--Y.
qu ij _ai(}T

32 Geometric tangent stiffness matrix

(5.2.40)
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oT

aj = R{ i } 33 (5.2.41)

T 0T

Remembering Eq. (5.2.7)

o [ o
3 = —
BREH (5.2.7)
iy [y
i =——= !
Ty Qi
1 1J,z
one observes that
a®? il ol
a;} a;}T S R T P s (5.2.42)
i Fijy ¢ iz

As for the global structure, the relation between loads and displacements Eq. (5.2.33)

turns into

dP =K cdU + K cdU-QdD (5.2.43)
where

K =ATdiaglke ; A (5.2.44)
K = ATdiaglk ; A (5.2.45)
Q=ATdiag[q; | (5.2.46)

One gets the total tangent stiffness matrix
K=Kg+Kg ; det[K]=0 ; eig[K]>0 (5.2.47)

which is assumed to be non singular and positive defined, as ordinarily usual under the

assumed hypotheses.

Finally, Eq. (5.2.43) can be solved by dU

33 Distortional tangent stiffness vector
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dU = K}(dP + QdD) (5.2.48)

The elongations of the single elements and therefore the increments of the internal

forces are also to be considered.

About the elongations, Eg. (5.2.14) is taken into account, remembering Eq. (5.2.37) and
Eqg. (5.2.20)
4

AL, zo—(g?T i )Ax,d (5.2.14)
]| gijZ +£'||'J£|J I ) l]

) 27 1
v T (5.2.37)
ij ij ij ij

A =[1i=1]Aauy 5 AxS =[-11 1Ay (5.2.20)
dr, =aldxd = o [I | —1]du, = o2 | —a ju, (5.2.49)
one considers the m elongations’ vector

dL=|de, {e idey, otdr, ] (5.2.50)
By considering Eq. (5.2.27)

AX = AAU (5.2.27)
one can write again (remembering the definition in Eq. (5.2.26) of Ax, here dx)

AXT =[ AU Jz[ ..... LAYy Az Ay Az ] (5.2.26)

dry =addxd = o [I | —1]du; = o | —a ju,
dx = AdU

dL = diaglal" | —a?" [ix = diaglel | —a’" JAdU
B= diag[ozi‘}T —af

dL =BdU

dL = BdU (5.2.51)
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where B denotes the compatibility matrix (mx=2n) depending on the geometry of the
configuration x°

B = diaglad” | —a (5.2.52)

The forces’ variations dF are expressed in function of dL and dD, by assembling the

m scalar equations Eq.(5.2.6) for ij = h =1,....m, and one gets

dF = diag|R; (dL - dD) (5.2.53)

5.2.3 Solution procedure

On the basis of the relations developed in the above, one sets up a calculus method for
solving the main problem of these kind of structures, i.e. identifying the displacements
for each given load condition.

Actually, by starting from the known initial configuration X°, its change into the new
one X occurs after the application of the loads AP and distortions AD, which may be
regarded as given by the sum of a number of load conditions: one considers. Then let
consider a load story given by an additive sequence of s increments of loads and

distortions.

AP =AP+ AP +...+ AP

(5.2.54)
AD=AD+AD+.....+ A°D

The final state X can be reached going through a series of intermediate conditions
50 - 51 (AP, A'D) > 32(A'P + AP, A'D + A°D) > ..... > T =3°(AP,AD)  (5.2.55)

Thus, once chosen A"P sufficiently small, then the passage from the situation =™ to the
subsequent one X' can be analized by the linear equations Eq.(5.2.48)-(5.2.53) in
Par.5.2.1

dU = K™'(dP +QuD) (5.2.48)

dry = adTdxd = ol [1 i —1]duy = o | —agT ju, (5.2.49)
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dL=[dey | dly 1§ ey (5.2.50)
dL = BdU (5.2.51)
B = diaglog | — o (5.2.52)
dF = diag|R; [dL - dD) (5.2.53)

After r steps, by summing up the partial results, one gets

(AU)" = AU+ A’U +....+ AU
(AF)" = A'F + A°F +....+ A'F (5.2.56)
(AL)" = A'L + AL +.....+ AL

The final results identifying X are obtained when r =s

AF = (AF)° (5.2.57)
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5.2.4 Example

In the following an example is presented for analytically treating the above illustrated
theoretical calculus model. Let consider a plane structure composed by m =2 beams

and n =1 free nodes (Fig.5.8), in a known static regime3*

=

A

Figure 5.8: Plane cable structure in the initial configuration loaded at the free node in

the known static regime.

Let consider the following entities in the initial configuration, where

P”7=[f§f1 O] is the vector of the initial loads applied on the free nodes, in 2n
components, in the initial configuration
X =[yo Zv] is the position vector of the free nodes in 2n components, in the initial

configuration

F" = [fg1 fgl] is the vector of the forces in the m beams, in the initial configuration

34 In the following, the dependence on Axil in the analysis of the single beam, and on AX in the global

structure aanalysis are omitted.
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D07=[031 pgl] is the vector of the distortions in the m beams in the initial

configuration

As shown in the previous paragraphs, after identifying the initial configuration in a
static known regime, a change of position AX of the free node is applied leading to a
new geometry of the structure and consequently to new static conditions. Let also

consider a variation of distortion in the beams (Fig.5.9).

The transition from the undeformed to the deformed configuration occurs under the
hypotheses (Par. 5.2.1):

Ag = A—g << 1, which means that the deformations in any beam are very small

/

b. Each beam has an elastic linear behavior
c. Any cable segment is straight both in undeformed and deformed configurations.

Figure 5.9: Deformed configuration (in red) due to the application of the position

change of the free node.

Hence, the variation of the external nodal load AP(AX) is searched for, in order to

ensure the equilibrium in the deformed configuration (Fig. 5.8).
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Figure 5.10: Cable structure in the deformed configuration (continuous line).

Denoted by
P=P° + AP the vector of the applied nodal load in the deformed configuration

X=X +AX the vector of the updates position of the free node in the deformed

configuration

D = D° + AD the vector of the distortions in the beams in the deformed configuration

One follows the two steps of the analysis in Par. 5.2.1, hence, firstly, the study of the
single elements with the identification of the relations between the internal forces’
variations and the free node position change, and, then, the study of the global structure,
where the assemblage operation is dealt with by introducing the topological matrix A,
finally, allowing to identify the relation between the load increments imposed position

changes of the free node.

5.2.4.1 Single elements’ analysis

Let first of all consider the beam Al in Fig.5.11 and its deformed configuration

described by the vector Ax?  after the application of AX
Al
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Figure 5.11: Al beam in its initial and deformed configuration.

A —A A
Axil _ |: Y a1 ylA:| _ |: yAl:| (5.2.58)
AZ, —AZ,, AZ

The boundary conditions in A, as a restrained node, are

Ay, =0

Az, =0

Consequently, by omitting the dependence of the following entities by Axfﬂ, one gets

£, =05 +AX, (5.2.59)
EAlAAl

AF,, = / (Al —AD,) =Ry (Al ,, —ADy,) (5.2.60)

Al
where

¢ ,, is the beam vector A1, directed from A to 1 in the deformed configuration

£5, is the beam vector Al directed from A to 1 in the initial configuration
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AF,, is the magnitude of the force variation in the beam Al
R, is the axial stiffness in the beam A1
Al ,, is the modulus of the length variation of the beam Al

AD,, is the modulus of variation of the distortions in the beam Al

In this first step, one focuses on the identification of the variations of the internal forces

Af , (AXS,) (5.2.61)
Afg, (AXg,) (5.2.62)

whence, remembering Eq. (5.2.16) in Par. 3.2,

F o
AfAl = RAl‘e AlZ’TAl [I - Axilﬂ’;l ]Axil + g_ﬁl [I —£ Al/’LLl ]Axci\l -
AL (5.2.63)
R
+ 20y (L= Ay AX5, )AD
0%
where

I is the identity matrix in 2x2 dimensions

A is the vector M;T(E‘ju + fAl)
Al AL™ Al

Hence, the variation of the internal force in the analysed beam Al from the end 1 to A is

inferred obtained through indexes’ permutation

F o]
AflA = RAl‘e Al/f;\l [I - Axil/l—;l ]AXfA + f?l [f Alﬂ’-;l ]AXfA -
AL

R
- E_:l £ Al (1 - //{’LlAXil)ADAl
Al
Once determined the internal forces’ variations at the ends of the considered beam, one
re-assembles the structure, in such a way to evaluate the variation of nodal load

necessary for the equilibrium of the structure in the updated configuration.
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One considers the 4m components vector An, that embeds the variations of the

internal forces at the ends the beam Al

[AF,,
AF
An,, = {Af“} =M (5.2.65)
Af,, AFlA]y
_AFlA,z i
Since
AY
d 10-10 || Az, AY =AY, o
AXAl = =
010 -1 Ay,, Az, — Az, (5.2.66)
Az,
SAS =[1 P —1]Auy, (5.2.67)
SAE =[-1 ¢ 1]Auy, (5.2.68)
with Au ,, of the 4 components displacement vector.
Thus the internal force vector can be written in the form
- [ Al = axé, 2L 0 N
. 0 € A1 - AxS AT, [ | —|}
AN, = AU ,,
LFR -2, ] 0 -1 1 (5.2.69)
IZ8 0 [
R V4
+ ﬂ_‘;: (1 - ﬂ’TAlAX(j-\l)|:_ fAlAjADAl
where one can identify the following matrices
* T d 4T I -1
kE,AlzRAl{EACj’AC[I_AXACJ’AC] 1
. F? [
K =2 {1 = £ 10, (5.2.70)
0 -1 1

« R 4
e

Al Al
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which are respectively the stiffness elastic and geometric secant matrices, and the secant

distortion vector of the beam Al.
By writing Eq. (5.2.69) in a compact form, it turns into
AN =Kg qAU L, +Kg AU, — 0 AD (5.2.71)

As concerns the other beam B1 of the structure, its change of geometry is given by

Ay, —Ay Ay
Ax4 =| =7 Y= A (5.2.72)
AZBI - AZLB AZm
with boundary conditions in B
Ay,; =0
5.2.73
Az, =0 ( )
Whence, Af, is given in the form
F o
AfBl = RBIZ 31’1;1 [I - Axglﬂ“gl ]Axgl + ﬁ [I —£ Blﬂgl ]Axgl -
B1 (5.2.74)
R
+ me B1 (1_ ﬂ’-lE;lAXgl)ADBl
B1
and then, by permuting the indexes, one gets Af,,
F [o]
Ale = RBl’e Bl/lgl [I - Axglﬂgl]AXfB + ﬁ[ﬂ Bl/l-gl ]Axfs -
B1 (3.6.18)
R
- e—flf B1 (1_ ﬂ’glAXgl)ADBl
B1
where
I is the identity matrix in 2x2 dimensions
. 1 .
A is the vector OZ—T(K g+ 4 31)-
EBl + B1™ B1
thus, the vector Angis introduced
(AR, |
Af AR,
Ang, = { Bl} = (5.2.75)
Af AR,
_AFlB,z B

By considering the vector of displacements Aug, one gets
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AYg,
Axd = 10-10 | Azg _ AYg, — AY,g
1010 1Ay, | | Az — Az, (5.2.75)
Az,
le.
AS =1 —1]Aug, (5.2.76)
A =15 —1]Aug, (5.2.77)
Then
R ¢ Bl//”-ll;l [I - Axglﬂ’gl] 0 4
> 0 ¢ BC ﬂ’gl [I - Axgl/ﬂal | -1
Ang, = T Aug,
n i{[l ¢ 81/131] 0 ﬂ L (5.2.78)
6%1 0 [I —4 Bl/ﬂal
V4
(1 ﬂ’BlAXBl)|: ZBI i|ADBl
Bl —tm
In the compact form
Ang, =k;BlAU B T k;BlAu B1 _qglADBl (5.2.79)
with
x [
kE,Bl =Ry {E Blfm [I - Axgllgl]>|:_ [ }
x Fo I -1
Ko ar 651 {[I -4 Bﬂﬂal]}{_ Lo } (5.2.80)
BL

{
T

which are, respectively, the stiffness elastic and geometric secant matrixes, and the

secant distortion vector referred to the B1 beam.

5.2.4.2 Global structure’s analysis: identification of the main entities

To pass to the analysis of the entire structure, let now consider embedding the

previously identified displacement and force vector of each cable segment
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[AY |
AZAl

Ay

AX = {Au “} _[A%a (5.2.81)
Au Bl AyB].

Az,

AYig
_Ale i

‘AFALy
AF,,
AF

1Ay

An AR, ,
AN=| " A= ™ (5.2.82)
Ang, AF

AFg,,
AFg,
AF

| 21,z |

BLy

Two linear compatibility and equilibrium relations may be set through the Boolean

matrix A (4mx2n), and its transposed one AT (2nx4m). A is made of 0 and 1 and

depends on the topology, with 1 for the free nodes.

Hence, by considering the structure shown in Fig. 5.12 and its constraint conditions
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Figure 5.12: Deformed global structure.

the A matrix is given by

10 1
0 1
0 0
A
A 00 (5.2.83)
10
0o 1] 1
0 0
B
_0 O_
Thus the compatibility relation can be written
AX=AAU (5.2.84)
and, taking into account Eq. (5.2.82), the equilibrium is
AP=ATAN (5.2.85)

By remembering Eq. (5.2.32)

AN =diag[k ¢ ;; ]Ax + diag[k s ;; ]Ax — diag[q; JAD
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where diag[ ] denotes the matrix in the square parentheses arranged in diagonal position

Ky O K. 0 0
AN{ S ]Ax+[ or }Ax {q“ ) }AD
0 kE,Bl O kG,Bl 0 qu

Moreover, substituting Eq. (5.2.83) into Eq. (5.2.86), one gets

K. 0 K 0 0
AN{ S ]AAU+[ or ]AAU —[q“ ) ]AD
0 kE,Bl 0 kG,Bl O C]Bl

and one gets

*

E,AL

*

Kk 0 0
o }AAU ~A [qu ]AD
0 G,Bl O qu

E,Bl

AP =AT [O }AAU +A'

where

Kt =A'diagk ;]JA

Kg = Aldiagk, ;1A

Q = diag[q;;]

Whence one can write

AP = KLAU + K AU -Q"AD

To solve the above equation, one assumes that the distortions are equal to 0

AD=0
Q'AD=0

Eqg.(5.2.90) turns then into

AP =K AU + K AU

(5.2.86)

(5.2.87)

(5.2.88)

(5.2.89a)

(5.2.89h)

(5.2.89¢)

(5.2.90)

(5.2.91)

(5.2.92)

After identified the variation of the external load by Eq. (5.2.92), through a small

incremental step (p) the first variaton of P is computed by
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dP* = AP +p (5.2.93)

The trigger value is considered to proceed step by step, and then the coupled

displacement can be identified by inverting the stiffeness matrix given by
K=K +K; (5.2.94)
finally obtaining

du' =K 'dP! (5.2.95)

Eq. (5.2.95) denotes the infinitesimal step applied to the structure, repeating the above
presented calculus procedure for then indivituating a new load condition. The procedure

continues up to convergence, that is when the difference between two subsequent

solutions is very small

dP™ —dP" <[ (5.2.96)
where

dP™ is the load variation at the subsequent step r +1

dP" is the load variation at the preceding step r

|t| is a tolerance value assumed for a valid solution.
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5.3 Three-dimensional systems

When referring to 3D structures, one may apply and extend to spatial schemes what
developed in Par.3.3 for 2D structures, and one may, thus, develop the general setup for
finding equilibrium shapes under different load conditions in the three-dimensional
case. As an example one refers to the topology illustrated in Fig. 5.13 subject to out-of-
plane loads, and one synthetically presents in the following the relevant results, after
suitably implementing the problem in the related calculus code.

5.13: Topology scheme.

In Fig. 5.14 the configuration is reported, due to the application of out-of-plane load P,
=1 in the upward direction with a ratio in edge and internal branches equal to 1:1.
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Perspective Plan

Elevation
Y Distance

' 5
YDistance ° o ' *_ o : 2 3 f s
X Distance X Distance
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3 P B 3
X Distance Y Distance

Figure 5.14 : Equilibrium shape under the out-plane load P,=1 in the upward direction.

The ratio in the edge to the internal branches is g=1:1.

Fig. 5.15 depicts the shape assumed by the structure under the application of the out-of-

plane load P, = 20 in the upward direction on a single free node (free node 5).

Perspective Plan

Elevation
Y Distance

X Distance

Y Distance ¢ : § _
‘ X Distance

Elevation 1 Elevation 2

Elevation
Elevation

X Distance ¥ Distance

Figure 5.15: Equilibrium shape under the load P,=20 in the upward direction , applied
only on the free node 5.

The ratio in the edge to the internal branches is g=1:1.
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5.3.1 Implementation

In the following the methodology described for a plane cable system with opposed
curvature is extended to a three-dimensional system case, shown in Fig.5.16-17, and we

will demonstrate its validity.

Figure 5.16: 3D model of a cable system with opposite curvature.

Thus, keeping the same definitions and symbols given for the plane case in the previous
Par.(5.2.1)-(5.2.2), the problem is formulated for a cable structure in the three-
dimensional space (Fig.5.17).

Figure 5.17 Lateral view of the Cable structure in the reference system Oxyz.
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The entities introduced for a two-dimensional system are extended to the three-
dimensional one, referring to the system (Oxyz)

PT = [le Py1 le PXZ Py2 PZZ Pxn Pyn Pzn]

; (5.3.1)
X = [Xl Yi 4y X Yo Zp o o XY, 2
FT - [Fl F2 Fh Fm] (5.3.2)
D' = [Dl D, D D

As seen, the change of configuration from Z° to X for a single element ij (Fig. 5.18) is
described by the vector

Axﬂ =| Ay —Ay;i (5.3.3)

Figure 5.18: Undeformed and deformed configuration of the beam due to the change of
configuration applied on the entire structure, in the reference system (Oxyz).

The length vector of the element ij in the deformed shape and the entity of the force
variation are given by

£y =145 + AX§ (5.3.4)
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E. A
AF, =33 (A, —AD, )=R, (¢, -AD,) (5.3.5)
ij
By introducing the versors
ZO ij,X
a S ai‘? in x°
ij 6?1 (J],y
Lz (5.3.6)
ij,x
o zfi: Xy | in X
) 5”
L1z
the force vector in ij can be written again
£ = Fyay = (F2 +AF, Jog +Aay )= 0 + AF, 0 + FOAa; +AF; Ag
(5.3.7)
Af; =1, —f = AFj0 + FJAa; + AF;Agy;
Similarly, Eq. (5.3.4) turns into
£y =105 +AX
(5.3.8)

0
Cy0 = Lhag +AX

Hence, the length variation is computed

£, =105 +AX;

o
Loy = L0 +Ax

T _ LT po
Uéuau aufuau +a; Ax ( +Aa”)5”a” +a; Ax

05 =05 = Aaf L5058 +al AX]

Aly = Aaj 508 +afAX]

or:

T T po T
ol 0 =0 liop +ag AX —(

+Aa”X£ a +AX )

i

=a (0] +a) AXS + Aafl5ad + Aaf AXS

0y =05 +a AX§ + Aaj (E?Ja” + AX] )
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ALy =0 =15 = asl AX] + Aa (5.3.9)

U] ij™ij

Following the same developments like in the plane case, the variation of the versor is
obtained by Eq. (5.3.8)

o] d
lij :Zij +AXj

0 d
E,Ja” = E,Ja” +Axij

05+ AX] _ir?ﬁAxﬂ
£0

BTl ag) 0| e agy)

2% +AxS 2% 1| £° + AXE
Ao, =0, —a° =—2 B R o 5.3.10
Hu = T o0+ as) 0 z?{iuAgui ”} ( )
Because of small deformation hypothesis
1
=1-Ae (5.3.11)
1+ Ae
Eq. (5.3.10) is simplified into
R . LEAxg o {f?ﬁAxi‘} z"}
ai.:ui.—ai.: 5 5 __0 — &£
T T e i asy) 0% 05| [Lrag)
1| €5 +AX; 1
Ao, =— (—)” -1 05+ AX; NL-Agy )-£5 |=
1) g?][ 1+A8|J |J] EIJ [( X ) ]
= oo+ axt - e, 08 - A AXE - £
AL,
Ay = = [AxE - Ag, 0 ”] AxS -— g,
5 05
Al
Aoy = 1 AXG —— L, (5.3.12)
o 5

and Eq. (5.3.9) turns into
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£y = L5 + AX;j
(a. =00 +Axﬂ

ij o] i)

ALy =0y =05 =a)l A +Aajl, = o] AX + £} Aa;

1 ij™ij

Al
Ay == [axE - Aeyb, )= | axt - Sy,
IE A

i j o
ij f

Al Z?JT T Al
Ly Ax +4; Ax -—4; |=
fu Kij Eij Eij

1 oT T d AZij T
:g_o(gij +fij)AXij S £l

ij ij

e P+ 1,
M{H—ZOZJJZMU[—' f?fj ’j - (€07 + 47 xS

ij ij

Al = af A + € i{
4

02 (o]

1 00 V4
AL :_+(£9T +£T.)Ax.d. :—(EOT +fT )AX
ij o 02 4T i ij 2N 02 | 4T ij
0 U5 L G+

EO
Al = —£°T+£T Xi: 5.3.13
=g O+ (5313

ij™j

For removing the elongation in Eq. (5.3.12) by Eq. (5.3.13), one gets the new

expression
Al
Aoy = :t AX; d =4
0°
= 4 ( +£T.) d
1) 02 T 1] ]
é A
1] o (674
Au'] E_O ij - 602 g g 1)
ij + ij™ij
oT T
. —iA ; (z + 1] )Ax” z,,

1 (ZOT + 45 A% £

A, = — Ax? — 0 02T T (5.3.14)
ij o 1) 02 T o
0 E +0.0. (ij

1 i ij
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The force variation in the element ij at the node j is

Afy =R €T [1 - AXOa]

ij > i) ij7ij

ij

Fe R,
ol — 0] IAXE E—O'JADij(l—kiTijg , (53.15)

7
ij

By remembering Eqg. (5.3.17)

oT T oT T ° e
i = by +&; Ly +¢ Y W Lirly _Ey iy (5.3.16)
j e°2+M 07402 ‘ €°2+ff 07 +15

i j 1 ] gl

the action on the node i is obtained by the permutation of indexes

Af, =R, L M1 [1-Ax; LT]Ax}’j+;f (|—£ijx;)Ax§}—R—AD (1-2]Ax¢

ij Vij
I
Afy=—Af; ; Ry =R, ; £, -4, Al -A} . Ax)=-Ax§ ; FP=F2,; £5=0%;
AD, =AD,
R;
~Af, =R, Kj,le[l—AxJ,x],]Ax“— ! ( (,,xj,)Ax‘;iw; AD, (1-2TAx¢
ji

definitively
Af, =R, T 1= axdal Jaxe Fi'( —£ 2T X % AD (127 Ax¢

- jivii ' T XJI ji in+£9 jilvii in_gou ji\t— i in

ji
or
Af, =R L AT [1-axda] Jaxd F"'( —£ ] axe D, (1-2] Ax¢
— AXjihj; ji g X“_i X
ij 'J

oras
Af =R L AT [1- AxdaT Jaxe il (1-£,00 Iax, + 1 AD (1-a7 Ax¢

= Xij A in+€o & ki AKX+ go SRty Xij

0 1o

AF, = R0, 0T [1 - AxdaT Jaxg il ( z”x;)ij,Jr AD, (1-2IAxd e, (5.3.17)

The vector of the internal force variation at the ends of the beam ij turns into

AT =|Af] AFL |=[Af, .t AR AR, AT DAfG AT (5.3.18)

1,y JLx Ly

Analogously Auijj denotes the vector of the 6 components of the imposed displacements
at the ends. Observing that for Eq. (5.3.3)
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AXij —AXJ.i
AXS = Ayij _iji (5.3.3)
Azij —AZJ.i
A =i =1auy 5 AxG =[=1 1 1Ay (5.3.19)
and
AXj; — AX;; AXji — AXj
Axﬂ =| Ay —AY; | Axcjii =| Ayj — Ay;;
AZ; - Az AZji — Az;;
Axij
Ay
: 7.
[Hi-taug={0 1 0 0 —1 0f U |=| Ay ~AYji |=Axj
ji
AZ;;
Ay
100 -100 N iji—Axij
) Z::
[-1i1]Jau;={0 1 0 0 -1 0O . Ay —Ayj = AxY

I AX

ji
00100 —1f,.

Az

ji

n

Az;; —Azij

the dependence between Anijj and Auij is inferred in the form
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AT = [AfT D AFT = [Af,, DAR DAR, LA DAf, AT
i RF
A, =Ry, 1[I = Axa] Jaxd + ’( RNAAING —f’ADij<l—kiTiji‘}
ij
R|
A =R £ L[ - Axd ,J]ij,+ ( K,Jx;)Ax‘}i+€—‘ADij(1—x;Ax;}
ij
o z”x;[l—Ax”xfj] 0
Af L 0 Ceaic AXHXH L]
Ang=| " |= -e-- AU+
PG| RI1-eap i 0 [—I: J i
€° 0 g
R, ‘.
LT EAN
K?J 1] 1] _‘eij ]]
o g_i_j_;j[l Ax,‘jx;] ) 0 N
Af v 0 f”)\.,TJ [I - AXU)\,,TJ] 1 =1
1M O
Afj Foll—eal 1 0 =1 (5.3.20)

é‘i’j 0

ij

) AT
12,0

R. /.
1) d ij
- (1-2]Ax¢ {:.[ij.}AD”

i

Taking into account that here the secant stiffness matrices and vector assume different

dimensions, they are defined as

_kEuAu +kGuAu q;}ADij
= [Af] DAfT]=[Af,, 1A ;Afii’z | Af
Af, =Ry £ M1 - AxEa ”]Ax”+ ( —L ]

Jix

hax -2

P Af

Af =Ry ML= AxET xS + ”( — L AT AXS, +—L
R.|: IJ Ij [I _AXU u] - 0
{Afu} ’ 0 EIJ)‘ITJ [I - AXIJ)‘ITJ
Ang=| 0= |
Af F I:I ZIJLITJ 0 }
AN
R. L.
] d 1)
LYWW AN

iy

(5.3.21)

fAfJ,Z]

AD, (1-2] AX¢

R,
5 AD, (1- 2] AXY

'J

ﬂ ’ E__

L1
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I -1
I(EIJ = {flj;“-lz [I _AXI] ij ]}{ ||:| kEI] (AX ) (5322)
S TIPS R IS
ij i
q; = %(1—x;Axg {_ﬂ’} —q; (axd) (5.3.24)
ij ij

Actually, the matrices appearing in the graph parentheses are with 3x3 size, and they

have the same function as described in Par. 5.2.1.

5.3.1 Assembled system

In order to consider the global structure the vector Ax is introduced, which now includes

the 6m components of the sub vectors Auij = Aun

Ayu AZ” AX ijl AZJI ; .....] (5325)

ji
and the vector AU of the 3n imposed displacements at the free nodes.

Hence the relation between Ax and AU is expressed through the topological matrix A
(6mxn),

AX = AAU (5.3.26)

At constrained nodes, the relevant components of Ax are zero in any change of

configuration, and then the related rows in A are equal to 0 as well.

Let considers the 6m components vector

AN" = iAn? fo =]l AN, An An An, An, AN, .| (5.3.27)

1,X 1,y 1,2 JIx my 1,2

which includes the sub vectors Anij= An, (h = 1,...m) in the same order of Ax, related to
the several segments. The variation of the external load AP is inferred through

equilibrium by the transpose of A
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AP =ATAN (5.3.28)

With reference to the definition of diag[ki]®* and to Eq. (5.3.21), (5.3.25)-(5.3.27),
(5.3.22)-(5.3.24), one gets

AN = diag|k} ; JAx + diag|k s ; |Ax —diag|a]; JAD (5.3.29)

AN = diag[k’f;,ij JAx+diag[kE i ij—diag[qu JAD
Ax=AAU

AN = oliag[k"Eij ]AAU +diag[k’g i ]AAU —diag[q’i]- ]AD

Whence the solving equation is identified

AP =ATAN = {ATdiag[kTE,ij lA}AU + {ATdiag[k’é,ij jA}AU N {ATdiag[qu J}AD (5.3.30)

AP =KEAU+KgAU-Q AD

with

Ki = ATdiaglk} ; JA =K} (aU) (5.3.31)
Ky = A'diag|ks ; |A = K& (aU) (5.3.32)
Q = ATdiag[q;} Jz Q" (AU) (5.3.33)

Hence the step by step approach in Par.5.2.2 is applied, taking into account that

[
1. kg =R; {aﬁuﬁT ]{ T I} is the elastic tangent stiffness matrix of the element

3 The matrix is made by zeros except for the diagonal positions, where the sub-matrices k;;are placed.
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2. kg =i{| —alal - T is the eometric tangent stiffness matrix of the
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element ij
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Remembering Eq. (5.2.51)
dL =BdU

with

B =diag [ai‘J’-T —ai‘J’-T ]A the compatibility matrix (mx3n)
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5.3.2 The elastic and distortional stiffness matrix

The distortional effects, which have been neglected in Par.5.2.3 in order to solve Eq.

(5.2.33) in Par. 5.2.1.2, are considered in the following.

Let consider EQ.(5.2.16) in Par. 5.2.1

Af; Rzﬂ[l AX{A ]Ax,J ( — L) %ADﬁ—ﬁijﬁ)zij (5.2.16)
i

By assembling all the terms depending on the axial stiffness R, one gets

lij £
Afy; = Rij| £ 1Ax —£afaxdafaxd —AD =0+ ADafaxd =0 |4

i i (5.3.34)

.
( —Lijhij XIJ

Hence, by moving the terms independent by the Axi‘} to the left and by considering

Eq.(5.2.5) in Par.5.2.1), Eq.(5.3.34) can be re-written

Af, +€0 AD/L, =R, {E ATIAXE — € AT AXCATAX +£—0AD AL, } ( — L0
IJ

Ri' o] d T T T
Af; +€—;ADij(fij +Axij): Ri{fijx”mx — £ 0 AR AXS +
ij

ADMAX, } ( — ] X

|l

f

ij

EO

Af; + il AD L5 = i{fijx;mx — L ASAXALAXS +£

— ADMAXE } " AD,AX{] }+ (1-2, )»T)AxIJ

R,
Af + 53 AD 5 = {f M IAXS — £ A AXEALAXS +—— 1 AD A AX } 1A, JAX]

£ 4 }+ (5.3.35)

fo ( ‘e )" )AX”

Whence
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F.?
JiADij AX§ +— (I—Eijﬂjijﬂ
i i

Af R”ADEO—R £
+€T itij = Rij LA

I{1+ 1 AD; J—Axg}qj
0°
ij

ij

(5.3.36)

Setting

R..
AfP =L AD ¢°

ij ° i ij
ij

i.e. the axial distortional forces, Eg. (5.36) turns into

F.2
L ap, laxe + (I_gijﬂj)m (5.3.37)

ij ij

D T
Af +AFS =R £k

o

|[1+ L Ap, J—Axm

Denoting by

ij ™ij ij
4 ij ij

Koy = Ryj1€ih |[1+iAD".]—Axg;qJ 1-Lap, (5.3.38)

the modified secant elastic stiffness matrix due to the effects of the distortions, one has

Af + AFP =K AXS + K A (5.3.39)

Following the considerations made in the Par. 5.2.1, Eq.(5.2.33), one has

ANPT = [ i AnDT L] (5.3.40)
Where
Af
Ang = Lfﬂ (5.3.41)
ji
and

APP = ATANP (5.3.42)
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which is the equilibrium equation between the variation of distortional loads and the
distortional forces.

For the entire structure one has

AN +ANP = diag|k , |Ax + diag|k, , JAx (5.3.43)
whence, because of compatibility

AX =AAU

AN +ANP = diagk %, |AAU + diag|k; , |AAU (5.3.44)
As regards the equilibrium, remembering that

AP =ATAN

one gets

AP +AP® = ATAN + ATANP

AP+ AP® = AT(AN +ANP)

AP+ APP = AT (diaglk %, JAAU + diag[k; , JAAU)

AP + AP = ATdiaglk %, |AAU + ATdiag|k; , JAAU (5.3.45)
By considering that

K® = ATdiaglk 2, ]A (5.3.46)
K = ATdiaglk; , JA (5.3.47)

are respectively the secant elastic stiffness matrix with the distorting effects, and the

secant geometric stiffness one, Eq. (5.3.45) can be written
AP +APP = KPAU + K AU (5.3.48)

Assuming
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AP, = AP+ AP® (5.3.49)
Eq.(5.3.48) written including the distortional effects as distortional loads, turns into
AP, = K{PAU + K AU (5.3.50)

The solving procedure previously described holds also for Eqg. (5.3.50), and the same
considerations are valid also in the 3D extension, taking into account the different size

of the matrices.
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6. AN OVERVIEW ON THE DYNAMIC BEHAVIOUR OF
CABLE TENSILE SYSTEMS

Aiming at emphasizing the dynamic behavior of tensile structures, in the following the
performance of cable tensile roof is investigated through the analysis of a study case

which is referred to.

The executed investigation focuses on the vibration modes of the selected study case,
paying attention, mainly, to the deformed configurations, frequencies and periods. The
accidental loads referred to in the analysis are identified as concerns the Italian
Instructions NTC2008. The analyzed structure is an open system, and, in this case, it is

undergone by an asymmetrical load.

6.1 General description of the study case

Firstly, the geometry and the materials of the study case have been identified and
described in the following. The structure refers to a tensile roof designed for covering a
large space in Tokyo. It is an open system, as previously mentioned, and it is composed
of steel frames and cables. Fig. 6.1 shows that it is a symmetrical cable structure with

opposite curvature where the connecting cables are arranged along the vertical direction.

Figure 6.1: Plan and vertical views of the structural scheme.

The geometry is characterized by an arch structure composed by steel elements
consisting of beams, piles and cables. The covering is in PVC material. It presents a
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span of 40000 mm, a depth of 10000 mm, reaching a height of 13000 mm. For the piles
HEM300 are used and IPE300 and IPE200 for the beams. The diameter of cables is 10
mm or 40 mm based on their arrangement and structural function. In Fig.6.2 the lateral

view is shown.

Figure 6.2: Lateral view of the structural scheme.

The distance between the cable elements amounts to 10000 mm, reaching a total depth
of 20000 mm, as highlighted in Fig. 6.4. Moreover, the connecting cables present a
different length along the arcade (Fig. 6.3).
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Figure 6.3: Plan and frontal views of the structural scheme.
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Figure 6.4: Lateral view of the structural scheme.

The analysis has been conducted according to the Italian Regulations, in particular:

Law November, 5" 1971: “Norme per la disciplina delle opere di conglomerato
cementizio armato, normale e precompresso ed a struttura metallica” (Regulation about
the reinforced concrete, concrete and pre-pressed concrete buildings and steel frame

structures);

D.M. (Ministerial Decree) Transport Infrastructures January, 14" 2008 : “Norme

tecniche per le Costruzioni” (Technical regulation about the buildings);

Furthermore some indications belonging to the Circolare 2 febbraio 2009 n. 617 del

Ministero delle Infrastrutture e dei Trasporti have been considered:

“Istruzioni per 'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 14
gennaio 2008”. (Instructions about the application of the Technical Regulation about the
buildings; DM 2008/01/14).

6.1.1 Materials
Then the materials composing the elements have been identified, as follows:

-S355

-Stainless steel
-PVC

in order to evaluate the following mechanical properties:
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- Weight per Unit of Volume

- Mass per Unit of Volume

-Young Modulus (E)

- Coefficient of Poisson (v)

- Shear Modulus (G)

- Coefficient of thermal expansion (a)

- Yield tensile stress (fyk)

The stress/strain graph is shown in Fig. 6.9.

6.1.2 Regularity of the structure

Table 6.1 summarizes the principal features of the plan and height regularity for the

study case, according to Italian Regulations (Par.6.1).

Table 6.1: Check of the plan regularity

Plan regularity of the the structure

The plan configuration  appears
symmetric along the two perpendicular YES
directions, according to the mass and

stiffness distribution.

The ratio between the sides of a
rectangle that inscribe the plan is less
than 4.

(bit = 68000 mm; hiet = 20000 mm;
brot/Niot =3,4)

No dimension of any recesses or

YES

protrusions exceeding 25% of the YES

construction dimension in the

corresponding direction.

The horizontal elements can be
considered infinitely rigid in their plane YES
with respect to the vertical elements and

sufficiently resistant.
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Height regularity of the structure
All the resistant vertical systems extend | YES

along all the height of the building.

6.1.3 Load Conditions

As concerns the loads applied on the structure, they are subdivided in permanent and
accidental loads.
To the first category the following loads belong:
- Gu: the structural elements self- weight (cables, beams, piles)
- G2: the un-structural elements self-weight
- T: the pre- tension in the cables
To the second one the following loads belong:
- L:accidental loads.

The considered load condition is given by
G,+G,+T+L (6.1)
The loads evaluation has been made according to the DM 2008, except for the

permanent ones, whose evaluation has been made according to the final dimensions of

the structure.

6.2 Modelling

A FEM model has been developed for the study case, in order to evaluate its response
under the accidental asymmetrical loads.

After the definition of the geometry and materials of the elements, and the constraint
conditions, the model has been realized with SAP2000 using frames, cables and shell
elements.

The lateral sloping and the vertical cables are modelled like a straight frame, divided in
ten segments in correspondence of the nodes which link the cable to the vertical ones.
The elements respect the number and the arrangement supposed in the design phase
step. The roof surface has been modelled through shell elements with membrane

behaviour. It has been divided in a regular mesh.
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Moreover, the elements are linked to each other through joints, as shown in Table 6.2.

Table 6.2: Main constraint conditions

Constraint Hinge Joints

[U=0;®=0] | [U=0;D+0]

& =

In Fig. 6.5-8, one shows the model and the different elements distinguished by the

different colors.

Legend
W Frame

Cable
H Shell

Figure 6.5: Model-Frontal view.
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Figure 6.6: Model-Perspective view.

Figure 6.8: Model- Bird’s eye view.

In Table 6.3 and Table 6.4 the number and type of elements and the number of the

constrained points used in the model are shown respectively.

Table 6.3: Type and number of elements

ELEMENTS N° OF ELEMENTS

Frames 46
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Cables 90
Shell 80
Nodes 131

For the piles the use of the HEM300 is adopted; instead for the principal beams the
IPE300 and for the secondary beams IPE200 are used.
In Table 6.5 the geometrical features of the above mentioned elements are shown.

Table 6.5: Geometrical features of the frame elements

b

h B a e
[mm] [mm] [mm] [mm]
IPE300 300 150 71 10,7
=
IPE200 200 100 5,6 8,5
$
1
(l HEM300 | 340 310 21 39
—

6.2.1 Materials’ properties

Then the mechanical parameters of the materials have been considered, summarized in

Tables 8 and 9. Moreover, in Fig. 6.9 the stress/strain graph of the steel material used in

the model is shown.
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Table 8: Weight and mass

Material Weight per unit | Mass per unit
volume volume
[KN/m?*] [KN/m?®]
S355 77 7,849
Steel 77,5 7,902
Table 9: Properties Data
Material E v a G
KN/m? - °C KN/m?
S355 2,1E+8 0,3 12E-6 | 80769231
Steel 2E+8 0,3 16 76923077

Legend
B Axial Stress/Strain Curve

B Share Stress/Strain Curve

................. Stram ™

b -6 150 a0 i & 0 [ T T

Figure 6.9: Stress/strain graph of adopted steel material.

6.2.2 Load Conditions

As concerns the load condition, the self-weight of the structure and the accidental loads

have been considered.
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The self-weight has been calculated by the program, by considering the self-weight of
the roof like an overload on the structure and including the pretension in the cable in the
class of the permanent loads.

About the accidental loads, an asymmetrical load one has been applied on the structure,

classified in the class of live loads.

Figure 6.10: Accidental load condition.

Table 6.10: Load condition

Type of load

Self- weight The self-weight of the structure is calculated
by the program

G2 0,009 kN/m?

Live gsk=1,30kN/m?

The value of the accidental loads has been calculated according to the NTC2008.
A snow load has been supposed on the roof.

According to the NTC2008 for a snow load, considering the different zones, one has

1. a,<200—q, =0.60kN/m?’ (6.2)
2
a
2. a,>200-q, :0.51{14{ %81) }kN / m? (6.3)
where

a, is the height of the zone

g is the snow load
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Therefore, one has considered a snow load given by

a, =600 (6.4)
. 0571+ (600 481)1 _1.30kN /m? (6.5)

The uniform asymmetrical load has been applied on the model in terms of nodal loads.
Fig. 6.11 shows how the asymmetrical loads have been calculated for each node of the

roof surface.

____________________________

3\&
PP o |

Y

Figure 6.12: Detail of the nodal loads condition.

The value of the nodal loads has been analytically calculated as follows.
Firstly, three types of nodes on the roof surface have been identified:

1. External nodes [ ]
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2.Longitudinal boundary nodes 0

3. Transversal boundary nodes

4. Inner nodes

For each of them, the value of the load has been determined as follows:

W pd-d

m pd,d,

The roof overload has been considered also applied on the nodes, following the same

procedure.

6.3 Modal analysis

The modal analysis of the structure has been developed under the given load conditions.

In order to identify the different vibration modes of the structure, one has considered the

following masses:

1. Self- weight of the structural elements (G1)
2. Overload of the roof (G2)

3. Accidental loads (L)

Therefore, the total mass is:

Gi:

Piles: w-A-H-n [kN]

Beams: W-A-/-n [kN]
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Cables: W-A-/Z-n [kN]
GZ:
Roof surface: g - A[KN]

where:

w: weight of the material of the element in kN/m?®
A: area of the element in m?

H: height of the element in m

n: number of the elements

I: length of the elements in m

or: gravity load of the roof in KN/m?

In order to assign this mass to the structures, one has identified the different loads in the
MASS SOURCE (M2), given by:

Elements and additional masses (G1)
From load (G2+L)

After that, the number of modes according to the eigen vectors has been identified.

6.4 Numerical results

In Figs. 6.13-24, one reports the results obtained by the modal analysis in terms of

deformed shapes (displacements in mm), frequencies(Cyc/sec) and periods (sec.).
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a1 ATTSEL S NTCR ST

Figure 6.13: Mode 1.

Figure 6.14: Mode 2.
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Figure 6.15: Mode 3.

Figure 6.16: Mode 4.
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Figure 6.17: Mode 5.

o5 e ofSER0 s <ol
Figure 6.18: Mode 6.
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40 1

Figure 6.19: Mode 7.

4 1

Figure 6.20: Mode 8.
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T S S
Figure 6.21: Mode 9.

420 0 0 e ese
Figure 6.22: Mode 10.
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490 560 G a0 o a4
Figure 6.23: Mode 11.

Figure 6.24: Mode 12.
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In the modal analysis 24 vibration modes have been considered, here depicting the first

12 modes.

In Table 6.11 and Table 6.12 the obtained results are shown.

Table 6.11: Modal Load Participation Ratios

OutputCase | ItemType Item | Static Dynamic
Text Text Text | Percent | Percent
MODAL Acceleration | UX | 71,4232 | 99,3969
MODAL Acceleration | UY | 96,5346 | 99,9492
MODAL Acceleration | UZ | 65,9536 | 88,7967
Table 6.12: Period and frequencies
StepType | StepNum | Period | Frequency | CircFreq
Text Unitless Sec Cyclsec rad/sec
Mode 1| 0,557161 1,7948 11,277
Mode 2| 0,422132 2,3689 14,884
Mode 3 0,32747 3,0537 19,187
Mode 41 0,312177 3,2033 | 20,127
Mode 5| 0,283351 3,5292 | 22,175
Mode 6| 0,249995 4,0001 | 25,133
Mode 7| 0,198076 5,0486 | 31,721
Mode 8| 0,177829 5,6234 | 35,333
Mode 9| 0,161133 6,206 | 38,994
Mode 10 | 0,136697 7,3154 | 45,964
Mode 11| 0,131833 7,5853 47,66
Mode 12 | 0,120482 8,3 52,15
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7 CONCLUSIONS

Tensile structures represent special kinds of architectural and engineering systems. They
had a rapid spread during the years due to their advantages as lightness, simple and fast
installation, maximum use of the materials’ mechanical properties. These structures are
mainly characterized by cables or cables systems as structural elements, and they can be
classified in cable structures, including simple cable, cable with opposite curvature, and
cable nets; membrane structures, tensegrity, and tesairity. Their application field is
various and for the above-mentioned features, these structures require particular
attention about the design and behaviour analysis comparing to the other ones
typologies. It implicated an increasing interest of the researcher about their structural
analysis. The form-finding process is a fundamental step in the design of these systems
searching the equilibrium shape according to the load conditions. As known that the
tensile structures are hypostatic systems, where the forces depend on the deformations;
therefore, the small displacements hypothesis doesn’t hold, and the calculus gets

complicated.

Several approaches have been developed and improved in the years, starting from the
results obtained by the study about the equilibrium of the rope. In particular, the

methods can be divided into catenary, FEM, and energy approaches.

Some procedures have been analyzed in this dissertation, investigating the current state
of the art; theoretical description and calculus demonstration of the statements have
been presented at the beginning chapters, to highlight the advantages and disadvantages

of the methodologies available in the literature.

Paying attention mainly to the cable structures, simple, with opposite curvature and
cable-nets, the examined methods model the structural elements or as a continuum or a
discrete one. The first case is referred to as the catenary approaches where the cable is
considered as a continuum element suspended from the ends; it is demonstrated that this

method is proposed for the cable with small curvature.

The second one, instead, starts from the assumption that the cable can be divided into
several segments linked to each other through joints; the loads are applied along each
segment or on the nodes, taking into account the geometrical and/or mechanical non-
linearity. However, even if in this case some simplifications in the calculus can be

obtained, the number of elements grows up, increasing the computational time. Hence,
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to solve this aspect, several matrix methods have been proposed, searching for the
tangent stiffness matrix and largely referring to FEM modeling. These two types of
approaches (continuum or discrete) have been considered also for the cable nets
systems; they can be considered or as a continuum approximating their behaviour to the
membrane one, or considering the system composed by several segments interconnected

to each other at the joints, and therefore considering the nodal solicitation.

As concerns the energy approaches, they are widely used in the structural engineering
field, mainly to describe the non-linear behaviour of these kinds of structures under the
large displacements hypothesis and by employing the mathematical variational
problems. Based on the Minimum Total Potential Energy Principle, several methods
have been analyzed and demonstrated in this thesis, in particular ones referred to as

Harmony search.

After classified the different typologies of the tensile structures and the deep
investigation performed about statics of these structural systems, in particular focusing

on the cable ones, different procedures are proposed and described.

Firstly, a constrained optimization methodology has been developed and explained for a
2D cable system composed of m straight beams and t nodes, where n are free and s are
fixed. It is loaded at the free nodes in a plane reference system; the analysis has been
conducted first on the single beam composing the structure and then on the global
system to identify the energy functional to minimize to obtain the equilibrated and
compatible shape. The solution is founded through a constrained optimization problem
solved by referring to the Kuhn-Tucker conditions, identifying the displacements as the
unknown variables and the constraints conditions as the inequalities. The Lagrangian
function has been obtained finding the global minimum of the energy functional. The
approach has been applied to a simple structure to highlight the advantages of the

described procedure.

Successively, to evaluate the static response of the above-mentioned cable structure,
both in 2D and 3D systems, the research is focused on the study and the development of
a calculus model in large displacements and small deformations, considering the

geometrical non-linearity and the elastic field.

The method is in a matrix form and starts from a known static regime of the plane

structure, on which a configuration change is applied, updating the structural shape.
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Taking into account that the deformations are small, the self-weight of the element is
neglected, and the Hooke law holds, the procedure is divided into two steps: the first
one focuses on the analysis of the single beams leading to the identification of the
relationship between variation of the internal forces and the position of the free nodes,
through the secant stiffness matrices, elastic and geometric, and the distortion secant

vector.

The second phase is characterized by an assemblage operation, identifying the
geometrical non-linear relationship of the loads ensuring the equilibrium in the
deformed configuration, and the displacements, expressed by the secant stiffness

matrices, elastic and geometric, and the distortion one.

The problem has been solved through a step by step procedure allowing to linearize the

equation at any infinitesimal single step, under small loads’ variation.

Once the distorting variations have been neglected and then their contribution has been
considered, identifying a distorting stiffness matrix, and considering the distortion as the

distorting loads.

The method has been applied to a simple structure and then extended to the three-

dimensional case confirming the expected results.

Finally, an overview of the dynamic behaviour of the tensile structure has been dealt

with, analyzing the vibration modes of a study case.

Paying the base for future developments and improvements, this research is aimed to
put in evidence the special behaviour of the tensile structure, with particular attention on
statics of cables ones, proposing methodologies proper to their structural analysis and

suitable to several typologies belonging to these structural categories
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