

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

EXPLORING THE SHA-2 DESIGN SPACE

RAFFAELE MARTINO

TUTOR: PROF. ALESSANDRO CILARDO

COORDINATOR: PROF. DANIELE RICCIO

XXXII CICLO
SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

Abstract
While SHA-2 is a ubiquitous cryptographic hashing primitive,

its role in emerging application domains, such as blockchains or
trusted IoT components, has made the acceleration of SHA-2 very
challenging due to new stringent classes of requirements imposed
by such domains, especially implementation cost and energy effi-
ciency.

This Ph.D. thesis explores the SHA-2 design space from dif-
ferent viewpoints. Its first contribution is a reasoned classification
of the many SHA-2 designs proposed in the literature according
to their architectural choices, each of them having different im-
plications on the application requirement. Based on this analysis,
this thesis introduces a framework and a methodology for evalu-
ating and comparing different implementation options, which is
used to assess the impact of each architectural technique on the
application requirements, as well as the effect of variations in the
underlying target technology. The last contribution of this the-
sis explores a different approach, namely utilising a specific tar-
get technology with maximum efficiency, and the resulting SHA-2
accelerator shows the best area efficiency reported so far in the
literature.

Preface

Some of the research described in this Ph.D. thesis has undergone peer
review and has been published in scientific journals and conference pro-
ceedings. This is the list of the scientific contributions originated from
the research work of this Ph.D. thesis.

Journal paper Raffaele Martino and Alessandro Cilardo, “A Flexi-
ble Framework for Exploring, Evaluating, and Comparing SHA-
2 Designs”. In IEEE Access, vol. 7, 2019, doi: 10.1109/AC-
CESS.2020.2972265.

Journal paper Raffaele Martino and Alessandro Cilardo, “SHA-2 ac-
celeration meeting the needs of emerging applications: A com-
parative survey”, in IEEE Access (accepted for publication), doi:
10.1109/ACCESS.2019.2920089.

Conference Proceedings paper Raffaele Martino and Alessandro Ci-
lardo, “A Configurable Implementation of the SHA-256 Hash Func-
tion”, in Proceedings of the 14th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC 2019), in
Advances on P2P, Parallel, Grid, Cloud and Internet Computing,
in Lecture Notes in Networks and Systems, vol. 96, 2020, pp.
558-567, doi: 10.1007/978-3-030-33509-0_52.10.1007/978-3-
030-33509-0_52.

v

https://doi.org/10.1109/ACCESS.2020.2972265
https://doi.org/10.1109/ACCESS.2020.2972265
https://doi.org/10.1109/ACCESS.2019.2920089
https://doi.org/10.1007/978-3-030-33509-0_52

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of Acronyms xv

List of Symbols xvii

Introduction xxi

1 SHA-2 and its Applications 1
1.1 Cryptographic Hash Algorithms 1
1.2 The Secure Hash Algorithm 2

1.2.1 Algorithm Definition 3
1.2.2 SHA-2 variants . 7

1.3 Applications . 8
1.3.1 Blockchains . 10
1.3.2 Internet of Things 12
1.3.3 Trusted Computing 13

2 Classification of SHA-2 Acceleration Approaches 17
2.1 Approaches to SHA-2 Acceleration 17

2.1.1 Programmable Processor Architectures 19
2.1.2 Accelerator Architectures 20
2.1.3 Optimisation Techniques 24

2.2 SHA-2 Accelerator Architectures 32
2.2.1 Basic architectures 32
2.2.2 Shift register architectures 33
2.2.3 Architectures with precomputation 35

vii

viii Contents

2.2.4 Architectures with spatial reordering 37
2.2.5 Architectures with quasi-pipelining 38

3 Evaluation of SHA-2 Hardware Acceleration Approaches 39
3.1 The Need for a Common Evaluation Platform 39

3.1.1 Evaluation Methodology 40
3.2 Workbench Architecture 41

3.2.1 Compressor . 42
3.2.2 Expander . 43
3.2.3 Control Unit . 44
3.2.4 Reconfigurable aspects controlled by source-level

parameters . 45
3.2.5 Reconfigurable aspects controlled by component

declarations . 48
3.2.6 Discussion . 50

3.3 Experimental Results . 50
3.3.1 Design comparison against a specific target 50
3.3.2 Architectural Exploration 52
3.3.3 Exploring a different target 57

3.4 Analysis of the Impact of Design Techniques on Applica-
tion Metrics . 57
3.4.1 Performance . 59
3.4.2 Area occupation and area efficiency 61
3.4.3 Power and energy consumption 61
3.4.4 Implementation complexity 64
3.4.5 Impact on applications 65

4 Efficient Multi-Operand Addition on FPGAs 67
4.1 Compressor Trees based on Parallel Counters 67
4.2 Generalised Parallel Counters 69

4.2.1 Efficiency Parameters of a GPC 71
4.2.2 From the GPC to the Compressor Tree 72

4.3 GPCs for the 7-series Xilinx FPGAs 74
4.3.1 The Xilinx 7-series Look-Up Table 74
4.3.2 A GPC library for the 7-series FPGA 75
4.3.3 Optimising the mapping of the GPCs 77

5 Efficient Mapping of SHA-2 on FPGA 81
5.1 Overview of 7-series Xilinx FPGA architectural features . 81

5.1.1 7-series Xilinx FPGA organization overview 81
5.1.2 LUT capabilities 82

5.2 Efficient SHA-256 implementation on 7-series Xilinx FPGA 84

Contents ix

5.2.1 Compressor . 84
5.2.2 Expander . 88
5.2.3 Other Components 91
5.2.4 Data Path . 92

5.3 Experimental Results . 96
5.3.1 Comparison with the State of the Art 97

Conclusion 99

Bibliography 101

List of Figures

2.1 General architecture of a SHA-2 processor core 20
2.2 General architecture of a SHA-2 accelerator core. 21
2.3 Straightforward architecture of the Expander 22
2.4 Straightforward implementation of the transformation round 23
2.5 The architecture with spatial reordering proposed in [76] . . . 28
2.6 Application of Quasi-pipelining in SHA-2 31
2.7 Straightforward shift register architecture implementation . . 34

3.1 Methodology for comparing different hash circuit architectures 41
3.2 Top level entity of the proposed evaluation platform 42
3.3 Expander architecture, with stage chaining 43
3.4 Expander architecture, unrolled of a factor 4 44
3.5 FSM of the Control Unit with the Compressor and the Ex-

pander aligned . 45
3.6 FSM of the Control Unit with the Expander moved ahead . . 46
3.7 Architecture of the Naive transformation round core 49

4.1 Examples of a single column counter and a GPC with 6 input
bits, with the dot notation . 70

(a) 6:3 counter . 70
(b) (1,3,2;4) GPC . 70

4.2 Architecture of the LUT of the 7-series Xilinx FPGA 75
4.3 Examples of GPC mapping 76

(a) (0,5,3) GPC . 76
(b) (0,3,3;4) GPC . 76

4.4 Optimisations of GPC mapping applied to the (0,3,1,2;5) GPC 77
(a) computing the two least significant output bit with

the same LUT . 77
(b) computing the least significant carry bit 77

5.1 Very simplified architecture of a slice 83

xi

xii List of Figures

5.2 Architecture of a CLB . 84
5.3 LUT-based shift register . 85
5.4 Proposed Compressor Tree for the addition within the SHA-

256 Compressor . 88
5.5 Architecture of the Expander with redundant LUT-based shift

registers . 90
5.6 Proposed Compressor Tree for the addition within the Expander 91
5.7 Architecture of the proposed SHA-256 implementation 94
5.8 Finite State Machine for the optimised SHA-256 implemen-

tation . 95

List of Tables

1.1 Characteristics of members of the SHA-2 family of algorithms 9

2.1 Synoptic overview of SHA-2 acceleration solutions 18

3.1 Detail of the architectures explored 51
3.2 SHA-256 implementation results on the Kintex FPGA 53
3.3 SHA-512 implementation results on the Kintex FPGA 54
3.4 Results with the addition of the final stage for SHA-256 . . . 55
3.5 Results with the addition of the final stage for SHA-512 . . . 56
3.6 SHA-256 implementation results on the Artix-7 FPGA 58
3.7 Impact of SHA-2 optimisation techniques on evaluation metrics 59
3.8 Requirements of surveyed applications relying on SHA-2 and

recommended optimisations 65

4.1 Primitive GPCs for n ≤ 6 . 78
4.2 GPC library . 79

5.1 Combined truth table for the Maj and Σ0 functions 86
5.2 Combined truth table for the Ch and Σ1 functions 87
5.3 Cost of the Compressor . 88
5.4 Cost of the Expander . 90
5.5 Cost of the constants ROM 91
5.7 Cost of the multiplexers . 92
5.6 Truth table for a 4:2 multiplexer 93
5.8 Cost of the proposed SHA-256 architecture 94
5.9 Implementation results for the proposed SHA-256 design . . . 97
5.10 Comparison of the proposed SHA-256 implementation with

other implementations in the literature on the same FPGA
family . 98

xiii

List of Acronyms

AES Advanced Encryption Standard

AH Authentication Header

ALU Arithmetic and Logic Unit

ASIC Application-Specific Integrated Circuit

BRAM Block RAM

CAD Computer-Aided Design

CLA Carry Look-ahead Adder

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide-Semiconductor

CSA Carry Save Adder

DES Data Encryption Standard

DRBG Deterministic Random Bit Generation

DSA Digital Signature Algorithm

ESP Encapsulated Security Payload

FIFO First In, First Out

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

xv

xvi List of Acronyms

FSM Finite State Machine

GPC Generalised Parallel Counter

HDL Hardware Description Language

HMAC Hash-Based Message Authentication Code

I/O Input/Output

IDE Integrated Development Environment

ILP Integer Linear Programming

IoT Internet of Things

IPSec Internet Protocol Security

LUT Look-Up Table

MAC Message Authentication Code

MD5 Message Digest 5

NIST National Institute of Standards and Technology

PDB Padded Data Block

PRNG Pseudo-Random Number Generator

RAM Random Access Memory

RFID Radio Frequency Identification

ROM Read-Only Memory

RTL Register Transfer Level

SGX Software Guard Extensions

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TEE Trusted Execution Environment

VHDL VHSIC (Very High Speed Integrated Circuits) Hardware De-
scription Language

List of Symbols

Please note that arithmetic operations within SHA-2 are intended to be
modular.

Secure Hash Algorithm
At, Bt, . . . ,Ht State variables at the round t
DM (M) Digest of message M
DMk (j) k-th hash accumulator for the computation of

the j-th PDB
F Hash rate of a SHA-2 implementation
Kt Round constant for the round t
L (x) Length of bit string x
M∗ Message to be hashed, after being padded
M Message to be hashed
Nclk Number of clock cycles required by a SHA im-

plementation to output a new hash value
Q Throughput of a SHA-2 implementation
R Number of iterations, or rounds, performed by

the hash function
S Number of stages of pipelined implementations
UF Unrolling factor of unrolled implementations
Wt Expander output word at the round t
Zt (j) j-th portion of the state variable at the round

t

Z State variable for an hash computation

xvii

xviii List of Symbols

τclk Minimum clock period of a SHA-2 implementa-
tion

fclk Maximum clock frequency of a SHA-2 imple-
mentation

l Input block size of the hash function

Generalised Parallel Counters
J Number of operands to be added
Ki Number of input bits of rank i in a GPC
K Number of output operands of a compressor

tree
N Bit width of the operands
Ok Output operands of a compressor tree
Xj Operand to be added
δr Compression ratio of a GPC
δ Compression difference of a GPC
η Performance efficiency of a GPC
ε Area efficiency of a GPC
bi Bit of rank i within a binary number
m Fan-in of a GPC
n Fan-out of a GPC

Operators
+ Arithmetic addition
− Arithmetic subtraction
/ Arithmetic division
< Strict minority
· Arithmetic multiplication
∀ Universal quantifier
≥ Loose majority
≫r Circular right shift

List of Symbols xix

≫ Logical right shift
∈ Set membership
[• : •] Bit range
b•c Floor operator
≤ Loose minority
¬ Logical NOT
⊕ Logical XOR
≺ Lexicographic minority
∧ Logical AND
|| Bitwise concatenation

Technological Parameters
C Capacitive load of a gate
Fin Fan-in of LUTs of an FPGA
Fout Fan-out of LUTs of an FPGA
P Instantaneous power consumption of a circuit
U Utilisation of an FPGA
V Voltage supplied to a circuit
α Switching activity of a circuit

Introduction

cryptographic hash functions underlie many aspects of our ev-
eryday life today. Their properties are the cornerstone of many se-

curity applications and protocols where tampering with either the con-
tent of messages, or the identity of the sender, or with both, is to be
avoided. Popular hash algorithms used in the past include Message Di-
gest 5 (MD5) [100] and the Secure Hash Algorithm (SHA) [89] family of
algorithms, however the discover of security vulnerabilities in MD5 [122,
12] and SHA-1 [121, 109] has left SHA-2 as the most commonly used
hash function nowadays.

Traditionally, their application domain has been network security,
usually over the Internet. In this context, client devices are usually suf-
ficiently powerful to perform the relatively limited number of hash com-
putations required by the security protocols, while servers can possibly
benefit from hardware acceleration of the hash operation [80]. The hard-
ware accelerator is designed to deliver the maximum possible throughput,
usually at the cost of increased area and power consumption.

Moreover, the peculiar properties of cryptographic hash functions
have made them the essential ingredient for emerging innovative appli-
cations, like blockchains and distributed ledgers, involving a wide range
of platforms from high-end servers down to resource-constrained Inter-
net of Things (IoT) devices. The Bitcoin mining process [83], which
heavily relies on the SHA-2 hash function, is extremely demanding in
terms of energy efficiency, even making its profitability uncertain from
the miner’s standpoint. Additionally, the development of new domains
such as IoT, with its low-cost, battery-powered devices needing to com-
municate securely [61], has also contributed to an increased demand
for area-efficient and energy-efficient accelerators to be paired with the
resource-constrained main processor.

Driven by the diverse sets of requirements posed by emerging appli-
cations, a number of different design techniques have been introduced,
targeting the optimisation of area, energy or power consumption of the

xxi

xxii Introduction

resulting SHA-2 accelerator. Many of these techniques still deliver an
increased throughput, but without excessive area or power penalties.
Nevertheless, there are also optimisation techniques which are keen to
sacrifice throughput in order to achieve significant area or power savings.
One of the contributions of this thesis is to provide a classification of the
design techniques which have been proposed for the design of the SHA-2
accelerator, and a systematic, evidence-supported analysis of the impact
of each technique on the application requirements. These findings can
be useful for the designer who is confronted with the task of designing
a SHA-2 hardware accelerator under a given set of performance, area,
energy and power requirements.

However, the choice of the best design alternative to meet a specific
set of requirements is influenced also by the specific technological char-
acteristics of the hardware which will be used to physically realise the
accelerator, the impact of which is often difficult if not impossible to
estimate on paper. One of the reasons for this is that many low-level
characteristics of the target technology are not made known by the manu-
facturer, but are only available to the algorithms used by vendor-specific
Computer-Aided Design (CAD) and Integrated Development Environ-
ment (IDE) tools used to translate the Hardware Description Language
(HDL) description of the architecture into a physical circuit. Therefore,
the fulfilment of strict requirements may force the designer to implement
a number of alternatives in order to compare their actual performance.

In order to simplify this activity, this thesis proposes an evaluation
framework which allows to obtain different architectures of the SHA-2
core simply by reconfiguring a number of parameters. This framework
is particularly useful when the designer wants to evaluate a design orig-
inally proposed for a different application. In such a case, the design
may take advantage of hypotheses specific to the original application,
which are no longer valid in the context at hand. The proposed frame-
work allows to evaluate each design without taking into account such
assumptions.

A greater degree of control over the impact of the target technology
over the implementation results can be obtained by working at a level
lower than the Register Transfer Level (RTL). This makes it possible to
take advantage of specific features of the target technology in order to
achieve further gains in the optimisation objective. Therefore, one of
the contributions of this thesis is the proposal of an architecture of the
SHA-2 accelerator for the Xilinx 7-series Field Programmable Gate Array
(FPGA) family, capable of achieving the best area efficiency reported in
the literature. This architecture has been designed at the level of the

xxiii

structural components of the 7-series FPGA.

The outline of this thesis is as follows.

Chapter 1 provides the context of this work by reviewing the SHA-
2 algorithm and its applications. The first part of the chapter reviews
the properties that make cryptographic algorithms like SHA-2 so rele-
vant in many applications, and then reviews the algorithm itself. In the
second part of the chapter, SHA-2 applications in various different field,
requiring hardware implementations of the hash function, are surveyed.
For each application, it is described how the properties of SHA-2 are
exploited, and what specific requirements are placed on the underlying
hardware implementing the hash function.

Chapter 2 reviews the body of technical literature on the hardware
implementation of SHA-2. Architectures are classified according to their
implementation approach and the optimisation techniques they employ.
Then, each approach and optimisation technique is described in detail,
with particular attention on the implications of employing the technique
on application metrics. The second part of the chapter analyses each
SHA-2 implementation proposal to show how different techniques have
been combined to meet the designer’s requirements.

Chapter 3 describes how to systematically evaluate different archi-
tectures for the SHA-2 hardware core with a newly introduced evaluation
framework. Building on the material exposed in Chapter 2, an evaluation
platform has been developed, that captures the commonalities between
the different architectures while allowing a fair comparison between the
alternatives. The chapter begins by introducing a methodology for the
systematic comparison of different SHA-2 hardware designs under a given
set of constraints. Afterwards, the architecture of the proposed evalu-
ation platform is described. The last part of the chapter presents an
analysis of the impact of each design technique on the application met-
rics and therefore on the application requirements, which builds on the
experimental results obtained via the evaluation platform.

Chapter 4 introduces how to efficiently add multiple operands on a
FPGA. The analysis described in the previous chapters clearly indicates
that the bottleneck for the performance of a SHA-2 hardware imple-
mentation is the multi-operand addition, the efficient implementation
of which strongly varies on different target technologies. The chapter
presents a technique to perform multi-operand additions which has been
proven to be effective when the target technology is an FPGA, and con-
cludes by applying the technique to a specific FPGA family.

Chapter 5 proposes a new design for the hardware implementation

xxiv Introduction

of SHA-2 which outperforms all the existing proposals in the literature in
terms of area efficiency. This result is obtained by using a number of de-
sign strategies, including the multi-operand addition techique presented
in Chapter 4. The chapter describes the architecture of the proposed
SHA-2 design and compares it with the state of the art.

Chapter 1

SHA-2 and its Applications

cryptographic hash functions have been employed for decades as
a fundamental building block of information security. Their prop-

erties ensure that message integrity as well as the sender’s identity in a
communication can be securely verified, provided that a secret has been
shared between the communicating parties.

In more recent years, the particular properties of cryptographic hash
functions have also paved the way for new application domains, like
blockchains and distributed ledgers, with different sets of requirements.

This chapter deals with one of the most commonly used cryptographic
hash functions, the SHA, and more specifically SHA-2. The SHA-2 al-
gorithm is reviewed, along with its properties as a cryptographic hash
function. After that, a brief overview of the landscape of applications
that relies on SHA-2 is presented.

1.1 Cryptographic Hash Algorithms

A hash algorithm can be used for providing security services only if
it ensures a set of properties, which are not necessarily guaranteed by
general-purpose hash functions. Hash functions ensuring these security
properties, like SHA-2, are called cryptographic hash function.

The one-way or preimage resistance property of cryptographic hash
functions implies that it is computationally infeasible to compute the
message M given its hash DM (M)1. The second preimage resistance
property means that, given a hash value DM (M), it is computationally
infeasible to find a different message M ′ 6= M that yields the same hash

1If DM (M) is the hash value of M , M is called the preimage of DM (M).

1

2 1. SHA-2 and its Applications

value. The pseudo-randomness property means that the hash value of
a message must expose statistical randomness. Finally, the collision
resistance property means that it is computationally infeasible to find a
pair of messages M1 and M2 which produce the same hash value.

Each application has different requirements in terms of these prop-
erties for its underlying hash function [107]. In Section 1.3 a wide range
of applications of SHA-2 are presented, not limited to security services,
and their specific requirements in terms of cryptographic hash properties
are discussed.

The security of a cryptographic hash algorithm is a measure of the
computational complexity of breaking its properties, especially its col-
lision resistance. It is measured in terms of the number of operations
required to break the algorithm, expressed as a power of 2. More specif-
ically, a hash function is said to have x security bits if 2x operations are
required to break it. The name stems from the fact that, for an unbro-
ken hash algorithm, the only feasible attack relies on brute force, which
implies a mean number of attempts exponential in the length of the hash
value L (DM (M)).

However, due to the birthday paradox, the number of attempts re-
quired on average to find two different messages hashing to the same
value, i.e. to break the collision resistance property in its broadest sense,
is 2L(DM(M))/2, making the number of security bits a half of the hash
size.

The hash sizes of the members of the SHA-2 family have been chosen
to match the security bits provided by symmetric encryption algorithms.
For these cryptographic algorithms, the number of security bits coincides
with the key length, hence SHA-2 hash sizes are twice the key length of a
symmetric encryption algorithm. Specifically, a hash size of 224 implies
the same number of security bits of the Triple Data Encryption Standard
(DES) [88], while 256, 384, and 512 are twice the key sizes supported by
the Advanced Encryption Standard (AES) [84].

1.2 The Secure Hash Algorithm

The Secure Hash Algorithm is a family of cryptographic hash functions
defined by the National National Institute of Standards and Technology
(NIST) and published as the Federal Information Processing Standard
(FIPS) 180, Secure Hash Standard (SHS) [89], for being employed by
U.S. government agencies. In the first version of the SHS, FIPS 180-0,
published in 1993, only one hash function was described. This algorithm,
now known as SHA-0, has been soon after replaced by SHA-1 in the

1.2. The Secure Hash Algorithm 3

revised version of the standard, FIPS 180-1, published in 1995. While
the only difference between SHA-0 and SHA-1 is a single bitwise rotation,
SHA-0 turns out to be considerably weaker than SHA-1 [123].

SHA-2 was firstly introduced in 2001, when FIPS 180-2 defined three
of its variants. These included the two main variants of SHA-2, which
are SHA-256 and SHA-512, respectively the 32- and 64-bit versions of
the same hash algorithm; and a truncated variant of SHA-512, SHA-384.
Subsequent updates to the SHS added other truncated variants to the
family. Namely, FIPS 180-3 in 2004 added SHA-224, which is a variant
of SHA-256, whilst FIPS 180-4 added in 2012 two variants of SHA-512,
SHA-512/224 and SHA-512/256, along with the general specification of
a t-wide hash function called SHA-512/t.

In summary, SHA-2 is the set of the cryptographic hash algorithms
defined in the SHS, excluding SHA-1. The following description will
focus on SHA-256, while Section 1.2.2 will provide the detail of the other
variants.

1.2.1 Algorithm Definition

SHA-2 is a block-based hash algorithm, meaning that it operates on
blocks of fixed size l to produce a fixed-size hash value DM (M) for
a given input message M . For SHA-256, l = 512 bit and the hash size
is 256 bit. Nevertheless, it is capable to process messages of practically
any arbitrary length, up to a limit fixed by the padding. Padding is
performed to ensure that the variable length L (M) of the message M
to be hashed is always a multiple of l.

Padding step

The message is padded with a single 1 bit, followed by as many 0 bits
as needed to reach a length congruent to 448 mod 512, so as to leave
the last 64 bits to encode a representation of the original length L (M).
This means that the length of the message to be hashed must not exceed
264 bit.

Padding is always performed, even when the length of the message
does not strictly require it. Therefore, the number of message blocks
required to hash a message can be written as bL (M) /lc+ 1, which can
also be written as a function of the padded message M∗ in the form
L (M∗) /l. Moreover, the actual maximum length of a message to be
hashed is limited to 264 − 65 bit.

4 1. SHA-2 and its Applications

To recall that padding has to be performed prior to any hash com-
putation, each message block is usually referred to as the Padded Data
Block (PDB).

Variables definition

The current hash value is used as an input for the hashing of the j-th
PDB Mj , and is stored in eight 32−bit accumulator variables DMk k ∈
[0, 7]. Their initial values are the first 32 bits of the fractional parts of
the square root of the first eight prime numbers, although they are also
hard-coded in the standard [89] as follows:

DM0 (0) = 0x6a09e667

DM1 (0) = 0xbb67ae85

DM2 (0) = 0x3c6ef372

DM3 (0) = 0xa54ff53a

DM4 (0) = 0x510e527f

DM5 (0) = 0x9b05688c

DM6 (0) = 0x1f83d9ab

DM7 (0) = 0x5be0cd19

(1.1)

For each PDB, the algorithm performs R = 64 iterations. Each
iteration updates the value of the internal state Z, constituted by eight
32-bit working variables called A to H. To refer to the state variables
as a whole, the following definition is used from now on:

Zt (0) = At

Zt (1) = Bt

Zt (2) = Ct

Zt (3) = Dt

Zt (4) = Et

Zt (5) = Ft

Zt (6) = Gt

Zt (7) = Ht

(1.2)

At the beginning of the processing of each PDB, the value of the

1.2. The Secure Hash Algorithm 5

working variables matches the value of the accumulators:

A0 = DM0 (j)

B0 = DM1 (j)

C0 = DM2 (j)

D0 = DM3 (j)

E0 = DM4 (j)

F0 = DM5 (j)

G0 = DM6 (j)

H0 = DM7 (j)

(1.3)

The message to be hashed determines the value of the variable Wt.
Namely, this is a 32-bit variable whose value changes at every iteration
as follows:

Wt =

{
Mj [32 · t+ 31 : 32 · t] 0 ≤ t < 16

σ1 (Wt−2) +Wt−7 + σ0 (Wt−15) +Wt−16 t ≥ 16
(1.4)

In other words, for the first 16 iterations, Wt is simply the t-th 32-
bit word of Mj . Note also that all the additions involved in the SHA-2
family are performed modulo the variable size, which is 32 for SHA-256.
The two functions σ0 (x) and σ1 (x) are defined as follows.

σ0 (x) = x≫r 7⊕ x≫r 18⊕ x≫ 3

σ1 (x) = x≫r 17⊕ x≫r 19⊕ x≫ 10
(1.5)

Lastly, the algorithm employs R constants Kt, the value of which are
hard-coded in the standard [89] as the first 32 bits of the fractional part
of the cube root of the first 64 prime numbers.

Message block processing

The computation performed by each iteration is often referred to as the
step function. Its main part is the computation of the following sub-
functions:

T 1
t = Ht + Σ1 (Et) + Ch (Et, Ft, Gt) +Kt +Wt ∀t ∈ [0, R− 1]

(1.6)

T 2
t = Σ0 (At) +Maj (At, Bt, Ct) ∀t ∈ [0, R− 1]

(1.7)

6 1. SHA-2 and its Applications

where the Choose2 and Majority functions are defined as

Ch (x, y, z) = (x ∧ z)⊕ (¬x ∧ y) (1.8)
Maj (x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (1.9)

whilst the Σ0 (x) and Σ1 (x) functions are defined as follows.

Σ0 (x) = x≫r 2⊕ x≫r 13⊕ x≫r 22

Σ1 (x) = x≫r 6⊕ x≫r 11⊕ x≫r 25
(1.10)

The overall step function can then be written as

At+1 = T 1
t + T 2

t ∀t ∈ [0, R− 1]

Bt+1 = At ∀t ∈ [0, R− 1]

Ct+1 = Bt ∀t ∈ [0, R− 1]

Dt+1 = Ct ∀t ∈ [0, R− 1]

Et+1 = Dt + T 1
t ∀t ∈ [0, R− 1]

Ft+1 = Et ∀t ∈ [0, R− 1]

Gt+1 = Ft ∀t ∈ [0, R− 1]

Ht+1 = Gt ∀t ∈ [0, R− 1]

(1.11)

It is worth noting that only two working variables out of eight are
actually updated at each iteration, whereas the other six take the value
of the following variable. More specifically, not taking into account At+1

and Et+1, Eq. (1.11) can be rewritten as:

Z (k)t+1 = Z (k − 1)t ∀k ∈ [1, 3] ∪ [5, 7] (1.12)

Message block chaining

After all of the prescribed number of iterations R have been performed,
the current hash value is updated as follows:

DM0 (j + 1) = DM0 (j) +AR

DM1 (j + 1) = DM1 (j) +BR

DM2 (j + 1) = DM2 (j) + CR

DM3 (j + 1) = DM3 (j) +DR

DM4 (j + 1) = DM4 (j) + ER

DM5 (j + 1) = DM5 (j) + FR

DM6 (j + 1) = DM6 (j) +GR

DM7 (j + 1) = DM7 (j) +HR

(1.13)

2The value of x chooses whether the output of y or z is propagated to the output.

1.2. The Secure Hash Algorithm 7

If j < L (M∗) /l, the algorithm continues with the processing of Mj+1;
otherwise, there are no message blocks left and the message digest is
DM0 || DM1 || DM2 || DM3 || DM4 || DM5 || DM6 || DM7.

It is worth noting, since it constitutes an hurdle for parallelisation in
hardware implementations, that Eq. (1.13) implies that the processing
of the PDB j + 1 cannot start before the end of the processing of the
PDB j, i.e. PDBs must be processed strictly sequentially.

1.2.2 SHA-2 variants

SHA-512 is the 64-bit variant of SHA-256. All the sizes are therefore
doubled, namely the hash size is 512 bit, the block length l is 1024 bit,
and the accumulator variables are 64-bit wise. Similarly to SHA-256,
their initial values are the first 64 bits of the fractional part of the square
root of the first eight prime numbers, and are hard-coded in the standard
[89].

SHA-512 performs R = 80 iterations to hash a single PDB. This
means that 80 values for the Kt constants are required. These values,
which are hard-coded in the standard, have been determined analogously
to SHA-256, as the first 64 bits of the fractional part of the cube root of
the first 80 prime numbers.

The padding step reflects the doubling of the dimensions, since the
message is padded with a single 1 followed by as many 0 bits as needed
to reach a length congruent to 896 mod 1024, so as to leave the last 128
bits to represent the original length L (M). This means that the limit on
the length of the message to be hashed is increased up to 2128 − 129 bit.

The only remaining differences between SHA-512 and SHA-256 in-
volve the expressions of the σ (x) and Σ (x) functions, which become

σ0 (x) = x≫r 1⊕ x≫r 8⊕ x≫ 7

σ1 (x) = x≫r 19⊕ x≫r 61⊕ x≫ 6

Σ0 (x) = x≫r 28⊕ x≫r 34⊕ x≫r 39

Σ1 (x) = x≫r 14⊕ x≫r 18⊕ x≫r 41

(1.14)

The other four hash functions are actually variants of SHA-256 and
SHA-512. The specifications of these variants are exactly the same as
their base algorithms, but the output is truncated to a lower number
of bytes and different initial values DM0 (0) to DM7 (0) are employed.
Namely:

8 1. SHA-2 and its Applications

SHA-224 is the same function as SHA-256, except that the output is
truncated to 224 bit and different initial valuesDM0 (0) toDM7 (0)
are used;

SHA-384 is the same function as SHA-512, except that the output is
truncated to 384 bit and different initial valuesDM0 (0) toDM7 (0)
are used;

SHA-512/224 is the same function as SHA-512, except that the out-
put is truncated to 224 bit and different initial values DM0 (0) to
DM7 (0) are used;

SHA-512/256 is the same function as SHA-512, except that the out-
put is truncated to 256 bit and different initial values DM0 (0) to
DM7 (0) are used.

The interested reader is referred to the standard [89] for the selection of
the initial values specific to each variant.

The different hash functions of the SHA-2 family are compared in
Table 1.1. The first part of the table presents some functional charac-
teristics of the hash algorithms. From this comparison, it is clear that
the different variants of SHA-2 offer different combinations of security
levels and block size. A symmetric encryption algorithm with equivalent
security level is also listed. The second part of the table compares some
internal parameters, which depend on the algorithm being derived from
the SHA-256 or SHA-512 main variant.

1.3 Applications

The properties of cryptographic hash functions make them one of the
most versatile cryptographic tools, used in a variety of security services
[107].

Digital signature schemes based on asymmetric encryption, such as
Digital Signature Algorithm (DSA) [85], employ hash functions to re-
duce their computational complexity while retaining the non-repudiation
property. Due to the processing time of asymmetric encryption, it would
be impractical to encrypt a large file to obtain its digital signature, so
only the hash of the file is encrypted. Due to the collision resistance
property, it is computationally infeasible to find a second file with the
same hash, and hence the same signature, of the original file, therefore
the non-repudiation of the signature is preserved.

Hash-Based Message Authentication Codes (HMACs) [10, 91] ex-
ploit the collision resistance property to provide message authentication,

1.3. Applications 9

Table 1.1: Characteristics of members of the SHA-2 family of algorithms

SHA-* 256 512 224 384 512/224 512/256

Hash size (bit) 256 512 224 384 224 256

Block size (bit) 512 1024 512 1024 1024 1024

Message size (bit) < 264 < 2128 < 264 < 2128 < 2128 < 2128

Security bits 128 256 112 192 112 128

Corresponding
AES-128 AES-256 TDES AES-192 TDES AES-128

symmetric cipher

Word size (bit) 32 64 32 64 64 64

Number of rounds 64 80 64 80 80 80

Publication year 2001 2001 2004 2001 2012 2012

which ensures the integrity of the transmitted data. The message to be
transmitted, along with a shared secret, is hashed to produce a Mes-
sage Authentication Code (MAC) which can be used at the receiver side
to verify that the message has not been altered. The inclusion of the
shared secret, in fact, prevents an attacker from simply replacing the
whole message-MAC pair, since the latter cannot be computed with-
out knowing the shared secret. It has been proved that the security of
HMAC is directly and formally related with the security of the hash
function employed [10]. HMACs are employed by the Internet Protocol
Security (IPSec) protocol [56], both in the Authentication Header (AH)
[54] and in the Encapsulated Security Payload (ESP) [55] modes.

Pseudo-Random Number Generators (PRNGs) based on Determin-
istic Random Bit Generation (DRBG) [87] produce pseudo-random se-
quences by hashing a linearly increasing seed. Apart from being built
directly from cryptographic hash functions, PRNGs can be built also
from HMACs [87].

Most of the security protocols listed above are standardized by NIST
[85, 91, 87], which requires the underlying hash function to be one of
its approved hash functions. However, vulnerabilities have been found
in SHA-1 [121], leading eventually to its breaking [109]. Given that al-
ternative hash functions such as MD5 [100] were already known to be
broken [122, 12], SHA-2 has been the only viable alternative for many

10 1. SHA-2 and its Applications

years. Although a new hash function, SHA-3, has been standardised by
NIST in 2015 [90], it has not reached widespread diffusion yet. Consid-
ering the slow process that has taken place for SHA-2 to fully replace
SHA-1 [93], along with the fact that there are no significant vulnerabili-
ties to SHA-2, the new SHA-3 function is not expected to replace SHA-2
in the near future.

Moreover, SHA-3 is based on a completely different mathematical
construction from SHA-2. Due to the different mathematical nature of
the function, it it difficult to re-use the body of knowledge in SHA-2 and
SHA-1 cryptanalysis for the new SHA-3 algorithm, hence more study
is required to increase confidence in its cryptographic strength of the
new SHA-3 function. On the other hand, SHA-2 has undergone intense
cryptanalysis [43] for more than 15 years, and no weaknesses have been
found yet, making SHA-2 attractive for innovative applications where
long-term collision resistance is required [116].

1.3.1 Blockchains

The blockchain technology employs hash functions to ensure the integrity
of a distributed ledger. At its very essence, a blockchain is an efficient
implementation of a distributed database growing in time within a peer-
to-peer network. In a blockchain, database transactions are grouped into
blocks, which are concatenated by including the hash of the last block
into the header of the next block. New blocks are added to the blockchain
by running a distributed consensus algorithm, ensuring a consistent view
of the database. Once the block sequence is agreed upon, the collision
resistance property of the hash functions implies that it is infeasible to
modify a transaction without being detected, since any change in the
block would result in a different hash.

A critical role in ensuring the integrity of the distributed database is
played by the distributed consensus algorithm. In fact, if an attacker is
able to subvert the consensus protocol, they may force the network to
agree on their own version of the blockchain, with a content of their own
choice. Specifically, consensus protocols running on peer-to-peer net-
works must avoid Sybil attacks [34], i.e. attacks based on the capability
of the attacker to present multiple identities, gaining an apparent ma-
jority which can drive the consensus. The Bitcoin cryptocurrency [83],
which introduced the blockchain technology, bases its own distributed
consensus protocol on SHA-256. It avoids Sybil attacks by forcing peers
to perform a computationally-intensive task in order to participate in
the consensus algorithm [116, 61].

1.3. Applications 11

The Bitcoin consensus protocol is also called Nakamoto consensus
[13]. It mandates that a new block can be added to the network if its
hash, computed by applying twice the SHA-256 hash function, is below
a specific threshold, called target. To this end, the header contains a
nonce which can be changed by peers in order to alter the hash value
of the block. The Nakamoto consensus relies on the one-way property
of SHA-256: were the SHA-256 function to be invertible, it would be
possible to compute the value of the nonce leading to the required hash
value by simply inverting the SHA-256 function [61]. Instead, a brute-
force approach is required, with minor possible improvements stemming
from details of the Nakamoto consensus protocol [24, 119].

The first node in the network capable of finding a new valid block
announces it to the network, and gets the reward associated to the block,
which consists of the sum of the fees of the transaction included in the
new block, plus a pre-defined quantity of newly mined coins, hence the
name "mining" given to the process. The increased interest in the Bitcoin
cryptocurrency, especially during the speculative bubble of late 2017 and
early 2018, during which the value of a Bitcoin almost topped 20 000 $,
has made the mining process an extremely competitive process, paving
the way for an entire industry of dedicated miner accelerators [112, 111]
with extremely high demands on the underlying SHA-256 circuitry. Not
only must such circuits be fast enough to compete profitably within the
peer-to-peer network, but they must also be power efficient, in order not
to have energy costs exceed mining revenues [92, 118].

But, even more importantly, the success of Bitcoin has raised in-
terest in the potential of the underlying blockchain technology, and its
applications beyond digital cryptocurrencies. In fact, investigating new
blockchain applications is currently a flourishing research and develop-
ment field [61]. The Bitcoin blockchain itself is rather limited in what
it can be used for, mainly because of its transaction script language
which is by design Turing-incomplete [116]. Furthermore, the Nakamoto
consensus protocol has undergone some criticism for the large amount
of energy it dissipates in a computation yielding no actual result [39].
Therefore, several alternative blockchains have been proposed, and most
of them have been implemented. However, only a few of these alterna-
tives are actually completely independent blockchains, or altchains, the
best known of which being Ethereum [127]. On the contrary, most of
the so-called second-generation blockchains actually rely on the Bitcoin
blockchain itself in some way, mainly in order to avoid destructive attacks
from the powerful network of Bitcoin miners [13]. This means that the
Bitcoin blockchain, with its reliance on hardware implementations of the

12 1. SHA-2 and its Applications

SHA-256 algorithm, is today fundamental for the blockchain industry as
a whole.

1.3.2 Internet of Things

The IoT field requires carefully designed hardware accelerators for SHA-
2 in order to meet security requirements within its manifold constraints.

The IoT is based on infrastructures of low-end devices able to au-
tonomously communicate across the Internet. It is an enabling paradigm
for a number of innovative applications across different fields, each with
its own security requirements [61]. Some cases, such as the biomedical
sector [49], present strict security requirements due to the involvement
of sensitive data, but almost any IoT application must face the threat of
external attacks [61].

There are different ways for SHA-2 to contribute to the security of
the IoT in the biomedical sector. One example is given in [46], where the
pseudo-randomness of SHA-256 is exploited to produce a strong crypto-
graphic key for the encryption of medical images which are to be sent
over the cloud. It is worth mentioning that SHA-1 is still approved
for use as PRNG [86]; however, authors of [46] opt for SHA-256 in or-
der to obtain a longer, hence more secure, key. Another application is
presented in [71], where the issue of black-hole routing attacks [126] is
considered. The work [71] includes source node authentication with an
HMAC based on the SHA-256 hash function in the routing algorithm,
according to the ideas presented in [70], in order to prevent unauthorized
nodes from sending malicious routing packets.

An example of IoT application where sensitive data are not involved,
but security is relevant anyway, is provided by Radio Frequency Iden-
tification (RFID) systems, which are increasingly used in supply chain
management to intelligently track parts along the supply chains and
manage inventories [31]. A small transponder called tag is attached to
an item, storing a unique serial number for the item which can be sent to
an RFID reader to track the object, or to start more complex interactions
between the reader and the tag.

The reading of RFID tags must be secured in order to preserve the
privacy of both customers and companies [124]. Hence, a number of
proposals for RFID access control have been put forward, mainly relying
on hash functions and their one-way property. The scheme proposed in
[124] avoids tracking by using a random number r in the tag response,
which therefore consist of (r||DM (ID||r)). An improvement is proposed
in [47], where transaction numbers are used to avoid replay attacks, and

1.3. Applications 13

the tag ID is updated at every successful transaction in order to prevent
traceability. The tag ID is updated also in the scheme of [31], where
MACs are used to authenticate both the tag and the reader.

In addition, since the IoT paradigm implies a peer-to-peer network,
and a blockchain is essentially a database distributed over a peer-to-
peer network, there is an increasing interest in applying the blockchain
technology to the IoT field [61, 99, 20, 21]. IoT applications can benefit
from the use of a blockchain providing integrity and non-repudiation of
communications between the nodes [61, 99]. Furthermore, innovative IoT
applications can be built taking advantage of smart contracts, which are
applications run on a suitable blockchain capable of self-enforcing some
business rules [20], or enabling the trading of IoT services directly by
the nodes of the IoT network [137].

IoT-related security presents unique challenges due to the characteris-
tics of the devices involved. In fact, a paramount issue in IoT applications
is the energy consumption, since devices are usually battery-backed, and
the battery life often determines the very lifetime of the device. Fur-
thermore, passively-powered devices like RFID tags are limited in how
much electrical power they can receive from the reader. This represents
an interesting positioning in the design space, as the limiting factor is
not posed by the mere energy budget but, inherently, by the instanta-
neous power that can be supplied. Such an issue is similar to the power
cap incurred by high-end processors used in server settings, albeit scaled
down to the deeply embedded realm. As a consequence, to meet their
energy requirements, IoT devices are often limited in their computing
capabilities [101]. On the other hand, this conflicts with the computa-
tional requirements of cryptographic primitives, like SHA-2, which are
very demanding and place a significant overhead on IoT devices [69, 37,
124]. This trade-off reaches its extreme with blockchain-based applica-
tions [21], making it is extremely difficult for sensor nodes to participate
in the consensus protocol [20].

Clearly, only carefully designed application-specific accelerators can
provide enough flexibility to address the conflicting constraints described
above in an effective way.

1.3.3 Trusted Computing

SHA-2 plays also a central role in ensuring mutual trust between com-
puting platforms. A computing platform gains the trust of another com-
puting platform when it is capable to prove that it is actually executing
the software and/or hardware configuration it is supposed to execute.

14 1. SHA-2 and its Applications

This can be accomplished by presenting the other computing platform
with an attestation of what is being executed, usually in the form of
the hash of the source code in execution. Specifically, Intel’s Software
Guard Extensions (SGX) uses SHA-256 to provide an attestation for
software with high security requirements [22]. These concepts, originally
developed in the software context, can also be applied to the hardware,
specifically reconfigurable hardware, of which the increasing diffusion in
uncontrolled environment, like the cloud, comes with the same issue of
trust.

In the last few years, there has been an emerging interest in including
reconfigurable hardware in cloud systems, as major cloud providers have
started having FPGAs in their facilities [19]. This trend stems from the
recognition that reconfigurable hardware implementations of commonly
used algorithms can achieve better performance and improved power
efficiency compared to classical CPU-based implementations [52].

Among the various challenges posed by the employment of reconfig-
urable hardware in cloud settings, there is the need to secure the provided
bitstream. In fact, when the reconfigurable hardware is not under their
direct control, users need to be guaranteed that the hardware accelerator
synthesized on the remote FPGA is the one they submitted, and has not
being tampered with, for example by adding backdoors for leaking user’s
data. This is particularly relevant when sensitive data is involved [36].
Moreover, it is also necessary to avoid that a single malicious FPGA
brings down the entire facility [19]. When the provided bitstream is se-
cured, that the accelerator running on the FPGA can be trusted, and
therefore can operate with sensitive data with the guarantee that such
data is not leaked.

In [36] an architecture for trusted FPGA in the cloud is proposed,
where a hardware SHA-2 accelerator is employed to authenticate the
bitstream supplied to the FPGA. A similar system is employed in [48],
which uses trusted accelerators on reconfigurable hardware for preventing
software running on the CPU from accessing sensitive data by offloading
them to the FPGA, although in the latter work the components of the
secure system are synthesized on the programmable part of the FPGA
along with the user’s design, where they are included through a dedicated
toolchain.

Interestingly, reconfigurable hardware is also used to implement Trusted
Execution Environments (TEEs) similar to SGX, mainly aiming to avoid
the need for the manufacturer, e.g. Intel, to directly verify the code run-
ning in the TEE [23]. An example of such approaches is proposed in [38],
where the case is made for hardware SHA-2 circuits into the trusted pro-

1.3. Applications 15

cessor architecture in order to minimize the security overhead. Another
proposal is outlined in [23], where a SHA-512 accelerator is employed as
a PRNG.

Chapter 2

Classification of SHA-2
Hardware Acceleration
Approaches

as discussed in Section 1.3, SHA-2 is employed in a wide range of
different domains, each with its own specific requirements. This has

lead to a high number of different hardware implementations of the algo-
rithm, with the employment of different techniques tailored to different
optimisation objectives. This chapter reviews the technical literature
about the SHA-2 hardware implementations, and develops a classifica-
tion for them.

2.1 Approaches to SHA-2 Acceleration

At the highest level, hardware implementations of SHA-2 can be classi-
fied according to two design approaches [41]:

Programmable processor architectures: these implementations fol-
low the general-purpose processor paradigm, with one or more
central buses, an Arithmetic and Logic Unit (ALU), an instruc-
tion memory, and an ad-hoc microcode; but all these components
are designed to perform only the computation of the SHA-2 hash
algorithm.

Accelerator architectures: also called coprocessor architectures, these
implementations follow the approach of performing all the compu-
tation directly in hardware.

17

18 2. SHA-2 Hardware Acceleration Approaches

Table 2.1: Synoptic overview of SHA-2 acceleration solutions. For papers
including more than one proposal, the best one is considered.

Approach Class Optimisations Literature Proposals

Programmable
processor

(Section 2.1.1)

Base
(Section 2.1.1)

Base [32]

Components Improvement
[41]

(Section 2.1.3)

Unrolled Loop Unrolling
[33]

(Section 2.1.1) (Section 2.1.3)

Accelerator
(Section 2.1.2)

Base
(Section 2.2.1)

Base [106, 50, 105, 35]

Components Improvements
[82]

(Section 2.1.3)

Loop Unrolling
[25, 77, 3, 135, 6]

(Section 2.1.3)

Loop Folding
[136, 40]

(Section 2.1.3)

Shift Register
(Section 2.2.2)

Base [75, 51, 57]

Components Improvements
[110, 9]

(Section 2.1.3)

Loop Folding [102, 60, 59, 125, 14, 1]
(Section 2.1.3)

Precomputation-Based
(Section 2.2.3)

Variables Precomputation
[45, 44, 117, 18, 17, 5]

(Section 2.1.3)

Components Improvements
[4]

(Section 2.1.3)

Loop Unrolling
[67, 2]

(Section 2.1.3)

Reordering-Based
(Section 2.2.4)

Basic Spatial Reordering
[76]

(Section 2.1.3)

Loop Unrolling
[8]

(Section 2.1.3)

Components Improvements
[80, 81, 78]

(Section 2.1.3)

Quasi-Pipelined
(Section 2.2.5)

Quasi-Pipelining
[68, 28, 27, 113]

(Section 2.1.3)

Loop Unrolling
[74]

(Section 2.1.3)

2.1. Approaches to SHA-2 Acceleration 19

A further classification is based on the implementation strategy for
the computational core of the accelerator. Table 2.1 presents a synoptic
overview of the different approaches proposed in the literature to design
SHA-2 hardware accelerators.

The remainder of this section will survey the programmable processor
architectures and introduce the general components of the accelerator ar-
chitecture, along with an analysis of the various optimisation techniques
for the computational core; whereas the whole Section 2.2 will be focused
on reviewing the different SHA-2 accelerator architectures proposed in
the literature.

2.1.1 Programmable Processor Architectures

The data path of a SHA-2 implementation based on the programmable
processor approach is shown in Fig. 2.1. It includes components com-
monly used in a processor design, such as an Input/Output (I/O) mod-
ule, a Control Unit, a Program Counter, a Random Access Memory
(RAM) used to hold the working variables and the message M to be
hashed, and a Read-Only Memory (ROM) for the Kt constants and the
initialisaton values DMk (0). These components are arranged around a
central bus, along with components designed specifically for the SHA-2
computation, such as a computation unit dedicated to the expansion of
M to produce the Wt words, and one or more computation units for
implementing the compressor function. A detailed description of the
data path of a processor architecture can be found in [32], where other
elements commonly used in general-purpose processors, such as Memory
Address Registers and Memory Data Registers, are also used.

In order to be executed by this kind of implementations, the SHA-2
algorithm must be described in terms of micro-operations, which are the
operations directly executable by the architecture in a clock cycle. Since
one iteration of the SHA-2 algorithm usually cannot be executed in a
single clock cycle with a processor architecture, the iteration is described
by a sequence of more than one micro-operation. Therefore, processor
architectures require multiple clock cycles to hash a single message.

Optimisations of the processor architecture may involve the optimi-
sation of some of its components, particularly the arithmetic units. In
[41] a 4-input ALU is used to compute Eqs. (1.6) and (1.7). This optimi-
sation is particularly well-suited for FPGAs, which very often provides
4-input Look-Up Tables (LUTs).

A different strategy relies on multiple instances of the same unit, so
as to parallelise the execution of different micro-operations. In [33] the

20 2. SHA-2 Hardware Acceleration Approaches

Figure 2.1: General architecture of a SHA-2 processor core. Customly
designed components are highlighted.

number of cycles needed by a SHA-2 iteration is reduced by executing two
micro-operations of the same iteration simultaneously, taking advantage
of multiple arithmetic units.

2.1.2 Accelerator Architectures

Accelerator architectures are built around a combinatorial block, here-
after referred to as the transformation round core, which performs the
SHA-2 step function as described in Section 1.2.1. The overall equa-
tion implemented by a transformation round core can be obtained by
combining Eqs. (1.6), (1.7) and (1.11):

At+1 = Σ1 (Et) + Ch (Et, Ft, Gt) + Σ0 (At) +Maj (At, Bt, Ct)

+Ht +Kt +Wt

Bt+1 = At

Ct+1 = Bt

Dt+1 = Ct

Et+1 = Σ1 (Et) + Ch (Et, Ft, Gt) +Dt +Ht +Kt +Wt

Ft+1 = Et

Gt+1 = Ft

Ht+1 = Gt

(2.1)

2.1. Approaches to SHA-2 Acceleration 21

Figure 2.2: General architecture of a SHA-2 accelerator core.

General architecture

The architecture of a SHA-2 accelerator is directly derived from the
structure of the algorithm, as described in Section 1.2, and it is shown
at a high level in Fig. 2.2.

Prior to hashing, the incoming message needs to be padded. There-
fore, a Padding Unit is responsible for producing PDBs. It is worth
noting that the Padding Unit modifies only the last block of a message,
leaving the others untouched. Since padding can be performed in soft-
ware quite efficiently without affecting the overall security of the system,
many implementations [18, 17, 51, 80, 81, 28, 27, 57, 14, 59, 125, 9] do
not include the Padding Unit. These implementations take as input
already formatted PDBs.

On the other hand, other implementations [106, 50, 105, 75, 35, 44,
135, 136, 110, 74] choose to include a Padding Unit directly in hardware.
In this case, the original messages must be provided to the accelerator,
while PDBs will be built internally. Especially for the area occupation
metric, it must be taken into account whether a Padding Unit is included
in the hardware design when comparing different implementations.

The PDB enters the Expander, which outputs the words Wt accord-
ing to Eq. (1.4). The implementation of the Expander is usually quite
straightforward, and is based on a 16-position shift register to store the
required words with the necessary delay. The input of the shift register
chain is the result of the computation of Eq. (1.4). By not taking the
Wt value from the input of the shift register chain, but rather from one
of the delay registers, it is possible to decouple the Expander from the
critical path of the Compressor [17].

Most implementations adopt this architecture for the Expander, which
is explicitly described in [105, 75, 44, 110, 51, 57, 1] and shown in Fig. 2.3.

22 2. SHA-2 Hardware Acceleration Approaches

Figure 2.3: Straightforward architecture of the Expander

Possible improvements rely on special devices for implementing the shift
register, such as Block RAMs (BRAMs) or First In, First Out (FIFO)
memory queues [17], or the shift register mode of the Configurable Logic
Blocks (CLBs) of Xilinx FPGAs [45]. A folded implementation of the
Expander, employing only one adder, is proposed instead in [60, 59].
The unrolled implementation of the Expander is presented in [8, 74].

In [27], an architectural optimisation of the Expander is proposed,
based on the delay balancing technique. This technique aims to shorten
the critical path by placing more combinatorial logic on non-critical
paths. The effect of this reordering is that non-critical paths, which
do not determine the worst-case delay of the circuit, are stretched, while
the critical path is shortened, resulting in a reduction of the circuit delay.

A ROM unit is employed to store and provide the Kt constants.
Multi-mode architectures [105, 44] take advantage of the fact that the
values for SHA-256 are the most significative halves of the values for
SHA-512, therefore the ROM for the SHA-256 constants can be used
also in the SHA-512 data path.

The current hash value needs to be retained until the end of the hash-
ing of the current PDB, since it must be added to the value of the working
state Z according to Eq. (1.13). In a straightforward implementation, 8
adders are required to perform this final addition simultaneously. How-
ever, in [18, 17] an efficient alternative technique is proposed to compute
the new intermediate hash value without adding any latency, since it is
calculated during the last stages.

The actual hash computation is performed within the Compressor,
which is also where the critical path is located. The transformation round
core is responsible for the computation of Eq. (2.1), and its straightfor-
ward implementation is shown in Fig. 2.4. However, Eq. (2.1) must be
computed R times for each PDB. There are different techniques that

2.1. Approaches to SHA-2 Acceleration 23

Figure 2.4: A straightforward implementation of the transformation
round. The critical path is highlighted.

can be used to perform the whole computation from the transformation
round core, which will be described next.

Loop rolling

The loop rolling technique consists of implementing an iterative algo-
rithm by using the same component to perform iteratively the same
computation. A feedback loop is employed to forward the output of the
component to its input, so as to re-apply the function performed by the
component.

Architectures employing this technique require R+ 1 clock cycles to
produce a hash value, since an additional clock cycle is employed for
performing the last addition described by Eq. (1.13).

Pipelining

The hardware pipelining implementation technique consists of instantiat-
ing S times the circuitry required to perform a single iteration, with each
instance performing a fraction of the total number of iterations. This
means that SHA-2 architectures employing pipelining distribute the R
rounds required by a single hash calculation onto S pipeline stages, each
of which performing R/S iterations. However, within each pipeline stage,
loop rolling is still employed to perform the R/S iterations.

24 2. SHA-2 Hardware Acceleration Approaches

Pipelined SHA-2 architectures clearly increase the steady-state through-
put, since they are capable of outputting a new hash value every R/S
cycle, or even less if loop unrolling is also employed: compared with the
non-pipelined implementation employing the same transformation round
core, the throughput improvement reaches a factor S.

However, pipelined implementations obviously also incur an area oc-
cupation increase by a factor S, and an increase in power consumption
due to the presence of more register elements. SHA-2 pipelined architec-
tures also have a non-negligible practical drawback: due to the fact that
the computation of the intermediate hash value of the j-th PDB DM (j)
requires knowing the previous intermediate hash value DM (j − 1) ac-
cording to Eq. (1.13), and taking into account the fact that the latency
of the computation of a single PDB is unaffected by the pipelining tech-
nique, which works on multiple PDBs in parallel, pipeline architectures
cannot speed up the computation of a single message. For this reason,
some proposals [115] choose to instantiate multiple loop-rolled SHA-2
cores instead of a single pipelined implementation. SHA-2 architectures
which choose to employ pipelining rely on the opportunity of processing
different messages at once.

In pipelined SHA-2 architectures, the output of each stage, which is
fed as input to the following stage, is stored into the pipeline registers.
This does not happen if the transformation round employs spatial re-
ordering, since the pipeline register is moved to the middle of the stage,
and stores intermediate values rather than the output of the stage. In
these architectures, the input of the following stage is provided directly
by the combinatorial part of the previous stage.

2.1.3 Optimisation Techniques

The implementation of the transformation round core can exploit a num-
ber of different techniques. Usually, architectures proposed in the litera-
ture combine in different ways more than one optimisation technique to
take advantage of their combined effect. In fact, some techniques are not
particularly impactful by themselves, but their employment turns out to
be indispensable for the profitable application of other techniques. For
example, loop unrolling and spatial reordering are often employed with
the purpose of creating opportunities for the application of variables
precomputation or component improvements.

This section discusses in isolation each of the techniques applied in
the different hardware implementations of SHA-2. Section 2.2 will then
illustrate how these techniques are combined in each full design proposal.

2.1. Approaches to SHA-2 Acceleration 25

Components improvement

Performance can be improved by replacing the single components which
perform the basic operations of the algorithm with more efficient imple-
mentations.

For the SHA-2 algorithms, this technique can be applied to the
adders. Eq. (2.1) suggests that the two-input adders, which usually are
implemented by Carry Look-ahead Adders (CLAs), can be replaced by
three-input Carry Save Adder (CSA) with a latency only slightly higher
than the latency of a single two-input adder.

However, this replacement is not always profitable, depending to
other optimisations being in place, which may change the order of the
performed operations. A good criterion to decide whether or not a Carry
Save Adder should be used is stated in [80]: the CSA is appropriate if
there is an already available input pending to be added to a sum that is
being computed at the same time.

Variables precomputation

Some values can be computed well before they are needed, if the inputs
on which they depend are already available. If the computation is on
the critical path, this can directly reduce the critical path and hence
improve throughput. Precomputation can be applied to SHA-2 at two
distinct scales.

Looking at the SHA-2 algorithm as a whole, Eq. (1.4) shows that
the message schedule does not depend on any intermediate result, and
hence can be precomputed so as to make the proper Wt word available
when needed. In fact, the first 16 values of Wt are available from the
very beginning, and the time needed to compute a Wt value is usually
less than the time required by Eq. (2.1). Moreover, due to the fact
that the values of the constant Kt are known from the beginning of the
computation, the precomputation of Wt allows for the precomputaion of
the sums Wt +Kt, as done in [80].

Precomputation can also be exploited within the transformation round
core, by computing in the current step some values that are not imme-
diately used, but will be consumed by some of the following iterations.
This type of precomputation is also favoured by Eq. (1.12), which means
that the values needed for computation at the round t are actually avail-
able a few rounds earlier. More specifically, Eq. (1.12) implies that the
values of the accumulator variables, apart those which are computed in
the current round, are available at least one round earlier. By iterating

26 2. SHA-2 Hardware Acceleration Approaches

Eq. (1.12), it turns out that some accumulators are actually available
two or even three rounds in advance.

Some examples of this kind of precomputation, also called operation
rescheduling [18], are illustrated in Section 2.2.3; precomputation within
the round also underpins the quasi-pipelining approach, discussed in
Section 2.1.3.

Loop unrolling

The combinatorial block can perform more than one iteration of the al-
gorithm in the same clock cycle. A transformation round core employing
loop unrolling by a factor UF computes UF subsequent iterations in the
same clock cycle, hence reducing the total number of iterations to R/UF .

To achieve loop unrolling by a factor UF , Eq. (2.1) must be rewritten
to combine the results of UF subsequent iterations (t, t− 1, . . . , t− (UF − 1)).
Consider for instance an unrolling factor UF = 2, meaning that the it-
erations t and t− 1 are to be combined. Taking into account Eqs. (1.6)
to (1.7), Eq. (1.11) for the step t can be written as

At+1 = T 1
t (Et, Ft, Gt, Ht,Kt,Wt) + T 2

t (At, Bt, Ct)

Bt+1 = At

Ct+1 = Bt

Dt+1 = Ct

Et+1 = Dt + T 1
t (Et, Ft, Gt, Ht,Kt,Wt)

Ft+1 = Et

Gt+1 = Ft

Ht+1 = Gt

(2.2)

and for the step t− 1 the equation can be written as

At = T 1
t−1 (Et−1, Ft−1, Gt−1, Ht−1,Kt−1,Wt−1)

+ T 2
t−1 (At−1, Bt−1, Ct−1)

Bt = At−1

Ct = Bt−1

Dt = Ct−1

Et = Dt−1 + T 1
t−1 (Et−1, Ft−1, Gt−1, Ht−1,Kt−1,Wt−1)

Ft = Et−1

Gt = Ft−1

Ht = Gt−1

(2.3)

2.1. Approaches to SHA-2 Acceleration 27

Combining Eq. (2.2) and Eq. (2.3) yields the equation expressing the
value of the accumulators at iteration t + 1 as functions of the value of
the accumulators at the iteration t− 1, which is the function performed
by a transformation round core unrolled by a factor UF = 21:

T 1
t−1 = T 1

t−1 (Et−1, Ft−1, Gt−1, Ht−1,Kt−1,Wt−1)

At+1 = T 1
t

(
Dt−1 + T 1

t−1, Et−1, Ft−1, Ht,Kt,Wt

)
+ T 2

t

(
T 1

t−1 + T 2
t−1 (At−1, Bt−1, Ct−1) , At−1, Bt−1

)
Bt+1 = T 1

t−1 + T 2
t−1 (At−1, Bt−1, Ct−1)

Ct+1 = At−1

Dt+1 = Bt−1

Et+1 = Ct−1 + T 1
t

(
Dt−1 + T 1

t−1, Et−1, Ft−1, Ht,Kt,Wt

)
Ft+1 = Dt−1 + T 1

t−1

Gt+1 = Et−1

Ht+1 = Ft−1

(2.4)

As shown by Eq. (2.4), loop unrolling increases the critical path, due
to the addition of another level of function T 1 followed by another sum
in the computation of At+1. On the other hand, the number of iterations
is reduced by a factor equal to the unrolling factor.

What is more, the unrolled loop may expose more opportunities for
applying other optimisations that can reduce the critical path, further
improving performance. For example, loop unrolling may expose the
fact that some values are computed well before they are needed, and
this circumstance enables the application of temporal precomputation
[80].

Loop folding

Loop folding is the opposite transformation of loop unrolling, since it
consists of splitting the execution of one iteration in multiple clock cy-
cles. The advantage of doing so is the possibility of reusing the same
functional block to perform different operations in the same iteration,
hence reducing the total area occupation.

Usually, architectures employing loop folding incur an increase in
latency, due to the steep rise in the number of clock cycles required
to perform the whole computation [60]. Nevertheless, [136] proposes a

1In Eq. (2.4), the quantity T 1
t−1 is not a distinct value to compute, it has been

defined only to make the other equations more readable.

28 2. SHA-2 Hardware Acceleration Approaches

Figure 2.5: The architecture with spatial reordering proposed in [76].
The critical path is highlighted.

rescheduling of operations which avoids any increase in latency. This
rescheduling takes into account the data dependencies in the SHA-2 al-
gorithm, which prevent the simultaneous execution of all the additions.

Spatial reordering

In the architecture of the transformation round core, usually the pipeline
registers are located at the beginning of the computation to hold the
inputs or, more commonly, at the end of the computation to store the
outputs. The spatial reordering technique, firstly introduced in [133]
for SHA-1, consists of moving the pipeline register to the middle of the
round, more specifically in the best position so as to obtain a reduction
in the critical path by splitting the round itself into balanced, parallel
halves.

This optimisation, essentially a form of variable precomputation, is
also referred to as the spatial precomputation technique. It has the key
advantage of avoiding any additional latency, since there are no addi-
tional registers.

2.1. Approaches to SHA-2 Acceleration 29

Quasi-pipelining

Quasi-pipelining is a technique aimed to introduce pipelining within the
transformation round core, taking advantage of Eq. (1.12) to perform
data forwarding. The model has been formalised in [68], and can be
potentially applied to any circuit which can be modeled as:

• a shift register chain of n positions Ri, i ∈ [1, n];

• a number of combinatorial logic functions φi, including the identity,
each of which taking as input one or more register values;

• a chain of combining operations, each of which being a commuta-
tive and associative binary operator to combine the results of the
φi functions, feeding the shift register chain with the result.

Two additional non-shift registers are added and the end of the chain
for the K constant and theW expanded word, with index n+1 and n+2
respectively. The latency of the combining operators, which for SHA-2
always coincide with the modular addition, is assumed greater than the
latency of the φi functions, therefore the critical path runs from the Rn+2

register through the combining operators chain, ending to the input of
R1.

In order to break this critical path, it may be first necessary to re-
order the chain of combining operators, which is possible thanks to their
commutativity and associativity properties. To this end, define the φi
block as the couple of each φi operation and its associated combining
operator2. Each φi block is associated with an index Ii constituted by
the list of indices of the registers Rj which feed the φi function. The
chain of combining operators can therefore be reordered by sorting the φi
blocks according to the lexicographic order of their indices3. For SHA-2,
the chain is already well-ordered.

The critical path can now be broken into so-called quasi-pipeline sec-
tions Qj , again according to the index Ii of the φi blocks. Namely, a
quasi-pipeline section includes all the φi blocks sharing the same first
number in their index Ii. Quasi-pipelined sections are finally separated
by registers.

For SHA-2, the application of the quasi-pipelining technique requires
the circuit to be split in two halves due to the feedback in the middle

2The φn+2 block does not include a combining operator.
3Ii ≺ Ij if and only if Ii is a prefix of Ij or, possibly after a common prefix, the

first differing number of Ii is less than the corresponding number of Ij

30 2. SHA-2 Hardware Acceleration Approaches

of the chain required to compute Et. The quasi-pipelining technique is
then applied as graphically shown in Fig. 2.6 and described below:

φ1 = Σ0 (R1) ⇒ I1 = {1}
φ2 = Maj (R1, R2, R3) ⇒ I2 = {1, 2, 3}
φ3 = Σ1 (R5) ⇒ I3 = {5}
φ4 = Ch (R5, R6, R7) ⇒ I4 = {5, 6, 7}
φ5 = R8 ⇒ I5 = {8}
φ6 = R9 ⇒ I6 = {9}
φ7 = R10 ⇒ I7 = {10}

⇒

Q1 = {φ1, φ2}
Q2 = {φ3, φ4}
Q3 = {φ5}
Q4 = {φ6}
Q5 = {φ7}

(2.5)

Note that for the quasi-pipeline section Qj , the common first number
in the indices is greater than or equal to j, where the former possibility
occurs when some numbers lacks as first one. For SHA-2, this happens
starting from Q2, due to the lack of 2 as leading number in the indices.

The quasi-pipeline sections can be optimised by employing the de-
lay balancing technique, which implies in this case that paths shorter
than the critical one can be stretched without incurring any performance
penalty. For example, there is no need to separate Q3 and Q4, since
both of them contain one modular addition, while Q1 and Q2 contain
two modular additions. Similarly, there is no point in having Q5 as a
separate quasi-pipeline section, since it does not include any modular
addition. The resulting quasi-pipeline sections are hence:

Q1 = {φ1, φ2}
Q2 = {φ3, φ4}
Q3 = {φ5, φ6, φ7}

(2.6)

Taking into account that the quasi-pipeline sections are filled in descend-
ing order, at each iteration t the quasi-pipeline section Qj computes its
part of the round t− q+ j, where q is the total number of quasi-pipeline
sections. If t < q − j, quasi-pipeline section Qj is not active, and its
registers Ri are not clocked in order to fill the pipeline.

However, and differently from classical pipelining, all the quasi-pipeline
sections operate on the same input registers Ri. This creates the need
for data forwarding, which is allowed by the shift register configuration
and the fact that the chain was lexicographically ordered. An array of
selecting functions σi, i.e. multiplexers, is therefore added to perform
data forwarding and completing the circuit.

2.1. Approaches to SHA-2 Acceleration 31

(a) (b)

(c)

Figure 2.6: Application of Quasi-pipelining in SHA-2: (a) Quasi-
pipelined model of SHA-2 with quasi-pipelined sections. (b) Final Quasi-
pipelined Sections. (c) Complete Quasi-pipelined SHA-2 circuit. Light
border denotes identity functions, which do not correspond to any actual
circuits. Note that there are only two actual multiplexers in the final
circuit.

32 2. SHA-2 Hardware Acceleration Approaches

2.2 SHA-2 Accelerator Architectures

The vast majority of hardware implementations of SHA-2 follow the
coprocessor architecture approach. Despite the fact that it requires a
higher design effort compared to the processor architecture approach,
a coprocessor implementation can achieve better gains in terms of raw
performance and area efficiency [51].

This section surveys the various SHA-2 architectural designs pro-
posed in the technical literature, showing how each of them makes use of
the techniques discussed in Section 2.1 to achieve different optimization
objectives.

2.2.1 Basic architectures

The work in [106] proposes a hardware implementation of Eqs. (1.6)
to (1.11) with dedicated logic, within a transformation round unit. Since
the equations employ only bitwise logic operations, shift operations and
modular additions, corresponding logic gates, bit reordering and mod-
ular adders are used to build up the transformation round unit. This
unit is surrounded by a ROM, which provides the Kt constant values,
and a number of support units. The Constants Unit supplies the trans-
formation round core with the initialisation values DMk (0). The initial
values DMk (0) are hard-coded in the LUTs of the FPGA, while for the
subsequent PDBs the initialisation values DMk (j) to be provided by the
Constants Unit are updated by the Modified Unit. This unit includes
an array of adders which perform Eq. (1.13) to update the intermediate
message digest. The Wt values are provided by a dedicated Wt - unit,
which in turn is fed by the Padding Unit. A very similar architecture
has been implemented in [50] on a Xilinx Virtex-5 FPGA, while [82] ad-
vocates the use of parallel adders to implement the additions leading to
the computation of At+1 and Et+1.

[105] is a multi-mode variant of [106], where a Control Unit is in
charge of reconfiguring the circuit to perform one of the different SHA-2
variants, according to the user’s specifications. The most important as-
pect of [105] is the management of the different word widths of SHA-256
and SHA-512. This is tackled by clearing the least significant 32 bits
of the data path when SHA-256 is selected. The multi-mode architec-
ture of [35] takes advantage of the similarities between MD5, SHA-1,
and SHA-256 to support all of them. On the other hand, it does not
support SHA-512, which is supported by [105]. This exclusion is due to
the fact that SHA-512 works on 64-bit words, whereas [35] is a 32-bit
architecture.

2.2. SHA-2 Accelerator Architectures 33

A straightforward implementation of loop unrolling is presented in
[25], where multiple instances of the transformation logic round are
placed between registers. This allows for evaluating different values of
the unrolling factor.

Loop unrolling by a factor 2 is also exploited in [77] with the aim of
decreasing power consumption while increasing parallelism in the round
function computation. This architecture is further optimized in [3] where
multi-operand additions are compressed by using CSAs. The same op-
timisation techniques are exploited in [135], where a multi-mode archi-
tecture is proposed. This architecture is further optimised in [136] by
observing that, due to data dependencies, the whole round function can
be computed using only two CSAs without incurring any performance
penalty, by properly scheduling the various additions.

In [5], a reordering within the transformation round is proposed. The
following variable is defined:

τt = Ht +Kt +Wt +Dt (2.7)

and substituted into Eq. (2.1), leading to

At+1 = Σ0 (At) +Maj (At, Bt, Ct) + Σ1 (Et) + Ch (Et, Ft, Gt) + τt −Dt

Et+1 = Σ1 (Et) + Ch (Et, Ft, Gt) + τt
(2.8)

This architecture is further improved in [4] with the addition of CSAs,
while in [6] the application of loop unrolling is explored, with the un-
rolling factor 4 yielding the best results.

In order to achieve low power consumption, [40] reduces the number
of adders and simultaneously clocked registers by employing the loop
folding technique. Only one adder is used to perform all the operations
of the Compressor and the Expander, which therefore do not operate in
parallel and can be disconnected from the clock network accordingly.

2.2.2 Shift register architectures

The architecture proposed in [75] exploits Eq. (1.12) in the implementa-
tion of Eq. (2.1). In fact, Eq. (1.12) implies that the accumulators can
be chained into a shift registers fashion, where for Et+1 the incoming
value of Dt is added with the output of the T 1

t function, as shown in
Fig. 2.7. The shift register chain is supplied T 1

t + T 2
t as input, which

is the value of At+1. The coprocessor architecture proposed in [51] also
follows the shift register approach, both for the SHA-256 and the full
HMAC-SHA-256 implementations. The multi-mode variant of the shift
register approach is presented in [57].

34 2. SHA-2 Hardware Acceleration Approaches

Figure 2.7: Straightforward shift register architecture implementation

The shift register architecture can be optimised to utilise a single
adder to perform the final sum. This is illustrated in [102], where an
adder from the data path is reused to this end.

The shift register approach is also adopted in [60], which is an archi-
tecture specifically tailored to low-power, area-constrained applications.
The round function is implemented by reducing the number of operator
blocks at the minimum, reusing the same operator block to perform mul-
tiple computations. The shift register architecture of the Compressor is
therefore modified to work with a single adder, which subsequently adds
different operands to compute the round function across several clock
cycles, while the Ht register is used as the accumulator for the addition.
Interestingly, a similar architecture is adopted also for the Expander,
which requires four clock cycles to compute a word, compared with the
seven clock cycles of the Compressor. The whole circuit requires 490
clock cycles to fully compute a hash, hence effectively trading through-
put for area and power consumption. The multi-mode extension of this
architecture is presented in [59].

Another proposal aimed at reducing area occupation, following the
shift register architecture, is [1]. In this case, the area reduction is ob-
tained by reducing the word size of the SHA-512 hash function, which is
normally 64 bit, to a lower value, taking advantage of the fact that most
of the operations involved in the hash algorithm can be computed in a
bit-wise fashion. Implementations with the word size reduced to 32 bit,
16 bit and 8 bit are considered. Interestingly, the 32-bit variant achieves
72% of the throughput of the full-word-size implementation, meaning
that it is more area efficient than the full-word-size counterpart. The
architecture described in [14] also reduces the word width of the circuit

2.2. SHA-2 Accelerator Architectures 35

to 8 bit, exploiting also loop folding to achieve further area reduction.
A different way to improve the shift register architecture involves the

use of parallel adders for the adder chain. In [110] the adder chain is
implemented with 5-to-3 parallel adders, while [9] employs a single 7-3-
2 parallel adder to compute At+1. The architecture proposed in [125]
combines the use of parallel adders with the loop folding technique, in or-
der to reduce area occupation limiting the throughupt penalty, therefore
maximizing the area efficiency.

2.2.3 Architectures with precomputation

The architecture proposed in [45] precomputes the sumKt+Wt out of the
main operational block, in order to shorten the critical path. Moreover,
it employs a 5-to-3 parallel adder to compute At+1. The architecture
is further optimised in [67], where loop unrolling by a factor 5 is used.
Values required later in the unrolled chain of operations are precomputed
as soon as possible.

Variable precomputation is employed in [18] to shorten the critical
path at the iteration t. Taking into account that Ht = Gt−1 due to
Eq. (2.1), and that the values Kt and Wt are known well before they are
needed, the value

δt = Ht +Kt +Wt

= Gt−1 +Kt +Wt

(2.9)

can be precomputed during round t− 1, leading to the following compu-
tation during round t:

At+1 = Σ0 (At) +Maj (At, Bt, Ct) + Σ1 (Et) + Ch (Et, Ft, Gt) + δt

Et+1 = Dt + Σ1 (Et) + Ch (Et, Ft, Gt) + δt
(2.10)

This architecture is further improved in [17] with two optimised variants
for the Expander, relying upon BRAMs and FIFOs respectively.

The work in [5] pushes this approach further, proposing another pre-
computation based on the fact that Dt = Ct−1 again due to Eq. (2.1).
The value τt defined in Eq. (2.7) can be precomputed during round t−1
as4

τt = δt +Dk

= δt + Ct−1
(2.11)

4To stress the fact that Eq. (2.11) is computed at round t − 1 while Eq. (2.7) is
computed at round t, [5] calls the latter δ′t instead of τt

36 2. SHA-2 Hardware Acceleration Approaches

The computation of round t can therefore be reduced to

At+1 = Σ0 (At) +Maj (At, Bt, Ct) + Σ1 (Et) + Ch (Et, Ft, Gt) + δt

Et+1 = Σ1 (Et) + Ch (Et, Ft, Gt) + τt
(2.12)

In [5] three architectures are compared against the straightforward im-
plementation of Eqs. (1.6) to (1.11) with a common platform, which em-
ploys a rolling loop to perform the whole SHA-256 computation. These
architectures are the one resulting from Eqs. (2.7) and (2.8) originally
proposed in [18], the one resulting from Eqs. (2.9) and (2.10) and the
one resulting from Eqs. (2.11) and (2.12).

The architectures are further optimised in [4] by employing CSAs.
Moreover, the common evaluation platform is improved by inserting two
registers to break the critical path without requiring any additional clock
cycle. These additional registers are located after the ROM memory
storing the values or the Kt constant, and before the DM (j) feedback
loop multiplexer.

The multi-mode architecture proposed by [44] also exploits the pre-
computation of δt and τt, computing these two in parallel as

δt = Ht +Kt +Wt

= Gt−1 +Kt +Wt

τt = Ht +Kt +Wt +Dt

= Gt−1 +Kt +Wt + Ct−1

(2.13)

While the first equation is the same as Eq. (2.9), the second equation is
implemented by computing Gt−1+Ct−1 in parallel with the sumKt+Wt,
and the result of the latter is added, in parallel, to both the former and
Gt−1.

The architecture presented in [117] exploits variable precomputation
even further, in order to introduce a form of pipelining within the trans-
formation round. In the first stage, Eq. (2.9) is computed and stored
into a register, while in the second stage computes Eq. (1.6). A simi-
larly aggressive precomputation is performed in [2] in the context of a
two-unrolled architecture.

2.2. SHA-2 Accelerator Architectures 37

2.2.4 Architectures with spatial reordering

[76] introduces the use of spatial reordering within the design of the
transformation round core for SHA-2. The computation of

P1∗t = Σ0 (At) +Maj (At, Bt, Ct)

P2∗t = Σ1 (Et) + Ch (Et, Ft, Gt)

H∗t = Ht +Kt +Wt

(2.14)

is performed before the pipeline registers, while the computation of

At+1 = P1∗t + P2∗t +H∗t

Et+1 = Dt + P1∗t
(2.15)

is performed after the register, along with Eq. (1.12). The reordering
implies that the critical path includes the two adders for the computation
of At+1 and the following adder for the computation of P1∗t , along with
the Maj function.

The same authors propose in [80] a methodology for the optimisa-
tion of the block responsible for the computation of the round function,
built around the spatial reordering technique. This methodology takes
also advantage of loop unrolling, component improvements and variables
precomputation, and leads to the following computation ahead of the
pipeline registers:

p1t+1 = Σ0 (At−1) +Maj (At−1, Bt−1, Ct−1)

p2t+1 =
(
Dt−1 +Ht−1 + (K +W)t−1

)
+ Σ1 (Et−1) + Ch (Et−1, Ft−1, Gt−1)

p3t+1 = Dt−1 + (K +W)t−1 + Σ1 (Et−1) + Ch (Et−1, Ft−1, Gt−1)

p4t+1 = (K +W)t +Gt−1

p5t+1 = p4t−1 + Ct−1

p6t+1 = Et−1 + Ch (p2t+1, Et−1, Ft−1)
(2.16)

In the above equation, (K +W) denotes that the sum is pre-computed
out of the operational block, due to data prefetching. Note also that
p2t+1 is not computed from p3t+1, due to the fact that the sum Dt−1 +
Ht−1+(K +W)t−1 is performed by a CSA. The results of Eq. (2.16) are
stored in the pipeline registers along with At−1, Bt−1, Et−1 and Ft−1,

38 2. SHA-2 Hardware Acceleration Approaches

allowing for the following computation after the pipeline registers:

At+1 = Σ0 (Bt+1) +Maj (Bt+1, At−1, Bt−1) + (p4t+1 + p6t+1 + Σ1 (p2t+1))

Bt+1 = p3t+1 + p1t+1

Ct+1 = At−1

Dt+1 = Bt−1

Et+1 = p6t+1 + Σ1 (p2t+1) + p5t+1

Ft+1 = p2t+1

Gt+1 = Et−1

Ht+1 = Ft−1
(2.17)

It is worth noting that, although [80] proposes a methodology made up of
a sequence of techniques to be applied in order to obtain the optimised
hash core, the application of many of the techniques is not straight-
forward, but requires a careful analysis of the circuit by the designer.
The methodology is further improved in [81], most notably by adding
recursion, obtaining an even improved hash core. This latter version is
evaluated against different FPGA platforms in [8], where the correspond-
ing architecture of the Expander is also presented. Finally, [78] presents
the multi-mode hash accelerator based on the same techniques.

2.2.5 Architectures with quasi-pipelining

The first quasi-pipelined architecture for SHA-2 is introduced in [28], to-
gether with an improved variant employing delay-balancing. A slightly
different version is presented in [27], where the Expander is also opti-
mised with the delay balancing technique. An independent theoretical
analysis carried out in [66] confirms that this design is optimal, with
respect to the throughput, at the architectural level.

Unrolling by factors 2 and 4 of the quasi-pipelining architecture is
presented in [74], obtaining an improvement in throughput only for SHA-
512 with unrolling factor 2.

Without applying the fully-structured quasi-pipelined model described
in Section 2.1.3, the work in [113] exploits the same basic ideas of split-
ting the adder chain with registers, and exploiting Eq. (1.12) for data
forwarding, in this case of the Et accumulator. This work also employs
a form of precomputation by summing the value Kt with the word Wt

directly in the Expander, so as to remove this sum from the critical path.

Chapter 3

Evaluation of SHA-2 Hardware
Acceleration Approaches

from the discussion of Section 2.1 it is clear that accelerator archi-
tectures follow the same approach to the hardware implementation,

i.e. focusing on the optimisation of the transformation round core, then
building the whole hashing circuit around the optimised round core. This
raises the question of determining the best implementation, a question
which does not have a single, generally valid answer. In fact, the best
implementation can only be determined once the optimisation objective
have been set, since different implementations optimises different aspects
of the design.

This chapter presents an evaluation methodology for the systematic
evaluation of different SHA-2 accelerator designs, based on the usage
of a common evaluation platform which reduces the implementation ef-
fort required by that comparison. Finally, the impact of each optimisa-
tion technique on application metrics is discussed, from both theoretical
analysis and the experimental results; and this impact is linked to the
application requirements listed in Section 1.3.

3.1 The Need for a Common Evaluation Platform

As explained in Section 2.2, each SHA-2 accelerator design exploits one
or, more commonly, more than one of the optimisation techniques de-
scribed in Section 2.1.3.

Despite the common approaches and the functional compatibility be-
tween the various designs, it is still challenging to compare architectures
presented in different articles, for two main reasons.

39

40 3. Evaluation of SHA-2 Implementations

First, each work develops its own control and supporting circuitry,
which influences the reported performance of the proposal. Second, the
experimental results are also influenced by the specific target technology
and synthesis toolchain, whose impact is deeply intertwined with purely
architectural aspects.

To face these issues, a common evaluation platform called SHA-
2 workbench has been developed as a flexible, easy-to-use exploration
framework for the evaluation and comparison of different alternatives
for the hardware implementation of SHA-2. Such platform provides a
control and supporting circuit flexible enough to accommodate a wide
range of different designs, compared to similarly aimed comparison plat-
forms which can be found in previous works, such as [5, 4], where only
a limited number of design techniques are supported.

3.1.1 Evaluation Methodology

A particular implementation of the transformation round core which is
captured in an HDL can be easily plugged into the framework and syn-
thesized for a given target. The common evaluation platform facilitates
the task of comparing different designs factoring out the impact of the
target hardware technology and related software toolchain, which typ-
ically introduce a great deal of variability and unpredictability in the
design performance. The workbench also ensures that the obtained re-
sults solely depend on the optimisation techniques implemented by the
design proposal of the round core, effectively supporting an extensive
architectural exploration for SHA-2 implementations.

An architecture which fulfills a given set of constraints can be found
according to the process outlined in Fig. 3.1. Once the designer has
chosen a transformation round core, a full hash circuit architecture can
be obtained by simply tuning the parameters of the architecture. The
resulting circuit can be implemented against a target FPGA. If all the
design constraints are met, the exploration stops. Otherwise, another
iteration of the exploration is performed, where the same transformation
round core can be evaluated with different architectural parameters.

The designer may also choose to insert a newly developed transfor-
mation round core in the evaluation loop. In fact, the proposed SHA-2
workbench also facilitates the development of new transformation round
cores, since the designer can focus solely on the implementation of their
own optimisations, then properly configuring the framework to obtain a
complete hash circuit.

3.2. Workbench Architecture 41

Figure 3.1: Methodology for comparing different hash circuit architec-
tures

3.2 Workbench Architecture

The architecture of the proposed evaluation platform implements a SHA-
2 hash core which takes as input a full PDB and produces as output the
corresponding hash value. The framework can be configured to produce
a SHA-256 or SHA-512 hash core. Message padding and generation of
PDBs must be performed externally to the SHA-2 core. Figure 3.2 shows
the data path of the proposed workbench.

Once the chosen implementation of the transformation round core is
plugged into the workbench, the overall SHA-2 core is built employing
the loop rolling or the pipelining techniques described in Section 2.1.2,
according to a configuration parameter. When the former is chosen, the
combinatorial circuitry is instantiated only once, whereas with the latter
configuration, the workbench replicates the same combinatorial block
multiple times.

42 3. Evaluation of SHA-2 Implementations

Figure 3.2: Top level entity of the proposed evaluation platform. Oper-
ative part is highlighted in blue, Control part in red.

The architecture is composed by two parallel paths, which become
two parallel pipelines when pipelining is enabled, one for the Compressor
and one for the Expander. The number of pipeline stages can be config-
ured, and can be also set to 1 to disable pipelining at all. For each stage
of the Compressor pipeline, there is also an associated ROM containing
the values of the Kt constant relevant for the stage.

3.2.1 Compressor

The round registers, clocked by the external base clock, are employed also
as pipeline registers. The two functions are controlled by a multiplexer,
placed before the register within the round, and driven by a major cycle
signal. The major cycle signal is produced by the round counter, which
also outputs the address input for the ROMs.

The compressor pipeline registers is expected to contain at least the
8 working variables and a validity flag, which is set during the first stage
and is carried until output, to signal that the value of the output hash
register is meaningful. If required by the transformation round core,
the compressor pipeline can also be configured to have the compressor
pipeline registers containing additional working variables. When this is
the case, an initialisation unit - not shown in Fig. 3.2 - is instantiated
before the Compressor pipeline to compute the initial values for these
variables. This is described in greater detail in Section 3.2.4.

Each stage of the Compressor pipeline is an instance of the transfor-
mation round core selected by the designer. The compressor pipeline may
be configured to work with a transformation round core which employs

3.2. Workbench Architecture 43

Figure 3.3: Expander architecture, with stage chaining

loop unrolling and system-level data prefetching. If the latter optimisa-
tion is to be used, initial values for the Kt and Wt parameters, not used
by the first stage, are forwarded to the initialisation unit.

The compressor ends with the chaining sum, which may be configured
to be placed into a separate stage. Both the optional final stage, and
the initialisation unit, work as separate stage even if pipelining of the
transformation round core is disabled.

3.2.2 Expander

Within the Expander, the round registers work as 16-position word-wide
shift registers during the stage, turned into parallel registers when the
major cycle signal is asserted, again by means of a multiplexer array.
Since the last shift of the stage works with the major cycle signal asserted,
it is not written to the shift register. Instead, it must be captured by
properly rearranging the connection with the register of the following
stage, as shown in Fig. 3.3.

To perform unrolling, the shift register chain of each Expander stage
is split into a number of chains being equal to the unrolling factor, as
shown in Fig. 3.4, since that number of expanded words Wt must be
generated at each clock cycle. Words are distributed among splitted
chains cyclically with respect to their positions within the original chain.

According to Eq. (1.4), the 16 initial words which the input message
is splitted into are in big-endian order, causing a reverse sorting of the
input message, which must be taken in little-endian order. This creates
the need to reversing the input of the Expander, and this reversal must
in turn be taken into account when splitting the expander into stages.

44 3. Evaluation of SHA-2 Implementations

Figure 3.4: Expander architecture, unrolled of a factor 4

3.2.3 Control Unit

The Control Unit is responsible for properly driving the internal signals
of the circuitry. It provides for the correct loading of the two pipelines
at the very beginning of the operations of the circuit, when the major
cycle signal is not active yet. Moreover, it properly enables and clears
the round counter.

Basically, the Control Unit should only keep the round counter en-
abled during the computation and reset it at the end. Hence, in principle,
it should be made only of two states, idle and compute.

An additional last_stages state is added to flush the pipeline when
no new PDBs are provided to the core for hashing. Since the number of
pipeline stages is configurable, it is not viable to employ a Finite State
Machine (FSM) state per pipeline stage. Instead, a stage counter is
employed, fed by the major clock cycle and enabled during the last_-
stages state. As for the round counter, the counting value of the stage
counter can be computed from the values of the generic parameters of
the design. When the round counter signals that the pipeline is fully
flushed, the FSM can go into the idle state.

The Control Unit is responsible also for properly driving the timing

3.2. Workbench Architecture 45

Figure 3.5: FSM of the Control Unit with the Compressor and the Ex-
pander aligned

of the circuitry. Due to the presence of the multiplexers, it is possible to
load the pipeline only when the major cycle signal is asserted, but since
upon reset the major cycle signal is cleared, the very first major cycle
would be lost. To avoid this, the Control Unit introduces two control
signals, which enable the Compressor and the Expander respectively to
receive incoming data also during the very first major cycle. This is done
during an additional stage, first_load, as shown in Fig. 3.5.

In this version of the FSM, the control signals for initialising the
Compressor and the Expander pipeline are actually the same signal.
However, depending on the chosen architecture of the transformation
round, the data path may incur a further timing issue, related to the
constant ROM. Such cases are handled by the Control Unit via an addi-
tional stage, second_load, which delays only the Compressor pipeline by
one clock cycle, preventing it from accepting inputs. To work correctly,
the Expander must instead start working, hence the need of differenti-
ating the two control signals. The modified FSM is shown in Fig. 3.6,
whilst Section 3.2.4 discusses the conditions on the round architecture
under which the modified FSM must be instantiated.

3.2.4 Reconfigurable aspects controlled by source-level
parameters

The following characteristics of the architecture can be reconfigured by
setting the corresponding generic parameter in the HDL code, which
has been written in the VHSIC Hardware Description Language (VHDL):

46 3. Evaluation of SHA-2 Implementations

Figure 3.6: FSM of the Control Unit with the Expander moved ahead

Hash size The selection of the hash size implies the selection of the
hash function to perform. The WIDTH parameter can hence be set to 256
to select SHA-256, or 512 to select SHA-512. The word width of the
circuit is set appropriately based on the value of the WIDTH parameter.

Number of pipeline stages The number of pipeline stages can be
set directly as the value of the PIPELINE_STAGES parameter. Set this
parameter to 1 to disable pipelining. This value is also the number of
PDBs which can be processed at the same time by the architecture. The
number of pipeline stages must divide the number R of rounds1.

Unrolling factor The unrolling factor of the design must be set as
the value of the UNROLLING_FACTOR parameter. Set this parameter to
1 to disable unrolling. Note that this value must be set consistently
with the unrolling factor of the selected internal transformation round,
otherwise the architecture will not work. Moreover, the unrolling factor
must divide the number R of rounds2.

Working variables The parameter PIPELINE_WIDTH, which is expressed
as number of words, must be at least 8, since the Compressor pipeline
register must hold the 8 SHA-2 accumulators. However, an optimisa-
tion may use additional working variables, as done in [76, 80, 81]. The
additional working variables can be stored in the pipeline register, if nec-

1This constraint is checked by an assert in the code.
2The latter constraint is checked by an assert.

3.2. Workbench Architecture 47

essary, by specifying a number of words greater than 8 in the PIPELINE_-
WIDTH parameter.

When there are additional working variables shared between rounds,
hence requiring to be stored in the pipeline register, these variables need
to be initialised for the first round, possibly from the initial values of
the accumulators and/or the initial values of Kt and Wt. To do so,
when the value of PIPELINE_WIDTH is greater than 8, an instance of the
VHDL entity called Initialisation_block is instantiated, which is
expected to provide the initial values for the additional working variables.
Hence, an implementation of the transformation round which requires
additional working variables is expected to provide an architecture for
the Initialisation_block VHDL entity.

The initialisation block effectivelty acts as an additional pipeline
stage, not included in the PIPELINE_STAGES figure, and lasting only
one clock cycle. Due to the pipelined architecture, the additional clock
cycle affects only the latency of the circuit, and not its throughput, even
if PIPELINE_STAGES is set to 1.

Prefetch shift The value of the parameter PREFETCH_STEPS must be
set to 0 unless data prefetching is in place. When the value of this
parameter is greater than 0, the values of Kt and Wt fed to the transfor-
mation round at each round are anticipated to PREFETCH_STEPS rounds.
Put another way, at the round t the transformation core is fed with the
values of Kt and Wt corresponding to the round t + PREFETCH_STEPS.
The value of PREFETCH_STEPS must be set irrespectively to the value
of UNROLLING_FACTOR, since the actual value is internally adjusted so
as to take into account the unrolling. The first PREFETCH_STEPS val-
ues of Kt and Wt are also made available to the initialisation block for
precomputing the initial values of the additional working variables, if
present.

Timing The boolean parameter FIX_TIME allows for reconfiguring the
timing of the part of the design which provides Kt and Wt constants, as
required by the standard [89].

Due to the fact that theKt ROM takes as input the value of the stage
counter, there is a one-cycle delay between the counter increment and
the corresponding value of the constant. If the pipeline register is placed
before any use of the Kt constants, as it happens in the Naive transfor-
mation round architecture, the pipeline register itself compensates for
the delay and hence no further action is required, so FIX_TIME must be
set to false. Otherwise, if the value of Kt is used before the pipeline

48 3. Evaluation of SHA-2 Implementations

registers, as in transformation round architectures which make use of the
precomputation technique, it is required to introduce a one-cycle delay
to align the value of Kt with the other operands.

This is done by the Control Unit as described in Section 3.2.3, and
this additional clock cycle impacts only the first computation, hence not
affecting steady-state throughput. To instantiate the appropriate FSM
for architectures which employ precomputation, FIX_TIME must be set
to true. When this is the case, the major cycle of the Compressor is
delayed by one clock cycle, by means of a flip-flop, in order to keep the
other stages aligned with the first stage, which is the only one directly
fixed by the Control Unit.

Final sum If the FINAL_SUM boolean parameter is set to true, an
additional register is placed just before the final sum, actually resulting
in an additional stage, which is not included in the PIPELINE_STAGES
figure. The output register of this stage is also the output register of
the whole circuit. This stage requires only one clock cycle, but if its
output register had been enabled by the major cycle signal, its latency
would have been the same of the other pipeline stages, which is R/(S · UF).
This is avoided by using as enable signal for the output register a one-
cycle-delayed version of the major cycle signal. Due to the pipelined
architecture, throughput is not affected by the presence of the final stage,
even if PIPELINE_STAGES is set to 1.

If the architecture employs spatial reordering and at least one adder
is placed before the pipeline register, however, it is not profitable to add
the final stage, hence FINAL_SUM can be set to false. When this is the
case, the output of the last stage is directly fed into the adders.

It is worth noting that, when an adder is placed before the registers,
it is most likely the one which performs the Ht + Wt or the Ht + Kt

sums. As a consequence, an architecture which sets FINAL_SUM to false
usually also needs to set FIX_TIME to true. However, it was chosen to
keep these two parameters distinct in order to provide greater flexibility
for new optimised implementations of the transformation round.

3.2.5 Reconfigurable aspects controlled by component
declarations

The architecture of the Compressor_pipeline_stage component can be
specified by a VHDL configuration declaration in order to configure
the transformation round. Alternatives are implemented as different
architectures of the Transf_round entity.

3.2. Workbench Architecture 49

Figure 3.7: Architecture of the Naive transformation round core

The following transformation round architectures are provided:

Naive A straightforward implementation of the transformation round,
with the architecture illustrated in Fig. 3.7. The pipeline register
is placed before all the combinatorial parts so as to compensate for
the delay of the constants ROM, as discussed in Section 3.2.4.

Precomputed_UF1 An implementation of the round function with pre-
computation, presented in [4].

Reordering_UF1 An architecture with precomputation and spatial re-
ordering, presented in [76].

Reordering_UF2 An architecture with precomputation, spatial reorder-
ing, unrolling and CSAs, presented in [81]

When using the Naive transformation round core, the combinato-
rial part can be further customised by specifying an architecture for the
Transf_round_comb component, shown in Fig. 3.7, which must imple-
ment the round function. The following architectures for the combina-
torial component are provided:

Naive A straightforward implementation of the round function.

Unrolled An implementation of the round function unrolled by a factor
4.

An optimisation of the transformation round which is entirely com-
binatorial should be implememented as an architecture of the Transf_-
round_core entity for usage within the Naive architecture of the Transf_-
round entity. This way the timing issue described in Section 3.2.4 is

50 3. Evaluation of SHA-2 Implementations

avoided. On the other hand, if an optimisation involves the pipeline reg-
ister, this must be implemented as an architecture for the Transf_round
VHDL entity.

3.2.6 Discussion

The main aim of the proposed SHA-2 workbench is to provide a fully
configurable design solution to be used to explore and evaluate existing
and possibly new architectures.

Most of the previous literature proposals for SHA-2 can in fact be
seen as a particular instance of the configurable solution presented here.
Only architectures that completely redefine the data path of the SHA-2
core, such as [68], are not suitable to be described by the framework
presented in this chapter.

Furthermore, works that take advantage of the particular application
of the SHA-2 function to enhance the performance of the overall system,
such as [81], also fall partially out of the scope of the framework. Such
architectures can be integrated into our framework for the part regarding
the SHA-2 design, but they cannot exploit the benefits of the particular
application. This is an intended goal of the research effort, which aims
to make it easier and fairer to compare SHA-2 implementations on their
own.

3.3 Experimental Results

The proposed architecture has been synthesized, placed, and routed with
the Xilinx Vivado IDE 2017.4 for an extensive range of configurations.
Since the proposed design is meant to be used as a part of a larger
system, the VHDL description has been synthesized in Out of Context
mode.

3.3.1 Design comparison against a specific target

Different design alternatives have been analyzed assuming the same tar-
get technology, in order to show how the proposed framework can help
in comparing fairly different designs on the same target technology, al-
lowing the designer to identify the best one for a given platform.

The target platform considered in this section is the Xilinx Kintex
UltraScale+ XCKU5P, which is a 16 nm FPGA featuring more than 200k
LUTs [130, 131].

3.3. Experimental Results 51

Table 3.1: Detail of the architectures explored. The number of stages
S is the value of the PIPELINE_STAGES generic parameter, while the
unrolling factor UF is the value of the UNROLLING_FACTOR parameter.

Nº Core type S UF PIPELINE_WORDS PREFETCH_STEPS FIX_TIME FINAL_SUM_AS_STAGE

1 Naive 1 1 8 0 false true

2 Naive 1 4 8 0 false true

3 Naive 4 1 8 0 false true

4 Naive 4 4 8 0 false true

5 Precomputed_UF1 1 1 8 0 true true

6 Precomputed_UF1 4 1 8 0 true true

7 Reordered_UF1 1 1 8 0 true false

8 Reordered_UF2 1 2 14 4 true false

9 Reordered_UF1 4 1 8 0 true false

10 Reordered_UF2 4 2 14 4 true false

The exploration started by comparing architectures with and with-
out pipelining, and with and without unrolling. Table 3.1 summarizes
the architectures that have been explored, along with the corresponding
parameter configurations. The unrolled variant of the Naive transforma-
tion round is obtained by replacing the Naive combinatorial part with
the Unrolled implementation. The Reordered_UF2 core is the only
which employs additional working variables and data prefetching. It is
worth mentioning that Reordered_UF1 also makes use of additional vari-
ables, but these are temporary, stored in the reordered pipeline register
but not shared between rounds.

Table 3.2 lists the implementation results for all the architectures
described in Table 3.1 on the Kintex UltraScale+ XCKU5P FPGA for
the SHA-256 hash algorithm. Table 3.3 lists the results of the same
implementation for the SHA-512 hash algorithm. Performance is ex-
pressed in terms of the hash rate, which is equivalent to the throughput
in Mbit s−1 except for the constant value of the hash size. On the other
hand, efficiency values are computed with respect to the throughput in
Mbit s−1.

It is worth recalling that, when pipelining is enabled, the same com-
binatorial circuitry is replicated throughout the stages, increasing the

52 3. Evaluation of SHA-2 Implementations

hash rate S times without degrading, in principle, the critical path delay
of the design.

The results show that the Reordered transformation round architec-
ture slightly outperforms the Naive implementation, while the Precom-
puted transformation round implementation underperforms the straight-
forward implementation, both in the basic and pipelined variants, re-
ported in Table 3.2a and Table 3.2b respectively. On the other hand,
the 2-unrolled variant of the Reordered transformation round architec-
ture, despite the fact that it includes more optimisations, underperforms
the unrolled Naive transformation round, both in the basic and pipelined
variants, reported in Table 3.2c and Table 3.2d respectively.

Overall, the best architecture depends on the evaluation metric. The
4-stage pipeline based on a non-optimised transformation round core
unrolled by a factor of 4, numbered 4 in the tables, turns out to be the
architecture with the highest hash rate and the best power efficiency,
but the 4-stage pipeline based on the highly optimised Reordered_UF2
transformation round, numbered 9 in the tables, shows the best area
efficiency.

3.3.2 Architectural Exploration

As an example of effective architecture exploration enabled by the SHA-
2 workbench, the analysis of the critical paths reported by the hardware
synthesis tool shows that the final adder was on the critical path even
when the circuit is synthesized with the Reordered cores, which theoret-
ically should not be the case [81]. This observation obviously raises the
question of whether separating that adder with a register could benefit
the critical path and hence the hash rate.

With the proposed framework, obtaining the modified architecture
is as fast as switching a boolean parameter. So, designs from 7 to 10
in Table 3.1 have been reimplemented with the modified architecture.
Architectures labelled with a quote (’) in the table correspond to those
in Table 3.1 having the same number, with the addition of the final stage.

Results are reported in Table 3.4 for SHA-256 and Table 3.5 for
SHA-512. All but one architectures benefit from the introduction of the
additional stage. It must be stressed that this gain could not have been
exposed by a theoretical analysis of the critical path, making it necessary
to go down to the implementation of each alternative.

3.3. Experimental Results 53

Table 3.2: SHA-256 implementation results on the Kintex FPGA. Area
efficiency is expressed in Mbit s−1⁄LUT, power efficiency is expressed in
Mbit s−1⁄mW

(a) Base architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

1 2.398 6.516 1578 1875 0.451 0.122 0.573 1.057 2.911

5 3.004 5.201 1619 1866 0.451 0.115 0.566 0.822 2.353

7 2.297 6.802 1485 1640 0.451 0.131 0.582 1.173 2.992

(b) Pipelined architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

3 2.745 22.769 5314 4302 0.453 0.412 0.865 1.097 6.738

6 3.050 20.492 5385 4314 0.454 0.430 0.883 0.974 5.941

9 2.646 23.621 4986 4312 0.454 0.434 0.887 1.213 6.817

(c) Unrolled architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

2 7.750 8.065 2793 1960 0.451 0.099 0.550 0.739 3.754

8 5.146 6.073 2907 2194 0.452 0.164 0.616 0.535 2.524

(d) Unrolled and pipelined architecures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

4 9.012 27.741 9316 4188 0.453 0.347 0.800 1.097 8.877

10 5.607 22.294 8670 5184 0.455 0.581 1.036 0.658 5.509

54 3. Evaluation of SHA-2 Implementations

Table 3.3: SHA-512 implementation results on the Kintex FPGA. Area
efficiency is expressed in Mbit s−1⁄LUT, power efficiency is expressed in
Mbit s−1⁄mW

(a) Base architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

1 2.812 4.445 3130 3689 0.452 0.222 0.674 0.727 3.377

5 5.145 2.430 3097 3690 0.451 0.130 0.581 0.402 2.141

7 2.738 4.565 2784 3240 0.452 0.233 0.685 0.840 3.412

(b) Pipelined architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

3 3.121 16.021 10424 8540 0.456 0.772 1.228 0.787 6.680

6 5.562 8.990 10079 8539 0.454 0.522 0.977 0.457 4.712

9 3.096 16.150 9825 8269 0.456 0.791 1.247 0.842 6.631

(c) Unrolled architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

2 10.012 4.994 5585 3892 0.452 0.167 0.619 0.458 4.131

8 9.392 2.662 5828 4343 0.452 0.205 0.657 0.234 2.074

(d) Unrolled and pipelined architecures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

4 12.003 16.663 17970 8304 0.455 0.586 1.041 0.475 8.195

10 10.287 9.721 18274 10469 0.457 0.807 1.263 0.271 4.027

3.3. Experimental Results 55

Table 3.4: Results with the addition of the final stage for SHA-256.
Area efficiency is expressed in Mbit s−1⁄LUT, power efficiency is expressed
in Mbit s−1⁄mW

(a) Reordered_UF1, without pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

7 2.297 6.802 1485 1640 0.451 0.131 0.582 1.173 2.992

7’ 2.250 6.944 1487 1898 0.451 0.134 0.585 1.196 3.039

(b) Reordered_UF2, without pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

8 5.146 6.873 2907 2194 0.452 0.164 0.616 0.535 2.524

8’ 4.935 6.332 2914 2451 0.452 0.164 0.616 0.556 2.632

(c) Reordered_UF1, with 4-stage pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

9 2.646 23.621 4986 4312 0.454 0.434 0.887 1.213 6.817

9’ 2.502 24.980 5088 4570 0.454 0.427 0.881 1.257 7.259

(d) Reordered_UF2, with 4-stage pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

10 5.607 22.294 8760 5184 0.455 0.581 1.036 0.658 5.509

10’ 5.607 22.294 8649 5455 0.455 0.576 1.030 0.660 5.541

56 3. Evaluation of SHA-2 Implementations

Table 3.5: Results with the addition of the final stage for SHA-512.
Area efficiency is expressed in Mbit s−1⁄LUT, power efficiency is expressed
in Mbit s−1⁄mW

(a) Reordered_UF1, without pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

7 2.738 4.565 2784 3240 0.452 0.233 0.685 0.840 3.412

7’ 2.689 4.649 2793 3754 0.453 0.223 0.676 0.852 3.521

(b) Reordered_UF2, without pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

8 9.392 2.662 5828 4343 0.452 0.205 0.657 0.234 2.074

8’ 8.793 2.843 5839 4856 0.452 0.217 0.669 0.249 2.176

(c) Reordered_UF1, with 4-stage pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

9 3.096 16.150 9825 8269 0.456 0.791 1.247 0.842 6.631

9’ 3.122 16.015 9821 8786 0.456 0.740 1.196 0.835 6.856

(d) Reordered_UF2, with 4-stage pipelining

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

10 10.287 9.721 18274 10469 0.457 0.807 1.263 0.272 3.940

10’ 10.346 9.666 18264 10983 0.456 0.773 1.229 0.271 4.027

3.4. Analysis of the Impact on Application Metrics 57

3.3.3 Exploring a different target

To investigate the influence of the target platform on the measured
results, the evaluation was repeated targeting a different technology,
namely the Xilinx Artix-7 XC7A200T device, a 28 nm FPGA [129],
smaller and slower compared to the Kintex device considered in the
previous section. Table 3.6 shows the implementation results.

Some of the considerations made for the Kintex target can be re-
peated for the Artix-7. The Precomputed transformation round still un-
derperforms the straightforward implementation, and the Reordered_-
UF2 transformation round still underperforms the unrolled Naive trans-
formation round.

However, there are also significant differences. The Reordered trans-
formation round no longer outperforms the straightforward implemen-
tation, both in the basic and in the pipelined variants, reported in Ta-
ble 3.6a and Table 3.6b respectively; in the latter case, the Reordered
transformation round even underperforms the Naive variant. More sur-
prisingly, the addition of the final stage turns out to be counterproduc-
tive, leading to an increase in the critical path delay. This suggests
that the gain observed for the Kintex target, which was not expected by
the theoretical analysis of the critical path, needs to be evaluated on a
platform-specific basis.

3.4 Analysis of the Impact of Design Techniques on
Application Metrics

Table 3.7 compares the various techniques described in Section 2.1 in
terms of their effects on performance, area occupation and energy effi-
ciency, and the implementation complexity of each of them. The table
also lists the most representative works employing each technique. As
described in Section 2.2, each design usually exploits more than one
technique in order to meet the stated objectives.

Most design techniques are primarily aimed to performance, at the
expense of increased area occupation and energy consumption. These
approaches are best evaluated in terms of area efficiency or area-delay
product, and power efficiency or power-delay product, in order to assess
whether the price in terms of area occupation and energy consumption
actually pays off.

Without loss of generality, throughout this section only single-PDB
messages will be considered, as is customary when talking about perfor-
mance metrics.

58 3. Evaluation of SHA-2 Implementations

Table 3.6: SHA-256 implementation results on the Artix-7 FPGA. Area
efficiency is expressed in Mbit s−1⁄LUT, power efficiency is expressed in
Mbit s−1⁄mW

(a) Base architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

1 6.273 2.491 1593 1865 0.122 0.063 0.185 0.400 3.447

5 8.214 1.902 1565 1866 0.122 0.054 0.176 0.311 2.767

7 6.274 2.490 1412 1642 0.122 0.070 0.192 0.452 3.321

7’ 6.500 2.404 1422 1900 0.122 0.062 0.184 0.433 3.344

(b) Pipelined architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

3 7.002 8.926 4923 4302 0.122 0.223 0.346 0.464 6.604

6 9.290 6.728 4971 4301 0.122 0.188 0.311 0.346 5.541

9 7.103 8.799 4795 4299 0.122 0.210 0.332 0.470 6.785

9’ 7.449 8.390 4754 4557 0.122 0.202 0.329 0.452 6.629

(c) Unrolled architectures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

2 20.262 3.085 2767 1960 0.122 0.048 0.170 0.285 4.645

8 13.709 2.280 2895 2195 0.122 0.086 0.208 0.202 2.808

8’ 13.988 2.234 2897 2452 0.122 0.080 0.202 0.197 2.831

(d) Unrolled and pipelined architecures

Nº Critical Hash rate Area Power Consumption (W) Efficiency

Delay (Mhash/s) LUT FF Static Dynamic Total Area Power

4 21.563 11.594 9072 4188 0.122 0.183 0.305 0.327 9.731

10 15.494 8.068 8566 5185 0.122 0.123 0.407 0.241 5.074

10’ 15.494 8.068 8468 5455 0.122 0.122 0.397 0.244 5.202

3.4. Analysis of the Impact on Application Metrics 59

Table 3.7: Impact of SHA-2 optimisation techniques on evaluation met-
rics. Stronger impacts are highlighted

Architectural Impact on
Complexity Employed by

Technique Throughput Area Power

Pipelining positive negative negative
low

[3, 76, 80, 81, 8]

Variables
positive negative negative low

[45, 67, 17, 18, 5]
Precomputation [4, 44, 2]

Loop Unrolling positive negative positive low
[25, 2, 80, 81, 8]
[67, 135, 136]

Loop Folding negative positive negative high
[60, 136, 110, 40]

[14, 125]

Spatial Reordering positive negative negative high [76, 80, 81, 8]

Quasi - Pipelining positive negative negative low [68, 28, 27, 113]

3.4.1 Performance

Performance refers to how fast data is processed. The most used metric
to assess performance of hash circuits is the throughput, defined as the
the number of bits delivered per unit of time. If the hash circuits is
capable of outputting a new hash value every Nclk clock cycles, and the
clock period is τclk, the throughput can be written as

Q =
L(DM(M))

τclk ·Nclk
=
L(DM(M)) · fclk

Nclk
(3.1)

The number of bits of the output depends on the selected hash func-
tion and does not offer any degree of freedom for improving throughput,
unless the designer is in the position of choosing which hash function to
employ. For this reason, when comparing designs for the SHA-2 function
with different hash sizes, it is preferable to refer to the hash rate, defined
as

F =
1

τclk ·Nclk
=

fclk
Nclk

(3.2)

The other two terms of Eq. (3.1) are instead fully dependent on ar-
chitectural design decisions. The clock period is lower bounded by the
critical path delay, hence it is directly influenced by architectural tech-
niques which impact the critical path. Variable precomputation, spatial

60 3. Evaluation of SHA-2 Implementations

reordering and quasi-pipelining all reduce the critical path, therefore
these techniques are beneficial for the throughput metric.

The number of clock cycles between two consecutive outputs is the
latency required to compute the hash of a single PDB. For architectures
capable to perform one iteration per clock cycle, Nclk is R+ 1 unless the
architecture can handle the final sum concurrently with the execution
of the last iteration, such as [18, 17], or has the adder in parallel with
the critical path, such as [80, 81]; in such cases Nclk is R. Architectures
with loop folding, on the other hand, require multiple clock cycles per
iteration, making this technique negative for throughput.

Pipelining does not modify the number of clock cycles required to
produce a single hash message. Instead, it reduces the average value
of Nclk by processing more PDBs simultaneously. The throughput is
consequently increased by a factor equal to the number of pipeline stages,
only slightly reduced by a small increase in the critical path delay, as
confirmed by the results reported in Section 3.3.

Loop unrolling has a twofold effect on performance. On one hand,
it directly reduces the number of cycles required to hash a message by
computing multiple iterations in a single clock cycle. On the other hand,
it substantially increases τclk due to the increased number of combina-
torial levels required to compute the different iterations. The overall
effect of loop unrolling hence depends on whether the reduction of the
number of clock cycles compensates for the increase in the critical path.
This does not happen in [67], while it happens in [80]. This discussion
does not take into account the fact that loop unrolling can enable fur-
ther transformations which can reduce the critical path, as mentioned in
Section 2.1.3.

Moreover, while the reduction of Nclk is platform-independent, the
increase in τclk does depend on the underlying technology. This implies
that the overall effect of loop unrolling on throughput is technology-
dependent. For the experimental data reported in Section 3.3 it is clear
that loop unrolling by a factor 4 is profitable for the straightforward
implementation of SHA-256 for both the targets analysed. In fact, the
increase factor of the critical path delay due to the unrolling is between
3× for the Artix-7 and 3.3× for the Kintex, i.e., less than the unrolling
factor 4. This is no longer the case for the Reordered implementations:
the increase factor here is between 2.1× and 2.3×, which is larger than
the unrolling factor 2. This suggests that a more aggressive unrolling
would be profitable also for the Reordered transformation round core.
It must be also stressed, however, that the Reordered_UF2 implemen-
tation involves a number of architectural differences compared to the

3.4. Analysis of the Impact on Application Metrics 61

Reordered_UF1 implementation, so it is not a simple unrolling of the
same architecture. For SHA-512, the effect of unrolling is vastly re-
duced, since the increase factor in the critical path becomes ∼ 3.8×
for the straightforward implementation and ∼ 3.4× for the Reordered
implementation.

3.4.2 Area occupation and area efficiency

Area occupation refers to the size of the circuit when implemented in
Application-Specific Integrated Circuit (ASIC) technology. On reconfig-
urable technologies such as FPGA, area occupation refers to the utilisa-
tion of device resources [30]. It is a relevant factor for the final cost of
the design, since a larger design requires a larger device for the physical
implementation [65].

Usually, area occupation is traded off for performance. Techniques
like pipelining and loop unrolling, which are aimed to increase through-
put, have a severely adverse impact on area occupation, since the circuit
must be replicated as many times as the number of pipeline stages or the
unrolling factor. However, unlike the case of multiple instances of the
same circuit, only the data path needs to be replicated. Conversely, loop
folding is aimed to reduce area occupation, at the expense of degraded
throughput.

The experimental results presented in Section 3.3 show that the area
occupation increase factor due to unrolling is ∼ 1.8× for the straightfor-
ward implementation and ∼ 2× for the Reordered implementation. Even
in the former case, this area increase factor is higher than the increase
factor for throughput, In fact, the increase factor for throughput due to
unrolling corresponds to UF/DIF , where DIF is the increase factor in
the critical path delay discussed in Section 3.4.1. This figure is ∼ 1.2×
for the straightforward implementation, which is lower than the increase
factor in terms of area occupation, resulting in a negative impact of loop
unrolling on area efficiency.

Other techniques, such as variable precomputation, spatial reorder-
ing and quasi-pipelining have a limited impact on the area occupation
of SHA-2 accelerators since the additional resources utilised by these
architectures are just a handful of registers.

3.4.3 Power and energy consumption

As with any digital system, energy represents the main operational cost
for SHA-2 hardware accelerators, while power consumption refers to the
amount of energy consumed by the circuit per unit of time.

62 3. Evaluation of SHA-2 Implementations

Interestingly, operational costs might not be the only factor of in-
terest, as instantaneous power consumption may sometimes have strong
implications on the physical design of the accelerator. In fact, the energy
absorbed per unit of time by a circuit is dissipated as heat, which must
be driven away from the hardware to avoid damaging the circuit by over-
heating [114]. The cost of cooling clearly increases with the amount of
power to be driven away [16], while thermal requirements can even place
an upper bound on the amount of functionality that can be integrated
in a chip [15], no matter what the cost constraints are; this latter issue is
referred to as power cap. If NM is the number of clock cycles required to
hash a single messageM , and P is the instantaneous power consumption
of the accelerator, the energy consumption of hashing a message can be
written as

Other applications, including passively-powered circuits, are limited
in the amount of power they can be supplied. The constraint on the SHA-
2 functionality placed by power supplying limitations is even tougher
than the one posed by power dissipation, since there are no measures
that can be used to mitigate the problem, unlike the case of cooling for
dissipation. In such occurrences, the input power constraint can only be
met by means of architectural optimisations [124].

JM = P · τclk ·NM =
P ·NM

fclk
(3.3)

since τclk · NM is the time required to hash the message M . For archi-
tectures processing one message at a time, NM = Nclk, while for archi-
tectures processing more than one message simultaneously, the identity
NM = Nclk holds on average over multiple messages. Therefore, the
average energy consumption per message hash can be written as

JM = P · τclk ·Nclk =
P

F
(3.4)

with F being the hash rate, defined by Equation (3.2).
The equation above suggests that the energy consumption can be

reduced by either increasing the hash rate, or decreasing the power con-
sumption. The hash rate has been analyzed in Section 3.4.1, so the
remainder of this section will focus on power consumption.

The power consumption of a circuit is usually divided into a static
and a dynamic component. The static component depends mainly on
technological aspects, such as the power supply V , or the threshold volt-
age of the transistors, amongst others [7]. On the other hand, the dy-
namic component can be influenced by architectural decisions [42] and

3.4. Analysis of the Impact on Application Metrics 63

therefore by the particular techniques employed in designing the SHA-2
circuit.

Energy is absorbed from the supply by a Complementary Metal-
Oxide-Semiconductor (CMOS) gate during a transition from 0 to V ,
and is dissipated as heat during the subsequent transition from V to
0. Therefore, only the former transition leads to energy consumption
[16]. For this reason, the switching activity α is often defined as the
probability of a transition from 0 to V within a clock cycle, in order to
avoid a 1/2 factor throughout the power consumption formulae.

At the gate level, the dynamic power consumption can be written as
[16]:

Pd = α · fclk · C · V 2 (3.5)

where C is the capacitive load of the gate. For FPGAs, the power
consumption can be rewritten to take into account the utilisation U of
each resource in the whole device after programming [103]:

Pd = fclk · V 2 ·
∑
i

αi · Ci · Ui (3.6)

These formulae show the impact of the clock frequency on power
consumption. Techniques that optimise throughput of the SHA-2 accel-
erator through decreasing the critical path end up increasing the power
consumption, due to the corresponding increase of fclk. This is the case
of variable precomputation, spatial reordering and quasi-pipelining.

As mentioned above, in massively parallel systems, increasing fclk
puts more pressure on cooling system, whose dissipation capabilities may
limit the maximum clock frequency, or poses an inherent limitation for
passively-powered devices. However, this power increase does not lead
to an increase of the energy consumed per hash, since fclk also appears
on the denominator of Eq. (3.3).

It is worth noting that if the optimisation of throughput is not due
to a decrease in τclk but to a decrease in Nclk, this argument does not
apply. In such cases, there is no power consumption penalty, and there
is a reduction in the energy consumption per hash due to the throughput
increase, as shown by Eq. (3.4). Techniques that increase throughput by
decreasing Nclk include pipelining and loop unrolling.

Another factor impacting power consumption is area occupation [11],
since more low-level devices need to be powered, and physical data and
clock nets are longer [29]. This is shown also by Eq. (3.6). Therefore,
designs which optimise resources utilisation, such as loop folding, also

64 3. Evaluation of SHA-2 Implementations

improve power efficiency. On the other hand, techniques leading to in-
creased area occupation, such as pipelining and loop unrolling, also face
increased power consumption.

A more direct effect of architectural choices on power consumption is
linked with the number of register operations [79, 3]. Since each register
is read and written once per clock cycle, reducing the number of clock
cycles needed to compute a hash also reduces the number of operations
performed by registers, hence the dynamic power dissipation due to reg-
ister operations. From this point of view, loop unrolling turns out to be
beneficial in terms of power savings due to register operations.

The overall effect to be expected on power consumption due to each
design technique is summarized in Table 3.7. Pipelining has an adverse
effect on power consumption, due to its increase in area and register oper-
ations. Loop unrolling has opposite implications on power consumption,
increasing the area occupation on one hand, but reducing frequency and
register operations on the other. Similarly, loop folding has a twofold
impact on power consumption. It leads to power savings due to the
area reduction, but this also comes at the cost of increased register op-
erations. The predominant effect ultimately depends on the underlying
technology employed for the SHA-2 accelerator.

3.4.4 Implementation complexity

This comparison criterium refers to the effort required for the designer to
apply the architectural technique to a circuit, which is especially relevant
in cases where a customized system is to be built.

Pipelining and loop unrolling are structured techniques, that can also
be applied automatically by modern CAD tools. Variable precomputa-
tion implies for the designer to break the critical path, which for SHA-2
is clearly located in the computation of At+1. Computations that do
not depend on At and Et can be moved ahead to the previous round.
Quasi-pipelining is a more sophisticated technique, but it can be applied
without too much effort as it is clearly documented in [68].

On the other hand, loop folding and spatial reordering require a sig-
nificant intervention by the designer. For the former, the designer must
identify which components can be shared, establish the schedule of op-
erations, and then implement it. For the latter, it is up to the designer
to balance the paths between the two halves resulting from reordering.

3.4. Analysis of the Impact on Application Metrics 65

Table 3.8: Requirements of surveyed applications relying on SHA-2 and
recommended optimisations

Application
Requirements Recommended

Throughput Area Energy Power Optimisations

Web server moderate minor minor minor

Pipelining
Loop Unrolling
Precomputation

Spatial Reordering
Quasi-Pipelining

Bitcoin mining critical major critical major

Loop Unrolling
Precomputation

Spatial Reordering
Quasi-Pipelining

IoT (cryptography) moderate critical critical minor
Precomputation

Spatial Reordering
Quasi-Pipelining

RFID minor critical minor critical Loop Folding

IoT (mining) critical critical critical major
Precomputation

Spatial Reordering
Quasi-Pipelining

Trusted FPGA minor moderate minor minor Loop Folding

3.4.5 Impact on applications

Different applications place different constraints on the underlying SHA-
2 circuitry. Table 3.8 lists the constraints incurred by the applications
discussed in Section 1.3 on the SHA-2 hardware accelerator, in order to
suggest the optimisation techniques best suitable for each application.

High-performance Web servers, providing security services relying
on SHA-2, are mainly concerned with throughput, since they need to
scale in the number of concurrent users they can serve. For this applica-
tion, switching from a software implementation to an application-specific
SHA-2 processor may bring substantial savings in terms of energy, i.e.
operational costs. The need of processing different messages simulta-
neously, and the relatively large budget for circuit area and cost, indi-
cate that pipelining, among other throughput-focused techniques, can

66 3. Evaluation of SHA-2 Implementations

be greatly beneficial for this class of applications.
Similarly, applications like trusted FPGA computing are loosely con-

strained, since SHA-2 is performed rather infrequently and does not pose
strict throughput or energy constraints, while the main concern is typ-
ically the area occupation, and the security scheme reduces the area
available for the user logic. This can be addressed by using the loop
folding technique.

Bitcoin mining rigs have far more stringent constraints, especially on
throughput and energy consumption, and both of them must be fulfilled
in order to design a profitable miner. Area requirements must also be
kept under control, both for allowing parallel instances of the miner to
be instantiated within the same device, and to contain the cost of the
rig. The same goes for power, which can become a limiting factor in
the design of a massively parallel architecture. This set of requirements
can be addressed by using the loop unrolling technique combined with
throughput-oriented techniques such as variable precomputation or spa-
tial reordering. In this way, the loop unrolling expands the applicability
of the other techniques while delivering energy savings.

IoT applications typically feature heavily constrained low-cost de-
vices. Area occupation of the SHA-2 circuit must therefore be contained
for these applications. Most importantly, energy consumption must be
kept as low as possible, in order not to waste the limited energy budget
of these devices. Of course, porting mining within an IoT environment
would add the requirement for high throughput and is normally per-
formed by the most powerful elements in the network. In this context,
techniques that deliver increased throughput of the accelerator with lim-
ited impact on area and throughput, such as variables precomputation,
spatial reordering, and quasi-pipelining can be utilised.

For passively-powered devices such RFID tags, a limited amount of
energy per unit of time can be delivered to the device, while the overall
energy consumption, or even duration, of the operation is less of a con-
cern. Therefore, the strict constraint is on power rather than energy or
throughput. Moreover, the severe cost limitations placed on the practical
usability of RFID tags translate to strict constraints on area occupation,
which suggests implementations based on the loop folding technique.

Chapter 4

Efficient Multi-Operand
Addition on FPGAs

implementing SHA-2 on an FPGA target technology is a particularly
challenging task, due to the nature of operations involved in the SHA-2

algorithm.
The critical path in any SHA-2 implementation is located within the

Compressor, and is mainly determined by the time needed to perform
the addition. Multi-operand additions can be implemented with com-
pressor trees based on parallel counters, which have been proven to be
particularly efficient on ASIC technology. However, due to the specific
architecture of FPGAs, parallel counters efficient on ASICs cannot be
synthesized efficiently on FPGAs

This chapter illustrates how to efficiently implement a multi-operand
addition on an FPGA, providing both the theoretical background and a
practical case study for a concrete FPGA, which will be used in Chapter 5
as one of the building blocks of an efficient implementation of a SHA-2
accelerator on that target technology.

4.1 Compressor Trees based on Parallel Counters

Let XJ−1, XJ−2, . . . , X1, X0 be a set of J N -bit operands to be added.
One approach to perform the addition would be to employ a tree of
binary N -bit adders, called an adder tree. Such a solution comes with
the obvious disadvantage of a delay proportional to log2 J times the
delay of the binary adder. A more efficient alternative strategy has been
proposed, originally in the context of partial product reduction in parallel
multipliers, based on the usage of parallel counters [120, 26].

67

68 4. Efficient Multi-Operand Addition on FPGAs

A compressor tree is a circuit that takes as input J N -bit operands
Xj and computes two values, S and C, such that [96]:

S + C =

J−1∑
j=0

Xj (4.1)

The addition of Eq. (4.1) can be computed with a standard binary
adder. In essence, the compressor tree is the generalisation of the Carry
Save Adder to a number of operands greater than 3.

Actually, a compressor tree may be designed to produce more than
two outputs. In general, a compressor tree outputs K operands Ok such
that [72]:

K−1∑
k=0

Ok =

J−1∑
j=0

Xj (4.2)

This can be advantageous if a fast adder with more than two operands
is available in the target technology. Current FPGAs offer support for
fast ternary addition [104], which can be exploited by rewriting Eq. (4.2)
as [96]:

O1 +O2 +O3 =

J−1∑
j=0

Xj (4.3)

A compressor tree is advantageous over an adder tree if its delay
scales with the number of operands less than logarithmically. To obtain
this, rather than being summed, bits of the operands are counted by
specialised counter circuits.

A single-column parallel counter, also called an m:n counter, is a
circuit that takes m input bits, counts the number of bits which value of
is 1, and outputs the result as an unsigned n-bit integer [94]. Therefore,
for a given number of input bits m, the number of output bits n is

n = dlog2 (m+ 1)e (4.4)

A 1:1 counter makes no sense, since it simply replicates in output its
input bit, a 2:2 counter is an half adder, and a 3:2 counter is a full adder
[94].

Parallel counters are usually represented graphically with the so-
called dot notation, which is shown in Fig. 4.1a with a 6:3 counter used
as an example. Input bits are represented by dots, surrounded by an oval
representing the counter. The oval is connected to the dots representing

4.2. Generalised Parallel Counters 69

output bits, which are connected together to indicate the outputs of the
same counter. This notation is also useful when designing compressor
trees built from parallel counters. The compressor tree shown in Fig. 5.4
of Chapter 5 can be regarded as an example of such a compressor tree.

4.2 Generalised Parallel Counters

Single column parallel counters count m bits from the same column of
the operands and outputs the result on n bits. This can be generalised
by counting m bits from an arbitrary number of columns, outputting the
results again on n bits.

To be more specific, let B = (bI−1, bI−2, . . . , b0) an I-bit unsigned
binary integer. The rank of the bit bi is its subscript i, which indicates
its position in the integer, and therefore its weight. In fact, the bit bi of
rank i contributes bi ·2i to the overall value represented by B. The value
represented by B can be converted in a base-10 value with the following
formula:

B =

I−1∑
i=0

bi · 2i (4.5)

An m:n counter, by definition, counts m bits of the same rank. In
the context of multi-operand addition, a column is a set of bits having
the same rank, typically from different operands [96]. If the common
rank of the input bits is i, the output bits of the counter have rank i,
i+ 1, . . . , i+ n− 1 respectively [94].

A Generalised Parallel Counter (GPC) is a counter capable of sum-
ming bits of different ranks [94]. Formally, a GPC is defined as a tuple
(Kn−2,Kn−1, . . . ,K0;n) where n is the number of output bits of the
GPC, and Ki is the number of bits of rank i summed by the GPC [108].
An example of GPC is shown in Fig. 4.1b; similarly to single column
counters, the dot notation is used to represent GPCs and the compres-
sor trees designed with them.

A GPC can add bits from up to n−1 different ranks, from 0 to n−2.
In fact, adding more than 1 bits of rank n − 1 would require output
bits of rank n at least, while the range of output bit ranks goes from 0
to n − 1. The same applies if there is only one bit of rank n − 1, but
there is carry from the lower ranks. Hence, it would only be possible
to have a single input bit of rank n − 1 for a GPC with n output bits,
with no carry from the lower ranks. But this would imply that this
single input bit is not actually added to anything, instead it is simply

70 4. Efficient Multi-Operand Addition on FPGAs

(a) 6:3 counter (b) (1,3,2;4) GPC

Figure 4.1: Examples of a single column counter and a GPC with 6 input
bits, with the dot notation. Note that a GPC may require more output
bits than the single column counter with the same number of input bits.

propagated to the output. In general, it is useless to have an input bit
being directly propagated to the output, therefore GPCs presenting such
bits are deemed unreasonable [94]. For the same reason, a reasonable
GPC must also meet the following condition [95]:

K0 > 1 (4.6)

In fact, K0 = 0 would imply that the output bit of rank 0 is always 0,
while K0 = 1 would imply that the input bit of rank 0 simply propagates
to the output.

For a GPC with m input bits and n output bits, the following quite
straightforward relations also hold:

4.2. Generalised Parallel Counters 71

n−2∑
i=0

Ki = m (4.7)

n−2∑
i=0

Ki · 2i ≤ 2n − 1 (4.8)

The first relation defines the number of input bits, whereas the last
relation ensures that the output can be represented with n bits. On the
other hand, the number of output bits of a GPCs with a given set of
input bits K0,K1, . . . ,KI−1 can be computed by inverting Eq. (4.8):

n =

⌈
log2

(
I−1∑
i=0

Ki · 2i + 1

)⌉
(4.9)

4.2.1 Efficiency Parameters of a GPC

GPCs can be evaluated according to different metrics, tailored towards
different design objectives.

The compression difference of a GPC is the difference between the
number of input bits and the number of output bits [98]:

δ = m− n (4.10)

Sometimes this metric is evaluated by the ratio rather than the dif-
ference [94, 72]:

δr =
m

n
(4.11)

Reasonable GPCs should have δ > 1 [72].
The area efficiency of a GPC, also called area degree in [98], is the

ratio between the compression difference δ and the number of logic re-
sources λ needed [63]:

ε =
δ

λ
(4.12)

The performance efficiency of a GPC, also called performance degree
in [98], is the ratio between the compression difference δ and the critical
delay τ of the GPC:

η =
δ

τ
(4.13)

72 4. Efficient Multi-Operand Addition on FPGAs

4.2.2 From the GPC to the Compressor Tree

Once GPCs have been defined, they must be combined to construct a
full compressor tree. This task is usually tackled in a two-step fashion.
First, a library of GPCs is built, and then an algorithm to generate
compressor trees from the GPCs in the library is applied. This approach
effectively decouples the problem of designing GPCs from the problem
of constructing the whole compressor tree.

Various different algorithms have been proposed in the literature to
obtain the compressor tree from the GPC library. These falls into two
categories: heuristics, and formulations based on Integer Linear Pro-
gramming (ILP).

Design of the GPC Library

The design of effective GPCs is influenced by a number of architec-
tural features of the target FPGA, therefore GPCs in the library are
architecture-specific [97], and typically designed by hand [98]. Since the
FPGA CAD tools are usually unable to infer the best mapping of each
GPC onto the components of the underlying target architecture, the
library must also be implemented manually [98].

Architectural characteristics of the target FPGA typically suggest
constraints on the maximum value of m and n for the GPCs in the
library. A primitive GPC is a GPC which satisfies the I/O constraints
of the library. However, not all primitive GPCs need to be implemented.
In fact, the functionality of a primitive GPCs can be implemented by
a GPC with more inputs, and possibly more outputs, by setting some
input bits to 0 so as to match the shape of the input of the GPC to
be implemented. A covering GPC is a GPC which the functionality of
cannot be implemented by any other primitive GPC in the library; in
other words its functionality cannot be implemented by another GPC
fulfilling the I/O constraints [95].

Implemented GPCs in the library are associated with some of the
efficiency parameters introduced in Section 4.2.1, which will be used by
the compressor tree synthesis strategy to select the most appropriate
GPC to employ every time more than one of them can be used. In
heuristic-based strategies, typically this means that GPCs are sorted
according to one efficiency parameter, and the choice of this efficiency
parameter is made according to which specific design objective is to meet
[97].

4.2. Generalised Parallel Counters 73

Heuristic-based Approaches

The heuristic proposed in [94] tries to remove the highest possible num-
ber of bits at each iteration, therefore favouring GPCs with the highest
compression ratio. At every iteration, the heuristic considers the highest
remaining column, and selects the GPC with the highest compression
ratio which can cover uncovered bits in the selected column and in the
surrounding ones. This heuristic is improved in [95] to take into account
the difference in delays between the output bits of the GPCs. Output
bits from the previous layer with the highest delays are connected with
the inputs in the next layer which drive the shortest paths. A different
generalisation of the heuristic is proposed in [98], where the selection
order of GPCs is no longer based only on the compression ratio, but can
follow different metrics, in order to meet different design objectives.

An alternative approach is proposed in [72], which starts by estabil-
ishing the heights of all levels of the compressor tree according to a rule
similar to Dadda’s [26]. The height hl of level l is computed with respect
to the m:n single column counter with the maximum compression ratio
in the library, according to the following:

hl =

{
K l = 0⌊
hl−1 · mn

⌋
l > 0

(4.14)

whereK is the number of outputs of the compressor tree, as per Eq. (4.2).
Only columns with height exceeding hl at level l are reduced by means
of GPCs. Authors of [72] found that this heuristic produces compressor
trees with fewer GPCs than those generated by heuristics without in-
termediate limits, similar to what happens with Dadda trees compared
with Wallace trees [26].

ILP-based Approaches

[96] proposes an ILP model for mapping compressor trees onto GPCs
with a maximum of 6 input bits, and 3 output bits, aimed at minimising
the overall number of layers.

The ILP model formulated in [73] for 6-input GPCs, minimises the
number of GPCs in the compressor tree after having minimised the num-
ber of its level. The same target is employed in the ILP model proposed
in [64], which supports arbitrarily defined GPCs and also the pipelining
of the compressor tree, by means of a 1:1 counter representing a flip-flop.
This model is extended in [62] in order to accomodate row-based com-
pressors. In [134], the ILP model is extended to take into account, and
favour, the possibility of resource sharing between GPCs.

74 4. Efficient Multi-Operand Addition on FPGAs

4.3 GPCs for the 7-series Xilinx FPGAs

GPCs can be efficiently implemented in FPGAs because they map quite
well onto the underlying component of this target technology.

More specifically, they take advantage of the fact that LUTs of an
FPGA can implement any logical function of their inputs. For GPCs,
this means that LUTs can count any number of input bits irrespective
of their ranks. A GPC with input bits m less than the number of input
bits Fin of the LUT can be implemented in exactly n/Fout LUTs, where
n is the number of the output bits of the GPC and Fout is the number
of output bits of the LUT [96].

Clearly, architectural parameters such as the fan-in and the fan-out
of the LUTs bear influence on the design of the GPCs. In some works [94,
96, 72, 73], the number of input bits m of the GPCs is upper bounded to
the fan-in Fin of the LUTs. Other works [63, 58] take advantage of the
carry chain component of the FPGA to combine more than one LUT in
order to implement bigger GPCs.

4.3.1 The Xilinx 7-series Look-Up Table

7-series Xilinx FPGAs are equipped with 6-input LUTs, able to im-
plement any arbitrary 6-input, 1-output logic function. This operating
mode uses the O6 output pin for the output of the logic function.

Actually, this LUT has two outputs. In fact, as shown in Fig. 4.2,
the 6-input LUT can be broken down into two 5-input LUTs with shared
inputs. The two LUTs can be programmed to implement two entirely
independent logic functions as long as they share their inputs; when this
is the case the most significant of the 6 input bits must be driven high,
otherwise the O6 and O5 pins would output the same bit. Alternatively,
a 6-input and a 5-input logic function with shared inputs can also be
implemented, but in this case the 5-input function must share also the
output values with the 6-input function when one of the input of the
latter, mapped as its most significant input, is 0. Finally, by setting
in each function as don’t care the input of the other function, a single
LUT can implement two completely independent logic functions, with
no shared inputs, provided that one function has at most 3 inputs and
the other has at most 2 inputs.

In summary, ignoring the uncommon scenario of two functions shar-
ing the same output values, a single LUT of the 7-series Xilinx FPGA
family can implement:

• an arbitrarily defined 6-input, 1-output logic function; or

4.3. GPCs for the 7-series Xilinx FPGAs 75

LUT6_2

LUT5

I4

I3

I2

I1

I0

I4

I3

I2

I1

I0

LUT5

I4

I3

I2

I1

I0

O6

O5

I5

Figure 4.2: Architecture of the Look-Up Table (LUT) of the 7-series
Xilinx FPGA. Adapted from [132].

• two arbitrarily defined 5-input, 1-output logic functions with shared
inputs; or

• two arbitrary, independent logic functions of 3 and 2 inputs.

4.3.2 A GPC library for the 7-series FPGA

In order to efficiently map the additions involved in the SHA-2 algorithm
on the 7-series FPGA, a GPC library has been defined. Taking into
account that these additions do not involve a dramatically high number
of operands, the number of inputsm has been constrained to the number
of inputs of the LUTs, i.e. Fin = 6. This in turn constraints also the
number of outputs n, according to Eq. (4.9).

In order to take into account both area and performance require-
ments, a definition of coverage stricter than the one given in Section 4.2.2

76 4. Efficient Multi-Operand Addition on FPGAs

LUT6_2

x(0)

x(1)

x(2)

x(3)

x(4)

‘1’

s(0)

s(1)

LUT5

x(0)

x(1)

x(2)

x(3)

x(4)

s(2)

(a) (0,5,3) GPC

LUT6

x(0)

y(0)

z(0)

x(1)

y(1)

z(1)

s(0) LUT6

x(0)

y(0)

z(0)

x(1)

y(1)

z(1)

s(1) LUT6

x(0)

y(0)

z(0)

x(1)

y(1)

z(1)

s(2) LUT6

x(0)

y(0)

z(0)

x(1)

y(1)

z(1)

s(3)

(b) (0,3,3;4) GPC

Figure 4.3: Examples of GPC mapping with (a) less than 6 inputs (b) 6
inputs

has been adopted. Namely, GPCx covers GPCy if and only if all the
following conditions are met:

Kx
i ≥ K

y
i ∀i ∈ (0, 1, . . . , ny − 2) (4.15a)

λx ≤ λy (4.15b)
τx ≤ τy (4.15c)
εx ≥ εy (4.15d)

On the contrary, the covering condition given in Section 4.2.2 implies
the satisfaction of Eq. (4.15a) only. The stricter definition of coverage
provided here allows for the selection of different GPCs to meet different
design objectives.

Table 4.1 lists all the primitive GPCs. Since m ≤ Fin, each GPC
can be implemented with a single level of LUTs. Since all LUTs of a
GPC takes the same m inputs, the dual 5-input LUT option can be
exploited to reduce the number of required LUTs, which can be written
as a function of the number of output bits:

λ =

{⌈
n
2

⌉
m ≤ 5

n m = 6
(4.16)

For m = 6 the dual-LUT option cannot be used, hence the num-
ber of required LUTs increases sharply. This mapping is exemplified in

4.3. GPCs for the 7-series Xilinx FPGAs 77

LUT6_2

x(0)

y(0)

x(1)

1

s(0)

s(1)

LUT6

x(0)

y(0)

x(1)

x(2)

y(2)

z(2)

s(2) LUT6

x(0)

y(0)

x(1)

x(2)

y(2)

z(2)

s(3) LUT6

x(0)

y(0)

x(1)

x(2)

y(2)

z(2)

s(4)

(a) computing the two least significant output bit with the same LUT

LUT6_2

x(0)

y(0)

x(1)

‘1’

c(1)

s(0)

LUT6_2

x(2)

y(2)

z(2)

‘1’

s(2)

s(1)

LUT6_2

x(2)

y(2)

z(2)

‘1’

s(4)

s(3)

(b) computing the least significant carry bit

Figure 4.4: Optimisations of GPC mapping applied to the (0,3,1,2;5)
GPC

Fig. 4.3b. As a consequence, 6-input GPCs cannot cover 5-input GPCs
since they fail to satisfy Eq. (4.15b).

4.3.3 Optimising the mapping of the GPCs

The straightforward mapping described in Section 4.3.2 is not always the
optimal one. This can be seen by observing that an absolute lower bound
on the number LUTs required to implement the GPC with n output bits
depends on the fanout of the LUTs and can be written as

λinf =

⌈
n

Fout

⌉
(4.17)

Taking into account the dual LUT option, each LUT can output 2
bits at most, therefore for this FPGA family

λinf =
⌈n

2

⌉
(4.18)

When m ≤ 5, the straightforward mapping is optimal, while for 6-input
GPCs, more efficient mapping can often be obtained by properly reorder-

78 4. Efficient Multi-Operand Addition on FPGAs

Table 4.1: Primitive GPCs for n ≤ 6

GPC δ λ ε τ Covered by

2-input GPCs

(2;2) 1 1 1 τLUT (3;2)

3-input GPCs

(3;2) 1 1 1 τLUT Covering

4-input GPCs

(0,4;3) 1 2 0.5 τLUT (0,5;3)
(2,2;3) 1 2 0.5 τLUT (2,3;3)
(1,3;3) 1 2 0.5 τLUT (1,4;3)

5-input GPCs

(0,5;3) 2 2 1 τLUT Covering
(1,4;3) 2 2 1 τLUT Covering
(1,3;3) 2 2 1 τLUT Covering
(0,3,2;4) 1 2 0.5 τLUT Covering
(1,1,3;4) 1 2 0.5 τLUT Covering
(1,2,2;4) 1 2 0.5 τLUT Covering
(2,1,2;4) 1 2 0.5 τLUT Covering

6-input GPCs

(0,6;3) 3 3 1 τLUT Covering
(1,5;3) 3 3 1 τLUT Covering
(0,2,4;4) 2 4 0.5 τLUT Covering
(0,3,3;4) 2 4 0.5 τLUT Covering
(0,4,2;4) 2 4 0.5 τLUT Covering
(1,1,4;4) 2 4 0.5 τLUT Covering
(1,2,3;4) 2 4 0.5 τLUT Covering
(1,3,2;4) 2 4 0.5 τLUT Covering
(2,1,3;4) 2 4 0.5 τLUT Covering
(2,2,2;4) 2 4 0.5 τLUT Covering
(0,3,1,2;5) 1 5 0.2 τLUT Covering

4.3. GPCs for the 7-series Xilinx FPGAs 79

Table 4.2: GPC library

GPC δ λ ε τ

(3;2) 1 1 1 τLUT

(0,5;3) 2 2 1 τLUT

(1,4;3) 2 2 1 τLUT

(1,3;3) 2 2 1 τLUT

(0,3,2;4) 1 2 0.5 τLUT

(1,1,3;4) 1 2 0.5 τLUT

(1,2,2;4) 1 2 0.5 τLUT

(2,1,2;4) 1 2 0.5 τLUT

(0,6;3) 3 3 1 τLUT

(1,5;3) 3
3 1 τLUT

2 1.5 2τLUT

(0,2,4;4) 2
4 0.5 τLUT

3 0.66 2τLUT

(0,3,3;4) 2
4 0.5 τLUT

3 0.66 2τLUT

(0,4,2;4) 2
4 0.5 τLUT

3 0.66 2τLUT

(1,1,4;4) 2 3 0.66 τLUT

(1,2,3;4) 2 3 0.66 τLUT

(1,3,2;4) 2 3 0.66 τLUT

(2,1,3;4) 2 3 0.66 τLUT

(2,2,2;4) 2 3 0.66 τLUT

(0,3,1,2;5) 1
4 0.25 τLUT

3 0.33 2τLUT

ing their inputs so as to exploit the dual 5-input LUT option also for
these GPCs.

To be more specific, consider those GPCs which have 5 input or less
in the lowest two ranks, i.e. satisfying the condition

80 4. Efficient Multi-Operand Addition on FPGAs

K0 +K1 ≤ 5 (4.19)

Correspondingly, let s0 and s1 be the lowest-rank output bits. These
output bits does not depend on the input bits of higher ranks. Thanks
to the condition above, these two bits can be generated by a single LUT
configured with the dual LUT option, which takes as inputs the K0 +
K1 lowest-rank input bits. This implementation reduces the cost of
the GPC without adversely affecting any other metrics; in other words,
this implementation is covering according to Eq. (4.15). Therefore, this
implementation of each suitable GPC simply replaces the straightforward
one in the library.

The same argument does not hold for output bits of higher ranks:
the output bit si of rank i depends on all the input bits of rank equal
or lower than i, due to the carry. However, if an increase in the delay of
the GPC can be accepted, a different mapping can be employed, where
the carry from the lowest rank, c1, is computed by the same LUT that
computes s0. This allows for a reduction in the number of inputs required
to compute the other outputs, which can therefore be computed by half
the LUTs, configured with the dual LUT option. This mapping can be
applied under a looser condition than the one for the mapping described
above, which is

K0 ≤ 5 (4.20)

However, mappings with carry do not lead to covering GPCs due to
the increase in the delay, which implies that Eq. (4.15c) is not satisfied.
For this reason, Table 4.2 lists this mapping as an alternative for each
suitable GPC, which cannot be used on the critical path of a design, but
can lead to additional area savings if the associated cost in terms of delay
can be paid. Moreover, for all GPCs with n = 4 satisfying Eq. (4.19),
the two mappings require the same number of LUTs λ = 3, which means
also the same efficiency ε = 0.66 due to the fact that the compression
difference is in any case δ = 6 − 4 = 2; but the mapping with carry
has an increased delay of τ = 2τLUT and is consequently covered by the
mapping without delay.

(0,3,1,2;5) GPC is the only one satisfying Eq. (4.19) for which both
the proposed optimisations can be applied, and the mapping with carry
leads to a number of LUTs less than the one without carry. In this
case, the mapping with carry allows to achieve the lower bound on the
number of LUTs λinf = 3. On the other hand, when n = 4 the lower
bound λinf = 2 is not reached due to the necessity of computing the
additional output c1.

Chapter 5

Efficient Mapping of SHA-2 on
FPGA

most of SHA-2 implementations discussed in Chapter 2 are char-
acterised by RTL optimisations. Since these optimisations does

not take into account any specific feature of the target technology, the
resulting designs are platform-independent, meaning that they can be
efficiently implemented on any target platform leading to some improve-
ment. However, when particularly strict constraints are to be satisfied,
platform-dependent designs are needed to obtain maximum performance
from the target technology. This chapter shows how to efficiently imple-
ment a SHA-256 accelerator on the 7-series Xilinx FPGA family.

5.1 Overview of 7-series Xilinx FPGA architectural
features

This section provides a brief summary of the architectural features of
the 7-series Xilinx FPGA family that have been used to implement the
SHA-256 accelerator. It is not intended to provide a comprehensive
description of the 7-series architecture, which the interested reader can
find in the 7-series user guide [128] and the 7-series library guide [132]

5.1.1 7-series Xilinx FPGA organization overview

The basic logic element in the 7-series FPGA is called a slice. A slice
contains:

81

82 5. Efficient Mapping of SHA-2 on FPGA

• 4 function generators, implemented as LUTs of the type described
in Section 4.3.1;

• 8 flip-flops, which can be configured to register one of the two
outputs of a corresponding function generator, or a signal from the
overall switch matrix;

• multiplexers to connect outputs of the function generator within
the slice, in order to implement any arbitrary logic function of up
to 8 inputs;

• a fast lookahead carry logic component, to perform arithmetic op-
erations.

Slices are arranged into Configurable Logic Blocks (CLBs). Each CLB
contains two slices, which are independently connected to the overall
switch matrix, and are not connected between them. In particular, each
of the two slices of a CLB is placed along a different column, where slices
aligned on the same column from different CLBs have their carry chains
connected, in order to form longer vertical carry chains.

5.1.2 LUT capabilities

Apart from the function generator capability described in Section 4.3.1,
7-series LUTs offer a number of additional functionalities. The ones
relevant for the SHA-256 accelerator implementation are described here.

Shift register

Each function generator can be configured as a 32-bit shift register, im-
plemented without using any of the flip-flops available in the slice. This
configuration is supported via dedicated pins, included those for the clock
and clock enable signals.

It is worth noting that such a shift register is initialised at program-
ming time, and cannot be set or reset when the FPGA is operational,
since this shift register has no parallel input.

A LUT-based shift register has no parallel output either, therefore
only the serial output of the shift register can be read. However, an
additional bit within the shift register can be read through the O6 LUT
output, and this bit can be dynamically chosen via the LUT inputs, as
shown in Fig. 5.3. When the LUT is configured as shift register, LUT
input signals are called address bits.

5.1. Overview of 7-series Xilinx FPGA architectural features 83

Figure 5.1: Very simplified architecture of a slice. LUTs, function mul-
tiplexers, the carry logic and the shift register connections are shown.
Signal marked as outputs can be chosen as actual slice outputs, but not
all of them simultanously. The 8 flip-flops are not shown since they can
buffer any of the outputs. For more detailed information, the interest
reader is referred to [128].

This feature can be used to build shift register shorter than 32 bits,
by selecting the depth via the address bits. This implies that, for shorter
shift registers, no intermediate bit can be read. In particular, two shift
registers up to 16-bit can be implemented in the same LUT if they share
the address bits. Shift registers longer than 32 bits, up to 128 bits, can
be built within a slice via the function multiplexers.

ROM

Function generators can also be configured as 64 × 1-bit ROM. This
means that ROMs up to 256 × 1-bit can be implemented with a sin-
gle slice, without using any flip-flop. The ROM value is provided at

84 5. Efficient Mapping of SHA-2 on FPGA

CLB

Switch

Matrix

Slice(0)

Slice(1)

CIN

COUT COUT

CIN

Figure 5.2: Architecture of a CLB. Adapted from [128]

programming time.

5.2 Efficient SHA-256 implementation on 7-series
Xilinx FPGA

5.2.1 Compressor

From Eq. (2.1) it is clear that the Compressor is mainly constituted by
additions, plus a set of logic functions. Therefore, the efficient imple-
mentation of the Compressor requires an efficient implementation of the
multi-operand additions.

The first architectural choice concerns the logic functions. Due to
their bitwise nature, in principle these functions could be fused into
the first stage of the multi-operand adder consuming their results, and
the inputs of the logic function becomes input to the modified adder.
However, the resulting increase in the number of input operands would
result in an area increase largely outweighting the area saving due to the
fusion. This is clear if each logic function is regarded, at the bit level, as
a GPC. Each logic function takes 3 bits as inputs and produces a single
bits as output, so its "compression difference" is δ = 3 − 1 = 2. Each
logic function can be implemented in a single LUT, so λ = 1 and its

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 85

SHIFTIN
32-bit Shift Register

CE

CLK

SHIFTOUT

Address (I4:I0)

Q

…

Figure 5.3: LUT-based shift register. Adapted from [128]

"area efficiency" is ε = 2/1 = 2. Looking at the GPC library reported in
Table 4.2, it is clear that such a value of area efficiency is higher than
those of any of the available GPC. Also when GPCs with more than 6
inputs are considered, recent works in the literature [58, 62, 134] show
that 2 is currently an upper bound for the area efficiency of GPCs.

The argument against the fusion of the logic functions into the com-
pressor trees is definitely won by observing that the area efficiency of
such implementation can be greater than 2, since two logic functions can
be implemented in the same LUT, obviously taking advantage of the
dual LUT option, with a proper rearrangement of bits. Namely, a single
LUT can compute the i-th bit of Maj and the (i+ 2) mod 32-th bit of
Σ0, since these two functions end up sharing the input but Ai, and the
whole pair of function can be regarded as a 5-input, 2-output function;
the same applies for the i-th bit of Ch and the (i+ 6) mod 32-th bit
of Σ1. The corresponding truth tables are reported in Table 5.1 and
Table 5.2 respectively.

For the additions, one option is to design two separate adders for the
computaton of At and Et, the first being a 7-input adder and the second

86 5. Efficient Mapping of SHA-2 on FPGA

Table 5.1: Combined truth table for the Maj and Σ0 functions. Opera-
tions on indexes are intended modulo 32.

C (i) B (i) A (i) A (i− 20) A (i− 11) Maj (i) Σ0 (i+ 2)

1 1 1 1 1 1 1
1 1 1 1 0 1 0
1 1 1 0 1 1 0
1 1 1 0 0 1 1
1 1 0 1 1 1 0
1 1 0 1 0 1 1
1 1 0 0 1 1 1
1 1 0 0 0 1 0
1 0 1 1 1 1 1
1 0 1 1 0 1 0
1 0 1 0 1 1 0
1 0 1 0 0 1 1
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 0 0 0 1 0 1
1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 1 1 1 0 1 0
0 1 1 0 1 1 0
0 1 1 0 0 1 1
0 1 0 1 1 0 0
0 1 0 1 0 0 1
0 1 0 0 1 0 1
0 1 0 0 0 0 0
0 0 1 1 1 0 1
0 0 1 1 0 0 0
0 0 1 0 1 0 0
0 0 1 0 0 0 1
0 0 0 1 1 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 0

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 87

Table 5.2: Combined truth table for the Ch and Σ1 functions. Opera-
tions on indexes are intended modulo 32.

G (i) F (i) E (i) E (i− 19) E (i− 5) Ch (i) Σ1 (i+ 6)

1 1 1 1 1 1 1
1 1 1 1 0 1 0
1 1 1 0 1 1 0
1 1 1 0 0 1 1
1 1 0 1 1 1 0
1 1 0 1 0 1 1
1 1 0 0 1 1 1
1 1 0 0 0 1 0
1 0 1 1 1 0 1
1 0 1 1 0 0 0
1 0 1 0 1 0 0
1 0 1 0 0 0 1
1 0 0 1 1 1 0
1 0 0 1 0 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 0 1 0
0 1 1 0 1 1 0
0 1 1 0 0 1 1
0 1 0 1 1 0 0
0 1 0 1 0 0 1
0 1 0 0 1 0 1
0 1 0 0 0 0 0
0 0 1 1 1 0 1
0 0 1 1 0 0 0
0 0 1 0 1 0 0
0 0 1 0 0 0 1
0 0 0 1 1 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 0 0

88 5. Efficient Mapping of SHA-2 on FPGA

Figure 5.4: Proposed Compressor Tree for the addition within the SHA-
256 Compressor

being a 6-input adder. Although that solution may produce a slightly
faster compressor, area considerations suggests that it is more efficient
to calculate the T 1

t sum first, according to Eq. (1.6), and then compute

At = T 1
t + Σ0 (At) +Maj (At, Bt, Ct)

Et = T 1
t +Dt

(5.1)

taking into account the availability of the ternary adder [104].
The 5-input adder can be efficiently implemented with a compressor

tree of only one level, constituted of (0,5;3) GPCs, as shown in Fig. 5.4,
and is completed by a ternary adder. As shown in Table 4.2, each (0,5;3)
GPCs requires 2 LUTs, and a GPC per bit is required. The overall cost
of the 5-input adder, reported in Table 5.3, is obtained by recalling that
an I-bit ternary adder, as well as a I-bit binary adder, requires I LUTs
to be implemented.

Table 5.3: Cost of the Compressor

Component Quantity LUT FF

Logic function 2 32 0
5-input adder 1 92 0

Binary/ternary adder 2 32 0

Total 224 0

5.2.2 Expander

The implementation of the Expander discussed in Section 3.2.2 is par-
ticularly expensive, since it requires a flip-flop and two multiplexers per

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 89

bit of the input message, which for SHA-256 are 512. This cost can be
reduced by removing the parallel behaviour of the shift register. Doing
so allows for the saving of the two multiplexers per input bit, but places
a restriction on the input pattern of the circuit, since the input message
must now be presented serially to the circuit, in order to be fed into the
shift register. More precisely, the 512-bit input message must be splitted
into 16 32-bit words, which must be presented in little-endian fashion in
the first 16 cycles.

Having removed the parallel behaviour, the shift register of the Ex-
pander can be implemented by LUTs, taking advantage of the shift reg-
ister capability discussed in Section 5.1.2. In this way, the number of
flip-flops needed by the Expander is greatly reduced, balancing the num-
ber of flip-flops required to store the state variables and the final result.
Only 32 flip-flops are now required by the Expander, to implement a
single register which is used both to store the current word of the input
message, and to decouple the combinatorial path of the Expander from
the one of the Compressor.

Implementing the shift register with LUTs poses another challenge:
according to Eq. (1.4), three intermediate values are required to compute
the value of Wt+16. As mentioned in Section 5.1.2, from shift registers
shorter than 32 bit no intermediate value can be read. The solution is
to replicate the shift register chain four times, each one with different
length, in order to produce all the required values for the computation of
Eq. (1.4). Since the chains have different lengths and therefore different
address bits, they cannot share LUTs.

The proposed architecture for the Expander is illustrated in Fig. 5.5.
The two logic functions σ0 and σ1 are 3-input, 1-output logic functions
at the bit level, without sharing any of their inputs: therefore, each of
them needs 1 LUT per bit, or 32 LUTs in total. The implementation of
the multiplexer is described in Section 5.2.3.

The last component to implement is the adder, which has to sum
4 operands. The best solution for the compressor tree of this adder
has been found to be the one employing (0,3,3;4) GPCs. The resulting
compressor tree, shown in Fig. 5.6, has only one level and is completed
by a ternary adder.

A further optimisation has become possible thanks to the fact that
the resulting delay of the Expander obtained so far was lower than the
delay of the Compressor. This has allowed for the employment of the
area-optimised version of the (0,3,3;4) GPC, further reducing the cost of
the adder without altering the overall critical path.

90 5. Efficient Mapping of SHA-2 on FPGA

Figure 5.5: Architecture of the Expander with redundant LUT-based
shift registers. SRL16E is the name used in the Vivado 7-series library
[132] to instantiate a LUT-based shift register.

Table 5.4: Cost of the Expander

Component Quantity LUT FF

Shift register 4 32 0
Logic function 2 32 0
Multiplexer 1 16 0
4-input adder 1 80 0
Buffer register 1 0 32

Total 288 32

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 91

Figure 5.6: Proposed Compressor Tree for the addition within the Ex-
pander. Note that the third and fourth rows of the output do not overlap
at any rank, therefore these two row constitute a single output operand.

5.2.3 Other Components

ROM

The constants ROM is implemented with LUTs, taking advantage of the
fact that, for SHA-256, the depth of the constants ROM matches exactly
the ROM depth that can be implemented in a single LUT, as described
in Section 5.1.2. This means that 32 LUTs are enough to implement the
whole component.

Table 5.5: Cost of the constants ROM

Component Quantity LUT FF

64× 32-bit ROM 1 32 0

Total 32 0

Multiplexers

Binary multiplexers are implemented by LUTs, and their cost is opti-
mised with an observation that allows to take advantage of the 6-input,
2-output LUTs of the 7-series family.

A 2:1 multiplexer is a 3-input, 1-output logical function. As de-
scribed in Section 4.3.1, 7-series LUTs cannot implement two arbitrarily
defined 3-input functions, hence a straightforward implementation of a
2n:n multiplexer requires n LUTs. Nevertheless, the n pairs of bits to be
multiplexed share the same selection signal. Therefore, the multiplex-
ing of two pairs of bits can be regarded as a 5-input, 2-output logical

92 5. Efficient Mapping of SHA-2 on FPGA

function, which can be implemented in a single LUT configured with the
dual LUT option.

In the SHA-256 data path, 8 64:32 multiplexers are required to mul-
tiplex the state variables Z (k).

Table 5.7: Cost of the multiplexers

Component Quantity LUT FF

64:32 multiplexer 8 32 0

Total 256 0

5.2.4 Data Path

The overall data path of the proposed SHA-256 architecture is shown
in Fig. 5.7. The data path includes registers for storing the accumu-
lator variables and the final hash value, and binary adders to compute
Eq. (1.13). In a straighforward implementation, 8 adders would be re-
quired to perform this calculation in a single clock cycle. However, due
to Eq. (1.12), the final value of accumulator variables At to Dt and Et to
Ht appears in the A and E register respectively, up to the fourth clock
cycle from the last. Therefore, the architecture originally proposed in
[18] can be used to compute Eq. (1.13) with only two adders in the last
four clock cycles. Two additional 4 : 1 × 32, or 128 : 32, multiplexers
are required to select the proper value of the primary input IV to use
at each clock cycle. Since each 4 : 1 multiplexer is a 6-input, 1-output
logical function, each of these multiplexers require 32 LUTs, the same
cost of a binary adder. In total, the original cost of 8 binary adders can
be halved to the cost of two adders and two 128 : 32 multiplexers.

The data path is completed by three LUTs, required to compute the
particular values 0, 14 and 60 of the stage counter. The first is used
to drive the rolling multiplexer, which only for the first round must fed
the Compressor with the externally provided initialisation values. The
value 14 is used to signal when the initial loading phase of the Expander
is over, according to Eq. (1.4), while the value 60 is employed to signal
to the Control Unit the start of the final sum. Values 14 and 60, and
not 15 and 61, are detected since a delay of a clock cycle introduced by
the FSM needs to be taken into account. Finally, a flip-flop is used to
produce a completion output signal, by delaying the overflow output of
the counter of one clock cycle to take into account the final sum.

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 93

Table 5.6: Truth table for a 4:2 multiplexer

sel y1 x1 y0 x0 o1 o1

1 1 1 1 1 1 1
1 1 1 1 0 1 1
1 1 1 0 1 1 0
1 1 1 0 0 1 0
1 1 0 1 1 1 1
1 1 0 1 0 1 1
1 1 0 0 1 1 0
1 1 0 0 0 1 0
1 0 1 1 1 0 1
1 0 1 1 0 0 1
1 0 1 0 1 0 0
1 0 1 0 0 0 0
1 0 0 1 1 0 1
1 0 0 1 0 0 1
1 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 1 1 1 0 1 0
0 1 1 0 1 1 1
0 1 1 0 0 1 0
0 1 0 1 1 0 1
0 1 0 1 0 0 0
0 1 0 0 1 0 1
0 1 0 0 0 0 0
0 0 1 1 1 1 1
0 0 1 1 0 1 0
0 0 1 0 1 1 1
0 0 1 0 0 1 0
0 0 0 1 1 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 0 0 0

94 5. Efficient Mapping of SHA-2 on FPGA

Table 5.8: Cost of the proposed SHA-256 architecture

Component LUT FF

Compressor 224 0
Expander 288 32

Constants ROM 32 0
State register 0 256
Hash register 0 256
Final addition 128 0

Rolling multiplexer 128 0
Top level entity 3 1

Total 804 545

Figure 5.7: Architecture of the proposed SHA-256 implementation

5.2. Efficient SHA-256 implementation on 7-series Xilinx FPGA 95

Figure 5.8: Finite State Machine for the optimised SHA-256 implemen-
tation

Control Part

The Control Part is composed of a counter for the stages, the value of
which is needed as the address of the ROM, and the simple FSM shown
in Fig. 5.8. The Control Unit has three tasks to undertake. First, it must
enable the round computation until all the stages have been computed;
this is done via the exec signal which enables both the counter and
the stage registers. Second, to avoid off-by-one errors due to the final
stage implementing Eq. (1.13) a reset of the counter at the end of each
computation is necessary. The last task is to enable the hash registers
only during the final four rounds, avoiding unnecessary writes to save
energy.

Both the counter and the FSM have been implemented at behavioural
level, leaving the task of their actual synthesis to the Vivado tool. There-
fore, their cost has not been accurately computed, but it can be safely
assumed that it must be of the order of the tens of LUTs and flip-flops.

96 5. Efficient Mapping of SHA-2 on FPGA

5.3 Experimental Results

The proposed SHA-256 implementation has been described in VHDL
and synthesized, placed and routed with the Xilinx Vivado IDE 2019.2
for the Xilinx Kintex UltraScale+ XCKU5P FPGA [130, 131]. Since the
proposed design is meant to be used as a part of a larger system, the
VHDL description has been synthesized in Out of Context mode.

Table 5.9 shows the post-implementation data reported by the tool,
and compares them with their corresponding expected values, reported
in Table 5.8. Moreover, Table 5.9 reports also the number of slices re-
quired by the design. Unfortunately, this piece of data is not provided by
the Vivado tool, but it can be estimated from the knowledge of the ar-
chitecture of the FPGA introduced in Section 5.1.1. To be more specific,
the minimum number of slices required by a design can be estimated as:

Slices = min

(
LUT

4
,
FF

8

)
(5.2)

where LUT and FF indicate respectively the number of LUTs and flip-
flops required by the design as reported by the Vivado tool. Actually, the
number of slices computed through Eq. (5.2) is the theoretical minimum
number of slices required by the design. In fact, placing and routing
constraints, or usability constraints of logic elements within the same
slice, may result in an higher number of slices truly occupied when the
design is programmed onto the FPGA.

It can be seen that the obtained results closely resemble the pre-
dicted values, especially for the number of slices, which strictly matches
the predicted one1. A closer exploration of data provided by the Vivado
tool allows to determine the source of the difference in the number of
flip-flops: as it was expected, the 36 additional flip-flops are the ones re-
quired to implement the Control Part, which were not taken into account
into the theoretical estimation, as described in Section 5.2.4. A similar
number of LUTs is also required to implement the Control Part, but this
is largely absorbed by savings that the tool is capable of obtaining from
other parts of the design.

1The predicted number of slices is computed through Eq. (5.2) using the predicted
values for the number of LUTs and flip-flops provided in Table 5.8.

5.3. Experimental Results 97

Table 5.9: Implementation results for the proposed SHA-256 design.
The number of slices is computed according to Eq. (5.2). In brackets the
difference versus the theoretically estimated values reported in Table 5.8.

LUTs Flip-flops Slices Critical delay

807 (+3) 581 (+36) 202 (+1) 3.5 ns

5.3.1 Comparison with the State of the Art

To assess the validity of the proposed approach, Table 5.10 compares
the results obtained by the proposed SHA-256 design with other imple-
mentations of the same SHA-2 family member. Table 5.10 reports data
provided by the authors in their proposals, so only designs originally im-
plemented on Xilinx Virtex FPGAs have been considered. This is exactly
the issue tackled by the evaluation framework presented in Chapter 3,
which allows for the fair comparison of different designs originally imple-
mented on different targets by greatly simplifying the implementation of
the Compressor. However, the SHA-256 design proposed here involves
optimisations of the whole data path, and in particular a completely dif-
ferent implementation of the Expander, therefore falling out of the scope
of the framework in its current form, as mentioned in Section 3.2.6.

The proposed SHA-256 design requires less slices, in many cases by
far, when compared with architectures with similar or superior through-
put. In particular, proposals heavily oriented on the maximisation of
throughput such as [81, 78], are willing to pay a significant area price
for achieving this objective. This trade-off is reasonable, since these pro-
posals achieve a decent area efficiency, however the area efficiency of the
proposed SHA-256 design is clearly superior.

Proposals oriented to area-constrained scenarios can achieve even less
area occupation than the proposed SHA-256 design, such as [125, 41],
but they do so by using techniques which have a hugely negative impact
on performance, in particular the loop folding technique, described in
Section 2.1.3. The reduction in throughput leads to a reduction in the
area efficiency metric, which is considerably lower than the one of the
proposed SHA-256 design.

By exploiting low-level features of the target FPGA, the proposed
SHA-256 design achieves the best area efficiency reported in the litera-
ture, with a reasonably high throghput. It is also worth noting that the
target FPGA has been one of the Kintex-5 family, which is significantly

98 5. Efficient Mapping of SHA-2 on FPGA

Table 5.10: Comparison of the proposed SHA-256 implementation with
other implementations in the literature on the same FPGA family

Proposal FPGA Slices
Frequency Cycles Throughput Area
(MHz) per hash (Mbit s−1) Efficiency

This one Kintex-5 233 285.71 65 2250.55 9.66

[125] Virtex-6 197 354 129 1405.02 7.13

[53] Virtex-5 387 202.54 65 1595.39 4.12

[50] Virtex-5 2796 179.08 64 1432.64 0.51

[82] Virtex-5 N/D N/D N/D 1539.60 1.13

[78] Virtex-7 1402 204 32 3264 2.33

[41] Virtex-5 139 64.45 280 117.85 0.85

[4] Virtex-2 1149 114.55 65 902.30 0.79

[81] Virtex-6 1831 172 8 11008 6.01

less performant in itself than the Virtex family employed by the other
proposals, further confirming the validity of the approach.

Conclusion

Choosing the best accelerator architecture for the hardware implemen-
tation of SHA-2 under the strict set of requirements imposed by one of
the emerging applications is neither an easy task nor a straightforward
one. Each design technique has often manifold implications on the ap-
plication metrics of performance, area occupation, and power or energy
consumption. What is more, the application of a sequence of techniques
can yield combined effects which are more than the sum of the effects
of each technique. The discussion of Chapter 2 highlighted that loop
unrolling is particularly useful when performance is the main design ob-
jective, not only for the benefits brought on its own, but mainly for its
capability of enabling other performance-improving optimisations. On
the other hand, designs for resource-constrained environment will avoid
loop unrolling due to its severely adverse impact on area occupation; in
such cases the preferred design technique turned out to be loop folding.

Application with mixed requirements will find their specific place in
the design space thanks to the methodology presented in Chapter 3. The
SHA-2 workbench proposed there has been proven capable of providing
insights into the interplay between design techniques and the underly-
ing target technology which cannot be exposed by theoretical analysis,
while allowing for a fair and time-effective comparison between different
alternatives. As shown in the end of the chapter, the framework can
successfully be employed to determine which technique is more suitable
to meet the specific requirements of any given application.

The approach of Chapter 3 is the best one to follow when portabil-
ity of the design between different target technologies is in the set of
requirements. On the other hand, when the target technology is fixed, a
deep knowledge of its features allows the designer to reach points in the
design space which are unaccessible to the methodology of Chapter 3.
This has been proven in Chapter 5, where the design for a SHA-2 accel-
erator tailored for the Xilinx 7-series FPGA family has been proven to
have the best area efficiency reported so far in the literature.

99

100 Conclusion

It is worth stressing that, apart for the already mentioned lack of
portability, the technique proposed in Chapters 4 and 5 comes with the
drawback of requiring a great effort to the designer, who has to man-
ually translate logical functions into their actual components, as done
in Chapter 4 for the multi-operand adder. For some of the applications
presented in Chapter 1 requirements are so strict that such an effort is
necessary, but for other applications requirements can be matched with
dramatically less effort, which implies less time-to-market, by following
the methodology of Chapter 3. In conclusion, the more narrow, “vertical”
approach of Chapters 4 and 5 and the more extensive, “horizontal” one
of Chapters 2 and 3 must be seen as different alternatives to be exploited
in different contexts.

Bibliography

[1] Imtiaz Ahmad and A. Shoba Das. “Hardware implementation
analysis of SHA-256 and SHA-512 algorithms on FPGAs”. In:
Computer and Electrical Engineering 31 (6 2005), pp. 345–360.
doi: 10.1016/j.compeleceng.2005.07.001.

[2] F. Aisopos et al. “A Novel High - Throughput Implementation
of a Partially Unrolled SHA-512”. In: MELECON 2006 - IEEE
Mediterranean Electrotechnical Conference. 2006, pp. 61–65. doi:
10.1109/melcon.2006.1653036.

[3] Konstantinos Aisopos et al. “High throughput implementation
of the new Secure Hash Algorithm through partial unrolling”.
In: SiPS 2005 - IEEE Workshop on Signal Processing Systems,
Design and Implementation. 2005, pp. 99–103. doi: 10.1109/
SIPS.2005.1579846.

[4] I. Algredo-Badillo et al. “FPGA-based implementation alterna-
tives for the inner loop of the Secure Hash Algorithm SHA-256”.
In:Microprocessors and Microsystems 37 (6-7 2012), pp. 750–757.
doi: 10.1016/j.micpro.2012.06.007.

[5] Ignacio Algredo-Badillo et al. “Novel hardware architecture for
implementing the inner loop of the SHA-2 algorithms”. In: DSD
2011 - 14th Euromicro Conference on Digital System Design.
2011. doi: 10.1109/DSD.2011.75.

[6] Ignacio Algredo-Badillo et al. “Throughput and Efficiency Analy-
sis of Unrolled Hardware Architectures for the SHA-512 Hash Al-
gorithm”. In: ISVLSI 2012 - 10th IEEE Computer Society Annual
Symposium on VLSI. 2012, pp. 63–68. doi: 10.1109/ISVLSI.
2012.63.

[7] Amara Amara, Frédéric Amiel, and Thomas Ea. “FPGA vs. ASIC
for low power applications”. In: Microelectronics Journal 37 (8
2006), pp. 669–677. doi: 10.1016/j.mejo.2005.11.003.

101

https://doi.org/10.1016/j.compeleceng.2005.07.001
https://doi.org/10.1109/melcon.2006.1653036
https://doi.org/10.1109/SIPS.2005.1579846
https://doi.org/10.1109/SIPS.2005.1579846
https://doi.org/10.1016/j.micpro.2012.06.007
https://doi.org/10.1109/DSD.2011.75
https://doi.org/10.1109/ISVLSI.2012.63
https://doi.org/10.1109/ISVLSI.2012.63
https://doi.org/10.1016/j.mejo.2005.11.003

102 Bibliography

[8] George S. Athanasiou et al. “Optimising the SHA-512 crypto-
graphic hash function on FPGAs”. In: IET Computers & Digital
Techniques 8 (2 2014). doi: 10.1049/iet-cdt.2013.0010.

[9] Ling Bai and Shuguo Li. “VLSI Implementation of High-Speed
SHA-256”. In: ASICON 2009 - 8th IEEE International Confer-
ence on ASIC. 2009. doi: 10.1109/ASICON.2009.5351591.

[10] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash
Functions for Message Authentication”. In: CRYPTO 1996 - 16th
Annual International Cryptology Conference. Berlin, Heidelberg:
Springer, 1996. doi: 10.1007/3-540-68697-5_1.

[11] Luca Benini and Giovanni De Micheli. “Static Assignment for Low
Power Dissipation”. In: IEEE Journal of Solid-State Circuits 30
(3 1995), pp. 158–268. doi: 10.1109/4.364440.

[12] John Black, Martin Cochran, and Trevor Highland. “A Study
of the MD5 Attacks: Insights and Improvements”. In: FSE 2006
- 12th International Conference on Fast Software Encryption.
Berlin, Heidelberg: Springer, 2006. doi: 10.1007/11799313_17.

[13] Joseph Bonneau et al. “SoK: Research Perspectives and Chal-
lenges for Bitcoin and Cryptocurrencies”. In: 36th IEEE Sympo-
sium on Security and Privacy. IEEE, 2015. doi: 10.1109/SP.
2015.14.

[14] Xiaolin Cao, Liang Lu, and Maire O’Neill. “A Compact SHA-256
Architecture for RFID Tags”. In: ISSC 2011 - 22nd IET Irish
Signals and Systems Conference. 2011, pp. 6–11.

[15] Amantha P. Chandrakasan, Samuel Sheng, and Robert W. Broder-
sen. “Low-Power CMOS Digital Design”. In: IEEE Journal of
Solid-State Circuits 27 (4 1992), pp. 473–484. doi: 10.1109/
4.126534.

[16] Anantha P. Chandrakasan and Robert W. Brodersen. “Minimiz-
ing Power Consumption in Digital CMOS Circuits”. In: Proceed-
ings of the IEEE 53 (4 1995), 498–523. doi: 10.1109/5.371964.

[17] Ricardo Chaves et al. “Cost-Efficient SHA Hardware Acceler-
ators”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 6 (8 2008), pp. 999–1008. doi: 10.1109/TVLSI.
2008.2000450.

[18] Ricardo Chaves et al. “Improving SHA-2 Hardware Implementa-
tions”. In: CHES 2006 - 8th Workshop on Cryptographic Hardware
and Embedded Systems. 2006. doi: 10.1007/11894063_24.

https://doi.org/10.1049/iet-cdt.2013.0010
https://doi.org/10.1109/ASICON.2009.5351591
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/4.364440
https://doi.org/10.1007/11799313_17
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/4.126534
https://doi.org/10.1109/4.126534
https://doi.org/10.1109/5.371964
https://doi.org/10.1109/TVLSI.2008.2000450
https://doi.org/10.1109/TVLSI.2008.2000450
https://doi.org/10.1007/11894063_24

Bibliography 103

[19] Fei Chen et al. “Enabling FPGAs in the cloud”. In: CF 2014 -
11th ACM Conference on Computing Frontiers. 2014. doi: 10.
1145/2597917.2597929.

[20] Konstantinos Christidis and Michael Devetsikiotis. “Blockchains
and Smart Contracts for the Internet of Things”. In: IEEE Access
4 (2016). doi: 10.1109/ACCESS.2016.2566339.

[21] Marco Conoscenti, Antonio Vetro, and Juan Carlos De Martin.
“Blockchain for the Internet of Things: a Systematic Literature
Review”. In: AICCSA 2016 - 13th IEEE/ACS International Con-
ference on Computer Systems and Applications. IEEE, 2017. doi:
10.1109/AICCSA.2016.7945805.

[22] Victor Costan and Srinivas Devadas. Intel SGX Explained. Re-
search rep. 086. IACR Cryptology ePrint Archive, 2016. url:
https://eprint.iacr.org/2016/086.pdf.

[23] Aimee Coughlin et al. “Breaking the Trust Dependence on Third
Party Processes for Reconfigurable Secure Hardware”. In: FPGA
2019 - 27th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays. 2019. doi: 10.1145/3289602.3293895.

[24] Nicolas T. Courtois, Marek Grajek, and Rahul Naik. “Optimiz-
ing SHA256 in Bitcoin Mining”. In: CSS 2014 - 3rd International
Conference on Cryptography and Security Systems. Berlin, Hei-
delberg: Springer, 2014. doi: 10.1007/978-3-662-44893-9_12.

[25] F. Crowe et al. “Single-Chip FPGA Implementation of a Cryp-
tographic Co-Processor”. In: FPT 2004 - 3rd IEEE International
Conference on Field-Programmable Technology. 2005, pp. 279–
285. doi: 10.1109/fpt.2004.1393279.

[26] Luigi Dadda. “Some schemes for parallel multipliers”. In: Alta
Frequenza 34.5 (1965), pp. 349–356.

[27] Luigi Dadda, Marco Macchetti, and Jeff Owen. “An ASIC Design
for a High Speed Implementation of the Hash Function SHA-256
(384, 512)”. In: GLSVLSI 2004 - 14th ACM Great Lakes Sympo-
sium on VLSI. 2004, pp. 421–425. doi: http://doi.acm.org/
10.1145/988952.989053.

[28] Luigi Dadda, Marco Macchetti, and Jeff Owen. “The Design of
a High Speed ASIC Unit for the Hash Function SHA-256 (384,
512)”. In: DATE 2004 - Design, Automation and Test in Europe
Conference & Exhibition. Vol. 3. 2004, pp. 70–75. doi: 10.1109/
DATE.2004.1269207.

https://doi.org/10.1145/2597917.2597929
https://doi.org/10.1145/2597917.2597929
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/AICCSA.2016.7945805
https://eprint.iacr.org/2016/086.pdf
https://doi.org/10.1145/3289602.3293895
https://doi.org/10.1007/978-3-662-44893-9_12
https://doi.org/10.1109/fpt.2004.1393279
https://doi.org/http://doi.acm.org/10.1145/988952.989053
https://doi.org/http://doi.acm.org/10.1145/988952.989053
https://doi.org/10.1109/DATE.2004.1269207
https://doi.org/10.1109/DATE.2004.1269207

104 Bibliography

[29] Lamping Deng, Kanwaldeep Sobti, and Chaitali Chakrabarti. “Ac-
curate models for estimating area and power of FPGA imple-
mentations”. In: ICASSP 2008 - IEEE International Conference
on Acoustics, Speech and Signal Processing. 2008, pp. 1417–1420.
doi: 10.1109/ICASSP.2008.4517885.

[30] Lanping Deng et al. “Accurate Area, Time and Power Models for
FPGA-Based Implementations”. In: Journal of Signal Processing
Systems 63 (1 2011), pp. 39–50. doi: 10.1007/s11265- 009-
0387-7.

[31] Tassos Dimitriou. “A Lightweight RFID Protocol to protect against
Traceability and Cloning attacks”. In: SECURECOMM 2005 -
1st International Conference on Security and Privacy for Emerg-
ing Areas in Communications Networks. 2005, pp. 59–66. doi:
10.1109/SECURECOMM.2005.4.

[32] James Docherty and Albert Koelmans. “A Flexible Hardware Im-
plementation of SHA-1 and SHA-2 Hash Functions”. In: ISCAS
2011 - 44th IEEE International Symposium on Circuits and Sys-
tems. 2011, pp. 1932–1935. doi: 10.1109/ISCAS.2011.5937967.

[33] Sandra Dominikus. “A Hardware Implementation of MD4-Family
Hash Algorithms”. In: ICECS 2002 - 9th IEEE International Con-
ference on Electronics, Circuits, and Systems. Vol. 3. 2002, pp. 1143–
1146. doi: 10.1109/ICECS.2002.1046454.

[34] John R. Douceur. “The Sybil Attack”. In: IPTPS 2012 - 1st Inter-
national Workshop on Peer-to-Peer Systems. Berlin, Heidelberg:
Springer-Verlag, 2012. doi: 10.1007/3-540-45748-8_24.

[35] Sylvain Ducloyer et al. “Hardware implementation of a multi-
mode hash architecture for MD5, SHA-1 and SHA-2”. In: DASIP
2007 - Conference on Design & Architectures for Signal & Image
Processing. 2007.

[36] Ken Eguro and Ramarathnam Venkatesan. “FPGAs for trusted
cloud computing”. In: FPL 2012 - 22nd International Conference
on Field Programmable Logic and Applications. IEEE, 2012. doi:
10.1109/FPL.2012.6339242.

[37] Mohammed El-Hajj et al. “Analysis of Cryptographic Algorithms
on IoT Hardware platforms”. In: CSNet 2018 - 2nd Cyber Security
in Networking Conference. 2018. doi: 10.1109/CSNET.2018.
8602942.

https://doi.org/10.1109/ICASSP.2008.4517885
https://doi.org/10.1007/s11265-009-0387-7
https://doi.org/10.1007/s11265-009-0387-7
https://doi.org/10.1109/SECURECOMM.2005.4
https://doi.org/10.1109/ISCAS.2011.5937967
https://doi.org/10.1109/ICECS.2002.1046454
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1109/FPL.2012.6339242
https://doi.org/10.1109/CSNET.2018.8602942
https://doi.org/10.1109/CSNET.2018.8602942

Bibliography 105

[38] Dmitry Evtyushkin et al. “Flexible Hardware-Managed Isolated
Execution: Architecture, Software Support and Applications”. In:
IEEE Transactions on Dependable and Secure Computing 15 (3
2018). doi: 10.1109/TDSC.2016.2596287.

[39] Peter Fairley. “Blockchain world - Feeding the blockchain beast if
bitcoin ever does go mainstream, the electricity needed to sustain
it will be enormous”. In: IEEE Spectrum 54.10 (Oct. 2017). doi:
10.1109/MSPEC.2017.8048837.

[40] Martin Feldhofer and Christian Rechberger. “A Case Against
Currently Used Hash Functions in RFID Protocols”. In: OTM
2006 - On the Move to Meaningful Internet Systems Workshop.
2006, pp. 372–381. doi: 10.1007/11915034_61.

[41] Rommel García et al. “A compact FPGA-based processor for the
Secure Hash Algorithm SHA-256”. In: Computers and Electrical
Engineering 40 (1 2014). doi: 10.1016/j.compeleceng.2013.
11.014.

[42] Feng Ge, Pranjal Jain, and Ken Choi. “Ultra-Low power and
High Speed Design and implementation of AES and SHA1 Hard-
ware cores in 65 Nanometer CMOS Technology”. In: EIT 2009 -
IEEE International Conference on Electro/Information Technol-
ogy. 2009, pp. 405–410. doi: 10.1109/EIT.2009.5189651.

[43] Henri Gilbert and Helena Handschuh. “Security Analysis of SHA-
256 and Sisters”. In: SAC 2003 - International Workshop in Se-
lected Areas in Cryptography. 2004, pp. 175–193. doi: https:
//doi.org/10.1007/978-3-540-24654-1_13.

[44] Ryan Glabb et al. “Multi-mode operator for SHA-2 hash func-
tions”. In: Journal of Systems Architecture 53 (2-3 2007), pp. 127–
138. doi: 10.1016/j.sysarc.2006.09.006.

[45] Tim Grembowski et al. “Comparative Analysis of the Hardware
Implementations of Hash Functions SHA-1 and SHA-512”. In: ISC
2002 - International Conference on Information Security. 2002,
pp. 75–89. doi: 10.1007/3-540-45811-5_6.

[46] Rafik Hamza et al. “Hash Based Encryption for Keyframes of
Diagnostic Hysteroscopy”. In: IEEE Access 5 (2017). doi: 10.
1109/ACCESS.2017.2762405.

https://doi.org/10.1109/TDSC.2016.2596287
https://doi.org/10.1109/MSPEC.2017.8048837
https://doi.org/10.1007/11915034_61
https://doi.org/10.1016/j.compeleceng.2013.11.014
https://doi.org/10.1016/j.compeleceng.2013.11.014
https://doi.org/10.1109/EIT.2009.5189651
https://doi.org/https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/https://doi.org/10.1007/978-3-540-24654-1_13
https://doi.org/10.1016/j.sysarc.2006.09.006
https://doi.org/10.1007/3-540-45811-5_6
https://doi.org/10.1109/ACCESS.2017.2762405
https://doi.org/10.1109/ACCESS.2017.2762405

106 Bibliography

[47] Dirk Henrici and Paul Müller. “Hash-based enhancement of loca-
tion privacy for radio-frequency identification devices using vary-
ing identifiers”. In: PERCOM 2004 - 2nd IEEE Annual Confer-
ence on Pervasive Computing and Communications Workshops.
2004, pp. 149–153. doi: 10.1109/PERCOMW.2004.1276922.

[48] Boeui Hong et al. “FASTEN: An FPGA-Based Secure System for
Big Data Processing”. In: IEEE Design & Test 35 (1 2018). doi:
10.1109/MDAT.2017.2741464.

[49] S. M. Riazul Islam et al. “The Internet of Things for Health Care:
A Comprehensive Survey”. In: IEEE Access 3 (2015). doi: 10.
1109/ACCESS.2015.2437951.

[50] Chanbok Jeong and Youngmin Kim. “Implementation of Efficient
SHA-256 Hash Algorithm for Secure Vehicle Communication us-
ing FPGA”. In: ISOCC 2014 - International SoC Design Confer-
ence. 2014, pp. 224–225. doi: 10.1109/ISOCC.2014.7087617.

[51] Marcio Juliato and Catherine Gebotys. “Tailoring a reconfigurable
platform to SHA-256 and HMAC through custom instructions
and peripherals”. In: ReConFig 2009 - International Conference
on Reconfigurable Computing and FPGAs. 2009, pp. 195–200.
doi: 10.1109/ReConFig.2009.40.

[52] Christoforos Kachris and Dimitrios Soudris. “A Survey on Re-
configurable Accelerators for Cloud Computing”. In: FPL 2016 -
26th International Conference on Field-Programmable Logic and
Applications. 2016. doi: 10.1109/FPL.2016.7577381.

[53] Fatma Kahri et al. “Efficient FPGA Hardware Implementation
of Secure Hash Function SHA-256/Blake-256”. In: SSD 2015 -
12th IEEE International Multi-Conference on Systems, Signals
& Devices. 2015, p. 5. doi: 10.1109/SSD.2015.7348105.

[54] S. Kent. IP Authentication Header. RFC 4302. RFC Editor, Dec.
2005. url: https://tools.ietf.org/html/rfc4302 (visited on
04/29/2019).

[55] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303.
RFC Editor, Dec. 2005. url: https://www.rfc-editor.org/
rfc/rfc4303.txt (visited on 04/29/2019).

[56] S. Kent and S. Seo. Security Architecture for the Internet Protocol.
RFC 4301. RFC Editor, Dec. 2005. url: https://tools.ietf.
org/html/rfc4301 (visited on 04/29/2019).

https://doi.org/10.1109/PERCOMW.2004.1276922
https://doi.org/10.1109/MDAT.2017.2741464
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1109/ISOCC.2014.7087617
https://doi.org/10.1109/ReConFig.2009.40
https://doi.org/10.1109/FPL.2016.7577381
https://doi.org/10.1109/SSD.2015.7348105
https://tools.ietf.org/html/rfc4302
https://www.rfc-editor.org/rfc/rfc4303.txt
https://www.rfc-editor.org/rfc/rfc4303.txt
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301

Bibliography 107

[57] M. Khalil, M. Nazrin, and Y. W. Hau. “Implementation of SHA-2
Hash Function for a Digital Signature System-on-Chip in FPGA”.
In: ICED 2008 - 12th International Conference on Electronic De-
sign. 2008. doi: 10.1109/ICED.2008.4786681.

[58] Burhan Khurshid and Roohie Naaz Mir. “High Efficiency Gener-
alized Parallel Counters for Xilinx FPGAs”. In: HiPC 2015 - 22nd
IEEE International Conference on High Performance Computing.
2015, pp. 40–46. doi: 10.1109/HiPC.2015.41.

[59] Mooseop Kim, Deok Gyu Lee, and Jaecheol Ryou. “Compact and
unified hardware architecture for SHA-1 and SHA-256 of trusted
mobile computing”. In: Personal and Ubiquitous Computing 17 (5
2013), pp. 921–932. doi: https://doi.org/10.1007/s00779-
012-0543-0.

[60] Mooseop Kim, Jaecheo Ryou, and Sungik Jun. “Efficient hardware
architecture of SHA-256 algorithm for trusted mobile computing”.
In: INSCRYPT 2008 - International Conference on Information
Security and Cryptology. 2009, pp. 240–252. doi: 10.1007/978-
3-642-01440-6_19.

[61] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, and Hicham
Lakhlef. “Internet of things security: A top-down survey”. In:
Computer Networks 141 (2018). doi: 10.1016/j.comnet.2018.
03.012.

[62] Martin Kumm and Johannes Kappauf. “Advanced Compressor
Tree Synthesis for FPGAs”. In: IEEE Transactions on Computers
(2018). doi: 10.1109/TC.2018.2795611.

[63] Martin Kumm and Peter Zipf. “Efficient High Speed Compression
Trees on Xilinx FPGAs”. In:Methoden Und Beschreibungssprachen
Zur Modellierung Und Verifikation Von Schaltungen Und Syste-
men (1 2014).

[64] Martin Kumm and Peter Zipf. “Pipelined Compressor Tree Op-
timization using integer Linear Programming”. In: FPL 2014 -
24th International Conference on Field Programmable Logic and
Applications. 2014, p. 8. doi: 10.1109/FPL.2014.6927468.

[65] Ian Kuon and Jonathan Rose. “Measuring the Gap Between FP-
GAs and ASICs”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 26 (2 2007), pp. 203–215.
doi: 10.1109/TCAD.2006.884574.

https://doi.org/10.1109/ICED.2008.4786681
https://doi.org/10.1109/HiPC.2015.41
https://doi.org/https://doi.org/10.1007/s00779-012-0543-0
https://doi.org/https://doi.org/10.1007/s00779-012-0543-0
https://doi.org/10.1007/978-3-642-01440-6_19
https://doi.org/10.1007/978-3-642-01440-6_19
https://doi.org/10.1016/j.comnet.2018.03.012
https://doi.org/10.1016/j.comnet.2018.03.012
https://doi.org/10.1109/TC.2018.2795611
https://doi.org/10.1109/FPL.2014.6927468
https://doi.org/10.1109/TCAD.2006.884574

108 Bibliography

[66] Yong Ki Lee, Herwin Chan, and Ingrid Verbauwhede. “Iteration
Bound Analysis and Throughput Optimum Architecture of SHA-
256 (384,512) for Hardware Implementations”. In: WISA 2007
- International Workshop on Information Security Appication.
2007. doi: https://doi.org/10.1007/978-3-540-77535-5_8.

[67] Roar Lien, Tim Grembowski, and Kris Gaj. “A 1 Gbit/s Partially
Unrolled Architecture of Hash Functions SHA-1 and SHA-512”.
In: CT-RSA 2004 - Cryptographers’ Track at the RSA Confer-
ence. 2004, pp. 324–338. doi: 10.1007/978-3-540-24660-2_25.

[68] Marco Macchetti and Luigi Dadda. “Quasi-Pipelined Hash Cir-
cuits”. In: ARITH 2005 - 17th IEEE Symposium on Computer
Arithmetic. 2005, pp. 222–229. doi: 10.1109/ARITH.2005.36.

[69] Lukas Malina et al. “On perspective of security and privacy-
preserving solutions in the internet of things”. In: Computer Net-
works 102 (2016). doi: 10.1016/j.comnet.2016.03.011.

[70] Avijit Mathur, Thomas Newe, and Muzaffar Rao. “Defence against
black hole and selective forwarding attacks for medical WSNs in
the IoT”. In: Sensors 16 (1 2016). doi: 10.3390/s16010118.

[71] Avijit Mathur et al. “A secure end-to-end IoT solution”. In: Sen-
sors and Actuators A: Physical 263 (2017). doi: 10.1016/j.sna.
2017.06.019.

[72] Taeko Matsunaga, Shinji Kimura, and Yusuke Matsunaga. “Multi-
Operand Adder Synthesis on FPGAs Using Generalized Parallel
Counters”. In: ASP-DAC 2009 - 14th Asia and South Pacific De-
sign Automation Conference. 2009, pp. 337–342. doi: 10.1109/
ASPDAC.2010.5419871.

[73] Taeko Matsunaga, Shinji Kimura, and Yusuke Matsunaga. “Power
and Delay Aware Synthesis of Multi-Operand Adders Targeting
LUT-based FPGAs”. In: ISLPED 2011 - International Sympo-
sium on Low Power Electronics and Design. 2011, pp. 217–222.
doi: 10.1109/ISLPED.2011.5993639.

[74] Robert P. McEvoy et al. “Optimisation of the SHA-2 Family of
Hash Functions on FPGAs”. In: ISVLSI 2006 - 4th IEEE Com-
puter Society Annual Symposium on Emerging VLSI Technologies
and Architectures. 2006, pp. 317–322. doi: 10.1109/ISVLSI.
2006.70.

https://doi.org/https://doi.org/10.1007/978-3-540-77535-5_8
https://doi.org/10.1007/978-3-540-24660-2_25
https://doi.org/10.1109/ARITH.2005.36
https://doi.org/10.1016/j.comnet.2016.03.011
https://doi.org/10.3390/s16010118
https://doi.org/10.1016/j.sna.2017.06.019
https://doi.org/10.1016/j.sna.2017.06.019
https://doi.org/10.1109/ASPDAC.2010.5419871
https://doi.org/10.1109/ASPDAC.2010.5419871
https://doi.org/10.1109/ISLPED.2011.5993639
https://doi.org/10.1109/ISVLSI.2006.70
https://doi.org/10.1109/ISVLSI.2006.70

Bibliography 109

[75] M. McLoone and J. V. McCanny. “Efficient Single-Chip Imple-
mentation of SHA-384 and SHA-512”. In: FPT 2002 - 1st IEEE
International Conference on Field-Programmable Technology. IEEE,
2003. doi: 10.1109/FPT.2002.1188699.

[76] H. Michail et al. “Novel high throughput implementation of SHA-
256 hash function through pre-computation technique”. In: ICECS
2005 - 12th IEEE International Conference on Electronics, Cir-
cuits, and Systems. 2005. doi: 10.1109/ICECS.2005.4633433.

[77] H. E. Michail et al. “High-Speed and Low-Power Implementa-
tion of Hash Message Authentication Code through Partially Un-
rolled Techniques”. In: MIV 2005 - 5th International Conference
on Multimedia, Internet & Video Technology. 2005, pp. 130–135.

[78] H. E. Michail et al. “On the development of high-throughput and
area-efficient multi-mode cryptographic hash designs in FPGAs”.
In: Integration, the VLSI Journal 47 (4 2014), pp. 387–407. doi:
10.1016/j.vlsi.2014.02.004.

[79] Harris Michail et al. “A Low-Power and High-Throughput Imple-
mentation of the SHA-1 Hash Function”. In: ISCAS 2005 - 38th
IEEE International Symposium on Circuits and Systems. 2005,
pp. 4086–4089. doi: 10.1109/ISCAS.2005.1465529.

[80] Harris E. Michail et al. “A Top-Down Design Methodology for
Ultrahigh-Performance Hashing Cores”. In: IEEE Transactions
on Dependable and Secure Computing 6 (4 2009), pp. 255–268.
doi: 10.1109/TDSC.2008.15.

[81] Harris E. Michail et al. “On the Exploitation of a High-Throughput
SHA-256 FPGA Design for HMAC”. In: ACM Transactions on
Reconfigurable Technology and Systems 5 (1 2012), 2:1–2:28. doi:
10.1145/2133352.2133354.

[82] Anane Mohamed and Anane Nadjia. “SHA-2 Hardware Core for
Virtex-5 FPGA”. In: SSD 2015 - 12th IEEE International Multi-
Conference on Systems, Signals & Devices. 2015. doi: 10.1109/
SSD.2015.7348110.

[83] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. 2008. url: https://bitcoin.org/bitcoin.pdf (visited on
04/29/2019).

[84] National Institute of Standards and Technology. Advanced En-
cryption Standard (AES). FIPS 197. U.S. Department of Com-
merce, Nov. 26, 2011. doi: https://doi.org/10.6028/NIST.
FIPS.197.

https://doi.org/10.1109/FPT.2002.1188699
https://doi.org/10.1109/ICECS.2005.4633433
https://doi.org/10.1016/j.vlsi.2014.02.004
https://doi.org/10.1109/ISCAS.2005.1465529
https://doi.org/10.1109/TDSC.2008.15
https://doi.org/10.1145/2133352.2133354
https://doi.org/10.1109/SSD.2015.7348110
https://doi.org/10.1109/SSD.2015.7348110
https://bitcoin.org/bitcoin.pdf
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197

110 Bibliography

[85] National Institute of Standards and Technology. Digital Signature
Standard (DSS). FIPS 186-4. U.S. Department of Commerce, July
2013. doi: 10.6028/NIST.FIPS.186-4.

[86] National Institute of Standards and Technology. NIST Policy on
Hash Functions. July 5, 2015. url: https://csrc.nist.gov/
projects/hash-functions/nist-policy-on-hash-functions
(visited on 12/11/2017).

[87] National Institute of Standards and Technology. Recommendation
for Random Number Generation Using Deterministic Random Bit
Generators. SP 800-90A Rev. 1. U.S. Department of Commerce,
June 2015. doi: 10.6028/NIST.SP.800-90Ar1.

[88] National Institute of Standards and Technology. Recommendation
for the Triple Data Encryption Algorithm (TDEA) Block Cipher.
SP 800-67 Rev.2. U.S. Department of Commerce, Nov. 2017. doi:
10.6028/NIST.SP.800-67r2.

[89] National Institute of Standards and Technology. Secure Hash Stan-
dard (SHS). FIPS 180-4. U.S. Department of Commerce, Aug.
2015. doi: 10.6028/NIST.FIPS.180-4.

[90] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. FIPS
202. U.S. Department of Commerce, July 5, 2015. doi: 10.6028/
NIST.FIPS.202.

[91] National Institute of Standards and Technology. The Keyed-Hash
Message Authentication Code (HMAC). FIPS 198-1. U.S. Depart-
ment of Commerce, July 2008. doi: 10.6028/NIST.FIPS.198-1.

[92] Karl J. O’Dwyert and David Malone. “Bitcoin Mining and its En-
ergy Footprint”. In: ISSC 2014 / CIICT 2014 - Joint 25th IET
Irish Signals & Systems Conference and China-Ireland Interna-
tional Conference on Information and Communications Technolo-
gies. 2014, pp. 280–285. doi: 10.1049/cp.2014.0699.

[93] Chris Palmer and Ryan Sleevi. Gradually sunsetting SHA-1. Ed.
by Google Security Blog. Google. Oct. 3, 2014. url: https://
security.googleblog.com/2014/09/gradually-sunsetting-
sha-1.html (visited on 04/27/2019).

[94] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. “Efficient
Synthesis of Compressor Trees on FPGAs”. In: ASP-DAC 2008
- 13th Asia and South Pacific Design Automation Conference.
2008, pp. 138–143. doi: 10.1109/ASPDAC.2008.4483927.

https://doi.org/10.6028/NIST.FIPS.186-4
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-67r2
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.1049/cp.2014.0699
https://security.googleblog.com/2014/09/gradually-sunsetting-sha-1.html
https://security.googleblog.com/2014/09/gradually-sunsetting-sha-1.html
https://security.googleblog.com/2014/09/gradually-sunsetting-sha-1.html
https://doi.org/10.1109/ASPDAC.2008.4483927

Bibliography 111

[95] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. “Exploiting
Fast Carry-Chains of FPGAs for Designing Compressor Trees”.
In: FPL 2009 - 19th International Conference on Field Programmable
Logic and Applications. 2009, pp. 242–249. doi: 10.1109/FPL.
2009.5272301.

[96] Hadi Parandeh-Afshar, Philip Brisk, and Paolo Ienne. “Improv-
ing Synthesis of Compressor Trees on FPGAs via Integer Linear
Programming”. In: DATE 2008 - Design, Automation and Test
in Europe Conference & Exhibition. 2008, pp. 1256–1261. doi:
10.1109/DATE.2008.4484851.

[97] Hadi Parandeh-Afshar et al. “Compressor Tree Synthesis on Com-
mercial High-Performance FPGAs”. In: ACM Transactions on
Reconfigurable Technology and Systems 4 (4 2011), p. 19. doi:
10.1145/2068716.2068725.

[98] Hadi Parandeh-Afshar et al. “Improved Synthesis of Compressor
Trees on FPGAs by a Hybrid and Systematic Design Approach”.
In: IWLS 2010 - 19th International Workshop on Logic and Syn-
thesis. 2010, pp. 193–200.

[99] Ana Reyna et al. “On blockchain and its integration with IoT.
Challenges and opportunities”. In: Future Generation Computer
Systems 88 (2018). doi: 10.1016/j.future.2018.05.046.

[100] Ron Rivest. The MD5 Message-Digest Algorithm. RFC 1321. RFC
Editor, 1992. url: https://www.ietf.org/rfc/rfc1321.txt
(visited on 04/29/2019).

[101] Farzad Samie, Lars Bauer, and Jörg Henkel. “IoT Technologies
for Embedded Computing: A Survey”. In: CODES 2016 - 11th
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. 2016. doi: 10.1145/2968456.
2974004.

[102] Akashi Satoh and Tadanobu Inoue. “ASIC-Hardware-Focused Com-
parison for Hash Functions MD5, RIPEMD-160, and SHS”. In:
ITCC 2005 - International Conference on Information Technol-
ogy: Coding and Computing. 2005. doi: 10.1109/ITCC.2005.92.

[103] Li Shang, Alireza S. Kaviani, and Kusuma Bathala. “Dynamic
power consumption in Virtex™-II FPGA family”. In: FPGA 2002 -
10th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. 2002, pp. 157–164. doi: 10.1145/503048.503072.

https://doi.org/10.1109/FPL.2009.5272301
https://doi.org/10.1109/FPL.2009.5272301
https://doi.org/10.1109/DATE.2008.4484851
https://doi.org/10.1145/2068716.2068725
https://doi.org/10.1016/j.future.2018.05.046
https://www.ietf.org/rfc/rfc1321.txt
https://doi.org/10.1145/2968456.2974004
https://doi.org/10.1145/2968456.2974004
https://doi.org/10.1109/ITCC.2005.92
https://doi.org/10.1145/503048.503072

112 Bibliography

[104] James M. Simkins and Brian D. Philofsky. “Structures and meth-
ods for implementing ternary adders/subtractors in programmable
logic devices”. Pat. US 7,274,211 B1. Xilinx, Inc. Sept. 25, 2007.

[105] N. Sklavos and O. Koufopavlou. “Implementation of the SHA-2
hash family standard using FPGAs”. In: Journal of Supercomput-
ing 31 (3 2005). doi: 10.1007/s11227-005-0086-5.

[106] N. Sklavos and O. Koufopavlou. “On the Hardware Implementa-
tions of the SHA-2 (256, 384, 512) Hash Functions”. In: ISCAS
2003 - 36th IEEE International Symposium on Circuits and Sys-
tems. 2003. doi: 10.1109/ISCAS.2003.1206214.

[107] William Stallings. Cryptography and Network Security: Principles
and Practice. 7th ed. Pearson Education, Inc., 2017.

[108] William J. Stenzel, William J. Kubitz, and Gilles H. Garcia. “A
Compact High-Speed Parallel Multiplication Scheme”. In: IEEE
Transactions on Computers (10 Oct. 1977), pp. 948–957. doi:
10.1109/TC.1977.1674730.

[109] Marc Stevens et al. Announcing the first SHA1 collision. Ed. by
Google Security Blog. Feb. 23, 2017. url: https://security.
googleblog.com/2017/02/announcing-first-sha1-collision.
html (visited on 04/27/2019).

[110] Wanzhong Sun et al. “Design and Optimized Implementation of
the SHA-2(256, 384, 512) Hash Algorithms”. In: ASICON 2007 -
7th International Conference on ASIC. 2007, pp. 858–861. doi:
10.1109/ICASIC.2007.4415766.

[111] Michael Bedford Taylor. “Bitcoin and The Age of Bespoke Sili-
con”. In: CASES 2013 - International Conference on Compilers
Architecture and Synthesis for Embedded Systems. IEEE, 2013.
doi: 10.1109/CASES.2013.6662520.

[112] Michael Bedford Taylor. “The Evolution of Bitcoin Hardware”. In:
IEEE Computer 50 (9 2017). doi: 10.1109/MC.2017.3571056.

[113] Kurt K. Ting et al. “An FPGA Based SHA-256 Processor”. In:
FPL 2002 - 12nd International Conference on Field Programmable
Logic and Applications. 2002. doi: 10.1007/3-540-46117-5_60.

[114] Vivek Tiwari et al. “Reducing Power in High-performance Micro-
processors”. In: DAC 1998 - 35th Design Automation Conference.
1998, pp. 732–737. doi: 10.1145/277044.277227.

https://doi.org/10.1007/s11227-005-0086-5
https://doi.org/10.1109/ISCAS.2003.1206214
https://doi.org/10.1109/TC.1977.1674730
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://doi.org/10.1109/ICASIC.2007.4415766
https://doi.org/10.1109/CASES.2013.6662520
https://doi.org/10.1109/MC.2017.3571056
https://doi.org/10.1007/3-540-46117-5_60
https://doi.org/10.1145/277044.277227

Bibliography 113

[115] Mihai Togan, Adrian Floarea, and Gigi Budariu. “Design and im-
plementation of cryptographic modules on FPGA”. In: European
Conference for the Applied Mathematics and Informatics. 2010,
pp. 149–154.

[116] Florian Tschorsch and Björn Scheuermann. “Bitcoin and Beyond:
A Technical Survey on Decentralized Digital Currencies”. In: IEEE
Communications Surveys & Tutorials 18 (3 2015). Ed. by IEEE.
doi: 10.1109/COMST.2016.2535718.

[117] Hoang Anh Tuan, Katsuhiro Yamazaki, and Shigeru Oyanagi.
“Three-Stage Pipeline Implementation for SHA2 Using Data For-
warding”. In: FPL 2008 - 18th International Conference on Field
Programmable Logic and Applications. 2008, pp. 29–34. doi: 10.
1109/FPL.2008.4629903.

[118] Sveinn Valfells and Jón Helgi Egilsson. “Minting Money With
Megawatts”. In: Proceedings of the IEEE 104 (9 2016). doi: 10.
1109/JPROC.2016.2594558.

[119] Matthew Vilim, Henry Duwe, and Rakesh Kumar. “Approximate
Bitcoin Mining”. In: DAC 2016 - 53rd ACM/EDAC/IEEE Design
Automation Conference. 2016. doi: 10.1145/2897937.2897988.

[120] C. S. Wallace. “A Suggestion for a Fast Multiplier”. In: IEEE
Transacrions on Electronic Computers EC-13 (1 1964), pp. 14–
17. doi: 10.1109/PGEC.1964.263830.

[121] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. “Finding Col-
lisions in the Full SHA-1”. In: CRYPTO 2005 - 25th Annual In-
ternational Cryptology Conference. Berlin, Heidelberg: Springer,
2005. doi: 10.1007/11535218_2.

[122] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other
Hash Functions”. In: EUROCRYPT 2005 - 21st Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques. Berlin, Heidelberg: Springer, 2005. doi: 10.
1007/11426639_2.

[123] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. “Efficient Col-
lision Search Attacks on SHA-0”. In: CRYPTO 2005 - 25th An-
nual International Cryptology Conference. 2005. doi: 10.1007/
11535218_1.

[124] Stephen A. Weis et al. “Security and Privacy of Low-Cost Radio
Frequency Identification Systems”. In: 1st International Confer-
ence on Security in Pervasive Computing. 2003, pp. 201–212. doi:
https://doi.org/10.1007/978-3-540-39881-3_18.

https://doi.org/10.1109/COMST.2016.2535718
https://doi.org/10.1109/FPL.2008.4629903
https://doi.org/10.1109/FPL.2008.4629903
https://doi.org/10.1109/JPROC.2016.2594558
https://doi.org/10.1109/JPROC.2016.2594558
https://doi.org/10.1145/2897937.2897988
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11535218_1
https://doi.org/10.1007/11535218_1
https://doi.org/https://doi.org/10.1007/978-3-540-39881-3_18

114 Bibliography

[125] Ming Ming Wong, Vikramkumar Pudi, and Anupam Chattopad-
hyay. “Lightweight and High Performance SHA-256 using Archi-
tectural Folding and 4-2 Adder Compressor”. In: IVLSI-SoC 2018
- IEEE/IFIP International Conference on VLSI and System-on-
Chip. 2019. doi: 10.1109/VLSI-SoC.2018.8644825.

[126] Anthony D. Wood and John A. Stankovic. “Denial of Service in
Sensor Networks”. In: Computer 35 (10 2002). doi: 10.1109/MC.
2002.1039518.

[127] GavinWood. Ethereum: A Secure Decentralised Generalised Trans-
action Ledger. 2014. url: https : / / ethereum . github . io /
yellowpaper/paper.pdf (visited on 05/02/2019).

[128] Xilinx Inc. 7 Series FPGAs Configurable Logic Block. User Guide
474. Version 1.8. Sept. 27, 2016.

[129] Xilinx, Inc., ed. 7 Series FPGAs Data Sheet: Overview. Feb. 27,
2018. url: https://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf (visited on 02/21/2019).

[130] Xilinx Inc., ed. Kintex UltraScale+ FPGA Product Brief. 2016.
url: https : / / www . xilinx . com / support / documentation /
product-briefs/kintex-ultrascale-plus-product-brief.
pdf (visited on 02/21/2019).

[131] Xilinx Inc., ed. UltraScale Architecture and Product Data Sheet:
Overview. Feb. 2, 2019. url: https://www.xilinx.com/support/
documentation/data_sheets/ds890-ultrascale-overview.
pdf (visited on 02/21/2019).

[132] Xilinx Inc. Vivado Design Suite 7 Series FPGA and Zynq-7000
SoC Libraries Guide. User Guide 953. Version 2019.2., Oct. 30,
2019.

[133] Ioannis I. Yiakoumis et al. “Maximizing the hash function of au-
thentication codes”. In: IEEE Potentials 25 (2 2006). doi: 10.
1109/MP.2006.1649004.

[134] Yuelai Yuan et al. “Area Optimized Synthesis of Compressor Trees
on Xilinx FPGAs Using Generalized Parallel Counters”. In: IEEE
Access 7 (2019), pp. 134815–134827. doi: 10.1109/access.2019.
2941985.

[135] M. Zeghid et al. “A Reconfigurable Implementation of the New
Secure Hash Algorithm”. In: ARES 2007 - 2nd International Con-
ference on Availability, Reliability and Security. 2007, pp. 281–
285. doi: 10.1109/ARES.2007.17.

https://doi.org/10.1109/VLSI-SoC.2018.8644825
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1109/MC.2002.1039518
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/product-briefs/kintex-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/kintex-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/kintex-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://doi.org/10.1109/MP.2006.1649004
https://doi.org/10.1109/MP.2006.1649004
https://doi.org/10.1109/access.2019.2941985
https://doi.org/10.1109/access.2019.2941985
https://doi.org/10.1109/ARES.2007.17

Bibliography 115

[136] Medien Zeghid et al. “Architectural design features of a pro-
grammable high throughput reconfigurable SHA-2 Processor”. In:
JIAS - Journal of Information Assurance and Security 3 (2 2008),
pp. 147–158.

[137] Yu Zhang and Jiangtao Wen. “The IoT electric business model:
Using blockchain technology for the internet of things”. In: Peer-
to-Peer Networking and Applications 10 (4 2017). doi: 10.1007/
s12083-016-0456-1.

https://doi.org/10.1007/s12083-016-0456-1
https://doi.org/10.1007/s12083-016-0456-1

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	SHA-2 and its Applications
	Cryptographic Hash Algorithms
	The Secure Hash Algorithm
	Algorithm Definition
	SHA-2 variants

	Applications
	Blockchains
	Internet of Things
	Trusted Computing

	Classification of SHA-2 Acceleration Approaches
	Approaches to SHA-2 Acceleration
	Programmable Processor Architectures
	Accelerator Architectures
	Optimisation Techniques

	SHA-2 Accelerator Architectures
	Basic architectures
	Shift register architectures
	Architectures with precomputation
	Architectures with spatial reordering
	Architectures with quasi-pipelining

	Evaluation of SHA-2 Hardware Acceleration Approaches
	The Need for a Common Evaluation Platform
	Evaluation Methodology

	Workbench Architecture
	Compressor
	Expander
	Control Unit
	Reconfigurable aspects controlled by source-level parameters
	Reconfigurable aspects controlled by component declarations
	Discussion

	Experimental Results
	Design comparison against a specific target
	Architectural Exploration
	Exploring a different target

	Analysis of the Impact of Design Techniques on Application Metrics
	Performance
	Area occupation and area efficiency
	Power and energy consumption
	Implementation complexity
	Impact on applications

	Efficient Multi-Operand Addition on FPGAs
	Compressor Trees based on Parallel Counters
	Generalised Parallel Counters
	Efficiency Parameters of a GPC
	From the GPC to the Compressor Tree

	GPCs for the 7-series Xilinx FPGAs
	The Xilinx 7-series Look-Up Table
	A GPC library for the 7-series FPGA
	Optimising the mapping of the GPCs

	Efficient Mapping of SHA-2 on FPGA
	Overview of 7-series Xilinx FPGA architectural features
	7-series Xilinx FPGA organization overview
	LUT capabilities

	Efficient SHA-256 implementation on 7-series Xilinx FPGA
	Compressor
	Expander
	Other Components
	Data Path

	Experimental Results
	Comparison with the State of the Art

	Conclusion
	Bibliography

