
JOINT PHD PROGRAM AT UNIVERSITÁ DEGLI STUDI DI

NAPOLI “FEDERICO II” AND UNIVERSITÄT OF ZÜRICH

DOCTORAL THESIS

Ultimate precision for the Drell-Yan process:
mixed QCDxQED(EW) corrections, final state
radiation and power suppressed contributions

Author:
Luca BUONOCORE

Supervisor:
Prof. Dr. Massimiliano

GRAZZINI
Prof. Dr. Francesco

TRAMONTANO

Ciclo XXXII, Coordinatore: Salvatore Capozziello
Sezione scientifico disciplinare FIS/02

Dipartimento di Fisica “Ettore Pancini” and Physik-Institut

Scuola Politecnica e delle Scienze di Base and Mathematisch-naturwissenschaftlichen
Fakultät

Years 2017/2020

http://www.fisica.unina.it
http://www.physik.uzh.ch
http://www.scuolapsb.unina.it
http://www.mnf.uzh.ch
http://www.mnf.uzh.ch


ii

“With diligent effort he has established that there is no statistical basis for Murphys Law. He has also
established that he believes in it anyway. ”

John Barnes, Mother of Storms (1994)
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Abstract
Ultimate precision for the Drell-Yan process: mixed QCDxQED(EW) corrections, final

state radiation and power suppressed contributions

The discovery of the Higgs Boson at the Large Hadron Collider in 2012 represented
a breakthrough in particle physics, providing a strong confirmation of the mechanism of
Electro-Weak-Symmetry-Breaking, which is in turn responsible for the generation of ele-
mentary particle masses. The Higgs discovery, however, was not followed by any evidence
of physics Beyond the Standard Model, and it is difficult to reconcile our current description
of the fundamental particles and their interactions with long-standing problems like neu-
trino masses, matter-anti matter asymmetry, the existence of dark matter and dark energy
and the hierarchy problem.

The lack of new-physics signals has stimulated a new precision collider programme,
which was made possible by the advances on both the experimental and theoretical sides.
Indeed, the precision target accuracy expected by the end of the planned LHC data taking
in 2038 is at the (sub)percent level. For a meaningful comparison with experimental data,
we need theoretical predictions which have a similar level of accuracy. This translates into
the necessity of computing higher order terms in perturbation theory, known as radiative
corrections in the language of Quantum Field Theory. At an hadronic collider as the LHC
the effects due to the strong interaction (described by Quantum CromoDynamics (QCD))
dominate. In the last decades a big effort has been profused to compute QCD radiative
corrections and nowadays Next-to-Next-to Leading Order (NNLO) computations represent
the state of the art for many 2→ 2 processes.

The production of a dilepton pair via the Drell-Yan mechanism has a special place in the
precision phenomenology program at LHC for its importance in experimental calibrations
and for the precise determination of important electro-weak (EW) parameters such as the
W mass. From the theoretical side, Drell-Yan is one of the most studied processes. QCD
corrections are known up to NNLO and in part at N3LO, while EW corrections are known
at NLO. At this level of accuracy, it becomes relevant to assess the relative importance of the
mixed QCD-EW corrections.

In this thesis, we set up a subtraction framework to compute the full set of mixed QCD-
EW(QED) corrections to the the Drell-Yan process at the differential level. We rely on the
transverse momentum resummation formalism to handle the genuine NNLO-type infrared
divergences associated to both initial and final state radiation in the small transverse mo-
mentum limit, exploiting the corresponding results for heavy-quark pair production. In
particular, we have to deal with massive leptons in the final state as the their mass acts as
a regulator for final-state collinear divergences. This may challenge the numerical stability
since the physical lepton masses are very small. We extensively study the radiation pattern
of massive emitters, building a dedicated momentum mapping which smoothly approaches
the massless limit. Furthermore, we study, for the first time, the leading power suppressed
contributions appearing at small transverse momenta, and we show that they are driven by
final-state soft radiation. As a validation of our construction, we show results both for the
inclusive and the relevant differential distribution for the mixed QCD-QED corrections to
the production of an on-shell Z boson.
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Zusammenfassung

Die Entdeckung des Higgs Boson am Large Hadron Collider(LHC) im Jahr 2012 stellte
einen Durchbruch in der Teilchenphysik dar und lieferte eine Bestätigung des Mechanismus
der Elektro-Schwach-Symmetrie-Brechung, der für die Erzeugung von Elementarteilchen-
massen verantwortlich ist. Auf die Higgs-Entdeckung folgte jedoch keine weiteren Hin-
weise für Physik jenseits des Standardmodells, und es bleibt weiterhin schwierig, die ak-
tuelle Beschreibung der fundamentalen Teilchen und ihre Wechselwirkungen mit lang beste-
henden Problemen wie den Neutrinomassen, der Materie-Antimaterie-Asymmetrie, die Ex-
istenz von dunkler Materie und dunkler Energie und das Hierarchieproblem in Einklang zu
bringen.

Das Fehlen von Signalen neuer Physik hat ein neues Präzisions-Beschleuniger-Programm
ins Leben gerufen, das erst durch die Fortschritte auf sowohl experimenteller als auch auf
theoretischer Seite ermöglicht wurde. Bis Ende der geplanten LHC-Datenaufnahme im Jahr
2038, wird eine auf dem (sub)prozentualen Präzisions-Zielgenauigkeit erwartet.

Für einen Vergleich mit experimentellen Daten benötigen wir theoretische Vorhersagen,
mit vergleichbarem Genauigkeitsgrad. Dies verlangt die Berechnung von Termen höherer
Ordnung in der Störungstheorie, auch bekannt als Strahlungskorrekturen in der Sprache
der Quantenfeldtheorie. An einem hadronischen Collider, wie dem LHC, dominieren die
Effekte der starken Wechselwirkung, beschrieben durch die Quantum Cromo Dynamics
(QCD). Im letzten Jahrzehnt gab es groSSe Anstrengungen, um insbesondere QCD Kor-
rekturen zu berechnen, und heutzutage stellen Next-to-Next-to-Leading Order (NNLO)-
Berechnungen den Stand der Technik für viele 2→ 2-Streuprozesse dar.

Die Erzeugung eines Dileptonpaares über den Drell-Yan-Mechanismus spielt eine beson-
dere Rolle in der Präzisionsphänomenologie am LHC, wegen seiner Bedeutung für die ex-
perimentelle Kalibrierungen und für die präzise Bestimmung bedeutsamer elektroschwacher
(EW) Parameter wie der W-Masse. Auf der theoretischen Seite ist Drell-Yan einer der am
meisten untersuchten Prozesse. QCD-Korrekturen sind bis NNLO und teilweise bis N3LO
bekannt, während EW-Korrekturen bislang nur auf NLO bekannt sind. Bei diesem Präzi-
sionsgrad ist es relevant, das relative Gewicht der gemischten QCD-EW-Korrekturen zu
bestimmen.

In dieser Dissertation entwickeln wir einen Subtraktions-Framework, um den vollständi-
gen Satz von gemischten QCD-EW(QED)-Korrekturen des Drell-Yan-Prozesses auf der dif-
ferentieller Ebene zu berechnen. Wir bauen auf den Formalismus der Transversalimpuls-
Resummation auf, um die tatsächlichen NNLO Infrarot-Divergenzen, die an Abstrahlun-
gen im Anfangs- und Endzustände in Bereichen kleiner transversal Impulse zugeordnet
sind, unter Ausnutzung entsprechender Ergebnisse für die Produktion von Schwere-Quark-
Paaren, zu behandeln. Insbesondere betrachten wir Leptonen im Endzustand massiv, da
deren Masse als Regulator für kollineare Divergenzen wirkt. Dies kann zu numerischen In-
stabilitäten führen, da die physikalischen Leptonenmassen sehr klein sind. Wir analysieren
ausgiebig das Strahlungsmuster massiver Emitter und erstellen eine dedizierte Impulsab-
bildung, die sich nahtlos dem masselosen Fall nähert. Des Weiteren untersuchen wir zum
ersten Mal die führenden power-suppressed Beiträge, die bei kleinen transversalen Mo-
menten auftreten, und wir zeigen, dass sie durch Softe-Strahlung im Endzustand angetrieben
werden. Als Validierung berechnen wir Ergebnisse sowohl für die Inklusiv- als auch rel-
evante differentielle Verteilungen für gemischten QCD-QED-Korrekturen zur Produktion
eines on-shell Z-Bosons.
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1

Introduction

Our knowledge of fundamental elementary particles and their interactions is enclosed in
the Standard Model (SM) of Particle Physics, which has been established and confirmed in
a number of experiments during the last fifty years. Its great success is culminated with
the discovery of the last missing building block, the Higgs boson, at the Large Hadron Col-
liders (LHC) of CERN in 2012. Since then, the LHC has been carrying on its program of
data taking searching for any signs of new physics around the TeV scale. There is indeed
strong evidence that the SM it not the ultimate theory as it fails to explain long-standing
problems as, among the others, the matter-anti matter asymmetry in the Universe, the ori-
gin of neutrino masses, the astrophysical evidence of dark matter and dark energy. From
the theoretical point of view, the presence of an elementary scalar particle, the Higgs boson
itself, is unpleasant because, within the SM alone, it requires an extreme fine tuning of the
parameters to preserve the relative small value of the Higgs mass from large quadratic ra-
diative corrections. Furthermore, it cannot accommodate the gravitational interaction in a
unified framework.

The fact that, so far, experiments at the LHC have not yet reported any sign of New
Physics, has made even more pressing the necessity to consider complementary exploration
strategies to the direct searches at the energy frontier. The unprecedented integrated lumi-
nosity of 147 fb−1 delivered by the LHC during the Run 2, together with the continuous
progress of the experimental methods of reconstruction and processing of the data, allows
to test several properties of the SM with increasing precision. This represents just the be-
ginning of a rich experimental program set up to pursue the precise measurement of many
fundamental SM parameters with an incredible sub-percent/percent target accuracy. In par-
ticular, one of the main goals is to precisely probe the Higgs sector, as there are still parame-
ters, as the Higgs self coupling, which have not yet been measured. The LHC operation with
the current configuration is planned to last up to 2023 (Run 3), reaching a total integrated
luminosity of over 300 fb−1; its High Luminosity upgrade has been approved and will ex-
tend up to at least 2038 with the goal of reaching 3000 fb−1. The design of Future Linear and
Circular colliders is proceeding fast and their approval would extend the program for more
then 40 years from now.

The experimental effort, which has already brought the LHC in its “precision” phase,
has to be supported by the theory with very accurate predictions. Indeed, measurements
alone can tell a lot about Nature, but when compared with the theoretical predictions, their
discrimination power greatly increase. Any significant deviations from the SM predictions
can indeed be interpreted as an indirect sign of New Physics and potentially give hints on
how the SM breaks and what has to replace it. Obtaining very accurate predictions for
scattering processes within the SM is in general a highly non-trivial task. Indeed, the SM
Lagrangian, despite its “simplicity”, underlies a very complicated non-linear dynamics that
for realistic physical cases cannot be solved in a closed analytic form. As it has proven suc-
cessful in other fields of physics, the main approach to overcome this issue is provided by
the idea of successive approximations. Rephrasing it in a more rigorous language, the theo-
retical framework to deal with scattering processes in Quantum Field Theory is provided by
Perturbation Theory that can be formulated in the language of Feynman diagrams. There-
fore, to get a meaningful comparison between data and theory, the computation of radiative
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corrections up to a certain order it is usually required depending on the accuracy target.
The production of leptons pairs at high transverse momentum, namely the Drell-Yan

process, is one of the central process for the precision physics program at the LHC. The case
in which the leptons come from the decay of a Z boson (neutral current), represents, for its
clean final-state signature, a “standard candle” for luminosity measurement and detector
calibration. It is important for the measurement of parton distribution functions at the LHC
and for searches of New Physics in the high region of the lepton-pair mass spectrum. Fur-
thermore, it allows a precision determination of some relevant EW parameters as the EW
mixing angle and some properties of the Z boson.

The case in which leptons come from the decay of the W (charged current) is of primary
importance for the precise determination of the W boson mass. The comparison of the mea-
sured value of the W mass with the SM prediction, in a global fit of the EW parameters,
which includes also, among others, the top and the Higgs boson masses, is a stringent test
of the SM and might highlight possible tensions [1]. Recently, the ATLAS collaboration has
published a measurement of the MW = 80.370± 19 MeV [2] with an accuracy comparable to
the world average and both the ATLAS and the CMS experiments are planning to measure
MW with an accuracy of 15 MeV (or eventually 10 MeV).

This precision program requires that the SM predictions for the Drell-Yan process should
have a target accuracy of orderO(1%) or better, which implies the inclusion of radiative cor-
rections. In hadronic collisions, QCD radiative corrections are the dominant contribution,
and for the inclusive DY cross section they have been computed up to next-to-leading order
(NLO) [3] and next-to-next-to-leading order (NNLO) [4]. The NNLO QCD calculation has
been extended to fully differential level [5–8]. NLO EW corrections are also known [9–12]:
their impact is typically at the percent level, and of the same order of the NNLO contri-
butions. NNLO QED corrections have been computed in Ref. [13]. In some phase space
regions, and for specific kinematic distributions, QCD and EW corrections are enhanced to
the several percent level, thereby calling for the evaluation of perturbative corrections of
even higher order 1, and, in particular of mixed QCD-EW corrections. First analytic results
for mixed QCD-EW corrections have been presented in [15–17]. Mixed QCD-QED correc-
tions for on-shell Z bosons have been obtained in [13] for the inclusive cross section, and
in [18] for the differential distributions. Complete QCD-EW corrections to on-shell Z pro-
duction have been obtained in Ref. [19]. An exact fully differential computation of mixed
QCD-EW corrections, including the leptonic decay, would be highly valuable.

The main subject of this thesis is the construction of a consistent framework to treat in-
frared (soft and collinear) divergences occurring at intermediate steps in the computation of
fully differential mixed QCD-EW corrections to Drell-Yan and other relevant hadron collider
processes. The structure of the mixed corrections is equivalent to that of NNLO in a single
coupling, so that, in other words, what we are looking for is a generalization of a NNLO
QCD subtraction scheme to mixed QCD-EW corrections.

To introduce the problem, consider first the situation at NLO for a simple inclusive reac-
tion with no identified hadrons in the initial-state (a more exhaustive presentation is given
in Chapter 1). As it is well known, the numerical generation of tree-level and one-loop scat-
tering amplitudes can be considered nowadays a solved problem 2. At this order, to produce
the prediction for the physical cross section, the squared tree-level amplitude associated to
the real emission process and the one-loop virtual correction must be combined to achieve
the cancellation of soft and collinear singularities. The two contributions are defined in two
different phase spaces and cannot be naively added. The cancellation only occurs after the
integration over the corresponding phase spaces has been carried out introducing a suitable

1Very recently, the N3LO QCD corrections to the photon contribution to DY have been presented [14].
2The only caveat is given by the number of external legs as the computational load increases going to higher

multiplicities. Some important progresses have been achieved in this direction [20].
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infrared (IR) regulator, as the dimensional regulator ε. Moreover, while the singularities of
the virtual correction are explicitly exposed as poles in ε at the integrand level, they emerge
in the real term only after integrating out the radiation. The regularization procedure re-
quires that the integration must be performed analytically. This is a severe drawback as the
two integrals become soon intractable with analytical methods when kinematic cuts are ap-
plied. To overcome this issue, general multi-purpose local subtraction schemes at NLO have
been proposed, such as Catani-Seymour dipole subtraction [21] and FKS [22–24], which, to-
gether with the progress in the computation of one-loop amplitudes, has lead to the com-
plete automation of fully differential NLO radiative corrections, which goes under the name
of NLO revolution.

We are still far from reaching the same level of automation at NNLO. The main bottle-
neck is the computation of two-loop amplitudes. Indeed, at variance with the one-loop case,
for which the class of basic integrals (master integrals) needed to decompose every amplitude
has been established, at two-loop the functional space required to represent the amplitudes
is not yet fully determined. Moreover, even the reduction of the amplitude to a set of mas-
ter integrals, a problem that can be formulated [25] in the terms of the resolution of a huge
algebraic linear system, becomes cumbersome when there are more than four scales in the
problem.3.

Besides the problem of the computation of the amplitudes, also the treatment of the soft
and collinear divergences becomes more complicated moving from NLO to NNLO. Indeed,
here one has to consider processes with up to two unresolved emissions leading to three
different phase spaces to be consistently combined in order to achieve the cancellation of
the singularities. The most difficult part is the double real emission which exhibits a richer
structure of singularities corresponding to both the situation of a single parton becoming
unresolved and of two partons becoming unresolved. This can lead to the introduction of
counterterms that, designed to cancel a specific singularity, for example a double unresolved
limit, are themselves divergent in the singular unresolved region. Despite different methods
have been proposed so far, in large part inspired by the formulation of the Catani-Seymour
dipoles and FKS, none of them has reached a level of generality and maturity comparable
with what we have at NLO.

In this work, we rely on the qT subtraction formalism [28] as the starting point to build
the framework for the computation of the mixed corrections to the Drell-Yan process. The
qT subtraction formalism is a well-established framework to handle and cancel the IR diver-
gences appearing in QCD computations at NNLO (and beyond4) based on the formulation
of the transverse-momentum resummation in QCD (further details are given in Chapter 3).
In its original formulation it has been successfully applied to carry out a variety of NNLO
QCD computations for the production of colourless final states in hadronic collisions [7, 30–
43]. In the last few years, thanks to the formulation of transverse-momentum resummation
for heavy-quark production [44–48] the method has been extended and applied to the pro-
duction of top-quark pairs [49–51]. As we will argue in the following, the latter progress is
of great importance for our purposes.

Strictly speaking, the infrared and collinear divergences in the computation of EW cor-
rections are associated to the propagation (as a virtual particle in the loop or as a real final-
state ) of massless photons, so that the subtraction scheme only “sees” the QED subset. This
leads to a great simplification in the construction of the framework for the mixed corrections.
The key idea [52] is that the abelian subset of QCD is formally equivalent to QED, so that it is
possible to develop a procedure to derive the QED result starting from the more complicated

3We mention that there have been recent progresses applying finite fields approaches [26, 27]
4A first application of qT subtraction to the computation of the approximate next-to-next-to-next-to-leading

order (N3LO) QCD corrections to Higgs boson production through gluon fusion has been presented recently
[29]
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QCD one without performing any new computation. For our purposes, this translates in
the following strategy: we start from the structure of the pure NNLO QCD qT subtraction
formula and determine the abelian components; then, we effectively trade a gluon with a
photon by applying suitable replacement rules of colour with electric charge factors taking
into account any differences in symmetry factors and colour averages.

Starting from the qT subtraction formula for the computation of NNLO corrections to
the production of a color-singlet system, this strategy allows us to derive the analog for-
mula for the mixed corrections to the production of a generic color-singlet and color-neutral
object. We have explicitly implemented the new formula in the computation of the mixed
QCD-QED corrections to on-shell Z boson production which represents a highly non-trivial
consistency check for our construction. Indeed, thanks to the abelianisation procedure, all
the ingredients needed to bring the computation to completion are available, including the
two-loop virtual amplitude. In addition, we have the chance to compare our prediction for
the inclusive hadronic cross section with the analytical computation recently reported in the
literature [13]. We mention that very recently the same differential computation, based on
the abelianised version of the nested soft-collinear subtraction scheme [18], has been per-
formed by another group including, in the narrow-width approximation, the decay of the Z
boson to a pair of leptons.

The recent extension of the qT subtraction formalism to heavy-quark pair production al-
lows us to construct a consistent subtraction framework for the full set of mixed radiative
corrections to the production of a pair of leptons via the Drell-Yan mechanism, including the
treatment of the genuine mixed initial-final soft singularities and off-shell effects. We have
made the first fundamental step in this direction computing the NLO EW corrections to both
the neutral- and charge-current Drell-Yan processes as a proof-of-concept of the abelianisa-
tion procedure in the case in which initial and final-state radiation is taken into account
More importantly, we have studied the numerical stability of the qT subtraction formalism
for heavy charged fermions in the limit of very small masses. In fact, in the way in which
it is currently formulated, the qT subtraction method cannot handle final-state collinear di-
vergences. This requires that the mass of the leptons must be kept finite. On one hand,
this represents a stress test for the numerical implementation because mass values as small
as the muon mass (and possibly electron) are the target for the physical applications. On
the other, this allows us to retain the full-dependence on the lepton mass, which is the true
physical cut-off of collinear singularities. In precision QED/EW calculation the leading mass
effects are usually retained (see for example Refs. [53, 54]), and in the case the calculation is
matched with a parton-shower program to achieve the resummation at leading logarithmic
accuracy of multi soft-collinear photon emissions, the finite lepton mass naturally represents
the physical cut-off [55] scale where the shower is stopped.

In order to be confident on the numerical stability of the method, there is another funda-
mental aspect to take into account which in principle can have an interplay with the small
mass limit. The qT subtraction counterterm is constructed by exploiting the universal behav-
ior of the associated transverse-momentum (qT) distribution and, therefore, the subtraction
is intrinsically non local. In practice the computation is carried out by introducing a cut, rcut,
on the transverse momentum of the produced final state system normalised to its invariant
mass. When evaluated at finite rcut both the contributions of the real emission and the one of
the counterterm exhibit logarithmically divergent terms plus additional power suppressed
contributions that vanish as rcut → 0. In the final result, the logarithms cancel leaving a
residual power-suppressed dependence on rcut. The efficiency of the subtraction procedure
crucially depends on the size of such power suppressed contributions. Indeed, from one
side, the cut-off should be chosen sufficiently small to keep the power corrections negligi-
ble. On the hand, it cannot be taken arbitrarily small because the cancellation will occur
between logarithmic contributions which become numerically larger and larger, requiring
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to increase the target accuracy of the integrator in order to avoid the consequent loss of
precision.

In the inclusive production of a colourless final state the power suppressed contributions
are known to be quadratic in rcut (modulo logarithmic enhancements) [39]. This allows us to
obtain precise predictions by either evaluating the cross section at sufficiently small rcut, or
carrying out the rcut → 0 extrapolation [56] 5. The power suppressed contributions to the
next-to-leading order (NLO) total cross section have been explicitly evaluated in Refs. [58,
59]. In the case of heavy-quark production the rcut dependence is found to be linear [50,
51, 60]. We have investigated the rcut dependence in our NLO EW computation finding
a similar linear behavior. This confirms, as it could have been expected, that the effect is
directly related to soft emission off massive final-state particles regardless it is in QCD or
QED. In the simplified case of final-state emission in pure QED, we analytically compute
the form of the first power correction at NLO to the qT subtraction formula for the inclusive
cross-section showing that it is pure linear (no logarithmic enhancements), and relating it to
corrections to the soft approximation.

The thesis is structured as follows. In Chapter 1, we review in general terms the con-
struction of a local subtraction scheme at NLO and we outline the main features of the FKS
scheme. Then, we present a new phase mapping required to deal with the soft singularity
associated to a massive emitter in the FKS scheme. The original idea underlying its con-
struction was the study of the radiation emitted off heavy quarks and its application to
open heavy-flavour production at NLO+PS accuracy within the POWHEG framework [61].
Furthermore, it has been applied for the NLO EW corrections described in Chapter 4, to deal
with the small-lepton mass limit.

In Chapter 2 we briefly report on the extension of local subtraction schemes to NNLO,
highlighting the main issues which so far have prevented the construction of a general-
purpose subtraction framework. An alternative strategy to this approach is provided by the
so-called non-local subtraction/slicing schemes, which are first introduced in general terms
and then specialized to the case of the qT subtraction method both for the production of a
color-singlet and for heavy-quark production.

Having reviewed the qT subtraction formalism, in Chapter 3 we describe in details the
abelianisation procedure used to derive the subtraction formula to handle initial-state mixed
corrections. We show results for a complete implementation of the mixed QCD-QED correc-
tion to on shell Z boson production, focusing on the stability with respect the rcut regulator
and including the relevant differential distributions.

Chapter 4 is dedicated to the treatment of final-state radiation at NLO EW and the inves-
tigation of mass effects and power corrections. In the first part, we give the main formula
to deal with the computation of NLO EW corrections within the qT subtraction formalism
and present numerical results for both neutral- and charged-current Drell-Yan processes. In
particular, we focus on the rcut dependence and on the small lepton mass limit. In the sec-
ond part, we consider a simplified process in pure QED and study with analytical methods
the first power correction to the NLO qT subtraction formula associated both to initial- and
final-state radiation. In the last section, we propose a strategy to remove the final-state soft
linear power correction at fully differential level.

In Chapter 5 we summarise our work.
The work presented in this thesis appeared or is going to appear in the following publi-

cations
5The only exception is the production of direct photons (γγ [30, 31], Zγ [33], Wγ [35]....), for which a fully

inclusive cross section cannot be defined, and an isolation prescription is required. The interplay of the isolation
prescription with the subtraction procedure makes the rcut dependence stronger [56, 57].
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Chapter 1

Subtraction at NLO and massive FKS
mapping

The most fundamental observable in collider physics is the cross section for a given scat-
tering process. The theoretical framework to deal with the computation of cross sections in
Quantum Field Theory is Perturbation Theory. We are mainly interested in applications to
hadron-hadron collision as occurring at the LHC, where the strong interaction described by
the Quantum Cromodynamics (QCD) dominates the scene.

At hadronic colliders, the situation is complicated by the fact that the incoming initial
particles are hadrons, while perturbative QCD deals with quarks and gluons (collectively
denoted as partons) at high energies. A pertubative approach is still possible for processes
characterized by a large momentum transfer and sufficiently inclusive with respect to fur-
ther radiation, as it will be motivated in the following. Consider for example the inclusive
production of a given final state F, namely h1 + hb → F + X. According to the factorization
theorems, for large momentum transfers, the inclusive cross section can be written as the
convolution of collinear hadron parton density functions (pdfs) with the elementary scatter-
ing cross section for the process in the given final state F plus additional particles radiation:

σ(h1h2 → F + X) = ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx1 fa/h1(x1, µ2

F) fb/h2(x2, µ2
F)σ̂(ab→ F + X), (1.1)

where fa/h1( fb/h2) is the customary parton density function of the parton a(b) inside the
hadron h1(h2), µF is the factorization scale and σ̂(ab→ F + X) is the short distance partonic
cross section.

The elementary cross section is calculable as a power series in the strong coupling con-
stant. The lowest order is denoted as Leading Order (LO) or Born cross section. In the
language of the Feynman diagrams, it usually corresponds to tree-level diagrams. Higher
order terms are called radiative corrections. It is well known that scattering amplitudes re-
quired for the calculation of radiative corrections are plagued by several and various kinds
of divergences.

The ultra-violet (UV) divergences are associated to the high energy behavior of the the-
ory. They are well-understood and, for renormalizable Quantum Field Theory, they can be
systematically reabsorbed by a redefinition of a finite number of parameters to all orders in
perturbation theory (renormalization procedure).

There is another type of divergences associated to the low-energy or infrared (IR) limit
of a gauge theory with massless particles. Focusing on the QCD case, these divergences are
associated to the configurations where a real or a virtual gluon has vanishing energy (soft)
or becomes collinear to another parton.
The cancellation of the infrared and collinear singularities for inclusive observables is the
fundamental result of the Kinoshita-Lee-Nauenberger (KLN) [62, 63] theorem. This means
that together with virtual loop corrections, one has to add processes with the emission of
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real partons (up to 1 emission for a NLO computation, up two 2 emissions for a NNLO
and son on). In this chapter we present the general local subtraction formalism needed to
compute any infrared observables ensuring the cancellation of the infrared divergences in a
fully differential manner, suitable for the numerical integration of exclusive cross sections.

Our interest will be mainly in the FKS subtraction scheme, for which we have devel-
oped a new phase space mapping to deal with soft radiation emitted off a massive parton.
The original motivation was the study of the radiation emitted by a massive quark, as the
bottom, at high transverse-momentum much larger than the mass of the quark. In this
limit, the approximation of massless quark allows to effectively resum the large logarithmic
enhancements of the transverse-momentum over the quark mass in the framework of the
fragmentation function [64, 65]1.

Our idea has been that of introducing a new FKS singular region in the POWHEG frame-
work associated to a quasi-collinear emission from a heavy quark line and to match it to a
parton shower in order to improve the description of the heavy quark radiation including
a subleading (NLL) logarithm contribution. Indeed, the comparison between the available
generators and the data on bottom production shows that there are still discrepancies to be
understood.

The mapping that we have developed is not limited to the specific topic discussed above.
It has a general applicability in case one is interested in a massive emitter. It has revealed
itself very useful in the application to the NLO EW corrections discussed in the Chapter 4.

This chapter is structured into two parts. In the first part, we present the local subtraction
formalism for NLO computations and we detail the main characteristic of the FKS scheme.
Then, we discuss the new phase space mapping for the massive emitter. In the second part,
we present the application to the description of radiation off heavy quarks in the context of
POWHEG generators describing heavy quark production.

1.1 Subtraction method

In this section, we review the main features of a QCD NLO differential calculation in a
generic subtraction formalism. First we focus on processes with no hadrons in the initial
state, such as lepton collisions or non-hadron particles decay. Identified hadrons in the
initial state introduce some specific issues which make the picture more complicated. We
will discuss them after presenting the basic aspects of the subtraction formalism.To be def-
inite, consider there are n partons in the final state, whose on-shell momenta {ki}n

i=1 are
constrained by the energy-momentum conservation

q = k1 + · · ·+ kn, (1.2)

being q the total initial momentum. We denote the collection of such momenta with Φn and
we use the short notation

dΦn = (2π)4δ(4)

(
q−

n

∑
i=1

ki

)
n

∏
i=1

d3ki

(2π)32k0
i

, (1.3)

for the n-body phase space. At LO, the master formula for the total cross section is given by
the integral over phase space of the Born or tree-level squared matrix element denoted by
B(Φn)

σLO =
∫

dΦnB(Φn). (1.4)

1The necessity to resum collinear radiation off heavy quark to all-order has been pointed out in a recent
work [66].
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At NLO, together with the n-body process (Born configuration), we have to consider the
process of real emission with an extra parton in the final state (real configuration); let Φn+1
denote the corresponding set of momenta. At this order, the total cross section gets contri-
bution from

• the tree-level squared amplitudes for the process with n+ 1 partons (real contribution);

• the interference between the virtual one-loop amplitudes and the LO one (virtual con-
tribution).

We assume that the virtual contribution has been renormalized in order to get an ultraviolet
finite, but still infrared divergent, quantity that we denote by V(Φn). Then the total cross
section up to NLO is given by the formula

σNLO =
∫

dΦn[B(Φn) + V(Φn)] +
∫

dΦn+1R(Φn+1). (1.5)

The above formula should be effectively read as an average value according to the non
normalized distribution function given by the differential cross section: each point in phase
space can be seen as a weighted event, having care to distinguish between Born event and
real event, and the integral is given by the sum of such weights over all the possible events.
In this sense it has to be read as our basic formula. More in general, one is interested in
computing an observable of phenomenological relevance O, function of the final state mo-
menta. The observable O can be effectively thought as a bin (or a collection of bins) of an
histogram for the distribution of some kinematic variables (invariant mass, transverse mo-
mentum, rapidity, etc.), with functional form given by the product of two theta functions.
Then, its expectation value is given by the weighted average in phase space

〈O〉 =
∫

dΦnOn(Φn)[B(Φn) + V(Φn)] +
∫

dΦn+1On+1(Φn+1)R(Φn+1), (1.6)

where On and On+1 are the specific realizations of the observable O in the Born and in real
phase space respectively.

The above integrals are usually too difficult to be performed analytically because of the
involved form of the observableO. On the other hand, their evaluation is more naturally ac-
complished by means of a numerical approach such as the Monte Carlo integration. Within
this framework, one can accommodate the computation of the average value in an easy fash-
ion: the weighted events that are generated at random and summed in order to obtain the
integral can be stored one by one into the bins of the desired histogram.

Life is not so simple: as they stand, the above formulae are not suitable for numerical
computations because of the presence of infrared divergences. We recall the well-known
result given by the KLN theorem: the total cross section is infrared finite since the full inte-
grated divergent parts arising from virtual and real contribution exactly cancel each others.
These divergences arise from soft, collinear and soft-collinear singularities that manifest
themselves as single and double poles in the parameter ε = 2− D/2, having adopted the
customary conventional dimensional regularization [67, 68]. This statement can be gener-
alized to other observables, which define the class of infrared safe observables. We remark
that the virtual and real term live in different phase spaces so that the above mentioned can-
cellation can occur only after their complete integration, but in this way we are completely
inclusive.

On the other hand, the essence of the KLN theorem is that in the infrared divergent
regions a real configuration is not distinguishable from a Born one so that we can think to
“remove” such events from the real contribution and to place them in the Born one. This
can be realized introducing, in correspondence of the singular regions, events with negative
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weights, called real counterterms, in such a way that they balance the divergent contribution
of the real events. This constitutes the core of the so called subtraction formalism [69] that
can be stated in a more systematic way as a rigorous integration method. In the following,
we adopt the notation of ref. [24]. For each particular singular region labeled with the index
α, we introduce a counterterm function C(α) and a mapping M(α)

M(α)Φn+1 = Φ̃(α)
n+1 (1.7)

that maps a real configuration into a singular one in the α region. It is required that the
mappings M(α) is smooth near the singular limit and that there it must reduce to the identity
in order to get the disordered cancellation effect. The counterterms C(α) have to be chosen
in such a way that, for any infrared-safe observable O, the function

R(Φn+1)On+1(Φn+1)−∑
α

C(α)(Φn+1)On+1(M(α)Φn+1) (1.8)

has at most integrable singularities in the real phase space. Before going on, some observa-
tions about the above formula are in order. The property of infrared-safety of the observable
On+1 guarantees that it remains finite in any singular limits and that, furthermore, it reduces
with continuity to its form in the Born-like kinematics On. This ensures that there is no pro-
liferation of new divergent structures. The singularities arise only from the real emission
term R. This implies that the counterterms required to cancel the divergent behavior of the
real differential cross section can be defined in a universal way, independently of the specific
observable. As it will be shown in the following, this is accomplished by means of the map-
pings M(α) and for this reason they appear in the argument of the On+1 in the subtracted
contributions in Eq. (1.23).
In the cases under consideration, two kinds of singular configurations are possible:

• the soft configuration in which there is a final-state parton with null four-momentum;

• the collinear configuration in which there are two massless partons with parallel three-
momenta.

As stated before, a singular configuration is indistinguishable from a Born one so that it is

possible to associate to each Φ̃(α)
n+1 a corresponding underlying Born configuration Φ(α)

n accord-
ing to the following prescriptions:

• for the soft singular configuration, the null-momentum parton is removed;

• for the collinear singular configuration, the two momenta of the collinear partons are
replaced by a single momentum given by their sum.

Adding and subtracting the contribution of the counterterms, Eq. (1.6) can be now rewritten
in the following form

〈O〉 =
∫

dΦnOn(Φn)[B(Φn) + V(Φn)] + ∑
α

∫
dΦn+1[C(Φn+1)On(Φn)]α

+
∫

dΦn+1

{
R(Φn+1)On+1(Φn+1)−∑

α

[
C(Φn+1)On(Φn)

]
α

}
,

(1.9)

In the above formula, we have made use of the replacement

On+1(Φ̃
(α)
n+1)→ On(Φ

(α)
n ) (1.10)
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which crucially relies on the fact thatO is infrared-safe. In the following, we adopt the short
notation

[· · · ]α (1.11)

with the meaning that all the variables which are affected by the superscript of the singular
region appearing inside the square brackets have to be evaluated in the α region. The last
term in Eq. (1.9) is now integrable in the whole real phase space in D = 4 dimension, as a
result of the “subtraction”, while the counterterm contribution added back

∑
α

∫
dΦn+1[C(Φn+1)On(Φn)]α (1.12)

and the virtual term in the Born phase space are still separately divergent. The next step
consists in combining them together to achieve the complete cancellation of infrared diver-
gences, as stated by the KLN theorem. To this aim, we observe that we cannot simply add
them as they stand, since the counterterms and the virtual term live in different space. We
will see in the following how to deal with this issue, proving in this way the success of the
subtraction procedure. As a preliminary step, we notice that a generic singular configura-
tion can be parameterized by the variables of its underlying Born configuration plus the
variables associated with the state of an extra parton, referred to, with obvious meaning, as
the radiation parton,

Φ(α)
n+1 ⇐⇒

{
Φ(α)

n , Φ(α)
rad

}
, (1.13)

in such a way that the phase space element can be written in the factorized form

dΦn+1 = dΦ(α)
n dΦ(α)

rad. (1.14)

In the above formula, we have absorbed in the definition of dΦ(α)
rad the Jacobian associated

to the new parametrization. We then require that the counterterms C(α) and the relative
mappings M(α) are chosen in such a way that the integrand in Eq. (1.12), which contains the
real divergent configurations, can be analytically integrated over the whole radiation phase
space dΦrad in D = 4− 2ε dimension[∫

dΦradC(Φn+1) = C(Φ)

]
α

. (1.15)

The resulting “integrated counterterms” C(α)
(Φ) exhibit single and double poles in ε that

takes into account the singular contributions of the real emission process. Since they live in
the Born space, we can now coherently add them to the virtual part: the quantity

V(Φn) = V(Φn) +

[
∑
α

C(α)
(Φn)

]
Φn=Φn

(1.16)

is free from divergences as the ε poles analytically cancel between the two contributions in
the r.h.s. of Eq. (1.16).

We observe that the successful completion of this program is based upon the introduc-
tion of the mappings M(α), the concept of the underlying Born configurations and the factor-
ization of the real phase space. We are now in the position to write down the master formula
for the NLO calculation in the subtraction formalism

〈O〉 =
∫

dΦnOn(Φn)[B(Φn) + V(Φn)] +
∫

dΦn+1R(Φn+1), (1.17)
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having defined

R(Φn+1) ≡ R(Φn+1)On+1(Φn+1)−∑
α

[
C(Φn+1)On(Φn)

]
α

. (1.18)

All the integrals are now finite and can be numerically integrated in D = 4 dimensions.

1.1.1 Identified hadrons in the initial-state

We discuss now the generalization of the subtraction method to the case of hadrons in the
initial state. To be definite, consider a 2 → n reaction in which the incoming particle 1 is a
hadron h carrying momentum P1 and the incoming particle 2 is a lepton carrying momen-
tum p2. The case with two hadrons in the initial state follows straightforwardly. According
to the parton model [70], the hadronic cross section is given by the incoherent sum of all the
possible partonic contributions convoluted with the customary parton density function fa/h
of the hadron

σhl = ∑
a

fa/h ⊗ σ̂al ≡∑
a

∫
dx fa/h(x)σ̂al . (1.19)

In the above formula, the index a runs over all the possible partons in h and σ̂al denotes the
partonic cross section initiated by the parton a. The variable x represents the fraction of the
incoming momentum P1 of h carried by the parton a. Then, the conservation of energy in
the partonic process reads

xP1 + p2 ≡ p1 + p2 =
n

∑
i=1

ki (1.20)

where, as before, we label with the collection {ki}n
i=1 the on-shell momenta in the final state.

For ease of notation, in the following, we suppress the partonic sum and the dependence on
the index a. The parton density function (pdf), will be denoted simply by f . The kinematics
is fixed by assigning together with {ki}n

i=1 the fraction x, so that now Φn = {x; k1, . . . , kn}
and we include the extra integration in the phase space element dΦn

dΦn = dx× (2π)4δ(4)

(
q−

n

∑
i=1

ki

)
n

∏
i=1

d3ki

(2π)32k0
i

. (1.21)

The discussion of the subtraction formalism follows closely what has been done in the pre-
vious section. Let us start from Eq. (1.6) for the expectation value of a generic infrared-safe
observable O at NLO, that now reads

〈O〉 =
∫

dΦn f (Φn)On(Φn)[B(Φn) + V(Φn)] +
∫

dΦn+1 f (Φn+1)On+1(Φn+1)R(Φn+1).

(1.22)
The presence of a parton in the initial state leads to an additional singular configuration
when

• a final-state parton becomes collinear to the incoming parton direction.

We then introduce a set of suitable mappings Mα, which maps a real configuration into a
singular one in the region α according to Eq.(1.7), and suitable counterterm functions Cα

such that

R(Φn+1) f (Φn+1)On+1(Φn+1)−∑
α

f (M(α)Φn+1)C(α)(Φn+1)On+1(M(α)Φn+1) (1.23)

is integrable all over the real phase space. Collinear initial-state singular configurations
differ from soft and collinear final-state ones in the fact that they modified the momentum
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fraction x, carried by the incoming parton before entering the hard scattering process. This
affects the way the underlying Born configuration is defined, i.e. the mapping

Φ̃n+1 = {x̃; k̃1, . . . , k̃n+1} → Φn = {x; k1, . . . , kn+1} . (1.24)

In the case of soft and collinear final-state configurations, we have that

x̃ = x, (1.25)

while for collinear initial-state configurations

x < x̃. (1.26)

Then, in the latter case, the underlying Born configuration is obtained

• by deleting the radiated collinear parton, and by replacing the momentum fraction of
the initial-state radiating parton with its momentum fraction after radiation, Eq. (1.26).

After replacing whenever possible the singular regions with the corresponding underlying
Born ones, the integral of the counterterms now reads

∑
α

∫
dΦn+1 f (Φ̃n+1)[C(Φn+1)On(Φn)]α (1.27)

We stress that we cannot make the replacement in the argument of f because of the presence
of the collinear initial-state singular regions. We distinguish to cases: the soft plus final-
state singular regions and the collinear initial-state one. In the former case, the condition in
Eq. (1.25) allow us to make the identification

f (Φ̃n+1) = f (Φn) . (1.28)

We then factor out the pdf f , so that we can introduce the integrated counterterms as in
Eq. (1.15) and add it to the virtual contribution. In the collinear initial-state case, we cannot
factor out the luminosity so easily because of Eq. (1.26). We consider the restriction of the
integrals in Eq. (1.27) only to the case of collinear initial-state singular regions (IS) and we
write[∫

dΦn+1 f (Φ̃n+1)C(Φn+1)On(Φn)

]
α∈IS

=

[∫
dΦnOn(Φn)

∫
dΦrad f (x̃)C(Φn+1)

]
α∈IS

=

[∫
dΦnOn(Φn)

dz
z

f
(

x
z

) ∫
dΦradC(Φn+1))zδ

(
z− x

x̃

)]
α∈IS

≡
[∫

dΦn
dz
z

f
(

x
z

)
On(Φn)C(Φ, z)

]
α∈IS

,

(1.29)

where in the last step we have introduced the z dependent integrated counterterms[
C(Φ, z) =

∫
dΦradC(Φn+1))zδ

(
z− x

x̃

)]
α∈IS

. (1.30)

In order to disentangle the pdf from the integration of the counterterms over the radiation
phase space, we have introduced the extra integration in the momentum fraction z. The
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resulting integral has a different structure and cannot be combined to the virtual contribu-
tion, so that it seems that in this case the cancellation of the IR divergences does not occur.
This result is not unexpected and it signals the failure of the naive parton model [70]. We
recall that the cancellation of the IR divergences requires a sufficient level of inclusiveness
in the particle configuration. In the case of collinear initial-state radiation, where the parton
momentum xP1 is further reduced by some factor z, the hard scattering process is effectively
initiated by the momentum zxP1 with a weight depending on z non-trivially. Since in this
case, we are not fully inclusive on the z variable, the IR singularities from collinear initial-
state radiation remain after summing virtual and real corrections. The cure to this issue
is provided by factorization which allows to absorb the collinear initial-state singularities in
re-definition of the pdf beyond the leading order. This procedure effectively separates the
long-distance physics effects caused by the collinear initial-state emissions, considered part
of the definition of the hadron, from the short distance physics going on in the hard scat-
tering process. Within the subtraction formalism, this can be formally taken into account
by

• interpreting the pdf f as “redifined pdf”

• introducing an additional collinear counterterm which subtracts the collinear initial-
state divergence: ∫

dΦn
dz
z
O(Φn)G0(Φn, z) . (1.31)

Then, as a result of the factorization, the combination of this new contribution with the
collinear initial-state integrated counterterms has the form

G0(Φn, z) + ∑
α∈IS

Cα
(Φn, z) = G(Φn, z) + δ(1− z)Gdiv(Φn) (1.32)

where the function G(Φn, z) is finite in D = 4 dimensions while Gdiv(Φn) contains a pole
in ε of soft origin. The latter term is combined with the virtual contribution and the soft
+ collinear final-state integrated counterterms (that we denote as S+FS). In the resulting
quantity

V(Φn) +

[
∑

α∈S+FS
C(α)

(Φn) + Gdiv(Φn)

]
Φn=Φn

≡ V(Φn) (1.33)

all the poles in ε analytically cancel. Finally, we get the master formula of the subtraction
method with an identified hadron in the initial state

〈O〉 =
∫

dΦnOn(Φn)[B(Φn) + V(Φn)] +
∫

dΦn
dz
z
O(Φn)G(Φn, z)

+
∫

dΦn+1

{
O(Φn+1)R(Φn+1)−∑

α

[O(Φn)C(Φn+1)]α

}
,

(1.34)

which is now suited to be integrated numerically, since all the integrals that appear in it are
finite and can be evaluated in 4 dimensions.

1.2 FKS Subtraction method

The basic assumption of the Frixione-Kunszt-Signer (FKS) subtraction formalism [22–24]
subtraction method is that in each singular region there is at most one collinear and one
soft singularity associated with one parton, called the FKS parton. This is accomplished by
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means of a set of non-negative projection functions Sij

∑
ij
Sij = 1. (1.35)

They are associated to regions in which a final-state parton, labeled with i, becomes collinear
and/or soft to an other final-state parton, labeled with j. They are defined by the following
list of properties ([24])

lim
k0

m→0
∑

j
Sij = δim, (1.36)

lim
~km‖~kl

(Sij + Sji) = δimδjl + δilδjm, (1.37)

(1.38)

With the help of the unitary relation Eq. (1.35), the real contributions R can be decom-
posed as

R = ∑
ij
Rij, Rij = SijR. (1.39)

The divergent contribution of the Rij comes only from the region in which the parton i
becomes collinear or soft to the j parton (FSR radiation). We observe that in this way one
have to deal with just a well defined divergent structure resulting in a great simplification
of the corresponding construction of the counterterms to be subtracted as it will be shown
in the next section.

For the sake of completeness, we report also an actual implementation of the projection
functions, given in [24]. We start defining a set of functions dij each one vanishes only in
correspondence of a particular singular region. In the c.m. frame they are defined as:

dij =
(
EjEi

)a
(1− cos ϑi j)b, (1.40)

where ϑij is the angle between ~ki and ~k j, and a and b are positive arbitrary real numbers.
Then, introducing the quantity

D = ∑
ij

1
dij

, (1.41)

the S-functions are given by

Sij =
1
Ddij

h
(

Ei

Ei + Ej

)
, (1.42)

where the function h(z) satisfies the properties

lim
z→0

h(z) = 1, lim
z→1

h(z) = 0, h(z) + h(1− z) = 1. (1.43)

A possible choice is

h(z) =
(1− z)c

zc + (1− z)c , (1.44)

where c is a positive arbitrary real number.

1.2.1 The real counterterms

The subtraction formalism is implemented in a natural way if one adopt the plus distribu-
tion prescription that is at the basis of the FKS subtraction method. In what follows, we will
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show in details how this works.
Let us start from the phase space element of the emitted parton in the real (n + 1)-

kinematics, that is denoted as the FKS parton; according to the dimensional regularization
approach we have adopted, we write it down in D dimensions as:

dD−1k
2k0(2π)D−1 =

dk1dk2dD−3k⊥
2k0(2π)D−1 =

dk1dk2kd−4
⊥ dk⊥ΩD−3

2k0(2π)D−1 , (1.45)

where in the last step we have parametrized the (D− 3)-dimensional space in spherical co-
ordinates, with k⊥ > 0 as radius and ΩD−3 represents the result of the angular integral in the
D − 3-space. The reason of the above parametrization is easily understood if one consider
the physical limiting case D = 4, where the tri-impulse of the FKS parton is given in terms
of its components in the k1k2-plane and the magnitude of the component perpendicular to
this plane, since its versus does not matter for symmetry reason and we have summed over
the two possibilities. We recall the result for the total solid angle in a a-dimensional space:

Ωa =
2πa/2

Γ
( a

2

) =
2aπa/2
√

πΓ(a)
Γ
(

1 + a
2

)
, (1.46)

where in the last step the duplication property of the gamma function has been used

Γ(z)Γ
(

z +
1
2

)
= 21−2z√πΓ(2z). (1.47)

For D = 4− 2ε dimension we get

dD−1k = dk1dk2k−2ε
⊥

2(4π)−εΓ(1− ε)

Γ(1− 2ε)
(1.48)

Since we are interested in the singular limits, i.e. when the FKS parton becomes soft or
collinear to the emitter (if the latter is massless too), we change coordinates to spherical
coordinates, assuming that the polar angle ϑ is defined with respect to the direction of the
emitter parton

k1 = k0 cos ϑ, k2 = k0 sin ϑ cos φ, k⊥ = k0 sin ϑ sin φ, (1.49)

Note that 0 < φ < π, according to the constraint k⊥ > 0; there is still a freedom in the choice
of its reference direction, being it not fixed by any singularities. In this parametrization,
k0 → 0 and y ≡ cos ϑ → 1 represent respectively the soft and collinear limits. Taking into
account the Jacobian of the transformation∣∣∣∣∂(k1, k2, k⊥)

∂(k0, y, φ)

∣∣∣∣ = k2
0 (1.50)

the radiation phase space element becomes

dD−1k
2k0(2π)D−1 =

πεΓ(1− ε)

Γ(1− 2ε)

1
(2π)3 k1−2ε

0 (sin ϑ sin φ)−2εdk0dydφ (1.51)

We adopt the common practice choice to use the dimensionless energy fraction defined by
the relation

k0 = ξ

√
s

2
, (1.52)
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and we factor out the overall normalization factor N

N = (4π)εrΓ, rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
=

1
Γ(1− ε)

+ O(ε3), (1.53)

as it is usually done in the computation of the virtual one-loop contributions. Since

Γ2(1− ε)

Γ(1− 2ε)
= 1− π2

6
ε2 + O(ε3), (1.54)

we get

dD−1k
2k0(2π)D−1 = N

[
1− π2

6
ε2 + O(ε3)

]
1

(2π)3 s−ε s
4

ξ1−2ε(sin ϑ sin φ)−2εdξdydφ. (1.55)

According to the FKS construction, each of the R(α) contains just one singular soft and/or
collinear region. We focus on one of these contributions, referred simply as R, omitting the
α index. Since the structure of the soft and collinear singularities are universal, the quantity
ξ2(1 − y)R is free from divergences and regular for ξ → 0 and y → 1. We rewrite the
contribution in the polar angle to the integral as∫ 1

−1
dy(sin ϑ)−2ε =

∫ 1

−1
dy(1− y2)−ε =

∫ 1

−1
dy(1− y)−ε(1 + y)−ε (1.56)

so that the singular part of the integration is proportional to∫ 1

−1
dy(1− y)−1−ε

∫ 1

0
dξξ−1−2ε[ξ2(1− y)R]. (1.57)

To deal with these singularities, we consider (1 − y)−1−ε and ξ−1−2ε as distributions and
expand them around ε = 0. At this scope, we use the usual trick of subtracting the value
of the function to which the distribution is applied at the singular point in order to get an
integrable quantity, which means to subtract a delta function; for example we have:∫ 1

0
dξ f (ξ)ξ−1−2ε =

∫ 1

0
dξ[ f (ξ)− f (0)Θ(ξc − ξ)]ξ−1−2ε + f (0)

∫ ξc

0
dξξ−1−2ε

=
∫ 1

0
dξ[ f (ξ)− f (0)Θ(ξc − ξ)]

(
1
ξ
− 2ε

log ξ

ξ
+ O(ε2)

)
− ξ−2ε

c
2ε

∫ 1

0
f (ξ)δ(ξ)

(1.58)

from which we get the identity

ξ−1−2ε = − ξ−2ε
c
2ε

δ(ξ) +

(
1
ξ

)
ξc

− 2ε

(
log ξ

ξ

)
ξc

+ O(ε2). (1.59)
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The Heaviside Θ-function limits the range of integration for the subtracted term to the in-
terval [0, ξc] resulting in a generalized plus-prescription distribution∫ 1

0
dξ f (ξ)

(
1
ξ

)
ξc

=
∫ 1

0
dξ

f (ξ)− f (0)Θ(ξc − ξ)

ξ
, (1.60)

∫ 1

0
dξ f (ξ)

(
log ξ

ξ

)
ξc

=
∫ 1

0
dξ[ f (ξ)− f (0)Θ(ξc − ξ)]

log(ξ)
ξ

. (1.61)

Analogously, we obtain the other expansion

(1− y)−1−ε = −2−ε

ε
δ(1− y) +

(
1

1− y

)
δ

+ O(ε), (1.62)

where ∫ 1

−1
dy f (y)

(
1

1− y

)
δ

=
∫ 1

−1
dy

f (y)− f (1)Θ(y− 1 + δ)

1− y
. (1.63)

In this general formulation, there is a freedom in the choice of the parameters, 0 < ξc < 1
and 0 < δ < 2, that can be exploit to increase the numerical efficiency.

Inserting the above expansions in Eq. (1.57), and denoting the regular term [ξ2(1− y)R]
as f (ξ, y), we get the decomposition∫ 1

−1
dy(1− y)−1−ε

∫ 1

0
dξξ−1−2ε f (ξ, y) = − ξ−2ε

c
2ε

∫ 1

−1
dy(1− y)−1−ε f (0, y)

−
∫ 1

0
dξ

[
2−ε

ε

(
1
ξ

)
ξc

− 2
(

log ξ

ξ

)
ξc

]
f (ξ, 1)

+
∫ 1

−1
dy
∫ 1

0
dξ

(
1

1− y

)
δ

(
1
ξ

)
ξc

f (ξ, y) + O(ε).

(1.64)

The first two terms can be integrated analytically over the full radiation variables giving
raise to contributions with the same structure of the virtual term to which they will be com-
bined. In this way, the singular parts cancels each other so that we get a finite contribution,
that is we have found a possible choice of the real counterterms. The first term, proportional
to δ(ξ), corresponds to the soft limit; we remark that, in order to calculate ξ2(1− y)R in
this limit, it is not necessary to evaluate the full real matrix element squared in D-dimension
since it can be obtained applying the eikonal approximation for the soft gluon emission.
Analogously, the second term corresponds to the collinear limit; also in this case, it is possi-
ble to extract the function f (ξ, 1) without calculate the full real contribution in D-dimension.
In the last term, the two distributions act over the regular function f (ξ, y) so that it produces
a finite result and we can interpret it as the contribution to R (see Eq. (1.18)):∫ 1

−1
dy
∫ 1

0
dξ

(
1

1− y

)
δ

(
1
ξ

)
ξc

[ξ2(1− y)R] =
∫ 1

−1
dy
∫ 1

0
dξξR (1.65)

with
R =

1
ξ

[
ξ2(1− y)R

]
(1.66)

and we can restrict ourselves to evaluate the integrand and to perform the integration in
4-dimensions. We emphasize that the integration limits can be in general different from that
shown in Eq. (1.65), as they depend upon the particular form of the parametrization of the
real phase space given by the radiation variables. We will show in Sec. 1.3 that the radiation
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phase space has the form
−1 ≤ y ≤ 1, 0 ≤ ξ ≤ X(y) (1.67)

with an y-dependent upper bound for the ξ variable.

1.3 The FKS mapping for the massive emitter case

Let us assume for definiteness to deal with a scattering process involving n partons in the fi-
nal state at lowest order in perturbation theory.We adopt a notation similar to that of Sec.1.1:
the generic point in the Born phase space (Born configuration) will be denoted with barred
momenta

Φn = {k1, . . . , kn}. (1.68)

with the corresponding phase space volume element given by

dΦn =
n

∏
i=1

d3~ki

(2π)32k
0
i

(2π)4δ(4)

(
q−

n

∑
i=1

ki

)
, (1.69)

where q is the total incoming 4-momentum.2 At Next-to-Leading order (NLO), one must
also include processes of emission of one more real massless extra parton, resulting in a
n + 1-body kinematics which we will denote as

Φn = {k1, . . . , kn+1}. (1.70)

The singular regions of the real phase space are separated by means of suitable projection
operators; in each of them, the radiated parton phase space is parametrized in terms of the
FKS variables [22] (the notations ~p and p for a generic momentum p denote the tri-impulse
and its modulus respectively)

ξ =
2kn+1

q0 , y =
~kn ·~kn+1

knkn+1
, (1.71)

as shown in Fig. 1.1, where we have assumed that the emitter and the FKS partons are
respectively the n-th and the n + 1-th parton. The rescaled energy ξ is related to the soft
limit (ξ → 0), and the variable y to the collinear one (y→ ±1). The kinematics is completed
by specifying the azimuthal angle whose definition retains some degrees of arbitrariness.
We adopt the definition in the POWHEG framework, which departs from the standard FKS
one. It is taken as the polar angle of the splitting around the axis parallel to the momentum
of the recoil system, in the rest frame where q = (q0,~0).

In what follows, we will construct a one-to-one map from a real configuration with radi-
ation variables (ξ, y, φ) into a Born one. This leads to a factorisation of the real phase space
in term of Born and radiation variables.

The mapping can be reduced to the case of the map from a 3-body phase space into a
2-body one. Inserting into the (n + 1)-body phase space volume element the identities

1 =
∫

d4krecδ(4)

(
krec −

n−1

∑
i=1

ki

)
(1.72)

2The system we are considering can be either the full final state, or the system of decay products of a reso-
nance, according to the origin of the heavy quark.
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FIGURE 1.1: Kinematics for a real configuration: kn is the massive emitter,
kn+1 is the radiated parton. y denotes the cosine of the angle between the two

tri-vectors.

and
1 =

∫
dM2

recδ(M2
rec − k2

rec), (1.73)

the phase space is decomposed into a chain of two consecutive processes. With reference to
Fig. 1.1, they are: the decay of a particle with momentum q into the 3-body system formed by
the emitter kn, the FKS-parton kn+1 and the “recoil” system, with momentum and invariant
mass

krec =
n−1

∑
i=1

ki = q− kn − kn+1, M2
rec = k2

rec, (1.74)

followed by the decay of the latter into the other n− 1 particles. In formula, we have

dΦn+1 = dΦ3dΦrec, (1.75)

where

dΦ3 =
dM2

rec
2π

d3~kn

2k0
n(2π)3

d3~kn+1

2k0
n+1(2π)3

d3~krec

2k0
rec(2π)3 × (2π)4δ(4)(q− kn − kn+1 − krec), (1.76)

dΦrec =
n−1

∏
i=1

d3~ki

2k0
i (2π)3

(2π)4δ(4)

(
krec −

n−1

∑
i=1

ki

)
. (1.77)

We now focus on the 3-body process; under the action of the mapping, the kn and kn+1
partons will be replaced by a single parton with mass m and momentum kn. We define

k ≡ kn + kn+1, (1.78)

so that
krec = q− k =⇒ k0

rec = q0 − k0,~krec = −~k. (1.79)

We fix the transformation by demanding~kn ‖ ~k. Care must be taken to ensure the conser-
vation of energy-momentum also for the resulting Born configuration. This is accomplished
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by performing a boost Λ in the direction~k and defining

kn = q−Λkrec, (1.80)

We determine the velocity parameter β of the boost transformation from the mass-shell con-
dition

k
2
n = (q−Λkrec)

2 = m2. (1.81)

We get

β =
−4kreck0

recq2

(q2 −m2 + M2
rec)

2 + 4k2
recq2

+
(q2 −m2 + M2

rec)
√
(q2 −m2 + M2

rec)
2 − 4M2

recq2

(q2 −m2 + M2
rec)

2 + 4k2
recq2

. (1.82)

We define the other barred variables as

ki = Λki, i = 1, . . . , n− 1. (1.83)

Their mass relations are preserved by the boost transformation and, furthermore, we have

n

∑
i=1

ki =
n−1

∑
i=1

ki + kn = q +
n−1

∑
i=1

Λki −Λkrec = q + Λ
( n−1

∑
i

ki − krec

)
= q, (1.84)

which is the energy-momentum conservation for the Born configuration.

1.3.1 Inverse map

We now detail the construction of the inverse map, which is what is actually needed in the
applications. Suppose that a Born event has been generated, i.e. the barred variables ki
(i = 1, · · · , n) are given. Then, M2

rec is obtained inverting Eq. (1.80):

M2
rec = (Λkrec)

2 = (q− kn)
2 = q2 + m2 − 2q0k

0
n. (1.85)

We want to attach to it a radiation described by the radiation variables ξ, y and φ. For future
convenience we introduce the largest allowed value for ξ

ξmax ≡ 1− (m + Mrec)2

q2 . (1.86)

The energy of the radiated parton is

k0
n+1 = kn+1 =

q0

2
ξ. (1.87)

Energy conservation requires that

q0 = k0
n+1 +

√
k2

n + m2 +
√

k2
rec + M2

rec, (1.88)

where
k2

rec = k2
n + k2

n+1 + 2knkn+1y. (1.89)

We can solve equation (1.88) for kn in a standard way, by bringing in turn each single square
root on one side of the equation and squaring both sides. By doing this we actually find the
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solutions of all of the following equations

q0 = k0
n+1 ±

√
k2

n + m2 ±
√

k2
rec + M2

rec, (1.90)

for all possible combinations of the signs in front of the square root. The solutions are given
by

k(±)n =
−(2k

0
n − q0ξ)ξy

(2− ξ)2 − ξ2y2 ±
(2− ξ)

√
(2k

0
n − q0ξ)2 −m2ξ2(1− y2)− 4m2(1− ξ)

(2− ξ)2 − ξ2y2 . (1.91)

In order for them to exist, the argument of the square root must be positive. This leads to
the bound

(q2 −m2 + m2y2)ξ2 − 4(q0k
0
n −m2)ξ + 4k

2
n > 0, (1.92)

with k
2
n = (k

0
n)

2 −m2. Eq.(1.92) is satisfied if either ξ > ξ(+)(y) or ξ < ξ(−)(y), with

ξ(±)(y) = 2
k

0
nq0 −m2 ±m

√
(q0 − k

0
n)

2 − k
2
ny2

q2 −m2 + m2y2

=
q2 −m2 −M2

rec ± 2m
√

M2
rec + k

2
n(1− y2)

q2 −m2 + m2y2

=
4k

2
n

q2 −m2 −M2
rec ∓ 2m

√
M2

rec + k
2
n(1− y2)

. (1.93)

The last equality follows from the fact that

ξ(+)ξ(−) =
4k

2
n

q2 −m2 + m2y2 . (1.94)

We see that ξ(+) is a decreasing function of y2. Thus

ξ(+)(y) > ξ(+)(1) = 1− (m−Mrec)2

q2 > ξmax. (1.95)

that is larger than the maximum value allowed by energy conservation. Thus, the corre-
sponding k(±)n values should be the solutions of one among equations (1.90) where some
minus signs appear. On the other hand, ξ(−)(y) is an increasing function of y2, so

ξ(−)(y) < ξ(−)(1) = 1− (m + Mrec)2

q2 , (1.96)

that is perfectly acceptable. Furthermore, in the ξ < ξ(−)(y) case the value ξ = 0 is allowed,
that lead to the solutions k(±)n = ±k

0
n satisfying Eq. (1.88) with the correct signs of the square

roots. Since the k(±)n must always satisfy one of the equations (1.90), and since they are
smooth function of both ξ and y in their allowed range (that includes the ξ = 0 point), we
infer by continuity that they satisfy equation (1.90).

Up to now we have not imposed the positivity of kn. On the other hand, negative kn
values still have a physical interpretation, as illustrated in Fig. 1.2. Thus, provided we inter-
pret negative values of kn according to the construction of Fig. 1.2, we have two solutions of
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FIGURE 1.2: Kinematic reconstruction of the real emission kinematics with
positive (left) and negative kn values. The angle θ is fixed by y = cos θ.

equation (1.88). They are however related, since

k(+)
n (ξ, y) = −k(−)n (ξ,−y). (1.97)

If we pick just one of them, we have a single-value map from the underlying Born config-
uration and the radiation variables ξ, y and φ to a real emission configuration. We pick the
solution k(+)

n (ξ, y), since for m = 0 it corresponds to the usual solution in the massless case.
Unlike in the massless case, however, k(+)

n (ξ, y) is not always positive: it is negative in the
region

y > 0 , ξ > ξ(−)(0) = 2
k

0
n −m
q−m

=
(q0 −m)2 −M2

rec
q0 (q0 −m)

. (1.98)

For continuity, k(+)
n (ξ, y) vanishes on the boundary line y > 0, ξ = ξ(−)(0) separating the

positive and negative regions. The points lying on this curve are degenerate and correspond
to the same real configuration with the emitter at rest in the partonic centre-of-mass frame.
Apart from them, that constitute a set of zero measure, the map is well defined and bijective.
The inverse map is well defined also on the boundary line y > 0, ξ = ξ(−)(0). This means
that the corresponding Jacobian vanishes on that curve. Then, the inverse map can be safely
used both for the integration of the real differential cross section and for the generation of
radiation.
In Fig. 1.3 we display the ξ, y kinematic region. We remark that the negative k(+)

n (ξ, y) re-
gion includes neither soft nor collinear singularities, since ξ is large, and since the angular
separation of the quark and the radiated gluon is larger than π/2. From now on we will
drop the suffix (−) and will use ξ(y) and ξ(0) instead of ξ(−)(y) and ξ(−)(0).

In Fig. 1.4 we show the partition of the kinematic region represented in the more familiar
Dalitz plane. Notice that in the massless limit the physical region in the Dalitz plot develops
an acute angle in the lower right, corner corresponding to the gluon being anticollinear with
the b quark. Thus, the problematic region ξ > ξ(0) is not a singular one.

1.3.2 Full kinematic reconstruction of the real emission

So far, we have got the length of the tri-vectors ~kn and ~kn+1. It is a standard kinematic

problem to determine their directions in such a way that their sum~k is parallel to~kn. We do
not enter in further details about it.

The last step is to calculate the β parameter of the boost transformation Λ, Eq. (1.82), and
to boost “back” the other barred momenta in the real event

ki = Λ−1ki, i = 1, · · · , n− 1. (1.99)
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The above mapping allows us to write the (n + 1)-body phase space element in the factor-
ized form

dΦn+1 = dΦraddΦn = J(ξ, y, φ)dξdydφdΦn, (1.100)

where we have expressed the radiation phase space in terms of the FKS variables with the
Jacobian function J(ξ, y, φ) taking into account the change of variables involved in the trans-
formation. In order to extract the Jacobian, we have to manipulate and compare the l.h.s
and the r.h.s of Eq. (1.100). Recalling Eq. (1.75), we perform the change of variables

~kn →~k−~kn+1 (1.101)

in the three-body phase space, Eq. (1.76),

dΦ3 =
dM2

rec
2π

d3~k
2k0

n(2π)3
d3~kn+1

2k0
n+1(2π)3

d3~krec

2k0
rec(2π)3 × (2π)4δ(4)(q− k− krec) . (1.102)

FIGURE 1.3: Plot of the physical region in the ξy plane. The shaded orange re-
gion is where k(+)

n (ξ, y) is negative. It is physically equivalent to the (positive)
k(−)n (ξ,−y) solution in the dark blue region. If we insisted upon considering
only positive kn solutions, the blue region would be doubly covered, and the

dark blue one would not be there.

FIGURE 1.4: Dalitz plot for the three-body phase space of the system compris-
ing the heavy flavour, the radiated gluon and the recoiling system.
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In polar coordinates, we have
d3~k = k2dkdΩ (1.103)

and, using as reference direction that of~k,

d3~kn+1

2k0
n+1(2π)3

=
q2

(4π)3 ξdξd cos αdφ , (1.104)

where α is the angle between~kn+1 and~k and φ is the azimuthal angle taking~k as the reference
direction. Hence

dΦn+1 =
q2

(4π)3 ξdξd cos αdφ
k2dkdΩ

2k0
n(2π)3

dM2
rec

2π
× d3krec

2k0
rec(2π)3 (2π)4δ(4)(q− k− krec)dΦrec.

(1.105)

On the other hand, following the same arguments that led to Eq. (1.75), we can split the
barred Born phase space into a two-body phase space and the phase space of the system
recoiling against the emitting parton

dΦn =
dM2

rec
2π

d3~kn

2k
0
n(2π)3

d3~krec

2k
0
rec(2π)3

× (2π)4δ(4)(q− kn − krec)dΦrec. (1.106)

Since kn = q−Λkrec, the delta function in Eq. (1.106) constrains the value of krec to be

krec = Λkrec. (1.107)

Then, exploiting the Lorentz invariance of the phase space element, we have

dM2
rec

2π

d3~krec

2k0
rec(2π)3 (2π)4δ(4)(q− k− krec)dΦrec =

dM2
rec

2π

d3~krec

2k
0
rec(2π)3

(2π)4δ(4)(q− kn − krec)dΦrec,

(1.108)

where the r.h.s and the l.h.s are related by the boost transformation Λ. In particular, we
observe that

Λ(q− k) = Λkrec = q− kn, (1.109)

so that the boost maps the argument of the delta function in the r.h.s into that of the delta
function in the l.h.s. Inserting Eq.(1.105) and Eq.(1.106) into Eq.(1.100) and using Eq.(1.108),
we get

q2

(4π)3 ξdξ d cos α dφ
k2dkdΩ

2k0
n(2π)3 = J(ξ, y, φ)dξ dy dφ

d3kn

2k
0
n(2π)3

. (1.110)

By virtue of the mapping, the vectors~k and~kn are parallel so that in polar coordinates their
angular elements are equal, dΩ = dΩn. Then, from Eq. (1.110) we have

q2

(4π)3 ξ
k2

k0
n

d cos α dk = J(ξ, y, φ)
k

2
n

k
0
n

dy dkn. (1.111)
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and we are left with the computation of the Jacobian of the two-variable-transformation

J(2) =

∣∣∣∣∣∣∣∣∣
∂kn
∂k

∂y
∂k

∂kn
∂ cos α

∂y
∂ cos α

∣∣∣∣∣∣∣∣∣ . (1.112)

This transformation is implicitly defined by the relations

kn =
√

k2 + k2
n+1 − 2k kn+1 cos α, y =

k2 − k2
n − k2

n+1

2kn kn+1
,

M2
rec = (q0 − k0

n − kn+1)
2 − k2, kn =

λ1/2(q2, M2
rec, m2)

2q0 ,

(1.113)

where λ is the kinematic Kallen function:

λ(x, y, z) = x2 + y2 + z2 − 2xy− 2xz− 2yz. (1.114)

Applying the chain-rule for the derivative, it is straightforward to compute the Jacobian. We
get

J(2) =
1
k3

n

k2

kn

k
0
n

k0
n

[
k0

n(k
0
n − kn+1)−m2(1− kn+1/q0)

]
(1.115)

The final expression for the full Jacobian J is thus

J(ξ, y, φ) =
q2

(4π)3 ξ
k3

n

kn

1

k0
n(k

0
n − kn+1)−m2(1− kn+1/q0)

=
q2

(4π)3 ξ
k3

n

kn

2

k0
n(2k

0
n − q0ξ)−m2(2− ξ)

(1.116)

Note that the denominator of J vanishes in two regions:

• when approaching the curve ξ = ξ(0) for y > 0, behaving as ξ(0)− ξ

• when approaching the curve ξ = ξ(y), as
√

ξ(y)− ξ.

In the first case, the k3
n term in the numerator vanishes simultaneously as (ξ(0) − ξ)3. It

follows that the Jacobian vanishes as J ∼ (ξ(0)− ξ)2 for ξ → ξ(0) at fixed y > 0. This result
is coherent with what has been argued above regarding the degenerate points corresponding
to the configuration with the emitter parton at rest in the partonic centre-of-mass frame. In
the second region, the Jacobian develops an integrable singularity, that can be dealt with by
importance sampling techniques in Monte Carlo integration.

1.4 Application: heavy quark radiation in NLO+PS POWHEG gener-
ators

Having a mass much larger than the typical hadronic scales, bottom quark hadroproduction
is calculable in perturbative QCD. Nonetheless, in cases when the transverse momentum
involved in the production is large compared to its mass, as, for example, in high-energy
e+e− annihilation, or in production at large transverse momentum in hadronic collisions,
bottom can behave as a light parton, and give rise to a hadronic jet. Techniques for dealing
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with these regimes have been developed in the past [65], and have been applied to the
LHC case [71]. They allow for the computation of the transverse momentum spectrum of
promptly produced b quarks at next-to-leading order in QCD, including the resummation of
large logarithms of the ratio of the transverse momentum over the bottom mass up to next-
to-leading-logarithmic accuracy. These large logarithms can arise both from initial state
radiation, when, for instance, an incoming gluon splits into a bb̄ pair, with one of the b
undergoing a large-momentum-transfer collision with a parton from the target, and from
final state radiation. In the last case, an outgoing gluon can split into a bb̄ pair, or a directly
produced b quark can emit a collinear gluon.

In next-to-leading order (NLO) calculations matched to Shower generators (NLO+PS)
for heavy flavour production [72, 73], one generally treats the heavy flavour as being very
heavy. The heavy quark mass thus acts as a cut-off on collinear singularities, that are thus
not resummed. This approach has in fact proven to be quite viable in heavy flavour produc-
tion even at relatively large momentum transfer [71]. Consider, for example, heavy quark
pair production in a POWHEG framework. By neglecting collinear singularities from heavy
quarks, the only singular region that we have to consider has to do with initial state radi-
ation involving only light partons. Since the POWHEG procedure guarantees that the matrix
elements are given correctly for up to one hard radiation, gluon splitting, flavour excitation
and radiation from the heavy flavour are included, so that the logarithmically enhanced
terms are correctly reproduced at first order. Higher order leading logarithms, however, are
not treated correctly. In particular, there are reasons to give an adequate treatment to final
state radiation from a high transverse momentum bottom quark. In fact, this radiation pro-
cess is intimately related to the physics of the bottom fragmentation function, and may have
important effects in processes of considerable interest, like for example in top decay.

The purpose of the present work is twofold:

• we present a new algorithm, based on the massive FKS mapping developed in Sec. 1.3,
for radiation from a heavy quark, that has proven superior to the available implemen-
tation [55] (Sec. 1.4.1);

• we perform a thorough investigation of the behaviour of this component of the POWHEG
generator, also by comparing the two methods, both in the framework of bottom
quarks generated in top decay, and in inclusive bottom quark pair production. In
the last case, such a study was never carried out (Sec. 1.4.2).

1.4.1 Generation of radiation

We recall the POWHEG master formula for the generation of radiation [24, 74] is

dσNLO = B(Φn)dΦn

[
∆NLO(Φn, tmin) + ∑

α

[dΦrad∆NLO(Φn, K⊥(Φn+1))R(Φn+1)]
Φα

n=Φn
α

B(Φn)

]
,

(1.117)

where tmin is an infrared cutoff, and the NLO Sudakov form factor is given by

∆NLO(Φn, pT) = θ(pT − tmin) exp

[
−∑

α

∫
[dΦradR(Φn+1)Θ(K⊥(Φn+1)− pT)]

Φα
n=Φn

α

B(Φn)

]
.

(1.118)

In the case of a massless emitter, K⊥ is a smooth function of the radiation variables, which is
required to reduce to the transverse momentum in approaching the soft and collinear limits.
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For the massive case, in ref. [55] the following definition was proposed

K2
⊥ = 2

k0

p0 p · k =
q2

2
ξ2(1− βyphy). (1.119)

yphy denotes the cosine of the physical angle between the emitter and the emitted parton.3

Eq. (1.119) has the remarkable property of reducing continuously to the transverse momen-
tum in the massless limit. We assume it as our default scale choice.

According to the standard veto method, we look for a suitable upper bound function U
of the integrand in the NLO Sudakov form factor, namely

U(ξ, y)dξdy ≥ R
B

J(ξ, y)dξdy. (1.120)

For the sake of simplicity, we have omitted the integration on the azimuthal angle dφ, which
results in a constant 2π factor.
We model the upper bound function on the asymptotic singular behavior of the real matrix
element near the soft and collinear singularities. We recall that the Jacobian of the mapping
has a divergent behaviour near the curve ξ = ξ(y). The upper bound function should have
a behaviour not weaker than the Jacobian near the singular regions, and furthermore, it
should be simple enough to allow us to perform an analytical integration in the constrained
radiation phase space given by the cut K2

T > t.
It is convenient to perform a change of integration variables from ξ, y to ξ, K2

T. Indeed, it
turns out that K2

T is a monotonic decreasing function of y at fixed ξ, i.e. ∂K2
T/∂y < 0.

The inversion of this mapping is too complex to be performed analytically,4 but easy to
perform numerically. We find that the associated Jacobian ∂K2

T/∂y has a behaviour similar
to that of the Jacobian of the mapping J:

∼ 1√
ξ(y)− ξ

when ξ → ξ(y); (1.121)

∼ (ξ(0)− ξ)2 when ξ → ξ(0) for y ≥ 0. (1.122)

We now write

U =
∂K2

T
∂y

U′, (1.123)

so that in the new integration variables the integrand becomes U′∫
dξ dy Θ(K2

T − t)U =
∫

dξdK2
TΘ(K2

T − t)U′. (1.124)

U′ must have a simple form, and must have the appropriate behaviour to act as an upper
bound for the soft and collinear singularities of the real matrix element.

3yphy must not be confused with the y variable of the mapping. More specifically, in the region ξ(0) ≤ ξ ≤
ξmax, y > 0 we have yphy = −y, while in all the remaining region yphy = y.

4In fact, rather than proving analytically that K2
T is a monotonic decreasing function of y at fixed ξ, we

demonstrated it numerically by checking it a large number of times for random values of the input parameters.
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Upper bound function

The singular behaviour of the real matrix element squared is universal and can be extracted
in a straightforward manner by means of the eikonal approximation. In terms of the radia-
tion variables, we get

R
B
∼ N

ξ2(1− βyphy)
=

N
K2

T
, (1.125)

with N a suitable normalization constant. On the other hand, in the soft limit, the Jacobian
of the mapping behaves as

J(ξ, y) ∼ N′ξ. (1.126)

We must also take into account the behaviour in the soft limit of the Jacobian term factorized
in U:

∂K2
T

∂y
∼ N′′ξ2. (1.127)

Putting all the three contributions together, we obtain the following expression of the upper
bound function U′

U′(ξ, K2
T) =

1
K2

T
× ξ × 1

ξ2 =
1

ξK2
T

. (1.128)

A more complete analysis shows that mapping J is enhanced (although not divergent) at
large ξ for y → −1. In order to get a more efficient upper bound, we add the factor 1

1−K2
T/q2

to the previous expression. Hence, our final choice for the upper bound function U′ is

U′(ξ, K2
T) =

1
ξK2

T(1− K2
T/q2)

. (1.129)

Integral of the upper bound function

In order to integrate the upper bound function analytically, its domain of integration has to
be suitably enlarged. This can be done by interpreting the R/B expression as being defined
in the larger domain, but as vanishing outside of the physical domain. Since the veto pro-
cedure prescribes that a point generated according to the upper bound function should be
accepted with a probability proportional to the value of the radiation function divided by
the upper bound function, points generated outside the physical domain should always be
vetoed according to the above interpretation. From Eq. (1.119), we find the upper bound

K2
T < K2

max ≡
q2

2
ξ2

max(1 + β0), (1.130)

where β0 is the velocity of the emitter in the underlying Born configuration (this follows
from the fact that we always have β ≤ β0), and we also find

2K2
T

(1 + β0)
< ξ2 <

2K2
T

(1− β0)
, (1.131)

We thus take as our domain of integration the region in KT and ξ such that eqs. (1.130) and
(1.131) are satisfied. We notice that in this way ξ can even become larger than 1. In practice,
however, adding also the ξ < 1 or ξ < ξmax limit would render the integration more difficult,
so we prefer to deal with it by vetoing. Defining

ξ M
m
(K2

t ) ≡

√
2K2

T
q2(1∓ β0)

, (1.132)
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the integral of the upper bound function is then

I(t) =
∫ K2

max

t

dK2
T

K2
T(1− K2

T/q2)

∫ ξM(K2
t )

ξm(K2
t )

dξ

ξ
= ln

[
K2

max
q2 − K2

max

q2 − t
t

]
y0, (1.133)

where y0 ≡ (1/2) ln[(1 + β0)/(1− β0)] is the rapidity of the emitter in the underlying Born
configuration. Given a number 0 < r < 1, the t value generated by solving the equation
r = exp[−2πNI(t)] is

t =
A

1 + A
q2, A =

K2
max

q2 − K2
max

exp
[

log r
2πNy0

]
. (1.134)

Generation of radiation kinematics

The algorithm for generating the radiation variables proceeds as follows:

1. We set the initial scale t0 = K2
max.

2. We generate a uniform random number

0 < r < exp[−2πNI(t0)],

and get t from Eq. (1.134). If t is below tmin, no radiation is generated, and the event is
emitted as is.

3. We pick a new uniform random number 0 < r′ < 1 and we generate a value for ξ as

ξ = ξm(t) exp(y0r′). (1.135)

This is consistent with the distribution of ξ at fixed K2
T according to Eq. (1.133).

4. If ξ > ξmax, we set t0 = t, and go back to the step 2.

5. If the veto condition is passed, given t and ξ, we solve numerically for y the implicit
equation

K2
T(ξ, y) = t. (1.136)

If a solution does not exist, we set t = t0 and go back to step 2.

6. Now that ξ and y are available, we generate a random φ, and compute the ratio R =
[R/BJ(ξ, y)]/U(ξ, y)], with U given in terms of U′ in Eq. (1.123), and generate a new
random number 0 < r′′′ < 1. If r′′′ > R we set t0 = t and go back to the step 2.
Otherwise, the event is accepted.

1.4.2 Phenomenology

Comparison in the bb4l case

We have compared results obtained with the new method presented here, with those ob-
tained with the default POWHEG settings for the bb4l generator of ref. [75]. We found remark-
able agreement between the two results for all the distributions that we have examined.
Here we show only two of them, to convey the idea of the quality of the agreement. These
results were obtained for the 8TeV LHC collider, using the MSTW2008 PDF [76] set for ref-
erence only (other sets could be used as well [77, 78]). In our simulations we make the B
hadrons stable. Jets are reconstructed using the Fastjet [79] implementation of the anti-kT

algorithm [80] with R = 0.5. We denote as B (B̄) the hardest (i.e. largest pT) b (b̄) flavoured
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hadron. The B (B̄) jet jB (jB̄) is defined to be the jet that contains the hardest B (B̄). We dis-
card events where the jB and jB̄ coincide. The hardest e+ (µ−) and the hardest νe (ν̄µ) are
paired to reconstruct the W+ (W−). The reconstructed top (antitop) quark is identified with
the corresponding W+ jB (W− jB̄) pair. We show the invariant mass of the W − b-jet system
(Fig. 1.5) and the B fragmentation function in top decay (Fig. 1.6), as defined in ref. [75], i.e.
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FIGURE 1.5: Invariant mass distribution of the reconstructed top quark mass,
defined as the mass of the W+ jB or W− jB̄ system, produced with the bb4l gen-
erator, at the 8 TeV LHC. The two distributions are obtained with the default
implementation of radiation from b quarks (def), and with the new implemen-

tation presented here (alt).
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FIGURE 1.6: B fragmentation function in top quark decay as defined in
ref. [75], produced with the bb4l generator for the 8 TeV LHC. The default

and alternative implementation of radiation from b quarks are compared.

the the B energy in the reconstructed top rest frame normalized to the maximum value that
it can attain at the given top virtuality. In the curves, the alt (for “alternative”) label stands
for our new implementation, while def (for “default”) is the current POWHEG default. As one
can see, the agreement is very good. This also shows that details in the implementation of
radiation from the b quark in top decays do not seem to have important impact on physical
observables.

We found that the efficiency and the generation rate of the new implementation are com-
parable with those of the POWHEG default.
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FIGURE 1.7: Example diagrams for the three mechanism that give rise to log-
enhanced contributions in heavy flavour production: a) final state radiation

from a quark; b) gluon splitting; c) flavour excitation.

b production in hadronic collisions

In this section we study the available POWHEG implementations of radiation from massive
quarks for the hvq generator [73], i.e. the default POWHEG implementation and our new one.
In spite of the fact that the default formalism has been available for quite some time [55], no
such study has been performed so far. We thus discuss it in this work, where we can also
compare with our new implementation.

The hvq generator has been available for quite some time as a tool to generate top, bottom
and charm pairs in hadronic collisions. It is designed to simulate correctly the production
of a heavy flavour pair when the logarithm of the ratio of the transverse momentum of
the heavy quark divided by its mass is not too large. This limitation arises because there
are three mechanisms, depicted in figure 1.7, involving radiation from the final state quark,
production of a heavy quark-antiquark pair via final state gluon splitting and the splitting
of an initial state gluon into a heavy quark-antiquark pair (where one of the two quarks is
scattered at large transverse momentum), that can generate large logarithms involving the
mass of the heavy quark. In the inclusive cross section for the production of a heavy quark
with a given pT, for example, they generate logarithms of pT/m (see ref. [81], Eq. (5.1)). The
last two mechanisms are commonly referred to as gluon splitting and flavour excitation.
In spite of this, the hvq generator has also been used to model relatively large transverse
momentum production of heavy flavours, as in ref. [71]. There, the transverse momentum
distribution of the heavy flavoured hadron in hvq was compared with the more accurate
(but less exclusive) FONLL prediction [65]. It was found to be in rather good agreement.
However, the large uncertainties related to the non-perturbative fragmentation of the heavy
quark leads to the suspect that such agreement is at least in part accidental.

We will now compare the results obtained with the default hvq generator, that we will
label nol (for “no light”, meaning that the heavy quark is treated as very heavy), that treats
as singular regions only the radiation from massless partons (i.e. initial state radiation); hvq
with the inclusion of the radiation from the heavy quark as a singular region will be labeled
asl (for “as light”, meaning that the heavy quark is treated as a light parton). Furthermore,
the default treatment of the heavy quark radiation region will be denoted as def, while the
new implementation presented here will be called alt. In Fig. 1.8, we show a comparison of
def and alt. We can immediately see that we do not find important differences between the
two methods, consistently with what was found in the bb4l case. The settings are similar to
the bb4l case: we make the B hadrons stable, and define the b (b̄) jets as the jets containing
the hardest b (b̄) flavoured hadron, with the jets defined as in the bb4l case. However, we do
not exclude the case when both hardest b-flavoured hadrons are in the same jet. We perform
the calculation for the LHC at 8 TeV, using NNPDF30_nlo_as_0118 pdf set [78]. As one can
see, the two implementations are in excellent agreement. Observe the jump at 10 GeV in
the jB mass. It is due to the case in which the b and b̄ flavoured hadrons are both in the
jet cone. From figure 1.8 we also see that for jet masses above 10 GeV the gluon splitting
configuration dominates.
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FIGURE 1.8: Comparison of alt and def for the transverse momentum distri-
bution of the B hadron (top left), for the transverse momentum distribution of

the b-jet (top right) and for the b-jet mass (bottom) at the 8TeV LHC.

We found that the new implementation has a generation efficiency, which is estimated
from the numbers of vetoes in FSR generation, three times greater than the default one. This
leads to a generation rate of 1316 events per minute, against the 298 events per minute of
the POWHEG default, which corresponds to a gain more than a factor of 4.

We now show in the left panels of Fig. 1.9, the comparison among the alt and nol.
Here we see considerable differences, especially in the large-momentum tail of the B and jB

transverse momentum distribution, the alt ones being much harder. The mass of the b jet
is also remarkably different. The large difference above 10 GeV hints to the fact that heavy
quark pair production via the splitting of a large transverse momentum gluon is treated in
a very different way in the two cases, and that this difference may be the cause of the large
discrepancy in the transverse momentum distribution of the b hadron.

The difference between the alt and nol cases should not come as a surprise. The gener-
ation of radiation is performed in the nol case according to the formula

dσ = dΦBB̃(ΦB) exp
[∫ R(ΦB, Φ′rad)

B(ΦB)
θ(k′t − kt)dΦ′rad

]
× R(ΦB, Φrad)

B(ΦB)
dΦrad ,

where kt is the transverse momentum of the emitted gluon with respect to the beam axis,
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FIGURE 1.9: Left panels: comparison of alt and nol for the transverse mo-
mentum distribution of the B hadron (top left), for the transverse momentum
distribution of the b-jet (top right) and for the b-jet mass (bottom) at 8TeV LHC.
Right panel: same comparison with the treatment of the enhanced regions us-

ing remnants, as discussed in the text.

since the only singular regions that are considered there are the initial-state radiation (ISR)
ones. The strong coupling constant and the parton densities are evaluated by default at a
scale equal to the transverse mass of the heavy quark at the level of the underlying Born
kinematics

µ f = µr =
√

k2
t,q + m2

q (1.137)

in the B̃ function, while they are evaluated at a scale kt (or k′t) in the R/B ratios appearing
in formula (1.137). Since B̃ and B are of order α2

S , while R is of order α3
S , this means that in

practice two powers of the strong coupling are evaluated at the scale of Eq. (1.137), while one
power is evaluated at a scale kt. The mismatch in the scale used in B̃ and in the B appearing
in the ratios, combined with the exponential, leads as usual to the correct Sudakov form
factor for initial state emission.

Problematic regions

In case the transverse momentum of the gluon is small, the scale assignments and the Su-
dakov form factor describe the process appropriately. It can happen however, that the
real emission kinematics is near the gluon splitting, flavour excitation or quark radiation
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regimes. In these cases the gluon transverse momentum is not small. Furthermore, the nu-
merator R in the integrand may be enhanced with respect to the denominator, thus yielding
a damping of the real cross section that is not justified. Also the scale choices are not ap-
propriate. For example, in the case of production of a high transverse momentum heavy
quark pair according to the gluon splitting mechanism, the appropriate scale should corre-
spond to two powers of αS evaluated at the gluon transverse momentum, and one power of
αS evaluated at the scale of the order of the invariant mass of the heavy quark pair.

The adoption of the methods illustrated in ref. [55] and in the present work for dealing
with radiation from a heavy quark leads to the correct treatment of the radiation from the
heavy, quark provided all remaining regions are treated correctly. This is in fact what hap-
pens in the case of the bb4l generator, where there is only one enhanced region, but it is not
the case for the asl generator, that does not treat in a proper way the two regions of gluon
splitting and flavour excitation. Thus, the nol and the asl generators will end up treating
the enhanced regions in different (and in both cases incorrect) ways. In fact, while in the
nol case the enhanced regions will all be treated as if they were ISR processes, in the asl
case they will be split, and treated in part as ISR processes, and in part as radiation from the
heavy quarks. In order to test this hypothesis, and in order to explore possible strategies to
deal with this problem, we proceed as follows. It is possible in POWHEG to further separate
out the real cross section into two terms, such that only one term has singular behaviour,
while the remaining term, being finite, can be integrated independently. In the hvq case, this
means

R = R(s) + R(r) . (1.138)

Eq. (1.137) is then replaced by

dσ = dΦBB̃(s)(ΦB) exp

[∫ R(s)(ΦB, Φ′rad)

B(ΦB)
θ(k′t − kt)dΦ′rad

]

×R(s)(ΦB, Φrad)

B(ΦB)
dΦrad +

∫
dΦBdΦradR(r)(ΦB, Φrad) . (1.139)

We can exploit this mechanism in order to separate out the enhanced regions, in such a
way that we can treat them in a more uniform way with our generators. In particular, we
separate out the gluon splitting and flavour excitation processes in all cases. In the nol case
we also separate out the regions of radiation from the heavy quarks, in such a way that they
are treated in a more transparent way. Observe that in performing this separation we rely
upon the fact that the three enhanced region are not really singular, since the quark mass
cuts off the collinear singularities, and thus the remnant term is actually finite.

We define the distance of a real configuration from a given enhanced region as follows

disr = k2
t , dglsp = 2kq · kq̄

k0
qk0

q̄

(k0
q+k0

q̄)
2 ,

dq = 2kq · k k0

k0
q
+ m2

q, dq̄ = 2kq̄ · k k0

k0
q̄
+ m2

q,

dq,flex = k2
q̄,⊥ + m2

q, dq̄,flex = k2
q,⊥ + m2

q,

(1.140)

where in the first line the distances for ISR and gluon splitting are given, in the second line
those for radiation from the heavy quarks, and in the last line the ones for flavour excitation.
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We then define, for the nol generator

D =
d−1

isr

d−1
isr + d−1

glsp + d−1
q + d−1

q̄ + d−1
q,flex + d−1

q̄,flex

,

R(s) = RD, R(r) = R(1− D) . (1.141)

For the alt and def generators, we define

D =
d−1

isr + d−1
q + d−1

q̄

d−1
isr + d−1

glsp + d−1
q + d−1

q̄ + d−1
q,flex + d−1

q̄,flex

(1.142)

R(s)
i = RiD, R(r)

i = Ri(1− D) , (1.143)

where the index i labels the three singular regions that POWHEG is handling. In this case, the
cross section is damped if the kinematics is near a singular region that is nether ISR nor
FSR, i.e. only gluon splitting and flavour excitation kinematics are separated into the (r)
component.

There is one more issue that needs to be considered when using a damping factor in
POWHEG. By default, when evaluating the R(r) component (called “real remnant”), the scale
choice is the same as for B̃, i.e. it is Eq. (1.137) applied to the underlying Born kinematics,
that depends upon the considered singular region. This would lead to a different scale
choice for the remnants in nol and asl. In order to avoid that, we should set the scale on the
basis of the real kinematics. This can be done in POWHEG by setting appropriate flags and by
modifying the code that computes the scales for the process. Our scale choice is

µ f = µr =
1
2

[√
k2

t,q + m2
q +

√
k2

t,q̄ + m2
q + kt

]
, (1.144)

that has the correct limit to the underlying Born scale both in the ISR and in the FSR case.
The result of this procedure is shown in the right panels of Fig. 1.9. We notice a remark-

able improvement in the agreement, although some important differences do remain. This
is not unexpected, since in the two cases radiation from the heavy quark is treated in a very
different way. It is interesting to notice that the B and the jB spectra computed with the
nol without remnants (which is the default in the standard hvq generator), is in fair agree-
ment with the alt one when the enhanced regions are separated using the remnants. Since
the default hvq program gives a description of the transverse momentum distribution of B
hadrons that is in fair agreement with the FONLL calculation, we infer that also the alt pre-
diction will display a similar agreement, provided the gluon splitting and flavour excitation
region are treated separately as remnants.

The alt (or equivalently the def generator), with the remnant separation discussed
above, seems to be at this point the generator that may give the best description of b pro-
duction data at hadron collider. We should not forget, however, that some flexibility still
remains in the treatment of the remnant (in this work we have made a definite scale choice
for the remnants in order to have a clearer comparison with the nol generator). We also
notice from Fig. 1.9 that after the remnants are introduced, the B-hadron and b-jet pT spectra
become softer. This seems to be in contrast with the discussion at the beginning of sec. 1.4.2.
On the other hand, this result may be due to the particular scale choice that we have per-
formed for the real graphs, and that POWHEG applies automatically also to the remnants. This
scale turns out to be higher than the typical scale involved in the region discussed at the be-
ginning of sec. 1.4.2. A better approach would be to introduce the possibility of alternative
scale choices in the remnants, including the possibility of performing a different scale choice
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depending upon which enhanced region one is considering.
In order to make progress in this direction, we have started a systematic comparison

with data on single inclusive b-hadron and b-jet production (see ref. [82–84] and references
therein) and on correlations of bb̄ pairs [85, 86]. The analyses are still ongoing and will be
the topic of a dedicated work.





39

Chapter 2

NNLO QCD with qt subtraction

The development of general-purpose subtraction schemes as dipoles subtraction and FKS,
together with a great boost in techniques used to compute tree and one-loop amplitudes
has allowed to achieve a high level of automation in the calculation of NLO QCD (and, as it
will be discussed in Chapter 4, NLO EW) corrections. This opened the door to the so called
“NLO revolution”. With this, it is meant that the problem to compute NLO corrections
for any process can be considered solved. In practice, the only limitation is related to the
computational load needed for processes with large number of external legs.

In view of the precision physics program undergoing at LHC and future colliders, going
beyond the NLO is highly desirable. As a rule of thumb, the theoretical uncertainty asso-
ciated to a NLO prediction is around 10− 30% and one usual starts to see the convergence
and the stability of the perturbative expansion at NNLO, with a reduction of the uncertainty
to orderO(5− 10%). In this context, one of the main bottleneck is given by the computation
of the two-loop virtual amplitudes. This topic is beyond the scope of this work and it will
not be discussed further.

In this chapter, we briefly address the problems we find to extend the subtraction formal-
ism to NNLO. Indeed, despite the great effort of different groups, a general-purpose sub-
traction algorithm similar to those available at NLO is still missing. We focus on a different
approach that is possible when one relaxes the condition to have fully local counterterms.
In particular, we review the main aspects of the non-local qT subtraction formalism as it will
be our starting point to develop a suitable scheme to handle the infrared singularities for
mixed QCD-QED corrections in Chapter 3.

2.1 NNLO corrections within the subtraction formalism

At NNLO, one must include in the computation real emission processes with up two extra
partons. The Feynman diagrams contributing to this order are then classified accordingly to
the number of extra partons in the final state: two-loop amplitude to be interfered with the
LO one and the squared of one-loop amplitude with no extra partons (double-virtual VV),
the interference of the one-loop amplitude with 1 extra parton with the corresponding tree-
level (real-virtRV), the squared tree-level amplitude with 2 extra partons (double-realRR).
In Fig. 2.1, we show an illustrative example of the three classes of contributions occurring in
the hadroproduction of an electroweak gauge boson W/Z in the diagonal quark-antiquark
annihilation channel at NNLO.

The contribution of NNLO corrections δσNNLO ≡ σNNLO − σNLO can then be written as

δσNNLO =
∫

dΦnVV(Φn) +
∫

dΦn+1RV(Φn+1) +
∫

dΦn+2RR(Φn+2) , (2.1)

for a generic process starting with n parton in the final state at LO. We assume here that the
loop diagrams have already been renormalized leading to UV finite quantities. Similarly to
what happens at NLO, virtual and real corrections develop infrared singularities associated
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FIGURE 2.1: Illustrative Feynman diagrams for the three classes of contribu-
tions to the hadroproduction of a electroweak gauge boson at NNLO in the
diagonal qq̄ channel: double virtual (left), real virt (center) and double real

(right). One-loop diagrams squared also belong to the first class.

to the soft and collinear limits. In case the partons are all massless, the maximally singular
configuration corresponds to two soft and collinear singularities. This means that we have
up to poles of degree four in the dimensional regulator ε. Factorization together with the
KLN theorem ensures the cancellation of the IR divergences for infrared-safe observables.
In practice, as in the NLO case, the situation is complicated by the fact that the divergences
are implicit in the real radiation corrections. They only appear after integration over the
phase space as opposed to the explicit pole structure in ε in the virtual corrections:

• two-loop virtual corrections∫
dΦnVV(Φn) =

∫
dΦn

(
VV4

ε4 +
VV3

ε3 +
VV2

ε2 +
VV1

ε
+ VV0

)
; (2.2)

• one-loop real emission corrections∫
dΦn+1RV(Φn+1) =

∫
dΦn+1

(
RV2

ε2 +
RV1

ε
+ RV0

)
; (2.3)

• double real emissions corrections∫
dΦn+2RR(Φn+2) =

∫
dΦn+2RR0 . (2.4)

Formally, it is natural and straightforward to extend the idea of the subtraction formalism
at NNLO:

1. introduce two new classes of countertems to deal with double and single real emission
processes respectively;

2. integrate analytically the counterterms over the corresponding radiation phase space
(double and single, respectively).

Schematically, the generic form of a NNLO subtraction scheme reads

δσNNLO =
∫

dΦnVV(Φn +
∫

dΦn+1CRV (Φn+1) +
∫

dΦnCRR(Φn+2)

+
∫

dΦn+1 [RV(Φn+1)− CRV (Φn+1)] +
∫

dΦn+2 [RR(Φn+2)− CRR(Φn+2)] .

(2.5)
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For the sake of simplicity, we have omitted in the above formula the collinear remainders
coming from the factorization of initial-state collinear singularities. While the program ap-
pears well defined, building an actual implementation of a NNLO subtraction is a highly
non-trivial task and, despite the great efforts profused by different groups in the last several
years, a general-purpose algorithm comparable to what we have at NLO is not yet avail-
able. The reason rests on the fact that the structure of the IR singularities is much richer
and more involved at NNLO with respect to the NLO case. In the double real emission
phase space, there are now two types of singular configurations: a single parton can become
soft and/or collinear (single unresolved limit) or both the extra partons become soft and/or
collinear (double unresolved limit), leading to a proliferation of possible overlapping singu-
lar configurations (triple-collinear, double-collinear, double-soft, single-soft, soft+collinear,
etc.).

In general, one should introduce two classes of counterterms, one responsible for the
cancellation of singularities of the double real squared matrix element in the double unre-
solved limits, that we denote collectively as A(2), and the other in the single unresolved
limits,A(1). Suppose to build the counterterm along the main ideas of the dipole formalism.
Schematically, this means to promote suitable factorization formulae, which approximate
the matrix elements in specific singular limits, to the whole real phase space through mo-
mentum mappings chosen in a such a way to achieve the exact factorization of the phase
space. At NLO, this is sufficient to build the subtraction scheme. At NNLO, the situation
is complicated by the fact that the kernel itself of such counterterms may be divergent ap-
proaching a different singular limit from the one they cancel. For example, a counterterm
in the class A(2), responsible for the cancellation of a double unresolved limit, can become
divergent in one of the single unresolved limit, and a similar situation can occur for the coun-
terterms in the class A(1). If one wants to proceed in this direction, additional counterterms
must be subtracted to single out these “spurious” singularities, leading to a proliferation of
terms to be defined and to be integrated analytically. We point out that theA(1) class must be
integrated over the 1-particle phase space to be combined with the real-virtual contribution,
as it is required to cancel the explicit poles of the one-loop real-virtual matrix element.

In the “dipole”-style approach sketched above, the construction of the counterterms is
completely independent from the treatment of the space space. A different strategy consists
in partitioning the phase space via suitable measurement functions. This allows to disen-
tangle the singular limits and simplify the structure of the counterterms needed in each
“sub-sector”, following an approach inspired by the FKS subtraction scheme. The countert-
erms are defined only in the specific sub-sector corresponding to a given singular limit that
they are required to cancel.

Both approaches have been pursued. ColorFull subtraction [87] can be thought as a gen-
eralization of the dipoles scheme and, so far, it has been completed for processes involving
no identified hadrons in the initial state [88–90]. Improved sector decomposition [91] and
nested soft-collinear subtraction [92] instead belong to the class of FKS-inspired subtrac-
tions. They have been used in NNLO computations for relevant processes at the LHC [93–
99]. Among other viable approaches, also the antenna subtraction scheme [100] has been
successfully employed for several important calculations [101–106].

For the sake of completeness, we conclude this general section mentioning the develop-
ment of other schemes based on a combination of dipoles and FKS approaches [107] and on
a geometric approach [108].

2.1.1 Non-local subtraction and slicing

All the subtraction schemes listed in the previous section attempt to build a realization of the
local subtraction formalism as presented in the previous chapter. By local, we mean that the
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cancellation of the IR divergences in the real corrections occurs pointwise at the integrand
level. From the numerical point of view, this approach is very robust and efficient, since
the resulting subtracted integrand is a harmless function, which contains at most integrable
singularities in the real emission phase space. On the other hand, as already discussed,
the construction of local counterterms is very involved due to the many overlapping sin-
gularities occurring at NNLO, which have to be isolated by means of suitable phase-space
parametrizations. At the same time, the counterterms should remain simple enough to al-
low one to perform their analytical integration over the radiation phase-space and to extract
the IR poles in the ε regulator.
A different approach is possible if one relaxes the requirement to have local counterterms.
The key observations here are the following:

1. the single unresolved regions can be separated from the double unresolved ones by
defining a suitable resolution variable X (non negative), such that for X > 0 at most
one parton can become soft and/or collinear, while the double unresolved limit occurs
only at X = 0. Furthermore, the resolution variable X is a physical infrared safe
observable.

Then, the structure of the divergences greatly simplifies: in the region X > 0, there
are only NLO-type singularities (that can be handled by standard NLO subtraction
algorithms); in the region X = 0, there are the genuine NNLO-type of singularities.

2. The cross section dσ/dΦndX, differential with respect to the Born configuration Φn
and the resolution variable X, can be easily computed up to (at least) NNLO in the
unresolved region X = 0. By easily, we mean that either it is already available or it
is calculable with well established techniques. More in details, we formally split the
differential cross section into a regular and a singular part

dσ

dΦndX
=

dσreg

dΦndX
+

dσsing

dΦndX
. (2.6)

The singular part of the X spectrum contains all the contributions that are singular in
the X → 0 limit, i.e. all the contributions which are either proportional to δ(X) or
that behaves as lnk X/X for vanishing X. This logarithmic structure of the singular
contributions is a general result which follows directly from the IR structure of QCD
amplitudes [109, 110], the KLN theorem, and the fact that the resolution variable X is
a physical infrared safe observable. Since in the unresolved region, the phase-space
reduces to the Born one, dσsing/dΦndX can only depend on the lowest-order configu-
rations Φn. Hence, it can be written as

dσsing

dΦndX
(ΦN) = H(Φn)δ(X) + ∑

k≥0
Ck(Φn)

[
θ(X)

lnk X
X

]
+

(2.7)

in terms of usual plus distributions. In this form, it is manifest the cancellation be-
tween real and virtual IR divergences, with the finite remnant of the virtual contri-
butions, after the cancellation has taken place, contained in the coefficient H(Φn) of
the δ(X) term. The coefficient functions appearing in Eq. (2.7) admit a perturbative
expansion in the strong coupling constant

H = ∑
m≥0

αm
s H(m), Ck = ∑

m≥0
αm

s C
(m)
k (2.8)
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and Eq. (2.7) can be recast in the form:

dσsing

dΦndX
(ΦN) = ∑

m≥0
αm

s

[
H(m)(Φn)δ(X) +

2m−1

∑
k=0
C(m)

k (Φn)

[
θ(X)

lnk X
X

]
+

]
. (2.9)

At a given order m in the perturbative expansion, real emission processes of up to m
extra partons are included in the computation. The maximally IR singular configu-
ration corresponds to all the extra partons approaching simultaneously the soft and
collinear limits. The degree of the singularity is therefore 2m and this explains the
maximum value of the exponent k = 2m− 1 in Eq. (2.9). Indeed, after integrating over
the X variable, it produces a logarithmic divergent term raised to the power of 2m,
log2m X.

Having defined the singular part, the regular is formally defined as the difference

dσreg

dΦndX
=

dσ

dΦndX
− dσsing

dΦndX
. (2.10)

and, by construction it satisfies the property

lim
X0→0

∫ X0

0
dX

dσreg

dΦndX
= 0 (2.11)

What it is actually demanded is the knowledge of just the singular part, i.e. the deter-
mination of the coefficient functions in Eq. (2.9) up to the desired perturbative order.

In the following, we will detail how it is possible to build a subtraction procedure for the
NNLO corrections starting from the above observations. As first step, we split the contribu-
tion of the real emission processes in Eq. (2.1) in the two regions X < Xmin and X > Xmin

δσNNLO =
∫

dΦnVV(Φn) +
∫

dΦn+1RV(Φn+1)Θ< +
∫

dΦn+2RR(Φn+2)Θ<

+
∫

dΦn+1RV(Φn+1)Θ> +
∫

dΦn+2RR(Φn+2)Θ> ,
(2.12)

where Θ< ≡ Θ(Xmin − X) and Θ> ≡ Θ(X − Xmin). Xmin plays the role of a small but finite
resolution cut-off. The three contributions in the first line of the r.h.s. of Eq. (2.12) live in the
unresolved region, so they can be formally re-combined to yield the total NNLO correction
below Xmin∫

dΦnVV(Φn) +
∫

dΦn+1RV(Φn+1)Θ< +
∫

dΦn+2RR(Φn+2)Θ<

=
∫

dΦndX
d(δσNNLO)

dΦndX
Θ< =

∫
dΦndX

[
d(δσ

sing
NNLO)

dΦndX
+

d(δσ
reg
NNLO)

dΦndX

]
Θ<

=
∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ< + O(Xl

min) .

(2.13)

In the above, we have used the decomposition into singular and regular part, Eq. (2.6), and
in the last step we have neglected the integral of the regular contribution, as it vanishes in the
Xmin → 0 limit according to Eq. (2.11). Therefore, the error associated to this approximation
is power suppressed, modulo logarithmic enhancements, in the resolution cut-off Xmin.

The real contributions in the second line of the r.h.s. of Eq. (2.12) live in the resolved
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region. This means that one of the real partons is always resolved so that they can be ef-
fectively viewed as the NLO corrections to the process given by the LO one plus one extra
jet. The structure of the singularities is then one order less and by applying one of the NLO
subtraction schemes (as dipoles or FKS), the quantity in the second line of Eq. 2.12∫

dΦn+1RV(Φn+1)Θ> +
∫

dΦn+2RR(Φn+2)Θ>

=
∫

dΦn+1

[
RV(Φn+1) + C

NLO
(Φn+1)

]
Θ> +

∫
dΦn+2

[
RR(Φn+2)− CNLO(Φn+2)

]
Θ> ,

(2.14)

is finite as long as Xmin is non-vanishing. It can be integrated numerically and provides
a fully differential description for infrared safe observables. In the above, we have intro-
duced the NLO counterterm, schematically denoted as CNLO(Φn+2), and its integrated ver-
sion CNLO

(Φn+1). The latter term, living in the n + 1-phase space, is combined with the
real-virtual contribution. In the sum, the explicit poles in the ε regulator, Eq. (2.3), cancel.
Then, Eq. (2.12) becomes

δσNNLO =
∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ< +

∫
dΦn+1

[
RV(Φn+1) + C

NLO
(Φn+1)

]
Θ>

+
∫

dΦn+2

[
RR(Φn+2)− CNLO(Φn+2)

]
Θ> + O(Xl

min) ,
(2.15)

which gives a well-defined phase-spacing slicing [111–113] numerical scheme suitable for
NNLO QCD computations. All the integral can be performed numerically and the compu-
tation is fully differential with respect to any infrared safe observables. The IR divergences
manifest themselves as large logarithmic enhancements in the resolution parameter Xmin
after integrating over the phase space both in the unresolved and in the resolved regions.
These two contributions exactly match with opposite sign so that the real-virt cancellation
takes place and the final result reproduces the NNLO correction up to power corrections in
the resolution parameter Xmin.

We can formally recast Eq. (2.15) in a form closer to a subtraction scheme by writing the
integral in the unresolved region as

∫
dΦndX

d(δσ
sing
NNLO)

dΦndX
Θ< =

∫
dΦndX

d(δσ
sing
NNLO)

dΦndX
Θ(Xmax − X)

−
∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ>Θ(Xmax − X)

(2.16)

for an arbitrary Xmax > Xmin, so that

δσNNLO =
∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ(Xmax − X)

+

[ ∫
dΦn+1

[
RV(Φn+1) + C

NLO
(Φn+1)

]
Θ> +

∫
dΦn+2

{
RR(Φn+2)− CNLO(Φn+2)

]
Θ>

−
∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ>Θ(Xmax − X)

}
+ O(Xl

min) .

(2.17)
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In Eq. (2.17), the logarithmic enhancements in the cut-off Xmin cancel between the real con-
tributions and the term ∫

dΦndX
d(δσ

sing
NNLO)

dΦndX
Θ>Θ(Xmax − X) (2.18)

which plays the role of a non-local counterterm since it is not fully differential in the radia-
tion variables. The first term in the r.h.s. of Eq. (2.17) can be viewed then as the contribution
given by the virtual terms (sitting at X = 0) and the integrated counterterm. From the
above formula, one can derive a numerical scheme which is different from a pure phase-
space slicing. Indeed, with an appropriate choice of the space mapping in the Monte Carlo
integration, it is possible to integrate the real and the counterterm together mimicking what
happens in a local subtraction scheme. In this context, the parameter Xmin assumes the role
of a technical cutoff for the numerical integration, which is still necessary because the inte-
grand is given by the difference of two divergent integrands. As for the power corrections,
the two formulae Eq. (2.15) and Eq. (2.17) are completely equivalent.
Summarizing, as compared to a local subtraction scheme, the slicing/non-local formalism
based on the introduction of a suitable resolution parameter X allows in practice

• to lower the order of the computation, from NNLO to NLO, but for the small unre-
solved region, where the cross section can be computed by other techniques (resum-
mation, effective field theory) up to NNLO,

with the drawbacks that

• the logarithmic enhancements associated to the IR singularities in the unresolved re-
gion globally cancel only after the integration over the phase space (large global cancel-
lations);

• while the method is exact in the limit of a vanishing resolution cutoff Xmin → 0, the
latter cannot be set to zero introducing a dependence in the computation in the form
of power corrections (modulo logarithmic enhancements).

Despite these drawbacks, qT and N-jettiness [114, 115] subtraction formalisms are two ex-
amples of non-local schemes that have been successfully employed to compute the NNLO
QCD corrections to a variety of processes relevant at the LHC. In this work, our focus is on
the qT subtraction method.

2.2 qT subtraction formalism

2.2.1 Color singlet case

In the last section, we have outlined the general aspects of a non-local subtraction formalism
to deal with NNLO corrections. Here, we focus on the specific case given by qT subtraction,
reviewing its construction. Originally, the method has been formulated to deal with the IR
divergences associated to the QCD corrections to the process of hadroproduction of a color
singlet system, as an electroweak gauge boson W/Z or the Higgs boson. We can generically
consider the reaction

h1(P1) + h2(P2)→ F({qi}) + X (2.19)

for a color singlet system F possibly made of n particles with momenta {qi}n
i=1. The total

momentum of the system F as a whole is denoted as q = ∑n
i=1 qi. At the lowest order in

perturbation theory, this class of reactions is initiated only by two partonic subprocesses:
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FIGURE 2.2: Feynman diagrams contributing to the NLO real corrections in
the hadroproduction of an electroweak gauge boson W/Z.

• the annihilation of a quark-antiquark pair q(p1) + q̄(p2)→ F(q) (as in the case of W/Z
production),

• the fusion of two gluons g(p1) + g(p2) → F(q) (as in the case of Higgs boson produc-
tion in the “heavy-top” Higgs Effective Theory [116, 117]).

as all the other partonic subprocesses are vanishing for color conservation.
To understand the main idea, consider the class of real corrections shown in Fig. 2.2,

which start to contribute at NLO. To be definite, we have considered explicitly the case of
the hadroproduction of an electroweak boson W/Z, but the following reasoning applies for
any color singlet objects in the final state as well. The IR divergences of the real emission
Feynman diagrams correspond to the configurations where the t-channel propagator is sin-
gular. In the partonic center-of-mass frame, we can parametrize the initial state momenta as

p1 =

√
s

2
(1, 0, 0, 1), p2 =

√
s

2
(1, 0, 0,−1) (2.20)

being s the center-of-mass energy, and the final state particles are back-to-back, k = −q.
Then, the t-channel propagator can be parametrized in terms of the transverse momentum
qT of the color object F as

1
2p1 · k

=
1√

s
1

k0 − k3 =
1√

s
k0 + k3

(k0)2 − (k3)2 =
1√

s
k0 + k3

q2
T

. (2.21)

We see that the variable qT is a good resolution variable in the sense of the previous section:

• for qT > 0 the propagator cannot be divergent. The real corrections are then finite and
they have the IR structure of a LO (one order less) computation;

• all the IR divergences are contained in the small qT limit.

Similarly, going one order higher, the transverse momentum of the qT color singlet object
separates the region with at least one resolved final state parton, as long as qT > 0, from the
unresolved region at qT = 0. In the former region, the NNLO corrections are equivalent to
the NLO corrections to the process F + 1 jet with an extra resolved jet in the final state.

The qT subtraction formalism cannot handle partonic processes with final-state collinear
singularities as in reactions involving the production of QCD jets. To clarify this statement,
we follow the same reasoning as before and consider the NLO real correction to the process
V + 1 jet (V = W/Z) depicted in Fig. 2.3. In this case, we focus on the fermion propagator
carrying the momentum k = k1 + k2. Adopting the parametrization in terms of the trans-
verse momentum pT, the rapidity y and the azimuthal angle φ,

ki = ki,T(cosh yi, cos φi, sin φi, sinh yi), i = 1, 2 , (2.22)
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FIGURE 2.3: Feynman diagrams contributing to the NLO real corrections in
associated hadroproduction of an electroweak gauge boson W/Z with a QCD

jet.

the propagator can be written as

1
2k1 · k2

=
1

2k1,Tk2,T(cosh(y1 − y2)− cos(φ1 − φ2))
=

1
2k1,T|qT − k1,T|

1
cosh ∆y− cos ∆φ

,

(2.23)
where in the last step we exploit the tri-momentum conservation in the partonic center-of-
mass frame, k1,T + k2,T + qT = 0. Hence, we see that the final-state propagator blows up
in the collinear limit ∆y = ∆φ = 0 for any values of the transverse momentum qT. In this
situation, the transverse momentum cannot play the role of the resolution variable and one
should look for another observable as the 1-jettiness [118, 119].

The fact that the qT observable is a good resolution variable for the process in Eq. (2.19)
is not sufficient alone to fully define a subtraction scheme. According to the discussion in
the previous section, the other fundamental ingredient is provided by the knowledge of the
singular part of the qT spectrum in the qT → 0 limit. In the case the produced final-state
system is composed of non-QCD particles, the behavior of the qT distribution in the small
qT limit has a universal structure that has been extensively studied, through the formalism
of the transverse momentum resummation both in QCD [120–123] and in Soft and Collinear
Effective Theory (SCET) [124–128], and it is explicitly known up to the NNLO level. In
particular, the result on transverse-momentum resummation are sufficient to fully specify
the qT subtraction formalism for this entire class of processes.

Small-qT behavior in the transverse-momentum resummation formalism

In the following, we detail the construction of the qT subtraction scheme as an explicit re-
alization of the non local subtraction formalism, generically described by Eq. (2.17). To this
aim, we first briefly recall the main results of the transverse-resummation for the qT distribu-
tion in the hadroproduction of a color singlet system. Let us introduce the fully differential
cross section for the generic process in Eq. (2.19)

dσF

d2qTdM2dydΩ
(P1, P2; qT, M, y, Ω) , (2.24)

which depends on the total momentum of the system F, i.e. on its invariant mass M2 = q2,
rapidity y and the set Ω = {ΩA, ΩB, . . . } of additional variables that control the kinematics
of the particles in the system F. This represents the explicit form of the differential cross sec-
tion dσ/dΦndX introduced in the previous section for the specific case under consideration.
In this context, it is assumed that the kinematic variables {ΩA, ΩB, . . . } do not depend on
qT, M2 and y and that the set of variable {qT, M2, y, Ω} completely determines the kine-
matic configurations of the particles in the system F. The hadronic cross section in Eq. (2.24)
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is obtained as the convolution of partonic cross sections and the customary scale-dependent
parton distributions fa/h(x, µ2

F), being a = q f , q̄ f , g the parton label of the colliding hadrons.
As it is customary in QCD calculations, it is assumed that the parton densities are defined
in the MS factorization scheme and the strong coupling αs(q2) corresponds to the QCD run-
ning coupling in the MS renormalization scheme.
We then decompose the fully differential cross section into a regular and a singular part
as in Eq. (2.6). In particular, we recall that the partonic cross section entering the singular
component contains all the contributions that are enhanced at small qT, i.e. either contri-
bution proportional to δ(2)(qT) or to large logarithms of the type 1/q2

T lnk M2/q2
T. Within

the transverse-momentum resummation formalism, only the singular component is consid-
ered, which represents what is needed to develop the subtraction scheme. The main result
is encoded in the resummation formula which predicts a universal structure for the singular
component in all-order perturbation theory. It explicitly reads [120, 129]

dσ
sing
F

d2qTdM2dydΩ
(P1, P2; qT, M, y, Ω) =

M2

S ∑
c=q,q̄,g

dσ̂
(0)
cc̄,F

dM2dΩ
(P1, P2; M, Ω)

×
∫ d2b

(2π)2 eib·qT Sc(M, b) ∑
a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[HFC1C2]cc̄;a1,a2 fa1/h1(x1, b2

0/b2) fa2/h2(x2, b2
0/b2) ,

(2.25)

where b0 = 2e−γE , (γE = 0.5772 . . . is the Euler constant) is a numerical coefficient, S =
2P1 · P2 is the energy in the hadronic system, and the kinematic variables x1 and x2 are

x1 =
M√

S
ey, x2 =

M√
S

e−y . (2.26)

We highlight the main features of the resummation formula in Eq. (2.25):

• it factorizes the lowest order partonic cross section dσ̂
(0)
cc̄,F, which introduces a trivial

process dependence due to the Born scattering amplitude of the partonic process cc̄→
F;

• it involves the Fourier transformation with respect to the impact parameter b, which
represents the Fourier conjugate variable of the transverse momentum qT. Therefore,
the region qT/M� 1 corresponds to Mb� 1;

• the function Sc(M, b), which depends only on the type (c = q or c = g) of colliding
partons, is the Sudakov form factor whose all-order expression is [120]

Sc(M, b) = exp

{
−
∫ M2

b2
0/b2

dq2

q2

[
Ac(αs(q2)) ln

M2

q2 + Bc(αs(q2))

]}
. (2.27)

in terms of the perturbative functions

Ac(αs) =
∞

∑
n=1

(αs

π

)n
A(n)

c , Bc(αs) =
∞

∑
n=1

(αs

π

)n
B(n)

c . (2.28)

As stated in Eq. (2.27), it is responsible for the resummation of the large logarithmically-
enhanced contributions;

• the parton densities are evaluated at the scale of b2
0/b2 which depends on the impact

parameter;
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• the hard-collinear term [HFC1C2]cc̄;a1,a2 embodies the remaining process dependence of
the resummation formula related to the virtual corrections proportional to δ(q2

T).

The idea to build the subtraction is now quite simple. In practice, what we need are the
coefficient functions in Eq. (2.9). By comparing it with the fixed order expansion of the re-
summation formula, we can express such coefficient functions in terms of the resummation
coefficients. If the latter are known up to the required order, then the subtraction will di-
rectly follow. Before going on in this direction, we discuss further the hard collinear term
and the universality structure of the resummation formula. This is an important point to
understand to what extent the subtraction scheme will be process-independent (remaining,
of course in the class of color singlet processes we are dealing with).

The first comment is that the structure of the hard collinear function is different for pro-
cesses initiated at the Born level by the quark-anti quark annihilation channel and the ones
initiated by the gluon fusion channel. In the latter case, indeed, the physics of the small-qT
region has a richer structure due to the non-trivial spin dependence of the collinear split-
tings. Collinear radiation from the colliding gluons leads to spin and azimuthal correla-
tions [123, 130] which are embodied in the hard-collinear function. For ease of reading and
since, in view of the application to the mixed corrections to the Drell-Yan processes, we are
mainly interested in the quark-anti quark channel, in the following we specialize the discus-
sion to this case. Then, in the case of processes initiated at the Born level by the quark-anti
quark channel, the symbolic hard-collinear function is explicitly given by the product

[HFC1C2]qq̄;a1,a2 = HF
q Cqa1 Cq̄a2 (2.29)

of two scalar functions, HF
q and Cqa1 , which admit a perturbative expansion in powers of

the strong coupling αs. Notice that in the above, we do not specify the argument of these
functions on purpose. The reason is the following: the resummation formula in Eq. (2.25) is
invariant under the following renormalization-group transformation [129]

HF
c (αs)→ HF

c (αs)[hc(αs)]
−1, (2.30)

Bc(αs)→ Bc(αs)− β(αs)
d ln hc(αs)

d ln(αs)
, (2.31)

Ccb(αs)→ Ccb(αs)[hc(αs)]
1/2, (2.32)

(2.33)

where hc(αs) = 1 +O(αs) is an arbitrary perturbative function, and β(αs) denotes the QCD
β-function

d ln αs(q2)

d ln q2 = β(αs(q2)) , (2.34)

β(αS) = −β0 αS − β1 α2
S +O(α3

S ) , (2.35)

β0 =
11CA − 2N f

12π
, β1 =

17C2
A − 5CAN f − 3CF N f

24π2 , (2.36)

where N f is the number of quark flavours, Nc is the number of colours, and the colour factors
are CF = (N2

c − 1)/(2Nc) and CA = Nc in SU(Nc) QCD. This means that the resummation
factors HF

c , Sc and Ccb are not unambiguously defined and according to the prescription
used to uniquely fix their definition one will end up with a different resummation scheme.
In particular, the process dependence can be shifted among the three factors and this is the
reason why we omit the arguments in Eq. (2.29). One of the result of Ref. [129] is the fact
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FIGURE 2.4: Diagrammatic representation of the different factors entering the
resummation formula in the hadroprodution of a color singlet object.

that, employing this freedom, one can define a scheme, dubbed hard scheme1, in which all
the process dependence is contained just in one coefficient, namely the hard coefficient HF

c ,
while both the resummation factors Sc and Ccb are universal and process-independent. In
this scheme, Eq.(2.29) explicitly reads [129]

[HFC1C2]qq̄;a1,a2 = HF
q (x1P1, x2P2; Ω; αs(M2))Cqa1(z1; αs(b2

0/b2))Cq̄a2(z2; αs(b2
0/b2)), (2.37)

where we highlight that the difference in the scales at which the strong coupling is evaluated
(M2 in the case of HF

q and b2
0/b2 in the case of Cqa) is a crucial result of the factorization of the

short distance and process-dependent physics contained in the hard function from the long-
distance and process-independent physics embodied in the universal factors Sc and Ccb.
The specification of the hard scheme (or any other schemes) is not a fundamental one, in the
sense that the qT cross section, its all-order resummation formula (2.25) and any consistent
perturbative truncation (either order-by-order in αS or in classes of logarithmic-enhanced
terms) of the latter [121, 129] does not depend on the resummation scheme at all. On the
other hand, it allows a cleaner presentation and organization of the resummation factors.
Indeed, in the hard scheme, the physical origin of the resummation formula emerges clearly
and can be pictorial represented as in Fig. 2.4: at small-qT, the emission of radiation accom-
panying the final-state system F is strongly inhibited, but for soft and collinear radiation.
Then, a distinctive picture emerges characterized by three class of processes separated in
the qT evolution:

• the process dependent factor HF
c embodies the hard contributions produced by virtual

corrections at transverse-momentum scales qT ∼ M;

• the Sudakov form factor Sc describes real and virtual (through unitary) contributions
associated to soft (Ac(αs)) and flavour-conserving collinear (Bc) radiation at scales
M & qT & 1/b;

• going at very low momentum scale, qT . 1/b, real and virtual soft-gluon corrections
cancel among each other as the cross section is infrared safe. The left over is provided
by initial-state collinear radiation associated to the proton activity and is embodied in
the coefficient functions Cab.

1More precisely, the hard scheme is the scheme in which, order-by-order in perturbation theory, the coefficients

C(n)
ab (z) with n ≥ 1 do not contain any δ(1− z) term.
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qT subtraction formula

In this section, we present and discuss the qT subtraction formula for the color singlet case.
We follow Ref. [121] and introduce the compact notation for the resummation formula in
Eq. (2.25)

dσF

dqTdM2dydΩ
(P1, P2; qT, M, y, Ω) =

M2

S

∫
db

b
2

J0(bqT)WF(b, M, y, Ω) . (2.38)

which has been specialized for the case of processes initiated by the quark-anti quark an-
nihilation channel. The integrand in the resummation formula for this class of processes
depends only on the modulo of the impact parameter b. This factorizes the integration over
the angle in the b-space∫ d2b

(2π)2 eib·qT =
∫ bdbdφ

(2π)2 eibqT cos φ =
∫

db
b
2

1
π
(J0bqT) , (2.39)

with J0(x) the customary 0th-order Bessel function. As already mentioned before, the idea
is to expand the resummation formula at fixed order in αs and to identify the coefficients of
the logarithmic enhanced contributions and of the contact delta term in Eq. (2.9).

Since the resummation formula is expressed in the impact parameter space, the large
logarithms in the small qT limit corresponds to large logarithms in the b → ∞ limit of the
type ln M2b2. Some degree of arbitrariness remains in the definition of the argument of
the logarithm as we are allowed to rescale it as ln M2b2 = ln Q2b2 + ln M2/Q2 provided
Q is independent on b and ln M2/Q2 = O(1) in the limit bM � 1. The resummation scale
Q ∼ M plays in the resummation program the same role assumed by the renormalization µR
and factorization µF scales respectively in the context of renormalization and factorization.
While the all-order resummation formula is independent on this scale, its truncation at some
level of logarithmic accuracy (to be not confused with the fixed order expansion in the strong
coupling) will show a residual dependence on Q which can be interpreted as a measure of
the uncertainty associated to missing higher order terms.

In the application to the subtraction, the final result cannot depend on Q at any fixed
order. In this context, the resummation scale Q can be either neglected or considered as an
additional free parameter that can be used to check the implementation or to shift part of the
corrections from the counterterm to the hard-collinear part. In the following presentation,
we retain the dependence on Q for the sake of generality. Then, we parametrize the large
logarithmic expansion parameter L as

L ≡ ln
Q2b
b2

0
. (2.40)

A second comment regard the behavior of L at small-b (large-qT). Also in this limit, L di-
verges logarithmically. In order to avoid the resummation of this enhanced contribution,
the simplest strategy is given by the introduction of an hard cut-off bmin (corresponding to
a maximum value qT,max). In Ref. [121] a different approach is proposed with the aim to
obtain a procedure to match the fixed order calculation with the resummed one without in-
troducing any arbitrary matching scale (uniform/smooth scaleless matching). The strategy
consists in replacing L with

L̃ = ln
(

Q2b
b2

0
+ 1
)

. (2.41)

The above replacement, which has the effect to reduce the impact of the resummed contri-
bution in the small-b region (where the resummation is not justified), is legitimate in the
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sense explained above, the difference between L and L̃ being of order O(1/(Qb)2) and so
negligible in the large-b limit. In particular, we observe that L̃ is integrable for b→ 0 so that
we can effectively push bmin to 0, or equivalently qT,max = ∞. It is then customary in this
context to organize the fixed order expansion in terms of the perturbative coefficients Σ̃(n)

implicitly defined as

W F
ab(b, M, ŝ; αS, µ2

R, µ2
F, Q2) = ∑

c

dσ̂
(0)
cc̄,F

dM2dΩ
(P1, P2; M, Ω)

{
δca δc̄b δ(1− z)

+
∞

∑
n=1

(αS

π

)n
[

Σ̃F (n)
cc̄←ab

(
z, L̃;

M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
(2.42)

+ HF (n)
cc̄←ab

(
z;

M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)]}
,

where the resummed factorW F
ab is related to the factor WF in Eq. (2.38) by the relation

WF
N(b, M) = ∑

a,b
W F

ab, N(b, M; αS(µ
2
R), µ2

R, µ2
F) fa/h1, N(µ

2
F) fb/h2, N(µ

2
F) . (2.43)

In particular, for n = 1, 2 we have explicitly

Σ̃F (1)
cc̄←ab(z, L̃) = ΣF (1;2)

cc̄←ab(z) L̃2 + ΣF (1;1)
cc̄←ab(z) L̃ , (2.44)

Σ̃F (2)
cc̄←ab(z, L̃) = ΣF (2;4)

cc̄←ab(z) L̃4 + ΣF (2;3)
cc̄←ab(z) L̃3 + ΣF (2;2)

cc̄←ab(z) L̃2 + ΣF (2;1)
cc̄←ab(z) L̃ , (2.45)

where the dependence on the scale ratios M2/µ2
R, M2/µ2

F and M2/Q2 is understood. The
notation cc̄ ← ab denotes the transition from the incoming partons a, on the first leg, and
b, on the second leg, to the cc̄ partons entering the hard scattering process. The NNLO
truncation of Eq. (2.42), supplemented with Eqs. (2.44)-(2.45), represents the explicit form
of Eq. (2.9) in the case of qT subtraction formalism. In this context, X = qT/Q and the
logarithmic terms in Eq. (2.9), are replaced by the more involved functions given by the
Bessel transformation from the b- to the qT-space of the L̃n powers

Ĩn(qT/Q) = Q2
∫ ∞

0
db

b
2

J0(bqT) lnn
(

Q2b2

b2
0

+ 1
)

. (2.46)

whose properties are detailed in Appendix B of Ref. [121]. The qT subtraction formula for
the parton level differential cross section in the hadroproduction of a color singlet system F
can be written with obvious notation in the following compact form

dσ̂F
(N)NLO = HF

(N)NLO ⊗ dσF
LO +

[
dσ

F+jets
(N)LO − dσ̂CT

(N)NLO

]
qT
Q >rcut

, (2.47)

where the symbol⊗ denotes convolutions with respect to the longitudinal-momentum frac-
tions z1 and z2 of the colliding partons and the counterterm reads

dσ̂CT = dσ̂F
LO ⊗ Σ̃

(
qT

Q

)
. (2.48)

We stress that Eq. (2.47) must be interpreted as explicitly stated in Eq. (2.17) for a generic
non-local subtraction scheme, with Xmax → ∞, i.e. the counterterm for large qT is integrated
up to infinity. In the small-qT region instead, since the counterterm does not act locally, the
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difference in the square bracket is integrated up to qT/M = rcut > 0, rcut being a dimension-
less cut-off parameter.
Having given the basic structure of the subtraction, the explicit form of the perturbative b-
independent coefficients ΣF (1;k)(z),HF (1)(z), ΣF (2;k)(z) andHF (2)(z), required to performed
the computation up to NNLO, is presented in the following formulae in terms of the per-
turbative resummation coefficients. The results are more easily presented in terms of the
N-moments with respect to the variable z2. We have

ΣF (1;2)
cc̄←ab, N = − 1

2
A(1)

c δcaδc̄b , (2.49)

ΣF (1;1)
cc̄←ab, N(M2/Q2) = −

[
δcaδc̄b

(
B(1)

c + A(1)
c `Q

)
+ δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

]
, (2.50)

HF (1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b

[
HF (1)

c −
(

B(1)
c +

1
2

A(1)
c `Q

)
`Q − pcFβ0`R

]
+δcaC(1)

c̄b, N + δc̄bC(1)
ca, N +

(
δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

)
(`F − `Q) , (2.51)

ΣF (2;4)
cc̄←ab, N =

1
8

(
A(1)

c

)2
δcaδc̄b , (2.52)

ΣF (2;3)
cc̄←ab, N(M2/Q2) = − A(1)

c

[
1
3

β0 δcaδc̄b +
1
2

ΣF (1;1)
cc̄←ab, N(M2/Q2)

]
, (2.53)

ΣF (2;2)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= − 1

2
A(1)

c

[
HF (1)

cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− β0 δcaδc̄b (`R − `Q)

]
− 1

2 ∑
a1,b1

ΣF (1;1)
cc̄←a1b1, N(M2/Q2)

[
δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

]
(2.54)

− 1
2

[
A(2)

c δcaδc̄b +
(

B(1)
c + A(1)

c `Q − β0

)
ΣF (1;1)

cc̄←ab, N(M2/Q2)
]

,

ΣF (2;1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= ΣF (1;1)

cc̄←ab, N(M2/Q2) β0 (`Q − `R)

− ∑
a1,b1

HF (1)
cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

) [
δa1aδb1b

(
B(1)

c + A(1)
c `Q

)
+ δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

]
−

[
δcaδc̄b

(
B(2)

c + A(2)
c `Q

)
− β0

(
δcaC(1)

c̄b, N + δc̄bC(1)
ca, N

)
+ δcaγ

(2)
c̄b, N + δc̄bγ

(2)
ca, N

]
, (2.55)

2In this work, we define the N-moments fN of any function f (z) of the variable z as fN =
∫ 1

0 dz zN−1 f (z) .
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HF (2)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b HF (2)

c + δca C(2)
c̄b, N + δc̄b C(2)

ca, N + C(1)
ca, N C(1)

c̄b, N

+ HF (1)
c

(
δca C(1)

c̄b, N + δc̄b C(1)
ca, N

)
+

1
6

A(1)
c β0 `

3
Q δcaδc̄b +

1
2

[
A(2)

c δcaδc̄b + β0 ΣF (1;1)
cc̄←ab, N(M2/Q2)

]
`2

Q

−
[
δcaδc̄b

(
B(2)

c + A(2)
c `Q

)
− β0

(
δcaC(1)

c̄b, N + δc̄bC(1)
ca, N

)
+ δcaγ

(2)
c̄b, N + δc̄bγ

(2)
ca, N

]
`Q

+
1
2

β0

(
δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

)
`2

F +
(

δcaγ
(2)
c̄b, N + δc̄bγ

(2)
ca, N

)
`F −HF (1)

cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
β0`R

+
1
2 ∑

a1,b1

[
HF (1)

cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+ δca1 δc̄b1 HF (1)

c + δca1 C(1)
c̄b1, N + δc̄b1 C(1)

ca1, N

]
×

[(
δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

)
(`F − `Q)− δa1aδb1b

((
B(1)

c +
1
2

A(1)
c `Q

)
`Q + pcF β0 `R

)]
− δcaδc̄b pcF

(
1
2

β2
0 `

2
R + β1 `R

)
. (2.56)

In the above formulae, pcF is the power of the αn
s factor in the LO partonic process, we have

defined

`R = ln
M2

µ2
R

, `F = ln
M2

µ2
F

, `Q = ln
M2

Q2 . (2.57)

and γab, N(αS) are the parton anomalous dimensions or, more precisely, the N-moments of
the customary Altarelli–Parisi splitting functions Pab(αS, z) [70, 131–133]:

γab, N(αS) =
∫ 1

0
dz zN−1 Pab(αS, z) =

∞

∑
n=1

(αS

π

)n
γ
(n)
ab, N . (2.58)

We observe that the required ingredients for

• a NLO order computation are the universal resummation coefficients A(1)
c , B(1)

c , C(1)
ab ,

the perturbative coefficient β0 of the QCD β-function, the process-dependent hard-
virtual function HF(1)

c and the LO Altarelli-Parisi splitting functions;

• a NNLO order computation are, in addition to the previous ones, the universal re-
summation coefficients A(2)

c , B(2)
c , C(2)

ab , the perturbative coefficient β1 of the QCD β-
function, the NLO Altarelli-Parisi splitting functions.

It is worth to mention that in terms of the logarithmic accuracy, the A(1)
c coefficient controls

the Leading-Log (LL), then B(1)
c and A(2)

c enter the computation at Next-to-Leading-Log
(NLL) and the coefficient B(2)

c starts to appear at Next-to-Next-to-Leading-Log (NNLL). All
the ingredients required for a NNLO computation are known and for ease of reading we
collect them in Appendix A.

Before concluding this section, we comment on the universality of the qT subtraction
formula. Since the perturbative coefficient functions A(n)

c , B(n)
c , C(n)

ab are universal, they can
be computed once and for all in a specific process and then they are fixed for the entire class
of processes to which it belongs. In particular, this means that one has to carry out explicitly
the computation for one process initiated by the quark-anti quark annihilation channel and
another one initiated by the gluon fusion channel to fully specify the counterterm for the
entire class of color-singlet processes. By explicitly carry out we mean that it is really needed
to perform the integration of the total cross section at small-qT analytically, as it has been
done in Ref. [134] (vector boson) and Ref.[135] (Higgs), in order to extract the expressions of
the these universal coefficients.
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In the hard scheme, the hard-virtual coefficient HF
c contains all the process-dependent

contributions due to virtual corrections. In principle, one should compute it process-by-
process performing the integration of the cross section as discussed before, making the ex-
tension to a new process (in the same class of reactions for which all the other universal
coefficients are know) cumbersome. On the other hand, multi-loop virtual scattering am-
plitudes can be computed independently exploiting other strategies and are usually the in-
gredients required in local subtraction formalism. It arises naturally the question whether
it is possible to relate the multi-loop virtual amplitudes to the hard-virtual function in such
a way that from the knowledge of the former it is possible to get the latter. The answer to
this question is affermative and it is the main result of Ref. [136]. In practice, starting from
the on-shell multi-loop virtual amplitude Mcc̄→F renormalized in the MS scheme (UV fi-
nite, IR divergent), one introduces an auxiliary amplitude M̃cc̄→F by means of the following
factorization formula

M̃cc̄→F( p̂1, p̂2; {qi}) =
[
1− Ĩc(ε, M2)

]
Mcc̄→F( p̂1, p̂2; {qi}) , (2.59)

with

Ĩc(ε, M2) =
αS(µ2

R)

2π
Ĩ(1)c (ε, M2/µ2

R) +

(
αS(µ2

R)

2π

)2

Ĩ(2)c (ε, M2/µ2
R)

+
∞

∑
n=3

(
αS(µ2

R)

2π

)n

Ĩ(n)c (ε, M2/µ2
R) .

(2.60)

The subtraction factor Ĩc(ε, M2) removes from the original Mcc̄→F the IR divergent poles
plus some definite amount of IR finite terms, which specifically depend on the transverse-
momentum cross section in Eq. (2.19) but are otherwise process-independent. We report
the explicit expression of the coefficients Ĩ(1)c (ε, M2/µ2

R) and Ĩ(2)c (ε, M2/µ2
R) in Appendix A.

What it is worth noticing is that to fix the structure of the subtraction operator, at least up to
the second order, it is sufficient to use only one process, either initiated at LO by the quark-
anti quark channel or by the gluon fusion, as the dependence on the parton c factorizes and,
hence, can be easily derived from one case to the other. In particular, this holds for the fi-
nite part of Ĩ(2)c (ε, M2/µ2

R), for which all the dependence on the parton c is contained in the
overall color charge factor Cc (Cq = CF, Cg = CA) (see Eq. (A.59)). This represents one of
main results of the universality of the transverse-momentum resummation.
The process-dependent resummation coefficients HF

c can then be written as follows

α
pcF
S (M2) HF

q (x1P1, x2P2; Ω; αS(M2)) =
|M̃qq̄→F(x1 p1, x2 p2; {qi})|2

|M(0)
qq̄→F(x1 p1, x2 p2; {qi})|2

. (2.61)

in the case of processes initiated by quark-anti quark annihilation.

2.2.2 Heavy-quark production

The qT subtraction formalism is not limited to the color-singlet case. In the previous sec-
tion, we have argued that the qT observable does not act as a good resolution variable for
processes involving jets in the final state. We recall that the reason is that the qT does not
control the collinear final-state singular limit, so that a radiated (and massless) parton can
become collinear to another massless parton in the finale-state regardless qT is vanishing or
not. We observe that, in order to develop collinear final-state singularities, massless partons
must appear in the lowest order partonic subprocesses, because otherwise the mass acts
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FIGURE 2.5: Feynman diagrams contributing to the NLO real corrections in
the hadroproduction of a heavy-quark pair: initial-state radiation (left), final-

state radiation (right).

as a physical regulator of these divergences. Therefore we can think to look at processes
involving massive coloured final-state systems.
In particular, consider the inclusive process of hadroprodution of a heavy-quark pair

h1(P1) + h2(P2)→ Q(p3) + Q̄(k2) + X (2.62)

At lowest order, both the quark-anti quark annihilation qq̄ → QQ̄ and the gluon fusion
gg → QQ̄ partonic channels are possible. In the following, we argue that the transverse
momentum qT of the heavy-quark pair can be used as a resolution variable for this case. In
Fig. 2.5, we report two illustrative Feynman diagrams of real corrections to the quark-anti
quark annihilation channel:

• initial-state radiation (left panel of Fig. 2.5): the situation is perfectly analogous to
that of color singlet in Fig. 2.2. The IR divergences are associated to the t-channel
propagator and the kinematics is the same. Therefore, we conclude that qT acts as a
resolution variable for this case.

• final-state radiation (right panel of Fig. 2.5): the situation is similar to the V + 1 jet
in Fig. 2.3, with the fundamental difference that now the quark is massive. We con-
sider the massive propagator carrying the momentum k = p3 + r and use again the
parametrization of the momenta in terms of transverse momentum, rapidity and az-
imuthal angle:

p3 = (E3,T cosh y3, p3,T cos φ1, p3,T sin φ1, E3,T sinh y1), E3,T =
√

m2
Q + p2

3,T, (2.63)

r = (qT cosh yr, qT cos φr, qT sin φr, qT sinh yr), (2.64)

where mQ is the mass of the heavy quark and we have exploited the conservation of
the tri-momentum, so that rT = qT. Then, the propagator can be written as

1
2p3 · r

=
1

2qT [E3,T cosh(y3 − yr)− p3,T cos(φ1 − φr)]
=

1
2qT

1
[E3,T cosh ∆y− p3,T cos ∆φ]

.

(2.65)
As long as mQ is not vanishing, the quantity [E1,T cosh ∆y− k1,T cos ∆φ] is finite and
the propagator is divergent if and only if qT = 0. We conclude that also in this case,
the qT variable is a good resolution variable.
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Transverse-momentum resummation and qT subtraction formula at NLO

In the last few years, thanks to the formulation of transverse-momentum resummation for
heavy-quark production [44–48] the qT subtraction formalism has been extended and ap-
plied to the production of top-quark pairs [49–51]. In this section, we will briefly review the
main results and present explicitly the qT subtraction formula at NLO accuracy.
Adopting the same notation of the previous section, the all-order transverse momentum
resummation formula reads [46]

dσ
sing
QQ̄

d2qTdM2dydΩ
(P1, P2; qT, M, y, Ω) =

M2

S ∑
c=q,q̄,g

dσ̂
(0)
cc̄,QQ̄

dM2dΩ
(P1, P2; M, Ω)

×
∫ d2b

(2π)2 eib·qT Sc(M, b) ∑
a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[H∆C1C2]cc̄;a1,a2 fa1/h1(x1, b2

0/b2) fa2/h2(x2, b2
0/b2) .

(2.66)

Compared to the color singlet case, Eq. (2.25), we see that the structure is similar. The im-
portant difference is all enclosed in the symbolic notation [H∆C1C2]cc̄;a1,a2 . In particular, the
factor ∆ embodies the new contributions due to the accompanying soft-parton radiation in
QQ̄ production. Formally, this means that the color-singlet case can be recovered setting
∆ = 1. To be more precise, the analog of Eq. (2.37) for the quark-anti quark annihilation
channels is

[(H ∆)C1C2]cc̄;a1a2
= (H ∆)cc̄ Cc a1(z1; αS(b2

0/b2)) Cc̄ a2(z2; αS(b2
0/b2)) , (c = q, q̄) , (2.67)

which makes manifest that the collinear coefficient functions Cab are the same of the color
singlet case.

The factors (H ∆) in Eq. (2.67) depend on b, M and on the kinematic variables of the
elastic partonic process

c(p1) + c̄(p2)→ Q(p3) + Q̄(p4) , (2.68)

In the shorthand notation (H ∆) for the contribution of the factors H and ∆, it is hidden
the non-trivial dependence on the colour structure (and colour indices) of the elastic par-
tonic process. To take into account the colour dependence, the colour space formalism of
Ref. [137] is used: the colour-index dependence of the scattering amplitudeM of the pro-
cess in Eq. (2.68) is represented by a vector |M 〉 in colour space, and colour matrices are
represented by colour operators acting onto |M 〉. Using the colour space formalism, we can
write the explicit representation of (H ∆). In the case of the quark-anti quark annihilation
channel, we have

(H ∆)cc̄ =
〈 M̃cc̄→QQ̄ | ∆ | M̃cc̄→QQ̄ 〉

α2
S (M2) |M(0)

cc̄→QQ̄(p1, p2; p3, p4)|2
, (c = q, q̄) . (2.69)

In the above, the IR finite auxiliary hard-virtual amplitude M̃cc̄→QQ̄ is defined by an exten-
sion of Eq. (A.52):

| M̃cc̄→QQ̄(p1, p2; p3, p4)〉 =
[
1− Ĩcc̄→QQ̄(αS(M2), ε)

]
|Mcc̄→QQ̄(p1, p2; p3, p4)〉 , (2.70)
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in terms of a suitable subtraction operator for heavy-quark Ĩcc̄→QQ̄(αS(M2), ε), which is cal-
culable order by order by order in perturbation theory:

Ĩcc̄→QQ̄(αS(M2), ε) =
αS(µ2

R)

2π
Ĩ(1)cc̄→QQ̄(ε, M2/µ2

R) +
∞

∑
n=2

(
αS(µ2

R)

2π

)n

Ĩ(n)cc̄→QQ̄(ε, M2/µ2
R) .

(2.71)

The factor ∆ depends on the impact parameter b, on M and on the kinematics of the par-
tonic process in Eq. 2.68. The kinematic dependence is specified by the rapidity difference
y34 = y3− y4 between Q(p3) and Q̄(p4) and the azimuthal angle φ3 of the quark Q(p3). The
all-order structure of ∆ is

∆(b, M; y34, φ3) = V†(b, M; y34) D(αS(b2
0/b2); φ3b, y34) V(b, M; y34) , (2.72)

where

V(b, M; y34) = Pq exp

{
−
∫ M2

b2
0/b2

dq2

q2 Γt(αS(q2); y34)

}
, (2.73)

Γt(αS; y34) =
αS

π
Γ
(1)
t (y34) +

(αS

π

)2
Γ
(2)
t (y34) +

∞

∑
n=3

(αS

π

)n
Γ
(n)
t (y34) , (2.74)

D(αS; φ3b, y34) = 1 +
αS

π
D(1)(φ3b, y34) +

∞

∑
n=2

(αS

π

)n
D(n)(φ3b, y34) . (2.75)

We remark that

• The colour operator (matrix) Γt is the soft anomalous dimension matrix, specific of
transverse-momentum resummation for QQ̄ production. This quantity is computable
order-by-order in αS as in Eq. (2.74) and embodies the non-trivial colour correlations
induced by soft-parton radiation. The first two coefficient functions Γ

(1)
t (y34) and

Γ
(2)
t (y34) are directly related to the IR structure of the virtual amplitude
|Mcc̄→QQ̄(p1, p2; p3, p4)〉 [138–140].

• V is an evolution operator which resums large logarithmic terms αn
S (M2) lnk(Mb)

(with k ≤ n). According to Eq. (2.73) it is obtained by the exponentiation of the in-
tegral of the soft anomalous dimension. The symbol Pq in Eq. (2.73) denotes the anti
path-ordering of the exponential matrix with respect to the integration variable q2.

• The colour operator D in Eq. (2.72), computable as a powers series expansion in αS(b2
0/b2)

(see Eq. (2.75)), embodies azimuthal correlations, specific of the heavy-quark pair pro-
duction process, at scale qT ∼ 1/b.

The physical interpretation is as follows (see Fig. 2.6): aside the common structure shared
with the color singlet case, the new factor ∆, specific of QQ̄ production, is due to QCD
radiation of soft non-collinear (at wide angles with respect to the direction of the initial-
state partons) partons from the underlying subprocess cc̄ → QQ̄. ∆ embodies the effect
of soft radiation from the QQ̄ final state and from initial-state and final-state interference
at scales 1/b∼< qT ∼< M. Therefore, ∆ resums additional NLL logarithmic terms αn

S lnk(Mb).
Moreover, soft-parton radiation at the scale qT ∼ 1/b has a ‘special’ physical role, since it is
eventually responsible for azimuthal correlations.
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FIGURE 2.6: Diagrammatic representation of the different factors entering the
resummation formula in the hadroprodution of a heavy-quark pair.

For the application to the NLO subtraction, we report here the explicit expressions of the
coefficient functions (colour matrix) Γ

(1)
t (y34) and Ĩ(1)cc̄→QQ̄(ε, M2/µ2

R) [46]:

Γ
(1)
t (y34) = −

1
4

(T2
3 + T2

4) (1− iπ) + ∑
i=1,2
j=3,4

Ti · Tj ln
(2pi · pj)

2

M2m2

+ 2 T3 · T4

[
1

2v
ln
(

1 + v
1− v

)
− iπ

(
1
v
+ 1
)]}

, (2.76)

where Ti are the color charge matrices in the colour space formalism of Ref. [137], m is the
heavy-quark mass, M is the invariant mass of the heavy-quark pair , and

Ĩ(1)cc̄→QQ̄

(
ε,

M2

µ2
R

)
= −1

2

(
M2

µ2
R

)−ε {( 1
ε2 + iπ

1
ε
− π2

12

)
(T2

1 + T2
2) +

2
ε

γc

− 4
ε

Γ
(1)
t (y34) + F(1)

t (y34)

}
, (2.77)

where

v =

√
1− m4

(p3 · p4
)2 =

√
1−

(
2m2

M2 − 2m2

)2

(2.78)

is the relative velocity of Q and Q̄ in the partonic center-of-mass frame.
The flavour dependent coefficients γc (c = q, q̄, g) originate from collinear radiation: the
explicit values of these coefficients are γq = γq̄ = 3CF/2 and γg = (11CA − 2N f )/6, and N f
is the number of flavours of massless quarks (e.g., N f = 5 in the case of tt̄ production). The
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IR finite contribution F(1)
t in Eq. (A.54) is

F(1)
t (y34) = (T2

3 + T2
4) ln

(
m2

T
m2

)
+ (T3 + T4)

2 Li2

(
−p2

T
m2

)
+ T3 · T4

1
v

L34 , (2.79)

where the function L34 is

L34 = ln
(

1 + v
1− v

)
ln
(

m2
T

m2

)
− 2 Li2

(
2v

1 + v

)
− 1

4
ln2
(

1 + v
1− v

)
+ 2

[
Li2

(
1−

√
1− v
1 + v

e y34

)
+ Li2

(
1−

√
1− v
1 + v

e−y34

)
+

1
2

y2
34

]
(2.80)

and Li2 is the customary dilogarithm function, Li2(z) = −
∫ z

0
dt
t ln(1− t).

According to the qT subtraction formalism, the parton level differential cross section dσQQ̄
NLO

for the inclusive production process pp→ QQ̄ + X can be written as

dσ̂QQ̄
NLO = HQQ̄

NLO ⊗ dσ̂QQ̄
LO +

[
dσ̂

QQ̄+jet
(N)LO − dσ̂QQ̄, CT

(N)NLO

]
, (2.81)

where dσ̂
QQ̄+jet
LO is the QQ̄+jet cross section at LO accuracy. As usual, the square bracket term

of Eq. (2.81) is IR finite in the limit qT → 0, but its individual contributions, dσ̂
QQ̄+jet
(N)LO and

dσ̂QQ̄, CT
(N)NLO, are separately divergent.

The explicit expression of dσ̂QQ̄, CT
NLO in the partonic channel ab→ QQ̄ + X reads [49]

dσ̂QQ̄, CT
NLO ab = ∑

c=q,q̄,g

αS

π
Σ̃QQ̄(1)

cc̄←ab ⊗ dσ̂QQ̄
LO cc̄

dq2
T

M2 , (2.82)

where M is the invariant mass of the QQ̄ pair and the symbol ⊗ denotes convolutions with
respect to the longitudinal-momentum fractions z1 and z2 of the colliding partons. The
functions Σ̃QQ̄(1)

cc̄←ab in Eq. (4.21) can be written as

ΣQQ̄(1)
cc̄←ab (z1, z2; r) = ΣQQ̄(1,2)

cc̄←ab (z1, z2) Ĩ2(r) + ΣQQ̄(1,1)
cc̄←ab (z1, z2) Ĩ1(r) (2.83)

where r = qT/M, and the coefficients ΣQQ̄(1,k)
cc̄←ab (z1, z2) (k = 1, 2) read

ΣQQ̄(1,2)
cc̄←ab (z1, z2) = ΣF(1,2)

cc̄←ab(z1, z2) (2.84)

ΣQQ̄(1,1)
cc̄←ab (z1, z2) = ΣF(1,1)

cc̄←ab(z1, z2)

− δcaδc̄bδ(1− z1)δ(1− z2)
〈Mcc̄→QQ̄|

(
Γ
(1)
t + Γ

(1)†
t

)
|Mcc̄→QQ̄〉

|Mcc̄→QQ̄|2
. (2.85)

The coefficient ΣQQ̄(1,2)
cc̄←ab (z1, z2) in Eq. (2.84) controls the leading logarithmic contribution at

small qT, while the coefficient ΣQQ̄(1,1)
cc̄←ab (z1, z2) in Eq. (2.85) controls the next-to-leading loga-

rithmic term. Since final-state soft-parton radiation starts to contribute at NLL, the former
coincides with the color singlet coefficient ΣF(1,1)

cc̄←ab(z1, z2), Eq. (2.49). The latter has a first term
(first line in Eq. (2.85)) which is identical to what we have in the case of the production of
a colour singlet, Eq. (2.50). The second term (second line in Eq. (2.85)) is due to soft-parton
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radiation and it is the additional term that is specific of the qT subtraction method for the
case of heavy-quark pair production [49]. The first-order hard-collinear coefficients HQQ̄

NLO
in Eq. (2.81) are also completely known [44–46].
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Chapter 3

Mixed QCD-QED corrections to
on-shell Z production

So far, the qT subtraction formalism has been applied only to handle QCD corrections. This
is easily understood as the main focus has been in applications to hadronic collider physics,
where the uncertainties are dominated by the modeling of strong interactions. In the intro-
duction chapter, we have already discussed the relevance and the physical motivations to
include EW corrections for the precision physics program at LHC and future colliders.

In general, virtual EW corrections are more involved than the QCD counterpart, as we
will briefly discuss in the next chapter. From the point of view of the subtraction, the sit-
uation is simpler as the IR divergences are associated either to the propagation of virtual
or to the emission of real photons. Indeed, for electroweak corrections involving massive
Z and W bosons, the mass of the vector boson regulates the IR divergences. Therefore the
structure of the IR counterterms needed for EW corrections can be put in correspondence
with the abelian subset of those needed for the QCD case. This means that, while in the
loops virtual (massive) electroweak bosons can propagate, we only consider real emission
processes with additional (massless) photons in the final state.

We briefly comment that, at energies much larger than the electro-weak boson masses,
the IR sensitivity yields the well known large logarithmic enhancements of the ratio of the
vector boson mass over the partonic center of mass energy. It is questionable whether to
naively add also the real emission process of a massive vector boson. Indeed, both vir-
tual and real corrections give rise to such large logarithms, which cancel in fully inclusive
observables according to the KLN theorem. At variance with the case of massless gauge
theories, however, there are two main differences: first, for massive gauge bosons, both vir-
tual and real contributions, which usually lead to two different experimental signatures, are
separately finite, so that there is no need to combine them for physical observables. Second,
even if the measurement is completely inclusive over the final state, the initial beams of col-
liders are typically not SEE(2) singlets, such that one can never respect the conditions of the
KLN theorem. In this work, we do not discuss further these aspects.

In principle, there is no limitation in the adaption of an existing QCD subtraction scheme
to the case of the EW corrections in the sense discussed above. For applications to NLO EW
corrections, the preferable choice is naturally given by general-purpose local subtraction
schemes, as dipole or FKS. On the other hand, the extension of the qT subtraction formalism
to the EW case will make possible to develop a suitable subtraction scheme to deal with
higher order corrections, as the mixed QCD-EW(or QED) and the NNLO EW ones.

In this chapter, we will outline the strategy adopted to extend the qT subtraction method
to the EW case focusing on initial-state radiation. We have applied the new formalism to
compute the mixed QCD-QED correction to on-shell Z production. All the ingredients re-
quired to carry out this computation are available, including the two-loop virtual amplitude
and, furthermore, the total cross section is known in analytic form [13]. This provides us
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with a perfect playground and a very stringent way to test our construction in all its part
and to study its numerical efficiency.

3.1 The qT subtraction formalism for initial-state mixed QCD-EW
corrections

3.1.1 Abelianisation procedure at NLO

Consider the production of a color singlet and neutral charge object F in hadron-hadron
collisions

h1(P1) + h2(P2)→ F(q) + X, (3.1)

where q denotes the total momentum of the F system and q2 = M2 is its mass. Since photons
and gluons do not couple each other, mixed corrections are vanishing for the gluon fusion
channel, so that we can focus to the case the reaction starts at lowest order in the quark-anti
quark annihilation channel

q(p1) + q̄(p2)→ F(q) . (3.2)

In order to clarify the notation and explain the main ideas, we consider as first step
the case of NLO EW corrections. In general, at NLO we have to consider the EW virtual
corrections to the Born process in Eq. (3.2), the process of a real photon

q(p1) + q̄p2 → F(q) + γ(k) . (3.3)

and the photon induced processes

q(p1) + γ(p2)→ F(q) + q(k), q̄(p1) + γ(p2)→ F(q) + q̄(k) . (3.4)

In a way similar to what happens for QCD corrections, new partonic channels open
going to higher order in the perturbative expansion. In this context, photons are treated as
partons, i.e. constituents of the protons, to which one associates a customary parton density
function, the photon pdf. The precise determination of the photon content of the proton has
been achieved recently [141, 142]. The resulting LUX_QED photon pdf have become part of
the major pdf sets. The evolution from one energy scale to another is performed by solving
the coupled system of DGLAP [131, 143, 144], including the photon pdf itself.

The photonic real emission processes in Eq.(3.3) and Eq. (3.4) are in one-to-one corre-
spondence to the QCD real corrections, from which can be obtained by simply replacing the
gluon with the photon, as showed in Fig. 3.1. Since the diagrams in correspondence are the
same, the QCD and QED contributions differ only by an overall factor which is related only
to the color and the electric charges, while it does not depend on the kinematics. This allows
to map the results from one type of correction to the other by constructing a suitable list of
replacement rules. The structure of the singularities is the same in the two cases, so that the
same replacement rules can be applied to both the counterterm and the hard-collinear func-
tions to obtained the EW version of the subtraction. In particular, this means the structure
of the subtraction is the same as in Eq. (2.38).

To distinguish between QCD and EW, we introduce the notation (i, j), which may ap-
pear as pre-subscript or superscript, with i and j denoting the order of the QCD and EW
correction respectively. Therefore, (1, 0) stands for NLO QCD, (0,1) for NLO EW, (1,1) for
the mixed QCD-EW and so forth. Explicitly, all the coefficient functions needed for the NLO
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q f g

q̄ f F

−→

q f γ

q̄ f F
g q̄ f

q̄ f F

−→

γ q̄ f

q̄ f F

FIGURE 3.1: The photonic real corrections contributing to the NLO EW correc-
tions in the hadroproduction of a color singlet and neutral object F (schemat-
ically depicted as an electroweak gauge boson) are obtained by replacing a

gluon with a photon starting from the QCD real corrections.

EW corrections in the production of a neutral object F are:

(0,1)Σ
F (1;2)
cc̄←ab, N = − 1

2
A(0,1)

c δcaδc̄b , (3.5)

(0,1)Σ
F (1;1)
cc̄←ab, N(M2/Q2) = −

[
δcaδc̄b

(
B(0,1)

c + A(0,1)
c `Q

)
+ δcaγ

(0,1)
c̄b, N + δc̄bγ

(0,1)
ca, N

]
, (3.6)

(0,1)H
F (0,1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b

[
HF (0,1)

c −
(

B(0,1)
c +

1
2

A(0,1)
c `Q

)
`Q − pQED

cF βQED
0 `R

]
+δcaC(0,1)

c̄b, N + δc̄bC(0,1)
ca, N +

(
δcaγ

(0,1)
c̄b, N + δc̄bγ

(0,1)
ca, N

)
(`F − `Q) , (3.7)

where it understood c = q. The structure is perfectly analogous to the QCD case (which can
be written in this notation replacing everywhere (0, 1) with (1, 0) ). To completely determine
the subtraction scheme, the resummation coefficients A(0,1)

c and B(0,1)
c , the Altarelli-Parisi

QED splitting-kernel P(0,1)
ab (z) and the the collinear functions C(0,1)

ab (z) must be supplied.
Following the above reasoning, everything can be obtained starting from the QCD case
and applying suitable replacement rules. To extract the latter, we consider again the two
processes in Fig. 3.1 which correspond to

• qq-splitting: q→ q(g)

• qg-splitting: g→ q(q̄)

In the first process, the color factor, including the color average, and the electric charge
associated to the two diagrams are

1
N2

c
Tr[TaTa] =

CF

Nc
−→ 1

N2
c

Nce2
f =

e2
f

Nc
, (3.8)

Then, we get the replacement rule
CF → e2

f , (3.9)

where f specifies the flavour of quark occurring in the splitting as the electric charge de-
pends on this information. In other words, we are replacing the QCD color casimir charge



66 Chapter 3. Mixed QCD-QED corrections to on-shell Z production

(C f ) with the QED electric casimir charge (e2). This introduces a difference with the QCD
case which is flavour blind. In general, we should explicitly add the dependence on the
flavour index. In order to keep the notation simple and unified as much as possible, we
prefer to have the flavour index implicitly defined in each parton label a which must now
be understood as a = {a, fa}. Keeping this in mind and applying the replacement rule in
Eq. (3.9), we get

A(0,1)
q =

e2
f

CF
A(1,0)

q = e2
f , B(0,1)

q =
e2

f

CF
B(1,0)

q = −3
2

e2
f (3.10)

and for the qq Altarelli-Parisi splitting function P(0,1)
qq and the collinear function C(0,1)

qq ,

P(1,0)
qq → P(0,1)

qq (z) =
1
2

e2
f

CF
P(1,0)

qq (z) = e2
f

[
1 + z2

(1− z)+
+

3
2

δ(1− z)
]

; (3.11)

C(1,0)
qq → C(0,1)

qq (z) =
e2

f

CF
C(1,0)

qq (z) = e2
f
1
2
(1− z). (3.12)

In the same way, from the second splitting process, we have that

1
Nc

1
N2

c − 1
Tr[TaTa] =

TR

Nc
−→ 1

Nc
Nce2

f = e2
f , (3.13)

which corresponds to the replacement rule

TR → e2
f Nc. (3.14)

Then, the qγ Altarelli-Parisi splitting function P(0,1)
qγ and the collinear remnant C(0,1)

qγ read:

P(1,0)
qg → P(0,1)

qγ (z) =
e2

f NC

TR
P(1,0)

qg (z) =
1
2

e2
f Nc(1− 2z + 2z2) (3.15)

C(1,0)
qg → C(0,1)

qγ (z) =
e2

f NC

TR
C(1,0)

qg (z) = e2
f Ncz(z− 1) (3.16)

For completeness, we report also the results for the γq splitting (q→ γ(q))

P(1,0)
gq → P(0,1)

γq (z) =
1
2

e2
f

CF
P(1,0)

qq (z) = e2
f
1 + (1− z)2

z
; (3.17)

C(1,0)
gq → C(0,1)

γq (z) =
e2

f

CF
C(1,0)

qq (z) = e2
f
1
2

z. (3.18)

This splitting is relevant, for example, in the hadroproduction of a dilepton pair via the
Drell-Yan mechanism

h1(P1) + h2(P2)→ l+(p3) + l−(p4) (3.19)

that will be discussed in the next chapter. In this case, at Born level, the process can be
initiated, beside by the quark-anti quark annihilation channel, also by the photon-photon
partonic process γ + γ → l+ + l−. In Fig. 3.2, we show the Feynman diagram associated to
the real correction containing the γq splitting.

Before concluding, we comment on the treatment of the photon pdf within our formal-
ism. Since the collinear mass singularities is subtracted in the same way as in the QCD case,
it must be understood that we are using a MS factorization prescription also for the photon
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q f q f

l+

γ l−

FIGURE 3.2: Example of Feynman diagram contributing to the NLO real cor-
rections in the hadroproduction of a massive dilepton pair containing the γq

splitting.

PDF. Therefore, the input photon pdf used should be consistently defined and evolved in the
same scheme. In general, the conversion to another factorization scheme can be computed
order-by-order in perturbation theory [70]. It should be kept in mind that even if formally
equivalent at any fixed order accuracy, the result given by two different schemes can be nu-
merical different as they organize the perturbative series in a peculiar way which can lead to
a different impact of the high order contributions. The conversion to the DIS scheme, which
is the other common choice, at NLO accuracy in the electromagnetic coupling can be found
in the Appendix A of Ref. [145].

3.1.2 Abelianisation for mixed QCD-EW corrections

The procedure outlined in the previous section can be extended to higher order corrections.
In particular, starting from the qT subtraction formula at NNLO in QCD one can derive the
structure both for the mixed corrections QCD-EW and for the pure NNLO EW (or QED). At
this order, the correspondence between the QCD and the QED diagrams associated to the
radiative corrections to the quark-anti quark annihilation channel is a bit more involved as
the contributions due to the non-abelian component of QCD start to appear in the game. In
this context, one more specifically talks about abelianisation referring to the procedure aiming
at determine the abelian subset of the QCD computation in order to extract the results for
the EW/QED case.

This strategy is nowadays well established in the literature and it has proved itself suc-
cessful and useful in a number of applications highly related to our study case: the deriva-
tion of order O(α), O(α2) and O(αsα) Altarelli-Parisi splitting kernels [52, 146], the exten-
sion of the transverse-resummation formalism to the neutral Z boson production [147]
combining QED and QCD corrections, the computation of mixed corrections to the inclu-
sive on-shell Z production [13], the first computation at the differential level of the mixed
corrections to the hadroproduction of a dilepton pair via the Drell-Yan mechanism in the
approximation of an on-shell Z within the framework of nested local subtraction [18]. In
particular, in Ref.[52] the abelianisation procedure is presented in details and their results
on the mixed splitting kernels are an essential ingredient to build the qT subtraction formula
for the O(αsα) corrections.

In principle, the combined QED and QCD transverse-momentum resummation formal-
ism of Ref. [147] represents the first step of the usual construction of the qT subtraction
formalism. In practice, this means to expand at fixed order in the couplings their results on
the expansion in the large logarithms (in the small-qT limit) of the singular component of
the differential cross section. We observe that in that work the resummation program has
be carried out up to LL with respect to the mixed correction, while to fully specify the sub-
traction also NLL subleading contributions are required. We prefer to start directly from the
qT subtraction at NNLO QCD and use the results in Ref. [147] as a non-trivial cross check,
especially for some combinatorics.
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Let us start from the counterterm. From the discussion in the previous section, it should
be clear that it shares the same structure of the NNLO QCD counterterm, i.e.

dσ̂F
LO ⊗ (1,1)Σ̃

F (2)
cc̄←ab(z, L̃) (3.20)

with the explicit expression of (1,1)Σ̃
F (2)
cc̄←ab(z, L̃) given by

(1,1)Σ̃
F (2)
cc̄←ab(z, L̃) = (1,1)Σ

F (2;4)
cc̄←ab(z) L̃4 + (1,1)Σ

F (2;3)
cc̄←ab(z) L̃3 + (1,1)Σ

F (2;2)
cc̄←ab(z) L̃2 + (1,1)Σ

F (2;1)
cc̄←ab(z) L̃ ,

(3.21)
each coefficient function being associated to the power of the corresponding logarithmic
divergence in the small-qT limit. Consider first the most divergent term (1,1)Σ

F (2;4)
cc̄←ab(z). It is

associated to two qq splittings becoming soft-collinear at the same time. This can only occurs
for the diagonal quark-anti quark annihilation channel. The situation is better understood
if one focuses on the double real corrections. The maximally singular configuration corre-
sponds to the emission of two real soft-collinear gluons. To derive the mixed corrections, we
replace one gluon with a photon. There are two ways to perform the replacements which
lead to two non-equivalent contributions at variance with the QCD case for which the two
gluons are indistinguishable. We recall the expression of the coefficient in QCD (Eq. (3.24))

ΣF (2;4)
cc̄←ab, N =

1
8

(
A(1,0)

c

)2
δcaδc̄b . (3.22)

The result in the r.h.s. comes from the individual contribution of the two gluon becoming

soft and collinear, so that it is indeed
(

A(1,0)
c

)2
= A(1,0)

c × A(1,0)
c . Then, we applied the

gluon-photon replacement to each of the two gluon contributions, once at time, obtaining
the correspondence(

A(1,0)
c

)2
→ A(0,1)

c × A(1,0)
c + A(1,0)

c × A(0,1)
c = 2A(1,0)

c A(0,1)
c (3.23)

where in the last step we have exploited the basic fact that the numerical coefficients com-
mute. We get then that

(1,1)Σ
F (2;4)
cc̄←ab, N =

1
4

A(1,0)
c A(0,1)

c δcaδc̄b , (3.24)

and we check that the combinatorics is coherent with what can be derived starting from the
result in Ref. [147], so that the above replacement rules correctly takes into account the fac-
tor of two corresponding to the different photon-gluon configurations. The above reasoning
can be generalized and applied to derive the structure of the coefficients of the other loga-
rithmic terms. In pure QCD, the generic contribution to any of the coefficients has the form
either X(1,0)

1 × X(1,0)
2 or X(2,0), where X, X1, X2 stand for any of the resummation coefficients,

the Altarelli-Parisi kernels, the collinear functions or the hard-virtual coefficient functions.
Then, the replacement rules are

• X(1,0)
1 × X(1,0)

2 → X(1,0)
1 × X(0,1)

2 + X(0,1)
1 × X(1,0)

2 ;

• X(2,0) → X(1,1).

In particular, in the second case, the possible factor of two is implicitly contained in the
actual expression of X(1,1). In addition, we observe that

• the coefficient A(1,1) is vanishing. This coefficient indeed has an easily interpretation
(the same as its pure QCD counterpart [148]): it corresponds to the coefficient of the
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term in the Altarelli-Parisi splitting function P(1,1)
qq which is singular in the soft limit

z = 1. Since P(1,1)
qq is not divergent in this limit (see Eq. (3.38)), we have A(1,1) = 0;

• at variance with the pure QCD case, at order O(αsα), diagrams related to the running
of the coupling, both αs and α, cannot contribute. Therefore, the terms proportional to
β0 in the pure QCD case are vanishing in this context (they will contribute instead for
the NNLO EW corrections)

Applying the above considerations, we get

(1,1)Σ
F (2;3)
cc̄←ab, N(M2/Q2) = −1

2
A(1,0)

c (0,1)Σ
F (1;1)
cc̄←ab, N(M2/Q2)− 1

2
A(0,1)

c (1,0)Σ
F (1;1)
cc̄←ab, N(M2/Q2) ,

(3.25)

(1,1)Σ
F (2;2)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= − 1

2
A(1,0)

c HF (0,1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− 1

2
A(0,1)

c HF (1,0)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− 1

2 ∑
a1,b1

(0,1)Σ
F (1;1)
cc̄←a1b1, N(M2/Q2)

[
δa1aγ

(1,0)
b1b, N + δb1bγ

(1,0)
a1a, N

]
− 1

2 ∑
a1,b1

(1,0)Σ
F (1;1)
cc̄←a1b1, N(M2/Q2)

[
δa1aγ

(0,1)
b1b, N + δb1bγ

(0,1)
a1a, N

]
− 1

2

(
B(1,0)

c + A(1,0)
c `Q

)
(0,1)Σ

F (1;1)
cc̄←ab, N(M2/Q2)

− 1
2

(
B(0,1)

c + A(0,1)
c `Q

)
(1,0)Σ

F (1;1)
cc̄←ab, N(M2/Q2) , (3.26)

(1,1)Σ
F (2;1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
=

− ∑
a1,b1

(0,1)H
F (1)
cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

) [
δa1aδb1b

(
B(1,0)

c + A(1,0)
c `Q

)
+δa1aγ

(1,0)
b1b, N + δb1bγ

(1,0)
a1a, N

]
− ∑

a1,b1

(1,0)H
F (1)
cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

) [
δa1aδb1b

(
B(0,1)

c + A(0,1)
c `Q

)
+δa1aγ

(0,1)
b1b, N + δb1bγ

(0,1)
a1a, N

]
(3.27)

−
[
δcaδc̄bB(1,1)

c + δcaγ
(1,1)
c̄b, N + δc̄bγ

(1,1)
ca, N

]
, (3.28)

and similarly for the hard-collinear coefficient (for easy of reading we do not report the
terms proportional to `Q)
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F F F F

FIGURE 3.3: Classes of Feynman diagrams contributing to the double real
emission corrections to the hadroproduction of a color singlet system F in the

quark-anti quark annihilation channel.

HF (1,1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b HF (1,1)

c + δca C(1,1)
c̄b, N + δc̄b C(1,1)

ca, N

+

{
C(1,0)

ca, N C(0,1)
c̄b, N +HF (1,0)

c

(
δca C(0,1)

c̄b, N + δc̄b C(0,1)
ca, N

)
+

+
1
2 ∑

a1,b1

[
HF (1,0)

cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+ δca1 δc̄b1 HF (1,0)

c + δca1 C(1,0)
c̄b1, N + δc̄b1 C(1,0)

ca1, N

]
×

[(
δa1aγ

(0,1)
b1b, N + δb1bγ

(0,1)
a1a, N

)
`F − δa1aδb1b pQED

cF βQED
0 `R

]
+ ((1, 0)↔ (0, 1), QED↔ QCD)

}
− δcaδc̄b

(
pQCD

cF βQED
(1,0) + pQED

cF βQCD
(0,1)

)
`R . (3.29)

In the above, a residual dependence on the running of the couplings remains according to
the renormalization of the pQCD

cF powers of αs and of the pQED
cF powers of α appearing at the

Born level. The coefficient βQED
(1,0) and βQCD

(0,1) correspond respectively to the β′(0,1) and β(0,1) in
Eq.(17) and Eq.(16) of Ref. [147]. They are finite contributions associated to the variation of
the renormalization scale and, therefore, are suppressed by `R.

By inspection of Eqs. (3.24)-(3.29), we see that in order to fully specify the subtraction we
need the resummation coefficient B(1,1), the mixed Altarelli-Parisi splitting kernels P(1,1)

ab and

the collinear functions C(1,1)
ab (z). The P(1,1)

ab kernels are already available in Ref. [52], while
we have to determine all the others. Once again, we rely on the abelianisation procedure
starting from the pure QCD case. As discussed at the beginning of this section, we have
to put some care to select the abelian component of the corresponding QCD coefficients in
order to extract the QED result. As it will be clear in a moment, one can look at the possible
colour structures and select the ones corresponding to the abelian contribution.

Let us start from the qq̄ diagonal channel. We can focus on a particular type of contribu-
tions, for example the double real emission diagrams, as the colour structures must match
the ones in the real-virtual and double virtual terms in order for the KLN cancellation to
happen. In Fig.3.3, we collect illustrative example of the classes of Feynman diagrams con-
tributing to the double real emission process. By interfering these diagrams, three different
color structures arise:

• squaring the diagram (a) for two identical gluons (so it must be considered also the
interference with the diagram obtained by exchanging the two gluons) we get two
colour factors

1
2N2

C
Tr[TaTaTbTb] =

C2
F

2Nc
,

1
2N2

C
Tr[TaTbTaTb] =

CF

2Nc

(
CF −

CA

2

)
. (3.30)
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In the above we have included also the colour average and the symmetry factor 1/2
for identical gluons. The contribution proportional to CACF arises from the non-
commutative nature of the SUc(3) colour group. Following the abelianisation pro-
cedure, we replace a gluon with a photon. There are two different ways to do the
replacement leading to two diagrams, which this time are distinguishable. Squaring
the two diagrams individually, one obtains the same colour factor

1
N2

C
Tr[TaTa]e2

q f
=

CFe2
q f

Nc
. (3.31)

Comparing Eq.(3.30) and Eq. (3.31), the mixed QCD-QED result can be obtained from
the QCD one by applying the following replacements

CA → 0, C2
F → 2CFe2

q f
; (3.32)

• the diagram in (b) containing the triple gluon vertex does not have a counterpart in
the mixed QCD-QED since photons and gluons do not couple each other. In the pure
QCD case, this diagram gives rise to color factors proportional to the Casimir CA so
that it is possible to get rid of it by applying the replacement rule

CA → 0 ; (3.33)

• in pure QCD, due to diagrams in (c) and (d), partonic channels initiated by quark of
different flavours are possible. Furthermore, those diagrams give rise to contribution
proportional to the number of light flavour N f . From their interference, we can have
either situations with two dis-jointed quark lines or with only a single quark line. In
the former case, the colour factor is proportional to Tr[TaTb]Tr[TaTb] = CFTR. When
a gluon is replaced with a photon, we get colour traces with only one colour genera-
tor, Tr[Ta]Tr[Ta], which are vanishing. For this reason partonic processes initiated by
quarks of different flavours do non contribute to the mixed correction. Terms propor-
tional to the colour structure CFTR in the QCD computation have to be removed. This
can be achieved by applying the replacement rule

TR → 0. (3.34)

In Fig. 3.4, we show an example of an interference which leads to a single quark line.
In this case, the mixed correction is non-vanishing. We compute the corresponding
colour factors:

1
N2

C
Tr[TaTbTaTb] =

CF

Nc

(
CF −

CA

2

)
→ 2

N2
C

Tr[TaTa]e2
q f
=

2CFeq f

Nc
(3.35)

where the factor of two in the mixed case takes into account the two possible interfer-
ences (at variance with the QCD case where there is only one interference). Then we
get again the replacement rules in Eq.(3.32). Similar contributions come also from the
the collisions of identical (anti)quark-(anti)quark, and the same replacement rule still
applies.

We conclude that for processes initiated by same flavour quark-anti quark and identical
(anti)quark-(anti)quark collisions, the abelianisation procedure is carried out by applying
the following replacement rules

CA → 0, TR = 0, C2
F → 2CFeq f . (3.36)
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× −→ × + ×

FIGURE 3.4: Non-vanishing interference contributing to the mixed correction.

In the following we give the explicit expression of the resummation coefficient B(1,1)
q , the qq

and qq̄ Altarelli-Parisi splitting kernels (in the notation of Ref. [52]) and the corresponding
collinear coefficients:

B(1,1)
q = (−3 + 24ζ2 − 48ζ3)2CFe2

q f
, (3.37)

PS(1,1)
qq = PS(1,1)

qq̄ = 0 , (3.38)

PV(1,1)
qq = −2 CF e2

q

[(
2 ln 1− x +

3
2

)
ln xpqq(x) +

3 + 7x
2

ln x +
1 + x

2
ln2 (x)

+ 5(1− x) +
(

π2

2
− 3

8
− 6ζ3

)
δ(1− x)

]
, (3.39)

PV(1,1)
qq̄ = 2 CF e2

q
[
4(1− x) + 2(1 + x) ln x + 2pqq(−x)S2(x)

]
, (3.40)

with

pqq(z) =
1 + z2

(1− z)+
, (3.41)

and

S2(x) =
∫ 1

1+x

x
1+x

dz
z

ln
1− z

z
= Li2

(
−1

x

)
− Li2 (−x)

+ ln2
(

x
1 + x

)
− ln2

(
1

1 + x

)
. (3.42)

C(1,1)
qq =

2CFe2
q f

48(1− z)

[
12
(
z2 + 1

)
Li3(1− z)− 60z2Li3(z) + 12Li2(z)

( (
z2 + 1

)
log(1− z)

+ 3
(
z2 + 1

)
log(z)− 2(z− 1)2)− 60Li3(z) + 60z2ζ(3) + 10π2z2 − 114z2 − z2 log3(z)

− 6z2 log2(z) + 6z2 log(1− z) log2(z) + 18z2 log2(1− z) log(z) + 96z2 log(z)

− 36z2 log(1− z) log(z)− 2π2z2 log(1− z) + 6z2 log(1− z)− 20π2z + 228z + log3(z)

+ 6z log2(z) + 6 log(1− z) log2(z) + 9 log2(z) + 18 log2(1− z) log(z)− 78z log(z)
+ 72z log(1− z) log(z)− 36 log(1− z) log(z) + 30 log(z)− 6z log(1− z)

− 2π2 log(1− z) + 60ζ(3) + 10π2 − 114
]

.

(3.43)
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C(1,1)
qq̄ = −

2CFe2
q f

24(z + 1)

[
12z2Li3(z)− 9z2Li3

(
z2)− 9Li3

(
z2)− 24z2Li3

(
1

z + 1

)
+ 6Li2

(
z2) ((z2 + 1

)
log(z) + (z + 1)2)− 24(z + 1)Li2(z) + 12Li3(z)− 24Li3

(
1

z + 1

)
+ 18z2ζ3 − π2z2 + 45z2 + z2 log3(z) + 4z2 log3(z + 1)− 6z2 log(z + 1) log2(z)

− 33z2 log(z) + 12z2 log(1− z) log(z) + 12z2 log(z + 1) log(z)− 2π2z2 log(z + 1)

+ 2π2z + log3(z) + 4 log3(z + 1)− 6 log(z + 1) log2(z)− 42z log(z)

+ 24z log(z + 1) log(z)− 9 log(z)− 2π2 log(z + 1) + 24 log(z) tanh−1(z)

+ 18Z3 + 3π2 − 45
]

.

(3.44)

With this approach, we can obtain also the hard-virtual coefficient H(1,1)
q,DY needed for the

mixed QCD-QED correction to on-shell Z boson production starting from the corresponding
H(2,0)

q,DY. We get

H(1,1)
q,DY =

1
4

2CFe2
q f

(
−15ζ3 +

511
16
− 67π2

12
+

17
45

)
. (3.45)

The same reasoning can be applied for the quark-gluon, quark-photon and gluon-photon
channels. The latter is trivial: it opens for the fist time at the level of the mixed corrections
and only requires NLO coefficients. We briefly comment on the first two. For these channels,
the qg and qγ splitting and collinear functions are relevant. In NNLO QCD there is only
the qg splitting, which gives rise to two colour structures, one proportional to CFTR and the
other to CATR. In the abelian limit only the first one survives, while, taking into account also
the difference in the colour average factor, we have now two different replacement rules for
the qg and qγ splittings:

CF → e2
q f

for qg splitting, TR → NCe2
q f

for qγ splitting. (3.46)

In particular, we observe that this time there are not any factors of two, since there is no
issue with indistinguishable processes. Then, introducing the quantities

p(1,1)
qv =

1
2

{
4− 9x− (1− 4x) ln x− (1− 2x)ln2 (x) + 4 ln 1− x

+ pqg(x)
[

2ln2
(

1− x
x

)
− 4 ln

1− x
x
− 2π2

3
+ 10

]}
, (3.47)

with
pqq(z) = z2 + (1− z)2 , (3.48)
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and

c(1,1)
qv =

1
96

[
− 48z2Li3(1− z)− 48z2Li3(z) + 24

(
2z2 − 2z + 1

)
Li2(1− z) log(1− z)

+ 24
(
2z2 − 2z + 1

)
Li2(z) log(z) + 48zLi3(1− z)− 24Li3(1− z) + 48zLi3(z)− 24Li3(z)

+ 384z2ζ3 − 16π2z2 − 240z2 − 8z2 log3(1− z)− 8z2 log3(z)− 24z2 log2(1− z)

+ 24z2 log(z) log2(1− z) + 24z2 log2(z) log(1− z)− 24z2 log2(z) + 48z2 log(z) log(1− z)

+ 96z2 tanh−1(1− 2z)− 384zζ3 + 16π2z + 258z + 8z log3(1− z)− 4 log3(1− z)

+ 4z log3(z)− 2 log3(z) + 24z log2(1− z)− 24z log(z) log2(1− z) + 12 log(z) log2(1− z)

− 24z log2(z) log(1− z) + 12 log2(z) log(1− z) + 36z log2(z) + 3 log2(z)− 36z log(1− z)

− 48z log(z) log(1− z) + 90z log(z) + 48 log(z) + 192ζ3 − 78
]

(3.49)

we can express the Altarelli-Parisi P(1,1)
qg and P(1,1)

qγ as

P(1,1)
qg = TRe2

q f
p(1,1)

qv , P(1,1)
qγ = CFe2

q f
Nc p(1,1)

qv , (3.50)

and the collinear functions C(1,1)
qg and C(1,1)

qγ as

C(1,1)
qg = TRe2

q f
c(1,1)

qv , C(1,1)
qγ = CFe2

q f
Ncc(1,1)

qv . (3.51)

This completes the list of ingredients needed to specify the subtraction to handle the mixed
corrections in the initial-state.

3.2 Numerical Validation: mixed QCD-QED corrections to on-shell
Z boson production

In this section, we present a collection of numerical results to validate the qT subtraction
formula developed in the previous section. To this aim we focus on the mixed QCD-QED
corrections to on-shell Z boson production in proton-proton collisions since

• the hard virtual term HF (1,1)
q,DY , related to the two-loop virtual amplitude, is known in

this case, its analytic expression given in Eq. (3.45) as obtained via the abelianisation
of the HF (2,0)

c,DY coefficient in pure QCD;

• the inclusive result is available in the literature [13], in the form of a one-fold integral
to be convoluted with the proton pdf.

We have implemented all the formulae in Ref. [13] in a Mathematica [149] notebook. The
package ManeParse [150] has been used to link the pdf into Mathematica and the Vegas [151]
implementation provided by the Cuba [152, 153] library has been used for the actual inte-
gration to obtain the total cross section. Our calculation is carried out by using an extension
of the numerical program of Ref. [7]. To have a better control of all the contributions, in the
actual implementation we prefer to treat the qT subtraction as a slicing. We rely on MCFM-
8.2 [154, 155] and MATRIX [56], suitably adapted for our purposes, to address the most time
consuming task, i.e. the integration of the subtracted double real and real-virtual contribu-
tions with the constraint qT > Mrcut. In this region, we treat the remaining NLO-type IR
divergences using dipoles subtraction.
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∆(1,1)
qq̄ [pb] ∆(1,1)

Qg [pb] ∆(1,1)
Qγ [pb] ∆(1,1)

gγ [pb] ∆(1,1)
qq+q̄q̄ [pb]

analytic 57.46± 0.02 −39.5± 0.2 −1.576± 0.009 0.6496± 0.0016 0.594± 0.001
qT subtraction 56.9± 0.6 −39.8± 0.5 −1.575± 0.013 0.646± 0.008 0.594± 0.003

TABLE 3.1: Mixed QCD-QED correction to on-shell Z boson production in
proton-proton collisions at

√
S = 14 TeV, split into the different partonic chan-

nels. We compare our results obtained with the numerical implementation of
the qT subtraction method with the “analytic” computation of Ref. [13]

2 TeV 14 TeV
∆(1,1)

qq̄ [pb] 6.66± 0.06 57.46± 0.02 349± 3 analytic

∆(1,1)
qq̄ [pb] 6.59± 0.12 56.9± 0.6 348± 7 qT subtraction

TABLE 3.2: Mixed QCD-QED correction to on-shell Z boson production in
the diagonal quark-anti quark channel in proton-proton collisions at different
collider energies. We compare our results obtained with the numerical imple-
mentation of the qT subtraction method with the “analytic” computation of

Ref. [13]

In the following we use the notation ∆(1,1) to denote the mixed correction. We decompose
this contribution according to the initial partonic channels:

∆(1,1) = ∆(1,1)
qq̄ + ∆(1,1)

Qg + ∆(1,1)
Qγ̄ + ∆(1,1)

gγ̄ + ∆(1,1)
qq+q̄q̄ (3.52)

where Q stands for all quarks and anti quarks. The last channel corresponds to the contri-
bution due to identical quark-quark and anti quark-anti quark interactions. We consider the
following setup: collider energy

√
s = 14 TeV, mass of the Z boson MZ = 91.1876, effective

electromagnetic coupling at LO α = 0.00754757036825847 ∼ 1/132.5, electromagnetic cou-
pling associated to the radiative corrections α(MZ) ∼ 1/128 = 0.0078125, strong coupling
constant αs(MZ) = 0.11800. We use NNPDF31_nnlo_as_0118_luxqed [78] pdf set which in-
cludes the LUX_QED [141, 142] photon pdf, and we consider the contribution of all the quarks
but the quark top. We set the renormalization scale and the factorization scale equal to each
other, with their common value being the mass of Z boson µF = µR = MZ.

In Tab. 3.1, we report the comparison between the results obtained with the analytic
computation of Ref [13] and with the qT subtraction formula, obtained at the fixed value
of the cut-off rcut = 0.8%, as motivated in the next section. We see that we get a good
agreement, within 1σ with a precision of 1− 2%.

The hard-virtual coefficient HF (1,1)
c,DY appears only in the corrections to the diagonal chan-

nel ∆(1,1)
qq̄ . We have found that the numerical impact of the hard-collinear coefficient in this

channel, which contains the contribution proportional to δ(qT) and hence also the HF (1,1)
c,DY

term, is very small, being of the order of the numerical error of the entire correction. To have
a more stringent test of this contribution, we have consider two more points at well sepa-
rated collider energies,

√
s = 2 TeV and

√
s = 100 TeV. The results are shown in Tab. 3.2.

We got a good agreement even though we find that the contribution of the hard-collinear
component is very small also in those cases. Given the stability of the result to this large
variation in the collider energy, we can reasonably conclude that the implementation has
been tested with positive results and it is very unlikely that some of the terms are wrong.
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3.2.1 Dependence on rcut

As discussed in the previous chapter, the qT subtraction formula is affected by power cor-
rections in the rcut regulator modulo logarithmic enhancements. We study the stability of
the prediction for the total cross section by varying rcut in the nominal range [0.01, 1]% for
all the partonic channels but the diagonal quark-anti quark channel for which we restrict
the exploration range to the interval [0.1, 1]% where we have a good numerical control. In
Fig. 3.5, we plot the mixed correction ∆(1,1) for all the partonic channels as a function of
rcut normalised to the rcut-independent result given by the the “analytic” computation of
Ref. [13]. The behavior is nicely flat in all the partonic channels and it motivates our choice
of the cut-off, rcut = 0.8%. This result is consistent with what expected from the rcut analysis
on the color-singlet production in pure QCD, where the dependence on rcut is known to be
quadratic [39, 56].

3.2.2 Differential distributions

We conclude this chapter showing results for the relevant kinematic distributions, the ra-
pidity yZ and the transverse momentum pT,Z of the Z boson. This analysis is meant to be
a technical study more than a phenomenological one. For this reason, we just focus on the
behavior of the reference central value scale µF = µR = MZ without performing a com-
plete analysis including scale variations and we do not push the computation further in the
direction to include also the decay of the Z boson into a lepton pair, that can be treated
consistently in the narrow-width approximation. For an on-shell Z, such computation has
already been performed in Ref. [18], providing a detailed phenomenological study for phys-
ical fiducial cross sections.

In that work, results on the inclusive cross sections are also given. This allows us to
perform a tuned comparison which provides us a completely independent validation of
our computation. The setup is very similar to the one in the previous section apart for
the hadronic center-of-mass energy: collider energy

√
s = 13 TeV, mass of the Z boson

MZ = 91.1876, effective electromagnetic coupling at LO α = 0.0075563839074311188 ∼
1/132.3, electromagnetic coupling associated to the radiative corrections α(MZ) ∼ 1/128 =
0.0078125, strong coupling constant αs(MZ) = 0.11800, NNPDF31_nnlo_as_0118_luxqed
with five active flavours.
Following Ref. [18], we introduce the relative corrections

∆(i,j)
r =

∆(i,j)

σre f
(3.53)

with respect to the reference cross section given by the NLO QCD cross section

σre f = σ(0,0) + σ(1,0). (3.54)

We obtain the following results for the NLO QED, the NNLO QCD and the mixed QCD-
QED corrections

∆(0,1)
r = (3.228± 0.004)× 10−3, ∆(2,0)

r = −(6.34± 0.14)× 10−3, ∆(1,1)
r = (3.0± 0.1)× 10−4 ,

(3.55)
which are in very good agreement with the results in Eq.(3.1) of Ref [18]. In particular,
the order O(α) and O(αsα) results represent a check of our new computation. The NNLO
QCD, which we computed with the well-established code in Ref. [7], is quoted here just as
reference value to get an idea of the relative importance of the other corrections.



3.2. Numerical Validation: mixed QCD-QED corrections to on-shell Z boson production 77

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

rcut=cutqT / M [%]

Δσ(1,1)/Δσ(1,1)analytic - 1 [%] qq‾ -channel

Δσ(1,1)qT(r)
Δσ(1,1)analytic

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

rcut=cutqT / M [%]

Δσ(1,1)/Δσ(1,1)analytic - 1 [%] qg -channel

Δσ(1,1)qT(r)
Δσ(1,1)analytic

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

rcut=cutqT / M [%]

Δσ(1,1)/Δσ(1,1)analytic - 1 [%] qγ -channel

Δσ(1,1)qT(r)
Δσ(1,1)analytic

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

rcut=cutqT / M [%]

Δσ(1,1)/Δσ(1,1)analytic - 1 [%] gγ -channel

Δσ(1,1)qT(r)
Δσ(1,1)analytic

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

rcut=cutqT / M [%]

Δσ(1,1)/Δσ(1,1)analytic - 1 [%] qq+q‾ q‾ -channel

Δσ(1,1)qT(r)
Δσ(1,1)analytic

FIGURE 3.5: Mixed correction as a function of rcut in all the partonic channel
defined in the main text in proton-proton collisions at 14 TeV. The result is
normalised to the rcut-independent cross section given by the “analytic” com-

putation of Ref. [13].
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FIGURE 3.6: Rapidity yZ (left panel) and transverse momentum pT,Z (right
panel) of the Z boson produced in proton-proton collisions at

√
S = 13 TeV.

In the upper panels, we plot the NLO QCD cross section, in the lower panels,
the relative corrections O(α), O(α2

s ) and O(αsα) as defined in Eq. (3.53).

In Fig. 3.6, we look at the behavior of the relative corrections ∆(0,1)
r and ∆(1,1)

r with the
rapidity (left panel) and with the transverse momentum (right panel) of the Z boson, which
are the relevant kinematic distributions that can be studied for this 2-to-1 reaction. We recall
that at LO, the pT distribution reduces to a delta function at pT = 0, while a non trivial
pT spectrum starts to appear when the NLO correction is included. This means that the
accuracy of the pT distribution is one order less than the accuracy of the computation, (N)LO
for a (N)NLO computation, while the rapidity contains genuine (N)NLO effects.

Looking at the rapidity distribution, we observe that both corrections have a flat behav-
ior, as it is usually expected, and give us the information about their relative importance.
Both corrections are positive with the mixed correction, as already seen in Eq. (3.54), smaller
by a factor of 10 than the NLO QED as expected by the naive power counting of the cou-
plings. As pointed out in Ref. [18], the relative importance of the mixed correction is rather
sensitive to the input parameters as at this energies, of relevance for the LHC physics, a large
cancellation occurs between the qq̄ and the Qg channels, as shown in Fig. 3.7.

As for the pT spectrum, we observe a rather flat behavior of the K-factor at moderate
and large pT, where the fix-order prediction is reliable. Going towards small pT, one starts
to observe the logarithmic divergence of the two contributions, especially for the mixed cor-
rection due to the higher logarithmic powers. Indeed, lowering the pT, the mixed correction
turns negative as expected from a NNLO correction.
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Chapter 4

NLO EW and power Suppressed terms

In this chapter, we focus on the first application of the qT subtraction formalism to the full
set of NLO EW radiative corrections including final-state radiation for both the neutral- and
charged-current Drell-Yan processes in hadronic collisions. To deal with the new structure of
soft divergences arising from the square of final-state diagrams and the interference between
initial and final-state ones, we take the abelian limit of the corresponding contributions in
the NLO qT subtraction formula for heavy quark production reviewed in Sec. 2.2.2. While
the abelianisation is straightforward, the efficiency of the method is crucial to achieve the
level of accuracy required by the applications of precision physics we are interested in. From
the study of the heavy-quark hadroproduction, indeed, it is known that the convergence of
the qT subtraction formula is challenged by the presence of final-state radiation.

At NLO, the rcut dependence is numerically found to be linear [50, 51, 60] at variance
with the case of the production of a color singlet/ neutral charged object [39]. The analytical
structure of the power corrections to the latter case has been recently established [58, 59].
A similar analysis for final-state radiation was missing in the literature. In the view of the
applications to EW and mixed radiative corrections, we have analytically computed the
power corrections for a simplified pure QED case including for the first time the effects of
final-state radiation. We investigate the origin of the observed linear behavior at the level
of the inclusive cross section. This analysis completes the study of the rcut dependence
of the NLO qT subtraction formula. Nonetheless, the proposed approach, being limited
to inclusive observables, does not provide an effective way to improve the convergence
of the subtraction. Based on the fact that power corrections are free of divergences, we
have developed a procedure to remove from the NLO qT subtraction formula the linear rcut
dependence associated to final-state radiation.

The mass of the colored/charged final-state particle acts as a regulator of the collinear
singularities and it cannot be set to zero within the qT subtraction formalism. The qT vari-
able, indeed, is not able to resolve the singularities associated to radiation emitted collinear
to final state particles. So far, the formalism for heavy quark pair hadroproduction has been
successfully applied only to the case of a very heavy fermion, namely the top quark [49–
51]. In the limit of vanishing mass, the amplitudes develop singularities in the form of
logarithms of the mass, which might lead to numerical instabilities. For the NLO EW ap-
plications we are interested in, this is of primary importance since really light fermions, as
electron and muons, are involved. To this aim, we have investigated the small mass behav-
ior of the qT subtraction formula pushing our implementation up to the physical case of the
muon mass m ≈ 105 MeV.

The chapter is organized into two parts. In the first part, we focus on the NLO EW cor-
rections to the neutral- and charged-current Drell-Yan lepton hadroproduction within the qT
subtraction formalism. EW radiative corrections are usually more involved than QCD ones
and present some specific technical aspects concerning renormalization/input schemes and
the treatment of unstable particles. Therefore, in the first section, we briefly review the main
aspects intended for the practitioners of the EW radiative corrections. We then discuss in
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Sec. 4.2 the implementation of the NLO EW corrections within the qT subtraction formalism
giving the main formulas, and we report a numerical validation for a heavy lepton of mass
ml = 10 GeV. We then detail the treatment of small masses in Sec. 4.2.3 and we show a tuned
comparison for fiducial cross sections and differential distributions for the relevant physical
case provided by muon hadroproduction. In the second part, we present the computation
and the results for the analytical structure of the power correction associated to final-state
radiation for the inclusive total partonic cross section, Sec. 4.3. We then discuss in Sec. 4.6, a
viable strategy to go beyond inclusive observables with the aim to develop an “improved”
qT subtraction formula for final-state radiation.

4.1 Survey of NLO EW corrections

Compared to QCD, the Lagrangian of the EW in the SM involves many terms and gives
rise to a large set of Feynman rules, rendering calculations of EW corrections more tedious.
Nonetheless, the ingredients required to perform one-loop corrections are the same in the
two cases and in the last decades have received a great boost: the treatment of soft and
collinear divergences (in dimensional regularization and/or mass regularization), the re-
duction of tensor integral (Passarino-Veltman [156], OPP [157–160]), the evaluation of the
scalar master integral [161–166], analytical and numerical helicity methods. The progresses
achieved have allowed to obtain a complete automation of the computation of QCD cor-
rections. Going to EW case, the complexity increases due to the mixing of QCD and EW
corrections, the increasing number of contributions, and the presence of more and very
different mass scales. Additional complications arise from the chiral structure of the EW
interactions and the instability of many SM particles. Recently an increasing number of one-
loop providers, as for example, RECOLA [167, 168], GoSam [169, 170], MadLoop [171, 172],
OPENLOOPS [173], NLOX [174], have been developed to deal with EW one loop corrections
as well, making it possible to compute the EW radiative corrections for a great number of
processes relevant at high energy hadronic and leptonic colliders [172, 175].

The focus of this work is on the subtraction procedure needed to tame the soft and
collinear singularities associated to the real corrections in such a way to ensure the can-
cellation of the infrared singularities between virtual and real corrections. In our numerical
implementation, we rely on the aforementioned automated tool for the computation of one-
loop virtual amplitudes. In what follows, we want to briefly convey two general aspects
concerning the EW radiative corrections from the point of view of the practical computa-
tion: the choice of the EW input scheme and the treatment of the unstable intermediate
resonances.

4.1.1 EW input schemes

The EW Standard Model, being a non-abelian gauge theory, is renormalizable [68, 176–179].
We mean that all the UV divergences can be absorbed into renormalization constants as-
sociated to the renormalization of the independent input parameters and the fields and/or
external wave functions. To fulfill the renormalization procedure a set of independent pa-
rameters has to be chosen. In this way, one defines a customary renormalization scheme.

At variance with QCD, where one usually relies on the Minimum Subtraction (MS) pre-
scription, the common choice for EW is provided by the On Shell (OS) renormalization
scheme [180–183]. In the OS scheme, the renormalization constants are fixed imposing the
renormalization conditions directly in the physical basis of the mass eigenstates. In such
a scheme, the renormalized masses of the gauge bosons, of the Higgs bosons, and of the
fermions are set equal to the physical masses, defined as the locations of the poles of the
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propagators. The renormalized electric charge can be set to be equal to the Thomson limit,
which corresponds to the low-energy Compton scattering of on-shell particles. This choice
is natural in the sense that the input parameters are directly related to observables which are
measured with high accuracy. In this context, the renormalization of the parameters together
with the renormalization of only the external wave functions, as dictated by the correct nor-
malization of S-matrix elements, is sufficient to obtain UV-finite predictions without any
additional fields renormalization [156, 181]. The latter are required to obtain finite Green
functions. We do not enter the details of the EW renormalization, which are beyond the
scope of this work.

Here, we discuss the choice of the input parameters, which define the so called input
scheme within the context of the OS renormalization scheme. It is indeed fundamental to
consider as input parameters a set of independent quantities to preserve gauge invariance
and the internal consistency of the results. Furthermore, as we discuss in the following, the
choice of the input scheme allows one to incorporate, on a process-by-process basis, parts
of (universal) electroweak corrections in the definition of the input parameters reducing the
impact of higher order corrections. As already stated, in the OS renormalization, the input-
parameters set is given by the the electromagnetic coupling constant α, the Higgs mass MH,
the weak-gauge boson masses MW and MZ, the fermion masses m f and the element of the
CKM matrix. In the EW sector the masses of the particles are conveniently defined as pole
masses. This does not apply to light quarks for which is preferred to consider a running MS
mass defined at some convenient scale.

The definition of the CKM is in general a non trivial task. For high-energy scattering, the
approximation to consider all the quark but the top (and possibly the bottom) massless and
ignoring mixing with the third generation is appropriate. Within this approximation, the
CKM reduces to the identity matrix but for charged-current processes, such as the quark-
antiquark annihilation channels in Drell-Yan-like W-boson production, where it leads to
global factors |Vij|2 in partonic cross sections with qi q̄j or qjq̄i initial states. This result holds
also including NLO EW corrections because of the mass degeneracy between the first two
quark generations.

The boson masses MW , MZ and MH, are usually set to on-shell real values. With this
choice of the input-parameters set, the Weinberg angle θw is not an independent quantity
and it is usually defined via the relation

cw ≡ cos θw =
MW

MZ
, cw ≡ sin θw =

√
1− c2

w . (4.1)

In particular, it is not consistent to use an independent value for sw as provided, for exam-
ple, by the effective mixing angle sin2 θW,e f f extracted from measurements of the various
asymmetries of the Z resonance [184].

As for the value of the electromagnetic coupling constant, three input values are usually
used in the applications:

• α(0)-scheme: the value of α is set to the low-energy Thomson limit, α(0) ≈ 1/137;

• α(M2
Z)-scheme: the value of α is set to the effective coupling at the Z pole due to the

running from Q2 = 0 to Q2 = M2
Z, α(M2

Z) ≈ 1/128;

• Gµ-scheme: the value of α is set to the effective coupling
αGµ

=
√

2/πGµ M2
W
(
1−M2

W/M2
Z
)
≈ 1/132, where Gµ is the Fermi constant as mea-

sured in the muon decay µ− → e−ν̄eνµ.

The difference between them ranges between 2− 6% and represents an important part of
the input scheme. Indeed, while at LO this choice represents only a modification of an in-
put parameter, at NLO it affects also the charge renormalization in a consistent way. To
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FIGURE 4.1: Fermion insertions in the photon propagator give rise to loga-
rithms of the fermion masses.

understand the idea underlying, let us start from the α(0)-scheme, which represent the most
natural choice at low energies. When applied to processes at energies of the EW gauge
bosons or above, this scheme leads to the appearence in the radiative corrections of large
logarithmic enhacements of the ratio of the fermion masses over the characteristic energy
scale of the reaction s. It is well understood that such logarithms are associated to the run-
ning of the electromagnetic coupling from Q2 = 0 to Q2 = s & M2

Z and can be reabsorbed
in the numerical value of the coupling. The resummation of this enhanced contributions at
the leading logarithmic accuracy can indeed be achieved by employing standard Renormal-
ization Group techniques, leading to the relation for the running of the coupling

α(M2
Z) =

α(0)
1− ∆α(M2

Z)
(4.2)

where ∆α(M2
Z) is provided by the renormalization of the vacuum polarization of the photon.

In the α(0)-scheme, this quantity contains logarithms of the fermion masses associated to the
one-loop diagram in Fig. 4.1

∆α(M2
Z) =

α(0)
3π ∑

f
N2

CQ2
f

(
ln

M2
Z

m2
f
− 5

3

)
+O

(
m2

f

M2
Z

)
, (4.3)

with the color number Nq
C = 3 for quarks and Nl

C = 1 for leptons, and Q f the electric charge
of the fermion f in unit of the electron electric charge e. We observe that ∆α(M2

Z) is sensitive
to the values of the light quark masses which are not well defined quantities in perturbation
theory. Therefore, α(M2

Z) is non-perturbative. The hadronic contribution to the running
is extracted from experimental data in electron-positron annihilation into hadrons and tao
lepton hadronic decays using theoretical arguments based on dispersion relations [185].

Replacing α(0) with α(M2
Z), i.e. passing to the α(M2

Z)-scheme, in the LO predictions
effectively removes ∆α(M2

Z) from the EW corrections. In doing so, the logarithms of the
fermion masses (and in particular the non-perturbative one associated to the light quark)
nicely disappear from the computation, and this cancellation holds at each loop order in
α, effectively resumming the dominant effects of the running. To implement the α(M2

Z)-
scheme, beside the modification of the input values of the electromagnetic coupling con-
stant, one should care to change the renormalization constant in order to properly subtract
the ∆α(M2

Z) contribution. From the above discussion, it follows that the α(M2
Z)-scheme is

preferred for processes at high energies.
When external photons are present, the situation is different. Indeed, the renormaliza-

tion of the photon wave function compensates the charge renormalization as a consequence
of the Ward identities. In this case, mass-singularities in the form of (non perturbative) log-
arithmic enhancements do not occur signalling that external photons effectively couple at
Q2 ≈ 0. The α(0)− scheme must be preferred in such cases.

One can accommodate more complex situations by applying in a consistent way dif-
ferent input-schemes for each of the different electromagnetic couplings appearing in the
process (mixed input-scheme). As an illustrative example, consider the NLO EW corrections
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to the hadroproduction of a dilepton pair through the Drell-Yan mechanism. At LO, the
process contains two powers of the electromagnetic coupling. The characteristic energy is
given by the mass of the Z boson M2

Z, so that the α(M2
Z)-scheme seems appropriate in the

light of the virtual EW corrections. On the other hand, as the real corrections are concerned,
an α(0) factor should be associated to the coupling of the real photon emission vertex. In
these situations, one can use an hybrid scheme, separating the α2 factor occurring at LO
from the extra α factor associated to the NLO EW corrections. In practice, this means to
compute the virtual corrections within the α(M2

Z)-scheme (in particular taking into account
the modified prescription for the charge renormalization constant), while setting the value
of the NLO electromagnetic coupling to α(0) both in real and virtual corrections. The last
point is important for self-consistency, otherwise the use of different couplings for real and
virtual contributions will spoil the cancellation of the infrared singularities. With this hybrid
choice, the NLO cross section will be proportional to α(0)× α2(M2

Z).
In a similar manner, the introduction of the Gµ-scheme is motivated by the attempt to

reabsorb an other class of universal EW radiative corrections which are related to the renor-
malization of the weak mixing angle. At NLO, the Gµ and α(0) schemes are related accord-
ing to

αGµ
=

√
2Gµ M2

W
π

(
1−

M2
W

M2
Z

)
= α(0)(1 + ∆r(1)) +O(α3) , (4.4)

where ∆r(1) parametrizes the NLO EW correction to muon decay [181, 186, 187]. In turn, the
quantity ∆r(1) can be further decomposed

∆r(1) = ∆α(M2
Z)− ∆ρ(1)

c2
W

s2
w
+ ∆rrem (4.5)

in terms of ∆α(M2
Z), the universal correction to the ρ parameter [188–190]

∆ρ(1) =
3α(0)m2

t

16πs2
w M2

W
, (4.6)

which shows the distinctive quadratic growth in the top mass, and a small remainder ∆rrem.
From Eq. (4.5), we see that the Gµ-scheme and the α(M2

Z)-scheme behaves similarly as the
running of the coupling is concerned. In addition, the Gµ-scheme takes into account the
leading EW correction to mixing angle. Indeed, a sw factor involved in an EW coupling (for
example a vertex W f f̄ ) will receive an universal correction s2

W → s2
w +∆ρ(1)c2

W due to the OS
renormalization of the weak mixing angle. In the Gµ scheme such contribution is subtracted
by the corresponding contribution proportional to ∆ρ(1) in Eq. (4.5). This is particularly
effective for processes involving the W boson. Nonetheless, also for the Z, which introduces
a cw factor, some part of the corrections are reabsorbed, so that it is preferable to use this
scheme whenever an electro-weak boson is involved. A detailed numerical study on the
impact of the different input schemes for the charged- and neutral-current Drell-Yan leptons
hadroproduction can be found in Ref. [145, 191].

4.1.2 Unstable particles

Unstable particles, as the EW gauge bosons and the Higgs, deserve a dedicated treatment,
especially when EW radiative corrections are concerned. From the theoretical point of view,
the presence of resonances leads to complications in the formulation of perturbation theory,
where stable asymptotic states are used to build the S-matrix. An unstable particle P of OS
mass MP should only appear in internal lines in Feynman diagrams. Nonetheless, even in
this case, the presence of a massive propagator (p2−M2

P)
−1 is dangerous and may develop a
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spurious singularity at any fixed order in perturbation theory when the momentum transfer
p becomes close to its pole. The solution to this problem is non perturbative and relies on
the Dyson resummation of the self energy corrections near the singularity. In terms of the
renormalized self-energies ΣR(p2) of P, the resummed propagator reads

Gp(p2) =
i

p2 −M2
P
+

i
p2 −M2

P
iΣR(p2)

i
p2 −M2

P
+ · · · = i

p2 −M2
P + ΣR(p2)

. (4.7)

The all orders result in Eq. (4.7) shows that radiative corrections may lead to a change in
the location of the pole of the full propagator. In OS renormalization, the renormalization
condition Re(ΣR) = 0 ensures that the real part of the pole stay unchanged and, hence, the
mass MR does not get corrections. In this context, the difference between a stable and an
unstable particle rests on the fact whether ΣR(p2) develops an imaginary part or not, as a
consequence of the optical theorem [192]:

• for a stable particle, ΣR(p2) is real and the resummed propagator asymptotically be-
haves as the LO propagator Gp ∼ i(p2 −MP)

−1 near the pole;

• for an unstable particle, which can decay into other final state particles, ΣR(p2) devel-
ops an imaginary part, and the resummed propagator behaves as

Gp(p2) ∼ i
p2 −M2

P + iMPΓP
(4.8)

where ΓP > 0 is related to the width of the unstable particle. The sign of ΓP is dictated
by causality (as given by the Feynman prescription) and guarantees that the resonance
decays with exponential law propagating forward in time.

While the Dyson summation provides a clean and straightforward framework to deal with
resonances, its use in practical applications is very limited. Indeed, this procedure gets
invalidated by the truncation of the perturbative series, which is required to compute cor-
rections that are not of self-energy type (as irreducible vertex functions). The reason is that
consistency relations from gauge invariance and unitarity usually hold order by order and
get violated in perturbative orders that are not completely taken into account. In particular,
we stress the importance of preserving gauge invariance. Beside being independent on the
gauge-fixing procedure and, hence, on the gauge parameters, gauge invariance ensures the
validity of the Ward identities. This guarantees that the resulting amplitudes will behaves
correctly in the high-energy limit.

Narrow-width-approximation and naive LO treatment

The simplest (and crudest) way to deal with resonances is provided by the narrow-width-
approximation (NWA) which consists in the separation of the full process into the production
of an OS particle P and its decay to some finale state. The approximation is asymptotically
exact in the limit of a “stable”resonance, ΓP → 0, where the square of the propagator of the
resonance behaves as

i
|p2 −M2

P + iMPΓP|2
∼ π

MPΓP
δ(p2 −M2

P) +O
(

ΓP

MP

)
, (4.9)

neglecting, in doing the above replacement, off-shell effects of order O(ΓP/MP). In this
context, the quantity ΓP is given by

ΓP = ∑
X

ΓP→X, (4.10)
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where the ΓP→X is the partial decay width in the final state or channel X and it is computable
in perturbation theory as

ΓP→X =
1

2MP

∫
dΦX|MP→X| (4.11)

whereMP→X is the matrix element for the process P→ X and ΦX is the phase space element
associated to the final state X. The ratio between the partial decay width ΓP→X and the total
width ΓP defines the branching ration BR(P→ X) into the channel X.

If the intermediate resonant state carries a non-trivial quantum spin number, spin cor-
relations between initial and final states may appear in kinematic distributions and when
cuts on the decaying particles are imposed. Such correlations are neglected in the simplest
implementations of the NWA, which rely upon unpolarized cross sections. This naive de-
scription can be improved by using instead a combination of production and decay parts for
definite polarization states of the unstable particle. In this way, spin correlations are fully
taken into account.

Within the NWA, radiative corrections can be approximately accommodated. Follow-
ing the separation of the decay process, radiative corrections to the production and to the
relevant BR are computed separately, neglecting off-shell effects of order O(ΓP/MP) due
to the off-shell tail of the resonance and to non-resonant contributions. Restoring the full
NLO accuracy requires going beyond the NWA. An improved description which adds such
effects on top of the NWA is possible, but limited to the resonance region. Furthermore,
the NWA cannot describe observables which resolve the resonance since, by construction,
the resonance is integrated over. A full description of a resonance process, keeping the full
differential information of the kinematics of the decay products, must be based on complete
matrix elements for the full process, including both resonant and non- resonant diagrams.
At LO, the simplest prescription to deal with the resonant state is given by the following
modification of the propagator of the unstable particle

i
p2 −M2

P
→ i

p2 −M2
P + iMPΓP(p2)

(4.12)

which takes into account the imaginary part of the Dyson summed self-energy. In particular,
we observe that the square of the above propagator gives raise to the characteristic Breit-
Wigner shape in the cross sections. Two alternative choices of Γ2

P(p2) have been commonly
used in practice:

• Fixed width (FW): ΓP(p2) = ΓP = const. The pole of the propagator is displaced in the
complex plane and is given by the complex squared mass

µ2
P = M2

P − iMPΓP . (4.13)

• Running width (RW):

ΓP(p2) = ΓP
p2

M2
P

θ(p2), (4.14)

with the aim to mimic the p2 dependence of the imaginary part of the one-loop self-
energy of a vector particle P that exclusively decays into pairs of massless fermions, as
it approximately applies to EW gauge bosons. In particular, the factor θ(p2) switches
off the imaginary part below the kinematic decay threshold, as demanded by causality
and unitarity.

From a theoretical point of view, none of the above schemes appear satisfactory since they
introduce gauge dependent quantities. In practice, it has been observed that the FW scheme
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works well for W/Z [193–195], while the RW, used for the analysis at the Z resonance [184],
can lead to totally wrong results, especially at high energies [196]. The reason can be traced
back to the p2 dependence in ΓP(p2), which is responsible for an enhancement of gauge-
invariant-breaking terms. Beyond LO, this issues becomes even more severe and they de-
serve a proper treatment within suitable computational schemes.

Complex-mass scheme, input parameters and relations with OS quantities

In this work, we adopt the complex-mass scheme [193, 197, 198], which relies on the intro-
duction of the complex pole µ2

P in Eq. (4.13). Within this framework, the mass squared of
each unstable particle P is identified with µ2

P not only in the propagator of P but also in the
couplings, which in turn become complex quantities. In particular, the weak mixing angle
is promoted into the complex domain via the relation

c2
w = 1− s2

w =
µ2

W
µ2

Z
. (4.15)

The procedure outlined above is sufficient to fully specify the complex-mass scheme at LO.
At NLO, the renormalization procedure follows directly the standard machinery for stable
particles but for few modifications. The complex-mass scheme does not change the under-
lying theory. Instead, it provides a procedure to systematically rearrange the perturbative
expansion avoiding double counting. This can be easily understood if one think that the
imaginary parts appearing in the complex masses are associated to higher-order contribu-
tions in the standard perturbation theory for stable particles. We refer to Ref. [199] (and
reference therein) for a description of the necessary changes in the renormalization proce-
dure in the complex-mass scheme.

Here, we limit ourselves to list the main advantages given by this approach:

• gauge invariance is automatically preserved because the gauge boson masses are mod-
ified only by an analytic continuation. In particular, since the pole location µ2

P is an in-
trinsic property of the S-matrix, the complex mass renormalization constants and the
parametrization of S-matrix elements in terms of µ2

P are gauge independent. On the
other hand, the OS scheme involves gauge dependences starting from the two-loop
level [200];

• NLO accuracy is uniformly reached both in resonant and non-resonant regions of the
phase space;

• the introduction of imaginary parts spoils unitary as expressed by standard cutting
relations at the amplitude level [201]. This is harmless within this approach since this
effect is formally of one order higher than the one of the computation (NLO for a LO
computation, NNLO for a NLO one). Unitary cancellations are therefore respected and
this is sufficient to prevent the appearing of unphysical and spurious enhancements.

The choice of the input parameters within the complex-mass scheme deserves some clar-
ifications. In particular, we remark that the width of the unstable particle ΓP, despite the fact
that µ2

P is promoted to the level of complex renormalized constant, is not an independent
quantity. This follows directly from the condition that µ2

P corresponds to the location of the
pole of the propagator of P, which reads

µ2
P −M2

0,P + Σ(µ2
p) = 0, (4.16)
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in terms of the bare mass M2
0,P and the unrenormalized self-energy Σ(p2). Replacing Eq. (4.13)

in Eq. (4.16) and equating the imaginary part, we obtain the relation

MPΓP = =Σ(M2
P − iM2

PΓP) , (4.17)

that can be iteratively solved for ΓP. From the above equation, it follows that if the self-
energy is known at NLO, the accuracy in the prediction of the width will be only LO. This
is a consequence of unitary cuts, which relate the imaginary part of the one-loop insertions
to corresponding tree-level real emission processes. In the proximity of the resonance, the
offshellness of the propagator is of the same size of the width, |p2 − M2

P| = O(M2
PΓP), re-

quiring to go one order higher in the computation of the width in order to achieve full NLO
accuracy. From the above discussion, it follows that, in the view of a NLO computation,
we need to use as “input” the ΓP as provided by the solution of Eq. (4.17) using self energy
corrections up to two-loop level or equivalently computing the relative decay amplitudes at
NLO. While there is a requirement regarding the lower accuracy at which the width should
be computed, actually it is allowed to go beyond NLO or even take an empirical value for it.
We mean that this choice for the width, and more generally for any other input parameters
(real or complex), does not introduce any inconsistencies such as violating gauge invariance
or unitarity cancellation.

An other important example is given by the electromagnetic coupling. Within the complex-
mass scheme, also this parameter becomes complex because of loop corrections that enter
the charge renormalization constant. Again, the imaginary part of the charge e is not a free
input parameter being determined by the charge renormalization in the same way the width
is determined by Eq. (4.17). In this case, the imaginary parts start to appear at two-loop (the
charge renormalization only involves self-energies contributions that are evaluated at zero
momentum transfer, which do not develop imaginary parts for real internal masses). For
this reason, it is allowed to put to zero the imaginary part of e within the NLO accuracy.
Moreover, we observe that a complex imaginary part in the virtual corrections would in-
troduce a mismatch in the cancellation of IR divergences between reals and virtuals. The
different α-input schemes described in Sec. 4.1.1 can be accommodated straightforwardly.

The complex-mass scheme provides a theoretically well-motivated framework to deal
with unstable particles and renormalization in EW SM. However, historically, the W and Z
masses and widths were experimentally determined at LEP, Tevatron, and the LHC in the
OS scheme. The definitions of pole masses and widths in the complex-mass scheme differ
from the one in OS scheme and they are related by the following relations [194, 202]

MP =
MP,OS√
1 +

Γ2
P,OS

M2
P,OS

, ΓP =
ΓP,OS√

1 +
Γ2

P,OS
M2

P,OS

(4.18)

where MP,OS and ΓP,OS are quantities in the OS scheme. For W and Z bosons, the mass
difference between the pole and OS definitions is

MW,OS −MW ≈ 27 MeV MZ,OS −MZ ≈ 34 MeV (4.19)

so that scheme differences are much larger than the current experimental uncertainties.
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4.2 NLO EW for Drell-Yan lepton hadroproduction

4.2.1 qT subtraction formula

We focus on the processes of hadroproduction of a dilepton l+l− pair and lepton-neutrino
l+νl (l−ν̄l) pair, namely pp → l+l− + X and pp → l+νl (l−ν̄l) + X. We can give an unified
treatment of the two processes and consider the general reaction pp → l1l2 + X in terms of
generic leptons l1 and l2 carrying electric charges e3 and e4 respectively. The NLO EW qT
subtraction formula for the partonic cross section has again the familiar structure

dσ̂l1l2
NLO = Hl1l2

NLO ⊗ dσ̂l1l2
LO +

[
dσ̂

l1l2+jet
LO − dσ̂l1l2, CT

NLO

]
, (4.20)

where, as already specified before, we include in the definition of jet also the photon. Let us
start the discussion from the IR subtraction counterterm dσ̂l1l2, CT

NLO . Its explicit expression in
the partonic channel ab→ l1l2 + X reads

dσ̂l1l2, CT
NLO ab = ∑

c=q,q̄,γ

α

π
Σ(1)

cc̄←ab ⊗ dσ̂l1l2
LO cc̄

dq2
T

M2 , (4.21)

where M is the invariant mass of the l1l2 pair and the symbol ⊗ denotes convolutions with
respect to the longitudinal-momentum fractions z1 and z2 of the colliding partons. As in
the previous chapter, we suppressed the dependence on the flavour of the parton for ease
of notation, i.e. a generic partonic index a must be understood as a ≡ {a, fa}. As usual, the
functions Σ(1)

cc̄←ab in Eq. (4.21) can be written as

Σ(1)
cc̄←ab(z1, z2; r) = Σ(1,2)

cc̄←ab(z1, z2) Ĩ2(r) + Σ(1,1)
cc̄←ab(z1, z2) Ĩ1(r) (4.22)

where r = qT/M. Now, we observe that the structure of the IR subtraction counterterm can
be decomposed as

• the Drell-Yan-like contribution due to the square of Feynman diagrams associated to
initial-state radiation only;

• all the new contributions due to the presence of final state radiation.

Since final-state radiation can only develop a single soft singularity, the coefficient Σ(1,2)
cc̄←ab(z1, z2)

reduces to the pure Drell-Yan one

Σ(1,2)
cc̄←ab(z1, z2) = (0,1)Σ

(1,2)
cc̄←ab(z1, z2) (4.23)

as given in Eq. (3.5), while the coefficient Σ(1,1)
cc̄←ab(z1, z2) will get an additive contribution

Σ(1,1),l1l2
cc̄←ab (z1, z2)

Σ(1,1)
cc̄←ab(z1, z2) = (0,1)Σ

(1,1)
cc̄←ab(z1, z2) + Σ(1,1),l1l2

cc̄←ab (z1, z2) . (4.24)

The coefficient Σ(1,1),l1l2
cc̄←ab (z1, z2) is obtained by taking the abelian limit of the customary coef-

ficient for heavy-quark production, Eq. (2.85). For ease of reference, we report here the latter

Σ(1,1),QQ̄
cc̄←ab (z1, z2) = −δcaδc̄bδ(1− z1)δ(1− z2)

〈Mcc̄→QQ̄|
(

Γ
(1)
t + Γ

(1)†
t

)
|Mcc̄→QQ̄〉

|Mcc̄→QQ̄|2
, (4.25)
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which is controlled by the first-order contribution to the soft anomalous dimension for
transverse-momentum resummation in heavy-quark production Γ

(1)
t , whose explicit expres-

sion is (Eq. (2.76))

Γ
(1)
t = −1

4

{
(T2

3 + T2
4)(1− iπ) + ∑

i=1,2;j=3,4
Ti · Tj ln

(2pi · pj)
2

M2m2 }

+ 2T3 · T4

[
1

2v
ln
(

1 + v
1− v

)
− iπ

(
1
v
+ 1
)]}

.

(4.26)

The abelian limit is simply obtained by replacing the QCD charges, given by the color ma-
trices Ti, with the corresponding scalar electric charges

Ti → eiI, (4.27)

and taking care of the modifications in the kinematics in the case of different lepton masses
ml1 6= ml2 . Therefore, the structure in color space becomes trivial, while a dependence on
the flavour of the fermions is introduced. The Σ(1,1),l1l2

cc̄←ab (z1, z2) coefficient reads

Σ(1,1),l1l2
cc̄←ab (z1, z2) = −δcaδc̄bδ(1− z1)δ(1− z2)2<Γ(1),l1l2

t , (4.28)

where Γ(1),l1l2
t can be interpreted as the customary first-order contribution to the QED soft

anomalous dimension for transverse-momentum resummation in dilepton production. We
specialize its explicit expression for the neutral-current dilepton pair production

Γ(1),l+ l−
t = −1

4

{
(e2

3 + e2
4)(1− iπ) + ∑

i=1,2;j=3,4
eiej ln

(2pi · pj)
2

M2m2
l
}

+ 2e3e4

[
1

2v
ln
(

1 + v
1− v

)
− iπ

(
1
v
+ 1
)]}

,

(4.29)

and for the charged-current lepton-neutrino pair production

Γ(1),l+νl
t = Γ(1),l− ν̄l

t = −1
4

{
e2

3(1− iπ) + ∑
i=1,2;

eie3 ln
(2pi · pj)

2

M2m2
l
}
}

. (4.30)

Similarly, the hard-collinear coefficientHl1l2
NLO is made of three contributions

• the process-dependent hard-virtual function H(1),l1l2 associated to the one-loop EW
virtual corrections.

• the universal Drell-Yan-like collinear remainder;

• the customary first-order contribution to the soft function F(1),l1l2
t .

The latter term represents the new contribution at qT = 0 (i.e. proportional to δ(q2
T))

arising from soft final state radiation. Again, it can be obtained by taking the abelian limit of
the corresponding soft function in heavy-quark production, i.e. by applying the replacement
in Eq.(2.79). Its explicit expression reads

F(1),l1l2
t =


(e2

3 + e2
4) ln

m2
l,T

m2
l
+ e3e4

1
v L34 (neutral-current l1 = l+, l2 = l−)

e2
3

[
ln

m2
l,T

m2
l
+ Li2

(
− p2

T
m2

l

)]
(charged-current l1 = l+(l−), l2 = νl(ν̄l))

(4.31)
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with the function L34 as given by Eq. (2.80). For the sake of completeness, we report the full
expression of the hard-collinear coefficientHl1l2

NLO

Hl1l2
NLO = δcaδc̄bδ(1− z1)δ(1− z2)

[
H(1),l1l2 + F(1),l1l2

t

]
+ δcaδ(1− z1)C

(1)
c̄b (z2) + δc̄bδ(1− z2)C

(1)
ca (z1)

+
[
δcaδ(1− z1) P(1)

c̄b (z2) + δc̄bδ(1− z2) P(1)
ca (z1)

]
LF

(4.32)

with LF = µ2
F/M2.

4.2.2 Numerical validation for a heavy lepton

We report here a numerical validation of the subtraction formalism developed in the pre-
vious section. To be definite, we consider the hadroproduction of a dilepton pair through
the Drell-Yan mechanism. In order to avoid at this stage the appearance of large logarith-
mic terms in the lepton mass, which may complicate the numerical convergence, we set the
mass of the final-state lepton to ml = 10 GeV. We postpone the discussion of the small mass
behavior to the following section. Our calculation is carried out by using an extension of
the numerical program of Ref. [7]. All the required tree level matrix elements are computed
analytically while the virtual EW corrections for qq̄ → l+l−, which include vertex and box
diagrams, are obtained by using GOSAM [169, 170].

Let us start setting the notation used to label the different contributions to the cross
section. At LO (i.e. O(α2)) both the resonant qq̄ and the non-resonant γγ partonic channels
contribute and we can write for the hadronic cross section

σLO = σ
qq̄
LO + σ

γγ
LO , (4.33)

where σ
qq̄
LO and σ

γγ
LO are the Born level cross sections in the qq̄ and γγ channels, respectively.

At NLO EW we can write

σNLO = σ
qq̄
LO + σ

γγ
LO + ∆σqq̄ + ∆σqγ + ∆σγγ (4.34)

where we have introduced the O(α3) correction in the qq̄ channel, ∆σqq̄, the corresponding
correction in the q(q̄)γ channel, ∆σqγ, and the correction in the γγ channel, ∆σγγ. Since the
γγ channel provides only a very small contribution to the Drell-Yan cross section, ∆σγγ will
be neglected in the following discussion.

We use the setup of Ref. [145], and, in particular, we work in the Gµ scheme with

GF = 1.16637× 10−5 GeV−2 α(0) = 1/137.03599911 (4.35)
MW,OS = 80.403 GeV MZ,OS = 91.1876 GeV (4.36)
ΓW,OS = 2.141 GeV ΓZ,OS = 2.4952 GeV (4.37)

and use the complex-mass scheme [197] throughout. More precisely, as explained in Sec. 4.1.1,
we adopt a mixed scheme in which real and virtual photons emissions are controlled by
α(0), while the α2 in the LO cross section is derived from GF, mZ and mW and the charge
renormalization includes the ∆r contribution. The conversion from the OS widths and
masses to the corresponding pole definitions is performed by using the relations in Eq. (4.18).
Following Ref. [145], the MRST2004qed [203] parton distribution functions (PDFs) are used.
The following set of cuts are applied

mll > 50 GeV pT,l > 25 GeV |yl | < 2.5 . (4.38)
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To validate our implementation, we have repeated our calculation by using the dipole sub-
traction method [21] and the independent matrix-element generator RECOLA [167, 168] for
the virtual corrections. In Table 4.1 we report our result for the lowest order cross sections
σ

qq̄
LO and σ

γγ
LO, and the NLO EW corrections in the qq̄ and qγ channels, ∆σqq and ∆σqγ. The

NLO correction ∆σqq̄ is obtained performing the calculation at different values of rcut and ex-
trapolating to rcut → 0 through a linear fit. Our results are compared with the corresponding
results obtained with dipole subtraction (CS+RECOLA). We see that the two results are in
perfect agreement.

qT + GoSam CS+RECOLA

σ
qq̄
LO (pb) 683.53± 0.03

∆σqq (pb) −5.920± 0.034 −5.919± 0.008

σ
γγ
LO (pb) 1.1524± 0.0004

∆σqγ (pb) −0.6694± 0.0008 −0.6690± 0.0005

TABLE 4.1: Comparison of NLO EW corrections to the Drell-Yan process com-
puted with qT subtraction and dipole subtraction. In the qq̄ channel the qT
result is obtained with a linear extrapolation in the rcut → 0 limit (see Fig. 4.2),
while in the q(q̄)γ channel it is obtained at rcut = 0.01%. The LO result in the

qq̄ and γγ channels is also reported for reference.

Dependence on rcut

We have studied the dependence of the NLO corrections for the fiducial cross section on rcut.
We have varied rcut in the range 0.01% ≤ rcut ≤ 1% and we have used the rcut-independent
cross section computed with our inhouse implementation of the dipole subtraction method
as normalisation. The results for the rcut dependent correction δqT = ∆σ/σ

qq̄
LO in the qq̄

and qγ channels are shown in Fig, 4.2. A distinctive linear behavior in the dominant qq̄-
annihilation channel emerges. Nonetheless, as reported in Ref. [56], it is known that sym-
metric cuts on the transverse momenta of the final state leptons challenge the convergence of
qT-subtraction leading to a stronger dependence on rcut even in the case in which a charge-
neutral final state is produced. In Fig. 4.3 we show the dependence of the NLO corrections
for the inclusive cross section on rcut when no cuts are applied. Again a distinct linear behav-
ior in the dominant qq̄-annihilation channel emerges, in agreement with what has already
been observed for the case of the tt̄ cross section [50], which can be clearly interpreted as a
genuine new effect due to the emission of radiation off the massive final-state leptons.

4.2.3 Physical lepton masses: small-mass limit and muon production

A finite lepton mass regulates the collinear divergence associated to the emission of a collinear
photon off the final-state charged lepton. Radiation emitted at small angles with respect the
direction of the emitter particle is suppressed and the resulting dead cone region has an an-
gular aperture of order of the lepton mass divided by the lepton energy. Heavier the lepton,
bigger will be the angular separation with the emitted photon that, in turn will be more
easily resolved as an isolated particle. In the limit of vanishing lepton mass, the collinear
singularity manifests itself in the form of asymptotically divergent logarithms of the ratio of
the mass divided by the characteristic energy scale of the process Q, and the size of the dead
cone region reduces, even below the experimental resolution. The KLN theorem guarantees
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FIGURE 4.2: NLO EW correction as a function of rcut in the dominant qq di-
agonal channel (left panel) and in the off-diagonal q(q̄)γ channel (right panel)
at 14 TeV. The NLO result is normalised to the rcut-independent cross section
computed with dipole subtraction. The lepton mass is fixed to ml = 10 GeV.

The fiducial cuts in Eq. (4.38) are applied.

that these logarithms cancel if photons collinear to the lepton are treated fully inclusively.
However, this picture can be spoiled by the application of phase-space cuts on the lepton
momenta. Indeed, events with a photon emitted in a small collinear cone around the mo-
menta of the lepton might not pass the cuts, leading to an imbalance of the logarithmic
divergent contributions between reals and virtuals. This is due to the fact that the cuts as-
sume perfect isolation of photons from the leptons. Fiducial cross sections of this kind are
not infrared safe. We stress that this situation is a general consequence of fixed order pertur-
bation theory in Quantum Field Theory and does not depend on the particular subtraction
scheme employed to handle the IR singularities.

The problem rests on the application of the phase-space cuts on the bare leptons as given
by the partonic description. Experimentally it is not possible to distinguish between a single
electron and an electron accompanied by a collinear photon. Therefore, the concept of a bare
lepton is not realistic for electrons, while it is phenomenologically relevant for muon final
states. Cross sections defined in terms of dressed leptons, which include the accompanied
collinear photon radiation, restore the infrared safety in a way similar to jet cross sections in
QCD. In practice, dressed leptons are defined by a simple recombination procedure [145, 191]

1. Photons with a rapidity |yγ| > 3, which are close to the beams, are considered part of
the proton remnant and are not recombined with the lepton.

2. For each photon passing the first step, we compute the resolution R between the pho-
ton and the generic charged lepton l in the final state as

R =
√
(yl − yγ)2 + ∆φ2

lγ (4.39)

where φ is the azimuthal angle in the transverse plane.

3. If R ≤ 0.1, the photon is recombined with the lepton l, i.e. the momenta of the photon
and of the lepton l are added and associated with the momentum of l, and the photon
is discarded.
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FIGURE 4.3: NLO EW correction as a function of rcut in the dominant qq di-
agonal channel (left panel) and in the off-diagonal q(q̄)γ channel (right panel)
at 14 TeV. The NLO result is normalised to the rcut-independent cross section
computed with dipole subtraction. The lepton mass is fixed to ml = 10 GeV.

No cuts are applied.

The cuts are then applied on the dressed or recombined leptons. While the electroweak cor-
rections differ for final-state electrons and muons without photon recombination, the cor-
rections become universal in the presence of photon recombination, since the lepton-mass
logarithms cancel in this case, in accordance with the KLN theorem.

So far, the discussion has been general, without entering the details of specific subtrac-
tion schemes. The cancellation of the large logarithms ensured by the KLN theorem is non-
trivial in a numerical differential calculation. This is due to the fact that, while in the virtual
corrections the lepton-mass logarithms are usually known analytically (or can be evaluated
numerically with high accuracy), in the real contribution they arise only after performing the
integration over the radiation phase space. This might lead to numerical instabilities when
the lepton mass gets very small values. In a local subtraction scheme, the choice of suitable
counterterms allows to “shift” the logarithmic enhanced contributions from the real cross
section to the virtual one in such a way to ensure their analytical cancellation for infrared
safe observables. As an example, this occurs employing the massive dipoles of Ref. [21],
which have the remarkable property of reducing to their massless counterparts in the limit
of vanishing masses. Then, the subtracted integrand (the real term minus the contribution of
counterterms) is a smooth function for all space points in the real kinematics and can be ef-
ficiently integrated with standard Monte Carlo methods, while the lepton-mass logarithms
are contained in the integrated counterterms in an analytic form. Of course, this approach is
effective also for bare leptons, when the cancellation is not complete, thanks to the analytical
treatment of the logs.

The situation is different for a slicing formalism, where one has really to perform the
numerical integration of the real contribution as it is. Formally, a finite lepton mass makes
the real integrand finite in the final-state collinear limit and, therefore, integrable. When the
mass gets smaller, the integrand function asymptotically approaches the divergent behavior
in the massless limit. This means that in the proximity of the quasi-collinear singularity, the
integral function has a steep gradient, so that even a small slice close to this end-point can
give a non-negligible contribution to the integral. In practice, this challenges the conver-
gence of the Monte Carlo numerical integration to the exact or true result. What happens
here is that the Monte Carlo estimate becomes dependent on the number of points used to
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sample the phase-space, which in turn corresponds to the resolution of the exploration. In-
deed, if the sample is not sufficiently wide, the region associated to the logarithmic enhance-
ment might be not ‘resolved”. In this situation, the Monte Carlo average is systematically
shifted from the true result and the Monte Carlo error tends to underestimate the uncer-
tainty associated to the numerical integration. We recall that the Monte Carlo uncertainty is
reliable under the assumption that the integrand function is square integrable. This result is
not contradicted in our case, since the integrand function behaves effectively as a divergent
function.

In conclusion, the numerical integration of the reals becomes highly inefficient, requiring
huge sample points in phase space for each integration step. Within the qT subtraction for-
malism, this represents the main source of numerical inefficiency when the computation is
pushed to the case of very light fermions, especially in combination with very small values
of the rcut regulator. Indeed, the dependence on the mass of the final state emitter particle
in the IR subtraction counterterm and in the hard-collinear function is harmless, being con-
tained only in the coefficient functions Γt and Ft respectively, in closed analytical form. In
particular, it is known the full dependence on the the leading logarithmic behavior in the
fermion mass. This provides a great control over the numerics, and it allows to use analyti-
cal expansions whenever it is required to improve the numerical implementation. To give an
example, we notice that the function L34 in Eq. (2.80), needed to compute the soft function Ft
for dilepton pair production, gets numerical instabilities for very small letpon masses. This
occurs when the lepton velocity v, which behaves asymptotically as v ∼ 1 +O((ml/M)4),
cannot be distinguished from 1 within the finite machine representation of floating numbers,
usually set to double precision (16 digits). In this case, one can either promote the compu-
tation to higher precision (as the quad precision) or use a truncated power series expansion
for L34, as

L34 =
π2

3
+ y34 + ln

m2
l

M2 ln
m2

l M2

m4
l,T

+ 2
m2

M2

[
ey34

(
1 + ln

m2
l

M2 − y34

)
+ e−y34

(
1 + ln

m2
l

M2 + y34

)]
+O

(
m4

l
M4

)
.

(4.40)

From the formal point of view, we can conclude that there are no limitations, intrinsic to
the method, which prevent the use of the qT subtraction formalism for light fermions (as
long as they have a finite mass). The main problem rests on the numerical integration of the
real contribution. Nonetheless, knowing its origin, one can develop different strategies to
improve this aspect, which eventually rely on an efficient way to generate points in phase-
space. In our opinion, indeed, the importance sampling method represents the best way to
make the integrand suitable for the Monte Carlo integration. This can be combined with
smart techniques of multi-channel generation to further improve the numerical efficiency.

To this aim, we employ a strategy similar to the FKS separation described in Sec. 1.2.
By means of suitable projection operators, we separate the initial-state and the final-state
regions and we apply a different phase-space mapping in the two cases. In particular, we
rely on the massive FKS mapping presented in Sec. 1.3 to treat the final-state region. In this
parametrization, the quasi-collinear singularity in the real matrix element squared behaves
as (1− βy)−1. Then, we can generate the angular variable y according to the above distribu-
tion so that the integrand becomes a smooth function whose integral can be accommodated
by the standard Monte Carlo algorithm.

In the following, we show a tuned comparison of fiducial cross sections and a selected
collection of differential distributions for muon hadroproduction processes, via both the
neutral- and the charged-current Drell-Yan mechanism, obtained with our implementation
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FIGURE 4.4: NLO EW correction to the neutral-current Drell-Yan process as a
function of rcut in the dominant qq diagonal channel (left panel) and in the off-
diagonal q(q̄)γ channel (right panel) at 14 TeV. The NLO result is normalised
to the rcut-independent cross section computed with SANC. The lepton mass
is fixed to the muon mass, ml = mµ = 105.658369 MeV. The fiducial cuts in

Eq. (4.38) are applied.

of the qT subtraction formalism and with the well-established public generator SANC [204].

Neutral-current

We stick with the same setup given in Sec. 4.2.2 for the numerical validation of the NLO
EW qT subtraction formula for a heavy lepton, with the EW input parameters given in
Eq. (4.35)-(4.37) and the fiducial cuts in Eq. (4.38). Here, we set the lepton mass to the phys-
ical muon value, ml = 105.658369 MeV, and we consider bare leptons.

We discuss first the fiducial cross section. We focus on the total NLO EW corrections,
given by the sum of the corrections in the qq̄ and qγ channels, ∆σqq̄ and ∆σqγ respectively.
The NLO correction ∆σqq̄ is obtained performing the calculation at different values of rcut
and extrapolating to rcut → 0 through a linear fit. In Tab. 4.2, we report the comparison of
our result with the one obtained with SANC. The agreement on the NLO correction, which
in turn amounts to a 4% effect compared to the LO, is pretty good, at the per mille level. In
Fig. 4.4, we show the rcut-dependence of the NLO correction to the fiducial cross section,
normalized to SANC. The behavior of both ∆σqq̄ and ∆σqγ are consistent to what has been
observed for the case of the heavy lepton, Fig. 4.2. This nicely demonstrates that, apart
from the numerical issues discussed in the previous section, the use of the qT-subtraction
formalism is not restricted to heavy fermions.

qT + GoSam SANC

∆σqq + ∆σqγ (pb) −29.95± 0.04 −29.99± 0.02

TABLE 4.2: Tuned comparison for NLO EW corrections to the Drell-Yan pro-
cess with ml = mµ = 105.658369 MeV with the SANC generator. The qT result
is the limiting value for rcut → 0 obtained with a linear fit for the NLO correc-
tion in the diagonal qq̄-annihilation channel, and it is the value at rcut = 0.01%

for the off-diagonal q(q̄)γ channel.
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FIGURE 4.5: Tuned comparison for the dilepton invariant mass with the
SANC generator. The qT result is obtained by fixing rcut = 0.01% and with

ml = mµ = 105.653869 MeV. In black the LO prediction.

According to Fig. 4.4, the residual power corrections in rcut can be safely neglected for
rcut . 0.01%. Setting rcut = 0.01%, we have computed a collection of phenomenological
relevant kinematic distributions: the dilepton invariant mass, the lepton transverse momen-
tum and rapidity, the dilepton transverse momentum and rapidity. In Figs.4.5-4.7, we report
the comparison with SANC. We see that, for all the observables considered, the agreement
is within few per mille, which is appropriate for phenomenology.

Charged-current

In this section, we show results for the charge-current Drell-Yan process pp → µ+νµ. The
setup is similar to the neutral-current case of the previous section apart for the fiducial cuts.
We use the same selection cuts as in Ref.[191]:

pT,µ+ > 25 GeV pT,νµ > 25 GeV |y+µ | < 1.2 . (4.41)

For simplicity, we assume a unit CKM matrix. In Fig. 4.8, we show the dependence of
the fiducial cross section as function of the rcut parameter. The behavior in the qq̄ channel
exhibits the usual linear shape, while the one in the qγ is pretty flat. This is consistent with
the fact that this time the rapidity cuts on the two leptons are not symmetric. In Figs 4.9,
we show the comparison with SANC for the most relevant distributions: the transverse-
momentum of the charged lepton and the transverse mass of the W boson. Again, we have
an excellent agreement.
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FIGURE 4.6: Tuned comparison for the dilepton transverse momentum dis-
tribution (left) and rapidity distribution (right) with the SANC generator. The
qT result is obtained by fixing rcut = 0.01% and with ml = mµ = 105.653869

MeV. In black the LO prediction.
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Eq. (4.41) are applied.

 0

 50

 100

 150

 200

 250

 300

√s = 14 TeV
MRST2004qed, µF = MW 

Gµ-scheme

pT,l+>25 GeV, pT,νl>25 GeV 
|yl+|<1.2

d 
σ

/d
 p

T,
l [

pb
/G

eV
]

LO
SANC
qT

 0.985
 0.99

 0.995
 1

 1.005
 1.01

 1.015

 25  30  35  40  45  50

Ra
tio

pT,l [GeV]

qT/SANC

 0

 20

 40

 60

 80

 100

 120

 140

√s = 14 TeV
MRST2004qed, µF = MW 

Gµ-scheme

pT,l+>25 GeV, pT,νl>25 GeV 
|yl+|<1.2

d 
σ

/d
 M

T,
ν l

l [
pb

/G
eV

]

LO
SANC
qT

 0.985
 0.99

 0.995
 1

 1.005
 1.01

 1.015

 50  60  70  80  90  100

Ra
tio

MT,νll [GeV]

qT/SANC

FIGURE 4.9: Tuned comparison for the transverse momentum distribution
of the positively charged lepton (left) and transverse mass distribution of the
W boson (right) with the SANC generator. The qT result is obtained by fixing
rcut = 0.01% and with ml = mµ = 105.653869 MeV. In black the LO predic-

tion.



4.3. Power corrections 101

4.3 Power corrections

The numerical results in Section 4.2.2 on the rcut dependence of NLO cross sections com-
puted with qT subtraction clearly show the change in the power correction from quadratic
to linear passing from the production of a color singlet/neutral system to that one of a col-
orful/charged massive final state. Here, we investigate the origin of the observed linear
behavior through a fully analytical computation. To this purpose, we focus on a simplified
process: the production of a massive lepton pair in pure QED in the diagonal channel

q(p1) + q̄(p2)→ l+(p3)l−(p4) + γ(k) (4.42)

with p2
3 = p2

4 = m2. While it allows for a great simplification in the computation, pure
QED already contains the relevant physical aspects involved in this effect without introduc-
ing any additional complications (as a more involved gauge group), which might obscure
the interpretation of the results. For these reasons, this process represents for us a perfect
playground to deal with.

The power suppressed terms arise by the integration of real emission cross section and
the counterterm. Since we keep rcut finite, we can consider their contributions separately.
We start our discussion from the contribution of the counterterm. From Eq. (4.21) we have

dσ̂CT
ab (rcut) = ∑

c=q,q̄,γ

∫ ∞

rcut

2rdr
αS

π
Σ(1)

cc̄←ab ⊗ dσ̂l+ l−
LO cc̄ . (4.43)

The NLO coefficient Σ(1)
cc̄←ab depends on r = qT/M only through the functions Ĩi(r). There-

fore we have

dσ̂CT
ab (rcut)

drcut
= −2rcut

αS

π

(
Σ(1,2)

cc̄←ab Ĩ2(rcut) + Σ(1,1)
cc̄←ab Ĩ1(rcut)

)
⊗ dσ̂l+ l−

LO cc̄ . (4.44)

In the small r limit the integrals Ĩ1(r) and Ĩ2(r) read

Ĩ1(r) = −
1
r2 +

b2
0

4
(1− 2 ln r) + O(r2),

Ĩ2(r) =
4 ln r

r2 +
b2

0
2

(
−1 + 2 ln2 r

)
+ O(r2) , (4.45)

i.e., they depend quadratically on r modulo logarithmic terms. This results holds also at
NNLO and beyond. It follows that the leading power corrections from the counterterm
are always quadratic in rcut, independently on the perturbative order. Moreover, given the
factorised form of the counterterm (2.48), this result is fully differential with respect the Born
variable and, thus, it holds even when fiducial cuts are applied. As a consequence, the linear
behavior with rcut that we observe in heavy-quark production and in the EW corrections to
dilepton production must be due to the real emission only. In the following we analytically
compute the real-emission contribution at small values of rcut.

4.4 Outline of the computation

The rcut dependence is contained in the constraint applied to the integration region, namely

σ̂qq̄(s; rcut) =
∫

dΦ3|M2|Θ
(qT

M
− rcut

)
(4.46)
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where s = (p1 + p2)2 is the partonic center-of-mass energy, dΦ3 the 3-body phase space
element andM the corresponding real emission matrix element. Our strategy is based on
the following simple idea: the treatment of the constraint becomes trivial if qT explicitly
appears among the integration variables. This amounts to parametrize in a smart way the
phase space. We consider the following parametrization

R3 =
1
16

1
(2π)4

∫
dM2dq2

T
1√

(s−M2)2 − 4sq2
T

√
1− 4m2

M2

∫
dΩ. (4.47)

in terms of the variables

M2 = (p3 + p4)
2 t = (p1 − k)2 u = (p2 − k)2 q2

T = f t/s (4.48)

and the angular integral is defined in the centre-of-mass frame of the final-state leptons. The
derivation of Eq. (??) and further details on the kinematics are given in Appendix B. Then,
introducing the energy fraction

z = M2/s , (4.49)

the double differential real emission cross section can be written in the following form

d2σ̂qq̄

dM2dq2
T
=

1
32s2

1
(2π)4

1√
(1− z)2 − 4zq2

T/M2

√
1− 4m2

M2

∫
dΩ|M|2 (4.50)

By integrating Eq. (4.50) over q2
T and M2 and keeping into account the phase space con-

straints Eq. (B.11) we obtain

dσ̂qq̄

dr2
cut

= − 1
32

1
(2π)4

∫ zmax

zmin

z dz√
(1− z)2 − 4zr2

cut

√
1− zmin

z

∫
dΩ|M|2. (4.51)

where

zmin =
4m2

s
zmax = 1− 2rcut

√
1 + r2

cut + 2r2
cut . (4.52)

Eq. (4.51) represents our master formula for the rcut dependence of the real emission cross
section. According to this formula, we are left with two integrations: first the angular inte-
gration in the rest frame of the lepton pair, second the integration over the energy fraction z.
We profit of the fact that the matrix element squared |M|2 can be divided into three separate
gauge invariant contributions: final state radiation, initial state radiation and interference.
We split the computation accordingly and we treat the three contributions separately. We
further observe that interference contribution is odd under the exchange p3 ↔ p4 and there-
fore vanishes after angular integration. Thus, we are left with only the final- and initial-state
contributions.
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4.4.1 Angular integration

In the calculation of the real emission process in Eq. (4.42), we introduce the following ten
invariants

s = (p1 + p2)
2

s2 = (p3 + p4)
2 = 2m2 + 2p3 · p4

u = (p2 − k)2 = −2p2 · k
t = (p1 − k)2 = −2p1 · k

u1 = (p1 − p4)
2 −m2 = −2p1 · p4

t1 = (p2 − p4)
2 −m2 = −2p2 · p4

s3 = (k− p4)
2 −m2 = −2k · p4

s4 = (k− p3)
2 −m2 = −2k · p3

u6 = (p2 − p3)
2 −m2 = −2p2 · p3

u7 = (p1 − p3)
2 −m2 = −2p1 · p3.

(4.53)

Since we are considering a 2 → 3 process, only five of the invariants are linearly indepen-
dent. In particular, the following relations among the invariants

u6 = −s− t1 − u, (4.54)
u7 = −s− u1 − t, (4.55)
u1 = −s2 − t1 − s3 = −s− t1 + s4, (4.56)

allow us to express u1, u6, u7 in terms of the others. We notice that the invariants u, t, s2 do
not depend on the leptons angular variables ϑ1, ϑ2. Thus, the dependence upon ϑ1, ϑ2 is
contained only in t1, s3, s4. By means of the relation of partial fraction

1
s3s4

=
1

s− s2

(
1
s3

+
1
s4

)
(4.57)

we can organize the expression of |M|2 in such a way that, in each of its terms, the depen-
dence on ϑ1, ϑ2 is of the form either tk

1sl
3 or tk′

1 sl′
4 . Then, the required angular integrals belong

to the family of integrals

I(k,l) =
∫ π

0
sin ϑ1dϑ1

∫ π

0
dϑ2(a + b cos ϑ1)

−k(A + B cos ϑ1 + C sin ϑ1 cos ϑ2)
−j (4.58)

where the coefficients a, b, A, B, C are functions of the invariants s, s2,u, t. The integrals rele-
vant for our computation are known since long and are available in the literature [205–207].
In the case of initial-state radiation they trivial. We list here for completeness only the ones
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needed for the case of final-state radiation:

I(0,1) =
π√

B2 + C2
ln

(
A +
√

B2 + C2

A−
√

B2 + C2

)
, (4.59)

I(0,2) =
2π

A2 − B2 − C2 , (4.60)

I(−1,1) = π

[
2bB

B2 + C2 +
a(B2 + C2)− bAB

(B2 + C2)3/ ln

(
A +
√

B2 + C2

A−
√

B2 + C2

)]
, (4.61)

I(−1,2) = π

[
2[a(B2 + C2)− bAB]

(B2 + C2)(A2 − B2 − C2)
+

bB
(B2 + C2)3/ ln

(
A +
√

B2 + C2

A−
√

B2 + C2

)]
(4.62)

I(−2,1) = π

[
4abB

B2 + C2 +
b2A(C2 − 2B2)

(B2 + C2)2

+
2[a(B2 + C2)− bAB]2 − b2C2(A2 − B2 − C2)

2(B2 + C2)5/2 ln

(
A +
√

B2 + C2

A−
√

B2 + C2

)]
(4.63)

I(−2,2) = π

[
2b2(B2 − C2)

(B2 + C2)2 +
2[a(B2 + C2)− bAB]2

(A2 − B2 − C2)(B2 + C2)2

+
2bB[a(B2 + C2)− bAB] + b2AC2

(B2 + C2)5/2 ln

(
A +
√

B2 + C2

A−
√

B2 + C2

)]
(4.64)

The algebraic manipulations, the book-keeping of the substitutions and the simplifications
required in performing the angular integration have been performed in Mathematica. As
sanity check of the computation, we have considered different sets of input parameters and
have compared the direct numerical integration with our analytical expressions for the an-
gular integration, finding perfect agreement within the double precision accuracy.

4.4.2 Expansion in rcut

After the angular integration, we are left with a further one-dimensional integral in the z
variable, see Eq. (4.51). The presence of different square root factors makes the analytical
integration a very hard task. Nonetheless, since we are interested in extracting the small-rcut
behavior of the integral, we do not need to compute it exactly.

Some care must be taken in performing the rcut expansion. To this purpose, we notice
indeed that the dependence on rcut is contained both in the upper integration limit zmax(rcut)
and in the integrand function. The angular integration of the matrix element gives rise to
an analytic function in r2

cut while it is divergent in z when approaching the soft limit z → 1.

The most problematic term is the Jacobian square root factor,
√
(1− z)2 − 4zr2

cut. Since the
integral is ill-defined in the limit rcut → 0, we cannot employ a simple expansion in Taylor
series. Even attempting to expand the integrand function only in power series does not help.
Indeed, the expansion of the Jacobian square root factor leads to a tower of more and more
divergent terms at z = 1: each term will contribute, after integrating over z, to the same
order in rcut requiring for the resummation of the series.

An effective strategy consists in introducing suitable rcut-dependent distributions, de-
fined in the interval [0, 1], and expand them in power series in rcut. We proceed as follows:

1. after performing the angular integration, we expand the matrix element (without the
Jacobian square root) in power series of rcut;
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2. in each term of the expansion, we extract a coefficient function which is regular at
z = 1 ;

3. the remaining part together with the product of theta function defining the integration
limits, Θ(zmax(rcut)− z)×Θ(z− zmin), is interpreted as distribution;

4. we expand the distribution in power series in rcut up to the order relevant to compute
the leading power and next-to-leading power contribution.

In the last step, we rely on standard mathematical techniques as the introduction of gener-
alized plus distributions and the Mellin transform.

4.5 Results

We discuss separately the case of final-state and initial-state radiation. Before giving the
final expression for the partonic cross section, we present some intermediate results obtained
following the procedure outlined above.

4.5.1 Final-state radiation

We report for completeness the expression of the unpolarized matrix element squared, av-
eraged over the initial colors and the spins degrees of freedom and summed over the final
ones in terms of the invariants in Eq. (4.53)

|M|2 =
4e6e2

q

3s2

[
− 4m4s

s2
3
− 8m4s

s3s4
− 4m4s

s2
4

+
4m2ss2

s3s4
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3
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3
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3
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4
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4
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+
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+
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+
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s3s4
+
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+
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+
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s4
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]
(4.65)

After performing the angular integration, the ensuing contribution to dσ̂qq̄/dr2
cut can be ex-

pressed in the following form

dσ̂FS
qq̄

dr2
cut

= −
4α3e2

q

3s

∫ zmax

zmin

dz

 K1(z; zmin)

(1− z)2
√
(1− z)2 − 4zr2

cut

+
K2(z; zmin)r2

cut

(1− z)4
√
(1− z)2 − 4zr2

cut


(4.66)
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in terms of two coefficient functions, K1 and K2, regular at z = 1 (soft limit) and independent
on the cut-off parameter rcut:

K1(z; zmin) = −
[
zminz2 + z(1 + z)2]√1− zmin

z

+ z(1 + z2 + zminz− z2
min
2

) ln
1 +

√
1− zmin

z

1−
√

1− zmin

z

,
(4.67)

and

K2(z; zmin) = 2z2

{
[1 + z(6 + z) + zminz]

√
1− zmin

z

−
(

1 + z2 + zmin(2 + z)− z2
min
2

)
ln

1 +
√

1− zmin

z

1−
√

1− zmin

z

}
.

(4.68)

In the small-rcut limit the integral in Eq. (4.66) can be computed by using the expansions

Θ(zmax − z)Θ(z− zmin)

(1− z)2
√
(1− z)2 − 4zr2

cut

=
1
4

δ(1− z)
1

r2
cut

+
π

8
[
δ(1− z) + 2δ′(1− z)

] 1
rcut

+O(1)

Θ(zmax − z)Θ(z− zmin)r2
cut

(1− z)4
√
(1− z)2 − 4zr2

cut

=
1

24
δ(1− z)

1
r2

cut
+

π

64
[
3δ(1− z) + 2δ′(1− z)

] 1
rcut

+O(1)

(4.69)

We observe that up to the considered order the lower limit zmin does not enter in the expan-
sion. Then, we obtain for the rcut dependence of the partonic cross section

σ̂FS
qq̄ (s; rcut) = σ0(s)

α

2π

{[
2− (1 + β2)

β
ln

1 + β

1− β

]
ln (r2

cut)

− 3π

8

[
6(5− β2)

3− β2 +
−47 + 8β2 + 3β4

β(3− β2)
ln

1 + β

1− β

]
rcut

}
+ O(r2

cut)

≡ σ̂FS
LP(s; rcut) + σ̂FS

NLP(s; rcut) + O(r2
cut)

(4.70)

where we have dropped terms which do not depend on rcut (which cannot be obtained
following our strategy) and we have introduced the Born cross section

σ0(s) =
2π

9s
α2e2

qβ(3− β2) (4.71)

with β =
√

1− 4m2

s .
Eq. (4.70) shows that the final-state contribution to the NLO cross section, integrated

down to rcut, contains the expected single logarithmic term in rcut associated to the soft
emission. This divergent contribution is exactly cancelled by the corresponding term in
the subtraction counterterm controlled by the soft anomalous dimension for transverse mo-
mentum resummation ΓT. The main result concerns the next-to-leading power contribution
σ̂FS

NLP(s; rcut). We have found that it is linear, thus explaining the source of the behavior
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shown in Figs. 4.3 and, for the case under investigation, we have computed its coefficient
analytically.

4.5.2 Initial-state radiation

The integration of the matrix element squared corresponding to initial-state radiation over
the angular variables is straightforward and we obtain

dσ̂IS
qq̄

dr2
cut

= −
4α3e4

q

9s

∫ zmax

zmin

dz

 K3(z; zmin)

r2
cut

√
(1− z)2 − 4zr2

cut

+
K4(z; zmin)√

(1− z)2 − 4zr2
cut

 (4.72)

where the coefficient functions K3 and K4 now read

K3(z; zmin) =

√
1− zmin

z

(
z +

zmin

2

) 1 + z2

z2 K4(z; zmin) = −2K3(z; zmin)
z

1 + z2 . (4.73)

The coefficient function K3(z; zmin) controls the most singular term, and is proportional to
the Altarelli-Parisi splitting function. In order to evaluate the integral in Eq. (4.72) we have
to expand the distribution

T(z, rcut, zmin) =
Θ(z− zmin)Θ(zmax − z)√

(1− z)2 − 4zr2
cut

(4.74)

in the small rcut limit. Since we already know that linear terms in rcut are absent, we have
to expand up to O(r2

cut). This time, at variance with the case of final-state radiation, the
expansion is complicated by the treatment of the lower integration zmin. To this aim, we ob-
serve indeed, that the coefficient functions K3(z; zmin) and K4(z; zmin) contain a square root
which vanishes at z = zmin. This will lead to spurious singularities when the distributions
appearing in the expansion involve derivatives at z = zmin. In order to overcome this issue,
we found it convenient to split the integration over z as follows∫ zmax

zmin

dz =
∫ a

zmin

dz +
∫ zmax

a
dz, zmin < a < zmax . (4.75)

The integral from zmin to a can be safely computed by expanding the integrand function
in rcut and truncating the expansion at the desired order, O(r2

cut). The integral from a to
zmax can be computed by using our procedure and expand in power series the distribution
T(z, rcut, a) in Eq. 4.74, where zmin has been replaced by a. We can safely carry out the
expansion in the Mellin N-momentum space and we get

TN(rcut, a) ≡
∫ 1

0
zN−1T(z, rcut, a)

= T(0,L)
N (a) log r2

cut + T(0)
N (a) + T(2,L)

N (a)r2
cut log r2

cut + T(2)
N (a)r2

cut +O(r2
cut),

(4.76)
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with

T(0,L)
N (a) = −1

2
, (4.77)

T(0)
N (a) =

1
N
− HN − B(a; N, 0), (4.78)

T(2,L)
N (a) = −1

2
N(N − 1) (4.79)

T(2)
N (a) = N2 − 1

N
− N(N − 1)HN − aN

∞

∑
k=1

(k + 1)!
(k− 1)!

ak

N + k
(4.80)

In the above, HN is the harmonic number

HN =
N

∑
k=1

1
k

, (4.81)

and B is the incomplete beta function

B(z; x, y) =
∫ z

0
dttx−1(1− t)y−1. (4.82)

The inversion of the Mellin transform into the real z-space, although quite technical and
lengthy, is straightforward. We get

T(z, rcut, a) = −1
2

δ(1− z) ln r2
cut +

(
1

1− z

)
a
+ ln(1− a)δ(1− z)

− 1
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δ(2)(1− z)− 2δ(1)(1− z)

)
r2

cut ln r2
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]
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cut +O(r4
cut).

(4.83)

where we have defined the distributions δ(n)(z− b),
( 1

1−z

)
a, D(1)(z, a) and D(2)(z, a) through

their action on a test function f (z) as∫ 1

0
dz f (z)δ(n)(z− b) = (−1)n f (n)(b), b ∈ [0, 1], (4.84)∫ 1

0
dz f (z)

(
1

1− z

)
a
=
∫ 1

a
dz

f (z)− f (1)
1− z

, (4.85)

∫ 1

0
dz f (z)D(1)(z, a) =

∫ 1

a
dz

f (1)(z)− f (1)(1)
1− z

, (4.86)∫ 1

0
dz f (z)D(2)(z, a) =

∫ 1

a
dz

z f (2)(z)− f (2)(1)
1− z

. (4.87)
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By combining the two contributions zmin < z < a and a < z < zmax the dependence on a
cancels out and we obtain for the rcut dependence of the partonic cross section

σ̂IS
qq̄(s; rcut) = σ0(s)

α

2π
e2

q

{
ln2 r2

cut − 4
(

2 ln 2− 4
3
− ln
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− 3
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}
+ ..........

≡ σ̂IS
LP(s; rcut) + σ̂IS

NLP(s; rcut) + .......... (4.88)

where we have dropped terms which do not depend on rcut and the dots stand for terms that
vanish faster than r2

cut as rcut → 0. At variance with Eq. (4.70), Eq. (4.88) contains a double
and a single logarithmic term in rcut, which will be cancelled by the subtraction counterterm.
As expected, the next-to-leading power contribution σ̂IS

NLP(s; rcut) is quadratic in rcut, modulo
logarithmic enhancements.

Check: color singlet production

The structure of the power corrections to the inclusive production of a color-singlet (or neu-
tral) massive vector boson can be reobtained as a byproduct of our calculation. In what fol-
lows, we show explicitly that we are able to reproduce the structure of the rcut dependence of
the vector boson production in the diagonal annihilation channel computed in Ref. [59] up
to and including the quadratic terms, which represents a non-trivial test of our calculation.
To get rid of the decay into the lepton pair, it is sufficient to take the limit for a vanishing
lepton mass m → 0 while the constraint on the mass of the vector boson M eliminates the
integration over the z variable. The former requirement corresponds to take the limit a→ 0
inside the expansion of the distributions in Eq. 4.77-4.80. Inverting in real z-space, we have

T(0,L)(z) = −1
2

δ(1− z), (4.89)

T(0)(z) =
(

1
1− z

)
+

, (4.90)

T(2,L)(z) = −1
2
[δ(2)(1− z)− 2δ(1)(1− z)], (4.91)

T(2)(z) = δ(2)(1− z)− 3δ(1)(1− z) +
1
2

δ(1− z) + D(2)
0 (z) + 2D(1)

0 (z), (4.92)

where we have introduced the two auxiliary distributions
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, (4.93)∫ 1

0
dz f (z)D(2)

0 (z) =
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0
dz

z3 f (2)(z)− f (2)(1)
1− z

, (4.94)

Due to the second requirement, we interpret now the partonic cross section as a distribution
over which acts on the parton luminosity, as function of the variable z = M2/S, S being the
total energy available in the hadronic center-of-mass frame. To match the computation given
in Ref. [59], we collect out a factor 1/z. Then, apart from an overall constant normalization
factor, we get the following structure for the rcut dependence
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a) contribution from K3
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cut + T(0)(z) log r2
cut + T(2,L)(z)r2

cut log r2
cut

+
(

T(2)(z)− T(2,L)(z)
)

r2
cut

]
=

1
2

log2 r2
cut −

1 + z2

(1− z)+
log r2

cut +
[
δ(2)(1− z)− 4δ(1)(1− z) + 3δ(1− z)

]
r2

cut log r2
cut

−
[
3δ(2)(1− z) + 14δ(1)(1− z) + 12δ(1− z) + (1 + z2)D(2)

0 (z) + 2(1 + z2)D(1)
0 (z)

]
r2

cut

(4.95)

which, apart from an overall factor of 2, matches the structure of the coefficient func-
tion ĝU(1)

qq̄ , eq.(4.7) of Ref. [59]. In particular, we have checked that the expression
proportional to the quadratic term defines the same distribution as that reported in
the reference work.

a) contribution from K4

2z
[

T(0,L)(z)r2
cut log r2

cut +
(

T(0)(z)− T(0,L)(z)
)

r2
cut

]
= −δ(1− z)r2

cut log r2
cut +

[
2z

(1− z)+
+ δ(1− z)

]
r2

cut,
(4.96)

which, apart from an overall factor of 2, matches exactly the structure of the coefficient
function ĝR(1)

qq̄ , Eq. (4.8) of Ref. [59].

4.5.3 Numerical validation

In order to check the results presented in Secs. 4.5.1, 4.5.2 we have numerically implemented
the exact real emission contribution to the cross section and the expansions in Eqs. (4.70) and
(4.88).

In Fig. 4.10 we report the exact real emission partonic cross section in the qq̄ channel for
β = 0.6 as a function of rcut from which we have subtracted the leading-power contribution
(black curve) and both the leading and next-to-leading power contributions (red curve). The
numerical computation is separately carried out for the final-state radiation (left panel) and
initial-state radiation (right panel) contributions. Both for final-state radiation and initial-
state radiation the leading-power contribution exactly matches the divergent behavior of
the real emission cross section which is finite in the small-rcut limit. The subtraction of the
leading-power contribution exactly corresponds (up to quadratic terms in rcut, see Eqs. (4.45)
to the second term on the right hand side of Eq. (4.20) and it is thus what is usually done
in the standard qT subtraction procedure. In the case of final-state radiation (left panel) the
subtracted cross section exhibits the expected linear behavior, while for initial-state radiation
(right panel) the subtracted cross section scales quadratically with rcut. When besides the
leading-power contribution, also the next-to-leading power (linear) term is subtracted the
final-state subtracted cross section (red curve) behaves quadratically with rcut, consistently
with the result in Eq. (4.70). In the case of initial-state radiation, the additional subtraction
of the next-to-leading power (quadratic) term makes the subtracted cross section almost
independent on rcut.
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FIGURE 4.10: Subtracted partonic cross section for final-state radiation (left
panel) and initial-state radiation (right panel). The solid lines represent the
subtraction of the leading-power term, while the red solid line is obtained by
subtracting also the next-to-leading power terms in Eq. (4.70) and Eq. (4.88),
respectively. The upper panels show the result normalised to the Born cross
section, while the lower panels show the result normalised to the rcut → 0

limit. The computation is carried out at fixed β = 0.6.

4.5.4 Hadronic cross section

Before concluding this section, we briefly comment upon the behavior of the hadronic cross
section. Indeed, as we will show in the following, a residual dependence on rcut is contained
in the convolution integral with the PDFs, which can potentially lead to an additional linear
term in rcut. In the case of final-state radiation such contribution could modify the parton
level result. In the case of initial-state radiation such contribution could potentially change
the power counting, by making the power correction linear. In what follows, we show that
this is not the case and that, thanks to the analicity of the cross section such additional term
vanishes both for final-state and initial-state radiation.

The real contribution to the hadronic cross section reads

σ(S, rcut) = ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1, µF) fb(x2, µF)σ̂ab(s, rcut)δ(x1x2S− s) (4.97)

where S is the hadronic CM-energy. The presence of a finite rcut implies that

s >
4m2

zmax
. (4.98)

where zmax, defined in Eq. (4.52), behaves linearly with rcut

zmax = 1− 2rcut +O(r2
cut) . (4.99)
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The hadronic cross section in Eq. (4.97) can be rewritten as

σ(S, rcut) = ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1, µF) fb(x2, µF)Θ
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x1x2S− 4m2

zmax

)
σ̂ab (s = x1x2S, rcut)

= z0 ∑
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z0

dz
z2

∫ − ln
√

z0/z

ln
√

z0/z
dy fa

(√
z0

z
ey, µF

)
fb

(√
z0

z
e−y, µF

)
σ̂ab

(
s =

4m2

z
, rcut

)
≡∑

a,b

∫ zmax

z0

dzLab(z, z0; µF) σ̂ab

(
s =

4m2

z
, rcut

)
(4.100)

where in the last step, we have performed the change of variables

x1 =

√
z0

z
ey, x2 =

√
z0

z
e−y, z0 ≡

4m2

S
. (4.101)

Hence, the presence of zmax as an upper integration limit in Eq. (4.100) could potentially
induce an additional linear term in rcut when the hadronic cross section is evaluated. How-
ever, the partonic cross section vanishes at the kinematic limit z = zmax

σ̂ab

(
s =

4m2

zmax
, rcut

)
= 0 . (4.102)

This is a sufficient mathematical condition to prevent the appearance of a further linear term
through integration. We thus conclude that, as anticipated, in the case of final-state radiation
the linear term in rcut is completely driven by the parton level result, while for initial-state
radiation the convolution with PDFs will not produce linear terms in rcut.

4.6 Final-state radiation at next-to-leading power: beyond inclu-
sive observables

The results presented in Sec. 4.5 have been obtained for the most inclusive observable, the
total partonic cross section without any fiducial cuts. This has been a crucial point in order to
perform the computation analytically. Given this limitation, the result cannot be employed
in practise to improve the efficiency of the subtraction when fiducial cuts are applied and
when one is interested in distributions. It is tempting to extend the analysis for such cases
and to show a viable approach at least at NLO level. In what follows we outline a strategy to
remove the final-state linear power suppressed contribution from the qT subtraction formula
at NLO at differential level.
Let us start from Eq. (2.81) at NLO

dσ̂F
NLO = HF

NLO ⊗ dσ̂F
LO +

[
dσ̂

F+jet
LO − dσ̂F, CT

NLO

]
Θ
(qT

M
− rcut

)
, (4.103)

where we have written explicitly the rcut constraint. Consider the following extension

dσ̂F
NLO = HF

NLO ⊗ dσ̂F
LO +

[
dσ̂

F+jet
LO − dσ̂F, CT

NLO

]
Θ
(qT

M
− rcut

)
+
[
dσ̂

F+jet
FS,LO − dσ̂F, CT

S,NLO

]
Θ
(

rcut −
qT

M

)
.

(4.104)
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In the above formula, dσ̂
F+jet
FS,LO is the differential cross section associated to final-state radi-

ation only and dσ̂F, CT
S,NLO is an arbitrary counterterm which cancels the corresponding final-

state soft divergence, so that their difference is finite. The new term lives in the unresolved
region below rcut so that its contribution is vanishing in the limit rcut → 0. Thus, the first
observation is that Eq.(4.103) and Eq.(4.104) differ only by power suppressed terms in rcut,
and therefore they are formally equivalent. The second and key observation is that, if the
new counterterm, as the standard qT subtraction one, does not introduce additional linear
power corrections, then the subtraction formula in Eq (4.104) is free of linear power sup-
pressed terms. Indeed, the linear term arising from the real emission cross section exactly
cancels in the sum[

dσ̂
F+jet
LO − dσ̂F, CT

NLO

]
Θ
(qT

M
− rcut

)
+
[
dσ̂

F+jet
FS,LO − dσ̂F, CT

S,NLO

]
Θ
(

rcut −
qT

M

)
= Ī +O(r2

cut).
(4.105)

We claim that to build a counterterm satisfying the above condition, we need only the lead-
ing term in the soft expansion of the real emission cross sections, i.e. the product of the
eikonal approximation for the matrix element times the soft phase space. The argument is
detailed in Appendix C, where the rcut dependence of the relevant soft integrals is com-
puted. The main result is that the leading soft contribution reproduces the leading power
term in rcut, which is of course expected, plus power-suppressed terms whose leading be-
havior is quadratic. We highlight that this result is fully differential with respect the Born
variables, thanks to the soft factorisation theorem. Next-to-soft contribution, then, repro-
duces the next-to-leading power in rcut. In other words, up to the next-to-leading power,
there is a one-to-one correspondence between the power counting in the rcut regulator and
the soft expansion.

The third and last observation is that if the soft subtraction is local, then it is effectively
possible to perform the integration in the unresolved region. Therefore, to construct the
additional soft counterterm we only need a soft mapping which reabsorbs the radiation into
a Born-like configuration. For this purpose we rely on the massive FKS mapping presented
in Chapter 1. Then, we define the local soft counterterm as

dσ̂CT
S = dσ̂LO(ΦB)×

e2

4π3s
dξ

ξ
dydφ

[
s− 2m2

(1− βyphy)(1 + βyphy)
− m2

(1− βyphy)2 −
m2

(1 + βyphy)2

]
(4.106)

where β =
√

1− 4m2/s.
We stress that the crucial point for this additional subtraction to be effective is that the

additional counterterm in Eq. (4.106) scales like dξ/ξ, thereby leading to purely logarithmic
contributions in rcut. We have checked that alternative local subtractions which do not fulfill
this property do not lead to a cancellation of the linear term. Furthermore, an additional
source of linear terms is implicitly contained in the theta function Θ

(
rcut − qT

M

)
, since the

invariant mass M of the produce final system is a function of the real kinematics. To avoid
the proliferation of this spurious contribution, one must compute M using the mapped born
kinematic when the cut is applied on the counterterm. In our case, this amounts to set
M =

√
s.

We conclude this Section with few comments on the above results. The subtraction of
the linear rcut behavior through Eq. (4.104) does not require any analytic integration. It just
requires an appropriate phase space mapping. The reader may of course argue that there is
no need to introduce the modification of Eq. (4.104) to achieve a smooth cancellation of the
soft singularity. Indeed, at NLO one can simply use a local subtraction scheme like FKS or
dipole subtraction to carry out the fully differential computation. Nonetheless, the strategy
adopted here could prove itself useful when extending the computation to the mixed QCD-
EW corrections with the qT subtraction formalism. In this case, given that we aim at the
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computation of an effect of the order of few per mille, having a quadratic instead of linear
rcut behavior could dramatically improve the numerical control of the O(ααS) contribution.

4.6.1 Numerical analysis

In fig. 4.11 we report a study case for the pure QED production (no Z resonance involved).
We consider the following four cases:

• fully inclusive;

• cuts on the lepton rapidities: |yl | < 2.5 only;

• cuts on the lepton rapidities and transverse momenta (asymmetric): |yl | < 2.5, pT,l− >
25 GeV and pT,l+ > 20 GeV

• cuts on the lepton rapidities and transverse momenta (symmetric): |yl | < 2.5, pT,l >
25 GeV.

We see that in all cases there is a milder dependence on rcut. In particular, in the first three,
the linear dependence with rcut is nicely cancelled. This does not occur completely in the
last case when symmetric cuts on the lepton transverse momenta are applied. As discussed
in Sec. 4.2.2, in this situation a linear dependence on rcut appears in the contribution from
initial-state radiation which is beyond the scope of our modification.

In fig. 4.12 we report a study case for the complete neutral current Drell-Yan process
including the Z resonance. We consider the following setups:

• fully inclusive;

• cuts on the lepton rapidities and the transverse momenta (asymmetric): |yl | < 2.5,
pT,l− > 25 GeV and pT,l+ > 20 GeV

The results show up the same behavior as in the pure QED case, confirming the validity of
this approach.
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FIGURE 4.11: NLO QED correction as a function of rcut for the pure QED
(no Z boson exchange) Drell-Yan process in the dominant qq diagonal chan-
nel without cuts (a) and with cuts ((b), (c), (d)) at 7 TeV. The standard result
obtained with qT subtraction (grey band) is compared with the result obtained
by including the power suppressed contribution in Eq. (4.104). The NLO re-
sult is normalised to the rcut-independent cross section computed with dipole

subtraction.
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FIGURE 4.12: NLO EW correction as a function of rcut for the complete Drell-
Yan process in the dominant qq diagonal channel without cuts (left panel) and
with asymmetric cuts (right panel) at 7 TeV. The standard result obtained with
qT subtraction (grey band) is compared with the result obtained by includ-
ing the power suppressed contribution in Eq. (4.104). The NLO result is nor-
malised to the rcut-independent cross section computed with dipole subtrac-

tion.
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Chapter 5

Conclusions

The excellent performance of the LHC offers the possibility to test the Standard Model of el-
ementary particles at an unprecedented precision. Very clean measurements on key observ-
ables for basic processes have reached few percent accuracy and the residual uncertainties
are expected to further decrease in the future. Indeed in the next years the ATLAS and CMS
experiments will collect about 20 times the number of collisions they have registered so far,
so that it is clear that percent accuracy will be eventually reached.

In such a situation, SM predictions at similar level of accuracy are mandatory, including
radiative corrections in the strong and the EW couplings. Besides the largest and ubiquitous
effects related to the QCD interaction, higher-order EW effects have an essential impact on
the physics of the collisions at the LHC, in particular for the application to the production
of a pair of leptons via the Drell-Yan mechanism and represent the main motivation of this
work. After the computation of the second order corrections in QCD and of the first order
corrections in the EW couplings, by a simple power counting argument it is clear that the
third order in QCD will compete with the mixed QCD-EW corrections. First results in such
computations are starting to appear in the literature.

In the theoretical study of the EW corrections at colliders, one usually retains the finite
value of the very small mass of charged leptons because it represents the natural cut-off
of the collinear singularities for both fixed order and shower radiation. In this scenario,
the present work started by considering the description of the radiation emitted by a mas-
sive particle in the framework of the FKS NLO subtraction scheme. In the standard FKS
for massless partons, the partitioning of the real phase space is driven by the collinear sin-
gularities. Nonetheless, in order to have a better control over the small-mass logarithmic
enhancements, it is useful to consider also quasi-collinear regions in which, strictly speak-
ing, only soft radiation leads to a genuine singularity. In this context, we have proposed a
new FKS mapping suitable to treat the singularities of an NLO computation with massive
radiators. This represents the first step towards a improved POWHEG formalism whose
implementation has been fully worked out in Chapter 1. It allowed us to consistently match
next-to-leading order computation to a parton shower including the resummation of sub-
leading quasi-collinear effects. We have started the study of the phenomenology impact of
such effects by comparing the predictions for bottom production at hadron colliders among
different POWHEG event generators. We are currently working on a global comparison
with single and double differential data available on open bottom production.

The core of the thesis was focused on the mixed QCD-EW corrections. We have moved
the first steps to set up a suitable subtraction scheme that allows us to compute such correc-
tions for Drell-Yan lepton pair production at fully differential level, by retaining the finite
mass of the final-state charged leptons. We based our construction upon the qT subtraction
formalism, which has been successfully employed to compute second order QCD correc-
tions for a large number of processes involving the hadroproduction of colorless final states,
and has been extended to the computation of NNLO QCD corrections to heavy-quark pair
production. The qT subtraction formalism is a non-local subtraction in the sense discussed
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in Chapter 2. In particular, it relies on the introduction of a physical infrared observable, the
transverse momentum of the produced system, which acts as a resolution variable for soft
and collinear regions. The computation is carried out by imposing a cut-off on the resolution
variable, as the cancellation of the divergences takes place only after performing the integra-
tion over the other radiation variables, thereby introducing power suppressed corrections
to the qT subtraction formula. The efficiency of the method mostly relies on the size of the
power corrections, which has been one of the main aspect investigated in this work.

Since the structure of soft and collinear singularities arising from the EW corrections is
due to the propagation of massless photons, the EW subtraction can be obtained applying
the so called “abelianisation” procedure starting from the corresponding QCD version. The
current formulation of the qT subtraction method is sufficient to derive the structure of the
subtraction for mixed QCD-EW corrections to the Drell-Yan processes. In Chapter 3, we
have showed in detail the use of the abelianisation procedure for the derivation of the qT
subtraction formula to deal with QCD-EW corrections for initial-state radiation. As a first
application, we have computed the mixed QCD-QED correction to the production of an on-
shell Z boson at the LHC. We have studied the stability of the computation by varying the
rcut regulator and we have found a rather flat behavior in the nominal exploration region
consistently with what is observed in the color singlet case in pure QCD, where the leading
power corrections are known to be quadratic. We have verified that the fully inclusive re-
sult of our calculation is in agreement with the literature and we have produced also some
illustrative differential results.

Then, the next step has been the inclusion of the final-state radiation, analyzing both the
production of a Z boson decaying in a pair of charged leptons and the production of a W
boson decaying into a charged lepton and a neutrino. The double virtual amplitudes, which
are an essential ingredient to complete the calculation of mixed QCD-EW corrections are
currently missing. Therefore, we have focused on the pure EW corrections. First of all, we
have assessed the performance of the method originally proposed and applied to heavy-
quark production to a process with masses as small as the muon mass. Here the numerical
efficiency is challenged by a new source of power suppressed contributions, the rcut depen-
dence being linear, contrary to what happens when only initial state radiation is considered.
We have computed the NLO EW corrections with the qT subtraction formalism to both the
neutral- and charged-current Drell-Yan processes. We have investigated the small-mass be-
havior and the dependence on rcut, which in principle can compete among each others. Our
results show that there is no severe interplay between the two parameters, since the qT sub-
traction counterterm retains the full mass dependence at fixed rcut. The numerical stability is
challenged by the logarithmic enhancement in the small-mass limit, which mostly affects the
integration of the real contribution. We have shown that the optimization of the sampling
strategy in the Monte Carlo integration allows us to reach a good control on the numerical
results, which turn out to be in nice agreement with those produced with publicly available
generators. This suggests us that our method will work also in the computation of mixed
QCD-EW corrections.

We have investigated for the first time the power corrections associated to the soft ra-
diation emitted off a massive final state, in order to understand the origin of the different
behavior with respect to the color-singlet case. To this extent, we have carried out the fully
analytic computation of the coefficient of the leading power in the rcut variable. We have
established the pure soft origin of the observed linear behavior, which is due to next-to-
leading order terms in the soft expansion of the qT-spectrum produced by the final-state real
emission. Inspired by our findings, we have also proposed a method to remove the linear
dependence on the rcut parameter from the qT subtraction formula at NLO at differential
level. Its generalization to the next order, if possible, besides being interesting from a theo-
retical point of view, would be very valuable in order to improve the numerical efficiency of
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the method.
The results presented in this work provide all the ingredients to build a subtraction

scheme to deal with the full set of mixed QCD-EW corrections to both neutral- and charged-
current Drell-Yan processes. We are currently working to extend the stability test on the
rcut and small mass dependence to the case of the mixed corrections to the charged W bo-
son. When the two-loop QCD-EW amplitudes will be available 1, it will be possible to take
the step to the evaluation of full mixed QCD-EW corrections for fiducial cross sections and
differential distributions.

The successful methodology applied to extend the qT subtraction formalism towards the
mixed QCD-EW corrections is not limited to the cases considered in the present work. It can
be exploited as well to compute the mixed corrections to other 2 → 2 reactions with mas-
sive final-state particles, as heavy-quark production, and pure NNLO EW(QED) corrections.
Furthermore, we anticipate further applications to e+e− collider processes.

1There has been a recent boost in this direction with the computation of the relevant master integrals [208,
209] and the first computation of the complete set of mixed QCD-EW correction to the inclusive on-shell Z boson
production [19] in the qq̄ channel.





121

Appendix A

qT subtraction formula in color singlet
production

In this Appendix we collect the main formulae required to implement the qT subtraction
method for the production of a color-singlet system in processes initiated at LO by the quark-
anti quark annihilation. In Sec. A.2, we briefly comment on the main differences with the
gluon-fusion induced processes.

A.1 Main formulae

For ease of reading and for self-consistency, we report here the qT subtraction formula for
the hadroproduction of a colour singlet F

dσ̂F
(N)NLO = HF

(N)NLO ⊗ dσF
LO +

[
dσ

F+jets
(N)LO − dσ̂CT

(N)NLO

]
qT
Q >rcut

, (A.1)

where the symbol⊗ denotes convolutions with respect to the longitudinal-momentum frac-
tions z1 and z2 of the colliding partons. In the above, qT is the transverse momentum of
F and Q is invariant mass. rcut = qmin

T /Q is the adimensional cut-off on the transverse
momentum. The counterterm reads

dσ̂CT = dσ̂F
LO ⊗ Σ̃

(
qT

Q

)
. (A.2)

The Σ̃ function admits a fixed order expansion

Σ̃ =
∞

∑
n=1

(αs

π

)n
Σ̃F (n)

cc̄←ab(z, qT/Q) (A.3)

Up to NNLO (n = 1, 2), we have explicitly

Σ̃F (1)
cc̄←ab(z, qT/Q) = ΣF (1;2)

cc̄←ab(z) Ĩ2(qT/Q) + ΣF (1;1)
cc̄←ab(z) Ĩ1(qT/Q) , (A.4)

and

Σ̃F (2)
cc̄←ab(z, qT/Q) = ΣF (2;4)

cc̄←ab(z) Ĩ4(qT/Q) + ΣF (2;3)
cc̄←ab(z) Ĩ3(qT/Q) + ΣF (2;2)

cc̄←ab(z) Ĩ2(qT/Q)

+ ΣF (2;1)
cc̄←ab(z) Ĩ1(qT/Q) .

(A.5)

The notation cc̄← ab denotes the transition from the incoming partons a, on the first leg, and
b, on the second leg, to the cc̄ partons entering the hard scattering process and the special



122 Appendix A. qT subtraction formula in color singlet production

functions Ĩn(qT/Q) are given by the following Bessel transformation

Ĩn(qT/Q) = Q2
∫ ∞

0
db

b
2

J0(bqT) lnn
(

Q2b2

b2
0

+ 1
)

. (A.6)

Having given the basic structure of the subtraction, the explicit form of the perturbative b-
independent coefficients ΣF (1;k)(z),HF (1)(z), ΣF (2;k)(z) andHF (2)(z), required to performed
the computation up to NNLO, is presented in the following formulae in terms of the per-
turbative resummation coefficients. The results are more easily presented in terms of the
N-moments with respect to the variable z1. We have

ΣF (1;2)
cc̄←ab, N = − 1

2
A(1)

c δcaδc̄b , (A.7)

ΣF (1;1)
cc̄←ab, N(M2/Q2) = −

[
δcaδc̄b

(
B(1)

c + A(1)
c `Q

)
+ δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

]
, (A.8)

HF (1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b

[
HF (1)

c −
(

B(1)
c +

1
2

A(1)
c `Q

)
`Q − pcFβ0`R

]
+δcaC(1)

c̄b, N + δc̄bC(1)
ca, N +

(
δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

)
(`F − `Q) , (A.9)

ΣF (2;4)
cc̄←ab, N =

1
8

(
A(1)

c

)2
δcaδc̄b , (A.10)

ΣF (2;3)
cc̄←ab, N(M2/Q2) = − A(1)

c

[
1
3

β0 δcaδc̄b +
1
2

ΣF (1;1)
cc̄←ab, N(M2/Q2)

]
, (A.11)

ΣF (2;2)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= − 1

2
A(1)

c

[
HF (1)

cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
− β0 δcaδc̄b (`R − `Q)

]
− 1

2 ∑
a1,b1

ΣF (1;1)
cc̄←a1b1, N(M2/Q2)

[
δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

]
(A.12)

− 1
2

[
A(2)

c δcaδc̄b +
(

B(1)
c + A(1)

c `Q − β0

)
ΣF (1;1)

cc̄←ab, N(M2/Q2)
]

,

ΣF (2;1)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= ΣF (1;1)

cc̄←ab, N(M2/Q2) β0 (`Q − `R)

− ∑
a1,b1

HF (1)
cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

) [
δa1aδb1b

(
B(1)

c + A(1)
c `Q

)
+ δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

]
−

[
δcaδc̄b

(
B(2)

c + A(2)
c `Q

)
− β0

(
δcaC(1)

c̄b, N + δc̄bC(1)
ca, N

)
+ δcaγ

(2)
c̄b, N + δc̄bγ

(2)
ca, N

]
, (A.13)

1In this work, we define the N-moments fN of any function f (z) of the variable z as fN =
∫ 1

0 dz zN−1 f (z) .
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HF (2)
cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
= δcaδc̄b HF (2)

c + δca C(2)
c̄b, N + δc̄b C(2)

ca, N + C(1)
ca, N C(1)

c̄b, N

+ HF (1)
c

(
δca C(1)

c̄b, N + δc̄b C(1)
ca, N

)
+

1
6

A(1)
c β0 `

3
Q δcaδc̄b +

1
2

[
A(2)

c δcaδc̄b + β0 ΣF (1;1)
cc̄←ab, N(M2/Q2)

]
`2

Q

−
[
δcaδc̄b

(
B(2)

c + A(2)
c `Q

)
− β0

(
δcaC(1)

c̄b, N + δc̄bC(1)
ca, N

)
+ δcaγ

(2)
c̄b, N + δc̄bγ

(2)
ca, N

]
`Q

+
1
2

β0

(
δcaγ

(1)
c̄b, N + δc̄bγ

(1)
ca, N

)
`2

F +
(

δcaγ
(2)
c̄b, N + δc̄bγ

(2)
ca, N

)
`F −HF (1)

cc̄←ab, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
β0`R

+
1
2 ∑

a1,b1

[
HF (1)

cc̄←a1b1, N

(
M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+ δca1 δc̄b1 HF (1)

c + δca1 C(1)
c̄b1, N + δc̄b1 C(1)

ca1, N

]
×

[(
δa1aγ

(1)
b1b, N + δb1bγ

(1)
a1a, N

)
(`F − `Q)− δa1aδb1b

((
B(1)

c +
1
2

A(1)
c `Q

)
`Q + pcF β0 `R

)]
− δcaδc̄b pcF

(
1
2

β2
0 `

2
R + β1 `R

)
. (A.14)

In the above formulae, pcF is the power of the αn
s factor in the LO partonic process, we have

defined

`R = ln
M2

µ2
R

, `F = ln
M2

µ2
F

, `Q = ln
M2

Q2 , (A.15)

and γab, N(αS) are the parton anomalous dimensions or, more precisely, the N-moments 2 of
the customary Altarelli–Parisi splitting functions Pab(αS, z) [70, 131–133]

γab, N(αS) =
∫ 1

0
dz zN−1 Pab(αS, z) =

∞

∑
n=1

(αS

π

)n
γ
(n)
ab, N . (A.16)

The regularized LO kernels are

P(1)
qq (z, ε) =

1
2

CF

[
1 + z2

(1− z)+
+

3
2

δ(1− z)− ε(1− z)
]

, (A.17)

P(1)
gq (z, ε) =

1
2

CF

[
1 + (1− z)2

z
− εz

]
, (A.18)

P(1)
qg (z, ε) =

1
2

TR

[
1− 2z(1− z)

1− ε

]
, (A.19)

P(1)
gg (z, ε) =

1
2

2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]
+

1
2

δ(1− z)
11CA − 4TRn f

6
, (A.20)

where in SUc(3): CF = 4/3, CA = 3, TR = 1/2 and nF is the number of active quark
flavours. The NLO kernels, computed in the classic papers [132, 133], are listed in Ref. [70].
In the following, we give the explicit expressions of the the required resummation coeffi-
cients. The LL and NLL universal (i.e. independent of the process and of the factorization
and resummation schemes) perturbative functions A(1)

c and A(2)
c are [210], [148]

A(1)
c = Cc , A(2)

c =
1
2

Cc

[(
67
18
− π2

6

)
CA −

5
9

N f

]
, (A.21)

2Note the different normalization, α/π instead of α/(2π), in order to math the resummation formulae.
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where Cc = CF if c = q, q̄ and Cc = CA if c = g. The first-order B(1)
c , c = q, q̄, g coefficients

are [210], [148]

B(1)
q = B(1)

q̄ = −3
2

CF , B(1)
g = −1

6
(
11CA − 2N f

)
, (A.22)

and they are related to the coefficient of the contact term in LO Altarelli-Parisi splitting
kernels, respectively P(1)

qq and P(1)
gg . The second-order coefficient B(2)

c is resummation scheme
dependent. In the hard scheme, it reads

B(2)
a =

γa(1)

16
+ πβ0 Ca ζ2 , (A.23)

where γa(1) (a = q, g) are the coefficients of the δ(1− z) term in the NLO quark and gluon
splitting functions [132, 133], which read

γq (1) = γq̄ (1) = (−3+ 24ζ2− 48ζ3)C2
F +

(
−17

3
− 88

3
ζ2 + 24ζ3

)
CFCA +

(
2
3
+

16
3

ζ2

)
CF N f ,

(A.24)

γg (1) =

(
−64

3
− 24ζ3

)
C2

A +
16
3

CAN f + 4 CF N f , (A.25)

and ζn is the Riemann zeta-function (ζ2 = π2/6, ζ3 = 1.202 . . . , ζ4 = π4/90).
The first-order coefficients C(1)

ab (z) are explicitly known [211–214] and in the hard scheme3

they read

C(1)
qq (z) =

1
2

CF(1− z) , (A.26)

C(1)
gq (z) =

1
2

CF z , (A.27)

C(1)
qg (z) =

1
2

z(1− z) , (A.28)

C(1)
gg (z) = Cqq̄(z) = Cqq′(z) = Cqq̄′(z) = 0 . (A.29)

We can give a simple interpretation of the above coefficients: they are the finite contribu-
tion arising from the O(ε) part of the corresponding LO Altarelli-Parisi splitting kernels in
Eqs. A.17-A.20. This is not unexpected in NLO computations: such contributions usually
arise as a finite remainder coming from the subtraction of the initial-state collinear singular-
ities (see for example Eq. (2.102) in Ref. [24]).

A.1.1 Second-order collinear functions for processes initiated by quark-anti quark
annihilation

In the following we give the explicit expressions of the second-order collinear functions C(2)
ab

relevant for processes initiated at the LO by the quark-anti quark annihilation:

3The collinear coefficients C(n)
ab (z) are resummation-scheme dependent; their expressions in the hard scheme

can be obtained from their corresponding expression in an arbitrary scheme by simply setting the coefficient of
the δ(1− z) term to zero.
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C(2)
qq = − 1

864(1− z)z

[
C2

F

(
− 216(z3 + z)Li3(1− z) + 1080(z3 + z)Li3(z)− 648(z3 + z)Li2(z) log(z)

−216(z3 + z)Li2(z) log(1− z) + 432(z− 1)2zLi2(z)− 108(z3 + z) log(1− z) log2(z)
−1080z(z2 + 1)ζ(3) + 18z(z2 − 1) log3(z)− 324z(z2 + 1) log2(1− z) log(z)
+36z((π2 − 3)z2 + 3z + π2) log(1− z)− 36(5π2 − 57)(z− 1)2z
+54z(2(z− 1)z− 3) log2(z)− 108z(z(16z− 13) + 5) log(z)

+648(z− 1)2z log(1− z) log(z)
)

+ CACF

(
216(z3 + z)Li3(1− z)− 432(z3 + z)Li3(z) + 216(z3 + z)Li2(z) log(z)

+216(z3 + z)Li2(z) log(1− z)− 216(z− 1)2zLi2(z)− 108z
(
3z2 − 11

)
ζ(3)

+18z(z2 + 1) log3(z) + 216z(z2 + 1) log2(1− z) log(z)
−36z((π2 − 3)z2 + 3z + π2) log(1− z) + 54π2(z− 1)2z + 16(z− 1)z(z + 100)
+9z(11− (z− 12)z) log2(z) + 12z(z(83z− 36) + 29) log(z)

−216(z− 1)2z log(1− z) log(z)
)

+ CF

(
− 144(z− 1)2z2Li2(z)− 144(z− 1)2Li2(z) + 72(z− 1)2zLi2(z)

+18z(z2 − 1) log3(z) + 9z
(
(5− 8z)z2 + 3

)
log2(z)

+12(z− 1)z(32z2 − 30z + 21) log(z)− 144(z− 1)2z2 log(1− z) log(z)
+2(z− 1)2((143− 136z)z + 6π2(z(2z− 1) + 2)− 172)

−144(z− 1)2 log(1− z) log(z) + 72(z− 1)2z log(1− z) log(z)
)

+ CFn f

(
− 18z(z2 + 1) log2(z)− 60z(z2 + 1) log(z)− 4(z− 1)z(19z + 37)

)]
(A.30)

C(2)
qq′ =

CF

864z

[
− 72(2z3 − 3z2 + 3z− 2)Li2(z)

+2(z− 1)(−136z2 + 6π2(2z2 − z + 2) + 143z− 172)− 9z
(
8z2 + 3z + 3

)
log2(z)

−12(z(−32z2 + 30z− 21) + 6(2z3 − 3z2 + 3z− 2) log(1− z)) log(z)

+18z(z + 1) log3(z)
]

(A.31)
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C(2)
qq = C(2)

qq′

+
1

24(z + 1)
CF

(
CF −

CA

2

) [
36z2Li3(−z) + 24z2Li3(z) + 24z2Li3

(
1

z + 1

)
−12Li2(−z)((z2 + 1) log(z) + (z + 1)2)− 12Li2(z)(z2 + z2 log(z) + log(z)− 1)

+36Li3(−z) + 24Li3(z) + 24Li3

(
1

z + 1

)
− 18z2ζ(3) + π2z2 − 45z2 − z2 log3(z)

−4z2 log3(z + 1) + 6z2 log(z + 1) log2(z) + 33z2 log(z)− 12z2 log(1− z) log(z)
−12z2 log(z + 1) log(z) + 2π2z2 log(z + 1)− 2π2z− log3(z)− 4 log3(z + 1)
+6 log(z + 1) log2(z) + 42z log(z) + 12 log(1− z) log(z)− 24z log(z + 1) log(z)

−12 log(z + 1) log(z) + 9 log(z) + 2π2 log(z + 1)− 18ζ(3)− 3π2 + 45
]

(A.32)

C(2)
qg =

1
864z

[
+ CFTR

(
− 432z3Li3(z) + 432z2Li3(z)− 216(2(z− 1)z + 1)zLi3(1− z)

−216zLi3(z) + 432(−2(z− 1)z− 1)zLi2(z) tanh−1(1− 2z)
+864z3 tanh−1(1− 2z) + 3456(z− 1)z2ζ(3) + 36(1− 2z)z2 log3(z)
−216(z− 1)z2 log2(1− z)− 324z2 log(1− z) + 432(z− 1)z2 log(1− z) log(z)
+1728zζ(3) + 18(z(−8(15 + π2)z + 8π2 + 129)− 39)z
−36(2(z− 1)z + 1)z log3(1− z)− 18z log3(z) + 27(4(3− 2z)z + 1)z log2(z)
+108(2(z− 1)z + 1)z log(1− z) log2(z)− 108(2(z− 1)z + 1)z log2(1− z) log(z)

+36π2(2(z− 1)z + 1)z log(1− z) + 54(15z + 8)z log(z)
)

+ CATR

(
− 1296z3Li3(z) + 432z2Li3(z)

+54(2z(z + 1) + 1)z
(

3Li3(z2) + 8Li3

(
1

z + 1

))
− 864z2Li2(z) log(z)

+216(2(z− 1)z + 1)zLi3(1− z)− 648zLi3(z)− 144(z− 1)(z(11z− 1) + 2)Li2(z)
−216zLi2(−z)(−2z(z + 1) + 2z(z + 1) log(z) + log(z))
−216(−2(z− 1)z− 1)zLi2(z) log(1− z)− 216(6z2 + 3)zζ(3) + 72z2 log3(z)
+216(z− 1)z2 log2(1− z) + 36(−12z + 2π2 + 9)z2 log(1− z)
+24(68z2 − 30z + 21)z log(z) + 144(z− 1)(−11z2 + z− 2) log(1− z) log(z)
+72π2 (2z2 + 1

)
z tanh−1(z) + 4(z((387− 298z)z− 315)

+6π2(z(z(11z− 9) + 3)− 2) + 172) + 36(2(z− 1)z + 1)z log3(1− z) + 36z log3(z)
−72(2z(z + 1) + 1)z log3(z + 1) + 9(8(3− 11z)z− 6)z log2(z)
+216(2(z− 1)z + 1)z log2(1− z) log(z)

+36z(2π2z + 3 log(z)(4z(z + 1) + 2z(z + 1) log(z) + log(z))) log(z + 1)
)

(A.33)
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Convolution of LO Altarelli-Parisi splitting kernels and coefficient functions

At NNLO, two subsequent splitting processes on the same initial leg can lead to double-
log singularities controlled by the convolution of two LO Altarelli-Parisi splitting kernels,
P(1)

ab ⊗ P(1)
bc . They contribute to the coefficient ΣF (2;2)

cc̄←ab, N (see second line of Eq. (A.12)). We give
the expressions in real space (z-space) of the convolutions required for processes initiated by
quark-anti quark annihilation at LO:

(P(1)
qq ⊗ P(1)

qq )(z) = C2
F

[
2
(

ln (1− z)
1− z

)
+

+
3
2

(
1

1− z

)
+

+ Pqqqq(z) +
1
4

(
9
4
− 2π2

3

)
δ(1− z)

]
(A.34)

with

Pqqqq(z) =
1
4

(
−4 ln

z
1− z

− 2(1− z) + (1 + z)(3 ln z− 4 ln (1− z)− 3)
)

(A.35)

(P(1)
qq ⊗ P(1)

qg )(z) =
1
8

CFTR

[
(z2 + (1− z)2) ln

1− z
z
−
(

z− 1
2

)
ln z + z− 1

4

]
(A.36)

(P(1)
qg ⊗ P(1)

gg )(z) = CATR

[
1
3z

+

(
z2 − z +

1
2

)
ln (1− z) +

(
2z +

1
2

)
ln z +

1
4
+ 2z− 31

12
z2
]

+ β0P(1)
qg

(A.37)

(P(1)
qg ⊗ P(1)

gq )(z) =
1
8

CFTR

[
2
3z

+ (1 + z) ln z− 2
3

z2 +
1
2
(1− z)

]
(A.38)

Replacing an Altarelli-Parisi splitting kernel P(1)
ab with a collinear function C(1)

aa yields a term
which controls part of the single-log singularity and, hence, contributes to the coefficient
ΣF (2;1)

cc̄←ab, N (see second line of Eq. (A.13)). The relevant convolutions for processes initiated by
quark-anti quark annihilation at LO are:

(C(1)
qq ⊗ P(1)

qq )(z) =
1
8

C2
F(1− z)(4 ln (1− z)− 2 ln z− 1) (A.39)

(C(1)
qq ⊗ P(1)

qg )(z) =
1
4

CFTR

[
− 2 + z + z2 − (1 + 2z) ln z

]
(A.40)

(C(1)
qg ⊗ P(1)

gg )(z) =
1
2

CATR

[
2z(1− z) ln (1− z)− 4z ln z +

1
3z
− 1− 5z +

17
3

z2
]
+ β0C(1)

qg

(A.41)

(C(1)
qg ⊗ P(1)

gq )(z) =
1
2

CFTR

[
1
3z
− 1 +

2
3

z2 − z ln z
]

(A.42)
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A.2 Gluon-fusion initiated processes

For gluon-fusion initiated processes (as in Higgs boson production) the hard-collinear func-
tion in Eq. 2.29 is replaced by [123][

HFC1C2

]
gg;a1a2

= HF
g;µ1 ν1,µ2 ν2

(x1 p1, x2 p2; Ω; αS(M2))

× Cµ1 ν1
g a1 (z1; p1, p2, b; αS(b2

0/b2)) Cµ2 ν2
g a2 (z2; p1, p2, b; αS(b2

0/b2)) , (A.43)

where the function HF
g has the perturbative expansion

HFµ1ν1,µ2ν2
g (x1 p1, x2 p2; Ω; αS) =HF(0)µ1ν1,µ2ν2

g (x1 p1, x2 p2; Ω)

+
∞

∑
n=1

(αS

π

)n
HF(n)µ1ν1,µ2ν2

g (x1 p1, x2 p2; Ω) , (A.44)

and the following lowest-order normalization:

HF(0)µ1ν1,µ2ν2
g gµ1ν1 gµ2ν2 = 1 . (A.45)

The coefficient function HF
g;µ1 ν1,µ2 ν2

depends now on the Lorentz indices (and, thus, on the
spins) {µi νi} of the colliding gluons with momenta xi pi (i = 1, 2). The Lorentz tensor
coefficients Cµi νi

gai in Eq. (A.43) depend on b2 (through the scale of αS) and, moreover, they
also depend on the direction (i.e., the azimuthal angle) of the impact parameter vector b in
the transverse plane and its structure is [123]

C µν
g a (z; p1, p2, b; αS) = d µν(p1, p2) Cg a(z; αS) + D µ ν(p1, p2; b) Gg a(z; αS) , (A.46)

where

d µν(p1, p2) = − gµν +
pµ

1 pν
2 + pµ

2 pν
1

p1 · p2
, (A.47)

D µν(p1, p2; b) = d µν(p1, p2)− 2
bµ bν

b2 , (A.48)

and bµ = (0, b, 0) is the two-dimensional impact parameter vector in the four-dimensional
notation (bµbµ = −b2). The gluonic coefficient function Cg a(z; αS) (a = q, q̄, g) in the right-
hand side of Eq. (A.46) has the perturbative structure

Cg a(z; αS) = δg a δ(1− z) +
∞

∑
n=1

(αS

π

)n
C(n)

g a (z) . (A.49)

In contrast, the perturbative expansion of the coefficient functions Gga, which are specific to
gluon-initiated processes, starts at O(αS), and we write

Gg a(z; αS) =
αS

π
G(1)

g a (z) +
∞

∑
n=2

(αS

π

)n
G(n)

g a (z) . (A.50)

The first-order coefficient C(1)
g a (z; αS) have been already given in Eqs. (A.27) and (A.29). The

first-order coefficients G(1)
ga are resummation-scheme independent, and they read [123]

G(1)
g a (z) = Ca

1− z
z

a = q, g , (A.51)
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where Ca is as usual the Casimir colour coefficient of the parton a with Cq = CF and Cg = CA.

A.3 Hard-virtual function: subtraction operator

The auxiliary amplitude M̃cc̄→F required to compute the hard-virtual function is expressed
by the following factorization formula

M̃cc̄→F( p̂1, p̂2; {qi}) =
[
1− Ĩc(ε, M2)

]
Mcc̄→F( p̂1, p̂2; {qi}) , (A.52)

in terms of the perturbative subtraction operator

Ĩc(ε, M2) =
αS(µ2

R)

2π
Ĩ(1)c (ε, M2/µ2

R) +

(
αS(µ2

R)

2π

)2

Ĩ(2)c (ε, M2/µ2
R)

+
∞

∑
n=3

(
αS(µ2

R)

2π

)n

Ĩ(n)c (ε, M2/µ2
R) .

(A.53)

The explicit expression of the first-order subtraction operator Ĩ(1)a is

Ĩ(1)a (ε, M2/µ2
R) = Ĩ(1) soft

a (ε, M2/µ2
R) + Ĩ(1) coll

a (ε, M2/µ2
R) , (A.54)

with

Ĩ(1) soft
a (ε, M2/µ2

R) = −
eεγE

Γ(1− ε)

(
1
ε2 + iπ

1
ε
+ δqT

)
Ca

(
M2

µ2
R

)−ε

, (A.55)

Ĩ(1) coll
a (ε, M2/µ2

R) = −
1
ε

γa

(
M2

µ2
R

)−ε

, (A.56)

and
γq = γq̄ =

3
2

CF , γg =
11
6

CA −
1
3

N f . (A.57)

In the hard scheme
δqT = 0 . (A.58)

The second-order (two-loop) subtraction operator Ĩ(2)c is [136]

Ĩ(2)a (ε, M2/µ2
R) =−

1
2

[
Ĩ(1)a (ε, M2/µ2

R)
]2
+

{
2πβ0

ε

[
Ĩ(1)a (2ε, M2/µ2

R)

− Ĩ(1)a (ε, M2/µ2
R)

]
+ K Ĩ(1) soft

a (2ε, M2/µ2
R) + H̃(2)

a (ε, M2/µ2
R)

}
, (A.59)

with

H̃(2)
a (ε, M2/µ2

R) = H̃(2) coll
a (ε, M2/µ2

R) + H̃(2) soft
a (ε, M2/µ2

R) (A.60)

=
1
4ε

(
M2

µ2
R

)−2ε (1
4

γa (1) + Ca d(1) + ε Ca δ
qT
(1)

)
. (A.61)

The QCD coefficients K in Eq. (A.59) and d(1) in Eq. (A.61) (they control the IR divergences

of Ĩ(2)a ) are [109]

K =

(
67
18
− π2

6

)
CA −

5
9

N f , (A.62)
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d(1) =
(

28
27
− 1

3
ζ2

)
N f +

(
−202

27
+

11
6

ζ2 + 7ζ3

)
CA , (A.63)

and the coefficients γa (1) (a = q, g) are given in Eqs. (A.24) and (A.25). In the hard scheme,
the coefficient δ

qT
(1) is

δ
qT
(1) =

20
3

ζ3πβ0 +

(
−1214

81
+

67
18

ζ2

)
CA +

(
164
81
− 5

9
ζ2

)
N f . (A.64)

The following formulae give the relation between the auxiliary amplitude M̃cc̄→F and
the process resummation coefficients HF

c :

α2k
S (M2) HF

q (x1 p1, x2 p2; Ω; αS(M2)) =
|M̃qq̄→F(x1 p1, x2 p2; {qi})|2

|M(0)
qq̄→F(x1 p1, x2 p2; {qi})|2

, (A.65)

for processes initiated by quark-anti quark annihilation and

α2k
S (M2) hF µ1ν1µ2ν2

g (x1 p1, x2 p2; Ω; αS(M2)) =

[
M̃µ1µ2

gg→F(x1 p1, x2 p2; {qi})
]†
M̃ν1ν2

gg→F(x1 p1, x2 p2; {qi})

|M(0)
gg→F(x1 p1, x2 p2; {qi})|2

,

(A.66)

HFµ1ν1µ2ν2
g (x1 p1, x2 p2; Ω; αS) = d µ1

µ′1
d ν1

ν′1
d µ2

µ′2
d ν2

ν′2
hF µ′1ν′1µ′2ν′2

g (x1 p1, x2 p2; Ω; αS) , (A.67)

where d µν = d µν(p1, p2) is the polarization tensor in Eq. (A.47) and it projects onto the
Lorentz indices in the transverse plane, for processes initiated by gluon fusion [123]. In the
above formulae, k is the power of αs in the LO matrix element.
Remark: by inspection of Eqs. (A.59)-(A.60), we observe that the second-order subtraction
coefficient Ĩ(2)c is completely fixed computing its explicit expression for only one process,
being it initiated either by quark-antiquark annihilation or by gluon fusion.
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Appendix B

3-body phase space parametrization

In this Appendix, we present the derivation of the 3-body phase space parametrization em-
ployed to analytically integrate in Chapter 4 the NLO real emission cross section up to the
transverse momentum cut-off rcut.

We consider a variant of the parametrization outlined in [207] for the heavy-quark pair
hadroproduction. The 3-body phase space can be decompose as the following chain of split-
tings

1. q(k1) + q(k2)→ γ(k3) + R(Q),

2. R(Q)→ L(p1) + L̄(p2).

Formally, this is equivalent to add the following decomposition of the unity in the phase
space integral ∫

d4Qδ(4)(Q− p1 − p2) = 1 (B.1)

so that

R3 =
1

(2π)5

∫
d4k3d4 p1d4 p2δ+(k2

3)δ
+(p2

1 −m2)δ+(p2
2 −m2)δ(4)(k1 + k2 − k3 − p1 − p2)

=
1

(2π)5

∫
d4k3d4Qδ+(k2

3)δ
(4)(k1 + k2 − k3 −Q)

×
∫

d4 p1d4 p2δ+(p2
1 −m2)δ+(p2

2 −m2)δ(4)(Q− p1 − p2).

We notice that each integral separately preserves Lorentz invariance. This allows to make
different frame choices as long one keeps the order of the integrations. For the innermost
integral, corresponding to the phase space of a decay process 1→ 2, we consider the center-
of-mass frame of the decay products, i.e. the frame in which the two leptons are back-to-
back. We get

R2 ≡
∫

d4 p1d4 p2δ+(p2
1 −m2)δ+(p2

2 −m2)δ(4)(Q− p1 − p2)

=
∫

d4 p1δ+(p2
1 −m2)δ+((Q− p1)

2 −m2) =
∫ d3 p1

2E1
δ+(M2 − 2Q · p1)

=
1
8

√
1− 4m2

M2

∫
dΩ,
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with M2 ≡ Q2. Putting all together, we have

R3 =
1

(2π)5

∫
d4k3d4Qδ+(k2

3)δ
(4)(k1 + k2 − k3 − p)R2 =

1
(2π)5

∫ d3k3

2E3
R2

=
1
16

1
(2π)5

∫
E3dE3

∫
d cos θ

∫
dϕ

√
1− 4m2

M2

∫
dΩ

where we have introduced generic polar and azimuthal angles for k3. It is now convenient to
specialize the choice of the second reference frame to the partonic center-of-mass frame. This
allows to make contact with the qT variable and to considerably simplify the expressions.
As usual we orient the axes such that the third axis coincides with the beam direction,

k1 =

√
s

2
(1, 0, 0, 1), k2 =

√
s

2
(1, 0, 0,−1), (B.2)

with s being the partonic center-of-mass energy. We can integrate out the azimuthal angle
as the matrix element squared does not depend on it

R3 =
1
16

1
(2π)4

∫
E3dE3

∫
d cos θ

√
1− 4m2

p2

∫
dΩ. (B.3)

Consider now the following invariants

s = (k1 + k2)
2 = 2k1 · k2,

t = (k1 − k3)
2 = −2k1 · k3 = −

√
sE3(1− cos θ),

u = (k2 − k3)
2 = −2k2 · k3 = −

√
sE3(1 + cos θ).

We can then express E3, cos θ as

E3 = − t + u
2
√

s
, cos θ =

t− u
2,
√

sE3
=

u− t
t + u

(B.4)

and qT as

q2
T = E2

3(1− cos2 θ) =
1
4s
((t + u)2 − (u− t)2) =

ut
s

. (B.5)

The Jacobian factor associated to the above change of variables reads

E3dE3d cos θ =
1
2s

dtdu =
1

2u
dudq2

T. (B.6)

We get

R3 =
1
32

1
(2π)4

∫ du
u

dq2
T

√
1− 4m2

M2

∫
dΩ, (B.7)

which reduces to Eq. in Ref. [] in the massless case. Introducing the change of variable from
u to M2

M2 = s + u +
sqT

u
(B.8)

we get the following final expression for the 3-body phase space is

R3 =
1
16

1
(2π)4

∫
dM2dq2

T
1√

(s−M2)2 − 4sq2
T

√
1− 4m2

M2

∫
dΩ. (B.9)
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The integration limits can be determined by looking at the points where the argument of the
square roots occurring in the integrand vanish and they are given by the following relations

4m2 < M2 < s , 0 < q2
T <

(s−M2)2

4s
. (B.10)

When the lower kinematic cut rcut is applied on transverse momentum divided by the mass
M2, the relations in Eq.(B.10) get modified as

4m2 < M2 < szmax(rcut) , rcutM2 < q2
T <

(s−M2)2

4s
, (B.11)

with zmax = (1− 2rcut

√
1 + r2

cut + 2r2
cut) .

B.0.1 Kinematics in the CM of the massive leptons

Here we report for completeness the expressions of the momenta for all the external particles
in the frame in which the two massive leptons are back-to-back. We denote with ϑ1 and ϑ2
respectively the polar and azimuthal angle of the massive lepton pair. Then, we have

p1 = (E, |p| sin ϑ1 sin ϑ2, |p| sin ϑ1 cos ϑ2, |p| cos ϑ1) , (B.12)

p2 = (E,−|p| sin ϑ1 sin ϑ2,−|p| sin ϑ1 cos ϑ2,−|p| cos ϑ1) . (B.13)

We can write E and |p| in terms of the invariant s2:

s2 = (p1 + p2)
2 = 4E2 ⇒ E =

√
s2

2
, |p| =

√
E2 −m2 =

√
s2

2

√
1− 4m2

s2
. (B.14)

There is still some freedom in the choice of the reference frame due to rotational invariance.
We fix it choosing one of the incoming momentum to be in the direction of the third axis, for
example let it be k2. We can then parameterize k1, k2 and k3 in the following way

k1 = (ω1, 0, ω3 sin ψ, ω3 cos ψ−ω2) , (B.15)
k2 = (ω2, 0, 0, ω2) . (B.16)

In terms of the invariants, we have

ω1 =
s2 − u
2
√

s2
, ω2 =

s + u
2
√

s2
, ω3 =

s− s2

2
√

s2
, cos ψ =

us2 − ts
(s + u)(s− s2)

. (B.17)
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Soft Integrals and power counting

In this Appendix, we discuss the soft power counting for final-state radiation. In the strictly
soft limit, the phase space of the emitted photon with momentum k exactly factorizes

dΦ3 = dΦ2 ×
d3k

(2π)32k0 . (C.1)

The leading power contribution to final-state radiation is given by the soft-factorisation for-
mula

|M(p1, p2, p3, p4, k)|2FSR ∼
(
e2

3 S33 + e2
4 S44 + 2e3e4 S34

)
|M(p1, p2, p3, p4)|2 (C.2)

where
Sij =

pi · pj

(pi · k)(pj · k)
. (C.3)

The power counting is more easily understood if we consider light-cone coordinates

k± =
k0 ± k3
√

2
d4k = dk+dk−d2k⊥ (C.4)

We recall that in light cone coordinates the scalar product between two vectors takes the
form

k · p = k+p− + k−p+ − k⊥ · p⊥ (C.5)

and in particular the norm squared is

k2 = 2k+p− − k2
⊥. (C.6)

The 1-body phase space volume has the form∫ d4k
(2π)3 δ+(k2) =

∫ dk+dk−d2k⊥
(2π)3 δ+(2k+k− − k2

⊥) =
1

(2π)3

∫ ∞

0

dk+

2k+

∫
d2k⊥ (C.7)

with k− = k2
⊥/2k+. Considering first the contribution from S34, the leading power uncon-

strained soft integral is given by

Isoft
34 =

1
(2π)3

∫ ∞

0

dk+

2k+

∫ ∞

0

dk2
⊥

2

∫ 2π

0
dθ S34Θ(k2

⊥ − sr2
cut)

=
p3 · p4

(2π)3

∫ ∞

sr2
cut

dk2
⊥

2

∫ ∞

0

dk+

2k+

∫ 2π

0
dθ

1
p2
⊥k2
⊥

1
(a3 − cos θ)(a4 + cos θ)

(C.8)

ai =
1

p⊥k⊥

(
p+i

k2
⊥

2k+
+ p−i k+

)
. (C.9)
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In the above formula, we have enforced the soft kinematic with two back-to-back massive
leptons. In particular, this means that p3,⊥ = p4,⊥ ≡ p⊥. The azimuthal average is straight-
forward, after disentangling the product occurring in the denominator by means of the par-
tial fraction relation

1
(a3 − cos θ)(a4 + cos θ)

=
1

a3 + a4

(
1

a3 − cos θ
+

1
a4 + cos θ

)
, (C.10)

and it gives

Isoft
34 =

p3 · p4

(2π)2

∫ ∞

sr2
cut

dk2
⊥

2

∫ ∞

0

dk+

2k+
1

p2
⊥k2
⊥

1
a3 + a4

∑
i=3,4

1√
a2

i − 1
, (C.11)

To make the scaling with the transverse momentum manifest, we apply the following
change of variables at fixed k⊥:

x =

(
k+

k⊥

)2

, dk+ = k⊥
dx

2
√

x
. (C.12)

The soft integral becomes

Isoft
34 =

p3 · p4

(2π)2
1√
2s

∫ ∞

sr2
cut

dk2
⊥

k2
⊥

∫ ∞

0

dx
1 + 2x ∑

i=3,4

1√
4(p−i )

2x2 + 2(m2 − p2
⊥)x + (p+i )

2
(C.13)

where s is the partonic CM energy.
We can complete the calculation of the leading power contribution by performing the inte-
gration over the x variable. The relevant integrals are of the form

T(a, b, c) =
∫ ∞

0

dx
1 + 2x

1√
ax2 + 2bx + c

=
1√

a− 4b + 4c
ln

[
−2b + 4c + 2

√
c
√

a− 4b + 4c
−a + 2b +

√
a
√

a− 4b + 4c

]
(C.14)

under the conditions b2 − ac < 0 and a, c > 0. Then, it is straightforward to compute∫ ∞

0

dx
1 + 2x ∑

i=3,4

1√
4(p−i )

2x2 + 2(m2 − p2
⊥)x + (p+i )

2
=

1√
2p

ln
1 + β

1− β
, p =

√
E2 −m2.

(C.15)
We get the final expression

Isoft
34 =

1
4(2π)2

1 + β2

β
ln

1 + β

1− β

∫ ∞

sr2
cut

dk2
⊥

k2
⊥

(C.16)

which exactly matches the coefficient of the leading logarithmic divergence proportional to
the charge product e3e4 = −1 in Eq. (4.70). The contributions from Isoft

33 and Isoft
44 are equal

one another and can be obtained in a similar way as Isoft
34 . Consider for example Isoft

33 . We
have

Isoft
33 =

1
(2π)3

∫ ∞

0

dk+

2k+

∫ ∞

0

dk2
⊥

2

∫ 2π

0
dθ S33Θ(k2

⊥ − sr2
cut)

=
m2

(2π)3

∫ ∞

sr2
cut

dk2
⊥

2

∫ ∞

0

dk+

2k+

∫ 2π

0
dθ

1
p2
⊥k2
⊥

1
(a3 − cos θ)2

(C.17)
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After performing the azimuthal integral and the change of variable in eq. (C.12), we obtain

Isoft
33 =

m2

(2π)2
1
2

∫ ∞

sr2
cut

dk2
⊥

k2
⊥

∫ ∞

0
dx

p+3 + 2p−3 x[
4(p−3 )2x2 + 2(m2 − p2

⊥)x + (p+3 )2
]3/2 (C.18)

where the logarithmic scaling with the transverse momentum is manifest. The relevant
integral is now of the form

T(a, b, c) =
∫ ∞

0
ds

a + bx

[4b2x2 + 2cx + a2]3/2 =
2

2ab + c
(C.19)

for b > 0. Applying the above result, it is straightforward to get

∫ ∞

0
dx

p+3 + 2p−3 x[
4(p−3 )2x2 + 2(m2 − p2

⊥)x + (p+3 )2
]3/2 =

2
2p+3 p+3 + m2 − p2

⊥
=

1
m2 (C.20)

and hence

Isoft
33 =

1
2(2π)2

∫ ∞

sr2
cut

dk2
⊥

k2
⊥

(C.21)

for the final result, which reproduces, multiplied by a factor of two to take into account the
contribution of Isoft

44 , the remaining term in Eq. (4.70).
The power counting for the linear power correction follows now easily observing that

the energy of the radiation scales with the transverse momentum

k0 =
k+ + k−√

2
= k⊥

√
x
2

(
1 +

1
2x

)
. (C.22)

This implies that corrections to the soft approximation will produce linear terms in rcut.
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