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ABSTRACT 

 

Climate is unequivocally changing. The planet's average surface temperature has risen about 1.62 

degrees Fahrenheit (0.9 degrees Celsius) since the late 19th century. Most of the warming climates 

occurred in the past 35 years, were recorded in the last 10 years. Global warming affects agriculture 

in a number of ways, including temperate region average temperature changes and climate extremes. 

Tomato (Solanum lycopersicum) is both an important commercial crop and a model system for 

genetic studies, due to its diploid, relatively compact, and recently sequenced genome and to the 

availability of large genetic and genomic resource collections. Tomato species is highly sensitive to 

high temperature and few degrees above its optimum growth temperature threshold can lead to serious 

deleterious effects, such as flower abscission, decrease of pollen quality, abnormal growth, reduced 

fruit set and yield. Therefore, the development of innovative strategies to obtain tomato cultivars with 

improved yield under high temperature conditions is a main goal for plant molecular science and 

breeding. 

In this thesis, different breeding strategies were used to improve tomato cultivars tolerance to heat 

stress. A F4 segregating population, deriving from the tomato variety JAG8810, previously selected 

for yield performance under hot stress, was phenotypically investigated under heat stress conditions 

to evaluate quantitative and qualitative traits. By the means of a PCA analysis, best and worst 

performers were selected.  Extreme individuals for yield were also evaluated for sub-traits, such as 

pollen viability, to better investigate the basis of heat stress tolerance and correlations among heat 

tolerance component traits. In addition, the cultivar Moneymaker was tested for a heat treatment on 

limited areas, suggesting that heat stress response is a local process. The F4 population deriving from 

the JAG8810 variety, was sequenced by genotyping by sequencing (GBS) approach to identify all 

possible variants. Genomic prediction models for yield production per plant (YP) and soluble solid 

content (SSC) under heat stress, were developed. Several parameters, including training population 

size and composition and marker quality were adjusted to obtain optimized models for assessed traits 

and population. The predicted GEBVs (genetic breeding values) of F5 offspring were phenotypically 

validated in field. Furthermore, the most meaningful SNPs selected for model construction were used 

to conduct a QTL analysis to shed light on the genetic basis of heat tolerant traits in tomato. The 

analysis permitted the identification of 5 QTLs involved in yield and one in SSC. Two candidate 

genes putatively involved in heat stress tolerance were discovered in regions underlining QTLs. 

Finally, with the aim to identify regulatory elements involved in the abiotic stress tolerance, a tomato 

genome scan and a phylogenetic analysis of Dof proteins was performed identifying SlDof11 as 

suitable target for CRISPR/Cas9 experiments. 
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CHAPTER I 

 
 

GENERAL INTRODUCTION 
 

 
1.1 HEAT STRESS IN PLANTS: A BRIEF OVERVIEW 

Climate is unequivocally changing. The planet's average surface temperature has risen about 1.62 

degrees Fahrenheit (0.9 degrees Celsius) since the late 19th century, a change mainly driven by 

atmospheric greenhouse gases increase, wide-spread land transformation and other human-made 

emissions into the atmosphere (Asseng et al., 2015). Most of the warming occurred in the past 35 

years, with the five warmest years on record taking place since 2010 (figure 1) 

(https://climate.nasa.gov/). 

 

 

Figure 1. Change in global average temperature since 1880. The red circle highlights the increase in 

temperature in the last five years. 

 

The “global warming” process has received increasing attention in recent years, due to its far-reaching 

effects on human society, including the extinction of species that cannot escape their environment 

and a substantial reduction in crop productivity (Wheeler and von Braun, 2013; Fahad et al., 2017). 
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Indeed, each plant species has an optimal temperature range for growth, and each increase above the 

optimal temperature range can be considered as heat stress. Serious losses in crop production may 

occur because many biological developmental processes are sensitive to high temperature and they 

may be irreversibly damaged. Therefore, the scientific community is improving efforts for deepening 

our knowledge about Heat Stress Response (HSR) in plants.  

The effects of high-temperature can be direct if they induce modification in existing physiological 

processes, or indirect if they alter patterns of development. Moreover, adverse effects of high 

temperature vary with the intensity, duration and sternness of the stress (Morimoto R., 1998; Wahid 

A et al., 2007; Fahad et al., 2016). Examples of direct injuries are protein denaturation and 

aggregation, and increased fluidity of membrane lipids. Examples of indirect damages are 

inactivation of enzymes in chloroplasts and mitochondria (affecting photosynthesis and cell 

respiration), inhibition of protein synthesis, protein degradation, loss of membrane integrity and 

alteration of the correct organization of microtubules (Wahid et al., 2007). In addition to these 

damages, heat stress may induce oxidative damage increasing production and accumulation of 

Reactive Oxygen Species (ROS) that rapidly become excessive (Volkov et al., 2006; Driedonks et 

al., 2015). This ROS accumulation pose serious threat to the cell functioning by damaging lipids and 

proteins (Apel and Hirt, 2004; Bita et al., 2011; Fahad et al., 2017). 

Immediately after exposure to high temperatures, plants make many changes at the molecular level, 

including the expression of genes and accumulation of transcripts. This can lead to the synthesis of 

stress-related proteins, called heat shock proteins (HSPs), as a key component of a stress-tolerance 

strategy (Iba, 2002; Wahid et al., 2007; Hanjing, 2015). 

A short exposure to very high temperature or a long period of exposure may cause severe cellular 

damages and even cell death as a consequence of the collapse of cellular organization. Indeed, injuries 

can be too severe to be healed by stress induced- protection pathways. Furthermore, plants respond 

differentially to high temperatures depending on species, genotype, organ, or developmental stage 

(Nguyen et al., 2019). In particular, the reproductive phase is more sensitive to high temperature 

compared to the vegetative growth phase (Warland et al., 2006; Hasanuzzaman et al., 2013; Ruggieri 

et al., 2019). Besides, the effect of the heat on the organism can be local, when heat effect is only 

registered in the part of the plant directly exposed to heat, or systemic, if after exposure of only a 

portion of the plant, the HSR appears in the entire organism. All these factors make the HSR a 

complex system to investigate.  
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1.1.2 EFFECTS OF HEAT STRESS ON REPRODUCTIVE SYSTEM 

An increasing in temperature can damage every plant tissue or organ. Numerous studies document a 

reduction in final yields due to heat stress during flowering since the reproductive apparatus resulted 

to be very sensitive in many crops like rice, wheat, barley and tomato (Barnabàset al., 2006; Zinn et 

al., 2010; Jagadish et al., 2014; Driedonks et al., 2016; Xu et al., 2017).  

The heat stress effect on reproductive system acts on multiple levels. Generally, a moderate heat stress 

will often accelerate flowering, which may cause reproduction to occur before plants accumulate 

adequate resources for allocation to developing seeds (Balasubramanian et al., 2006; Tonsor et al., 

2008). Heat stress can have a different effect on male and female structures and, as a consequence, it 

may create a lack of synchrony between the development of the two tissues (Herrero, 2003; Hedhly 

et al., 2008). A third category of heat stress effects includes defects in the structure and function of 

parental tissues (i.e. corollas and stamens) reducing the number, decrease the size, and cause 

deformity of floral organs (Takeoka et al., 1991; Morrison and Stewart, 2002). Finally, although both 

reproductive organs are affected, little is known on the effects of heat stress on female reproductive 

organs. Whereas, the effects of temperature stress on male reproductive structures has been widely 

studied by highlighting that pollen development is the most heat-sensitive process in plant 

reproduction (Sato, 2002; Barnabaset et al., 2008). Indeed, the sudden decline in yield due to high 

temperatures experienced by plants during flowering is mainly associated with pollen infertility (Zinn 

et al., 2010; Bita et al., 2013).  

Reduction in pollen viability after exposure to heat has been observed in several crop species like 

barley (Sakata et al., 2010), tomato (Pressman et al., 2002; Firon et al., 2012; Müller et al., 2016), 

soybean (Djanaguiraman et al., 2013) and rice (Matsui and Omasa, 2002). It has been established that 

a heat stress at early stages of pollen grains development may cause an arrest in the biological process 

(De Storme and Geelen, 2013). The developmental sensitivity to heat stress in pollen seems to be 

species-specific, even if meiosis is likely to be the most sensitive process for many crops (Paupière 

et al., 2014). Unfortunately, reduced fertility at high temperature cannot be clearly identified as a 

defect in a single function, but most likely varies with the type of heat stress and the plant species. 

Loss of fertility could result from problems in male meiosis, pollen germination, pollen tube growth, 

or megagametophyte defects among other factors. Recently, it has been suggested that a reduction in 

pollen number and viability might be the indirect result of defects in the tapetal cells (De Storme and 

Geelen, 2014; Xu et al., 2017). For example, in wheat, heat stress during the period of microspore 

meiosis can induce tapetum degradation (Sakata et al., 2010) that leads to pollen sterility. Similar 

tapetal defects, always associated with reduced pollen viability, are known from cold and drought 
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stress, and occur in different plant species such as wheat, barley, rice, Arabidopsis and tomato (De 

Storme and Geelen, 2014; Parish et al., 2012). 

 

 

1.2  BREEDING METHODS FOR OBTAINING HEAT STRESS TOLERANT PLANTS 

The traditional method for breeding for heat tolerance is to grow advanced lines in a hot target 

production environments and select lines that have greater yields than current cultivars (this provides 

a direct measure of heat tolerance). However, high-temperature tolerance is a complex phenomenon 

highly influenced by environmental variations, controlled by multiple genes imparting a number of 

physiological and biochemical changes. Due to uncontrolled environmental factors and the influence 

of additional abiotic and biotic stresses, it can be difficult to select for high-temperature tolerance 

through conventional breeding (Tayade et al., 2018). Suitable breeding techniques to improve crop 

species in order to easy produce elite lines with heat tolerance traits are therefore surely needed to 

address this challenge (Driedonks et al., 2016).  

In recent years, the development of molecular-marker techniques and their applications drastically 

changed the fate of plant breeding. Molecular markers were mainly integrated in traditional 

phenotypic selection (PS) by applying marker-assisted selection (MAS) to improve the plant selection 

process through the selection of chromosomal segments containing quantitative trait locus (QTL). 

Few genetic selection approaches mediated by the aid of molecular markers on heat tolerance in 

different crops have been conducted (Cao et al., 2003; Zhao et al., 2006). In some plants, such as 

Arabidopsis, barley, brassica, cowpea, maize, potato, rice, sorghum, tomato and wheat, QTLs for heat 

tolerance-related traits have been discovered, including reproductive traits such as yield, fruit set, 

grain weight, grain filling rate, days to heading, spikelet fertility, pollen germinability and pollen tube 

growth (Jha et al., 2014).  

Traits, such as yield, are often controlled by many “minor” gene effects, which are difficult to map. 

However, also if mapping is successful, often multiple quantitative trait loci (QTL) are present, which 

are difficult to locate and as a consequence, the proportion of genetic variance that is capitalized by 

MAS is limited (Goddard and Hayes, 2009). For traits with polygenic inheritance, a strategy able to 

predict the genomic potential of any individual should be used. A GS approach usually allows a better 

prediction of a genotype potential performance since it provides a direct estimation of the likelihood 

that it possesses superior alleles (Bassi et al., 2016). In this regard, genomic selection (GS) provides 

new opportunities for increasing the efficiency of plant breeding programs (Bernardo and Yu, 2007; 

Heffner et al., 2009; Crossa et al., 2010; Lorenz et al., 2011) by reducing the cost per cycle and the 

time required for developing a new variety (figure 2). 
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The aim of GS is to estimate the genetic potential of the candidates for selection using genome-wide 

marker data. Basically, GS combines genotypic and phenotypic data in a training population (TRN) 

to obtain the genomic estimated breeding values (GEBVs) of individuals in a testing population (TST) 

that have been genotyped but not phenotyped.  

The decreasing costs of high-density genotyping system based on single nucleotide polymorphism 

(SNP) and development of statistical methods capable of accurately predict marker effects have led 

to the breakthrough of GS increasing the rate of genetic gain per unit of time. Nowadays, GS has been 

used in several crops (Lorenz et al., 2011; Crossa et al., 2014; Song et al., 2017; Yamamoto et al., 

2017; Cui et al., 2020) and empirical studies have demonstrated that GS has higher genetic gain than 

MAS for traits controlled by large number of QTL (Crossa et al., 2017). 

 

 

Figure 2. Comparison of genomic selection and conventional process for plant breeding. Genomic 

screening of germplasm accelerates and optimizes the genetic gain obtained in each selection cycle 

(from Cappetta et al 2020). 
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1.3 BIOTHECNOLOGICAL APPROACHES TO IMPROVE HEAT STRESS TOLERANCE  

Breeding systems described above allowed breeders to produce improved varieties of many crops. 

However, many challenges persist and alternative innovative technologies have the potential to 

address many of these challenges. For example, in the last decade, new technologies, commonly 

referred to as genome-editing technologies, have revolutionized the field of plant science and 

agriculture. These technologies, that rely on engineered site-specific nucleases (SSNs), can overcome 

incompatibility barriers between different species and introduce artificial/synthetic genes into crop 

plants; and hence, generate new cultivars with novel traits. In contrast to the transgenic approach, 

which leads to random insertions and very often random phenotypes, genome editing methods 

produce defined mutants, thus becoming a potent tool in functional genomics and crop breeding 

(Malzahn et al., 2017). Improved crops can be used in breeding programs and the resulting varieties 

can be directly used (Waltz, 2018). The SSNs such as zinc finger nucleases (ZFNs) and transcriptional 

activator-like effector nucleases (TALENs) operate through the fusion of sequence-specific DNA 

binding domains (DBDs) and nucleases. Following the recognition of the target sequence by the 

DBDs, nucleases provide double-strand breaks (DSBs) leading to loss-of-function mutations 

(Chandrasegaran and Carroll, 2016). More recently, the CRISPR-Cas9 (Clustered Regularly 

Interspaced Short Palindromic Repeats) /Cas9 (CRISPR-associated protein-9 nuclease) technology 

was developed consisting of engineered nucleases driven to the target sequence by a specifically 

designed guide RNA (gRNA) (figure 3). 
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Figure 3. Schematic of CRISPR–Cas9-mediated genome editing. The Streptococcus pyogenes derived 

CRISPR–Cas9 RNA-programmable DNA endonuclease is targeted to a DNA sequence via a single guide 

RNA (sgRNA) sequence, which base-pairs with a 20-nt DNA sequence upstream of the protospacer-

associated motif (PAM), resulting in a 3-bp double-strand break (DSB) upstream of the NGG. Random 

indels or precise modifications introduced into the genomic DNA by the NHEJ or HDR pathway. 

(reproducted from Gosh et al., 2019) 

 

 

However, due to the complex nature of abiotic stress, fewer genome-editing studies have been 

conducted in this research area. The identification of regulatory genes involved in the abiotic stress 

tolerance will provide new molecular targets to implement breeding programs. In particular, 

transcription factors (TFs) represent an important class of targets for modulating the level of 

expression of several downstream genes and activating many stress signals (Zafar et al., 2019). 

Various TF members belonging to the MYB, WRKY, NAC, DOF, DREB, AREB/ABF (ABA 

response-element binding factor), GBFs (G-box binding factors), and AP2/ERF families (Bostock et 

al., 2014) have been characterized for their involvement in abiotic stress. Recently, in wheat 

protoplasts, two abiotic-stress-responsive transcription factor genes encoding dehydration responsive 

element binding protein 2 (TaDREB2) and ethylene responsive factor 3 (TaERF3) were edited 

conferring adaptive abiotic stress responses (Kim et al., 2018). Rice transcription factor OsNAC041 

have also been targeted to increase salinity tolerance (Bo et al., 2019). These findings confirmed that 

CRISPR/Cas9 could be the future of targeting regulatory genes of complex quantitative traits related 

to abiotic stress. 
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1.4 SOLANUM LYCOPERSICUM AS A MODEL FOR HEAT STRESS 

Tomato (Solanum lycopersicum) is the most important vegetable and the seventh most valuable crop 

worldwide. It possesses unique properties, offering both a rich source of vitamin A (lycopene) and C 

(ascorbate), and antioxidants that have been shown to correlate with prevention of cancer and 

cardiovascular diseases (Rao and Agarwal, 2000). Tomatoes are native to South America and were 

introduced in Europe in the 16th century. On global scale, the annual production of fresh tomatoes 

amounts to approximately 160 million tonnes (Mt) (http://faostat3.fao.org/home/index.html). The 

biggest tomato producers are found in Asia, which represents 60.3% of tomato production. Europe 

represents 12.7% of the world tomato production (figure 4). Recent data reported by AMITOM 

(Mediterranean International Association of the Processing Tomato) show that Italy is the top 

European producer with 4.750 Mt (figure 5). 

 

 

 

 

 

 

Figure 4. Choropleth map showing countries by tomato production in tonnes, based on data from the 

Food and Agriculture Organization Corporate Statistical Database (FAOSTAT, 

http://faostat3.fao.org/home/index.html). 
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Figure 5. AMITOM (Mediterranean International Association of the Processing Tomato) 2018 tomato 

production. 

 

 

Besides to have invaded the crop market and our plates, tomato is considered by researchers as a 

model crop due to its attractive traits (Foolad, 2007):  a relative short life cycle, a high self-fertility 

that allows genetic stability over generations, a recently sequenced genome and the availability of 

several genomic resources. 

The optimal growing temperature of tomato is between 21 ◦C to 30 ◦C during the day and 18.5 ◦C to 

21 ◦C during the night (Jones, 2008), and cultivation of tomatoes under higher temperatures affects 

plant growth and yield (Sato et al., 2000; Gerszberg et al., 2017). Indeed, a temperature of a few 

degrees above this threshold can lead to serious deleterious effects, such as flower abscission, 

decrease of pollen quality, abnormal growth, reduced fruit set and a huge loss in yield (Hasanuzzaman 

et al., 2013). Hence, the increased temperatures forecasted for the near future (e.g. increase of heat 

waves), the importance of the tomato crop worldwide, the variation in heat stress response of different 

tomato accessions and the applicability of tomato as a model plant, makes it a valuable object for the 

study of the mechanisms of heat tolerance of the whole plant and, in particular, of the male 

reproductive organs, whose high sensitivity is the bottleneck of fruit production under high 

temperatures. 
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1.5 OBJECTIVIES OF THE THESIS  

The main goal of this thesis was the exploitation of genetic and genomic resources for accelerating 

the development of tomato cultivars with improved yield under high temperature conditions. 

In Chapter II, a tomato F4 segregating population was phenotypically evaluated for quantitative and 

qualitative traits under heat stress condition to identify superior genotypes.  To better investigate the 

basis of heat stress tolerance selected individuals were also assessed for pollen viability. Finally, the 

cultivar Moneymaker was tested for a local heat treatment to understand if the heat stress response is 

a local or a systemic process. 

In Chapter III, Genomic prediction models for yield production per plant (YP) and soluble solid 

content (SSC) based on genotyping by sequencing (GBS) data were set up and tested on segregating 

populations in order to increase the breeding gain. A QTL analysis to better understand the genetic 

architecture of heat tolerant traits in tomato was also performed. 

In chapter IV, the SlDof transcription factors family was investigated to identify potential regulators 

of temperature stress tolerance in tomato. A phylogenetic analysis of this gene family including 

Arabidopsis members was performed to identify a suitable candidate for a CRISPR/Cas9 experiment. 
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CHAPTER II 
 

TOMATO PLANTS PHENOTYPING UNDER HEAT 

STRESS CONDITIONS 

 
 

2.1 INTRODUCTION 

The elucidation of plant response to abiotic stresses has been an important goal for plant scientists 

and breeders since many decades. Indeed, crop yield reduction due to climatic events is threatening 

global food security (Bailey-Serres et al., 2012; Tele Ayenan et al., 2019). Among abiotic stresses, 

high temperature is one of the major affecting plant reproduction and productivity (Dane et al., 1991). 

Tomato (Solanum lycopersicum) is one of the most important worldwide horticulture crop despite 

being sensitive to high-temperature. The optimum temperature range for tomato is of 21 ◦C to 30 ◦C 

during the day and 18.5 ◦C to 21 ◦C during the night (Jones B.J, 2008), and cultivation of tomatoes 

under higher temperatures affects plant growth and yield (Sato et al., 2000; Gerszberg and Hnatuszko-

Konka K, 2017).  

Developing heat stress tolerant tomato cultivars may be a valuable strategy to cope with climate 

changes. To date, screening for thermo-tolerance is undertaken in various environments such as 

growth chambers, greenhouse, and in open field (Mesihovic et al., 2016).  Several studies have 

focused on open field screening for the identification of tomato cultivars tolerant to high temperature 

in order to reproduce the real crop conditions (Dane et al 1991; Kartikeya et al., 2012; Kugblenu et 

al., 2013; Zhou et al., 2015; Singh et al., 2015). However, several uncontrollable factors (biotic 

stress, variation in soil type, fertility level, etc.) that can affect plant response should be taken in 

account (Mesihovic et al., 2016). 

Different quantitative and qualitative parameters such as pollen viability, fruit set, yield 

productivity per plant, total number of fruits, fruit shape and SSC (soluble solid content) of fruits, 

may be assessed to evaluate the high temperature plant tolerance (Wahid et al., 2007). Among these, 

fruit set and yield have been the main targeted traits for most heat tolerance screening in tomatoes 

(Kugblenu et al., 2013; Singh et al., 2015) and has been shown that the decrease in fruit set and yield 

in tomato under long-term mildly elevated temperatures is correlated with a decrease in pollen 

viability (Sato et al., 2000; Pressman et al., 2006; Xu et al., 2017). In the last years, the research on 

heat tolerance mechanisms was focused on heat tolerance sub-traits such as pollen number per 

flower, pollen viability, number of flowers per plant, number of inflorescences per plant (Yan et 

al., 2010; Weerakoon et al., 2008; Driedonks et al., 2018). The indirect assessment of fruit setting 
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and/or yield through these sub-traits is mainly supported by the complexity of these traits and the 

relative simplicity of the sub-traits genetic architecture (Paupière et al., 2017; Driedonks et al., 

2018).  

At the light of these observations and to better investigate the basis of heat stress tolerance, a 

segregating population obtained from the tomato variety JAG8810 was characterized at phenotypic 

level for nine traits under heat stress in field. This variety is very interesting because it was 

previously selected for its high tolerance under heat stress by Bayer seed company. The agronomic 

evaluation of JAGF4 population allowed us to identify 8 extreme individuals, which have been also 

phenotyped in growth chamber (with full control of temperature, light and humidity) for pollen 

viability, flowers and inflorescences number per plant. In addition, a comparison between local and 

global heat treatment on the cultivar Moneymaker in order to improve our knowledge about heat stress 

effects on plant tissues and organs, was carried out. Furthermore, the Tomato Analyzer tool 

(Rodrıguez et al., 2011) was tested for the analysis of fruit shape of all 100 JAGF4 lines to 

complement the previous agronomic characterization with digital fruit descriptors.  
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2.2 MATERIALS AND METHODS 

 

2.2.1 Material and plant grown 

The tomato variety JAG8810, kindly obtained from Bayer station (Latina, Italy) was self-pollinated 

from F2 to F4 generations through a Single Seed Descendent (SSD) schema in greenhouse, of 

Department of Agriculture of the University of Naples Federico II (N 40° 48.’ 49.352’’; E 14° 20’ 

40.073’’). In 2017, 100 F4 lines were grown in open field in Southern Italy region (Battipaglia-

Campania; N 40° 58.’ 56.69’’; E 14° 96’ 10.02’’), usually characterized by high temperatures during 

the flowering and fruit set periods (from June to August). Fifteen seeds for line were sown in plateau 

under plastic-house. Ten seedlings for single JAGF4 line in a completely randomized design were 

transplanted in field under plastic tunnel in the first half of May in order to expose plants to high 

temperatures. Tomato plants were grown following the standard cultural practices of the area and 

temperature and climatic data were recorded using the weather station Davis weatherlink. 

 

2.2.2 Trait evaluation and statistical analysis  

In the experimental field, three random plants per genotype were analyzed for traits related to 

flowering, fruit production and quality. For four of these traits (fruit earliness-FRL, leaf coverage-

LC, inflorescences number-IN and contemporaneous ripening-CR) a Selection Index (SI) was 

calculated by assigning an arbitrary scale scored on a 1 to 5.  Furthermore, since many genotypes 

have suffered a viral attack during their grown, all genotypes were also scored for disease symptoms 

presence (0 for absence, 1 for presence). The percentage of fruit set (FS) were evaluated on 

inflorescences produced from the second to the fifth truss on three plants per line randomly chosen. 

Finally, at fruit red ripe stage, total fruit number (TFN), soluble solid content (SSC-3 fruits per plant) 

and yield production per plant (YP) were measured. Correlations between phenotypic traits were 

estimated using the Spearman coefficient analysis. Principal component analysis (PCA) combining 

all phenotypic traits was conducted to determine the origin and structure of variation as well as 

contribution of the observed characteristics in total variability.  
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2.2.3 Fruit characterization by Tomato Analyzer software and statistical analysis 

Three ripe fruits per genotypes were longitudinally cut and scanned with a photo scanner (Epson, 

V39) at a resolution of 300 dpi and subjected to morphometric analysis with Tomato Analyzer version 

3 software (Rodríguez et al., 2010; Strecker et al., 2010). Data were recorded for a total of  9 

categories of Tomato Analyzer descriptors, which included basic (7), fruit shape (3), homogeneity 

(3), blockiness (3), distal fruit end shape (4), proximal fruit end shape (4), internal eccentricity (5), 

asymmetry (6), and latitudinal section (3) descriptors. Default settings were used for blockiness and 

proximal fruit end shape and distal fruit end shape descriptors (Rodríguez et al., 2010). Data analyses 

of all descriptors were performed using standard parametric statistics (Little and Hills, 1978). Mean 

and range values were calculated for each descriptor.  

 

2.2.4 Pollen viability assessment  

All experiments described in this section were conducted to assess the pollen viability of selected 

tomato lines at the Molecular Plant Physiology Department- Radboud University- Nijmegen 

(Netherlands). A preliminary experiment (BACTH 1) was performed to set up the optimal 

temperature range using the variety JAG8810 (December 2018). A second experiment (January- April 

2019) was conducted with JAG8810 and eight F4 extreme individuals deriving from JAG8810 

(BACTH 2). Seeds from both BATCHs were incubated in 2.5% hypochlorite for 30 min at room 

temperature before sowing them in soil (Horticoop, Lentse Potgrond, Slingerland Potgrond) covered 

with vermiculite (Agra - Vermiculite) under standard greenhouse condition (25˚C/19˚C day/night) 

and humidity (70/80% day/night). Seedlings were transferred to 0.5 L pots after two weeks and, after 

one month, placed in 12 L pots. When the transition from the vegetative to the generative phase 

occurred, flower buds were removed, and the plants were transferred to a climate chambers using a 

randomized design. In particular, BATCH 1 plants were transferred in 3 different chambers (5 plants 

per chamber) maintaining a 14/10 h day/night photoperiod and humidity of 70/80% at three control 

temperatures: 30.5˚C/25˚C, 32˚C/26˚C, 33.5˚C/27˚C day/night. Whereas, 3 different experiments 

with BATCH 2 were conducted using the same photoperiod and humidity conditions of BATCH 1 

and a control temperature of 33˚C/27˚C. In each BACTH 2 experiment, 3 plant per genotypes were 

used.  

The pollen viability (PV) screening analysis was conducted on newly opened flowers, collected each 

morning for four days from 9 to 11 am under the heat stress. In total, three flowers per plant were 

collected and three plants were used per genotype. Flowers were collected into a petri dish filled with 

a wet paper. From each flower, anthers were cut into three to four pieces with a razor blade on a glass 

and transferred in a 1,5 ml Eppendorf. One microliter of AmphaFluid 4 Buffer was added, vortexing 
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for 5 seconds. Measurements were carried out, loading 500µl of the solution through a microfluidic 

chip, that permits a single cell analysis by impedance flow cytometry AmphaTMZ30 (Amphasys). 

This analysis allows to detect dead and viable pollen exploiting measurements in a broad 

radiofrequency (RF) range (0.1 – 30 MHz) and to determine size, membrane capacitance and 

cytoplasmic conductivity of cells. In BATCH 1, each replicate was represented by a pool of pollen 

derived from 3 flowers collected from the same plant. For each experiment the average and the 

standard deviation of 5 biological replicates was calculated.  In BATCH 2, three biological replicates 

were used for each single experiment. Furthermore, the total number of inflorescences (TNI) and 

flowers (TNF) were also counted to correlate the PV to TNI and TNF. 

 

2.2.5 Setting up a method to evaluate heat stress effects  

To test if the effect of high temperatures in plant is local or systemic, an experiment, in which an 

isolated plant branch was treated with a different temperature from the rest of the plant, was set up. 

The cultivar Moneymaker was used for the experiment because it shows high sensitiveness to the 

heat. In order to isolate a single branch of the plant from the rest of the room, a hole in the wall of a 

climate room connecting the outside corridor to the grown chamber, has been exploited. Different 

trials were carried out to set up the most suitable conditions. At first, a tube connecting an air pump 

located in the corridor (at the temperature of 26°C) to the plants’ branch, isolated through a plastic 

bag from the rest of climate room at 33 °C, was tested. However, the tubing system didn’t allow to 

maintain the temperature stable. Therefore, a refrigerator at 4.6 °C to cool the tube before connecting 

it to the isolated branch was added (figure 1). Before starting the biological experiment, the 

temperature in the plastic bag was measured every day for one week through a thermometer. In 

addition to the external pump, another air pump, located into the climate room at 33°C degree, was 

also connected to a plastic bag containing another plant branch of the same plant as positive control.  

After 2 weeks of stress the PV was measured as described in the section 2.2.4. In particular, for four 

days one flower from the bag connected with the corridor (at 26°C), one flower from the bag 

connected to the air pump into the room at 33°C, one flower from the same plant in the grow chamber 

at 33°C (without bag) and 3 flowers deriving from 3 different Moneymaker plants located in another 

climate room at 25°C (control), were analyzed. 
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Figure 1. Setting up the experiment. 

 

2.2.6 Statistical analysis 

Correlation analysis (Spearman or Pearson) and PCA analysis were processed in the statistical 

software SPSS statistics 24.0 (IBM Corp., Armonk, NY, USA). 

All statistical analyses for pollen viability were performed using a logit transformation data 

value’=LN((value+1)/(101-value)). Analysis of significant differences among replicates and 

experiments was performed running a T-test in Excel.  The correlation coefficients among phenotypic 

traits were calculated by a Pearson correlation analysis for PV, TNF, TNI and YP using SPSS 

software. 
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2.3 RESULTS 

 

2.3.1 Analysis of phenotypic traits in tomato segregating population for heat stress tolerance   

In this study, 100 F4 tomato genotypes obtained from the heat stress tolerant tomato variety 

JAG8810, were grown under high temperatures. Tomato plants grown in the South of Italy are usually 

transplanted in open fields in April. However, in this study the genotypes were transplanted in open 

fields under plastic tunnel with a delay of one month compared to the usual transplanting period, thus 

imposing a high-temperature condition during the reproductive stages. Figure 2 reports the variation 

of maximum temperatures from May until the end of July. Temperatures mostly resulted upper than 

30°C and therefore we considered them sufficiently elevated to analyze the response to high 

temperature conditions of the different genotypes. Indeed, maximum temperatures of 35°C during the 

day, represent an extremely critical threshold in the sensitive stages of reproductive development 

(Jones B.J, 2008). In our trials, former temperature, was frequently exceeded (11 days) (figure 2). 

  

 

 

 

 

Figure 2. Maximum temperatures recorded in the experimental fields (Battipaglia, It) during the day 

from May to July 2017. 

 

In these extreme conditions 100 F4 genotypes were phenotyped for 9 traits related to flowering, fruit 

set, soluble solid content and productivity (supplementary table 1). Table 1 reports the average and 
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the minimum and maximum value of 4 measured traits (FS, TFN, YP and SSC). As we can see, we 

found high variability for analyzed traits related to flowering and fruit production. For example, YP 

ranged between a minimum value of 0.8 kg to a maximum value of 16 kg; FS (%) ranged between a 

minimum of 8 to a maximum of 78; SSC ranged between a minimum of 3 to a maximum of 6.8.  

 

Trait Mean Min Max 

FS (%) 38.3 8 78 

TFN 156.7 32 354 

YP (Kg/plant) 7.9 0.8 16 

SSC 4.4 3 6.8 
 

Table 1. Mean value, minimum value and maximum value of traits related to flowering, yield and SSC. 

FS (%): fruit set percentage; TFN: total fruit number per plant; YP: yield production per plant; SSC: 

Soluble solid content. 

 

A correlation matrix was obtained using all available data (table 2). A positive and significant 

correlation among parameters relative to plant production was found. Indeed, YP was positively and 

strongly correlated to TFN (r= 0.888; P<.0.01) and FS (r=0.576; P<0.01). The yield contributing trait 

such as YP was also positive significantly correlated to IN (r=0.373; P<0.01) and FRL (r=0.326; 

P<0.05) whereas, it was negative correlated with CR (r=-0.531; P<0.01) and SSC (r=-0.314; P<0.01). 

SSC was also negative correlated with TFN (r=-0.267; P<0.05), IN (r=-0.306; P<0.01) and FRL (r=-

0.340; P<0.01). However, we found a slight positive correlation between CR and SSC (r=0.273; 

P<0.05). 

 

   YP (Kg) TFN SSC CR FS IN 

 TFN .888**      

 SSC -.314**    -.267*     

 CR -.531** -.451** .273*    

 FS .576** .598**  -.234*   

 IN .373** .343** -.306** -.24* .278*  

 LC    -.515**   

 FRL .326* .236* -.34**   .278* 

         

Table 2. Correlation coefficient (r) among variables. *P<0.05, **P<0.01. YP: yield production per plant; 

TFN: total fruit number per plant; SSC: Soluble solid content; CR: contemporaneous ripening; FS: 

percentage of fruit set; IN: inflorescence number; LC: leaf coverage; FRL: fruit earliness. 
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Finally, in order to select the best and worst performing genotypes under high temperatures a PCA 

analysis based on all phenotypic analyzed data was carried out. The first three PCA components 

accounted for 69.033% of total variation among genotypes means (table 3).  In particular, the first 

PCA component explained 37.5% of the total variation among the genotypes and the most important 

traits for PCA1 were YP, TFN and FS (table 4). PCA2 explained 18.76 % of the total variability 

among genotypes. The most important traits for PCA2 were CR, viroses and LC (table 4). Finally, 

PCA3 explained 12.77 % of the total variation. SSC, IN and FRL represents the most important traits 

for PCA3 (table 4). The PCA scores of genotypes were plotted with respect to PCA1, PCA2 and 

PCA3 to assess the genotypic differences. Great variations were found among tomato lines. This 

analysis allowed us to identify the best and worst performers under heat stress for traits related to 

plant production (figure 3).  

 

 

 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total  

Variance 
%  

Cumulative 
% Total  

Variance 
% 

Cumulative 
% Total  

Variance 
% 

Cumulative 
% 

1 3.375 37.500 37.500 3.375 37.500 37.500 2.383 26.480 26.480 

2 1.689 18.763 56.263 1.689 18.763 56.263 2.236 24.843 51.323 

3 1.149 12.770 69.033 1.149 12.770 69.033 1.594 17.710 69.033 

4 .797 8.855 77.887             

5 .705 7.829 85.717             

6 .486 5.404 91.121             

7 .378 4.204 95.325             

8 .337 3.747 99.072             

9 .083 .928 100.000             

 

Table 3. Total variance explained in PCA analysis 
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Component 

1 2 3 

YP .843 -.366 .261 

TFN .864 -.297 .141 

SSC .022 .128 -.794 

CR -.239 .783 -.177 

Virosis -.136 .745 -.299 

FS .841 .129 .043 

IN .170 -.174 .680 

LC -.050 -.857 -.184 

FRL .332 .219 .506 

 

Table 4. PCA characteristics of 100 tomato genotypes analyzed. Note: Bold values represent parameters 

important for PCA1, PCA2, PCA3. YP: yield production per plant; TFN: total fruit number per plant; 

SSC: Soluble solid content; CR: contemporaneous ripening; Virosis; FS: percentage of fruit set; IN: 

inflorescence number; LC: leaf coverage; FRL: fruit earliness. 
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Figure 3. Three-dimensional PCA plot of 100 genotypes analyzed for 9 traits (YP: yield production per 

plant; TFN: total fruit number per plant; SSC: Soluble solid content; CR: contemporaneous ripening; 

FS: percentage of fruit set; IN: inflorescence number; LC: leaf coverage; FRL: fruit earliness). The best 

genotypes are highlighted in the upper part of graphic by a red circle; the worst are highlighted by a 

green circle. 

 

 

 

 

 

 

PCA 1: YP, TFN, FS% 

PCA 2: CR, viroses, LC 

PCA 3: SSC, IN, FRL 
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2.3.2 Fruit characterization by Tomato Analyzer 

An electronic scanning of fruits was performed to digital phenotype to accurately analyze the tomato 

fruit of JAGF4 population (table 5). For 38 tomato fruit descriptors, unit, mean and range were 

reported. Most of traits studied were dissected in sub descriptor categories that showed wide variation. 

In this respect, the descriptors with largest variation were the Area (1487.8-3455.2 mm2) within the 

Basic descriptors category; Curved Fruit Shape Index (0.79-1.74) within the Fruit shape index 

descriptors; Fruit Shape Triangle (0.63-1.37) within Blockiness descriptors; Circular (0.02-0.14) in 

Homogeneity descriptors category, Proximal Angle Micro (58.8-187.9) within Proximal fruit end 

shape descriptors; Distal Angle Micro (54.5-325.7) in Distal fruit end shape descriptors category; 

H. Asymmetry.ob (0.00–0.3) in Asymmetry descriptors category; Fruit Shape Index Internal (0.7–

1.56) within Internal eccentricity descriptors, and Lobedness Degree (1.7-9.9) in Latitudinal section 

descriptors category (table 5; supplementary figure 1). For eight descriptors of the categories Distal 

fruit end shape (Distal indentation  area and distal end protrusion), Asymmetry (Obovoid, Ovoid, 

H.Asimmetry.Ov and H.Asymmetry.Ob) and Proximal fruit end shape  (Shoulder height and 

Proximal Indentation Area) values of  0.00 were observed (table 5). 
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Descriptors Units Mean Range 

Basic descriptors 

  Perimeter Mm 183.57 151.6-235.73 

  Area   mm2 2178.17 1487.81-3435.19 

  Width Mid-height (WMh) Mm 53.15 39.2-67.42 

  Maximum Width (MW) Mm 54.10 40-68.8 

  Height Mid-width (HMw) Mm 50.14 39.32-72.16 

  Maximum Height (MH) Mm 50.95 39.33-74.17 

  Curved Height (CH) Mm 53.90 41.75-74.5 

Fruit shape index descriptors 

  Fruit Shape Index External I (FSIE I)  0.96 0.68-1.52 

  Fruit Shape Index External II (FSIE 2)  0.96 0.69-1.56 

  Curved Fruit Shape Index (CFSI)  1.03 0.79-1.74 

Blockiness descriptors 

  Proximal Fruit Blockiness (PFB)  0.66 0.45-0.79 

  Distal Fruit Blockiness (DFB)  0.67 0.51-0.77 

  Fruit Shape Triangle (FST)  0.98 0.63-1.37  

Homogeneity descriptors 

  Ellipsoid  0.03 0.01-0.06 

    Circular  0.07 0.02-0.14 

  Rectangular  0.53 0.48-0.58 

Proximal fruit end shape descriptors 

  Shoulder Height (SH)  0.015 0.00-0.03 

  Proximal Angle Micro (PAMicro) Degree 147.94 58.8-187.9 

  Proximal Angle Macro (PAMacro) Degree 150.00 78.21-173.56 

  Proximal Indentation Area (PIA)  0.03 0.00-0.03 

Distal fruit end shape descriptors 

  Distal Angle Micro (DAMicro)  155.10 54.49-325.74 

  Distal Angle Macro (DAMacro) Degree 152.47 75.91-200.88 

  Distal Indentation Area (DIA) Degree 0.01 0.00-0.09 

  Distal End Protrusion (DEP)  0.01 0.00-0.19 

Asymmetry descriptors 

  Obovoid  0.075 0.00-0.22 

  Ovoid  0.057 0.00-0.23 

  V. Asymmetry (V.A)  0.097 0.02-0.26 

  H. Asymmetry.ob (H.A.ob)  0.054 0.00-0.3 

  H. Asymmetry.ov (H.A.ov)  0.033 0.00-0.16 

  Width Widest Pos (WWP)  0.488 0.34-0.62 

Internal eccentricity descriptors 

  Eccentricity  0.79 0.74-0.8 

  Proximal Eccentricity (PE)  0.89 0.88-0.89 

  Distal Eccentricity (DE)  0.89 0.86-0.89 

  Fruit Shape Index Internal (FSII)  0.96 0.69-1.56 

  Eccentricity Area Index (EAI)  0.39 0.33-0.43 

Latitudinal section descriptors 

  Lobedness Degree (LD)  3.70 1.73-9.86 

  Pericarp Area (PA)  0.57 0.56-0.62 

  Pericarp Thickness (PT)  0.25 0.24-0.25 

 

Table 5. Tomato Analyzer descriptors data. Unit used, mean and range variation observed in the 100 

tomato JAGF4 lines are reported.  

 

Finally, with the aim to find correlations among descriptors, a correlation matrix was created (figure 

4). Results highlight a strongly positive and significant correlation for 5 (out of 7) descriptors related 

to fruit size (basic descriptors). A strongly positive correlation was also found for the three fruit shape 

index descriptors that describe the external form of the fruit. Instead negative correlations were found 

among the three Fruit shape index descriptors and 2 basic descriptors (Width mid-height and 
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Maximum Width). Positive correlation has been found between the three fruit shape index descriptors 

and internal fruit shape index belonging to the category of Internal eccentricity descriptors. 

Interestingly, both fruit shape index descriptors and internal eccentricity descriptors resulted 

negatively correlated to the 2 basic descriptors related to fruit size (Width mid-height and Maximum 

Width). Other important positive correlations were found among Lobediness degree descriptor 

(Latitudinal section) and Circular descriptor (Homogeneity) and between 2 descriptors belonging to 

the same class, Ovoid and H. Asymmetry. Ob (Asymmetry descriptors). Moreover, a strong negative 

correlation was found between H. Asymmetry. Ob (Asymmetry descriptors) and Fruit Shape triangle 

descriptor belonging to the class Blockiness descriptors. Supplementary figure 2 reports the 

significant correlation values (P<0.05) found. 

            

 

Figure 4. Pearson’s rank correlation coefficients between pairs of descriptors. Only correlation 

coefficients with P value<0.01 after Bonferroni correction are shown. Color intensity is proportional to 

the correlation coefficients. On the right side of the correlogram, the legend color shows the correlation 

coefficients and the corresponding colors. 
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2.3.3 Characterization of pollen traits in extreme phenotypes for heat stress tolerance 

As described above (section 2.3.1), the PCA analysis based on the combination of 9 phenotypic traits 

analyzed in the field during the summer 2017 allowed us to select the best and worst performers in 

the investigated population. Among these, 8 extreme JAGF4 genotypes (4 tolerant and 4 susceptible 

for traits related to production) were selected and phenotyped for pollen viability through a flow 

cytometer (table 6). 

 

 

  Line YP TFN  FS 

Worst 

S132 4 70 15 

S185 6.5 77 24 

S153 2.3 45 27 

S239 4 80 20 

Best 

S75 13.5 330 73 

S76 13.7 333 53 

S196 12.5 249 50 

S99 12 208 65 
 

Table 6. Summary of agronomic characteristics of 8 JAGF4 extreme genotypes. Worst represents the 

JAGF4 susceptible genotypes. Best represents JAGF4 tolerant genotypes. Value of YP, TFN and FS: 

were reported. 

 

To set up the optimal temperature condition for the PV test of lines, a preliminary experiment 

(BATCH 1) using the hybrid JAG8810 was conducted. The percentage of PV varied from 72.15 at 

30.5˚C, 68.9 to 22.8 at 33.5˚C (figure 5). Results showed that there were no statistically significant 

differences between the % PV at 30.5˚C and 32˚C, while the plant at 33.5˚C (P<0.001) showed a PV 

reduction of 50 % compared to the plants at 30˚C and of 46% compared to the plants at 32˚C 

(P<0.001). 
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Figure 5. Comparison of PV in JAG8810 at three different temperatures. Values represent the mean ± 

standard deviation.  

 

At the light of these results we decided to use a heat stress temperature of 33˚C/27˚C (day/night) for 

the further PV screening (BATCH 2). The percentage of PV under high temperature showed high 

variability among genotypes, also compared to the control (JAG8810). All differences between each 

JAGF4 genotype and JAG8810 resulted statistically significant (figure 6a). All worst lines had lower 

PV compared to the control whilst S76, a good performer line, showed a PV almost 10 times higher 

than the control (figure 6a).  

Based on genotypes response to the three parameters tested (PV and TNI, TNF), 3 classes, using the 

control as reference were identified: (i) genotypes with higher PV and higher TNI and TNF (S76), 

(ii) genotypes with lower PV but higher TNI and TF (S75, S99, S196 and S132), genotypes with 

lower PV and lower TNI and TNF (S185, S153, S239) (figure 6a;6c). These data allowed us to 

identify the genotype S76 as one of the best performer in the studied population. It performed also 

better than JAG8810 both for traits related to productivity in field (section 2.3.1) and for PV, TNI 

and TNF. Furthermore, our results concerning the total number of inflorescences (TNI) and flowers 

(TNF) counting, showed that genotypes with high TNI had also higher TNF since they were strongly 

correlated (r=0.961; P<0.01). Our results showed also a positive and significant correlation between 

TNF and PV (r=0.443; P<0.01) but not between TNI and PV (table 7). Moreover, with the aim to 

verify if also the yield contributing trait such as YP were correlated to TNF, TNI and PV, a correlation 

analysis including values of YP for the 8 genotypes analyzed was performed. Interestingly, the 

correlation matrix highlight that YP was positively and highly correlated to PV (r= 0.642; P<0.05). 

YP was also positive significantly correlated to TNF and TNI (table 7). 
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Figure 6. Comparison among the 8 contrasting JAGF4 genotypes and JAG8810. a) Percentage of Pollen 

viability, mean ± standard deviation for PV trait. T-test significance level: *, P<0.05; **, P<0.01; ***, 

P<0.001 is reported. b) flowers, fruit longitudinal sections and fruit transverse sections for each genotype 

is displayed. c) TNI (total inflorescences number) and TNF (total flowers number) mean value under 

heat stress conditions are reported.  

 

 

 

 

 

 

 

 

  PV TNF TNI YP 

PV 1       

TNF .443** 1     

TNI ns .961** 1   

YP .642* .623** .602* 1 

 

Table 7. Correlation analysis among variables tested. PV=pollen viability; TNF: total flowers number; 

TNI: total inflorescences number; YP: yield production per plant. *P<0.05, **P<0.01, ns= not 

significant. 
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2.3.4 Local/systemic effect of heat stress 

The main goal of this experiment was to find out if the effect of heat on the treated plant is local or 

systemic. PV turned out to be unequivocally higher in the part of the plant maintained at RT condition, 

although the plant is located at the temperature of 33°C. In particular, results indicate that PV of 

flowers in the bag connected to the pump outside at RT condition (26°C) was 92.8 %, PV of flowers 

in the bag connected to the air pump in the 33°C room was 9.02% and PV of flowers of plants (without 

bag) at 33°C was 8.71 %. By contrast flowers of MM plants in the control room at 25°C had PV of 

86%. PV of the branch at RT condition results to be 8 times higher than PV of the branch at 33°C and 

7 times higher than PV at controlled room. No significant difference was detected between PV of the 

branch at RT condition and PV at controlled room (figure 7). Moreover, heat stress alterations were 

observed in young buds and flowers at 33°Cat anthesis stage and were characterized by abnormal 

anthers and style elongation. Figure 8 shows some phenotypic alterations induced in tomato flowers 

exposed to prolonged high temperature of 33°C compared to the control. 

 

  

 

 

Figure 7. Pollen viability (PV) comparison between flowers under heat stress condition and control 

temperatures. Values represent the mean ± standard deviation of PV trait. The differences were assessed 

by a T-test. ***Significance level: P<0.001; ns=not significant. 33°C_Bag: flowers in the bag connected 

to the pump in the 33°C room; C_Bag: flowers in the bag connected to the pump outside (temperature 

range between 26 and 27°C); C_no bag: flowers of plants (without bag) at 33°C; C_25°C: flowers of 

MM plants in the control room at 25°C. 
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Figure 8. Phenotypic alterations induced in tomato flowers exposed to prolonged high temperature of 

33°C compared to the control. a) flowers of three different plants at 25°C control temperature. b) flowers 

of plant exposed at 33°C.  33°C_Bag: flowers in the bag connected to the pump in the 33°C room, 26-27 

C Bag: flowers in the bag connected to the pump outside; 33°C no bag: flowers of plants (without bag) 

at 33°C. 
 

  

2.4 DISCUSSION 

Extreme temperature is one of the most harmful abiotic stresses occurring during the plant 

reproductive phase. In this study, a tomato F4 population was grown imposing a high-temperature 

condition during flowering and fruit setting in open filed during the summer 2017. Traits related to 

fruit production such as FS, YP  and TFN, which usually are highly affected by high temperatures in 

tomatoes (Sato et al., 2006; Golam et al., 2012), as well as in other species (Shivanna et al., 1991; 

Saha et al., 2010), showed a wide variation in our experiment. A strong positive correlation between 

YP and FS was observed confirming similar findings found in other works (Tele Ayenan et al., 2019).  

By contrast, a negative correlation between traits related to fruit production such as YP and TFN and 

fruit quality (SSC) was found. Indeed, it was widely reported that tomato varieties with high SSC 

tend to be less productive (Garcia et al., 2006; Tigist et al., 2013) although it represents an important 

tomato selection parameter. The fluctuations in yield productions are governed principally by changes 

in one or more other components, mainly related to fruit quality (Tigist et al., 2013). However, the 
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optimal combination of yield and SSC parameters is crucial in tomato breeding since the brix grade 

represents one of the primary quality traits selected in breeding programs (Fortes et al., 2017).  

The PCA analysis used to select the best and worst performing genotypes for yield related traits result 

very useful for evaluate the contribution to variation of each trait and for identify best lines. 

Furthermore, the Tomato Analyzer high-throughput phenomics study allowed the digital acquisition 

of fruit morphology traits difficult to estimate by the conventional descriptors. This analysis permitted 

to find an interesting correlation between descriptors related to fruit size and fruit shape in our JAGF4 

population. Indeed, several studies have been showed that Tomato Analyzer can be a valuable 

complementary tool to characterize the commercial varieties and\or to study the genetics of fruit 

shape in tomato (Mazzucato et al., 2010; Scott, 2010; Panthee et al., 2013; Rodrıguez et al., 2011). 

Accurate phenotyping has become a big constraint for multiple traits characterization (D’Agostino 

and Tripodi, 2017; Araus et al., 2018) and digital phenotyping with scalable technologies can 

accelerate selection (D’Agostino and Tripodi, 2017). However, the nature of the analyzed traits and 

the interaction with the external environment must be taken in account. The alignment of phenotyping 

under controlled conditions with targets for real (i.e., field) phenotyping limit the adoption of new 

phenotyping tools (Rebetzeke et al., 2016; Daniel et al., 2017). It is very difficult to define how heat 

stress should be imposed experimentally leading to a high variability in heat treatments and lack of 

standardized protocols.  

To test phenotyping system able to better dissect flowering traits, the best and worst JAGF4 

performers, identified through the PCA analysis, were phenotyped for pollen viability through a flow 

cytometer in controlled conditions (with full control of temperature, light and humidity).  Indeed, 

the tomato pollen viability is reduced under high temperature and the lack of pollen compromises 

subsequent pollination and fruit production. All environmental conditions were checked since it has 

been widely demonstrated that also relative humidity affects reproductive processes (Yan et al., 

2010; Weerakoon et al., 2008; Driedonks et al., 2018). The pollen viability high-throughput analysis 

through flow cytometers have several advantages respect the tedious traditional pollen viability 

assessment made through germination that is important bottleneck in pollen phenotyping (Dreccer et 

al., 2018). In addition, impedance flow cytometry (IFC) technique used in this thesis is non-

destructive, is not species dependent, and can be also used in the field (Heidmann et al., 2016).  

Our results confirmed that heat stress had significantly harmful effects on PV (Firon et al., 2006; 

Pressman et al., 2002; Sato et al., 2006, Xu et al., 2017) although the 4 best performers responded 

better to heat stress than the worst. Worst genotypes showed PV reduction 8-9 times higher than best 

performers, which strengthens the notion that pollen viability is correlated with traits related to fruit 

production (Sato et al., 2000; Firon et al., 2006; Xu et al., 2017). These findings highlight also the 
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importance of pollen viability as a sub-trait for heat tolerance screening as reported in several crops 

such soybean, cotton canola, rice, wheat (Kakani et al., 2005; Singh et al., 2008; Mesihovic et al., 

2016), confirming its importance as a key indicator of thermo-tolerance status of genotypes. Indeed, 

the relative simplicity of the sub-traits genetic architecture can widely support indirect assessment 

of complex fruit setting and yield traits (Paupière et al., 2017; Driedonks et al., 2018). Indirect 

assessment of heat tolerance based on style length and style protrusion number of flower for plant 

was also suggested (Xu et al., 2017).  

To further investigate the implementation of indirect selection for heat tolerance, we focused also on 

other two key sub-traits: number of flowers per plant (TNF) and number of inflorescences per plant 

(TNI). Our finding confirmed that genotypes with high TNI had also higher TNF since they were 

strongly correlated. A positive significant correlation between TNF and PV in agreement with Xu 

and collaborators (2017) was also found. Moreover, positive YP significant correlations to PV, TNF, 

and TNI were highlighted in our dataset. Xu et al (2017) found a positive correlation between fruit 

set and pollen viability of 0.72, highlighting that PV is a key trait influencing fruit setting and 

consequently yield under heat stress. Therefore, indirect selection for fruit setting and other traits 

related to fruit production through PV can be adopted also in field phenotyping. 

HSR in plants can be local, when heat effect is only registered in the part of the plant directly exposed 

to heat, or systemic, if after the stress the heat stress response appears in the entire organism. From 

data obtained in this work it is evident that heat stress has a tomato plant local response. Moreover, 

floral morphology showed clearly the damage impaired by heat stress (33˚C) compared to the flowers 

at control temperature of 25 ˚C. The experiment performed suggested that heat stress affects only the 

directly exposed parts of the plant, while in the rest of the organism there are no detectable effects. 

This aspect should be carefully considered when the exposed part is also suffering other stresses (e.g. 

nutritional deficiency, water scarcity) because they can magnify the heat stress plant response.  
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2.5 SUPPLEMENTARY 

 

 

      

   

  

  

Supplementary figure 1. Boxplot representation of 38 descriptors based on mean and range of 

variation observed in JAGF4 population. Each color represents a specific category of Tomato 

Analyzer descriptors. 
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LINE YP TFN SSC CR Virosis FS IN LC FRL

F4S231 4.5 60 4 5 1 42 1 3 1

F4S150 4.8 80 4.9 4 1 8 2 3 2

F4S31 10.8 218 4.4 1 0 47 1 4 1

F4S62 8 139 4.7 1 0 59 2 4 1

F4S33 10.8 224 3.3 3 0 46.6 4 3 1

F4S30 11.6 306 3.7 1 0 43.5 4 5 1

F4S53 16 350 3.3 1 0 53.7 3 4 4

F4S196 12.5 249 4 2 0 50 5 3 3

F4S128 6.1 169 4 3 0 33 2 2 1

F4S4    6.3 139 4.3 1 0 30 1 4 1

F4S112 8.5 145 4.8 3 0 40 3 3 3

F4S12 4 82 4.6 4 1 28 1 1 1

F4S194 9.8 177 4 1 1 57 5 2 2

F4S34 12 310 4.7 5 1 68 3 2 2

F4S97 6.5 127 5 3 1 29 1 3 1

F4S91 11.5 270 3.8 1 0 63 3 4 4

F4S1    7.5 129 5 5 1 21.75 1 2 3

F4S82 10 147 4.8 3 1 42 1 4 1

F4S160 5 80 5 3 0 10 4 3 1

F4S22 9 115 4.3 5 1 40 1 2 1

F4S225 3.5 70 4.1 5 0 34 2 4 1

F4S75 13.5 330 3.6 1 1 73 4 3 3

F4S100 5.6 80 6.8 1 1 43 1 4 1

F4S99 12 208 4.1 1 0 65 3 4 5

S133 3 125 5.5 5 1 29 1 2 1

F4S13 16 295 4.2 1 0 45 5 4 5

F4S20 7.2 150 4 5 1 45.25 3 4 4

F4S113 6 100 5.5 3 1 48 1 4 1

F4S118 9.8 191 4.1 5 0 44 2 1 2

F4S8   13.7 248 4.1 1 0 47 5 4 3

F4S117 6.5 229 5 5 1 66 1 2 2

F4S2   9.7 201 4.5 5 1 38.25 3 1 4

F4S41 16 354 4.5 1 0 74.26 2 5 1

F4S90 6 132 4.7 5 1 35.5 1 2 1

F4S69 10 209 4.5 1 0 38 1 5 1

TRAITS
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LINE YP TFN SSC CR Virosis FS IN LC FRL

F4S208 2 50 4.2 5 1 41 3 3 1

F4S98  10 215 4.3 1 1 54.25 3 4 2

F4S68 9.8 152 4.3 1 1 35 1 2 3

F4S204 4.5 90 4.6 3 1 16 1 4 1

F4S76 13.7 333 5 1 0 53 1 2 1

F4S28 10.5 230 4 1 0 78 4 4 1

F4S121  7.3 180 4.6 1 0 35 2 4 1

F4S187 4 125 4.6 1 0 19.25 4 3 1

F4S218 6.6 110 4.8 1 0 24 3 2 1

F4S6 5 91 4 1 0 27 1 4 1

F4S60 13 335 4.2 1 0 40 1 5 2

F4S183 5 60 5.8 5 1 20 1 2 1

F4S224 8 145 4.4 1 0 50 4 4 1

F4S235 4.5 50 4.2 3 0 20 1 2 1

F4S156 3.4 110 4.4 3 0 20 5 5 1

F4S185 6.5 77 4 1 0 24 2 5 1

F4S244 10 205 3.5 1 1 29 3 2 2

F4S106 9.6 167 4 3 0 31 1 4 1

F4S39 11.7 211 4.5 1 0 53.7 2 3 1

F4S237 5 55 3.2 3 0 22 2 3 3

F4S249 12.5 130 3.7 1 0 65 4 2 4

F4S220 4 58 4.7 3 0 15 2 5 2

F4S180 6.7 115 5.4 5 1 27 5 2 1

F4S127 9.3 173 5.5 1 0 40 2 5 1

F4S115 4.8 119 4.5 5 0 60 1 2 1

F4S205 7.2 80 4 5 1 44 1 2 2

F4S153 2.3 45 4 3 1 27 4 2 4

F4S55 10.1 199 3 1 0 32.5 4 5 2

F4S67 8.2 145 3.9 3 1 30 2 3 1

F4S36 9.7 176 4.2 1 0 47 1 4 1

F4S201 4 105 4.6 4 0 24 2 4 1

TRAITS
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Supplementary table 1. Mean values of phenotypic traits analysed under heat stress conditions during 

the summer 2017. 

 

  

 

 

 

 

 

LINE YP TFN SSC CR Virosis FS IN LC FRL

F4S221 10.25 195 5.4 5 0 35 2 5 2

F4S92 15 239 4.2 1 0 41 3 5 5

F4S254 6 100 3.8 1 1 22 1 3 3

F4S47 1.65 62 4.5 5 1 44 1 4 1

F4S147 7 106 4.5 3 0 33 1 2 3

F4S84 9.5 178 4.8 2 1 47 3 3 3

F4S10   8.9 213 5.2 1 1 51.25 1 4 1

F4S179 7 100 3.8 1 1 25 1 3 3

F4S5   10 221 3.7 1 0 43.5 3 4 1

F4S63 7.7 160 3.6 1 0 43 2 4 2

F4S64 8.7 200 4.7 1 0 20 2 5 1

F4S159 10 200 3.9 3 1 9 2 2 1

F4S66 5.5 70 5.2 5 1 35 2 1 1

F4S126 0.8 32 5.4 3 0 27 2 5 1

F4S188 6.2 105 4.1 1 0 19 2 4 1

F4S48 13 242 4.5 2 1 54 3 2 1

F4S114 6 115 5 3 1 28 1 4 1

F4S77 11.8 222 4 2 0 47 3 5 1

F4S51 8.7 173 3.6 5 0 23 2 3 5

F4S174 4.3 92 4.5 5 1 50 3 1 1

F4S21  8 140 4.5 5 0 57.2 3 1 2

F4S139 2 50 4.6 5 1 31 1 4 1

F4S239 4 80 5 5 1 20 3 1 1

F4S9 4.5 184 4.5 5 1 41.25 3 1 3

F4S105 11.5 246 4.7 1 0 34 3 5 1

F4S104 5.8 88 4.3 3 0 8 1 5 1

F4S27  13.8 238 4 1 0 61.5 5 3 1

F4S130 7.5 90 4.1 1 0 51 3 3 1

F4S78 4 78 4.4 4 0 20 2 5 4

F4S83   5.2 148 4.5 3 1 47 1 3 1

F4S252 3.5 70 5.1 3 1 22 1 4 1

F4S255 13 235 4.7 2 1 45 4 2 1

F4S132 4 70 5 5 1 15 1 2 1

TRAITS
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Supplementary figure 2. Correlation values between pairs of phenotypes. Only correlation coefficients 

with P value<0.01 are shown. Colour intensity is proportional to the correlation coefficients. The red 

indicates positive correlations; the blu indicates negative correlations. 
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CHAPTER III  

 

GENOME INVESTIGATIONS ON BREEDING LINES 

CHARACTERIZED FOR HEAT STRESS TOLERANCE  

 

 

3.1 INTRODUCTION 

Heat stress is a major abiotic factor limiting the tomato crop productivity since it is particularly 

sensitive to this stress. In temperate regions, heat stress can become the bottleneck factor of tomato 

fruit production during hot season.   

During the 90s tomato breeders integrated traditional phenotypic assessment with marker-assisted 

selection (MAS) improving the plant selection process targeting chromosomal region containing 

quantitative trait locus (QTL) or single trait (Collard and Mackill, 2008; Andolfo et al., 2014; 

Capuozzo et al., 2017). Several studies have been successfully performed in tomato to map genes or 

QTLs for abiotic environmental stresses (such as salinity, drought, and heat) and for fruit-related 

characteristics (Osei et al., 2018). However, QTLs related to complex traits are very difficult to 

transfer and MAS resulted more suitable for simple traits with a few major-effect genes than for traits 

controlled from a large number of small effect genes (Dekkers and Hospital, 2002; Heffner et al., 

2009). In recent years, the tomato genome sequencing effort and subsequently development of 

genomic resources and tools, have improved the efficiency and accuracy of tomato genotyping. The 

potential breeding value of an individual can be estimated using genomic-based data such as single 

nucleotide polymorphisms (SNP). High-throughput genotyping (HTG) systems generate several 

thousand SNP markers allowing to scan entire genomes at a reasonable cost.  

Genomic selection (GS) provides new opportunities for increasing the efficiency of plant breeding 

programs for traits with polygenic inheritance (Heffner et al., 2009; Crossa et al., 2010; Lorenz et al., 

2011). GS relies on extensive use of molecular markers with inclusion of all marker information in 

statistical models to estimate genomic breeding value. Most of the variation due to minor QTL is 

captured in the prediction model. GS can accelerate the genetic gain obtained in each cycle, especially 

when selection is performed for traits with not highly heritability. Although the effect of each marker 

is very small, a large amount of genome-wide marker information has the potential to explain all the 

genetic variance (Wang et al., 2018). The development of statistical methods capable of accurately 
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predict marker effects has led to the breakthrough of GS increasing the rate of genetic gain per unit 

of time. GS combines genotypic and phenotypic data from a training population (TRN) in a training 

set (TRS) to obtain the genomic estimated breeding values (GEBVs) of individuals in a testing 

population (TST). The GS model is then employed to predict breeding values of not-phenotyped 

individuals in the next selection step (figure 1).  

 

 

 

 

 

Figure 1. Genomic selection experimental scheme    

 

In tomato, pioneer GS studies have been conducted for yield-related traits in fresh market varieties 

and wild related species (Duangjit et al., 2016; Yamamoto et al., 2016). More recently, Yamamoto et 

al. (2017) assessed the potential of GS to improve soluble solids content and total fruit weight, 

analyzing the genome of fresh market F1 tomato varieties and Liabeuf et al. (2018), the resistance to 
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Bacterial Spot Resistance. The GS models were employed to predict phenotypes of progeny and 

parents, although the efficiency varied with the parental cross combinations and the selected traits.  

GS can result in a valuable tool for tomato breeding even if protocols need to be optimized and 

validated. Given the fact that many GS programs in this species are starting now, factors affecting the 

construction, the model accuracy, such as the importance of TRN size, the relationship between 

individuals in TRS and TST, the marker metrics and the design of GS schema were not yet evaluated 

and it seems useful to optimize protocols in tomato as well.  

In this study, through the use of the GBS (Genotyping by sequencing) approach, we have developed 

a GS model that can be leveraged to accelerate breeding for heat tolerance in tomato. Furthermore, 

once the model was built up and validated, the meaningful SNPs (calculated by the model) were used 

to perform a QTL analysis to better understand the genetic architecture of heat tolerant traits in 

tomato. 

 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 DNA extraction and library preparation and sequencing  

DNA was extracted from JAG8810 variety, 100 individuals of the JAGF4 population and 54 

individuals of deriving F5 population in 2018 and 2019 respectively, using the Qiagen DNeasy Plant 

kit.  DNA samples were sent to the IGAtech for genotyping by sequencing (GBS) approach.  

In silico analysis on the reference genome was used to select the best combination of the two 

restriction enzymes SphI and MboI and the best fragment size distribution to obtain the desired 

number of loci. Genomic DNA was fluorimetrically quantified, normalized to a uniform 

concentration and double digested. Libraries to obtain ddRAD were produced using an IGATech 

custom protocol, with minor modifications respect to Peterson et al. (2012). Fragmented DNA was 

purified with AMPureXP beads (Agencourt) and ligated to barcoded adapters. Samples were pooled 

on multiplexing batches and bead purified. For each pool, targeted fragments distribution was 

collected on BluePippin instrument (Sage Science Inc.). Gel eluted fraction was amplified with oligo 

primers that introduce TruSeq indexes and subsequently bead purified. The resulting libraries were 

checked with both Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) and Bioanalyzer DNA assay 

(Agilent technologies, Santa Clara, CA). Libraries were processed with Illumina cBot for cluster 

generation on the flowcell, following the manufacturer’s instructions and sequenced with V4 

chemistry paired end 125bp mode on HiSeq2500 instrument (Illumina, San Diego, CA).  
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3.2.2 Data processing and variant calling 

Raw sequencing data were checked for quality score using the BBDuk software (version 35.59), 

removing low quality portions while preserving the longest high quality part of NGS reads. The 

minimum length was set at 35 bp and the quality score at 25.  

The high quality reads were aligned against the Solanum lycopersicum reference genome sequence 

(SL3.0/) with BWA aligner (Li and Durbin, 2009) (software package for mapping low-divergent 

sequences against a large reference genome). Default parameters and selection of uniquely aligned 

reads (i.e. reads with a mapping quality >4) were used. Filtering of detected loci using the Populations 

program included in Stacks v2.0 (Catchen et al., 2013). Populations was run with option –r=0.75 in 

order to retain only loci that are represented in at least the 75% of the population.   

The “ref_map.pl” program of program belongs to Stacks v2.0 package was used for variant calling. 

(Catchen et al., 2013). This program aligned data to the reference genome. A VCF file was created 

and filtered by Minimum Read Depth (DP) >= 4. Variant Calling Filter Files (VCFs) containing all 

the identified variants were obtained. 

 

3.2.3 Circos plot analysis 

Four contrasting JAGF4 genotypes (2 tolerants and 2 susceptibles) and the hybrid JAG8810, were 

analyzed with CircosVCF tool, an interactive tool that provides genomic variation information 

considering all genetic variant data generated from variant call file (VCF). All parameters were set 

on the user interface. The karyotype of Solanum lycopersicum SL3.0 was loaded in txt format. A line, 

representing each SNP location, was colored based on its genotype, according to its homozygosity to 

the reference allele (which in our case is represented by the most frequent allele in the analyzed 

population), homozygosity to the alternative or heterozygosity. This option was selected for the 

evaluation since the parental genome was not available (Krzywinski et al., 2009). In the end, also the 

annotation gene file was loaded to visualize genes harbored by the regions of interest. 

 

3.2.4 Genomic selection model construction set up 

Following the scheme reported in figure 1, we developed a GS experimental scheme. In particular, 

100 phenotyped and genotyped JAG F4 individuals were used to build up a training population. The 

TRN was divided in TRS e TST in a cross-validation scheme, meaning that the model was build using 

X individuals of the TRS and validated in the TST with remaining 100-X lines. The GS model was 
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then employed to predict the genetic breeding values (GEBVs) of not-phenotyped individuals in the 

next selection step (F5) and validated in F6 offspring deriving form F5 population through a 

phenotypic characterization under heat stress conditions. 

 

3.2.5 GS statistical model 

The rrBLUP model (Endelman, 2011) was used for analyzing our SNP dataset. It measures the whole 

set of marker effects at one time under the assumption that genomic variances for all loci are equal 

based on the following relation:  

 

y = μ +Xg + e 

 

 where y is Nx1 vector of phenotypic means; μ the overall mean of the training set; X is the NxNm 

(marker matrix); g is NmX1 (marker effects matrix) and e represents the Nx1 vector of residual 

effects. Matrixes were constructed numerically coding markers as 1, -1, 0, and NA respectively for 

major allele, minor allele, heterozygosity, and missing data. Loci with missing data were imputed 

using the EM method with the A.mat function of the ‘rrBLUP’ package in R (Endelman, 2011). A.mat 

also calculates the additive relationship matrix.  

 

3.2.6 TRNs composition and marker dataset selection 

Cross-validation of prediction accuracy was conducted varying the training set (TRS) size for each 

trait. In particular for YP, where the TRN used to build up the model was composed from 90 

individuals, 15, 20, 25, 30 and 35 individuals were randomly included in the TST to predict their 

GEBVs and replicated 1000 times. While for SSC all individuals were included in the analysis (100) 

and 20, 25, 30, 35, 40, 45 individuals were randomly included in the TST. 

To evaluate the effects of GBS marker selection on genomic prediction accuracy, two criteria for 

filtering SNPs were considered. GBS SNPs were filtered for minor-allele frequency (MAF) >0.05 

and based on 5 levels of percentage of eliminated missing values (PEMVs). These 5 levels were 90, 

85, 80, 75, 70 %. Markers were filtered based on all possible combinations of PEMV and MAF 

producing 5 GBS marker subsets (e.g., 5 PEMV levels × 1 MAF level). After filtering, remaining 

missing values were imputed using the EM method with the A.mat function of the ‘rrBLUP’ package 

in R (Endelman, 2011).   

These 5 subsets were used to evaluate the impact of the TRS on prediction accuracy. Therefore, these 

5 marker dataset were combined with the 5 TRS dataset described above both for YP and for SSC. 
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In particular, the accuracies of predictions, obtained by the relationship between predicted and 

observed values, was assessed by Pearson correlation setting up 25 rrBLUP models, one for each 

combination. The prediction accuracy (Pearson correlation coefficient between the GEBVs and the 

phenotypes of the TST) of each combination was evaluated using cross validation replicated 1000 

times. The mean predictive ability across the 1000 replicates over the folds was used as the 

elimination criterion. The validated models obtained were then used to predict F5 individuals in the 

following cycle (which have been only genotyped but not phenotyped) (see section 3.2.1). 

 

3.2.7 JAGF6 population phenotyping for GS validation 

The F6 offspring deriving from JAGF5 population was grown and phenotyped as described for 

JAGF4 population in chapter II-section 2.2.2, except for the planting binary pattern.  

Briefly, 54 F6 lines were grown in a completely randomized design with 10 plants per line. Seeds 

were sown in plateau under plastic-house and seedlings were transplanted in field under plastic tunnel 

in the first half of May in order to expose growing plants to high temperatures. 

Tomato plants were grown following the standard cultural practices of the area and temperature. At 

fruit red ripe stage, the Soluble Solid Content (SSC-3 fruits per plant) and yield production per plant 

(YP) were measured in order to validate the model. 

 

3.2.8 QTL analysis   

Quantitative trait locus (QTL) analyses for the two traits (YP and SSC) assessed in JAGF4 population 

(chapter II) were performed using R-based software package, R/qtl (Broman et al., 2003; Broman and 

Sen, 2009, in R version 3.2.5). From the dataset used for GS model construction (14.286 for SSC and 

14.210 for YP) a total of 2.486 and 2.034 SNP were used for mapping QTL in YP and SSC 

respectively.  

After filtering, SNP markers were coded as AA, BB, AB, and NA respectively for major allele, minor 

allele, heterozygosity, and missing data. To analyze the F4 population the function cross <- 

convert2bcsft (cross, BC.gen = 0, F.gen=4) was used. Genetic maps were constructed by est.map 

using the Kosambi’s function of R-qtl (Kosambi, 1944). Phenotypic traits were analyzed by 

composite interval mapping (CIM) using the maximum likelihood via the expectation-maximization 

algorithm (Dempster et al., 1977). Using 1 cM steps, CIM was calculated using default settings. 

Genome-wide significance thresholds were generated for each trait by determining LOD values at 

alpha of 0.05 from 1000 permutations (Broman and Sen,2009).  The percent phenotypic variance 

explained by a QTL was estimated via the following formula: h2=1-10 − (2/n) LOD, where “n” is the 
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sample size and “LOD” the single-QTL model LOD score, using single interval mapping (SIM). The 

whole genome was scanned in steps of 1 cM by the scan one function. Batch number was added as 

covariate in both analyses, whereas family number was only applied as covariate in the interspecific 

mapping population. The 95% Bayes credible interval was assessed using the bayesint function, using 

the LOD score of CIM. 

 

3.2.9 Variant annotation and investigation of candidate genes 

In order to perform a variant annotation of the Variant Calling Files (VCF) (see section 3.2.2), the 

SnpEff software was employed on JAGF4 population dataset, which let the association of each variant 

to the annotated genes and to predict their effect on the protein function. Variants were classified 

based on their location (e.g., exon, intron, splice site, etc.) and the effect of their ‘impact’: High, 

Moderate, Low and Modifier. A blastn analysis of candidate genes against TAIR database 

(https://www.arabidopsis.org) was performed to further investigate their function in the model 

species A. thaliana. 
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3.3 RESULTS 

 

3.3.1 High-throughput genotyping of tomato segregating populations  

The hybrid variety JAG8810 and the segregating populations JAGF4 and JAGF5 have been 

sequenced through GBS approach in 2018 and 2019 respectively, producing a total of 117.798.988 

and 136.926.433 reads. 

After quality check, all reads were mapped onto the reference genome (Solanum lycopersicum cv. 

Heinz 1706), and the results were used for SNP calling using STACKS package (Catchen et al., 2013) 

producing 135.355 SNPs in JAGF4 and 176.596 SNPs in JAGF5. In order to characterize the JAGF4 

population genetic diversity, further analyses on identified variants were performed. The total number 

of SNPs for each chromosome is displayed in figure 2. A high density of SNPs on chromosomes 4,5 

6 and 11 was found.  

 

 

 

 

 

 

Figure 2. SNP number distribution among chromosomes. 

 

Based on these results, to better investigate the genomic relatedness of individuals based on whole 

genome SNP information and to detect specific meaningful SNP regions on these chromosomes 

associated with traits of interest, a circos plot analysis was obtained. For this analysis we used 4 

CHROMOSOMES 
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contrasting genotypes in terms of traits involved in fruit production (YP-Yield production per plant, 

% FS-percentage of fruit set, TFN-total fruit number): 2 tolerant (S77 and S75) and 2 susceptible 

(S160 and S239) lines using the hybrid JAG8810 as reference genotype, were compared. Results 

were shown in figure 3. The outermost circle depicts the tomato chromosomes, whereas the five inner 

circles reports, from the outside to the inside, the number of SNPs found in S239, S160, JAG8810, 

S75 and S77 genotypes, respectively. SNPs homozygous to the reference allele are colored in yellow, 

the alternative form in red and heterozygous SNPs in blue (table 2). Clearly differentiating regions 

can be detected at a glimpse of the generated circos plot between the contrasting genotypes also 

compared with JAG8810 (figure 3a). In particular, results highlight two specific contrasting 

chromosomic regions: one on chromosome 4 and the other on chromosome 6. To better investigate 

such regions, the SNPs found on two chromosomes of interest and related genes annotation, were 

used to generate a new plot (figure 3b). The results clearly showed that hybrid JAG8810 revealed a 

heterozygous state, whilst genotypes with higher value in terms of fruits production (YP, % FS and 

TFN) (table 1), represented by the 2 intermost cycles, are homozygous for the A allele (dominant 

allele) and genotypes with lower values (the two outermost cycles) are homozygous for the B allele. 

 

 

  Genotype  YP(kg) FS%    TFN(num)      SSC     

Worst S239 4.0 20         80               5.0 

  S160 5.0 10         80               5.0 

 S77 12.5 55        248              3.9 

Best S75 13.5 73        330              3.8 
 

Table 1. Phenotypic values of YP, %FS, TFN and SSC for S239, S160, S77, S75 genotypes. The 

phenotypic values is refer to the specific line used for DNA extraction. 
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Table 2. Color scheme and number of SNPs related to homozygous to reference, heterozygous and 

homozygous to alternative, were reported for S239, S160, JAG8810, S75 and S77 individuals. 
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                          a) 

b)  

 

 

Figure 3.  Circos plots representation. a) The outermost circle displays the 12 tomato chromosomes 

whereas the five inner circles represent, from outside inside, the SNP’s genotypes of S239, S160, 
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JAG8810, S75 and S77 respectively. Each line is colored according to the SNP's genotype, where yellow 

stands for homozygosity to the reference allele, red for homozygosity to the alternative, and blue 

heterozygosity. b) Focus on chromosome 4 and 6. In this representation also the genes annotation was 

displayed. 

 

As widely established in chapter II, traits related to fruit production such as YP, FRN, % FS were 

negatively correlated to the fruit quality trait SSC. To better investigate this correlation also at 

genotypic level, values relates to SSC were also reported in table 1 highlighting the negative 

correlation. The chromosomic regions involved in SSC under heat stress conditions were the same of 

those related to fruit production (chromosome 4 and 6) but with opposite effect. Genotypes with lower 

SSC value, represented by the 2 intermost cycles, are homozygous for the A alleles (dominant allele); 

whereas genotypes with higher values (the two outermost cycle) are homozygous for the B alleles. 

These results, mirroring the negative correlations found between the phenotypic traits themselves 

analyzed in chapter II, suggesting that traits involved in YP and SSC under heat stress conditions are 

located on chromosome 4 and 6.   

 

 

 

 

 

 

3.3.2 Development and optimization of genomic selection models for tomato crop 

 

3.3.2.1 GS model experiment set up 

GS scheme was implemented following a JAG8810 variety Single Seed Descendent (SSD) selection 

(figure 4). In particular, after two SSD cycles (F2 and F3), in F4 generation we selected 100 

individuals to both genotype by GBS approach and phenotype under heat stress conditions (as 

described in chapter II). The genotypic and phenotypic data obtained in this step were used as training 

set to build up and cross-validate a statistical model (MODEL CONTRUCTION), able to predict the 

performance of not phenotyped F5 lines (MODEL APPLICATION). In last step, the F6 offspring 

deriving from F5 generation was phenotyped under heat stress condition to validate the prediction of 

the model (MODEL VALIDATION). The two predicted traits in this experiment were YP and SSC, 

two critical traits in heat stress condition as widely discussed before (chapter II). 
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Figure 4. GS experiment set up 

 

3.3.2.2 Model construction 

In this section, the effect of Training Set (TRS) size and the selection of marker subsets used for GS 

model training was investigated. For each trait, five marker subsets were obtained filtering SNPs for 

MAF>0.05 and PEMV at following 5 levels: 90, 85, 80, 75, 70 %. Since the number of individuals 

of TRN was different for the two traits analyzed (90 for YP and 100 for SSC) these subsets included 

different number of SNPs (table 3).  

 

 

 

 

 

 

 

 

 

 

 

Table 3. SNP number obtained after filtering by MAF and PEMV for SSC and YP respectively 

 

 

Starting with the maximum TRS set of 80 and 70 sampled genotypes for SSC and YP respectively, 

we randomly removed 5 genotypes, reducing the TRS samples set and evaluating the model quality 

for each subset. In particular, 5 TRS subsets were created for each trait: 80, 75, 70, 65, 60 (out of 100) 

for SSC data and 75, 70, 65, 60, 55 (out of 90) for YP. Subsequently, 25 RR-blup models, varying 

PEMV 
Number of markers 

SSC YP 

90 14.286 14.210 

85         16.625 16.224 

80 18.806 18.637 

75 21.019 20.555 

70 23.471 23.228 
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the combination of two parameters, were tested in order to assess the effect of marker subsets and 

TRS sizes on prediction accuracy, with 1000 cycles of permutation for model (table 4). The prediction 

accuracy both for YP and SSC resulted different in each combination tested. As expected, accuracy 

of the GS models generally decreased when fewer genotypes were used in TRS. Moreover, the results 

revealed that predictive ability did steadily increase up until the maximum PEMV in the cross 

validation strategy for both traits and, indeed, it was maximum for the highest PEMV (90%). The 

mean predictive ability across 1000 replicates over the folds was used as the elimination criterion. At 

the end, the best prediction was obtained by the model deriving from the combination: MAF>0.05, 

PEMV (90%) and TRS\TST composition in 80\20 ratio for SSC and MAF>0.05, PEMV (90%) and 

TRS\TST composition in 75\15 ratio for YP (figure 5).  

 

 

 

 

 

 

 

 

 

a)                                                                         b) 

TRS 
size 

Prediction accuracies of TST GEBVs under 
different proportion of PEMV 

90% 85% 80% 75% 70% 

80 0.715 0.708 0.705 0.705 0.711 

75 0.711 0.71 0.708 0.71 0.709 

70 0.71 0.709 0.708 0.711 0.701 

65 0.704 0.707 0.704 0.707 0.707 

60 0.705 0.705 0.705 0.704 0.702 

   

Table 4. Prediction accuracies of TST GEBVs under different proportion of PEMVs. a) Mean value of 

prediction accuracy obtained for SSC after 1000 cycles of iteration. b) Mean value of prediction 

accuracy obtained for YP after 1000 cycle of iteration. 
 

 

             

 

 

 

TRS 
size 

Prediction accuracies of TST GEBVs under 
different proportion of PEMV 

90% 85% 80% 75% 70% 

75 0.729 0.723 0.723 0.723 0.72 

70 0.723 0.718 0.723 0.723 0.724 

65 0.726 0.721 0.719 0.712 0.722 

60 0.716 0.722 0.719 0.72 0.72 

55 0.716 0.71 0.714 0.719 0.712 
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             a) 

b)  

 

Figure 5. Prediction accuracies of TST GEBVs under different proportion of PEMVs. The red arrow 

indicates the best combination for YP (5a) and SSC (5b). 

 

This result highlights that using higher PEMV values the accuracy of GS model based on larger TRS 

improves. The marker subsets for the optimized GS model turned out to be of 14.286 and 14.210 

SNPs and that represents also the smallest subsets in terms of marker density (table 3). This is an 

important outcome of our investigation since the use of fewer markers result in significant cost 

reductions for genotyping, but also impact the extent of LD picked up by the prediction models.  

Figure 6 and 7 showed the correlation values between GEBVs and real data for each of the 1000 

iteration cycles. Extremely accurate models were obtained for YP (0.729) and SSC (0.715) using 

parameters optimized in our test. This means that we found a good correspondence between the 

GEBVs and real values in the TST as shown in figure 8 for YP trait.  
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Figure 6. Plot between correlation values and 1000 cycles of iteration for YP 

 

 

 

Figure 7. Plot between correlation values and 1000 cycles of iteration for SSC 

 

YP accuracy 

SSC accuracy 
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Figure 8. Comparison between real and predicted value (YP and GEBV) in a TST cross validation. 

 

 

 

 

3.3.2.3 Model application 

The model constructed and cross-validated in JAGF4 population was applied in next selection round 

to estimate GEBVs of F5 progeny population (JAGF5). In particular, 54 JAGF5 individuals were 

only genotyped by GBS producing a total of 176.596 SNPs. Based on the high-quality SNPs subset 

selected for model construction in JAGF4, 12.566 shared SNPs were detected among the two dataset. 

However, 10.648 SNPs were retrieved and used in the Model application since 1.908 SNP showed 

inconsistencies in the two datasets and therefore, have been eliminated. The GEBVs of JAGF5 

individuals (not phenotyped) were calculated by using the GS models trained on the JAGF4 

individuals. In particular, the JAGF4 individuals were used as TRS to calculate the GEBVs of the 54 

JAGF5 genotypes used as TST. Table 5 summarizes the GEBV predictions obtained in this selection 

round.  High variability both for YP and SSC was observed. Indeed, the GEBVs ranged from a 

minimum value of 4.1 to a maximum value of 13 with an average of 8.4 for YP (table 5a) and from 

a minimum value of 3.6 to a maximum of 5.4 with an average of 4.52 for SSC (table 5b). To select 

the best and worst predicted performers the mean value of all F5 genotypes was used as threshold 

(table 5). Individuals with GEBVs higher than average value were considered the best predicted 

performers and individuals with lower, the worst. Figure 9 displays GEBVs of JAGF5 individuals for 
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the two traits. For YP the 30 best predicted performers, with higher GEBV than 8.4, are colored in 

blu (figure 9a) whereas for SSC, the 25 best genotypes (with GEBV higher than 4.52) are colored in 

green (figure 9b). 

 

                      

 

Table 5. The mean, minimum and maximum values of predicted GEBVs in F5 population for YP (a) and SSC 
(b) were reported. The % of the best and worst predicted values were also reported. 
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a)

 

        b) 

 

Figure 9. GEBVs prediction for YP and SSC. a) the best predicted performers for yield are displayed in 

blu. b) the best predicted performers for SCC are displayed in green. Red lines indicate the threshold 

values. 

 

3.3.2.4 Model validation 

In the last step we investigated whether the GS models efficiently predicted phenotypes in the next 

progeny populations. For this purpose, the F6 offspring deriving from F5 generation was phenotyped 

under heat stress condition to validate the prediction of the model at phenotypic level for both 

analyzed traits (YP and SSC). The coefficients of correlation between the GEBVs calculated on F5 

genomic data and the phenotypic values obtained in F6 offspring were comparable to values obtained 

in F4 model build up (0.729 and 0.715), although it turned out to be slighter lower (0.67 and 0.7 for 

YP and SSC respectively). The reduction (approx. 4.000 SNPs) of the marker dataset used for the F4 

model construction during the F5 model application stage may be affected the prediction precision. 

Furthermore, the GS model for SSC showed higher predictability than YP probably due to use of the 

high-precision digital refractometer. However, the results indicated that our GS model was correctly 



 
 

62 

cross-validate by experimental trials, confirming that the calibrated GS models for YP and SSC set 

up in this study can efficiently predict phenotypes. 

Subsequently, we investigated in more detail the predicted data in order to identify the most 

interesting lines. Table 6 reported the mean, the minimum and maximum values obtained in F6 

population and the percentage of the best and worst performers using the mean value as threshold.  

24 individuals had higher yield value than 2.29 (mean value) and therefore represents the best 

performers in terms of YP, whereas for SSC, 32 genotypes have higher GEBV than 4.54 (mean value) 

and represent the best. Out of 54 F6 individuals, 41 resulted correctly predicted (74%) for YP and 42 

individuals for SSC (76%) (table 6). The performance of best predicted JAGF5 individuals (for the 

two analyzed traits) was confirmed by the JAGF6 phenotypic validation (table 7).  

a)                                                                          b) 

                   

Table 6. The mean, minimum and maximum values of F6 individuals for YP (a) and SSC (b). The 

percentage of the best and worst performers were also reported. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 7. The best predicted performers (for the two analyzed traits) in JAGF5 population. For YP, 

individuals with GEBVs higher than 8.4 (the mean value in JAGF5) and higher than 2.29 (the mean 

Best Yiel production SSC 

Lines GEBV JAGF5  YP JAGF6(Kg) GEBV JAGF5  SSC JAGF6 

S2 11.8 6 4.51 4.56 

S22 9.6 4.6 5.4 5.1 

S34 10.3 2.5 4.69 4.6 

S67 10 3.1 5.18 5.2 

S77 11 2.9 4.86 5.3 

S118 10.27 2.4 4.7 4.7 

S153 11 4.9 4.5 4.6 

S159 11.7 3.1 5.3 5.3 

S194 10 2.9 5.05 5 
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value in JAGF6) were reported. For SSC, individuals with GEBVs higher than 4.52 (the mean value in 

JAGF5) and 4.54 (the mean value in JAGF6) were reported. 

 

3.3.3 Mapping of quantitative trait loci associated to heat stress tolerance  

A subset of SNPs with higher effect in the rrBLUP model from the datasets of 14.286 and 14.210 

SNP was selected to identify specific chromosomic regions associated with the two analyzed traits of 

interest (YP and SSC) under heat stress condition. In particular, SNP with effect higher than |2| were 

selected obtaining a total of 2.486 and 2.034 for YP and SSC respectively, covering more than 95% 

of genome in both cases. Figure 10 reports a summary plot of the phenotypic and genotypic data for 

two traits. 

 

a) 
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b) 

Fig. 

Figure 10. Summary plot of the phenotypic and genotypic data including the pattern of missing genotype 

data (black pixels indicate missing data) and histograms of the two phenotypes distribution for YP (a) 

and SSC (b). 

 

Combination of genotyping and phenotyping data of JAGF4 population were analyzed by composite 

interval mapping (CIM), revealing QTLs for the two investigated traits. In particular, to declare the 

significant QTLs, a permutation test was performed for each phenotype. The value of the LOD Score 

threshold for the two traits was 3.00. In this way, 5 significant QTLs were detected for YP, on 

chromosome 5, 6, 8, 9 and 11 (qYP1, qYP2, qYP3, qYP4, qYP4) explaining the 51, 64, 53, 51, 53 % 

of the phenotypic variance respectively (Xiao et al., 2011). Whereas only 1 significant QTL was 

detected for SSC on chr 6 (qSSC1) explaining 48% of the phenotypic variance. The results of the 

QTL LOD scores values were displayed in figure 11. The highest LOD Scores for the two analyzed 

traits were found on the same chromosome (chr6) and it was 19.99 for qYP2 at V81972 marker and 

12.16 for qSSC1 at V82503 marker.  
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                    a)                                                                    b) 

                                                             

Figure 11. LOD scores values representation for each chromosomes for YP (a) and 

SSC(b).  The arrows indicated the maximum LOD scores calculated 

 

 

Interestingly, QTLs for the two different traits mapped approximately to the same genomic region on 

this chromosome. In particular, the qYP2 starts at 355.596 bp and ends at 28.961.753 bp whereas 

qSSC1 starts at 19.772.865 bp and ends at 30.508.757 bp indicating an overlapping co-localization 

of  9.188.888 bp (figure 12).  

 

 

LOD: 19.99 LOD: 12.16 
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Figure 12. SNP distribution on chr 6. In red, the overlapped region between qYP2 and qSSC1 has been 

highlighted 

 

When the YP and SSC phenotypes were plotted against the genotype at V81972 and V82503 markers, 

in both instances the heterozygous revealed an intermediate state in terms of YP and SSC but opposite 

homozygous state was observed. Indeed, for YP, genotypes which are homozygous for the A alleles 

(dominant allele) showed higher yield while the genotypes homozygous for the B alleles (recessive 

allele) showed lower yield values. Whereas, for SSC we found a higher SSC degree in homozygous 

genotypes for the B alleles and lower SSC in homozygous genotypes for the A alleles (figure 13).  

These results highlight that the co-localization for the two traits on chr 6 perfectly mirrored the 

negative correlations found between the YP and SCC phenotypic traits (chapter II) confirming they 

have a genetic basis.   
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Figure 13. a) YP phenotype is plotted against the genotype at markers V81972 on chr 6. b) SSC 

phenotype is plotted against the genotype at marker V82503 on chr 6. 
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To better investigate the response of plants to heat stress, QTL regions associated with traits of interest 

were scanned to identify genes putatively involved in the heat stress response. 

Five QTLs were identified for the YP under heat stress condition around markers V62848 on chr 5, 

V81972 on chr 6, V88039 on chr 8, V89258 on chr 9 and V91295 on chr 11. To estimate the location 

of QTLs an interval characterized by 3 indexes was delimitated: the first and last indicated the ends 

of the intervals; the middle index corresponds to the location with higher LOD score value. All 

significant markers with higher LOD score values located on the 5 QTL intervals were plotted again 

trait of interest (figure 14). 

 

 

a) 

                                                                      

b) 
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c) 

 

d)                                                                                        e) 

                                      

Figure 14. Plot of all significant markers with higher LOD score values identified as indexes of QTL in 

5 chromosome regions again the trait of interest. a) Plot of V62848 and V62862 markers (chr 5); b) plot 

of V66858, V81972 and V84318 markers (chr 6); c) plot of V86676 and V88039 markers (chr 8); d) plot 

of V89258 marker (chr 9); plot of V91295 marker (chr11). 

 

Interestingly, all the three indexes defining the QTL interval on chr 6 correspond to three markers 

given as input. At this point, in order to identify genes putatively involved in YP under heat stress, a 

variant annotation was performed to associate each variant included in the identified QTL to the 

annotated genes and to predict their effect on the protein function. However, we excluded from this 

analysis all SNPs located in intergenic regions, including all the SNPs found on chr 5 and 9.  Table 8 

reported the SNP ID, the gene position and gene annotation. The SNPs previously selected as indexes 

of QTLs intervals are highlighted in red being those with a higher LOD score and putatively more 

involved in the plant’s response to stress. In this way, a SNP located on chr 8, in the intronic region 

of a stress responsive alpha-beta barrel domain was identified. Interestingly, among all the identified 

SNPs in the QTL region on chr 6, those that delimited the ends of interval (V66858 and V84318) 

were located on upstream region of the R2R3 trascription factor myb 59 and the SKP1-like protein 

respectively. 
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Table 8. SNP variants annotation. The chromosome, SNP ID, the affected region and gene annotation 

were reported. SNPs selected as indexes of QTLs intervals were highlighted in red 
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Regarding the SSC only one significant QTL was detected. A number of SNPs located on genes 

mapping on chromosome 6 QTL interval is reported in table 9.  

 

 
 
Table 9. SNP variants annotation. The chromosome, SNP ID, the affected region and gene annotation 

were reported. 
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3.4 DISCUSSION 

Tomato crop is particularly sensitive to heat stress, a major abiotic factor limiting the crop 

productivity. By the end of the 21st century (2081–2100), global temperatures are supposed to 

increase on average of 1 to 3.7 ◦C compared to their levels in 1986–2005 (Pachauri e al., 2014). 

Therefore, the genetic architecture of some traits associated with heat tolerance (e.g., pollen viability, 

inflorescence number, fruit set) has been dissected and associated quantitative trait loci (QTL) 

mapped (Xu et al., 2017; Driedonks et al., 2018). However, despite the efforts, no major breakthrough 

has been achieved for imparting heat resistance in tomato. 

In recent years, the rapid advances in genotyping and its decreasing cost offer widespread applications 

in breeding programs. In this study, high-throughput genotyping by the means of GBS approach, was 

performed to implement a new breeding selection scheme following a “Genomic selection” approach 

improving genetic gain for heat tolerance in tomato. The genetic architecture of heat tolerant traits 

was also investigated by QTL analysis followed by a gene variant characterization to identify 

potential candidates involved in heat tolerance. 

 

3.4.1 GS model construction and validation 

Our GS models, based on the genotyping and phenotyping of a F4 segregating population under heat 

stress, were able to predict the performance of not phenotyped F5 individuals further validated in F6 

offspring. Indeed, although tomato pioneer GS studies have been conducted for yield-related traits 

(Duangjit et al., 2016; Yamamoto et al., 2016) also improving soluble solid content and total fruit 

weight (Yamamoto et al., 2017), there are no evidence on the analysis of these traits in heat stress 

conditions. Recent studies have demonstrated that the establishment of GS experiment optimal 

parameters is crucial for a reliable prediction (Robertsen et al., 2019). Selection response mainly 

depends on the TRN size, relatedness of the TRS and TST, marker density, precision of the 

phenotyping. In our GS experiment the optimal TRN was characterized by 90 and 100 (for YP and 

SSC respectively) F4 individuals.  

Several works in literature explored the effect of the TRN size (Goddard et al., 2009; Sarinelli et al., 

2019) showing that highest levels of accuracy have been reached with large TRNs (Meuwissen et al. 

2013; Sarinelli et al., 2019). However, the optimal TRN size seems to be highly influenced by the 

relatedness of the TRS and TST (Schoop et al., 2017; Cericola et al., 2017; Edwards et al., 2019). In 

our work, also with relatively small populations, good predictions were obtained. The accuracy of 

our optimized GS models for the two traits of interest was 0.729 for YP and 0.715 for SSC. Our 

accuracies were higher than values (YP=0.3 and SSC=0.6) obtained, with a comparable TRN size (96 

individuals), by Yamamoto et al. 2017. However, in our experiment TRNs were composed by full-
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sib individuals related to TRS. The accuracy of a GS model when the TRS is fully related to the TST 

is normally between 0.4 and 0.7 (Bassi et al., 2016). TRS unrelated or distantly related to the TST, 

tends to give less accurate prediction (between 0.2 and 0.4). This is consistent with data obtained by 

Yamamoto et al. (2017) that employed a TRN population composed by 96 tomato unrelated varieties.  

Indeed, when the TRS and TST are unrelated, marker effects could be inconsistent due to the presence 

of different alleles, allele frequencies, and linkage phases. 

The goal of GS model construction is to capture as much of the genetic variation as possible, and it 

was widely reported that a higher marker density will improve prediction accuracy (Zhang et al., 

2019). Rapid advances in sequencing technologies are providing highly informative markers at very 

low cost, making sequence-based genotyping a very attractive approach to rapidly characterize 

genomes and populations. In this regard, Genotyping-by-sequencing (GBS) used in this study, have 

generated high-density markers efficiently and inexpensively, although with moderate rates of 

missing data. In our work a study of the effects of Training Set (TRS) size and GBS marker subsets 

filtering (by MAF and PEMV) on the model accuracy was performed. Interestingly, the most accurate 

prediction was obtained with the smallest marker subset in terms of marker density. This is an 

important point to take in account, since the use of fewer markers would result in significant cost 

reductions for genotyping, but would also impact the extent of LD that is picked up by the prediction 

models.  

In previous studies, Yamamoto and collaborators (2017) used a set of 96 big-fruited F1 tomato 

varieties to develop GS models, and the segregating populations obtained from crosses were used to 

validate the models. Consequently, the GS models were used to predict parental combinations 

generating superior hybrids based on the values of approximatively 20 expected progeny phenotypes 

for soluble solids content and total fruit weight. The phenotypic diversity of evaluated progenies was 

narrow and contrasting indications were obtained for future parental crossing combinations. In our 

work, GS was implemented in a Single Seed Descendent (SSD) scheme where each generation derive 

from the former, taking only one seed from each parent plant. This scheme takes advantage of the 

gain increase generated by shortening the cycle length and offering great benefits especially in 

situations where simultaneous selection for several characteristics with different heritability is 

required (Kanbar et al., 2011). In the classical SSD scheme, no selection is conducted until the last 

generation (generally F6-F7), so the phenotyping of a larger number of lines could be challenging. 

The integration of the GS approach in the SSD scheme resulted in reducing the number of auto-selfing 

generations shortening the last two. Because the prediction accuracy is generally higher when LD 

(linkage disequilibrium) is high, an increase of the breeding gains was expected, applying GS in the 

earliest heterozygous segregating generations (i.e., F2-F4). Therefore, F4 generation was used for 
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developing the GS model, and subsequently GS prediction to assist selection in the next generations. 

Genomic data accurately track the best performing plants along the generations and the approach 

successfully lead to the selection of individuals with the highest GEBV in F5 and F6. 

 In previous studies potential assessment of the GS in tomato breeding was performed based on cross-

validation using only training data (Duangjit et al., 2016; Yamamoto et al., 2016) or without cross-

validation (Liabeuf et al., 2018). Our model was validated in F6 generation, confirming that our 

approach is promising since the correlation value between the GEBVs of F5 predicted individuals 

and the real values of F6 phenotyped individuals is in agreement. Our study displayed that GS could 

reduce the expenditures required for tomato breeding. Although more studies are needed to test GS 

in actual breeding programs, our results highlight GS as a promising strategy for future tomato 

breeding. 

 

3.4.2 QTL analysis revealed candidate genes putatively involved in heat stress tolerance 

In order to characterize the F4 population previously characterized at phenotypic level (see chapter 

II) also at genotypic level, further analyses were performed on the genomic data obtained. We found 

a high density of SNPs on chromosomes 4, 5, 6 and 11. To better investigate the genomic relatedness 

of individuals based on whole genome SNP information and to detect specific meaningful SNP 

regions on these chromosomes, a circos plot analysis was performed. This analysis allowed us to 

discover two extremely interesting regions on chromosome 4 and chromosome 6 associated with 

traits of interest (YP and SSC). 

Subsequently, the information gathered by the GS model were further investigated in order to perform 

a QTL analysis based only on the more significant SNPs. Indeed, among all SNPs used for the model 

construction only those with higher SNP effect calculated by the model were used. In this way we 

used only the meaningful SNPs, drastically reducing the number of SNPs for the analysis. 

Conventional mapping allowed to identify several tomato QTLs associated with heat tolerance (Lin 

et al., 2006; Grilli et al., 2007; Xu et al., 2017; Driedonks et al., 2018; Wen et al., 2019) and these 

studies provided the basis for understanding the genetic architecture of heat tolerance traits. Our 

combined approach allowed to detected 5 significant QTLs for YP under heat stress, on chromosome 

5, 6, 8, 9 and 11 (qYP1, qYP2, qYP3, qYP4, qYP5) and 1 significant QTL for SSC on chromosome 

6 (qSSC1). Xu et al. (2017) and Driedonks et al. (2018) also detected a heat-tolerance QTL on 

chromosomes 11 related to pollen viability trait and a QTL on chromosome 8 related to inflorescences 

number. Besides, on chromosome 5, Wen et al. (2019) and Driedonks et al. (2018) found 2 QTLs 

related to a physiological traits and style protusion respectively and a QTL on chromosome 9 related 

to heat-tolerant anther length trait was reported from the former authors (Driedonks et al., 2018). 
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However, no heat-tolerance QTLs on chromosomes 6 were reported although our analysis revealed 

the highest LOD Scores for the two analyzed traits on this chromosome. Furthermore, our findings 

revealed that, the QTLs on chromosome 6 for the two analyzed traits mapped approximately to the 

same genomic region. This co-localization perfectly mirrored the negative correlation found between 

the phenotypic traits analyzed themselves (chapter II). Indeed, when the YP and SSC phenotypes 

were plotted against the genotypes, opposite homozygous states were observed. 

The heat-tolerance QTLs on chromosome 6 covered a large area with a large number of candidate 

genes. In order to identify genes putatively involved in YP and SSC under heat stress, a variant 

annotation was performed to associate each variant of identified QTL to the annotated genes and to 

predict their effect on the protein function using a strategy similar to the one applied by Driedonks et 

al. (2018) and Wen et al. (2019). Among all the identified SNPs in the QTL region for YP trait, those 

that delimited the ends of interval (V66858 and V84318) resulted quite interesting since they are 

located on upstream region of the R2R3 trascription factor myb 59 (SlMYB59) and the SKP1-like 

protein respectively. Although the MYB59 gene is not yet functionally characterized in tomato, an 

orthologous to MYB59 gene was found in Arabidopsis (AtMYB59) (https://solgenomics.net/). 

AtMYB59 is involved in the development of secondary cell walls and vasculature in A. thaliana 

stems (Oh et al., 2003), in jasmonate signalling (Hickman et al., 2017) and in the response to K 

deficiency (Nishida et al., 2017), as well as to regulate growth and the cell cycle in roots (Mu et al., 

2009). More recently, Du et al. and Fasani et al. (2019) highlighted the key role of AtMYB59 in 

multiple stress response since several genes involved in abiotic and biotic stress are modulated in the 

myb59 mutant already in control conditions. On the other hand, little is known about the skp1-like 

protein. A blast analysis allowed us to identify as orthologous of the identified skp1-like protein the 

ASK2 in Arabidopsis. The Arabidopsis genome contains 21 SKP1-like genes called ASK (for  

Arabidopsis SKP1-like), among which only ASK1 and ASK2 has been characterized in detail 

(Fuquan Liu, 2004). It has been demonstrated that ASK1 and ASK2 play vital roles in embryo-genesis 

and postembryonic development, since ask1ask2 double mutant showed substantial delay in 

embryogenesis and lethality in seedling growth. However, further analysis needed to confirm the role 

of these two proteins in tomato.  

The candidate genes detected in the present study can be functionally exploited by TILLING or 

CRISPR-Cas9 approaches. If the candidate genes will confirm to be involved in the heat-tolerance 

response it could be then transferred to cultivated tomatoes to improve performances under high 

temperatures. 
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CHAPTER IV 

 

EXPLORING SlDOF TRANSCRIPTION FACTORS 

FAMILY TO IDENTIFY POTENTIAL REGULATORS OF 

HEAT STRESS TOLERANCE IN TOMATO 

 

4.1 INTRODUCTION 

Tomato is a horticultural crop of major economic importance worldwide though the continuous 

manifestations of biotic and abiotic stresses during the different growth stages led severe yield 

reductions (Mittler, 2006; Prasad et al., 2011). In future, the temperate regions are expected to be 

heavily impacted by climate change (Cramer et al., 2018). In particular, in semiarid temperate regions, 

the co-occurrence of heat stress with drought can seriously limit tomato cultivation.  

Important advancements have been achieved in our understanding of transcriptional regulation, signal 

transduction, and gene expression in plant responses to abiotic stresses (Zhu et al., 2010; Zafar et al., 

2019). Indeed, the identification of regulatory genes involved in the abiotic stress tolerance will 

provide new molecular targets to implement breeding programs. Transcription factors (TFs) and co-

transcriptional regulators acting in various signaling cascades can adjust the molecular response to 

environmental cue. Various TF members belonging to the MYB, WRKY, NAC, DOF, AREB/ABF 

(ABA response-element binding factor), GBFs (G-box binding factors), and AP2/ERF families 

(Bostock et al., 2014) have been characterized for their involvement in abiotic stress response (table 

1).  In rice, for example, overexpression of a NAC encoding gene, SNAC1, promotes yield increasing 

under drought stress condition (Hu et al., 2006). Similarly, functional analysis of the PbeNAC1 in 

Pyrus betulifolia, revealed that this gene is involved in the regulation of cold and drought stress 

tolerance (Jin et al., 2017). Overexpression of OsMYB55, a rice MYB encoding gene in transgenic 

maize resulted in improved plant growth as well as decreased the negative effects of drought and high 

temperature (Casaretto et al., 2016). Wei et al. (2017) demonstrated that CiMYB3 and CiMYB5 

cloned from Cichorium intybus were involved in various abiotic stresses response. WRKY6 acts as a 

negative regulator in both transgenic Arabidopsis and Cotton during drought and salt stress (Li et al., 
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2019). SlWRKY39 confer both drought and salt tolerance in tomato by activating abiotic stress genes 

(Sun et al., 2015). More recently, Dof factors emerged as mayor stress response players since they 

are involved in several biotic and abiotic stress response (Corrales et al., 2014; Corrales et al., 2017; 

Ewas et al., 2017). 

 

 

 

 

Trascription 

factor Transformed species Stress tolerance Reference 

OsABF3 Triticum aestivum Drought, Salt Lu et al., 2009 

PtrABF Nicotiana nudicaulis Drought, osmosis Huang et al., 2010 

GmWRKY54 Glicine max Salt, drought Wei et al 2019 

GmWRKY27 Glicine max Drought, salt Wang et al., 2015 

AtCBF3(AP2/ERF) Oryza sativa Drought, salt, cold Oh et al 2005 

AtNAC042 Arabidopsis thaliana Drought, heat Shahnejat et al 2012 

SNAC1 Oryza sativa 
Increased yield under 

drought stress 
Hu et al., 2006 

PbeNAC1 Pyrus betulifolia Cold, drought Jin et al.,2017 

AtDREB2C Arabidopsis thaliana Salt, cold Lee et al, 2010 

OsDREB2B Arabidopsis thaliana Drought, heat Chen et al, 2008 

OsMYB4 Arabidopsis thaliana, 

Solanum lycopersicum 
Drought, cold Vannini et al 2007.Pasquali et 

al., 2008. Agarwal and Jha 2010 

OsMYB55 Zea Mais Heat, drought Casaretto et al., 2016 

CiMYB3, CiMYB5  Cichorium intybus  Abiotic stress response Wei et al. (2017)  

GhWRKY6 
Arabidopsis thaliana, 

Cotton 
Drought, Salt Li et al., 2019 

SlWRKY39 Solanum lycopersicum Drought, Salt Sun et al., 2015 

CDF3 (Dof) Arabidopsis thaliana Drought, Cold Corrales et al., 2017 

SlCDF1, SlCDF3 Solanum lycopersicum Drought, Salt Corrales et al., 2014 

SlTDDF1   Solanum lycopersicum Drought, Salt Ewas et al., 2017 

 

Table 1. Transcription factors involved in regulating plants in response to multiple abiotic stresses.  

 

The Dof (DNA-binding with one finger) proteins constitute a plant-specific family of TFs harboring 

a DNA-binding domain, which forms a single zinc-finger (Noguero et al., 2013). These proteins are 

characterized by an highly conserved DNA-binding domain at the N-terminal composed of 52 amino 

acid residues structured as a Cys2/Cys2 (C2/C2) zinc finger that recognizes a cis-regulatory element 

containing the common core sequence 5′-(T/A)AAAG-3′ (Yanagisawa, 2004). However, these 

proteins also contain a more variable C-terminal transcriptional regulation domain containing diverse 
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amino acid sequences (Yanagisawa, 2001; Gupta et al., 2015). The N- and C-terminal regions of the 

Dof proteins contribute to their bi-functional roles in DNA binding and protein-protein interactions 

to regulate the expression levels of the target (Gupta et al., 2015). In addition to the highly conserved 

Dof domain, up to 25 conserved domains have been identified in this gene family. These additional 

domains result in a high divergence in the structure of the genes between the different groups or 

subgroups (Cai et al., 2013). 

The Dof gene family size widely vary in the genomes of plant species. It ranges from 9 genes in 

Physcomitrella patens to 54 Dof genes in maize (Gupta et al., 2015). The first identified Dof gene, 

ZmDof1 was found to play a role in light-regulated gene expression and it affects light response and 

nitrogen assimilation (Yanagisawa and Izui, 1993; Yanagisawa and Sheen, 1998).  Subsequently, a 

large number of Dof genes were reported to be involved in a variety of plant-specific biological 

processes, such as seed germination (Santopolo et al., 2015), pollen development (Peng et al., 2017), 

endosperm development  (Wu  et  al.,  2019),  fruit  ripening  (Feng  et  al.,  2016), flowering time 

control (Wu et al., 2017), plant architecture (Wu et al., 2015), carbon and nitrogen metabolism (Santos 

et al., 2012), and responses to plant hormones (Rymen et al., 2017; Lorrai et al., 2018; Qin et al., 

2019), as well as various abiotic and biotic stress responses (Su et al., 2017; Zang et al., 2017). In this 

regard, for example, overexpression of Arabidopsis CDF3 showed its involvement in both flowering 

time control and abiotic stress tolerance (Corrales et al., 2017).  In tomato, the overexpression of 

TDDF1, a Dof gene inducing early flowering displayed higher resistance to drought, salt, and late 

blight caused by Phytophthora infestans (Ewas et al., 2017).  

In rice, overexpression of OsDof15 reduced the sensitivity of roots to salt stress via restricting 

ethylene biosynthesis, suggesting that OsDof15-mediated ethylene biosynthesis plays a role in the 

inhibition of primary root elongation by salt stress (Qin et al., 2019). These findings demonstrate that 

the Dof proteins are playing important roles in the plant growth and development, but also in several 

biotic and abiotic stress response.  

In tomato, 34 Dof proteins, classified in 4 classes and distributed in 11 chromosomes have been 

identified (Cai et al., 2013, table 2). However, despite the importance of this gene family during plant 

growth, only a small number of members have been functionally characterized in tomato. A group of 

five tomato Dof genes, homologous to Arabidopsis Cycling Dof Factors (CDFs) are reported to be 

mainly involved in the control of flowering time (Corrales et al., 2014). Among these, overexpression 

of the cycling Dof factor (CDF) TF designated as CDF3 resulted also in increased tomato biomass 

production and higher fruit yield under salt stress (Renau-Morata et al., 2017).  

In 2017, Ewas et al., have characterized the TDDF1 gene showing that this Dof was involved in 

circadian regulation and salt and drought stress resistance. More recently, Rojas Gracia et al. (2019) 
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have shown the role of SlDof10 gene in vascular tissue elongation specifically during reproductive 

development. Therefore, additional work is required to fully understand the role of Dof genes during 

tomato plant growth and development and in response to the abiotic stress. 

 

Table 2. Annotation of predicted SlDof genes in tomato.  Relative position of introns (▾) with respect 

to the Dof domain. AA, amino acids; pI, isoelectric point of the deduced polypeptide; Mw, molecular 

weight (by Cai et al., 2013). 

 

This species is both important as food crop than as model plant species that has been used 

extensively for studying gene functions. Its genetic features combined with readily available 

technologies (site specific cleveage enzymes, genome sequences, transformation methodology) 

makes tomato an ideal candidate for gene editing. Genome engineering techniques for dissecting out 

the molecular function of TFs have been dramatically improved by the genome editing technology. 

In particular, clustered regulatory interspaced short palindromic repeats “CRISPR”-Cas9 system 

resulted as the most effective system used in editing plant genomes (Cong et al., 2013). In the 
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CRISPR/Cas9 system, Cas9 functions as a Cas9-gRNA ribonucleoprotein complex and uses its DNA 

endonuclease activity to induce the cleavage of the genome, which is targeted by gRNA. Double-

strand breaks sometimes induce insertions and deletions at the target site, leading to frameshift 

mutations of genes. The simplicity of vector construction and the versatility of experiments design 

has dramatically increased the number of genome editing studies in plants including tomato (Klap et 

al., 2017; Swinnen et al., 2020). 

In this work, with the aim to identify regulatory tomato SlDof genes involved in the abiotic stress 

tolerance, a genome scan for Dof protein domains and a phylogenetic analysis of this gene family 

including Arabidopsis members was performed. Among these, the Dof factor STOMATAL 

CARPENTER 1 (SCAP1/Dof5.7) resulted of interest since it regulates essential processes of stomatal 

guard cell (GC) maturation and functions as a key transcription factor regulating the final stages of 

guard cell differentiation (figure 1). SCAP1-mutants displayed altered levels of transcripts of multiple 

genes directly involved in stomatal functioning and morphogenesis and furthermore are defective in 

some mechanical properties of the GC cell wall (Negi et al., 2013; Castorina et al., 2016). These 

findings highlight the key role of SCAP1/Dof5.7 in abiotic stress response. Once the orthologous of 

SCAP1 has been identified in tomato, targets suitable for a genome editing approach were designed 

in order to functionally characterize this Dof factor. In addition, a CRISPR/Cas9 experiment was 

carried out using the Golden Braid modular system. 
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Figure 1. Physiological functions of the Arabidopsis Dof transcription factors. (by Yanagisawa et al., 

2015). 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Annotation of DOF-encoding genes  

To identify DOF encoding genes, we scanned the Solanum lycopersicum (SL3.0) proteome with 

Hidden Markov Model (HMM) of zf-Dof (Pfam: PF02701) using HMMER v3.0 with default 

parameters (Finn et al., 2011). The seed sequence of the zf-Dof domain was retrieved from Pfam 

v31.0 (http://pfam.xfam.org). The protein domain architecture of HMMER outputs was annotated 

using IntetProScan v5 (Jones et al., 2014).  

 

4.2.2 Phylogenetic analysis of DOF-encoding genes 

For comparative propose, the 34 Solanum lycopersicum full-length protein sequences identified and 

36 Arabidopsis thaliana Dof proteins obtained from the TAIR database 

(https://www.arabidopsis.org) were aligned with ClustalW (Larkin et al., 2007), using default setting. 

Evolutionary analyses were conducted using MEGA7 (Kumar and Tamura, 2015). The phylogenetic 

relationships of Dof-encoding genes were inferred using the maximum likelihood method based on 

the Jones et al. (1992) mode. Model with the lowest BIC (Bayesian Information Criterion) score was 

considered to describe the substitution pattern. The bootstrap consensus tree inferred from 100 

replicates was taken to represent the evolutionary history of the sequences analysed. The trees were 

drawn to scale, with branch lengths measured in the number of substitutions per site. Finally, to reroot 

the phylogenetic trees, Triticum aestivum DOF4 (accession number FJ687390) was used.  

 

4.2.3 Targets selection and vector construction  

4.2.3.1 gRNA target sequences design 

Benchling was used for the gRNAs design. Parameters for identification of possible off-targets were: 

less than five mismatches (L0 = 4) or less than four mismatches (L1 = 3), if one mismatch is found 

in seed sequence, gRNA with PAM ‘NGG and start with ‘G’, on-target score and off-target score 

>45%. Once all possible gRNA sequences in target gene were found, the protein sequences of the 

top-ranked targets (https://solgenomics.net) was loaded in prosite (https://prosite.expasy.org/) to 

identify the functional domain (Zinc-finger-DOF-type). Only the gRNAs able to target the conserved 

functional domain were chosen. In the end, to validate the selected gRNAs, Cas-OFFinder tool 

(http://www.rgenome.net/cas-offinder/) was used to search throughout the entire genome of interest 

for possible off-target sequences that differ by up to 2 nucleotides from the on-target sequences. 
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Parameters used were: maximum number of mismatches: 3; off-target sites with 2 bp deletions or 

insertions (DNA/RNA bulges). 

 

4.2.3.2 Strains and Growth Conditions 

Escherichia coli DH5α was used for cloning the sequences and Agrobacterium tumefaciens strain 

LBA4404 was used for plant transformation experiments. Both strains were grown in Luria-Bertani 

medium under agitation (200 rpm) at 37°C and 28°C, respectively. Kanamycin (50 µg mL−1), 

ampicillin (100 µg mL−1) and spectinomycin (50 µg mL−1) were used for E. coli selection. 

Rifampicin, streptomycin, and kanamycin were also used for A. tumefaciens selection at 50 µg mL−1. 

5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside acid (40 μg mL−1) and isopropylthio-β-

galactoside (0.5 mM) were used on Luria-Bertani agar plates for the white/blue selection of clones. 

 

4.2.3.3 Restriction-Ligation Assembly Reactions 

Restriction-ligation reactions were set up as described elsewhere (Sarrion-Perdigones et al., 2011) 

using BsaI, BsmBI, as restriction enzymes (Thermo Fisher) and T4 Ligase (Thermo Fisher). Reactions 

were set up in 25 cycle digestion/ligation reactions (2 min at 37°C, 5 min at 16°C). One microliter of 

the reaction was transformed into E. coli DH5α electrocompetent cells, and positive clones were 

selected in solid medium. Plasmid DNA was extracted using the E.Z.N.A. Plasmid Mini Kit I (Omega 

Bio-Tek). Assemblies were confirmed by restriction analysis and sequencing. All plasmid digestions 

were compared with in silico predicted plasmid digestions on Benchling (https://benchling.com). 

4.2.3.4 GB segments construction 

The GoldenBraid 2.0 Kit, including the complete set of vectors required to perform GoldenBraid 

cloning was used (https://www.addgene.org/kits/orzaez-goldenbraid2/). All vectors used in this work 

have been designed using Golden Braid 3.0 system following the described assembly strategy 

(Sarrion-Perdigones et al., 2013; Sarrion-Perdigones et al., 2014; Vazquez-Vilar et al., 2015; 

Vazquez-Vilar et al., 2016). Sequences of GB-Parts are accessible at GB cloning website 

(https://gbcloning.upv.es/) using the GB database ID. 

 

4.2.3.5 gRNAs assembly in α-Level Plasmids (Multipartite Reaction)  

The optimal primer combinations for the gRNAs selected were analysed on Benchling. 

The 20nt sgRNA39 and sgRNA558 were assembled as follows:  sgRNA39_F, sgRNA39_R and 

sgRNA558_F, sgRNA558_R (supplementary table 2), were resuspended in water to final 

concentrations of 1 µM and incubated at room temperature for 30 min.  The BsaI restriction–ligation 
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reactions were set up in 10 µl with 0.6 µl of primers mix, 75 ng of GB1001 (U626 promoter), 75 ng 

of GB0645 (scaffold RNA), 3u BsaI, 3u of T4 ligase, 1 µl of ligase buffer and 75 ng of pDGB3_alfa1 

destination vector for sgRNA39 and pDGB3_alfa2 for sgRNA558.  After 25 cycles × (37 °C 2 min, 

16 °C 5 min) one microliter of the reaction was transformed into E.coli electrocompetent cells and 

the number of white colonies growing on agar plates counted. All gRNA constructs were validated 

by RE-analysis, analyzed by sequencing and confirmed correct. Plasmid digestions were compared 

with in silico predicted plasmid digestions on Benchling. 

 

4.2.3.6 Multigene Assembly in Ω Level Plasmids (Binary Reaction) 

GB parts assembled in α-level plasmids were combined in Ω-level plasmids. The assembled reaction 

contained 75 ng of the Ω-level destination vectors (pDGB3_omega1, pDGB3_omega2), 75 ng of the 

TUs to be assembled, 3u BsmBI and 3u T4 DNA ligase in a final volume of 10 µl. After 25 cycles × 

(37 °C 2 min, 16 °C 5 min), one microliter of the reaction was transformed into E.coli 

electrocompetent cells and the number of white colonies growing on agar plates counted. All 

constructs were validated by RE-analysis and sequencing. Plasmid digestions were compared with in 

silico predicted plasmid digestions. 

 

4.2.3.7 Multigene Assembly in α-Level Plasmids (Binary Reaction) 

In the end, composite parts GB assembled in Ω-level plasmids were combined in α-level plasmids in 

order to obtain the final constructs. The assembled reaction contained 75 ng of the α-destination 

vector, 75 ng of the TUs to be assembled, 3u BsaI, and 3u T4 Ligase in a final volume of 10 μL.  After 

25 cycles × (37 °C 2 min, 16 °C 5 min), one microliter of the reaction was transformed into E.coli 

electrocompetent cells and the number of white colonies growing on agar plates counted. All 

constructs were validated by RE-analysis and sequencing. Plasmid digestions were compared with in 

silico predicted plasmid digestions. 

 

4.2.4 Plant Material and Growth Conditions 

Seeds of Solanum lycopersicum (cv Red setter) were surface sterilized with 70% (v/v) ethanol for 

1 min and then in 2% (v/v) sodium hypochlorite solution for 10 min, thoroughly washed, stratified 

for 48 h at 4 °C in the dark and sown on Murashige & Skoog solid medium pH 5.8 containing 30 g 

l−1 sucrose and 9 g l−1 agar. The plants were grown at 23 °C, under long-day photoperiod (16 h light, 

8 h dark) in presence of cool white fluorescent light (110 μmol m−2 s−1).  
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4.2.5 Agrobacterium tumefaciens-mediated Transformation 

Multigene constructs were transferred into Agrobacterium tumefaciens adding 15 ng of plasmids to 

50 μL of A.tumefaciens  electrocompetent cells and 500 μL of SOC medium Reactions were incubated 

in a 15 mL tube at 28 °C for 2 h with agitation.  Different amount of reaction (50, 100, 200 and 

500μL) were spread in LB plates containing kanamycin, streptinomycin and rifampicin and then 

incubate for 48 h in a 28 °C growing chamber. The positive colonies were validated by RE-analysis. 

A. tumefaciens-mediated transformations of the tomato (Solanum lycopersicum) cv Red Setter were 

performed according to Van Eck et al. (2006). In brief, 1 ml starter culture of the Agrobacterium was 

inoculated into 50 ml of LB media containing 50 mg /l rifampicin and 50 mg/l kanamycin and grown 

at 28°C. The culture was centrifuged at 5000 g for 10 min. The bacterial pellet was re-suspended in 

fresh MS media to an OD600 of 0.6 and used for the plant transformation procedure. Leaf discs were 

inoculated for 20 min in the A. tumefaciens suspension. Inoculated leaf discs were blotted dry on 

sterile filter paper, placed on cocultivation media (4.46 g MS salts with vitamins, 1 µM BAP, 30 g/l 

sucrose, pH 5.8) and incubated at 22°C for 2 days in the dark. After two days the leaf discs were 

transferred to regeneration media (4.46 g MS salts with vitamins, 1 µM BAP, 30 g/l sucrose, and 400 

mg/l cefotaxime, pH 5.8), and kept at 26°C in a 16 h/8 h day/night cycle under coolwhite fluorescent 

lights and sub-cultured to fresh media every two weeks. Shoots began to develop after 4 weeks. Each 

site of shoot development was considered a separate transgenic event. Ten putative transgenic shoots 

were transferred to rooting media (2.23 g/l MS salts with vitamins, 20 g/l sucrose, mg/l kanamycin 

and 400 mg/l cefotaxime, and pH 5.8) in small 100 ml culture vessels. 
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4.3 RESULTS AND DISCUSSIONS 

 

4.3.1 Phylogenetic analysis of the tomato Dof transcription factors 

The Dof multigene family showed to play important roles in many biological processes during 

development and in response to environmental stimulus (Peng et al., 2017). In recent years, several 

Dof family genome-wide surveys have been conducted. In physic nut (Jatropha curcas) has been 

identified 25 Dof genes (Wang et al., 2018; Zou and Zhang, 2019),  in peach (Prunus persica) 25 

members  (Chen et al., 2017), in eggplant (Solanum melongena) 29 (Wei et al., 2018), 33 in  pepper  

(Capsicum  annuum)  (Kang  et  al.,  2016; Wu  et  al.,  2016),  35 in potato (Solanum tuberosum) 

(Venkatesh & Park, 2015), 36 in cucumber (Cucumis sativus) (Wen et al., 2016), 45  in  cassava  

(Manihot  esculenta)  (Zou  et  al.,  2019),  45  in  pear  (Pyrus bretschneideri) (Liu et al., 2019), 46 

in rubber tree (Hevea brasiliensis) (Zou and Yang, 2019), 36 Watermelon (Zhou et al., 2019). The 

number of Dof members found in tomato (34) is in line with the number retrieved in other close 

species, suggesting that the Dof multigene families was conserved within botanical families. In this 

work, with the aim to identify regulatory Dof genes putatively involved in the abiotic stress response 

in tomato, a fine gene annotation and a phylogenetic analyses including tomato and Arabidopsis 

members were performed in order to identify orthologous Dof genes. In particular, for this analysis 

the full-length sequence of 34 Solanum lycopersicum and 36 Arabidopsis thaliana Dof- protein were 

employed. Results showed that each tomato Dof gene has at least one homologous gene in 

Arabidopsis (figure 2), suggesting that Dof genes might play similar roles in tomato and Arabidopsis. 

Similar results were obtained in other species such as watermelon, eggplant, potato (Zhou et al., 2019; 

Wei et al., 2018; Venkatesh & Park, 2015) confirming our findings. 
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Figure 2. Phylogenetic tree of Arabidopsis and tomato Dof genes. The full length amino acid sequences 

of AtDofs and SlDofs were aligned by ClustalW.  

 

In particular, 4 orthologous gene pairs between tomato and Arabidopsis were identified in our dataset. 

The number of the SlDofs and AtDofs pair-orthologous turns out to be lower, compared for example 

with the 10 eggplant - Arabidopsis orthologous base pairs (Wei et al., 2018) suggesting that a higher 

diversification occurred in the former species. 
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Among the 4 orthologous pairs, the SlDOF11 (Solyc11g090140.1) resulted the orthologous to the 

Dof factor STOMATAL CARPENTER 1 (SCAP1) in Arabidopsis. The structure of the SlDof11 is 

displayed in figure 3.  

 

                                                                        SlDof11 

 

  

 

Figure 3. Structure of the tomato SlDOF11 

 

4.3.2 SlDOF11 sequence investigation for designing suitable CRISPR/Cas9 sRNA guides 

As a proof of concept, we decided to use the gene encoding SlDof11 as target in a S.lycopersicum 

gene-editing experiment, given that the loss of function in Arabidopsis SCAP1 impair stomatal 

opening and closing and repress the expression of genes involved in stomatal movement and 

morphogenesis (i.e., cell wall architecture). This transcription factor regulates the final stages of guard 

cell differentiation, indicating that SCAP1 regulates essential processes of stomatal guard cell (GC) 

maturation and functions. Therefore, SlDof11 could exert a key role in abiotic stress response.  

A CRISPR/Cas9 based genome editing approach was conducted to characterize the SlDof11 function.   

The targeting of key traits related to abiotic stresses can be harnessed prolifically from CRISPR/Cas9 

system. For example, OsRR22 and OsNAC041 have been edit in rice to increase salinity tolerance 

(Zhang et al., 2019). In corn the expression of ARGOS8 have improved through CRISPR/Cas based 

genome editing approach to enhance yield under drought stress drought tolerance (Shi et al., 2017). 

The tomato MAPK3 was edit through CRISPR/Cas9 confirming to be involved in adaptive abiotic 

stress responses (Duan et al., 2016; Wang et al., 2017; Huang et al., 2018). Recently, two abiotic-

stress-responsive transcription facto r genes, encoding dehydration responsive element binding 

protein 2 (TaDREB2) and ethylene responsive factor 3 (TaERF3) were edit in wheat protoplasts by 

Kim et al. (2018). CRISPR/Cas9-induced knockdown of the tomato slagamous-like 6 (SlAGL6) gene 

responsible for the parthenocarpic phenotype, making tomato plants able to produce parthenocarpic 

fruits under heat stress (Klap et al., 2017).  

100bp 
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The gRNAs design to target the DNA sequence of SlDof11 gene was a very critical point for 

producing edit plants since the specificity of the gRNAs can greatly influence the success of the 

experiment. We found more of 25 putative sgRNA sequences in the target gene. Suitable gRNA 

targets were selected taking into account target and off-target sites. Moreover, only gRNAs that 

started with ‘G’ were selected since 'G' at the transcription start site increase its transcription 

efficiency when a U6 promoter is employed in genome editing experiments. Following these rules, 9 

putative gRNAs were selected for further analysis (table 3). 

 

Position  Strand Sequence PAM 
On-Target 

score 
Off-Target 

score 

39 + GGCGAAAGCCAGAGTTCTGG TGG 61.9 49.6 
42 + GAAAGCCAGAGTTCTGGTGG TGG 57.3 48.4 

112 - GTATTGGGAGAATCACATCT AGG 61.0 45.1 
558 + GCTTTACGCAACGTTCCAAT AGG 49.5 48.8 

1033 + GGATTTTTTTAACACGACAA CGG 61.8 88.1 
1126 + GCTTTAGTGTCGTTTCTCTC AGG 45.3 48.2 
1327 + GGATCAATGGGAGTTCATCA TGG 60.2 45.9 
1335 + GGGAGTTCATCATGGTACAA TGG 51.3 47.6 
1468 - GGTTTTGATCATCATGAAGA GGG 55.8 77.8 

Table 3. The 9 top-ranked gRNAs selected on Benchling. The position, strand, sequence, PAM and the 

percentage of On-Target and Off-Target score were reported. 

 

Guide RNAs targeting conserved functional domains can increase the likelihood that a mutation will 

compromise protein function (Shi et al., 2015; Giuliano et al., 2019). Therefore, only 4 target gRNAs 

located on the conserved Zinc-finger-Dof-type domain of SlDof11 protein sequence (gRNA in 

position 39, 42, 112 and 558) were further selected. In particular the gRNA39, gRNA42 and 

gRNA112 targeted Cas 9 to the exon 1 of the gene whereas the gRNA558 targeted the Cas9 to the 

exon 2. To better investigate the performance of such targets, we predicted the off-target sites with 

maximum mismactches of 2 basis and off-target sites with 2 bp deletions or insertions (i.e. DNA/RNA 

bulges).   

 The 2 gRNAs with lower off-target sites were: GGCGAAAGCCAGAGTTCTGG (sgRNA39) and 

GCTTTACGCAACGTTCCAAT (sgRNA558). The predicted off-target sites were reported in the 

supplementary table 1. These 2 gRNAs target the Cas9 to two different exons that encode functional 

protein domains (figure 4) enlarging the chance to ablate gene function than simply targeting a 5’exon 

(Shi et al., 2015, Giuliano et al., 2019). 
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Figure 4. The position of the 2 gRNAs selected were displayed. The 2 gRNAs (in blue) target the Cas9 

to two different exons (in grey) that encode functional protein domain also located on the two different 

exons (in red). 

 

4.3.3 CRISPR/Cas9-Based Genome Editing of the Transcription Factor SlDOF11  

Different editing strategies were checked to evaluate the effects of different mutations targeting the 

SlDOF11 gene. Single guide (sgRNA39 and sgRNA558) targeting unique regions and paired 

gRNA39 and gRNA558 constructs were tested. Indeed, although sgRNA design is based on a 

relatively simple 5′-N(20)-NGG-3′ targeting rule (Cong et al., 2013; Jinek et al., 2012; Mali et al., 

2013), the efficiency of different gRNAs could vary in the cell. Targeted genomic deletions by 

CRISPR/Cas9 have been observed in numerous studies. Short deletions of ~ 100 bp are frequently 

reported in plants (Brooks et al., 2014; Kapusi et al., 2017; Nekrasov et al., 2017; Ordon et al., 2017). 

Dual-targeting based on the paired use of gRNAs, was also effective in deleting larger fragments (10–

12 kb) as reported in rice and Arabidopsis (Durr et al., 2018; Wang et al., 2017) and even larger 

fragments of 170–245 kb were deleted by multiplex targeting in rice (Zhou et al., 2014). However, 

compared to point mutagenesis (effect of a single gRNA), genomic deletions (effect of paired gRNAs) 

consistently occurred at much lower rate even when two or more gRNAs of equal efficiencies were 

used (Minkenberg et al. 2017; Tian et al., 2017). 

Thanks to the modular design for GoldenBraid constructs (Sarrion-Perdigones et al., 2013; Vazquez-

Vilar et al., 2015; Vazquez-Vilar et al., 2016), we generated three final vectors with all needed 

transcriptional units (TUs). This modular system improved the versatility and combinatorial 

potentialty of technique. The TUs were combined in a binary vector following a double-loop iterative 

cloning strategy that allows the assembly of increasingly complex multigenic modules. The vectors 

containing the hCas9 CDS were placed under the control of optimal promoters for tomato species 

35S (GB0639). Similarly, the gRNA multiplexed transcriptional unit (TU) were placed under the 

control of the AtU6-26 promoter (GB1001). Specific resistance gene were also introduced into each 

vector for in vitro selection, as required by crop transformation protocols. Three final constructs, 

containing single or double guides, were obtained as shown in figure 5. The correct insertion of 
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constructs in A.tumefaciens was verified by PCR amplification with specific primers (see 

supplementary table 2) using an aliquot of bacterial culture transformed with the relative expression 

construct. All constructs were also validated by sequencing. 

 

  

 

Figure 5. Description of transcriptional units (arrows) assembled in the final vectors generated for plant 

transformation using the modular system GoldenBraid. 

  

The final GoldenBraid constructs were introduced into tomato plants as described in the materials 

and method section (4.2.4). In vitro selection of callus from tomato leaves allowed the regeneration 

of kanamycin resistance transgenic tomato lines only for the construct containing the dual-targeting 

by CRISPR/Cas9, based on the paired use of gRNAs (sgRNA39 and sgRNA558). For this construct, 

the PCR amplification confirmed the correct insertion in A.tumefaciens, (figure 6). At moment 

transformations experiments are ongoing and the CRISPR editing efficiency will be confirmed by the 

sequencing of targeted amplicons on primary transformant plants obtained.  
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a) 

  

 

b) 

 

 

c) 

 

Figure 6.  Key steps in the construct validation and plant transformation. a) PCR amplification using 

an aliquot of 4 bacterial cultures transformed with the relative expression construct. The nptII gene 

(kanamycin resistance determinant) was amplified (753 bp). b) Sanger sequencing chromatograms 

confirm the final construct. The sequence obtained using a reverse primer (RB-TDNA Rv-see 

supplementary table 2) was displayed. The red lines highlight the different portions related to the two 

gRNAs (sgRNA39 and sgRNA558). c) Different stages of Agrobacterium tumefaciens-mediated 

transformation are shown. 
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4.4 SUPPLEMENTARY 

a) 

Bulge Type Target Chromosome Position Direction Mismatches 
Bulge 
Size 

RNA crRNA: GGCGAAAGCCAGAGTTCTGGNGG chr1 78840016 + 2 2 
  DNA:   tGCGAAAGaCAGAGT--TGGAGG           

RNA crRNA: GGCGAAAGCCAGAGTTCTGGNGG chr1 78840016 + 2 2 
  DNA:   tGCGAAAGaCAGAGTT--GGAGG           

RNA crRNA: GGCGAAAGCCAGAGTTCTGGNGG chr10 55997973 - 2 1 
  DNA:   aG-GAAAGCCAGAtTTCTGGTGG           

 

 

b) 

Supplementary table 1. Possible off targets identified for sgRNA39(a) and sgRNA558 (b). 

 

Primer list 

NPTII_F: 5’ ACGTGCTATTCGGCTATGACTGGG 3’ 

NPTII_R: 5’TCAGAAGAACTCGTCAAGAAGGCG 3’ 
LB-TDNA_F: 5’ TGGCAGGATATATTGTGGTG 3’ 
RB-TDNA_R: 5’ TTACCCGCCAATATATCCTG 3’ 
DOF11_558_F: 5' ATTGCTTTACGCAACGTTCCAAT 3' 
DOF11_558_R: 5' AAACATTGGAACGTTGCGTAAAG 3’ 
DOF11_39_F: 5' ATTGGCGAAAGCCAGAGTTCTGG 3' 

DOF11_39_R: 5' AAACCCAGAACTCTGGCTTTCGC 3' 

Supplementary table 2. List of primers used in this study. 

 

 

 

 

 

 

 

 

 

Bulge Type Target Chromosome Position Direction Mismatches 
Bulge 
Size 

RNA crRNA: GCTTTACGCAACGTTCCAATNGG chr7 223189 - 2 2 
  DNA:   GCTTTAgGgA--GTTCCAATGGG           

RNA crRNA: GCTTTACGCAACGTTCCAATNGG chr1 16664391 - 2 2 
  DNA:   GtTTTAtGCAAC--TCCAATTGG           
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CHAPTER V 

 

CONCLUSIONS 

In next years, several agricultural regions will be more vulnerable to climate change as result of 

challenges such as temperature extremes, higher hot season average temperature, persistent drought. 

Tomato (Solanum lycopersicum) is one of the most important worldwide crop in terms of production 

despite being sensitive to high-temperature. Developing tomato cultivars tolerant to heat stress may 

be a valuable strategy to cope with climate changes. In this thesis, different strategies were integrated 

to promote the identification of traits involved in heat stress tolerance and the selection of elite lines 

tolerant to heat stress: 

✓ The agronomic evaluation of a JAGF4 segregating population, under heat stress conditions, 

allowed us to identify the best performing lines as well as the worsts by the means of a PCA 

analysis. Most of the variation among the genotypes was explained by YP, TFN, FS. By 

contrast, SSC, IN and FRL account for the 13% of estimated variance. Fruit set and related 

flowering traits high impact total yield and SCC. A trade-off between these two parameters 

during the selection was imposed by their negative correlation. 

 

✓ The characterization for sub-traits related to flowering of extreme genotypes confirmed the 

tolerant genotypes responded better to heat stress than the susceptible. Moreover, a high 

positive correlation among pollen viability (PV), total number of flowers (TNF) per plant 

and total number of inflorescences (TNI) and YP was found.   

 

✓ The genotypes, showing highest PV, TNF and TNI values, were also YP performers, 

supporting the finding that the assessment of complex fruit setting and yield traits can be 

assisted through sub-traits (such as pollen viability). In addition, the heat stress test 

performed on limited area of cultivar Monymaker suggests that heat stress response is a local 

process. 

 

✓ The 100 JAGF4 individuals previously phenotyped were also genotyped through GBS 

(genotyping by sequencing) approach. Optimized genomic prediction models for YP and 
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SSC, were developed testing several critical parameters, including training population size 

and composition and marker density and quality.  

 

✓ GS results highlight that GS is a promising strategy to accelerate breeding for heat tolerance 

in tomato since our models were able to predict the GEBVs (Genomic estimated breeding 

values) in next round of selection (F5- F6). Moreover, the F6 offspring, grown under field 

heat stress condition, validated the prediction accuracy of the model, confirming the 

performance of the 9 top lines. 

 

✓ Furthermore, the meaningful SNPs (calculated by the model) were used to perform a QTL 

analysis to better understand the genetic architecture of heat tolerant traits in tomato. Five 

significant QTLs were detected for YP under heat stress, on chromosome 5, 6, 8, 9 and 11 

(qYP1, qYP2, qYP3, qYP4, qYP5) and 1 significant QTL for SSC, co-localizing with qYP2, 

on chromosome 6 (qSSC1). Yield-SCC contrasting pattern may be solved by fine genomic 

selection of such region. 

 

✓ A variant annotation was performed on genes located in regions underlying identified QTL, 

to predict their effect on the protein function. Two suitable candidate genes were detected 

(SlMYB59 and SKP1-like protein) that can be further functionally exploited. If the candidate 

genes will confirm to be involved in the heat-tolerance response could be then transferred to 

cultivated tomatoes to improve performances under high temperatures.  

 

✓ A tomato genome scan and a phylogenetic analysis of Dof proteins family, including 

Arabidopsis members, allowed us to identify a putative transcription factor (SlDof) involved 

in the abiotic stress tolerance.  The SlDof11 gene was choose as suitable target for performing 

a CRISPR/Cas9 experiment to validate its putative involvement in heat tolerance response.  
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