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. . . a handful of poppy-seed moves easily just as a draught of water; for

the several round particles are not checked one by the other, and when

struck, it will roll downhill just like water.

Lucretius – De rerum natura



Abstract

Granular materials are ubiquitous in everyday life, in nature as well as in industry;

therefore the prediction of granular fluid dynamics is of great interest in both physics

and engineering research. A common complex granular flow is that occurring in

rotating drums, which are widely employed as mixers, separators, dryers, reactors and

granulators in different industrial processes.

Numerical simulations can provide a useful tool to understand the physics underlying

the dynamics of these materials. In most of the works available in the literature, the

commonly adopted numerical approach to study granular materials is the Discrete

Element Method (DEM), where the material is modelled as an assembly of rigid

particles, and the interactions among particles are explicitly considered. Although

DEM has the advantage to describe the discrete nature of the flow, a relatively limited

number of particles can be managed. This drawback becomes important for large-scale

flow modelling, as for the case of an industrial drum, containing billions of particles; a

continuum approach, where the solid phase is treated as a continuum, is possibly more

suitable.

In this work, we present 3D Finite Volume (FV) simulations of dense granular

flow of non-cohesive beads inside a rotating cylinder, adopting the visco-plastic Jop-

Forterre-Pouliquen constitutive model [78, 79] for the granular medium stress tensor.

We investigated in our simulations different flow conditions, by changing the cylinder

aspect ratio and the drum angular velocity. Moreover, the material parameters and the



particle dimensions, appearing in the constitutive equation, are systematically varied,

to understand their effects on the main features of flow in the cylinder.

The results obtained from our simulations are also compared with several experi-

mental results available in the literature for the mono-disperse and bi-disperse case.

We reproduce the flow configurations sequence in rotating drums, ranging from rolling

to centrifuging [111], in good agreement with experimental results [146]. We capture

some distinctive features of granular flow in a rotating drum, such as a Bagnold profile

[10] followed by an exponential tail for velocity throughout the depth of granular bed

[87, 73], the existence of axial components of the surface velocity, and the difference

of the flow field near the lateral wall and at the symmetry plane [129]. Moreover, we

investigated the segregation patterns of bi-disperse mixture varying the filling degree

of the rotating drum [113].

This validation opens up the feasibility of characterising a wide variety of regimes

by changing both physical and geometric parameters, with the possibility of discovering

new dynamical regimes, and of calculating several flow quantities difficult to be accessed

through experiments.
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Chapter 1

Introduction

Fig. 1.1 Examples of granular materials.

Granular materials are ubiquitous in our daily lives; flour, sugar, sand, cement are

things without which the life would be very different (fig. 1.1). It has been estimated

that more than 50% of sales in the world involve commodities produced using granular

materials at some stage, which makes granular media the second most used type of
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material in industry after water [5]. Major industries dealing with granular materials

are food, pharmaceutical, petrochemical, polymer, and glass industries.

On the other hand, granular matter is very common in natural phenomena; soil is

made of solid particles so, the knowledge of the physic underlying granular flow is

very important to prevent the consequences of natural hazards, such as avalanches,

landslides, sand dunes, pyroclastic flows. The behaviour of soil is becoming more and

more interesting because of the solar system exploration; for example, knowing Mars

soil mechanical properties is essential for the correct landing of a probe.

Despite this significant interest, a theoretical framework which describes the variety of

complex behaviours of the granular materials is still missing and so, these materials

still challenge engineers and fascinate researchers.

Fig. 1.2 Classification of particulate matter depending on particle size; colloids d < 1 µm,
powder d < 100 µm and granular material [5].

We shall consider granular material as a large conglomerate of macroscopic, discrete,

rigid particles.

The behaviour of granular medium depends on the grain size (see fig. 1.2). When

particles are larger than 100 µm, the dominant forces are due to direct mechanical
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1.1 Work motivation

contacts involving normal compression and tangential frictional forces, and when the

grains are immersed in a liquid, to hydrodynamics interactions induced by the motion

of the interstitial fluid. For particles with d < 100 µm (powder), humidity effects, air

(or solvent) drag, and colloidal forces interfere, such as van der Waals and electrostatic

interactions. If d < 1 µm, thermal agitation of the solvent becomes significant, and

Brownian motion comes into play [55].

In this thesis we take into consideration dry particles with a diameter above 100 µm.

1.1 Work motivation

Granular material can imitate different states of aggregation of the matter depending

on the rate of deformation; at low velocity of deformation granular matter behaves like

a solid, with very long frictional contacts between particles, increasing the velocity of

deformation the grains flow like a liquid, at even greater rate the material acts like a

gas with rapid binary contacts (see fig. 1.3). In the limit of low and high velocity of

deformation granular behaviour is successfully described by solid-like soil mechanics

and gas-like kinetic theory, respectively. Theory for the “liquid-regime” is at an early,

though very promising, stage of development.

Due to the absence of a unified theory, problems for mixing, flow, transportation,

and storage are often encountered, which are solved by engineers using empirical

techniques.

The commonly adopted approach in most of the works available in the literature is

based on the Discrete Element Method (DEM), where the material is modelled as an

assembly of rigid particles, and interactions among particles are explicitly considered.

DEM accounts for the discrete nature of the flowing material, but a relatively limited

number of particles can be effectively managed [26]. To our knowledge, the largest

system treated so far, in the discharge flow from a silo, is about 107 particles [128].

3



1.1 Work motivation

Fig. 1.3 Different behaviours of granular material depending on the velocity of defor-
mation; solid, liquid and gas [54].

On the other hand, just to give an example, a small industrial cylindrical mixer,

with a radius R = 1.5 m equal to length W , half-filled with 200 µm spherical particles

(typical sizes in practical applications as for pharmaceutical granulators) contains

about 1012 particles, presently out of reach for DEM computations. Practical flow

conditions may be even more extreme in full-scale rotating drums employed in industrial

applications.

From a different perspective, a continuum approach, where the granular phase

is treated as a continuum, should be suitable for large-scale flow modelling. Indeed,

the description of liquid-like granular flows has been a long-standing challenge of

process engineering as well as of geophysical science. Such continuum approach is very

attractive, if applicable, as it could manage real scale systems, e.g., natural avalanches

or large industrial devices.

A constitutive law reproducing the entire complexity of the granular flow behaviour

in the liquid range is still elusive. Our aim here is to prove that a description of

complex flows in large scale applications is in fact possible, with a suitable constitutive

fully 3D equation for the rheology of the continuous granular phase.

4



1.1 Work motivation

Jop et al. [78, 79] proposed a constitutive equation for the granular liquid regime,

capable of describing the two principal features of a granular liquid, i.e. a yield criterion

and a complex dependence of the viscosity on rate of deformation and pressure. The

Jop-Forterre-Pouliquen (JFP) model has already been tested on simple geometries and

flow conditions, showing remarkable agreement with experiments [12, 52, 88, 153, 71].

In this thesis, we present 3D Finite Volume (FV) simulations of dense granular

flow inside a rotating cylinder, adopting the continuum visco-plastic JFP constitutive

model [79] for the granular medium.

A common complex granular flow of great interest in both physics and engineering

research is that occurring in rotating drums, usually employed as mixers, separators,

dryers, reactors, and granulators in different industrial processes. Despite the common

use of these devices, granular behaviour therein is not completely understood, also in

view of the complex dependence on several operating conditions. This is a fully 3D

problem, with the additional complexity of the presence of an evolving free surface

separating the (assumed) continuous solid phase from the gas phase.

We are going to present dense particulate flows of monodisperse beads in a rotating

drum in a first section, then we will analyze the mixing dynamic of bidisperse particles

in a second part. Each section of the thesis will be dealt with the analysis of literature

review, material and methods, and results.
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Chapter 2

Mono-disperse granular flow

2.1 Literature review

2.1.1 Experimental literature

“The rotating drum is particularly associated with the study of dense granular flows”

[149].

Mellmann [111] identified various flow configurations of granular media in rotating

drums, depending on cylinder filling degree f , wall friction and Froude number (Fr),

which is the ratio of inertia to gravity Fr = DΩ2/g (fig. 2.1). According to Mellmann’s

classification there are three main regimes:

• Slipping; when angular velocity, wall friction and filling degree are very low, no

granular flow occurs. Depending on whether f < or > 0.1, sliding or surging

sub-regime takes places. In the first one the material is constantly sliding from

the wall, the granular bed does not move for an inertial observer. In the latter

there is a bulk motion, because wall friction suffices to “grip” the material, and

to generate a periodic alternation between adherence and sliding from the wall.
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2.1 Literature review

Fig. 2.1 Flow configurations in a rotating drum [111].

• Cascading/Tumbling; at intermediate values of Fr a “liquid-like” flow starts.

Progressively increasing rotational speed, the slumping sub-motion can be ob-

served, where cascades in the top of the bed periodically occur and decrease the

free-surface angle from a maximum value to a minimum, afterward, the bed rigid

rotation restores the higher angle, and the cycle repeats. Hence, in the slumping

regime, the almost flat free surface periodically oscillates between two limiting

angles.

Increasing further the velocity there are the rolling and the cascading sub-regimes,

characterized by a continuous cascade. The only difference between rolling and

cascading motions is the shape of free-surface, flat and S-shaped respectively. As

we can read from the last row of the figure 2.1, this “liquid” regime is the most

often encountered in applications, since it enhances mixing.

• Cataracting; if the gravitational acceleration becomes comparable to inertia, the

particles are massively flung into the drum free space occupied by the gas and
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2.1 Literature review

the cataracting sub-regime occurs. At even greater Fr there is the centrifuging,

where a uniform layer of grains covers the internal walls.

Fig. 2.2 Flowing layer, the “cascading zone” in the upper part of the bed, and the
plug region, which follows the rigid rotation of the cylinder, divided by a red curve, in
rolling and cascading regime, on left and right, respectively.

In rolling and cascading regimes can be distinguished a uniform particle layer called

flowing layer, continuously flowing in the upper part of the bed, while the beads in the

bulk essentially follow the rigid rotation of the cylinder, the so-called plug region, as it

can be seen by fig. 2.2.

Most of the quantities available for granular flow in rotating cylinders are accessed

by naked eyes. These experiments are conducted looking through transparent walls,

but it is well known that there is a strong influence of the lateral wall on the flow

[44, 106, 78, 129, 28, 127]; hence this is the worst condition for experiments. Since

grains are opaque, the interior of the flow cannot be investigated with optical methods,

but there are three other approaches: Magnetic Resonance Imaging (MRI) [168],

Positron Emission Particle Tracking (PEPT) [124] and X-ray imaging. The first two

allow the tracking of the single particle trajectory. Those are very complex experiments

and their space and time resolutions are quite low. The disadvantages of these last

techniques are the complexity, the lower space and time resolution with respect to the

naked eye. X-ray imaging capture highly accurate trajectory fields, but the medical

9



2.1 Literature review

Fig. 2.3 Experiments on velocity profile inside the granular bed: Parker et al. [123] (a),
Ding et al. [38] (b), Maneval et al. [106] (c), and Orpe and Khakhar [119].
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2.1 Literature review

protocols for continuous exposure narrow it down to very low density particles; thus

data are insufficient for computing key rheological parameters like the volume fraction

distribution [62].

Different authors studied the velocity profile inside the granular bed.

In fig. 2.4 there is a sketch of the rotating cylinder where the “end walls” and the

“centre” can be distinguished.

END WALLS

CYLINDER 
CENTRE

Fig. 2.4 Rotating cylinder sketch; the centre is the symmetry plane of the cylinder, the
end walls are the two vertical cylinder walls.

Parker et al. [123] performed the first positron emission particle tracking of spherical

particle motion in rotating drums and reported a non-linear velocity profiles in the

flowing layer and the distributions of angular velocity in the fixed bed (fig. 2.3.a).

Ding et al. [38] investigated the velocity of glass beads in the rolling flow regime

with a low filling degree, still with PEPT. The authors fit the velocity profile inside

the bed with a second order polynomial (fig. 2.3.b).

11



2.1 Literature review

Maneval et al. [106] and Sanfratello et al. [141] both found a velocity profile at

cylinder centre and wall described by:

u(r) =


−utop

(
1 − r

h

)2
+ Ωeffr, r < h

Ωeffr, h < r < R

(2.1)

Where utop is the maximum velocity at the top of the free surface, h is the depth of

the flowing layer, and Ωeff is the effective rotation rate determined from data. Ωeff

would be the rotation rate of the cylinder if there were no slippage.

Maneval et al. [106] reported a higher velocity at the centre with respect to that at

the wall (fig. 2.3.c).

Unlike the authors that are just mentioned, Orpe and Khakhar [119] found a linear

mean-velocity profile over most of the layer depth in all cases, with an exponential

decay near the base of the flowing layer and a flattened region near the free surface,

for a quasi-2D cylinder (fig. 2.3.d). This exponential tail is due to a solid-like regime

that is characterised by dense quasi-static flow in which the deformations are very slow

and the particles interact by frictional contact [140].

Yamane et al. [168] and Dury et al. [44] focused their attention on the differences

between the dynamic angles at the centre and the wall by varying velocity. They both

reported a dynamic angle 5° higher on the wall than at the centre of the cylinder

independently from drum speed.

Félix et al. [48] reported a monotonically increasing scaling of the dynamic angle

and the flow depth with the rotational velocity. The angle is also found to increase

with decreasing width. It has to be noticed that the authors did not consider the width

of the cylinder as an important parameter, so they simply reported its value, without

controlling it thoroughly.
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2.1 Literature review

Fig. 2.5 The stream-wise surface velocity as a function of the axial position △L/D =
0.06, ♢L/D = 0.14, □L/D = 0.26, #L/D = 0.52,  L/D = 1.03, D and L are cylinder
diameter and length respectively [129].

Pohlman et al. [129] investigated the free surface velocity of 3D cylinders changing

the drum width. They reported the stream-wise surface velocity as a function of the

axial position. They observed a velocity close to the wall 20% higher than that at

the centre when W/D > 1, even though the particles on the wall were slower due to

friction (fig. 2.5). The same authors presented contour and density maps of the axial

flow. The free-surface velocity is directed toward the centre in the upper part of the

free surface and toward the end walls in its lower part, in fact the magnitude of the

axial velocity is bigger in the cylinder corners (fig. 2.6).

Alexander et al. [2] studied the stream-wise velocity profile in a rotating drum.

They found a dependence on the rotational speed and on the ratio of particle size

and cylinder diameter. The effect of rotational velocity on symmetry/asymmetry of

the stream-wise velocity profile is shown in fig. 2.7. The same authors reported new

non-dimensional scaling criteria using a simplified model in agreement with both the

magnitude and the shape of the velocity profiles.
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2.1 Literature review

Fig. 2.6 Ratio of the magnitude of axial flow with respect to the stream-wise flow for 1
mm particles, D and L are cylinder diameter and length respectively [129].

Fig. 2.7 Stream-wise velocity; asymmetric △ 52.1RPM, symmetric # 26.1RPM, and
symmetric with a constant velocity region □ 4.3RRM, by Alexander et al. [2].
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2.1 Literature review

2.1.2 Numerical literature

CFD simulations

As mentioned above, a continuum approach, where the granular phase is treated as a

continuum, should be suitable for large-scale flow modelling in order to manage real

scale systems.

Attempts have been done to describe granular flow are focused on extending the

existing theory for diluted assembly of collisional sphere, the so called kinetic theory

Goldhirsch [61], to dense frictional spheres Haff [64], Campbell [24], Jenkins and Berzi

[74], Berzi [18].

Some authors solved the Eulerian-Eulerian formulation of the balance equations

coupled with the kinetic theory for dense granular materials inside rotating drums

[65, 92, 162, 89, 35, 146, 170, 34, 84, 39, 105, 16, 70].

Demagh et al. [35] modelled the dense particulate flow with the kinetic theory of

granular flow and with an Eulerian formulation, reproducing rolling and cascading

regimes and finding qualitative agreement with the experimental data of Ding et al.

[38].

The complete analysis by Santos et al. [146] compares experimental data with

numerical predictions of the Eulerian-Eulerian approach, assuming interpenetrating

continua and the kinetic-theory-based constitutive equations derived by Lun [103].

Their results are obtained at various drum rotation rates, and their predictions are

in general qualitative agreement with their own experiments (fig. 2.19). The major

drawback of this approach is the dependence of results on the choice of adjustable

parameters. As we can see from the figure, where S1, S2, S3, S4, S5, and S6 are

simulations which differ for critical volume fraction, a parameter of the kinetic model

adopted by Santos et al. [146], there is a strong influence of the choice of this critic

value of predictions.
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2.1 Literature review

Fig. 2.8 Comparative plots of velocity inside the granular bed against dimensionless
depth at two different free-surface positions for simulations [35] and experiments by
Ding et al. [38].

Delele et al. [34] performed a multiphase 3D CFD model of particle and fluid flow

in rotary drums with kinetic-theory-based constitutive equations by Lun [103] like

Santos et al. [146]. The same authors conducted experiments for model validation.

There are good agreements between numerical and experimental results on particle

velocity, dynamic repose angle, active layer thickness, air velocity, and residence time

measurements.

Machado et al. [105] compared their experimental and numerical results of the

particle dynamic flow in a rotary drum with one flight, under different boundary

conditions. They used the Euler-Euler approach with the kinetic theory of granular

flow and a finite volume discretization method for simulations.

Zheng and Yu [170] presented a numerical study on the flow behaviours of granular

materials in a rotating drum based on the Eulerian-formulation FEM. The granular

material is treated as a continuum medium described by the Mohr–Coulomb Elasto-

Plastic (MCEP) model. They reported qualitatively results on particle flow patterns

ranging to rolling to centrifuging, obtained changing the drum speed in the simulations.

The authors tried to reproduce slipping and slumping regime too, but they stated that
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Fig. 2.9 Volume fraction of the granular solid phase for 1.09 mm glass beads. In the
first row there are Santos et al. [146] experiments, S1, S2, S3, S4, S5, and S6 are
simulations which differ for critical volume fraction, a parameter of the kinetic model
adopted by Santos et al. [146]. Fill level of 31.40% on left and of 18.81% on right.
Rotational velocities for each fill level of 1.45, 4.08, 8.91 and 16.4 rad/s.
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“no evidence of slipping and slumping modes were observed in the simulations with the

baseline parameters, no matter what rotational speed was used”.

Other models and numerical techniques

Kamrin [80] reformulated and combined models for granular elasticity [76] and rate-

sensitive fluid-like flow [78] into one universal elasto-plastic law, capable of predicting

flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry.

The model is numerically implemented in multiple geometries and results are compared

to experiments and discrete simulations.

Eslamian and Khayat [46] proposed a hybrid method to simulate the dry granular

flow of materials over a wide range of inertial numbers that simultaneously covers the

quasi-static and dense granular flow regimes. The elastic–perfectly plastic theory based

on the Drucker–Prager yield criterion is combined with the theory of dense granular

flows, Smoothed Particle Hydrodynamics (SPH) [102, 59] is used as the framework for

the method. The method is used to solve the 2D dry granular cliff collapse problem

and to model dry granular material flow inside a rotary drum.

2D Smoothed Particle Hydrodynamic codes with the implementation of JFP model

[78] were able to quantitatively match the experimental data available for the granular

column collapse problem [27, 114].

Volpato et al. [161] studied flow occurring in partially filled 2D tumbler mixers

of different shapes. The granular and the air flows was simulated using an Eulerian

continuum approach. They proposed a suitable rheology for the granular flow. The

model is based on conservation equations for mass, momentum and fluctuating kinetic

energy and the rheology is described through a generalized Newtonian model whose

viscosity depends on granular temperature. This approach was already used by Artoni

et al. [8, 9] and Volpato et al. [160] for silos discharge.
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In conclusion, it should be mentioned the Material Point Method (MPM), it was

firstly developed to simulate problems of solid mechanics such as impact/contact,

penetration, and perforation with history-dependent internal state variables [154,

155] and later applied to granular flows [13, 32]. MPM is a hybrid method with

Eulerian–Lagrangian description. This feature allows the analysis of contact and force

reaction between a soft (particle-based) body and a rigid (grid-based) surface. In

literature there are different works on simulation of landslides behaviour by means of

MPM [107, 41, 99, 77, 49, 47, 95, 96, 150, 97, 93, 15, 165, 94].

In particular Dunatunga and Kamrin [41] proposed a constitutive framework for

the different behaviours of granular media: when dense, the material is treated as a

pressure-sensitive elasto-viscoplastic solid obeying a yield criterion and a plastic flow

rule given by the µ(I)–rheology; when the free volume exceeds a critical level, the

material is deemed to separate and is treated as disconnected, stress-free media. By

using the MPM they simulated silo flows, granular-column-collapses, and inclined chute

flows.

Li et al. [91] used MPM simulations to study sloshing granular liquids.

Coetzee [31] and Chen et al. [29] investigated the soil cutting process using Material

Point Method.

2.1.3 Towards a dense granular rheology

Dense granular matter can be seen as a visco-plastic material like toothpaste and

ketchup. In fact, granular materials are characterized by:

1. flow threshold

2. shear-rate dependence

3. hysteretic behaviour
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And there goes the question of whether a constitutive equation can describe granular

liquids under stress.

Forterre and Pouliquen [54], Andreotti et al. [5], Goddard [60] and Forterre and

Pouliquen [55] presented complete reviews of salient phenomenological aspects of

granular flow, along with a unified mathematical synthesis of current continuum

models.

Velocity, density and velocity-fluctuation profiles of the most common flow config-

urations, used to investigate dense granular flows, are studied in detail by the GDR

MiDi [57]. These configurations can be distinguished in flows confined between walls

(shear cells and silos) and free surface flows (inclined planes, heap flows and rotating

drums), see fig. 2.10.

Fig. 2.10 The six configurations of granular flows: (a) plane shear, (b) annular shear,
(c) vertical-chute flow, (d) inclined plane, (e) heap flow, (f) rotating drum [57].

GDR MiDi [57], da Cruz et al. [33] and Lois et al. [100] observed that, in a simple

sheared configuration with rigid particles, the dimensional analysis strongly constrains
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Fig. 2.11 Schematic showing the physical meaning of the typical time of deformation
Tγ and the confinement timescale Tp [57].

the stress/shear rate relations. For large systems (i.e., when the walls do not come into

play), the system is controlled by a single dimensionless parameter called the inertial

number :

I = γ̇dp√
p/ρp

(2.2)

This parameter may be seen as the ratio of a microscopic time scale dp/
√

p/ρp which

represents the time it takes for a particle to fall in a hole of size equal to the size particle

dp, under the pressure p and which gives the typical time scale of rearrangements, and

a macroscopic time scale 1/γ̇ linked to the mean deformation, where γ̇ is the shear

rate (fig. 2.11).

For small values of I the system is quasi-static, i.e. the macroscopic deformation is

lower than microscopic rearrangement, for large I the flow is rapid.

From the dimensional analysis, to switch from quasi-static to inertial regime, shear

rate/pressure must increase/decrease. The shear stress is proportional to the pressure

and the volume fraction is function of I:

τ = µ(I)p (2.3) ϕ = ϕ(I) (2.4)
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In the dense flow regime the volume fraction is almost constant. The dilatancy and

friction laws are decoupled, which allows one to neglect the variations of ϕ(I) without

losing the variations of the friction coefficient, which characterize the viscous nature of

the material [79, 54].

Figure 2.12 .a and .b show da Cruz et al. [33] and Renouf et al. [137] µ(I) and ϕ(I)

functions. da Cruz et al. [33] obtained this dependence by means 2D discrete numerical

simulations of plane-shear at constant pressure, while Renouf et al. [137] performed

2D rotating drum simulations obtaining local friction coefficient and local I from the

velocity profiles at different drum speeds. The friction coefficient µ is non-zero for

I = 0, first increases and then saturate with increasing inertial number, and eventually

decreases when reaching the kinetic gas regime. The volume fraction ϕ(I) decreases

linearly with I.

In fig. 2.12 .b and .c µ(I) is obtained by Pouliquen [132] and GDR MiDi [57] from

inclined-plane experiments measuring depth-averaged velocities at different inclinations

and thickness.

Moreover, da Cruz et al. [33] determined the I interval for which the system is in

the dense liquid state: 10−3 < I < 10−1 (see fig. 2.13).

Eq. 2.3 is obtained for plane shear configuration and, strictly speaking, using this

relation for granular flow is not possible in general. But, if we can talk of local rheology,

i.e. the shear stress depends only on the local shear rate and pressure, the stress is the

same of plane shear.

In fig. 2.12 the curves, obtained in different flow configurations, collapse, suggesting

that the inertial number I is the relevant parameter, in other words, the friction law

µ(I) is independent from configuration and that granular liquids can be described in

terms of local friction and dilatancy laws.
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Fig. 2.12 Friction coefficient and volume fraction as a function of the inertial number
[54].
(a, b):  , 2D DEM plane-shear simulations by da Cruz et al. [33]; #, 2D rotating drum
simulations by Renouf et al. [137]. Inset in (a): Plane-shear simulation at constant
volume fraction [100].
(c, d):  , inclined-plane simulations of Baran et al. [12]; #, inclined-plane experiments
by Pouliquen [132] and GDR MiDi [57]; +, plane-shear experiments [147].
(e, f) Continuous line is the µ(I) relation 2.5, and dashed line is the prediction of
kinetic theory for frictionless spheres [103].
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Fig. 2.13 Diagram of the granular flow regimes depending on I, for 10−3 < I < 10−1

the state is liquid.

Jop et al. [78] fitted µ(I) and ϕ(I) with the functions:

µ = µs + µ2 − µs

1 + I0/I
(2.5)

ϕ(I) = ϕmax + (ϕmin − ϕmax)I (2.6)

In equation (2.5) µs, µ2 and I0 depend on the specific material and can be measured

in simple flow configurations, I0 is a fitting parameter, µs/µ2 is linked to the mini-

mum/maximum angle under/beyond which no continuous flow occurs fig. 2.14 (see

Pouliquen [132] and Forterre and Pouliquen [53] for the detailed computation of these

parameters). Pouliquen [132] reported minimum and maximum angles for some glass

beads, see fig. 2.15. Equations (2.3) and (2.5) define the so-called µ(I)–rheology for

granular liquids. Jop et al. [78, 79] used values for monodispersed glass beads in three

dimensions: µs = tan(21◦), µ2 = tan(33◦), I0 = 0.3 , see fig. 2.15.

The friction law saturates to a finite value µ2 when I goes to infinity. Although

the friction law has not been directly tested for large values of the inertial number
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Fig. 2.14 Region where steady uniform flows are obtained; h is the granular thickness
on inclined plane, d is the particle diameter and θ is the slope [132].

Fig. 2.15 Minimum and maximum angles of continuous flow on inclined plane by
Pouliquen [132].
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I, we will see that this saturation is supported by experiments on steady granular

fronts flowing down a slope, in fact at the tip of a front the shear rate goes to infinity,

whereas experiments reveal that the slope (and hence the friction coefficient) is finite,

so the saturation of µ to a finite value could be true [54].

This µ(I) relation has been successful in predicting two-dimensional configurations,

capturing velocity profiles on inclined planes [57, 152] and important features of flows

on a heap [78], without any fitting parameter once the friction law is determined

independently in inclined-plane experiments.

Rotating drum flows have similarities with inclined plane flows; in fact the flow is

restricted to an upper zone of the granular bed close to the free-surface; however, data

are difficult to analyse, owing to the non-uniformity of the flow [137].

Renouf et al. [137] have shown in 2D simulations that the friction law µ(I) is locally

satisfied along the profile.

Orpe and Khakhar [119] also reported that the variation of the friction coefficient

is correctly described in their experiments.

A tensorial generalization of eq. (2.5) is needed to account this non-uniformity; Jop

et al. [79] generalize the µ(I) relation assuming the constancy of the volume fraction,

and hence an incompressible granular liquid phase, as follows:

σ = −Ip + τ (2.7)

τ = 2η(IID, p)D (2.8)

η = µ(I) p

IID

(2.9)

where I is the identity matrix, D is the rate of deformation tensor (i.e. the symmetric

part of the velocity gradient ∇u), IID is the second invariant of D (from now on

called the shear rate), p is an isotropic pressure, and η the viscosity of the granular

phase.
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The viscosity diverges to infinity when the shear rate goes to zero. This divergence

ensures that a yield criterion exists. If the shear rate goes to zero, the material flows

only if the following condition is satisfied [79]:

IIτ > µsp (2.10)

where IIτ is the second invariant of τ .

This is a Drucker–Prager-like criterion [40]. Under the threshold, the granular

material acts like a solid, a rigid body. This property is linked to the frictional nature

of stresses in granular media, which induces a flow threshold proportional to the normal

stress (the Mohr–Coulomb criterion).

To test this rheology Jop et al. [79] performed experiments of granular flows on

a pile. They made rough sidewalls by gluing beads on them, reproducing a no-slip

boundary condition at the walls.

This tensorial rheology has been tested for free surface flows between rough walls

[79], in which shear in two directions is present, and for the long wave instability

of flows on inclined planes [52]. In both cases, striking quantitative agreement was

obtained between predictions and experimental measurements for velocity profiles and

dispersion relations.

Lagrée et al. [88] implemented the so-called µ(I) rheology in a 2D fluid-mechanics

solver, simulated granular column collapses for a wide range of initial aspect ratios and

compared the CFD results with both analytical solutions and 2D contact dynamics

discrete simulations. Their predictions implementing the JFP model agree very well

with DEM results.

Ionescu et al. [71] reformulated the JFP model in the framework of Drucker–Prager

plasticity with the yield stress and viscosity depend on both the pressure and the

norm of the strain rate tensor. The authors simulated with finite element method the
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Fig. 2.16 Comparison of 3D simulations (lines) and experimental results (symbols) by
Jop et al. [79].
(a, b, c); free-surface velocity profiles for different channel widths and for different flow
rates.
(d); depths of the flowing layer across the channel for different flow rates.
(e, f, g); free-surface inclination, rescaled maximum free-surface velocity and maximum
flowing thickness respectively, as a function of the rescaled flow rate.
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granular column collapse over inclined planes, the rheological parameters are directly

derived from the experiments. The computed run-out distances and slopes of the piles

agree very well with experiments. They observed a slumping behaviour due to the

flow/no-flow criterion and to the associated strain-independent part of the constitutive

model, related to plastic effects. The same authors reported that the velocity profiles

have a velocity maximum at the free surface, a Bagnold-like to linear profile and an

exponential tail near the transition between the flowing layer and the creepy zone.

Furthermore, the development of shear bands during the beginning of the spreading

on an inclined plane was observed.

Local rheology limits

The local rheology seems to provide a theoretical framework to describe dense granular

flows. Although, the link with microscopic grains properties is still lacking, and serious

limitations exist [54]. Some phenomena observed are not described by the local rheology;

the creeping exponential tail, at the transition zone between the flowing liquid layer

and the solid granular bed, and the flow threshold are not exactly captured. Below

a threshold the continuous flow stops and intermittent flow with successive transient

avalanches starts [90, 78]. Indeed, the local rheology predicts a continuous steady flow

even for very low angles of pile inclination [54]. Moreover, when the flow rate is very

high and dilute region develops on top of the dense flow, high slopes up to 60◦ are

reported [159, 101], while Jop et al. [78] predicted an inclination always below tan−1(µ2).

Pouliquen et al. [133] reported the non-uniformity of the stress distribution, i.e. the

shear bands, but the predicted thickness of shear bands depends on the shear rate and

vanishes in the quasi-static regime, unlike experimental observations. Another limit is

that it does not take into account the hysteresis observed in some flow configurations

[57].
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Non local extension of the JFP model has been recently proposed to overcome some

of these limits [134, 21, 156, 83, 22, 66, 67, 82, 68, 169].

[81] discussed a range of models (also models different from the JFP) that have

been proposed to take into account non-local effects of granular flow.

2.2 Governing equations

Our aim is to capture some experimental results available in the literature for several

flow conditions, which differ in terms of cylinder angular velocity Ω, filling degree f ,

particle diameter dp, particle density ρp, cylinder diameter D, and cylinder length W .

The first goal is to reproduce the entire succession of flow regimes identified by Mellmann,

i.e. rolling, cascading, cataracting and centrifuging, and compare our simulations with

experiments [146, 11]. The second is to predict quantitatively features of granular flow,

as shape of free-surface, superficial velocity, velocity inside the bed, and axial velocity,

like in experimental literature [38, 129].

In this first part of the thesis we solve numerically granular flow of monodisperse,

cohesionless and dry grains inside a rotating cylinder. The remaining space, not

occupied by the grains, is filled by air.

Equations for the mass balance and the momentum balance with the adoption of

the JFP constitutive equation are solved with the Volume of Fluid (VoF) approach

(for details about the method see Moukalled et al. [115]). The VoF approach treats

the mixture of two phases as a single whole fluid with physical properties calculated as

volume-weighted averages between properties of the “pure” phases. An independent

variable, a phase volume fraction α, is then added to the model, representing the

fraction occupied by one of the phases (the granular phase in our case), in each control

volume:
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∂ρ

∂t
+ ∇ · (ρu) = 0 (2.11)

∂ρu

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ + ρg (2.12)

where ρ, p, u, and τ are the density, pressure, velocity, and the shear stress of the single

whole fluid, g is the gravity, and t is the time.

The additional independent variable α requires a transport equation and the VoF

approach uses a simple advection equation:

∂α

∂t
+ ∇ · (αu) = 0 (2.13)

where α is the volume fraction of granular phase. The volume fraction ranges from

0 (air only) to 1 (granular phase only). The interface between the two phases is

postulated to be at α = 0.5.

The density and the viscosity of the overall fluid are treated as simple linear (with

respect to α) averages of densities and viscosities of granular phase and air:

ρ = α ρgp + (1 − α) ρair, η = α ηgp(IID, p) + (1 − α) ηair (2.14.a, .b)

Both phases are assumed to be incompressible. Thus, the packing factor of the

grains (ϕ = ρgp/ρp) is constant, fixed to 0.6 in all our calculations as Jop et al. [78, 79]

(the random close packing factor for spheres is 0.64), and the expansion of the granular

phase due to the flow is neglected [79].

Notice that ϕ has not to be confused with α; ϕ is the packing factor, that is the

volume fraction occupied by the solid sphere in their 3D arrangement in the bulk; α is

the volume fraction of the granular phase as fluid (i.e. with its voids filled with air).

In fact, the density of granular phase is ρgp = ρpϕ.
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It is possible to demonstrate that if the density in eq. (2.14) is a linear function of

α the eq. (2.11) reduces to the usual expression for incompressible fluids:

∇ · u = 0 (2.15)

Doesn’t matter the averaging function for η, in fact Lagrée et al. [88] used a harmonic

function of α for the viscosity.

In eq. (2.12) τ is:

τ = 2ηD (2.16)

In eq. (2.14).b ηgp is given by JFP model:

ηgp =
(

µs + µ2 − µs

1 + I0/I

)
p

IID

= µ(I) p

IID

(2.17)

Boundary conditions

The problem geometry has a planar symmetry that can be used to reduce the dimension

of the computational domain. Only one half of the cylinder has been simulated (fig. 2.17),

hence a symmetry condition has been imposed on the central symmetry plane z = 0:


u · nz = 0

∇u · nz = 0
(2.18)

and

∇α · nz = 0 (2.19)

where nz is the normal to the symmetry plane (aligned with the z-axis).

On walls we choose a no-slip boundary condition that means:

u = Ω × r (2.20)

32



2.2 Governing equations

Fig. 2.17 Sketch of the problem geometry. Only one half of the cylinder has been
simulated (blue coloured part).

where Ω is the angular velocity vector and r is radial position vector.

The boundary condition for α at walls is a zero gradient condition:

∇α · nw = 0 (2.21)

where nw is the normal to the walls.

This is a standard α boundary condition of the solver that we have used to solve

the equations above. We discuss the boundary conditions more in detail in the next

section.
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2.3 Numerical method

We use the interFoam solver of the open-source finite-volume software OpenFOAM

2.1.1 [118] to solve the three-dimensional dynamical equations, implementing the JFP

model in a homemade standalone routine. InterFoam solves the equations of motion

for a two phases incompressible fluid with a specific version of the VoF model [17], and

implements the PIMPLE algorithm to solve the transient problem. PIMPLE blends

PISO [72] and the SIMPLE [125] algorithms, and includes one or more PISO loops

inside one or more outer SIMPLE loops at each time step. These methods belong to

the category of the “pressure-correction” methods, which derive a pressure equation

from the continuity and momentum equations enforcing the mass conservation [50].

The presence of a pressure equation leads to the need of boundary conditions for the

pressure itself. This is, in our opinion, one of the major downside of pressure-correction

methods.

We imposed a symmetry condition on the symmetry plane:

∇p · nz = 0 (2.22)

and a pressure gradient at the walls called buoyantPressure in OpenFOAM, that means

a pressure gradient equal to the hydrostatic one:

nz · ∇p = −(nz · ∇ρ)(g · h) (2.23)

where h is the position vector.

Regarding mass conservation, it should be remarked that high-curvature or poorly

resolved regions of the flow and advection errors may lead to mass loss [36]. Deshpande

et al. [36] carried out a series of tests on the interFoam solver comparing its performance

with those of different VoF formulations [45, 163]. They reported excellent mass

34



2.3 Numerical method

conservation features and acceptable advection errors for the interFoam solver, much

smaller than those attained with other techniques.

In this thesis we adhere to the idea of compressive pressure of Jop et al. [79], and

put to zero any negative pressure contribution inside the viscosity equation.

We modified interFoam solver to implement the JFP model. The JFP model

predicts a divergent viscosity for the granular phase when the shear rate goes to zero.

The divergence of the viscosity calls for a regularization, and we choose to set a viscosity

cut-off, as suggested by Lagrée et al. [88], of 1550 Pa·s for the granular phase. We

have tested that a different choice of the cut-off in the range 1000-150000 Pa s does

not affect the results.

Dense granular materials commonly exhibit partial slip rather than a no-slip

condition at the walls. Artoni et al. [7] reported an approximate expression for the

slip length, which scales with particle diameter. In our simulations, no-slip boundary

condition for velocity is instead imposed on all the drum internal walls, since in the

corresponding experiments [146, 38] the inner walls were coated with a layer of rough

material to avoid slipping. In the VoF method, however, the velocity field is evaluated

at the cell centres, and this implies that, although with the no-slip condition the

velocity at the drum walls should be ΩR, the method stores this velocity value in the

cell centres adjacent to the wall, resulting in an effective (numerical) slip boundary

condition [116]. For a mesh size △x in a cell adjacent to the wall, the numerical slip

length is 1/2△x [75].

Notice that the slip length value obtained using the Artoni et al. expression for a

granular material like the one we are considering is of the order of 10−3 m, which is the

typical size of our mesh. Thus, even in presence of a no-slip condition at the wall, a

motion of the contact line is guaranteed by the numerical slip. In this respect, Renardy

et al. [136] showed that the contact line motion is indeed mesh dependent, but the
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overall flow is only slightly affected by such a numerical slip. Our findings support

this conclusion. We tested this by comparing results obtained with two different mesh

resolutions at the walls (by just dividing each element of the mesh at the boundary in

three identical cells), and keeping the rest of the elements at the same size. Free-surface

shape, velocity, and thickness of the flowing layer are essentially unaltered by the

(slight) change of the slip length due to the mesh size.

The condition (2.21) results in a contact angle of 90◦ between the wall and the

interface [118]. We found that a change of the contact angle (30◦ - 150◦) does not

affect the overall dynamics.

The adopted geometry meshing is different for a different drum filling. In the case of

large filling levels (to compare with Santos et al. experiments, see below), a hexahedral

mesh is generated with two mesh generation utilities supplied with OpenFOAM,

blockMesh and snappyHexMesh [118]. The former generates a background mesh of

hexahedral cells that fills the entire region within the external domain boundary, while

the latter adapts the mesh approximately to the surface by iteratively refining the

starting mesh. In the case of low filling (to compare with Ding et al. experiments), in

order to reduce the computational costs, a refinement of the mesh is performed only in

the zone of the cylinder where the granular material is expected to be present. All our

simulations are carried out on half domain by exploiting drum symmetry.

We performed convergence tests for every case performed in this work, refining the

starting mesh.

Regarding the time step, it is adapted throughout the calculation in order to match

a local stability criteria based on the Courant number, Co [17]. To achieve temporal

accuracy and numerical stability, a Courant number of less than a maximum value is

required.
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The Courant number is defined for one cell as:

Co = δt |U|
δx

(2.24)

where δt is the time step, |U| is the magnitude of the velocity through that cell and

δx is the cell size in the direction of the velocity. The flow velocity varies across the

domain and we must ensure Co < Comax everywhere. If anywhere in the mesh the

local Co exceeds the critic value, the time step is decreased to have a new local Co

below the limit.

In each subsection of the section Results we discuss more in detail the adopted

procedure for choosing the element number of the mesh. We have chosen a maximum

Co of 0.8 for all the simulations, decreasing this value our results have not changed. A

maximum time step size of 0.01 s has also been used for all the simulations.

2.4 Results

We have compared our predictions with some experimental results available in the

literature for several flow conditions, which differ in terms of cylinder angular velocity

Ω, filling degree f , particle diameter dp, particle density ρp, cylinder diameter D, and

cylinder length W . All the parameters used in our simulations are reported in table

2.1. We first report results reproducing the entire succession of flow regimes identified

by Mellmann, i.e. rolling, cascading, cataracting, and centrifuging, and compare our

simulations with Santos et al. [146] experiments. By aid of the very recent results by

Balmforth and McElwaine [11] we also show the ability of the model to capture the

so-called slumping regime at very low rotation rates. Then, we report a comparison

between our simulations and the experiments by Ding et al. [38] on some detailed

features of granular flow, as shape of free-surface, superficial velocity, and velocity
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Table 2.1 Parameters used in our simulations and experiments of comparison for the
mono-disperse case

Exp Ω[ rad
s ] f [%] dp[mm] ρp[ g

m3 ] D[cm] W [cm] µs µ2

A [146] 1.45, 4.08, 31.4 1.09 2.46 19.5 50 0.39 0.55
8.91, 16.4

B [146] 12 18.81 1.09 2.46 19.5 50 0.39 0.55
C [11] 0.4 and 0.8 50 10 2.9 28.7 11 0.59 0.67
D [38] 0.18 10 1.5 2.9 40 100 0.4 0.46
E [129] 4.08 18.81 1.09 2.46 19.5 20.1 0.39 0.55
F [129] 4.08 18.81 1.09 2.46 19.5 5.07 0.39 0.55

inside the bed. Finally, we conclude with the analysis of axial flow comparing our

simulations with Pohlman et al. [129] experiments.

Comparison with experimental results of Santos et al. [146]

In this section we report the analysis of the flow in a 3D rotating cylinder using the

parameters in row “A” of the table 2.1. The experiments refer to steady state situations,

so we carried out our simulations until the attainment of steady regime conditions.

The parameter values to be chosen for the JFP equation are derived as follows: i)

I0 is fixed to 0.279 as suggested by Jop et al. [79]; ii) µs and µ2 for the glass particle

of 1.09 mm are obtained by linear interpolation from Pouliquen [132] data for glass

beads with diameters of 0.5 mm and 1.3 mm, and their value are reported in table 2.1.

We remark again that those parameter values are fixed once and for all, as they only

depend on the nature and size of the grains (glass beads, in this case).

The mesh adopted is shown in fig. 2.18. Mesh convergence of the results is attained

with 310388 elements.

Figure 2.19 shows the distribution of the granular and the gas phase of our simulation

results for “A” flow conditions (second row) and the corresponding experiments from

Santos et al. (first row). The third row compares our simulation results of the interface
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Fig. 2.18 Adopted mesh (“A”).
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●

●

Fig. 2.19 Different flow regimes (see at table 2.1 for corresponding velocities) filling
degree 31.40%. (a) Experimental results of Santos et al. [146] (b) Our simulation
results. (c) Comparison between interfaces from experiments and simulations.
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(α = 0.5) with the experimental interface obtained through image analysis. In the

figure, the colour scale represents the volume fraction α, ranging between 0 for the

air (black) and 1 for granular phase (ochre). Notice that our results are taken on the

symmetry plane of the drum, i.e. at the cylinder half length, whereas the experiments

report the situation on the transparent glass wall. As remarked by Santos et al.,

however, the observed velocities at end of the drum are very close to those at the

middle of the drum.

The succession of flow configurations identified by Mellmann with increasing drum

rotational velocity, and reproduced in Santos experiments, i.e., rolling, cascading,

and centrifuging, is correctly captured by our simulations. At the lowest angular

velocity (1.45 rad/s) rolling motion takes place, where a uniform particle layer (flowing

layer) continuously flows in the upper part of the bed, while the beads in the bulk

essentially follow the rigid rotation of the cylinder (plug region). The shape of the

free surface in this rolling regime is nearly flat. As the rotational speed increases

(4.08 and 8.91 rad/s), the bed surface begins to arch, and assumes an S-shape that

defines the cascading regime. In fact, the main difference between rolling and cascading

regimes in Mellman’s categorization is the shape of the free surface. Our simulations

demonstrate an excellent quantitative agreement between the predictions based on

the JFP constitutive equation and the experimental results in these regimes. As

illustrated in figure 2.19c, the predicted and observed free-surfaces essentially coincide.

A small discrepancy is observed in the “tail” of the bed (leftmost part near to the

drum wall), where our interface is systematically, though slightly, below the actual one.

We believe that such discrepancy is due to a local variation of the packing factor in

the experiments. Indeed, in the experiments one can notice a reduction of intensity in

the tail of the granular bed, corresponding to a kind of “rarefaction” of the bed; this

scenario is obviously out of reach in our simulations, as we assume that the packing
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Fig. 2.20 Cataracting regime at filling degree 18.81%. (a) Our simulation at 12 rad/s,
(b) experimental results at 16.4 rad/s, (see main text).

factor is strictly constant. It remains true, however, that simulations reproduce the

experiments both in the sequence of regimes and in their range of occurrence in terms

of rotational velocity. Such predictive capability is worth stressing, since rolling and

cascading regimes are thought to ensure the best degree of mixing and heat transfer,

and for this reason such flow configurations are the most frequently encountered in

industrial applications [111]. Simulation results, of course, are very rich in details, and

give the possibility of quantifying fields of interest like, e.g., the pressure field and

velocity fields both at the interface and in the bulk of the bed (see subsection 2.4).

Thus, simulations would ensure proper design solutions in terms of mixing capability

in the rotating drum. Finally, at the largest rotational speed, a uniform layer of grains

covers the internal walls, in a centrifuging motion, (see figure 2.19a-4, at 16.4 rad/s),

both in experiments and in simulations.

Figure 2.20 shows the comparison between our simulations (at 12 rad/s) and the

experimental results of Santos et al. in the case of 18.81% filling degree, and at 16.4

rad/s (“B” in table 2.1). In experiments, cataracting motion is observed (figure 2.20.b),

a regime characterized by particles massively thrown into the drum free space occupied

by the gas. At variance with experiments, our calculations (not shown) predict, in the

same operating conditions, a centrifuging regime. At a slightly lower rotational speed
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(12 rad/s), simulations show a cascading regime (figure 2.20.a), where distinguishable

“drops” of granular phase detach from the top of the bed and are thrown inside the

cylinder free space. This condition is very similar to the cataracting regime. A similar

discrepancy between experimental and simulations results is also reported by Santos

et al., and is attributed by those authors to possibly inaccurate no-slip boundary

conditions. In the experiments, the inner walls were coated with a layer of rough

material to avoid slipping, but at such a low filling degree and at such high rotational

velocity some slippage might indeed arise. We believe that another possible clue for

the discrepancy might again be the variable density of the granular phase, which is not

accounted for in the JFP model we use. It should be remarked, in closing this section,

that also in this cataracting regime the predicted shape of the bed is astonishingly

close to the measured one, even in fine details like the bed tail in the leftmost part of

the drum.

Slumping regime

At lower rotational speeds with respect to those examined in the previous section,

Mellmann [111] reports the existence of a slumping regime. The very recent work by

Balmforth and McElwaine [11] reports a rich experimental data set in such slumping

regime. They point out how cascades in the top of the bed periodically occur. Such

cascades contribute to decreasing the free-surface angle from θstart to θstop (the angle is

measured as the surface slope at the central position with respect to the horizontal);

afterward, a rigid rotation of the bed restores the higher angle, and the cycle repeats.

Hence, in the slumping regime, the almost flat free surface periodically oscillates

between two limiting angles. To reproduce the slumping regime with our approach, we

have first of all selected operating conditions such that the limiting angle range is rather

wide. This choice is motivated by the advantage of obtaining a clear manifestation of

43



2.4 Results

the oscillations in this regime. Following the indications by Balmforth and McElwaine

[11], we fix the parameters as in “C” in table 2.1. Indeed, Balmforth & McElwaine find

that, with such a drum geometry, the slumping-to-rolling transition occurs in a velocity

range of 10−3 − 10−1 rad/s for glass beads in the range 1.5 − 5mm; they also remark

that, by increasing the particle diameter, the velocity at which such transition occurs

increases. This is the reason why we have chosen rather large particles (10mm), so as

to attain slumping at a rather large angular velocity, and thus allowing simulations to

be run in reasonable computational times. Values for µs and µ2 were fixed as follows:

1) in Balmforth & McElwaine, it is indicated that, for 10mm particles, θstart = 34◦

and θstop = 28◦; 2) they also observe that, within the slumping regime, these angles

stay essentially unaltered as the rotation rate is varied; 3) from the given values for

θstart and θstop, we compute the values for µs and µ2 reported in table 2.1 from the

well-known relations for flow on an incline [53].

The mesh adopted is qualitatively very similar to the one in fig. 2.18. In this case,

the chosen mesh has 209720 elements.

Figure 2.21.a shows the time series of the predicted surface angle dynamics for an

imposed rotation rate of 0.8 rad/s. It can be noted that, after a long transient, the

oscillation damps out, and the surface eventually reaches an angle around 35◦. The

attainment of a stable stationary free-surface angle is typical of the rolling regime

[111]. Then, to capture slumping by simulations, we reduced the velocity by 50%.

Figure 2.21b shows a sustained oscillation regime, reached after an initial transient.

Qualitatively, the regime oscillation is characterized by a quasi-periodic signature

very similar to those experimentally found in Balmforth & McElwaine. On average,

θstart ≈ 35◦ and θstop ≈ 32.5◦. A fair qualitative agreement is found with the data by

Balmforth & McElwaine, though the oscillation amplitude is lower in the simulations.

Averaging the time lags between two peaks, that means the time elapsed between the
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Fig. 2.21 Time series of surface angle. (a) Ω = 0.8 rad/s (reaching a steady state). (b)
Ω = 0.4 rad/s (periodic oscillations).
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beginnings of two cascades, we can obtain the characteristic time of rigid rotation that

restore the maximum angle: 1.8s. Within such a time span, the cascade time almost

equals the “rising” time, a feature expected close to the slumping to rolling transition.

This is the first time that the slumping regime has been observed through continuum

modelling; this result show the great capabilities of our numerical approach to capture

fine details, e.g., transitions between different flow regimes, which are quite difficult

to be accessed through experiments, and which are not predictable through DEM

simulation for large cylinders with billion of particles.

Comparison with experimental results of Ding et al. [38]

Ding et al. [38], through adoption of refined imaging techniques (PEPT, Positron

Emission Particle Tracking), measure surface and bulk velocities, together with surface

shapes, at the symmetry cross-section of a rotating drum. We now report on our

simulation results on such subtle features of the flow field, and compare predictions

with experiments. For the parameters adopted in our simulations, see line “D” in table

2.1. We will consider the free-surface shape, the granular velocity on the free surface,

and the velocity within the granular bed.

The mesh adopted is showed in fig. 2.22. Mesh convergence of the results is attained

with 442750 elements.

Figure 2.23a shows the shape of the free surface from simulations and experiments.

Our results give the steady state surface shape attained after about 10s from start-

up: the surface reaches a constant angle of 23◦. The agreement with experiments is

quantitative.

At variance with the free surface shape, the calculated velocities do not attain a

steady state. Consequently, we plot those data by reporting averages and standard

deviations, to account for the persistent oscillations predicted by the numeric. Figure
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Fig. 2.22 Adopted mesh (“C”).
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Fig. 2.23 Comparison between our simulation results (line and shaded area) with Ding
et al. experiments (points). (a) Shape of the free surface typical of the rolling motion.
(b) Bed surface velocity profile, us, versus the x-direction. (c) x-direction velocity
throughout the depth of the granular bed, for two different dimensionless x-coordinates
(see main text).
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2.23.b shows the bed surface velocity profile, us, plotted as a function of a coordinate

x on an axis going from the top to the bottom of the free-surface, as in “figure 1” in

Ding et al. [38]. Agreement is excellent throughout the surface, with the slopes close to

cylinder walls and the velocity maximum value being quantitatively predicted with the

JFP constitutive equation. The largest value of the superficial velocity occurs around

the mid-chord position; hence particles moving at the surface accelerate until they

reach the mid-chord, and then decelerate. The standard deviation measured in the

numerical simulation (showed with shaded area) encloses very well the spread of the

experimental data.

Figure 2.24 shows x-component of the velocity within the granular bed, at two

different x-coordinates ( x is made nondimensional through the chord length 2L). The

y coordinate measures the depth within the bed, and it is y = 0 at the free surface.

Agreement between experiments and predictions is quite good. As expected, and as

shown in the experiments, the largest x-component velocity in the active region is at

the free surface, and makes the flow field similar to a chute flow [148]. As Ding et

al. reported, by increasing y/R, i.e., moving towards the cylinder wall, the x-component

of velocity eventually attains the wall velocity, which theoretical value in case of no-slip

is |ΩR| = 0.036m/s, very close to the effective value, thus indicating that the slippage

between the inner wall and the granular bed is indeed small.

Finally, we have analysed the average velocity profile in the bed depth at the

mid-chord position (x/2L = 0.25), as predicted by our simulations. It so appears that,

moving from the free-surface along the y-direction (fig. 2.25), the average velocity in

the flowing layer is well fitted with a Bagnold-like profile [10], with the velocity given

by u = uT OP (1 − a
(

y
R

)3/2
), where a is a fitting parameter and uT OP corresponds to

the velocity at the free surface. (Notice that, in fig. 2.25, we subtracted the rigid

rotation velocity.) In the “jammed region”, close to the wall, an exponential-like tail
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Fig. 2.24 x-direction velocity throughout the depth of the granular bed, for two different
dimensionless x-coordinates (see main text).
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Fig. 2.25 Our simulation results (line) for x-direction average velocity (scaled of the
rigid rotation) throughout the bed depth, at the mid-chord position. Fittings by
Bagnold profile in the flowing layer (⊕ symbols) and by an exponential curve in the
rigidly rotating part (∗ symbols).

gives a reasonable fit. The two fitting in figure 2.25 are ub = 0.127 − 1.96( y
R

)3/2 and

ue = −1.46 · 10−3 + 1.07 · e−22.2 y
R are respectively the Bagnold and the exponential

fitting.

Comparison with experimental results of Pohlman et al. [129]

Pohlman et al. [129] measured the velocities of particles at the free surface of the

rotating tumbler using Particle Tracking Velocimetry (PTV). For the parameters

adopted in our simulations, see lines “F” and “G” in table 2.1.

In the following simulations we have adopted a mesh of 310388 for AR=1.03 and

132080 for AR=0.26, as results of spatial convergence.

As mentioned before in section 2.1.1, Pohlman et al. [129] investigated the free sur-

face velocity of 3D cylinders changing the drum width hence, to reproduce qualitatively

their experimental results we have changed the width of the cylinder in case “A” (tab.
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2.1), in order to have the same aspect ratio (AR) used by the authors. They reported

the stream-wise velocity, normalized with the velocity value on the symmetry plane

at the mid-chord position, as a function of the axial position and observed a velocity

close to the wall 20% higher than that at the centre when W/D > 1, even though the

particles on the wall were slower due to friction, in fig. 2.26 the comparison with our

simulative results is showed. The agreement is very satisfying.

Chen et al. [28] conducted a similar numerical study using the discrete element

method for the granular flow inside 2D and 3D drums. They found a good agreement

with prior measurements at the surface by Pohlman et al. [129]; they found a region of

high speed flow with axial components of velocity occurs near each end-wall in long

tumblers. The increase of the velocity near the end-wall is lighter than that reported

by the experimental measurements of Pohlman et al. [129]. Chen et al. [28] found a

velocity close to the wall 10% higher than that at the centre for W/D = 1.43, while

Pohlman et al. [129] reported a value of 20% for W/D > 1, consistently with our

simulations.

So, we can conclude that although DEM simulation can capture several features of

granular flows, our continuum approach seems more accurate in describing granular

flows in 3D long cylinders with many particles.

In fig. 2.27 are showed our simulative results for contour and density plot of the

axial component of the free-surface velocity for AR = 0.26 and AR = 1.03. The axial

velocity is normalized by the speed value on the symmetry plane at the mid-chord

position. The velocity vector map is represented by arrows. The free-surface velocity

in both cases is directed toward the centre in the upper part of the free surface and

toward the end walls in its lower part, in fact the magnitude of the axial velocity is

bigger in the cylinder corners. The two areas are not symmetric: the zone near the top

of the free surface is bigger in size, but weaker than the bottom area. Our results in
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Fig. 2.26 Predicted and experimental stream-wise velocity profile along the axial
direction varying the aspect ratio. Our simulation results (lines on the right) for
stream-wise velocity along the z-direction, at the mid-chord position of the free-surface.
On the left experiments by Pohlman et al. [129]. Blue is used for AR = 1.03, red for
AR = 0.26.
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Fig. 2.27 Density plot of the axial velocity on the free surface and velocity vector map
represented by arrows, parametric in the aspect ratio. On the left experiments by
Pohlman et al. [129]. On the top of the figure: AR = 0.26, on the bottom: AR = 1.03.
Contours at ±0.03 m/s, ±0.046 m/s and ±0.07 m/s. The cylinder end wall, the cylinder
symmetry plane, the top and the bottom of the avalanche are specified for clarity.

fig. 2.27 are consistent with the observation made by Pohlman et al. [129] showed in

fig. 2.6.
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Chapter 3

Mixing of bi-disperse granular

material

3.1 Literature review

Granular mixing in three-dimensional systems is a complex operation, since a difference

in particle size, shape or density can lead to segregation. These differences between two

or more granular phases can lead to very complex and different segregation patterns

depending on all operating conditions. Segregation is the major issue in granular

processes [110]. Unlike the mixing of liquids, the flow and mixing of granular materials

is poorly understood and a general framework is still lacking [122]. In fact, segregation

has been discussed by a great number of authors in literature but results are discordant.

For this reason, this chapter begins with a short review of the literature regarding

those aspects of mixing where some agreement has been reached.

Then, we will present the comparison between our simulation results and experi-

ments on mixing of bi-disperse granular media different only in colour or different only

in density. Our aim is to evaluate if the continuum approach with JFP model allows to

simulate the dynamic behaviour of two different granular materials in a 2D tumbler.
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The ultimate goal is to predict some aspects of axial segregation observed in the

experiments of Taberlet et al. [157] and Taberlet et al. [158] and reported in the results

of [70] by means of 3D CFD simulations.

3.1.1 Experimental literature

Nityanand et al. [117] described the radial segregation obtained in their work stating

that, at low rotational velocity, percolation dominates on inertia, hence smaller particles

sink to lower levels in the flowing layer following the inner streamlines, and this leads

to the formation of a smaller particles core. On the other hand, at high drum speeds,

inertia dominates, and the segregation pattern reverses, with the smaller particles on

the drum walls instead that inside the core.

The just mentioned experimental result at low rotation rate was confirmed by

Pollard and Henein [130], who focused on radial segregation due to size differences of

irregularly shaped particulate solids in horizontal rotating cylinders. Moreover, they

reported that the rate of segregation is faster if difference in particle size is larger.

Wightman and Muzzio [164], on the other hand, observed the reverse phenomenon,

namely, that large particles concentrate in the core, at least for the examined rotation

rate.

Core segregation was reported too by Alonso et al. [4], who found that, at a given

rotation rate, smaller or heavier particles concentrate in the core of the bed, but size

and density can somehow compensate with each other, contrasting segregation. They

performed experiments in a quasi 2D-cylinder.

Ottino and Khakhar [120] also reported on the effect of density and size of particles

on segregation patterns in a quasi 2D-cylinder in their review. In the experiments,

they used glass and steel beads with various diameters.
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Cantelaube [25] studied the dynamics of a large diameter particle intruded in a bed

of small particles. They found a migration of the intruder bead to the centre of the

bed, see fig. 3.1 for the experimental result.

Clément et al. [30] investigated the mixing of steel particles in the slumping regime,

with particles only differing in size. They reported that largest particles tend to stay

in the cylinder outer region more than small particles (see fig. 3.2). The same authors

stated that the centre of the cylinder and the outer zone near the walls “attracted”

the trajectory distributions. So, the size segregation mechanism can be seen as the

predominance of one attractor compared to the other. The authors talks about a

bi-stability transition controlled by the size ratio.

Fig. 3.1 Dynamic of a bead intruder greater than the bulk particles [25].

Fig. 3.2 Segregation patterns when 1.5 mm steel beads (white) are mixed with 1 mm
(a), 1.5 mm (b), 2 mm (c) steel beads [30].
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Khakhar et al. [86, 85] focused their attention on the radial segregation and the core

formation due to density difference of two types of particles equal in size, comparing

experimental, DEM, Monte Carlo, and continuum theory results. The analysis is

restricted to low speeds of rotation, when the free surface of the granular solids is nearly

flat. They reported a formation of a central segregated core of the denser particles.

McCarthy et al. [108], too, studied density- induced segregation, comparing ex-

perimental results with Particle Dynamics and Lagrangian Simulation results. The

heaviest particles form a bulk core.

Jain et al. [73] presented an experimental investigation of size, density, rotational

velocity, and filling effect on mixing. They used a half filled quasi-2D drum filled

with a bi-disperse mixture of equal volumes of different sizes of steel and glass beads.

They observed “radial streaks” or a “classical core” (see fig. 3.3 and fig. 3.5). When

percolation and buoyancy act in the same direction, that means when the smaller

particles are also the heavier, a core of smaller denser particles takes place; the formation

of streaks depends on the size ratio of the two type beads: the larger is the diameter

ratio the more uniform is the core boundary, see fig. 3.3. For diameter-density couplings

where percolation and buoyancy oppose to one another, there is a transition from a

core composed of denser beads to a core composed of smaller beads (see fig. 3.4). They

observed that mixing can be achieved if the denser beads are also bigger and if the

ratio of particle size is larger than the ratio of particle density. The pattern depends

on the interplay size-density, and on drum speed (see fig. 3.5).

Xu et al. [166] studied mixing behaviours of equal-sized (but differently coloured)

glass beads in a rotating drum by both 2D DEM simulations and experiments. They

experimentally observed the mixing process in various flow regimes and concluded that

experiments indicated that higher rotation speed can enhance mixing.
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Fig. 3.3 Segregation patterns when buoyancy and percolation mechanisms act in the
same direction after 2 revolutions. 1mm steel beads with 2mm (a), 3mm (b), 4mm
(c) glass beads [73].

Fig. 3.4 Segregation patterns when buoyancy and percolation oppose each other after
20 revolutions. 4mm steel beads with 0.2mm glass beads (a): no segregation, 1mm
glass beads (b): bands of steel beads near walls, 2mm glass beads (c): small core of
glass beads, a band of glass beads near walls, and a band of steel beads between them,
3mm glass beads (d): glass beads on the periphery [73].
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Fig. 3.5 Segregation patterns depending on drum speed after 20 revolutions. 1mm steel
beads and 3mm glass beads at 1rpm (a), 4rpm (b), 8rpm (c), and 16rpm (d) [73].

Metcalfe et al. [113] focused their attention on the segregation pattern for salt

grains coloured in two different ways for the avalanching regime. The same authors

performed simulations using a “random map model”. They reported that the mixing is

hampered by filling greater than 50% (fig. 3.6).

McCarthy et al. [109] confirmed the results of Metcalfe et al. [113] and extended

the study of segregation patterns to different geometries (2D and 3D) by means

of experiments and simulations. They merged molecular dynamics simulation and

geometrical considerations to reduce the computational time. They found the optimal

filling for mixing in each geometry studied, by defining a “mixing efficiency” that also

accounts for the amount of interface reached during mixing. In fig. 3.7, the dependence

of such efficiency on filling is reported, showing that the best fill correspond to 0.25 for

a circular section of the drum. In this case, they also show that a core occurs when

the drum is more than half-filled.

Metcalfe et al. [112] studied the effect of the aspect ratio in rotating drum using

MRI technique and focusing the attention on core size and patterns. They found that
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Fig. 3.6 Segregation patterns for avalanching regime at different filling degrees after 2
revolutions. Simulation results on the left, experimental ones on the right [113].

Fig. 3.7 Dependence of the mixing efficiency on the filling degree for simulations [109].
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the core radius decreases by increasing the aspect ratio and by decreasing the filling

degree and the wall roughness.

Although this thesis will essentially deal only with the above described phenomenol-

ogy, i.e., radial/mixing segregation in rotating drums, it should be clarified that the

migration problem in this geometric configuration is in fact much more complex. In-

deed, axial mixing/segregation in rotating drums is an important and ample issue,

much studied in the literature; we will however only give here a few examples on this

problem.

Santomaso et al. [143] experimentally studied mixing in two cross-section regimes,

rolling and cataracting, with two powders of different colours initially axially segregated,

to understand how drum speed influences mixing efficiency. They observed that the

cataracting regime improves the homogenization and the mixing rate over the rolling

regime. They proved that cataracting prevents the formation of segregation patterns,

and that this regime destroys axial convective fluxes responsible for the formation of a

bulk core. A diffusive mechanism is demonstrated to fit properly the mixing during

cataracting flow.

Santomaso et al. [145] experimentally studied radial segregation driven by axial

convection. They found a core of heavy particles also in the axial direction, with light

particles occupying the zones of the granular bed near the two end-walls.

Taberlet et al. [157] and Taberlet et al. [158] compared experimental and DEM

simulation results on the combination between axial and radial segregation in a rotating

drum partially filled with a ternary mixture of beads of three sizes. In experiments,

surface particle velocities are measured by particle tracking. In fig. 3.8 the experimental

results for axial segregation patterns over time are showed; initially the large particles

form an outer surface band, the medium ones constitute an internal band, and the

smallest particles form a core (1-1.5 min, a-b). Subsequently, axial segregation occurs,
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with transverse layers throughout the granular bed (2-2.5 min, c-d). Furthermore,

while no significant jump was found in velocity and velocity gradient at interfaces in

the radial direction, large jumps occur in the axial direction of the drum.

Fig. 3.8 On the left: Image sequence of ternary mixture of 0.6mm (blue), 1mm (yellow),
and 2mm (red) particles. On the upper right: radial core on the end wall of the cylinder
after 1 min of rotation; the smallest particles (blue) form a core in the centre with the
medium sized (yellow) next out and the largest farthest out (red). On the lower right:
schematic of an axial band evolving with time [158].

Finally, we mention that radial segregation is always faster than axial one; radial

process is observed within several drum revolutions, while axial segregation evolves

very slowly and usually takes several hundreds or even 10′000 cylinder revolutions

[130, 164].

3.1.2 Numerical literature

DEM literature

Dury and Ristow [42] investigated with 3D discrete element method the dynamics

of the size segregation process of binary mixtures differing in size in rotating drums,
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operated in the continuous flow regime. They found that segregation is favoured by

more than half-filled cylinder, as experimentally reported by Metcalfe et al. [113]. The

authors reported that radial segregation occurs for any arbitrary small particle size

difference. Interestingly, they found that, starting with initially separated granular

phases, the light particles always maintain a geometrically connected shape, confirming

experimental results by Pollard and Henein [130], Alonso et al. [4], Clément et al.

[30], Cantelaube [25], Ristow and Nakagawa [138], Taberlet et al. [157].

In a second work the same authors, Dury and Ristow [43], studied again the radial

segregation dynamics of a binary particle mixture in a three-dimensional cylinder using

DEM. The size ratio of the two types of particles was fixed, while the density of the

smaller particles was varied in order to see the interplay of size and density radial

segregation. The initial configuration was set with an equal amount of smaller and

large particle occupying the two cylinder halves divided by the cylinder symmetry

plane. They found that if the smaller particles also have the higher density, the radial

segregation process is enhanced. Instead, if the smaller particles have the lower density,

the radial segregation is counterbalanced, supporting the experimental results by Jain

et al. [73].

Yamane [167] also investigated radial size segregation in a rotating cylinder using

DEM. After only few revolutions of the cylinder he found a central core of smaller

particles surrounded by larger particles, confirming the results of [42]. Moreover, he

found particle migration in axial direction.

Pereira et al. [126] used DEM and experiments to study the segregation of a binary

mixture equal in size but of differing density granular material in an axially rotating

cylinder. The agreement between simulation and experimental results was very good.

The final asymptotic state is found to be independent of the initial segregation state of
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the particles: a segregation core of heavy particles is formed, as in the experimental

results of Alonso et al. [4], Khakhar et al. [86, 85], and McCarthy et al. [108].

Xu et al. [166] studied mixing in a rotating drum by both 2D DEM simulations and

experiments. They explored the dependence on both physical properties, i.e. density

or friction, and geometrical properties on mixing process. The authors highlighted

that particle density and size are the dominating factors in the segregation dynamic,

while the effect of frictional coefficient is little influencing. In fig. 3.9 are showed

simulative results for size segregation; the authors found that greater particles form

an inside core. These results significantly different from the experiment of Pollard

and Henein [130], Alonso et al. [4], Clément et al. [30], Cantelaube [25], Ristow and

Nakagawa [138], Taberlet et al. [157] and the DEM simulations of Dury and Ristow

[42] and Yamane [167], but consistent with the results of Wightman and Muzzio [164].

The authors do not understand the reason of this disagreement, but an explanation

could perhaps be found trough to observed dependence on angular velocity reported

by Nityanand et al. [117].

Fig. 3.10 show the radial segregation for particles differing in density, with a core of

denser particles (blue), in agreement with the results of Alonso et al. [4], Khakhar et al.

[86, 85], Pereira et al. [126], and McCarthy et al. [108]. DEM radial segregation results

for particles differing in size and density shows a segregated core of smaller particles, if

these ones have the greater density and instead, a better homogenization if the bigger

beads are denser (see. fig. 3.11), in agreement with the experimental results of Jain

et al. [73].
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Fig. 3.9 Simulated mixing patterns at different time instants: 1st row, size ratio 4:1;
2nd row, size ratio 2:1 [166].

Fig. 3.10 DEM radial density segregation [166]. Blue particles are the denser and form
an inside core.

Fig. 3.11 DEM radial segregation results for particles differing in size and density,
smaller/bigger particles have the higher density in the first/second row [166].
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CFD literature

While many numerical studies based on DEM have been made for the study of

segregation in rotating drum cylinder, the continuum approach has been used in few

studies.

Gray [63] compared experiments and theory for the quasi two-dimensional steady

continuous motion of mono-disperse granular material in a rotating drum. In the

theory the fluid-like avalanche is treated as a shallow incompressible Mohr-Coulomb or

inviscid material sliding on a moving bed at which there is erosion and deposition. The

solid is treated as a rigid rotating body, and the two regions are coupled together using

a mass jump condition. For their results see fig. 3.12; comparison between theory and

experiments is very good for high filling degree, to slightly deteriorate for low filling

degree.

Huang et al. [69] and Huang and Kuo [70] used Eulerian continuum approach using

the constitutive equation from kinetic theory of granular matter. They found a core of

small particles and two side “wings” not far from the end walls of the cylinder (fig. 3.13).

The formation of radial segregation core and axial segregation bands qualitatively agree

with the experimental observations. They used three kinetic models: Syamlal–O’brien

model [104], Gidaspow model Gidaspow [58], and DARF model Huang et al. [69]. Their

results are very dependent from the adopted model.

He et al. [65] simulated segregation of binary mixtures in a rotating drum using

the Eulerian based continuum model. The authors reported that small particles tend

to concentrate in the core region, while large particles tend to occupy the outer region,

consistent with experimental observations [130, 4, 30, 25, 138, 157]. Starting with a

homogenous mixture the authors reported a radial segregation fully developed within

2.56 drum revolutions, which is consistent with experimental observations [130, 164].
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Fig. 3.12 Experimental and simulative results for different filling degree over time [63].

Fig. 3.13 Axial and radial segregation by Eulerian continuum approach. Volume
fraction of the particulate phase of the greater particles (top row) the smaller particles
(bottom row) at t = 3, 5, 10, 20 s (from left to right) [70].
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Ding et al. [37] used PEPT and a two-dimensional mathematical model based on

the Eulerian approach and the thin layer approximation to capture solid motion and

concentration distribution of grains differing in diameter. Small particles are reported

to concentrate in the core region, whereas large particles tend to occupy the shell

region, in good agreement with their model predictions and the other experiments

in literature. The axial particle mobility increases with drum rotational speed, the

mutual diffusivity of small particles is higher than that of large particles.

3.2 Governing equations

We solved numerically granular flow of bi-disperse, cohesionless and dry grains inside a

rotating cylinder, the remaining space, not occupied by the grains, is filled by air.

For our first goal, we focused on simulations of two granular phases differing only in

colour as in Metcalfe et al. [113], whose experimental results are going to be compared

with our predictions.

The following simulations will deal with density segregation experimentally observed

by Alonso et al. [4], Khakhar et al. [86, 85], and McCarthy et al. [108]. Finally, we

investigate some features of axial segregation.

Equations for the mass balance and the momentum balance with the adoption of

the JFP constitutive equation are solved with the Volume of Fluid (VoF) approach

as for the mono-disperse case. In this case we have two volume fractions αg1 and αg2,

representing the fractions occupied in each control volume by the granular phase “1”

or “2” respectively. Hence, the governing equations for the mixture are very similar to

the mono-disperse ones:

∇ · u = 0 (3.1)

∂ρu

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ + ρg (3.2)
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3.2 Governing equations

where ρ, p, u, and τ are the density, pressure, velocity, and the shear stress of the single

whole fluid, g is the gravity, and t is the time.

∂αg1

∂t
+ ∇ · (αg1u) = 0 (3.3)

∂αg2

∂t
+ ∇ · (αg2u) = 0 (3.4)

The volume fraction αgi ranges from 0 to 1 (granular phase “i” only). The interface

between any two phases is postulated to be at αgi = 0.5.

The density and the viscosity of the overall fluid are:

ρ = αg1 ρg1 + αg2 ρg2 + (1 − αg1 − αg2) ρair (3.5)

η = αg1 ηg1(IID, p) + αg2 ηg2(IID, p) + (1 − αg1 − αg2) ηair (3.6)

All the phases are assumed to be incompressible. Thus, the packing factor of the

grains (ϕi = ρgi/ρ) is constant, fixed to 0.6 in all our calculations as in Jop et al.

[78, 79].

In eq. 3.2 τ is:

τ = 2ηD (3.7)

In eq. 3.6.b ηgi are given by JFP model:

ηg1 =
(

µs1 + µ21 − µs2

1 + I0/I

)
p

IID

= µ1(I) p

IID

(3.8)

ηg2 =
(

µs2 + µ22 − µs2

1 + I0/I

)
p

IID

= µ2(I) p

IID

(3.9)

When the particles differ only in colour, in the simulation will be µs = µs1 = µs2

and µ2 = µ21 = µ22, and so µ(I) = µ1(I) = µ2(I) and ηg = ηg1 = ηg2.
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Boundary conditions

Unlike the mono-disperse case, for which we have studied a fully three-dimensional

problem, while for the bi-disperse granular media, different only in colour or different

only in density, we perform 2D-simulations. The other boundary conditions are the

same used in the 3D-case.

For boundary conditions used in the study of axial segregation, a 3D problem, we

refer to the section 2.2.

On walls we choose a no-slip boundary condition that means:

u = Ω × r (3.10)

where Ω is the angular velocity vector and r is radial position vector.

The boundary condition for αgi at walls is a zero gradient condition:

∇αg1 · nw = 0 (3.11)

∇αg2 · nw = 0 (3.12)

where nw is the normal to the walls.

This is a standard αgi boundary condition of the solver that we have used to solve the

equations above.

For the numerical method see section 2.3.
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Table 3.1 Parameters used in our simulations for the bi-disperse case

Ω[rad/s] f [%] dp[mm] ρp1 − ρp2[ g
m3 ] D[cm] W [cm] µs µ2

A 1.5 20, 40, 80 0.6 2.46 14.4 - 0.4 0.64
B 1.5, 7.5 60 0.6 2.46-1.23 14.4 - 0.4 0.64
C 1.5, 7.5 60 0.6 2.46-1.23 14.4 14.4 0.4 0.64

3.3 Results

3.3.1 Mixing of particles of two different colour

Our first aim was to study the segregation patterns of a bi-disperse mixture where the

particles differ only in colour as the experiments of Metcalfe et al. [113].

The parameters used in our simulation are reported in row “A” of tab. 3.1.

The authors did not report the rotational velocity of their experiments, so we

performed our simulation at different drum speed and we are going to show predictions

for the rotational velocity that best matched experiments. This choice is in agreement

with the velocity value used by Liu et al. [98] in a DEM similar study.

For µs and µ2 we used parameters of Jop et al. [78, 79], since such material

parameters are not available for the salt cubes used by Metcalfe et al. [113].

The experiments are shown until two revolutions, while we study the mixing process

until 6 rev.

In the following simulations we have adopted a mesh of 17153 elements and a Co

number equal to 0.06, as results of spatial and temporal convergences respectively.

In fig. 3.14 there is the initial setting in our simulation for 0.2 filling degree, for the

other fills the setup is the same. The initial configuration starts from two completely

segregated granular phases.

When the filling degree is low, already after 2 revolutions, we can see a complete

homogenization in our simulation as in the experiment, see fig. 3.15.a. When the filling

73



3.3 Results

Fig. 3.14 Initial configuration for mixing simulations (0.2 filling degree). Blue colour
stands for granular phase “1”, red for “2”, the violet is used when αg1 and/or αg2 are
equal to 0.5.

is increased to 40%, the formation of a core appears, which becomes very pronounced

when the fill is further increased to 80% (fig. 3.15.b and .c). Our results are in

qualitative agreement with the experimental ones and are very promising.

The misalignment of the inclination of the free surface was to be expected, it is due

to the inadequate µs and µ2 adopted in our simulations; these values are measured for

glass beads and not for salt used in the experiment of Metcalfe et al. [113]. In fact, we

remember that µs and µ2 are the physical parameters linked to the inclination of the

free-surface.

We have prolonged the simulation until 6 revolutions to see the patterns evolutions

and to study the time influence on mixing, the results are shown in fig. 3.16; for 40%

the formation of a “red” core (phase 2) is clear, while for 80% the two phases are still

highly segregated and a homogenization is far to be seen.
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3.3 Results

Fig. 3.15 Comparison between our predictions and experiments about segregation
patterns after 2 rev. a: 20%, a: 40% and c: 80%.

Fig. 3.16 Segregation patterns after 6 revolutions for our simulations. a: 20%, a: 40%
and c: 80%.
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3.3 Results

The differences between simulations and experiments can be addressed also to the

different predicted regime; adopting parameters for glass beads and such rotational

velocity, we capture a rolling regime, while Metcalfe et al. [113] observed a slumping

one. In fact, as we can see from fig. 3.15 the predicted flowing layer is greater than

the experimental one and this lead to a smaller core.

The effect of cubic particles, instead of round ones taken into account in the model,

should not be forgotten; round grains tend to roll easier than irregular particles which

make a stronger structure, able to limit the relative movement among particles. So in

our simulations we have studied a material “weaker” than that used in experiments of

Metcalfe et al. [113].

However, as done by Metcalfe et al. [113], we can conclude that fillings up to 50%

hinder mixing and lead to segregation and core formation.

3.3.2 2D Density segregation

In this section our aim is to predict the experimental observations of Alonso et al.

[4], Khakhar et al. [86, 85], and McCarthy et al. [108], where heavier particles form a

core surrounded by lighter ones.

In order to obtain this result we have halved the density of the granular phase “2”

from the previous case. The parameters used in our simulations for the bi-disperse

case with density difference are reported in row “B” of tab. 3.1.

The parameters µs and µ2 are the same used in the previous case.

Also the mesh, with 17153 elements, and the Co number, equal to 0.06, are the

same.

Since we want to observe the formation of an inside core, and low filling degree

ensures the mixing, while high filling requires several revolutions for the mixing process,

as shown above, we choose to study intermediate filling level (0.6).
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The simulations are conducted until six revolutions as before.

We study the problem for the same velocity of the previous case, 1.5 rad/s, and for

an additional rotational velocity five times bigger (7.5 rad/s).

In fig. 3.17 there is the initial setting in our simulation for 0.6 filling degree. As it

can be seen by the figure the heavy particles are on the left (blue phase) and the light

ones on the right (red phase). The initial configuration starts from two completely

segregated granular phases.

Fig. 3.17 Initial configuration for mixing simulations (0.6 filling degree). Blue colour
stands for the heavy granular phase “1”, red for the light phase “2”, the violet is used
when αg1 and/or αg2 are equal to 0.5.

In fig. 3.18 the configuration after six revolutions is shown. We can observe the

formation of an inside core made of denser particles confirming the experimental results

of Alonso et al. [4], Khakhar et al. [86, 85], and McCarthy et al. [108] and the DEM

results by Xu et al. [166]. The formation of a core is already visible (if barely) after

77



3.3 Results

two revolutions only. After 6 revolutions, on the other hand, the formation of a large

segregated inside core is apparent.

Fig. 3.18 Configuration for 1.5 rad/s after 2 and 6 revolutions. Heavy granular phase
in blue.

A second simulation is also run to identify the possible influence of the rotational

velocity.

Simulations at the velocity of 7.5 rad/s predict the cascading regimes instead of the

rolling one showed in all the earlier cases, see fig. 3.19. The segregation process is now

much faster, as it can be seen by comparing the fig. 3.18 and 3.19 after 2 revolutions

only. Conversely, after 6 revolution the homogenization for the faster rotation is much

better than for the rolling regime. This evidence, in fact, confirms the experimental

results about the velocity effects by Xu et al. [166] and Santomaso et al. [143].

The reason of this better homogenization at higher speed can be explained consid-

ering the bigger thickness of the flowing layer at higher angular velocity [48].
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Fig. 3.19 Configuration for 7.5 rad/s after 2 and 6 revolutions. Heavy granular phase
in blue.

3.3.3 3D Density segregation

The ultimate goal is to predict the axial segregation due to density difference.

In this case we performed 3D simulations.

The parameters adopted are reported in row “C” of tab. 3.1, the values are the

same of row “B”, except the addition of cylinder width equal to diameter.

For the initial setting of our simulation see fig. 3.17.

The simulations are conducted until three revolutions in this case.

The fig. 3.20 shows the evolution patterns for 1.5 rad/s at different axial coordinates.

As we can see, our simulations show a core of heavy granular material which decreases

getting closer to the end-wall. After 2 revolutions this core disappears near the end-wall,

the light particles enclose completely the denser core.
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Our simulation results confirm the experimental evidence of Santomaso et al. [145],

who reported the formation of a core made of denser particles for a bi-disperse case of

equal-sized beads.

Fig. 3.20 Configuration for 1.5 rad/s at z=0 (on the symmetry plane), z=-W/4, z=W/2
(on the end-wall) after 1, 2 and 3 revolutions. Heavy granular phase in blue.

We have also studied the influence of the rotational velocity on axial segregation

patterns; in fig. 3.21 the segregation pattern over time at different axial positions for

7.5 rad/s is reported.

The first evidence is that axial components of the velocity enhance mixing as we

can see from the comparison of the fig. 3.21 for z=0, t=2revs and the fig. 3.19; the

homogenization is better for the 3D case.

As we can see from the fig. 3.21 the evolution patterns are very complex at high

rotational velocity; the blue core of heavy particles is bigger in size and in volume
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fraction value at an intermediate position between the symmetry plane and the end-wall

(z=-0.035m) at any time. The core has almost vanished at the symmetry plane and at

the end-wall for t=2revs, while it is still distinguishable for z=-0.035m.

This very particular segregation pattern can be observed in fig. 3.22, which

represents a 3D contour for αheavy = 0.7. There are two cores, one very small near the

symmetry plane and another at an intermediate position between the symmetry plane

and the end-wall, in the proximity of the end wall there are only light particles.

Fig. 3.21 Configuration for 7.5 rad/s at z=0 (on the symmetry plane), z=-W/4, z=W/2
(on the end-wall) after 1, 1.5 and 2 revolutions. Heavy granular phase in blue.

To the best of our knowledge, these complex segregation patters have not been

observed for particles differing in density, in fact reconstructing particle positions and

trajectories inside the entire granular bed over time, for long cylinder, is very difficult

by means of experiments.
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Fig. 3.22 Cores formation of heavy particles for 7.5 rad/s after 2 revolutions. It
represents a 3D contour for αheavy = 0.7
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Chapter 4

Conclusions and future

perspectives

In this work we have studied, by means of 3D CFD numerical simulations, the flow

of dry, mono-disperse granular materials in rotating cylinders, at various angular

velocities, with different filling levels and glass bead sizes, and the bi-disperse granular

flow of grains different only in colour or different only in density.

The granular material is modelled as a continuum fluid by adopting the visco-plastic

Jop-Forterre-Pouliquen constitutive model [79]. All the constitutive parameters in

JFP equation have been identified from independent data, also derived in geometries

different from that of drums. The µ(I)–rheology is then introduced without resorting

to adjustable parameters.

As we have reviewed in sections 2.1 and 3.1, most published research works proposed

numerical models which require adjustable parameters, and/or studied 2D problems,

despite the proven influence of side-walls [78, 129].

The importance of the third dimension is confirmed by our simulations, which

give the first quantitative agreement with stream-wise velocity measurements reported

in literature Pohlman et al. [129]. Moreover, our 3D simulations have shown very
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complex three dimensional patterns for bi-disperse systems with particles differing

only in density. It would be quite important to compare this prediction with actual

experimental result.

Overall, our simulation results provide a substantial validation of JFP model in

complex 3D geometry, and capture the succession of flow regimes categorized by

Mellmann [111], i.e., slumping, rolling, cascading, cataracting, and centrifuging.

Most studies reported in literature focused mainly on rolling regime because it is

characterized by a stable and flat surface of flowing layer, this feature makes experiments

much more simple [143, 20, 2, 141]. Also some models reported in literature require

this simplification [19, 86, 38, 121, 141]. This thesis overcomes this limit.

In this work the first prediction of slumping regime through continuum modelling

is reported, and complex segregation patterns, never before observed by means of

experiments or simulations, are showed.

The results for mono-disperse case are compared with experimental data by Santos

et al. [146], Balmforth and McElwaine [11], Ding et al. [38] and Pohlman et al. [129].

We refer to the observations of Alonso et al. [4], Khakhar et al. [86, 85], McCarthy

et al. [108], Santomaso et al. [143, 145] and Xu et al. [166] for the bi-disperse one.

The agreement is quantitative in most cases, and thus supports the use of continuum

mechanics to describe granular dense flows.

In particular, the adoption of JFP constitutive model proves to be very effective in

a wide range of parameter values. Indeed, free-surface shape, superficial velocity and

velocity within the granular bed are predicted in amazing detail.

These results show the great capabilities of our numerical approach to capture fine

details, e.g., transitions between different flow regimes, which are quite difficult to be

accessed through experiments, and which are not predictable through DEM simulation

for large cylinders with billion of particles.
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Our next purpose is to study the influence of µs and µ2 on the segregation patterns,

matching quantitatively the experimental results of Metcalfe et al. [113].

Moreover, we want to study the mixing process of a mixture constituted of two or

more kind of grains differing in size or density or their interplay, comparing our results

with experiments reported in literature [139, 130, 4, 30, 138, 157, 37, 164, 86, 85, 108,

120, 73].

It is a question of future research investigate the third dimension more in detail. A

closer look to experimental and numerical literature on axial mixing, reveals a number

of contradictory evidence and little known aspects [151, 138, 43, 135, 167, 157, 142,

143, 145, 51, 158, 126, 1, 144, 3, 70].

A point which needs further investigations is the study of wall boundary conditions

[7, 6]. Here, a simple no-slip condition has been adopted, while a wide variety of

behaviours has been reported for granular materials near walls [131, 23, 56].

Another important improvement could be the implementation of a variable packing

factor [14], which would allow to study regimes where the gas behaviour is experienced,

e.g. like in the cataracting regime.
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