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Summary

In recent years the term “Artificial Intelligence” (or Al) has become more and
more an integral part of the daily life of all of us. We are increasingly dealing
with smart mobile phones, intelligent voice assistants, robotic chats, etc. Our
interaction with these “intelligent systems” has become so predominant and
widespread that even the world of industry has begun to use such Al in factory
life and logistics. The term artificial intelligence refers to the ability of a
computer (an artificial entity) to perform functions resembling the typical
reasoning of the human mind (i.e. intelligence). Indeed, Marvin Minsky,
Alan Turing, Frank Rosenblatt and other Al pioneering studies focused on
the development of artificial entities able to autonomously do things usually
requiring human intelligence (e.g. the ability to make a decision based on the
status of the environment) to be performed.

Although commonly thought to be a child of the last years, the first
studies on artificial agents began on the eve of the second world war. From
that moment on, amid ups and downs, researches started focusing on the
development of theories and mathematical models laying the foundation for
the upsurge of artificial intelligence in a wide variety of domains. Nowadays,
the term Al is widely abused, and one of the unpleasant effects of this spread



with the mass audience is the confusion made with all its related terms, such
as “Pattern Recognition”, “Machine Learning”, “Deep Learning”, etc., too
often used interchangeably. Indeed, what usually media refers to with Al is
actually Machine Learning (ML), a term used to describe the ability of this
kind of Al systems to learn from examples, just as we humans learn from
experience. This peculiarity has made it possible to relieve the programmer
from the task of writing the sequence of operations necessary to perform a
given task (algorithm), allowing them to perform increasingly complex tasks,

for which it would have been impossible to code a solution.

Among all machine learning models, Artificial Neural Networks (ANN,
often referred simply as Neural Network - NN) are definitely the branch
that has been receiving the most media coverage since their parallel layered
structure of computing elements (i.e. artificial neurons) is inspired to the
human brain complex interconnected structure of biological neurons. More
recently, the introduction of General Purpose GPU (GP-GPU) computing,
the development of free and easy to use frameworks, the availability of huge
labelled dataset and progresses in gradient-based optimisation, determined the
uprising of Deep Neural Networks. The term “Deep Learning” (DL) refers
to a particular subset of ANNs characterised, inter alia, by a very “depth
structure” (i.e. made up of several layers). Another key aspect of deep models
is their ability to autonomously learn the best or set of features for the task
under analysis, to the point of even exceeding human capabilities in some
tasks. This characteristic, known as feature learning, has played a key role
in the recent spread of Al since allowed DL use also in domains lacking

effective expert-designed features.

The impact of Al, and in particular of deep learning, on the industry has
been so disrupting that it gave rise to a new wave of research and applications
that goes under the name of Industry 4.0. This expression refers to the appli-
cation of Al and cognitive computing to leverage an effective data exchange

and processing in manufacturing technologies, services and transports, laying



the foundation of what is commonly known as the fourth industrial revolution.
As a consequence, today’s developing trend is increasingly focusing on Al
based data-driven approaches, mainly because leveraging user’s data (such
as location, action patterns, social information, etc.) can make applications
able to adapt to them, enhancing the user experience. To this aim, tools
like automatic image tagging (e.g. those based on face recognition), voice
control, personalised advertising, etc. process enormous amounts of data
(often remotely due to the huge computational effort required) too often rich

in sensitive information.

Artificial intelligence has thus been proving to be so effective that today it
is increasingly been using also in critical domains such as facial recognition,
biometric verification (e.g. fingerprints), autonomous driving etc. Although
this opens unprecedented scenarios, it is important to note that its misuse
(malicious or not) can lead to unintended consequences, such as unethical or
unfair use (e.g. discriminating on the basis of ethnicity or gender), or used to
harm people’s privacy. Indeed, if on one hand, the industry is pushing toward
a massive use of artificial intelligence enhanced solution, on the other it is not
adequately supporting researches in end-to-end understating of capabilities
and vulnerabilities of such systems. The results may be very (negatively)
mediatic, especially when regarding borderline domains such those related
to subjects privacy or to ethical and fairness, like users profiling, fake news

generation, reliability of autonomous driving systems, etc.

We strongly believe that, since being just a (very powerful) tool, Al is
not to blame for its misuse. Nonetheless, we claim that in order to develop
a more ethical, fair and secure use of artificial intelligence, all the involved
actors (in primis users, developers and legislators) must have a very clear idea
about some critical questions, such as “what is AI?”, “what are the ethical
implications of its improper usage?”, “what are its capabilities and limits?”,

“is it safe to use Al in critical domains?”, and so on. Moreover, since Al is



very likely to be an important part of our everyday life in the very next future,

it is crucial to build trustworthy Al systems.

Therefore, the aim of this thesis is to make a first step towards the crucial
need for raising awareness about reproducibility, security and fairness threats
associated with Al systems, from a technical perspective as well as from the
governance and from the ethical point of view. Among the several issues that
should be faced, in this work we try to address three central points:

* understanding what “intelligence” means and implies within the context

of artificial intelligence;

 analyse the limitations and the weaknesses that might affect an Al-
based system, independently from the particular adopted technology or

technical solutions;

* assessing the system behaviours in the case of successful attacks and/or

in the presence of degraded environmental conditions.

To this aim, the thesis is divided into three main parts: in part [ we
introduce the concept of Al, focusing on Deep Learning and on some of its
more crucial issues, before moving to ethical implications associated with
the notion of “intelligence”; in part II we focus on the perils associated
with the reproducibility of results in deep learning, also showing how proper
network design can be used to limit their effects; finally, in part III we address
the implications that an Al misuse can cause in a critical domain such as

biometrics, proposing some attacks duly designed for the scope.

The cornerstone of the whole thesis are adversarial perturbations, a term
referring to the set of techniques intended to deceive Al systems by injecting
a small perturbation (noise, often totally imperceptible to a human being)
into the data. The key idea is that, although adversarial perturbations are a
considerable concern to domain experts, on the other hand, they fuel new

possibilities to both favours a fair use of artificial intelligence systems and to



better understand the “reasoning” they follow in order to reach the solution
of a given problem. Results are presented for applications related to critical
domains such as medical imaging [111, 138], facial recognition [113] and
biometric verification [113]. However, the concepts and the methodologies
introduced in this thesis are intended to be general enough to be applied to
different real-life applications.






Part I

The Fourth Industrial Revolution






In the last years, the impact of Artificial Intelligence (Al) on the industry
has been so disrupting that it gave rise to a new wave of research and applica-
tions that goes under the name of “Industry 4.0” (figure 1). This term refers
to the application of Al and cognitive computing to leverage an effective
data exchange and processing in manufacturing technologies, services and
transports, laying the foundation of what is commonly known as the fourth
industrial revolution [148, 90].

h!ll 1st: Steam Engine
(~1770)
2st: Assembly Line [N
(~1890) =]
@ 3rd: Automation
(~1950)
4th: Al
(~2010)
Figure 1: Timeline for the four industrial revolutions: the first, based on the
invention of the steam engine; the second, thanks to the development of the

assembly line by Henry Ford; the third, with the development of computers
and automation; the fourth, supported by artificial intelligence.

Several are the industries impacted by it, with logistic [18], manufacturing
[173] and transport systems [160] representing some of the fields in which
machine learning is expected to have a very important impact in the next
future. Nevertheless, several are the contexts in which some effects are already

visible:
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Automotive and avionics are probably the first use cases in which the use
of machine learning, in the shape of auto-pilot [196, 23], has been
applied. However, in a more and more connected world, that is aiming
to self-driving vehicles, the proper control of such amount of traffic in a
precise and effective way, together with pick-hour and congestion/delay
predictions [184] becomes some of the biggest challenges to face;

The smart city represents what engineers, architects and sociologists expect
to be the place in which we, as humans, will live in the next future.
Although the term can suggest utopistic or futuristic dreams, it actually
aims in designing “human-in-the-loop” cities intended to support the
wealth of citizens, for example by reducing stress and pollution [103];

Smart energy harvesting and grid design (e.g. pick usage prediction and
smart distribution of the electricity over the power grid [208]) are
becoming extremely important, both on a local [151] and on a national
[165] scale, in a world more and more relying on renewable energy
rather than fossil fuels;

Telemedicine that, thanks to the ultra wide-band connectivity delivered by
5G technology [185], allow to analyse huge amounts of patients data to

provide Al-based solution in several clinical contexts [108];

Robotics in industrial applications where, thanks to the advances in the
computer vision field, cooperate with and assist humans in safety-

critical environments [99, 69];

Security enforcement, with Al opening new scenario in user identification

[30] and anti-malware protection [91];

Smart assistants that, from chatbots [8] to smart assistants [41], are revolu-

tionising human-machine interaction.
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The reported examples are just some wise applications and, unfortunately,
represent only one side of the coin. Indeed, the disrupting spread and success
of Al comes with some downsides, which find among their most (in)famous
examples applications related to the violation of subjects’ privacy, and unethi-
cal and unfair behaviours, such as users profiling [6], fake news generation
[140], autonomous weapon systems [10], discriminative advertisement [39],
etc. We strongly believe that, since being just a (very powerful) tool, Al is
not to blame. Nonetheless, we claim that in order to develop a more ethical,
fair and secure use of artificial intelligence, all the involved actors (in primis
users, developers and legislators) must have a very clear idea about some
critical questions, such as “what is AI?”, “what are the ethical implications
of its improper usage?”. It is clear that developing an own idea about these
questions is a process requiring time, expertise and open-mind. Therefore, to
provide the tools needed to fully understand the claims, the scenarios, and the
contributions made in this work, this first part will start by introducing the
concept of Al (chapter 1), focusing on Deep Learning and on some of its more
crucial issues, before moving to ethical implications (chapter 2) associated

with the notion of “intelligence”.






The Artificial Intelligence Era

The term Artificial Intelligence (Al) refers to the ability of a computer to
perform functions resembling the typical reasoning of the human mind. Al-
though commonly thought to be a child of the last years, the first studies
on the development of an artificial agent started in the early forty of the
past century. From its very beginning, Al has been the centre of the debate
between scientists and philosophers, with the former interested in the theory
and techniques aimed at the development of algorithms to allow the machines
to show “intelligent” skills and actions (at least in specific domains), while
the latter more interested in the aspects related to the possible implications
that can be triggered by considering an artefact as an “intelligent entity”.
According to Marvin Minsky, considered one of the pioneer fathers of IA
together with Alan Turing and Frank Rosenblatt, the purpose of this new field
is “to develop machines able to autonomously do things that would require

intelligence if they were made by humans” [116].

Several are the problems arising with this definition of artificial intelli-
gence. The first is clearly in the lack of a universally agreed definition of
“intelligence”, with almost all the interpretations so far proposed impractical
to prove or too much fuzzy. This is the reason why, seventy years after its first

introduction, the most agreed definition is actually based on “the imitation
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game”, a test proposed by Alan Turing in his 1950 article titled “Comput-
ing machinery and intelligence” [188]. The idea is basically to consider a
machine intelligent if capable, when hidden behind a screen and connected
with the world through an appropriate communication interface, to mislead a
human tester by convincing they to be interacting with another human being.
In 2014 a chatbot (i.e. a conversational agent) made the news thanks to its
ability to pass the Turing test [1]. This claim started an ongoing debate [158]
on whether this can actually be considered a proper victory or not, since what
really happened was the bot able to mislead ~ 33% of a panel of judges into
believing it was a real young boy after a five-minute conversation. Although
subtle, the difference is in the fact that the environmental settings and the
performed task are far from being general and accepted as realistic. This is
anything new since it has already been shown that, under certain conditions, it
can be straightforward to pass the Turing test [82]. Also, this proof comes as
no surprise, since the problem is intrinsically rooted in the difference between

the two Al ideologies:

The Strong thesis claiming that a properly designed, programmed and trained
machine can be endowed with pure intelligence in no way distinguish-

able from humans one;

The Weak thesis arguing that no matter how closely a machine will ever be
able to resemble the human cognitive process, it will never be able to

fully reproduce the complexity and versatility of humans intelligence.

At the time of writing this thesis, despite the availability of AI models
able to compete with and, in some cases, even surpass humans [12, 182, 118],
we are still far from a general Al model, able to fulfil the strong thesis. Indeed,
even the top-performing Al systems have the characteristics to be usable only
on the task they have been designed for, mainly because of the wide variety
of available “input signals” and the lack of cross-domain/task generalisation

ability. Nonetheless, the use of artificial intelligence keeps spreading [42], not
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only in high-tech companies and domains but even in everyday applications,

with a worldwide impact on the economy (figure 1.1).
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Figure 1.1: McKinsey Global Institute analysis on the potential impact that
Al will have in the next future on some important industries [109].
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1.1 From Shallow to Deep Neural Networks

In recent years, the term “Artificial Intelligence” has become more and more
an integral part of our daily life. We are increasingly dealing with “smart”
mobile phones, “intelligent” voice assistants, “robotic” chats, etc. Nowadays,
the term Al is widely abused, and one of the unpleasant effects of this spread
with the mass audience is the confusion made with all its related terms, such
as “Pattern Recognition”, “Machine Learning”, “Deep Learning”, etc., too
often used interchangeably. Thus, with the aim of help the reader in better
understanding the terminology and the contributions made in this thesis, figure

1.2 reports a brief toponymy of the most (mis)used Al-related terms.

= Artificial Intelligence (Al)

Any algorithm allowing a machine to mimic a human behavior

= Pattern Recognition (PR)

Looking for pattern in the data (e.g. correlations) to predict model the
behavior of a system

Algorithms making a machine able to learn from examples

= Artificial Neural Networks (ANN)

A particular ML model based on the concept of artificial neuron

= Deep Learning (DL)
A specific set of artificial neural networks characterized by:

* A huge number of artificial neurons, stacked in several layers
*  The ability of autonomously learn the best set of feature for a
given task

Figure 1.2: A brief toponymy of some of the most common terms related with
“artificial intelligence”. A box included into another represents the relation
between a sub-concept and a concept.
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What usually media refers to with Al is actually machine learning (ML).
Indeed, what is really taking the scenes is the ability of this kind of Al systems
to learn from examples, referring to their ability to learn how to perform a
task through the use of examples. This characteristic relieves the programmer
from the burden of writing the sequence of operations necessary to perform
a given task (algorithm), consequently allowing the system to face complex

tasks, for which it would have been impossible to code a solution.

Among all ML models, Artificial Neural Networks (ANN) are definitely
the branch that has been received the most media coverage due to their “inspi-
ration” to the human brain: as the latter consists of a complex interconnected
structure of biological neurons, the former is a network of artificial ones.
In particular, an artificial neural network (often simply referred as Neural
Network - NN) is a parallel structure (since each artificial neuron operates in
parallel with the other) whose elements are organised in layers and interact

each other to perform, after a suitable training stage, the desired task.

More recently, Deep Learning is the term that has started been using
as a synonym for AI/ML. The term refers to a particular subset of ANNs
characterised, inter alia, by a very “depth structure” (i.e. made up of several
layers). The other key aspect of deep models is their ability to autonomously
learn, during the training stage, the best input representation (or set of features)
for the task under analysis. This characteristic, known as feature learning, has
played a key role in the recent spread of Al since allowed its use also in domain
lacking effective expert-designed features. When it comes to elaborate images,
Deep Convolutional Neural Networks (D-CNNs or simply CNNs) have shown
incredible performance in a wide range of research fields, including natural
image processing [199], biomedical applications [66], biometrics [35] and
many others [202, 167, 86]. The core of CNNs are convolutional layers,
namely layers of neurons leveraging the concept of convolution between the
input and a kernel to perform the feature extraction. Unlike the human-based

feature extraction, where the feature design process is fixed, convolutional
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layers allows CNNs to adapt the feature extraction during the training itself
since the kernels used for the convolutions are learnt together with the other
neurons’ weights. When several convolutional layers are stacked in sequence,
the whole network starts learning how to extract a hierarchical set of features,
from a low to a high level of details (figure 1.3)%

Figure 1.3: Ilustration showing how a 3-layered CNN learns to describe a
complex image as composed by many simpler concepts. Starting from the
input (the woman image on the left), each convolutional layers learns how
to combine informations from the previous layer to extract new hierarchical
features: the first convolutional layer is directly connected to the image and
can learn how to extract simple pattern (e.g. edges); the central convolutional
layer exploit the input feature map (low-level geometrical features extracted
by the first convolutional layer) to extract more complex pattern, such as eyes,
noses, etc; the last convolutional layer uses the middle-level features to learn
high-level concepts, like faces. In the end, a fully connected layer learns how
to use high-level features to perform the desired task (gender classification in
the example), generating the output for the provided input.

'A detailed explanation of ANNs and of CNNs is beyond the purposes of this work. For
a more complete and detailed explanation please refer to [22] and to [63].
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Contrary to popular belief, CNNs are not utterly something recent (figure
1.4). Indeed, the first ANN designed to perform the feature engineering phase
has been introduced in 1980 under the name of neocognitron [56]. The gap
between the time they have been theorised and the moment they have been
developed is mostly due to the lack of suitable computational power, enough
training data and some mathematical limitations. Moreover, the increasing

popularity of kernel machine dampened the enthusiasm for neural networks.

Early Al

Researches starts theorizing the
idea of a machine able to think like
a human

1940’

Z

Artificial Neural Networks

The first artificial neuron is developed
and, a little after, the first “network”
of neurons designed

1950’

N

Classical Machine

Learning Convolutional Neural Networks

1980’ The first CNN architecture is theorised,
but the computational power is not

enough to prove it effectiveness

The rise of kernel Machines
1990’

Some problems with neural networks and
the success of the kernel trick idea, put

artificial neural networks in the shadows

N

Modern Deep Learning Era

New mathematical solutions and the
availability of huge amount of training
data and a suitable computational power,
allowed deep learning to take the scene

2010

N

Deep
Learning ﬁ

@)@ e HeHe

Figure 1.4: Short timeline for some of the AI most important events.
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This was the case until a convolutional neural network [95] won the
2012 Large Scale Visual Recognition Challenge [152], a popular open-source
contest in which participants have to correctly classify images to one of the
1000 classes. From that moment on, an increasing interest stated again to be
paid by researches on the study and on the application of CNNs in several
contexts, giving rise to new CNN architectures, training and optimization
strategies able to compete with, and in some cases surpass, humans in many
tasks [118, 12]. Several are the factors that concurred to make neural networks,
and in particular deep architectures, regain popularity up to unprecedented
heights. Excluding some mathematical intuitions, four are the factors that

contributed the most:

* The rise of Big Data in late 2000, a term referring to the collection of
massive amounts of data often unstructured and coming from different
sources (e.g. images, text, audio, medical signals, etc.). The availability
of public and free to use collections of labelled samples started to show
the limits of kernel machines while allowing researches to experiment

with richer (in neurons) ANNs;

* The computational power needed to optimise the huge number of pa-
rameters (typical of deep architecture) and to iteratively elaborate the
involved massive training datasets has been a technical limitation for
a long time. On this regards, the advances in General-Purpose GPU
(GP-GPU) computing strongly sustained the spread of deep learning
models, allowing a significant reduction in the required training times.
A key role has been playing by NVIDIA with its CUDA technology
[127], an adaptation of C++ explicitly intended to be used with GPU

stream multiprocessors;

« Barkley Artificial Research (BAIR) group? has been one of the first

research group understanding the potential of deep learning. To sustain

Zhttps://bair.berkeley.edu/
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its spread they developed and released Caffe [84], a BSD-licensed C++
framework for the development of deep architectures. To increase its us-
age in the research community, Caffe was intended to be easily accessed
by third-party applications (thanks to the availability of Python and
MATLAB API) and to natively support GPU acceleration. In parallel,
the group also released pre-trained implementations of the CNNs that,
time by time, started to be designed by researches, further increasing its
success within the community. Shortly after, some big players followed
the example by releasing their own deep learning framework: PyTorch
(by Facebook), CNTK (by Microsoft) and TensorFlow (by Google).
Also famous applications for scientific calculation (e.g. MATLAB
by The Mathworks® and Mathematica by Wolfram®) started officially
supporting deep learning;

* The last step to do before really considering deep learning within ev-
eryone’s reach was to make GPU computing accessible (since suited
GPU were, and sometimes still are, relatively expensive). Some com-
panies quickly catch this business opportunity, starting to provide easy
to use web-based virtual machines intended to allow developers to
use remote GPUs for a little price. In 2017, Google publicly released
Colaboratory, a totally free web-based IDE providing remote GPU

acceleration.

1.2 The Burden of Deep Architectures

In the machine learning field, it is well known that what matters above
classifier are the features used to describe the entities under analysis. For this

reason, a lot of new features have been designed by domain experts to improve

3https://it. nathworks.com/products/deep-learning.html
“https://reference.wolfram.com/language/guide/MachineLearning. html
>https://colab.research.google.com/
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classification results in a widespread of different fields, including computer
vision (such as natural and biomedical image processing), automatic speech
recognition (ASR) and time-series analysis. As seen in the previous section,
this rapidly changed with the advent of Deep Convolutional Neural Networks
(CNNs), able to autonomously learn the best set of features to effectively
face the task under analysis, particularly for those domains lacking effective
expert-designed features [98].

Model Top-1 Accuracy Top-5 Accuracy Parameters Depth
AlexNet [95] 0.593 0.818 60,965,224 8
VGG16 [166] 0.715 0.901 138,357,544 23
VGGI19 [166] 0.727 0.910 143,667,240 26

MobileNet [79] 0.665 0.871 4,253,864 88
DenseNet121 [80] 0.745 0918 8,062,504 121
Xception [33] 0.790 0.945 22,910,480 126
InceptionV3 [180] 0.788 0.944 23,851,784 159
ResNet50 [76] 0.759 0.929 25,636,712 168
DenseNet169 [80] 0.759 0.928 14,307,880 169
DenseNet201 [80] 0.770 0.933 20,242,984 201
InceptionResNetV2 [178] 0.804 0.953 55,873,736 572

Table 1.1: Brief list of some famous CNNs designed to face the ImageNet
[152] classification challenge. For each network, the top-1 and top-5 accuracy,
together with the number of parameters and layers (depth) are reported.
Reported numbers refers to the corresponding Keras [34] implementation®.

Researches agree that the strength of a CNN is in its deep hierarchical
architecture able to learn features at multiple levels of abstraction [179, 48].
Although this characteristic gives CNNs a great representational capacity,
it also comes with a huge number of parameters to learn. Indeed, the term
deep refers to the number of layers and thus, indirectly, to the total number
of neurons (parameters) in the network, that can easily get over 10° even for

medium-sized models (as briefly reported in table 1.1). Therefore, despite

®https://keras.io/applications/
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the efforts made to design increasingly compact networks [76, 180, 80], to
avoid incurring in over/under-fitting, a suitable number of annotated samples
is required to properly estimate millions of parameters when training a deep
CNN from scratch (i.e. starting from randomly initialised weights). Unfortu-
nately, gathering a big dataset is a difficult, expensive and time-consuming
task, that can become even harder in domains where a large number of sam-
ples is difficult to collect. A typical case is biomedical imaging, where not
only collecting huge datasets is technically laborious (privacy-related issues,
different protocols, etc.), but it is intrinsically hard because of the huge class
imbalance (e.g. between positive and negative oncology patients). As a
matter of fact, training a CNN from scratch requires expertise to design an
architecture suitable for the problem under analysis, experience to effectively
tune all the hyper-parameters and proper computational power to train the

network in a reasonable time.

To address this problem, an increasingly popular solution is to adopt
Transfer Learning, a term referring to the act of transferring the knowledge
learnt in a task (i.e. leveraging pre-trained CNN parameters) with a proper
amount of available training data, to another (sometimes very different) task.
Although the idea is not new [132], is only with deep learning that it showed
its full potential with many authors that, in the last years, are increasingly
exploiting transfer learning to derive new state-of-art solutions in different
fields. In practice, transfer learning can be sought by following two different

approaches:

* the first, known as fine-tuning, consists in adapting the pre-trained CNN
on the new task. This is done by “freezing” (setting the learning rate to
0) some layers (usually the convolutional ones), before performing a
“re-training” (starting from the pre-trained weights) of the network on
the data coming from the new task. It is worth to note that it is possible
to modify/add/remove any of the layers, keeping in mind that those new

layers will not be able to leverage pre-trained weights. This operation
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Figure 1.5: Comparison of number of papers published between 2010 and
2017 that i) train a neural network from scratch (in green), ii) fine-tune a
neural network (in blue) and iii) use AlexNet, both for fine-tuning or as a
feature extractor (in yellow). The search was performed in Google Scholar
using "train from scratch neural network", "fine tune neural network" and
"AlexNet fine tuning | AlexNet feature extractor" as keywords for the first,
the second and the third case respectively.

is always needed at least for the classification layer since the desired

new classification task (usually) has a different set of possible classes;

* the second consists in the use of the pre-trained CNN as a feature
extractor. In this case, the idea is that the pre-trained CNN has learnt
a set of features that are supposed to be effective also for the new
task. Thus, it is possible to leverage this knowledge by feeding the
pre-trained network with the new task data, obtaining a new set of

features by taking the output of one of the CNN layers (usually one of
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the fully connected). This features can then be used to train any kind of

machine learning model on the new desired task.

Both approaches exploit the CNN inherent ability to learn very effective
hierarchical features that demonstrated to be suitable for a widespread of
distinct task [43, 204, 72], also including those that differ greatly [183]. In
particular, it had been showed that deep architectures pre-trained on the
ImageNet dataset [152] show great flexibility and versatility [72, 135, 145]
mostly thanks to their ability to learn Gabor-like low-level feature [75] (edge,
lines, shapes), combined to form feature able to extract complex details and
textures. Among all the available dataset and deep CNN, in automatic (not
necessarily natural) image classification the duo ImageNet[152]-AlexNet[95]
is one of the most used (figure 1.5) thanks to i) the ImageNet broad number
of different class/images and ii) to the AlexNet simple (easy to understand
and adapt) but powerful structure, consisting in 5 convolutional layers and
3 fully connected ones (for a total of 60,965,224 parameters), using ReLLu
[123] as activation function.

Figure 1.6 shows how to approach transfer learning with AlexNet, both
by using it as feature extractor and by following the fine-tuning approach:
in the first case, the output of the last hidden layer (fc7) is used as features
set to feed an external classifier (i.e. SVM, Random Forest, etc), while, in
the latter case, the original 1000 classes classification layer is dropped and
replaced by (for example) a binary one and then a new training process is
performed. Practically, both approaches are very effective since they allow to
use a CNN designed to be enough powerful to face a 1000 classes problem for
a classification task that (as in the described example) might even only have 2
classes. In particular, using the net as a feature extractor is a versatile way
to exploit past learnt knowledge since it is possible to take the output from
any of the network layers according to the desired feature abstraction level
(recalling from section 1.1 that early layers learn lower level features). On the

other hand, fine-tuning is easier to apply (since it does not involve external
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classifiers to tune and to optimise) and, thanks to the re-training, allows to
adapt the network as a whole to the new task. Though one may not necessarily
be better than the other, as a rule of thumb the latter is usually preferred when
the number of training samples and the available computational power are
enough to train (although not from scratches) a CNN, while the former is
usually preferred when one of these conditions is not satisfied.

Convolutional Layers Fully Connected Transfer

Learning
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A% 6 Fine Tuning
0
0 25
------------ Al B
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Input (RGB) convl fe7

Figure 1.6: A representation of transfer learning using AlexNet. From left
to right: the net input (a 227 %227 pixels - 3 channels (RGB) image), con-
volutional layers, fully connected layers and adaptations needed to perform
transfer learning. In particular, on the top right side there is an example of
how to fine-tune AlexNet for a binary classification task, while on the bottom
right side there is an illustration showing the use of the output from the last
hidden layer as features set for an external classifier (i.e. using AlexNet as
feature extractor). As a note, the illustration reports the original structure of
AlexNet distributed over two GPU (although a single GPU implementation is
nowadays commonly used).
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1.3 Deceivable AI

Optical illusion is the term used to describe figures (e.g. images, illustrations,
drawing, etc.) able to mislead the human visual perception system (figure
1.7). Since the hierarchical structure of deep neural networks (section 1.1) is
inspired by the human brain, is it possible to mislead them similar to the way

optical illusions mislead us?

Figure 1.7: Illustrative optical illusion. Humans visual perception system is
not able to determine how many circles there are in the figure on the left since
the circles’ texture and the used background colour daze our brain expectation.
However, as we over-impose some solid-coloured reference shapes, figure on
the right, our brain suddenly recognise the underlying circles.

The answer is yes. In particular, it has been shown [181] that it is possible
to arbitrarily cause state-of-the-art CNNs to misclassify an image by applying
on it a suitable small perturbation (often even imperceptible to human eyes)
and that regularization techniques are useless in this case (since it is not the
result of overfitting). On the same line, some recent works [121, 203] started
to develop effective ways to perform targeted back-door attacks against CNNs
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aimed in creating samples that will always make the target CNN behave as
desired by the attacker.

Scientists’ concerns are serious since some studies showed that it is
possible to effectively perform this kind of attacks also in real-world scenarios
[25]. Therefore, it is clear that facing this problem is of primary importance,
especially in the view of safety-critical applications such as autonomous
driving, subject identification, fake news detection, etc. To this aim, in the
last years several researchers started working on the development of effective
methods to detect and defend against them [47, 200]. As a consequence, more
sophisticated and sneaky attacks have been developed, giving rise to a game
between the attackers and the defenders that seems far from ending and, up
to date, sees the former ahead. However, the vulnerability of CNNs to this
kind of attacks could open new possibilities for privacy protection and to
enforce fairness in Al-based applications. Therefore, to better understand the
intuitions and contributions made in the next chapters, the following sections

will introduce some of the attacks that are recently making the news’.

1.3.1 Adversarial Perturbations

The term adversarial perturbation refers to the whole of techniques that inject
an image with a suitable, hardly perceptible, perturbation (noise) with the aim
of misleading a CNN. To put on some notations, given an image / € R(whAc)
of size w* h on ¢ channels, and a classifier mapping function fc : I — {1..n}
that classifies an image / into one of the n possible labels, an adversarial

perturbation r is defined as:

re R . fo(D) # fe(I+7) (1.1)

Thttps://www.technologyreview.com/s/614497/military-artificial-intelligence-can-be-
easily-and-dangerously-fooled



1.3 Deceivable AI | 29

where r usually is the smaller perturbation able to fool the network (see figure

1.8 for an example).

. S UL
Cat (prob. 99.2%) Dog (prob. 89.7%)

Figure 1.8: Adversarial perturbation attack on a cat image from the Dogs vs
Cats competition [49]: image A) represents the original sample, while image
B) is the result obtained by using the DeepFool [120] as perturbation approach.
The reported probabilities have been obtained by fine-tuning AlexNet [95].

The aim of and adversarial perturbation is to move the target sample
beyond the model decision boundary (figure 1.9). There are two possible
ways of doing it:

* Gradient-based methods exploit the gradients information with re-
spect to the input in order to determine the best perturbation to add to
the target sample to mislead the target CNN;

* Non-Gradient-based (e.g. genetic algorithms) that changes (e.g. ran-
domly) some values in the input data until a fitness function says that

the obtained perturbation is able to mislead the target classifier.

Since, by definition, an adversarial perturbation should be as invisible as

possible, the hardest part is to determine a small (imperceptible) noise that is
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Figure 1.9: Illustration of an adversarial perturbation attack performed in
the case of a 2D features space. Given a classifier (and thus identified its
decision boundary), an adversarial perturbation attack aims to move correctly
classified samples across the decision boundary. In the example, a dark red
dot and a dark blue cross, previously corrected classified (since laying in
the right subspace identified by the decision boundary) are “pushed” (i.e.
modified by adding some carefully crafted adversarial noise) just enough to
cross the decision boundary. The effect is that now the perturbed samples are
misclassified by the target model. Image adapted from another work®.

still able to mislead the target classifier. Of all research areas for which deep

neural networks have been demonstrating overwhelming performance, com-

8https://pod3275.github.io/paper/2019/08/02/KDwithADVsamples.html
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puter vision is still one of those that mostly catches the interest of researchers.
For this reason, of all deep architecture, Convolutional Neural Networks
(CNN) are among the most popular and used, and, as a consequence, the
most “attacked”. Indeed, in 2013 it has been shown that given a target CNN,
it is possible to craft samples able to arbitrarily mislead it [181]. It is worth
noting that the authors not only proved the existence of blind-spots in CNNss,
but also introduced a method for the generation of adversarial samples based
on the Limited Memory Broyden—Fletcher—Goldfarb—Shanno (LM-BFGS)
algorithm and on the network loss function value.

Two years later, the Fast Gradient Sign Method (FGSM) laid the founda-
tions for attacks exploiting the network gradient to generate an adversarial
sample [64]. In short, given a victim CNN and a clean input image, the FGSM
multiplies a user-defined standard deviation € by the sign of the prediction
gradient (with respect to the input class) to generate an additive perturbation.
The attack success probability and the human perceptibility increase with €
(since it causes an increase of the perturbation magnitude). Along the lines
of the FGSM, three approaches are especially worthy of note for the contri-
butions made. The FGSM Iterative Method [97] was proposed to perform
a semi-automatic tuning of the € value by using an iterative procedure. In
this case, a small magnitude perturbation is calculated and applied several
times, instead of applying a stronger noise in a single shot. It is worth noting
that the basic FGSM approach is un-targeted, as it does not consider the
class in which the adversarial sample will be classified. Thus, in the same
work, authors also highlighted that to make FGSM target-class aware it is
sufficient to consider the prediction gradient with respect to the desired target
class. DeepFool [120] made a step further by introducing an efficient iterative
approach exploiting the network gradient of a locally linearized version of the
loss. This allows generating a sequence of additive perturbations that move
the clean sample on the edge of the classification boundaries. Then, to make

the adversarial sample cross the hyperplane enough to be misclassified, the
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perturbation is multiplied by a value 11 < 1. Finally, Momentum Iterative
Method [44] introduced a momentum-based iterative FGSM like approach,
resulting in a procedure able to stabilize the update directions and thus to

escape from poor local maxima determined during its execution.

Meantime, other researches focused their attention on the development
of adversarial perturbation techniques aimed to surpass some limitations,
rather than only looking for performance. The Carlini Wagner L2 method
[28] proposed to construct the adversarial samples using the same basic
idea of [181], but with some significant improvements considering 1) three
possible targeted attack (best, worse and average case), ii) three different
distance metrics between the clean and the adversarial sample (Lg, Lo, L)
and iii) different optimization algorithms. Finally, the algorithm performs
a greedy search to determine a discrete perturbation, to make it robust to
rounding operations performed in the [0 — 255] value image representation.
With the aim of modifying as few pixels as possible, the Jacobian-based
Saliency Map Attack (JSMA) performs a greedy iterative procedure that 1)
evaluate a saliency map based on the target class classification gradient ii) to
determine the most influencing pixels [133]. The algorithm iterates until the
adversarial sample is generated or the number of modified pixels exceeds a
fixed threshold (meaning that the attack is failed). With the same aim, the
One-Pixel Attack [174] defined a totally different manner to reach the solution.
The idea is to modify a very reduced number of pixels (just one most of the
time) without having any prior information on the network. Instead of using
the classification gradient, One-Pixel Attack uses Differential Evolution, an
evolutionary optimization method, to iteratively determine a new generation
of candidate solutions. An interesting side effect of this solution is that the
One-Pixel Attack does not need white-box access to the target CNN. On
a different side, the Feature-Opt method [154] approaches the adversarial
perturbation problem focusing on the image representation at the internal

layers of a CNN instead of considering the output of the classification layer.
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The aim is to generate an adversarial sample that not only causes an erroneous
classification, but that also has an internal representation closer to the target

class rather than to the clean one.

The race for adversarial perturbations attacks is still going, with new ideas
regularly introduced. Among all, in our humble opinion, a promising idea is
represented by approaches facing the generation of adversarial samples as a
min-max optimization problem, in a way very similar to the approach adopted
by Generative Adversarial Networks (GANs). Among them, one of the most
interesting is the Projected Gradient Descent Method (PGDM) that allows
determining the optimum adversarial perturbation in a white-box scenario
[105]. It works iterating a maximization step, that consists in determining the
perturbation, and a minimization step, that aims in making the net robust to the
determined perturbation. The procedure generates both effective perturbations

and more robust networks.

1.3.2 Deep Poisoning Techniques

With adversarial perturbations an attacker crafts adversarial samples aimed in
deviating a target trained CNN from its nominal behaviour. On the other hand,
there are situations in which an attacker, exploiting (a potentially partial)
access to the training dataset, wants to inject some carefully crafted samples
to “poison” the training procedure. These attacks, commonly grouped under
the more general set of Poisoning Attacks, aim in causing the network to learn
a malicious pattern that the attacker can exploit as a “back-door”. Several are
the possible ways in which an attacker can exploit this adversarial access to

the networks. Following, we report some of the most intriguing proposals:

* In a recent work [68], the authors propose the creation of a BedNet, an
altered CNN that seems to behave exactly as intended by the user, but
that actually reacts to a set of pre-determined inputs injected by the

attacker. To this aim, the attacker alters the training procedure (e.g. on a
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remote computing facility) to make the network react when a particular
sample (or detail in it) is presented as input (figure 1.10);

Input: Input:

Output: 7 Output: 8

Figure 1.10: Illustrative example of a CNN modified under a poisoning attack.
On the left, the “clean” network correctly classifies the input. On the right,
the network has been modified in order to react (orange activation path) to a
small detail in the input (in the example, a small triangle in the bottom right
corner), producing the outcome desired by the attacker (image from [68]).

* As for adversarial perturbations, the crafted samples need to be tailored
to the target model, implying the attacker having a white-box access to
the network. Despite this scenario is not uncommon, there are many
situations in which it is not realistic. Therefore, to cope with, in [37]
the authors introduce an universal noise pattern able to mislead the
target model on up to the 90% of the dataset samples;
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* As described above, poisoning attacks take place during the training
stage. This has proven to be effective also when the attack is performed
during the fine-tuning re-training (see section 1.2 for details). However,
if the attack is performed on the network before the fine-tuning, this
latter procedure tends to modify the network to the point of making
the attack no longer effective. With the aim of developing a poisoning
attack able to “survive” to such scenario, in [203] the authors introduce
a latent backdoor, namely a poisoning attack introducing a backdoor
that is preserved also after a “clean” fine-tuning. In the era where it is
common to share and use pre-trained deep models found on the internet,

this attack can represent a severe concern.

Detecting this type of attacks is challenging because the unexpected
behaviour occurs only when a backdoor trigger, which is known only to the
adversary, is presented at inference time. Nonetheless, as for adversarial
perturbations, the search for suitable defences is always in progress [172].

1.3.3 Trained Model Exploitation

As seen in the previous sections, the spreading adoption of Al has been
fuelling the development of several attacks aimed in misleading or hijacking
a target model. Besides adversarial perturbations and poisoning attacks, there
are other sets of procedures intended to extrapolate (potentially sensitive)
information from a trained model. The underlying idea is that during the
training a model memorises not only the details needed for the desired task
but also side information that can be of interest for an attacker. Although the
literature is not very coherent on the used terminology, three are the main

attack scenarios:

* Membership inference, in which the aim of the attacker is to deter-
mine whether or not a given sample has been used to train the target

model. In this case, the sensitive information is not the sample itself,
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but the fact that it has been used as part of the training set: more the
task is sensitive, more this information compromises privacy. Indeed,
the first attack of this kind [54] showed how to deduce a patient health
status by attacking a model trained on medical data. The idea is that any
model is likely to react (i.e. produce the output score) differently for
samples already seen during the training, with respect to all the other.
Therefore, it is possible to train a shadow model (one per class [163]
or one for the whole model [157]) to recognise in-train and out-train
samples. On the same line, another work proposed the “knock knock”
attack [141], showing how to infer membership also on aggregated
mobility data (e.g. the position and time of a subject, quantised in
neighbourhoods and hours instead of using GPS data and second-wise

time stamps);

* Model inversion, aimed at reconstructing a sample used during the
training by properly querying the target model. Two are the most
effective approaches so far proposed [53, 170], both abusing the typical
wide generalisation ability of CNNs (see figure 1.11 for an example).
It is worth to note that this is one of the most confusing term since the

name suggests an attack aimed in inferring model properties;

* Property inference, namely procedures intended to infer properties of
the training data (e.g. the number of sample) [57], information about
the training environment [13], or other model properties [130, 38].

Given the wide impact that these attacks can potentially have, researchers
started to develop defensive techniques early on. Among all, differential
privacy [46] represents the ultimate defence, since can provide mathematical
guarantees of non-disclosure. Unfortunately, designing a practical imple-
mentation for differential privacy is not straightforward, especially when it

comes to using it to protect deep neural networks [2, 143]. Interestingly,
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Figure 1.11: Illustrative example of a model inversion attack against a CNN-
based face authorisation system: on the left, the sample reconstructed by
the attack; on the right the actual subject sample. To perform the attack,
the attacker only needs the target subject id and the ability to query the
authorisation system to obtain the confidence score (image from [53]).

model inversion and membership inference seem to strongly be related to
overfitting [104] (unlike adversarial perturbations). Therefore, some authors

are developing defence techniques based on training regularisation [125].






Ethics and Al

Today’s developing trend is increasingly focusing on data-driven approaches
[187, 155, 201], in fields ranging from simple mobile games [128] to complex
web applications [96]. This is mainly because leveraging user’s data (such as
location, action patterns, social information, etc.) make applications able to
adapt to the user themselves, enhancing the user experience. However, data
itself is useless, since the real interest is in the latent information within the
data. For example, the numeric values of longitude and latitude are useless
until associated with the user proximity to some Point Of Interest (POI) [20]
or to crowd behaviours [19] as well as users banking account history is useless
until it is merged with their monthly expenses to derive, for example, the user
financial risk [168].

Using data to design data-aware applications usually means to deal with
very huge amounts of entries, of which only a very little part can be effectively
used (after a proper processing stage) to extract useful information. If, on one
hand, analysing these amounts of data is hard and time-consuming, on the
other it represents a perfect use case for Al-based applications. Unfortunately,
users’ data is always directly or indirectly entangled with sensitive informa-
tion, whose misuse can lead to unethical or to unfair behaviours. Although

this is a problem that has always existed, the use of Al raises new concerns
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related to the meaning of the word “intelligence” and to the philosophical
question of whether a human artefact can be considered responsible for its

actions.

2.1 Un-Ethical AI

As seen in chapter 1, in recent years artificial intelligence is gaining popu-
larity as the most effective approach for data management and understating,
supplanting the classical statical methods. While newer approaches are con-
stantly proposed by domain experts, as seen in section 1.1, deep learning has
been rising in many pattern recognition tasks, being able to overcome the
classical machine learning models in different fields and even getting able
to outperform skilled humans in some computer vision tasks [76]. Despite
its undeniable benefits, deep learning can have detrimental and unintended
consequences that could often be very difficult to anticipate by developers.
Literature is full of examples where something went wrong and it was not
always possible to determine whether there really was any system breakdown.
Among all, following we report some remarkable cases that have made the

news in recent years:

» Stamples is an e-commerce website for office supplies, furniture, copy-
print services and more. In 2012 the management decided to develop an
algorithm to automatically determine the prices of the items according
to user home address information. The idea behind this choice was
to operate a differential pricing strategy based on the user proximity
to one of the direct competitor store. Although legal and apparently
rational, this decision led to higher prices for low-income customers
which turned out to generally live farther from competitor stores [190].
Clearly, even if Staples’ intentions were not necessarily reprehensible,
the problem was in the impossibility of foreseeing all potential implica-

tions and risks resulting from the designed data-driven algorithm;
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* Google and Microsoft also had very bad times using advanced machine-
learning for big audience applications. Google uses very innovative
deep neural networks in many of its business areas, but primarily to
automatically label images and to suggest targeted ads (based on users
profiling). However, some users experienced an unwanted behaviour
when the Google’s image tagger stared to associate racially offensive
labels with images of black people (figure 2.1) [71, 153], discrimina-
tory ads for lower-paying jobs with women [39] and offensive, racially
charged ads with black people again [177]. Microsoft had a similar
problem with 7ay, an artificial intelligence Twitter chatbot that was
originally released on March 23, 2016. It caused controversy when the
bot began to post inflammatory and offensive tweets (figure 2.2), ending
up spouting nazi drivel, forcing Microsoft to shut down the service only
16 hours after its launch [78]. After the analysis and the investigations
of the cases, it turned out that in both cases the problem was not artifi-
cial intelligence, but humans. In fact, in the Google case, the dataset
used to train the neural network was discovered to contain different
sexist and racist samples® in the language used to describe the images
[192]. These descriptions were generated by human crowd workers
(such as those registered on Amazon Mechanical Turk'?), and com-
puters have been using them as learning materials to teach themselves
how to recognise and to describe images for years. For the Microsoft
case, it turned out that there was a coordinated effort by some users to
abuse Tay’s commenting skills to have Tay respond in inappropriate
ways. Microsoft also declared that the bot was “designed for human
engagement”, thus the more she talks with humans, the more she will
learn from them. Someone could say that she simply used to talk with
the wrong people [198];

“http://money.cnn.com/2015/05/21/technology/flickr-racist-tags/
1Ohttps://www.mturk.com/mturk/welcome
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Figure 2.1: Example of a racist tag for a black couple generated a former
Google automatic tagging algorithm.

* COMPAS (Correctional Offender Management Profiling for Alter-
native Sanctions [40]) is an unknown algorithm used by U.S. courts
(including New York, Wisconsin, California and Florida) for crimino-
genic risk assessment (i.e. to calculate the likelihood that someone will
commit another crime). The system, based on machine learning, uses
several offender information (such as age, time of the first arrest, history
of violence, etc.) to determine the risk of re-offending. Probably, this is
one of the worst examples of what happens if and when an intelligent
system fails. Unfortunately, this may have happened to Eric L. Loomis,
a man who had been sentenced by a judge to six-year of prison for
eluding the police. What has made the news was the judge declaring
Loomis being a “high risk” person for the community, arriving at his
sentencing decision in part because of Loomis’s rating on the Compas
assessment. Mr. Loomis challenged the judge’s reliance on the COM-
PAS score and on the criteria used by the COMPAS algorithm (which
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ﬂ TayTweets A ‘
- - , _
- :

@RoguelnTheStars @UnburntWitch
aka Zoe Quinnis a Stupid W mme.

Figure 2.2: Example of an offensive tweet by Microsoft Tay chatbot.

is proprietary and protected). Although non-public available, after
strong pressures from media, COMPAS company officials acknowl-
edged that man, woman and juveniles receive different assessments if
committing the same crime with the same background [55], but the
factors considered and the weight used are kept secret. Therefore, Mr.
Loomis’s lawyer argued that he should be able to review the algorithm
and make arguments about its validity as part of his client defence. He
also challenged the use of different scales for each sex. Moreover, he
also wrote that “COMPAS is full of holes and violates the requirement
that a sentence has to be individualised”.

As can be seen from the reported examples, it is no wonder that reports of
discriminatory effects in data-driven applications litter the news. However, it
seems clear that the problem is not in machine learning itself, but in humans
that do not train them appropriately or maliciously teach them the worst of
our mind. Jeff Clune, a professor from University of Wyoming specialised

in deep learning, is one of those supporting this idea, saying that “if that’s
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DYLAN FUGETT

Prior Offense
1 attempted burglary

BERNARD PARKER

Prior Offense
1 resisting arrest

without violence

Subsequent Offenses
3 drug possessions Subsequent Offenses

None

LOW RISK 3

HIGHRISK 10

Figure 2.3: Example of COMPAS predicted risk. Fugett was rated low risk
after being arrested with cocaine and marijuana. He was arrested three times
on drug charges after that (source [11]).

the data that you’re providing to Al, and you’re challenging Al to mimic
those behaviours, then of course it’s going to mimic those biases. Sadly,
if it didn’t do that, then there’s something wrong with the technology.” In
simple words, artificial intelligence is neither good, nor evil, but just a tool.
As what happened with Microsoft’s Tay bot, Al simply does what you design
it for, although sometimes behaving in a very unexpected manner (as seen in
section 1.3). Stephen Hawking and Stuart Russell [74] claim that the potential
benefits of Al are huge, although not predictable. Unfortunately, Hawking
and Russell also highlight that “creating AI might also be the last event in
human history unless we learn how to avoid the risks”. Therefore, if on one
hand, Al is probably one of the milestones in human history, its abilities make

it crucial to take into account all the risks associated with its usage.
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2.2 Beyond Good and Evil

In the previous section, it has been shown that our society is moving toward a
future in which Al will have a major role. This poses numerous important
questions, many of which can be understood and analysed through the lens of
ethical theory. In a quite recent work [26] the authors argue that the recent
advances in artificial intelligence are pushing the need for expanding the way
we think about ethics. The core idea is that the basic questions of ethics,
which so far have been involving only humans and their actions, will shortly
need to be asked also to human-designed artefacts since they are (or shortly
will be) capable of making their own decisions based on their own perceptions
of the real world.

The matter is extremely complex and facing it is clearly out of the reach
of this thesis. Nevertheless, we believe that it is important to talk about
it, in order to develop an idea that can help in better understanding the
consequences associated with Al, malicious or not, misuses. On this line,
an interesting first approach in dealing with ethics in Al is to answer to the
ethical dilemma that has arisen repeatedly throughout the centuries: how do
we treat “others”? Some of the groups that have been classed as “others” in the
past include animals (endangered species in particular), children, plants, the
mentally and physically disabled, societies that have been deemed “primitive”
or “backward”, citizens of countries with whom we are at war and even
artefacts of the ancient world. In the context of this section, also Al agents
can simply be put under the “other” label.

Unfortunately, although interesting, this simplistic approach risks limiting
the ethic question only on “how humans should treat Al agents”. Instead,
in our opinion, it is important to switch the viewpoint and ask “how can we
implement moral decision-making in artificial intelligence system?”” This
inherently interdisciplinary field is at the interface of philosophy, cognitive

science, psychology, computer science and robotics. Therefore, the question
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needs to be addressed from multiple angles, to reach a solid judgement about
which theory (or theories) is best suited, also by considering the effects of
possible solutions. On this line, there are three dominant ways we could face
the problem: from a deontological point of view; by using the concept of

utilitarianism; relying on virtue ethics.

* Deontology, developed by Immanuel Kant in the late eighteenth cen-
tury, describes ethics as to be about following the moral law. According
to Thomas King“, a data scientist with a PhD in computational in-
telligence, Al system have to be deontological. The main reason is
that Al is something that had to be implemented as a program, thus
it would have somehow involved a set of rules [87]. This idea is fur-
ther supported by the ethical consistency principles [58] that impose
to prioritise deontological obligations over consequences. The main
contrast to King’s point of view is that neural networks do not actually
operate by following a clear set of rules, but instead learn their own
rules (representation of the world) by interacting with the environment.
However, although an Al agent can automatically learn its own rules,
they are still finite and operate on numeric and measurable quantity.
In this viewing, the rise of deep learning further augment the ethical

concerns;

« Utilitarianism, developed by Jeremy Bentham and John, focuses on
the basic question of “what is the greatest possible good for the greatest
number?”. In the case of Al, there is the difficulty of how to practically
measure and implement the utility of each situation in an Al system. It
would be difficult for an artificial intelligent agent to have knowledge
beforehand of all the variables that should go into such a calculation.
And even if it did, such utility maximisation/optimisation problems are
computationally very costly, making them impractical in real-world sit-

uations. It is worth noting that using approximations or meta-heuristics

https://digitalethicslab.oii.ox.ac.uk/thomascking/
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to calculate probable values would be dangerous since there is no guar-
antee about the actual system behaviour. Moreover, using utilitarianism
needs to define numerical values and thresholds to guide the Al agent
to make its decision. For example, let consider the situation in which
an Al agent is faced with choosing between increasing the happiness
of a wide number of people (i.e. a billion) each by 1%, but by reducing
the happiness of a single person by 100%. A possible scenario is if a
futuristic Al agent could go back in the past and shot Hitler holdings
a child (the person which happiness will be decreased by 100%) in
order to save all Jews. An Al agent that uses only quantitative measures
of utility is very likely to fall into such a scenario. The only way to
avoid this is to introduce some hard non-quantitative rules like “You
can increase the happiness of everyone, but only as long as nobody is
killed, no innocent is harmed, nobody is enslaved, etc.”. It is clear that

in this case, the result is something very close to deontological ethics.

* Virtue Ethics, developed by Aristotle and sometimes called teleolog-
ical ethics, focuses on ends (or goals) that an agent pursues. In this
case, we quickly fall in the paradox related to the command hierarchy.
Indeed, even the smartest Al agent must have been designed at some
point by a human, who thus indirectly pushed in it its life purpose.
Therefore, following this line of thought might quickly result in a dog

chasing its own tail.

In conclusion, it is clear that the problem is not the Al, but the meaning that
we humans give to sentences, decisions and interactions with the environment.
Therefore, our opinion is that the most effective way to deal with ethics in
machine learning is to consider the humans and the Al agents as a strictly
coupled entity. This can allow to actively provide the system (human +
machine) ethical judgement, to closely monitor for problematic emergent
behaviours, and to be prepared to quickly react when problems arise. It is

worth noticing that Asimov reached the same results many years ago: indeed,
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although Asimov doesn’t mention Kant or refer to the word “deontological”
anywhere in his works, it is clear from their formulation that the three robotic

laws are Kantian in spirit, in the sense that they are universal and context-
independent.
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In part I we have seen what artificial intelligence exactly is and how
extensive is its impact in current and in the next future everyday life. This
is particularly true for Deep Learning (DL) (section 1.1) that, after winning
the 2012 Large Scale Visual Recognition Challenge [152] (LSVRC), started
to draw attention by researches from different fields. This interest has been
further increasing in recent years, to the point of making the news when
started to even surpass humans in some tasks (e.g. Mahajan et al. approach
[107] increases the LSVRC top-5 accuracy by ~ 25%-+ and ~ 2.5%+ w.r.t.
the best conventional machine learning model and humans respectively).

The flip-side of this disrupting fast success, further sustained by the avail-
ability of free of charges frameworks and computational resources (section
1.1), is in the potential misuse of its capabilities (as seen in chapter 2). It
is worth highlighting that deep learning remains a tool and, as such, it has
limitations and it is subject to the same set of problems affecting classical
machine learning approaches. Along this line, a recent work [147] identified
“three pitfalls to avoid in machine learning”:

Improper data preparation in terms of biased training/test/validation split-
ting that could lead to astonishing performance, that is however actually

based on patterns not present in real-world data;

The lack of control of hidden variables that are way more numerous than

those actually taken into account during experimental setup;

Picking the wrong objective function or optimisation strategy when facing

a problem.

On top of that, deep learning has its own set of issues that, mostly re-
lated to the underlying optimisation libraries and to its vast representational
capacity, can results in severe reproducibility issues (chapter 3) and unex-
pected “blindspots” (section 1.3). Nevertheless, this intrinsic complexity can
give rise to clever optimisations that, properly leveraged, can lead to a better

understanding and wider usage of deep neural networks (chapter 4).






The Need for Reproducible Research

As seen in section 1.1, the increasing spread of free and intuitive frameworks
and affordable hardware supported researchers to explore the use of Al, and
in particular of deep learning, in several application fields. If, on one hand,
the availability of such frameworks allows developers to use the one they
feel more comfortable with, on the other, it raises questions related to the
reproducibility of the designed model across different hardware and software

configurations, both at training and at inference time.

This reproducibility assessment is important in order to determine whether
the resulting model produces good or bad outcomes due to its capacity or
just because of luckier or blunter environmental training conditions. As Al is
being used in critical domains, more concerns this problem start arising, since
reproducibility related issues could make authors claims harder to verify [83].
Even though the factors undermining results reproducibility are numerous

[70], three are the common main problems affecting research papers:

* Undocumented experimental setup, referring to the lack of precise
details about assumptions and arbitrary decisions made in the paper;
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* The lack of original source code, with authors usually not sharing the
code due to non-disclosure agreements, or because it is labelled as work

in progress, or because declared lost;

» Using private datasets, a situation extremely common in domains

dealing with private and sensitive data (e.g. medical data).

Although these issues tend to be more frequent in non-peer-reviewed
papers, there are domains (including Al) in which this is usually the rule
more than the exception. Different initiatives have been deploying to promote
results reproducibility, including the collection and release of big public
dataset [110, 152, 36] or the acknowledgement of a reproducibility label'?
or badges '3. Unfortunately, when it comes to deep learning there is some
non-determinisms intrinsically associated with the training procedure that

unavoidably affect DL-based approaches reproducibility.

3.1 The Lack of Determinism in Deep Training

On the deep learning wave of success, several entities (both industries and
academics) started releasing frameworks to make deep learning accessible
to almost everyone. Although frameworks usually differ on many aspects
(used programming language, approach to computation, data processing and
storage, etc), they all share the need for advanced General-Purpose GPU (GP-
GPU) computing, to be able to handle the huge number of matrix operations
made to train a deep neural network (see section 1.1 for details). At the
time of writing this work, NVIDIA is the only provider of a suite of APIs
and libraries for deep learning GPU acceleration, based on their GP-GPU
paradigm CUDA [127]. The core of NVIDIA deep learning toolkit is cuDNN
[32], a GPU-accelerated library of primitives (such as 2D Convolution) for

deep neural networks.

2https://rrpr2018.sciencesconf.org/
Bhttps://www.acm.org/publications/policies/artifact-review-badging
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CuDNN default configuration exploits stochastic and speculative proce-
dures that, although increase the execution speed, introduce uncontrollable
factors that can result in not reproducible outcomes. The source of this

non-reproducibility seems to be related to [16]:

* some implementation choices made in synchronisation and kernel veri-

fication routines (such as barrier);

* the use, in some functions, of atomics operations (i.e. not guaranteed
synchronization or ordering constraints for memory operations) to

speed up the computation [191].

Four are the cuDNN routines (cudnnConvolutionBackwardFilter, cud-
nnConvolutionBackwardData, cudnnPoolingBackward and cudnnSpatialTf-
SamplerBackward) mostly suspected to be the root causes for results non
reproducibility in deep learning applications [32]. The problem seems to be
caused by non-deterministic gradient updates, mainly due to underlying non-
deterministic reductions for convolutions (e.g. asynchronous floating-point

operations are not necessarily associative due to rounding errors [191]).

As aresult, all the frameworks using cuDNN (such as MATLAB, Ten-
sorFlow, PyTorch etc.) are affected by reproducibility issues when using
GP-GPU acceleration, leading to randomness in the trained models. Although
some workarounds have been proposed!#, the problem is still present and
could unexpectedly arise during experimentation. Therefore, especially in
critical domains, it is really necessary to take this into account and to put into

practice all the means needed to guarantee a fail-safe situation.

https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-
determinism-in-deep-learning.pdf
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3.2 Determinism in e-Health

As seen at the beginning of the chapter, having a deterministic machine learn-
ing model (i.e. its behaviour is reproducible when prompted with the same
input, under the same environment status) is desirable in any context. Al-
though there are situations in which relaxing this constraint is still acceptable
(e.g. because what matters is the macro behaviour of a system), there are
some critical domains in which this requirement is mandatory [144], since
unexpected behaviours could lead to potentially critical situations. A striking
example is represented by autonomous driving [92] where driver, passengers

and pedestrians life are at stake.

Another critical domain is e-Health [9], a term that refers to all of health-
care practices supported by electronic means and elaborations (figure 3.1).
Indeed, although biomedical image processing [112] is one of the research
fields that has benefited the most by the rise of big data and deep learning
[66], it is important to take into account some relevant differences between

natural and medical images when using deep learning approaches:

* the wide inter/intra patients variability;
* the need for elaborations respecting patients’ privacy;

* the criticisms associated with false negative/positive in “sensitive” ap-

plications (e.g. tumours detection).

The first and the third are particularly critic when it comes to determinism
and reproducibility: the former because can results in learning patterns not
really present in real-world, the latter due to the impact that a misdiagnosis can
have on a person’s life. Therefore, with the diffusion of deep learning based
solutions for biomedical image processing, performing a reliable evaluation
of obtained results requires to consider their reproducibility both at training

and at inference time.
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Figure 3.1: Illustration of some e-Health topics and their interconnection.

As seen (section 3.1), this is a non-trivial problem for deep learning based
applications due to the use of stochastic approaches and of some heuristic
considerations (mainly speculative procedures) at training time. If, on one
hand, this helps in reducing the required computational effort, on the other
tends to introduce non-deterministic behaviours, with a direct impact on the

results and on the models’ reproducibility.

Usually, to face this problem, researches take into account probabilistic
considerations about the distribution of data or focus their attention on very
huge datasets. However, this approach does not really fit the medical imaging
analysis standards, with Computer-Aided Detection and Diagnosis systems
(CAD) requiring demonstrable proofs of results effectiveness and repeatability
[137]. Our opinion is that in these cases it is very important to clarify if and
to what extent a DL based application is stable and repeatable over than
effective. Therefore, the aim of this section is to quantitatively highlight the
reproducibility problem of CNN based approaches, proposing to overcome

it by using statistical considerations. Moreover, given the wide number of
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different available hardware and software configurations, we also analyse
the impact that the execution environment might have when facing the same
problem by the same means. As a case of study, we consider our ICPR2018
[139] proposal for the breast tissues segmentation in DCE-MRI by means
of a 2D U-Net CNN [149] (a very effective deep architecture for semantic
segmentation), considering two deep learning frameworks (MATLAB and

TensorFlow) across different hardware configurations.

Given the intrinsic cuDNN non-determinism (section 3.1), we propose
to shift the reproducibility issue from a strictly combinatorial problem to a
statistical one, in order fo validate the model robustness and stability more
than its perfect outcomes predictability that can vary across different used
frameworks and hardware combinations.

3.2.1 Breast Segmentation in DCE-MRI

In recent years, breast cancer is the most common cancer type among women
in the western world (30% new cases in USA 2018), resulting to be the second
cause of death by cancer (14% deaths in USA 2018) after the lung cancer and
before the colorectum cancer [164]. The budget for breast cancer research
has gradually increased over the past years, but today prevention and early
diagnosis remain the most important phases in cancer cure. World Health
Organization (WHO) cancer screening guide suggests mammography as the
first screening method for breast cancer [209]. However, mammography has
some drawbacks: first, it uses ionising radiations, themselves cause of cancer
after long exposure; second, it is not suitable for young women (under forty)
due to a hyperdense glandular breast.

Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI)
has gained popularity as an important complementary diagnostic methodology
for early detection of breast cancer [100]. It has demonstrated a great potential

in the screening of high-risk women, both for staging newly diagnosed breast
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cancer patients and in assessing therapy effects [129, 112, 137] thanks to its
minimal invasiveness and to the possibility to visualise 3D high resolution
dynamic (functional) information (figure 3.2) not available with conventional
RX imaging [189].

X:Y>ZatT)

Figure 3.2: Illustration of a DCE-MRI study consisting in the acquisition of
several 3D volumes over time, before and after the intravenous injection of a
contrast agent. SI(x,y,z,t) is the Signal Intensity value associated with the
voxel located in (x,y,z) at the time ¢.

Nowadays, radiologists make use of tools that assist in the detection of
cancerous lesions and, sometimes, also in the evaluation of a complete diag-
nosis [61, 67]: these instruments are known as Computer-Aided Detection
and Diagnosis (CAD) and, supported by an appropriate and proved medical
validity, are widely used in the analysis of complex medical investigations
both for the extension of data to be taken into account (MRIN\TC\PET) and
for an intrinsic uncertainty of the data due to the scanning process (such as

UltraSound scans - US). CAD systems analyse data using strict mathemat-
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ical patterns, according to well-defined and deterministic algorithms. This
characteristic allows to remove the difficulties due to inter- and intra-observer
variability, represented by different evaluations of the same region, under the
same assumptions, by the same doctor on different moments, and different
evaluations of the same region by different doctors. Mathematics features
behind the deductions (both in the detection and in the diagnosis phase) allow
evaluating sensitivity and specificity of such instruments in a precise and

strict way, showing objective improvement in these parameters [24, 52].

A typical CAD system for breast cancer analysis in DCE-MRI involves
four stages (figure 3.3): whole breast segmentation, lesion detection/segmentation,

lesion classification, therapy assessment.

Breast Segmentation

Lesion
Detection/Segmentation

!

Lesion Classification

[ Therapy Assessment ]

Figure 3.3: Stages involved in a typical CAD system for breast cancer analysis
in DCE-MRI.
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In particular, an automatic breast DCE-MRI CAD system requires an
early stage finalised to exclude all voxels that do not explicitly belong to
the breast parenchyma (such as heart, chest wall and pectoral muscle) and
to the background (air), while preserving all those in which a breast cancer
can be located (figure 3.4). This early stage, commonly known as breast-
mask extraction, is crucial to reduce the required computational effort and to

improve the effectiveness of subsequent stages [137, 139].

Figure 3.4: Illustration of breast cancer site incidence (source [136]).

In our ICPR2018 paper [139] we proposed to perform the whole breast
tissues segmentation by considering the MRI 3D volume as composed of
several 2D sagittal slices. Then, we introduced a modified 2D U-Net (figure
3.5) to perform the actual segmentation: (a) the output feature-map was set
to one to speed up the convergence; (b) zero-padding, with a size-preserving

strategy, was applied for preserving the output shapes; (c) batch normalization



62 | The Need for Reproducible Research

(BN) layers was inserted after each convolution. The network was trained by

using a segmentation-specific loss:

n()’gt r\'ynet)

UNetioss = 1 — DSC(net, Ver), DSC = 2
o ot ) 20vq) + 1)

(3.1

where yner and yg¢ are the predicted and the ground-truth segmentation
mask, while DSC 1s the Dice Similarity Coefficient calculated considering the
number of voxels n(-) in each volume. The networks weights had been drawn
from a random normal distribution .4 (0, \/2/(fan; + fan,)) [62], where fan;
and fan, are the input and output size of the convolution layer respectively;
the bias had been set to the constant value of 0.1. ADAM [88] has been used
as optimiser, with f; = 0.9, B, = 0.999; the learning rate had been set to a

constant value of 0.001, with an inverse time decay strategy.
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Figure 3.5: The used U-Net model for semantic segmentation of breast
tissues in DCE-MRI. The left side implements the contracting path, where
the spatial-sizes (represented by the filters receptive field and by the output
sizes) decrease and the feature-size increases. The right side implements the
expansive path, with the aim of increasing the image sizes.
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3.2.2 [Experimental Setup

As stated at the beginning of the section 3.2, we propose to shift the repro-
ducibility issue from a strictly combinatorial problem to a statistical one, in
order to validate the model robustness and stability more than its perfect
outcomes predictability that can vary across different used frameworks and
hardware combinations. To this aim, we perform Montecarlo-like repetition
experimentation, considering the model stable, and thus repeatable, if results
stay within the desired confidence interval. Therefore, to measure the model
robustness and stability over different software frameworks and hardware
configurations, in this thesis we implement the model by using two different
deep learning frameworks

* K: Keras high-level neural networks API in Python 3.6 with the Ten-
sorFlow (v1.9) as the back-end

* M: MATLAB 2018b with Deep Learning Toolbox 12.0 (formerly Neu-
ral Network Toolbox)

running the experiments over three different hardware configurations

e Conf. A: A virtual environment freely offered by Google Colabora-
tory!®. The virtual machine has an Intel(R) Xeon(R) @ 2.2GHz CPU
(2 cores), 13GB RAM and an Nvidia K80 GPU (Tesla family) with
12GB GRAM (Tested framework: K)

« Conf. B A physical server hosted in our university HPC center!®
equipped with 2 x Intel(R) Xeon(R) Intel(R) 2.13GHz CPUs (4 cores),

Bhttps://colab.research.google.com
16http://www.scope.unina.it
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32GB RAM and an Nvidia Titan Xp GPU (Pascal family) with 12GB
GRAM (Tested frameworks: K and M)

* Conf. C A DELL R720 equipped with two Intel(R) Xeon(R) CPU
E5-2680 v2 @ 2.80GHz, 128GB RAM and two NVIDIA Tesla K20
(Pascal family) with SGB GRAM (Tested frameworks: K and M)

The proposal has been evaluated by using a private dataset composed of
42 women breast DCE-MRI 4D data (average age 40 years, in range 16-69)
with benign or malignant lesions histopathologically proven. All patients
underwent imaging with a 1.5T scanner (Magnetom Symphony, Siemens
Medical System, Erlangen, Germany) equipped with breast coil. DCE T1-
weighted FLASH 3D coronal images were acquired (TR: 9.8ms, TE: 4.76
ms; FA: 25 degrees; FoV 370x185 mm?; Image: 256x128; Thickness: 2 mm;
Gap: 0; Acquisition time: 56s; 80 slices spanning entire breast volume). One
series (f9) was acquired before intravenous injection and 9 series (f1-t9) after.
In particular, the intravenous injection consists of 0.1 mmol/kg of a positive
paramagnetic contrast agent (gadolinium-diethylene-triamine penta-acetic
acid, Gd-DOTA, Dotarem, Guerbet, Roissy CdG Cedex, France). In order
to perform the injection, an automatic system was used (Spectris Solaris EP
MR, MEDRAD, Inc.,Indianola, PA) and the injection flow rate was set to 2
ml/s followed by a flush of 10 ml saline solution at the same rate. The lesions
ground-truth was manually carried out by. Only images from pre-contrast
series have been used in this study. The assessment was performed by using a
patient-based 10-fold Cross-Validation (CV), in order to prevent slices from
the same subject belonging to two different folds, applying a training/test
data standardization using the median and standard deviation calculated only
on the training patients’ fold. To validate the repeatability of our model, we
repeated the execution 50 times. We used the same initialization seeds for

the random numbers generators to try highlighting only the uncertainty due
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to random considerations introduced by the optimization tools’ randomness.
The obtained breast-mask is compared to the gold standard in terms of Dice
Similarity Coefficient (DSC) index. To be sure to tackle all the randomness
sources but those due to the underlying GPU libraries, we fix the seeds of all
the random numbers generators to the constant values of 2019 and reset the

environment to its initial state before each execution.

3.2.3 Reproducibility Results

For each Montecarlo trial, we perform a 10-fold cross-validation. The median
values (over the considered 42 patients) of each repetitions are reported in
tables 3.1 to 3.5, while the corresponding box-plot are reported respectively
in figures 3.6 to 3.10.

Repetition DSC [%] LB [%] UB [%]
ICPR2018 [139] 95.90% 95.16% 96.64%
Rep.01 95.80%  95.24% 96.37%
Rep.02 96.19%  95.62% 96.75%
Rep.03 95.85%  95.38% 96.39%
Rep.04 96.11%  95.69% 96.57%
Rep.05 96.04%  95.15% 96.62%
Rep.06 95.90%  95.02% 96.60%
Rep.07 96.25%  95.29% 96.52%
Rep.08 95.93%  95.44% 96.56%
Rep.09 95.95%  95.38% 96.36%
Rep.10 95.89%  95.35% 96.43%

Table 3.1: Results obtained for each of the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation for the analysed breast mask extraction
approach, using the Conf. A and the Framework K. The results presented in
ICPR2018[139] are also reported in bold. Median values with corresponding
95% confidence intervals (LB: LowerBound, UB: UpperBound) are reported.
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Repetition DSC [%] LB [%] UB [%]
ICPR2018 [139] 9590%  95.16% 96.64%
Rep.01 95.89%  95.18% 96.47%
Rep.02 9591%  95.25% 96.32%
Rep.03 96.14%  95.08% 96.66%
Rep.04 95.90%  94.92% 96.48%
Rep.05 96.01%  94.98% 96.41%
Rep.06 96.12%  94.95% 96.53%
Rep.07 96.03%  95.56% 96.28%
Rep.08 95.95%  95.52% 96.29%
Rep.09 96.08%  94.77% 96.39%
Rep.10 96.12%  95.31% 96.48%

Table 3.2: Results obtained for each of the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation for the analysed breast mask extraction
approach, using the Conf. B and the Framework K. The results presented in
ICPR2018[139] are also reported in bold. Median values with corresponding
95% confidence intervals (LB: LowerBound, UB: UpperBound) are reported.

It is worh noting that, for brevity reasons, tables and figures report only the
first 10 executions of the Montecarlo analysis for each explored combination.
Finally, table 3.6 reports the statistics (median values) about confidence
intervals (CIs) and training times for each of the experiments to better compare
and discuss the results. The CI size has been calculated as the difference
between the Upper Bound and the Lowe Bound (UB - LB).

Tables 3.1 to 3.5 show how the computational frameworks for the op-
timization of deep learning models suffer from reproducibility during the
training phase producing different models and thus, different results. It is
worth noting that it is not limited to the analysed frameworks (MATLAB
and TensorFlow), neither in the used GPU architecture, but instead lies in
the Nvidia libraries (as discussed in section 3.1). This it is further confirmed

by the fact that several CPUs executions, using the same framework, result
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Repetition DSC [%] LB [%] UB [%]
ICPR2018 [139] 9590%  95.16% 96.64%
Rep.01 96.05%  94.87% 96.33%
Rep.02 95.99%  95.11% 96.51%
Rep.03 96.05%  95.32% 96.38%
Rep.04 96.00%  95.61% 96.30%
Rep.05 95.91%  94.98% 96.27%
Rep.06 96.04%  95.09% 96.51%
Rep.07 96.14%  95.08% 96.50%
Rep.08 95.99%  9535% 96.51%
Rep.09 95.92%  95.32% 96.28%
Rep.10 96.10%  95.68% 96.32%

Table 3.3: Results obtained for each of the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation for the analysed breast mask extraction
approach, using the Conf. C and the Framework K. The results presented in
ICPR2018[139] are also reported in bold. Median values with corresponding
95% confidence intervals (LB: LowerBound, UB: UpperBound) are reported.

in totally reproducible outcomes. Nevertheless, the randomness introduced
in the trained models by using a GPU produces not statistically different
results, as graphically shown in figures 3.6 to 3.10. In particular, analysing
the boxplots it is possible to state that our CNN-based model is stable to the
different training executions over different frameworks and hardware con-
figurations since the confidence intervals obtained on the tests data overlap.
It is interesting to note that, although from a statistical point of view there
are no significant differences among the configurations (both hardware and
software), the model trained with MATLAB appears to be more stable, since
its confidence intervals are narrower (about 27% smaller). This suggests that
the MATLAB framework better compensates for the randomness associated

with the training, paying it in terms of training time, as reported in table 3.6.
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Repetition DSC [%] LB [%] UB [%]
ICPR2018 [139] 9590%  95.16% 96.64%
Rep.01 96.25%  95.43% 96.53%
Rep.02 95.86%  95.40% 96.15%
Rep.03 95.86%  94.94% 96.08%
Rep.04 96.11%  95.61% 96.52%
Rep.05 95.99%  95.27% 96.27%
Rep.06 95.90%  95.15% 96.26%
Rep.07 9591%  95.22% 96.31%
Rep.08 96.21%  95.64% 96.46%
Rep.09 95.95%  95.62% 96.13%
Rep.10 95.94%  95.64% 96.18%

Table 3.4: Results obtained for each of the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation for the analysed breast mask extraction
approach, using the Conf. B and the Framework M. The results presented in
ICPR2018[139] are also reported in bold. Median values with corresponding
95% confidence intervals (LB: LowerBound, UB: UpperBound) are reported.

Moreover, results show that the variability across different frameworks is
more evident than the variability across different hardware architectures.

In conclusion, we showed that the reproducibility issue can be shifted from
a strictly combinatorial problem to a statistical one, in order to validate the
model robustness and stability more than its perfect outcomes predictability.
Generally speaking, the randomness introduced by deep learning libraries,
could impact outcomes of biomedical image processing application relying on
deep learning approaches. Therefore, in order to avoid providing not totally
reproducible claims, it is very important to shifts the attention from a pure
performance point-of-view to a statistical validity of the obtained outcomes.
Indeed, a model showing large variations in results will have wider confidence
intervals with respect to a more stable, and thus reproducible, one.



3.2 Determinism in e-Health | 69

Repetition DSC [%] LB [%] UB [%]
ICPR2018 [139] 9590%  95.16% 96.64%
Rep.01 95.98%  95.66% 96.15%
Rep.02 95.92%  95.20% 96.19%
Rep.03 96.16%  95.67% 96.56%
Rep.04 95.84%  95.38% 96.13%
Rep.05 95.88%  95.15% 96.25%
Rep.06 9591%  95.00% 96.13%
Rep.07 96.19%  95.63% 96.44%
Rep.08 95.86%  95.56% 96.09%
Rep.09 96.19%  95.38% 96.48%
Rep.10 95.95%  95.27% 96.36%

Table 3.5: Results obtained for each of the first 10 out of 50 Montecarlo exe-
cutions of the 10-fold cross-validation for the analysed breast mask extraction
approach, using the Conf. C and the Framework M. The results presented in
ICPR2018[139] are also reported in bold. Median values with corresponding
95% confidence intervals (LB: LowerBound, UB: UpperBound) are reported.

Conf. A B B C C
Framework K K M K M
Median CI size 1.13% 1.36% 0.95% 1.22% 0.94%

Median training time ~50min ~13min ~33hours ~25min ~42hours

Table 3.6: Comparative results (median values) for each experimental set-up,
in terms of median confidence interval spread and required training time.
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Figure 3.6: Boxplots associated with results in table 3.1 obtained by using

the Conf. A and the Framework K.
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the Conf. B and the Framework K.
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Figure 3.8: Boxplots associated with results in table 3.3 obtained by using
the Conf. C and the Framework K.
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Figure 3.9: Boxplots associated with results in table 3.4 obtained by using

the Conf. B and the Framework M.
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Figure 3.10: Boxplots associated with results in table 3.5 obtained by using
the Conf. C and the Framework M.



Deep Approximate Computing

One of the common misconceptions with numerical computing is related
to the concepts of “correct” and “approximate” computation: the former
term is often erroneously (at list in the numerical computing field) used as
synonym for “closed-form solution”, while the latter tends to be perceived
as “not precise” or “roughly estimated”. The error lays its foundations in the
erroneous belief (from non-expert people) of computers being able to directly
interface with the real world (continuous in its nature), totally forgetting about
their intrinsically discrete nature. Indeed, when a natural signal (e.g. an
image, a sound, an earthquake trace, etc) needs to be processed by means of
a computer, the first step is to make it discrete (e.g. by using quantization).
Working on a discrete version of the problem does not necessarily imply ob-
taining a less usable solution. For example, considering the case of measuring
the area under a curve (integral of a function), the discrete solution tends
to the analytic one as discretization level tends to infinite. Thus, part of the
solution design is the choice of discretization level, on the basis of the desired

precision.

Some applications have the property of being resilient, meaning that they
are robust to noise (e.g. due to error, to discretization, etc.) in the data. This

characteristic is very useful in situations where an approximate computation
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(e.g. by representing rational numbers by using single-precision floating-point
variables instead of double precision ones) allows to perform the computation

in less time or to deploy it on embedded hardware [7].

As seen in chapter 3, deep learning is clearly one of the fields that can
benefit from approximate computing since, by definition, once trained they
show an impressive generalisation ability (i.e. resiliency to an error in the
data or to intrinsic randomness). One of the most adopted solutions in this
regard is to quantize the learnt weights [73], with the aim of both reducing
the required memory and to speed-up the inference stage. The limitation of
this solution is in the fact that the obtained network is not necessarily the
most compact possible one since quantization operates on all the weights
similarly. In a relatively recent work [15], the authors propose an interesting
approximate approach exploiting software mutants to explore the solutions
space looking for those laying on the pareto-frontier. Unfortunately, this
approach is extremely computationally demanding, resulting infeasible to use
in the case of deep neural networks.

Therefore, in this work we propose to face the problem from a different
perspective: instead of reducing the weights or look for the perfect approxi-
mated network, we investigate whether is it possible to remove whole neurons

without substantially affecting the network performance.

4.1 Hidden Layer Sizing

As seen in section 1.1, Convolutional Neural Networks (CNNs) are very simi-
lar to traditional (shallow) Artificial Neural Networks (ANNs): they are both
made of neurons, usually organised in layers, connected to form a network
in which the output of a neuron is the input of some others. This elaboration
chain made it possible to transform the input data in the desired output value
(i.e. a class for a classification problem or a value for a regression one),

learning the best way of doing it during the training phase. However, while
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shallow neural networks operate on the features designed and extracted by a
domain expert (figure 4.1a), CNNs use an hierarchy of convolution operations
(whose kernel’s weights are learned in the very same way classical neurons
are) to autonomously extract the feature that better models the problem under
analysis (figure 4.1b).

All CNNss of the type described in figure 4.1b can be seen as a stack of
neurons specialised for the feature engineering (the ones in the convolutional
layers) and neurons intended for the classification task (the ones in the fully
connected layers). According to this point of view, the fully connected layers
can be seen as a standard multilayer perceptron (MLP) classifier that relies
on features extracted from the convolutional layers (although it is worth
noting that all layers are trained together). This distinction is important since
convolutional and fully connected layers have a very different number of
parameters. Using AlexNet as example, it has 2,334,080 parameters in the
convolutional layers (~ 4% of the total) and 58,631, 144 parameters in the
fully connected ones (~ 96% of the total). The reason is that AlexNet was
originally intended to face the 1000 classes of ImageNet, therefore, after the

feature engineering, a great representational capacity is required.

Since optimising a huge number of parameters can easily result in overfit-
ting, in section 1.2 we have seen that a widely adopted solution is to make
use of transfer learning techniques. In particular, there are two possible
ways of leveraging knowledge from a pre-trained network: fine-tuning the
net to adapt it to the new task; directly using the network as a feature exac-
tor. It is important to highlight that, while the feature extractor approach
does not change the network structure (it just exploits the net inherit hier-
archical representation), fine-tuning implies a change in the architecture,
without any concern on if and to what extent this alteration can impact the
efficiency and effectiveness of the net.

Indeed, fine-tuning is usually applied on problems having a smaller num-

ber of classes, causing a bottleneck in the network structure: e.g. in the
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Figure 4.1: Comparison between a shallow and a convolutional neural network
architecture. (a) A representation of the classical approach in which some
features (in the middle) are extracted from input data (on the left) and used
to train a shallow neural network (a multilayer perceptron in the image on
the right); (b) An exemplification of a CNN using an hierarchy of (in the
example 2) convolutional layers (in the middle) to autonomously learn the
best representation of input data (on the left) in order to train a fully connected
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case reported in figure 1.6 in section 1.2, the 4096 neurons in the fc7 layer
(originally intended to be the input for the 1000 classes output layer) are
connected to a 2 neurons output layer. Besides the waste of representational

capacity, this simplistic approach has three main drawbacks:

* can introduce an unnecessary additional computational and memorisa-
tion burden (with a direct impact on the net performance and required

system characteristics);

* can cause the net to focus more on the noise within images rather than

on other salient aspects;

* may require more training sample to converge (due to the higher number

of parameters to fit).

Thus, in the view of networks size reduction, in this work we propose
to further adapt deep CNNs by performing a sizing of hidden layers (i.e.
those between the input and the output layers) when using the fine-tuning
strategy. With the term sizing, we refer to the use of a suitable strategy to
reduce the number of used neurons, without significantly affecting the network
performance. This can be achieved in two different ways: by reducing the
synapses (i.e. connections between neurons), or by removing whole neurons.
Here we will analyse the latter approach, focusing in particular only on
neurons in the fully connected layers since, as previously discussed, are the

most numerous ones.

4.1.1 Choosing the Number of Neurons

Designing a neural network is something closer to art than to science. On
one hand, the universal approximation theorem states that a single hidden
layer (with an infinite number of neurons) feed-forward neural network can
approximate any continuous function. On the other, an improper network

design can easily result in under/over-fitting (figure 4.2).
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Figure 4.2: Illustrative representation of how the number of neurons affects
the decision boundaries for a two-classes problem, in a single hidden layer
multilayer perceptron. For each box, the image on the left refers to training
samples, while the image on the right refers to validation samples. The
number in the box represents the number of neurons in the hidden layer: 2
causes underfitting; 100 results in overfitting; finally 5 is the perfect value.
Images adapted from [45].
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Several heuristics have been so far proposed, each trying to define a “rule
of the thumb” to help in the ANN design process. Among all, in this work we

consider two approaches, chosen for their simplicity and diffusion:

* To use as many neurons as the average between the number of input

and output neurons (hereafter referred as A-Rule);

* Defined m as the number of classes and i as the number of input neurons,
in [81] the author propose to use n =2 \/(m+ 2) * i (hereafter referred
as Huang).

4.2 Sizing as CNNs Approximation Technique

To measure the suitability of the sizing strategy for approximate computing
purposes, it is important to measure the resiliency of the “sized” network,
with respect to the “original” one, on a given task. Both the network depth
and the considered task might affect the approach effectiveness: the former,
due to the different ratio between the numbers of neurons in the convolutional
and in the fully connected layers; the latter due to the different number
of classes, directly related to the number of neurons in the classification
layer. Therefore, in this work we consider two different networks on three

classification problems.

4.2.1 Experimental Setup

To take into account the depth of the networks, in this work we use two
different CNNs pre-trained on ImageNet [152]: AlexNet [95] and Vggl19
[166]. The former, consists of 5 convolutional and of 3 fully connected layers,
for a total of 60,965,224 parameters (on the left in figure 4.3); The latter,
consists of 16 convolutional and of 3 fully connected layers, for a total of
143,667,240 parameters (on the right in figure 4.3). For both networks, the

sizing approximation procedure is as follows:
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Figure 4.3: A simplified illustrative representation and comparison between
AlexNet [95] and Vgg19 [166] CNNs architectures. In both cases, activation
functions, dropout and other functional layers have not been reported. For
details about the number of parameters, depth, etc., please refer to table 1.1
in section 1.2.



4.2 Sizing as CNNs Approximation Technique | 83

* Replace the last fully connected layer with a new fully-connected layer
having as many neurons as the number of classes in the considered

dataset;

* Change the shape of the second to last fully connected layer according

to one of the sizing rule introduced in section 4.1.1;

* Freeze the trained weights and biases for all convolutional layers (by

setting the learning rate to 0);
* Set a very low learning rate (10~%) for the fully connected layers;
 Re-train the modified network on the new task.

Since also the used optimiser could affect the evaluation, all the experi-
ments were run two times: the first, by using Stochastic Gradient Descent
with Momentum (SGDM) [22], the second by using ADAM [88]. A 5-fold
cross-validation was performed, with 3 folds using as training set, 1 as valida-
tion set and 1 as test set. In all the configurations, the training is stopped after
15 consecutive non-improvements on the validation set accuracy. As a result,

it is worth noting that:

* all the weights in the convolutional layers will remain unvaried (the

same learnt on ImageNet);

* the weights in layer the third to last fully connected layer will start
the fine-tuning with weights learnt on ImageNet, but will be updated

during the re-training;

» weights of last two fully connected layers will be randomly initialized

and will be adapted during the training.

To evaluate the effectiveness of the proposed approach, we considered
three datasets differing in terms of number of classes, number of samples and

image resolution:
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* The Dogs vs Cats dataset'’ [49], consisting in 25000 images of cats
and dogs (figure 4.4) equally distributed;

» The UTUC Sports Event dataset'® [102], containing images of 8 differ-
ent sport activities (figure 4.5), distributed from 137 to 250 images per

category;. All the images are also grouped into “easy” and “medium’
according to the human subject judgement;

+ The Caltech 101 dataset!® [51], collecting pictures of objects belonging
to 101 different categories (figure 4.6), distributed from 40 to 800
images per category;

Figure 4.4: Sample images from Dogs vs Cats dataset [49].

Thttps://www.microsoft.com/en-us/download/details.aspx?id=54765
I8http://vision.stanford.edu/lijiali/event_dataset/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Figure 4.6: Sample images from Caltech 101 dataset [51].
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4.2.2 Experimental Results

Measuring the resiliency of a deep CNN imply measuring the classification
error rates of the approximated networks against those obtained by using
the basic fine-tuning procedure. Tables 4.1, 4.2, 4.3 report the classification
accuracy and the number of iterations needed to converge for AlexNet [95],
varying the training optimiser (section 4.2.1) and the used sizing approach
(section 4.1.1), for each considered dataset respectively (section 4.2.1). Ta-
bles 4.4 and 4.5 respectively report the number of parameters and occupied
memory (in MB) for the same set of CNN, optimisation approach, sizing

strategy and dataset.

Technique Optimiser Accuracy Iterations
Mean Median Mean Median
B SGDM  0.9744+0.0021 0.9738+0.0026 4120 3800
ase ADAM  0.9658+0.0025 0.9656+0.0031 7400 5000
ARul SGDM  0.9729+0.0024 0.9730+0.0030 5360 5000
U ADAM  0.966440.0026  0.9660+0.0032 11880 12000
Huan SGDM  0.9729+0.0025 0.9722+0.0031 11120 13000
UYANE ADAM  0.966340.0027 0.9660+0.0033 18160 17400

Table 4.1: AlexNet [95] 5-fold cross validation mean results for the Dogs vs
Cats [49] dataset, with respective 95% confidence values when needed. In
bold the best result for each combination.

Similarly, tables 4.6, 4.7, 4.8 report the classification accuracy and the
number of iterations needed to converge for Vgg19 [166], varying the training
optimiser (section 4.2.1) and the used sizing approach (section 4.1.1), for
each considered dataset respectively (section 4.2.1). Tables 4.9 and 4.10
respectively report the number of parameters and occupied memory (in MB)

for the same set of CNN, optimisation approach, sizing strategy and dataset.
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Technique Optimiser Accuracy Iterations
Mean Median Mean Median

B SGDM  0.9538+0.0095 0.9587-+0.0119 1022 792
ase ADAM  0.9601-£0.0111 0.9621+0.0138 192 156
ARul SGDM  0.953140.0132 0.9495+0.0165 1190 1248
W ADAM  0.958840.0138 0.9495+0.0172 293 192
Huan SGDM  0.949340.0113 0.9460+0.0141 1534 1368
€  ADAM  09563+0.0156 0.952440.0195 190 168

Table 4.2: AlexNet [95] 5-fold cross validation mean results for the UTUC
Sports Event [102] dataset, with respective 95% confidence values when
needed. In bold the best result for each combination.

Technique Optimiser Accuracy Iterations
Mean Median Mean Median
Base SGDM  0.9159+0.0100 0.9155+0.0125 25258 24455
ADAM  0.9334+0.0067 0.9338+0.0084 9475 10512
ARul SGDM  0.9229+0.0073 0.9237-+0.0091 29667 29638
U ADAM 0.932440.0071  0.93354+0.0089 7680 7300
Huan SGDM  0.921240.0071 0.9204-£0.0089 31332 29273
UAaNg ADAM  0.933140.0082 0.9329+0.0103 7227 6789

Table 4.3: AlexNet [95] 5-fold cross validation mean results for the Caltech-
101 [51] dataset, with respective 95% confidence values when needed. In
bold the best result for each combination.

Although this work must be considered just as a proofs-of-concept, re-
sults show that it could be possible to reduce the number of neurons in the
hidden layer without statistically affect the network performance, but with a
significant reduction of the number of parameters (up to ~ 27% for AlexNet

and ~ 11% for Vgg19) and required memory occupation (up to ~ 41% for
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#Parameters A A%

Base 56,876,418 -
Dogs Vs Cats [49] A-Rule 48,485,765 8,390,653 14.75%
Huang 41,136,258 15,740,160 27.67%

Base 56,901,000 - -
UIUC Sports Event [102] A-Rule 48,510,380 8,390,620 14.75%
Huang 41,745,340 15,155,660 26.64%

Base 57,282,021 - -
Caltech-101 [51] A-Rule 48,894,417 8,387,604 14.64%
Huang 41,136,258 15,740,160 27.67%

Table 4.4: Summary of the number of AlexNet [95] parameters for each
sizing technique and considered dataset. The table also report the numerical
difference (A) and the percentage saving (A%) obtained by using the sized
network w.r.t. the base fine-tuning approach.

Memory (MB) A(MB) A%

Base 211 - -
Dogs Vs Cats [49] A-Rule 177 34 16.11%
Huang 124 87 41.23%

Base 207 - -
UIUC Sports Event [102] A-Rule 176 31 14.98%
Huang 152 55 26.57%

Base 209 - -
Caltech-101 [51] A-Rule 178 31 14.83%
Huang 166 43 20.57%

Table 4.5: Summary of the required AlexNet [95] memory for each sizing
technique and considered dataset. The table also report the numerical differ-
ence (A) and the percentage saving (A%) obtained by using the sized network
w.r.t. the base fine-tuning approach.
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Technique Optimiser Accuracy Iterations
Mean Median Mean Median

Ba SGDM  0.9887+0.0010 0.9884+0.0013 9160 9800
5¢ ADAM  0.9870+0.0009 0.9870+£0.0011 6760 2200
A-Rul SGDM  0.9881£0.0006 0.98824+0.0007 10360 10200
-rule ADAM  0.9864+0.0015 0.9858+0.0019 6200 5200
SGDM  0.9884+0.0009 0.9880+0.0011 9200 8400

Huang

ADAM  0.9873+0.0013 0.9872+£0.0016 3280 1400

Table 4.6: Vggl9 [166] 5-fold cross validation mean results for the Dogs vs
Cats [49] dataset, with respective 95% confidence values when needed. In
bold the best result for each combination.

Technique Optimiser Accuracy Iterations
Mean Median Mean Median
Base SGDM  0.9658+0.0097 0.9621+0.0121 377 276
ADAM  0.973440.0026 0.9716+0.0032 84 72
A-Rul SGDM  0.9683+0.0066 0.9685+0.0082 386 372
“Rule ADAM  0.9740+0.0025 0.9746+0.0031 245 96
SGDM  0.9709+0.0043 0.9714+0.0054 1022 1068
Huang

ADAM  0.9740+0.0044 0.9746+£0.0054 192 156

Table 4.7: Vggl19 [166] 5-fold cross validation mean results for the UITUC
Sports Event [102] dataset, with respective 95% confidence values when
needed. In bold the best result for each combination.

AlexNet and ~ 10% for Vgg19). This would imply that, though fine-tuning
can already be effectively used in many different contexts, other investigations
are needed to develop improvements that allow unleashing its full potential.

Moreover, the possibility of reducing the memory occupation without a direct
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Technique Optimiser Accuracy Iterations
Mean Median Mean Median
B SGDM  0.93624+0.0035 0.93774+0.0043 11271 11242
ase ADAM  0.9378+0.0063 0.937740.0078 569 511
A-Rule SGDM  0.94784+0.0075 0.9531+0.0094 11811 11023
ADAM  0.941540.0065 0.9431+0.0082 657 584
Huan SGDM  0.948340.0061 0.94754+0.0076 9724 8103
uang ADAM  0.94154-0.0065 0.9431+0.0082 657 584

Table 4.8: Vgg19 [166] 5-fold cross validation mean results for the Caltech-
101 [51] dataset, with respective 95% confidence values when needed. In

bold the best result for each combination.

#Parameters A A%

Base 139,578,434 - -
Dogs Vs Cats [49] A-Rule 131,187,781 8,390,653 6.01%
Huang 123,838,274 15,740,160 11.28%

Base 139,603,016 - -
UIUC Sports Event [102] A-Rule 131,212,396 8,390,620 6.01%
Huang 124,447,356 15,155,660 10.86%

Base 139,984,037 - -
Caltech-101 [51] A-Rule 131,596,433 8,387,604 5.99%
Huang 123,838,274 15,740,160 11.28%

Table 4.9: Summary of the number of Vggl9 [166] parameters for each
sizing technique and considered dataset. The table also report the numerical
difference (A) and the percentage saving (A%) obtained by using the sized
network w.r.t. the base fine-tuning approach.

impact on the network classification ability open new scenarios toward the

application of powerful CNNs on embedded devices, as already done with

Random Forest classifier [15].
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Memory (MB) A (MB) A%

Base 508 - -
Dogs Vs Cats [49] A-Rule 488 20 3.94%
Huang 461 47 9.25%

Base 507 - -
UIUC Sports Event [102] A-Rule 477 30 5.92%
Huang 452 55 10.85%

Base 506 - -
Caltech-101 [51] A-Rule 482 24 4.74%
Huang 465 41 8.10%

Table 4.10: Summary of the required Vgg19 [166] memory for each sizing
technique and considered dataset. The table also report the numerical differ-
ence (A) and the percentage saving (A%) obtained by using the sized network
w.r.t. the base fine-tuning approach.

4.3 Sizing and Adversarial Perturbations

In section 1.3 we introduced the problem of misleading a CNN by means of
adversarial perturbations. Common defence techniques usually try to make
CNNs more robust by either working on the data (to find out the adversarial
samples [200] or to destroy the injected artefacts [47]) or on the way the
model learns from it [117]. But is it possible that the shape of the network
itself contributes to the effectiveness of such attacks? Our idea is that the
shape of CNNss itself could be part of the reasons why they are susceptible to
adversarial attacks.

Although recently, some authors have proposed adversarial attacks able
to work in several domains [29, 159], in this section we will focus only on
CNNs for image processing and on adversarial attacks applicable to them.
This is because 1) CNNs represents the most used deep neural networks
and ii) all the adversarial attacks so far proposed in any domain are the

same, or are an adaptation, of those intended against images. Therefore, we
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analyse the impact that the sizing strategy has on the robustness of CNNs
against adversarial perturbation approaches. To this aim, table 4.11 and
4.12 respectively report the robustness of AlexNet [95] and Vggl9 [166]
against two adversarial perturbation strategies (see section 1.3.1 for details)
on the UIUC Sports Event Dataset [102], varying the sizing approach (section
4.1.1). The value p, introduced in [120] and related to the magnitude of the

adversarial noise needed to mislead the CNN, is defined as

_[Nall2
[

where N, is the injected adversarial noise and / is the target image. The

(4.1)

column “Time” refers to the time (in seconds) needed to craft the adversarial
samples. It is worth noting that, to provide fair results, the CNNs have been
trained of the training set, while the adversarial samples have been crafted
only for images in the test set. Moreover, both rho and “7Time” values have

been measured only for successfully crafted adversarial samples.

Fool p Time (s)
Mean Median Mean Median

FGSM  0.0183 0.0185 2690.45 2811.46
DeepFool 0.0407 0.0419 706.83  703.33

FGSM  0.0193 0.0194 3260.09 3146.05
DeepFool 0.0442 0.0452  722.80  754.96

Huan FGSM  0.0199 0.0202 4745.09 4149.13
£ DeepFool 0.0488 0.0499 558.67 554.58

Base

A-Rule

Table 4.11: AlexNet [95] robustness to FGSM [64] and to DeepFool [120]
adversarial perturbations attacks on the UIUC Sports Event Dataset [102],
varying the sizing approach.
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Fool P Time (s)
Mean Median Mean Median

FGSM  0.0177 0.0182 18386.91 18634.11
DeepFool 0.1188 0.0754 4305.76  4383.62

FGSM  0.0192 0.0190 27851.98 28652.63
DeepFool 0.0713 0.0730 5151.23  5243.81

Huan FGSM  0.0200 0.0201 22059.96 22084.38
& DeepFool 0.1000 0.0882 4132.82  4130.29

Base

A-Rule

Table 4.12: AlexNet [166] robustness to FGSM [64] and to DeepFool [120]
adversarial perturbations attacks on the UIUC Sports Event Dataset [102],
varying the sizing approach.

Interestingly, results show that, apart for a single combination, sized CNN’s
needs a “stronger” adversarial noise to be mislead. This further motivate other
investigations in the direction of CNNs layer sizing, since the reported analysis
seems to suggest that the adversarial perturbation problem can be faced (or at
least limited) by reducing the number of neurons/connections that actively
take part in the network decision problem. This results, although preliminary,
represent a novel contribution in the field of adversarial defense strategies
since CNN sizing does not relay on the analysis of the data but could make
CNNss intrinsically more robust by changing the neurons connection pattern.
This will help the user in “sizing” the network accordingly to the desired
levels of performance/robustness they needs to obtain on the basis of the risk
associated with the task.

It is also worth to note that the approach is totally topic-agnostic, meaning
that it is applicable in several contexts and for different tasks (i.e. user
recognition, object detection, etc), helping researchers in choosing the most
suitable solution without changes in the procedure. Moreover, one of the big

strengths of the approach is that it can theoretically be used also on already
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developed network, since it only operates on the network structure, not on the
data nor on the training procedure. This has a huge impact on its applicability,
since it means that also already deployed CNN bases application could be
made more robust to adversarial attacks and updated in a total transparent
way from the user perspective, since the input/out of the network will remain

totally unchanged.
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As seen in part I, artificial intelligence, and in particular deep learning, is
being involved in a wide range of application fields, including critical ones.
As a consequence of this wide spreading, Al-based systems are becoming
more and more target of attacks aimed in circumventing them (see section 1.3
for details). Indeed, if on one hand, industry is pushing toward a massive use
of artificial intelligence enhanced solution, on the other it is not adequately
supporting researches in end-to-end understating of capabilities and vulner-
abilities of such systems. The results may be very (negatively) mediatic?’,
especially when regarding borderline domain such as the reliability of au-
tonomous driving systems [169]. Unfortunately, this contributes in further
undermining people trust in Al, whose reputation is already tarnished by mass
media®!.

Since Al is very likely to be an important part of our everyday life in
the very next future, it is crucial to build trust in Al systems. Although the
solution is not straightforward, a crucial step in that direction is to raise aware-
ness about security and fairness threats of these systems, from a technical
perspective as well as from the governance and from the ethical point of view.
Several are the issues that must be faced, such as: designing systems that
analyse people data ensuring privacy by default; analysing the limitations and
the weaknesses that might affect an Al-based system, independently from the
particular adopted technology or technical solutions; assessing the behaviours
in the case of successful attacks and/or in presence of degraded environmental
conditions.

In this part of the thesis, we will focus on these aspects. In particular, in
chapter 5 we investigate the vulnerability of biometric based authentication
systems, while in chapter 6 we consider the privacy and fairness concerns

associated with automatic face analysis. In both cases we take advantage

2Ohttps://towardsdatascience.com/your-car-may-not-know-when-to-stop-adversarial-
attacks-against-autonomous-vehicles-a16df91511f4

2Ihttps://www.theguardian.com/commentisfree/2016/apr/07/robots-replacing-jobs-
luddites-economics-labor
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of adversarial perturbations, making them the key factor the proposed ap-
proaches.
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Figure 4.7: Installation at the London Science Museum on an adversarial
attack against automatic traffic signs recognition.



Biometrics Authentication Systems

In a more and more connected world, one of the actions we perform more
often is to verify our identity, in order to get access to our laptop, mobile
phone, bank account, university services, etc. There are several ways to prove
someone’s identity, such as by using a certificate, a personal document, a
password, a key, etc. All these means share the characteristics of having some
sort of “secret” that only the real user knows/posses and, thus, providing it

demonstrate the user’s identity.

Over the years, as the risk associated with grating access to unautho-
rised users increased, industry moved toward users’ identification bases on
something the subject can not lend to anyone else [17]. Therefore, with
the growing availability of small, cheap and reliable biometric acquisition
scanners, the spread of Biometric-based Authentication Systems (BAS) in
daily life consumer electronics (like smartphones and laptops) have been
increasing [206]. Biometrics are becoming the security standard de-facto
in several context, mainly because they are usually easy and safe to acquire
[21], allowing the system to identify a subject (and thus to understand its
authorisation levels) on the basis of characteristics that describe what the user

is (such as a fingerprint), more than what a user own (like a key).
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As for in many other domains, in the last years industry is pushing toward
the use of artificial intelligence and deep learning in BAS [176]. The aim
is to increase BAS reliability and versatility by leveraging machine learning
approaches to relieve domain expert from designing new solutions. However,
as seen in the introduction of this part of the thesis, it is of crucial importance
to have and end-to-end understanding of capabilities and vulnerabilities of
such Al-bases systems when used in critical domains. Therefore, in this
chapter we investigate whether it is possible to circumvent a CNN-based BAS

by exploiting adversarial perturbations (see section 1.3.1 for details).

5.1 Biometrics

Biometrics analysis, as the term suggest, refers to the “measure” of some
“biological” characteristics of a subject to infer some property about they
(e.g. the user identity). Biometrics can be grouped into hard (also known
as primary) and soft (figure 5.1), with the first referring to physical [85],
behavioral [119], and biological characteristics [156] directly measurable
on the subject, and the latter concerning ancillary characteristics related, for
example, to the subject nationality, gender, age and so on [3]. Over the years,
researchers’ interest is moving from hard to soft biometrics, at the beginning
mainly with the aim of improving authentication system effectiveness [205, 4],

then focusing on subject identification [186, 146].

Each biometrics has some pros and cons, usually related with the intrinsic
security level or to the invasiveness of the acquisition procedure. For this
reason, the choice for the most appropriate solution depends on the purpose
the system has been designed for. For example, DNA can be considered
ideal to verify someone’s identity, but the acquisition procedure might be
tedious; iris is usually easy to acquire, but the associated security level not
very high; etc. Therefore, it is not uncommon the contemporaneous use of

several biometrics (sometimes less effective, but cheaper) to cope with the
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Figure 5.1: Biometrics classification schema in hard and soft, according to

the grouping made in [3].

system requirements [27]. Unfortunately, as for any other authentication

means, it is possible to attack a BAS by using a counterfeit replica of the

target subject biometrics (see figure 5.2 for an example). Since the attack

consists in “presenting” the fake replica to the scanner, this type of attacks
goes under the name of Presentation Attack (PA). As the spread of BAS

increased, the same happened to the effectiveness of presentation attacks, to

the point of even starting a public debate about their usage??. Therefore, to

2https://www.bizjournals.com/washington/blog/techflash/2013/10/this-is-the-biometric-

war-michael.html
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face the problem, researches started developing Liveness Detectors (LDs),
namely methods aimed in detecting whether the acquired biometrics belongs
to a live (and thus real) subject or no.

Figure 5.2: Example of a face presentation attack. From left to right: a printed
face; a face reproduced by means of an electronic device; a face 3D mask.
Top row show the fake biometrics replicas, while bottom row show the attack
by using the corresponding replica. Images taken from [101].

Detecting fake biometrics usually involve the analysis of characteristics
that, evident in the case of real acquisitions, are hard to replicate on counterfeit
replicas (e.g. heartbeat in a finger, eye blinking for a face, etc). These
characteristics can be identified by means of external hardware (e.g. a depth
camera to analyse whether a face is tridimensional or just printed) or by
simply analysing the acquired biometry by using an ad-hoc software. If, on
one hand, the former tends to be more accurate and reliable, on the other it
also might be hard to be put in practice (e.g. because too expensive, too big,
etc). Thus, on the basis of the desired security level, it is possible to use a

different approach for liveness detection against presentation attacks.



5.2 Fingerprint-based Authentication Systems | 103

5.2 Fingerprint-based Authentication Systems

The last years growing availability of small, cheap and reliable fingerprint
acquisition scanners has been resulting in an increasing spread of Fingerprint-
based Authentication Systems (FAS) in consumer devices, such as smart-
phones and laptops. The success of FAS with the mass audience is mostly
related to their high users’ acceptability, thanks to the fact that fingerprints
are considered secure (both in terms of subject identification reliability and of
spoofing difficulty) and their acquisition not invasive [21]. The flip side of
the coin is that this wide-spreading has giving rise to a new wave in research
on smarter spoofing attacks, namely procedures aimed to bypass a FAS by
using a counterfeit fingerprint (see section 5.1 for details).

As happened for other biometrics, to face this problem researches are
focusing on the development of more effective Liveness Detectors (LDs)
approaches to discern authentic (i.e. acquired by using a “live” finger) fin-
gerprints from artificial replicas. As a consequence, a modern FAS (Fig.
5.3) usually comprises a Liveness Detector (LD) stage [131]: it is clear that
detecting fake fingerprints as soon as possible is crucial [5] to reduce the
computational burden and to limit the probability of unauthorised access.
Determining whether a fingerprint comes from a live finger or not is a task
that can be faced by exploiting additional hardware or by only relying on the
data coming from the scanner. Despite the use of external sensors data (e.g.
temperature, humidity, etc) may be more effective [115], using hardware-
based LD it usually results in higher costs and bigger scanner. For this reason,
over the last years researches mostly focused on the development of LD based

on the analysis of the fingerprint image as acquired by the scanner.

Performing the attack at sensor level implies that the liveness detection can
be addressed in the context of computer vision. As for many other computer
vision problems, over the years machine learning (ML) based approaches

demonstrated to be reliable and effective for fingerprint liveness detection,
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Figure 5.3: Exemplification of a modern FAS working schema. On the left,
the scanner acquires the fingerprint: if there is any acquisition problem, the
acquisition in rejected (Failure to acquire), otherwise the acquired image is
passed to the next stage. In the middle, the liveness detector checks whether
the input sample comes from a live (real) finger or not: in the former case it
is passed to the next stage; the latter case it is rejected (Failure to enrol). On
the right, the authentication system verifies if the fingerprint belongs to an
authorised user, granting or forbidding the access.

with recent deep Convolutional Neural Networks (CNN) obtaining state-
of-the-art performance in detecting a wide number of spoofing approaches
[60, 35]. However, as seen in section 1.2, the term deep refers to the number
of stacked layers and thus, indirectly, to the total number of neurons in the
network. To estimate millions of parameters without incurring in over-fitting,
a huge number of annotated samples is usually required. Unfortunately,
collecting a big fingerprint dataset could be difficult, expensive and time-
consuming. Therefore, one of the most adopted solutions [21] is fine-tuning,

consisting in using a CNN pre-trained on a different task (having a suitable
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amount of available training samples) and performing a re-training of some
of the layers (usually last ones) to adapt the network to the new task while
preserving part of the past learned knowledge (see section 1.2 for details).
However, although fine-tuning demonstrated to be very effective [204], the
use of a pre-trained CNN does not bring only benefits but also cause inherit its
weaknesses that could nullify the effectiveness of a liveness detector. Among
all, the most critical are represented by adversarial perturbation [181], i.e. the

ability of ad-hoc crafted noise to mislead a CNN (see section 1.3 for details).

Despite natural images and fingerprints belongs to different domains,
this weak-point could open new attack scenario never considered before.
Therefore, to shed lights on this problem and raise domain experts awareness,
we want to design an adversarial perturbation based attack to arbitrarily
cause state-of-the-art CNN-based liveness detectors to misclassify a fake
fingerprint. In particular, the aim is to understand if and to what extent

adversarial perturbations can affect FASs by:

* exploring the effectiveness of some adversarial attacks on a CNN based

fingerprint liveness detection system;

* analysing the impact of the injected adversarial perturbation on the

fingerprint authentication algorithm;

* proposing a strategy to improve the attack success rate. Moreover, in
order to design an attack procedure usable in a real-world scenario, we
also propose some constraints to make the generated fake fingerprint

printable.

It is worth noticing that the need to preserve fingerprint key authentication
characteristics while injecting a perturbation able to mislead the liveness
detector is a way of exploiting adversarial perturbation that, to the best of our

knowledge, has never been so far proposed.
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5.2.1 Fingerprint Liveness Detection

As stated in the previous section, fingerprints are the most popular biometrics
since they have been proven to be reliable, easy to implement and to use
[21]. Moreover, the reduction of both the size and the cost of fingerprints
sensors have been causing a spread of biometric authentication systems
based on fingerprints. As a consequence, a growing number of attacks have
been designed to circumvent the authentication system and thus providing
unauthorized access. As seen in the previous section, a common strategy is
emphpresentation attack, consisting in the submission (presentation) of an
artificial replica of the finger to the sensor. Several materials can be used
for this purpose (including cheap and very accessible ones, such as wood
glue and play-doh), as long as they fairly emulate a finger skin characteristics
(figure 5.4). A fake replica can be made with (consensual), without (un-
consensual) or with the partial (semi-consensual) authorization of the real
user [60], starting, for example, from high-resolution photos, fingerprints left
on an object, etc.

(@)

Figure 5.4: Artificial finger replicas made using GLS (a), Ecoflex (b), Liquid
Ecoflex (c) and Modasil (d). Images taken from [21].

In this context, Liveness Detection (LD) (section 5.1) is the task of de-
termining whether a fingerprint belongs to a real (live) finger or to a fake
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replica, before its submission to the authentication system. This task can
both i) leverage only on the fingerprint image acquired by the scanner or
i1) exploit data coming from additional sensors (such as temperature, blood
pressure, humidity etc.). If, on one hand, the information provided by exter-
nal hardware can improve the recognition rate, on the other its acquisition
could not be always viable (e.g. it is not possible to use this approach for
already deployed sensors). Thus, much effort has mainly been dedicated to

developing image-based (software) techniques.

Over the years, increasingly sophisticated LDs approaches have been pro-
posed to cope with increasingly challenging spoofing techniques. To support
this process, in 2009 was started the first Liveness Detection Competitions
[110], a biennial contest in which participants are challenged to identify spoof
biometrics (iris and fingerprints) from live samples. The urge is to allow
researches to compare on a standardised, common experimental protocol,
providing them with a large quantity of fake and live samples, collected in a
well-known environment, in the viewing of sustaining results reproducibility
(see section 3 for details). The task complexity and liveness detectors perfor-
mance improved over LivDet editions. The 2015 edition [122] set a turning
point not only because the test-set spoof fingerprints were produced by also
using materials not included in the training set, but mainly because it was the
first time that a CNN was used for fingerprint liveness detection, resulting in
accuracy levels, intra-materials and intra-sensors generalization ability never
reached before. In particular, it is also worth noting that, despite the runner-up
[65] used a sophisticated approach able to exploit both spatial and frequency
domain features, the competition was won by an approach [126] relaying
on a Vggl9 CNN [166] pre-trained on ImageNet and then fine-tuned on the
fingerprint liveness detection task.

Thereafter, not only livdet top performers always include CNN-bases
approaches, but interestingly, similar solutions resulted effective also with

other biometrics [142, 77]. This give rise to some questions: how vulnerable
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are CNN-based fingerprint liveness detectors to adversarial perturbations?
Is the counterfeit fingerprint still correctly recognised by the authentication
system or had its main characteristics totally been destroyed by the adversarial
attack? To answer these questions, analysing the effectiveness of adversarial

perturbation approaches against FAS is of crucial importance.

5.3 Adversarial Presentation Attack

The potential vulnerability of CNN-bases liveness detection systems could
open new scenarios in which an attacker could be able to make a fake finger-
print being recognised as live by exploiting adversarial perturbations, giving
rise to an adversarial presentation attack. It is worth noting that, since a
FAS must be considered as composed of two subsystems (figure 5.3), to be
considered successful a FAS outbreak must not only be able to circumvent the
liveness detector, but also have to preserve the biometry as clean as possible
in order to be still able to break the authentication system. Therefore, in this
work we propose to evaluate FAS attacks in two steps (figure 5.5): first, we
evaluate the effectiveness of the attack against the LD subsystem and then we
verify the robustness of the AS to fake adversarial replicas that were able to
mislead the liveness detector.

5.3.1 Attacking the Liveness Detector

As stated in section 1.3.1, several adversarial perturbation attacks were so far
proposed. However, to the best of our knowledge, adversarial perturbation
was never used as a method to mask a presentation attack for fingerprints,
neither for any other biometry. In this work we thus propose to attack the
fingerprint liveness detector system by determining an adversarial pertur-
bation over a fake fingerprint image such that it can be recognized as live
and thus submitted to the matching process, while preserving as minutiae as

possible in order to be still able to break the authorization system. Since none
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Fingerprints (both fake and live)

Failure to
acquire
Perturbation Injection
@ (only on fake fingerprints)
Failure to

enroll

:'I Fingerprints that bypassed the
_»/ FAS (both real and perturbed)

Figure 5.5: Exemplification of the proposed attack schema. On the left, a
set of fingerprints, some of which (the marked ones) perturbed in order to
try to mislead the FAS. In the centre, after the LD some fake fingerprints are
still present and will be submitted to the AS. Finally, on the right, the set of
authorized accesses contains a fake fingerprint, meaning that the adversarial
attack was successful.

of the perturbation approaches so far developed demonstrated to be the most
effective, in order to better understand the vulnerability of FASs according
to the definition proposed at the beginning of section 5.3, in this work, we

analysed the effectiveness of three perturbation techniques:
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1) As a baseline, we considered the iterative version of the FGSM proposed
by [97], in order to asses if a very intuitive and simple to apply attack
can break the liveness detector. For the attack, we used an initial

standard deviation € = 0.01 and an increment of 0.01;

2) DeepFool [120] is then used to analyze if the local linearisation approach

stands also against a fine-tuned binary CNN;

3) Finally, in order to explore the effectiveness of an almost uninformed at-
tack, we considered the evolutive approach introduced by [174]. In par-
ticular, since preliminary exploration demonstrated that the one-pixel
attack is useless against the LD (at least under the imposed maximum
number of iteration), in this work we removed the low-number modified
pixels constraints, allowing the algorithm to modify up to 2000 points

(that implies modifying < 2% of pixels in the worst case).

5.3.2 Fingerprints Adversarial Perturbations

As seen in section 1.3.1, in the contest of natural images I € R(A:3)

, given
a classifier fc : I — {1..n} mapping I to one of the possible n labels, an

adversarial perturbation r is defined as

re RO fo(l) # fell+7) (5.1)

where r is usually required to be as little as possible (to be subtle for the
human perception, as in figure 1.8). However, natural images and fingerprints
are different in natures and thus applying adversarial perturbation approaches
as are may not be effective (figure 5.6).

According to the adversarial perturbation idea, the injected noise should
be as reduced as possible, to be almost invisible to human eyes. However,
natural and fingerprint images differ for some characteristics, making this

requirement harder to achieve with fingerprint images since: in the former, the
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(a) Clean (b) DeepFool

Figure 5.6: Example of using DeepFool [120] to generate the adversarial
perturbation for a fingerprint from LivDet2015 [122] competition.

whole image carries information, usually in a colour (RGB) space; in the latter,
the information is limited to a portion of the image (where the fingerprint
is) and only the differences between background and the fingerprint are of
interest (thus a grey-level like space). This implies that, even though an
adversarial presentation attack would be able to fool the liveness detector, not
only a simply masking or a threshold operation will destroy the attack, but a

human operator will be definitively able to spot the attack.

Since we want to produce print-robust adversarial fingerprints, to take into

account these differences, we constrained adversarial perturbation approaches:

* to inject a grey-level (i.e. the same for all the channels in the case of
RGB acquisitions) noise r € [0,255]

* to apply it only to the Region of Interest (ROI) delimiting the actual
fingerprint [113].

If, on one hand, these constraints make the attack harder to perform, on

the other are needed to conduct the experiments in a more realistic fashion.
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5.3.3 Experimental Setup

As stated in section 5.2.1, the need for a common experimental protocol
started the gathering of fingerprints datasets. In this work, we will make
use of the one provided with LivDet2015 [122] competition. The variety of
used sensor and of used spoofing material, the availability of well-defined
training and test datasets (the latter produced also by using spoofing materials
not available in the training) collected under clear circumstances, and the
availability of open-source top-performer liveness detectors trained on it, are

the main reasons motivating our choice.

Table 5.1 briefly reports the main characteristics of the LivDet2015 dataset.
For each scanner, the table reports the size (in pixels) of the acquired finger-
print, and the number of live and fake fingerprints. The latter are grouped
based on the used spoofing material. A hyphen in a cell indicates that the
corresponding material has not been used to generate fake fingerprints for the

corresponding scanner.

The FAS considered in this work consists of the cascade of following two

sub-systems (see section 5.2 for details):

* The first to analyse the input fingerprint image is the liveness detector
(LD). Aimed in detecting fake fingerprints, it is the first to analyze the
input images. In this work we consider the approach proposed by the
LivDet 2015 winner [126], based on a VGG19 CNN pre-trained on
ImageNet and then fine-tuned on the fingerprint liveness detection task.
The choice made by the authors was not only guided by the enthusiasm
for deep learning, but the result of a precise analysis of its suitability. In
particular, authors proved that their approach obtains better results when
compared both to other CNN (AlexNet and an ad-hoc generated CNN
were evaluated) and also to other non-deep state-of-the-art approaches
[59], producing results able to outperform the runner-up. To prevent

over-fitting, authors adopted dataset augmentation by extracting from
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Scanner Biometrika CrossMatch DigitalPersona GreenBit
Image Size (px) 1000x1000  640x480 252x324 500x500
Live 1000 1500 1000 1000
Body Double - 300 - -
Ecoflex 250 270 250 250
Gelatine 250 300 250 250
Latex 250 - 250 250
Liquid Ecoflex 250 - 250 250
OOMOO - 297 - -
Playdoh - 281 - -
RTV 250 - 250 250
Woodglue 250 - 250 250

Table 5.1: LivDet2015 dataset characteristics. For each scanner, the acquired
fingerprint size, and the number of live and fake fingerprints (for each spoof-
ing materials) images are reported. The hyphen in a cell indicates that the
corresponding material has not been used to generate fake fingerprints for the
corresponding scanner.

each fingerprint five smaller images obtained considering the 80%
of the original image from each corner and one at the centre. Each
patch is then horizontally reflected, obtaining a final dataset 10 times
bigger than the original one. Finally, simple resizing was adopted to fit
fingerprints (whose size ranges from 252x324 pixels up to 1000x1000)
to the VGG19 input layer (that expects three channels images with 224
pixels height and width).

* The second is the authentication system (AS), aimed in determining
whether the biometry is valid for accessing the system. To this aim, it
provides access if the pattern of ridges, furrows and minutiae on the
surface of the presented fingerprint matches the pattern of a reference
one. Fingerprint-based reliable authentication can be a challenging

problem and its accuracy strongly depends on the image quality and
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on the fingerprint orientation. We consider as AS the work of [85], a
hybrid AS that extract shape and orientation descriptor to filter false
and unnatural minutiae pairings while exploiting ridge orientation as
an adjunct parameter for the matching. This choice was guided by
its closeness to the FBI standards [89] and by its common usage in

literature as a baseline.

The liveness detector [126] was trained on the training set, using 5-fold
cross-validation to determine the best number of training iterations and the
augmentation technique proposed in the original paper; then, the adversarial
attack was performed by using images from the test set. Only fake fingerprints
have been considered since an attacker is usually interested in making fake
replicas recognized as live. It is worth noting that the LD is not perfect, thus
implying that some fake fingerprints are recognized as live. Therefore, in
order to produce fair results, only fingerprint correctly recognized as fake were
used for the adversarial perturbation attack. Finally, only perturbed images
able to mislead the LD was submitted to the authentication system. Table
5.2 summarises, for each LivDet2015 fingerprint scanner, the number and

relative percentage of correctly recognised and authorised fake fingerprints.

5.3.4 Adversarial Presentation Attack Results

This section reports the results for the fingerprint adversarial presentation
attack, by varying the adversarial perturbation approach. Tables 5.3 to 5.5
report the results of the attack, for each sensor, for the FGSM, DeepFool and
Evolutionary adversarial perturbation approaches respectively. Results show
that DeepFool is the most effective in breaking the LD (~ 36.7% of average
success rate), but the worst against the AS (~ 70% of average success rate).
The FGSM based attack shows an average success rate of 2.3% for the LD,
but injected perturbation preserves enough fingerprint characteristics to make
it able to break the AS in about the 90.6% of the cases (on average).
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Scanner #FF #FF\#fFake #Auth. #Auth.\#Fake

Biometrika 1435  95.66% 1058 73.73%
CrossMatch 1406  97.09% 1366 97.16%
DigitalPersona 1424  94.93% 1049 73.67%
GreenBit 1426  95.06% 1064 74.61%

Table 5.2: Results of a classical presentation attack (i.e. without the use
of any perturbation technique to mislead the liveness detector). For each
scanner, the Table reports: the number of fake fingerprints (and relative
percentage with respect to the total number of available fingerprints in the
dataset) correctly recognised as fake by the liveness detector (#FF); the
number of fake fingerprints able to by-pass the authentication system (and
the relative percentage with respect to the total number of fake fingerprints
able to mislead the liveness detector).

Although the Evolutionary attack performs only a little bit better w.r.t.
the FGSM approach against the LD (excluding the GreenBit scanner, with
a success rate of 65.79%), perturbed fingerprints are very likely able to fool
the AS (~ 95.16% of average success rate). For each attack, the column R in
the same table reports the ratio between the number of successful adversarial
perturbed fingerprints (against LD and AS) over the number of successful
clean fake fingerprints (against only the AS), indicating the relative percentage
of fake fingerprints that, despite the injected noise, are still able to break the
AS. For the sake of completeness, table 5.2 reports, for each sensor, the result
of a standard presentation attack (without any perturbation injected) in order
to define a baseline, considering only correctly recognised fake fingerprints
(as stated in session 5.3). It is worth noting that, although not reported
here, during our experiment the considered AS demonstrated to be perfect in
recognising users on the basis of live fingerprints. Finally, to better understand
the attack effectiveness, figure 5.7 reports some examples of successful and
unsuccessful adversarial attacks for each analysed adversarial perturbation
approach. Among all the images, it is worth noting that the one produced by
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the Evolutionary attack appears to be the less perturbed one, resulting in a
just slightly visible salt-pepper like noise (Figure 5.7-¢).

Scanner LD (%) AS (%) R (%)

Biometrika 2.67 86.84 3.15
CrossMatch 2.45 85.71 2.82
DigitalPersona 2.16 93.55 2.74
GreenBit 1.92 96.30 1.90

Table 5.3: Results of the adversarial attack, for each scanner, by using the
FGSM adversarial perturbation approach. The Table reports the attack success
rate against the Liveness Detector (LD%) and the Authentication System
(AS% - evaluated with reference to the number of images that have passed
the Liveness Detector) and the ratio (R%) between the number of successful
adversarial perturbed fingerprints (against LD and AS) over the number of
successful clean fake fingerprints (against only the AS).

Scanner LD (%) AS (%) R (%)
Biometrika 62.15 73.67  62.15
CrossMatch 35.06 7220 3393
DigitalPersona  1.60 69.57 1.51
GreenBit 52.92 68.01 37.04

Table 5.4: Results of the adversarial attack, for each scanner, by using the
DeepFool adversarial perturbation approach. The Table reports the attack
success rate against the Liveness Detector (LD%) and the Authentication
System (AS% - evaluated with reference to the number of images that have
passed the Liveness Detector) and the ratio (R%) between the number of
successful adversarial perturbed fingerprints (against LD and AS) over the
number of successful clean fake fingerprints (against only the AS).
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Figure 5.7: Successful (left) and unsuccessful (right) adversarial perturba-
tion attack on a fake fingerprint using FGSM (a-b), DeepFool (c-d) and the
Evolutionary approach (e-f).
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Scanner LD (%) AS (%) R (%)

Biometrika 3.58 96.08 4.67
CrossMatch 7.22 91.26 8.83
DigitalPersona  8.78 9444 11.25
GreenBit 65.79 98.16 66.47

Table 5.5: Results of the adversarial attack, for each scanner, by using the
Evolutive adversarial perturbation approach. The Table reports the attack
success rate against the Liveness Detector (LD%) and the Authentication
System (AS% - evaluated with reference to the number of images that have
passed the Liveness Detector) and the ratio (R%) between the number of
successful adversarial perturbed fingerprints (against LD and AS) over the
number of successful clean fake fingerprints (against only the AS).

The analysis of the three considered attacks (namely, FGSM, DeepFool
and the Evolutionary one) shows that the FGSM approach is the less effective
against the LD, but introduced perturbation is able to obtain good performance
against the AS. On the other hand, DeepFool is the best in misleading the LD
(excluding the GreenBit scanner), while the Evolutionary approach is the best
against the AS: the result is that FGSM is the less effective considering the
FAS as a whole, with DeepFool and the Evolutionary approach performing
better on two sensors respectively. This is very interesting because despite
FSGM and DeepFool had a perfect knowledge of the LD, they are not effective
when considering the FAS as a whole, while the Evolutionary based attack
does not only consider the FAS as a black-box, but it is also very robust to the
settings and acquisition scanners variations, so demonstrating to be a good

starting point for designing a black-box scanner-independent attack.

It is worth noting that, although this work must be considered as a pre-
liminary step to the development of an adversarial presentation attack, re-
sults seem to support the feasibility of the proposed idea. In particular, the

reduced number of successfully perturbed images by the Evolutionary ap-
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proach, together with their high likely AS attack success rates, suggest that
an appropriate tuning of the attack parameters (maximum number of iteration,
population size and differential evolution parameters) is likely to have a strong
impact on its effectiveness. However, further studies are needed to analyse
the applicability of such an approach in a real-world scenario, taking into
account different scanner, fake replicas made using unknown materials and

SO On.

5.4 Transferring Perturbation Attack

A common assumption in adversarial perturbation scenarios is that the attacker
has white-box access to the target CNN and to the used dataset. Indeed, in
section 5.3 we attacked the Vgg16-based liveness detector introduced in [126],
showing how to effectively bypass it. In that case, the attacker had white-box
access to the trained CNN used for the LD and limited knowledge on the
dataset since some spoofing materials used for the test set are not used for the

training.

However, in the biometrics authentication system context, this might be a
stretch limiting the applicability of the attack. Therefore, in this section, we
want to make a step further by analysing whether it is possible to transfer a
perturbation across different CNN liveness detectors in the case of a target
LD very different from the one used to derive the perturbations. In particular,
we want the attacker having no clues about the target liveness detector, but
that it is CNN-based. The knowledge the attacker has about the dataset is the
same considered in our past experiment (i.e. the used fingerprint scanner and
training spoofing materials). The aim is to perform a black-box perturbation
attack against CNN fingerprint liveness detectors, analysing if and to what
extent the scanner and the spoofing material combinations affect the success
rate of the attack. Both points, to the best of our knowledge, have never been

so far addressed.
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As seen in section 5.3, misleading a CNN-bases liveness detector requires
the attacker to modify a fake fingerprint such that it is recognised as real.
Using adversarial perturbations to this aim in a black-box scenario implies
the crafting of the adversarial fingerprint by using a CNN that is different
from the one actually used by the target liveness detector. Thus, to analyse
the transferability of adversarial perturbation in the fingerprint context, it is
important 1) to understand how to adapt adversarial perturbation approaches,
ii) to define a fingerprints dataset and iii) to set the liveness detectors used for
the experimentation. To face this scenario, we propose i) to use a “shadow”
(i.e. ad-hoc crafted and trained by the attacker) CNN-based liveness detector
to create the perturbations that ii) will be transferred to the fingerprint analysed
by the target black-box liveness detector.

As showed by the LivDet competitions, over the years researches faced the
liveness detection problem adopting increasingly sophisticated approaches,
usually based on the available computer-vision state-of-the-art techniques.
Two years later the end of LivDet2015 competition, a new approach raised
the bar for the LivDet2015 dataset: Finferprint SpoofBuster [35]. Although
itself based on the fine-tuning of a (more recent) CNN named MobileNet
[79], the authors argue that resizing the fingerprint image as a whole, to
match the net input size, introduces noise leading to severe information loss.
Therefore, to face this, they introduce the idea of analysing local fingerprint’s
regions of 96 pixels height and width, each centred on minutiae (i.e. ridges
and pores). Each region is then rotated based on the minutiae orientation
and resized to match the CNN input layer. The network is then fine-tuned
by using RMSProp optimiser [22] and a batch size of 100, after applying a
data augmentation procedure. The probabilistic output from the so trained
network is used as a “spoofness score” for the current region, with 0.5 used

as a threshold between live and fake minutiae (Fig. 5.8).

At the time of writing this paper, the two described approaches represent

the state-of-the-art for all LivDet competitions, since all the approaches that
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Figure 5.8: Example of minutiae based regions for a live (left) and for a fake
(righ) fingerprint. The number represents the spoofness score. The circle with
the line is the minutiae orientation. Image taken from the original SpoofBuster
paper [35].

obtained better results are neither publicly available nor published. Therefore,
in this work we consider SpoofBuster [35] as the target black-box liveness
detector, and the Vgg16 based approach proposed in [126] as our shadow
model.

It is worth to note that, in the described scenario, the attacker has no
clues about the target liveness detector. Thus, the only viable approach for
the attacker is to generate an adversarial noise having the same size as the
fingerprint acquired by the scanner. However, since adversarial samples have
the same size of the target CNN input layer, there is the need for a stage to
adapt the noise crafted by using the shadow liveness detector to the fingerprint
scanner acquisition size. Once the attacker creates the adversarial samples by
using the shadow LD, there are two viable approaches to obtain an adversarial

sample having the scanner output size (figure 5.9):
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» Image resize, in which the attacker directly resizes the crafted adver-

sarial sample;

* Noise resize, in which the attacker resizes only the adversarial noise,

adding it to the original fingerprint acquired by the scanner.
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Figure 5.9: Transfer perturbation attack scenarios. Top: the image resize
attack procedure. Bottom: the noise resize attack procedure.
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Since there is no reason to prefer one above the other, we analyse the
effectiveness of both procedures. To this aim, both the target and the shadow
liveness detectors are trained in a 5-fold CV fashion on the official LivDet2015
training dataset. To evaluate the attack success rate, we consider only fake
fingerprints form the official LivDet2015 test dataset (since an attacker is
usually interested only in making fake replicas recognised as live). Finally, as
none of the perturbation approaches so far developed demonstrated to be the
most effective, we consider three different algorithms to craft the adversarial
samples: iterative FGSM [97], with an initial standard deviation € = 0.01 and
an increment of 0.01; DeepFool [120]; OnePixel [174], modified to relax the
low-number modified pixels constraint to allow modifying up to 2000 pixels
(i.e. <2% of the total number of pixels on the smallest fingerprint).

5.4.1 Experimental Results

Since the different sensor may differ a lot in terms of acquisition size (see table
5.1 for details), a different liveness detector (both target and shadow) is trained
for each sensor. It is worth to note that since obtained LDs are not perfect
(although closely matching the performance reported in the corresponding
papers) some fake fingerprints in the test dataset are already recognized as
live. Therefore, in order to produce fair results, only fingerprint correctly
recognized as fake by the target liveness detector were used to evaluate
the attack, obtaining 1472 (98.13%), 1436 (99.17%), 1445 (96.33%) and
1456 (97.06%) fingerprints for Biometrika, CrossMatch, DigitalPersona and
GreenBit scanners respectively (refer to table 5.2 for the number of samples
in each dataset).

Table 5.6 reports the transfer perturbation attack success rates obtained by
using the “image resize” approach. Results show that, although there are some
critic combinations for which the attack is ineffective, the effectiveness of the

attack is related to the scanner more than to the used perturbation algorithm.
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Scanner FGSM DeepFool OnePixel

Biometrika 3,16% 2,94% 3,51%
CrossMatch 96,88%  97,82% 96,66%
DigitalPersona  3,51% 3,65% 0,28%
GreenBit 19.99%  20,97% 0,08%

Table 5.6: Transfer adversarial attack success probability against the target
Liveness Detector under the “image resize” scenario, for each scanner and
for each adversarial perturbation approach.

This behaviour is expected since, although all optical, each LivDet2015
scanner have different characteristics (e.g. sensor, lens, acquisition plate,
etc.) that result in distinct artefacts in the acquired fingerprints [50]. A clear
example of this is reported in figure 5.10, where two fingerprints from the
same finger of the same user, but acquired by using two different scanners,
are reported. It is interesting to note that the two scanners proven more robust
against this attack are those having the smaller and the largest fingerprint
sizes, while the weakest is the scanner for which training and test spoofing
material did not overlap. Using a different sensor also affects the acquired
fingerprint histogram (figure 5.11) due to the different ways each sensor
acquires the light wavelengths. As a consequence, since a CNN essentially
performs liveness detection by analysing fingerprints high-frequency texture
details, some sensors may be more resilient to perturbation attacks.

Table 5.7 reports the success rates obtained in the “noise resize” scenario,
with results clearly showing that the approach is not effective (except for a
single scanner/algorithm combination). This is probably motivated by the
fact that adversarial perturbation algorithms determine the noise to inject with
respect to a target sample. Therefore, resizing only the noise probably causes
the resulting image losing the details able to mislead the CNN-based LD.
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Figure 5.10: Example of different geometric distortions introduced by acquir-
ing the same fingerprint by using two different scanners: GreenBit (left) and
DigitalPersona (right).
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Figure 5.11: Mean histograms of greyscale for all the LivDet2015 scanner
(“Hi Scan” refers to the Biometrika scanner). Image taken from [50].
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Scanner FGSM DeepFool OnePixel

Biometrika 1,08% 1,15% 0,00%
CrossMatch 0,07% 1,16% 99.93%
DigitalPersona 0,00% 0,00% 0,00%
GreenBit 0,00% 0,07% 0,00%

Table 5.7: Transfer adversarial attack success probability against the target
Liveness Detector under the “noise resize” scenario, for each scanner and for
each adversarial perturbation approach.

Proven “image resize” as the best strategy, to better understand to what
extent the used spoofing material affect the liveness detection effectiveness,
tables 5.8 to 5.11 report the success rates (one scanner per table), under the

“image resize” scenario, grouped by spoofing material.

Scanner FGSM DeepFool OnePixel
Ecoflex 0,40% 0,39% 0,00%
Gelatin 1,60% 1,62% 1,60%
Latex 0,80% 0,81% 0,80%
Liquid Ecoflex  0,00% 0,00% 0,80%
RTV 6,41%  19,60% 6,01%

Wood Glue 8,40% 8,00% 8,40%

Table 5.8: Biometrika scanner per-material transfer adversarial attack success
probability against the target Liveness Detector under the “image resize”
scenario, for each adversarial perturbation approach.
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Scanner FGSM DeepFool OnePixel
Body Double 96,65%  96,68% 96,67%
Ecoflex 98,52%  98,89% 98,53%
Gelatin 90,33%  91,67% 90,33%
OOMOO 94,24%  94,95% 94,28%
Playdoh 79,36%  80,43% 80,07%

Table 5.9: Crossmatch scanner per-material transfer adversarial attack success
probability against the target Liveness Detector under the “image resize”
scenario, for each adversarial perturbation approach.

Scanner FGSM DeepFool OnePixel
Ecoflex 0,80% 0,81% 0,00%
Gelatin 0,80% 0,82% 0,00%
Latex 0,40% 0,42% 0,00%
Liquid Ecoflex 9,60% 9,62% 1,60%
RTV 0,80% 0,79% 0,00%

Wood Glue 7,60% 7,61% 0,00%

Table 5.10: Digital Persona scanner per-material transfer adversarial attack
success probability against the target Liveness Detector under the “image
resize” scenario, for each adversarial perturbation approach.
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Scanner FGSM DeepFool OnePixel
Ecoflex 14,80%  15,60% 0,00%
Gelatin 2,80% 2,82% 0,00%
Latex 10,80%  11,20% 0,00%
Liquid Ecoflex 31,20%  30,41% 0,00%
RTV 16,40%  19,60% 0,00%

Wood Glue 37,60%  40,41% 0,40%

Table 5.11: Green Bit scanner per-material transfer adversarial attack success
probability against the target Liveness Detector under the “image resize”
scenario, for each adversarial perturbation approach.

Results shows that there is no a single substance always performing
the best, but rather that each scanner shows a different robustness degree
against different materials. Together, these results seem to suggest that the
combination of the fingerprint scanner and spoofing material is crucial for the
success of the attack. This result is expected since the different characteristics

of fingerprint scanners affects the texture of the acquired images.

To better understand the result of adversarial presentation attack transfer,
figures 5.12 and 5.13 report some examples of successful and unsuccessful

attacks for each analysed adversarial perturbation approach.

As a final consideration, we highlight that an attack against a liveness
detector should be performed in reasonable time to be considered useful
(e.g. because of security policies timing). For the target liveness detector
considered in this work (SpoofBuster), this point is even more critic since
it analyses a fingerprint on local patches, making the white-box attack we
introduced in section 5.3 extremely time-consuming. In this case, transferring

the adversarial perturbations from a CNN easier (less time-consuming) to
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(a) Clean (b) FGSM

(c) DeepFool (d) OnePixel

Figure 5.12: Successful adversarial perturbation attacks on a clean fingerprint
(a), using FGSM (b), DeepFool (c) and OnePixel (d) under the “image resize”
scenario. Please note that no successful example exist for the FGSM approach.

attack, to a harder one, might be the best choice. To sustain this claim, we run
both the original white-box attack and the introduced transfer attack by using
a server hosted in our HPC facility >3 equipped with 2 x Intel(R) Xeon(R)
Intel(R) 2.13GHz CPUs (4 cores each), 32GB RAM and an Nvidia Titan
Xp GPU having 12GB DDRS GRAM. For the white-box, the computation
needed about 576 hours, while the “image resize” transfer attack took only

about 33.5 hours (~ 17x times faster).

2 www.scope.unina.it
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(a) Clean (b) FGSM

(c) DeepFool (d) OnePixel

Figure 5.13: Unsuccessful adversarial perturbation attacks on a clean finger-
print (a), using FGSM (b), DeepFool (c) and OnePixel (d) under the “image
resize” scenario. Please note that, for visualization reasons, the fingerprint
used for the OnePixel example is different from the one used in the other
cases.

In conclusion, this work is a first proof-of-concept showing the viability of
adversarial transfer perturbations against CNN-based liveness detectors un-

der certain combinations of fingerprint scanner and used spoofing material.



Fairness and Privacy in Face Analysis

The improvements in artificial intelligence, sustained by the rise of the big
data paradigm and of social media, allowed the spread of several smart
assistants in our daily life activities. Tools that appears to be totally harmless,
such as automatic image tagging (e.g. those based on face recognition),
voice control and personalised advertising, process enormous amounts of
data (often remotely due to the huge computational effort required) rich in
sensitive information. Literature is full of approaches aimed at exposing
subject privacy, with several researchers trying to develop defensive strategies

in the view of a secure and private Al [162, 14].

However, those privacy threats are usually perceived as far from us or,
even worse, able to affect only our digital alter-ego. Unfortunately, this
is a false belief. Indeed, especially when it comes to derive subjects’ soft
biometrics from data spontaneously published by target users (e.g. a profile
picture on a social media, a blog post, a product review, etc.), there are many
very effective and sneaky (i.e. not perceived by users) attacks able to extract
our soft biometrics with a single glance in a real environment, maybe also
without our explicit consensus [93, 31] . The impact that privacy-related issues
could have on our life is becoming more and more severe as Al improves. In

recent years, face analysis is becoming a central theme for subject privacy
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and fairness with Al. Indeed, although face recognition was a task already
addressed in a successful way before the advent of deep learning [193], it was
only with CNNs that researchers were able to “close the gap with respect to
human-level performance” [182, 175, 134].

Face recognition and analysis is a particularly sensitive topic even without
involving Al. Indeed, it has been proven that attractive people tends to get
more financial and social benefit [106]. Despite apparently related to humans
social and evolutionary psychology, “lookism” [195] (the term used to de-
scribe this behaviour) is extrimely controversial, especially when it results
in discriminative decisions. With the increasing use if Al for face analysis,
could there any risk to fell for a similar affair? According to a very recent

124

scandal“* the concerns seem to be more realistc than expected.

As already showed in chapter 2, the problem is not in artificial intelligence,
but in the way we, as humans, make use it. However, with Al increasing
usage in everyday tool (smartphone, ads, loan, etc.), how can we be sure not
only that our privacy information will be not disclosed, but that they will not
be used against us? Therefore, in this chapter we investigate whether it is
possible to exploit adversarial perturbations (see section 1.3.1) as a mean to
protect against extraction of sensitive information from face images, our most
disclosed identity biometrics.

24https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-
algorithm-increasingly-decides-whether-you-deserve-job/
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6.1 Defending Against Face Soft-Biometrics

As seen in this chapter beginning, the misuse of Al when it comes to privacy
concerning context may results in issues that could impact our real life when
users lose control of their data. With the spread of facial recognition and of all
the soft-biometrics information associated with it (see section 5.1 for details),
having concerns about a (potentially malicious) misuse of deep learning based

face analysis techniques is no so conspirational®.

However, as already seen in section 1.3.1, CNNs have blindspots that can
be leveraged to mislead human biometrics analysers (section 5.2). Therefore,
the potential vulnerability of CNNs to adversarial perturbations could open
new possibilities for privacy protection by exploiting them to create an object
that can be used in the real world to fool automatic soft biometrics systems
based on CNNs. The aim of this section is thus to understand if and to
what extent adversarial perturbation can be used to protect subjects against

unwanted soft biometric detection by automatic means.

The idea is to create an adversarial patch [25] that, once printed, is able
to fool CNNs by simply "wearing" it, in the shape, for example, of a sticker,
a clip or a pendant. By definition, an adversarial perturbation should be as
invisible as possible and this constraint is usually met since the injected noise
is distributed over the whole image. On the contrary, in our case, it is strongly
preferable to trade a very visible perturbation in exchange for having the

opportunity to apply it on a very limited portion of the image.

Among all the soft biometrics, probably gender and ethnicity are the
most crucial ones, mainly because of their past bad experiences [153, 39]. In
this work, as a case of study, we will focus on the generation of a general

adversarial patch specifically designed to fool a CNN for ethnicity recognition

Zhttps://www.telegraph.co.uk/technology/2019/09/20/government-ai-rules-require-
diverse-teams-prevent-racist-sexist/
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in a real-world application. In particular, the aim is to create a patch that

works across different subjects, including those never seen by the CNN.

6.1.1 CNN:s for Ethnicity Classification

As described in the beginning of the chapter, although face recognition was a
task already addressed in a successful way before the advent of deep learning
[193], it was only with CNNs that researchers were able to "close the gap
with respect to human-level performance" [182, 175, 134]. Thanks to the
availability of large labeled dataset, in the last years researchers started to
explore the effectiveness of CNNs for soft biometrics detection, both by using
ad-hoc architectures [171, 114] or by fine-tuning a pre-trained CNN [124].

In this work we follow the latter approach, by fine-tuning an ImageNet
[152] pre-trained Vggl6 [166] CNN on the ethnicity classification task. This
choice was guided by some preliminary experiments that showed the higher
effectiveness of fine-tuning w.r.t. training from scratch. Since Vggl6 was
intended to face a thousand classes problem, we replaced the classification
layer with one having the desired number of classes (ethnicity to be recog-
nized) before performing a re-training of all the layers to adapt the network

to the new classification task.

As dataset we considered UTKFace?® [207], a publicly available large-
scale face dataset containing over 20,000 images with annotations (obtained
with the DEX algorithm [150] and double checked by a human annotator) of
age (ranging from O to 116 years old), gender and ethnicity (Asian, Black,
Indian, White, Others), covering large variation in pose, facial expression,
illumination, occlusion, resolution, etc. Although it is divided into five
different ethnic clusters (table 6.1), in this work, as a case of study, we chose
to focus only on the *Black’ vs. "White’ task.

6https://susanqq.github.io/UTKFace/
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Ethnicity Male Count Female Count Avg. Age

Asian 1575 1859 26
Black 2319 2209 34
Indian 2261 1715 32
White 5477 4601 38
Others 760 932 23

Table 6.1: UTKFace dataset characteristics.

It 1s worth noticing that we did not impose any further restriction on
subject age, pose, expression, illumination and occlusion, in order to obtain a
model and an adversarial patch able to work in real environmental conditions.
To show the differences in resolution, illumination, position, etc., in figure 6.1

we report some samples extracted from the UTKFace dataset.

(d) White

Figure 6.1: Images from the UTKFace dataset. Please note the variety of
pose, illumination, age, resolution, expression and accessories.
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To train the Vgg16 model, images were randomly divided into a training
and a test set (80/20); following past similar works, the ADAM optimizer
[88] was used, with a batch size of 32 and a 5% 10~% L2 regularization term.
Training was performed for 10 epochs, with initial learning rate set to 10~3
and a step-wise decay strategy of 0.1 each 2 epochs. Images do not undergo
any kind of pre-processing: a simple image resizing is performed to match
the Vggl6 expected input height and width (224 x 224). Under these settings,
we obtained a CNN able to determine the subject ethnicity with an accuracy,
on the test dataset, of 95.59%.

6.1.2 Face Global Adversarial Patch

As stated in section 1.3.1, several adversarial perturbation attacks was so far
proposed. However, to the best of our knowledge, adversarial perturbation
was never used as a method to mask a subject ethnicity (nor any other soft
biometry). The designed iterative procedure, intended to obtain the general
adversarial patch invariant to position and subject, consists in the following
steps (synthesized by the Algorithm 1):

1. A mask is generated to force the perturbation algorithm to work only

in a restricted region of the image

2. An adversarial perturbation is determined for the first image, over the
previously generated mask

3. The second point is repeated for all the remaining images, by starting,
for each image, from the perturbation calculated over the immediately

preceding image

4. The mask is randomly moved in order to generate an adversarial patch

invariant to its position
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5. Steps 3 and 4 are repeated (including also the first image) until the
perturbation is able to tamper all the images ethnicity, or until a termi-

nation condition (such as the maximum number of iterations) was met

It is worth noting that it is not strictly needed that the perturbation algo-
rithm is able to determine a good patch for each image in a single attempt,
since the same image is seen many times. As a consequence, the maximum
number of allowed iteration has to be tuned according to the desired perfor-
mance level. Moreover, the proposed schema is totally independent of the
chosen mask shape or perturbation algorithm: the first can be freely selected
to match the desired object shape (for example a circle for a pendant); for the
latter, the only strict requirement is to force the algorithm to inject only integer

noise in the range [0,255], in order to make the obtained patch printable.

mask = createMask();

pert = randPert(mask);

pertCount, iterCount = 0;

while pertCount < ths & iterCount < maxlter do

pertCount = 0O;

for Image img in Dataset do

mask,pert = randomMove(mask,pert);

pert = calculatePert(pert, mask, img);

if classify(img) # classify(img + pert) then
| pertCount++;

end

maxlter++;

end

end

Algorithm 1: General adversarial patch creation. Please note that the
maxlter and ths (threshold) values were not set to highlight that they are
user-defined parameters.
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6.1.3 Experimental Results

The adversarial presentation attack was performed using images from the
test set. In particular, we consider only images whose ethnicity was correctly
classified in the absence of perturbation, in order to produce fair results
not influenced by false positives. We used DeepFool [120] as adversarial
perturbation algorithm; the maximum iteration value was set to 500, while the
mask was shaped in a circle. We performed the patch generation separately
for black and white subjects; MATLAB R2018a was used to perform the

experiments.

Table 6.2 reports the success rates for each ethnicity, by varying the mask
size, showing that the approach is effective also when the mask size is reduced.
It is interesting to note that the performance drop associated with the mask
size is more significant for black subjects: this could be due to many factor,
including problems related to a smaller diversity of the dataset (as reported
in table 6.1, the number of black subjects is almost the half of white ones)
or, on the contrary, to a greater variation between black subject images (that
resulted in a trained CNN with a higher generalization ability in classifying
black individuals).

Circle Radius
10 15 20

Black  67.81% 88.56% 95.75%
White  97.49% 98.82% 99.95%

Ethnicity

Table 6.2: Success rates of the general adversarial patch for the black vs white
classification task, as the patch radius varies (in pixel).
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Figures 6.2 and 6.3 report some examples of images with and without the
adversarial perturbation applied, respectively for black and for white subjects,
as the mask size varies. Finally, figure 6.4 reports the effect of evaluating the
patch on images acquired in real-time with a laptop webcam, while figure 6.5
reports the effect of printing the patch and acquiring the resulting perturbed

printed image with a webcam.

It is worth noting that although the idea of creating an adversarial patch
that, once printed, is able to fool CNNs in a real context is not new [25], nor is

new to apply it on face images [161], this work makes a step further because:

* We do not impose constraints on the patch position, making it insensible

to its positioning (i.e. on a cap, as a pendant, etc.)

* We do not perform any kind of pre-processing, making the patch in-
variant to gender, age, illumination, expressions, etc., i.e. all conditions

that usually happen in a real application

* We performed an analysis of the impact that the patch size has on the

approach effectiveness

* We do not impose any constraint on the used adversarial perturbation

algorithm, under the only condition to inject an integer, printable, noise

* Our approach allows us to generate a patch that works for several
different subjects, so that it is possible to calculate it once and apply it

many times

As shown in Figures 6.2, 6.3 and 6.5, despite the fact that for very small-
sized patch the performance drops in the case of black individuals, the patch
always occupies just a very reduced portion of the input image, so that it is
possible to use it in a real scenario as an accessory. Moreover, it is worth
noticing that the binary ethnicity problem has been chosen just as a proof-of-
concept: the proposed approach is general and applicable to any kind of soft
biometric and CNN.
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(a) Black (clean) (b) White (perturbed)

(c) Black (clean) (d) White (perturbed)

(e) Black (clean) (f) White (perturbed)

Figure 6.2: Example of the general adversarial path effects on same images of
black subjects from the UTKFace dataset. Left columns, clean (unperturbed)
images; right column, the same images with a 10 (d), 15 (e), 20 (d) pixels
radius patch applied. Please note the variety of pose, illumination, age,
resolution and expression.
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(a) White (clean)

(c) White (clean)

(e) White (clean) (f) Black (perturbd)

Figure 6.3: Example of the general adversarial patch effects on the same
images of white subjects from the UTKFace dataset. Left column, clean
(unperturbed) images; right column, the same images with a 10 (d), 15 (e), 20
(d) pixels radius patch applied. Please note the variety of pose, illumination,
age, resolution and expression.
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Probability Probability

White . White
0.75 1 0 025 05 075 1
Clean (b) Perturbed

Probability Probability

White - White

Black - Black
0 025 05 075 1 0 025 05 075 1
(c) Clean (d) Perturbed

Figure 6.4: Example of the effectiveness of the adversarial patch on authors’
images acquired using a laptop webcam: the top row reports clean (a, ¢) and
resulting perturbed (b, d) images, while the bottom row reports the associated
probabilities.
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Probability Probability

White

0 025 05 0.75

1

o

025 05 075 1

Figure 6.5: Example of the effectiveness of the adversarial patch after printing:
on the left, the clean image is printed and classified by using a laptop webcam;

on the right, image with the patch is printed and classified by using a laptop
webcam.






Discussions and Open Issues

The spread of artificial intelligence in critical domains (e.g. facial recognition,
biometric verification, autonomous driving, etc.) rises questions related to the
consequences that its misuse (malicious or not) can lead to, such as unethical
or unfair decisions (e.g. discriminating on the basis of ethnicity or gender)
as well as violating people’s privacy. Trough the text we have several times
highlighted that Al is not to blame since, being just a tool, the consequences
resulting from its misuses can not be accounted to the medium, but must be

instead attributed to its operator.

Nonetheless, we claim that in order to develop a more ethical, fair and
secure use of artificial intelligence, all the involved actors (in primis users,
developers and legislators) must have a very clear idea about some critical
questions, such as “what is AI?”, “what are the ethical implications of it
improper usage?”, “what are its capabilities and limits?”, “is it safe to use
Al in critical domains?”, and so on. Moreover, since Al is very likely to be
an important part of our everyday life in the very next future, it is crucial to

build trustworthy Al systems.
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Therefore, in this thesis we tried to make a step towards the crucial need
for raising awareness about security, ethical and fairness threats associated
with Al systems, from a technical perspective as well as from the governance
and from the ethical point of view. To this aim, this thesis is divided into
three main parts: in part I (chapters 1 and 2) we introduced the concept of Al
and the related ethical implications; in part II (chapters 3 to 4) we presented
some crucial issues associated with the use of deep learning, showing how a
proper network design can be used to limit their effects; in part III (chapter 5
and 6) we addressed the implications that an Al misuse can cause in a critical
domain such as biometrics, proposing attacks properly intended for the aim.

In particular:

* in Chapter 1, with the aim of providing the reader with the basic con-
cepts needed to fully understand our contribution, we introduced the
concept of Artificial Intelligence, illustrating the differences between
shallow and deep architecture, motivating the reasons making Deep
Learning bloom only in the last years, finally highlighting the burden
associated with the use of deep neural networks. In particular, we intro-
duced “transfer learning”, showing how this approach can be effectively
used to leverage deep neural networks (consisting of millions of param-
eters to optimise) also in task with limited amounts of labelled samples.
We also introduced “adversarial perturbations”, a term referring to the
techniques intended to deceive Al systems by injecting a small pertur-
bation (noise, often totally imperceptible to the human being) into the
data. This represents the cornerstone of the whole thesis, since although
adversarial perturbations are a considerable concern to domain experts,
on the other hand, the fuels new possibilities to both favour a fair use of
artificial intelligence systems and to better understand the “reasoning”
they follow in order to reach the solution of a given problem. Therefore,
the chapter first introduces the concept both from a mathematical and

from the effects of such attacks, and then provide a review of some of
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the most famous approaches so far proposed, grouped on the basis of

the exploited characteristics or on the basis of the obtained effects;

in Chapter 2 we focused on the Al ethical aspects, first by reporting
some detrimental (and often unintended) consequences that could arise
with DL misuses, second by exposing and motivating our personal point
of view. As can be seen from the reported examples, it is no wonder that
reports of discriminatory effects in data-driven applications litter the
news. On the other hand, the same examples also show that the problem
is in humans not properly training AI models or maliciously teach them
the worst of our mind. Essentially, Al is neither good or evil. It is just
a tool designed to learn from example, also in the case of biased (e.g.
racist) labels. The other question arising is whether we should adapt
the notion of ethics to take into account decisions (totally or partially)
made by human artefacts. Our opinion is that the most effective way
to deal with ethics in machine learning is to consider the humans and
the Al agents as a strictly coupled entity. This can allow to actively
provide the system (human + machine) ethical judgement, to closely
monitor for problematic emergent behaviours, and to be prepared to
quickly react when problems arise. It is worth noticing that Asimov
reached the same results many years ago: indeed, although Asimov
doesn’t mention Kant or refer to the word “deontological” anywhere in
his works, it is clear from their formulation that the three robotic laws
are Kantian in spirit, in the sense that they are universal and context

independent;

Chapter 3 is centred on the reproducibility of results, a crucial aspect of
any scientific research. Focusing in particular on deep neural networks,
we shed some lights on the intrinsic lack of determinism associated
with the use of cuDNN, the NVIDIA library for GPU accelerated
deep learning used (at the time of writing the thesis) in frameworks.

Since, despite the workaround proposed by NVIDIA, the problem
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could unexpectedly arise during experimentation, especially in critical
domains it is of crucial importance to take this into account and to put
into practice all the means needed to guarantee a fail-safe situation. To
this aim, we investigated the reproducibility of deep learning across
different hardware and software configurations, both at training and at
inference time. This reproducibility assessment is important in order to
determine whether the resulting model produces good or bad outcomes
just because of luckier or blunter environmental training conditions.
As a case of study, we considered a biomedical image processing
problem for the consequences associated with a misdiagnosed patient.
Results show that the reproducibility issue can be effectively shifted
from a strictly combinatorial problem to a statistical one, in order
to validate the model robustness and stability more than its perfect
outcomes predictability. Thus, in order to avoid providing not totally
reproducible claims, it is very important to shifts the attention from a
pure performance point-of-view to a statistical validity of the obtained
outcomes. Indeed, a model showing large variations in results will
have wider confidence intervals with respect to a more stable, and thus
reproducible, one;

» Chapter 4 focused on the concept of approximate computing, a field
involving the study of resilience (i.e. the ability of a system to provide
correct results also in the presence of degraded working conditions) to
reduce the resources needed by a system. The chapter introduced the
concept of “sizing a CNN”, namely a procedure intended in removing
some neurons to reduce the number of trainable parameters, in the con-
text of fine-tuning. The aim is to show how a naive use of deep neural
networks might not be the best solution. Indeed, although preliminary,
results not only show that it is possible to reduce the number of param-

eters and memory usage without statistically affecting the performance,
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but also that the obtained network is more robust against adversarial

perturbations;

Chapter 5 aims to raise domain experts awareness on the potential con-
sequences associated with the use of deep learning in security critical
domain, such as biometric authentication systems. To this aim, after
introducing the concept of biometrics, of authentication system, of
presentation attacks and of liveness detection, the chapter proposed two
attacks against CNN based authentication systems. The core idea is
to exploit adversarial perturbations to modify fake fingerprints enough
to be recognised as real by a liveness detector while preserving the
user characteristics needed to bypass the authentication system. Since
natural and fingerprint images are different, the considered adversarial
perturbations approaches had been suitably adapted. Moreover, in or-
der to design an attack procedure usable in a real-world scenario, we
also propose some constraints to make the generated fake fingerprint
printable. It is worth noticing that the need to preserve fingerprint key
authentication characteristics while injecting a perturbation able to mis-
lead the liveness detector is a way of exploiting adversarial perturbation
that, to the best of our knowledge, has never been so far proposed.
Moreover, with the aim of performing a more realist attack, we also
introduce the concept of shadow model, indicating a liveness detector
trained by the attacker for the sole purpose of generating the adver-
sarial samples to submit to the actual target LD. All the results and
experiments had been performed by using a public fingerprint dataset,

considering as target CNNss its current top performers;

in Chapter 6 we explored the insidious problem of protecting user
privacy when it comes to derive subjects’ soft biometrics from data
spontaneously published by target users (e.g. a profile picture on a
social media, a blog post, a product review, etc.). As a case of study, we

focused on subject ethnicity detection based on the analysis of a face
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picture. To address the problem, we used adversarial perturbations to

create a patch that trades visibility for a wide user usability.

It should be clear that several are the issues that must be faced, such
as: designing systems that analyse people data ensuring privacy by default;
analysing the limitations and the weaknesses that might affect an Al-based
system, independently from the particular adopted technology or technical
solutions; assessing the behaviours in the case of successful attacks and/or
in presence of degraded environmental conditions; etc. Indeed, if on one
hand, the industry is pushing toward a massive use of artificial intelligence
enhanced solution, on the other it is not adequately supporting researches in
end-to-end understating of capabilities and vulnerabilities of such systems.
The results may be very (negatively) mediatic, especially when regarding
borderline domains related to subjects privacy, ethics and fairness, such as
users profiling, fake news generation and reliability of autonomous driving

systems.

As shown, since Al is extremely pervasive in our life, there is a high
risk that the choices made by using such models may have a significant
impact on society. Therefore, it is becoming more and more crucial to quickly
understand how to properly regulate artificial intelligence [197]. But, is the
legislator able to cope it? The solution is not straightforward, not only due
to the difficulties arising trying to put in practice Al policies [94], but also
because it is a problem that must be addressed internationally, and not on a

local scale.

Unfortunately, this is a very hard matter, since opinions about it are
extremely discordant even within the same country. For example, in the USA,

on one hand, FBI claims that their Al algorithms are effective and reliable

7

to the point of being usable as scientific evidence?’, on the other Google is

2Thttps://www.propublica.org/article/with-photo-analysis-fbi-lab-continues-shaky-
forensic-science-practices
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pushing toward the development of a suitable Al regulation®®. In Europe,
the situation appears a little more uniform, mainly thanks to General Data
Protection Regulation (GDPR), a document through which the European
Parliament has proposed, in 2016, a set of rules to regulate the activity of
any company operating with data belonging to citizens from any European
country [194].

In conclusion, Al represents without any doubt one of the greatest achieve-
ment made by humans. It has the power of really changing our world and to

help people, even more than fire and electricity did>®

. However, since “with
great power comes great responsibility”, we must learn how to properly use it,
developing methods and enacting laws that support its fair, secure and ethical

usage for all people around the world.

Zhttps://www.ft.com/content/34676592a-386d-1 1ea-ac3c-f68c10993b04
https://www.cnbc.com/2018/02/01/google-ceo-sundar-pichai-ai-is-more-important-
than-fire-electricity.html
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