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Abstract 
 

In this dissertation we propose an accelerator for the implementation of 

Long Short-Term Memory layer in Recurrent Neural Networks. We 

analyze the effect of quantization on the accuracy of the network and 

we derive an architecture that improves the throughput and latency of 

the accelerator. The proposed technique only requires one training 

process, hence reducing the design time. We present implementation 

results of the proposed accelerator. The performance compares 

favorably with other solutions presented in Literature.  

The goal of this thesis is to choose which circuit is better in terms of 

precision, area and timing. In addition, to verify that the chosen circuit 

works perfectly as activation functions, it is converted in Vivado HLS 

using C and then integrated in an LSTM Layer. A Speech recognition 

application has been used to test the system. The results are compared 

with the ones computed using the same Layer in Matlab to obtain the 

accuracy and to decide if the precision of the Non-Linear functions is 

sufficient. 
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Chapter 1 
 

State of Art 
In this Chapter will be introduced the first idea of Neural Networks, 

starting from the basic model to the latest architectures. 

 

1.1 Biological Neural Network 
 

A Biological Neural Network is a series of interconnected neurons 

whose activation define a recognizable linear pathway. The interface 

through which neurons interact with their neighbors usually consists of 

several axon terminals connected via synapse to dendrites on other 

neurons. If the sum of the input signals into one neuron overcome a 

threshold, the neuron sends an action at the axon and transmits this 

electrical signal along the axon. 

 
 

The first study of neuronal training was presented by Hebb [1] in 1949, 

while neuroscientists McCulloch and Pitts [2, 3] showed theoretically 

that networks of artificial neurons could implement logical, arithmetic 

and symbolic functions. These studies inspired the Artificial Neural 

Networks. 
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1.2 Artificial Neural Network 
 

Artificial Neural Networks (ANNs) are mathematical models inspired 

by biological neural networks that constitute animals’ brain. These 

models take shape in computing systems that learn tasks by considering 

examples, generally without a simplified version of biological animals’ 

neurons, and the connection between them it’s called Synapse.  

In a Synapse, an artificial neuron can transmit a signal to another 

artificial neuron and, this one, can process it and send to another neuron 

link to it. The signal, usually, is a real a number and the output of each 

artificial neuron is the result of a non-linear function of the sum of its 

inputs.  

A weight is assigned to classify the strength between the neurons, and 

its value decreases or increases during the learning process. A threshold 

is used to guarantee that a signal is sent only when it’s sufficiently 

strong, in this way, a lot of resources are saved. 

ANNs are usually organized in layers, as it’s possible to see in Figure 

1. 

 

 
                               Fig 1. A simple structure of an ANN 
 

The input of the ANN is a vector data obtain from the pixel’s image or 

sample audio. The vector is sent to a Feature Map Computation block 

that provides the extraction of the Feature Map if the input is an image. 

If the input is a sample audio, the Feature Map Computation block will 



8                                   _________      Chapter 1: State of the Art 

 

give N Cepstrum, where a cepstrum is the result of the Inverse Fourier 

Transformation of the logarithm of the signal spectrum. 

 

The Features (or Cepstrum) are sent to the first layer. A layer is usually 

composed of M linear functions, so its output will be a vector of M 

elements. 

The number of layers it’s choice according to the application, and this 

problem is solved during the design part of an ANN. 

The last layer is called Fully Connected Layer (Figure 2), because it’s 

connected to all the output of the previous one, and its task is to 

calculate the result [4]. 

 

 

 
 

                                     Fig 2. An example of Fully Connected Layer 

 

During the learning proceed, a Test set is given as input to the ANN to 

allow the balance of the weight of the neurons and the correct bias of 

the entire system. To avoid “Overfitting” problem, usually a shuffle or 

a resort of the data input is needed. 

 

Originally thought to solve problems in the same way the human brain 

would, ANNs are now focusing on specific tasks like Speech 

Recognition, Computer Vision or medical diagnosis. They are usually  

implemented by software, but in the latest years, thanks to the new 

technologies in the Electronic field and the research for new models of 
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neural networks, the design of an ANN that works totally in hardware 

and Offline is becoming the new challenge, in particular for the 

Recurrent Neural Networks (RNNs). 

1.3 Recurrent Neural Network 
 

In traditional ANNs, the data assigned as inputs are assumed all 

independent of each other, but that idea doesn’t work for all the task. 

The concept behind the Recurrent Neural Networks (RNNs) [5] is to  

use sequential information. For example, to predict the next letter in a 

word, it’s better to know the previous one. 

The term Recurrent is used because this type of Neural Network 

performs the same task on every input element of sequence, with the 

output being depended on the previous computation. In literature, it’s 

easy to find RNNs associated with a memory behavior, because, in 

theory, they can store almost every step of previous computations, but 

in practice, they can only store a few steps back. A typical RNNs is 

shown in Figure 3: 

 
                                       Fig 3. Example of a structure of an RNNs 
 

The unfold of the RNN structures, show how it’s very similar to a 

Convolutional Neural Network. The number of layers is equal, for 

example, to the number of data in the sequence given as inputs.  

 

In case of forwarding propagation, the input moves through the layers 

at each time step, while in back-propagation, it's like going back in time 
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to change the weight, so it’s called Back Propagation through Time 

(BPTT). In the next paragraphs, the story and the state of art of RNN 

will be illustrated, while the equations and the functionality of the RNN 

will be reported later in this Chapter [6, 7]. 

 

1.3.1 Hopfield Network 
 

In 1980, the physicist John Hopefield published a paper where he 

describes the first RNN, that will become popular as Hopefield 

Network. This network is based on the ability of the human brain to 

recognize an image also when this is wrong or corrupted thanks to the 

associative memory. Hopfield tried to replicate the associative memory 

using the structure in Figure 4: 

 

 
 

                                         Fig 4. Hopfield's Network Structure 

 

The units are binary and usually are -1 and 1, but sometimes the net is 

implemented with units like 1 and 0. Every connection between units 

has a weight 𝑤𝑖𝑗 that represents the link between the i and j artificial 

neuron. 

The weights have the following constraints: 

 

 • 𝑤𝑖𝑖=0, ∀i, means that every unit have no connection with itself; 
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 •    𝑤𝑖𝑗=𝑤𝑗𝑖, ∀i,j, means that the connections are symmetric. In this 

way, it’s guaranteed that the weights are symmetric and chaotic 

behavior are avoided. As a result, the net should converge to a local 

minimum, but the learning process it’s not easy, so often its converge 

to a false local minimum. [8] 

 

1.3.2  Elman and Jordan Network 

An Elman network is a three-layer network with the addition of a 

set of units (c0, c1, c2 in Figure 5a). The middle layer is called Hidden 

Layer and it’s connected to the units c0 with a weight of one. At each 

step, the input is moved forward, and a learning rule is applied, while 

the value of the previous hidden layer state is saved in the unit c0. In 

this way, the net can maintain a sort of state, and that’s a necessary 

condition to perform a task like sequence prediction. 

The Jordan Network (Figure 5b), it’s very similar to the Elman one. 

The main difference is that the units c in the back-propagation chain are 

connected to the outputs instead of the hidden layers. 

These two networks are usually called Simple Recurrent Networks 

(SNRs). [9] 

 

 
             Fig 5. a) Elman network structure             b) Jordan Network structure 
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1.3.3 Neural history compressor 
 

All the RNNs described before, suffers from a problem called 

Vanishing Gradient Problem. In machine learning, this problem is 

encountered in Neural Networks based on gradient-based learning 

methods and back-propagation.  

In a typical method, the weights in the Neural Networks receive an 

update proportional to the gradient of the error function, considering 

also the current weight in each iteration training. In some cases, the 

gradient is too small (from here the term Vanishing), preventing the 

change of the weight’s value. 

This problem is mainly due to the activation functions like 

hyperbolic tangent function, which have a gradient in the range (0,1). 

So, during the learning process, there will be n multiplication for small 

numbers to compute gradients in an n-layer network, that means that 

the error signal (gradient) decreases exponentially with n, while the 

front layers slowly its training.  

To avoid this problem, in 1992, a generative model called the 

Neural History Compressor, implement as an unsupervised stack of 

RNNs. At the input level, it learns to predict its next input from the 

previous inputs.  

Not all the inputs become the inputs of the next higher level RNN, 

but only the unpredictable inputs of some RNNs in lower lever, in this 

way, the entire system recomputed its internal state rarely. The RNN in 

the higher-level studies a compressed representation of the information 

of the RNN below, so the input sequence can be reconstructed from the 

representation at the highest level. 

The system effectively reduces the description length or the 

negative logarithm of the probability of the data. With this approach, 

the higher level RNN can be supervised learning to easily classify even 

deep sequence with long intervals between events [10, 11]. 

In 1993, Jürgen Schmiduber solved a Very Deep Learning task that 

required more than 1000 subsequent layers in an RNN unfolded in time 

using this system. 
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1.4 Long-Short Term Memory 
Long Short-Term Memory (LSTM) units were proposed by Sepp 

Hochreiter and Jürgen Schmiduber to avoid the vanishing gradient 

problem when training traditional RNNs. A common LSTM unit is 

composed of a cell, an input gate, an output gate and a forget gate. In 

figure 6, a common LSTM’s architecture is shown. [12, 13] 

 

 
                                         Fig 6. A common LSTM's architecture 
The cell is in charge of remembering values for an arbitrary time 

interval; this is the reason for the word memory in the name. Each gate 

can be thought as an artificial neuron, while the term gate derives from 

the fact that they work as regulators of the flow of the values that goes 

through the connections of the LSTM. 

 

          Every gate uses an activation function to compute a weighted 

sum. The expression Long Short-Term is due to the possibility to store 

short term (like the short memory in the human brain) for an extended 

period. For this reason, LSTM are suited to classify, process and predict 

time series given time lags of unknown size and duration between 

important events. 

Thanks to its characteristics, LSTM units are taking place in many 

applications over other RNNs like Hidden Markov models (a system 

based on the Markov Process). 

LSTM units are very common for solving speech recognition 

problems. Google, Apple and Microsoft using LSTM as fundamental 

units in their products. As an example, Google is using LSTM for the 

smart assistant Allo in its smartphones and for Google Translate, Apple 
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and Amazon are doing the same for their smart assistant Siri and Alexa 

respectively. In 2017, Microsoft reaching 95.1% recognition accuracy 

on the Switchboard corpus, incorporating a vocabulary of 165000 

words, using as approach dialog session long short-term memory. [6, 

14-16] 

 

1.4.1 LSTM: Architecture 

As said in the previous paragraphs, RNNs can learn from past 

information. The question is: how long an RNN can and what should 

remember? An RNN standard, can store and use recent information, but 

cannot learn long-term dependencies. Furthermore, it’s very difficult to 

train it due the gradient vanishing problem. This is the point where the  

LSTM filled the gap. In an LSTM unit, it is an RNN with an explicit 

memory controller that decide what remember and what forget. In this 

way, the learning process is more stable and allows to the system to 

handle long dependencies in sequences. 

There are many variants of LSTM architecture. The vanilla version 

is showed in the following picture. 

 

 
 
                                    Fig 7. LSTM vanilla architecture 
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As shown in the figure, the memory cell influences the input, the forget 

and output gate. This architecture is taken as reference for the hardware 

implementation and testing described in this thesis. To understand 

better how this system works, it’s necessary to define the following 

equations: 

 

it=(Wix×xt+Wih×ht-1+bi)                                     (1) 

ft = (Wfx×xt+Wfh×ht-1+bf)                                     (2) 

ct = ft∙ct-1+ it .g (Wcx×xt+Wch×ht-1+bc)                   (3) 

Where W is constant weight matrices designed during the training 

process of the network, × is the matrix multiplication, represents the 

element-wise multiplication, b are bias vectors, is the logistic function 

sigmoid, g is the input activation function, 𝑖𝑡 and 𝑓𝑡 are the input gate 

and forget gate respectively. The computation of the output sequence is 

based on the following equations: 

 

  ot = σ (Wox×xt+Woh×ht-1+ bo)                                                           (4) 

  ht = ot∙H(ct)                                                                                                          (5) 

  yt = Φ (Wyh×ht+ by)                                                                            (6) 

 

where ot is the output gate, H is the output activation function and 

Φ is the SoftMax operation. The output activation function H and the 

input activation function g can be defined in several ways. In this thesis, 

they are both the hyperbolic tangent function. 

In the next chapter, will be discussed the numerical analysis for the 

implementation in hardware of the hyperbolic tangent function and the 

sigmoid function. [6, 12, 14-18] 

 

 

 

 



 

 

Chapter 2 

Signal quantization 
 

An aggressive quantization allows obtaining an efficient 

implementation of equations (1)-(6) but it also affects the accuracy of 

the network.  

The quantization can be taken into account during the training 

process. However, we propose to apply quantization after the network 

has been trained. The advantage of this technique is that the design time 

of the accelerator is lower. As we will show, our approach introduces a 

negligible accuracy loss. 

The search of the optimal quantization for a given target accuracy 

is not a straightforward task since it requires to fix independently the 

number of bits used for each one of the 7 signals in the network (the 

hidden state, the cell activation, the three gates, the two hyperbolic 

tangents) and the 12 constant matrixes/vectors because these values 

have different dynamic range. 

In order to reduce the search space, we define two parameters: the 

maximum variable error (MVE=2-M) and the maximum constant error 

(MCE=2-L). L is optimal spot for MCE and M is optimal spot for MVE. 

MVE is the maximum error allowed on the representation of each 

variable signal s in eq. (1)-(6). If we define 𝑠̂ as the quantized version 

of the signal s we have: 

 

|𝑠̂ − 𝑠| ≤ MVE ∀𝑠 ∈  {ℎ𝑡, 𝑖𝑡 , 𝑓𝑡 , 𝑐𝑡 , 𝑜𝑡 , 𝑔𝑡 , tanh (𝑐𝑡)}                         (7) 

 

MCE is the maximum error allowed on the representation of each 

weight w of each weight matrix. If we call 𝑤̂ the quantized 

representation of the weight w we have: 

 
|𝑤̂ − 𝑤| ≤ MCE ∀𝑤 ∈  𝑊ix ∪ 𝑊fx ∪ 𝑊cx ∪ 𝑊ox ∪ 𝑊ih ∪ 𝑊fh ∪ 𝑊ch ∪ 𝑊oh  (8) 
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The quantized representation 𝑏̂ of a bias value b is obtained according 

to the following rule: 

  |𝑏̂ − 𝑏| ≤ MCE∙MVE ∀𝑏 ∈  𝑏i ∪  𝑏f ∪  𝑏c ∪ 𝑏o                           (9) 

 

In order to show the effect of our quantization scheme we have designed 

and trained two RNNs. The first network is based on the scheme in 

Fig. 8(a) and is used to identify a speaker among 9 possible candidates.  

 

For this network Fig. 8(a) Z is equal to 12 and N is equal to 50. The 

second network is based on the scheme of Fig. 8(b). The network is 

used to predict the monthly occurrence of chickenpox on the basis of 

previous history. For this network Fig. 8(b) Z is equal to 1 and N is 

equal to 200. The training and the test sequences of the two networks 

are available on-line [19], [20]. 

 

 
   

Fig. 8 Architecture of a RNN: a RNN used for sequence classification, b RNN used 

for data prediction 

 

We have trained both networks using floating-point representation 

for each variable signal and each constant factor in the equations (1)-

(6). The training operation has been performed using Matlab. After the 

training process we have applied the constraint (8) on the weight 

factors. 
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 Fig. 9 shows the dependency of the accuracy of the first RNN on 

the MCE. The accuracy is computed as the percentage of correct 

speaker identification over the entire test set. As can be seen, decreasing 

the MCE, the accuracy of the network improves.  

However, the result in Fig. 9 shows that there is an optimal value 

for MCE. Reducing the MCE under the optimal spot does not increase 

the accuracy of the network. As can be seen L=5 allows achieving the 

same accuracy of the floating-point representation. Fig. 10 shows the 

result of a similar analysis performed on the second RNN.  

Here the accuracy is computed as the root mean square error 

between the value predicted by the network and the actual value of the 

series. Again, as can be seen, there is an optimal spot that can be used 

to fix the value of L. Increasing the value of MCE not only allows 

reducing the number of bits used for the weight factors, it also allows 

reducing the overall number of non-zero constant weights.  
 

Increasing the value of MCE not only allows reducing the number 

of bits used for the weight factors, it also allows reducing the overall 

number of non-zero constant weights. Fig. 11 shows the number of non-

zero values as a function of MCE for the first RNN. As can be seen, the 

overall number of non-zero coefficients reduces by 50% at the optimal 

spot (the one chosen in Fig.9 Similar considerations can be done on the 

second RNN. 

 

 

 
                                                                 
                         Fig. 9 Accuracy vs MCE for the classification RNN 
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                                     Fig. 10 RMSE vs MCE for the forecasting RNN 

 

 

Once we have found the optimal spot for the MCE we can apply the 

constraints (7) and (9) on the variable signals and the bias values 

respectively. Fig. 12 shows the relation between accuracy, RMSE (Root 

Mean Square Error) and MVE for both networks. In this figure, L is 

fixed at the optimal spot as can be seen an optimal spot can be found 

for MVE as well and hence for M. 

 

 
 

                          Fig. 11 non-zero constant weights vs MCE for the classification RNN 

 

The use of the optimal spot is a technique that can be used for the 

quantization in any RNN. It allows to reduce the size of the signals in 

the accelerator. It also allows reducing the number of constants that 

must be stored in the internal memory of the accelerator. Overall, the 

loss on the accuracy of the network is neglectable. 
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Fig. 12 accuracy vs MVE. (a) Accuracy of the classification RNN (b) RMSE of the 

forecasting RNN 

 

 2.1 Quantization effects on the dynamic behavior 

of the network 
 

The quantization also affects the dynamic behavior of the neural 

network. Figures 13-16 show the dynamic behavior of the neural 

network designed to recognize a speaker among 9 possible ones. Each 

figure reports the output of the network as it changes while the network 

is processing an input sequence.  

The dashed line represents the correct classification for the provided 

input sequence. The circled values are obtained using a floating point 

based neural network while the crossed values are obtained with the 

quantized neural network designed using the optimal spot. 

As shown in Fig.13 and 14 for some input sequences the behavior 

of the floating point and the quantized neural network remains the same. 

However, as shown in Fig.15 and 16, there are cases where the 

quantization changes the dynamic evolution of the network, but it does 

not change the final result. 
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                Figure 13. Output of the neural network for a given input sequence 
 

 

 
                Figure 14. Output of the neural network for a given input sequence 
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                 Figure 15. Output of the neural network for a given input sequence 

 

 
                          

                 Figure 16. Output of the neural network for a given input sequence 
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        2.2 Circuit implementation 

 

The direct implementations of Eqs. (1) – (6) requires the use of two 

memories to store the values of ℎ𝑡−1,  and 𝑐𝑡−1,. However, in a SoC 

architecture, this choice is non-optimal.  

 

 

 
 

 

                                                 Fig. 17 Proposed architecture 

 

In our architecture Fig.17 the Eqs. (2), (3), (4) and (6) are divided 

in two parts: the recurrence part that depends on ht-1 and the input part 

that only depends on 𝑥𝑡. Instead of storing ℎ𝑡−1, we store the recurrence 

part of each of the four equations separately. This choice greatly 

improves the latency of the circuit and, because of the feedback 

architecture, the throughput of the accelerator. We have designed two 

accelerators. 

Both accelerators implement the first RNN discussed in the 

previous section and can be used for the classification of speakers.  
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We have used high-level synthesis to synthesize the accelerator. We 

used Xilinx Zynq XC7Z020 as the target technology and Vivado HLS 

as the synthesis tool. 

The accelerator receives the commands from an AXI4 lite 

compatible interface. The inputs and the outputs are read from and 

stored into external block-RAMs in order to keep the IP as fast as 

possible. We have fixed the clock frequency to 100 MHz to limit the 

maximum number of DSPs that can be cascaded in the data-path with 

no pipelining allowed. 
 

                                      Table 1. Accelerator performance 

 

 SRAM DSP FF Latency Recurrence 

Latency 

fclock 

 

Single 

Recurrence 

Mem. 

387 Kb 11 30604 58K 31K 115 

MHz 

Multiple 

Recurrence 

Mem. 

387 Kb 11 1157 30K 7651 115 

MHz 

[27] 86 Kb 96  40M N.A. 200 

MHz 

[28] 17 Mb 1504 453K 16K N.A. 200 

MHz 

[29] 288 Kb 50 13K 127K N.A. 142 

MHz 

 

The first accelerator uses a single recurrence memory to store the 

value of h_(t-1). The achieved performance is shown in the first row of 

Table 1. 4 DSPs are used to implement the recurrence operations (the 

multiply-and-add operation involving ℎ𝑡) plus 7 DSPs for the remaining 

operations.  

The second accelerator is based on the architecture of Fig. 17 and 

uses 4 recurrence memories. The computation of the recurrence 

operation is obtained with a parallel data path, using 4 DSPs. We 
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allowed 7 DSPs to be used in the computation of the other equations. 

The results are shown in the second row Table 1.  

As shown, the 4 data-paths used to compute the recurrence 

operations allows to reduce the recurrence latency by 75%. 

Furthermore, the use of 4 memories allows the reduction of the overall 

latency by 49% with the same number of arithmetic units used. 

Compared with previous art, the proposed circuit has a very small foot-

print and is suitable for efficient accelerators for IoT devices.  
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Chapter 3 

 
 3.1 Circuit Optimization 
 

This chapter will address mathematical analysis to develop an effective 

algorithm to create a circuit that can perform the calculations necessary 

to implement a recurrent neural network. The RNN referred to is the 

one shown in the previous chapter, and LSTM in particular Vanilla 

Architecture. For simplicity I will report here the equations that define 

the LSTM layer. 

 

it = σ (Wix×xt+Wih×ht-1+ bi)                                    (1) 

ft = σ (Wfx×xt+Wfh×ht-1+bf)                                     (2)        

ct = ft∙ct-1+ it∙g (Wcx×xt+Wch×ht-1+bc)                      (3) 

ot = σ (Wox×xt+Woh×ht-1+ bo)                                  (4) 

Where Wix,Wfx, Wcx, Wox, Wih, Wfh,Wch,Woh represent the 

weight matrices. The latter are obtained directly in software during the 

training phase of the network, equivalently also the vectors of bias bi, 

bf, bc, bo are extracted during the training phase carried out in Matlab. 

xt represents the t input vector of the input sequence, the vector made 

up of the features, while g and σ are the input activation functions. 

 

ht = ot∙H(ct)                                                             (5) 

yt = Φ (Wyh×ht+ by)                                                 (6) 

There are two output equations, H represents the output activation 

function while Φ SoftMax is the function. The goal is to provide a 

mathematical method for designing an LSTM-based RNN for any 

application. 
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           3.2 Parallelization Algorithm 
 

Within the equations above the most expensive calculations to be made 

are the products between matrix and vector. In this paragraph we focus 

on a first solution to do this in HW by trying to obtain a low Latency 

and that allows the increase in compute units (DSP) used to always have 

all devices in operation, Therefore, a maximum efficiency. 

Focusing first on the matrices, Wih, Wfh , Wch , Woh the first 

information we have about them is that they are matrices square. This 

information is not really of any relevance for the calculation method but 

in the following way it will be able to facilitate some accounts. 

 

Define 

 

imem:  Wih  × ht 

fmem:  Wfh  ×  ht-1 

cmem:  Wch  × ht-1 

omem:  Woh  ×  ht-1 

 

and I'll call M the number of columns in the following arrays, Y the 

number of rows, and the product M*Y=N. In the case that I'm going to 

treat the arrays are square so M=Y also the size of the vectors ht-1 is M 

elements.  

The product between these arrays and the   h vectors will in turn 

give vectors of size M that I mentioned earlier with imem, fmem, cmem, 

omem. The algorithm for carrying out the product between matrix and 

vector is known: 
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𝑖𝑚𝑒𝑚𝑖  = ∑ 𝑊𝑖ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

 

 

 

𝑖𝑚𝑒𝑚𝑖  = ∑ 𝑊𝑖ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

 

 

𝑐𝑚𝑒𝑚𝑖  = ∑ 𝑊𝑐ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

 

 

𝑐𝑚𝑒𝑚𝑖  = ∑ 𝑊𝑐ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

 

 

𝑖𝑚𝑒𝑚𝑖  = ∑ ∑ 𝑊𝑖ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)   𝑤𝑖𝑡ℎ  𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

 

 

𝑖𝑚𝑒𝑚𝑖  = ∑ ∑ 𝑊𝑖ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)   𝑤𝑖𝑡ℎ  𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

 

 

𝑐𝑚𝑒𝑚𝑖  = ∑ ∑ 𝑊𝑐ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)   𝑤𝑖𝑡ℎ  𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

 

 

𝑜𝑚𝑒𝑚𝑖  = ∑ ∑ 𝑊𝑜ℎ  (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)   𝑤𝑖𝑡ℎ  𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

 

 

The idea is to calculate the i-th element by unpacking the M sums 

of products into a number ∆ of sums, which in turn are sums of products. 

 

𝑖𝑗𝑘 = 𝑤𝑖ℎ  (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘) 
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           𝑓𝑗𝑘 = 𝑤𝑖ℎ   (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘) 

 𝑜𝑗𝑘 = 𝑤𝑖ℎ   (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘) 

 

 

           3.3 Algorithm 1 
 

We calculate in the base time unit T, which represents the clock period, 

n products in the order i,f,c,o. Example N=5 DSPs 

 

 

T=1 T=2  

i11 f12  

f11 c12  

c11 o12  

o11 I13  

i12 f13  

 

After that you continue in the same way, as you can see in the table 

schematization. This type of scheme means that every clock shot all 

DSPs are performing an operation. You continue to calculate products 

if  𝑜𝑗𝑘  is not found in the last row in the table schematization. 

 

T=1 T=2 T=3 T= 4 

i11 f12 c13 r14 

f11 c12 o13 i15 

c11 o12 i14 f15 

o11 i13 f14 c15 

i12 f13 c14 o15 
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In the 5 DSPs example, this happens after a time of T=4 per k=5, that 

is, after 4 stroke of clock we calculated the products up to the fifth 

element on each of the 4 arrays. After this first phase in the second 

phase we calculate the sum of these k products. 

 

T=5                  T=6             T=7                  T=8 

imem 

= 𝒊𝟏𝟏  +  𝒊𝟏𝟐 
+𝒊𝟏𝟑 

+ 𝒊𝟏𝟒 + 𝒊𝟏𝟓 

+ imem 

fmem 

= 𝒇𝟏𝟏  +  𝒇𝟏𝟐 
+𝒇𝟏𝟑 

+ 𝒇𝟏𝟒 + 𝒇𝟏𝟓 

+ fmem 

cmem 

= 𝒄𝟏𝟏  +  𝒄𝟏𝟐 
+𝒄𝟏𝟑 

+ 𝒄𝟏𝟒 + 𝒄𝟏𝟓 

+ cmem 

omem 

= 𝒐𝟏𝟏  +  𝒐𝟏𝟐 
+𝒐𝟏𝟑 

+ 𝒐𝟏𝟒 + 𝒐𝟏𝟓 

+ Omem 

 

 

The algorithm should be iterated ∆ times to get the first element of 

imem, fmem, cmem, omem. In the example seen, with n=5 DSPs we 

run out 5 elements of the first line or in general of the i-th line. The 

number of products calculated in the first iteration of the algorithm is 

what we call 𝜑𝑛.  

The algorithm should be iterated ∆ times to get the first element of 

imem, fmem, cmem, omem. In the example seen, with n=5 DSPs we 

run out 5 elements of the first line or in general of the i-th line. The 

number of products calculated in the first iteration of the algorithm is 

what we call 𝜑𝑛. In the example with 5 DSPs, the time it takes to 

calculate the first 𝜑𝑛 products for each array is called 𝛾. 

 

 𝜑𝑛 =
𝑛

4
∗ 𝛾𝑛 

 

 

𝛾𝑛 = {

4          𝑖𝑓  𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 
2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑒𝑣𝑒𝑛 𝑜𝑓 4

1          𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒  𝑜𝑓 4 
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I can make a further simplification by introducing  𝛼𝑛 = 𝛾𝑛 4⁄     such 

a way as to get  

 

𝜑𝑛 = 𝑛 ∗ 𝛼𝑛
 

 

                                  𝛼𝑛 = {

1         𝑖𝑓  𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 

1 2⁄   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑒𝑣𝑒𝑛 𝑜𝑓 4

1 4⁄       𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒  𝑜𝑓 4 
 

 

If I define 𝐿𝑖  latency of the single iteration, it is equal to 2𝜸𝒏  = 𝟖  𝜶𝒏
  

,  while the latency to calculate the i-th element of imem, fmem, cmem, 

omem is equal to 𝑳𝒓 =  𝑳𝒊   ∗   ∆ . The total latency to get imem, fmem, 

cmem, omem, that is to get the 4 array products per vector will then be 

 

                                      𝑳𝒕𝒐𝒕 = 𝑳𝒓 ∗ Y =  𝑳𝒓 ∗ M = 𝑳𝒊 ∗  ∆ ∗ M 

 

 

with  ∆ = 𝑀 𝝋𝒏⁄   for  which  𝑳𝒕𝒐𝒕 =   𝑳𝒊 𝑴𝟐 𝝋𝒏⁄  = 8𝜶M2/(n𝜶) = 

8M2/n . For increasing the number of DSP n not to lose effectiveness, 

it must be 𝜺𝒏′𝒏′′ =   
𝑳𝒏′

𝑳𝒏′′
 =  

𝒏′′

𝒏′    with   n’<n’’  where the subscript at 

the base of  L indicates the number of DSP used. In the particular case 

where n'' = 2n' should  

 

                                        𝜺𝒏′𝒏′′ =   
𝑳𝒏′

𝑳𝒏′′
 =  2     

 

                                Or   

 

                                                𝑳𝒏′′ =  𝑳𝒏′ 𝟐⁄  

 

Or doubling the number of DSP halves the latency. All of this I can 

also express by introducing another parameter that I call the efficacy 
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line = 𝛝𝐧 =  𝐋𝐧 ∗ 𝐧 .  If this line is constant in the plane (n, 𝛝𝐧) then the 

latency decreases proportionally to them as the number of DSP 

increases. In the case of the algorithm just described it results 

 

𝝑𝒏= 8 𝑴𝟐 

 

And since M is fixed the line of effectiveness is constant. If I call  

𝜓 = 𝑛′′ 𝑛′⁄  I can define the performance as a function of the DSP used 

𝜼𝒏′𝒏′′ = 100 𝜀𝑛′𝑛′′ 𝜓⁄   .  

In the treated algorithm   𝜀𝑛′𝑛′′ = (8M2/𝑛′) ∗  (𝑛′′/8M2) =  𝑛′′ 𝑛′⁄  

= 𝜓   from which 𝜼𝒏′𝒏′′ = 100 %.  Supposing to have n = 6 and M = 48 

the total latency is of  𝐿6𝑡𝑜𝑡 = 3072 clock shots. So, to calculate all 4 

matrices using 6 DSPs it takes 3072 clock strokes using this algorithm. 

The following table shows the latency values in function of the number 

of DSPs with 4<n<48 and M= 48 such that the mcm (𝜑𝑛, M) = M. 

 

DSPs Latency 

6 3072 

8 2304 

12 1536 

16 1152 

24 768 

32 576 

48 384 

 

The flaw of this algorithm lies in the fact that it does not exploit the 

potential of individual DSP. In fact, each DSP in a single stroke of clock 

can make a MAC, while in this algorithm it is used only to sum or 

product and never sum and product. 
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          3.4 Algorithm 2 
 

We introduce the second algorithm assuming to work in this case 

on a single matrix, for example suppose we want to calculate only 

imem, consequently afterwards we can extend the reasoning also for 

fmem, cmem, omem. It starts from the case in which I have only 1 DSP 

available and I want to use it more effectively by performing MAC 

operations such as a * b + c. The same notation used in the previous 

paragraph applies. Calculate the i-th element of imem: 

 

(for ease of notation I used 𝑖𝑚 instead of imem) 

 

 

As you can see in this case except for the first clock shot, the only 

DSP used always performs MAC operations. The latency to obtain 

imem (1) will be equal to 𝐿𝑟= 𝑀. Now we use n = 2 DSPs instead 

 

 

T=1 T=2 T=3 ... T=M 

im = 11 im 

= 𝒊𝟏𝟐 + 𝒊𝒎 

im 

= 𝒊𝟏𝟑 + 
𝒊𝒎 

... im 

= 𝒊𝟏𝑴 + 
𝒊𝒎 

T=1 T=2 .... T=M/2 T=M/2 

t1 =  𝒊𝟏𝟏 

t2=  𝒊𝟏𝟐 

 

t1 = i13 + 
t1 
t2 = i14 + 
t2 

 

... t1 

=  
i1 (M-1) 

+ t1   

t2 = i1M + 
t2 

 

im = t1 + 
t2 
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Several memory elements (𝑡𝑖) equal to the number of DSP are used. 

In this case, however in the last clock shot, n-1 DSP is used, in addition 

to the fact that in the first clock stroke no DSP plays a Mac. In the case 

of 2 DSPs the latency is equal to 𝐿2=𝑀/2 +1. You can generalize by 

finding the following formula: 

 

𝑳𝒏= 
𝑴

𝒏
 + 1 

 

Also in this case n, cannot be chosen at will but in fact we see that 

it must be M / n an integer, or n must be a submultiple of M which in 

other words can be written by setting the condition 1) p = M where p is 

given by the following expression 𝑝 = 𝑚𝑐𝑚 (𝑛, 𝑀) with n <M. The 

latency of imem is therefore given by the following expression as a 

function of n 

 

𝐿𝑛 = {
𝑀𝑌                             𝑓𝑜𝑟 𝑛 = 1

[ ( 𝑀 𝑛 )  +  1]𝑌⁄     𝑓𝑜𝑟  𝑛 > 1
 

 

To get the overall latency to get both imem, fmem, cmem, omem 

just multiply by 4. 

 

𝐿𝑛𝑡𝑜𝑡 = {
4𝑀𝑌                             𝑓𝑜𝑟 𝑛 = 1

4[ ( 𝑀 𝑛 )  +  𝑀]𝑌⁄     𝑓𝑜𝑟  𝑛 > 1
 

 

In the case of a square matric MY=M2 

 

𝐿𝑛𝑡𝑜𝑡 = {
4𝑀2                             𝑓𝑜𝑟 𝑛 = 1

4[ ( 𝑀2 𝑛 )  +  1]𝑌⁄    𝑓𝑜𝑟  𝑛 > 1
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          3.5 Comparison 
 

We evaluate the relationship between the latency of the first algorithm 

and this second algorithm, if it is greater than 1 then this just exposed 

is faster. 

 

                                                    𝜒 = 𝑳𝒏
𝑰 𝑳𝒏

𝑰𝑰⁄  

Where the quotes I and II denote which of the two algorithms is 

being referenced. Since the first holds for n > 4 we evaluate this 

relationship in which 

 

                                          𝑳 𝒏  =
𝑰𝑰  𝟒[ ( 𝑴 𝒏 )  +  𝑴]⁄  

                                   𝜒 = 
𝟖𝑴𝟐 𝒏⁄

𝟒 [ (𝑴𝟐 𝒏) +𝑴 ]⁄
 = 

𝟖𝑴𝟐

𝟒  (𝑴𝟐 + 𝒏𝑴)
 = 

𝟒𝑴

𝑴 + 𝒏
 

Since both are valid for n <M is 𝜒> 1. So, this second way of 

working is faster than the first method shown, in particular if 𝑀 >> 𝑛 

then 𝜒≅2 which means to say that in the same time interval I can 

perform almost twice as many operations. 

 

           3.6 Effectiveness Parameters 
 

Also, in this case I can define an index  𝜀𝑛′𝑛′′ = 
𝐿𝑛′

𝐿𝑛′′
 that for 𝑛′= 1 and  

𝑛′′ = 𝑛  𝜀1,𝑛 =𝜀𝑛= 𝐿1 𝐿𝑛⁄  

 

                                𝑳𝟏 𝑳𝒏⁄  = 
𝟒𝑴𝟐

𝟒 [ (𝑴𝟐 𝒏) +𝑴 ]⁄
 = 

𝒏𝑴𝟐

𝑴  (𝑴 + 𝒏)
 = 

𝒏𝑴

𝑴 + 𝒏
 

 

 

                               𝜺𝒏= 
𝒏𝑴

𝑴+𝒏
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moves away from 𝜓 = 𝑛 ’’ / 𝑛 ’= n, while in the first the condition 

was always verified. All this translates into a better efficiency for a 

number n of low DSP. All this is valid only in the condition we 

mentioned above p = M and n <M. 

I have also analyzed if it is possible to use a number n of DSP that 

is not a submultiple of M. This is possible by following a slightly 

different procedure, but which leads to identical results in terms of 𝜀𝑛. 

 

          3.7 Extension of 2nd algorithm  

Suppose we have a number of DSP = n <M such that p = mcm (n, 

M) > M, this is equivalent to saying that n is not a submultiple of M, it 

is possible to find a way to perform the calculations with the same 

speed. 

• Several products are calculated during the first clock stroke 

   t1, t2+...+ tn, equal to the number of DSP available n. 

• At the second clock stroke we calculate tp, or the partial sum of the 

  first calculated products 𝑡𝑝 = 𝑡1 + 𝑡2 + ... + 𝑡𝑛 

• At the third clock stroke the first coefficient is calculated already the 

first one 

   imem result (1) = 𝑡𝑝 + 𝑡𝑛+1 + ⋯ 𝑡𝑀 

And at the same time, you begin to calculate the products of the next 

row. I introduce parameters to simplify the discussion.  

Said T the unit of time in terms of clock strokes i = T-2, 𝑞𝑖 is the 

number of DSP usable to calculate products at clock stroke T = i + 2, 

while 𝜁𝑖 is the number of DSP used to perform sums or sums more 

products. These parameters are calculated starting from T = 3 or from i 

= 1. 

𝜻𝒊 = {

𝑴 − 𝒏                   𝑻 = 𝟑
𝒒𝑻 −𝟑          𝒇𝒐𝒓 𝒆𝒗𝒆𝒏 𝑻 

𝑴 −  𝒒𝑻 −𝟑    𝒇𝒐𝒓 𝒐𝒅𝒅 𝑻
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𝒒𝒊 = {
𝒏 − 𝜻𝒊                   𝒇𝒐𝒓 𝒆𝒗𝒆𝒏 𝑻

           
𝒂𝒏 −  𝒃𝑴             𝒇𝒐𝒓 𝒐𝒅𝒅 𝑻

 

 

With b=a-1 and a = (3+ i)/2 (T + 1)/2 

 

With b=a-1 and a = (3+ i)/2 (T + 1)/2 

The algorithm stops when 𝑞𝑖 = 0 or equivalently when 𝜁𝑖 = 𝑛 and 

iteratively repeats for N / p times, remembering that N = MY ep = mcm 

(n, M). This procedure works only if said 𝛽𝑛 = 𝑛 / (𝑀 − 𝑛) is an integer 

and mcm (p, N) = N.  

The number of elements of the resulting vector calculated is equal 

to 𝛽𝑛 and the time taken, or the latency is equal to T = i + 2 or similarly 

 

                                                                 𝑳𝒑= ( 2𝜷𝒏 + 1) 

 

The latency to calculate a matrix product per vector is equal to 

 

                                                         L= ( 2𝜷𝒏 + 1) * N/p 
 

In the case where n satisfies the condition on 𝛽𝑛 then p = M * 𝛽𝑛 

 

 
T=1 

 
T1, t2, t3... t8 
 

 
T=2 

 
Tp+t1+t2+t3+....t8 
 

 
T=3 

Imem(1) = 𝑡𝑝 + t9+t10+t11+t12                                𝜁𝑖= 4 

T1, t2, t3, t4                                                                q1 = 4 
 

 
T=4 

Tp=t1+t2+t3+t4                                                𝜁𝑖= 4 

 T5, t6, t7, t8                                                               q1 = 4 
 

 
T=5 

Imem (2) = 𝑡𝑝 + t5+t6+t8+…+t12                          𝜁𝑖= 8 
                                                                                     𝑞3= 0 
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Example for n = 8 and M = 12 Y = 48 

In the case chosen for the example 𝛽8 = 8/4 = 2 for which use 𝐿𝑝    

= 2 (2 + 1) = 5 clock shots to get the first 2 results. 

 

L= (2𝜷𝒏 + 1) * (Y/𝜷𝒏 ) 

So the latency for the calculation of imem is equal to 𝐿 = 5 ∗ (48/2) 

= 5 ∗ 24 = 120 and the total latency will be 𝐿𝑡𝑜𝑡 = 480, time necessary 

to wait for having imem, fmem, cmem, omem.Calculation also in this 

case 𝜀𝑛 in the case of a square matric with M rows and M columns 

 

𝜀𝑛=𝐿1/𝐿𝑛=(𝑀2)/[(2𝛽𝑛+1) ∗(𝑌/𝛽𝑛)] =𝑀𝛽𝑛/(2𝛽𝑛+1)  

=(𝑛𝑀/𝑀−𝑛)/[(2𝑛/𝑀−𝑛) +1]  

=𝑛𝑀/(2𝑛+𝑀−𝑛) =𝑛𝑀/(𝑀+𝑛) 

Which brings us back to the same identical result as before even 

having changed the process formula for the calculation of imem, fmem, 

cmem, omem. Figure 18a shows the efficiency trend, in 18b the 

efficiency. 

             Efficiency                                                  Performance 

    
 
               Fig 18. a: Efficiency                                  Fig 18. b: Performance 
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𝜂𝑛=[100𝑛𝑀/(𝑀+𝑛)] ∗ 𝑛=100𝑀/(𝑀+𝑛) 

From which we can see that as the number of DSP increases, the 

yield decreases more and more until it reaches a minimum of 50% when 

n = M. 

It can be seen in the same way 𝜗𝑛, noting that effectiveness, that is 

the line of effectiveness grows with the growth of n and does not remain 

constant 

 

                                           𝜗𝑛=(2𝛽𝑛+1) ∗
𝑴

𝜷𝒏
∗𝑛= (

𝟐𝒏

𝑴−𝒏
 +1) ∗[

𝑴

𝒏
∗(𝑀−𝑛)] ∗𝑛 

                                       = (𝑀+𝑛)∗𝑀=𝑴𝟐+ 𝑛𝑀 

𝑛𝑀≪𝑀2↔𝑛𝑀≪𝑀2 𝑐𝑖𝑜is 𝑀≫𝑛, that is the ideal case could be had 

only approximately in the case in which several DSP is used very much 

smaller than the dimensions of the Matrix. 

Therefore, downstream of this research the most sensible solution, 

in general, is to not adopt more than one DSP per line, as we have seen 

that the increase speeds up the calculation but in an increasingly 

expensive way, paying in terms of performance. 

 

                                     Effective line     

 
                                             Figure 19:  Effective line 
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Suppose instead we want to use several DSP n greater than M and see 

how to proceed.  

 

𝑘=⌊(𝑖+1)/2⌋ 
 

𝑖=𝑇+2 

 

𝑓=⌊𝑇/2⌋ 
 

𝜔=𝑛/𝑀 

 

𝜆=⌊𝜔⌋ 
 

𝜈=𝑛−𝜆𝑀 

 

𝑠𝑑,𝑒=𝑊(𝑑,𝑒)∗𝑥(𝑑,𝑒) 

 

Where W is the generic matrix of dimensions Y × M and the product 

𝑊 × 𝑥 = 𝑢 

 

                           𝝆𝒇 = {

𝟐                                   𝒇𝒐𝒓  𝒇 = 𝟎
           

𝝆𝒇−𝟏  + 𝝀 + 𝟏             𝒇𝒐𝒓 𝒇 > 𝟎
 

 

 

3.7.1 Algorithm details 

 

     I- In the first clock stroke calculation 𝑠1,1, 𝑠1,2, ..., 𝑠1,𝑣 

     II- In the second clock stroke calculation  

      sp = 𝑠1,1+ 𝑠1,2 + ...+ 𝑠1,𝑣   also calculation 

      𝑠𝑝𝑓−1,1, 𝑠𝑝𝑓−1,2, ..., 𝑠𝑝𝑓−1,𝑀 

     …. …. … 

      𝑠𝑝𝑓,1, 𝑠𝑝𝑓,2, ..., 𝑠𝑝𝑓,𝑀 
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III-    At the third clock stroke I start to get the first results 

𝑢1, 𝑢𝑝𝑓−1, . . . 𝑢𝑝𝑓  

 

And I begin to calculate   𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,2, ..., 𝑠𝑝𝑘 +1, 𝑞𝑖 

 

IV- calculation              𝑠𝑝𝑘=  𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,(𝑞𝑖−1+ 𝑞𝑖)  

 

                                       𝑠𝑝𝑓−1,1, 𝑠𝑝𝑓−1,2,..., 𝑠𝑝𝑓−1,𝑀 

                                         

                                         ….   ….. … ….  … ….. 

 

                                       𝑠𝑝𝑓,1, 𝑠𝑝𝑓,2,..., 𝑠𝑝𝑓,𝑀 

V- calculation                  𝑢𝑝𝑓−1-1 ,𝑢𝑝𝑓−1 , . . . 𝑢𝑝𝑓 

 

   𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,2,..., 𝑠𝑝𝑘 +1, 𝑞𝑖 

 

The procedure continues until  𝑞𝑖= 0, remembering that 

 

𝑞𝑖 = {
𝑛 − 𝜁𝑖   , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑇
𝑎𝑛 − 𝑏𝑀,  𝑓𝑜𝑟 𝑜𝑑𝑑 𝑇

 

 

 

𝛇𝑖 = {

𝑀 − 𝑛              𝑇 = 3 
𝑞𝑇−3        𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑇
𝑞𝑇−4         𝑓𝑜𝑟 𝑜𝑑𝑑 𝑇 

 

 

𝑐1=𝑚𝑐𝑚 (𝜈, 𝑀)/𝑀 

𝑐2=𝑐1𝜆 

𝑐=𝑐1+𝑐2 

 

The time to calculate c elements is  𝐿𝑝= 2c1 + 1, to calculate the integer 
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T=1 𝒔𝟏,𝟏 , 𝒔𝟏,𝟐 ,. . .. 𝒔𝟏,𝟖  

T=2 Sp = 𝒔𝟏,𝟏+ 𝒔𝟏,𝟐 + ... 𝒔𝟏,𝟖 

𝒔𝟐,𝟏 , 𝒔𝟐,𝟐 ,. . .. 𝒔𝟐,𝟖  

𝒔𝟑,𝟏 , 𝒔𝟑,𝟐 ,. . .. 𝒔𝟑,𝟖 

T=3 

i=1 

 𝒖𝟏 =  sp + 𝒔𝟏,𝟗 + ... 𝒔𝟏,𝟏𝟐 

𝒖𝟐 =  𝒔𝟐,𝟏 + 𝒔𝟐,𝟗 + ... 𝒔𝟐,𝟏𝟐 

𝒖𝟑 =  𝒔𝟑,𝟏 + 𝒔𝟑,𝟗 + ... 𝒔𝟑,𝟏𝟐 

𝛇𝟏  = 𝟒   ,  𝒒𝟏 = 4 

𝒔𝟒,𝟏 + 𝒔𝟒,𝟐 + ... 𝒔𝟒,𝟒 

T= 4 

i =2 

Sp = 𝒔𝟒,𝟏+ 𝒔𝟒,𝟐 + ... 𝒔𝟒,𝟒 

𝒔𝟓,𝟏 + 𝒔𝟓,𝟐 + ... 𝒔𝟓,𝟏𝟐 

𝒔𝟔,𝟏 + 𝒔𝟔,𝟐 + ... 𝒔𝟒,𝟏𝟐 

𝛇𝟐  = 𝟒   ,  𝒒𝟐 = 4 

𝒔𝟒,𝟓 + 𝒔𝟒,𝟔 + ... 𝒔𝟒,𝟖 

T=5 

i=3 

𝒖𝟒 =  sp + 𝒔𝟒,𝟓 + ... 𝒔𝟒,𝟏𝟐 

𝒖𝟓 =  𝒔𝟓,𝟏 + 𝒔𝟓,𝟐 + ... 𝒔𝟓,𝟏𝟐 

𝒖𝟔 =  𝒔𝟔,𝟏 + 𝒔𝟔,𝟐 + ... 𝒔𝟔,𝟏𝟐    

 𝛇𝟑  = 𝟖   ,  𝒒𝟑 = 0 
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matric instead 𝐿 = 𝐿𝑝 ∗ (𝑌 / 𝑐) = (2𝑐1 + 1) ∗ (𝑌 / 𝑐) 

Example M = 12, Y = 48, n = 32 𝜆 = 2, 𝜐 = 8 

The algorithm is applicable when mcm (nbY, c) = Y and moreover 

as in the algorithm of before changing n = 𝜈 the ratio 𝛽𝜈  = 𝜈 / (𝑀 − 𝜈) 

is an integer. 

The graph below shows the trend of the latency as the number of 

DSP increases for a matric with dimensions M = 12 Y = 48. Figure 20 

shows the trend of latency according to the number of DSP used. 

 
                                                         Latency 

 

 
                            Figure 20: latency as a function of the number of DSPs 

 

Once the question on how to carry out the most complicated 

calculations present in the equations to derive 𝑖𝑡, 𝑓𝑡, 𝑐𝑡, 𝑜𝑡 has been 

unraveled, it is necessary to understand how to organize the architecture 

aimed at performing these calculations. 
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      3.8 Architecture 

 
To organize the sequence of the calculations I started from a simpler 

architecture to then refine it in order to improve the latency of the 

overall circuit. 

 

 
 
                              Figure 21: architecture of DSP 

 

In this first model of architecture there is a single large block within 

which all operations are carried out. A more sophisticated model with 

respect to this consists in trying to parallelize the calculations within the 

single equations, in fact breaking the single equation into 2 Calculation 

Blocks.  

 

 

 

 



                                                  __________                            ______45 

 

 

 
 
                                       Figure 22: graph of 2 blocks 

 

The first block receives as input 𝑊𝑖𝑥 , 𝑊𝑓𝑥 , 𝑊𝑐𝑥 , 𝑊𝑜𝑥 , 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜, 

imem, fmem, cmem, omem and calculates at the output h which is sent 

to the second block. The second block concurrently with the first one 

receives ℎ𝑡 − 1 and 𝑊𝑖ℎ , 𝑊𝑓ℎ , 𝑊𝑐ℎ , 𝑊𝑜ℎ  which it uses to calculate imem, 

fmem, cmem, omem according to the modalities we have seen before.  

The first block must carry out in addition to the vector matrix 

product also the addition of this last result with imem, fmem, cmem, 

omem. One might think that this introduces a significant slowdown but 

in reality, it is not so since in all the cases except, in the case  

which I use 1 DSP this is in no way to invalidate the latency of the 

block. To see how the first block will have to schedule the calculations, 

let us take as an example only the 
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                                           Figure 23: block diagram of 2 DSPs  
 

This is one of the 4 calculations that the first block must perform, 

and we want to show that except in the case of 1 DSP, where the latency 

increases by Y clock shots, in all other cases the latency remains the 

same. Consider the matrix 𝑊𝑖𝑥 of dimensions Y (lines), M (columns) 

and n = 1 DSP, always using the same notation we schematize the 

algorithm as before. 
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      T=1      T=2                T..                 T=M            T=M+1 

 

Then I use M clock shots instead of using M + 1. Having a matrix 

of Y rows, this latency must be multiplied by Y so that 𝐿 = 𝑀𝑌 + while 

in the case in which the only calculation that must perform is 𝑊𝑖𝑥  × 𝑥𝑡 

the latency is less and is equal to 𝐿 = 𝑀𝑌. Then using 1 only DSP the 

latency increases with increasing Y. If instead I use 2 DSPs 

 

T=1  t1= i13 + t1 

 t2= i14 + t2 

T= 2 t1= i11 + t1 

t2= i12 

T..... ..................................... 

T=M/2 t1= i1(M-1) + t1 

t2= i1M + t2 

T=M/2 u1= t1 + t2 + imem (1) 

 

im 

= i11 + bi (1) 

im 

  = i12 + im 

.... im 

  = i1M + im 

im 

=im+imem(1) 
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So, by using 2 DSPs the latency for a single element becomes 𝐿 = 

𝑀 / 2 +1 which is the same that you have to perform the simplest 

calculation where neither imem nor the bias appear. So, for n> 1 the 

latency is exactly the same in both branches with the same size of the 

matrices. 

From the analysis carried out it emerges that in general to make a 

product between a matric and a vector it is better to use only one DSP 

since with increasing n efficiency is always lower. 

If I use 1, in making the two accounts, on the one hand I always go 

slower than the other of Y shots of clock. The choice I can think of to 

make to make the times as similar as possible is to use a number n of 

DSP where each of the single DSP executes in parallel the algorithm on 

a single line, in this way I get 

 

𝐿𝐵1 = (𝑀𝑌 + 𝑌 / 𝑛) (Latency relative to block 1) 

𝐿𝐵2 = 𝑀𝑌 / 𝑛 (Latency relative to block 2) 

Since the latencies must be integers, in both cases we must 

choose n so that mcm (n, Y) = Y 

I evaluate which is the best choice in terms of n so that the two 

latencies can be as close as possible, with n number of DSP to place 

individually on each line and not as previously seen for the calculation 

of the same line. 

I introduce a new parameter that evaluates the relationship 

between the latency of the first block decreased by 1 and the latency of 

the second block  

𝜏= (𝐿𝐵1−1) /𝐿𝐵2=(𝑀+(𝑌/𝑛) −1)/(𝑁/𝑛) 

=(𝑀𝑛+𝑌−𝑛)/𝑁 

=[𝑛(𝑀−1) +𝑌]/𝑁 

Clearly in this circumstance n_{max} = Y therefore we evaluate 
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with the variation of n.𝜏 is a linearly increasing function with n and 

assumes its maximum for n = Y in which it is 1.  

When n = Y means that 𝐿𝐵1 = 1 + 𝐿𝐵2 that is when I use the 

maximum of DSP, putting 1 for the first block and the second block 

have a difference in terms of latency of a single clock stroke, even if the 

first block performs many more operations.  

So, we derive that a convenient choice is to use as many DSP as 

possible. Figure 24 shows the trend of the ratio with the variation of n 

with M = 50 and Y = 50. 

 

                                   Relationship between first and second block 

 
                                          Figure 24: trend of 𝜏 as a function of n 
 

After the above algorithms, the second one was used since it was 

the fastest to perform the calculations and, I used 1 DSP for each single 

element calculated.  
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It remains to establish how many DSP to use in order to obtain a 

low latency and try to equate the latencies between the first and second 

calculation block.  

The 1 block performs the following operations 

 

                             1) 𝑖𝑡=𝜎(𝑤𝑖𝑥×𝑥𝑡+𝑖𝑚𝑒𝑚+𝑏𝑖) 

                             2) 𝑓𝑡=𝜎(𝑤𝑓𝑥×𝑥𝑡+f𝑚𝑒𝑚+𝑏𝑓) 

                             3) 𝑐𝑡=𝑓𝑡∗𝑐𝑡−1+𝑖𝑡∗𝑔(𝑤𝑐𝑥×𝑥𝑡+𝑐𝑚𝑒𝑚+𝑏𝑐) 

                             4) 𝑜𝑡=𝜎(𝑤𝑜𝑥×𝑥𝑡+𝑜𝑚𝑒𝑚+𝑏𝑜) 

                             5) ℎ𝑡=𝑜𝑡∗𝐻 (𝑐𝑡) 

 

The matrices 𝑤𝑖𝑥 , 𝑤𝑓𝑥 , 𝑤𝑐𝑥, 𝑤𝑜𝑥 have dimensions equal to 𝑌 × 𝑀, 

while 𝑤𝑖𝑥 , 𝑤𝑓ℎ , 𝑤𝑐ℎ, 𝑤𝑜ℎ have dimensions 𝑌 × 𝑌. The size M is fixed 

by the number of features and therefore by the data set being used to 

train the neural network, while Y represents the number of hidden states 

used to train the network and it can be varied to have a more or less high 

accuracy.  

Beyond a certain limit, increasing Y only increases the calculations 

to be made but does not return a higher accuracy that depends on how 

large the data set used is. Of the five equations given above, the most 

critical, that is, the one that entails a greater computational burden is 

certainly 3. To make all the necessary calculations to get the 3) you 

must wait until you've already got the 1) and the 2) reason why I decided 

to rewrite it in a different way that I report here. 

 

                                   𝑐𝑡=𝑓𝑡∗𝑐𝑡−1+𝑖𝑡∗𝑐𝑐 

where 6) 

 

                               𝑐𝑐=𝑔(𝑤𝑐𝑥×𝑥𝑡+𝑐𝑚𝑒𝑚+𝑏𝑐) 
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At this point the 1), 2), 4), 6) require exactly the same latency to 

produce the results and in particular if we think of only one element that 

is 𝑖𝑡 (1), 𝑓𝑡 (1), 𝑐𝑐 (1), 𝑜𝑡 (1) latency, using a DSP for a single equation, 

will be equal to M + 1 as previously calculated. 

 
T=1  it(1) =  Wix(1,1) ∗ xt (1) + 𝒃𝒊(1) 

 ft(1) = Wfx(1,1)  ∗ xt (1) + 𝒃𝒇(1) 

 cc(1) = Wcx(1,1) ∗ xt (1) + 𝒃𝒄(1) 

 ot(1) =  Wtx(1,1) ∗ xt (1) + 𝒃𝒐(1) 

T=2  it(1) =  Wix(1,2) ∗ xt (2) + it(1) 

 ft(1) = Wfx(1,2)  ∗ xt (2) + ft(1) 

 cc(1) = Wcx(1,2) ∗ xt (2) + cc(1) 

 ot(1) =  Wtx(1,2) ∗ xt (2) + ot(1) 

T..... .................................... 

T=M  it(1) =  Wix(1,M) ∗ xt (M) + it(1) 

 ft(1) = Wfx(1,M)  ∗ xt (M) + ft(1) 

 cc(1) = Wcx(1,M) ∗ xt (M) + cc(1) 

 ot(1) =  Wtx(1,M) ∗ xt (M) + ot (1) 

T=M+1  it(1) =  imem(1) + it(1) 

 ft(1)  =  fmem(1) + ft(1) 

 cc(1)  = cmem(1) + cc(1) 

 ot(1) =  omem(1) + ot (1) 

 

So, to calculate the first element of each of the four equations M + 

1 clock shots are needed. To get the true values you need to apply the 

activation functions to them, which by design choice I decided to pre-

calculate in software for every possible value that can be verified and 

stored in ROM memories so as not to have to implement a circuit that 

runs in HW this operation. 
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T= M +1 it(1) = 𝜎(𝑖𝑚𝑒𝑚(1) +𝒊𝒕(1)) 

ft(1) = 𝜎(f𝑚𝑒𝑚(1) +𝒇𝒕(1)) 

cc(1) =  g(cmem(1) + 𝒄𝒄(1)) 

ot(1) = 𝜎(o𝑚𝑒𝑚(1) +ot(1)) 

 

So, at this point to get  𝑐𝑡 (1) and  ℎ𝑡 (1) 

 

 

 

 

 

 

 

 

 

So overall to get the first element of ℎ𝑡 using 4 DSPs I must wait 

for a latency of M + 3 clock strokes. To get all the elements the latency 

will be equal to 𝐿 = (𝑀 + 3) ∗ 𝑌 

What I now want to investigate is the latency to get all the vector ℎ𝑡 

with the number of DSP n, since it represents the latency of the whole 

first block.  

Since I have parallelized on all 4 matrices n must always be a 

multiple of 4, that is mcm (n, 4) = n. If I use 8 DSPs after M + 3 clock 

strokes I will get 2 of the M elements of h for which I will have halved 

the latency. If I use 12 DSPs, I reduce the latency by a factor of 3 and 

so on. 

However, this method of proceeding also imposes an additional 

condition. 

The number of elements calculated every M + 3 clock stroke must 

be a submultiple of Y. I can define the number of elements calculated 

T= M+2   ct (1) = ft (1) ∗ ct-1 (1) + it (1) ∗ cc(1) 

T=M+3 ht(1) = ot(1) ∗ H(ct(1)) 
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every M + 3 clock strokes like 𝜕 = 𝑛 / 4 where n is the number of DSP 

used. The conditions to which n must therefore respect are 

 

𝑚𝑐𝑚(𝜕,𝑌) =𝑌 

𝑚𝑐𝑚(𝑛,4) =𝑛 

So established Y, I can't use several DSP at will. The latency of the 

first block, chosen Y, will be equal to 𝐿𝐵1 = (𝑀 + 3) ∗ 𝑌 / 𝜕 = 4 (𝑀 + 3) 

𝑌 / 𝑛.  

It can be observed that for uniform distribution the length of carry 

chain is always sensibly smaller than adder size. When 50% of inputs 

are taken from Gaussian distribution with 𝜎=256 (Fig. 27(b)), a bimodal 

distribution is observed with an appreciable portion of carry chains is 

as long as the adder size; by increasing 𝜎 the second peak of the 

distribution moves to the left (Fig. 27(c)). 

 

            3.9 Application: voice recognition 

 

The hardware that has been implemented is custom built for a 

specific application. The dataset used to train the network is the 

‘Japanese vowels’ present inside Matlab, in which 300 times sequences 

are provided, each of which contains more vectors of 12 elements. 

Each element of these vectors represents a feature of the specific 

application. To train the network, a specific Matlab toolbox was used, 

configured in such a way as to be able to classify 9 different items. 

To do the training there is also the need to define how many layers 

of the LSTM to use, the higher the number of output size the higher the 

accuracy will be, within a certain limit dictated by the data set that is 

available. The number of output sizes of the LSTM 
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Also corresponds to what until now we have called Y or the number of 

rows of the matrices. In this regard, Y will be chosen ad hoc following 

a precise mathematical reasoning. 

 
T=1 imem(1) =  Wih(1,1) ∗ ht-1(1) 

fmem(1) =  Wfh(1,1)  ∗ ht-1(1) 

cmem(1) =  Wch(1,1)  ∗ ht-1(1) 

omem(1) :  Woh(1,1)  ∗ ht-1(1) 

T=2 imem(1) =  Wih(1,2) ∗ ht-1(2) + imem(1) 

fmem(1) =  Wfh(1,2)  ∗ ht-1(2) + fmem(1) 

cmem(1) =  Wch(1,2)  ∗ ht-1(2) + cmem(1) 

omem(1) :  Woh(1,2)  ∗ ht-1(2) + omem(1) 

 

T=M imem(1) =  Wih(1,Y) ∗ ht-1(Y) + imem(1) 

fmem(1) =  Wfh(1,Y)  ∗ ht-1(Y) + fmem(1) 

cmem(1) =  Wch(1,Y)  ∗ ht-1(Y) + cmem(1) 

omem(1) :  Woh(1,Y)  ∗ ht-1(Y) + omem(1) 

 

The number of features of the specific application represents instead 

what until now has been called M, or the number of columns of the 

matrices on which it is necessary to operate in the first block. It can be 

concluded that M = 12 and Y is to be established by trying to choose 

neither too low nor too high.  

Since in the case of the considered application the number of 

features is equal to 12 then M = 12 which means that 𝐿𝐵1 = 60 ∗ 𝑌 / 𝑛. 

This is what regards the latency of the first block, for the second block 

we can make similar considerations to estimate the latency as a function 
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of Y and n. To calculate the first value of imem, fmem, cmem, omem 

the procedure I follow is always the same. 

For the second block therefore the latency using 4 DSP is equal to 

M and more generally it will be 𝐿𝐵2 = 𝑌2 / 𝜕 = 4𝑌2 / 𝑛. It is not said 

that I should use the same number n of DSP for both blocks, so I 

distinguish in n1 and n2 where n1 is the number of DSP used for the 

first block and n2 for the second.  

 

𝐿𝐵2 =𝑌2 / 𝜕 = 4𝑌2 / 𝑛2 

𝐿𝐵1 =60∗𝑌/𝑛1 

I aim to find the values of n1, n2, Y for which the latency of the first 

and second blocks are the same. 

 

𝐿𝐵1=𝐿𝐵2 

60∗𝑌/𝑛1=4∗𝑌2/𝑛2 

𝑛1=(15/𝑌)∗𝑛2 

 

From this equality, having to be n1 and n2 integers we understand that 

also Y cannot be any and among other things also Y must be an integer. 

It turns out that mcm (15, Y) = Y or Y must be a multiple of 15. 

 

𝑌∈ {15,30,45,60,75,90,105,120, ⋯} 

When Y varies, the possible values n1 and n2 may also vary. 

 

𝑛1: 𝑚𝑐𝑚(𝑛1,4) =𝑛1      and      𝑚𝑐𝑚 (𝑛1/4, 𝑌) =𝑌 

𝑛2: 𝑚𝑐𝑚(𝑛2,4) =𝑛2     and      𝑚𝑐𝑚 (𝑛12/4, 𝑌) =𝑌 

 

𝑛1: 4∗𝑌/𝑛1                          must be an integer 

𝑛2: 4∗𝑌2/𝑛2                        must be an integer 
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These conditions are the result of the fact that latency must always 

be a whole natural number. I analyze if there are possible solutions for 

Y = 60. 

 

Y=60 𝑛1, 𝑛2 ∈ {4,8,12,16,20,24,40,48,60,80,120,240} 

n2=4*n1 

n1=4, n2=16  

now I have to check the third and fourth conditions respectively 

located on n1 and n2 

 

4∗𝑌/𝑛1=4∗60/4=60  

4∗𝑌2/𝑛2=4∗602/16=14400/16=900 ok 

𝑛1=8, 𝑛2=32      it does not belong to the set of possible 𝑛2  

𝑛1=12, 𝑛2=48 𝑜𝑘 240/12=20 𝑜𝑘 14400/48=300 𝑜𝑘 

𝑛1=16, 𝑛2=64     it does not belong to the set of possible 𝑛2 

𝑛1=20, 𝑛2=80 𝑜𝑘 240/20=12 𝑜𝑘 14400/80=180 𝑜𝑘  

𝑛1=24, 𝑛2=96     it does not belong to the set of possible 𝑛2 

𝑛1=40, 𝑛2=160     it does not belong to the set of possible 𝑛2 

𝑛1=60, 𝑛2=240  𝑜𝑘  240/60=4  14400/240=60 

 

Therefore, using 𝑛1 = 60 𝑒𝑑 𝑛2 = 240 𝑑𝑠𝑝 a latency can be obtained 

for both blocks of 60 clock strokes. The choice I accepted instead is to 
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set Y = 48 and choose n1 = 48 and n2 = 192 which allows, by doing a 

good design, to obtain a latency of 60, therefore equal to that of the case 

n1 = 60 n2 = 240 with Y = 60 with the benefit of using 60 DSPs less.  

 

            3.10 Circuit implementation 
 

An accelerator for neural networks has been designed using the 

Global Foundry 40nm CMOS technology. The accelerator implements 

the LSTM block of the recurring neural network. The numbers of the 

implemented circuit are recalled in the table 2: 

                                        Table 2 

 Block 1 Block 2 

Number of 
operations 

2832 9216 

Number of 
DSPs 

48 192 

Ideal latency 59 48 

Obtained 
latency 

60 48 

 

The architecture of the Block1 and 2 is shown in fig. 25 and 26 

respectively. 

 

 
                             Fig.25: Block 1 architecture 
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                                            Fig.26: Block 2 architecture 

 

As can be seen, scratchpad memories and schedulers are used to 

implement the scheduling discussed in previous sections. The table 3 

reports a comparison with previous art. 
                                                     Table 3 

 Clock 

frequency  

(MHz) 

# DSP Registers ROM  Latency 

Implemented 
circuit 

464 240 5904 1.8Mb 60 

[13] 115 11 30604 387Kb 58K 

[14] 115 11 1157 387Kb 30K 
[30] 200 96 N.A. 86Kb 40M 
[31] 200 1504 453K 17Mb 16K 
[32] 142 50 13K 288Kb 127K 

 

As can be seen the main feature of the developed circuit is the very 

low latency obtained. The number of DSPs used is larger than the one 

used in the implementation presented in the previous section (rows 2 

and 3 of the table), so this implementation cannot be considered a 

reduced footprint design.  

However, with respect to the accelerator presented in [31], the 

proposed circuit still exhibit a low number of DSPs while achieving a 

better latency.   
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Chapter 4 
 

Conclusion 
 

Within this thesis, different types of approaches have been 

developed to speed up the calculation of the LSTM Layer of the RNN. 

In particular, 2 algorithms have been developed for the scheduling of 

operations, which allow easy access to the vectors to be taken in 

memory. 

These two it has been shown that one in particular allows to obtain 

an almost ideal case, which we can define as sub-optimal. It allows to 

first split the set of equations of the LSTM into two sub-sets in which 

the dependence between the data is reduced to the minimum, so as to 

be able to parallelize the calculations of these two blocks. 

Afterwards, within each of these two blocks, it is possible to 

optimize the calculation work by implementing a parallelism between 

functions, rows and columns with the use of DSPs that allow their 

potential to be exploited almost 100%.  

The analysis conducted in conclusion provides a valid method to be 

able to design an RNN based on LSTM for any type of application. In 

particular, following this type of approach it is possible to consistently 

decrease the latency of these types of circuits, allowing to obtain results 

that are close to the ideal case. 
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Appendix 
 

 

Appendix A  

 

C Code for the LSTM Layer  

#include "ap_int.h"  

#include "sistema.hpp"  

void sistema(ap_int<6> x[12], ap_int<6> 

h[50],ap_uint<1>reset)  

{  

                 static ap_int<18> imem[50];  

                 static ap_int<18> fmem[50];  

                 static ap_int<19> cmem[50];  

                 static ap_int<18> omem[50];  

                 static ap_int<6>    h_int[50];  
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                 if(reset==1){  

                       for (int i=0;i<50;i++){  

                                 imem[i]=0;  

                                 fmem[i]=0;  

                                 cmem[i]=0;  

                                 omem[i]=0;  

                                 h_int[i]=0;  

         mem2y(x, h_int, h, imem, fmem, cmem, 

omem,reset);  

                      }  

          }          else{  

         mem2y(x, h_int, h, imem, fmem, cmem, 

omem,reset);  

         memCalc(h_int, imem, fmem, cmem, omem);  

        }  

} 

 

 

 

 

 

 

 

 

 

 

 

 



66                                   _________      Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B  

 

C Code for the LSTM Ext function  
 
#include "ap_int.h"  

#include "cordic_hls.h"  

#define N 50  

#define M 12  

 

//x_t sarà su 4 bit. 3 per la parte decimale ed una 

per quella intera. (2^0;2^-3)  

 

//void lstm(int5 x_t[N],int5 y_t[N]) {  

void mem2y(ap_int<6> x_t[M],ap_int<6> 

y_t[N],ap_int<6> y_t_ext[N], ap_int<18> imem[N], 

ap_int<18> fmem[N], ap_int<19> cmem[N], ap_int<18> 

omem[N],ap_uint<1> reset) {  
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//const ap_int<4> Wxi[] = {  

const ap_int<5> Wxi[] = {  

#include "Wxi.txt"  

};  

 

const ap_int<5> Whi[] = {  

#include "Whi.txt"  

};  

 

const ap_int<5> Wxf[] = {  

#include "Wxf.txt"  

};  

 

const ap_int<5> Whf[] = {  

#include "Whf.txt"  

};  

 

const ap_int<7> Wxc[] = {  

#include "Wxc.txt"  

};  

 
const ap_int<6> Whc[] = {  

#include "Whc.txt"  

};  

 

//const int5 Wxo[] = {  

const ap_int<5> Wxo[] = {  

#include "Wxo.txt"  

};  

 

const ap_int<5> Who[] = {  

#include "Who.txt"  

};  

 

const ap_int<8> b_i[] = {  

#include "bi.txt"  
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};  

 

 

 

 

const ap_int<10> b_f[] = {  

#include "bf.txt"  

}; 

const ap_int<9> b_o[] = {  

#include "bo.txt"  

};  

const ap_int<9> b_c[] = {  

#include "bc.txt"  

};  

 

ap_int<19> i_t_pre[N],o_t_pre[N];  

//ap_int<15> app, app2, app3;  

ap_int<19>f_t_pre[N];  

ap_int<20>g_t_pre[N];  

ap_int<6> i_t[N],f_t[N];  

 
ap_int<6>g_t[N],o_t[N];  

ap_int<8> in_wave;  

ap_int<2> sigma;  

ap_int<45> 

wave_out_i,wave_out_i2,wave_out_f,wave_out_f2, 
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wave_out_g,wave_out_g2,wave_out_o,wave_out_o2,wave_

out_c2,wave_out_c;  

ap_int<11> costante;  

ap_int<22> variante,variante2;  

ap_int<22> risultatov;  

//solo c_t_1 deve essere static (controllare)  

ap_int<13> c_t_pre[N];  

//serve memoria su y_t_pre? (controllare)  

// ap_int<14> y_t_pre[N];  

ap_int<12> y_t_pre[N];  

//static int5 c_t[N],c_t_1[N],y_t_1[N];  

//solo c_t_1 deve essere static (controllare)  

static ap_int<6> c_t_1[N];  

ap_int<6> uno_long;  

ap_int<6> c_t[N];  

static ap_int<6> y_t_1[N];  

ap_int<30> 

risultatoi,risultatoo,risultatoi2,risultatoo2;  

ap_int<30> risultatof,risultatof2;  

 
ap_int<31>risultatog;  
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ap_int <31> risultatog2;  

ap_int<13>c_t_pre2[N];  

ap_int<45> rounding37;  

ap_int<30> rounding11;  

ap_int<24>rounding9;  

ap_int<31> rounding11g;  

ap_int<6> rounding_out=1;  

rounding_out=(rounding_out<<2);  

int j,k,w;  

uno_long=1;  

uno_long=uno_long<<3;  

costante=652;  

rounding37=1;  

rounding37=rounding37<<37;  

rounding11g=1;  

rounding11g=rounding11g<<11;  

rounding11=1;  

rounding11=rounding11<<11;  

rounding9=1;  

rounding9=rounding9<<9;  

ap_int<6> c_t_tanh[N];  
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if(reset==1){ 

 

             for(int T=0;T<N;T++){  

             y_t_1[T]=0;  

             c_t_1[T]=0;  

 

             }  

 

}  

else{  

 

i__t:  

for(j=0;j<N;j++){ 

 

      i_t_pre[j]=0;  

    f_t_pre[j]=0;  

      o_t_pre[j]=0;  

    g_t_pre[j]=0; 

       lstm_label6:for(k=0;k<M;k++){  

             //app3 = (ap_int<15>)x_t[k];  

            //app2 = (ap_int<15>)Wxi[j*M+k];  

           //app = app2*app3; 

           i_t_pre[j]=i_t_pre[j]+Wxi[j*M+k]*x_t[k];  

f_t_pre[j]=f_t_pre[j]+Wxf[j*M+k]*x_t[k];  

           o_t_pre[j]=o_t_pre[j]+Wxo[j*M+k]*x_t[k];  

           g_t_pre[j]=g_t_pre[j]+Wxc[j*M+k]*x_t[k];  

 

} 

 

//calcolo i_t  
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i_t_pre[j]=i_t_pre[j]+imem[j]+b_i[j];  

 
if(i_t_pre[j]<-805){  

i_t[j]=0;  

}  

else if(i_t_pre[j]>804){  

i_t[j]=uno_long;  

}  

 

 

 

 

else{ 

 

          risultatoi=i_t_pre[j]*costante;  

risultatoi=risultatoi+rounding11;  

risultatoi2=risultatoi>>12;  

sigma=1;  

in_wave=risultatoi2;  

cordic_hls(in_wave,sigma,&wave_out_i);  

wave_out_i=wave_out_i+rounding37;  

wave_out_i2=wave_out_i>>38;  

i_t[j]=wave_out_i2; 

 

 

} 

 

//calcolo f_t  
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f_t_pre[j]=f_t_pre[j]+fmem[j]+b_f[j];  

if(f_t_pre[j]<-805){  

f_t[j]=0;  

}  

else if (f_t_pre[j]>804){ 

 

f_t[j]=uno_long;  

}  

else{ 

 

 

                 risultatof=f_t_pre[j]*costante;  

                 risultatof=risultatof+rounding11;  

                 risultatof2=risultatof>>12;  

             sigma=1;  

                in_wave=risultatof2;  

                

cordic_hls(in_wave,sigma,&wave_out_f);  

                wave_out_f=wave_out_f+rounding37;  

                wave_out_f2=wave_out_f>>38;  

 

                f_t[j]=wave_out_f2; 

 

 } 

 
 

       //calcolo o_t  
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       o_t_pre[j]=o_t_pre[j]+omem[j]+b_o[j];  

       if(o_t_pre[j]<-805){  

        o_t[j]=0;  

       }  

       else if(o_t_pre[j]>804){  

       o_t[j]=uno_long;  

      }  

      else{   

 

 

risultatoo=o_t_pre[j]*costante;  

                  

risultatoo=risultatoo+rounding11;  

                  risultatoo2=risultatoo>>12;  

                  sigma=1;  

                  in_wave=risultatoo2;  

                  

cordic_hls(in_wave,sigma,&wave_out_o);  

                  

wave_out_o=wave_out_o+rounding37;  

                  wave_out_o2=wave_out_o>>38;  

                  o_t[j]=wave_out_o2; 

 

     }  

// calcolo g_t  

g_t_pre[j]=g_t_pre[j]+cmem[j]+b_c[j];  

if(g_t_pre[j]<-805){  
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g_t[j]=-8;  

}  

 
else if(g_t_pre[j]>804){  

g_t[j]=uno_long;  

}  

else { 

 

 

                risultatog=g_t_pre[j]*costante;  

                

risultatog=risultatog+rounding11;  

                risultatog2=risultatog>>12;  

                sigma=0;  

                in_wave=risultatog2;  

               

cordic_hls(in_wave,sigma,&wave_out_g);  

 

 

wave_out_g=wave_out_g+rounding37;  

                wave_out_g2=wave_out_g>>38;  

                g_t[j]=wave_out_g2; 

 

      } 

   

    c_t_pre[j]=f_t[j]*c_t_1[j]+i_t[j]*g_t[j];  
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    c_t_pre2[j]=c_t_pre[j]+rounding_out;  

    c_t_pre2[j]=c_t_pre2[j]>>3;  

    c_t[j]=c_t_pre2[j];  

    c_t_1[j]=c_t[j];  

    if(c_t_pre[j]<-805){  

    c_t_tanh[j]=-8; 

 

  }  

 

 

 
else if (c_t_pre[j]>804){  

  c_t_tanh[j]=uno_long;  

  }  

  else{  

  

 

 

 variante=c_t_pre[j]*costante;  

  sigma=0;  

  variante=variante+rounding9;  

  variante2=variante>>10;  

  in_wave=variante2;  

  cordic_hls(in_wave,sigma,&wave_out_c);  

  wave_out_c=wave_out_c+rounding37;  

  wave_out_c2=wave_out_c>>38; 
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c_t_tanh[j]=wave_out_c2;  

}  

y_t_pre[j]=o_t[j]*c_t_tanh[j];  

y_t_pre[j]=y_t_pre[j]+rounding_out;  

y_t_pre[j]=y_t_pre[j]>>3;  

y_t[j]=y_t_pre[j];  

y_t_1[j]=y_t[j];  

y_t_ext[j]=y_t[j];  

}  

 

Appendix C  

 

Code for the Memcalc function of the LSTM Layer  

 

#include "ap_int.h"  

#define N 50  

#define M 12  

//void lstm(int5 x_t[N],int5 y_t[N]) {  

void memCalc(ap_int<6> y_t[N], ap_int<18> 

imem_o[N], 

ap_int<18> fmem_o[N], ap_int<19> cmem_o[N], 

ap_int<18> omem_o[N]) {  

const ap_int<5> Wxi[] = {  

#include "Wxi.txt"  

};  
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const ap_int<5> Whi[] = {  

#include "Whi.txt"  

};  

const ap_int<5> Wxf[] = {  

#include "Wxf.txt"  

};  

const ap_int<5> Whf[] = {  

#include "Whf.txt"  

};  

const ap_int<7> Wxc[] = {  

#include "Wxc.txt"  

};  

const ap_int<6> Whc[] = {  

#include "Whc.txt"  

};  

 
//const int5 Wxo[] = {  

const ap_int<5> Wxo[] = {  

#include "Wxo.txt"  

};  

const ap_int<5> Who[] = {  

#include "Who.txt"  

};  

//const ap_int<7> b_i[] = {  

const ap_int<8> b_i[] = {  

#include "bi.txt"  

};  
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//const ap_int<10> b_f[] = {  

const ap_int<10> b_f[] = {  

#include "bf.txt"  

};  

//const ap_int<8> b_o[] = {  

const ap_int<9> b_o[] = { 

 

 

#include "bo.txt"  

};  

 

   //const ap_int<8> b_c[] = {  

   const ap_int<9> b_c[] = {  

   #include "bc.txt"  

   };  

 

 
   ap_int<18> imem[N];  

   ap_int<18> fmem[N];  

   ap_int<19> cmem[N];  

   ap_int<18> omem[N]; 

 
   int j,k,w; 
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//calcolo le memorie dipendenti da h:  

imem_lbl:  

for(j=0;j<N;j++){  

 

imem[j]=0;  

fmem[j]=0;  

cmem[j]=0;  

omem[j]=0; 

lstm_label2:for(w=0;w<N;w++){  

      imem[j] = imem[j] + Whi[j*N+w]*y_t[w];  

      fmem[j] = fmem[j] + Whf[j*N+w]*y_t[w];  

      cmem[j] = cmem[j] + Whc[j*N+w]*y_t[w];  

      omem[j] = omem[j] + Who[j*N+w]*y_t[w]; 

}  

   //le costanti di polarizzazione vengono 

spostate nell'altro 

 
blocco  

//imem[j] = imem[j] + b_i[j];  

imem_o[j] = imem[j];  

//fmem[j] = fmem[j] + b_f[j];  
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fmem_o[j] = fmem[j];  

//cmem[j] = cmem[j] + b_c[j];  

cmem_o[j] = cmem[j];  

//omem[j] = omem[j] + b_o[j];  

omem_o[j] = omem[j];  

}  

} 

Appendix D 

 
C Code for the Testbench of the LSTM Layer  

 
#include "sistema.hpp"  

#include "ap_int.h"  

#include <string.h>  

#include <stdlib.h>  

#include <stdio.h>  

#define N 50  

#define M 12  

#define S 370  

int main()  

{ 

     char num[12];  

     int contaSeq;  
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     ap_int<6> x_tb[M];  

     ap_int<6>h_tb[N];  

     ap_uint<1>reset_tb=0;  

     FILE *fp,*fp2;  

     char nomeFile[100];  

     char nomeFileout[100]; 

     for( contaSeq=1;contaSeq 

<(S+1);contaSeq++){  

          strcpy(nomeFile,"Seq");  

 
 

        strcpy(nomeFileout,"u");  

        itoa(contaSeq,num,10);  

        strcat(nomeFile,num);  

        strcat(nomeFile,".txt"); 

        strcat(nomeFileout,num);  

        strcat(nomeFileout,".txt");  



                                                  __________                            ______83 

 

 

 

 

 

 
fp=fopen(nomeFile,"r");  

        fp2=fopen(nomeFileout,"w");  

        reset_tb=1;  

 

     int pass;  

if(reset_tb==1){  

   sistema(x_tb,h_tb,reset_tb);  

   reset_tb=0;  

} 

 

          while (!feof(fp)){  

              for (int 

contaDim=0;contaDim<M;contaDim++){  

              fscanf(fp,"%d,",&pass);  

              x_tb[contaDim]=(ap_int<6>)pass;  

             //fscanf(fp,"%d",&pass); 

 
  } 
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               if(!feof(fp)){  

               sistema(x_tb,h_tb,reset_tb);  

               for (int i=0;i<50;i++){  

               

fprintf(fp2,"%d\n",(int)h_tb[i]);  

              }  

              }     

 

              }   

          fclose(fp);  

          fclose(fp2);  

 

 
}  

          //     /*  

          //      * Applico gli ingressi al 

sistema  

          //      * */  

          //      sistema(x, h);  

          //      /*  
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          //      * Salvo le uscite  

          //      * */  

          //}  

// }  

         return 0;  

} 

 

 

 


