

 UNIVERSITÀ DEGLI STUDI DI
 NAPOLI FEDERICO II

 PH.D. THESIS
 IN

 INFORMATION TECHNOLOGY AND
 ELECTRICAL ENGINEERING

 Efficient Implementation of
 Recurrent Neural Network

 Accelerators

 VIDA ABDOLZADEH

 TUTOR: PROF. NICOLA PETRA

 COORDINATOR: PROF. DANIELE RICCIO

 XXXII CICLO
 SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
 DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE
 DELL’INFORMAZIONE

2 _________ Index

 Acknowledgments 4

 CHAPTER 1 6

 State of Art 6

1.1 Biological Neural Networks 6

1.2 Artificial Neural Networks 7

1.3 Recurrent Neural Networks 9

 1.3.1 Hopfield Network 10

 1.3.2 Elman and Jordan Network 11

 1.3.3 Neural History Compressor 12

 1.4 Long Short-Term Memory 13

 1.4.1 LSTM Architecture 14

 CHAPTER 2 16

 Signal quantization 16

2.1 Quantization effects on the dynamic behavior 20

2.2 Circuit implementation 23

 CHAPTER 3 26
3.1 Circuit optimization 26

3.2 Parallelization Algorithm 27

3.3 Algorithm 1 29

3.4 Algorithm 2 32

3.5 Comparison 34

3.6 Effectiveness Parameters 35

3.7 Extension of 2nd algorithm 36

 __________ ______3

 3.7.1 Algorithm details 40

3.8 Architecture 44

3.9 Application: voice recognition 53

3.10 Circuit implementation 57

CHAPTER 4 59

References 60

Appendix 64

4 _________ Acknowledgements

Acknowledgments

I would like to thank my family, especially my mother, to whom I

dedicate the entire thesis work. She has provided me through moral and

emotional support in my life.

 I thank Prof. Petra for the opportunity given to me and for his support

during the thesis period, he has always been available to guide me in

the development of the activities and ready to respond to my doubts

about the project development.

I want also to thank the remaining professors of Electronics Group for

their priceless lessons. I am also grateful to my friends who have

supported me along the way.

Finally, I would like to thank the friends of the Electronics Group at

DIETI, Antonio, Darjn Michele, Luca for their friendship and nice time

spent together.

“One, remember to look up at the stars and not down at your feet. Two,

never give up work. Work gives you meaning, and purpose and life is

empty without it. Three, if you are lucky enough to find love, remember

it is there and don't throw it away."

(Stephen Hawking)

 __________ ______5

Abstract

In this dissertation we propose an accelerator for the implementation of

Long Short-Term Memory layer in Recurrent Neural Networks. We

analyze the effect of quantization on the accuracy of the network and

we derive an architecture that improves the throughput and latency of

the accelerator. The proposed technique only requires one training

process, hence reducing the design time. We present implementation

results of the proposed accelerator. The performance compares

favorably with other solutions presented in Literature.

The goal of this thesis is to choose which circuit is better in terms of

precision, area and timing. In addition, to verify that the chosen circuit

works perfectly as activation functions, it is converted in Vivado HLS

using C and then integrated in an LSTM Layer. A Speech recognition

application has been used to test the system. The results are compared

with the ones computed using the same Layer in Matlab to obtain the

accuracy and to decide if the precision of the Non-Linear functions is

sufficient.

6 _________ Chapter 1: State of the Art

Chapter 1

State of Art
In this Chapter will be introduced the first idea of Neural Networks,

starting from the basic model to the latest architectures.

1.1 Biological Neural Network

A Biological Neural Network is a series of interconnected neurons

whose activation define a recognizable linear pathway. The interface

through which neurons interact with their neighbors usually consists of

several axon terminals connected via synapse to dendrites on other

neurons. If the sum of the input signals into one neuron overcome a

threshold, the neuron sends an action at the axon and transmits this

electrical signal along the axon.

The first study of neuronal training was presented by Hebb [1] in 1949,

while neuroscientists McCulloch and Pitts [2, 3] showed theoretically

that networks of artificial neurons could implement logical, arithmetic

and symbolic functions. These studies inspired the Artificial Neural

Networks.

 __________ ______7

1.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are mathematical models inspired

by biological neural networks that constitute animals’ brain. These

models take shape in computing systems that learn tasks by considering

examples, generally without a simplified version of biological animals’

neurons, and the connection between them it’s called Synapse.

In a Synapse, an artificial neuron can transmit a signal to another

artificial neuron and, this one, can process it and send to another neuron

link to it. The signal, usually, is a real a number and the output of each

artificial neuron is the result of a non-linear function of the sum of its

inputs.

A weight is assigned to classify the strength between the neurons, and

its value decreases or increases during the learning process. A threshold

is used to guarantee that a signal is sent only when it’s sufficiently

strong, in this way, a lot of resources are saved.

ANNs are usually organized in layers, as it’s possible to see in Figure

1.

 Fig 1. A simple structure of an ANN

The input of the ANN is a vector data obtain from the pixel’s image or

sample audio. The vector is sent to a Feature Map Computation block

that provides the extraction of the Feature Map if the input is an image.

If the input is a sample audio, the Feature Map Computation block will

8 _________ Chapter 1: State of the Art

give N Cepstrum, where a cepstrum is the result of the Inverse Fourier

Transformation of the logarithm of the signal spectrum.

The Features (or Cepstrum) are sent to the first layer. A layer is usually

composed of M linear functions, so its output will be a vector of M

elements.

The number of layers it’s choice according to the application, and this

problem is solved during the design part of an ANN.

The last layer is called Fully Connected Layer (Figure 2), because it’s

connected to all the output of the previous one, and its task is to

calculate the result [4].

 Fig 2. An example of Fully Connected Layer

During the learning proceed, a Test set is given as input to the ANN to

allow the balance of the weight of the neurons and the correct bias of

the entire system. To avoid “Overfitting” problem, usually a shuffle or

a resort of the data input is needed.

Originally thought to solve problems in the same way the human brain

would, ANNs are now focusing on specific tasks like Speech

Recognition, Computer Vision or medical diagnosis. They are usually

implemented by software, but in the latest years, thanks to the new

technologies in the Electronic field and the research for new models of

 __________ ______9

neural networks, the design of an ANN that works totally in hardware

and Offline is becoming the new challenge, in particular for the

Recurrent Neural Networks (RNNs).

1.3 Recurrent Neural Network

In traditional ANNs, the data assigned as inputs are assumed all

independent of each other, but that idea doesn’t work for all the task.

The concept behind the Recurrent Neural Networks (RNNs) [5] is to

use sequential information. For example, to predict the next letter in a

word, it’s better to know the previous one.

The term Recurrent is used because this type of Neural Network

performs the same task on every input element of sequence, with the

output being depended on the previous computation. In literature, it’s

easy to find RNNs associated with a memory behavior, because, in

theory, they can store almost every step of previous computations, but

in practice, they can only store a few steps back. A typical RNNs is

shown in Figure 3:

 Fig 3. Example of a structure of an RNNs

The unfold of the RNN structures, show how it’s very similar to a

Convolutional Neural Network. The number of layers is equal, for

example, to the number of data in the sequence given as inputs.

In case of forwarding propagation, the input moves through the layers

at each time step, while in back-propagation, it's like going back in time

10 _________ Chapter 1: State of the Art

to change the weight, so it’s called Back Propagation through Time

(BPTT). In the next paragraphs, the story and the state of art of RNN

will be illustrated, while the equations and the functionality of the RNN

will be reported later in this Chapter [6, 7].

1.3.1 Hopfield Network

In 1980, the physicist John Hopefield published a paper where he

describes the first RNN, that will become popular as Hopefield

Network. This network is based on the ability of the human brain to

recognize an image also when this is wrong or corrupted thanks to the

associative memory. Hopfield tried to replicate the associative memory

using the structure in Figure 4:

 Fig 4. Hopfield's Network Structure

The units are binary and usually are -1 and 1, but sometimes the net is

implemented with units like 1 and 0. Every connection between units

has a weight 𝑤𝑖𝑗 that represents the link between the i and j artificial

neuron.

The weights have the following constraints:

 • 𝑤𝑖𝑖=0, ∀i, means that every unit have no connection with itself;

 __________ ______11

 • 𝑤𝑖𝑗=𝑤𝑗𝑖, ∀i,j, means that the connections are symmetric. In this

way, it’s guaranteed that the weights are symmetric and chaotic

behavior are avoided. As a result, the net should converge to a local

minimum, but the learning process it’s not easy, so often its converge

to a false local minimum. [8]

1.3.2 Elman and Jordan Network

An Elman network is a three-layer network with the addition of a

set of units (c0, c1, c2 in Figure 5a). The middle layer is called Hidden

Layer and it’s connected to the units c0 with a weight of one. At each

step, the input is moved forward, and a learning rule is applied, while

the value of the previous hidden layer state is saved in the unit c0. In

this way, the net can maintain a sort of state, and that’s a necessary

condition to perform a task like sequence prediction.

The Jordan Network (Figure 5b), it’s very similar to the Elman one.

The main difference is that the units c in the back-propagation chain are

connected to the outputs instead of the hidden layers.

These two networks are usually called Simple Recurrent Networks

(SNRs). [9]

 Fig 5. a) Elman network structure b) Jordan Network structure

12 _________ Chapter 1: State of the Art

1.3.3 Neural history compressor

All the RNNs described before, suffers from a problem called

Vanishing Gradient Problem. In machine learning, this problem is

encountered in Neural Networks based on gradient-based learning

methods and back-propagation.

In a typical method, the weights in the Neural Networks receive an

update proportional to the gradient of the error function, considering

also the current weight in each iteration training. In some cases, the

gradient is too small (from here the term Vanishing), preventing the

change of the weight’s value.

This problem is mainly due to the activation functions like

hyperbolic tangent function, which have a gradient in the range (0,1).

So, during the learning process, there will be n multiplication for small

numbers to compute gradients in an n-layer network, that means that

the error signal (gradient) decreases exponentially with n, while the

front layers slowly its training.

To avoid this problem, in 1992, a generative model called the

Neural History Compressor, implement as an unsupervised stack of

RNNs. At the input level, it learns to predict its next input from the

previous inputs.

Not all the inputs become the inputs of the next higher level RNN,

but only the unpredictable inputs of some RNNs in lower lever, in this

way, the entire system recomputed its internal state rarely. The RNN in

the higher-level studies a compressed representation of the information

of the RNN below, so the input sequence can be reconstructed from the

representation at the highest level.

The system effectively reduces the description length or the

negative logarithm of the probability of the data. With this approach,

the higher level RNN can be supervised learning to easily classify even

deep sequence with long intervals between events [10, 11].

In 1993, Jürgen Schmiduber solved a Very Deep Learning task that

required more than 1000 subsequent layers in an RNN unfolded in time

using this system.

 __________ ______13

1.4 Long-Short Term Memory
Long Short-Term Memory (LSTM) units were proposed by Sepp

Hochreiter and Jürgen Schmiduber to avoid the vanishing gradient

problem when training traditional RNNs. A common LSTM unit is

composed of a cell, an input gate, an output gate and a forget gate. In

figure 6, a common LSTM’s architecture is shown. [12, 13]

 Fig 6. A common LSTM's architecture
The cell is in charge of remembering values for an arbitrary time

interval; this is the reason for the word memory in the name. Each gate

can be thought as an artificial neuron, while the term gate derives from

the fact that they work as regulators of the flow of the values that goes

through the connections of the LSTM.

 Every gate uses an activation function to compute a weighted

sum. The expression Long Short-Term is due to the possibility to store

short term (like the short memory in the human brain) for an extended

period. For this reason, LSTM are suited to classify, process and predict

time series given time lags of unknown size and duration between

important events.

Thanks to its characteristics, LSTM units are taking place in many

applications over other RNNs like Hidden Markov models (a system

based on the Markov Process).

LSTM units are very common for solving speech recognition

problems. Google, Apple and Microsoft using LSTM as fundamental

units in their products. As an example, Google is using LSTM for the

smart assistant Allo in its smartphones and for Google Translate, Apple

14 _________ Chapter 1: State of the Art

and Amazon are doing the same for their smart assistant Siri and Alexa

respectively. In 2017, Microsoft reaching 95.1% recognition accuracy

on the Switchboard corpus, incorporating a vocabulary of 165000

words, using as approach dialog session long short-term memory. [6,

14-16]

1.4.1 LSTM: Architecture

As said in the previous paragraphs, RNNs can learn from past

information. The question is: how long an RNN can and what should

remember? An RNN standard, can store and use recent information, but

cannot learn long-term dependencies. Furthermore, it’s very difficult to

train it due the gradient vanishing problem. This is the point where the

LSTM filled the gap. In an LSTM unit, it is an RNN with an explicit

memory controller that decide what remember and what forget. In this

way, the learning process is more stable and allows to the system to

handle long dependencies in sequences.

There are many variants of LSTM architecture. The vanilla version

is showed in the following picture.

 Fig 7. LSTM vanilla architecture

 __________ ______15

As shown in the figure, the memory cell influences the input, the forget

and output gate. This architecture is taken as reference for the hardware

implementation and testing described in this thesis. To understand

better how this system works, it’s necessary to define the following

equations:

it=(Wix×xt+Wih×ht-1+bi) (1)

ft = (Wfx×xt+Wfh×ht-1+bf) (2)

ct = ft∙ct-1+ it .g (Wcx×xt+Wch×ht-1+bc) (3)

Where W is constant weight matrices designed during the training

process of the network, × is the matrix multiplication, represents the

element-wise multiplication, b are bias vectors, is the logistic function

sigmoid, g is the input activation function, 𝑖𝑡 and 𝑓𝑡 are the input gate

and forget gate respectively. The computation of the output sequence is

based on the following equations:

 ot = σ (Wox×xt+Woh×ht-1+ bo) (4)

 ht = ot∙H(ct) (5)

 yt = Φ (Wyh×ht+ by) (6)

where ot is the output gate, H is the output activation function and

Φ is the SoftMax operation. The output activation function H and the

input activation function g can be defined in several ways. In this thesis,

they are both the hyperbolic tangent function.

In the next chapter, will be discussed the numerical analysis for the

implementation in hardware of the hyperbolic tangent function and the

sigmoid function. [6, 12, 14-18]

Chapter 2

Signal quantization

An aggressive quantization allows obtaining an efficient

implementation of equations (1)-(6) but it also affects the accuracy of

the network.

The quantization can be taken into account during the training

process. However, we propose to apply quantization after the network

has been trained. The advantage of this technique is that the design time

of the accelerator is lower. As we will show, our approach introduces a

negligible accuracy loss.

The search of the optimal quantization for a given target accuracy

is not a straightforward task since it requires to fix independently the

number of bits used for each one of the 7 signals in the network (the

hidden state, the cell activation, the three gates, the two hyperbolic

tangents) and the 12 constant matrixes/vectors because these values

have different dynamic range.

In order to reduce the search space, we define two parameters: the

maximum variable error (MVE=2-M) and the maximum constant error

(MCE=2-L). L is optimal spot for MCE and M is optimal spot for MVE.

MVE is the maximum error allowed on the representation of each

variable signal s in eq. (1)-(6). If we define �̂� as the quantized version

of the signal s we have:

|�̂� − 𝑠| ≤ MVE ∀𝑠 ∈ {ℎ𝑡, 𝑖𝑡 , 𝑓𝑡 , 𝑐𝑡 , 𝑜𝑡 , 𝑔𝑡 , tanh (𝑐𝑡)} (7)

MCE is the maximum error allowed on the representation of each

weight w of each weight matrix. If we call �̂� the quantized

representation of the weight w we have:

|�̂� − 𝑤| ≤ MCE ∀𝑤 ∈ 𝑊ix ∪ 𝑊fx ∪ 𝑊cx ∪ 𝑊ox ∪ 𝑊ih ∪ 𝑊fh ∪ 𝑊ch ∪ 𝑊oh (8)

 __________ ______17

The quantized representation �̂� of a bias value b is obtained according

to the following rule:

 |�̂� − 𝑏| ≤ MCE∙MVE ∀𝑏 ∈ 𝑏i ∪ 𝑏f ∪ 𝑏c ∪ 𝑏o (9)

In order to show the effect of our quantization scheme we have designed

and trained two RNNs. The first network is based on the scheme in

Fig. 8(a) and is used to identify a speaker among 9 possible candidates.

For this network Fig. 8(a) Z is equal to 12 and N is equal to 50. The

second network is based on the scheme of Fig. 8(b). The network is

used to predict the monthly occurrence of chickenpox on the basis of

previous history. For this network Fig. 8(b) Z is equal to 1 and N is

equal to 200. The training and the test sequences of the two networks

are available on-line [19], [20].

Fig. 8 Architecture of a RNN: a RNN used for sequence classification, b RNN used

for data prediction

We have trained both networks using floating-point representation

for each variable signal and each constant factor in the equations (1)-

(6). The training operation has been performed using Matlab. After the

training process we have applied the constraint (8) on the weight

factors.

18 _________ Chapter 2: Signal quantization

 Fig. 9 shows the dependency of the accuracy of the first RNN on

the MCE. The accuracy is computed as the percentage of correct

speaker identification over the entire test set. As can be seen, decreasing

the MCE, the accuracy of the network improves.

However, the result in Fig. 9 shows that there is an optimal value

for MCE. Reducing the MCE under the optimal spot does not increase

the accuracy of the network. As can be seen L=5 allows achieving the

same accuracy of the floating-point representation. Fig. 10 shows the

result of a similar analysis performed on the second RNN.

Here the accuracy is computed as the root mean square error

between the value predicted by the network and the actual value of the

series. Again, as can be seen, there is an optimal spot that can be used

to fix the value of L. Increasing the value of MCE not only allows

reducing the number of bits used for the weight factors, it also allows

reducing the overall number of non-zero constant weights.

Increasing the value of MCE not only allows reducing the number

of bits used for the weight factors, it also allows reducing the overall

number of non-zero constant weights. Fig. 11 shows the number of non-

zero values as a function of MCE for the first RNN. As can be seen, the

overall number of non-zero coefficients reduces by 50% at the optimal

spot (the one chosen in Fig.9 Similar considerations can be done on the

second RNN.

 Fig. 9 Accuracy vs MCE for the classification RNN

 __________ ______19

 Fig. 10 RMSE vs MCE for the forecasting RNN

Once we have found the optimal spot for the MCE we can apply the

constraints (7) and (9) on the variable signals and the bias values

respectively. Fig. 12 shows the relation between accuracy, RMSE (Root

Mean Square Error) and MVE for both networks. In this figure, L is

fixed at the optimal spot as can be seen an optimal spot can be found

for MVE as well and hence for M.

 Fig. 11 non-zero constant weights vs MCE for the classification RNN

The use of the optimal spot is a technique that can be used for the

quantization in any RNN. It allows to reduce the size of the signals in

the accelerator. It also allows reducing the number of constants that

must be stored in the internal memory of the accelerator. Overall, the

loss on the accuracy of the network is neglectable.

20 _________ Chapter 2: Signal quantization

Fig. 12 accuracy vs MVE. (a) Accuracy of the classification RNN (b) RMSE of the

forecasting RNN

 2.1 Quantization effects on the dynamic behavior

of the network

The quantization also affects the dynamic behavior of the neural

network. Figures 13-16 show the dynamic behavior of the neural

network designed to recognize a speaker among 9 possible ones. Each

figure reports the output of the network as it changes while the network

is processing an input sequence.

The dashed line represents the correct classification for the provided

input sequence. The circled values are obtained using a floating point

based neural network while the crossed values are obtained with the

quantized neural network designed using the optimal spot.

As shown in Fig.13 and 14 for some input sequences the behavior

of the floating point and the quantized neural network remains the same.

However, as shown in Fig.15 and 16, there are cases where the

quantization changes the dynamic evolution of the network, but it does

not change the final result.

 __________ ______21

 Figure 13. Output of the neural network for a given input sequence

 Figure 14. Output of the neural network for a given input sequence

22 _________ Chapter 2: Signal quantization

 Figure 15. Output of the neural network for a given input sequence

 Figure 16. Output of the neural network for a given input sequence

 __________ ______23

 2.2 Circuit implementation

The direct implementations of Eqs. (1) – (6) requires the use of two

memories to store the values of ℎ𝑡−1, and 𝑐𝑡−1,. However, in a SoC

architecture, this choice is non-optimal.

 Fig. 17 Proposed architecture

In our architecture Fig.17 the Eqs. (2), (3), (4) and (6) are divided

in two parts: the recurrence part that depends on ht-1 and the input part

that only depends on 𝑥𝑡. Instead of storing ℎ𝑡−1, we store the recurrence

part of each of the four equations separately. This choice greatly

improves the latency of the circuit and, because of the feedback

architecture, the throughput of the accelerator. We have designed two

accelerators.

Both accelerators implement the first RNN discussed in the

previous section and can be used for the classification of speakers.

24 _________ Chapter 2: Signal quantization

We have used high-level synthesis to synthesize the accelerator. We

used Xilinx Zynq XC7Z020 as the target technology and Vivado HLS

as the synthesis tool.

The accelerator receives the commands from an AXI4 lite

compatible interface. The inputs and the outputs are read from and

stored into external block-RAMs in order to keep the IP as fast as

possible. We have fixed the clock frequency to 100 MHz to limit the

maximum number of DSPs that can be cascaded in the data-path with

no pipelining allowed.

 Table 1. Accelerator performance

 SRAM DSP FF Latency Recurrence

Latency

fclock

Single

Recurrence

Mem.

387 Kb 11 30604 58K 31K 115

MHz

Multiple

Recurrence

Mem.

387 Kb 11 1157 30K 7651 115

MHz

[27] 86 Kb 96 40M N.A. 200

MHz

[28] 17 Mb 1504 453K 16K N.A. 200

MHz

[29] 288 Kb 50 13K 127K N.A. 142

MHz

The first accelerator uses a single recurrence memory to store the

value of h_(t-1). The achieved performance is shown in the first row of

Table 1. 4 DSPs are used to implement the recurrence operations (the

multiply-and-add operation involving ℎ𝑡) plus 7 DSPs for the remaining

operations.

The second accelerator is based on the architecture of Fig. 17 and

uses 4 recurrence memories. The computation of the recurrence

operation is obtained with a parallel data path, using 4 DSPs. We

 __________ ______25

allowed 7 DSPs to be used in the computation of the other equations.

The results are shown in the second row Table 1.

As shown, the 4 data-paths used to compute the recurrence

operations allows to reduce the recurrence latency by 75%.

Furthermore, the use of 4 memories allows the reduction of the overall

latency by 49% with the same number of arithmetic units used.

Compared with previous art, the proposed circuit has a very small foot-

print and is suitable for efficient accelerators for IoT devices.

26 _________ Chapter 3

Chapter 3

 3.1 Circuit Optimization

This chapter will address mathematical analysis to develop an effective

algorithm to create a circuit that can perform the calculations necessary

to implement a recurrent neural network. The RNN referred to is the

one shown in the previous chapter, and LSTM in particular Vanilla

Architecture. For simplicity I will report here the equations that define

the LSTM layer.

it = σ (Wix×xt+Wih×ht-1+ bi) (1)

ft = σ (Wfx×xt+Wfh×ht-1+bf) (2)

ct = ft∙ct-1+ it∙g (Wcx×xt+Wch×ht-1+bc) (3)

ot = σ (Wox×xt+Woh×ht-1+ bo) (4)

Where Wix,Wfx, Wcx, Wox, Wih, Wfh,Wch,Woh represent the

weight matrices. The latter are obtained directly in software during the

training phase of the network, equivalently also the vectors of bias bi,

bf, bc, bo are extracted during the training phase carried out in Matlab.

xt represents the t input vector of the input sequence, the vector made

up of the features, while g and σ are the input activation functions.

ht = ot∙H(ct) (5)

yt = Φ (Wyh×ht+ by) (6)

There are two output equations, H represents the output activation

function while Φ SoftMax is the function. The goal is to provide a

mathematical method for designing an LSTM-based RNN for any

application.

 __________ ______27

 3.2 Parallelization Algorithm

Within the equations above the most expensive calculations to be made

are the products between matrix and vector. In this paragraph we focus

on a first solution to do this in HW by trying to obtain a low Latency

and that allows the increase in compute units (DSP) used to always have

all devices in operation, Therefore, a maximum efficiency.

Focusing first on the matrices, Wih, Wfh , Wch , Woh the first

information we have about them is that they are matrices square. This

information is not really of any relevance for the calculation method but

in the following way it will be able to facilitate some accounts.

Define

imem: Wih × ht

fmem: Wfh × ht-1

cmem: Wch × ht-1

omem: Woh × ht-1

and I'll call M the number of columns in the following arrays, Y the

number of rows, and the product M*Y=N. In the case that I'm going to

treat the arrays are square so M=Y also the size of the vectors ht-1 is M

elements.

The product between these arrays and the h vectors will in turn

give vectors of size M that I mentioned earlier with imem, fmem, cmem,

omem. The algorithm for carrying out the product between matrix and

vector is known:

28 _________ Chapter 3

𝑖𝑚𝑒𝑚𝑖 = ∑ 𝑊𝑖ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

𝑖𝑚𝑒𝑚𝑖 = ∑ 𝑊𝑖ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

𝑐𝑚𝑒𝑚𝑖 = ∑ 𝑊𝑐ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

𝑐𝑚𝑒𝑚𝑖 = ∑ 𝑊𝑐ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗)

𝑀

𝑗=1

𝑖𝑚𝑒𝑚𝑖 = ∑ ∑ 𝑊𝑖ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗) 𝑤𝑖𝑡ℎ 𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

𝑖𝑚𝑒𝑚𝑖 = ∑ ∑ 𝑊𝑖ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗) 𝑤𝑖𝑡ℎ 𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

𝑐𝑚𝑒𝑚𝑖 = ∑ ∑ 𝑊𝑐ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗) 𝑤𝑖𝑡ℎ 𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

𝑜𝑚𝑒𝑚𝑖 = ∑ ∑ 𝑊𝑜ℎ (𝑖, 𝑗) ∗ ℎ𝑡−1 (𝑗) 𝑤𝑖𝑡ℎ 𝑖 ∈ [1 … 𝑀]

(1+𝑝)𝜑𝑛

𝑗=1+𝑝𝜑𝑛

𝜇𝑛

𝑝=0

The idea is to calculate the i-th element by unpacking the M sums

of products into a number ∆ of sums, which in turn are sums of products.

𝑖𝑗𝑘 = 𝑤𝑖ℎ (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘)

 __________ ______29

 𝑓𝑗𝑘 = 𝑤𝑖ℎ (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘)

 𝑜𝑗𝑘 = 𝑤𝑖ℎ (𝑗, 𝑘) ∗ ℎ𝑡−1 (𝑘)

 3.3 Algorithm 1

We calculate in the base time unit T, which represents the clock period,

n products in the order i,f,c,o. Example N=5 DSPs

T=1 T=2

i11 f12

f11 c12

c11 o12

o11 I13

i12 f13

After that you continue in the same way, as you can see in the table

schematization. This type of scheme means that every clock shot all

DSPs are performing an operation. You continue to calculate products

if 𝑜𝑗𝑘 is not found in the last row in the table schematization.

T=1 T=2 T=3 T= 4

i11 f12 c13 r14

f11 c12 o13 i15

c11 o12 i14 f15

o11 i13 f14 c15

i12 f13 c14 o15

30 _________ Chapter 3

In the 5 DSPs example, this happens after a time of T=4 per k=5, that

is, after 4 stroke of clock we calculated the products up to the fifth

element on each of the 4 arrays. After this first phase in the second

phase we calculate the sum of these k products.

T=5 T=6 T=7 T=8

imem

= 𝒊𝟏𝟏 + 𝒊𝟏𝟐
+𝒊𝟏𝟑

+ 𝒊𝟏𝟒 + 𝒊𝟏𝟓

+ imem

fmem

= 𝒇𝟏𝟏 + 𝒇𝟏𝟐
+𝒇𝟏𝟑

+ 𝒇𝟏𝟒 + 𝒇𝟏𝟓

+ fmem

cmem

= 𝒄𝟏𝟏 + 𝒄𝟏𝟐
+𝒄𝟏𝟑

+ 𝒄𝟏𝟒 + 𝒄𝟏𝟓

+ cmem

omem

= 𝒐𝟏𝟏 + 𝒐𝟏𝟐
+𝒐𝟏𝟑

+ 𝒐𝟏𝟒 + 𝒐𝟏𝟓

+ Omem

The algorithm should be iterated ∆ times to get the first element of

imem, fmem, cmem, omem. In the example seen, with n=5 DSPs we

run out 5 elements of the first line or in general of the i-th line. The

number of products calculated in the first iteration of the algorithm is

what we call 𝜑𝑛.

The algorithm should be iterated ∆ times to get the first element of

imem, fmem, cmem, omem. In the example seen, with n=5 DSPs we

run out 5 elements of the first line or in general of the i-th line. The

number of products calculated in the first iteration of the algorithm is

what we call 𝜑𝑛. In the example with 5 DSPs, the time it takes to

calculate the first 𝜑𝑛 products for each array is called 𝛾.

 𝜑𝑛 =
𝑛

4
∗ 𝛾𝑛

𝛾𝑛 = {

4 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑒𝑣𝑒𝑛 𝑜𝑓 4

1 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4

 __________ ______31

I can make a further simplification by introducing 𝛼𝑛 = 𝛾𝑛 4⁄ such

a way as to get

𝜑𝑛 = 𝑛 ∗ 𝛼𝑛

 𝛼𝑛 = {

1 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

1 2⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑒𝑣𝑒𝑛 𝑜𝑓 4

1 4⁄ 𝑖𝑓 𝑛 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4

If I define 𝐿𝑖 latency of the single iteration, it is equal to 2𝜸𝒏 = 𝟖 𝜶𝒏

, while the latency to calculate the i-th element of imem, fmem, cmem,

omem is equal to 𝑳𝒓 = 𝑳𝒊 ∗ ∆ . The total latency to get imem, fmem,

cmem, omem, that is to get the 4 array products per vector will then be

 𝑳𝒕𝒐𝒕 = 𝑳𝒓 ∗ Y = 𝑳𝒓 ∗ M = 𝑳𝒊 ∗ ∆ ∗ M

with ∆ = 𝑀 𝝋𝒏⁄ for which 𝑳𝒕𝒐𝒕 = 𝑳𝒊 𝑴𝟐 𝝋𝒏⁄ = 8𝜶M2/(n𝜶) =

8M2/n . For increasing the number of DSP n not to lose effectiveness,

it must be 𝜺𝒏′𝒏′′ =
𝑳𝒏′

𝑳𝒏′′
 =

𝒏′′

𝒏′ with n’<n’’ where the subscript at

the base of L indicates the number of DSP used. In the particular case

where n'' = 2n' should

 𝜺𝒏′𝒏′′ =
𝑳𝒏′

𝑳𝒏′′
 = 2

 Or

 𝑳𝒏′′ = 𝑳𝒏′ 𝟐⁄

Or doubling the number of DSP halves the latency. All of this I can

also express by introducing another parameter that I call the efficacy

32 _________ Chapter 3

line = 𝛝𝐧 = 𝐋𝐧 ∗ 𝐧 . If this line is constant in the plane (n, 𝛝𝐧) then the

latency decreases proportionally to them as the number of DSP

increases. In the case of the algorithm just described it results

𝝑𝒏= 8 𝑴𝟐

And since M is fixed the line of effectiveness is constant. If I call

𝜓 = 𝑛′′ 𝑛′⁄ I can define the performance as a function of the DSP used

𝜼𝒏′𝒏′′ = 100 𝜀𝑛′𝑛′′ 𝜓⁄ .

In the treated algorithm 𝜀𝑛′𝑛′′ = (8M2/𝑛′) ∗ (𝑛′′/8M2) = 𝑛′′ 𝑛′⁄

= 𝜓 from which 𝜼𝒏′𝒏′′ = 100 %. Supposing to have n = 6 and M = 48

the total latency is of 𝐿6𝑡𝑜𝑡 = 3072 clock shots. So, to calculate all 4

matrices using 6 DSPs it takes 3072 clock strokes using this algorithm.

The following table shows the latency values in function of the number

of DSPs with 4<n<48 and M= 48 such that the mcm (𝜑𝑛, M) = M.

DSPs Latency

6 3072

8 2304

12 1536

16 1152

24 768

32 576

48 384

The flaw of this algorithm lies in the fact that it does not exploit the

potential of individual DSP. In fact, each DSP in a single stroke of clock

can make a MAC, while in this algorithm it is used only to sum or

product and never sum and product.

 __________ ______33

 3.4 Algorithm 2

We introduce the second algorithm assuming to work in this case

on a single matrix, for example suppose we want to calculate only

imem, consequently afterwards we can extend the reasoning also for

fmem, cmem, omem. It starts from the case in which I have only 1 DSP

available and I want to use it more effectively by performing MAC

operations such as a * b + c. The same notation used in the previous

paragraph applies. Calculate the i-th element of imem:

(for ease of notation I used 𝑖𝑚 instead of imem)

As you can see in this case except for the first clock shot, the only

DSP used always performs MAC operations. The latency to obtain

imem (1) will be equal to 𝐿𝑟= 𝑀. Now we use n = 2 DSPs instead

T=1 T=2 T=3 ... T=M

im = 11 im

= 𝒊𝟏𝟐 + 𝒊𝒎

im

= 𝒊𝟏𝟑 +
𝒊𝒎

... im

= 𝒊𝟏𝑴 +
𝒊𝒎

T=1 T=2 T=M/2 T=M/2

t1 = 𝒊𝟏𝟏

t2= 𝒊𝟏𝟐

t1 = i13 +
t1
t2 = i14 +
t2

... t1

=
i1 (M-1)

+ t1

t2 = i1M +
t2

im = t1 +
t2

34 _________ Chapter 3

Several memory elements (𝑡𝑖) equal to the number of DSP are used.

In this case, however in the last clock shot, n-1 DSP is used, in addition

to the fact that in the first clock stroke no DSP plays a Mac. In the case

of 2 DSPs the latency is equal to 𝐿2=𝑀/2 +1. You can generalize by

finding the following formula:

𝑳𝒏=
𝑴

𝒏
 + 1

Also in this case n, cannot be chosen at will but in fact we see that

it must be M / n an integer, or n must be a submultiple of M which in

other words can be written by setting the condition 1) p = M where p is

given by the following expression 𝑝 = 𝑚𝑐𝑚 (𝑛, 𝑀) with n <M. The

latency of imem is therefore given by the following expression as a

function of n

𝐿𝑛 = {
𝑀𝑌 𝑓𝑜𝑟 𝑛 = 1

[(𝑀 𝑛) + 1]𝑌⁄ 𝑓𝑜𝑟 𝑛 > 1

To get the overall latency to get both imem, fmem, cmem, omem

just multiply by 4.

𝐿𝑛𝑡𝑜𝑡 = {
4𝑀𝑌 𝑓𝑜𝑟 𝑛 = 1

4[(𝑀 𝑛) + 𝑀]𝑌⁄ 𝑓𝑜𝑟 𝑛 > 1

In the case of a square matric MY=M2

𝐿𝑛𝑡𝑜𝑡 = {
4𝑀2 𝑓𝑜𝑟 𝑛 = 1

4[(𝑀2 𝑛) + 1]𝑌⁄ 𝑓𝑜𝑟 𝑛 > 1

 __________ ______35

 3.5 Comparison

We evaluate the relationship between the latency of the first algorithm

and this second algorithm, if it is greater than 1 then this just exposed

is faster.

 𝜒 = 𝑳𝒏
𝑰 𝑳𝒏

𝑰𝑰⁄

Where the quotes I and II denote which of the two algorithms is

being referenced. Since the first holds for n > 4 we evaluate this

relationship in which

 𝑳 𝒏 =
𝑰𝑰 𝟒[(𝑴 𝒏) + 𝑴]⁄

 𝜒 =
𝟖𝑴𝟐 𝒏⁄

𝟒 [(𝑴𝟐 𝒏) +𝑴]⁄
 =

𝟖𝑴𝟐

𝟒 (𝑴𝟐 + 𝒏𝑴)
 =

𝟒𝑴

𝑴 + 𝒏

Since both are valid for n <M is 𝜒> 1. So, this second way of

working is faster than the first method shown, in particular if 𝑀 >> 𝑛

then 𝜒≅2 which means to say that in the same time interval I can

perform almost twice as many operations.

 3.6 Effectiveness Parameters

Also, in this case I can define an index 𝜀𝑛′𝑛′′ =
𝐿𝑛′

𝐿𝑛′′
 that for 𝑛′= 1 and

𝑛′′ = 𝑛 𝜀1,𝑛 =𝜀𝑛= 𝐿1 𝐿𝑛⁄

 𝑳𝟏 𝑳𝒏⁄ =
𝟒𝑴𝟐

𝟒 [(𝑴𝟐 𝒏) +𝑴]⁄
 =

𝒏𝑴𝟐

𝑴 (𝑴 + 𝒏)
 =

𝒏𝑴

𝑴 + 𝒏

 𝜺𝒏=
𝒏𝑴

𝑴+𝒏

36 _________ Chapter 3

moves away from 𝜓 = 𝑛 ’’ / 𝑛 ’= n, while in the first the condition

was always verified. All this translates into a better efficiency for a

number n of low DSP. All this is valid only in the condition we

mentioned above p = M and n <M.

I have also analyzed if it is possible to use a number n of DSP that

is not a submultiple of M. This is possible by following a slightly

different procedure, but which leads to identical results in terms of 𝜀𝑛.

 3.7 Extension of 2nd algorithm

Suppose we have a number of DSP = n <M such that p = mcm (n,

M) > M, this is equivalent to saying that n is not a submultiple of M, it

is possible to find a way to perform the calculations with the same

speed.

• Several products are calculated during the first clock stroke

 t1, t2+...+ tn, equal to the number of DSP available n.

• At the second clock stroke we calculate tp, or the partial sum of the

 first calculated products 𝑡𝑝 = 𝑡1 + 𝑡2 + ... + 𝑡𝑛

• At the third clock stroke the first coefficient is calculated already the

first one

 imem result (1) = 𝑡𝑝 + 𝑡𝑛+1 + ⋯ 𝑡𝑀

And at the same time, you begin to calculate the products of the next

row. I introduce parameters to simplify the discussion.

Said T the unit of time in terms of clock strokes i = T-2, 𝑞𝑖 is the

number of DSP usable to calculate products at clock stroke T = i + 2,

while 𝜁𝑖 is the number of DSP used to perform sums or sums more

products. These parameters are calculated starting from T = 3 or from i

= 1.

𝜻𝒊 = {

𝑴 − 𝒏 𝑻 = 𝟑
𝒒𝑻 −𝟑 𝒇𝒐𝒓 𝒆𝒗𝒆𝒏 𝑻

𝑴 − 𝒒𝑻 −𝟑 𝒇𝒐𝒓 𝒐𝒅𝒅 𝑻

 __________ ______37

𝒒𝒊 = {
𝒏 − 𝜻𝒊 𝒇𝒐𝒓 𝒆𝒗𝒆𝒏 𝑻

𝒂𝒏 − 𝒃𝑴 𝒇𝒐𝒓 𝒐𝒅𝒅 𝑻

With b=a-1 and a = (3+ i)/2 (T + 1)/2

With b=a-1 and a = (3+ i)/2 (T + 1)/2

The algorithm stops when 𝑞𝑖 = 0 or equivalently when 𝜁𝑖 = 𝑛 and

iteratively repeats for N / p times, remembering that N = MY ep = mcm

(n, M). This procedure works only if said 𝛽𝑛 = 𝑛 / (𝑀 − 𝑛) is an integer

and mcm (p, N) = N.

The number of elements of the resulting vector calculated is equal

to 𝛽𝑛 and the time taken, or the latency is equal to T = i + 2 or similarly

 𝑳𝒑= (2𝜷𝒏 + 1)

The latency to calculate a matrix product per vector is equal to

 L= (2𝜷𝒏 + 1) * N/p

In the case where n satisfies the condition on 𝛽𝑛 then p = M * 𝛽𝑛

T=1

T1, t2, t3... t8

T=2

Tp+t1+t2+t3+....t8

T=3

Imem(1) = 𝑡𝑝 + t9+t10+t11+t12 𝜁𝑖= 4

T1, t2, t3, t4 q1 = 4

T=4

Tp=t1+t2+t3+t4 𝜁𝑖= 4

 T5, t6, t7, t8 q1 = 4

T=5

Imem (2) = 𝑡𝑝 + t5+t6+t8+…+t12 𝜁𝑖= 8
 𝑞3= 0

38 _________ Chapter 3

Example for n = 8 and M = 12 Y = 48

In the case chosen for the example 𝛽8 = 8/4 = 2 for which use 𝐿𝑝

= 2 (2 + 1) = 5 clock shots to get the first 2 results.

L= (2𝜷𝒏 + 1) * (Y/𝜷𝒏)

So the latency for the calculation of imem is equal to 𝐿 = 5 ∗ (48/2)

= 5 ∗ 24 = 120 and the total latency will be 𝐿𝑡𝑜𝑡 = 480, time necessary

to wait for having imem, fmem, cmem, omem.Calculation also in this

case 𝜀𝑛 in the case of a square matric with M rows and M columns

𝜀𝑛=𝐿1/𝐿𝑛=(𝑀2)/[(2𝛽𝑛+1) ∗(𝑌/𝛽𝑛)] =𝑀𝛽𝑛/(2𝛽𝑛+1)

=(𝑛𝑀/𝑀−𝑛)/[(2𝑛/𝑀−𝑛) +1]

=𝑛𝑀/(2𝑛+𝑀−𝑛) =𝑛𝑀/(𝑀+𝑛)

Which brings us back to the same identical result as before even

having changed the process formula for the calculation of imem, fmem,

cmem, omem. Figure 18a shows the efficiency trend, in 18b the

efficiency.

 Efficiency Performance

 Fig 18. a: Efficiency Fig 18. b: Performance

 __________ ______39

𝜂𝑛=[100𝑛𝑀/(𝑀+𝑛)] ∗ 𝑛=100𝑀/(𝑀+𝑛)

From which we can see that as the number of DSP increases, the

yield decreases more and more until it reaches a minimum of 50% when

n = M.

It can be seen in the same way 𝜗𝑛, noting that effectiveness, that is

the line of effectiveness grows with the growth of n and does not remain

constant

 𝜗𝑛=(2𝛽𝑛+1) ∗
𝑴

𝜷𝒏
∗𝑛= (

𝟐𝒏

𝑴−𝒏
 +1) ∗[

𝑴

𝒏
∗(𝑀−𝑛)] ∗𝑛

 = (𝑀+𝑛)∗𝑀=𝑴𝟐+ 𝑛𝑀

𝑛𝑀≪𝑀2↔𝑛𝑀≪𝑀2 𝑐𝑖𝑜is 𝑀≫𝑛, that is the ideal case could be had

only approximately in the case in which several DSP is used very much

smaller than the dimensions of the Matrix.

Therefore, downstream of this research the most sensible solution,

in general, is to not adopt more than one DSP per line, as we have seen

that the increase speeds up the calculation but in an increasingly

expensive way, paying in terms of performance.

 Effective line

 Figure 19: Effective line

40 _________ Chapter 3

Suppose instead we want to use several DSP n greater than M and see

how to proceed.

𝑘=⌊(𝑖+1)/2⌋

𝑖=𝑇+2

𝑓=⌊𝑇/2⌋

𝜔=𝑛/𝑀

𝜆=⌊𝜔⌋

𝜈=𝑛−𝜆𝑀

𝑠𝑑,𝑒=𝑊(𝑑,𝑒)∗𝑥(𝑑,𝑒)

Where W is the generic matrix of dimensions Y × M and the product

𝑊 × 𝑥 = 𝑢

 𝝆𝒇 = {

𝟐 𝒇𝒐𝒓 𝒇 = 𝟎

𝝆𝒇−𝟏 + 𝝀 + 𝟏 𝒇𝒐𝒓 𝒇 > 𝟎

3.7.1 Algorithm details

 I- In the first clock stroke calculation 𝑠1,1, 𝑠1,2, ..., 𝑠1,𝑣

 II- In the second clock stroke calculation

 sp = 𝑠1,1+ 𝑠1,2 + ...+ 𝑠1,𝑣 also calculation

 𝑠𝑝𝑓−1,1, 𝑠𝑝𝑓−1,2, ..., 𝑠𝑝𝑓−1,𝑀

 …. …. …

 𝑠𝑝𝑓,1, 𝑠𝑝𝑓,2, ..., 𝑠𝑝𝑓,𝑀

 __________ ______41

III- At the third clock stroke I start to get the first results

𝑢1, 𝑢𝑝𝑓−1, . . . 𝑢𝑝𝑓

And I begin to calculate 𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,2, ..., 𝑠𝑝𝑘 +1, 𝑞𝑖

IV- calculation 𝑠𝑝𝑘= 𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,(𝑞𝑖−1+ 𝑞𝑖)

 𝑠𝑝𝑓−1,1, 𝑠𝑝𝑓−1,2,..., 𝑠𝑝𝑓−1,𝑀

 …. ….. … …. … …..

 𝑠𝑝𝑓,1, 𝑠𝑝𝑓,2,..., 𝑠𝑝𝑓,𝑀

V- calculation 𝑢𝑝𝑓−1-1 ,𝑢𝑝𝑓−1 , . . . 𝑢𝑝𝑓

 𝑠𝑝𝑘 + 1,1, 𝑠𝑝𝑘 +1,2,..., 𝑠𝑝𝑘 +1, 𝑞𝑖

The procedure continues until 𝑞𝑖= 0, remembering that

𝑞𝑖 = {
𝑛 − 𝜁𝑖 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑇
𝑎𝑛 − 𝑏𝑀, 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑇

𝛇𝑖 = {

𝑀 − 𝑛 𝑇 = 3
𝑞𝑇−3 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑇
𝑞𝑇−4 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑇

𝑐1=𝑚𝑐𝑚 (𝜈, 𝑀)/𝑀

𝑐2=𝑐1𝜆

𝑐=𝑐1+𝑐2

The time to calculate c elements is 𝐿𝑝= 2c1 + 1, to calculate the integer

42 _________ Chapter 3

T=1 𝒔𝟏,𝟏 , 𝒔𝟏,𝟐 ,. . .. 𝒔𝟏,𝟖

T=2 Sp = 𝒔𝟏,𝟏+ 𝒔𝟏,𝟐 + ... 𝒔𝟏,𝟖

𝒔𝟐,𝟏 , 𝒔𝟐,𝟐 ,. . .. 𝒔𝟐,𝟖

𝒔𝟑,𝟏 , 𝒔𝟑,𝟐 ,. . .. 𝒔𝟑,𝟖

T=3

i=1

 𝒖𝟏 = sp + 𝒔𝟏,𝟗 + ... 𝒔𝟏,𝟏𝟐

𝒖𝟐 = 𝒔𝟐,𝟏 + 𝒔𝟐,𝟗 + ... 𝒔𝟐,𝟏𝟐

𝒖𝟑 = 𝒔𝟑,𝟏 + 𝒔𝟑,𝟗 + ... 𝒔𝟑,𝟏𝟐

𝛇𝟏 = 𝟒 , 𝒒𝟏 = 4

𝒔𝟒,𝟏 + 𝒔𝟒,𝟐 + ... 𝒔𝟒,𝟒

T= 4

i =2

Sp = 𝒔𝟒,𝟏+ 𝒔𝟒,𝟐 + ... 𝒔𝟒,𝟒

𝒔𝟓,𝟏 + 𝒔𝟓,𝟐 + ... 𝒔𝟓,𝟏𝟐

𝒔𝟔,𝟏 + 𝒔𝟔,𝟐 + ... 𝒔𝟒,𝟏𝟐

𝛇𝟐 = 𝟒 , 𝒒𝟐 = 4

𝒔𝟒,𝟓 + 𝒔𝟒,𝟔 + ... 𝒔𝟒,𝟖

T=5

i=3

𝒖𝟒 = sp + 𝒔𝟒,𝟓 + ... 𝒔𝟒,𝟏𝟐

𝒖𝟓 = 𝒔𝟓,𝟏 + 𝒔𝟓,𝟐 + ... 𝒔𝟓,𝟏𝟐

𝒖𝟔 = 𝒔𝟔,𝟏 + 𝒔𝟔,𝟐 + ... 𝒔𝟔,𝟏𝟐

 𝛇𝟑 = 𝟖 , 𝒒𝟑 = 0

 __________ ______43

matric instead 𝐿 = 𝐿𝑝 ∗ (𝑌 / 𝑐) = (2𝑐1 + 1) ∗ (𝑌 / 𝑐)

Example M = 12, Y = 48, n = 32 𝜆 = 2, 𝜐 = 8

The algorithm is applicable when mcm (nbY, c) = Y and moreover

as in the algorithm of before changing n = 𝜈 the ratio 𝛽𝜈 = 𝜈 / (𝑀 − 𝜈)

is an integer.

The graph below shows the trend of the latency as the number of

DSP increases for a matric with dimensions M = 12 Y = 48. Figure 20

shows the trend of latency according to the number of DSP used.

 Latency

 Figure 20: latency as a function of the number of DSPs

Once the question on how to carry out the most complicated

calculations present in the equations to derive 𝑖𝑡, 𝑓𝑡, 𝑐𝑡, 𝑜𝑡 has been

unraveled, it is necessary to understand how to organize the architecture

aimed at performing these calculations.

44 _________ Chapter 3

 3.8 Architecture

To organize the sequence of the calculations I started from a simpler

architecture to then refine it in order to improve the latency of the

overall circuit.

 Figure 21: architecture of DSP

In this first model of architecture there is a single large block within

which all operations are carried out. A more sophisticated model with

respect to this consists in trying to parallelize the calculations within the

single equations, in fact breaking the single equation into 2 Calculation

Blocks.

 __________ ______45

 Figure 22: graph of 2 blocks

The first block receives as input 𝑊𝑖𝑥 , 𝑊𝑓𝑥 , 𝑊𝑐𝑥 , 𝑊𝑜𝑥 , 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, 𝑏𝑜,

imem, fmem, cmem, omem and calculates at the output h which is sent

to the second block. The second block concurrently with the first one

receives ℎ𝑡 − 1 and 𝑊𝑖ℎ , 𝑊𝑓ℎ , 𝑊𝑐ℎ , 𝑊𝑜ℎ which it uses to calculate imem,

fmem, cmem, omem according to the modalities we have seen before.

The first block must carry out in addition to the vector matrix

product also the addition of this last result with imem, fmem, cmem,

omem. One might think that this introduces a significant slowdown but

in reality, it is not so since in all the cases except, in the case

which I use 1 DSP this is in no way to invalidate the latency of the

block. To see how the first block will have to schedule the calculations,

let us take as an example only the

46 _________ Chapter 3

 Figure 23: block diagram of 2 DSPs

This is one of the 4 calculations that the first block must perform,

and we want to show that except in the case of 1 DSP, where the latency

increases by Y clock shots, in all other cases the latency remains the

same. Consider the matrix 𝑊𝑖𝑥 of dimensions Y (lines), M (columns)

and n = 1 DSP, always using the same notation we schematize the

algorithm as before.

 __________ ______47

 T=1 T=2 T.. T=M T=M+1

Then I use M clock shots instead of using M + 1. Having a matrix

of Y rows, this latency must be multiplied by Y so that 𝐿 = 𝑀𝑌 + while

in the case in which the only calculation that must perform is 𝑊𝑖𝑥 × 𝑥𝑡

the latency is less and is equal to 𝐿 = 𝑀𝑌. Then using 1 only DSP the

latency increases with increasing Y. If instead I use 2 DSPs

T=1 t1= i13 + t1

 t2= i14 + t2

T= 2 t1= i11 + t1

t2= i12

T.....

T=M/2 t1= i1(M-1) + t1

t2= i1M + t2

T=M/2 u1= t1 + t2 + imem (1)

im

= i11 + bi (1)

im

 = i12 + im

.... im

 = i1M + im

im

=im+imem(1)

48 _________ Chapter 3

So, by using 2 DSPs the latency for a single element becomes 𝐿 =

𝑀 / 2 +1 which is the same that you have to perform the simplest

calculation where neither imem nor the bias appear. So, for n> 1 the

latency is exactly the same in both branches with the same size of the

matrices.

From the analysis carried out it emerges that in general to make a

product between a matric and a vector it is better to use only one DSP

since with increasing n efficiency is always lower.

If I use 1, in making the two accounts, on the one hand I always go

slower than the other of Y shots of clock. The choice I can think of to

make to make the times as similar as possible is to use a number n of

DSP where each of the single DSP executes in parallel the algorithm on

a single line, in this way I get

𝐿𝐵1 = (𝑀𝑌 + 𝑌 / 𝑛) (Latency relative to block 1)

𝐿𝐵2 = 𝑀𝑌 / 𝑛 (Latency relative to block 2)

Since the latencies must be integers, in both cases we must

choose n so that mcm (n, Y) = Y

I evaluate which is the best choice in terms of n so that the two

latencies can be as close as possible, with n number of DSP to place

individually on each line and not as previously seen for the calculation

of the same line.

I introduce a new parameter that evaluates the relationship

between the latency of the first block decreased by 1 and the latency of

the second block

𝜏= (𝐿𝐵1−1) /𝐿𝐵2=(𝑀+(𝑌/𝑛) −1)/(𝑁/𝑛)

=(𝑀𝑛+𝑌−𝑛)/𝑁

=[𝑛(𝑀−1) +𝑌]/𝑁

Clearly in this circumstance n_{max} = Y therefore we evaluate

 __________ ______49

with the variation of n.𝜏 is a linearly increasing function with n and

assumes its maximum for n = Y in which it is 1.

When n = Y means that 𝐿𝐵1 = 1 + 𝐿𝐵2 that is when I use the

maximum of DSP, putting 1 for the first block and the second block

have a difference in terms of latency of a single clock stroke, even if the

first block performs many more operations.

So, we derive that a convenient choice is to use as many DSP as

possible. Figure 24 shows the trend of the ratio with the variation of n

with M = 50 and Y = 50.

 Relationship between first and second block

 Figure 24: trend of 𝜏 as a function of n

After the above algorithms, the second one was used since it was

the fastest to perform the calculations and, I used 1 DSP for each single

element calculated.

50 _________ Chapter 3

It remains to establish how many DSP to use in order to obtain a

low latency and try to equate the latencies between the first and second

calculation block.

The 1 block performs the following operations

 1) 𝑖𝑡=𝜎(𝑤𝑖𝑥×𝑥𝑡+𝑖𝑚𝑒𝑚+𝑏𝑖)

 2) 𝑓𝑡=𝜎(𝑤𝑓𝑥×𝑥𝑡+f𝑚𝑒𝑚+𝑏𝑓)

 3) 𝑐𝑡=𝑓𝑡∗𝑐𝑡−1+𝑖𝑡∗𝑔(𝑤𝑐𝑥×𝑥𝑡+𝑐𝑚𝑒𝑚+𝑏𝑐)

 4) 𝑜𝑡=𝜎(𝑤𝑜𝑥×𝑥𝑡+𝑜𝑚𝑒𝑚+𝑏𝑜)

 5) ℎ𝑡=𝑜𝑡∗𝐻 (𝑐𝑡)

The matrices 𝑤𝑖𝑥 , 𝑤𝑓𝑥 , 𝑤𝑐𝑥, 𝑤𝑜𝑥 have dimensions equal to 𝑌 × 𝑀,

while 𝑤𝑖𝑥 , 𝑤𝑓ℎ , 𝑤𝑐ℎ, 𝑤𝑜ℎ have dimensions 𝑌 × 𝑌. The size M is fixed

by the number of features and therefore by the data set being used to

train the neural network, while Y represents the number of hidden states

used to train the network and it can be varied to have a more or less high

accuracy.

Beyond a certain limit, increasing Y only increases the calculations

to be made but does not return a higher accuracy that depends on how

large the data set used is. Of the five equations given above, the most

critical, that is, the one that entails a greater computational burden is

certainly 3. To make all the necessary calculations to get the 3) you

must wait until you've already got the 1) and the 2) reason why I decided

to rewrite it in a different way that I report here.

 𝑐𝑡=𝑓𝑡∗𝑐𝑡−1+𝑖𝑡∗𝑐𝑐

where 6)

 𝑐𝑐=𝑔(𝑤𝑐𝑥×𝑥𝑡+𝑐𝑚𝑒𝑚+𝑏𝑐)

 __________ ______51

At this point the 1), 2), 4), 6) require exactly the same latency to

produce the results and in particular if we think of only one element that

is 𝑖𝑡 (1), 𝑓𝑡 (1), 𝑐𝑐 (1), 𝑜𝑡 (1) latency, using a DSP for a single equation,

will be equal to M + 1 as previously calculated.

T=1 it(1) = Wix(1,1) ∗ xt (1) + 𝒃𝒊(1)

 ft(1) = Wfx(1,1) ∗ xt (1) + 𝒃𝒇(1)

 cc(1) = Wcx(1,1) ∗ xt (1) + 𝒃𝒄(1)

 ot(1) = Wtx(1,1) ∗ xt (1) + 𝒃𝒐(1)

T=2 it(1) = Wix(1,2) ∗ xt (2) + it(1)

 ft(1) = Wfx(1,2) ∗ xt (2) + ft(1)

 cc(1) = Wcx(1,2) ∗ xt (2) + cc(1)

 ot(1) = Wtx(1,2) ∗ xt (2) + ot(1)

T.....

T=M it(1) = Wix(1,M) ∗ xt (M) + it(1)

 ft(1) = Wfx(1,M) ∗ xt (M) + ft(1)

 cc(1) = Wcx(1,M) ∗ xt (M) + cc(1)

 ot(1) = Wtx(1,M) ∗ xt (M) + ot (1)

T=M+1 it(1) = imem(1) + it(1)

 ft(1) = fmem(1) + ft(1)

 cc(1) = cmem(1) + cc(1)

 ot(1) = omem(1) + ot (1)

So, to calculate the first element of each of the four equations M +

1 clock shots are needed. To get the true values you need to apply the

activation functions to them, which by design choice I decided to pre-

calculate in software for every possible value that can be verified and

stored in ROM memories so as not to have to implement a circuit that

runs in HW this operation.

52 _________ Chapter 3

T= M +1 it(1) = 𝜎(𝑖𝑚𝑒𝑚(1) +𝒊𝒕(1))

ft(1) = 𝜎(f𝑚𝑒𝑚(1) +𝒇𝒕(1))

cc(1) = g(cmem(1) + 𝒄𝒄(1))

ot(1) = 𝜎(o𝑚𝑒𝑚(1) +ot(1))

So, at this point to get 𝑐𝑡 (1) and ℎ𝑡 (1)

So overall to get the first element of ℎ𝑡 using 4 DSPs I must wait

for a latency of M + 3 clock strokes. To get all the elements the latency

will be equal to 𝐿 = (𝑀 + 3) ∗ 𝑌

What I now want to investigate is the latency to get all the vector ℎ𝑡

with the number of DSP n, since it represents the latency of the whole

first block.

Since I have parallelized on all 4 matrices n must always be a

multiple of 4, that is mcm (n, 4) = n. If I use 8 DSPs after M + 3 clock

strokes I will get 2 of the M elements of h for which I will have halved

the latency. If I use 12 DSPs, I reduce the latency by a factor of 3 and

so on.

However, this method of proceeding also imposes an additional

condition.

The number of elements calculated every M + 3 clock stroke must

be a submultiple of Y. I can define the number of elements calculated

T= M+2 ct (1) = ft (1) ∗ ct-1 (1) + it (1) ∗ cc(1)

T=M+3 ht(1) = ot(1) ∗ H(ct(1))

 __________ ______53

every M + 3 clock strokes like 𝜕 = 𝑛 / 4 where n is the number of DSP

used. The conditions to which n must therefore respect are

𝑚𝑐𝑚(𝜕,𝑌) =𝑌

𝑚𝑐𝑚(𝑛,4) =𝑛

So established Y, I can't use several DSP at will. The latency of the

first block, chosen Y, will be equal to 𝐿𝐵1 = (𝑀 + 3) ∗ 𝑌 / 𝜕 = 4 (𝑀 + 3)

𝑌 / 𝑛.

It can be observed that for uniform distribution the length of carry

chain is always sensibly smaller than adder size. When 50% of inputs

are taken from Gaussian distribution with 𝜎=256 (Fig. 27(b)), a bimodal

distribution is observed with an appreciable portion of carry chains is

as long as the adder size; by increasing 𝜎 the second peak of the

distribution moves to the left (Fig. 27(c)).

 3.9 Application: voice recognition

The hardware that has been implemented is custom built for a

specific application. The dataset used to train the network is the

‘Japanese vowels’ present inside Matlab, in which 300 times sequences

are provided, each of which contains more vectors of 12 elements.

Each element of these vectors represents a feature of the specific

application. To train the network, a specific Matlab toolbox was used,

configured in such a way as to be able to classify 9 different items.

To do the training there is also the need to define how many layers

of the LSTM to use, the higher the number of output size the higher the

accuracy will be, within a certain limit dictated by the data set that is

available. The number of output sizes of the LSTM

54 _________ Chapter 3

Also corresponds to what until now we have called Y or the number of

rows of the matrices. In this regard, Y will be chosen ad hoc following

a precise mathematical reasoning.

T=1 imem(1) = Wih(1,1) ∗ ht-1(1)

fmem(1) = Wfh(1,1) ∗ ht-1(1)

cmem(1) = Wch(1,1) ∗ ht-1(1)

omem(1) : Woh(1,1) ∗ ht-1(1)

T=2 imem(1) = Wih(1,2) ∗ ht-1(2) + imem(1)

fmem(1) = Wfh(1,2) ∗ ht-1(2) + fmem(1)

cmem(1) = Wch(1,2) ∗ ht-1(2) + cmem(1)

omem(1) : Woh(1,2) ∗ ht-1(2) + omem(1)

T=M imem(1) = Wih(1,Y) ∗ ht-1(Y) + imem(1)

fmem(1) = Wfh(1,Y) ∗ ht-1(Y) + fmem(1)

cmem(1) = Wch(1,Y) ∗ ht-1(Y) + cmem(1)

omem(1) : Woh(1,Y) ∗ ht-1(Y) + omem(1)

The number of features of the specific application represents instead

what until now has been called M, or the number of columns of the

matrices on which it is necessary to operate in the first block. It can be

concluded that M = 12 and Y is to be established by trying to choose

neither too low nor too high.

Since in the case of the considered application the number of

features is equal to 12 then M = 12 which means that 𝐿𝐵1 = 60 ∗ 𝑌 / 𝑛.

This is what regards the latency of the first block, for the second block

we can make similar considerations to estimate the latency as a function

 __________ ______55

of Y and n. To calculate the first value of imem, fmem, cmem, omem

the procedure I follow is always the same.

For the second block therefore the latency using 4 DSP is equal to

M and more generally it will be 𝐿𝐵2 = 𝑌2 / 𝜕 = 4𝑌2 / 𝑛. It is not said

that I should use the same number n of DSP for both blocks, so I

distinguish in n1 and n2 where n1 is the number of DSP used for the

first block and n2 for the second.

𝐿𝐵2 =𝑌2 / 𝜕 = 4𝑌2 / 𝑛2

𝐿𝐵1 =60∗𝑌/𝑛1

I aim to find the values of n1, n2, Y for which the latency of the first

and second blocks are the same.

𝐿𝐵1=𝐿𝐵2

60∗𝑌/𝑛1=4∗𝑌2/𝑛2

𝑛1=(15/𝑌)∗𝑛2

From this equality, having to be n1 and n2 integers we understand that

also Y cannot be any and among other things also Y must be an integer.

It turns out that mcm (15, Y) = Y or Y must be a multiple of 15.

𝑌∈ {15,30,45,60,75,90,105,120, ⋯}

When Y varies, the possible values n1 and n2 may also vary.

𝑛1: 𝑚𝑐𝑚(𝑛1,4) =𝑛1 and 𝑚𝑐𝑚 (𝑛1/4, 𝑌) =𝑌

𝑛2: 𝑚𝑐𝑚(𝑛2,4) =𝑛2 and 𝑚𝑐𝑚 (𝑛12/4, 𝑌) =𝑌

𝑛1: 4∗𝑌/𝑛1 must be an integer

𝑛2: 4∗𝑌2/𝑛2 must be an integer

56 _________ Chapter 3

These conditions are the result of the fact that latency must always

be a whole natural number. I analyze if there are possible solutions for

Y = 60.

Y=60 𝑛1, 𝑛2 ∈ {4,8,12,16,20,24,40,48,60,80,120,240}

n2=4*n1

n1=4, n2=16

now I have to check the third and fourth conditions respectively

located on n1 and n2

4∗𝑌/𝑛1=4∗60/4=60

4∗𝑌2/𝑛2=4∗602/16=14400/16=900 ok

𝑛1=8, 𝑛2=32 it does not belong to the set of possible 𝑛2

𝑛1=12, 𝑛2=48 𝑜𝑘 240/12=20 𝑜𝑘 14400/48=300 𝑜𝑘

𝑛1=16, 𝑛2=64 it does not belong to the set of possible 𝑛2

𝑛1=20, 𝑛2=80 𝑜𝑘 240/20=12 𝑜𝑘 14400/80=180 𝑜𝑘

𝑛1=24, 𝑛2=96 it does not belong to the set of possible 𝑛2

𝑛1=40, 𝑛2=160 it does not belong to the set of possible 𝑛2

𝑛1=60, 𝑛2=240 𝑜𝑘 240/60=4 14400/240=60

Therefore, using 𝑛1 = 60 𝑒𝑑 𝑛2 = 240 𝑑𝑠𝑝 a latency can be obtained

for both blocks of 60 clock strokes. The choice I accepted instead is to

 __________ ______57

set Y = 48 and choose n1 = 48 and n2 = 192 which allows, by doing a

good design, to obtain a latency of 60, therefore equal to that of the case

n1 = 60 n2 = 240 with Y = 60 with the benefit of using 60 DSPs less.

 3.10 Circuit implementation

An accelerator for neural networks has been designed using the

Global Foundry 40nm CMOS technology. The accelerator implements

the LSTM block of the recurring neural network. The numbers of the

implemented circuit are recalled in the table 2:

 Table 2

 Block 1 Block 2

Number of
operations

2832 9216

Number of
DSPs

48 192

Ideal latency 59 48

Obtained
latency

60 48

The architecture of the Block1 and 2 is shown in fig. 25 and 26

respectively.

 Fig.25: Block 1 architecture

58 _________ Chapter 3

 Fig.26: Block 2 architecture

As can be seen, scratchpad memories and schedulers are used to

implement the scheduling discussed in previous sections. The table 3

reports a comparison with previous art.
 Table 3

 Clock

frequency

(MHz)

DSP Registers ROM Latency

Implemented
circuit

464 240 5904 1.8Mb 60

[13] 115 11 30604 387Kb 58K

[14] 115 11 1157 387Kb 30K
[30] 200 96 N.A. 86Kb 40M
[31] 200 1504 453K 17Mb 16K
[32] 142 50 13K 288Kb 127K

As can be seen the main feature of the developed circuit is the very

low latency obtained. The number of DSPs used is larger than the one

used in the implementation presented in the previous section (rows 2

and 3 of the table), so this implementation cannot be considered a

reduced footprint design.

However, with respect to the accelerator presented in [31], the

proposed circuit still exhibit a low number of DSPs while achieving a

better latency.

 __________ ______59

Chapter 4

Conclusion

Within this thesis, different types of approaches have been

developed to speed up the calculation of the LSTM Layer of the RNN.

In particular, 2 algorithms have been developed for the scheduling of

operations, which allow easy access to the vectors to be taken in

memory.

These two it has been shown that one in particular allows to obtain

an almost ideal case, which we can define as sub-optimal. It allows to

first split the set of equations of the LSTM into two sub-sets in which

the dependence between the data is reduced to the minimum, so as to

be able to parallelize the calculations of these two blocks.

Afterwards, within each of these two blocks, it is possible to

optimize the calculation work by implementing a parallelism between

functions, rows and columns with the use of DSPs that allow their

potential to be exploited almost 100%.

The analysis conducted in conclusion provides a valid method to be

able to design an RNN based on LSTM for any type of application. In

particular, following this type of approach it is possible to consistently

decrease the latency of these types of circuits, allowing to obtain results

that are close to the ideal case.

References

[1] C. Marzban, and R. Viswanathan, “STOCHASTIC NEURAL

NETWORKS WITH THE WEIGHTED HEBB RULE,” Physics

Letters A, vol. 191, no. 1-2, pp. 127-133, Aug, 1994.

[2] K. Guenther, “Rebel Genius: Warren S. McCulloch's

Transdisciplinary Life in Science,” Bulletin of the History of Medicine,

vol. 92, no. 1, pp. 223-224, Spr, 2018.

[3] W. S. McCulloch, and W. Pitts, “A LOGICAL CALCULUS OF

THE IDEAS IMMANENT IN NERVOUS ACTIVITY (REPRINTED

FROM BULLETIN OF MATHEMATICAL BIOPHYSICS, VOL 5,

PG 115-133, 1943),” Bulletin of Mathematical Biology, vol. 52, no. 1-

2, pp. 99-115, 1990.

[4] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85-117, Jan, 2015.

[5] A. B. Bulsari, and H. Saxen, “A RECURRENT NEURAL

NETWORK MODEL,” Artificial Neural Networks, 2, Vols 1 and 2, pp.

1091-1094, 1992.

[6] B. Bakker, "Reinforcement learning with long short-term memory,"

Advances in Neural Information Processing Systems 14, Vols 1 and 2,

Advances in Neural Information Processing Systems T. G. Dietterich,

S. Becker and Z. Ghahramani, eds., pp. 1475-1482, 2002.

[7] M. Liang, X. L. Hu, and Ieee, "Recurrent Convolutional Neural

Network for Object Recognition," IEEE Conference on Computer

Vision and Pattern Recognition. pp. 3367-3375, 2015.

[8] G. Massini, “Hopfield Neural Network,” Substance Use & Misuse,

vol. 33, no. 2, pp. 481-488, 1998.

[9] D. T. Pham, and D. Karaboga, “Training Elman and Jordan

networks for system identification using genetic algorithms,” Artificial

Intelligence in Engineering, vol. 13, no. 2, pp. 107-117, Apr, 1999.

 __________ ______61

[10] S. P. Chatzis, and Y. Demiris, “Echo State Gaussian Process,” Ieee

Transactions on Neural Networks, vol. 22, no. 9, pp. 1435-1445, Sep,

2011.

[11] A. Goudarzi, A. Shabani, D. Stefanovic, and Ieee, “Exploring

Transfer Function Nonlinearity in Echo State Networks,” 2015 Ieee

Symposium on Computational Intelligence for Security and Defense

Applications (Cisda), pp. 119-126, 2015.

[12] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov, 1997.

[13] V. Abdolzadeh, N. Petra. "On the Trade-Offs in Efficient

Implementation of Neural Network Accelerators," ApplePies annual

conference 2018-September 26-27, Pisa.Italy.

[14] V. Abdolzadeh and N. Petra, "Efficient Hardware Accelerators for

Recurrent Neural Network SoC Design," in proc. Società Italiana di

Elettronica conference (SIE),Napoli, IT, 20-22 Jun. 2018. ISBN:978-

88-905519-2-5.

[15] R. C. Jin, J. F. Jiang, and Y. Dou, “Accuracy Evaluation of Long

Short-Term Memory Network Based Language Model with Fixed-

Point Arithmetic,” Applied Reconfigurable Computing, vol. 10216, pp.

281-288, 2017.

[16] K. Zhang, W. L. Chao, F. Sha, and K. Grauman, “Video

Summarization with Long Short-Term Memory,” Computer Vision -

Eccv 2016, Pt Vii, vol. 9911, pp. 766-782, 2016.

[17] A. Zyner, S. Worrall, J. Ward, E. Nebot, and Ieee, "Long Short-

Term Memory for Driver Intent Prediction," 2017 28th Ieee Intelligent

Vehicles Symposium, IEEE Intelligent Vehicles Symposium, pp. 1484-

1489, 2017. 65

[18] M. Mimura, S. Sakai, T. Kawahara, and A. Isca-Int Speech

Commun, Speech Dereverberation Using Long Short-Term Memory,

2015.

[19] Y. W. Zhang, C. Wang, L. Gong, Y. T. Lu, F. Sun, C. C. Xu, X.

Li, X. H. Zhou, and Ieee, "A Power-Efficient Accelerator Based on

62 _________ References

FPGAs for LSTM Network," IEEE International Conference on Cluster

Computing. pp. 629-630, 2017.

[20] JANUARY 2018, pp. 198–208.UCI Machine Learning

Repository:Japanese,Vowels,Dataset.https://archive.ics.uci.edu/ml/dat

asets/Japanese+Vowels

[21] Hyn-d-man, R.J.: Time Series DataLibrary.

https://datamarket.com/data/list/?q=cat:g24%20 provider:tsdl

[22] Zou, L., Gu, Y., Song, J., Liu, W., Yao, Y.: Long short-term

memory based recurrent neural networks for collaborative filtering. In:

IEEE UIC 2017 San Francisco, CA, USA, pp. 1–6.

https://doi.org/10.1109/uic-atc.2017.8397539

 [23] B. Y. Masram, P. T. Karule, and Ieee, “High Performance

Analysis of a CORDIC Architectures based on FPGA: A comparative

approach,” 2014 International Conference on Advanced

Communication Control and Computing Technologies (Icaccct), pp.

569-574, 2014.

[24] J. Sudha, M. C. Hanumantharaju, V. Venkateswarulu, and H.

Jayalaxmi, “A Novel Method for Computing Exponential Function

Using CORDIC Algorithm,” International Conference on

Communication Technology and System Design 2011, vol. 30, pp. 519-

528, 2012.

[25] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, W. Sung, and Ieee,

“FPGA-based Low-power Speech Recognition with Recurrent Neural

Networks,” 2016 Ieee International Workshop on Signal Processing

Systems (Sips), pp. 230-235, 2016.

[26] Xilinx. "Digilent ZedBoard Zynq®-7000 ARM/FPGA SoC

Development,Board,"https://reference.digilentinc.com/_media/zedboa

rd:zedboard_ug.pdf.

[27] Han et al.: ESE: efficient speech recognition engine with sparse

LSTM on FPGA. In: Proceedings of the 2017 ACM/SIGDA FPGA

2017, Monterey, CA, USA, Feb. 2017, pp. 75–84

[28] Price et al.: A low-power speech recognizer and voice activity

detector using deep neural networks. IEEE JSSC 53(1) (2018)

 __________ ______63

[29] Moini et al.: A resource-limited hardware accelerator for

convolutional neural networks in embedded vision applications. IEEE

TCAS II: Express Briefs 64(10) (2017)

[30] Y. Zhang, C. Wang, L. Gong, Y. Lu, F. Sun, C. Xu, X. Li,

Implementation and Optimization of the Accelerator Based on FPGA

Hardware for LSTM Network: In: 2017 IEEE International Conference

on Ubiquitous Computing and Communications (ISPA/IUCC) https://

DOI 10.1109/ISPA/IUCC.2017.00098

[31] S. Li, Qi. Wang, X. Liu, J. Chen,Y. Zhang, C. Wang, L. Gong, Y.

Lu, F. Sun, C. Xu, X. Li, Low Cost LSTM Implementation based on

Stochastic Computing for Channel State Information Prediction. In:

2018 IEEE Asia Pacific Conference on Circuits and Systems 978-1-

5386-8240-1/18/$31.00 ©2018 IEEE

[32] R. C. Jin, J. F. Jiang, and Y. Dou, “Accuracy Evaluation of Long

Short Term Memory Network Based Language Model with Fixed-Point

Arithmetic,” Applied Reconfigurable Computing, vol. 10216, pp. 281-

288, 2017.

64 _________ Appendix

Appendix

Appendix A

C Code for the LSTM Layer

#include "ap_int.h"

#include "sistema.hpp"

void sistema(ap_int<6> x[12], ap_int<6>

h[50],ap_uint<1>reset)

{

 static ap_int<18> imem[50];

 static ap_int<18> fmem[50];

 static ap_int<19> cmem[50];

 static ap_int<18> omem[50];

 static ap_int<6> h_int[50];

 __________ ______65

 if(reset==1){

 for (int i=0;i<50;i++){

 imem[i]=0;

 fmem[i]=0;

 cmem[i]=0;

 omem[i]=0;

 h_int[i]=0;

 mem2y(x, h_int, h, imem, fmem, cmem,

omem,reset);

 }

 } else{

 mem2y(x, h_int, h, imem, fmem, cmem,

omem,reset);

 memCalc(h_int, imem, fmem, cmem, omem);

 }

}

66 _________ Appendix

Appendix B

C Code for the LSTM Ext function

#include "ap_int.h"

#include "cordic_hls.h"

#define N 50

#define M 12

//x_t sarà su 4 bit. 3 per la parte decimale ed una

per quella intera. (2^0;2^-3)

//void lstm(int5 x_t[N],int5 y_t[N]) {

void mem2y(ap_int<6> x_t[M],ap_int<6>

y_t[N],ap_int<6> y_t_ext[N], ap_int<18> imem[N],

ap_int<18> fmem[N], ap_int<19> cmem[N], ap_int<18>

omem[N],ap_uint<1> reset) {

 __________ ______67

//const ap_int<4> Wxi[] = {

const ap_int<5> Wxi[] = {

#include "Wxi.txt"

};

const ap_int<5> Whi[] = {

#include "Whi.txt"

};

const ap_int<5> Wxf[] = {

#include "Wxf.txt"

};

const ap_int<5> Whf[] = {

#include "Whf.txt"

};

const ap_int<7> Wxc[] = {

#include "Wxc.txt"

};

const ap_int<6> Whc[] = {

#include "Whc.txt"

};

//const int5 Wxo[] = {

const ap_int<5> Wxo[] = {

#include "Wxo.txt"

};

const ap_int<5> Who[] = {

#include "Who.txt"

};

const ap_int<8> b_i[] = {

#include "bi.txt"

68 _________ Appendix

};

const ap_int<10> b_f[] = {

#include "bf.txt"

};

const ap_int<9> b_o[] = {

#include "bo.txt"

};

const ap_int<9> b_c[] = {

#include "bc.txt"

};

ap_int<19> i_t_pre[N],o_t_pre[N];

//ap_int<15> app, app2, app3;

ap_int<19>f_t_pre[N];

ap_int<20>g_t_pre[N];

ap_int<6> i_t[N],f_t[N];

ap_int<6>g_t[N],o_t[N];

ap_int<8> in_wave;

ap_int<2> sigma;

ap_int<45>

wave_out_i,wave_out_i2,wave_out_f,wave_out_f2,

 __________ ______69

wave_out_g,wave_out_g2,wave_out_o,wave_out_o2,wave_

out_c2,wave_out_c;

ap_int<11> costante;

ap_int<22> variante,variante2;

ap_int<22> risultatov;

//solo c_t_1 deve essere static (controllare)

ap_int<13> c_t_pre[N];

//serve memoria su y_t_pre? (controllare)

// ap_int<14> y_t_pre[N];

ap_int<12> y_t_pre[N];

//static int5 c_t[N],c_t_1[N],y_t_1[N];

//solo c_t_1 deve essere static (controllare)

static ap_int<6> c_t_1[N];

ap_int<6> uno_long;

ap_int<6> c_t[N];

static ap_int<6> y_t_1[N];

ap_int<30>

risultatoi,risultatoo,risultatoi2,risultatoo2;

ap_int<30> risultatof,risultatof2;

ap_int<31>risultatog;

70 _________ Appendix

ap_int <31> risultatog2;

ap_int<13>c_t_pre2[N];

ap_int<45> rounding37;

ap_int<30> rounding11;

ap_int<24>rounding9;

ap_int<31> rounding11g;

ap_int<6> rounding_out=1;

rounding_out=(rounding_out<<2);

int j,k,w;

uno_long=1;

uno_long=uno_long<<3;

costante=652;

rounding37=1;

rounding37=rounding37<<37;

rounding11g=1;

rounding11g=rounding11g<<11;

rounding11=1;

rounding11=rounding11<<11;

rounding9=1;

rounding9=rounding9<<9;

ap_int<6> c_t_tanh[N];

 __________ ______71

if(reset==1){

 for(int T=0;T<N;T++){

 y_t_1[T]=0;

 c_t_1[T]=0;

 }

}

else{

i__t:

for(j=0;j<N;j++){

 i_t_pre[j]=0;

 f_t_pre[j]=0;

 o_t_pre[j]=0;

 g_t_pre[j]=0;

 lstm_label6:for(k=0;k<M;k++){

 //app3 = (ap_int<15>)x_t[k];

 //app2 = (ap_int<15>)Wxi[j*M+k];

 //app = app2*app3;

 i_t_pre[j]=i_t_pre[j]+Wxi[j*M+k]*x_t[k];

f_t_pre[j]=f_t_pre[j]+Wxf[j*M+k]*x_t[k];

 o_t_pre[j]=o_t_pre[j]+Wxo[j*M+k]*x_t[k];

 g_t_pre[j]=g_t_pre[j]+Wxc[j*M+k]*x_t[k];

}

//calcolo i_t

72 _________ Appendix

i_t_pre[j]=i_t_pre[j]+imem[j]+b_i[j];

if(i_t_pre[j]<-805){

i_t[j]=0;

}

else if(i_t_pre[j]>804){

i_t[j]=uno_long;

}

else{

 risultatoi=i_t_pre[j]*costante;

risultatoi=risultatoi+rounding11;

risultatoi2=risultatoi>>12;

sigma=1;

in_wave=risultatoi2;

cordic_hls(in_wave,sigma,&wave_out_i);

wave_out_i=wave_out_i+rounding37;

wave_out_i2=wave_out_i>>38;

i_t[j]=wave_out_i2;

}

//calcolo f_t

 __________ ______73

f_t_pre[j]=f_t_pre[j]+fmem[j]+b_f[j];

if(f_t_pre[j]<-805){

f_t[j]=0;

}

else if (f_t_pre[j]>804){

f_t[j]=uno_long;

}

else{

 risultatof=f_t_pre[j]*costante;

 risultatof=risultatof+rounding11;

 risultatof2=risultatof>>12;

 sigma=1;

 in_wave=risultatof2;

cordic_hls(in_wave,sigma,&wave_out_f);

 wave_out_f=wave_out_f+rounding37;

 wave_out_f2=wave_out_f>>38;

 f_t[j]=wave_out_f2;

 }

 //calcolo o_t

74 _________ Appendix

 o_t_pre[j]=o_t_pre[j]+omem[j]+b_o[j];

 if(o_t_pre[j]<-805){

 o_t[j]=0;

 }

 else if(o_t_pre[j]>804){

 o_t[j]=uno_long;

 }

 else{

risultatoo=o_t_pre[j]*costante;

risultatoo=risultatoo+rounding11;

 risultatoo2=risultatoo>>12;

 sigma=1;

 in_wave=risultatoo2;

cordic_hls(in_wave,sigma,&wave_out_o);

wave_out_o=wave_out_o+rounding37;

 wave_out_o2=wave_out_o>>38;

 o_t[j]=wave_out_o2;

 }

// calcolo g_t

g_t_pre[j]=g_t_pre[j]+cmem[j]+b_c[j];

if(g_t_pre[j]<-805){

 __________ ______75

g_t[j]=-8;

}

else if(g_t_pre[j]>804){

g_t[j]=uno_long;

}

else {

 risultatog=g_t_pre[j]*costante;

risultatog=risultatog+rounding11;

 risultatog2=risultatog>>12;

 sigma=0;

 in_wave=risultatog2;

cordic_hls(in_wave,sigma,&wave_out_g);

wave_out_g=wave_out_g+rounding37;

 wave_out_g2=wave_out_g>>38;

 g_t[j]=wave_out_g2;

 }

 c_t_pre[j]=f_t[j]*c_t_1[j]+i_t[j]*g_t[j];

76 _________ Appendix

 c_t_pre2[j]=c_t_pre[j]+rounding_out;

 c_t_pre2[j]=c_t_pre2[j]>>3;

 c_t[j]=c_t_pre2[j];

 c_t_1[j]=c_t[j];

 if(c_t_pre[j]<-805){

 c_t_tanh[j]=-8;

 }

else if (c_t_pre[j]>804){

 c_t_tanh[j]=uno_long;

 }

 else{

 variante=c_t_pre[j]*costante;

 sigma=0;

 variante=variante+rounding9;

 variante2=variante>>10;

 in_wave=variante2;

 cordic_hls(in_wave,sigma,&wave_out_c);

 wave_out_c=wave_out_c+rounding37;

 wave_out_c2=wave_out_c>>38;

 __________ ______77

c_t_tanh[j]=wave_out_c2;

}

y_t_pre[j]=o_t[j]*c_t_tanh[j];

y_t_pre[j]=y_t_pre[j]+rounding_out;

y_t_pre[j]=y_t_pre[j]>>3;

y_t[j]=y_t_pre[j];

y_t_1[j]=y_t[j];

y_t_ext[j]=y_t[j];

}

Appendix C

Code for the Memcalc function of the LSTM Layer

#include "ap_int.h"

#define N 50

#define M 12

//void lstm(int5 x_t[N],int5 y_t[N]) {

void memCalc(ap_int<6> y_t[N], ap_int<18>

imem_o[N],

ap_int<18> fmem_o[N], ap_int<19> cmem_o[N],

ap_int<18> omem_o[N]) {

const ap_int<5> Wxi[] = {

#include "Wxi.txt"

};

78 _________ Appendix

const ap_int<5> Whi[] = {

#include "Whi.txt"

};

const ap_int<5> Wxf[] = {

#include "Wxf.txt"

};

const ap_int<5> Whf[] = {

#include "Whf.txt"

};

const ap_int<7> Wxc[] = {

#include "Wxc.txt"

};

const ap_int<6> Whc[] = {

#include "Whc.txt"

};

//const int5 Wxo[] = {

const ap_int<5> Wxo[] = {

#include "Wxo.txt"

};

const ap_int<5> Who[] = {

#include "Who.txt"

};

//const ap_int<7> b_i[] = {

const ap_int<8> b_i[] = {

#include "bi.txt"

};

 __________ ______79

//const ap_int<10> b_f[] = {

const ap_int<10> b_f[] = {

#include "bf.txt"

};

//const ap_int<8> b_o[] = {

const ap_int<9> b_o[] = {

#include "bo.txt"

};

 //const ap_int<8> b_c[] = {

 const ap_int<9> b_c[] = {

 #include "bc.txt"

 };

 ap_int<18> imem[N];

 ap_int<18> fmem[N];

 ap_int<19> cmem[N];

 ap_int<18> omem[N];

 int j,k,w;

80 _________ Appendix

//calcolo le memorie dipendenti da h:

imem_lbl:

for(j=0;j<N;j++){

imem[j]=0;

fmem[j]=0;

cmem[j]=0;

omem[j]=0;

lstm_label2:for(w=0;w<N;w++){

 imem[j] = imem[j] + Whi[j*N+w]*y_t[w];

 fmem[j] = fmem[j] + Whf[j*N+w]*y_t[w];

 cmem[j] = cmem[j] + Whc[j*N+w]*y_t[w];

 omem[j] = omem[j] + Who[j*N+w]*y_t[w];

}

 //le costanti di polarizzazione vengono

spostate nell'altro

blocco

//imem[j] = imem[j] + b_i[j];

imem_o[j] = imem[j];

//fmem[j] = fmem[j] + b_f[j];

 __________ ______81

fmem_o[j] = fmem[j];

//cmem[j] = cmem[j] + b_c[j];

cmem_o[j] = cmem[j];

//omem[j] = omem[j] + b_o[j];

omem_o[j] = omem[j];

}

}

Appendix D

C Code for the Testbench of the LSTM Layer

#include "sistema.hpp"

#include "ap_int.h"

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#define N 50

#define M 12

#define S 370

int main()

{

 char num[12];

 int contaSeq;

82 _________ Appendix

 ap_int<6> x_tb[M];

 ap_int<6>h_tb[N];

 ap_uint<1>reset_tb=0;

 FILE *fp,*fp2;

 char nomeFile[100];

 char nomeFileout[100];

 for(contaSeq=1;contaSeq

<(S+1);contaSeq++){

 strcpy(nomeFile,"Seq");

 strcpy(nomeFileout,"u");

 itoa(contaSeq,num,10);

 strcat(nomeFile,num);

 strcat(nomeFile,".txt");

 strcat(nomeFileout,num);

 strcat(nomeFileout,".txt");

 __________ ______83

fp=fopen(nomeFile,"r");

 fp2=fopen(nomeFileout,"w");

 reset_tb=1;

 int pass;

if(reset_tb==1){

 sistema(x_tb,h_tb,reset_tb);

 reset_tb=0;

}

 while (!feof(fp)){

 for (int

contaDim=0;contaDim<M;contaDim++){

 fscanf(fp,"%d,",&pass);

 x_tb[contaDim]=(ap_int<6>)pass;

 //fscanf(fp,"%d",&pass);

 }

84 _________ Appendix

 if(!feof(fp)){

 sistema(x_tb,h_tb,reset_tb);

 for (int i=0;i<50;i++){

fprintf(fp2,"%d\n",(int)h_tb[i]);

 }

 }

 }

 fclose(fp);

 fclose(fp2);

}

 // /*

 // * Applico gli ingressi al

sistema

 // * */

 // sistema(x, h);

 // /*

 __________ ______85

 // * Salvo le uscite

 // * */

 //}

// }

 return 0;

}

