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Summary

In this thesis, statistical methods for industrial process monitoring are proposed. The
industrial scenario that motivates the research work is the monitoring and prediction of fuel
consumption and CO2 emissions from maritime transportation. The two main objectives are,
on the one hand, the prediction of fuel consumption (and/or CO2 emissions) on the basis of
covariates describing the ship operating conditions at each voyage by means of advanced
regression methods, and, on the other hand, the statistical process monitoring of the ship
operating conditions and the fuel consumption (and/or CO2 emissions) based on control
charts.

The proposed methodologies can be arranged in three groups on the basis of how they
treat the data for each voyage of a ship. The first group uses multivariate techniques, which,
for each voyage, consider each individual observation of the variables as scalar quantities.
Typically, the mean value of each variable over a voyage is considered. The second group
considers the data for each voyage as profiles, from which several features are extracted in
order to describe them in the best possible way. The third group considers the data for each
voyage as functions, i.e. as complex, unique objects that have to be treated using functional
data analysis techniques.

The common ground of all the proposed methodologies is the need to provide tools to
industrial practitioners that are easily interpretable and give clear indications of anomalies
by identifying the related causes, possibly in real-time, and the use of real-data examples to
demonstrate their predictive and monitoring abilities.
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Chapter 1

Introduction

The aim of this thesis is to provide statistical methods in the industrial context of prediction
and monitoring of fuel consumption and CO2 emissions from maritime transportation. The
two main objectives are the prediction of fuel consumption (and/or CO2 emissions) on
the basis of covariates describing the ship operating conditions at each voyage by means
of advanced regression methods, and the statistical process monitoring of ship operating
conditions and fuel consumption (and/or CO2 emissions) based on control charts.

The relevance of the industrial scenario is highlighted by the new international regulations,
such as the EU regulation 2015/757, which urge shipping operators to set up systems for the
monitoring, reporting and verification of CO2 emissions. These regulations in the shipping
sector aim to give greater transparency to operations and public access to CO2 emissions data.
On the other hand, the continuous acquisition of operational data, which is performed on
most of the modern ships, urgently calls for the application of new and opportune statistical
methods able to deal with high-dimensional data. Modern multi-sensor systems are able to
stream massive amounts of high-frequency observational data, which can be considered to be
varying over a continuous domain, therefore ship operating conditions can be described by
sensor signals collected throughout each voyage and stored as profiles. However, in today’s
market, there is no standard solution or method available that can be robustly adopted in
real environments for the shipping industry.

The methodologies proposed in this thesis are shown in the next chapters and can be
arranged in three groups on the basis of how they treat the data for each voyage of a ship.
The first group of methodologies uses multivariate techniques, that is, for each voyage,
observations of the variables are scalar quantities. The second group of methodologies
considers the data for each voyage as profiles, from which several features are extracted in
order to describe them in the best possible way. The third group of methodologies considers
the data for each voyage as functions, i.e. as complex, unique, objects, which are to be
treated using functional data analysis techniques.

In order to give an overview of the entire research work, we briefly introduce the industrial
scenario motivating the research work in Section 1.1, then we introduce methods for the
prediction of ship fuel consumption and CO2 emissions in Section 1.2 and methods for
statistical process monitoring of ship performance in Section 1.3.
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1.1 The industrial scenario

In the last years, the problem of monitoring CO2 emissions in the maritime transportation
field has become of paramount importance in view of the climate change and global warming
issues. The shipping industry is nowadays facing a new regulatory regime that aims to
give public access to emissions data. At the European level, the application of the EU
regulation 2015/757 (European Commission 2015), which is mandatory from January 2018,
urges shipping companies to set up a system for daily monitoring, reporting, and verification
(MRV) of emissions for each ship. At the world level, environmental directives imposed by
the Kyoto Protocol and the International Maritime Organization (IMO) are coming into
force to strictly control greenhouse gases emissions, especially into the so-called emission
controlled areas (Buhaug et al. 2009, IMO 2012a,b,c,d, European Commission 2013). Then,
the extensive and increasingly demanding air pollution programs make predicting ships’ CO2
emissions not only a strategic, but also a mandatory task for shipping companies.

Concurrently, automatic multi-sensor acquisition systems installed on-board of modern
ships allow data to be uploaded and stored without manual intervention and in very short
periods of time. Thus, the initial problem of acquiring and transferring data to a remote
server (Chen 1989) now turns into a problem of correctly handling and processing the
information hidden in the massive amount of operational data (Bertram 2011, Løvoll &
Kadal 2014) available (e.g. vessel’s resistance, power needed for propulsion, fuel consumption,
speed, different routes, weather conditions, sea weaves, displacement, draughts, trim, engine
operation mode, etc.) and converting it into value. The profile of these variables is typically
complex, unstructured, intrinsically collinear and with non-stationary behaviour.

The critical issue of predicting ship fuel consumption and CO2 emissions in the shipping
industry is a starting point to devise better operational strategies to mitigate this envi-
ronmental aspect and decrease the ecological footprint of the shipping activity. The most
common method used in the naval literature to estimate the fuel consumption concerns the
use of the so-called power-speed curves, because a direct proportional relationship also holds
between the engine power and the fuel consumption through the power-based specific fuel
oil consumption coefficient (see e.g. Corbett & Koehler (2003)). Methods for estimating
the relationship between operational data and some response (such as fuel consumption or
CO2 emissions) are usually classified as white-box, when based only on principles of physics
and black-box, when the relationship between response and predictor variables is purely
data-driven. However, these two extreme categories are not so well distinct and grey-box is
the most common label for methods that start from physics principles but also learn from
the observed data. The marine engineering literature mainly relies on the use of white-box
models. The most common example to estimate the fuel consumption and CO2 emissions is
the use of the so-called power-speed curves (Van Manen et al. 1988, Schrady et al. 1996),
which describe an ideal univariate relationship between vessel speed and the engine power.
In fact, a direct proportional relationship also holds between the engine power and the
fuel consumption through the power-based specific fuel oil consumption coefficient (see e.g.
Corbett & Koehler (2003)). However, these curves are usually calibrated through dedicated
tests and overlook other factors affecting the vessel during navigation, then this leads to
poor predictions of fuel consumption and harmful emissions. In this context and in the
recent years, a few black- and grey-box approaches have been proposed to circumvent these
limitations. Perera & Mo (2016) drew empirical relationships between ship resistance and
speed through data visualization methods. Petersen et al. (2012) investigated artificial neural
networks and Gaussian Process approaches for statistical modeling of fuel efficiency. Lu et al.
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(2015) developed a semi-empirical ship operational performance predictive model to estimate
the ship’s added resistance considering specific additional variables. Bocchetti et al. (2015)
proposed a statistical approach founded on multiple linear regression which allows for both
point-wise and interval predictions of the fuel consumption at given operating conditions.

Classical approaches used in the naval literature may fail or are at least suboptimal,
since they are often limited to the analysis of averages per voyage. However, in spite of
the easier interpretability, compressing a variable profile into a single average value may
lead to significant information loss and to discarding most of the relevant dynamic patterns.
For these reasons, in this thesis we propose the methodologies briefly summarized in the
following sections.

1.2 Methods for the prediction of ship fuel consumption and CO2
emissions

Nowadays, the statistical and data science domains offer potentially interesting tools. Statis-
ticians, engineers and data scientists are naturally called upon in order to propose and test
alternative predictive techniques that might answer positively to the issues referred above,
especially when applied to current complex data, which is typically less structured, larger in
size, and requires merging several datasets from various sources.

We want to clarify that in this thesis, the term “prediction” is not used in the sense
of “forecasting”, i.e. being able to predict the amount of CO2 emissions before the end
of a voyage, or of voyages following the current one. The main aim with prediction is to
“model the variability” of the scalar response variable conditional on all factors that can
influence it. This is useful because, at the end of a new voyage to be monitored, for example,
the practitioner is able to understand that the amount of CO2 emissions was higher than
average because of adverse weather conditions and then its variability was not unusual given
the model, while, on the other hand, in some other situation the amount of CO2 emissions
was close to the average, but its prediction error was too large, then this situation should
be signaled as potentially anomalous. It is also important to note that there are both
controllable and uncontrollable covariates, for example the speed of a ship is a controllable
factor, while the wind speed is uncontrollable. Using both controllable and uncontrollable
factors is crucial, because they allow to model the variability of the scalar response better.

The next subsections illustrate the methodologies proposed in this thesis for prediction
of ship fuel consumption and CO2 emissions, by following the increasing complexity of the
data, i.e. we consider multivariate methods, feature-oriented methods, and scalar-on-function
regression.

Multivariate methods
In Chapter 2 multivariate methods for the prediction of ship fuel consumption and CO2
emissions are proposed. A first aim of this thesis is in fact to compare and discuss modern
regression techniques and their ability for predicting ships’ CO2 emissions based on the
navigation information available in modern ships and to develop a robust and accurate model
for this critical aspect. A large number of regression methods are available in the literature
and can be used in the present context of predicting CO2 emissions. Chapter 2 proposes four
different classes of regression methods representing a rich variety of modeling approaches
usually considered for handling large datasets possibly presenting collinearity and sparsity
issues: variable selection methods, penalized regression methods, latent variable methods
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and tree-based ensemble methods. Each class contains methods that share similarities in
terms of prior assumptions regarding the predictor variables, the response variable (ship fuel
consumption or CO2 emissions), and the relationship between them.

Variable selection methods. The variable selection class assumes that only some predictors
are relevant for the prediction model, i.e. some predictor variables carry relevant information
regarding the response while others are irrelevant and should be discarded in order to obtain
more simple, robust and parsimonious models.

Penalized regression methods. The class of penalized regression methods imposes a penalty
on the magnitude of the regression coefficients, thus constraining their values to be small.
The penalty increases the bias of the regression model, but stabilizes the estimator variance
so that better estimates of the regression coefficients can be obtained. Note that the variance
decrease often compensates the bias increase so that the overall prediction performance can
be improved. This includes four regression methods: ridge regression (Draper & Smith 2014),
least absolute shrinkage and selection operator (Tibshirani 1996, Rasmussen & Bro 2012)
(LASSO), elastic net and support vector regression (Smola & Schölkopf 2004, Ahmed et al.
2010, Canu et al. 2005).

Latent variable methods. The third class of methods is based on the latent variable
framework (Burnham et al. 1999) where a set of unmeasured quantities are considered to
be responsible for the observed variability in both predictors and response variable. Linear
combinations of the measured variables are used to estimate the latent variables and the
model obtained can be used for predicting the response based on the available predictors.
This class includes three regression methods: principal component regression (Jolliffe 2002,
Jackson 2005, Wold et al. 1987), principal component regression with the scores added in
a forward stepwise fashion (PCRFS) and partial least squares regression (Wold et al. 2001,
Geladi & Kowalski 1986, Wold et al. 1984).

Tree-based ensemble methods. The last class of regression methods is based on ensembles
of regression trees (Hastie et al. 2009, Dietterich 2000, Strobl et al. 2009, Breiman et al.
1984). A regression tree is a model that splits the predictors’ space into regions where the
response variability is small. Then, the mean response of the samples within the leaf is the
predicted value. Ensemble methods are adopted to decrease the variance of the trees, which
is indeed very high when trees are deep and therefore could overfit the training sets. This
class includes three regression methods: bagging of regression trees (BRT), random forests
(RF) and boosting of regression trees (BT). BRT applies bootstrap to the original dataset in
order to generate many datasets. Each one of these datasets is used to build a regression tree
and the average prediction from all trees in the ensemble constitute the predicted response.
Similarly, RF uses bootstrap to generate datasets, which however only contain a smaller
number (e.g. ?

p) of randomly selected predictors. Lastly, BT (Elith et al. 2008, Cao et al.
2010, Freund et al. 1996) iteratively fits regression trees to the residuals from previous trees
so that each tree focuses on samples that were poorly modelled.

Feature-oriented methods

In Chapter 5, feature-oriented methods for the prediction of ship fuel consumption and CO2
emissions are proposed. Automatic multi-sensor acquisition systems installed on-board of
modern ships facilitate collecting operational data (i.e., ship operating conditions) from a
massive number of variables. The profile of these variables is typically complex, unstructured,
intrinsically collinear and with non-stationary behavior. In this scenario, classical approaches
used in the naval literature may fail or are at least suboptimal, since they are limited to the
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analysis of averages per voyage. However, in spite of the easier interpretability, compressing
a variable profile into a single average value may lead to significant information loss and to
discarding most of the relevant dynamic patterns.

In the opposite spectrum of complexity, multivariate statistical methods commonly used
for monitoring batch processes usually require the implementation of data pre-processing
techniques that constitute an additional challenge for practitioners and may hamper their
practical usability. For example, data needs to be correctly unfolded to handle its three-way
structure, resulting in a very large number of pseudo-variables and model parameters. Fur-
thermore, complex synchronization methods are required in order to ensure that the voyages’
major landmarks are aligned and that all voyages have the same number of observations.

The batch process monitoring literature is vast and another class of approaches that is
growing in importance is the class of feature-oriented methods. These methods are simpler
to apply because they do not require synchronization and tend to be more parsimonious
since the number of model parameters is smaller. Examples of feature-oriented methods
include profile-driven features, recently proposed by Rendall et al. (2017), and statistical
pattern analysis, proposed by He & Wang (2011). These techniques compress each variable
into a small number of features that can be utilized for data-driven model building.

Scalar-on-function regression method
In Chapter 7, functional data analysis methods for the prediction of ship fuel consumption
and CO2 emissions are proposed. The most complex approach to the prediction problem
avoids the simplification of feature-oriented methods that extract relevant features from the
profiles, but it treats the data describing the operating conditions of a ship over each voyage
as unique, complex mathematical objects, such as functions or vectors of functions. In this
context, functional data analysis techniques, in particular scalar-on-function regression, can
be used to predict the fuel consumption or CO2 emissions at each voyage.

Denote by X “ pX1, . . . , XP q a vector of random elements that take value in the space
of square integrable functions, and with y the scalar response variable representing the fuel
consumption or the CO2 emissions at each voyage, let tpXi, yiqui“1,...,n be a random sample
from pX, yq, with Xi “ Xiptq “ pXi1ptq, . . . , XiP ptqq being a vector of functional covariates.
The conditional distribution of yi given the corresponding observation of the functional
covariates Xi can be modeled by means of the following scalar-on-function regression model

yi “ β0 `

P
ÿ

p“1

ż

T
Xipptqβpptqdt` εi, i “ 1, . . . , n, (1.1)

where β0 P R, β “ pβ1, . . . , βP q, with βp P L2pT q, the space of square integrable functions,
are the coefficient to be estimated, and ε1, . . . , εn are the error terms, which are assumed to
be independent identically distributed. Estimation of these types of models requires to deal
with the infinite dimensionality of the dataset.

1.3 Methods for statistical process monitoring of ship
performance

First of all, we want to clarify the meaning of the word “monitoring” in this thesis work.
According to Woodall (2017), because it better reflects the application of the methods, the
use of control charts and other monitoring methods should be referred to as “statistical
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process monitoring”, not “statistical process control.” The use of the word “control” implies
that control actions based on an adjustment variable are part of the practice and theoretical
framework in the sense of Box & Narasimhan (2010), however this is not the case in this
thesis.

The statistical process monitoring literature makes a distinction between phase I and
phase II monitoring (Vining 2009). Phase I control charts use a “base period,” which is the
period used to estimate the control chart parameters. Phase I control charts are much more
an exploratory data analytic tool. Phase II control charts treat the control chart parameters
as known and in actual practice these are estimated based on the results from the phase I
study. One legitimately may view a phase II control chart as a sequence of hypothesis tests.
In this thesis, only phase II control charts are proposed. While there is always a phase I
based on both statistical and engineering considerations to remove outliers that can affect
estimation of model parameters and control chart limits, this part is not focus of this thesis
and we use phase I only to estimate model parameters. The objective is to identify new
voyages as anomalous after estimation of model parameters, then we perform only phase II
monitoring. Therefore, in each chapter it is always assumed that the data used for model
estimation have already been filtered and do not contain outliers.

There are two main aims related to statistical process monitoring of ship performance and
fuel consumption and/or CO2 emissions: (i) statistical monitoring of ship fuel consumption
and CO2 emissions to support shipping management to identify anomalies and (ii) quantifying
fuel consumption reduction consequent to energy efficiency initiatives or dry-dock operations.
In the naval literature, the most common method used to estimate fuel consumption and
then CO2 emissions is the so-called speed-power curve. These curves are used both for
prediction and monitoring of any possible anomalies in the ship performance. However,
despite its intuitive usage, this method is affected by large variability due to different sailing
(e.g. trim, displacement, etc.) and weather conditions. Many of the available methods for
prediction and monitoring have strong limitations when applied to high-dimensional and
correlated data, or they do not fully exploit all of the available information.

There is a common framework among all the methods proposed in this thesis for statistical
process monitoring, which can be summarized in the following steps:

1. the starting point is a regression model where the ship fuel consumption or the CO2
emissions are the response variable to be predicted using one of the approaches described
in the previous section;

2. since the predictor variable space is characterized by high or infinite dimensionality,
dimensionality reduction is applied to both stabilize the estimation of regression
coefficients in the prediction problem and to describe covariates in a more efficient
and interpretable way, in a lower dimensional subspace; usually principal component
analysis (possibly functional) and partial-least squares methods are used for this
purpose;

3. the dimension reduction provides a nice split of the covariate space into two comple-
mentary subspaces: correspondingly, two control charts are used. Usually the Hotelling
T 2 statistic is calculated on the variables obtained from the projection of covariates
onto the subspace of the components retained in the model, while a squared prediction
error statistic monitors the squared distance of the covariates in the original space from
the projection subspace; finally a third monitoring statistic looks at the prediction
error on the response variable based on the regression model;
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4. on the basis of the monitoring statistics and a reference sample of in-control observations,
control charts are built to monitor future observations;

5. once control charts are built (again, in all the research work proposed in this thesis,
phase I focuses only on estimation of model parameters), we can use them to detect if
a new observation is anomalous, in phase II;

6. when some control charts detect out-of-control observations, contribution plots are
built in order to decompose the monitoring statistics as sums over the covariates and
then to identify the variable(s) responsible of anomalies.

The next subsections illustrate the methodologies proposed in this thesis for monitoring
ship performance, by following the increasing complexity of the data, i.e. we consider
multivariate methods and functional data analysis methods. We want to specify that most
of the thesis refers to a retrospective monitoring, which means that points can be plotted on
control charts for each monitoring statistic only at the end of a ship voyage, even though
variables for each voyage are stored as profiles. Then, the monitoring is performed at the
end of each voyage by looking backwards at the data off-line. The real-time monitoring is
indeed of primary interest and is in fact the newest part of this thesis work. It is presented
in Chapter 7. However, we think that off-line monitoring is still interesting to give valuable
information to the maritime engineers between consecutive voyages, moreover when profiles
are analyzed it is important to have indication about which part of a voyage was potentially
anomalous.

Multivariate methods
In Chapters 3 and 4, multivariate methods for monitoring ship performance are proposed.
Chapter 4 uses partial-least squares (PLS) regression that is very useful because it is able
to give good predictions of the response variable and also allows multivariate statistical
process monitoring. The choice of the PLS in place of e.g., multiple linear regression has
great potential of supporting the management to handle the great amount of data collected
on board of modern ships that are usually noisy and strongly correlated. The residuals left
by the PLS model are also naturally prone to be monitored at each new voyage through
prediction error control chart, whereas the predictor variables can be monitored through
the Hotelling’s T 2 and squared prediction error control charts. When a point falls outside
the upper control limit of at least one of the control charts, a possible problem may have
occurred. The management is then urged to further investigate physical variables that have
caused the out-of-control condition by exploring the corresponding contribution plot.

Another novel method proposed in this thesis is developed in Chapter 3 with the aim of
enhancing fuel-speed curves accuracy when information is available on additional factors
from multi-sensor systems. This is done by elaborating the orthogonal least-squares partial
least-squares (LS-PLS) approach (Jørgensen et al. 2004, 2007). This method avoids the
collinearity issue between additional factors (Montgomery et al. 2012), which usually bounds
the number of additional factors to be included in the regression models. The LS-PLS
estimation method makes interpretation easier with respect to the standard partial least-
squares (PLS). The orthogonal LS-PLS algorithm is in fact used to estimate parameters of
the model and to maintain the physical relation between fuel consumption (or CO2 emissions)
per hour and speed over ground expected by marine engineers that are used to classical
fuel-speed curves. Besides, the LS-PLS method is expanded also for constructing opportune
control charts for monitoring the predictor variables as well as the response variable.
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Functional data analysis methods
As for the prediction problem case, while multivariate methods described above work
with summary statistics (typically averages) for each voyage to perform statistical process
monitoring, ship operating conditions can be described by sensor signals collected throughout
each voyage and stored as profiles. The latter can be analyzed through appropriate techniques.

The main advantage of considering profiles instead of single observations per each voyage
is the possibility to give real-time predictions and indications on possible anomalies in ship
operating conditions during a voyage and on the instant at which anomalies may have
occurred.

Two main approaches are presented in this thesis to profile monitoring. Both of them
are able to monitor profiles with different lengths at different voyages (due to the different
duration).

• The first one is presented in Chapter 6 and uses multi-way partial least-squares
regression Nomikos & MacGregor (1995a) and a multilinear version of PLS proposed
by Bro (1996), Smilde (1997), which is called three-way partial least-squares (tri-PLS),
which requires a three-dimensional array that contains ship operational reference
profiles at given domain points with the following three dimensions: the number of
replications, the number of variables, and the number of evaluation points.

• The second one is presented in Chapter 7 and is based on functional data analysis, in
particular on multivariate functional principal component analysis.

1.4 Outline of the thesis

Next chapters are based on papers that have been published in refereed journals. In particular,
Chapter 2 is based on the paper:

• Lepore, A., Reis, M. S. d., Palumbo, B., Rendall, R. & Capezza, C. (2017), ‘A
comparison of advanced regression techniques for predicting ship CO2 emissions’,
Quality and Reliability Engineering International 33(6), 1281–1292.

Chapter 3 is based on the paper:

• Lepore, A., Capezza, C., & Palumbo, B. (2019), ‘Orthogonal LS-PLS approach to
ship fuel-speed curves for supporting decisions based on operational data’, Quality
Engineering 31(3), 386–400.

Chapter 4 is based on the paper:

• Capezza, C., Coleman, S., Lepore, A., Palumbo, B. & Vitiello, L. (2019), ‘Ship fuel
consumption monitoring and fault detection via partial least squares and control charts
of navigation data’, Transportation Research Part D: Transport and Environment 67,
375–387.

Chapter 5 is based on the paper:

• Reis, M. S. d., Rendall, R., Palumbo, B., Lepore, A. & Capezza, C. (2019), ‘Predicting
ships’ CO2 emissions using feature-oriented methods’, Applied Stochastic Models in
Business and Industry 36(1), 110–123.
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Chapter 6 is based on the paper:

• Lepore, A., Capezza, C., & Palumbo, B. (2018), ‘Analysis of profiles for monitoring of
modern ship performance via partial least squares methods’. Quality and Reliability
Engineering International 34(7), 1424–1436.

Chapter 7 is based on the paper:

• Capezza, C., Lepore, A., Menafoglio, A., Palumbo, B. & Vantini, S. (2020+), ‘Control
charts for monitoring ship operating conditions and CO2 emissions based on scalar-
on-function regression’. To appear in Applied Stochastic Models in Business and
Industry.

Finally, Chapter 8 introduces the R package funcharts, which provides the software for
the methodology proposed in Chapter 7 and is available on GitHub at the link https:
//github.com/unina-sfere/funcharts.

In particular, Chapters 2, 4, and 5 are based on papers that are output of a collaboration
agreement between The Industrial Statistics Research Unit, Newcastle University, United
Kingdom, The Department of Industrial Engineering, University of Naples Federico II,
Italy, The Process Systems Engineering Group of the Chemical Process Engineering and
Forest Products, and Research Center (CIEPQPF), Department of Chemical Engineering,
University of Coimbra, Portugal, whose title is “Big data in shipping for monitoring and
benchmarking fuel efficiency and CO2 emissions”, which has been signed with reference to
years 2016, 2017, and 2018, and which has been extended to years 2019, 2020, and 2021.
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Chapter 2

Advanced regression techniques for
the prediction of ship CO2 emissions

The new European Union Regulations urge shipping operators to set up systems for the
monitoring, reporting and verification of CO2 emissions. Indeed, new monitoring data
acquisition systems installed on modern ships have brought a navigation data overload
that needs to be correctly handled in order to make proper decisions about their operation.
However, in today’s market, there is no standard solution or method available that can
be robustly adopted in real environments for the shipping industry. In view of the novel
attempts for solving this issue proposed by statisticians, marine engineers and practitioners,
this chapter presents an extensive comparison of several regression techniques that can exploit
the navigation information usually available in modern ships: variable selection methods,
penalized regression methods, latent variable methods and tree-based ensemble methods.
The comparison is made by means of operational data collected on a Ro-Pax cruise ship
owned by the Italian shipping company Grimaldi Group. The goal of this analysis is twofold:
(i) to identify methodologies with more potential at analyzing the data collected from this
shipping industry scenario; (ii) to develop a predictive model for CO2 emissions with good
characteristics of accuracy and robustness.

2.1 Introduction

The shipping industry is currently facing a new regulatory regime as well as new relevant
market challenges. Environmental directives imposed by the Kyoto Protocol and the Interna-
tional Maritime Organization (IMO) are coming into force to strictly control greenhouse gases
emissions, especially into the so-called emission controlled areas (Buhaug et al. 2009, IMO
2012a,b,c,d, European Commission 2013). Concurrently, sensor technology and automatic
acquisition systems allow data to be uploaded and stored without manual intervention and
in very short periods of time. Thus, the initial problem of acquiring and transferring data to
a remote server (Chen 1989) now turns into a problem of correctly handling and processing
the information hidden in the massive amount of operational data (Bertram 2011, Løvoll &
Kadal 2014) available (e.g. vessel’s resistance, power needed for propulsion, fuel consumption,
speed, different routes, weather conditions, sea weaves, displacement, draughts, trim, engine
operation mode) and converting it into value.

This article addresses the critical issue of predicting CO2 emissions in the shipping industry,

13



2. Predicting ship CO2 emissions

as a starting point to devise better operational strategies to mitigate this environmental
aspect and decrease the ecological footprint of this activity. In this context, methods for
estimating the relationship between operational data and some response (such as CO2
emissions) are usually classified as white-box, when based only on principles of physics
and black-box, when the relationship between response and predictor variables is purely
data-driven. However, these two extreme categories are not so well distinct and grey-box is
the most common label for methods that start from physics principles but also learn from
the observed data. The marine engineering literature mainly relies on the use of white-box
models. The most common example in this sense is represented by the speed-power curves
(Van Manen et al. 1988, Schrady et al. 1996) which describe an ideal univariate relationship
between the engine power and the vessel speed and are usually calibrated through dedicated
tests. However, these approaches overlook other factors affecting the vessel during navigation
and lead to poor predictions of fuel consumption and harmful emissions. In this context and
in the recent years, a few black- and grey-box approaches have been proposed to circumvent
these limitations. As an example of black-box approach, Perera & Mo (2016) drew empirical
relationships between ship resistance and speed through data visualization methods in order
to identify energy efficient operation conditions. A grey-box methodology was proposed
by Bialystocki & Konovessis (2016) for a more accurate estimation of ship’s speed-fuel
curve on the basis of the major operational variables affecting it, namely ship’s draught and
displacement, weather force and direction, hull and propeller roughness. Petersen et al. (2012)
investigated artificial neural networks and Gaussian Processes approaches for statistical
modelling of fuel efficiency. Lu et al. (2013, 2015) also developed a semi-empirical ship
operational performance predictive model to estimate the ship’s added resistance considering
specific operational variables, e.g. ship type, draughts, speeds, encounter angles, sea states,
fouling effect and engine degradation conditions. Unfortunately, most of these methods are
based only on physical deterministic relationships and/or classical univariate statistical tools
and therefore, have strong limitations when applied to high-dimensional and correlated data.

The statistical and data science domains, in turn, offer potentially interesting alternatives
to the methodologies mentioned above. A variety of multivariable methods satisfactorily
solves the issue of simultaneously integrating the contribution of operational variables and
their interactions. However, they may present sensitivity to outliers and cross-correlations
(both in the variable and observation modes) as well as be affected by the well-known
collinearity issue between predictors (Montgomery et al. 2012), which limits the accuracy of
the parameters included in the models.

In this context, statisticians, engineers and data scientists are naturally called upon in
order to propose and test alternative predictive techniques that might answer positively to
the issues referred above, especially when applied to current complex data, which is typically
less structured, larger in size, and requires merging several datasets from various sources.
The aim of this chapter is to compare and discuss modern regression techniques and their
ability for predicting ships’ CO2 emissions based on the navigation information available
in modern ships and to develop a robust and accurate model for this critical aspect. The
comparison is made by means of operational data collected on a Ro-Pax cruise ship owned
by the Italian shipping company Grimaldi Group.
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Table 2.1: Operational variables measured for each voyage.

Variable Description
1 SGP Shaft generator power (port) [kW]
2 SGS Shaft generator power (starboard) [kW]
3 ∆P Power difference between port and starboard propeller shafts [kW]
4 ∆SG Power difference between two shaft generators [kW]
5 h Actual voyage navigation time
6 V Speed Over Ground (SOG) [kn]
7 WF Following wind [kn]
8 WH Head wind [kn]
9 WS Side wind [kn]
10 TF D Departure draught (fore perpendicular) [m]
11 TAD Departure draught (aft perpendicular) [m]
12 TP D Departure draught (midship section—port) [m]
13 TSD Departure draught (midship section—starboard) [m]
14 TF A Arrival draught (fore perpendicular) [m]
15 TAA Arrival draught (aft perpendicular) [m]
16 TP A Arrival draught (midship section—port) [m]
17 TSA Arrival draught (midship section—starboard) [m]
18 σ2

V SOG variance [kn\textsuperscript{2}]
19 TrimD Departure Trim [m]
20 TrimA Arrival Trim [m]
21 ∆ Displacement [m]
22 M Sailed Distance Over Ground [NM]

2.2 Materials and methods

Data description

Operational data from a Ro-Pax cruise ship were collected during a period of one year
and stored for analysis in the current shipping industry scenario. The ship links four
Mediterranean ports. However, their names and voyage dates are intentionally omitted
for confidentiality reasons. The total CO2 emissions at each voyage, which is the response
variable, is calculated depending on fuel consumption through the fuel mass to CO2 emission
factor for heavy fuel oil (IMO 2009).

Table 2.1 describes the predictor variables used to describe the ship operating conditions
and to build regression models. Further details can also be found in Bocchetti et al. (2015).

The observations for the predictor variable (PV) are obtained for each voyage as summary
statistics of high-rate sensor measurements; they are acquired without human intervention
by a large-scale network system patented by CETENA SpA. All PVs reported in Table 2.1
refer to the actual voyage navigation time, which is defined as the time between the “finished
with engine order” (when the ship leaves the departure port) and the “stand by engine order”
(when the ships enters the arrival port) IMO (2000). The Sailed Distance Over Ground is the
distance travelled by the vessel during the actual voyage navigation time, measured in Nautic
Miles (NM) and calculated by the on-board data acquisition system from GPS latitude and
longitude using the Haversine formula Veness (2007). The Speed Over Ground (SOG) is
obtained as the ratio between the sailed distance over ground and the actual navigation time.
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The SOG variance is the variance on the actual voyage navigation time, of the five-minute
SOG average. This variable takes into account SOG variation (acceleration). Head, following
and side wind are defined on the basis of comprehensive engineering considerations on the
wind component influence. Let VW T denote the true wind speed and ΨW T the difference
between the true wind angle (in the earth system) and the course over ground ITTC (2008).
Then WH , WF and WS (Table 2.1) are obtained as the five-minute averages of the following
quantities:

W̃H “

#

0 if 90˝ ď ΨW T ď 270˝

VW T cospΨW T q otherwise
,

W̃F “

#

´VW T cospΨW T q if 90˝ ď ΨW T ď 270˝

0 otherwise
, (2.1)

W̃S “ ´|VW T sinpΨW T q|.

Port and starboard shaft generator power measure the average power delivered by the shaft
generators for electrical supply on board. The power difference between two shaft generators
allows us to take into account the different modes of navigation (constant and combinator
mode). Power difference between two propeller shafts is useful for discovering anomalies or
malfunctioning in the main engines. Departure and arrival trim are obtained through the
inclinometer measurements and the geometric features of the ship. Draughts are measured
both at departure and arrival ports by four submersible transmitters located at fore and aft
perpendiculars, and at port and starboard midship sections. Displacement is derived from
the hydrostatic data on the basis of the mean draught at midship and trim.

Regression Methods
A large number of regression methods are available in the literature and can be used in
the present context of predicting CO2 emissions. The following four different classes of
regression methods were contemplated, representing a rich variety of modeling approaches
usually considered for handling large datasets possibly presenting collinearity and sparsity
issues: variable selection methods, penalized regression methods, latent variable methods
and tree-based ensemble methods. Each class contains methods that share similarities in
terms of prior assumptions regarding the PVs, i.e. the operational variables defined in Table
2.1, the response variable (CO2 emissions) and the relationship between them. Multiple
linear regression (Montgomery et al. 2012, Draper & Smith 2014) (MLR) was also considered
as it represents one of the most tested and studied methods. The MLR estimate of the p+1
coefficients b0, . . . , bp of a linear model is obtained by minimization of the mean squared
prediction error

b̂MLR “ arg min
b“rb0...bpsT

#

n
ÿ

i“1

`

y piq ´ ŷ piq
˘2

+

, (2.2)

where b̂MLR is a vector of regression coefficients, y piq is the i-th observed response value
and ŷ piq is the corresponding model prediction pŷ piq “ b0 `

p
ř

j“1
bjxi,jq, n is the number of

observations pn “ 538q and p is the number of PVs pp “ 22q. A known drawback of MLR
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is that for collinear predictors, the solution might get unstable or even unfeasible. In this
case, alternatives such as latent variable methods are preferred since they are able to extract
uncorrelated sources of structured variability in a stable way. On the other hand, MLR has
the advantage of being simple to interpret and implement. In order to explore the agreement
between the method’s assumptions and the dataset, a large collection of statistical tests and
residual analysis tools have been developed in the last decades. The four classes of methods
considered in this work are briefly presented below to address the limitations of MLR.

Variable selection methods. The variable selection class assumes that only some
predictors are relevant for the prediction model, i.e. some PVs carry relevant information
regarding the response while others are irrelevant and should be discarded in order to obtain
more simple, robust and parsimonious models. Forward stepwise regression (Andersen & Bro
2010, Montgomery & Runger 2010) (FSR) was selected as the representative method from
this class. In this method, the relevance of each predictor is assessed based on the p-value of
the partial F -test and the most important predictor is selected. Then, at each subsequent
step, the relevance of other predictors is assessed, conditioned on the predictors already
selected, and the most relevant one is included in the model. Variables already included in
the model can also be removed if they are later found to be insignificant, which can happen
due to the inclusion of new variables in the mean time.

Penalized regression methods. The class of penalized regression methods imposes a
penalty on the magnitude of the regression coefficients, thus constraining their values to be
small. The penalty increases the bias of the regression model, but stabilizes the estimator
variance so that better estimates of the regression coefficients can be obtained. Note that
the variance decrease often compensates the bias increase so that the overall prediction
performance can be improved. In this class, four regression methods were selected: ridge
regression (Draper & Smith 2014) (RR), least absolute shrinkage and selection operator
(Tibshirani 1996, Rasmussen & Bro 2012) (LASSO), elastic net (EN) and support vector
regression (Smola & Schölkopf 2004, Ahmed et al. 2010, Canu et al. 2005) (SVR).

The EN is a general method and contains both RR and LASSO as special cases. The EN
model is obtained by solving the following optimization problem:

b̂EN “ arg min
b“rb0...bpsT

$

&

%

n
ÿ

i“1

`

y piq ´ ŷ piq
˘2

` γ

¨

˝α
p

ÿ

j“1

ˇ

ˇbj

ˇ

ˇ `
1 ´ α

2

p
ÿ

j“1
b2

j

˛

‚

,

.

-

, (2.3)

where γ is a hyper-parameter that controls the bias-variance tradeoff, and α is a hyper-
parameter that weighs the squared

´

b2
j

¯

and the norm
ˇ

ˇbj

ˇ

ˇ penalties. These hyper-parameters
are often selected by cross-validation (Efron & Gong 1983) in order to ensure an appropriate
compromise between

´

b2
j

¯

and
ˇ

ˇbj

ˇ

ˇ. The RR is obtained by setting α “ 0, i.e. only the
squared penalty is imposed. The solution obtained with RR usually contains many small but
non-zero coefficients, so that each variable has a small contribution to predict the response.
On the other hand, LASSO is obtained by setting α “ 1 and the norm penalty often yields
a sparse regression coefficient vector (i.e. many regression coefficients are effectively set
to zero) which means that some predictors are discarded from the regression problem. By
combining RR and LASSO penalty terms, the EN can adapt to a wide range of scenarios
and applications. In particular, the method is able to include small contributions from a
group of predictors while eliminating other groups.

The last method from the penalized regression class is the SVR (Smola & Schölkopf 2004,
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Ahmed et al. 2010, Canu et al. 2005). The SVR minimizes the sum of squared regression

coefficients
˜

p
ř

j“1
b2

j

¸

in order to decrease model variance but also constrains the prediction

errors to be smaller than a certain threshold (ϵ ). Additionally, slack variables are introduced
to allow errors above the threshold, relaxing the optimization problem. Samples with errors
above the threshold constitute the support vectors and contribute actively to establish the
model.

Latent variable methods. The third class of methods are based on the latent variable
framework (Burnham et al. 1999) where a set of unmeasured quantities are considered to
be responsible for the observed variability in both predictors and response variable. Linear
combinations of the measured variables are used to estimate the latent variables and the
model obtained can be used for predicting the response based on the available predictors. In
this class, three regression methods were considered: principal component regression (PCR)
(Jolliffe 2002, Jackson 2005, Wold et al. 1987), principal component regression with the scores
added in a forward stepwise fashion (PCRFS) and PLS regression (Wold et al. 2001, Geladi
& Kowalski 1986, Wold et al. 1984). The latent variable model is described by the following
equations:

X “ TPJ`E,
y “ Tc ` f ,

(2.4)

where T is a nˆa orthogonal matrix of scores, P is a pˆa loading matrix, c is an aˆ1 vector
that relates scores to the response, and E and f correspond to residuals. PCR is applied after
a principal component analysis (PCA) decomposition of the predictor space where most of
its variability is explained by a number a “ αP CR of principal components, which is typically
much smaller than p and is selected by cross-validation in order to avoid overfitting. Since
only a few orthogonal columns of the score matrix T (i.e. principal components) are retained
in the model, the final covariance matrix is easily inverted. Then a model structure similar to
MLR is adopted to relate these scores (i.e. principal components) with the response variable.
Note that for PCR, the matrix T is obtained by purely considering the variability in the
predictor space. The PCRFS is quite similar to the PCR but PCs are selected using the
forward stepwise algorithm based on the p-value of the partial F -test (as described for FSR).
Finally, PLS regression estimates directions with maximum covariance between predictors
and the response variable. However, unlike PCR, PLS scores (T) also contain information for
describing the response variable and, at the same time, provide a good approximation of the
predictor space. Again, the number of latent variables pαP LSq is selected by cross-validation
in order to choose a suitable model complexity.

Tree-based ensemble methods. The last class of regression methods is based on
ensembles of regression trees (Hastie et al. 2009, Dietterich 2000, Strobl et al. 2009, Breiman
et al. 1984) . A regression tree is a model that splits the predictors’ space into regions where
the response variability is small. The algorithm starts by identifying a split variable and a
split point so that the predictors’ space is divided into two regions where the sum of the
response variance is as small as possible. Then, a greedy search is used to identify more split
points and split variables, further decreasing the response variability. A criterion must be
defined in order to stop the splitting process. In this work, trees are built until a minimum of
five samples are obtained for each region, a standard value that can also be optimized. Once
the splitting procedure stops, each region represents a leaf in the final regression tree. When
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predicting a new sample, the value of its predictors are used to map the sample into one of
the tree’s leaves. Then, the mean response of the samples within the leaf is the predicted
value. Ensemble methods are adopted to further decrease the variance of the trees, which
is indeed very high when trees are deep and therefore could overfit the training sets. In
this class, three regression methods were considered: bagging of regression trees (BRT),
random forests (RF) and boosting of regression trees (BT). BRT applies bootstrap to the
original dataset in order to generate many datasets. Each one of these datasets is used to
build a regression tree and the average prediction from all trees in the ensemble constitute
the predicted response. Similarly, RF uses bootstrap to generate datasets, which however
only contain a smaller number (e.g. ?

p) of randomly selected predictors. For both BRT
and RF, the number of trees (TBRT and TRF, respectively) in the ensemble is selected by
cross-validation and controls the bias-variance tradeoff. Lastly, BT (Elith et al. 2008, Cao
et al. 2010, Freund et al. 1996) iteratively fits regression trees to the residuals from previous
trees so that each tree focuses on samples that were poorly modelled. In order to avoid
overfitting, BT considers only a small fraction (u) of the response at each iteration. The
fraction u, also known as the learning rate, and the number of trees are usually inversely
related (i.e. a small learning rate requires a larger number of trees and vice-versa). In this
work, the learning rate is fixed at a small value (u=0.02) and the number of trees (TBT) is
selected by cross-validation.

2.3 Comparison framework

A double cross-validation (Filzmoser et al. 2009) procedure was devised to compare the wide
range of regression methods considered in this particular case study, as well as to obtain
estimates of their prediction performance as measured by the root mean squared error of
double cross-validation (RMSEdcv). The proposed procedure has the advantage of providing
variability estimates of RMSEdcv due to the different data splits.

The procedure starts by randomly partitioning the complete dataset into training and
test datasets. In this work, 80% of the data constitute the training set whereas the remaining
20% represents the test set. The training set is used to build models and choose suitable
values of the hyper-parameters, which are selected by 10-fold cross-validation. When the
model building stage is complete, the trained models are used to predict the test set and the
RMSEdcv is computed. Since the RMSEdcv is affected by the initial split of the complete
dataset, the whole procedure is repeated in order to obtain a measure of its variability. Then,
the complete dataset is again randomly partitioned into training and test sets: models are
built based on the training set and used to compute the RMSEdcv over the test set. In this
work, 40 iterations of double cross-validation allowed to have estimates of the mean and the
variance of RMSEdcv and to characterize the performance of each regression method much
better than the point estimates that would be obtained by a single dataset split.

In the model building stage, a 10-fold cross-validation scheme was adopted to select
the most suitable hyper-parameters. This scheme has been extensively applied in many
application domains and found to be robust to overfitting. Table 2 presents the values of the
hyper-parameters tested for each regression method considered.

Finally, variables were centered and scaled because the results of regression methods can
be sensitive to the measurement units. Since no prior knowledge was available to define
suitable scaling factors for all variables, auto-scaling was adopted by mean-centering each
variable (i.e. the average value of each variable is subtracted from the data) and dividing
each variable by the sample standard deviation. In each iteration of double cross-validation,
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Table 2.2: Hyper-parameters tested during model training. The suitable value for each
method is selected by 10-fold cross-validation.

Hyper-parameter(s) Possible value(s)
MLR - -

FSR penter

prem

0.05
0.1

RR α
γ

0
0.002;0.02;0.2;2;20

LASSO α
γ

1
0.002;0.02;0.2;2;20

EN α
γ

0.001;0.01;0.1
0.002;0.02;0.2;2;20

SVR ϵ 0.001;0.005;0.01;0.05;0.1
PCR αP CR r1 : minp20, n, pqs

PCRFS
penter

prem

0.05
0.1

PLS αP LS r1 : minp20, n, pqs

BRT TBRT 50; 100;500; 1000; 5000
RF TRF 50; 100;500; 1000; 5000
BT TBT 50; 100;500; 1000; 5000

variable centering and scaling were applied in a consistent way: the mean and the standard
deviation of each variable to be used for scaling the test set were calculated based on the
training set.

2.4 Results and discussion

The comparison framework described in the previous section was applied to the dataset
collected from the Ro-Pax cruise ship and to all the regression methods considered, in order
to assess their performance for predicting the CO2 emissions. The results obtained from this
comparison framework also allowed the identification of the PVs that most influence CO2
emissions. All computations were performed in the Matlab platform (version 2015b, The
Mathworks, Inc.).

In order to examine the available dataset and obtain preliminary insights, an exploratory
data analysis was carried out prior to the application of the comparison framework. The
number of operational variables available is relatively small (22 PVs). A simple way to
measure the predictive power of individual variables is to compute the correlation between
each variable and CO2 emissions, as reported in Figure 2.1. From the correlation values
obtained from all routes reported in Figure 2.1, it is trivial to observe that the actual voyage
navigation time (PV 5) and sailed distance over ground (PV 22) are the variables with the
highest correlation (very close to 1) with the CO2 emissions.

Based on these high correlation values, one might expect the regression problem to be
straightforward and even a simple ordinary least squares model to give satisfactory predic-
tions. However, correlation does not provide information regarding the sample distribution.
Therefore, a PCA model was built in order to better explore the sample space. Figure 2.2a
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Figure 2.1: Correlation between predictors and CO2 emissions.

presents the scores for the first two principal components. Analyzing Figure 2.2a, one can
verify the existence of at least two clearly separable clusters. The presence of clusters is
known to artificially increase correlation even when it is zero or near zero within each cluster.
Further exploration of the dataset revealed that three clusters can be identified when plotting
CO2 emissions and the distance over ground (Figure 2.2b), corresponding to three different
types of routes: short (average 120 NM), medium (average 150 NM) and large (average
400 NM). Note that response variable values were hidden for confidentiality reasons, but
scale was left unchanged. When correlation is analyzed within each cluster (Figure 2.1), the
values are generally smaller and an interesting behavior is observed for the actual voyage
navigation time (PV 5): although the correlation is high and positive in the complete dataset,
it becomes negative for the medium and long routes and is quite small for the shortest route.

In summary, exploratory data analysis revealed the presence of three clusters, each
corresponding to a different route. In order to remove this effect and avoid inflated correlations,
the performance of the considered regression methods was studied for each route separately.

Prediction of CO2 emissions—short route
The short route constitutes the first cluster (218 samples) and the correlation between CO2
emissions and the operational variables is rather weak (Figure 2.1, short route), suggesting
that the regression methods might not be able to predict the response accurately. The
RMSEdcv obtained for all regression methods included in the comparison study are presented
in Figure 2.3. From this figure, one can verify that most methods present similar performances,
except for PCRFS, BRT, RF and BT, which had prediction errors that were almost twice
the errors obtained with the best methods. Thus, the class of tree-based ensembles does not
appear to be particularly suitable for the short route. This may be justified by the piece-wise
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(a) (b)

Figure 2.2: Analyzing the samples’ space: (a) the scores from a PCA model reveal clusters
in the data, which can be well identified by the sailed distance over ground (b). Analyzing
the samples’ space: (a) the scores from a PCA model reveal clusters in the data, which can
be well identified by the sailed distance over ground (b).

nature of the regression trees. Indeed, it is expected that most operational variables have a
continuous (linear or nonlinear) relation with the response and the approximation obtained
with piece-wise functions does not seem to be effective at approximating this relationship.

In terms of regression methods with good performances, it can be seen in Figure 2.3
that the difference between the top methods is not pronounced nor statistically significant.
The method with the minimum median RMSEdcv is the RR. However, due to its similar
performance to other regression methods, LASSO is the recommended approach for predicting
CO2 emissions for the short route. As is known, the parsimony principle (also called Occam’s
razor) (Seasholtz & Kowalski 1993) states that when two methods have the same performance
for a regression problem, the simpler method has to be preferred. LASSO often generates
solutions where some PVs are discarded due to the penalization term and the model tends to
be more parsimonious. The LASSO model also has a smaller variance than the MLR model
(due to correlation between predictors, the MLR regression coefficients were quite sensitive
to the training set used in the double cross-validation procedure). Thus, although MLR
may be more familiar to practitioners, the parsimony principle provides a robust argument
for selecting LASSO since it presents similar prediction errors but has a smaller number of
regression coefficients. This fact also facilitates interpreting the LASSO model since some
PVs have zero regression coefficients and do not contribute to predict the response.

In terms of latent variable methods, an interesting fact was observed for both PLS and
PCR: the hyper-parameters selected were very often at the higher boundary of possible
values. For example, the number of latent variables used in PLS for all 40 iterations of
double cross-validation was 20, the maximum number allowable as specified in Table 2. This
result suggests that the structure underlying the dataset may not be that of a latent variable
model.

In order to further explore results from LASSO, Figure 2.4a presents the regression
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Regression Methods
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Figure 2.3: Distribution of RMSEdcv obtained when predicting CO2 emissions for the
short route.

coefficients obtained for all 40 iterations of double cross-validation, whereas Figure 2.4b
presents the plot of predicted against observed CO2 emissions. In Figure 2.4a, one can
note that CO2 emissions are mostly influenced by the actual voyage navigation time (PV
5), then by the power difference between two shaft generators (PV 13) and the arrival
draught (midship section—starboard, PV 17). Furthermore, it is interesting to note that the
first four variables of Table 2.1 do not contain relevant information regarding the response
as well as the presence of some iterations affecting the variable arrival draught (midship
section—port, PV 16). The latter has positive regression coefficients in some iterations of
double cross-validation and negative coefficients in other ones. Figure 2.4b shows that the
plot of predicted against observed CO2 emissions follows the 1:1 line and residuals do not
exhibit patterns.

Prediction of CO2 emissions—medium route

With regard to the second cluster, which contains 85 samples, one can observe in Figure 2.1
that the correlation between CO2 emissions and the actual voyage navigation time (PV 5) is
negative, and large in magnitude. This observation agrees with theoretical considerations
because higher navigation times correspond to lower speeds. Since fuel consumption per
hour is expected to vary with the vessel’s speed raised to the third power, lower speeds (i.e.
longer navigation times) tend to have lower CO2 emissions.

The RMSEdcv obtained in all 40 iterations of double cross-validation for the medium
route are presented in Figure 2.5. In Figure 2.5, one can observe similar trends as those
observed for the short route. In particular, methods based on regression trees have the
highest prediction errors while the other classes achieve comparable ones. As in the previous
case, using 10-fold cross-validation, the maximum allowable number of latent variables was
selected for most iterations of double cross-validation.
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(a) (b)

Figure 2.4: Results from LASSO model training for the short route: (a) regression coefficients
and (b) the predicted and observed CO2 emissions for all 40 iterations of double cross-
validation.

Strictly speaking, the regression method with the smallest median RMSEdcv is the SVR,
although the variability around the median value is larger when compared to other good
methods. As for the short route, the more parsimonious model and the smaller model variance
indicates the LASSO method as the recommended approach. For further inspection, Figure
6 presents the regression coefficients as well as the predicted and observed CO2 emissions
in all 40 iterations of double cross-validation for the LASSO method. In particular, Figure
2.6a shows that arrival draught (midship section—starboard, PV 17) is the most important
predictor, followed by arrival trim (PV 20) and departure draught (aft perpendicular, PV
11). From Figure 2.6a, it is also worth noting that many regression coefficients are zero
(i.e. the corresponding predictors are not included in the model) which suggests a sparse
structure of the dataset. Furthermore, the prediction errors tend to be relatively small over
all iterations of double cross-validation. Figure 2.6b supports the successful prediction of
CO2 emissions for the medium route, reporting a satisfactory median R2 (0.86).

Prediction of CO2 emissions—long route
The last cluster contains 235 samples from the long route. Figure 2.7 presents the RMSEdcv obtained
for all 40 iterations of double cross-validation. As for the previous routes, the class of variable
selection, penalized regression and latent variable methods (except for PCRFS) present
similar performances. However, the class of tree-based methods now have prediction errors
which are in the same range as other classes and BT is actually the best regression method
with a median RMSEdcv of 2.67. This is confirmed, at 5% significance level, also by means of
a multiple paired t-test conducted to compare its RMSEdcv distribution with those obtained
through the other regression methods. For all iterations of double cross-validation, Figure
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Figure 2.5: Distribution of RMSEdcv obtained when predicting CO2 emissions for the
medium route.

(a) (b)

Figure 2.6: Results from LASSO model training for the medium route: (a) regression
coefficients and (b) the predicted and observed CO2 emissions for all 40 iterations of double
cross-validation.
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Regression Methods
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Figure 2.7: Distribution of RMSEdcv obtained when predicting CO2 emissions for the
long route.

2.8a and Figure 2.8b present the predictors’ importance and the plot of predicted vs observed
CO2 emissions, respectively. In particular, Figure 2.8a shows that actual voyage navigation
time (PV 5) and speed over ground (PV 6) are the two most important predictors. The
agreement between predicted and observed CO2 emissions (Figure 2.8b) also confirms that
BT accurately model the relation between the predictors and the response variable with
median R2 equal to 0.91.

As a summary, the comparison framework pointed to reliable regression methods that can
be adopted for predicting CO2 emissions. The fact that the recommended method depends
on the route type corroborates the need to conduct a comparison study since the available
a priori knowledge was not enough to select a suitable regression method. The absence
of an overall best method is in accordance with theoretical considerations since the data
generating mechanisms for the different route types ought not to be the same. Thus, by
considering different classes of regression methods and a robust comparison scheme, a large
number of prior assumptions regarding the data generating mechanisms were explored and a
more consistent assessment of prediction performance was obtained.

2.5 Conclusions

The ongoing changes in regulations regarding the control of greenhouse gases emissions are
having a great impact in the marine industry and are urging shipping operators to correctly
measure and predict CO2 emissions of their fleet. However, there is no incontrovertible
method that can be satisfactorily adopted in real environments as the best one to turn the
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(a) (b)

Figure 2.8: Results from BT model training for the long route: (a) regression coefficients and
(b) the predicted and observed CO2 emissions for all 40 iterations of double cross-validation.

operational information into value. In this context, a robust and thorough comparison is
critical especially when applied to real world complex data. This work provided directions
on the use of advanced regression techniques for predicting CO2 emissions for a real shipping
industry scenario.

The regression methods considered in this study were grouped in four classes, namely
variable selection, penalized regression, latent variable methods and tree-based ensembles.
Representative methods from each class were selected and a double cross-validation procedure
was used to estimate their prediction errors. The analysis of one year’s worth of data collected
on-board of a modern Ro-Pax cruise ship owned by the Italian company Grimaldi Group
revealed clusters corresponding to three different route lengths—namely short (average 120
NM), medium (average 140 NM) and long (average 400 NM). In order to accurately model
each route, double cross-validation was conducted for each cluster separately. For the short
route: the class of tree-based ensembles and latent variable methods did not appear to
be particularly suitable, whereas most of the regression methods presented similar good
performances. However, LASSO (with a median RMSEdcv equal to 0.58) was preferred in
the light of the parsimony principle. Voyage navigation time, power difference between
shaft generators and arrival draught were shown to be the most influencing variables on
the response. For the medium route: LASSO (with a satisfactory median RMSEdcv equal
to 0.86) was the more parsimonious model with the smaller variance and therefore, the
recommended technique also in this case. Arrival draught, arrival trim and departure draught
(aft perpendicular) were the most important predictors over a noticeable sparse structure
of the LASSO regression coefficients. For the long route: BT presented the best prediction
results (with a median RMSEdcv equal to 0.91). The actual voyage navigation time and
speed over ground were shown to be the two most important predictors for this route. This
is in accordance with theoretical (white-box) approaches that expect CO2 emissions to vary
with the vessel’s speed raised to the third power. In fact, only for the medium and long
routes, low speeds over ground achieve higher navigation times and therefore, significant
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CO2 emission reductions.
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Chapter 3

LS-PLS approach to ship fuel-speed
curves

The shipping industry relies on ship fuel-speed curves to describe the fuel consumption (and
CO2 emissions levels) per hour as a function only of the vessel’s speed over ground, based
on dedicated test data. However, they are affected by additional factors in real cases. In
this chapter, a novel method is developed elaborating the orthogonal least-squares partial
least-squares (LS-PLS) approach to enhance fuel-speed curves accuracy when information is
available on additional factors from multi-sensor systems. Through real data examples, the
approach is shown capable of detecting anomalies in CO2 emission levels and testing the
effectiveness of ship energy efficiency initiatives.

3.1 Introduction

The maritime shipping has a great need for benchmarks and measures of fuel efficiency,
which is the major factor in establishing the price required for faster travel (Gabrielli &
von Karman 1950). In this context, fuel efficiency is usually calculated as the ratio between
fuel consumption per hour (FCPH) and mean hourly vessel’s speed over ground (SOG). In
general, it represents the relationship between the distance travelled and the amount of fuel
consumed. Maritime engineers are in fact crucially concerned with the use of fuel-speed
curves (St Amand 2012), which are essentially two-dimensional graphs that represent the
cubic physical-based relationship between fuel consumption and SOG (Ronen 1982, Schrady
et al. 1996, Fagerholt et al. 2010, MAN Diesel & Turbo 2011). These curves are also popular
for estimating levels of CO2 emissions (i.e. carbon dioxide), as the latter are stoichiometrically
related to fuel consumption.

It is worth noting that, in maritime engineering, fuel-speed curves are equivalent to the
power-speed curves, because a direct proportional relationship also holds between engine
power and fuel consumption through the power-based specific fuel oil consumption coefficient
(Corbett & Koehler 2003, MAN Diesel & Turbo 2011, Lu et al. 2015, Bialystocki & Konovessis
2016). Hereinafter we refer only to fuel-speed curves, even though the obtained results can
be trivially extended to power-speed curves.

So far, ship performance verification protocols refer to fuel-speed curves calibrated on data
from dedicated speed trials under standard reference conditions (Bazari 2007) only. By means
of these data, as common practice, fuel-speed curves are estimated through the ordinary
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least squares (LS) method. However, this method may give inaccurate fuel predictions when
based on operational data (i.e. under non-standard conditions), because of several additional
factors that can in reality affect vessel performance (Molinero & Mitsis 1984, Lu et al. 2013,
2015).

Indeed, vessel operators are nowadays in the position to access massive additional
operational data from modern multi-sensor systems, which provide great potential for
managerial decision-making by improving fuel-speed curve accuracy. Efforts in this direction
are still very sparse in the naval literature, however. The main exception is provided by
Bialystocki & Konovessis (2016), who however simply suggest a univariate statistical approach
for calculating the influence of ship draft and displacement, weather force and direction, and
hull roughness on the fuel-speed curve. On the other hand, multiple linear regression (MLR)
has been historically used to budget (Molinero & Mitsis 1984) and, more recently, to monitor
ship fuel consumption (Bocchetti et al. 2015, Erto et al. 2015).

Monitoring of fuel consumption represents in fact a compelling task imposed by the EU
regulation 2015/757 (European Commission 2015) that came into force from January 2018.
In such a regulatory regime, there is also a managerial need for testing whether claims for
ship fuel consumption reduction after a specific energy efficiency initiative (EEI) (e.g. hull
form optimization, hull cleaning and propeller polishing, ultra-smooth coating, propulsion
efficiency improvement, engine maintenance operation, power plant efficiency improvement)
are true. Unfortunately, canonical applications of methods based on multivariate statistical
techniques and artificial neural networks (see e.g., Petersen et al. (2012), Beşikçi et al. (2016))
do not appear to attract shipping practitioners, who are used to dealing with classical
fuel-speed curves.

The aim of this chapter is then to mitigate the drawbacks of those curves when applied to
operational data, and to give marine engineers the additional opportunity to use a familiar
tool for monitoring and testing purposes of fuel efficiency and CO2 emissions.

In order to do that, prediction accuracy of the fuel-speed curves is enhanced by exploiting
the massive amounts of available operational data via the orthogonal least squares-partial
least squares (LS-PLS) method (Jørgensen et al. 2004, 2007), firstly. This method avoids the
collinearity issue between additional factors (Montgomery et al. 2012), which usually bounds
the number of additional factors to be included in the MLR models. The main focus of
Jørgensen et. al. was to point out that the LS-PLS estimation method makes interpretation
easier with respect to the standard partial least-squares (PLS). Their orthogonal LS-PLS
algorithm is in fact used in this chapter to estimate parameters of the model and to maintain
the physical relation between FCPH and SOG expected by marine engineers. Besides, we
newly expand the method also for constructing opportune control charts for monitoring
the predictor variables as well as the response variable. In fact, two multivariate control
charts are introduced to detect whether future observations move away from the normal
operating conditions or not (Duchesne & MacGregor 2004). Voyages with unusual variations
are further investigated through contribution plots corresponding to those control chart,
which gives the opportunity of supporting the prognosis of faults, unfeasible via the classical
fuel-speed curves. Otherwise, for voyages with unusual variations, the fuel consumption
is monitored through the construction of pointwise prediction intervals for the proposed
LS-PLS normalized fuel-speed curve.

Lastly, the enhanced prediction accuracy of the proposed LS-PLS normalized fuel-speed
curve is exploited also for comparing graphically fuel efficiency before and after EEIs, and
for estimating any consequent reduction in terms of fuel consumption and CO2 emissions.
This feature can be regarded as a relevant proposal to entitle shipping operators to directly

30



3.2. The proposed approach

cash in carbon credits according to the international emission trading mechanism set by the
Kyoto Protocol (Zhang & Folmer 1995, Ki-Moon 2008). Moreover, the proposed LS-PLS
normalization approach may be used to overcome the indications of weakness reported in
the ISO guidelines (ISO 2015) for normalization purposes (Bazari 2007) of the fuel-speed
curve estimation based on real operational data.

The remainder of the chapter is as follows: in Section 3.2 the orthogonal LS-PLS
approach to ship fuel-speed curves is introduced; in Section 3.3 the approach is applied to
real operational data automatically acquired from a roll-on/roll-off passenger (Ro-Pax) cruise
ship that is owned by the Italian shipping company Grimaldi Group. Finally, Appendix A
validates the use of the orthogonal LS-PLS with respect to classical MLR method; Appendix
B outlines the main steps of the PLS algorithm; Appendix C reports a simulation study
to verify the coverage of the approximate pointwise prediction intervals for the proposed
LS-PLS normalized fuel-speed curve.

3.2 The proposed approach

The section is structured in four subsections. In Section 3.2, a variant of the orthogonal
LS-PLS method is presented and customized to enhance the ordinary LS ship fuel-speed
curve, while maintaining the original physical-based relationship between the cubed SOG
and the FCPH. Section 3.2 shows how to obtain the LS-PLS normalized fuel-speed curve
and, accordingly, opportune control charts are provided and demonstrated to be relevant
tools for monitoring FCPH and supporting the diagnosis of faults. Then, in Section 3.2, a
hypothesis testing procedure is developed to assess a change in the mean fuel consumption
per hour (e.g. before and after an EEI that aims to improve ship performance). Lastly,
in Section 3.2, a practical solution is proposed for estimating fuel consumption reduction
achieved in a given period that follows an effective EEI.

The orthogonal LS-PLS method

As outlined, from physical-based models, the relationship between fuel and speed is known to
be linearized by considering the cubed SOG. Starting from this assumption, let us consider
a response variable Y (e.g., the mean FCPH over a single voyage), a predictor variable X
(e.g., the vessel’s cubed SOG) and a vector Z “ pZ1, Z2, . . . , Zm´1qJ of m ´ 1 additional
factors. Moreover, let us consider n observations y “ py1, . . . , ynqJ of Y , x “ px1, . . . , xnqJ

of X, and

Z “ pz1, . . . , zm´1q “

¨

˚

˚

˝

z11 . . . z1pm´1q

...
...

zn1 . . . znpm´1q

˛

‹

‹

‚

(3.1)

of Z. Each column of Z, x, and y is mean centred and scaled to unit variance prior to
performing the regression analysis. Then, the simple linear regression model without intercept
of Y on X can be written as follows

y “ xβ ` εLS , (3.2)

where the vector εLS contains the n random error terms, which are assumed independent
identically distributed with zero mean and uncorrelated with X. The ordinary LS estimate
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of β is β̂ “ pxJxq´1xJy, and the ordinary LS prediction of y is then obtained as

ŷLS “ xβ̂. (3.3)

Trivially note that the vector of residuals

eLS “ y ´ xβ̂ (3.4)

is orthogonal to the predictor variable vector x, i.e. eJ
LSx “ 0.

However, unless Z is uncorrelated withX or Y , if we consider a new model y “ xβ`Zγ`ε,
by simply adding a new term in Equation (3.2), then the ordinary LS estimator of β is
biased. This is known as the omitted variable bias problem (Clarke 2005) However, if there
is a linear relationship between X and Z, a new term can be added to Equation (3.2), while
still maintaining the unbiasedness of the ordinary LS estimator β̂. In order to prove that, let
us consider the following multi-response model without intercept

“xδJ ` Zorth, (3.5)

where δ “ pδ1, . . . , δm´1qJ is a vector of parameters, and Zorth is a nˆpm´1q matrix of errors,
with zero mean and uncorrelated with X. The vector δ is estimated as δ̂ “ pxJxq´1xJZ.
The model in Equation (3.5) allows to remove the linear dependence of Z on X. Then,
the following linear regression model can be used to describe the relationship between the
response variable Y and both the predictor variable X and the additional factors, and to
apply the LS-PLS method (Jørgensen et al. 2004, 2007)

y “ xβ ` Zorthγ ` ε. (3.6)

The vector γ “ pγ1, . . . , γm´1qJ contains the additional parameters to be estimated, whereas
ε contains the n random error terms, independent identically distributed with zero mean
and uncorrelated with X and Zorth (viz., also with Z). The model can be also written as

y “ xpβ ´ δJγq ` Zγ ` ε. (3.7)

In any case, since X and Zorth are uncorrelated, β̂ is still an unbiased estimator of β and is
independent of the additional factors Z. Then, the matrix of the residuals

Zorth “ Z ´ xδ̂ (3.8)

of model (3.5) can be used as predictor of y. Note that, although columns of Zorth are
orthogonal to x, i.e. they contain the orthogonal components of the additional m´ 1 factors,
they are not necessarily orthogonal to each other. Therefore, the standard MLR technique
cannot be applied and methods for dimension reduction are required in case of collinearity
among variables (i.e. if the rank of Zorth is less than m´ 1, which happens when modern
systems acquire data from many sensors). This is the reason for performing a PLS regression
of y on Zorth. PLS allows in fact to obtain orthogonal scores T from the loading matrix P
and the weight matrix W (see e.g. Helland (1988), Phatak & De Jong (1997)) as follows

T “ ZorthWpPJWq´1. (3.9)

Then, the regression of y on the scores T yields γ̂ “ pTJTq´1TJy and the PLS prediction
of y is

ŷP LS “ Tγ̂P LS . (3.10)
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By setting γ̂ “ WpPJWq´1γ̂P LS , we obtain an estimate of γ in Equation (3.6). A discussion
on the properties of the PLS estimator is provided in Krämer (2007).

The number of columns of T, i.e. the number of scores a, is determined through the
leave-one-out cross-validation (Efron & Gong 1983, Geladi & Kowalski 1986). In this chapter,
the evaluation of the number of scores is based on the prediction residual sum of squares
(PRESS) statistic (Geladi & Kowalski 1986). The cross-validation procedure assigns to each
number of latent variables a value of the PRESS statistic, in order to find the optimal number
of components to retain in the model. Given a number of components, for each of the original
n observations, the PLS model is built on the other n´ 1 ones, and the prediction error on
the observation left out from the model is computed. The PRESS statistic for that number
of components is calculated as the sum of these squared prediction errors, and the optimal
number of components is chosen as the one corresponding to the minimum PRESS value.
Since x and Zorth are orthogonal, the LS-PLS response prediction of y can be written as

ŷLS´P LS “ ŷLS ` ŷP LS (3.11)

and the vector of the final LS-PLS residuals is given by

eLS´P LS “ y ´ ŷLS´P LS (3.12)

With this strategy, it is possible to achieve scores that are orthogonal each other and to x
simultaneously. In contrast with the direct application of the PLS method, Equation (3.11)
expresses ŷLS´P LS as a combination of physical variables and scores that still preserves
orthogonality among predictor variables. By keeping the information in the different matrices
separated, Equation (3.11) then has a more straightforward interpretation with respect to
the canonical PLS models. In the Appendix A, the PLS is shown to outperform the MLR in
terms of predictive ability.

Fuel consumption monitoring through normalized fuel-speed curve
The fitted prediction values of FCPH ŷLS , calculated by Equation (3.3), can be plotted
against the vessel’s cubed SOG observations x to draw the ordinary LS fuel-speed curve.
The 100p1 ´αq percent LS prediction interval for the future observation of the FCPH y0 can
then be calculated based on the corresponding cubed SOG x0 through the limits given by
Montgomery et al. (2012)

x0β̂0 ¯ tα{2;n´2

g

f

f

e

eJ
LSeLS

n´ 2

˜

1 `
1
n

`
x2

0
xJx

¸

, (3.13)

where tα{2;n´2 is the percentile of a Student’s distribution with n ´ 2 degrees of freedom.
The LS-PLS method illustrated in Section 3.2 naturally lends itself to be used in reducing
the LS prediction interval width defined by Equation (3.13) while maintaining the original
relationship between the cubed SOG and the FCPH. Let us then define the normalized
FCPH by subtracting the term ŷP LS calculated in Equation (3.10) from the observations y
as follows

yN “ y ´ ŷP LS . (3.14)

Note that ŷP LS in Equation (3.10) depends explicitly on γ̂ and Zorth, i.e. on the complete
operational dataset used to build the model. Upon substituting y with yN as the response
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variable to plot against SOG observations, the LS-PLS normalized fuel-speed curve can
finally be obtained. Figure 3.1 illustrates the graphical scheme of the proposed approach to
develop the model.

Figure 3.1: Graphical scheme of the proposed approach for model building. Bold lines
refer to measured variables/factors.

Given a future observation of the cubed SOG x0 and of the additional m ´ 1 factors
arranged in the vector z0 “ pz10, . . . , zpm´1q0qJ, the corresponding observation of the nor-
malized FCPH, yN,0, can be explicitly calculated through Equation (3.14) as

yN,0 “ y0 ´ zJ
0,orthγ̂, (3.15)

where z0,orth “ z ´ x0γ̂. Based on a slightly different formula to the one given by Nomikos
& MacGregor (1995a), the approximate limits of the 100p1 ´ αq percent LS-PLS pointwise
prediction interval can be calculated as

x0β̂0 ¯ tα{2;n´a´2

d

eJ
LS´P LSeLS´P LS

n´ a´ 2

ˆ

1 `
1
n

` tJ
0 pTJTq´1t0

̇

, (3.16)

where tα{2;n´2 is the 100α{2 percentile of a Student’s distribution with n´ a´ 2 degrees of
freedom and

tJ
0 “ zJ

0,orthWpPJWq´1, (3.17)
as in Equation (3.9). Note that the limits in Equation (3.16) are only approximated because
T depends non-linearly on y Nomikos & MacGregor (1995a), but allow to develop a simple
expression. In the Appendix C, we carried out a simulation study to confirm the coverage
of the prediction intervals in Equation (3.16). In order to explain the operative meaning
of the FCPH normalization, note that regression of yM on x has the amazing property of
yielding the same coefficient β̂ obtained through LS regression of y on x, because ŷP LS is,
by construction, orthogonal to x. Thus, the vector of fitted values ŷ “ xβ̂ is equal to ŷLS

in Equation (3.3). Therefore, the LS-PLS fuel-speed curve (in the normalized FCPH-SOG
plane) coincides with the ordinary LS one (in the usual FCPH-SOG plane). Therefore, with
abuse of terminology, we sometimes simply refer to fuel-speed curve. However, it is easy
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to verify that normalized FCPH deviations yN ´ ŷN are equal to the LS-PLS residuals
eLS´P LS of Equation (3.12). In other words, even if normalized FCPH does not represent
actual FCPH, its deviation from the fuel-speed curve still represents deviation in terms of
the actual FCPH (from the LS-PLS FCPH prediction ŷLS´P LS). This allows monitoring
FCPH through the LS-PLS pointwise prediction intervals of the normalized FCPH defined
in Equation (3.16). Moreover, from Equation (3.15), note that the observation y0 are equal
to yN,0 when z0 “ x0δ̂, i.e. the additional factors do not bring supplementary information,
because each is equal to its expected value at the given SOG. Conversely, when the additional
factors bring further information, ŷP LS contributes to reduce the LS-PLS residual sum of
squares eJ

LS´P LSeLS´P LS with respect to the LS residual eJ
LSeLS . Therefore, the higher

the uncorrelated information brought by the additional factors for predicting the FCPH, the
smaller the prediction interval width.

In short, let us note that using the LS-PLS method instead of the direct application
of the PLS technique can be regarded as forcing the direction of the cubed SOG x to be
the first latent variable direction. This means that the first component was not selected by
maximizing its covariance with y. In general, this impacts on the number of columns of
T, which may indeed increase as the direction of the predictor variable x (fitted through
ordinary LS) deviates from the first component that would be obtained through the direct
application of the PLS technique. However, the proposed approach mitigates the drawbacks
of the classical fuel-speed curves and gives marine engineers the additional opportunity to use
a familiar tool for monitoring purposes. In fact, the normalized FCPH observation for each
voyage can be compared in the fuel-speed plot with the corresponding curve, as well as with
the pointwise prediction interval (Equation (3.16)) at a given significance level. Points that
fall outside the LS-PLS prediction interval warrant further investigation for fault diagnosis.

Strictly speaking, as with the canonical application of PLS methods (Nomikos & Mac-
Gregor 1995b, Kourti & MacGregor 1996), LS-PLS normalization of FCPH is allowed if and
only if factors show no unusual variation during a given voyage. More precisely, the two
following multivariate control charts have to be used to monitor the respective variations
inside and outside the hyperplane defined by the model in the predictor variable space.

The first control chart is based on the T 2 statistic for a new observation

T 2 “

˜

x2
0

xJx{pn´ 1q
` tJ

0 S´1t0

¸

npn´ aq

apn2 ´ 1q
, (3.18)

where S is the estimated covariance matrix of the scores T introduced in Equation (3.9).
Note that Equation (3.18) represents the LS-PLS modification of Hotelling’s statistic for
scores (Tracy et al. 1992, Nomikos & MacGregor 1995b) and involves, as expected, both the
cubed SOG x0 and the latent variable values t0. The T 2 statistic follows an F -distribution
with a ` 1 and n ´ a ´ 1 degrees of freedom. Therefore, it can be used opportunely to
define an upper control limit to test whether a new observation remains within the normal
operating region in the projection space or not.

The second, namely the squared prediction error (SPEX) control chart, detects the
occurrence of any new event that causes the ship’s operating conditions to move away from
the latent variable space. A valid specification involves not only monitoring the scores of the
additional factors from new observations, but also requires monitoring the residuals or the
distance from the PLS model (Duchesne & MacGregor 2004). The SPEX for the additional
factors is defined for a new observation as

SPEX “ pz0,orth ´ ẑ0,orthqJpz0,orth ´ ẑ0,orthq, (3.19)
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where ẑ0,orth “ Pt0 is the value of the new observation for the additional m ´ 1 factors
predicted by the latent variable model. In other words, it represents the squared perpendicular
distance of an observation from the latent variable space and gives a measure of how close
the observation is to it (Kourti & MacGregor 1996). Note that in contrast with , the statistic
does not involve the cubed SOG, because there is no prediction error for the non-projected
predictor variable. The upper control limit for this statistic is calculated assuming that it is
approximately distributed as a weighted chi-squared (Jackson 2005, Nomikos & MacGregor
1995a). Following Jackson (2005), expression of the control limit with a significance level
equal to is

Qα “ θ1

˜

zα

a

2θ2h2
0

θ1
`
θ2h0ph0 ´ 1q

θ2
1

` 1
¸1{h0

, (3.20)

where θi “ tracepViq is calculated from the covariance matrix V of the residuals matrix
E “ Zorth ´ TPJ, h0 “ 1 ´ 2θ1θ3{3θ2

2, and zα is the 100p1 ´ αq percentile of the standard
normal distribution. When an observation for T 2 or the SPEX statistic falls outside of
control limits, contribution plots can be drawn to detect, through visual inspection, the
variable(s) with the highest deviation(s), which should be investigated. This relevant support
to domain experts in fault diagnosis is unfeasible via the ordinary LS approach to fuel-speed
curves. The LS-PLS method used for monitoring is summarized in the graphical scheme
reported in Figure 3.2.

Figure 3.2: Graphical scheme of the proposed approach for monitoring FCPH. Bold lines
refer to measured variables/factors.
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Hypothesis testing on the effectiveness of energy efficiency initiatives
The LS-PLS fuel-speed curve gives a useful support when a benchmark comparison of data
trends is needed before and after each specific EEI. From a formal viewpoint, let us consider
the matrices x and Zorth of the predictor variable observations corresponding to a proper
reference period before EEI. We now combine them into the matrix M1 “ rx Zorths and the
regression coefficients into the vector θJ

1 “ rβ γJs. Then, the sample model corresponding
to Equation (3.6) can be written into the more compact form

y1 “ M1θ1 ` ε1, (3.21)

where y1 contains the FCPH observations before the EEI and ε1 contains the corresponding
errors.

Similarly, let us consider only data after the EEI and arrange observations into matrices
M2 “

“

x2 Zorth,2
‰

and y2. Then, the corresponding model is as follows

y2 “ M2θ2 ` ε2, (3.22)

where θJ
2 “ rβ2 γJ

2 s is the new vector of regression coefficients and ε2 contains the
corresponding errors.

Note that, by setting θ∆ “ θ2 ´ θ1, Equation (3.22) can be rearranged as follows

y2 “ M2pθ1 ` θ∆q ` ε2, (3.23)

which means that
y2 ´ M2θ1 “ M2θ∆ ` ε2, (3.24)

The left-hand side represents the error ε21, obtained by using the model in Equation (3.21)
estimated by reference data collected before EEI, with observations y2 and M2 collected
after EEI. Thus, from Equation (3.24) a new model readily follows

ε21 “ M2θ∆ ` ε2. (3.25)

From Equation (3.25), the effectiveness of a specific EEI can be tested by determining
whether the vector M2θ∆ is zero, i.e. the model in Equation (3.25) does not account for a
significant portion of the variation in the ε21 variable. The appropriate hypotheses are

H0 : M2θ∆ “ 0
loooooooomoooooooon

effective EEI

, H1 : M2θ∆ ‰ 0
loooooooomoooooooon

not effective EEI

(3.26)

These hypotheses relate to the significance of the model in Equation (3.25) and may be
tested through analysis of variance (ANOVA), which is summarized in Table 3.1. If the null
hypothesis holds, the ratio between the mean square due to regression (MSR) and the mean
squared error (MSE) follows an F distribution with a` 1 and n´ a´ 2 degrees of freedom
(Searle & Khuri 2017, Nomikos & MacGregor 1995a).

The proposed procedure can be trivially extended to different benchmark comparisons
(e.g. between sister ships or between speed trials and operational data).

Quantification of fuel consumption and CO2 emission reduction
If the null hypothesis is rejected, the model in Equation (3.21) can no longer be utilized
for monitoring purposes. However, it can be useful for the quantification of savings in
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Table 3.1: ANOVA table for hypothesis testing of the effectiveness of an EEI.

Source of
variation

Degrees of
freedom

Sum of
squares MSE F -value

Regression a` 1 ŷJ
LS´P LSŷLS´P LS MSR “

ŷJ
LS´P LS ŷLS´P LS

a`1
MSR
MSE

Residuals n´ a´ 2 eJ
LS´P LSeLS´P LS MSE “

eJ
LS´P LSeLS´P LS

n´a´2

terms of fuel consumption or CO2 emissions. In this regard, unfortunately, the international
regulations (Milligan et al. 2006, European Commission 2015) are not rigorous in properly
defining the periods before the EEI (to be used for curve estimation) and after the EEI (to
be used for quantification of the fuel saving).

Regardless of this, let us consider for a given voyage j after the EEI, the FCPH yj and
its prediction ŷj based on the ship operating conditions xj and zJ

orth,j , using the model
developed before the EEI

ŷj “ xj β̂ ` zJ
orth,j γ̂. (3.27)

The total fuel consumption reduction (FCR) can be calculated as

FCR “

k
ÿ

j“1
pyj ´ ŷjqhj , (3.28)

where yj ´ ŷj represents the saving achieved for the voyage j, hj is the actual voyage sailing
time, and k is the number of voyages considered after the EEI. Calculation of FCR also
allows estimating CO2 emission reduction (Yuan et al. 2016) through the emission factor for
marine fuel oil, which is equal to 3.114 grams of CO2 per gram fuel (Smith et al. 2015).

3.3 Case study: a Grimaldi Group Ro-Pax cruise ship

In the following treatment, real operational data from the Ro-Pax cruise ship mentioned
in the introduction are applied in order to illustrate the proposed approach. Table 3.2
summarizes the variables chosen as response and first predictor, as well as the additional
factors used in the LS-PLS model. Further details on these factors can be found in Bocchetti
et al. (2015) Two applications are shown in the two following subsections. In particular,
Section 3.3 shows the LS-PLS approach used for monitoring both predictor variable and
additional factors (trough the and control charts), and response variable (though the LS-PLS
fuel speed curve) for new voyages. Section 3.3 evaluates the effectiveness of an EEI in terms
of fuel consumption reduction.

Using the LS-PLS approach for monitoring new voyages

A Phase I sample of 59 reference observations is collected during a ten months’ period, while
Phase II monitoring is applied on 46 new voyages over the following six months. Figure
3.3 shows the PRESS statistic calculated for the PLS model, as result of the leave-one-out
cross-validation procedure, which achieves its minimum when the number of components is
nine.
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Table 3.2: Operational variables measured for each voyage.

Symbol Description
Response variable y FCPH
Predictor variable V 3 cubed SOG

Additional factors

σ2
V SOG variance
WH mean head wind
WF mean following wind
WS mean side wind
SGP mean port shaft generator power
SGS mean starboard shaft generator power
∆P mean power difference between two propeller shafts
TrimD departure Trim
TrimA arrival Trim
TF D departure draught (fore perpendicular)
TAD departure draught (aft perpendicular)
TP D departure draught (midship section—port)
TSD departure draught (midship section—starboard)
TF A arrival draught (fore perpendicular)
TAA arrival draught (aft perpendicular)
TP A arrival draught (midship section—port)
TSA arrival draught (midship section—starboard)
∆ displacement

Figure 3.3: The PRESS statistic used to determine the number of components to retain in
the PLS model.
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Estimating the LS-PLS fuel-speed curve

The LS and LS-PLS fuel-speed curves are reported in Figure 3.4, together with the reference
observations of FCPH and normalized FCPH (obtained by Equation (3.14)), used for their
construction, respectively. For confidentiality reasons, y-axis tick labels are hidden, but the
vertical scale is left unchanged. As already indicated in Section 2.2, note that the LS-PLS
fuel-speed curve is identical to the ordinary LS one, but the points in Figure 3.4a are much
more scattered than the points in Figure 3.4b, because the LS residual sum of squares is
larger than the LS-PLS residual .

Figure 3.4: (a) FCPH and (b) normalized FCPH reference observations (points) used for
the construction of (a) ordinary LS and (b) LS-PLS fuel-speed curves. Vertical scale unit
is 1 t{h.

Monitoring the predictor variables

As described in Section 3.2, fuel consumption Phase II monitoring through LS-PLS fuel-speed
curve requires and (defined in Equation (3.18) and (3.19)) to be in control. For this reason,
Figure 3.5 and Figure 3.6 report T 2 and SPEX control charts, respectively, together with
the corresponding upper 99% limits calculated based on the Phase I sample. Voyages are
identified by the progressive voyage number (VN) and are analysed in chronological order
below. In those figures, the labelled voyages are outside the control limits and thus may
require further technological investigation on the SOG or the additional factors (Table 3.2)
for the diagnosis of unusual variations.

In this case, there is a group of three consecutive voyages, VN 18, 19, and 20 that are out
of control in both the T 2 and SPEX charts. By exploring the corresponding contribution
plots, which are reported in Figure 3.7 and Figure 3.8, respectively, the power difference
between propeller shafts (∆P ) appear as the major variable contributing to both the T 2 and
SPEX statistics. The contribution to the T 2 statistic also identifies as anomalous the cubed
SOG (V 3) and the arrival trim (TrimA).
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Figure 3.5: T 2 control chart for monitoring voyages with 99% control limit (dashed line).

The VN 43 is out of control only in the SPEX control chart (Figure 3.6) that is again
plausibly due to the power difference between propeller shafts (∆P ) as indicated by the
corresponding contribution plot (Figure 3.7).

Unfortunately, the consecutive VN 45 and 46, which are out of control in the T 2 control
chart (Figure 3.5), do not present dominant factors as almost all show high contributions
(Figure 3.7) to T 2.

As already noted in Section 3.2, the predictor variable V 3 does not contribute to the
SPEX statistic because it is not involved in PLS latent model building; thus it does not
appear in contribution plots in Figure 3.8.

Monitoring the response variable through the LS-PLS fuel-speed curve

For monitoring the FCPH of those voyages that do not fall outside the limits of either
the T 2 or SPEX control charts (Figure 3.5 and Figure 3.6), the fuel-speed curves (Figure
3.4) and LS and LS-PLS pointwise 95% prediction intervals based on Phase I sample are
obtained through Equation (3.13) and (3.16) and are reported in Figure 3.9a and Figure
3.9b, respectively.

We note again that the LS-PLS pointwise prediction intervals of the FCPH depend not
only on SOG, but also on the additional factors. Then, in 3.9b it is not surprising that
voyages with the same SOG do not (necessarily) have the same prediction interval width.

By comparing 3.9a and 3.9b it is, however, evident that the LS-PLS method achieved, as
expected, narrower prediction intervals. In particular, the 95% prediction intervals obtained
through the ordinary LS method (3.9a) are at least 78% wider than LS-PLS pointwise ones
(3.9b) and are thus useless for managerial decision-making. In those voyages with FCPH
outside the limits of the 95% pointwise prediction intervals, a fault may have occurred caused
by factors external to those considered in Table 3.2.
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Figure 3.6: SPEX control chart for monitoring voyages with 99% control limit (dashed
line).

Using the LS-PLS approach for testing the effectiveness of an EEI

The proposed approach lends itself to be used in testing the effectiveness of a specific EEI,
through a benchmark comparison of FCPH before and after the EEI, which, for the considered
ship, consisted in a silicone foul release coating of the hull. In order to do this, two different
groups of data are considered. The first group of data is made of 66 observations available
before the EEI, whereas the second group of data is made of 61 observations collected after
the EEI. Both the fuel speed curves that are plotted in Figure 3.10 are estimated on the basis
of the 66 observations of the first group. Then, FCPH and normalized FCPH observations
of the second group are reported together with the corresponding LS and LS-PLS pointwise
95% prediction intervals in Figure 3.10a and Figure 3.10b, respectively. In particular, the
latter is based on five PLS components as resulted from the leave-one-out cross-validation
procedure. The advantage of the proposed LS-PLS approach is in correctly identifying a
larger number of points that fall under the lower prediction limit at the same level (95%)
as graphically confirmed by Figure 3.10. In more formal terms, the effectiveness of the
considered EEI is also tested as described in Section 3.2 and summarized in the ANOVA
table reported in Table 3.3.
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3.3. Case study: a Grimaldi Group Ro-Pax cruise ship

Figure 3.7: Contribution to T 2 for VN 18, 19, 20, 45, and 46.
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Figure 3.8: Contribution to SPEX for VN 18, 19, 20 e 43.

Figure 3.9: Monitoring of voyages (triangles) through (a) ordinary LS fuel-speed and (b)
LS-PLS fuel-speed curve. Vertical scale unit 1 t{h.
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Table 3.3: ANOVA table for hypothesis testing of the effectiveness of an EEI.

Source of
variation

Degrees of
freedom

Sum of
squares MSE F -value p-value

Regression 6 1.030 0.172 18.92 <0.001
Residuals 54 0.490 0.009

Figure 3.10: Benchmark comparison of 61 new voyages (triangles) after the EEI via (a)
95% LS prediction intervals and (b) 95% LS-PLS pointwise prediction intervals of the
corresponding fuel-speed curve obtained based on 66 reference observations before the
considered EEI. Vertical scale unit 1 t{h.

The null hypothesis of not effective EEI is rejected at a significance level α “ 0.01. This
allows explicitly stating the effectiveness of the considered EEI and thus, estimating fuel
consumption and CO2 emission reduction as explained in Section 3.2. Through Equation
(3.28), the FCR achieved by the considered 61 voyages after EEI is equal to 96.9t of heavy
fuel oil. By the conversion coefficient for this fuel type, this corresponds to a CO2 emission
reduction of 302 t.

Then, the rejection of the null hypothesis allows the mean FCR for a future voyage
conditional to a given SOG to be visualized trough the difference, at the given SOG, between
the fuel-speed curve depicted in Figure 3.9b, depicted in Figure 3.11, that are constructed
based on the observations collected before (thin line) and after (bold line) the EEI.

3.4 Conclusions

Fuel-speed curves are very attractive for shipping practitioners, who are used to dealing with
classical curves when estimating and testing for fuel efficiency improvement. Motivated by
real operational data automatically acquired from a Ro-Pax cruise ship operating in the
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Figure 3.11: Comparison between fuel-speed curves estimated based on reference obser-
vations collected before (thin line) and after (bold line) the EEI. Vertical scale unit 1
t{h.

Mediterranean Sea, a novel approach has been proposed by elaborating the orthogonal LS-
PLS method. This approach allows estimating fuel-speed curves that exploit the contribution
of orthogonal components constructed as linear combinations of additional factors collected
on-board by modern multi-sensor systems. The LS-PLS normalized fuel-speed curve is shown
to possess the highly useful property of maintaining the theoretical relationship between
fuel consumption per hour and mean hourly vessel’s speed over ground, as well as achieving
narrower prediction intervals for future observations than those obtained through the ordinary
LS method. This makes the fuel-speed curve suitable for monitoring fuel consumption per
hour in real cases.

Accordingly, the LS-PLS modification of Hotelling’s control chart for scores and the
classical squared prediction error control chart are used to detect whether or not future
observations move away either inside or outside the normal operating region of the latent
variables, respectively. Voyages with unusual variations have been further technologically
investigated through contribution plots of the corresponding control chart in order to support
the diagnosis of fault causes. This support would have been unfeasible via the ordinary LS
approach to fuel-speed curves.

Prediction intervals for future observations are also utilized to compare graphically fuel
consumption before and after energy efficiency initiatives. Moreover, a specific hypothesis
test is implemented and allows for the estimation of any fuel consumption reduction due to
a specific energy efficiency initiative. In particular, for the Ro-Pax cruise ship considered in
the case study, fuel consumption and CO2 emission reduction were estimated after silicone
foul release coating of the hull. These results entitled the shipping company to directly cash
in the carbon credits, according to the international emission trading mechanism set by the
Kyoto Protocol.

Lastly, the proposed approach deserves the attention of ship owners, managers, and
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3.5. Appendix A: predictive ability comparison of PLS and MLR

Figure 3.12: Fuel-speed curve (solid line) and 95% pointwise prediction interval of the
normalized FCPH (dashes) estimated by (a) MLR and (b) PLS methods for voyages
monitored in Phase II (triangles).

operators who are called to make decisions based on massive amounts of operational data on
their fleet.

3.5 Appendix A: predictive ability comparison of PLS and MLR

The predictive ability of the LS-PLS approach can be validated by comparing the PLS
method that enters into force in Equation (3.8) to decompose Zorth with respect to the
use of the standard MLR. In general, the two methods are equivalent when the number of
components used in the PLS method equals the number of additional factors. Let us consider
the same Phase I sample used in Section 3.3, as well as the same voyages monitored in Phase
II. The PRESS statistic has already been reported in Figure 3.3 in the case of the PLS
method. The minimum value (6.07) is achieved at nine components and therefore, is smaller
than the PRESS achieved by the MLR (6.82). This shows that the PLS method has better
than or at least the same predictive ability of MLR. This is also validated on the Phase II
by looking at Figure (3.12) that shows 95% pointwise prediction intervals obtained by MLR
(Figure (3.12)a) are wider than those obtained by PLS (Figure (3.12)b). Accordingly, the
sum of squared prediction errors achieved by MLR (1.09) is larger than that achieved by
PLS (0.80).

3.6 Appendix B: main steps of the PLS algorithm

In this Appendix, the main steps of the PLS algorithm are outlined. Suppose you have a
nˆ 1 vector y representing a scalar response variable and a nˆm matrix X representing
the predictors. The linear relationship between y and X, which is y “ Xγ ` ε, where ε is a
vector of errors. Suppose that the variables are mean centered. In this work, the nonlinear
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iterative partial least-squares (NIPALS) algorithm for the linear regression of y on X is
used. The algorithm is initialized by setting X0 “ X and y0 “ y. Then, at each iteration
i “ 1, . . . , a:

1. calculate the weight vector wi “ XJ
i´1yi´1{pyJ

i´1yi´1q;

2. scale wi to be unit length;

3. calculate the score vector as linear combination of columns of Xi´1 as ti “ Xi´1wi;

4. regress yi´1 on ti obtaining the coefficient bi “ yJ
i´1ti{ptJ

i´1ti´1q;

5. calculate the loading vector pi “ XJ
i´1ti{ptJ

i´1ti´1q;

6. deflate the matrices Xi “ Xi´1 ´ tipJ
i and yi “ yi´1 ´ tibi and start from the first

step to find a new component.

At the end of the algorithm, define the matrices T “ pt1, . . . , taq, W “ pw1, . . . ,waq,
P “ pp1, . . . ,paq, and the vectors γ̂P LS “ pb1, . . . , baqJ. The vector γ̂P LS allows to make
predictions on the response variable, in fact ŷ “ Tγ̂P LS . However, we are interested
in expressing the prediction of the response variable as a linear combination of columns
of X, i.e. ŷ “ Xγ̂. Note that, since T “ XWpPJWq´1, we can write ŷ “ Tγ̂P LS “

XWpPJWq´1γ̂P LS . Therefore, we have γ̂ “ W pPJWq´1γ̂P LS .

3.7 Appendix C: simulation study on the coverage of the
approximate pointwise prediction intervals

This Appendix deals with a simulation study on the coverage of the approximate pointwise
prediction intervals for the proposed LS-PLS normalized fuel-speed curve, whose limits are
reported in Equation (3.16). To this aim, we firstly consider Equation (3.5) to introduce the
relationship between (observations of) the predictor variable X and the vector of the m´ 1
additional factors Z.

The observations x of X are generated as pseudo-random observations from the standard
normal distribution. The number of additional factors is set equal to m ´ 1 “ 9 and the
matrix Z is obtained according to Equation (3.5), with δ “ p1, . . . , 1qJ. The matrix Zorth

is then generated in order to introduce multicollinearity, as in (Gunst & Mason 1977). In
particular, the first five columns zorth,1, . . . , zorth,5 of Zorth are generated as independent
observations from the standard normal distribution; whereas each of the remaining columns
is obtained as a nearly linear combination of the first five ones, i.e.,

zorth,j “
1
5zorth,1 ` ¨ ¨ ¨ `

1
5zorth,5 ` εZorth,j

, (3.29)

where εZorth,j
is a vector of independent observations normally distributed with zero mean

and standard deviation equal to . Observations of the response variable are generated
according to Equation (3.7), with β “ 1 and γ “ p1, . . . , 1qJ, whereas the errors ε are
independently generated from the standard normal distribution.

According to the proposed approach, four sets of reference observations, with different
sample size n “ 30, 60, 200, 1000 have been generated. For each set of reference observations,

1. the number of PLS components are chosen by leave-one-out cross-validation;
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3.7. Appendix C: simulation study on the coverage of the approximate pointwise prediction
intervals

Table 3.4: Mean, median, and 95% confidence interval of the approximate prediction interval
coverage.

Sample size n mean median 95%-confidence interval
30 0.908 0.920 0.800–0.978
60 0.929 0.933 0.875–0.972

200 0.944 0.946 0.918–0.966
1000 0.949 0.949 0.935–0.963

2. a new independent set of 1000 observations has been further generated;

3. model parameters are estimated through the proposed orthogonal LS-PLS approach;

4. the prediction interval coverage is estimated as the proportion of new observations of
the response variable within the corresponding prediction interval.

This procedure has been repeated 1000 times to get the empirical distribution of the
approximate pointwise prediction interval coverage. The main results are summarized in
Table 3.4. In particular, for each sample size, Table 3.4 reports the sample mean, the sample
median as well as the corresponding 95%-confidence interval of the approximate prediction
interval coverage, calculated as the 5th and 95th sample percentiles from the empirical
distribution of the approximate prediction interval coverage. The smaller the sample size,
the larger the 95% -confidence interval, the more the distribution of the coverage estimates is
left-skewed (i.e., the mean is smaller than the median). Indeed, this is quite reasonable since
the coverage is constrained in p0, 1q and its mean and median are close to one. Accordingly,
as the sample size increases, prediction intervals become much narrower and symmetric, and
the sample mean and median get very close to 0.95. This clearly shows that the larger the
sample size, the more precise the coverage of the approximate prediction interval.
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Chapter 4

Ship fuel consumption monitoring and
fault detection via control charts based
on partial least squares regression

New regulations in the shipping sector aim to give greater transparency to operations
and public access to CO2 emissions data. EU regulation 2015/757 became mandatory
in January 2018 and urges shipping companies to set up systems for daily monitoring,
reporting and verification (MRV) of emissions for individual ships. Manual acquisition and
handling of emissions data may be allowed (e.g. bunker fuel delivery note, bunker fuel
tank monitoring), but is adversely affected by uncertainty due to human intervention and
will eventually be unusable for monitoring purposes. However, the massive amounts of
navigational data acquired by multi-sensor systems installed on-board modern ships have
great potential to aid compliance with regulations but their use is hampered by the lack of
effective analytical methods in maritime literature. This work demonstrates a statistical
framework and automatic reporting system for fuel consumption monitoring that addresses
the MRV requirements needed to comply with the regulations. The framework has been
applied to the Grimaldi Group’s Ro-Ro Pax cruise ships and is shown, in addition, to be
capable of supporting fault detection as well as verifying CO2 savings achieved after energy
efficiency initiatives.

4.1 Introduction

Regulatory background
In recent years, the increase of greenhouse gas (GHG) emissions such as carbon dioxide (CO2)
has determined global warming and climate change. They are considered one of the biggest
challenges of our time and prompt solutions have to be adopted to avoid severe consequences
for society. According to the Kyoto Protocol (Ki-Moon 2008), several institutions have focused
their attention on this problem. The International Maritime Organization (IMO), through the
Maritime Environmental Protection Committee (MEPC), has developed initiatives to reduce
GHGs from ships, urging shipping companies to adopt a set of technical and operational
measures to improve energy efficiency of ships not only during operation but also in the
design phase (IMO 2009, 2012b,d). The Energy Efficiency Design Index (EEDI) (IMO 2012d),
and the Ship Energy Efficiency Management Plan (SEEMP) (IMO 2012b), are the tools used
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to monitor these improvements. Alongside IMO guidelines, the Regulation EU 2015/757 of
the European Parliament forces shipping companies, operating with their fleet in the EEA
(European Economic Area) regardless of the flag state or port registry, to monitor and report
all harmful emissions (European Commission 2015) from 1 January 2018.

The basic measure adopted by shipping companies to reduce CO2 emissions and fuel
consumption is the sailing speed reduction, since it does not require any energy efficiency
operation that has a cost. In fact, the ship’s speed has also implications in terms of energy
efficiency and costs for owners and ship operators. Small changes in speed can significantly
improve the energy efficiency as well as the productivity and revenue of the ship (Smith et al.
2015). The problem of optimizing the ship speed on a route in order to minimize the total
fuel cost while satisfying the calling time window constraints at the calling ports has been
faced by Kim et al. (2014, 2016). Because of the well-known difficulties in directly measuring
CO2 emissions, the MRV regulation (European Commission 2015) provides for indirect
monitoring through the ship’s fuel consumption. The calculation of CO2 emissions can, in
fact, be retrieved on the basis of the amount of fuel consumption, through the emission
factor in accordance to Annex VI (European Commission 2012).

Literature review

In the naval literature, the most common method used to estimate fuel consumption and
then CO2 emissions is the so-called speed-power curve. This curve is drawn by exploiting
the univariate relationship between the engine power and the vessel speed (Lewis 1988).
However, despite its intuitive usage, this method is affected by large variability and may
lead to poor predictions due to different sailing (e.g. trim, displacement, etc.) and weather
conditions.

Several methods have been proposed to improve the estimate of speed-power curves, by
exploiting any information from additional operational variables. In particular, Bialystocki
& Konovessis (2016) firstly consider ship’s draught and displacement, weather force and
direction, hull and propeller roughness. Perera & Mo (2016) draw the empirical relationship
between fuel consumption and the main operational variables using a graphical data analysis
of performance and navigation parameters to support the management in analyzing the
energy flow path. Petersen et al. (2012) proposed a statistical method based on artificial
neural networks and Gaussian Processes to predict fuel consumption through sailing and
environmental conditions such as vessel’s speed over ground, vessel’s speed through water,
trim, displacement, wind force and directions. Lu et al. (2013) estimated the ship resistance
considering as operational variables the ship type, draughts, speeds, encounter angles, sea
states, fouling effect and engine degradation conditions. Meng et al. (2016) proposed a
method based on regression models to estimate the fuel consumption rate of container
ships. Trodden et al. (2015) analyzed fuel consumption and speed over the ground using
a continuous data stream from a tug boat. Murphy et al. (2012) used fuel consumption
data and engine load from sea trials to investigate reduction in fuel consumption. Zaman
et al. (2017) presented a statistical analysis to automatically detect the vessel operational
modes (port, manoeuvring, sailing) based on sensor data acquired on board as a pre-cursor
to modelling fuel consumption in transit mode.

Bocchetti et al. (2013, 2015) proposed a statistical method based on multiple linear
regression to predict ship fuel consumption and build prediction intervals for each voyage
considering the operational and sailing conditions including ship speed, sailed distance, wind
speed, wind direction, cumulative docking time, displacement, stabilizer fin operating time,
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and engine operation mode. In particular, this method exploits the massive amount of sensor
data acquired on board of two Ro-Ro Pax ships that link three ports in the Mediterranean
Sea.

The proposed approach

Unfortunately, most of the presented methods have strong limitations when applied to high-
dimensional and correlated data, or they do not fully exploit all of the available information.
New data acquisition technologies in fact have brought massive navigation data and a call for
shipping management to adopt new methodologies to fully exploit them. For this purpose,
an engineering approach based on partial least squares (PLS) regression is introduced to
develop a model for ship fuel consumption prediction and monitoring based on the massive
navigation data automatically acquired on-board of the modern ships. In particular, the
proposed model is based on summary statistics of each voyage deduced from the sensor
signals that relate to the actual navigation time and therefore, neglects manoeuvre time
and stay in port at departure and at arrival. The fuel consumed in this phase is known to
contribute more than the 90 percent to the total consumption.

The aim of the proposed approach is twofold: (i) statistical monitoring of ship fuel
consumption (and thus CO2 emissions) to support shipping management to identify anomalies
and (ii) quantifying fuel consumption reduction (FCR) consequent to energy efficiency
initiatives (EEIs) (hereinafter referred to also as dry-dock operations). The rest of the
chapter is organized as follows. A brief introduction on the acquisition data system and the
variables used in this procedure is given in Section 4.2. Section 4.3 details the statistical
approach and the monitoring tools utilized. Lastly, in Section 4.4 a real-case study is
presented to illustrate the applicability and the effectiveness of the proposed approach.

4.2 Data

The navigation data are collected on board of four Ro-Ro Pax ships owned by Grimaldi
Group that operate in the Mediterranean Sea. Ships, port names and dates are intentionally
omitted for confidentiality reasons as well as actual numeric values but axis scales in the
figures are left unchanged. However, even if we have currently been implementing the model
on all the four Ro-Ro Pax ships mentioned above, for reasons of brevity, in what follows
we show only the most relevant results achieved for two ships (hereinafter referred to as
Ship 1 and Ship 2 ). Therefore, we used two different ships to present different scenarios in
which the proposed approach can be useful. A first scenario is meant to show the monitoring
performance of the proposed approach, while in the second case the ship under the energy
efficiency initiative did not show out-of-control voyages in the considered period.

Each ship is equipped with a sensor network and a data acquisition device (DAQ).
Every five minutes the DAQ device collects the values of a set of physical variables used as
predictors, the complete set of physical variables of engineering interest used as predictor
variables to monitor the ship operating conditions, ship fuel consumption, and CO2 emissions
is illustrated in Table 4.1. Further information on predictor variables and their descriptions
are given in the following sub-section.
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Table 4.1: Physical variables acquired at each voyage considered in the proposed approach.

Symbol Description
Response variable y Average fuel consumption per hour [Mt{h]

Predictor variables

V 3 cubed SOG [kn3]
σ2

V SOG variance [kn2]
WH head wind [kn]
WF following wind [kn]
WS side wind [kn]
SGP port shaft generator power [kW ]
SGS starboard shaft generator power [kW ]
∆P power difference between two propeller shafts [kW ]
∆SG power difference between two shafts generators [kW ]
TF D departure draught (fore perpendicular) [m]
TAD departure draught (aft perpendicular) [m]
TP D departure draught (midship section—port) [m]
TSD departure draught (midship section—starboard) [m]
TF A arrival draught (fore perpendicular) [m]
TAA arrival draught (aft perpendicular) [m]
TP A arrival draught (midship section—port) [m]
TSA arrival draught (midship section—starboard) [m]
TrimD departure Trim [m]
TrimA arrival Trim [m]
∆ displacement [t]

Other variables

UTC Date and time UTC
h SOG variance [kn2]
PT shaft propeller power [kW ]
PE electrical power [kW ]
M Distance travelled [NM ]
hij Running hours (i-th engine, j-th engine set) [h]
SFOCij Specific fuel oil consumption (i-th engine, j-th engine set)
Pij Power (i-th engine, j-th engine set) [kW ]
ηm

j Gearbox mechanical efficiency (j-th engine set)
ηe

j Shaft generator electrical efficiency (j-th engine set)
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Variable Definition
As previously stated, each variable summary statistic is available only at the end of the
actual navigation time (h), that is defined as the time interval between the Finished with
Engine order at departure port and Stand by Engine order at arrival port (IMO 2000). The
actual navigation time is calculated on the data and time UTC Coordinated Universal Time
acquired through the Saab R4 GPS Navigation Sensor.

The Speed Over Ground (V ) and the variance of SOG (σ2
V ) represent respectively the

mean value and the variance value of the averages obtained from the 5 minutes interval
observations. In particular, the SOG is obtained as

V “
M

h
(4.1)

where h is the actual navigation time and M is the distance travelled, calculated from the
latitude and longitude data collected by the Saab R4 GPS Navigation Sensor. The distance
travelled is calculated through the haversine formula according to (Veness 2007) as

M “ rθ (4.2)

where r is the radius of the Earth, i.e. 6378.14 km and θ is defined as an angular distance in
radians. The angle θ is calculated via the haversine formula as follows

havθ “ hav∆φ` cosφA cosφBhav∆L, (4.3)

where ∆ φ is the difference in latitudes, ∆L is the difference in longitudes, while φA and
φB are the latitude values at point A and point B, respectively, and havθ “ sin2pθ{2q is the
haversine function.

Specific resistance tests carried out in a towing tank within a speed range of 20 to 25 kn
show that, for the considered ship type, the hydrodynamic resistance is proportional to the
third power of SOG. Therefore, the proposed approach adopts a SOG that is cubed in order
to obtain V 3.

The wind speed and direction are considered through the head (WH), side (WS) and
following (WF) wind components. According to (ITTC 2017), Figure 4.1 shows the sign
convention.

Figure 4.1: Wind components.
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The head wind component is calculated as

W̃H “

#

0 if 90˝ ď ΨW T ď 270˝

VW T cospΨW T q otherwise
, (4.4)

where the VWT is the true wind speed and Ψ WT the difference between the true wind angle
in earth system (BWT) and course over ground (COG) averaged by the DAQ device every 5
minutes. VWT and BWT are automatically calculated by a Thies Clime anemometer (Adolf
Thies GmbH & Co. KG, Gottingen, Deutschland) based on the sensor measurements of the
relative wind speed VWT and direction Ψ WT, as well as COG and SOG data. The wind
speed sensor has an accuracy of ˘ 2.5% and a resolution of 0.05 m, while the wind direction
sensor has an accuracy of ˘ 2.5% and a resolution of 2.5˝ . The side wind component WS is
defined once a voyage is completed as the mean of

W̃S “ |VW T sinpΨW T q|, (4.5)

while the following wind component WF is defined as the mean value of

W̃F “

#

´VW T cospΨW T q if 90˝ ď ΨW T ď 270˝

0 otherwise
. (4.6)

The engine variables are port and starboard shaft generator power variables SGP and SGS and
they allow taking into account the different modes of navigation (constant and combinator
mode).

The Power difference between two propeller shafts ∆P allows discovering anomalies or
malfunctions in the main engines, while the Power difference between two shaft generator
powers ∆SG allows discovering if one of the two shaft generators is out of order.

The Displacement variable ∆ is defined as the mean value of the two displacements
obtained, respectively, at departure and arrival port. In particular, each of these two
displacement values are derived from the hydrostatic data based on draughts at amidships
and trim. The former is obtained by averaging the portboard and the starboard draught in
the amidships section at the departure and arrival port, i.e. TPD, TSD, TPA, and TSA; the
latter in accordance with ITTC (2008) is defined as the mean value of difference between
the draught fore and the draught aft at the arrival port, i.e. TFA and TAA . The draught
variables TFD, TAD, TPD, TSD, TFA, TAA, TPA, and TSA do not refer to the entire voyage,
but each variable is measured both at departure and at arrival ports by four submersible
transmitters located at fore and aft perpendiculars, and at port and starboard amidships
sections. These data are acquired by four Vegawell 52 draught gauges (pressure transmitters;
VEGA, Schiltac, Deutschland), each with a maximum deviation of 0.2%. These measurements
are collected in port when SOG is less than 0.3 Knots because this sensor acquires the
hydrostatic pressure. At high speed these measurements are affected by errors.

Departure and arrival trim (TrimD and TrimA) are obtained through the inclinometer
measurements and the geometric features of the ship.

Hourly Fuel consumption and CO2 emission calculation
The response variable object of this study is the average fuel consumption per hour for each
voyage (i.e. the ratio between fuel consumed and actual navigation time in hours for each
voyage) during navigation

Y “
Q

h
, (4.7)
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where Q is the total fuel consumption for the voyage during the actual navigation time and h
is the navigation time in hours. A brief overview of the ship engine room layout is presented
to identify how Q is calculated. All the cruise ships monitored in this chapter have two
engine sets, each with two Wartsila 12V46D main engines for propulsion with a variable
pitch propeller and a Marelli shaft generator (keyed on a gearbox) for electric power; Figure
4.2 outlines the Engine room layout.

Figure 4.2: Engine room layout.

As detailed by Bocchetti et al. (2015), on the j-th engine set (j=1, 2) the DAQ device
collects the thrust power PT

j on the shaft propeller and the electrical power PE
j on the shaft

generator. The powers PT
j and PE

j are the only measurements available for calculating
the main engine power. Note that when the engine operation mode is combinator, the
shaft generator is necessarily powered off (PE

j “ 0). In this case, the electrical power is
supplied by three diesel generators, which are intentionally not considered in the following
fuel consumption calculation.

The actual fuel consumption Q related to the main engines is calculated through the
following relation

Q “

2
ÿ

i“1

2
ÿ

j“1
PijhijSFOCij , (4.8)

where hij is the number of running hours of the i-th engine of the j-th engine set (with
i,j=1,2), is the specific fuel oil consumption of the i-th engine of the j-th engine set. Then,
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the power Pij of the i-th main engine of the j-th engine set can be calculated as follows

Pij “

$

&

%

0 if xij “ 0
xij

ř2
i“1 xij

Pj otherwise , (4.9)

where xij assumes the value 0 if the i-th main engine of the j-th engine set is powered off and
1 otherwise. For each voyage, the main engine power Pj of the j-th engine set is calculated
as the mean value of

Pj “
PE

j

ηe
jη

m
j

`
PT

j

ηm
j

, (4.10)

where ηm
j and ηe

j are the gearbox mechanical efficiency and the shaft generator electrical
efficiency, respectively.

The proposed method can utilize CO2 emissions as response variable, in particular,
according to Annex I of MRV regulation (European Commission 2015), the calculation of
CO2 emissions can be performed exploiting the amount of ship fuel consumption through
the following formula

CO2 emission = fuel conusmption ˆ emission factor. (4.11)

For each fuel type, a different value of the emission factor is available, according to the
Intergovernmental Panel for Climate Change (IPCC) as reported in Annex VI (European
Commission 2012).

Timeline and Maintenance Intervals

As already stated, for reasons of brevity, we show the most relevant results achieved for two
of the four Ro-Ro Pax ships owned by Grimaldi Group. In particular, the application of the
proposed approach for the on-line monitoring of fuel consumption and fault detection (aim
(i)) is illustrated by means of data acquired on Ship 1 ; whereas, data acquired on Ship 2
are used to show the capability of the proposed approach to assess and quantify the fuel
consumption reduction related to a dry-dock operation (aim (ii)). In what follows, the data
used to estimate the model are referred to as calibration dataset; whereas those used for aims
(i) and (ii) are referred to as monitoring dataset. Accordingly, for Ship 2 the calibration and
monitoring datasets refer to data collected before and after EEI, respectively. The periods
to which calibration and monitoring datasets refer, as well as those indicating dry-dock
operations, are outlined in Figure 4.3 and Figure 4.4 for Ship 1 and Ship 2, respectively. For
the sake of completeness, for Ship 1, the calibration and the monitoring period include 606
and 720 voyages, respectively; for Ship 2 the calibration (before EEI) and the monitoring
(after EEI) datasets contain 329 and 462 voyages, respectively. In particular, for Ship 1, 11
months’ worth of data collected right after EEI operation have been certified as reference
data for the model calibration, in the extent of capturing all the typical operating conditions;
whereas, for Ship 2, 10 months’ worth of data between two dry-dock operations have been
certified as reference data for the model calibration, Anomalous voyages have been identified
by proper statistical procedures and are left out in the reference dataset only if being
confirmed as exceptional by technical engineers.
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Figure 4.3: Ship 1 timeline.

Figure 4.4: Ship 2 timeline.

4.3 The Statistical Approach and Monitoring Tools

In this chapter, PLS regression is used to evaluate the parameters of the statistical model
for predicting and monitoring ship fuel consumption and emissions of CO2. The choice of
the PLS in place of e.g., multiple linear regression (Erto et al. 2015) has great potential of
supporting the management to handle the great amount of data collected on board of modern
ships that are usually noisy and strongly correlated. The residual left by the PLS model are
also naturally prone to be monitored at each new voyage through prediction error control
chart, whereas the predictor variables are monitored through the Hotelling’s T2 and SPEx

control chart, as detailed below. When a point falls outside the upper control limit of at least
one of the latter control charts, a possible problem may have occurred. The management
is then urged to further investigate physical variables that have caused the out-of-control
condition by exploring the corresponding contribution plot (MacGregor & Kourti 1995).

From a mathematical point of view, the two statistics monitor different anomalies that
may occur during voyages. In particular, a value exceeding the control limits of the Hotelling’s
T2 chart indicates that the corresponding observation presents extreme values in one or more
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Figure 4.5: Fault detection analysis diagram.

physical variables, but plausibly maintains the same correlation structure as in the reference
dataset (high variability inside the PLS model). In opposition, values exceeding the control
limits in the SPEx control chart are related to observations that have a different structure
with respect to the reference data (outside the PLS model). Finally, if both T 2 and SPE
statistics are out of control for an observation, we can say that there is some value in one or
more physical variables that is extreme with respect to the reference dataset in the projected
subspace (high variability inside the PLS model) and that, at the same time, this or other
variables show a different correlation structure with respect to the reference dataset in the
residual space (high variability outside the PLS model).

In Figure 4.5 the main steps of the statistical procedure proposed for monitoring of fuel
consumption and diagnosis of faults is outlined. The first step is to set up the monitoring
control chart of the T2 statistic and identify the anomalous voyages for which the statistic
falls outside the upper control limit. For each of these voyages, in order to identify the
physical variables that have determined the largest value, the contribution plot to T2 is
built. The second step regards the SPEx control chart. Similarly, to the T2 statistic, for all
voyages with the SPEx statistic falling above the upper control limit, a contribution plot to
the SPEx statistic is performed. Finally, the prediction error control chart is built up. More
information is given in the next section, which shows the procedure applied operatively to a
real case study from a Ro-Ro Pax ship.

The Hotelling T 2 chart
Note that the detailed explanation of the statistical considerations about the monitoring
statistics introduced in the previous subsection are not in the scope of this article, readers
are referred to (Nomikos & MacGregor 1995b) for more discussion on this topic. When
dealing with a new voyage to be monitored, let us denote by xnew the vector of observations
of the predictor variables from which the (multivariate) sample mean of the reference data is
subtracted and with tnew the vector of the corresponding observations of the latent variables
(or scores) for this voyage. Moreover, let us denote with S the sample covariance matrix of
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the scores of the reference observations.
The Hotelling T2 chart is a monitoring chart reporting for a single voyage to be monitored

the relative statistic T2, which is calculated as

T 2 “
tJ

newS´1tnewNpN ´Rq

RpN2 ´ 1q
, (4.12)

where N is the number of reference observations and R is the number of latent variables
included in the model. Figure 4.6 shows the graphical meaning of T2 statistics. Since T2 has
the F -distribution with R and N-R degrees of freedom, the upper control limit T2

limit is
defined as follows

T 2
limit “ FR,N´R,α, (4.13)

where α “ 0.01 is the significance level. When the T2 statistics for a new voyage falls above
T2

limit, a possible problem in a physical variable may have occurred. In particular, the
value of one or more physical variables is unusual and gives a high contribution to the T 2

statistics that have determined an out of control signal in the T2 statistic. It is possible to
identify the physical variables that have the highest contribution to the out-of-control signal
by calculating the contribution to the T2 statistic according to MacGregor & Kourti (1995),
as the elements of the vector

ContributionT 2 “ tnewpJ
j , (4.14)

where pj is the j-th column of the loading matrix P. Graphically, the plot of the contributions
to T2 is a bar plot, each bar displaying the corresponding physical variable used in the
statistical model. The physical variables that have determined the largest contribution to
the T2 statistic are identified by the highest bars in the contribution plot. On the vertical
axis, the values of the physical variables contribution are reported.

The SPEx chart
For each voyage, the statistic reported in the SPEx control chart is as follows MacGregor &
Kourti (1995)

SPEx “ pxnew ´ x̂newqJpxnew ´ x̂newq, (4.15)
where x̂new “ tnewPJ is the prediction of xnew based on the PLS latent variable model.
Accordingly, the upper control limit is defined as

SPEsup “ θ1

«

cα

a

2θ2h2
0

θ1
`
θ2h0ph0 ´ 1q

θ2
1

` 1
ff1{h0

. (4.16)

A point that falls outside of this limit may indicate that a variable has assumed an atypical
value with respect to the other variables, and an exceptional cause may have occurred with
respect to the baseline used to calibrate the model, as shown in Figure 4.7. As for the T 2

statistic, the contribution to the SPEx

ContributionSP E “ xnew ´ x̂new (4.17)
can be plotted to have indications on physical variables that may have concurred to the
out-of-control.

Variable contributions to T2 and SPEx statistics are such that large contributions in
absolute value lead to large values of the control statistics. Then, when an out of control
signal is detected in one of the two control charts, one can identify the responsible variables
by looking at the larger absolute contribution values.
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The prediction error control chart
As the residuals left by the PLS model are also naturally prone to be monitored at each
new voyage a prediction error control chart can be defined by plotting the predicted hourly
fuel consumption ŷnew and the 100p1 ´ αq prediction interval calculated as in Nomikos &
MacGregor (1995a)

ŷnew ¯ tα{2;n´R´1

d

eJe
n´R ´ 1

“

1 ` tJ
newpTJTq´1tnew

‰

. (4.18)

The matrix T is the matrix of the scores based on the reference data, e is the vector of the
prediction error of the response variable for the reference observations, and tα{2;n´R´1 is the
100α{2 percentile of a Student’s distribution with n-R-1 degrees of freedom. Note that from
an engineering point of view, the use of the prediction error control chart is discouraged when
the T2 and SPEx control charts signal an out of control, since this can cause the problem
of extrapolation, i.e., using the estimator ŷnew in Equation (4.18) beyond the boundary of
the predictor space (Montgomery et al. 2012). On the other hand, anomalies detected only
by the prediction error control chart cannot be addressed to any of the monitored variables
and therefore, they plausibly pertain to a change among factors not included in the set of
predictor variables. Moreover, the usefulness of the prediction error control chart is the
possibility to detect anomalous trends of the response variable over subsequent voyages or
shifts from zero of the prediction error mean, which are not observable by neither the T2 nor
SPEx control charts.

4.4 Real-case study

However, even if we have currently been implementing the model on all the four Ro-Ro
Pax ships mentioned above, for reasons of brevity, in what follows we show only the most
relevant results achieved for two ships (hereinafter referred to as Ship 1 and Ship 2 ). In
particular, Section 4.4 show the capability of this procedure to support management to
identify anomalous fuel consumption (and thus CO2 emissions) and the physical variable
(prognosis of fault) that give the highest contribution to the out-of-control are identified
for Ship 1. whereas, Section 4.4 illustrates how the approach is able to quantifying FCR
consequent to a silicone foul release coating of the hull of Ship 2.

Prognosis of faults
In this section, for illustrative purposes a relevant case study is presented to underline the
ability of the proposed procedure to discover anomalous voyages and to support management
in making suitable decisions to solve the problem that occurred on Ship 1. Note that each
voyage is identified with a unique voyage number (VN).

In this case, a monitoring window from VN 2034 to 2053 of Ship 1 is considered. With
respect to this monitoring window, Figure 4.6, Figure 4.7 and Figure 4.8 show the Hotelling
T2 control chart, the SPEx control chart, and the prediction error control chart, respectively.
In particular, VN 2035 exceeds the upper control limit in all the three charts:

As previously explained, according to the procedure displayed in the flow chart of Figure
4.5, when an observation falls outside the upper control limits in both the T2 and SPEx
charts, to further investigate the cause that occurred, the contribution plots to T2 and SPEx
are produced (Figure 4.9 and Figure 4.10).
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Figure 4.6: Hotelling T 2 control chart for voyages 2034–2053 of Ship 1.

Figure 4.7: SPEx control chart for voyages 2034–2053 of Ship 1.
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Figure 4.8: Prediction error control chart for voyages 2034–2053 of Ship 1.

Figure 4.9: Contribution of the variables
to the Hotelling T 2 statistic, for the voyage
2035 of Ship 1.

Figure 4.10: Contribution of the variables
to the SPEx statistic, for the voyage 2035
of Ship 1.
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Draughts and displacement for voyage 2035 display the largest contribution to the
T2 statistic (Figure 4.9), which support technical investigations in detecting an error signal
in the draft gauge sensor. The large contribution to SPEx of the departure trim in Figure
4.10 is due to an unusual value of draught variables. In fact, trim and draught variables are
related and an error signal in the draft gauge sensor turn into an error in the trim value
accordingly.

Referring to Figure 4.6, for VN 2036 the Hotelling T2 statistic falls outside the control
limit, therefore the respective contribution plot is reported in Figure 4.11.

Figure 4.11: Contribution of the variables to the Hotelling T 2 statistic, for the voyage
2036 of Ship 1.

The physical variable responsible of the out of control in the Hotelling T2 control chart
is ∆ P, i.e. the power difference between shaft propellers; further investigations revealed
that the ship sailed with three engines in service during one hour of the total sailing time.

VN 2041 is out of control both in the SPEx control chart (Figure 4.7), and in the
prediction error control chart (Figure 4.8). For this voyage, a contribution plot to SPEx is
built in Figure 4.12.
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Figure 4.12: Contribution of the variables to the SPEx statistic, for the voyage 2041 of
Ship 1.

The physical variable that gives the highest contribution of SPEx is the draught in fore
at departure. The cause is an error in the draft gauge sensor.

Instead, from VN 2047 to 2049 both the monitored statistics T2 and SPEx are in control
(Figure 4.6 and Figure 4.7), while the prediction error control chart (Figure 4.8) underlines
for these voyages an extra-consumption of fuel. In this case, contribution plots are not needed
because the statistics T2 and SPEx do not exceed their upper control limits. The causes
of extra-consumption are to be detected outside the variables considered in the statistical
model.

For graphical reasons, Figures 4.6 through 4.8 show only 20 relevant voyages (from 2034
to 2053) out of the 720 included in the monitoring dataset of Ship 2.

Energy efficiency quantification

The statistical approach presented is also able to quantify the energy saving after an energy
efficiency improvement (EEI) operation. In particular, the fuel consumption reduction and
therefore the CO2 emission reduction can be quantified through the saving zi of a new voyage
i defined as

zi “ pŷi ´ yiqhi, (4.19)

where ŷi is hourly fuel consumption predicted for the new voyage, yi is the actual hourly fuel
consumption for the same voyage and hi is the sailing time. As consequence, the quantity
ŷi ´ yi represents the hourly saving after the EEI operation. To quantify the total fuel
consumption reduction (FCR) after an EEI operation, the set voyages to be considered refers
to the monitoring period that immediately follows the EEI operation. Only voyages that are
in control in both Hotelling T2 and SPEx control chart are considered.

The FCR can be calculated as

FCR “

NEEI
ÿ

i“1
zi (4.20)

where NEEI is the number of new voyages considered after the EEI to evaluate its effectiveness.
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A relevant case study follows. Considering the Ship 2, the EEI operation that was set up
for this ship is the installation of silicone foul release coating on the wetted surface of the hull.
This is a non-toxic hull paint based on fluoropolymer and siloxane (silicone polymer) coating.
The main property of this class of painting is its “non-stick” surface that prevents the
attachment of marine organisms to the hull, therefore it avoids an increase in the resistance,
which requires additional power and consequently additional fuel consumption (and CO2
emissions) to maintain the same vessel speed. Setting up this kind of EEI operation, shipping
management is able to determine the actual improvement in shipping performance as well
as economic and environmental savings consequent to reduction in fuel consumption and
CO2 emissions. One year’s worth of data of voyages after the dry-dock operation (VN 427
to 888), from 15 March 2016 to 14 March 2017 are monitored to quantify the FCR.

Figure 4.13: Prediction error control chart for voyages 427–476 of Ship 2, which follow an
energy efficiency operation.

For graphical reasons, Figure 4.13 shows the prediction error control chart for voyages
427—476 of Ship 2 to illustrate the improvement and the consequent saving gained after the
installation of silicone foul release coating only for the first month following this operation.
Note that the actual hourly fuel consumption is lower than the prediction hourly fuel
consumption for all the voyages, underlying that the saving has been effectively obtained
thanks to the EEI. Moreover, voyages displayed without their relative prediction error
control chart are those outside upper control limit in Hotelling T2 and/or SPEx control
chart, therefore according to Nomikos & MacGregor (1995a) their prediction interval is not
calculated and not considered for the quantification of FCR. In particular, the percentage
of FCR quantified on one year of observations is 9.25%. This is a profitable result for the
shipping management.

4.5 Conclusion

The shipping industry is facing a new regulatory regime that aims to give public access to
CO2 emissions data and this challenge can be addressed by making better use of the massive
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amounts of sensor data now available. The International Maritime Organization—through the
Energy Efficiency Design Index and the Ship Energy Efficiency Management Plan—and the
European Union—through the application of the EU regulation 2015/757, which is mandatory
from January 2018—urge shipping companies to set up a system for daily monitoring of
emissions from each ship. Engineers in the naval sector traditionally rely on deterministic
relationships among the physical variables of interest in order to make decisions. Moreover,
even if manual acquisition of emission data is allowed by all the international regulations
(e.g. bunker fuel delivery note, bunker fuel tank monitoring), it is yet affected by uncertainty
due to human intervention and thus will be eventually unusable for monitoring purposes.
On the other hand, the massive amount of navigation data acquired by multi-sensor systems
installed on-board of modern ships have a great potential to naturally comply with those
regulations but are hampered by the lack of effective methods in the maritime literature.
Despite this advantage, many shipping companies limit their analyses to only calculating
simple summary statistics at each voyage. The range of tools needs to be extended to include
statistical methods for detecting patterns in data. The main contribution of this work is to
provide statistical tools that effectively support the management. Without those statistical
tools, the management cannot easily investigate and diagnose faults responsible for increase
in fuel consumption (and CO2 emissions). The proposed statistical approach is therefore
able to support managerial decision making by setting up suitable actions to improve ship
performance as well as to quantify consumption/emission savings after energy efficiency
improvement operations (e.g., hull form optimization, hull cleaning and propeller polishing,
ultra-smooth coating, engine maintenance operation, propulsion and power plant efficiency
improvement). As is known, this is particularly profitable for shipping companies in order to
claim for carbon credit.

The proposed statistical approach is not only useful to maritime engineers and shipping
companies, but also to the international organizations responsible to adopt regulations related
to the CO2 emission monitoring problem. In fact, the same techniques can be adopted
to verify that shipping companies satisfy the regulatory requirements. Currently, however,
these statistical tools are difficult to implement and spread among shipping companies
because such organizations are not ready to be forced to use automatic systems for the
statistical analysis of emission data in order to verify that CO2 emissions are coherent with
the ship characteristic. The purpose of this chapter is to describe the methodology and
demonstrate its applicability. Ongoing implementation is expected to yield further evidence
of the methodology’s benefits and usability.
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Chapter 5

Feature-oriented methods for the
prediction of CO2

Shipping companies are forced by the current EU regulation to set up a system for monitoring,
reporting, and verification (MRV) of harmful emissions from their fleet. In this regulatory
background, data collected from on-board sensors can be utilized to assess the ship’s operating
conditions and quantify CO2 emission levels. The standard approach for analysing such
datasets is based on summarizing the measurements obtained during a given voyage by
the average value. However, this compression step may lead to significant information loss
since most variables present a dynamic profile that is not well approximated by the average
value, only. Therefore, in this work, we test two feature-oriented methods that are able
to extract additional features, namely, profile-driven features (PdF) and statistical pattern
analysis (SPA). A real dataset from a Ro-Pax ship is then considered to test the selected
methods. The dataset is segregated according to the voyage distance into short, medium,
and long routes. Both PdF and SPA are compared to the standard approach and the results
demonstrate the benefits of employing more systematic and informative feature-oriented
methods. For the short route, no method is able to predict CO2 emissions in a satisfactory
way, whereas for the medium and long routes, regression models built using features obtained
from both PdF and SPA resulted in improved prediction performance. In particular, for the
long route, the standard approach failed to provide reasonably good predictions.

5.1 Introduction

The extensive and increasingly demanding air pollution programs (IMO 2012b,d,c,a, Smith
et al. 2015) make predicting ships’ CO2 emissions not only a strategic, but also a mandatory
task for shipping companies. At the European level (European Commission 2015), they are
in fact forced to set up a system for daily monitoring, reporting, and verification (MRV) of
harmful emissions for their fleet. Concurrently, automatic multi-sensor acquisition systems
installed on-board of modern ships facilitate collecting operational data (i.e., ship operating
conditions) from a massive number of variables (e.g., vessel’s resistance, propulsion power,
fuel consumption, speed, routes, weather conditions, sea weaves, displacements, draughts,
trim, engine operation mode, etc.). The profile of these variables is typically complex,
unstructured, intrinsically collinear and with non-stationary behaviour. In this scenario, data
scientists are called upon in order to develop new predictive techniques that might answer
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positively to the need of predicting CO2 emissions and have a tangible impact in today’s
maritime industry and policy-making (Buhaug et al. 2009, Løvoll & Kadal 2014). More
specifically, operational data show great potential to reveal, by means of suitable analysis,
relevant and timely information (Bertram 2011) to be used for assessing the ship’s efficiency
in terms of CO2 emissions. On this regard, classical approaches used in the naval literature
may fail or are at least suboptimal, since they are limited to the analysis of averages per
voyage. However, in spite of the easier interpretability, compressing a variable profile into a
single average value may lead to significant information loss and to discarding most of the
relevant dynamic patterns.

In the opposite spectrum of complexity, multivariate statistical methods commonly
used for monitoring batch processes have also appeared in the shipping industry statistical
literature (Lepore et al. 2018). However, they usually require the implementation of data
pre-processing techniques that constitute an additional challenge for practitioners and may
hamper their practical usability. For example, data needs to be correctly unfolded to handle
its three-way structure, resulting in a very large number of pseudo-variables and model
parameters. Furthermore, complex synchronization methods are required in order to ensure
that the voyages’ major landmarks are aligned and that all voyages have the same number
of observations.

The batch process monitoring literature is vast and another class of approaches that is
growing in importance is the class of feature-oriented methods. These methods are simpler to
apply because they do not require synchronization and tend to be more parsimonious since
the number of model parameters is smaller. Examples of feature-oriented methods include
profile-driven features (PdF), recently proposed by Rendall et al. (2017), and statistical
pattern analysis (SPA), proposed by He & Wang (2011). These techniques compress each
variable into a small number of features that can be utilized for data-driven model building.
In our previous work (Lepore et al. 2017), we utilized the standard approach in the shipping
industry based on average values (AV) of each variable as predictors of CO2 emissions.
Therefore, it is now opportune to assess whether additional information, in the form of
features, can actually be extracted from the variables’ profiles for improving prediction
performance. Accordingly, in this work, we study the suitability of both PdF and SPA
to extract additional information from the on-board sensor data that are collected during
each voyage and we compare them to the standard AV approach, which will be used as the
benchmark method for this study. A real case study on shipping data acquired on-board
of a Ro-Pax cruise ship, owned by the shipping company Grimaldi Group, is presented to
illustrate the predictive performances of the proposed methods.

The remaining of this chapter is organized as follows. Section 5.2 details the dataset
considered in this work as well as the feature-oriented methods tested. Section 5.3 describes
the comparison framework employed for assessing and comparing the different feature-oriented
methods, while Section 5.4 presents the results obtained, followed by their discussion. Finally,
Section 5.5 summarizes the main conclusions of this work.

5.2 Materials and Methods

In this section, we provide details on the variables collected during each voyage of the Ro-Pax
cruise ship mentioned in the introduction and on the feature-oriented methods utilized for
converting the on-board sensor data into features. These features constitute the predictors
that are used later on for developing regression models for predicting CO2 emissions.
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Data description

The dataset consists of operational data acquired during 679 voyages performed by a Ro-Pax
cruise ship during a period of one year and three months. The name of the ship and voyage
dates are not reported for confidentiality reasons. Voyages are grouped by length into short,
medium and long routes. In particular, there are N “ 302 short-route voyages, N “ 78
medium-route voyages, and N “ 299 long-route voyages.

The scalar response is the cumulative CO2 emissions at the end of each voyage. The
variables that are measured during each voyage and that were selected for analysis are
presented in Table 5.1. Further details can be found in Bocchetti et al. (2015). In the
following paragraphs, we provide more details regarding the variables collected during each
voyage.

A large-scale IT network system acquires observations from each of the variables shown
in Table 5.1. The collected values refer to the actual voyage navigation time, which is
defined as the time between the “finished with engine order” (when the ship leaves the
departure port) and the “stand by engine order” (when the ships enter the arrival port).
The Speed Over Ground (SOG), denoted by V , is obtained as the ratio between the sailed
distance over ground and the actual navigation time. The Sailed Distance Over Ground
is the distance travelled by the vessel during the actual voyage navigation time, measured
in Nautic Miles (NM) and calculated by the on-board data acquisition system from GPS
latitude and longitude using the Haversine formula.

The power difference between port and starboard propeller shafts, denoted by ∆P , is
useful for discovering anomalies or malfunctioning in the main engines. The power difference
between two shaft generators, denoted by ∆SG, takes into account the different operation
modes of navigation (constant speed mode and combinator mode).

Longitudinal and side wind, denoted by WL and WS , respectively, are calculated based on
data acquired by the anemometer sensors and are defined on the basis of the true wind speed,
denoted by VW T , and the difference between the true wind angle (in the earth system) and
the course over ground, ΨW T . That is, WL “ VW T cos ΨW T and WS “ ´ |VW T sin ΨW T |.

The air temperature variables, denoted by T1, T2, T3, and T4, respectively, measure
the air temperature of the four main engines. The sailing time h indicates the cumulative
navigation time during the voyage. The trim variable, denoted by Trim, is obtained through
the inclinometer measurements and the geometric characteristics of the ship. The percentage
of total miles (PM) indicates the voyage completion proportion and is defined as the ratio of
travelled distance to the total travelled distance.

Feature-oriented methods

A feature-oriented method is a procedure for transforming raw measurements into a set
of potentially useful features that summarize the relevant information contained in the
measurements. In particular, they can be viewed as a mapping from a measurement space
(M ), where data is collected, to a feature space (F) and finally to a decision space (D) Pal &
Mitra (2004):

The mapping from M to F is made using a feature-oriented method (also called a feature
dictionary) that defines the algorithmic procedure to obtain a finite set of features from
measured data. In the context of CO2 prediction, the measurement space contains the
trajectories of the variables X́ that are measured during each voyage and has dimensions
N ˆ J ˆKn, where N is the number of voyages, J pJ “ 12q corresponds to the number of
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Table 5.1: Variables used as covariates in the feature-oriented approach.

Variable Description
1 V Speed Over Ground (SOG) [kn]
2 ∆P Power difference between port and starboard propeller shafts [kW]
3 ∆SG Power difference between two shaft generators [kW]
4 WL Longitudinal wind [kn]
5 WS Side wind [kn]
6 T1 Air temperature of port engine 1 [˝C]
7 T2 Air temperature of port engine 2 [˝C]
8 T3 Air temperature of starboard engine 1 [˝C]
9 T4 Air temperature of starboard engine 2 [˝C]
10 h Sailing time [h]
11 Trim Trim [m]
12 PM Percentage of total miles [%]

measured variables, and Kn is the number of samples collected for the nth voyage, with
n “ 1, . . . , N). Therefore, a feature dictionary transforms the three-way array X́ into a
feature matrix F (with dimensions N ˆ nf , where each row contains the features for a given
voyage, and nf is the number of features extracted by the selected dictionary). The decision
space, D, contains the response value for each sample/voyage in M and corresponds to the
cumulative values of CO2 emissions per voyage. The effect of applying a feature-oriented
method is graphically depicted in Figure 5.1.

Figure 5.1: The application of a feature-oriented method transforms the input three-
way structure X into a feature matrix F. AV, PdF and SPA stand for average values,
profile-driven features, and statistical pattern analysis, respectively.

As stated before, the feature-oriented methods contemplated in this chapter, namely,
PdF (Rendall et al. 2017) and SPA (He & Wang 2011, Wang & He 2010), are compared with
the standard method based on the AV.

The AV approach consists in using the average value of each variable over a voyage as
a feature and, therefore, the number of features per voyage corresponds to the number of
variables J. In summary, the measured data X́ is transformed into a feature matrix FAV with
dimensions N ˆ J . This standard approach has been successfully utilized in our previous
paper (Lepore et al. 2017), where we considered a larger set of variables. Nevertheless,
compressing all the information contained in the profile of a variable into a single numerical
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Table 5.2: Object-profiles and their respective features considered in the PdF dictionary.

Object-Profile Features

Constant
Average value
Variance
Area

Linear

Slope
Intercept
SSR*
Residual variance
Area

Step

Step occurrence
Average value before and after step
Variance before and after step
SSR*
Area

Pulse

Pulse Beginning
Average value before, after and in the pulse
Variance before, afer and in the pulse
SSR* Area

˚SSR corresponds to the sum of squared residual errors between estimated and measured profile.

value may be suboptimal. In particular, some variables present dynamic patterns that are
not well represented by the average value, incurring in significant information loss. The use of
PdF and SPA attempt to overcome this issue and lead to larger sets of features that capture,
besides the mean values, other characteristics of the variables’ profile, such as transients,
stochastic variation and slopes, which may be relevant for predicting CO2 emissions.

PdF is a methodology based on a set of archetype profiles (also called object-profiles in
the original paper) that represent typically found trajectories. There are specific features
associated with each archetype, characterizing the main dynamic patterns contained in the
variable’s trajectory. The object-profiles utilized in this work are presented in Table 5.2. In
order to apply PdF, each variable collected from the on-board sensors is first assigned to a
given profile archetype by visual inspection or automatically (the former alternative tends to
be preferred since it is more reliable and can be easily conducted alongside a first stage of
exploratory data analysis). The assignment is based on the similarity between the trajectory
of a variable over all voyages and the archetype. Following the assignment step, an estimated
trajectory is obtained using the measured data and the respective features are computed.
Therefore, PdF transforms the measured data X́ into a feature matrix FPdF. Further details
of PdF can be consulted in the original paper (Rendall et al. 2017).

SPA is a feature extraction procedure based on the variables’ statistical moments. In this
context, typical features include the mean, variance, covariance between variables, kurtosis,
and skewness. These features are few in number and describe many aspects of a variable’s
statistical distribution. SPA converts the three-way structure X́ into a feature matrix FSPA

(with dimensions N ˆ
`

J pJ ` 7q
˘

{2). One can also note that this approach contains AV as
default features and, therefore, it is expected to be at least as good as the approach based
on AV.
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The feature matrices FAV, FPdF, and FSPA, which contain the features extracted from
the measured data X́ by the three aforementioned approaches, are considered separately in
order to develop regression models for predicting CO2 emissions. For this task, a predictive
analytics comparison (PAC) (Rendall & Reis 2018) framework is applied to compare, in
a rigorous way, the predictive content of each feature set, as well as to identify the most
promising regression methods.

5.3 Predictive analytics comparison framework

The predictive analytics comparison framework (PAC) is a robust methodology for assessing
and comparing the prediction performance of different regression methods. It takes, as
input, a dataset arising from a regression problem and produces a report that highlights the
more promising regression method (and/or class of regression methods), signals important
predictor variables, and can be used to infer combinations of methods that may be desirable.
In the particular context of predicting CO2 emissions, PAC is applied to each feature matrix
separately (FAV, FPdF or FSPA) and allows the identification of the feature set that is richer
in terms of predictive content. PAC has four main components: the analytics domain, the
data domain, the comparison engine, and the results report. Each component is briefly
described next.

Analytics domain. The analytics domain is composed of different classes of regression
methods that are used for developing models that relate features and CO2 emissions. Four
classes of regression methods are considered: variable-selection methods, penalized regression
methods, latent variable methods, and tree-based ensembles. Each class has different a priori
assumptions and their suitability is dependent on whether or not they find good adherence
to the data generating mechanisms. The class of variable selection assumes that only a
few relevant variables contain information regarding the response, therefore, these methods
employ various strategies in order to select important features and remove irrelevant ones.
Forward stepwise regression (FSR) (Andersen & Bro 2010, Montgomery & Runger 2010) is
selected as a representative method from this class. The class of penalized regression employs
a penalty to the magnitude of the regression coefficients, constraining their values to be low
and may even eliminate some features (when the estimated regression coefficient is zero).
In this class, ridge regression (RR) (Hoerl & Kennard 1970), least absolute shrinkage and
selector operator (LASSO) (Tibshirani 1996), elastic net (EN) (Zou & Hastie 2005), and
support vector regression (SVR) (Smola & Schölkopf 2004, Ahmed et al. 2010) were included.
Latent variable methods are based on the assumption that a few underlying unobservable
variables govern the variability in the data. Therefore, they estimate the latent structure
and the model can also be used to predict the response. Principal component regression
(PCR) (Jolliffe 2002, Jackson & Mudholkar 1979, Wold et al. 1987) and partial least squares
(PLS) regression (Wold et al. 2001, Geladi & Kowalski 1986) were included as representative
methods for this class. Finally, tree-based ensemble methods use ensembles of regression
trees in order to approximate the relationship between predictors and response variable. A
regression tree (Strobl et al. 2009, Breiman et al. 1984) splits the input space into regions
where the response variable tends to be constant, therefore, it provides a piecewise-constant
approximation for the response variable. The predictions obtained from a single tree tend to
present high variance, and ensembles are needed in order to decrease the variance and obtain
stable and reliable estimates. Compared to the other classes, tree-based ensembles have the
ability to model non-linear relationships between features and CO2 emissions, broadening
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the applicability of PAC to non-linear problems. In this class, bagging of regression trees
(BaRT), random forests (RF), and boosting of regression trees (BoRT) (Freund et al. 1999,
Cao et al. 2010) were considered. A more detailed description of the methods considered
here can be consulted in the original paper (Rendall et al. 2017) or in its contextualized
application to the prediction of CO2 emissions (Lepore et al. 2017).

Data domain. The data domain provides the factual evidence that is used to assess
the prediction performance of the regression methods considered in the analytics domain.
This component is problem-specific and is often structured as a tabular dataset, where rows
represent samples and columns correspond to different predictor variables. In the particular
case of CO2 prediction, the dataset is composed of features that are extracted following the
procedure described for each dictionary, and each row corresponds to a voyage. Thus, this
component contains FAV, FPdF, FSPA, (as predictors, considered one at a time) as well as
the cumulative CO2 emissions for each voyage (response variable).

Comparison engine. This component is related to assessing and comparing the perfor-
mance of the regression methods considered in the analytics domain. In PAC, a robust
comparison strategy based on double cross-validation is utilized, which is an enhanced
approach when compared to single cross-validation. In brief terms, double cross-validation
splits a dataset into a training and a validation sets. Models are built using the training set
and their hyper-parameters are tuned using standard cross-validation (this constitutes the
inner loop of double cross-validation). The models are then utilized to predict the validation
set and the root mean squared error in the validation set pRMSEdcvq is computed as the
base metric of performance. The whole procedure of dataset splitting and model building
can be repeated for a pre-defined number of iterations (this constitutes the outer loop of
double cross-validation). The distribution of RMSEdcv obtained in the end, characterizes
the prediction errors incurred by each method.

Results report. The last component of PAC concerns the presentation of results in a way
that is user-oriented, highlighting methods that have lower RMSEdcv. One can also assess
whether a given class of methods is more promising than others and conjecture possible
combination of methods that may be suitable or opportune to consider. In a more detailed
analysis, important features can be identified for the top regression methods, improving the
knowledge of the prediction problem at hand.

5.4 Results and Discussion

This section presents the results obtained for predicting CO2 emissions based on the three
methods considered, namely, AV, PdF, and SPA. As previously stated, the results are
segregated according to the voyage distance into short, medium, and long routes in order to
allow for a more detailed analysis.

Short route
The dataset collected for the short route contains N “ 302 samples. PdF and SPA generate
37 and 114 features, respectively, whereas AV trivially considers 12 features (one average
value for each variable of Table 5.1). The results obtained after applying PAC to these three
feature dictionaries are presented in Figure 5.2. As can be observed in Figure 5.2, there is
no practical difference and all dictionaries lead to similar predictions in the validation set
for all iterations of double cross-validation. In other words, there appears to be no added
value in this case from extracting additional features besides the average values. This is
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5. Feature-oriented methods for the prediction of CO2

coherent with results of our previous work (Lepore et al. 2017), where CO2 emissions for the
short route were also poorly predicted because, it was conjectured, the short distance of the
route does not allow the main factors to significantly contribute to CO2 emissions. Instead,
the systematic variability is small, and the methods cannot capture any significant trends
in the data. This is further corroborated here, as including additional features does not
improve prediction performance. Even if there are statistical differences between the different
combinations of regression methods and feature dictionaries, these differences are rather
small for practical purposes. Therefore, no method is highlighted for the short route as the
best one and the predictions are considered not to be reliable, which limits the interpretive
insights that can be obtained from the developed models. This is also confirmed when
analyzing the distribution of the coefficients of determination over different runs of double
cross-validation

`

R2
dcv

˘

, which is typically close to zero or even negative in some iterations
(the results are not shown here for simplicity). Thus, no further analysis is made to identify
the most relevant features.
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Figure 5.2: Distribution of RMSEdcv for 50 iterations of double cross-validation for the
short route.

Medium route
The dataset for the medium route contains N “ 78 voyages and the application of PdF and
SPA generate 38 and 114 features, respectively. The results obtained for predicting CO2
emissions are presented in Figure 5.3, where one can verify that the predictions obtained
using PdF lead to better predictions, when compared to the other dictionaries (AV and SPA)
for all the regression methods considered. Therefore, it suggests that PdF is able to generate
more informative features that better characterize the profiles of the variables over different
medium-route voyages, by accounting for their dynamic patterns. Moreover, one can also
observe in Figure 5.3 that AV has the worst predictive performance, which again supports
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the point that additional information contained in the trajectories can be used for predicting
the CO2 emissions.

The best combination of dictionary and regression method is obtained when an elastic
net EN model is developed for features extracted by PdF. This is also confirmed by pairwise
comparisons of all methods based on the t-test, which highlights EN as the best method
overall, followed by BoRT. EN belongs to the class of penalized regression methods and has
the implicit ability to remove irrelevant features (i.e., features that do not convey information
about the response). In order to further explore these results, Figure 5.4a presents the
features’ importance (i.e., the regression coefficients) for the EN model, where one can see
the features colored by their type. As can be observed in Figure 5.4a, other features besides
the average values (also referred to as mean, feature # 18) are important for predicting CO2
emissions. In particular, features # 6 (the area of the speed over ground) and # 29 (the
variance of the air temperature of starboard engine 2) are the second and third most relevant
features. These results show again that more systematic feature extraction methods are
beneficial. Accordingly, Figure 5.4b shows that the predicted and observed values of CO2
emissions for the EN model fall rather close to the 1:1 line.

Regression Method
FSR RR Lasso EN SVR PCR PLS BaRT RF BoRT
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Figure 5.3: Distribution of RMSEdcv for 50 iterations of double cross-validation for the
medium route.
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Figure 5.4: Elastic net (EN) modeling results with PdF features for the medium route
showing (a) the feature importance for different types of features, and (b) predicted vs
measured CO2 emissions.

Long route

The long route contains N “ 299 samples and the AV dictionary generates 12 features,
whereas PdF and SPA generate 40 and 114 features, respectively. The distribution of
RMSEdcv is presented in Figure 5.5 and confirms again that PdF and SPA are significantly
better than AV, irrespectively of the regression method considered. This is a considerable
difference and shows that using only AV leads to very poor predictions of CO2 emissions.
In contrast, PdF and SPA have lower prediction errors and pairwise comparisons, based
on the t-test, identifies the best combinations as SPA with LASSO and PdF with BoRT.
Since LASSO models are more parsimonious and simpler to interpret than BoRT, Figure
5.6a shows the regression coefficients for the combination of LASSO and SPA. Figure 5.6a
clearly shows that some features are excluded from the model, as their regression coefficients
are zero. However, multiple additional features besides the AV contribute to the regression
model. In particular, features # 44 (the kurtosis of air temperature of starboard engine 1),
# 68 (the covariance between the power difference between port and starboard propeller
shafts and Trim), and # 72 (the covariance between power difference between two shaft
generators and air temperature of port engine 1) are important for the prediction of CO2
emissions, even though they are not considered by the AV dictionary. The predicted and
observed CO2 emission values are presented in Figure 5.6b, which displays that the main
trends are captured.
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Figure 5.5: Distribution of RMSEdcv for 50 iterations of double cross-validation for the
long route.
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Figure 5.6: LASSO modeling results with SPA features for the long rout showing (a) the
feature importance for different types of features, and (b) the predicted and measured CO2
emissions.
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5.5 Conclusions

The prediction of CO2 emissions based on on-board multi-sensor data has the potential to
support the shipping industry efforts to comply with current EU regulations. In fact, both
shipping companies and policy makers, that are responsible to adopt regulations related to
the CO2 emission monitoring problem, have two compelling needs: better predictions of CO2
emissions and interpretable models that allow identifying which variables (and which of their
features) are important for the prediction. In fact, on the one hand, shipping companies can
take advantage of better support to decision-making and, on the other hand, international
regulations can adopt stricter requirements if they are able to recognize with lower uncertainty
that ships can emit lower CO2 emissions under appropriate conditions. However, despite the
opportunity provided by the availability of data collected from modern on-board multi-sensor
systems, many shipping companies still limit their analysis to variables’ averages per voyage,
due to the intrinsic complexity of the methods needed to handle multivariate profiles, and
thus overlook any information contained in the dynamic patterns of variables’ trajectories
within each of the voyages.

The main contribution of this work, with respect to the applicability of the proposed
framework in the maritime engineering, is the possibility to implement solutions that do not
require difficult data pre-processing and implementation of complex techniques, while still
guaranteeing predictive performance and interpretability.

In this context, this work presented a comparison study of feature-oriented methods
that convert the collected data from on-board sensors into features that are potentially
useful for the prediction of ship’s CO2 emissions. Three feature-oriented methods were
considered: average values (AV, the current standard method), profile-driven features (PdF),
and statistical pattern analysis (SPA). By developing regression models, the extracted
features were then used as predictors of CO2 emissions.

A predictive analytics comparison framework (PAC) was applied in order to robustly assess
and compare the predictions of CO2 emissions obtained with AV, PdF, and SPA. PAC contains
4 classes of regression methods that are able to cover many types of relationships between
predictors and response variable. The regression methods’ performance was assessed by
means of the root mean squared error achieved through a double cross-validation pRMSEdcvq

procedure. Each feature dictionary was considered separately. The results obtained showed
the advantages of using more systematic feature-oriented methods such as PdF and SPA,
and prediction performance increased in almost all the cases considered. In the short route,
no method presented acceptable prediction performance because the variability is too small
and the main factors contributing to CO2 emissions are suppressed. However, in the medium
and long routes, PdF and SPA achieved satisfactory predictions of CO2 emissions. For
the medium route, PdF combined with an elastic net model provided the best prediction
performance; whereas for the long route, SPA combined with Lasso was the best option.
The developed models were also investigated with the aim of identifying the most important
predictors, which confirmed the advantages of employing feature-oriented methods that
extract additional features, besides the variables’ averages per voyage.
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Chapter 6

Analysis of profiles using partial
least-squares methods for ship
performance monitoring

Shipping operators are nowadays facing the challenge of monitoring ship performance based
on operational data. This is triggered by the compelling air pollution program EU 2015/757
of the European Parliament, that aims from January 2018 to monitoring, reporting, and
verification of all harmful emissions of ships operating in the European Economic Area. On
the other hand, the continuous acquisition of operational data, which is performed on most of
the modern ships, urgently calls for the application of new and opportune statistical methods
able to deal with high-dimensional data. Ship operating conditions can be in fact described
by sensor signals collected throughout each voyage and stored as profiles. In this paper, the
latter are analyzed through multi-way partial least-squares regression of the average fuel
consumption per hour over each voyage, which is chosen as scalar performance response, being
proportional to harmful emissions. The proposed approach is able to monitor profiles with
different length at different voyages. Nevertheless, it is capable of indicating at which instant
anomalies may have occurred in ship operating conditions. The proposed approach is shown
to be able to furnish clear indications for supporting prognosis of faults. By means of real
data acquired from a Ro-Pax cruise ship owned by the shipping company Grimaldi Group, a
different multilinear version that explicitly takes into account the three-way structure of the
data is also compared with the proposed approach.

6.1 Introduction

The shipping industry is nowadays facing a new regulatory regime that aims to give public
access to emissions data. The application of the EU regulation 2015/757 (European Com-
mission 2015), which is mandatory from January 2018, urges shipping companies to set up a
system for daily monitoring, reporting, and verification (MRV) of emissions for each ship.
Because of the well-known difficulties in the direct measurement of emissions, the MRV
program accepts also indirect measurements obtained through the ship fuel consumption.
The calculation of greenhouse gas (GHG) emissions can be in fact retrieved by on the basis of
the amount of fuel consumption through opportune emission factors (European Commission
2015). Then, the fuel consumption can be regarded as the main performance.
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6. Analysis of profiles via PLS

In this paper, we focus on the analysis of the fuel consumption only during the sailing
mode, which is known to represent the most relevant part of the total fuel consumption. The
most common method used in the naval literature to estimate the fuel consumption concerns
the use of the so-called power-speed curves, because a direct proportional relationship also
holds between the engine power and the fuel consumption through the power-based specific
fuel oil consumption coefficient (see e.g. Corbett & Koehler (2003)). Those curves are
obtained by performing a simple regression on the vessel’s speed over ground (SOG) collected
through dedicated trials under standard reference conditions (Bazari 2007). Unfortunately,
they lead to poor predictions in practice, even if some methods that have been proposed to
improve the accuracy of these curves by exploiting the information from additional variables
(Bialystocki & Konovessis 2016, Perera & Mo 2016) (e.g. acceleration, trim, displacement,
wind speed and direction, stabilizer fin operational time, engine operation mode).

The prediction provided by those curves have been outperformed by using more advanced
regression techniques (Lepore et al. 2017) that overcome the problem of ill-conditioned
data due to collinear variables in high-dimensional systems. However, only some of those
techniques are likely to be used for monitoring purposes, such as partial least-squares (PLS)
regression which returns also stable predictions in all the cases presented by Lepore et al.
(2017) further on and is always comparable with the best method.

At the other end of the industry, digitization and automation are reshaping the ship
operation. Modern ships are in fact able to continuously measure and store complex
and massive operational data, which have brought management board to call for new
methodologies to turn data into value.

Note that all methods appeared so far for monitoring ship performance have been usually
limited only to a single representative measurement at each voyage, even though the entire
signal of each variable is available. Functional data analysis (FDA) techniques (Ramsay &
Silverman 2005) are explored to convert each signal acquired by the multi-sensor system at
each voyage into profiles. FDA techniques are effectively applied in several subject areas
(Ramsay & Silverman 2005, 2002, Ramsay et al. 2009), but have never been implemented in
the maritime field.

In this paper, at each voyage, a profile is obtained from each of the sensor signals
that describe ship operating conditions. Then, the multi-way partial least-squares (MPLS)
approach (Nomikos & MacGregor 1995a, Kourti & MacGregor 1995) is used for monitoring
purposes with respect to the average fuel consumption per hour over each voyage, which
we denote with FCPH, chosen as scalar response variable. In this way, profiles of each
variable at different voyages is handled as a multivariate profile. The proposed approach is
also compared with a multilinear version of PLS proposed by Bro (Bro 1996, Smilde 1997),
which is called three-way partial least-squares (tri-PLS), and naturally takes into account
the three-way structure of the data.

Control charts based on the T 2 and the squared prediction error statistics are used to
monitor anomalies in ship operating conditions, whereas a prediction error chart will monitor
the FCPH.

The rest of the paper is organized as follows. Section 6.2 describes the three main steps
for the implementation of the proposed approach and details the differences between MPLS
and tri-PLS. Section 6.3 presents a real case study by means of ship navigation data acquired
from a Ro-Pax cruise ship owned by the Italian shipping company Grimaldi Group.
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6.2 The proposed approach

Note that MPLS has been introduced for monitoring batch processes (Nomikos & MacGregor
1995a), and can be applied only if the number of observations is constant for each combination
of batches and variables. Then, in this paper, in order to adapt this approach to profiles,
whose length may vary among different voyages, data need to be registered through functional
techniques (Ramsay & Silverman 2005). This is also convenient for tri-PLS because even
if, in theory, a three-dimensional array allows for different number of observations among
voyages, this does not allow to consider voyages as separate observations.

Then, both MPLS and tri-PLS methods require a three-dimensional array X that contains
ship operational reference profiles at given domain points with the following three dimensions:
the number of replications I, the number of variables J , and the number of evaluation
points K. In particular, with reference to the case study mentioned in the introduction,
the I replications correspond to the I voyages with the ship sailing in conditions that are
considered not exceptional and are selected to build a reference data set. The J physical
predictor variables, automatically acquired on-board by multi-sensor system, are assumed
to describe adequately the ship operating conditions and to influence the response variable.
Lastly, the K evaluation points contain the observations of each variable, at each voyage.
Thus, the scalar response variable FCPH is organized into the pI ˆ 1q vector y at each
voyage.

Once a voyage is completed, the MPLS model is exploited to monitor both ship operating
conditions described by the physical predictor variables and FCPH. In particular, ship
operating conditions are monitored by means of the control charts based on T 2, SPEX , and
SPEk statistics, which will be introduced in Section 6.2. The T 2 and SPEX statistics give
both a single scalar statistic at the end of each voyage, while the SPEk statistic gives a
profile that allows monitoring the physical predictor variables at each point k “ 1, . . . ,K.
This allows to determine at which instant an anomaly may have occurred. However, let us
explicitly remark that the calculation of the SPEk requires that the entire signals of the
predictor variables have been observed. Then, the monitoring strategy can be applied as
soon as data about an entire voyage to be monitored have been collected. This is not a big
deal as modern multi-sensor systems are capable to provide fast data storage.

In the case of MPLS, contribution of physical predictor variables to the monitoring
statistics can be defined in order to identify the most influential ones when an out of control
occurs in one of the corresponding control chart. Otherwise, when all the physical predictor
variables are in control at the end of each voyage, a prediction error chart is allowed to be
used for directly monitoring the response variable. When the absolute value of the prediction
error is large, possible causes are plausibly to be investigated outside the set of predictor
variables used to describe ship operating conditions in the model.

Section 6.2 describes the techniques that allow getting the same number of domain points
for all profiles (K). Section 6.2 describes how the MPLS and the tri-PLS models are built
from those data. Section 6.2 defines the statistics used for constructing the control charts
used for monitoring ship performance.

Step 0

As already mentioned, voyages have different duration. Then, in order to obtain the same
number K of evaluation points to build the array X both for MPLS and tri-PLS, FDA
techniques are required. In order to do this, we may require different repetitions of profiles to
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have the same functional domain as in many FDA applications. In the case study presented
in Section 6.3 the travel duration varies significantly among voyages. Therefore, a warping
function needs to be chosen to allow the comparison of navigation variable measurements
over different replications, i.e., different voyages. Warping functions are commonly used in
FDA for the registration of functional data (Ramsay & Silverman 2005).

In this paper, the percentage of the total distance traveled at each voyage by the ship is
chosen as functional domain and act as a warping function hi : r0, Tis Ñ r0, 1s, where Ti is the
sailing time of the i-th voyage, with i “ 1, . . . , I. At a given domain point, the ship is almost
in the same position over different replications of a given route and its operating conditions
are reasonably expected to be similar when no anomalies in the ship performance occurred.
After profiles are obtained, each observation can be evaluated in K equally spaced points of
the domain, this gives the pI ˆ J ˆKq array X. This means that the i-th observation, with
i “ 1, . . . , I, is a pJ ˆKq matrix, that we denote with Xpiq.

Step 1
The main difference between MPLS and tri-PLS is the way the two methods deal with X.
In particular, MPLS unfolds the array X into a large pI ˆ JKq matrix X, and then applies
standard PLS using y and X. On the other hand, tri-PLS makes a tri-linear decomposition
of the array X into a set of rank-one cubes. This should improve interpretability and
predictions, and reduces the number of parameters to be estimated with respect to MPLS.

MPLS

MPLS is applied by unfolding the array X into a large pI ˆ JKq matrix X. This is done
by setting the matrix that is extracted from X when the third dimension equal to k, i.e.,
Xp¨, ¨, kq, as the columns kJ ` 1, kJ ` 2, . . . , kJ ` J of X, for k “ 0, . . . ,K ´ 1. The matrix
X can then can be decomposed via the partial least-squares method into a smaller number
of R orthogonal score vectors or components t1, . . . , tR, which are observations of latent
variables and are arranged in a pI ˆRq matrix T. Each score vector is obtained as the linear
combination of the predictor variables having maximal covariance with the response y. In
particular, the first PLS component t1 “ Xw1 is such that the weight vector w1 solves the
optimization problem

max
w

“

covpt,yq|t “ Xw and ∥w∥ “ 1
‰

. (6.1)

The successive PLS components tr “ Xwr, with 2 ă r ď R, are such that the weight vector
wr solves the optimization problem

max
w

”

covpt,yq|t “ Xr´1w and ∥w∥ “ 1,wJwj “ 0 @j “ 1, . . . , r ´ 1
ı

, (6.2)

where Xr´1 is the matrix X orthogonalized with respect to t1, . . . , tr´1 as in the following
algorithm. This is obtained by means of the nonlinear iterative partial least-squares (NIPALS)
algorithm (Geladi & Kowalski 1986) for a single response variable, which is initialized by
setting X0 “ X and y0 “ y; then, at each iteration r “ 1, . . . , R,

1. calculate the weight vector wr “ XJ
r´1yr´1{pyJ

r´1yr´1q;

2. scale wr, i.e., wr Ñ wr{∥wr∥;
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3. calculate the score vector as linear combination of X-columns tr “ Xr´1wr;

4. regress yr´1 on tr obtaining the coefficient qr “ yJ
r´1tr{ptJ

r trq;

5. calculate the loading vector pr “ XJ
r´1tr{ptJ

r trq;

6. deflate the matrices Xr “ Xr´1 ´ trpJ
r and yr “ yr´1 ´ qrtr and return to step 1 to

find a new component.

Then, X and y can be decomposed as

X “ TPJ ` E, (6.3)
y “ Tq ` f , (6.4)

where P is the pJK ˆ Rq matrix of the X-loadings, whose columns are p1, . . . ,pR, q “

pq1, . . . , qRqJ is the pR ˆ 1q vector of y-loadings, and E “ XR and f “ yR are the residual
matrices obtained at the R-th iteration, i.e., at the end of the NIPALS algorithm. Moreover,
it can be also shown that the matrix T is given by Phatak & De Jong (1997), Helland (1988)

T “ XWpPJWq´1, (6.5)
where W is the pJK ˆRq matrix of the X-weights, whose columns are w1, . . . ,wR. We can
also write T “ XR, where R “ WpPJWq´1. This allows to write columns of T directly as
linear combinations of columns of X (De Jong 1993).

Tri-PLS

The tri-PLS (Bro 1996) method decomposes the array X into R rank-one cubes, each of
them (r “ 1, . . . , R) consists of one score vector tr, a first pJ ˆ 1q weight vector wJ

r , and a
second pK ˆ 1q weight vector wK

r such that ||wJ
r || “ ||wK

r || “ 1. These weight vectors have
the same role of the weight vector w in standard PLS. In fact, the problem (6.1) can be
rewritten as

max
wJ ,wK

»

–covpt,yq|ti “

J
ÿ

j“1

K
ÿ

k“1
xijkw

J
j w

K
k and ∥wJ∥ “ ∥wK∥ “ 1

fi

fl , (6.6)

where xijk is the element pi, j, kq of the array X, wj is the j-th element of the vector wJ

and wk is the k-th element of the vector wK . The trilinear PLS algorithm (Bro 1996) is
initialized by setting X0 “ X and y0 “ y. Then, for each r “ 1, . . . , R,

1. calculate the pJ ˆ Kq matrix Z whose pj, kq element is given by zjk “
řI

i“1 yixijk,
where yi is the i-th element of the vector yr´1 and xijk is the element pi, j, kq of the
array Xr´1;

2. perform singular value decomposition on Z, then define wJ
r and wK

r as the left and
right singular vectors of Z, respectively;

3. calculate the pI ˆ 1q vector tr “ pt1,r, . . . , tI,rqJ such that its i-th element is ti “
řJ

j“1
řK

k“1 xijkw
J
j w

K
k , where wJ

j is the j-th element of wJ
r´1 and wK

k is the k-th
element of wK

r´1;
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6. Analysis of profiles via PLS

4. define the pI ˆ rq matrix Tr by column as Tr “ pt1, . . . , trq;

5. calculate b “ pTJ
r Trq´1TJ

r y;

6. replace Xr´1 with the array Xr whose each i-th observation, with i “ 1, . . . , I, is
obtained as Xpiq

r “ Xpiq

r´1 ´ ti,rwJ
r pwK

r qJ, where Xpiq

r´1 is the i-th observation of Xr´1,
moreover replace yr´1 with yr “ yr´1 ´ Trb and return to step 1 to find a new
component.

At the end of the algorithm, the score matrix can be defined as T “ TR.

There are two main differences between MPLS and tri-PLS. On one hand, tri-PLS allows
to estimate a lower number of weights than MPLS. In fact, for each component r “ 1, . . . , R,
the number of weights estimated with MPLS is JK, while for tri-NPLS it is J `K. On the
other hand, an unfortunate aspect is that, unlike MPLS, the scores obtained with tri-PLS
are not orthogonal. This makes calculating the contribution of the predictor variables to the
Hotelling T 2 statistic, which is shown for MPLS in Section 6.2, more complicated.

Note also that, both for MPLS and tri-PLS, data are scaled prior to perform the analysis
by subtracting from observations of each variable the sample mean, and dividing them by
the sample standard deviation. The scaling procedure is the same for both methods, that is
each value is scaled with respect to the sample mean and sample standard deviation of the
corresponding column of the matrix obtained after unfolding the array X.

Step 2
In order to implement the monitoring strategy, for a new voyage, a pJ ˆ Kq matrix Xp0q

of observations of the predictor variables is available. This can be unfolded to a pJK ˆ 1q

vector of observations of the predictor variables, which then can be scaled to obtain x0 “

px0,1, ¨ ¨ ¨ , x0,JKqJ by dividing each value with respect to the mean and standard deviation
of the corresponding column in the reference data. The corresponding observation of the
response variable is stored in the scalar y0.

MPLS

In order to apply MPLS to a new observation, we can calculate the scores t0 “ pt0,1, ¨ ¨ ¨ , t0,RqJ

as

tJ
0 “ xJ

0 R. (6.7)
The predictor variables of forthcoming voyages can then be monitored by the T 2, SPEX ,
and SPEk statistics defined as follows.

The Hotelling T 2 statistic is defined as (Kourti & MacGregor 1995, 1996, Jackson 2005)

T 2 “

R
ÿ

i“1
t20,i{λ̂j , (6.8)

where λ̂1 ě ¨ ¨ ¨ ě λ̂R ě 0 are the eigenvalues of the covariance matrix of the scores, which is
orthogonal and is calculated as pI ´ 1q´1TJT “ diagpλ̂1, . . . , λ̂Rq. The upper control limit
with a significance level α for the T 2 statistic is given by Kourti & MacGregor (1995)

T 2
lim,α “

RpI2 ´ 1q

IpI ´Rq
FαpR, I ´Rq, (6.9)

86



6.2. The proposed approach

where FαpR, I ´ Rq is the p1 ´ αq-quantile of the Fisher distribution with R and I ´ R
degrees of freedom.

The squared prediction error statistic (SPEX) (Nomikos & MacGregor 1995a) for residuals
in the predictor variable space at each voyage is given by

SPEX “ eJ
0 e0, (6.10)

where the pJK ˆ 1q vector e0 “ pe0,1, ¨ ¨ ¨ , e0,JKqJ “ x0 ´ Pt0 contains the corresponding
X-residuals. Moreover, the SPEX statistic can be specialized to a single instantaneous
evaluation point k (i.e., a given percentage of distance travelled) as

SPEk “

kJ
ÿ

c“pk´1qJ`1
e2

0,c. (6.11)

The SPEk statistic represents the perpendicular distance of the instantaneous ship operating
condition measurements from the reduced predictor variable space obtained based on the
reference data, and then is able to clearly detect problems at a specific point k.

The upper control limit at a significance level α for the SPEX statistic (6.10) is given
by Nomikos & MacGregor (1995b)

SPElim,α “ θ1

«

zα

a

2θ2h2
0

θ1
`
θ2h0ph0 ´ 1q

θ2
1

` 1
ff

1
h0

, (6.12)

where θ1 “ tracepVq, θ2 “ tracepV2q, and θ3 “ tracepV3q, with V “ pI ´ 1q´1EEJ, while
h0 “ 1 ´ 2θ1θ3{3θ2

2. The upper control limit of the SPEk statistic is obtained in the same
way as for SPEX , where θ1, θ2, θ3, and V are calculated by replacing the matrix E with
the pI ˆ Jq matrix Ek, whose columns are the columns from pk ´ 1qJ ` 1 to kJ of E.

When, at a given voyage a monitoring statistic lies outside the corresponding control
limit, detailed information can be obtained about plausible causes of anomalies by exploring
the contribution of the j-th individual variable to the T 2 statistic (6.8). Since scores are
orthogonal, such contributions can be defined as

ContributionT 2,j “

K´1
ÿ

k“0

R
ÿ

i“1

t0,i

λ̂i

x0,j`kJrj`kJ,i, (6.13)

where ra,b is the pa, bq entry of the matrix R. The contribution is obtained by considering
that the T 2 statistic can be decomposed as

T 2 “

R
ÿ

i“1

t20,i

λ̂i

“

R
ÿ

i“1

t0,i

λ̂i

JK
ÿ

p“1
x0,prp,i “

JK
ÿ

p“1

¨

˝

R
ÿ

i“1

t0,i

λ̂i

x0,prp,i

˛

‚. (6.14)

Then, terms in the first sum can be grouped by each physical predictor variable, because
the columns j ` kJ , with k “ 0, ¨ ¨ ¨ ,K ´ 1, give the values of the j-th physical predictor
variable at each k. From those terms we get

T 2 “

J
ÿ

j“1

¨

˝

K´1
ÿ

k“0

R
ÿ

i“1

t0,i

λ̂i

x0,j`kJrj`kJ,i

˛

‚. (6.15)
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This allows to interpret the T 2 statistic as the sum of contributions of the physical predictor
variables, defined in Equation (6.13).

Accordingly, one can examine the contribution of the j-th individual variable to the
SPEX statistic through

ContributionSP EX ,j “

K´1
ÿ

k“0
e2

0,j`kJ . (6.16)

If a forthcoming voyage shows no anomalies, i.e., the monitoring statistics do not exceed
control limits, the scalar performance indicator can be monitored by means of approximate
intervals for the prediction error of the FCPH y0 ´ tJ

0 q, whose limits can be calculated as
(Nomikos & MacGregor 1995b)

˘tI´R´1,α{2σ̂

b

1 ` tJ
0

`

TJT
˘´1 tJ

0 , (6.17)

where σ̂ “ fJf{pI ´ 1q, and tI´R´1,α{2 is the p1 ´ α{2q-quantile of a Student distribution
with I ´R ´ 1 degrees of freedom.

Tri-PLS

Given a new observation Xp0q and the corresponding unfolded vector x0, it is possible to
calculate the tri-PLS scores t0 “ pt0,1, . . . , t0,RqJ as (Smilde 1997)

tJ
0 “ xJ

0 V, (6.18)

where

V “ rw1|pI ´ w1wJ
1 qw2| . . . |pI ´ w1wJ

1 qpI ´ w2wJ
2 q . . . pI ´ wR´1wJ

R´1qwRqs, (6.19)

with wr “ wJ
r b wK

r indicating the pJK ˆ 1q vector obtained as the Kronecker product
between wJ

r and wK
r . We can compare the Hotelling T 2 statistic obtained with MPLS as

described in Section 6.2 with the one defined for tri-PLS

T 2 “
1

I ´ 1tJ
0 pTJTq´1t0, (6.20)

where T is the matrix of scores obtained with the tri-PLS algorithm. The upper control
limit is given by Equation (6.9) as for MPLS.

We also compare the squared prediction error statistic (SPEX) for residuals in the
predictor variable space at each voyage, obtained for MPLS as described in Section 6.2 with
the one defined for tri-PLS as

SPEX “ eJ
0 e0, (6.21)

where the vector eJ
0 “ pe0,1, . . . , e0,JKq “ xJ

0 ´ tJ
0 WJ, with W “ rwK

1 b wJ
1 | . . . |wK

R b wJ
Rs.

The upper limit for this statistic is given by (6.12) as for MPLS, where the residual matrix
used to calculate θ1, θ2, θ3 is E “ X ´ TWJ.

Finally, for voyages that show no anomalies among the predictor variables, the prediction
error given by MPLS can be compared with the one given by tri-PLS as y0 ´ tJ

0 b, where b
is the coefficient obtained from the regression of y on T in the tri-PLS algorithm.
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6.3. Real case study

6.3 Real case study

The proposed approach has been applied to the real operational data mentioned in the
introduction in order to illustrate how the proposed approach can also furnish clear indications
for supporting prognosis of faults. The name of the ship, route and voyage dates are omitted
for confidentiality reasons. The multi-sensor system continuously acquires data for each
variable, which are stored with five minute frequency in the raw data set used to illustrate
the MPLS approach. A route has been analyzed such that every observation corresponds
to a single voyage of the ship. As anticipated in the introduction, only data collected
during the sailing mode have been considered. In particular, this operational mode has been
automatically detected as reported by Zaman et al. (2017)

In particular, a detailed description of the ship navigation data is addressed to Section
6.3, while the results obtained through both MPLS and tri-PLS are compared in Section 6.3.
Section 6.4 draws conclusions and future directions.

Ship navigation data
For each voyage, J “ 7 variables stored as profiles have been considered to describe the ship
operating conditions and to be used for the prediction of FCPH, which is the scalar response:

1. SOG [kn], V ;

2. acceleration over ground [kn/s], A;

3. power difference between port and starboard propeller shafts [kW], ∆P ;

4. power difference between port and starboard shaft generators [kW], ∆SG;

5. longitudinal wind [kn], WL;

6. side wind [kn], WS ;

7. distance from the nominal route [NM], Dist.

The first variable is the SOG, which is known as the most important predictor of the FCPH
(Bialystocki & Konovessis 2016, Bocchetti et al. 2015, Erto et al. 2015, Lepore et al. 2017).
Moreover, FDA recommends to explore instantaneous information not only about variables,
but also about their derivatives, as they often give useful additional information. Then, the
SOG derivative (i.e., the acceleration over ground), can be used as additional predictor. Note
that the acceleration is obtained as the derivative of the functional SOG with respect to the
time at first. Then, the functional observations of acceleration are warped by the percentage
of sailed distance r0, 1s as for the other variable profiles.

The power difference between port and starboard propeller shafts is considered in order
to discover any anomaly in the main engines for propulsion, whereas the power difference
between port and starboard shaft generators can guide the identification of the navigation
modes (viz., combinator and constant).

The longitudinal and the side wind are obtained from the anemometer sensor and have
the potential of accounting for the influence of weather conditions on the ship performance.

The last predictor variable is the distance of the ship from the nominal route, which is
the route recommended by the ship captain in normal conditions.
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Figure 6.1: Hotelling T 2 control chart obtained with MPLS for monitoring voyages, with
95% and 99% upper control limits (dashed and solid line, respectively).

Analysis and interpretation
Functional data are obtained via 100 B-spline basis functions with equally spaced knots and
a roughness penalty on the second derivative of 10´10, which has shown to produce good
results for all the functional variables. In theory, a different value for both the number of
basis functions and the roughness penalty should be provided for each functional variable.
One of the most common criteria used to choose the parameters is the minimisation of the
generalized cross-validation (GCV) (Ramsay & Silverman 2005). However, since GCV values
often change slowly near the minimizing value, a fairly wide range of the roughness values
may give the same GCV in practice, as in this case.

Each functional variable has been evaluated in K “ 100 equally spaced domain points
to get the three-dimensional array X. The MPLS and tri-PLS approaches have been then
applied to a set of I “ 52 reference voyages. A single run of 10-fold cross-validation procedure
based on the PRESS statistic (Hastie et al. 2009) has been carried out for both MPLS
and tri-PLS. Note also that the data partition into the ten segments used for the 10-fold
cross-validation is the same for both approaches. The number of latent variables selected for
MPLS by cross-validation is R “ 4. The coefficient of determination is equal to 0.82 and
confirms the model is able to adequately predict the FCPH at each voyage. The tri-PLS
approach has also been applied to the same set of voyages and the number of latent variables
selected through cross-validation is 2.

Ship performance has been then monitored on 16 successive voyages. By using MPLS,
Figure 6.1 shows the T 2 statistic for the monitoring voyages. Unusual operating conditions
are highlighted by the control chart for voyages 3 and 16. The SPEX statistic in Figure 6.2
points out the same voyages out of control. The performance of these two charts is compared
with the results obtained below via tri-PLS. Figure 6.3 shows the Hotelling T 2 control chart
obtained with tri-PLS for the same 16 monitoring voyages. The results are very similar in
practice to those obtained for MPLS in Figure 6.1. Some differences in the control limits are
due to the fact that tri-PLS chose a higher number of components. As in Figure 6.2, the
SPEX control chart obtained with tri-PLS in Figure 6.4 shows that all the voyages but 3
and 16 are in control. Therefore, in this case we can conclude that, for monitoring purposes,
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Figure 6.2: SPEX control chart obtained with MPLS for monitoring voyages, with 95% and
99% upper control limits (dashed and solid line, respectively)
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Figure 6.3: Hotelling T 2 control chart obtained with tri-PLS for monitoring voyages, with
95% and 99% upper control limits (dashed and solid line, respectively).
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Figure 6.4: SPEX control chart obtained with tri-PLS for monitoring voyages, with 95%
and 99% upper control limits (dashed and solid line, respectively.)
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Figure 6.5: SPEk control chart for one in control voyage 4 (a) and one out of control voyage
3 (b), with 95% and 99% upper control limits (dashed and solid line, respectively).

both the considered PLS methods furnish similar results and conclusions.
The voyages identified as anomalous can be further investigated. In fact, the SPEk

control chart obtained via MPLS allows examining individually each single voyage, as shown
in Figure 6.5, which illustrates the use and interpretation of the SPEk statistic.

In particular, Figure 6.5 (a) shows the SPEk control chart for the voyage 4, which is
in control, i.e., does not show anomalies in the SPEk statistic at any instant k. Whereas,
Figure 6.5 (b) shows the SPEk control chart for the voyage 3, which has been pointed out
to be out of control in the SPEX control chart (Figure 6.2). For this voyage, most of the
points of the SPEk statistic fall above the 99% upper control limit, and especially in the
first part of the voyage, the statistic has a very large value. The anomalous voyage 3 can
be checked against the reference model to determine the reason for their difference. This
can be investigated by using the contribution plots, which are shown in Figure 6.6. The
contributions to the T 2 statistic (Figure 6.6 (a)) show that the main variable responsible for
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Figure 6.6: Contribution of the variables to the T 2 statistic (a) and to the SPEX statistic
for the voyage 3.

the out of control is the distance from the mean route, even though the SOG has also a large
contribution. The distance from the mean route is the most influencing variable also for the
out of control of the SPEX statistic (Figure 6.6 (b)). Other less influencing variables are
the SOG and the side wind. The contribution plots allow to return to the physical variable
space and to identify the physical predictor variables to be investigated.

Figure 6.7 shows the observations of these functional variables against the reference ones.
In this case, the ship has sailed with a different route than the nominal one (Figure 6.7 (a)).
Moreover, the SOG is particularly smaller than that of the reference voyages, especially in
the first part of the voyage (Figure 6.7 (b)). This is in accordance with the behaviour of the
SPEk graph drawn in Figure 6.5 (b). The side wind (Figure 6.7 (c)) does not show very
anomalous behaviour, apart from a larger-than-average values in the middle of the voyage.

The voyage 16 is also out of control in both T 2 and SPEX statistics, as shown in Figure
??. The SPEk control chart can then be used for evaluating in which parts of the voyage
anomalous conditions may have occurred. In Figure 6.8 the SPEk statistic is shown to fall
above the upper 99% control limit over most of the voyage, but in the central part, between
domain points 0.3 and 0.6, achieves very large values. This plausibly indicates that the main
anomaly has occurred in the middle of the voyage.

Contribution plots shown in Figure 6.9 can be used to identify the possible causes.
Note that in voyage 3 the contribution to the two statistics indicated the same variables
as responsible for the out of control. This could mislead to the conclusion that only one
control chart is sufficient to implement a complete multivariate monitoring strategy. This is
not true for latent variable models, for which it is necessary to look into both the reduced
latent variable space—by means of the T 2 statistic—and the residual space—by means of
the SPEX statistic. This is confirmed for the voyage 16 and in fact Figure 6.9 (b) reveals
the acceleration variable as one of the biggest responsible for the out of control, whereas
Figure 6.9 (a) is not able to detect any acceleration problem.

We can summarize the information of both contribution plots, which indicate the SOG,
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Figure 6.7: Functional observation of distance from mean route (a), SOG (b), and side wind
(c) variables for voyage 3 against reference voyages. Note that in each plot the bold line
refers to the voyage 3, while the grey lines are the observations of the corresponding variable
for the 52 reference voyages.
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Figure 6.8: SPEk control chart for voyage 16, with 95% and 99% upper control limits
(dashed and solid line, respectively).
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Figure 6.9: Contribution of the variables to the T 2 statistic (a) and to the SPEX statistic
for the voyage 16.
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Figure 6.10: Functional observation of SOG (a), power difference between port and starboard
propeller shafts variables (b), and acceleration variables for voyage 16 against reference
voyages. Note that in each plot the bold line refers to the voyage 16, while the grey lines are
the observations of the corresponding variable for the 52 reference voyages.

the power difference between port and starboard propeller shafts, and the acceleration as
the variables to investigate. Figure 6.10 shows the plots of these variables. Accordingly with
the SPEk plot in Figure 6.8, it is to note that the voyage is characterized by a first part,
which corresponds to domain point values between 0 and about 0.3, where the profiles are in
accordance with reference data. Whereas, at a domain point equal to about 0.3, the SOG
suddenly decreases. This corresponds to a deceleration which is pointed out. At the same
time, the graph of the power difference between port and starboard propeller shafts indicates
a big departure from zero. This was due to a malfunctioning in one engine on board. After
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Figure 6.11: Prediction error control chart.

some time, starting from domain point 0.5, the power difference between port and starboard
propeller shafts decreases with local changes and this turned into a higher SOG and large
acceleration values. However, for the rest of the voyage the profiles still result to be quite
different from the reference data. This is also in accordance with the SPEk plot in Figure
6.8.

For those voyages where the monitoring statistics of the predictor variable space, i.e.,
T 2, SPEX , and SPEk, are out of control, the prediction of the response variable through
the MPLS model cannot be considered. When instead voyages do not show problems in the
predictor variables, then the FCPH can be monitored through the prediction error chart.
Figure 6.11 illustrates the prediction error chart for the monitoring voyages considered in
the proposed case study. In this chart, the prediction error limits for voyages 3 and 16 are
not shown, because they have shown anomalies in the predictor variable space. Note that
voyages that are in control in the predictor variable space, for which the prediction error
falls outside the limits given by Eq. 6.17, require further investigation on those variables
that have not been considered in the MPLS model.

Finally, the predictive ability is compared between MPLS and tri-PLS. Since the reference
data have been used as training set to select the number of latent variables via cross-validation
and fit the model, the monitoring data can be considered as the new test set on which the
model selection can be performed (Hastie et al. 2009). The sum of squared prediction error
on the voyages that are in control in the predictor variable space is 0.556 t2{h2 for MPLS
and 0.865 t2{h2 for tri-PLS. This clearly shows that for the considered real case study the
MPLS outperforms tri-PLS in FCPH prediction.

6.4 Conclusion

To respond to the compelling air pollution programs, shipping companies are nowadays
setting-up on their fleets modern sensor systems that stream massive amounts of operational
data to remote servers. Motivated by this context, the statistical process monitoring approach
based on multi-way partial least-squares method has been combined with techniques popular
in the functional data analysis context in order to allow monitoring profiles with a different
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length. This is in fact the case of operating conditions collected over different voyages that,
in general, have different travel duration or distance traveled. All profiles then needed to be
warped through the percentage of traveled distance with respect to the nominal route. In
such a way, variable profiles can be used to build a multi-way partial least-squares model both
for monitoring of ship operating conditions and for predicting the average fuel consumption
per hour. The proposed approach has also been compared to the trilinear PLS, that takes
into account the three-way structure in the data. A real case study is presented to illustrate
that the proposed procedure is able to furnish adequate predictions and to indicate if and
when anomalies occur. The squared prediction error statistic evaluated at a single domain
point gives clear indications in this regard. This would have not been feasible through
statistical models built using a single variable observation per each voyage.

The MPLS approach allows shipping operators to monitor complex multi-sensor data and
to explore the possibility of comparing ship performance under different operating conditions.

The results showed that while trilinear PLS offered parsimony in the number of parameters
to be estimated, the proposed approach has a higher prediction ability. Moreover, MPLS
allows to obtain orthogonal scores and to calculate contribution to the Hotelling T 2 statistic.

Future research should be addressed to build a model able to deal with incomplete data
and thus, to perform real-time monitoring before the completion of a voyage. In fact, the
proposed approach requires that the entire voyage to be monitored is completed to allow
obtaining the score observations needed to calculate the monitoring statistics and to predict
the response variable. A suitable completion method would then allow to perform real-time
monitoring and prediction.
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Chapter 7

Monitoring ship operating conditions
and CO2 emissions using control charts
based on scalar-on-function regression

To respond to the compelling air pollution programs, shipping companies are nowadays
setting-up on their fleets modern multi-sensor systems that stream massive amounts of
observational data, which can be considered as varying over a continuous domain. Motivated
by this context, a novel procedure is proposed that extends classical multivariate techniques
to the monitoring of multivariate functional data and a scalar quality characteristic related to
them. The proposed procedure is shown to be also applicable in real time and is illustrated
by means of a real-case study in the maritime field on the continuous monitoring of operating
conditions (i.e., the multivariate functional data) and total CO2 emissions (i.e., the scalar
quality characteristic) at each voyage of a cruise ship. The real-time monitoring is particularly
helpful for promptly supporting managerial decision making by indicating if and when an
anomaly occurs during the navigation.

7.1 Introduction

In many statistical process control (SPC) applications, the quality characteristic to be
monitored is influenced by one or more explanatory variables (referred to also as covariates).
The regression control chart idea, classically addressed by Mandel (1969), where a scalar
quality characteristic is affected by a single scalar variable, is nowadays exacerbated by
the availability of massive amounts of data stored from multiple sources. This increases
the complexity and dimension of the information and calls for extensions of the classical
statistical methods toward new mathematical settings. In this perspective, Nomikos &
MacGregor (1995a,b) and Kourti & MacGregor (1996) have introduced methods in SPC
of batch processes to address the problem of dimensionality reduction and monitor one or
more quality characteristics on the basis of several covariates observed over a discrete time
domain. In their works, the dimensionality reduction is achieved by projection methods of a
multivariate domain, such as principal component analysis (PCA), and indeed allows to jointly
monitor, in addition to the quality characteristic under study, the covariates themselves.
These multivariate methods have the potential to cope with technological problems and
contexts where the quality characteristic or the covariates are described by smooth functions
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over some continuous domain (sometimes referred to also as profile (Woodall et al. 2004)) and
gave raise, in the last decade, to the new SPC field known as profile monitoring (Noorossana
et al. 2012, Colosimo & Pacella 2007, 2010). The increasing need of handling those type of
data (Happ & Greven 2018, Chen & Jiang 2017) have naturally unleashed cross-fertilization
of profile monitoring with functional data analysis (FDA) (Ramsay & Silverman 2005, Wang
et al. 2016). The possibility of using derivative information in FDA gives many advantages
in dealing with complex objects, mainly due to its nonparametric nature. Nevertheless, it
allows retrieving and extending techniques from the multivariate settings, e.g., regression
models, PCA.

FDA techniques can be exploited to fill the gap in the SPC literature on methods for the
joint monitoring of multivariate functional data observed over multi-dimensional domains
(Happ & Greven 2018) and quality characteristics related to them. In this work, the quality
characteristic is supposed to be a scalar and covariates to be real-valued functions with
one-dimensional domain.

In what follows, the regression control chart is extended to the functional case by
considering the scalar-on-function regression (Reiss et al. 2017), i.e., a functional linear model
with scalar response and functional covariates. In particular, we develop the idea introduced
by Chiou et al. (2016), who performs a multivariate functional principal component analysis
(MFPCA) (Chen & Jiang 2017) on the functional covariates and uses the retained principal
components to model the relationship with the scalar response. In addition, we discuss the
optimal choice of the functional principal components to retain into the model, with the
aim of considering also the variability in the covariates that is useful for the prediction of
the scalar response, which is an issue raised also in the multivariate context (Jolliffe 2002)
and usually overlooked in the classical PCA. Moreover, MFPCA allows the extension of
profile monitoring techniques based on the Hotelling T 2 and squared prediction error (SPE)
control charts to the joint monitoring of the multivariate functional covariates. As in the
multivariate case, contribution plots shall be defined accordingly to help diagnosing variables,
among the functional covariates, that are possibly responsible for an out-of-control (OC)
condition detected by the T 2 or SPE statistics.

The proposed monitoring strategy can be recapped in the following three main steps:

(i) Phase I: estimating a scalar-on-function regression model based on an in-control (IC)
reference data set that is supposed to contain all the structural information about
how the variable measurements deviate from their average trajectories under normal
operation (also referred to as training or Phase I sample);

(ii) Phase II: monitoring of new observations of the functional covariates, by means of
functional T 2 and SPE control charts, and of the scalar response, via regression control
chart, i.e., testing whether the new observation behaviour is consistent with that of
the Phase I sample or signals an OC condition;

(iii) diagnosing faults when an OC condition is detected i.e., highlighting the most influencing
variable(s) by means of contribution plots to T 2 or SPE statistics.

According with the SPC literature (Woodall et al. 2004, Montgomery 2007), Step (i) will be
hereinafter referred to as Phase I and step (ii) as Phase II. Furthermore, the proposed method
is suitably generalized to be used for the real-time monitoring (e.g., up to any intermediate
time domain point) of the functional covariates and scalar response. The proposed monitoring
strategy is motivated and illustrated by means of a real-case study from the maritime field
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in monitoring CO2 emissions during the navigation phase of a roll-on/roll-off passenger
(Ro-Pax) cruise ship, whose data are courtesy of the owner Grimaldi Group.

The paper is organized as follows: Section 7.2 describes the motivating example related
to the problem of CO2 emission in the maritime field; Section 7.3 sets up the notation and
recall the main aspects of the scalar-on-function regression methodology, introduces the
proposed functional control charts and the regression control chart; Section 7.4 presents the
real-case study; Section 7.5 illustrates the proposed functional real-time monitoring strategy,
and Section 7.6 draws conclusions.

7.2 A Motivating Example

In the last years, the problem of monitoring CO2 emissions in the maritime transportation
field has become of paramount importance in view of the climate change and global warming
issues. The Marine Environment Protection Committee of the International Maritime
Organization has given raise at each continent level to extensive air pollution programs
(European Commission 2015, IMO 2012a,b,d, 2014, Smith et al. 2015) that require monitoring
and verification of CO2 emissions.

To respond to this compelling regulatory regime, shipping companies are nowadays
setting-up modern multi-sensor systems on their fleets that allow massive amounts of
observational data to be automatically streamed and stored to a remote server, bypassing
human intervention. However, monitoring of the measured emissions still represents an open
challenge for both shipping operators and energy policy makers. Several additional factors
can in fact affect vessel performance, e.g., ship type, draught, speed, acceleration, encounter
angle, wind regime, sea state (Bialystocki & Konovessis 2016), which are, in general, also
function of time.

The maritime field constitutes a new challenging area for FDA and related SPC methods.
The problems addressed are, on the one hand, to build models that allow prediction of ship
CO2 emissions based on observational data describing ship operating conditions, and, on the
other, to monitor operating conditions for detecting anomalies and diagnosing faults.

Maritime engineering literature is mainly devoted to physical deterministic relationships
under standard conditions and dedicated speed-trial test data and have strong limitations
when applied to real data, which are typically more complex, larger in size, and collected
from various sources. Few attempts to circumvent these issues can, however, be found in the
following works. Perera & Mo (2016) drew empirical relationships between ship resistance
and speed through data visualization methods. Petersen et al. (2012) investigated artificial
neural networks and Gaussian Process approaches for statistical modeling of fuel efficiency.
Lu et al. (2015) developed a semi-empirical ship operational performance predictive model
to estimate the ship’s added resistance considering specific additional variables. Bocchetti
et al. (2015) proposed a statistical approach founded on multiple linear regression which
allows for both pointwise and interval predictions of the fuel consumption at given operating
conditions.

Statistical approaches have bend modern multivariate analytics to the maritime context
only in the very last years (see e.g., Lepore et al. (2017) for a thorough comparison). However,
the majority of the approaches that have already appeared in the maritime literature do not
exploit the potential for continuously supporting managerial decision-making through the
monitoring of the entire voyage profiles acquired on board.
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7. Control charts and functional regression

7.3 Methodology

The scalar-on-function regression model is illustrated in Section 7.3, while the Phase I model
estimation is described in Section 7.3. The Phase II monitoring procedure and fault diagnosis
are introduced in Sections 7.3 and 7.3, respectively.

Scalar-on-Function Regression Model

We consider the Hilbert space H of P -dimensional vectors whose components are functions
in the space L2pT q, with compact domain T Ă R. Functions f, g P H can be written as
f “ pf1, . . . , fP q and g “ pg1, . . . , gP q, where fp, gp P L2pT q. In this setting, we can define
the inner product of H as xf, gyH “

řP
p“1xfp, gpy, where xfp, gpy “

ş

T fpptqgpptqdt is the
inner product of L2pT q, and the induced norm of H as ∥f∥H “ xf, fy

1{2
H .

Let us denote with X̃ “ pX̃1, . . . , X̃P q a random element that takes values in H, i.e.,
X̃1, . . . , X̃P are random elements that take values in L2pT q, which are hereinafter referred
to as functional covariates. Moreover, let X̃ have mean function µX “ pµX

1 , . . . , µ
X
P q,

with µX
p ptq “ EpX̃pptqq for every t P T , variance function vX “

`

vX
1 , . . . , v

X
P

˘

, where
vX

p ptq “ VarpX̃pptqq, and correlation function C “ tCp1p2 up1,p2“1,...,P , with Cp1p2 pt1, t2q “

Corr
´

X̃p1 pt1q , X̃p2 pt2q

¯

“ CovpX̃p1 pt1q, X̃p2 pt2qqvp1 pt1q´1{2vp2 pt2q´1{2. To deal with infi-
nite dimensionality of the data, X̃ is decomposed through multivariate functional principal
component analysis (MFPCA). However, as is known, this method is not scale-invariant,
thus X̃ are suitably scaled through the normalization approach proposed by Chiou, Chen &
Yang (2014). The normalized functional covariates are denoted by X “ pX1, . . . , XP q, and
Xpptq, p “ 1, . . . , P , are obtained as vpptq´1{2pX̃pptq ´ µX

p ptqq. Trivially note that X has
zero mean and covariance function that coincides with C.

Denote by y the scalar response variable, let tpX̃i, yiqui“1,...,n be a random sample from
pX̃, yq, with X̃i “ pX̃i1, . . . , X̃iP q. The conditional distribution of yi given the corresponding
observation of the normalized functional covariates Xi is modelled by means of the following
scalar-on-function regression

yi “ β0 ` xXi,βyH ` εi “ β0 `

P
ÿ

p“1

ż

T
Xipptqβpptqdt` εi, i “ 1, . . . , n, (7.1)

where β0 P R, β “ pβ1, . . . , βP q P H are the coefficient to be estimated, and ε1, . . . , εn are
the error terms, which are assumed to be independent identically distributed normal random
variables with mean zero and variance σ2. Moreover, they are assumed to be uncorrelated
with the functional covariates, i.e. EpεiXpptqq “ 0 for each i “ 1 . . . , n, p “ 1, . . . , P , and
t P T .

Phase I Model Estimation

Instead of using a random sample tpXi, yiqui“1,...,n, SPC literature is more concerned to use
in Phase I a reference data set that can be assumed representative of the normal behavior of
the functional covariates and of the relation of the latter with the scalar response. Then,
the coefficients β0 and β “ pβ1, . . . , βP q in Equation (7.1) can be estimated by solving the
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following least-squares problem

min
β0PR,βPH

n
ÿ

i“1

`

yi ´ β0 ´ xXi,βyH
˘2
. (7.2)

As is known, this problem is not well-posed since the solution has to be found among all
the possible elements of the infinite-dimensional Hilbert space H on the basis of a finite
sample. However, as in Chiou et al. (2016), the problem can be approached by considering
the Karhunen-Loève expansion of X

X ptq “

8
ÿ

m“1
ξmψm ptq , (7.3)

where the multivariate functional principal components tψm “ pψm1, . . . , ψmP qumPN, with
ψm P H, form an orthonormal basis of H, i.e.

xψm1 ,ψm2 yH “

P
ÿ

p“1
xψm1p, ψm2py “

#

1 if m1 “ m2

0 if m1 ‰ m2
. (7.4)

The latter represent the eigenfunctions of the covariance operator Γ : H Ñ H defined
by Γx “ Erxx,XyHXs, i.e. they are the solutions of Γψm “ λmψm, with eigenvalues
λ1 ě λ2 ě ¨ ¨ ¨ ě 0. In Equation (7.3), the multivariate functional principal component
scores, or scores, ξm “ xX,ψmyH “

řP
p“1xXp, ψmpy are random coefficients with Epξmq “ 0,

Epξ2
mq “ λm and Epξm1ξm2 q “ 0 when m1 ‰ m2.
The coefficient β in the model in Equation (7.1) can be expressed by using the same

eigenbasis of H

βptq “

8
ÿ

m“1
bmψmptq. (7.5)

In this way, by substituting Equation (7.3) and (7.5) into Equation (7.1) we get

yi “ β0 `

8
ÿ

m“1
xξimψm, bmψmyH ` εi “ β0 `

8
ÿ

m“1
ξimbm ` εi, i “ 1, . . . , n, (7.6)

where ξim “ xXi,ψmyH are the scores of the i-th observation Xi. Since the scores are
orthogonal, the coefficients bm can be estimated separately because they only depend on the
corresponding ξm. However, we would not be able to estimate infinite parameters and get β̂
that minimizes Equation (7.2) because of the finite number of available data. Therefore, we
consider an M -dimensional approximation of Xptq in Equation (7.3)

XM ptq “
ÿ

mPM
ξmψm ptq , (7.7)

where M “ tm1, . . . ,mM u Ă N is a set of M distinct natural numbers, indicating which
principal components to retain in the scalar-on-function regression model.

The choice of M is usually carried out by maximizing the proportion of the total variability
explained by the principal components. According to this criterion, the optimal choice is
to retain the first M components, i.e., M “ t1, . . . ,Mu (Chiou, Zhang, Chen & Chang
2014). However, this is not the only possible choice. The variable selection problem for
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principal component regression is well known in the multivariate setting and discussed in
Jolliffe (2002). In fact, if one is interested in prediction of the scalar response, there are some
components that may have small predictive ability, for which ideally the coefficient bm is
zero. Therefore, retaining those components in the model would not be beneficial for the
estimation of bm. On the other hand, we are still interested in retaining components with
large variances, for which the corresponding estimates of bm are more stable, and discarding
components with low variance.

A parsimonious choice may be discarding all components whose variance is less than a
threshold and result not significant for the regression on the scalar response. For this purpose,
an error statistic, e.g., the prediction sum of squares (PRESS) statistic (Montgomery et al.
2012), calculated by cross-validation, can be considered. In this paper, the PRESS statistic
is obtained via leave-one-out cross-validation as

PRESS “

n
ÿ

i“1
pyi ´ ŷrisq

2, (7.8)

where ŷris is the prediction of yi based on the scalar-on-function regression model with
the i-th observation removed from the reference data set. The idea is then to select only
those components that achieve a PRESS reduction larger than a threshold. The practical
illustration of this procedure for selecting M can be found in the real-case study addressed
in Section 7.4. By considering the approximation in Equation (7.7) and taking into account
Equation (7.6), we can write the model in Equation (7.1) as

yi “ β0 `
ÿ

mPM
ξimbm ` εM

i , i “ 1, . . . , n, (7.9)

where εM
i “

ř

mPNzM ξimbm ` εi is as close to εi as ξim has low variance or bm is close to
zero.

To get the final least squares estimate of β0 and β in Equation (7.5) based on a set of
n observations pX̃i, yiq, we first estimate the mean function as µ̂X

ptq “
řn

i“1 X̃iptq{n and
the variance function as v̂X

ptq “
řn

i“1pX̃iptq ´ µ̂X
ptqq2{pn´ 1q, then standardize X̃i and

obtain Xi “ pXi1, . . . , XiP q, where Xipptq “ v̂pptq´1{2pX̃ipptq ´ µ̂X
p ptqq.

The estimates of eigenvalues λ̂m and eigenfunctions ψ̂m of the covariance operator Γ can
be obtained by applying MFPCA on the observed data, for example by using the principal
analysis by conditional expectation algorithm (Happ & Greven 2018), or, alternatively,
through the spectral decomposition of the discrete version of the estimate of the correlation
function (Chiou et al. 2016). In any case, the principal component scores can be eventually
estimated as ξ̂im “ xXi, ψ̂myH. Note that, on the basis of a finite sample of size n, the
maximum number of multivariate functional principal components that can be estimated is
n´ 1, i.e., λ̂m “ 0 for m ě n.

Based on M, the intercept can be estimated as β̂0 “
řn

i“1 yi{n (since the scores have
null means) and the coefficients bm can be estimated separately as

b̂m “

řn
i“1 yiξ̂im

řn
i“1 ξ̂

2
im

. (7.10)

Accordingly, the estimate of β can be obtained as

β̂ptq “
ÿ

mPM
b̂mψ̂mptq, (7.11)
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and the prediction of yi results to be

ŷi “ β̂0 `
ÿ

mPM
ξ̂imb̂m, (7.12)

Finally, we can also get an estimate of the variance σ2 of the error in the model in Equation
(7.1)

σ̂2
“

řn
i“1pyi ´ ŷiq

2

n´M ´ 1 . (7.13)

Phase II Monitoring of Multivariate Functional Covariates and Scalar
Response
The information that allows Phase II monitoring is assumed to be incorporated in the
multivariate functional principal components estimated on the IC reference data (Phase I).
Suppose that, on the basis of the Phase I sample tpXi, yiqui“1,...,n, the scalar-on-function
regression model has been estimated together with all the parameters described in Section 7.3.
Moreover, suppose that a new observation pXnew, ynewq is available from (X, yq, where ynew

is the new (i.e., future) observation of the response variable and Xnew “
`

Xnew
1 , . . . , Xnew

P

˘

is the corresponding new standardized observation of X̃. The new scores tξ̂
new

m umPM can be
calculated as

ξ̂
new

m “ xXnew, ψ̂myH, m P M. (7.14)
Note that the inner product in Equation (7.14) assumes Xnew to be completely observed
over the domain T to calculate the statistics used for monitoring the operating conditions
defined as in Equation (7.15), (7.17), and (7.18). The first two, namely the Hotelling T 2

and SPE statistics, define two functional control charts for monitoring the multivariate
functional covariates. The third statistic allows monitoring the scalar error term pertaining
to the response variable and will be hereinafter referred to as response prediction error.

Hotelling T 2 control chart The Hotelling T 2 statistic monitors the components retained
to estimate the scalar-on-function regression model

T 2 “
ÿ

mPM

pξ̂
new

m q2

λ̂m

. (7.15)

That is the part of variability in the functional covariates which is informative for the
prediction of the scalar response. The distribution of the T 2 statistic depends on the
distribution of the scores in M, which in general is not known. An upper control limit can
be set as the empirical p1 ´ αT 2 q quantile of the T 2 statistic values obtained for the Phase I
sample.

Squared prediction error control chart The SPE statistic looks at the norm of the
residual function obtained by approximating Xnew with X̂new

M “ pX̂
new

M1 , . . . , X̂
new

MP q

X̂
new

M ptq “
ÿ

mPM
ξ̂

new

m ψ̂m ptq . (7.16)

That is the part of variability in the functional covariates not considered in the T 2 statistic,
i.e., related to those components that have little relevance in the prediction of the scalar
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response. By noting that Xnewptq ´ X̂
new

M ptq “
ř

mPt1,...,n´1uzM ξ̂
new

m ψ̂mptq, we can write

SPE “ ∥Xnew ´ X̂
new

M ∥2
H “

“

C

ÿ

m1Pt1,...,n´1uzM

ξ̂
new

m1
ψ̂m1 ,

ÿ

m2Pt1,...,n´1uzM

ξ̂
new

m2
ψ̂m2

G

H

“

“
ÿ

m1Pt1,...,n´1uzM

ÿ

m2Pt1,...,n´1uzM

ξ̂
new

m1
ξ̂

new

m2
xψ̂m1 , ψ̂m2 yH “

“
ÿ

mPt1,...,n´1uzM

pξ̂
new

m q2. (7.17)

As for the Hotelling T 2 statistic, an upper control limit can be set as the empirical p1´αSP Eq

quantile of the SPE statistic values obtained for the Phase I sample.

Response prediction error control chart Beside monitoring of functional covariates,
the scalar response can also be monitored itself through the response prediction error given
by

ynew ´ ŷnew
“ ynew ´ β̂0 ´

ÿ

mPM
ξ̂

new

m b̂m. (7.18)

Since the experimental errors are assumed to have independent identical normal distribution,
the lower ´Lαy

and upper Lαy
control limits for the response prediction error can be obtained

by setting

Lαy
“ tn´M´1,1´αy{2

»

–σ̂2

˜

1 `
1

n´ 1
ÿ

mPM

pξ̂
new

m q2

λ̂m

¸

fi

fl

1{2

“

“ tn´M´1,1´αy{2

»

–σ̂2

˜

1 `
T 2

n´ 1

¸

fi

fl

1{2

(7.19)

where tn´M´1,1´αy{2 is the p1 ´ αy{2q quantile of the Student distribution with n´M ´ 1
degrees of freedom. Note that the limits depend on the value of the T 2 statistic. A higher
value in T 2 determines wider prediction error limits. If the distribution of the experimental
errors is not normal and more generally does not belong to a scale and location family,
the limits cannot be standardized to be equal. Nevertheless, they can be estimated non-
parametrically only asymptotically, because when the sample size grows they tend to be
of constant amplitude whatever the new observation of functional covariates. This control
chart can be regarded as the natural extension of the regression control chart known in the
SPC literature firstly introduced by Mandel (1969) to the case of multivariate functional
covariates by means of the scalar-on-function regression model of Equation (7.1).

Since the simultaneous use of three control charts boils down in testing three hypotheses
for each observation, the control limits have to be selected to control the (type-I) family-wise
error rate (FWER) for a significance level α. In what follows, we denote by αT 2 , αSP E , and
αy the significance levels to be separately used in the T 2, SPE, and response prediction
error control charts, respectively. In all those cases when these three control charts can be
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assumed as independent the Šidák correction (Šidák 1967) gives an exact FWER of α by
choosing αT 2 , αSP E , and αy such that

p1 ´ αT 2 qp1 ´ αSP Eqp1 ´ αyq “ 1 ´ α. (7.20)

and is conservative if they are positively dependent. However, as is known the Šidák correction
cannot be used if tests are suspected to be negatively dependent. In this latter case, the
alternative is the classical Bonferroni correction that can be utilized to guarantee that the
type-I FWER is not larger than α, by choosing αT 2 , αSP E , and αy such that

αT 2 ` αSP E ` αy “ α. (7.21)

However, as is known, this correction is more conservative than the previous one, and results
in a lower power. Whatever multiple correction one wants to use, a possible choice is to
assign the same correction to the three control charts, then

αT 2 “ αSP E “ αy “ 1{3. (7.22)

A suitable alternative is to split equally the FWER into the control level of the functional
covariate control charts (T 2 and SPE) and scalar response prediction error control chart

αT 2 “ αSP E “ α{4, αy “ α{2. (7.23)

Fault Diagnosis via Contribution Plots
The behavior of a new observation is assessed by comparing the T 2, SPE and response
prediction error statistics with respect to the control limits built in Phase I. If at least one
statistic is out of the control limits, then an OC alarm is issued. Unusual behaviors can be
explored by analyzing the single contribution of each variable to trigger the OC as follows.

As proposed in Kourti & MacGregor (1996), the overall contribution of each functional
variable to the Hotelling statistic T 2 can be defined by observing that

T 2 “
ÿ

mPM

ξ̂
new

m

λ̂m

ξ̂
new

m “
ÿ

mPM

ξ̂
new

m

λ̂m

xXnew, ψ̂myH “

P
ÿ

p“1

ÿ

mPM

ξ̂
new

m

λ̂m

xXnew
p , ψ̂mpy. (7.24)

Then, we can write

CONTT 2

p “
ÿ

mPM

ξ̂
new

m

λ̂m

xXnew
p , ψ̂mpy, p “ 1, . . . , P. (7.25)

The contribution of each functional variable to the SPE statistic, rewritten as

SPE “

P
ÿ

p“1
∥Xnew

p ´Xnew
Mp ∥2, (7.26)

can be analogously defined as

CONTSP E
p “ ∥Xnew

p ´Xnew
Mp ∥2, p “ 1, . . . , P. (7.27)

Note that, even if both T 2 and SPE statistics are non negative, CONTT 2

p can be negative
for some variable. In general, the contributions have not the same distribution for all the
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variables. A proper upper limit for each variable contribution to T 2 and SPE statistics
has to be set to support the identification of anomalous variables. A plausible choice of the
upper limit is to estimate it from its empirical distribution based on the reference data set.
A multiple test correction should then be used to control the type-I FWER. By using the
Bonferroni correction, which is the simplest choice, the upper control limits can be set as the
p1 ´ αT 2 {P q and p1 ´ αSP E{P q quantiles of the empirical distribution for each contribution.

On the other hand, the response prediction error does not benefit from a decomposition
into interpretable contributions. Then, when an OC is issued by the response prediction error
control chart, possible causes have to be investigated outside the set of variables included in
the model as functional covariates.

7.4 A Real-Case Study

Data collected from a Ro-Pax cruise ship owned by the Italian shipping company Grimaldi
Group are used to illustrate the proposed method. Functional data from the multi-sensor
system installed on board are used for constructing the trajectories of the different ship
operating conditions (i.e., the functional covariates) and monitor CO2 emissions, (i.e., the
response variable). In view of the recent regulations discussed in Section 7.2, monitoring of
CO2 emissions is of great interest in the maritime sector to timely plan energy efficiency
improvement operations and react to anomalies.

Section 7.4 describes the variables chosen as functional covariates and scalar response.
Section 7.4 illustrates the preprocessing step required to obtain functional covariates from
the acquired signals. Section 7.4 shows the implementation details for estimation of the
scalar-on-function regression model (Phase I) and illustrates a scenario in which the proposed
monitoring strategy is applied to Phase II monitoring. Section 7.4 compares the latter with
simpler method based on scalar observations per each voyage.

Variable Description
The considered Ro-Pax ship has two engine sets. Each engine set has two main engines for
propulsion with a variable pitch propeller and a shaft generator for electric power supply.
The name of the ship, route, and voyage dates are omitted for confidentiality reasons.

Table 7.1 reports the P “ 9 variables used as functional covariates in the scalar-on-
function regression model in Equation (7.1). The scalar response variable, y, is the total
CO2 emissions, measured in tonne (t). Each observation refers to the navigation phase of
each ship voyage at given route and direction. More precisely, the navigation phase starts
with the finished with engine order (when the ship leaves the departure port) and ends with
the stand by engine order (when the ship enters the arrival port).

The cumulative sailing time variable, measured in hour (h) is the cumulative voyage
navigation time. The speed over ground (SOG) variable, measured in knot (kn), is the ratio
between the sailed distance over ground, i.e., the distance travelled by the vessel during the
navigation phase, hereinafter denoted by d, and the cumulative sailing time. The former is
measured in nautic mile (NM) and calculated from latitude and longitude data acquired by
the by the GPS sensor through the Haversine formula. The acceleration variable is obtained
as the first derivative of SOG with respect to the sailing time. The power difference between
port and starboard propeller shafts is included for discovering anomalies or malfunctioning in
the main engines, e.g., when one of the engines is turned off. The Distance from the nominal
route variable, measured in nautic mile (NM), is calculated as the distance, at each domain
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Table 7.1: Functional covariates used in the scalar-on-function regression model.

Variable
number Variable name Symbol Unit of

measurement
1 Speed Over Ground (SOG) V kn
2 Acceleration A NM{h2

3 Power difference between port
and starboard propeller shafts ∆P kW

4 Distance from the nominal route Dist NM
5 Longitudinal wind component WL kn
6 Transverse wind component WT kn
7 Air Temperature, mean of four engines T ˝C
8 Cumulative sailing time H h
9 Trim T rim m

point, of the actual GPS position of the vessel from the position indicated in the nominal
route. The wind component variables are calculated on the basis of the wind speed W ,
measured in kn, and direction relative to the ship Ψ, measured in radiant, acquired by the
anemometer sensor. The longitudinal wind component variable is obtained as WL “ W cos Ψ.
The transverse wind component variable is obtained as WT “ |W sin Ψ|. The air temperature
variable is the average of the temperatures measured from the sensors installed on each
of the four main engines. The Trim variable is obtained through the inclinometer sensor
measurements. Additional information about the variables can be found in Bocchetti et al.
(2015), Erto et al. (2015), Lepore et al. (2017), and Reis et al. (2020).

Preprocessing and Registration
In the proposed real-case study, functional data are obtained from profiles collected during
the navigation at five-minute frequency by the multi-sensor system on-board. The first
step to be carried out is to get smooth observations X̃i “ pX̃i1, . . . , X̃iP q of the functional
covariates X̃ at each voyage i “ 1, . . . , n. For each i “ 1, . . . , n and p “ 1, . . . , P , X̃ip can
be obtained from the discrete data xipn, n “ 1, . . . , Ni, using a cubic B-spline basis with
equally spaced knots

X̃ipptq “

Q
ÿ

q“1
ciqpϕq ptq , i “ 1, . . . , n, p “ 1, . . . , P, t P T , (7.28)

where ϕ1, . . . , ϕQ are the B-spline basis functions and ciqp are the basis coefficients. Functional
data have been obtained by smoothing data with regularization, using the R package fda
(Ramsay et al. 2018). Since the number of basis functions should be large enough to ensure
that the regularization is controlled by the choice of the smoothing parameter, 100 bases with
equally spaced knots and a roughness penalty on the integrated squared second derivative have
been chosen. For each functional variable and each observation, the smoothing parameter
are chosen separately by minimizing the generalized cross-validation criterion (Ramsay &
Silverman 2005).

Even if time is naturally prone to be chosen as functional domain, total travelling time
could vary from voyage to voyage. Thus, a reasonable choice is to use the fraction of
distance travelled over the voyage as the common domain T “ r0, 1s of the functional data
(Abramowicz et al. 2018). This choice can be regarded as a landmark registration (Ramsay
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Figure 7.1: Warping functions mapping at each voyage the cumulative sailing time to the
common domain T “ r0, 1s, which is the fraction of distance travelled over the voyage.

et al. 2009) of the functional data set from the function-specific temporal domain to the
common domain r0, 1s with the group of affine transformations with positive slope as the
group of the warping functions and voyage starting and ending points as landmarks.

Model Estimation and Perspective Monitoring

The reference data set has n “ 139 observations and is used to estimate the control limits
for the perspective (Phase II) monitoring of 30 consecutive voyages. The estimation of
multivariate functional principal components and corresponding scores are obtained through
the R package fda (Ramsay et al. 2018). As explained in Section 7.3, the choice of M,
i.e., the set of components to retain in the model, is carried out by considering both the
variability of the covariates explained by the principal components, reported in Figure 7.2a,
and PRESS statistic calculated by Equation (7.8), reported in Figure 7.2b, as a function of
the first m retained principal components in Equation (7.9). As previously stated in Section
7.3, we get M “ t1, 2, 5, 6, 12u as the set of principal components that achieve the higher
reductions of the PRESS statistic and percentages of variance explained larger than the
threshold value (0.01) (Figure 7.2a). The normality assumption for the errors is supported
by the Shapiro-Wilk test (p-value “ 0.11).

To give the same importance to functional covariates and scalar response, the functional
control charts are built by choosing the Bonferroni correction as αT 2 “ αSP E “ α{4 and
αy “ α{2 as proposed in Equation (7.23), with α “ 0.05. The upper control limits of the
Hotelling T 2 and SPE control charts are calculated as the Phase I empirical p1 ´ αT 2 {2q

quantiles of the corresponding statistic. The limits for the response prediction error control
chart have been calculated using Equation (7.19). Figure 7.3 shows the three control charts
proposed in Section 7.3 used for the perspective monitoring of the upcoming voyages.
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Figure 7.2: (a) Fraction of the variance of the functional covariates explained by the
multivariate functional principal components (solid line) and threshold (dashed line) equal
to 0.01. (b) PRESS statistic calculated by Equation (7.8) as a function of the the first m
retained principal components; trivially, when m “ 0, the PRESS is obtained on the basis of
the predictions calculated as the sample mean of the response variable; the points are the
PRESS values corresponding to the multivariate functional principal components retained in
the model.

Figures 7.4a and 7.4b report the boxplots of the functional covariates contribution to
the Hotelling T 2 and SPE statistics, respectively, to visually highlight contributions are not
identically distributed. Then, as discussed in Section 7.3, different limits for each variable
are set for contributions to both T 2 and SPE by using the Bonferroni-like correction as the
empirical p1 ´ α{p4P qq-quantiles of the corresponding contribution obtained based on the
Phase I reference sample.

OC points signalled by T 2 or SPE control charts (Figures 7.3a and 7.3b) are investigated
by means of the corresponding contribution plots and the most paradigmatic cases are
illustrated and discussed below in chronological order.

Voyage 7

Voyage 7 is the first one to be signalled, by the SPE statistic, as OC. Contributions to
the SPE statistic of the functional covariates are shown in Figure 7.5. From that figure,
the variables to appear the main responsible for the OC condition are acceleration (A) and
SOG (V ), while contributions of cumulative sailing time (H) and mean air temperature of
the engines (T ), moderately exceed their limits. The corresponding trajectories are then
explored in Figure 7.6. From the SOG profile (Figure 7.6a) it is clear that the ship was
sailing at a lower speed for a short initial fraction of the voyage, which assuredly affected
the sailing time (Figure 7.6b). A SOG profile higher than the average after the slowdown
allowed the ship to complete the voyage without delay at the final destination. Accordingly,
the acceleration (Figure 7.6c) shows SOG variations, and the mean air temperature of the
engines (Figure 7.6d) reflects the same behaviour of the SOG.
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Figure 7.3: (a) Hotelling T 2, (b) SPE, and (c) response prediction error control charts used
for monitoring the Phase II voyages. In each control chart, points joint by a line indicate
monitoring statistic values at each voyage, while dashed lines indicate control chart limits as
in Equation (7.23), with α “ 0.05.
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Figure 7.4: Box plots of the contributions of the functional covariates to (a) the Hotelling
T 2 statistic and (b) the SPE statistic for the reference voyages.
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Figure 7.5: Contribution of the functional covariates to the SPE statistic for voyage 7. The
bars are the contributions of the variables, with the darker ones indicating values exceeding
the limit, while the black dashes are the limits calculated on the basis of the reference
voyages.
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Figure 7.6: Observations of the critical (i.e., indicated as responsible of OC by contributions
plots in Figure 7.5) functional covariates for Phase II monitoring of the voyage 7, viz. (a)
SOG (V ), (b) cumulative sailing time (H), (c) acceleration (A), (d) power difference between
port and starboard propeller shafts (∆P ), and (e) longitudinal wind component (WL). In
each plot, the black line indicates the current observation, while the reference functional
observations are plotted in grey.

Voyage 18

Voyage 18 is signalled as OC by both T 2 and SPE functional control charts. Note that
to higher values of the Hotelling T 2 statistic correspond wider intervals in the response
prediction error control chart. In Figure 7.7a, the contribution plot to the Hotelling T 2

statistic signals the SOG (V ) and power difference between port and starboard propeller
shafts (∆P ) as anomalous. Whereas, in Figure 7.7b, contribution plot to the SPE statistic
signals longitudinal wind component (WL), cumulative sailing time (H), and acceleration
(A) variables. The trajectories of the functional covariates can be then exploited, as shown
in Figure 7.8. As in the case of the voyage 7, this voyage is characterized by an atypical
SOG profile (Figure 7.8a), with a lower average value throughout the entire voyage and
atypical alternation of accelerations and decelerations (Figure 7.8c). This affected the sailing
time (Figure 7.8b), which shows a strong delay on arrival. By looking at the profile for the
power difference between port and starboard propeller shafts (∆P ) in Figure 7.8d, the ship
is noticed to have had one of the main engines turned off for most of the voyage duration.
This is also exacerbated by a very high longitudinal wind component profile (Figure 7.8e).
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Figure 7.7: Contribution of the functional covariates to the Hotelling T 2 statistic (a) and
SPE statistic (b) for voyage 18. The bars are the contributions of the variables, with the
darker ones indicating values exceeding the limit, while the black dashes are the limits
calculated on the basis of the reference voyages.

Voyage 19

As in the case of voyage 18, voyage 19 is signalled as OC by both T 2 and SPE functional
control charts, and the higher-than-average value of the Hotelling T 2 statistic results in
wider control limits for the response prediction control charts. The contribution plots to
the T 2, reported in Figure 7.9a, indicates the power difference between port and starboard
propeller shafts (∆P ), cumulative sailing time (H), speed over ground (V ), and acceleration
(A) as anomalous. In addition to the latter variables, the contribution to the SPE statistic
in Figure 7.9b also reports the wind components (WL and WT ) slightly above their control
limit. The plots of those functional covariates are explored in Figure 7.10 and evidence a
SOG variable profile (Figure 7.10a) unusually low during the first part of the voyage and
reflects also in atypical pattern of the acceleration profile (Figure 7.10c). Accordingly, the
sailing time (Figure 7.10b) is higher than usual in the middle of the voyage to complete the
voyage with no delay on arrival. The power difference between port and starboard propeller
shafts (∆P ) (Figure 7.10d) helped to diagnose malfunctioning of one of the main engines in
the initial part of the voyage.

Voyage 23

Voyage 23 has IC covariates (i.e., T 2 and SPE statistics do not exceed their control limits
in Figure 7.3) but the response prediction error control chart indicates that the total CO2
emissions are lower than the predicted value (Figure 7.3c). In this case, plausible fault causes
are to be investigated outside the covariates included in Table 1.

Voyage 24

Voyage 24 is signalled by both T 2 and SPE functional control charts (Figure 7.3) as OC.
Note that, as for voyage 18 and 19, the higher the value of the Hotelling T 2 statistic, the wider
the corresponding interval of the response prediction error control chart. In Figure 7.11a, the
contribution to the Hotelling T 2 statistic signals SOG (V ), power difference between port and
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Figure 7.8: Observations of the critical (i.e., indicated as responsible of OC by contributions
plots in Figure 7.7) functional covariates for Phase II monitoring of the voyage 18, viz. (a)
SOG (V ), (b) cumulative sailing time (H), (c) acceleration (A), (d) power difference between
port and starboard propeller shafts (∆P ), and (e) longitudinal wind component (WL). In
each plot, the black line indicates the current observation, while the reference functional
observations are plotted in grey.

starboard propeller shafts (∆P ), and acceleration (A) as anomalous variables. Additionally,
in Figure 7.11b, the contribution to the SPE statistic also indicates the longitudinal wind
component (WL), and confirms V and ∆P . Plots of the functional covariates, shown in
Figure 7.12, evidences unusually low SOG profile (Figure 7.12a) during the very beginning
and final part of the voyage. Surprisingly, the acceleration variable is not indicated as
anomalous, since the variations in SOG are not so pronounced. The power difference between
port and starboard propeller shafts (∆P ) (Figure 7.10d) supported diagnosis of an anomaly
in one of the main engines in correspondence of the part of the voyage with low SOG. Also
in this case the longitudinal wind profile WL shows larger than usual values at the beginning
of the voyage.

Comparison with scalar method
To assess the performance of the proposed methodology and to point out the advantage
of using a functional approach, we perform a comparison with a simpler model, where a
single scalar measurement is considered for each covariate and each voyage. In particular,
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Figure 7.9: Contribution of the functional covariates to the Hotelling T 2 statistic (a) and
SPE statistic (b) for voyage 19. The bars are the contributions of the variables, with the
darker ones indicating values exceeding the limit, while the black dashes are the limits
calculated on the basis of the reference voyages.

the proposed scalar model is as follows

yi “ γ0 `

P
ÿ

p“1
Zipγp ` εi, i “ 1, . . . , n, (7.29)

where Zip “
ş1
0 Xipptqdt is the sample mean of the functional covariate Xp at voyage i,

γ0, γ1, . . . , γP are the regression coefficients, and εi is the error term. The multivariate
monitoring of the scalar covariates can be performed by calculating the Hotelling T 2 statistic
(Montgomery 2007), obtained as

T 2 “ pZ ´ µ̂ZqJΣ̂
´1
Z pZ ´ µ̂Zq, (7.30)

where Z “ pZ1, . . . , Zpq, while µ̂Z and Σ̂Z are the estimates of the mean and covariance
matrix of Z, respectively. The upper control limit of the control chart is calculated non-
parametrically, as it is done for the functional control charts. Given a new observation
pZnew, ynewq, the scalar response variable can be monitored by means of the response pre-
diction error control chart, by defining ynew ´ ŷnew

“ ynew ´ γ̂0 ´
řP

p“1Z
new
p γ̂p, where

γ̂0, γ̂1, . . . , γ̂P are the least squares estimators of the regression coefficients. The control
limits of the response prediction error control chart are the same as in Equation (7.19),
where T 2 is calculated as in Equation (7.30).

Figures 7.13a and 7.13b show the scalar control charts for the Phase II voyages. Note
that voyage 7 is not detected as anomalous in this case, as it is done in the SPE functional
control chart. This gives a practical evidence of the advantages of the proposed functional
monitoring strategy that is able to highlight anomalies that are present only in a small part
of the functional domain (Figure 7.6). In order to compare the predictive performance of
the two models, we use the mean squared error (MSE) of prediction calculated for Phase II
voyages, using the proposed scalar-on-function model (7.1) and the scalar model (7.29). Note
that in the MSE calculation for both models, we did not include the anomalous voyage 23
signalled as OC by the response prediction error control chart in Figure 7.3c. Unsurprisingly,
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Figure 7.10: Observations of the critical (i.e., indicated as responsible of OC by contributions
plots in Figure 7.9) functional covariates for Phase II monitoring of the voyage 19, viz. (a)
SOG, (b) cumulative sailing time (H), (c) acceleration, (d) power difference between port
and starboard propeller shafts (∆P ), (e) longitudinal wind (WL), and (f) transverse wind
(WT ). In each plot, the black line indicates the current observation, while the reference
functional observations are plotted in grey.

the scalar-on-function model achieves an MSE “ 100.2, that is comparatively much lower
than the scalar model MSE “ 122.5.

7.5 Functional real-time control charts

Up to this point, the proposed monitoring strategy presented in Section 7.3 assumed all
functional covariates fully observed in their compact domain T . By relaxing this assumption,
we want to enlarge its use for functional real-time monitoring up to any intermediate domain
point. In order to do that, a real-time warping procedure needs to be defined, and, without
loss of generality, it will be presented in what follows with reference to the proposed real-case
study. Hereinafter, the real-time version of the functional control charts are referred to as
functional real-time control charts, where the term functional is used to emphasize that,
instead of monitoring the instantaneous value of the covariates and response only, they
exploit the new voyage information cumulated up to the current domain point.

Accordingly, let us denote with t˚ the instant at which we want to apply the monitoring
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Figure 7.11: Contribution of the functional covariates to the Hotelling T 2 statistic (a) and
SPE statistic (b) for voyage 24. The bars are the contributions of the variables, with the
darker ones indicating values exceeding the limit, while the black dashes are the limits
calculated on the basis of the reference voyages.

procedure and with k˚ P T “ r0, 1s the corresponding fraction of distance travelled. The
response variable to be monitored, denoted by y˚, is suitably chosen in this setting as the
total CO2 emissions up to t˚ (and k˚). Trivially, when k˚ “ 1 (i.e., at the end of the voyage),
y˚ coincides with ynew. At any instant t˚, we use as real-time warping function the map
f : r0, t˚s Ñ r0, k˚s that associates to each t P r0, t˚s the corresponding fraction of distance
travelled as kptq “ dptq{d, where dptq is the distance travelled until t ď t˚ and d is the total
distance travelled at the end of the voyage. Unfortunately, as d is not known yet at t˚, the
following steps are required to calculate kptq and thus k˚ “ kpt˚q:

1. consider the current GPS position P˚ of the ship, given by its longitude and latitude;

2. identify the point P˚ on the nominal route as that with minimal distance from the
current position of the ship at the considered instant t˚ (Figure 7.14);

3. calculate the fraction of distance travelled at t˚ as k˚ “ d˚{d P r0, 1s, where d˚ is the
length of the nominal route from departure port to P˚ and d is the length of the whole
nominal route.

The reference data set at t˚ can be obtained by truncating the reference observations of
covariates at k˚, such that the new functional domain is r0, k˚s. The reference data set
so obtained can be used to repeat the Phase I, described in Section 7.3, to calculate the
monitoring statistics at k˚ and the limits of the corresponding control charts. In particular,
note that for every k˚ the limits of the T 2 and SPE control charts do not change in Phase
II from voyage to voyage. Therefore, they need to be calculated at the end of Phase I only
once for k˚ values varying on an appropriate discretization of the domain T “ r0, 1s. In
particular, in this real-case study we consider 50 equally spaced values between 0.15 and
1, where 0.15 is arbitrarily chosen as burn-in domain portion. Contrarily, the limits of the
prediction error control chart depend also on the current covariate profiles (i.e., the profiles
observed at k˚), and must be calculated in real time for each voyage in Phase II. In view of
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Figure 7.12: Observations of the critical (i.e., indicated as responsible of OC by contributions
plots in Figure 7.11) functional covariates for Phase II monitoring of the voyage 24, viz.
(a) SOG (V ), (b) power difference between port and starboard propeller shafts (∆P ), (c)
longitudinal wind component (WL), and (d) acceleration (A). In each plot, the black line
indicates the current observation, while the reference functional observations are plotted in
grey.

this, most of the computational effort is required only at the end of Phase I and the real-time
monitoring is fast in practice.

As an example, in Figure 7.15 we report the functional real-time control charts built
for those voyages that we already signalled as OC by at least one of the control charts in
Figure 7.3 at the end the voyage (i.e., k˚ “ 1), viz. voyages 7, 18, 19, 23 and 24. By those
voyages, we aim to demonstrate the straightforward real-time use of the proposed monitoring
strategy in tracking dynamic scenarios that may occur during navigation and in supporting
more prompt diagnosis of faults. Moreover, in what follows we compare the behaviour of the
functional real-time control charts of Figure 7.15 with profiles of critical covariates indicated
as responsible for the OC signal by contributions plots reported in Section 7.4.

Specifically, in Figure 7.15a, the functional real-time monitoring of voyage 7— signalled
as OC only by the SPE control chart of Figure 7.3—exhibits the real-time profile of the
SPE statistic out of the control limit on the entire domain. In addition, the functional
real-time T 2 control chart in Figure 7.15a is able to indicate also anomalous T 2 values at
the beginning of the voyage (k˚ ď 0.25). This is coherent with Figure 7.6, where critical
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Figure 7.13: (a) Scalar control chart for the covariates based on the Hotelling statistic (7.30)
and (b) scalar control chart for the response prediction error used for monitoring the Phase
II voyages. In each control chart, points joint by a line indicate monitoring statistic values
at each voyage, while solid lines indicate control chart limits.

covariates exhibit anomalous behaviour at the beginning of the voyage.
Similarly, T 2 and SPE profiles of voyages 18, 19, and 24—signalled as OC by both T 2

and SPE control charts of Figure 7.3—plot predominantly OC, although with different
patterns (Figures 7.15b, 7.15c, and 7.15e). For voyage 18, the functional real-time T 2 and
SPE control charts reported in Figure 7.15b signal OC except for the very beginning of
the voyage. This is coherent with Figure 7.8, where most of the the observation of critical
covariates lie far from the reference data set from values of k˚ approximately larger than
0.20. Similarly, for voyage 19, T 2 and SPE real-time profiles plot out of the control limits.
Note that, while the SPE statistic is always much larger than the control limit, the T 2

statistic shows a decreasing trend. This is in accordance with the critical covariates reported
in Figure 7.10, where all covariates plot close to the reference dataset only in the second
half of the voyage. The straightforward interpretation of the functional real-time control
charts applies also for voyage 24. Indeed, Figure 7.15e shows the real-time SPE statistic
much larger than its control limit on the entire domain, whereas the T 2 goes very close to its
control limit in the middle part of the voyage This behaviour iagrees, as in the cases before,
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7. Control charts and functional regression

Figure 7.14: Graphical example showing how k˚ “ d˚{d is determined for a new voyage.
The dashed curve represents the route travelled by the ship up to the current GPS position,
which is the point labeled as P˚. The solid curve represents the nominal route and its point
nearest to P˚ is labeled as P˚. d˚ is the length of the portion of the solid curve from the
departure port to P˚. d is the total length of the nominal route.

with covariate profiles (Figure 7.12). Differently from voyage 7, the real-time prediction of
the cumulative CO2 emissions is consistent with the data even though functional covariates
are predominantly in OC state. This is displayed in the third column panels of voyages 18,
19 and 24 in Figure 7.15, where the actual response plots within the corresponding prediction
interval (αy “ α{2 “ 0.025). Instead, note that voyage 23—which has T 2 and SPE statistics
within the control limits during the whole voyage (see Figures 7.3 and 7.15d)—has actual
cumulative CO2 emissions below the lower limit throughout the voyage. This supports
practitioners to plausibly investigate anomaly causes not related to the covariates included
in the model (i.e., utilized to characterize ship operational conditions).

As theoretically expected, we can observe that control limits of the response prediction
error control chart become wider as k˚ increases, because the response (total CO2 emissions)
is chosen as cumulative up to t˚.

In conclusion, even if the considered real-case study has most of the functional covariates
with smooth behaviours (e.g., they are generally constant or linear over the entire voyages),
the proposed functional real-time control charts are able to detect anomalies more promptly
(k˚ ď 1) than the monitoring performed only at the end of each voyage (k˚ “ 1) examined in
Section 7.4. Those advantages are expected to definitely increase in more dynamic scenarios.

7.6 Conclusion

The need of handling complex data from modern ship multi-sensor systems have naturally
called for the implementations of new statistical methodologies that extend the multivariate
monitoring techniques to the case of multivariate functional data. In this work, a joint real-
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10

20

0

5

10

15

20

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
fraction of distance travelled fraction of distance travelled fraction of distance travelled

T
2

S
P

E

C
O

2 
em

is
si

on
s

(d) Voyage 23
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(e) Voyage 24

Figure 7.15: Real-time monitoring of voyages 7 (a), 18 (b), 19 (c), 23 (d) and 24 (e). For
each voyage, the T 2, SPE, and response prediction error control charts are plotted. In
each plot, solid lines indicate the profiles of the monitoring statistics during the voyage, and
dashed lines indicate the corresponding control limits as in Equation (7.23), with α “ 0.05.
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time monitoring procedure for functional covariates and a scalar response related to them, is
proposed, which, to the best of the authors’ knowledge, is new in both statistical and maritime
field. A suitable landmark registration is proposed to warp all functional observations into
the same domain. Signals acquired from different kind of sources and with different units
of measurement are shown to be easily integrated into a multivariate functional regression
model. Besides, the joint use of the Hotelling T 2 and squared prediction error functional
control charts, estimated by means of multivariate functional principal component analysis, is
shown to be able to effectively monitor the ship operating conditions of the upcoming voyages
and to highlight unusual behaviour with respect to a reference-good data set of past voyages.
In case of an out-of-control signal, the corresponding contribution plots are demonstrated to
be powerful tools for supporting diagnosis of faults. The optimal choice of the functional
principal components to retain has been also discussed with the aim of considering the
variability in the covariates that is beneficial for the response prediction performance. Then,
by means of response prediction error control chart, the proposed procedure is demonstrated
to be able to monitor ship CO2 emissions and to plausibly indicate if an anomaly occurs in the
scalar-on-function linear model, i.e., outside the covariates that characterize ship operational
conditions acquired on board and included as covariates. To allow the joint use of the three
control charts, control limits have been opportunely corrected so that the type-I family-wise
error rate achieves at most a fixed significance level. The problem of multiple comparison is
addressed to plot the limits of the contribution plots, in a fully real-time scenario, which
is itself an issue rarely discussed in the mainstream literature. The proposed monitoring
procedure is in fact shown to be applicable also for functional real-time monitoring up to
any intermediate time domain point of both functional covariates and scalar response. This
can greatly help shipping practitioners to support real-time managerial decision making by
promptly indicating anomalies during the navigation phase. The advantages of the proposed
functional real-time monitoring procedure are expected to escalate in those scenarios where
the functional data reveal very dynamic behaviours.
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Chapter 8

The R pacakge funcharts

The goal of funcharts is to provide control charts for functional data. The methodology is
described in Chapter 7.

8.1 Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("unina-sfere/funcharts")

8.2 Usage of funcharts

Let us show how the funcharts package works through an example with the dataset air
from the package FRegSigCom used in the paper of Qi & Luo (2019). First of all, let us
arrange the data in an appropriate format, we need a dataframe with the following columns:

• an id_variable column, identifying the observation in the functional dataset;
• a domain_var column, identifying the variable giving the domain point;
• then we need one column for each functional variable.

Qi & Luo (2019) propose a function-on-function regression model of the NO2 functional
variable on all the other functional variables available in the dataset. In order to show the
package, we consider a scalar-on-function regression model, where we take the mean of NO2
at each observation as scalar response and all other functions as functional covariates. Since
for each functional variable data are arranged in a matrix format, we can easily obtain the
long format using tidyverse through the function pivot_longer or gather. Let us also
plot the functions (not smoothed) to see the functional variables.
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library(FRegSigCom)
library(tidyverse)
library(funcharts)
library(gridExtra)
library(grid)
df <- lapply(seq_along(air), function(ii) air[[ii]] %>%

t %>%
as.data.frame %>%
setNames(1:ncol(.)) %>%
add_column(hours = 1:24) %>%
pivot_longer(- hours, names_to = "rep",
values_to = names(air[ii])) %>%
mutate(rep = as.numeric(rep))

) %>%
bind_cols %>%
dplyr::select(hours, rep, names(air)) %>%
mutate(rep = factor(rep)) %>%
group_by(rep) %>%
mutate(NO2 = mean(NO2)) %>%
ungroup

fun_covariates <- c("CO", "NMHC", "NOx", "C6H6", "temperature", "humidity")
lapply(fun_covariates,

function(var) df %>%
ggplot +
geom_line(aes_string("hours", var, group = "rep"), size = .1) +
theme_bw()

) %>%
do.call(grid.arrange, .)
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Now we split observations into a phase I training/calibration set and a phase II monitoring
set, then we can use the funchart package and perform the analysis using the function
do_analysis.

obs_list <- list(list(cal = factor(1:300), mon = factor(301:355)))

results <- do_analysis(
dt = df,
domain = c(1, 24),
n_basis = 40,
domain_var = "hours",
id_variable = "rep",
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id_group = NULL,
variables = fun_covariates,
ncores = detectCores(logical = FALSE) - 1,
loglambda_search = seq(from = - 10, to = 0, by = 1),
scalar_response = "NO2",
identify_outlier = FALSE,
confidence.interval = FALSE,
obs_list = obs_list,
selection = "PRESS",
variance_explained = 0.8,
alpha = 0.05,
min_var_explained = 0.01

)

gtable_rbind(
ggplotGrob(results$monitoring_list$plot$plot.list$`1`$plot.hot),
ggplotGrob(results$monitoring_list$plot$plot.list$`1`$plot.spe),
ggplotGrob(results$monitoring_list$plot$plot.list$`1`$plot.y),
size = "first") %>%
grid.draw
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From the control charts it is possible to see phase II observations 5, 7, and 12 (they are
actually days 305, 307 and 312) out of control. Let us see contributions for observation 5

do_cont_plot(result_phase1_list = results$result_phase1_list,
monitoring_list = results$monitoring_list,
id_observation = 5) %>%

lapply(function(x) x[[1]] %>% ggplotGrob) %>%
do.call(gtable_rbind, .) %>%
grid.draw
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For the 5-th observation in the phase II dataset, we have the temperature variable causing
the out of control for the Hotelling control chart.

fault_vars <- "temperature"
fun_covariates %>%

lapply(function(var)
plotfunmon(

fobj_segm_cal_mon = results$fobj_segm_cal_mon,
group = 1,
variable = var,
obs = 5,
col = if (var %in% fault_vars) "red" else "black",
lwd = if (var %in% fault_vars) 1 else .5
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)) %>%
do.call(grid.arrange, .)
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Let us see contributions for observation 9:

do_cont_plot(result_phase1_list = results$result_phase1_list,
monitoring_list = results$monitoring_list,
id_observation = 9) %>%

lapply(function(x) x[[1]] %>% ggplotGrob) %>%
do.call(gtable_rbind, .) %>%
grid.draw
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Many variables contribute to SPE

fault_vars <- c("C6H6", "CO", "humidity", "NMHC")
fun_covariates %>%

lapply(function(var)
plotfunmon(

fobj_segm_cal_mon = results$fobj_segm_cal_mon,
group = 1,
variable = var,
obs = 9,
col = if (var %in% fault_vars) "red" else "black",
lwd = if (var %in% fault_vars) 1 else .5

)) %>%
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do.call(grid.arrange, .)
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Let us see contributions for observation 12:

do_cont_plot(result_phase1_list = results$result_phase1_list,
monitoring_list = results$monitoring_list,
id_observation = 12) %>%

lapply(function(x) x[[1]] %>% ggplotGrob) %>%
do.call(gtable_rbind, .) %>%
grid.draw
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Again we have temperature signaled:

fault_vars <- "temperature"
fun_covariates %>%

lapply(function(var)
plotfunmon(

fobj_segm_cal_mon = results$fobj_segm_cal_mon,
group = 1,
variable = var,
obs = 12,
col = if (var %in% fault_vars) "red" else "black",
lwd = if (var %in% fault_vars) 1 else .5

)) %>%
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do.call(grid.arrange, .)
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Now we show the real-time monitoring results for the same voyages.

## Real time
out_realtime <- do_real_time(

kk = seq(from = 4, to = 24, length.out = 15),
dt = df,
domain = c(1, 24),
n_basis = 40,
domain_var = "hours",
id_variable = "rep",
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id_group = NULL,
variables = fun_covariates,
scalar_response = "NO2",
lambda = NULL,
loglambda_search = seq(from = - 10, to = 0, by = 1),
data_mon = NULL,
identify_outlier = FALSE,
confidence.interval = FALSE,
obs_list = obs_list,
selection = "PRESS",
variance_explained = 0.8,
alpha = 0.05,
n_fold = 5,
min_var_explained = 0.01,
ncores = detectCores()
)

grid.draw(plotrealtime(5, out_realtime$`1`))
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grid.draw(plotrealtime(7, out_realtime$`1`))
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grid.draw(plotrealtime(12, out_realtime$`1`))
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Conclusion

In this thesis, methods for industrial process monitoring based on modern multivariate
regression techniques and functional data analysis have been proposed. The proposed
methodologies are shown to achieve accurate predictions of the CO2 emissions or fuel
consumption and, at the same time, to be capable of interpretable indications about the main
causes of anomalies, possibly in real-time. This latter aspect is the main advantage over the
existing methods, especially in the case of profile monitoring in the functional data analysis
context. The proposed methodologies have the aim to provide results that are interpretable
for the practitioner and are able to support the technical management in the decision-making
process, which is an advantage over the black-box artificial intelligence alternatives. Finally,
open-source software is provided that not only is available to practitioners in the maritime
transportation sector, but it also generalizes to any application in the industrial process
monitoring setting where a scalar quantity depends on a set of functional variables.

Regarding the future directions of the research, there are several ways in which the work
proposed in this thesis can be improved, they are listed below.

Monitoring and prediction of a functional response variable

The focus of the proposed thesis is on a scalar response variable that is summarized into a
single statistic, usually the total amount of CO2 emissions at the end of a voyage. We think
that it is valuable to work directly with the single value of the scalar response variable at
the end of each voyage, because the specific application of this thesis is the prediction and
monitoring of the total amount of CO2 emissions of a ship due to navigation at each voyage.
Then, especially in the case of retrospective monitoring, the main interest of the practitioner
is in the cumulative quantity and on whether this quantity was particularly high. However,
being able to extract for example the information of the effects of various factors on the
emissions at different stages of a voyage is of great interest as well. This can be achieved
through function-on-function regression, which is not considered in this thesis.

Functional time series

All the models proposed in this thesis assume that observations of the response variable
are statistically independent conditionally on the covariates, both in the scalar and in
the functional case. We believe that, conditionally on the covariates, the main temporal
dependence structure is the one observed within each single voyage, which is modeled well
when treating data as profiles. However, functional time series techniques may further
allow to consider the temporal dependence across different voyages, if any, and improve the
prediction and monitoring performance.
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Functional generalized additive models
Most of the regression models proposed in this thesis assume there exists a linear relation-
ship between the functional covariates and the scalar response. Indeed there exist richer
alternatives. For the multivariate case, one possibility is to use generalized additive models
(Wood 2017), where the relationship between covariates and the expected value of a response
variable can be described through smooth functions. This also holds for functional regression
models, for which several extensions are possible, such as functional generalized additive
models (Scheipl et al. 2015, 2016), where the effect of a functional covariate over the response
variable is a generic smooth functional effect instead of a linear one.

Completion methods for functional data
Another important research question in functional data analysis that, surprisingly, raised the
attention only recently is how to do statistical inference in real time for functional variables
defined over temporal domains. While in Chapter 7 we have provided a method for real-time
monitoring, which gives indications about anomalies up to the current instant, it may be
interesting to consider the case where, conditional on the currently observed part, one wants
to have a prediction about the remaining part of a functional observation and predict if this
future unobserved part will be anomalous. Some recent works that describe the state-of-the
art for this future research line are shown below.

One of the first works in this context is the paper from Yao et al. (2005), which estimates
functional data from sparse observations, however it assumes functional data are sparsely
observed, while in our application navigation data are available with high frequency. For
dense data, Kraus (2015) proposed a method to complete the missing part of partially
observed functional data from the available observation in the more general case where the
functional domain is not necessarily time and the missing part is any interval contained in
the functional domain. However the proposed method does not guarantee continuity at the
boundary point between observed and unobserved portions, which is an important desired
aspect. Goldberg et al. (2014) proposed a method to predict the continuation of a function,
which is suitable to the application proposed in this thesis thesis. It guarantees continuation
of curve forecasting, however it is strictly related on splines. In a very recent work, Kneip &
Liebl (2020) propose a reconstruction operator that also aims to recover the missing parts of
a function given the observed parts. This new operator belongs to a new, very large class of
functional operators which includes the classical regression operators as a special case and
guarantees continuity at the boundary point.
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