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INTRODUCTION 

 

Geophysical exploration helps solving practical environmental, engineering or exploration 

problems. When more detailed information about the subsurface is needed, quantitative models 

need to be calculated mainly through inversion algorithms. In integrate exploration geophysics 

gravity data are often used to investigate the edges and bottom part of causative bodies, such as 

salt domes, while constraining the top part of the body from seismic information.  

The goal of the inverse problem is to determine the distribution of the physical property or 

the main geometrical features of the source distribution properties that give rise to the data. 

Unfortunately, this is not completely possible in practical surveys because only a limited number of 

data can ever be measured, and problems are not inherently unique. So, in order the calculated 

solution could more likely represent the true subsurface structure, we need other information about 

the source distribution.  

The main objective of this thesis is to reconstruct complex geometric structures from gravity 

data, following an approach based on inverting not the gravity data themselves but a derived 

quantity, the scaling function (Fedi, 2005). The approach has been defined in previous papers, 

referred to as the MHODE method (Fedi et al., 2015), and its application to 2D gravity profiles 

demonstrated its efficacy (Chauhan, Fedi & Sen, 2018). We here extend the method to the 2.x D 

case and to the 3D case. 

In the first chapter we introduce some general aspects of potential field theory, of most 

interest to this thesis.  

In chapter 2 we introduce the MHODE method (Multi HOmogeneity Depth Estimation) (Fedi 

et al., 2015) from a theoretical point of view. This method concerns the homogeneity properties of 

complex models, namely a multi-homogeneous model. This is done using the scaling function data, 

because it has the main advantage of being not dependent on the density, but only on the geometric 

features. 

Then, in chapter 3, we focus on the definition of the 2.5D, 2.x D (Rasmussen & Pedersen, 

1979), and 3D forward problems (Tsoulis, 2012). In contrast to the 2D case, this type of problems 

allows us to consider a finite strike length for the sources and so to manage the symmetry of the 

profile with respect to the source in correct way. 2-D formulae were early established by Talwani 

and Heirtzler (1964), while 2.5D ones were established by Shuey and Pasquale (1973). Rasmussen 

& Pedersen (1979) determined for cases 2.5D and 2.x D formulae to calculate the gravity field, the 
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first-order vertical derivative for the gravity field and the magnetic field. In conformity with this 

work, starting from the same formulae by Rasmussen & Pedersen, we calculated the second-order 

and the third-order vertical derivatives for the gravity field, and the first-order and second-order 

derivatives of the vertical component of magnetic field.  

In chapter 4 we look more in depth at the inversion, more specifically the VFSA optimization 

method (Very Fast Simulated Annealing). VFSA is a global optimization algorithm adapted on 

thermodynamic processes, on establishing how a molten material could cross different states to 

cool down or to reach the state of equilibrium. The main state of this process is the state of balance. 

If the cooling is very rapid, we will meet a local minimum. If, on the other hand, the process reaches 

equilibrium slowly, we will find global minimum (Sen & Stoffa, 2013). 

In the 5th and 6th chapters we apply, for a synthetic case and for a real case respectively, a 

3D inversion with a priori conditions starting from 2.x D MHODE inversion. In the first case, we start 

from the 2.x D interpretation of data generated by a 3D polyhedral model, thanks to a formula 

developed by Tsoulis (2012), whose FORTRAN code has been translated to the MATLAB 

environment. We defined a set of 2.x D gravity field profiles and its first order derivatives. By the 

MHODE inversion, the VFSA (Very Fast Simulated Annealing) inversion algorithm solves an 

equations system that has only geometric unknowns, because the scaling function has the 

peculiarity of not depending on the density. In the real case, we used the data taken from an existing 

gravity dataset from the Nevada Test Site (Ponce, 1997). We extracted eight parallel profiles and 

inverted them with the 2.x D MHODE method. These models and the estimated average density 

contrast constituted the main a priori information for the 3D inversion We so obtained a 3D density 

model, interpreted as a paleozoic dolomitic-quartzitic basement, buried under alluvial and cenozoic 

tuff deposits. 

Finally, in the 7th chapter we discuss about the work on the model uncertainty for the scaling 

function inversion of potential fields. 
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CHAPTER 1. POTENTIAL FIELDS THEORY (hints) 

 

This chapter describes some general aspects of potential theory of most interest to this 

thesis. In physics the potential theory describes not only the gravitational attraction but also a large 

class of phenomena, including magnetostatic and electrostatic fields, fields generated by uniform 

electrical currents, steady transfer of heat through homogeneous media, steady flow of ideal fluids, 

the behaviour of elastic solids, probability density in random-walk problems, unsteady water-wave 

motion, and the theory of complex functions and conformal mapping (Blakely, 1996). 

 

1.1 Potential Fields 

 

A field is a function of space and time. Fields can be classed as either scalar or vector. A scalar 

field is a single function of space and time; a vector field, such as flow of heat, velocity of a fluid, 

and gravitational attraction, must be characterized by three functions of space and time, namely, 

the components of the field in three orthogonal directions. However, in many cases only a 

component of the vector field is measured.  

For example, gravimeters used in geophysical surveys only measure the vertical component 

𝑔𝑧 (a scalar field) of the acceleration of gravity 𝐠 (a vector field).  

 

1.2 Newtonian Potential 

 

According to Newton’s law of gravitational attraction, the magnitude of the gravitational 

force between two masses is proportional to each mass and inversely proportional to the square of 

their distance. In cartesian coordinates (Figure 1.1), the mutual force between a particle of mass 𝑚 

centred at point 𝑃′ = (𝑥′, 𝑦′, 𝑧′) and a particle of mass 𝑚0 at 𝑃 = (𝑥, 𝑦, 𝑧) is given by 

 

 𝐹 = 𝛾
𝑚𝑚0

𝑟2
                      (1.1) 

 

where 
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𝑟 = [(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]
1
2 

 

                     (1.2) 

 

 

Figure 1.1 – Masses 𝑚 and 𝑚0 experience a mutual gravitational force which is proportional to 𝑚, 𝑚0 and 𝑟−2. By 

convention, unit vector �̂� is directed from the gravitational source to the observation point, which in this case is located at test mass 

𝑚0 (modified from Blakely, 1996). 

 

and where 𝛾 is the Newton's gravitational constant. If we let mass 𝑚0 be a test particle with 

unit-mass, then dividing the force of gravity by 𝑚0 provides the gravity field, expressing the 

gravitational attraction produced by mass 𝑚 at the location of the test particle: 

 

 𝐠(𝑃) = −𝛾
𝑚

𝑟2
�̂�                      (1.3) 

 

where �̂� is the unit vector directed from the mass 𝑚 to the observation point 𝑃, that is, in cartesian 

coordinates: 

 

 
�̂� =

1

|𝒓|
[(𝑥 − 𝑥′)�̂� + (𝑦 − 𝑦′)�̂� + (𝑧 − 𝑧′)�̂�]                          (1.4) 

 

The minus sign in equation 1.4 is necessary because of the convention that �̂� is directed from 

the source to the observation point, opposite in sense to the gravitational attraction. Because 𝐠 is 

force divided by mass, it has units of acceleration and is called gravitational acceleration.  
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Gravity field, as described by equation 1.4, is irrotational because 

 

 ∇ × 𝐠 = 0                      (1.5) 

 

So, the field is conservative and can be represented as the gradient of a scalar potential 

 

 𝐠(𝑃) = ∇𝑈(𝑃)                      (1.6) 

 

where 

  

 𝑈(𝑃) = 𝛾
𝑚

𝑟
                      (1.7) 

 

is the gravitational potential or Newtonian potential. 

 

1.3  Gravity Method 

 

The gravitational potential is harmonic at all the points outside of the mass, that yields 

∇2𝑈 = 0, but in the source region (the volume occupied by masses), according to Poisson’s 

equation: 

 

 ∇2𝑈 = −4𝜋𝛾𝜌                      (1.8) 

 

where 𝜌 is the density of the mass distribution at a given point. In geophysical exploration, 

gravimeters measure only the vertical component of the gravity, as given by: 

 

 𝑔𝑧 =
𝜕𝑈

𝜕𝑧
                      (1.9) 

 

In the gravity method the collected data need correction for all the variation in the Earth’s 

gravitational field, which do not result from the difference of density of the underlying rocks. When 

a gravimeter collects gravimetric data, they are (Blakely, 1996): 
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o component due to the reference ellipsoid (theoretical gravity); 

o effect of elevation above sea level on the theoretical gravity (free air effect); 

o effect of “topographic” mass (Bouguer slab and terrain effects). 

o time-dependent variations (tidal and instrumental drift effects). 

o effect of moving platform (Eӧtvӧs effect). 

o effect of masses that support topographic loads (isostatic effects). 

o effects from the crust density variations ("geological field"). 

 

The main objective of computing “Bouguer anomalies” is to reduce gravity measurements 

made on or near the Earth's surface to anomaly values that reflects density variations in the crust 

only. 

In the Table 1, we represent the factors of gravimetric case expressed in units of 

International and cgs systems: 

Factor SI cgs 

Mass 𝑚 kilograms (kg) Grams (𝑔) 

Distance 𝑟 meters (m) Centimetres (𝑐𝑚) 

Gravitational attraction 𝐠 m ∙ sec−2 𝐺𝑎𝑙 = 𝑐𝑚 ∙ 𝑠𝑒𝑐−2 

Gravitational constant 𝛾 6.67 × 10−11 m3kg−1sec−2 6.67 × 10−8 cm3g−1sec−2 
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CHAPTER 2. MHODE METHOD 

 

2.1 Upward Continuation 

 

               One of the fundamental steps for the MHODE method is the upward continuation. 

The upward continuation is a technique that allows us to transform the potential field measured on 

a given surface in that we would have measured on another surface at an upper altitude. With 

upward continuation we can accentuate the anomalies caused from deep sources, decreasing the 

contribute of the shallow sources (Blakely, 1996). 

To show how the upward continuation works, we start from the Green’s third identity: 

 

 𝑈(𝑃) = −
1

4𝜋
∫
∇2𝑈

𝑟
𝑑𝑣 +

 

𝑅

1

4𝜋
∫
1

𝑟

𝜕𝑈

𝜕𝑛
𝑑𝑆

 

𝑆

−
1

4𝜋
∫𝑈

𝜕

𝜕𝑛

 

𝑆

1

𝑟
𝑑𝑆              (2.1) 
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Figure 2.1 – (a) A function harmonic throughout region 𝑅 can be evaluated at any point within 𝑅 from its behaviour on 

boundary 𝑆. Unit vector ℎ is normal to surface 𝑆. (b) Upward continuation from a horizontal surface. Potential field is known on 

horizontal plane  𝑧 = 𝑧0 and desired at point (𝑥, 𝑦, 𝑧0 − ∆𝑧)(∆𝑧 > 0). Surface 𝑆 consists of the horizontal plane plus a hemispherical 

cap of radius 𝛼. Point 𝑃′ is the mirror image of 𝑃 projected through the plane. The point of integration 𝑄 is on surface 𝑆, and 𝑟 and 

𝜌 denote distance from 𝑄 to 𝑃 and from 𝑄 to 𝑃′, respectively (modified from Blakely, 1996). 

 

We see that if U is harmonic and has continuous derivatives, hence for the Green’s third 

identity the value of 𝑈 at any point 𝑃 within 𝐴 (called free-source or harmonic region) is given by: 

 

 𝑈(𝑃) =
1

4𝜋
∫ [
1

𝑟

𝜕𝑈

𝜕𝑛
− 𝑈

𝜕

𝜕𝑛

1

𝑟
]

 

𝑆

𝑑𝑆                      (2.2) 

 

where 𝑆 represents the boundary of 𝐴, 𝑛 is the outward normal direction, and 𝑟 is the 

distance from 𝑃 to the point of integration on 𝑆. From this equation, assuming a half-space source 
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volume, it is well known (Blakely (1996) eq. 2.39) that we may, with some algebra, obtain the well-

known upward continuation formula: 

 

 

 

𝑈(𝑥′, 𝑦′, −Δ𝑧) =
Δ𝑧

2𝜋
∫

𝑈(𝑥, 𝑦, 0)

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + Δ𝑧2

 

𝑆

𝑑𝑥𝑑𝑦 

 

                     (2.3) 

 

where 𝑆 is an infinitely extended plane surface, Δ𝑧 is the difference from the altitudes of the 

measurement plane, with points of coordinates [𝑥, 𝑦, 0],  and any upper altitude plane with points 

of coordinates [𝑥′, 𝑦′, −Δ𝑧]. 

To sum up, the important meaning of upward continuation is that a potential field can be 

calculated at any point within a region from the behaviour of the field on a surface enclosing the 

region. No knowledge is required about the sources of the field, provided they are below the 

measurement plane. This equation is evidently of great importance for multiscale methods, such as 

imaging methods, such as migration or DEXP, multiridge methods and methods based on the 

continuous wavelet transform, since they are expressly related to the variations of the field along 

the vertical axis. Among them, we are particularly interested to the MHODE (Multi Homogeneity 

Depth Estimation) method, which is heavily based on the multiscale properties of potential fields. 

 

2.2 The scaling function  

 

DEXP, Depth from EXtreme Points (Fedi, 2007), is a method to interpret potential field data 

on the basis of a meaningful property of 3D potential fields. It applies to the Newtonian potential 

and to its nth-order derivatives and will be characterized by a high-degree of stability and accuracy 

in retrieving the location, the type (SI), and the excess source density. The DEXP method is 

implemented in four stages: 

1. Create a 3D data volume of the potential field. In practice, this means that data are 

needed both horizontally and vertically. 

2. Scale the 3D field using specific laws — namely, the 3D field 𝑓(𝐫, 𝐫𝟎), which originates 

from a source at 𝐫𝟎, is transformed into a scaled field 𝑊(𝐫, 𝐫𝟎). 

3. Determine the depth to source, which involves a search for the extreme points of 
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the scaled potential field. We will show that extreme points will occur for 𝑊(𝐫, 𝐫𝟎) at 

points 𝐫(x, y, z) which are symmetrical (versus the 𝑥𝑦-plane, Figure 2.2) to 

𝐫𝟎(𝑥0, 𝑦0, 𝑧0) that is, at points enjoying the meaningful correspondence  

𝑥 = 𝑥0; 𝑦 = 𝑦0;  𝑧 = −𝑧0.  

4. Compute the excess mass, or the excess dipole moment intensity for the magnetic 

field, from the value of the scaled potential field at the extreme points. The final 

result will then be a depth distribution of extreme points and the computation of the      

excess mass and the scaling exponent. 

 

 

Figure 2.2 – Position vectors for DEXP transformation theory. The position vectors 𝐫 and 𝒓𝟎 indicate field points 𝑃(𝐫) in the 

harmonic region and source points 𝑆( 𝒓𝟎) in the source region (modified from Fedi, 2007).  

 

The scaling function (Fedi, 2007), was introduced in Fedi, 2005 in the context of DEXP theory. 

It does not depend on density or other physical constants, but only on the geometric characteristics 

of the model source. It is a dimensionless function of altitude that characterize the behaviour of 

homogeneity field. The scaling function 𝜏 is the ratio between the derivative of the logarithm of the 

homogeneous field 𝑔  and the derivative of the logarithm of depth: 
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 𝜏(𝑧) =
𝜕 log 𝑔

𝜕 log 𝑧
=

𝑛𝑧

𝑧 − 𝑧0
                      (2.4) 

 

where 𝑛 is the homogeneity degree (integer or fractional) of the observed field, 𝑧 is the altitude and 

𝑧0 is the depth to the source. 

Using standard differentiation calculus of logarithmic functions, we may use an equivalent 

formula for the scaling function 
𝜕 log𝑔

𝜕 log𝑧
 in equation 2.4 and rewrite 𝜏 as follows: 

 

 

𝜏(𝑧) =
𝜕 log 𝑔

𝜕 log 𝑧
=
1

𝑔

𝜕𝑔

𝜕𝑧
𝑧 

 

                     (2.5) 

So, considering the Rasmussen and Pedersen’s gravity formula (eq. 3.7), the theoretical 

scaling function, called 𝜏𝑇, will be completely defined by computing the expression of  
𝜕𝑔

𝜕𝑧
 (eq. 3.8). 

Similar computation may be made for computing the scaling function of order 𝑝, as follows: 

 

 

𝜏𝑝 =
𝜕 log𝑔𝑝

𝜕 log 𝑧
=
1

𝐹𝑝

𝜕𝑔𝑝

𝜕𝑧
𝑧 

 

                     (2.6) 

 

Formulas for 𝑝 = 1 and 𝑝 = 2 are described in paragraph 3.1 and in Appendix A respectively. 

Let us assume a source approximated by a polygonal (Talwani’s formula). 
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Figure 2.3 – Representation of a polygonal source (modified from Blakely, 1996) 

 

 In this case the unknowns are the source-density and the vertex coordinates for the gravity 

problem, and the only set of vertex coordinates for the scaling function problem. In order to 

estimate the unknown quantities of the scaling function, i.e., the coordinates (𝑥1… . . 𝑥𝑞 , 𝑧1… . . 𝑧𝑞) 

of the 𝑄 vertices of the body, we will so form the following system of non-linear equation along the 

ridges (see paragraph 2.3): 

 

 

 

[
 
 
 
 
 
𝜏𝑇(�̅�1, �̅�1, 𝑧1̅, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�1, 𝑧1̅)

…                                     …
𝜏𝑇(�̅�𝑖 , �̅�𝑖 , 𝑧�̅�, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�𝑖, 𝑧�̅�)

…                                     …
𝜏𝑇(�̅�𝐿 , �̅�𝐿𝑧�̅� , 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�𝐿 , 𝑧�̅�) ]

 
 
 
 
 

                          (2.7) 

 

 

where: 𝜏(�̅�𝑖, 𝑧�̅�)  𝑖=1,…,𝐿 refers to the scaling function estimated at points of coordinates 

(�̅�𝑖, 𝑧�̅�)  𝑖=1,…,𝐿 along the ridge and 𝜏𝑇 refers to the theoretical expression computed thanks to 

equation (2.6) and to the related equations (3.1) (3.2) (3.3) (3.5) (3.7) (3.8) (3.9) (3.12). For instance, 

to calculate the scaling function of order 𝑝 = 2, we have to calculate the second-order and third-

order derivatives of the gravity field for the 2.5D and 2.x D cases. 
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2.3. Multiridge Analysis 

 

The scaling function is calculated along ridges, the ridges are lines passing through the 

maxima of a field and of its derivatives at different scales. The multiridge analysis (Fedi et al., 2009) 

is a multiscale method that is used when the field and its derivatives can be expressed by harmonic 

functions. This method mainly consists of:  

• the creation of a multiscale dataset by performing upward continuation (Blakely, 

             1996) from the original measurement level to different levels  

• individuation and representation of the edges 

• representation and continuation of the ridges down to the source-region, to 

individuate the correct position of the source at the intersection of more ridges. 

According to Fedi et al., 2009 there are three types of ridges: 

 

                   • Zeros of the horizontal derivative 

                   • Zeros of the vertical derivative 

                   • Zeros of the field itself 

 

The intersection of the ridges usually occurs in the source region at the source position (i.e. 

at the depth to the centre of a sphere or at the depth to the top of an infinite vertical cylinder). The 

number of ridges depends on the order of the partial derivatives of the field, it increases according 

to the order of the field. 

 

 

Figure 2.4 – Multiridge Analysis calculated for the first-order vertical derivative of gravity field for a polygonal source. The dotted 
cyan lines represent the zeros of horizontal derivative, the dotted yellow lines represent the zeros of vertical derivative and the 

dotted white lines represent the zeros of the field itself.  
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2.4 Theory of MHODE 

 

The MHODE (Multi-HOmogeneity Depth Estimation) method (Fedi et al., 2015) is the 

inversion of inhomogeneous fields at different altitudes.  

Concerning homogeneous fields, there are many automatic methods to interpret the 

potential fields: those based on the Euler deconvolution (e.g., Thompson, 1982; Reid et al., 1990; 

Ravat, 1996; Fedi et al., 2009); the local wavenumber (e.g., Thurston and Smith, 1997; Smith et al., 

1998), the Continuous Wavelet Transform (CWT) (e.g., Moreau et al., 1997; Fedi et al., 2010; Fedi 

and Cascone, 2011), the Depth from Extreme Point (DEXP) (Fedi, 2007; Fedi and Pilkington, 2012; 

Fedi and Florio, 2013; Abbas et al., 2014; Abbas & Fedi, 2014; Baniamerian et al., 2016) and the 

Multi-ridge Method (Fedi et al., 2009; Florio and Fedi, 2014).  

Homogeneous potential fields 𝑓 satisfy the homogeneity law: 

 

 𝑓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = 𝑡𝑛𝑓(𝑥, 𝑦, 𝑧)                      (2.8) 

 

 or, equivalently, the Euler’s differential homogeneity equation: 

 

 
𝜕𝑓

𝜕𝑥
(𝑥 − 𝑥0) +

𝜕𝑓

𝜕𝑦
(𝑦 − 𝑦0) +

𝜕𝑓

𝜕𝑧
(𝑧 − 𝑧0) = −𝑛𝑓                      (2.9) 

 

where 𝑛 is the homogeneity degree, 𝑡 > 0 and {𝑥0𝑦0𝑧0} are the coordinates of the unknown single 

source.  

When the potential field 𝑓 is generated by one-point sources (the source distribution of such 

sources may be defined by a single point) n is integer. The best example is the homogeneously dense 

sphere (n=2) whose field is equivalent to that of a point-mass having its mass distribution 

concentrated on its centre, so that the gravity field may be defined by this single point (Fedi, 2016).  

The homogeneity degree 𝑛, for one-point sources, assumes the integer values 

{−3,−2,−1, 0}. All the methods for interpreting homogeneous fields assume the homogeneity 

degree as an integer value at least within a local set of data points.  

However, Fedi et al. (2015) argued that any inhomogeneous field can be homogeneous in 

two asymptotical conditions, either, a) measurements are very near to the source region, so 

horizontal extension can be approximated to infinite, or b) measurements are very far from source 
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region, so any types of sources behave like a point source and the homogeneity degree tends to −3 

in magnetic case or −2 in gravity case. But we know that in the real world the causative sources are 

complex sources and measured fields are no longer homogeneous. Also, we know that the 

homogeneity degree n is a function of distance for a complex source, and that it may hold fractional 

values as well (Steenland 1968). This is confirmed by other authors, dealing with sources which are 

not one-point sources and whose homogeneity degree n is fractional: in that case, the retrieved 

depth is somewhere between the source top and centre (Keating and Pilkington, 2004; Gerovska et 

al., 2005). On the other hand, Fedi et al. (2015) generalized the homogeneity law, similar to 

multifractal scaling laws from monofractals and redefined Equation 2.8 in the following manner: 

 

 

𝑓(𝑎𝑥, 𝑎𝑦, 𝑎𝑧) = 𝑎𝑛(𝑥,𝑦,𝑧)𝑓(𝑥, 𝑦, 𝑧) 

 

                   (2.10) 

so Euler differential becomes: 

 

 

𝜕𝑓

𝜕𝑥
(𝑥 − 𝑥0) +

𝜕𝑓

𝜕𝑦
(𝑦 − 𝑦0) +

𝜕𝑓

𝜕𝑧
(𝑧 − 𝑧0) =

= −𝑛(𝑥, 𝑦, 𝑧)𝑓(𝑥, 𝑦, 𝑧) 

                   (2.11) 

 

where n is now a function of distance to the source and 𝑓 is an inhomogeneous field. 

In contrast to ideal sources, real sources are finite and not necessarily equivalent to sources 

concentrated at a single point. So, real sources are expected to generate, as a general behaviour, 

inhomogeneous fields. For these fields the local homogeneity-degree may be computed by current 

methods revealing to be a function 𝑛(𝑟) varying versus the distance to the source (see fig. 2 in 

Steenland 1968), with their values being either fractional or integer, as well (Fedi et al., 2015). In 

general, these sources are finite in all extent and we may also refer to them as multiple or multipoint 

sources. Fedi et al., (2015) have shown that any type of field homogenous or inhomogeneous may 

have integer or fractional values of the homogeneity degree and that it changes with respect to 

distance from the source. For many sources (Fedi et al., 2015; Ravat, 1994; Steenland, 1968), the 

field homogeneity-degree n, is varying from 0 to -2 with respect to the depth to the top of the 

source. So, in the case of a single-scale study, the homogeneity degree may occasionally assume an 

integer value but in reality, it is continuously tending from 0 to a higher fractional value at higher 

distance. Therefore, to study the field of realistic sources, real and varying values of the 

homogeneity degree should are expected along the whole multiscale dataset.  
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Fedi et al. (2015) defined the local homogeneity by distinguishing homogenous and locally 

homogeneous functions. Consider 𝑓(𝐫) is a continuously differentiable in the region R, then it is 

locally homogeneous of degree 𝑛, if and only if: 

 

 

∇𝑓(𝐫)(𝐫 − 𝐫𝟎) = −𝑛𝑓(𝐫) 

 

                   (2.12) 

From Equation 2.12 it follows that: a) 𝑓(𝐫) is locally homogeneous of degree 𝑛 in a region 𝑅 

if and only if f it is homogeneous of degree 𝑛 in some neighbourhood of every point of 𝑅; and b) 

locally homogeneous fields are not necessarily homogeneous, since n may change in subregions of 

𝑅, as exemplified with a counterexample by Gelbaum & Olmsted (2003); conversely, homogeneous 

fields are always locally homogeneous. Since the homogeneity degree is different in different 

domains of the space, Fedi et al. (2015) introduced a new expression for such potential fields, called 

multi-homogeneous field. 

Therefore, following the concept of multi-homogeneity, any function can be approximated 

as: 

 

 

𝑓(𝐫)~𝐹𝐻(𝐫) 

 

                   (2.13) 

where 𝐹𝐻(𝐫) is the best homogeneous field of degree 𝑛 in the considered window W (Fedi 

et al., 2009; Fedi et al., 2015; Florio and Fedi, 2014). 

The main assumption of this method is therefore that at any altitude the inhomogeneous field could 

be approximated by a homogeneous field, with fractional or integer degree. 

Inhomogeneous fields may be studied by classical methods, such as Euler Deconvolution, 

provided they are analysed at different altitudes. In this work we will instead not process directly 

the gravity data, but a correlated quantity, the scaling function, which we described in section 2.2.  

One of the main advantages of the scaling function is that it does not depend on density or other 

physics constants, but only on the geometric characteristics of the source. MHODE (Multi-

HOmogeneity Depth Estimation) is a new technique of source parameter estimation, permitting 

retrieval of the source parameters of complex sources (Fedi et al., 2015). Fedi et al. (2015) examined 

in detail the application of a multi-homogeneous model to inhomogeneous fields and showed that 

the whole multiscale behaviour of 𝑛(𝑟) and of 𝑧0(𝑟) is needed to study potential fields and to 
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improve substantially their interpretation. We show in figure 2.3 the curves of z0(z) and n(z) 

computed for the inhomogeneous field due to a finite cylinder. 

 

Figure 2.3 - Multiscale Euler deconvolution of the gravity field of a cylindrical model. The model is a vertical cylinder having 
z01 = 300 m, z02 = 1 km, a 100 m radius and a 2 g cm–3 density. The analysed data are along a ridge of type I of the gravity field shown 
in (a); (b) depth to source estimates versus the altitude, z0(z); (c) homogeneity degree estimates versus the altitude, n(z). As expected, 
z0(z) and n(z) are both not constant functions of the altitude indicating that the field is inhomogeneous (modified from Fedi et al., 
2015). 

 

The theoretical expression of the scaling function for an inhomogeneous field is: 

 

 

𝜏𝑇 = 𝑛(𝑧)
𝑧

𝑧 − 𝑧0(𝑧)
 

 

                   (2.14) 
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Fedi et al. (2015) formed the system: 

 

 

 

[
 
 
 
 
 
 
 
 
 
 −𝑧1

2𝑧1 − 𝑧01 − 𝑧02
(𝑧1 − 𝑧01)(𝑧1 − 𝑧02)

= −𝑛(𝑧1)
𝑧1

𝑧1 − 𝑧0(𝑧1) 
∙                 ∙               ∙

 
∙                 ∙               ∙

 
∙                 ∙               ∙ 

 𝑧𝑀
2𝑧𝑀 − 𝑧01 − 𝑧02

(𝑧𝑀 − 𝑧01)(𝑧𝑀 − 𝑧02)
= −𝑛(𝑧𝑀)

𝑧𝑀
𝑧𝑀 − 𝑧0(𝑧1)

  ]
 
 
 
 
 
 
 
 
 
 

                          (2.15) 

𝑖 = 1,… ,𝑀. 

 

where the scaling function refers to M altitudes and the first members of the M equations 

refer to the theoretical expression of the scaling function of the first order derivative of a finite 

vertical cylinder.  The unknowns are 𝑧01 and 𝑧02, i.e. the depths to the top and to the bottom of the 

cylinder. Using an optimization code based on the Levenberg–Marquardt algorithm, they got the 

true solution for a synthetic case very quickly. 
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CHAPTER 3. FORWARD PROBLEM FOR THE SCALING 

FUNCTION OF THE GRAVITY FIELD AND OF ITS DERIVATIVES 

 

As we have seen, in order to form the equation system (2.7), we need to compute the scaling 

function at different altitudes along the ridges and we have also to compute the theoretical forward 

problems for the scaling function. In the case illustrated above, the theoretical formula of a finite 

cylinder was obviously known, and the unknown quantities were just the depths to the top and to 

the bottom of the finite cylinder. In the case of a general source we need to define the forward 

problem for the gravity field and its derivatives in the 2.5D, 2.x D cases for a general polygon of 

unknown vertex coordinates and for a general polyhedron in the 3D case. However, being this case 

very complex, in this project we will merely consider the 2.x D formulae for a general source, which 

is indeed a substantial task developed in this research project, and we will use the 3D formulae to 

create a synthetic gravity map to extract the profiles that represent the observed data in the 

synthetic case. Once these formulas are fixed, we can use equations 2.5 and 2.6 to have the 

theoretical equations of the scaling function for the gravity field and its derivatives in the 2.5D, 2.x 

D approximation. 

 

3.1 2.5D and 2.x D formulae for the gravity forward problem  

 

The 2.x D forward problem has several advantages vs. the 2D case. First of all, it allows us to 

consider the strike length of the body source like a finite length. Besides, we can manage the 

symmetry of the profile with respect to the source in a correct way.     

To obtain this type of forward problem is often enough to treat three-dimensional problems 

by introducing end corrections to allow the finite extent of the causative bodies. The important 

feature about these corrections is that they can really be considered as corrections to the simple 2D 

expressions, therefore calculating the fields from such bodies becomes quite rapid (Figure 3.1). 

The 2.5D and 2.x D modelling is obtained starting from the well-known 2-D formulae of 

Talwani and Heirtzler (1964), slightly changed to represent the body with a geometry “two-and-a-

half-dimensional”, or 2.5D by the Shuey and Pasquale (1973) formulae: 
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Figure 3.1 – Representation of a body in 2.5 dimension. Y is the strike length, for Y1 = Y2 we have a symmetrical body and 

for Y1≠Y2 we have an asymmetrical body (modified from Rasmussen & Pedersen, 1979). 

 

To calculate the gravity field expressed by a source in 2.5 dimension we use the equation 8 

from the Rasmussen & Pedersen (1979) paper: 

  

 

𝑔𝑧 = −2𝑌𝐺𝜌∑−cos𝜑𝑖 log
𝑢𝑖+1 + 𝑅𝑖+1
𝑢𝑖 + 𝑅𝑖

+

𝑖

 

+2𝐺𝜌∑
𝑥𝑖𝑧𝑖+1 − 𝑧𝑖𝑥𝑖+1

∆𝑥𝑖
2 + ∆𝑧𝑖

2

{
 
 

 
 ∆𝑧𝑖 log

𝑟𝑖+1(𝑌 + 𝑅𝑖)

𝑟𝑖(𝑌 + 𝑅𝑖+1)
+

+∆𝑥𝑖 (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌

𝑤𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝑤𝑖𝑅𝑖
)
}
 
 

 
 

𝑖

 

           (3.1) 

 

 

Where: 𝐺 is the gravitational constant,  𝜌 is the density of the body, 𝑌 is the strike length, ∆𝑥𝑖 =

𝑥𝑖+1 − 𝑥𝑖;  ∆𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖;  𝑅𝑖+1 = (𝑢𝑖+1
2 + 𝑤𝑖

2 + 𝑌2)
1
2⁄ ;  𝑅𝑖 = (𝑢𝑖

2 + 𝑤𝑖
2 + 𝑌2)

1
2⁄ ;  𝑟𝑖+1 =

(𝑢𝑖+1
2 + 𝑤𝑖

2)
1
2⁄ ;  𝑟𝑖 = (𝑢𝑖

2 + 𝑤𝑖
2)
1
2⁄ ;  𝑤𝑖 = 𝑤𝑖+1 = −sin𝜑𝑖𝑥𝑖 + cos𝜑𝑖𝑧𝑖 ;  𝑢𝑖 = cos𝜑𝑖𝑥𝑖 +

sin𝜑𝑖𝑧𝑖 ; 𝑢𝑖+1 = cos𝜑𝑖𝑥𝑖+1 + sin𝜑𝑖𝑧𝑖+1.  

The first-order vertical derivative of gravity field is represented by the equation 16 in the 

Rasmussen & Pedersen (1979): 
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𝜕𝑔𝑧
𝜕𝑧

= − 2𝐺𝜌∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 {∆𝑧𝑖 log
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
−

𝑖

− ∆𝑥𝑖 (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌

𝑤𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝑤𝑖𝑅𝑖
)} 

                              (3.2) 

 

where: 

 

𝑅𝑖+1 = (𝑢𝑖+1
2 + 𝑤𝑖

2 + 𝑌2)
1
2⁄ ;   𝑟𝑖+1 = (𝑢𝑖+1

2 + 𝑤𝑖
2)
1
2⁄ ; 

 

𝑅𝑖 = (𝑢𝑖
2 + 𝑤𝑖

2 + 𝑌2)
1
2⁄ ;    𝑟𝑖 = (𝑢𝑖

2 + 𝑤𝑖
2)
1
2⁄ ; 

 

𝑤𝑖 = 𝑤𝑖+1 = −sin𝜑𝑖𝑥𝑖 + cos𝜑𝑖𝑧𝑖 ;   

 

𝑢𝑖 = cos𝜑𝑖𝑥𝑖 + sin𝜑𝑖𝑧𝑖 ;   𝑢𝑖+1 = cos𝜑𝑖𝑥𝑖+1 + sin𝜑𝑖𝑧𝑖+1 ;  

 

During my period abroad, in collaboration with the Aristotle University of Thessaloniki, we 

developed the formulae for the second-order and third-order vertical derivative of gravity. Using 

equation (3.3) we calculated the second-order vertical derivative of gravity field  

 

𝜕2𝑔𝑧

𝜕𝑧2
= −2𝐺𝜌∑

∆𝑥𝑖
∆𝑥𝑖

2 + ∆𝑧𝑖
2

𝜕𝐷

𝜕𝑧
𝑖

 

 

            (3.3) 

where: 

 

𝐷 = ∆𝑧𝑖 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
− ∆𝑥𝑖 (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌

𝑤𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝑤𝑖𝑅𝑖
) 

 

             (3.4) 

See equations A.1, A.2 and A.7 for the complete mathematical definition of  
𝜕2𝑔𝑧

𝜕𝑧2
 . for all 

development of the second-order vertical derivative of the field for the symmetrical case see the 

Appendix A.1. 

 

The third-order vertical derivative of gravity field is given by: 



26 
 

 

𝜕3𝑔𝑧

𝜕𝑧3
= −2𝐺𝜌∑

∆𝑥𝑖
∆𝑥𝑖

2 + ∆𝑧𝑖
2

𝜕2𝐷

𝜕𝑧2
𝑖

 

 

                             (3.5) 

where: 

 

𝐷 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

             (3.6) 

See equations A.30 and A.31 for the complete mathematical definition of  
𝜕3𝑔𝑧

𝜕𝑧3
 for all 

development of the third-order vertical derivative of the field for the symmetrical case see the 

Appendix A.3. 

 

While for the asymmetrical case 2.x D the formula to calculate the gravity field: 

 

 

𝑔𝑧 = −𝑌2𝐺𝜌∑�̂� · �̂�𝐢 log
𝑢𝑖+1 + 𝑅𝑖+1
𝑢𝑖 + 𝑅𝑖

𝑖

+ 𝐺𝜌∑
𝑥𝑖𝑧𝑖+1 − 𝑧𝑖𝑥𝑖+1

∆𝑥𝑖
2 + ∆𝑧𝑖

2

{
 
 

 
 ∆𝑧𝑖 log

𝑟𝑖+1(𝑌2 + 𝑅𝑖)

𝑟𝑖(𝑌2 + 𝑅𝑖+1)
+

+∆𝑥𝑖 (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)
}
 
 

 
 

+

𝑖

+ 𝑌1𝐺𝜌∑�̂� · �̂�𝐢 log
𝑢𝑖+1 + 𝑅𝑖+1
𝑢𝑖 + 𝑅𝑖

+

𝑖

+ 𝐺𝜌∑
𝑥𝑖𝑧𝑖+1 − 𝑧𝑖𝑥𝑖+1

∆𝑥𝑖
2 + ∆𝑧𝑖

2

{
 
 

 
 ∆𝑧𝑖 log

𝑟𝑖+1(𝑌1 + 𝑅𝑖)

𝑟𝑖(𝑌1 + 𝑅𝑖+1)
+

+∆𝑥𝑖 (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)
}
 
 

 
 

𝑖

 

(3.7) 

 

And, for the first-order vertical derivative of gravity field, we have: 

 

 

𝜕𝑔𝑧
𝜕𝑧

= − 𝐺𝜌∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 {∆𝑧𝑖 log
𝑟𝑖(𝑅𝑖+1 + 𝑌2)

𝑟𝑖+1(𝑅𝑖 + 𝑌2)
− ∆𝑥𝑖 (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)} +

𝑖

+ 𝐺𝜌∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 {∆𝑧𝑖 log
𝑟𝑖(𝑅𝑖+1 + 𝑌1)

𝑟𝑖+1(𝑅𝑖 + 𝑌1)
𝑖

− ∆𝑥𝑖 (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)} 

(3.8) 
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From the equation 3.8 we have calculated the second order of vertical derivative of gravity 

field: 

 

 
𝜕2𝑔𝑧
𝜕𝑧2

= −𝐺𝜌 {∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷2
𝜕𝑧

𝑖

+∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷1
𝜕𝑧

𝑖

}                      (3.9) 

 

where 𝐷2 and 𝐷1 factors are: 

 

𝐷2 = ∆𝑧𝑖 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌2)

𝑟𝑖+1(𝑅𝑖 + 𝑌2)
− ∆𝑥𝑖 (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

) 

 

             (3.10) 

 

𝐷1 = ∆𝑧𝑖 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌1)

𝑟𝑖+1(𝑅𝑖 + 𝑌1)
− ∆𝑥𝑖 (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

) 

 

(3.11) 

 

See equations A.11 A.12 A.17 A.21 and A.26 for the complete mathematical definition of  

𝜕2𝑔𝑧

𝜕𝑧2
  for all development of the third-order vertical derivative of the field for the asymmetrical case 

see the Appendix A.2. 

 

 The third-order vertical derivative of the gravity field for the asymmetrical case: 

 

 
𝜕3𝑔𝑧
𝜕𝑧3

= −𝐺𝜌 {∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕2𝐷2
𝜕𝑧2

𝑖

+∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕2𝐷1
𝜕𝑧2

𝑖

}        (3.12) 

 

where 𝐷2 and 𝐷1 factors are: 

 

 

𝐷2 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(3.13) 
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𝐷1 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(3.14) 

See equations A.47 A.48 and A.64 for the complete mathematical definition of  
𝜕3𝑔𝑧

𝜕𝑧3
 for all 

development of the third-order vertical derivative of the field for the asymmetrical case see the 

Appendix A.4. 

 

3.2 2.5D and 2.x D formulae for the magnetic forward problem 

 

In collaboration with the Aristotle University of Thessaloniki, we also developed the formulae 

for symmetrical 2.5D and asymmetrical 2.x D cases for the magnetic field. From the work of 

Rasmussen & Pedersen (1979) we have the formula to calculate the vertical component 𝐵𝑧 of 

magnetic field in a symmetrical case: 

 

 

𝐵𝑧=− 2𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 {(𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) log
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
+

𝑖

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌

𝑤𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝑤𝑖𝑅𝑖
)} 

       (3.15) 

 

where, 𝐽 is the magnetization of the body and 𝑗𝑥, 𝑗𝑦, and 𝑗𝑧 are the magnetization directions.  

 

From the equation (3.15) we calculated the first-order vertical derivative of the vertical 

component of magnetic field: 

  
𝜕𝐵𝑧
𝜕𝑧

= −2𝐽∑
∆𝑧𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷

𝜕𝑧
𝑖

  (3.16) 

where: 

𝐷 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
− (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌

𝜔𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝜔𝑖𝑅𝑖
) 

 

 (3.17) 
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See equations A.80 A.81 and A.86 for the complete mathematical definition of  
𝜕𝐵𝑧

𝜕𝑧
 for all 

development of the first-order vertical derivative of the vertical component of magnetic field for 

the symmetrical case see the Appendix A.5. 

The second-order vertical derivative of the vertical component of magnetic field is 

represented by the equation:  

   

𝜕2𝐵𝑧
𝜕𝑧2

= −2𝐶𝑚𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷

𝜕𝑧
𝑖

 

 

 (3.18) 

where: 

 

𝐷 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)
𝜕𝐶1
𝜕𝑧

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

 (3.19) 

 

See equations A.125 and A.126 for the complete mathematical definition of  
𝜕2𝐵𝑧

𝜕𝑧2
 for all 

development of the first-order vertical derivative of the vertical component of magnetic field for 

the symmetrical case see the Appendix A.7. 

For the asymmetrical case we have the formula to calculate the vertical component 𝐵𝑧 

of magnetic field: 
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𝐵𝑧=

− 𝐽 {∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 [(𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1

′′ + 𝑌2)

𝑟𝑖+1(𝑅𝑖
′′ + 𝑌2)

𝑖

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌2
𝜔𝑖𝑅𝑖+1

′′ − 𝑡𝑎𝑛−1
𝑢𝑖𝑌2
𝜔𝑖𝑅𝑖

′′)

+ 𝑗𝑦 (
1

2
𝑙𝑜𝑔

(𝑅𝑖+1
′′ − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1
′′ + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)

−
1

2
𝑙𝑜𝑔

(𝑅𝑖
′′ − 𝑢𝑖)(𝑟𝑖 + 𝑢𝑖)

(𝑅𝑖
′′ + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)

 )]

+∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 [(𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1

′ + (−𝑌1))

𝑟𝑖+1 (𝑅𝑖
′ + (−𝑌1))𝑖

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛
−1
𝑢𝑖+1(−𝑌1)

𝜔𝑖𝑅𝑖+1
′ − 𝑡𝑎𝑛−1

𝑢𝑖(−𝑌1)

𝜔𝑖𝑅𝑖
′ )

+ 𝑗𝑦 (−
1

2
log

(𝑅𝑖+1
′ − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1
′ + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)

+
1

2
log

(𝑅𝑖
′ − 𝑢𝑖)(𝑟𝑖+1 + 𝑢𝑖)

(𝑅𝑖
′ + 𝑢𝑖)(𝑟𝑖+1 − 𝑢𝑖)

)]} 

       (3.20) 

 

where  𝑅𝑖
′′ = (𝑢𝑖

2 + 𝑤𝑖
2 + 𝑌2

2)1/2; 𝑅𝑖+1
′′ = (𝑢𝑖+1

2 + 𝑤𝑖
2 + 𝑌2

2)1/2; 

  𝑅𝑖
′ = (𝑢𝑖

2 + 𝑤𝑖
2 + (−𝑌1)

2)1/2; 𝑅𝑖+1
′ = (𝑢𝑖+1

2 + 𝑤𝑖
2 + (−𝑌1)

2)1/2; 

The formula to calculate the first-order vertical derivative of vertical component of magnetic 

field is: 

 

 

𝜕𝐵𝑧
𝜕𝑧

= −𝐶𝑚𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2
[
𝜕𝐷2
𝜕𝑧

−
𝜕𝐷1
𝜕𝑧
]

𝑖

 

 

              (3.21) 

where 𝐷2 and 𝐷1 factors are: 

 

𝐷2 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)𝐶1 + (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖)(𝐶2 − 𝐶3) + 𝑗𝑦 (−
1

2
𝐶4+

1

2
𝐶5) 

 

(3.22) 

 

𝐷1 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)𝐶1 + (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖)(𝐶2 − 𝐶3) + 𝑗𝑦 (−
1

2
𝐶4+

1

2
𝐶5) 

 

 

 

(3.14) 
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See equations A.90 A.91 A.98 A.108 and A.115 for the complete mathematical definition of  

𝜕𝐵𝑧

𝜕𝑧
 for all development of the first-order vertical derivative of the vertical component of magnetic 

field for the asymmetrical case see the Appendix A.6. 

Finally, we wrote these formulae in a Matlab code, implementing them in MHODE inversion 

algorithm. 

 

3.3 3D forward problem 

 

Among the different works about 3D forward problem (Fueg & Xia, 1996; Gotze & Lameyer, 

1988; Hansen, 1999; Holstein & Ketteridge, 1996; Holstein et al., 2007; Moraes & Hansen, 2001; 

Pohanka, 1988; Richardson & MacInnes, 1989;  Talwani & Ewing, 1960; Tsoulis, 2012; Wu & Hu, 

2006), we chose the one about the calculus of a polyhedral source gravity field. 

The 3D forward problem by polyhedron code (Tsoulis, 2012) consists in calculating the 

gravitational potential, the field and the its first-order derivative of a 3D source model, defined by 

polyhedral faces which are built by closed polygons SP along these calculates line integrals. The 

advantage of this algorithm is the possibility to create sources with general shapes, since it is a 

flexible model tool. 

 

Figure 3.2 – Geometrical definitions of the quantities used in the evaluation procedure for an individual face of the 

polyhedron (modified from Tsoulis & Petrovic, 2001). 
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In figure 3.2 𝑃′ is the projection of the computation point 𝑃, 𝑃′′ is the orthogonal projection 

of 𝑃′ on the straight line of the line segment 𝐺𝑝𝑞, line segments that form the plane of polygon 𝑆𝑝, 

while 𝑆𝑝𝑞 are the distances between 𝑃′′and the end points of 𝐺𝑝𝑞. 

Even if we have not intention to develop the 3D MHODE modelling for polyhedron-like 

sources during this project, we are, however, interested in these formulae in order to generate 

anomalies from realistic sources. We will then interpret these anomalies by 2.x D models and will 

try to use them for building a 3D model with the VOXI algorithm.  

To this end we have two formulae that we are interested in, the formula of gravitational field 

and the formula of first-order vertical derivative: 

  

 
𝑉𝑥𝑖 = 𝐺𝜌∑ 𝑐𝑜𝑠(𝐍p, 𝐞i)

𝑛

𝑝=1

[∑𝜎𝑝𝑞ℎ𝑝𝑞𝐿𝑁𝑝𝑞 + ℎ𝑝∑𝜎𝑝𝑞𝐴𝑁𝑝𝑞

𝑚

𝑞=1

+ 𝑆𝐼𝑁𝐺𝒜𝑝

𝑚

𝑞=1

]             

 (𝑖 = 1,  2,  3) 

     (3.13) 

 
𝑉𝑥𝑖𝑥𝑗 = 𝐺𝜌∑𝑐𝑜𝑠(𝐍p, 𝐞i)

𝑛

𝑝=1

[∑𝑐𝑜𝑠(𝐧pq, 𝐞j) 𝐿𝑁𝑝𝑞

𝑚

𝑞=1

+ 𝜎𝑝 𝑐𝑜𝑠(𝐍p, 𝐞j)∑𝜎𝑝𝑞𝐴𝑁𝑝𝑞 +

𝑚

𝑞=1

𝑆𝐼𝑁𝐺𝐵𝑝𝑗]            

  (𝑖, 𝑗 = 1,  2,  3) 

     (3.14) 

 

where 𝐍𝑝 is the outer unit normal of the polyhedral plane 𝑝, 𝐧𝑝𝑞 the normal of segment 𝑞 that lies 

on the plane of polygon 𝑆𝑝, ℎ𝑝 is the positive distance between the plane 𝑝 and the computation 

point 𝑃, 𝜎𝑝  variable indicates the sign of ℎ𝑝, ℎ𝑝𝑞 distance between 𝑃′ and 𝑃′′ and 𝜎𝑝    variable 

indicates the sign of ℎ𝑝𝑞. 

The terms 𝑆𝐼𝑁𝐺𝒜𝑝
and 𝑆𝐼𝑁𝐺𝐵𝑝𝑗  are parameters of control on the positions of the projections 

of the calculation point 𝑃, so they depend on the location of 𝑃′, if 𝑃′ is located out of polygon𝑆𝑝 

𝑆𝐼𝑁𝐺𝒜𝑝
= 𝑆𝐼𝑁𝐺𝐵𝑝𝑗 = 0 (Tsoulis and Petrovic, 2001). 

Finally, we have two quantities 𝐿𝑁𝑝𝑞 and 𝐴𝑁𝑝𝑞 that are abbreviations of the following 

transcendental expressions: 

 

𝐿𝑁𝑝𝑞 = ln
𝑢2𝑝𝑞+𝑙2𝑝𝑞

𝑢1𝑝𝑞+𝑙1𝑝𝑞
;    𝐴𝑁𝑝𝑞 = 𝑎𝑟𝑐𝑡𝑎𝑛

ℎ𝑝𝑢2𝑝𝑞

ℎ𝑝𝑞𝑙2𝑝𝑞
− 𝑎𝑟𝑐𝑡𝑎𝑛

ℎ𝑝𝑢1𝑝𝑞

ℎ𝑝𝑞𝑙1𝑝𝑞
;  
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here, we have 𝑙1𝑝𝑞  and 𝑙2𝑝𝑞 that are the distances between 𝑃 and the end points of 𝐺𝑝𝑞, 

while 𝑢1𝑝𝑞  and 𝑢2𝑝𝑞  are the distances between 𝑃′′ and the end points of 𝐺𝑝𝑞. 

In each of these formulae we have two summations, one inner for the sum of line segments 

𝑞, is running from one to 𝑚 for each face 𝑝, and the other one outer for the sum of all faces of 

polyhedron. 

The calculus of the second-order vertical derivative and also of their high-order derivatives 

for the polyhedral source is very complex, that is why we decided to use MHODE for the 3D case, 

through different 2.x D sections. The set of the so interpreted sections will then be used as a priori 

model for the 3D inversion with VOXEL method (Ellis, 2012). 
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CHAPTER 4. 2.x D MHODE INVERSION 

 

The word inversion in geophysics refers to mathematical and statistical techniques for 

recovering in an automatic way information on the subsurface physical properties from observed 

geophysical data. If 𝑁 measurements are performed in a particular experiment, for instance, one 

might consider these numbers as the elements of a vector 𝐝 of length 𝑁. Similarly, the model 

parameters can be represented as the elements of a vector 𝐦, which, is of length 𝑀. 

 
data:                           𝐝 = [𝑑1, 𝑑2, 𝑑3, 𝑑4, … , 𝑑𝑁]

𝑇 

model parameters:  𝐦 = [𝑚1, 𝑚2, 𝑚3, 𝑚4, … ,𝑚𝑁]
𝑇 

            (4.1) 

where  𝑇 denotes transpose (Menke, 1989).  

In an inverse problem the model parameters and the data are in some way related. This 

relationship is given by the theory, that is one or more formulas that the data and model parameters 

are expected to follow. 

In more realistic situations the data and model parameters are related in complicated ways, 

by one or more implicit equations such as 

 

 

𝑓1(𝐝,𝐦) = 0 

𝑓2(𝐝,𝐦) = 0 

∙ 

∙ 

∙ 

𝑓𝐿(𝐝,𝐦) = 0 

            (4.2) 

 

where 𝐿 is the number of equations.  

When the relationship among d and m is linear, we have to solve the system: 
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 𝐝 = 𝐀𝐦             (4.3) 

 

in order to estimate 𝐦. 

A solution to an inverse problem is not unique. When trying to solve an inverse problem, the 

error function (misfit) E can be defined by a sum of squares of the individual misfit error as: 

 𝐸 =∑𝑒𝑖
2

𝑁

𝑖=1

             (4.4) 

This is the squared Euclidean length of the vector 𝐞𝑇𝐞. The Euclidean length is one of the 

possible ways to quantifying the size or length of a vector. In general, the norm is used to refer for 

measuring the length and indicated by a set of double vertical bars: ‖𝑒‖ is the norm of vector 𝐞 

(Menke, 1989). A general norm 𝐿𝑝 (e.g., Menke, 1989; Dimri, 1992; Sen and Stoffa, 2013) is defined 

as: 

 𝐿𝑝 𝑛𝑜𝑟𝑚: ‖𝑒‖𝑝 = [∑|𝑒𝑖|
𝑝

𝑁

𝑖=1

]

1 𝑝⁄

             (4.5) 

 

where 𝑁  is the number of data points. In geophysical application, the 𝐿2 𝑛𝑜𝑟𝑚 is commonly 

used, as given by: 

 𝐿2 𝑛𝑜𝑟𝑚: ‖𝑒‖2 = [∑|𝑒𝑖|
2

𝑁

𝑖=1

]

1 2⁄

              (4.6) 

Use of other norms, e.g. L1 can also be found in the geophysical literature. One main requirement 

is that the found parameters could generate computed data which could well approximate the true 

data. In this case the misfit error depends on being the problem linear or nonlinear.  
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Geophysical problems are often non-linear and the error function can have multiple minima 

of various size. In this case, we must distinguish among local optimization algorithms and global 

optimization algorithms (Dimri, 1992; Sen and Stoffa, 2013). To find and quantify the error function 

minimum, we have to kinds of algorithms. On the one hand, local optimization algorithms calculate 

the gradient of the problem and typically try to find a local minimum in the close neighbourhood of 

the starting solution. On the other hand, global optimization algorithms try to find the global 

minimum of the error function. These types of algorithms (Sen and Stoffa, 2013) are stochastic in 

nature and use global information about the error surface to update their current position. In many 

cases, global optimization algorithms are still able to find the good solution starting with poor initial 

models. Global optimization algorithms include genetic algorithm, simulated annealing algorithms 

and others (Ingber, 1989; Kirkpatrick et al., 1983; Sen & Stoffa, 1995; Sen & Stoffa 2013). 

To optimize our inverse problem in the MHODE method we used the Very Fast Simulated 

Annealing algorithm (VFSA). In the next paragraphs, we will first introduce how to approach an 

inverse problem with MHODE, then we will examine the VFSA more closely. 

 

4.1 Global optimization algorithm with MHODE 

 

As we said in the previous chapter, with MHODE we can approximate the measured 

inhomogeneous field at any altitude to a homogeneous field. With MHODE we invert the scaling 

function, calculated along the ridges at different altitudes, solving a set of non-linear equations. The 

main objective is to find only the parameters related to the source geometry, as the scaling function 

does not depend on density but only on the geometrical features of the body (vertex coordinates). 

Obtaining a priori information, that can be geological, seismic or other geophysical data 

information, we can approach to the solution of the following problem: the more are the sides of 

the polygon, the more precise will the gravity field computation, but at the same time this implicates 

more difficulties in the solution of the inversion problem.  

 In the case of salt domes, we will see a clear image of a salt dome structure top through the 

seismic method, but not the rest of the body. For this reason, we will use gravity to investigate the 

edges and the bottom of the source body, while constraining the top part of the body from seismic 

information. 
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We will solve Equation 2.7 by using the Very Fast Simulated Annealing method. As we said 

before, MHODE method includes the inversion of the scaling function, so we can write the error 

function as: 

 

 
𝐸 =∑(𝜏𝑇 − 𝜏)2             (4.7) 

where 𝜏𝑇 is the scaling function value computed using the estimated source model and 𝜏 is the 

scaling function calculated along the ridges. 

 

4.2 VFSA (Very Fast Simulated Annealing) algorithm 

 

One of the main aims of the geophysical inversion is searching for a minimum of an error 

function 𝐸(𝐦), where 𝐦 is a model vector. Very Fast Simulated Annealing (VFSA) has been chosen 

as it is a method for finding the global minimum of a function 𝐸(𝐦). The basic concepts of VFSA are 

taken from problems in statistical mechanics that concern the analysis of the properties of several 

atoms in samples of liquid or solid. It is a modified form of simulated annealing (SA), a global 

optimization method used in many geophysical parameter estimation problems. 

SA is a method for solving unconstrained and bound-constrained optimization problems. The 

method models the physical process of heating a material and then slowly lowering the temperature 

to decrease defects, thus minimizing the system energy. In particular, it is used for finding the global 

minimum of a function 𝐸(𝐦). Many geophysical inverse problems also involve finding the minimum 

of an error function 𝐸(𝐦) and, as a consequence, SA has been applied on these problems.  

VFSA has recently is even more efficient from a computational point of view. In contrast to 

SA, in VFSA the perturbations are generated from the model parameters according to a Cauchy-like 

distribution whose shape changes with each iteration. This results in an algorithm that converges 

much faster than a SA. In finding the optimal solution, VFSA tries several models from the search 

space. All these models can be used to obtain estimates of uncertainty in the derived solution. This 

method makes no assumptions about the shape of an a posteriori probability density function in the 

model space. 
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The VFSA Method compares the parameters (model parameters) of an optimization problem 

and particles in an idealized physical system. A process of physical annealing occurs when a solid in 

a heat bath is initially heated by increasing the temperature so that the particles are distributed 

randomly in a liquid phase. Then a slow cooling process follows, so that the particles arrange 

themselves in the low-energy ground state where crystallization happens. The optimization process 

involves the simulation of the evolution of the physical system as it cools down and anneals in a 

state of minimum energy. In the terminology of stochastic processes every particles configuration 

is defined as state. At each temperature, the solid is allowed to reach thermal equilibrium, where 

the probability of being in a state 𝑖 with energy 𝐸𝑖 is given by the following Gibbs or Boltzmann pdf: 

 

 𝑃(𝐸𝑖) =
𝑒𝑥𝑝 (−

𝐸𝑖
𝐾𝑇)

∑ 𝑒𝑥𝑝 (−
𝐸𝑗
𝐾𝑇
)𝑗∈𝑆

=
1

𝑍(𝑇)
𝑒𝑥𝑝 (−

𝐸𝑖
𝐾𝑇
)             (4.8) 

 

where the set 𝑆 is made of all the possible configurations, 𝐾 is the Boltzmann’s constant, 𝑇 

is the temperature and 𝑍(𝑇), partition function, which is given by 

 𝑍(𝑇) =∑𝑒𝑥𝑝 (−
𝐸𝑗

𝐾𝑇
)

𝑗∈𝑆

             (4.9) 

The temperature is gradually reduced after the thermal equilibrium is reached so that in the 

limit 𝑇 → 0, the state of minimum energy becomes intensely probable. The key to this process is 

the requirement of the equilibrium. If the cooling is too rapid (quenching), the material will freeze 

at a local minimum of 𝐸𝑗, forming a glass. Nevertheless, if the melt is cooled too slowly, annealing), 

the nit will eventually freeze at an energy state that is very close to the global minimum of 𝐸𝑗, 

forming a crystal (Sen & Stoffa, 2013). 

In our case the VFSA algorithm is characterized by a starting model with a random 

distribution, limited between the constraints assigned. From this model we calculated an initial 

error (objective function) between the scaling function of the observed data and the scaling function 

calculated of this model. Now we assigned an initial temperature 𝑇0𝑖 and let this temperature, that 

will tend to a value of zero, to change for any iteration, assuming for example a total iteration 
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number equal to 1000. For each temperature 𝑇𝑖(𝑘) (eq. 4.10) we have a new model with a Cauchy 

distribution, a distribution that depends on the temperature, and calculate a new error function 

that is subtracted to the previous one. If the new error function decreases, we proceed to the next 

state of temperature, until the allowed maximum of iterations is reached. The final model will have 

an error function representing the global minimum error, with a temperature equal to 𝑇𝑓𝑖 (eq. 4.11).  

 𝑇𝑖(𝑘) = 𝑇0𝑖𝑒𝑥𝑝(−𝑐𝑖𝑘
1 𝑁𝑀⁄ )             (4.10) 

where 𝑇𝑖(𝑘)  is the temperature at iteration 𝑘, 𝑇0𝑖 is the initial temperature for model 

parameter 𝑖, 𝑐𝑖 is the parameter used to control the temperature schedule which helps tuning the 

algorithm for specific problems, and 𝑁𝑀 is the number of model parameters. 𝑐𝑖 must be chosen 

such as  

 𝑇𝑓𝑖 = 𝑇0𝑖𝑒𝑥𝑝(−𝑚𝑖)             (4.11) 

where the final iteration 𝑘𝑖 = 𝑒𝑥𝑝 𝑛𝑖 and 𝑇𝑓𝑖 is the final temperature (Ingber 1989; Ingber and Rosen 

1992). Thus: 

 𝑐𝑖 = 𝑚𝑖𝑒𝑥𝑝(−𝑛𝑖 𝑁𝑀⁄ )             (4.12) 
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CHAPTER 5. MHODE INVERSION (SYNTHETIC CASE) 

 

Once implemented the new formulae of the field and its derivative in the MHODE inversion 

algorithm, for the case 2.5D and 2.x D, we now test the inversion based on these forward problems 

in a synthetic case. 

 

5.1. Forward problem 

 

First, we created a 3D polyhedral source-model (Tsoulis, 2012), the source being made of 

199 vertices, with a 1 𝑔 𝑐𝑚3⁄ density (Figure 5.1). We calculate with the 3D formulae of Tsoulis the 

maps of the gravity field and its first order vertical derivative of the synthetic polyhedral source-

model (Figure 5.2). These maps will be our observed data. From these we extract 7 profiles, 4 

distributed along the 𝑥 direction and the other 3 along the  𝑦 direction (Figure 5.3).  

 

Figure 5.1 - 3D Geometric representation of the source model. The 3D model is a combination of 7 profiles, 4 profiles along 

the x direction and 3 profiles along y direction. 
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Figure 5.2 – a) Map of 3D gravity field with a plan view of the sections chosen; b) Map of 3D first order vertical derivative 
of the gravity field with a plan view of the sections chosen. 
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Figure 5.3 – a) Projections of the profiles chosen for the study of synthetic case on the map of 3D gravity field; b) Projections 
of the profiles chosen for the study of synthetic case on the map of 3D first order vertical derivative of the gravity field. 

 

5.1.1 Forward problem for the 2.x D sections 

 

Therefore, for each profile extracted we have the observed field and the first order vertical 

derivative of the field for a 3D source (Figures 5.4 – 5.10). When we calculate in a forward 2.x D, we 

assume that each profile model has a finite length of the strike direction, therefore for each profile 

we know the profile exact position with respect to the source along the strike direction. 
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Figure 5.4 – The profile evidenced is the profile number 1, it develops on the y length and it has x = -4 km coordinate. a) 3D 

Representation of the section profile extracted from the 3D model. b) The observed gravity field anomaly for the profile. c) The 

observed first order derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from 

the 3D model, constituted by 33 vertices, with a density contrast of 1 𝑔 𝑐𝑚3⁄ .  

 

 

Figure 5.5 – The profile evidenced is the profile number 2, it develops on the y length and it has x = -2 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 35 vertices, with a density contrast of 1 𝑔 𝑐𝑚3⁄ . 
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Figure 5.6 – The profile evidenced is the profile number 3, it develops on the y length and it has x = 2 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 28 vertices, with a density contrast of 1 𝑔 𝑐𝑚3⁄ . 

 

 

Figure 5.7 – The profile evidenced is the profile number 4, it develops on the y length and it has x = 4 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 34 vertices, with a density contrast of 1 𝑔 𝑐𝑚3⁄ . 
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Figure 5.8 – The profile evidenced is the profile number 5, it develops on the x length and it has y = -2 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 18 vertices, with a density contrast of 1 𝑔 𝑐𝑚3⁄ . 

 

 

Figure 5.9 – The profile evidenced is the profile number 6, it develops on the x length and it has y = 1 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 23 vertices, with a density contrast 1 𝑔 𝑐𝑚3⁄ . 
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Figure 5.10 – The profile evidenced is the profile number 7, it develops on the x length and it has y = 3 km coordinate. a) 3D 

Representation of the section profile in the 3D model. b) The observed gravity field anomaly for the profile. c) The observed first order 

derivative of the gravity field anomaly for the profile. d) Geometric representation of the section extracted from the 3D model, 

constituted by 28 vertices, with a density contrast 1 𝑔 𝑐𝑚3⁄ . 

 

It is important to notice that, choosing a profile that is farther from the source centre and 

closer to the source bound, the gravimetry anomaly intensity decreases. 

 

5.1.2 Multiridge Analysis of a forward problem 

 

Once we have the observed field and its derivatives for all profiles, we calculate the ridges 

of these for each profile thanks to the Analysis of Multiridges (see Chapter 2). The ridge along which 

we will calculate the scaling function represents the points where the horizontal derivative is equal 

to zero (Figures 5.11 – 5.17). 
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Figure 5.11 – for Profile 1: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 

 

 

Figure 5.12 – for Profile 2: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 
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Figure 5.13 – for Profile 3: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 

 

Figure 5.14 – for Profile 4: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 
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Figure 5.15 – for Profile 5: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 

 

Figure 5.16 – for Profile 6: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 
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Figure 5.17 – for Profile 7: I is the ridge of the gravity field; II – III – IV are the ridges of the first order vertical derivative of 

the gravity field. 

 

5.2 Inversion model  

 

5.2.1 The scaling function for the 2.x D sections 

 

The fundamental parameter of our type of inversion, as we said in the previous chapters, is 

the scaling function. It does not depend on the density but only on the geometric characteristics of 

the source (the coordinates of the vertices). We show in the next figures, from 5.18 to 5.24, the 

comparison between the scaling function observed (the scaling function calculated for the profiles 

extracted from 3D gravity map) and the scaling function calculated with VFSA algorithm:     
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Figure 5.18 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 1.   

 

 

Figure 5.19 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 2.   
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Figure 5.20 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 3.   

 

 

Figure 5.21 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 4.   
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Figure 5.22 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 5.   

 

 

Figure 5.23 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 6.   
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Figure 5.24 – Comparison between the observed scaling functions and calculated scaling functions, I: compare between 

scaling functions for the gravity field; II – III – IV: compare between scaling functions for the first order vertical derivative of the gravity 

field. Comparison between real model and calculated model for profile 7.   

 

5.2.2 Geometric models obtained with 2.x D inversion 

 

In the next figures (5.25 – 5.31) we will show the geometric models obtained with 2.x D 

inversion. To obtain these models by 2.x D MHODE inversion first, we put in the algorithm, if there 

are, some constraints. For example, we can assume that we know the vertices at the top of source 

coordinates through seismic information. Second, we assume a finite length for the strike direction; 

third, we choose a strategy to build the calculated model,  and we let the algorithm free to calculate 

the final result, firstly inserting few vertices with the large range for bound along the coordinate x 

and z, and step by step, inversion by inversion. Then we take in to account the inversion result, but 

increase the number of vertices and reduce the width of the bounds, up to an optimal resolution 

for the geometrical problem (Chauhan, Fedi & Sen, 2018). During the MHODE inversion, the VFSA 

(Very Fast Simulated Annealing) inversion algorithm calculates the objective function (minimal 

error) for the quantity of the scaling function (see chapter 4), and solves the equations system that 

has only geometric unknowns, because the scaling function has the peculiarity of not depending on 

the density.  

In the case of the model 1 we fixed 8 vertices to the top and for the sides and the bottom 

we inverted 6 vertices, leaving them free to move along x and z directions.  



55 
 

 

Figure 5.25 – Profile 1: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along x and z coordinates. The y coordinate of the profile along the strike length is x = -4 km.  

 

For the model 2 we fixed 8 vertices to the top and for the sides and the bottom we inverted 9 

vertices, leaving them free to move along x and z directions. 

 

Figure 5.26 – Profile 2: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along x and z coordinates. The y coordinate of the profile along the strike length is x = -2 km. 
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While in the case of the model 3 we fixed 9 vertices to the top and for the sides and the 

bottom we inverted 8 vertices leaving them free to move along x and z directions. 

 

Figure 5.27 – Profile 3: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along x and z coordinates. The y coordinate of the profile along the strike length is x = 2 km. 

 

For the model 4 we fixed 8 vertices to the top and for the sides and the bottom we inverted 

8 vertices, leaving them free to move along x and z directions 

 

Figure 5.28 – Profile 4: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along x and z coordinates. The y coordinate of the profile along the strike length is x = 4 km. 
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In the case of the model 5 we fixed 7 vertices to the top and for the sides and the bottom 

we inverted 6 vertices, leaving them free to move along x and z directions 

 

Figure 5.29 – Profile 5: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along y and z coordinates. The x coordinate of the profile along the strike length is y = -2 km 

. 

For the model 6 we fixed 8 vertices to the top and for the sides and the bottom we inverted 

6 vertices, leaving leaving them free to move along x and z directions 

 

Figure 5.30 – Profile 6: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along y and z coordinates. The x coordinate of the profile along the strike length is y = 1 km. 
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In the end for the model 7 we fixed 8 vertices to the top and for the sides and the bottom 

we inverted 5 vertices, leaving them free to move along x and z directions. 

 

Figure 5.31 – Profile 7: comparison between the real model and the inverted model. The continue line represents the real 

model, while the dot line represents the inverted model. The red dots are fixed vertices, the black circles are the vertices free to move 

in the bounds along y and z coordinates. The x coordinate of the profile along the strike length is y = 3 km. 

 

5.2.3 Estimated average density 

 

Once we calculate by MHODE the unknown geometric coordinates, we can estimate the 

average density, obtained from the slope of the straight line that fits a distribution of points in a 

scatter plot (figure 5.32) between the observed field and the calculated field, (the last one with unit-

density). 

 

Figure 5.32 – Representation of the all values of estimated density for all profiles, obtained by the slope of the straight line 

that fits the distribution of points between the observed field and the calculated field, with unitary density for the last, in the scatter 

plots. 
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We may notice in figure 5.32 that the density estimated are somewhat different for the 

sections at the end of the body and in its central part. This difference is related to the approximation 

of the calculated model in 2.x D dimension. If we consider, for example, the section of the profile 1, 

this section will have a deeper top with respect to the middle section of profile 2. When we calculate 

the 2.x D model of the section of the profile 1, we consider all along the strike direction the same 

section, so in this case we are underestimating the real mass of the body, and the value of the 

estimated density is increased. We have the opposite situation for the section of profile 3, where 

we have an overestimation of the mass of the body source. Nevertheless, this difference is not a 

problem, because if we calculate the mean estimated density for the whole body, this will be equal 

1 𝑔 𝑐𝑚3⁄ , which is the real value of the density of the synthetic body. And especially because these 

values will be used to form a reference model with a full 3D algorithm, which will finally establish 

the correct density distribution in the body.      

 

5.2.4 Calculation of the field and of its derivative with the estimated average 

density 

 

By the estimated density and source geometry, we may now calculate the field and its 

derivatives, and compare them with the observed field and derivative data (Figures 5.33 – 5.39) 

 

Figure 5.33 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 1.  



60 
 

 

Figure 5.34 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 2. 

 

Figure 5.35 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 3. 

 

Figure 5.36 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 4. 



61 
 

 

Figure 5.37 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 5. 

 

Figure 5.38 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 6. 

 

Figure 5.39 – Comparison between fields, first-order derivatives and between real model and calculated model for profile 7. 

  

At the end, once obtained and interpreted the models from the 2.x D inversion, we can build 

density sections that constitute the starting model for a 3D inversion model.   
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5.2.5 3D inversion 

 

According to (Ellis et al., 2013) we know that 3D inverse algorithm in Geosoft is represented 

by the equations that we will show in the next lines:  

It is assumed that geophysical inverse problem is resolved with methods according to 

Tikhonov regularization (Tikhonov 1977). For the observed data 𝒅𝒊
𝒐𝒃𝒔, 𝑖 = 1, 𝑁, of a geophysical 

survey 𝑮 on physical property model 𝒎, we can write a simplified formulation of the geophysical 

problem:      

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜑𝑇[𝒎] = 𝜑𝐷[𝒎] + 𝜆 𝜑𝑀[𝒎] 𝑤𝑖𝑡ℎ 𝜆 ∶  𝜑𝐷 = 𝜑𝐷
∗   (5.1) 

 
𝜑𝐷[𝒎] = ∑ (

𝑮𝒊[𝒎] − (𝒅𝒊
𝒐𝒃𝒔 − 𝒅𝒊

𝒕𝒓𝒆𝒏𝒅)

𝛿𝒅𝒊
)

2

𝑎𝑛𝑑 𝜑𝑀[𝒎] = 𝑾(𝒎−𝒎𝒓𝒆𝒇)

𝑖=1,𝑁

 

 

          

(5.2) 

 
where the equation (5.1) represents the minimization of the total objective function 𝜑𝑇 to 

find the model 𝒎. The total objective function is the sum of the data objective function 𝜑𝐷 and the 

product between the regularization parameter 𝜆 and the model objective function, 𝜑𝑀. The 

regularization parameter 𝜆 is used to maintain a suitable data misfit 𝜑𝐷 = 𝜑𝐷
∗ .  

The equation (5.2) represents the definitions of the data and model objective functions. We 

can choose it in different problems, depending on the auxiliary inputs (error assignment, trend 

removal, etc.).    

To define the model objective function, it has chosen a least squares method misfit measure;  

𝒅𝒊
𝒕𝒓𝒆𝒏𝒅 is a possible trend that can be removed from the data, and 𝛿𝒅𝒊 is the error assigned to each 

data point. 

The operator 𝑾, contained in the model objective function 𝜑𝑀, is applied to the difference 

between the inversion result, 𝒎, and a reference model, 𝒎𝒓𝒆𝒇. 𝑾 could be selected to be a simple 

L2 norm (smallest deviation models), or could include derivative operators (smooth models), or any 

other terms thought to be useful (focusing, depth weighting, etc.). 

We now calculate a density model by a tool of Geosoft ®, VOXI. By VOXI we can take such 

2.x D inverted sections and the mean density value for the body, which is 1 𝑔 𝑐𝑚3⁄ , as a starting 
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model. A least squares 3D inversion will lead us to form a final 3D density model (Figures 5.38 – 

5.41). 

 

 

Figure 5.38 – The density sections calculated by inversion 2.x D MHODE are the starting model for the 3D inversion. 

 

 

Figure 5.39 – The estimated 3D density model calculated by VOXI, a tool of Geosoft. 
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Figure 5.40 – Comparison along x direction between the 3D density model and the geometry model created by polyhedron 

at beginning of the synthetic case.  

 

 

Figure 5.41 – Comparison along y direction between the real 3D density model and the geometry model created by 

polyhedron at beginning of the synthetic case. 
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CHAPTER 6. MHODE INVERSION (REAL CASE) 

 

In this chapter we will discuss a real case. We will invert a dataset of gravity stations from 

the Nevada Test Site (USA) (Ponce, 1997). The data process that will take us to the definition of a 

3D model of the Yucca Flat’s basin consists in two phases: the first focus on the 2.x D inversion, 

where we will finally have the 2.x D density sections that will constitute the starting model for the 

3d inversion. After this the phase two will start, and we will proceed to the 3D inversion in order to 

obtain the final 3D model of the basin.     

   

6.1. Geology and gravity data of the survey area 

 

The area where the survey of gravity data has been made concerns the NE corner of the 

Nevada Test Site, in the Basin and Range province: the Yucca Flat (Figure 6.1). Yucca Flat is a Tertiary 

alluvial basin that shows many characteristics typical of the Basin-and-Range structural and 

physiographic province in which it lies.  

 

 

Figure 6.1 – Survey Area, Yucca Flat is situated in the North – East corner of the Nevada Test Site (modified from Cole et al., 

1997). 
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The basin formed consequently to regional crustal extension, which was oriented generally 

East-West between about 9 Ma and the present. At the edges of the area the oldest rocks outcrop, 

which are upper Precambrian or paleozoic limestones, dolomites, quartzites, argillites, and 

siltstones, along with isolated late Mesozoic granodioritic intrusions. These rocks constitute what is 

the base, on which the volcanic rocks of the upper Miocene (mainly tuffs; e.g., Byers et al., 1976) 

and the quaternary clastic rocks (colluvial fans of the Tertiary and Quaternary sediments) were 

deposited (Figure 6.2).   

 

 

Figure 6.2 – In this figure is shown a representative well for the all area of Yucca Flat; modify from Florio (2020).  

 

The information on the range of density of the rocks type in the Yucca Flat are shown in the 

Table 2: 

 

Type of deposit Range of density (𝒈 𝒄𝒎𝟑⁄ ) Geology Period 

Alluvium 1.9 – 2.1A Quaternary 

Nonwelded and welded tuffs 2.39 – 2.57B Tertiary 

Dolomite 2.51 – 2.72C Devonian 

Quartzite 2.6 – 2.8A Ordovician 

A = Snyder et al., 1983; B = Rautman et al., 1995; C = Ramspott et al., 1970. 
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Tectonically, the basin is dominated by NS trending normal faults such as the Carpetbag fault 

and the Yucca fault, formed by eastward extension and eastward dipping (Cole et al., 1997). The 

topography of the area between the North-Eastern and South-Western basin boundaries 

moderately slopes down with a difference of elevation of about 400 m (Figure 6.3). 

 

 

Figure 6.3 – Topography in the Yucca Flat Area. 

 

Studies of the Yucca Flat are significant because this basin was one of four major sites of the 

underground nuclear-bomb test detonations on the Nevada Test Site since the late 1950's (U.S. 

Department of Energy, 1994; Laczniak and others, 1996) to 1995. 

Although many of these test experiments were conducted in unsaturated rock above the 

water table, as many as 225 were detonated below the water table or sufficiently close that 

radioactive products were probably released directly into the ground water flow system (Laczniak 

and others, 1996). This aquifer system conveys substantial ground water from central Nevada 

toward the southwest in the Death Valley ground water flow system (Winograd and Thordarson, 

1975; Dettinger, 1989). Thus, an understanding of the geologic framework of the carbonate aquifer 

is important to evaluating the potential consequences of contaminant migration in ground water. 
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So, the goal of researches in this zone is changed with the time, from the optimization of the depth 

of burial of the nuclear explosives (e.g., Healey, 1966), to find the optimal place for high-level 

nuclear waste storage (Healey et al., 1987), to support the modelling of the pathway of underground 

contaminants by constraining the basin configuration and identifying faults and other possible water 

conduits or barriers (Phelps et al., 1999). 

Gravity data were taken from an existing dataset of gravity stations from the Nevada Test 

Site (Ponce, 1997). The total of stations in the basin are 642. Gravity data were reduced to complete 

Bouguer gravity anomalies (Plouff, 1977) with a reduction density of 2670 𝑘𝑔 𝑚3⁄  by applying earth-

tide, instrument drift, free-air, Bouguer, latitude, curvature, and terrain corrections. An isostatic 

correction, following the method and parameters used by Jachens and Griscom (1985), was applied 

to produce the final isostatic gravity anomaly. Assuming a sea level crustal thickness of 25 km based 

on seismic profiles, a crustal density above sea level of 2670 𝑘𝑔 𝑚3⁄ , and a mantle-crust density 

contrast of 400 𝑘𝑔 𝑚3⁄ , the correction removed the long-wavelength gravitational effect caused by 

isostatic compensation of topography (Phelps 2002). 

The dataset of isostatic residual gravity anomaly (Figure 6.4) of the investigated area was 

used as the main data to model the contact between dense pre-Cenozoic rocks and less dense 

overlying Tertiary and Quaternary deposits. 
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Figure 6.4 - Isostatic Bouguer gravity anomalies of the investigated area. 

 

The negative gravity anomaly over Yucca Flat basin reaches –28 mGal, where the basin is 

known to be about 1.5 km deep (Phelps & Graham, 2002). The anomaly reaches its minimum in the 

Eastern area of the basin (in the figure the basin is represented with a black dotted line), and it 

presents an elongated maximum in the Western part of the basin. The anomaly approaches to zero 

along the boundaries of the Yucca Flat in all directions except for the Southern direction.  

From the isostatic residual gravity anomaly map, we calculated numerically the vertical 

gradient of the gravity map (Figure 6.5). We will focus on this ahead, as we will use it for the 2.x D 

inversion.  
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Figure 6.5 – First order vertical derivative of Isostatic Bouguer gravity anomalies of the investigated area. 

 

6.2 2.x D inversion of the gravity data in Yucca Flat  

 

The first phase of data processing is the 2.x D inversion of the gravity data. This phase is 

characterized by 5 steps: 

- Extraction of the profiles from the gravity map 

- Multiridge analysis of the profiles extracted 

- VFSA inversion of the scaling functions observed and calculated of the ridges 

       obtained 

- Calculation of the geometry, the sides and the bottom, of the source  

- Estimation of the density of the model inverted     

 

As we said before, the observation of this anomaly allows us to assume in the interpretation 

phase that the gravity data can be interpreted with the contact surface between a pre-Cenozoic 

basement and a Tertiary and Quaternary basin.  
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The first step of the 2.x D inversion with MHODE method consists in the extraction of eight 

parallel profiles, oriented West – East, that pass on the minimum anomaly, (Figures 6.6 and 6.7). To 

calculate the field and its derivative, we assume that the investigated source has a finite strike length 

(North – South), with a length of 28 km. As a consequence, the northernmost point of the strike 

length has a coordinate of 4116.3N km and the southernmost point has a coordinate of 4088.3N 

km.  

 

Figure 6.6 - Representation of the 8 parallel profiles West-East on the gravity field map of the Yucca Flat. The white dotted 

line represents the finite strike length. 
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Figure 6.7 - Representation of the 8 parallel profiles West-East on the gravity gradient map of the Yucca Flat, the white 

dotted line represents the finite strike length. 

 

The information on the localization of the profiles is contained in the Table 3: 

 

Name of the profile Initial position xi (km) Final position xf (km) Strike position y (km) 

Profile 1 580 587.2 4109 

Profile 2 580 589.6 4107 

Profile 3 581.8 590.6 4105 

Profile 4 581.8 590.6 4103 

Profile 5 581.8 591.4 4101 

Profile 6 581.8 591.4 4099 

Profile 7 581.8 591.4 4097 

Profile 8 581.8 589.4 4095 
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The figures (6.8 – 6.15) show the gravity field and its derivative for all eight profiles, 

separated with a step of 2 km along the strike direction from North to South. 

 

 

Figure 6.8 - a: Track of profile 1 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 1. 

 

 

Figure 6.9 - a: Track of profile 2 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 2. 
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Figure 6.10 - a: Track of profile 3 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 3. 

 

 

Figure 6.11 - a: Track of profile 4 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 4. 
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Figure 6.12 - a: Track of profile 5 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 5. 

 

 

Figure 6.13 - a: Track of profile 6 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 6. 
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Figure 6.14 - a: Track of profile 7 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 7. 

 

 

Figure 6.15 - a: Track of profile 8 on the gravity map (red solid line); b: gravity field along profile 1; c: first order vertical 

derivative of the gravity field along profile 8. 

 

For all the eight profiles, we performed the multiridge analysis (Figures 6.16 – 6.23) by 

upward continuing the gravity field up to 1.5 km altitude and the first order vertical derivative of 

the gravity field up to 5 km altitude.  
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Figure 6.16 – gravity field along profile 1 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 1 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field.  

 

 

Figure 6.17 – gravity field along profile 2 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 2 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 
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Figure 6.18 – gravity field along profile 3 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 3 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 

 

 

Figure 6.19 – gravity field along profile 4 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 4 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 
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Figure 6.20 – gravity field along profile 5 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 5 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 

 

 

Figure 6.21 – gravity field along profile 6 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 6 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 



80 
 

 

Figure 6.22 – gravity field along profile 7 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 7 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 

 

 

Figure 6.23 – gravity field along profile 8 (a) ridge along the profile (b, yellow dots) superposed to the upward continued 

field; first order vertical derivative of the gravity field along profile 8 (c) and ridge along the profile (d, yellow dots) superposed to the 

upward continued field. 
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We have then used the VFSA inversion algorithm to calculate the best model with the 

minimal misfit error between the observed scaling function and the scaling function of the 

calculated model (Figure 6.24). 

 

 

Figure 6.24 – Comparison between the observed and calculated scaling functions. a): Scaling functions of the profile 1; b): 

Scaling functions of the profile 2; c): Scaling functions of the profile 3;  d): Scaling functions of the profile 4; e): Scaling functions of the 

profile 5; f): Scaling functions of the profile 6; g): Scaling functions of the profile 7; h): Scaling functions of the profile 8; 

 

For each model obtained through the VFSA inversion, the density values are estimated by 

the slope of the straight line that fits the points in a scatter plot between the observed gravity field 

and calculated gravity field with unitary density. (Figure 6.25).  
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Figure 6.25 – Estimated density by MHODE method, the density values are estimated by the slope of the straight line that 

fits the points in each scatter plot between the observed gravity field and calculated gravity field with unitary density. a) scatterplot 

between the fields for profile 1; b) scatterplot between the fields for profile 2; c) scatterplot between the fields for profile 3; d) 

scatterplot between the fields for profile 4; e) scatterplot between the fields for profile 5; f) scatterplot between the fields for profile 

6; g) scatterplot between the fields for profile 7; h) scatterplot between the fields for profile 8. 

 

From the figure above, we may observe a substantial agreement of the estimated density 

for all the sections. Differences could depend on the 2.x D assumption (mentioned in the paragraph 

5.2.3), because in the 2.x D case we are assuming that the modelled section does not vary along the 

strike direction. Obviously, for real data, differences may also be effective, reflecting the real 

distribution of the density. In any case, as for the synthetic case, we remind all the evaluations to 

the final 3D model.    

 

Finally, we show in the following figures (6.26 – 6.33) the 2.x D models obtained with the 

respective density contrasts, and the comparison between the calculated field and its 1st order 

derivative vs. the observed field and 1st order derivative. In 2.x D model the position of each vertex 

along x coordinate and z coordinate, obtained with the inversion of the scaling functions by the 
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VFSA algorithm, constitutes the 2.x D model inverted that represents the limit of the sides and the 

bottom of the source processed. 

 

 

Figure 6.26 – Estimated model for profile 1. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.27 – Estimated model for profile 2. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.28 – Estimated model for profile 3. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.29 – Estimated model for profile 4. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.30 – Estimated model for profile 5. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.31 – Estimated model for profile 6. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.32 – Estimated model for profile7. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 
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Figure 6.33 – Estimated model for profile 8. Top: observed (solid line) and calculated gravity field (dot); middle: observed 

(solid line) and calculated (dot) first order vertical derivative: Bottom: 2.x D inverted model: black circles indicate the vertices free to 

move along the depth. 

 

After having estimated the eight inverted 2.x D models, we may now pass to the second 

phase of the data processing, aimed to obtain a 3D density model of the area investigated. 
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6.3 3D inversion of the gravity data in Yucca Flat 

 

The second phase of data processing concerns in the following steps: 

- Construction of the mesh-grid in the VOXI tool 

- Obtaining the starting model for the 3D inversion by the 2.x D density sections 

- 3D inversion and elaboration of the 3D model density 

- Producing a depth map of the thickness of the basin and a density contrast vs 

      the depth 

 

Utilizing the VOXI algorithm of the Oasis montaj Geosoft Software, we can build the 3D 

density model by constrained inversion of the gravity data. The first thing to do is to create a mesh 

grid constituted by some number of cells; the cells represent the resolution of the model. In the 

mesh we assume a 0.4 km step along the x direction (West – East direction in our real case) and a 

0.8 km step along the y direction (North – South direction in our real case). Along the z direction, 

the step was 0.05 km with a max depth of 4.3 km.  

The second step focuses on assigning a starting model to the 3D inversion, which is the main 

constraint to invert the gravity data (Figure 6.34). Our constraints are the above illustrated sections 

and the mean estimated value of density -0.6 g/cm3, (see paragraph 5.2.3). 
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Figure 6.34 – The starting model of the 3D inversion (a); the starting model of the 3D inversion sectioned at x = 584.3 km to 

observe the bottom of the 2.x D density sections interpolated (b). 

 

In the Eastern zone the density values range from -0.6 to 0 𝑔 𝑐𝑚3⁄ , estimated by the MHODE 

inversion, are prolonged to North and South, while the Western zone is assigned densities ranging  

from -0.28 to 0 𝑔 𝑐𝑚3⁄ ; in this part of the area we don’t have density values constrained to the 2.x 

D density sections, this range is calculated from the interpolation algorithm during the calculation 

of the voxel of the starting model. The starting model is the second constraint that we assigned to 

3D model. After this we start with the third step of the processing 3D, calculating the 3D inversion 

and the result of that is represented in Figure 6.35. 
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Figure 6.35 – The 3D density model estimated with VOXI inversion (a); The 3D density model estimated with VOXI inversion 

sectioned at x = 584.3 km to observe the possible contact surface between a basin (less dense) and a basement (more dense) (b). 

 

In figure 6.35a we can see the 3D density model estimated by VOXI inversion. The density 

contrast changes from -0.76 𝑔 𝑐𝑚3⁄  to 0 𝑔 𝑐𝑚3⁄ , while in the figure 6.35b we can observe the inner 

part of the 3D density model and suppose a contact surface between the material less dense and 

more dense.   

In figure 6.36 we show the predicted field by the 3D density model, the observed field and 

their misfit, showing that our model allows to reproduce very well the measurements. 
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Figure 6.36 – a) Observed gravity field; b) Gravity field generated by 3D VOXI inversion; c) Difference between the observed 

data and the data predicted by the 3D inversion algorithm. 

 

In fact, the misfit amplitude is 2.7 mGal while that of the gravity data in the Yucca flat basin 

is 33 mGal. The misfit presents positive anomalies in the South-Eastern zone where we have the 

most important anomaly in the predicted field, while in the North West zone it is possible to see 

alternated positive – negative areas, finally in the Western zone we have in the residual map well 

correlated maximums residuals. 

The interface corresponding to a density contrast near to zero can be considered the bottom 

of the basin. In Figure 6.37 we show the thickness of the basin calculated with respect this interface. 
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Figure 6.37 –The thickness map of the 3D density model inverted from the gravity dataset of Yucca Flat (Nevada). 

 

The figure shows in the Western zone a shallow depth for the basin, excepted for the area 

at km 4105N – 580E. By contrast, in the Eastern zone we have the extreme basin deepening, around 

1400 meters, interspersed by some more shallow zones.  

It is also interesting to calculate the behaviour of the density contrast (Figure 6.38) vs.  depth. 

To see this, we choose the area corresponding to the maximum depth in the 3D model and extracted 

there the vertical profile of density.  To compare it to the results from other studies (see later figure 

6.41), we show it positive because referred to the hosting pre-Tertiary basement rocks instead than 

to the sediments of the basin. 
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Figure 6.38 – Density contrast vs depth estimated in the investigated area.   

 

As expected, the density contrast model ranges from 0.6 𝑔 𝑐𝑚3⁄ , for the shallowest layer, to 

around 0 𝑔 𝑐𝑚3⁄  for the deepest layer. In particular, it is rather constant until a 500 m depth, and 

decreases slowly to 0.4 𝑔 𝑐𝑚3⁄  down to 300 m depth, while we see a sharp decrease from 300 m to 

1300 m where it goes to around zero. 

 

6.4 Comparison between the calculated 3D model with other 

basement models and a possible interpretation on the contact surface 

basin – basement in the Yucca Flat 

 

So far, other researchers worked on the gravity data in the area of Yucca Flat to estimate the 

pre-Tertiary basement morphology. Ferguson et al. (1988) inverted the data using both the Cordell-

Henderson method (Cordell and Henderson, 1968) and the Parker-Oldenburg approach (Oldenburg, 

1974), obtaining very similar results from these different techniques. Phelps et al. (1999) used the 

method of Jachens and Moring (1990), which includes a procedure to estimate and remove the 

gravity effect generated by density variations in the basement. In 2020, Florio calculated the top of 

the basement with the ITerative RESCaling (ITRESC) Method for Basement Morphology Modelling 

(Florio, 2018). 
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The models calculated by Florio (2020) and Ferguson et al. (1988), show a good agreement 

with the density 3D model (this study), estimating a maximum thickness of about 1200 m for one 

and about 1100 for the other and displaying similar basement features, only in the South West zone 

where the our model is more shallow respect this models . The basement model by Phelps et al. 

(1999) (Figure 6.40d) in the North East zone is in very similar to the 3D density model, while in South 

East zone the surface of interaction basement – sedimentary basin is more depth (around 2500 m). 

   

 

Figure 6.40 – a) Depth model calculated with 3D inversion algorithm; b) Yucca Flat basement model as computed by Florio 

(2019); c) Yucca Flat basement model, as computed by Ferguson et al. (1988). d) Yucca Flat basement model, as computed by Phelps 

et al. (1999).  



98 
 

In the study of the function density contrast for all the models (Figure 6.41) Ferguson et al., 

1988 estimated a constant density contrast of 0.7 𝑔 𝑐𝑚3⁄  between the filling sediments and the 

basement rocks. In the study of Phelps et al. (1999) the density contrast decreases linearly with the 

depth; this function attributes a density contrast of 0.91 𝑔 𝑐𝑚3⁄  at the surface and very low values 

at depth. Finally, Florio (2020) estimated a function density contrast represented into eight straight 

segments, starting from a value around 1 𝑔 𝑐𝑚3⁄  near the surface and assumed a constant value of 

0.45 𝑔 𝑐𝑚3⁄  at major depth. 

 

 

Figure 6.41 - Comparison of the estimated density contrast function with other methods. 

 

Trying to interpret our results from a geological point of view, we now start to analyse the 

estimated 3D density model (Figure 6.35). We may see that the range between the maximum and 

the minimum of the density contrast is about 0.7 𝑔 𝑐𝑚3⁄ , which may be justified  by the density 

contrast between an alluvial deposit and a dolomitic - quartzitic basement  interred at a greater 

depth. 

On the other hand, studying the behaviour of the density contrast (Figure 6.38) we may 

assume that the density contrast values in the first 400 metres may be associated to the presence 

of alluvial deposits, while in the next 400 metres, we may refer to tuff deposits. This contrast 

decreases drastically and down to the basin bottom, where we intercept the Palaeozoic basement, 

is around zero. 
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Finally, if we look at the depth map (Figure 6.37), reporting the basin thickness in all the area, 

we may attribute to the South-Western area of the basin a basement depth shallower than the 

South-Eastern area, even though we did not succeed in signing a constrain on the Western area 

depths. In the North-Western area the thickness behaves as the South-Western area, but we may 

see a quite shallow depth for the basin, except for an area, located at 4105N km and 580E km, where 

we notice a local deepening. 
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CHAPTER 7. MODEL UNCERTAINTY FOR THE SCALING FUNCTION 

INVERSION OF POTENTIAL FIELDS 

 

Non-uniqueness in potential field inversion is a critical issue, which is sometimes expressed 

in terms of source ambiguity. Fedi et al., (2005) explained different kinds of source ambiguity which 

are distinguishable based on their characteristics: for instance, discretization of the continuous field 

creates a sampling ambiguity, because the spatial distribution of the measurements does not 

adequately represent the field. Other type of ambiguities, like algebraic and error ambiguities, may 

occur due to subjective discretization of the source volume and to experimental/instrumental 

errors. There is also an inherent ambiguity derived from the Green’s third identity (e.g., Blakely, 

1996; Parker, 1977). The presence of all these ambiguities demands an appropriate a priori 

information in the inversion. For instance, Barbosa et al. (2002) showed how prior geological 

information can lead to a unique solution by imposing: a) that the estimated density distribution 

does not depend on z and is confined to a horizontal slab of known position (Smith’s theorem, Smith, 

1961); b) the estimated source has a known and homogeneous density and is compact. Besides all 

these kind of ambiguities, inverse problems are instable, and regularization is needed, which 

worsens further the ambiguity (e.g., Li and Oldenburg, 1996; Zhdanov, 2002; Pilkington, 1997; 

Paoletti et al., 2013).  

In this work, we face the non-uniqueness assuming that the depth to top of the source is 

sufficiently well known: this important assumption is realistic for compact bodies such as salt-

domes, whose depth to the top may be reliably mapped by seismic data. The overall shape of the 

source is instead not well defined by seismics and, in this case, gravity modeling may help the 

investigation of the source.  It is also realistic for many sedimentary basins, whose top often coincide 

with the measurement surface.  

We will model the gravity source using Talwani’s 2D formula (Talwani et al., 1959). The same 

formula will be used to model the scaling function, which is the derivate of the logarithmic field vs. 

logarithmic altitude (Fedi, 2007). In order to estimate the source parameters, which are the 

coordinates of the vertices of the polygonal Talwani’s source and the density contrast, we will use 

global optimization techniques for solving two different problems:  

a) the gravity problem, solving for vertex coordinates and density;  

b) the MHODE inversion (Fedi et al., 2015; Chauhan & Fedi, 2015; Chauhan et al., 2018), 

based on the scaling function, solving for the vertex coordinates only and then obtaining the average 
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density contrast using the found geometrical model. This method was already applied to a synthetic 

2D salt dome model and to two real cases: the gravity data of Mors salt dome, Denmark, and 

Gadavari basin, India (Chauhan, Fedi and Sen, 2018). 

It is really interesting to compare the inversions of the scaling function and gravity. This 

because of one main property of the scaling function: it depends on the geometrical features of the 

source, but it does not depend on the density. So, with the scaling function inversion, the density is 

estimated after the shape and depth of the source have been inverted, while with the gravity 

inversion the density is one of the unknowns. In this way, the two approaches will both lead to a 

model of the source geometry and density, but we expect that the respective uncertainty will be 

different. The study of the model uncertainty so becomes the main goal of this work. 

In the following sections we will first describe the MHODE method and the global 

optimization inversion used for inverting both the scaling function and gravity, the very fast 

simulated-annealing algorithm (VFSA; Ingber 1989; Sen and Stoffa 1995). We will then study the 

uncertainty of the geometrical source parameters and of the density of the estimates from both the 

kinds of inversion for noise-free data and noisy synthetic data; finally, the uncertainty analysis will 

be made for the real cases of the Mors Salt Dome (Denmark) and the Decorah basin, Iowa (USA).  

 

7.1 Methodology 

 

In this section, we introduce the forward calculation and inversion approach of either the 

gravity or the scaling function problems. The assumed model for synthetic and for real case 

interpretation is that of complex structures, which can be straightforward modelled with the 

polygonal approximation of the Talwani’s 2D formula. In fact, the field of any homogeneous 2D 

sources can be approximated by that of a polygon of q sides (e.g., Talwani Blakely, 1996):  

 

𝑔𝑖 = 2𝛾𝜌∑
𝛽𝑞

1 + 𝛼𝑞2

𝑄

𝑞=1

[log
𝑟𝑞+1

𝑟𝑞
− 𝛼𝑞(𝜃𝑞+1 − 𝜃𝑞)]         (7.1) 

 

where 𝑔𝑖 is the gravity field calculated at each observation point, i=1,..., L; ρ is the density 

contrast, γ is the gravitational constant, 𝑥𝑞 and 𝑧𝑞 are the coordinates of the vertices of the polygon 
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and (�̅�𝑖, 𝑧�̅�), 𝑖 = 1, … , 𝐿 are the coordinates of the measurement points. Other quantities of 

Equation (7.1) are: 

  

𝛼𝑞 =
𝑥𝑞+1 − 𝑥𝑞

𝑧𝑞+1 − 𝑧𝑞
,     𝛽𝑞 = (𝑥𝑞 − �̅�𝑖)  − 𝛼𝑞(𝑧𝑞 − 𝑧�̅�)   

𝑟𝑞 = [(𝑥𝑞 − �̅�𝑖)
2
+ (𝑧𝑞 − 𝑧�̅�)

2
]

1
2
 

𝑟𝑞+1 = [(𝑥𝑞+1 − �̅�𝑖)
2
+ (𝑧𝑞+1 − 𝑧�̅�)

2]
1/2

 

𝜃𝑞 = tan
−1 (

𝑧𝑞 − 𝑧�̅�

𝑥𝑞 − �̅�𝑖
) , 𝜃𝑞+1 = tan−1 (

𝑧𝑞+1 − 𝑧�̅�

𝑥𝑞+1 − �̅�𝑖
) 

Now a system of equation can be formed at points (�̅�𝑖, 𝑧�̅�), 𝑖 = 1, … , 𝐿 along the profile as 

follows: 

 

[
 
 
 
 
𝑔(𝜌, �̅�1, 𝑧1̅, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝑔(�̅�1, 𝑧1̅)

…                                    …
𝑔(𝜌, �̅�𝑖 , 𝑧�̅�, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝑔(�̅�𝑖 , 𝑧�̅�)

…                                    …
𝑔(𝜌, �̅�𝐿 , 𝑧�̅� , 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝑔(�̅�𝐿 , 𝑧�̅�)]

 
 
 
 

                (7.2) 

 

where the vertex coordinates {𝑥𝑞 , 𝑧𝑞} and the density contrast 𝜌 are the unknown 

quantities. 

The scaling function, 𝜏, can be calculated directly from the potential field f by a simple 

mathematical expression (Fedi, 2007; Chauhan et al., 2018): 

 

𝜏 =
𝜕 log(𝑓)

𝜕 log(𝑧)
=

1

𝑓

𝜕f

𝜕z
𝑧                     (7.3). 

 

For ideal sources, i.e., whose fields are homogeneous, the scaling function assumes an easy 

form: 

 

𝜏 =  
𝑛𝑧

𝑧−𝑧0
                             (7.4). 

 

where z is the altitude, n is the degree of homogeneity and z0 is the depth to the source. The 

strength of τ is that it does not depend on density and that it is dimensionless. The dependency of 
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𝜏 on the altitude z candidates it to be studied as a multiscale function. It has been in fact studied 

along the ridges (i.e., the lines formed by the zeros of the field derivatives at different altitudes) in 

the 3D space (Fedi, 2007).  

The scaling function, however, is not only important for homogenous functions, but may be 

used also to study inhomogeneous fields, i.e. fields whose homogeneity degree varies in the space. 

Fedi et al. (2015) made a detailed explanation of its extension to inhomogeneous fields and 

described how to form an inverse problem for the scaling function, that allows us not to involve the 

density among the unknown parameters. Further studies generalized the scaling function approach 

(Chauhan & Fedi, 2015; Chauhan et al., 2017 (a; b); Chauhan et al., 2018) for inversion of the fields 

of sources having irregular shapes and also extended the formula (Equation 7.3) for the scaling 

function relative to high-order derivatives: 

 

𝜏𝑝 =
𝜕 log(𝑓𝑝)

𝜕 log(𝑧)
=
1

𝑓𝑝

𝜕𝑓𝑝

𝜕𝑧
𝑧                         (7.5) 

 

where p is the order of differentiation of the field f. See Chauhan et al. (2018) for further 

details on Talwani’s formulas updated for p=1 and p=2.  Since, the gravity field calculated by 

Equation (7.1) is due to multi-point sources, hence an inhomogeneous field, we can form a system 

of equation for the scaling function by using Talwani’s formula: 

 

[
 
 
 
 
𝜏𝑇(�̅�1, 𝑧1̅, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�1, 𝑧1̅)

…                                    …
𝜏𝑇(�̅�𝑖 , 𝑧�̅�, 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�𝑖, 𝑧�̅�)

…                                    …
𝜏𝑇(�̅�𝐿 , 𝑧�̅� , 𝑥1, . . , 𝑥𝑞 , 𝑧1, . . , 𝑧𝑞) = 𝜏(�̅�𝐿 , 𝑧�̅�)]

 
 
 
 

                (7.6) 

 

where (�̅�𝑖 , 𝑧�̅�), 𝑖 = 1,… , 𝐿, are the coordinates of points along the ridges where the scaling 

function is estimated and 𝜏𝑇 is the theoretical scaling function that is calculated by using Equations 

(7.1) and (7.3). It is worth noting again that the system in Equation (7.6) is only function of the 

geometrical source parameters and it is independent on the density. 

We will now find the solutions of the equation systems (7.2) and (7.6) by using the global 

optimization technique Very Fast Simulated Annealing (VFSA; Ingber 1989; Sen and Stoffa 1995). 

Both the problems represented by the systems are non-linear vs. the coordinates of the vertices 

and the degree of non-linearity depends on the number of vertices of the polygon, as each vertex 
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adds two unknowns to search for. The gravity problem (Equation 7.2) is however linearly related to 

density, as a further unknown. 

 

7.2 Inversion of gravity and the scaling function 

 

For optimizing the system of equations (7.2) and (7.6) we used the Very Fast Simulated 

Annealing (VFSA) algorithm. Since, the scaling function does not depend on density (Equations 7.3-

7.5), the goal is to estimate the geometrical parameters of the causative source; in the gravity 

inversion (Equation 7.2) however the density is an unknown quantity as well.  

In the next section we will explore the possibilities of getting a reliable model through gravity 

and scaling function inversion. Due to the main ambiguity of both the problems, a priori information 

is needed. In this paper we will consider source geometries typical of salt domes and sedimentary 

basins. In the case of salt domes, we will take the opportunity to borrow the information on the 

depth to top from seismic data and will search to define the rest of the main source geometry 

(typically poorly defined by seismic) with the scaling function and gravity field inversion. In the case 

of sedimentary basins, the problem is simpler since the source x-position is easily established along 

the profile and the depth to the top is often known, as coincident with the measurement surface. 

We will therefore try to analyze the unknown uncertainties of the estimated vertices at the flanks 

and at the bottom of the source. Regarding the density it will be estimated for the gravity inversion 

as that of one of the parameters; in the case of the scaling function inversion it will be estimated 

instead as that deriving from the density estimates computed for the Talwani’s model vertices. 

First of all, we define the data vector as dobs and define the following error function: 

 

𝐸 =∑(𝑑𝑜𝑏𝑠 − 𝑑𝑝𝑟𝑒)2 ,                               (7.7) 

 

where 𝑑𝑝𝑟𝑒 is the predicted data vector. 

Now we use the VFSA algorithm in order to minimize the error function (Equation 7.7) for 

both the scaling function and gravity inversion. VFSA is an efficient method to find optimal model 

parameters in highly non-linear problems, at less computational cost compared to algorithms based 

on Monte Carlo or grid search (Roy et al., 2005, Sen and Stoffa, 2013). The method was proposed 

by the Ingber (1989), as an advanced version of simulated annealing (SA), whose concept lies in to 
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the thermodynamic according to the different cooling states of a molten material (Sen and Stoffa, 

2013). The energy Ei (for the ith state) can be defined by the Gibbs probability density function 𝑃 (or 

Boltzmann pdf) as: 

 

𝑃(𝐸𝑖) =
exp (−

𝐸𝑖
𝐾𝑇)

∑ exp(−
𝐸𝑗
𝐾𝑇)𝑗∈𝑆

= 
1

𝑍(𝑇)
exp(− 

𝐸𝑖
𝐾𝑇
)   ,                       (7.8) 

 

where K is the Boltzmann’s constant, T is the temperature, S is the set of all the possible 

configurations and Z(T) is the partition function: 

 

𝑍(𝑇) =  ∑exp (−
𝐸𝑗

𝐾𝑇
)  

𝑗∈𝑆

,                               (7.9) 

 

Since we are interested to search for the unknown model parameters given in Equation 7.2 

and 7.6, the random selection of the model in each iteration is a state of the process. The algorithm 

draws the model randomly from the Cauchy-like distribution and the shape of the distribution is 

regulated by the temperature T. In order to achieve the global minimum of E, the process should 

approach the equilibrium state slowly rather cooling down rapidly which eventually can lead to the 

local minima (Sen and Stoffa, 2013) of the error function (Equation 7.7). For further detailed 

description of the algorithm and its application, we refer to Sen and Stoffa (2013) and references 

therein. 

We here also use the algorithm to quantify the uncertainties in the model space. Sen and 

Stoffa (1996) have shown that VFSA can be used to find a balance between the model evaluation 

and accuracy, by allowing numerous runs and using appropriate cooling schedule and convergence 

criteria. However, to avoid the biasness and to sufficiently sample the model space (Sen and Stoffa, 

1996) it is advisable to repeat the algorithm for a number of times with a random initial guess of the 

model parameters. We adopted this strategy and run the algorithm several times with thousands 

of iterations in each run, so providing a completely random initial guess. We then collected the 

models (𝑚𝑖) after the algorithm convergences for each run (misfit error stabilization) and calculated 

the statistical parameters, mean 〈𝑚〉 and standard deviation 𝜎 as: 
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〈𝑚〉 =
1

𝑁
∑𝑚𝑖

𝑁

𝑖=1

,            𝜎 = √
1

𝑁
∑(𝑚𝑖 − 〈𝑚〉)2
𝑁

𝑖=1

 .             (7.10) 

 

in order to estimate the uncertainties associated with a particular unknown parameter. 

In the next section we will show the depth estimations by the gravity and scaling function 

inversions for complex synthetic examples and for a real case example and will discuss the 

respective uncertainties in the model parameters. 

 

7.3 Model uncertainty estimation 

 

Synthetic Example 

We have selected a complex shape model, as shown in Figure 7.1(a) (black solid line) 

approximating a salt like structure. Chauhan et al., (2018) interpreted the same model for source 

parameters estimation using inversion of the scaling function only. In this work, they also 

demonstrated that increasing the number of vertices improve the overall fitting of the scaling 

function (Figure 4; Chauhan et al., 2018).  

Since our goal is here to explore the uncertainties in the source region, we decided to make 

the problem simpler as possible, which means invert for only four vertices. We here present the 

analysis led in the case of error-free and noisy data. 

ERROR-FREE CASE  

We inverted the scaling function and gravity using the same strategy explained in the 

methodology section. We used the same criteria for inverting both the gravity and scaling function 

datasets, as presented in the Figure 7.1 and Figure 7.2, respectively. It is immediately clear than, 

despite of the inherent roughness related to use four vertices only, the scaling function inversion is 

able to identify quite well the tilt of the structure, while the gravity depicts a too symmetrical source 

(Figures 7.1a and 7.2a). The associated error bar (Figure 7.1a and 7.2a) shows the standard deviation 

in the x-z directions of the estimated vertices, which are calculated using the Equation 7.10. This 

can be due to the fact that the scaling function is independent on the density in the inversion, 

leading therefore the fitting of the scaling function deserved only to the geometrical features of the 

source. Contrarily, density adds as a further unknown parameter in the gravity inverse problem. 
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Hence, due to inherent ambiguity, there can be a wide range of combination of density and 

geometrical features, in turn related to the source volume, which fit the gravity equally well.  

In the case of the scaling function inversion, the density is post-calculated using a 1st-order 

regression analysis between the observed gravity anomaly and the data calculated from each 

reconstructed geometrical model, with a unit density (Chauhan et al., 2018). Since the retrieved 

models by the scaling function inversion are fairly well consistent, the estimated density distribution 

(Figure 7.1c) for each model is concentrated almost well around the assumed density contrast (-0.2 

g/cm3).  

Instead, the density contrast retrieved by the gravity inversion is widely dispersed (Figure 

7.2c) and it is difficult to decide the value to estimate: the mode (most frequent value) is higher 

than the true one (-0.1 g/cm3), but the mean is considerably lower (-0.35 g/cm3) than either the true 

value (-0.2 g/cm3) or the mean value estimated in the scaling function inversion (-0.19 g/cm3, Figure 

7.1c).  

 

 

Figure 7.3: a) Inverted model by scaling function inversion and error bars relative to the standard deviation from mean value 

in x-z direction for each estimated vertex; b) gravity anomaly using the mean model; c) histogram of the densities retrieved for each 

model.  The density retrieved by the mean mode is indicated by a red line. 
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Figure 7.4:  a) Inverted model by gravity inversion and error bars relative to the standard deviation from mean value in x-z 

direction for each estimated vertex; b) gravity anomaly using mean model; c) histogram of the densities retrieved for each model.  

The density retrieved by the mean mode is indicated by a red line. 

 

NOISY CASE 

We repeat the test on the same source by adding Gaussian noise with zero mean and 

standard deviation equal to 10% of the anomaly amplitude. Taking advantage of the multi-scale 

approach, we can simply discard the too noisy data at the lower altitudes and calculate the scaling 

function along the ridges at high altitudes only, that is at altitudes greater than 1.5 km for gravity 

and greater than 2 km for gravity derivatives (Figure 7.3). 

 

Figure 7.5: Calculated ridges for the noisy gravity data. 
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We, then invert the scaling function and gravity data using the same approach as for the 

noise-free case. Once again, the results of scaling function inversion are quite stable and the 

retrieved models are not only the less ambiguous on both the horizontal and vertical coordinates 

but also the tiltness of the source is well recognized (Figure 7.4 a-b). Though the error in the depth 

coordinates of the vertices slightly increased (Figure 7.1a and 7.4a), they are still better than those 

obtained with the gravity inversion (Figure 7.2a and 7.5a). As a consequence, the distribution of the 

density contrast in both the cases has the same characteristics as for the noise-free case (Figure 7.4c 

and 7.5c).   

 

Figure 7.6: Noisy case: a) Inverted model by scaling function inversion and error bars relative to the standard deviation from 

mean value in x-z direction for each estimated vertex; b) gravity anomaly using mean model; c) histogram of the densities retrieved 

for each model.  The density retrieved by the mean mode is indicated by a red line. 

 

 

Figure 7.7: Noisy case: a) Inverted model by gravity inversion and error bars relative to the standard deviation from mean 

value in x-z direction for each estimated vertex; b) gravity anomaly using mean model; c) histogram of the densities retrieved for each 

model.  The density retrieved by the mean mode is indicated by a red line. 
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7.4 Real Case Examples 

 

Mors Salt dome 

We apply the same methodology on the Mors salt dome in Northern Jutland (Reynolds, 

1997). The earlier studies (Sharma, 1986; Reynolds, 1997) for this gravity anomaly were done for 

the safe disposal of the radioactive material. However, our interest is to analyze the above defined 

methodology on a real data over the salt dome, differently than Chauhan et al. (2018) as they have 

interpreted the salt dome like structure to find the best fit model from the scaling function inversion. 

The data for this case study was digitized from the map (Figure 2.37) of Reynolds (1997). The 

calculated ridges for the gravity data are shown in Figure 7.6. 

 

 

Figure 7.8: Calculated ridge for the gravity anomaly over the Mors Salt Dome. 

 

The resulted models obtained from the scaling function and gravity inversion do not differ 

very much, but the uncertainty (red color error bar Figure 7.7c and 7.8c) associated with the 

estimated coordinates of the vertices is slightly higher in the gravity inversion (Figure 7.8c). 

Interestingly, the estimated density distribution for all the retrieved model is significantly different. 

In case of the scaling function inversion density distribution (Figure 7.7b) the distribution is very 

concentrated, with mean value: −0.163 𝑔 𝑐𝑚3⁄ . However, using the bounds (-3.0 to 0 g/cm3) for 

density in the gravity inversion, the distribution (Figure 7.8b) of density is comparatively wide and 

overestimated with the mean occurring nearly at −0.122 𝑔 𝑐𝑚3⁄ . Comparing our analysis of 
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density estimation with the earlier study (−0.17 𝑔 𝑐𝑚3⁄  in Chauhan et al., 2018), the density 

retrieved by the scaling function inversion is better suited. 

 

Figure 7.9: (a) gravity anomalies; (b) histogram of the densities retrieved for each model. The density retrieved by the mean 

mode is indicated by a red line; (c) estimated final mean model with error bar in depth-coordinates whose anomaly is plotted in the 

upper panel (a) in black solid color.  
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Figure 7.10: (a) gravity anomalies; (b) histogram of the densities retrieved for each model.  The density retrieved by the 

mean mode is indicated by a red line; (c) estimated final mean model with error bar in depth-coordinates. 

 

Decorah Basin 

We apply the same strategy for interpretation the gravity data of Decorah, North-Eastern 

Iowa (USA). The whole surface of Iowa county is deeply covered by deposits of Pleistocene and 

Recent age; this type of rocks covers the county to a depth varying from a few inches to several 

hundred feet. The stratigraphic column of IOWA (USA) (IOWA Geological Survey) shows at the top 

sandstones, siltstones and shales, down to a depth of about 4 km, where these sediments lay on a 

Palaeozoic carbonate basement, made of limestones and dolomites. At around 14 km there is a 

crystalline basement constituted of igneous and metamorphic rocks. The observation of this gravity 

anomaly allows us to assume in the interpretation phase that the gravity data can be interpreted 

with the undulations of a Palaeozoic carbonate basement, buried under sands and clays. 

The gravity map (Figure 7.9a) is obtained from the gradiometry data as described in the Final 

Report, Processing and Acquisition of Air-FTG® Data Decorah, Iowa for United States Geological 

Survey (2013). The profile is extracted from the map along the red line profile, that crosses the 

negative anomaly in the NE on the map. Ridges are calculated for the gravity and the first-order of 
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vertical and horizontal derivatives, as shown in Figure 7.9 b-d. We then run the algorithm with the 

similar approach defined above and collected the models obtained from the scaling function and 

gravity inversion.  

The obtained models have a bottom depth which varies from about 5 km to about 2 km 

(Figure 7.10c and 7.10c) in both the inverted models (scaling function and gravity data). The 

estimated mean density contrasts from the scaling function and gravity inversion are rather similar, 

∆𝜌 ≈ −0.242 𝑔 𝑐𝑚3⁄  and ∆𝜌 ≈ −0.231 g cm3⁄ , respectively (Figure 7.10b and 7.10b). Using the 

mean geometrical model and the estimated mean density, the gravity data are well fitted in both 

the cases, as shown in Figures 7.10a and 7.11a. The uncertainties in the scaling function inversion 

are once again lower than those for the gravity inversion (as shown by error bars in Figure 7.10c and 

7.11c) and also the obtained density is narrowly distributed in the results obtained from the scaling 

function inversion (Figure 7.10b), compared to the gravity inversion (Figure 7.11b).  So, even though 

the average density contrasts are rather similar, the inversion for the scaling inversion yields again 

a more confident result. 

Taking into account the obtained information, we can say that the estimated model is 

consistent with the investigated sedimentary basin. By looking at the stratigraphic column 

(http://publications.iowa.gov/4862/, 2004) we may notice that the carbonate basement is located 

approximately at a 4 km depth. Accordingly, we may associate our depth model to the top of the 

carbonate basement. Besides, assuming that sands and clay density are in the range 2.3 – 2.6  g cm3⁄  

and the carbonate basement density in the range 2.6 – 2.9  g cm3⁄ , we may say that the estimated 

density is very close to their density contrast, ∆𝜌 = −0.3 g cm3⁄ . In conclusion, gravity data can be 

interpreted with the undulations of a Palaeozoic carbonate basement, buried under sands and clays. 
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Figure 7.11: (a) Gravity map of the Decorah area (USA); (b) calculated ridges of the extracted gravity profile from map along 

the red line; (c) ridges of the calculated vertical derivative of the gravity profile; (d) ridges of the horizontal derivative of the gravity 

profile. 

 

 

Figure 7.12: (a) gravity anomalies; (b) histogram of the densities retrieved for each model.  The density retrieved by the 

mean mode is indicated by a red line; (c) estimated final mean model with error bar in depth-coordinates whose anomaly is plotted 

in upper pane (a) in black solid color. 
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Figure 7.13: (a) gravity anomalies; (b) histogram of the densities retrieved for each model.  The density retrieved by the 

mean mode is indicated by a red line; (c) estimated final mean model with error bar in depth-coordinates and smoothed model. 

 

Conclusions 

 

Uncertainty is an inherent issue in the process of estimating source parameters from 

inversion of geophysical data. Its evaluation is important to make less ambiguous the geological 

modelling of potential field data. We here explore whether the newly developed inversion 

approach, based on the scaling function, is advantageous when compared to the classical gravity 

inversion. The first advantage comes from mathematical considerations: the scaling function is 

independent on density or any other physical constant. Therefore, we may form a system of 

equations whose unknowns are the geometrical parameters of the source only, differently to gravity 

inversion where density adds as a further unknown quantity. We studied complex structures, such 

as salt domes or sedimentary basins and used the same constraints, irrespective of the inversion 

type (scaling function or gravity): we fixed the depth to the top for salt domes and basin-like 

structures. Given common criteria and constraints, the overall results obtained from the scaling 
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function results are promising since the error bars of the mean model are lower and the estimated 

distribution of the density contrast is narrower. In the case of real data analysis, the overall results 

obtained from the scaling function inversion in both the cases are promising. We estimated a 

reasonable depth (about 4 km) over the basin, in independent agreement with stratigraphic model. 

Future developments regard the interpretation of 3D sources and also the application of the method 

to magnetic data modelling. 
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CONCLUSIONS  

 

In this thesis we presented a 2.x D MHODE inversion to interpret potential fields and to 

reconstruct complex geometric structures through the Scaling Function inversion.  

In the MHODE framework we invert not the gravity data, but the scaling function (Fedi, 

2007), which was introduced in Fedi, 2005 in the context of DEXP theory. This quantity does not 

depend on density or other physical constants, but only on the geometric characteristics of the 

model source. It is a dimensionless function of altitude that characterize the behaviour of 

homogeneity field. Once we obtain a geometrical model for the source, we can then obtain an 

average value of the density contrast by fitting the observed data vs. the data computed assuming 

the found geometrical model and a unit-density.   

Our goal is to solve a 3D problem with MHODE; for this reason, we first studied a complex-

source synthetic case, the polyhedron, whose field was computed by a code which I obtained 

converting to Matlab the original Fortran code realized by Tsoulis (2012). It allows calculating the 

gravitational potential, the field and its first-order derivative for a generic 3D polyhedral source 

model. However, the MHODE method would need also the first-order gravity field derivative. Being 

the calculus of the second-order vertical derivative for the polyhedral source very complex, I decided 

to use MHODE not for the 3D explicit case, but through inversion of several 2.x D sections. The so 

obtained depth models and the average density contrast were then used as a priori model for the 

3D inversion with VOXEL method. 

Even with this approach, I needed developing new formulas for the 2.x D inversion. In fact, 

MHODE was previously developed (Fedi et al. 2015) for 2D models only. In the 2D case we do not 

specify the length of the strike direction and consider the profile always symmetric with respect to 

the source. In this work, we implemented the MHODE method for the 2.5D and 2.x D cases. The 

2.5D and 2.x D gravity formulas for arbitrary source sections were obtained by Shuey and Pasquale 

(1973), who slightly changed the well-known 2-D formulae of Talwani and Heirtzler (1964). 

However, to obtain the scaling function of orders 𝑝 = 1 and 𝑝 = 2, I calculated during my period at 

Aristotle University of Thessaloniki (under the guidance of Prof. Tsoulis), the second-order and third-

order vertical derivatives of gravity field. These formulae have been developed for the magnetic 

case too.  

In order to invert the scaling function quantity, we used the algorithm VFSA (Sen & Stoffa, 

2013), which was very effective for MHODE inversion in the 2D case (Chauhan et al., 2018) 
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Once implemented the new 2.5D and 2.x D formulae of the field and its derivatives in the 

MHODE algorithm I tested the whole algorithm for a synthetic case. First, we created a 3D 

polyhedral model (Tsoulis, 2012) with a 1 𝑔 𝑐𝑚3⁄  density. From the anomaly of this 3D model we 

extracted seven profiles and calculated the ridges of the gravity field and of its derivative for each 

profile. For any acceptable ridge we calculated the scaling function. During the inversion by VFSA 

algorithm we inverted this quantity and solved the equations system, with the unknowns being the 

geometric coordinates of vertices. Then, we obtained the final 2.x D model fixing the vertices of the 

top of the source (constraints from a priori information, e.g. from seismic interpretation) and leaving 

the vertices of the sides and bottom free to move in some prefixed bounded range. Once 

interpreted the obtained sections, these constitute the a priori information for the starting model 

in 3D inversion. The 3D inversion obtained with VOXI algorithm gave us the 3D density model, that 

is very close to the synthetic 3D model.  

I used the 2.x D MHODE method also for the real case: we inverted the gravity data from a 

dataset in the Nevada Test Site (Ponce, 1997). We extracted 8 parallel profiles, crossing the 

minimum on the South-Eastern part of the map. Once extracted the profiles, we calculated the 

ridges of the gravity field and of the first order derivative of the field for each profile. For each 

acceptable ridge we calculated the scaling function. During the inversion by VFSA algorithm we 

inverted this quantity and solved the equations system with the unknowns being the geometric 

coordinates of vertices. The 2.x D MHODE inversion gives us an estimated density for each profile. 

So, we calculated the field and its derivative for the new 2.x D model, thanks to the estimated 

densities, and compared them with the observed gravity and its derivative fields. Then, we 

represented the final 2.x D models. From the 2.x D models (a priori conditions), we calculated the 

2.x D density sections forming the starting model of the 3D inversion. By 3D inversion with VOXI 

algorithm we obtained the 3D density model and from this we calculated a map of distribution of 

the thickness of the basin, and a plot with the density contrast function. The 3D model defines well 

a basin of cenozoic deposits, of density lower than that of a paleozoic basement.  

The main advantages of this method are: 

1) We invert a quantity like the Scaling Function, that is correlated to the gravity field, 

which does not depend on density, and from its inversion we get geometric information of the 

investigated model 

2) In contrast to the 2D modelling, it allows us to assume a finite strike direction length 

and so to manage the symmetry with respect to the body source in the most correct way. 
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3) The utilization of multiscale methods allows us to use ridges of the field derivatives 

4) From the 2.x D inversion we may build density sections, manage better its geometry, 

thus having the opportunity to create a starting model for a 3D inversion. 

 

A possible concern is that this method needs the forward problem to be formulated in terms 

of scaling function, which involves new mathematical and numerical formulations for the problem. 

This was an important part of this thesis (see Appendix A).  

On the other hand, working with 2.x D sections allows a minor computational cost, 

guaranteeing in any case a consistent information that constitutes a reasonable starting model to 

use then in a full 3D inversion. 

Future research may concern the development of the method for application to magnetic data 

and a full 3D MHODE inversion. 
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Appendix A 

 

Gravity case formulae 

 

Here we show the detailed formulae of the second and third order derivative of the field for 

the symmetrical and asymmetrical cases. 

 

A.1 Second-order 2.5D vertical derivative of gravity field: 
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where: 
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Now we may write: 

 

D=∆𝑧𝑖𝐶1 − ∆𝑥𝑖𝐶2 + ∆𝑥𝑖𝐶3 
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with: 
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So, we have: 
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A.2 Second-order 2.x D vertical derivative of gravity field: 
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𝐷2 Depends on the strike length 𝑌2: 
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(𝑟𝑖+1(𝑅𝑖 + 𝑌2))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌2)) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)) 

(A.18) 
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𝜕𝐶2
𝜕𝑧

=
1

1 + (
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

)
2 {
−𝑌2sin𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌2)

(𝑤𝑖𝑅𝑖+1)2
[− cos𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 sin 𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
)]} 

 

(A.19) 

 

𝜕𝐶3
𝜕𝑧

=
1

1 + (
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)
2 {
−𝑌2sin𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌2)

(𝑤𝑖𝑅𝑖)2
[− cos𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 sin 𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)]} 

 

(A.20) 

where 𝑅𝑖 = (𝑢𝑖
2 + 𝑤𝑖

2 + 𝑌2
2)1/2 and 𝑅𝑖+1 = (𝑢𝑖+1

2 + 𝑤𝑖
2 + 𝑌2

2)1/2. 

 

Similarly, 𝐷1 will depend on the strike length 𝑌1: 

 

𝐷1 = ∆𝑧𝑖 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌1)

𝑟𝑖+1(𝑅𝑖 + 𝑌1)
− ∆𝑥𝑖 (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

) 

 

(A.21) 

We may write: 

 

𝐷1=∆𝑧𝑖𝐶1 − ∆𝑥𝑖𝐶2 + ∆𝑥𝑖𝐶3 

 

(A.22) 

with: 

 

𝐶1 = 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌1)

𝑟𝑖+1(𝑅𝑖 + 𝑌1)
 

 

(A.23) 

 

𝐶2 = 𝑡𝑎𝑛
−1
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

 

 

(A.24) 

 

𝐶3 = 𝑡𝑎𝑛
−1
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

 

 

(A.25) 

So, we have: 
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𝜕𝐷1
𝜕𝑧

= ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(A.26) 

with: 

 

𝜕𝐶1
𝜕𝑧

=
(
−𝑢𝑖 sin 𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌1) + 𝑟𝑖 (

−𝑢𝑖 sin 𝜑 + 𝑤𝑖 cos 𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌1)]
+ 

+
−(𝑟𝑖(𝑅𝑖+1 + 𝑌1))

(𝑟𝑖+1(𝑅𝑖 + 𝑌1))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌1)) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)) 

(A.27) 

 

𝜕𝐶2
𝜕𝑧

=
1

1 + (
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

)
2 {
−𝑌1sin𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌1)

(𝑤𝑖𝑅𝑖+1)2
[− cos𝜑 𝑅𝑖+1 +𝑤𝑖 (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
)]} 

 

(A.28) 

 

𝜕𝐶3
𝜕𝑧

=
1

1 + (
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)
2 {
−𝑌1sin𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌1)

(𝑤𝑖𝑅𝑖)2
[− cos𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)]} 

 

(A.29) 

where 𝑅𝑖 = (𝑢𝑖
2 + 𝑤𝑖

2 + 𝑌1
2)1/2 and 𝑅𝑖+1 = (𝑢𝑖+1

2 + 𝑤𝑖
2 + 𝑌1

2)1/2. 

 

A.3 Third-order 2.5D vertical derivative of gravity field: 

 

𝜕3𝑔𝑧
𝜕𝑧3

= −2𝐺𝜌∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷

𝜕𝑧
𝑖

 

 

(A.30) 

where: 

 

𝐷 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(A.31) 

and 𝐶1, 𝐶2, 𝐶3 are given by equations (A.4) (A.5) (A.6) respectively. 
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So, we may write: 

  

𝜕𝐶1
𝜕𝑧

= 𝑃1𝑎 + 𝑃1𝑏  

 

(A.32) 

 

𝜕𝐶2
𝜕𝑧

= 𝑃2𝑎𝑃2𝑏 

 

(A.33) 

 

𝜕𝐶3
𝜕𝑧

= 𝑃3𝑎 + 𝑃3𝑏  

 

(A.34) 

 

where:  

 

𝑃1𝑎 = (
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos 𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌)]
) 

 

(A.35) 

 

𝑃1𝑏 = [
−(𝑟𝑖(𝑅𝑖+1 + 𝑌))

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌)) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
))] 

 

(A.36) 

 

𝑃2𝑎 = (
1

1 + (
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)
2) 

 

(A.37) 

 

𝑃2𝑏 =
−𝑌𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌)

(𝑤𝑖𝑅𝑖+1)2
[− 𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖+1
)] 

 

(A.38) 
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𝑃3𝑎 = (
1

1 + (
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)
2) 

 

 
 
 
 
(A.39) 

 

𝑃3𝑏 =
−𝑌𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌)

(𝑤𝑖𝑅𝑖)
2
[− 𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖
)] 

 

(A.40) 

So, we may write: 

 

𝜕𝑃1𝑎
𝜕𝑧

=

(

 
 
 
 
 
 
[[(
𝜕2𝑟𝑖
𝜕𝑧2

) (𝑅𝑖+1 + 𝑌) +
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖+1
𝜕𝑧

] + [
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖 (
𝜕2𝑅𝑖
𝜕𝑧2

)]] 𝑟𝑖+1(𝑅𝑖 + 𝑌) −

−(
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌) + 𝑟𝑖

𝜕𝑅𝑖
𝜕𝑧
) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌) + 𝑟𝑖+1
𝜕𝑅𝑖+1
𝜕𝑧

]

[𝑟𝑖+1(𝑅𝑖 + 𝑌)]2

)

 
 
 
 
 
 

 

 

(A.41) 

 

𝜕𝑃1𝑏
𝜕𝑧

= −

[
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌)+𝑟𝑖

𝜕𝑅𝑖+1
𝜕𝑧

] (𝑟𝑖+1(𝑅𝑖 + 𝑌))
2
− (𝑟𝑖(𝑅𝑖+1 + 𝑌))

[2(𝑟𝑖+1(𝑅𝑖 + 𝑌)) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌) + 𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
]]

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
4 ((

𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌))

+  𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
) +

−(𝑟𝑖(𝑅𝑖+1 + 𝑌))

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
2 [
𝜕2𝑟𝑖+1
𝜕𝑧2

(𝑅𝑖 + 𝑌) +
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧
]

+ [
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖+1
𝜕2𝑅𝑖
𝜕𝑧2

] 

 

(A.42) 
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𝜕𝑃2𝑎
𝜕𝑧

= −

2(
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)(
−sin𝜑 𝑌(𝑤𝑖𝑅𝑖+1) − (𝑢𝑖+1𝑌) [−cos𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
)

[1 + (
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)
2

]

2  

 

 

 

(A.43) 

 

 

𝜕𝑃2𝑏
𝜕𝑧

= −
−(𝑌𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌)(𝑤𝑖𝑅𝑖+1)
2 − (𝑢𝑖+1𝑌) [2(𝑤𝑖𝑅𝑖+1)(−𝑐𝑜𝑠 𝜑 𝑅𝑖+1) + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖
𝜕𝑅𝑖+1
𝜕𝑧

) + (
−(𝑢𝑖+1𝑌)

(𝑤𝑖𝑅𝑖+1)
2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

) +

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖+1
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
(A.44) 

 

 

𝜕𝑃3𝑎
𝜕𝑧

= −

2(
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)(
−sin𝜑 𝑌(𝑤𝑖𝑅𝑖) − (𝑢𝑖𝑌) [−cos𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
)

[1 + (
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)
2

]

2  

 

 
 
 
 
 
(A.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

𝜕𝑃3𝑏
𝜕𝑧

= −
−(𝑌𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌)(𝑤𝑖𝑅𝑖)
2 − (𝑢𝑖𝑌) [2(𝑤𝑖𝑅𝑖)(−𝑐𝑜𝑠 𝜑𝑅𝑖) + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖
𝜕𝑅𝑖
𝜕𝑧
) + (

−(𝑢𝑖𝑌)

(𝑤𝑖𝑅𝑖)2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧
) +

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.46) 

where 
𝜕𝑅𝑖+1

𝜕𝑧
=

−𝑢𝑖+1 sin𝜑+𝑤𝑖 cos𝜑

𝑅𝑖+1
; 

𝜕𝑅𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜙+𝑤𝑖 cos𝜙

𝑅𝑖
) ;  

𝜕𝑟𝑖+1

𝜕𝑧
= (

−𝑢𝑖+1 sin𝜙+𝑤𝑖 cos𝜙

𝑟𝑖+1
) ; 

𝜕𝑟𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜙+𝑤𝑖 cos𝜙

𝑟𝑖
) ;  

           
𝜕2𝑅𝑖+1

𝜕𝑧2
= −

(−𝑠𝑖𝑛2𝜑−𝑐𝑜𝑠2𝜑)𝑅𝑖+1−(𝑢𝑖+1 𝑠𝑖𝑛 𝜑+𝑤𝑖 𝑐𝑜𝑠 𝜑)(
−𝑢𝑖+1 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖+1
)

𝑅𝑖+1
2 ; 

           
𝜕2𝑅𝑖

𝜕𝑧2
= −

((−𝑠𝑖𝑛2𝜑−𝑐𝑜𝑠2𝜑))𝑅𝑖−(𝑢𝑖 𝑠𝑖𝑛 𝜑+𝑤𝑖 𝑐𝑜𝑠 𝜑)(
−𝑢𝑖 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖
)

𝑅𝑖
2 ; 

 

A.4 Third-order 2.x D vertical derivative of gravity field: 

 

𝜕3𝑔𝑧
𝜕𝑧3

= −𝐺𝜌 {∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷2
𝜕𝑧

𝑖

+∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷1
𝜕𝑧

𝑖

} 

 

(A.47) 

𝐷2 Depends on the strike length 𝑌2: 

 

𝐷2 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(A.48) 

and 𝐶1, 𝐶2, 𝐶3 are given by equations (A.14) (A.15) (A.16) respectively. 

So, we may write: 

  (A.49) 
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𝜕𝐶1
𝜕𝑧

= 𝑃1𝑎 + 𝑃1𝑏  

 

 

𝜕𝐶2
𝜕𝑧

= 𝑃2𝑎𝑃2𝑏 

 

(A.50) 

 

𝜕𝐶3
𝜕𝑧

= 𝑃3𝑎 + 𝑃3𝑏  

 

(A.51) 

 

where:  

 

𝑃1𝑎 = (
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌2) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos 𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌2)]
) 

 

(A.52) 

 

𝑃1𝑏 = [
−(𝑟𝑖(𝑅𝑖+1 + 𝑌2))

(𝑟𝑖+1(𝑅𝑖 + 𝑌2))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌2))

+  𝑟𝑖+1 (
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos 𝜑

𝑅𝑖
))] 

 

(A.53) 

 

𝑃2𝑎 = (
1

1 + (
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

)
2) 

 

(A.54) 

 

𝑃2𝑏 =
−𝑌2𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌2)

(𝑤𝑖𝑅𝑖+1)2
[− 𝑐𝑜𝑠 𝜑𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖+1
)] 

 

(A.55) 
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𝑃3𝑎 = (
1

1 + (
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)
2) 

 

 
 
 
 
 
 
(A.56) 

 

𝑃3𝑏 =
−𝑌2𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌2)

(𝑤𝑖𝑅𝑖)2
[− 𝑐𝑜𝑠 𝜑𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖
)] 

 

(A.57) 

So, we may write: 

 

𝜕𝑃1𝑎
𝜕𝑧

=

(

 
 
 
 
 
 
[[(
𝜕2𝑟𝑖
𝜕𝑧2

) (𝑅𝑖+1 + 𝑌2) +
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖+1
𝜕𝑧

] + [
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖 (
𝜕2𝑅𝑖
𝜕𝑧2

)]] 𝑟𝑖+1(𝑅𝑖 + 𝑌2) −

−(
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌2) + 𝑟𝑖

𝜕𝑅𝑖
𝜕𝑧
) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌2) + 𝑟𝑖+1
𝜕𝑅𝑖+1
𝜕𝑧

]

[𝑟𝑖+1(𝑅𝑖 + 𝑌2)]2

)

 
 
 
 
 
 

 

 

(A.58) 

 

𝜕𝑃1𝑏
𝜕𝑧

= 

= −

[
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌2)+𝑟𝑖

𝜕𝑅𝑖+1
𝜕𝑧

] (𝑟𝑖+1(𝑅𝑖 + 𝑌2))
2
− (𝑟𝑖(𝑅𝑖+1 + 𝑌2))

[2(𝑟𝑖+1(𝑅𝑖 + 𝑌2)) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌2) + 𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
]]

(𝑟𝑖+1(𝑅𝑖 + 𝑌2))
4 ((

𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌2))

+  𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
) + 

+
−(𝑟𝑖(𝑅𝑖+1 + 𝑌2))

(𝑟𝑖+1(𝑅𝑖 + 𝑌2))
2 [
𝜕2𝑟𝑖+1
𝜕𝑧2

(𝑅𝑖 + 𝑌2) +
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧
] + [

𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖+1
𝜕2𝑅𝑖
𝜕𝑧2

] 

 

(A.59) 
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𝜕𝑃2𝑎
𝜕𝑧

= −

2(
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

)(
−sin𝜑 𝑌2(𝑤𝑖𝑅𝑖+1) − (𝑢𝑖+1𝑌2) [−cos𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
)

[1 + (
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

)
2

]

2  

 

 

 

 

 

 

(A.60) 

 

 

𝜕𝑃2𝑏
𝜕𝑧

= −
−(𝑌2𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌2)(𝑤𝑖𝑅𝑖+1)
2 − (𝑢𝑖+1𝑌2) [2(𝑤𝑖𝑅𝑖+1)(−𝑐𝑜𝑠 𝜑𝑅𝑖+1) + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖
𝜕𝑅𝑖+1
𝜕𝑧

) + (
−(𝑢𝑖+1𝑌2)

(𝑤𝑖𝑅𝑖+1)2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

) +

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖+1
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

(A.61) 

 

 

𝜕𝑃3𝑎
𝜕𝑧

= −

2(
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)(
−sin𝜑 𝑌2(𝑤𝑖𝑅𝑖) − (𝑢𝑖𝑌2) [−cos𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)
2 )

[1 + (
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)
2

]

2  

 

 
 
 
 
 
(A.62) 
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𝜕𝑃3𝑏
𝜕𝑧

= −
−(𝑌2𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌2)(𝑤𝑖𝑅𝑖)
2 − (𝑢𝑖𝑌2) [2(𝑤𝑖𝑅𝑖)(−𝑐𝑜𝑠 𝜑𝑅𝑖) + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑𝑅𝑖 + 𝑤𝑖
𝜕𝑅𝑖
𝜕𝑧
) + (

−(𝑢𝑖𝑌2)

(𝑤𝑖𝑅𝑖)2
)

(

 
 

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧
) +

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.63) 

Similarly, 𝐷1 will depend on the strike length 𝑌1: 

 

𝐷1 = ∆𝑧𝑖
𝜕𝐶1
𝜕𝑧

− ∆𝑥𝑖 (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(A.64) 

and 𝐶1, 𝐶2, 𝐶3 are given by equations (A.23) (A.24) (A.25) respectively. 

So, we may write: 

  

𝜕𝐶1
𝜕𝑧

= 𝑃1𝑎 + 𝑃1𝑏  

 

(A.65) 

 

𝜕𝐶2
𝜕𝑧

= 𝑃2𝑎𝑃2𝑏 

 

(A.66) 

 

𝜕𝐶3
𝜕𝑧

= 𝑃3𝑎 + 𝑃3𝑏  

 

(A.67) 

 

where:  

 

𝑃1𝑎 = (
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌1) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos 𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌1)]
) 

(A.68) 
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𝑃1𝑏 = [
−(𝑟𝑖(𝑅𝑖+1 + 𝑌1))

(𝑟𝑖+1(𝑅𝑖 + 𝑌1))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌1)) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
))] 

 

(A.69) 

 

𝑃2𝑎 = (
1

1 + (
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

)
2) 

 

(A.70) 

 

𝑃2𝑏 =
−𝑌1𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌1)

(𝑤𝑖𝑅𝑖+1)2
[− 𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖+1
)] 

 

(A.71) 

 

 

𝑃3𝑎 = (
1

1 + (
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)
2) 

 

 
 
 
 
 
(A.72) 

 

𝑃3𝑏 =
−𝑌1𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌1)

(𝑤𝑖𝑅𝑖)2
[− 𝑐𝑜𝑠 𝜑𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖
)] 

 

(A.73) 

So, we may write: 

 

𝜕𝑃1𝑎
𝜕𝑧

=

(

 
 
 
 
 
 
[[(
𝜕2𝑟𝑖
𝜕𝑧2

) (𝑅𝑖+1 + 𝑌1) +
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖+1
𝜕𝑧

] + [
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖 (
𝜕2𝑅𝑖
𝜕𝑧2

)]] 𝑟𝑖+1(𝑅𝑖 + 𝑌1) −

−(
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌1) + 𝑟𝑖

𝜕𝑅𝑖
𝜕𝑧
) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌1) + 𝑟𝑖+1
𝜕𝑅𝑖+1
𝜕𝑧

]

[𝑟𝑖+1(𝑅𝑖 + 𝑌1)]2

)

 
 
 
 
 
 

 

 

(A.74) 
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𝜕𝑃1𝑏
𝜕𝑧

= 

= −

[
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌1)+𝑟𝑖

𝜕𝑅𝑖+1
𝜕𝑧

] (𝑟𝑖+1(𝑅𝑖 + 𝑌1))
2
− (𝑟𝑖(𝑅𝑖+1 + 𝑌1))

[2(𝑟𝑖+1(𝑅𝑖 + 𝑌1)) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌1) + 𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
]]

(𝑟𝑖+1(𝑅𝑖 + 𝑌1))
4 ((

𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌1)) +  𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
) + 

+
−(𝑟𝑖(𝑅𝑖+1 + 𝑌1))

(𝑟𝑖+1(𝑅𝑖 + 𝑌1))
2 [
𝜕2𝑟𝑖+1
𝜕𝑧2

(𝑅𝑖 + 𝑌1) +
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧
] + [

𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖+1
𝜕2𝑅𝑖
𝜕𝑧2

] 

 

 

 

(A.75) 

 

𝜕𝑃2𝑎
𝜕𝑧

= −

2(
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

)(
−sin𝜑 𝑌1(𝑤𝑖𝑅𝑖+1) − (𝑢𝑖+1𝑌1) [−cos𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
)

[1 + (
𝑢𝑖+1𝑌1
𝑤𝑖𝑅𝑖+1

)
2

]

2  

 

(A.76) 

 

 

𝜕𝑃2𝑏
𝜕𝑧

= −
−(𝑌1𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌1)(𝑤𝑖𝑅𝑖+1)
2 − (𝑢𝑖+1𝑌1) [2(𝑤𝑖𝑅𝑖+1)(−𝑐𝑜𝑠 𝜑𝑅𝑖+1) + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖
𝜕𝑅𝑖+1
𝜕𝑧

) + (
−(𝑢𝑖+1𝑌1)

(𝑤𝑖𝑅𝑖+1)2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

) +

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖+1
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

(A.77) 
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𝜕𝑃3𝑎
𝜕𝑧

= −

2(
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)(
−sin𝜑 𝑌1(𝑤𝑖𝑅𝑖) − (𝑢𝑖𝑌1) [−cos𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
)

[1 + (
𝑢𝑖𝑌1
𝑤𝑖𝑅𝑖

)
2

]

2  

 
 
 
(A.78) 

 

𝜕𝑃3𝑏
𝜕𝑧

= −
−(𝑌1𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)
2

+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌1)(𝑤𝑖𝑅𝑖)
2 − (𝑢𝑖𝑌1) [2(𝑤𝑖𝑅𝑖)(−𝑐𝑜𝑠 𝜑 𝑅𝑖) + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑𝑅𝑖 + 𝑤𝑖
𝜕𝑅𝑖
𝜕𝑧
) + (

−(𝑢𝑖𝑌1)

(𝑤𝑖𝑅𝑖)2
)

(

 
 

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧
) +

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

(A.79) 

where 
𝜕𝑅𝑖+1

𝜕𝑧
=

−𝑢𝑖+1 sin𝜑+𝑤𝑖 cos𝜑

𝑅𝑖+1
; 

𝜕𝑅𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜙+𝑤𝑖 cos𝜙

𝑅𝑖
) ;  

𝜕𝑟𝑖+1

𝜕𝑧
= (

−𝑢𝑖+1 sin𝜙+𝑤𝑖 cos𝜙

𝑟𝑖+1
) ; 

𝜕𝑟𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜙+𝑤𝑖 cos𝜙

𝑟𝑖
) ;  

           
𝜕2𝑅𝑖+1

𝜕𝑧2
= −

(−𝑠𝑖𝑛2𝜑−𝑐𝑜𝑠2𝜑)𝑅𝑖+1−(𝑢𝑖+1 𝑠𝑖𝑛 𝜑+𝑤𝑖 𝑐𝑜𝑠 𝜑)(
−𝑢𝑖+1 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖+1
)

𝑅𝑖+1
2 ; 

           
𝜕2𝑅𝑖

𝜕𝑧2
=−

(−𝑠𝑖𝑛2𝜑−𝑐𝑜𝑠2𝜑)𝑅𝑖−(𝑢𝑖 𝑠𝑖𝑛 𝜑+𝑤𝑖 𝑐𝑜𝑠 𝜑)(
−𝑢𝑖 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖
)

𝑅𝑖
2 ; 
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Magnetic case formulae 

 

In the next lines we show all the terms that constitute the formulae of the first order 

derivative of the vertical component 𝐵𝑧 of magnetic field for the symmetrical and asymmetrical cases. 

And the formula of the second order derivative of the vertical component 𝐵𝑧 of magnetic field for 

the symmetrical case. 

 

A.5 First-order 2.5D vertical derivative of the vertical component ∆𝐵𝑧 of magnetic 

field: 

 

𝜕𝐵𝑧
𝜕𝑧

= −2𝐶𝑚𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷

𝜕𝑧
𝑖

 

 

(A.80) 

where: 

 

𝐷 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
− (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌

𝜔𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖𝑌

𝜔𝑖𝑅𝑖
) 

 

(A.81) 

Now we may write: 

 

𝐷 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)𝐶1 − (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖)(𝐶2 − 𝐶3) 

 

(A.82) 

with: 

 

𝐶1 = 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌)

𝑟𝑖+1(𝑅𝑖 + 𝑌)
 

 

(A.83) 

 

𝐶2 = 𝑡𝑎𝑛−1
𝑢𝑖+1𝑌

𝜔𝑖𝑅𝑖+1
 

 

(A.84) 
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𝐶3 = 𝑡𝑎𝑛
−1

𝑢𝑖𝑌

𝜔𝑖𝑅𝑖
 

 

 

 
(A.85) 

So, we have: 

 

𝜕𝐷

𝜕𝑧
= (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)

𝜕𝐶1
𝜕𝑧

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

 

(A.86) 

with: 

 

𝜕𝐶1
𝜕𝑧

=
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌)]
+ 

+
−(𝑟𝑖(𝑅𝑖+1 + 𝑌))

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌)) +  𝑟𝑖+1 (

−𝑢𝑖 sin 𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)) 

 

(A.87) 

 

𝜕𝐶2
𝜕𝑧

=
1

1 + (
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)
2 {
−𝑌sin 𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌)

(𝑤𝑖𝑅𝑖+1)2
[− cos𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
)]} 

 

(A.88) 

 

𝜕𝐶3
𝜕𝑧

=
1

1 + (
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)
2 {
−𝑌sin𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌)

(𝑤𝑖𝑅𝑖)2
[− cos𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)]} 

 

(A.89) 
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A.6 First-order 2.x D vertical derivative of the vertical component ∆𝐵𝑧 of magnetic 

field: 

 

In the magnetic case equation A.90, in contrast to the gravity case, we notice that the sign of the 

two parts of the strike length is not the same and in equation A.91 we have other two factors 

𝐶4 and 𝐶5 that multiply the direction of magnetization along strike direction 𝑗𝑦. 

 

 

𝜕𝐵𝑧
𝜕𝑧

= −𝐶𝑚𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2 [
𝜕𝐷2
𝜕𝑧

−
𝜕𝐷1
𝜕𝑧
]

𝑖

 

 

(A.90) 

𝐷2 Depends on the strike length 𝑌2: 

 

𝐷2 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌2)

𝑟𝑖+1(𝑅𝑖 + 𝑌2)
+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛

−1
𝑢𝑖+1𝑌2
𝜔𝑖𝑅𝑖+1

− 𝑡𝑎𝑛−1
𝑢𝑖𝑌2
𝜔𝑖𝑅𝑖

) + 

+𝑗𝑦 (−
1

2
𝑙𝑜𝑔

(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
+
1

2
𝑙𝑜𝑔

(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖 + 𝑢𝑖)

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
) 

 

(A.91) 

Now we may write: 

 

𝐷2 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)𝐶1 + (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖)(𝐶2 − 𝐶3) + 𝑗𝑦 (−
1

2
𝐶4+

1

2
𝐶5) 

 

(A.92) 

With: 

 

𝐶1 = 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + 𝑌2)

𝑟𝑖+1(𝑅𝑖 + 𝑌2)
 

 

(A.93) 

 

𝐶2 = 𝑡𝑎𝑛−1
𝑢𝑖+1𝑌2
𝜔𝑖𝑅𝑖+1

 

 

(A.94) 
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𝐶3 = 𝑡𝑎𝑛
−1
𝑢𝑖𝑌2
𝜔𝑖𝑅𝑖

 

 

 
 
(A.95) 

 

𝐶4 = 𝑙𝑜𝑔
(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
 

 

(A.96) 

 

𝐶5 = 𝑙𝑜𝑔
(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖 + 𝑢𝑖)

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
 

 

(A.97) 

So, we have: 

 

𝜕𝐷2
𝜕𝑧

= (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)
𝜕𝐶1
𝜕𝑧

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) + 𝑗𝑦 (−

1

2

𝜕𝐶4
𝜕𝑧

+
1

2

𝜕𝐶5
𝜕𝑧
) 

 

(A.98) 

with: 

 

𝜕𝐶1
𝜕𝑧

=
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌2) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌2)]
+ 

+
−(𝑟𝑖(𝑅𝑖+1 + 𝑌2))

(𝑟𝑖+1(𝑅𝑖 + 𝑌2))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌2)) +  𝑟𝑖+1 (

−𝑢𝑖 sin 𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)) 

 

(A.99) 

 

𝜕𝐶2
𝜕𝑧

=
1

1 + (
𝑢𝑖+1𝑌2
𝑤𝑖𝑅𝑖+1

)
2 {
−𝑌2sin𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌2)

(𝑤𝑖𝑅𝑖+1)2
[− cos𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
)]} 

 

(A.100) 
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𝜕𝐶3
𝜕𝑧

=
1

1 + (
𝑢𝑖𝑌2
𝑤𝑖𝑅𝑖

)
2 {
−𝑌2sin𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌2)

(𝑤𝑖𝑅𝑖)2
[− cos𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)]} 

 

 

 
(A.101) 

For factor 
𝜕𝐶4

𝜕𝑧
 we have: 

 

𝜕𝐶4
𝜕𝑧

= 𝑄1 + 𝑄2 

 

(A.102) 

With: 

 

𝑄1 =

(
−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
− (−sin𝜑)) (𝑟𝑖+1 + 𝑢𝑖+1)(𝑅𝑖+1 − 𝑢𝑖+1) + (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑
𝑟𝑖+1

+ (−sin𝜑))

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
 

 

(A.103) 

 

𝑄2 =

−(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1) (
−𝑢𝑖+1 sin𝜑+ 𝑤𝑖 cos𝜑

𝑅𝑖+1
+ (− sin𝜑)) (𝑟𝑖+1 − 𝑢𝑖+1) +

+(𝑅𝑖+1 + 𝑢𝑖+1) (
−𝑢𝑖+1 sin𝜑 +𝑤𝑖 cos𝜑

𝑟𝑖+1
− (− sin𝜑))

[(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)]
2

⁄

 

 

(A.104) 

And for factor 
𝜕𝐶5

𝜕𝑧
 we have: 

 

𝜕𝐶5
𝜕𝑧

= 𝑄3 + 𝑄4 

 

(A.105) 

With: 

 

𝑄3 =

(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
− (− sin𝜑)) (𝑟𝑖 + 𝑢𝑖)(𝑅𝑖 − 𝑢𝑖) + (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑟𝑖

+ (− sin𝜑))

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
 

 

(A.106) 
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𝑄4 =

−(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖+1 + 𝑢𝑖) (
−𝑢𝑖 sin𝜑+ 𝑤𝑖 cos𝜑

𝑅𝑖+1
+ (− sin𝜑)) (𝑟𝑖 − 𝑢𝑖) +

+(𝑅𝑖 + 𝑢𝑖) (
−𝑢𝑖 sin𝜑+ 𝑤𝑖 cos𝜑

𝑟𝑖
− (− sin𝜑))

[(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)]
2

⁄

 

 

 
 
(A.107) 

 

 

where 𝑅𝑖 = (𝑢𝑖
2 + 𝑤𝑖

2 + 𝑌2
2)1/2 and 𝑅𝑖+1 = (𝑢𝑖+1

2 + 𝑤𝑖
2 + 𝑌2

2)1/2 

Similarly, 𝐷1 will depend on the strike length −𝑌1: 

 

𝐷1 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖) 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + (−𝑌1))

𝑟𝑖+1(𝑅𝑖 + (−𝑌1))
+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (𝑡𝑎𝑛

−1
𝑢𝑖+1(−𝑌1)

𝜔𝑖𝑅𝑖+1
− 𝑡𝑎𝑛−1

𝑢𝑖(−𝑌1)

𝜔𝑖𝑅𝑖
) + 

+𝑗𝑦 (−
1

2
𝑙𝑜𝑔

(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
+
1

2
𝑙𝑜𝑔

(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖 + 𝑢𝑖)

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
) 

 

(A.108) 

Now we may write: 

 

𝐷1 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)𝐶1 + (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖)(𝐶2 − 𝐶3) + 𝑗𝑦 (−
1

2
𝐶4+

1

2
𝐶5) 

 

(A.109) 

With: 

 

𝐶1 = 𝑙𝑜𝑔
𝑟𝑖(𝑅𝑖+1 + (−𝑌1))

𝑟𝑖+1(𝑅𝑖 + (−𝑌1))
 

 

(A.110) 

 

𝐶2 = 𝑡𝑎𝑛−1
𝑢𝑖+1(−𝑌1)

𝜔𝑖𝑅𝑖+1
 

 

(A.111) 

 

𝐶3 = 𝑡𝑎𝑛
−1
𝑢𝑖(−𝑌1)

𝜔𝑖𝑅𝑖
 

 

 
 
(A.112) 
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𝐶4 = 𝑙𝑜𝑔
(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1)

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
 

 

 

 
(A.113) 

 

𝐶5 = 𝑙𝑜𝑔
(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖 + 𝑢𝑖)

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
 

 

(A.114) 

So, we have: 

 

𝜕𝐷1
𝜕𝑧

= (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)
𝜕𝐶1
𝜕𝑧

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) + 𝑗𝑦 (−

1

2

𝜕𝐶4
𝜕𝑧

+
1

2

𝜕𝐶5
𝜕𝑧
) 

 

(A.115) 

with: 

 

𝜕𝐶1
𝜕𝑧

=
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + (−𝑌1)) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + (−𝑌1))]
+ 

+
−(𝑟𝑖(𝑅𝑖+1 + (−𝑌1)))

(𝑟𝑖+1(𝑅𝑖 + (−𝑌1)))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + (−𝑌1))) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)) 

 

(A.116) 

 

𝜕𝐶2
𝜕𝑧

=
1

1 + (
𝑢𝑖+1(−𝑌1)
𝑤𝑖𝑅𝑖+1

)
2 {
−(−𝑌1)sin𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1(−𝑌1))

(𝑤𝑖𝑅𝑖+1)
2 [− cos𝜑 𝑅𝑖+1 +𝑤𝑖 (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
)]} 

 

(A.117) 

 

𝜕𝐶3
𝜕𝑧

=
1

1 + (
𝑢𝑖(−𝑌1)
𝑤𝑖𝑅𝑖

)
2 {
− (−𝑌1)sin𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖(−𝑌1))

(𝑤𝑖𝑅𝑖)2
[− cos𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
)]} 

 

(A.118) 
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For the factor 
𝜕𝐶4

𝜕𝑧
 we have: 

 

𝜕𝐶4
𝜕𝑧

= 𝑄1 + 𝑄2 

 

(A.119) 

with: 

 

𝑄1 =

(
−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖+1
− (−sin𝜑)) (𝑟𝑖+1 + 𝑢𝑖+1)(𝑅𝑖+1 − 𝑢𝑖+1) + (

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑
𝑟𝑖+1

+ (−sin𝜑))

(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)
 

 

(A.120) 

 

𝑄2 =

−(𝑅𝑖+1 − 𝑢𝑖+1)(𝑟𝑖+1 + 𝑢𝑖+1) (
−𝑢𝑖+1 sin𝜑+ 𝑤𝑖 cos𝜑

𝑅𝑖+1
+ (− sin𝜑)) (𝑟𝑖+1 − 𝑢𝑖+1) +

+(𝑅𝑖+1 + 𝑢𝑖+1) (
−𝑢𝑖+1 sin𝜑 +𝑤𝑖 cos𝜑

𝑟𝑖+1
− (− sin𝜑))

[(𝑅𝑖+1 + 𝑢𝑖+1)(𝑟𝑖+1 − 𝑢𝑖+1)]
2

⁄

 

 

(A.121) 

And for the factor 
𝜕𝐶5

𝜕𝑧
 we have: 

 

𝜕𝐶5
𝜕𝑧

= 𝑄3 + 𝑄4 

 

(A.122) 

With: 

 

𝑄3 =

(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
− (− sin𝜑)) (𝑟𝑖 + 𝑢𝑖)(𝑅𝑖 − 𝑢𝑖) + (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑟𝑖

+ (− sin𝜑))

(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)
 

 

(A.123) 

 

𝑄4 =

−(𝑅𝑖 − 𝑢𝑖)(𝑟𝑖+1 + 𝑢𝑖) (
−𝑢𝑖 sin𝜑+ 𝑤𝑖 cos𝜑

𝑅𝑖+1
+ (− sin𝜑)) (𝑟𝑖 − 𝑢𝑖) +

+(𝑅𝑖 + 𝑢𝑖) (
−𝑢𝑖 sin𝜑+ 𝑤𝑖 cos𝜑

𝑟𝑖
− (− sin𝜑))

[(𝑅𝑖 + 𝑢𝑖)(𝑟𝑖 − 𝑢𝑖)]
2

⁄

 

 

(A.124) 

where 𝑅𝑖 = (𝑢𝑖
2 + 𝑤𝑖

2 + (−𝑌1)
2)1/2 and 𝑅𝑖+1 = (𝑢𝑖+1

2 + 𝑤𝑖
2 + (−𝑌1)

2)1/2 
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A.7 Second-order vertical derivative of vertical component 𝐵𝑧 of magnetic field for 

the symmetrical case: 

 

𝜕2𝐵𝑧
𝜕𝑧2

= −2𝐶𝑚𝐽∑
∆𝑥𝑖

∆𝑥𝑖
2 + ∆𝑧𝑖

2

𝜕𝐷

𝜕𝑧
𝑖

 

 

(A.125) 

where: 

 

𝐷 = (𝑗𝑥∆𝑥𝑖 + 𝑗𝑧∆𝑧𝑖)
𝜕𝐶1
𝜕𝑧

+ (𝑗𝑥∆𝑧𝑖 − 𝑗𝑧∆𝑥𝑖) (
𝜕𝐶2
𝜕𝑧

−
𝜕𝐶3
𝜕𝑧
) 

 

(A.126) 

and 𝐶1, 𝐶2, 𝐶3 are given by equations (A.83) (A.84) (A.85) respectively. 

So, we may write: 

  

𝜕𝐶1
𝜕𝑧

= 𝑃1𝑎 + 𝑃1𝑏 

 

(A.127) 

 

𝜕𝐶2
𝜕𝑧

= 𝑃2𝑎𝑃2𝑏 

 

(A.128) 

 

𝜕𝐶3
𝜕𝑧

= 𝑃3𝑎 + 𝑃3𝑏  

 

(A.129) 

 

where:  

 

𝑃1𝑎 = (
(
−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖
) (𝑅𝑖+1 + 𝑌) + 𝑟𝑖 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑
𝑅𝑖

)

[𝑟𝑖+1(𝑅𝑖 + 𝑌)]
) 

 

(A.130) 
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𝑃1𝑏 = [
−(𝑟𝑖(𝑅𝑖+1 + 𝑌))

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
2 (((

−𝑢𝑖+1 sin𝜑 + 𝑤𝑖 cos𝜑

𝑟𝑖+1
) (𝑅𝑖 + 𝑌)) +  𝑟𝑖+1 (

−𝑢𝑖 sin𝜑 + 𝑤𝑖 cos𝜑

𝑅𝑖
))] 

 

 

 
(A.131) 

 

𝑃2𝑎 = (
1

1 + (
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)
2) 

 

(A.132) 

 

𝑃2𝑏 =
−𝑌𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖+1
+
−(𝑢𝑖+1𝑌)

(𝑤𝑖𝑅𝑖+1)2
[− 𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖 (

−𝑢𝑖+1 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖+1
)] 

 

(A.133) 

 

𝑃3𝑎 = (
1

1 + (
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)
2) 

 

 
 
 
(A.134) 

 

𝑃3𝑏 =
−𝑌𝑠𝑖𝑛 𝜑

𝑤𝑖𝑅𝑖
+
−(𝑢𝑖𝑌)

(𝑤𝑖𝑅𝑖)2
[− 𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖 (

−𝑢𝑖 𝑠𝑖𝑛 𝜑 + 𝑤𝑖 𝑐𝑜𝑠 𝜑

𝑅𝑖
)] 

 

(A.135) 

So, we may write: 

 

𝜕𝑃1𝑎
𝜕𝑧

=

(

 
 
 
 
 
 
[[(
𝜕2𝑟𝑖
𝜕𝑧2

) (𝑅𝑖+1 + 𝑌) +
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖+1
𝜕𝑧

] + [
𝜕𝑟𝑖
𝜕𝑧
𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖 (
𝜕2𝑅𝑖
𝜕𝑧2

)]] 𝑟𝑖+1(𝑅𝑖 + 𝑌) −

−(
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌) + 𝑟𝑖

𝜕𝑅𝑖
𝜕𝑧
) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌) + 𝑟𝑖+1
𝜕𝑅𝑖+1
𝜕𝑧

]

[𝑟𝑖+1(𝑅𝑖 + 𝑌)]2

)

 
 
 
 
 
 

 

 

(A.136) 
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𝜕𝑃1𝑏
𝜕𝑧

= −

[
𝜕𝑟𝑖
𝜕𝑧
(𝑅𝑖+1 + 𝑌)+𝑟𝑖

𝜕𝑅𝑖+1
𝜕𝑧

] (𝑟𝑖+1(𝑅𝑖 + 𝑌))
2
− (𝑟𝑖(𝑅𝑖+1 + 𝑌))

[2(𝑟𝑖+1(𝑅𝑖 + 𝑌)) [
𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌) + 𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
]]

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
4 ((

𝜕𝑟𝑖+1
𝜕𝑧

(𝑅𝑖 + 𝑌))

+  𝑟𝑖+1
𝜕𝑅𝑖
𝜕𝑧
) +

−(𝑟𝑖(𝑅𝑖+1 + 𝑌))

(𝑟𝑖+1(𝑅𝑖 + 𝑌))
2 [
𝜕2𝑟𝑖+1
𝜕𝑧2

(𝑅𝑖 + 𝑌) +
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧
]

+ [
𝜕𝑟𝑖+1
𝜕𝑧

𝜕𝑅𝑖
𝜕𝑧

+ 𝑟𝑖+1
𝜕2𝑅𝑖
𝜕𝑧2

] 

 

 

 

 

(A.137) 

 

𝜕𝑃2𝑎
𝜕𝑧

= −

2(
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)(
−sin𝜑 𝑌(𝑤𝑖𝑅𝑖+1) − (𝑢𝑖+1𝑌) [−cos𝜑 𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
)

[1 + (
𝑢𝑖+1𝑌
𝑤𝑖𝑅𝑖+1

)
2

]

2  

 

 

(A.138) 

 

 

𝜕𝑃2𝑏
𝜕𝑧

= −
−(𝑌𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑𝑅𝑖+1 + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌)(𝑤𝑖𝑅𝑖+1)
2 − (𝑢𝑖+1𝑌) [2(𝑤𝑖𝑅𝑖+1)(−𝑐𝑜𝑠 𝜑 𝑅𝑖+1) + 𝑤𝑖

𝜕𝑅𝑖+1
𝜕𝑧

]

(𝑤𝑖𝑅𝑖+1)4
)

(− 𝑐𝑜𝑠 𝜑 𝑅𝑖+1 + 𝑤𝑖
𝜕𝑅𝑖+1
𝜕𝑧

) + (
−(𝑢𝑖+1𝑌)

(𝑤𝑖𝑅𝑖+1)2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

) +

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖+1
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖+1
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
(A.139) 

 

𝜕𝑃3𝑎
𝜕𝑧

= −

2(
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)(
−sin𝜑 𝑌(𝑤𝑖𝑅𝑖) − (𝑢𝑖𝑌) [−cos𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
)

[1 + (
𝑢𝑖𝑌
𝑤𝑖𝑅𝑖

)
2

]

2  

 
 
 
 
(A.140) 
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𝜕𝑃3𝑏
𝜕𝑧

= −
−(𝑌𝑠𝑖𝑛 𝜑) [−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖)2
+ 

+

[
 
 
 
 
 
 
 
 
(−

(−𝑠𝑖𝑛𝜑 𝑌)(𝑤𝑖𝑅𝑖)
2 − (𝑢𝑖𝑌) [2(𝑤𝑖𝑅𝑖)(−𝑐𝑜𝑠 𝜑 𝑅𝑖) + 𝑤𝑖

𝜕𝑅𝑖
𝜕𝑧
]

(𝑤𝑖𝑅𝑖+1)4
)

(−𝑐𝑜𝑠 𝜑 𝑅𝑖 + 𝑤𝑖
𝜕𝑅𝑖
𝜕𝑧
) + (

−(𝑢𝑖𝑌)

(𝑤𝑖𝑅𝑖)2
)

(

 
 

(−𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧
) +

(− 𝑐𝑜𝑠 𝜑
𝜕𝑅𝑖
𝜕𝑧

+ 𝑤𝑖
𝜕2𝑅𝑖
𝜕𝑧2

)
)

 
 

]
 
 
 
 
 
 
 
 

 

 

 

(A.141) 

where: 

 

 
𝜕𝑅𝑖+1

𝜕𝑧
=

−𝑢𝑖+1 sin𝜑+𝑤𝑖 cos𝜑

𝑅𝑖+1
; 
𝜕𝑅𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜑+𝑤𝑖 cos𝜑

𝑅𝑖
) ;  

𝜕𝑟𝑖+1

𝜕𝑧
= (

−𝑢𝑖+1 sin𝜑+𝑤𝑖 cos𝜑

𝑟𝑖+1
) ; 

𝜕𝑟𝑖

𝜕𝑧
= (

−𝑢𝑖 sin𝜑+𝑤𝑖 cos𝜑

𝑟𝑖
) ;  

          
𝜕2𝑅𝑖+1

𝜕𝑧2
= −

(−𝑠𝑖𝑛2 𝜑−𝑐𝑜𝑠2 𝜑)𝑅𝑖+1−(𝑢𝑖+1 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑)(
−𝑢𝑖+1 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖+1
)

𝑅𝑖+1
2 ; 

          
𝜕2𝑅𝑖

𝜕𝑧2
=−

(−𝑠𝑖𝑛2 𝜑−𝑐𝑜𝑠2 𝜑)𝑅𝑖−(𝑢𝑖 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑)(
−𝑢𝑖 𝑠𝑖𝑛𝜑+𝑤𝑖 𝑐𝑜𝑠𝜑

𝑅𝑖
)

𝑅𝑖
2 ; 

 

 

 

 

 

 

 

 

 

 

 

 


