
Università Degli Studi Di Napoli
Federico II

Scuola Politecnica e delle Scienze di Base

Dipartimento di Matematica e Applicazioni
“Renato Caccioppoli”

Tesi per il dottorato di ricerca in
Scienze Matematiche e Informatiche

XXXII Ciclo

Quantum Machine Learning: A
Comparison Between Quantum and
Classical Support Vector Machine

Claudio Pipicelli



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 Introduction 4
1.1 Classical computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 A note on choosing x86 CPUs as a reference . . . . . . . . . . . . . 8
1.1.2 Evaluating CPU performance . . . . . . . . . . . . . . . . . . . . . 11
1.1.3 Megahertz Myth (around 1980-2004) . . . . . . . . . . . . . . . . . 18
1.1.4 Multi core era (around 2005-nowadays) . . . . . . . . . . . . . . . 22
1.1.5 Slowdown of Moore’s Law . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.6 ALU size effectivness . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.1.7 A significant example: the evolution from P6 to Sunny Cove . . . 31
1.1.8 Multi-core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.1.9 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.2.1 Quantum Mechanics in brief . . . . . . . . . . . . . . . . . . . . . 44
1.2.2 Quantum Computing basic concepts . . . . . . . . . . . . . . . . . 46

1.3 The main current development environments for quantum computing . . . 49
1.3.1 IBM Quantum Experience . . . . . . . . . . . . . . . . . . . . . . . 50
1.3.2 Rigetti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 Machine Learning 57
2.1 Classical Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1.1 Some considerations about Classical A.I. computational requests . 60
2.1.2 Classical A.I. trouble: an example, working memory latency . . . . 60

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.1 VC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4 Machine Learning and recent computer industry development . . . . . . . 85

2.4.1 Increasing floating-point and vector capabilities . . . . . . . . . . . 85
2.4.2 From dual core to multi core and GPU . . . . . . . . . . . . . . . . 92
2.4.3 Low precision data formats . . . . . . . . . . . . . . . . . . . . . . 96
2.4.4 FPGA and ASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Support Vector Machine 101
3.1 SVM for linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2 Not linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3 Soft margin and least square support vector machine . . . . . . . . . . . . 110
3.4 SVM vs ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS 3

4 Quantum Machine Learning 113
4.1 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.1.1 Quantum Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.2 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.1.3 Multiple qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.1.4 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 An example: a quantum full adder . . . . . . . . . . . . . . . . . . . . . . 121
4.3 Quantum Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.1 Quantum Machine Learning Perspectives . . . . . . . . . . . . . . 129
4.4 QSVM intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Quantum Support Vector Machine 132
5.1 IBM QSVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Analysis and results 138
6.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 First QSVM tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 QSVM for a 1-dim feature space - linearly separable case . . . . . 141
6.2.2 QSVM for a 1-dim feature space - not linearly separable case . . . 145
6.2.3 QSVM for a 2-dim feature space - linearly separable case . . . . . 145
6.2.4 QSVM for a 2-dim feature space - a three classes example . . . . . 149
6.2.5 QSVM for a 3-dim feature space - linearly separable case . . . . . 150
6.2.6 QSVM for a 3-dim feature space - not linearly separable casesphere

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 QSVM vs SVM comparison on standard datasets: some preliminary notes 153

6.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.2 Evaluating results . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 QSVM vs SVM comparison on standard datasets . . . . . . . . . . . . . . 161
6.4.1 Banana dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.4.2 Haberman dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.3 Iris dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4.4 Breast cancer dataset . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4.5 Wine dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.6 Optical recognition of handwritten digits dataset . . . . . . . . . . 171

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7 Preliminary conclusion 175

List of Figures 179

List of Tables 183

Bibliografia 185



To Alessandro, my young niece
To my family



Acknowledgements

At the end of the run, I would like to express my sincere gratitude to the key persons
who supported me throughout the last three years.

Firstly, I wish to strongly thank my scientific advisor, Prof. Giovanni Acampora. His
guidance, motivation and incitements have been allowing me to train and increase my
research attitudes.

Besides my supervisor, I am grateful to Dr. Autilia Vitiello and Dr. Mariacarla Staffa
for being present in many situation I needed.

A special mention goes to my PhD colleagues, among various Federico II’s depart-
ments and all my friends. The enjoyable moments I spent with them helped me to face
this almost four-years run less hardly.

Finally, thanks go to my big and magnificent family and to my beloved nephew for
the tremendous support and limitless endurance. I dedicate this thesis to them all.

ii



Summary and foreword

This thesis is mainly focused on the study of Quantum Support Vector Machine
(QSVM), a very important member of the recent and innovative Quantum Machine Learn-
ing field, and its comparison with conventional Support Vector Machine (SVM) [Cortes
and Vapnik, 1995].

Machine Learning [Bishop, 2006], a prominent subset of Artificial Intelligence, perhaps
the most developed in the last few decades, is progressively pursuing significant growth
prospects and achieving important results in many fields nowadays, such as computer
vision, speech recognition, natural language processing, robot control, predictive mainte-
nance, and so on, with a growing spread in other sectors, for example health care, man-
ufacturing, education, financial modeling, policing, and marketing [Jordan and Mitchell,
2015]. Machine learning algorithms can figure out how to perform important tasks by
generalizing from exhibited examples. This is conceptually a very attractive alternative
to manually design an algorithm to perform the same task. Moreover, in several research
and application fields, this approach is often feasible and cost-effective where explicit,
conventional programming is not. As more data becomes available, in principle more
ambitious problems can be tackled by machine learning techniques. However, every ma-
chine learning approach to solve a not trivial problem postulates the access to sufficient
amounts of useful data and requires accordingly to solve an optimization problem: in
fact, these are determinants which are the most appropriate choices for parameters (and
possibly hyperparameters), in order to improve the execution of a specific task using a
particular model.

The adoption of learning algorithms characterized by high computational complexity
and the use of large amounts of training data (the so colled “big data”), can therefore
make the application of effective machine learning really infeasible to solve some classes
of useful problems, even on the fastest and most expensive electronic digital computers.

Moreover, because Moore’s Law [Moore et al., 1965], the principle that has powered the
information technology revolution since the beginning of microelectronics in 1960s, seems
that is reaching its end as lithographic processes shrink down [Chien and Karamcheti,
2013; Markov, 2014], approaching the extreme ultraviolet (from deep ultraviolet), so to
involve the construction of transistors constituted by an increasingly smaller number of
atoms, other models of computation urgently need to be evaluated and implemented.

Inspired by quantum mechanics laws, one really encouraging computing model is quan-
tum computing [Feynman, 1982; Nielsen and Chuang, 2010], which includes both ad hoc
solutions (such as D-Wave quantum annealing machines [Adachi and Henderson, 2015;
Finnila et al., 1994; Rønnow et al., 2014]) both universal, general purpose solutions, from
several multinational information technology company such as I.B.M., Google, Intel, Mi-
crosoft as well as promising startups such as Rigetti and Xanadu.
Quantum computers leverage peculiar quantum effects, such as superposition and en-
tanglment [Chuang and Shor, 2018b; Gottesman and Chuang, 1999; Rycerz et al., 2015;
Simon, 1997], to evaluate simultaneously more computational paths, but they are sub-
jected to stringent limits, both for the current shortage of quantum bits and gates, both
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for the ineluctable presence of various kinds of single and multi-qubit errors, decoherence
phenomena and so on [Chuang and Harrow, 2018; Chuang and Shor, 2018c; Nielsen and
Chuang, 2010], which, in some ways, make quantum computers more similar to old ana-
logue computers (almost never used in the last few decades) than digital ones, especially
with regard to the reproducibility of results and tolerance to errors.

Anyway, quantum computing is quite a promising approach to solve some kind of
hard problem, such as high complexity optimization problems, significantly faster and
more efficient than classical digital computers.

The first and most famous quantum algorithms [Chuang and Shor, 2018b; Nielsen
and Chuang, 2010] exhibit indeed considerable comptutational advantages with rispect
to conventional computers: Deutsch-Jozsa algorithm [Deutsch and Jozsa, 1992] allows
resolution of a specific class of “on promise” problems with just one function (“oracle”)
evaluation; Shor algorithm [Shor, 1994] provides an exponential speed-up for prime num-
ber factorization (anyway, until now the only real implementations are able to work
with very small numbers [Monz et al., 2016]); Grover algorithm [Grover, 1996] allows a
quadratic speed-up for searching an unstructured database. Very recently, both the scien-
tific and non-specialist press has emphasized Google’s bold statement that it has achieved
the so called “quantum supremacy”[Arute et al., 2019]: to complete a specific task, used
as benchmark, a million times, Google’s Sycamore quantum processor takes about 200
seconds, while Google’s forecast indicates that the equivalent task for a state-of-the-art
classical supercomputer would take approximately 10,000 years.

In the last few years, Quantum Machine Learning is emerging as the union between
quantum computing and information systems and machine learning [Biamonte et al., 2017;
Lloyd et al., 2013; Otterbach et al., 2017; Ristè et al., 2017; Ruan et al., 2016; Schuld
et al., 2015a; Wilson et al., 2018], including quantum neural networks [Carleo et al., 2018;
Chen et al., 2017; Da Silva et al., 2012; da Silva et al., 2016; Fard et al., 2018; Gupta and
Zia, 2001; Hu, 2018; Liu et al., 2013; Rebentrost et al., 2017; Schuld et al., 2014, 2015b;
Verdon et al., 2017; Zhao et al., 2018] and quantum support vector machines[Ding et al.,
2019; Havlíček et al., 2019; Havlivcek et al., 2018; Rebentrost et al., 2014; Schuld and
Killoran, 2018; Willsch et al., 2019].

There are multiple reasons to support this union. In fact, in recent years the applica-
tion of machine learning algorithms in multiple sectors (industrial applications, automa-
tion technologies, autonomous driving systems, road surveillance, facial recognition, bank
fraud detection and eventually prevention, and so on) requires more and more computing
power , also because often these algorithms are applied to the so called “Big Data”. As
a result, there has been a rapid transition from general purpose CPU code execution
to massive GPU adoption, as well as the development of ad hoc solutions, in the form
of FPGAs and ASICs carefully designed to support high performance. The preference
for these hardware configurations is related to the fact that the main machine learning
algorithms are based on the repeated application of relatively simple processing kernels
applied to large amounts of data; moreover, these kernels are generally massively based
on linear algebra operations, therefore well adaptable to special purpose accelerators con-
sisting of hundreds or thousands of computational cores, albeit simpler than a general
purpose CPU, or even networks of appropriately designed calculation elements.

In this context, the idea of having a quantum computer perform at least significant
portions of the machine learning algorithms is decidedly plausible. First, the evolution of
quantum systems is described by operators in Hilbert spaces, which suggests the possibil-
ity of applying specific machine learning strategies by breaking them down into operators
that characterize evolution starting from an initial state of the system. In addition, ef-
ficient implementations of quantum algorithms based on linear algebra, such as Fourier
Transform and Principal component analysis, have already been demonstrated in the sci-
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entific literature [Biamonte et al., 2017; Bowden et al., 2002; Liu and Rebentrost, 2018;
Lloyd et al., 2014; Nam et al., 2018]. Furthermore, the intrinsically probabilistic nature
of the result of the processing of a quantum computer should not affect significantly the
goodness of the result, at least in principle, in machine learning applications, because
they are systems that don’t guarantee absolute certainty, but they provide results that
can be used in a statistical sense (provided, of course, that the errors introduced by the
quantum computer are under control, to be sufficiently modest). Furthermore, especially
in the inferential phase, high precision in the execution of the single calculations is often
not required: indeed, the emerging result of a suitably trained system is therefore stable
for small (and sometimes even relatively large) errors of the single calculation units. So
this aspect also suggests that the error rate found so far on quantum computers could
affect machine learning applications less than other fields of application.

Recently, a quantum implementation has been conceived for a machine learning tech-
nique widely used in classification problems: the Support Vector Machine (SVM) was
born embryonic from the simple idea of identifying the hyperplane that guarantees maxi-
mum separation between linearly separable sets [Burges, 1998; Cortes and Vapnik, 1995];
this algorithm is generalized, through the so-called kernel trick, to classes that are not
linearly separable, usually immersing the feature space in a space of higher dimensional-
ity, in which it is possible to identify an optimal hyperplane for classification; in addition,
even when it is not possible to identify a separation surface between the classes subject
to the classification problem, there is a generalization of SVM based on the least squares
technique [Suykens et al., 2000; Suykens and Vandewalle, 1999]. Therefore, a quantum
version of Least Square Support Vector Machine was developed and it is receiving a lot
of attention for the possibility of running also on current quantum systems, characterized
by an extremely small number of functioning qubits [Havlivcek et al., 2018; Schuld and
Killoran, 2018]. Just as Google’s quantum computer has shown excellent performance
in an area of little concrete interest, working on an artificial case designed specifically
to be difficult for a classic computer, so the first implementation of Quantum Support
Vector Machine (QSVM) has shown interesting performance applied to artificial datasets
generated to put it under the best conditions in comparison with a classic SVM [Havlíček
et al., 2019].

In this paper, I have worked on the application of Quantum Support Vector Machine
algorithm, that runs on near term quantum processors from I.B.M., through IBM Quan-
tum Experience cloud service, to a set of supervised machine learning case studies and
I compared its performance with classical Support Vector Machine algorithm; net of the
enormous hype surrounding the proliferation of quantum technologies in recent years, are
we beginning to glimpse an application of real interest in which quantum systems, albeit
with limitations, offer concrete improvements already now?



Chapter 1

Introduction

1.1 Classical computing
Since ancient times, humanity has been interested in the development of methods

that would allow solving some classes of problems, operating in a uniform, repeatable
way. Therefore, throughout the history of Mathematics, techniques and strategies have
been developed to obtain exact or at least approximate solutions to problems of the most
disparate nature. Classic examples can be considered the iterative method attributed
to the Babylonians to extract the square root, the iterative strategy exposed in Euclid’s
Elements to determine the greatest common divisor between two natural numbers or the
Sieve of Eratosthenes, which gives step by step instructions for quickly removing all non-
prime numbers from a defined set of numbers (for instance, between 1 and 100) until
only prime numbers are left. So there has always been considerable interest in identifying
a finite sequence of well-defined, (as much as possible) unambiguous instructions whose
purpose is to solve a class of problems or to perform a calculation; informally, such kind
of procedures is named “algorithm”, a word that has its roots in Latinizing the name of a
Persian mathematician, al-Khwarizmi. During first decades of the 1900s, computability
theory was born, as part of a profound process of revision of the foundations of mathe-
matics. Indeed, in the 19th century the discovery of consistent alternative to Euclidean
geometry (hyperbolic and elliptic geometry) started a crisis of the foundations of math-
ematics, a crisis progressively aggravated by developments such as the Cantor’s paradox
(“there is no greatest cardinal number”) or the Russell paradox (concerning “the set of
all non-self-membered sets”). So, to avoid further confusion and satisfactorily answer
paradoxical results, a new and more rigorous foundation for mathematics was necessary.
Therefore it was in that period that mathematicians wondered about the possibility of
formalizing the concept of algorithm and of determining which functions are in principle
computable, starting from certain set of assumptions. For example, what problems can
a man solve by using pen and paper? Is there an effective method to check if every
well-formed formula of propositional logic is true or false? And for first-order logic? And
so on. Driven by this lively and varied research, computability theory quickly began to
develop, producing various formal models of effective computation, such as Godel and
Herbrand’s partial recursive functions, Church’s λ-calculus, Turing machines, Kleene’s
equation calculus.

Under very general hypotheses, all those formal models describe classes of computable
functions which are proved to be equivalent; moreover, the Church–Turing thesis (also
known as computability thesis) states that any function on the natural numbers can be
calculated by an effective method if and only if it is computable by a Turing machine, so
to exclude the possibility of a more general model of computation.

Although tools and “machines” have been designed or at least conceived since an-
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cient times to carry out mathematical operations, for a long time they have been of
rather limited use, for example various kind of abacus were useful mainly to carry out
additions and subtractions, but eventually also multiplications and divisions, seen respec-
tively as repeated additions and subtractions. The first appearance of abacus was over 4
thousand years ago in Mesopotamia: Sumeric abacus had a table of successive columns
which delimited the successive orders of magnitude of their sexagesimal number system.
Obviously the abacus cannot be considered a mechanical calculator as it does not have
mechanisms: human operator must perform all the operations manually, nothing happens
automatically. Blaise Pascal, instead, invented Pascaline, a mechanical instrument with
an automatic carry mechanism to add and subtract two numbers directly and to per-
form multiplication and division through repeated addition or subtraction. During 1800,
Charles Babbage created at first a difference engine, i.e. a special-purpose automatic
mechanical calculator designed to tabulate logarithms and trigonometric functions by
evaluating finite differences to create approximating polynomials. In general, a difference
engine can interpolate any sufficiently regular function by using a small set of polynomial
coefficients, which were tabulated using the method of divided differences, i.e. a recursive
division process. Following the failures with several difference engine prototypes, Babbage
then tried to develop the Analytical Engine, a mechanical computing device which aspired
to be a general-purpose computer; someway it anticipated the first digital computers of
the following century, with a sort of arithmetic logic unit, control flow in the form of
conditional branching and loops, and integrated memory. Babbage also established a col-
laboration with Ada Lovelace, who developed a way to calculate Bernoulli numbers using
the Analytical Engine, so she has been described as the first computer programmer (in
her honor, in the late 70s of the twentieth century, a programming language bearing her
name was developed). While Babbage was never able to complete any of his machines
due to inadequate funding and technical troubles, the Analytical Engine was its most
successful achievement.

Beside the formulation of a mathematical theory of computation, since around 1930s
the first electro-mechanical computers were build and soon after them the first digital
electronic computers also, based on thermionic valves (tubes) and using mostly binary
arithmetic and Boolean logic. During the World War II, the Allies developed several com-
plex machines to decode German messages; for example, in 1943 they made the Colossus:
it consisted of about 2,400 valves and was the first partially programmable electronic
computer. It allowed to decode encrypted messages generated even by the famous Ger-
man machine Lorenz SZ40/42. Konrad Zuse, in 1941 developed Z3, based on the binary
system (implementing a Leibniz’s idea). Z3 used about 2600 relays, i.e. electromechanical
switches. The IBM Automatic Sequence Controlled Calculator (ASCC), best knwon as
Harvard Mark I, was put into operation in 1944 and it was a special purpose programmable
machine to solve numerically differential equations. ENIAC (Electronic Numerical Inte-
grator and Calculator) is considered the world’s first fully operational electronic general-
purpose computer: the project was developed by Eckert and Mauchly and it was funded
by the U.S. Army and became operational during World War II, but it was not publicly
disclosed until 1946 and it remained in operation until 1955. This enormous machine,
with 18,000 vacuum tube (it had a 10-bit register), was used supposedly for computing
artillery firing tables, but the ENIAC provided even conditional jumps and it was the first
truly programmable computer, which clearly distinguished it from earlier special purpose
calculators, because it could be used for any type of calculation: in principle, it was
equipotent to a universal Turing machine (although in fact subject to the constraints of a
finite memory). EDVAC (Electronic Discrete VAriable Computer) and IAS (Institute for
Advanced Study) computer were the first computer with an internal memory that could
store program instructions .
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Although, for some decades, analog computers were used in scientific and industrial
applications, because at the time they were typically faster than digital computers, re-
vealing especially well-suited to representing situations described by differential equations
[Care, 2010], they started to become obsolete for general purpose application as early as
the 1950s, because there were serious concerns about analogue computing, such as its
limitations on scale, reliability (noise and temperature sensitivity, for example), and long-
running error-free computation (by virtue of errors accumulation processes).

Indeed, during the 1950s to 1970s, digital computers became more economical and
precise, offered greater flexibility and largely replaced analog computers. Their success
depended even on reliability and reproducible results: the choice to encode all program
and data information with sequences of binary digits, only zeros and ones, represented
with quite distinct high or low voltage signals, simplifies and strengthens information
storage and communication.

A fundamental point, around 1945, was the definition of the so called von Neumann
architecture, i.e. a computer architecture which consists of a central processing unit
(CPU), that contains (at least) an arithmetic logic unit (which implements the funda-
mental arithmetic and Boolean logic operations) and a control unit (which manages the
sequential program execution and conditional instructions), then central working (usually
volatile) memory that stores data and instructions, external persistent mass storage and
usually input and output devices (which, respectively, allows users to feed the computer
with data and programs or transmit the computation’s results and other computer’s in-
formation to the user). Almost all digital computer made since then are based on von
Neumann paradigm or some variant of it; for example, in the Harvard paradigm there are
separate memories for the program code and for the data to be processed.

In the second half of 1900, other computational models, more adequate to be con-
cretely implemented with the available technology, such as Unlimited Register Machine,
were conceived and it was shown that, under appropriate hypotheses, they were compu-
tationally equivalent to Turing machines.

In the meanwhile, the the point-contact transistor was invented in 1947 by William
Shockley, John Bardeen and Walter Brattain at Bell Labs, followed by the bipolar junc-
tion transistor in 1948. From 1955 onward transistors replaced vacuum tubes in computer
designs, giving rise to a new generation of computers. Compared to vacuum tubes, tran-
sistors have many advantages: they are smaller, require less power and usually last longer.

The MOSFET (metal-oxide-semiconductor field-effect transistor), also known as the
MOS transistor, was later invented by Mohamed Atalla and Dawon Kahng at Bell Labs in
1959, which led to the mass-production of MOS transistors for a wide range of uses. The
MOSFET has since become the most widely manufactured device in history. With its high
scalability, and much lower power consumption and higher density than bipolar junction
transistors, the MOSFET made it possible to build high-density integrated circuits (ICs),
allowing the integration of several thousands transistors in a single IC.

The monolithic integrated circuit was first introduced as a concept by British radar
engineer Geoffrey Dummer on May 7, 1952. It was later developed by Jack Kilby and
Robert Noyce, and successfully demonstrated on September 12, 1958. Then on April
25th, 1961 the first patent was awarded to Robert Noyce for an integrated circuit.

The scientific and commercial success of deterministic general purpose electronic dig-
ital computing was driven by the rapid, substantially exponential growth of both compu-
tational power and available memory.

Around the mid-60s, it was observed that the average cost per component is nearly
inversely proportional to the number of components, for small integrated circuits, but as
more components are added, decreased yields of whole IC more than compensate for the
increased complexity, tending to raise the average cost per component. Thus, the function
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that expresses the dependence of the average price of a circuit component (transistor or
logic gate) on the number of components used, for a fixed production process, is a convex
function, so there is a minimum cost at any given time in the evolution of the technology.

The so called Moore’s law predicted that such optimal circuit size, i.e. the number of
transistor for which average unitary price reaches its minimum, doubles every year[Moore
et al., 1965]. Afterwards, the prediction was changed so that the optimal number of
components in integrated circuits double every eighteen or twenty-four months.

“The complexity for minimum component costs has increased at a rate of roughly
a factor of two per year. Certainly over the short term this rate can be expected to
continue, if not to increase. Over the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it will not remain nearly constant for at
least 10 years. That means by 1975, the number of components per integrated circuit for
minimum cost will be 65,000.”[Moore et al., 1965]

Doubling the transistor budget for integrated circuits has allowed on the one hand the
memory capacity to expand rapidly, on the other hand it has made possible to create ever
more sophisticated microprocessors. In 1968 Gordon Moore and Bob Noyce founded Intel,
short for “integrated electronics” The first commercial single-chip microprocessor, the
Intel 4004, was developed by Federico Faggin, using his silicon-gate MOS IC technology,
with Intel engineers Marcian Hoff and Stan Mazor, and Busicom engineer Masatoshi
Shima. It was a 4-bit central processing unit (CPU) released by Intel Corporation in 1971
on a 10 μn process and it was originally designed and built for Busicom’s 141-PF electronic
calculator: it was the most advanced integrated circuit (IC) design undertaken up until
then1. The Intel 4004 had 2250-2300 transistor and it operated at 108 KHz frequency.
Only one year later, Intel released the 8008 microprocessor, with 3500 transistor, still on a
10 μn process, with 8 bit registers and doubled clock. With the new 6 μn process, in 1974
Intel, which became an important chip manufacturer, released 8080 8-bit microprocessor,
with 6000 transistor and 2 MHz clock rate. His second 8-bit microprocessor became one
of the first widespread microprocessors in the world: 8080 became indeed the engine of
the Altair 8800, the first prototype “personal” computer and it was the original target
CPU for the famous CP/M operating systems. Distributed in mounting kit or already
assembled, Altair was an unexpected success, and its manufacturer, MITS, earned its
first supply contract together with Microsoft (at the time Micro-Soft), which provided
the Altair BASIC programming language.

With the rapidly increasing transistor budget, microprocessors have progressively im-
proved by increasing some crucial parameters or by adopting a plethora of increasingly
refined solutions[Hennessy and Patterson, 2011], for example:

• increasing the number (from a few to many tens or a few hundreds), flexibility (ad
hoc usage - such as accumulator, index, loop control, etc. - or general purpose) and
size of the registers (usually, power of 2, from 4 bits to 8, 16, 32, 64 bits);

• expanding Arithmetic and Logic Unit (ALU), to manipulate longer sequence of bits
(for some simple operations, such addition, subtraction, AND, OR and so on, tran-
sistor budget depends linearly on word size, i.e. the number of bits processed in one
elementary step of computation, but for complex operations, such as multiplication
and division, the budget is usually at least quadratic on word size);

• introducing pipelined execution, dividing incoming instructions execution into a
series of stages, i.e. sequential steps, to allow increasing CPU throughput, at the
cost of worst latency and virtually pipeline bubbles;

1(http://www.vintagecalculators.com/html/busicom_141-pf_and_intel_4004.html

http://www.vintagecalculators.com/html/busicom_141-pf_and_intel_4004.html
http://www.vintagecalculators.com/html/busicom_141-pf_and_intel_4004.html
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• superscalar design, using more parallel pipelines, to extract instruction level paral-
lelism, i.e. trying to execute instructions without mutual data dependency at the
same time in different (rarely perfectly symmetric) pipelines;

• Out Of Order Execution (OoOE), to allow instructions to begin execution as soon
as their operands are ready, more accurately in an order governed by the availability
of input data and physical execution units, rather than by their original order in a
program;

• Speculative Execution, to reduce the cost of conditional branch instructions using
schemes that predict the execution path of a program based on the history of branch
executions, even at the risk of having to cancel part of the work done, in case of
mis-prediction; rarely eager execution is used, a form of speculative execution where
both sides of the conditional branch are executed, than only the results from right
one are kept;

• Simultaneous multithreading (SMT), to permits multiple independent software threads
of execution to better utilize the execution resources provided;

• adding specialized units, such as:

– Memory Managment Unit (MMU), to provide the virtualization of memory
access;

– Floating-Point Unit (FPU, aka mathematical co-processor or Numeric Proces-
sor Unit), to allow the rapid execution of arithmetic operations and transcen-
dental functions with - “approximate” - real numbers (floating-point is indeed a
mechanism to encode a “good enough” subset of real numbers, with a trade-off
between range and precision; since at least the last 35 year almost all processors
adhere to the IEEE 754 format);

– special cache memories, to speed up memory access, exploiting the principles of
spatial and temporal locality of reference (multilevel cache memory hierarchies
have been gradually adopted);

– Translation Lookaside Buffers (TLB), a sort of small address-translation cache,
to accelerate virtual memory to physical memory indexing (even for TLBs,
multilevel cache memory hierarchies have been gradually adopted);

– Branch Prediction Unit (BPU), to predict the status, taker or not taken, of a
branch, i.e. to accelerate selective and iterative structures execution;

– Single Instruction Multiple Data units (SIMD), to speed up array operations,
issuing the same instruction simultaneously to several sequential elements in
an array (usually to speed up vector processing);

– Hardware Data Prefetch (to copy speculatively into the fast cache memory the
data needed before they are actually used).

1.1.1 A note on choosing x86 CPUs as a reference

In formulating concrete examples and evaluating some trends in the ICT market, I
will mainly refer to general purpose processors based on the x86 ISA conceived by In-
tel and to its 64-bit extension developed by AMD. This choice is motivated by multiple
considerations. First of all, it is the most widespread type of processor in the world,
if we take into consideration laptops, desktops, workstations, HPC (High Performance
Computing) and servers (excluding, that is, controllers and embedded processors, smart-
phones and IoT devices). Moreover, this is probably the longest-running CPU family in
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history, as the progenitor, i8086, was introduced in 1978: this ineluctably also entails
deleterious consequences, since a series of compromises that were reasonable four decades
ago, when the transistor budget was a few tens of thousands of elements (for example,
the scarcity of architectural registers, variable-length instructions op-codes, instructions
that combine both access to memory and logical-arithmetic operations), are much less
appropriate in the present days, when it is possible to economically make chips with a
few billion transistors. Anyway, in the last twenty-five years, almost all x86 CPUs un-
couple an in order front-end that decodes x86 instructions and a parallel, out-of-order
back-end, introducing many registers for renaming operations, mitigating the defects due
to the age of the ISA (indeed, some aspects, such as higher code density, are potentially
transformed into advantages, because they improve the cache hit percentage). x86 CPUs
first experienced widespread use for the nascent Personal Computer market, dominated
by IBM and compatible devices, but starting in the second half of the nineties, the x86
CPUs have progressively assaulted and they gradually replaced other architectures in the
upper sectors of the market, leading in fact to the end of the development of some com-
peting processor families, mainly of type RISC (Reduced Instruction Set Computing), or
relegating them to increasingly niche markets.

For example, during the 80s, Motorola 68k CISC (Complex Instruction Set Comput-
ing) CPUs were excellent products and they were widely used in multiple Amiga and
Macintosh computers, but they could not keep up the pace of development of Intel CPUs,
so in 1991 Motorola, Apple (its best client) and IBM created an alliance to develop
PowerPC (Performance Optimization With Enhanced RISC – Performance Computing),
which initially included 32-bit microprocessors, later evolved into 64-bit solutions. In the
early 1990s, IBM wanted indeed to free itself from the dependence on the Intel-Microsoft
(“Wintel”) duopoly for the supply of CPUs and operating systems or, at the very least, to
differentiate its product offerings; in fact, in addition to developing the PowerPC project,
IBM invested in the OS/2 operating system (as an alternative to Microsoft DOS and
Windows for its PC) and in the manufacture of x86 CPUs designed by Cyrix (a fab-less
independent developer).

Anyway, after a dozen years of profitable use of PowerPC CPU in Apple systems
and after having repeatedly supported the virtues of this architecture (moreover, in 2004
Steve Jobs, at that time CEO and guru of Apple, during a presentation event with
strong media resonance, ridiculed the Intel CPUs, declaring that he would never use
one of them, in a video that had a viral spread), in 2005 Apple announced it would
no longer use PowerPC processors in its Macintosh computers and it decided to adopt
only Intel processors, starting in 2006 with Yonah and Merom CPUs, while roughly in
the same period IBM sold its Personal Computing Division to the Chinese Lenovo (that
acquisition was completed on May 1, 2005). Even the PowerPC adoption as a gaming
console CPU has proved ephemeral, involving only one generation of Xbox, the second
one (Xbox 360; the first one and all subsequent models are x86 based, instead), only
one generation of Playstation (the third, the following are all x86) and three Nintendo’s
generations (GameCube, Wii and Wii U), before Japanese console makers moved to ARM
solutions for the Switch console. So, to the present day, the PowerPC survives only in
the embedded sector and in some very high-end IBM POWER platforms.

Alpha was instead a 64-bit RISC CPU family developed by Digital Equipment Corpo-
ration (DEC); Alpha CPUs were intended to be 64-bit high-performance design from the
inception and they were used in a variety of workstations and servers. The first version,
the Alpha 21064 (EV4) was introduced in November 1992 at 750 nm processing node,
while the Alpha 21264 (EV6) was a valuable source of inspiration for AMD’s K7 project;
in fact, the first AMD Athlon in many ways resembled a sort of Alpha EV6 with the addi-
tion of a front-end that allowed to decode the x86 instructions into RISC-like Macro-ops
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sequences; even the interconnection bus used by K7 and derivatives was exactly the EV6
bus from DEC, obtained under license from AMD. But in 1998 Compaq, a very important
Intel customer (for example, in September 1986, Compaq released Deskpro 386, the first
386 PC, beating IBM by 7 months), bought most parts of DEC, including the Alpha
architecture, which was phased out in favor of the forthcoming Hewlett-Packard/Intel
Merced/Itanium architecture. In 2001 Intel bought all Alpha intellectual property, while
later HP purchased Compaq later that same year, so Alpha development was killed, al-
though the sales to the existing customer base continued until 2007.

SPARC (Scalable Processor Architecture) is a RISC CPU family originally developed
by Sun Microsystems (later acquired by Oracle) and Fujitsu. The first implementation
of the original 32-bit architecture (SPARC V7) was released already in 1987. SPARC
V9, released in 1993, introduced a 64-bit architecture and was first released in Sun’s
UltraSPARC processors in 1995. In 2006, Sun released UltraSPARC T1, based on chip
multi-threading (CMT) and massive multi-core: the so-called “Niagara” project pursued
Throughput Computing and it provided indeed a “torrent” of hardware threads, with an
octo-core single die CPU, where each core had 4 hardware threads, for a total of 32 logical
processors, at a time when the first dual core CPUs were beginning to spread into the
PC world. The latest commercial high-end SPARC processors are Fujitsu’s SPARC64
XII (introduced in 2017 for its SPARC M12 server) and Oracle’s SPARC M8 introduced
in September 2017 for its high-end servers. Oracle claimed that it terminated SPARC
design after the completion of the M8.

In the mid-80s, Hewlett Packard started Spectrum program, a project for a 32 bit RISC
architecture, that was sold as Precision Architecture RISC (PA-RISC). Albeit in 1996 PA-
RISC 2.0 introduced 64 bits support and it also added fused multiply–add instructions,
HP had meanwhile entered into an agreement with Intel for the Merced project. Though
HP stopped selling PA-RISC-based HP 9000 systems at the end of 2008, in the last decade
of his commercial life its development has been very slow and the priority for HP was the
Merced platform.

In 1989, HP researchers started indeed to investigate a new architecture that can al-
low the processor to execute multiple instructions in each clock cycle, exploiting multiple
execution units and issue ports. To simplify control logic and reduce energy consumption
(by eliminating the need for complex run-time scheduling circuitry), HP chose a form
of very long instruction word (VLIW) architecture, later named Explicitly Parallel In-
struction Computing (EPIC). With EPIC, Instruction Level Parallelism is exploited by
the compiler, that determines in advance which instructions can be executed at the same
time, so the microprocessor’s transistor budget is basically invested entirely in execution
units, registers and caches, enabling deeper inspection of the code at compile time to
identify additional opportunities for parallel execution with the respect to any form of
hardware scheduling and out of order window. In 1994 Intel joined HP to develop this
EPIC paradigm under the Merced project, which conducted to IA-64 architecture. HP
and Intel initiated a large joint development effort with a goal of delivering the first prod-
uct, Merced, in 1998, with the ambitious goal of quickly conquering important positions
in the high-end server and workstation sectors, as well as High Performance Computing,
and of reaching high-end PCs within 5 years, and then became a replacement for the
original x86 architecture. Indeed, at some point, Intel boldly decided to rename Merced
project into P7, to indicate that the future of the x86 microprocessors would consist of a
conversion to the new EPIC architecture. HP and Intel were so convincing that Compaq
and Silicon Graphics decided to abandon further development of the Alpha and MIPS
architectures respectively in favor of migrating to IA-64, but when Itanium was released
in June 2001 it was far below expectations: only a few thousand systems using the orig-
inal Merced Itanium processor were sold, due to relatively poor performance, high cost
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and limited software availability. One year later, the Itanium 2 was released and it was
marketed for enterprise servers rather than for the whole gamut of high-end computing.
Despite huge and protracted economic efforts, Itanium has never been a high-volume
product for Intel; the last attempt was to develop a single interconnection bus for both
x86 and Itanium (CSI, i.e. Common System Interface, later named QPI, Quick Path
Interconnect) multi-socket systems, in the hope of reducing the development costs of the
motherboards for Itanium, but in fact this product line has substantially extinct after
2010.

1.1.2 Evaluating CPU performance

In the case of a single central processing unit, i.e. a system with only a single core mi-
croprocessor, in a first approximation the performances can be considered corresponding
to the product of the operating frequency, or how many execution cycles can be carried
out in a second, and the average amount of actual work done in a clock cycle, represented
by the IPC (Instructions Per Second):

Performance = IPC × Frequency

For many years, operating frequency of a CPU was a fixed value, then at a certain
point more and more sophisticated arrangements were developed to vary the frequency
according to the expected workload. The first version of Intel SpeedStep Technology
acted only on products intended for laptops and it allowed the switching between only two
modes: low consumption for battery operation, high frequency if connected to the power
supply. Later, more advanced technologies, such as AMD PowerNow!, AMD Cool’n’Quiet,
Intel Enhanced SpeedStep adopted increasingly sophisticated dynamic frequency scaling
strategies to reduce consumption even on desktop systems and in general to modulate
operating frequencies and power voltages dynamically depending on the workload. In
the last decade, newer solutions have also been adopted to increase operating frequencies
beyond the base value in a controlled, reliable and warranted way.

Anyway, for a long time, the operating frequency, which was precisely a fixed and
carefully determined CPU parameter, obtained the greatest emphasis on performance
evaluation. This choice also depends on the fact that the IPC does not assume a constant
value over time and its average value also cannot in general be accurately estimated, as
it depends on a plethora of factors. For example, in the case of a modern superscalar
CPU, although in theory it is possible to achieve an IPC of 4 or more instructions per
cycle in optimal conditions (such as small memory footprint for high percentage of cache
and TLB hits, regular memory access patterns to “cooperate” well with hardware data
prefetcher, a small jump density to not put too much effort on the branch prediction unit
and to pay small penalities for mispredicted branches, and so on), it is not uncommon to
find use cases in which the average IPC does not even reach 0.5.

Once a specific hardware configuration has been fixed, the IPC varies according to
the exact instructions used, therefore it is possible to evaluate different average IPC
values not just by tackling totally different software but even with the aim of solving a
specific problem, for example by changing the solving algorithm, using a different compiler,
changing the compiler’s options or running the software on a different operating system.

Given how extremely complicated it is to evaluate “absolute” mean IPC for a CPU or
platform, it can be emphasized that it is very difficult to even evaluate a sort of “relative”
IPC: in general, between two CPUs based on different ISAs, different microarchitectures
or even simply different platforms (motherboard, memory subsystem, graphic section,
mass storage compartment, etc.), any attempt to compare IPCs should be evaluated with
extreme caution. Even with the same ISA and using identical, or very similar, platforms,
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the ratio between IPCs of two CPUs with different microarchitecture is generally not
constant, furthermore often the order relationship is not invariant either, in the sense
that a microarchitecture can offer a higher IPC with certain software and the other,
instead, is the best with different workloads.

Moreover, if a specific benchmark has been selected and a very precise hardware and
software platform has been set, the following considerations can be found by modifying
only the microprocessor:

• if a CPU X is replaced by a CPU Y of the same microarchitecture, with the only
difference of an increase in operating frequency in favor of the latter, the average
IPC tends to decrease, because of factors such as higher memory access latency
(measured in clock cycles) and lower average bandwidth for clock cycle;

• if a CPU X is replaced by a CPU Y, of the same microarchitecture or an extremely
similar one (for example, a “die shrink”), in which the only or main difference is
the cache memory hierarchy, if the newer product has a larger cache but with a
higher (so worse) latency, there may be a slight decrease in the average IPC in the
processing of small datasets and an increase with large datasets;

• with identical chips (and same active features), the adoption of a faster connection
with the rest of the system can lead to a significant increase in IPC, at least for cer-
tain workloads (for example, there were three versions of the Pentium 4 Northwood
at 2.8 GHz, denoted by the suffixes A, B and C, respectively with Fronst Side Bus
- FSB - at 400, 533 and 800 MHz, each one faster than the previous one).

In order to assess the relative performance of computer systems or CPUs, because
is very difficult to predict their performance simply by looking at their specifications
(especially since they can be the result of divergent choices and different compromises),
special programs were developed that allowed comparison of different architectures: the
benchmarks.

Maybe one of the first benchmark was the Whetstone, a synthetic benchmark for
evaluating the performance of scientific computers that was first written in Algol 60
in 1972 and primarily measures the floating-point arithmetic performance [Curnow and
Wichmann, 1976]. Usually it reports performance profile using the Millions of Whetstone
Instructions Per Second (MWIPS) metric. In 1984, choosing the name as a pun on
Whetstone, Dhrystone was developed by Reinhold P. Weicker as a synthetic computing
benchmark, originally written in Ada, to evaluate system integer performance (eventually
with over-representation of string operations). It grew to become representative of general
processor performance, expressed as the number of Dhrystones per second (the number
of iterations of the main code loop per second).

Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation
that aims to “produce, establish, maintain and endorse a standardized set” of perfor-
mance benchmarks for computers that are reasonably scientific, unbiased, meaningful
and relevant. It was founded in 1988 and it released its first set of benchmarks, the SPEC
Benchmark Suite for UNIX Systems version 1.0, which consisted of 10 computation-
intensive benchmark programs, the same year. This suite consisted of 10 programs which
could be run and measured to produce three scores: integer SPECmark (later renamed to
SPECint and finally to SPECint89), floating-point SPECmark (later renamed as SPECfp
and afterwards SPECfp89), and overall SPECmark. In January 1992 SPEC released up-
dated benchmark suites, SPECint92 and SPECfp92 (dropping a combined index), each
with a greater number of programs than its predecessor, and each using larger amounts
of code and larger datasets.
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Figure 1.1: SPEC CPU Suite Growth across all of its iterations.

SPEC distributes source code files to users wanting to test their systems. These files
are written in a standard programming language, which is then compiled for each par-
ticular CPU architecture and operating system. Thus, the performance measured is that
of the CPU, RAM, and compiler, and does not test I/O, networking, or graphics. Two
metrics are reported for a particular benchmark, “base” and “peak”: allowed compiler
options account for the difference between the two numbers. In 1992, SPEC92 (subse-
quently known as SPEC CPU92) debuts with 20 benchmark programs and up to 10.2
billion dynamic instruction count. With the release of this suite, the Baseline rule was
introduced; in which vendors are no longer allowed to optimize the compilation of the
code without reporting it.

It was followed by CPU95, CPU2000, and CPU2006. The latest standard is SPEC
CPU_2017 and consists of SPECspeed and SPECrate: the first data is used for comparing
time for a computer to complete single tasks, while the second one measure the throughput
or work per unit of time. 1995 SPEC CPU95 goes live, with a SPARCstation 10 model
40 as its reference machine and

2017 SPEC releases SPEC CPU2017, an all-new version of its flagship performance
evaluation suite, with 43 individual benchmarks organized into four categories. The
SPECspeed 2017 Integer and SPECspeed 2017 Floating Point suites are . The SPECrate
2017 Integer and SPECrate 2017 Floating Point suites

Intel Comparative Microprocessor Performance (iCOMP) was an index published by
Intel and it was used to measure the relative performance of its microprocessors, as in
Fig. 1.2; it allowed the customers to compare the performance of Intel’s various processor
among various families and models using a simple, relative measure of microprocessor
performance. Introduced in 1992, it compared CPU from 386 SX at 16 MHz processors
to the P54C Pentium, choosing a 486 SX at 25 MHz as an arbitrary reference and giving it
the conventional score 100. iComp was based on a mix of 16 and 32 bit benchmarks, with
emphasis on 16-bit tests, in accordance with the fact that most of the software actually
in use was just 16-bit. The overall score was indeed determined on 70% of 16-bit tests
and 30% of 32-bit tests: in more detail, 68% of the total score was assigned by virtue of
PC Bench 7.01, released by Ziff Davis Labs to evaluate traditional business applications
(at 16-bit), 2% for 16-bit Whetsone, 25% for SPECint92 and 5% for SPECfp92 (the last
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two were the 32-bit tests). iComp index was useful to show that a processor of a more
advanced architecture could outperform a rival (a 486 compared to a 386, a Pentium
compared to a 486) even operating at lower frequencies: for example, 486 SX at only 20
MHz could outperform 386 DX at 33 MHz (and almost reach it at just 16 MHz), Pentium
at 60 MHz could exceed 486 DX4 at 100 MHz. Converserly, it could show significant
differences at the same frequency: at 25 MHz, 386 SX scored 39 points, 386 DX 49, 486
SX 100 and 486 DX 122 points; at 100 MHz, 486 DX4 scored 435 points, while Pentium
scored 815.

iCOMP was updated twice; version 2.0 was introduced in 1996, it used only 32-bit
benchmarks and it chose the Pentium 120 as baseline, because the Pentium 120 scored
1000 in iCOMP 1.0; it computed the weighted geometric mean of a processor’s relative
performance on each of the component benchmarks compared to the chosen base processor
and multiplied by 100. The weights were 40% for CPUmark32 (to represent traditional
business applications, such as Microsoft Office and Lotus Smart Suite), 15% Norton SI-32
(to evaluate high-end applications, such as Adobe Photoshop and Autodesk’s Autocad),
20% for SPECint_base95 (general purpose integer computation), 5% SPECfp_base95
(general purpose floating-point calculations), and 20% for Intel Media Benchmark. iComp
2.0 upgraded support from SPEC92 to SPEC95, which included 18 benchmark programs
with up to 520.4 billion dynamic instruction count. Moreover, it presented higher focus
on FPU performance, because competitors (AMD, Cyrix) FPU performance were inferior
to Intel’s, and on new MMX instructions, as it allowed the new Pentium MMX and
Pentium II to stand out against its predecessors Pentium and Pentium Pro, as well as
competing products, which supported MMX instructions with severely reduced speed.
According to Intel, at that time there was no industry standard multimedia benchmark
which measures video, audio, imaging, and 3D performance, so Intel developed the Media
Benchmar specifically to illustrate the advantages of the new MMX instructions, so much
so that it was the only program in the iComp 2.0 suite to use these instructions; the
overall score of the Media Benchmark was calculated at 40% for Video (video playback
with MPEG1 decompression), 30% for 3D Geometry (a mix of Direct3D and OpenGL
3D geometry computations), 25% Audio (decompression and playback of MPEG1 stereo
audio clip, but event sample rate conversion, special effects and stereo mixing), 5% Image
(applications of digital filters on 24-bit “true coloro” bitmap images). In Tab. 1.1, a
comparison among three 200 MHz Intel CPUs is shown: in Media Benchmark, the most
significant increase in performance offered by MMX instructions was found in the Image
section (+ 370%, P55C vs P54C), to which however only 5% of the sub-score was assigned;
in the Audio section there was the second improvement (+ 118%„ P55C vs P54C), while
in Video section there was a + 74% improvement; 3D Geometry requires floating-point
calculations and it is unaffected by MMX instruction set, while P6 beefier FPU conquered
+36.4%. Overall, the P55C outperformed the P54C by 28.2% (identical advantage in
SPECint_base95), due to the doubling of size and set associativity of the L1 cache, a
new pipeline balance, enhanced branch prediction and deeper write buffers.

The last version of iCOMP was released in 1999; iComp 3.0 abandoned the tradition of
using conventional SPEC tests (SPECint and SPECfp), but it used six benchmarks: Win-
tune 98 Advanced CPU Integer test (20%), CPUmark 99 (20%), than 3DWinBench 99-3D
Lighting and Transformation test (20%), MultimediaMark 99 (25%), Jmark 2.0 Proces-
sor Test (10%), and WinBench 99-FPU WinMark (5%). These benchmarks were selected
to help give a better rating of the Intel Pentium 3 processors that included additional
“multimedia” instructions, i.e. ISSE: indeed, at the same 450 MHz frequency, Pentium
III Katmai overtook Pentium II Deschutes with 1500 points versus 1240 (+21%), with
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Benchmark P54C P55C P6
iComp 2.0 142 182 220
CPUmark32 382 423 553
Norton SI-32 43.8 56.7 90.0

SPECint_base95 5.00 6.41 8.20
SPECfp_base95 2.98 3.90 5.54

Intel Media Benchmark 153.06 253.08 196.29
Video 153.42 267.23 160.97

3D Geometry 155.69 160.19 212.41
Audio 148.50 323.81 239.27

Image Processing 157.77 742.65 222.04

Table 1.1: Comparison of three 350nm Intel CPU at 200MHz: P54C (Pentium), P55C
(Pentium MMX), P6 (Pentium Pro).

the same cache memory hierarchy, FSB and any other parameter. Officially, the selection
of tests had to reflect the increasing use of 3D, multimedia, and Internet technology and
software, so the biggest weight was assigned to the MultimediaMark 99, which measured
performance of audio, video, imaging, educational, creativity and numerous Internet ap-
plications. Anyway, the aggregate value of Wintune 98 Advanced CPU Integer test and
CPUmark 99 was 40%: they were used as indicative of productivity applications (32-bit
integer performance). An important addition to this iteration of icomp index was Jmark,
a benchmark that measured performance of Java code, which was increasingly becoming
a widely accepted technology in the Internet; Java applications are typically compiled to
an intermediate representation called Java bytecode, instead of directly to architecture-
specific machine code, so this bytecode can run on any Java virtual machine (JVM)
regardless of the underlying computer architecture and this aspect is particularly useful
for client-server web applications. The Java programming language was indeed spread-
ing rapidly, because it is a general-purpose object-oriented programming language that
is intended from its conception to let application developers write once, run anywhere
(WORA), because it is architecture-neutral and portable since Java Runtime Environ-
ment (JRE) are provided for free and constantly updated on popular platforms. While
the use of bytecode makes application porting simple, the overhead of interpreting byte-
code into machine language instructions slow down execution speed with to respect to an
optimized native executable. So, since the early stage of Java development Just-in-time
(JIT) compilers were developed to compile byte-codes to machine code during runtime;
JMark showed even the efficiency of the byte-code interpreter of Java enviroment.

Pentium II Deschutes at 350MHz was chosen as reference point (its index was 1000)
because it was the entry level (i.e. slower) among FSB100 CPUs supported by Seattle
chipset, alias 440BX; iComp 3.0 was computed by calculating the weighted geometric
mean of a processor’s relative performance on each of the component benchmarks com-
pared to the base CPU. As soon as Intel introduced the Pentium 4, Intel switched to use
only frequency for performance classification.

Usually, CPU manufacturers who could not reach the higher frequencies, tried to make
up for this lack by introducing some alternative metrics, although aware that it could not
receive an ubiquitous diffusion among potential buyers and users.

The PR (Performance Rating, P-Rating or Pentium-rating) system was a figure of
merit developed by AMD, Cyrix, IBM Microelectronics and SGS-Thomson as a method
of comparing their x86 processors to those of rival Intel. AMD was lagging behind in
the development of its fifth generation processor, the K5, so it introduced an enhanced
486 at high frequency a stop-gap product; this 486 processor at 133 MHz was sold as



INTRODUCTION 16

5x86-PR75, because it was as fast as a Pentium running at 75 MHz, according to Ziff-
Davis Winstone 96 for Windows 95 benchmark, which run 13 applications (mostly 16-
bit) in four categories: Business Graphics/DTP (Adobe Pagemaker 5.0a, CorelDRAW!
5.02E2, PowerPoint 4.0c), Database (Borland dBASE 5.0, Borland Paradox 5.0, Access
2.0c, Works 3.0b), Spreadsheet (Lotus 1-2-3 Release 5, Excel 5.0c, Works 3.0b, Novell
Quattro Pro 6.01), Word Processing (Lotus Ami Pro 3.1, Word 6.0c, Works 3.0b, Novell
WordPerfect 6.1). Similarly, Cyrix, which was lagging behind in the development of its
M1 project (commercially called 6x86), developed a sort of simplified version with 486
bus, sold under the name 5x86. Cyrix 5x86 at 120 MHz scored 47.1 points in Winstone
96 versus 45.2 points of Pentium 90, so was solded as 5x86-PR90.

While in these first uses in 1995 the PR index served to compare processors that needed
higher operating frequencies to the Pentium, starting from 1996, the AMD K5 and Cyrix
6x86 consistently outperformed higher-frequency Pentium processors on Winstone 96, so
both manufactures PR-rated the chips one or two Pentium speed grades higher than clock
speed. In 1997, after Pentium II introduction, a PR2 rating system was introduced, but
used only by Cyrix for its M2 processor (6x86MX, later renamed MII). PR rating has
been heavily criticized for using only business application, leaving out completely high-end
applications, games, audio and video processing and so on.

AMD revived it in 2001 with the introduction of its Athlon XP line of processors. In re-
action to the consumers’ misconception, AMD reinstated the PR to compare their Athlon
XP microprocessors. AMD made sure to advertise the PR number of its microprocessors
rather than their raw clock speeds believing that customers would compare the PR of
AMD’s processors to the clock speed of Intel’s processors. The PR number was originally
believed to show the clock speed (in megahertz) of an equivalent Pentium 4 processor,
but this was never confirmed by AMD. As part of its marketing, AMD even made sure
that motherboard manufacturers conspicuously showed the PR number of the micropro-
cessor in the motherboards’ POST and not include the processors’ clock speeds anywhere
except within the BIOS Between 2001 and 2003, Intel and AMD made few changes to the
designs of their processors. Most performance increases were created by raising the pro-
cessor’s clock speed rather than improving the microprocessor’s core. Around mid-2004,
Intel encountered serious problems in increasing their Pentium 4’s clock speed beyond 3.4
GHz because of the enormous amount of heat generated by the already hot Prescott core
processor when working at higher clock speeds. Quickly switching transistors lose more
leakage power: power leaking became a serious problem at 90 nm. A CPU that needs to
run at very high frequency is limited by wire delays. The result is many repeaters and
extra pipelines stages just to get the signal across the die. More pipeline stages and more
repeaters mean more logic, more power. SOI – Silicon on Insulator - has made process
technology even more complex but it improved the insulation of the gate and thus reduces
leakage currents; anyway, the most spectacular reduction of leakage came from “high-k”
materials, which replaced the previously used silicon dioxide gate dielectric. In response,
Intel started exploring ways to improve the performance of its microprocessors in ways
other than raising the clock speeds of the processors such as increasing the sizes of the
processors’ caches, using a P6 microarchitecture descendant in Pentium M CPUs and
beyond, and using multiple processing cores in its processors. Because of the philosophy
change, Intel now faces the challenge of making consumers compare its processors based
on the PR system rather than raw clock speed, ironically a problem which Intel created
itself. Some analysts regard the PR scheme (and a raw MHz / GHz rating) as nothing
more than a marketing tactic, rather than as a useful measure of CPU performance.

Power = kCV 2Af

In other words, dissipated power increases quadratically with the CPU’s core voltage
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Figure 1.2: iComp 1.0 performance for Intel CPU from 386SX at 16 MHz up to Pentium
P54C at 133 MHz.
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Figure 1.3: Leakage Power Estimated by Intel in 2004 from 250 to 65 nm (70 nm reported).

(V), but it is linear with the effective capacitance (C), activity(A) and frequency(f).
Effective capacitance depends essentially on lithographic process, transistor count and
circuit layout, while k denotes a proportionality coefficient. Activity is the factor that is
influenced by the software used; the more intensive the software, the higher the amount
of the time that the transistors are active; a higher IPC can contribute to increase the
activity, but a high activity is not necessarily associated with a high IPC: in this regard,
the replay mechanism for NetBurst microprocessors proves almost the exact opposite.

Of course, as CPUs extract more ILP and have deeper pipelines, they become more
complex and use more transistors. Clock gating logic only activate the clocks selectively
in a Functional Unit Block when it needs to work, so it’s a power-saving technique im-
plemented extensively.

1.1.3 Megahertz Myth (around 1980-2004)

Moreover, for many decades, the technological development and the progressive minia-
turization of transistors has allowed to raise the microprocessors’ operating frequencies
with relative simplicity, from under a MHz to a few GHz, so the fundamental problem of
raw computer power was slowly being overcome with such a rapid growth.

That extremely rapid increase in operating frequencies involved the spread of the
so-called “Megahertz myth”, the misconception of only using clock rate to evaluate mi-
croprocessor and, by extension, the whole digital computer’s performance.

This myth arose because of the simplicity inherent in the adoption of a naive met-
ric based on a single parameter, based on the idea that higher frequencies always cor-
responded to a higher performance, so clock rate was promoted in advertising and by
enthusiasts without taking into account other factors.

While frequencies are a valid way of comparing the performance of different micropro-
cessor, all the rest being equal, including details of the computer’s configuration, other
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Figure 1.4: Subthreshold Leakage Power Estimated by Intel in 2005 from 250 to 45 nm.

factors such as instruction set, amount of execution units, pipeline depth, cache hierar-
chy, branch prediction and memory subsystem can greatly affect the performance when
considering microprocessors of different “families” and or generations.

Because for some decades clock rates speed up seemed correlated, more or less, to
transistor doubling (really with migration to new process node), frequently there has
been overlap or confusion between Moore’s law and MHz “race”, a sort of corollary of
MHz myth, in the sense that competition between different microprocessor manufacturers
placed the emphasis on this specific feature.

At the start of 2004, Intel decided to move towards a new “MHz less” model name,
on the one hand due to the difficulties in increasing frequency encountered by Prescott,
on the other to emphasize the virtues of Dothan (second generation Pentium M).

For example, at the beginning of the year 2000 there was a bitter battle between
AMD, with the Athlon processor family, and Intel, with the Pentium III, both at 180 nm
process node, to reach the psychological barrier of 1 GHz. In the end, AMD announced
its Athlon 1GHz on the March, 6th, 2000 and Intel ran for cover two days later. At
that specific juncture, however, while AMD was able to supply the market with CPUs at
800, 850, 900 and 950 MHz, in addition to the flagship 1 GHz model, Intel was able to
distribute a limited number of CPUs at 1 GHz, while ordinary supplies were limited to
800 MHz.

It is important to note that although two antithetical approaches, braniacs (focused
on high-IPC - instruction per cycle) and speed demon (striving for high clock speeds),
have long been faced in the development of digital computer processors, at one point the
MHz Myth was so widespread as to induce Intel to develop a microarchitecture, called
Netburst, which he advanced the achievement of higher frequencies at any cost. Starting
from an initial design, progressively better IC processes usually have greatly improved
both the IPC and the cycle time of microprocessors, leading some vendors to claim to
deliver the best of both worlds, braniacs and speed demon. For example, Intel Pentium
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release date process (nm) Product Freq. (MHz)
22/03/1993 800 Pentium P5 67
07/03/1994 600 Pentium P54C 100
27/03/1995 350 Pentium P54CQS 120
01/06/1995 350 Pentium P54C 133
08/01/1997 350 Pentium P55C 200
02/06/1997 350 Pentium P55C 233
01/11/1995 350 Pentium P6 200
07/05/1997 350 Pentium II Klamath 300
26/01/1998 250 Pentium II Deschutes 333
15/04/1998 250 Pentium II Deschutes 400
24/08/1998 250 Pentium II Deschutes 450
26/02/1999 250 Pentium III Katmai 500
17/05/1999 250 Pentium III Katmai 550
02/08/1999 250 Pentium III Katmai 600
25/10/1999 180 Pentium III Copermine 733
20/12/1999 180 Pentium III Copermine 800
08/03/2000 180 Pentium III Copermine 1000
20/11/2000 180 Pentium 4 Willamette 1500
23/04/2001 180 Pentium 4 Willamette 1700
02/07/2001 180 Pentium 4 Willamette 1800
27/08/2001 180 Pentium 4 Willamette 2000
07/01/2002 130 Pentium 4 Northwood 2200
02/04/2002 130 Pentium 4 Northwood 2400
25/08/2002 130 Pentium 4 Northwood 2800
12/11/2002 130 Pentium 4 Northwood 3067
14/04/2003 130 Pentium 4 Northwood 3000
23/06/2003 130 Pentium 4 Northwood 3200
02/02/2004 130 Pentium 4 Northwood 3400
21/06/2004 90 Pentium 4 Prescott 3600
12/11/2004 90 Pentium 4 Prescott 3800

Table 1.2: Intel CPU release dates during the so called MHz Race. Intel was very ag-
gressive in releasing processors operating at higher frequencies as quickly as possible,
regardless of other factors, such as increased energy consumption or decreased average
IPC

reached both a significantly higher IPC than i80486 both up to double operative frequency.
Anyway, the “true” speed demon philosophy dictate that a processor’s cycle time should
be the minimum required to cycle an ALU and pass the result to the next instruction,
at a fixed process node, rather than exploit only IC process gains. In the case of the
Pentium 4 Willamette, based precisely on the Netburst microarchitecture, Intel decided
not only to substantially double the length of the typical execution pipeline, but also
adopted special fast-ALUs capable of operating at a frequency twice that of the rest of
the microprocessor, breaking down the execution of the most common (and simple, such
as several types of addition and subtraction) 32-bit instructions into a pair of just 16 bits
(a further half cycle is necessary to update the status register, for example to take into
account any carry or borrow).

In Tab. 1.2 e in Fig.1.5, the concrete implementation of the MHz Myth is shown in
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Figure 1.5: MHz Race in action: fastest clock speed (in MHz) for Intel CPU for more
than a decade, from 1993 to 2003 (and the subsequent slowdown). The cross data points
correspond to the values in Tab. 1.2. The dashed line shows the exponential trend
obtained through the least squares method. The dotted line, on the other hand, represents
the “average” exponential.

an exemplary way: there is an exponential growth in operating frequency over a period
of a dozen years. The dashed line shows the exponential trend obtained through the
least squares method: for 2005 it contemplates exceeding the 5 GHz threshold, in line
with the expectations that Intel and the market had for the Prescott and Tejas CPUs.
It is characterized by a time constant τ = 656.66days = 1.8years. The dotted line,
on the other hand, represents the “average” exponential: it is simply the exponential
curve that passes through the first and last of the data points taken into consideration,
that is, showing the expected rhythm for a constant cadence of the frequency increases.
It is characterized by a time constant τ = 730.04days = 2.0years. Therefore, there is a
doubling of operating frequency with a substantially constant rate, about every two years,
over a time span of a dozen years. In Fig.1.5, it can be found that both exponential curves
underestimate the rapidity of growth in operating frequency between the end of 2000 and
the beginning of 2003: this is due to the introduction of the Netburst microarchitecture,
with its hyperpipeline. By adhering to the “speed daemon” design paradigm, the aim was
to increase frequency at any cost, even at the expense of IPC and energy consumption.
“While architectural enhancements are important, Intel intends to continue its lead in raw
speed [i.e. frequency]. Otellini demonstrated a new high-frequency mark for processors,
running a Pentium 4 processor at 4.7 GHz” (Intel press release after IDF Fall 20022)
(Otellini was executive vice president and general manager of the Intel Architecture Group
and in 2002 he was elected to the board of directors and became president and Chief
Operating Officer at the company). Later, Prescott’s data point are instead under the
least squares exponential curve, because the introduction of a new lithographic process
(from 130 to 90 nm) and the 55% increase in the hyperpipeline (from 20 to 31 stages) did
not produce the desired improvements in terms of frequency. Although Intel had placed

2https://www.anandtech.com/show/1611

https://www.anandtech.com/show/1611
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much emphasis in 2001 in highlighting that it took less than 18 months, after the 1 GHz
milestone, to reach the 2 GHz mark, in spite of the fact during the IDF 2002 it made very
bold statements, it became overly complicated to reach operating frequencies. “What you
have seen is a public demonstration of 4 GHz silicon straight off our manufacturing line.
We have positive indications to be able to take Netburst to the 10 GHz space” (IDF Spring
20023). Instead, the ambitious Tejas project was officially canceled on May, 7th 2004, the
planned 4GHz Prescott was erased also and it took about 10 years for an Intel CPU to
reach the 4 GHz milestone. To pursue Moore’s law and to increase overall computing
power, Intel started the multi-core era: by cramming two complete computational cores
into a single package, then an increasing number of cores, to improve performance in
multi-user or multi-tasking environments or with multi-thread applications.

In Tab. 1.3 e in Fig.1.6, the frequency slowdown during recent multicore era is showed.
Despite the awareness of a certain amount of arbitrariness, it was considered reasonable
to select, at each major release of new CPUs destined to the PC and HEDT (High-
End Desktop) market, the CPU with the maximum operating frequency (observing the
maximum frequency in turbo mode for a single active core, possibly for the best core in
the case of CPUs that support Turbo 3.0 mode). The first dual core CPUs were based on
the Netburst microarchitecture and could operate at frequencies close to 4 GHz, but with
the transition to the Merom / Conroe microarchitecture the operating frequencies were
drastically reduced, so in Fig.1.6 I prepared two least squares regression lines: the dotted
line was computed using all data points in Tab. 1.3, while dashed line was calculated
excluding Netburst processors (Pentium 4, Pentium D and Extreme Edition). It seems
evident from the graph that the growth of the maximum frequency in the last fifteen years
follows definitely a linear trend, with a relatively modest slope. In fact, evaluating the
overall CPU portfolio, there is an increase from 3.8 GHz (Pentium 4 Prescott, 12/11/2004)
to 5.0 GHz (Core i7 8086K Coffee Lake, 08/06/2018), i.e. by 31.6 % in fourteen years, in
stark contrast to exponential growth with a doubling of frequency every 18-24 months.
Even excluding the parenthesis of products based on the NetBurst microarchitecture,
over a dozen years there has been a 70.5% increase in frequency since the the Core 2 Duo
Conroe X6800 release at 2933 MHz.

1.1.4 Multi core era (around 2005-nowadays)

Hyperthreading [Akkary and Driscoll, 1998] Turbo Mode Intel Dynamic Acceleration
(IDA) More cores only helps users workloads that scale across multiple cores, or gives an
opportunity for more work at once. There also has to be an interconnect to feed those
cores, which scales out the power requirements. Cores doesn’t always help everyone, but
it can be one of the easier ways to scale out certain types of performance.

1.1.5 Slowdown of Moore’s Law

The doubling of components in integrated circuits has already started to falter, thanks
both to increasing difficulty in developing new lithographic processes and to the heat that
is unavoidably generated when more and more silicon circuitry is jammed into the same
small area.

Over the last few years, there have been some crucial events that have shown the
difficulty in the progress of production processes:

3https://www.anandtech.com/show/1611

https://www.anandtech.com/show/1611
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release date (nm) cores/thr. Product Freq. (MHz)
21/02/2005 90 1/2 Pentium 4 Prescott 2M EE 3733
18/04/2005 90 2/4 Pentium XE Smithfield 3200
12/06/2005 90 1/2 Pentium 4 Prescott 571 3800
14/11/2005 90 1/2 Pentium 4 Presctott 2M 672 3800
27/12/2005 65 2/4 Pentium XE Presler 3466
05/01/2006 65 1/2 Pentium 4 Cedar Mill 661 3600
22/03/2006 65 2/4 Pentium XE Presler 3733
27/07/2006 65 2/2 Core 2 Duo Conroe X6800 2933
16/07/2007 65 2/2 Core 2 Duo Conroe E6850 3000
07/01/2008 45 2/2 Core 2 Duo Wolfdale E8500 3167
10/08/2008 45 2/2 Core 2 Duo Wolfdale E8600 3333
17/11/2008 45 4/8 Core i7 EE Bloomfield 965 3467
02/06/2009 45 4/8 Core i7 EE Bloomfield 975 3600
08/09/2009 45 4/8 Core i7 Lynnfield 870 3600
07/01/2010 32 2/4 Core i5 Clarkdale 670 3733
18/04/2010 32 2/4 Core i5 Clarkdale 680 3867
30/05/2010 45 4/8 Core i7 Lynnfield 880 3733
09/01/2011 32 4/8 Core i7 Sandy Bridge 2600K 3800
13/02/2011 32 6/12 Core i7 EE Gulftown 990X 3733
23/10/2011 32 4/8 Core i7 Sandy Bridge 2700K 3900
14/11/2011 32 6/12 Core i7 Sandy Bridge-E 3960X 3900
23/04/2012 22 4/8 Core i7 Ivy Bridge 3770K 3900
12/11/2012 32 6/12 Core i7 Sandy Bridge-E 3970X 4000
02/06/2013 22 4/8 Core i7 Haswell 4770K 3900
10/09/2013 22 6/12 Core i7 Ivy Bridge-E 4960X 4000
11/05/2014 22 4/8 Core i7 Haswell Refresh 4790 4000
02/06/2014 22 4/8 Core i7 Devil’s Canyon 4790K 4400
05/08/2015 14 4/8 Core i7 Skylake 6700K 4200
03/01/2017 14 4/8 Core i7 Kaby Lake 7700K 4500
26/06/2017 14 10/20 Core i9 Skylake-X 7900X 4500
25/09/2017 14 18/36 Core i9 Skylake-X 7980XE 4400
05/10/2017 14 6/12 Core i7 Coffee Lake 8700K 4700
08/06/2018 14 6/12 Core i7 Coffee Lake 8086K 5000
08/10/2018 14 18/36 Core i9 Skylake-X Refresh 9980XE 4500
08/10/2018 14 8/16 Core i9 Coffee Lake-R 9900K 5000
07/10/2019 14 18/36 Core i9 Cascade-X 10980XE 4800
28/10/2019 14 8/16 Core i9 Coffee Lake-R 9900KS 5000

Table 1.3: Intel CPU: max frequency evolution in the last 15 years, during multi-core age.
For each CPU model, max operative frequency is reported (such as 1-core turbo mode,
best core for Turbo 3.0)
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Figure 1.6: Intel CPU maximum frequency evolution in the last 15 years, during multi-
core age. The cross data points correspond to the values in Tab. 1.3. The dashed line
shows the best fit regression line over all CPU since Conroe’s introduction. The dotted
line, instead, shows the best fit regression line over all data points plotted, including
Pentium 4 and Pentum D Netburst processors.

• 2004 Intel Prescott delay at 90 nm, with final frequencies far below promises (up to
3.8 GHz, while the promise before the commercial release of the product was of 5
GHz and above)

• 2007 IBM’s discussion of the inevitable compromises for the scaling from 90 nm to
65 nm of Cell processor (jointly developed by Sony, Toshiba, and IBM, an alliance
known as “STI”): with that transition, for the first time IBM was forced to choose at
most two directions of improvement, including greater density of transistors, higher
operating frequency and reduction of energy consumption (from that moment, the
producers of integrated circuits have often been forced to release significant varia-
tions of a certain process node, privileging different aspects such as high operating
frequency or very low power usage)

• 2014 Intel difficulties with manufacturing and shipping 14 nm products (Broadwell
delay, niche market release, Haswell refresh introduction at old 22 nm node)

• 2019 Intel prolonged difficulties with manufacturing and shipping 10 nm CPU (Can-
nonlake, formerly named Skymont, Ice Lake are low volume, niche products, only
for low frequency, low core market segment)

The most significant effects of the difficulties encountered in the transition to more
advanced lithographic processes were the sharp reduction in the rate of increase in op-
erating frequency and the transition to multicore architectures. For example, in about
ten years there was the transition from 66 MHz to 3800 MHz, in the next fifteen years
maximum frequency rose up only to 5000 MHz (in peculiar “turbo mode”).

At the end of the year 2000, NetBurst based processors somewhere between 8 – 10GHz
were considered realistically a concrete objective to be reached in the following five years,
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year producer product lithography (μm) transistor (k) freq. (MHz)
1971 Intel 4004 10 2.25 0.4-0.7
1972 Intel 8008 10 3.5 0.5-0.8
1974 Intel 8080 6 6.0 2-3
1976 Intel 8085 3 6.5 3-6
1978 Intel 8086 3 29 5-10
1979 Intel 8088 3 29 5-8
1982 Intel 80286 1.5 134 6-12.5
1985 Intel 80386 1.5-1.0 275 12-33
1989 Intel 80486 1.0 1200 25-33
1992 Intel 80486DX2 0.8 1200 50-66
1993 Intel Pentium P5 0.8 3100 60-66
1994 Intel 80486DX4 0.6 1600 75-100
1994 Intel Pentium P54C 0.6 3300 75-120

Table 1.4: Intel and compatible CPU until 19944

year producer product lithography (nm) transistor (M) freq. (MHz)
1995 Intel Pentium P54CS 350 3.3 133-200
1995 Intel Pentium P6 350 5.5 150-200
1997 Intel Pentium P55C 350 4.5 166-233
1997 Intel Pentium II Klamath 350 7.5 233-300
1998 Intel Pentium II Deshutes 250 7.5 333-450
1999 Intel Pentium III Katmai 250 9.5 450-600
1999 Intel Pentium III Coppermine 180 28 600-1000
2000 Intel Pentium 4 Willamette 180 42 1300-2000
2001 Intel Pentium III Tualatin 130 44 1400
2002 Intel Pentium 4 Northwod 130 55 2000-3400
2003 Intel Pentium M Banias 130 77 900-1300
2004 Intel Pentium 4 Prescott 90 125 2600-3800

Table 1.5

before a more radical architecture’s change was needed again. It was even speculated that
such very high frequency CPU would be based on a manufacturing process forecasted to
debut in 2005 at about 70 nm, for these processors who were expected to run at less than
1 volt, 0.85v being the more accurate estimate (based on what happened in the previous
3 years, when there was a decrease from 3.3 V of P54C and P6, operating at 200MHz on
350 nm node, to 1.5-1.8 V for Tualatin, Thundirbird and Willamette, operating at 1.4-2
GHz on 180 nm process). Although the story has followed a radically different path, it
is curious to note that at the end of 2005 Intel had actually introduced processors with
a 65 nm lithographic process and that these products could operate under 1 V, although
only in low consumption mode (around 1 GHz for mobile Yonah and Merom).



INTRODUCTION 26

year producer product lithography (nm) transistor (M) core count freq. (MHz)
2006 Intel Core 2 Duo Conroe 65 291 2 1833-3000
2006 Intel Core 2 Quad Kentsfield 65 2x291 4 2400-3000
2007 Intel Core 2 Duo Penryn 45 410 2 2667-3466
2007 Intel Core 2 Quad Yorkfield 45 2x410 2 2400-3200
2009 Intel Core i7 Nehalem 45 2x410 2 2666-3466

Table 1.6

2.0

Figure 1.7: DRAM specifications

Figure 1.8: CPU clock rates

Figure 1.9: bandwidth vs latency



INTRODUCTION 27

Figure 1.10: DRAM rate improvement

Figure 1.11: SPEC Growth CPU perf

Figure 1.12: Relationships software vectorizable
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Figure 1.13: vectorization GigaFlops Thread Count

(a) An example of synchronization primitives’s
speed-up (b) From Merom (Conroe) to Nehalem there was

a 2.5x improvement in about 2 years and half

Figure 1.14: Some examples of ad hoc improvements. When it is difficult to improve
performance in a generalized way, efforts are made to identify particular use cases that
are subject to significant improvements.
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Figure 1.15: Schematic representation of x86 pipelines evolution.

objective ALU size ALU size ALU size
16-bit ALU 32-bit ALU 64-bit ALU
ADC ADD ADC ADD ADC ADD

16-bit 0 1 0 1 0 1
32-bit 1 1 0 1 0 1
64-bit 3 1 1 1 0 1

128-bit 7 1 3 1 1 1
256-bit 15 1 7 1 3 1
512-bit 31 1 15 1 7 1

Table 1.7: ALU operations needed to compute big numbers additions. When you want to
work with numbers that require a higher number of bits than that provided by hardware,
i.e. registers and ALUs, you must decompose the execution of each abstract arithmetic
operation into several elementary instructions. In this case, for each addition, the ratio
between the number of bits desired and those available to the hardware gives the number
of needed arithmetic operations. Of these operations, one will be a simple ADD, while all
the others will be ADC, or additions with carry. This table shows the operations necessary
to compute additions between numbers up to 512 bits on 16, 32 or 64 bit ALUs. This
table enumerates only arithmetic operations, but it is usually necessary to carry out a
series of support instructions such as moves or pushes and pops, to remedy the limitations
of registers.
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Figure 1.16: Microprocessor’s transistor count from 1971 to 20115
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objective ALU size ALU size
32-bit 64-bit

MUL ADC ADD MUL ADC ADD
32-bit 1 0 0 1 0 0
64-bit 4 5 3 1 0 0

128-bit 16 29 15 4 5 3
256-bit 64 125 63 16 29 15
512-bit 256 509 255 64 125 63

Table 1.8: ALU operations needed to compute big numbers multiplications. When you
want to work with numbers that require a higher number of bits than that provided by
hardware, i.e. registers and ALUs, you must decompose the execution of each abstract
arithmetic operation into several elementary instructions. In this case, for each multipli-
cation, the number of elementary multiplications grows as the square of the ratio between
the number of bits desired and those available to the hardware, but a large number of
support additions are needed. This table shows the operations necessary to compute mul-
tiplications between numbers up to 512 bits on 32 or 64 bit ALUs. This table enumerates
only arithmetic operations, but it is usually necessary to carry out a series of support
instructions such as moves or pushes and pops, to remedy the limitations of registers.

1.1.6 ALU size effectivness

ADDIZ. MOLTIPL. ADDIZ. MOLTIPL. 64-bit 2 12 1 1 128-bit 4 60 2 12 256-bit 8
252 4 60 512-bit 16 1020 8 252

1.1.7 A significant example: the evolution from P6 to Sunny Cove

Since the 4004 introduction, Intel represents the historical leader in the semiconductor
market and, above all, in the CPU business. Its success depended predominantly on the
ubiquitous diffusion of systems with the x86 instruction set developed by it (also by virtue
of its backwards compatibility): since the choice made by IBM in 1980 of Intel 8088 as
CPU of its first Personal Computer, Intel products have gained significant sales volumes,
operating sometimes almost monopolistically in some market areas. The evolution of P6
microarchitecture is really an emblematic case, because it is a microarchitecture that has
survived, obviously with profound changes, for over 25 years, through a dozen lithographic
processes; performance of these processors have grown due to improved microarchitecture,
elimination of bottlenecks, enlarged caches, higher clock and multicore.

Around 1990, Intel began in parallel the development of two new CPUs, P5 and
P6. The first saw the light in 1993 with the name Pentium and represented a profound
evolution of the previous 80486, above all for the adoption of a super-scalar architecture
(with the two famous, albeit not fully symmetric, u and v pipes); moreover the fast,
synchronous on-chip first-level cache doubled from 8 to 16 kB (with the adoption of
a Harvard architecture, with separate caches and signal pathways for instructions and
data); data cache used the MESI protocol to support more efficient write-back strategy in
addition to the write-through previously used by the 80486 processor; branch prediction
with an on-chip branch table was added to increase performance in looping constructs;
there was a substantial improvement of the floating-point unit (FPU); external data bus
was doubled from 32 to 64 bits; an APIC was integrated to support systems with multiple
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Figure 1.17: Intel P5 (Pentium) pipeline[Vv.Aa., 1997]

Figure 1.18: Intel P6 (Pentium Pro) pipeline[Vv.Aa., 1997]

processors, providing “glueless” support for up to two processors, enabling low-cost, two-
way symmetric multiprocessing.

The P6 processor, that was sold commercially under the name Pentium Pro in 1995
(with simultaneous release of 600 nm and 350 nm variants, both with 5.5 milion tran-
sistors), represented an important turning point in the development of Intel CPUs: al-
though it had insignificant architectural extensions compared to the Pentium, in the form
of new conditional move and compare instructions, it was a beefier super-scalar micro-
architecture, the first Intel CPU that involved the (“on the fly”) translation of the CISC
x86 instructions into RISC-like micro-ops (something already done in 1994 by NexGen
with its Nx586 and that AMD was working on for its K5), the first one that used an out
of order and speculative execution engine, the first with a very fast level two cache (con-
nected by a special, dedicated bus: Dual Indipendent Bus was the commercial feature’s
name) and also provided “glueless” support for up to four processors.

P6 was received as an interesting and successful blend of architectures, dominating
the high end PC market and spreading in the workstation and server areas. P6 executes
the x86 CISC instruction set, maintaining the advantage of high code density, as well as
backward compatibility with previous generations, but x86 instructions are fetched and
decoded by a superscalar (three ways), in order, decoding stage, which translates any
of them into one or more μops, i.e. simple, RISC-like instructions (the first decoder is

Figure 1.19: Comparison between the increase of CPU and RAM speed (1980-2010).
While CPU speed increased substantially exponentially, the RAM speed has grown lin-
early.
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complex and can manage x86 instructions which requires from 1 to 4 μops, while the other
two decoder are simple and can translate only x86 instructions requiring a single μop).
Then, a high performance “post-RISC” execution engine supports out-of-order execution
through multiple, asymmetric (integer, floating point, load, store data and store address)
pipelines, making use of five issue ports. While super-scalar versions of RISC processors
relied on the compiler to order instructions for maximum performance and hardware
checked the legality of multiple simultaneous instruction issue, post-RISC processors are
much more aggressive at issuing instructions using hardware to dynamically perform the
instruction reordering. The new processors find more parallelism by executing instructions
out of program order, but the final stage retires the instruction in original program order.

In 1997, Klamath (the first Pentium II), with 7.5 milion transistors, doubled up the
first level cache, both for instruction both for data (from dual separated 8 KB 2-way set
associative to dual 16 KB 4-way set associative), it added MMX instruction set and it
improved execution of legacy, 16-bit machine code (in particular, mitigating the negative
effects in the partial writing of the 32 bit registers, introducing an internal flag to skip
pipeline flushes whenever possible, and adding segment register caches). But all that
glitters is not gold: one of the strengths of the P6 was the L2 cache operating at full
processor frequency and with an access latency (additional to the L1 miss) of just 3 cycles
(at least for basic 256KB version; there were even 512 KB L2 version at 166 MHz and 200
MHz and afterwards a special 1 MB L2 version at 200MHz). While P6 required a special
dual or triple cavity package for the very fast L2 cache, Pentium II was implemented as
a daughter board, i.e. a specific printed circuit board, with a pair of separate dies for
512KB L2 cache, operating at half frequency, with 18 cycle latency. This daughter board
was packaged in a slot-based module within a plastic cartridge. Pentium II Xeon versions
used up to 2MB of DDR SRAM (Static RAM) as L2 cache at half frequency, but full
data rate burst transfer rate and only 14 cycle latency.

At the time Intel declared that it was essential to move the CPU into a sort of car-
tridge, believing it impossible to exceed 200 MHz with a conventional CPU installed
in a socket; Intel asserted on the one hand that the heat produced was not disposable
with conventional cooling systems, on the other specified that the cartridge contributed
to isolate the processor from sources of electromagnetic noise. The fact that, to reduce
production costs, Intel quickly switched from a SECC type cartridge to a thinner one
called SECC2 and then introduced a shieldless SEPP format for the Celeron CPUs, am-
ply demonstrated the groundlessness of the arguments inherent in the shielding to be
electromagnetic waves. The introduction of the long-running Socet 370 platform just a
year and a half after the presentation of Slot 1 completed the circle, emphasizing that
there were no insurmountable difficulties in developing high frequency processors on the
socket interface. In fact, the only real motivation behind the introduction of slot 1 was
related to the second level cache. In fact, Intel needed a fast and connected L2 cache via a
Back Side Bus, independent from Front Side Bus connection to the northbridge of system
chipset, to differentiate its products from competitors’ solutions, but clashed against the
fact that the Klamath’s 350 nm production process did not allow the integration of a
significant amount of cache, while the strategy of the Pentium Pro dual cavity package
was too expensive for a widely distributed product. In 1998, Mendocino Celeron at 250
nm introduced a very fast 128kB on-die L2 cache (with a load to use latency of just 4
cycles), while starting from 180 nm in 1999 also the high-end CPUs returned to a socket
version, using on-die cache.

Deschutes was only a die shrink of Klamath at 250nm, but later it introduced 100 MHz
FSB (Front Side Bus), a 50% increase and overcame a limitation of the early Pentium II;
in fact, although they were able to address 4 GB of memory, on all the Klamath and on
the first version of Deshutes, tag chips were mounted for the L2 cache that did not allow
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to manage cache-accelerated access beyond the 512MB limit.
Katmai, the first Pentium III, introduced Processor Serial Number and floating-point

SSE SIMD instruction set; later, Katmai-B intrudeced 133 MHZ FSB. In late 1999, Cop-
permine, instead, in addition to the 180 nm die shrink, introduced ATC (Advanced Trans-
fer Cache), an L2 cache operating at full CPU frequency, with only 5 cycles latency and
with a quadrupled bus, from 64 to 256 bits.

At the end of 2000, Willamette CPU, in origin P68, made its debut, as the first Pen-
tium 4, based on the hyper-pipeline of the NetBurst microarchitecture. Despite Tualatin,
the 130 nm Pentium III die shrink, was on roadmaps, the P6 microarchitecture seemed
destined to be permanently shelved, as the 32-bit NetBurst processors would conquer PC
market and the 64-bit Merced/Itanium platform would dominate the server and HPC
sectors, only to land on high-end PCs in about 5 years.

Indeed, Intel was looking for a new architecture to replace the aging x86 architecture
and to offer 64-bit computing, so in 1995, Intel and HP formed a joint venture to design
a new architecture, Merced or IA-64; its roots lied in earlier attempts to build LIW and
VLIW machines (Long Instruction Word and Very Long Instruction Word), especially
those at Cydrome and Multiflow—and in a long history of compiler work that continued
after these companies failed at HP, the University of Illinois, and elsewhere. VLIW try
to exploit instruction level parallelism (ILP) in software, at compile time, avoiding the
complexity inherent in some other chip designs. To remark that in their approach ILP is
actively pursued, Intel called EPIC (Explicit Parallel Instruction Computing) its VLIW
schema. Originally, Merced it was expected to be released in 1998, but was introduced
three years later under the trade name Itanium; a profound revision, Itanium 2, made its
debut in 2002.

Meanwhile, Intel’s Israeli development section, after the abortion of the Timna project
(low cost CPU with integrated graphic, project severally penalized by having invested in
the Rambus memory), decided to carry out a profound revision of the P6 microarchitec-
ture to develop a CPU, intended only for the mobile market, in which energy efficiency
was more important than operating frequency. In 2003, Banias was released as Pentium
M, the core of famous Centrino mobile platform. In comparison to Pentium IIII, Ba-
nias doubled both L1 instruction and data cache, doubled the shared L2 cache (with to
respect to Tualatin), and borrowed from Pentium 4 SSE2 instruction set and very fast
quad-pumped FSB. Micro-ops fusion, faster operations with the hardware stack, signif-
icantly improved branch prediction. Radical power saving technologies are introduced
due to the orientation to mobile applications. There are a number of microarchitectural
improvements, floating point multiplication/addition operations are divided between two
separate execution ports, the delays due to partial register stall are fixed. Improved
branch prediction and return address stack are among the most significant progress in
Banias. Two ways to classify branch instructions are by whether the branch is conditional
or unconditional,and whether the branch target is direct (can be calculated statically) or
indirect (depends on a register value that is unknown until run time). Return instructions
are indirect branches, so they can have multiple branch targets and can be difficult to
predict. The multiple branch targets come from the fact that functions can be called
from multiple sites (code reuse), and the return must branch back to the caller, which
can be different every time. What makes function returns special is that in most sane
programming languages, function calls and function returns are matched, and functions
are nested in a last-in-first-out order. A hardware stack-like structure would be able to
accurately predict function return target addresses by pushing the location of each call
instruction that executed, then popped it off for each return instruction. This stack-like
predictor structure is the return address stack, which works very well if the typical length
of nested calls is not very long. Furthermore, for the first time Banias introduces direct



INTRODUCTION 35

support to manage indirect jumps, an aspect of crucial importance for improving the
efficiency in the use of polymorphism, in the context of Object Oriented Programming.

Later Dothan was a Banias die shrink at 90 nm, with double L2 cache and some minor
tweaks, such as the execution speed of MMX addition instruction is doubled.

So, after a decade of honorable service, the P6 project seemed destined to play only
for some time a niche role, in thin and light notebooks, waiting for it to be possible to
reduce the consumption of the Netburst microarchitecture of the Pentium 4. Instead, the
Pentium 4 Prescott arrived on the market with a strong delay, with operating frequencies
significantly lower than expected, high energy consumption; furthermore, despite a long
list of architectural improvements, the 55% increase in the misprediction pipeline, from
20 to 31 stages, resulted in a IPC reduction.

On May, 7th 2004, the ambitious Tejas project, a beefier Netburst processor slated
to operate at frequencies of 7 GHz or higher, increasing the number of pipeline stages
to between 40 and 50 stages, and with a new dynamical multithread support, was of-
ficially canceled and Intel announced the NGMA (Next-Generation Micro-Architecture)
initiative: a dual core, low power 64 bit x86 CPU.

Yonah was then introduced as a sort of midterm solution (not a Conroe yet, not a
Pentium III anymore), with the distinction of being the only true 32-bit dual core x86
CPU: in 2006, Core Duo was a dual core with shared L2 cache, it added SSE3 instruction
set, but above all a significantly improved decoder with support for SSE micro-op fusion
(to handle packed SSE instructions in all three decoder channels). It supports VT and
improved power saving technologies, improved memory prefetch and faster execution of
some instructions.

NGMA was developed as a sort of way out of the difficulty of frequency scaling with
Prescott and derivatives and it was presented as a fusion of the micro-architectural char-
acteristics of Pentium-M and Pentium 4, but in reality it was a dual core project, based
exclusively on a profound revision of the Banias micro-architecture, with an enhance-
ment of the execution of the SSE instructions and the adoption the so-called T* origi-
nally developed for Prescott and derivatives (CT, LT and VT, aka Clackamas, LaGrande
and Vanderpool Technologies, respectively the 64-bit extension, security feature - TXT,
Trusted Execution Technology - and virtualization hypervisor support).

NGMA was released in 2006 as Conroe (desktop) and Merom (mobile) CPU: for the
first time, the fundamental P6 pipeline was modified, with the introduction of a wider
execution engine, with a fourth decoder and a sixth issue port. Since AMD has long
been the industry leader in the x86 CPU sector for the past seven years, with high-
performance products such as Athlon K7 and Thunderbird, Athlon XP Palomino, Athlon
64 ClawHammer and Athlon 64 X2 Toledo and Windsor, which had introduced high IPCs,
64-bit instructions, integrated memory controllers, Intel decided to launch a new course to
ensure rapid development of new solutions. With Conroe, Intel started indeed “Tick-Tock
execution”, a production model that included each year the introduction of a new product,
with the alternation of the debut of a new microarchitecture on a proven lithographic
process (a tock, such as Conroe, Nehalem, Sandy Bridge, Haswell and Skylake) or the
introduction of a new production process by adopting at most minor revisions to an
existing microarchitecture (a tick, such as Penryn, Westmere, Ivy Bridge, Broadwell). by
virtue of the considerable delays in the introduction of the 14 nm lithographic process
and the difficulties still existing with the 10 nm one, Intel has declared that tick-tock
execution was no longer sustainable and it decided to change its strategy, coining the
slogan “Process-Architecture-Optimization”. Since 2016, under this three-phase model,
every die shrink is followed by a microarchitecture change and then by one (or more!)
optimization; indeed, on 14 nm litographic node, after the tick/process Broadwell and
the tock/architecture Skylake, on optimization phase there were Kaby Lake, Kaby Lake
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Refresh, Coffe Lake, Coffe Lake Refresh and Comet Lake.
In 2008, Nehalem introduced a very big IPC bump largely because it added an In-

tegrated Memory Controller, five years after AMD K8; moreover, it backported Hyper
Threading, Intel’s marketing name for simultaneous multi-threading (SMT), i.e. the ca-
pabiliy the ability to fetch instructions from two threads at the same time instead of just a
single one, from Netburst microarchitecture; it was the first CPU with Turbo Mode, hat is,
the possibility of opportunistically increasing the operating frequency, when not all cores
are active or the energy consumption and operating temperatures are under respective
thresholds and the first with macro-ops fusion (despite having four decoders, in appro-
priate circumstances it can decode five x86 instructions per cycle); it included a Power
Control Unit (PCU), which tunes voltage for a given frequency, operating conditions, and
silicon characteristics.

In 2010, Westmere Tick at 32 nm introduced only new instructions to accelerate AES
encoding; it was an atypical generation, because it included only Gulftown high end
six-core solutions and low level Arrendale dual core CPU with integrated (on package)
graphic, without offering quad-core solutions. Anyway, server versions of both Nehalem-
EX and Westmere-EX introduced a ring bus core interconnection topology, which was
later adopterd by Sandy Bridge.

In 2011, Sandy Bridge Tock, manufactured in the 32 nm process, was developed by
Intel’s Research and Development center in Haifa, from the same team that has baked
Banias, and it was perhaps the the most profound revision of the P6 microarchitecture, for
example for the adoption of a PRF-based (Phisical Register Files) renaming architecture
(an aspect borrowed from Netburst), instead of centralized Retiremente Register File,
which assures a single copy of every data and no movement after calculation (especially
important for the large registers adopted by the SIMD units, such as the 128-bit XMM
registers of the SSE and the 256-bit YMM registers of the AVX). Informally, in old
roadmaps that product was denoted by Nehalem-C and later, in 2009, by Gesher, literally
meaning bridge in Hebrew; however, Intel discarded the name when it was discussed that
Gesher is also the name of a former political party in Israel. Anyway, Sandy Bridge
introduced a profound revision to purse high performance and high power efficiency; it
introduced a new μOP cache, containing 1536 already decoded instructions (but it is
organized differently than the Netburst trace cache), higher branch prediction accuracy,
new Zeroing and Ones idioms optimizations, AGUs capable to do both loads and stores
dinamically, new 256 bit AVX instructions, improved performance for transcendental
mathematics, AES encryption and SHA-1 hashing, a ring bus topology, a faster Last
Level Cache, an on die integrated graphics and so on. For Sandy Bridge, a typical pipeline
length of 14 stages has been estimated, in the case of hits in the μop cache, extended by
5 stages if it is necessary to use decoders.

In 2012, Ivy Bridge was a Tick, i.e. a die shrink to 22 nm of Sandy Bridge, based
on FinFET 3D Tri-Gate transistors; it introduced a F16C Extension for performing half-
precision/single-precision floating point conversion, a snew random number generator and
the RDRAND instruction, codenamed Bull Mountain.

In 2013, Haswell was a Tock on 22 nm, it was an important redesign with the introduc-
tion of a pair of issue ports, a fourth ALU and the possibility of executing three-operand
FMA instructions.

After significant problems and delays with the transition to 14nm, Broadwell brought
marginal improvements, while Skylake has been the reference architecture for Intel pro-
cessors for the past 5 years.

For example, the only difference between Skylake and Kabylake was that SkyLake’s
Speed Shift implementation is significantly improved, cutting responsiveness by as much
as 66% (down to just 10-15ms to reach peak frequency, rather than 30 ms). Indeed,



INTRODUCTION 37

with Kaby Lake, the hardware control around Speed Shift was tremendously improved,
altought there wasn’t a change in the OS driver; this could have an impact on latency lim-
ited interactions as well as situations where delays occur, such as asynchronous web page
loading, so good Speed Shift implementation is a play for user experience in interactive
enviroments.

This synthetic historical overview of the evolution of a microarchitecture over the
course of about 25 years serves to testify how complex it is for conventional computers to
be able to achieve generalized performance improvements.

For example, the first level cache of data and instructions was organized with two 8
kB blocks each for the 600nm production process, it was doubled two years later with the
350 nm process but took another six years and three lithographic processes, to reach the
size of 32 kB each in 2003 in Banias; since then they have not changed, except for the
50% increase in the very recent Ice Lake, still a ghost product.

The second level cache, on the other hand, found a fluctuating trend: at the beginning
it was very fast, but extremely expensive, available mainly with the capacity of 256 kB
(although 512 and 1024 kB versions were contemplated, for those who needed speed at
any cost ), then its capacity was doubled at the expense of speed, especially in terms of
latency, with Coppermine it was incorporated on die in the very fast ATC implementation
and from that moment it doubled with each generation (Tualatin, Banias, Dothan), first
to come across dual core solutions. In fact, despite the 90 to 65 nm die shrink, Yonah
provided an L2 cache shared by both cores with overall capacity to that offered by Dothan
for a single core. The L2 cache shared by a pair of cores has increased to 4 MB with Conroe
at 65 nm and 6 MB with Penryn at 45nm, to then be reduced to 256 kB per core in the
transition to the Nehalem generation at 45nm. From then on, the L2 cache has remained
unchanged for multiple generations of products, to the Skylake-X / Cascade-Lake server
variant (which uses 1 MB), and 512 kB for the problematic 10 nm products, CannonLake
and Ice Lake. This oscillation in the size of the L2 waves cache has had the consequence
that the access latency has gone from 4 cycles of the 128 kB of Mendocino from 250 nm,
5 cycles for the 256 kB of Coppermine to 180 nm to rise to about 10 cycles per 1MB of
Banias, to go up to 15 cycles with the shared Conroe cache, go down to 10 cycles with
Nehalem and oscillate between 11 and 12 cycles in subsequent generations, to land at 13
cycles with Ice Lake. Furthermore, as regards the bandwidth, it has gone from 8 bytes
per cycles of the P6, to 4 for Klamath/Deshutes/Katmai, 16 for Coppermine/Tualatin,
32 for the CPUs from Banias up to Ivy, to reach 64 from Haswell to Ice Lake.

As for the front end, the decoders remained 3 for a dozen years, from 600 to 65 nm
(from P6 to Yonah), to be expanded to 4 with Conroe and 5 with the Palm Cove core of
Skylake. In 2011 Sandy Bridge introduced a 1536 instruction mop cache, which remained
unchanged for a decade, until the introduction of the Sunny Cove core of Ice Lake.

The Out of Order window size, that dictate how many on flight instruction can be
reordered to cover memory latency and maximize execution unit utilization, started at
40 μop for original P6 in 1995, the first time in 2003 it grew to 64 for Banias, then
96 for Conrore, 128 for Northwood (to better support two hardware thread per core via
HyperThreading), 168 for Haswell in 2013, 192 for Broadwell, 224 for Skylake and Cannon
Lake and 352 for Ice Lake.

An other example are AGU, special units devoted to address computation: since P6
to Westmere (from 600 nm in 1995 to 32 nm in 2010), there was only two AGU, one
for loads and the other for store. Only in 2011, Sandy Bridge changed this structure,
allowing the second AGU to generate addresses for load and store operations without
distinction; in 2013 Haswell added a third AGU, to better support FMA3 operations, two
dedicated to load and the other one to store operations; Ice Lake once again makes the
AGU symmetrical, providing two for the loads and as many for the stores. Associated
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with each address generated by an AGU, there is the possibility of accessing the L1 cache;
from P6 to Yonah, at most one 64 bit load and store per cycle was possible; since Conroe
up to Westmere, at most a 128 bit load and store were possible. With Sandy Bridge and
Ivy Bridge, at most two loads or a 128 bit load and store were possible; In 2013, Haswell
doubled its 256-bit ports, to better support AVX instructions, up to two loads and one
store per cycle; Ice Lake, like Skylake-X, expands 512-bit ports to support AVX-512s, but
also adds a second port for store operations.

Perhaps the parameter that indicates more than any other how difficult it is to sig-
nificantly improve a microarchitecture over the years is the number of issue ports. The
600nm P6 had 5 issue ports and remained so until the 65nm Yonah introduced in early
2006, then the Conroe added a sixth to support a third ALU. In 2013, at 22 nm, Haswell
added two to accommodate an additional AGU and a fourth ALU.

This roundup, without pretension of exhaustiveness, of generational differences during
the evolution of the P6, shows how much more difficult it is to achieve fairly generalized
increases in performance (not dependent, that is, on specific use cases or on the adoption
of new ad hoc instructions). Furthermore, keeping the reference architecture relatively
stable, although subject to periodic reinterpretations, perhaps has simplified life for some
hacker activities.

For the past two years, indeed, we’ve seen multiple attacks based on microarchitectural
vulnerabilities, such as like Meltdown, Spectre, Zombieload, Foreshadow/L1TF. All this
security exploits can be used to probe or stole data. On March 2020, Load value injection
was also dicovered, which can inject data values, and is resistant to the countermeasures
so far used to mitigate the Meltdown vulnerability. The data injection can either be
instructions or memory addresses, allowing the attacker to obtain data from the victim.
This data injection bypasses even stringent security enclave environments, such as Intel’s
Software Guard Extensions (SGX), and the attackers claim that successful mitigation
may result in a slowdown of 2x to 19x for any SGX code.

1.1.8 Multi-core

1174/5000 As a consequence of the difficulty of increasing the average CPI and in-
creasing operating frequencies, multi-core solutions have proliferated in recent years. On
the destop and portable computers side, dual core solutions spread very quickly, because
they allowed significant performance increases with any workload: in fact, even in the hy-
pothesis of running essentially single-threaded applications, a real multitask between two
applications complex, frequent taskswitching between multiple applications or interact-
ing with a single program, while in the background system updates, firewalls, antivirus,
etc. are active, a dual core cpu offered obvious advantages. The transition to quadcore
solutions has been slower, but due to AMD’s technical and economic difficulties, Intel has
found itself to be an undisputed monopolist in the medium-high end of the market for
several years, leaving a stationary situation. With the introduction of the AMD Ryzen,
based on Zen microarchitecture in 2017, the market has revived, allowing the rapid spread
of 6-8 core solutions, with the availability of 10-12 core products under $ 500.

Anyway, solutions with a large number of cores have proliferated rapidly in the server,
workstation and HPC sectors, such as the 28-core Skylake-EP, the 32-core AMD Naples
and the 64-core AMD Rome, the latter also available on prosumer platforms under the
aegis of Threadripper.

But over the past 15 years there has been a flourishing of interesting solutions, even
outside of the x86 microprocessors, IBM POWER and UltraSparc.

The Teraflops Research Chip (also called Polaris) is a research manycore aka mul-
ticore processor, containing 80 cores developed by Intel Corporation’s Tera-Scale Com-
puting Research Program. The processor was officially announced February 11, 2007
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and shown working at the 2007 International Solid-State Circuits Conference. Features of
the processor include dual floating point engines, sleeping-core technology, self-correction,
fixed-function cores, and three-dimensional memory stacking. The purpose of the chip is
to explore the possibilities of Tera-Scale architecture (the process of creating processors
with more than four cores) and to experiment with various forms of networking and com-
munication within the next generation of processors. Along with 80 cores, the chip also
contains 80 routers. Each of the cores on board the teraflops research chip contains two
floating point engines. better load distribution and a decreased chance of overheating.
If a core is overloaded then the heat produced by that core increases, which reflects a
decrease in efficiency and a waste of energy. In the teraflops research chip, if some of the
cores are being overloaded, that load can just be delegated to other cores, resulting in a
load distribution which does not create as much heat The processor is constructed using
a 65 nm CMOS process, the die is 12.64 mm by 21.72 mm (274.5 mm2) and contains 100
million transistors. Intel first disclosed it had built a prototype 80-core processor during
2007 Intel Developer Forum, when CEO Paul Otellini promised to deliver the chip within
five years.

Intel used 100 million transistors on the chip, which measures 275 millimeters squared.
By comparison, its Core 2 Duo chip uses 291 million transistors and measures 143 millime-
ters squared. The chip was built using Intel’s 65-nanometer manufacturing technology,
but any likely product based on the design would probably use a future process based
on smaller transistors. A chip the size of the current research chip is likely too large for
cost-effective manufacturing.

The computing elements are very basic and do not use the x86 instruction set used by
Intel and Advanced Micro Devices’ chips, which means Windows Vista can’t be run on the
research chip. Instead, the chip uses a VLIW (very long instruction word) architecture,
a simpler approach to computing than the x86 instruction set.

There’s also no way at present to connect this chip to memory. Intel is working on a
stacked memory chip that it could place on top of the research chip, and it’s talking to
memory companies about next-generation designs for memory chips. Intel’s researchers
will then have to figure out how to create general-purpose processing cores that can handle
the wide variety of applications in the world.

But the primary challenge for an 80-core chip will be figuring out how to write software
that can take advantage of all that horsepower. The PC software community is just
starting to get its hands around multicore programming, although its server counterparts
are a little further ahead. Still, Microsoft, Apple and the Linux community have a long
way to go before they’ll be able to effectively utilize 80 individual processing units with
their PC operating systems.

“The operating system has the most control over the CPU, and it’s got to change. It
has to be more intelligent about breaking things up”

Intel demonstrated the chip running an application created for solving differential
equations. At 3.16GHz and with 0.95 volts applied to the processor, it can hit 1 teraflop of
performance while consuming 62 watts of power. Intel constructed a special motherboard
and cooling system for the demonstration in a San Francisco hotel.

The Single-Chip Cloud Computer (SCC) is a computer processor (CPU) created by
Intel Corporation in 2009 that has 48 distinct physical cores that communicate through
architecture similar to that of a cloud computer data center. Cores are a part of the
processor that carry out instructions of code that allow the computer to run. The SCC
was a product of a project started by Intel to research multi-core processors and parallel
processing (doing multiple calculations at once). Additionally Intel wanted to experiment
with incorporating the designs and architecture of huge cloud computer data centers
(Cloud computing) into a single processing chip. They took the aspect of cloud computing
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in which there are many remote servers that communicate with each other and applied
it to a microprocessor. It was a new concept that Intel wanted to experiment with. The
name “Single-chip Cloud Computer” originated from this concept. Intel developed this
new chip architecture based on huge cloud data centers, the cores are separated across the
chip but are able to directly communicate with each other. The chip contains 48 P54C
Pentium cores connected with a 4x6 2D-mesh. This mesh is a group of 24 tiles set up
in four rows and six columns. Each tile contained two cores and a 16 KB (8 per core)
message passing buffer (MPB) shared by the two cores, essentially a router. The SCC
naturally supports the message passing programming model, as it is not cache-coherent
in hardware. [Corley, 2010]

As the number of cores per chip increases, load balancing becomes more important
(and challenging) for efficient use of the available processing power.

For evaluating and comparing computer architectures, Amdahl’s law is often used.
It is named after computer scientist Gene Amdahl, and was presented at the AFIPS
Spring Joint Computer Conference in 1967. For a task at a fixed workload, Amdahl’s
law expresses the theoretical speedup of the execution of the task with the respect to
improvements of the computer: the performance improvement to be gained from using
some faster mode of execution is limited by the fraction of the time the faster mode can
be used

Amdahl’s law can be formulated in the following way:

Soverall(p, s) = 1
(1− p) + p

s

where
Soverall is the theoretical speedup of the execution of the whole task; s is the speedup

of the part of the task that benefits from improved system resources; p is the proportion
of execution time that the part benefiting from improved resources originally occupied.

Furthermore,
Slatency(s) ≤ 1

1− p
lim

s→∞
Slatency(s) = 1

1− p

shows that the theoretical speedup of the execution of the whole task increases with the
improvement of the resources of the system and that regardless of the magnitude of the
improvement, the theoretical speedup is always limited by the part of the task that cannot
benefit from the improvement.

Amdahl’s law applies only to the cases where the problem size is fixed. In practice,
as more computing resources become available, they tend to get used on larger problems
(larger datasets), and the time spent in the parallelizable part often grows much faster
than the inherently serial work. In this case, Gustafson’s law gives a less pessimistic
and more realistic assessment of the parallel performance: this law gives the theoretical
speedup in latency of the execution of a task at fixed execution time that can be expected
of a system whose resources are improved. It was presented in the article Reevaluating
Amdahl’s Law in 1988.

Gustafson estimated the speedup S gained by using N processors (instead of just one)
for a task with a serial fraction s (which does not benefit from parallelism) as follows:

S = N + (1−N)s

Using different variables, Gustafson’s law can be formulated the following way:

Slatency(s) = 1− p + sp

where
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S_latency is the theoretical speedup in latency of the execution of the whole task; s
is the speedup in latency of the execution of the part of the task that benefits from the
improvement of the resources of the system; p is the percentage of the execution workload
of the whole task concerning the part that benefits from the improvement of the resources
of the system before the improvement. Gustafson’s law addresses the shortcomings of
Amdahl’s law, which is based on the assumption of a fixed problem size, that is of an
execution workload that does not change with respect to the improvement of the resources.
Gustafson’s law instead proposes that programmers tend to set the size of problems to fully
exploit the computing power that becomes available as the resources improve. Therefore,
if faster equipment is available, larger problems can be solved within the same time.

The impact of Gustafson’s law was to shift[citation needed] research goals to select or
reformulate problems so that solving a larger problem in the same amount of time would
be possible. In a way the law redefines efficiency, due to the possibility that limitations
imposed by the sequential part of a program may be countered by increasing the total
amount of computation.

1.1.9 GPU

In the last fifteen years, there has been a growing multidisciplinary interest in the use of
GPUs (Graphics Processing Units) for non-graphics, general purpose applications. With
respect to conventional general purpose CPUs, GPUs usually invest more resource (logi-
cal gates, power usage) in arithmetic computation than in control operations; moreover,
GPUs usually avoid or make little use of sophisticated techniques, such as out of order
execution and speculative execution, furthermore they use simpler, more regular memory
pattern access, which are more sensitive to high bandwidth than to low latency and not
require complex memory disambiguation techniques (to avoid or at least mitigate aliasing
issue). Most operations, even on “traditional” GPU, operate in a vectorized fashion: one
operation can be performed on up to four values at once; for example, a pixel shader
instruction could manipulate RGBA data (red, green, blu, alpha channels of pixel repre-
sentation), while a vertex shader instruction could manipulate four-dimensional projective
coordinates (x, y, z, w) of a triangle’s vertex (projective or homogeneous coordinates are
ubiquitous in computer graphics because they allow basic graphics manipulations, such
as translation, rotation, scaling and perspective projection, to be each represented as
a matrix, so that any arbitrary sequence of these transformations can be computed by
evaluating the row-by-column product of the matrices corresponding to each transforma-
tion; by contrast, using simpler, tridimensional Cartesian coordinates, translations and
perspective projection cannot be expressed as matrices). Moreover, combination of SIMD
/ MIMD techniques allow you to apply the same operation simultaneously to multiple
vectors or vector components. GPUs have very large register files, which allow them to
reduce context-switching latency. Register file size is also increasing over different GPU
generations. Pioneer general-purpose computing on graphics processing units (GPGPU)
started about 2002-2003, when DirectX 9 Shader Model 2.x suggested the support of two
floating point types, full and partial precision, for pixel shader operations. is the use of a
graphics processing unit (GPU), which typically handles computation only for computer
graphics, to perform computation in applications traditionally handled by the central pro-
cessing unit (CPU). Full precision support could either be FP32 or FP24 (floating point
32- or 24-bit per component) or greater, while partial precision was at least FP16. ATI
series of GPUs supported FP24 precision only in the programmable fragment pipeline,
while Nvidia series supported both FP16 and FP32. A fundamental transition was found
in 2007 with the transition to unified GPU architectures for vertex, pixels and other types
of shaders (hull, computational, etc.).

As DirectX 9-capable GPUs became available, some researchers took notice of the



INTRODUCTION 42

raw performance growth path of GPUs and began to explore the use of GPUs to solve
complex parallel problems. DirectX 9 GPUs had been designed only to match the features
required by the graphics API. To access the computational resources, a programmer had
to cast their problem into native graphics operations.

Porting applications to GPGPUs is one of the most important issues in these highly-
parallel architectures. There are millions of lines of existing legacy parallel code, which
cannot exploit GPGPUs easily (for example, scientific communities have a lot of parallel
code mostly written in MPI). In addition, the effort for tuning and writing new code is
high for GPGPUs.

While computational power of GPU raised almost exponentially (for parallel tasks),
there was a tremendous development in the programming languages and tools for deploy-
ing algorithms on GPU.
Among libraries and tools to deploy GPU programs, the usually preferred solution is
NVIDIA CUDA, which is both a parallel computing platform and API (Application Pro-
gramming Interface) model with support for NVIDIA GPUs, but even open-source or
multiplatform solution such as OpenCL are spreading more and more. But recently
Radeon Open Compute platforM (ROCm) was designed to be a universal platform for
gpu-accelerated computing, to integrate multiple programming languages and makes it
easy to add support for other languages. ROCm is focused on using AMD GPUs to accel-
erate computational tasks such as machine learning, engineering workloads, and scientific
computing. In order to focus our development efforts on these domains of interest, ROCm
supports a targeted set of hardware configurations. ROCm supports AMD GPUs that
use following chips: GFX8 GPUs Fiji, Polaris 10, Vega 10, Vega 7nm
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1.2 Quantum Computing
Electronics is approaching a major paradigm shift because silicon transistor scaling no

longer yields historical energy-efficiency benefits, spurring research towards beyond-silicon
nanotechnologies. In particular, carbon nanotube field-effect transistor (CNFET)-based
digital circuits promise substantial energy-efficiency benefits, but the inability to perfectly
control intrinsic nanoscale defects and variability in carbon nanotubes has precluded so
far the realization of very-large-scale integrated systems [Hills et al., 2019].

Inspired by quantum mechanics laws, quantum computing [Deutsch, 1985; Feynman,
1982; Nielsen and Chuang, 2010] is a really promising computational paradigm aimed
at overcoming classic computation in solving hard problems thanks to the exploitation
of quantum properties such as superposition and entanglement [Deutsch et al., 1995;
Finnila et al., 1994; Giovannetti et al., 2008a,b; Kadowaki and Nishimori, 1998; Lloyd,
1993, 1995, 1996; Menon and Ritwik, 2014; Rønnow et al., 2014; Simon, 1997]. Precisely,
these features enable a so-called quantum massive parallelism that allows to evaluate si-
multaneously many computational paths and leads to a significant (usually exponential
or quadratic) speed-up in approaching well-known hard problems such as the integer fac-
torization or the search of items in unsorted databases.
However, quantum computers are subjected to stringent limits, both for the current short-
age of quantum bits and gates, both for the ineluctable presence of various kinds of sin-
gle and multi-bit errors, decoherence phenomena and so on [Chuang and Harrow, 2018;
Chuang and Shor, 2018c; Nielsen and Chuang, 2010], which, in some ways, make quantum
computers more similar to analogue computers than digital ones (l.

Already in the ’80s, Feynman and Deutsch[Deutsch, 1985] proposed a novel computa-
tional paradigm, based on the idea that to effectively simulate the properties of a quantum
system, in physics or chemistry, it could be advantageous to rely on a computer that works
on quantum principles.

Today, some major quantum companies (I.B.M. and Rigetti above all) are strongly
investing in designing and developing quantum processing unit, and providing users with
cloud-based interfaces to enable a simple and fast implementation and analysis of quantum
circuits. However, the proliferation of such interfaces is increasing the number of different
quantum languages used to represent the quantum circuits, resulting in the definition of
a set of heterogeneous cloud-based quantum platforms that do not have any capability
of interacting among them. This diversification of schemes and paradigms partly mimics
what happened during the development of the classic computers, where for each main
programming paradigm different research bodies or companies have developed antago-
nistic languages, but risks creating an additional level of difficulty at a time in to which
quantum computing is still taking its first concrete steps. As a consequence, according
to me, the need for an abstract language emerges, capable of capturing all the essential
features provided by the proprietary representation of quantum circuits and enable the
definition of inter-operable quantum circuits.

Quantum computing, by its very nature, cannot be efficiently reproduced using clas-
sical computers. The resources required to simulate quantum hardware increases expo-
nentially with the number of qubits. For the hardware developed in the next few years,
even the world’s largest classical supercomputers won’t be enough.

Despite this, these near-term devices are still ‘intermediate scale’. Though large
enough that their simulation will be intractable, they won’t yet be large enough to im-
plement full-scale quantum error correction. This means that errors will occur during
execution of any quantum computation. The longer our quantum program, the more
these errors will accumulate.

These errors are unavoidable, and can take many forms depending on the physics of



INTRODUCTION 44

the devices. To develop quantum algorithms that are robust against their effects, we need
to know our enemy. This requires us to have an accurate model of the errors that occur,
as well as the ability to simulate their effects. Then we’ll be much better equipped to
explore near-term quantum applications with noisy devices.

1.2.1 Quantum Mechanics in brief

While classical physics formulates effective models of interactions in nature at “macro-
scopic” scale, quantum mechanics tries to explain the aspects of nature at very small,
atomic and subatomic, scales. It explains the behavior of matter and its interactions
with energy on the scale of atoms and subatomic particles. Many aspects of quantum
mechanics are counter-intuitive and can seem paradoxical because they describe behavior
quite different from that seen at larger scales. For example, the uncertainty principle of
quantum mechanics means that the more closely one pins down one measurement (such
as the position of a particle), the less accurate another complementary measurement (i.e.
conjugate variables) pertaining to the same particle (such as its speed) must become.
Another example is entanglement, in which a measurement of any two-valued state of a
particle (such as light polarized up or down) made on either of two “entangled” particles
that are very far apart causes a subsequent measurement on the other particle to always
be the other of the two values (such as polarized in the opposite direction).

Quantum mechanics has the curious distinction of being so far simultaneously the
most successful and the most mysterious of scientific theories. Quantum mechanics is a
fundamental theory in that important quantities (such as energy and angular momentum)
of a bound system are restricted only to discrete values (quantization effect), small objects
such as electrons have characteristics of both particles and waves (wave-particle duality).

Quantum mechanics was developed in fits and starts over a remarkable period from
1900 to the 1920s, when Planck’s solution in 1900 to the black-body radiation problem, i.e.
spectral distribution for electromagnetic radiation in thermodynamic equilibrium, when
there is no net flow of matter or energy, introduced the the quantum of action, while
Einstein offered a quantum-based explanation of the photoelectric effect (1905), the work
for which he was awarded the Nobel prize in 1921. In the mid-1920s, quantum mechanics
was developed to become the standard formulation for atomic physics. In the summer of
1925, Bohr and Heisenberg published results that closed the old quantum theory. Due
to their particle-like behavior in certain processes and measurements, light quanta came
to be called photons (1926). In 1926 Erwin Schrodinger suggested a partial differential
equation for the wave functions of particles like electrons. And when effectively restricted
to a finite region, this equation allowed only certain modes, corresponding to discrete
quantum states – whose properties turned out to be exactly the same as implied by matrix
mechanics. In the meantime, he presented the hypothesisThe de Broglie hypothesis holds
for all types of matter: all matter exhibits properties of both particles and waves. The
wavelength, λ, associated with any object is related to its momentum, p, through the
Planck constant, h:

p = h

λ

The entire field of quantum physics emerged, leading to its wider acceptance at the
famous Fifth Solvay Conference in 1927. Quantum mechanics matured then into its cur-
rent form in the late 1920s and physicists had great success applying quantum mechanics
to understand the fundamental particles and forces of nature, culminating in the de-
velopment of the standard model of particle physics. Over the same period, physicists
had equally great success in applying quantum mechanics to understand an astonishing
range of phenomena in our world, from polymers to semiconductors, from superfluids to
superconductors.
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Quantum mechanics assert that the state space of a system is a Hilbert space (crucially,
that the space has an inner product) and that observables of the system are Hermitian op-
erators acting on vectors in that space – although they do not tell us which Hilbert space
or which operators. These can be chosen appropriately in order to obtain a quantitative
description of a quantum system. An important guide for making these choices is the
correspondence principle, which states that the predictions of quantum mechanics reduce
to those of classical mechanics when a system moves to higher energies or, equivalently,
larger quantum numbers, i.e. whereas a single particle exhibits a degree of randomness,
in systems incorporating millions of particles averaging takes over and, at the high energy
limit, the statistical probability of random behaviour approaches zero. In other words,
classical mechanics is simply a quantum mechanics of large systems. This “high energy”
limit is known as the classical or correspondence limit. One can even start from an estab-
lished classical model of a particular system, then try to guess the underlying quantum
model that would give rise to the classical model in the correspondence limit.

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes
the notion of Euclidean space. It extends the methods of vector algebra and calculus
from the two-dimensional Euclidean plane and three-dimensional space to spaces with
any finite or infinite number of dimensions. A Hilbert space is an abstract vector space
possessing the structure of an inner product that allows length and angle to be measured.
Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow
the techniques of calculus to be used.

A Hilbert space H is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product the states
of a quantum mechanical system are vectors in a certain Hilbert space, the observables are
hermitian operators on that space, the symmetries of the system are unitary operators,
and measurements are orthogonal projections. The relation between quantum mechanical
symmetries and unitary operators provided an impetus for the development of the unitary
representation theory of groups, initiated in the 1928 work of Hermann Weyl

Hilbert spaces arise naturally and frequently in mathematics and physics, typically as
infinite-dimensional function spaces. The earliest Hilbert spaces were studied from this
point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and
Frigyes Riesz. They are indispensable tools in the theories of partial differential equations,
quantum mechanics, Fourier analysis (which includes applications to signal processing
and heat transfer), and ergodic theory (which forms the mathematical underpinning of
thermodynamics). John von Neumann coined the term Hilbert space for the abstract
concept that underlies many of these diverse applications. The success of Hilbert space
methods ushered in a very fruitful era for functional analysis. Apart from the classical
Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions,
spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces
of holomorphic functions. In an inner product space, the concept of perpendicularity is
replaced by the concept of orthogonality: two vectors v and w are orthogonal if their
inner product ⟨v, w⟩ is zero. The inner product is a generalization of the dot product
of vectors. The dot product is called the standard inner product or the Euclidean inner
product. However, other inner products are possible

In 1925, Werner Heisenberg attempted to solve one of the problems that the Bohr
model left unanswered, explaining the intensities of the different lines in the hydro-
gen emission spectrum. Through a series of mathematical analogies, he wrote out the
quantum-mechanical analog for the classical computation of intensities. Shortly after-
wards, Heisenberg’s colleague Max Born realised that Heisenberg’s method of calculating
the probabilities for transitions between the different energy levels could best be expressed
by using the mathematical concept of matrices. In the same year, building on de Broglie’s
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hypothesis, Erwin Schrödinger developed the equation that describes the behavior of a
quantum-mechanical wave. The mathematical model, called the Schrödinger equation af-
ter its creator, is central to quantum mechanics, defines the permitted stationary states of
a quantum system, and describes how the quantum state of a physical system changes in
time. The wave itself is described by a mathematical function known as a “wave function”.
Schrödinger said that the wave function provides the ”means for predicting probability
of measurement results”. Schrödinger was able to calculate the energy levels of hydrogen
by treating a hydrogen atom’s electron as a classical wave, moving in a well of electrical
potential created by the proton. This calculation accurately reproduced the energy levels
of the Bohr model. In May 1926, Schrödinger proved that Heisenberg’s matrix mechanics
and his own wave mechanics made the same predictions about the properties and behav-
ior of the electron; mathematically, the two theories had an underlying common form.
Yet the two men disagreed on the interpretation of their mutual theory. For instance,
Heisenberg accepted the theoretical prediction of jumps of electrons between orbitals in
an atom, but Schrödinger hoped that a theory based on continuous wave-like proper-
ties could avoid what he called (as paraphrased by Wilhelm Wien) “this nonsense about
quantum jumps”. In the end, Heisenberg’s approach won out, and quantum jumps were
confirmed.

1.2.2 Quantum Computing basic concepts

Even in classical computing, various kinds of errors than can affect computations or
communications, indeed various encoding schemes are adopted to detect and possibly
correct random errors. For example, both in the packets of information transferred over
a network connection, and in the sectors recorded on a magnetic, optical or solid state
medium, there are error detection codes next to the data. In common processors, parity
schemes are typically used to protect instruction caches (which are used in read-only
mode), while ECC (Error Correction Code) systems for other cache levels; as regards the
main working memory, the systems that aspire to be used in mission critical environments
make use of ECC schemes, as well as some professional graphics cards or ones specifically
dedicated to computing. One of the most important challenges for the realization of
quantum information tasks is the implementation of quantum logic gates that are robust
in the presence of perturbations.

In quantum computing, furthermore there are both a quantum noise, which is a con-
sequence of the interaction with the environment (a factor that is usually tried to limit
with cryogenics) and a sort of classical noise, emerging from the interaction of the clas-
sical circuits that are used to experimentally control the quantum system and to make
measurements.

The basic idea in quantum information science is that information can be encoded in
the state of a quantum mechanical system. Hence, given a input state, which expresses
the configuration of some quantum system in a pure state, a quantum algorithm is noth-
ing more than the physical transformation that the system experiences. Hence, by the
principles of quantum mechanics, a quantum algorithm is a unitary transformation which
maps an input state into an output state:

Diffused misconception is that the potential — and the limits — of quantum com-
puting must come substantially from hardware. After quantum processor with only 5-20
working qubits, the 50-qubit quantum machines now coming online from companies likes
of Intel and IBM have inspired predictions that we are nearing “quantum supremacy” —
a nebulous frontier where quantum computers begin to do things beyond the ability of
classical machines.

But quantum supremacy is not a simple, clearly defined demarcation line, a sort of
Rubicon to be crossed, but rather a series of not so small challenges. It will be established
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problem by problem, quantum algorithm versus classical algorithm. “With quantum
computers, progress is not just about speed. It’s much more about the intricacy of
the algorithms at play.” (Michael Bremner, a quantum theorist at the University of
Technology Sydney)

At room temperature, the computer may acquire errors due to thermal motion of the
atoms in the computer’s structure.

Before the dream of a quantum computer took shape in the 1980s, most computer
scientists took for granted that classical computing was all there was. The field’s pioneers
had convincingly argued that classical computers — epitomized by the mathematical
abstraction known as a Turing machine — should be able to compute everything that is
computable in the physical universe, from basic arithmetic to stock trades to black hole
collisions.

Classical machines couldn’t necessarily do all these computations efficiently, though.
Let’s say you wanted to understand something like the chemical behavior of a molecule.
This behavior depends on the behavior of the electrons in the molecule, which exist in a
superposition of many classical states. Making things messier, the quantum state of each
electron depends on the states of all the others — due to the quantum-mechanical phe-
nomenon known as entanglement. Classically calculating these entangled states in even
very simple molecules can become a nightmare of exponentially increasing complexity.

A quantum computer, by contrast, can deal with the intertwined fates of the electrons
under study by superposing and entangling its own quantum bits. This enables the
computer to process extraordinary amounts of information. Each single qubit you add
doubles the states the system can simultaneously store: Two qubits can store four states,
three qubits can store eight states, and so on. Thus, you might need just 50 entangled
qubits to model quantum states that would require exponentially many classical bits —
1.125 quadrillion to be exact — to encode.

A quantum machine could therefore make the classically intractable problem of sim-
ulating large quantum-mechanical systems tractable, or so it appeared. “Nature isn’t
classical, dammit, and if you want to make a simulation of nature, you’d better make it
quantum mechanical,” the physicist Richard Feynman famously quipped in 1981. “And
by golly it’s a wonderful problem, because it doesn’t look so easy.”

It wasn’t, of course.
Even before anyone began tinkering with quantum hardware, theorists struggled to

come up with suitable software. Early on, Feynman and David Deutsch, a physicist at the
University of Oxford, learned that they could control quantum information with mathe-
matical operations borrowed from linear algebra, which they called gates. As analogues
to classical logic gates, quantum gates manipulate qubits in all sorts of ways — guiding
them into a succession of superpositions and entanglements and then measuring their out-
put. By mixing and matching gates to form circuits, the theorists could easily assemble
quantum algorithms.

In the classical computation, the number of logic gates of n bit are in a finite number,
indeed at most 22n , as in in Tab. 2.1 (obviously, not all operators are equally interesting);
in particular, the unary operators are technically four, but two are trivial (the output
is always false or always true, regardless of the input), while the others are identity
and negation (NOT). In the quantum case, instead, the possible one-qubit gates are a
continuous set. That set is the unitary group U(2) for one qubit, or U(N) for n = log2 N
qubits. Hence, a quantum logic gate can be engineered with in principle arbitrary high,
but finite accuracy.

Richard Feynman, the physicist who came up with the idea for a quantum computer
in the 1980s, quipped that “by golly, it’s a wonderful problem, because it doesn’t look so
easy.”
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Conceiving algorithms that promised clear computational benefits proved more diffi-
cult. Until now, researchers had come up with only a few good candidates. Most famously,
in 1994, a young staffer at Bell Laboratories named Peter Shor proposed a quantum al-
gorithm that factors integers exponentially faster than any known classical algorithm —
an efficiency that could allow it to crack many popular encryption schemes[Shor, 1994];
anyway, until now the only real implementations are able to work with very small numbers
[Monz et al., 2016; Vandersypen et al., 2001].

Two years later, Shor’s Bell Labs colleague Lov Grover devised an algorithm that
speeds up the classically tedious process of searching through unsorted databases; its
algorithm [Grover, 1996] allows a quadratic speed-up for this specific task.

“There were a variety of examples that indicated quantum computing power should
be greater than classical,” said Richard Jozsa, a quantum information scientist at the
University of Cambridge.

The coherence time of the qubit should be larger than the time needed for the algo-
rithm to compute.

Until recently, the pursuit of quantum power was largely an abstract one. “We weren’t
really concerned with implementing our algorithms because nobody believed that in the
reasonable future we’d have a quantum computer to do it,” Jozsa said. Running Shor’s al-
gorithm for integers large enough to unlock a standard 128-bit encryption key, for instance,
would require thousands of qubits — plus probably many thousands more to correct for
errors[Chuang and Harrow, 2018; Chuang and Shor, 2018c; Nielsen and Chuang, 2010].

But by 2011, things were starting to look up. That fall, at a conference in Brussels,
Preskill speculated that “the day when well-controlled quantum systems can perform
tasks surpassing what can be done in the classical world” might not be far off. Recent
laboratory results, he said, could soon lead to quantum machines on the order of 100
qubits. Getting them to pull off some “super-classical” feat maybe wasn’t out of the
question. (Although D-Wave Systems’ commercial quantum processors could now boast
more than 2,000 qubits, they tackle only specific optimization problems; many experts
doubt they can exhibit fully quantum effects and so outperform classical computers.)

“I was just trying to emphasize we were getting close — that we might finally reach a
real milestone in human civilization where quantum technology becomes the most powerful
information technology that we have,” Preskill said. He called this milestone “quantum
supremacy.” The name — and the optimism — stuck. “It took off to an extent I didn’t
suspect.”

A host of new computer technologies have emerged within the last few years, and
quantum computing is arguably the technology requiring the greatest paradigm shift on
the part of developers. The intuition behind quantum computing stemmed from what
the fact that despite quantum mechanics greatest successes, even some of the simplest
systems seemed to be beyond the human ability to model with quantum mechanics,
because simulating carefully systems of even a few dozen interacting particles requires
more computing power than any conventional computer can provide.

one of the main reasons why quantum mechanics is hard to simulate is because quan-
tum theory says that matter, at a quantum level, is simultaneously in a linear superpo-
sition of different possible configurations, known as states. Unlike classical probability
theory, these many configurations of the quantum state, which can be potentially ob-
served, may interfere with each other like waves in a tidepool. This interference prevents
the use of statistical sampling to obtain the quantum state configurations. Rather, we
have to track every possible configuration a quantum system could be in if we want to
understand the quantum evolution.

The fondational core of quantum computing is to store information in quantum states
of matter and to use quantum gate operations to compute on that information, by harness-
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ing and learning to “program” quantum interference. An early example of programming
interference to solve a problem thought to be hard on our conventional computers was
done by Peter Shor in 1994 for a problem known as factoring. Solving factoring brings
with it the ability to break many of our public key cryptosystems underlying the security
of e-commerce today, including RSA and Elliptic Curve Cryptography. Since that time,
fast and efficient quantum computer algorithms have been developed for many of our
hard classical tasks: simulating physical systems in chemistry, physics, and materials sci-
ence, searching an unordered database, solving systems of linear equations, and machine
learning.

Designing a quantum program to harness interference may sound like a daunting
challenge, and while it is, many techniques and tools, including our Microsoft Quantum
Development Kit, have been introduced to make quantum programming and algorithm
development more accessible. There are a handful of basic strategies that can be used
to manipulate quantum interference in a way useful for computing, while at the same
time not causing the solution to be lost in a tangle of quantum possibilities. Quantum
programming is a distinct art from classical programming requiring very different tools
to understand and express quantum algorithmic thinking. Indeed, without general tools
to aid a quantum developer in tackling the art of quantum programming, quantum algo-
rithmic development is not so easy.

the challenges of quantum information processing; it is integrated in a software stack
that enables a quantum algorithm to be compiled down to the primitive operations of a
quantum computer. Before approaching the programming language, it’s helpful to review
the basic principles on which quantum computing is based. We will take the fundamental
rules of quantum computing to be axioms, rather than detailing their foundations in
quantum mechanics. Additionally, we will assume basic familiarity with linear algebra
(vectors, matrices etc). If a deeper study of quantum computing history and principles is
desired, we refer you to the reference section containing more information.

Decoherence is nothing but uncontrolled interactions between the system and its en-
vironment. The decoherence can lead to a quantum loss in the quantum processor and
kills the advantage of a quantum algorithm. To avoid this decoherence time sets a limit
on the number of operations that can be performed in our quantum algorithm.

Decoherence can be corrected using error-correction algorithms by encoding quantum
state with redundancy over many qubits. But this can be achieved only when the indi-
vidual quantum gates error rate is very small. Using this a full quantum algorithm that
can run longer than the decoherence time can be built single fault-tolerant qubit requires
thousands of physical qubits. A study shows that quantum computing can achieve a
significant speedup, but this advantage diminished when classical processing required an
error-correction scheme to be implemented

Designing higher fidelity qubits is an important hardware challenge as qubits must
be considered as embedded in an open environment that requires classical simulation
software packages. Quantum RAM unavailability. Complex computation problems like
in machine learning or deep learning require huge amounts of data. Currently, we do not
have quantum RAM (qRAM) that can efficiently encode this information as a quantum
state and store it for a longer time. This is an important hardware challenge for quantum
computing. Noisy Intermediate-Scale Quantum (NISQ) processors.

1.3 The main current development environments for quan-
tum computing

Without any claim of exhaustiveness, below is a brief list of what in recent years have
been the main initiatives to support the development of quantum computing, quantum
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information and quantum machine learning. For each of these development environments,
the main prerogatives and initiatives aimed at increasing the community of developers
are indicated. All of these frameworks encourage the active participation in the quest for
quantum advantage, supporting development of new and innovative software solutions,
while the big companies continue to release hardare solutions that are faster, cheaper, or
better quality with to respect to previous quantum devices.

1.3.1 IBM Quantum Experience

IBM Quantum Experience is an initiative, provided by the IBM, that offers everyone
in the world, after a registration process, the ability to execute programs on quantum
computers connected in the cloud. This online platform gives users in the general public
access to a set of IBM’s prototype quantum computers via the Cloud: currently, IBM offers
a fleet of 18 quantum systems; privileged customers have access to premium quantum
systems, with up to 53 qubits or up to 32 “quantum volume”, while everyone else can take
advantage of a simulator via the cloud, ibmq_qasm_simulator v0.1.547, which supports
up to 32 qubits and a varied repertoire of basic gates (u1, u2, u3, cx, cz, id, x, y, z, h,
s, sdg, t, tdg, ccx, swap, unitary, initialize, kraus), and a set of open quantum systems,
i.e. a single qubit quantum processor (ibmq_armonk v1.1.0, online since October 16,
2019, with id, u1, u2, u3 basic gates and 1.136 × 10−3 single-qubit U2 error rate) and
several multi-qubits quantum computers, as in Fig. 1.20, all available for free, trough a
“fairshare” run mode. Until today, all quantum systems deployed by IBM Quantum are
based on superconducting transmon qubit technology, using special cryogenic refrigerator,
as IBM researchers think that this technology offers the control and scalability to pave a
valid path to achieving better quantum systems.

Nowadays, the bigger IBM premium quantum system is locate at Rochester, Min-
nesota, in the facility that was designed by Saarinen: just the fact that this important
building is covered with blue panels of various shades, under the inspiration of the sky, is
at the origin of the nickname of “Big Blue” for multinational colossus of IT world. This
quantum computer has a record breaking 53 qubits as shown in Fig. 1.21b. Since 2016,
when it made the world’s first quantum computer available through the IBM Cloud, IBM
Quantum Experience has remained the premier place for researchers, industry profession-
als, developers, and students to access cutting edge quantum hardware.

Inside IBM Quantum Experience, developers can interact with a quantum processor
through the quantum circuit model of computation, applying quantum gates on the qubits
using a GUI called the quantum composer, writing quantum semi-assembly language code
(QASM) or writing high-level code, usually in Python, to cooperate with Qiskit libraries.

When developing a circuit to solve a class of problems, one imagines being able to
exploit arbitrary connections between the different qubits if necessary: indeed, various
simulators support all-to-all connectivity; however, to date, each quantum computer is
characterized by a specific coupling map. The coupling map is a sort of list that indicate
those pairs of qubits that support two-qubit gate operations between them, to describe the
device topology or connectivity. The coupling map can be viewed visually, with qubits
represented as circles, and the supported two-qubit gate operations displayed as lines
connecting the qubits, as in Fig. 1.20.

Another important parameter for real quantum computer is the maximum number of
shots, i.e. the maximum number of times a single circuit can be executed on a hardware
computer backend. The number of shots taken determines the precision of the output
probability distribution over repeated executions. In Fig. 1.22, it is shown that the
average error of a quantum computer increases with the duration of the computation,
so a maximum number of iterations must be set to stem this difficulty. Indeed, the
maximum number of shots (times) you can execute a single circuit on a IBM Quantum
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computer is usually 8192 (213). The number of shots taken determines the precision of the
output probability distribution over repeated executions. By virtue of the intrinsically
probabilistic nature of quantum computations, it is not possible to rely on the result
of a single execution, or a limited number of executions, of a quantum circuit. The
presence of errors due to decoherence and other quantum noise makes it rather preferable
to repeat the execution of each circuit a large number of times, in order to be able to
average the outcomes of the individual occurrences and infer a more reliable result. In
theory, therefore, the best results should be obtained launching each circuit multiple
times, a single shot at time, between two calibrations phases; however, for the same
total number of executions, launching a circuit several times, reducing the number of
shots for each occurrence, involves a dramatically significant dilation of execution times
and significantly increases the risk of incurring failures due to exceeding the time-out
or the onset of connection problems (at least as regards free access to simpler quantum
computers).

1.3.2 Rigetti

Rigetti Computing was a startup founded in 2013 by Chad Rigetti, a quantum com-
puting physicist who take a bachelor’s degree in physics from the University of Regina
and a Ph.D. in applied physics from Yale. He worked in the quantum computing group
at IBM before he decided to start an integrated systems company in Berkeley, California.
Rigetti Computing is a full-stack quantum computing company: it designs and fabricates
superconducting quantum processors, integrates them with a controlling architecture to
build quantum computers, and develops software for programmers to use to build algo-
rithms for the chips. In 2016, the company had begun testing a three-qubit chip made
using aluminum circuits on a silicon wafer. In 2017, the company produced eight-qubit
computers [Zeng et al., 2017], then it announced the public beta availability of a quan-
tum cloud computing platform, called Forest, which allows developers to write quantum
algorithms and the introduction of a quantum processor consisting of 20 superconducting
transmon qubits with fixed capacitive coupling as shown in Fig. 1.25; due to a fabrica-
tion defect, qubit 3 is not tunable, consequently, Rigetti treat this as a 19-qubit processor,
calling it Rigetti 19Q [Otterbach et al., 2017].

Rigetti has chosen for its system a quantum-classical hybrid architecture, based on
co-location of a classic CPU with the quantum processing unit, to take advantage of the
quantum chip as an accelerator for specific tasks while eliminating Internet transmission
latency, using Quantum Cloud Service (QCS), as shown in Fig. 1.27. QCS use the
QPUs Aspen (Quantum Processing Units) Aspen architecture 1.28b. The initial versions
of Aspen used for public beta of QCS were based on a 16 qubit configuration, then
evolved til 31 qubis 1.28a, while Rigetti announced that the Aspen family will extend
to 128 qubits10. The QCS system is unique because each user receives a dedicated QMI
(Quantum Machine Image), preconfigured with Rigetti’s Forest SDK. Rigetti introduced
some technologies such as parametric compilation, to allow to run the same quantum
program with different parameters at run time, and an active qubit reset capability, to
allow rapid execution of programs by eliminating any delays that would result in a return
to the zero state of the qubit; according to Rigetti, these features together can provide
up to 30x performance increase over a plain web API model. Through Quantum Cloud
Services (QCS) platform, their machines can be integrated into any public, private or
hybrid cloud. On Dec. 2, 2019 Rigetti announced a commercial agreement with Amazon,
to offer its quantum computers through a fully managed Amazon Web Services (AWS)
solution, named Amazon Braket, so to allow scientists, researchers, and developers to

10https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea

https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
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(a) ibmq_16_melbourne v2.1.0: online since
November 06, 2018, it offers 16 Qubits and id,
u1, u2, u3, cx as basis gates.

(b) ibmq_5_yorktown - ibmqx2 v2.0.5: online
since January 24, 2017, it offers 5 Qubits and u1,
u2, u3, cx, id as basis gates.

(c) ibmq_essex v1.0.1: online since September
13, 2019, it offers 5 Qubits and u1, u2, u3, cx, id
as basis gates.

(d) ibmq_burlington v1.1.4: online since
September 13, 2019, it offers 5 Qubits and u1,
u2, u3, cx, id as basis gates.

(e) ibmq_london v1.1.0: online since September
13, 2019, it offers 5 Qubits and u1, u2, u3, cx, id
as basis gates.

(f) ibmq_vigo v1.0.2: online since July 03, 2019,
it offers 5 Qubits and u1, u2, u3, cx, id as basis
gates.

(g) ibmq_ourense v1.0.1: online since July 03,
2019, it offers 5 Qubits and u1, u2, u3, cx, id as
basis gates.

(h) ibmq_rome v1.0.0: online since March 23,
2020, it offers 5 Qubits and u1, u2, u3, cx, id as
basis gates.

Figure 1.20: IBM multi-qubits quantum computers with free cloud access6 (2020).
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(a) IBM Quantum Systems: topologies for 2019
computers

(b) IBM Quantum Experience: 53 Qubit
Rochester’s topology

Figure 1.22: IBM Quantum computing sampling error: distance for a Bell state run on
the IBM Quantum Boeblingen system from the theoretical answer (in terms of Hellinger
distance) as a function of the number of shots taken.

Figure 1.23: IBM Q System One two-quibts Error Rates7

Figure 1.24: IBM Quantum systems: fundamental metrics in four recent IBM Q systems8
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Figure 1.25: Rigetti 19Q quantum processor: a, Chip schematic showing tunable trans-
mons (teal circles) capacitively coupled to
xed-frequency transmons (pink circles). b, Optical chip image. Note that some couplers
have been dropped to produce a lattice with three-fold, rather than four-fold, connectivity
[Otterbach et al., 2017].

Figure 1.26: Rigetti developed a scalable 16-qubit form factor to pave the way to 128-qubit
chip9.
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Figure 1.27: Rigetti Quantum Cloud Service11

begin experimenting with computers from quantum hardware providers in a single place.
To boost enterprise customers relationships, Rigetti has also joined the AWS Partner
Network (APN) as a solutions provider, to develop custom software solutions focused
on simulation, optimization and machine learning for industry-leading organizations in
finance, insurance, pharmaceuticals, defense, and energy.

Rigetti developed a quantum instruction language called Quil [Smith et al., 2017],
which was the first to introduce a shared quantum-classical memory model. Quil supports
quantum circuit model abstraction model and the superconducting quantum processors
developed by Rigetti Computing through the Forest quantum programming API. The
language also supports macro-like definitions of possibly parametrized quantum circuits
and their expansion, qubit measurement and recording of the outcome in classical mem-
ory, synchronization with classical computers with the WAIT instruction which pauses
the execution of a Quil program until a classical program has ended its execution, con-
ditional and unconditional branching, pragma support, as well as inclusion of files for
use as libraries (a standard set of gates is provided as one of the libraries.) A Python li-
brary called pyQuil was introduced to develop Quil programs with higher level constructs.
Rigetti Computing developed a Quantum Virtual Machine, an abstract representation of
a general-purpose quantum computing device, in Common Lisp that simulates the quan-
tum machine on a classical computer and is capable of the parsing and execution of Quil
programs with possibly remote execution via HTTP. The Quantum Abstract Machine
(QAM) includes support for manipulating both classical and quantum state. As shown in
Fig. 1.26, Rigetti developed a scalable 16-qubit form factor to pave the way to 128-qubit
chip,
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Chapter 2

Machine Learning

Machine learning is a very important subset of artificial intelligence (AI) research field.
Machine Learning techniques are used in various research sectors, where it is necessary for
a system to automatically learn a task or improve performance through experience, based
on the data it can evaluate; with such techniques, a system can know how to recognize
data or perform a task without having been explicitly programmed for the task to be
performed. Nowadays machine learning is one of most rapidly growing technical fields,
lying at the intersection of computer science and inferential statistics, and it consists
of various models and techniques. Recent progress in machine learning has been driven
both by the development of new learning algorithms and theory and by the ongoing
explosion in the availability of online, often open access data-sets and relatively low-cost
computational resources. The adoption of data-intensive machine-learning methods can
be found throughout science, technology and even commerce, leading to more evidence-
based decision-making across many walks of life, including health care, manufacturing,
education, financial modeling, policing, and marketing. For example, when we interact
with medical diagnostic centers and banks, buy at online stores or use social networks,
machine learning algorithms are used to make our experience efficient, easy and safe (or,
conversely, to deeper influence our choices).

2.1 Classical Artificial Intelligence
The seeds of modern AI were planted by classical philosophers who attempted to

describe the process of human thinking as the syntactic, mechanical manipulation of
symbols. This work culminated in the invention of the programmable digital computer
in the 1940s, a machine based on the abstract essence of mathematical reasoning and
syntactic manipulation of symbols. In the 1940s and 50s, digital computer and the ideas
behind it inspired a handful of scientists from a variety of fields (mathematics, psychology,
engineering, economics and political science) to begin seriously discussing the possibility
of building a sort of artificial, probably electronic, brain. In the early 1950s, there was a
variety of conceptual orientations for the field of the so called “thinking machines”, partic-
ularly cybernetics, automata theory, and complex information processing. In particular,
the research in neurology had shown that the brain was an electrical network of neurons
that fired in all-or-nothing pulses, while Alan Turing’s theory of computation suggested
that any form of computation could be described by Turing’s machines and implemented
in digital computer.

In this period, Cybernetics emerged as a trans-disciplinary approach, comprising me-
chanical, physical, biological, cognitive, and social sciences, for study how humans, an-
imals and machines control and communicate with each other, indeed Norbert Wiener
defined cybernetics in 1948 as “the scientific study of control and communication in the
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animal and the machine”. Cybernetics is relevant to explore regulatory systems: their
structures, constraints, and possibilities, in particular where action by the analysed sys-
tem generates some change in its environment and that change is reflected in the system
in some manner (feedback) that triggers a system change. The essential goal of the broad
field of cybernetics is to understand and define the functions and processes of systems that
have goals and that participate in complex, usually circular causal chains that move from
action to sensing to comparison with desired goal, and again to action. Its focus is how
anything (digital, mechanical or biological) processes information, reacts to information,
and changes or can be changed to better accomplish the first two tasks. Therefore Cy-
bernetics deals especially with learning, cognition, adaptation, social control, emergence,
convergence, communication, efficiency, efficacy, and connectivity.

According to many experts, the field of AI research was founded, or at least acknowl-
edged as an academic discipline, at a workshop held on the campus of Dartmouth College
during the summer of 1956, which was essentially a sort of brainstorming session, accord-
ing to the following proposal:
“We propose that a 2-month, 10-man study of artificial intelligence be carried out during
the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to
proceed on the basis of the conjecture that every aspect of learning or any other feature
of intelligence can in principle be so precisely described that a machine can be made to
simulate it. An attempt will be made to find how to make machines use language, form
abstractions and concepts, solve kinds of problems now reserved for humans, and improve
themselves. We think that a significant advance can be made in one or more of these
problems if a carefully selected group of scientists work on it together for a summer.”

Those who attended would become the leaders of AI research for decades. Many of
them boldly predicted that a machine as intelligent as a human being would exist in no
more than a generation and so they were given millions of dollars to make this vision
come true. In retrospect, this pioneering phase has often been described as strong AI
and it had set very high expectations, such as passing the famous Turing test: a machine
and a human both converse sight unseen with a second human, who must evaluate which
of the two is the machine, which passes the test if it can fool the evaluator a significant
fraction of the time.

In the 1970s, AI was subject to critiques and financial setbacks. Some AI researchers
seemed to understimate the difficulty of the problems they faced: their optimism had
raised exaggeratedly high expectations, and when the promised results failed to realize,
funding for AI projects were dramatically cut. Because of combinatorial explosion of
paths to be explored to reach a solution, for many interesting problems there was not
enough memory or processing speed to accomplish useful results. Moreover, many impor-
tant artificial intelligence applications like vision or natural language processing require
simply enormous amounts of information about the world: until relatively few years ago,
researchers could not build a database so large and no one knew how a program might
learn so much information.

Some sectors developed within AI are Knowledge Base, Symbolic Calculus, Logical
Inference, Logical Reasoning Systems, Computer vision, Control systems, Conversation
theory, Interactions of actors theory, Learning organization, Robotics, Cellular automa-
ton, Decision support systems, Formal languages, Modal logic, Adaptive systems. Some-
times, symbolic AI, i.e. based on high-level symbolic representations of problems, is called
“Good Old-Fashioned Artificial Intelligence” (GOFAI).

Usually, classical AI was based on the union of ad hoc studies for each class of prob-
lems, trying to build on abstract knowledge of each examined instance and to take into
account the opinion of human experts, and uniform strategies, such as A* and backtrack
algorithms.
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For example, there are problems which admit the concept of a “partial candidate
solution” and a relatively quick test of whether it can possibly be completed to a valid
solution. Conceptually, in such cases the partial candidates can be represented as the
nodes of a tree structure, i.e. the potential search tree. Each partial candidate is the
parent of the candidates that differ from it by a single extension step; the leaves of the
tree are the partial candidates that cannot be extended any further. We can use breadth-
first or depth-first (such as backtracking algorithm) approaches to find one solution: the
breadth-first approach guarantees the identification of a solution, but usually requires a
very high memory use, while the depth-first approach risks being trapped in a branch
of infinite length, therefore a maximum exploration depth of the configuration tree is
usually contemplated, so to force to evaluate even non-leaf nodes (usually through ad
hoc heuristic functions). Anyway, for any problem that can be seen as combinatorial
optimization task we can use this kind of algorithms. As another example, for two-player
zero-sum game theory we can use minimax evaluation or alpha–beta pruning to find a
solution in which each player minimizes the maximum payoff possible for the other. Chess
and checkers are typical examples of games for which it is possible to develop strategies
using the minimax algorithm; the alpha–beta pruning algorithm allows to discard entire
branches that certainly do not contain better candidate solutions than the provisionally
identified one, allowing to increase the maximum search depth.

A classical example is the n-queens puzzle: on a standard 8×8 chessboard, the “basic”
eight queens puzzle is the problem of placing eight chess queens so that no two queens
threaten each other; thus, a solution requires that no two queens share the same row,
column, or diagonal, but the problem can be generalized to the case of n×n chessboards,
for any natural number n. If n equals 1, there is obviously only a trivial solution, for n
equals 2 or 3 there are no solutions, for n equals 4 there are two solutions, but each of
them it is obtained from the other by reflection, so there is only a “fundamental” solution.
There is no known formula for the exact number of solutions for each natural number n,
or even for its asymptotic behaviour, but for n greater than 6 the number of solutions is
growing very fast. The problem of finding all solutions to the n-queens problem can be
quite computationally expensive, as there are

(︁n2

n

)︁
possible arrangements of n queens on

an n× n board; by applying a simple rule that constrains each queen to a single column
(or row),it is possible to reduce the number of possibilities to n2 possible combinations;
generating permutations further reduces the possibilities to just n! possibilities, which
are then checked for diagonal attacks. As the factorial grows very rapidly, even taking
into account symmetries, such as rotations of multiples of a right angle or reflection, the
number of possible configurations to be tested is too high to proceed with a breadth-first
exploration, therefore making search strategies preferable based on back-tracking.

Maybe one of the most famous, or at least spectacular, successes of classic artificial
intelligence was when on 11 May 1997, IBM Deep Blue became the first computer chess-
playing system to beat a reigning world chess champion, Garry Kasparov, the highest
rated chess player in history (at the time), the World Champion for 15 years (1985–2000).
Deep Blue was a supercomputer developed by IBM specifically for playing chess: its de-
velopment started in 1985 as the ChipTest research project in Carnegie Mellon University
led by Feng-hsiung Hsu. It eventually evolved into Deep Thought and it was later re-
named to Deep Blue in 1989; even Joel Benjamin, a chess grandmaster, was added to the
development team. It consisted of 30 nodes, with 120 MHz P2SC microprocessor (Power2
Single Chip) and, as coprocessors, 480 special-purpose VLSI chess chips per node, so it
could elaborate an average of 200,000,000 moves per second. According to the TOP500
list, Deep Blue was the 259th most powerful supercomputer in 1997: it achieved 11.38
GFLOPS on the LINPACK benchmark. It used mostly brute-force strategies to overcome
human champion.
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2.1.1 Some considerations about Classical A.I. computational requests

If we examine the algorithms developed within classical artificial intelligence, we can
identify some recurring traits: there is a predominance of symbolic processing and calcu-
lation with integer numbers; any computation with machine representations of decimal
numbers is usually relegated to particular aspects (for example, the assignment of a score
by an evaluation function); because there are many evaluations of conditional expressions,
the code is usually really branch intensive; because there are complex data dependencies,
a relative low Instruction Per Clock (IPC) is usually found even on complex, superscalar
microarchitectures; there are often many jumps for functions’ recursive calls; not regular
data access make cache memory hierarchy and automatic, in hardware, data prefetching
techniques quite ineffective; a high sensitivity to memory latency is revealed; moreover,
this kind of algorithms not always is very thread friendly.

The adducted elements demonstrate how complicated it is for a microprocessor to
efficiently perform artificial intelligence’s classical algorithms.

For example, the high density of jump instructions, by virtue of conditional statements
or calls to recursive functions, clashes with the high lengths of modern pipelines; moreover,
unlike what usually happens with iterative structures, such as controlled loops, in which
a jump usually follows a path many times, until the entry condition is falsified (therefore
it is correctly predicted always or almost by a good branch prediction unit), in these
circumstances even the best branch prediction units are thrown into crisis. Moreover,
complex data dependencies tend to limit the IPC exploitation and the effectiveness of
out-of-order execution engines, while they do not facilitate the use of SIMD or vector
units; complex, difficult to predict memory access pattern limit the effectiveness of the
cache memories and TLB, with frequent flushes, moreover put the hardware data prefetch
units in difficulty (nowadays, access to the RAM memory can cost some hundreds of work
cycles).

Ultimately, the most widely implemented techniques in modern processors to increase
performance in the most frequently used programs, rarely cooperate effectively with most
classical artificial intelligence algorithms.

2.1.2 Classical A.I. trouble: an example, working memory latency

In many classical A.I. algorithms, the load to use latency for access to information in
working memory plays a crucial role, therefore a simple explanation of the access to the
memory is provided. Generally a memory array is divided into banks or pages, than each
block is addressed by rows and columns, so that each memory access consists of several
stages. Memory speed can be characterized on the basis of two fundamental parameters:
latency and bandwidth. Latency indicates how much time elapses between the need for
information and its effective availability, while bandwidth expresses the maximum amount
of information that can be transferred per unit of time, at least in the most favorable
conditions (primarily sequential access, but even circumstances in which a pipelined access
can conveniently mask the transfer latency of addresses for subsequent accesses). Even
in the most favorable case, the burden of specifying the column containing the desired
information block must be assumed at least, therefore the CAS (Column Access Strobe)
latency plays a crucial role in determining the minimum latency of a memory access.
Spatial locality principle dictate that if a particular memory location is referenced once,
then it is likely that nearby memory locations will be referenced in the near future, so
it is common to access several memory blocks in the same memory row (thus having to
pay only once the duty in the form of RAS - Row Access Strobe - latency per multiple
memory accesses): in such circumstances, the CAS latency alone determines the elapsed
time (from the perspective of the memory module, at least). For over 50 years, JEDEC
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(Joint Electron Device Engineering Council), which has over 300 members, including
some of the world’s largest computer companies, has been a global leader in developing
open standards and publications for the microelectronics industry; its committees provide
industry leadership in developing open standards for a broad range of technologies, which
are the basic building blocks of the digital economy and form the bedrock on which
healthy, high-volume markets are built. JEDEC play a hegemonic role especially for
memory chip, modules and interfaces specifications, so as to develop several generations
of SDRAM ( Synchronous Dynamic Random Access Memory) memories, defining their
operating parameters.

While the CPU speed has grown for long periods with an exponential rate, the working
memory speed has grown linearly at most1.19. Furthermore, over the past 25 years, while
RAM memory bandwidth has grown a couple of orders of magnitude, memory access
latency has declined very little.

For example, in 1996 a Pentium or Pentium PRO 200 MHz had a working cycle of 5
ns, while the SDRAMs PC66 offered a CAS latency of 2 cycles at 66 MHz, corresponding
therefore to 30 ns. As a result, the CAS latency corresponded to just 6 microprocessor
cycles. Nowadays, a Core i9-9900 CPU offers a maximum frequency (Turbo Boost) of
5 GHz, therefore its work cycle lasts merely 0.2 ns, while it officially supports DDR4
memories up to 2666MHz. RAM DIMMs of this frequency, compliant with JEDEC (Joint
Electron Device Engineering Council) standards, offer the minimum CAS latency of 17
cycles, or 12.75 ns, which means that the CAS latency corresponds to 63.75 CPU cycles.
This example shows that the CAS latency perceived by the CPU has worsened by an order
of magnitude (in terms of CPU clock cycles), while the overall bandwidth has increased
by a factor of 80 (from 533 MB/s to 42.67 GB/s), with the average bandwidth for cycle
increased by a factor of 3.2 (from 2.67 to 8.53 bytes/cycle).

Even violating the Intel specifications for this CPU, but respecting JEDEC’s standard
for memory, it is possible to adopt DDR4 3200 with CL 20, so despite a further 20%
increase in bandwidth there is only an imperceptible reduction in CAS latency, i.e. at
12.50 ns (exactly the same absolute CAS latency value in nanoseconds offered in 2003
by the fastest memory compliant with JEDEC’s standard, DDR-400 CL 2.5), therefore
62.5 CPU cycles (but only 25 CPU cycles for an AMD Athlon K8 Model Number 3200+
working at 2 GHz, one of top speed CPU in 2003).

By using expensive memories that circumvent the JEDEC specifications, it is possible
to further reduce access latency; for example, with DDR4-2400 CL 12, DDR4-2800 CL
14, DDR4-3000 CL 15 or DDR4-3200 CL 16 the CAS latency is 10 ns (DDR4-2666 CL13
offers 2.5% lower latency, at 9.75 ns), exactly at the same level reached by the DDR-400
CL2, the fastest (but not strictly standard) memory in the year 2003. By opting for even
more expensive devices (and agreeing to severely limit the maximum memory capacity),
it is possible to go up to DDR4-4266 CL 17 (7.97 ns) or DDR4-4800 CL 18 (7.50 ns), that
correspond to 39-40 CPU cycles at 5GHz. Over a period of 17 years therefore we cannot
measure a latency reduction for standard JEDEC memory, but even regarding the best
memories that do not comply with the JEDEC standards, we can point out that we are
observing a latency reduction of just 20-25% , in the face of lower market availability,
higher relative cost and more narrow capacity constraints.

It is also necessary to point out that, as the number of cores offered by modern CPUs
increases, the connection topology becomes more complex and articulated (for example,
multiple ring buses, multiple CCXs, i.e. core complexes, uniform mesh topology inside a
single die, but there are even complex inter-die connections for multi-die solutions), the
arbiter stage to memory access become more complicated and computationally expensive
as well as the protocols aimed at ensuring the consistency of the information (MESI/-
MOESI protocols, cache snooping, cache filter and so on). The resulting effect of these
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important changes is that Intel CPUs with a low number of computational cores (Kaby
Lake and Coffee Lake, with 4-6 cores) at most reach, when connected to memories that ex-
ceed JEDEC standards, the overall latency for memory access shown by the AMD Athlon
64 in 2003 (the first X86 CPU with memory controller and northbridge integrated in its
die), i.e. approximately 40-45 ns (same latency, but with an effective bandwidth about 20
times higher, due to the transition from a single DDR memory channel at 400 MHz to a
double DDR4 memory channel at around 4GHz). Even AMD Renoir, the Ryzen Mobile
4000 Series 7nm APU, with a monolithic design (so far the only “Zen 2” product not to
use a multi-chip module package with IOD, a dedicated die for I/O), has a load to use
memory latency of about 65 ns. All CPUs with a higher number of computational cores
(such as Intel Haswell-E, Broadwell-E, Skylake-X and Cascade Lake-X or AMD Ryzen and
ThreadRipper) demonstrate ineluctably higher memory access latency, sometimes even
2-3 times worse. Therefore, the most advanced processors, with the higher computing
power, actually observe a worsening of latency compared to 17 years ago.

While JEDEC still has not published the DDR5 specification officially, since 2018
there are drafts of this new technology by JEDEC working groups and some provisional
DDR5 IP (Intellectual Property), such as controllers and PHYs, have since been released
commercially. At least on the server side, it is widely known that AMD’s EPYC “Genoa”
(based on Zen 4 microarchitecture, supposedly on 5nm litographic process) as well as
Intel’s Xeon Scalable “Sapphire Rapids” (based on Willow Cove microarchitecture, suc-
cessor to the Ice Lake’s Sunny Cove core: it should be the second refinement of the 10
nm process, which is supposed to include new security features and the cache subsystem
redesign) will support DDR5 DRAM when they launch in the 2021 2022 time frame.
Transition to DDR5 represents a major challenge for DRAM makers because the chips
are set to simultaneously increase capacity, rise data transfer rates, increase effective per-
formance (per clock and per channel), and lower power consumption all at the same time.
DDR5 is indeed expected to bring in I/O speeds of 4800 to 6400 MT/s (Mega-Transfers
per second), with a supply voltage drop to 1.1 Volt and 16-32 Gbit density; in addition,
DDR5 is expected to make it easier to stack multiple DRAM devices, which will allow to
further increase DRAM capacity, at least on the server side.

Industry sources expect that DDR5 ramp will begin with 16 Gb DRAMs at 4800 MT/s
and that, from there, DDR5 will evolve in two directions: capacity and performance.
Capacity wise, DDR5 will quickly grow from 16 Gb to 24 Gb and then to 32 Gb capacity
per chip. As for performance, it is expected that DDR5 will evolve to 5200 MT/s data
rate in 12 – 18 months after DDR5-4800 launch and then to 5600 MT/s in another 12 –
18 months, so performance progress of DDR5 will occur in a pretty much regular cadence,
until the expected milestone of 6400 MT/s, i.e. double what is officially achieved by DDR4
almost a decade after its introduction. It is also expected that eache 64 bit DIMM will use
two independent 32-bit channels per module (or 40 bit channels with ECC). Furthermore,
DDR5 will have an improved command bus efficiency (because the channels will have
their own 7-bit Address (Add)/Command (Cmd) buses), better refresh schemes, and an
increased bank group for additional performance. In fact, Cadence Design Systems, one
of the largest multinational companies involved in electronic design automation (EDA)
software and engineering services, goes as far as announcing that improved functionality
of DDR5 will enable a 36% higher real-world bandwidth when compared to DDR4 even
at the same 3200 MT/s (obviously this bold claim will have to be put to a test).

However, the relevant fact is that none of the committees or companies involved into
developing new RAM memory standards, such as JEDEC, Cadence, RAM memory man-
ufacturers (Micron Technology, Samsung Semiconductor and SK Hynix), microprocessor
manufacturers (Intel, AMD, ARM), venture to name a slight reduction in access latency
as a goal to be pursued or at least a sort of collateral benefit of this new technology.
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In general it is possible to profitably mask memory latency by exploiting locality of
reference principle, with the introduction of one or more levels of cache memory; moreover,
in a certain sense it is possible to buy latency by spending bandwidth, in the sense of being
able to exploit any fraction of bandwidth that is not directly exploited by the software in
use to preload information in one of the cache levels that have a high probability of being
used in the near future, thus taking advantage of the hardware prefetching units present
in the CPUs released in the last twenty years and constantly improved.

Anyway, for many “classic” artificial intelligence algorithms the assumptions of tem-
poral locality and spatial locality are not always observed, therefore greater emphasis is
reserved to the worst case scenario (full working memory, i.e. RAM, access). For example,
rather than the simple traversal of elements in a one-dimensional array (or row/column
scan in two-dimensional array, depending on whether it is stored in row major or column
major order), from the base address to the highest element, exploiting the sequential local-
ity of the array in memory, many A.I. algorithms use more sophisticated data structures,
such as trees, hash tables and tries whose elements are scattered everywhere in memory,
incurring often even in very expensive page table walk to react to TLB miss.

2.2 Machine Learning
The theoretical study and computer modeling of automatic learning processes in their

multiple manifestations constitutes the subject matter of machine learning, one of most
rapidly growing technical fields. The field of machine learning is organized around three
primary research areas: the development and analysis of automatic learning systems to
improve performance in a predetermined set of tasks, i.e. task-oriented studies; the inves-
tigation and computer simulation of vertebrates, mammals or human learning processes,
i.e. cognitive simulation; the theoretical exploration of the space of possible learning
methods and algorithms independent of application domain, i.e. theoretical analysis.
An equally basic scientific objective of machine learning is the exploration of alternative
learning mechanisms, including the discovery of different induction algorithms, the scope
and limitations of certain methods, the information that must be available to the learner,
the issue of coping with imperfect training data, and the creation of general techniques
applicable in many task domains.

Machine learning algorithms can figure out how to perform important tasks by gener-
alizing from examples. This is often feasible and cost-effective where manual programming
is not. As more data becomes available, more ambitious problems can be tackled. As a
result, machine learning is widely used in computer science and other fields.

Often the original data (raw data) cannot be used by the classifier to build a model,
but an additional pre-processing is required which transforms the raw data to so called
feature vectors which better describe the data, e.g., mean values and standard deviations,
frequency power spectra, and amplitudes after a low or high pass filtering stage. When
dealing with classification tasks of complex data, the generation of meaningful features is
a major issue. This is due to the fact that the data often consists of a superposition of
a multitude of signals, together with dynamic and observational noise. Hence, the data
processing usually requires the combination of different pre-processing steps in addition
to a classifier. In fact, the generation of good features plays a fundamental rule both
to increase the goodness of the results of the training process both to converge towards
an acceptable solution more quickly, so the choice of pre-processing is often at least
as important as the selection of actual classification algorithm. Sometimes, for high-
dimensional data, pre-processing includes some dimension reduction technique, performed
prior to applying the learning algorithm, in order to avoid the effects of the so called curse
of dimensionality, for example, PCA (Principal Component Analysis).
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In the early 1900, Pearson was the PCA’s artificer, then it was later independently
invented and named by Harold Hotelling. PCA is mostly used as a tool in exploratory data
analysis and it is very useful to better view complex datasets. Intuitively, if you have k
experimental points in an n-dimensional space, but you have no a priori knowledge on their
arrangement, the simplest operation is to evaluate a “best fit” line that passes through
these experimental points, usually the one that minimizes the average squared distance
from a point to the line. If the data followed an almost linear trend, this line would
adequately represent them; in general, this assumption is obviously not satisfied, but the
procedure can be repeated choosing the next best-fitting line in the orthogonal subspace
to the first one. Accordingly PCA is conceived as an orthogonal linear transformation
that transforms the data to a new coordinate system such that the greatest variance
by some scalar projection of the data comes to lie on the first coordinate (called the
first principal component), the second greatest variance on the second coordinate (second
principal component), and so on. To center the data around the origin, the mean of
each variable is subtracted from the dataset: this is an extremely important step so that
it is possible to identify the directions according to which the variability of the points
is maximum, that is the dispersion with respect to a sort of center of mass. Anyway,
PCA analysis is sensitive to the scaling of the data: theoretically it cannot be established
in general how to best scale the data to obtain optimal results, usually each variable’s
variance is normalized (equal to 1). PCA can be done by eigenvalue decomposition or
singular value decomposition of a data matrix, to speed up learning phase

From the most abstract possible viewpoint, machine learning can be summarized as
learning a function (f) that maps input variables (X) to output variables (Y): Y = f(x).

An algorithm learns this target mapping function from training data.
The form of the function is unknown, so we need to evaluate different machine learning

algorithms and find which is better at approximating the underlying function.
Different algorithms make different assumptions or biases about the form of the func-

tion and how it can be learned.
Assumptions can greatly simplify the learning process, but can also limit what can

be learned. Algorithms that simplify the function to a known form are called parametric
machine learning algorithms: in this case, the learning model summarizes data with a
set of parameters of fixed size (independent of the number of training examples). In this
case, the model is generated with a combination of a scheme chosen a priori (number
and type of elementary functions, for example) and a set of adaptive parameters, that is
parameters are initialized with typical or random values and then changed according to an
optimization procedure. For example, if we expect the data to follow a linear or parabolic
trend, we can try to determinate the coefficients of, respectively, a first or second grade
polynomial, according to some criterion (for example, maximum likelihood, i.e. least
square technique). Often the assumed functional form is a linear combination of the
input variables and as such parametric machine learning algorithms are often also called
“linear machine learning algorithms”; then, applying a nonlinear output function could
increase model flexibility. Some examples of parametric models are: logistic regression,
LDA (Linear Discriminant Analysis), Perceptron, Naive Bayes, and even simple, fixed-
size, neural networks.

Algorithms that do not make strong assumptions about the form of the mapping
function are called non-parametric machine learning algorithms. Non-parametric methods
are good when there have a lot of data and no prior knowledge, and when you don’t want to
worry too much about choosing just the right features. Non-parametric methods, instead,
are good when there is a lot of data, but no prior knowledge. Some examples of non-
parametric models are: Decision Trees, K-Nearest Neighbor, Support Vector Machines
(with Kernel trick).
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In conclusion, with parametric models to predict new data, we only need to deter-
minate the parameters of the model, while in non-parametric methods there is more
flexibility and for forecasting new data we need to know the parameters of the model and
the state of the data that has been observed.

Some advantages of parametric models are: usually they are easier to understand
and interpret results; they are typically very fast to learn from data and they do not
require as much training data and can work well even if the fit to the data is not perfect.
Obvious limitations of parametric Machine Learning algorithms are: by choosing a priori
functional form, these methods are highly constrained to that specific form, so they are
usually more suited to simpler problems; if we don’t have strong and founded hypotheses
on mapping function, in practice the methods give not so good results.

An easy to understand non-parametric model is the k-nearest neighbors algorithm
that makes predictions based on the k most similar training patterns for a new data
instance. The method does not assume anything about the form of the mapping function
other than patterns that are close are likely have a similar output variable.

Some more examples of popular non-parametric machine learning algorithms are: De-
cision Trees like CART and C4.5, Support Vector Machines.

Benefits of Nonparametric Machine Learning Algorithms: Capable of fitting a large
number of functional forms, No assumptions (or weak assumptions) about the underlying
function, Can result in higher performance models for prediction. Limitations of non-
parametric Machine Learning Algorithms: they usually require a lot more training data
to estimate the mapping function; they can be slow to train as they often have far more
parameters to train; there is more of a risk to overfit the training data and it is harder to
explain why specific predictions are made.

The two main types of machine learning strategies currently used are supervised and
unsupervised machine learning algorithms. The difference between these two types is
defined by the way in which each algorithm learns the data to make predictions.

The supervised machine learning algorithms are the most used. With this model, a
data scientist acts as a guide and teaches the algorithm the results to be generated. In
supervised machine learning the algorithm learns from an already labeled data set with
a predefined output (the expected output value for a function, the expected label for a
classification problem).

Linear and logistic regression algorithms, multi-class classification algorithms and sup-
port vector machines are some examples of supervised machine learning.

Unsupervised machine learning uses a more independent approach, in which a com-
puter learns to identify complex processes and patterns without the careful and constant
guidance of an extern expert (usually human, but it could be another computer algo-
rithm). Unsupervised machine learning involves training based on data without labels
and for which a specific output has not been defined.

Unsupervised machine learning will look for the similarities between the dataset points
and divide them into groups, assigning each group the new corresponding label. The k-
means clustering algorithms, the analysis of main and independent components and the
association rules are examples of unsupervised machine learning.

Machine learning has been adopted in a wide range of sectors to support various busi-
ness objectives and use cases, including: classification of images, recommendation engines,
calculation of the customer life cycle value, detection of anomalies, determination of dy-
namic prices, predictive maintenance [Bunks et al., 2000; Cline et al., 2017; Hashemian
and Bean, 2011; Kaur et al., 2010; Liu et al., 2015b; Peng and Dong, 2011; Peng et al.,
2010; Su et al., 2006; Susto et al., 2015; Wang et al., 2017b; Wu et al., 2007; Yam et al.,
2001; Zeng et al., 2006; Zhou et al., 2010].

Among the reasons that have led to an ever wider expansion of machine learning in the



ML 66

artificial intelligence sector, it cannot be overlooked that in recent decades there has been
a synergetic development of CPU and GPU technologies on the one hand and machine
learning algorithms on the other.

For example, compared to classic artificial intelligence algorithms, the density of jump
instructions in machine learning is extremely low (a strongly penalizing element with the
use of very long execution pipelines, dozens of stages on CPU, hundreds on GPU). More-
over, machine learning requires massive crunch number capability, with a predominant
use of linear algebra, which is well suited to ample SIMD execution unit inside modern
CPU (we have progressively witnessed the transition from 1997 K2-2 64-bit 3D Now units
to 1999 Katmai 128-bit SSE, 2011 Sandy Bridge 256-bit AVX and, for a couple of years
now, Skylake-X and recent Ice Lake 512-bit AVX-512)

Furthermore, machine learning algorithms present regular, predictable memory access
patterns (which are relatively simple to manage from cache memories and hardware data
prefetch units) and show more bandwidth sensitivity (it’s decidedly simpler to augment
bandwidth with respect to decrease latency).

Finally, machine learning tecniques usually make it relatively simple to partition the
computation in the data domain, give multi-thread friendly and opens the doors to exploit
multicore processor, graphic processor (GPU), FPGA and ASIC implementations.

A vulnerability of the machine learning techniques is that using faulty data or dirty
data can lead to making bad predictions even if a very good model has been selected.
For example, in supervised learning, we use data that has been previously labeled, but in
many cases, this labeling is normally done by a human, which can lead to errors.

In theory, you can never have too much data (as long it’s correct data). In practice,
even though there have been tremendous advances in storage and computing costs and
performance, we are still bound by physical constraints of time and space. So currently,
one of the most important jobs a data scientist has is to judiciously pick out the data
sources they think will have an impact in achieving accurate model predictions.

Not having enough data is possible because of cost or financial issues, privacy issues
(for example, for health care), and so on.

There is a famous theorem in mathematics. The “No Free Lunch” (NFL) theorem
states that there is no one model that works best for every problem. The assumptions
of a good model for one domain may not hold for another, so it is not uncommon in
data science to iterate using multiple models, trying to find the one that fits best for
a given situation. This is especially true in supervised learning. Validation or cross-
validation is commonly used to assess the predictive accuracy of multiple models with
varying complexity to find the most suitable model. In addition, a model that works well
could also be trained using multiple algorithms – for example, linear regression could be
trained using normal equations or using gradient descent.

Depending on the use case, it is critical to ascertain the trade-offs between speed,
accuracy, and complexity of different models and algorithms and to use the model that
works best for a given domain. In computational complexity and optimization the no free
lunch theorem is a result that states that for certain types of mathematical problems, the
computational cost of finding a solution, averaged over all problems in the class, is the
same for any solution method.

2.2.1 VC Dimension

The Vapnik–Chervonenkis (VC) dimension is a measure of the complexity of a space
of functions that can be learned by a statistical classification algorithm. It is defined as
the cardinality of the largest set of points that the algorithm can shatter. A classification
model f with some parameter vector θ is said to shatter a set of data points (x1, x2, . . . , xn)
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if, for all assignments of labels to those points, there exists a θ such that the model f makes
no errors when evaluating that set of data points.

The VC dimension of a model f is the maximum number of points that can be arranged
so that f shatters them. More formally, it is the maximum cardinal D such that some
data point set of cardinality D can be shattered by f.

In general, VC dimension is a property of a set of functions which can be defined
by various classes of function f. Let’s consider a function that correspond to the binary
pattern recognition problem

f we have n points then we can label them 2n possible way. Now for each labelling, a
member of the set can be found which correctly assigns those labels then we say that set
of the point is shattered by that set of function. The maximum number of the training
points that can be shattered by is called the VC dimension for the set function . If for a
function the VC dimension is h, then there exist at least one set of h points that can be
shattered.

Let’s assume that for a feature space R2, and the set of functions defined by a oriented
straight line. Points of one side of the given line are labeled as class 1 and other points
are as class -1. The orientation represents by the arrow in the figure 2.12 shows the points
shattered by the line. Therefore it is possible to shatter three points. But not possible to
find four points.

Intuitively, we may think that having higher parameters would result in higher VC
dimension and few parameters will result very low VC dimension. But this intuition is
proven wrong by E. Levin and J.S. Denker[Cortes and Vapnik, 1995]. It’s been stated
that: A learning machine with just one parameter, but with infinite VC dimension (a
family of classifiers is said to have infinite VC dimension if it can shatter l points, no
matter how large l). The definition of step function H(x);

Now lets consider one parameter family of functions defined by
Now we choose some number l number of points to be shattered:
Then we specify the labels as:
Then f(a) gives this labeling if we choose to be
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2.3 Neural Networks
The complex and varied repertoire of behaviors expressed by living organisms in inter-

actions with their respective environments is attributable to the computational processes
performed by their nervous systems. Although there are significant differences in the
constitution and organization of the nervous systems among the many forms of life, from
the simplest invertebrates to the most complex mammals, it is possible to describe their
basic functioning by virtue of interactions between special “computational” cells, called
neurons. Biologically inspired by the structure and function of nervous tissue, particu-
larly by the nervous system of vertebrates[Kandel et al., 2013], therefore it is possible to
elaborate very general models of computation, characterised by the interactions between
elementary computing units, called neurons.

Artificial neural networks are therefore made up of a set of computing units, usually of
a simple and uniform type, connected to each other by making various kind of connections,
modeled on the biological synaptic ones, so to allow the (unidirectional) transfer of the
activation status from an afferent neuron to an efferent one.

Brief notes on biological neural networks

Nervous tissue is one of the four basic types of tissue present in Metazoa, that is, in al-
most all multicellular living organisms belonging to the Animalia kingdom, and constitutes
a morpho-functional and structural unit responsible for the coordination of voluntary and
involuntary actions that allow the individual to relate to his environment. This function
is carried out by receiving, processing and transmitting the internal and external stimuli
of the body. A peculiarity of the nervous tissue consists in the inclusion of cells equipped
with special structures capable of sending signals, accurately and quickly, to cells of the
organism even very distant.

Although the scientific study of the physiological properties of the nervous system can
be traced back to the end of the eighteenth century, for example with the studies on the
electrical nature of nerve communications conducted by Galvani [Kandel et al., 2013], only
towards the end of the XIX century Golgi developed the so-called black reaction method,
through which it was possible to analyze the nervous tissues, highlighting some constituent
cells; in fact, in the central nervous system the cells are so densely interconnected that they
are difficult to identify using optical microscopes. On the basis of his observations, Golgi
was a supporter of a reticular theory, in which the presence of a functional syncytium of
the nerve cells was hypothesized, i.e. that the latter were substantially fused in a single
block (substantially a multinucleated cell).

Later Cajal exploited Golgi’s analysis technique extensively and hu further perfected
it, so that he was able to produce many accurate images of the cells of the nervous
system; with its studies, Cajal argued, instead, that the individual nerve cells, called
neurons, were anatomically and functionally distinct [Fields, 2006; Johnston et al., 2005].
Cajal also hypothesized that the distinction of cytoplasmic extensions in dendrites and
axons played a crucial role in the transmission of information in a particular direction,
formulating the law of dynamic polarization [Kandel et al., 2013].

Therefore, a controversy arose in neurobiology between the supporters of these two
opposing interpretative hypotheses on the structure of the nervous system. Thus, in 1907
tissue culture began to resolve this dispute [Alberts et al., 2008]: small pieces of spinal
cord were placed on coagulated tissue fluid in a warm and moist room and subsequently
observed at intervals of regular time under a microscope. The American embryologist
Harrison showed that long and thin cytoplasmic extensions are growing from the body of
the individual nerve cells, even when each neuron is isolated from the others in specific
tissue cultures [Kandel et al., 2013], thus proving that each nerve fiber derives from a
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single nerve cell and is not the product of the fusion of many cells, thus confirming the
so-called “neural doctrine ”.

The introduction of electron microscopy sanctioned the definite proof of the validity
of the neural doctrine [Kandel et al., 2013]: only in 1954 it was in fact possible to observe
for the first time the synaptic cleft, that is the inter-synaptic space, about 20 nm, which
results from the juxtaposition of the respective plasma membranes of the presynaptic
axon and dendrites or of the cell body of the postsynaptic neuron [Johnston et al., 2005],
thus providing convincing evidence that refuted the reticular theory.

In the nervous tissue, two main categories of cells are distinguished: glial cells and
neuronal cells, or neurons.

Glial cells generally have a nutritive and supportive function for neurons, they guide
their development during the growth of the organism, ensure the isolation of nerve tissues
and protection from foreign bodies in case of injury. For over a century, it has been
believed that they did not play a significant role in signal transmission and processing, but
recent studies seem to suggest some type of involvement in cognitive processes [Franklin
and Bussey, 2013; Ransom and Orkand, 1996; Turrigiano, 2006], although the mechanism
by which they interact with neurons is not yet well understood.

Although neurons can exhibit significant differences between different animal species,
as well as between distinct anatomical regions of the same organism, they have a signifi-
cant set of common features. Neurons, in fact, consist of a cell body, called soma, that is
the spherical part, usually with a diameter of the order of 10µm, which includes the nu-
cleus, which perform the synthesis of proteins necessary for cell development and repair.
Cytoplasmic extensions, called neurites, originate from the soma; they vary enormously
in length, thickness, branching mode and molecular structure. Despite this, most neurites
can be attributed to one of the following functional categories: dendrites and axons.
The dendrites, characterized by a diameter of the order of 1µm, have branches, similar to
those of a tree, through which they receive signals from afferent neurons and propagate
them in a centripetal direction, that is, towards the soma, while the axon, whose diameter
is also usually of the order of 1µm, conducts the signal in a centrifugal direction towards
other cells, also located at a considerable distance. As an example, in a giraffe there
are axons that travel several meters, avoiding to establish connections with inappropri-
ate neuronal partners, to reach the right region and recognize the appropriate synaptic
objectives [Kandel et al., 2013].

The complexity of the dendritic tree represents one of the main determinants of neu-
ronal morphology and the number of signals received by the neuron. Unlike the axon,
dendrites are not good conductors of nerve signals which tend to decrease in intensity.
In addition, the dendrites thin up to the terminal point and contain polyribosomes. The
axon, which starts from the so-called “axon hillock”, has a uniform diameter and shows
an excellent conductor thanks to the layers of myelin. The final part of the axon is an
expansion called terminal button or synaptic button, through which it can make contact
with the dendrites, or directly with the cell body, of other neurons. A neuron can react
to external, chemical and electrical stimuli; it can reach a state of excitement, which trig-
gers the production of an electrical impulse that propagates along the axon with minimal
losses, until it reaches the synaptic button, where synaptic vesicles are present; they re-
lease neurotransmitters in the small synaptic cleft that stands between the axon and the
dendrites; it is interesting to note that the release of neurotransmitters can only occur
in a quantized manner [Katz, 1969]. The most common form of synapses, with axo-
dendritic connection, has been described in a simplified way, but axosomatic, axo-axonic,
dendro-dendritic synapses have also been observed.

It is not easy to determine how many cells make up the nervous system and how
exactly they are distributed; for example, in [Kandel et al., 2013] and [Izhikevich, 2007] it is
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specified that the human brain can be considered a network made up of over 1011 neurons,
also in [Noctor et al., 2007] the presence of 1011 to 2 cdot1011 neurons is estimated, with
a number of glial cells higher by an order of magnitude. Before isotropic fractionation
was developed, finding accurate cell numbers in the brain was more painstaking and
susceptible to errors. Determining glial cell counts has been particularly challenging due
to the small size of glia and the difficulty in telling them apart from other small cells.
Although it was widely believed that the tiny glia outnumbered neurons, there was not a
lot of hard evidence to prove this was the case, while in [Azevedo et al., 2009] the presence
of 8.6 · 1010 neurons and 8.4 · 1010 glial cells is considered approximately.

A typical neuron receives afferent signals from over 104 other neurons via synaptic
connections, i.e. contacts on its [Izhikevich, 2007] dendritic tree.

Biological-inspired neural models

Nicolas Rashevsky was a pioneer in the application of mathematics to biology as
it proposed the ambitious goal of developing a quantitative theory[Rashevsky, 1933],
analogous to mathematical physics, capable of dealing with the entire field of biology
investigation [Rashevsky, 1938]. By developing a theory of the conduction of nerve signals,
based on electrochemical gradients, Rashevsky managed to formulate one of the first
models of neural excitability [Rashevsky, 1933], which expressed the relations between the
intensity by means of differential equations of neural arousal and chemical concentrations,
which play an excitatory or inhibitory role [Abraham, 2002].

Then Alan Hodgkin and Andrew Huxley described an accurate model to explain the
dynamic of action potentials in the squid giant axon. They received the 1963 Nobel Prize
in Physiology or Medicine for this work. The Hodgkin-Huxley computational model de-
scribes how the generation and propagation of action potential takes place in the squid
giant axon, through nonlinear differential equations [Hodgkin and Huxley, 1952a,b]. It
is a mathematical model strongly inspired by biological observations and therefore bio-
physically accurate, but presents a high computational complexity (usually prohibitive for
large-scale simulations). The first classic experiments were conducted just on the squid gi-
ant axon because it is so large and robust so that it was possible to extrude its cytoplasm
and therefore to perfuse it internally with artificial solutions of Na+, K+, Cl−, SO2−

4
[Alberts et al., 2008], as well as applying electrodes for accurate measurements of the
potential differences already with the techniques available around the middle of the twen-
tieth century. The model comprises four variables, described by the following system of
differential equations

Cm
dVm

dt
= I − gK(Vm − VK)− gNa(Vm − VNa)− gl(Vm − Vl)

Cm
dVm

dt
= I − ḡKn4(Vm − VK)− ḡNam3h(Vm − VNa)− ḡl(Vm − Vl)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

Later, FitzHugh and J. Nagumo simplified the Hodgkin-Huxley model [FitzHugh,
1955; Izhikevich and FitzHugh, 2006; Nagumo et al., 1962].

dv

dt
= v − v3

3 − w + Iext
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Figure 2.1: Comparison of neural models (relationship between biological plausibility and
computational complexity)
Comparison between the neuro-computational properties of various neural models, in
which the biological plausibility, expressed by counting the characteristics exhibited, is

compared with respect to the implementation cost [Izhikevich, 2004].

τ
dw

dt
= v + a− bw

Izhikevich neural model

It has been found that the models that accurately describe biological neurons usually
present a high computational complexity, therefore, simpler models have been developed,
suitable for carrying out simulations, such as the “integrate and shoot” model, which
is computationally efficient, but proves unable to reproduce the rich dynamic repertoire
expressed by cortical neurons, precisely because it is unrealistically simple. Izhikevich’s
neuronal model offers a discreet union between computational efficiency (similar to the
model integrates and shoots) and biological plausibility, as it does not differ significantly
from the dynamics expressed by Hodgkin-Huxley models [Izhikevich, 2003]. The model
is based on two variables (v represents the membrane potential, while u is a “recovery”
variable) and four parameters, resulting described by the following system of equations:

dv

dt
= 0.04v2 + 5v + 140− u + I

du

dt
= a(bv − u)

v ≥ 30mV ⇒ v ← c, u← u + d

Early models of artificial neural networks

The first attempt to formalize a hypothesis on how the brain can process information
can be traced[Lisboa, 1992] in the paper of McCulloch and Pitts[McCulloch and Pitts,
1943], incidentally, the latter was a Rashevsky’s student.

In the paper of McCulloch and Pitts, starting from the consideration that neuronal
activity seems to be of the “all or nothing” type, they shaped the functioning of neurons
as simple logical operators; by building networks with many interconnected units, they
demonstrated that there was an equivalence between the model of neural networks they
had developed and the propositional calculus, that is, that it was possible to perform
arbitrary logic operations using appropriate neural networks. In their model, a linear
combination of the afferent signals can be supplied as input (with ad hoc choice of co-
efficients, i.e. neural “weights”) to each neuron, where it is compared with a threshold
(“bias”), eventually applying a non linear output function, the Heaviside step function. It
was quickly understood that the overall behavior of a circuit consisting of many neurons
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Figure 2.2: Comparison of the neuro-computational properties of spiking and bursting
models
Comparison of the neuro-computational properties of various neural models, in which

FLOPS’s # denotes a number, at least indicative, of floating point arithmetic
operations necessary to simulate the functioning of the model during a time span of 1
ms. Each empty square indicates that the model considered should be able to present

the corresponding property, according to theoretical considerations, with an appropriate
choice of parameters, but Izhikevich was unable to identify these parameters within a

period of reasonable time. [Izhikevich, 2004].
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Figure 2.3: Summary of the neuro-computational properties of biological spiking neurons
Synthesis of the neuro-computational properties of biological neurons. Each horizontal

bar represents a time interval of 20 ms [Izhikevich, 2004].
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depended more on the structure of the connections than on the minute details of the
functioning of the individual neural units, therefore pioneer researchers began to wonder
about the possibility to alter the connectivity of the neural circuits to obtain desirable
correlations between nodes, considered as input to the system, and others considered to
be output, in order to exploit neural networks for practical tasks, for example as statistical
classifiers.

In 1949 the so-called Hebb [Hebb, 1949] rule was enunciated, according to which if
a neuron repeatedly excites another neuron, a process of altering the effectiveness of the
corresponding synaptic connection occurs.

In 1951, Minsky, who was pursuing his PhD, designed and built, together with Ed-
monds, the Stochastic Neural Analog Reinforcement Calculator (SNARC), which is con-
sidered the first computer based on neural networks, as well as the first machine capable
of learning [Russell and Norvig, 1995]. This calculator, built using thermionic valves, was
made up of randomly connected networks, in which learning was carried out according to
Hebb’s rule.

A milestone in the development of artificial neural networks was Rosenblatt’s percetron
[Rosenblatt, 1958, 1961], a neuron that can receive multiple input lines and has a single
output line, with the intent to function as a binary classifier. Percetron works like a
McCulloch and Pitts neuron: it calculates a linear combination of the input values, with
coefficients considered as synaptic weights, it evaluates the difference with a threshold
(bias) and finally applies a simple non-linear function, the Heaviside step function. The
crucial step is that Rosenblatt defines a learning algorithm (usually called the delta rule)
that allows to modify a vector of parameters (the synaptic weights), generally initialized
randomly, presenting to the system predetermined inputs and evaluating the discrepancy
between the output of the neuron and the expected one (thus constituting one of the first
cases of supervised learning).

A few years later, Minsky and Papert elegantly demonstrated that there were classes of
simple problems that went beyond the capabilities of the percetron [Minsky and Seymour,
1969]; in fact, the perceptron classifier works correctly only when the two classes of objects
considered are linearly separable, that is if the separation surface between them is a
hyperplane. This circumstance can be clarified by taking into consideration the Boolean
logical operators (in the following, the false logical value is identified with 0 and the true
with 1). If the minimum arity is selected, i.e. if the set of unary operators is taken into
account, there are four possibilities: the identity, which leaves unchanged the operator’s
argument; the negation, which reverses its value; the “null” operator, which returns 0
regardless of the input and similarly the operator which always returns “one”. In this
very simple case, there is no problem of evaluating the decision boundary, therefore the
percetron is able to learn all unary operators. Taking into consideration the arity 2,
thera are 16 binary operators (in general, for an operator with n arguments, 22n distinct
truth tables are possible), including the conjunction (AND), the disjunction (OR) and
their negations (NAND, NOR). McCulloch and Pitts showed how to make logical AND
and OR gates with a neuron of their model, appropriately choosing the coefficients, and
Minsky and Papert showed that percetron could learn those operators with delta rule,
but they also showed the perceptron failed with the XOR (and obviously with its denial,
XNOR). It is important to emphasize that the limitation imposed by linear separability
becomes more and more burdensome with increasing dimensionality; if a percetron can
learn 14 of the 16 possible binary operators, things quickly deteriorate with increasing
arity, as shown in Tab. 2.1.

While Minsky showed that a single Rosenblatt’s perceptron could not learn a logical
XOR gate, there are various possibilities to overcome this limitation: it is possible to
select a more complicated output function for the neuron, a non-linear combination of
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n Linearly separable op. All Boolean op.(22n) ratio
1 4 4 1
2 14 16 0.875
3 104 256 0.40625
4 1882 65536 0.028717
5 94572 4.295e + 09 2.2019e− 05
6 1.5028e + 07 1.8447e + 19 8.1468e− 13
7 8.3781e + 09 3.4028e + 38 2.4621e− 29
8 1.7562e + 13 1.1579e + 77 1.5166e− 64

Table 2.1: Determination of the Boolean logical operators that are linearly separable, for
each arity

the afferent signals can be supplied as input (for example, introducing quadratic terms
[Hassoun, 1995]), or more neural units can be connected in cascade, possibly arranged in
multiple layers.

For example, to solve the XOR problem you can use the Quadratic Threshold Gate
(QTG) [Hassoun, 1995], described by the equation

y = H

⎡⎣ n∑︂
i=1

wixi +
n∑︂

i=1

n∑︂
j=i+1

wijxixj − T

⎤⎦
where y represents the output of the neuron, xi are the input parameters and H denotes
the step function; to get an XOR, just choose: y = H

[︂
x1 + x2 − 3x1x2 − 1

2

]︂
In fig. 2.5,

instead, there is a solution of the XOR problem with 2 neurons, in which there are no
constraints on the topology (the network, that is, it is not feed-forward).

The difficulty in managing networks with multiple neurons is inherent in the training
procedure, that is, how to modify the system parameters to reach the desired output. The
computational burden of the learning algorithms was quadratic compared to the number
of weights, so the interest in neural networks was reduced until the “rediscovery” of the
backpropagation, an efficient way of computing the derivatives of the activation function
of the neurons [Rumelhart et al., 1986].

Feed forward neural networks

If there are no cycles in the connection graph, the network is called feed forward
[Anderson, 1995; Rojas, 1996], because information flows from inputs through the the
intermediate nodes and finally to the output, but there are no feedback connections in
which outputs of the model are feed back into the network. This implies that a feed-
forward network cannot enjoy a memory, because the current output of the system does
not depend on the previous values of the output and therefore neither of the previous
internal states Feedforward neural networks can be represented by composing together
many different functions to realize a black box global function, with units not linked to
input or output (hidden neurons). Multilayer feed forward networks are often created,
where each layer can receive information exclusively from the previous one. These net-
works are considered universal approximators [Cybenko, 1989; Hornik et al., 1989] and are
widely used as automatic classifiers [Bishop, 2006; Bishop et al., 1995]; for this purpose,
they are usually used through supervised learning algorithms, in which typical examples
of input values and the desired outputs are provided. The network can try to learn to infer
the relationship between inputs and outputs, modifying the effectiveness of connections,
in an attempt to minimize an appropriate error function. The “rediscovery” of back-
propagation, an efficient way to compute the derivatives of the neuron activation function
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Figure 2.4: Multi-layer feed-forward neural network[Rumelhart et al., 1986].

Figure 2.5: A MLFFNN which implements XOR operator [Rumelhart et al., 1986].

[Rumelhart et al., 1986], was of crucial importance to give an acceleration in the spread of
neural networks feed forward because it is often used to reduce the computational burden
of learning algorithms.

Recurrent neural networks

If in the topology of the interconnections of an artificial neural network the presence of
one or more cycles is contemplated, recurrent neural networks are obtained [Amit, 1992].
The presence of a feedback mechanism allows to obtain a behavior that depends on time,
because the output of the system depends not only on the current signals supplied at the
input, but on a sort of memory, represented by the state of the network; for this reason,
recurrent neural networks can be modeled as nonlinear dynamic systems [Strogatz, 2001].

There are multiple models of recurrent neural networks, which differ in topological
aspects, for the selection of the activation or exit function of the neural units, for the
choice of a synchronous or asynchronous update dynamic, for the use of a continuous or
discrete time.

NARX is a really simple recurrent neural network, discrete time, in which the feedback
is applied exclusively to the neuron to which the output of the system is assigned [Haykin,
1999]; from the states of the system in the previous p instants, as well as from the inputs
in the last q instants, according to the general equation:

yo[t + 1] = F (yo[t], yo[t− 1], . . . , yo[t− p + 1], u[t], u[t− 1], . . . , u[t− q + 1])

The RMLP model (recurrent multilayer perceptron) is another example of a simple
recurrent neural network: it can be conceived as a multilayer feed forward neural network,
in which a feedback mechanism is added only at the last layer, the output one.

Hopfield networks are recurrent neural networks, made up of simple threshold neu-
rons, characterized by symmetric connections (with null self-conference terms), used as



ML 77

2.0

Figure 2.6: SPEC CPU Suite Growth across all of its iterations.

memories addressed on the basis of the content [Hopfield, 1982], offering robustness with
respect to alterations of connections .

Continuous-time recurrent neural networks

The CTRNN model (Continuous-time recurrent neural networks) is one of the simplest
computational models of non-linear time-continuous neural networks [Beer, 2006].

The CTRNN model was proposed in 1986, to describe the temporal evolution of the
neuronal membrane potential as if it were a parallel R-C circuit, based on the observation
that the cell membrane is permeable only to some ions[Hopfield et al., 1986]; the original
model, with N constituent neurons, is described by the system of coupled differential
equations:

Ciu̇i = − ui

Ri
+ Ii +

N∑︂
j=1

Tijfj (uj)

in which ui represents the membrane potential, Ci, Ridenote the capacity and the
resistance of the neuron, Ii indicates the input current, coming from outside the considered
circuit, Tij represents the strenght of the synaptic connection and fj is a sigmoid type
function, which varies from 0 to fmax.

Despite the simpleness of the model, CTRNNs are widely used because they have a bi-
ological plausibility, offer a limited computational burden and are universal approximators
[Funahashi and Nakamura, 1993].

In the literature there are different formulations of the model, such as the following:
in [Beer, 1995, 2006; Magg and Philippides, 2006; McHale and Husbands, 2004a,b]

ẏi = 1
τi

⎧⎨⎩−yi +
∑︂

j

wijfj (yj + θj) + Ie
i

⎫⎬⎭
in [Buckley, 2008]:

ẏi = 1
τi

⎧⎨⎩−yi + tanh

⎛⎝∑︂
j

wijyj + θi

⎞⎠⎫⎬⎭
in [Funahashi and Nakamura, 1993]:

u̇i = −ui

τi
+

∑︂
j

wijσ (uj) + Ie
i
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in [Donnarumma et al., 2015, 2012]

ẏi = 1
τi

⎡⎣−yi + fi

⎛⎝∑︂
j

wijyj +
∑︂

j

we
ijIj + θi

⎞⎠⎤⎦
with fi (x) = σ (x) = 1

1+e−x

If this version of the model is selected and if the time dependency and the choice of
the activation function are explicit, it is obtained:

ẏi(t) = 1
τi

⎧⎨⎩−yi(t) + σ

⎡⎣∑︂
j

wijyj(t) +
∑︂

j

we
ijIj(t) + θi

⎤⎦⎫⎬⎭
From this equation, by discretizing in the time domain with step ∆t and resorting to

integration using the Euler method, the discrete-time recurrent neural network equation
can be obtained:

yi[n] = yi[n− 1] + ∆t

τi

⎧⎨⎩−yi[n− 1] + σ

⎡⎣∑︂
j

wijyj [n− 1] +
∑︂

j

we
ijIj [n] + θi

⎤⎦⎫⎬⎭
Deep Learning

Although it is shown that two-layered feed-forward neural networks can constitute
universal approximators [Cybenko, 1989; Hornik et al., 1989], in the sense that they can
arbitrarily approximate any function from m input to n output, in the recent years there
has been a growing interest in neural networks with multiple layers, that is, developed
more in depth than in amplitude [Arnold et al., 2011; Chen and Lin, 2014; Joshi et al.,
2017; LeCun et al., 2015; Ota et al., 2017; Szegedy et al., 2015] Modern deep learning
provides a powerful framework for supervised learning, by adding more layers and more
units within a layer, a deep network can represent functions of increasing complexity.
Most tasks that consist of mapping an input vector to an output vector, and that are
easy for a person to do rapidly, can be accomplished via deep learning, given sufficiently
large models and sufficiently large datasets of labeled training examples [Goodfellow et al.,
2016]. These methods have dramatically improved the state-of-the-art in speech recog-
nition, visual object recognition, object detection and many other domains such as drug
discovery and genomics. Deep learning discovers intricate structure in large data sets by
using the backpropagation algorithm to indicate how a machine should change its internal
parameters that are used to compute the representation in each layer from the represen-
tation in the previous layer. Deep convolutional nets have brought about breakthroughs
in processing images, video, speech and audio, whereas recurrent nets have shone light on
sequential data such as text and speech [LeCun et al., 2015].

The behavior of the other layers is not directly specified by the training data. The
learning algorithm must decide how to use those layers to produce the desired output, but
the training data do not say what each individual layer should do. Instead, the learning
algorithm must decide how to use these layers to best implement an approximation of f.
Because the training data does not show the desired output for each of these layers, they
are called hidden layers

Deep learning is a class of machine learning algorithms that uses multiple layers to
progressively extract higher level features from the raw input. For example, in image
processing, lower layers may identify edges, while higher layers may identify the concepts
relevant to a human such as digits or letters or faces.

Deep learning architectures such as deep neural networks, deep belief networks, re-
current neural networks and convolutional neural networks have been applied to fields
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including computer vision, speech recognition, natural language processing, audio recog-
nition, social network filtering, machine translation, bioinformatics, drug design, medical
image analysis, material inspection and board game programs, where they have produced
results comparable to and in some cases surpassing human expert performance.

Deep learning is a set of machine learning algorithms that utilize deep neural networks,
to power advanced applications, such as image recognition and computer vision, with
wide-ranging use-cases across a variety of industries.

Deep learning has a long history and many aspirations. Modern deep learning provides
a powerful framework for supervised learning.By adding more layers and more units within
a layer, a deep network can representfunctions of increasing complexity. Most tasks that
consist of mapping an input vector to an output vector, and that are easy for a person
to do rapidly, can be accomplished via deep learning, given sufficiently large models
and suffciently large datasets of labeled training examples. Other tasks, that cannot
be described as associating one vector to another, or that are difficult enough that a
person would require time to think and reflect in order to accomplish the task, remain
beyond the scope of deep learning for now. This part of the book describes the core
parametric function approximation technology that is behind nearly all modern practical
applications of deep learning. We begin by describing the feedforward deep network
model that is used to represent these functions. Next, we present advanced techniques for
regularizationand optimization of such models. Scaling these models to large inputs such
as high-resolution images or long temporal sequences requires specialization. We introduce
the convolutional network for scaling to large images and the recurrent neuralnetwork for
processing temporal sequences. Finally, we present general guide lines for the practical
methodology involved in designing, building, and configuring an application involving
deep learning and review some of its applications.

Deep feedforward networks, also called feedforward neural networks, or multilayer per-
ceptrons (MLPs), are the quintessential deep learning models. The goal of a feedforward
network is to approximate some function f. For example, for a classifier, y=f(x) maps an
input x to a category y. A feedforward network defines a mapping y = f(x; Θ) and learns
the value of the parameters Θ that result in the best function approximation.

Neuromodulation

The connectomics represents a field of investigation of the neurosciences aimed at the
realization of a connectome, that is an accurate description of the neural units and a
complete map of the connections (through the realization of a detailed “wiring diagram”)
of the nervous system of a living organism. there is an ambitious goal of being able to
enumerate all the synaptic connections of the brain, even of “ complex ” vertebrates, like
a human being. Already “ultrastructural” analyzes of small brains or reduced portions of
the brain of higher organisms are being carried out systematically, working on areas con-
taining millions of synaptic connections (for the human brain, the most accurate estimate
in the literature is 1015 synapse) [Bargmann, 2012].

The first complete description of the morphology and synaptic connectivity of an
organism was made for the spasmidary nematode worm Caenorhabditis elegans, through
reconstructions from the electron micro-graphs of the tissue sections [White et al., 1986].
This organism has just 302 neurons, yet offers a rich variety of them, so they have been
cataloged in 118 distinct classes, according to their characteristics; approximately 5000
chemical synapses, 2000 neuro-muscular junctions and 600 electrical synapses [White
et al., 1986] have been identified. The determination of the connectome of this nematode
worm provided for the first time the possibility of attempting to identify and understand
the neural basis of the whole behavioral repertoire of a living being [Dunn et al., 2004].

However, it has been highlighted that connectomics is presumably a necessary, but
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not sufficient, element to determine the functioning of the nervous system [Brezina, 2010;
Marder, 2012].

In fact, mechanisms of communication of nerve cells alternative to synaptic transmis-
sion (based on the action of molecules, which act as neurotransmitters, at the so-called
chemical synapses, which are generally established between axons and dendrites) have
been identified in living organisms. electrical synapses (or gap junctions) [Marder, 1998;
Söhl et al., 2005], the mixed synapses [Rash et al., 1996], the ephaptic transmission
[Kamermans and Fahrenfort, 2004; Krnjevic, 1986] and a plethora of volumetric trans-
mission mechanisms [Agnati et al., 2006, 2010; Zoli et al., 1998].

In particular, alongside the role played by neurotransmitters in synaptic interactions,
more and more emphasis is given to the study of neuromodulators [Bargmann, 2012], that
is, a varied repertoire of chemicals that influence the functioning of the nervous system in
a more articulated way compared to conventional neurotransmitters , as their effect may
not be merely excitatory or inhibitory [Buckley, 2008].

Where neurotransmitters selectively act on a single neuron or rather on a single synap-
tic link, the neuromodulators intervene, instead, on larger areas, typically involving several
neurons and possibly other cells of the nervous system.

Although the nervous systems of living organisms exploit a large number of neurotrans-
mitters and neuromodulators, the first formal models of neural functionality completely
ignored the nature of neuromodulators.

Neuromodulatory substances tend to behave as signaling agents with global action
because they are released, both from neurons and from glial cells, typically more slowly
at release sites consisting of “ open ” synapses [Zoli and Agnati, 1996] or from non-
synaptic sites, from which they are able to spread for long times and wide distances
through the intercellular space or even through the circulatory system, in the case of
neuro-hormones [Brezina, 2010]. Neuromodulators therefore seem to play a crucial role
for the volumetric transmission of signals [Brezina, 2010]. Many of the problems posed
by the modeling of neuromodulators, but also the prerequisites for their considerable
computational effectiveness, seem to derive from the spatial and temporal dissociation of
their activity from that of the neural network on which they act [Brezina, 2010].

Neuromodulation seems to be a valid tool to increase or at least control the com-
putational complexity of a neural network, without necessarily increasing its structural
complexity [Fellous and Linster, 1998], understood as the number of constituent neurons
and synaptic connections between of them constituted.

From a computational point of view, there is still much work to be done to understand
the overall network architecture as well as the effects of the changes that the different
neuromodulators produce in the individual elements present in these circuits. However,
neuromodulators seem to be able to deal with problems related to the massively dis-
tributed architecture of the central nervous system, providing important information,
both on the state of the organism and on the environment in which it is found, in a dif-
fuse or selective way depending on the circumstances, as well as having significant effects
on information processing by changing the dynamics properties of neurons, as well as the
effectiveness of their synaptic connections [Dayan, 2012].

The speed of neuromodulatory processes in relation to neural computations plays a
decisive role in determining the properties of a neural system. It is possible to distinguish
two fundamental cases: the intervention of a slow modulation with respect to the func-
tioning of the conventional neural network or a rapid modulation on a slow computation
[Fellous and Linster, 1998].

Since the action of a neuromodulator is usually a slow process with a wide spatial
diffusion, acting on some aspects of the properties of the membranes and synapses, we
frequently fall back to the first case considered.
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Rhythmic activation of neurons seems to play a crucial role in invertebrates as well
as vertebrates, where the generation and synchronization of oscillatory activity can allow
distinct neural subnets to communicate in a coordinated way. In recent years, there
has been growing interest in the scientific community in the interaction of phenomena
on different time scales in neural systems, in particular as regards the neuromodulatory
phenomena [Buckley et al., 2005]. However, most research activities tend to consider
neuromodulatory action as a slow and extrinsic influence on a conventional neural circuit:
this kind of simplifications allows you to model neuromodulation as a dynamic change in
the parameters of a neural system [Buckley, 2008].

Although the original Hodgkin-Huxley model does not include the intervention of neu-
romodulatory substances [Hodgkin and Huxley, 1952b], starting from a model of this type
in [Bertram, 1993] we evaluate the effects of serotonin on the neuron R15 (burster type)
of the abdominal ganglion of the Aplysia Californica mollusc, introducing a dependence
of the maximum conductance on the concentration of the neuromodulator considered.

The exogenous application of serotonin on the neuron soma indirectly induces (through
the production of intracellular cAMP) an increase of two “sub-threshold” currents, IR

and INSR, whose corresponding maximum conductances tend to increase up to reach a
saturation (first one, then the other). The concentration of serotonin is analyzed as a
fixed parameter, therefore any changes take place on a long time scale with respect to the
dynamics of the considered neuron. Different values of this parameter allow to control
the waveform of the membrane voltage, profoundly altering the behavior of the neuron.
In fact, a change in the concentration of serotonin can change the number of shots in a
single burst, the distance and the depth of the pause between two bursts, up to determine
a steady state or lead to a rhythmic oscillation.

Cm
dVm

dt
= I−

[ḡKn2j(Vm − VK) + ḡNam3h(Vm − VNa) + ḡl(Vm − Vl)+

ḡCax2(Vm − VCa) + ḡK(Ca)
[Ca2+]

µ̄∞ + [Ca2+] (Vm − VK)]−

[ḡNSR([5−HT ])q4y∞(Vm)(Vm − VCa) + ID + ḡR([5−HT ])
r∞(Vm)(Vm − VK) + IA]

with:
ḡNSR([5−HT ]) = 0.12 + 0.84

1 + e−3(5[5−HT ]−3)

ḡR([5−HT ]) = 0.3 + 1.8
1 + e−1.6(10[5−HT ]−3)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

GasNet

Drawing inspiration from the biological behavior of gases such as nitrogen monox-
ide [Changeux, 1993; Gally et al., 1990; Hölscher, 1997; Montague and Sejnowski, 1994;
Palmer et al., 1987; Philippides et al., 1998; Smith and Philippides, 2000], a computational
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model of recurrent, discrete-time neural network was developed, GasNet [Husbands, 1998;
Husbands et al., 1998a,b; Philippides et al., 2005]. This model implements an intrinsic
neuromodulation process, in which the presence of gaseous neuromodulators can influence
the properties of artificial neural units of the CTRNN type.

The output of each neuron is usually computed, applying a transfer function to the
weighted sum of its inputs, but this sum is modulated by a multiplicative factor ki which
depends on the instantaneous concentration of the gases, diffused by the network nodes,
in a neighborhood of the considered neuron. In the GasNet model, some neurons are
classified as potential emitters, as they are capable of emitting one of the possible gases,
if an appropriate condition is met, such as exceeding a predetermined level of the electrical
potential or the concentration of one of gases, while in principle all neurons undergo the
effects of neuromodulatory gas.

The original GasNet network model [Husbands et al., 1998a] contemplates the presence
of 19 adaptive parameters for each neuron:

• two parameters x, y for the position in the Euclidean plane

• three parameters Rp, θ1p, θ2p to find the “positive” circular segment

• three parameters Rn, θ1n, θ2n to find the “negative” circular segment

• visin binary selector that indicates whether the neuron receives visual input; if it is
active, it is followed by three further parameters:

– the polar coordinates of the corresponding pixel in the image sensor (visr e
visθ)

– a threshold (visthr)

• rec eventually a recurrent connection (inhibitory, excitatory, absent)

• TE represents under which circumstances the neuron can emit gas

• CE indicates the type of gas that may be emitted

• s determines the speed of diffusion

• Re specifies the maximum emission radius

• index0 is the default value of the index used to determine the transfer parameter k

• b the bias

In this version of the model, only synaptic connection values of +1 or −1 are allowed;
furthermore, it is required that all outgoing excitatory connections (+1) belong to the
“positive” circular segment and all the inhibitory ones (−1) to the “negative” one. If
the two segments are partially overlapping, any neurons that lie in the intersection will
have both excitatory and inhibitory connections. For the emission of gases, on the basis
of the value of the TE parameter, it is assessed either the activation by the neuron of
an electrical threshold or the achievement of a minimum gas concentration around the
neuron; the threshold values are set a priori and the same for all neurons, as an electric
type threshold equal to 0.5 and a threshold referred to gas concentrations equal to 0.1 are
chosen.

The temporal dynamics of a GasNet neuron is described by the equation:

yi[n] = tanh

⎡⎣ki[n]

⎛⎝∑︂
j

wijyj [n− 1] + Ii[n]

⎞⎠ + bi

⎤⎦
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The multiplicative factor is determined by ki[n] = P [indi[n]], in which:

indi[n] = f

[︃
indi[0] + Ci,1[n]

C0K
(N − indi[0])− Ci,2[n]

C0K
indi[0]

]︃
= f

[︃
indi[0]

(︃
1− Ci,1[n] + Ci,2[n]

C0K

)︃
+ Ci,1[n]

C0K
N

]︃
where C0 and K represent parameters, usually set equal to one, P is a vector of the

possible values (discrete and symmetric with respect to zero) assumed by the multiplica-
tive coefficient ki and N indicates the length (typically N = 11 or N = 13):

P = {kmin,
1
2kmin, . . . , 0, . . . ,

1
2kmax, kmax}

kmin = −4.0, kmax = 4.0, N = length(P )

f(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x ≤ 0
⌊x⌋ 0 < x < N

N x ≥ N

The concentration of the l-th gas at the i-th neuron is expressed by:

C l
i [n] =

∑︂
j

C̃ l
i,j(dij , n), con dij = |x⃗i − x⃗j |

where the contribution C̃ l
i,j generated by the j-neuron is determined by:

C̃ l
i,j(dij , n) =

⎧⎨⎩C0e
−(

dij
rj

)2
Tj [n] dij < rj

0 dij ≥ rj

with

Ti(t) =
{︄

H( t−te,i

si
) if it is emitting gas

H[H( ts,i−te,i

si
)−H( t−ts,i

si
)] if it is not emitting gas

and

H(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x ≤ 0
x 0 < x < 1
1 x ≥ 1

in order to guarantee a saturation of the gas concentration (only in the emission phase)
in the range [0, 1].

In the literature, some variants of the GasNet model have been identified, based on 2 or
4 gases, with a Gaussian or exponential spatial diffusion trend, with different dependence
of the multiplying factor on the gas concentrations, with limitations on the number of
input synaptic connections to each neuron, with the velocities for the growth and decay
of the concentration of each gas coinciding or not. However, these models share some
simplifications:

• neurons are arranged in a two-dimensional Euclidean space;

• the weights of the connections can only take values ±1;

• ki can take values in a predetermined range (usually [−4.0, 4.0]), moreover, only
discrete values are generally allowed;

• the gaseous diffusion is isotropic in space, decreases from the source and is canceled
beyond a predetermined radius of influence;
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• the gaseous diffusion shows a growth over time (during the emission) and a subse-
quent decrease with a linear trend in both cases, but with concentration saturation
(usually in the interval [0, 1]);

• neuromodulation is slow compared to the characteristic times of synaptic commu-
nications.

Among the multiple variants of the GasNet model found in the literature, there is
one in which the coefficients ki that modulate the functioning of each neuron can assume
continuous values [Buckley, 2008]:

ki[n] = ki[0] + Ci,1[n](kmax − ki[0])− Ci,2[n](ki[0]− kmin)

ki[n] ∈ [kmin, kmax], kmin = −4, kmax = 4

Ci,l[n] =
∑︂

j

C̃j,l(dij , n)

C̃j,l(dij , n) =

⎧⎨⎩e
−(

dij
rj

)2
Tj [n] dij < rj

0 dij ≥ rj

Ṫi(t) = H(yi(t), Ci(t))Gi + (H(yi(t), Ci(t))− 1)Di

Ci(t) = Ci,1(t) + Ci,2(t)

Hi(y, C) =
{︄

1 se y > θ̄i o C > C̄i

0 otherwise
GTi ∈ {−1, 0, 1}

GasNet are mainly used for robotic tasks, such as discrimination of visual inputs
[Husbands et al., 2010; Smith et al., 2002] or for the control of bipedal or quadrupedal
locomotion [McHale and Husbands, 2004a,b], essentially using evolutionary learning al-
gorithms [Floreano et al., 2008; Philippides et al., 2002].

In literature, an attempt has been made to evaluate the contributions of the elements
characterizing the GasNet approach, adding or removing them in turn from the equations
that regulate neuronal dynamics, so as to take into consideration all possible combinations
[Buckley, 2008]. At least in the context of the specific task taken into consideration
(pattern generation), it seems that the possibility of intervening on the synaptic inputs
using a multiplicative factor, dependent on the concentration of gas, plays the crucial role
in allowing GasNet to provide performance superior to other types of recurrent neural
networks, lacking a neuromodulatory mechanism, even if the latter are equipped with
a greater number of neurons. The other peculiar characteristics of the GasNet model,
i.e. the spatial encapsulation (i.e. the effects of the spatial arrangement of neurons
and limited diffusion rays) and the slow temporal dynamics of the action of the gases,
on the other hand, do not seem to significantly improve the capacities. of the neural
network. Until now, theoretical demonstrations justifying the apparent superiority of
computational models such as GasNet compared to recurrent neural networks without
neuromodulation have not been clarified [Smith et al., 2001]. In general, since the role
of neuromodulation has not been fully clarified in the biological field, computational and
robotic models temporarily deal with problems on a wide application spectrum, to identify
the existing relationships between the characteristics of the model and its performance in
fulfilling certain tasks [Soltoggio, 2008].
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2.4 Machine Learning and recent computer industry devel-
opment

The implementation of most of the algorithms in vogue in the machine learning sector
involves a massive use of computationally intensive linear algebra routines, therefore it
can significantly benefit from the adoption of hardware solutions that support the simul-
taneous processing of multiple vector or matrix operations.

This implies that, where it is possible to effectively separate the data to be processed
into relatively independent blocks, such machine learning algorithms can receive signifi-
cant benefits from the adoption of some sort of parallel computing systems. Depending
on the specific algorithm, the dimensionality of the problem, the size of the dataset used
in the training phase or the number of applications expected in the inferential phase,
significant speedups can be found by adopting SMT (Simultaneous Multi Threading)
techniques, adding more cores to each physical processor, adopting multi-socket systems
or relying on a cluster of computers.

In addition, a significant speed improvement can be obtained by uniformly processing
the elements of an array by adopting special instructions that support some kind of
vector calculation. To this end, over the years various ISA (Instruction Set Architecture)
extensions have been adopted, with the addition of S.I.M.D. (Single Instruction, Multiple
Data) capabilities.

2.4.1 Increasing floating-point and vector capabilities

The presence of S.I.M.D. units provides a CPU with the ability to perform the same
operation on multiple data points simultaneously, in fact resorting to multiple deeply
connected processing elements. Such technique exploits data level parallelism, but not
instruction concurrency: there are simultaneous calculations, but only a single instruction
at a given moment is executed (for each SIMD unit). These additional instructions allow
to improve the speed of execution of algorithms based on linear algebra techniques, or
more generally that require the execution of uniform actions on the elements of an array,
acting along at least those directions:

• more than one data is processed with a single instruction, making it possible to
increase the actual ILP (Instruction Level Parallelism), moreover in a predictable
way;

• conversely, because they allow to reduce the number of machine language instruc-
tions necessary to encode an algorithm (static instruction count) that solve a prob-
lem or compute a function, they increase the code density and thus they improve
the instruction cache hit rate, i.e. the percentage of instruction fetches satisfied by
cache hits (during instruction fetch stage) over a given time interval;

• the actual number of machine language instructions that must be executed by the
CPU for the task (i.e., dynamic instruction count) decreases, this virtually corre-
sponds to actually increasing the out of order execution windows size, in order to
manage data flow analysis more effectively and to resolve data dependency issues;

• since the data are packaged in larger blocks, there are advantages related to the
use of better alignment for the data structures, such as better exploitation of the
modern memories’ burst transfer modes are obtained and even the effectiveness of
hardware data prefetching techniques is augmented.

In x86 world, MMX was the first SIMD ISA extension, developed by Intel, introduced
in 1997 first in its P55C (“Pentium with MMX Technology”), then in AMD K6 (evolution
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of Nexgen Nx686), Intel Klamath (first Pentium II), Cyrix 6x86MX (“M2”). Although
officially MMX is not an acronym, it was often considered an abbreviation of MultiMedia
eXtension, Multiple Math eXtension or Matrix Math eXtension, even on some old Intel’s
informative slides. Since it was the first set of SIMD instruction set adopted also on
CPUs intended for the mass market, MMX suffered from considerable limitations: it only
supports integer data types and, to avoid compatibility problems with the context switch
mechanisms in existing operating systems (such as Chicago, alias Windows 95, Detroit,
alias Windows 95B or OSR2, and Cairo, aka Windows NT 4.0), reuses the registers ST(0)
to ST(7) already reserved to the x87 co-processor (NPU or FPU, i.e. Numeric or Floating-
point Processing Unit). To reuse x87 FPU registers, MMX is forced to define eight 64-bit
registers, called MM0 through MM7, which are used as aliases for the preexisting x87
registers.

Obviously, MMX defined 57 new operative codes for instructions that use those reg-
isters, most of which operate in a single clock. MMX supports four different data types:
an eight-byte array (8x8 bits), a four-word array (4x16 bits), a two element double-word
array (2x32 bits), and a quad-word object (1x64 bits), so that each MMX register can
hold one of these four data types. Anyway, most operations are only supported on bytes,
words and double-words: arithmetic operations (additions, subtractions, multiplications;
“multiply and add”, but only to multiply signed 16-bit words and then add the 32-bit
results) and comparison instructions fall into this category. The packed logic (AND, OR,
XOR, AND NOT) instructions, instead, are some examples of MMX instructions that ac-
tually operate on quad-word 64-bit values. Of course, there is no need for distinct packed
byte, packed word, or packed double word versions of these bit-wise instructions, since
they would all be equivalent to the provided 64-bit logic instruction. Shift instructions
operate on word, double word, and quad word operands, but it is not provided a version
of these instructions that operate on bytes. MMX includes, also, conversion instructions
to pack and unpack data elements and data movement instructions.

In 1998, AMD introduced “Chompers”, alias K6-2 or K6-3D, with “3DNow!”, the
first SIMD floating-point extension to x86 instruction set, which included 21 new in-
structions and enabled to perform vector processing on non-integer data, improving the
performance of many graphic-intensive applications, at a time when 3D graphics were be-
coming mainstream in PC multimedia and games, but graphics controllers left the entire
geometry computations to the main CPU, before hardware transform and lighting unit
were introduced.

While SIMD instructions, such as MMXs, introduced by Intel have always found high
support from compiler developers (moreover, Intel has historically developed excellent
compilers for Fortran and C/C++, obviously optimized for its products) and they sooner
or later have also been adopted by AMD CPUs, 3DNow! have never been supported
by Intel, so this instruction set never gained much popularity with software developers
and on August 2010 AMD announced that support for 3DNow would be dropped in
its future processors, such as Bulldozer, Bobcat and Zen. As an enhancement to the
MMX instruction set, the 3DNow instruction-set used the eight MMX SIMD registers to
support common arithmetic operations (addition, subtraction, multiplication, but even
max and min, reciprocal, square roots, reciprocal square root) on packed single-precision
32-bit floating-point data. The 3DNow instruction set also included operations for SIMD
integer operations, data prefetch, and faster MMX-to-floating-point switching: 3DNow!
allowed programs to mix integer code (MMX) and floating point code (3DNow!) at the
same time without needing to switch context (necessary, however, to issue x87 instructions
to conventional FPU).

In the execution of appropriate code sequences, the 3DNow instructions allowed a
high performance increase, because they allowed to reach a peak speed of 2 additions
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and 2 multiplications per cycle (but it cannot sustain that rate, because there were only
two “simple” decoders), while with x87 code the K6 throughput is just 0.5 instructions
for cycle; 3DNow usually raised the speed by about 2–4 times. AMD K7 (Athlon) CPU,
instead, could sustain the peak of 2 additions and 2 multiplications per cycle, because it
had three powerful symmetrical decoders, a beefier out of order execution engine, bigger
caches and faster bus.

In response to the introduction of the 3DNow! instruction set, Intel, which was already
considering the adoption of SIMD instructions capable of operating on floating-point data,
in particular on on single precision data, designed the KNI (Katmai New Instructions),
so called because Katmai, the first Pentium III, would have been the first microprocessor
with such instructions. Apart from the controversial PSN (Personal Serial Number), the
new instructions were the only difference between Katmai and Deschutes in 1999: to
emphasize the usefulness of these new instructions, the KNI were commercially called
ISSE (Internet Streaming SIMD Extensions), underlining their role to open the door
and enter a new world, characterized by internet connectivity and video streams. Later
ISSE was renamed SSE; anyway, it contained 70 instructions, most of which work on
single precision floating point data: because it supports floating point math, it had wider
applications than MMX and became more popular. Unlike MMX and 3DNow! extensions,
which occupy the same register space as the normal FPU registers, SSE adds a separate
register space to the microprocessor: Katmai added eight new 128-bit registers known as
XMM0 through XMM7, four years later AMD K8’s x86-64 doubled this space, adding a
further eight registers XMM8 through XMM15 (this extension was backported to the Intel
64 architecture sush as Prescott with Yamhill project and CT, Clackamas Tecnology).
Because of this, SSE can only be used on operating systems that preserve XMM registers
during context switching. SSE used only a single data type for XMM registers: four 32-bit
single-precision floating point numbers.

Therefore the main advantage of SSE compared to 3DNow! consisted in supporting
128-bit vectors, on which to act with vector or scalar instructions; however Katmai and
subsequent CPU (until Conroe) divided each 128-bit operation into a pair of 64-bit oper-
ations (one ADD, one MUL), so that the maximum overall throughput was identical to
that of 3DNow! solutions. One advantage of 3DNow, instead, is that it is possible to add
or multiply the two numbers that are stored in the same register: this capability, known
as horizontal computation, was the major addition to the SSE3 instruction set in 2004.

The AMD K7 Athlon introduced Extended 3DNow!: it added 5 new 3DNow instruc-
tions to boost DSP and 19 new MMX instructions (a subset of SSE instructions: all
operations that not used XMM registers). Later, the K6-2+ and K6-III+ mobile CPU
included only the 5 new 3DNow! instructions, leaving out the 19 new MMX instructions.
These instructions provide some enhanced conversion and selection instructions, as well
as some advanced cache management instructions.

In 2001, AMD Palomino (Athlon XP) was the first CPU to carry the 3DNow! Profes-
sional instruction set, i.e. Extended 3DNow! plus the complete SSE instruction set; on
Palomino (and subsequent K7 class cores) and K8 CPU the speed of execution of vectorial
operations with 3DNow and SSE is identical, but with SSEs a double number of values
can be kept in the registers (or quadruple, in 64-bit mode); in principle, it is possible
to combine 3DNow and SSE instructions to further reduce register pressure (to hold 48
single precision values, instead of 16 or 32, in 32-bit mode), but in practice it is difficult to
find an appreciable speedup due to the instructions executing on shared functional units
(anyway, the use of 3DNow, already very limited before Palomino’s support of the SSE,
was later completely shelved).

In 2000, Willamette New Instructions (WNI), introduced with the first Pentium 4,
was released as SSE2 and it included 144 new instructions. It was a major enhancement
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to SSE because it allowed considerably more flexibility in vector processing:

• it expanded the usage of the XMM registers to include, in addition to four 32-bit
single precision floating-point: two 64-bit double-precision floating point numbers,
two 64-bit integers, four 32-bit integers, eight 16-bit short integers, sixteen 8-bit
bytes or characters;

• it introduced MMX-like integer operations on 128-bit XMM registers, so to make
MMX largely redundant (though further performance increases theoretically can be
attained in some circumstances by using MMX in parallel with SSE operations; on
the other hand, another advantage of replacing MMX with SSE2 is avoiding the
mode switching penalty for issuing x87 instructions present in MMX because it is
sharing register space with the x87 FPU);

• it supported greater precision in the computation of numerical algorithms, by virtue
of the adoption of the double precision format;

• it offered a complete set of instructions for dealing with all common data types;

• it included a set of cache control instructions, intended to minimize cache pollution
when processing big streams of information.

Only in 2003, AMD included support for SSE2 instruction, starting with 64-bit K8 core:
while Pentium 4 needed SSE2 instructions to achieve maximum performance operating in
double precision, K8 achieved exactly the same peak and sustaind performance with x87
or SSE2 instructions (however, with the latter, it could take advantage of more registers
space: for a double number of values in 32-bit mode and quadruple in 64-bit mode).

SSE3, alias PNI (Prescott New Instructions), was introduced by Intel in early 2004
with the third Pentium 4 core and it was an incremental upgrade to SSE2, beacause
it added only 13 new instructions. SSE3 allowed to add or subtract two numbers that
are stored in the same register (horizontal operation), which wasn’t possible in SSE and
SSE2, but only in 3DNow!, it supported a misaligned integer vector load instruction that
has better performance for loads that cross cacheline boundaries, it introduced FISTTP
(which allows to convert a floating-point value to integer by truncating, without hav-
ing to change the status word) and it added also a couple process control instructions
(MONITOR, MWAIT) to boost performance with Intel’s HyperThreading Technology.
AMD started supporting SSE3 in April of 2005, with K8 rev. E (Venice and San Diego),
omitting these thread instructions, which are only useful for HyperThreading CPUs. The
most notable change is just the capability to work horizontally in a register, as opposed
to the vertical operation of all previous SSE instructions. These new instructions be used,
for example, to simplify and speed up the implementation of scalar products. The graphic
data are typically organized as AOS (Arrays Of Structures), which are not easily manip-
ulated with the vertical SSE/SSE2 instructions, which lend themselves naturally to the
management of SOA (Structure of Arrays). Previously, in order to take advantage of the
SSE/SSE2 vector capabilities, it was therefore necessary to resort to auxiliary operations
of shuffling and packaging of the XMM registers, while the new instructions eliminate this
task, effectively reducing the number of instructions to be performed to obtain the same
result. In essence it is a way of increasing the IPC that goes through the recompilation
of the code with new optimized compilers; in an example provided by Intel, the scalar
product with vectors in single-precision involves a threefold reduction in the number of
instructions.

In May 2004, the Tejas CPU project was erased, but Tejas New Instructiosn (TNI)
converged to Merom New Instructions (MNI) and as such they were introduced as SSSE
(Supplemental SSE3) on June 26, 2006 with the “Woodcrest” Xeons. SSSE3 added 16
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new instructions to accelerate computations on packed integers, which included horizontal
addition or subtraction operations, absolute value, permuting the bytes in a word, mul-
tiplying 16-bit fixed-point numbers with correct rounding and within-word accumulate
instructions, align data from the composite of two operands; because each instruction can
act on 64-bit MMX or 128-bit XMM registers, they can be counted as 32 instructions.

Penryn New Instructions (PNI) was announced at the Fall 2006 Intel Developer Forum
on September 27, 2006 (contextually to the announcement of the end of the development
of SSE instructions, reserving the right to introduce only ATAs, Application Targeted
Accelerators) then more precise details were provided at Spring 2007 IDF, but it was
released on fall 2007 with SSE4.1 name: it was another enhancement to SSE, adding 47
new instructions, including a dot product instruction, additional integer instructions, a
popcnt instruction. It features a number of instructions whose action is determined by
a constant field and a set of instructions that take XMM0 as an implicit third operand;
several of these instructions were enabled by the new single-cycle shuffle engine in Penryn.
SSE4.1 became famous because it made it possible to improve the speed of encoding in
very popular, at the time, Divx format, so Intel coined the marketing term HD Boost to
refer to them. One of the stages of the video encoding process consists of motion esti-
mation, i.e. identifying the differences between consecutive frames due to the movement
of peoples and objects; it requires a lot of computation of sums of absolute differences,
as well as finding the minimum values of the results of those computations. The SSE2
instruction PSADBW can compute two sums of differences from a pair of 16B unsigned
integers; the SSE4 instruction MPSADBW can do eight; according to Intel, the same full
search algorithm for motion estimation can take 71 cycles employing the SSE2 code path,
compared to only 26 cycles using the SSE4 version (for each 16x16 pixel block).

AMD Barcelona (K10) in late 2007 supported only a small subset of SSE4.1 (the
full SSE4 instruction set was supported with Bulldozer in 2011), but it added some in-
structions for bit manipulation, under the name SSE4a. In particular, SSE4a included
POPCNT and LZCNT, instructions that came under the name Advanced Bit Manipu-
lation (ABM) and which operate on integer rather than SSE registers. Morever, K10
introduced improvements for mis-aligned accesses; Intel later introduced similar speed
improvements to unaligned SSE in their Nehalem processors, but it did not introduce
misaligned access by non-load SSE instructions until Sandy Bridge.

The subsequent extension was constituted by the NNI, Nehalem New Instructions,
released in 2008 as SSE4.2: seven instructions, considered as Application Targeted Ac-
celerators. Indeed, Intel stated that the feedback received from the developers played a
crucial role in developing this new instruction set. SSE4.2 added STTNI (String and Text
New Instructions), several new instructions that perform character searches and compari-
son on two operands of 16 bytes at a time, instructions useful to speed up text processing,
such as the parsing of XML documents. SSE4.2 added also a CRC32 instruction to com-
pute cyclic redundancy checks as used in certain data transfer protocols, to speed up data
integrity checking algorithms. Intel implemented also POPCNT with SSE4.2, postponing
LZCNT support to Haswell era.

in March of 2008, WMI (Westmere New Instructions) was announced, a set of 7
instructions that assist with encryption and decryption with popular AES algorithm. In
2010, Westmere CPU introduced them under the name AES New Instructions (AES-NI).

After a stormy period, with AMD’s proposal for a set of SSE5 instructions, with
support for FMA3 (Fused Multiply-Add 3 operands) on 128-bit registers, and an AVX
set by Intel, considered more advanced because it supported new 256-bit registers and
4-operand FMA4, the market has seen the progressive adoption of the AVX set, but with
FMA3.

Gesher New Instructions (GNI), Advanced Vector Extensions (AVX) The AVX in-
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struction set was announced by Intel in March of 2008. It departs from Intel’s usual
instruction encoding form in that it allows 3-operand instructions. It’s also intended to
address growing register sized in the future, as SIMD widths increase. Initially, plans are
for 16 256-bit registers, but it also extends to 512-bit registers with AVX-512. Whereas
SSE registers are called XMM0-XMM7, AVX’s registers are called YMM0-YMM15. The
XMM registers map to the bottom half of each of the larger YMM registers.

, is an advanced version of SSE announced by Intel featuring a widened data path from
128 bits to 256 bits and 3-operand instructions (up from 2). Intel released processors in
early 2011 with AVX support.[5] AVX requires support from the operating system. AVX2
is an expansion of the AVX instruction set. All CPUs since AMD Carrizo or Intel Haswell
support AVX2. AVX-512 (3.1 and 3.2) are 512-bit extensions to the 256-bit Advanced
Vector Extensions SIMD instructions for x86 instruction set architecture.

Advanced Vector Extensions (AVX, also known as Sandy Bridge New Extensions)
are extensions to the x86 instruction set architecture for microprocessors from Intel and
AMD proposed by Intel in March 2008 and first supported by Intel with the Sandy
Bridge[1] processor shipping in Q1 2011 and later on by AMD with the Bulldozer[2]
processor shipping in Q3 2011. AVX provides new features, new instructions and a new
coding scheme. AVX2 expands most integer commands to 256 bits and introduces fused
multiply-accumulate (FMA) operations. AVX-512 expands AVX to 512-bit support using
a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel
with the Knights Landing processor, which shipped in 2016

AVX uses sixteen YMM registers to perform a Single Instruction on Multiple pieces of
Data (see SIMD). Each YMM register can hold and do simultaneous operations (math) on:
eight 32-bit single-precision floating point numbers or four 64-bit double-precision floating
point numbers. The width of the SIMD registers is increased from 128 bits to 256 bits, and
renamed from XMM0–XMM7 to YMM0–YMM7 (in x86-64 mode, from XMM0–XMM15
to YMM0–YMM15). The legacy SSE instructions can be still utilized via the VEX prefix
to operate on the lower 128 bits of the YMM registers. AVX introduces a three-operand
SIMD instruction format, where the destination register is distinct from the two source
operands. For example, an SSE instruction using the conventional two-operand form
a = a + b can now use a non-destructive three-operand form c = a + b, preserving
both source operands. AVX’s three-operand format is limited to the instructions with
SIMD operands (YMM), and does not include instructions with general purpose registers
(e.g. EAX). Such support will first appear in AVX2.[5] The alignment requirement of
SIMD memory operands is relaxed.[6] The new VEX coding scheme introduces a new set
of code prefixes that extends the opcode space, allows instructions to have more than
two operands, and allows SIMD vector registers to be longer than 128 bits. The VEX
prefix can also be used on the legacy SSE instructions giving them a three-operand form,
and making them interact more efficiently with AVX instructions without the need for
VZEROUPPER and VZEROALL. The AVX instructions support both 128-bit and 256-
bit SIMD. The 128-bit versions can be useful to improve old code without needing to
widen the vectorization, and avoid the penalty of going from SSE to AVX, they are also
faster on some early AMD implementations of AVX. This mode is sometimes known as
AVX-128

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD
instructions for x86 instruction set architecture proposed by Intel in July 2013, and are
supported with Intel’s Knights Landing processor.[3] AVX-512 instruction are encoded
with the new EVEX prefix. It allows 4 operands, 7 new 64-bit opmask registers, scalar
memory mode with automatic broadcast, explicit rounding control, and compressed dis-
placement memory addressing mode. The width of the register file is increased to 512
bits and total register count increased to 32 (registers ZMM0-ZMM31) in x86-64 mode.
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AVX-512 consists of multiple extensions not all meant to be supported by all processors
implementing them. AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Ex-
tensions SIMD instructions for x86 instruction set architecture (ISA) proposed by Intel in
July 2013, and implemented in Intel’s Xeon Phi x200 (Knights Landing)[1] and Skylake-X
CPUs; this includes the Core-X series (excluding the Core i5-7640X and Core i7-7740X),
as well as the new Xeon Scalable Processor Family and Xeon D-2100 Embedded Se-
ries.[2] AVX-512 is not the first 512-bit SIMD instruction set that Intel has introduced in
processors: the earlier 512-bit SIMD instructions used in the first generation Xeon Phi
coprocessors, derived from Intel’s Larrabee project, are similar but not binary compatible
and only partially source compatible. AVX-512 consists of multiple extensions that may
be implemented independently. This policy is a departure from the historical require-
ment of implementing the entire instruction block. Only the core extension AVX-512F
(AVX-512 Foundation) is required by all AVX-512 implementations.

The VEX prefix used by AVX and AVX2, while flexible, did not leave enough room
for the features Intel wanted to add to AVX-512. This has led them to define a new prefix
called EVEX.

Compared to VEX, EVEX adds the following benefits:[6] Expanded register encoding
allowing 32 512-bit registers. Adds 8 new opmask registers for masking most AVX-512
instructions. Adds a new scalar memory mode that automatically performs a broadcast.
Adds room for explicit rounding control in each instruction. Adds a new compressed
displacement memory addressing mode. The extended registers, SIMD width bit, and
opmask registers of AVX-512 are mandatory and all require support from the OS. SIMD
modes The AVX-512 instructions are designed to mix with 128/256-bit AVX/AVX2 in-
structions without a performance penalty. However, AVX-512VL extensions allows the
use of AVX-512 instructions on 128/256-bit registers XMM/YMM, so most SSE and
AVX/AVX2 instructions have new AVX-512 versions encoded with the EVEX prefix
which allow access to new features such as opmask and additional registers. Unlike AVX-
256, the new instructions do not have new mnemonics but share namespace with AVX,
making the distinction between VEX and EVEX encoded versions of an instruction am-
biguous in the source code. Since AVX-512F only works on 32- and 64-bit values, SSE
and AVX/AVX2 instructions that operate on bytes or words are available only with the
AVX-512BW extension (Byte & Word support).

RISC-V vector extensions are finally nearing approval. They impose almost no limits
on the size or number of data elements, and they allow mixed-width elements to execute in
the same instruction stream with fixed-width elements and general-purpose instructions.
They can operate on all data types, and compiled binaries will run on any implementation.
CPU designs now under way range from microcontroller-class cores with 32-bit vectors to
supercomputer-class cores with 16,384-bit vectors.

The 32-bit RISC-V Vector (RVV) specification will soon advance from v0.8 to v0.9.
(The same instruction set will work with future 64- and 128-bit encodings. The V-
extension task group expects to propose the v1.0 specification by the end of June, kicking
off a 45-day review for final comments. Assuming no serious objections, the community
board could adopt the spec in August. RISC-V vendors can then begin shipping produc-
tion RTL for CPUs with the extensions. SiFive already has three cores in development.

RVV extensions depart from the single-instruction, multiple-data (SIMD) extensions
for proprietary CPUs, which fix in hardware the vector widths and numbers of elements
(lanes). As the need for more parallelism has grown, SIMD extensions have expanded to
512 bits or more. Each iteration adds dozens or hundreds of new instructions, and newer
code usually won’t run on older implementations.

By contrast, RVV extensions can adapt to different microarchitectures at run time.
They target diverse CPU designs while maintaining binary compatibility, although code
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compiled for a specific implementation will run faster. Programmers can write code in
assembly language or in a high-level language by using intrinsic functions or a vectorizing
compiler. The main competitors are Intel’s AVX-512 and Arm’s Scalable Vector Extension
(SVE), but both are more conventional than RVV.

2.4.2 From dual core to multi core and GPU

A parallel system contains more than one processor having direct memory access to
the shared memory that can form a common address space. Usually, a parallel system is of
a Uniform Memory Access (UMA) architecture. In UMA architecture, the access latency
(processing time) for accessing any particular location of a memory from a particular pro-
cessor is the same. Moreover, the processors are also configured to be in a close proximity
and are connected in an interconnection network. Conventionally, the interprocess pro-
cessor communication between the processors is happening through either read or write
operations across a shared memory, even though the usage of the message-passing capa-
bility is also possible (with emulation on the shared memory). Moreover, the hardware
and software are tightly coupled, and usually, the processors in such network are installed
to run on the same operating system. In general, the processors are homogeneous and
are installed within the same container of the shared memory.

A multicomputer parallel system is another type of parallel system containing mul-
tiple processors configured without having a direct accessibility to the shared memory.
Moreover, a common address space may or may not be expected to be formed by the
memory of the multiple processors.

A multicomputer system in a Non-Uniform Memory Access (NUMA) architecture is
usually configured with a common address space. In such NUMA architecture, accessing
different memory locations in a shared memory across different processors shows different
latency times.

Array processor exchanges information by passing as messages. Array processors have
a very small market owing to the fact that they can perform closely synchronized data
processing, and the data is exchanged in a locked event for applications such as digital
signal processing and image processing. Such applications can also involve large iterations
on the data as well.

Compared to the UMA and array processors architecture, NUMA as well as message-
passing multicomputer systems are less preferred if the shared data access and communi-
cation much accepted. The primary benefit of having parallel systems is to derive a better
throughput through sharing the computational tasks between multiple processors. The
tasks that can be partitioned into multiple subtasks easily and need little communication
for bringing synchronization in execution are the most efficient tasks to execute on par-
allel systems. The subtasks can be executed as a large vector or an array through matrix
computations, which are common in scientific applications. Though parallel computing
was much appreciated through research and was beneficial on legacy architectures, they
are observed no more efficient/economic in recent times due to following reasons:

However, Amdahl’s law is applicable only to scenarios where the program is of a fixed
size. In general, on larger problems (larger datasets), more computing resources tend to
get used if they are available, and the overall processing time in the parallel part usually
improves much faster than the by default serial parts.

802.3ba is the designation given to the higher speed Ethernet task force which com-
pleted its work to modify the 802.3 standard to support speeds higher than 10 Gbit/s in
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year process Product and Instruction 100% 100% 50+50% 100%
(nm) codename Set ADD MUL Add/Mul FMA

1995 350 Pentium Pro P6 x87 1 0.5 1 N/A
1997 350 AMD K6 (Nx686) x87 0.5 0.5 0.5 N/A
1997 350 Pentium II Klamath x87 1 0.5 1 N/A
1998 250 AMD K6-3D Chomper 3DNow! 2 2 4 N/A
1999 250 Pentium III Katmai SSE 2 2 4 N/A
1999 250 AMD Athlon K7 x87 1 1 2 N/A
1999 250 AMD Athlon K7 3DNow! 2 2 4 N/A
2000 180 Pentium 4 Willamette x87 1 0.5 1 N/A
2000 180 Pentium 4 Willamette SSE 2 2 4 N/A
2001 180 AMD Athlon XP Palomino SSE 2 2 4 N/A
2003 130 AMD Athlon 64 K8 Hammer x87 1 1 2 N/A
2003 130 AMD Athlon 64 K8 Hammer SSE 2 2 4 N/A
2006 65 Core 2 Duo Conroe SSE 4 4 8 N/A
2007 65 AMD Phenom K10 Agena SSE 4 4 8 N/A
2008 45 Core i7 Nehalem SSE 4 4 8 N/A
2011 32 Core i7 Sandy Bridge SSE 4 4 8 N/A
2011 32 Core i7 Sandy Bridge AVX 8 8 16 N/A
2011 32 AMD FX Bulldozer x87 2 2 2 N/A
2011 32 AMD FX Bulldozer SSE 8 8 8 N/A
2011 32 AMD FX Bulldozer AVX 8 8 8 16
2013 22 Core i7 Haswell AVX 16 16 16 32
2017 14 AMD Ryzen Zen SSE 8 8 16 N/A
2017 14 AMD Ryzen Zen AVX 8 8 16 16
2017 14 Core i9 Skylake-X AVX512 32 32 32 64
2017 7 AMD Ryzen 3 Zen2 AVX 16 16 32 32
2019 10 Core i7 Ice-Lake AVX512 16 16 16 32

Table 2.2: This table shows some Intel and AMD flotating-point maximum throughput
(in IEEE-754 single precision format) for each clock cycle, using common mix of basic
arithmetic operations: all additions (or subtraction, nothing changes); all multiplications;
one half additions/subtractions and half multiplications; special FMA (Fused Multiply
Add) operations (more complex operations, such as reciprocal, division, square root and
transcendent functions are more computational expensive, they are often not even fully
pipelined, so that very limited use is made of them in critical paths code). (N/A means
Not Applicable, because only some recent CPU had FMA units)



ML 94

year process Product and Instruction 100% 100% 50+50% 100%
(nm) codename Set ADD MUL Add/Mul FMA

1995 350 Pentium Pro P6 x87 1 0.5 1 N/A
1997 350 AMD K6 (Nx686) x87 0.5 0.5 0.5 N/A
1997 350 Pentium II Klamath x87 1 0.5 1 N/A
1999 250 AMD Athlon K7 x87 1 1 2 N/A
2000 180 Pentium 4 Willamette x87 1 0.5 1 N/A
2000 180 Pentium 4 Willamette SSE2 1 1 2 N/A
2003 130 AMD Athlon 64 K8 Hammer x87 1 1 2 N/A
2003 130 AMD Athlon 64 K8 Hammer SSE2 1 1 2 N/A
2006 65 Core 2 Duo Conroe SSE2 2 2 4 N/A
2007 65 AMD Phenom K10 Agena SSE2 2 2 4 N/A
2008 45 Core i7 Nehalem SSE2 2 2 4 N/A
2011 32 Core i7 Sandy Bridge SSE2 2 2 4 N/A
2011 32 Core i7 Sandy Bridge AVX 4 4 8 N/A
2011 32 AMD FX Bulldozer x87 2 2 2 N/A
2011 32 AMD FX Bulldozer SSE2 4 4 4 N/A
2011 32 AMD FX Bulldozer AVX 4 4 4 8
2013 22 Core i7 Haswell AVX 8 8 8 16
2017 14 AMD Ryzen Zen SSE2 4 4 8 N/A
2017 14 AMD Ryzen Zen AVX 4 4 8 8
2017 14 Core i9 Skylake-X AVX512 16 16 16 32
2017 7 AMD Ryzen 3 Zen2 AVX 8 8 16 16
2019 10 Core i7 Ice-Lake AVX512 8 8 8 16

Table 2.3: This table shows some Intel and AMD flotating-point maximum throughput
(in IEEE-754 double precision format) for each clock cycle, using common mix of basic
arithmetic operations. Same remarks as in Tab. 2.2
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2010 The standard was announced in July 2007[86] and was ratified on June 17, 2010 IEEE
802.3’s 400 Gb/s Ethernet Study Group started working on the 400 Gbit/s generation
standard in March 2013. Results from the study group were published and approved on
March 27, 2014. Accordingly, at the IEEE Industry Connections Higher Speed Ethernet
Consensus group meeting in September 2012, 400 GbE was chosen as the next genera-
tion goal. Additional 200GbE objectives were added in January 2016. In 2016, several
networking equipment suppliers were already offering proprietary solutions for 200G and
400G. 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE)
standards developed by the IEEE P802.3bs Task Force using broadly similar technology
to 100 Gigabit Ethernet were approved on December 6, 2017. Distributed computing is
the concurrent usage of more than one connected computer to solve a problem over a
network connection. The computers that take part in distributed computing appear as
single machines to their users.

Distributing computation across multiple computers is a great approach when these
computers are observed to interact with each other over the distributed network to solve
a bigger problem in reasonably less latency. In many respects, this sounds like a general-
ization of the concepts of parallel computing

While both distributed computing and parallel systems are widely available these days,
the main difference between these two is that a parallel computing system consists of
multiple processors that communicate with each other using a shared memory, whereas a
distributed computing system contains multiple processors connected by a communication
network. In parallel computing systems, as the number of processors increases, with
enough parallelism available in applications, such systems easily beat sequential systems
in performance through the shared memory. In such systems, the processors can also
contain their own locally allocated memory, which is not available to any other processors.

In distributed computing systems, multiple system processors can communicate with
each other using messages that are sent over the network. Such systems are increasingly
available these days because of the availability at low price of computer processors and
the high-bandwidth links to connect them.

The following reasons explain why a system should be built distributed, not just
parallel: Scalability: As distributed systems do not have the problems associated with
shared memory, with the increased number of processors, they are obviously regarded
as more scalable than parallel systems. Reliability: The impact of the failure of any
single subsystem or a computer on the network of computers defines the reliability of
such a connected system. Definitely, distributed systems demonstrate a better aspect
in this area compared to the parallel systems. Data sharing: Data sharing provided
by distributed systems is similar to the data sharing provided by distributed databases.
Thus, multiple organizations can have distributed systems with the integrated applications
for data exchange. Resources sharing: If there exists an expensive and a special purpose
resource or a processor, which cannot be dedicated to each processor in the system, such a
resource can be easily shared across distributed systems. Heterogeneity and modularity: A
system should be flexible enough to accept a new heterogeneous processor to be added into
it and one of the processors to be replaced or removed from the system without affecting
the overall system processing capability. Distributed systems are observed to be more
flexible in this respect. Geographic construction: The geographic placement of different
subsystems of an application may be inherently placed as distributed. Local processing
may be forced by the low communication bandwidth more specifically within a wireless
network. Economic: With the evolution of modern computers, high-bandwidth networks
and workstations are available at low cost, which also favors distributed computing for
economic reasons.

An important and key feature of distributed computing and the message-passing model
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of communication is having no shared memory, which also infers the nonexistence of a
common physical clock. The distributed system processors are loosely coupled so that
they have their own individual capabilities in terms of speed and method of execution
with versatile operating systems. They are not expected to be part of a dedicated system;
however, they cooperate with one another by exposing the services and/or executing the
tasks together as subtasks.

2.4.3 Low precision data formats

Another element that highlights the union between the hardware development of com-
putation “agents” and the increasingly pervasive diffusion of machine learning techniques
in recent years is the possibility of operating efficiently with reduced machine precision.

Do not use too much precision when it is not necessary. Single precision (32-bits) is
faster on some operations and consumes only half the memory space as double precision
(64-bits) or double extended (80-bits).

FPU (x87) instructions provide higher precision by calculating intermediate results
with 80 bits of precision, by default, to minimise roundoff error in numerically unstable
algorithms (see IEEE 754 design rationale and references therein). However, the x87 FPU
is a scalar unit only whereas SSE2 can process a small vector of operands in parallel.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard
for floating-point arithmetic established in 1985 by the Institute of Electrical and Elec-
tronics Engineers (IEEE). The standard addressed many problems found in the diverse
floating-point implementations that made them difficult to use reliably and portably.
Many hardware floating-point units use the IEEE 754 standard.

The standard defines: arithmetic formats: sets of binary and decimal floating-point
data, which consist of finite numbers (including signed zeros and subnormal numbers),
infinities, and special “not a number” values (NaNs) interchange formats: encodings (bit
strings) that may be used to exchange floating-point data in an efficient and compact form
rounding rules: properties to be satisfied when rounding numbers during arithmetic and
conversions operations: arithmetic and other operations (such as trigonometric functions)
on arithmetic formats exception handling: indications of exceptional conditions (such
as division by zero, overflow, etc.) In 1976 Intel began planning to produce a floating
point coprocessor. John Palmer, the manager of the effort, persuaded them that they
should try to develop a standard for all their floating point operations. William Kahan
was hired as a consultant; he had helped improve the accuracy of Hewlett-Packard’s
calculators. Kahan initially recommended that the floating point base be decimal[14] but
the hardware design of the coprocessor was too far along to make that change. The work
within Intel worried other vendors, who set up a standardization effort to ensure a ’level
playing field’. Kahan attended the second IEEE 754 standards working group meeting,
held in November 1977. Here, he received permission from Intel to put forward a draft
proposal based on the standard arithmetic part of their design for a coprocessor. The
arguments over gradual underflow lasted until 1981 when an expert hired by DEC to
assess it sided against the dissenters. Even before it was approved, the draft standard
had been implemented by a number of manufacturers.[15][16] The Intel 8087, which was
announced in 1980, was the first chip to implement the draft standard. IEEE 754-1985
was an industry standard for representing floating-point numbers in computers, officially
adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by
minor revision IEEE 754-2019. During its 23 years, it was the most widely used format
for floating-point computation. It was implemented in software, in the form of floating-
point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first
integrated circuit to implement the draft of what was to become IEEE 754-1985 was the
Intel 8087. The standard also recommends extended format(s) to be used to perform
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internal computations at a higher precision than that required for the final result, to
minimise round-off errors: the standard only specifies minimum precision and exponent
requirements for such formats. The x87 80-bit extended format is the most commonly
implemented extended format that meets these requirements.

IEEE 754-1985 represents numbers in binary, providing definitions for four levels of
precision, of which the two most commonly used are: IEEE 754-2008, published in August
2008, includes nearly all of the original IEEE 754-1985 standard, plus the IEEE 854-1987
Standard for Radix-Independent Floating-Point Arithmetic. The current version, IEEE
754-2019, was published in July 2019. It is a minor revision of the previous version,
incorporating mainly clarifications, defect fixes and new recommended operations. The
standard defines five basic formats that are named for their numeric base and the number
of bits used in their interchange encoding. There are three binary floating-point basic
formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats
(encoded with 64 or 128 bits). The binary32 and binary64 formats are the single and dou-
ble formats of IEEE 754-1985 respectively The standard specifies optional extended and
extendable precision formats, which provide greater precision than the basic formats.[12]
An extended precision format extends a basic format by using more precision and more
exponent range. An extendable precision format allows the user to specify the preci-
sion and exponent range. An implementation may use whatever internal representation
it chooses for such formats; all that needs to be defined are its parameters (b, p, and
emax). These parameters uniquely describe the set of finite numbers (combinations of
sign, significand, and exponent for the given radix) that it can represent.

The standard recommends that language standards provide a method of specifying
p and emax for each supported base b.[13] The standard recommends that language
standards and implementations support an extended format which has a greater precision
than the largest basic format supported for each radix b.[14] For an extended format
with a precision between two basic formats the exponent range must be as great as
that of the next wider basic format. So for instance a 64-bit extended precision binary
number must have an ’emax’ of at least 16383. The x87 80-bit extended format meets
this requirement. IEEE 754-2008 (previously known as IEEE 754r) was published in
August 2008 and is a significant revision to, and replaces, the IEEE 754-1985 floating-
point standard, while in 2019 it got updated with a minor revision IEEE 754-2019.[1]
The 2008 revision extended the previous standard where it was necessary, added decimal
arithmetic and formats, tightened up certain areas of the original standard which were
left undefined, and merged in IEEE 854 (the radix-independent floating-point standard).
In a few cases, where stricter definitions of binary floating-point arithmetic might be
performance-incompatible with some existing implementation, they were made optional.

Single-precision floating-point format is a computer number format, usually occupying
32 bits in computer memory; it represents a wide dynamic range of numeric values by
using a floating radix point. A floating-point variable can represent a wider range of
numbers than a fixed-point variable of the same bit width at the cost of precision.

In the IEEE 754-2008 standard, the 32-bit base-2 format is officially referred to as
binary32; it was called single in IEEE 754-1985. IEEE 754 specifies additional floating-
point types, such as 64-bit base-2 double precision and, more recently, base-10 represen-
tations. One of the first programming languages to provide single- and double-precision
floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985,
the representation and properties of floating-point data types depended on the computer
manufacturer and computer model, and upon decisions made by programming-language
designers. E.g., GW-BASIC’s single-precision data type was the 32-bit MBF floating-
point format. Single precision is termed REAL in Fortran, SINGLE-FLOAT in Common
Lisp, float in C, C++, C#, Java, Float in Haskell, and Single in Object Pascal (Delphi),
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Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and
single in versions of Octave before 3.2 refer to double-precision numbers. In most imple-
mentations of PostScript, and some embedded systems, the only supported precision is
single.

Double-precision floating-point format is a computer number format, usually occupy-
ing 64 bits in computer memory; it represents a wide dynamic range of numeric values by
using a floating radix point. Floating point is used to represent fractional values, or when
a wider range is needed than is provided by fixed point (of the same bit width), even if
at the cost of precision. Double precision may be chosen when the range or precision of
single precision would be insufficient. In the IEEE 754-2008 standard, the 64-bit base-2
format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE
754 specifies additional floating-point formats, including 32-bit base-2 single precision and,
more recently, base-10 representations. One of the first programming languages to provide
single- and double-precision floating-point data types was Fortran. Before the widespread
adoption of IEEE 754-1985, the representation and properties of floating-point data types
depended on the computer manufacturer and computer model, and upon decisions made
by programming-language implementers. E.g., GW-BASIC’s double-precision data type
was the 64-bit MBF floating-point format. Double-precision binary floating-point is a
commonly used format on PCs, due to its wider range over single-precision floating point,
in spite of its performance and bandwidth cost. As with single-precision floating-point
format, it lacks precision on integer numbers when compared with an integer format of
the same size. It is commonly known simply as double. The IEEE 754 standard specifies
a binary64 as having: Sign bit: 1 bit Exponent: 11 bits Significand precision: 53 bits
(52 explicitly stored) Using double-precision floating-point variables and mathematical
functions (e.g., sin, cos, atan2, log, exp and sqrt) are slower than working with their
single precision counterparts. One area of computing where this is a particular issue is
for parallel code running on GPUs. For example, when using NVIDIA’s CUDA platform,
calculations with double precision take, depending on a hardware, approximately 2 to
32 times as long to complete compared to those done using single precision IEEE 754
quadruple-precision binary floating-point format The IEEE 754 standard specifies a bi-
nary128 as having: Sign bit: 1 bit Exponent width: 15 bits Significand precision: 113 bits
(112 explicitly stored) In its 2008 revision, the IEEE 754 standard specifies a binary256
format among the interchange formats (it is not a basic format), as having: Sign bit: 1
bit Exponent width: 19 bits Significand precision: 237 bits (236 explicitly stored)

A roundoff error, also called rounding error, is the difference between the result pro-
duced by a given algorithm using exact arithmetic and the result produced by the same
algorithm using finite-precision, rounded arithmetic.[3] Rounding errors are due to inex-
actness in the representation of real numbers and the arithmetic operations done with
them. This is a form of quantization error.[4] When using approximation equations or
algorithms, especially when using finitely many digits to represent real numbers (which
in theory have infinitely many digits), one of the goals of numerical analysis is to es-
timate computation errors.[5] Computation errors, also called numerical errors, include
both truncation errors and roundoff errors. When a sequence of calculations with an
input involving roundoff error are made, errors may accumulate, sometimes dominating
the calculation. In ill-conditioned problems, significant error may accumulate.[6] In short,
there are two major facets of roundoff errors involved in numerical calculations: Digital
computers have magnitude and precision limits on their ability to represent numbers.
Certain numerical manipulations are highly sensitive to roundoff errors. This can result
from both mathematical considerations as well as from the way in which computers per-
form arithmetic operations. Loss of significance is an undesirable effect in calculations
using finite-precision arithmetic such as floating-point arithmetic. It occurs when an
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operation on two numbers increases relative error substantially more than it increases ab-
solute error, for example in subtracting two nearly equal numbers (known as catastrophic
cancellation). The effect is that the number of significant digits in the result is reduced
unacceptably. Ways to avoid this effect are studied in numerical analysis.

In computing, half precision is a binary floating-point computer number format that
occupies 16 bits (two bytes in modern computers) in computer memory. In the IEEE
754-2008 standard, the 16-bit base-2 format is referred to as binary16. It is intended
for storage of floating-point values in applications where higher precision is not essential
for performing arithmetic computations. Although implementations of the IEEE Half-
precision floating point are relatively new, several earlier 16-bit floating point formats
have existed Sign bit: 1 bit Exponent width: 5 bits Significand precision: 11 bits (10
explicitly stored) The hardware-accelerated programmable shading group led by John
Airey at SGI (Silicon Graphics) invented the s10e5 data type in 1997 as part of the
’bali’ design effort. Nvidia and Microsoft defined the half datatype in the Cg language,
released in early 2002, and implemented it in silicon in the GeForce FX, released in
late 2002 The half data type makes use of the Partial Precision instruction modifier to
request less precision. NVIDIA GPUs may use half-precision floating-point when the
Partial Precision instruction modifier is specified. Half-precision floating-point is encoded
with a sign bit, 10 mantissa bits, and 5 exponent bits (biased by 16), sometimes called
s10e5. float The float data type corresponds to a floating-point representation with at
least 24 bits. NVIDIA GPUs supporting vs_2_sw use standard IEEE 754 single-precision
floating-point encoding with a sign bit, 23 mantissa bits, and 8 exponent bits (biased by
128), sometimes called s10e5. Older ATI GPUs use 24-bit floating-point.

If codes designed for x87 are ported to the lower precision double precision SSE2
floating point, certain combinations of math operations or input datasets can result in
measurable numerical deviation, which can be an issue in reproducible scientific compu-
tations, e.g. if the calculation results must be compared against results generated from a
different machine architecture. A related issue is that, historically, language standards and
compilers had been inconsistent in their handling of the x87 80-bit registers implement-
ing double extended precision variables, compared with the double and single precision
formats implemented in SSE2: the rounding of extended precision intermediate values to
double precision variables was not fully defined and was dependent on implementation
details such as when registers were spilled to memory.

The bfloat16 is a truncated 16-bit version of the 32-bit IEEE 754 single-precision
floating-point format that preserves 8 exponent bits, but reduces precision of the signif-
icand from 24-bits to 8 bits to save up memory, bandwidth, and processing resources,
while still retaining the same range. The bfloat16 format was designed primarily for ma-
chine learning and near-sensor computing applications, where precision is needed near
to 0 but not so much at the maximum range. The number representation is supported
by Intel’s upcoming FPGAs as well as Nervana neural network processors, and Google’s
TPUs. Given the fact that Intel supports the bfloat16 format across two of its product
lines, it makes sense to support it elsewhere as well, which is what the company is going
to do by adding its AVX512_BF16 instructions support to its upcoming Xeon Scalable
‘Cooper Lake-SP’ platform.

we actually won’t see high core count Ice Lake CPUs for a while due to too low
yields on 10nm. The bfloat16 (Brain Floating Point) floating-point format is a computer
number format occupying 16 bits in computer memory; it represents a wide dynamic
range of numeric values by using a floating radix point. This format is a truncated (16-
bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with
the intent of accelerating machine learning and near-sensor computing.[1] It preserves the
approximate dynamic range of 32-bit floating-point numbers by retaining 8 exponent bits,
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but supports only an 8-bit precision rather than the 24-bit significand of the binary32
format. More so than single-precision 32-bit floating-point numbers, bfloat16 numbers
are unsuitable for integer calculations, but this is not their intended use.

The bfloat16 format is utilized in Intel AI processors, such as Nervana NNP-L1000,
Xeon processors (AVX-512 BF16 extensions), and Intel FPGAs, Google Cloud TPUs, and
TensorFlow. ARMv8.6-A also supports the bfloat16 format. As of October 2019, AMD
has added support for the format to its ROCm libraries bfloat16 has the following format:
Sign bit: 1 bit Exponent width: 8 bits Significand precision: 8 bits (7 explicitly stored),
as opposed to 24 bits in a classical single-precision floating-point format

2.4.4 FPGA and ASIC

Evolvable Hardware, implementazioni di reti neurali shallow e deep su FPGA, ar-
itmetica in precisione ridotta, ecc [Chakradhar et al., 2010; Gankidi and Thangavelau-
tham, 2017; Guo et al., 2017; Gupta et al., 2011; Haddow and Tyrrell, 2018; Higuchi
et al., 1996; Himavathi et al., 2007; Jeyanthi and Subadra, 2014; Kuon et al., 2008;
Lacey et al., 2016; Liang et al., 2018; Liu et al., 2015a; Misra and Saha, 2010; Nazari
et al., 2015; Nurvitadhi et al., 2017; Papadimitriou et al., 2011; Park and Sung, 2016;
Perko et al., 2000; Schmit and Huang, 2016; Shafique et al., 2017; Sharma et al., 2017;
Sipper et al., 1999; Vasicek and Sekanina, 2007; Wang et al., 2017a; Xiao et al., 2017;
Yao and Higuchi, 1999; Zhang et al., 2015; Zhou et al., 2017] Achronix Semiconductor
Corporation is a fabless semiconductor corporation based in Santa Clara, California, of-
fering high-performance FPGA solutions. Achronix is the only supplier to have both
high-performance and high-density standalone FPGAs and embedded FPGA (eFPGA)
solutions in high-volume production. Achronix’s FPGA and eFPGA IP offerings are
further enhanced by ready-to-use PCIe accelerator cards targeting AI, ML, networking
and data center applications. All of Achronix’s products are supported by best-in-class
EDA software tools. In 2019, Achronix announced the revolutionary Speedster7t FPGA
product family based on TSMC 7nm FinFET technology — the first FPGA architecture
to offer a 2D network-on-chip (NoC) and an array of machine learning processors opti-
mized for AI/ML workloads. Built on TSMC’s 7nm FinFET process, Speedster7t FPGAs
feature a revolutionary new 2D network-on-chip (NoC), an array of new machine learn-
ing processors (MLPs) optimized for high-bandwidth and artificial intelligence/machine
learning (AI/ML) workloads, high-bandwidth GDDR6 interfaces, 400G Ethernet and PCI
Express Gen5 ports — all interconnected to deliver ASIC-level performance while retain-
ing the full programmability of FPGAs. The Speedster7t FPGA family is optimized for
high-bandwidth workloads and eliminates the performance bottlenecks associated with
traditional FPGAs. Built on TSMC’s 7nm FinFET process, Speedster7t FPGAs feature
a revolutionary new 2D network-on-chip (NoC), an array of new machine learning pro-
cessors (MLPs) optimized for high-bandwidth and artificial intelligence/machine learning
(AI/ML) workloads, high-bandwidth GDDR6 interfaces, 400G Ethernet and PCI Ex-
press Gen5 ports — all interconnected to deliver ASIC-level performance while retaining
the full programmability of FPGAs. Get started today with the VectorPath accelerator
card, featuring the Speedster7t FPGA. 2D Networ on chip 20Tbps bandwidth, 4 Tbps 16
GDDR6 channels bandwidth, 385 Mb on chip memory, 2.6 Million 6-input luts



Chapter 3

Support Vector Machine

Support Vector Machines are supervised machine learning models, that can be used
both for classification tasks and regression analysis.

In machine learning models used for regression or classification, such as neural net-
works, the form of the mapping from an input value, ordinarily encoded in a feature
vector, to desired output is governed by a set, typically seen as a list or often as a vec-
tor, of adaptive parameters, such as neural network weights. During the deterministic or
stochastic learning phase, a set of useful training data is usually used to obtain a point
estimate of the parameter vector (or eventually to determine a “posterior” distribution
over this vector). After the learning phase, the training data is then completely discarded,
and predictions for new (typically unseen) inputs are based purely on the learned param-
eter vector. In particular, if there is a fixed finite number of parameters independent of
dataset size, i.e. if the size of adaptive parameters is a priori determined, the models is
called parametric.

However, there is a class of pattern recognition techniques, in which the training data
points, or a subset of them, are kept and used also during the prediction phase: obviously
these approaches are non-parametric machine learning models.

For example, there are simple techniques for pattern classification called nearest
neighbours (NN) and its generalization K-nearest neighbors (KNN), which involved non-
parametric methods to assigning to each new test vector, respectively, the same label as
the closest example from the training set or the label determined by a plurality vote of
its neighbors, with the test vector being assigned to the class most common among its
k nearest neighbors. They are examples of memory based methods that involve storing
the entire training set in order to make predictions for future data points. They typically
require a metric to be defined that measures the similarity of any two vectors in input
space, and are generally fast to “train” but slow at making predictions for test data points
(if the train set is big and the learning phase retains a good part of it).

Support Vector Machines (SVM) are considered non-parametric supervised machine
learning models, even if in the very basic case, i.e. the linear SVM with “hard” margin
in its “primal” formulation, it’s not really true: if feature space has D dimension, linear
SVM needs indeed always D+1 parameters to determine uniquely a hyperplane and hence
can be seen as parametric model.

In general, Support Vector Machines require the identification of a subset of the train-
ing set points, aimed at identifying a clear decision boundary that meets the principle of
structural risk minimization. Precisely structural risk minimization is a pivotal point in
the success of SVMs, because the learned model should not overfit the data, otherwise its
generalization performance will be poor.

SVM have number of applications in several fields, such as hand-written characters
recognition, face detection (i.e., classifieng parts of the image as a face or non-face), text
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and hyper text categorization for both inductive and transductive models, and so on.
The SVM algorithm has been widely applied also in the biometrics, like Protein fold and
remote homology detection.

The high spread of support vector machines is linked to some advantages perceived in
this machine learning model:

• SVM usually proves effective in high dimensional spaces;

• SVM has a simple geometric interpretation, while for other machine learning algo-
rithms trying to interpret the parameters is decidedly complicated (in fact, they are
mainly used as a black box);

• SVM uses structural risk minimization, so thie model is less prone to overfitting
training data;

• SVM proves helpful in countering the curse of dimensionality, because it can be still
efficacious even if size of training set is lower than space dimensionality;

• with to respect to other non parametric models, SVM could also be memory efficient,
because it uses a subset of training points (i.e, the so called support vectors!) in
the decision function;

• for the general case, i.e. non linear SVM, this model demonstrates remarkable ver-
satility, because different Kernel functions can be specified for the decision function,
both de facto standard kernels, such as polynomial of various degree or radial basis
function, both ad hoc “custom” kernels;

• fixed a kernel function for SVM, the solution is guaranteed to be global and unique,
which warrants the repeatability of the results and prevents the possibility of getting
stuck in a local minimum, possibly much worse than the global one;

• because this machine learning approach is massively based on linear algebra, it is
relatively simple to optimize its performance, improving its speed using two paral-
lel computing strategies, i.e. by implementing multithreaded solutions and/or by
adopting vector calculation instructions (for example, SIMD extensions), as well as
implementing computation on GPU Salleh and Baharim [2015].

3.1 SVM for linearly separable data
For two-class, linearly separable training data sets, there are lots of possible linear

separators. Intuitively, a decision boundary drawn in the middle of the void between data
items of the two classes seems better than one which approaches very close to examples
of one or both classes. While some learning methods such as the perceptron algorithm,
find just any linear separator, others, like Naive Bayes [Russell and Norvig, 2016], search
for the best linear separator according to some criterion. One conceptual problem is
how to find a separating hyperplane that will generalize well: the dimensionality of the
feature space could be very large, so not all hyperplanes that separate the training data
will necessarily generalize well. The SVM is a lerning machine for binary classification
problems and in particular it defines the criterion to be looking for a decision surface that
is maximally far away from any data point. That criterion, just for the case of optimal
hyperplanes for separable classes, was found by Vapnik in 1965. An optimal hyperplane
is defined as the linear decision bundary with maximal margin between the vectors of the
two classes. This distance from the decision surface to the closest data point determines
the margin of the classifier. This method of construction necessarily means that the
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Figure 3.1: The left plot shows data from two classes, denoted by red crosses and blue cir-
cles, together with the decision boundary found by least squares (magenta curve) and also
by the logistic regression model (green curve). The right-hand plot shows the correspond-
ing results obtained when extra data points are added at the bottom left of the diagram,
showing that least squares is highly sensitive to outliers, unlike logistic regression. (Fig.
4.4 in [Bishop, 2006]).

decision function for an SVM is fully specified by a (hopeful small) subset of the data
points which define the position of the separator: precisely these points are referred to as
the support vectors, so, you can think of these points as vectors “supporting” the margin
and thus the decision boundary, keeping the boundary in a nice equilibrium.

Other data points play no role in determining the decision boundary that is chosen.
So, the cool property that the decision boundary is solely determined by the support
vectors, as its a linear combination of these vectors.

It was shown that if the training vectors are separated without errors by an optimal
hyperptane the expectation value of the probability of committing an error on a test
example is bounded by the ratio between the expectation value of the number of support
vectors and the number of training vectors:

E[Pr(error)] ≤ E[# of support vectors]
# training vectors

Note that this bound does not explicitly contain the dimensionality of the space of
separation. It follows from this bound, that if the optimal hyperplane can be constructed
from a small number of support vectors relative to the training set size the generalization
ability will be high, even in an infinite dimensional space. In Section 5 we will demonstrate
that the ratio (5) for a real life problems can be as low as 0.03 and the optimal hyperplane
generalizes well in a billion dimensional feature space. Let

w0z + b0 = 0

be the optimal hyperplane in feature space. We will show, that the weights w0 for the
optimal hyperplane in the feature space can be written as some linear combination of
support vectors

Lagrange multipliers
Con l’SVM è possibile creare un modello di classificazione. Ogni oggetto appartenente

ad un insieme X = x1 . . . xn verrà etichettato con una classe appartenente all’insieme Y =
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Figure 3.2: Illustration of the convergence of the perceptron learning algorithm, showing
data points from two classes (red and blue) in a two-dimensional feature space.The top
left plot shows the initial parameter vector w shown as a black arrow together with
the corresponding decision boundary (black line), in which the arrow points towards the
decision region which classified as belonging to the red class. The data point circled in
green is misclassified and so its feature vector is added to the current weight vector, giving
the new decision boundary shown in the top right plot. The bottom left plot shows the
next misclassified point to be considered, indicated by the green circle, and its feature
vector is again added to the weight vector giving the decision boundary shown in the
bottom right plot for which all data points are correctly classified. (Fig. 4.7 in [Bishop,
2006]).
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Figure 3.3: The margin is defined as the perpendicular distance between the decision
boundary and the closest of the data points, as shown on the left figure. Maximizing
the margin leads to a particular choice of decision boundary, as shown on the right. The
location of this boundary is determined by a subset of the data points, known as support
vectors, which are indicated by the circles. (Fig. 7.1 in [Bishop, 2006]).

Figure 3.4: An example of a separable problem in a 2 dimensional space. The support
vectors, marked with grey squares, define the margin of largest separation between the
two classes. (Fig. 2 in [Cortes and Vapnik, 1995]).
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Figure 3.5: Classification of an unknown pattern by a support-vector network. The
pattern is in input space compared to support vectors. The resulting values are non-
linearly transformed. A linear function of these transformed values determine the output
of the classifier. (Fig. 4 in [Cortes and Vapnik, 1995]).
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Figure 3.6: Examples of the dot-product (39) with d = 2, Support patterns are indicated
with doable circles, errors with a cross. (Fig. 5 in [Cortes and Vapnik, 1995]).

y1 . . . ym. La classificazione è eseguita sugli attributi (features) dell’oggetto xi, 1 ≤ i ≤ n.
Fornendo un insieme di dati di addestramento, il modello SVM deve classificare elementi
non analizzati precedentemente.

Dato un insieme di addestramento, in cui ogni elemento è una coppia nome e etichetta
(xi, yi), i = 1 . . . n dove xi ∈ Rn e y ∈ [1,−1]n la SVM trova la soluzione al seguente
problema:

minw,b,ξ
1
2wT w + C

n∑︂
i=1

ξi

con yi(wT ϕ(xi) + b) ≥ 1− ξi, ξ ≥ 0
Il vettore xi è mappato in uno spazio dimensionale più ampio dalla funzione ϕ. La

SVM trova un iperpiano con il margine massimo nello spazio dimensionale. La mappatura
del vettore xi nella funzione ϕ è eseguita tramite una funzione definita kernel (K). In
letteratura sono presenti quattro kernel di base:

• linear: K(xi, xj) = xT
i xj

• polinomiale: K(xi, xj) = (γxT
i xj + r)d, γ ≥ 0

• funzione radiale di base: K(xi, xj) = exp(−γ|xi − xj |2, γ ≥ 0

• funzione sigmoidea: K(xi, xj) = tanh(γxT
i xj + r)

Sparse representation: the separating hyperplane f(x) is spanned those data points
i where yi 6= 0,called Support Vectors. Both the estimation and the evaluation of f(x)
only involve dot product.

3.2 Not linearly separable data
[Cortes and Vapnik, 1995]
The support-vector network implements the following idea: it maps the input vectors

into some high dimensional feature space Z through some non-linear mapping chosen a
priori. In this space a linear decision surface is constructed with special properties that
ensure high generalization ability of the network.

the training problem is reformulated and represented in such away so as to obtain
a (convex) quadratic programming (QP) problem. The solution to this QP problem is
global and unique. In SVMs, it is possible to choose several types of kernel functions
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Figure 3.7: Example of synthetic data from two classes in two dimensions showing con-
tours of constant y(x) obtained from a support vector machine having a Gaussian kernel
function. Also shown are the decision boundary, the margin boundaries, and the support
vectors. (Fig. 7.2 in [Bishop, 2006]).

Figure 3.8: Illustration of the role of nonlinear basis functions in linear classification
models. The left plot shows the original input space (x1, x2) together with data points
from two classes labelled red and blue. Two ‘Gaussian’ basis functions φ1(x) and φ2(x)
are defined in this space with centres shown by the green crosses and with contours shown
by the green circles. The right-hand plot shows the corresponding feature space (φ1, φ2)
together with the linear decision boundary obtained given by a logistic regression model
of the form discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary
in the original input space, shown by the black curve in the left-hand plot. (Fig. 4.12 in
[Bishop, 2006]).
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including linear, polynomial, RBFs, MLPs with one hidden layer and splines, as long as
the Mercer condition is satisfied.

Finally, what happens if one uses a kernel which does not satisfy Mercer’s condition?
In general, there may exist data such that the Hessian is indefinite, and for which the
quadratic programming problem will have no solution (the dual objective function can
become arbitrarily large). However, even for kernels that do not satisfy Mercer’s condition,
one might still find that a given training set results in a positive semidefinite Hessian, in
which case the training will converge perfectly well. In this case, however, the geometrical
interpretation described above is lacking. Burgess (1998)

Many linear parametric models can be re-cast into an equivalent ‘dual representation’
in which the predictions are also based on linear combinations of a kernel function eval-
uated at the training data points. As we shall see, for models which are based on a fixed
nonlinear feature space mapping (x), the kernel function is given by the relation

From this definition, we see that the kernel is a symmetric function of its arguments so
that . The kernel concept was introduced into the field of pattern recognition by Aizerman
et al. (1964) in the context of the method of potential functions, so-called because of an
analogy with electrostatics. Although neglected for many years, it was re-introduced into
machine learning in the context of largemargin classifiers by Boser et al. (1992) giving
rise to the technique of support Chapter 7 vector machines. Since then, there has been
considerable interest in this topic, both in terms of theory and applications. One of
the most significant developments has been the extension of kernels to handle symbolic
objects, thereby greatly expanding the range of problems that can be addressed. Many
linear models for regression and classification can be reformulated in terms of a dual
representation in which the kernel function arises naturally.

Another idea would be hoping kernelizing would separate them in the non-linear higher
dimension. introduction of non linear kernel function immersion in higher dimensionality
space

SVM is a supervised machine learning algorithm. It can be used for classification or
regression problems. It uses a method called the kernel trick to transform your data. A
Support Vector Machine (SVM) performs classification by finding the hyperplane that
maximizes the margin between the two classes. The vectors that define the hyperplane
are the support vectors. The extreme points in the data sets that define the hyperplane
are the support vectors

Kernel machines are algorithms in which kernels are employed to conceptually map
data from an input space into a higher-dimensional feature space where the data can
be processed using linear methods. The mapping is usually nonlinear and is imple-
mented implicitly through the kernel trick. Many kernel methods have been developed by
the machine learning community, such as support vector machines (SVMs) [51], kernel-
based principal component analysis (KPCA) [36], kernel-based linear discriminant anal-
ysis (KLDA) [35], kernel-based independent component analysis (KICA) [2] and kernel-
based nearest neighbour classifier [38]. SVM, a mostwidely used kernelmachine, was
originally developed for two-class classification. Based on the principle of structural risk
minimization, discriminative binary SVMs, referred to as Binary SupportVector Classifier
(BSVC) in this chapter, have been reported to perform well in many real applications [9,
12, 37]. However, SVM also suffers from some fundamental problems in statistical pattern
recognition, such as the imbalanced data problem [19], in which the size of the training
data from one class is significantly larger than that of the other class in a two-class classi-
fication task. Such a problem is frequently encountered in many biomedical applications
where data from both positive and negative diagnosis categories are not available equally.
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Figure 3.9: Illustration of the slack variables. Data points with circles around them are
support vectors. (Fig. 7.3 in [Bishop, 2006]).

Figure 3.10: Illustration of the ν-SVM applied to a nonseparable data set in two dimen-
sions with Gaussian kernels. The support vectors are indicated by circles. (Fig. 7.4 in
[Bishop, 2006]).

3.3 Soft margin and least square support vector machine
Linear Separability of the SVM is relaxed by using something known as the Hinge

Loss objective (i.e. a soft-margin SVM) instead of using the vanilla objective.
This involves recourse to Karush-Kuhn-Tucker conditions[Tucker and Kuhn, 1951]
The LS-SVM is the least squares SVM which minimizes a quadratic penalty on the

slack variables as well. This allows the quadratic programming problem to be reduced to
a set of matrix inversion operations in the dual space, which takes less time compared to
solving the SVM quadratic problem. The flip side is the requirement that the matrices
being invertible and/or well conditioned.

To demonstrate the KKT conditions and the derivation of support vectors (SVs) in
SVM, we consider SVM developed by Corinna Cortes and Vladimir N. Vapnik in 1995.
It can readily be extended to the case of non-linear SVM using the so-called kernel trick.
The linear model of SVM is:

f(x)=wTx+b(1) where w and b are unkown and determined by the training samples.
This is achieved by the following formulation:

mininize w,e subject to where C controls the trade-off between model complexity (first
term) and empirical risk (second term).

Taking equality instead of inequality constraints in the problem formulation. As a
result one solves a linear system instead of a QP problem. Due to this choice of a
2-norm one looses sparseness in the resulting LS-SVM Maximum Margin Classifier is
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a choice when data is linearly separable but in many of the cases with no separating
boundary possible and hence there is no solution with M>0. Hence, there is a need to
extend the concept of a separating hyperplane in order to develop a hyperplane that
ALMOST separates the classes, using so called SOFT MARGIN. This generalization is
called “Support Vector Classifier”. We want a hyperplane that does not perfectly separate
two classes, in the interest of

LS-SVMs show greater robustness to individual observation and better classification
of most of the training observations

In Support Vector Machines (SVMs), the solution of the classification problem is
characterized by a (convex) quadratic programming (QP) problem. In a modified version
of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function
is proposed so as to obtain a linear set of equations in the dual space.

Anyway, LS-SVM is a variant of SVM with a “slightly” altered objective function:
The above formulation is actually an implicit consequence of a least square regression

problem, that’s why it is called least square-SVM.
Another difference is that SVM requires you to solve a quadratic programming problem

while LS-SVM requires you to solve a linear system.
Since the formulation of both objective functions are different, their results would

normally not be the same even when you apply them on the same dataset. However, it is
demonstrated that, under specific conditions, they can be equivalent.

The conceptual problem is how to find a separating hyperplane that will generalize
well: the dimensionality of the feature space will be large, and not all hyperplanes that
separate the training data will necessarily generalize well

3.4 SVM vs ANN
One specific benefit that ANNs, such as multilayer feed-forward networks (FF nets

for short), have over SVMs is that their size is fixed: they are parametric models, while
SVMs are non-parametric. That is, in an ANN you have a bunch of hidden layers with
sizes h1 through hn depending on the number of features, plus bias parameters, and those
make up your model. By contrast, an SVM (at least a kernelized one) consists of a set of
support vectors, selected from the training set, with a weight for each. In the worst case,
the number of support vectors is exactly the number of training samples (though that
mainly occurs with small training sets or in degenerate cases) and in general its model
size scales linearly. In natural language processing, SVM classifiers with tens of thousands
of support vectors, each having hundreds of thousands of features, is not unheard of.

Also, online training of FF nets is very simple compared to online SVM fitting, and
predicting can be quite a bit faster.

Obviously all of the above pertains to the general case of kernelized SVMs. Linear
SVM are a special case in that they are parametric and allow online learning with simple
algorithms such as stochastic gradient descent.

A significant advantage of SVMs is that whilst ANNs can suffer from multiple local
minima, the solution to an SVM is global and unique. Two more advantages of SVMs
are that that have a simple geometric interpretation and give a sparse solution. Unlike
ANNs, the computational complexity of SVMs does not depend on the dimensionality of
the input space. ANNs use empirical risk minimization, whilst SVMs use structural risk
minimization.

The reason that SVMs often outperform ANNs in practice is that they deal with the
biggest problem with ANNs, SVMs are less prone to overfitting.

Another advanteg of SVM is that for two linearly separable classes SVM will draw
the separating hyperplane halfway between the nearest points of the two classes (these
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become support vectors), while a neural network would draw any line which separates the
samples, which is correct for the training set, but might not have the best generalization
properties.

Both random forests and SVMs are non-parametric models (i.e., the complexity grows
as the number of training samples increases). Training a non-parametric model can thus
be more expensive, computationally, compared to a generalized linear model, for example.

When data are not lineraly separable, we can end up with a lot of support vectors in
SVMs; in the worst-case scenario, we have as many support vectors as we have samples
in the training set. Although, there are multi-class SVMs, the typical implementation for
mult-class classification is One-vs.-All; thus, we have to train an SVM for each class – in
contrast, decision trees or random forests, which can handle multiple classes out of the
box.



Chapter 4

Quantum Machine Learning

Quantum Machine Learning is a very new, promising interdisciplinary research area
which lies in the intersection of quantum computing and information systems and machine
learning[Biamonte et al., 2017; Da Silva et al., 2012; da Silva et al., 2016; Fard et al.,
2018; Gupta and Zia, 2001; Havlíček et al., 2019; Havlivcek et al., 2018; Liu et al., 2013;
Otterbach et al., 2017; Rebentrost et al., 2017; Ristè et al., 2017; Schuld et al., 2018;
Schuld and Killoran, 2018; Schuld et al., 2014, 2015a,b; Verdon et al., 2017]. Said in a
nutshell, Quantum Machine Learning deals with identifying and running suitable machine
learning models on a quantum computer. One of the sources of inspiration is that many
machine learning algorithms operate by performing specific matrix operations on vectors
within high-dimensional feature spaces, which looks similar to what forms the basis of
quantum mechanics.

Quantum Machine Learning takes on at least three stages: first stage involves con-
verting classical data to suitable quantum data, second stage performs the computations
on the quantum computer, trying to exploit a computational speed up, and finally third
stage converts the quantum results back into the an understandable classical format.

Until now, the prevailing approach is to try to take inspiration from a consolidated
classical machine learning model and try to convert it into a quantum format. In the fu-
ture, it may be possible to directly develop effective quantum machine learning algorithms
that could not have a classical counterpart.

In artificial intelligence, an evolutionary algorithm is a generic population-based meta-
heuristic optimization algorithm. An evolutionary algorithm uses mechanisms inspired
by biological evolution, such as reproduction, mutation, recombination, and selection.
Candidate solutions to the optimization problem play the role of individuals in a popu-
lation, and the fitness function determines the quality of the solutions. Evolution of the
population then takes place after the repeated application of the above operators.

Evolutionary algorithms often perform well approximating solutions to all types of
problems because they ideally do not make any assumption about the underlying fitness
landscape. In most real applications of evolutionary algorithms, computational complex-
ity is a prohibiting factor. In fact, this computational complexity is due to fitness function
evaluation. It is possible to point out that even quantum evolutionary algorithms have
been formulated and achieved some success[Han and Kim, 2000; Kumar and Kumar,
2018; Laboudi and Chikhi, 2012; Lahoz-Beltra, 2016; Layeb and Saidouni, 2007; Li et al.,
2018; Ma and Jin, 2007; Narayanan and Moore, 1996; Nowotniak, 2010; Nowotniak and
Kucharski, 2010; Platel et al., 2007; Sakurai and Katz, 2009; Sofge, 2008; Tkachuk, 2018;
Udrescu et al., 2006; Wang et al., 2013; Zhang, 2011].

113
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4.1 Quantum Computing
The first and most famous quantum algorithms [Chuang and Shor, 2018b; Nielsen

and Chuang, 2010] exhibit considerable comptutational advantages with rispect to con-
ventional computers: Deutsch-Jozsa algorithm [Deutsch and Jozsa, 1992] allows resolution
of a specific class of “on promise” problems with just one function (“oracle”) evaluation;
Shor algorithm[Shor, 1994] provides an exponential speed-up for prime number factoriza-
tion (anyway, until now the only real implementations are able to work with very small
numbers [Monz et al., 2016]); Grover algorithm [Grover, 1996] allows a quadratic speed-up
for searching an unstructured database.

Quantum computing can substantially speedup least-squares support vector machines.
Least square SVMs translate an optimization problem to a set of linear equations. The
linear equations require the quick calculation of the kernel function, or rather kernel
matrix, so a potential advantage of quantum computing is inherent in the acceleration of
the computation of kernel transformation. The other source of the quantum speedup is
the efficient solution of the linear equations on quantum hardware.

By virtue of pressing technical and economic constraints, such as the modest number of
qu-bits (quantum bits) made available by current or near-term hardware implementations,
high production costs, the need to operate in cryogenics , of the high rate of errors[Chuang
and Harrow, 2018; Chuang and Shor, 2018c], of the decoherence phenomena, the idea
of adopting hybrid solutions is predominant, that is, in which classical and quantum
computing agents co-exist profitably, in particular with the aim of using this last type
of resource to accelerate only some portions of computation ( assigning, therefore, the
execution of specific small routine to quantum hardware solutions).

The two peculiar aspects of quantum systems that can play a decisive role in ensur-
ing speed improvements (“quantum advantage”) are superposition and entanglement: the
superposition gives a quantum system the possibility to memorize (simultaneously) any
linear combination of states, while the entanglement allows to establish a strong correla-
tion between two quantum systems, so that the application of an interaction to the first
has an effect also on the second one (as in the teleportation[Chuang and Shor, 2018b;
Gottesman and Chuang, 1999; Rycerz et al., 2015]).

The development of quantum algorithms and quantum computers is mainly based
on the computational model of quantum circuits [Chuang and Shor, 2018a; Nielsen and
Chuang, 2010].
Because the temporal evolution of (perfectly closed) quantum systems is completely de-
termined by unitary operators, it is necessary to design circuits based on reversible logic
gates [Brylinski and Brylinski, 2002; DiVincenzo, 1995, 1998; Maslov et al., 2005, 2007;
Sasao and Kinoshita, 1979; Shende et al., 2002], such as Toffoli and Fredkin gates [Fredkin
and Toffoli, 1981; Toffoli, 1981], instead of classical dissipative gates (such as AND, OR,
NAND, NOR, XOR, XNOR).

In these models, it is necessary to identify an adequate set of elementary reversible logic
gates, capable of representing, or at least approximating, any quantum circuit [Barenco
et al., 1995; Deutsch et al., 1995; DiVincenzo, 1995; Gottesman and Chuang, 1999; Lloyd,
1995; Shi, 2002].

4.1.1 Quantum Bits

Just as bits are the fundamental object of information in classical computing, qubits
(quantum bits) are the fundamental object of information in quantum computing. To
understand this correspondence, let’s look at the simplest example: a single qubit.

While a bit, or binary digit, can have only two distinct values, such as true or false
either 0 or 1, a qubit can have a value that is either of these or any quantum superposition
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Figure 4.1: Bloch sphere is a geometrical representation of the pure state space of a
two-level quantum mechanical system (qubit)

of the 0 and 1 states. The state of a single qubit so can be described by a two-dimensional
column vector of unit norm (pure state), that is, the magnitude squared of its entries must
sum to one. This vector, called the quantum state vector, holds all the information needed
to describe the one-qubit quantum system just as a single bit holds all of the information
needed to describe the state of a binary variable.

Any two-dimensional column vector of real or complex numbers with unitary norm
represents a possible quantum state held by a qubit. Thus[︄

α
β

]︄

represents a qubit state if α and β Because are complex numbers satisfying α2 + β2 = 1
Some examples of valid quantum state vectors representing qubits include[︄

0
1

]︄
[︄
1
0

]︄
[︄ 1√

2
1√
2

]︄
In particular, the quantum state vectors[︄

0
1

]︄
[︄
1
0

]︄
take a special role: these two vectors form a basis for the vector space that describes
the qubit’s state. This means that any quantum state vector can be written as a linear
combination of these basis vectors. Specifically, the generic vector[︄

α
β

]︄
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can be written as
α ·

[︄
0
1

]︄
+ β ·

[︄
1
0

]︄
While any rotation of these vectors would serve as a perfectly valid basis for the qubit,

we choose to privilege this one, by calling it the computational basis.
We take these two quantum states to correspond to the two states of a classical bit,

namely 0 and 1. Thus, out of the infinite number of possible single-qubit quantum state
vectors, only two correspond to states of classical bits; all other quantum states do not.

Now that we know how to represent a qubit, we can gain some intuition for what these
states represent by discussing the concept of measurement. A measurement corresponds
to the informal idea of observing a qubit status, which immediately collapses the quantum
state to one of the two classical states 0 or 1. When a qubit given by the quantum state
vector [︄

α
β

]︄
is measured, we obtain the outcome 0 with probability α2 and the outcome 1 with proba-
bility β2. Obviously these probabilities sum up to 1 because of the normalization condition
α2 + β2 = 1.

The properties of measurement also mean that the overall sign of the quantum state
vector is irrelevant. Negating a vector is equivalent to transform in[︄

−α
−β

]︄

but because the probability of measuring 0 and 1 depends on the magnitude squared of the
terms, inserting such signs does not change the probabilities whatsoever. More generally,
the so called “global phase” of the system is not an observable physical quantity and
therefore does not affect the state of the system.

A final important property of measurement is that it does not necessarily affect all
quantum state vectors. If we start with a qubit in a pure state, which corresponds to the
classical state 0 or 1, measuring this state, using the computational basis, will always yield
the same outcome and leave the quantum state unchanged. In this sense, if we only have
classical bits (i.e., qubits that are either 0 or 1) then measurement does not damage the
system. This means that we can replicate classical data and manipulate it on a quantum
computer just as one could do on a classical computer. The ability, however, to store
information in both states at once is what elevates quantum computing beyond what is
possible classically and further robs quantum computers of the ability to copy quantum
data indiscriminately, see also the no-cloning theorem.

4.1.2 Quantum Gates

Since the temporal evolution of quantum systems (in the ideal case, i.e. of perfect
isolation from the external environment) is completely determined by unitary type op-
erators, it is essential to design circuits based on reversible logic gates[Brylinski and
Brylinski, 2002; DiVincenzo, 1995, 1998; Maslov et al., 2005, 2007; Sasao and Kinoshita,
1979; Shende et al., 2002], such as Toffoli and Fredkin gates [Fredkin and Toffoli, 1981;
Toffoli, 1981],instead of the classical logic gates (such as AND, OR, XOR), which are
inevitably dissipative.

So quantum computers process data by applying a universal set of quantum gates that
can emulate any rotation of the quantum state vector. This notion of universality is akin
to the notion of universality for traditional (i.e., classical) computing where a gate set
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Figure 4.2: Pauli’s gates

Figure 4.3: Hadamard’s gate
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is considered to be universal if every transformation of the input bits can be performed
using a finite length circuit. In quantum computing, the valid transformations that we
are allowed to perform on a qubit are unitary transformations and measurement. The
adjoint operation or the complex conjugate transpose is of crucial importance to quantum
computing because it is needed to invert quantum transformations.

Although this is a trivial example (as the H operation is self-adjoint), you can see how
this becomes invaluable for more complicated qubit operations. For more information,
see Operations and Functions.

On a classical computer, for each fixed arity n, it is possible to define 22n logical
connectives; for example, there are only four functions that map one bit to one bit. In
contrast, there are an infinite number of unitary transformations on a single qubit on
a quantum computer. Therefore, no finite set of primitive quantum operations, called
gates, can exactly replicate the infinite set of unitary transformations allowed in quan-
tum computing. This means, unlike classical computing, it is impossible for a quantum
computer to implement every possible quantum program exactly using a finite number of
gates. Thus quantum computers cannot be universal in the same sense of classical com-
puters. As a result, when we say that a set of gates is universal for quantum computing
we actually mean something slightly weaker than we mean with classical computing. For
universality, we require that a quantum computer only approximate every unitary matrix
within a finite error using a finite length gate sequence. In other words, a set of gates
is a universal gate set if any unitary transformation can be approximately written as a
product of gates from this set.

What does such a universal gate set look like in practice? The simplest such universal
gate set for single-qubit gates consists of only two gates: the Hadamard gate H and the
so-called T-gate (also known as the Pi/8 gate):

However, for practical reasons related to quantum error correction it can be more
convenient to consider a larger gate set, namely one that can be generated using H and
T. We can classify the quantum gates into two categories: Clifford gates and the T-
gate. This subdivision is useful because in many quantum error correction schemes the
so-called Clifford gates are easy to implement, that is they require very few resources
in terms of operations and qubits to implement fault tolerantly, whereas non-Clifford
gates are quite costly when requiring fault tolerance. The standard set of single-qubit
Clifford gates include H, X, Y, Z, where the last three are used especially frequently and
are named Pauli operators after their creator Wolfgang Pauli. Together with the non-
Clifford gate (the T-gate), these operations can be composed to approximate any unitary
transformation on a single qubit.

While the previous constitute the most popular primitive gates for describing opera-
tions on the logical level of the stack (think of the logical level as the level of the quantum
algorithm), it is often convenient to consider less basic operations at the algorithmic level,
for example operations closer to a function description level.

4.1.3 Multiple qubit gates

While single-qubit gates possess some counter-intuitive features, such as the ability
to be in more than one state at a given time, if all we had in a quantum computer were
single-qubit gates then we would have a device with computational power that would
be dwarfed by even a calculator let alone a classical supercomputer. The true power of
quantum computing only becomes evident as we increase the number of qubits and we
resort to entaglment. This power arises, in part, because the dimension of the vector
space of quantum state vectors grows exponentially with the number of qubits. This
means that while a single qubit can be trivially modeled, simulating a fifty-qubit quantum
computation would arguably push the limits of existing supercomputers. Increasing the
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size of the computation by only one additional qubit doubles the memory required to
store the state and roughly doubles the computational time. This rapid doubling of
computational power is why a quantum computer with a relatively small number of qubits
can far surpass the most powerful supercomputers of today, tomorrow and beyond for some
computational tasks.

Why do we have exponential growth for quantum state vectors? Our goal in this sec-
tion is to review the rules used to build multi-qubit states out of single-qubit states as well
as discuss the gate operations that we need to include in our gate set to form a universal
many-qubit quantum computer. These tools are absolutely necessary to understand the
gate sets that are commonly used in code and also to gain intuition about why quantum
effects such as entanglement or interference render quantum computing more powerful
than classical computing.

The main difference between one- and two-qubit states is that two-qubit states are
four dimensional rather than two dimensional. This is because the computational basis
for two-qubit states is formed by the tensor products of one-qubit states.

It is easy to see that more generally the quantum state of n qubits is represented by
a unit vector of dimension 2n. Just as with single qubits, the quantum state vector of
multiple qubits holds all the information needed to describe the system’s behavior.

Such a two-qubit state, which cannot be written as the tensor product (or Kronecker
product) of single-qubit states, is called an “entangled state”; the two qubits are said to
be entangled. Loosely speaking, because the quantum state cannot be thought of as a
tensor product of single qubit states, the information that the state holds is not confined
to either of the qubits individually. Rather, the information is stored non-locally in the
correlations between the two states. This non-locality of information is one of the major
distinguishing features of quantum computing over classical computing and is essential
for a number of quantum protocols including quantum teleportation and quantum error
correction.

Measuring two-qubit states is very similar to single-qubit measurements.
It is also possible to measure just one qubit of a two-qubit quantum state. In cases

where you measure only one of the qubits, the impact of measurement is subtly different
because the entire state is not collapsed to a computational basis state, rather it is col-
lapsed to only one sub-system. In other words, in such cases measuring only one qubit
only collapses one of the subsystems but not all of them.

As in the single-qubit case, any unitary transformation is a valid operation on qubits.
In general, a unitary transformation on n qubits is a matrix U of size 2n (so that it acts
on vectors of corresponding size).

We can also form two-qubit gates by applying single-qubit gates on both qubits, thus
we can form two-qubit gates by taking the tensor product of some known single-qubit
gates.

Note that while any two single-qubit gates define a two-qubit gate by taking their
tensor product, the converse is not true. Not all two-qubit gates can be written as the
tensor product of single-qubit gates. Such a gate is called an entangling gate. One example
of an entangling gate is the CNOT gate.

The intuition behind a controlled-not gate can be generalized to arbitrary gates. A
controlled gate in general is a gate that acts as identity (ie it has no action) unless a
specific qubit is 1.

Building controlled unitaries in an efficient manner is a major challenge. The simplest
way to implement this requires forming a database of controlled versions of fundamental
gates and replacing every fundamental gate in the original unitary operation with its
controlled counterpart. This is often quite wasteful and clever insight often can be used
to just replace a few gates with controlled versions to achieve the same impact. For this



QML 120

reason, we provide in our framework the ability to perform either the naive method of
controlling or allow the user to define a controlled version of the unitary if an optimized
hand-tuned version is known.

Gates can also be controlled using classical information. A classically controlled not-
gate, for example, is just an ordinary not-gate but it is only applied if a classical bit is 1
as opposed to a quantum bit. In this sense, a classically controlled gate can be thought
of as an if statement in the quantum code wherein the gate is applied only in one branch
of the code.

As in the single-qubit case, a two-qubit gate set is universal if any unitary matrix can
be approximated by a product of gates from this set to arbitrary precision. One example
of a universal gate set is the Hadamard gate, the T gate, and the CNOT gate. By taking
products of these gates, we can approximate any unitary matrix on two qubits.

We can follow exactly the same patterns explored in the two-qubit case to build many-
qubit quantum states from smaller systems. Such states are built by forming tensor
products of smaller states.

Quantum gates work in exactly the same way. In many qubit systems, there is often a
need to allocate and de-allocate qubits that serve as temporary memory for the quantum
computer. Such a qubit is called an ancilla. By default we assume the qubit state is
initialized to 0 upon allocation. We can further assume that it is returned again to 0
before de-allocation. This assumption is important because if an ancilla qubit becomes
entangled with another qubit register when it becomes de-allocated then the process of
de-allocation will damage the ancilla. For this reason, we always assume that such qubits
are reverted to their initial state before being released.

Finally, although new gates needed to be added to our gate set to achieve universal
quantum computing for two qubit quantum computers, no new gates need to be intro-
duced in the multi-qubit case. The gates H, T and CNOT form a universal gate set on
many qubits because any general unitary transformation can be broken into a series of
two qubit rotations. We then can leverage the theory developed for the two-qubit case
and use it again here when we have many qubits.

4.1.4 Quantum circuits

This visual language for quantum operations can be more readily digestible than
writing down its equivalent matrix once you understand the conventions for expressing a
quantum circuit.

In a circuit diagram, each solid line depicts a qubit or more generally a qubit register.
By convention, the top line is qubit register 0 and the remainder are labeled sequentially.
Gates acting on one or more qubit registers are denoted as a box.

Quantum gates are ordered in chronological order with the left-most gate as the gate
first applied to the qubits. In other words, if you picture the wires as holding the quantum
state, the wires bring the quantum state through each of the gates in the diagram from
left to right.

Matrix multiplication obeys the opposite convention: the right-most matrix is applied
first. In quantum circuit diagrams, however, the left-most gate is applied first. This dif-
ference can at times lead to confusion, so it is important to note this significant difference
between the linear algebraic notation and quantum circuit diagrams.

All quantum circuits have precisely the same number of wires (qubits) input to a
quantum gate as the number of wires out from the quantum gate, because all quantum
operations, save measurement, are unitary and hence reversible. If they did not have the
same number of outputs as inputs they would not be reversible and hence not unitary,
which is a contradiction. For this reason any box drawn in a circuit diagram must have
precisely the same number of wires entering it as exiting it.
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Figure 4.4: Quantum circuit representation of quantum teleportation

Multi-qubit circuit diagrams follow similar conventions to single-qubit ones.
Quantum teleportation is perhaps the best quantum algorithm for illustrating how to

use quantum components to build a simple quantum circuit. Quantum teleportation is a
method for moving data within a quantum computer (or even between distant quantum
computers in a quantum network) through the use of entanglement and measurement.
Interestingly, it is actually capable of moving a quantum state, say the value in a given
qubit, from one qubit to another, without even knowing what the qubit’s value is! This
is necessary for the protocol to work according to the laws of quantum mechanics. The
quantum teleportation circuit is given below; we also provide an annotated version of the
circuit to illustrate how to read the quantum circuit.

4.2 An example: a quantum full adder
In order to highlight that quantum computing does not always present itself as the

ideal platform to deal with a computational problem, we will introduce a simple example.
The simplest and most intuitive arithmetic operation that acts on natural numbers is
addition. The addition enjoys the associative property, admits an identity element and is
commutative. By introducing the relative integers, the addition gives origin to an Abelian
group, but in digital circuit implementations the adoption of signed numbers forces to
devise adequate numerical representation schemes. That is, whereas to represent natural
numbers, the conversion between positional systems characterized by different bases is
rather simple, the management of the sign introduces a difficulty. For example, to convert
a natural number from the decimal format into binary, octal or hexadecimal it is necessary
to perform repeated divisions by the new base, taking care to collect the remainders and
bring them back in reverse order (because the remainder of the first division provides the
least significant figure in the new base and so on). The opposite conversion is even easier,
because it is enough to multiply the value of each digit by the appropriate power of the
adopted base, according to the position, and to add the collected products. However, if
you want to represent relative numbers, you must somehow code the sign of the number,
in addition to its module.

The simplest systems to represent relative numbers in binary format are signed mag-
nitude representation, the ones’ complement, the two-complement and the biased repre-
sentation. The signed magnitude representation uses the most significant bit to represent
the sign (0 indicates a non-negative number, 1 a negative number), which allows you to
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A B Cin Sum Cout

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 4.1: Full adder truth table: A and B denote external inputs, Cin a carryover, where
Cout and Sum represent the result.

easily partition the information: the first bit codes the sign, all the others the magnitude,
so that two opposite numbers differ only in the first, most significant bit. Perhaps it
is the simplest for a man to conceive, because it mimics the usual representation of the
relative numbers with a decimal positional system The disadvantage of this system is that
there are two distinct encodings for the neutral element, plus 0 (all zeros) and minus 0
(an one and all other bits equal zero). Moreover, addition, subtraction and comparison
require different behaviour depending on the sign bit The ones’ complement and two’s
complement use the same encoding as signed magnitude representation for non negative
numbers. To encode a negative binary number, the ones’ complement start with its op-
posite and then it flips every bit, i.e. the one’s complement of a negative number is the
bitwise NOT applied to its opposite. The disadvantage of this system is also that there are
two distinct encodings for the neutral element, plus 0 (all zeros) and minus 0 (all ones).
With this representation, even the simple addition requires specific attention depending
on the sign of the oprandi, such as the addition of an appropriate offset (that is -1). The
ones’ complement of a negative number can be determined from the sign-magnitude rep-
resentation flipping all bits of its magnitude. The two’s complement of a negative number
is calculated by adding the unit to the one’s complement; in this representation, there
is only one encoding of 0 (all zeros). Its merit is to simplify the hardware implementa-
tion of elementary arithmetic operations, which de facto is the reason for its widespread
popularity. The biased representation is the only one (among typical representations, of
course) in which all zero bits meaning is not zero! Biased representations are now pri-
marily used for the exponent of floating-point numbers in IEEE-754 formats: arbitrarily
fixed a non-negative bias value b, its coding in signed magnitude representation is used
for encoding zero, the sequence of all zero corresponds to the value minus b and so on.

So, for sake of simplicity, we limit our attention to a very simple one bit binary adder,
as shown in 4.5. In any positional numeric system, the sum of two numbers of m and n
digits respectively may require at most m + n digits, therefore the sum of two single bit
numbers requires two bits for its representation. While the sum of two zero bits makes
zero and the sum of a zero bit and a unit bit makes one, the sum of two unit bits requires
indeed two bits to represent (10)2. In the general case, it is possible that the carry-over of
any addition of a previous pair of bits affects the sum of the two bits considered, therefore
in general a full adder contemplates three inputs, as shown in Tab. 4.1.

So I developed a very simple quantum circuit (4.6)to implement full single bit adder
and, at first, I I tested its operation both with Aer qasm_simulator and ibmq_qasm_simulator,
getting 100% correct results. Then, I put real quantum computers to work.
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A B Cin ‘00’ ‘01’ ‘10’ ‘11’ Correct Pos. Perc. of correct res.
0 0 0 39267 7902 26807 7944 1 47.93
0 1 0 18589 20444 18900 23987 2 24.96
1 0 0 19393 21104 17469 23954 2 25.76
1 1 0 29356 9819 33181 9564 1 40.50
0 0 1 18955 22698 17307 22960 2 27.71
0 1 1 32605 8478 32861 7976 1 40.11
1 0 1 34259 8194 31937 7530 2 38.99
1 1 1 18063 22121 19240 22496 1 27.46

Table 4.2: Full single bit adder results on real quantum device ibmq_burlington: for
statistical purposes, the results of 10 executions were collected with the maximum number
of ‘shots’, i.e. 8192, for a total of 81920 executions of each sum on the quantum computer.
A and B denote external inputs, Cin a carryover. In the four columns from ‘00 ’to‘ 11’,
the occurrences of each possible result are reported. In the last two columns are indicated:
if correct results are in first or subsequent position; the percentage of correct results.

Figure 4.5: Digital circuit representation of a simple full adder

def my_adder ( c i r c u i t , q , c ) :
c i r c u i t . cx (q [ 0 ] , q [ 3 ] ) ; c i r c u i t . cx (q [ 1 ] , q [ 3 ] )
c i r c u i t . cx (q [ 2 ] , q [ 3 ] ) ; c i r c u i t . ccx (q [ 0 ] , q [ 1 ] , q [ 4 ] )
c i r c u i t . ccx (q [ 0 ] , q [ 2 ] , q [ 4 ] ) ; c i r c u i t . ccx (q [ 1 ] , q [ 2 ] , q [ 4 ] )
c i r c u i t . measure (q [ 3 ] , c [ 0 ] ) ; c i r c u i t . measure (q [ 4 ] , c [ 1 ] )
return c i r c u i t

Listing 4.1: Python funtion to generate a quantum circuit capable of performing sigle bit
addition, with carry-in and carry-out

def my_job( c i r c u i t , backend , num=10, shot s =8192):
counts ={}
for a in range (num) :

job = execute ( c i r c u i t , backend , shot s=shot s )
r e s u l t = job . r e s u l t ( ) ; r e s = r e s u l t . get_counts ( c i r c u i t )
for x in r e s :

i f x in counts : counts [ x ] = counts [ x]+ r e s [ x ]
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q0 : • • •
q1 : • • •
q2 : • • •
q3 :
q4 :
c0 :
c1 :

Figure 4.6: Quantum single bit full adder: q0 and q1 denote input, q2 is carry-in

else : counts [ x ] = r e s [ x ]
return counts

Listing 4.2: Python function to issue a job on quantum computer multiple times

from q i s k i t import QuantumRegister , C l a s s i c a lR e g i s t e r
from q i s k i t import QuantumCircuit , execute , IBMQ
prov ide r = IBMQ. get_provider (hub=’ ibm−q ’ )
backend = prov ide r . get_backend ( ’ ibmq_burlington ’ )
num=10; shot s =8192; t r i a l s=num∗ shot s

q = QuantumRegister (5 , ’ q ’ ) ; c = C l a s s i c a lR e g i s t e r (2 , ’ c ’ ) ;
c i r c u i t = QuantumCircuit (q , c )
c o r r e c t=’ 00 ’ ;
c i r c u i t = my_adder ( c i r c u i t , q , c ) ;
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
print ( ’0+0 ’ , res , co r r e c t , ind , r e s [ c o r r e c t ] / t r i a l s ∗100)

c i r c u i t = QuantumCircuit (q , c ) ; c i r c u i t . x ( q [ 0 ] )
c o r r e c t=’ 01 ’ ;
c i r c u i t = my_adder ( c i r c u i t , q , c ) ;
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
print ( ’1+0 ’ , res , co r r e c t , ind , r e s [ c o r r e c t ] / t r i a l s ∗100)
. . . .

c i r c u i t = QuantumCircuit (q , c ) ; c i r c u i t . x ( q [ 0 ] ) ; c i r c u i t . x ( q [ 1 ] )
c i r c u i t . x ( q [ 2 ] ) ; c o r r e c t=’ 11 ’ ;
c i r c u i t = my_adder ( c i r c u i t , q , c ) ;
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
print ( ’ ’ Cin+1+1 ’ , ␣ res , ␣ co r r e c t , ␣ ind , ␣ r e s [ c o r r e c t ] / t r i a l s ∗100)

Listing 4.3: Python sample code to test single bit adder

First I ran the circuit, with the maximum number of ‘shots’ allowed by qiskit (8192)
on each quantum computer for which IBM allows free access, therefore on the providers:
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• ibmq_16_melbourne

• ibmqx2

• ibmq_vigo

• ibmq_ourense

• ibmq_london

• ibmq_burlington

• ibmq_essex

• ibmq_rome

Only ibmq_armonk was excluded because it has only one qubit. It can be shown in
Fig. 4.7e that the same high level circuit, as depicted in Fig. 4.6, could be implemented in
very different ways, according to qunatum computer’s topology, i.e. the available physical
connections and gates.

After ascertaining that the results of these preliminary tests seemed comparable on the
different quantum computers, ibmq_burlington was chosen, because it seemed to respond
faster at the time of the tests, to accumulate the results of 10 sessions of 8192 shots for
each possible combination of the input values. As shown in Tab.4.2, even the simple
addition of two bits, with eventual carry-in, is problematic on a quantum computer, by
virtue of the probabilistic nature of the computation results. In particular, when an odd
number of bits with 1 value occur at the input, the correct result is not the most frequent
one, moreover the correct result presents itself with a percentage close to 25%: therefore
the outcome of the circuit does not differ from that which would occur in a purely random
event, for example by throwing two perfect coins with an honest toss, one coin for each
bit of the result.

The results are better when there are an even number of bits with a unit value at the
input. In fact, when a pair of bits with the value 1 occur at the input, about 40% of the
results are correct, when all the input bits are null the zero result occurs almost in half
of the cases. Therefore, even in these more favorable cases, quantum hardware proves to
be inadequate for this simple arithmetic operation.

As further verification, I built an adder with two-bit addends, plus a possible carry-in.
The result, this time, requires three bits to encode. I developed the circuit using 9 qubits,
using one qubit for the possible carry over in the sum of the least significant bits, as
shown in Fig. 4.8. Once I tested the correct functioning with a quantum simulator, I
ran it with the only IBM quantum computer currently freely accessible with more than 5
qubits, i.e. ibmq_16_melbourne. As shown in Fig. 4.9d, due to topological constraints
of the quantum processor of the IBM computer, not only does the circuit appear much
longer and more complex due to the presence of many auxiliary operations, mainly swaps,
but it must resort to an additional qubit, therefore using a total of 10 qubits.

The complete table for this adder contemplates 32 possible input configurations, all
validated correctly on the simulator, but since the execution times on the quantum ma-
chine could be very long, it was preferred to test only a subset of the possibilities. In
particular, 16 configurations with an even number of active bits and as many with an odd
number of active bits are possible. It was therefore decided to test the only sequence with
all zeros, two of the ten possible configurations with a pair of active bits and two of the
five configurations with four active bits. Likewise, the only sequence with all one, two of
the ten possible configurations with three active bits and two of the five configurations
with a single active bit were selected. The possible results with 3 output bits are 8, half
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A B Cin Correct result Correct Pos. Perc. of correct res.
00 00 0 000 2 22.32
00 01 0 001 6 8.39
00 00 1 001 5 8.84
01 01 0 010 4 11.08
00 01 1 010 4 11.47
01 01 1 011 7 4.69
10 10 1 101 6 6.42
11 01 1 101 6 7.17
11 11 0 110 5 9.10
11 11 1 111 7 6.51

Table 4.3: Full two bits adder results on real quantum device ibmq_16_melbourne: for
statistical purposes, the results of 10 executions were collected with the maximum number
of ‘shots’, i.e. 8192, for a total of 81920 executions of each sum on the quantum computer.
A and B denote external inputs, Cin a carryover. In the fifth column there are the correct
results. In the last two columns are indicated: if correct results are in first or subsequent
position; the percentage of correct results.

with an even number of active bits and half with an odd number, so that the ten input
combinations have been chosen so as to generate 5 outputs with an odd number of active
bits and as many with a even number. More precisely, three configurations were chosen
with an even number of active input bits that would also generate a result with an even
number of active bits, as many configurations with an odd number of active input bits
that would generate a result with an odd number of active bits, and so on.

As shown in Tab. 4.3, on the real quantum processor, the arithmetically correct results
had never been the most frequent outcomes. For all zero inputs, the zero result scored
second place, with almost a fourth of the results, but for all other input possibilities the
right answer scored among fourth and seventh place, furthermore, if the eight possible
values encoded by three bits were considered as equally probable events, we would expect
a probability of 12.5% for each outcome; for each combination of inputs, 81920 repetitions
are carried out, which should constitute a sufficiently large number to guarantee an empir-
ical feedback in line with the theoretical predictions. So the fact that, for all combinations
of non-null inputs, the correct result occurs less frequently than a purely random event
with eight possible outcomes (sometimes with frequencies even 2-3 times lower), proves
unequivocally that, at least on current hardware quantum, it is not possible to attempt to
perform even simple arithmetic operations, unless possibly resorting to robust detection
and error correction schemes, which, however, would require the physical availability of a
much higher number of qubits.

def my_2bit_adder ( c i r c u i t , q , c ) :
c i r c u i t . cx (q [ 0 ] , q [ 6 ] ) ; c i r c u i t . cx (q [ 1 ] , q [ 6 ] )
c i r c u i t . cx (q [ 3 ] , q [ 6 ] ) ; c i r c u i t . ccx (q [ 0 ] , q [ 1 ] , q [ 5 ] )
c i r c u i t . ccx (q [ 0 ] , q [ 3 ] , q [ 5 ] ) ; c i r c u i t . ccx (q [ 1 ] , q [ 3 ] , q [ 5 ] )
c i r c u i t . cx (q [ 2 ] , q [ 7 ] ) ; c i r c u i t . cx (q [ 4 ] , q [ 7 ] )
c i r c u i t . cx (q [ 5 ] , q [ 7 ] ) ; c i r c u i t . ccx (q [ 2 ] , q [ 4 ] , q [ 8 ] )
c i r c u i t . ccx (q [ 2 ] , q [ 5 ] , q [ 8 ] ) ; c i r c u i t . ccx (q [ 4 ] , q [ 5 ] , q [ 8 ] )
c i r c u i t . measure (q [ 6 ] , c [ 0 ] ) ; c i r c u i t . measure (q [ 7 ] , c [ 1 ] )
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q0 : • • •
q1 : • • •
q2 : • • •
q3 : • • •
q4 : • • •
q5 : • • •
q6 :
q7 :
q8 :
c0 :
c1 :
c2 :

Figure 4.8: Quantum circuit for the sum of a pair of two bits numbers. q0 is carry-in,
q1, q2 denote first input (q1 is the least significant digit), q3, q4 is the second addend (q4
is the most significant digit)

c i r c u i t . measure (q [ 8 ] , c [ 2 ] )
return c i r c u i t

Listing 4.4: Python function to generate a quantum circuite to comute addition for a pair
of two bits inputs)

from q i s k i t import QuantumRegister , C l a s s i c a lR e g i s t e r
from q i s k i t import QuantumCircuit , execute ,IBMQ
prov ide r = IBMQ. get_provider (hub=’ ibm−q ’ )
backend = prov ide r . get_backend ( ’ ibmq_16_melbourne ’ )
num=10; shot s =8192; t r i a l s=num∗ shot s

#00+00
q = QuantumRegister (9 , ’ q ’ ) ; c = C l a s s i c a lR e g i s t e r (3 , ’ c ’ )
c i r c u i t = QuantumCircuit (q , c ) ;
c o r r e c t=’ 000 ’
c i r c u i t = my_2bit_adder ( c i r c u i t , q , c )
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
print ( ’ 00+00 ’ , res , co r r e c t , ind , r e s [ c o r r e c t ] / t r i a l s ∗100)
. . .

#Cin+10+01
q = QuantumRegister (9 , ’ q ’ ) ; c = C l a s s i c a lR e g i s t e r (3 , ’ c ’ )
c i r c u i t = QuantumCircuit (q , c ) ;
c i r c u i t . x ( q [ 0 ] ) ; c i r c u i t . x ( q [ 2 ] ) ; c i r c u i t . x ( q [ 3 ] ) ;
c o r r e c t=’ 100 ’
c i r c u i t = my_2bit_adder ( c i r c u i t , q , c )
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
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print ( ’ Cin+10+01 ’ , res , co r r e c t , ind , r e s [ c o r r e c t ] / t r i a l s ∗100)
. . .

#Cin+11+11
q = QuantumRegister (9 , ’ q ’ ) ; c = C l a s s i c a lR e g i s t e r (3 , ’ c ’ )
c i r c u i t = QuantumCircuit (q , c ) ;
c i r c u i t . x ( q [ 0 ] ) ; c i r c u i t . x ( q [ 1 ] ) ; c i r c u i t . x ( q [ 2 ] )
c i r c u i t . x ( q [ 3 ] ) ; c i r c u i t . x ( q [ 4 ] )
c o r r e c t=’ 111 ’
c i r c u i t = my_2bit_adder ( c i r c u i t , q , c )
r e s=my_job( c i r c u i t , backend , num, shot s )
ind=1+len ( [ x for x in r e s i f r e s [ x]> r e s [ c o r r e c t ] ] ) ;
print ( ’ Cin+11+11 ’ , res , co r r e c t , ind , r e s [ c o r r e c t ] / t r i a l s ∗100)

Listing 4.5: Python sample code to test the two bit full adder

4.3 Quantum Machine Learning
QuantumMachine Learning is a rapid growing scientific sector, born by the application

of quantum computing to supervised or unsupervised machine learning techniques, such
as SVM (Support Vector Machine) [Rebentrost et al., 2014].
Two main methods are proposed to exploit quantum computing with SVM: the quantum
variational classifier and the quantum kernel estimator [Schuld et al., 2018; Schuld and
Killoran, 2018]: these ideas were applied to quantum circuits with 2-qubits [Havlivcek
et al., 2018]. It is an interesting open question what type of feature map circuits are
classically intractable, but at the same time lead to powerful kernels for classical models
such as support vector machines. [Schuld and Killoran, 2018].
Moreover, methods for training set selection were developed to improve (classical) SVM’s
scalability without deprecating its classification accuracy [Acampora et al., 2018].
I’ll develop and test the application of suitable training set selection tecniques to quantum
SVM, to improve classification’s accuracy.

4.3.1 Quantum Machine Learning Perspectives

4.4 QSVM intro
Over the years there has been a lot of demonstration regarding quantum computation.

There are illustrations of how this emerging technology utilizes its effects to add a new
dimension to this era of technological advancement. It opens new doors of immense
possibilities for the researchers.

In 2016 Microsoft and Cambridge University researchers have implemented a few
machine learning algorithms in a quantum environment and compared the complexity
over a classical computer. It’s been found a significant speedup[9] in quantum methods.
The key factor behind this speedup was the exponential number of states in quantum
computers.

Noise in quantum operation and output is a big challenge. According to research on
low depth circuits [Verdon et al., 2017], it has been proposed a method which employs
the quantum approximate optimization algorithm as a subroutine in order to approxi-
mate sample from Gibbs states of Ising Hamiltonians. [Verdon et al., 2017] used this
approximate Gibbs sampling to train neural networks for which they demonstrate train-
ing convergence for numerically simulated noisy circuits with depolarizing errors of rates
of up to 4%. After analyzing all these research works we found out that there are the
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enormous possibilities waiting for machine learning in quantum technology and there are
a lot of scopes for improvement.



Chapter 5

Quantum Support Vector Machine

One of the fundamental task within supervised machine learning is the achievement of
a classifier. For this kind of problem, we assume that a function exists that maps elements
of a n-dimensional space onto a set of labels for all possible equivalence classes. Usually,
this function is unknown and it could be very complex, maybe impossible to express in a
mathematical closed form given data from a training set A and a test set B, both subset
of the ensemble of all conceivable data.

Both training and test sets are assumed to be labeled by a map unknown to the
algorithm. The training algorithm only receives the labels of the training data T. The
goal is to infer an approximate map on the test set such that it agrees with high probability
with the true map, not only on training data (overfitting) but above all on the never seen
before test data. For such a learning task to be meaningful it is assumed that there is a
correlation between the labels given for training and the true map. A classical approach
to constructing an approximate labeling function uses so called support vector machines
(SVMs).

Classical Support Vector Machine is hugely popular, in particular, for efficient binary
data classification, whether it is directly linearly separable or it requires the use of an
appropriate kernel function, the so called kernel trick: the data gets mapped non-linearly
to a high dimensional space, the feature space, where a hyperplane is constructed to sepa-
rate the labeled samples. For pattern recognition and image processing problem, a feature
map starts from an initial set of measured data and incorporates features intended to be
informative and non-redundant, facilitating the subsequent learning and generalization
steps, and in some cases leading to better human interpretations. In general what we do
is basically dimension reduction. It involves reducing the number of resources needed to
explain an oversized set of information. once applying the analysis of complicated data,
one in every of the most important issues stems from the number of variables concerned.
Analysis with an oversized range of variables usually needs a large quantity of memory
and computation power, and will even cause a classification algorithm to overfit to train-
ing samples and generalize poorly to new samples. Once the input data to an algorithm
is just too large to be processed and is suspected to be redundant (for example, the iden-
tical measure is provided in each pound and kilograms), then it may be remodelled into
a reduced set of features, named a feature vector. The methods of deciding a set of the
initial features is named feature choice. The chosen features are expected to contain the
relevant info from the input file, so the specified task may be performed by using the
reduced illustration rather than the entire initial data. Instead of feature choise, often
more sophisticated pre-processing techniques and feature extraction algorithms are used.
One of them is PCA, Principal Component Analysis, but usually the original data is
normalized before performing the PCA, at least to assure zero means, often to make unit
variance.
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Figure 5.1: Feature map representation for a single qubit. (Fig. 1a in [Havlíček et al.,
2019]).

Figure 5.2: The general circuit is formed by products of single- and two-qubit unitaries
that are diagonal in the computational basis. In our experiments, both the training and
testing data are artificially generated to be perfectly classifiable using the feature map.
(Fig. 1b in [Havlíček et al., 2019]).

Anyway, Support Vector Machine could suffer throubles on a classical machine when
higher dimensions are involved or very large datasets are taken up, so, in order to enhance
the efficiency of Support Vector Machine, the idea of running it on a quantum machine
takes over.

Quantum Support Vector Machine[Ahmed, 2019; Arodz and Saeedi, 2019; Bishwas
et al., 2018; Chatterjee and Yu, 2016; Ding et al., 2019; Havlíček et al., 2019; Havlivcek
et al., 2018; Rebentrost et al., 2014; Schuld et al., 2018; Schuld and Killoran, 2018] is
indeed a sort of quantum implementation of Support Vector Machine: in this algorithm’s
version, classical data should be transformed into quantum data and then analysed over
a quantum computer.

The Quantum Support Vector Machine algorithm retrieves and processes the data in
a classical way but training is done by the help of quantum state space, that is data model
features are mapped in non linearly to a quantum state

A Quantum version of Support Vector Machine was developed even for annealing
quantum computers produced by D-Wave[Willsch et al., 2019].

5.1 IBM QSVM
Qiskit is an open-source framework for quantum computing that was founded by IBM

Research to allow software development for their cloud quantum computing service, IBM
Q Experience, but nowadays contributions are also made by external supporters. In
principle, Qiskit can be used for any quantum hardware that follows the reversible circuit
model for universal quantum computation and it currently supports superconducting
qubits and trapped ion, but obviously its primary target are quantum system offered by
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Figure 5.3: Experimental implementations. a Schematic of the five-qubit quantum pro-
cessor. The experiment was performed on qubits Q0 and Q1, highlighted in the image.
b Variational circuit used for our optimization method. The two top qubits depict the
circuit implemented. c, Circuit to directly estimate the fidelity between a pair of feature
vectors for data x and z as used for our second method. (Fig. 2 in [Havlíček et al., 2019]).

Figure 5.4: Convergence of the method and classification results. a Convergence of the
cost function after 250 iterations of Spall’s SPSA algorithm. Red (or black) curves corre-
spond to l = 4 (or l = 0). We train three datasets per depth and perform 20 classifications
per trained set. b Example data used for both methods in this work. The data labels (red
for +1 label and blue for −1 label) are generated with a gap of 0.3 (white areas). The
training set with 20 points per label is shown as white and black circles. For the quantum
kernel estimation method we show the support vectors (green circles) and a classified test
set (white and black squares). Three points are misclassified, labelled as A, B and C.
c The classifications results are shown as blue histograms for all three randomly chosen
unitaries (a total of 60 classifications per depth and 20 data points per classification per
label), with mean values represented by black dots. The error bar is the standard error of
the mean. The inset shows histograms as a function of the probability of measuring label
+1 for one test set of 20 points per label obtained with an l = 4 classifier circuit, depicting
classification of this set with 100% success. The dashed red lines show the results of our
direct kernel estimation method for comparison, with Sets I and II yielding 100% success
and Set III yielding 94.75% success. (Fig. 3 in [Havlíček et al., 2019]).
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Figure 5.5: Kernels for Set III. a, Experimental (left) and ideal (right) kernel matrices
containing the inner products of all data points used for training Set III (round symbols
in Fig. 3b). A cut through row 8 (indicated by the red arrow in a) is shown in b, where
the experimental (or ideal) results are shown as red (or blue) bars. (Fig. 4 in [Havlíček
et al., 2019]).

IBM via cloud access.
Qiskit provides the ability to develop quantum programs with at least two principal

approach. At a very low level, Qiskit supports the machine code-like of OpenQASM; in
a certain sense, OpenQASM programming is even lower level than the machine language
of a classic computer, because it requires the construction of a quantum circuit acting
at the single qubit and gate level, where the machine language of a conventional CPU,
even for an 8 bit, 40 years ago, commodity processor offered abstraction such as general
and special purpose multibit registers, relatively complex logical and arithmetic opera-
tions, sophisticated indirect and indexed memory access systems, a flow control based on
conditioned and unconditional jumps and so on.

Moreover, Qiskit provides abstract levels suitable for developers that prefer a develop-
ment environment more suited to the expectations of a modern programming language,
avoiding quantum circuits details. To support this needs, Qiskit contains four principal
parts or elements, unfortunately named in an evocative way according to ancient pre-
scientific theories, dating back to about 2500 years ago, thanks to the contribution of
famous and influential Greek philosophers such as Anaximenes of Miletus, Empedocles
and Plato. At least, until now, IBM has not released portions of the library dedicated to
the quintessence contemplated by Aristotle.

Qiskit Terra is the core foundation and it provides tools to explicitly construct quan-
tum circuits, assembling quantum gates, but it also provides tools to allow quantum
circuits to be optimized for a particular quantum processor’s topology, as well as manag-
ing batches of jobs, to be scheduled on local simulator or cloud access quantum devices
and simulators.

Qiskit Aer is conceived to accelerate software development, offering both high-performance
simulators hosted locally on the developer’s device, as well as IBM High Performance
Computing resources available through the cloud interface; these simulators can emulate
a perfect quantum device but even reproduce several sophisticated noise models; in con-
cert with Qiskit Terra, a highly configurable noise model for studying quantum computing
in the NISQ regime is offered. More precisely, Aer includes the following simulators:

• state_vector Simulator is an auxiliary backend for Qiskit Aer. It simulates the
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ideal execution of a quantum circuit and returns the final quantum state vector of
the device at the end of simulation. This is useful for education, as well as the
theoretical study and debugging of algorithms.

• qasm_simulator is considered the main Qiskit Aer backend; it emulates execution
of a quantum circuits on a real device and returns measurement counts; to that end,
it includes highly configurable noise models and can even be loaded with automat-
ically generated approximate noise models based on the calibration parameters of
actual hardware devices; there are multiple methods that can be used that simulate
different circuits more efficiently, such as

– statevector, which uses a dense statevector simulation;
– stabilizer, which uses a Clifford stabilizer state simulator that is only valid for

Clifford circuits and noise models;
– extended_stabilizer, which uses an approximate simulator that decomposes

circuits into stabilizer state terms, the number of which grows with the number
of non-Clifford gates [Bravyi et al., 2019];

– matrix_product_state, which uses a Matrix Product State (MPS) simulator;

• unitary_simulator allows simulation of the final unitary matrix implemented by
an ideal quantum circuit; it is also conceived mostly for education and algorithm
studies.

• pulse_simulator simulates continuous time Hamiltonian dynamics of a quantum
system, with controls specified by pulse Schedule objects, and the model of the
physical system specified by PulseSystemModel objects.

Qiskit Ignis is involved with addressing noise and errors: it contains tools for charac-
terizing noise in near-term devices, as well as allowing computations to be performed in
the presence of noise. This is includes tools for benchmarking near-term devices, error
mitigation and error correction.

Qiskit Aqua (Algorithms for QUantum Applications) is projected to allow design
algorithms and implement applications without without worrying too much about the
details of the quantum circuits. Aqua provides high level tools, in the form of a library of
quantum algorithms and components, that can already speedup application development
in chemistry, machine learning, optimization and finance, favoring leverage near-term
devices.

A key concept in classification methods is that of a kernel. Data cannot typically
be separated by a hyperplane in its original space. A common technique used to find
such a hyperplane consists on applying a non-linear transformation function to the data.
This function is called a feature map, as it transforms the raw features, or measurable
properties, of the phenomenon or subject under study. Classifying in this new feature
space – and, as a matter of fact, also in any other space, including the raw original one –
is nothing more than seeing how close data points are to each other. This is the same as
computing the inner product for each pair of data in the set. In fact we do not need to
compute the non-linear feature map for each datum, but only the inner product of each
pair of data points in the new feature space. This collection of inner products is called
the kernel and it is perfectly possible to have feature maps that are hard to compute but
whose kernels are not.

The QSVM algorithm applies to classification problems that require a feature map
for which computing the kernel is not efficient classically. This means that the required
computational resources are expected to scale exponentially with the size of the problem.
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QSVM uses a Quantum processor to solve this problem by a direct estimation of the kernel
in the feature space. The method used falls in the category of what is called supervised
learning, consisting of a training phase (where the kernel is calculated and the support
vectors obtained) and a test or classification phase (where new data without labels is
classified according to the solution found in the training phase).

Internally, QSVM will run the binary classification. If the data has more than 2 classes
then a multiclass_extension is required to be supplied, but I preferred to “manually”
encode a one-against-

I acknowledge the use of IBM Quantum services for this work. The views expressed
are those of the author, and do not reflect the official policy or position of IBM or the
IBM Quantum team.



Chapter 6

Analysis and results

6.1 Preliminary remarks
For this work, I choose free and preferably open-source hardware and software so-

lutions. Among the development environments for quantum software, I selected IBM
Quantum Experience1, also by virtue of free cloud access to real quantum computers and
extensive online community support. It is possible to use IBM Q services with Circuit
Composer, QASM language (a sort of Quantum Assembly) [Bishop, 2017; Cross et al.,
2017] or Qiskit library [Abraham et al., 2019], an open-source framework for quantum
computing, based on the Python programming language2. Training sessions for quan-
tum support vector machine were conducted using IBM’s Qiskit Aqua framework, which
contains a library of cross-domain quantum algorithms upon which applications for near-
term quantum computing can be built. Aqua is designed to be extensible, and employs a
pluggable framework where quantum algorithms can easily be added. It currently allows
the developers to program chemistry simulations, machine learning sessions, optimization
and finance applications on near-term quantum computers. The most relevant elements
of Aqua used during these simulations are:

• the QSVM class, which run the binary classification based on QSVM algorithm;

• the SecondOrderExpansion class, which is a sub-class of PauliZExpansion where
z_order is fixed at 2; it generate a feature map, according to the number of input
features and the depth, i.e. the number of repeated circuits (obviously, at least 1; on
current hardware, rarely can be grater than 2); entanglement is a very important
parameter, because it generate the qubit connectivity according to a predefined
topology; full entanglement allows to connect every qubit to each other, while linear
entanglement connects each qubit only to the next one;

• the QuantumInstance class, which holds a Qiskit Terra backend as well as config-
uration for circuit transpilation and execution, including shots, i.e. the number of
repetitions of each circuit, for sampling reasons; a QuantumInstance object have to
be provided to an Aqua algorithm so the algorithm will run the circuits it needs
using the instance;

From Qiskit Aer, I used mostly StatevectorSimulator, an ideal quantum circuit statevector
simulator. In Qiskit IBM Q, there is the IBM Quantum Provider, which make it possibile
to vary the back-end while running on different machine: I used both simulation on
classical computer both remote, cloud access to IBM Q quantum processor.

1http://quantum-computing.ibm.com/
2http://www.python.org/
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Because of its free and open-source nature, but even for for very rich libraries and
its extensive community support, Python is by now a very popular programming lan-
guage. Moreover, Python is often considered as the most powerful language that is still
human readable. In the last few years, Python has conquered many followers for Machine
Learning and Artificial Intelligence projects, thanks also to the diffusion of environments
such as PyTorch and Tensorflow, but in general it is experiencing a considerable diffusion
throughout the scientific community. So all algorithms in this thesis are implemented
using Python; after a series of initial experiments conducted from the command line or
using local development environments, such as the Python IDE PyCharm 3, I preferred
to take advantage of the agility offered by Jupyter Notebook4. The Jupyter Notebook
is an open-source interactive computing environment offered as a web application that
allows developers to create and share documents that contain both “live” code (writing
and running it interactively), both narrative text, graphics, images and equations. The
Jupyter Notebook is increasingly popular for numerical simulation, statistical modeling
and data visualization, and even machine learning, favoring sharing with developers com-
munities using email, cloud storage services like Dropbox, version control systems like
github. Jupyter Notebook supports a versatile system based on interaction with different
kernels, that run executable code written in various programming languages and return
output back to the notebook web application, but the core programming languages sup-
ported by Jupyter are Julia, Python, and R. Indeed, Jupyter started as a spin-off project
of IPython (Interactive Python5), a command shell for interactive computing in multi-
ple programming languages, originally developed for the Python programming language;
even nowadays, Jupiter’s default kernel is IPython, to efficiently run Python code. The
Notebook support the interactive computing paradigm, offering a web-based application
suitable for capturing the whole computation process: developing, documenting, and ex-
ecuting code, as well as communicating the results.

Therefore I used Python 3.6.9 [GCC 8.4.0] inside Google Colab, a free Jupyter note-
book environment that requires no setup and runs entirely (writing, running, sharing
code) on the cloud, but sometimes I run some code on Python 3.7.6 [GCC 7.3.0] inside
IBM Quantum Experience Qiskit notebooks. For classical Support Vector Machine tests,
in Python the reference library, or rather de facto standard, is scikit-learn library6; I
used 0.22.2.post1 version inside Google Colab and 0.21.0 version inside Qiskit notebooks.
Anyway, I always used the latest Qiskit 0.19.2 version, with qiskit-terra 0.14.1 version,
qiskit-ignis 0.3.0 version, qiskit-aqua 0.7.1 version, qiskit-aer 0.5.1 version, qiskit-ibmq-
provider 0.7.1 version.

6.2 First QSVM tests
During a preliminary phase, simple tests were carried out with the QSVM algorithm,

both on the simulator and on real quantum systems, to verify the correct functioning
of the classifier and to compare accuracy with classical SVM. In all selected cases, the
performance of the QSVM has been evaluated with at least one simulator, the local
simulator, statevector_simulator offered by Qiskit’s Aer, which simulates the operation
of an ideal quantum computer, free of topological limitations and not affected by any
kind of error, or the ibmq_qasm_simulator, with free access via cloud, which offers a
more accurate simulation, reproducing certain types of errors (in this regard, the default
parameters have been confirmed, although probably a bit optimistic compared to the real

3http:///www.jetbrains.com/pycharm/
4http://jupyter.org/
5https://github.com/ipython/ipython
6http://scikit-learn.org/

http:///www.jetbrains.com/pycharm/
http://jupyter.org/
https://github.com/ipython/ipython
http://scikit-learn.org/
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performance of current quantum computers). For simple test, I choose prototypical two
class classification task:

• one dimensional cases

– linearly separable classes, for various noise levels
– not linearly separable classes, for various noise levels

• two dimensional cases

– linearly separable classes, for various noise levels
– not linearly separable classes (XOR problem)
– not linearly separable classes (circle)

• three dimensional cases

– linearly separable classes, for various noise levels
– not linearly separable classes (sphere)

Moreover, a simple three classes scenario was tested in two dimensions, using the vertices
of an equilateral triangle. For the sake of brevity, I have not included in this report the
data of all the synthetic cases carried out.

QSVM constructor requires a feature_map, to describe the quantum kernel, a training
set and a test set, so for each test I created three dataset (each one balanced with to respect
to the two classes):

• a training set, indispensable to perform any training algorithm;

• a test set, to check each trained model on data similar to that used for training

• a validation set, to try each trained model on more data, usually more difficult cases
(for example, with applied bigger noise)

For validation set, I report separately success rates for each class; the success rates in
recognizing the elements of each class correspond (or, at least, are proportional) to the
elements on the main diagonal of a confusion matrix. Indeed, for two classes classification
task often a confusion matrix is used: it is usually drawn as a square that allows simple
visualization of the performance of a predictive model. Each row of the matrix represents
the instances in a predicted class while each column represents the instances in an actual
class (depending on the authors, the matrix can be transposed). he name expresses the
fact that this table considerably facilitates the possibility of ascertaining to what extent
the supervised machine learning system, after the training phase, confuses the elements
of the two classes or not, i.e. how often the decision algorithm mislabel one element as
belonging to the other class. If we identify the first class with True and the second with
False, then it makes sense to talk about True Positive (TP) as True elements recognized
as True, True Negative (TN) as False elements considered False, while False Positive
(FP) are False elements recognized as True and, finally, False Negative (FN) are True
elements considered False. Common statistical measures of the performance of a binary
classification model are Sensitivity and specificity. Sensitivity measures the proportion
of actual true elements that are correctly identified as such, therefore it expresses the
avoidance of false negatives and it is often called the true positive rate (TPR):

TPR = TP

P
= TP

TP + FN
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Specificity, instead, measures the proportion of actual negatives that are correctly iden-
tified as such, it expresses the avoidance of false positive and it is often called the true
negative rate (TNR):

TNR = TN

N
= TN

TN + FP

(where P denotes all positive and T all negative elements of available dataset). A perfect
predictor would have 100% sensitivity and 100% specificity, so that it will leave only zeros
outside the main diagonal of the confusion matrix, but this is an eventuality that does
not happen concretely for non trivial classification problems. Anyway, for any statistical
decision system, based on machine learning or not, there is usually a trade-off between the
measures of specificity and sensitivity. So success rate for the two classes on validation set
cam be considered as true positive rate (TPR) and true negative rate (TNR), the more
relevant information in a binary classification task.

6.2.1 QSVM for a 1-dim feature space - linearly separable case

The first case examined was a binary classification problem in a single-dimensional
feature space. In this toy example, I randomly generated numbers centered around zero
and unity, with function in List. 6.3, as if I wanted to distinguish whether a digital
electrical signal is taking on a value of 0 or 1.

The first time, I generated perfectly separated sets for training, because the minimum
distance between the set of samples for 0 (true in negative logic, i.e. active-low) and 1
(false in negative logic) is 1

2 . I tried the QSVM, with code in List. 6.3 both with local
statevector_simulator backend both with a real quantum device, ibmq_london. In both
cases, the classifier generated obtained 100% accuracy both on the test set and on the
validation set (both tests were generated using a radius doubled with to respect to that
used for the training set, so that the sets corresponding to true and false could actually
touch each other). By examining the classifiers generated in the two execution environ-
ments (local simulator and cloud quantum backend) starting from random sequences set
for training, tests and validation sets, we find that the selected support vectors for the
two classes are the same, while other parameters are very similar (alphas, bias).

During local simulator execution, the QSVM training generated this parameters:

’alphas’: array([2.52204406, 0.92162106, 1.60042225])
’bias’: array([0.11386612])
’support_vectors’: array([[ 0.81237196], [ 0.20519846], [-0.22907846]])
’yin’: array([-1., 1., 1.])

During cloud execution on a real quantum computer, the QSVM training generated
this parameters:

’alphas’: array([2.67232031, 1.05723112, 1.61503035])
’bias’: array([0.13254928])
’support_vectors’: array([[ 0.81237196], [ 0.20519846], [-0.22907846]])
’yin’: array([-1., 1., 1.])

Later, I repeated the experiment, increasing the radius to 1
2 to generate the points of

the training set and 9
16 for the test and validation sets. In this way, the samples of the

two classes used for training are close and the samples used for testing and evaluation can
be partially overlapped.

On local simulator, QSVM correctly predicted 91.67% of test elements, while on vali-
dation set accuracy was 86.67% for true set and 96.67% on false set.



Results 142

backend alg/kernel test (%) True P (%) True N (%)
Aer statevector_simulator QSVM 91.67 86.67 96.67
ibmq_london QSVM 95.00 90.00 96.67
sklearn.svm.SVC rbf 95.00 90.00 100.00
sklearn.svm.SVC linear 95.00 96.67 96.67

Table 6.1: QSVM and SVM comparison on 1 dimension dataset with low noise: the last
three columns show the accuracy, respectively, on test dataset, then true positive and
true negative on validation dataset. “rbf” denotes a radial basis function kernel.

On a real quantum computer, once again ibmq_london, QSVM has identified the
same support vectors and it correctly predicted 95% of test elements, while on validation
set accuracy was 90.0% for true set and 96.67% on false set.

During local simulator execution, the QSVM training generated this parameters:

’alphas’: array([125.79289601, 5.49083558, 120.30206043])
’bias’: array([1.56265853])
’support_vectors’: array([[ 0.53301875], [-0.43020758], [ 0.4626269 ]])
’yin’: array([-1., 1., 1.])

During cloud execution on a real quantum computer, ibmq_london, the QSVM train-
ing generated this parameters:

’alphas’: array([104.94204362, 6.14408706, 98.79795647])
’bias’: array([1.42964367])
’support_vectors’: array([[ 0.53301875], [-0.43020758], [ 0.4626269 ]])
’yin’: array([-1., 1., 1.])

Then I checked the classifier accuracy against classical SVM, using scikit-learn 0.23.1
pacage with code in List. 6.4; when I used linear classifier, I got 95.0% global accuracy
on test set (96.67% on true set and 93.33% on false set) and 96.67% accuracy on both
validation sets. After that, I used rbf kernel, i.e. radial basis functions, and I got 95.0%
global accuracy on test set (93.33% on true set and 96.67% on false set), 90.0% on valida-
tion true set and lastly 100% accuracy on validation false set. For exploratory purposes
only, the other kernels offered by scikit-learn for SVM have been evaluated and I report
the results of accuracy only on the two validation sets in the format true / false: sigmoid
kernel 66.67/56.67%, polynomial with degree 1 90.0/100.01%, polynomial with degree 2
96.67/96.67% and polynomial with degree 3 93.33/96.67%.

Noting that all the tests were carried out with sequences of values generated randomly
but blocked to test the different classifiers in a uniform and repeatable way, it can be said
that in this decidedly simple scenario the QSVM was able to provide performances similar
to the classical SVM.

As a next step, I decided to increase the radii for the generation of sequences of
random values, so that the two sets were no longer perfectly separable; more specifically,
the radius to generate the training set had the value 9

16 , so that there was potentially an
overlapping width 1

8 between the two classes. Then I set the radius to generate the test
and validation sets to the 5

8 value, so that there was potentially an overlapping 1
4 segment

between the two classes.
On local simulator, QSVM correctly predicted 80.00% of test elements, while on vali-

dation set accuracy was 76.67% for true set and 90.00% on false set. On a real quantum
computer, ibmq_london, QSVM has identified also in this case the same support vectors
and it correctly predicted 80.00% of test elements, while on validation set accuracy was
83.33% for true set and 86.67% on false set, as shown in Tab. 6.2. Only for this case, I
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backend alg/kernel test (%) True P (%) True N (%)
Aer statevector_simulator QSVM 80.00 76.67 90.00
ibmq_london QSVM 80.00 83.33 86.67

Table 6.2: QSVM and SVM comparison on 1 dimension dataset with high noise: the last
three columns show the accuracy, respectively, on test dataset, then true positive and
true negative on validation dataset. “poly n deg” denotes a polinomial kernel of degree
n, “rbf” denotes a radial basis function kernel.

also attempted the execution on single qubit ibmq_armonk quantum computer; in this
platform, QSVM has identified five support vectors, that is two more; more precisely, two
support vector are in common with respect to the previous executions, then three other
vectors have been selected; it correctly predicted 85.0% of test elements.

During local simulator execution, the QSVM training generated this parameters:

’alphas’: array([69.62656342, 6.91858324, 62.70798014])
’bias’: array([1.32495047]),
’support_vectors’: array([[ 0.57037937], [-0.47034937], [ 0.47247277]])
’yin’: array([-1., 1., 1.])

During cloud execution on a real quantum computer, ibmq_london, the QSVM train-
ing generated this parameters:

’alphas’: array([71.4176846 , 6.6120571 , 64.80566182])
’bias’: array([1.46213834])
’support_vectors’: array([[ 0.57037937], [-0.47034937], [ 0.47247277]])
’yin’: array([-1., 1., 1.])

During cloud execution on a real quantum computer, single qubit ibmq_armonk, the
QSVM training generated this parameters:

’alphas’: array([ 8.54823924, 12.97649675, 1.39973566, 4.34586523, 15.77913631])
’bias’: array([0.5403182])
’support_vectors’: array([[ 0.618765 ], [ 0.59224903], [ 0.41198377], [-0.47034937], [ 0.47247277]])
’yin’: array([-1., -1., 1., 1., 1.])

def add_noise_1d (x , r ) :
for i in range ( x . shape [ 0 ] ) :

x [ i ] += random . random ( ) ∗ 2 ∗ r − r
return x

Listing 6.1: Python function to add random noise to one dimensional array

#t r a i n i n g s e t c r ea t i on
n=10; r=1/4
tra in_true=np . z e r o s ( ( n , 1 ) )
t ra in_true = add_noise_1d ( tra in_true , r )
t r a i n_ f a l s e=np . ones ( ( n , 1 ) )
t r a i n_ f a l s e = add_noise_1d ( t r a i n_ fa l s e , r )

#t e s t and v a l i d a t i o n s e t s c r ea t i on
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n2=3∗n ; r2=1/2
tes t_true=np . z e r o s ( ( n2 , 1 ) )
te s t_true = add_noise_1d ( test_true , r2 )
t e s t_ f a l s e=np . ones ( ( n2 , 1 ) )
t e s t_ f a l s e = add_noise_1d ( t e s t_ f a l s e , r2 )

val_true=np . z e ro s ( ( n2 , 1 ) )
val_true = add_noise_1d ( val_true , r2 )
va l_ f a l s e=np . ones ( ( n2 , 1 ) )
va l_ f a l s e = add_noise_1d ( va l_fa l s e , r2 )

tra in ing_data = { ’T ’ : tra in_true , ’F ’ : t r a i n_ f a l s e }
test ing_data = { ’T ’ : test_true , ’F ’ : t e s t_ f a l s e }

Listing 6.2: Python sample code to generate training, test and validation sets

from q i s k i t import Aer
#backend = prov ide r . get_backend ( ’ ibmq_qasm_simulator ’ )
#backend = Aer . get_backend ( ’ s t a t e v e c t o r_s imu l a t o r ’ )
backend = prov ide r . get_backend ( ’ ibmq_london ’ )
shot s=8192

num_qubits = 1
feature_map = SecondOrderExpansion ( feature_dimension=num_qubits ,

depth=2, entanglement=’ f u l l ’ )
svm = QSVM( feature_map , tra in ing_data , tes t ing_data )
quantum_instance = QuantumInstance ( backend , shot s=shots ,

sk ip_qobj_val idat ion=False )
r e s u l t = svm . run ( quantum_instance )
print ( ’ Accuracy : ␣ ’ , r e s u l t [ ’ t e s t ing_accuracy ’ ] , ’ \n ’ )
print ( r e s u l t )
pred_true = svm . p r ed i c t ( val_true , quantum_instance )
print ( ’ Accuracy␣on␣ true ’ ,

np . count_nonzero ( pred_true==1)/pred_true . s i z e )
pred_fa l s e = svm . p r ed i c t ( va l_fa l s e , quantum_instance )
print ( ’ Accuracy␣on␣ f a l s e ’ ,

np . count_nonzero ( pred_fa l s e==0)/pred_fa l s e . s i z e )

Listing 6.3: Python code to apply QSVM to generated data for 1-dim classification task

from s k l e a rn import svm
c l f = svm .SVC( ke rne l=’ l i n e a r ’ ) #then c l f = svm .SVC( ke rne l =’ r b f ’ )
X=np . concatenate ( ( tra in_true , t r a i n_ f a l s e ) )
y=np . concatenate ( ( np . z e r o s ( ( n , 1 ) ) , np . ones ( ( n , 1 ) ) ) ) . r av e l ( )
c l f . f i t (X, y )
print (np . count_nonzero ( c l f . p r ed i c t ( t e s t_true )==0)/

te s t_true . shape [ 0 ] ∗ 1 00 )
print (np . count_nonzero ( c l f . p r ed i c t ( t e s t_ f a l s e )==1)/

t e s t_ f a l s e . shape [ 0 ] ∗ 1 00 )
print (np . count_nonzero ( c l f . p r ed i c t ( val_true )==0)/
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(a) Support vectors selected by QSVM for low
noise datasets.

(b) Support vectors selected by QSVM for big
noise datasets.

Figure 6.1: QSVM applied to a simple two dimension dataset; black crosses denote support
vectors chosen by QSVM algorithm, plus markers represent training set datapoint, small
dots are validation sets datapoint. Red and blu are used to distinguish classes.

val_true . shape [ 0 ] ∗ 1 00 )
print (np . count_nonzero ( c l f . p r ed i c t ( va l_ f a l s e )==1)/

va l_ f a l s e . shape [ 0 ] ∗ 1 00 )

Listing 6.4: Python code to apply classical SVM to generated data for 1-dim classification
task

6.2.2 QSVM for a 1-dim feature space - not linearly separable case

6.2.3 QSVM for a 2-dim feature space - linearly separable case

The next step to test QSVM capabilities consisted in a test on very simple 2d feature
space clasification task. I have assigned to the opposite vertices of a square, of coordinates
(0; 0) and (1; 1) respectively, the values true and false. Then I generated training sets by
applying random noise to these two values, selecting a radius equal to a quarter of the
diagonal of the square,

√
2

4 To generate the test and the validation set, I expanded the
radius to 1

2 , as shown in List. 6.6, obtaining data points shown in Fig. 6.1a.
I tried the QSVM, with code in List. 6.7 both with local statevector_simulator back-

end both with a real quantum device, ibmq_london. QSVM on local simulator chose three
support vectors for each class and scored with 90% accuracy on test set; on validation set
accuracy was 90% for true elements and 96.67% for false. QSVM on quantum computer
chose four support vectors for true class and three support vectors for false class; it scored
with 88.33% accuracy on test set; on validation set accuracy was 86.67% for true elements
and 100.0% for false. For comparison, classical SVM scored 100.0% both on test set and
validation sets, with several kernel choices (except sigmoid kernel, not reported here for
convenience); it used three support vectors per class with linear kernel and polynomial
kernel of degree 1, four support vector per class with radial basis functions kernel and
only two support vectors per class with polynomial kernel of degree 2 or 3, as shown in
Tab. 6.3.

During local simulator execution, the QSVM training generated this parameters:

’alphas’: array([1.71994012, 2.31538821, 1.00775775, 1.4248689,
1.07434067, 2.54387655])

’bias’: array([0.59862379])
’support_vectors’: array([

[ 1.02751184, 1.23596748], [ 1.31566984, 0.9830822 ],
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backend alg/kernel test (%) True P (%) True N (%)
Aer statevector_simulator QSVM 90.00 90.00 96.67
ibmq_london QSVM 88.33 86.67 100.00
sklearn.svm.SVC rbf 100.00 100.00 100.00
sklearn.svm.SVC linear 100.00 100.00 100.00
sklearn.svm.SVC poly 2 deg 100.00 100.00 100.00
sklearn.svm.SVC poly 3 deg 100.00 100.00 100.00

Table 6.3: QSVM and SVM comparison on a simple 2 dimensions dataset: the last three
columns show the accuracy, respectively, on test dataset, then true positive and true
negative on validation dataset. “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.

Figure 6.2: QSVM circuit for a linearly separable bi-dimensional feature space on
ibmq_london quantum computer

[ 0.82209995, 1.16294195], [ 0.20399493, -0.13820954],
[-0.04519968, 0.17753551], [-0.15804101, -0.24959031]])

’yin’: array([-1., -1., -1., 1., 1., 1.])}

During cloud execution on a real quantum computer, the QSVM training generated
this parameters:

’alphas’: array([3.11537135, 2.79521063, 0.16353942, 1.51084673,
1.3310395, 0.07460427, 3.15763105])

’bias’: array([0.71337578])
’support_vectors’: array([

[ 1.02751184, 1.23596748], [ 1.31566984, 0.9830822 ],
[ 0.82209995, 1.16294195], [ 0.20399493, -0.13820954],
[-0.04519968, 0.17753551], [ 0.17557884, -0.03350857],
[-0.15804101, -0.24959031]])

’yin’: array([-1., -1., -1., 1., 1., 1., 1.])

Afterwards I generated new training sets by applying random noise to the two reference
values, selecting this time a radius equal to half of the diagonal of the square,

√
2

2 To
generate the test and the validation set, I expanded the radius to 0.9, as shown in List.
6.6, obtaining data points shown in Fig. 6.1a.

Even this time, I tried the QSVM, with code in List. 6.7 both with local statevec-
tor_simulator backend both with a real quantum device, ibmq_london. QSVM on local
simulator chose five support vectors for each class and scored with 71.67% accuracy on
test set; on validation set accuracy was 70.00% for true elements and 56.67% for false.
QSVM on quantum computer chose five support vectors for true class (four equals to that
selected by the simulator) and six support vectors for false class (only two commons to
simulator’s choices); it scored with 71.67% accuracy on test set; on validation set accuracy
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backend alg/kernel test (%) True P (%) True N (%)
Aer statevector_simulator QSVM 71.67 70.00 56.67
ibmq_london QSVM 71.67 76.67 53.33
sklearn.svm.SVC rbf 98.33 100.00 96.67
sklearn.svm.SVC linear 98.33 93.33 96.67
sklearn.svm.SVC poly 2 deg 96.67 100.00 86.67
sklearn.svm.SVC poly 3 deg 96.67 100.00 86.67
sklearn.svm.SVC poly 4 deg 95.00 100.00 86.67
sklearn.svm.SVC poly 5 deg 96.67 100.00 86.67

Table 6.4: QSVM and SVM comparison on a simple 2 dimensions dataset: the last three
columns show the accuracy, respectively, on test dataset, then true positive and true
negative on validation dataset. “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.

was 76.67% for true elements and 53.33% for false. For comparison, classical SVM scored
98.33% on test set, 93.33% on validation true set and 96.67% on validation false set with
linear kernel, using four support vectors for true classe and three for the false class; radial
basis function used one more support vector for each class, obtaining 98.33% accuracy
on test set, 100.0% on validation true set and 96.67% on validation false set; polynomial
kernel with degree 1 replicated linear kernel results, with degree 2 or 3, it chose only two
support vectors per class, with 96.67% accuracy on test set and 100.0% on validation
true set but only 86.67% on validation false set; polynomial kernel with degree 4 chose
two support vectors for true class and a single support vector for false class, with 95.0%
accuracy on test set and 100.0% on validation true set but only 86.67% on validation
false set; polynomial kernel with degree 5 chose a single support vectors for each class,
with 96.67% accuracy on test set and 100.0% on validation true set but only 86.67% on
validation false set.

Anyway, with this simple but very noisy data, QSVM was in trouble with to respect
to classical SVM, as shown in Tab. 6.4.

During local simulator execution, the QSVM training generated this parameters:

’alphas’: array([38.33259778, 2.61541404, 4.05983042,
5.34439088, 10.47660117, 16.87999588,
5.69595284, 28.82635007, 0.23659479, 9.18994133])

’bias’: array([0.87647038])
’support_vectors’: array([

[ 1.10156387, 1.34357601], [ 0.71779101, 0.6201427 ],
[ 1.28566177, 0.64410777], [ 0.49200567, 1.48838526],
[ 0.96038797, 1.07865239], [ 0.51693332, 0.35894799],
[-0.60513116, -0.27110868], [-0.46576562, -0.06375724],
[-0.08524934, -0.2358175 ], [ 0.47684918, -0.40611562]])

’yin’: array([-1., -1., -1., -1., -1., 1., 1., 1., 1., 1.])

During cloud execution on a real quantum computer, the QSVM training generated
this parameters:

’alphas’: array([24.87595355, 14.46093403, 9.54782349, 2.05870143,
6.4200966, 4.21240539, 19.67110842, 0.02823584,
19.17509552, 13.87883043, 8.82264439])

’bias’: array([1.57117708])
’support_vectors’: array([
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[ 1.10156387, 1.34357601], [ 1.5070482 , 1.14501997],
[ 0.71779101, 0.6201427 ], [ 1.28566177, 0.64410777],
[ 0.80031368, 0.69428676], [ 1.11264308, 1.31388827],
[ 0.51693332, 0.35894799], [ 0.54524299, -0.26460588],
[-0.46576562, -0.06375724], [-0.08524934, -0.2358175 ],
[ 0.47684918, -0.40611562]])

’yin’: array([-1., -1., -1., -1., -1., -1., 1., 1., 1., 1., 1.])

def add_noise_2d (v , r ) :
for i in range ( v . shape [ 0 ] ) :

a=True
while a :

x = random . random ( ) ∗ 2 ∗ r − r
y = random . random ( ) ∗ 2 ∗ r − r
i f x∗x+y∗y < r ∗ r :

v [ i , 0 ] += x
v [ i , 1 ] += y
a=not a

return v

Listing 6.5: Python function to add random noise to two dimensional array

n=10; r=math . s q r t (2)/4
tra in_true=np . z e r o s ( ( n , 2 ) )
t ra in_true = add_noise_2d ( tra in_true , r )
t r a i n_ f a l s e=np . ones ( ( n , 2 ) )
t r a i n_ f a l s e = add_noise_2d ( t r a i n_ fa l s e , r )

n2=3∗n ; r2=1/2
tes t_true=np . z e r o s ( ( n2 , 2 ) )
te s t_true = add_noise_2d ( test_true , r2 )
t e s t_ f a l s e=np . ones ( ( n2 , 2 ) )
t e s t_ f a l s e = add_noise_2d ( t e s t_ f a l s e , r2 )

val_true=np . z e ro s ( ( n2 , 2 ) )
val_true = add_noise_2d ( val_true , r2 )
va l_ f a l s e=np . ones ( ( n2 , 2 ) )
va l_ f a l s e = add_noise_2d ( va l_fa l s e , r2 )

tra in ing_data = { ’T ’ : tra in_true , ’F ’ : t r a i n_ f a l s e }
test ing_data = { ’T ’ : test_true , ’F ’ : t e s t_ f a l s e }

Listing 6.6: Python code to generate datasets

backend = prov ide r . get_backend ( ’ ibmq_london ’ )
shot s=8192
num_qubits = 2
feature_map = SecondOrderExpansion ( feature_dimension=num_qubits ,

depth=2, entanglement=’ f u l l ’ )
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svm = QSVM( feature_map , tra in ing_data , tes t ing_data )
quantum_instance = QuantumInstance ( backend , shot s=shots ,

sk ip_qobj_val idat ion=False )
r e s u l t = svm . run ( quantum_instance )
print ( ’ Accuracy : ␣ ’ , r e s u l t [ ’ t e s t ing_accuracy ’ ] , ’ \n ’ )
print ( r e s u l t )
pred_true = svm . p r ed i c t ( val_true , quantum_instance )
print ( ’ Accuracy␣on␣ true ’ ,

np . count_nonzero ( pred_true==1)/pred_true . s i z e )
pred_fa l s e = svm . p r ed i c t ( va l_fa l s e , quantum_instance )
print ( ’ Accuracy␣on␣ f a l s e ’ ,

np . count_nonzero ( pred_fa l s e==0)/pred_fa l s e . s i z e )

Listing 6.7: Python code to apply QSVM to 2-dim feature space

6.2.4 QSVM for a 2-dim feature space - a three classes example

In a two dimensional feature space, the most simple three classes classification task
could be conceived as to distinguish the vertices of an equilateral triangle.

n=10; r=1/4 #r=math . s q r t (2)/4
train_A=np . z e ro s ( ( n , 2 ) ) ; train_A = add_noise_2d ( train_A , r )
train_B=np . concatenate ( ( np . ones ( ( n , 1 ) ) , np . z e r o s ( ( n , 1 ) ) ) , ax i s=1)
train_B = add_noise_2d ( train_B , r )
train_C=np . concatenate ( ( np . ones ( ( n , 1 ) ) / 2 , np . ones ( ( n , 1 ) ) ∗

math . s q r t ( 3 ) /2 ) , ax i s=1)
train_C = add_noise_2d ( train_C , r )
#s i m i l a r code f o r t e s t and v a l i d a t i o n s e t s

Listing 6.8: Python code to generate three classes, with points centered in the vertices of
an equilateral triangle with a unitary side

backend = prov ide r . get_backend ( ’ ibmq_essex ’ )
num_qubits = 2
shot s=8192
feature_map = SecondOrderExpansion ( feature_dimension=num_qubits ,

depth=2, entanglement=’ f u l l ’ )

t ra in_true=train_A ; t r a i n_ f a l s e=np . concatenate ( ( train_B , train_C ) )
te s t_true=test_A ; t e s t_ f a l s e=np . concatenate ( ( test_B , test_C ) )
val_true=val_A ; va l_ f a l s e=np . concatenate ( ( val_B , val_C ) )

tra in ing_data = { ’T ’ : tra in_true , ’F ’ : t r a i n_ f a l s e }
test ing_data = { ’T ’ : test_true , ’F ’ : t e s t_ f a l s e }
print ( ’A␣vs␣ o the r s ’ )

svm = QSVM( feature_map , tra in ing_data , tes t ing_data )
quantum_instance = QuantumInstance ( backend , shot s=shots ,

sk ip_qobj_val idat ion=False )
print ( ’ Running . . . . \ n ’ )
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backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 100.00 84.00 97.00
ibmq_qasm_simulator QSVM 100.00 85.00 96.00
sklearn.svm.SVC linear 100.00 100.00 100.00
sklearn.svm.SVC rbf 100.00 100.00 100.00
sklearn.svm.SVC sigmoid 62.50 0.00 99.00
sklearn.svm.SVC poly 1 100.00 100.00 100.00
sklearn.svm.SVC poly 2 100.00 100.00 90.00
sklearn.svm.SVC poly 3 100.00 100.00 58.00
sklearn.svm.SVC poly 4 100.00 100.00 42.00
sklearn.svm.SVC poly 5 100.00 100.00 33.00

Table 6.5: QSVM and SVM comparison on a simple 3 dimensions dataset: the last three
columns show the accuracy, respectively, on test dataset, then true positive and true
negative on validation dataset. “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.

r e s u l t = svm . run ( quantum_instance )
print ( ’ Accuracy : ␣ ’ , r e s u l t [ ’ t e s t ing_accuracy ’ ] , ’ \n ’ )
print ( r e s u l t )
print ( ’ Pr ed i c t i on ’ )
pred_true = svm . p r ed i c t ( val_true , quantum_instance )
print ( ’ True␣ p o s i t i v e ’ , np . count_nonzero ( pred_true==1)/

pred_true . s i z e )
pred_fa l s e = svm . p r ed i c t ( va l_fa l s e , quantum_instance )
print ( ’ True␣ negat ive ’ , np . count_nonzero ( pred_fa l s e==0)/

pred_fa l s e . s i z e )

Listing 6.9: Python code to classify the first class versus the others, using QSVM

6.2.5 QSVM for a 3-dim feature space - linearly separable case

I decided to test QSVM capabilities on very simple 3d feature space clasification task.
I have assigned to the opposite vertices of a cube, of coordinates (0; 0; 0) and (1; 1; 1)
respectively, the values true and false. Then I generated training and test sets by applying
random noise to these two values, selecting a radius equal to 1

2 (20 elements for each class,
both in training both in test set), while to generate the validetion set I choosed a radius√

3
2 , half of the diagonal of the cube. To generate the dataset, I applied the function in
List. 6.10, obtaining data points (40 points for each class) as shown in Fig. 6.3.

I tried the QSVM both with local statevector_simulator backend both with the cloud
ibmq_qasm_simulator backend. QSVM on both simulators chose five support vectors
for a class and six for the other, scored with 100% accuracy on test set; on validation set,
TPR was 84.00-85.00% for true elements and FPR was 96.00-97.00%. For comparison,
classical SVM scored 100.0% both on test set and validation sets, with linear and RBF
kernel, as shown in Tab. 6.5.

Then I increased the noise to half diagonal to generate train and test set and I choose
3
5 of diagonal to generate noise for validation set. QSVM on local simulator chose ten
support vectors for true class and eleven per false class, scored with 95.00% accuracy
on test set; on validation set, TPR was 74.00% and FPR was 62.00%. QSVM on cloud
quantum simulator chose ten support vectors for true class, but only nine support vectors
for false class; anyway, it scored almost equals to noiseless statevector_simulator. For
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(a) Two linearly separable datasets (b) Datapoints with higher noise

Figure 6.3: Simple 3D dataset: on the left, traning and validation dataset are linearly
separable, on the right training and test set is linerly separable, but validation set not
(bigger points denote test set elements, smaller one validation set elements).

backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 95.00 74.00 62.00
ibmq_qasm_simulator QSVM 95.00 75.00 62.00
sklearn.svm.SVC linear 100.00 85.00 74.00
sklearn.svm.SVC rbf 100.00 79.00 71.00
sklearn.svm.SVC sigmoid 0.00 17.00 33.00
sklearn.svm.SVC poly 1 100.00 82.00 71.00
sklearn.svm.SVC poly 2 100.00 88.00 67.00
sklearn.svm.SVC poly 3 100.00 91.00 65.00
sklearn.svm.SVC poly 4 100.00 94.00 64.00
sklearn.svm.SVC poly 5 100.00 96.00 62.00

Table 6.6: QSVM and SVM comparison on a simple 3 dimensions dataset, with applied
bigger noise: the last three columns show the accuracy, respectively, on test dataset, then
true positive and true negative on validation dataset. “poly n deg” denotes a polinomial
kernel of degree n, “rbf” denotes a radial basis function kernel.

comparison, classical SVM scored 100.0% both on test set and validation sets, with several
kernel choices (except sigmoid kernel, not reported here for convenience); it used three
support vectors per class with linear kernel and polynomial kernel of degree 1, four support
vector per class with radial basis functions kernel and only two support vectors per class
with polynomial kernel of degree 2 or 3, as shown in Tab. 6.6.

As a third and final case, I increased noise to 5
√

3
8 to generate training and test set

(always 20 elements for each class) and to 3
√

3
4 to generate training and test set (always

40 elements for each class), as shown in Fig. 6.4. QSVM on local simulator chose sixteen
support vectors for true class and thirteen per false class, while cloud simulator chose
one support vector less for true class and one more for false class; both simulators scored
similar, with about half success rate on test set (i.e. no more accurate than tossing a
perfect coin) and about the same on validation set. QSVM on cloud quantum simulator
chose ten support vectors for true class, but only nine support vectors for false class;
anyway, it scored almost equals to noiseless statevector_simulator. Curiously, with both
simulators, QSVM has juggled relatively better in FPR, performing even better than most
classic kernels. Except sigmoid kernel, classical SVM scored a little better on test set,
with TPR similar to QSVM but with lower FPR, as shown in Tab. 6.7.
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backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 47.50 50.00 57.00
ibmq_qasm_simulator QSVM 47.50 50.00 59.00
sklearn.svm.SVC linear 62.50 50.00 32.00
sklearn.svm.SVC rbf 62.50 45.00 31.00
sklearn.svm.SVC sigmoid 27.50 55.00 72.00
sklearn.svm.SVC poly 1 67.50 39.00 31.00
sklearn.svm.SVC poly 2 65.00 45.00 29.00
sklearn.svm.SVC poly 3 55.00 45.00 36.00
sklearn.svm.SVC poly 4 52.50 40.00 33.00
sklearn.svm.SVC poly 5 52.50 41.00 35.00

Table 6.7: QSVM and SVM comparison on a simple 3 dimensions dataset, with applied
bigger noise: the last three columns show the accuracy, respectively, on test dataset, then
true positive and true negative on validation dataset. “poly n deg” denotes a polinomial
kernel of degree n, “rbf” denotes a radial basis function kernel.

Figure 6.4: Simple 3D dataset with more noise; bigger points denote test set elements,
smaller one validation set elements.

def add_noise_3d (v , r , s =1):
for i in range ( v . shape [ 0 ] ) :

a=True
while a :

x = random . random ( ) ∗ r
y = random . random ( ) ∗ r
z = random . random ( ) ∗ r
i f x∗x+y∗y+z∗z < r ∗ r ∗ r :

v [ i , 0 ] += np . s i gn ( s )∗x
v [ i , 1 ] += np . s i gn ( s )∗y
v [ i , 2 ] += np . s i gn ( s )∗ z
a=not a

return v

Listing 6.10: Python function to add 3d noise, remaining inside the unitary cube

6.2.6 QSVM for a 3-dim feature space - not linearly separable cas-
esphere case

As a last case in simple, artifical dataset, I conceived a sphere in 3d space. I think
of a first class of points near the origin and a false class of points far from it; more
precisely, I imagined that the first class included the points within a radius 1

2 and the
points outside belonged to the second class. In a first phase, I created a margin of 1

10 ,
in the sense that I considered belonging to the first class only points inside the sphere of
radius r −margin = 2

5 , while for the second class I considered those outside the sphere
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backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 100.00 96.00 100.00
ibmq_qasm_simulator sklearn.svm.SVC linear 62.50 96.00 48.00
sklearn.svm.SVC rbf 97.50 100.00 100.00
sklearn.svm.SVC sigmoid 55.00 80.00 48.00
sklearn.svm.SVC poly 1 60.00 96.00 48.00
sklearn.svm.SVC poly 2 97.50 100.00 96.00
sklearn.svm.SVC poly 3 62.50 100.00 36.00
sklearn.svm.SVC poly 4 90.00 100.00 92.00
sklearn.svm.SVC poly 5 65.00 100.00 36.00

Table 6.8: QSVM and SVM comparison on a simple 3 dimensions dataset, with applied
bigger noise: the last three columns show the accuracy, respectively, on test dataset, then
true positive and true negative on validation dataset. “poly n deg” denotes a polinomial
kernel of degree n, “rbf” denotes a radial basis function kernel.

of radius r + margin = 3
5 . I created a train test with 30 elements for each class, then as

shown in Tab. 6.8. 19 14 For classical SVM, there w

6.3 QSVM vs SVM comparison on standard datasets: some
preliminary notes

In this section, I show comparison between classical and quantum SVM on several
standard dataset, each of them publicly available and often used as machine learning
benchmarks. In most cases, the performance of the QSVM has been evaluated with
the local simulator, statevector_simulator offered by Qiskit’s Aer, which simulates the
operation of an ideal quantum computer, free of topological limitations and not affected by
any kind of error, and with the ibmq_qasm_simulator, with free access via cloud, which
offers a more accurate simulation, reproducing certain types of errors (in this regard, the
default parameters have been confirmed, although probably a bit optimistic compared to
the real performance of current quantum computers).

Only some specific configurations have been tested with real quantum computers,
because very long processing times are required, because each session of QSVM training or
inference requires issuing several jobs via cloud: moreover, each of them should be created,
if necessary even “transpiled” (i.e. convert high level gates to basis gates effectively
supported by selected quantum processor), then validated and eventually executed, after
waiting in the queue. Above all, huge waiting times and uncertainties about correct
completion are really big troubles. Furthermore, IBM’s fairshare policies for the limited
quantum computational resources offered free of charge via the cloud entail repeated
cancellations of many jobs, followed by any attempts to restart them later; moreover,
in many situations, after several hours from the initial launch of the processes, due to
online access troubles or some errors with the IBM platform the execution of the training
or test sessions ended, with a duplex deleterious effect: in addition to the lost time, the
possibility of launching further processes via the cloud in the following hours worsened.
For the majority of executions on real quantum computers (but also for many jobs on
online simulator) the epilogue was one of them:

• “The user reached the maximum number of jobs running concurrently [1012]”

• “FAILURE: Can not get job id, Resubmit the qobj to get job id. Terra job er-
ror: Error submitting job: 400 Client Error: Bad Request for url: https://api.

https://api.quantum-computing.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/Jobs
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quantum-computing.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/
Jobs. Reached maximum number (5) of concurrent jobs, Error code: 3458.”

• “Job limit reached, waiting for job ### to finish before submitting the next one”

• “IBMQJobTimeoutError: Timeout while waiting for job ###.”

Moreover, Google Colab Jupyter notebooks have an idle timeout of 90 minutes, so if user
does not interact with his Google Colab notebook for more than 90 minutes, its istance is
automatically aborted. Furthermore, Google Colab Jupyter notebooks have a maximum
lifetime of 12 hours; these limitations make it difficult to automate large work sessions
and often force training sessions to start over.

It must also be noted that the pressing topological limitations inherent in all current
real quantum computers entail the need to resort to transpiling frequently when more
than one pair of qubits is used: at least, indeed, there is at least the need for additional
SWAP gates to match the abstract design to concrete circuit’s topology and every SWAP
gate gets decomposed into three controlled-not gates, so it can be seen that the actual
circuit depth increases and then its output is more affected by noise. All this suggests
that, in addition to the considerations supporting the reduction of the dimensionality
of the feature space already ascertained in classic machine learning, in all likelihood in
the case of quantum machine learning it is preferable to reduce the features to two to
minimize the effects of noise, reduce the time of execution and increase the hope that a
training session can be conducted without crashing, at least on current IBM free access
systems.

Almost all test are executed with k-fold cross validation, a common model validation
technique for assessing how the results of a statistical analysis will generalize to a never
seen before dataset. With k-fold cross validation, the available dataset is divided into
k equals (or almost equals) groups, than for k times a group is chosen as test dataset,
while all the other k-1 groups are used as training dataset, as shown in Fig. 6.5. In
general, the accuracy of each run are collected and then averaged, to obtain a more
representative evaluation of the statistic model. In this work, I explicitly coded k-fold cross
validation in Python, without resorting to sklearn’s functions, such as train_test_split
and cross_val_score.

This choice rewarded me by giving me considerable flexibility, allowing me to evaluate
IBM Aqua’s QSVM and sklearn’s SVM uniformly, and giving me the opportunity to test,
for each of the k training datasets configurations, each model with unseen datas, i.e.
not involved in the k-fold selection. In fact, starting from each dataset identified in the
literature, I first extracted random data from which to apply the k-fold cross validation,
then I randomly extracted other data to be used as a further validation set. I resorted
to this strategy because in many cases the data was too much to achieve results in a
reasonable time with the simulator via the cloud and, least of all, with real quantum
computers.

Some classification problems can exhibit a large imbalance in the distribution of the
target classes: for instance there could be several times more negative samples than pos-
itive samples. In such circumstances, a simple sampling strategy could offer not enough
sample of each class for the training model. Support Vector Machine, in particular, is
a linear model whose performance can be severely impacted by the adoption of a highly
unbalanced training set. In such cases, it is usually recommended to use appropriate
strategies, such as stratified sampling, which sklearn offers in StratifiedKFold and Strat-
ifiedShuffleSplit. In general, a stratified k-fold cross-validation generates the folds as to
preserve the percentage of samples for each class; in the case of binary classification, this
technique assures that each partition contains roughly the same proportions of the two
types of class labels.

https://api.quantum-computing.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/Jobs
https://api.quantum-computing.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/Jobs
https://api.quantum-computing.ibm.com/api/Network/ibm-q/Groups/open/Projects/main/Jobs
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Figure 6.5: K-fold cross validation is both simple, computationally feasible and widely
used in statistics and machine learning.

Moreover, I decided to write my own stratified k-fold cross-validation implementation.
For binary classification, I have implemented the following strategy: from the available
dataset, I choose a reasonable value for k and then randomly extract a certain number of
representative elements of each class that is a multiple of k. So I divide each of the two
sets into k equal parts, take a part from the first set, a part from the second set and make
up the test set. I take the remaining 2k− 2 parts to make up the training set. Therefore,
it’s as if I separately had applied k-fold cross validation to each class.

Anyway, I could not use k-fold cross validation in the case of execution on real quantum
processors, because the execution times were too long and many times the executions
stopped due to errors. So, in some cases I have run QSVM algorithm only on a particular
partition in training and test set; for this reason, being unable to mediate on k-folds,
obviously a sample standard deviation is not indicated in the tables.

Furthermore, in some circumstances, after training the QSVM on a real quantum
computer, problems occurred with access to cloud resources which prevented the QSVM
from being applied to the validation set directly on the quantum hardware; in these
circumstances, in the inferential phase the QSVM was run on a simulator, with the
parameters learned on a real quantum computer, as indicated in List. 6.12. These cases
are reported in the tables with computer type names_name/sim_name, for example
ibmq_london/sv_sim denotes that the system has been trained on the ibmq_london
computer, but operated in inferential mode on statevector_simulator.

tot_sz = 30 ; # t r a i n + t e s t
k=5; s=int ( tot_sz /k ) # k−f o l d
# c1 , c2 are np . array wi th a l l i n s tance o f each c l a s s
ind_true=random . sample ( range ( c1 . shape [ 0 ] ) , tot_sz )
ind_fa l s e=random . sample ( range ( c2 . shape [ 0 ] ) , tot_sz )
i_val_true=np . d e l e t e (np . array ( ( range ( c1 . shape [ 0 ] ) ) ) , ind_true )
i_va l_ fa l s e=np . d e l e t e (np . array ( ( range ( c2 . shape [ 0 ] ) ) ) , i nd_fa l s e )

val_sz=60 # a new v a l i d a t i o n s e t
i_val_true = i_val_true [ random . sample ( range (

i_val_true . shape [ 0 ] ) , val_sz ) ]
i_va l_ fa l s e = i_va l_ fa l s e [ random . sample ( range (

i_va l_ fa l s e . shape [ 0 ] ) , val_sz ) ]

for ke rne l in [ ’ l i n e a r ’ , ’ r b f ’ , ’ s igmoid ’ ] :
c l f = svm .SVC( ke rne l=ke rne l )
tp=np . z e r o s ( k ) # true p o s i t i v e on v a l i d a t i o n s e t
tn=np . z e r o s ( k ) # true nega t i v e on v a l i d a t i o n s e t
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acc=np . z e r o s ( k ) # t e s t accuracy
val_tp=np . z e r o s ( k )
val_tn=np . z e r o s ( k )
for i in range ( k ) :

t e s t_true=c1 [ ind_true [ i ∗ s : ( i +1)∗ s ] ]
t ra in_true=np . concatenate ( ( c1 [ ind_true [ ( i +1)∗ s : ] ] ,

c1 [ ind_true [ : ( i ∗ s ) ] ] ) )
t e s t_ f a l s e=c2 [ i nd_fa l s e [ i ∗ s : ( i +1)∗ s ] ]
t r a i n_ f a l s e=np . concatenate ( ( c2 [ i nd_fa l s e [ ( i +1)∗ s : ] ] ,

c2 [ i nd_fa l s e [ : ( i ∗ s ) ] ] ) )
Xtrain=np . concatenate ( ( tra in_true , t r a i n_ f a l s e ) )
x c l a s s=np . concatenate ( ( np . z e r o s ( ( t ra in_true . shape [ 0 ] , 1 ) ) ,

np . ones ( ( t r a i n_ f a l s e . shape [ 0 ] , 1 ) ) ) ) . r av e l ( )
c l f . f i t ( Xtrain , x c l a s s )

acc [ i ]=(np . count_nonzero ( c l f . p r ed i c t ( te s t_true)==0)+
np . count_nonzero ( c l f . p r ed i c t ( t e s t_ f a l s e )==1))/
( te s t_true . shape [0 ]+ t e s t_ f a l s e . shape [ 0 ] )

val_tp [ i ]=np . count_nonzero ( c l f . p r ed i c t ( c1 [ i_val_true ])==0)/
i_val_true . shape [ 0 ]

val_tn [ i ]=np . count_nonzero ( c l f . p r ed i c t ( c2 [ i_va l_ fa l s e ])==1)/
i_va l_ fa l s e . shape [ 0 ]

accm=np .mean( acc )∗100 ; accs=np . std ( acc )∗100
tpm=np .mean( val_tp )∗100 ; tnm=np .mean( val_tn )∗100
tps=np . std ( val_tp )∗100 ; tns=np . std ( val_tn )∗100
print ( ’ s k l e a rn . svm .SVC␣&␣ ’ , k e rne l ) # and so on

Listing 6.11: Python code to apply k-fold cross validation

backend = prov ide r . get_backend ( ’ ibmq_qasm_simulator ’ )
qsvm . set_backend ( backend )
new_quantum_instance = QuantumInstance ( backend , shot s=shot s )
# Pred ic t us ing t e s t data , i n f e r ence on s imu la tor
pred_true = qsvm . p r ed i c t ( test_true , new_quantum_instance )
# and so on . . .

Listing 6.12: Python code to compute the inferential phase on local or cloud simulator,
after the training phase on a real cloud quantum computer

6.3.1 Preprocessing

For each machine learning system, performance depends greatly on the inputs consid-
ered in the training phase. It is often useful to extract relevant characteristics from the
raw data available, reduce the number of dimensions to counteract the curse of dimen-
sionality or perform some normalization procedure. One of the most simple techniques
is standardization of datasets; it is a common requirement for many machine learning
estimators, because they are often developed under the assumption that the distributions
are Gaussian, so they might indeed behave badly if the individual features do not more
or less look like standard normally distributed data. Moreover, to avoid that one feature
does not affect the outcome of the learning process more than others, usually are prefer-
able Gaussian with zero mean and unit variance. Anyway, one of the most popular and
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simple techniques for reducing dimensionality is Principal component analysis (PCA).
PCA is used to decompose a multivariate dataset in a set of successive orthogonal com-
ponents that explain a maximum amount of the variance; it can be used to apply linear
dimensionality reduction using Singular Value Decomposition of the data to project it to
a lower dimensional space. In scikit-learn, PCA is implemented as a transformer object
that learns n components in its fit method, and can be used on new data to project it on
these components.

To correctly apply PCA algorithm, the input data have to be centered, i.e. with zero
means for every features, otherwise it is clear, for example, that as the first main direction
the algorithm could select the one that connects the experimental points more far away
from with the origin, rather than the direction along which the data separate most. In
addition, imposing a unit variance along each component prior to application of the PCA
is strongly recommended for many cases, such as the K-Means clustering algorithm and
Support Vector Machines with the RBF kernel. For instance, many elements used in the
objective function of a learning algorithm assume that all features are centered around
zero and have variance in the same order. If a feature has a variance that is orders of
magnitude larger than others, it might dominate the objective function and make the
estimator unable to learn from other features correctly as expected.

So, regardless of the shape of the expected distribution, I choose to just transform
the data to center it by removing the mean value of each feature, then scale it by di-
viding non-constant features by their standard deviation, using StandardScaler object in
sklearn.preprocessing. This object standardize features by removing the mean and scaling
to unit variance; the standard score of a sample x is calculated as:

z = x−m

s

where m is the mean of the training samples (or zero if the flag with_mean is set to
False), and s is the standard deviation of the training samples (or one if the flag with_std
is set to False). Centering and scaling happen independently on each feature by computing
the relevant statistics on the samples in the training set. Mean and standard deviation
are then stored to be used on later data using transform method.

However, even taking care of these measures, the QSVM often showed erratic learning:
although the Qiskit Aqua library offers relatively high-level support, it is of paramount
importance that the data provided in absolute value do not exceed the unit, because
quantum circuits are composed of gates represented as unitary operators. To this end,
after applying the PCA on standardized features, I resorted to MinMaxScaler object in
sklearn.preprocessing library. This object is useful to transform features by scaling each
feature individually to a given range, for example [−1, 1]

The transformation is given by:

X_new = (X −Xmin)/(Xmax −Xmin) ∗ (max−min) + min

where min, max represent range, X is the column vector of a specific feature, X_new is
the new vector after transformation, while Xmin, Xmax represent minimum and amximum
values for the feature X. Anyway, this transformation is often used as an alternative to
zero mean, unit variance scaling.

It was assessed to further narrow the range of allowable values by 10%, so that each
feature could span [−0.9; 0.9]. However, this kind of data transformation risks reducing
the effectiveness of the preprocessing phase performed by the PCA; in fact, the projection
on the principal directions ensures that the variance decreases when the direction index
increases. By applying the MinMaxScaler instead, this difference between the selected
main directions is canceled, a problem that could get worse with the increase in the
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size of the feature space generated by the PCA, or by the number of selected principal
components. So, for some datasets, I also tested the following strategy:

• fitting sklearn.preprocessing’s StandardScaler object to raw data to transform them
such as to guarantee zero means and unitary variance for each original feature

• fitting sklearn.decomposition’s PCA object to data (generated from previous com-
putation stage) and to transform them in a reduced dimensionality space item find
the greatest absolute value of distance from the center, for each element of the
dataset and for each direction considered by the PCA and then scaling all the val-
ues of the dataset, to make them fall within the desired range, for example [−1, 1],
but preserving the relationship between the variances.

As shown in List. 6.13,

#load d a t a s e t s
rawdata = data s e t s . l oad_d ig i t s ( )

data=rawdata . data
y=rawdata . t a r g e t
f e a t u r e s=data . shape [ 1 ]

s c a l e r = StandardSca ler ( )
s c a l e r . f i t ( data )
s c a l e r . set_params (with_mean=True , with_std=True )
data=s c a l e r . t rans form ( data )

n f ea t=4 # s e l e c t p r i n c i p a l components
data=PCA(n_components=n f ea t ) . f i t_t rans fo rm ( data )

mm=np .max( ( np . abs (np .min( data ) ) , np .max( data ) ) )
rad=0.9

for i in range ( data . shape [ 0 ] ) :
for j in range ( n f ea t ) :

data [ i , j ] = ( data [ i , j ]+mm)∗ rad/mm−rad

Listing 6.13: Python code to preprocess datasets

6.3.2 Evaluating results

In addition to all the considerations already explained regarding the comparison on
simple artificial datasets of the Quantum Support Vector Machine, which adopts a kernel
that exploits the quantum effect of the entanglement, with a classic version of the Support
Vector Machine with various widely used kernels, in the case of more complex datasets
widely used in the literature for the comparison of various classifiers, it was considered
appropriate to carry out a more in-depth analysis. To this end, the receiver operating
characteristic (ROC) analysis has been taken into consideration. This name is not very
self-explanatory because the technique originates during World War II for the analysis
of radar signals: it was conceived as a technique to increase the prediction of correctly
detected aircraft from radar signals. So, for these purposes, ROC analysis measured
the ability of a radar receiver operator to make these important distinctions, which was
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just called the Receiver Operating Characteristic. Anyway, ROC analysis is based on
evaluating ROC curve, a graphic representation that illustrates the diagnostic ability
of a binary classifier system as a function of a threshold parameter, and Area Under
Curve (AUC). If the two class subject to classification are considered as positive and
negative elements, AUC express the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one (assuming ’positive’
ranks higher than ’negative’). ROC Curve expresses the accuracy of a binary classifier
and it is a curve parameterized according to a threshold parameter and drawn in an
orthogonal reference system, where the False Positive Rate (FPR) is indicated on the
abscissas and TPR is on the ordinates. Recalling the expressions for TPR and TNR:

TPR = TP

P
= TP

TP + FN

TNR = TN

N
= TN

TN + FP

equivalently FPR can be defined as:

FPR = FP

N
= FP

TN + FP
= 1− TNR

The threshold parameter indicates where the boundary between the two classes can be
put; usually, for a fixed classification system (for example, a trained SVM), if we want a
zero FPR, we are forced to accept a low or even zero TPR value, while modifying threshold
to increase TPR can indesirably increase FPR, too. So the steepness of ROC curves is
very important, since it is ideal to maximize the true positive rate while minimizing the
false positive rate. In the FPR/TPR plane, a perfect classifier would be represented
by a vertical segment, from (0; 0) to (0; 1) and then an horizontal segment to (1; 1):
the classifier always correctly predicts and the AUC takes the maximum value, that is,
one. Conversely, the worst classifier never recognizes even a representative of the true
class, regardless of the threshold parameter, therefore the AUC is zero. In a full random
choice, such as a perfect coin toss, AUC equals 0.5, so a much higher value can be
expected from a valid classification system. Although I am aware that it is subject to
limitations, nevertheless AUC is one of the most important evaluation metrics for checking
any classification model’s performance, but when I choose to use ROC curve and AUC to
compare QSVM and SVM, I ran into a small difficulty.

The sklearn library offers complete support for this kind of analysis, even providing
the very convenient sklearn.metrics.plot_roc_curve function. This function receives as
input an estimator instance, i.e. a trained classifier object, a set of input values and the
correct corresponding labels; it outputs a ROC curve and it computes AUC. This function
interacts perfectly with the implementation of SVM within the sklearn library, regardless
of the selected kernel, but unfortunately it does not accept an instance of the QSVM class
of the IBM Quantum Experience. After unsuccessfully attempting to build an effective
wrapper for an instance of QSVM, I thought of getting around the problem by using the
sklearn.metrics.roc_curve function. This function develops a ROC analysis generating
three parallel arrays, in which, for the same index, the coordinates are found in the
FPR/TPR plane and the corresponding threshold parameter; to this end, it receives an
array containing true binary labels, a second array containing target scores and possibly
a pos_label parameter that expresses the label of the positive class.

But a further complication arose, because the target scores can either be probability
estimates of the positive class, confidence values, or non-thresholded measure of decisions
(as returned by a decision function), but not predicted class labels! QSVM, indeed, of-
fers a predict method; after the training phase, predict try to guess right class labels.
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Therefore, I went to study the parameters learned by the QSVM, I verified that the
expected relationship between the alpha coefficients and the yi was respected fairly ac-
curately and I manually obtained the weight vector of the model, so that I could apply
explicitly the decision function to the input data, so as to obtain target scores suitable
for the sklearn.metrics.roc_curve function. So I checked that the linear combination of
αi is (almost) zero (indeed, the sum is about 10−4 − 10−5:

l∑︂
i=1

αiyi = 0

The weights depend on a linear combination of chosen support vecors:

w⃗ =
l∑︂

i=1
αiyix⃗i

I remember that the decision function for an SVM classifier is expressed by

w⃗tx⃗i + bias

In List. 6.14, I reported the developed code to apply QSVM decision function to choosen
data; by way of verification, I also ran similar code for the standard sklearn classifiers, to
make sure that the outcomes matched those generated by sklearn.metrics.plot_roc_curve
function.

# t r a i n i n g QSVM on tra in ing_data
qsvm = QSVM( feature_map , tra in ing_data , tes t ing_data )
r e s u l t = qsvm . run ( quantum_instance )

# e x t r a c t i n g t ra ined QSVM parameters
qsvm_res=r e s u l t [ ’ svm ’ ]
b i a s=qsvm_res [ ’ b i a s ’ ]
a lphas=qsvm_res [ ’ a lphas ’ ]
s_v = qsvm_res [ ’ support_vectors ’ ]
y i = qsvm_res [ ’ y in ’ ]

# check ing cond i t i on on a lpha
test_acc=0
for l in range ( y i . shape [ 0 ] ) :

test_acc += alphas [ l ]∗ y i [ l ]
print ( ’ check␣ zero ␣ ’ , test_acc )

# computing QSVM weigh t s
qsvm_w=np . z e ro s ( ( s_v . shape [ 1 ] ) )
for l in range ( y i . shape [ 0 ] ) :

qsvm_w = np . add (qsvm_w, alphas [ l ]∗ y i [ l ]∗ s_v [ l , : ] )

# app ly ing d e c i s i o n func t i on to data
pred_val = np . z e ro s ( datap . shape [ 0 ] )
for l in range ( datap . shape [ 0 ] ) :

pred_val [ l ] = b ia s
for f e a t u r e in range (qsvm_w. shape [ 0 ] ) :

pred_val [ l ] += qsvm_w[ f e a tu r e ] ∗ data [ l , f e a t u r e ]



Results 161

backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 61.67 90.00 60.00
ibmq_qasm_simulator QSVM 63.33 74.00 42.00
ibmq_burlington QSVM 63.33 76.00 48.00
sklearn.svm.SVC rbf 83.33 98.00 72.00
sklearn.svm.SVC linear 61.67 52.00 66.00
sklearn.svm.SVC sigmoid 51.67 24.00 76.00
sklearn.svm.SVC poly 2 deg 70.00 72.00 82.00
sklearn.svm.SVC poly 3 deg 48.33 56.00 44.00
sklearn.svm.SVC poly 4 deg 68.33 60.00 88.00
sklearn.svm.SVC poly 5 deg 66.66 42.00 88.00

Table 6.9: QSVM and SVM comparison on banana dataset with just raw data: the last
three columns show the accuracy, respectively, on test dataset, then true positive and
true negative on validation dataset. “poly n deg” denotes a polinomial kernel of degree
n, “rbf” denotes a radial basis function kernel.

fpr , tpr , th r e s = metr i c s . roc_curve (
xva l c l a s s , pred_val , pos_labe l=0)

roc_auc = metr i c s . auc ( fpr , tpr )

Listing 6.14: Python code to apply ROC analysis and compute AUC for QSVM

6.4 QSVM vs SVM comparison on standard datasets

6.4.1 Banana dataset

I used Banana dataset from Keel dataset repository7. It is declared as an artificial
dataset (although a real world origin is indicated in its header file), where instances
belongs to several clusters with a banana shape. There are only two attributes At1 and
At2 corresponding to the x and y axis, respectively, where At1 contains real numbers in
[−3.09; 2.81] and At2 real numbers in [−2.39; 3.19] The class label (−1 and 1) represents
one of the two banana shapes in the dataset. So this dataset contains 5300 instances,
2924 in the first class and 2376 in the second.

In a preliminary phase, I proceeded to randomly extract two subsets of the same size,
one with elements of the first class and the other with elements of the second class. I
selected 20% of each set for training, 30% for the test and the remaining 50% for validation.

In Tab. 6.9, QSVM is compared with SVM with various kernel selections: their
accuracy seems similar, only classical SVM with radial basis function scores best.

Then I applied the general procedure, as indicated in List. 6.13: anyway, it must be
specified that the dataset already offers an almost flawless standardization of the data,
as the means along the two features differ from zero for 10−5 and the standard deviations
are away from the unit only for 10−4, so the only effect of my preprocessing is a rotation
due to PCA and a scaling, as shown in Fig. 6.6. So I applied k-fold cross validation, as
in List. 6.11

7http://sci2s.ugr.es/keel/dataset/data/classification/banana.zip

http://sci2s.ugr.es/keel/dataset/data/classification/banana.zip
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(a) Banana dataset: raw data plot.
(b) Banana dataset: data plot after PCA and
scaling.

Figure 6.6: The banana dataset’s graphic representation.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmq_rome/sv_sim QSVM 50.00 55.00 80.00
statevector_simulator QSVM 78.33 ± 8.50 72.00 ± 3.86 67.67 ± 4.03
ibmq_qasm_simulator QSVM 63.33 ± 8.50 65.33 ± 4.14 56.00 ± 7.64
sklearn.svm.SVC poly 1 40.00 ± 12.25 56.67 ± 6.41 42.00 ± 9.97
sklearn.svm.SVC poly 2 68.33 ± 6.24 54.33 ± 9.35 64.67 ± 8.19
sklearn.svm.SVC poly 3 55.00 ± 15.46 78.00 ± 5.21 63.67 ± 11.71
sklearn.svm.SVC poly 4 68.33 ± 6.24 47.33 ± 2.71 72.33 ± 3.43
sklearn.svm.SVC poly 5 55.00 ± 18.71 72.67 ± 9.23 65.33 ± 22.54
sklearn.svm.SVC linear 46.67 ± 15.46 57.00 ± 6.62 39.67 ± 7.48
sklearn.svm.SVC rbf 71.67 ± 10.00 88.67 ± 7.77 58.00 ± 3.56
sklearn.svm.SVC sigmoid 41.67 ± 14.91 48.33 ± 5.87 34.67 ± 11.18

Table 6.10: QSVM and SVM comparison on banana dataset with just pre-processed data
and 5-fold cross validation: the last three columns show the accuracy, respectively, on test
dataset, then true positive and true negative on validation dataset. “poly n deg” denotes
a polinomial kernel of degree n, “rbf” denotes a radial basis function kernel.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 51.25 ± 4.18 56.20 ± 12.11 41.40 ± 17.47
sklearn.svm.SVC poly 1 52.25 ± 4.96 53.60 ± 3.14 55.80 ± 8.08
sklearn.svm.SVC poly 2 61.25 ± 7.25 45.60 ± 3.38 77.40 ± 1.02
sklearn.svm.SVC poly 3 63.25 ± 8.01 83.20 ± 2.99 52.80 ± 1.60
sklearn.svm.SVC poly 4 60.00 ± 4.11 54.80 ± 24.69 70.80 ± 23.94
sklearn.svm.SVC poly 5 58.50 ± 8.04 88.80 ± 5.04 36.80 ± 5.81
sklearn.svm.SVC linear 52.25 ± 3.66 53.60 ± 2.65 56.20 ± 8.23
sklearn.svm.SVC rbf 88.50 ± 2.29 92.20 ± 1.60 83.60 ± 1.20
sklearn.svm.SVC sigmoid 35.50 ± 6.74 25.00 ± 1.10 39.80 ± 1.60

Table 6.11: QSVM and SVM comparison on banana dataset with just pre-processed data
and 5-fold cross validation: increasing training set, with 200 data points for each class,
do not improve learning. The last three columns show the accuracy, respectively, on test
dataset, then true positive and true negative on validation dataset. “poly n deg” denotes
a polinomial kernel of degree n, “rbf” denotes a radial basis function kernel.
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(a) Area under the ROC Curve for 10 elements
for each class in training set.

(b) Area under the ROC Curve for 20 elements
for each class in training set.

(c) Area under the ROC Curve for 50 elements
for each class in training set.

(d) Area under the ROC Curve for 200 elements
for each class in training set.

Figure 6.7: The banana dataset: Area under the ROC Curve, for different training sets..

6.4.2 Haberman dataset

I used Haberman’s Survival data set from Keel dataset repository8. It is a real world
dataset: it contains cases from a study that was conducted between 1958 and 1970 at the
University of Chicago’s Billings Hospital on the survival of patients who had undergone
surgery for breast cancer. The patients who survived 5 years or longer are marked as
positive, while if the patient died within 5 year is considered negative. There are three
attributes, all expressed as integers: the first is age, with values in [30, 83], the second
is the year in [58, 69], while the third is the number of positive axillary lymph nodes
detected9. The class labels, respectively negative and positive, were transformed in −1
and 1. This dataset contains 306 instances, 225 in the first class and 81 in the second.

In a first phase, I proceeded to randomly extract two subsets of the same size, one with
70 elements of the first class and the other with 70 elements of the second class. I selected
20 elements of each set for training, other 20 for the test dataset and the remaining 30
elements for validation set, as in List. 6.15. In this scenario, with all 3 feature and
none pre-processing I compared QSVM on both local simulator (without noise) and cloud
simulator (with standard quantum noise), with lower score than conventional SVM with
radial basis function.

Then I

import time , random
#data i s an np . array wi th raw data
c1=data [ ( data [: ,−1]==−1) ,: data . shape [1 ] −1 ]

8http://www.keel.es/
9http://www.kaggle.com/gilsousa/habermans-survival-data-set

http://www.keel.es/
http://www.kaggle.com/gilsousa/habermans-survival-data-set
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 55.00 66.67 43.33
ibmq_qasm_simulator QSVM 55.00 66.67 43.33
sklearn.svm.SVC rbf 70.00 80.00 43.33
sklearn.svm.SVC linear 62.50 60.00 50.00
sklearn.svm.SVC sigmoid 50.00 70.00 20.00
sklearn.svm.SVC poly 1 deg 70.00 80.00 40.00
sklearn.svm.SVC poly 2 deg 65.00 96.67 23.33
sklearn.svm.SVC poly 3 deg 62.50 63.33 53.33
sklearn.svm.SVC poly 4 deg 55.00 56.67 56.67
sklearn.svm.SVC poly 5 deg 62.50 70.00 63.33

Table 6.12: QSVM and SVM comparison on haberman dataset: the last three columns
show the accuracy, respectively, on test dataset, then true positive on both validation
datasets, the first one . “poly n deg” denotes a polinomial kernel of degree n, “rbf”
denotes a radial basis function kernel.

c2=data [ ( data [ : ,−1]==1) , : data . shape [1 ] −1 ]

t ra in_sz =20; te s t_sz =20; val_sz=30;
tot_sz = tra in_sz + tes t_sz + val_sz
ind_true=random . sample ( range ( c1 . shape [ 0 ] ) , tot_sz )
ind_fa l s e=random . sample ( range ( c2 . shape [ 0 ] ) , tot_sz )

t ra in_true = c1 [ ind_true [ 0 : t ra in_sz ] , : ]
t r a i n_ f a l s e = c2 [ ind_fa l s e [ 0 : t ra in_sz ] , : ]

t e s t_true = c1 [ ind_true [ t ra in_sz : t ra in_sz+tes t_sz ] , : ]
t e s t_ f a l s e = c2 [ i nd_fa l s e [ t ra in_sz : t ra in_sz+tes t_sz ] , : ]
val_true = c1 [ ind_true [ t ra in_sz+tes t_sz : ] , : ]
v a l_ f a l s e = c2 [ i nd_fa l s e [ t ra in_sz+tes t_sz : ] , : ]

t ra in ing_data = { ’T ’ : tra in_true , ’F ’ : t r a i n_ f a l s e }
test ing_data = { ’T ’ : test_true , ’F ’ : t e s t_ f a l s e }

Listing 6.15: Python code to extract data from Haberman’s dataset

6.4.3 Iris dataset

The famous Iris dataset is used as a classic example of statistical classification, so
it is among the most used in the field of machine learning. It is a multivariate dataset
introduced by Ronald Fisher in 1936. It consists of 150 instances of Iris measured by
Edgar Anderson and classified according to three species: Iris silky, Iris virginica and Iris
versicolor. There are exactly 50 members for each class. The four variables considered are
the length and width of the sepal and petal. I used the version of the dataset embedded
in the library sklearn. For all tests in this section, I used 5-fold cross validation.

First I normalized dataset, to make the mean zero and standard deviation unitary, then
I applied a PCA analysis to project the dataset on the two main dimensions. Because
there are three classes, I run SVM and QSVM for each possible binary scenario: first
class versus the others, second class versus the others and eventually third class versus
the other. In a first phase, I had thought of extracting the same number of samples from
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backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 65.00 ± 3.33 12.67 ± 25.33 90.33 ± 19.33
ibmq_qasm_simulator QSVM 51.67 ± 11.06 44.67 ± 23.34 67.67 ± 14.97
sklearn.svm.SVC poly 1 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 2 90.00 ± 6.24 93.33 ± 0.00 82.33 ± 1.33
sklearn.svm.SVC poly 3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 4 90.00 ± 3.33 86.67 ± 2.11 86.33 ± 1.94
sklearn.svm.SVC poly 5 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC linear 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC rbf 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC sigmoid 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 6.13: QSVM and SVM comparison on on Iris dataset to discern the first class
from the others with 5-fold cross validation: the last three columns show the accuracy,
respectively, on test dataset, then true positive (for first class) and true negative on
validation dataset. 20 elements were choosen for each class, so there was not a real
balance for this task: 20 samples of class 1 and 40 samples of “not class 1”. Indeed,
QSVM presented an erratic behaviour because there was 16 training samples for first
class and overall 32 training samples for other classes (ibmq_qasm_simulator was used
with 1024 shots.)“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a
radial basis function kernel.

each class; therefore, to classify an object of the first class, I selected for example 20
elements from the first class and a total of 40 from the other two, to create a dataset to
which apply The classic SVM algorithms managed this situation correctly, but the QSVM,
performed both on the local simulator and on the IBM online simulator, exhibited erratic
behavior: it was able to recognize the elements of the other two classes very well as not
belonging to the first class but had difficulty recognizing first-class members, as shown
in Tab. 6.13 Analyzing scrupulously the individual training sessions, in many cases the
QSVM, at the end of the training, always answered ‘other ’regardless of the input value,
on the whole dataset. It was thus found that the general advice to correctly balance the
training data before applying SVM classifier is of paramount importance with quantum
implementation.

Then I trained both QSVM and SVM to classy element of class 2, but now balanc-
ing training, test and validation set, so that each of them contained one half of class 2
samples and one half of the other classes samples. In Tab. 6.14, results are reported,
where quantum support vector machine don’t seem able to convincingly exceed even the
threshold of 50%, scoring worse thna even SVM with linear kernel.

Afterwards, I tried the procedure described in List. 6.13, extracting the two main
components with the PCA, and selecting 35 points per class for the training set, 15 per
class for the validation set. In Tab. 6.15 there are the results for the first class against
the others, while in Tab. 6.16 there are the results for the second class against the others.

6.4.4 Breast cancer dataset

I used breast cancer dataset from sklearn libray. It is a diagnostic dataset from Wis-
consin. It contains 569 istances with 30 attributes, distributed in two classes, respectvely
with (212 and 357 elements. I generated 30 sample for each class for training and an-
other unseen 40 sample for each class for validation set. In Tab. 6.17 I showed analysis
when three principal components were chosen, while in Tab. 6.18 four components were
selected. In the case of this dataset, performance tends to deteriorate by increasing the
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backend alg/kernel test (%) True P (%) True N (%)
statevector_simulator QSVM 50.00 ± 11.18 48.00 ± 20.07 44.33 ± 25.49
ibmq_qasm_simulator QSVM 60.00 ± 12.25 55.33 ± 10.24 50.00 ± 10.95
sklearn.svm.SVC poly 1 72.50 ± 14.58 67.33 ± 6.80 67.67 ± 2.91
sklearn.svm.SVC poly 2 87.50 ± 7.91 95.33 ± 2.67 89.33 ± 1.33
sklearn.svm.SVC poly 3 67.50 ± 12.75 92.67 ± 4.42 49.00 ± 2.49
sklearn.svm.SVC poly 4 82.50 ± 6.12 98.67 ± 1.63 85.67 ± 3.59
sklearn.svm.SVC poly 5 75.00 ± 11.18 100.00 ± 0.00 54.00 ± 3.74
sklearn.svm.SVC linear 75.00 ± 17.68 65.33 ± 6.53 67.00 ± 3.86
sklearn.svm.SVC rbf 82.50 ± 12.75 84.00 ± 6.46 89.67 ± 2.87
sklearn.svm.SVC sigmoid 75.00 ± 15.81 60.00 ± 4.71 74.33 ± 6.72

Table 6.14: QSVM and SVM comparison on on Iris dataset to discern the second class
from the others with 5-fold cross validation: the last three columns show the accuracy,
respectively, on test dataset, then true positive and true negative on validation dataset.
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel. QSVM worked better on cloud simulator (ibmq_qasm_simulator was used with
1024 shots.)

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmq_burlington QSVM 57.14 33.33 93.33
statevector_simulator QSVM 90.00 ± 7.28 100.00 ± 0.00 82.67 ± 5.33
ibmq_qasm_simulator QSVM 85.71 ± 13.55 89.33 ± 10.83 78.67 ± 10.67
sklearn.svm.SVC poly 1 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 2 98.57 ± 2.86 93.33 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 4 98.57 ± 2.86 93.33 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC poly 5 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC linear 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC rbf 100.00 ± 0.00 94.67 ± 2.67 100.00 ± 0.00
sklearn.svm.SVC sigmoid 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 6.15: QSVM and SVM comparison on on Iris dataset to discern the second class
from the others with 5-fold cross validation: the last three columns show the accuracy,
respectively, on test dataset, then true positive and true negative on validation dataset.
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel. QSVM worked better on cloud simulator (ibmq_qasm_simulator was used with
1024 shots.)
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmq_burlington QSVM 64.29 86.67 20.00
statevector_simulator QSVM 62.86 ± 15.25 89.33 ± 8.00 57.33 ± 9.04
ibmq_qasm_simulator QSVM 82.86 ± 18.41 84.00 ± 5.33 74.67 ± 7.77
sklearn.svm.SVC poly 1 75.71 ± 3.50 100.00 ± 0.00 40.00 ± 0.00
sklearn.svm.SVC poly 2 88.57 ± 9.69 100.00 ± 0.00 86.67 ± 0.00
sklearn.svm.SVC poly 3 77.14 ± 2.86 100.00 ± 0.00 40.00 ± 0.00
sklearn.svm.SVC poly 4 88.57 ± 9.69 98.67 ± 2.67 80.00 ± 4.22
sklearn.svm.SVC poly 5 74.29 ± 5.71 100.00 ± 0.00 38.67 ± 2.67
sklearn.svm.SVC linear 74.29 ± 5.71 100.00 ± 0.00 40.00 ± 0.00
sklearn.svm.SVC rbf 90.00 ± 10.69 100.00 ± 0.00 89.33 ± 5.33
sklearn.svm.SVC sigmoid 72.86 ± 2.86 94.67 ± 2.67 49.33 ± 9.98

Table 6.16: QSVM and SVM comparison on Iris dataset (third class): the last three
columns show the accuracy, respectively, on test dataset, then true positive on both
validation datasets, the first one . “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 85.00 ± 6.24 86.00 ± 5.15 85.50 ± 4.30
sklearn.svm.SVC poly 1 90.00 ± 6.24 95.50 ± 1.87 98.00 ± 1.00
sklearn.svm.SVC poly 2 53.33 ± 6.67 50.50 ± 7.31 89.00 ± 7.00
sklearn.svm.SVC poly 3 83.33 ± 5.27 83.00 ± 6.00 100.00 ± 0.00
sklearn.svm.SVC poly 4 58.33 ± 5.27 46.50 ± 4.64 94.00 ± 2.55
sklearn.svm.SVC poly 5 70.00 ± 10.00 65.00 ± 3.87 100.00 ± 0.00
sklearn.svm.SVC linear 90.00 ± 9.72 90.50 ± 2.92 97.00 ± 1.00
sklearn.svm.SVC rbf 91.67 ± 7.45 97.00 ± 1.00 95.50 ± 1.00
sklearn.svm.SVC sigmoid 93.33 ± 8.16 96.00 ± 1.22 97.00 ± 1.87

Table 6.17: QSVM and SVM comparison on breast cancer dataset (after pre-processing
and with 5-fold cross validation): class 1 was compared against the other. With PCA,
the three principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.

dimensionality of the feature space. The QSVM classifier proves to be able to discriminate
the two classes, but with systematically lower performance than the classic SVM.

6.4.5 Wine dataset

scikit-learn contains a copy of the UCI ML Wine recognition datasets10. These data
are the results of a chemical analysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the quantities of 13 constituents
found in each of the three types of wines. The attributes are :

• Alcohol

• Malic acid

• Ash
10https://archive.ics.uci.edu/ml/datasets/wine

https://archive.ics.uci.edu/ml/datasets/wine
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmq_vigo/sv_simu QSVM 75.00 65.00 95.00
ibmq_vigo/ibmq_qasm_sim QSVM 75.00 65.00 95.00
statevector_simulator QSVM 75.00 ± 17.48 71.00 ± 9.43 97.50 ± 3.16
ibmq_qasm_simulator QSVM 75.00 ± 15.81 72.00 ± 6.78 94.00 ± 3.00
sklearn.svm.SVC poly 1 95.00 ± 6.67 89.00 ± 1.22 97.00 ± 2.45
sklearn.svm.SVC poly 2 76.67 ± 14.34 58.50 ± 4.06 95.00 ± 2.24
sklearn.svm.SVC poly 3 90.00 ± 9.72 78.00 ± 1.87 97.50 ± 0.00
sklearn.svm.SVC poly 4 71.67 ± 10.00 46.00 ± 4.64 100.00 ± 0.00
sklearn.svm.SVC poly 5 81.67 ± 9.72 58.00 ± 4.00 98.00 ± 1.00
sklearn.svm.SVC linear 96.67 ± 4.08 86.50 ± 2.00 97.50 ± 0.00
sklearn.svm.SVC rbf 93.33 ± 6.24 88.00 ± 2.92 97.50 ± 1.58
sklearn.svm.SVC sigmoid 93.33 ± 6.24 89.50 ± 1.00 94.00 ± 2.00

Table 6.18: QSVM and SVM comparison on breast cancer dataset (after pre-processing
and with 5-fold cross validation): class 1 was compared against the other. With PCA,
the four principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.

• Alcalinity of ash

• Magnesium

• Total phenols

• Flavanoids

• Nonflavanoid phenols

• Proanthocyanins

• Color intensity

• Hue

• OD280/OD315 of diluted wines

• Proline

Wine dataset is usually considered a good data set for first testing of a new classifier,
but not very challenging. In Tab. 6.19 and Tab. 6.20 I show the comparison between
classifier when choosing, respectively class 1 versus the other two and then class 3 versus
the other ones, selecting 3 principal components via PCA and using preprocessing as
illustrated in List. 6.13. In Fig. 6.8b there is an example of ROC analysis and AUC
computation for QSVM (on statevector_simulator) and SVM with radial basis function.
In Tab. 6.21 e Tab. 6.22, the results are illustrated when MinMaxScaler is applied to
the main components selected by the PCA to, losing the relative order of the features, in
the sense that the difference in variance is faded away: in the first case, MinMaxScaler
was applied to set all features in [-0.9; 0.9], in the second case MinMaxScaler was applied
to set all features in [-1.0; 1.0]. At least when QSVM is executed on the simulator, the
improvement in classifier performance seems evident when the feature values are reduced
to values lower than the unit, while preserving the relative variances in the different main
components.
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 86.67 ± 13.54 98.67 ± 2.67 76.00 ± 9.04
sklearn.svm.SVC poly 1 95.00 ± 6.67 97.33 ± 3.27 93.33 ± 0.00
sklearn.svm.SVC poly 2 91.67 ± 5.27 97.33 ± 3.27 60.00 ± 4.22
sklearn.svm.SVC poly 3 85.00 ± 6.24 81.33 ± 12.93 93.33 ± 4.22
sklearn.svm.SVC poly 4 85.00 ± 9.72 96.00 ± 8.00 69.33 ± 5.33
sklearn.svm.SVC poly 5 83.33 ± 7.45 66.67 ± 0.00 94.67 ± 4.99
sklearn.svm.SVC linear 95.00 ± 4.08 98.67 ± 2.67 92.00 ± 2.67
sklearn.svm.SVC rbf 98.33 ± 3.33 97.33 ± 3.27 100.00 ± 0.00
sklearn.svm.SVC sigmoid 95.00 ± 6.67 93.33 ± 0.00 93.33 ± 0.00

Table 6.19: QSVM and SVM comparison on digits dataset (after pre-processing and
with 5-fold cross validation): class 1 was compared against the others. With PCA, the
three principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 81.67 ± 6.24 77.78 ± 3.51 63.33 ± 4.44
sklearn.svm.SVC poly 1 98.33 ± 3.33 95.56 ± 2.22 100.00 ± 0.00
sklearn.svm.SVC poly 2 90.00 ± 8.16 68.89 ± 4.44 92.22 ± 2.72
sklearn.svm.SVC poly 3 95.00 ± 4.08 83.33 ± 3.51 98.89 ± 2.22
sklearn.svm.SVC poly 4 86.67 ± 8.50 62.22 ± 4.16 94.44 ± 0.00
sklearn.svm.SVC poly 5 93.33 ± 6.24 61.11 ± 0.00 100.00 ± 0.00
sklearn.svm.SVC linear 96.67 ± 4.08 98.89 ± 2.22 98.89 ± 2.22
sklearn.svm.SVC rbf 98.33 ± 3.33 95.56 ± 2.22 100.00 ± 0.00
sklearn.svm.SVC sigmoid 96.67 ± 4.08 100.00 ± 0.00 96.67 ± 2.72

Table 6.20: QSVM and SVM comparison on digits dataset (after pre-processing and
with 5-fold cross validation): class 3 was compared against the others. With PCA, the
three principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.

(a) Wine dataset: projection on first 2 principal
components.

(b) Wine dataset: ROC and AUC comparison
between QSVM and RBF.

Figure 6.8: Wine dataset’s PCA representation and ROC analysis.
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 86.67 ± 13.54 98.67 ± 2.67 76.00 ± 9.04
sklearn.svm.SVC poly 1 95.00 ± 6.67 97.33 ± 3.27 93.33 ± 0.00
sklearn.svm.SVC poly 2 91.67 ± 5.27 97.33 ± 3.27 60.00 ± 4.22
sklearn.svm.SVC poly 3 85.00 ± 6.24 81.33 ± 12.93 93.33 ± 4.22
sklearn.svm.SVC poly 4 85.00 ± 9.72 96.00 ± 8.00 69.33 ± 5.33
sklearn.svm.SVC poly 5 83.33 ± 7.45 66.67 ± 0.00 94.67 ± 4.99
sklearn.svm.SVC linear 95.00 ± 4.08 98.67 ± 2.67 92.00 ± 2.67
sklearn.svm.SVC rbf 98.33 ± 3.33 97.33 ± 3.27 100.00 ± 0.00
sklearn.svm.SVC sigmoid 95.00 ± 6.67 93.33 ± 0.00 93.33 ± 0.00

Table 6.21: QSVM and SVM comparison on digits dataset (with 5-fold cross validation):
class 1 was compared against the others. With PCA, the three principal components
were selected, then MinMaxScaler was applied to set all features in [-0.9; 0.9]. The last
three columns show the accuracy, respectively, on test dataset, then true positive on both
validation datasets, the first one . “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmqx2 QSVM 78.57 80.00 70.00
statevector_simulator QSVM 84.29 ± 2.86 98.00 ± 2.45 56.00 ± 7.35
ibmq_qasm_simulator QSVM 72.86 ± 8.33 86.00 ± 5.83 65.00 ± 8.94
sklearn.svm.SVC poly 1 90.00 ± 5.71 99.00 ± 2.00 93.00 ± 2.45
sklearn.svm.SVC poly 2 84.29 ± 7.00 100.00 ± 0.00 61.00 ± 3.74
sklearn.svm.SVC poly 3 81.43 ± 10.69 81.00 ± 4.90 98.00 ± 2.45
sklearn.svm.SVC poly 4 77.14 ± 9.48 89.00 ± 9.70 63.00 ± 13.27
sklearn.svm.SVC poly 5 80.00 ± 10.50 71.00 ± 4.90 100.00 ± 0.00
sklearn.svm.SVC linear 90.00 ± 5.71 99.00 ± 2.00 93.00 ± 2.45
sklearn.svm.SVC rbf 98.57 ± 2.86 100.00 ± 0.00 95.00 ± 0.00
sklearn.svm.SVC sigmoid 91.43 ± 5.35 97.00 ± 2.45 93.00 ± 2.45

Table 6.22: QSVM and SVM comparison on digits dataset (with 5-fold cross validation):
class 1 was compared against the others. With PCA, the three principal components
were selected, then MinMaxScaler was applied to set all features in [-1.0; 1.0]. The last
three columns show the accuracy, respectively, on test dataset, then true positive on both
validation datasets, the first one . “poly n deg” denotes a polinomial kernel of degree n,
“rbf” denotes a radial basis function kernel.
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6.4.6 Optical recognition of handwritten digits dataset

scikit-learn contains a copy of the optical recognition of handwritten digits dataset
from the UCI ML datasets11. One of the simplest graphical representations adopted by
computers for two-dimensional images is bitmap encoding. With this approach, the im-
age is considered formed by a discrete number of points, divided into rows and columns;
one or more contiguous bits in a specific portion of memory represent the color or light
intensity information of each point, called pixel. In the case of perfectly monochromatic
images, such as black and white images without shades of gray, a single bit is sufficient
to encode the information of each pixel. Usually, if the pixel is on, the corresponding bit
assumes the logical value 1, otherwise it assumes the value 0. This dataset includes a pri-
mary preprocessing made by programs developed by NIST to extract normalized bitmaps
of handwritten digits from a preprinted form. The original images are 32x32 bitmaps,
but they are divided into non-overlapping blocks of 4x4 and the number of on pixels are
counted in each block. This generates an input matrix of 8x8 where each element is an
integer in the range 0..16. In practice, a very simple case of bilinear filtering has been
adopted. Bilinear filtering is indeed one of the basic resampling techniques in computer
vision and image processing. This filtering is an extension of naive linear interpolation
for functions of two variables on a rectangular bidimensional grid. This technique also
became popular with the general public in the mid-90s, when the first graphics cards
began to spread with the ability to accelerate three-dimensional rendering, such as the
famous 3dfx Voodoo. One of the simplest expedients to achieve a satisfactory graphic
rendering of the objects and characters consisted in covering the surfaces, approximated
with strips of triangles, with textures, that is, appropriate chromatic descriptions. Ob-
viously, depending on the relative distances and the observer’s point of view, there is no
one-to-one relationship between the points of a texture (texel) and the points displayed
on the screen. The most basic method to overcome this problem simply chooses to draw
on the texel whose coordinates are closer to those which would theoretically correspond
to the pixel to be drawn on the screen; this method is called Nearest-neighbor filtering.
Such simple texture mapping make the picture look pixelated, full of aliasing. Bilinear
filtering, instead, prevents this by interpolating the points that are between texels.

NIST algorithm differ from conventional bilinear filtering in two ways: it acts as the
sampling coordinate are always exactly in the center of each 2× 2 square; it accumulates
values, instead of average them. Anyway, this reduces dimensionality from 1024 to 64
and guarantees invariance with to respect to small distortions; each pixel is encoded with
a first row of 4x4 pixel block counts in features from 0 to 7, then second row in features
from 8 to 15 and so on, a row at time. To make this dataset, a total of 43 people
participated: thirty of them contributed to the training set and different thirteen to the
test set. Anyway, in the copy retrieved from scikit-learn, there are a total of 1797 entries,
which is not a multiple of 43 or 10, either. Instead, were labeled about 180 entries for
each decimal numeric digit, more precisely:

• 178 samples for 0

• 182 samples for 1

• 177 samples for 2

• 183 samples for 3

• 181 samples for 4

• 182 samples for 5
11https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
ibmqx2/qasm_sim QSVM 75.00 93.33 31.67
ibmqx2/sv_sim QSVM 75.00 93.33 31.67
ibmqx2 QSVM 75.00 83.33 30.00
statevector_simulator QSVM 85.00 ± 6.24 91.67 ± 4.08 84.67 ± 3.23
ibmq_qasm_simulator QSVM 81.67 ± 6.24 88.33 ± 5.48 84.33 ± 4.03
sklearn.svm.SVC poly 1 90.00 ± 8.16 99.00 ± 1.33 92.00 ± 3.40
sklearn.svm.SVC poly 2 88.33 ± 8.50 93.00 ± 0.67 94.33 ± 1.33
sklearn.svm.SVC poly 3 93.33 ± 6.24 89.00 ± 1.70 100.00 ± 0.00
sklearn.svm.SVC poly 4 91.67 ± 7.45 83.67 ± 1.94 98.33 ± 0.00
sklearn.svm.SVC poly 5 86.67 ± 4.08 84.00 ± 1.33 99.00 ± 0.82
sklearn.svm.SVC linear 88.33 ± 11.30 100.00 ± 0.00 74.00 ± 4.55
sklearn.svm.SVC rbf 96.67 ± 4.08 98.67 ± 1.25 97.00 ± 1.94
sklearn.svm.SVC sigmoid 86.67 ± 11.30 100.00 ± 0.00 73.33 ± 2.79

Table 6.23: QSVM and SVM comparison on digits dataset (after pre-processing and
with 5-fold cross validation): class 0 was compared against the others. With PCA, the
three principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.

• 181 samples for 6

• 179 samples for 7

• 174 samples for 8

• 180 samples for 9

For this test, I report in Tab. 6.23 e 6.25 the results of classification test conducted
selecting class 0 and comparing, in the training phase, 30 random istances of c0 against 30
(total) random instance of other classes. I applied 5-fold cross validation to this data, then
checked TPR and TNR on validation set, with double number of elements with to respect
to training set. In Tab. 6.24 the results are illustrated when MinMaxScaler is applied
to the main components selected by the PCA, losing the relative order of the features,
in the sense that the difference in variance is faded away. I am convinced that in higher
dimension feature spaces my approach, as illustrated in List. 6.13 and which already for
3 features seems to benefit QSVM, on the local simulator at least, can guarantee more
significant advantages.

6.5 Results
The preliminary conclusions, based on the executed tests, suggest that Quantum Sup-

port Vector Machine, in classification tasks, could prove, depending on the dataset, a
lower accuracy than the classical Support Vector Machine. All this is not surprising at
all, because it happens due to the ineluctable probabilistic nature of quantum comput-
ers and multiple noise issues in nowadays devices. Attenuating the noise in a quantum
computer system is one of the biggest challenges so far, so all error-mitigation techniques
present a route to accurate classification even with noisy intermediate-scale (NISQ) de-
vices hardware. Certainly, on the basis of the scarce availability of qubits in the systems
created so far, the adoption of effective error detection and correction schemes does not
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-.9, .9 ibmqx2 QSVM 58.33 70.00 56.67
statevector_simulator QSVM 91.67 ± 5.27 81.00 ± 2.26 80.67 ± 5.64
ibmq_qasm_simulator QSVM 90.00 ± 6.24 81.67 ± 2.79 79.00 ± 6.72
sklearn.svm.SVC poly 1 88.33 ± 8.50 93.00 ± 1.25 88.67 ± 4.14
sklearn.svm.SVC poly 2 96.67 ± 4.08 87.67 ± 0.82 94.33 ± 1.33
sklearn.svm.SVC poly 3 96.67 ± 4.08 88.67 ± 1.63 99.67 ± 0.67
sklearn.svm.SVC poly 4 95.00 ± 4.08 85.00 ± 1.05 98.00 ± 1.94
sklearn.svm.SVC poly 5 96.67 ± 4.08 84.00 ± 1.33 99.67 ± 0.67
sklearn.svm.SVC linear 86.67 ± 6.67 96.33 ± 1.25 79.67 ± 2.87
sklearn.svm.SVC rbf 96.67 ± 4.08 98.00 ± 0.67 93.33 ± 4.08
sklearn.svm.SVC sigmoid 81.67 ± 6.24 100.00 ± 0.00 67.67 ± 1.70

Table 6.24: QSVM and SVM comparison on digits dataset (with 5-fold cross validation):
class 0 was compared against the others. With PCA, the three principal components
were selected, after using StandardScaler, then each features was normalized in [-.9, .9]
with MinMaxScaler scaler.. The last three columns show the accuracy, respectively, on
test dataset, then true positive on both validation datasets, the first one . “poly n deg”
denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function kernel.

backend alg/kernel test (%) True P c.1 (%) True P. c2 (%)
statevector_simulator QSVM 90.00 ± 9.72 89.67 ± 1.25 76.67 ± 6.67
ibmq_qasm_simulator QSVM 85.00 ± 6.24 86.00 ± 3.09 74.67 ± 5.31
sklearn.svm.SVC poly 1 93.33 ± 3.33 97.33 ± 1.33 88.33 ± 2.36
sklearn.svm.SVC poly 2 96.67 ± 4.08 91.67 ± 0.00 94.33 ± 0.82
sklearn.svm.SVC poly 3 98.33 ± 3.33 92.00 ± 0.67 96.00 ± 0.82
sklearn.svm.SVC poly 4 96.67 ± 4.08 90.00 ± 0.00 95.67 ± 0.82
sklearn.svm.SVC poly 5 96.67 ± 4.08 89.67 ± 0.67 96.67 ± 0.00
sklearn.svm.SVC linear 88.33 ± 6.67 98.67 ± 0.67 77.00 ± 2.45
sklearn.svm.SVC rbf 96.67 ± 4.08 96.67 ± 1.05 98.67 ± 0.67
sklearn.svm.SVC sigmoid 90.00 ± 6.24 98.33 ± 0.00 79.67 ± 2.87

Table 6.25: QSVM and SVM comparison on digits dataset (after pre-processing and
with 5-fold cross validation): class 0 was compared against the others. With PCA, the
four principal components were selected. The last three columns show the accuracy,
respectively, on test dataset, then true positive on both validation datasets, the first one .
“poly n deg” denotes a polinomial kernel of degree n, “rbf” denotes a radial basis function
kernel.
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seem imminent; for example, the Shor code corrects arbitrary single-qubit errors, but
to protect the qubit content both from a bit flip or a sign flip, it requires nine physical
qubits to represent a single logical qubit. It can also be noted that the Shor code presup-
poses equivalent qubits, while in all the real systems created so far there are significant
topological limitations.

Anyway, with Quantum Support Vector Machine any feature can be represented us-
ing a single qubit; it is possible to accomplish one dimensional classification task even
on ibmq_armonk quantum computer, a single qubit quantum computer, while it’s incon-
ceivable to perform any non-trivial task on a classic computer with 1 bit or a few bits, let
alone face a classification problem.

Therefore, there are solid preconditions for the application of machine learning tech-
niques on quantum computers, including QSVM, to produce very interesting results,
providing high time efficiency on high dimensional dataset with to respect to classical
Support Vector Machine.



Chapter 7

Preliminary conclusion

For over three decades, starting from the pioneering speculations of Feynman, Benioff,
Manin and Deutsch, the study of quantum systems has been very interesting, but mainly
theoretical. Instead, in recent years there has been a thriving proliferation of projects
and results, both on the hardware and on the software side, thanks to profound efforts
made by academic and corporate research groups. In fact, the first prototypes of quan-
tum computers were constructed and made available to the international community of
researchers, often through highly flexible and totally free collaborative methods. We have
thus witnessed on the one hand the development of solutions capable of implementing
more complex circuits, making available a greater number of quantum digits (qubits),
improving the accuracy of computation and the reliability of the systems (for example,
in 2019 IBM quantum systems reached uptime of 95 percent), on the other hand the
proliferation of software solutions characterized by a higher level of abstraction, such as
IBM Qiskit library.

In some ways, this trend seems to mimic what has happened in the last few decades
for digital electronic computers: on one side, we observed a progressive reduction in
size (from entire buildings to a single room, then to a cabinet, after that to solutions
that can be installed on desks or even used on the knees, until they land on hand-held
devices and mobile phones) and power usage, accompanied by lower purchase costs and
total costs of ownership, while simultaneously on the other side we have ascertained
enormous progress for processing speed, volatile memory capacity, mass memory capacity,
connection interfaces speed, and so on; furthermore, there was the widespread diffusion
of ever more abstract and possibly simpler programming languages, as well as of human-
machine interfaces that would allow use even to an audience without high mathematical
and technical skills (from punched cards to the keyboard, from printing on paper to
screens in text mode, from graphical user interfaces and mouse to voice commands, touch
screens, etc.).

According to a widespread anecdotal, in 1943 IBM’s president, Thomas J Watson,
would have reputedly said: “I think there is a world market for about five computers”.
Nowadays there are definitely more than five functioning quantum computer, but I think
that it is objectively difficult to foresee an ubiquitous diffusion of this technology even in
a rather remote future. Certainly in the 1940s it was not possible to predict the invention
of the transistor, the spread of microelectronics and the adoption of sophisticated litho-
graphic processes, which made it possible to create, after just about 70 years, compact
and inexpensive computers albeit millions of times faster than first prototypes, however,
it seems very difficult to imagine the possibility of creating quantum computers that can
spread in the consumer electronics sector or even in small and medium-sized companies.

On one side, there are multiple theoretical trobubles. For example, the so called no-
cloning theorem states that it is not possible to copy of an arbitrary unknown quantum

175



Conclusion 176

state, so the single most frequently used assembler instruction (MOVE), or assignment
instruction in high level languages, cannot be implemented in the case of quantum com-
puters.

Holevo’s theorem proves that although n qubits can use quantum superposition to en-
code information corresponding up to 2n states, therefore generally requiring the storage
of 2n complex coefficients in the implementation through a simulator on a classic com-
puter (therefore up to 2n+4 conventional bits for double precision real numbers type), the
amount of classical information that can be retrieved can be only up to n classical bits.
In fact, every time we measure the state of a qubit, we project its possible superposition
of states in only one of the eigenstates of the selected measurement operator compatible
with the considered state (Wave function collapse). So if we measure n qubits state, the
state of the system is projected, in an intrinsically random way, in any of the eigenstates
relating to the measurement operator present in the possible overlapping of quantum
states.

On the other side, there are multiple hardware challenges. The decoherence phenom-
ena comport the loss of quantum coherence, that is they disrupt a definite phase between
different quantum states; a definite relationship is the conditio sine qua non to perform
any quantum computation on quantum system, otherwise the quantum information en-
coded in quantum states are lost or damaged. For a perfectly isolated quantum system,
the coherence is preserved under the laws of quantum physics, but then that system would
be impossible to manipulate or investigate it, because during any measurement the quan-
tum coherence is inevitably degraded. Decoherence due to unwanted interactions with
the external environment can be reduced developing higher fidelity qubits and alleviated
using error-correction algorithms by encoding quantum state with redundancy over many
qubits; for example, Shor conceived a 9-qubit encoding, so to protect the content of a
single logical qubit from any single qubit error using 9 phisically qubit. Just as over the
years more sophisticated error detection and correction algorithms have been developed
for classic computers (such as the different Reed – Solomon error-correcting codes for stor-
age systems), there is the hope that encoding schemas can be developed with more robust
error correction for quantum computing; it has been postulated that significantly increas-
ing the number of physical qubits used to represent a single logical qubit (even reaching
hundreds or thousands of qubits) could help in appreciably increasing the decoherence
time, providing a quantum computer more time to carry out complex algorithms, which
require circuits of greater depth than those implemented so far, but it is really difficult
to imagine implementing such kind of expensive coding in a widespread way as long as
there will be such a shortage of qubits in the hardware solutions available. Anyway, any
multi phisical qubits encoding schema can effectively be pursued only when the individual
quantum gates error rate is very small; as shown in Fig. 1.20, until now real quantum
computers offer single qubit gate errors in the range 3× 10−4− 3× 10−3 and CNOT (the
simplest two-qubit gate) error rate 1.0 × 10−2 − 7.5 × 10−2, very high error rates com-
pared to conventional electronic computers. For example, as shown in Tab. 4.2 e Tab.
4.3, even the simple addition between two qubits involves a considerable error rate and
moreover in the sum of pairs of qubits it is easier to guess the correct result if we consider
equiprobable the output binary digit sequences than launching execution on a quantum
computer thousands of times and evaluating the frequencies of the possible outputs. The
attempt to manage decoherence poses two major problems: the need for cryogenics, to
try to minimize unwanted interactions with the external environment, seems to consti-
tute an almost insurmountable limit for an ubiquitous diffusion of quantum computers;
the need to minimize measurement operations and, consequently, any type of interaction
with classic computers or with man-machine interaction tools (keyboards, mice, screens,
microphones, etc.) does not make it possible to imagine a purely quantum interactive
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computer. To the best of current theoretical and technological knowledge, therefore, it is
possible to predict, even with an optimistic vision aimed at a distant future, at most a
significant proliferation of quantum computer solutions as a component of mixed comput-
ing systems, in which interactions with the user and probably most of the operations will
be carried out by classical digital electronic calculators, while the quantum component
will be profitably used only as a specific accelerator for solving some classes of problems.

By now, several studies show that a quantum computer can offer significant speedups
in some fields of application, for which many research activities are flourishing aimed at
probing the applicability of quantum techniques to the solution of interesting problems.
Certainly, as already postulated by Feynmann, functioning quantum computers, equipped
with enough good quality qubits, will be indispensable for effectively simulating complex
quantum systems. As Shor has shown, these computers can be used profitably to effi-
ciently solve problems such as prime factorization and, consequently, to find important
cryptographic applications. Anyway, any theoretical quantum advantage risks being sig-
nificantly dissipated if coding systems that are too expensive must be adopted to protect
the correctness of the application of an algorithm and provide guarantees regarding the
quality of the computation.

Another big trouble is that currently, we do not have a quantum equivalent of Ran-
dom Access Memory: altought there are theoretic studies on quantum RAM (qRAM)
[Giovannetti et al., 2008a,b; Knill, 1996; Miszczak, 2011; Nagarajan et al., 2007], until
now there is not a sort of cell that can efficiently encode this information as a quantum
state and store it for a longer time. Indeed, the status of a qubit produced by the ap-
plication of a gate must be immediately after being manipulated with the application of
another gate or measured by the control system, in any case over a period of time suffi-
ciently reduced to allow the containment of the effects of decoherence. So this is really
a very important hardware challenge for quantum computing. if we cannot overcome
this obstacle, we will never be able to hope to significantly extend the scope of quantum
computation. If you allow me the coarse grain analogy, a current quantum computer is
in a situation similar to the GPUs of twenty years ago: in some specific tasks, such as
bilinear or trilinear filtering of textures with mipmapping, they achieved superior order
performance larger than the CPUs (as an example, I remember a comparison with the
Quake II graphics engine between an AMD Athlon Thunderbird CPU at 1400 MHz, with
37.5 million transistors, and a humble first generation Voodoo graphics card , released 5
years earlier and equipped with two specialized chips with one million transistors each,
operating at 60 MHz: the video card reached higher frame rates, applying bilinear filter-
ing, than those achieved with the software engine on the CPU with the application of the
crudest Nearest-neighbor filter). However, the graphics chips were severely limited, so to
apply effects not explicitly supported at the hardware level, one had to carry out complex
processing techniques based on multiple passages in the graphics pipeline, with a notice-
ably deteriorating performance, or completely give up on these visual effects. Only when
some flexibility was provided, with various releases of specifications for pixels and vertex
shaders, was it possible to first free the creativity of the developers of professional graphic
and video game applications and then inaugurate the thriving sector of the GP-GPU.

Probably, the challenge for the near future is to try to understand if, on the basis
of rapid theoretical and technological progress, it will be possible to build computers
equipped with units dedicated to quantum computation with costs, technical character-
istics, maintenance needs, etc. such that they can be deployed ubiquitously in public and
private research centers or if these solutions will be relegated forever to particular centers
adequately equipped and accessible exclusively via remote interfaces, such as the cloud.

In this work, because of significant limitations found in current and near term quantum
computers, clear advantages did not emerge for Quantum Support Vector Machine with to
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respect to conventional Support Vector Machine, when applied on conventional dataset,
not ad hoc cases designed to be difficult for classical computers. Despite this, it seems
clear that in several study cases the QSVM is able to roughly replicate the performance
of a classic SVM, which is very interesting in itself, and even more exciting just in light of
the limitations of current quantum hardware. Anyway, there are valid reasons to expect
good speed increases, applying quantum computation to solve machine learning problems,
such as classification task with Quantum Support Vector Machine. The execution time
of classical model should lag well behind the execution time of the quantum model, with
big enough datasets. Indeed, the quantum model should performs better linear algebra
computation than the classical model in terms of time complexity.

So if these physical limitations are mitigated, if accuracy and precision are improved,
then the quantum computer and quantum machine learning, like Quantum Support Vector
Machine, can be used as the basis for important future developments.
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