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Abstract

In the last decades, complex dynamical networks have attracted the attention of a highly
heterogeneous community. Indeed, they are a suitable tool to study the emergence of
collective behaviors in ensembles of coupled dynamical systems. Under simplifying and
standard assumptions on the individual dynamics and on the static interaction topology,
the control of such collective behaviors is now quite assessed. However, a deeper
understanding is required when the structures of the interconnections change with time.
Spurred by the belief that achieving insights on the interplay between the node dynamics
and the time-varying topology could be beneficial from a control perspective, in this
thesis, we focus on modeling and control of what we called evolving networks. In the
first part of the thesis, we deal with the so-called temporal networks, i.e., networks whose
structure changes in time, and show how their optimal control can be challenging in
a realistic scenario in which only a probabilistic, instead of deterministic, knowledge
of the topology is available. Indeed, controlling a large static network, while keeping
the control energy limited, has always been a chimera. Recent results suggested that
deterministic knowledge of network temporality can be exploited to substantially reduce
the energy required to control the network. In a more realistic scenario, we illustrate that
the temporality can be exploited to our advantage only provided that the variability of
the network structure matches the intrinsic time scales of the nodes we aim to control.
Considering a time-varying law is not the only way to account for the evolution of network
structure. In the second part of the thesis, we introduce the more general concept of
coevolving networks, in which both the nodes and the structure dynamically evolve in
an interdependent fashion. We exploit the potential of this modeling framework in a
socio-economic context and then show how the laws governing the coevolution of the
network topology and of the node dynamics can be properly tuned to achieve specific
control goals. In line with the idea of relaxing standard assumptions, and verifying if we
can still gain advantage from the networked nature of complex networks, in the third part
of the thesis, we focus on special static networks (networks endowed with symmetries and
networks whose structures can be negatively weighted) that can provide further challenges
and opportunities for control design.
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Chapter 1. Introduction

1 Introduction

1.1 Control of complex networks

A great variety of real-world phenomena and applications ranging from engineering
to socio-economics science can be modeled as ensembles of dynamical systems in
mutual interaction, commonly denoted complex dynamical networks. More specifically,
a complex dynamical network is constituted by a graph whose nodes are associated to
dynamical systems interconnected and mutually influenced by a set of edges. For their
descriptive power, complex networks have been extensively employed in diverse domains
of application, including power grids [1], socio-economic dynamics [2–4], modeling, and
control of spreading processes [5], and opinion formation [6–8]. The cross-fertilization
among different disciplines yielded the development of a variety of methodologies
and approaches, each of which employed to uncover a specific aspect of complex
networks. For instance, tools from statistical mechanics have been employed to identify
the mechanism underlying the formation of the topology interconnecting the dynamical
systems. Algorithms were developed to synthetically generate network topologies whose
properties resembled those observed in real networks, e.g., the small-world effect [9] or
the preferential attachment in the scale-free networks formation [10]. Dynamical systems
theory is instead, interested in elucidating how the interplay between the individual
dynamics of the nodes and the topology of interactions yields to a wide range of emerging
collective behaviors. Due to its numerous applications, spanning from distributed sensing
to cooperative unmanned aerial vehicles [11], synchronization [12] deserves a place
of honor among such collective behaviors that take place in complex networks. In
formal terms, synchronization occurs when the trajectories of all individuals converge
towards each other. Researchers investigated under which conditions synchronization
spontaneously emerges in complex networks. However, from the perspective of control
theory, the problem arises of i) inducing synchronization when it is not self-induced, and
ii) assigning a desired reference trajectory to the network. In the last decades, designed ad
hoc algorithms and control protocols have been extensively proposed to impose a desired
collective behavior to the networks, that is, to synchronize onto the desired trajectory or
to converge toward a point in the state space.

However, the strong interplay between the two constituent elements of a network,
that is, its topology and the individual nodes’ dynamics, make its control particularly
challenging [13]. Even the standard Kalman condition of controllability for linear systems
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1.2. Key research questions

needs to be adapted to properly take into account the specific nature of a complex network.
Indeed, starting from the pioneering work of Liu et al. [13], a research line has successfully
tried to relate the controllability properties of complex networks with their topological
features, identifying the minimum number of nodes to enforce controllability of all nodes.
Later works observed that, even if a network is in principle controllable, may not be
practically controllable, in the sense that the required control energy exponentially grows
with the dimension of the network [14, 15]. Then, several works have proposed strategies
to reduce the energy required to control linear networks while keeping contained the
number of control inputs, as [16], in which the targeted optimal control aims to scale
the required control energy. Whichever the network dynamics are, a powerful strategy
to face with the control of complex networks is what we can define a dimensionality
reduction approach. Indeed, provided that the entire network cannot be controlled, or
that a complete network state cannot be achieved, it is possible to employ distinctive
features of the network to extract the portion that effectively determines its controllability
properties and so affects the control design. This is the case of cluster consensus and
synchronization where distributed protocols are designed to steer the states of different
parts (i.e., the clusters) of the network towards different desired states, or of the partial
pinning control [17] in which the nodes to be controlled are selected to maximize the
fraction of nodes of the whole network that asymptotically synchronize to a reference
trajectory, or of the targeted optimal control [18] where a sized number of nodes are
selected to be controlled through a small number of control inputs and a small amount of
control energy.

Therefore, outlining, the general goal of control networks theory is that of exploring
the controllability properties of a network, providing the “space" of the controllable
network’s states, and designing suitable protocols by taking advantage of the structured
nature of the network. As in real life, it is not rare that one has to accept the inability to
control a complex network and fall back on the understanding of the intriguing nature of
the system. A byproduct of such awareness, as in real life, is the happiness of controlling
even partially the network or of achieving by chance the desired network state without
dreaming the impossible mission of controlling the entire network. Such awareness will
be useful in reading this work in which we propose a daring step forward in controlling
complex networks.

1.2 Key research questions

Most of the results of control networks theory have been achieved by means of a
fundamental assumption on the interactions among the nodes of the network independently
on what they represent:

“The edges of the network do not change in time.”
This assumption is, of course, a good approximation when the variability of the interactions
can be neglected respect to those of the nodes, or, in other words, when there exists
a sufficient time-scale separation between them. Relaxing this assumption means
considering that the edge sets is a time-varying set and eventually can be associated with
a specific dynamics describing the evolution of the interactions. The class of complex
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Chapter 1. Introduction

networks whose structure changes in time has been labeled differently during the last
20 years, here and in the rest of the thesis we denote them evolving complex dynamical
networks, or for brevity, evolving networks. The class includes temporal networks [19],
adaptive networks [20], and what we will formally define in Part , Chapter 1 as coevolving
networks. Different from [21], these concepts are framed within complex networks of
dynamical systems, where the evolution of the network topology affects the dynamics
at the nodes. A network can exhibit temporality in several ways, and indeed each type
of evolving network model serves different purposes. For instance, temporal networks
are employed to model cases in which the interactions among the nodes can be active or
inactive for a nonnegligible time. The adaptive networks, instead, model the virtuous
feedback loop existing, in some scenarios, between network state and the topology, that is,
the topology changes depending on the network state and vice-versa. Finally, coevolving
networks face with an extra dimension of temporality and introduce a different concept of
the network state. Indeed, the edges’ time behaviors are described by dynamical systems.
Consequently, both the switching behavior of the temporal networks and the feedback
loop of the adaptive networks are considered in the coevolving networks. In all the cases
where these features are nonnegligible, static networks do not fit.

The analysis of such kind of networks offers a higher descriptive power especially of
some phenomena as social systems [22], opinion formation [23,24], biological systems
as neural networks [25], economic systems [2, 3, 26], technological networks [27] or in
epidemics spreading [28]. The price of this finer-grained modeling is in introducing
undesired complications that limit the applicability of the standard analysis techniques.
Their control is challenging as well. Indeed, on one side we generally prefer to work
with time-invariant systems for which several results are well assessed and a plethora of
proprieties can be employed. On the other the cost associated with a control that has to
chase a so tangled dynamics risks to be prohibitive. However, the daily experience of
continuously diving in temporality and the fact that history has already taught us how
complex networks can be a useful tool in modeling and control real-world systems spur
us to invest in a refurbishment of our understanding of complex networks.

Therefore, in this work, we present both modeling and control instances as a possible
way to face evolving networks. Specifically, following the footsteps of classical complex
networks scientists, with this work we attempt to give a reply as complete as possible to
the following big vision questions:

1. When is it possible to extend the obtained results for the traditional complex
dynamical networks to the aforementioned evolving networks?

2. What is the gain of considering evolving rather than static networks worth from a
modeling and control perspective?

3
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1.3 Contribution of the thesis

In this thesis, we answer to the above research questions with contributions in different
areas.

• In part I, we show how the control of temporal networks can be challenging in real
scenarios. Indeed, the authors of [29] show the possibility to take advantages from
controlling a temporal network respect with a static one. This no intuitive result is
claimed by means of standard control measures, as the size of the controllability
space, the control energy and the locality of the controlled trajectory. In this
work, we investigate if such advantages hold in a realistic scenario in which at the
beginning of the control horizon, rather than having a deterministic knowledge of
the temporal network, we can only face with its probabilistic description (we will
name this kind of networks stochastic temporal networks, see Definition 4.1).

• In part II, we give a formal definition of coevolving networks (see Definition 7.1).
Then, we offer an instance of how to use this framework as a modeling tool for
describing socio-economic phenomena [2, 3] (Part II, Chapter 8). Moreover, we
state and solve two control problems concerning the pinning synchronization of
coevolving networks (Part II, Chapters 9). Specifically, we address the problem of
selecting edge dynamics for pinning synchronizing a network while minimizing the
control energy required to reject local perturbations. Then, in the same context of
pinning control, we show how to dynamically evolve the edges weights to maximize
the class of systems that can be synchronized.

• In part III, we present two types of networks whose topology peculiarities give
rise some difficulties in control design. In Chapter 12, we present networks whose
topologies endows with symmetries [30]. In [31, 32], is pointed out that networks
where the interactions couplings among the nodes is diffusive and that endow
symmetries are not controllable. In Chapter 12 we reformulate the problem of
controlling networks with symmetries when the interactions are coded by the
adjacency matrix and give an example of how symmetries can be used to identify
the effective size of the network to control and then taking advantage even from
networks that apparently prevent from controlling their collective behaviors [33].
In Chapter 13, we present signed graphs as a useful tool for modeling interactions
among the nodes when they can be both cooperative and antagonistic. Then, we
propose a strategy for solving a containment control problem in presence of large
networks [34]. Indeed, provided that contain the entire network state within a given
region could be unfeasible or undesired, we provide an algorithm to maximize
the portion of the network that can be contained with a limited number of control
inputs. This part is focused on topics that are of great interest per se, and therefore
we studied them in the simpler context of static graphs, leaving the implications for
the analysis of temporal and coevolving networks for future works.
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Chapter 1. Introduction

1.4 Notation

In this section, we give the general notation we will use throughout the thesis.
Notation concerning sets is as follows, Q being a generic set:

• N is the set of natural numbers including zero, andN>0 is the set of natural numbers
excluding zero,

• R is the set of real numbers, R≥0 excludes negative numbers, and R>0 excludes
non-positive numbers,

• ∅ is the empty set,
• if Q is finite, |Q| is its cardinality.
• If Q ⊂ R, the notation Q ≤ 0 means that ∀B ∈ Q, B ≤ 0 (analogously for ≥, =, etc.),

Notation concerning operators is as follows:

• the dot diacritic ¤ represents total derivative with respect to time,
• m0
m1

is the partial derivative of 0 with respect to 1,
• ∇ is the gradient and is a row vector,
• ⊗ denotes the Kronecker product,
• × is the Cartesian product,
• T is the transpose,
• := means “is defined as”,
• the right vertical bar with a subscript means “evaluated with the subscript as a
constraint”. For example, “ 5 (G, H) |G=1” is the same as “ 5 (1, H)”.

Notation concerning scalars is as follows, B ∈ R being a generic scalar:

• |B | is the absolute value of B (although if B ∈ C, then |B | is the module of B),
• sign(B) is its sign (with sign(0) = 0),
• bBc is the largest integer A such that A ≤ B,
• dBe is the smallest integer A such that A ≥ B.
• e is Euler’s number.

Notation concerning vectors is as follows, v ∈ R= being a generic vector:

• normally we will denote a vector by a lower-case bold letter; if not specified
differently, we assume it is a column vector,

• |v| = [|E1 | |E2 | · · · |E= |]T,
• sign(v) = [sign(E1) sign(E2) · · · sign(E=)]T,
• 1= the =-column vector of 1 and 0= is the null column vector with = entries; we
will omit the subscripts when not necessary,

• diag(v) ∈ R=×= is the diagonal matrix having the elements of vector v on its
diagonal,

• ‖v‖ ? is the ?-norm of v, with ? being equal to 2 if it is omitted.

Notation concerning matrices is as follows, � ∈ R=×< being a generic matrix:

• �8 9 is the (8, 9)-th element of �,

5



1.4. Notation

• _8 (�) is its 8-th eigenvalue, with the eigenvalues being sorted in an increasing order
if they are all real (_min (�) := _1 (�) is the smallest one),

• ‖�‖ ? is the ?-norm of �, with ? being equal to 2 if it is omitted,
• The notation � > 0(� ≥ 0) indicates that � is positive (semi-) definite (analogously
for negative definiteness),

• �= is the = × = identity matrix; we will omit the subscript when not necessary,
• 0=×< is the = × < null matrixwe will omit the subscript when not necessary,
• R(�) = {�v | v ∈ R<} denotes the column space of �.

6
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Control of temporal networks
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Chapter 2. Controlling linear networks

2 Controlling linear networks

In this background chapter, we focus on a topic that has been extensively studied in the
literature on complex networks, that is, the problem of controlling a linear dynamical
network, see e.g., [13, 15, 35, 36] . Specifically, we consider a set of # scalar linear
dynamical systems coupled on a graph G = {V, E}, whose dynamics are described by

¤x(C) = �x(C) + �u(C)
x(0) = x0

(2.1)

where:

• x = [G1 (C), . . . , G# (C)]) ∈ R# is the network state vector, which is the stack of the
states of the # network nodes,

• x0 ∈ R# is the initial network state,
• C ∈ R≥0 is time,
• � ∈ R#×# is the adjacency matrix associated to graph G,
• � ∈ R#×? is the input matrix,
• u ∈ R? is the control input vector.

In particular, we focus on the minimum energy control of a complex network. Indeed,
it has been shown that, even though a network is theoretically controllable, our ability
to actually control it is limited, since an excessive amount of energy might be required.
Therefore, in what follows, we start by stating the minimum energy control problem for
static networks and then report some useful results for the case of temporal networks,
which is the goal of Part I.

2.1 Minimum energy control of complex networks

The classic control-theoretic questions, e.g., “is the system controllable (reachable)?”,
“what is the minimum control energy to drive a system toward a target state?”, also apply
to complex networks. In the last decade, researchers have tried to leverage the network
structure of (2.1) to relate the properties of the graph describing the interactions among
the network nodes to these classic control-theoretic questions. To start with, we report the
following definitions of reachability and controllability for network (2.1).

9



2.1. Minimum energy control of complex networks

Definition 2.1 (Reachability). A network state x 5 = x(C 5 ) is reachable at time C 5 if
for some C0 < C 5 , ∃u(C), with C ∈ [C0, C 5 ] that transfers the network state from the
origin at C0 to x 5 at C 5 .

All the reachable network states x 5 constitutes a linear subspace of the state space, the
reachability space, ΩA .

Definition 2.2 (Controllability). A network state x0 is controllable at C0 if for some
C > C 5 there exists u(C) that transfers the network state from x0 at C0 to the origin in
C 5 .

As for ΩA , all the controllable network states x0 define the controllable subspace of the
state space, Ω2 . In what follows, in virtue of the Reduction Theorem (Theorem 5, page
266 of [37]) stating the equivalence, for linear systems, and so for linear networks, between
the controllability on [C0, C 5 ] and the reachability on [C0, C 5 ], without loss of generality,
we will refer to the reachability problem.

From Definition 2.1 if x 5 is reachable at C 5 , there exists an input u(C) such that

x 5 =
∫ C 5

C0

e�(C 5 −g)�u(C)dg

then, the range of the integral map

!A (u, C0, C 5 ) :=
∫ C 5

C0

e�(C 5 −g)�u(g)dg

coincides with the reachability subspace, ΩA for system (2.1). Moreover, it can be shown
that

R(!A ) ≡ R(,A )

where,A is defined as follows

Definition 2.3 (Reachability gramian). The reachability gramian of network (2.1) is
the symmetric positive semidefinite matrix

,A (C0, C 5 ) :=
∫ C 5

C0

e�(C 5 −g)��) e�
) (C 5 −g)dg. (2.2)

Therefore, an input u(C) that attempts to the desired transfer state exists if and only if

x̄ 5 := x 5 − e�(C 5 −C0)x0 ∈ ΩA = R(,A )

and is of the form
u(C) = �) e�

) (C 5 −C)( (2.3)

where ( is the solution of,A( = x̄ 5 .

10



Chapter 2. Controlling linear networks

It is worth to be noted that the control input resulting from (2.3), that is,

u(C) = �) e�
) (C 5 −C),−1

A x̄ 5 (2.4)

is also the input that minimizes the control effort, that is, it is the exact solution of the
following optimal control problem

min
u

J(u(C)) :=
1
2

∫ C 5

C0

u(C)) u(C)dC

s.t.
¤x(C) = �x(C) + �u(C)
x(C0) = x0

x(C 5 ) = x 5

(2.5)

Therefore, for the Minimum Cost Control Theorem [37], if a network pair (�, �) is
controllable on [C0, C 5 ], then∀ x0, x 5 ∈ R# , the control input (2.4) steers the network from
x0 to x 5 , in finite time, and with the minimum possible control energy

∫ C 5
C0

u(C)) u(C)dC.
For its role in the control of linear networks, we report here some properties of the
reachability gramian (2.2)1 that will turn useful in reading the next chapters. Indeed, it
concurrently concerns

1. The reachability of the network.
As R(!A ) = R(,A ), all the states that can be reached at time C 5 are in the range
of,A . Verifying that det(,A ) ≠ 0 is equivalent to: i) the traditional Kalman rank
condition [38] and, ii) R(!A ) = R# .

2. The control energy of the network.
If in (2.4) x0 = 0, the minimum energy of problem 2.5 is J★(u(C)) = x)

5
,−1
A x 5 .

This implies that, denoting _8 (,A ), v8 (,A ) the eigenvalues and the corresponding
orthonormal eigenvectors of the nonsingular reachability gramian, network (2.1)
can reach, for a unit cost, any point of the energy-ellipsoid whose semiaxes are
v8 (,A )/

√
_8 (,A ) (see Figure 2.1 for the simplest case of two nodes). Therefore, if

we sort the eigenvalues in ascending order _1 ≥ . . . ≥ _# , then v# identifies the
most energetically demanding direction to reach.

From the above discussion, the required energy to control a network is strongly related to
the singularity of the reachability gramian,A , then a proxy of the efficiency of reaching a
specific network state is the reciprocal condition number W of,A , defined as

W :=
_min (,A )
_max (,A )

.

This is the main issue in considering (2.1) as it is, a network. Indeed, in [14], it is shown
that, even for a chain topology, that is �8 9 = X8, 9+1 and �8 = X18 for which A0=: (Ωr) = # ,

1We refer to the reachability gramian but similar results hold for the controllability gramian.
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2.1. Minimum energy control of complex networks
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Figure 2.1: In the top-left panel the controlled nodes states’ trajectories of the toy network
depicted in the top-right panel with initial conditions x0 = [0 0]) , forced by the control
signal plotted in green in the bottom-left panel to be steered towards x 5 = [1 2]) in one
unit time. In the bottom-right panel the energy ellipse whose semi-axes are v8/

√
_8 with

8 = 1, 2.

as the size of the network chain increases, the gramian becomes nearly singular. Moreover,
as the number of driver nodes decreases, W exponentially decreases towards zero.

Unfortunately, network topologies are not designed, in general, to be efficiently
controlled, thus a trivial workaround to be sure to control the network by spending the
minimum possible control energy is that of having ? = # drivers nodes. The advantage
of having � ∈ R#×# is that it allows keeping the controlled trajectories local [14], that is,
traveling directly towards the target state, x 5 , instead of wandering around the state space.
As this is the exception rather than the rule, most of the issues coming from considering
(2.5) in terms of control of networks are related to the fact that the control signals only
affect a limited number of inputs (? < #) and that there is no guarantee that the topology
will be energetically efficient [35,39]. Summarizing, ensuring the Kalman condition is
verified or equivalently the gramian is nonsingular, only theoretically guarantees we are
able to control a network, as in practice, unbearable energy costs might limit our ability
to control real large networks.
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Chapter 3. Control of temporal networks

3 Control of temporal networks

In the direction of finding a way to reduce the control energy without increasing the
number of drivers, the authors of [29] suggested that exploiting temporality, that is,
the network variability over time, could substantially reduce energy requirements. In
what follows we give some preliminaries on temporal networks (Section 3.1) and then
summarize the results shown in [29] (Sections 3.2–3.4).

3.1 Temporal networks

The first natural extension of static networks, allowing to explicitly account for the
time intervals at which the interactions among the agents occur, is represented by
temporal networks. In this thesis, we refer to temporal networks whose graphs are
denoted interval graphs in [19], where the nodes are given, while the edges are active
over a set of consecutive time intervals T = {[C0, C1), . . . , [C<−1, C<)}, that is, the
interactions are encoded in an ordered sequence of time-invariant adjacency matrices
A = {�0, �1, . . . , �: , . . . , �<−1}. Moreover, we denote the pair {�: , [C: , C:+1)}, the
:-th time-snapshot or, for brevity, snapshot. A wide range of natural and artificial systems
can be modeled as interval graphs. For instance, this is the case of ensembles of mobile
agents, where proximity plays a relevant role in determining their interaction patterns: the
edge between a pair of agents is only active in the time intervals when they have been
sufficiently close. Other notable examples of systems where interval graphs modeling is
required include computer networks where continuous network connectivity may lack [40],
neuroscience [25], and finance [41], among the others. The unavoidable complication
due to an extra dimension, time, is, sometimes, worth the effort in terms of the increased
accuracy in understanding the phenomenon the network is describing and therefore in
controlling such phenomenon, as we will show next.

The authors of [29] presented a threefold exciting result that would indicate a
fundamental advantage in facing with the control of temporal rather than static linear
dynamical networks. To allow comparing temporal and static networks, thus allowing to
appreciate this advantage, for a given temporal network, they define its static counterpart
as the corresponding aggregated network, with adjacency matrix �B that is the average of
each of the adjacency matrices �: , for : = 0, . . . , < − 1(see Figure 3.1 for an example).

13



3.2. Controllability of temporal networks

They show that for the temporal network described by

¤x(C) =�:x(C) + �u(C) C ∈ [C: , C:+1) : = 0, . . . , < − 1
x0 =0,

(3.1)

1. The controllable subspace of network (3.1) never shrinks respect with that of its
static counterpart, that is, network (3.1) with �B for all C ∈ [C0, C<) instead of �: in
[C: , C:+1) : = 0, . . . , < − 1.
Indeed, even if one or more snapshots1 are uncontrollable, the entire temporal
network can be controllable or, at least more controllable than its static counterpart
(see Figure 3.1 for an example). To quantify how much more controllable it is, they
define (C ((B) as the number of snapshots required to have full controllability of the
temporal (static) network. Unfortunately, there is no proof of the existence of an
order relation between (B and (C (see details in Section 3.2).

2. The minimum energy required to steer the temporal network from x0 to x 5 is less
than the energy required to control its static counterpart from x0 to x 5 by orders of
magnitude (see details in Section 3.3).

3. Some real systems are such that the states of the nodes should not take arbitrary
values. For instance, the generator frequencies in the power grid can only vary
within a narrow range around their normal operating point, without inducing failures.
Therefore, the controlled trajectories cannot arbitrarily wander into the state space
but must exhibit a high degree of locality [14]. To test the degree of locality in
temporal networks, they compute the length of the network controlled trajectories,
as ! =

∫ C 5
C0
‖ ¤x(C)‖dt (see details in Section 3.4).

3.2 Controllability of temporal networks

Consider the temporal network in (3.1). The controllable subspace, Ω2 is

Ω2 = 〈�<−1 | �〉 +
<−2∑
:=0

:∏
9=<−1

e� 9 X 9 〈�: | �〉 (3.2)

where 〈�: | �〉 =
∑#−1
8=0 �8

:
R(�) is the controllable subspace of the :-th snapshot with

time interval X: := C:+1 − C: . Therefore, network (3.1) is controllable if

Ω2 ≡ R# 2. (3.3)

According to Equation (3.2), the controllable subspace will never shrink as the topology
varies. Hence, it is possible to define (C as the minimum number of snapshots before
network (3.1) becomes fully controllable.

1Note that as we are dealing with controlled temporal networks with snapshot we denote the triplet
{�: , �: , [C: , C:+1) }. However, as we will consider �: = � for all :, we can still identify the snapshot through
the pair {�: , [C: , C:+1) }.

2Note that condition (3.3) for a static network (i.e., with �: = �), corresponds to the traditional Kalman
rank condition.
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Chapter 3. Control of temporal networks

𝑡𝑡

𝑢𝑢 𝑢𝑢 𝑢𝑢 𝑢𝑢

𝑡𝑡

+ =
dim Ωs = 2

𝑢𝑢 𝑢𝑢 𝑢𝑢

+ =
dim Ωs = 3, 
𝑆𝑆𝑠𝑠 = 3+
𝑡𝑡

𝑢𝑢 𝑢𝑢 𝑢𝑢 𝑢𝑢

dim Ωt = 3, 𝑆𝑆𝑡𝑡 = 2

𝑡𝑡

𝑢𝑢 𝑢𝑢

(𝑎𝑎)

(𝑏𝑏)

(𝑐𝑐)

(𝑑𝑑)

Figure 3.1: Toy example of a linear temporal network [29], as an ordered sequence of
static graphs (a). In (b) the static graph obtained by aggregating the first two snapshots of
the temporal graph depicted in (a) is uncontrollable as the dimension of its controllability
space is less than 3, i.e., |ΩB | < # . In (c), it is shown that by adding an extra snapshot
the corresponding static network is controllable as ΩB ≡ R# , as (B = 3. However, the
temporal network becomes fully controllable at the second snapshot as (C = 2 (Panel (d)).
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3.3. Minimum energy control of temporal networks

To make the point clear, in Figure 3.1, we report the toy example shown in [29].
Specifically, in Panel (a) of Figure 3.1 a 3-node temporal network with uncontrollable
snapshots is considered, and in panels (b)-(d) is shown the meaning of (C and of (B.
Indeed, while to obtain a corresponding controllable static network (B = 3 snapshots are
needed, the temporal network is controllable after (C = 2 snapshots. It has to pointed
out that there is no formal proof of the relation between (C and (B for a given temporal
network.

3.3 Minimum energy control of temporal networks

To quantify how a wider controllable subspace with respect to that of a static network
reflects in a more efficient control action, the authors of [29] search for the minimum
energy control input u(C) as the solution of the following conceptual optimal control:

min
u

1
2

∫ C 5

C0

u(C)) u(C)dC

s.t.
¤x(C) = �:x(C) + �u(C) C ∈ [C: , C:+1) : = 0, . . . , < − 1
x(C0) = x0

x(C 5 ) = x 5

(3.4)

where �: is the static adjacency matrix at the :-th snapshot, i.e., in [C: , C:+1). Then, they
reformulate problem (3.4) by exploiting the Bellman Principle [42] according to which
the control energy stockpiled over each snapshot, say up to the :-th snapshot, must also
be minimal for the control sub-problems of traveling between the initial and final states of
each snapshots, say (x: , x:+1) for all : = 0, . . . , < − 1. Indeed, in each snapshot : , the
optimal control input according to (2.4) is

u(C) = �) e�
)
:
(C:+1−C)c: for C: ≤ C ≤ C:+1, : = 0, . . . , < − 1 (3.5)

with c: = ,−1
:

(
x:+1 − e�: (C:+1−C: )x:

)
where the (: + 1)-th waypoint, x:+1, is the real

decision variable in the :-th control subproblem. Therefore, after some algebra, the
unfeasible problem in (3.4) can be written in a mathematically treatable form as follows

min
c

1
2

c),c

s.t.
�c = d

(3.6)

where:

• c = (c)0 , . . . , c
)
<−1)

) ∈ R<# ;
• d = x< − e�<−1 X<−1 . . . e�0 X0x0 ∈ R# ;
• , = diag(,0,,1, . . . ,,<−1) ∈ R<#×<#
with,: =

∫ C:+1
C:

e�: (C:+1−C)��) e�): (C:+1−C)dC ∈ R#×# ;
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Chapter 3. Control of temporal networks

• � = (e�<−1 X<−1 . . . e�1 X1,0, . . . , e�<−1 X<−1 . . . e�:+1 X:+1,: , . . . ,,<) ∈ R#×<#

with < the total number of snapshots and X: := C:+1 − C: . The optimal solution turns out
to be

c∗ = ()
(
(,()

)−1
d, (3.7)

with the corresponding minimum control energy being

�∗ (C0, C 5 ) =
1
2

d),−1
eff d, (3.8)

where

• C 5 ≡ C< ∈ R≥0
• ( =

(
e�<−1 X<−1 . . . e�1 X1 , . . . , e�<−1 X<−1 . . . e�:+1 X:+1 , . . . , �#

)
∈ R#×<# ;

• ,eff = (,(
) is called effective gramian matrix. Note that,eff ≠ , as the effective

portion of the network concurring to the increase of the control energy does not
correspond to the entire considered temporal network.

As the control energy grows as x0 and x 5 come further apart, if we set x0 = 0 and
normalize (3.8), that is,

�̄ =
x)
5

(
(,()

)−1 x 5
2x)

5
x 5

(3.9)

we can obtain the following bounds

1
2_max (,eff)

≤ �̄ ≤ 1
2_min (,eff)

.

Besides the scaling behavior of the energy bounds, to make the comparison between
the energy required to control a temporal network with respect to its static counterpart,
the authors of [29] show by numerical simulations, both on real and synthetic data, that
�∗temporal << �

∗
static. Practically speaking, this apparently counterintuitive finding can be

explained by considering that the temporality of a network allows its state to move along
the more efficient directions when it is possible (i.e., when the topology changes in a
favorable direction) and eventually to stop when the cost of control is prohibitive. On the
contrary, in a static network we have no choice and we must control also in energetically
costly directions. However, the orders of magnitude in the energy saving are strongly
linked with the choice of the static counterpart as we will show in Section 4.2.

3.4 Locality of the controlled trajectories

The locality of the controlled trajectories is an extra measure of the efficiency in controlling
a network. Indeed, as shed out in [14], whenever the control input and the energy required
to steer a network from an initial state to a final state in finite time is, by chance,
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3.4. Locality of the controlled trajectories

numerically computable, if the drivers nodes are less than the number of nodes, the
controlled trajectories show a high degree of non-locality. Let,

! =

∫ C 5

C0

‖ ¤x(C)‖dC (3.10)

be the length of the optimally controlled trajectory of a network steered from x0 to x 5 ,
[ := ‖x 5 − x0‖ being their distance, and for the sake of simplicity, set x0 = 0. Then, it
easy to see that !, independently on the temporality of the network, increases linearly
with ‖x 5 ‖, indeed the controlled trajectory of a static network is

x(C) = ,C0 ,C,−1
C0 ,C 5 e�(C 5 −C0)x 5

where ,C0 ,C =
∫ C
C0

e�(g−C0)��) e�) (g−C0)dg. The control energy in (3.9) decreases by
orders of magnitude with respect to that of its static counterpart as, for a fixed [, the
locality degree [14] decreases by orders of magnitude as numerically illustrated in [29].
Indeed, the general non-locality of the controlled trajectories is a natural consequence
of the fact that not all the eigen-direction are energetically efficient and that to target the
final state the controller could travel zigzag in the state space. On the contrary, the more
locality of the temporal networks trajectories, again, is a byproduct of the possibility of
the controller to move along more energetically efficient direction and straight to x 5 .
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Chapter 4. Control of stochastic temporal networks

4 Control of stochastic temporal
networks

In this Chapter we present the problem of controlling temporal networks in the scenario
where only a probabilistic description of the network evolution is available [43]. To do so,
we first introduce the concept of stochastic temporal graphs.

Definition 4.1 (Stochastic temporal networks). A stochastic interval graph defined
over a set of consecutive time intervals T = {[C0, C1), . . . , [C<−1, C<)} is an interval
graph in which the adjacency matrices are independently drawn from a family
F = {�8}8∈I according to a given probability distribution. We will refer to it also as
a stochastic temporal graph.

Hence, the sequence of adjacency matrices regulating the network topology can be viewed
as a stationary stochastic process. To simplify the notation, we model this by enforcing
that at each time-instant the realization �f (:) =

[
08 9 (f(:))

]=
8, 9=1 depends on the value

of the i.i.d. switching signal f(:). Consequently, the stochastic temporal networks we
aim to control are described by

¤x(C) = �f (:)x(C) + �u(C), C ∈ [C: , C:+1), : = 0, 1, 2, . . . , < (4.1)

where:

• �f (:) ∈ R#×# is the adjacency matrix of the stochastic temporal graph in the :-th
snapshot;

• � ∈ R#×? is the time-invariant input matrix that identifies the set of ? ≤ # driver
nodes which we directly influence through the control input u(C) ∈ R# ;

• [C: , C:+1) is the :-th snapshot.

The main goal is to uncover when the opportunities offered by temporality (and reported
in Chapter 3) prevail over uncertainty.

In this stochastic scenario,
does temporality still represent an advantage for network control?

To answer this question we must first find the signal u(C) that minimizes the expected
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4.1. Minimum energy control of stochastic temporal networks

energy required to drive the network from an initial state x(C0) to a final state x(C<), that
is,

min
u(C)

E [� (u(C))] =
1
2

∫ C<

C0

u(C)) u(C)dC

s.t.
¤x(C) = �f (:)x(C) + �u(C) C ∈ [C: , C:+1) : = 0, . . . , < − 1
x(C0) = x0

x(C 5 ) = x 5

(4.2)

Note that problem in (4.2) is unsolvable as it is, since the # constraints on the network
state depend on a stochastic variable �f (:) . Therefore, in what follows we reformulate
and solve (4.2) by means of tools by Stochastic Optimal Control theory.

4.1 Minimum energy control of stochastic temporal networks

To do so we must first give a condition for controllability that suits this scenario. As the
sequence of future snapshots is unknown a priori, guaranteeing that a temporal network is
controllable, implies selecting a � such that any possible realization of the pair (�: , �),
: = 0, . . . , < − 1 is controllable. This ensures that in each snapshot

u∗ (C) = �) e�
)
f (:) (C:+1−C: ),−1

: (x:+1 − e�
)
f (:) (C:+1−C: )x: ) (4.3)

where by x 9 we denote x(C 9 ), is the well-defined minimum energy control input.
Under this assumption, to investigate whether temporality can mitigate the control

effort, in what follows we employ Stochastic Optimal Control. Therefore, we find the
signal u(C) that minimizes the expected energy required to drive the network from an
initial state x0 to a final state x<. It turns out that minimizing (4.2) implies transitioning
between any two consecutive waypoints with minimum energy. This can be achieved,
in each snapshot, by means of the classic minimum energy control input (4.3). At the
onset of the :-th snapshot (i.e., at time C: ), as u∗ (C) is a function of x: and x:+1, the
actual choice for the decision maker is the next waypoint. Following this observation,
also our problem becomes that of finding the optimal sequence of waypoints with the non
negligible difference of not knowing, at C: , the future actual sequence of the adjacency
matrices, i.e., �f (:+1) , . . . , �f (<−1) .

Denoting by e: the vector [f(:), . . . , f(<−1)]) , we pose the following optimization
problem, which consists in minimizing the expected control energy:

min
u(C)

�temporal := E
e1
[� (u)]

s.t.
¤x(C) = �f (:)x(C) + �u(C), C ∈ [C: , C:+1), : = 0, . . . , < − 1,

x(C0) = x0, x(C<) = x<, �f (0) = �0

(4.4)
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Chapter 4. Control of stochastic temporal networks

Figure 4.1: Control energy requirements in the deterministic (blue) and stochastic
(red) scenario for the yeast SaccharmoycesCerevisiae. The solid lines are theminimum
energies averaged over 103 final states x(C<), selected on the unit hypersphere centered in
the origin, as a function of X = (C<− C0)/<. The shaded areas are enclosed by the observed
minimum and maximum energies. The minimum energy feedback control strategy is
implemented both in the stochastic and in the deterministic scenario (see the numerical
settings details in Section 6.2, Appendix 6). The picture shows that in the stochastic
scenario the control can be orders of magnitude more energetically demanding with
respect to the deterministic scenario. The energy gap tends to vanish when X increases,
that is, when the temporality becomes slower.
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4.1. Minimum energy control of stochastic temporal networks

where
E
e1
[� (u)] =

∫ +∞

−∞
· · ·

∫ +∞

−∞
� (u) 5e1 (e1)df(1) · · · df(< − 1),

with 5e1 being the joint probability distribution of the variables f(1), . . . , f(< − 1). To
solve this problem, some preliminary considerations have to be made on the cost function.
Indeed, we can write

E
e1
[� (u)] = E

e1

[
<−1∑
:=0

�: (u: )
]
, (4.5)

where
�: (u: ) =

∫ C:+1

C:

u: (C)) u: (C)dC,

and u: (C) is the restriction of u(C) to [C: , C:+1), for : = 0, . . . , < − 1. As anticipated,
notice that for given values of x: , x:+1, and f(:), the input u∗

:
minimizing �: is the

well-known solution of the following standard minimum energy control problem:

min
u:

�: (u: )

s.t.
¤x(C) = �f (:)x(C) + �u(C), C ∈ [C: , C:+1),

x(C: ) = x: ,
x(C:+1) = x:+1.

(4.6)

Namely, the optimal solution is

u∗: (x: , x:+1, f(:), C) = �
) e�

)
f (:) (C:+1−C),−1

:

(
x:+1 − e�f (:) (C:+1−C: )x:

)
, C ∈ [C: C:+1),

(4.7)
where

,: =

∫ C:+1

C:

e�f (:) (C:+1−g)��) e�
)
f (:) (C:+1−g)3g

is the reachability gramian1. Noting that �: (u: ) ≥ �: (u∗: ) for all possible x: , x:+1, and
f(:), we can conclude that the structure of the solution of (4.4) is given by Equation (4.7).
This entails that problem (4.4) can be viewed as a concatenation of problems (4.6) in each
of which x: is given and x:+1 is the actual decision variable. Accordingly, solving (4.4)
becomes equivalent to select the optimal waypoints x∗1, . . . , x

∗
<−1. Therefore, substituting

(4.7) in the objective function (4.5), we have

�: (x: , x:+1) =
(
x:+1 − eX: �f (:) x:

))
,−1
:

(
x:+1 − eX: �f (:) x:

)
. (4.8)

Hence, we can rewrite the minimum energy control problem as

min
x1...

x<−1

E
e1

[
<−1∑
:=0

�: (x: , x:+1)
]
, (4.9)

1We remark that the well-posedness of problem (4.6) requires the pair (�f (:) , �) to be reachable.
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Chapter 4. Control of stochastic temporal networks

where, at each : , �f (:) is known. The following theorem provides a recursive solution
for computing the optimal waypoints.

Theorem 4.2. The solution of the optimal control problem (4.9) is given by

x∗: = %:x< +&:x:−1, : = 1, . . . , < − 1, (4.10)

where

%: =

(
,−1
:−1 +

<−1∑
8=:

E
e:

[
'8:
)
,−1
8 '8:

] )−1 <−1∑
8=:

E
e:

[
'8:
)
,−1
8 �8:

]
,

&: =

(
,−1
:−1 +

<−1∑
8=:

E
e:

[
'8:
)
,−1
8 '8:

] )−1

,−1
:−1eX:−1�f (:−1) ,

(4.11)

with
'8: =

{
eX: �f (:) −&:+1, 8 = :,

'8:+1&:+1, 8 > :,
: = 0, . . . , < − 2,

�8: =

{
%:+1, 8 = :,

�8:+1 − '
8
:+1%:+1, 8 > :,

: = 0, . . . , < − 2,

'<−1
<−1 = eX<−1�f (<−1) , �<−1

<−1 = � .

(4.12)

Furthermore, the associated optimal cost is given by

�∗temporal = E
e1

[
<−1∑
8=0

(
�80x< − '80x0

))
,−1
8

(
�80x< − '80x0

) ]
. (4.13)

Proof. See Section 6.1 in Appendix 6. �

To shad out that (4.13) is equivalent to (3.8) when the temporal network is not stochastic,
i.e., �f (:) = �: , we report here the optimal value of the control energy when x0 = 0,
X: = X ∀: and < = 2. According to (3.8), the optimal control energy is:

�★2 =
1
2

x)2
(
(,()

)−1
x2 =

1
2

x)2
(
e�1 X,0e�

)
1 X +,1

)−1
x2 =

1
2

[
,−1

1 −,
−1
1 e�1 X

(
e�

)
1 X,−1

1 e�1 X +,−1
0

)−1
e�

)
1 X,−1

1

]
x2

(4.14)

where the last inequalities comes from applying the Inversion Lemma2. Now, (4.13) in
the same instance can be rewritten as

�∗2 =
1
2

x)< E
e (1)

[
<−1∑
8=0

�8 )0 ,−1
8 �80

]
x< =

1
2

x)<,expx<.

2For the Inversion Lemma, given matrices �, � , if � = ���, the inversion of their sum is (� + �)−1 =
�−1 − �−1� (��−1� +�−1)−1��−1.
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4.2. Benchmark energy

with ,exp := Ee (1)
[∑<−1

8=0 �8 )0 ,−1
8
�80

]
being the expected gramian in (0, C2). After

some calculations, it can be seen that when �f (:) = �: , that is, when we drop off the
expected values, the expression of,eff coincides with that of,exp becoming(

e�1 X,0e�
)
1 X +,1

)
.

As a gramian,,exp encodes the energy structure of the stochastic temporal network and
thus its trace represents the expected energy required to reach any point on the ellipsoid
whose semiaxes are v8 (,exp)/

√
_8 (,exp) starting from the origin (see Section 2.1). We

leverage the developed machinery to compare the tasks of controlling a temporal network
in a deterministic and in a stochastic setting. An exemplary illustration of the effect
of uncertainty is reported in Figure 4.1, which depicts the minimum energy required
to control a temporal network obtained from the time-varying protein-protein binding
interactions [44], condensed over consecutive time windows of equal length X. Compared
with the deterministic case where the sequence of snapshots is known a priori, and thus
the waypoints can be computed in advance, the stochastic setting demands orders of
magnitude more energy when the network temporality is fast (small X). This difference
reduces and asymptotically vanishes as the duration of each snapshot increases. In
what follows we delve into the above points, that is, the relation with the selected static
benchmark and the impact of the duration of each snapshot on the amount of energy
required.

4.2 Benchmark energy

To support the evidence of Figure 4.1, we introduce an appropriate benchmark for the a
priori expected minimum energy (4.13) required to drive the stochastic temporal network
(4.1) from x0 to x<. Notice that, as we consider a i.i.d. process f(:), the marginal
probability distribution 5f (:) (f(:)) will be the same for all : , that is, we can write

5f (:) (f(:)) = 5f (f).

Now, for each feasible realization of f, we can consider the following static optimization
problem where matrix �f (:) = �f for all ::

min
u

∫ C<

C0

u(C)) u(C)dC

s.t.
¤x(C) = �fx(C) + �u(C), C ∈ [C0, C<),

x(C0) = x0,

x(C<) = x<,

(4.15)

with associated optimal cost

�∗static (f) =
(
x< − e(C<−C0)�fx0

))
,−1
f

(
x< − e(C<−C0)�fx0

)
, (4.16)
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Chapter 4. Control of stochastic temporal networks

Figure 4.2: The advantage of temporal networks in the stochastic scenario. The solid
lines represent the minimum expected energy (in red) averaged over all possible final
states on the unit hypersphere centered in the origin and the benchmark energy (in green)
as a function of X = (C< − C0)/<. The shaded areas are enclosed by the minimum and the
maximum energies observed over 105 final states on the unit hypersphere (see Section 6.2,
Appendix 6). In the fast regime (i.e., for small X), uncertainty prevails over temporality
with the expected energy required to control a temporal network being larger than the
benchmark energy. As temporality vanishes (i.e., for large X), the energy difference
becomes negligible. The advantage of temporality appears in the intermediate temporality
regime and is shown in the inset.

25



4.3. The effect of temporality regime

where
,f =

∫ C<

C0

e�f (C<−g)��) e�
)
f (C<−g)dg. (4.17)

Therefore, a natural benchmark in our setting is the expected value of the minimum energy
associated to the family of static problems in (4.15), that is,

�∗b := E
f

[
�∗static (f)

]
. (4.18)

Notice that our choice is different from that made in [29], where the benchmark energy
was selected as the energy required to control the aggregate network, an average network,
that is, a network described by matrix �̄ = Ef [�f]. This choice would yield the apparent
paradox of temporality being beneficial even when so slow to be taken into consideration
as it is better explained in the next Section.

4.3 The effect of temporality regime

As shown in Figure 4.2, in the fast temporality regime (with very small X) the expected
energy required to control a temporal network can exceed by orders of magnitude that
required by a static network. On the other hand, in the slow temporality regime, we
observe that this difference becomes negligible. To support our intuition, as most real
systems in their normal mode of operation exhibit stability [45], we focus on the case in
which, for all : , all the admissible topologies �f (:) are described by Hurwitz matrices.
Under this hypothesis, by using the analytic solution provided by Thorem 4.2, we show
that when the network temporality is extremely slow (X → ∞), the difference between
expected energy �∗ associated to the optimal solution and the energy �∗b associated to the
static benchmark tends to be negligible. On the contrary, when the network variability is
extremely fast (X→ 0), temporality becomes detrimental, that is �∗ > �∗b , with the only
exception of the two-snapshot case in which �∗ = �∗b .
For the sake of illustration, we derive results first in the two-snapshot case, and x0 = 0.
Then, we extend the derivations to the general case.

4.3.1 The case of two snaphots
In this case, the expected optimal energy for controlling the stochastic temporal network
can be written as

�∗ = E
f (0)
[�∗temporal] = G

)
2 E

[
,−1

1
]
G2

− G)2 E
[
,−1

1 eX�f (1)
]

E
[(

E
[
,−1
2,1

]
+,−1

0

)−1
]

E
[
eX�

)
f (1),−1

1

]
G2,

(4.19)

where,2,1 is the controllability gramian, which is by definition related to the reachability
gramian as follows:

,−1
2,1 = eX�

)
f (1),−1

1 eX�f (1) .
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Chapter 4. Control of stochastic temporal networks

Taking the limit for X → +∞, as the spectrum of the matrices �f (:) belongs to the
open-left half complex plane for all : , we have

lim
X→+∞

eX�f (1) = 0.

Now, taking advantage of the following well-known relationship between the finite-time
and infinite-time gramians [46]

,1 = ,
∞
1 − eX�f (1),∞1 eX�

)
f (1) ,

where
,∞1 =

∫ ∞

C0

eg�f (1) ��) eg�
)
f (1) dg,

one obtains
lim
X→+∞

,1 = ,
∞
1 , and lim

X→+∞
,−1
2,1 = 0,

thus finally yielding

lim
X→+∞

�∗ = G)2 E
[
(,∞1 )

−1] G2 = lim
X→+∞

�∗b . (4.20)

A similar result can be achieved when the network variability is much faster than the
fastest time constant of all possible snapshots. Indeed, when X→ 0, one obtains

eX�f (:) = �# , (4.21)

for all : = 0, . . . , < − 1, and for all f(:) associated to a positive value of the probability
density function 5 (f(:)). This also implies that

lim
X→0

,2,: = lim
X→0

,: = lim
X→0

X��) (4.22)

independently from the realization of f(:). Hence, from (4.19) we get

lim
X→0

�∗ = lim
X→0

(
x)2 (X��

) )†x2 − x)2 (X��
) )† X

2
��) (X��) )†x2

)
= lim
X→0

1
2

x)2 (X��
) )†x2

, (4.23)

which is exactly what we obtain also for the static benchmark, as we indeed have

lim
X→0

E
f
[,f] = lim

X→0
2X��) ,

implying lim
X→0

�∗b = lim
X→0

x)<,−1
f x< = lim

X→0
x)< (2X��) )−1x< = lim

X→0
�∗.
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4.3. The effect of temporality regime

4.3.2 Generalization

Case % → 0

When X → 0, from the recursive equations (4.11) and (4.12), some algebra allows to
derive that

%: , &: =
�#

2
, : = 1, . . . , < − 1, (4.24)

and, for all : = 0, . . . , < − 1, that

�8: = '
8
: = U

8
: �# , 0 ≤ : ≤ 8 ≤ < − 1, (4.25)

where

U8: =


1, 8 = :, 8 = < − 1,
1/2, 8 = :, 8 < < − 1,

U8−1
: /2, 8 > :, 8 < < − 1,

U8−1
: , 8 > :, 8 = < − 1.

(4.26)

Notice that as
∑<−1
8=: U

8
:
= 1 and U8

:
> 0 for all 8, : , then

<−1∑
8=:

U8:
2 ≥ 1

< − : , : = 0, . . . , < − 1. (4.27)

From (4.13), we can then write

lim
X→0

E
f (0)

[
�∗temporal

]
=

<−1∑
8=0

U80
2 lim
X→0
(x< − x0))

(
X��)

)−1
(x< − x0). (4.28)

On the other hand, the static benchmark when X tends to zero becomes

lim
X→0

E
f

[
�∗static (f)

]
=

1
<

lim
X→0
(x< − x0))

(
X��)

)−1
(x< − x0) . (4.29)

Now, from (4.27) we have that
∑<−1
8=0 U80

2 ≥ 1/<. Considering that
∑<−1
8=0 U80

2
= 1/< if

and only if U80 = U
9

0 for all 8, 9 , we can finally conclude that

lim
X→0

E
f (0)

[
�∗temporal

] 
= lim
X→0

E
f

[
�∗static (f)

]
if < = 1, 2,

> lim
X→0

E
f

[
�∗static (f)

]
if < ≥ 3.

(4.30)

Moreover, by combining equations (4.10) and (4.24), we obtain

x∗: =
x:−1 + x<

2
, (4.31)

that is, the next optimal waypoint is halfway between the current waypoint and the final
state x<.
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Chapter 4. Control of stochastic temporal networks

Case % → +∞

When X → +∞, we have that limX→+∞ eX�f (:) = 0 for all possible realization of f(:),
and for all : . Furthermore,

lim
X→+∞

,: = ,
∞
: :=

∫ +∞

C0

eg�f (:) ��) eg�
)
f (:) dg.

Now, notice that from equations (4.11) and (4.12) we can write

'8: = 0# , : = 0, . . . , < − 1, : ≤ 8 ≤ < − 1

�8: =

{
�# , if 8 = < − 1,
0# , otherwise,

(4.32)

This yields
lim
X→+∞

E
f (0)

[
�∗temporal

]
= x)< E

f (<−1)

[
(,∞<−1)

−1] x<. (4.33)

Now, observing that E
f (<−1)

[
(,∞<−1)

−1] = lim
X→+∞

E
f

[
,−1
f

]
, we finally get

lim
X→+∞

E
f (0)

[
�∗temporal

]
= lim
X→+∞

E
f

[
�∗static (f)

]
. (4.34)

Notice that equations (4.11) and (4.12) also implies that

%: = 0# , &: = 0# , : = 1, . . . , < − 1, (4.35)

thus yielding x∗
:
= 0 for all : = 1, . . . , < − 1.

Our derivations provide a formal proof of the intuition that when the temporality is
so fast (X → 0) that we do not have time to exploit it, the effect of uncertainty prevails.
When instead the temporality is so slow (X → +∞) that most of the energy fed to the
network in order to reach a targeted waypoint is dissipated in the next snapshots, we rather
wait for the last snapshot, thus treating a temporal network as if it were static. The above
formal analysis clarifies that the apparent paradox reported in [29] that temporality is
advantageous even when so slow to be negligible is due to the use of an ad hoc static
benchmark. Interestingly, we do find that there is a regime where temporality prevails
on uncertainty (see the inset of Figure 4.2). To delve into this regime, we should take
into account that all real world systems that can be modeled as dynamical networks are
characterized by time scales. The digital communication networks [47], for instance, are
determined by the time-scale of the dynamical flow of the data packets, while those of
epidemic spreading processes [48] depend on the specific infection rate, and can range
from few days to months [19]. For a linear network, and thus for each of our snapshots,
the time scale is related to the eigenvalues of the matrix �: . Our numerical results
reveal that shifting the spectrum of the snapshots shifts the regime where the advantage
of temporality is touchable (see Figure 4.3). In other words, temporality prevails on
uncertainty, provided it matches the time scales of the network we are trying to control.
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4.3. The effect of temporality regime

Figure 4.3: Network temporality and time scales. We consider 19 temporal networks
with # = 100 nodes over < = 3 snapshots and differing only in the dominant time
constant gmax that is chosen as a measure of the network time scale. The left panel
shows the expected control energy averaged over all possible final states x(C<) on the
unit hypersphere centered in the origin for 5 of the 19 networks. The Figure displays
that the network becomes more energetically demanding and that the minimum point of
the energy shifts towards faster temporality regimes as gmax becomes smaller (i.e., as the
curves become darker). The right panel highlights the relation between temporality and
time scales, with the black dots representing log(X∗) as a function of log(gmax) for each of
the 19 networks. Specifically, the minimum point X∗, numerically obtained, corresponds
to the value of X associated to the minimum expected control energy.
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5 Discussion

One of the historical puzzle of the control network theory is
“ Is it effectively possible to control a complex network?”

We have explained in Chapter 2 the meaning of controlling a linear dynamical network
and shaded out why it is important to investigate whenever a provided theoretically control
input could be realistically implemented. In Chapter 3, we revised the findings of [29]
according to which exploiting the temporality of the networks would improve our ability to
control real networks. However, in Chapter 4 we question that in such real world systems
temporality comes hand in hand with uncertainty. Indeed, who can determinstically
predict the future chemical reactions in a metabolic network, or the time instant at which
a mobile device will activate? In this scenario, after reformulating the problem by means
of stochastic programming, we proved that exploiting temporality is not a workaround to
achieve the chimera we are chasing since 2011 [13], that is, controlling complex networks
with a very limited number of driver nodes. More precisely, our findings stress the fact
that there is not a unique answer to this question. We never experience that temporality
yields orders of magnitude of energy savings in the realistic scenario we faced with in
Chapter 4. Rather, we highlight how selecting a misleading static benchmark we could end
in the paradox of temporality being beneficial independently on how slowly the topology
changes. Not only, our deep understanding of the intricate relation existing between the
time-scale of the network and its temporality, allows us find that there exists a regime
where temporality still offers energy savings, even in a stochastic scenario. This example
witnesses how without dreaming missions impossible, we can end in an exceptional
understanding of the complexity of real-world networks. Indeed, both temporality and
uncertainty represents one of the assets the research community is mature to invest in to
accomplish a new shift of prospective.
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Chapter 6. Appendix

6 Appendix

6.1 Proof of Theorem 4.2

In this Section we report the proof of Theorem 4.2.

Proof. For all : = 0, . . . , < − 1, let us define

+: (G: ) = E
e:+1

[
<−1∑
8=:

�8 (G8 , G8+1)
]
. (6.1)

By applying dynamic programming [42] to problem (4.9), we know that the optimal cost
�∗temporal is equal to +

∗
0 (G0), obtained as the last step of the recursive algorithm

+∗<−1 (x<−1) = �<−1 (x<−1, x<),
+∗: (x: ) = min

x:+1
E
e:+1

[
�: (x: , x:+1) ++∗:+1 (x:+1)

]
, : = 0, . . . , < − 2. (6.2)

Now, let us pick any ℎ ∈ {1, . . . , < − 1}. If we could write

+∗ℎ (xℎ) = E
eℎ+1

[
<−1∑
8=ℎ

(
�8ℎx< − '8ℎxℎ

))
,−1
8

(
�8ℎx< − '8ℎxℎ

) ]
, (6.3)

we would then have that
1. Equation (4.10) would hold for : = ℎ. Indeed,

+∗ℎ−1 (xℎ−1) = min
xℎ...

x<−1

E
eℎ

[(
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

))
,−1
ℎ−1

(
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

)
+
<−1∑
8=ℎ

�: (x: , x:+1)
]

= min
xℎ

E
eℎ

[(
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

))
,−1
ℎ−1

(
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

)
++∗ℎ (xℎ)

]
From (6.3), we get

+∗ℎ−1 (xℎ−1) =min
xℎ

( (
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

))
,−1
ℎ−1

(
xℎ − eXℎ−1�f (ℎ−1) xℎ−1

)
+ E
eℎ

[
<−1∑
8=ℎ

(
�8ℎx< − '8ℎxℎ

))
,−1
8

(
�8ℎx< − '8ℎxℎ

) ] )
.

(6.4)
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As the cost function (6.4) is convex with respect to xℎ , to find its minimum we can
compute the gradient and set it to zero, thus obtaining

2x)ℎ,
−1
ℎ−1 − 2x)ℎ−1eXℎ−1�

)
f (ℎ−1),−1

ℎ−1 + 2x)ℎ
<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 '8ℎ

]
− 2x)<

<−1∑
8=ℎ

E
eℎ

[
�8ℎ
)
,−1
8 '8ℎ

]
= 0,

which implies(
,−1
ℎ−1 +

<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 '8ℎ

] )
xℎ =

<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 �8ℎ

]
x<

+,−1
ℎ−1eXℎ−1�f (ℎ−1) xℎ−1.

As matrix

(
,−1
ℎ−1 +

<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 '8ℎ

] )
is positive definite, we finally get

x∗ℎ =

(
,−1
ℎ−1 +

<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 '8ℎ

] )−1 <−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 �8ℎ

]
x<

+
(
,−1
ℎ−1 +

<−1∑
8=ℎ

E
eℎ

[
'8ℎ

)
,−1
8 '8ℎ

] )−1

,−1
ℎ−1eXℎ−1�f (ℎ−1) xℎ−1

= %ℎx< +&ℎxℎ−1.

(6.5)

2. Equation (6.3) also holds for : = ℎ − 1. Indeed, combining (6.4) and (6.5), we get

+∗ℎ−1 (xℎ−1) =
(
%ℎx< +

(
&ℎ − eXℎ−1�f (ℎ−1)

)
xℎ−1

))
,−1
ℎ−1

(
%ℎx< +

(
&ℎ − eXℎ−1�f (ℎ−1)

)
xℎ−1

)
+ E
eℎ

[
<−1∑
8=ℎ

( (
�8ℎ − '

8
ℎ%ℎ

)
x< − '8ℎ&ℎxℎ−1

))
,−1
8

( (
�8ℎ − '

8
ℎ%ℎ

)
x< − '8ℎ&ℎxℎ−1

) ]
(6.6)

Now, if we set �ℎ−1
ℎ−1 = %ℎ, '

ℎ−1
ℎ−1 = eXℎ−1�f (ℎ−1) − &ℎ, �8ℎ−1 = �

8
ℎ − '

8
ℎ%ℎ, and

'8
ℎ−1 = '

8
ℎ&ℎ , for all 8 = ℎ, . . . , < − 1, Equation (6.6) can be rewritten as in (6.3),

that is,

+∗ℎ−1 (xℎ−1) = E
eℎ

[
<−1∑
8=ℎ−1

(
�8ℎ−1x< − '8ℎ−1xℎ−1

))
,−1
8

(
�8ℎ−1x< − '8ℎ−1xℎ−1

) ]
.

(6.7)

From (6.2), and setting �<−1
<−1 = �# and '<−1

<−1 = eX<−1�f (<−1) , we know that (6.3) holds
for ℎ = < − 1. By induction, the thesis follows. �
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6.2 Description of the numerical setting

To show the effectiveness of our approach in controlling temporal networks in the stochastic
setting, we perform numerical simulations both on synthetic and empirical data set.

Empirical data set

Protein network of Figure 4.1: The raw data set is the time series of gene expression
(GSE4987) coming from GEO (Gene Expression Omnibus) repository and consists of
6228 probes at 50 different time points [49]. To reconstruct the temporal network, we
filter the data employing the method presented in [44]. Namely,

1) At each time point C ∈ {1, . . . , 50}, we compute the activity level act8 (C) of the 8-th
gene, for all 8 = 1, . . . , 6228, following [44];

2) We compare act8 (C) with a global activity threshold g for all the genes. At each
snapshot, we say that there is an undirected edge between nodes 9 and ℎ if act8 (C) > g
for 8 = 9 , ℎ.

3) Finally, according to the gene ontology terms, we consider a reduced network
obtained by considering only the genes sharing the same Biological Process.

Although our optimal solution also works for unstable dynamics, we focus on networks
associated to stable (dissipative) dynamics. Therefore, we add suitable self-loops so as to
make the adjacency matrix Hurwitz in all the snapshots.

Synthetic data set

To perform our analyses on synthetic temporal networks, we build a pool of three ER-like
undirected graphs with average degree 6 and = = 100 nodes. The edge weights of
each graphs are randomly selected in the interval (0, 1]. Their adjacency matrices are
manipulated so as to obtain laplacian row-stochastic matrices.

For the numerical analysis portrayed in Figure 4.2, we build the three snapshots
starting from the obtained three laplacian matrices stabilizing their standalone dynamics
according to the Gershgorin disks theorem, that is, adding to their diagonal elements the
scalars {−3,−1,−2}.

For the numerical analysis of Figure 4.3, we start from the same set of three laplacians.
From these matrices we create 19 pools of 3 snapshots stabilizing their standalone
dynamics so that each matrix in the same pool shares the same maximum eigenvalue _max,
each pool being characterized by different _max. The maximum eigenvalues selected for
each pool are

{−20,−18,−16,−13,−12,−10,−8,−6,−4,−2
− 1.8,−1.6,−1.4,−1.2,−1,−0.8,−0.6,−0.4,−0.2}.

In this way, the dynamics associated to each pool are characterized by increasing dominant
time constants gmax = 1/|_max |.
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6.2. Description of the numerical setting

For all numerical analyses performed on synthetic networks (Figures 4.2 and 4.3),
each snapshot of a temporal network is extracted from its pool according to a uniform
distribution. Moreover, a common set of 10 driver nodes has been selected so to ensure
controllability of each snapshot of all the pools.
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Coevolving networks: modeling and
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Chapter 7. Coevolving networks

7 Coevolving networks

Temporal networks are a suitable modeling framework when the network topology
commutes between a set of graphs. However, in several applications, it is essential to
explicitly account for the inertia associated to changes in the graph topology. For instance,
the topology of mutual influence among traders in a financial markets is based, among
the others, on the concept of trust and reputation, which both need time to be built, and
depend dynamically from a node state variable, such as the trader’s wealth, which is a
proxy of its success. Similarly, during a political campaign, the preferences are built
as the result of individual opinion dynamics, combined with the dynamic evolution of
the cobweb of interaction between the voters. To capture the interlaced dynamics of the
nodes and their interconnected topology, we associate a state variable also to the edges of
a network. Since the evolution of nodes and edges state variables is in general mutually
interdependent, we call this kind of network coevolving. Formally, we give the following
definition:

Definition 7.1 (Coevolving networks). Given a graph G = {V, E}, a coevolving
network C(�) associates a state variable x8 ∈ R= to each node 8 ∈ V and a state
variable 28 9 ∈ R@ to each edge (8, 9) ∈ E. Denoting, x ∈ R |V |= the stack vector
of the nodes’ states and 2 ∈ R |E |@ the stack vector of the edges’ states, it can be
described by the following equations

¤x(C) =q(x,2, C) x ∈ R |V |=

¤2(C) =W(2, x, C) 2 ∈ R |E |@ .
(7.1)

The concept of coevolving network aims to concurrently take into account the adaptive
nature of the real-world complex systems, the virtuous feed-back loop between the
networks structure and the nodes dynamics, and the possibility for a network topology
to evolves. D. Siljak, in his pioneering work [50] , made a paramount first step toward
the concept of coevolving network, by introducing the dynamic graphs, defined as a
set of weighted graphs, with a given number of nodes, whose weights dynamically
evolve. Later work [51,52] has further expanded this concept and introduced the evolving
dynamical networks that encompass a wider set of networks compared to coevolving
networks as described in Definition 7.1. For instance, while coevolving networks use
ODEs for modeling the network evolution, evolving dynamical networks can also consider
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a Markovian update of the network structure. It is worth pointing out that, when there is
a time-scale separation between the node and edge dynamics, the coevolving networks
becomes a traditional (static) complex network. Indeed, when the edge evolution is much
slower compared to node dynamics, the network system can be viewed as dynamical
nodes interacting on a static graph. The same happens when the node evolution is much
slower than the edge dynamics, with the only caveat that now the edges dynamically
evolves, and are statically coupled through their common endpoints.

This chapter focuses instead on the case in which there is no time-scale separation
between node and edge dynamics, so that their intricate interdependence cannot be
neglected.

In Chapter 8, we will show how coevolving networks can be effectively used to model
the dynamics of an artificial financial markets. In Chapter 9, we will show how network
coevolution can be leveraged in control problems over networks. Specifically, in Section
9.1 we will show how, with a suitable choice of the edges dynamics, we can pinning
synchronize a dynamical networks in an efficient way, that is, by minimizing the control
energy required to reject a local perturbation [53]. Then, in Section 9.2, in the context
of pinning controllability, we illustrate a distributed approach to dynamically evolve the
edge weights to maximize the class of systems that can be pinning synchronized [54].
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8 Coevolving networks to model
financial market dynamics

In this Chapter we offer an example of application of coevolving networks to model
real-world phenomena in which the relations among the actors (i.e., the nodes) dynamically
evolve and depends upon the agents’ states. As a paradigmatic example, we present how
in a financial market (viewed as a coevolving network) we are able to show how the
delicate interplay between the decisions of the investors (i.e., the nodes) and the cobweb
of intricate relations (i.e., the edges) among them affects the overall market dynamics.
Specifically, by incorporating in the network edges dynamics we are able to describe
a bunch of realistic aspects that actually lack in the neoclassical economics [55]. The
finding reported in this Chapter have been published in [2, 3].

8.1 Behavioral financial markets

In the modern and contemporary economic history there is plenty of evidence in apparent
contradiction with the main hypotheses of neoclassical economics [55]. As examples, we
mention some of the speculative bubbles and market crushes that cannot be explained
with the neoclassical theory. In 1637, the first big speculative bubble of the history
erupted, the so-called Tulip bubble, making the price of a bulb comparable with that
of houses, fields and livestocks [56], while, around 1720, in the United Kingdom the
overwhelming euphoria of the investors fostered the South Sea Bubble which caused
substantial losses even to Isaac Newton [57]. More recently, the worldwide crises which
followed the Wall Street’s crush of 1929 represents a stunning example of unpredicted and
sudden market crushes. The analysis of these and of more recent historical events, (e.g.,
the 2008 financial crisis), seriously questioned the model of the homo oeconomicus and
convinced the economists of the necessity of additional and interdisciplinary tools to make
quantitative the novel concepts coming from behavioral econonomics [58,59]. Indeed,
psychological studies illustrate that the decision-making process, which is the determinant
of financial dynamics, cannot be described as perfectly rational [60] and conceptual
models of bounded rationality have been proposed in [61]. Our way of taking decisions
is imperfect due to the presence of uncertainties, approximation errors, emotions, and
cognitive biases. Inspired by the early concepts of the Prospect Theory [62, 63], and,
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thanks to the collaborative work of Economists, Psychologists and Sociologists, a new
discipline, Behavioral Finance, was born with the goal of investigating the reasoning
patterns of the financial agents to unravel their mental and emotional processes and the
way they influence their trading strategies [59].

Among the revealed cognitive bias and emotional processes that lies outside rationality
and are related to markets’ crushes we will focus on

1. How the reputation of financial agents, when based on individual charisma rather
than on objective evaluations, can spur the emergence of an unmotivated leadership
in the market. Indeed, while the imitation of a best performing agent could produce a
general improvement of the financial agents’ conditions, beingmyopically influenced
by charismatic peers can of course have detrimental effects on market dynamics.

2. The effect on market dynamics of one of the most studied cognitive bias, that is,
overconfidence [64], which is the attitude of an individual to strongly believe in her
inaccurate evaluations. This often leads to performing overoptimistic judgements
of life prospects which ultimately affect financial decisions. Overconfidence is
associated with a body of related effects, which includes overplacement, that is,
overestimation of one’s rank in a population. Clearly, this directly impacts on
the assessment of her own trading abilities compared to those of her competing
peers [65, 66], and reflects on her trading patterns: overconfident agents tend to be
stubborn rather than open-minded [67].

Therefore, we will build a behavioral market, that is, an artificial financial market
model that can atomically account for the presence of cognitive biases affecting the
investor decision process, and we will show how such behavioral nuances shape their
interactions and then their investing strategies.

8.2 Why coevolving networks?

Developing quantitative models capable of translating the principles of Behavioral
Finance into helpful instruments that may inform policy makers, is a pressing open
problem, see for instance [68]. A relevant contribution to this field has been given by
the community of the Physicists, who looked at financial markets as complex systems
that can be studied through the tools of statistical mechanics [69–71]. A novel discipline,
Econophysics, was born in 1995 [72] and tried to elucidate the macroscopic emerging
features of financial markets from the behavior of its micro constituents, i.e., the financial
agents. Using tools from agent-based modeling [73–75], artificial financial markets
were developed to reproduce and explain the so-called stylized facts observed in real
markets [73, 76–84]. For instance, in [81] the authors showed how scaling in finance
arises from mutual interactions of market participants, while in [82] a realistic trading
mechanism for price formation was reproduced. The study of financial markets represents
an intriguing challenge for the Engineering community as well, which also started to
contribute to this field, see for instance [82, 84, 85] and references therein. We wish
to remark that, even though the effort of several scientific communities is producing
noticeable work that is clarifying certain aspects of the market fluctuations, a thorough
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understanding of the cause-effect relationship between the agents’ behavior, decision of
policy makers, and market dynamics is still missing. One of the unanswered questions
is the impact of the cobweb of relationship among the agents on the market evolution.
Indeed, the bias induced by the social interactions among individuals may strongly
affect individual decision making [86]. In the literature, the interaction network among
investors is frequently considered static [87] or varies according to the rate of transmission
of information [88]. However, in real markets the influence among the agents may
dynamically change [89, 90], thus determining an adaptive topology whose evolution
driven, among other exogenous factors, by the perceived successfulness of the agents,
with some central nodes of the network loosing their leadership in favor of other agents
that are climbing the market [91–93]. Differently form the existing literature, we model
the edge dynamics through the edges snapping mechanism, firstly introduced in [94] to
model edges evolution in complex networks, to describe the variable patterns of influence
among financial agents. Indeed, starting from the assumption that the relations among the
agents play a crucial rule, we will design two types of input driving the edges dynamics
and corresponding to two different behavioral features observed in real markets to be the
determinants of its evolution. Moreover, we endow the agents with different degrees of
rationality, which affect their ability of objectively assess the reputation of an agent. We
illustrate how the different degrees of investors’ rationality impact on macroscopic market
observables (e.g., the wealth distribution, the overall transaction volumes) [2]. Finally, we
show how the presence of overconfident agents in the market affects the overall market
dynamics [3].

8.3 Market model

Leveraging tools from agent-based modeling and complex networks theory, we model
the investment market as a coevolving network, see Definition 7.1, where the node state
variables describe the current wealth and investing attitude of each financial agent, while
the edge state variables determine the dynamical evolution of the cobweb of influence
relationship among the agents (see a schematic of the investment market model in Figure
8.1). In what follows, after describing the node and edge dynamics, we detail the driving
forces triggering the market evolution and the taxation scheme regulating the market.

8.3.1 Node dynamics
We consider a market populated by # financial agents. At each trading session, an agent
can decide whether investing a fraction X of her capital in one of the alternative financial
portfolios from the finite set L = {1, ..., <}. The <-th portfolio is virtual, corresponding
to no-investment, which, differently from the other (proper) investments, has unlimited
availability. Every agent will chose among one of the available portfolios depending on
her risk attitude A8 (:). In turn, the risk attitude dynamics are described by

A8 (: + 1) =
 (1 − F)A8 (0) +

F
N8 (:)

#∑
ℎ=1

0ℎ8 (:)Aℎ (:), if N8 (:) > 0,

A8 (0) otherwise,
(8.1)
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NODE DYNAMICS
𝑥𝑥 𝑘𝑘 , 𝑟𝑟 𝑘𝑘

EDGES DYNAMICS
𝜎𝜎 𝑡𝑡

𝐴𝐴(𝑘𝑘) Behavioral 
attributes

Trading 
mechanism

Taxation 
scheme

Figure 8.1: Schematic of the investment market. The node dynamics describe the
evolution of the agent wealth G(:) and of its risk attitude A (:) which are updated at discrete
steps, corresponding, e.g., to trading sessions. The edge dynamics evolve continuously in
time, and determine whenever an agent is affected or not by another investor, with the
corresponding component of f(C) converging to one or zero, respectively. The edge state
at time : determines the adjacency matrix �(:) at the :-th trading session.
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for 8 = 1, . . . , # , where 0 < F < 1 is the interaction weight, A8 (0) is the innate risk attitude
of agent 8, 0ℎ8 (:) is the ℎ8-th element of a time-varying adjacency matrix �(:) ∈ R#×#
describing the current mutual influences among the agents at time : , and it is 1 if agent 8
is influenced by agent ℎ at time : , while it is zero otherwise, and N8 (:) =

∑
ℎ 0ℎ8 (:), is

the in-degree of agent 8. In general, 0ℎ8 (:) is involved in a virtuoso feed-back loop as it
will be clear later1. At trading session : , the current risk attitude A8 (:) shapes the utility
function that agent 8 seeks to maximize, thus determining the selection of the portfolio
ℓ8 (:) := ℓ8 (A8 (:)) in which she invests a fraction X of her capital. According to this
trading mechanism, the wealth dynamics will be then given by

G8 (:) = q(G8 (: − 1), g8 (A 9 (: − 1))), (8.2)

where the function q accounts for the specific structure of the market; and g8 (: − 1) is the
investing strategy she adopts on the basis of her risk attitude A8 (: − 1).

During the trading sessions, each agent is characterized by a behavioral attribute.

• The reputation of each agent d8 (:), which is a time-varying attribute conferred
to 8 by the other agents. To avoid an overly complex modeling, we consider the
reputation of the agent independent from the agent assessing it. Specifically, the
reputation is computed as a convex combination of her current wealth, that is a
proxy of the effectiveness of its trading history, and the intensity 28 of her charisma,
which is a personal quality that magnifies the capability of influencing her peers
independently from her trading skills. Namely,

d8 (:) = (1 − a)G8 (:) + a28 , 8 = 1, . . . , #, (8.3)

where 0 ≤ a ≤ 1 is the irrationality coefficient that quantifies the extent of
irrationality permeating the market,2. Depending on the selection of the reputation
of an agent will be more or less influenced by the intensity of her charisma.

• The level of self-confidence, B8 of agent 8, which is her resistance to learn from the
trading strategies of her neighbors, thus overestimating her own abilities respect
with those of her neighbors. Given two thresholds B < B, we define the sets of
overconfident and underconfident agents as

O = {8 : B8 > B̄} ⊆ V, U =
{
8 : B8 < B

}
⊆ V,

respectively. As it will be clear from the next sections, both the market irrationality
and the self-confidence will affect the way the influence matrix �(:) evolves, thus
indirectly impacting on the node dynamics, see equation (8.1).

1We remind the reader that �(:) is the output of the edge dynamics, which will be described in the next
section.

2Differently from the conceptual models in [61], here we use a single parameter to quantify the extent of
rationality in the market.
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Figure 8.2: Potential driving the edge evolution with 1 = 16. The red dotted arrow
corresponds to an inactive edge, while the blue solid arrow to an active one.

8.3.2 Edge dynamics
To mimic the variable patterns of aggregation observed in financial markets [95], at
every trading session, edges between agents can be added or removed. Namely, the
topology of the influence network among the agents can evolve depending on the relative
agent reputations. Typically, each agent cannot interact with all the others: in real
social networks the interaction mechanism is selective and not all-to-all, as individuals
have a finite communication capacity [96–99]. Accordingly, we introduce the graph
P = {V, E?} describing the social capacity of every agent, whereV is the set of agents,
and E? is the set of edges (the relations) that can be activated.

The activation or deactivation of an edge (8, 9) ∈ E? depends on the value of the
state variable f8 9 ∈ R associated to each potential edge in the network. To capture the
evolutive dynamics of the mutual influence among financial agents, we leverage the edge
snapping mechanism proposed in [94] to model the edge evolution in complex networks.
Specifically, the following set of differential equations governs the edge dynamics3:

¥f8 9 (C) + 3 ¤f8 9 (C) +
d+ (f8 9 (C))

df8 9 (C)
= D8 9 (bCc), (8.4)

for all (8, 9) ∈ E?, where 3 is a damping parameter, + is a bistable potential, and
D8 9 : R × R→ R is a driving force, which is a function of the reputation of the agents’
pair. The bistable potential + : R→ R is

+ (f8 9 ) = 1f2
8 9 (f8 9 − 1)2, (8.5)

where 1 sets the height of the barrier separating the two equilibrium points, see Figure
8.2. The edge dynamics, in turn, determines the adjacency matrix �(:) describing the

3Notice that, while the agents’ state are updated at discrete time steps (at each trading session), the cobweb
of interactions among the agents evolves continuously with time.
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Figure 8.3: Network variability [(:) in the rational market.

active edges at time : . Specifically, its element 08 9 (:) is computed as follows:

08 9 (:) =
{

1 if (8, 9) ∈ E? and f8 9 (:) > 0.5
0 otherwise (8.6)

Indeed, at time : , the edge (8, 9) ∈ P is active if f8 9 (:) > 0.5, while it is inactive
otherwise, as illustrated in Figure 8.2. The time varying matrix �(:) is associated to
the graph G(:) = {V, E(:)} defining the influence network among the agents. Namely,
(8, 9) belongs to E(:) ⊆ E? if 08 9 (:) = 1. Notice that the update of �(:) (and then of
G(:)) has a direct influence on the node dynamics, see Equation (8.1) and Figure 8.1.

8.3.3 Driving forces
The drivers of the edge evolution embedded in the function D8 9 in Equation (8.4) can
determine the emergence and/or the dissolution of an influence relation between financial
agents [100] and can vary depending on the behavioral attribute we are taking into account.
Specifically, as stated in Section 8.3.1, we consider two alternative inputs, one shaped by
the relative reputation among the financial agents and one shaped by the self-confidence
of the agents in their own trading abilities.
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Figure 8.4: Indegree distribution of the network in the rational market. In (a) at
: = 1 and in (b) at : = 15000.

Reputation

When we consider the reputation as the major behavioral attribute determining the relation
among the financial agents, the force driving the edge evolution is selected as follows:

D8 9 (:) = (−1)08 9 (:) max{0, (−1)08 9 (:)(d8 (:) − d 9 (:))}, (8.7)

for all (8, 9) ∈ E?. In simple words, the absence of the edge (8, 9) at time : that is,
08 9 (:) = 0, implies that agent 8 does not influence agent 9 , although agent 8 belongs to the
social network of agent 9 . In that case, an input D8 9 (:) = d8 (:) − d 9 (:) may induce the
activation of the edge (8, 9) in a future trading session only if the reputation of 8 is higher
than that of 9 (d8 > d 9 ). Symmetrically, if 08 9 (:) = 1, an edge may be deactivated only
when d 9 > d8 . We emphasize that the edge activation or deactivation is not instantaneous,
as it is regulated by the dynamical system (8.4). This models the effect of memory in
social dynamics [101]: the difference of reputation has to persist for a sufficient time-span
to determine a variation in the network topology.

Looking at Eqs. (8.3) and (8.7), we notice that by varying the value of a in Equation
(8.3), we can move on what we call the spectrum of market rationality: its origin
corresponds to a market populated by agents behaving as the homo oeconomicus (a = 0),
while at the end of the spectrum the agents are solely inspired by their subjective
perceptions (a = 1). Indeed, in a perfectly rational market, the relative reputation is
measured by the wealth differences (d8 − d 9 = G8 − G 9 ), which become the only driver of
the edge evolution through Equation (8.7). When irrationality dominates the market, the
different intensities of the agents’ charisma (d8−d 9 = 28−2 9 ) determine the edge evolution.
We emphasize that low values of the irrationality coefficient could trigger a potentially
virtuous phenomenon of rational adaptation, in which the agents tend to account for the
investing strategies of the most wealthy investors. On the other hand, as irrationality
pervades the market, the agents start to follow charismatic leaders irrespectively of the
trading outcome, a scenario that we call irrational herding [102].
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Self-confidence

When, the self-confidence is the behavioral feature that mostly affects the relations among
the financial agents the driving force becomes:

D8 9 (:) = (−1)08 9 (:) max{0, (−1)08 9 (:)(G8 (:)/B 9 − G 9 (:))}, (8.8)

where B 9 is the self-confidence of 9 , that is, a parameter quantify the level of confidence
of agent 9 in her trading ability. To clarify how this mechanism works, for the sake of
clarity, we refer to the case of an agent 9 not being influenced by agent 8 at time : (i.e.
08 9 (:) = 0, f8 9 (:) < 0.5), and having to decide whether she wants to account for agent
8’s risk attitude at time : + 1, thus activating the edge (8, 9) (the case of a deactivation is
specular). In this case, Equation (8.8) becomes

D8 9 (C) = max
(
0,
G8 (:)
B 9
− G 9 (:)

)
, C ∈ [:, : + 1[. (8.9)

Indeed, in our mechanical analogy, when the mass is closer to the first well (f8 9 (:) < 0.5),
then 9 is not influenced by 8. To make 9 change her mind at the next trading session,
a necessary condition is that D8 9 (C) > 0, that is, she believes that 8 has better trading
abilities than her own. This happens when G8 (:)/B 9 > G 9 (:). Notice that a neutrally
confident agent (B 9 = 1) just compares her wealth with that of 8, thus objectively evaluating
their relative past trading abilities. Differently, an overconfident agent (i.e. B 9 � 1)
will consider being influenced by 8 only if agent 8’s trading strategies proved to be way
more successful than that of agent 9 (i.e. G8 (:) � G 9 (:)). The opposite happens for
underconfident agents. However, we emphasize that those are only necessary conditions
for activating the edge: as the update is not instantaneous, but dynamical according to
Equation (8.4), the perceived difference in trading abilities has to be intense enough and
persist for a sufficient time span.

8.3.4 Trading mechanism and taxation
Following the work in [103], we focus on a simplified competitive market where the agents
can choose to invest on a set of alternative portfolios of financial assets, characterized by
a limited availability and different expected return and volatility. The market is regulated
by a taxation scheme that redistributes the wealth while keeping its total unchanged. In
particular, the generic wealth dynamics in (8.2) become

G−9 (:) = G 9 (: − 1) + V 9 (:)XG 9 (: − 1) (0ℓ − 1)
− (1 − V 9 (:))XG 9 (: − 1) (1 − 1ℓ), (8.10)

G 9 (:) = j(G−9 (:)), (8.11)

where X is the fraction of the current wealth that 9 decides to invest in the portfolio ℓ,
whose win and loss rates are 0ℓ and 1ℓ , respectively, V 9 (:) is a realization of a uniform
Bernoulli random variable � describing the output of the trade, and j is a function
describing the considered taxation scheme. At each trading session, the agents can decide
to invest on the available portfolio that corresponds to the highest expected value of a
power-low utility function [103] (see Section 10.1, Appendix 10 for details).
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Figure 8.5: Example of graph with uniform indegree and outdegree distributions.

8.4 Numerical set up

We consider an artificial investment market populated by # = 1000 agents with average
wealth Ḡ = 100. At each trading session, they can choose among three alternative portfolios
of investments. The agents are grouped in three classes (of equal size) depending on their
innate risk attitudes, which are uniformly distributed in the interval [0.5, 1] as in [103].
Namely, they are classified as audacious if A 90 ∈ [0.83, 1], ordinary if A 90 ∈ [0.67, 0.83),
and prudent otherwise. These three agent classes are chosen so that the prudent agent
will only consider investing in the less risky portfolio, the ordinary will also consider the
averagely risky portfolio, while the audacious agents will invest in the riskiest one as
well. The selected taxation scheme is Tobin-like and determines the investing strategy.
Within this frame, we aim at testing the effect of the irrationality of the market and of
the self-confidence of the investors on the overall market dynamics with a special focus
on the properties of the emerging network. In both cases, the social capacity topology
P is randomly generated applying a degree-preserving rewiring algorithm to a nearest
neighbor graph with average degree 〈:〉 = 52, and we randomly select initial conditions
for all the f8 9 such that (8, 9) ∈ E? . The number of trading sessions ) is selected so that
the investment market evolves for a sufficient time span to achieve a steady-state wealth
distribution.

8.4.1 The effect of irrationality

As the reputation of agent 8 depends on her charisma (8.3), we randomly selected parameter
28 from an exponential distribution of parameter _ = 1. The mean of this distribution is
amplified of a factor 100 to coincide with the expected value of the wealth. Moreover,
the impact of the edge dynamics on the market will be tested for increasing values of the
irrationality coefficient a. Indeed, the extent of rationality in the market affects the way
the agents evaluate their reputation. Accordingly, we select a = 0 and a = 1 to model the
purely rational and irrational investment markets, respectively, while we choose a = 0.75
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Figure 8.6: Network variability [(:) in the rational market under variable taxation
schemes.

as a representative example of partially rational market.
To isolate the effect of the snapping evolution from that of other possible drivers, as

for instance the selected taxation scheme, we evaluate the results against two reference
scenarios: i) a market with non-interacting agents and ii) a market where the interaction is
triggered on an Erdös and Rènyi (ER) random undirected topology [104]. All the results
reported below are averaged over 100 repetitions for each value of a.

Rational market evolution (a = 0)
In what we called a perfectly rational market, subjective factors like the agent charisma
should not affect the edge evolution. We model this scenario by setting the irrationality
coefficient a to zero so that the reputation of each agent is solely determined by its current
wealth, that is, d 9 (:) = G 9 (:). In what follows, we explain the effect of perfect rationality
on market dynamics.

Impact on the network topology

In a perfectly rational market, the reputation of the agents, which drives the edge dynamics,
is quantified by an objective and measurable variable, that is, their wealth. As the agents’
wealth persistently changes, because of the stochastic nature of the investment outcome
(see the variable V 9 (:) in Equation (8.10)), the network topology will persistently vary
along the trading sessions. To quantify these variations, we defined the network variability
[(:) as the fraction of potential edges activated or deactivated at every session, that is,

[(:) :=
‖�(:) − �(: − 1)‖1��E? �� .
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As illustrated in Figure 8.3, [(:) is persistently greater than zero at every trading session,
with an average value of 0.01.

However, while the network continues to change, some topological properties remain
almost unchanged throughout the evolution. For instance, it is interesting to discuss the
steady-state distribution of the indegree (similar considerations hold for the outdegree
distribution). At the onset of the network evolution, as the initial conditions are randomly
selected, the indegree distribution is Poisson-like, see the left panel of Figure 8.4. Then,
after a transient, the indegree distribution settles, and, averaging the distribution in
the 100 simulations, we observe an almost uniform distribution in the interval [0 51],
right panel of Figure 8.4. This distribution shows striking similarities with the degree
distribution of the corporate elite network in the US, which was also shown to be close to
the uniform [105]. A possible explanation of this common behavior is that in networks
of influence, like the one considered in this work or the real corporate elite network
studied in [105], the nodes are ranked based on what we call reputation, and the links
almost always points from nodes with a higher reputation (the influencers) to nodes with
a lower reputation (the followers). In case this unwritten rule were always followed,
and every link could be in principle activated, a perfectly uniform degree distribution
would be obtained, as for the graph illustrated in Figure 8.5. However, in real influence
networks, this rule is less compelling, and the interaction is selective, that is, not every
link in the network may be activated [97], thus leading to a moderate deviation from a
perfectly uniform distribution. Our edge snapping mechanism is capable of reproducing
this second, and more realistic, degree distribution. Indeed, the topology is not instantly
updated, as its evolution is filtered by the dynamical system (8.1), which adds an inertia to
the activation or deactivation of links. Therefore, a higher reputation of node 8 compared
to that of node 9 implies a higher likelihood of edge (8, 9) compared to ( 9 , 8), but does not
guarantee its activation. In combination with the selective interaction due to the limited
social capacity of the agents, this allows the model to display moderate deviations from a
uniform distribution, thus making it closer to a real influence network.

As the degree distribution is determined by the snapping mechanism, a question
naturally arises: what is the cause of the persistent network variability shown in Figure
8.3? We argue that the variability of the network topology is an indirect measure of
the chances that the wealth ranking among the agents changes. Indeed, due to the
stochastic nature of the investments and the redistributive effect of Tobin-like taxation
schemes [106], the poorest nodes may increase their wealth, thus climbing the pyramidal
network structure: in the limit example of Figure 8.5, one or more nodes climbing the
market would only correspond to a relabeling of the nodes, but would have no effect on
the network structure. Different market structures, which would translate into different
shapes of the function q in (8.2), may hinder agent recovery from poverty, thus reducing
the network variability. A striking example can be obtained by considering the impact of
a less fair taxation scheme. For instance, we report in Figure 8.6 the outcome of a single
run of the market simulation, in which at time 5000 the taxation scheme is changed to a
flat tax, and then is switched back to a Tobin-like tax at time 10000. Differently from the
Tobin-like tax, the flat tax has no redistributive effect, as the rate of the tax is independent
from the agents’ wealth [107]. This dramatically reduces the opportunities for an agent to
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Figure 8.7: Average risk attitude Ā (:) of the network. In magenta for the reference
scenarios and in blue for the rational market.

climb the wealth rankings. Accordingly, the network variability strongly decreases when
the flat tax is introduced, and then slowly returns to oscillating in the usual range when
the Tobin-like tax is introduced again.

Impact on the risk attitudes

The evolution of the influence network has a direct impact on the risk attitude of the agents.
Indeed, Equation (8.1) implies that the risk attitude of the 9-th agent is updated through a
weighted average between its innate attitude and the current average attitude of the set
N9 (:) of its neighbors. Therefore, as the edge states evolve, 08 9 (:) is updated, with the
effect of a persistent variation of the set N9 (:), which in turn implies that risk attitude
dynamics never settle. Moreover, we observe that the average risk attitude decreases
if compared with the case of no interaction among the agents, and with the case of an
ER undirected random influence topology, in which it remains constant, see Figure 8.7.
Indeed, in a rational market the reputation is built based only on the agents’ wealth: when
a Tobin-like tax is considered, the prudent agents are favored [103], and therefore the edge
snapping dynamics steer the agents attitude towards prudence, with the poorest agents
trying to emulate the successful strategy of the richest ones. We emphasize that, when
a = 0, the snapping dynamics are also capable of adapting to possible variation in the
trading mechanism: for instance, we observe that, when the taxation scheme changes, the
most effective investing strategy changes, and the risk attitudes start drifting accordingly,
see Figure 8.9. Indeed, when the flat tax, which rewards more audacious traders [103],
replaces the original taxation scheme, the average risk attitude starts to increase, with this
tendency reversed when the Tobin-like tax is reintroduced.
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Figure 8.8: Evolution of the Gini coefficient. In black for a market without interaction,
in magenta for a market with random interaction, and in blue for the rational market.
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Figure 8.9: Average risk attitude Ā (:) in the rational market under variable taxation
schemes.
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Figure 8.10: Indegree distribution. In (a) for the partially rational market and in (b) for
the irrational market at : = 15000.

Impact on the wealth distribution

Themodification of the risk attitude induced by the introduction of the snappingmechanism
has an impact on the overall dynamics of the market, and in particular on the wealth
distribution. To quantify the extent of the inequalities among the agents, we used the
Gini coefficient, introduced by Corrado Gini in [108], which can vary between 0 (perfect
equality among the agents’ wealth) and 1 (all the wealth belongs to one agent). As
expected, because of the learning mechanism, the topological adaptation is beneficial
and induces wealth redistribution in the market: from Figure 8.8 we notice that the Gini
coefficient decreases if compared with both the reference scenarios.

The onset of irrationality (a > 0)

As irrationality pervades the market, the reputation of each agent becomes more and
more influenced by a subjective variable, that is, the innate intensity of its charisma.
An analysis of the steady-state degree distribution demonstrates that it is approximately
uniform regardless of the level of irrationality in the market, see Figures 8.4 and 8.10.
Although the structural properties of the graph do not change, the ranking of the nodes in
the hierarchical structure of Figure 8.5 becomes less and less related to the agents’ wealth
as the irrationality increases. To clearly illustrate this point, in Figure 8.11 we report
the average wealth of an agent as a function of its indegree (symmetrical considerations
hold for the outdegree), and we observe that the dependence between the two quantities
becomes weaker and weaker as a gets closer to 1. Indeed, a higher indegree means that
the agent is influenced by a large fraction of her neighbors. In presence of rationality,
this happens when she is significantly poorer than her neighbors. This is not the case
when irrationality increases. An interesting common denominator across all the levels
of irrationality is that the nodes with very low indegree (and high outdegree), tend to
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Figure 8.11: Average wealth of an agent as a function of her indegree. In the rational
market at : = 1 (a) and in (b) at : = 15000, and in the partially rational market (c) and
irrational market (d) at : = 15000.

have a wealth that is remarkably higher than the average. This can be easily explained in
a rational market, in which the edge dynamics are driven by the wealth difference, and
then the absence of ingoing links is associated to the richest nodes. When a approaches
to one, the explanation is less trivial, and can be obtained by observing that only low
indegree agents preserves a relevant fraction of agents with the best (prudent) attitude,
see Figure 8.12. Indeed, the random interaction taking place when a = 1 has the main
effect of averaging the attitudes, dramatically increasing the fraction of ordinary nodes.
The nodes that are less affected by this effect are the most charismatic, who maintain their
initial investing strategies regardless of what the others do. In other words, this means
that when irrationality pervades the market, the best strategy is to avoid herding.

The reduced rationality also impacts on the investing strategies selected by the agents:
compared with the perfectly rational case, the average risk attitude increases and, when
a = 1, becomes equivalent to the innate one, see Figure 8.16. Accordingly, the distribution
of the investing strategies is not anymore steered towards the more prudent (and rewarded)
ones, and becomes comparable to that obtained with a random undirected ER influence
network. Consistently, we observe that the redistributive effect of rational adaptation
illustrated in Figure 8.8 is hampered as irrationality increases, giving place to what we
call irrational herding, where the potential benefits of the interaction are ruled out by
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Figure 8.12: Average fraction of prudent agents as a function of their indegree for
different values of a at : = 15000.

its randomness, see Figure 8.17. On the other hand, the increased irrationality mitigates
one of the known drawbacks of the introduction of Tobin-like tax schemes, that is, the
reduction of the trading volumes [106]. Indeed, the irrationality leads to the permanence
of a relevant fraction of audacious agents, thus increasing the total volume of trades, see
Figure 8.18.

8.4.2 The effect of overconfidence
In our simulations, we set B̄ = 2.5. To test the effect of overconfidence, we selected two
reference scenarios:

a) All the agents are neutrally confident, that is, B8 = 1 for all 8. In this case, the agents
are perfectly rational, and they rank their trading ability by only considering the
output of their past investments, that is, their wealth.

b) The agents mildly deviate from rationality, as, B8 for 8 = 1, . . . , # , are randomly
selected from an inverse uniform distributionwithmedian 1, where the overconfident
agents represent a minority in the market.

These reference scenarios are compared with cases in which the overconfident are
prevalent, as often occurs in real markets [109]. In particular, we consider

c) An extremely overconfident market, in which all the agents are overconfident, as
we selected the coefficients B8 , 8 = 1, . . . , # , from an inverse uniform distribution
with values in [B, +∞).

d) A prevalently overconfident market, in which, for each class of agents (audacious,
ordinary, and prudent), half of the agents are selected as in Scenario b) and half as
in c).
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In our analysis, we have run 100 simulations for each of the four scenarios, where all
the agents start with the same initial wealth. Before the interaction is triggered, the
agents trade without mutual influence for 1000 sessions to diversify their wealth G 9 ,
9 = 1, . . . , # . At time : = 1001 the edges dynamics (8.4) are activated for all the pair
of nodes (8, 9) ∈ E?, and we let the market evolve for further 14000 sessions, so that
a steady-state wealth distribution is achieved and that the network parameters analyzed
in the following settle. We first investigate how overconfidence shapes the network of
influence among the agents, and then analyze the subsequent effect on the risk attitude
and wealth of the agents.

Impact of overconfidence on the network

The considered scenarios differ for both the percentage of overconfident, and for the
variability of the self-confidence, which could be quantified by the sample standard
deviation. In what follows, we aim at elucidating how these reflects on the network
properties, with a specific focus on

• the network density, quantified by its average degree 3ave.
• the network asymmetry, that determines the directionality of the relations in the
influence network, and that, following [110], we quantify through the absolute
binary network asymmetry as

B1 =
1
2
# + 1
# − 1

( � − �) 
�

‖�‖�

)2

,

where ‖·‖� is the Frobenius norm. Notice that B1 spans from 0, that is the case
of an undirected network, to 1, which corresponds to the case where there are no
mutual links, i.e. the activation of edge (8, 9) implies the absence of ( 9 , 8).

• the network clustering, that is quantified by the average clustering coefficient �.
We remind that the clustering coefficient of a node, say 8, is computed as the ratio
between the number of directed triangles in the graph and the total number of
possible triangles that 8 could form;

• the correlation 2>A (G, 3o) between the out-degree distribution and wealth.

The effects of the different distribution of self-confidence are summarized in Table
8.1 and discussed below. The first immediate consequence of overconfidence is an
increased sparsity of the network. Indeed, the abnormal level of self-confidence makes
the agent reluctant to be influenced by their neighbors. Consistently, we observed a
dramatic reduction of the average degree 3ave as the fraction of overconfident agents
increases. Indeed, when all the agents are overconfident (Scenario (c)), given the pair
of edges (8, 9), ( 9 , 8) ∈ E? with agent 8 richer than 9 , it happens that 8 will decide not to
be influenced by 9 , but often we will also observe that 08 9 = 0. This behavior produces
a sparse network, populated by stubborn investors, but the network remains perfectly
asymmetric, with B1 being equal to 1 as in the Scenario (a). Consistently, we observe that
the presence of bidirectional links is caused by the presence of a set of underconfident
agents (in our simulations we set B

8
= 0.65). Indeed, underconfident agents overestimate
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Table 8.1: Legend. 3ave is the average degree of the network; B1 is the absolute binary
network asymmetry; � and �A are the clustering coefficient of the network and of the
corresponding ER graph with equivalent degree, respectively; 2>A (G, 3o) is the correlation
between the wealth of an agent and her out-degree, �>, �<, �8 , and �> are the number
of cycle, middleman, in, and out pattern over the total number of possible triangles,
respectively; |O| /# and |U| /# are the fraction of overconfidence and underconfident
agents, respectively. Confidence intervals with significance level 0.05 are also reported
when needed.

Scen. (a) (b) (c) (d)

dave 26.00 23.46 5.50 14.40
[25.61, 26.39] [22.87, 24.05] [4.95, 6.05] [13.87, 14.93]

sb 1.00 0.80 1.00 0.91
[0.98, 1.00] [0.78, 0.81] [0.98, 1.00] [0.90, 0.92]

103I 25.80 28.10 4.18 24.10
[25.59, 26.01] [27.56, 28.64] [3.57, 4.79] [23.28, 24.92]

103Ic 0.07 0.85 0 0.19
[0.05, 0.09] [0.75, 0.95] [0, 0] [0.16, 0.22]

103Im 8.58 8.86 1.50 8.11
[8.51, 8.65] [8.74, 8.98] [1.19, 1.81] [7.84, 8.38]

103Ii 8.58 6.50 2.53 4.05
[8.51, 8.65] [6.38, 6.62] [1.98, 3.08] [3.87, 4.23]

103Io 8.58 11.85 0.15 11.75
[8.51, 8.65] [11.43, 12.27] [0.13, 0.17] [11.02, 12.48]

103Ir 26.05 23.51 5.51 14.28

cor (x, do) 0.41 0.51 0.71 0.62
[0.39, 0.43] [0.49, 0.54] [0.69, 0.73] [0.60, 0.64]

|O | /T 0 0.22 1.00 0.62

|U | /T 0 0.20 0 0.10
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the trading abilities of their neighbors, thus considering being influenced also by less
successful investors: this leads to an increased probability of the presence of mutual links,
and therefore to the reduction of B1 as the fraction of underconfident increases.

As for the clustering coefficient �, we observed that, when the agents behave
homogeneously, it is always of the same magnitude as the expected one in an ER random
graph with the same size and expected degree. This happens in Scenarios (a) and (c),
where the agents are all rational or all overconfident, respectively. On the contrary, the
increased heterogeneity of the agent behaviors in Scenarios (b) and (d) increases the
likelihood of encountering triangles of agents, see Table 8.1. However, the differences
becomes even more relevant if we decompose the overall clustering coefficient in the four
possible patterns that can be formed in directed networks, see Figure 8.13. The absence of
underconfident agents in Scenarios (a) and (c) makes almost impossible the formation of
cycles, which instead appear in (b) and are significantly higher in (d), which is the scenario
characterized by the highest fraction |U| /# of underconfident. Moreover, we notice that
in a market dominated by overconfidence as in Scenario (c), the possibility of having (at
least) two outgoing edges is limited only to the richest agents, that may influence those
who are significantly poorer overcoming their overconfidence: consequently, this strongly
reduces the fraction of out patterns �>, which are instead favored in Scenarios (b) and (d),
where the underconfidence of a non-negligible minority of agents increases the chances
of having >DC patterns.

Finally, we observe the correlation between outdegree and wealth. Intuition would
suggest this correlation to be higher in a market where most of the agents are capable of
correctly assessing their trading ability and where the richer are more likely to have a
higher out-going degree. On the contrary, we observe that the d increases as long as the
fraction of overconfident agents increases. The explanation is that in a market populated
by overconfident agents, agent 8 may have outgoing edges only if her wealth is much
higher than that of her neighbors, thus increasing the correlation between out-degree and
wealth.

The impact of overconfidence on agent success

The different distribution of self-confidence in the four considered scenarios shapes the
network topology which, in turns, affects the way agents’ trade through Equation (8.1).
From [2, 103], we know that in a rational market the Tobin-like tax regulating the market
favors the prudent agents, that consider investing only in the less risky asset. Therefore,
prudent agents have in average more outgoing links, and therefore the average risk attitude
Ā settles around 0.67, see the blue line in Figure 8.14, which is significantly lower than
the average innate attitude of the agents, that is 0.75. An interesting effect is observed as
the fraction of overconfident agents pervades the market: the average risk attitude further
reduces, see Figure 8.14 when all the agents are overconfident (red line) we observe the
lowest settling value for Ā (:). This is explained by the fact that overconfident agents are
only influenced by the agents who are significantly richer than them: this means that an
overconfident agent 8 is very likely to only imitate the trading patterns of the agents with
the best strategy, and not of agents with wrong strategy, but that are temporary richer than
8 due to a better luck.
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Figure 8.13: Example of the four possible patterns in triangles from the perspective of
node 8 [111]: cycle (i), middleman (ii), in (iii), and out (iv).
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Figure 8.14: Evolution of the average risk attitude Ā (:). Scenario (a) (blue line), (b)
(green line), (c) (red line), and (d) (magenta line).

Next, we focus on Scenario (d) to understand whether overconfidence hinders agent’s
wealth. To this aim, we evaluated the average wealth for each class of agents (prudent,
ordinary, and audacious) and checked whether being overconfident were an advantage
or not in each class, see Figure 8.15. In agreement with the findings of behavioral
finance [65,66,109,112], we find that an excess of confidence is detrimental when agents’
own valuations are mistaken: in this case, being open-minded can make up for wrong
evaluations. On the other hand, skilled traders benefit from self-confidence, as they stand
on their own correct evaluations.

8.5 Discussion

We explored the interplay between the evolution of the cobweb of relations among financial
agents and the overall market dynamics. Taking a new perspective, we exploited the edge
snapping mechanism, firstly introduced in [94], to model the edges dynamics: each link
is viewed as a mass moving in a double-well potential, with the first well corresponding
to an inactive link and the second to an active one. We considered two behavioral
features shaping the edge evolution, that is, the extent of the agent’s ratioanlity and their
self-confidence, respectively. Then, the driver of link evolution depends on a behavioral
feature of the agents. Specifically, in one case we consider the relative reputation between
possibly coupled nodes, while in the other the self-confidence of the agent in her own
trading strategy.

As for the role of rationality, we observed that

• the network topology at steady state displays a fairly uniform indegree distribution.
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Figure 8.15: Scenario (d). Evolution of the average risk attitude. Blue, green, and
orange lines, correspond to prudent, ordinary and audacious agents, respectively, while
solid and dotted lines refer to overconfident and non-overconfident agents, respectively.
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ᾱ
(k
) ordinary

audacious

prudent

20
0.752

0.754

0

Figure 8.16: Average risk attitude. In the rational (in blue), partially rational (in green)
and irrational (in red) markets.
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This result is due to the fact that the snapping dynamics tend to assign an indegree
which is inversely proportional to agents’ reputation (the opposite happens for
the outdegree). This result is consistent with the typical structure of influence
networks, in which the agents are ranked based on their reputation, see for instance
the network of corporate elite in the US [105]. A different level of rationality only
has the effect of modifying the wealth ranking of the agents, but not the topology
of the interaction graph.

• The rate of the network variability, defined as the number of edges activated
or deactivated at each trading session, quantifies the permeability of the market
to agents climbing the reputation ranking. Indeed, in a rational market less
fair taxation schemes, such as the flax tax, hamper wealth redistribution, thus
reducing network variability. As irrationality pervades the market, the reputation is
prevalently determined by the agent innate charisma, and therefore this also hinders
the network variability, as modifications of the agents’ wealth have little impact on
their reputation.

• Rational adaptation is beneficial for the market stability. Indeed, it favors wealth
redistribution and steers the investing strategies towards themost efficient. Moreover,
it confers to the agents the capability of learning from the environment: they react
to variations of the market scenario (e.g. changes in the regulations) and adapt
their investing strategies accordingly. On the other hand, irrational herding fosters
inequalities, nullifying the potential benefits of mutual interactions. Indeed, the
agents start to follow the strategies of the most charismatic agents, which are
not necessarily those with the most effective investing strategies. Interestingly,
the nodes with the lowest indegree, that are the charismatic market leaders, who
refuse to herd, shows a significantly higher average wealth. This means that in
an irrational market it is better not to herd and to be an influencer rather than a
follower, according to the empirical findings that illustrate how bubbles may appear
in conjunction with irrational herding [113].

Next, we tested the influence of a second behavioral parameter, the agent’s level of
overconfidence. We observed that

• overconfidence induces network sparsity: agents tend to become stubborn, thus
reducing the connections with their neighbors;

• networks pervaded by overconfident agents are strongly asymmetric, as underconfi-
dent (and wealthy) agents are crucial for the formation of mutual influence among
pairs of agents;

• a more heterogeneous distribution favors clustering. The presence both underconfi-
dent and overconfident agents promotes the emergence of triangle motifs and, more
specifically, allows the presence of cycles;

• a highly overconfident market is characterized by a stronger correlation between
out-degree and wealth: indeed, only the richest agents are capable of influencing
stubborn overconfident agents.

• The average risk attitude reduces as the fraction of overconfidence increases: indeed,
overconfidence is accompanied by amore selective coupling which implies that most
of the influence links depart from edges having the best (prudent) trading strategy.
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Figure 8.17: Evolution of the Gini coefficient. In the rational (blue line), partially
rational (green line), and irrational (red line) markets.
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Figure 8.18: Evolution of the trading volumes. In the rational (blue line), partially
rational (green line), and irrational (red line) markets.
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However, we numerically illustrated that overconfidence is indeed detrimental when
it has the effect of sticking the agent on her own mistaken valuation.
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9 Optimal control of coevolving
networks

In this Chapter, we focus on the case in which the edge dynamics of the coevolving
network can be tailored so as to achieve the control goal. Special instances of control
of coevolving networks are the synchronization and the pinning control problem with
adaptive coupling gains. In these contexts, the coupling gain between neighboring nodes
corresponds to the edge state, and is often chosen to monotonically increases with the
relative error norm [51, 94, 114–116]. Although effective in controlling the network,
these adaptive approaches cannot regulate the steady-state values of the edge state, which
will depend on the initial conditions, and might end up to be excessively large. In this
chapter, we aim to explore two alternative approaches to control the edge dynamics in an
optimal way. In Section 9.1, we consider the problem of controlling the node dynamics
toward a desired equilibrium point. Specifically, we optimally select the target value for
the edge dynamics. The selection is optimal in the sense that it minimizes the control
energy required to reject local perturbations from the desired equilibrium point of the
node dynamics [53]. Then, in Section 9.2, we consider the problem of optimally evolving
the edge dynamics so as to maximizing pinning controllability in the network. Different
from existing approaches, the optimal adaptation is obtained in a completely distributed
fashion [54].

9.1 Optimal selection of the target edge state

9.1.1 Linear node dynamics: the classic consensus case

To describe our approach, we start with the simplest node dynamics, that is, we consider a
coevolving network of coupled integrators on a graph G = {V, E}. We refer to a specific
class of coevolving networks whose dynamics fall within Definition 7.1. Specifically, the
node dynamics are described by

¤G8 (C) = D8 (C) ∀8 ∈ V (9.1)
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where G8 (C) is the state of the 8-th node and

D8 (C) = −
#∑
9=1
f8 9 (C)

(
G8 (C) − G 9 (C)

)
(9.2)

with f8 9 (C) being the state of edge (8, 9) ∈ E. Then, we select the edge dynamics so
that the only possible equilibrium of the network are G1 = · · · = G# and f8 9 = 0 for all
(8, 9) ∈ E, that is

¤f8 9 (C) = −1f8 9 (C) + :
(
G8 (C) − G 9 (C)

)2
, (9.3)

where 1 and : are two positive scalars. This means that, when consensus is achieved, the
network topology is completely disconnected.

Note that the node dynamics can be rewritten in matrix form as

¤x(C) = −!fx(C) (9.4)

where !f is a time-varying Laplacian matrix (when unnecessary, we omit the dependence
on time for brevity) with its generic 8 9-th element being

;f8 9 =

{ ∑#
:=1,:≠8 f8: (C) 8 = 9

−f8 9 (C) 8 ≠ 9 .
(9.5)

Note that, independent of f8 9 (C), if G is undirected and connected, !f is a Laplacian
matrix, that is, it is zero row-sum and its diagonal elements are non-negative.

WhenG is connected, the only possible consensus value is Ḡ = 1
#

∑#
8=1 G8 (0). Defining

the disagreement vector, e(C) = [41 (C), . . . , 4# (C)]) ∈ R# with 48 (C) := G8 − Ḡ, we can
show that, under the edge dynamics (9.3), the network achieves consensus by proving that
the error, described by the following dynamics,

¤e(C) = −!fe(C) (9.6)

converges towards zero. Before illustrating the proof, we provide the following useful
Lemma:

Lemma 9.1. For all non-negative initial conditions f8 9 (C0) ≥ 0, the dynamical system
in (9.3) is positive.

Proof. The proof follows from [117], Part I, Theorem 2. �

Theorem 9.2. Given the network in (9.1–9.3), if G is undirected and connected, and
0 ≤ : < 2, the equilibrium {Ḡ1N, 0M} is globally asymptotically stable.
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Proof. To prove the thesis, we show that both e(C) and 2(C) globally asymptotically
converge to zero. Combining together (9.6) and (9.1–9.3), we can rewrite the network
dynamics as

¤48 (C) = −
#∑
9=1
;f8 9 4 9 (C) ∀ 8 ∈ V

¤f8 9 (C) = −1f8 9 (C) + : (48 (C) − 4 9 (C))2 ∀ (8, 9) ∈ E .
(9.7)

where ;f
8 9
is the generic element of the time-varying Laplacian matrix defined in (9.5).

Next, let us consider the candidate Lyapunov function

+ (C) = 1
2

(
e(C)) e(C) + 2(C))2(C)

)
=

1
2

e(C)) e(C) + 1
2

∑
(8, 9) ∈E

f8 9 (C)2.

Differentiating, we can write

¤+ (C) = − e(C)) !2e(C) − 1
∑
(8, 9) ∈E

f8 9 (C)2 + :
∑
(8, 9) ∈E

f8 9 (C) (48 (C) − 4 9 (C))2

= −e(C)) !2e(C) + 1
2
:e) (C)!2e(C) − 12) (C)2(C)

=

(
1
2
: − 1

)
e) (C)!2e(C) − 12) (C)2(C)

≤ −12) (C)2(C) := F(e(C),2(C)) ≤ 0

(9.8)

where the last inequality comes from Lemma 9.1.1. Now, for the generalized LaSalle
Theorem [118] limC→+∞ F(e(C),2(C)) = 0, which implies

lim
C→+∞

2(C) = 0. (9.9)

From (9.6) and (9.9), we also have that limC→+∞ ¤e(C) = 0, limC→+∞ e(C) = ē, where ē is
a vector in R# . We prove that ē = 0 by contradiction. Indeed, if ē ≠ 0, we would have
limC→+∞ ¤2(C) ≠ 0, and this would contradict (9.9). �

Figure 9.1 compares the traditional adaptive coupling in [51] which corresponds to setting
1 = 0 in Equation (9.3), with our approach (1 > 0). Note that the selection of a positive
1 make the coupling strength between the network nodes asymptotically vanishing. On
the other hand, in the classic adaptive approach (right panels of Figure 9.1), the coupling
gains monotonically increase, and this could yield to their divergence, e.g., in the case
of persistent noise acting on the network system, see Figures 9.2 and 9.3. This also has
implications on the overall control energy spent to lead the network to consensus, defined
as

E =
∫ )

0
u(C)) u(C)dC (9.10)

with u, the stack vector of D8 for all 8 ∈ V. In Figure 9.4, we show that the control energy
in (9.10) is significantly lower when 1 > 0.
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When the control objective is to steer the node dynamics toward the state of a given
node in the network, rather than to the average of the initial conditions, the control problem
is called leader-followers consensus [119,120]. In this context, the controlled network
can be viewed as an augmented system, in which an extra node, the leader, is added to
the graph G, and is unidirectionally coupled with a (limited) fraction of the rest of the
nodes, the followers. To keep the notation consistent with the existing literature, we use
a different letter ?, for the state of the edges connecting the leader to the the rest of the
network, and we use a single subscript to identify which node is coupled with the leader.
In formal terms, we rewrite (9.1–9.3) as

¤G8 (C) = −
#∑
9=1
;f8 9 G 9 − ?8X8 (G8 − Gℓ (C)) (9.11)

¤f8 9 = − 1f8 9 (C) + : ( |G8 (C) − Gℓ (C) |)2 ∀(8, 9) ∈ E (9.12)

¤?8 = − 1??8 (C) + : ? ( | G8 (C) − Gℓ (C) |)2 ∀8 ∈ P (9.13)

where P ⊆ V is the subset of the ? followers, that is, nodes that are directly connected
with the leader; Gℓ (C) = Gℓ (0) is the state of the leader, which is constant since, having
no incoming links, its dynamics are given by ¤G; (C) = 0; X8 is the Kroncker delta, that
is, it is equal to 1 if 8 ∈ P, while it is 0 otherwise; and 1?, : ? are nonnegative tunable
parameters.

Definition 9.3. Network (9.11– 9.13) globally asymptotically achieves consensus onto
the state of the leader if, for all x(0) ∈ R# ,

lim
C→+∞

|G8 (C) − Gℓ (0) | = 0 ∀8 ∈ V . (9.14)

Note that, defining this time the disagreement vector with respect to leader’s state, that
is, as e(C)=[41 (C), . . . , 48 (C), . . . , 4# (C)], with 48 (C) := G8 (C) − Gℓ (0), imposing condition
(9.14) for all initial conditions x(0) ∈ R# and for all 8 ∈ V is equivalent to the global
asymptotic convergence of e(C) to the origin. The error dynamics can be written as

¤e(C) = −!fe(C) − %e(C) = −"fe(C) (9.15)

where "f := !f + %, with % a diagonal matrix whose 8-th diagonal entry is ?8 if 8 ∈ P,
while it is 0 otherwise. Now, we are ready to give a convergence result for network
(9.11–9.13) similarly to what has been done in Theorem 9.10.

Lemma 9.4. For all nonnegative initial conditions ?8 (C0) ≥ 0, the dynamical system
in (9.13) is positive.

Proof. The proof follows from [117], Part I, Theorem 2. �
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Figure 9.1: Time evolution of the coevolving network (9.1,9.3) on an ER graph with
# = 100 when 1 = 0.5 (left panels) and when 1 = 0 (right panels). Top and bottom
panels corresponds to node and edge evolution, respectively. Node initial conditions are
normally distributed with 0 mean and standard deviation equal to 0.5, while edge initial
conditions are uniformly distributed in [0 1].

Theorem 9.5. Given the network in (9.11–9.13), if G is undirected and connected
and : and : ? are such that 0 ≤ (: + : ?) < 2, the equilibrium

{
Gℓ (0)1# , 0" , 0?

}
is

globally asymptotically stable.

Proof. The proof comes from the proof of Theorem (9.2) by considering the following
Lyapunov function

+ (C) = 1
2

(
e(C)) e(C) + 2(C))2(C) + p(C)) p(C)

)
invoking Lemma 9.4, Equation (9.15) and using the fact that "f = !f + %. �

Figure 9.5 and 9.6 show that, as in the leaderless case, setting 0 as the equilibrium
point of the edge dynamics yields a reduction in the overall control energy required to
drive the network to consensus and to respond to external disturbances.
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9.1. Optimal selection of the target edge state

Figure 9.2: Time evolution of the state of the nodes (top panel) and edges (bottom panel)
of the coevolving network (9.1–9.3) on an ER graph with # = 100 when 1 = 0.5, and,
every 200 time units, an impulsive disturbance acts on each node. The amplitude of the
disturbance is randomly selected from a normal distribution with zero mean and standard
deviation equal to 0.5.
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Figure 9.3: Time evolution of the state of the nodes (top panel) and edges (bottom panel)
of the coevolving network (9.1–9.3) on an ER graph with # = 100 when 1 = 0, and,
every 200 time units, an impulsive disturbance acts on each node. The amplitude of the
disturbance is randomly selected from a normal distribution with zero mean and standard
deviation equal to 0.5.
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Figure 9.4: Control energy comparison. Time evolution of the energy E spent to control
the coevolving network (9.1–9.3) on an ER graph with # = 100 when 1 = 0.5 (left panel)
and 1 = 0 (right panel). Every 200 time units, an impulsive disturbance acts on each node.
The amplitude of the disturbance is randomly selected from a normal distrubution with
zero mean and standard deviation equal to 0.5.
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Figure 9.5: Time evolution of the coevolving network (9.11–9.13) with 1 = 1? = 0.5,
: = : ? = 0.8. The followers are coupled through the same topology as in Figure 9.1–9.4.
The set P of followers directly connected with the leader has cardinality 0.2# , that is, the
number of followers is equal to 0.2# .
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Figure 9.6: Energy comparison. Time evolution of the energy spent to control coevolving
network (9.11–9.13) with : = 0.8. The followers are coupled through the same topology as
in Figure 9.1–9.4. The set P of followers directly connected with the leader has cardinality
0.2# . The parameter 1 is set to 0.5 (top panel) and 0 (bottom panel), respectively.
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9.1.2 Nonlinear node dynamics: pinning control of synchronization
Note that in the classic consensus problem it is possible to choose the origin as the target
state for the edge dynamics since the disagreement dynamics are marginally stable when
the system is decoupled. This is not true, in general, for synchronization of nonlinear
systems, where the synchronization error might be unstable in the absence of coupling.
In that case, the problem arises of appropriately selecting the target point for the edge
dynamics. In the context of nonlinear node dynamics, leader-follower problems take
the name of pinning control [17, 121–126], where the role of the leader is played by a
virtual node, the pinner, that exerts a feedback control action only on a small fraction
of the nodes which then propagates to the rest of the nodes by leveraging the existing
connections among them. The objective here is to drive the node dynamics towards the
trajectory identified by the pinner. As explained above, to achieve this aim, since we are
considering now generic nonlinear node dynamics, we need to modify the design of the
edge dynamics (9.11–9.13) so as to change the setpoint for the edge states. Specifically,
the dynamics of the coevolving network become

¤x8 =� (x8 , C) −
#∑
9=1
;f8 9x 9 − ?8X8 (x8 − s) ∀ 8 ∈ V (9.16)

¤f8 9 = − 1(f8 9 − e8 9 ) + : ‖x8 − x 9 ‖2 ∀ (8, 9) ∈ E (9.17)

¤?8 = − 1? (?8 − d8) + : ? ‖x8 − s‖2 ∀ 8 ∈ P (9.18)

where x8 ∈ R= is the state of node 8, � (·) : R= × R+ → R= is the vector field describing
the individual dynamics, P ⊆ V is now called the set of pinned nodes and s(C) ∈ R=
is the reference trajectory identified by the pinner, that is the solution of the following
Cauchy problem

¤s(C) = � (s, C)
s(0) = s0.

(9.19)

Finally, e8 9 and d8 are the setpoints for the dynamics of the edges among followers, and
among the pinner and the followers, respectively and, 1, :, 1? , : ? are tunable parameters.

The synchronization error is defined as e(C) =
[
e1 (C)) , . . . , e8 (C)) , . . . , e# (C))

]
,

where e8 (C) = x8 − s(C) ∀8 ∈ V, that is described by the following dynamics

¤e8 = � (x8 , C) − � (s, C) −
#∑
9=1
<f8 9e 9 ∀ 8 ∈ V (9.20)

where <f
8 9
is the 8 9-th element of the extended Laplacian "f . Let us now give some

definitions that will turn out to be useful for the next results

Definition 9.6 (Pinning controllability). [127] The coevolving network (9.16–9.18) is
said to be locally asymptotically controlled to the pinner trajectory s(C) ∈ R= with
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C ≥ 0 if there exists a constant Δ(C0) for any C0 ≥ 0 such that

lim
C→+∞

‖e(C)‖ = 0 (9.21)

for ‖e(C0)‖ < Δ(C0). When, additionally, there exists A > 0 such that

‖e(C)‖2 ≤ ‖e(0)‖2e−AC (9.22)

then the network is locally exponentially controlled to the pinner trajectory. Finally, if
(9.22) holds for all ‖e(C0)‖ ∈ R=# , then network (9.16–9.18) is globally exponentially
controlled to the pinner trajectory.

In what follows, we consider the case in which the vector field � (·) admits an unstable
equilibrium point s̄, and that s(0) = s̄. In other words, we consider the problem of pinning
controllability towards an unstable equilibrium point. Specifically, our problem consists
in a suitable selection of the setpoints e8 9 and d8 for the edge dynamics. First, we provide
lower bounds on the setpoints guaranteeing local pinning controllability to the equilibrium
point, thus identifying an admissible set of values for e8 9 and d8 . Then, within this set,
we optimally select the edge setpoints so that the network rejects local perturbation with
the minimum control energy.

Lower bounds on the edge setpoints.

To study the local pinning controllability of network (9.16–9.18) (see Definition 9.6), we
consider infinitesimal perturbations from the unstable equilibrium point s̄ identified by
the pinner. Defining = as the stack of all e8 9 , and 1 as the stack of all the d8 , we linearize
network (9.16–9.18) around (x,2, 1) = (s̄, 2̄, 1̄), thus obtaining

X ¤x =
[
I# ⊗ �� (s) − " X ⊗ I#

]
Xx (9.23)

X ¤2 = − 1(2 − =) (9.24)
X ¤p = − 1? (p − 1) (9.25)

where �� (s) is the time-invariant Jacobian of � (·) evaluated in s and " X is the time-
invariant extended Laplacian whose weights correspond to the asymptotic edge and gain
states. Moreover, we denote Xx = [Xx1, . . . , Xx8 , . . . , Xx# ], with Xx8 = x8 − s̄, X2 = 2− =̄
and Xp = p − 1̄. Moreover, we assume that the target edge states are identical for all
(8, 9) ∈ E, i.e., e8 9 = e, and that the target gains states are identical for all 8 ∈ P and are
equal to the target edge state, i.e., d8 = e . Therefore, the asymptotic edge and gain states
are equal to 1" e and 1?e 1.

To study the local stability of (9.16–9.18), we study the stability of (9.23–9.25) that
are decoupled and can be studied separately. Diagonalizing " X , equation (9.23) can be
rewritten as

¤/8 = (�� (s) − e_8 (" X)I# )/8 , (9.26)

1Note that the equilibrium point 2̄ and p̄ are independent on the control parameters 1 and 1? .
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for all 8 = 1, . . . , # , where /8 is the 8-th modal coordinate of the network corresponding to
the 8-th eigenvalue of" X . Now, if we assume G connected and undirected, the eigenvalues
of " X are positive and real [125] and can be ordered as 0 < _1 ≤ . . . ≤ _8 ≤ _# .
Substituting e_8 with a nonnegative parameter [, we obtain the following master stability
equation

¤/8 = (�� (s) − [(" X)I# )/8 , (9.27)

The master stability function (MSF) [12, 124] is a function that associates to each value
of [ the largest Lyapunov exponent, Λ([), of (9.27). In this way, rather than studying
the # variational equations in (9.26), we can study the parametric behavior of Λ([) as [
changes. We are now ready to give the following result:

Theorem 9.7. The coevolving network (9.16–9.18) is locally asymptotically controlled
to the unstable equilibrium B̄ if,

1) G is connected and undirected;
2) � (·) is such that Λ([) is monotonically decreasing, and there exists [★ > 0 :
Λ([★) = 0;

3) e8 9 = e >
[★

_1 (" X) for all (8, 9) ∈ E;

4) d8 = e >
[★

_1 (" X) for all 8 ∈ P.

Proof. As � (·) is such that Λ([) is monotonically decreasing and by setting d8 = e8 9 =

e >
[★

_1 (" X) , all the transversal eigenmodes to the synchronization manifold in (9.26)

become stable as Λ([) < 0 for [ = e_8 (" X), 8 = 1, . . . , # . Moreover, the edge (9.17)
and the gain (9.18) dynamics are asymptotically locally stable at e . �

Theorem 9.7 provides a sufficient condition to select the edge setpoints. In the
following, within the admissible setpoints (i.e., those fulfilling the bound given in
Theorem 9.7), we select those minimizing the control energy required to reject local
perturbations.

Optimal selection of the setpoints

Here we select the edge setpoints = so that the controller reacts spend the minimum
possible energy to recover from local perturbations of the node states from the desired
node setpoint s̄. More specifically, we find =★ by minimizing the control energy required
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as follows
min
=

max
‖Xx0 ‖

∫ +∞

0
u(C, =)) u(C, =)dC

s.t.
X ¤x(C) = [I# ⊗ �� (s)] Xx(C) + u(C, =)
Xx(0) = Xx0

u(C, =) = −
[
" X (=) ⊗ I=

]
Xx(C)

= > 1" ([∗/_1 ("f))

(9.28)

where [∗ is needed to enforce local pinning synchronization and comes from Theorem
9.72. The min-max problem (9.28) consists in selecting a unique setpoint e∗ for the edge
dynamics so as to minimizing the energy required to reject a local perturbation along the
least favorable direction.

Although in general problem (9.28) has to be numerically solved, we show how in
the case of scalar node dynamics it can be analytically treated. Indeed, in this case we
have that the node set point B̄ ∈ R and �� (B) ∈ R. Furthermore, since the edge setpoints
are selected to be identical for all (8, 9) ∈ E, we can then write " X = e" = e (! + %).
Hence problem (9.28) becomes

min
e

max
‖Xx0 ‖=1

e2Xx)0 , (e)Xx0

s.t.
e > [∗/_1 (")

(9.29)

where
, (e) =

∫ +∞

0
e(�� (B)I#−e" )C"") e(�� (B)I#−e" )

) CdC

is a positive semi-definite matrix, solution of the following Lyapunov equation

(�� (B)�# − e")) , (e) +, (e) (�� (B)I# − e") + "") = 0. (9.30)

Following the chain of the min−max problems, we start by solving

max
‖Xx0 ‖=1

Xx)0 , (e)Xx0. (9.31)

By applying the Lagrange Multipliers method, we obtain that

,Xx★0 = _(, (e))Xx
★
0 (9.32)

that is the eigenvalues equation. In other words, the maximum of (9.31) is attained at the
eigenvector Xx★0 of, (e) corresponding to the maximum eigenvalue of, (e). Indeed, the
maximumvalue of the objective function is_max (, (e)), as Xx★)0 , (e)Xx★0 = _max (, (e)).
Now, we are ready to solve

min
e
e2_max (, (e)). (9.33)

2Note that the solution of problem (9.28) is independent of the selection of n , and therefore in the following
we will set n = 1.
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Let us note that we can diagonalize (9.30) left multiplying it by +) and right multiplying
it by + , that is the matrix of the right eigenvectors of (�� (B)I# − e") to obtain:

(�� (B)I# − eΛ)& +& (�� (B)I# − eΛ) ++)"")+ = 0 (9.34)

where & = +), (e)+ and Λ is the diagonal matrix containing the eigenvalues of " . As
" = ") , the eigenvectors of "2 are the same of " (i.e., are those contained in +) while
the eigenvalues are the squared eigenvalues of ". Therefore, & is a diagonal matrix
containing the eigenvalues of the Gram matrix, (e) with generic element equals to

&8 = _8 (, (e)) = −
_2
8
(")

2(�� (B) − e_8 ("))
. (9.35)

that is, the eigenvalues of, (e) are function of the eigenvalues of " . As (9.35) are not a
monotonic function of _8 ("), problem (9.33) becomes

min
e

max
8

L8 := − e2_8 (")2
2(�� (B) − e_8 ("))

[★

_1 (")
− e < 0.

(9.36)

Problem (9.36) can be solved by noting that for e ∈ ([★/_1 ("), +∞), and for all

8 = 1, . . . , # , L8 is convex, and has a uniqueminimumpoint at e★
8
=

2�� (B)
_8 (")

. Furthermore,

the minimum is the same for all 8, and correspond to 2�� (B). This implies that, defining

ē :=
�� (B) (_1 (") + _# ("))
(_1 (")_# ("))

as the value of e such that L1 = L# , we have

max
8

L8 =
{
L1, if e ≤ ē ,
L# , if e > ē. (9.37)

Since e★
#
≤ ē ≤ e★1 , the solution of (9.36) is e

★ = ē .
To illustrate our findings, we consider a simple example over the pinned 4-nodes

graph depicted in Figure 9.7, where the individual dynamics are described by the normal
form of the supercritical pitchfork bifurcation, that is,

� (G, C) = AG − G3, (9.38)

where we select A = 2, so that the origin is the unstable equilibrium point towards which we
aim at steering the network dynamics. In Figure 9.8, we show function L8 for 8 = 1, . . . , # ,
with the red dashed line identifying max8 L8 . In this case, we obtain e★ = 14.85, and to
illustrate the optimality of this selection, we compare in Figure 9.9 the energy required to
reject a sequence of impulsive perturbations, when e = e★ and e = 20 > e★, respectively.
We conclude this example by showing in Figure 9.9 that the control energy required to
react to infinitesimal perturbations of the node states from the desired setpoint is doubled
when it is selected an edge setpoint e > e★.
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Figure 9.7: 4-nodes network: the largest dot identifies the pinned node.

9.2 Optimal pinning controllability of complex networks

Here, we consider the problem of optimally evolving the edge dynamics to maximize
traditional measures of pinning controllability. Different from existing approaches, we
aim at achieving this goal in a completely distributed fashion. In this case, the controlled
network is static, and thus the node dynamics coevolve only with the edges connecting
the pinner node to the nodes of the controlled network. In pinning control problems over
static networks, sufficient conditions for local and global convergence of the nodes to
the desired trajectory have been derived in the literature [124–126,128]. In particular, it
was shown in [128] that, under suitable assumptions on the individual node dynamics, a
crucial parameter for controlling the network is the smallest eigenvalue _1 of an extended
Laplacian matrix, which encompasses information on the network topology, the set of
pinned nodes, and the coupling and control gains. The largest _1, the easier is to control
the network. Although it is apparent that a smart choice of the value of the control gains
might increase _1, most of the previous works on optimal pinning control focuses on
optimizing the selection of the pinned nodes (i.e., the nodes to be targeted by the control
action), see for instance [129], while lower bounds on the (typically uniform) coupling
gains are provided. However, when the control gains cannot be arbitrarily large, a uniform
choice is indeed detrimental and might prevent the achievement of the control goal.

In this Section, we propose a fully decentralized approach for tuning online the control
gains in an optimal adaptive fashion. Inspired by the work on optimal consensuability
and synchronizability of Kempton et al. [130–132], we built a multilayer approach where
i) the first layer employs a decentralized version of the power iteration algorithm [133]
to evaluate the sensitivity of _1 to the variation of the gains and ii) the second layer
dynamically tunes the control gains, which are then used for pinning control. The
effectiveness of the approach is demonstrated through a representative example of a
network of Chua’s circuits.
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Figure 9.8: Optimal selection of the edge setpoint for the network depicted in Figure
9.7 when � (·) corresponds to (9.38). Plot of the functions L1, . . . ,L4, with the solid
horizontal line identifying their minimum 2�� (B) = 4, and the solid vertical line the
threshold on e at 14.36 as defined in problem (9.36). The red dashed line corresponds to
max8 L8 , while the vertical dashed lines identifies the optimal value e★ = 14.85.
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Figure 9.9: Control energy required to the 4-nodes network with vector field as in (9.38)
for rejecting a sequence of impulsive perturbations from the node equilibrium point
G = 0. The edge setpoint is set to e★ = 14.85 (top panel) and to e = 20 (bottom panel),
respectively.
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9.2.1 Pinning controllability in static networks
Let us consider network (9.16) when the edges are time-invariant, that is

¤x8 (C) =
{
� (x8 , C) − f

∑#
9=1 ;8 9x 9 (C) − ?8 (x8 − s(C)), if 8 ∈ P,

� (x8 , C) − f
∑#
9=1 ;8 9x 9 (C), otherwise. (9.39)

In pinning control, a well-assessed assumption on the node dynamics ensuring that global
exponential pinning controllability (see Definition 9.6) can be achieved is the so-called
QUAD inequality, , which is defined as follows:

Definition 9.8. A vector function � (·) is QUAD [114] if there exists a diagonal matrix
& ∈ R=×= such that

(x − y)) (� (x, C) − � (y, C)) ≤ (x − y))&(x − y)

for all x, y ∈ R=.

Notice that the pinning error dynamics can be written as in (9.20) with <8 9 instead of
<f
8 9
. The following Lemma shows that, when the individual dynamics are QUAD, the

magnitude of the smallest eigenvalue of ", _1 ("), plays a key role in guaranteeing
global pinning controllability.

Lemma 9.9. If G is undirected and connected, the vector function � (·) is QUAD and
_1 (") > @max := max8 &88 , then network (9.39) is globally exponentially pinning
controlled to the desired trajectory s(C) with rate (_1 (") − @max)/2.

Proof. Consider the candidate Lyapunov function

+ (C) = 1
2

e(C)) e(C).

Differentiating, and exploiting the assumption that � (·) is QUAD, we can write

¤+ (C) = e) (C) ¤e(C)
≤ e) (C) [(I# ⊗ &) − (" ⊗ I=)]e(C)
≤ @maxe(C)) e(C) − _1 (")e(C)) e(C)
= − (_1 (") − @max) e(C)) e(C)

(9.40)

where we leveraged the fact that e(C)) (" ⊗ �=) e(C) ≥ _1 (" ⊗ �=) = _1 (") with _1 (")
being positive as G is undirected and connected. As _1 (") > @max, then inequality (9.40)
implies the thesis. �

Lemma 1 explains that optimizing _1 (") is crucial to enlarge the set of node dynamics
we can control (i.e., we can pick larger @max), and to improve their convergence rate
towards s(C). Clearly, if there are no constraints on the set of pinnable nodes P and on the
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gains ?8 , a trivial solution would be to pin all the nodes with the highest possible control
gains. However, not all the nodes may be accessible, that is, P ⊂ V, and the sum of the
control gains, which can be viewed as a proxy of the control effort, must be lower than
some upper bound, say ?̄. Hence, we formulate the following optimization problem for
the selection of the control gains:

p∗ = arg min
p
−_1 (" (p))

s.t.
1)? p ≤ ?̄
p ≥ 0,

(9.41)

where p ∈ R? is the vector with elements {?8}8∈P , and ? = |P |.
Notice that _1 (") depends both on the network topology and the control gains,

thus in principle the pinner should have global topological information for solving the
optimization problem in (9.41). This assumption is often unrealistic, hence we avoid it
and solve problem (9.41) by designing a distributed strategy where the only edge states
that can evolve are those associated to the pinner, i.e., the edge states corresponding to the
control gains of the pinner. Specifically, our approach optimally tune the control gains,
solving problem (9.41) in a completely distributed fashion.

9.2.2 Distributed adaptation of the control gains
Note that the objective function in (9.41) is a convex function of the eigenvalues of ",
which in turn are a monotone function of ?8 , for all 8 ∈ P [134]. This also implies
convexity of the objective function with respect to p. Moreover, the fact that the set of
feasible control weights

p ∈
{
p ≥ 0 ∧ ?̄ − 1) p ≥ 0

}
is convex, implies that the optimization problem (9.41) is also convex, and thus its global
minimum can be found through the gradient descent algorithm [130]. To implement a
distributed version of the algorithm, we first need to evaluate the sensitivity of _1 (") to
variations of the control gains.

9.2.3 Layer 1: Distributed estimation of m_1(")/m?
Here, we present a continuous-time version of the power iteration algorithm, which adapts
the implementation of [135] to obtain a decentralized estimation of m_1 (")/mp.

Let us denote by v
¯1 the right eigenvector corresponding to _1 ("), and define

v̂1 := v1/(v)1 v1)1/2. We can then write:

v̂)1 " v̂1 = _1 (")v̂)1 v̂1 = _1 ("). (9.42)

Now, computing the derivative of the above expression with respect to the the pinner
control gain vector p, and omitting for brevity the dependency upon " , we have

m_1 (")
mp

=
mv̂)1
mp

" v̂1 + v̂)1
m"

mp
v̂1 + v̂)1 "

mv̂1
mp

. (9.43)
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Now,
mv̂)1
mp

" v̂1 + v̂)1 "
mv̂1
mp

= _1 (")
m

(
v̂)1 v̂1

)
mp

= 0,

and from (9.43) we get:
m_1 (")
mp

= v̂)1
m"

mp
v̂1. (9.44)

Noting that
m"

m?8
= diag{08−1, 1, 0#−8}, we can rewrite (9.44) as

m_1 (")
m?8

= v̂)1
m"

m?8
v̂1 = Ê

2
8,1 =

E2
8,1

v)
8

v8
, (9.45)

for 8 = 1, . . . , # . Therefore, to estimate the sensitivity of _1 (") to variations of the
control gains, we need to perform an estimate of v1. To this aim, we propose to apply the
power iteration algorithm from [135] to matrix (I# − U"), for some sufficiently small U.
Let y = (H1, . . . , H# )) ∈ R# be the estimate of the eigenvector v1. The classical steps of
the power iteration algorithm are

¤y = − U"y, (apply M),

¤y = −
(
y) y/# − 1

)
y, (renormalization),

(9.46)

where U is a positive scalar. To run (9.46) simultaneously, we combine them in a linear
way as

¤y = −:1"y − :2

(
y) y
#
− 1

)
y, (9.47)

where :1 and :2 are scalar gains. As " is real and symmetric, it is diagonalizable,
that is, " = ))"d) with "d = diag{_1, . . . , _# } and ) being an orthonormal matrix.
Therefore, after performing a change of coordinates ỹ = (ỹ1 . . . ỹ# )) = )y, we can
rewrite (9.47) as

¤̃y = −:1"d ỹ − :2

(
ỹ) ỹ
#
− 1

)
ỹ. (9.48)

Now, we are ready to give the following theorem that provides the necessary and sufficient
condition for the convergence of y to v1.

Theorem 9.10. Given any initial condition H(C0) such that v)1 y(C0) ≠ 0, and pos-
itive gains :1 and :2, the solution of (9.47) will converge to the eigenvector v1
corresponding to _1 of " with norm ‖v1‖2 =

√
# (:2 − :1_1)/:2 iff

:2 > :1_1. (9.49)

Proof. See the Appendix. �
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9.2. Optimal pinning controllability of complex networks

In view of implementing (9.47) in a decentralized manner, we emphasize that an upper
bound for _1 (") is given by ?̄, and therefore condition (9.49) can be met without any
information on the graph topology by simply setting :2 > :1 ?̄. Now, considering that
" = !̄ + %, we expand Equation (9.47) as

¤y = −:1 !̄y − :1%y − :2

(
y) y/# − 1

)
, (9.50)

and then analyze each of the terms of the right-hand side, and observe that

i) The first term can be computed in a decentralized manner from the definition of
graph Laplacian.

ii) The second term −:1%y is also decentralized, if we only make the reasonable
assumption that each node knows if it belongs to the set P or not.

iii) The third term requires computing a centralized average of y) y. However, this
computation can be performed in a decentralized fashion by employing the following
PI average consensus estimator [135, 136]

¤I8 = W((H8)2 − I8) − :%
∑
9∈N8
(I8 − I 9 )

+ : �
∑
9∈N8
(F8 − F 9 ),

¤F8 = −: �
∑
9∈N8
(I8 − I 9 ),

(9.51)

where N8 is the set of neighbors of node 8, I8 is the estimate of y) y/# carried out
by node 8; W > 0 is the rate at which new information replaces old information,
while :% > 0 and : � > 0 are the proportional and the integral estimator gains,
respectively.

These considerations yield the following decentralized version of Equation (9.47):

¤H8 =
{
−:1

∑
9 ;8 9 H

9 − :2 (I8 − 1)H8 if 8 ∉ P,
−:1

∑
9 ;8 9 H

9 − :2 (I8 − 1)H8 − :1?8H
8 if 8 ∈ P, (9.52)

which, paired with (9.51), allows to perform a decentralized estimate of v1, where at
each time instant each agent 8 receives a triplet of variables

{
H 9 , I 9 , F 9

}
from each of its

neighbors 9 ∈ N8 .
Notice that, crucially, every agent 8 is capable of computing an estimate H8 of E8,1, and

therefore every pinned node can transmit a decentralized estimation of the sensitivity of
_1 (") to ?8 back to the pinner. Namely,�m_1 (")

m?8
=
(H8)2
#I8

, (9.53)

where we exploit the decentralized estimation I8 of y) y/# .
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Figure 9.10: Schematic of the multilayer algorithm described in Subsection 9.2.5.
The two estimation and adaptations layers (enclosed by a dashed rectangle) provide the
values of the control gains to be used by the pinner, which steers the trajectories of the
nodes in the controlled network (at the bottom) towards the desired solution s(C).
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9.2. Optimal pinning controllability of complex networks

9.2.4 Layer 2: Decentralized gain adaptation
The second layer exploits the information provided by (9.53), to solve (9.41) through a
decentralized implementation of the steepest descent method. First, we incorporate the
inequality constraints in the objective function, thus obtaining the modified cost function

J(p) = −_1 (") +Φ1 (p) +Φ2 (p), (9.54)

where

Φ1 (p) =
1
@(C)

∑
8∈P

log(?8),Φ2 =
1
@(C) log

(
?̄ −

∑
8∈P

?8

)
are the logarithmic barriers, and @(C) is an adaptive parameter determining their severity.
The minimum of (9.54) is the stationary point of the following second order differential
equation [131]:

¥p = −0 mJ(p)
mp

− 1 ¤p, 0 > 0, 1 > 0. (9.55)

In view of our distributed implementation, we derive a decentralized estimation of
mJ(p)/mp which exploits the estimator (9.53) from Layer 1. Namely,�mJ(p)

m?8
= −

�m_1 (")
m?8

− 1
@(C)

(
1
?8
− 1
?̄ −∑

8∈P ?8

)
. (9.56)

Now, we decentralize (9.55) as

¥?8 = 0
( �m_1 (")

m?8

)
+ 0

@8 (C)

(
1
?8
− 1
?̄ −∑

8∈P ?8

)
− 1 ¤?8 , (9.57)

where the barriers steepness function @8 (C) is adapted as

¥@8 =
21���m̂J/m?8

��� + 3 − 22 ¤@8 , @8 (0) = 1, ¤@8 (0) = 0, (9.58)

see [130] for a detailed discussion on steepness functions.

9.2.5 Overall pinning control scheme
A schematic of the optimal pinning control scheme developed in this work is reported
in Figure 9.10. Once the nodes to be pinned have been selected, layer 1 runs equations
(9.51)-(9.53) and outputs the sensitivity of _1 (") to variations of p. This output is
transmitted to Layer 2 that adapts the control gains to maximize _1 (") through the
adaptive equations (9.57) and (9.58). The gains p are then fed to the pinning controller,
which drives network (9.39) towards the prescribed solution s(C). Note that for the
multilayer approach to work smoothly, it is necessary to guarantee a sufficient time-scale
separation between the processes involved. Specifically, the fastest time-scale should be
that of the PI average estimator (9.51): this allows an accurate estimation of the sensitivity
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Chapter 9. Optimal control of coevolving networks

Figure 9.11: Topology of the controlled network. The pinned nodes are colored
consistently with the plot of ?8 (C) in Figure 9.12, with their sizes being proportional to
the corresponding ?∗

8
.

of the cost function to variations of the control gains. Finally, the slowest time-scale
should be that of Layer 2, thus providing sufficient time for _1 (") to converge. Notice
that it is always possible to tune the time-scale separation of the processes involved in the
two layers, and numerical explorations suggests keeping their time-scales separated by an
order of magnitude to be sufficient. Nevertheless, a formal proof is beyond the scope of
this thesis.

9.2.6 Numerical example
In this section, we illustrate the effectiveness of the proposed pinning control scheme via
a representative example.

Node dynamics

we select Chua’s chaotic circuits [115] as nodes of the controlled network. Thus, the
vector dynamics in Equation (9.39) can be written in adimensional form as

� (x8 , C) =

U1 (−G81 + G82 − i(G81))

G81 − G82 + G83
−U2G82

 , 8 = 1, . . . , #,

where i(G81) = V1G81 + 0.5(V2 − V1) (|G81 + 1| − |G81 + 1|). We select U1 = 10, U2 = 18,
V1 = −3/4, and V2 = −4/3 to ensure chaotic behavior of the nodes when decoupled.
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Figure 9.12: Evolution of _1 (") (top panel) and of the control gains ?8 , 8 = 1, . . . , 4
(bottom panel). The initial conditions are set to ?8 (0) = 10−2 × [1.0 1.5 2.0 7.0]) , while
¤?8 (0) are uniformly distributed in [0, 0.7] for all 8 = 1, . . . , 4.
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Figure 9.13: Norm of the network pinning error. The green line corresponds to the
case in which the control gains, starting from initial conditions p(0), evolve according to
the multi-layer approach described in Figure 9.12, while the blue line corresponds to a
static pinning control strategy with p = p(0).
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9.2. Optimal pinning controllability of complex networks

The initial conditions are uniformly distributed in [−0.5, 2.5]. The Chua’s circuit fulfills
the QUAD assumption [114], therefore an optimal selection of the control gains can be
crucial to achieve the pinning control goal.

Network topology

We consider a randomly selected undirected and connected graph of # = 10 nodes, whose
topology is depicted in Figure 9.11. We set the number < of pinned nodes to 4 and the
maximum sum ?̄ of the control gains to 25. The pinned nodes are randomly selected from
a discrete uniform distribution and depicted in Figure 9.11.

Multilayer estimation and gain adaptation

By exploring the parameter space numerically, we tuned the parameters of both layers so
as to allow sufficient time-scale separation between the processes. In particular, we set
:% = 200 and : � = 20 for the PI estimator (Layer 1, equations (9.51)), :1 = 2 and :2 = 40
for the estimation of the eigenvector E1 (Layer 1, Equation (9.47)), and 0 = 2, 1 = 1,
21 = 1, 22 = 2, and 3 = 0.01 for the adaptive tuning of the gains (Layer 2, Equations
(9.57) and (9.58)). Moreover, we set the initial conditions of the control gains such that,
in the absence of any adaptation, the synchronization error would not converge to the
origin (i.e., the network would not be pinning controllable).

Results

Figure 9.12 illustrates the effectiveness of the proposed approach, with _1 (") converging
very close to the constrained maximum (compared to a centralized approach, the error
is below 1%) thus distributedly solving problem (9.41). We also observe the control
gains asymptotically settle to steady-state optimal values. Figure 9.13 illustrates how
the adaptation can be beneficial from a control viewpoint. Indeed, while with the initial
control gains p(0) the error exhibits chaotic oscillations (blue line), optimizing the
coupling gains all the oscillators converge towards the desired trajectory, with the error
asymptotically settling to zero (green line).
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10 Appendix

10.1 Wealth dynamics

The proposed artificial financial market is populated by a set of = agents, who can choose
among alternative portfolios. The agents behave according to the Von Neumann and
Morgenstern utility theory [137]. At each time step : = 1, 2, ..., a simulated trading
session is performed. Each agent, in a sequential random order, evaluates the convenience
of investing a given fraction X of its current wealth G 9 (:) in one of the portfolios from
the set L = {1, . . . , <}. The portfolios in L are characterized by a limited availability
Υ8 , 8 = 1, ..., <, where Υ< = +∞ is associated to a virtual portfolio, corresponding to
no-investment. Each agent is allowed to invest in one of the available portfolios, that
is, in any element of L such that Υ8 ≥ XG 9 (:). Agents’ access to trading is randomly
permuted at each time step : , so that, on average, no agent is favored. After each trading,
the availability of the selected portfolio is updated before the next agent is allowed to
trade. A power-law utility function characterizes the risk attitude of each agent. At each
trading session : , agent 9 decides to invest a fraction X of its current wealth G 9 (:) in the
most profitable portfolio 8 ∈ L, selected by comparing the expected utilities

� [* 9 (G 9 (:), 8)] = 0.5
[
(08XG 9 (:))U9 (:) + (18XG 9 (:))U9 (:)

]
, 8 = 1, ..., <, (10.1)

where U 9 (:) is the risk attitude of the j-th agent, 08 and 18 are the win and loss rates
associated to the i-th portfolio, 8 = 1, . . . , <1. Namely, at each trading session agent 9 ,
based on its risk attitude U 9 (:), selects the investment

ℓ 9 (U 9 (:)) = arg max
8∈S

� [* 9 (G 9 (:), 8)], (10.2)

whereS ⊆ L is the set of portfolios that the moment of the trade have an availability higher
than XG 9 (:). We emphasize here that an agent may decide not to invest (formally, to invest
in the <-th portfolio), if � [* 9 (G 9 (:), <)] ≥ � [* 9 (G 9 (:), 8)] for all the 8 ∈ S − {<}.

The outcome of the trade is the realization V 9 (:) of a uniform Bernoulli random
variable �. Therefore, the wealth G−

9
(:) of the agent 9 at time : before the taxation is

given by
G−9 (:) = G 9 (: − 1) + V 9 (:)XG 9 (: − 1) (0ℓ 9 (:) − 1)

− (1 − V 9 (:))XG 9 (: − 1) (1 − 1ℓ 9 (:) ),
1Notice that the win and loss rates associated to the virtual portfolio are 0< = 1< = 1.
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10.2. Tobin-like taxation scheme

where we omit the dependence of ℓ 9 on U 9 (:). At this point, the taxation scheme
determines the wealth at iteration : as

G 9 (:) = j(G−9 (:)). (10.3)

In the next sections, we clarify the taxation mechanism of the Tobin-like and flat taxes
considered in this work, that is, we specify function j.

10.2 Tobin-like taxation scheme

The Tobin-like tax employed in this work is a financial transaction tax, which reduces the
current wealth of the winning agents by a profit fraction d(:) given by

d(:) =
{

? (:)∑=
9=1 B 9 (:)

, ?(:) > 0,
0, ?(:) ≤ 0,

(10.4)

where B 9 (:) = G−9 (:) − G 9 (: − 1), and ?(:) = ∑=
9=1 (G−9 (:) − G 90). Accordingly, (10.3)

becomes
G 9 (:) = G−9 (:) − � (B 9 (:))B 9 (:)d(:), (10.5)

where � is the Heaviside step function. For the sake of brevity, in what follows we refer
to this financial transaction tax as Tobin-like Tax (TT).

10.3 Flat taxation scheme

Adopting a flat tax, the amount of the tax is proportional to the total wealth of the
individual. Specifically, it is a non-progressive wealth tax (WT), proportional to the
current wealth G−

9
(:) of each agent 9 , with 9 = 1, . . . , =. Accordingly, (10.3) becomes

G 9 (:) = W(:)G−9 (:), (10.6)

where

W(:) =
∑=
9=1 G 90∑=

9=1 G
−
9
(:) .

Notice that, to allow for a proper comparison between the two taxation schemes, the
time-varying coefficients d(:) and W(:) in (10.4) and (10.6), respectively, are selected so
as to keep the average wealth constant over time, that is, 1

=

∑=
9=1 G 9 (:) = Ḡ.
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10.4 Stability of system (9.47)
Here, we present some results on the stability of system (9.47) that are instrumental for
the subsequent proof of Theorem 9.10.

Proposition 10.1. System (9.47) has an equilibrium point H = 0 which is locally
unstable when :2 > :1_1.

Proof. Linearizing the equivalent system (9.48) around a generic equilibrium point H̄, we
obtain the following Jacobian:

� = −:1"d − :2

(
H̄) H̄� + 2H̄ H̄)

)
/# + :2� .

When H̄ = 0, the linearized system (9.48) can then be written as

¤̃H = (−:1"d + :2�) H̃. (10.7)

Therefore, setting H̄ = 0 in (10.7), we obtain that the origin is a locally unstable equilibrium
point of (9.47) if :2 > :1_1. �

Proposition 10.2. If (9.49) holds, then system (9.48) has # pairs of nonzero equilib-
rium points H̃8 , 8 = 1, . . . , # , given by

H̃
9

8
=

{
0 if 1 ≤ 9 ≤ #, 9 ≠ 8,
±
√
# (:2 − :1_8) /:2 if 9 = 8. (10.8)

Moreover, among the # pairs of equilibria, only H̃1 is locally stable.

Proof. Setting ¤̃H = 0 one gets

"dỹ = − :2
:1

(
ỹ) ỹ
#
− 1

)
ỹ.

As for any unit eigenvector ˆ̃E8 of "d, "d ˆ̃E8 = _8 ˆ̃E8 , and considering that condition (9.49)
holds, then H̃8 = ±

√
# (:2 − :1_8)/:2 ˆ̃E8 . As ˆ̃E8 is the 8-th versor of R# , it follows that

(10.8) are the set of nonzero equilibria of (9.48). Now, to study the stability of those
equilibria, we can look at the eigenvalues of the diagonal Jacobian

`
9

8
=

{
−2(:2 − :1_8) if 8 = 9 ,
:1 (_8 − _ 9 ) if 8 ≠ 9 ,

that are all negative only for 8 = 1, that is H̃1 is the only stable equilibrium of (9.48). �
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Proposition 10.3. Given any initial condition y(C0) and any positive gains :1, :2,
the trajectory of system (9.47) is bounded over time as

‖y(C)‖ 6 max
{
‖y(C0)‖,

√
#

}
.

Proof. Consider the following candidate Lyapunov function

+ = y) y = ỹ) ỹ.

Differentiating, we get

¤+ = 2ỹ) ¤̃y = 2ỹ)
[
−:1"3 − :2

(
ỹ) ỹ/# − 1

)
I
]

ỹ.

If ‖ỹ(C0)‖ >
√
# ,

(
ỹ) ỹ/# − 1

)
> 0 and then ¤+ < 0 until ‖ỹ(C)‖ ≤

√
# (an invariant

set for system (9.47)). Moreover, if ‖ỹ(C0)‖ ≤
√
# then ‖ỹ(C)‖ ≤

√
# and so

‖y(C)‖ ≤
√
# for all C > C0. �

Proof of Theorem 1

As y = )) ỹ, showing that condition (9.49) is necessary and sufficient for the convergence
of y to the eigenvector v1 with norm

√
# (:2 − :1_1)/:2 is equivalent to showing that it

is a necessary and sufficient condition for the convergence of ỹ to H̃1, which is what we
are going to prove next.

Sufficiency
Consider any two H̃1 and H̃2. Then, we can write

3

3C

(
ln
H̃1

H̃2

)
=
¤̃H2 H̃1 − ¤̃H1 H̃2

H̃2 H̃1 = −:1_2 − :2

(
H̃) H̃

#
− 1

)
+ :1_1 + :2

(
H̃) H̃/# − 1

)
= :1 (_2 − _1) > 0

that implies that H̃1/H̃2 →∞ and as H̃1 is bounded, see Proposition 10.3, H̃2 → 0. This
holds for all 8 > 1, that is H̃1/H̃8 →∞ and H̃8 → 0. Therefore, ỹ) ỹ→

(
H̃1)2 and as (9.49)

holds, the expression of H̃1 over time can be reduced to

¤̃H1 =
:2
#

(√
# (:2 − :1_1) /:2 + H̃1

) (√
# (:2 − :1_1) /:2 − H̃1

)
H̃1.

As ỹ(C0) ≠ 0 and being the origin unstable, see Proposition 10.1, then
H̃1 → ±

√
# (:2 − :1_1)/:2.

Necessity
If H̃1 → ±

√
# (:2 − :1_1)/:2, then condition (9.49) automatically holds. �

—————————————————————–
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Chapter 11. Background

11 Background

In Part III we will conclude our trip into the complexity of the networks structure. In
Parts I and II we saw that the advantages gained from a modeling and control perspective
are worth the effort of conisidering the mathematical paradigm of evolving networks.
Specifically, in Part I we shed out that the range of situations in which a stochastic temporal
network can be efficiently controlled is limited and in Part II we pointed out how the
flexibility of coevolving networks turns to be useful in modeling intricate real phenomena
in performing a more efficient network control. In both cases, the key ingredient to
overcome the obstacle of facing with a higher complexity is to devise optimization
problems able to exploit the features of the network to our advantage.

Along the same lines of argument, in Part III, we will show how an ad hoc design
of the control action allows us at the same time to overtake and to exploit two kinds of
networks that seem to hinder our ability to achieve a desired collective behavior: networks
with symmetries or signed interconnections. In the first case, provided that the presence
of symmetries in the network causes loss of controllability, we show how to deal with a
control goal known as group consensus (a collective behavior where clusters of nodes
sharing the same value of their state variables arise) [33]. In the second case, that is, when
the graph of the network is signed, we define the partial containment control and propose
an algorithm to solve it, that is, steering the states of a subset of the network nodes in the
convex hull defined by the states of what we will define as the leaders of the network [34].

11.1 Networks with symmetries

It can be observed in nature and in several real-world applications that networks have a
certain degree of symmetry in their structures (see Table 11.1). The concept of symmetry
is perhaps one we all have in mind, having learned it in daycare (See Figure 11.1).
Mathematically speaking, the symmetry properties of a network are defined in terms of the
existence of certain automorphisms of the nodes setV of the graph G = {V, E}. Indeed,
an automorphism is a permutation of the nodes that leaves the networks unchanged (that
is, maps edges to edges and nonedges to nonedges [139]). The set of all authomorphisms
forms a permutation group aut(G) generated by all the network symmetries. Indeed, the
set of all the permutations in the automorphism group will only permute certain subsets
of nodes among each other. Consistently with the existing literature [140–142], we will
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Network N |aut(G)|

Biological Networks
Caenorhabditis elegans Genetic (Cele) 2060 6.9985 × 10161

Yeast Protein Interactions (Yeast) 1458 1.2607 × 10254

BioGRID Human(BGHum) 7019 1.207 × 10485

Technological Networks
Internet (AS Level) (IntAS) 22332 1.2822 × 1011298

US Power Grid (USPow) 4941 5.1851 × 10152

www.EPA.gov subnet(EPA) 4253 1.277772 × 102321

Social Networks
Media ownership (Media) 4475 3.3638 × 104818

PhD network (PhD) 1025 2.9810 × 10292

Erdös Collaboration (Erdös) 6927 3.4610 × 1042222

Table 11.1: Table extracted by Table 1 of [30] where in the third column the order of
magnitudes of the size of automorphism groups, |aut(G)|, of some real networks are given.
Note that the symmetries of most of the listed networks are order of magnitudes higher
than the estimated number of atoms in the visible universe, that is, ∼ [1072, 1087] [138].

denote these subsets as orbits or clusters (more details will be given in Chapter 12). The
abundance of symmetries in real world networked systems (see Table 11.1) spurred the
scientific communities to investigate (as usual) if the structure of such networks could be
exploited to our advantage. Paradigmatic is the example of the cluster synchronization
in which all the nodes belonging to the same orbit synchronize to the same trajectory
essentially by employing the symmetry structure of the network [140,141,143]. However,
coping with networks with symmetries can also prevent from their control. Backpedaling
to Chapter 1, one issue is represented by the inability of controlling a network with a
limited set of drivers to a desired behavior. Indeed, in [31, 32, 144] it is pointed out that
symmetries cause loss of controllability and sufficient conditions for uncontrollability
are provided. A recent work [142] showed that although the presence of symmetries in
linear networks hampers controllability, it has the power to favor the emergence of group
consensus, i.e.,

Definition 11.1 (Group consensus). The nodes in a cluster C: achieve group consen-
sus if limC→+∞ ‖G8 (C) − G 9 (C)‖ = 0 for all 8 and 9 in C: . Moreover, group consensus
is possible for either stable, marginally stable, or unstable node dynamics, as long as
the trajectories converge to each other.

Therefore, it does naturally arise the question: is it possible to control the group consensus
of such networks? This is the research question we answered in [33] and that we report in
Chapter 12. A byproduct of our study regards another chance offered by the presence
of symmetries in networks. Indeed, given a graph with symmetries, the clusters C: of
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Figure 11.1: Daycare exercise to train the concept of symmetry in 11.1a and a nice natural
example of symmetry in the star fish in 11.1b

symmetric nodes such that ∪ 
:=1C: = V and ∩ 

:=1C: = ∅ define a partition, Π, of V.
The graph whose nodes are the  cells of Π is called the quotient graph, Q, of G. As,
generally, the dimension of Q is smaller than that of G, we can take advantage from
such dimensionality reduction also from a control prospective, by designing the required
control input on the quotient network rather than on the original network as we will see in
Section 12.4.

11.2 Networks over signed graphs

One of the traditional assumptions on the networks topology relies with the nonnegativity
of the edges weights and reflects the fact that the interactions among the nodes of the
network are cooperative. However, especially in human interaction networks, such as social
networks, antagonism is commonly observed. A tool to model such interactions is offered
by the so-called signed graphs, introduced in the Fifties by Harary to model disliking,
indifference and liking sentiments described by psychologist in social interactions. As
we pointed out since the beginning of this work, the problem of steering the nodes of a
dynamical network towards a collective behavior, in some way, the general goal of the
control of complex networks theory. Departing from the pioneering work of DeGroot in
the Seventies [145], substantial research effort has been devoted to unravel the mechanisms
leading to the emergence of consensus in networks of simple integrators. The problem
has been deeply studied both in continuous and discrete time [146], on undirected or
directed graphs, and in presence of delays [11]. Consensus has been also investigated
in a leader-following setting, in which one node, the leader, drives a network of linear
systems towards a desired value [147]. The cross assumption of all the above works
is the collaborative interactions among the nodes of the networks. In [148], Altafini
firstly investigated if it would still be possible to achieve a form of agreement even in the
presence of antagonistic interactions. He proposed the so-called bipartite consensus as
a consensus protocol for networks whose graph is signed, that is, the adjacency matrix
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can have negative weights (the formal definition will be given in Chapter 13). He gave
conditions on the structural properties of the signed network under which: i) all the
nodes polarize (asympthotically converge to zero), and ii) the network nodes partition
into two sets, one converging to Ḡ, and the other one to −Ḡ. However, achieving consensus
is not the only possible control goal in multi-agent systems. Indeed, in applications of
networks of autonomous agents, the goal is often to contain the agent into a region, for
instance to impede that a group of robot or autonomous vehicle enter into hazardous
areas [149], to comprise the opinions of voter into a certain range [6], or to avoid the
spreading of an epidemic. Motivated by these kinds of phenomena, Ji and coworkers
introduced the so-called containment control problem, where multiple leaders have to
drive a group of mobile agents within a desired convex polytope [150]. Later works have
further analyzed the problem to account for the presence of directed interactions [151],
possible switches in the network topology [2,152], uncertainty [153], and higher-order
dynamics [154,155]. Recently, a first definition of containment control over signed graphs
was given in [156]. Specifically, the author says that a network is contained when the
states of its nodes converge towards the convex hull spanned by the leaders and by their
symmetric trajectories. Assuming continuous-time dynamics, conditions guaranteeing
the achievement of full network containment were achieved. Similar results were obtained
in [157] for the case of generic linear heterogeneous node dynamics. Similarly to the
case of networks with symmetries, provided that a large directed signed networks present
structural constraints and that it is unfeasible, or too expensive to inject control signal
whenever in the networks. This motivates us to formulate the partial containment control
problem over signed graphs, that is, a protocol aiming to contained a portion of the
network within the convex hull defined by the leaders’ state. Moreover, we present an
algorithm aiming to maximize the number of nodes asymptotically contained with a
limited number of control inputs.
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12 Controlling group consensus
in networks with symmetries

In this Chapter, we deal with linear networks endowing symmetries. We will show that

1) there exists a group consensus subspace of the state space, that is, the set of all the
nodes’ states such that the nodes in the same cluster asympthotically converge to
the same value, according to Definition 11.1;

2) the group consensus subspace encompasses the controllable subspace.

As we are interested in studying the group consensus manifold we will refer to two
partitions of the nodes that are �-invariant1, orbital and equitable partitions. Roughly
speaking, an orbital partition subdivides the nodes set V in clusters according to the
permutations in the set of all permutations in aut(G(�)), while the equitable partition is
more related to dynamics as it groups the nodes in a cluster if their dynamics are affected
equally by the nodes outside from other clusters) (more details and formal definitions will
be given later). Therefore, we prove points 1) and 2) for both partitions (in Section 12.2
for the orbital partitions and in Section 12.3 for the equitable partitions) and as it can be
proved that all the equitable partitions are orbital but not vice-versa, we will present a way
to control group consensus in the case of equitable partitions (in Section 12.4).

12.1 Mathematical Preliminaries

Before going into the details of the problem, we list some definitions and preliminaries
that will turn useful.

We denote by G(V, E) an undirected graph with V, the set of # nodes, and
E ⊆ V × V the set of edges defining the interconnections among the nodes. The
symmetric binary matrix � ∈ R#×# is the adjacency matrix of the graph, that is, a
matrix whose elements are �8 9 = � 98 ≠ 0 if (8, 9) ∈ E and �8 9 = � 98 = 0 otherwise. The
symmetry properties of G are defined by the existence of the authomorphism as defined
in what follows.

1Note that as we refer to linear networks � A describes both the network topology, being an adjacency
matrix, and the netework dynamics.
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12.2. Controllability Properties of Networks with orbital partitions

Definition 12.1 (Automorphism). A permutation c(V) = Ṽ of the nodes setV is an
automorphism of G if

1. V = Ṽ;
2. if (8, 9) ∈ E, then (c(8), c( 9)) ∈ E.

The set of all the automorphisms of a graph with adjacency matrix �, with the operation
of composition, is the automorphism group which we will denote by aut(G(�)). Any
permutation in aut(G(�)) is encoded in a permutation matrix % that commutes with �,
i.e., such that %� = �%. The set of all automorphisms in the group will only permute
certain subsets of nodes (the orbits or clusters) among each other. For any two nodes in
the same orbit there exists a permutation that maps them into each other. Therefore,

Definition 12.2 (Orbital partition). All the permutations in aut(G) define orbital
partitions, Π>A , ofV, into B subsets, the orbits or clusters, {C1, C2, ...CB}, such that
∪B
8=1C8 = V, C8 ∩ C9 = ∅ for 8 ≠ 9 .

Orbital partitions fall in the general class of the equitable partitions, that is

Definition 12.3 (Equitable partition). A partition, Π4@ , of the nodes set, V, in  
clusters C1, C2, . . . , C is equitable if for all 8∑

?∈C9
�; ? = 38 ? ∀; ∈ C8 . (12.1)

An orbital and an equitable partition Π are said coarsest if it partitions the nodes through
the minimum number of clusters.

Definition 12.4 (Indicator matrix). To each partition of B clusters, Π, it can be
associated a # × B indicator matrix �Π, such that �Π

8 9
= 1 if node 8 belongs to C9

and �Π
8 9
= 0 otherwise. We will denote by �Π>A and �Π4@ the indicator matrix

corresponding to the orbital and equitable partition, respectively.

12.2 Controllability Properties of Networks with orbital parti-
tions

We consider a linear dynamical network described by

¤x = �x + �u. (12.2)

where x ∈ R# defines the state space X and is the vector stacking the states of the #
network nodes and u is the vector stacking the " input signals injected in the network.
Consistently, the # × # symmetric matrix � defines the network topology, while the
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Chapter 12. Controlling group consensus in networks with symmetries

# × " matrix � describes the way in which the " input signals affect the network
dynamics. Namely, if the 9-th input is injected in the 8-th node then �8 9 = 1, while �8 9 = 0
otherwise.

We will show how the presence of symmetries in network (12.2) affects its controlla-
bility.

Lemma 12.5. The subset of automorphisms of G(�) associated to the set of matrices
P := {%8 : %8� = �%8 and %8� = �} forms a subgroup of aut(G(�)).

Proof. For the set P to be a subgroup, the following four properties must be true:

(i) %8 (% 9%: ) = (%8% 9 )%: ∀ (%8 , % 9 , %: ) ∈ P;
(ii) %8 ∈ P is non singular ∀ 8;
(iii) � ∈ P;
(iv) given any two matrices %8 ∈ P and % 9 ∈ P, then %8% 9 ∈ P.

Proving that the matrices in P satisfy property (i) and (ii) is trivial as (i) is true for any
three square matrices with the same dimensions (%8 , % 9 , %: ) ∈ P regardless of whether
these are, or are not, in P, while (ii) is true as permutation matrices are not singular.
Moreover, (iii) holds as � � = �� = �, and �� = �. Moreover, property (iv) is proved as

(%8% 9 )� = %8 (% 9�) = %8 (�% 9 ) = �%8% 9 = �(%8% 9 )

which proves that %8% 9� = �% 9%8 for all (%8 , % 9 ) ∈ P. Then, finally, the proof is
completed by noting that, as from our hypotheses % 9� = %8� = � for all (%8 , % 9 ) ∈ P, it
follows that %8% 9� = %8� = �. �

We will denote as aut(G(�, �)) the group represented by the permutation matrices
% such that %� − �% = 0 and %� − � = 0. Similarly to aut(G(�)), aut(G(�, �))
partitions the set of network nodes into orbits or clusters, where an orbit is a subset of
symmetric nodes. Hence, we can define the coarsest orbital partition Π>A into clusters
corresponding to the orbits of the automorphism group aut(G(�, �)), C1, C2, . . . , C ,
such that ∪ 

8=1C8 = V, and C8 ∩ C9 = 0 for 8 ≠ 9 . We will rely on the indicator matrix
�Π>A to keep track of the orbit to which each node belongs.

Lemma 12.6. Each orbit of the coarsest partition Π>A induced by 0DC (G(�, �)) is a
subset of an orbit of the coarsest partition induced by 0DC (G(�)).

Proof. The thesis follows from the observation that if two (or more) nodes are permuted
by a permutation matrix % in 0DC (G(�, �)) and thus belong to the same orbit, then they
also belong to the same orbit of the coarsest orbital partition induced by 0DC (G(�)), as
the same matrix % also belongs to 0DC (G(�)). �

Theorem 12.7. If there exists a permutation matrix % ≠ � such that %� − �% = 0
and %� − � = 0, then

(i) the set of states X>A := {G : G8 = G; ∀ 8, ; ∈ C9 , ∀ 9} ⊂ X, is an invariant
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12.2. Controllability Properties of Networks with orbital partitions

subspace of the matrix �, i.e., ∀G ∈ X>A , �G ∈ X>A ;
(ii) if G8 = G; then ¤G8 = ¤G; for all (8, ;) ∈ C9 and for all 9 .

Proof. Let us start by showing that if there exists a permutation matrix % such that
%� = �% and %� = �, then the network state G and the permuted state vector y := %x
share the same dynamics. Indeed, by left multiplying both sides of Equation (12.2) by %
we get

% ¤x = %�x + %�u.

Then, as %� = �% and %� = �, we get

¤y = �y + �u.

Now, as there always exists a permutation matrix % ∈ aut(G(�, �)) that maps into each
other any two nodes belonging to the same clusters [142], this proves statement (ii), i.e.,
that nodes in the same clusters share the same dynamics, and thus that if G8 = G 9 for all 8
and 9 in the same cluster, then also ¤G8 = ¤G 9 . Moreover, this also means that the subspace
made of all the points of the state-space such that G8 = G; for all (8, ;) in the same cluster
and for each of the  clusters is �-invariant (statement (i)). �

Theorem 12.7 establishes the existence of the group consensus subspace X>A for network
(12.2). Hence, to tackle consensus control problems, it is useful to perform a transformation
that allows us to separate the dynamics along the subspaceX>A from that orthogonal to the
subspace X>A itself. This task is accomplished by the so called Irreducible Representation
(IRR) of the symmetry group through a transformation in a new coordinate system [140].
This is a state transformation zor = )orx where the transformation matrix

)or =

[
) ‖

)⊥

]
∈ R#×#

is orthogonal, and the elements of the block ) ‖ ∈ R ×# are such that

)
‖
8 9
=

√
|C8 |
−1

(12.3)

if node 9 is in cluster 8 and 0 otherwise. The  rows of the matrix ) ‖ are thus a basis
of the group consensus subspace Xor. The rows of the matrix )⊥ ∈ R(#− )×# , which
complete the transformation, are thus a basis of the orthogonal complement to the group
consensus subspace. Consistently, we have that the dynamic matrix �̃ = )or�)

−1
or has the

following structure:

�̃ = )or�)
)
or =

[
�‖ 0
0 �⊥

]
. (12.4)

From Equation (12.4), we see that the IRR decouples motion along the consensus subspace
from that orthogonal to the group consensus subspace. In this new coordinate system, the
dynamics of network (12.2) can be rewritten as

¤zor = �̃zor + �̃u, (12.5)
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and
�̃ = )or� =

[
� ‖
�⊥

]
.

Indeed, the pair (�‖ , � ‖), which we will denote as the quotient pair, determines the
controllability properties of the dynamics along the subspace Xor and thus our ability to
control the consensus state, while the pair (�⊥, �⊥) determines our ability to stabilize
such solution. We are interested in studying the controllability properties of the two
pairs (�‖ , � ‖) and (�⊥, �⊥). Before doing so, we will present a few more details on
this representation. First of all, let us point out that the block )‖ of the matrix ) is such
that )‖ = �†or, where �or ∈ R#× is the indicator matrix corresponding to the coarsest
partition Πor. Consistently, the state of the quotient network, the network associated to
pair (�‖ , � ‖), can be computed as

z‖or = �
†
orx ∈ R 

and thus, we have that �‖ = �†or��or and � ‖ = �†or�.

Remark 12.8. Note that the quotient network associated to the coarsest orbital
partition does not encompass symmetries, i.e., the only permutation matrix % such
that %�‖ − �‖% = 0 and %� ‖ − � ‖ = 0 is the identity matrix.

Now, we are ready to give the following theorem.

Theorem 12.9. If there exists a matrix % ≠ � such that %� = �% and %� = �,
then Xor, the invariant subspace of the matrix � associated to the cluster consensus
solution, encompasses the controllable subspace.

Proof. To prove the statement we must show that if %� = �, this subspace encompasses
the range of �. Indeed, if %� = �, as left-multiplying a vector by the matrix % only
permutes the elements associated to nodes of the same cluster, � is such that 18; = 1 9; for
all ; and for all 8, 9 in the same cluster. Hence, all the columns of � and thus its range, are
encompassed in the �-invariant subspace defined by the clusters (see Theorem 12.7). As
the controllable subspace is defined as the smallest �-invariant subspace encompassing
the range of �, the thesis follows. �

Corollary 12.10. �⊥ = 0(#− )×" .

Proof. The statement is a direct consequence of the statement of Theorem 12.9 and of
the definition of �⊥. �
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12.3 Controllability properties of networks with equitable par-
titions

In this section we extend the results of section 12.2 to the case in which the network
clusters correspond to an equitable partition (see Definition 12.3). Let us now extend the
definition of equitable partition to the graph induced by the pair (�, �).

Definition 12.11. A partition Π̃4@ of the node setV(G(�, �)) of the graph G(�, �)
induced by the pair (�, �) is equitable if and only if for all (8, 9)

1)
∑
:∈C9 �;: = 38 9 ∀; ∈ C8;

2) �; ? = 38 ? ∀ ; ∈ C8 and ∀ ? = 1, . . . , ".

We denote by �̃ the indicator matrix corresponding to Π̃4@ .

Note that all the orbital partitions of a graph G(�, �) are equitable but the converse is not
true [141, 142]. An example of an equitable partition that is not orbital is shown in Fig as
the equitable partition has two clusters C1 and C2, with its nodes colored in light blue and
green respectively, while the coarsest orbital partition defines three clusters {1, 2, 3, 4},
{5, 6, 7, 8} and {9, 10}. Also, all the clusters of the orbital partition Π>A are subsets
of the clusters of the equitable partition Π4@ . Now, we are ready to give the following
theorem.

Theorem 12.12. Let G(�, �) be the graph induced by the pair (�, �) and Π̃4@ be
an equitable partition of the nodes of G(�, �) with indicator matrix �̃ . Then,

a) Π̃4@ is equitable if and only if the column space of �̃ is �−invariant;
b) the column space of �̃ encompasses the controllable subspace.

Proof. In proving a) we start from the definition of �−invariance, that is, the column
space of �̃ is �−invariant if and only if there exists a matrix & such that ��̃ = �̃& [158].
Then, we show that if Π̃4@ is equitable, then & = (�̃) �̃)−1�) �� . To do so, we need to
prove that

��̃ = �̃ (�̃) �̃)−1�) ��

which can be easily done by left multiplying both terms of this expression by �̃) , yielding

�̃) ��̃ = �̃) �̃ (�̃) �̃)−1�̃) ��̃

which implies that �̃) ��̃ = �̃) ��̃ thus proving statement a). To prove b) note that, as
�; ? = 38 ? ∀ ; ∈ C8 and ∀ ? = 1, . . . , " the range of � is encompassed in the �−invariant
subspace generated by the columns of �̃ and as the controllable subspace is defined as the
smallest �−invariant subspace encompassing the range of �, b) is proved. �
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Chapter 12. Controlling group consensus in networks with symmetries

Definition 12.13. The coarsest equitable partition i4@ of the graph G(�, �) is the
equitable partition of the graph G(�, �) with the minimum number  of clusters. We
denote by �i the corresponding indicator matrix.

Let us write the transformation matrix as done in Section 12.2:

)eq =

[
�
†
i

)⊥

]
(12.6)

with the rows of �†i = span
{
�
(1)
i , �

(2)
i , . . . , �

( )
i

}
where � (8)i is the 8−th column of

�i , and )⊥ is an (# −  ) × # matrix whose rows span the orthogonal complement to
the column space of � . Then, we can give the following two Corollaries to Theorem
12.12:

Corollary 12.14. Let G(�, �) be a graph, and i4@ be its coarsest equitable partition.
Let )eq be the # × # matrix of Equation (12.6). Then, through the change of variable
zeq = )eqx ∈ R# the transformed network dynamics is

¤zeq = �̂zeq + �̂u

where the matrices
�̂ =

[
�‖ 0
0 �⊥

]
, �̂ =

[
� ‖
0

]
, (12.7)

with the dimensions of each block being defined by that of the matrix �‖ := �†i��i ∈
R × . Moreover, if the pair (�‖ , � ‖) is controllable, then the transformation )4@ is
a controllability transformation.

Proof. Note that, as by definition of the matrix )4@ in Equation (12.6), �‖ is the quotient
network, and thus the first  state variables capture the dynamics along the column space
of �i . Hence, from Theorem 12.12 a), which states that the column space of �i is
�-invariant, we can prove the existence of the 0 block in �̂. Moreover statement b) of
Theorem 12.12 implies the existence of the 0 block in �̂, as the dynamics orthogonal to
the column space of �i are uncontrollable. �

12.4 Controlling group consensus

In Sections 12.2 and 12.3, we have established some controllability limitations of networks
with symmetries and equitable partitions. Here, we show how to operate within these
limitations so to control group consensus.

Corollary 12.15. Consider a graph G(�, �) with coarsest equitable partition ieq.
If the pair (�‖ , � ‖) is controllable, then for any cost function � (u(C)) the optimal
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control problem

min
u

∫ C 5

0
� (u(C))dC (12.8a)

B.C.

¤x = �x + �u (12.8b)

x(0) = 0 (12.8c)

x(C 5 ) = x 5 (12.8d)

admits solution u(C)∗ := argmin
∫ C 5

0 � (u(C))dC if and only if G 5 ,8 = I ‖5 ,; for all 8 ∈ C;
and for all ;. Moreover, if G 5 ,8 = I ‖5 ,; , then u∗ = u∗∗, where u∗∗ is the solution of the
following optimal control problem

min
u

∫ C 5

0
� (u(C))dC (12.9a)

B.C.

¤z‖eq = �‖z
‖
eq + � ‖u (12.9b)

z‖eq (0) = 0 (12.9c)

z‖eq (C 5 ) = z‖
5
. (12.9d)

Proof. From Corollary (12.14), if ∃ 8, ; such that G 5 ,8 ≠ I 5 ,; then x 5 is not reachable,
and thus problem (12.8) is not feasible. On the other hand, if G 5 ,8 = I 5 ,; for all 8 ∈ C; and
for all ;, then G 5 ∈ X>A , from Theorem 12.9 and from the hypotheses, the controllable
subspace coincides with X>A . Then, reaching z‖ = z‖

5
implies reaching the point x 5 .

Hence, to prove our thesis, we are left with showing that u∗ = u∗∗. We will do so by
showing that problems (12.8) and (12.9) share the same decision variables, cost function,
and constraints. Indeed, the decision variables are the same by definition, as well as the
cost function as input signals are not affected by equivalent transformations. Finally, to
prove that problems (12.8) and (12.9) share the same constraints, let us show that by
left multiplying both sides of equations (12.8b)-(12.8d), we obtain eqs. (12.9b)-(12.9d)
together with a set of equations that are always verified independently of D. Indeed this is
trivially true for Equation (12.8b), as x(0) = 0 and z‖eq (0) = 0. Moreover, if G 5 ,8 = I 5 ,; ,
and from the definition of )eq in (12.6), then

)eqx 5 =

[
z‖
5

0

]
which implies that z⊥

5
= 0. This is ensured independently of u as z⊥ (0) = 0 and as from

Theorem 12.12 we know that z⊥ are the state variables of the non-controllable subsystem
of the pair (�, �). Finally, from Equation (12.7) we know that left-multiplying Equation
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(12.8a) by )eq yields the set of equations

¤z‖ = �‖z‖ + � ‖u (12.10a)

¤z⊥ = �⊥z⊥. (12.10b)

As z⊥ (0) = 0, from Equation (12.10b) we have that z⊥ (C) = 0 for all C, and thus Equation
(12.10a), which coincides with Equation (12.9b), captures completely the dynamics in
Equation (12.8b) independently of u. Hence, problem (12.8) and the reduced order
problem in (12.9) share the same decision variables, cost function, and constraints which
implies that u∗ = u∗∗. �

Remark 12.16. Note that as orbital partitions are also equitable, Corollary 12.15
also holds for networks with symmetries.

Remark 12.17. Corollary 12.15 provides an approach to control the consensus
solution. Note however that this solution is not stabilizable neither in the case
of symmetries nor in that of equitable partitions, as the dynamics orthogonal to
the group consensus subspace are uncontrollable (see Theorems 12.9 and 12.12).
However, in both cases, the transformations in eqs. (12.3) and (12.6) allow to study
the stability of the group consensus solution by computing the eigenvalues of the
block �⊥ of the matrices �̃ in Equation (12.4) and �̂ in Equation (12.7) respectively.
Note that the block �⊥ of the matrix �̃ of the irreducibile representation in Equation
(12.4) is itself block-diagonal, with each block representing the dynamics orthogonal
to the consensus subspace of single or intertwined clusters [140]. Hence, in the case
of symmetries, analysis of the eigenvalues of each one of the diagonal subblocks of
�⊥ in Equation (12.4) provides information about which clusters will asymptotically
reach consensus (and which ones will not).

Remark 12.18. Note that Corollary 12.15 provides an approach to design a a possible
control input to steer the network towards a desired group consensus value. A viable
alternative is to solve

min
u

∫ C 5

0
� (u(C))dC (12.11a)

B.C.

¤x = �x + �u (12.11b)

y = �)ix (12.11c)

x(0) = 0 (12.11d)

y(C 5 ) = y 5 . (12.11e)
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with �i being the indicator matrix of an equitable partition C1, C2, . . . C of the
network nodes, and

H8

|C8 |
being the consensus value for all the nodes of the cluster C8 .

12.5 Numerical example

In this section we will show the powerful of Corollary 12.15, highlighting the chance
offered by networks with symmetries in dimensionality reduction. We consider the
# = 10 nodes network in Figure 12.1, with an equitable partition i4@ that partitions the
network nodes in  = 2 clusters, C1 ∪ C2 = V and C1 = {1, 2, 3, 4} and C2 = V \ C1 and
then not completely controllable. The corresponding indicator matrix is

�)i =

[
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1

]
. (12.12)

Consistently with Corollary 12.14, performing the state transformation zeq = )eqx, with
the matrix )eq selected according to Equation (12.6) we obtain that �⊥ = 0. Moreover,
we have that

�‖ =

[
−10 3

2 −8

]
, � ‖ =

[
1
0

]
, (12.13)

and the reader may easily check that the pair (�‖ , � ‖) is controllable. Hence, we can
exploit the results in Section 12.4 to control group consensus. Indeed, to steer the network
towards the group consensus state [11×4 21×6]) by spending the minimum control energy,
from Corollary 12.15, instead of solving

min
u

1
2

∫ 1

0
u(C)) u(C)dC

B.C.

¤x =�x + �u
x(0) =010×1

x(1) =[11×4 21×6])

(12.14)

we can solve

min
u

1
2

∫ 1

0
u) (C)u(C)dC

B.C.

¤z‖eq =�‖z
‖
eq + � ‖u

z‖eq (0) =02×1

z‖eq (1) =[1 2])

(12.15)
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−10 0 0 0 1 1 1 0 0 0
0 −10 0 0 1 1 1 0 0 0
0 0 −10 0 0 0 0 1 1 1
0 0 0 −10 0 0 0 1 1 1
1 1 0 0 −10 1 0 1 0 0
1 1 0 0 1 −10 1 0 0 0
1 1 0 0 0 1 −10 0 0 1
0 0 1 1 1 0 0 −10 1 0
0 0 1 1 0 0 0 1 −10 1
0 0 1 1 0 0 1 0 1 −10


� =

[
1 1 1 1 0 0 0 0 0 0

])

Figure 12.1: A simple 10 node network, with edge weights all equal to one, and self-loop
weights all equal to -10 that serve to stabilize the network and so make the minimum
control energy problemmeaningful. The coarsest equitable partition of the network shown
in the figure has two clusters C1 and C2, with colored in light blue and green respectively.

where z‖eq ∈ R2 is the state variable of the quotient network associated to pair (�‖ , � ‖).
The solution of problem (12.15) is

u∗∗ (C) = �)‖ e�‖ (1−C),−1z‖4@ . (12.16)

where

, =

∫ 1

0
e�‖ (1−C)� ‖�)‖ e�

)
‖ (1−C)dC

is the reachability gramian of the quotient network. For Corollary 12.15 we can compute
paper and pen the optimal control input (12.16) of a 2 × 2 dynamical network instead
of the original 10-dimensional one. Indeed, diagonalizing �)‖ = +)Λ+

−1
)

, where +) is
the matrix containing the right eigenvectors and Λ is the diagonal matrix containing the
eigenvalues of �)‖ , we obtain

u∗∗ (C) =�)‖ e�
)
‖ (1−C),−1z‖eq (1)

=�)‖ +
−1
) eΛ(1−C)+),−1z‖eq (1)

≈ − 1058e(9+
√

7) (C−1) + 806e(9−
√

7) (C−1)

(12.17)

that is, the optimal control input is a linear combination of the two eigenmodes corre-
sponding to the two clusters of the partition ieq of G(�, �). Thus u∗∗ can be used to
control the original network whose graph is depicted in Figure 12.1. Note that the optimal
control input (12.17), that is shown in Figure 12.2b is able to steer nodes in C1 to 1 and
nodes in C2 to 2 at C 5 = 1, as shown in Figure 12.2a.
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Figure 12.2: In (a) the state trajectories of the original network when forced by the optimal
control input u∗∗ of (12.17) depicted in (b). In light blue the trajectories of nodes in
cluster C1 and in green those of nodes in cluster C2.

12.6 Discussion

Motivated by the observation that symmetries induce loss of controllability and the
emergence of group consensus, in this work we studied the controllability properties
of networks endowed of symmetries. We found that controllability is lost in directions
orthogonal to the group consensus subspace, but we can still control the consensus
state either if the network initial condition belongs to the group consensus subspace, or
if the subsystem of the dynamics orthogonal to this subspace is asymptotically stable.
Moreover, we showed that when the network controllable subspace coincides with the
group consensus subspace, we can control consensus by designing control strategies on
a lower-dimensional network, the quotient network associated to the original one, thus
reducing the computational burden, something that turns useful when the networks to be
controlled are large. We demonstrated our theoretical analysis through a representative
numerical example.
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13 Partial Containment control
over signed networks

In this Chapter, we propose a new control protocol, the partial containment control over
signed networks (Section 13.2), especially useful either when the network is large or when
we do not aim to achieve the complete containment control. To do so, we reformulate
the graph condensations introduced in section 13.1.3, to make them suitable for signed
graphs. On the basis of these condensations, we will derive sufficient conditions to contain
the larger number of nodes of our network, that is, the strongly connected components
(SCCs) (Section 13.3). Finally, employing the convergence analysis results, we design a
suboptimal algorithm to efficiently deploy the control input in the network (Section 13.4).

13.1 Mathematical Preliminaries

13.1.1 Signed graphs
A weighted directed signed graph G consists of a weighted digraph U = {V, E} and
a partial mapping f : E → {+,−} [159]. An edge (8, 9) ∈ E is called positive if
f(8, 9) = {+}, while it is called negative otherwise. We associate to G a weighted
adjacency matrix �, whose 8 9-th element 08 9 is positive if (8, 9) ∈ E ∧ f(8, 9) = {+},
negative if (8, 9) ∈ E ∧ f(8, 9) = {−}, and zero otherwise.

Throughout the thesis, we shall consider signed graphs fulfilling the following
assumption.

Assumption 13.1. |088 | > 0 and
∑=
9=1

��08 9 �� = 1, for all 8 = 1, . . . , =.

Definition 13.2. A directed signed graph G is structurally balanced if there exists a
bipartition {V1,V2} ofV, such that 08 9 ≥ 0, for all 8 and 9 ∈ V \ and 08 9 ≤ 0 for
all (8 ∈ V \ , 9 ∈ V \ V \ ), for all \ ∈ {1, 2}. G is unbalanced otherwise.

Notice that every unsigned graph is structurally balanced with V1 = V and V2 = ∅.
Following [160] and [161], we define the enlarged graph associated toG as follows:
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Definition 13.3. The enlarged graph G̃ = {Ṽ, Ẽ} associated to G (see for instance
Figure 13.1) is a (unsigned) directed graph of 2= nodes (Ṽ = {1, . . . , =, 1−, . . . , =−})
and all positive edges related to that of G through the adjacency matrix �̃, whose
elements are

0̃8 9 = 0̃8+# , 9+# =max(0, 08 9 ) ≥ 0,
0̃8+# , 9 = 0̃8, 9+# =max(0,−08 9 ) ≥ 0,

for 8, 9 = 1, . . . , # .

13.1.2 Some useful lemmata

Lemma 13.4. [162]Let us consider a reducible matrix in normal form:

" =


"1 0 0 0
...

. . .
. . .

...

0 · · · "@ 0
'1 · · · '@ (


,

where " 9 , 9 = 1, . . . , @, are semi-convergent irreducible matrices and ( is a
convergent matrix [163]. We then have

lim
:→+∞

" : =


"∞1 0 0 0
...

. . .
. . .

...

0 · · · "∞@ 0
· · · '∗

9
· · · 0


,

where "∞
9
= lim:→+∞ " :

9
and '∗

9
= (� − ()−1' 9"

∞
9
. Furthermore, if _ = 1 is

an eigenvalue of " 9 , then "∞9 = k 9b
)
9
, where b 9 and k 9 are the left and right

eigenvectors associated to _ = 1, respectively, scaled so that b)
9
k 9 = 1.

Lemma 13.5. [160] Given a strongly connected signed graph G and its associated
enlarged graph G̃, G is structurally balanced if and only if G̃ is disconnected and
composed of two strongly connected components.

Lemma 13.6. [160] Given a strongly connected signed graph G and its associated
enlarged graph G̃, G is structurally unbalanced if and only if G̃ is strongly connected.
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13.1.3 Graph condensations
In this subsection we give some useful notations regarding graph condensations. A
condensation of a graph G is a new directed graph whose nodes represent the strongly
connected components of G.

Definition 13.7. Given any pair of vertex sets {V,V ′}, with |V| ≥ |V ′ |, any
(single-valued) function 5 : V → V ′ is called a condensing function. Moreover,

V8 := {C ∈ V : 5 (C) = 8}, 8 ∈ V ′.

Definition 13.8. Let us consider a graph G = (V, E), a vertex setV ′, a condensing
function 5 : V → V ′, and the edge set E ′ = {(8 ∈ V ′, 9 ∈ V ′), 8 ≠ 9 |∃(C, D) ∈
E| 5 (C) = 8, 5 (D) = 9}. The graph G′ = {V ′, E ′} is the condensation of G induced
by 5 .

Definition 13.9. The classic condensation G2 of a graph G is the condensation of G
induced by the condensing function 5 2 condenses into the same node ofV2 , all the
nodes ofV that belong to the same SCC of G.

Now, we introduce a novel condensation of a graph G, denoted as the signed
condensation GB of G:

Definition 13.10. The signed condensation GB of a graph G is the condensation of
G induced by the condensing function 5 B that condenses in the same node ofVB all
the nodes ofV belonging to the same SCC of G̃.

Notice that if G is unsigned, then G2 = GB. The correspondences between the diverse
condensations are illustrated in Figure 13.1. Moreover, we observe that the signed
condensation GB is a directed acyclic graph. From now on, we call directed acyclic
condensation every condensation that is a directed acyclic graph (DAG). We can now give
the following definition.

Definition 13.11. Let us consider a directed acyclic condensation G3 = (V3 , E3)
of a graph G = (V, E) induced by a condensing function 5 3 . Node 8 ∈ V3 belongs
to level 1 if � 9 : ( 9 , 8) ∈ E3 . Furthemore, a node 8 ∈ V3 belongs to the ; (> 1)-th
level ofV3 if

∀( 9 , 8) ∈ E3; 9 ∈ level ? < ;.

Moreover, the total number of levels is denoted by ℓ3 and the number of nodes of G3
in a given level ; is =3

;
.

Given a directed acyclic condensation G3 of G, we associate to each node inV3 a pair
of indexes (0, 1): the first will indicate the level the node belongs to and the second its
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Figure 13.1: The correspondences between the various condensations and their decompo-
sition in levels are illustrated with reference to a sample signed graph G.

(random) ranking in that level, see Figure 13.1. Notice that, by definition, all the leaders
belong to level 1. Accordingly, we can define a function 63 that associates to each (0, 1)
the corresponding node ofV3 . Now, we can partition (and sort) the set of nodes ofV as

V = {V3
11, . . . ,V

3

1=31
, . . . ,V3

ℓ3=
3
ℓ

}, (13.1)

where
V3
8 9 := {C ∈ V : 5 3 (C) = 63 (8, 9)}. (13.2)

Moreover, we denote G3
8 9
⊆ G the subgraph induced byV3

8 9
. Consequently, we indicate by

G2
8 9
a strongly connected component (SCC) of G, for all 8 = 1, . . . , ℓ2 , 9 = 1, . . . , =2

8
, and

that G211, . . . ,G
2
1ℎ , . . . ,G1=21 are its =21 ≥ 1 aperiodic root strongly connected components

(RSCCs). Notice that the number of levels of G2 , G̃2 and GB is the same, that is,
ℓ2 = ℓ̃2 = ℓB := ℓ. Moreover, for all ; = 1, . . . , ℓ, =2

;
≤ =B

;
≤ =̃2

;
. Moreover, any SCC of G

can be classified as of

1. type 1 if it has no negative weights;
2. type 2 if it has at least one negative weight and is structurally balanced;
3. type 3 if it has at least one negative weight and is structurally unbalanced.

Remark 13.12. For all ℎ = 1, . . . , =; , ; = 1, . . . , ℓ, we associate to the ℎ-th node of
the ;-th level of G2
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• the h-th (h̃-th) and the h∗-th (h̃∗-th) nodes of the ;-th level of GB (G̃2) such that
V2
;ℎ
= VB

;h
∪VB

;h∗ ⊂ Ṽ
2

;h̃
∪ Ṽ2

;h̃∗
, if G2

;ℎ
is of type 1 or type 2;

• the h-th (h̃-th) node of the ;-th level of GB such thatV2
;ℎ
= VB

;h
⊆ Ṽ2

;h̃
, if G2

;ℎ
is

of type 3.

Moreover, we associate to the h̃-th node of the ;-th level of G̃2 the ℎ-th node of the
;-th level of G2 such that

Ṽ2

;h̃
∩V2

;ℎ ≠ ∅.

These associations between the nodes of the condensations are clearly illustrated in Figure
13.1.

13.2 Problem formulation

Let us consider a signed graph G with = nodes, and let G8 ∈ R be the state of the 8-th node,
and N8 = { 9 ∈ V : ( 9 , 8) ∈ E} is the set of neighbors of 8, for all 8 = 1, . . . , =. Then, let
us denote by C ⊂ V the set of < leaders (sometimes also denoted pinners [121,128,164],
depending on the context), that is, nodes that have no incoming links. The dynamics over
this signed graph are described by

G8 (: + 1) = G8 (:) +
#∑
9=1
08 9

(
G 9 (:) − sign(08 9 )G8 (:)

)
, (13.3)

for all 8 = 1, . . . , =, or, equivalently,

G(: + 1) = �G(:),

where G = [G1, . . . , G=]) is the vector of the nodes’ states.
Here, we focus on the case in which��08 9 �� = { 1

|N8 | if 9 ∈ N8 ,
0 otherwise,

but the results given in the following can be easily extended to alternative rules for
computing 08 9 that are consistent with Assumption 13.1. Notice that, assuming 088 > 0
for all 8 ∈ C, G8 (: + 1) = G8 (:) = G8 (0) for all 8 ∈ C. From [156], we give the following
definition of containment in signed graphs.

Definition 13.13. A node 8 ∈ V − C is asymptotically signed contained when

lim sup
:→+∞

|G8 (:) | ≤ max
9∈C

��G 9 (0)�� , (13.4)
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Definition 13.14. Network (13.3) is @-partially signed contained if there exist a subset
Q ⊆ V \ C of cardinality @ such that all the nodes in Q are asymptotically contained.
If @ = = − <, then network (13.3) is signed contained.

Let us denote by L the set of nodes directly controlled by the leaders, that is,

L =
{
8 ∈ V | ∃ 0 98 > 0, 9 ∈ C

}
.

Then, we can define K(L) := {8 ∈ V | eq. (13.4) holds}, as the set of asymptotically
contained nodes. For a given cardinality, say 3, of the set L, the partial containment
control problem consists in finding optimal selection L∗ (3) that maximizes the number
of contained nodes, that is,

L∗ (3) = arg max
L
|K(L)|

s.t. |L| = 3.
(13.5)

We observe that the numerical solution of this problem for 3 > 1, although conceptually
simple, would require to test for a number of alternative selections of the pinned nodes
that is in the order of =!. An extensive search of the optimal solution is therefore
computationally prohibitive even for relatively small networks. In what follows, we
propose a computationally efficient heuristic approach to find a suboptimal solution of
problem (13.5).

13.3 Convergence analysis

Before giving our main results, we give some relevant notation. Specifically, for the ℎ-th
SCC of the ;-th level, we introduce the stack vector G;ℎ of the states {G8}8∈V2

;ℎ
, and the

vector
H;ℎ (:) :=

[
G;ℎ (:)) ,−G;ℎ (:))

])
. (13.6)

If G2
;ℎ

is of type 2, Hℎ; can be viewed as the vector containing all the states of the
nodes in Ṽ2

;h̃
∪ Ṽ2

;h̃∗
. From Lemma 13.5, G̃;ℎ is composed by two disconnected SCCs.

Therefore, we can find a permutation matrix );ℎ such that, defining I;ℎ (:) = );ℎH;ℎ (:) =
[I;h̃ (:)) I;h̃∗ (:)) ]) , we can write

I;ℎ (: + 1) =
[
/;h̃ 0
0 /;h̃∗

]
I;ℎ (:), (13.7)

where /;h̃ and /;h̃∗ are the submatrices extracted from �̃ associated to the nodes in Ṽ2

;h̃

and in Ṽ2

;h̃∗
. In what follows, for any node ℎ of level ; in G2 corresponding to a type 1

SCC of G, we indicate with b;ℎ the left eigenvector associated to the unique eigenvalue
_ = 1 of block �;ℎ of matrix � in Equation (13.3), while, given a type 2 SCC G2

;ℎ
, we

denote b̃;h̃ (b̃;h̃∗) the left eigenvector associated to the unique eigenvalue _ = 1 of /;h̃
(/;h̃∗ ).
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By exploiting the condensations introduced in Section 13.1.3, here we explore the
network level by level, to finally provide an algorithm that computes the steady-state
configuration of any SCC in the graph. Let us start by characterizing the asymptotic
behaviors of the nodes in the RSCCs (i.e. in the level 1 of G2).

Theorem 13.15. For all ℎ = 1, . . . , =21 ,

• if G21ℎ is of type 1, then

lim
:→+∞

G8 (:) = b)1ℎG1ℎ (0), ∀8 ∈ V2
1ℎ (13.8)

• if G21ℎ is of type 2, the SCC polarizes and

lim
:→+∞

G8 (:) = b̃)1h̃I1h̃ (0) ∀8 ∈ VB
1h

lim
:→+∞

G8 (:) = −b̃)1h̃∗ I1h̃∗ (0) ∀8 ∈ VB

1h̃∗
(13.9)

• if G21ℎ is of type 3, then
lim
:→+∞

G1ℎ (:) = 0. (13.10)

Proof. Sorting the network nodes according to (13.1) and setting 3 = 2, we can rewrite
matrix � as 

�11 0 0 0
...

. . .
. . .

...

0 · · · �1=21 0
'1 · · · '=21 &


(13.11)

From (13.11), we can then write

G1ℎ (: + 1) = �1ℎG1ℎ (:), ℎ = 1, . . . , =21 .

We distinguish three cases:

1. G21ℎ is of type 1. In this case, the classical results on discrete-time consensus
hold [11], and we can write

lim
:→+∞

G1ℎ (:) = b)1ℎG1ℎ (0)1|V21ℎ | ,

which is equivalent to (13.8).
2. G21ℎ is of type 2. From (13.7), and being /1h̃ and /1h̃∗ irreducible and row stochastic,

we can conclude that

lim
:→+∞

G8 (:) =

b̃)1h̃I1h̃ (0) ∀8 ∈ VB

1h̃,

b̃)1h̃∗ I1h̃∗ (0) ∀8 ∈ VB

1h̃∗ .
(13.12)

From (13.6), we have b̃)
1h̃
I1h̃ (0) = −b̃)1h̃∗ I1h̃∗ (0), which, together with (13.12),

implies (13.9).
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3. G21ℎ is of type 3. In this case, from Lemma 13.6, the corresponding graph G̃1h̃ is
strongly connected, and then all the elements of H1ℎ must converge to a common
value, say 21ℎ . However, since the vector H1ℎ contains both G1ℎ and −G1ℎ , then we
have 21ℎ = 0.

�

Next, we define the upstream and the downstream of a node of a DAG.

Definition 13.16. For each node 8 of a directed acyclic graph, its upstream (down-
stream) is the set of nodes, including 8 itself, from which 8 is reachable (which 8 can
reach) through a directed path. Moreover, we denote with ΥG

3

;ℎ
the upstream of the

node ;ℎ of G3 .

For any node ;ℎ of G2 , X8 (;ℎ) is the number of nodes of the 8-th level of G2 that are in the
upstream of ;ℎ, for 8 = 1, . . . , ;−1. Furthermore, we define the set J8 (;ℎ) := { 91, . . . , 9X8 }
as the set of nodes of level 8 that are in the upstream of node ;ℎ, 8 = 1, . . . , ; − 1. Set
J8 (;ℎ) can be partitioned as follows:

J8 (;ℎ) = {J81 (;ℎ),J82 (;ℎ),J83 (;ℎ)} ,

where J8C (;ℎ) =
{
U ∈ J8C (;ℎ) | G28U is type C

}
, C = 1, 2, 3.

We now give an algorithmic procedure to compute the steady-state values of the states
of the nodes belonging to a generic SCC of G.

Theorem 13.17. For all ; = 2, . . . , ℓ, ℎ = 1, . . . , =2
;
, the steady-state values Ḡ;ℎ of the

nodes in G2
;ℎ

can be computed through the following algorithm

Ḡ1? =



[
+b̃)1p̃I1p̃ (0)1 |VB1p̃ |
−b̃)1p̃I1p̃∗ (0)1 |VB1p̃∗ |

]
if G21? is of type 1

b)1?G1? (0)1 |V21? | if G21? is of type 2
0 if G21? is of type 3

,

∀? ∈ J1 (ℎ;),

ḠB? =
(
� − �B?

)−1
B−1∑
_=1

∑
8∈J_ (B?)

�B?,_8 Ḡ_8 ,

∀B = 2, . . . , ;, ? ∈ JB (ℎ;).

(13.13)

Proof. The algorithm initialization is a direct application of Theorem 13.15. Now, let us
assume that, at step B ∈ {2, . . . , ;} we can compute all the steady-state values Ḡ_8 , for all
_ = 1, . . . , B − 1, 8 ∈ J_ (B?), ? ∈ JB (ℎ;). Then, as �B? is sub-stochastic, from Lemma
13.4 we can compute ḠB? according to (13.13), for all ? ∈ JB (ℎ;). As this assumption
holds for B = 2 (we can compute all the steady-state values in level 1 according to Theorem
13.15), algorithm (13.13) follows by induction. �
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Corollary 13.18. If ∪=
2
1
ℎ=1V1ℎ = C, then network (13.3) is signed contained.

Proof. The thesis directly follows from Theorems 13.17. �

The above corollary means that the network is signed contained if the leaders set C is
connected to each of the 5 SCCs of the graph of the followers, that is, the subgraph F
induced by the node setV − C. This implies that, to guarantee signed containment, the
number of outgoing edges 3 from the leaders has to be equal or higher than 5 . The
following corollary gives sufficient conditions guaranteeing asymptotic containment of a
given SCC of G.

Corollary 13.19. For all ;=2, . . . , ℓ, ℎ=1, . . . , =;2 , the ℎ-th SCC of the ;-th level of G
is signed contained if ∪

:∈ΥG2
;ℎ

V1: ⊆ C.

Proof. The dynamics of the nodes in any SCC of the network are decoupled by those of
the nodes that are not in its upstream. Then, the thesis follows from Theorem 13.17. �

In other words, this means that if the RSCCs of the upstream of the considered SCC are
(a subset of) the network leaders, then the SCC is contained.

13.4 An algorithm for control design

Given a network topology G, the nodes that will be asymptotically signed contained may
be more than those of the SCCs fulfilling the assumption of Corollary 13.19. However,
this will depend on the initial conditions of the RSCCs of G that are not the network
leaders. Therefore, if one aims at finding the optimal solution for problem (13.5), then the
knowledge of the initial conditions of all the followers would be necessary for the leaders.
In absence of this information, a suboptimal solution maximizing the number of nodes
that are guaranteed to be signed contained can be found. Specifically, rather then solving
problem (13.5), we will focus on finding the optimal solution of the following problem:

L̂(3) = arg max
L
|q(L)|

s.t.
|L| = 3,

(13.14)

where q(L) is the subset of nodes of G belonging to SCCs fulfilling the assumptions
of Corollary 13.19. Contrary to problem (13.5), the solution of this problem does not
require a full exploration of the feasible solutions, and can be translated into an integer
linear program (ILP). The steps of the algorithm can be adapted from [17] as follows.

Consider the condensation F 2 of the subgraph F of the followers. The algorithm
solving problem (13.14) consists of the following steps:

(a) build a new graph G = {V, E} as follows:
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• add toV the set of roots A8 of F 2 and all the non-roots W8 of F 2 that are in
the downstream of no more than 3 roots A8;

• for all pairs W8 , A 9 ∈ V, add an edge (W8 , A 9 ) to E, with associated binary
variable H8 9 , if in F 2 , W8 is in the downstream of A 9 ;

• add an additional node, c, representing the leader set C, and connect it to
all the A 9 inV by adding a set of edges (A 9 , c) to E, with associated binary
variable H 9 c ;

(b) associate to all edges of the graph Ḡ the following weights:

• F8 9 = |W8 |, ∀8, that is, all edges entering the 8-th node W8 have a weight equal
to the number of nodes in the SCC W8;

• F 9 c = |A 9 |, ∀ 9 , that is, all edges entering the 9-th root A 9 have a weight equal
to the number of nodes in the SCC A 9 ;

(c) solve the following ILP:

max
H

∑
8

∑
9

F8 9 H8 9 +
∑
9

F 9 c H 9 c (13.15)

s.t.∑
9

H 9 c = 3 (13.16)∑
8

H8 9 ≤ :out
9 H 9 c ∀ 9 (13.17)

: in
8

∑
9

H8 9 ≤
∑
9 |∃H8 9

H 9 c ∀8 (13.18)

H8 9 , H 9 c ∈ {0, 1} ∀8, 9 (13.19)

where : in
8
and :out

8
are the in- and out-degree of the 8 − Cℎ node of graph G, respectively.

Let us briefly illustrate the procedure outlined above. We first create a new graph
G, whose nodes are either RSCC of the subgraph of the followers, or SCCs in the
downstream of such RSCCs. Each node representing a RSCC is connected to the SCCs in
its downstream. Notice that we do not include any node representing a SCC that has more
than 3 RSCCs in its upstream, and thus cannot be guaranteed to be contained according
to Corollary 13.19. Then, we add an extra node c to G representing the set of leaders, and
we connect it to all nodes A8 representing the RSCCs. Finally, we associate to each edge in
G a weight equal to the number of nodes in the (R)SCC it points to. The solution of the
ILP in (13.15)-(13.18) is then equivalent to determine the RSCCs that have to be directly
controlled, together with the corresponding SCCs that are guaranteed to be contained.
Namely, SCC W8 is contained for all possible initial conditions if there exists a 9 such that
H8 9 = 1, and RSCC A 9 will be directly controlled if H 9 c = 1. Accordingly, the objective
function to be maximized in (13.15) represents the total number of nodes that we can
guarantee to contain according to Corollary 13.19. The constraint (13.16) guarantees that
the directly controlled nodes are 3, while (13.17) that all the contained nodes are in the
downstream of (some of) the leaders. Finally, Equation (13.18) imposes that the nodes of
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𝛱

𝒓𝟏 𝒓𝟐 𝒓𝟑

𝜸𝟏 𝜸𝟐 𝜸𝟑 𝜸𝟒

𝜸𝟓 𝜸𝟔 𝜸𝟕 𝜸𝟖 𝜸𝟗

Figure 13.2: Graph Ḡ associated to the signed graph G in the numerical example. The
(R)SCCs of G that are guaranteed to be asymptotically contained are depicted in blue,
while the remaining (R)SCCs are in black.

an SCC are contained only if a node in each of the RSCCs in their upstream is directly
controlled by one of the leaders.

Remark 13.20. Notice that our algorithm only determines which RSCCs of F have
to be connected to the set of leaders. Indeed, the selection of the specific node of
each RSCC, and the leader connected to it, is indifferent to the objective function
of problem (13.14). Therefore, this selection will be performed randomly in the
numerical example that follows. Clearly, the selection may indeed impact on both
the convergence rate and on the width of the convex hull in which the followers are
asymptotically contained. However, the investigation of these aspects goes beyond
the scope of the present work.

Numerical example
We consider a signed graph G of # = 1500 nodes distributed over 4 levels and 15
SCCs, whose dynamics follow equation (13.3). We assume that only 3 = 2 nodes can be
directly controlled by the 3 leaders of the network. Following the steps of the algorithm,
we first build the graph Ḡ, which is depicted in Figure 13.2. Then, we solve the ILP
(13.15)-(13.18) and find that the leaders should directly control the RSCCs denoted by A2
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(a) (b)

Figure 13.3: Two simulations of the network dynamics with leader states GC=[−1, 0.5, 1]) .
The two simulations differ for the initial conditions of the followers, which are randomly
selected from a uniform distribution in [−10; 10]. The dotted black lines delimit the
region where the leader aim at containing the followers, whose trajectories are in blue
if they belong to SCCs fulfilling the assumptions of Corollary 13.19, while they are in
green otherwise. In the top panel, the total number of asymptotically contained nodes is
516, while they are 843 in the bottom panel.

and A3 in Figure 13.2 to maximize |q|, that is, the number of followers that are contained
regardless of the initial conditions of the network. The optimum value of the objective
function of problem (13.14) is |q(L̂(2)) | = 508. To validate our results, we simulated
the system with the same leaders’ states ([−1, 0.5, 1]) ) and two different sets of initial
conditions, randomly selected from a uniform distribution in [−20; 20]. In both cases, the
nodes in q(L̂(2)) (depicted in blue in Figure 13.3) are asymptotically contained. Then,
depending on the specific selection of the initial conditions, further nodes of the network
might be asymptotically contained, as in the two simulations |K(L̂(2)) | is equal to 516
and 843, respectively, see Figure 13.3.

13.5 Discussion

We tackled the containment control problem in a multi-agent discrete-time system where
the interactions can be both cooperative and antagonistic. In particular, we focused on
the case in which the containment of the entire network is prohibited by constraints
on the number of control inputs the leaders can exert on the follower. The partial
containment control problem was then defined as searching for the optimal deployment
of the available control inputs so as to maximize the number of contained nodes. A
preliminary graphical study, based on two alternative condensations of the original graph,
allowed the derivation of the conditions guaranteeing the containment of the atomic
element of a directed network, that is, a strongly connected component. Leveraging
the convergence analyses, an algorithm for maximizing the number of followers we can
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guarantee to contain was built. Our solution strategy was translated into an integer linear
program, and its effectiveness was demonstrated on a testbed examples. Future work will
extend this analysis to alternative scenarios in which, for instance, the leaders may not
cooperate and have contrasting goals.
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14 Conclusions

In this thesis we gave a picture of how to deal with complex dynamical networks whose
topologies change in time. Indeed, we relaxed the typical assumption on the invariance of
the network structures and we named the class of networks with changing topology as
evolving networks. Specifically, following the footsteps of complex networks scientists,
we investigated if and when the extra information on the structure of the network can
be fruitfully used for control purposes. For instance, recent results [29] suggested that
exploiting temporality, that is, the variability of the network topology over time, could
reduce control energy requirements without increasing the number of signals required
to control the network. However, this result has been achieved under the unrealistic
assumption of a complete knowledge of the future network evolution. Therefore, in
Part I, we addressed the challenging problem of controlling a temporal network (i.e., an
element of the evolving networks class) in a more realistic scenario, that is, when we
can only have a probabilistic, description of the variability of the network. By using
stochastic programming, we reformulated the minimum control energy problem of what
we called a stochastic temporal networks. By assuming to know deterministically only
the current topology of the network we aim to control, we stated the problem of finding
the optimal waypoints, that is, the intermediate points on the optimal trajectory between
the (fixed) initial and final (desired) network states. As a result, we showed the control
energy be a quadratic function of the initial and final network states. To quantify if the
network temporality, when it comes hand in hand with uncertainty (as in our more realistic
scenario), could actually improve our ability of controlling complex dynamical networks,
we performed numerical simulations both on real and synthetic data. We showed that
the temporality is not a panacea for reducing the energy required for network control,
however, it can still be leveraged to obtain substantial energy savings provided that the
time-scale of the network matches its temporality.

Part II was instead devoted to consider the case in which the topology does not
commute between a set of predefined graphs, but dynamically coevolves with the network
nodes. We referred to this class of networks as coevolving networks. First, we focused
on a model of socio-economic phenomena to illustrate how this novel framework is
instrumental in domains of applications in which it is essential to consider the inertia
associated to interconnections topology changes. Specifically, we presented a model
of artificial financial markets where the investors are not perfectly rational and can be
affected by the cognitive bias, which has an impact on their mutual relations. We showed
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how coevolving networks are able to simultaneously model the dynamical evolution of
the relations among the financial agents and the effect on the overall market dynamics in
terms of some global observables, such as the distribution of the agents’ wealth. After
showing the relevance of coevolution for modeling, we then turned our attention on the
possible implications for network control. Therefore, we provided two instances that
illustrated how the edge dynamics can be tailored to foster the achievement of collective
behavior. In particular, we showed how edge evolution can be tuned to optimally solve
the pinning controllability problem over coevolving networks.

The thesis then concludes with Part III, where we focused on additional aspects of
the network structure, other than its temporality or coevolution, that might challenge
our ability to control the network. Specifically, we discussed the case of symmetries in
the network structure, and that of signed network topology modeling the presence of
antagonistic interactions. In a network endowed with symmetries, we gave conditions
under which it is possible to achieve group consensus and offered a control design
alternative to set a desired value for the group consensus. To cope with the presence of
antagonistic interactions, we then modeled a network on a signed graph, and provided an
algorithmic solution for maximizing the nodes contained within a desired convex hull
while keeping limited the number of control inputs.
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