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Abstract

The already existing and upcoming massive surveys, such as KiDS, DES, Euclid and

LSST, bring to reality many exiting possibilities in precision cosmology, as well as galaxy

evolution and large-scale structure studies. However, to fully benefit from these surveys,

we require redshifts for millions of galaxies. Currently, it is impossible to obtain these

redshifts with spectroscopy only, since it would require immense observational time. For

this reason, an alternative method, called photometric redshifts (photo-z) is used.

This thesis is dedicated to a new data cleaning methodology, that allows to significantly

improve the quality of photo-z catalogues and to guarantee the reliability of their quality

metrics (i.e., to perform photo-z calibration). This methodology is based on an unsuper-

vised Machine Learning (ML) algorithm called Self-Organizing Maps (SOM). Different

components of this methodology allow to tackle several important issues. Namely, in-cell

SOM anomaly detection helps to alleviate contamination of a spectral redshift cata-

logue with unreliable measurements and reduce the percentage of catastrophic outliers

in photo-z predictions. Another approach, SOM occupation map calibration, counters

the deterioration of the reliability of photo-z catalogues caused by differences between

the parameter space of the train and run datasets.

The methodology is tested on a deep 30-band photometric catalogue COSMOS2015.

Photometric redshifts for this catalogue were obtained using a well-tested supervised ML

algorithm MLPQNA. For additional comparison, SED (Spectral Energy Distribution)

fitting photo-z were used. For both photo-z methods, the usage of the SOM-based data

cleaning methodology reduces the percentage of catastrophic outliers by at least an order

with corresponding improvements of other metrics. This result makes the SOM-based

data cleaning a highly recommendable tool for preparing photo-z catalogues for the

upcoming large surveys.



Contents

Abstract i

List of Figures iv

List of Tables v

Abbreviations vi

Surveys abbreviations vii

1 Rather futurological introduction 1
1.1 Scientific revolutions of the 20th century . . . . . . . . . . . . . . . . . . . 1
1.2 Artificial Intelligence, Machine Learning, Big data . . . . . . . . . . . . . 4
1.3 Machine Learning basic concepts . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Prehistory of Astroinformatics . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Small problems with big data in Astronomy . . . . . . . . . . . . . . . . . 15
1.7 ML-powered future of astronomy . . . . . . . . . . . . . . . . . . . . . . . 18
1.8 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Photo-z 22
2.1 The Universe in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 General idea of photo-z . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Metrics and why they matter . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 SED fitting methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Empirical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Shallow neural networks . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.5 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.6 Other algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.7 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Hybrid approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Calibration of photo-z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8.1 Types and sources of photo-z errors . . . . . . . . . . . . . . . . . . 52
2.8.2 Calibration strategies . . . . . . . . . . . . . . . . . . . . . . . . . 55

ii



Contents iii

2.9 Perspective directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 COSMOS photo-z with Machine Learning methods 60
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1 COSMOS2015 photometric catalogue . . . . . . . . . . . . . . . . . 61
3.1.2 Main Spectroscopic catalogue . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 DEIMOS spec-z catalogue . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.4 Final catalogues and SOM data cleaning prerequisites . . . . . . . 64

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 MLPQNA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.4 Spec-z in-cell outlier cleaning with SOM . . . . . . . . . . . . . . . 70
3.2.5 Parameter space calibration with SOM occupation map . . . . . . 71

3.3 MLPQNA photo-z for COSMOS . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Baseline photo-z experiments with MLPQNA . . . . . . . . . . . . 71
3.3.2 Visual, UV and IR bands . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Narrow band influence . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.4 Colours vs. magnitudes . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.5 Automatic feature selection . . . . . . . . . . . . . . . . . . . . . . 80
3.3.6 Outlier analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Photo-z after in-cell outlier cleaning with SOM . . . . . . . . . . . . . . . 86
3.4.1 Spec-z in-cell outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.2 Photo-z cleaning with SOM . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Calibration of the datasets with SOM . . . . . . . . . . . . . . . . . . . . 88
3.5.1 Calibration of the DEIMOS dataset . . . . . . . . . . . . . . . . . 88
3.5.2 Calibration of the run dataset . . . . . . . . . . . . . . . . . . . . . 92

3.6 A purely data-driven selection of the reliable spec-zs . . . . . . . . . . . . 95
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7.1 SED fitting vs. ML . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7.2 Spec-z anomalous sources filtering . . . . . . . . . . . . . . . . . . 99
3.7.3 Photo-z anomalous sources and occupation map filtering . . . . . . 101
3.7.4 Potential biases introduced by SOM cleaning procedures . . . . . . 102
3.7.5 Filtering strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Conclusion 108

A Methodology for bibliography analysis 111
A.1 The frequency of the ML-related terms in literature in 1950-2020 . . . . . 111
A.2 Number of ML-related astronomical publications by years . . . . . . . . . 111
A.3 Popularity of the ML photo-z methods . . . . . . . . . . . . . . . . . . . . 112

B SOM repository 113

Acknowledgements 114

Bibliography 116



List of Figures

1.1 The frequency of the ML-related terms in literature in 1950-2020. . . . . . 6
1.2 Number of ML-related astronomical publications by years . . . . . . . . . 12

2.1 Photo-z principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Photo-z color-redshift degeneracy . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Popularity of the ML photo-z methods . . . . . . . . . . . . . . . . . . . . 35
2.4 Shallow neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Types of photo-z outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Number of objects in the main spec-z catalogue by instruments . . . . . . 63
3.2 Spec-z distribution for the KB and DEIMOS . . . . . . . . . . . . . . . . 64
3.3 Magnitude distributions for the KB, run and DEIMOS datasets . . . . . . 65
3.4 Coordinate coverage for the KB, run and DEIMOS datasets . . . . . . . . 65
3.5 Venn diagram of the used catalogues . . . . . . . . . . . . . . . . . . . . . 66
3.6 Objects with magerr > 1 by bands . . . . . . . . . . . . . . . . . . . . . . 66
3.7 Photo-z quality dependence from the size of the train dataset . . . . . . . 74
3.8 Photo-z quality with various feature sets . . . . . . . . . . . . . . . . . . . 77
3.9 Feature correlation matrices: broad and narrow bands . . . . . . . . . . . 83
3.10 Feature correlation matrix for colours . . . . . . . . . . . . . . . . . . . . . 84
3.11 Statistics before and after occupation map filtering . . . . . . . . . . . . . 89
3.12 SOMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.13 Occupation maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.14 Scatter plots of ML and SED fitting zphot against zspec . . . . . . . . . . . 93
3.15 Spec-z distribution for the test dataset with and without standard Q_f

cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.16 Correlation plots of ML and SED fitting photo-z residuals . . . . . . . . . 100
3.17 Spec-z distributions before and after SOM cleaning . . . . . . . . . . . . . 103
3.18 Statistics for the test and DEIMOS datasets vs. occupation of their BMU 105
3.19 Statistics for the DEIMOS datasets in ipmagap3 bins . . . . . . . . . . . . 106
3.20 Statistics for ML/SED residuals for run dataset in ipmagap3 bins . . . . . 107

iv



List of Tables

3.1 MLPQNA model hyper-parameters . . . . . . . . . . . . . . . . . . . . . . 68
3.2 SOM settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Basic MLPQNA photo-z experiments . . . . . . . . . . . . . . . . . . . . . 75
3.4 The results with visual, UV and IR bands . . . . . . . . . . . . . . . . . . 76
3.5 NMAD in zspec bins for different feature sets . . . . . . . . . . . . . . . . . 78
3.6 Photo-z with narrow bands in the feature set . . . . . . . . . . . . . . . . 79
3.7 Photo-z performance with feature sets based on colours . . . . . . . . . . . 80
3.8 Photo-z quality for feature sets obtained with automatic feature selection 82
3.9 Photo-z for the test set in spec-z bins . . . . . . . . . . . . . . . . . . . . . 85
3.10 Photo-z percentage of outliers for objects with different spec-z reliability . 87
3.11 Percentage of outliers for objects with different spec-z reliability after in-

cell outlier removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.12 Photo-z for the test dataset after different types of data cleaning . . . . . 91
3.13 Photo-z for the DEIMOS dataset after different types of data cleaning . . 92
3.14 ML/SED statistics for the DEIMOS and run datasets after different types

of cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.15 Photo-z performance for the ’dirty’ spec-z sample . . . . . . . . . . . . . . 97
3.16 Percentage of objects with |Kspec| ≤ 1 for different spec-z quality flags . . 97
3.17 ML, SED and mixed photo-z for the test and DEIMOS datasets . . . . . . 104

v



Abbreviations

ML Machine Learning

AI Artificial intelligence

KB Knowledge base

NLP Neural Language Processing

DNN Deep Neural Network

CNN Convolutional Neural Network

GPT Generative Pre-trained Transformer

RF Random Forest

SVM Support Vector Machines

IR Infrared

UV Ultraviolet

RMSE Root Mean Square Error

AGN Active Galactic Nuclei

SNe Supernovae

SFR Star-Formation Rate

vi



Surveys abbreviations

SDSS Sloan Digital Sky Survey, Ahumada et al. [2020]

LSST Vera Rubin Observatory Large Synoptic Survey Telescope,
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Chapter 1

Rather futurological introduction

1.1 Scientific revolutions of the 20th century

The advancement of computers, with the subsequent appearance of the Internet and

ongoing progress of data science, is sometimes called the Digital or Third Industrial

Revolution. Calling it a revolution might seem a bit preposterous, considering what the

previous technological revolutions were and how they changed the fate of Homo Sapiens

Sapiens.

The Neolithic or Agricultural Revolution took several millennia. Its early sign was the

domestication of animals and plants, with dogs being the first around 20 000 − 40 000

years ago. By 10 000 BCE the Neolitic revolution gained momentum, and ended in

Mesopotamia around 6 500 BCE [Diamond, 1998]. Writing, math, specialization, so-

cial hierarchy, money, calendar and astronomy have appeared there, at that point, and

everything that we see now as a ’civilization’ is a consequence of that transition.

The Industrial Revolution (also known as the First Industrial Revolution) took much

less time, roughly from 1750 to 1850. It spread from Great Britain all across Europe

and the United States. The most known change that happened in that period was the

transition from handcrafting of goods to machine production. Looking back, we realize

that it triggered an avalanche of social, political, scientific and technological events, from

horrific, such as the two World Wars, to magnificent, such as the creation of the Universal

Declaration of Human Rights and flying to space.

The Second Industrial Revolution was a logical continuation of the First one. It took ap-

proximately fifty years before the World War I, and its distinctive trait was the standard-

ization and mass production of complex manufacturing machinery. These two processes

1
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made the building of large factories, the rapid expanse of modern transport and com-

munication, and globalization as a whole, possible. During that period, people switched

from solar time to railway time, which eventually led to the customary system of time

zones. There was no need for this before the Second Industrial Revolution with its rail-

ways and telegraph, but after that we all started to live by the same clock. One might

consider how it changed our perception of the world, when a concept as fundamental

as time stopped being defined by the motion of the Sun and became governed by our

transportation.

And then the 20th century arrived, with its numerous scientific breakthroughs. In a

sense, they could be considered as revolutions of their own, if only we had enough time

between them to fully grasp the scale of changes that they brought. It took one hundred

years for the First Industrial Revolution to happen, around fifty for the Second, but

the 20th century turned into a parade of game-changing innovations and massive social

shifts. Even a quick recall shows that every generation had its own turning point.

First, the development of quantum theory and the theory of relativity had shattered our

vision of the deterministic and common sense-based world. This change took around

three decades. Then, powered by World War II and the rapid evolution of our under-

standing of the laws of nature, nuclear physics brought to reality the first potentially

unlimited source of energy and the first weapon potent enough to cause mass extinction.

Once again, it took only about thirty years, from 1911 to 1942, to walk the path from the

Rutherford’s publication on his planetary model of the atom, which still was two models

away from the correct one, to the ignition of the first nuclear reactor, the Chicago Pile-1.

Three years later, hundreds of thousands of people were killed with this new science

during the bombing of Hiroshima and Nagasaki.

At the same period of time, two much quieter, yet life-saving transitions were happening:

the first mass production of penicillin, also fuelled by World War II, and the first mass

vaccination, the one against polio1. The middle of the 20th century is sometimes called

the Atomic Age, while it should be called the Age of Antibiotics and Vaccines, considering

that together with better sanitation they have mostly stopped the epidemics that were

plaguing cities since humankind domesticated sheep and chickens.

Soon after that, with the launch of the Soviet satellite Sputnik 1 in the 1957, the

Space Age began. In only four years Yuri Gagarin reached space. In four more, the

first spacewalk happened, and in another four, in 1969, Neil Armstrong made his small

step on the surface of the Moon. One would have thought that humankind is just a

few decades away from becoming a multi-planetary species, but something went wrong.
1Strictly speaking, mass smallpox vaccinations were organized since 18th century, but only on a small

scale, and only by the mid 20th did it result in the eradication of the disease.
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Unlike the new continents discovered by Columbus and Vasco da Gama, space could not

offer anything of tangible, saleable value. There were no spices, no cheap gold, no lands

to send there convicts for colonization, and therefore no fuel to keep the expansion going.

The most breathtaking revolution of the 20th century, the one of dreamers and writers

of the Golden Age of Science Fiction, soon came to a halt. Still, from the first satellite

to the landing on the Moon, only twelve years passed.

Instead of driving us to Mars, the progress took a different turn. In the early 70’s the

epoch of personal computers has began. Several technological inventions and, impor-

tantly, design solutions, made it possible. The major factor was the progress of semicon-

ductors, an essential ingredient to create small, universal and power-efficient processors;

another one was putting semiconductors onto a small plate, e.g. the development of

integral circuits. Perhaps, the third in importance was the development of periphery

devices and Graphical User Interface (GUI), which made computers user-friendly. In

1974, the Altair 8800 became the first commercially successful personal computer. Soon

after that the first Microsoft software - an interpreter for a programming language BA-

SIC - was released. From that point, in less than ten years computers evolved from a

bulky, expensive and complicated devices for big business and complex calculations into

an expensive hobby, instrument for everyday work, and, eventually, a playground. From

this playground the next technological breakthroughs sprung:

• The Internet. Its basis was laid in the 70-s with the APRANET, but its epoch has

truly started in the late 80-s, when it became available to the private users and the

technological stack for the World Wide Web was created.

• The social networks. Their prototypes existed since early 90-s but their real as-

cending has happened in early 2000-s. This controversial advancement is unique in

many regards. For example, it is the first technological revolution that has virtu-

ally nothing to do with the production of goods. Even Internet has began first of

all as an instrument for work, but social networks at the beginning were nothing

more than entertainment. Another peculiarity is that it is the first technology that

is often considered as a defining factor for the whole generation - generation Y, or

millennials, - born during its development.

• And Machine Learning (ML) and Big data. They started to affect everyone’s life

in early 2010-s. We are now in the midst of this revolution, and likely on the cusp

of the next one.

The last three technologies, together with a number of others, such as smartphones and

Internet of Things (IoT), are considered to be the components of the Third Industrial

Revolution.
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This short list is by no means complete or objective, yet it shows that in the last cen-

tury, new pivotal technologies were appearing at least every 20-30 years, and, obviously,

they continue to evolve and shape humankind even when they are out of their "inflated

expectations" phase of the hype curve [Dedehayir and Steinert, 2016]. As a result, it

becomes impossible to trace the roots of the further changes2. The creation of the theory

of relativity lead to the appearance of precise satellite navigation, and it lead to Google

Maps in our smartphones [Ashby, 2003]; the horror tales of the Age of Atom (and, of

course, a ghost of eugenics; a long echo of the World War II) lead to general wariness

towards scientific advances, and this lead to pausing the research of gene therapy of

embryos [Lander et al., 2019]; and the beginning of the cosmic age lead to monitoring

satellites on the Earth’s orbit, resulting in the confirmation of the global climate changes

[Ablain et al., 2016, Guo et al., 2015]. But we can see these connections only well in a

hindsight.

Obviously, predicting how the current Data revolution will affect the world is near im-

possible. Yet, everyone try; predictions are made by those who drive this transition as

well as those who never wrote a single line of code, and their tone varies from alarmist

to Utopian, bringing confusion and producing provocative headlines in newspapers. But

to a large extent the field itself is to blame for this confusion; even its basic terminology

is somewhat fuzzy. It is easy to determine what is a nuclear reactor, a spacecraft or

a computer, but what should we consider as an artificial intelligence, which algorithms

belong to ML and how big are the ’Big data’?

1.2 Artificial Intelligence, Machine Learning, Big data

The issue of terminology was raised for the first time by Alan Turing in his seminal

paper "Computing Machinery and Intelligence" [Turing, 1950]. In there, Turing starts

his considerations with a question: "Can machines think?". Right away he reflects that

in order to answer it, we have first to define what it means ’to think’, and an attempt

to do this is likely to end up in a long and tedious argument. So he pragmatically

proposes to use an ’imitation game’ instead, now also known as the Turing test. The

idea is that a researcher tries to discern between a ’thinking machine’ and a person

solely through dialogue with both, without visual or voice contact. Although such test

equalizes ’thinking’ to ’imitating human thinking process’, in this way, at least, we would

not depend on what edition of the dictionary we have at hand.
2So called Amara’s law states: "We tend to overestimate the effect of a technology in the short run

and underestimate the effect in the long run".
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For several years the field continued developing a number of ’machine thinking’ tech-

niques with little need to delve into terminology, until in 1956, during the Dartmouth

summer workshop, the term ’Artificial Intelligence’ (AI) was coined. The organizers of

the workshop picked it in order to avoid biasing towards one of the already existing terms,

reserved for a specific research direction. In the funding proposal for the workshop, the

term ’AI’ is defined indirectly: "The study is to proceed on the basis of the conjecture

that every aspect of learning or any other feature of intelligence can in principle be so

precisely described that a machine can be made to simulate it. An attempt will be made

to find how to make machines use language, form abstractions and concepts, solve kinds

of problems now reserved for humans, and improve themselves" [McCarthy et al., 2006].

In other words, AI was defined not as just something that can fool a human interroga-

tor, but as something that can operate as a human being, which is much harder (and

more obscure) demand. Apparently, the participants of the workshop were content with

this, because Marvin Minsky, one of the founders of this field and a participant of the

workshop, in 1955 wrote in his report "Heuristic Aspects of the Artificial Intelligence

Problem": "I do not feel that it would be at all useful to try to lay down an absolute

definition of ’intelligence’ or even ’intelligent behavior’... it seems wrong in spirit; we can

often find very simple machines which, for certain tasks, exhibit performances which,

if done by a man, we would have to call ’intelligent’." [Minsky, 1956]. In more than

fifty years that have passed since the Dartmouth workshop, the definition of AI did not

become any clearer. In fact, the current edition of the Merriam-Webster dictionary is

even more general: "Artificial intelligence. 1: a branch of computer science dealing with

the simulation of intelligent behavior in computers. 2: the capability of a machine to

imitate intelligent human behavior".

The organizers of the Dartmouth workshop proposed "2-month, 10 man study of artifi-

cial intelligence", expressing their belief that "a significant advance can be made ... if a

carefully selected group of scientists work on it together for a summer" [McCarthy et al.,

2006]. Needless to say, two months were not enough, nor two decades. Interestingly,

Turing in his paper in 1950 predicted that ’thinking machines’ will appear only by the

end of the century (and it was a fairly good estimation, considering the latest advance-

ments in the field). It is an open question, whether the organizers of the Dartmouth

workshop actually believed that some significant progress could be made in few months,

or they wrote so in the proposal simply because it is much easier to obtain funding if

one promises ’a significant advance’ and not ’some curious ideas’.

After about a decade of active research it became clear that the possible pace of the AI

progress was overestimated. The funding had drained out, and a period called ’an AI

winter’ has started. Yet, the research did not stop. Looking at Fig. 1.1, it is evident that



Chapter 1 6

Figure 1.1: The frequency of the ML-related terms in literature in 1950-2020. The
initial spike of interest towards AI was highly correlated with expert systems, but in a
decade neural networks showed themselves as a more perspective technology. The ’AI
winter’ (late 80’s - early 90’s), the period of funding cuts of the research on the topic,
was caused by the disparity between the original enthusiasm and real progress in the
field. However, the studies continued, paving the way for the current advancements.
The word frequency data obtained using Google Ngram service; the description of the

methodology is given in Appendix A.1

it continued in a different direction and under different name. The AI winter became an

ML spring.

Unlike AI, Machine Learning does not aim to imitate an abstract "intelligent human

behavior", but merely "extract knowledge from data" [Müller and Guido, 2016], or even

more specifically, "automatically extract meaningful patterns from raw data" [Good-

fellow et al., 2016, Shalev-Shwartz and Ben-David, 2014]. Merriam-Webster dictionary

specifies that Machine Learning is "the process by which a computer is able to improve

its own performance (as in analyzing image files) by continuously incorporating new data

into an existing statistical model". The common element here is data. The AI research

at its early stages was mostly concentrated on developing pre-programmed expert sys-

tems that would be more or less universal and on incorporating knowledge disregarding

its source [Langley, 2011]. Instead, the specific trait of ML is that it changes its own

programming (by tuning model parameters) to create the best solution only for a given

dataset. From a conceptual point of view, ML is a step backward in comparison with

AI as it was understood in 1950s. From the practical point of view, this is what had to

be done in order to achieve ’significant advance’ in Natural Language Processing (NLP),

Machine Vision and AI playing board games and fighting simulators.

Finally, in the early 2000 a concept of big data comes into play.
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The term itself appeared in the late 1990s [Mashey, 1998] in the discussions on how to

handle the growing volumes, variety and velocity of generation (so called ’three V’, see

Sagiroglu and Sinanc [2013]) of the data. The ’three V’ are sometimes elaborated with

other qualities, such as veracity of the data, its value, etc. Considering that the three

’V’ have never been about some specific numbers, the big data is probably the most

ill-defined term of the Digital revolution.

Speaking of volumes, the most important thing is that they are much larger than what

can be handled with an ordinary software installed on a typical computer. Taking into

account that ’ordinary software’ can be very different for an owner of a small town grocery

store and an astronomer working with the last data release of the Gaia survey, the most

convenient dividing line is a volume that at least can be stored on a typical computer,

which is nowadays of an order of Terabytes (Tb). In the paradigm of big data, it is

usually assumed that this volume is distributed across a number of data storage nodes,

and smooth work with the data is provided through usage of special technologies, such

as MapReduce [Dean and Ghemawat, 2004] or Apache Spark [Salloum et al., 2016]. The

key idea of these technologies is that every algorithm is being split to multiple elementary

tasks which are performed independently on every node of the data storage cluster, and

the results of their work are being combined to provide the final result to the user.

This approach is very different from how the large datasets were used before the big

data paradigms appeared. For example, scientific datasets, such as those generated by

the CERN facilities or produced by astronomical observations, ordinarily were analyzed

using supercomputers, and the software for such analysis was developed specifically for

each task.

The variety of data assumes that the data can be stored in different formats, that the

structure of the dataset is not defined in advance and that these data can be unstructured.

It means that the big data algorithms have to be universal and easy to modify in case if

some new tasks will appear and require additional knowledge extraction or data fusion,

using the data that was not previously present.

Finally, the velocity means that the data is being generated in an increasing speed, and

that the algorithms have to be handling it in real time or as close to it as possible. This

aspect is relevant only for the fields where the infrastructure allows passing the large

volumes of data to the final user; up to date this is one of the bottlenecks for scientific

applications. E.g. astronomical facilities often storage multi-Tb datasets, but there is

no built-in possibility to download large parts of them; the query interfaces usually have

limits of several thousands of records. This difficulty spurred a discussion on the pos-

sibility of bringing code to the data instead of trying to bring the data to code, i.e. of

providing computational resources for the users right at the data facility. This solution
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did not gain any serious popularity in the past; however, similar approach becomes com-

mon in computer science and industry. Large technological companies, e.g. Amazon and

Google, offer cloud computing services at affordable prices, taking upon themselves the

convoluted tasks of programming environment setup and management. Assuming that

astronomical organizations will outsource the data storage to them, ’bringing code to the

data’ might become much more feasible.

Leaving AI, as the most obscure concept, out of consideration, we can notice that in

astronomy, elements of ML and Big Data approaches have been in use long before these

concepts became mainstream. Indeed, astronomy always had to deal with large volumes

of heterogeneous, unlabelled data, and its discoveries often have been about finding a

pattern, a correlation or a clustering of the data points in some non-obvious parameter

space. So there is no surprise that astronomers have been amongst the first people to

try the new technology. But before moving to the astronomical applications of ML, it

is useful to consider the basic concepts and definitions that will be actively used in the

next chapters.

1.3 Machine Learning basic concepts

As was defined above, ML is an automatic extraction of meaningful patterns from data.

This extraction is done via learning process, when an ML algorithm adjusts its own

parameters so that the final learned pattern was the best approximation of the dataset

under investigation.

The dataset consists of records, or instances (usually they are the rows of the table),

where one instance corresponds to one data point (e.g. a galaxy, a star, a transient event,

etc.); the parameters of an instance (columns) are often called features (e.g. magnitudes

in different bands or at different moments of time, chemical or morphological parameters,

etc.). The features define a parameter, or feature space of the problem.

The ML algorithms usually have a number of user-defined model hyperparameters, which

define the model architecture. Model architecture plays an important role in the ML

performance, but there are no universal rules on selecting the architecture, so trying

various hyperparameters is an essential part of creating an ML solution for the task at

hand.

There are several types of ML algorithms:
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• Supervised learning. For this algorithms the dataset has to contain labels (also

called targets), which are the parameter of the data points that has to be learned.

The target can be categorical (e.g. a class of star) or numerical (e.g. star-formation

rate of a galaxy). The goal of supervised learning is to be able to predict target

value with a maximum accuracy. In the case when the target values are categorical,

the task is called classification problem; when the targets are numerical, the task

is called regression problem. Many supervised ML algorithms can work in both

regime, but with different setup and accuracy metrics.

For the supervised problems it is typical to split the data in train, test, validation

and run datasets. The train, validation and test datasets compose so-called Knowl-

edge Base (KB); for these datasets both features and targets are known. The train

dataset is used for training the ML model; the validation dataset is used to evalu-

ate its performance in each experiment, where various experiments are conveyed to

determine the best architecture model. The test dataset is used at the stage of the

final evaluation of the selected architecture. The train, validation and test datasets

should not overlap, in order to avoid overfitting - a condition when the model have

learned the ’right answers’ only for the data it has seen, instead of learning the

smooth n-dimensional correspondence between features and targets. Finally, the

run dataset consists of only features; this is the dataset for which ML predictions

are needed.

• Unsupervised learning. Unsupervised methods work on unlabelled data, looking

for the patterns in the parameter space based on the topology, connectivity or lo-

cal density of the data points of the dataset. The common classes of unsupervised

ML are clustering, dimensionality reduction and anomaly detection algorithms.

Without any targets to guide the learning process, in the most cases (apart from

the simplest ones) there are multiple patterns that unsupervised ML can find in

the same dataset. The interpretation of these patterns is a task left for the re-

searcher. For this reason unsupervised ML is often used for data exploration and

visualization.

• Semi-supervised learning. Semi-supervised algorithms take a large amount of

unlabelled data and a small amount of labelled data, and analyze them simultane-

ously. Unlabelled data provides more information on the dataset topology, while

labelled data serves as a guide towards the preferable solution, e.g. a version of

clustering that maximizes the distance between two classes of objects.

There are multiple algorithms belonging to each category of ML; choosing the right one

and then finding the optimal architecture is an important part of solving the problem,
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sometimes considered to be ’more art than science’ due to its complexity. However, ar-

guably, even more important part of the solution is a good data preprocessing: removing

instances with incorrect measurements, filling absent values (or removing instances where

some features are not present), normalization of the features, and feature selection.

In theory, it seems to be a good solution to give the ML algorithm all data that is present

and to trusts it to find necessary information by itself. In practice, every additional fea-

ture brings not only meaningful signal, but also some amount of noise. What poses even

more serious problem, though, is so-called ’curse of dimensionality’ [Bellman, 2010]. Its

meaning is that the higher is the dimensionality of the parameter space, the larger is the

distance between the data points and the harder it is for an ML algorithm to determine

the topology of the dataset. The dependency is non-linear; it is often recommended that

in order to compensate for the ’curse of dimensionality’, the number of the training data

points should be at least 5 times larger than the dimensionality of the parameter space

[Koutroumbas and Theodoridis, 2008]. Given a fixed number of data points, obviously, it

means that thoughtless increase of the number of the features leads to the deterioration

of the model’s performance.

For the datasets when there are only few features present, this is not an issue. However,

ML tasks, including astronomical ones, sometimes deal with dozens and hundreds of fea-

tures. In such a case, feature selection and sometimes feature engineering is an essential

part of the data preprocessing.

Feature selection is a process of choosing which features are going to be used to train the

model; the most relevant features can be chosen with automated methods or manually,

based on the domain knowledge of the researcher. The aim of this process is to find

features that correlate most strongly with the target value, but most weakly with other

features chosen for the training (to minimize redundancy) and bring minimal amount

of noise. The difficulty of this task is that ML models by construction are able to de-

tect signal which is impossible to find with ordinary statistical methods. Besides, the

main interest of using ML is to find some patterns that were not known beforehand,

i.e. not incorporated in domain knowledge. As a result, brute force search across all

combinations of features is the only method that is guaranteed to find the optimal fea-

ture set; unfortunately, usually it also so computationally expensive that providing it

is absolutely impossible. Less direct feature selection methods, however, often provide

satisfying results.

Finally, feature engineering is the process of creating new features by combining the old

ones, e.g. by summation, division, etc. The usefulness of this process is not obvious;

after all, no new information is going to appear if we sum two columns instead of us-

ing them separately, and many ML algorithms are doing the same various operations
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under the hood. Still, there are some benefits. First of all, combining several features

might enhance the signal, while reducing the noise (similarly to averaging over several

measurements). Secondly, it preserves the signal while reducing the dimensionality of

the dataset. Finally, it is possible that the signal is contained in the relation between

several features (think of how different types of galaxies are separated with colours, not

magnitudes), and by suggesting this relation to the ML model directly we simplify its

work. Obviously, the difficulties here are the same as with feature selection.

Now, after creating a rough map of ML concepts, we can look into how ML methods are

used in astronomy.

1.4 Prehistory of Astroinformatics

The first mentions of AI application to astronomical problems begin to appear in the

1980-s, although nowadays we would hardly consider the used algorithms as AI ones.

Back then, the most perspective direction for the AI research was expert systems; as-

tronomers have developed several simple implementations of such (today we would call

them decision trees based on the human-developed heuristic rules) and used them to clas-

sify sunspots [McIntosh, 1990, Miller, 1988, 1989b]. Several works have been dedicated

to the application of the Bayesian approach: for example, to star/galaxy classification

[Sebok, 1979, Slezak et al., 1988] and classification of stellar spectra [Goebel et al., 1989].

Neural networks, apart from a few attempts [see Adorf, 1989, and references therein],

have remained unused until the 1990-s; then have started being investigated for classifi-

cation of the stellar spectra [Weaver, 1990], correction of images obtained with adaptive

optics [e.g. Angel et al., 1990, Lloyd-Hart et al., 1992, Sandler et al., 1991], star/galaxy

[Odewahn et al., 1992], morphological galaxy [Storrie-Lombardi et al., 1992] and stellar

[Hernandez-Pajares et al., 1992] classification, etc.

Interesting to note that apart from expert systems, there was a lot of hopes for Natural

Language Processing (NLP). It was expected that advanced NLP software would help

astronomers to manage proposal application and review, plan observations, search in-

formation in literature and transfer this information into a convenient knowledge base

[Adorf, 1991, Albrecht, 1989, Rosenthal, 1988]; the Hubble Space Telescope software

infrastructure included several of such systems [see Miller, 1989a]. In other words, as-

tronomers were thinking about systems that would simplify the working routine, rather

than classification and regression tasks. Although we have developed non-AI systems

for these kinds of tasks, it is hard to argue that there is a lot to do in this direction.

Currently, the best NLP instrument that we have is recommendation systems (e.g. such
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Figure 1.2: Number of refereed ML-related astronomical publications by years. The
counts are taken using ADS API, the methodology is described in Appendix A.2

as implemented in the bibliography management service Mendeley), but it is evident

that it is not enough to handle an information overload from thousands of papers. We

may hope that the current advancements of the NLP algorithms will lead to the creation

of robust and useful information extraction services, and that it will not take another

three decades for such systems to migrate from commercial use to academia.

Starting from the late 1980-s, a number of initiatives was taken to handle the upcoming

rise of the raw data. The most known and still ongoing is the Virtual Observatory [Arviset

et al., 2012, Szalay and Brunner, 1999], but the growing number of large sky surveys and

spread of programming skills amongst astronomers lead to appearance of custom data

interfaces for almost every observational program. The abundance of heterogeneous and

large astronomical datasets spurred a discussion on a new branch of astronomy called

astroinformatics [e.g. Borne et al., 2009], by analogy with bioinformatics.

1.5 Current status

ML became a popular technology in early 2010-s; Fig. 1.1 shows that the turning point

was passed around 2013. Most likely it is related to the progress of machine object

recognition that allowed to achieve better-than-human scores in the visual recognition

competition ImageNet in 2012. As it can be seen from Fig. 1.2, the astronomical commu-

nity started to widely adopt these techniques around the same time, although in the last

four years the growth sped up even more. A review of the most common ML techniques

used in astronomy can be found in [Baron, 2019, Longo et al., 2019]. The problems for

which they are used include star/galaxy classification [e.g. Bertin and Arnouts, 1996,

Brescia et al., 2015, Cabayol et al., 2019, Jarrett et al., 2000, Kovács and Szapudi, 2015,



Chapter 1 13

Odewahn et al., 2004], morphological classification of galaxies [e.g. Barchi et al., 2020,

de la Calleja and Fuentes, 2004, Huertas-Company et al., 2008, 2015, Moore et al., 2006,

Simmons et al., 2017, Siudek et al., 2018, Vavilova et al., 2017], event detection [Brink

et al., 2013, du Buisson et al., 2015, George et al., 2018, Goldstein et al., 2015, Masci

et al., 2017, Mukund et al., 2017, Pearson et al., 2018, Schanche et al., 2019, Shallue and

Vanderburg, 2018, Zevin et al., 2017] and search for peculiar objects (in a broad sense,

e.g. gravitational lenses, galaxy mergers, galaxies at a specific phase of their evolution,

fresh craters on the Moon and Mars surface, etc.; see e.g. Ackermann et al. [2018],

Huertas-Company et al. [2018], Jacobs et al. [2017], Lanusse et al. [2018], Lee and Hogan

[2020], Petrillo et al. [2017], Silburt et al. [2019]).

Calculation of photometric redshift, which is the main subject of this thesis, is some-

times considered a template use case of ML regression problem in astronomy [Brescia

et al., 2018], due to the existence of large KBs and relative simplicity of the photometry-

redshift correlation (see Connolly et al. [1995] on this subject). Shallow neural networks

have been the first ML method applied to this task [Collister and Lahav, 2004, Firth

et al., 2003, Tagliaferri et al., 2003, Vanzella et al., 2004] and remain quite competitive

on the catalogues with small number of broad photometric bands and representative

KBs (see e.g. Dahlen et al. [2013] for a comparison of the ANNz [Collister and Lahav,

2004, Sadeh et al., 2016] to other methods, Norris et al. [2019] for a comparison of the

MLPQNA [Cavuoti et al., 2012] to other methods, and Euclid Collaboration et al. [2020]

for a comparison of both). Other common ML methods, such as Random Forest [e.g.

Carliles et al., 2010, Carrasco Kind and Brunner, 2013] and Support Vector Machines

[e.g. Wadadekar, 2005] have also been used.

Photometric redshifts have been one of the few astronomical problems that have been ex-

tensively addressed with unsupervised machine learning, primarily with Self-Organizing

Maps (SOM) algorithm. SOM have been used for photo-z prediction [Carrasco Kind

and Brunner, 2014b, Geach, 2012], but in the last few years it became much more im-

portant as a tool for calibrating the photometric datasets to a spectroscopic ones [e.g.

Hildebrandt et al., 2020b, Masters et al., 2015, Wright et al., 2020].

Since extragalactic astrophysics and especially cosmology requires reliable photo-z for

the large samples of galaxies, including faint and high-redshift ones, there are many

attempts to create better photo-z algorithms. Yet, there is not much space for improve-

ments without including additional information. The latter, indeed, sometimes allows

to obtain better photo-z predictions, and depending on the nature of this additional

information some ML algorithms may be more preferable than other. For example, in

order to include morphological information by using raw images as inputs, CNNs are re-

quired; Hoyle [2016] and Pasquet et al. [2019] have implemented such schemes and tested
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them on SDSS data, but the results did not show a convincing improvements over more

traditional schemes. Another perspective direction is inclusion of medium and narrow

photometric bands to the feature sets; Leistedt and Hogg [2017] have tried this with a hy-

brid SED fitting/ML methods and Heinis et al. [2016] used SVM (and genetic algorithm

for feature selection). Neither approach brought any decisive improvement. Eriksen et al.

[2020] achieved much better results with 40-band photometry and deep Mixture Density

Network algorithm, but only after using synthetic dataset for pre-training their model.

In more detail this subject is considered in Sec. 2.5.

This list of astronomical ML applications is far from a complete one, and new applications

of ML to astronomical problems appear every day. There are two conditions, under which

a problem can be solved using ML - and with some scientific gain: the problem has to

be formalizable, and there should be datasets suitable for ML applications.

The requirement of formalization means that there should exist a clear performance

metric: a well-defined classification system, or a value to predict. The simplicity of this

requirement is often an illusion. For example, stars and galaxies are physically different,

so provided a perfect telescope, we can confidently discern between them. Then, spiral,

elliptical and irregular galaxies are usually different, but there are intermediate cases.

These intermediate cases are physically motivated, since all types of galaxies are noth-

ing more than conventionally chosen points in a multi-dimensional and not completely

known continuous sequence of galaxy evolution. And as to the fine morphological galaxy

classification, the system which it has to follow is mostly an arbitrary choice. Any at-

tempt to pose this problem as a classification task is inevitably only an approximation of

a regression task with an undetermined number of target values, and this approximation

is not only rough, but also biased by the instrument, wavelength of observation and the

researcher’s focus of interests.

Evidently, this should not be a concern of ML per se. It is an intrinsic trait of astron-

omy, a field of science that studies exceptionally complex objects at an unimaginable

distances with rather primitive (as our descendants in a few hundreds years will surely

say) instruments and imperfect human brains. But this is where the second requirement

for a problem comes into play: existence of the training datasets.

From the point of view of ML, astronomical datasets in general are far from ideal. There

are several typical issues, that are not being accounted for by the ML developers from

other fields, and therefore have to be tackled by the astroinformaticians themselves:

• It is a common case that a large percentage of data points in the dataset contains

missing values for one or several features. These data points either have to be
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discarded from the analysis, or they should be subjected to a process of data

imputation.

• Instead of simple Gaussian distribution, errors often have a complex dependency

from observable parameters (e.g. magnitude errors may depend on the object’s

magnitude, angular size, its angular distance from the center of the field of view

during the observation, weather conditions, etc.). ML algorithms have different

sensitivity to this issue; more so, the majority of ML algorithms do not have com-

mon (e.g. included in popular programming language libraries) implementations

that would take into account errors of physical measurements. As a consequence,

astronomers have to develop such implementations themselves [e.g. Reis et al.,

2019].

• Astronomical datasets are intrinsically incomplete, both due to Malmquist bias

and due to the selection functions introduces by the observational strategy. ML

models inherit these biases.

• Astronomical datasets are imbalanced, in a sense that different classes of objects

appear with a different frequency. Sometimes such imbalance is of several orders,

meaning that in a dataset with dozens of thousands of objects only a handful

belong to the rarest class. ML algorithms tend to always predict more common

classes and never ’notice’ the rare ones. At the same time, the rare objects pose

the biggest interest to science. To tackle this issue, either dataset resampling or

model penalization are necessary. More so, we are usually interested in detecting

objects that are not just underrepresented, but even previously unseen. In this case

novelty detection algorithms have to be applied in addition to classification ones.

On the other hand, astronomy, unlike many other areas where ML is being applied, holds

a treasure of multiple rich datasets, gathered, analyzed and labelled by experts over many

decades. In theory, it would mean that astronomy and data science are bound to a fast

and fruitful fusion. Unfortunately, the reality is not so bright.

1.6 Small problems with big data in Astronomy

The notion that astronomy is entering the age of Big data is a common one. A curious

thing about it is that in some form, it is being announced for at least ten years now [e.g.

Yasuda et al., 2004]. In 2004 - the year when Facebook and Gmail were launched and

long before data science became one of the most attractive specializations - SDSS Data

Release 3 (DR3) already contained observations of about 141 million of sources, and the
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preparations for the Petabyte-sized surveys were put into effect [Thakar et al., 2004].

Sixteen years later, big data analysis is a cheap service used by every other merchant,

ML-powered algorithms retouch our faces on the fly during online conferences, and the

Petabyte-sized survey LSST is on its brush-and-polish stage. Yet, the Catalog Archive

System (CAS) and Astronomical Data Query Language (ADQL), developed in 2004 for

the SDSS DR3, are still one of the most widely used and user-friendly interfaces for

retrieving astronomical data. There are no tools that would, for example, automatically

select all merging galaxies observed in HDF, or all craters on the Moon younger than a

certain age. In fact, even the simplest tasks, such as crossmatching two catalogues or

obtaining a few thousands of galaxy thumbnails, can take several hours (sometimes days,

sometimes weeks) if these catalogues are not coming from one of the very few surveys

with "big data adapted" interfaces. The world in general has entered the age of big data

and Machine Learning long time ago; but astronomy is still entering it, and it seems like

this transition is going to take a couple decades more.

The reasons to this have nothing to do with technological complications, but rather with

the sociology of the astronomical community. First of all, it is small. Depending on the

estimation, there are ∼ 10000− 15000 astronomers in the world; it is a population of a

big village. Turning an innovation into a tool takes research, development, testing and

maintenance, and there are not so many human resources in astronomy to invest them

into anything non-vital.

The second issue is that astronomy does not bring short-term profit. There are few other

kinds of human activity, even among fundamental sciences, that would be so unlucrative.

Biology helps to develop drugs, Earth sciences are involved with politics through climate

change research, physics provides new materials, but the only measurably valuable prod-

uct that of fundamental astronomy are well-trained, creative and critical brains, and

they are more likely to bring some short-term profit if being relocated elsewhere. All

in all, the only regular investors in astronomy are governments, and with no noticeable

dividends, the investments are rather small.

A historical observation: in Adorf [1990], an article in the "Artificial Intelligence Tech-

niques for Astronomy" conference proceedings, we can read:

"Problems in astronomy:

• ...

• computing in astronomy is lagging behind other scientific areas;

• astronomical community is so small, no commercial interest, different

from e.g. medicine or geology which receive attention in computer sci-

ence research and from hardware vendors;
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• advanced software engineering is too complex and distracting for as-

tronomers, should be left to specialists (astronomers also don’t build

their own CCD-chips);

• software groups are often understaffed;

• strategic planning is often missing (notable exceptions: Space Telescope

Science Institute and NRAO)."

Thirty years later, every single point in this list is still painfully valid.

There is another common notion, this time from data science: in any data analysis or

ML project, 80% of the time is spent on finding, cleaning and organizing data, and only

20% on the actual analysis3. Searching for the right data can be a tedious task, especially

when these data are not a generic dataset from a big observatory but a specific catalogue,

prepared by a small team, uploaded only to an institute server, with counter-intuitive

column names and mixed NaN values, unfindable unless one has read the fine print in

the footnote of an application to some paper. Observational data, produced by large

facilities, often pose another problem: in the absence of massive batch download and

on-server crossmatch functions, gathering information about few hundreds or thousands

of objects of interest requires downloading several data packages of tens or hundreds of

gigabytes each. After that, selection and cross-matching procedures are performed on

the user’s computer. Rest assured, the whole process can take 80% of the working time

and more.

Speaking from the point of technology, there is a straightforward way to shorten this

part of the work: all that is needed is to create a system that would connect various

astronomical data storages, guarantee the presence of complete and informative meta-

data for the individual datasets, store the relations between individual datasets and

support fast access to them. The system would help even in those cases when a simple

direct cross-match is impossible, e.g. when it is necessary to find optical counterpart for

an objects observed in another range. In such cases, well-organized data infrastructure

would at least lessen the volume of the downloaded data by performing an on-server

control that the sky areas, observed with two surveys, are overlapping. Essentially, it

is a description of an idea of the Virtual Observatory, and similar systems are widely

used in industry. However, in astronomy, the implementation of this straightforward idea

struggles with incompatibility of various astronomical data storage systems (because they

were developed at different times and no one has modernized them), incomplete and

obscure meta-data (provided by the authors of the catalogues, not really enthusiastic
3Of course, it is just a variation of the well-known Pareto principle.
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about uploading them in the first place), and general shortage of resources (especially

human ones).

A reasonable question arises, if it is really that important. To answer it, we can make a

back-of-the-envelope calculation. In the last decade, about 28000 refereed astronomical

papers are being published annually4. Let’s assume that 10000 of these publications are

dedicated to some sort of data analysis5. If we manage to speed up the process of this

analysis by 10% (by simplifying the process of finding, cleaning and organizing data),

formally there would be ∼ 11000 publications instead6; one thousand more observations,

discoveries or ideas.

But since astronomy is an extremely non-profitable area, there are very little stimuli

for the governments to make investments into enhancements that would allow this to

happen, because a few more things discovered about the Universe and a higher number

(or higher quality) of scientific papers will not make a visible effect on the society, not in

decades or even centuries. And astronomers, being few in numbers and mostly focused on

their own projects with little time and efforts to spare, are not prone to fast and effective

self-organization. As a result, astronomy was one of the first field to experiment with

big data and ML, and will be one of the last to fully integrate these new technologies.

Using the terminology introduced by sociologist Everett M. Rogers, astronomy is an

early adopter and a laggard at the same time.

Nonetheless, changes do, inevitably, happen, at least, in the observational facilities under

construction. One may hope that one day, when ML becomes an astronomer’s everyday

tool of the same mundanity as ADQL or basic statistic analysis, a modernization of the

legacy archives will happen too.

1.7 ML-powered future of astronomy

Currently, the most prominent results in the ML-related fields are obtained with deep

learning, e.g. with artificial NNs with large7 number of hidden layers, and the progress

is generally due to the increasing number of model’s parameters [Hogarth, 2020]. The
4According to the ADS request collection:astronomy property:refereed year:2010-2019.
5To evaluate whether this assumption is close to reality we can make the following request:

(body:"dataset" or body:"data set" or body:"catalog") year:2019 collection:astronomy
property:refereed. It returns 10765 papers.

6Some would say that it would not be a positive change, considering that the information overload is
already making it impossible to follow not only the events in the whole astronomical field, but even in
several adjacent branches. But this is an issue that we have to solve, either with changing the publishing
policies or with machine reading comprehension systems, not run away from it. And hopefully, in reality
the number of paper would lessen, but they would become more concentrated on physical interpretations.

7’Large’ in general means ’more than one’. First DNNs were composed of less than ten layers, but
now DNNs can be built of hundreds of layers and more.
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number of parameters can go over a hundred of billions in the case of GPT-3 [Brown et al.,

2020]; such algorithms require massive datasets and immense computational power, and

the cost of training such a model goes over several million dollars. Although only big

companies can allow to develop these algorithms, there is a positive side: such a model

has to be trained only once, and after that it can be used for a multitude of applications.

It means that in the near future an ’ML model rent service’ will appear, and top notch

AI models will become commonly used. Perhaps, the most appealing possibility for

astronomy (and other sciences as well) is a long-desired automatic information extraction

and summarization system for publications, which was the top line in the wish lists in

the old astronomical AI reviews [Adorf, 1990, Rosenthal, 1988].

There are limits to increasing the number of model parameters, both technological and

economical, so the AI community is looking for new approaches. For example, there is

a growing interest to combining NLP algorithms with knowledge graphs obtained from

various sources, e.g. from social network databases, connectivity of web pages or search

query statistics. Unfortunately, even if these systems will be developed soon, astronomy

is unlikely to benefit from it in the foreseeable future.

What can be expected is that as already existing algorithms become more and more user-

friendly, up to the point where no knowledge of programming or ML theory is required,

more and more astronomers will be including ML-based tools to their working routine

for quick investigation of the datasets and selection of the objects of interest from the

catalogues. Currently the bottleneck of this process is the data infrastructure; however,

the new large surveys promise to be more ML-friendly. Another trend that arises for the

new observational facilities is that they rely on ML algorithms for the preliminary data

processing, e.g. for removing artifacts, classifying objects ’on the fly’ and raising alerts

for transient events.

One of the most rapidly growing areas of astronomical ML-applications is image process-

ing with DNNs. It is explainable, since DNNs allow to extract task-specific information

from the raw images, which previously was possible to do only manually, and only when

the relevant image parameters were already known. Another reason for the rapid progress

is that deep learning is commonly used in industry and there are numerous algorithms

and libraries that can be used ’out of the box’ with very little adjustments. However, in

many regards astronomical datasets are different from those in industry and other sci-

ences; astronomical data are sparse, often affected by variability, highly unbalanced, and

suffer from non-homogeneous and non-Gaussian errors. As a result, astronomy would

benefit from mastering less common algorithms that are better at handling these issues,

e.g. one-shot/few-shots learning, Gaussian processes and recurrent neural networks.
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The near future will bring us Petabyte-scale, multi-messenger, time-domain astronomy.

An optimistic person can hope that in slightly more distant future, private space com-

panies will speed up space exploration, and that it will result not only in communication

satellites marring astronomical images [Hainaut and Williams, 2020, Tyson et al., 2020],

but in some gains as well. Constellations of astronomical CubeSats observing the sky

without breaks and in the wavelengths unavailable for the ground-based telescopes [Ser-

jeant et al., 2020, Shkolnik, 2018] would bring the term of ’time-domain’ to a new level,

and launching complex orbital telescopes would be much less stressful if there was a

possibility to convey some construction works already in the orbit. Both advancements

would result in even larger growth of the volumes of astronomical datasets, fuelling

further advancement of astroinformatics. At the same time, perhaps, one of the next

state-of-the-arts DeepMind AIs will be assigned a task from some branch of astronomy -

provided that astronomers will be able to formalize it and to prepare suitable datasets.

After all, there are attempts to create an AI model that would be able to derive laws of

physics from observations [e.g. de Silva et al., 2019, Iten et al., 2020, Wu and Tegmark,

2018], so in principle there is nothing too fantastic in imagining an AI algorithm trying

to untangle the mystery of dark energy or dark matter by analyzing the astronomical

and particle physics datasets simultaneously.

The most incomprehensible part of these changes is not technology though; the appear-

ance of mobile phones and robots was hypothesized well before their actual creation.

The most incomprehensible and unpredictable part of this equation are people. No one

had predicted anything like WikiLeaks, fake news, Ice Bucket Challenge or video game

streaming. The ungoing Data revolution promises - or threatens, depending on one’s

point of view - to bring immense changes, but truthfully, no one knows what they will

be. The unpredictable human reactions plays the major role in this transition, making

any prognosis a little more than random guessing. One of the common predictions is

that a number of professions, mostly low-qualified ones, will become obsolete in the next

twenty years8, and that it will cause social tension and an epidemic of depression. But

who knows, maybe the new generation, growing in an ever-changing world, taught not to

trust social media and used to chatting with virtual assistants, will be completely com-

fortable with this new reality. Maybe they will be a generation of hikikomori, recluses

living almost completely in the virtual world. Or maybe the opposite will happen, and

this generation will dedicate itself to learning new things, arts, volunteering work in the

countries that are still not completely over even with the vaccination revolution9, or citi-

zen science. If something like that will ever be true, astronomical community will finally
8The latest success of the AI systems hint that even high-qualified areas, like translating and pro-

gramming, might become a machine’s territory sooner than we think.
9The geopolitical consequences of such disparity are another rather scary and unpredictable subject.
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have a chance to grow beyond the size of a village; after all, astronomy is not just one of

the most unprofitable areas of human activity, but also one of the most inspiring ones.

1.8 About this thesis

The present work is done at the junction of astronomy and data science, fully withing

the scope of astroinformatics. It is dedicated to photometric redshifts, a ’template case’

for Machine Learning in astronomy.

Robust and reliable photo-z are critical for the new large-scale extragalactic surveys to

succeed in their task of constraining cosmological parameters with a few-percent accuracy.

However, different scientific problems are studied with different samples of galaxies for

which various observables are present, and there is no algorithm that would be a ’silver

bullet’, a perfect solution for all of them. Additionally, precision cosmology requires

not only very precise photo-z catalogues, but also the knowledge of their biases. A

careful comparison of photo-z codes and calibration of their outcomes is necessary, and

ML methods have been one of the key tools for this. Ch. 2 gives an elaborated review

of the previous research done on photo-z, including the existing approaches to obtain

them, auxiliary algorithms for photo-z catalogues calibration and validation, and the

requirements posed by the upcoming cosmological surveys.

In this work, I use both supervised and unsupervised ML to obtain and calibrate photo-z

for the COSMOS2015, a deep 30-band photometric catalogue which is often used as a

model dataset for the upcoming surveys. Ch. 3 describes this work in detail, presenting

a new ML-based methodology for improving the reliability of photo-z catalogues. For

the first time the description of this new methodology was given in Razim et al. [2021]

(submitted to MNRAS).

This new methodology is used for several purposes: a) to detect unreliable spec-z mea-

surements from the catalogue used for training and evaluation, b) to estimate the reliabil-

ity of photo-z predictions without comparing them to spec-z values and to remove those

that are likely to be catastrophic outliers, and c) to calibrate the dataset without spec-z

information (run dataset) to the one that was used for training. Combined together,

different types of cleaning and calibration allow to reduce the percentage of catastrophic

outliers by an order, with corresponding improvement of other metrics. As highlighted

in Ch. 4, it makes the SOM-based data cleaning methodology a highly perspective tool

for preparation of the massive photo-z datasets, e.g. based on the data observed by

the LSST and Euclid, and for any survey that combines photometry and spectroscopy

coming from different instruments.
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Photo-z

2.1 The Universe in 3D

In the 20th century a number of methods for determining astronomical distances was

created, but the absolute majority of them share the same weakness: they work only

for the specific types of objects and in a limited range of distances. For example, the

method of stellar parallax works only for the closest stars; even now the most precise

measurements, performed with GAIA, will allow us to map in 3D less than 1% of the

stars in the Milky Way. Measuring distances to the stars on the outskirts of our galaxy

requires other methods; local galaxies, more distant galaxies, quasars - every category of

objects requires a new method, or rather several, in order for the measurements to be

reliable.

As a result, astronomers now use a so called ’distance ladder’. The first rung in this

ladder are the approaches that allow us to measure distances to the closest objects.

They are used for calibrating the approaches with more far away range of applicability;

those calibrated approaches, in turn, are used to verify the techniques for even larger

distances, and so on. Finding the overlapping sample that can be used for reliable

calibration of the more far-reaching method is often a non-trivial task, so the small sizes

of these overlapping samples is the major factor that limits the precision of the overall

distance scale.

But more critical issue is that in order to convey modern cosmological and astrophysi-

cal research it is not enough to determine distances only to some selected objects. We

need them for millions and billions of galaxies, irrespective to their type and whether

they contain some ’standard candle’. Among the variety of methods of determining the

distances there is literally only one which is applicable to almost any galaxy in the Uni-

verse: the one based on the cosmological redshifts, measured either with spectroscopy or

22
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photometry.

There are three causes of redshift: a) the relative motion of the emitter and the observer

along the line of sight (peculiar motion, which causes classical Doppler effect), b) the

difference in the strength of the gravitational fields in the point of emission and the

point of observation (gravitational redshift), and c) cosmological expansion of space

(cosmological redshift). The measured redshift of any extragalactic object is a sum of

these three components, and for the galaxies that are not gravitationally bound to the

Milky Way the third component is the dominant one. The cosmological redshift is caused

by the fact that when light travels from its galaxy of origin to the observer, it passes

through the expanding space. The electromagnetic wave is being stretched together with

the space, so the photon’s wavelength is being increased, and this increase is proportional

to the distance that light has traveled.

Mathematically it is equivalent to the emitting galaxy moving away from the observer

[Bunn and Hogg, 2009], so it can be described through the Doppler–Fizeau equation:

λobs
λem

= 1 +
v

c
(2.1)

where λem is the emitted wavelength and λobs is the observed wavelength.

The redshift is measured as the relative change of the wavelength:

z =
λobs − λem

λem
or

λobs
λem

= 1 + z (2.2)

From 2.1 and 2.3:

1 + z = 1 +
v

c
, meaning that v = cz (2.3)

At the same time, the expansion of the Universe causes all galaxies to move away from

each other, and the larger the distance between two galaxies, the larger is their relative

velocity. According to the Hubble’s law:

v = H0D (2.4)

where v us the velocity of the galaxy, H0 is the Hubble parameter and D is the distance

to the galaxy.
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As a result, from 2.3 and 2.4:

v = cz = H0D (2.5)

This way, by measuring the redshift of some spectroscopic feature and assuming some

value of H0, we can directly obtain the distances to the galaxies.

This derivations assume flat Universe and require the knowledge of H0, and these are

not guaranteed, so in different branches of astronomy the redshifts are used differently.

While in galaxy evolution studies they effectively substitute distances, in cosmology they

are used to estimate the cosmological parameters, H0 included, at different epochs, by

comparing them with other distance measurements. This way, redshifts are the last rung

of the distance ladder.

The first large spec-z surveys have been finished in the middle of the 20th century [de

Vaucouleurs et al., 1976, 1964, Humason et al., 1956, Sandage, 1978]. Thanks to them

astronomy started to map the large-scale structure of the universe, investigate galaxy

evolution and derive cosmological parameters using large samples of galaxies. However,

spectroscopy could not keep pace with photometry; for the massive wide surveys, only

about one of one hundred of photometrically observed galaxies has measured spec-z1, and

for many observational programs this ratio is even worse. It is especially hard to obtain

spec-z for the faint galaxies, meaning that spec-z catalogues have systematic bias towards

bright massive galaxies and low redshifts affecting both astrophysical and cosmological

research. For this reason, in the beginning of the 21th century a complementary method,

photometric redshifts (or photo-z), came into play.

2.2 General idea of photo-z

The general idea of photo-z is based on the fact that both galaxy spectrum and its

multiband photometry are the representations of the intrinsic spectral energy distribution

(SED) of this galaxy. The essential difference between them is resolution. Spectrographs

allow to distinguish the difference of the energy levels for the features that withstand

from one another by angstroms. Photometry, on the other hand, allows to detect only

the slope of the SED using the two points that correspond to the median wavelength

values of the adjacent bands. These two points typically withstand from one another
1This is true for e.g. SDSS Data Release 16, based on the sizes of photometric and spectroscopic

catalogues obtained via http://skyserver.sdss.org/CasJobs/

http://skyserver.sdss.org/CasJobs/
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Figure 2.1: A SED of an elliptical galaxy [Bruzual and Charlot, 2003] with the SDSS
filter bandpasses overlaid. The SED is shown at three redshifts, increasing from the
bottom panel to the top one. With the increase of z, the Balmer break located at 3646Å
in the restframe moves from u/g bands to the redder part of the spectrum. Image taken

from Padmanabhan et al. [2007].

by 1 000 − 2 000 angstroms for optical broad bands with a significant increase of this

scale in the IR part of the spectrum (e.g. Spitzer bands withstand one from another by

∼ 10 000 − 20 000Å); for the optical narrow bands this gap is ∼ 100 − 200Å. Galaxy

spectrum allows us to measure redshift directly, by identifying a certain spectroscopic

feature and comparing its observed wavelength with a wavelength of this feature in a

rest-frame. Resolution of photometry, obviously, does not allow that. Instead, when a

prominent spectroscopic feature, such as strong emission line or Lyman (912Å) or Balmer

(3646Å) breaks, is redshifted, it moves from one photometric band to another, causing

an increase or decrease of its flux (see Fig. 2.1). By these changes of the fluxes it is

possible to estimate the wavelength of the feature and, consequently, derive the redshift.

There are a number of factors to take into account. Photometry in a certain band is

an integrated flux of the galaxy in the band’s wavelength range, but it is affected by

the intergalactic absorption, Galactic interstellar absorption, atmosphere absorption (in
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case of ground-based observations) and the instrument’s transmission curve in this band.

Spectral features can be detected with photometric observations if they are prominent

enough to cause a change of flux larger than photometric errors. Primarily such features

are Lyman and Balmer breaks for ordinary galaxies and strong emission lines for quasars,

although in the last ten years precise and narrow-band photometry also made it possible

to ’detect’ emission lines in the spectra of star-forming galaxies.

For the first time photo-z method was used by Baum [1962]2. The motivation for this

work was to probe the redshifts of the objects that were too faint for the spectroscopy

of that time, with a final goal of distinguishing between the cosmological world mod-

els; essentially, this is the most important application of photo-z even now. Baum has

measured photometry for 26 color-selected elliptical galaxies located in 8 clusters in the

redshift range zspec < 0.44, using 9 filters from UV to near-IR. Baum was one of the

pioneers of using photoelectric detectors in astronomy, so the photometry was obtained

with them instead of photographic plates. The 9 bands were enough to locate the Balmer

break; after correcting the photometry for the atmosphere and instrument’s transmission

curves, Baum has compared the redshifts of the SED curves to the ’zero-redshift’ SED

of a single star. Despite the crudeness of such calibration, the photoelectric redshift for

one of the most distant galaxies of the sample appeared to be in a good agreement with

measured previously spec-z, and the subsequent spec-z measurements for most of the

other galaxies were also close to the redshifts reported in the paper.

For more than a decade the method has been abandoned, but in the consequent few

decades several works have confirmed its viability. In that period two main approaches

to the problem have been outlined: a SED template fitting, that compares synthetic

galaxy SEDs with the observed photometry, and empirical algorithms, that try to derive

the correspondence between colours and redshifts from an observed sample of galaxies

itself.

Simultaneously, some limitations of the photo-z methods were discovered. Firstly, it was

demonstrated that in the case when the shape of the SED is known (i.e. in the case when

the sample is homogeneous; the typical example of such are intrinsically luminous red

elliptical galaxies), photo-z can be estimated with a precision σ(∆z) < 0.03 even from

three-band photometry [Butchins, 1981, Koo, 1985]. From the simulated data it was

shown that for the high signal-to-noise data and assuming no intrinsic variability caused

by the evolution of the stellar population, precision of σ(∆z) ∼ 0.02 is possible [Connolly
2In fact, it seems that the method has been developed earlier. In 1960 Baum and Minkowski already

write: "Redshifts above 0.2 can be observed spectroscopically only for objects showing strong emission
lines, but for all galaxies of normal color they are readily accessible to the method of multicolor pho-
toelectric photometry. Using this method Baum has observed a redshift of 0.44 ± 0.03 for two average
galaxies in the central part of the cluster." Baum and Minkowski [1960]
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et al., 1995]. It appears that this limitation is a fundamental one, and obtaining better

results is possible (but not guaranteed) only by introducing additional information.

Secondly, it became clear that for the medium-redshift galaxies (z < 0.5), 4000Å break

(Balmer break) is the most important source of signal for the photo-z methods. This leads

to a conclusion that the performance of the photo-z methods depends on the prominence

of the Balmer break, which is different for different types of galaxies; for the bright

red elliptical galaxies photo-z predictions are much more precise than for spirals and

irregulars (the difference in metrics can be higher than one order). High signal-to-noise

ratio of the photometry is essential to locate it precisely; additionally, it meant that for

the high-redshift galaxies, for which Balmer break falls out of the optical part of the

wavelength range, IR photometry is necessary.

Next, in the second half of the 20th century it became clear that the earlier assumption

that galaxy type mix have been the same at all cosmological epochs, i.e. at all redshifts, is

incorrect. It meant that the SED templates based on the observations of the low-redshift

galaxies can be unsuitable for the higher redshifts. Synthetic templates can be created

with any combination of parameters (e.g. SFR histories, metallicity, dust extinctions,

etc.), but there is a risk of including physically unrealistic combinations, and using such

templates may increase the percentage of catastrophically wrong fits [Firth et al., 2003].

Finally, when the observations of the high-redshift galaxies became possible, another

issue was discovered: a degeneracy between high-z and low-z galaxies. The source of this

degeneracy is the confusion between Lyman and Balmer break. It was evident that for

breaking this degeneracy a NIR photometry is needed, and that photometry has to be

multi-band in a sense that apart from the three bands to locate a continuum break at

least two additional bands are required, bracketing the break region, to determine the

continuum slope [Yee, 1998].

For some tasks, primarily cosmological, not only photo-z point estimations are used,

but the Probability Distribution Functions3 (PDFs) as well [Mandelbaum et al., 2008].

PDF describes the probability of a galaxy, given the observed photometry, to belong to

a certain redshift as a function of redshift. The shape of the PDF, i.e. whether it is

uni- or multi-modal and what is the amplitude and width of its maximums, helps to ac-

count for uncertainties introduced by both physical degeneration and photometric errors.

The progress of instrumentation in the end of the 20th century made possible large spec-z

surveys. As stated in Giovanelli and Haynes [1991], "the redshift industry is among the

most successful, as it can boast a sustained growth rate in excess of 10% per year over
3Sometimes they are called Probability Density Functions.
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its all 80-years history, and has the potential to maintain its growth for the foreseeable

future". For this reason, for a long time photo-z was not used in any cosmological or

astrophysical research. The growth of the volume of the spec-z surveys continues up

until now (e.g. the ongoing DESI is planned to map ∼ 30 million of galaxies and quasars

[DESI Collaboration et al., 2016a]), but the ’photometric industry’ has been growing

much faster than the spectroscopic one. Mosaic CCDs made it possible to observe large

fields of sky with a high sensitivity, detecting millions of galaxies that are too faint to be

observed spectroscopically. The turning point was the Hubble Deep Field observations,

which provided multi-band photometric data for a large sample of faint galaxies; photo-z

was the only method for obtaining redshifts for them [Yee, 1998]. In 1998, the first blind

test competition of several photo-z methods was conveyed [Hogg et al., 1998]. A sample

of 27 galaxies in the range zspec < 1.4 was taken from the HDF observations, and it was

demonstrated that various photo-z implementations show similar performance. In a few

years, following the abundance of high-quality photometric measurements for millions of

extragalactic objects, photo-z became a common substitute for spec-z.

Currently photo-z are used in multitude of studies that require good knowledge of the red-

shift distribution of some sample of objects, rather than high precision of the individual

redshifts. These applications can be roughly separated into astrophysical, cosmological

and large-scale structure investigations.

The examples of astrophysical questions that widely use photo-z are SFR evolution [e.g.

Karim et al., 2011, Magnelli et al., 2009, Pérez-González et al., 2005], properties of

dark matter halos [e.g. Hildebrandt et al., 2009, Mandelbaum et al., 2006, Parker et al.,

2007, Wake et al., 2011], environmental effects on galaxy evolution, evolution of galaxy

mergers, galaxy morphology and physical properties [e.g. Conselice et al., 2005, Guzzo

et al., 2007, Ilbert et al., 2013, Lotz et al., 2008, McAlpine et al., 2013, Papovich et al.,

2001], luminosity functions [e.g. Buchner et al., 2015, Finkelstein et al., 2015, Ilbert et al.,

2010, Magnelli et al., 2011, McLure et al., 2013], evolution of AGNs and their role in

galaxy evolution [e.g. Aird et al., 2010, Barger et al., 2005, Parsa et al., 2018, Tozzi et al.,

2006, Wolf et al., 2003], etc.

Large-scale structure investigation is concentrating on identification of clusters [e.g.

Adami et al., 2010, Arnouts et al., 1999, Hoekstra et al., 2013, Koester et al., 2007,

Wen and Han, 2011] and general reconstruction of the cosmic web and its properties

[e.g. Darvish et al., 2017, Jarrett, 2004, Kawaharada et al., 2010, Salimbeni et al., 2009].

Finally, photo-z are instrumental for constraining cosmological parameters; the specific

applications include already mentioned identification and determination of parameters of

galaxy clusters, studying Baryon Acoustic Oscillations [e.g. Abbott et al., 2019, Beńıtez

et al., 2009a, Bernstein, 2006, Chaves-Montero et al., 2018, Zhan et al., 2008] and weak
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lensing [e.g. Bonnett et al., 2016, Hamana et al., 2020, Hikage et al., 2019, Hildebrandt

et al., 2020a, Hoekstra et al., 2002, Hoyle et al., 2018, Schrabback et al., 2010]. A general

review of cosmology with photo-z can be found in e.g. [Blake and Bridle, 2005, Weinberg

et al., 2013].

Considering the importance of the photo-z for the cosmological research, the best deter-

mined requirements for the photo-z quality are coming from this area, especially from

the weak lensing surveys. For this reason, this chapter often refers to the demands orig-

inating from the weak lensing in application to the determination of the cosmological

constraints. The general logic of obtaining and calibrating photo-z remains the same for

the other applications, with necessary corrections introduced by the specific traits of the

galaxy sample under investigation.

2.3 Metrics and why they matter

The performance of the photo-z methods is usually evaluated by calculating residuals

between spec-z and photo-z (eq. 2.6) for some sample of galaxies, and then investigating

the distribution of these residuals.

∆z =
zspec − zphot

1 + zspec
(2.6)

Obviously, it requires a sample of galaxies for which the spec-zs are known, and in the

ideal case this sample has to be representative. We cannot extrapolate the photo-z quality

obtained for the bright low-redshift galaxies on the dataset containing also faint distant

ones. Considering that photo-z method exists precisely because it is often impossible to

obtain spec-z for faint distant galaxies, and taking into account that photo-z performance

is generally lower for the star-forming spirals and irregulars, which were more common

at high redshifts, any photo-z quality estimation is by default an optimistic one. Adding

narrow band photometry has been shown to improve SED fitting photo-z quality for

star-forming galaxies [Ilbert et al., 2009], however, narrow bands are usually shallower

than broad bands, and for many surveys are not available at all.

At the initial stages, photo-z research almost completely relied on RMSE as the perfor-

mance metric. But then it became clear that there are multiple reasons why photo-z

predictions can be incorrect, and that RMSE alone is not enough to reveal which ones

are the most relevant for a particular dataset. Currently there is a variety of metrics

that are used to estimate the quality of the photo-z catalogues. They can be roughly

divided in three groups:
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1. Bias, traditionally determined as mean µ(∆z). It reflects the systematic error of

the method; it is often related to the imbalance of the train dataset. For weak

lensing analysis it is important that not only the overall bias, but also the bias in

every redshift bin was low;

2. Scatter metrics:

(a) Standard deviation σ(∆z);

(b) Standard deviation over the central part of the ∆z distribution. Usually this

is the part limited by 68% percentile: σ68(∆z);

(c) Normalized Median Absolute Deviation (NMAD), defined as NMAD(∆z) =

1.48×median(|∆z|). This metric is also less sensitive to catastrophic outliers.

Scatter errors take root in the intrinsic variability of the galaxies’ properties and

in photometric errors.

3. Percentage of catastrophic outliers with various definitions of outliers. The most

common ones are:

(a) η0.15, defined as a number of sources with |∆z| ≥ 0.15

(b) η68, defined as a number of sources with |∆z| outside the central 68% area of

the distribution of residuals;

(c) η3σ, defined as a number of sources with |∆z| outside the 3σ range from the

mean of the distribution of the residuals.

Catastrophic outliers appear due to the colour-redshift degeneracy, blended galax-

ies, exotic sources, such as quasars and AGNs, mis-fit of the galaxy and SED

template when SED fitting method used or non-representative KB in the case of

ML photo-z methods (see § 2.8.1 for details). In the cosmological publications

the definition and classification of outliers can be different and more detailed (see

§ 2.8).

In some cases additional parameters of the ∆z distribution are determined, such as

skewness and kurtosis. They are used to estimate whether the residuals follow the normal

distribution.

Another matter is how to evaluate the quality of the photo-z PDFs. The PDF of a

galaxy depends on its observed parameters, template library (in the case of SED fitting)

or the KB (in the case of ML methods and SED fitting that uses observed spec-z for

calibration), and on the implementation of the algorithm itself Schmidt et al. [2020].

The issue is that there is no ’perfect’ PDF of a single observed galaxy with which the
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PDF produced by an algorithm could have been compared. One possible solution to

this is to rely on simulations, and another one is to use PDFs determined from a sample

of observed galaxies. In any case, there are several metrics for the PDFs proposed, e.g.

continuous ranked probability score (CRPS) and probability integral transform (PIT)

[D’Isanto and Polsterer, 2018, Polsterer et al., 2016, Schmidt et al., 2020].

2.4 SED fitting methods

SED template fitting, the historically first photo-z approach, requires a library of pre-

defined galaxy SED templates (essentially, synthetic galaxy spectra), obtained either

from models or from observations. These templates are being redshifted with a small

step and compared with the observed photometry of a galaxy. The best fitting template-

redshift combination produces a rough classification of the galaxy and its photo-z.

Butchins [1981] essentially applied SED fitting photo-z method for the first time. He

obtained photo-z for a sample of 141 galaxies, both elliptical and spiral, using only B-V

and B-R colors. To do this he used ’simulated’ photometry for four galaxy types, obtained

through convolution of the observed model spectra with the transmission curves of the

telescope. Then this simulated photometry was compared to the observed one, and the

best-fit photo-z value was compared to the spec-zs derived from various catalogues. The

RMS of the residuals between the photo-z and spec-z was ∼ 0.03 in the range zspec < 0.5.

Based on the experiments with simulated photometric noise, Butchins also suggested that

the photo-z scatter is mainly explained by the photometric errors. Then Puschell et al.

[1982] obtained photo-z for a number of optically faint radio-emitting galaxies, that were

assumed to be elliptical ones. In this paper IR photometry (JHK) was used together

with the optical bands (IR) for the first time. It was also the first work where several

SED templates for the same types of objects were tested in order to estimate how the

evolution of the stellar populations affects photo-z performance.

Koo [1985] conveyed the first systematic investigation of how various factors affect the

performance of the photo-z calculation. The study was performed using synthetic SED

templates and considered the contribution of photometric errors, intrinsic variability of

the type of the observed galaxy, its dust content and the epoch at which the galaxy

was formed. The synthetic SEDs were then used to obtain photo-z for a heterogeneous

sample of ∼ 100 galaxies, all of which had zspec < 0.8. The author used UBVI photometry,

obtained with CCDs. A year later Loh and Spillar [1986] measured photometric redshifts

for ∼ 1000 galaxies; they used six bands covering 400−950Å range, and the same model

SEDs that were used in Koo [1985].
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In the 90th it became clear that in order for SED fitting to be effective, the algorithm

has to take into account a number of factors. In practice it means that apart from the

mandatory processing - convolution of each template with the instrument’s transmission

curves and the redshifting itself - additional steps are needed. The most common ones:

• Accounting for the Galactic reddening, caused by the interstellar dust. This effect

is coordinate-dependent; to counter it, the input photometry is corrected using

Milky Way dust maps [see e.g. Galametz et al., 2017, and references therein].

• Accounting for the intergalactic absorption, caused by hydrogen clouds. This is

particularly important for the high-redshift galaxies [see e.g. Furusawa et al., 2000,

Massarotti et al., 2001b].

• Correcting the SED templates for the internal extinction, caused by the dust within

the observed galaxy [e.g. Furusawa et al., 2000, Massarotti et al., 2001a, Mobasher

and Mazzei, 2000].

Various modern implementations of SED fitting photo-z codes account for these and

other factors differently; some apply corrections to the SED templates, and others model

it as free parameters.

The advancement of the CCDs made possible a) large photometric datasets reaching far

beyond the magnitude limits of spectroscopy, and b) large spectroscopic surveys that

enabled a thorough investigation of the stellar populations, which resulted in a creation

of reliable SED templates. As a result, in the late 90’s the photo-z methodology gained

its second breath. The rapid growth of the number of the publications can be traced

back to the two seminal papers, Beńıtez [2000] and Bolzonella et al. [2000], both on SED

fitting methods.

First SED fitting codes used maximum likelihood (or, equivalently, χ2) criteria for

the comparison of the SED template and the photometry. Beńıtez [2000] developed a

Bayesian photometric redshifts (BPZ) code, which introduced a Bayesian approach

instead. The benefit of the Bayesian approach is that it allows to utilize additional

information obtained elsewhere, such as redshift-dependent distribution of galaxy types

(and, consequently, SED templates), magnitude-dependent distributions of redshifts [e.g.

Beńıtez, 2000, Brammer et al., 2008, Coe et al., 2006, Luo et al., 2010] or redshift-

dependent distribution of stellar mass and star formation rates [e.g. Tanaka, 2015].

Additionally, the code presented in Beńıtez [2000] provided full PDFs and a number

of reliability metrics, enabling an exhaustive analysis of uncertainties for the further

applications. The BPZ was tested on HDF photometry with various combinations of

photometric bands and SED templates.
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Figure 2.2: Photo-z color-redshift degeneracy in V-I and I-K colour space. The
lines correspond to the different SED templates redshifted in the range 1 < z < 5,
the size of the filled squares corresponds to the redshift. Every crossing of the lines
means color-redshift degeneracy, where an algorithm cannot discern between the two
fits. The right panel shows an effect of photometric errors; it increases the probability
of degeneracy. Adding more templates to the library is risky in a sense that they
produce more degenerative fits. The solution to this is to use more colours, obtain
better photometry and analyze full PDFs where degeneracy appears as several peaks.

Image taken from Beńıtez [2000].

Bolzonella et al. [2000] used simulated and observed HDF data to test the photo-z qual-

ity against various template libraries, photometric errors, both random and systematic,

dust reddening and physical parameters of the galaxies (e.g. metallicities, initial mass

functions, presence of emission lines, etc.). The analysis was performed for narrow-field

deep and wide-field shallow cases. The work was done with a new hyperz code; the

authors opted for a standard χ2 procedure instead of Bayesian one, motivating it by

a notion that introducing some priors to the analysis makes it more dependant on the

researcher’s hypothesis.

Both BPZ and hyperz codes were made publictly available, became widely used in the

next decades, served as a basis for several other photo-z implementations and remain
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benchmarks in the blind test competitions up until now. Later many other SED tem-

plate fitting codes were developed, e.g. ZEBRA [Feldmann et al., 2006], EAZY [Brammer

et al., 2008] and LePhare [Ilbert et al., 2006].

The main downside of the SED fitting methods is that they rely on predetermined galaxy

SED templates, reddening maps, magnitude zero-points, point spread functions, etc.; in

other words, SED photo-z are only as good as our knowledge of astrophysics in general.

As was shown in e.g. Beńıtez [2000], it is especially important that the template library

contained templates that are suitable for the galaxy sample under investigation. One

might be tempted to add as much templates as possible; synthetic templates can be

generated for any combinations of stellar populations and other physical parameters, and

then one could trust that the photo-z code will choose the right one for every particular

galaxy. But this strategy is tampered by the degeneracies (see Fig. 2.2).

Although template libraries become less reliable in the redshift range that is poorly

covered by the spectroscopic surveys, in general SED fitting algorithms can produce

predictions in the whole range of redshifts. It made SED fitting methods an important

tool for cosmological surveys.

2.5 Empirical methods

Empirical methods aim to establish the correspondence between the colours and redshifts

using an observed galaxy sample for which both photometry and spec-z are known,

instead of fitting a pre-determined SED templates. First such methods were based on a

simple linear or quadratic fit, with a first attempt taken by Connolly et al. [1995]. The

authors used spec-z and UBRI photometry for a sample of ∼ 300 galaxies, distributed in

the range zspec < 0.4, to calibrate color-redshift function and obtain photo-z for ∼ 2000

galaxies. Importantly, in this paper the authors found out that the distribution of the

galaxies in the UBR magnitude space is essentially two-dimensional. The location of a

galaxy on this plane depends on its type, luminosity and redshift. The galaxies with a

fixed redshift form a ’slab’, whose intrinsic coordinates are the luminosity and colors;

the ’slabs’ corresponding to the different redshifts partially overlap in the color space,

because blue distant galaxies, being redshifted, appear similar to the closer red ones. The

ability to distinguish between the two overlapping ’redshift slabs’ defines the accuracy

of the photo-z methods, but the simplicity of the topology of this relation is the major

factor that makes the photo-z method possible. Connoly et al. derived photometric

redshifts using both linear and quadratic fit, obtained from the spectroscopic sample,

with the quadratic fit producing better results (scatter of residuals between spec-z and
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Figure 2.3: Popularity of the ML photo-z methods based on the refereed papers
published between 2000 and 2020 and available in the ADS system. Number of the
papers mentioning the respective algorithms is given after comma. For the methodology

see Appendix A.3

photo-z 0.042); they also used simulated data to estimate what precision can be expected

from photo-z predictions in an ideal case. Later few more works used polynomial fitting

[e.g. Brunner et al., 1997, 2000, Budavári et al., 2005, Li and Yee, 2008, Wang et al.,

1998], but starting from the early 2000-s this approach has been dominated by the ML

methods.

Essentially, instead of using a finite number of templates obtained manually, ML methods

derive an arbitrary number of "templates" right from the dataset under investigation.

This change brings a number of benefits. Firstly, "learning templates" from the dataset

means that the method does not rely on our knowledge of the galaxy astrophysics. This

is important when we move to the higher redshifts, where the galaxy SED templates

obtained from the studies of the nearby galaxies are not necessarily suitable. Secondly,

the inner "templates" of the ML model come being already calibrated, corrected for the

extinction and re-weighted according to the distributions of the galaxies withing this

particular dataset. This explains why ML photo-z methods are mostly insensitive to the

imprecise determination of the photometric zero-points and selection biases introduced

by the observation strategies (provided that they are the same for the train and run

datasets).

At the same time, the reliance of the ML methods on the data, and on the spec-z data

in particular, is their greatest weakness. The majority of the supervised ML algorithms

works well in interpolation regime, but is powerless in extrapolation, so it cannot make

adequate predictions for the points that lie outside of the parameter space of the training

dataset. For the photo-z case it means that ML models cannot produce meaningful

predictions for the galaxies that are dissimilar in terms of their colour-redshift relation

to those observed within the spectroscopic program.
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Since the first works on ML photo-z in the early 2000-s, a number of algorithms have

been adapted for this task (see Fig. 2.3). Briefly review the common ones.

2.5.1 Shallow neural networks

Artificial neural networks (ANN) or simply neural networks (NN) are a family of super-

vised ML algorithms, inspired by biological neural networks. Considering that in the

next chapters I will use an NN-based algorithms, I give here a description of how they

work.

ANN consists of nodes called artificial neurons, where each neuron works as a complex

adding unit. Lets assume that a neuron takes xm as feature vector; then the neuron’s

output will be calculated according to the equation:

y = f(
∑

wmxm + b) (2.7)

where f is an activation function, which can be linear, logistic, sigmoid or some other,

wm are the weights of the neuron, initialized with random values at the beginning of the

training, and b is a linear bias.

The neurons of a NN are grouped in layers; the first (input) layer of a network takes

the data, and the last (output) layer is composed of a number of neurons corresponding

to the number of values (targets or labels) that have to be predicted. The intermediate

layers are called hidden layers; typically the outputs of the neurons of the previous layer

become inputs of the next one (Fig. 2.4), although this may depend on a particular

algorithm. Types and number of layers and the number of neurons in each layer describe

the model architecture; together with the neuron’s activation function, learning rate and

number of training epoch (or a threshold after which training stops) these are the main

hyperparameters that have to be pre-defined by the user.

During the training data points are picked from the training set one by one; their feature

vectors pass through the network, and the final outputs is being compared with the target

values tn, producing an error value. The function to produce error value is different for

different tasks, but the simplest case is the mean square error (MSE):

E =
1

n

n∑
i=1

(ti − yi)2 (2.8)

Then the weights of each neuron are being updated in such a way that the error would

lessen. It is done by calculating the small addend ∆wi,j for every weight value wi of every
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neuron j. The simplest way of doing it is by using gradient descent, i.e. by calculating

the slope of the error function in the current point and by moving in the direction of the

local minimum:

∆wi,j = η
∂E

∂wi,j
(2.9)

Since neurons of the ’later’ layers take as inputs the values produced by the ’earlier’

layers, updating weights goes in the backward direction: first the updates for the output

neurons are calculated, then the updates for the last hidden layers and so on. This

mechanism is called error backpropagation.

The goal of this process is to calculate such weight values that the NN was always pro-

ducing the outputs that would be as close to the target values as possible; in other words,

the complex non-linear function that describes the NN’s outputs has to approximate the

training data.

Shallow fully connected neural network is the simplest case of NN. Classical definition

states that shallow neural network has only one or two hidden layers, but in this para-

graph I will also include the cases of NNs with several more hidden layers, if these layers

are all ordinary dense ones, without convolution, pooling or some other special layers.

The reason for this deviation from the ordinary terminology is that in the last several

years the term ’deep neural network’ almost always assume large number of layers (more

than ten) and complex architecture.

Shallow NNs have been the first ML algorithm applied to photo-z problem; the first

papers were published in 2003 [Firth et al., 2003, Tagliaferri et al., 2003].

Tagliaferri et al. [2003] used a shallow NN with one hidden layer to obtain photo-z for

SDSS Early Data Release [Stoughton et al., 2002]. The authors have tried various feature

sets, combined of ugriz magnitudes in total and petrosian apertures, fluxes, etc., de-

scribed the complications introduced by the imbalanced distribution of the target value,

i.e. spec-z, and applied an unsupervised Self-Organizing Map algorithm to investigate

the resulting photo-z catalogue’s quality.

Firth et al. [2003] tried several model architectures, arriving to the conclusion that 3

hidden layers bring the best results and additional increase of the depth does not im-

prove the photo-z. They also averaged the predictions of several NNs with the same

architecture, but different initial weights, effectively introducing a simplified ensemble
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Figure 2.4: Fully connected shallow neural network. Image taken from Fernández-
Cabán et al. [2018]

approach4. The investigation was conveyed for the 6-band mock photometry as well as

for ugriz photometry for the galaxies from the SDSS-I limited by spec-z<0.5. The NN

model showed comparable or sometimes better results than the SED fitting algorithm

hyperz [Bolzonella et al., 2000]. The authors also investigated whether some morpholog-

ical parameters, namely Petrosin radii and galaxy/star classification flag from the SDSS,

improve the performance of their NN, and found that although in some redshift ranges

it slightly improves the results, the overall statistics do not show reliable improvements.

Authors explain it by the possibility that the benefit of adding morphological information

is outweighed by the additional noise that comes with these features.

Later on a number of works have been investigating shallow NNs performance; the com-

monly used implementations are simple Multi-Layer Perceptron [Cavuoti et al., 2012,

Tagliaferri et al., 2003, Vanzella et al., 2004] and ensemble-based ANNz/ANNz2 [Collis-

ter and Lahav, 2004, Sadeh et al., 2016].
4Ensemble approach in ML means using several ML algorithms, or the same algorithm but with dif-

ferent model architectures, to obtain predictions for the same data, and then averaging these predictions.
It is based on a hypothesis that several weak predictors may compensate each other’s errors.
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2.5.2 Deep neural networks

Deep neural networks (DNNs) work on the same principle as shallow NNs, but the number

of hidden layers is higher, and usually the architecture of the model is more complicated

than for shallow NNS in a sense that there are various types of layers. DNNs are usually

applied when the training data are images, data cubes, spectra, brightness curves or

some other ’raw’ data, since their depth and flexibility of the architecture allows DNNs

to extract useful patterns from such data. The ’useful patterns’ in astronomical data can

be texture and asymmetry of galaxies, concentration index, distance between spectral

lines in spectra, etc.; in other words, all the parameters that otherwise would have been

extracted by some other software and often semi-manually. Elimination of this semi-

manual or ’other software’ step minimizes biases and loss of information, enabling the

DNN to fully utilize all the information contained in the data.

DNNs are used for photo-z predictions exactly with the hypothesis in mind that the raw

images may provide more information than photometric and morphological parameters

in a tabular form. Theoretically, morphological data may help to break colour-redshift

degeneracy, which would reduce the percentage of outliers, especially for the datasets

that occupy large redshift range. Improvement of the scatter of the residuals also pos-

sible, since DNN provided with the raw images of resolved galaxies should be able to

perform internal ’galaxy classification’, which would compensate for the intrinsic vari-

ability of spirals and irregular galaxies. For this reason, several groups derived photo-z

with DNNs. Hoyle [2016] has done it for ∼ 60000 galaxies from SDSS Data Release

10, using differences between adjacent griz bands as three color channels. D’Isanto

and Polsterer [2018] used Convolutional Neural Network (CNN) together with a Mix-

ture Density Network (MDM) to derive photo-z PDFs for a dataset containing ∼ 300000

quasars, ∼ 200000 galaxies and ∼ 200000 stars from SDSS Data Release 9; ugriz images

as well as their differences were used. Pasquet et al. [2019] used only ugriz images with-

out ’colour differences’ of ∼ 500000 galaxies taken from SDSS DR12. In all three cases

DNNs have shown the performance similar or better to those of reference ML models

(RF, AdaBoost and k-NN), but not significantly better. It is also worth noticing that

no DNN method used in any blind test competitions and their performance was not

compared to the performance of the common photo-z codes. Considering that DNNs

need significantly more computational resources (by few orders more in comparison to

simpler ML methods) and large datasets of image cutouts (which is hard to prepare for

the absolute majority of surveys due to the absence of data-sceince adapted interfaces;

one may notice that all three works are performed for SDSS data), the gain does not

seem that convincing. It is possible, though, that the situation will change once more
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Figure 2.5: Random forest. The algorithm uses different sets of features Xi for every
decision tree, and picks random data points for their training. This process is called
bootstrapping. The resulting decision trees have different architecture, i.e. they use
different sets of questions to make the classification. Then the predictions are being

aggregated. Image taken from Misra and Li [2020].

surveys will develop better interfaces. Simulated cutouts also can help for pre-training

the DNNs.

2.5.3 Random forest

Random forest (RF) is an ensemble method based on the decision tree algorithm.

Every decision tree passes the data through a sequence of questions with a fixed number

of possible answers; the following questions depend on the answer for a previous question.

For example, for the photo-z problem the first question can be ’is mag lesser than median

mag?’; if the answer is positive, the next question asks whether the same mag is lesser

than the median value of the new mag range, and so one until the range of the mag of the

galaxy is not determined with a pre-defined precision. After doing so for every feature,

the dataset ends up distributed in multiple leaves where each leaf corresponds to a small

area of parameter space. This leaf is assigned median or mean spec-z value of its galaxies,

and all galaxies from the run dataset, that will be classified as belonging to this leaf, will

get this spec-z value as photo-z prediction.

RF creates multiple decision trees, that are being trained on different feature sets and on

various random samples of data taken from the whole training set. Then the predictions

of all decision trees are being combined together; multiple rough predictions are being
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averaged, producing a ’most likely’ outcome, and outlying predictions, made by a few

number of decision trees, are being down-weighted. As a result, RF is not prone to

overfitting and not very sensitive to the noise in the training dataset. Another advantage

of this algorithm is that it is computationally effective.

RF was used to obtain photo-z for large samples of galaxies taken from SDSS [Carliles

et al., 2008, 2010] and DES [Sánchez et al., 2014]; implementations for obtaining PDFs

were also created [Carrasco Kind and Brunner, 2013]. Due to its simplicity, robustness

against outliers and modest computational requirements, RF often serves as an ML

benchmark when testing other ML algorithms [e.g. Almosallam et al., 2016a, Carrasco

Kind and Brunner, 2014b, Cavuoti et al., 2017b, D’Isanto and Polsterer, 2018, Pasquet-

Itam and Pasquet, 2018].

2.5.4 Support Vector Machines

Support vector machines (SVM) [Burges, 1998, Cortes and Vapnik, 1995] is a family of

algorithms that look for a hyperplane that would separate two samples of data points,

belonging to the different classes. The learning process consists of finding such a hy-

perplane that would have a maximum margin between this hyperplane and the closest

data points (Fig. 2.6). In the case when it is impossible to find a separating hyper-

plane in the original ’flat’ parameter space, SVM attempts to map it to a feature space

of higher dimensionality using a pre-defined kernel function, enabling in this way non-

linear classification. A distinctive trait of these algorithms is that the kernel function

and its properties are the only hyperparameters that have to be pre-determined. Also

SVMs computational cost increases almost linearly with the increase of the parameter

space dimensionality, so these algorithms are suitable for the data with large numbers of

features.

The original version of SVM is a binary classification algorithm, but for photo-z task

either a multi-label classification (where labels correspond to small ranges of redshift) or

a regression version is used. The regression SVM attempts to find such a hyperplane that

the data points were located within a certain small error margin from it. In Wadadekar

[2005] SVMs were used on a set of ∼ 20000 bright galaxies from SDSS DR2, limited

to zspec < 0.5, and on a simulated dataset. The authors found that on this datasets

adding 50% and 90% Petrosian flux radii to the ugriz photometry helps to lower scatter

of predictions. Wang et al. [2008] used SVM for obtaining photo-z for ∼ 70000 quasars

from SDSS DR5, and Han et al. [2016] used ∼ 106000 quasars from SDSS RD7 to show

that a combination of SVM and KNN algorithms can reduce the percentage of catas-

trophic outliers in photo-z predictions by almost 10%. Finally, Jones and Singal [2017]
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Figure 2.6: Support vector machines principle. The algorithm attempts to find a
separating hyperplane with a maximum margin between it and the closest data points.

Image taken from Cortes and Vapnik [1995].

developed a publicly available SVM code for photo-z calculation called SPIDERz; they

tested it on several datasets, including PHAT-1 (18-band photometry from the GOODS

survey), used for the blind competition in Hildebrandt et al. [2010], COSMOS2015 (30-

band multi-source photometry) and AEGIS (5-band ugriz photometry). The authors

also tried to add morphological parameters to the feature sets. In terms of the general

performance the algorithm was competitive with other codes, both ML and SED fitting

ones, but adding morphological parameters lead to the deterioration of the statistics.

The authors concluded that noise of the morphological data outweights the benefit of

additional information.

2.5.5 Gaussian processes

Gaussian processes (GP) [Rasmussen and Williams, 2006] is a family of Bayesian ML

algorithms that aim to outline all the possible functions that can describe the corre-

spondence between the data and target values (see Fig. 2.7). This approach allows to

incorporate photometric errors in the analysis, and its outcome also includes uncertain-

ties of the predictions. It is less common and more computationally expensive than the

methods described above, although there are adapted for the photo-z GP models with a

lower computational complexity [e.g. Almosallam et al., 2016b, Way et al., 2009].
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Figure 2.7: Gaussian process starts with a sample of possible functions defined by a
prior probabilities, and then narrows it down, using the train data as conditions for
calculation a posterior probability. In the ranges of input parameters where training
data points are absent, the predictions will be given higher uncertainty. Image taken

from de Freitas [2013].

Way and Srivastava [2006] applied GPs to the photo-z predictions for the first time;

the authors compared it with linear and quadratic fits and shallow NNs and found that

GPs perform better on the small datasets. Several feature sets were used, composed of

SDSS, GALEX UV and 2MASS IR photometry and several morphological parameters.

This work was continued in Way et al. [2009], where the authors used a modified, more

computationally effective version of GPs; they also found out that adding morphological

information to the feature sets leads to the deterioration of the photo-z statistics. Bon-

field et al. [2010] also found that GPs are preferable over NNs on the small datasets and

in the cases when there are undersampled ranges of redshifts (e.g. ’redshift desert’ in the

range ∼ 1.3 < z < 1.7, where spectroscopic measurement in the optical wavelengths is

complicated by the absence of the prominent spectral lines). Almosallam et al. [2016b]

created a GPs code that takes into account uncertainties introduced by non-uniform data

noise and non-uniform density of the data points. Finally, due to its good performance on

sparse datasets, GPs were used by Duncan et al. [2018] to predict photo-z for IR, X-ray

and optically selected AGNs. In some ranges (e.g. 1 < z < 2), GPs showed significantly

better performance than SED fitting method; however, for the galaxies that do not fit

any AGN criteria, GPs showed worse scatter metrics than SED fitting.

2.5.6 Other algorithms

A number of other ML algorithms were used for prediction photo-z, although they are

less common that the ones described above.

• k-Nearest Neighbours (k-NN): k-NN assumes that the data points that are

close in the parameter space will have similar target values. The proximity in
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the parameter space is usually measured with Euclidian distance. In the case of

regression problem, such as photo-z, the predicted value is the mean of the target

values of k nearest neighbours from the train set, where k is user-defined parameter.

k-NN is commonly used for predicting photo-z for quasars [e.g. Ball et al., 2007,

Curran, 2020, Richards et al., 2001, Zhang et al., 2013].

• Self-Organizing Maps (SOM): SOM is an unsupervised method for data visu-

alization and clusterization. It also groups similar data points together, but the

grouping rule is more complicated than in the case of k-NN, and as a result SOM

preserves intrinsic topology of the dataset. More detailed description of the al-

gorithm is given in § 3.2.3. Nowadays the SOM is mostly used as an auxiliary

algorithm for dataset calibration (see § 2.8), but Way and Klose [2012] used SOM

to produce photo-z point estimations for the SDSS and PHAT0 galaxy samples

and showed that they are of similar quality as those obtained with other photo-z

algorithms. As was demonstrated in Carrasco Kind and Brunner [2014b], SOM

also can be used for obtaining photo-z PDFs.

• Boosted Decision Trees: As was explained in § 2.5.3, decision tree is an al-

gorithm that performs classification or regression through a series of ’yes or no’

questions, that form a unique ’decision path’ for every small range of the target

value. Boosted Decision Trees is a modified version of this idea; after regression

is finished for the first time, the algorithm repeats it, giving larger weight to the

data points that were misclassified (or catastrophic outliers, speaking in the photo-

z terms). Gerdes et al. [2010] successfully used this approach to derive photo-z

estimations and their PDFs for SDSS galaxies as well as simulated SDSS and DES

datasets.

2.5.7 Feature selection

Regardless of which algorithm we use, the quality of the photo-z predictions mostly

depends on the data: on its quality, e.g. on the photometric errors, and on the presence

of the redshift signal in the algorithm’s input features. As was demonstrated in the early

works on the topic [e.g. Butchins, 1981, Koo, 1985], even a few bands can be enough

to derive photo-z of acceptable quality. An important nuance here is to take the right

bands; e.g. for the low-redshift galaxies optical bands are enough, but for the galaxies

with z > 1 IR photometry is needed to keep tracking the redshifted Balmer break. In

other words, on the most basic level feature selection for photo-z calculation is done

based on the general reasoning about the galaxies’ astrophysics.
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However, once we attempt to refine our predictions and utilize information contained

in all the measured galaxy parameters, we cannot decide which features will be most

useful from the physical considerations alone. Even if we have only magnitudes, it is

not uncommon to have them measured in several apertures, so which ones should we

use? Or maybe it is beneficial to derive ratios between the magnitudes in two different

apertures, using it as a homemade concentration index? Should we use magnitude errors

as inputs, giving an algorithm a hint on which magnitudes can be trusted, and which

ones are likely to be imprecise?

In the case of SED fitting algorithm, there is not so much freedom in answering these

questions. Different apertures can be tried one by one; magnitude errors can be included

in the PDF production; and any additional information can be introduced only in a form

of preliminary derived Bayesian priors. ML algorithms, on the other hand, in the general

case can accept any kinds of features, and also their derivatives, in any combinations.

It is possible to use all magnitudes in all apertures, errors, ratios, differences, square

roots, physical parameters coming from any source, etc. And it is tempting to try these

additional features; for example, we know that galaxy type mix is different at different

redshifts, so why not to use some morphological features or star-formation rates for a

better constrain of the redshift bin?

The question remains, though: how do we find the features that can bring the best result?

Using all possible features is not a solution. First of all, the higher is the dimensionality

of the data, the longer it will take for an ML model to train. But more importantly, due

to the ’curse of dimensionality’, expanding the dataset’s feature space can worsen the

performance of the model, so it is a good practice to keep the number of features as low

as possible.

Some ML algorithms, e.g. CNNs, by themselves extract meaningful features from the raw

images (although it is worth noting that this mechanism is imperfect and some ’feature

engineering’ in the form of e.g. brightness adjustment can be beneficial). In other cases,

we have to determine the feature set before training the model. In the case when the

number of features is small, we can do it by brute force search, i.e. by trying all possible

feature combinations and comparing the model’s performance for all of them. But the

number of possible unique combinations of k out of total n features grows as n!
k!·(n−k)! ,

meaning that once we have n > 5 ∼ 10, brute force search becomes too computationally

expensive.

There are multiple automatic methods of feature selection, starting from the simple ones,

based on feature correlations or dimensionality reduction, and spanning to the complex

ML-based solutions (see e.g. Guyon and Elisseeff [2003] for a general overview and

Donalek et al. [2013] for the one on astronomical applications). However, as with any
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other data science task, there is no method that would always be better than others.

More so, a feature set that was identified as optimal for one dataset is not guaranteed to

be suitable for another dataset. It is fairly simple to explain using photo-z as an exam-

ple: two surveys will have non-identical magnitude and redshift distributions, targeting

strategies, instrumental biases, transmission curves, etc., so a band that holds a strong

redshift signal in the first survey can be noisy and useless in the second one. Finally,

it is possible that a feature can be of low informational value by itself, but useful in

combination with some other feature.

Due to these complications, there are very few works investigating the benefits of feature

selection for the ML photo-zs. Hoyle et al. [2015] used Boosted Decision Trees (BDT)

to select most informative features for the SDSS. The authors investigated 85 features,

including magnitudes in different apertures, colours, radii, ellipticity, etc., and discovered

that adding several of the best BDT-determined ’best features’ to the standard feature

set of magnitudes improves the statistics of the photo-z obtained with NN-based code by

10−30%. Heinis et al. [2016] used Genetic Algorithms together with SVM to choose best

features among magnitudes, colors, and also their logarithmic and exponential transfor-

mations (978 features in total) measured in the 25 broad, medium and narrow bands in

the COSMOS field. The authors showed that the colours in narrow and medium bands

bear maximum importance, but they do not compare their results, obtained with the 45

best features, with any ’standard feature set’ of smaller size. Finally, Stensbo-Smidt et al.

[2017] and D’Isanto et al. [2018] used forward feature selection. The idea of the forward

feature selection is to start with only one feature and evaluate its predictive power; then

take the best feature and use it together with another feature, going through all possible

combinations; then take the best combination and add to it one more feature, and so

on. Since this method is computationally demanding, the authors of both papers had to

use simple and computationally inexpensive photo-z codes (Stensbo-Smidt et al. [2017]

used k-NN and D’Isanto et al. [2018] used k-NN and Random Forest), and even then

a massive parallelization was required. Both groups used SDSS data; Stensbo-Smidt

et al. [2017] experimented only with magnitudes and colours in various apertures, while

D’Isanto et al. [2018] included also magnitude errors, radii, ellipticity and extinctions,

and a number of feature transformations, e.g. ratios and differences. Both studies showed

that using ’best’ feature sets improves the statistics in comparison with the standard ones

by at least 10− 20%, and that these ’best’ features are not those that would be chosen

from general reasoning.

From these works it is evident that automatic feature selection, indeed, can help to

improve photo-z quality. However, their high computational cost and the necessity to

perform this analysis for every dataset separately makes its wide spread unlikely.
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2.6 Hybrid approaches

Both SED fitting and empirical methods have their pros and cons. A question arises,

whether is is possible to construct a methodology that would combine both approaches in

a way that would compensate the original methods’ weaknesses. Several such attempts

were made, using various approaches, e.g.:

• Empirical methods are used to derive SED templates from the dataset composed

of observed spectra. Then these templates are used for SED fitting. The benefit

of this method is that the templates are by definition physically realistic and do

not rely on our knowledge. The downside of it is there is no guarantee that the

templates derived from the low-redshift data will describe high-redshift galaxies

well enough, and high-redshift data are often too scarce to produce good and rep-

resentative empirical templates. Csabai et al. [2000] used this method on simulated

and observed date in the HDF. The authors derived so-called eigenspectra which

were used to produce SED templates, and showed that these templates provide bet-

ter performance than those used in previous studies and obtained by traditional

means.

There is a variation of the previous approach, when the process starts with one

pre-determined SED template, which is being adjusted for different subsets of the

whole dataset. Such methodology was applied to quasars [Budavári et al., 2001]

and SDSS galaxies [Csabai et al., 2003, Padmanabhan et al., 2005]. There is also

a more recent implementation of this technique that uses SED template-guided

Gaussian processes to derive new templates from the data [Leistedt and Hogg,

2017].

• SED template fitting is used for galaxy classification. Then photo-z ML algorithm

is trained on the galaxy samples corresponding to each galaxy type separately.

The benefit of this approach is that ML model is trained on a more homogeneous

datasets, and it lowers the demand to the model’s generalizing capability. It is

especially important when there are some underrepresented types of galaxies, which

would not be easy to learn for the model when mixed with other, more common

types. The downside is that if the initial classification is mistaken, then every

misclassified object will become a catastrophic outlier.

Cavuoti et al. [2017b] used this approach with ugri KiDS photometry and com-

pared its performance with the performance of the purely ML and SED fitting

codes. The authors discovered that hybrid approach improves both scatter and

outlier metrics.
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A common variation of this approach is when the classification at the first step is

done not with SED fitting, but with unsupervised ML instead [see e.g. Speagle and

Eisenstein, 2017].

• SED templates are used to produce a mock dataset. The ML algorithm is pre-

trained on this dataset, and then (if it is possible) additionally trained on the

observed data. In other words, it is a transfer learning scheme. It was used in

e.g. Eriksen et al. [2020] with a DNN photo-z model and multi-source broad- and

narrow-band photometry in the COSMOS field.

Apart from that, there are various ways to combine photo-z predictions obtained sepa-

rately by SED fitting and ML algorithms, e.g.:

• Brodwin et al. [2006] used a SED fitting algorithm for the ordinary galaxies from

Spitzer/IRAC Shallow observations and NN-based code for the AGNs.

• Carrasco Kind and Brunner [2014a] used Bayesian approach to combine PDF pre-

dictions made by several ML and SED fitting methods.

• Finally, for the large cosmological surveys, which require highly reliable photo-

zs, it is a standard practice to provide predictions made by a number of various

algorithms [e.g. Sánchez et al., 2014]; obviously, the galaxies for which all photo-z

predictions are in agreement have the most reliable photo-zs.

2.7 Performance comparison

In the last 20 years a huge variety of photo-z methods have appeared. A question arises,

which one should be applied to a new survey, or, in the case of surveys like SDSS where

multiple photo-z catalogues are available, which results should be used for further studies.

For a number of reasons, it is hard to compare performance of various photo-z codes.

Firstly, the performance of any algorithm hugely depends on quality of the data. Color

cuts, redshift limits, limiting by photometric errors and selection or omission of certain

types of objects (e.g. AGNs) affect the statistics dramatically. More so, the spec-z

catalogues used for calculating performance also can be different (e.g. authors may use

different quality flag filtering). For this reason, without an independent crossmatch of

the datasets, it is often impossible to directly compare the performance reported in

publications, even when the origin of the datasets is the same.

Secondly, the metrics have various relevance for different astronomical problems, e.g. for

weak lensing it is important that the bias was low in every photometric bin, while for
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luminosity functions of rare types of galaxies keeping the percentage of catastrophic out-

liers low can be more useful. The authors usually concentrate their efforts on improving

those statistical indicators that are most important for their field of interest. Besides,

even though in the last decade a conventional set of performance metrics has been shaped

(see § 2.3), it is not common that all these metrics are reported, and comparing e.g. σ∆z

with NMAD∆z is, obviously, impossible.

Finally, the performance of a photo-z code depends on multiple factors. For example,

shallow NNs, the most common ML photo-z code, show excellent performance on datasets

with abundant KBs, but struggle with interpolating in the redshift ranges where the

training data are sparse; Gaussian processes, on the other hand, handle such situations

much better. k-NN can be more robust on the sparse datasets, such as quasars, while

for a dataset with resolved galaxies CNN can produce more accurate predictions than

any feature-based algorithm. In other words, there is no universal solution; for every

scientific task and every large dataset a number of approaches have to be tested. It is

worth noting that although it is considered a good practice to compare the performance

of a new photo-z code to some commonly used implementations, such comparisons have

to be taken with a grain of salt. Every algorithm has its quirks and weaknesses, and

comparing a carefully adjusted newly presented algorithm to a, say, RF or NN solution

with default settings, is not very informative.

The necessity of having independent evaluations has resulted in the appearance of the

so-called ’blind test competitions’. The competitors - scientific groups working on photo-

z codes - receive a KB that can be used for training the ML models or calibrating the

SED fitting algorithms. Another part of the dataset remains unpublished. At the end of

the competition it is used to compare the performance of the developed solutions.

First such competition was presented in Hogg et al. [1998]; the KB was not provided,

so the teams were allowed to use any data they could derive from public databases,

and the test set was composed of only 27 galaxies observed in the HDF. The competing

codes were all but one SED fitting ones; the only empirical implementation used third-

order polynomial fitting. This competition resulted in a qualitative observation, that all

solutions perform more or less similarly.

Later a number of such competitions were organized, using e.g. GOODS [Hildebrandt

et al., 2010], CANDELS [Dahlen et al., 2013], COSMOS [Norris et al., 2019], LSST

[Schmidt et al., 2020] and Euclid [Euclid Collaboration et al., 2020] data. Besides, a

number of non-blind comparisons were performed for e.g. HDF-North [Cohen et al.,

2000], SDSS EDR [Csabai et al., 2003], SDSS DR6 [Abdalla et al., 2011], HSC-SSP DR1

[Tanaka et al., 2018] and DES SV [Bonnett et al., 2016, Sánchez et al., 2014]. Salvato

et al. [2019] also compares the performances of different codes on different datasets,
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highlighting the importance of the input data, namely number of photometric bands

and volume of the spec-z catalogue. Despite the ever-growing demands for the photo-z

quality, the absolute majority of these investigations confirmed the conclusion made in

Hogg et al. [1998]: in general, various photo-z codes perform similarly. At the same time,

a few details were discovered:

• Most photo-z codes underestimate uncertainties of their predictions [e.g. Dahlen

et al., 2013, Hildebrandt et al., 2008, Schmidt et al., 2020];

• High uncertainties may indicate catastrophic outliers, but small uncertainties have

almost no correlation with actual photo-z errors [e.g. Hildebrandt et al., 2008];

• ML methods usually outperform SED fitting in the low-redshift regime, where the

training data are abundant [Dahlen et al., 2013, Euclid Collaboration et al., 2020,

Hildebrandt et al., 2010, Norris et al., 2019, e.g.];

• SED fitting, predictably, outperforms ML in the very low-redshift and high-redshift

regime, where ML methods do not have enough data for training [Abdalla et al.,

2011, Euclid Collaboration et al., 2020, e.g.].

Overall, it is evident that the best strategy is, whenever possible, to obtain photo-z with

several algorithms, preferably both SED fitting and ML ones, so that they compensated

each other’s weaknesses, with ML being the preferable approach for the datasets with

abundant KBs, and SED fitting - for the scarce high-redshift datasets.

2.8 Calibration of photo-z

The estimation of the photo-z’s quality made for some spec-z sample is an optimistic

one. The photometric sample is usually deeper, fainter and more diverse than the spec-

troscopic one, so photo-z for the overall catalogue are by definition worse than for the

KB. For the weak lensing research, one of the major and most demanding in terms of

photo-z accuracy consumer of photo-z, it is important to know how much worse, since

in this type of analysis photo-z are the main source of uncertainty. For example, for the

LSST Dark Energy Science Collaboration (DESC) program, the redshifts after ten years

of observations have to be known with a systematic uncertainty of µ(∆z) ≤ 0.001 and

scatter accuracy of σ(∆z) ≤ 0.03, which has to have a systematic uncertainty ≤ 0.001

[The LSST Dark Energy Science Collaboration et al., 2018]; and these requirements must

hold not simply for the overall sample, but for the galaxies within several redshift bins.

The percentage of outliers has to be below 10%, and Schaan et al. [2020] showed that
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without additional correction (namely, marginalization over outliers), 5% uncertainty

of the percentage of outliers (i.e., assuming that the fiducial percentage of outliers is

10%, it is 0.005% of the total size of the dataset) can outweight all other uncertainties

in the dark energy analysis. Even with careful accounting for these effects, they can

significantly lessen the reliability of the obtained cosmological constraints. In fact, such

situation appeared a few years ago, when the tomographic cosmic shear measurements

performed on the KiDS and DES data revealed a mild tension between the results. The

scientific groups of both surveys performed a re-analysis of photo-z, using the same data,

but switching to each other’s methodologies; after that the tension was alleviated (see

Wright et al. [2020] and references therein).

For these reasons, in the last ten years a lot of efforts are dedicated not only to the

development of better photo-z codes, but to the auxiliary methods for calibrating their

outcome as well [see e.g. Bernstein and Huterer, 2010, Bordoloi et al., 2010, Cunha et al.,

2012, 2014, Davis et al., 2017, Hartley et al., 2020, Hearin et al., 2010, Lima et al., 2008,

Ma and Bernstein, 2008, Masters et al., 2015, Matthews and Newman, 2010, Newman,

2008, Newman et al., 2015, Schaan et al., 2020, Wright et al., 2020]. As Schaan et al.

[2020] put it, "like in any physical experiment, obtaining a quality measurement requires

the instrument to be precise (training of the photo-z algorithm), and this precision to

be known (calibration of the photo-z algorithm)". Usually this calibration is done using

spec-z sample, but selecting this spec-z sample can pose a problem as well; below we will

discuss it a little more.

It is worth noting that the term ’calibration’ is not well-defined in photo-z literature

and bears a little different meaning in the cosmological publications, where redshift

distribution is the main objective, not individual redshifts itself. For simplicity and for

the purposes of the next chapters, here I outline a definition that utilizes ML terminology,

but is applicable for photo-z obtained with any method. Let’s assume that the KB is the

sample of galaxies for which both photometry and spec-z are known, and the run dataset

is the sample of galaxies for which only photometry is present and which will be used

in the further astrophysical and cosmological analysis. Then, photo-z calibration is a set

of methods that ensure that the photo-z statistics obtained for the KB are applicable to

the whole run dataset with a level of uncertainty that will not compromise the reliability

of the further studies. In practice, any photo-z calibration is composed of two steps: a)

ensuring that the photo-z statistics obtained for the KB are robust and reliable, and b)

ensuring that the run dataset and the KB are the same in terms of parameter space, or

accounting for their differences using statistical methods. The second step is often called

’calibration’ by itself, in a sense that the run dataset is being calibrated to the KB.



Chapter 2 52

Figure 2.8: A schematic representation of types of photo-z outliers. Black diamonds
correspond to the generally correct photo-z predictions. Black squares correspond to
the localized catastrophic outliers caused by e.g. colour-redshift degeneracy that is
observed on the spec-z sample and can be removed at the calibration stage. Red crosses
appear to be similar to the black squares, but the nature of these outliers is different.
They are localized catastrophic outliers that are underrepresented in the spec-z dataset;
they cannot be removed from the photo-z catalogue and bias the following cosmological
analysis. Finally, red triangles are uniform catastrophic outliers, which are the objects
in a certain redshift range that are underrepresented in the spec-z train sample. Image

taken from Hearin et al. [2010].

Before considering various calibration strategies, it is useful to look into the sources of

photo-z errors first.

2.8.1 Types and sources of photo-z errors

Photo-z errors have various physical nature; they manifest differently and their contribu-

tion to the further analysis is also different. Using the terminology of Hearin et al. [2010],

there are localized and uniform catastrophic outliers (see Fig. 2.8). The localized outliers

are a population of objects which have a localized true redshift and localized predicted

wrong photo-z; they cause systematic bias. The uniform outliers have ’random’ photo-z

residuals, and they mostly contribute to the scatter metrics.

The origins of photo-z errors are:

• Intrinsic differences of the galaxies’ SEDs. Even in the ideal case, some

baseline scatter of residuals is inevitable simply due to the intrinsic differences of

the galaxies’ SEDs and to the low wavelength resolution of photometry. The only

way to lessen this scatter is by observing more galaxies of the types that have higher

intrinsic differences and by obtaining photometry in medium- and narrow-bands.
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• Differences between spec-z and photometric samples in terms of

colour/magnitude parameter space. For the ML photo-z methods this factor

is more obvious: ML algorithms by definition perform adequately only in the part

of the parameter space which was occupied by the KB. SED fitting methods, in

theory, can perform well even for the objects that are very dissimilar to those for

which spec-z exist; however, it is not guaranteed, so for the precise cosmological

measurements a good spec-z calibration sample is necessary.

Failing to perform parameter space calibration results in higher scatter of predic-

tions and in so-called uniform catastrophic outliers [Hearin et al., 2010], i.e. objects

for which the predicted photo-z are incorrect and distributed randomly across the

photo-z range, instead of being localized near some median value. There are two

ways to handle this issue: to convey a follow-up spec-z survey, targeting the ob-

jects in the underrepresented parts of the parameter space, or to exclude these

objects from the analysis. Both strategies have their pros and cons. Most often,

the objects for which reliable spec-z are not available are the faint ones, for which

obtaining spec-z may be impossible in principle. Rejecting all the objects from the

underrepresented parts of the parameter space, on the other hand, significantly

reduces the size of the galaxy sample and leads to the deterioration of reliability

of the cosmological analysis. In a way, the demands of high completeness and ac-

curacy of a spec-z survey confront each other; for a higher completeness, we have

to observe fainter objects, but their accuracy is going to be lower [Cunha et al.,

2014]. However, as Masters et al. [2015] have demonstrated, a careful planning of

the follow-up observations can provide enough spec-z even for the faint parts of the

colour space, with only a few percents of the photometric dataset left for rejection.

• Colour-redshift degeneracy, when a distant blue galaxy, being redshifted, be-

comes indistinguishable from a local intrinsically redder one. This outliers are

usually localized ones [Hearin et al., 2010]; the degeneracy can be resolved with

addition of the photometry in IR and UV bands that would help to better evaluate

the shape of the SED [e.g. Beńıtez et al., 2009b], otherwise it can be taken into

account using PDFs, where degenerate solutions appear as multimodality.

• Blended sources, which produce an apparent SED that is a sum of two different

SEDs. The best way to handle this issue is to obtain photometry with an instru-

ment with a higher spatial resolution, i.e. with from space [Schaan et al., 2020],

however in principle photo-z codes should be able to assign low reliability to such

objects.

• Exotic sources, e.g. AGNs, quasars, SNe, Gamma-ray bursts. These are

a problematic class of objects for photo-z algorithms. Firstly, their SED is also
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essentially a combination of two components: one conditioned by the host galaxy

and another appearing from the exotic or transient object itself. Secondly, their

variability makes it complicated to obtain consistent photometry, especially when

various bands are observed not at the same time [Salvato et al., 2019]. As a result,

AGNs and other exotic objects often appear as catastrophic outliers when being

treated together with the overall galaxy sample. To solve this issue it is necessary

to use a suitable library of templates that accounts for the compound nature of

these objects’ SED or to train an ML model on the sample of these objects alone.

• False outliers due to the contamination of the spec-z catalogue. Some

percentage of outliers (and some part of the scatter) is caused not by incorrect

photo-z, but unreliable spec-z. Their origin is misidentification of spectral lines,

unremoved atmospheric lines or spectroscopic analogue of color-redshift degeneracy,

when in order to obtain spec-z a featureless spectra is being cross-correlated with

a template spectra and Balmer and Lyman breaks are confused with each other

[Cunha et al., 2014].

As we defined above, the process of photo-z calibration consists of two steps: making

sure that the statistics obtained on the KB are reliable and robust, and calibrating the

run dataset to the KB. The first step poses a number of requirements for the KB; spec-z

catalogues have their own sources of inconsistencies, such as [Cunha et al., 2012]:

• Statistical shot noise, caused by too small size of the sample.

• Cosmic sample variance, caused by the fact that large-scale structure of the Uni-

verse introduces a coordinate-dependent distribution of the redshifts. On another

patch of sky this distribution is going to be different, which affects photo-z pri-

ors, introduced to the SED fitting codes or learned from the dataset by the ML

methods.

• Sample variance introduced by the observing conditions;

• Type incompleteness or imbalance, caused by the observational strategy or diffi-

culties in observing certain types of objects, especially faint ones. Naturally, the

objects which are the easiest for spec-z measurements - bright, with prominent

spectroscopic features and well-defined SED shape - are also the objects for which

photo-z are likely to have good accuracy. As a result, it is hard to determine the

source of the statistics deterioration when photo-z code is being evaluated on the

overall spec-z sample instead of the most reliable part of it. Some part of the de-

terioration is due to the photo-z failure, but some part is due to the ’false outliers’

caused by the incorrect spec-z.
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In § 3.4 I will apply a SOM-based data cleaning methodology to alleviate the contami-

nation by some of these outliers.

The second step, the calibration of the datasets, has to ensure that the results obtained

on the KB are applicable to the run dataset - and that all the unresolved uncertainties

from the previous step are taken into account. To do this, several strategies exist.

2.8.2 Calibration strategies

The calibration of the run dataset aims to make its distribution in the parameter space

the same as the distribution of the KB. The parameters, in the simplest case, are the

colours, magnitudes and redshift; it is assumed that such calibration also ensures that the

galaxy populations for the two datasets will be the same. The validity of this assumption

depends on the number and coverage of photometric bands. In principle, nothing prevents

using other parameters, e.g. morphological, for the calibration as well; it might be

useful to break colour-redshift degeneracy in the deep surveys with absent IR and UV

photometry.

There are three ways to do dataset calibration: culling the galaxies that are not repre-

sented in the KB, reweighting, or obtaining more spec-z for the underrepresented galaxies.

Culling in the simplest case is done via manual magnitude or colour cuts. It is often

used at the stage of creation of the photo-z catalogues [see e.g. Cavuoti et al., 2015b,

Eriksen et al., 2019, Wright et al., 2019], when it is not yet clear which sample of galaxies

will be used in the further analysis. The culling criteria is more strict for the ML photo-z

codes than for the SED fitting ones, since ML methods cannot make predictions outside

of the KB’s parameter space.

A finer way to do culling is to utilize an ML method to determine the boundaries of the

KB’s parameter space. In principle, many methods can be used for this, both supervised

and unsupervised. In the case of a supervised ML the model has to be trained to deter-

mine whether an object belongs to the KB or the run dataset based on the photometry

only. The objects from the run dataset for which this classifier fails are the objects that

are well-represented by the KB, i.e. for which photo-z predictions can be trusted. Cunha

et al. [2014] tested this approach with NN-based classifier. In the case of unsupervised

ML, a clustering or dimensionality reduction algorithm has to be trained on the run

dataset, and then post-labelled using the KB. This is the approach that I will use in

Ch. 3.
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Reweighting compensates the differences between the KB and run dataset by weighting

the galaxies from the spec-z sample in such a way, that the resulting parameter distribu-

tion of the KB was similar to that of the run dataset. This approach was implemented

for the first time by Lima et al. [2008] and tested on the mock DES and SDSS DR 6

datasets. The authors used nearest-neighbour algorithm in magnitude parameter space

to establish the mapping between the spec-z and photometric samples and determine

normalization weights. Later k-NN [Hildebrandt et al., 2017] and SOM-based [Buchs

et al., 2019, Wright et al., 2020] implementations were created.

Newman [2008] proposed a completely different approach: to utilize spatial information

instead of mapping the KB and the run dataset in the colour space. More precisely, the

authors proposed to measure angular cross-correlation between the positions of the ob-

jects from the spectroscopic and photometric samples; taking into account that galaxies

usually belong to groups and clusters, there is a high probability that the galaxies that

are close to each other on the sky also have similar redshifts. Later this approach has

been investigated in more detail by McQuinn and White [2013], and a publicly-available

codes were developed [e.g. Morrison et al., 2017]. The advantage of these approaches is

that they do not put much constraints on the spec-z sample; in principle, it can con-

tain only selected type of objects for which spec-z are easy to obtain, e.g. luminous red

galaxies.

The reweighting methods can be and often is used independently from the photo-z, since

it allows to reconstruct the redshift distribution by itself - and this is exactly what is

needed for many of the cosmological applications. Apart from the calibration, they can

also be modified for obtaining priors for the Bayesian SED fitting photo-z codes.

At the same time, reweighting strategies have to be used with caution, and a careful

propagation of the photo-z uncertainties through the subsequent analysis is needed. This

is so because the influence of the redshift uncertainties on the cosmological models is

redshift-dependent, so the same percentage of outliers in different redshift bins is harmful

in various degree [Cunha et al., 2014, Hearin et al., 2010]. For example, let’s consider two

redshift bins, a low-redshift one and a medium-redshift one, with the same percentage

of outliers, but with different density distributions of the KB and run datasets. The

low-redshift bin has lesser number of galaxies in the run dataset, but almost all of them

are observed spectroscopically. The normalizing weight is close to 1, and the statistics

in general remain reliable. However, the medium-redshift bin has higher number of

photometrically observed galaxies, and lower number of galaxies with reliable spec-z. As

a result, spec-z sample is less representative for this bin than for the low-redhift bin, and

the underrepresented objects are likely to have worse quality of spec-z. The reweighting

algorithm has to take that into account. In principle, SOM-based solutions seem to be
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the most suitable tool for this task, thanks to the fact that their splitting of the parameter

space into hypervolumes depends on the local density of the data points.

Obtaining more spec-z for the underrepresented galaxies is the most prolific

method of dataset calibration, provided that the observational resources are available

and the depth of the analysis is in principle within the reach of spectroscopy. Instead

of removing some objects from consideration, which introduces selection biases to astro-

physical research and reduces statistical reliability of cosmological studies, or propagating

uncertainties originating from the incomplete spec-z sample and its difference from the

photometric sample, this approach alleviates the uncertainties and preserves the variety

of the galaxies. However, assuming a random sampling of the galaxies observed spec-

troscopically, the calibration of e.g. LSST would require a sample of ∼ 100000 spectra,

highly representative in terms of magnitudes and galaxy types, taken over several hun-

dred square degrees, and for objects in the whole range of redshifts used for the analysis.

Considering that the average success rate of a deep spectroscopic survey is ∼ 40− 70%,

that is essentially an impossible requirement [Newman et al., 2015].

In Masters et al. [2015] a much better approach was proposed, which is basically an

inversion of the SOM-based reweighting algorithms. The idea is to train a SOM on the

photometric dataset and then post-label it with already existing reliable spec-z. The

cells which contain high number of galaxies from the run dataset but none or very few

galaxies with reliable spec-z are the hypervolumes of the parameter space which require

more information for calibration. The galaxies from these cells have to be targeted by

the follow-up spec-z survey. In Masters et al. [2017] and Masters et al. [2019] this ap-

proach was used to organize spectroscopic observations of the calibration dataset in the

COSMOS field, assuming Euclid-like photometric information available.

Similarly to the situation with photo-z codes, it is clear that combining multiple calibra-

tion methods, based on the task at hand, is the best possible strategy. It is also impor-

tant to note that all the analysis mentioned above is cosmology-oriented, and mostly aim

eliminating systematic biases in redshift distribution. The photo-z calibration for astro-

physical purpose, which would be more concentrated on uniform catastrophic outliers

and redshift distributions of specific types of galaxies, remains mostly unexamined.
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2.9 Perspective directions

The next generation of large extragalactic surveys promises not only to constrain cosmo-

logical parameters with a precision of few percents, but also to provide us with an im-

mense volume of information on galaxy parameters, variability and large-scale structure

of the Universe. It means immense possibilities for astrophysics and galaxy evolution,

and even imprecise photo-z distances will be instrumental to fully utilize them. Con-

sidering that there is no perfect photo-z or calibration code, but rather more and less

effective combinations of data and methods, the volume and variability of the approaches

is going to grow. However, there are seem to be two main trends.

The first trend is the appearance of combined pipelines, built using various ML, SED fit-

ting and auxiliary approaches. Such pipelines commonly outperform standard methods,

as it should be expected: ML allows to extract information directly from observations,

SED fitting provides information known from previous observations, and various kinds

of calibration remove biases, include spatial information and ensure the reliability of

the metrics. It can be expected that with the advancement of the astronomical data

infrastructure, even more complex algorithms will be created, e.g. such that will be

automatically applying the most suitable code to the different populations of galaxies.

The second trend is to use not only broad band photometry, but other observables as

well. The experiments on including morphological information into the analysis have

been conveyed for at least twenty years, but in most cases they did not improve the

results, apparently introducing more noise than redshift signal. However, this might

change with a) DNN-based feature extractors, obtaining only relevant for the photo-z

algorithms morphological parameters from the raw images directly, and b) creation of

combined pipelines, that would use morphological parameters to narrow down the photo-

z predictions and break colour-redshift degeneracy only for the objects from certain areas

of the parameter space.

Unlike morphology, including medium and narrow bands have proved to be very useful,

enabling the detection of bright emission lines in spectra of star-forming galaxies. At

least, it is useful for the SED fitting algorithms; for now, ML-based codes do not show

the similar degree of improvements. A possible explanation to this is that narrow bands

contain a detectable redshift signal only for a small percentage of galaxies, so, perhaps,

the existing ML photo-z codes are not adapted to learning this information. A further

investigation of this matter is needed, e.g. in the direction of transfer learning with

simulated datasets.
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Other possible features that could improve the predictions are variability parameters

(which will be provided abundantly by the LSST), SFRs, photometric errors, and im-

puted photometric data in the bands where non-detections are common. Obviously,

in order to avoid the ’curse of dimensionality’, preliminary (and possibly classification-

aided) feature selection will be needed.
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COSMOS photo-z with Machine

Learning methods

In this chapter, I obtain ML photo-z for the COSMOS2015 catalogue using shallow NN

algorithm MLPQNA [Brescia et al., 2012, Cavuoti et al., 2012]. Although MLPQNA was

used to obtain photo-z for multiple photometric catalogues before, this is the first time

it is tested on a catalogue with narrow- and medium- band photometry. Additionally,

here I test SOM-based data cleaning methodology for cleaning and calibrating source

datasets. The aim of this step is to handle catastrophically wrong photo-z predictions of

various nature (see § 2.8).

§ 3.1 describes the datasets and their basic preprocessing. § 3.2 gives information on

the methods used. In § 3.3 I report the quality of the photo-z obtained with MLPQNA,

investigate various feature sets and how the inclusion of the narrow bands affects the

performance, and identify sources of photo-z errors. § 3.4 is dedicated to automatic

detection of unreliable spec-z measurements, causing ’false outliers’ (see § 2.8.1), and

catastrophically wrong photo-z predictions. § 3.5 considers how we can use unsupervised

ML to calibrate the parameter space of the run dataset to ensure the reliability of the

photo-z quality estimations. In § 3.6 I describe how we can use our data-cleaning method-

ology to obtain reliable spec-z sample without quality flags. Finally, in § 3.7 I compare

the quality of ML and SED fitting photo-z, discuss the nature of catastrophically wrong

predictions, and consider how various data cleaning criteria can help to obtain spec-z

and photo-z samples of various quality.

This chapter is based on the paper Razim et al. [2021].

60
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3.1 Data

In this section I describe the three catalogues used in this work:

1. The COSMOS2015, which is our source of photometric measurements and SED

fitting photo-z. Its detailed description can be found in Laigle et al. [2016].

2. A compilation of spectroscopic redshift available in literature for the same COS-

MOS field. This catalog is called the Main spec-z catalog.

3. The Deep Imaging Multi-Object Spectrograph (DEIMOS) spec-z catalogue [Hasinger

et al., 2018], used to perform an additional, independent test of our methods.

3.1.1 COSMOS2015 photometric catalogue

The COSMOS2015 catalogue contains multi-wavelength broad-range (from mid-IR to

near-UV) photometry for about half million objects, for which X-Ray and radio mea-

surements, star formation rates and other additional information is available. Moreover,

this catalogue includes SED fitting photo-zs, obtained with LePHARE software [Arnouts

et al., 1999, Ilbert et al., 2006].

We downloaded the COSMOS2015 photometric data consisting of 34 bands:

• UV broad and medium bands: NUVmag, FUVmag, u;

• optical and near-IR broad bands: B, V, ip, r, zp, zpp, Ks, Y, H, J, Hw,

Ksw, yH;

• mid-IR broad bands: 3_6mag, 4_5mag, 5_8mag, 8_0mag;

• optical and near-IR medium bands: IA484, IA527, IA624, IA679, IA738, IA767,

IB427, IB464, IB505, IB574, IB709, IB827;

• and optical and near-IR narrow bands: NB711, NB816.

For all of them 2′′, 3′′ AUTO and ISO apertures were available, except for Spitzer Large

Area Survey with Hyper-Suprime-Cam (SPLASH; 3_6mag, 4_5mag, 5_8mag, 8_0mag)

and GALEX (NUVmag, FUVmag) bands.

The preprocessing of this dataset consisted of the following steps:
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1. To ensure homogeneity of photometry and to enable a comparison with SED fitting

photo-z, I follow the procedure described in Laigle et al. [2016]. I consider only

those objects that lay within both UltraVISTA (this is done by using the condition

Area==0) and COSMOS (Cfl==1) sky areas (see McCracken et al. [2012], Capak

et al. [2007] and Scoville et al. [2007] for a detailed descriptions of these regions).

As a result, 576, 762 objects remain out of the initially available 1, 182, 108 samples.

2. I also exclude stars, X-ray and unclassified sources (OType==0). This leaves us with

551, 538 objects.

3. Finally, I remove saturated sources, by rejecting objects masked in optical broad

bands (Sat==0). After this step, the final photometric catalogue consists of 518, 404

objects.

3.1.2 Main Spectroscopic catalogue

The Main spec-z catalog is extracted from the spectroscopic COSMOS master catalog

maintained within the COSMOS collaboration. Our version of this catalogue includes

only the publicly available redshifts prior Fall 2017. This catalogue contains 65 426

spectral redshifts, obtained with 27 different instruments in a spec-z range 0 < zspec <

6.5. The preprocessing consisted of the following steps:

1. To exclude stars, I remove sources with zspec < 0.01; I also remove objects with

zspec > 9 to discard erroneous spec-z;

2. AGNs often pose a contamination problem for photo-z algorithms [Norris et al.,

2019]. Therefore, I remove sources visible in X-Ray, using a catalogue of AGN

sources detected by Chandra in the COSMOS field [Civano et al., 2012].

3. Then the resulting spec-z catalogue is cleaned from unreliable instances, using the

available quality flags Q_f, described in Lilly et al. [2009]. Only robust spectroscopic

redshifts are selected (i.e. with ∼ 99.6% of spectroscopic verification), using the

conditions 2<Q_f<5 and 22<Q_f<25.

It is important to note that the main spec-z catalogue is a compilation of multiple

catalogues. These data were obtained during different surveys with different targeting

strategies and quality requirements during the last two decades, so the exact quality of

the spectroscopic verification is impossible to estimate. As a result, the actual robustness

of the final spec-z set may be lower, and this is one of the issues that I will address in the

following sections. Another nuance is that for some objects the main spec-z catalogue
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Figure 3.1: Number of objects in the main spec-z catalogue by instruments before
and after the basic preprocessing steps. It can be seen that the preprocessing does not

noticeably affect the instrument distribution.

contains multiple measurements made with different instruments, and in some cases these

spec-z values have large residuals between each other (> 0.1). At this stage, I do not

try to determine which measurements are correct, neither discard these objects. Instead,

during the crossmatch, I simply use the spec-z measurements that are the best coordinate

match to the COSMOS2015 objects. In § 3.3 I analyse these objects to clarify the nature

of the photo-z outliers.

The resulting dataset is cross-matched with the COSMOS2015 photometric catalogue,

obtaining ∼ 20 000 objects. The exact size of the dataset depends on the bands involved

for limiting photometric errors, varying in the various experiments; see § 3.1.4. For the

majority of this work, I used a dataset where I limit only photometric errors for broad

and narrow visual, UV and IR bands in 3′′ aperture; it contains 19 893 objects. As

shown in Fig. 3.1, the preprocessing does not noticeably affect the distribution of the

sources by instrument of observation, and Fig. 3.2 shows that the spec-z distribution for

zspec ≤ 4 is almost unaffected either. However, as it can be seen from this distribution,

the number of objects for zspec > 1.2 is approximately one order of magnitude lesser than

the amount of closer objects. In absolute numbers, there are only ∼ 700 galaxies in the

redshift range 1.2 < zspec < 4. Such number of objects is not enough to effectively train

the photo-z algorithm in this redshift range, and for this reason I limit further analysis

and the resulting catalogue to zspec ≤ 1.2.
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Figure 3.2: Spec-z distribution before and after quality flag (Qf) cleaning of the KB
and DEIMOS datasets. The plots in the top row compare distributions dataset-wise,
while the plots in the bottom row compare the KB and DEIMOS on the same cleaning

stages.

3.1.3 DEIMOS spec-z catalogue

Since we want to test our methodology for selecting the subset of photometric data

that is well covered by the KB, we need an independent spec-z catalogue different from

the main spec-z catalogue selection function. For this purpose, I used the catalogue of

spectroscopic redshift presented in Hasinger et al. [2018], acquired with DEIMOS, within

different programs. This catalog provides redshifts for sources that are not included in the

main spec-z catalog and that are somewhat fainter (see Fig. 3.3). For these differences,

it represents an excellent benchmark data for this study.

In the preparation of the DEIMOS spec-z catalogue, I follow the same procedure de-

scribed in § 3.1.2, aimed at discarding stars, AGNs and unreliable sources1.

3.1.4 Final catalogues and SOM data cleaning prerequisites

After the basic preprocessing described in the previous sections, the following datasets

are prepared (see Fig. 3.5 and Fig. 3.4 for the coordinate coverage):
1Note that the DEIMOS catalogue has two different quality flag columns. The one following the

same scheme as in Lilly et al. [2009] is labeled "Qf".
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Figure 3.3: Magnitude distributions for the KB, DEIMOS and run datasets in the
ipmagap3 after standard cleaning but before any SOM filtering.

Figure 3.4: Coordinate coverage for the COSMOS2015, main spec-z and DEIMOS
catalogues (all after the preprocessing).

1. KB (knowledge base), which is the intersection crossmatch between the COS-

MOS2015 and main spec-z catalogues. It contains both photometry and spec-z. For

the ML photo-z experiments I randomly split this KB into train (70% of KB) and

blind test (30%) datasets to provide reliable evaluation of the model performance.

The photo-z algorithm also uses 10-fold cross validation during the training;

2. Run dataset, which is the COSMOS2015 catalogue after excluding the objects from

the KB. It contains only photometric data;

3. DEIMOS dataset, which is an intersection of the run dataset and DEIMOS spec-z

catalogue (meaning that it does not contain the objects from the KB). I use the

DEIMOS as a control dataset to check how well our cleaning procedures work on
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Figure 3.5: Venn diagram of the catalogues used in this work.

Figure 3.6: Number of objects in the KB with magnitude errors>1 by bands.

the data that come from an independent from the KB source and occupy a different

hypervolume in the parameter space (see § 3.1.3).

In order to ensure the quality of the trained model, a reliable photometry is required, so

I excluded all objects with high magnitude errors. Some bands have too many objects

with unreliable photometry; if applied to these bands, this part of the preprocessing

would reduce the size of the dataset by a factor of two or more, and narrow the area

of parameter space where the photo-z algorithm would be applicable. To avoid this,

I identified the bands affected by too many objects with large magnitude errors and

excluded them from the experiments. As a rule of thumb this selection was operated by

removing bands containing one order higher number of unreliable measurements than

the others. As it can be seen from Fig. 3.6, these bands are 5_8mag, 8_0mag, NUVmag

and FUVmag and contain thousands of objects with large errors, while the other bands

have up to hundreds of such galaxies.

Afterwards, I clean the photometry in the remaining bands, by limiting the magnitude

error within the range 0 < e_mag < 1, where e_mag are magnitude errors for each
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band. The cleaning is performed for every feature set separately, since it allows us to

preserve as many objects as possible (for example, in the experiments where I use only

broad bands I do not remove the objects with high magnitude errors in narrow bands).

Then in all ML experiments the software independently normalizes each band to the

[0, 1] range.

In order to take care of the mentioned low extrapolative power of ML models, we have

to make sure that the run dataset is compliant with the KB in terms of parameter

space coverage. Fig. 3.3 shows the magnitude distribution for the KB, DEIMOS and

run datasets in ipmagap3. As it can be seen, our run dataset is noticeably deeper than

the KB and DEIMOS datasets, as expected due to the spectroscopic bias induced by the

targeting algorithms.

We then limit the magnitudes in the run dataset bands by their corresponding maximum

values present within the KB. However, this is just a preliminary solution, since it does

not guarantee a full similarity between the KB and run datasets, with respect to the

parameter space. In § 3.2.5 I introduce a more accurate procedure to calibrate the run

dataset to the parameter space of the KB.

3.2 Methods

In this work, I use two neural network algorithms. To calculate the photo-z point es-

timations, I use the supervised ML algorithm MLPQNA [Brescia et al., 2013, 2014].

Furthermore, in order to investigate and clean the datasets, I use an unsupervised ML

approach, based on a modified version of the well-known dimensionality reduction algo-

rithm SOM [Kohonen, 2013].

3.2.1 MLPQNA algorithm

MLPQNA is a neural network based on the classical Multi-layer Perceptron [Rosenblatt,

1963] with two hidden layers and hyperbolic tangent activation function of neurons. The

general description of shallow neural networks was given in § 2.5.1, so here I outline only

the distinctive traits of the MLPQNA.

MLPQNA uses Quasi Newton approximation of the Hessian error matrix as a learning

rule [Nocedal, 2006]. MLPQNA was successfully used for photo-z estimation in a number

of papers (such as, Biviano et al. [2013], Brescia et al. [2013, 2014], Cavuoti et al. [2012,

2015a, 2017a,b], Nicastro et al. [2018]). The model hyper-parameters were heuristically

selected on the basis of our past experience and on an intensive test campaign. To
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Parameter name Parameter value

number of input neurons N (number of features)
number of hidden layers 2
number of neurons in the hidden layer 1 2N + 1

number of neurons in the hidden layer 2 N − 1

number of output neurons 1 (for photo-z prediction)
weight decay (weight update multiplying
coefficient) 0.001

restarts in every learning epoch 80
threshold (the difference between two con-
sequent values of the learning metric after
which the training stops)

0.01

epochs 20000

Table 3.1: MLPQNA model hyper-parameters settings (see Brescia et al. [2013] for
details).

determine the number of neurons in each layer, I follow the rule of thumb described in

Brescia et al. [2013]. This rule implies that the optimal number of neurons for the first

hidden layer equals 2N + 1 and the optimal number of neurons in the second hidden

layer is N − 1, where N is number of features (i.e., photometric bands). The MLPQNA

hyper-parameters are reported in Tab. 3.1.

3.2.2 Metrics

In order to evaluate the quality of photo-z estimations, I use standard metrics, described

in § 2.3.

1. Standard deviation σ(∆z);

2. Normalized median absolute deviation NMAD(∆z) = 1.48×median(|∆z|), which
is less sensitive to catastrophic outliers than σ(∆z);

3. Bias, defined as mean(∆z);

4. Percentage of outliers η0.15, defined as a number of sources with |∆z| ≥ 0.15.

3.2.3 SOM

The Self Organizing Map (SOM) is a neural network algorithm first described in Koho-

nen [1982]. The idea behind SOM is the following: a parameter space of an arbitrary

dimensionality is projected on a 2D map in such a way that neighbour instances in the

original parameter space remain neighbours on the resulting map. For this purpose, the
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SOM algorithm compares the feature vector of every object in the dataset (in our case

the magnitude vector of every galaxy) with the weight vector of the same dimensionality

associated with each cell on the 2D map. The object is then placed in the cell having

the most similar weight vector (in terms of euclidean distance). Such cell is called Best-

Matching Unit (BMU). The weights of the BMU and its neighbour cells are updated

in such a way that they become more similar to the feature vector of the object. This

mechanism ensures that, at the end of training loop, the map learns the representation

of the parameter space of the entire training dataset in a self-organized way. That is why

SOM is commonly used to perform an unsupervised data exploration. In photo-z esti-

mation applications, several authors demonstrated that SOM can be used for different

tasks. For example, Geach [2012] and Way and Klose [2012] used it to obtain photo-z,

while Carrasco Kind and Brunner [2014b] applied it to estimate photo-z PDFs. Finally,

Masters et al. [2015] adapted the SOM to check the coverage of the photometric param-

eter space by a given spectroscopic sample, thus indirectly creating a suitable method to

optimize a spectroscopic follow-up strategy.

In this work I use the SOM for two different purposes: i) to detect potentially unreliable

spec-z in the KB (see Sect. 3.2.4 and 3.4); ii) to ensure that the run dataset occupies the

same part of the parameter space as the KB, i.e. to remove objects in the run dataset

that are photometrically different from those in the KB (see Sect. 3.2.5 and 3.5). In our

experiments I use a modified version of MiniSOM2.

I use photometric bands as the input features for the SOM training. To analyse the

datasets, I colour-label the resulting maps using either photo-z, spec-z, or the number of

objects within each cell (also called the cell’s occupation). The latter mapping is further

referred as occupation maps, and it allows us to check how well the dataset, used for the

labelling, covers the parameter space of the SOM training dataset.

Most of the SOM hyper-parameters (specifically, number of epochs, sigma, learning rate

and neighbourhood function) are chosen via grid search. Their final values are listed

in Tab. 3.2. The size of the map is chosen in such a way that, on average, each cell

contains more than 30 galaxies from the training set. The choice of this size is based on

the best compromise between the two competing goals: the reliability of statistics within

each cell, and the need to capture the data topology with the maximum finesse. A SOM

with a small number of cells provides us with a higher number of galaxies per cell, thus

improving the reliability of the statistical indicators. On the other side, a larger SOM

shows more details of the data distribution in the parameter space, but the statistics

within some cells become unreliable. For this reason, SOM maps of different sizes are
2The original version of MiniSOM can be found in the repository https://github.com/JustGlowing/

minisom. Our modified version is available at https://github.com/ShrRa/minisom.

https://github.com/JustGlowing/minisom
https://github.com/JustGlowing/minisom
https://github.com/ShrRa/minisom
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Parameter name Parameter value

width (low-resolution SOM) 25
height (low-resolution SOM) 28
width (high-resolution SOM) 67
height (high-resolution SOM) 64

num_features 10
epochs 6000
sigma 5

learning rate 0.5
neighborhood_function bubble

Table 3.2: SOM settings used for all experiments in this study. For more details
about low and high resolution maps, see § 3.2.3.

used. Specifically, I use small low-resolution maps to determine the anomalous sources

within each cell, and large high-resolution maps to investigate the train dataset coverage

of the parameter space defined by the run catalogue.

3.2.4 Spec-z in-cell outlier cleaning with SOM

The trained SOM places objects with similar feature vectors in the same or neighbour

cells. If some object has a photometry-spec-z relationship that appears to be anomalous

for its BMU, such object will be considered as an outlier in terms of spec-z distribution

of this BMU. In order to avoid the potential confusion between these in-cell outliers with

the traditional outliers of a photo-z distribution, hereafter I will refer the in-cell outliers

as anomalous sources or anomalies.

We assume that these objects have a lower photo-z reliability, so I drop them out. In

order to exclude such objects, for every galaxy the algorithm calculates the coefficient:

Kspec =

〈
zBMU

spec

〉
− zobj

spec

σ(zBMU
spec )

(3.1)

where
〈
zBMU

spec

〉
is the mean spec-z obtained by averaging over the objects falling in the

same BMU, zobj
spec is the spec-z of the galaxy, and σ(zBMU

spec ) is the standard deviation of

the spec-z distribution within the BMU cell. This coefficient has the same meaning as a

standard score, or Z-score, often used in statistics. The prefix K instead of Z is chosen in

order to avoid confusion with redshifts. Typically, objects are considered to be outliers if

|Kspec| > 3. Yet, other criteria were also tried in order to see how it affects the photo-z

quality (see § 3.4).
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3.2.5 Parameter space calibration with SOM occupation map

As I pointed out earlier, neural networks cannot perform extrapolation. It means that,

in order to obtain reliable results, the run dataset has to occupy the same area of the

parameter space that is well sampled by the KB. Besides, as was explained in § 2.8,

calibration of the datasets is needed even when SED fitting photo-z algorithms are used,

otherwise the reliability of the photo-z performance is not guaranteed. Fig. 3.3 shows

that, in terms of magnitude distribution, our train and run datasets are quite different.

Therefore, in order to avoid biasing, we need to perform dataset calibration and estimate

the statistics for each magnitude bin independently.

In the photo-z publications it is common to perform dataset calibration in the simplest

form, by limiting the magnitudes of the run dataset to the maximum magnitudes of

the KB, i.e. by cutting the faint-end "tail" of the magnitude distributions (e.g. Cavuoti

et al. [2015b], Eriksen et al. [2019], Wright et al. [2019]). But this approach poses a major

problem: if extreme cuts are adopted, the coverage of the parameter space is ensured

but at the risk of loosing many objects with reliable photo-z. With a soft limiting value,

on the other hand, the run dataset is affected by too many objects that lay outside of

the KB parameter space.

Using SOM occupation maps, I implement a more accurate calibration, based on the

approach first investigated by Masters et al. [2015]. The idea behind the method is

simple: we train the SOM on the run dataset and then project the KB on the trained

map. Since the entire SOM represents a projection of the parameter space of the run

dataset, the galaxies in the KB will be clustered only in a subset of cells, with a fairly

large number of cells either poorly occupied or completely empty. For these cells we do

not have spectral information and hence photo-z predictions cannot be trusted. In order

to capture in detail the coverage of the run dataset parameter space by the KB, I use a

high-resolution SOM map of size 67X64 (Tab. 3.2).

3.3 MLPQNA photo-z for COSMOS

3.3.1 Baseline photo-z experiments with MLPQNA

Here I calculate the photometric redshifts for the KB after the standard preprocessing

described in §3.1.

As was explained in § 2.5.7, the choice of the feature set affects the results of ML process

significantly, but selecting optimal features for the photo-z prediction task is not a trivial
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matter. Considering that in the case of COSMOS2015 we have four magnitudes in more

than 30 bands, it is computationally impossible to convey MLPQNA experiments in the

parameter space of the full dimensionality, and, consequently, some feature selection is

needed. Performing a full brute force search is also too computationally expensive. For

this reason, I tried manual feature selection based on domain knowledge, some brute

force search on small subsamples of the total feature set, and several computationally in-

expensive automated feature selection algorithms. As a result of this search, I performed

∼ 400 experiments with different combinations of features, namely: with all photomet-

ric bands, only broad bands, broad bands plus one or more narrow bands, with five

"SDSS-like" bands, etc. I also investigated whether there is any difference in photo-z

performance when we use photometry in the same bands, but obtained with different

instruments. To do this, I used same baseline broad-band feature sets, where one of the

bands was replaced with the same band from a different source (i.e. VIRCAM/VISTA

Ks and H bands were being replaced with WIRCAM/CFHT Ksw and Hw)

Tab. 3.3 reports the results of several basic experiments that I conveyed to obtain baseline

results and narrow down the further search. The first five experiments use the same basic

SDSS-like (based on the similarity of the central wavelengths of the bands) set of five

broad bands, one in UV and four in the visual parts of the range, but different apertures.

The experiments show comparable results, although 2′′ and 3′′ apertures demonstrate

slightly lower bias and percentage of outliers than pseudo-total Kron magnitudes in

aper_auto and isophotal magnitudes in aper_ISO. This is consistent with the results

obtained for the SED fitting photo-z, reported in Laigle et al. [2016]. In the same article

it is suggested that the lower quality of photo-z with aper_auto and aper_ISO can be

explained in two ways: by the contamination by blended sources, or by the fact that

these apertures are determined based on the images taken in the detection band, so it

is possible that for the faint sources, these magnitudes in other bands are going to be

noisier than fixed-aperture magnitudes.

The experiments with 2′′ and 3′′ apertures show very similar performance, and using them

together does not bring noticeable improvement. For consistency of the comparison of

the ML and SED fitting photo-z, in the further experiments I used magnitudes in 3′′

aperture, unless specified otherwise.

The next two rows in Tab. 3.3 (exp006 and exp007) are excerpts from the series of

experiments dedicated to the investigation of how adding broad UV and IR and narrow

bands affects photo-z performance. In more details these experiments are reported in

§ 3.3.2 and § 3.3.3, and here they are presented for general comparison.
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The exp006 in Tab. 3.3 reports the results of the experiment with the feature set com-

posed of all broad bands available, i.e. five visual3, one UV and four IR. Compared

to the results obtained in experiments with the SDSS-like feature sets, this experiment

shows noticeable improvement of NMAD: from ∼ 0.025 − 0.028 to 0.018. However, the

improvement of σ∆z is weak, and the percentage of outliers does not drop at all. In

§ 3.3.6 I will investigate this discrepancy and show that the major source of outliers in

our dataset is the contamination of the spec-z sample; the important consequence of this

is that without additional data cleaning, percentage of outliers and σ∆z are less reliable

metrics than NMAD. For this reason, in the next paragraphs, dedicated to the various

aspects of feature selection, I will mostly concentrate on NMAD.

The exp007 in Tab. 3.3 is an example of an experiment with a feature set composed

of all broad and one narrow band. Unlike adding IR bands, this expansion does not

bring a serious improvement; the same is fair for the exp008, where all available bands,

both broad and narrow ones, were used. This absence of improvements contradicts the

findings for the SED fitting algorithms, which were shown to benefit from the addition

of the narrow bands [e.g. Salvato et al., 2019, and references therein]. I will return to

this in § 3.3.3.

In order to make sure that we do not run into the ’curse of dimensionality’, I performed

a series of experiments to test how the quality of photo-z predictions depends on the size

of the train sample. They were done with the setup of exp006, i.e. with 10 broad bands.

Fig. 3.7 shows the results of these experiments. It demonstrates that after the training

sample reaches ∼ 8 000 − 10 000 objects, the improvement of statistics essentially stops.

3.3.2 Visual, UV and IR bands

The strongest redshift signal is encoded in the gradient between the magnitudes brack-

eting either Balmer or, for high-redshift galaxies, Lyman break. Being redshifted, these

breaks change their wavelength, and, consequently, fall within different bands, meaning

that the significance of each band for the photo-z calculation is redshift-dependent. We

check how different combinations of the bands belonging to the visual, IR and UV parts

of the spectra affect the quality of the ML photo-z. Tab. 3.4 reports the results of these

experiments, and Fig. 3.8 demonstrates the residual-redshift distribution for each feature

set.
3We included the NIR zpp band in the ’visual’ feature set for two reasons: firstly, to have another

5-band feature set for a fair comparison with the SDSS-like, and secondly, to perform an experiment
with the bands all coming from one instrument (in this case, Suprime-Cam/Subaru) to see whether there
will be any degradation when we add photometry from other instruments.
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Figure 3.7: Photo-z quality dependency from the size of the train dataset. Three
experiments were performed for each number of objects in the training sample. The

setup of exp006 from Tab. 3.3 was used.
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Exp ID Description bands Mean σ∆z NMAD η0.15

exp001 SDSS-like, aper2 u, B, r, ip, zpp 0.000 0.053 0.025 1.999

exp002 SDSS-like, aper3 u, B, r, ip, zpp -0.001 0.051 0.027 1.807

exp003 SDSS-like, aper_auto u, B, r, ip, zpp -0.003 0.055 0.027 2.364

exp004 SDSS-like, aper_ISO u, B, r, ip, zpp -0.004 0.059 0.028 2.346

exp005 broad bands, aper2 and aper3 u, B, r, ip, zpp -0.001 0.051 0.025 1.756

exp006 broad bands, aper3
B, H, J, Ks, V,
Y, ip, r, u, zpp -0.002 0.048 0.018 2.138

exp007 broad bands + one narrow band, aper3

B, H, J, Ks, V,
Y, ip, r, u, zpp,
IB574 -0.002 0.048 0.019 1.642

exp008 all bands, aper3

Ks, Y, H, J,
B, V, ip, r, u,
zp, zpp, IA484,
IA527, IA624,
IA679, IA738,
IA767, IB427,
IB464, IB505,
IB574, IB709,
IB827, NB711,
NB816, Hw,
Ksw, yH

-0.002 0.049 0.017 1.877

Table 3.3: Results of the baseline experiments performed with the trained MLPQNA
on the blind test set of the KB, after having just applied the standard KB cleaning

procedure.

The first thing to notice is that the baseline experiment exp002, performed with SDSS-

like features, has higher NMAD than all the experiments that include visual bands.

This is easy to explain by the fact that our SDSS-like band set is chosen based on the

central wavelengths of the bands only, without any consideration of their bandwidth.

In the case of COSMOS2015, the adjacent B and r band do not overlap, and the gap

between them degrades the quality of the photo-z predictions for galaxies in the range

∼ 0.4 < zspec < 0.9, which inevitably affects the overall statistics. This effect is enhanced

by the fact that the majority of the galaxies lie in that range, so the worsening of NMAD

for them has higher weight than better NMAD for the galaxies in the range zspec < 4,

which is also observed with SDSS-like features due to the presence of the u band. In any

case, adding the V band improves the statistics in the middle of redshift distribution.
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Exp ID Description N bands Mean σ∆z NMAD η0.15

exp002 Baseline SDSS-like (u, B, r, ip, zpp) 5 -0.001 0.051 0.027 1.807

r_exp001 Vis (B, V, r, ip, zpp) 5 -0.003 0.055 0.024 2.242

r_exp003 IR (Y, J, H, Ks) 4 -0.011 0.109 0.066 13.489

r_exp004 Vis, UV 6 -0.003 0.052 0.020 1.929

r_exp005 Vis, IR 9 -0.003 0.053 0.020 2.260

r_exp006 Vis, UV, IR 10 -0.002 0.052 0.018 2.068

r_exp007 Vis, UV, Y 7 -0.002 0.049 0.019 2.103

r_exp008 Vis, UV, J 7 -0.004 0.053 0.018 2.086

r_exp009 Vis, UV, H 7 -0.003 0.047 0.020 1.756

r_exp010 Vis, UV, K 7 -0.002 0.050 0.020 1.964

Table 3.4: The results with visual, UV and IR bands, obtained on the test set of the
KB.

The IR bands alone (r_exp003) are predictably not enough to make good photo-z pre-

dictions, but adding them to visual bands (r_exp005) reduces both NMAD and mean

of residuals. Adding UV band (r_exp004) has the same effect. Curiously, in both cases

the improvement mostly comes from the galaxies in range zspec < 0.3 (see Tab. 3.5). For

the visual+UV feature set it was to be expected, since for the galaxies with zspec < 0.3

Balmer break moves from u to B band. The improvement introduced by the IR bands

is harder to explain; however, it is beneficial to add IR bands to the feature set even

if u band is already included (r_exp006). A more careful analysis with adding each

IR band to the feature set separately (experiments r_exp007-r_exp010) shows that the

main improvement in terms of NMAD is introduced by the J band; at the same time,

using only this band causes a slight increase of the mean bias.

It seems likely that IR bands in this case allow the MLPQNA to extract information

contained in the overall shape of the SED, rather than detect some specific SED feature.

Considering that the feature set composed of all broad bands produces the best results,

in the majority of the further experiments, I use the feature set composed from all broad

visual, IR and UV bands, unless specified otherwise.



Chapter 3 77

Figure 3.8: Photo-z quality with various feature sets

3.3.3 Narrow band influence

As was shown by e.g. Ilbert et al. [2009], SED fitting photo-z methods demonstrate better

performance when SED templates take into account prominent emission lines, especially

when narrow-band photometry is present. The improvement is most significant for star-

forming galaxies and AGNs [e.g. Salvato et al., 2009]. However, it was never exhaustively

investigated how adding narrow bands to the feature set affects the performance of the

ML photo-z methods. Leaving such investigation for the future, I did try to perform a

percursory check.

Tab. 3.6 reports the results of one of the series of these experiments. In there, I used

a basic feature set composed of broad visual, UV and IR bands, complemented with

all narrow bands one by one. In comparison with the baseline experiment (exp006), no

experiment shows robust improvements for neither of metrics. Using all narrow bands in
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zspec Vis Vis, UV Vis, IR Vis-(Vis, UV) Vis-(Vis,IR) (Vis,UV)-(Vis,IR)

0.1 0.062 0.058 0.062 0.004 0.000 -0.004

0.2 0.045 0.023 0.024 0.022 0.021 -0.001

0.3 0.038 0.020 0.027 0.018 0.011 -0.007

0.4 0.019 0.016 0.018 0.003 0.001 -0.002

0.5 0.026 0.020 0.024 0.006 0.002 -0.004

0.6 0.015 0.013 0.017 0.002 -0.002 -0.004

0.7 0.016 0.016 0.016 0.000 0.000 0.000

0.8 0.019 0.019 0.016 0.000 0.003 0.003

0.9 0.023 0.021 0.018 0.002 0.005 0.003

1.0 0.023 0.022 0.018 0.001 0.005 0.004

1.1 0.030 0.035 0.026 -0.005 0.004 0.009

1.2 0.031 0.034 0.025 -0.003 0.006 0.009

Table 3.5: NMAD in zspec bins for different feature sets. The first column gives
the upper boundary of the redshift bin; the next three columns report the NMADs for
the feature sets composed of broad visual, visual+UV and visual+IR bands correspond-
ingly. The next two columns indicate the difference between the NMADs obtained with
different feature sets; essentially, they show the improvement of NMAD that comes with
adding UV or IR bands. This difference is largest for the two redshift bins in range
0.1 < zspec < 0.3. The final column reports the difference between the NMADs ob-
tained with the features sets that include UV and IR. Adding UV band brings some
improvement for zspec < 0.6, adding IR bands improves redshifts for zspec > 0.6. Such
clear separation by the median of the redshift distribution suggests that it can be intro-
duced by the ML model rather than some physical effect. In any case, the performance

difference between these two feature sets is fairly small for all redshift bins.

addition to all broad bands lowers NMAD (see exp008 in Tab. 3.3), but only just: the

improvement is from 0.018 to 0.017.

There are several causes that could prevent the ML model from learning the information

contained in the narrow bands, starting from issues with photometry homogenization

and finishing with unsuitable ML model architecture. In any case, SED template fitting

example shows that this information is possible to utilize, and finding a way to do it

should be subject of further work.
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Exp ID Band Mean σ∆z NMAD η0.15

exp006 Baseline -0.002 0.048 0.018 2.138

n_exp031 IA484 -0.002 0.051 0.018 2.086

n_exp032 IA527 -0.003 0.053 0.019 1.929

n_exp033 IA624 -0.003 0.050 0.019 1.721

n_exp034 IA679 -0.001 0.050 0.020 1.790

n_exp035 IA738 -0.002 0.048 0.019 1.964

n_exp036 IA767 -0.003 0.051 0.019 1.947

n_exp037 IB427 -0.001 0.046 0.020 1.843

n_exp038 IB464 -0.003 0.053 0.019 1.912

n_exp039 IB505 -0.003 0.053 0.018 1.860

n_exp040 IB574 -0.002 0.048 0.019 1.895

n_exp041 IB709 -0.001 0.050 0.019 2.068

n_exp042 IB827 -0.002 0.051 0.019 2.155

n_exp043 NB711 -0.002 0.051 0.019 1.982

n_exp044 NB816 -0.002 0.051 0.019 1.947

Table 3.6: The photo-z statistics obtained for the feature sets that include visual, UV
and IR broad bands, complemented with an indicated narrow band.

3.3.4 Colours vs. magnitudes

The major part of the redshift information is contained in the slope of the SED rather

than in magnitude values themselves. For this reason, photo-z codes commonly use

colours instead or together with magnitudes. For ML photo-z algorithms, it is an open

question whether using colours is any better or worse than using magnitudes. From one

point of view, in ML tasks, suitable feature engineering simplifies the algorithms’ job and

sometimes allows to significantly improve the performance. From another point of view,

ML algorithm should be able to determine the utility of such simple ’composite feature’

as the magnitude differences by itself. At the same time, other magnitude relations,

e.g. ratios or colours obtained between non-adjacent bands, can hold some redshift
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Exp ID Description N features Mean σ∆z NMAD η0.15

c_exp023 colours: Vis 5 -0.002 0.054 0.021 2.155

c_exp024 colours: Vis, UV 6 -0.001 0.051 0.020 2.034

c_exp025 colours: Vis, IR 8 -0.004 0.052 0.020 2.051

c_exp026 colours: Vis, UV, IR 9 -0.001 0.051 0.020 2.016

Table 3.7: Photo-z performance with feature sets based on colours obtained for visual,
UV and IR broad bands.

information as well. By using only simple adjacent-band colours, we might prevent the

model from learning more complex dependencies.

We tested the performance of MLPQNA using colours instead of magnitudes for the

four main cases of wavelength coverage, e.g. for the visual part of the spectrum, vi-

sual+UV, visual+IR and visual+UV+IR (see Tab. 3.7). The results are essentially the

same as when magnitudes were used; however, in the case of ’full coverage’ feature set

(visual+UV+IR), magnitude-based feature set brings slightly lower NMAD than colours-

based (0.018 for magnitudes-based, 0.020 for colours-based).

3.3.5 Automatic feature selection

Apart from testing physically motivated feature sets, I performed some experiments with

automated feature selection algorithms. There are plethora of such algorithms, which

are often split in three categories:

• Filter methods. These methods are the most general and computationally inexpen-

sive; essentially, they measure the correlation between each of the feature and the

target value, and the features with the highest correlation coefficient are considered

most useful. I used the simplest Pearson’s correlation matrix.

• Wrapper methods. These approaches iteratively add or remove features to/from

feature sets, using performance of some ML algorithm as a criterion for whether

the feature is important. To obtain best results possible, the feature relevance

metric should be based on the same ML method that will be used in the the

end for the target prediction. However, often it is impossible because the ML

model is computationally expensive and training it at every iteration of the feature

selection process would take too long. For example, this is true for MLPQNA.

For this reason, I used a basic Random Forest (RF) regression model with default
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sklearn settings (100 estimators with no limit for the maximum depth of the tree),

combining it with the Recursive Feature Elimination (RFE) algorithm.

• Embedded methods. These methods are also iterative; at every iteration they eval-

uate the relevance of the features and remove those that are less useful than a pre-

defined threshold. I used Parameter handling investigation LABoratory (ΦLAB)

method, presented in Delli Veneri et al. [2019] and Brescia et al. [2019]. This

method combines embedded and filter approaches; it uses so called shadow fea-

tures, the noisy copies of the real ones [Kursa and Rudnicki, 2010], to determine

feature importance threshold, and Naive LASSO (Least Absolute Shrinkage, Tib-

shirani [2012]) regularization to remove least relevant features.

The selection with Pearson’s correlation matrix and RFE was performed using Python

sklearn implementations and only on magnitudes and colours taken from the adjacent

broad band magnitudes. Feature selection with ΦLAB also investigated all possible

differences and ratios between all magnitudes, since their production is part of our im-

plementation of the code. In every case, ten most relevant features were selected, in

order to provide a fair comparison with the baseline feature set composed of ten broad

bands.

Tab. 3.8 reports the results of the photo-z experiments with the feature sets derived by

these automatic methods.

In comparison with the baseline feature set composed of all ten broad bands, the feature

set selected with correlation matrix performs the worst. From the physical point of

view it is not surprising; the selected features are mostly narrow bands, which might

correlate with spec-z, but are not sufficient to detect Balmer break. Looking at the

correlation matrices themselves (Fig. 3.9 and Fig. 3.10), we can also get some insight on

why correlation-based feature selection methods are in general not the best choice for

the photo-z task. Traditionally, apart from checking how various features correlate with

the target value, it is useful to check how they correlate with each other and select such

a feature set that its inner correlation was minimal. This additional step helps to reduce

redundancy and minimize the dimensionality of the parameter space. However, in the

case of photo-z, photometric bands (especially adjacent ones) are bound to correlate with

each other, due to the fact that they are the points on a smooth and mostly monotone

galaxy SED. Consequently, removing one of the features from the highly correlated pair

would break the most useful feature pairs. For example, the correlation matrices for

the broad and narrow bands (Fig. 3.9) show that these feature sets in general have

more ’internal correlations’ between their features than colour-based (Fig. 3.10), yet in

the experiments with MLPQNA using colours does not bring any better results than
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Photo-z method Feature selection Bands Mean σ∆z NMAD η0.15

MLPQNA Baseline (exp006)
B, H, J, Ks, V, Y,
ip, r, u, zpp -0.002 0.048 0.018 2.138

MLPQNA CorrMatrix

IB574, V, IA527,
IA624, IB505, r,
IA484, IA679, r-ip,
IB464

-0.004 0.072 0.028 4.050

RF Baseline (exp006)
B, H, J, Ks, V, Y,
ip, r, u, zpp -0.004 0.059 0.026 2.710

RF RF-RFE

IB574, u-B, B-V,
V-r, r-ip, ip-zpp,
zpp-Y, Y-J, J-H,
H-Ks

-0.002 0.055 0.017 2.360

MLPQNA RF-RFE

IB574, u-B, B-V,
V-r, r-ip, ip-zpp,
zpp-Y, Y-J, J-H,
H-Ks

-0.002 0.051 0.023 2.103

MLPQNA ΦLab

u/B, r-ip, B/V, u-B,
IA527/IA624, H-Ks,
IA679-IA738, V-r,
IB464/IB505, V/r

-0.003 0.051 0.024 1.959

Table 3.8: Photo-z quality for feature sets obtained with automatic feature selection.

using magnitudes. Similarly, all IR bands show high internal correlation, as well as

high correlation with the IR zpp magnitude which I arbitrary included in the ’visual’

feature set; still, adding the four IR bands J, H, Y, Ks improves the photo-z quality in

comparison with visual-only feature set, and this improvement is higher than if we add

only one IR band.

To test the next feature selection method, I first used RF in basic configuration with the

baseline feature set (Tab. 3.8, third row), and then re-trained the same model on the RFE-

selected features (Tab. 3.8, fourth row). With the baseline feature set, RF performed

noticeably worse than MLPQNA (RF produced photo-z with NMAD = 0.026, NMAD

of MLPQNA was 0.018). The RFE-selected features lowered the NMAD obtained with

RF to 0.017. With MLPQNA, however, this feature set performed worse than baseline,

producing NMAD = 0.023. Curiously, the RFE-selected features are mostly colours with

an addition of one narrow band. The different behavior of RF and MLPQNA with the
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Figure 3.9: Feature correlation matrices for broad and narrow bands. During feature
selection process all correlation matrices were analyzed together; the split for three

matrices is done only for the sake of more clear visualization.
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Figure 3.10: Feature correlation matrix for colours. Unlike two previous correlation
matrices, this one has two features with anti-correlation with spec-z: u-B and B-V;

however, for our purposes only their absolute values are important.

two feature sets, magnitudes-based and colour-based, demonstrates the importance and

model-dependence of correct feature selection.

Finally, the MLPQNA was trained with the features selected by ΦLAB. The most rel-

evant features selected by this algorithm are all ratios and differences between adjacent

broad bands or between narrow bands withstanding from each other by one narrow band.

Similarly to the other feature selection methods, the results with this feature set is worse

than with the ordinary baseline magnitudes.

Despite the generally negative results of the feature selection experiments, it brings

some useful insights that might help with further, more elaborate study in this direction.

First of all, it is clear that in the case of photo-z task, filtering methods are unlikely to

be useful for feature selection. On the other hand, the serious improvement of RF per-

formance with the RFE-selected features together with an absence of such improvement

in the case of MLPQNA suggests that the development of a faster implementation of

wrapper method for MLPQNA should be the preferred approach.

3.3.6 Outlier analysis

Keeping in mind that COSMOS2015 has exceptionally rich and well-calibrated photom-

etry, one could expect to obtain photo-z catalogue of high precision. Our expectations

were also based on the very precise results obtained with SED fitting in Laigle et al.

[2016], and on the fact that in previous works (e.g. done for SDSS-DR9 [Cavuoti et al.,
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ML photo-z SED photo-z

spec-z bin Num objects σ∆z NMAD Mean η0.15 σ∆z NMAD Mean η0.15

[Overall] 5967 0.048 0.019 -0.0023 1.64 0.094 0.011 -0.0041 2.23

[0.0; 0.2] 422 0.1 0.027 -0.0416 8.29 0.278 0.012 -0.0552 7.82

[0.2; 0.4] 1445 0.043 0.016 -0.0081 1.31 0.056 0.008 -0.0034 1.94

[0.4; 0.6] 1158 0.038 0.016 0.0003 1.04 0.067 0.01 -0.0002 2.07

[0.6; 0.8] 1489 0.036 0.018 0.0001 1.01 0.052 0.012 0.0002 1.48

[0.8; 1.0] 1085 0.032 0.019 0.0041 0.55 0.044 0.014 0.0057 1.2

[1.0; 1.2] 368 0.051 0.028 0.0292 2.99 0.094 0.027 -0.0068 3.53

Table 3.9: Statistics for the test set calculated in spec-z bins. ML photo-z used here
were obtained during the exp007 from Tab. 3.3 using ten broad and one medium bands.

2017b] and KiDS [Brescia et al., 2014]), MLPQNA generally performed on a comparable

or better level than other photo-z algorithms.

Yet, in all the experiments, reported in Tab. 3.3, the accuracy achieved in previous

works was not reached. In particular, σ(∆zML) and percentage of outliers are noticeably

higher than those reported in the aforementioned papers for KiDS and SDSS-DR9. It is

especially strange that the addition of the IR and UV bands (see Tab. 3.3 exp002 and

exp006, exp007 and exp008) does not significantly reduce the percentage of outliers,

despite the fact that it should have been able to break colour-redshift degeneracy, one of

the most common sources of catastrophic outliers.

The COSMOS2015 is deeper than the catalogues used in those publications, and it

combines photometry coming from various sources, so the deterioration of the overall

statistics could be attributed to the issues of photometry calibration or the quality of

spectroscopy for the high-z sources. But even for low-z galaxies (i.e. with zspec < 0.5),

both the percentage of outliers and σ(∆zML) turned out to be of lower quality (see

Tab. 3.9).

These photo-z outliers can be degenerate solutions, exotic objects or misinterpreted spec-

tra (e.g. false outliers), and thanks to the fact that some objects in our main spec-z

catalogue contain more than one spec-z measurement, we can try to disentangle these

contributions. In order to do this, I selected objects with more than one measurement of
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spec-z and calculate maximum difference between these measurements, calling it spec-z

scatter. Then I calculated the percentage of outliers separately for objects with a sin-

gle spec-z measurement, multiple measurements and small (< 0.1) scatter, and multiple

measurements and large (≥ 0.1) scatter. Tab. 3.10 reports these calculations for ML and

SED fitting photo-z.

From this table we can deduce several facts:

1. For the objects with multiple spec-z values the percentage of outliers for ML and

SED fitting photo-z is essentially the same.

2. For the objects with small spec-z scatter this percentage is significantly lower

(η0.15 ∼ 0.2%) than for the objects with large spec-z scatter (η0.15 ∼ 11%).

3. For the objects with single spec-z measurement the percentage of outliers for SED

fitting is ∼ 50% higher than for ML.

The most probable explanation here is that for the photo-z outliers with large spec-z

scatter, the specific spec-z measurement used to estimate the photo-z residual is incorrect.

Consequently, the majority of such outliers are likely to have correct photo-z predictions.

It also implies that some percentage of the outliers with single spec-z measurements

should be attributed to incorrect spec-z measurements. At the same time, we should not

assume that the percentage of incorrect spec-z measurements in this group is the same

as for the objects with multiple measurements, since there is no guarantee of similarity

of the selection functions for these two categories of objects.

Instead, I used the SOM cleaning procedure, described in § 3.2.4, to select a set of objects

with reliable spec-z even without multiple spec-z measurements.

3.4 Photo-z after in-cell outlier cleaning with SOM

3.4.1 Spec-z in-cell outliers

We train the SOM, using the KB with the set of broad bands that gave us the best re-

sults for the MLPQNA experiments (B,H,J,Ks,V,Y,ip,r,u,zpp, exp006 from Tab. 3.3).

Fig. 3.12 shows the resulting SOM map, colour-labelled with, respectively, the mean and

standard deviation of spec-z and ML and SED fitting photo-z. In order to discard objects

with anomalous spec-z values, I calculated the in-cell spec-z outlier coefficients Kspec for

each source, as defined in Eq. (3.1); then I binned the whole KB according to the value of

this coefficient and calculate the statistics of photo-z residuals for each bin. This allows
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ML photo-z SED photo-z

Case Num objects Num outliers % outliers Num outliers % outliers

Total 5967 98 1.64 133 2.23

Single measurement 3745 63 1.68 98 2.62

Multiple measurements,
spec-z scatter <0.1 1945 4 0.21 5 0.26

Multiple measurements,
spec-z scatter ≥ 0.1 277 31 11.19 30 10.83

Table 3.10: Statistics for ML and SED outliers for the test set of the KB for objects
with different number and scatter of spec-z measurements.

us to check how the quality of photo-z correlates with similarity between the spec-z of a

given source and the mean spec-z of its BMU.

Fig. 3.11 shows that the majority of the objects have relatively small Kspec (second row

of the figure), and the statistics are much better for them than for the objects with larger

absolute values of Kspec.

In the majority of the bins ML photo-z’s have lower standard deviations (third row from

the top) and lower percentage of outliers (last row from the top) than SED photo-z’s, but

higher NMAD (fourth row). Predictably, mean residuals (second row from the bottom)

have inverse correlation with Kspec, implying that photo-z predictions, for objects with

spec-z lower than the median spec-z of their BMU, are biased towards higher values, and

vice versa.

By limiting our dataset to galaxies with absolute value of Kspec smaller than 1, we re-

duce the percentage of outliers from 1.64 to 0.19 for ML photo-z and from 2.23 to 0.7

for SED fitting. The standard deviation of residuals also is reduced by a factor ∼ 2 (see

Tab. 3.12).

Remarkably, after this cleaning the statistics are effectively the same as for the objects

with multiple spec-z measurements and low spec-z scatter. In other words, removing

in-cell anomalous spec-z leaves us with a reliable set of spec-z with no need to use re-

peated spec-z measurements, and this set is twice as large as the one with multiple

measurements.

Tab. 3.11 shows that while the percentage of outliers for the ML photo-z drops not only

for the objects with large spec-z scatter, but for other categories as well, for the SED

fitting the improvement for the objects with single spec-z measurement is weaker.
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ML photo-z SED photo-z

Case Num objects Num outliers % outliers Num outliers % outliers

Total 4311 8 0.19 30 0.70

Single measurement 2683 5 0.19 24 0.89

Multiple measurements,
spec-z scatter <0.1 1468 0 0.00 1 0.07

Multiple measurements,
spec-z scatter ≥ 0.1 160 3 1.88 5 3.12

Table 3.11: Statistics for ML and SED outliers for the test set of the KB for ob-
jects with different number and scatter of spec-z measurements after removing in-cell

anomalous spec-z (|Kspec| ≤ 1).

3.4.2 Photo-z cleaning with SOM

Taking into account that the run dataset does not contain spec-z, it appeared useful

to check whether the quality of the dataset could be improved by using photo-z in-

cell anomaly detection instead of spec-z. To do so, I calculated outlier coefficients for

SED and ML photo-z (KSED and KML correspondingly), and applied the same filtering

using these coefficients instead of Kspec. It turns out that such filtering improves the

overall statistics, even though less than the Kspec cleaning (upper half of Tab. 3.12). As

expected, the relative improvements are stronger for the SED fitting photo-z than for

the ML photo-z; in § 3.7.3 I will discuss this aspect in more detail.

3.5 Calibration of the datasets with SOM

3.5.1 Calibration of the DEIMOS dataset

Before applying the trained MLPQNA model to the run dataset, we have to discard

galaxies that are not photometrically similar to the galaxies of the train dataset. To

estimate the performance of such photometry cleaning, I used the DEIMOS dataset.

Considering that the DEIMOS dataset is slightly deeper than the train dataset, we

can expect that the cleaning process will mostly remove faint objects. Fig. 3.13 shows

occupation maps for the train, test, DEIMOS and run datasets, respectively. For each

object of the test, DEIMOS and run datasets I derive the occupation of its BMU by

the galaxies of the train dataset. As expected, Fig. 3.18 demonstrates that the statistics

tends to be better for cells with higher occupation by the train dataset. Based on the
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Figure 3.11: Statistics for the test and DEIMOS datasets in Kspec bins before and
after occupation map filtering. Bins with number of objects < 15 are considered to be

unreliable and excluded from these plots.

statistics for the DEIMOS dataset (right panel of Fig. 3.18), I chose to leave only the

objects that belong to the cells with occupation > 5, since more strict criteria do not

bring further improvements.

Tables 3.12 and 3.13 report the overall statistics for the test and DEIMOS datasets,

respectively. The statistics are given for the different stages of cleaning, including the

cases of combination of cleaning with occupation map and removal of the objects with

anomalous spectroscopic or photometric redshifts. From these tables, we see that the

effect of occupation filtering is much stronger for the DEIMOS than for the test dataset

(since the test dataset by construction covers the same regions of the parameter space
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Figure 3.12: SOMs built and labelled with KB. The first two rows from the top
illustrate mean and standard deviation of the redshifts (spectroscopic on the left, ML
in the center and SED fitting on the right) within each cell. The fourth and fifth rows
illustrate mean and standard deviation of residuals: on the left are the maps calculated
for the residuals between ML and SED fitting photo-z, in the center and on the right are
the residuals for ML and SED fitting photo-z. The last plot reflects how many objects
are within each cell. Black cells on the occupation and mean maps imply that these
cells are empty. On the maps of standard deviation black cells mean that occupation

of the cell equals 1 and standard deviation cannot be calculated.
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ML photo-z SED photo-z

Filtering Num objects σ∆z NMAD Mean η0.15 σ∆z NMAD Mean η0.15

No filtering 5967 0.048 0.019 -0.0023 1.64 0.094 0.011 -0.0041 2.23

|Kspec| ≤ 1 4311 0.025 0.017 0.0002 0.19 0.052 0.01 0.0006 0.7

|KML| ≤ 1 4071 0.045 0.018 -0.002 1.28 0.077 0.01 -0.0026 1.65

|KSED| ≤ 1 4133 0.043 0.018 -0.002 1.06 0.061 0.01 -0.0021 1.43

trainMapOccupation > 5 5167 0.041 0.018 -0.0021 1.18 0.058 0.01 0.0001 1.49

Kspec + trainMapOccupation 3761 0.022 0.016 -0.0002 0.05 0.05 0.009 0.0018 0.35

KML + trainMapOccupation 3587 0.039 0.017 -0.0015 1.06 0.062 0.01 -0.0003 1.17

KSED + trainMapOccupation 3624 0.038 0.017 -0.0016 0.94 0.038 0.01 0.0002 0.99

Table 3.12: Statistics for ML and SED fitting photo-z calculated for the test dataset
after different types of filtering. The upper part of the table presents the statistics
calculated for the dataset without spec-z and photo-z outliers. The lower part reports

the effects of photometric filtering with occupation map.

Figure 3.13: Occupation maps for all datasets projected on SOM trained with run
dataset.
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ML photo-z SED photo-z

Filtering Num objects σ∆z NMAD Mean η0.15 σ∆z NMAD Mean η0.15

No filtering 2255 0.099 0.032 0.0347 10.86 0.142 0.014 -0.0082 5.06

|Kspec| ≤ 1 1075 0.035 0.02 0.0018 1.02 0.127 0.011 -0.0103 2.88

|KML| ≤ 1 1209 0.095 0.033 0.0392 12.57 0.09 0.013 -0.0031 4.55

|KSED| ≤ 1 1183 0.085 0.029 0.0245 8.96 0.078 0.013 0.0005 3.3

trainMapOccupation>5 1382 0.058 0.023 0.0127 2.1 0.059 0.012 0.0085 2.68

Kspec + trainMapOccupation 758 0.025 0.018 0.0017 0.13 0.031 0.01 0.0038 0.92

KML + trainMapOccupation 724 0.064 0.022 0.0136 1.93 0.06 0.011 0.008 2.62

KSED + trainMapOccupation 741 0.046 0.02 0.0063 1.48 0.044 0.011 0.0075 1.89

Table 3.13: Statistics for ML and SED fitting photo-z for the DEIMOS dataset after
different types of filtering. Upper part of the table describes statistics after spec-z and
photo-z outlier removal, while the lower part reports the effects of photometry filtering

with occupation map.

as the train dataset). Still, even on the test dataset the effect of the filtering with

occupation map is comparable or better than the effect of the filtering of the photo-z

anomalous sources. Also, occupation map filtering is more cost-effective in a sense that

it discards much less objects than spec-z or photo-z anomalous source filtering.

From Tab. 3.13 we see that without any filtering applied to the DEIMOS dataset, our

ML photo-z has worse indicators than SED photo-z. This can be easily understood by

remembering that part of the DEIMOS dataset lays outside of the parameter space of

the train dataset. But for objects that belong to the cells with good occupation, the

percentage of outliers and standard deviations for both ML and SED fitting photo-z are

very close.

After additional spec-z anomalous source filtering, the statistics improves even more and

reaches approximately the same values as for the KB; the scatter plots in Fig. 3.14 clearly

illustrate the improvement.

3.5.2 Calibration of the run dataset

The COSMOS2015 contains ∼ 500 000 galaxies. After the standard preprocessing de-

scribed in § 3.1 and excluding objects that belong to the KB, the run catalogue consists

of ∼ 190 000 galaxies. For all these galaxies, I calculated ML photo-z, and in order to

determine the reliability of these redshifts, I calculatedKSED, KML and the occupation of

their BMU by the objects in the train dataset, as described in the previous subsections.
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Figure 3.14: Scatter plots of ML and SED fitting zphot against zspec. In the first
column on the left are the datasets before SOM filtering procedures, in the second
column are the results after only zspec outlier filtering, in the third are the plots after
only occupation map filtering, and in the last column are the datasets after the two
cleaning together. The dotted lines show outlier boundaries defined as zphoto = zspec±
0.15 · (1 + zspec). The first two rows show the results for the test and DEIMOS datasets
limited to zspec < 1.2 and zphot < 1.2. It can be seen that the two cleaning procedures
remove different outliers. The last row demonstrates the predictions for the DEIMOS
for the whole range of redshifts. It can be seen that both ML and SED fitting require
occupation map filtering to select the objects with good predictions. Without it SED
fitting produces a lot of catastrophic outliers in the whole range of zspec, and ML
systematically fails for the objects with zspec > 1.2. Another observation to make is
that the cleaning procedures are most effective against those outliers for which the
predicted redshifts are higher than zspec, while the objects with underestimated zphot

are likely not to be removed.
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DEIMOS dataset Run dataset

Filtering N obj σ∆z NMAD Mean η0.15 N obj σ∆z NMAD Mean η0.15

No filtering 2255 0.102 0.033 0.0355 11.35 194509 0.238 0.129 0.1373 40.23

|Kspec| ≤ 1 1075 0.07 0.023 0.0049 2.88 NA NA NA NA NA

|KML| ≤ 1 1209 0.088 0.034 0.0392 11.75 137152 0.225 0.11 0.1243 37.76

|KSED| ≤ 1 1183 0.072 0.03 0.0224 7.44 146773 0.206 0.101 0.1217 34.93

trainMapOccupation> 5 1382 0.047 0.023 0.0031 1.52 43279 0.083 0.028 -0.0019 3.59

Kspec + occupation map 758 0.036 0.02 -0.0028 0.92 NA NA NA NA NA

KML + occupation map 724 0.043 0.022 0.0048 0.97 33296 0.08 0.028 -0.0029 3.48

KSED + occupation map 741 0.03 0.022 -0.0015 0.27 35189 0.056 0.026 -0.0031 2.17

Table 3.14: Statistics for ML/SED residuals for the DEIMOS and run datasets after
different types of filtering. Upper part of the table describes statistics after spec-z
and photo-z outlier removal, lower part reports the effects of photometry filtering with
occupation map. Taking into account that for the run dataset spectral information is

absent, the rows corresponding to spec-z cleanings for run dataset are empty.

Since we do not have spec-z for the galaxies in the run dataset, we can only perform

an accuracy test comparing SED and ML photo-z. To do so, I construct ML/SED

residuals ∆zML/SED = (zSED−zML)/(1+zSED). Obviously, such a test suffers from biases

introduced by both photo-z methods, so it can be used only for qualitative estimation of

the photo-z robustness.

Tab. 3.14 compares the statistics for ML/SED photo-z residuals for the DEIMOS and run

catalogues after applying different filters. The dataset calibration with occupation map

appears to be the most important step, since it allows to reduce the percentage of outliers

by almost an order of magnitude. Removal of SED fitting photo-z anomalous sources

also improves the statistics. Maximum improvement for both datasets is achieved by a

combination of occupation map filtering and removal of SED fitting photo-z anomalous

sources. It reduces the percentage of outliers from 11% to 0.27% for the DEIMOS dataset,

and from 40% to 2% for the run dataset. σ(∆z) for the DEIMOS drops from 0.102 to

0.03, and from 0.238 to 0.056 for the run dataset. NMAD changes from 0.033 to 0.022

for the DEIMOS dataset and from 0.129 to 0.026 for the run dataset.
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3.6 A purely data-driven selection of the reliable spec-zs

The successful removal of the unreliable spec-z measurements, described in § 3.4, suggests

a possibility to create a data-driven complement for the quality flags system. This system

would not be able to replace the standard quality checks, but rather be an additional

check and a tool for choosing likely correct spec-z measurements from a sample of doubtful

ones.

The idea is to apply the SOM in-cell anomaly filtering to the full uncleaned spec-z sample.

By removing objects with high |Kspec| from this sample, I created a catalogue of galaxies

with spec-z values that are typical for their multi-dimensional colours. Obviously, there

are two issues with this approach. The first one is that in-cell anomaly cleaning only

removes galaxies with strongly mismatching redshift and colours, and does not detect

objects with non-catastrophic spec-z uncertainties. For this reason, the sample of galaxies

obtained with this methodology is expected to have higher scatter of residuals between

spec-z and true redshifts. And the second is that this cleaning is likely to remove rare

and anomalous objects, even if they have reliable spec-z. For some applications, such

as predicting photo-z with ML methods or mapping large-scale structure, this can be

acceptable, but for many astrophysical applications it will be not. However, in this cases

it is possible to expand the Q_f-selected catalogue with galaxies that have unreliable Q_f,

but low |Kspec|, which would provide a compromise between quality and completeness

in terms of galaxy types.

In order to test this idea, I prepared a spec-z sample where only objects with 0.01 <

zspec and zspec > 9, e.g. those that can be contaminated by stars and those without

measured spec-z, are removed; the AGN and quality flags cleaning, described in § 3.1.2,

was omitted. As a result, instead of 19 893 objects obtained after standard pre-processing,

we have a dataset of ∼ 30 630 objects. Then I trained SOM algorithm on this dataset

and remove in-cell spec-z outliers, using |Kspec| ≤ 1 criteria. This leaved us with 24 058

objects, which spec-z distribution is essentially the same as for the spec-z sample after

standard Q_f cleaning, with a slight overabundance in the high-redshift part of the

distribution (Fig. 3.15). It is also worth to remember that the criteria |Kspec| ≤ 1 is

somewhat arbitrary; choosing other threshold will allow to preserve even larger sample

at cost of lower reliability of the spec-z.

After that, I obtained photo-z for this sample, using the same MLPQNA setup as in

§ 3.3. For additional comparison, I also calculated photo-z for a random galaxy sample

of the same size, taken from the non-cleaned spec-z dataset.

Tab. 3.15 reports the results of these experiments in comparison with a baseline exper-

iment before and after in-cell spec-z anomaly cleaning. It shows that using only SOM
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Figure 3.15: Spec-z distribution for the test dataset with and without standard Q_f
cleaning

in-cell anomaly filtering, we are unable to obtain the same quality of photo-z as with

a combination of standard quality flag pre-processing and SOM filtering. However, for

the ML photo-z the difference is rather small; with the combined standard and SOM

cleaning, we have NMAD = 0.017 and η0.15 = 0.19, while with SOM-only cleaning the

statistics are NMAD = 0.018 and η0.15 = 0.56. This deterioration of statistics comes with

a benefit of increasing the size of the spec-z dataset by ∼ 67%. Remarkably, unlike ML,

SED fitting photo-z show noticeable degradation on this dataset; mean bias is worsened

by two orders, from 0.0006 to −0.0134, and percentage of outliers increases from 0.7 to

1.93. The experiment with a random sample taken from the uncleaned spec-z catalogue

demonstrates that without any form of data cleaning, photo-z quality is significantly

worse: for ML photo-z, the percentage of outliers is ∼ 4.3%, NMAD equals 0.025, and

mean bias is exceeding −0.005, and for SED fitting photo-z the percentage of outliers is

∼ 5.78%, NMAD equals 0.015, and mean bias is −0.0238.

Unsurprisingly, Tab. 3.16 shows that |Kspec| criteria and Q_f system have some rough

correlation. In the case of our spec-z sample, only five Q_f categories (1, 2, 3, 4, and

9) have enough objects to provide reliable statistics. Two of them, Q_f=3 and Q_f=4,

correspond to secure redshifts, Q_f=9 marks secure best-guess one-line redshifts, and

Q_f=1 and Q_f=2 mean insecure and probable redshifts correspondingly [Lilly et al.,

2009]. The percentage of objects with |Kspec| ≤ 1 differs for these categories from > 80%

for the reliable Q_f=3, 4 to ∼ 65% for Q_f=1. This result is unsurprising because the

Q_f system is calibrated with photo-z, and every photo-z algorithm in its core performs

some sort of analysis of the ’typicality’ of a redshift for the given colour combination, just

as SOM in-cell anomaly analysis does. The benefit of of SOM-cleaning is that it is both
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ML photo-z SED photo-z

Exp ID Description Num obj σ∆z NMAD Mean η0.15 σ∆z NMAD Mean η0.15

exp007 Baseline 5967 0.048 0.019 -0.0023 1.64 0.094 0.011 -0.0041 2.23

exp007-clean Baseline, Kspec ≤ 1 4311 0.025 0.017 0.0002 0.19 0.052 0.010 0.0006 0.7

d_exp027 ’Dirty’ spec-z, |Kspec| ≤ 1 7218 0.033 0.018 -0.0009 0.57 0.135 0.012 -0.0134 1.93

d_exp028 ’Dirty’ spec-z, random sample 7218 0.072 0.025 -0.0055 4.32 0.178 0.015 -0.0238 5.78

Table 3.15: Photo-z performance for the test sample with and without standard Q_f
cleaning. The first two rows describe baseline exp007 experiment, which was done on
the spec-z sample cleaned with standard Q_f criteria (§ 3.1.2), before and after SOM
in-cell spec-z anomaly filtering. The third row describes an experiment done on the
spec-z sample that was not cleaned with Q_f, but only with SOM in-cell filtering. The
last row reports an experiment done on a random sample from the spec-z catalogue

which was not cleaned neither with Q_f nor SOM in-cell filtering.

Q_f N obj % with |Kspec| ≤ 1 Q_f N obj % with |Kspec| ≤ 1

1 1085 65.3 12 1 100.0

2 8626 71.3 21 41 61.0

3 8378 81.5 22 53 84.9

4 11417 83.0 23 75 85.3

5 4 50.0 24 39 79.5

6 4 50.0 29 23 78.3

9 884 80.3

Table 3.16: Percentage of objects with |Kspec| ≤ 1 for different spec-z quality flags
(Q_f).

data-driven, i.e. not limited by the SED template library and SED fitting setup, and

easy to interpret and visualize, which is a rare quality for the ML photo-z algorithms.

3.7 Discussion

As I have shown in the previous section, there are several ways in which we can apply

SOM to improve the quality of the photo-z catalogues. In this section I compare the

effects of the SOM cleaning on ML and SED fitting photo-z (§ 3.7.1), consider the nature



Chapter 3 98

of spec-z and photo-z in-cell anomalies (§ 3.7.2 and § 3.7.3), and define general strategies

for using the SOM cleaning methodology on other datasets (§ 3.7.5).

3.7.1 SED fitting vs. ML

In all the experiments performed on the KB, the ML photo-z distribution has a lower

percentages of outliers and lower standard deviations than the SED fitting photo-z dis-

tribution, but higher NMAD (see Tab. 3.12). For the DEIMOS dataset, before SOM

filtering, the situation is different: ML photo-z have a significantly higher percentage of

outliers (∼ 11% against 5% for SED fitting), due to the fact that DEIMOS contains

many objects laying outside of the boundaries of the parameter space sampled by the

KB. Dataset calibration with occupation map discards the majority of these outliers and

the statistics of both ML and SED fitting photo-z become similar to those for the test

dataset (see Tab. 3.12 and 3.13). In particular, for ML σ∆z decreases from 0.099 to 0.058

(for the KB it equals 0.041), and for SED fitting σ∆z from 0.142 to 0.059 (0.058 for the

KB). The percentage of outliers also drops from 10.86% to 2.1% for ML photo-z (1.18%

for the KB) and from 5.06% to 2.68% for SED fitting (1.49% for the KB).

The difference between the two methods in terms of NMAD can be explained by the fact

that SED fitting methods benefit from the inclusion of the narrow-band photometry.

It allows the SED fitting methods to detect emission lines passing through a certain

wavelength range [Ilbert et al., 2009]. On the contrary, in the case of MLPQNA, the

same inclusion of the additional narrow bands does not lead to significant improvements

(Tab. 3.3). Earlier work by several authors (see e.g. Heinis et al. [2016] and Eriksen et al.

[2020]) demonstrated that inclusion of the narrow-band photometry generally improves

ML photo-z only after additional preparations, such as transfer learning or a extensive

preliminary feature selection.

Even after occupation map filtering and removing in-cell anomalous spec-z, SED fitting

produces a higher number of catastrophic outliers than ML. Also, the residuals for these

outliers are larger than for ML outliers (Fig. 3.14: for the test dataset the mean absolute

value of residuals for SED fitting catastrophic outliers is 0.35, while for ML outliers it’s

0.26; for the DEIMOS the mean absolute residual for SED fitting is 0.29, and for ML it’s

0.22). As can be seen from the second row of Fig. 3.12, the SOM map of the standard

deviations of SED fitting photo-z has a number of cells with significantly higher values

than appear on the σ(zspec) and σ(zML) maps. These are the cells where the majority

of the catastrophic outliers are located. From Fig. 3.16 it also can be seen that there

for SED fitting photo-z there is a localized group of catastrophic outliers which do not

disappear after dataset calibration with occupation map, but disappear after in-cell SED
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photo-z anomaly removal. It seems likely that these outliers appear due to the lack of a

suitable SED template or SED fitting failure.

A somewhat unexpected result is that SED fitting seriously benefits from occupation

map calibration. For the test dataset the percentage of outliers drops from 2.23% to

1.49%, while for DEIMOS it goes from 5.06% to 2.68%, which is even better than what

is obtained after spec-z filtering. One possible explanation to this is that the objects in

the areas of parameter space that are poorly covered by the spec-z catalogue are likely

to be faint and at a high spec-z, thus having a less reliable photo-z.

The aforementioned results for ML photo-z are obtained using only 10 broad and 1

medium band. In the case of SED fitting photo-z more than thirty (broad, medium

and narrow) bands were used; still, the statistics for SED fitting and ML are quite

close. It implies some consequences for the observational strategies of the future sur-

veys. Depending on the design of a survey, it can be more beneficial to invest resources

into obtaining either a larger spectroscopic KB with ML photo-z algorithms in mind,

or additional medium/narrow band photometry for SED fitting. Both decisions lead to

similar quality of the photo-z catalogue with some differences in the NMAD and in the

percentage of outliers. Obviously, obtaining both an extensive spectroscopic catalogue

and medium/narrow band photometry will allow to use both techniques and to increase

the reliability of the photo-z predictions (e.g. Cavuoti et al. [2017b], also see § 3.7.5).

3.7.2 Spec-z anomalous sources filtering

Removal of the spec-z anomalous sources drastically reduces the percentage of outliers

for both photo-z methods. As was shown in § 3.3, the photo-z outliers mostly appear to

be misinterpreted spectra, and removing them from the analysis makes the performance

estimation more correct. Yet, there are much more objects with high values of Kspec

than ML or SED fitting outliers. A question arises, what are all these objects.

Looking at Fig. 3.11, we can see that in general the statistics (including NMAD, which

is less sensitive to hard outliers) deteriorate smoothly with the increase of the absolute

value of Kspec. This smooth dependency is present not only for ML photo-z, but for SED

fitting photo-z as well. It means that within each cell of SOM (which represents a small

hyper-volume in the photometric parameter space), both ML and SED fitting perform

better for "typical" spec-z than for atypical ones. This is true even for those regions of

parameter space that are well-covered by the spec-z catalogue. In other words, Kspec

works as an additional, finer indicator of whether a given galaxy is well-represented in

the spectroscopic KB. However, it is not completely clear to what degree this ’under-

representation’ has some physical ground, and to what degree it is simply a consequence
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Figure 3.16: Correlation plots of ML and SED fitting photo-z residuals. Left panel:
the test dataset, right panel: the DEIMOS. Several groups of object are present. On the
left panel there is an evident diagonal stripe of objects for which ML and SED fitting
predictions are very close, but different from spec-z values. This stripe disappears
on the third row, where in-cell spec-z anomalies are removed. There is also a clearly
distinguishable group of objects with resid_ML ∼ 0 and resid_SED ∼ 0.2; using the
terminology from § 2.8.1, they appear to be localized outliers, some type of objects that
are represented in the KB (and well-learned by the MLPQNA), but not represented in
the SED library. This group is also present in the plots from the right panel. These
objects disappear when SED in-cell anomaly are removed (bottom row). Finally, on the
top plot in right panel there is a group of objects for which ML predictions are much
worse than SED fitting ones; these objects disappear both after dataset calibration with

occupation map (second row) and in-cell spec-z anomaly removal (third row).
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of the fact that every photo-z code makes redshift predictions with a resolution which is

rougher than the resolution of spec-z measurements.

In any case, removing objects with highKspec allows us to create a reliable spec-z sample,

useful for comparing the performance of different photo-z algorithms. In our case, for the

test dataset this sample is more than two times larger than the set of the objects with

multiple spec-z measurements that are in good agreement with each other. The usage

of this method seems to be highly beneficial for the preparation of any future compound

spec-z catalogues, and possibly for the verification of the new spec-z surveys against the

old ones.

3.7.3 Photo-z anomalous sources and occupation map filtering

To clean photo-z values for the run dataset, the only possibility is to use KML or KSED

to discard either ML or SED fitting photo-z anomalies. However, the performance is dif-

ferent in the two cases. As it can be seen from Tab. 3.12 and 3.13, discarding SED fitting

anomalies improves the statistics slightly more than removing ML anomalous sources.

Obviously, this is related to the large percentage of outliers obtained in SED fitting

photo-z and to their large residuals.

On the DEIMOS dataset, photo-z anomalous sources filtering, together with occupa-

tion map cleaning allows to reach σ∆z ≈ 0.046 and percentage of outliers ≈ 1.48% for

ML photo-z, and σ∆z ≈ 0.044 and percentage of outliers ≈ 1.89% for SED fitting. At the

same time, for ML/SED residuals on the DEIMOS the same cleaning procedure brings

σ∆z ≈ 0.03 and percentage of outliers ≈ 0.27%, which is quite close to the statistics

for ML and SED photo-z after occupation map filtering together with removing spec-z

anomalous sources.

Fig. 3.19 shows the values of different statistics in ipmagap3 magnitude bins at different

stages of cleaning of the DEIMOS dataset. As expected, with occupation map calibra-

tion the improvements are mostly achieved due to the filtering in the fainter part of

magnitude distribution. Instead of completely loosing the faint objects, as it would have

happened if we used the traditional cut-off procedure, we are preserving those which have

fairly good quality of photo-z predictions. Fig. 3.20 shows the same picture for the run

dataset. For what the standard deviation is concerned, the difference appears for objects

fainter than ipmagap3 ∼ 21, but the most significant effect is observed for objects with

ipmagap3 > 23.
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3.7.4 Potential biases introduced by SOM cleaning procedures

Every astrophysical or cosmological application has different requirements to the selection

function of the redshift sample. For example, for weak lensing analysis, it is primarily

the size of the sample in each redshift bin, which should be large enough to provide

high statistical reliability, low mean bias and percentage of catastrophic outliers, which

is needed to minimize systematic errors of cosmological parameters, and reliability of the

redshift quality estimators, to correctly account for these systematics. For other tasks,

such as studying luminosity functions of certain types of objects, the completeness of the

sample becomes more important. In any case, in order to obtain meaningful scientific

results, it is necessary to take into account the biases introduced by the data cleaning

procedures.

As can be seen from Fig. 3.19, all cleaning procedures change magnitude distribution of

the sample: fainter objects have much higher chances of being discarded. However, as

can be seen from the upper panel of Fig. 3.17, the normalized distribution of spec-z of

the test sample does not change much. In comparison to the redshift distribution before

SOM cleaning, the distribution after such cleaning has a sharp diminishing of the number

of objects with zspec < 0.02 (considering the high percentage of outliers in the closest

redshift bin, evident from e.g. Tab. 3.9, one might suspect some residual contamination

by stars, perhaps introduced during crossmatch of photometric and spectroscopic cata-

logues), and much softer decline of the relative share of objects with 1 < zspec < 1.2,

but the shape of the middle part of the distribution remains intact. The lower panel

of Fig. 3.17 shows that in the case of the DEIMOS, the SOM cleaning procedures do

exactly what they are supposed to do: remove objects with zspec higher than 1.2, which

was the limit for the KB. Similarly to the distribution for the test sample, some decline

of the percentage of objects at the tails of the distribution is present, and the middle

part of it remains essentially unaffected.

The cut of the total size of the spec-z sample is a serious downside of the method,

especially for the cosmological applications. On the other hand, as I have shown in § 3.6,

SOM in-cell anomaly filtering can be used to increase the size of the sample, if one is

willing to sacrifice rare types of objects and accept potentially higher scatter of spec-z

uncertainties.

3.7.5 Filtering strategies

The optimal strategy of the data cleaning with SOM depends on the nature of a dataset

and on the task at hand:
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Figure 3.17: Spec-z distributions before and after SOM cleaning.

• Identification of spec-z anomalous sources is useful for finding unreliable spec-z and

under-represented objects.

• Identification of photo-z anomalies allows us to improve the quality of a photo-z

catalogue, especially for SED fitting photo-z. It can be applied to the run catalogue

(i.e., for objects without spectral information), but this procedure is effective only

for datasets that are well sampled by the KB.

• For the run datasets that are not well sampled by the KB, SOM filtering with an

occupation map is the most important step. It leads to significant improvements

not only in the case of ML based methods but also in the case of SED fitting.

In this work I used all three types of cleaning with the following thresholds:

1. spec-z anomalies filtering: Kspec ≤ 1.

2. Occupation map filtering: trainMapOccupation > 5.

3. photo-z anomalies filtering: KSED ≤ 1.
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Test dataset DEIMOS dataset

Photo-z Num objects σ∆z NMAD Mean η0.15 Num objects σ∆z NMAD Mean η0.15

ML 3508 0.021 0.016 -0.0001 0.03 725 0.024 0.018 0.002 0

SED 3508 0.049 0.009 -0.0001 0.06 725 0.027 0.009 0.0022 0.55

Mixed 3508 0.018 0.009 0.0012 0.03 725 0.017 0.01 0.0051 0

Table 3.17: Statistics for ML, SED fitting and mixed (selected based on the ML/SED
residual value) residuals for the test and DEIMOS datasets. Both datasets were cleaned

with the following conditions: trainMapOccupation > 5, |Kspec| ≤ 1, |KSED| ≤ 1.

4. In cases when better NMAD is needed and percentage of outliers is less critical, SED

fitting photo-z are preferable. For the tasks that demand the lowest percentage of

outliers, ML photo-z show better results. Finally, it is possible to choose between

the two values of photo-z: when photo-z predictions are similar (based on the grid

search on the test and DEIMOS datasets, it is recommended to use the criteria

of ML/SED residual < 0.5), it is better to select SED fitting value, and when the

residual is > 0.5, ML photo-z are more likely to be correct. Tab. 3.17 reports the

statistics for photo-z selected in this way for the test and DEIMOS datasets. With

such selection we obtain both good NMAD and low percentage of outliers.
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Figure 3.18: Dependency of the statistics for the test and DEIMOS datasets from
the occupation of their BMU by objects from train dataset. The x-axis is limited to
occupation ≤ 80 since there are not enough objects in the cells with bigger occupations

to calculate reliable statistics.
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Figure 3.19: Statistics for the DEIMOS datasets in ipmagap3 bins after applying
different filters. Left panel: ML photo-z residuals, right panel: SED fitting photo-z
residuals. Bins with number of objects < 15 are considered to be unreliable and excluded

from these plots.
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Figure 3.20: Statistics for ML/SED residuals for run dataset in ipmagap3 bins af-
ter applying different filters. Bins with number of objects < 15 are considered to be

unreliable and excluded from these plots.
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Conclusion

In this work, ML photo-z for the COSMOS2015 catalogue were calculated for the first

time; it was done using MLPQNA algorithm. For the training and testing I used multi-

instrument spectroscopic KB with zspec ≤ 1.2 and various sets of photometric bands,

obtaining the best results with a feature set composed by 10 broad and 1 narrow bands.

The comparison of the statistics for ML photo-z and SED fitting photo-z, calculated by

Laigle et al. [2016] using the whole set of COSMOS2015 bands, showed that ML photo-z

has lower percentage of outliers and σ∆z, but higher NMAD. Particularly, for the test

dataset without additional SOM cleaning MLPQNA produces photo-z with σ∆z = 0.048,

NMAD = 0.019 and η0.15 = 1.64%, while SED fitting photo-z has σ∆z = 0.094, NMAD =

0.011 and η0.15 = 2.23% (Tab. 3.12).

Unlike SED fitting algorithms, the ML photo-z algorithm does not significantly benefit

from the inclusion of the most medium and narrow photometric bands (Tab. 3.3 and

§ 3.3.3). To check this, I used various feature sets, chosen from general physical reasoning

as well as from the results of the experiments with automatic feature selection algorithms

(§ 3.3.5). Finding a way to exploit the information contained in those bands should be

a subject of further work.

The experiments demonstrated that a significant percentage of outliers have similar val-

ues of ML and SED fitting photo-z. By analysing the objects with multiple spec-z

measurements, I discovered that the majority of such outliers have unreliable spec-z val-

ues, which makes it likely that the photo-z prediction for these objects are correct and

the actual percentage of outliers for both photo-z methods is significantly lower. On

the subset of galaxies with multiple similar spec-z measurements, η0.15 ∼ 0.2% for both

photo-z methods.
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I tested the possibility of using Self-Organizing Maps (SOM) for removing unreliable

spec-z and creating a high-quality spec-z sample. To do this, I calculated a coefficient

Kspec that quantifies how much a spec-z of a given galaxy differs from the mean spec-z

of all the galaxies belonging to the same SOM cell, e.g. of the galaxies that are most

photometrically similar. The resulting Kspec were used to remove objects with incorrect

spec-z: as a consequence, the percentage of outliers for the test set of the KB dropped

from 1.64 to 0.19 for ML photo-z and from 2.23 to 0.7 for SED fitting, and σ∆z for both

ML and SED fitting photo-z improved almost by a factor of ∼ 2 (see Tab. 3.12). At the

same time, Kspec is sensitive to the intrinsic in-homogeneity of the galaxy population,

caused by physical reasons. In this way, Kspec serves as a fine indicator of whether a

given object is well-represented within the KB.

In § 3.6 I used Kspec cleaning to prepare a reliable spec-z dataset without using standard

quality flags provided withing the catalogue. The performance of ML photo-z algorithm

on this dataset is better than for the sample cleaned with quality flags but not cleaned

with SOM, and only slightly worse than for the sample after both types of cleaning.

Additionally, the sample obtained with only SOM cleaning is by 67% larger than the

sample for which quality flag cleaning was also used. However, SED fitting shows serious

degradation of statistics on this sample.

To ensure that our run dataset occupies the same area of the parameter space as the

KB, I also used SOM occupation maps to calibrate the datasets. I found that after this

cleaning, on the control DEIMOS spec-z dataset, that is slightly deeper than the KB

spec-z catalogue, the percentage of outliers drops from 11% to 2% for ML photo-z and

from 5% to 3% for SED fitting photo-z, with consequent improvements of other metrics.

The details are reported in Tab. 3.13.

The statistics also improve after excluding the objects with SED fitting photo-z values

that are anomalous for their SOM cells. Removing objects with anomalous ML photo-z

does not improve the results significantly. Using both occupation map and SED fitting

photo-z in-cell anomalies filtering, it is possible to bring the statistics for the DEIMOS

dataset to the order of those for the KB. To be more precise, the standard deviation

drops from σ∆z = 0.099 to σ∆z = 0.046 for ML and from σ∆z = 0.142 to σ∆z = 0.044

for SED fitting, and the percentage of outliers lessens from η0.15 = 10.86 to η0.15 = 1.48

for ML and from η0.15 = 5.06 to η0.15 = 1.89 for SED fitting. This result allows us to

select the parts of photometric catalogues for which our photo-z predictions, obtained

with any algorithm, can be trusted.

All in all, the SOM in-cell anomaly detection, presented in this work, proved to be

a viable method for selecting reliable spec-z samples from a contaminated catalogue

and a good tool for identifying SED fitting photo-z outliers. The SOM occupation map
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calibration is recommendable for ensuring the reliability of the future photo-z catalogues.

Together, in-cell anomaly detection and occupation map calibration allow to create larger

spec-z and photo-z catalogues which simultaneously have better quality and reliability;

consequently, it is recommended to apply this methodology to the verification of the

redshift catalogues of the upcoming Euclid and LSST surveys.



Appendix A

Methodology for bibliography

analysis

A.1 The frequency of the ML-related terms in literature in

1950-2020

The data for the Fig. 1.1 are obtained using Google Books Ngram Viewer1. This

engine provides information on the frequency with which the words (or combinations

of words) appear in printed sources in a given time range in a chosen text corpora.

The frequencies are normalized for the number of books published in a given year,

so the rise of the number of publication does not affect the plot. For the Fig. 1.1

I used case-insensitive search across ’English (2019)’ corpora, which includes books

printed in any country and on any topic (as opposed to e.g. ’English Fiction’ cor-

pora). The code for reproducing the plot is available in the GitHub repository https:

//github.com/ShrRa/google-ngrams-2020updated.

A.2 Number of ML-related astronomical publications by

years

The data for the Fig. 1.2 are obtained using the Astrophysics Data System (ADS)

API2. The request used is database:astronomy, property:refereed, abs:("machine

learning" or "neural network" or "perceptron" or "neural-network" or "random

forest" or "support vector machine" or "self-organizing map" or "k-nearest

1https://books.google.com/ngrams/
2https://github.com/adsabs/adsabs-dev-api
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neighbor"), e.g. it counts only refereed astronomical papers that contain one of the pop-

ular ML-related terms in title, abstract or keywords. The code for reproducing the plot

is available in the GitHub repository https://github.com/ShrRa/thesis_astroML.

A.3 Popularity of the ML photo-z methods

The data for the Fig. 2.3 are obtained using the ADS API. The requests retrieve only ref-

ereed astronomical papers published between 2000 and 2020 (year:2000-2020) with the

words ’photometric redshift’ in the title (e.g. database:astronomy, property:refereed,

title:"photometric redshift"). For each category of methods several related ML

terms were grouped together and added to the main part of the request:

• DNN+CNN: abs:("deep neural network" or "convolutional neural

network");

• RF+DT: abs:("random forest" or "decision tree" or "TPZ");

• SVM: abs:("support vector machine");

• Gaussian process: abs:("gaussian process" or "gaussian processes");

• SOM: abs:("self-organizing map");

• k-NN: abs:("k-nearest neighbor");

• Shallow NN: abs:("neural network" or "perceptron" or "neural-network")

-abs:("deep neural network" or "convolutional neural network");

• Other: abs:"machine learning" -abs:("neural network" or "perceptron"

or "TPZ" or "Mixture" or "Gaussian process" or "Gaussian processes"

or "support vector machine" or "self-organizing map" or "decision tree"

or "random forest");

The code for reproducing the plot is available in the GitHub repository https://github.

com/ShrRa/thesis_astroML.

https://github.com/ShrRa/thesis_astroML
https://github.com/ShrRa/thesis_astroML
https://github.com/ShrRa/thesis_astroML
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SOM repository

The source catalogues for this work can be obtained as described in Sect. 3.1. The

final catalogue, containing MLPQNA photo-z and SOM-produced parameters that can

be used for selecting objects with high-confidence predictions will be published via CDS

Vizier facility. The code for reproducing this work is available in the GitHub repository

https://github.com/ShrRa/COSMOS_SOM. The MLPQNA software is available within

the PhotoRApToR1 (PHOTOmetric Research APplication To Redshifts Cavuoti et al.

[2015a]) package.

1http://dame.oacn.inaf.it/dame_photoz.html#photoraptor
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Guyon Isabelle and Elisseeff André. An introduction of variable and feature selection. J.

Machine Learning Research Special Issue on Variable and Feature Selection, 3:1157–

1182, 01 2003. doi: 10.1162/153244303322753616.

Guzzo L., Cassata P., Finoguenov A., et al. The Cosmic Evolution Survey (COSMOS):

A Large-Scale Structure at z=0.73 and the Relation of Galaxy Morphologies to Local

Environment. APJS, 172(1):254–269, September 2007. doi: 10.1086/516588. ADS

URL: https://ui.adsabs.harvard.edu/abs/2007ApJS..172..254G.

Hainaut Olivier R. and Williams Andrew P. Impact of satellite constellations on as-

tronomical observations with ESO telescopes in the visible and infrared domains.

A&A, 636:A121, April 2020. doi: 10.1051/0004-6361/202037501. ADS URL: https:

//ui.adsabs.harvard.edu/abs/2020A&A...636A.121H.

Hamana Takashi, Shirasaki Masato, Miyazaki Satoshi, et al. Cosmological constraints

from cosmic shear two-point correlation functions with HSC survey first-year data.

PASJ, 72(1):16, February 2020. doi: 10.1093/pasj/psz138. ADS URL: https://ui.

adsabs.harvard.edu/abs/2020PASJ...72...16H.

Han Bo, Ding Hong-Peng, Zhang Yan-Xia, and Zhao Yong-Heng. Photometric redshift

estimation for quasars by integration of KNN and SVM. Research in Astronomy and

https://ui.adsabs.harvard.edu/abs/1991ARA&A..29..499G
https://ui.adsabs.harvard.edu/abs/1991ARA&A..29..499G
https://ui.adsabs.harvard.edu/abs/1989A&A...222L...5G
https://ui.adsabs.harvard.edu/abs/1989A&A...222L...5G
https://ui.adsabs.harvard.edu/abs/2015AJ....150...82G
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
http://www.sciencedirect.com/science/article/pii/S1674927815000519
http://www.sciencedirect.com/science/article/pii/S1674927815000519
https://ui.adsabs.harvard.edu/abs/2007ApJS..172..254G
https://ui.adsabs.harvard.edu/abs/2020A&A...636A.121H
https://ui.adsabs.harvard.edu/abs/2020A&A...636A.121H
https://ui.adsabs.harvard.edu/abs/2020PASJ...72...16H
https://ui.adsabs.harvard.edu/abs/2020PASJ...72...16H


Bibliography 130

Astrophysics, 16(5):74, May 2016. doi: 10.1088/1674-4527/16/5/074. ADS URL:

https://ui.adsabs.harvard.edu/abs/2016RAA....16...74H.

Hartley W. G., Chang C., Samani S., et al. The impact of spectroscopic incompleteness

in direct calibration of redshift distributions for weak lensing surveys. MNRAS, 496

(4):4769–4786, June 2020. doi: 10.1093/mnras/staa1812. ADS URL: https://ui.

adsabs.harvard.edu/abs/2020MNRAS.496.4769H.

Hasinger G., Capak P., Salvato M., et al. The DEIMOS 10K Spectroscopic Survey

Catalog of the COSMOS Field. ApJ, 858:77, May 2018. doi: 10.3847/1538-4357/

aabacf. ADS URL: https://ui.adsabs.harvard.edu/abs/2018ApJ...858...77H.

Hearin Andrew P., Zentner Andrew R., Ma Zhaoming, and Huterer Dragan. A Gen-

eral Study of the Influence of Catastrophic Photometric Redshift Errors on Cosmol-

ogy with Cosmic Shear Tomography. ApJ, 720(2):1351–1369, September 2010. doi:

10.1088/0004-637X/720/2/1351. ADS URL: https://ui.adsabs.harvard.edu/abs/

2010ApJ...720.1351H.

Heinis S., Kumar S., Gezari S., et al. Of Genes and Machines: Application of a Com-

bination of Machine Learning Tools to Astronomy Data Sets. ApJ, 821(2):86, April

2016. doi: 10.3847/0004-637X/821/2/86. ADS URL: https://ui.adsabs.harvard.

edu/abs/2016ApJ...821...86H.

Hernandez-Pajares M., Comellas F., Monte E., and Floris J. Classifying Stars: A Com-

parison between Classical, Genetic and Neural Network Algorithms. In European

Southern Observatory Conference and Workshop Proceedings, volume 43 of European

Southern Observatory Conference and Workshop Proceedings, page 325, September

1992. ADS URL: https://ui.adsabs.harvard.edu/abs/1992ESOC...43..325H.

Heymans Catherine, Van Waerbeke Ludovic, Miller Lance, et al. CFHTLenS: the

Canada-France-Hawaii Telescope Lensing Survey. MNRAS, 427(1):146–166, Novem-

ber 2012. doi: 10.1111/j.1365-2966.2012.21952.x. ADS URL: https://ui.adsabs.

harvard.edu/abs/2012MNRAS.427..146H.

Hikage Chiaki, Oguri Masamune, Hamana Takashi, et al. Cosmology from cosmic shear

power spectra with Subaru Hyper Suprime-Cam first-year data. PASJ, 71(2):43, April

2019. doi: 10.1093/pasj/psz010. ADS URL: https://ui.adsabs.harvard.edu/abs/

2019PASJ...71...43H.
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