Achieving Isolation in Mixed-Criticality Industrial

Edge Systems with Real-Time Containers

Appendix

17

- ⁴ Marco Barletta **□ 0**
- 5 Università degli Studi di Napoli Federico II, Italy
- 6 Marcello Cinque ☑ **⑤**
- ⁷ Università degli Studi di Napoli Federico II, Italy
- ⁸ Luigi De Simone ☑ **6**
- 9 Università degli Studi di Napoli Federico II, Italy
- 10 Raffaele Della Corte

 □
 □
- Università degli Studi di Napoli Federico II, Italy

A Schedulability Test Proof

- This is the appendix to the paper¹. Here, we provide the analytical proof of our simplification
- of the schedulability test presented in Subsection 3.2. In particular, the response time analysis
- is described by equations (1) and (2).

$$L_i(w_i) = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{w_i + J_j}{T_j} \right\rceil C_j \quad \text{with } w_i^0 = C_i + \left(\left\lceil \frac{C_i}{C_S} \right\rceil - 1 \right) (T_S - C_S)$$
 (1)

$$w_{i}^{n+1} = L(w_{i}^{n}) + \left(\left\lceil \frac{L(w_{i}^{n})}{C_{s}} \right\rceil - 1 \right) (T_{s} - C_{s}) + \sum_{\substack{\forall X \in hp(S) \\ servers}} \left\lceil \frac{max\left(0, w_{i}^{n} - \left(\left\lceil \frac{L(w_{i}^{n})}{C_{s}} \right\rceil - 1 \right) T_{s} \right) + J_{X}}{T_{X}} \right\rceil C_{X}$$

$$(2)$$

According to analysis in Subsection 3.2, the third term in Equation 2 can be rewritten as:

$$\sum_{\forall X \in hp(S)} C_X \tag{3}$$

- We provide in the following the proof about Equation 2 and Equation 3. 20
- From previous studies²³⁴, the interference for a deferrable server is made up of the load that can be generated by a higher priority server x, that is up to:

$$I(t) = \left\lceil \frac{t + J_x}{T_x} \right\rceil C_x = \left\lceil \frac{t - C_x}{T_x} \right\rceil C_x + C_x \tag{4}$$

¹M. Barletta, M. Cinque, L. De Simone, R. Della Corte. *Achieving Isolation in Mixed-Criticality Industrial Edge Systems with Real-Time Containers*. Proceedings 34rd Euromicro Conference on Real-Time Systems (ECRTS 2022).

²R. Davis and A. Burns. An investigation into server parameter selection for hierarchical fixed priority pre-emptive systems. 16th International Conference on Real-Time and Network Systems (RTNS 2008).

³R. Davis and A. Burns. *Hierarchical fixed priority preemptive scheduling*. 26th IEEE International Real-Time Systems Symposium (RTSS'05). IEEE, 2005.

⁴G. Bernat and A. Burns. *New results on fixed priority aperiodic servers*. Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No. 99CB37054). IEEE, 1999.

35

However, this is the worst case of a more generic formula that can be expressed in this way:

$$I(t) = \begin{cases} \left\lceil \frac{t - \phi_x}{T_x} \right\rceil C_x + \phi_x & \text{if } \phi_x < C_x \\ \left\lceil \frac{t - \phi_x}{T_x} \right\rceil C_x + C_x & \text{if } \phi_x \ge C_x \end{cases} = \left\lceil \frac{t - \phi_x}{T_x} \right\rceil C_x + \min(\phi_x, C_x) \qquad \forall \phi_x \in [0, T_x]$$
 (5)

To demonstrate Equation 5, we rewrite a generic time instant t as:

$$t = \phi_x + k * T_x + \alpha \qquad \phi_x \in [0, T_x] \quad \alpha \in [0, T_x]$$

$$(6)$$

Where ϕ_x is the initial phasing of the server, $k * T_x$ is a multiple of the server period and α is the exceeding. In ϕ_x , at most $min(C_x,\phi_x)$ load is provided by the server. In $k*T_x$ at most $k * C_x$ load is provided and finally in α the load is at most $min(\alpha, C_x)$. Thus, the load provided by the server in [0,t] is: $L(t) = min(C_x, \phi_x) + k * C_x + min(\alpha, C_x)$. Then, for a lower priority server the preemption time is: $I(t) = (k+1) * C_x + min(\phi, C_x)$,

since if there is any exceeding of the period, the higher priority server must complete the execution. The formula can be rewritten as:

$$I(t) = \left\lceil \frac{t - \phi_x}{T} \right\rceil C_x + \min(\phi_x, C_x) \tag{7}$$

(7)

Being t the extent in the last period³, and T the common period, if we prove that $t \leq T$, then 37

$$I(t) \le \left[1 - \frac{\phi_x}{T}\right] C_x + \min(\phi_x, C_x) = C_x + \min(\phi_x, C_x)$$
(8)

Since the periods are lockstep, $\phi_x = 0$ (i.e., all servers have the same phasing).

We prove that $t \leq T$, even if it is trivial due to the extent in the last period is of course not greater than the period. From ³:

$$t = w_i^n - \left(\left\lceil \frac{L(w_i^n)}{C_s} \right\rceil - 1 \right) T \qquad L_i(w_i^n) = C_j + \sum_{\forall i \in hp(j)} \left\lceil \frac{w_i + J_i}{T} \right\rceil C_i \tag{9}$$

If t value were greater than T (i.e., t > T) then $w_i^n > \left(\left\lceil \frac{L(w_i^n)}{C_s} \right\rceil \right) T$.

However, this is not possible since:

$$w_{i}^{n} = L(w_{i}^{n-1}) + \left(\left\lceil \frac{L(w_{i}^{n-1})}{C_{s}} \right\rceil - 1 \right) (T - C_{s}) + \sum_{\substack{\forall X \in hp(S) \\ servers}} \left\lceil \frac{max\left(0, w_{i}^{n-1} - \left(\left\lceil \frac{L(w_{i}^{n-1})}{C_{s}} \right\rceil - 1 \right) T \right) + J_{X}}{T} \right\rceil C_{X}$$

$$(10)$$

In order to have schedulable servers, the third term should be less than $T_s - C_s$ (see note³):

$$w_i^n \le L(w_i^{n-1}) + \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) T - \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) C_s - T + C_s + T - C_s$$

$$L(w_i^{n-1}) - \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) C_s + \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) T \ge w_i^n$$

$$(11)$$

48 If we suppose $w_i^n > \left(\left\lceil \frac{L(w_i^n)}{C_s} \right\rceil \right) T$ then:

$$L(w_i^{n-1}) - \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) C_s + \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) T \ge w_i^n > \left(\left\lceil \frac{L(w_i^n)}{C_s} \right\rceil \right) T$$
(12)

 $_{50}$ The first two terms are not positive because of the definition of ceiling function. Thus:

$$\eta + \left(\left\lceil \frac{L(w_i^{n-1})}{C_s} \right\rceil \right) T \ge w_i^n > \left(\left\lceil \frac{L(w_i^n)}{C_s} \right\rceil \right) T \quad \text{with } \eta \le 0$$
 (13)

 $_{\rm 52}$ $\,$ But this is not possible since the last term is a non-decreasing succession.