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A Schedulability Test Proof12

This is the appendix to the paper1. Here, we provide the analytical proof of our simplification13

of the schedulability test presented in Subsection 3.2. In particular, the response time analysis14

is described by equations (1) and (2).15
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According to analysis in Subsection 3.2, the third term in Equation 2 can be rewritten as:18

∑
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servers

CX (3)19

We provide in the following the proof about Equation 2 and Equation 3.20

From previous studies234, the interference for a deferrable server is made up of the load21

that can be generated by a higher priority server x, that is up to:22
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2 Appendix

However, this is the worst case of a more generic formula that can be expressed in this way:24
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To demonstrate Equation 5, we rewrite a generic time instant t as:26

t = ϕx + k ∗ Tx + α ϕx ∈ [0, Tx] α ∈ [0, Tx] (6)27

Where ϕx is the initial phasing of the server, k ∗ Tx is a multiple of the server period and28

α is the exceeding. In ϕx, at most min(Cx, ϕx) load is provided by the server. In k ∗ Tx at29

most k ∗ Cx load is provided and finally in α the load is at most min(α, Cx).30

Thus, the load provided by the server in [0,t] is: L(t) = min(Cx, ϕx) + k ∗ Cx + min(α, Cx).31

Then, for a lower priority server the preemption time is: I(t) = (k + 1) ∗ Cx + min(ϕ, Cx),32

since if there is any exceeding of the period, the higher priority server must complete the33

execution. The formula can be rewritten as:34
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Being t the extent in the last period3, and T the common period, if we prove that t ≤ T ,36

then37
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Since the periods are lockstep, ϕx = 0 (i.e., all servers have the same phasing).39

We prove that t ≤ T , even if it is trivial due to the extent in the last period is of course not40

greater than the period. From 3:41
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In order to have schedulable servers, the third term should be less than Ts − Cs (see note3):46

wn
i ≤ L(wn−1

i ) +
(⌈

L(wn−1
i )

Cs

⌉)
T −

(⌈
L(wn−1

i )
Cs

⌉)
Cs − T + Cs + T − Cs

L(wn−1
i ) −

(⌈
L(wn−1

i )
Cs

⌉)
Cs +

(⌈
L(wn−1

i )
Cs

⌉)
T ≥ wn

i (11)47
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The first two terms are not positive because of the definition of ceiling function. Thus:50
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But this is not possible since the last term is a non-decreasing succession.52
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