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The increasing use and demand of rare earth elements in many emerging

technologies is leading to a potentially higher input to the marine environment.

This study compared for the first time the effect of lanthanum (La), cerium (Ce),

neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium

(Dy), and erbium (Er) to the microalga Phaeodactylum tricornutum Bohlin. The

algal growth inhibition was investigated after 72 h of exposure. The median

effect concentrations (EC50) ranged from 0.98 mg/L to 13.21 mg/L and

elements were ranked as follows: Gd > Ce > Er > La > Eu > Nd > Dy > Sm.

The comparison of predicted no effect concentrations (PNEC) for hazard and

risk assessment with measured environmental concentrations showed that

ecological risks deriving from REEs could be present, but limited to specific

environments like estuarine waters. The results support evidence of actions to

manage the REE impact in seawater environments, looking to improve the

monitoring tailored to the different and dynamic nature of ecosystems.
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Introduction

Rare earth elements (REEs) can have potential harmful effects on environmental and

human health, and the related exposure is expected to increase in the near future due to

their wide use in technology, medicine, agriculture and industry (Pagano et al., 2019).

REEs are considered essential for a large number of applications including the alternative

energy sector (Hurst, 2010; Adeel et al., 2019; Cardoso et al., 2019) including permanent

catalysis (24%), magnets (23%), polishing (18%), metallurgy (8%), and batteries (8%)

(Roskill Information Services Ltd). REEs are strategic resources, but they are not
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renewable and are considered to be close to “peaking” (Rustad,

2012; Balaram, 2019) with an application boom that would

continue also in the near future (Balaram, 2019). The REEs

supply chain is still linear and recycling barely reaches 1% of the

world production (Rustad, 2012). In this way, REEs enter the

environment via many ways, particularly during disposal of

consumer and industrial products (e.g., landfills), discharges

from mining and mineral processing, and wastewater from

industrial processes that use REEs (Migaszewski and Gałuszka,

2015; Gwenzi et al., 2018; Balaram, 2019). Anthropogenic REEs

contamination can be of great concern in hot spots (e.g., ore mine

tailings and abandoned mines) (Pagano et al., 2015a). The

general alteration of their biogeochemical cycles can transform

them into potential emerging contaminants (Pagano et al., 2015a;

Pagano et al., 2015b; Gravina et al., 2018; Gwenzi et al., 2018;

Balaram, 2019; Galdiero et al., 2019; Pagano et al., 2019;

Naccarato et al., 2020). There is still relatively little knowledge

of the natural or anthropogenic cycles of REEs in the

environment as well as their biological effects compared to

cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr), and

nickel (Ni) (Hirano and Suzuki, 1996). However, REEs and heavy

metals (HMs) have similar environmental behaviours, can be

accumulated by animals and plants and consequently they can

pose potential risks in a one-health perspective (Pagano et al.,

2015a; Gwenzi et al., 2018). Like HMs, REEs could generate

reactive oxygen species (ROS), weaken, or inactivate the

antioxidant defence and bind for the high affinity to vital

macromolecules (Pagano et al., 2015a; Balali-Mood et al.,

2021; Siciliano et al., 2021; Trapasso et al., 2021).

The increased mobilisation and concentration of REEs in

water systems could have significant impacts primarily to

aquatic organisms (Freitas et al., 2020). The REE-content in

seawater can be determined by factors relating to different

input sources (e.g., terrestrial, hydrothermal) and scavenging

processes related to depth, salinity, and oxygen levels (Greaves

et al., 1999; Nozaki, 2001). The distinctive character of the

seawater REEs distribution is largely controlled by the

uniform trivalent behaviour most REEs (except for Ce and

Eu which vary with oxygen levels) and estuarine and oceanic

scavenging processes (Nothdurft et al., 2004). In contrast,

anthropogenic, strongly chelated, anionic REEs appear to

have a conservative behaviour and a long environmental

half-life (Kulaksız and Bau, 2007; Lawrence et al., 2009;

Kulaksız and Bau, 2013). REEs anomalies due to

anthropogenic activities were observed in seawaters in

Plymouth Sound, UK (Karadaş et al., 2011), Ibaraki, Japan

(Zhu, 2020) and Western Philippine (Goldstein and Jacobsen,

1988).

The biological effects and the toxicity of REEs is not fully

understood, especially in saltwater. From the scarce literature

on REE toxicity to aquatic organisms, only few data are

available for marine organisms compared to freshwater

ones (González et al., 2015; Freitas et al., 2020). Most

studies demonstrated the ability of REEs to accumulate in

marine species belonging to lower trophic levels, and

consequently posing potential ecological risks (Pagano

et al., 2015b; Ponnurangam et al., 2016; Gwenzi et al.,

2018). Currently, no data about REEs exist about

Phaeodactylum tricornutum Bohlin, that is, a cosmopolitan

species found in transitional, marine-coastal and marine

waters and considered as a reference model in monitoring

seawater pollution and assessment of pure organic and

inorganic chemicals (Libralato et al., 2016).

This study investigated the effects of lanthanum (La),

cerium (Ce), neodymium (Nd), samarium (Sm), europium

(Eu), gadolinium (Gd), dysprosium (Dy), and erbium (Er) on

P. tricornutum growth explicitly providing the median and

10% effect concentrations (EC50 and EC10). The aims of this

study were to: 1) generate ecotoxicological information

regarding P. tricornutum poorly studied for the REE

toxicity, 2) compare, if possible, REEs toxicity with HMs,

and 3) weigh up the EC50 with concentrations already found in

the seawater to determine the potential risk associated with

these elements.

Materials and methods

Chemicals, testing solutions, and
analytical characterization

Nitrate standard solutions of 8 REEs (100 mg/L) provided by

Sigma-Aldrich (Saint Louis, United States of America) were used

for conducting the toxicity trials [La(NO3)3 6H2O, purity 97%,

Ce(NO3)3 6H2O, purity 97%; Nd(NO3)3 6H2O, purity 99.9%],

Sm (NO3)3 6H2O, purity 99.9%, Eu(NO3)3 5H2O, purity 99.9%,

Gd(NO3)3 6H2O, purity 99.9%, Dy(NO3)3 xH2O, purity 99.9%

and Er(NO3)3 6H2O, purity 99.9%.Treatment REE solutions

were prepared by diluting REE standard solutions into

artificial seawater (ISO, 2016) at least 1 h prior to the

exposure followed by the pH measurement (Mettler Toledo

Five Easy, Milan, Italy).

Rare earth elements analytical concentrations were

determined by inductively coupled plasma mass

spectrometry (ICP-MS, Aurora M90 Bruker Daltonics Inc.).

High-purity water (resistivity of 18.2 MΩ cm) was obtained

from a Milli-Q unit (Millipore, United States). Nitric acid

(HNO3, 69% v/v Ultratrace@ ppb-trace analysis grade) was

provided by Scharlau (Barcelona, Spain). All samples analyzed

in ICP-MS were prepared in HNO3 solution (2% v/v). The

analysis was performed in Normal Sensitivity mode.

Calibration curves for determining REEs ranged from

0.5 to 1,000 µg/L and were constructed daily by analysis of

standard solutions prepared immediately before analysis. The

internal standard was 115In for both calibration curve and

sample analysis.
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Phaeodactylum tricornutum bioassay

Axenic cultures of P. tricornutum microalgae were cultured

at Hygiene Laboratory, Department of Biology at the University

of Naples Federico II. Culture of P. tricornutum were routinely

maintained in axenic artificial seawater medium supplemented

with nutrients (ISO, 2016)at 22 ± 1°C and 4,800 lux on a 16:8 h

light-dark cycle. Algal growth inhibition test (72 h) was

performed according to ISO 10253:2016 (ISO, 2016) by using

multiwell plates. For each concentrations four wells were filled

with 2,250 µL of the respective solution (K2Cr2O7 positive

control, spiked REE solution, sinthetic sea water as negative

control), 125 μL of the 20-fold culture media and 125 μL of

inocula of exponentially growing microalgae. One of the four

replicates served as blanks the prepared well plates were then

placed on a horizontal shaker with 50 rpm for 72 h at 22 ± 1°C

under continuous light of 6,700 lux. Solutions spiked with REEs

ranged between 0.3 mg/L and 5.0 mg/L (nominal

concentrations).

After a 72 h of exposure, spectrophotometric measurement

of samples at 670 nm (DR 5000 sc, Hach) allowed to determine

algal cell density through linear regression equation that

described the relationship between optical density and cell

density. The growth rate compared to negative control was

calculated according to ISO (2016).

Data analysis

After screening assays, testing concentrations were set up in

order to allow the calculation of median, 20, 10 and 5% effect

concentrations (EC50, EC20, EC10, and EC5) which were

determined using linear and nonlinear regression. For each

REE, the best-fitting model was selected based on the mean

corrected coefficient of determination (R2) and by graphical

interpretation of the model fit. Differences between treatments

were assessed via one-way analysis of variance (ANOVA) after

the verification of normality (Shapiro-Wilk’s test) and

homoscedasticity (Levene’s test). Moreover, to further evaluate

the risk of REEs, the estimated concentration causing an effect

(EC50) was divided by an assessment factor (AF) to estimate a

predicted no-effect concentration (PNEC). The ratio of measured

environmental concentration (MEC) listed in Table 3 to the

PNEC was calculated to estimate the risk quotient (RQ).

Results

REE nominal vs. analytical concentrations

Analytical concentrations used to calculate concentration-

response curves are highlighted in Table 1. The ratio between

analytical and nominal concentrations in most samples ranged

from 0.8 to 1.2. Results are in accordance with previous studies

(Pagano et al., 2016; Oral et al., 2017).

REE toxicity on P. tricornutum

In Figure 1, the results about the growth inhibition of P.

tricornutum are reported for Ce, Dy, Eu, La, Er, Gd, Sm, and Nd.

All equations and the relative standard errors are provided in

Figure 1 and the determination of EC50, EC20, EC10, and EC5 are

summarized in Table 2.

As a general overview, the algal growth always evidenced

inhibitory effects at all the tested concentrations, except for La

and Dy, which displayed biostimulation effect at the two lowest

tested concentrations. Cells of P. tricornutum exposed to La and

Dy concentrations between 0.3 and 0.7 mg/L after 72 h showed

greater cell density than the control group. The elements that

caused the highest growth inhibition at the lowest concentrations

were Gd and Ce (27 and 24%, respectively).

Cell density of P. tricornutum at the highest concentrations

exposed of Ce, La, Gd and Er showed the highest inhibition of

growth with inhibitions of 88, 91, 98, and 96% respectively

(Figure 1). In contrast, the highest concentrations of Eu, Nd,

Dy, and Sm showed the lowest growth inhibition 72, 62, 71, and

53%, respectively (Figure 1).

TABLE 1 Nominal and measured concentrations of rare earth elements and the relative standard deviations; NC = nominal concentrations; MC =
measured concentrations (mg/L).

NC MC

La Eu Ce Gd Nd Dy Sm Er

0.3 0.33 ± 0.01 0.24 ± 0.01 0.27 ± 0.01 0.38 ± 0.02 0.30 ± 0.013 0.27 ± 0.01 0.31 ± 0.02 0.29 ± 0.14

0.6 0.70 ± 0.03 0.81 ± 0.04 0.63 ± 0.01 0.58 ± 0.03 0.55 ± 0.024 0.56 ± 0.03 0.51 ± 0.03 0.52 ± 0.02

1.2 1.24 ± 0.05 1.59 ± 0.08 1.13 ± 0.03 1.01 ± 0.05 1.42 ± 0.062 1.40 ± 0.08 1.11 ± 0.06 1.28 ± 0.06

2.5 2.03 ± 0.09 2.95 ± 0.12 2.19 ± 0.06 2.06 ± 0.11 2.84 ± 0.124 2.74 ± 0.15 2.28 ± 0.11 2.08 ± 0.09

5 6.00 ± 0.26 5.82 ± 0.28 5.04 ± 0.15 4.08 ± 0.22 6.05 ± 0.26 6.21 ± 0.34 4.26 ± 0.21 4.28 ± 0.20
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The toxicity always showed a dose-response

relationship. Both Dy and La displayed biostimulation at low

concentrations, while the highest relative inhibition was observed

at the highest concentration.

The EC50 values (±95% confidence limit values) obtained for

all the tested elements were summarised in Table 2 including

EC5, EC10 and E20. Based on the calculated EC50 values, the

following toxicity relationship was established: Gd > Ce > Er >
La > Eu > Nd > Dy > Sm.

Comparative risk assessment

About risk assessment, RQs for each REEs were estimated

using values of MEC considering three different scenarios from

the literature (coastal seawater, open seawater and estuarine

seawater) (Wysocka and Vassileva, 2017; Zhu, 2020) and

PNEC (Table 3). Wennmalm and Gunnarsson (2009) and

Verlicchi et al. (2012) classified the environmental risk into

different levels according to the RQs obtained. The

FIGURE 1
Concentration-response relationship of La, Eu, Ce, Gd, Nd, Dy, Sm, and Er exposed to P. tricornutum; x-axis log scaled concentrations are in
mg/L. Solid line indicates the line of best fit, the dashed lines represent the 95% confidence intervals for linear regression (La, Eu, Ce, Gd, Nd, and Dy)
and for nonlinear regression (Sm, and Er).
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classification follows: if RQ < 0.1 the environmental risk level is

considered insignificant, an RQ from 0.1–1.0 is considered low,

an RQ from 1.0–10 is considered moderate, and an RQ > 10 is

considered high risk. For groups of relatively unknown sensitivity

such as saltwater species and for acute laboratory studies, the

assessment factor is between the range of 10–1,000 (Fairbrother,

2008). Because of the scarce data available about the toxicity of

REEs to marine species, the factor of this study was set at 1,000.

In all scenarios, RQs were below 1 and none of the

investigated REEs were classified as high risk. The estimated

RQs varied from 0.0006 to 0.1803 with a mean value of 0.0346 in

the coastal seawaters, from 0.0008 to 0.0403 in the open seawaters

with a mean value of 0.0135 and from 0.0196 to 0.4606 in the

estuarine waters with a mean value of 0.2154, indicating, in the

latter case, a potential low risk posed by the REEs on the marine

organisms. Only Ce posed low risks to aquatic organisms in the

coastal seawaters, while all the other elements resulted in

insignificant risk. Moreover, for open seawaters, all the REEs

resulted in insignificant risks, including Ce, La and Nd, which are

considered the most abundant REEs in the environment (Freitas

et al., 2020; Adeel et al., 2019). Overall, of the 8 REEs, more than

60% exhibited potential ecotoxicological risks in the estuarine

waters due to their relative high concentrations and/or toxicities.

The results agreed with the previous study of (González et al.,

2015) that REEs in the different exposure environmental

conditions had ecological risks limited to some hotspots.

Discussion

To the best of our knowledge, this is the first study reporting a

large set of REEs toxicity data towards P. tricornutum. Previous

data are available only from Sun et al. (2019) on La but

considering only nominal concentrations. The EC50 of La

from this study (2.46 mg/L) is more than 4 times lower than

that obtained by (Sun et al., 2019) (10.08 mg/L), being such

difference attributable to the use in our paper of measured

concentrations. However, the values obtained in both studies

do not differ greatly and can therefore still be comparable in the

effects on the growth. Moreover, to further evaluate the data

obtained and interpret the toxicological relations for tested REEs,

the results obtained were compared to those obtained by (Tai

et al., 2010) on diatom Skeletonema costatum. From this study,

the EC50 of Ce (1.53 mg/L) was lower than those obtained by

TABLE 2 EC5, EC10, EC20, and EC50 values for Ce, Dy, Eu; La and Nd on P. tricornutum; values are in mg/L; n.a. = not available; REEs = rare earth
elements; EC = effective concentration; average EC values are provided ±95% confidence limit values in brackets (n = 3).

REEs EC5 EC10 EC20 EC50

La 0.65 (0.24–1.89) 0.76 (0.28–2.19) 1.02 (0.37–2.97) 2.46 (0.87–7.34)

Eu 0.32 (0.11–0.84) 0.41 (0.15–1.07) 0.68 (0.25–1.74) 3.02 (1.16–7.41)

Ce 0.16 (0.04–0.78) 0.21 (0.05–1.01) 0.34 (0.08–1.68) 1.53 (0.32–7.75)

Gd 0.17 (0.07–0.46) 0.21 (0.08–0.56) 0.31 (0.12–0.83) 0.98 (0.37–2.67)

Nd 0.26 (0.17–0.40) 0.34 (0.23–0.53) 0.60 (0.39–0.92) 3.19 (2.09–4.88)

Dy 0.75 (0.31–1.81) 0.90 (0.38–2.18) 1.31 (0.55–3.16) 4.01 (1.67–9.70)

Sm 0.60 (0.06–8.18) 0.85 (0.08–11.20) 1.68 (0.16–20.99) 13.21 (1.03–138.28)

Er 0.27 (0.05–1.44) 0.33 (0.06–1.75) 0.48 (0.09–2.57) 1.55 (0.28–8.20)

TABLE 3 Calculated risk quotients for REEs in seawater.

REE PNEC [ng/L] MEC [ng/L] RQ

Open seawater
(Zhu, 2020)

Coastal seawater
(Zhu, 2020)

Estuarine water
(Wysocka and
Vassileva, 2017)

Open sea
water

Coastal seawater Estuarine

La 2,460 99.30 166.00 794.83 0.0404 0.0675 0.3231

Eu 3,020 2.50 2.07 59.06 0.0008 0.0007 0.0196

Ce 1,530 33.50 276.00 704.75 0.0219 0.1804 0.4606

Gd 980 13.90 10.10 311.32 0.0142 0.0103 0.3177

Nd 3,190 58.80 31.00 855.91 0.0184 0.0097 0.2683

Dy 4,010 14.60 10.80 356.38 0.0036 0.0027 0.0889

Sm 13210 10.80 7.50 778.84 0.0008 0.0006 0.0590

Er 1,550 12.50 8.20 288.31 0.0081 0.0053 0.1860
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Tai et al. (2010) (4.2 mg/L) and the Dy values obtained were very

similar in value (4.01 and 4.6 mg/L).

Moreover, to understand better the sensitivity of P. tricornutum

to metals, the EC50 values obtained were also compared to data

available on the toxicity of heavymetals (Table 4). The ecotoxicity of

HMs (e.g., Cd, Pb) is higher than that of REEs, when compared

under similar experimental conditions and species. From the results

presented in this study compared to those obtained by (Horvatić and

Peršić, 2007), the element with the highest toxicity was Gd (0.98 mg/

L), which differed around 4 orders of magnitude with the element

with the highest toxicity mercury chloride (1.16·10−5 mg/L), had a

similar toxicity to cobalt chloride (1.19 mg/L) and had a higher

toxicity than cadmiumnitrate (5.37 mg/L).Moreover, (Horvatić and

Peršić, 2007), also found that low concentrations of Cd andCo had a

stimulatory effect on the growth rate from concentrations between

0.02 and 1.25 mg/L for Co and 0.16–0.31 mg/L for Cd, which are in

a similar range to those obtained for Dy and La, which presented a

biostimulation effect from concentrations between 0.3 and 0.7 mg/L.

Results displayed, indicate thatHMs such as copper andmercury are

more toxic than the tested REEs, nevertheless, the results obtained

are in a similar range to the remaining HMs presented. Elements

such as Hg, Pb, Co and Cr have shown to be themost toxic elements

affecting the growth of P. tricornutum (Cabrita et al., 2016), this

might be explained by the fact that the cells incorporate these

elements and the internalization causes damages in terms of cell

division and growth (Deng et al., 2013; Cabrita et al., 2014; Cabrita

et al., 2016).

The outcome of the environmental risk assessment of

investigated REEs was different depending on the MECs of

coastal, oceanic, and estuarine waters used to calculate the

RQs. The evaluation results showed that RQ values were

gradually increasing from ocean to estuary. The RQs were less

than 0.1 in coastal and oceanic waters, except for Ce, which

meant ecological environmental risk of REEs to marine species

was not of concern. While for coastal and oceanic scenarios,

hydrodynamics and significant dilution could explain the lower

REE concentrations, it was notable that REEs concentrations

were higher at estuarine waters, which could be attributed to the

local sewage discharge and anthropic activities.

Either way, the RQs in the estuarine waters for REEs were

always higher than 0.1. In this scenario, based on the RQ approach,

the REEs assessed herein appear to be of raising marine concern,

especially with regard to La and Ce, which could be explained based

on the more frequent use of Ce and La that can promote their

occurrence in environment as well as seawater. This work reinforces

the urgent need for more data embracing other REEs and other

species, in order to avoid under- or over- estimation when assessing

the environmental risks of these metals.

Conclusion

Rare earth elements (Ce, La, Eu, Sm, Gd, Dy, Er, and Lu)

effects to P. tricornutum growth inhibition were investigate.

Results showed similar toxicity levels between light, medium

and heavy REEs.

Toxicity can be compared to the effect of heavy metals on P.

tricornutum. Although the differences in orders of magnitude

between some elements, it can be observed that both groups of

elements can have a bio-stimulatory effect but an inhibitory effect

at higher concentrations. Further studies to evaluate the effects of

low and constant exposure is suggested.

Further, this study presents a first insight on the effect of

several REEs on the unicellular species P. tricornutum, which can

be considered as a potential candidate to further study the effect

of REEs on more complex matrices such as artificial sea water.

Based on P. tricornutum toxicity results, the presence of REEs

in the marine environment does not seem to represent a

widespread environmental risk except at some hotspots which

may become more severe with the increase of REE application.

This approach could be used to further investigate more

relevant endpoints, which could lead to indirect effects on the

food chain and to study predictable patterns in bioavailability,

bioaccumulation and ecotoxicity, as well as studies addressing the

combined effect of several stressors such as REEs mixtures.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

AS: Conceptualization, Formal analysis, Data

curation,Writing- original draft- review and editing. MS:

Formal analysis. AP: Formal analysis. EP: Formal analysis,

TABLE 4 Toxicity response of P. tricornutum to metals in 72-h growth
inhibition bioassays. *Measured, #Nominal Concentrations.

Element 72-h EC50 References

Cadmium (Cd(NO3)2 ·4H2O) 5.37# Horvatić and Peršić, (2007)

Cobalt (Co(NO3)2) 19.57#

Cobalt (CoCl2) 1.19#
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Mercury (HgSO4) 0.03#

Mercury (HgCl2) 1.16 × 10−5#

Nickel (NiSO4·6H2O) 7.28#

Copper (CuSO4·5H2O) 0.035 Moreno-Garrido et al., (2000)

0.008* Levy et al., (2007)

0.010# Franklin et al., (2001)

0.565* Liping and Zheng, (2008)
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