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Abstract

We are aiming at studying the rheological behavior of ordinary and associ-

ating polymers. Ordinary polymers refer to polymers without stickers but

under fast flows. Associating polymers are a group of polymers which are

held together through reversible non covalent bonds, such as ionic interac-

tions, metal-ligand, π-π stacking, and hydrogen bonds. Both topics have

attracted enormous attention either due to the non-universal features in

fast flows of polymer melts or because of their unique abilities for working

as self-healing, stimuli-sensitive, and shape-memory materials.

Fast flows and large deformation rates typically are involved in polymer pro-

cessing operations and no general constitutive equation can be written that

describes these nonlinear rheological behavior exhibited by polymer flows.

Therefore, molecular modeling of the rheology of polymers in fast flow was

developed many years ago. The friction reduction due to coalignment of

polymer chains has been confirmed both through molecular dynamics simu-

lations and extensional flow experiments. In spite of the results achieved by

the friction reduction model, the flow-induced reduction of the friction co-

efficient is still highly controversial. For instance, the Einstein relationship

between ζ and the diffusion coefficient probably does not hold true away

from equilibrium.

This thesis partly focuses on enhancing our understanding of the mech-

anisms behind the nonlinear responses of the unentangled polymer melts

under fast shear flow through a coarse-grained modeling approach. We

take advantage of the rich set of data of Kremer-Grest melts in fast steady

shear flows. First, we apply the data to the latest Watanabe’s model. Then

we reproduce them by suitable Brownian dynamics simulations, where the

beads are endowed with isotropic and anisotropic friction separately.



Likewise, molecular modeling is typically used to study the viscoelastic

response of associating polymers as well. The most famous one is the sticky

Rouse model. This model is capable of accounting for the slowing down

of the relaxation caused by reversible bonds. However, the effects of the

lifetime, density, and distribution of stickers on the dynamics of associating

polymers is still a matter of some debate. For instance, a mismatch between

data and predictions of this model at the intermediate frequencies always

appears.

The rest of this thesis concentrates on studying the dynamics of associat-

ing polymers. A multi-chain model and a single-chain model are proposed.

The predictions of the multi-chain model are able to describe the topologi-

cal structure of polymer networks. Meanwhile, those effects on rheological

behavior are studied. The results are compared with the predictions of the

sticky Rouse model. The single-chain model, which was designed to save

running time, allows stickers to be distributed randomly. The predictions

are compared with data.
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1

Introduction

1.1 Linear Response of Materials: Elastic, Viscous, Vis-

coelastic

1.1.1 Linear Elastic Properties

Elasticity is a property of matter typical of the solid state. An elastic solid can be

deformed by applying suitable forces, and recovers the original shape when those forces

are removed. Locally, i.e. in a small neighborhood of a material point, elasticity is

described by a relationship (a constitutive equation) that links stresses and strains at

that point. Such a relationship is generally nonlinear. However, if only small strains (or

small stresses) are considered, the relationship becomes linear. Alternatively, when one

starts deforming (or forcing) an elastic material, the initial response is always linear,

to become nonlinear only eventually, when strains (or stresses) are large. We will only

consider amorphous solids, like glass or rubber. Crystals are more complicated, because

they are anisotropic, i.e., their response to deformation depends on how the crystal is

oriented.

Figure 1.1 shows the configurations of an amorphous solid before and after an

uniaxial extension. We introduce the stretch ratio λ = L/L0 as a scalar measure of the

extension. When the deformation is small, i.e., λ is close to unity, it becomes convenient

to introduce the strain ε:

ε = λ− 1 =
L− L0

L0
� 1 (1.1)

1



1. INTRODUCTION

Figure 1.1: Small deformations in uniaxial extension. - L0 and L are the unde-

formed and deformed lengths, respectively

To achieve a (small) strain, a force per unit area is required, given by:

F/A = Eε, (1.2)

where the coefficient of this linear law is the Young’s modulus. Assuming that the

uniaxial extension occurs along x, the material element contracts along y and z in most

cases. The corresponding strains are therefore negative, given by:

εy = εz = µε, (1.3)

where µ is Poisson’s ratio (µ ≤ 1/2). µ = 1/2 on condition that the material is

incompressible.

Figure 1.2 displays the configurations of an amorphous solid before and after a

simple shear deformation.

Figure 1.2: Small deformations in shear. - h is the undeformed length and d is the

distance that the upper material points were translated parallel to the horizontal direction.

Shear strain is defined by γ = d/h� 1.

2



1.1 Linear Response of Materials: Elastic, Viscous, Viscoelastic

For whatever amorphous material, a stress that generates a small shear strain does

not modify the volume. The tangential stress σ is linked to γ by

σ = Gγ, (1.4)

where G is the shear modulus.

Among the three material constants so far introduced (G, E, µ) there exists a

relationship, namely

E = 2G(1 + µ). (1.5)

Thus linear elasticity of amorphous materials is characterized by two material constants

only. For the important case of volume-preserving materials, since µ = 1/2, eq (1.5)

becomes

E = 3G

and hence a single material constant, G or E, describes linear behavior.

1.1.2 Linear Viscous Properties

The viscosity is a property of the liquid state defined by Newton in 1687 (as quoted

by Barnes et al.[10]) through the simple shear experiment schematically depicted in

Figure 1.3. The liquid is confined between two parallel plates, the bottom plate being

fixed while the top plate is allowed to slide over the liquid. In simple liquids like water

the tangential force per unit area F/A, that is, the shear stress σ, required to move the

upper plate is proportional to the plate velocity U , and inversely proportional to the

gap H between the two plates, the proportionality constant being the viscosity η, that

is,

σ = η
U

H
= ηγ̇, (1.6)

where the velocity gradient γ̇ = U
H is the shear rate. Eq (1.6) is known as Newton’s

law of viscosity, and fluids obeying eq (1.6) are called Newtonian.

Newtonian behaviour in experiments conducted at constant temperature and pres-

sure has the following characteristics[10]:

• The only stress generated in simple shear flow is the shear stress, the two normal

stress differences being zero.

• The shear viscosity does not vary with shear rate.

3



1. INTRODUCTION

Figure 1.3: Shear flow between parallel plates. - U is the velocity of the upper plate.

• The viscosity is constant with respect to the time of shearing and the stress in

the liquid falls to zero immediately the shearing is stopped. In any subsequent

shearing, however long the period of resting between measurements, the viscosity

is as previously measured.

• The viscosities measured in different types of deformation are always in simple

proportion to one another, so, for example, the viscosity measured in a uniaxial

extensional flow is always three times the value measured in simple shear flow.

A liquid showing any deviation from the above behaviour is non-Newtonian.

1.1.3 Linear Viscoelastic Properties

1.1.3.1 Step Strain Experiment

Many materials, especially polymeric ones, exhibit both elastic and viscous behavior.

They are called viscoelastic. There exist viscoelastic solids and viscoelastic liquids,

though sometimes the distinction can be difficult. To approach viscoelasticity, specif-

ically linear viscoelasticity, let us start from the case of solids. These, when perfectly

elastic, obey eq (1.4) in the general case. The crucial difference introduced by vis-

coelasticity is that the moduli G become time dependent. Limiting our discussion to

the incompressible case, eq (1.4) becomes

σ(t) = G(t)γ (1.7)

with the following meaning: At time t=0 a small strain γ is applied to the material

element, and the strain γ is held constant therefrom. A stress immediately arises like

in purely elastic solid: σ(0) = G(0)γ. Subsequently, however, the stress decays in

4



1.1 Linear Response of Materials: Elastic, Viscous, Viscoelastic

time. The material function G(t) is called relaxation (shear) modulus, and is always a

decreasing function of time represented by the GreenKubo relations. The experiment

to which eq (1.7) applies is called: stress relaxation after a step strain.

The relaxation process just described is irreversible, and dissipates at least part of

the work done initially to deform the material element. To the dissipation accompa-

nying a deformation we associate the word viscous. Therefore, materials obeying eq

(1.7) in step strain are called viscoelastic. If the viscoelastic material to which eq (1.7)

applies is a solid, then G(t) in the course of time approaches a nonzero value, G∞.

That is, although stress decreases in time during relaxation, it will approach a value

which then stays on forever as long as the configuration corresponding to the strain γ

is maintained. The difference with respect to a perfectly elastic solid is that, for the

viscoelastic case, the equilibrium stress associated to the strain γ is smaller than the

initial stress σ(0).

Eq (1.7) applies to viscoelastic liquids as well. For such a case, however, G(t)

decreases down to zero. Then, although the strain γ is held constant, in due time the

stress σ vanishes entirely, the liquid material relaxing back to the isotropic equilibrium

state. The work done initially is totally lost, and deformation is not recovered when the

constraint imposing γ is removed. As shown next, though introduced for the particular

case of a step strain, the material function G(t) fully characterizes the linear viscoelastic

response of incompressible materials.

1.1.3.2 Boltzmann Superposition Principle

We take the stress-free equilibrium configuration at t = 0 as the reference configuration.

After that, we deform the material element progressively in time. Such a process can

be described through the function γ(t), which gives the shear strain at time t. For

solids, we assume that γ remains small at all times. For liquids, we temporarily make

the same assumption. Next, we try to find the stress σ at time t, given the fact that

we know the relaxation modulus G(t) of the material. The problem is that, while the

strain is being augmented in time, thus generating additional stress, the stress due to

previous strains is simultaneously relaxing. The strain increment is given by γ̇(t)dt,

where γ̇(t) is the shear rate at time t.

t′ is marked as any instant of time prior to present time t, when we want to know

the stress σ(t). The increment in strain between t′ and t′ + dt′ in the past is given

5
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by (t′)dt′. Such a differential strain step has generated a differential stress dσ which,

however, during the time interval between t′ and t has relaxed somewhat, obeying the

relaxation rule given by eq (1.7). Then, at the present time t, we expect that dσ has

become:

dσ(t) = G(t− t′)γ̇(t′)dt′ (1.8)

In view of linearity, we are entitled to sum over all such past contributions to the present

stress (Boltzmann superposition principle). Hence:

σ(t) =

∫ t

0
G(t− t′)γ̇(t′)dt′ (1.9)

Eq (1.9) is the constitutive equation of linear viscoelasticity for incompressible materials

(limited to shear deformations for simplicity).

The linear equations of viscoelasticity were obtained under the condition that the

strain γ(t) remains small. While such a condition is mandatory for the case of solids,

it is not so for liquids. The asymptotic value is G∞ for solids, while it is zero for

liquids. Thus eq (1.9) only contains the shear rate γ̇(t), which means that γ(t) can

grow indefinitely (as it certainly does in a steady shear flow) as long as the shear rate

γ̇(t) remains small for all values of t′. In other words, eq (1.9) also applies to flows

for which the deformation grows without bounds provided they are sufficiently slow,

so that the memory of large deformations is lost, and only small, more recent, relative

strains contribute to the current stress.

In a steady shear flow, shear rate and shear stress are constant. Eq (1.9) then

becomes:

σ(t) = γ̇

∫ t

0
G(t− t′)dt′ = γ̇

∫ ∞
0

G(t)dt. (1.10)

Hence the viscosity is the integral over time of the relaxation modulus:

η =

∫ ∞
0

G(t)dt. (1.11)

1.2 Nonlinear Response of Polymers

1.2.1 Generalities on Linear Response

Linear response implies that the equilibrium microstructure of the material essentially

remains the same in the non-equilibrium situation, and is only infinitesimally perturbed.

6
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The observed stress is then proportional to some measure of such perturbation. The

concepts of equilibrium microstructure and of perturbation are vague, but can be made

more precise in specific materials.

In solid materials, for example, where atoms can be considered (aside from vibra-

tions) as fixed in space, the microstructure is described by the interatomic distances,

and a deformation indeed perturbs such distances. In liquids made of small molecules,

since molecules are mobile, the microstructure can be the density distribution around

each molecule, or the orientational distribution if the molecules are elongated, or both.

These equilibrium distributions, usually isotropic, will be perturbed by flow. In sus-

pensions, we may define the microstructure in a similar way, with reference to the

suspended particles instead of molecules. In polymeric liquids and in rubber, since the

molecules have a large number of internal degrees of freedom, the microstructure can

be related to polymer conformations. And the examples could continue.

1.2.2 Why Linearity is Universal?

In spite of differences in microstructure, linearity of response is generally observed for

small perturbations.

At equilibrium, the material is in a minimum of free energy. For whatever shape

of the free-energy function, close to the minimum the shape is always parabolic (i.e.,

quadratic) in the state variables. Hence, the forces required to displace the material

from its free-energy minimum, being the derivatives of the free energy (at constant

temperature), are linear.

In the linear range, materials differ one from another only in the values of the pro-

portionality constants. It should also be apparent that, since far from the minimum the

shape of the free energy function will vary from one case to another, no universality of

nonlinear behavior can be expected. Materials may then differ widely in their nonlinear

behavior. At most, we can expect that materials that are similar in structure will show

some sort of universal behavior, nevertheless limited to their specific category.

1.2.3 Why liquids respond nonlinearly?

From what we have said about linearity, it is to be expected that solids will respond

nonlinearly if we deform them too much. However, what makes liquids, which are

infinitely deformable, become nonlinear?

7
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It is well known that the microstructure of a liquid can be described by distribution

functions. When the fluid is set in motion, the velocity gradient acts in the direction of

modifying the distributions prevailing at equilibrium. For example, rodlike molecules

that are randomly oriented at equilibrium will tend to be aligned to some direction

because of flow. On the other hand, thermal motion acts in the opposite direction, i.e.,

it attempts at re-establishing equilibrium.

The concept of relaxation will help us understand the competition between the

external force and intrinsic thermal motion. The concept is more general: If the mi-

crostructure of a material has been modified by some cause, and then the cause is

removed, the microstructure relaxes back to equilibrium. Hence, if flow is much slower

than relaxation, then flow loses the competition. It only marginally perturbs the equi-

librium microstructure of the liquid, and the response is linear. It is nonlinear otherwise.

1.2.4 Nonlinear Behavior Example: Shear Thinning

A well known example of nonlinear (or non-Newtonian) behavior is the shear thinning

exhibited by most polymeric liquids in steady shear flows:

Figure 1.4: Illustration of shear thinning. - Steady-state shear viscosity normalized

with zero shear viscosity as a function of non dimensional shear rate.
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1.3 Friction Reduction due to Co-alignment of Polymer Chains in Fast
Flows

Cox and Merz (1958) [26] reported that the dependence of η on the shear rate (a

nonlinear material function) happens to virtually coincide with the dependence of |η∗|
on frequency ω(a material function of linear viscoelasticity). This is known as the

”Cox-Merz rule”.

In summary, nonlinear behavior varies qualitatively from one system to another.

Differently from the linear case, no general constitutive equation can be written that

describes nonlinearities. Some generic (usually phenomenological) nonlinear constitu-

tive equations , such as the power law for shear thinning fluids, only applies to some

categories of materials, and only in some range of shear rates. Many phenomenological

nonlinear constitutive equations have been proposed in the past that are occasionally

useful for specific problems. Nonlinear constitutive equations are better derived by

modeling the relevant physics of the specific material, or group of materials.

1.3 Friction Reduction due to Co-alignment of Polymer

Chains in Fast Flows

Fast flows and large deformation rates typically are involved in polymer processing

operations. As a consequence, the polymer flow properties during processing cannot

be predicted from measurement of their linear viscoelastic functions, which merely

describe relaxation from small deviations from equilibrium. In strong flows, the polymer

molecular configurations depart strongly from their equilibrium configurations. For

instance, this departing is encountered frequently in many processing operations such

as fiber spinning and film blowing, which are operated in extensional flows [42].

Molecular modeling of the rheology of polymers in fast flow has been developed

over many years starting from the fundamental contributions of Ianniruberto et al.[38,

55, 56], of Masubuchi et al.[86, 88] and of Watanabe et al.[90, 134]. Many years ago,

Ianniruberto et al.[51] proposed that in polymer melts, the monomeric friction coef-

ficient might change because of coalignment of the Kuhn segments (statistical chain

monomers) under the action of fast flows, the phenomenon being in some way anal-

ogous to what occurs at the isotropic-to-nematic transition of liquid crystals. There

followed several suggestions that indeed the effect existed, both from molecular dy-

namics simulations of styrene oligomer melts in shear flows[52] and from the analysis

of extensional flow experiments on entangled and unentangled polystyrene melts and
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solutions[53, 90, 98, 139]. Dependence of the friction reduction effect on the polymer

chemistry is also suggested in some works[86, 90, 92]. Even for a melt of Kremer-

Grest chains, an indirect indication of a weak reduction of the friction coefficient with

increasing molecular coalignment has been recently reported by Masubuchi et al.[88],

who performed molecular dynamics simulations of stress relaxation following fast ex-

tensional flows. Finally, a recent analysis of shear (instead of extensional) data for

unentangled polystyrene melts was added to the list[56].

In spite of the results reported in the papers just referred to, the flow-induced re-

duction of the friction coefficient is still highly controversial, partly because most of the

evidence is indirect and also because the nonlinear rheology of polymers, especially if

entangled, is very complex, encompassing several molecular dynamics mechanisms (e.g.,

see the reviews of Masubuchi[86] and of Larson and Desai[69]). For example, one of

the more advanced molecular models for the rheology of entangled polymers[3] predicts

an extensional viscosity of polystyrene melts that falls somewhat below the experimen-

tal data, despite the fact that the friction coefficient is kept constant in the model.

Needless to say, the prediction worsens should the friction coefficient be assumed to

decrease in fast flows. Such a consideration, clearly speaking against friction reduction,

is also explicitly mentioned by Shahid et al.[118], while discussing possible nematic

interactions between polymers and oligomeric solvents. Moreover, Wagner[130] mod-

els the nonlinear rheology of entangled polymer melts (seemingly successfully) without

making use of any friction coefficient reduction. Wagners model is also taken up by

Rasmussen[103], up to very recent times.[104] Finally, OConnor et al.[94] report molec-

ular dynamics simulations of the relaxation following fast uniaxial extensional flows of

entangled polymer melts, and their results show that the first stage of the relaxation

occurs in a time comparable to the equilibrium Rouse time, seemingly with no sign of

acceleration induced by a possible friction coefficient reduction.

Here, we hopefully solve the above-mentioned controversy by comparing the pre-

dictions of the Brownian dynamics simulations of the coarse-grained Fraenkel-chain

model to KremerGrest (KG) molecular dynamics simulation results by Xu et al.[138].

In addition, the results reported by Xu et al. [138] are implemented to the very recent

model proposed by Watanabee et al. [134], in which the roles of finite extensible nonlin-

ear elasticity (FENE), friction-reduction, as well as brownian force intensity variation

playing on the nonlinear flow behavior were studied.
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1.4 Dynamics of Reversible Polymer Networks

1.4 Dynamics of Reversible Polymer Networks

Reversible polymer networks are formed by physical association of linear or branched

polymers via reversible noncovalent bonds[30, 114, 116, 126], such as ionic interactions[21,

22, 33, 129], metalligand[78, 142, 143], π-π stacking, and hydrogen bonds[24, 34, 74,

75, 119, 136]. The reversibility of cross-linking provides them unique abilities for work-

ing as self-healing, stimuli-sensitive, and shape-memory materials. They also have

superior processing and recycling properties over traditional polymers and chemical

networks constructed from covalently cross-linked polymers owing to the sharp de-

crease in viscosity upon increasing temperature or decreasing concentration. The po-

tential applications of supramolecular polymer networks have inspired strong interests

in understanding the physical mechanisms underlying their structural, dynamic, and

mechanical properties[30, 114, 116, 126].

The topological structures of supramolecular polymer networks are determined by

the molecular composition of the back bones and the nature of the noncovalent in-

teractions. The associating polymers which form supramolecular polymer networks

can have multiple stickers distributed along their backbones. Each sticker can thus be

cross-linked with several other polymers at well-separated bonding sites[33, 34]. The

simplest and most widely studied supramolecular systems are those formed by the

pairwise association of stickers[22, 108]. The polymers begin to aggregate into clusters

which effectively work as cross-links in the transient network if the sticker functionality

increases above two. Here, we only study the case where the sticker functionality is

two. In spite of that, the complicated topological structures, together with the inter-

play between the dynamics of the parent polymer chains and the breaking/re-forming

kinetics of the physical bonds, result in rich dynamic behavior of supramolecular poly-

mer networks. The intrinsic characteristic times include the lifetime of the reversible

stickers τs and the Rouse time τR in view that only unentangled polymers are taken

into account here.

Theoretical models have been developed for describing the dynamic and rheologi-

cal properties of supramolecular polymer networks in accordance with their structural

classification[1, 11, 22, 27, 43, 73, 80, 107, 108, 108, 115]. For unentangled polymers

with supramolecular side groups, the polymer type relevant to our work, the so-called

sticky-Rouse model has been proposed [11, 22, 40, 73, 107]. A scaling theory based
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on the assumptions of pairwise association and hopping diffusion of stickers has also

been developed to describe the self-healing process of unentangled supramolecular poly-

mer networks[123]. Chen et al. [22] viewed the dynamics of associating polymers as

two kinds of motional modes, i.e., low order chain motional modes (Rouse-like, through

breaking and reformation of reversible crosslinks) and high order Rouse modes (delayed

by ion associations with lifetime τs). On the basis of Chen et al.’s work [22], Cui et al.

[27] made several improvements by taking dangling effects into account and introducing

the so-called ”hop” distance. Even though the predictions of their models are able to

capture the main features of the viscoelastic response of associating polymers, discrep-

ancies still appear in the intermediate frequency range of the LVE response, i.e., in the

region where data exhibit a rubbery plateau in the elastic modulus, and a minimum in

the loss modulus. More importantly, their models typically predict more pronounced

than shown by the data at the intermediate frequency regarding the minimum of the

loss modulus.

Here, we investigate the dynamics of the reversible polymer networks by using the

multi-chain model and the single-chain model. The multi-chain model has the capabil-

ities to predict the evolution of the topological structure so that we can estimate the

phase separation according to the local chain density. Due to the natural character-

ization of the time correlation, it usually takes several days to obtain relatively good

results. Particularly, one hardly waits for the terminal relaxation time. On the other

hand, the single-chain model is a time-saving one even though we can only implicitly

know the topological structure of polymer networks through conformational quantities.

More importantly, the predictions of our single-chain model have a good agreement

with data, especially at the intermediate frequencies.

1.5 Thesis Outline

This Ph.D project is part of the DoDyNet (Double Dynamics for Design of New Re-

sponsive Polymer Networks and Gels) project which is funded under the Initial Training

Network of Marie Curie Programme in the European Union HORIZON 2020 Frame-

work. The scientific objective of DoDyNet is to obtain a fundamental understanding of

the synergistic effects arising by combining distinct dynamic modes within a polymeric

network. As part of DoDyNet, this Ph.D project focuses on modeling the dynamics of

12



1.5 Thesis Outline

reversible polymer networks and modeling the nonlinear rheological behavior of unen-

tangled polymer melts under fast flows. The aim of this Ph.D project is to study the

effects of sticker related factors (sticker distribution, density, and lifetime etc.) on the

viscoelastic response of the transient polymer networks and explore the mechanisms of

friction reduction happening in fast flows through modeling and simulation approaches.

Chapter 2 and 3 deal with the dynamics of reversible polymer networks. Chapter 2

starts with the periodic simulation box. Then the Smoluchowski approach and Langevin

approach are given. At the same time, our model is introduced. The effects of the

lifetime, density, and distribution of stickers on the dynamics of associating polymers

are studied. Meanwhile, the comparison between the predictions of our model and that

of the sticky Rouse model is made.

Chapter 3 first displays the mathematical model. Then the results were applied to

examine the data reported by Lewis et al.[74] referring to the unentangled polydisperse

poly-butyl acrylate (PBA) melts (both with and without stickers). Meanwhile, the

polydispersity effect is studied. Next, the results are compared with the LVE data of

Cui et al.[27], where the glassy contribution is taken into account.

Chapter 4 and 5 deal with the friction reduction of unentangled melts under flows.

Chapter 4 first illustrates the physics of deformed polymer under flows in the Intro-

duction. Then a few finitely extensible nonlinear elastic (FENE) models and the flow-

induced friction reduction are given in the same section. Later, a rich set of data of

Kremer-Grest melts in fast steady shear flows is presented. Next, Watanabe’s model is

briefly presented and the above data are applied to this model.

Chapter 5 begins with the assumption that the beads are endowed with isotropic

friction. In this section, the Fraenkel-chain model is shown first. Then the predictions

are compared with the data. Discussions are given at the same time. The next sec-

tion proposes that the beads are endowed with anisotropic friction. In this section,

the theory is presented first. The results are compared with the data as well as the

results of the isotropic friction reduction model both for the conformation data and the

viscometric functions.
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2

A Multi-chain Model for the

Linear Viscoelasticity of

Unentangled Associating

Polymer Melts

2.1 Introduction

Associating polymers are made of covalent chains connected through noncovalent bonds[30,

114, 116, 126], such as ionic interactions[21, 22, 33, 129], metalligand[78, 142, 143], π-π

stacking, and hydrogen bonds[24, 34, 74, 75, 119, 136]. The ability to vary and control

the interactions in supramolecular systems provides an efficient tool to tune the struc-

ture, dynamics, and rheology [19, 44, 106]. This ability stems from different lifetimes,

densities and distribution of stickers along the chain.

The physical meaning of the lifetime of stickers is the bonding energy that enables

two stickers to be associated. The thermal energy at room temperature and pressure

is around kBT = 2.5kJ · mol−1. The energy of a covalent bond is typically larger

than 100kJ ·mol−1. Therefore, the polymer chains connected through covalent bonds

are stable at room temperatures and pressures. In contrast, the bonding energies

of hydrogen bonding, ionic, or van der Waals interactions are comparable with the

thermal energy at room pressure and temperature[15, 59]. Therefore, the networks

formed by these bonds are reversible. The reversibility is crucial for materials to fulfill
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the functions of self-healing, stimuli responsive, and shape memory[91, 144]. Moreover,

both touching and detaching are physiologically important in folding and unfolding of

proteins, where the reversible bonds play a pivotal role[60].

The density of stickers makes a difference as well. Callies et al. [20] investigate

systematically the viscoelasticity of supramolecular center-functionalized linear poly(n-

butyl acrylate) (PnBA) chains as a function of density of stickers. At a certain thresh-

old, the density of stickers is supposed to lead to a transition between two kinds of dy-

namics. Specifically, above the threshold, the density of stickers should be high enough

to allow self-assembly into large aggregates and the rheological properties should be

regulated by the scission and relaxation of these aggregates. On the other hand, be-

low the threshold, the stickers are dispersed in the PnBA melt and should behave as

localized and transient attachment points between chains.

The distribution of stickers has an effect on the structure and physical properties

of associating polymers. Radi et al. [100] supposed that dangling chain ends result in

imperfections in the associating polymers, which lower the crosslink density, thereby

reducing elastic recovery and increasing the solvent swelling. Martin et al.[83] con-

firmed that the dangling chains act as a network defect and decrease crosslink density

depending on the number and length of these dangling chains. This decrease in the

crosslink density leads to reduced mechanical properties[131] as well as greater swelling

of the network in an active solvent environment. In an amorphous polymer network

such as a vulcanized elastomer, the number of dangling chains leads to an increase in

the relaxation time[28, 83] and poor elastic recovery. Control of the number and type

of dangling chains can lead to useful properties.

This study attempts to investigate the effects of the lifetime, density and distribu-

tion of stickers on the viscoelastic response of associating polymers by using a multi-

chain model. This Chapter is scheduled as follows. Section 2.2 introduces the periodic

simulation box. The Lees-Edwards sliding bi-periodic box is illustrated, which makes

it possible to simulate polymer melts under shear flow at a molecular scale. Section

2.3 gives background of Smoluchowski approach and Langevin approach, as well as

the sticky Rouse model and the multi-tau algorithm. Section 2.4 discusses the predic-

tions of the model and compares the results with Chen et al.’s model[22]. Section 2.5

summarizes the whole Chapter.
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2.2 Periodic Simulation Box

When it comes to the multi-chain model, we can not avoid the simulation box. Taking

into account the finite size of model/simulation box is crucial to compute correctly

many of the structural characteristics (e.g. bead-spring statistics) of the system being

studied since the size of the system is limited by the available storage on the host

computer, and, more crucially, by the speed of execution of the program.

The importance of the finite size of the model box can be illustrated using a 1 dm3

edged cube of water (1 L) at room temperature. This cube contains approximately

3.3×1025 water molecules, each of them can be considered as a sphere having a diameter

of 2.8 Å. Following this scheme surface interactions can affect up to 10 layers of spheres

(water molecules) far from the surface of the model cubic box. In this case the number

of water molecules exposed to the surface is about 2 × 1019, which is a small fraction

of the total number of molecules in the model.

Currently, simulations are usually performed on a small number of molecules, some-

where from 1 thousand to several thousands of molecules/atoms. As a result a very

substantial fraction of them may be influenced by the finite size of the simulation/model

box. The problem of surface effects is approached by implementing the so-called Pe-

riodic Boundary Conditions ”PBC”[18], which means surrounding the simulation box

with its translational images in the 3 directions of space. The cubic box is replicated

throughout space to form an infinite lattice. In the course of the simulation, as a

molecule moves in the original box, its periodic image in each of the neighbouring

boxes moves in exactly the same way. Thus, as a molecule leaves the central box, one

of its images will enter through the opposite face. There are no walls at the boundary

of the central box, and no surface molecules. This box simply forms a convenient axis

system for measuring the coordinates of the N molecules.

The Periodic Boundary Conditions have been implemented successfully over the

past few years to predict the equilibrium behaviour of a macroscopic system from that

of a small model. The consideration of various correlation functions offers a rigorous

approach to the evaluation of transport coefficients provided one is close to thermal

equilibrium. (It should, however, be stated that any study of transport phenomena is

extremely demanding in terms of machine time.) However if one is far from equilibrium

the correlation function approach is inapplicable, as are purely analytic approaches. If
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the periodic boxes are stationary, it cannot reveal the time dependent properties or the

behaviour of a system under really extreme conditions.

In 1972 Lees and Edwards[72] proposed a bi-periodic domain concept for Molecu-

lar Dynamics simulations by describing sliding boundary conditions for simple shear

flow, which is nowadays called the Lees-Edwards boundary condition (LEbc). Hwang et

al. (2003)[49] combined the sliding bi-periodic domain concept of Lees and Edwards[72]

with a standard velocity-pressure formulation of a fictitious-domain/finite-element method

by introducing sliding bi-periodic frame constraints. A two-dimensional version of such

a periodic system under shear flow is shown in Figure 2.1. The periodic system can be

applied in equilibrium problems by setting the shear rate γ̇ = 0.

Figure 2.1: Illustrates the principle of the periodic boundary conditions used

in shear flow: a particle which goes out from the simulation box by one side is

reintroduced in the box by the opposite side (in the 2 dimension of space). - γ̇

is the shear rate and L is the length of the box.

In Figure 2.1, the Cartesian coordinates in the plane are specified in terms of the

x coordinate axis (horizontal)and the y-coordinate axis (vertical) with the intersection

point at the bottom left corner of box A. The kinematic relations for the horizontal
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periodicity and the sliding periodicity are written in eqs (2.1) and (2.2), respectively:

vx(x+ nL, y) = vx(x, y), x ∈ (0, L), y ∈ (0, L), n ∈ N. (2.1)

vx(x+ nγ̇Lt, y + nL; t) = vx(x, y; t) + nγ̇L, x ∈ (0, L), y ∈ (0, L), n ∈ N, (2.2)

which means middle row boxes remain static, while the upper row boxes or the bottom

row boxes are moving toward right or left at the speed of γ̇L, respectively. To illustrate

eqs (2.1) and (2.2) explicitly, Figures 2.2-2.6 show the boxes position and the particles

location at different time, where the blue circles or boxes indicate the particles or boxes

location at t = 0 and the red circles or boxes refer to the current particles or boxes

location.

Figure 2.2: Illustration of periodic boxes movement under shear flow - t =

0.01, γ̇ = 25
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Figure 2.3: Illustration of periodic boxes movement under shear flow - t =

0.02, γ̇ = 25
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Figure 2.4: Illustration of periodic boxes movement under shear flow - t =

0.03, γ̇ = 25

As particle 1A moves through a boundary, its images 4C (where the subscript spec-

ifies in which box the image lies) move across their corresponding boundaries. The

number density in the central box A (and hence in the entire system) is conserved. It

is not necessary to store the coordinates of all the images in a simulation (an infinite

number!), just the molecules in the central box (However, when particle interactions

are not negligible, the coordinates of the particles in surrounding boxes (8 boxes for the

2-D problem) are usually necessary to be stored as well). When a molecule leaves the

box by crossing a boundary, attention may be switched to the image just entering. It is

sometimes useful to picture the basic simulation box (in our two-dimensional example)

as being rolled up to form the surface of a three-dimensional torus or doughnut, when

there is no need to consider an infinite number of replicas of the system, nor any image

particles. This correctly represents the topology of the system, if not the geometry. A

similar analogy exists for a three-dimensional periodic system.

It is important to ask if the properties of a small, infinitely periodic system and the

macroscopic system which it represents are the same. This will depend both on the

range of the intermolecular potential and the phenomenon under investigation. The
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Figure 2.5: Illustration of periodic boxes movement under shear flow - t =

1.02, γ̇ = 25
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Figure 2.6: Illustration of periodic boxes movement under shear flow - t =

2.03, γ̇ = 25

common experience in simulation work is that periodic boundary conditions have little

effect on the equilibrium thermodynamic properties and structures of fluids away from

phase transitions and where the interactions are short-ranged. It is always sensible

to check that this is true for each model studied. If the resources are available, it

should be standard practice to increase the number of molecules (and the box size, so

as to maintain constant density) and rerun the simulations. In addition, Pratt and

Haan (1981) [99] have developed theoretical methods for investigating the effects of

boundary conditions on equilibrium properties.

The cubic box has been used almost exclusively in computer simulation studies

because of its geometrical simplicity.

2.3 Molecular Approach

As we mentioned in the Introduction, the nonlinear behavior of polymers varies qualita-

tively from one system to another and no general constitutive equation can be written

that describes nonlinearities. However, the molecular approach has generalities and
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can be applied to different systems. The most famous model is the bead-spring model.

Figure 2.7 shows the Dumbbell model, where two friction beads are connected by a

spring. The beads account for the viscous, dissipative properties of the polymer, while

the elastic spring accounts for the connectivity of the molecule and for its entropic

elasticity[50].

R

Figure 2.7: Dumbbell model. - R is the end-to-end vector.

2.3.1 Smoluchowski Approach and Langevin Approach

The motion of polymer chains is also affected by thermal agitation. This Brownian mo-

tion dominates various time-dependent phenomena in polymer melts such as viscoelas-

ticity and diffusion. This motion is regularly regarded as a kind of stochastic process

from a phenomenological point of view, i.e., constructing a phenomenological equation

describing Brownian motion based on known macroscopic laws. The phenomenological

equation for Brownian motion has two seemingly different, but essentially the same,

forms: the Smoluchowski equation and the Langevin equation.

• Smoluchowski approach

The Smoluchowski equation is derived from the diffusion equation and has the

following form.:

∂Ψ

∂t
=

∂

∂R
·
[
D
∂Ψ

∂R
+ ΨD

∂

∂R

( E

kBT

)]
− ∂

∂R
· (ΨK ·R), (2.3)
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where E is the elastic energy, K is the velocity gradient and D is the diffusion co-

efficient. At equilibrium, Ψ(R, t) is isotropic and Gaussian distribution function.

When D does not vary with R, we can easily compute the term 〈RR〉 by

d〈RR〉
dt

= 2DI− 6D

R2
0

〈RR〉+ K · 〈RR〉+ 〈RR〉 ·KT. (2.4)

• Langevin approach

The Langevin approach describes Brownian motion by including the random force

f explicitly. For the dumbbell model, the Langevin equation is written as:

ζ
(
K ·R− dR

dt

)
−HR + f = 0. (2.5)

For the Rouse model (C.F. Figure 2.8), the Langevin equation reads:
ζ dR1

dt = −H(R1 −R2) + ζK ·R1 + f1, if n = 1

ζ dRn
dt = −H(2Rn −Rn+1 −Rn−1) + ζK ·Rn + fn,

if n = 2, ..., N − 1

ζ dRN
dt = −H(RN −RN−1) + ζK ·RN + fN , if n = N

(2.6)

whereH = 3kBT/R
2
0 andR0 is the end-to-end distance for a subchain at the equilibrium

state, fn is the random force characterized by

〈fn(t)〉 = 0,

〈fnα(t)fmβ(t′)〉 = 2ζkBTδnmδαβδ(t− t′).
(2.7)

Figure 2.9 shows that the Smoluchowski approach is equivalent to the Langevin ap-

proach, neglecting the fluctuation caused by Brownian motion. The Langevin equation

is preferable insofar as it is capable of describing wider classes of stochastic processes[71].

2.3.2 Microscopic Expression for the Stress Tensor and the Relax-

ation Modulus

• Microscopic expression for the stress tensor

It can be shown that the stress tensor σ contributed by an ensemble of Rouse

chains is equal to

σ = νH〈
N−1∑
n=1

(Rn+1 −Rn)(Rn+1 −Rn)〉, (2.8)
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R!

R"
R#

R$

Figure 2.8: Rouse model. - Ri is the position vector of i-th bead.

where ν is the number density of molecules.

• Microscopic expression for the relaxation modulus

G(t) =
V

kBT
〈σxy(t+ τ)σxy(τ)〉τ = νkBT

N−1∑
p=1

exp(−2t/τp), (2.9)

where H = 3kBT/R
2
0 and τp is written as

τp =
2ζ

H

[
4sin2

( pπ
2N

)]−1
. (2.10)

It should be noted that the term 〈σxy(t + τ)σxy(τ)〉τ appearing in eq (2.9) is a

time correlation function revealing relaxation properties of polymer chains. In order to

improve the response signal, many values of the stress σxy(t) are typically used. Thus,

the calculation of time correlation functions frequently consumes significant CPU time

and memory resources. Recently developed efficient methods[79, 101, 102], i.e. the

multi-tau correlator algorithm, have made this computation significantly easier.

2.3.3 Sticky Rouse Model

The sticky-Rouse model is based on the idea that stickers along the chain provide an

additional effective drag, delaying the terminal relaxation time, schematically depicted
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Figure 2.9: Comparison of Smoluchowski approach and Langevin approach. -

〈RxRy〉 as a function of time.
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Subchain’s different colors indicate different molecules

Figure 2.10: Sticky Rouse model. - The sticker functionality is two.

in Figure 2.10. Accordingly, a larger value of friction coefficient ζs will be adopted,

compared with the ordinary bead friction ζ.

The delaying effect can be taken into account either by the drag force from as-

sociated polymer chains (C.F. Figure 2.11) or by assigning a larger value of friction

coefficient ζs, compared with the ordinary bead friction ζ.

In the former method, we suppose that when the distance of two stickers, which

are from different chains, is less than dc, they are associated and they are relocated to

the middle point. After the lifetime tc, the limitation is released and they are in free

status.

Figure 2.12 illustrates the chain’s movements in the periodic simulation boxes.

2.4 Linear Viscoelastic Response of Polymer Networks

Figure 2.13 shows the nondimensional results of shear relaxation modulus G(t). The

yellow, gray, and black curves clearly indicate that the number of stickers N determines

the level of the second plateau. Furthermore, these three curves imply that a more

significant time delay at the end will be found for a larger friction ratio ζs/ζ. The

red and gray curves (or pink and yellow curves) indicate that the G(t) prediction

has a higher second plateau for the the chain with more stickers. The blue and pink
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Figure 2.11: Two associated chains. - The bead j is the associated bead. The friction

coefficient of bead j is two times of that of the ordinary bead.
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Figure 2.12: The conformations of polymer chains in the periodic simulation

boxes. - Blue circles refer to associating stickers. 3 beads per chain with 2 stickers. Box

size: 10 × 10. dc = 0.2, tc = 0.05, time step: 0.01. From up left to down right: t=

5.9-t=5.95.
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curves implies that the distributions of stickers make a difference to the relaxation

modulus results. At the second plateau, the G(t) prediction of the chains with random

distribution of stickers is slightly higher than that of the chains with fixed distribution

of stickers, which means the random distribution of stickers amplifies the effect caused

by stickers, compared with the fixed distribution of stickers. The green and grey curves

show that a vertical shift factor is enough when the G(t) predictions of a longer chain

is traslated to that of a shorter chain.

Figure 2.13: Comparisons of shear relaxation modulus for different friction

ratio ζs/ζ, number of beads N , number of stickers S, and distribution of stickers.

- Hereinafter, ”Random” and ”Fixed” indicate the distribution of stickers.

Figure 2.14 displays the nondimensional predictions of the storage and loss moduli.

From Figure 2.14, we can have a whole picture of the effects of distribution of stickers,
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number of stickers, and friction ratio on the viscoelastic response. To illustrate these

effects clearly, we plot them separately.

Figure 2.14: Comparisons of linear viscoelastic master curves for different fric-

tion ratio ζs/ζ, number of beads N , number of stickers S, and distribution of

stickers. -

Figure 2.15 shows the effects of the distribution of stickers. The G′′(ω) prediction of

the chain with fixed distribution of stickers shows a lower minimum at the intermediate

frequency.

Figure 2.16 shows the effects of the number of stickers. The G′(ω) prediction of

the chain with more stickers shows a higher plateau of the intermediate frequencies. In

addition, it displays a longer time delay at the low frequencies than that of the chain

with less number of stickers.
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Figure 2.15: Comparisons of linear viscoelastic master curves for different dis-

tribution of stickers. -
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Figure 2.16: Comparisons of linear viscoelastic master curves for different num-

ber of stickers S. -
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Figure 2.17 shows the effects of the friction ratio. The physical meaning of the fric-

tion ratio is the lifetime of stickers, which is related to the bonding energy. The higher

the bonding energy is, the larger the friction ratio is. The window of the prediction

of the chain with longer lifetime of stickers (larger friction ratio) is wider than that of

the chain with shorter lifetime of stickers at the intermediate frequencies. Moreover, it

displays a more remarkable time delay at the low frequencies. However, there is almost

no difference at the high frequencies, which indicates that the lifetime of stickers has

no effects on the local dynamics of chains.

Figure 2.17: Comparisons of linear viscoelastic master curves for different fric-

tion ratio ζs/ζ. -

Figure 2.18 displays the comparisons with the predictions of the sticky Rouse model
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reported by Chen et al. [22]. Their model is simple and is capable of capturing the main

features of the viscoelastic response of reversible polymer networks. From Figure 2.18,

we can see that Chens formula is reasonably consistent with our simulations. However,

discrepancies appear in the low and intermediate frequencies. It probably results from

the ignoring of the dangling effect and the unknown distribution of stickers in their

model.

Figure 2.18: Comparisons of linear viscoelastic master curves between Chen et

al. (2013)[22] and our simulation predictions. -
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2.5 Conclusions

The dynamics response as well as the topological structure of reversible polymer net-

works are studied through a multi-chain model in this Chapter. This model not only

is able to describe the topological structures of polymer networks, but also is capable

of predicting rheological behavior in a more comprehensive way.

The simulation results show that the number of stickers decides the level of the

second plateau of G(t) as well as of the plateau of G′(ω) at the intermediate frequencies.

In addition, the number of stickers not only affects the local dynamics of polymer

networks but also has an effect on the viscoelastic response of polymer networks at

a whole scale. Nevertheless, the lifetime of stickers (friction ratio) merely affects the

relaxation of the polymer networks at a whole scale rather than locally.

Moreover, the distribution of stickers affects the viscoelastic response of associat-

ing polymers. Chen et al.[22] reported a classic sticky Rouse model, which is explicit

and simple. However, their model did not take the distribution of stickers into ac-

count. Indeed, discrepancies of the linear viscoelastic response typically appear at the

intermediate frequencies. We will discuss this problem as well in the next Chapter.

Even though the multi-chain model seems perfect, it is somewhat time-consuming.

For instance, to plot the Figure 2.13, it takes 3-4 days, considering the fact that we still

can not obtain good results of the terminal relaxation. In the next Chapter, we propose

a single-chain model, which makes the running time shorter without deteriorating the

reliability.
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3

A Single-chain Model for the

Linear Viscoelasticity of

Unentangled Associating

Polymer Melts

3.1 Introduction

Our current understanding of the rheology of associating polymers is based on the

seminal paper of Green and Tobolsky [40], who first introduced the concept of im-

permanent network. Associating polymers indeed form impermanent networks with

temporary cross-links made up of sticky monomers along the chains. The dynamics of

associating polymers then becomes a many-chain problem, even in the case of low-molar

mass unentangled polymers. Successful single-chain models for unentangled associating

polymers have been first developed by Baxandall [11], Rubinstein and Semenov [107],

and Leibler [73], with their well-known sticky Rouse model, later refined by several

authors, e.g., by Indei and Takimoto [58] who accounted for the occurrence of multiple

stickers in the same network junction.

A systematic comparison of the predictions of the sticky-Rouse model with data

on unentangled associating polymers has been made only more recently. In particular,

we here refer to the nice contributions by Chen et al. [22], Shabbir et al. [117], and

Cui et al. [27], who clearly show that, though the sticky Rouse model qualitatively
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describes the linear viscoelastic (LVE) behavior of a variety of associating systems, a

quantitative agreement with data is still missing. Discrepancies typically emerge in

the intermediate frequency range of the LVE response, i.e., in the region where data

exhibit a rubbery plateau in the elastic modulus, and a minimum in the loss modulus.

Particularly critical is the minimum, which models often predict more pronounced than

shown by the data.

A possible reason for the mismatch is that in the sticky-Rouse model the sticky

beads are assumed to be evenly distributed along the chain, while the real chains are

copolymers with a random distribution of sticky comonomers along the chain. The

model of Jiang et al. [61] accounts for the randomness of the sticker location along

the chain by solving a Rouse-like mathematics with beads endowed with two different

friction coefficients, a small one for the ordinary non-sticky beads, and a large one for the

stickers. As we shall see, however, this model remains somehow inadequate. Indeed, the

same authors have just published a paper [62], where they perform molecular dynamics

simulations of Kremer-Grest-type unentangled associating chains, and compare the

resulting relaxation modulus G(t) with that predicted by their model in [61]. One may

note that the comparison remains not completely successful at intermediate times,

corresponding to the G′(ω) plateau region. In this paper, we suggest a solution for this

discrepancy.

The paper is organized as follows. We first develop the Rouse-like mathematics of a

chain with the same friction coefficient at all beads, but different chain contour lengths

between consecutive beads. This model is meant to describe the slow relaxation of the

associated chains, the beads coinciding with the stickers, randomly distributed along

the chain. The theory is then completed by suggesting a more complete description of

the fast relaxation process. Next, the model is successfully compared with two different

sets of data provided by Lewis et al. [74], and by Cui et al. [27]. Final remarks conclude

the paper.

3.2 Theory

Let’s consider unentangled polymer chains with N Kuhn segments and S sticky points

forming binary junctions. If those junctions are long lasting, the system becomes an

impermanent network that completely relaxes only at times longer than the lifetime of
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those junctions. At sufficiently long times, the many-chain dynamics of the network

can be replaced by that of a single chain where the sticky points are endowed with

a sufficiently large (fictitious) friction coefficient, as suggested long ago by several au-

thors [11, 58, 73, 107]. As mentioned in the Introduction, we here consider a random

distribution, which is the actual situation of the data by Lewis et al. [74] and by Cui

et al. [27] .

Should two of the sticky points be located at the chain ends, and all other ones

distributed uniformly, as in the work of Chen et al. [22], the number of Kuhn segments

in each chain strand is N/(S − 1). In that case, the chain is a classic Rouse chain with

an elastic constant given by

k =
3kBT
N
S−1b

2
, (3.1)

where kBT is thermal energy, and b the Kuhn segment length. In the case of a random

distribution, for any given location of the S sticky points, the i-th strand will have an

elastic constant ki = αik, with the αi’s given by

αi =
N
S−1
ni

, (3.2)

ni being the number of Kuhn segments in the i-th strand. The αi numbers are on

average larger than unity because the utmost sticky points are generally not located at

the chain ends.

The long-time chain dynamics then obeys the following Langevin equations
ζ dR1

dt = α1k(R2 −R1) + f1, if i = 1

ζ dRi
dt = k[αi(Ri+1 −Ri)− αi−1(Ri −Ri−1)] + fi,

if i = 2, ..., S − 1

ζ dRS
dt = αS−1k(RS−1 −RS) + fS , if i = S

(3.3)

where Ri is the position of the i-th sticky point, ζ is their equivalent friction, and fi’s

are the random forces obeying the fluctuation dissipation theorem characterized by

〈fn(t)〉 = 0,

〈fnα(t)fmβ(t′)〉 = 2ζkBTδnmδαβδ(t− t′).
(3.4)

As is usual [84], to solve the set of eqs (3.3), we need to find the normal modes, i.e.,
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the S eigenvalues λi of the symmetric matrix

α1 −α1 0 · · · · · · · · · · · · · · · 0
−α1 α1 + α2 −α2 0 · · · · · · · · · · · · 0

0 · · · · · · · · · · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 −αi−1 αi−1 + αi −αi 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · · · · · · · 0 −αS−2 αS−2 + αS−1 −αS−1
0 · · · · · · · · · · · · · · · 0 −αS−1 αS−1


(3.5)

which reduces to the Rouse matrix if all elastic coefficients αi are equal to unity. Also

in this case, one of the eigenvalues is zero. The S − 1 modes Xp corresponding to the

nonzero eigenvalues obey the equation

ζp
dXp

dt
= −kpXp + fp (3.6)

where the ratio
ζp
kp

defines the relaxation time τp of the p-th mode:

τp =
ζp
kp

=
ζ

λpk
=

N
S−1b

2

λp3kBT
ζ (3.7)

The long-time stress relaxation is then given by

Glong(t) = νkBT

s−1∑
p=1

exp

(
− t

τp

)
(3.8)

where ν is chain number density.

In order to determine the short-time dynamics (aside from the glassy one), we

argue as follows. We have seen that the sticky points, with their friction coefficient

ζ, determine the long-lasting topology of the network. However, the binary junctions

they form are not virtually fixed in space at short times as the large friction coefficient

ζ might suggest. Indeed, the binary junctions fluctuate in space, their local motion

being controlled by a friction coefficient ζstrand comparable to that of a network strand

between consecutive stickers, which on average is lower than

ζstrand =
N

S − 1
ζK , (3.9)
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where ζK is the Kuhn segment friction coefficient. Within the assumption that the

network junctions are long lasting, it is

ζ � ζstrand. (3.10)

Consistently with the argument above, the short time dynamics generates a stress

relaxation given by:

Gshort(t) = νkBT

N∑
p=1

exp

(
− t

τR,p

)
, τR,p =

1

p2
τRouse, τRouse =

ζKN
2b2

6π2kBT
. (3.11)

As in the classical theory [22], the overall stress relaxation is then given by:

G(t) = Gshort(t) +Glong(t). (3.12)

Notice, however, that in the classical theory [22] the short-time relaxation is written

as

Gshort(t) = νkBT
N∑
p=S

exp

(
− t

τR,p

)
(3.13)

i.e., the sum over the Rouse normal modes starts from p = S rather than from p = 1, as

in eq (3.11). In other words, the classical theory assumes that at short times the first

S − 1 normal modes are frozen, i.e., that the junctions created by the sticky points are

virtually fixed in space because of their large friction coefficient ζ, whereas in reality

their local mobility is assured by the small value of the friction coefficient ζstrand. We

will show in the following section how important is the difference between eq (3.11) and

the classical assumption.

Nondimensional parameters of the model are: the number N of Kuhn segments, the

number S of the sticky points, as well as their location along the chain, ranging in the

interval {1, · · · , N}. The dimensional parameters are the friction coefficient ζK of the

Kuhn segments, the much larger (effective) friction coefficient ζ of the sticky points,

and νkBT , where ν is chain number density.

3.3 Results and Discussion

We first examine the data reported by Lewis et al. [74] referring to poly-butyl acry-

late (PBA) melts with an average molar mass Mw of the order of 80 kg/mol, and a
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polydispersity index PI of the order of 2.5. The melts are essentially unentangled since

the PBA entanglement molar mass is Me ≈ 20kg/mol [121]. This is also confirmed by

Figure 3.1, showing the Rouse-like linear viscoelastic response of the basic PBA melt

at room temperature. Notice that the glassy response is absent in Figure 3.1 because

the glass temperature is much lower than 25◦C, and the highest frequency explored is

not large enough.

Figure 3.1: Frequency response of the PBA melt (Mw = 82kg/mol, PI=2.5) at

25◦C. - Symbols are data by Lewis et al. [74]. Red and green lines are predictions of the

monodisperse (M = Mw) and polydisperse Rouse model, respectively

Figure 3.1 shows both the monodisperse and polydisperse Rouse model predictions.

Knowing that for PBA melts at room temperature the Kuhn segment molar mass is

MK ≈ 0.7kg/mol and the mass density is ρ ≈ 103kg/m3 [121], the monodisperse

prediction is obtained from eq (3.11) with N = Mw/MK ≈ 100 (results in Figure 3.1

are in fact insensitive to N provided N is larger than ca. 50), and by choosing the Kuhn

segment friction coefficient ζK so as to fit the zero shear viscosity given by G′′/ω in the

terminal region. The polydisperse prediction is obtained by assuming a Generalized

Exponential (GEX) distribution function [93]. We have taken the exponent within the

exponential equal to 2, a value often suggested in the literature [128], while the other
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two parameters are determined from the average molar mass (Mw = 82kg/mol) and

the polydispersity index (PI=2.5). In the low-M tail of the molar mass distribution the

number of Kuhn segments can be small enough to require that τR,p and τRouse of eq

(3.11) take the more complex expressions reported in the literature (see e.g. Likhtman

[76]).

Figure 3.1 shows good agreement between data and polydisperse predictions. The

minor discrepancy at high frequencies, while suggesting a smaller value for the Kuhn

segment friction coefficient, reveals a minor influence of topological effects, i.e., the

presence of some entanglements. In other words, should ζK be reduced to fit the high

frequency data, the Rouse-like prediction in the terminal region falls slightly to the

right of the data, thus indicating a somewhat slower terminal relaxation because of

topological interactions.

We next examine the data of Lewis et al. [74] for the polymers containing sticky

points, obtained by copolymerization n-butyl acrylate with comonomers bearing hydrogen-

bonding side groups. We here only consider PBA melts with the UPy comonomer be-

cause they show a plateau in G′(ω), which is typical of an impermanent network with

long-lasting sticky junctions.

Figure 3.2 reports the comparison of the model predictions with the data on PBA

melts with a 5% concentration of UPy comonomers. We first examine the case with

no stickers by using the polydisperse Rouse model (cyan curves). We so determine the

Kuhn segment friction coefficient by fitting the high frequency response. Although the

G′ curve follows the data, the G′′ one drops down too early, probably because we are

omitting some contribution from the glassy response. Alternatively, we might obtain a

better fit by artificially decreasing the Kuhn segment molar mass MK , but there is no

evidence thatMK is significantly smaller than 0.7kg/mol.

Next, we consider predictions of the polydisperse model with an average number

of stickers per chain equal to 11 (corresponding to 5% UPy molar concentration). The

green curves are obtained by fitting the low frequency region through the arbitrary

choice of the friction coefficient ζ of the sticky points. As is apparent, the plateau

modulus is somewhat lower than that shown by the data. We believe that such dis-

crepancy is due to the fact that the model has so far ignored the possible presence of

trapped entanglements. Indeed, the large value of Mw, significantly larger than Me,

together with the evidence of some topological interaction in the basic polymer (see
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Figure 3.2: Frequency response at 25◦C of the PBA melt (Mw = 75kg/mol,

PI=2.4) with 5% molar concentration of UPy monomers (a mean of 11 stickers

per chain). - Symbols are data by Lewis et al. (2014)[74]. Cyan and green lines are

polydisperse model predictions for the case of no stickers and 5% stickers, respectively.

Red lines are predictions accounting for trapped entanglements, using eq (3.11) (full lines)

or eq (3.13) (dashed lines) for Gshort
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discussion of Figure 3.1), indicate that when the stickers close up to form junctions the

impermanent network entraps a non-negligible number of entanglements. The solid red

curves in Figure 3.2 are obtained by raising the long-time modulus Glong(t) in eq (3.8)

by a factor of 1.7. This would indicate that there is somewhat less than one trapped

entanglement per every network strand, a result compatible with the ratio Mw/Me. Fit

of the low frequency data indicates that the friction coefficient ζ of the sticky points is

about 3.5 · 104 times that of the Kuhn segment, ζK .

The low frequency data also indicate that the terminal region is not yet reached, i.e.,

that some more permanent weak structure is still present. Such long-living structures

probably result from stronger junctions created by sticker doublets. The latter occur

when two stickers are located at two neighboring beads. The numerical code reveals

that the probability of such occurrence is about 1%, which seems in agreement with

the fact that on average there are ca. 10 stickers per chain, the latter containing (on

average) ca. 100 beads. The junctions formed by doublets are expected to be more

permanent than junctions formed by individual stickers [27, 107].

It is now important to notice that the dashed red curves in Figure 3.2 are obtained

by using eq (3.13) instead of eq (3.11). It is remarkable how well the solid red lines,

differently from the dashed ones, fit the G′′ minimum of the data. How difficult is the

matching of this minimum has been the subject of several discussions in the literature

[22, 27]. It so appears that the solution of this difficulty is in the fact that the sticky

junctions move in space (and dissipate energy) with a friction coefficient close to ζK

(actually ζstrand), rather than with the equivalent friction coefficient ζ of the network

topology. The latter is the assumption tacitly made in the existing literature. It is

finally noted that also the G′ solid red curve fits the data better than the dashed one

in the intermediate frequency range.

Figure 3 reports the comparison of the model predictions with the data of the PBA

melt having a 2% molar concentration of UPy comonomers. In this case the LVE data

reported by Lewis et al. are G′(ω) and the complex viscosity η∗(ω). The triangles in

Figure 3.3, representing G′′(ω), were then obtained indirectly by using the relationship

η∗ =
√

(G′2 +G′′2)/ω. The scatter of the triangles in the intermediate frequency region

is due to the fact that G′ is dominating in that region.

Here, as in the previous case, the long-time modulus Glong(t) has been increased by

the same factor 1.7 because of trapped entanglements. As regards friction coefficients,
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Figure 3.3: Frequency response at 25◦C of the PBA melt (Mw = 82kg/mol,

PI=2.5) with 2% molar concentration of UPy monomers (a mean of 5 stickers

per chain) . - Symbols are data by Lewis et al. [74]. Lines as in Figure 3.2.
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we find that ζK is smaller than that of the 5% case by a factor of ca. 20 due to the

different distance from the glass temperature Tg. Also the sticker friction coefficient ζ

comes out smaller (by a factor of ca. 8) in spite of the fact that the binding energy is

independent of Tg. Decrease of ζ is probably due to the larger mobility of the network

strands.

Before leaving the analysis of the data by Lewis et al. [74] it is worth considering

that, as previously mentioned, the ratio ζ/ζK for the UPy comonomers is larger than

104, which guarantees the appearance of a plateau modulus. The absence of a plateau

in G′ curves of the other comonomers examined by Lewis et al[74]. indicates that such

friction ratio is not large enough. Quantitative analysis of those other data falls beyond

the scope of the present work.

We now move on to examine the LVE data of Cui et al. [27] where the same sticky

monomer, UPy, is co-polymerized with ethylhexyl acrylate (EHA) monomers. Two

features distinguish these more recent data with respect to those of Lewis et al[74].

One of them is that one of the copolymers only contains two stickers per chain (on

average), a feature that, as shown in the following, is of particular importance. The

second difference is that the copolymer chains are made up of very few Kuhn segments

and are therefore definitely unentangled. For the same reason, however, the glassy

response plays a major role.

Figure 3.4 reports Cui et al. [27] G′, G′′ data at 70◦C for the nearly monodisperse

PEHA melt (without stickers) with Mw = 18kg/mol. Since Me ≈ 15kg/mol [27],

this melt can certainly be considered unentangled. The crossing of the data at high

frequencies is a signature of the glassy response. Hence, in order to obtain predictions

in the low frequency range, we first made a fit of the high frequency data (from ω =

107rad/s onwards) with a multi-mode Maxwell model. The resulting discrete glassy

spectrum is shown in Table 1. From the spectrum, we calculate the glassy contribution

to the zero-shear viscosity given by ηG ≈ 0.1Pa · s.
In the lower frequency range, predictions are based on the Rouse model with pa-

rameters determined as follows. As indicated by Cui et al. [27], the PEHA Kuhn

segment is made up of 13 monomers, corresponding to a Kuhn segment molar mass

MK ≈ 2.4kg/mol. Hence, we used eq (3.11) with N = Mw/MK = 18/2.4 ≈ 7. As

regards density, lacking direct information, we used ρ = 900kg/m3. We then chose

the Kuhn segment friction coefficient ζK so as to fit the zero-shear viscosity (given by
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Table 3.1: Discrete glassy spectrum for PEHA at 70◦C

Relaxation times (s) Moduli (Pa)

4.2 · 10−15 1.3 · 108

2.2 · 10−14 9.8 · 107

9.6 · 10−14 1.1 · 108

5.5 · 10−13 1.3 · 108

3.3 · 10−12 1.2 · 108

1.7 · 10−11 8.3 · 107

8.9 · 10−11 5.9 · 107

5.0 · 10−10 2.9 · 107

2.8 · 10−9 1.0 · 107

1.6 · 10−8 2.9 · 106

1.3 · 10−7 1.3 · 105

G′′/ω in the terminal region), accounting for the fact the glassy contribution is known

(see above). Lines in Figure 3.4 were then obtained by summing the glassy and Rouse

contributions. Agreement between predictions and data can be deemed satisfactory.

Figure 3.5 reports the data for the copolymer with 2 UPy stickers per chain. As is

apparent, notwithstanding the strength of the UPy association, there is no G′ plateau.

The reason is actually quite simple. Molecules associate to form impermanent longer

chains, thus saturating the 2 stickers they contain. Indeed, no temporary network

can form unless stickers are at least 3 per chain. The long impermanent chains thus

formed relax at a rate controlled by the ordinary Kuhn segment friction coefficient,

essentially ignoring the presence of stickers except when their dissociation destroys the

long impermanent chains. The equilibrium length of these associated chains is in fact

determined by the detachment time of the stickers, insofar as no associated long chain

can exist whose Rouse-like relaxation time is longer than the junction lifetime of the

stickers.

The peculiar behavior of chain with only 2 stickers has been missed by Cui et al.

[27] who used either the classic sticky-Rouse theory or a more sophisticated stochastic

model, both predicting a G′ plateau. One may note that the essential irrelevance of

the sticker friction coefficient ζ in this case of only 2 stickers per chain is the same

one previously mentioned when considering the local motion of the network junctions,
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Figure 3.4: Frequency response at 170◦C of the PEHA melt (Mw = 18kg/mol,

PI=1.05) without stickers. - Symbols are data by Cui et al. (2018)[27]. Lines are

Rouse predictions, summed up to the glassy contribution.
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Figure 3.5: Frequency response at 170◦C of the PEHA melt with 2 stickers per

chain (Mw = 21kg/mol, PI=1.24). - Symbols are data by Cui et al. (2018)[27]. Lines

are polydisperse Rouse predictions with parameters specified in the text (plus the glassy

contribution)
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leading to the use of eq (3.11) instead of eq (3.13).

Predictions in Figure 3.5 were obtained by using a model for the long-associated

Rouse chains with a molar mass Mw ≈ 1200kg/mol, corresponding to nearly 60 unas-

sociated chains. Best fit of the data was achieved for a value of the Kuhn segment

molar mass MK ≈ 4.8kg/mol (giving N = Mw/MK ≈ 250). One may note that MK

of the associated chain is ca. twice as large than that of the unassociated one. This is

probably due to the short branches of the associated chain arising from the fact that

the sticky points are generally not located at the ends of the unassociated chains. The

other parameter of the best fit is the Kuhn segment characteristic time, which we find

essentially equal to that of the unassociated polymer. Needless to say, curves in Figure

3.5 also account for the glassy contribution, which the data indicate to be the same as

the PEHA melt, i.e., that reported in Table 3.1.

The above analysis of the data in Figure 3.5 delivers a very important result. Indeed,

as just discussed, the value of the Rouse time of the associated long chain (equal to

ca. 3 · 10−3s) also represents the lifetime of the UPy sticker junction. Such a lifetime

is confirmed by the value of the frequency at which the terminal relaxation starts (ca.

300rad/s), and it will be used in dealing with the other associating polymers, carrying

more than 2 stickers per chain.

Figure 3.6 reports the data of Cui et al. [27] for the PEHA melt with 7 UPy

comonomers per chain (on average) showing, as expected, a clear G′ plateau. The

analysis starts by first simply that the lifetime of the junctions is 3 · 10−3s, as derived

from Figure 3.5. Such assumption leads to the cyan curves in Figure 3.6, clearly

inadequate. The data strongly indicate a much longer lifetime of the stickers as well

as a slightly smaller value of the plateau modulus. The first discrepancy is due to an

effect emphasized by Rubinstein and Semenov [107] who write (in the Introduction) a

network strand breaks and recombines again many times at the same pair of stickers

before a final break occurs . It is therefore no surprise that fitting of the data requires

a much longer sticker lifetime in the network with respect to that in the linear chain

considered in Figure 3.5.

As regards the second (minor) discrepancy, i.e., the slightly lower level of the plateau

modulus, it is worth noting that the 7 UPy stickers will distribute in a chain made up

of very few Kuhn segments (at most N = Mw/MK = 30/2.4 ≈ 13). Consequently,

we expect that some Kuhn segments will contain more than one sticker, whereas the
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cyan curves in Figure 3.6 are calculated by assuming that the 7 stickers are all located

on different Kuhn segments. The occurrence of multiple stickers on the same Kuhn

segment reduces the number of elastically active network strands, and hence the level

of the plateau modulus. To confirm this effect, simulations found that, on average,

only ca. 2 Kuhn segments (out of 13) contain single stickers, while the other 5 stickers

form clusters located on other Kuhn segments. Such clusters form in spite of the fact

that the code randomly distributes the 7 stickers among the 13 Kuhn segments. To be

complete, we mention that in fact, since the sample is polydisperse, numbers of stickers

and of Kuhn segments are made proportional to the molar mass of each component of

the molar mass distribution, 7 stickers and 13 Kuhn segments being average values.

Figure 3.6: Frequency response at 170◦C of the PEHA melt with 7 stickers per

chain (Mw = 30kg/mol, PI=1.38). - Symbols are data by Cui et al. [27]. Lines are

polydisperse Rouse predictions with parameters specified in the text.

Consistently with the above discussion, the red curves in Figure 3.6 were then

obtained by reducing the average number of effective stickers per chain from 7 to 5.3,

and by increasing the effective sticker lifetime from 3 · 10−3s to 5.4 · 10−2s. We also

slightly increased the Kuhn segment characteristic time from 1.6 ·10−6s to 2.4 ·10−6s to
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optimize the fit in the high frequency range. The lifetime ratio 5.4 ·10−2/(3 ·10−3) = 18

indicates that on average the stickers open up and close up again 18 times before finding

a different partner, i.e., before contributing to the relaxation process. The intuition of

Rubinstein and Semenov [107] appears confirmed.

Although the agreement of the red curves with data is satisfactory, some minor dis-

crepancies can be observed. Indeed, data do not show the expected terminal behavior,

thus indicating the presence of a small proportion of long-lasting structures. These can

be rationalized on the basis of the clusters of stickers previously mentioned. It appears

sensible to envisage that such clusters may form more long-lasting temporary junctions.

An analysis similar to that just made for the 7 sticker case could be repeated for the

two higher UPy concentrations reported by Cui et al. [27], with 11 and 17 stickers per

chain, respectively. Although the qualitative aspect of the data looks similar, the large

number of stickers distributed over so few Kuhn segments makes a quantitative analysis

awkward, also because an arbitrary choice of more parameters would be required.

3.4 Conclusions

The main original contributions of this work are as follows:

a) The analysis of the data in Figure 3.5 for a melt of unentangled associating polymers

with only two stickers per chain has clearly shown for the first time that the classic

sticky-Rouse recipes, predicting a G’ plateau not shown by the data, fail because

the association generates longer chains but no network structure.

b) The same analysis also provides an estimate of the true lifetime of the sticky junc-

tion, coinciding with the longest relaxation time of the associated chain. Indeed,

when in this case sticky junctions open up, the chance that the same two stickers

recombine is expected not to be significantly different from that of combining

with a different partner.

c) Still, the success of the Rouse-like model used for the data in Figure 3.5 clarifies that

the friction coefficient of the sticky junctions in their 3D motion is not significantly

different from that of the ordinary monomers (Kuhn segments). Of course, this

conclusion is an obvious consequence of the structural information given by point

a).
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d) Moving on to the data with more than two stickers per chain (Figures 3.2, 3.3,

and 3.6), the original contribution with respect to the classic sticky Rouse mod-

els consists in using eq (3.11), instead of eq (3.13), for the so-called short-time

contribution to G(t), coming from the fast relaxation of the individual chains (as

opposed to the slow relaxation of the network). The physics behind the use of eq

(3.11) is that, in the fast relaxation of the chains, the sticky junctions exhibit a

friction coefficient similar to that of the Kuhn segments, the much larger friction

coefficient only affecting the slower relaxation of the network topology. In other

words, in eq (3.13) of the classical theory the sum over the modes is made by

assuming that the sticky points are essentially fixed in 3D space because of their

large friction coefficient, i.e., the slower modes of the fast chain motion are com-

pletely cut off. In reality, the sticky points move in space towards equilibrium

conformations of the network, thus dissipating energy. This appears to explain

why eq (3.11) gives a better fit of the G′′ minimum (see Figures 3.2 and 3.3).

e) Concerning the slow network relaxation, Figure 3.6 shows explicitly that the effective

lifetime of the sticky junctions in the network is several times longer than the

lifetime of the same junctions in the unconstrained situation of the long-associated

chains not forming a network, i.e., those of Figure 3.5. As mentioned in Section

3, this result confirms for the first time the suggestion advanced long ago by

Rubinstein and Semenov [107].

f) Last, but not least, it is worth comparing predictions that make use of the the-

ory we developed for randomly-distributed stickers (requiring calculation of the

eigenvalues of the matrix in eq (3.5)) with those obtained with the uniform sticker

distribution of the classic sticky-Rouse model. This is done in Figure 3.7 for the

data already examined in Figure 3.2, where, according to the authors [74], stick-

ers are distributed randomly. Red and blue curves were obtained with the same

values of the parameters, and both make use of eq (3.11). Superiority of the pre-

dictions with a random sticker distribution (red curve) over those for the uniform

case is apparent.

Note finally that, as mentioned in the Introduction, the algorithm developed by

Jiang et al. for a random distribution of stickers is not equivalent to that proposed

here. Indeed, their model assigns a definite value of the friction coefficient to all Kuhn
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Figure 3.7: Random vs. uniform sticker distribution. - For the data in Figure 3.2

random distribution of stickers generates the red curves (as in Figure 3.2),while a Rouse-like

uniform distribution gives the blue curves.
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segments, and hence a large value ζ to the Kuhn segments occupied by the stickers.

Therefore, at short and intermediate times, those Kuhn segments are in fact fixed in

space, contrary to the physical picture described by the model developed in this paper.

Of course, many-chain models like those developed by Masubuchi and coworkers (see

e.g. [85, 87]) can effectively, but more expensively, replace the single-chain model

suggested here.
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4

Unentangled Polymer Melts are

not Simpler than Entangled Ones

4.1 Introduction

Since we shall concentrate on the viscosity behaviour of polymer melts, it is important

that we first emphasize what polymer melts is, in the context of the shear viscosity.

Polymer melts are highly viscous liquids, possessing non-Newtonian and viscoelastic

properties. These properties result in very complicated stress relaxation and flow be-

havior in response to a deformation. For example, under shear flow or extensional flow,

the stress is a function of the whole deformation history rather than just of deformation

rate (as in simple liquids) or of deformation amplitude (as in simple solids).

The configurations of deformed polymer molecules (melts) subject to flow manifest

themselves in anisotropic quantities such as the stress and optical tensors. Understand-

ing the physics of polymer melts in simple flows is crucial in order to develop molecular

models and constitutive equations which can subsequently be implemented for more

complex flows and geometries.

4.1.1 Physics of Deformecd Polymer Melts Subject to Flow

4.1.1.1 Unentangled vs Entangled Melts in Shear Flow

If a start-up shearing test is continued until the stresses reach their steady state values,

the rheological response of the material is described completely by three functions of the
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shear rate. These are the viscosity and the first and second normal stress differences,

which were defined by Eqs. (4.1), (4.2), and (4.3).

η ≡ σxy/γ̇ (4.1)

N1 ≡ σxx − σyy (4.2)

N2 ≡ σyy − σzz (4.3)

The three material functions of steady simple shear η(γ̇), N1(γ̇), and N2(γ̇) are

called the viscometric functions, and they provide a complete description of the behavior

in steady simple shear of an isotropic polymer, i.e., one that does not form a liquid

crystal or another ordered phase at rest.

Of the viscometric functions, the viscosity is the easiest to measure and the one most

often reported. As in the case of Newtonian fluids, the viscosity depends on temperature

and pressure, but for polymeric fluids (Non-Newtonian) it also depends on shear rate,

and this dependency is quite sensitive to molecular structure. In particular, the curve

of viscosity versus shear rate can be used to infer the molecular weight distribution of

a linear polymer. This curve is also of central importance in plastics processing, where

it is directly related to the energy required to extrude a melt.

At sufficiently high shear rates, the viscosity often approaches a power-law relation-

ship with the shear rate. Figure 4.1 is a plot of viscosity versus Weissenberg number

for unentangled polystyrene melts, and it shows a slope of -0.5 when Wi > 1[109, 122].

Figure 4.2 displays the relationship for entangled polystyrene melts, and it indicates a

slope of -0.8 when Wi > 1[25].

4.1.1.2 Unentangled vs Entangled Melts in Elongational Flow

The nonlinear rheological behavior under uniaxial elongation was examined for unen-

tangled melts of polystyrene by Matsumiya et al [90] (C.F. Figure 4.3). The steady

state shear viscosity, ηE , exhibites strain-rate-hardening and then strain-rate-softening

on an increase of the Weissenberg number Wi ≥ 0.3 (Wi = γ̇τR, with γ̇ and τR

being the shear rate and the Rouse relaxation time in the linear viscoelastic regime,

respectively). For the unentangled melts, the hardening and softening are free from

any entanglement nonlinearity, so that the hardening was unequivocally related to the

finite extensible nonlinear elasticity (FENE) of the chain, and the softening, to the
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Figure 4.1: Steady-state shear viscosity normalized with zero shear viscosity

as a function of Weissenberg number: Unentangled PS melts in shear - Mω =

10k, 14k, 20k

Figure 4.2: Steady-state shear viscosity normalized with zero shear viscosity

as a function of Weissenberg number: Entangled PS melts in shear - Mω =

133k, 185k[25, 47]
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suppression of the FENE effect due to reduction of the segment friction ζ occurring for

the highly stretched and oriented chain.

Figure 4.3: Steady-state extensional viscosity normalized with zero shear vis-

cosity as a function of Weissenberg number: Unentangled PS melts in extension

- Mω = 27k

The extensional viscosity of entangled polystyrene melts was measured using a

filament stretching rheometer capable of measuring at high temperatures by Huang

et al, 2019, Bach et al, 2003[5, 47] with thinning viscosity exhibiting a power-law

dependence on stretch rate with an exponent of about −1/2.

The steady-state extensional viscosities are plotted against Weissenberg number ε̇τ

in Figure 4.4 for two nearly monodisperse linear PS melts with molar mass of 133000

g/mol and 185 000 g/mol linear molecules. The linear chains exhibit a transition from

constant viscosity to a power-law behavior at about the inverse reptation time (1/τd)

with no apparent change in behavior at the inverse Rouse time, as Bach et al[5] observed

.

The -0.5 exponent at high extensional rates has been observed with a range of poly-

mer melts, albeit all with free ends, including model linear [5] and star [48] polystyrene,
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Figure 4.4: Steady-state extensional viscosity normalized with zero shear vis-

cosity as a function of Weissenberg number: Entangled PS melts in extension

- Mω = 133k, 85k

long-chain branched polyethylene [2, 45], and unentangled linear chains [90].

The PS melt data reported in the above figures clearly reveal that unentangled

melts are not simpler than entangled ones in fast shear and elongational flows. Indeed,

unentangled melts also exhibit shear and extensional thinning, contrary to the predic-

tions of the Rouse model that, for long time, has been considered a reasonable model for

unentangled melts. Data clearly indicate the models must account for some nonlinear

effects. In the next sections, we will summarise the presuma bly missing effects.

4.1.2 Finitely Extensible Nonlinear Elastic (FENE) Model

Shear-thinning is the most common type of time-independent non-Newtonian fluid

behavior that can be observed. It is also called pseudoplasticity and is characterized

by an apparent viscosity, which decreases with increasing shear rate.

Many works have been done to explain these phenomena in atomic length scale.

The most famous one is the bead-spring Rouse model.

Some of the earliest theoretical developments in equilibrium polymer physics in-

volved polymer models constructed from spherical beads connected by rigid rods, i.e.
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Figure 4.5: Sample chain trajectories in steady shear flow for N = 50 and

Wi = 0.355; 35.5 and 3.55 × 108.[32] - For polymer melts under shear flow, the end-

to-end distance of polymer chains becomes larger with increasing of Weissenberg number

Wi ≥ 0.3 (Wi = γ̇τR, with γ̇ and τR being the shear rate and the Rouse relaxation time

in the linear viscoelastic regime, respectively).

64



4.1 Introduction

bead-rod chains (Flory 1989)[36]. Kuhn (1934)[67] and Guth & Mark (1934)[41] showed

that the probability distribution function for the separation of the chain ends for ‘phan-

tom’ bead-rod chains is a Gaussian. Using statistical thermodynamics it can be shown

(Treloar 1975[127]) that the force required to increase the chain end-to-end separation is

proportional to the end-to-end separation, i.e. the entropic force behaves as a Hookean

spring for small deformations. For larger deformations Kuhn & Grun (1942)[68] showed

that the entropic force is given by the inverse Langevin function. These entropic forces

derived from the bead-rod model are the fundamental starting point for most bead-

spring models, where the spring represents the entropic force. Bead-spring dumbbell

models have been studied extensively and have been useful in developing constitutive

equations for polymer solutions (Bird et al. 1987[16]; [84]Doi & Edwards 1986; Larson

1988[70]).

Inspired by the success of the rigid dumbbell kinetic theory [17] in describing

qualitatively a wide range of shear-rate dependent viscoelastic phenomena, Warner

et al, 1972[132] developed a dumbbell model with a finitely extensible nonlinear elastic

(FENE) connector to understand the transition in behavior between the rigid dumbbell

and the Hookean spring dumbbell. The finitely extensible connector is closer to the

behavior of a macromolecule since a long chain molecule is neither rigid as is a rigid

dumbbell nor infinitely expandable as is a Hookean spring dumbbell.

F c
j =

HQj

[1− (Qj −Q0)2]
, (4.4)

where H is the spring constant, Qj is the connector vector from bead j to bead j + 1,

Q0 is the maximum end-to-end distance of a link in the chain, and F c
j is the tension in

the jth connecting spring of the chain.

The FENE-P chain, that is, the finitely extensible non-linear elastic dumbbell with

the Peterlin approximation, has been used extensively to describe the rheological be-

havior of dilute polymer solutions.

F c
j =

HQj

[1− 〈(Qj −Q0)2〉]
, (4.5)

where the angular brackets indicate a configuration average.

Wedgewood et al, 1991 [135] developed a model which retains the form of the FENE-

P chain, but allows the use of normal coordinates. To achieve this goal, they replaced
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the denominator of the FENE-P spring force with an expression which was invariant

under the transformation to normal coordinates, specifically writing as

F c
j =

HQj[
1−

∑N−1
j=1 〈(Qj −Q0)2〉/(N − 1)

] , (4.6)

This model was called the FENE-PM model where the M stands for the mean value

that appears in the denominator.

To construct a spring whose length can only fluctuate within a very small range

around the value of the rod length Q0 so that the spring behaves similarly to a rigid link

in the freely jointed chain, Hsieh, et al, 2006[46] mimicked the formulation of the FENE

spring law and the Fraenkel spring law, where the former is finitely extensible and the

latter has a nonzero equilibrium length. The FENE-Fraenkel springs were defined by

F c
j =

H(Qj − 1)

[1− (1−Qj)2/s2]
Qj

Qj
, (4.7)

where s is the extensibility parameter that defines the maximum possible deviation

between the actual spring length and the natural spring length. The FENE-Fraenkel

model turns out to be efficient because it allows use of a larger time step and it yields

less noisy results.

In the bead-spring model, the spring represents an entropic restoring force and the

beads act as sources of friction. Above we have discussed the spring connector applied

in the fast flow. Next we shall present the bead friction story.

4.1.3 Flow-induced Reduction of Monomeric Friction

In the polymeric melts, the friction of beads was thought of as being caused by the

motion of a chain relative to the rest of the material[97]. Molecular theories of nonlinear

viscoelasticity of polymeric melts usually assume, implicitly more often than explicitly,

that the friction coefficient ζ of the Kuhn segment of the polymer maintains the same

value, ζeq, that is observed close to equilibrium, i.e., in linear viscoelasticity. However,

only in recent times, it was found necessary to account for an effect that is important

in fast flows: the friction coefficient ζ of the monomeric unit (Kuhn segment) changes

because of the flow-induced co-alignment of the molecules[51].

Specifically, for polystyrene (PS), ζ is found to decrease in fast elongational flows,

seemingly even by a large amount. The ζ reduction has been linked to the increase
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in the order parameter of the Kuhn segments, although the relationship between them

(expected to be chemistry-dependent) cannot easily be predicted theoretically. How-

ever, such relationship has been determined through molecular dynamics of shear flows

of PS oligomers[52], as well as from stress relaxation data following elongational flows

of high-molar-mass PS melts[139].

ζ reduction has been unequivocally demonstrated by the elongational flow data of

unentangled PS melts reported by Matsumiya et al[90]. As emphasized by those au-

thors, the advantage of using unentangled polymers instead of entangled ones resides in

the fact that, for the latter, other nonlinear effects are simultaneously present (convec-

tive constraint release, disentanglement), which are absent in unentangled polymers.

Moreover, in unentangled polymers, orientation and stretch take place simultaneously

at the onset of the nonlinear response, whereas in entangled ones, nonlinearities start

because of flow-induced tube orientation while chain stretch (which reduces ζ) occurs

only in faster flows (faster than the reciprocal Rouse time of the chain)[84]. A ζ re-

duction effect in unentangled polymers had also been noted by Masubuchi et al[88].

through KremerGrest (beadspring chains) molecular dynamics simulations of stress re-

laxation after cessation of fast elongational flows. However, the KremerGrest chemistry

gave rise to a ζ reduction effect much smaller than that found by Matsumiya et al[90].

The dependence of the ζ reduction effect on the chemistry of the polymer chain has

been confirmed by Matsumiya et al.,[90] who, together with PS, also report experiments

on poly(p-tertbutylstyrene) unentangled melts.

In analyzing their data, Matsumiya et al.[90] model the unentangled polymer as a

finitely extensible (FENE) beadspring Rouse chain with a pre-averaged FENE effect.

The ζ reduction is first estimated by them from the elongational steady-state results in

the form of a dependence of ζ on the elongational stress. However, they find that the

same dependence cannot explain the transient startup data, and even less the relaxation

data following cessation of elongational flow. They argue that the model failure in the

transient results might be due to a delay in the ζ reduction with respect to the flow-

induced stretch/orientation of the polymer chains. However, they find that the same

dependence cannot explain the transient startup data, and even less the relaxation

data following cessation of elongational flow. They argue that the model failure in

the transient results might be due to a delay in the ζ reduction with respect to the

flow-induced stretch/orientation of the polymer chains.
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To illustrate the ζ reduction effects explicitly clear, we reproduced the Figure 4 of

Ianniruberto et al. [54] and the Figure 9 of Ianniruberto et al. [38] here. Figure 4.6

and Figure 4.7 show the comparisons of viscometric functions predictions between with

ζ reduction and without ζ reduction in elongational flow and shear flow, respectively.

Both of them obviously indicate that predictions without ζ reduction are not enough

to fit the data.

Figure 4.6: Steady-state elongational viscosity vs stretch rate. - Black stars are

data from Matsumiya et al.[90] Red circles (and the red spline through them) are model

predictions from the Figure 3 in Ianniruberto et al. [54]. Black circles (and the black spline

through them) are model predictions without ζ reduction from Figure 2 in Ianniruberto

et al. [54]. Green circles are model predictions without ζ reduction but with H̃ = 5000

(rather than 500). Dashed black and green lines are viscosities of fully extended Fraenkel

chains with H̃ = 500 and 5000, respectively. The lower gray line is the LVE limit, while the

upper one gives the viscosity of fully aligned beadrod chains.Reproduced with permission

from ref [38].

Very recently, Watanabe et al [134] investigated the effects of the local elastic

strength κ, segmental friction coefficient ζ, and the Brownian force intensity B of

polymer chains in a melt on the nonlinear viscoleastic response and conformation.

They supposed that these three separate variables are expected to change under fast
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Figure 4.7: Unentangled PS melt (M = 13.7 kDa) viscosity and first normal

stress difference coefficient vs shear rate, top and bottom panels, respectively.

- Symbols are data from Santangelo and Roland [109], approaching power laws (solid

gray lines) with the indicated slopes. Dashed gray lines mark the zero-shear values.

Red and green curves are Fraenkel chain predictions with and without friction reduction,

respectively[56]. Reproduced with permission from ref [38].
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flow. The FENE-PM model of Wedgewood and co-workers (that adopts a FENE spring

strength κ preaveraged for all springs, just as described above)[135] was modified by

allowing the bead friction ζ to decrease with the tensile stress σE , namely, with the

spring orientation and stretch that determine σE . The modified model also described

time evolution of the stress growth and decay coefficients, η+E(t,Wi) and ηE(t,Wi), on

startup and cessation of extensional flow at relatively low Wi, given that ζ determined

from the ηE data (i.e., under steady flow) was extended to time-dependent ζ(σE(t,Wi))

and these ζ(σE(t,Wi)) and σE(t,Wi) were calculated self-consistently in each step of

the time evolution in the model.

Currently, a full set of rheological and structural data for unentangled melts ob-

tained by experiments can not be found in the literature. However, Xu et al.[138]

reported rich data on the Kremer-Grest melts under shear flow using nonequilibrium

molecular dynamics (NEMD) simulations. We will utilize Xu et al’s data on Kremer-

Grest unentangled melts to check Watanabe’s recipe.

4.2 Data on Polymer Kremer-Grest Melts under Fast Shear

Flow

As mentioned at the end of Introduction 4.1, to our knowledge, no other data on

unentangled monodisperse melts are available in the literature. We then move on

to the single information on unentangled monodisperse polymers in fast shear flows

contributed by Xu, et al (2014)[138] using nonequilibrium molecular dynamics (NEMD)

simulations.

In their system, the intermolecular and intramolecular excluded-volume interactions

were taken into account by the repulsive, shifted, and truncated 6− 12 Lennard-Jones

(LJ) potential. Within one polymer chain, the entropic restoring energy was taken into

account by the FENE potential. The LJ+FENE chain model was applied to study the

effects of flow on the rheological (e.g., viscosity and normal stress differences), structural

(e.g., chain end-to-end distance, gyration tensor, orientation resistance parameter), and

dynamical (e.g., tumbling frequency) properties through NEMD simulations.

By fitting the simulation curve in the shear thinning regime with a power-law ex-

pression of the form η ∼ γ̇b, Xu et al (2014) found that the best curve fits were obtained

for b = −0.7 for shear rates γ̇ in the interval 1/τ0 < γ̇ < γ̇c, and for b = −0.37 ± 0.02
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for shear rates corresponding to γ̇ > γ̇c. Analogously, Baig et al (2010)[9] reported that

the exponent b had the values of b = −0.89± 0.06 and b = −0.44± 0.05,respectively.

Figure 4.8: Shear viscosity ζ as a function of shear rate γ̇ for different chain

lengths N = 30, 50, 100, 200, and 400. - Two orange dashed lines correspond to ζ ∼ γ̇0.7

and ζ ∼ γ̇0.37, used to determine the critical shear rate γ̇c = 0.003 for N = 400. The

inset displays the same data marked by the blue frame; the dashed lines indicate the

dependences of ζ on γ̇ . (b) Schematic illustration of the shear thinning behavior. Inset:

The dependence of scaling exponent n on chain length N in the ST-I regime.

We need models that predict the observed behavior, especially for the simple un-

entangled case. The more so because the behavior of the normal stress differences at

high shear rates are pretty different from that at low shear rates (see Figure. 4.9).

Even though we have introduced the normal stress differences in eqs (4.2) and

(4.3), the normal stress coefficients appear in the literature very frequently. Dealy et al

(2018)[31] showed a good explanation on the origin of the definitions of normal stress

coefficients.

From the basic axioms of continuum mechanics, it is possible to show that for a

simple fluid subjected to a perfectly smooth (infinitely differentiable) strain history the

stress tensor is given by an infinite series in terms of Rivlin-Ericksen strain tensors. The

first three terms of this series show the earliest departures from Newtonian behavior as

the strain rate increases from zero. This truncated series is said to model the behavior

of a second-order fluid, although this is a misnomer, as it does not describe the behavior

of any actual fluid but is rather an approximation of the behavior of a simple fluid in a

flow that differs only infinitesimally from the rest state. According to the second-order
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Figure 4.9: Normal stress differences - (a) Scaled first normal stress difference N1

as a function of shear rate. The dashed line indicates quadratic behavior for γ̇ < τ10 . (b)

Negative second normal stress difference N2 as a function of shear rate.

truncation, in simple shear flow the shear stress is proportional to the shear rate, while

the first and second normal stress differences are quadratic in the shear rate. This

inspired the definitions of the first and second normal stress coefficients as follows[31].

Ψ1(γ̇) ≡ N1(γ̇)/γ̇2 (4.8)

Ψ2(γ̇) ≡ N2(γ̇)/γ̇2 (4.9)

Figure 4.9 indicates that in unentangled melts N2 is nonzero. Figure 4.10 shows that

the ratio N2/N1 at low rates is ca. 0.1 just like in entangled melts. In entangled melts

N2/N1 first decreases with increasing γ̇ (as observed experimentally), but, surprisingly,

it asymptotically increases. Otherwise, in unentangled melts N2/N1 first stays constant

at ca. 0.1 with increasing γ̇, then it approaches the same asymptotic behavior.

In Figure 4.11, the left figure indicates that the end-to-end distance appears to ap-

proach one half the fully extended length L with increasing γ̇. We will examine whether

it is due to tumbling. The right figure shows the end-to-end distance distribution be-

comes nearly a constant in fast flows.
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Figure 4.10: The ratio of N2 to N1 - Ratio of N2/N1 in unentangled melts reported

by Xu et al, (2014)[138]) (left) and ratio of the normal stress coefficients (equivalent to the

ratio of N2/N1) in simulated C400H802 PE melt (entangled) reported by Baig et al (2010)

[9] (right)

Figure 4.11: Structural properties of polymer melts under shear flow. - (a)

Scaled root-mean-square end-to-end distance 〈Rete〉 as a function of shear rate. The dashed

line corresponds to 〈Rete〉/L = 0.5. The insets show the snapshots of a polymer chain (N =

200) at various shear rates, from bottom to top γ̇ = 0.00001, 0.001, and 0.1, respectively.

(b) Probability distribution functions of |Rete|/L, P (|Rete|), for N = 200 at various shear

rates. Inset: P (|Rete|) at γ̇ = 0.2 for several chain lengths.
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4.3 Interpretation of Kremer-Grest Melts Data withWatan-

abe’s Recipe

A remarkable difference between entangled solutions and melts of linear polystyrene

(PS) under fast flow was revealed by Sridhars group[13, 14, 141] and Hassagers group[5,

35].

The left figure in Figure 4.12 indicates that the entangled solution exhibits strain-

softening on an increase of elongation rate ε̇ and then significant strain-hardening on

a further increase of ε̇. In contrast, the entangled melt (data of Bach et al in the right

figure) exhibits no hardening even at high Wi(� 1). This lack of hardening strongly

suggests that the entangled linear chains in a melt are not extremely stretched even at

high Wi.

Figure 4.12: Steady-state elongational viscosity of solutions and melts - Left:

Steady-state elongational viscosity vs elongation rate ε̇ as predicted by standard molecular

theories of entangled polymers. From the Trouton value 3η0 at low ε̇, the viscosity first

decreases as 1/ε̇ and then increases again when chains stretch out. Right: Same as in left

figure together with data of Bach et al., showing that the standard theory does not seem

to apply to polymer melts.[82]

To address this problem, Marrucci and co-workers proposed two basic molecular

mechanisms, interchain pressure effect and segmental friction-reduction. Very recently,

Watanabe’s group studied the effect of the changes of spring strength κ, monomeric

friction ζ, and Brownian force FB on nonlinear rheological properties and conformation.

They proposed that the changes in κ, ζ, and FB should occur under fast shear flow.

κ, ζ, and FB were regarded as separate parameters that determine the chain dynamics

as a function of the flow rate.
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On the basis of the Smoluchowski equation for the conformational distribution func-

tion, Matsumiya et al (20018)[90] analyzed the nonlinear rheological behavior by in-

troducing the ζ−reduction into the FENE-PMRouse model[135] but with no change

in the Brownian force intensity B under flow. The Langevin equation (eq (4.10)) is

equivalent to the Smoluchowski equation but includes the Brownian force explicitly, so

that an effect of changes of B on the rheological behavior, one of the main subjects of

this study, can be examined more straightforwardly with an analytical perspective for

the Langevin equation. Thus, Watanabe et al [134] adopted eq (4.10) as the starting

equation.

4.3.1 Description of Watanabe’s Model

A Rouse chain composed of N+1 beads (Rouse segments) and N springs was considered

in Watanabe et al (2021)[134]. Each spring was composed of g Kuhn segments, and

the chain as a whole has ntotal = gN Kuhn segments. N (or g) can be chosen rather

arbitrarily due to the well-known Rouse scaling[76, 84, 133].

For the Rouse chain on startup of constant-rate shear flow, the time evolution of

the position vector of the nth bead, r(n, t), is described by the Langevin equation as

ζ(t)

[
∂r(n, t)

∂t
− v(n, t)

]
= κ(t)

N∑
m=0

Anmr(m, t) + FB(n, t), (4.10)

where ζ(t) and κ(t) denote the bead friction coefficient and spring strength at time

t, respectively, and FB(n, t) stands for the thermal Brownian force acting on the nth

bead at t. Anm is the nmth component of the Rouse matrix A given by

A =



−1 1 0 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 −2 1
0 · · · · · · 0 0 1 −1

 (4.11)

The velocity v(n, t) of a frictional medium at the position of the nth bead is ex-

pressed in terms of the ξ-component of the bead position vector, rξ(n, t) with ξ = x, y, z,

as

v(n, t) =

γ̇ry(n, t)0
0

 (4.12)
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where γ̇ is the strain rate in the shear flow field. The x and y directions are chosen to

be the velocity and velocity gradient directions in eq (4.12).

The Brownnian force is characterized by

〈FB(n, t)〉 = 0,

〈FB(n, t)FB(m, t′)〉 = B(t)δnmδ(t− t′)I,
(4.13)

where 〈· · · 〉 indicates an average taken for all beads in the system, δnm is the Kronecker

delta, and δ(t− t′) is the delta function.

A few comments need to be made for this model. Wingstrand[137], Alvarez[92],

Masubuchi[86], Watanabe[90], and their co-workers have demonstrated that the ζ-

reduction is a local phenomenon, which implies two facts at least. First, the friction

magnitude should be dependent on the chemical structure of the monomeric segments.

In fast shear flow, the bead friction ζ can be assumed to decrease with the tensile stress

σE . Second, the segmental ζ-reduction appears to play a central role in the nonlinear

shear rheology of unentangled polymer melts (as well as that of entangled polymer

melts in addition to the tube pressure effect specific to entangled chains). Matsumiya

and Watanabe[89] gave an explanation on the origin of friction reduction in atomic

length scale. In the coarse-grained length scale, the friction unequivocally represents

dissipation of mechanical energy through motion of the monomeric segments. A given

monomeric segment (probe) should interact with the surrounding segments accord-

ing to a spatial arrangement (position and orientation relative to the probe) of those

segments, so that the energy-dissipating motion of the probe, driven by that interac-

tion, should depend on this spatial arrangement. Then, a characteristic time τ∗ of the

probe motion in the atomic length scale should change with the relative orientation

of surrounding segments. Specifically, the segment motion would become faster if all

segments are oriented in the same direction, which results in the ζ-reduction in the

coarse-grained length scale.

In the linear viscoelastic (LVE) regime, the fluctuationdissipation theorem (2.7) is

valid and the (squared) intensity of the Brownian force, B(t), appearing in eq (4.13),

reduces to the equilibrium intensity Beq = 2ζeqkBT , with ζeq, kB, and T being the fric-

tion coefficient at equilibrium, the Boltzmann constant, and the absolute temperature,

respectively. In contrast, under flow, Matsumiya and Watanabe[89] thought that B(t)

may deviate from Beq (and may change with t in the transient state). Their assumption

was supported by the following statement.
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”...the isotropic white noise character of the Brownian force FB(n, t) is assumed to

be deduced from the fluctuation dissipation theorem in the coarse-grained length and

time scales cf. eq (2.7). However, in the time scale of segmental motion explained above,

FB(n, t) would have a memory characterized by the time τ∗ thereby not behaving as the

white noise (even in the absence of flow). For this case, the term δ(t−t′) appearing in eq

(2.7) should be replaced by a memory decay function having the characteristic time τ∗

(this τ∗ may change with S(t)) (S is the average orientational anisotropy in the presence

of nematic coupling defined in eq (13) in Matsumiya et al[89]). Furthermore, under

fast flow, the fluctuation-dissipation theorem may become invalid. Then, FB(n, t) may

exhibit anisotropy according to the relative orientation of the segments under flow, so

that the isotropic unit tensor I appearing in eq (2.7) may need to be replaced by an

anisotropic tensor. In addition, the intensity of FB(n, t) shown in eq (2.7) , directly

related to the scalar frictional coefficient ζ, may need to be modified. Because the

tensile stress σE is directly dependent on z and x components FB(n, t) (as can be

noted from eq (4.10) ), these changes of FB(n, t) should affect the simulation results at

short t rather significantly. Combination of full-atomic and coarse-grained simulations

would be helpful also for quantifying these features of FB(n, t) under fast flow and

improving the analyses explained in the previous sections.”

We will check this assumption by comparing the rich data of Xu et al (2014)[138]

with the model of Watanabe et al (2021)[134]. The results of the model in eqs (4.10 -

4.13) are summarized as
η

η0
=
rB
rκ

(4.14)

Ψ1

Ψ1,0
=
rBrζ
r2κ

(4.15)

with

rζ =
ζsf
ζeq

, rκ =
κsf
κeq

, rB =
Bsf
Beq

. (4.16)

〈R2〉sf
〈R2〉eq

=

(
rB
rζrκ

){
1 +

(N + 1)[(N + 1)4 − 1]

45N
(W ∗i )2

}
(4.17)

The subscript sf appearing in eqs (4.14 - 4.17) emphasizes that the quantities shown

therein are defined under steady flow. In eq (4.17), W ∗i denotes a reduced Weissenberg

number under shear flow defined by

W ∗i = 2sin2

[
pπ

2(N + 1)

]
rζ
rκ
γ̇τR,eq, (4.18)
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where τR,eq =
ζeq

8sin2
[

pπ
2(N+1)

]
κeq

.

The eqns (4.14), (4.15) and (4.17) can be solved for rκ, rζ, rB by using the data of

η, ψ1 and R2 in Xu et al (2014)[138]. The results are plotted in Figure 4.13.

Figure 4.13: The spring strength rκ, the friction rζ, and the Brownian intensity

rB as a function of Weissenberg number - Full symbols: N = 30, empty symbols:

N = 50.

As shown in Figure 4.13, the spring strength rκ increases with increasing Wi while

the friction rζ decreases, as expected. In contrast, the Brownian intensity rB stays

almost constant, rather than decreasing together with the friction. Hence, the Brownian

force under flow can be regarded as the same as it in the equilibrium state.

Results in Figure 4.13 confirm that in order to fit the data in fast steady shear

flows the spring coefficient must increase with increasing shear rate, rather than stay-

ing constant as predicted by the Rouse model. In other words, finite-extensibility

(FENE) effects become relevant in fast flows because of the flow-induced stretching of

the molecules. However, data also indicate that FENE effects are not enough to explain
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the observed shear thinning behavior. Other nonlinear effects come into play. More

specifically, results in Figure 4.13 also indicate that the friction coefficient must decrease

with increasing the shear rate, consistently with the suggestion advanced long ago by

Marrucci and Ianniruberto. Friction reduction is due to the flow-induced monomer

co-alignment in the shear flow direction. Surprisingly, but consistent with Watanabes

intuition, Figure 4.13 also indicates that the Brownian force intensity does not decrease

together with the friction coefficient, as the fluctuation dissipation theorem would pre-

dict. Indeed, results in Figure 4.13 clearly show that the nondimensional Brownian

intensity remains essentially constant with increasing shear rate. The violation of the

fluctuation dissipation theorem in fast flows of polymer melts clearly emerging from

Figure 4.13 confirms a similar violation shown by the molecular dynamics results of

Brasiello et al [52] who independently measured both the diffusion and the mobility

tensors in fast shear flows of oligostyrene melts (see their Figures 6 and 7).

In conclusion, the results reported in this chapter unequivocally confirm that suc-

cessful models for fast flows of polymer melts, both unentangled and entangled, must

necessarily account for flow-induced friction reduction effects, also triggering a violation

of the fluctuation dissipation theorem. Unfortunately, both phenomena are expected to

be chemistry dependent, and they can only be predicted by resorting to nonequilibrium

molecular dynamics simulations. In the following chapter, we will attempt a fit of the

unentangled melt data of Xu et al. [138] by performing suitable single-chain Brownian

dynamics simulations.

4.4 Conclusions

The Physical phenomena of deformecd polymer melts subjected to flow were presented,

in which two couples of comparisons were made, unentangled vs entangled melts in shear

flow and unentangled vs entangled melts in elongational flow. In both flows, the steady-

state viscosities approach a power-law relationship with the shear rate at sufficiently

high shear rates, even though the exponent may be different. At low shear rates and

under elongational flow, the unentangled melts exhibit more significant strain-hardening

on an increase of the Weissenberg number Wi than the entangled melts due to the chain

stretch. The strain-hardening and strain-softening are attributable to the stretch- and
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orientation-induced ζ reduction and the finite extensible nonlinear elasticity (FENE)

effect.

Watanabe et al (2021)[134] attempted to describe the roles of the local elastic

strength κ, segmental friction coefficient ζ, and the Brownian force intensity B of

polymer chains in a melt by allowing κ, ζ, and B in the Rouse model to change under

flow, in which a modified FENE-PMRouse model was applied. Xu et al.[138] reported

rich data on the Kremer-Grest melts under fast flow, including η, ψ1 and R2, which is

a full set of rheological and structural data required by Watanabe’s model. We applied

Xu et al’s data into Watanabe’s model with the conclusion that the Brownian force

under flow almost remained the same as that at the equilibrium state.

In Watanabe’s system, since they made an attempt to express effects of changes of

B, ζ, and κ under flow on the nonlinear rheology of the Rouse chain in an analytical

form, decoupling and pre averaging happened for all springs, which resulted in N2 = 0.

Nevertheless, Xu et al’s (2014) [138] reported a group of non-zero N2 data. A nonzero

second normal stress difference can be a signature of the importance of topological

effects, similarly to what happens in entangled melts.

In the next section, the isotropic friction reduction and anisotropic friction reduction

in polymer melts will be further discussed by using Xu et al’s (2014) data. The model

adopted in the next section will not be pre averaging. Therefore, N2 will not be zero.

80



5

Friction Reduction in Fast Flows

of Unentangled Polymer Melts

5.1 Introduction

It has been thought for a long time that unentangled polymer melts are well described

by the Rouse model, with the possible exception of their shear viscosity exhibiting

shear thinning, and hence requiring some correction of the Rouse model[23]. A sensible

modification of the Rouse model was required in fast extensional flows because the

Rouse chain is indefinitely extensible, while actual polymer molecules are obviously not.

Finite extensibility (FENE) corrections were therefore included where necessary[31, 46,

124].

In recent times, however, further corrections appeared indispensable in fast flows

(for a review, see Matsumiya et al. (2021)[89]). Both experiments and molecular dy-

namics simulations of uniaxial extensional flows revealed that the extensional viscosity

does not approach the expected plateau value predicted by the FENE models because of

a new effect, namely the flow-induced co-alignment of the Kuhn segments (monomers)

of the polymer molecules, and the consequent reduction of the monomeric friction

coefficient[38, 90], an effect also observed in entangled polymers[47, 53, 86, 98, 140].

Finally, the link between the monomeric friction coefficient and the random forces due

to thermal motion, known as fluctuation-dissipation theorem, (or, equivalently, the

Einsteins relationship between diffusivity and friction coefficient) does not necessarily

hold true away from equilibrium. This nonlinear effect was revealed by nonequilib-
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rium molecular dynamics simulation of styrene oligomers in shear flows[52], and more

recently emphasized by Watanabe and coworkers [90], who envisaged significant con-

sequences on the rheology and flow-induced conformations of unentangled polymers in

fast flows. As is well known, nonlinear data on unentangled polymers are scarce, and

Watanabe and coworkers called for new data to be collected to confirm the anticipated

nonlinear effects.

In this paper, we take advantage of the rich set of data obtained by Xu et al.[138]

with nonequilibrium molecular dynamics simulations of several Kremer-Grest melts in

fast steady shear flows to try and reproduce them by suitable Brownian dynamics simu-

lations, with the aim of understanding the role of the nonlinear mechanisms mentioned

above. Indeed, the data of Xu et al[138]. include not only the viscosity and the first

normal stress difference (as is typically measured in experiments [120]), but also the

second normal stress difference, the chain end-to-end distance, and all components of

the gyration tensor. One should note that the second normal stress difference is pre-

dicted to be zero by the Rouse model, also in the modified version recently proposed

by Watanabe and coworkers[134], while a nonzero second normal stress difference is

typical of the entangled regime. Quite surprisingly, the results of Xu et al.[138] indi-

cate that the second normal stress difference is present in unentangled melts, and that

the ratio to the first normal stress difference is virtually the same as that of entangled

melts. Even more surprisingly, and differently from entangled melts, the normal stress

ratio in the unentangled case remains essentially constant with increasing shear rate.

As suggested in this paper, the latter effect is probably due to flow-induced excluded

volume interactions.

As mentioned above, single-chain Brownian simulations are used in this paper,

with chains coarse grained at Kuhn segment level. To account for the inextensibility

of the Kuhn segments (and consequently of the whole chain), the latter are simulated

as stiff Fraenkel segments. Should the friction of the beads of the chain be isotropic,

simulations give a zero second normal stress difference, because the Fraenkel chain is

equivalent to the Rouse one in this respect. Hence, we endow the beads with anisotropic

friction, on the plausible assumption that a bland topological hindrance is also present

in unentangled polymers. The trick of an anisotropic friction was already suggested in

previous works attempting to replace the tube confining entangled polymers (refs), as
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well as to mimic bland topological interactions in polymeric solutions at the overlap

concentration c∗ [81].

A mild topological interaction in unentangled polymers is also revealed by the fact

that at equilibrium the center-of-mass friction coefficient ζcm is more than proportional

to the chain molar mass (a parabolic relationship is reported by Svaneborg and Everaers

(2020)[125]), rather than following the linear relationship predicted by the Rouse model.

5.2 Beads Endowed with Isotropic Friction

5.2.1 Fraenkel-chain Model

In unentangled polymer melts, each chain feels the surrounding chains through the

excluded volume interaction (preserving the mass density and presumably not affecting

chain dynamics) and through the monomeric friction coefficient ζ[84]. At equilibrium,

the entropic response of unentangled polymer melts can be well-described by the Rouse

model, which is well-known. Nevertheless, in fast flows, where chains become strongly

extended, the Rouse model becomes inadequate, and a better model of the polymer

chain is obtained by coarse-graining at the level of the inextensible Kuhn segment,

described as a Fraenkel spring with a suitably large spring constant. Then unentangled

polymers can be modeled as Fraenkel chains made up of beads endowed with the friction

coefficient ζ and connectors of root-mean-square Kuhn length lK having a suitably large

spring constant H. In polymer melts, hydrodynamic and excluded volume interactions

are screened. Hence, for unentangled melts, the equations of a Fraenkel chain (coarse

graining being at Kuhn segment level) reads:

F = H(l − lK)u, (5.1)

where F is the force in the chain segment having orientation described by the unit

vector u and H is so chosen that the current segment length l remains close to lK .

Chain dynamics is described by the following Langevin equation

ζ

(
dRi

dt
− k ·Ri

)
= Fi+1 − Fi + fi i = 0, · · · , N (5.2)

F0 = FN+1 = 0, (5.3)
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where Ri is the position of the ith bead, k is the velocity gradient, and Fi obeys

eq (5.1) (for 1iN) with li and ui obeying the connectorvector relationship Qi ≡ Ri −
Ri−1 = liui. The Brownian force fi has a Gaussian distribution with 〈fi〉 = 0, and

〈fi(t)fi(t′)〉 = 2ζkBTδ(tt
′)I, where 〈· · · 〉 indicates ensemble average, kBT is the thermal

energy, δ(·) is the Dirac delta function, and I is the unit tensor.

Observables are computed by averaging over a suitably large population of chains.

The observables of interest are the stress tensor σ and the Kuhn segment order param-

eter tensor S, respectively, given by

σ = ν

〈
N∑
i=1

FiQi

〉
, (5.4)

S =
1

N

N∑
i=1

Si, Si =
3

2

(
〈uiui〉 −

1

3
I

)
, (5.5)

where ν is the number density of chains and Si is the local order parameter tensor,

i.e., that of the Kuhn segments located at the ith position along the chains. In the

case of uniaxial elongational flows, the order parameter tensor is fully determined by

the scalar order parameter S given by

S =
1

N

N∑
i=1

Si, Si = 〈u2i,x − u2i,y〉, (5.6)

where ui,x and ui,y are components of ui in a Cartesian coordinate system with the x-

axis in the elongation direction. Obviously, the order parameter S is zero at equilibrium,

while approaching unity when chains become increasingly oriented in the elongation

direction.

Consistently with previous results[52, 53, 98, 140], it is here assumed that the

monomeric friction coefficient ζ is the following decreasing function of the Kuhn segment

order parameter S
ζ

ζeq
=

1[
1 +

(
S
Sc

)α]n/α (5.7)

Since α will be set at a value around 2, eq (5.7) implies that, for S smaller than

a critical value Sc (of order 0.1), ζ essentially remains at the equilibrium value ζeq,

whereas for S larger than Sc, ζ/ζeq follows the power law (S/Sc)
n.
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All relaxation times are assumed to be proportional to ζ through equations of the

form

τ

τeq
=

ζ

ζeq
, (5.8)

where τeq is the value of τ at equilibrium.

Simulations were actually run in non dimensional units. we take the following

scalings:

kBT = k̃BT ·U, lK = l̃K · L, τK = τ̃K · T, (5.9)

where U, L, and T are units of energy, length, and time, respectively. Hereinafter,

the ˜ symbol implies that the variables are non-dimensional. The unit of time also

represents the relaxation time T of the Kuhn segment at equilibrium. Accordingly, the

spring constant H and the contour length of the i-th subsegments li has the scalings

H̃ = HL2

U , l̃i = li
L . The stress tensor σ in eq (5.4) can be written in the following

form:

σ = ν

〈
N∑
i=1

H̃U

(
1− 1

l̃i

)
l̃iui l̃iui

〉
. (5.10)

Then the stress tensor has the following scaling form:

σ̃ =
ρ

Nbead

〈
N∑
i=1

H̃

(
1− 1

l̃i

)
Q̃iQ̃i

〉
, (5.11)

where ν is the number density of chains, Nbead is the number of beads per chain, and ρ

is the number of beads per unit volume. In comparing simulation results to data of Xu

et al. [138], known values of lK and kBT are used, while τK is determined by fitting

linear viscoelastic data.

Before comparing predictions to the data of Xu et al. [138], however, it is worth

recalling that, since unentangled melts have a relatively fast relaxation, the glassy dy-

namics provides a minor but non-negligible contribution to the rheological response[90].

Hence, the viscosity is defined as follows

η =
σ

γ̇
+ ηG, (5.12)

where ηG is the glassy contribution to the zero-shear viscosity.

85



5. FRICTION REDUCTION IN FAST FLOWS OF UNENTANGLED
POLYMER MELTS

5.2.2 Comparison with the Molecular Dynamics Simulations on Kremer-

Grest Unentangled Melts

5.2.2.1 Review the Simulation Data of Kremer-Grest Unentangled Melts

The aim is that of performing Brownian dynamics simulations of Fraenkel chains

(coarse-grained at the Kuhn length scale), in order to compare them with the molec-

ular dynamics results of Xu et al.[138] on Kremer-Grest (KG) unentangled melts, as

we have already introduced in the last chapter. In particular, we focus on KG chains

with N = 30 and N = 50 beads for which we have equilibrium and steady shear flow

results. The approach is based on the assumption that the friction coefficient decreases

with increasing flow-induced molecular co-alignment[54, 55].

Let’s start from the equilibrium results reported in Table 5.1 of Xu et al.[138], here

reproduced for convenience.

Table 5.1: Chain length N , longest relaxation time τ0, zero shear viscosity η0, scaling

exponent n, critical shear rate γ̇c, mean-square radius of gyration 〈R2
g0〉 and mean-square

end-to-end distance 〈R2
ete0〉 at equilibrium for the systems in this work. All quantities are

given in standard reduced LJ units.

N τ0 η0 n γ̇c 〈R2
g0〉 〈R2

ete0〉
30 834 20.2 · · · · · · 7.7 46.3

50 2500 37.9 0.45 0.022 13.4 80.2

100 13513 90.5 0.51 0.015 27.9 168.3

200 86956 417.4 0.60 0.010 56.2 341.8

400 714285 3589.9 0.70 0.003 115.5 686.5

In Table 5.1 we find the following equilibrium properties: the longest relaxation

time τR (extracted from end-to-end vector autocorrelation), the zero-shear viscosity η0

(extracted from the low shear rate asymptote of Figure 5.1), and the square average

end-to-end chain size 〈R2〉, where all quantities are expressed in Lennard-Jones (LJ)

units. We also know the curvilinear length L of the chain, L = (N − 1)lb, where N − 1

is the number of bonds and lb = 0.965 is the bond length. From 〈R2〉 and L we can

compute the number NK of Kuhn segments and the Kuhn segment length lK by using

the following equations: 〈R2〉 = NK · l2K and L = NK · lK . Then, from τR we can extract

the Kuhn segment friction ζ by using the well-known formula for the Rouse time. Once
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we have NK , lK and ζ we can perform equilibrium simulations and compare results

with those reported in Table 5.1. Details are reported below for N = 30 and N = 50.

Let’s start from the equilibrium dynamics of the N = 30 KG melts. From Table

5.1 we know that 〈R2〉 = 46.3. On the other hand, the length L of the chain is

L = 29 · 0.965 = 28. Hence lK = 〈R2〉/L = 1.65, a value slightly smaller than indicated

by Figure 2 of Svaneborg and Everaers (2020)[125] (1.68 and 1.74 for N = 20 and

N = 40, respectively). There follows that NK = 〈R2〉/(l2K) = 16.9 ≈ 17. Fraenkel

chain simulations with NK = 17 give 〈R2〉 = 46.6.

Concerning dynamic properties, from Table 5.1 of Xu et al.[138] we know that

the longest relaxation (Rouse) time is τR = 834. The formula for τR is τR =

(ζl2K)/(12kBT sin2[π/2(NK + 1)]), from which we get ζ = 27.9. This value is con-

sistent with that reported in Figure 6(a) of Svaneborg and Everaers (2020)[125], which

is ζ = ζCM/NK = 441.6/17 = 26.0. We have run Fraenkel chain simulations with

such a value of ζ, giving a longest relaxation time of 848. Hence the true value of ζ is

ζ = 27.9 · 834/848 ≈ 27.

The same Fraenkel chain simulation gives η0 = 19. By correcting for the slightly

smaller value of the longest relaxation time, we obtain η0 = 18.5, which is compatible

with the value reported by Xu et al.[138], η0 = 21.2. The difference 21.2 − 18.5 = 2.7

gives an estimate of the glassy contribution to the zero-shear viscosity, which is not

accounted for in our Fraenkel chain simulations.

Let’s then move to the equilibrium dynamics of the N = 50 KG melts. From Table

5.1 of Xu et al.[138], we know that 〈R2〉 = 80.2. On the other hand, the length L of the

chain is L = 49 · 0.965 = 47.3. Hence lK = 〈R2〉/L = 1.70, a value slightly smaller than

indicated by Figure 2 of Svaneborg and Everaers (2020)[125] (1.74 for N = 40). There

follows that NK = 〈R2〉/(l2K) = 27.8 ≈ 28. Fraenkel chain simulations with NK = 28

give 〈R2〉 = 81.1.

Concerning dynamic properties, from Table 5.1 of Xu et al.[138] we know that

the longest relaxation (Rouse) time is τR = 2500. Now, since τR is τR =

(ζl2K)/(12kBT sin2[π/2(NK + 1)]), we get ζ = 30.4. This value is consistent with

that reported in Figure 6(a) of Svaneborg and Everaers (2020)[125], which is ζ =

ζCM/NK = 878/28 = 31.4. We have then run Fraenkel chain simulations with such

a value of ζ, giving a longest relaxation time of 2520. Hence the true value of ζ is

ζ = 30.4 · 2500/2520 ≈ 30.
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The same Fraenkel chain simulation gives η0 = 33.7. By correcting for the slightly

smaller value of the longest relaxation time, we obtain η0 = 33.7 · 0.99 = 33.4, which

is compatible with the value reported by Xu et al.[138], η0 = 37.9. The difference

37.9−33.4 = 4.5 gives an estimate of the glassy contribution to the zero-shear viscosity.

Hence, we take an average of the estimates, giving ηG = 3.6. This value is particu-

larly important for the comparison with steady shear data to be discussed below.

Now the aim is fitting the viscosity data reported in Figure 5.1 of Xu et al.[138],

reproduced here for convenience.

Figure 5.1: First normal stress difference N1 - Scaled first normal stress difference

N1 as a function of shear rate. The dashed line indicates quadratic behavior for γ̇ < τ−1
0 .

Figure 5.2 shows that Fraenkel chain simulations with the equilibrium friction gen-

erate a modest shear thinning, incompatible with data. The only way to improve

predictions is by reducing the friction coefficient, more and more significantly with

increasing values of the shear rate.

In order to fit the data in Figure 5.1 we developed a code that, with a trial-and-error

procedure, determines the best fit value of the friction coefficient for each shear rate.

In this section, the beads are endowed with isotropic friction. Figure 5.3 shows the

bead friction under steady flow normalized with the equilibrium friction as a function
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Figure 5.2: Steady-state shear viscosity as a function of Weissenberg number

- Comaprisons between the data from Xu et al.[138] and the Fraenkel chain predictions

with equilibrium friction. Hereinafter, ”CF” indicates ”constant friction” and ”Xu” refers

to the data from Xu et al.[138].
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of Weissenberg number. We can easily find that at shear rates larger than γ̇c data

can be fitted with a shear-rate independent friction coefficient, about one third the

equilibrium value.

Figure 5.3: Normalized friction coefficient with equilibrium friction as a func-

tion of Weissenberg number - At Wi > 100, friction coefficient is about one third the

equilibrium value.

Figure 5.3 also indicates that the steady-state normalized friction is not sensitive to

chain length, at least for the length within an unentangled regime (the good agreement

between N = 30 and N = 50). The agreement is explainable from a chemical point of

view. As mentioned in the last Chapter, ζ-reduction is a local phenomenon. Hence, the

friction magnitude relies on the chemical structure of the monomeric segments. In other
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words, the chain length would not affect the magnitude (within the unentangled regime.

For the entangled polymer melts, the effect of ζ-reduction on the viscoelastic response is

mixed with the effects of nonlinear mechanisms of entanglement relaxation; it is not so

straightforward to extract just the former effect from those responses). In addition, at

low enough shear rates (γ̇ < 0.2), the friction remains near a constant, which means that

the energy-dissipating motion of monomeric segments, driven by molecular interaction,

is so slow that the arrangement of chains almost remains unchanged. In contrast, at

high shear rates, the friction plummets. It implies that monomeric segment motion

becomes faster and that the relative orientation of surrounding segments is changed.

Finally, all segments are oriented in the same direction and the motion arrives at the

ultimate speed.

After fitting the data in Figure 5.1, the challenge is looking at all other observables

reported by Xu et al.[138].

5.2.2.2 Structural Properties

The end-to-end tensor R and the gyration tensor G are the most common quantitative

variables of the conformational properties of a polymer chain under flows, which are

defined as follows

R = (RN −R1)(RN −R1) (5.13)

G =
1

N

N∑
i=1

RcmRcm, (5.14)

where Rcm is the vector between i-th monomer and the center of mass of the polymer.

On the basis of the definition of R and G, we mark their trace as the mean-square

end-to-end distance 〈R2
ete〉 and the mean-square radius of gyration 〈R2

g〉 respectively,

i.e. 〈R2
ete〉 = Tr〈R〉 and 〈R2

g〉 = Tr〈G〉.
Figure 5.4, and Figure 5.5 display simulation results for the mean-square chain

radius of gyration normalized with the quadratic curvilinear length 〈R2
g〉/L2 and the

nomarlized root-mean-square chain end-to-end distance 〈Rete〉/L as a function of Weis-

senberg number in dimensionless units, respectively. The comparisons among the con-

stant friction (”CF”) case , the friction reduction (”FR”) case, and the data of Xu

et al. [138] are made in both Figures as well. At low enough shear rates (γ̇ < 2),

the two quantities remain practically unaffected by the applied flow, indicating that in
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this range of shear rates the flow causes mainly orientation (and not distortion) of the

chains along the flow direction. At higher shear rates, on the other hand, the values

of 〈R2
g〉/L2 and 〈Rete〉/L increase rapidly with the applied flow; this indicates that for

these intermediate flows, polymermolecules are not only aligned along the flow direc-

tion but assume also a stretched conformation. This is accompanied by effects such as:

(a) significant energetic and entropic contributions to the free energy of the system, (b)

development of significant lateral enthalpic interactions between neighboring chains,

and (c) development of an anisotropic chain diffusivity tensor, which are all features

of the nonlinear viscoelastic response of the melt to the applied flow. At high shear

rates, the increase in the chain dimensions gradually slows down, leading eventually to

a plateau. Comparing with the data of Xu et al. [138], the simulation results of both

”FR” and ”CR” are able to qualitatively capture the features of the chain radius of

gyration 〈R2
g〉/L2 as well as the features of chain end-to-end distance. However, at high

shear rates, even though both ”CF” and ”FR” deviate from the data, ”FR” alleviates

the derivation to a great extent. The discrepancies happened in the friction reduction

model is probably caused by the fact that the beads are endowed with isotropic fraction.

In the next section, we proposed that the bead friction is anisotropic in view that

the diffusivity tensor is anisotropic.

Figures 5.6, 5.7 show the friciton reduction results for the probability distribution

function with respect to the magnitude |Rete|/L of the normalized chain end-to-end

vector for a number of shear rates in the interval 0.001 ≤ γ̇ ≤ 0.2 covering both linear

and nonlinear flow fields. At equilibrium the distribution is Gaussian, in accordance

with theoretical predictions for long enough chains. The distribution remains essen-

tially Gaussian even when a flow is applied as long as the dimensionless shear rate

is approximately less than 0.01 (although a small shift of the entire curve to larger

|Rete|/L values is clearly discernible in the curves of Figures 5.6 and 5.7). For higher

shear rates (e.g., for Wi ≈ 10, γ̇ = 0.01 in Figure 5.6 (Wi = 8.34) and γ̇ = 0.006 in Fig-

ure 5.7 (Wi = 15) ) the distribution deviates significantly from the Gaussian one, which

is consistent with the simulation reports for shorter (i.e., unentangled) PE melts[8, 64].

For example, despite the fact that it is still dominated by a single peak, it is centered

asymmetrically around its average value (more precisely, it is broadened on its left).

At even higher shear rates (e.g., for γ̇ = 0.1, 0.15, and 0.2 in Figures 5.6 and 5.7), the

distribution becomes very flat in its intermediate region (its width grows considerably);
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Figure 5.4: Normalized mean-square chain radius of gyration 〈R2
g〉/L2 - When

Wi > 3, the chain radius of gyration increases rapidly first and then approaches to a

constant.
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Figure 5.5: Normalized root-mean-square chain end-to-end distance 〈Rete〉/L -

The values of the end-to-end distance show a similar trend as the value of the chain radius

of gyration.
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it also shows a tendency to develop two peaks, one at small and one at large |Rete|/L
values. This phenomenon is due to chain rotation and tumbling under shear:[4, 8, 64]

the increase in the shear rate enhances the rotational frequency of the molecule (its vor-

ticity), thus also the number of lateral collisions with neighboring chains; consequently

the polymer tumbles quickly, since it finds itself more and more often in an unstable

orientation relative to the direction of the applied flow. The net result is a chain whose

conformation alternates quickly between stretched and collapsed structures, and this

explains the broadening of the distribution function for |Rete| as well as the appearance

of the two peaks (instead of one at low shear rates)[4, 8, 29, 39, 64]. The comparisons

of the distribution of |Rete| among FR, CR and Xu (data) for N = 30 at γ̇ = 0.2 is

plotted in Figure 5.8. For low |Rete| (|Rete|/L < 0.2), the distribution are almost the

same for all cases, yet the predictions of both FR and CF models depart from the data

when |Rete| becomes larger even though the former two results overlap with each other.

The consistency of the results between FR and CR implies that the friction reduction

is not caused by the stretching of chains but by the orientation of chains.

Figures 5.9, 5.10, and 5.11 reports results for the variation of the three nonzero

components of the radius gyration tensor (〈Gxx〉, 〈Gyy〉, and 〈Gzz〉) with Wi. Figures

5.12 and 5.13 shows the combined results for the variation of those components of the

radius gyration tensor with Wi, in the cases of N = 30 and N = 50, respectively. The

curves obtained are very similar to those already reported in the literature for a number

of shorter PE melts from direct NEMD or hybrid GENERIC Monte Carlo/NEMD sim-

ulations with a similar atomistic model[8]. More specifically, 〈Gxx〉 remains practically

constant (close to unity of the equilibrium condition) at low shear rates corresponding

to rather weak flows (Wi < 2), for larger shear rates (corresponding to Weissenberg

numbers in the interval 2 < Wi < 30) it increases rapidly, while for even higher shear

rates (Wi > 30) it reaches an asymptote. The overall behavior appears to be quite

similar to 〈R2
g〉/L2 shown in Figure 5.4, as 〈Gxx〉 dominates over the other components

at high shear rates (c.f. Figures 5.12 and 5.13), As closely related to Figure 5.4, the

asymptotic behavior of 〈Gxx〉 is ascribed to (a) finite chain extensibility due to local

bond-stretching and bond-bending interactions, and (b) chain rotation and tumbling

under shear flow, which lower the average chain dimension significantly below its max-

imum value and prevent perfect alignment of chains to the flow (x-) direction;50 this

can also be interpreted as an asymptotic behavior of the persistence length lK at high
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Figure 5.6: Variation of the probability distribution function P (|Rete|) regarding

the normalized chain end-to-end distance |Rete|/L with shear rate - N = 30
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Figure 5.7: Variation of the probability distribution function |Rete| regarding

the normalized chain end-to-end distance |Rete|/L with shear rate - N = 50
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Figure 5.8: Comparisons of the probability distribution function P (|Rete|) re-

garding the normalized chain end-to-end distance |Rete|/L among FR, CF and

Xu - N = 30, γ̇ = 0.2
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shear rates, as described earlier. Qualitatively similar behavior has also been observed

in unentangled polyethylene38 and polystyrene50 melts under shear. Likewise, FR re-

sults reduce the gap between CF results and the data. The asymptotic behavior shown

by FR and CR at high shear rates is probably induced by the persistence length lK .

Figure 5.9: Variation of the radius gyration tensor component 〈Gxx〉 with Wi.

- The FR results narrow the deviation from the data, comparing with CF results when

Wi > 3.

In contrast to 〈Gxx〉, 〈Gyy〉, and 〈Gzz〉 are found to decrease monotonically with

the applied flow, which is physically reasonable given that their behavior is governed

solely by the degree of chain orientation and alignment with the flow. Furthermore,

〈Gzz〉 decreases more slowly than 〈Gyy〉, which should have been expected given that

the y-axis is the velocity gradient and the z-axis is the neutral direction.
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Figure 5.10: Variation of the radius gyration tensor component 〈Gyy〉 with Wi.

- The fact that CF results show smaller values at high shear rates (Wi > 10) implies that

the chain conformation is more flat when the equilibrium friction is adopted in the steady

shear flow.
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Figure 5.11: Variation of the radius gyration tensor component 〈Gzz〉 with Wi.

- Even though the FR results deviate from the data at the intermediate shear rates, they

are approaching to the data along with shear rates increasing(Wi > 10.)
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Figure 5.12: The combined results for the three components of the tensor G as

a function of Wi - N = 30
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Figure 5.13: The combined results for the three components of the tensor G as

a function of Wi - N = 50

103



5. FRICTION REDUCTION IN FAST FLOWS OF UNENTANGLED
POLYMER MELTS

In both Figures 5.10 and 5.11, CF results show smaller values at high shear rates

(Wi > 10), which indicates that the chain conformation is more flat along y-axis and

z-axis. These predictions are acceptable since at high shear rates, chains with larger

friction (compared with the friction reduction model) are less movable, driven by shear

flow, along y-axis and z-axis.

Given that the conformation tensor is one of the most favorite primary state vari-

ables for the formulation of differential constitutive models[12, 105], the results pre-

sented here for its variation with the applied flow can be important not only in getting

a deeper understanding of the interplay between flow and molecular-level character-

istics of polymer melts but also in developing more accurate rheological models 79-

81,36,82,83 and, more importantly, in designing more versatile multiscale simulation

methodologies[7, 8, 57, 96, 110].

The degree of chain alignment/orientation can be characterized by the angle φ,

which is the angle between the projection of the eigenvector of the gyration tensor with

the largest eigenvalue onto the flow-gradient plane and the flow direction. It can be

extracted straightforwardly from the simulation data through

tan(2φ) = 2〈Gxy〉/(〈Gxx〉 − 〈Gyy〉) = mG/γ̇, (5.15)

where the right-hand side of the equation defines the orientation resistance parameter

mG.

Figure 5.14 displays the comparisons of the scaled orientation resistance parameter

among FR, CF, and the data as a function of Wi. In the Newtonian regime (Wi < 2),

mG is found independent of shear rate, consistent with the results for polymers in

dilute solution under shear[6, 9, 66]. With the increase of shear rates, the orientational

resistance deviates from a plateau value and can be described by a universal power law

for various chain lengths. The exponent is about 0.75.

The FR results have a good agreement with the data regarding the orientation

resistance parameter. However, the magnitude of the CF predictions is less than that

of the data when Wi > 2. These facts provide solid evidence for the assumption that

the physical phenomenon of friction reduction is related to the orientation of polymer

chains.

Further insight into the orientational behavior of polymer chains is gained by the

orientation parameter S, which is defined in eq (5.5). Figure 5.15 shows the comparisons
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of the order parameter between FR and CF with two different chain lengths as a

function of Wi. Clearly, the degree to which chains get ordered along the flow direction

increases with increasing shear rate, approaching a plateau (0.6) at high enough fields

where approximately ∼ 60% of the chains (on the average) is supposed to be aligned

along the flow direction. On the other hand, at low shear rates (Wi < 0.1), chains

should be neither stretched nor elongated in any preferred direction although a nonzero

xy-component should be present.

The difference between FR and CF results shows the effects of the friction reduction

on the chain alignment. The smaller magnitude of the FR results imply that the chains

are less aligned along the flow direction in the FR model than that in the CF model,

which is consistent with the results of the orientation gyration tensor as well as with

the results of the resistance parameter (c.f. Figures 5.10, 5.11 and 5.14).

5.2.2.3 Viscometric Functions

In Figures 5.16, 5.17, and 5.18 we present the predictions of our FENE simulations for

the material functions of the simulated Kremer & Grest (KG) melt, namely the first

normal stress coefficient Ψ1, the second normal stress N2, and the ratio −Ψ2/Ψ1. The

results have been obtained by using the given expression in eqs (4.1), (4.2), and (4.3)

for the stress tensor σ based on the well-known Irving-Kirkwood statistical-mechanical

formula.

In an incompressible material, normal stresses are themselves of no rheological sig-

nificance, because if they are equal in all directions they cause no deformation. How-

ever, differences between normal stress components are significant, because they cause

deformation. Figures 5.16 and 5.17 show our simulation results for the first normal

stress coefficient and the second normal stress difference Ψ1 and N2 as a function of

dimensionless shear rate. Consistent with experimental observations,2 both exhibit a

large shear thinning behavior which is captured quite well by power-law expressions.

Figure 5.18 reports the ratio −Ψ2/Ψ1, we see that the value of the ratio lies within the

range [0.0001,0.01].

In Figure 5.16, the FR results show a better agreement with the data than the CF

predictions.

The second normal stress difference N2 is the most difficult to measure of the three

viscometric functions, not only by experiments but also by the simulations. Olson et
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Figure 5.14: Scaled orientation resistance parameter mG as a function of Wi. -

The resistance parameter exhibits a power-law dependence on shear rate with an exponent

of about 0.75.
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Figure 5.15: Order parameter S as a function of Wi - The mismatch of the results

between FR and CR indicates that the friction reduction is related to the conformation of

chains.
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Figure 5.16: FENE simulation predictions for the steady-state viscoelastic ma-

terial functions of the simulated KG melt - The first normal stress coefficient
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Figure 5.17: FENE simulation predictions for the steady-state viscoelastic ma-

terial functions of the simulated KG melt - The second normal stress difference
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Figure 5.18: FENE simulation predictions for the steady-state viscoelastic ma-

terial functions of the simulated KG melt - the ratio −Ψ2/Ψ1 of the second to the

first normal stress coefficient
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al. [95] measured the second normal stress difference using beams inclined at several

angles to find the components of the refractive index tensor. To determine transient

normal stress difference, the phase-modulated polarization technique was developed by

Frattini and Fuller [37]. Kalogrianitis and van Egmond [63] used this technique to

determine the shear stress and both normal stress differences as functions of time in

the start-up of steady simple shear. Optical techniques are particularly attractive for

measurements of normal stress differences, since such methods do not require the use

of a mechanical transducer that is subject to compliance error.

A non-zero N2 is obtained in our simulation, even though the values are smaller

than the data. It should be noticed that in the last Chapter, the value of N2 reported

by Watanabe’s recipe is zero due to the pre averaging assumption used in their model.

Here, we take the topological effects into account so that we obtain the non-zero N2.

We are supposed to use the beads endowed with anisotropic friction model in the next

section to improve the results.

Schweizer[111] reported a technique that a cone angle of 0.148 rad minimized in-

strument compliance while generating a nearly homogeneous strain. Schweizer[111]

used this technique to study a polystyrene melt and found that the normal stress ratio

−Ψ2/Ψ1 was 0.24 at a shear rate of 0.1s1 and decreased to 0.05 at 30s1. Schweizer

et al. [113] used the cone/partitioned plate method to obtain transient normal stress

data for a polystyrene melt and reported that axial compliance and the normal force

range caused problems. Schwiezer and Schmidheiny [112] added a third plate partition

(CPP3) to suppress edge effects, and this improved the accuracy of the steady state

value of N2, but it was not suitable for use with melts because of rheometer frame

compliance. The FR results shown in the Figure 5.18 qualitatively capture the experi-

mental characterization described above, even though there are discrepancies between

the FE results and the data.

5.3 Beads Endowed with Anisotropic Friction

5.3.1 Theory

As mentioned in the Introduction, we want to account for a bland topological interac-

tion with the surrounding chains. Since at each time t the chain is seen as an ellipsoid,
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we will assume that the chain diffuses preferentially along the major axis of such ellip-

soid, i.e., diffusion in the orthogonal direction is somewhat restricted. The chain model

considered here is therefore endowed with a time-dependent anisotropic diffusion coef-

ficient D and mobility µ of the beads given by:

D(t) = D[(1− α)I + αu(t)u(t)], µ(t) =
1

ζ
[(1− α)I + αu(t)u(t)] (5.16)

These tensors are defined by the scalar coefficients D and ζ, respectively, and by

the nondimensional tensor (1 − α)I + αu(t)u(t), where 0 ≥ α < 1 is the anisotropy

parameter, I is the unit tensor, and u is the eigenvector (of unit length) of the gyra-

tion tensor of the chain, specifically the one corresponding to the largest of the three

eigenvalues.

If the chain is divided into N subchains, and Rn (n = 0, 1, ..., N) are the lo-

cations of the N + 1 beads, the Smoluchowski equation for the distribution function

Ψ(R0,R1, ...,RN ; t) is written as[84]:

∂Ψ

∂t
=

N∑
n=0

∂

∂Rn
·
[
D · ∂Ψ

∂Rn
+ (k ·Rn − µ · F n)Ψ

]
(5.17)

Here k is the velocity gradient of the flow, and F n is the force on the n-th bead exerted

by the subchain springs. Hence, the bracket multiplying Ψ in eq (5.17) is the net

convective velocity of the n-th bead. In the Ito interpretation,(refs) the set of Langevin

equations corresponding to eq (5.17) is then written as

dRn =

(
∂

∂Rn
·D + k ·Rn − µ · F n

)
dt+B · ηn

√
2dt, n = 0, 1, ..., N (5.18)

where B is the tensor obeying B ·BT = D, and ηn are normal Gaussian vectors.

Needless to say, numerical integration of eq (5.18) requires calculation of the unit

eigenvector u of the gyration tensor at each time step, thus allowing determination ofD

and µ, of the Cholesky square root B, and of the set of the N + 1 divergences ∂
∂Rn
·D.

As regards these divergences, in view of eq (5.16) we need to calculate ∂
∂Rn
· uu. The

latter divergence is best rewritten by using the eigenvector V before normalization (see

Appendix 6):

∂

∂Rn
· uu =

1

V

[(
∂

∂Rn
· V − 2u · ∂V

∂Rn
· u
)
u+

∂V

∂Rn
· u
]

(5.19)
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Finally, the set of gradient tensors ∂V
∂Rn

needs to be calculated from the gyration tensor

G, which is a straightforward, if cumbersome, operation (see Appendix 6).

Up to now, we have not specified the expression for the subchain spring force fn,

which is needed to calculate the force fn on the beads. Indeed, at equilibrium, long-time

relaxation properties of the system can be calculated by using the classical Gaussian

expression fn = 3kBT
l2K

(Rn −Rn−1), where lK is the Kuhn length, and kBT is thermal

energy. Conversely, under flow, especially under fast flows, inextensibility of the sub-

chains (Kuhn segments) must be accounted for, and the Fraenkel force is used instead

fn = H

(
1− lK

l

)
(Rn −Rn−1) (5.20)

where l = |Rn−Rn−1| is the current subchain length, and H is a suitably large spring

constant that maintains l close to lK at all times.

It should be noted that in eq (5.16) two scalar quantities appear, D and ζ, which

at equilibrium are linked by the well-known Einstein relationship Deq = kBT/ζeq, also

known as fluctuation-dissipation theorem. As mentioned in the Introduction, it appears

that such relationships break down in fast flows. Hence, in fast flows, not only we

expect that the Kuhn-segment friction coefficient ζ becomes smaller than ζeq because

of the flow-induced co-alignment of the Kuhn segments, but also that D will increase

with respect to its equilibrium value Deq in a way that does not fulfill the relationship

D = kBT/ζ[52].

From the simulations we extract several observables, as averages over a sufficiently

large number of chains. Conformational quantities are the chain end-to-end distance

Rete, and all the components of the gyration tensor G. The rheological quantity is the

stress tensor T given by:

T = ν

[
N∑
n=1

〈fn(Rn −Rn−1)〉 − epww

]
, (5.21)

where ν is the chain number density, w is the unit eigenvector associated to the smallest

eigenvalue of the gyration tensor G, and ep is an unknown factor with dimension of

energy. The first term in eq (5.21) is the classical Kramer expression for phantom

chains that accounts for intrachain forces only. As discussed later in this Chapter, the

second term arises in fast flows from interchain excluded volume interactions. As is

known, the latter are irrelevant in polymer melts at equilibrium [], i.e., at equilibrium

it is ep = 0.
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5.3.2 Results and Discussion

5.3.2.1 Linear Viscoelasticity

We here compare predictions of the model with the molecular dynamics results of Xu et

al.[138] on Kremer-Grest (KG) unentangled melts. In particular, we focus on KG chains

with 30 and 50 beads because their results on longer chains already show entanglement

effects.

In Table I of the Xu et al.[138] paper the following equilibrium properties are re-

ported: i) the longest relaxation time τlong (extracted from the end-to-end vector auto-

correlation), ii) the zero-shear viscosity η0 (extracted from the low shear rate asymptote

in Figure 1 of Xu et al[138].), and iii) the average square end-to-end distance R2
ete. Ta-

ble I below reports all such quantities in Lennard-Jones (LJ) units. We will use LJ

units throughout this Section.

Table 5.2: Properties of the two unentangled KG melts of Xu et al.[138]

Number of beads τlong η0 R2
ete N τR α ν

30 834 20.2 46.3 17 700 0.35 0.028

50 2500 37.9 80.2 28 1800 0.4 0.017

The curvilinear length L of the two chains is also known from L = Nblb, where Nb

is the number of bonds (29 and 49, respectively), and lb = 0.965 is the bond length of

the KG chain [125]. From R2
ete and L the number N of Kuhn segments and the Kuhn

segment length lK are determined by solving the equations: R2
ete = Nl2K and L = NlK .

Values of N (rounded to integer numbers) are reported in Table 5.2, and the value of

lK ≈ 1.7 agrees with literature results [125].

It is now worth calculating the Rouse time τR of the two chains from the formula

τR = ζeql
2
K/(12kBT sin2[π/(2N + 2)]) [76]. Here, the equilibrium friction coefficient

ζeq of the Kuhn segment is obtained from the literature value of the KG bead friction

coefficient ζb = 12.4 ± 1 [125] as ζeq = ζblK/lb ≈ 22. The values of τR so obtained

(see Table 5.2) confirm that the Rouse model is inadequate, while a bland topological

interaction explains why τlong is found somewhat larger than τR, the more so the larger

is N .

In our simulations, topological effects are introduced through the anisotropy param-

eter α, and we find that α = 0.35 and α = 0.4, for N = 17 and N = 28, respectively,
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generate τlong = 845 and τlong = 2540, respectively, in agreement with the data in Ta-

ble 5.2. Figure 1 shows the end-to-end autocorrelation function for both KG melts as

generated by our coarse-grained simulation. In this linear-log plot, the ultimate slope

gives 1/τlong. The values of α so obtained will be maintained throughout the rest of

the paper.

To calculate the zero-shear viscosity, we first compute the linear relaxation modulus

G(t) from the Green-Kubo stress autocorrelation function [76], and then use the rela-

tionship η0 =
∫∞
0 G(t)dt. Calculation of the stress requires the chain number density

ν (see eq (5.21)), given by ν = ρ/[mb(Nb + 1)]. Since ρ = 0.85 and mb = 1, we find

the values reported in Table 5.2. Figure 2 reports the G(t) curves for both KG melts,

calculated from Fraenkel chain simulations with the same parameters as in Figure 5.19.

Integration of the G(t) curves gives η0 = 19 and eta0 = 37, for the two KG melts,

respectively. Comparison with the η0 values of Xu et al.[138] reported in Table 5.2

indicates that the glassy dynamics (not accounted for in our simulations) gives a small

contribution to the zero-shear viscosity, of the order of a few percent for both KG melts.

In particular, we estimate a glassy viscosity ηG ≈ 1. This is in agreement with the fact

that the molecular dynamics simulations of Xu et al.[138] are run at T = 1, far above

the glass transition temperature (Kremer and Grest, 1990[65]).

Before moving on to the nonlinear range, it is fair to also perform a comparison

with the KG melt data of Likhtman and co-workers[77], which also include results of

chains with 50 beads. Figure 5.21 reports that comparison in terms of G(t)t0.5vs.t,

where symbols are KG data, and the green line are the corresponding Fraenkel chain

predictions reported in Figure 5.20.

Both figures confirm that the glassy contribution is not relevant. Deviations at short

times are probably not significant for our purpose. It is finally fair to mention that

there is a non-negligible discrepancy between Xu[138] and Likhtman[77] result, insofar

the zero-shear viscosity of Xu is 38 while Likhtman indicates the value 45, which is

closer to our prediction.

Values of Kuhn segment length, lK = 1.7, and equilibrium friction coefficient, ζeq =

22, as well as α = 0.35 and 0.4 here determined for N = 17 and 28, respectively, are

all parameters needed to solve the Langevin equation (eq (5.17)) for any value of the

velocity gradient k. In particular, shear flows are considered in the next section.
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Figure 5.19: End-to-end autocorrelation function for KG melts of 30 and 50

beads, obtained from Kuhn-segment-level coarse-grained Brownian simulations

with anisotropic mobility. - Parameters are N = 17, α = 0.35 (red line), and N = 28,

α = 0.4 (green line).
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Figure 5.20: Linear relaxation modulus of the KG melts with 30 and 50 beads,

red and and green lines, respectively. - Parameters as in Figure 5.19
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Figure 5.21: Comparison of model predictions with G(t) data of KG melts with

50 beads reported by Likhtman et al.[77] - Parameters as in Figure 5.19
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5.3.2.2 Shear Flow

We first run our simulations by letting the parameters ζ at the equilibrium value ζeq,

and D at the Einstein value Deq = kBT/ζeq. For the time being, we will calculate the

stress tensor by setting ep = 0. Starting from equilibrium conformations of the chains,

we switch on a shear rate γ̇, and advance in time sufficiently long so as to reach a

steady state, and compare our predictions with the steady shear data of Xu et al[138].

Figures 5.22-5.25 report their data of shear viscosity η, first normal stress difference

N1, second normal stress difference N2, and end-to-end distance Rete, versus γ̇, for

30 bead KG melts. In the same figures, green squares are simulation results with

parameter values determined in the previous section and orange circles are simulation

results obtained in the previous Chapter. In slow flows, γ̇τlong < 1, agreement between

simulations and data is satisfactory. Particularly relevant is the good agreement with

the value of N2, which represents a confirmation of the α values determined in the

previous section. It is worth recalling again that, without anisotropy (α = 0), N2

would be zero. In fast flows agreement between predictions and data is totally lost,

with the possible exception of the viscosity. Indeed, both Rete and N1 are predicted

larger than observed, and N2 approaches a plateau, while data keep increasing with

increasing γ̇.

Figures 5.26-5.29 show the results of radius gyration tensor components 〈Gxx〉,
〈Gyy〉, 〈Gzz〉, and 〈Gxy〉 for 30 bead KG melts. Compared with the data (solid circles),

both anisotropic results and isotropic results have good agreement with data at low

shear rates, even though they depart from the data at high shear rates (〈Gxx〉, 〈Gyy〉,
and 〈Gzz〉) or at the intermediate shear rates (〈Gxy〉). In addition, the anisotropic

results slightly shrink the discrepancies between the isotropic results and the data.

The anisotropic friction reduction model hopefully improves the results, which will be

left for the future work.

5.4 Conclusions

The steady-shear-flow molecular dynamics results on two unentangled Kremer-Grest

melts, reported by Xu et al.[138], already analyzed in the previous chapter by using

the Rouse-like constitutive equation very recently suggested by Watanabe and cowork-

ers (2021)[134], have here been carefully re-analyzed through single-chain Brownian
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Figure 5.22: Steady-state shear viscosity as a function of shear rate - Hereinafter,

”anisoCF” indicates ”anisotropy constant friction”.
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Figure 5.23: Comparisons of viscometric functions among the isotropic con-

stant friction results, anisotropy constant friction results, and the data. - The

first normal stress difference.
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Figure 5.24: Comparisons of viscometric functions among the isotropic con-

stant friction results, anisotropy constant friction results, and the data. - The

second normal stress difference.
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Figure 5.25: Comparisons of viscometric functions among the isotropic con-

stant friction results, anisotropy constant friction results, and the data. - Root-

mean-square chain end-to-end distance.
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Figure 5.26: Comparisons of radius gyration tensor component among the

isotropic constant friction results, anisotropy constant friction results, and the

data. - 〈Gxx〉
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Figure 5.27: Comparisons of radius gyration tensor component among the

isotropic constant friction results, anisotropy constant friction results, and the

data. - 〈Gyy〉
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Figure 5.28: Comparisons of radius gyration tensor component among the

isotropic constant friction results, anisotropic constant friction results, and the

data. - 〈Gzz〉
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Figure 5.29: Comparisons of radius gyration tensor component among the

isotropic constant friction results, anisotropic constant friction results, and the

data. - 〈Gxy〉
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dynamics simulations. Those simulations first accounted for FENE effects by coarse

graining chains at the Kuhn segment scale, and by mimicking the rod-like behavior

of the Kuhn segments through suitably stiff Fraenkel springs. Results confirm that

FENE effects alone are not sufficient to describe the complex nonlinear behavior of

unentangled KG melts. As already shown for the case of unentangled polystyrene

melts, though a better agreement with KG melt data can be attained by accounting for

flow-induced friction reduction effects, simulations still predict a virtually zero second

normal stress difference, similarly to the Rouse-like model of Watanabe and coworkers,

but inconsistently with the data of Xu et al[138].

We have here shown that to improve predictions for the second normal stress dif-

ference some topological effects must be accounted for. In particular, we accounted for

those topological effects by endowing the beads of the Kuhn chain with an anisotropic

mobility. Similarly to the case of entangled melts, beads are here assumed to move

preferentially along some direction: chains are here seen as ellipsoids, diffusing prefer-

entially along the major axis of such ellipsoid, the diffusion in the orthogonal direction

being somewhat restricted by the steric hindrance of the surrounding chains. Such

anisotropy affects dynamic properties already at equilibrium, and for that reason we

have extracted the anisotropy parameter α of eq (5.16) by fitting the equilibrium au-

tocorrelation of the chain end-to-end vectors.

Preliminary results of this anisotropic model are very encouraging, being also con-

sistent with the second normal stress data in slow flows (compare Figure 5.17 with

Figure 5.24). To improve predictions in fast flows, the simulations must obviously ac-

count for friction reduction effects, and probably also for the possible violation of the

fluctuation-dissipation theorem, as suggested by Watanabe and coworkers. A further

possible complication is due to the fact that interchain excluded volume interactions,

which are known to be screened at equilibrium in melts, become important in fast flows.

Those flow-induced pressure-like interactions could indeed explain the large values of

the second normal stress difference in fast flows (see Figure 5.24). Understanding all

these aspects is left as future work.
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6

Summarizing Chapter

In this thesis, we have studied the linear and nonlinear rheological behavior of ordinary

and associating unentangled polymer melts through molecular modeling approaches.

Results not only enhanced our understanding of the rich dynamic behavior of asso-

ciating polymers, resulting from the the complicated topological structures and the

breaking/re-forming kinetics of the physical bonds, but also promoted our understand-

ing of the mechanism of the friction reduction of unentangled polymer melts in fast

flows.

In Chapter 2, we developed a multi-chain model to study the topological properties

as well as the dynamics of reversible polymer networks, where a periodic simulation

box was introduced to overcome the surface effects at a molecular scale. This box was

designed to also be used under flow. To save on computing time, a multi-tau correlator

algorithm was used. Effects of the lifetime, density and distribution of stickers on

the viscoelastic response of associating polymers were studied. Our results confirmed

that the distribution of stickers has an effect on the viscoelastic response of reversible

polymer networks, whereas this is ignored in the sticky Rouse model proposed by Chen

et al. [22]. In addition, our results showed that the lifetime of stickers has almost no

effects on the local dynamics of chains but significant effects on the viscoelastic response

at low and intermediate frequencies with a significant time delay. Furthermore, our

results indicated that the sticker density determines the level of the G′(ω) plateau at

the intermediate frequencies as well as that the chains with more stickers had a longer

terminal relaxation time.
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In Chapter 3, a simple single-chain model, based on the classic sticky-Rouse model,

was proposed. Our results showed good agreement with the data of Lewis et al. [74],

especially at the intermediate frequencies, where the predictions of the model proposed

both by Cui et al. [27] and by Chen et al.[22] failed to fit the data. Then we compared

with the data reported by Cui et al. [27]. The good agreement of the results predicted

by our sticky-Rouse model with the data of the chain having two stickers implied

that the association generated longer chains but no network structure, where a larger

number of Kuhn segments was used. The true lifetime of the sticky junction was

estimated by the the longest relaxation time of the associated chain with two stickers.

Indeed, when in this case sticky junctions detach, the opportunity that the same two

stickers recombine is expected not to be significantly different from that of combining

with a different partner. Our results had good agreement with the data with more than

two stickers per chain as well.

In Chapter 4, we compared the nonlinear rheological behavoir of unentangled and

entangled melts in shear and elongational flows to emphasize that unentangled melts

are not rheologically simpler than entangled ones. The nonlinear behavior (i.e. strain-

hardening and strain-softening) are attributable to the stretch-and orientation-induced

ζ reduction and the finite extensible nonlinear elasticity (FENE) effect. The very

recent model proposed by Watanabe et al (2021)[134] was used for the first time to

fit the rich data set of Kremer-Grest melts under fast flow reported by Xu et al.[138].

Results confirmed that FENE and friction reduction effects are important in fast flows

of unentangled melts. More importantly, the results in Chapter 4 strongly confirm

Watanabe’s suggestion that the fluctuation dissipation theorem is not fulfilled in fast

flows. Indeed, we have shown that the Brownian force almost remains the same as that

at the equilibrium state, rather than decreasing together with the friction.

In Chapter 5, Brownian dynamics simulations of ordinary unentangled polymer

melts were performed to improve agreement with Xu et al data, revealing, among other

things, a nonzero second normal stress difference, differently from the predictions of

Watanabe’s model. We first considered beads endowed with isotropic friction. Even

though the results are capable of capturing the main features of the data, discrepancies

indicated that FENE effects alone are not sufficient to describe the complex nonlinear

behavior of unentangled KG melts. Then we proposed another model, where beads

were endowed with anisotropic friction. Preliminary results of this anisotropic model
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are very encouraging. The results showed improved predictions for the second normal

stress difference. To further improve the results, friction reduction effects have to be

taken into account, which is left as future work.
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Appendix A

Calculation of the gradient

∂ν/∂R of the eigenvector ν

As is well known, the eigenvalues λ of the moment of inertia M are found from the

cubic equation

det(M − λI) = det

M11 − λ M12 M13

M12 M22 − λ M23

M13 M23 M33 − λ

 = 0, (A.1)

where the Mij ’s are the 6 Cartesian components of the symmetric tensor M .

The Cartesian components of the eigenvector ν mentioned in the paper are obtained

from the minors of the matrix (M − λI). If we choose the minors of the elements of

the first row, we write:

ν1 = (M22 − λ)(M33 − λ)−M2
23,

ν2 = M13M23 −M12(M33 − λ),

ν3 = M12M23 −M13(M22 − λ)

(A.2)

where it is understood that in this and in the following formulas λ is the largest of the

three eigenvalues.

Lets now assume that the moment of inertia M is differentially modified by dM .

There follows that also the Cartesian components of ν are modified (to first order) by

the differential quantities:
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dν1 = (M22 − λ)dM33 + (M33 − λ)dM22 − 2M23dM23 − (M22 +M33 − 2λ)dλ,

dν2 = M13dM23 +M23dM13 −M12dM33 − (M33 − λ)dM12 +M12dλ,

dν3 = M12dM23 +M23dM12 −M13dM22 − (M22 − λ)dM13 +M13dλ.

(A.3)

On the other hand, dλ is itself related to dM . Indeed, by differentiating eq (A.1),

one obtains:

dλ = m11dM11 +m22dM22 +m33dM33 + 2m12dM12 + 2m13dM13 + 2m23dM23, (A.4)

where the mij ’s are the minors of the corresponding elements of the matrix (M − λI),

changed in sign if i+ j is odd, and divided by the quantity:

(M11−λ)(M22−λ)+(M22−λ)(M33−λ)+(M11−λ)(M33−λ)−M2
12−M2

13−M2
23. (A.5)

For future reference, it should be noted that the mij ’s are the 6 Cartesian compo-

nents of a symmetric tensor m.

We now recall that we are interested in the differential modification of M due to

changing by dR the location R of one of the beads of the chain. (Here and in the

following we omit the bead index n from Rnto avoid confusion with the coordinate

indices.) If R is measured from the center of mass of the molecule, dM is given by

dM = RdR+ dRR, (A.6)

or, in Cartesian component form:dM11 dM12 dM13

dM12 dM22 dM23

dM13 dM23 dM33

 =

R1dR1 +R1dR1 R1dR2 +R2dR1 R1dR3 +R3dR1

R1dR2 +R2dR1 R2dR2 +R2dR2 R2dR3 +R3dR2

R1dR3 +R3dR1 R2dR3 +R3dR2 R3dR3 +R3dR3

 .

(A.7)

It is then found that substituting eq (A.7) into eq (A.4) gives

dλ = w · dR, (A.8)

where vector w is itself obtained from tensor m as:

w = 2m ·R. (A.9)
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Finally, replacing eqs (A.7)-(A.8) into eq (A.3) for dν gives the 9 Cartesian com-

ponents of the tensor ∂ν
∂R :

∂ν1
∂R1

= −(M22 +M33 − 2λ)w1,

∂ν1
∂R2

= 2R2(M33 − λ)− 2R3M23 − (M22 +M33 − 2λ)w2,

∂ν1
∂R3

= 2R3(M22 − λ)− 2R2M23 − (M22 +M33 − 2λ)w3,

∂ν2
∂R1

= R3M23 −R2(M33 − λ) +M12w1,

∂ν2
∂R2

= R3M13 −R1(M33 − λ) +M12w2,

∂ν2
∂R3

= R2M13 +R1M23 − 2R3M12 +M12w3,

∂ν3
∂R1

= R2M23 −R3(M22 − λ) +M13w1,

∂ν3
∂R2

= R3M12 +R1M23 − 2R2M13 +M13w2,

∂ν3
∂R3

= R2M12 −R1(M22 − λ) +M13w3.

(A.10)

We recall that in eq (A.10), R is measured from the center of mass, and λ is the

largest of the three eigenvalues of the moment of inertia M . We also note that vector

w, just like vector R, is bead-dependent, i.e., for both vectors, as well as for the tensor

∂ν
∂R , the bead index n is understood.
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Appendix B

Accuracy of Simulation

Approaches

B.1 Simulation on Fraenkel Chain

In Chapter 4 and 5, we studied the viscoelastic response and the structural properties

of polymer melts in steady fast flow. Figure. B.1 illustrates the effect of the time

step dt. In the simulation, the time step was chosen as 5 × 10−5. We can also decide

the starting time of the steady state from Figure. B.1. Spring constant is another

constant crucial to the simulation results. Figure. B.2 shows the simulation results of a

variable that is proportional to the viscosity with different spring constant for N = 30

and N = 50. The value Hk = 500 was chosen in our simulation.

137
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Time step

N = 50, molecule: 5000,  = 0.2, ! = 0.25 

    dt = 9E ‚àí6
    dt = 5E ‚àí5
    dt = 1.9E ‚àí4

Figure B.1: A variable proportional to viscosity as a function of time. - Effect

of time step
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B.1 Simulation on Fraenkel Chain
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2000150010005000

Time step

molecule: 8000,  
for N50  = 0.1, 

for N30  = 0.2

    H
k

= 1E3,N = 30
    H

k
= 5E2,N = 30  (we used)

    H
k

= 1E2,N = 30
    H

k
= 1E3,N = 50

    H
k

= 5E2,N = 50  (we used)
    H

k
= 1E2,N = 50

Figure B.2: A variable proportional to viscosity as a function of time. - Effect

of spring constant in both N30 and N50 cases.
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