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Incipit

In statistics to smooth a dataset means to create an approximating function
that attempts to capture important patterns in the data, leaving out noise or
other scale-structures pheonomena. The data points are modified so individual
points higher than the adjacent points are reduced and points that are lower
than the adjacent points are increased leading to a smoother data, under the
smoothing label falls a set of tools which objective is to remove errors and noise
from data.

Noise has negative effects on predictions and descriptions of data, and one of
the main task of the statistician is to produce information that minimizes the
amount of errors in the data, this is because in empirical applications one usu-
ally believe that data are the best available description of the world and at the
same time has no interest in explaining and identifying all the sources of varia-
tion.

Also in economics, at least under the reductionist paradigm, smoothness has a
huge role in the formulation of theories and models trying to describe the ratio-
nal behaviour, and noise is identified as one of the main source for the theories
and models failures. The main difference between the two approaches is that
the statistician produces an analysis that attempts to minimize the unexplained
variation in the data, while the econometrician models the error to isolate the
desired effect that its analysis aims to inspect.

In this manuscript I provide two applications of an established smoothing tech-
nique, the Penalized Spline smoother, to solve the roughness issue in econometric
analysis of the portfolio selection problem. In Chapter 1 I face the problem of
statistical hedge ratio estimation through quantile regression, here the result
of the P-spline application is to avoid model specification and to smooth the
quantile regression objective function. In Chapter 2 the smoother is applied in
a time series filtering framework in order to achieve smoother Principal Compo-
nent Analysis and provide smoother principal component for regression analysis,
this allows robust feature selection from principal component loadings in order
to perform portfolio selection with index tracking purpose.

13



Chapter 1

P-spline Quantile
Regression Hedge Ratio

Modern portfolio theory, as defined by Markowitz (1952), suffers of two major
flaws, either one assumes Gaussian asset returns or the agent utility function is
assumed to be quadratic, these allow portfolio weights estimation by ordinary
least squares regression method. In this chapter I try to loose these assump-
tions applying P-spline quantile regression method to the task of Choquet risk
minimization in an exercise of statistical portfolio estimation.

1.1 Introduction

Portfolio optimization is the selection process of the best asset allocation ac-
cording to some criterion. It is one of the most controversial and long-lived
discussion topics since the dawn of civilization and the invention of writing, its
references can be found in the Old Testament! as in the Gospel 2. However,
aside from these exotic references, the topic has been developing as the financial
market itself, drawing the attention of several scholars belonging to different
fields that produced a plethora of theories, strategies and methods to be ap-
plied in order to achieve a scientific and sound investment process.

In this chapter I am going to focus on a specific subject within the broader
topic of portfolio optimization, discussing the estimation issues concerning the
most famous hedging procedures and attempting to tackle them through the
application of an already well studied method in the domain of statistics, the
P(enalized)-Spline estimator.

The cornerstone of modern portfolio theory is expected utility maximization
as elaborated by Bernoulli(1737), Ramsey(1931), de Finetti(1937), von Neu-
mann and Morgenstein (1944) and many other authors[46]. Many are its pro-

LGenesis 41:34-36 ”Let Pharaoh appoint commissioners over the land to tackle a fifth of
the harvest of the Egypt during the seven years of abundance...”.
2Matthew 25:14-30, better known as the ”Parable of the Talents”.
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posed variations, one of the most successful has been the family of non-additive,
or rank-dependent, formulations of Quiggin (1982)[121], Yaari(1987)[140] and
Schmeidler(1989)[127] , that replaces the Lebesgue integral with the Choquet
integral[33] , thus accentuating the probability of the least favorable outcomes
and yielding a pessimistic decision criterion.

In this kind of framework the selection problem between two random variables,
X and Y, characterized by their distribution function F, and Fj, is solved
through their quantile functions F~!(¢) and G~1(t), and Choquet utility intro-
duces a distortion of the original probability assessment that allows to integrate
dv(t) with respect to some other probability measures defined on the interval
[0,1].

The distortion function v inflates or deflates the probabilities according to the
rank ordering of the outcomes, and can be seen as a reflection of the optimism
or pessimism of the decisor agents, leading to the quite schizophrenic situation
of a decision maker that accepts probabilities represented by the distribution
functions F' and G and then distorts these probability before making decisions.
To be short, while in the traditional expected utility framework (supposing that
the initial wealth is embodied in the two random variables), one prefers X to Y if

oo

Bea() = [ a@)dr@) > [ u()d6) < Ecu(y), (1)

— 00 —00

in the Choquet framework, X is preferred to Y if

By u(X) = /0 W(F-L(r)) du(r) > /0 WG (7)) do(r) = By g u(Y). (1.2)

Because in a risk mitigation exercise the flaws of mean-variance optimization
emerge more critically (indeed non-Gaussian tail behaviour of empirical return
distribution leads to undesired risk taking, thus sub-optimal behaviour), in this
paper the comparison between this two approach will be conducted in the sta-
tistical estimation of the optimal hedge ratio within twenty-three stock indeces
and their respective front month future contract.

This chapter links to a wide branch of literature trying to stress the problem
of determining the optimal hedging whenever none of the standard conditions
occur, the next section will provide an insightful review of this branch, from
a theoretical and empirical point of view. Section number three will briefly
review the quantile regression model, its estimation through P-spline and the
inference procedure (however the P-spline estimator has been more comprehen-
sively treated in appendix A) and section four presents its empirical application
to the estimation of the optimal hedge ratio for twenty-three major stock in-
dices. The fifth, and last part, will be devoted to a discussion on the results
and on the subsequent conclusions.
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1.2 Literature Review

1.2.1 Mean-Variance and Pessimistic risk hedging
Mean-Variance and its less fortunate variations

The basic concept of hedging is to combine positions in different assets to make
a portfolio that reduces fluctuations in its value, i.e. a portfolio whose return
dispersion is less than the sum of the dispersions of its component returns. In
this section I will always consider a portfolio consisting of wg shares of wealth on
a long position in the spot market and wp shares of wealth on a short position
in the futures market. The return of the portfolio, Rp, will thus be given by:

wSSfRS — wFFtRF
Rp = = Rs—hR
P U/SSt S Fy

where Fy, S; are the futures and spot prices in time ¢, Rp, Rg are respectively
futures and spot returns related to t — 1 and thus h = fﬁz—gf is the hedge ratio.
This latter quantity depends on a particular objective function to be optimized,
and leads to the first distinction within the strategies to be discussed next.

I consider the static case, where h doesn’t change over time. In this case the
most famous hedge ratio comes from Harry Markowitz’ ”Modern Portfolio The-
ory”[106] in his seminal papers from the fifties, adapted to the hedging problem
by Jhonson(1960)[85, 44].

In this framework the hedge ratio is the one minimizing the portfolio risk as
resulting by the variance of the changes in its value, stated as

Var(Rp) = wiVar(Rs) + wiVar(Rr) — 2wswrCov(Rs, Rp),
thus the MV hedge ratio is given by

Cov(Rp, R o
Wiy = wfws = CouBr fs) _ o5

V(IT(RF) (TF. (13)

On the same theoretical foundations lays another estimation strategy, now in-
corporating the portfolio return in the hedging and based on the risk-return
trade-off as formulated by William F. Sharpe [132, 133, 134] and developed in
the hedging framework by Howard and D’Antonio [71, 72, 73], that considers
the optimal level of contracts that maximizes the portfolio’s excess return to its
volatility:
Mag2Er) = By
wg op

where Ry is the risk-free interest rate. In this case one has that the optimal
shares of future position is given by

(§) () [ (s52) -]

1_9s ( E(RF)p ) ’
or \ E(Rs)—Ry

Wp = —ws
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that allows to determine the optimal hedge ratio as

By = — () [z (555) -7

_ﬁ( E(Rr)p ) ’
or E(Rs)fRf

if one makes the standard assumption that E(Rr) = 0 then
5= Py

As pointed out by Chen et al. (2001)[30], the Sharpe ratio is highly non-linear
function of the hedge ratio, and this can lead to solutions that may minimize
rather than maximize the Sharpe ratio.

A first deviation from the MPT framework (which assume either quadratic util-
ity function or normally distributed assets returns) is the stochastic dominance
approach, in which the analyst knows that the agents on the market maximize
their utility from returns but ignores their utility functions. One example, per-
tinent to the application to be developed, is the strand of literature applying
the Extended Mean Gini coefficient[130, 31, 95]3 defined as:

I',(Rp) = —vCov(Rp, (1 — F(Rp)"™1)), (1.5)

where F(-) is the cumulative distribution and v is the risk aversion parame-
ter. To define the optimal hedge ratio in this framework, one differentiates the
portfolio equation with respect to h and obtains:

. _ —Cov(Rp,(1 - F(Rp))"")
MEG — dCov(Rp,(1—F(Rp))"—1) ’
oh

(1.6)

This latter expression is not easy to compute due to the partial derivative at
the denominator, thus scholars rely on search grid optimization methods to
approximate its value.

Aside from the purely theoretical point of view, also the knowledge about the
empirical distribution of returns led to some modification in the criterion for the
determination of the optimal hedge ratio, indeed during the seventies has been
pointed out that returns distributions are skewned and leptokurtic, proving that
co-skewness and co-kurtosis of asset returns (which measure the contribution
that an asset makes to the skewness and kurtosis of a portfolio) are priced
by the markets, thus to not optimality of minimum variance hedging due to
ambiguous effects on portfolio returns distribution third and fourth moments.
Intensive studies [24, 55, 68] have been conducted on portfolio optimization on

3The Gini Index is a measure of statistical dispersion, developed by Corrado Gini to mea-
sure how far a country’s wealth deviates from a totally equal distribution, that is:

1 1
G=i/0 /O 1Q(X1) — Q(X2)|dX 1 dXo

where @Q(-) is the quantile function.
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the mean-VaR (Value-at-Risk) space, leading to criteria that have the following
form over a given time period 7:

a—VaR(Rp) = Za(Tp\/_ — E[RP]T

which results in the ”zero-VaR”[75] hedge ratio, given by

s 1—p?

gs
Var = P— —E[Rr] =\ 55— 1.7
VaR pO'F [ F] ” Z(QXU% — ]E[RFP ( )

o
o
Choquet expected utility and pessimistic portfolio allocation

The story of the development of the pessimistic framework for portfolio alloca-
tion is not clear and linear as the one of the mean-variance portfolio because
the former has been developed almost autonomously in two different fields with
different motivations.

The pure economics theoretical roots for the pessimistic portfolio allocation has
been developed in the field of the Behavioral Economics, the field under which
one could group all the studies highlighting (either experimentally or rethori-
cally) the paradoxes induced by classical expected utility formulation and pro-
viding alternative framework overcoming them. Trying to overcome the puzzling
observation made by Friedman and Savage (1948)[58], that many people are go-
ing to buy insurance and gamble at the same time, Quigging (1982)[121] and
Schmeidler (1989)[127] noted that some distortion functions initially concave
and then convex may explain this behavior, so if one defines the simplest distor-
tion ve(t) = min{t/a,1} then has E,, u(X) = o~ [, * u(F~*(t))dt, meaning
that the « least-favorable outcome has an inflated probability while the 1 — «
proportion of the most-favorable outcomes are entirely discounted. Following
Schmeidler’s article comonotonicity definitions*, one can loose the independence
axiom and achieve the monotone invariance of the quantile function in the for-
mulation of the pessimistic portfolio theory as stated by Bassett, Koenker and
Kordas in their 2004 article[12].

The other pillar upon which is based pessimistic portfolio allocation is a branch
of literature emerged in the late nineties in the field of quantitative finance
concerning the portfolio risks measures. An influential article in this branch is
the one by Artzner et al. (1999)[8] which defines the axiomatic foundation for
"coherent” risk measures.

Definition. For real-valued random variables 2 € y on (©,Y*) a mapping
0:x — R is called a coherent risk measure if it is:

4In Schmeidler own word:
Definition. Two acts, f and g, in Y° are comonotonic if for no s and ¢ in S, f(s) = f(t)

and g(t) > g(s).

(Comonotonic independence axiom) For all pairwise comonotonic acts f,g and h in L and
for all & in ]0, 1[: f > g implies af + (a)h > ag+ (1 — a)h.



20 CHAPTER 1. P-SPLINE QUANTILE REGRESSION HEDGE RATIO

1. Monotone: z,y € x, with x < y = o(z) > o(y).

2. Subadditive: z,y,x +y € x,= o(z + y) < o(z) + varrho(y).

3. Linearly homogeneous: For all A > 0 and = € x, o(\, ) = Ao(x).

4. Translation invariant: For all A € R and = € x, o(A+ ) = o(x) — A.

This definition eliminated many conventional risk measures traditionally used
in finance, ruling out all those based on second moments by monotonicity re-
quirment and those quantile-based (including the «-VaR) by subadditivity.
This drove a boost in the research of robust risk measures and subsequently in
strategies for portfolio optimization in the subsequents plethora of new spaces
developed from these new metrics. Conditional Value-at-Risk by Rockafellar
and Uryasev(2000) (from now on C-VaR)[122] is a measure of downside risk
that overcomes the shortfalls of traditional a-VaR in terms of coherence,

VaR
C-VaR = (1 —¢)™! / Rpp(Rp)dRp,
-1

meaning that is something like the mean of the loss exceeding a-Var and leading
to an optimization problem that can be stated in the following way

Govar = argmin  u(a,h) = argmin Fy(h,v), (1.8)
her (h,v)ERXR

with F, (h,v) =v+a ' E[(-=r, —v)T] and (z)* = maxz(z,0). Other prominent
example of coherent risk measure are the expected shortfall proposed by Acerbi
and Tasche in (2002)[1] and tail conditional expectation[8].

In the framework of pessimistic portfolio allocation a considerable coherent risk
measure is

1 a
o)== [ Fd0 = o [ 0,
Jo Jo
that leads straightforward to the following optimization problem
min 0., (Rp) — Au(Rp), (1.9)

with the intuitive meaning of minimizing the a-risk measure subject to a con-
traint on mean return (another alpha-risk too, since pu(Rp) = —o,,(Rp)).

1.2.2 Estimation Methods of the Optimal Hedge Ratio
OLS Method

The conventional[44, 85] approach to the MV hedge ratio estimation is a straight
forward application of the classical regression model on the difference of the

prices, written as
ASy = Bo + B1AF; + &, (1.10)
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whence is immediate to understand that the empirical counterpart of the Mini-
mum Variance hedge ratio (1.3) is 51, this approach has the downside that the
hedge ratio is estimated using unconditional sample moments, thus giving the
same weight to all past informations instead of giving more reliance to the newer
ones. Another approach[112], also relying on the OLS method, suggest the use
of conditional covariance and variances in order to obtain a conditional version
of the optimal hedge ratio with the following form:

T ws  Cov(AS,AF)|Q_4
) = — =
MV e Var(AF)|Q—1

where €2;_1 is the current information, including a vector of variables X¢_; and
the spot and futures price changes as generated by the following equilibrium
model

ASy = Xy 1a+uy

ARy =X 18+

that allows an agile computation through a straightforward application of the
Frisch-Waugh theorem, leading to

X, = 2w (1.11)

where G,, is the sample covariance between the residuals u; and vy, and &2
is the sample variance of the residual v;. Here, again, one can see that if the
spot and futures prices follow a random walk, with or without drift, the two
estimation strategies produce the same results.

ARCH and GARCH Method

Since the development of ARCH and GARCH models onward, the OLS hedge
ratio estimation method has been generalized to take into account the het-
eroskedastic nature of the error term, so the unconditional sample variance and
covariance in (1.3) have been substituted by the conditional variance and co-
variance from the GARCH model, allowing an update of the hedge ratio over
the hedging period, as in the following bivariate GARCH model[25, 9]

AS, _ M E1,t o
881 ] 4 2] o avi= -,

i Yo
Do Xoogu

vec(Xy) = C + A -vec(ey—16,_1) + B -vec(Xy1).

€t|Qt—1 ~ N(O,Et), Xy = {

Then, the conditional MV hedge ratio at time t is given by

- 2ot
hI\IV,t = ﬁ (112)
t—
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There are extensions[128, 101] of this model to allow positions in more than
two contracts according to the same logic, also some authors proposed regime-
switching GARCH models introducing a state variable s; = {1,2} in the data
generating process, assumed to follow a first-order Markov process, with the
state transition probabilities assumed to follow a logistic distribution, affect-
ing the expression of the conditional covariance matrix and the time varying
conditional MV hedge ratio between the spot and futures returns.

Cointegration and Error Correction Method

The estimation methods as far discussed do not allow spot and futures returns
to be non-stationary, leading to misspecification of the model (1.10). Engle and
Granger (1987)[50] proposed the inclusion of an error correction term in the
equation. Indeed if an arbitrage condition ties the two returns they can’t drift
far apart in the long run thus, if both series obey a random walk, one can expect
them to be cointegrated, leading to the need of cointegration analysis.

This latter requires the fulfillment of a two steps procedure, first is necessary to
test each series for a unit root, through some standard test as those by Dicky
and Fuller or Phillips and Perron [41, 119], then to perform a cointegration test
as those proposed by Engle and Granger themself or Johansen and Juselius[84].
In the context of hedge ratios estimation, if the spot and futures price are found
to be cointegrated, then the hj, can be obtained attending to the following
procedure, first one has to estimate the following cointegrating regression

St:a—i—th—l—ut.

Then one estimates the error correction model

ASy = pup-r + BAF 1+ ) 6AFi+ Y 0:AS,j +¢j,

j=1

with u; the residuals of the cointegrating regression, the optimal hedge ratio
is thus given by 8. Some scholars[102] assume that the long-run cointegrating
relationship is (S — F}), so they find more appropriate to estimate an error
correction model of this form
m n
ASt = p(St,1 — thl) + ﬁAFt + Z(SzAthz + ZOZ-ASt,j + Ej-

i=1 =1

An alternative model[34] combines the error correction with the biavariate
GARCH in the following way

] = ]+ ettt E )] + o]

where the error processes follow a GARCH process, again the hedge ratio at
time (t) is given by

hi—1 =
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Mean Extended Gini coefficient estimation

So far I have discussed the statistical methods linked to portfolio choices of
agent with quadratic utility over the mean-variance space, or assuming the
normality of the return distribution, now I will discuss a family of statistical
methods which applications to the portfolio problem are based on the second
order stochastic dominance, thus involving the cumulative distribution function
estimation in order to rank alternative prospects, and their linear combinations,
in a coherent way. Contrary to the methods listed above, those to be discussed
in this section will generally not provide an analytical solution of the model, and
closed form expression for the hedge ratio, instead their solution will require
an iterative research of the minimum over a grid of parameters. One of the
methods [95] discussed in this section is the estimation of the MEG hedge ratio
requiring the minimization, over a grid of portfolio weights, of the portfolio MEG
coefficient (1.5), through an estimate of the cumulative distribution function
F(Rp), achieved by the empirical distribution method as follows:

A Rank(R
F(Rpy) = %

where T is the sample size. Once one has obtained a set of probability distribu-
tion functions, the MEG is obtained by substituting the sample covariance to
the theoretical one

Z(Rp’t — Rp)((l — F(Rp,f,))v_l — (:)) (1.13)

t=1

fv(RP) ==

Nl <

where Rp is the mean return of the portfolio, © = 1 Zle(l —F(Rpy))" " and
v is a parameter representing the risk adversion of the agent.

Shalit(1995)[129] proposal is to find the MEG hedge ratio through the instru-
mental variable method, allowing for the derivation of an analytical solution to
the hedging problem, indeed assuming the equivalence between the cumulative
distribution of the terminal wealth and that of the future price he avoided the
partial derivative at the denominator of (1.6) achieving this expression®

iy Cou(Sia, (1 - Q(Fra))" ™)
MEG ™ Cov(Fiq1, (1 — Q(Fry1))v™ 1)

(1.14)

Some authors[103] pointed out that this method produces unsatisfactory results
in the smoothness of the estimator (if it has any relevance), also it has been
showed that this estimation method is asymptotically deficient in comparison
to a properly chosen kernel estimator, thus requiring a bigger sample to achieve
the convergence. Those motivations lead some researchers to investigate the
properties of Nadaraya-Watson estimators for the MEG coefficient, leading to

5To avoid confusion, since this expression involves futures prices that I have previously
addressed as F%, I have used Q(:) to represent the cumulative distribution function, that
before has been declared as F'(-).
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the same expression has (1.13), but with the cumulative distribution function
now estimated by

F(Rp) = 3 3" K((Rp ~ Rpo)1),
t=1

where 4 is the bandwidth and K(z) = \/szwea:p(—xQ/Q) is the Gaussian kernel.
This procedure produces more robust results than the empirical distribution
method, but it implies the choices of the right kernel and of the appropriate
bandwidth, nonetheless the results in the literature shows no improvement in
the hedging performance and the insensitivity of the hedge ratio to the band-

width selection.

C-Var estimation methods

Traditionally, VaR and CVaR are computed as the negative of the 1% quantile
of the historical distribution of returns over a prespecified period, relying on the
assumption of the normality of the distribution for consistent results. However
when the assumption of normality doesn’t hold this estimation method becomes
less accurate. The ”standard” method for the VaR-optimal hedge ratio estima-
tion relies on numerical procedures. One starts with an arbitrary hedge ratio,
computes the portfolio returns and the historical distribution approach is used
to estimate the VaR of the resulting portfolio. Then a numerical optimization
procedure (usually a grid search approach) is used to find the value of the hedge
ratio that minimizes the portfolio VaR and that is the minimum-VaR hedge
ratio. The minimum-CVaR hedge ratio is calculated with the same numerical
procedure.

A drawback of this approach is its reliance on a large historical sample of data of
returns for both the assets included in the optimization procedure, unavoidable
because by construction it is only possible to measure the empirical frequency of
a relatively rare event by using a sample in which there are sufficient occurrences
of such events, leading the researchers to focus on methods much less dependent
on historical data. One of these is focused on mathematical expansion applied
to the approximation of the quantiles of the probability distribution.

If the returns are supposed to be drawn from a location-scale family of distri-
butions and, for the sake of notation, one assumes that its mean is zero, then
the (1 — 7) percent VaR of a portfolio can be written as

VaRp(l —7) = —opqp(T)

where gp(7) is the 7 percent quantile of the standardized distribution of hedge
portfolio returns and op it’s his standard deviation. An analytical expression
for the minimum-VaR hedge ratio can be derived from the Cornish-Fisher ex-
pansion, that approximates gp(7) using the higher moments of the distribution
of hedge portfolio returns, thus

r(7s sp, k) = a3 0P 1sp+o o) —3a(D)](p—3)— 3e[2a(7)P—5a()lsh,
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where ¢(7) is the 7 percent quantile of the standard normal distribution and sp
and kp are respectively the skewness coefficient and the kurtosis coefficient of
the hedge portfolio, substituting this corrected quantile in the VaR expression
one obtaines the Cornish-Fisher VaR. The optimal h in this case can be ob-
tained differentiating this last objective function with respect to the hedge ratio
and setting its first derivative equal to zero, yielding the following first order
condition

60’]3

oh +A5—+2A4SP

8813 8kp 85}3
— (A1 + Agsp + As kP+A4SP)+Jp (AQ oh ah 8h> 0,

where A; = ¢(7) — %[q(r)?’ —3¢(7)], A2 = gla(7)? — 1], Az = 35[q(7)3 — 3q(7)],
and Ay = —3=[2¢(7)? — 5¢(7)]. One then replaces the population moments with
their sample estimates and solve for the minimum-VaR hedge ratio, hVa R

The C-VaR of a portfolio can be approximated in the same way as

C-V&RP(:[*T) =—0p <M1+ (M271)8P+ (M373M1)I€p+

1
7%(2]\[3 - 0M1)9P>
with M; = 1 f_cf;) 2 f(x)dr and f(-) is the standard normal probability density
function. Differentiating this latter expression with respect to h and then setting
the first derivative equal to zero yields the following first order condition

aO'p aSP 8k 5813) -0

B 2B
¢ on T g TEbase

Bi + Basp + Bskp + Basp) + op <Bz oh 5
where B1 = Ml - —[Mg — 3]\{1] B2 = %[MQ - 1], Bg = i[Mg — 3M1], and
By = [2M3 — 5M;], and again the solution is found by substituting the
populamon moments with thier sample estimates and solve for the minimum-
CVaR hedge ratio, h&E,  numerically.

One issue in the application of kernel estimation in this context, that doesn’t
arise in the MEG framework, is the boundary effect, alias the inconsistency of
the kernel estimation at finite points at the end of the support. This issue has
been sometimes addressed with the technique of weighted double kernel local
linear (WDKLL) estimator[22, 74]. Given a symmetric kernel K (-), notice that

1
E[K. (v = Yo)|Xe = 2] = f(ylo) + 52 () F2(ylz) + 0(:5),

where f(y|z) is the conditional probability density function of Y;, X; = =,
K, (u) = K(u/w)/w, p2(K) = [7_ u?K(u)du and f2°0 = %lel) So if one
considers K, (y —Y,) as a first estimation of f(y|z), then one could express

the left hand side of the former equation as a nonparametric regression of the
observed variable versus X; and apply the local linear fitting scheme, leading to
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the locally weighted least squares regression problem

Koo (y = ¥y) — a = b(Xy — )" Wi (2 — Xy).

M=

t=1

Minimizing this expression with respect to a¢ and b leads to the following esti-
mators

flylz) = Zwtm Ky = Y,).
t=1

The double kernel local linear estimator of the cumulative distribution function
is then obtained by integration of this latter formula, in the following way

T
F(ylz) = / fyla)dy = Z K, (y = Yi).

This procedure can be made more reliable with a better choice of both the kernel
involved, and with ad hoc procedure for the bandwidth selection.

However the estimator is composed, one substitute it in the model (1.8), that
has already been proven to be a convex problem irregardless of the tuning
parameters and thus can be solved by search grid optimization[141, 74].
Quantile regression also provide a valid technnique to estimate C-VaR [51].

Pessimistic portfolio estimation and quantile hedge ratio

Empirical strategies for minimizing 7-risk lead immediately to the methods of
quantile regression[92, 21]. Let

pr(u) = u(r —I(u < 0)) (1.15)

denote the piecewise linear (quantile) loss function (also known as ” check” func-
tion), and consider the problem,

wminElp. (v - )]

any minimizer of this problem is a 7-quantile of the random variable x, and
minimizing the 7-quantile objective function is equivalent to the evaluation of
the sum of expected return and the 7-risk of 2, then multiplyied by 7%

minElp, (= ) = (s + 0o, (2)). (1.16)

This allowed Bassett et al.(2004) [12] to formulate the problem as

Ou, () = (nT) IIHHE pr(xs — &) — fins,

STheorem 2 in Bassett et al.(2004)
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thus formulating the problem as a quantile regression one and, instead of solving
it for a quantity representing 7-th sample quantile, they solve for p coeflicients
of a linear function estimating the 7-th conditional quantile function.

Finally, a recent trend in the literature[104, 135, 10, 105] applied this method-
ology to the study of hedging effectiveness, estimating the parameter vector
[a(7), B(7)] obtained as the minimizers of the sum of the check functions calcu-
lated over a sample of returns, namely

T

[a(r), B(7)] = a(g)ﬂg(m), > lp-(Rsy — alr) = B(r)Rpy]. (1.17)

such that 3(7) is the quantile hedge ratio at quantile 7.

1.3 P-Spline Estimation

1.3.1 Linear Spline in Regression Analysis

Before the spread of CAD technologies spline was the name given to thin strips
of wood widely used (mostly in naval design) to draw smooth curve through a
set of given knots, they were very flexible (thus allowing them to curve enough
to pass for each knots) and their curvature may be increased applying weights
within each knot. Those tools inspired mathematicians (mostly in the field of
numerical analysis) to name splines a family of piecewise continuous functions
joining multiple polynomials to generate smooth curve through a set of points.
Thus a linear spline, mathemathically speaking, can be defined as

K

f@)=Bo+ Bz + > bilz —wi)s

k=1

where by, is the weight of each linear function and (x — wy) 4 refers to the k —th
function on the knot wy and the notation indicates that below that knot the
function value is defined to be zero

T — wg, if v —wi >0,
— = 1.18
(% = wn)+ {0, if 2 — wy, < 0. (1.18)

Referring to the regression model framework it means that the basis of the
model would be

1 x x—w)y ... (EX—wg)i]

allowing a wide variety of shapes to be fit. A more comprehensive treatment on
the splines can be found in appendix A.

1.3.2 P-Spline in a nutshell

The decision about the optimal number of knots is crucial because it affects
the number of parameters to be estimate in the process furthermore, since its
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optimization can be time intensive and memory consuming, in the literature
scholars have developed an alternative method, penalized spline (abbreviated
P-Spline) where the b in (1.18) is constrained by a penalty function, in order to
optimize the fit and avoiding overfitting the data, thus leading to a modification
of the minimizing criterion that now can be formally stated as

min -y — X0 °
st. ATDB<C
or through Lagrange multipliers
H}gin ly — XJ3|° + \237Dg

where the D is a symmetric penalty matrix. Thus, given a smoothing parameter
A, the least-square spline estimator of y is given by

P
§= bapTyp, (1.19)
p=1
where by = (bx,1,...,bxp) is the estimator of the vector of parameter 3, specif-

ically if one defines X = {x;(wk)}ie[1.n),ke[1, k] then by is the solution of the
normal equations
X}‘XAb)\ = X}‘y’

and if X, has rank K then
by = (X1X, +A’D) X7y,
so the fit can be expressed in the following way

¥y =X(XTX + X?D)'XTy.

1.3.3 P-Spline Quantile Regression

It is well known that the minimization of S = > "  (y; — ¢)* brings to the
solution of g = Y y;/n, the arithmetic mean. It is not the case if one moves
to the L-1 norm, such that S = Y |y; — g|, bringing the median as solution,
but only after one has sorted the data. If there are covariates, the solution
is found through linear programming technique, and this leads to the case of
quantile regression. Koenker et al. (1994)[93, 94] solved the median smoothing
problem with unpenalized B-splines straightforward, minimizing S = ||y — 9||!,
where § is defined as in (1.19), this approach can be generalized to any quantile,
with the application of the quantile loss function (also know as check function)
(1.15), Bollaerts et al. (2006)[16] introduced monotonicity restrictions to avoid
quantile cross in isotropic and anisotropic P-spline regression quantile.

Penalization in this framework requires care and extra work, because the sum
of differences does not easily combine with the sum of absolute residuals. Let
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me start with a clear statement of the problem, that is the minimization in the
vector of spline coefficients « of the objective function,

S1 = |ly — glI' + MDDy 2. (1.20)

Several approaches have been proposed in the literature for solving this problem
with standard linear programming technique, considering that the optimization
software takes a response vector and a design matrix as inputs. The first one
[47] is to proceed by data augmentation, one defines a design matrix including
the penalization term as (BT) = [B’|\D’]" and extends y as y™ = [y/|0’]’, so the
rows of B are extended by AD and y is extended by a vector with (n — d) zeros,
with d being the difference order in the penalty term, feeding this augmented
problem to a standard linear programming software yields the desired result.
One alternative is to drop linear programming and switch to iterative algorithms[126]
, so one should combine the sum of absolute values of the residuals with the
sum of squares in the penalty, the key viewpoint to understand this approach
is to notice that for any scalar u, ||ul|! = w?/||u/|' = wu?, with w = 1/|ul|*.
This identity allows to write a sum of absolute values as a weighted sum of
squares, whether u is a vector then the identity extends to |lu|' = Wu? with
W = diag(w) (ie. a diagonal matrix with w; = 1/|lw;||'), this leads to
a chicken-and-egg problem, since one needs u to compute W and viceversa,
solved performing standard P-spline fitting, and using its by as starting value
for the residuals computation, then the objective function can be written as
(y — 9)'W(y — Bg) + || Dby || where @; = 1/||@;|| and @; =y — 9.

These estimation strategy relies on the knowledge of the smoothing parameter
A, and since it is not usual to have this information in advance, the estimation
strategy is usually loaded with many other computations and loops through
coefficient and smoothing parameter optimizations. For these reasons in the
empirical analysis I opted for a more general and stronger methodology, based
on the intuition that the function (1.20) is convex since it is the sum of convex
functions, allowing me to rely on Disciplined Convex Programming” as in [6, 7]
and streamline the optimization process.

1.3.4 Optimal smoothing parameter selection

The second step of the estimation strategy concerns about the research of the
optimal smoothing parameter A, this is a crucial step since all the qualities as-
cribed to the P-spline estimators compared to its more famous competitors (such
as local regression method, smoothing splines and kernel smoothers) depend on
that. The most used criteria are Akaike’s Information Criterion, Schwartz In-
formation’s Criterion and Cross Validation, however there is a growing branch
of literature highlighting the flaws of these methods, because they all require

"The reader that is curious about Disciplined Convex Programming may read Stephen
Boyd PhD dissertation thesis [18], while the impatient reader may find more insightful his
article for the presentation of the R package CVXR [59]
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the estimation of the model over a vector of different parameters (or over dif-
ferent samples as in CV) that is not desirable in L; optimization, they can be
very sensitive to outlying observations and this is not adequate in a quantile
regression task, and they can go astray in presence of serial correlation that is
a contingency that I can’t exclude since, due to hardware limitations, I was not
able to regress over lagged returns.

L-Curve (and V-Curve)[57] criterion seemed a promising alternative due to their
robustness to serial correlation, but in my application it brought ambiguous re-
sults in the location of a suitable AS.

Recent advancement in the quantile regression framework from the bayesian
perspective [61, 62] allows the application of the Harville-Fellner-Schall (HFS)
algorithm to the selection of the smoothing parameter as in [138, 111].

The HFS algorithm, in Lo-norm is based on the intepretation of the P-spline as
a mixed model,

y= Xp+ Z wu+ewithe~N(0,%),u~N(0,Q),
nXxp nx(p—d)
cov(e) = ¥ = 021,
cov(u) = Q = 1,4,
thus, considering §j = X3 + Zu with u = Dby the smoothing parameters can
be expressed as the ratio between the two estimated variances

=2
02
The algorithm proceeds as follows:
1. Fixes a starting value for the smoothing parameter A(®)

2. Fits the model minimising the objective function

n p—d
> peyi—9) + A Dby,
i=1 =1

3. Computes the variances ¢, and 1@2,

o

4. Puts \ = 0—7

2

=

5. Sets A = A9 and iterates steps 2 to 4 until convergence is achieved.

Problems arise because the variance is a concept based on mean measure, so
it is not simple to establish a measure of a quantile-based variance, also my
quantile regression framework is distribution free, meaning that I have to choose
a reliable distribution either for error and random effect to estimate the variance

8The resulting L and V curves can be provided at the request of the reader
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components. To solve these issues I rely on the strategy shown in [111], thus
I estimated the standard errors instead of variances, and also I assumed that
the errors distribute as an asymmetric Laplace variable and used the Maximum
Likelihood estimator [61, 142]

n n
Ge=n"" pe(yi — pra) =0 pelyi — ),
7 i

with p,; being the 7 quantile of the conditional distribution.
The estimation of the random effect standard error goes in the same direction,
assuming u; ~ ALD(u;,1,7), so the join density of (y;, u;) becomes

1 IR
fisug) = )i P {T‘_ [Z(”?ﬁ — i) + )\|U7:||1] } :

that for similarity to the penalized quantile regression in [91] seems related to
a penalized model by [111, 138], then the random effect variance ) estimator

becomes .
=3l
i

1.3.5 Confidence Interval and hypothesis testing

So far I descrived the procedure used to estimate the parameter

B(T) = brp. (1.21)
p=1

To retrieve its confidence interval and provide hypothesis testing I have to esti-
mate the variance of 3(7) in order to derive its asymptotic distribution that is
given by:

Va[B(r) = B(r)] = N(0,0*()V)

with V = lim n~'X"X

n—oo

where w?(7), the scale parameter at the selected quantile is defined as

T(1—7)
fEH(r))?
The density at the selected quantile is unkown and has to be estimated by
Siddiqui(1960)[136] estimator °:

1 F=Y(t+h)—F~Y(t—h)
S(T) = — =
JEH(T)) 2h

4.5¢4@1(r) 1°

2 (12 +1)?

Wi () =

h=n"/3

9 According to the procedure discussed in the book by Davino, Furno and Vistocco [39] at
Chapter 5.
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Thus, one wanting to compute the confidence intervals and test the hypothesis
Hy : B8(7) = 0 can rely on /&?(7) as standard error for §(7), such that the
confidence interval is given by

P (B(r) = V& () X 21072 < B(1) < B(r) + V& (1) X 21-0p2) = 1 - a

and the Student-t test with n—p degrees of freedom to verify the null hypothesis
ist = B(r)/w(r).

1.4 Results

I have performed statistical pessimistic hedge ratio estimation on twenty-three
major stock indeces and their front month future (i.e. their corresponding fu-
ture contract with the nearest expiration date), conducting the experiment on a
six year time window starting on 02/01/2014 and ending on 02/07/2020 (2-nd
January 2014 - 2-nd July 2020), such that most of my series have more than
1600 observations after cleaning operations. Each series has been splitted in
two parts, the first (¢raining set) is used to ”train” the methods and obtain the
coefficients, which statistical validity is verified on the second period (testing
set), also used to verify the performance of the hedged portfolio.

For the sake of exposure I will provide in the body of the chapter only the anal-
ysis and the results for the Amsterdam Exchange Index because it’s the first in
alphabetical order, however analysis and result for the rest of the sample are
showed in the Appendix 1.

1.4.1 Preliminary Analysis

To verify ex-ante the opportunity to hedge risk in a pessimistic way, one needs
to asses first if and how the correlation between the assets taken in consideration
changes over time. Indeed if the correlation is proved to be stable (moreover
after random shocks in the assets volatilities) there is no practical reason to
avoid standard Mean-Variance (OLS) estimation, however if one has a clue
about the sensitivity of the correlation to shocks in the volatilities of the assets
included in the portfolio then there should be space for the application of more
sophisticated hedging strategies.

To assess the possible usefulness of a pessimistic hedging estimation I analyze the
relationship between the assets taken in consideration through the application of
the famous DCC-Garch model [17, 48, 49], that consist in a two step procedure
to analyse the time conditional correlation defined as

Ei1[rs rrq)

\/Et—llr%,t] E—1[r ]

The first step consists in the estimation for each series of the return r; ; and its
conditional volatility o;; using a GARCH model, then denoting the diagonal

PS,Fit =



1.4. RESULTS 33

matrix of the conditional volatilities D; and the standardized residuals as
v =Dy (re — ),
and defining the Bollerlev’s Constant Conditional Correlation (CCC) estimator

as
1 &
=7 Z vy,
t=1
then the Dynamic Conditional Correlations are
Qi=R+a(vi v, —R)+B(Qi-1 — R), (1.22)

which parameters can be estimated simultaneously through maximum log-likelihood
estimation.

In the next page I show the plot of the conditional correlation and the table of
the parameters estimated with the DCC-Garch(1,1) model. Before looking at
the graph and reading the table I need to make some clarifications, this analysis
has been conducted just to investigate the behaviour of the correlation between
the assets in the time frame covered in the training set from a qualitative point
of view, I don’t intend to apply the results in the prediction of the correlations
between the considered assets. This is crucial because changes the interpreta-
tion that I give of the parameters and their statistical significance.

As the plot shows, the correlation is always positive and nearly always close
to the unity, even though one can see there is a slight noise, few outliers are
present and this can be the first hint for the occurrence of under-hedging with
the traditional approach, indeed a perfect positive correlation implies that one
can fully hedge the risk bore by the Index position through the short selling of
an equal amount of Future assets, however a lower correlation implies that if
a fall occurs in the Index value the subsequent losses won’t be matched by the
gains in the short Future position, making the position over hedged such that
some part of the hedging is useless.

A little bit more informative is the parameter interpretation, for what mat-
ters in this context I am not uncomfortable by the small t-statistics for #* and
w’ because I have selected DCC due to its generality and wideness, also these
parameters should not affects the estimation of the o and 8% parameters that
describes most of the behaviour I am interested in. a’9*, 37%% o and 7" in the
parameters table suggest that the variance models are not misspecified, while
the statistical significance of the a“°" shows the absorbing pattern of the co-
movement to shocks in the variance, 3¢°" value and significance suggest that
a CCC model maybe a more appropriate alternative to model the correlation
behaviour.

1.4.2 P-spline quantile regression results

Each future’s log-return training series has been expanded on a collection of
Cubic B-spline spanning min{40,n/4} knots'® uniformly distributed on a line

10 According to an empirical rule stated in [123].
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Contracts conditional correlation

U

2014

2018 2007

(=]
[ =
s
(5]

Time

Parameters
Estimate Std. Error t value Pr(>]t])

W™ 0000755 0.000347 2173237 0.029762
g% 0.045852 0035624 1287119 0.198053
o 3e06 4e-06 0.884951 0.376183
o® 0129531 0.028161 4599677  4e-06
A 0.850358 0022851 37.212602 0

1" 0000779 0000326 2390025 0016847
o™ 0041467 0044282 0936419 0.349058
o 4e-06 9e-06  0.422874 0.672387
o™ 0134186 0030443 4407699  1e-05
p™™ 0843639 0.064163 13.148311 0

o°°" 0328601 0.149933 2191657 0.028404
g 0 0.041587 1e-06 1

Figure 1.1: GARCH-DCC Results for AEX Index and Future correlation.
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ranging from min(xgy) — ke to maxz(xpry)+ ke, where k. is the distance between

maz(rf)—min(xrf)
min{40,n/4}

training set of the future’s return series,!! obtaining from each vector a ma-
trix B,. Due to the implemented knots placement the order of the difference
operator (that in my analysis is set to five) in (1.20) has no straightforward in-
terpretation and has been chosen to be just greater than the number of non-zero
cells per row in matrix B,.

Following the strategy showed in [104] I estimated quantile hedge ratio using
the a narrow set of quantiles'?. Results, according to the procedure exposed
above are statistically significant both on the training than on the testing set
over the whole sample, the Total Absolute Quantile Loss (that is a measure of
the goodness of fit in this context) doesn’t show any substantial variation within
the different quantiles and between the training and testing sets, so does the
coefficient standard error.

each knot, defined as

, and xpgy is the vector containing the

J&} G5 5% 95% t statistic  Total Loss

1% -0.61904 0.00002 -0.61908 -0.61899 -32073.73011 5.23704
2% -0.58942 0.00002 -0.58947 -0.58937 -28886.05496 5.14451
5% -0.57685 0.00005 -0.57697 -0.57672 -10854.49206 5.11532
10% -0.54330 0.00003 -0.54336 -0.54324 -21539.80771 5.02519
20% -0.55236  0.00002 -0.55241 -0.55231 -26519.58831 5.09347
30% -0.55492 0.00002 -0.55495 -0.55488 -36002.10569 5.14060
40% -0.54086 0.00001 -0.54089 -0.54083 -45852.02112 5.13233
50% -0.55523 0.00001 -0.55525 -0.55520 -48370.20417 5.21908
60% -0.52411 0.00001 -0.52414 -0.52407 -35955.09319 5.15220
70% -0.49404 0.00001 -0.49407 -0.49402 -53178.04247 5.08741
80% -0.49264 0.00002 -0.49268 -0.49260 -28132.01081 5.11981
90% -0.48555 0.00003 -0.48561 -0.48549 -18161.74439 5.13240
95% -0.45797 0.00005 -0.45808 -0.45785  -9247.80434 5.05511
98% -0.42902 0.00002 -0.42907 -0.42897 -19658.60937 4.96536
99% -0.41046 0.00002 -0.41050 -0.41042 -24584.02704 4.90433

Table 1.1: Shows f, its standard error, its confidence interval, Student-t statis-
tics at 95% against the null Hy : 5(7) = 0 and the Total Loss, over the training
set for the model for the Amsterdam Exchange Index against its front month
future, n = 829.

The main difference that I notice in comparison with Lien et al. [104] results,
is that there is no inverted ”U-shape” pattern through the different quantiles,

1Here, my approach differs from other applications of P-spline smoother in the literature
[26, 78, 79], because my splines range through the value assumed by the variable in the training
period, instead of ranging through the time domain of the series, so my basis can be thought as
the probability that each observation falls in four adjacent bins in an evenly spaced histogram,
rather than the coefficients of a moving average smoother.

2ie. 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%
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B o 5% 95% t statistic =~ Total Loss

1% -0.61904 0.00004 -0.61914 -0.61894 -14253.71683 4.58752
2% -0.58942 0.00004 -0.58951 -0.58933 -15132.23199 4.50578
5% -0.57685 0.00006 -0.57700 -0.57670 -8972.47060 4.47539
10% -0.54330 0.00002 -0.54336 -0.54325 -22852.33096 4.38897
20% -0.55236  0.00001 -0.55239 -0.55233 -38773.12122 4.43110
30% -0.55492 0.00001 -0.55495 -0.55489 -44000.82141 4.45489
40% -0.54086 0.00001 -0.54088 -0.54084 -64630.06242 4.43126
50% -0.55523 0.00001 -0.55524 -0.55521 -84947.45650 4.48888
60% -0.52411 0.00001 -0.52412 -0.52409 -70116.94669 4.41579
70% -0.49404 0.00001 -0.49406 -0.49403 -65271.42141 4.34508
80% -0.49264 0.00001 -0.49268 -0.49261 -36725.89378 4.35691
90% -0.48555 0.00002 -0.48560 -0.48551 -25821.86456 4.35213
95% -0.45797 0.00003 -0.45804 -0.45789 -14447.42849 4.27956
98% -0.42902 0.00001 -0.42906 -0.42899 -29017.13066 4.19967
99% -0.41046 0.00002 -0.41051 -0.41041 -19392.60950 4.14695

Table 1.2: Shows 37 its standard error, its confidence interval, Student-t statis-
tics at 95% against the null Hy : S(7) = 0 and the Total Loss, over the testing
set for the model for the Amsterdam Exchange Index against its front month
future, n = 829.

neither I observe the almost identical parameters estimated in the stock index
subsets. Instead what I observe is an increasing monotonic pattern through the
different quantiles, never approaching the OLS B r at any level.

To test the economic significance of the result I have derived the portoflio weights
by combination the definitions of hedge ratio and portfolio weights in the fol-
lowing way:

WE
h=—, wg+wr=1
ws

1 h

= ——,Wg = —=.
PO Y T 14k

After obtaining h from the statistical procedure, I have computed the portfolio
returns over the testing period. What one can immediately see looking at fig-
ure Figure 1.1, is that there is no substantial difference between the different
weights configurations, due to the equivalence between the Index and Future
distribution'3. This is a pattern that is persistent over the whole dataset and
is consistent with the results of Bassett et al.(2004)[12].

I3Kolmogorov-Smirnov and Mann-Whitney tests confirms this interpretation, the results
are not shown due to redundancy and will be provided to request of the reader.
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Hedged portfolio return distribution with different weights for AEX
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Figure 1.2: Box-plot of the return distribution of Amsterdam Exchange Index,
its front month future, OLS Mean-Variance hedged portfolio, and the condi-
tional quantile regression hedged portfolio.
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1.4.3 Extreme Analysis results

Figure 2 shows the box-plot of the return distribution of portfolios built with
different weight configurations over the testing period, as one can see every
configuration shows an high number of outliers, thus it may be useful to confront
juts the tails of these distributions. To perform this task I rely on the comparison
of several estimator of the Tail Index, the o parameter of a Paretian distribution,
that means the positive constant for which

1—F(z) =2 %(z),

where [(x) is the slowly varying function at infinity. For convenience the lit-
erature on the subject focused on the estimation of the quantity v = 1/«, as
emerged due to maximum likelihood considerations in Hill(1975)[69], the sub-
sequent "Hill Estimator” is an estimate of the mean excess function of the log-
transformed data replacing the expected value by the empirical average of those
sample values larger than a given threshold, thus given a sample {X,..., X,,}
of which {X1,,..., X, n} is the ordered sample, the estimator for the right tail
is given by

k

k
N 1 ]- AaniJrl,n
Yo = E :E IOg X'n.fi+1,n — log ank,n) = E i:EI lOg—n_k,n .

The Hill estimator can’t be negative, this implies the need to perform some dirty
tricks to compute it when dealing with distributions with v < 0, to avoid the
potentially induced bias I have implemented also the Moment Estimator [40],
defining the log-moments of the sample as

j
nvln
=3 (o)

then one can correct the 45 to obtain

1 (m)2\
1—=-1(1-— .
M = YH + ( M2

The last alternative implemented in the analysis for the tail index is the Adjusted
Hill estimator[64]:
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here U; are the X;, log-spacings, a little discussion has to be done about the
second order parameter estimator p, the tuning parameter 7 depends by the
value of p, if p € (—inf,—1) 7 = 0, instead if p € [-1,0) 7 =1, I set 7 =0
by default, if the resulting p < —1 then I repeat the estimation for tau = 1.
The strategy adopted to determine the threshold & is based on the minimization
of the maximal Kolmogorov-Smirnov distance between different log-spaced tail
sequences as explained in [37].

Pareto model is a very common choice in financial risk managment [27] and to
assess the goodness of my strategy I confront the tail index estimators so far
described to compare the tail behaviour of the return distribution for different
pessimistic hedge ratios and the scale parameter of the fitted Student t distri-
bution.

While there is no appreciable difference between the different strategies in the
mean/normal domain, one can clearly see that the pessimistic quantile hedging
always produces better results at the tails of the distributions, indeed Table 3
shows clearly that the pessimistic portfolios always have thinner left tails than
the Mean-Variance one, implying that extreme losses for the pessimistic portfo-
lios are less intense than those of the Mean-Variance. This is the first time that
this result appears in the literatue.

Anothe, more interesting, fact is that pessimistic hedged portfolio return distri-
butions’ right tails are always fatter than that of the Mean-Variance, meaning
that extreme gains of the pessimistic portfolios are higher than those of the
Mean-Variance one.

147 affects the estimation through the value T} (k)

(M,,(})(k))T—(%Mff)(k)) 2
(3P (1) % - (AP (1)) 5

log (M) (1)) — 4 log (3 M) (k)
T1og(3M7 (1)~ 3 tog (357 (1)

, if >0,
T (k) =
if 7 =0.
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1.5 Conclusion

In this chapter I focused on the application of P-Spline method to the estimation
of a quantile regression model for the solution of a Pessimistic static hedging
portfolio allocation.

The results shown refute the evidences of Lien et al.(2014)[104] that the two
approaches provide the same hedge ratios estimation for stock indeces. I don’t
have a strong interpretation of the reasons behind this difference, but I have two
suspects. First, the standard linear quantile regression performed in Lien work
may lack the ability to capture non-linearities in the relationship between the
two variables, while the P-Spline estimator doesn’t need a precise specification
of the functional relation to estimate (indeed it only needs a large enough basis
and penalty order). At the same time, the procedure that I used to build the
confidence interval which I based my hypothesis testing upon, strongly depends
on the error density estimation at the selected quantile, which in turn depends
on the sample size, so I can’t exclude that a large enough sample size may shrink
the estimated coefficient’s standard errors to zero, thus leading to too narrows
confidence interval. Further investigations are needed to clarify this question
and will be the subject of future researches.

From the economic side of the problem, my results support the evidence present
in the literature that in mean terms there is no economically significant differ-
ence between the Pessimistic and the Mean-Variance hedging. Looking at my
result one may even argue that stock index future hedging is useless at all, while
this could be a tempting statement to make it is not true for several reason.
First of all, my analysis has been conducted only on the daily hedging horizon,
that is not a very realistic one, conducting the same analysis on several different
horizons may give more insight about the time relationship between the spot
and future index return quantile. Second, while comparing the distribution ob-
tained from the different configurations, I haven’t considered the time domain,
that in any hedging exercise is crucial to determine rebalancing gains and losses,
this exercise would have needed a richer dataset, requiring the registration and
modeling of transaction costs, it should also required the definition of an optimal
rebalancing timing, that is still a controversial topic in the field of quantitative
finance, and which solution would have been out of the scope of this paper.
Third, preliminary results shows that while static hedging maybe obsolete on
stock index due to market efficiency, dynamic hedging is still a viable risk mit-
igation technique. All these aspects requires further investigations and will be
the subject of future researches.

However, the situation changes drastically in the extreme domain, indeed ex-
treme analysis results are fresh and encouraging, showing for the first time that
Pessimistic quantile hedge ratio is able to achieve results in flattening the tail
of the loss distribution while, at the same time, making the gains distribution
tail heavier.
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1.6 Appendix I: Graphs and Tables of Chapter
1
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Contracts conditional correlation
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Figure 1.3: GARCH-DCC Results for ASX Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -0.34476 0.00001 -0.34479 -0.34473 -28945.43273 3.59835
2% -0.29364 0.00001 -0.29367 -0.29361 -21314.71032 3.46400
5% -0.23870 0.00003 -0.23876 -0.23863  -8532.20210 3.32250
10% -0.20308 0.00002 -0.20313 -0.20304 -10736.33226 3.23436
20% -0.16838 0.00001 -0.16841 -0.16836 -17096.71691 3.15362
30% -0.16255 0.00001 -0.16257 -0.16252 -17057.83992 3.14866
40% -0.12372  0.00001 -0.12373 -0.12370 -17861.81007 3.05598
50% -0.11911 0.00001 -0.11913 -0.11909 -15678.41122 3.05381
60% -0.12296 0.00001 -0.12298 -0.12295 -17560.23750 3.07417
70% -0.10558 0.00001 -0.10560 -0.10555 -10798.80441 3.03762
80% -0.07142 0.00001 -0.07144 -0.07140  -8942.22785 2.95599
90%  0.07417 0.00001 0.07414  0.07419 7117.86526 2.58280
95%  0.08200 0.00002 0.08195  0.08204 4282.17402 2.56669
98%  0.14058 0.00001  0.14056  0.14060  18135.87813 241821
99%  0.15325 0.00001 0.15323  0.15326  25372.49045 2.38664

B b3 5% 95% t statistic Total Loss

1% -0.34476 0.00001 -0.34479 -0.34473 -28945.43273 3.59835
2% -0.29364 0.00001 -0.29367 -0.29361 -21314.71032 3.46400
5% -0.23870 0.00003 -0.23876 -0.23863  -8532.20210 3.32250
10% -0.20308 0.00002 -0.20313 -0.20304 -10736.33226 3.23436
20% -0.16838 0.00001 -0.16841 -0.16836 -17096.71691 3.15362
30% -0.16255 0.00001 -0.16257 -0.16252 -17057.83992 3.14866
40% -0.12372  0.00001 -0.12373 -0.12370 -17861.81007 3.05598
50% -0.11911 0.00001 -0.11913 -0.11909 -15678.41122 3.05381
60% -0.12296 0.00001 -0.12298 -0.12295 -17560.23750 3.07417
70% -0.10558 0.00001 -0.10560 -0.10555 -10798.80441 3.03762
80% -0.07142 0.00001 -0.07144 -0.07140  -8942.22785 2.95599
90%  0.07417 0.00001 0.07414 0.07419 7117.86526 2.58280
95%  0.08200 0.00002 0.08195 0.08204 4282.17402 2.56669
98%  0.14058 0.00001  0.14056  0.14060  18135.87813 2.41821
99%  0.15325 0.00001 0.15323 0.15326  25372.49045 2.38664

Table 1.4: Shows 3 inference results over the testing and training set for the
model for the Australian Securities Exchange against its front month future,
n = 825.
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Figure 1.4: Box-plot of the return distribution of Australian Securities Ex-
change its front month future, OLS Mean-Variance hedged portfolio, and the

conditional quantile regression hedged portfolio.
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Contracts conditional correlation
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Figure 1.5: GARCH-DCC Results for ATX Index and Future correlation.



48 CHAPTER 1. P-SPLINE QUANTILE REGRESSION HEDGE RATIO

B o 5% 95% t statistic =~ Total Loss

1% -0.55713 0.00003 -0.55718 -0.55707 -22267.12207 4.23509
2% -0.54390 0.00002 -0.54394 -0.54385 -28322.01661 4.20394
5% -0.51654 0.00004 -0.51664 -0.51645 -12439.60449 4.14356
10% -0.48980 0.00004 -0.48989 -0.48971 -12513.99684 4.09335
20% -0.44435 0.00002 -0.44439 -0.44431 -23654.93884 4.01270
30% -0.39018 0.00001 -0.39021 -0.39015 -27765.23556 3.90478
40% -0.24325 0.00002 -0.24329 -0.24321 -15414.26905 3.53112
50% -0.15822 0.00001 -0.15825 -0.15820 -12814.24765 3.32563
60% -0.22767 0.00001 -0.22769 -0.22765 -24563.13447 3.56098
70% -0.27763 0.00001 -0.27766 -0.27760 -21046.39522 3.74394
80% -0.32891 0.00001 -0.32894 -0.32888 -24063.56890 3.93393
90% -0.36125 0.00002 -0.36130 -0.36119 -15472.78957 4.07061
95% -0.35387 0.00004 -0.35396 -0.35378 -9023.64736 4.06903
98% -0.28714 0.00002 -0.28718 -0.28711 -18506.99951 3.88043
99% -0.28134 0.00002 -0.28138 -0.28130 -15830.29838 3.86682
B Gp 5% 95% t statistic  Total Loss

1% -0.55713 0.00004 -0.55722 -0.55703 -14064.32089 5.24959
2% -0.54390 0.00004 -0.54398 -0.54381 -15369.94622 5.19688
5% -0.51654 0.00008 -0.51673 -0.51636 -6469.15870 5.08255
10% -0.48980 0.00004 -0.48989 -0.48970 -12158.41092 4.95907
20% -0.44435 0.00002 -0.44439 -0.44430 -22696.77550 4.74319
30% -0.39018 0.00002 -0.39022 -0.39014 -23523.52264 4.50148
40% -0.24325 0.00001 -0.24328 -0.24322 -16553.34524 3.95451
50% -0.15822 0.00001 -0.15825 -0.15820 -15145.52929 3.62787
60% -0.22767 0.00001 -0.22770 -0.22764 -17663.35413 3.80460
70% -0.27763 0.00001 -0.27766 -0.27760 -20593.30632 3.91557
80% -0.32891 0.00001 -0.32894 -0.32888 -26842.25704 4.02759
90% -0.36125 0.00003 -0.36131 -0.36119 -14338.51014 4.07599
95% -0.35387 0.00007 -0.35402 -0.35372 -5395.28518 4.02567
98% -0.28714 0.00003 -0.28722 -0.28707 -9371.53699 3.80183
99% -0.28134 0.00003 -0.28141 -0.28127 -9046.82122 3.77865

Table 1.6: Shows £ inference results over the testing and training set for the
model for the Austrian Traded Index against its front month future, n = 644.
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Hedged portfolio return distribution with different weights for ATX
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Figure 1.6: Box-plot of the return distribution of Austrian Traded Index its

front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolio.
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Contracts conditional correlation
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Figure 1.7: GARCH-DCC Results for BEL Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.60592 0.00002 -0.60596 -0.60587 -30845.09949 4.70062
2% -0.59042 0.00002 -0.59047 -0.59038 -32277.33657 4.65953
5% -0.65658 0.00004 -0.65669 -0.65648 -14720.90463 4.86734
10% -0.64246 0.00002 -0.64252 -0.64240 -26020.05907 4.84825
20% -0.62173 0.00002 -0.62177 -0.62169 -36580.30651 4.83132
30% -0.61286 0.00001 -0.61289 -0.61283 -42999.30935 4.84899
40% -0.59628 0.00001 -0.59630 -0.59625 -55586.60350 4.84273
50% -0.57352 0.00001 -0.57354 -0.57350 -54221.56464 4.81662
60% -0.59373 0.00001 -0.59374 -0.59371 -77004.89069 4.92221
70% -0.58719 0.00002 -0.58722 -0.58715 -37426.69182 4.94542
80% -0.58466 0.00001 -0.58469 -0.58463 -41302.30925 4.98090
90% -0.46152 0.00002 -0.46157 -0.46147 -21627.17222 4.63348
95% -0.31353 0.00003 -0.31360 -0.31346 -10562.87930 4.18553
98% -0.23321 0.00001 -0.23324 -0.23318 -18596.45551 3.94297
99% -0.18816 0.00001 -0.18819 -0.18813 -14568.84363 3.80441

I6; Gp 5% 95% t statistic =~ Total Loss

1% -0.60592 0.00006 -0.60605 -0.60579 -10739.01166 5.54857
2% -0.59042 0.00004 -0.59051 -0.59034 -15717.81702 5.48824
5% -0.65658 0.00006 -0.65673 -0.65643 -10332.48453 5.73317
10% -0.64246 0.00003 -0.64252 -0.64240 -24640.47383 5.67100
20% -0.62173 0.00002 -0.62177 -0.62169 -37673.63802 5.57537
30% -0.61286 0.00001 -0.61289 -0.61283 -53578.58502 5.52470
40% -0.59628 0.00001 -0.59631 -0.59625 -42273.12535 5.44536
50% -0.57352 0.00001 -0.57354 -0.57350 -74017.75178 5.34332
60% -0.59373 0.00001 -0.59375 -0.59370 -55053.39572 5.40163
70% -0.58719 0.00001 -0.58721 -0.58716 -59991.99958 5.36028
80% -0.58466 0.00001 -0.58469 -0.58463 -47614.05074 5.33392
90% -0.46152 0.00002 -0.46157 -0.46148 -23101.08796 4.86275
95% -0.31353 0.00004 -0.31362 -0.31344 -7898.64522 4.31034
98% -0.23321 0.00002 -0.23326 -0.23316 -11181.35926 4.01218
99% -0.18816 0.00002 -0.18820 -0.18811 -9139.97340 3.84639

Table 1.8: Shows /3 inference results over the testing and training set for the
model for the Brussels Stock Exchange against its front month future, n = 829.
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Hedged portfolio return distribution with different weights for BEL20
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Figure 1.8: Box-plot of the return distribution of Brussel Stock Exchange index,
its front month future, OLS Mean-Variance hedged portfolio, and the condi-
tional quantile regression hedged portfolios.



9ININJ IO JUOIJ ST JSUTRSe 9FURYIXG] HD01S SO[[OXNIY o1f)
JO [9pouI a1} 10} 198 SUIIS9) 9T[} I9A0 I9jauTeIRd 9[RdS }-NIOPNIS 1]} PUR SN[EA SIOJETIIIS XOPU] [18], WIDIOPIP SMOYS :6'T 9[RL

8¢000°0  8€900°0 87960°0- CLS8T'0 9G79¢°0  LESRT'0 €8 | 96891°0- 086¢9'0 V69870 242890 08 | %66
8¢000°0  L£900°0 8Y7E€a'0-  SYIST'0 GCLET'0  SGPISF'0 €8 | LOLVE0- 8E¥C9'0  091¢s0 806290 08 | %S6
8¢000°0  TE€900°0 TLVGT'¢-  09987°0 VESTG'0  09987°0 €8 | 7.8¢S'0- <cve9'0  6089G6°0 Gerco'0 08 | %S6
8¢000°0  ¢€900°0 88169°0- SISIS0 89GT9°0 LOSTG'0 €8 | G88L¥'0- TL1990 €7¥0€9°0 GLTG9°0 6L | %06
6¢000°0  8%7900°0 Gcc6e0-  ¢S9¢Ss0 292890  696cS'0 €8 | 8GTI¥L'0- ¥8CS9'0 67,690 80990 LL | %08
8¢000°0  9€900°0 L€08€°0-  0LL2S°0 VLESY'0  TLI9CG'0 €8 | 6L199°0- TLES9'0 968690 696990 LL | %0L
8¢000°0  ¢¥900°0 0079¢°0- 1786250 8L989°0 GL8CG'0 €8 | 0FP90T°0- SP999'0 T9869°0 L8¥799°0 9L | %09
8¢000°0  ¢¥900°0 667S7°0-  0FIcs0 VI8L9°0 G80CG'0 €8 | PGLST'T- <S06¥9'0 T6¢69°0 G0679°0  LL | %08
8¢000°0  L£900°0 1687¢°0- 0616460 6L.89°0 600€G°0 €8 | ¥€€90°0- €I899'0 €L669°0 929990 9L | %0¥
6¢000°0  65900°0 GeILY'0- 169250 9C869°0  LESCS'0 €8 | PSIET'0- 67€L9°0 ¥¥L0LO 9LTL9°0 9L | %0¢
8¢000°0  L€900°0 688170~ ¢VI€s0 96T0L°0 <€90€G°0 €8 | 67E6T°0- S8C9L9°0 E6ITLO €0GL9°0 9L | %0¢
6¢000°0  #5900°0 ¢690€°0-  €99¥90 660TL°0 9LEPG0 €8 | GERCYF'0- 910690 ¢8ICL0 600690 GL | %01
6¢000°0  8G900°0 ¥6L0€°0-  GI67S°0 8CSTL'0  PELVGO €8 | 9698¢°0- 8FP69'0 TI9TEL0 8¢¥69°0 GL | %S
8¢000°0  €€900°0 ¢c99¢°0-  0¢6¢S0 VIGR9'0 FVIKCG'0 €8 | SIcLS'0- €8799'0 L6669°0 6L759°0 LL | %C
6¢000°0  #5900°0 80L87°0- G9€¢S°0 ¢0869°0 LT1€29°0 €8 | 9G790°0- LSIL9°0 <CIv0L'0 €0699°0 9L | %I
€T000°0  79800°0 60G00°T-  TTI687°0 96887°0 TI6GRF'0 €8 | 61GST'0- 67EF9'0  68€65°0 96E79°0 08 | AIN
4L o 0 Hd PV WA YL Bl Hd PV WA HL Bl
9Tedg 1-1UAPIYg [reT, ST [T, 3391




0.99-

1.6. APPENDIX I: GRAPHS AND TABLES OF CHAPTER 1

Contracts conditional correlation

0.98-

0.97-

0.96-

!
2014

ldx

(]

=1
o

Estimate
0.000347
0.075267
4e-06
0.078373
0.866127
0.000354
0.070773
4e-06
0.076456
0.87104
0.031117
0.862111

!
2016

Time

Parameters
Std. Error tvalue Pr(>|t])
0.000294 1181367 0237457
0.038455 1957266 0.050316

1e-06 3654027 0.000258
0.008573 9141724 0
0.016459 52622827 0
0.000301 1178218 023871
0.036115  1.959647 0.050037

1e-06 3620847 0000294
0.007834 9.758979 0
0.014606 59.636343 0
0.02371 1.312374 0.189394
0.121248 7.110336 0

55

Figure 1.9: GARCH-DCC Results for BMV Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.25709 0.00001 -0.25712 -0.25706 -19231.92468 3.13395
2% -0.25265 0.00001 -0.25268 -0.25262 -20577.01752 3.12435
5% -0.26026 0.00002 -0.26032 -0.26021 -11010.61673 3.14939
10% -0.26345 0.00001 -0.26349 -0.26342 -17839.64750 3.16674
20% -0.24345 0.00001 -0.24348 -0.24342 -21213.16860 3.13312
30% -0.22244 0.00001 -0.22246 -0.22242 -24614.82493 3.09632
40% -0.19337 0.00001 -0.19339 -0.19335 -22847.86025 3.03785
50% -0.15451 0.00001 -0.15452 -0.15449 -21586.59834 2.95286
60% -0.18040 0.00001 -0.18042 -0.18038 -22130.39013 3.03811
70% -0.20444 0.00001 -0.20447 -0.20442 -19830.70121 3.11924
80% -0.19714 0.00001 -0.19716 -0.19712 -19087.57410 3.11714
90% -0.18531 0.00001 -0.18534 -0.18528 -15168.78117 3.10267
95% -0.17884 0.00002 -0.17889 -0.17879 -8635.87923 3.09382
98% -0.11896 0.00001 -0.11898 -0.11893 -11531.58025 2.93737
99% -0.08835 0.00001 -0.08837 -0.08832 -8116.56260 2.85641

B Gp 5% 95% t statistic  Total Loss

1% -0.25709 0.00003 -0.25715 -0.25703 -10154.86503 3.97970
2% -0.25265 0.00002 -0.25269 -0.25261 -15410.14813 3.96218
5% -0.26026 0.00004 -0.26036 -0.26017  -6193.54216 3.97724
10% -0.26345 0.00002 -0.26350 -0.26341 -14511.65413 3.97158
20% -0.24345 0.00001 -0.24347 -0.24343 -24503.89161 3.87608
30% -0.22244 0.00001 -0.22246 -0.22241 -20719.16912 3.77853
40% -0.19337 0.00001 -0.19338 -0.19335 -26940.43919 3.65702
50% -0.15451 0.00001 -0.15452 -0.15449 -20449.54781 3.50672
60% -0.18040 0.00001 -0.18042 -0.18038 -21141.36040 3.55699
70% -0.20444 0.00001 -0.20447 -0.20442 -22515.75977 3.60040
80% -0.19714 0.00001 -0.19716 -0.19711 -18414.63394 3.54796
90% -0.18531 0.00002 -0.18535 -0.18527 -11444.29356 3.48232
95% -0.17884 0.00004 -0.17892 -0.17875  -5023.77006 3.44806
98% -0.11896 0.00002 -0.11899 -0.11892  -7621.17539 3.26125
99% -0.08835 0.00001 -0.08838 -0.08832  -6518.82625 3.16784

Table 1.10: Shows f inference results over the testing and training set for the
model for the Bolsa Mexicana de Valores against its front month future, n = 815.
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Figure 1.10: Box-plot of the return distribution of Bolsa Mexicana de Valores
index, its front month future, OLS Mean-Variance hedged portfolio, and the
conditional quantile regression hedged portfolios.
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Figure 1.11: GARCH-DCC Results for CAC40 Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -0.85273 0.00003 -0.85279 -0.85266 -30155.54376 6.62427
2% -0.80702 0.00003 -0.80708 -0.80695 -28146.84295 6.46339
5% -0.76255 0.00006 -0.76268 -0.76242 -13518.67368 6.31320
10% -0.75152 0.00004 -0.75162 -0.75142 -17927.92589 6.28936
20% -0.74499 0.00002 -0.74504 -0.74494 -35316.55612 6.29740
30% -0.74250 0.00002 -0.74254 -0.74246 -41378.94339 6.31993
40% -0.73971 0.00002 -0.73975 -0.73967 -41896.17146 6.34126
50% -0.73983 0.00001 -0.73985 -0.73980 -62346.66048 6.37320
60% -0.73795 0.00002 -0.73798 -0.73791 -46072.48269 6.39775
70% -0.73130 0.00001 -0.73133 -0.73128 -61194.45467 6.40454
80% -0.70085 0.00002 -0.70090 -0.70081 -34762.16297 6.32243
90% -0.68954 0.00003 -0.68961 -0.68946 -21505.19012 6.31089
95% -0.67354 0.00005 -0.67365 -0.67342 -13677.12852 6.26619
98% -0.61014 0.00001 -0.61018 -0.61011 -42962.82820 6.03721
99% -0.58665 0.00002 -0.58670 -0.58661 -29695.40200 5.95191

B b3 5% 95% t statistic Total Loss

1% -0.85273 0.00006 -0.85286 -0.85260 -15151.25595 5.90197
2% -0.80702 0.00005 -0.80712 -0.80691 -17362.78731 5.75699
5% -0.76255 0.00007 -0.76271 -0.76239 -10906.90873 5.61578
10% -0.75152 0.00004 -0.75161 -0.75143 -19555.35618 5.58037
20% -0.74499 0.00002 -0.74502 -0.74495 -48107.28692 5.55879
30% -0.74250 0.00001 -0.74253 -0.74247 -60527.40392 5.55001
40% -0.73971 0.00001 -0.73973 -0.73968 -69016.87486 5.54028
50% -0.73983 0.00001 -0.73986 -0.73979 -51199.94096 9.53977
60% -0.73795 0.00001 -0.73797 -0.73792 -73529.90150 5.53293
70% -0.73130 0.00001 -0.73133 -0.73128 -61509.43811 5.51103
80% -0.70085 0.00001 -0.70089 -0.70082 -47242.22904 5.41379
90% -0.68954 0.00003 -0.68960 -0.68948 -26835.24822 5.37712
95% -0.67354 0.00005 -0.67366 -0.67342 -13413.59417 5.32609
98% -0.61014 0.00003 -0.61020 -0.61008 -23156.60665 5.12532
99% -0.58665 0.00003 -0.58672 -0.58659 -21577.41029 5.05096

Table 1.12: tab:Table 7 Shows B inference results over the testing and training
set for the model for the Cotation Assistée en Continu against its front month
future, n = 829 .
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Figure 1.12: Box-plot of the return distribution of Cotation Assistée en Continu
index, its front month future, OLS Mean-Variance hedged portfolio, and the
conditional quantile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.13: GARCH-DCC Results for DAX Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.39556 0.00001 -0.39559 -0.39553 -26712.60170 5.11946
2% -0.38160 0.00002 -0.38164 -0.38156 -21816.86574 5.07206
5% -0.36587 0.00004 -0.36596 -0.36577 -8691.43394 5.02496
10% -0.35097 0.00003 -0.35105 -0.35090 -11242.53268 4.98744
20% -0.33355 0.00002 -0.33360 -0.33350 -15924.51840 4.95689
30% -0.32455 0.00002 -0.32459 -0.32451 -17840.92617 4.95675
40% -0.31874 0.00001 -0.31877 -0.31870 -22607.81519 4.96807
50% -0.30048 0.00001 -0.30051 -0.30045 -27562.94726 4.93228
60% -0.28881 0.00001 -0.28884 -0.28879 -27392.23455 4.92053
70% -0.27154 0.00001 -0.27157 -0.27152 -23524.74697 4.88684
80% -0.25035 0.00002 -0.25040 -0.25031 -12700.95429 4.83725
90% -0.20200 0.00002 -0.20205 -0.20194 -8301.92781 4.68180
95% -0.18501 0.00003 -0.18507 -0.18494 -6977.81216 4.63103
98% -0.17863 0.00001 -0.17865 -0.17861 -17480.21391 4.61517
99% -0.17127 0.00001 -0.17129 -0.17125 -19174.05039 4.58954
I6; Gp 5% 95% t statistic =~ Total Loss

1% -0.39556 0.00003 -0.39564 -0.39548 -11431.92532 4.69094
2% -0.38160 0.00003 -0.38167 -0.38153 -12445.56086 4.64419
5% -0.36587 0.00005 -0.36598 -0.36575 -7334.36744 4.59260
10% -0.35097 0.00003 -0.35103 -0.35091 -13357.87175 4.54500
20% -0.33355 0.00002 -0.33359 -0.33351 -18418.33537 4.49162
30% -0.32455 0.00001 -0.32458 -0.32452 -29864.80101 4.46675
40% -0.31874 0.00001 -0.31876 -0.31871 -35288.50347 4.45267
50% -0.30048 0.00001 -0.30050 -0.30046 -35130.81258 4.39612
60% -0.28881 0.00001 -0.28884 -0.28879 -27201.05536 4.36194
70% -0.27154 0.00001 -0.27157 -0.27152 -30046.80159 4.30853
80% -0.25035 0.00001 -0.25038 -0.25032 -18675.81309 4.24156
90% -0.20200 0.00002 -0.20204 -0.20196 -12428.05824 4.08142
95% -0.18501 0.00004 -0.18510 -0.18491 -4488.32679 4.02582
98% -0.17863 0.00003 -0.17869 -0.17857 -6954.25699 4.00552
99% -0.17127 0.00002 -0.17132 -0.17121 -7200.48656 3.98079

Table 1.14: Shows f inference results over the testing and training set for the
model for the Deutscher Aktienindex against its front month future, n = 820.
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Figure 1.14: Box-plot of the return distribution of Deutscher Aktienindex, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolios.
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Figure 1.15: GARCH-DCC Results for DJA Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -0.30588 0.00001 -0.30590 -0.30586 -29716.78685 2.88616
2% -0.28982 0.00001 -0.28984 -0.28980 -33132.80693 2.85510
5% -0.21725 0.00003 -0.21731 -0.21719  -8391.36079 2.70987
10% -0.15470 0.00002 -0.15474 -0.15466  -9341.47123 2.59075
20% -0.14271 0.00001 -0.14273 -0.14268 -12939.53985 2.59144
30% -0.13292 0.00001 -0.13293 -0.13290 -19699.17821 2.59636
40% -0.14844 0.00001 -0.14845 -0.14843 -28726.10205 2.65605
50% -0.12363 0.00001 -0.12365 -0.12362 -19657.91610 2.62754
60% -0.14870 0.00001 -0.14872 -0.14869 -27734.60923 2.70901
70% -0.15220 0.00001 -0.15222 -0.15218 -16873.70636 2.74306
80% -0.11274 0.00001 -0.11276 -0.11272 -13976.29424 2.67962
90% -0.08867 0.00002 -0.08871 -0.08863  -5390.11176 2.64978
95% -0.08043 0.00001 -0.08047 -0.08040  -5869.84669 2.64321
98% -0.05361 0.00001 -0.05363 -0.05360  -8786.80298 2.58861
99% -0.04797 0.00001 -0.04799 -0.04795  -5983.37945 2.57796

B b3 5% 95% t statistic Total Loss

1% -0.30588 0.00004 -0.30597 -0.30579  -8170.89590 4.11451
2% -0.28982 0.00003 -0.28989 -0.28975  -9907.62499 4.06758
5% -0.21725 0.00006 -0.21739 -0.21710  -3512.36542 3.85187
10% -0.15470 0.00003 -0.15478 -0.15462  -4502.36354 3.67151
20% -0.14271 0.00001 -0.14273 -0.14268 -13364.31425 3.65990
30% -0.13292  0.00001 -0.13294 -0.13289 -14319.12315 3.65469
40% -0.14844 0.00001 -0.14845 -0.14843 -28110.77827 3.72919
50% -0.12363 0.00001 -0.12365 -0.12362 -19972.68367 3.67577
60% -0.14870 0.00001 -0.14872 -0.14869 -23664.82308 3.78143
70% -0.15220 0.00001 -0.15222 -0.15218 -22690.97485 3.81844
80% -0.11274 0.00001 -0.11276 -0.11271 -10999.16952 3.71572
90% -0.08867 0.00002 -0.08871 -0.08862  -4692.61356 3.66171
95% -0.08043 0.00003 -0.08051 -0.08035  -2368.34415 3.64683
98% -0.05361 0.00001 -0.05365 -0.05358  -3577.16305 3.56587
99% -0.04797 0.00003 -0.04805 -0.04789  -1415.29410 3.54967

Table 1.16: Shows B inference results over the testing and training set for the
model for the Dow Jones Industrial Average against its front month future,
n = 817.
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Hedged portfolio return distribution with different weights for DJA
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Figure 1.16: Box-plot of the return distribution of Dow Jones Industrial Average
index, its front month future, OLS Mean-Variance hedged portfolio, and the
conditional quantile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.17: GARCH-DCC Results for EXX Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.79062 0.00003 -0.79068 -0.79055 -29414.78867 6.70820
2% -0.78014 0.00003 -0.78020 -0.78007 -28561.92558 6.67069
5% -0.76303 0.00006 -0.76317 -0.76290 -13104.91266 6.61200
10% -0.74405 0.00003 -0.74414 -0.74397 -21343.43708 6.54988
20% -0.72862 0.00002 -0.72866 -0.72857 -35251.81535 6.51021
30% -0.71158 0.00003 -0.71164 -0.71153 -27733.93042 6.46421
40% -0.77157 0.00002 -0.77160 -0.77153 -48463.26012 6.71041
50% -0.75708 0.00001 -0.75711 -0.75704 -57076.17875 6.67416
60% -0.72193 0.00002 -0.72197 -0.72189 -42133.85431 6.55882
70% -0.72251 0.00001 -0.72254 -0.72248 -59003.94966 6.57949
80% 0.29581  0.00001 0.29578  0.29583 27864.29879 2.72858
90% -0.11573 0.00002 -0.11577 -0.11569 -6506.86690 4.28742
95% -0.30077 0.00004 -0.30086 -0.30068 -7603.99123 5.00348
98% -0.35168 0.00002 -0.35172 -0.35164 -21082.17701 5.20345
99% -0.35106 0.00002 -0.35110 -0.35102 -20548.63709 5.20255

I6; Gp 5% 95% t statistic =~ Total Loss

1% -0.79062 0.00005 -0.79073 -0.79050 -15643.63513 5. 78717
2% -0.78014 0.00005 -0.78024 -0.78003 -17001.36553 5.75195
5% -0.76303 0.00007 -0.76320 -0.76287 -10554.01001 5.69381
10% -0.74405 0.00003 -0.74413 -0.74398 -22027.51859 5.62851
20% -0.72862 0.00002 -0.72865 -0.72858 -46089.60845 5.57258
30% -0.71158 0.00002 -0.71162 -0.71155 -44653.13570 5.51143
40% -0.77157 0.00001 -0.77160 -0.77153 -56527.64514 5.70501
50% -0.75708 0.00001 -0.75710 -0.75705 -70890.57011 5.65223
60% -0.72193 0.00001 -0.72196 -0.72190 -56311.64784 5.563130
70% -0.72251 0.00001 -0.72253 -0.72249 -73921.99028 5.52842
80% 0.29581 0.00001 0.29579 0.29582 46903.71790 2.20234
90% -0.11573 0.00002 -0.11577 -0.11569 -6731.31607 3.52591
95% -0.30077 0.00003 -0.30085 -0.30069 -8748.24553 4.13016
98% -0.35168 0.00002 -0.35173 -0.35163 -16843.07784 4.29591
99% -0.35106 0.00003 -0.35113 -0.35099 -11499.03882 4.29346

Table 1.18: Shows f3 inference results over the testing and training set for the
model for the EURO STOXX 50 against its front month future, n = 827.
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Hedged portfolio return distribution with different weights for EXX
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Figure 1.18: Box-plot of the return distribution of EURO STOXX 50 index, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolios.
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Figure 1.19: GARCH-DCC Results for IBEX35 Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -1.34829 0.00004 -1.34838 -1.34820 -33220.17901 9.37232
2% -1.29819 0.00003 -1.29827 -1.29811 -37349.55544 9.17359
5% -0.98964 0.00006 -0.98979 -0.98950 -15892.99629 7.94541
10% -1.01908 0.00004 -1.01917 -1.01900 -27475.22934 8.06914
20% -1.00875 0.00003 -1.00883 -1.00867 -30936.63795 8.04010
30% -0.98903 0.00003 -0.98910 -0.98897 -35087.96845 7.97332
40% -0.98449 0.00002 -0.98452 -0.98445 -62297.18940 7.96721
50% -0.98441 0.00002 -0.98444 -0.98437 -64538.44865 7.97899
60% -0.89389 0.00002 -0.89392 -0.89385 -56708.86507 7.62655
70% -0.92887 0.00002 -0.92891 -0.92882 -46150.42311 7.77919
80% -0.93379 0.00003 -0.93385 -0.93372 -33665.05800 7.81084
90% -0.97481 0.00004 -0.97490 -0.97473 -26096.30237 7.98862
95% -0.85949 0.00005 -0.85961 -0.85937 -16802.84438 7.52794
98% -1.02571 0.00003 -1.02577 -1.02565 -40292.19287 8.20443
99% -1.07693 0.00002 -1.07697 -1.07688 -57545.18428 8.41315

B Gp 5% 95% t statistic  Total Loss

1% -1.34829 0.00005 -1.34840 -1.34817 -27290.13304 8.23814
2% -1.29819 0.00005 -1.29831 -1.29808 -26845.73882 8.05417
5% -0.98964 0.00008 -0.98982 -0.98946 -12765.84039 6.94927
10% -1.01908 0.00003 -1.01916 -1.01900 -30129.80439 7.01981
20% -1.00875 0.00002 -1.00880 -1.00870 -47973.06902 6.91859
30% -0.98903 0.00002 -0.98907 -0.98899 -53172.72933 6.78588
40% -0.98449 0.00001 -0.98452 -0.98446 -72620.21411 6.70597
50% -0.98441 0.00001 -0.98444 -0.98437 -65880.03441 6.64134
60% -0.89389 0.00001 -0.89392 -0.89385 -64676.84323 6.27570
70% -0.92887 0.00001 -0.92890 -0.92884 -72241.53563 6.32955
80% -0.93379 0.00002 -0.93384 -0.93374 -40411.66956 6.28308
90% -0.97481 0.00003 -0.97488 -0.97475 -33400.58402 6.35295
95% -0.85949 0.00005 -0.85961 -0.85937 -16456.56837 5.95021
98% -1.02571 0.00003 -1.02578 -1.02565 -36399.13272 6.46491
99% -1.07693 0.00004 -1.07702 -1.07683 -27209.71407 6.62237

Table 1.20: Shows f inference results over the testing and training set for the
model for the Indice Bursatil Espanol against its front month future, n = 829.
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Figure 1.20: Box-plot of the return distribution of Indice Bursatil Espanol, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.21: GARCH-DCC Results for iBOV Index and Future correlation.
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B o 5% 95% t statistic = Total Loss

1% -0.04253 0.00001 -0.04255 -0.04250 -3542.63180 4.86100
2%  0.00675 0.00001  0.00672  0.00678 502.39325 4.63030
5%  0.06927 0.00003 0.06920 0.06933 2491.40995 4.34262
10%  0.13533 0.00002 0.13528  0.13538 6797.08166 4.04247
20%  0.18708 0.00001  0.18705 0.18711 15260.68074 3.81921
30%  0.17104 0.00001 0.17101  0.17107 14214.77688 3.91682
40%  0.15370 0.00001  0.15367  0.15373 13197.39234 4.02164
50% 0.18616  0.00001 0.18613  0.18618 15969.03928 3.88706
60% 0.22783  0.00001 0.22781 0.22786  19299.98444 3.70663
70%  0.24594 0.00001  0.24592  0.24597 21376.59129 3.63896
80% 0.25363  0.00001 0.25360  0.25367 16974.14609 3.62113
90% 0.27138 0.00001 0.27135 0.27141 19034.19576 3.55380
95%  0.28600 0.00003  0.28594  0.28607 10340.45681 3.49188
98%  0.32435 0.00001  0.32432  0.32439 22439.73432 3.30999
99%  0.37586 0.00001  0.37583  0.37588 35881.68915 3.06260
3 Gp 5% 95% t statistic Total Loss

1% -0.04253 0.00004 -0.04262 -0.04243 -1002.49610 4.72437
2%  0.00675 0.00002  0.00670  0.00680 331.59403 4.50208
5% 0.06927 0.00004 0.06918  0.06936 1821.14623 4.22584
10% 0.13533 0.00002  0.13528  0.13538 6270.49430 3.93880
20%  0.18708 0.00001  0.18705 0.18711 16255.63836 3.73160
30%  0.17104 0.00001 0.17101 0.17106 16108.42608 3.83846
40% 0.15370 0.00001 0.15368  0.15372 16818.29211 3.95272
50%  0.18616 0.00001  0.18613 0.18618 16233.29153 3.83086
60%  0.22783 0.00001  0.22781  0.22785 26911.05825 3.66219
70%  0.24594 0.00001  0.24592  0.24597 23980.86719 3.60454
80% 0.25363  0.00001 0.25361 0.25366 22882.77559 3.59636
90% 0.27138  0.00001 0.27135  0.27141 22323.64394 3.53812
95%  0.28600 0.00003 0.28594  0.28606 11287.66841 3.48008
98% 0.32435 0.00001 0.32432  0.32439 22517.45246 3.29890
99% 0.37586  0.00001 0.37583  0.37588 33089.92081 3.04763

Table 1.22: Shows f3 inference results over the testing and training set for the
model for the Indice Bovespa against its front month future, n = 801.
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Figure 1.22: Box-plot of the return distribution of Indice Bovespa, its front
month future, OLS Mean-Variance hedged portfolio, and the conditional quan-
tile regression hedged portfolios.
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Figure 1.23: GARCH-DCC Results for MASCI Index and Future correlation.
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84 CHAPTER 1. P-SPLINE QUANTILE REGRESSION HEDGE RATIO

38 o 5% 95% t statistic Total Loss

1% -0.20333 0.00001 -0.20335 -0.20330 -19539.54260 2.84496
2% -0.18859 0.00001 -0.18860 -0.18857 -23392.15571 2.80665
5% -0.15500 0.00002 -0.15504 -0.15496 -8216.75621 2.71911
10% -0.14237 0.00001 -0.14240 -0.14234 -10452.61790 2.68414
20% -0.12909 0.00001 -0.12912 -0.12907 -11899.92615 2.64489
30% -0.17779 0.00001 -0.17780 -0.17777 -27481.16446 2.76260
40% -0.34351 0.00001 -0.34353 -0.34350 -46637.05747 3.17807
50% -0.31303 0.00001 -0.31304 -0.31302 -55890.82336 3.09388
60% -0.26768 0.00001 -0.26769 -0.26766 -39841.13839 2.97248
70% -0.15388 0.00001 -0.15390 -0.15386 -20294.13060 2.67887
80% -0.06320 0.00001 -0.06321 -0.06318 -7625.82006 2.44699
90% 0.01074 0.00001 0.01072  0.01076 1052.57770 2.25965
95%  0.04566 0.00002  0.04561  0.04571 2137.45908 2.17426
98%  0.07756 0.00001 0.07754  0.07759 7315.12162 2.09763
99%  0.08442 0.00001  0.08440  0.08444 9080.51841 2.08104

B Gp 5% 95% t statistic  Total Loss

1% -0.20333 0.00003 -0.20339 -0.20327  -7541.58156 3.45243
2% -0.18859 0.00002 -0.18862 -0.18855 -12129.95646 3.40720
5% -0.15500 0.00003 -0.15508 -0.15492  -4680.68033 3.30332
10% -0.14237 0.00002 -0.14241 -0.14233  -8307.64953 3.25845
20% -0.12909 0.00001 -0.12911 -0.12907 -15561.81367 3.20434
30% -0.17779 0.00001 -0.17781 -0.17777 -17970.09060 3.33115
40% -0.34351 0.00001 -0.34353 -0.34350 -44047.10417 3.79832
50% -0.31303 0.00001 -0.31305 -0.31301 -43588.46377 3.69159
60% -0.26768 0.00001 -0.26770 -0.26766 -30469.84575 3.54289
70% -0.15388 0.00001 -0.15390 -0.15386 -15702.19392 3.19973
80% -0.06320 0.00001 -0.06322 -0.06317  -6356.86523 2.92693
90%  0.01074 0.00001  0.01071  0.01077 852.32287 2.70584
95%  0.04566 0.00002  0.04562  0.04570 2800.99069 2.60499
98%  0.07756 0.00001 0.07755  0.07758 9333.03635 2.51540
99%  0.08442 0.00001  0.08439  0.08444 7622.72586 2.49575

Table 1.24: Shows f inference results over the testing and training set for the
model for the MSCI Singapore against its front month future, n = 831.
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Figure 1.24: Box-plot of the return distribution of MASCI Singapore, its front
month future, OLS Mean-Variance hedged portfolio, and the conditional quan-

tile regression hedged portfolios.
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Figure 1.25: GARCH-DCC Results for NFTY Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.62070 0.00001 -0.62074 -0.62067 -46658.54633 4.04904
2% -0.59306 0.00002 -0.59310 -0.59301 -30930.04945 3.98576
5% -0.58466 0.00004 -0.58476 -0.58457 -14392.75660 3.98338
10% -0.57036 0.00002 -0.57042 -0.57031 -25304.23040 3.97818
20% -0.55035 0.00002 -0.55039 -0.55031 -30053.79227 3.98831
30% -0.54127 0.00001 -0.54129 -0.54125 -55584.39485 4.02559
40% -0.54735 0.00001 -0.54737 -0.54733 -59919.15944 4.10256
50% -0.56892 0.00001 -0.56895 -0.56889 -47043.22400 4.22191
60% -0.54225 0.00001 -0.54228 -0.54223 -45622.93413 4.21058
70% -0.52599 0.00001 -0.52601 -0.52596 -48342.66315 4.22611
80% -0.51590 0.00002 -0.51594 -0.51586 -31946.46515 4.25781
90% -0.49422 0.00002 -0.49426 -0.49417 -24656.24020 4.25554
95% -0.49409 0.00002 -0.49415 -0.49404 -22269.39682 4.28464
98% -0.48785 0.00001 -0.48787 -0.48783 -53216.40729 4.28425
99% -0.48665 0.00001 -0.48666 -0.48663 -74424.15025 4.28664

B Gp 5% 95% t statistic  Total Loss

1% -0.62070 0.00005 -0.62082 -0.62059 -12508.33226 4.79917
2% -0.59306 0.00003 -0.59312 -0.59299 -22106.75691 4.71877
5% -0.58466 0.00005 -0.58478 -0.58454 -11263.66579 4.69999
10% -0.57036 0.00002 -0.57041 -0.57031 -27288.20587 4.66760
20% -0.55035 0.00002 -0.55039 -0.55031 -33653.93982 4.62808
30% -0.54127 0.00001 -0.54130 -0.54124 -42644.09876 4.62107
40% -0.54735 0.00001 -0.54738 -0.54732 -45474.91928 4.65979
50% -0.56892 0.00001 -0.56894 -0.56890 -61062.27262 4.74585
60% -0.54225 0.00001 -0.54228 -0.54223 -44360.48600 4.68493
70% -0.52599 0.00001 -0.52601 -0.52596 -53678.17858 4.65527
80% -0.51590 0.00001 -0.51593 -0.51587 -43264.24610 4.64426
90% -0.49422 0.00002 -0.49426 -0.49417 -26619.71266 4.59708
95% -0.49409 0.00005 -0.49420 -0.49399 -10704.19693 4.60654
98% -0.48785 0.00002 -0.48789 -0.48780 -23617.02199 4.59303
99% -0.48665 0.00004 -0.48674 -0.48655 -12291.71326 4.59126

Table 1.26: Shows 3 inference results over the testing and training set for the
model of the NIFTY 50 Index against its front month future, n = 799.
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Figure 1.26: Box-plot of the return distribution of NIFTY 50 index, its front
month future, OLS Mean-Variance hedged portfolio, and the conditional quan-

tile regression hedged portfolios.
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Figure 1.27: GARCH-DCC Results for NKK Index and Future correlation.
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92 CHAPTER 1. P-SPLINE QUANTILE REGRESSION HEDGE RATIO
38 o 5% 95% t statistic Total Loss
1% -0.17044 0.00002 -0.17049 -0.17040 -8472.63986 4.51483
2% -0.15077 0.00002 -0.15081 -0.15073 -8340.29428 4.43950
5% -0.09726 0.00004 -0.09735 -0.09716 -2363.36349 4.23504
10% -0.00902 0.00003 -0.00908 -0.00895 -333.49859 3.89761
20%  0.10705 0.00001  0.10702  0.10709 7214.81467 3.46016
30%  0.29871 0.00001 0.29869  0.29873 35589.31927 2.73016
40%  0.48246 0.00001  0.48245  0.48247 93498.13550 2.05112
50% 0.48791  0.00000 0.48790 0.48792 127068.78252 2.04001
60% 0.27680 0.00001 0.27678 0.27681 52027.38915 2.85270
70%  0.22603 0.00001  0.22600  0.22605 24995.22300 3.06576
80% 0.17377 0.00001 0.17375 0.17379 17624.52382 3.28742
90% 0.17497  0.00002 0.17493 0.17501 10303.65715 3.29714
95%  0.13649 0.00002 0.13643 0.13655 5507.94681 3.45942
98%  0.11692 0.00001 0.11690 0.11695 10522.53461 3.54300
99% 0.12495 0.00002 0.12491 0.12498 8042.21725 3.51213
I6; Gp 5% 95% t statistic ~Total Loss
1% -0.17044 0.00003 -0.17051 -0.17037 -5685.50308 3.69642
2% -0.15077 0.00002 -0.15081 -0.15073 -8986.08963 3.63567
5% -0.09726 0.00004 -0.09736 -0.09716 -2308.04724 3.47083
10% -0.00902 0.00002 -0.00907 -0.00896 -374.37206 3.19910
20%  0.10705 0.00001  0.10704 0.10707 12605.37360 2.85150
30%  0.29871 0.00001  0.29870  0.29873 49099.69142 2.27187
40% 0.48246  0.00000 0.48245 0.48247 103490.73894 1.73334
50%  0.48791 0.00000  0.48790  0.48792 139282.18967 1.72588
60%  0.27680 0.00001 0.27678  0.27681 45978.16502 2.37276
70% 0.22603  0.00001 0.22601 0.22604 43932.02142 2.54341
80% 0.17377 0.00001 0.17374  0.17379 16139.58210 2.72108
90%  0.17497 0.00001 0.17494  0.17499 15460.29736 2.73002
95%  0.13649 0.00002 0.13643  0.13655 5497.06774 2.85995
98% 0.11692 0.00001 0.11690 0.11695 10218.07314 2.92703
99% 0.12495 0.00001 0.12492 0.12498 9553.21597 2.90249

Table 1.28: Shows f3 inference results over the testing and training set for the
model of the NIKKEI 225 Index against its front month future, n = 793.
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Hedged portfolio return distribution with different weights for NKK
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Figure 1.28: Box-plot of the return distribution of NIKKEI 225 index, its front
month future, OLS Mean-Variance hedged portfolio, and the conditional quan-
tile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.29: GARCH-DCC Results for PSI Index and Future correlation.
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96 CHAPTER 1. P-SPLINE QUANTILE REGRESSION HEDGE RATIO

B o 5% 95% t statistic =~ Total Loss

1% -0.76104 0.00003 -0.76111 -0.76096 -24230.30881 7.58944
2% -0.70901 0.00002 -0.70907 -0.70896 -29350.34915 7.35493
5% -0.64551 0.00005 -0.64564 -0.64539 -12078.71612 7.06090
10% -0.60107 0.00004 -0.60115 -0.60098 -16525.23311 6.84206
20% -0.56993 0.00002 -0.56998 -0.56987 -22996.65475 6.65913
30% -0.56484 0.00002 -0.56487 -0.56480 -36543.65259 6.59037
40% -0.56104 0.00002 -0.56108 -0.56100 -31131.26633 6.52746
50% -0.54539 0.00001 -0.54542 -0.54537 -43375.48016 6.41451
60% -0.52301 0.00001 -0.52304 -0.52298 -35344.61807 6.27419
70% -0.51329 0.00002 -0.51333 -0.51324 -26082.19344 6.18822
80% -0.38348 0.00002 -0.38352 -0.38344 -22429.08745 5.61052
90% -0.37859 0.00002 -0.37864 -0.37853 -17132.10142 5.54979
95% -0.36479 0.00003 -0.36486 -0.36472 -12015.47150 5.47377
98% -0.29740 0.00001 -0.29743 -0.29737 -20986.07360 5.19080
99% -0.25357 0.00001 -0.25360 -0.25354 -20070.02793 5.01096

I6; Gp 5% 95% t statistic ~Total Loss

1% -0.76104 0.00002 -0.76110 -0.76098 -30459.01458 5.20142
2% -0.70901 0.00002 -0.70906 -0.70897 -35389.81052 5.04053
5% -0.64551 0.00004 -0.64560 -0.64542 -16186.67351 4.84156
10% -0.60107 0.00003 -0.60113 -0.60100 -20907.52486 4.69800
20% -0.56993 0.00001 -0.56995 -0.56990 -47214.53310 4.58690
30% -0.56484 0.00001 -0.56486 -0.56481 -55089.93891 4.55501
40% -0.56104 0.00001 -0.56106 -0.56102 -58061.52326 4.52711
50% -0.54539 0.00001 -0.54541 -0.54538 -67226.37526 4.46370
60% -0.52301 0.00001 -0.52303 -0.52299 -50583.47206 4.38040
70% -0.51329 0.00001 -0.51332 -0.51326 -41066.67961 4.33529
80% -0.38348 0.00001 -0.38350 -0.38345 -37249.52524 3.93341
90% -0.37859 0.00002 -0.37862 -0.37855 -23466.55771 3.90407
95% -0.36479 0.00003 -0.36486 -0.36472 -12689.23984 3.85593
98% -0.29740 0.00001 -0.29742 -0.29738 -31141.29477 3.65376
99% -0.25357 0.00001 -0.25360 -0.25354 -19907.81497 3.52468

Table 1.30: Shows 3 inference results over the testing and training set for the
model of the Portuguese Stock Index against its front month future, n = 827.
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Hedged portfolio return distribution with different weights for PSI
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Figure 1.30: Box-plot of the return distribution of Portuguese Stock index, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.31: GARCH-DCC Results for RTS Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -1.60642 0.00006 -1.60656 -1.60629 -28379.34269 16.68986
2% -1.52434 0.00005 -1.52446 -1.52422 -29159.07301 16.14636
5% -1.46895 0.00011 -1.46921 -1.46868 -12899.08081 15.76726
10% -1.52410 0.00008 -1.52429 -1.52390 -18253.35747 16.09963
20% -1.41087 0.00004 -1.41098 -1.41077 -31489.72662 15.30659
30% -1.30683 0.00004 -1.30693 -1.30673 -30966.28927 14.57800
40% -1.27467 0.00004 -1.27477 -1.27456 -28582.24862 14.31838
50% -1.25960 0.00004 -1.25970 -1.25950 -29071.89727 14.17026
60% -1.17224 0.00004 -1.17232 -1.17215 -32439.70615 13.55868
70% -1.16296 0.00004 -1.16304 -1.16287 -31238.16468 13.45042
80% -1.14853 0.00005 -1.14865 -1.14842 -22552.66765 13.30979
90% -1.11995 0.00006 -1.12008 -1.11982 -19575.61574 13.07976
95% -1.02573 0.00012 -1.02600 -1.02547  -8875.63891 12.45891
98% -0.91197 0.00005 -0.91210 -0.91185 -17026.05444 11.72545
99% -0.81428 0.00004 -0.81437 -0.81419 -21301.97644 11.10527

B b3 5% 95% t statistic Total Loss

1% -1.60642 0.00010 -1.60667 -1.60618 -15384.84495 10.96509
2% -1.52434 0.00006 -1.52447 -1.52421 -27537.40358 10.62098
5% -1.46895 0.00010 -1.46918 -1.46871 -14457.95064 10.39535
10% -1.52410 0.00005 -1.52422 -1.52398 -29045.00351 10.64342
20% -1.41087 0.00003 -1.41094 -1.41081 -49593.45019 10.19173
30% -1.30683 0.00003 -1.30689 -1.30677 -47621.71439 9.77676
40% -1.27467 0.00002 -1.27472 -1.27461 -54138.88790 9.66674
50% -1.25960 0.00003 -1.25966 -1.25954 -48625.18166 9.62904
60% -1.17224 0.00003 -1.17230 -1.17217 -44548.28408 9.28160
70% -1.16296 0.00002 -1.16301 -1.16290 -49451.18267 9.26731
80% -1.14853 0.00002 -1.14859 -1.14848 -48466.34519 9.23073
90% -1.11995 0.00004 -1.12004 -1.11986 -29957.94216 9.13280
95% -1.02573 0.00007 -1.02591 -1.02556 -13993.26689 8.73875
98% -0.91197 0.00003 -0.91205 -0.91189 -27791.75142 8.25482
99% -0.81428 0.00003 -0.81436 -0.81420 -23626.15768 7.83575

Table 1.32: Shows B inference results over the testing and training set for the
model of the Russian Trading System Index against its front month future,
n = 782.
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Hedged portfolio return distribution with different weights for RTS
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Figure 1.32: Box-plot of the return distribution of Russian Trading System
index, its front month future, OLS Mean-Variance hedged portfolio, and the
conditional quantile regression hedged portfolios.
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Contracts conditional correlation
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Figure 1.33: GARCH-DCC Results for SA Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -0.15844 0.00002 -0.15848 -0.15840  -9277.87030 3.69110
2% -0.12246  0.00001 -0.12249 -0.12243  -9762.82958 3.57667
5% -0.06752 0.00003 -0.06759 -0.06746  -2530.80741 3.40382
10% -0.06040 0.00001 -0.06043 -0.06036  -4177.53954 3.38532
20% -0.06256 0.00002 -0.06260 -0.06252  -3731.30645 3.40050
30% -0.07732 0.00001 -0.07735 -0.07729  -6897.31244 3.45605
40% -0.12229 0.00001 -0.12231 -0.12227 -14266.19541 3.60962
50% -0.19994 0.00001 -0.19997 -0.19992 -18997.30028 3.87062
60% -0.11215 0.00001 -0.11217 -0.11213 -13183.02733 3.59426
70% -0.05482 0.00001 -0.05484 -0.05480  -6263.20261 3.41703
80%  0.00050 0.00001  0.00048  0.00052 63.47577 3.24614
90%  0.05696 0.00001  0.05693  0.05699 4165.30089 3.07085
95%  0.08076 0.00002 0.08071  0.08080 4044.15477 2.99737
98%  0.09881 0.00001  0.09879  0.09883  12479.74020 2.94113
99%  0.11317 0.00001  0.11315 0.11319  12795.06053 2.89556

B b3 5% 95% t statistic Total Loss

1% -0.15844 0.00003 -0.15850 -0.15838  -6140.54601 4.03550
2% -0.12246 0.00002 -0.12250 -0.12242  -6617.73423 3.90701
5% -0.06752 0.00003 -0.06760 -0.06744  -1967.57883 3.71549
10% -0.06040 0.00002 -0.06044 -0.06036  -3438.24455 3.69611
20% -0.06256 0.00002 -0.06259 -0.06252  -4151.15917 3.71511
30% -0.07732 0.00001 -0.07734 -0.07730 -10507.82970 3.77876
40% -0.12229 0.00001 -0.12231 -0.12228 -16187.66195 3.95185
50% -0.19994 0.00001 -0.19997 -0.19992 -19212.08219 4.24823
60% -0.11215 0.00001 -0.11218 -0.11213 -10250.96313 3.93891
70% -0.05482 0.00001 -0.05483 -0.05480  -7899.99765 3.74431
80%  0.00050 0.00001  0.00048  0.00053 43.71964 3.55974
90%  0.05696 0.00002 0.05692  0.05700 3626.64996 3.37494
95%  0.08076 0.00003 0.08068 0.08083 2473.79486 3.29955
98%  0.09881 0.00002 0.09877  0.09885 5539.47870 3.24209
99%  0.11317 0.00002 0.11312 0.11322 5324.01029 3.19539

Table 1.34: Shows B inference results over the testing and training set for the
model of the Johannesburg Stock Exchange Index against its front month future,
n = 782.
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Figure 1.34: Box-plot of the return distribution of Johannesburg Stock Exchange
index, its front month future, OLS Mean-Variance hedged portfolio, and the
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conditional quantile regression hedged portfolios.
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Figure 1.35: GARCH-DCC Results for SMI Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.96283 0.00003 -0.96289 -0.96277 -38309.29701 5.74267
2% -0.82860 0.00002 -0.82865 -0.82855 -36442.48932 5.34232
5% -0.47240 0.00003 -0.47248 -0.47232 -13550.82701 4.28255
10% -0.45761 0.00003 -0.45768 -0.45755 -16331.01899 4.24133
20% -0.56293 0.00002 -0.56297 -0.56290 -37447.71799 4.56055
30% -0.49635 0.00001 -0.49638 -0.49633 -39969.68934 4.36736
40% -0.61678 0.00001 -0.61680 -0.61675 -53451.63685 4.73288
50% -0.62870 0.00001 -0.62872 -0.62867 -53454.07083 4.77438
60% -0.53188 0.00001 -0.53190 -0.53185 -52608.41528 4.49008
70% -0.58473 0.00001 -0.58476 -0.58471 -62543.79746 4.65420
80% -0.99898 0.00002 -0.99902 -0.99894 -54933.85635 5.90622
90% -0.98171 0.00003 -0.98177 -0.98165 -36353.48353 5.86113
95% -0.96228 0.00005 -0.96239 -0.96217 -20458.20011 5.80595
98% -0.86120 0.00002 -0.86125 -0.86115 -39627.40978 5.50289
99% -0.80128 0.00002 -0.80133 -0.80123 -37254.48564 5.32289

B Gp 5% 95% t statistic  Total Loss

1% -0.96283 0.00004 -0.96292 -0.96275 -26543.43151 5.25288
2% -0.82860 0.00003 -0.82866 -0.82854 -31999.61005 4.88446
5% -0.47240 0.00005 -0.47251 -0.47229  -9889.45902 3.91059
10% -0.45761 0.00002 -0.45766 -0.45757 -24050.02571 3.88272
20% -0.56293 0.00001 -0.56296 -0.56290 -41353.32896 4.20038
30% -0.49635 0.00001 -0.49638 -0.49633 -53808.71500 4.04106
40% -0.61678 0.00001 -0.61680 -0.61676 -70543.62409 4.40659
50% -0.62870 0.00001 -0.62872 -0.62867 -61761.37274 4.46858
60% -0.53188 0.00001 -0.53190 -0.53185 -56518.50524 4.22026
70% -0.58473 0.00001 -0.58476 -0.58471 -60886.60825 4.39877
80% -0.99898 0.00002 -0.99903 -0.99893 -49219.08277 5.62975
90% -0.98171 0.00003 -0.98178 -0.98164 -32909.00052 5.61413
95% -0.96228 0.00004 -0.96236 -0.96220 -27242.61967 9.57433
98% -0.86120 0.00001 -0.86124 -0.86117 -57760.02768 5.28695
99% -0.80128 0.00001 -0.80131 -0.80124 -53884.77691 5.11405

Table 1.36: Shows f inference results over the testing and training set for the
model of the Swiss Market Index against its front month future, n = 814.
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Hedged portfolio return distribution with different weights for SMI
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Figure 1.36: Box-plot of the return distribution of Swiss Market index, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional
quantile regression hedged portfolios.
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Contracts conditional correlation
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|
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=
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i
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Time

Parameters

Estimate Std. Error
0.000569 0.000214
g™ 0073686 0.036482
o™ 6e-06 1e-06

o™ 0200028 0.035614
B™ 0705482 0.046844
p 0.000628  0.000224
g™ -0.067315 0.044814
o 7e-06 1e-06

-
=4

o - 0.255701  0.039007

Fu

0.655077 0.044127

ot 0181363 0.061236

o
=1

p 0382796 0.106314

tvalue Pr{=|t])
265565 0.007916
-2.019825 0.043402
5.023991 1e-06
5616552 0
15.060225 0
2809407 0.004963
-1.50209 0.133074
7.294025 0
6.555267 0
14 845279 0
296171 0.003059
3600617 0.000317

Figure 1.37: GARCH-DCC Results for SP500 Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.42689 0.00002 -0.42693 -0.42686 -26112.10246 3.20930
2% -0.42194 0.00001 -0.42197 -0.42190 -28848.14694 3.20188
5% -0.38685 0.00003 -0.38692 -0.38678 -13281.70444 3.13434
10% -0.37334 0.00002 -0.37339 -0.37330 -19747.69077 3.12157
20% -0.32121 0.00001 -0.32125 -0.32118 -22098.82594 3.03801
30% -0.31307 0.00001 -0.31309 -0.31305 -39158.14194 3.05279
40% -0.30381 0.00001 -0.30383 -0.30380 -50372.15995 3.06455
50% -0.28804 0.00001 -0.28805 -0.28802 -47638.76601 3.06057
60% -0.27523 0.00001 -0.27525 -0.27521 -33054.30820 3.06291
70% -0.21994 0.00001 -0.21996 -0.21992 -25232.08250 2.96347
80% -0.10278 0.00001 -0.10280 -0.10277 -12278.72877 2.71266
90% -0.08500 0.00002 -0.08504 -0.08497 -5653.53527 2.69743
95% -0.07006 0.00002 -0.07010 -0.07002 -4124.63205 2.67479
98% -0.05168 0.00001 -0.05170 -0.05166 -6135.54616 2.63805
99% -0.03645 0.00001 -0.03647 -0.03643 -4570.98543 2.60350
I6; Gp 5% 95% t statistic =~ Total Loss

1% -0.42689 0.00004 -0.42700 -0.42679 -9761.59417 4.22947
2% -0.42194 0.00003 -0.42202 -0.42186 -12206.20182 4.21889
5% -0.38685 0.00007 -0.38701 -0.38669 -5733.11648 4.12736
10% -0.37334 0.00004 -0.37344 -0.37325 -9181.19005 4.10703
20% -0.32121 0.00002 -0.32125 -0.32118 -20861.23135 3.99057
30% -0.31307 0.00001 -0.31309 -0.31306 -46176.94046 4.00356
40% -0.30381 0.00001 -0.30382 -0.30380 -57528.59031 4.01271
50% -0.28804 0.00001 -0.28805 -0.28802 -42611.05961 4.00144
60% -0.27523 0.00001 -0.27525 -0.27522 -38433.08497 3.99844
70% -0.21994 0.00001 -0.21996 -0.21992 -23899.17389 3.86253
80% -0.10278 0.00001 -0.10281 -0.10276 -9798.02923 3.52975
90% -0.08500 0.00001 -0.08504 -0.08497 -5670.22262 3.50473
95% -0.07006 0.00003 -0.07014 -0.06998 -2065.24497 3.47266
98% -0.05168 0.00002 -0.05173 -0.05163 -2267.82137 3.42325
99% -0.03645 0.00003 -0.03653 -0.03637 -1104.11523 3.37772

Table 1.38: Shows f3 inference results over the testing and training set for the
model of the S&P500 against its front month future, n = 818.
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Hedged portfolio return distribution with different weights for SP500
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Figure 1.38: Box-plot of the return distribution of S&P 500, its front month
future, OLS Mean-Variance hedged portfolio, and the conditional quantile re-
gression hedged portfolios.
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Contracts conditional correlation
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Figure 1.39: GARCH-DCC Results for TSX Index and Future correlation.
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8 o 5% 95% t statistic  Total Loss

1% -0.16677 0.00001 -0.16680 -0.16675 -15722.25176 2.59890
2% -0.16187 0.00001 -0.16189 -0.16184 -16622.06592 2.58957
5% -0.15153 0.00002 -0.15159 -0.15148  -6226.22217 2.57134
10% -0.12798 0.00002 -0.12802 -0.12794  -8105.22372 2.52654
20% -0.12500 0.00001 -0.12502 -0.12498 -13442.03265 2.53563
30% -0.10044 0.00001 -0.10047 -0.10042 -10818.35785 2.49561
40% -0.09362 0.00001 -0.09364 -0.09361 -17147.43782 2.49548
50% -0.08796 0.00000 -0.08797 -0.08794 -17947.39288 2.49780
60% -0.07437 0.00000 -0.07438 -0.07436 -15390.84303 2.48167
70% -0.06317 0.00001 -0.06319 -0.06316  -9451.42630 2.47071
80% -0.07705 0.00001 -0.07706 -0.07703 -12559.91447 2.51809
90% -0.06417 0.00001 -0.06420 -0.06414  -4948.53986 2.50290
95% -0.02229 0.00002 -0.02233 -0.02225  -1237.67634 241171
98%  0.05574 0.00001  0.05572  0.05575 7562.77815 2.23226
99%  0.07979 0.00001  0.07977 0.07981  10588.93081 2.17718

B b3 5% 95% t statistic Total Loss

1% -0.16677 0.00004 -0.16685 -0.16669  -4743.73131 2.81606
2% -0.16187 0.00002 -0.16191 -0.16182  -8269.89014 2.80434
5% -0.15153 0.00004 -0.15162 -0.15144  -3912.85978 2.77967
10% -0.12798 0.00002 -0.12802 -0.12794  -7625.62590 2.72347
20% -0.12500 0.00001 -0.12502 -0.12498 -16284.61840 2.71620
30% -0.10044 0.00001 -0.10046 -0.10043 -18026.86141 2.65755
40% -0.09362 0.00000 -0.09364 -0.09361 -19720.22309 2.64115
50% -0.08796 0.00000 -0.08796 -0.08795 -23403.12949 2.62751
60% -0.07437 0.00000 -0.07438 -0.07436 -16683.14842 2.59521
70% -0.06317 0.00001 -0.06319 -0.06316 -11920.31484 2.56856
80% -0.07705 0.00001 -0.07706 -0.07704 -14407.28086 2.60124
90% -0.06417 0.00001 -0.06419 -0.06415  -7324.79929 2.57062
95% -0.02229 0.00003 -0.02236 -0.02223 -817.08156 247147
98%  0.05574 0.00001  0.05571  0.05577 4581.50388 2.28734
99%  0.07979 0.00002 0.07975  0.07983 4343.60153 2.23147

Table 1.40: Shows B inference results over the testing and training set for the
model of the S&P Toronto Stock Exchange Index against its front month future,
n = 812.
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Hedged portfolio return distribution with different weights for TSX
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Figure 1.40: Box-plot of the return distribution of S&P Toronto Stock Exchange
Index, its front month future, OLS Mean-Variance hedged portfolio, and the
conditional quantile regression hedged portfolios.
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Figure 1.41: GARCH-DCC Results for US2000 Index and Future correlation.
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38 o 5% 95% t statistic Total Loss

1% -0.42461 0.00002 -0.42465 -0.42457 -24530.24118 4.69412
2% -0.39586 0.00002 -0.39590 -0.39581 -20826.55046 4.60152
5% -0.37297 0.00004 -0.37305 -0.37288 -10335.42295 4.53263
10% -0.34739 0.00002 -0.34743 -0.34734 -18773.59076 4.45895
20% -0.29940 0.00002 -0.29944 -0.29936 -16147.71958 4.32102
30% -0.24651 0.00001 -0.24653 -0.24648 -23438.09919 4.16520
40% -0.08304 0.00001 -0.08306 -0.08302 -8573.84447 3.63681
50% -0.16136 0.00001 -0.16138 -0.16133 -14915.17351 3.91816
60% -0.20158 0.00001 -0.20160 -0.20156 -20241.05096 4.07309
70% -0.20372 0.00001 -0.20374 -0.20369 -21331.35760 4.09969
80% -0.19860 0.00001 -0.19863 -0.19858 -17058.32405 4.10157
90% -0.17649 0.00002 -0.17653 -0.17646 -10659.57443 4.04489
95% -0.16782 0.00002 -0.16788 -0.16776 -6793.43085 4.02451
98% -0.14927 0.00001 -0.14929 -0.14924 -14124.55608 3.96620
99% -0.12679 0.00001 -0.12681 -0.12677 -14556.05230 3.89057
I6; Gp 5% 95% t statistic =~ Total Loss

1% -0.42461 0.00003 -0.42468 -0.42453 -13582.56729 5.71851
2% -0.39586 0.00004 -0.39594 -0.39577 -11159.76035 5.60277
5% -0.37297 0.00006 -0.37311 -0.37282 -5962.35346 5.51260
10% -0.34739 0.00004 -0.34749 -0.34728 -7724.41381 5.41317
20% -0.29940 0.00002 -0.29944 -0.29936 -17257.59527 5.22674
30% -0.24651 0.00001 -0.24654 -0.24648 -19120.00594 5.02069
40% -0.08304 0.00001 -0.08306 -0.08302 -11020.90339 4.37513
50% -0.16136 0.00001 -0.16138 -0.16134 -16757.50762 4.69442
60% -0.20158 0.00001 -0.20160 -0.20156 -25466.61430 4.86227
70% -0.20372 0.00001 -0.20374 -0.20369 -19208.52224 4.87780
80% -0.19860 0.00001 -0.19864 -0.19857 -14120.51158 4.86424
90% -0.17649 0.00002 -0.17654 -0.17645 -8826.68970 4.78221
95% -0.16782 0.00005 -0.16794 -0.16771 -3435.08823 4.75069
98% -0.14927 0.00002 -0.14932 -0.14921 -6284.94773 4.67797
99% -0.12679 0.00004 -0.12688 -0.12670 -3332.14352 4.58811

Table 1.42: Shows f inference results over the testing and training set for the
model of the Russell 2000 Index against its front month future, n = 819.
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Hedged portfolio return distribution with different weights for US2000
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Figure 1.42: Box-plot of the return distribution of Russell 2000 Index, its front
month future, OLS Mean-Variance hedged portfolio, and the conditional quan-
tile regression hedged portfolios.
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Figure 1.43: GARCH-DCC Results for WIG20 Index and Future correlation.
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B o 5% 95% t statistic =~ Total Loss

1% -0.59670 0.00002 -0.59675 -0.59666 -31524.08475 5.22501
2% -0.58465 0.00002 -0.58469 -0.58461 -35379.94226 5.18386
5% -0.53962 0.00004 -0.53971 -0.53953 -13427.82126 5.03169
10% -0.50993 0.00003 -0.50999 -0.50987 -20049.60423 4.92686
20% -0.47771 0.00002 -0.47775 -0.47766 -23130.73764 4.80696
30% -0.45200 0.00001 -0.45202 -0.45197 -37465.16573 4.70914
40% -0.39320 0.00001 -0.39322 -0.39317 -34183.87496 4.50636
50% -0.33075 0.00001 -0.33077 -0.33073 -34937.40056 4.29379
60% -0.36213 0.00001 -0.36215 -0.36210 -34384.69074 4.37947
70% -0.35568 0.00001 -0.35571 -0.35565 -28676.88235 4.34523
80% -0.33263 0.00001 -0.33266 -0.33260 -24288.80186 4.25910
90% -0.30037 0.00002 -0.30043 -0.30031 -12227.81615 4.14490
95% -0.27480 0.00002 -0.27485 -0.27474 -11238.87037 4.05887
98% -0.23973 0.00001 -0.23975 -0.23971 -27056.58544 3.94657
99% -0.22848 0.00001 -0.22850 -0.22846 -23396.17651 3.91059

B Gp 5% 95% t statistic  Total Loss

1% -0.59670 0.00004 -0.59679 -0.59662 -16759.54838 6.27765
2% -0.58465 0.00003 -0.58471 -0.58459 -23021.49287 6.22690
5% -0.53962 0.00005 -0.53973 -0.53951 -11418.05668 6.03999
10% -0.50993 0.00003 -0.50999 -0.50987 -18949.91275 5.90805
20% -0.47771 0.00002 -0.47775 -0.47766 -26823.02491 5.75227
30% -0.45200 0.00002 -0.45203 -0.45196 -29828.83054 5.62315
40% -0.39320 0.00001 -0.39323 -0.39317 -31486.09625 5.36719
50% -0.33075 0.00001 -0.33077 -0.33072 -28075.53499 5.09983
60% -0.36213 0.00002 -0.36217 -0.36209 -22288.35468 5.19325
70% -0.35568 0.00001 -0.35571 -0.35565 -25458.96297 5.14174
80% -0.33263 0.00002 -0.33267 -0.33260 -21097.45248 5.02775
90% -0.30037 0.00002 -0.30042 -0.30032 -12859.68095 4.88007
95% -0.27480 0.00004 -0.27488 -0.27471  -7639.50641 4.77137
98% -0.23973 0.00002 -0.23977 -0.23969 -13921.70947 4.63276
99% -0.22848 0.00002 -0.22852 -0.22844 -12683.75875 4.58828

Table 1.44: Shows f inference results over the testing and training set for the
model of the Warsaw Stock Index against its front month future, n = 810.
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Hedged portfolio return distribution with different weights for WIG20
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Figure 1.44: Box-plot of the return distribution of Warsaw Stock Index, its
front month future, OLS Mean-Variance hedged portfolio, and the conditional

quantile regression hedged portfolios.
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Chapter 2

P-Spline FPCR Portfolio
Selection

In this chapter I investigate the implementation of an index tracking portfolio
strategy in an high-dimensional setting, by mean of Functional Principal Com-
ponent Regression (FPCR) of the smoothed stock price time series, attempting
to overcome some flaws affecting some state of the art techniques for endogenous
index tracking portfolio selection.

2.1 Introduction

An asset allocation is passive if it aims to reproduce the risk-return profile of
some specified benchmark, while in the past these strategies were advisable nor
desirable, there is evidence that they have gained increasing popularity both to
practitioners and customers. One of the most famous passive strategy families
in the scientific literature is indexing, trying to replicate the results of a specific
index by investing in its constituents.

The easiest way to track an index is to hold all its assets in the same relative
quantities, this is the so-called full replication approach, which has several
drawbacks due to the complexity of the index composition, that sometimes in-
cludes thousands of stocks, and this implies the need to frequent revision the
portfolio weights thus incurring in high transaction costs. Another relevant ap-
proach is to synthesize the index through equity derivatives (such as ETF) and
future contracts, this is preferable since one usually buys only one contract and
is able to fully replicate the index behaviour for short period of time, neverthe-
less these contracts are negotiated on a range of maturities (CME, for example,
offers quarterly contracts for five consecutive quarters) and rolling contracts to
dynamically track the underlying index is expensive and risky.

Another approach, relies on the selection of a smaller subset of index’s com-
ponents to replicate its behaviour, this is usually a less effective strategy com-
pared either to the full replication or synthetic replication approach, but allows
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to overcome the formers alternatives flaws, through the application of more or
less sophisticated statistical methods. In this chapter I solve the stock selection
problem to achieve an index tracking portfolio with the application of Principal
Component Regression over the P-spline smoothed price series of all the stocks
included in the S&P500 index during the observation window, and provide a
comparison with the solution provided by a recent implementation of the coin-
tegration method.

Next section gives a review of more or less recent methodological proposal for
the solution of the stated problem, with special consideration to the branches of
literature applying cointegration analysis and unsupervised learning techniques.
Section 3 describes my proposal and provides descriptions of the solution to tech-
nical issues related to its implementation. Section 4 is about data and results,
while Section 5 contains conclusion, considerations and further development.

2.2 Literature Review

2.2.1 Traditional econometrics approaches

Traditionally, quantitative methods for portfolio selection rely on the economic
theory of investor’s optimal portfolio choice, pionereed by Markowitz[106], Merton[107],
Famal[52] and Samuelson [124], that is based on a mathematical programming
approach where, after some assumptions on the market structure, one models
the optimizing behaviour of the agent according to some specified family of util-
ity functions. From the merely statistical point of view these approaches led to
two branches of econometric literature on the subject: plug-in estimation and
decison theory.

Under the plug-in estimation approach, the analyst draws inference about de-
cision maker’s optimal portfolio weights to make descriptive statements, in the
decision theory approach the analyst takes the role of the investor and draws
inferences about the return distribution to choose portoflio weights that are op-
timal with respect to these inferences.

Plug-in Estimation

Much of the portfolio choice literature falls under the plug-in estimation (or
calibration) label, meaning that the analyst has a numerical or analytical so-
lution to the investor’s problem and plugs in the estimated parameters of the
data generating process, if the analyst treats the parameter as estimates, the
portfolio weights are estimated, otherwise (if the parameter are assumed to be
true) the portfolio weights are calibrated.

Another distinction that can be stated in this branch is related to the time
horizon of the problem, if one considers the single-period choice problem, the
investor’s solution maps the preference parameters ¢, the state vector z; and the
parameter of the data generating process 6 into the optimal portfolio weights



2.2. LITERATURE REVIEW 129

Wy
w: = w(¢a 2ty 9)7

where ¢ is specified ex-ante, z; is observed and 6 is estimated from the data
Yr = {yf}t _o» DPlugging 6 in the wy expression one obtains W} = w(e, 2, )
Assuming # consistency with asymptotic distribution vT'(6 — 6) ~ N0, Vs,
the asymptotic distribution of the estimator w; can be computed using delta
method

VT (@ wf) ~ N[0, w3 (-) Vows ().

For example in the mean-variance case, assuming i.i.d excess returns with con-
stant risk premia p and covariance matrix ¥ the optimal portfolio weights are

= (1/7)X~'u, where v is the prespecified risk aversion coefficient for CRRA
utility. Thus, given excess return data {r;,1}._;, the moments can be estimated
from the sample analog

T
1
:—ZTt+1 andZ—T N — Z;Tt+1 ’I“t+1 ,U,)/

t=1

and the optimal plug-in portfolio weights estimates are w; = (1/ 'y)ZA]*l it and are
unbiased due to normality and standard independence assumptions. Without
normality, or without standard covariance matrix normalization, the estimator
is generally biased but still consistent.

There is a long literature branch documenting the shortcomings of plug-in esti-
mates, especially in the context of large-scale mean-variance problems [81, 82,
109, 13, 14, 32]. The general conclusion is that plug-in estimates are extremely
imprecise and that the asymptotic approximations are unreliable. Moreover the
precision of plug-in estimation deteriorates with the number of assets held in
the portfolio. This motivated a huge branch of literature to suggest different,
or complementary, methods for improving plug-in estimation for practical ap-
plications.

Shrinkage estimation ”shrinks” the sample means toward a common value, a
convex combination of the sample means, that dominates those of the random
variables in terms of joint mean-squared error,

s = bopro + (1 — 6)[i,

thereby reducing the extreme estimation errors that occur in the cross section
of individual means and resulting in a lower overall variance of the estimators.
This technique, that has been applied to portfolio choice problems by [83, 86]
among the others, leads to estimates that dominate, in terms of expected utility,
those provided by the plug-in methods constructed with the usual sample means.
Shrinking estimation has been also applied to covariance matrices [98, 99, 100],

s=05+(1-0)%

showing reduced sampling error, that guarantees a positive definite estimate
also when the sample covariance matrix is itself singular (N > T).
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rit = o+ Bife + €in
S = BY;B + X,

General K-factor model.

Another approach to reduce the statistical error in plug-in estimates is to impose
a factor structure for the covariation among assets. Sharpe(1963)[131] has been
the first to propose the use of a single-factor marker model covariance matrix in
a mean-variance problem, reducing the dimensionality of the portfolio problem
to 3N + 1 terms, with the drawback that one single factor may not be able to
capture all the covariation among assets, leading to potentially biased estimates
of the return covariance matrix.

This problem can be faced with an increasing number of factors, that translate
to an increased number in the degrees of freedom. To avoid this in the literature
there is an established preference towards common factors model. Typically one
can approach this problem in three ways. First, one can choose factors based on
economic theory, as those proposed by Sharpe(1963) (aggregate wealth portfo-
lio) or aggregate investment opportunity set as in Merton(1973)[108](ICAPM).
Second, the choice can be based on empirical evidence, thus including macroe-
conomic factors[29], industry factors, firm characteristic-based factors[53] and
their combinations. Third, the factors can be obtained from returns using sta-
tistical procedures as factor analysis or principal component analysis [36].

Decision Theory

According to the second traditional econometric approach the analyst takes the
role of the investor and chooses portfolio weights optimal with regards to the
subjective belief about the true return distribution. Due to statistical uncer-
tainity about parameters or the parametrization of the data generating process,
the subjective return distribution may be different from the results of plug-in
approach estimates leading to different optimal portfolio weights. I consider the
expected utility maximization problem stated as:

Wy

/ w(wlrees + ROp(rea|O)r .

In the previous exposed approach it was implicitly assumed that the problem was
well posed, meaning that all the information required to solve it were available
to the decision maker. If one supposes instead that the investor doesn’t know
the distributions’ true value parameters the problem can’t be solved. In these
situations one can proceed in three different ways, first one may naively use
estimates of the parameters as in the plug-in approach, except that now is the
decision of the investor to be modeled. Alternatively one may consider worst
case outcome under some prespecified set of possible parameter values, as in a
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robust control framework. Finally one can eliminate the optimization problem
dependence from the unknown parameters, replacing the true distribution with
a subjective one, leading to irrelevant sub-optimality due to the unknowability
of the truth[143, 90, 19].

In this context the most popular way to specify a prior is to rely on theoretical
implications of an economic model [15, 35, 116].

2.2.2 Cointegration Analysis

Cointegration analysis is an econometric technique developed to analyze a par-
ticular class of vector unit root processes known as cointegrated processes. Such
specification had been already implicitly defined in ”error-correction” model
(such those advocated by Davidson, Hendry, Srba and Yeo(1978)[38]), but the
formal key concept hadn’t been developed in the field until the groundbreaking
work by Granger(1983)[65] and Engle and Granger(1987)[50]. The simplest ex-
ample of cointegrated vector process is the bivariate system:

Y1t = VY2t + Ui,
Y2,6 = Y2,4—1 + U2¢,

which matrix polynomial moving average operator has a root at unity, hence
is non-invertible, and this makes the finite-order VAR in differences a poor ap-
proximation due to the information about y; contained in the level of yo, the
introduction of the lagged levels along with the lagged differences brings a sta-
tionary representation of the process and leads to the definition of cointegrated
process as a vector of time series, which individually are nonstationary with a
unit root, but with a linear combination (the lagged levels) a'yy that is station-
ary for some (n x 1) vector a, this can be interpreted as a common stochastic
trend shared by two (or more) time series.

The first application of cointegration analysis to asset allocation relies on the
observations on common trend by Stock and Watson[137], which justified the
application of cointegration analysis for optimal portfolio selection by Alexan-
der [2], that achieved the identification of optimal trading pairs, gained en-
hanced weight stability and a better mining of the information contained in the
stock price series, allowing him to build levered and self-financing index track-
ing and long-short market neutral trading strategies. The same author used the
same technique to construct cointegration-based portfolio to search for potential
"alpha” sources concluding that cointegration analysis can improve traditional
models [4, 5, 43].

In this framework one assumes that stock price series are I(1), therefore being
Piy, Poy, ..., Pry asequence of I(1) time series if there are nonzero real numbers
b1, B2, ..., Br such that

B1Pit+ BaPoy + ...+ B Py

becomes an I(0) series, then one can say that the former series are cointegrated,
that they share a stationary long-run stable relationship with the property of
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mean reversion. One can thus assume that the index tracking model can be
stated in the following way:

K
log(I) = Bo + Z Bilog(P; +) + €4,

i=1

where I; is the index value at time t. Then, normalizing the cointegration
coefficients ; to sum up to one, the analyst determines the proportional weights
for each stock. If 8 catches the effect of the cointegration relationship, then the
residuals are supposed to be stationary. So, one defines the loss functions as
L(et) = P S 1’
Op

where p stands for the autocorrelation coefficients (and &, for its relative stan-
dard error) in the dynamic error correction relationship, formally

d

g =a+pg1+ ZyAst,l + g,
i=1

and d is the considered lag-order.

2.2.3 Unsupervised learning technique

One of the most common scientific application of unsupervised statistical learn-
ing techniques is portfolio selection, this is because this class of methods aim
to exploit data patterns to identify homogeneous groups (thought as latent cat-
egorical variable) in large datasets, a task that is very close to the portfolio
selection process and that inspired scholar from different fields and with differ-
ent background.

A traditional application is the factor covariance matrix decomposition for the
identification of additional "hidden” factors (or ”uncertainty structure”) to en-
hance the results of factor models [63, 120, 87, 97], this is usually done by
Principal Component Analysis (PCA) or Independent Component Analysis,
Alexander and Dumitru(2004)(3] applies the same technique to select a portfolio
tracking the first principal component of a group of stocks, thus capturing only
the common trend in stock returns.

Fabozzi and Focardi (2004)[56] discusses the problem of implementing optimal
investment strategy when full replication is not deemed suitable, discovering
correlation and cointegration structure of the index components through clus-
ter analysis, Pattarin et al. (2004)[117] combines PCA and evolutionary clus-
tering algorithm to discover mutual funds style by analysing the time series of
their return. Fang and Wang (2005)[54] applies the fuzzy logic to a bi-objective
programming model for the selection on index tracking portfolio problem while
Gaivoronsky et al.(2005)[60] produces an algorithm which determines whether
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or not to rebalance a given portfolio based on transaction costs with an ap-
plication to an index tracking portfolio for the Oslo stock exchange. Dose and
Cincotti(2005)[42] successfully combines stochastic-optimization technique with
time series cluster analysis in a two step procedure to achieve the construction of
an enhanced index tracking portfolio and Basalto et al.(2007)[11] groups stock
price time series according to their Hausdorff distance! to discover common
trend, Monfort et al. (2008)[110] develops an optimizing sampling algorithm to
construct portfolio that tracks an index ”as accurately as possible” and Jeuris-
sen and van den Berg(2008)[80] investigates an approach for tracking the Dutch
AEX index using hybrid genetic algorithm which chromosome represents a spe-
cific subset of the stocks from the index, the fitness function to the minimized
achievable tracking error for that subset and defines the tracking portfolio as
the highest fitness achievable. Caiado and Crato (2010)[23] proposes volatility
and spectral based methods for the cluster analysis of stock returns, looking to
the hierarchical structure tree, something similar is also done by other authors
[114, 77, 115].

Bruni et al.(2012)[20] proposes the application of large-size optimization model
for Enhanced Index Tracking that selects the optimal portfolio according to a
new stochastic dominance criterion and solves this problem with an efficient
constraint generation technique. Guastaroba and Speranza (2012)[66] intro-
duces mixed-integer linear programming formulations for the index tracking
portfolio selection problem and solves this through the Kernel Search heuris-
tic framework, a similar procedure is proposed in Chen and Kwon (2012)[28]
that develops a robust portfolio selection model for tracking a market index
using subset of its assets, here the model is an integer program that maximize
the similarity between selected assets and those of the target index. Ediris-
inghe (2013)[45] considers the index tracking portfolio selection problem for the
S&P500 index and solves it with a tracking optimization model thought as an
extension of the Mean-Variance model with constant adjustments to portfolio
weights, dependent on the index variance and assets’ return parameters. Wu et
al. (2014) [139] proposes the nonnegative-lasso method for portfolio selection
in high dimensional linear regression models, achieving smaller tracking error
when compared to more traditional approaches.

THausdorff distance measure the distance between two subsets of a matric space by con-
sidering the distance between their closest elements, formally:

dg (A, B) = max {supd(a7 B), supd(A, h)} ,
a€A beB

where d(a, B) = bingd(a, b) quantifies the distance from a point a € A to b € B.
€
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2.3 P-spline FPCR Portfolio selection

2.3.1 Principal Component Analysis and Principal Com-
ponent Regression

First proposed by Pearson (1901)[118] PCA is an essential tool for multivari-
ate data analysis and unsupervised dimension reduction. Its goal is to find the
sequence of orthogonal components that explains in the most efficient way the
overall variance of the observations. Its original version was (and still is) useful
in the context of longitudinal studies to address singularity in the covariance
matrix due to multicollinarity or high-dimensionality, Hotelling (1933) provided
the description of the procedures to attend for principal components computa-
tion [70].

The main advantage of PCA is its ability to find a lower-dimensional representa-
tion of the original variables while preserving their amount of information. For
centered data Xg on a (N x P) matrix PCA yields an orthogonal decomposition
for a given number of principal components, given by

B =& X, (2.1)

/

1XN I1xP NxP

where @4 is the first principal component and [ is the set of principal com-
IxXN

ponent scores with mean zero. One finds ®; by maximization of the variance

of ®; X' and then obtains the other principal components by substitution of
1xP NxP

the reduced data matrix Xy to the original one. Another (and easier) algorithm
to perform the PCA is through singular value decomposition (SVD), that for
the centered data matrix Xg can be expressed as
Xo= U D V| (2.2)
NxP NxK KxK KXP
where K < min(N, P), UU = V'V = I and D is a diagonal matrix with
dy > do > ... > di on the diagonal, UD containing the principal components
score.
Now, consider a multivariate linear regression model

y=Xp+e,

where y is a vector of centered responses, X is an (N x P) matrix of predictors,
0 is a vector of uknown regression coefficients and ¢ is a vector of i.i.d. random
errors, using the SVD of X in (2.2) the ordinary least squares coefficients can
be written as

Bors = (X'X)"' X'y,
= [(UDV'YUDV'] " (UDV")y,

= VD 'Uy = 3
k=1

/
VEUy,
y
dg

(2.2)
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Principal Component Regression (PCR) starts by using the principal component
of the predictor variables in place of predictors. Since the principal components
are uncorrelated by construction it solves the problem arising in the presence
of rank-deficient model matrix by deleting those components that have low
variances. Mathematically the model is defined as

y=®Bpcr te.

The principal component scores are calculated via OLS and given by

Bpor = (2'®) '@y
= (L)™' @'y,
where L? represents the diagonal matrix whose k" element is the k" largest

eigenvalue of X’X. This estimator has the advantage to ” shrink” the expansion
(2.2), thus

UR U,

dy;

Bpcr = y, K <min(N, P)

k=1

Functional PCA and Functional PCR

In my application PCA is applied to time series objects, which are defined in a
space defined by price and time, so can be considered as functional data.
Many authors realized that PCA runs many difficulties in the analysis of func-
tional data due to the ”curse of dimensionality”, FPcA overcomes this difficulty
and provides a more informative way of examining the covariance structure
than PCA. FPCA finds the set of orthogonal principal component functions
maximizing the variance along each component, namely

B, = / " 1 (2)E(x) d,

1

as before, successive principal component functions are obtained iteratively by
subtracting the first k principal component from f0(z) = f(x), that is

f¥(z) = £ (z) — Bror (),

and then computing the next principal components scores

T —

T1

which variance is maximized under the constraints

/ 8 (1) de = R ()] = 1.

/ Ort1(2)0j(z)de =0for j =1,..., k.
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The Functional principal component regression (FPCR) describes the relation-
ship between the functional predictors and responses, where the response vari-
able can be scalar or function, and can be expressed as follows

K
fily) = @)+ Birdn() +en(z), t=1,2,...,n, (2.3)
k=1

where u(x) = E[f(z)] is the mean function and f(x) is a vector of n realizations of
a stochastic process, ¢ (z) is the k' orthonormal eigenfunction of Var[f(x)] and
the By is the k' functional principal component scores, given by the projection
of f(x) — p(x) in the k' eigenfunction direction, €;(z) is the error function for
the t'* observation (including the excluded functional principal component) and
K is the number of retained functional principal components. In my framework
the scope of the analysis is to find the eigenvectors of the covariance matrix
that would describe the shape of the observed time series as in Cerioli et al.
(2005)[26]. The problem is that these eigenvectors may bee too noisy, meaning
that in high dimension the ”space” between points stretches making the true
covariance matrix look essentially uniform, thus very sensitive to noise. To
overcome the computational difficulties of the integration in the the FPCA
expression, one can rely on three approaches:

e Discretization: one performs FPCA similarly to PCA, except that after
the decomposition one has to renormalize the eigenvectors and interpolate
them with a suitable smoother.

e Basis function expansion: one can express each function (time series) as
a linear combination of basis functions fi(z) ~ >, Bex¢r(x), and ap-
proximating each function with a finite number of basis functions.

e Numerical Approximation: one uses quadrature rules to approximate FPCA.

In this application I rely on the second approach, applying Penalized Spline
smoother to the stock price time series before performing PCA.

2.3.2 P-spline times series filtering

The main idea of smoothing (filtering) is to decompose the times series y; in
two components, one identifiable as a long phase variation (or trend) g;, the
other as residuals or unexplained short term variation ;, applying a suitable
smoother (filter) to extract g; and &;. In the approach applied in this chapter
let B(t) denote a rich spline basis with support over the observed time points
t. A simple possible choice is to use the truncated polynomials in the form

Bt)=(Lt,....t, (t—m)%, ..., (t—7p)L), (2.4)

where ¢ is the degree of the highest polynomial and (¢t — 7;); =t for ¢ > 0
and (t — 7;)4+ = 0 otherwise and the knots are equidistantly chosen to cover the
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range of time points £. In this framework one smooths the time series y; such
as

Yt = gt + €t = B(t)a + &¢. (25)

The Mixed Model interpretation of P-splines, that is very familiar to econome-
tricians because it connects P-spline with others widely used filters like Hodrick-
Prescott and Band-pass filters[88], is to furtherly decompose the basis function
with low and high dimensional components, B(t) = {X(t), Z(t)} reformulating
(2.5) in the following way

y=B{t)0+e=X)B+ Z(t)u + &4,

with € ~ N(0,02R,, where R, is a stationary correlation matrix. This means
to impose a penalty on u leading to the penalized least square

1(B,u;h) = {Y — B(t)0} ' RZ MY — B(t)0} + %)\utDu, (2.6)

where D is a penalty matrix. The Lagrange penalty operator A is the crucial
parameter in this procedure; steering the amount of penalization, its selection
provides an huge advantage of P-spline applications over other smoothing tech-
nique. Indeed, thinking about the penalty in (2.6) as a priori normal distribution
and postulating normality for the residuals leads to a linear Mixed Model

Y|u~ N(XB+ Zu,0?R.), u~ N(0,02D7)

with X and Z as design matrices built from rows X (¢) and Z(t) with ¢ =
1,2,3,..., D™ as generallized inverse of D and smoothing coefficient A = 02 /02.
What does this mean? It means that if A is well estimated, the estimate of g;
through X (¢)3+ Z(t)a with @ as the Best Linear Unbiased Predictor(BLUP)[96,
89]. This is an important advantage for P-splines smoothing, because it means to
achieve good estimates results nevertheless the specification adopted, a property
that doesn’t hold for other smoothing techniques [113].

L- and V-curves for optimal )\ selection

The A selection is a crucial aspect of P-spline smoothing, in my application
I make use of a recent development, the V-curve as described in Frasso and
Eilers(2015)[57] because it handles very well serial correlation, thus having a
preferential role in time series filtering. The best value of A is determined from
the data, Hansen (1992)[67] proposes the L-curve, a plot of log(|ly — X8||?)
against log(]|0|?) for a grid of value of log()\). If the spacing of the grid is
fine, the plotted dots present a ”curve” and Hansen advises to choose the A
corresponding to the corner and found good results. Frasso and Eilers (2015)[57]
explores the L-curve for P-spline, plotting () = log(|ly — B0||?) against ¢()\) =
log(||D@||?). They claim that no meaningful trend can be obtained with other
selection techniques, such as leave-one-out cross-validation, generalized cross-
validation or Akaike Information Criterion, and that the results of mixed model
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Figure 2.1: The core idea of P-spline: a sum of B-spline basis function with
gradually changing heights. The grey dots show S&P500 value over the obser-
vation window, the large dots the B-spline coefficients (that have the same color
as the splines) and the blue curve shows the P-spline fit.

based approaches are outperformed. Since the curvature of the L-curve can be
computed using:

PN (N) — " (NP (V)

[W/(A)? + @/ (N)2]3/2
in the end the V-curve is the function of the distance between points on the
L-curve against the geometric mean of their lambdas.

k() =

2.4 Results

The efficacy of the proposal is tested on a dataset containing the price series
of 471 actively traded stocks included in the S&P500 in the period comprised
between 08/02/2013 and 10/08/2015 (8-th February 2013 and 10-th August
2015) including 629 trading days. The resulting portfolio performance were
measured over a period comprised between 11/08/2015 and 07/02/2018 (11-th
August 2015 and 7-th July 2018). The same experiment is conducted with an
adaptation of a cointegration model presented in Sant’Anna et al.(2017)[125]
and sketched in the appendix of this chapter. To summarize the content of
section 3, the selection is implemented in a four step procedure:

1. P-spline smoothing over the log-transformed stock price time series with
V-curve )\ selection;

2. PCA over the smoothed dataset;
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3. Selection of the principal components by evaluation of their effects on a
linear regression model against the index to replicate;

4. Selection of the top absolute contributors to the principal component, ac-
cording to their loadings? and inclusion in the portfolio according to an
equally weighted scheme.

I performed PCA over the smoothed set of prices series, allowing the compu-
tation of 471 components, one for each series. Naturally, because the original
data variance is sequentially decomposed over the different components, is not
surprising that almost all the components have been discarded, since the first
component alone explains the 67% of the variance in the dataset and first four
components account for the 94%.

PC1 PC2 PC3

Standard deviation | 17.8472 8.6963 5.5133
Proportion of Variance | 0.6777 0.1609 0.0647
Cumulative Proportion | 0.6777 0.8386 0.9033

Table 2.1: Standard deviation of the fist three principal component, the original
variance proportion showed by each component and its sum.

Variables | Model 1 Model 2 Model 3
PC1 PC1+PC2 PC1+PC2+PC3
S&P500 1871.44 *** 1871.44 ***  1871.44 ***
(1.971) (1.453) (1.450)
PC1 9.914 *** 9.914 *** 9.914 ***
(0.111) (0.082) (0.081)
PC2 3.842 *** 3.842 ***
(0.167) (0.167)
PC3 -0.515
(0.263)
N 629 629 629
R2 0.928 0.961 0.961
¥ p < 0.001; **p<0.01; *p<0.05.

Table 2.2: Results summury of the regression of the following three models on

the training data.

The regressions of the S&P500 Index value against the selected principal com-

2Rearranging(2.1) one obtains

®; = Br121 + B2z + -+ Pi,NTN,

then B; 1 is the loading of the i-th variable on the first principal component.
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Figure 2.2: This plot overlaps the first principal component and the index value.

ponents suggest that the first principal component is able to capture almost the
97% of the variation in the dependent variable, this seems not reasonable since
the dependent variable is raw while the components are the result of the linear
combination of smoothed series, however the incredibly narrow confidence inter-
val and a graphical inspection allows for a safe concordance statement between
the two series. The same conclusion is supported by performing linear regres-
sion of the S&P500 Index over the three principal components on the testing
period.
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Variables | Model 1 Model 2 Model 3
PC1 PC1+PC2 PC1+PC2+PC3
S&P500 2252.22 *** 2252.22 *¥** 29252 29 ***
(2.493) (2.185) (2.113)
PC1 12.599 *** 12.599 *** 12.599 ***
(0.140) (0.123) (0.119)
PC2 -3.471 *** -3.471 *¥*
(0.251) (0.243)
PC3 2.559 ***
(0.384)
N 629 629 629
R2 0.928 0.945 0.945
¥ p < 0.001; **p<0.01; *p<0.05.
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Table 2.3: Results summury of the three principal components regression mod-
els on the testing data.
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According to [76] the first principal component can be interpreted as a long
term trend component in the dataset, so it fits well to the purpose of Index
Replication, the same source states that the second component may have the
interpretaion as a shock component and may be interestingin future research, to
test is utility for replicating the second order moment of the Index distribution.
The selection procedure continues by sorting the variables (in this case the
stocks) in decreasing order of the absolute value of their loadings on the selected
principal component, I decide to use the absolute value because the principal
component is affected either by stocks with a positive loading than by stocks
with a negative loading. I select the top four contributors to the first component.

i

i il 8 -

Figure 2.3: Plot showing the first two first principal component contributors,
the connected grey dots show the row log-price values, the blue lines show the
P-spline fitted value and the large dots the B-spline coefficients..
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Figure 2.4: Plot showing third and fourth first principal component contribu-
tors, the connected grey dots show the row log-price values, the blue lines show
the P-spline fitted value and the large dots the B-spline coefficients (they have
the same colors as the corresponding splines). The horizontal locations of these
dots correspond to the knots where the polynomial segments of the B-spline
join.
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The goodness of the selection procedure can be seen also with a regression
exercise, as shown in table 4 and 5.

The selected stocks have been used as components of an index tracking portfolio
with equally weighted scheme. To evaluate the performance of the resulting
portfolio I computed, over the testing period the following indicators3:

e Annual average return;

e Cumulative return;

Annual volatility;

Average Tracking Error:

T N
ﬁt _ Zt:l Zq (wiri,t - Iy)

T i

Tracking Error Variance:

, XL [TE-TE]
OTE = T ;

Sharpe Ratio?:

)

2 _ 2
Tap op

3The expressions are general formulas for portfolios of N assets, trying to replicate the
returns of a benchmark Ry, which performance has been measured over a period of length T'.

4 A modified version of the Sharpe Ratio to account for the volatility of the tracking bench-
mark
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Variables Model 1

(Intercept) 4.811 ***
(0.049)

CTAS -0.135 *¥*
(0.027)

APH 0.347 ***
(0.019)

SYK 0.275 ***
(0.025)

FISV 0.180 ***
(0.024)

N 629

R? 0.972

Rk p < 0.001; ** p < 0.01; * p < 0.05.

Table 2.4: Results of the regression on training data.

Variables Model 1
ntercept .

I 4.972 ***
(0.033)

CTAS 0.198 ***
(0.016)

APH 0.193 *¥*
(0.021)

SYK -0.026
(0.021)

FISV 0.239 ***
(0.022)

N 630

R2 0.972

% p < 0.001; ** p < 0.01; * p < 0.05.

Table 2.5: Results of the regression on testing data.
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Table 6 shows the performance of the resulting portfolio and compares them
with those obtained with the cointegration approach ° and with the tracked
benchmark itself.

Rg Cum. Ret. 5’% TE OTE SR

PS-FPCR | 18.76 % 47.00 % 14 % 0.033% 0.005 0.07

Coint 7.54 % 18.83 % 25.26 % 0.00 2.86 0

S&P500 | 10.43 % 26.00 % 10% — — —
Table 2.6

2.5 Conclusions

In this chapter I have presented the application of a P-Spline Functional Prin-
cipal Component Regression to the portfolio selection for index tracking. The
results show that, while the P-Spline filtering allows a meaningful principal
component extraction and the selected principal component is reliably able to
track the performance of the selected benchmark, the selected portfolio is not
sharply achieving its purpose because while the tracking performance shows a
good tracking, financial performance shows huge divergences between the port-
folio and the benchmark. In this case this doesn’t seem to be a problem because
the selected portfolio almost double the financial performance of the index (even
if with a slight increase in volatility), but this maybe the result of the general
state of the market, implying that if the benchmark had performed negatively
during the observed period, then the selected portfolio may had doubled its loss.
What clearly can be understood by my analysis is that the cointegration ap-
proach as presented in [4, 125] is not a valid approach for benchmark tracking.
First of all because even if the residuals are stationary, this doesn’t remove the
effect of multicollinearity on the regression coefficients and their normalization
for weights selection is not based on information gained from the data, due to
the ambiguous ripartition of the observed variation between collinear covariates.
Second, the stock picking selection is too random and results in a set of portfo-
lio which presents too much variation, making the selection of the right stocks
dangerous and unreliable. As Table 7 shows, the worst 25% of the portfolios
selected with the cointegration method yielded average yearly return lower than
-28.50% and cumulated return over the whole period lower than -71.25%.

S5those are the average results of the approach, because it randomly generates several sub-
sets.
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Min.  1st Qu. Median Mean  3rd Qu. Max.
Rg -308.70%  -28.50% 5.78%  7.54%  43.16% 264.70%
Cum. Ret. | -771.00% -71.25% 14.00% 18.83% 108.00% 661.00%

Table 2.7: The average yearly return and the cumulative return over the testing

period of all the portfolios generated with the cointegration method.
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2.6 Appendix I: Cointegration Based Portfolio
Selection Algorithm
Here T present the cointegration algorithm that I mutated from [4, 125].

1. Estimation, for each stock included in the sample, of the model
log(1t) = Bo + log(Pi+)Bi + et

where I; is the index value at time ¢ and P ; is the price of stock ¢ at time
t.

2. Augmented Dicky Fuller test performance for all the residuals of the former
models, with the null of stationarity. Exclusion from the sample of all the
stocks that don’t cointegrate with the index.

3. Extraction of 1000% subsample, each including 10 elements from the prin-
cipal sample.

4. Estimation for each subsample of the models

10
log(Iy) = Bo + Y _log(P;¢)B; + &
i=1
d
6 =a+pg_1+ ZvAEt,l + uy (2.7)
i=1

Where A = 1.

5. Augmented Dicky Fuller test on the residuals u; and exclusion of the
failing models.

6. Normalization of the absolute value” of the regression coefficient and port-
folio construction according to these weights.

6The original procedure requires 100000 generations but due to hardware constraints I have
to reduce this number.

"The original procedure allows coefficient to be negative, but in this context these generated
portfolios with negative values.



Explicit

Noise has a central role either in statistics than in economics, the main purpose
of this scritp has been to practically show the effectivness of P-spline smoothing
in the solution of practical relevance econometrics issues in portfolio selection
problems.

Chapter 1 provided a detailed description of the hedge ratio estimation under
mean-variance and pessimistic frameworks and the results of the application of
P-spline quantile regression in this task, from the statistical point of view results
showed the difference in the behaviour of spot and future return distributions
at different quantile, but the results were poor when applied to predict a useful
hedge ratio for future periods.

Chapter 2 provided a detailed description of statistical portfolio estimation pro-
cedure using different methodologies in the attempt to produce an index tracking
portfolio in an high-dimensional context. The results of the P-spline Functional
Principal Component Regression exercise were solid from the statistical point
of view, meaning that I was able to identify a small subset of index components
able to track the index behaviour in the training period, however from the eco-
nomics point of view, the result of the portfolio selection are not sharp, because
I achieved an enhanced indez tracking performance.

For both the research lines the question is yet to be answered and I provided
what I believe to be their further developments at the end of each chapter.
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Appendix A

Splines

A.1 Introduction

In this section I am going to discuss the study of nonparametric regression by
way of smoothing splines. The target is to estimate the function gg, typically
assumed to be smooth and defined in some kind of Sobolev space WP (a,b),
and I want to accomplish this task using the penalized smoothing spline esti-
mators.
A natural measure of smoothness associated with a function is [ ¢(™)(x)2dz,
a natural measure of goodness-of-fit to the data is the residual sum-of-squares
n~13"  (yi — g(z;))?, thus an overall measure of quality of the candidate esti-
mator g is provided by the sum:

n

(1= a0 (s = glai))? +a [ o @), (A1)

i=1

for some 0 < ¢ < 1. An ”optimal” estimator should then be the one obtained
by minimization of this functional over the function space. Being A = ¢/(1 — q)
the former operation becomes equivalent to study the function g minimizing

—12 +)\/ (™) (2)2dz, A > 0. (A.2)

The result is the smoothing spline estimator of the regression function.

The A parameter governs the trade-off between smoothness and goodness-of-fit,
usually referred to as the smoothing parameter, when its value is large a pre-
mium is being placed on smoothness and potential estimators with large m —th
derivatives are penalized, while small value of A corresponds to more emphasis
on goodness-of-fit.

In the context of polynomial regression, through the application of Taylor The-
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orem, one can rewrite the model as
Ui :293-;8571 + Rem(z;) + €, i=1,..,n, (A.3)
j=1

with constants 64, ...,0,, and

Rem(ay) = [(m = DI [ g™ (€)(a - 77" (A4)
Then by Cauchy-Schwarz inequality one has
Jm((I)
em ()% < ‘ 5
Jpax Rem(z:)” < 2m — 1)[(m — 112’ (A.5)

where the numerator is the smoothness measure criterion, that is providing a
bound on how far the regression function departs from the model. Knowing this
before one could minimize n~'RSS(g)+A(J,,,(9)—c) (c is this latter bound) with
A that becomes the Lagrange multiplier for the constraint, producing the same
estimator as (A.1), this leads to the following theorem (by Schoenberg(1964)).

Assume that n > m and let g(-, ¢) be the minimizer of the RSS in W3[0, 1]
subject to Jn(g) < ¢. Let g be the minimizer of (A.1) in WJ*[0,1], then
there is a computable constant ¢y such that the sets {g(-,¢) : 0 < ¢ < ¢p} and
{gr(*) : 0 < XA < oo} are identical in that any value of A there is a unique ¢ such
that gx(-) = g(+,¢) and conversely. If ¢ < ¢y then J(g(-,¢)) = c.

This theorem has the consequence that the solution to the constrained prob-
lem is a smoothing spline estimator of the function corresponding to A. Thus,
the choice of a particular value for A\ implies the assumption about J,,,(g) <
ey, with ¢y = Jn(gy) reflecting the beliefs about the magnitude of the re-
minder terms and therefore giving an extension of polynomial regression es-
timator avoiding departures from the idealized polynomial regression model,
furthermore, since smoothing spline are minimax estimators, provides protec-
tion against ”worst case” departures.

Smoothing splines estimators also have a Bayesian interpretation always on the
strand of polynomial regression. Assume that we observe responses at distinct
design points, conditional on the value of a parameter vector 3 = (B, ..., Bm)T
that satisfies

m
y; = g Bjxji+e, i=1,..,n, j=1..m (A.6)
Jj=1
f = T 1 d ith i i
or € = (€1,...,€,)" a zero mean, normal random vector with covariance matrix

o%I and x, ..., 2,, the Demmler-Reinsch basis for the natural splines of order
2m with knots tq,...,t,, to complete the model specification § is taken to be
m-variate normal with zero mean and covariance matrix

2 o2

_9 1 _ 9 -1
Var(8) = n)\D” n)\dzag(y, s Vs Y1y ey Yr—m) s (A7)

m



A.1. INTRODUCTION 165

with 71, ..., Yn—m the Demmler-Reinsch eigenvalues.! Thus we have that the

joint density for the response vector y and the coefficient vector is proportional
to

e { =0z (v = X0 (v = X8) — 7507D,3 } =

A.8
= 1TIS 1XsTs—lxs )
= exp —ﬁy (I— /\,V)y_m( B8 — ,\,VY) ,\,u( B — ,\,VY) )
where

Sxy = X(XTX +nAD,) ' X! =n"'X(I+ AD,) X7, (A.9)

Thus, we have E[gly] = S,y and Var[gly] = 0%Sy,, for g = Xf3 the conditional
mean vector for the response, and the unconditional y distribution is an n-
variate normal with mean zero and variance o?(I — Sy ). Also, since S is the
smoothing spline hat matrix we have that

lim E[gly] = g,

v—0

. 2 .

lim Var[gy] = 0”8, lim, (A.10)
Var[(I—Sx,)y] = o?(I—S,).

In this framework the first equation says that the smoothing splines fitted values
are the posterior mean of g = X/ while the other two equations give the covari-
ance matrices for g and the residual vector, leaving only A and o2 to estimate.
Wahba(1990) developed maximum likelihood estimators for these parameters
by splitting the design matrix in two uncorrelated parts and then relying on the
orthogonality of the Demmler-Reinsch to find the distribution of the not poly-
nomial part and therefore formulating the log-likelihood and by maximization
obtains the following estimators:

T —

n—m

~ T1-s
A= argminky(—l/(jzym).
|I*S,\|+ N

(A.12)
Thus, this show that the smoothing spline can be derived from a Bayesian re-
gression model wherein the regression function is a random natural spline whose
distribution is diffuse over polynomials of order m.

The origins of smoothing splines lies in the work on graduating data by Whit-
taker(1923) and remained mainly a numerical analysis method until Grace
Wahba proved their usefulness in the solution of statistical estimation prob-
lems, making clear that they are a extremely flexible data analysis tool.

!The appeal of Demmler-Reinsch basis is a technicality for allowing the design matrix to
have properties that will be clearer in the formal definition of the estimator.
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A.2 Formal definition of smoothing spline esti-
mator

The formal and explicit expression of the smoothing spline estimator requires
the definition of the knots. Those depends from the order of the smoothing
spline, which defines the minimum support of this kind of function. A nat-
ural spline of order 2m is a 2m-th order piecewise polynomial with 2m — 2
continuous derivatives consisting of different polynomial segments over each of
the intervals defined by a sequence of (for the sake of clarity, distinct) knots
[ti,tiv1],7=1,...,n — 1 and is a polynomial of order m outside of [t1, t,].
Thus, being gy a natural spline, the problem of minimizing (A.2) over all func-
tions in W [0, 1] reduces to the finite dimensional problem of minimization over
the n dimensional set of natural splines, allowing the proof of the following the-
orem that gives a closed form for the estimator.

Let z1,...,x, be a basis for the set of natural splines of order 2m with knots
at tq,...,t, and define X={x;(t;)}i j=1,n. If n > m then the unique minimizer
of (A.2)is gy = Z;L:l bx;T;, where by = (bx1,...,bx )T is the unique solution
with respect to ¢ = (c1, ..., )T of the system:

(XTX +nAQ)c = XTy, (A.13)

with

0= { / 1 2™ (t)x§m>(t)dt}i o (A.14)

0

The vector of fitted values corresponding to the smoothing spline estimator has
seen to be

gxn = (ga(t1), -, 9r(t0)) T = Sy, (A.15)

with

Sy = X(XTX4n Q) XT (A.16)

The reader with a deeper knowledge about regularization methods in regression
analysis can recognize a similarity with ridge regression, this is due to the com-
mon Bayesian heritage of both the methods.

As T have anticipated in the last section an insightful representation of the
estimator requires a judicious choice of the basis elements, in order to simulta-
neously diagonalize X7X and Q in S\ expression.

For m = 1 and a uniform design, the Demmler-Reinsch basis functions admit
closed form. Suppose that we have data at points ¢t; = (2i —¢)/2n,i = 1,...,n
and we estimate g € W3[0, 1] by minimization of (A.2). In this setting we have
a linear smoothing spline estimator and gy = Z?:l by,ix; where the x; are basis
and by is the solution to (A.13). The z; functions are all natural splines that
interpolate the constant and the functions v/2cos(jnt),j = 1,....n — lat the
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design points, given explicitly by z1(¢) =1 and

V2 cos (jmt1), 0<t<ty,

21 (1) V2cos(jmti) (A.17)
+1(8) = 4, , ‘ :
= ﬂtzilt—ltl [cos (jmtiy1) — cos (jmty)], i <t < tit1,

i=1,.m—1,
V2 cos (jrty), t, <t<l1.

The x; in this case are all natural linear splines since they are all continuous,
constant outside the design points and linear over each subinterval of the latter.
Also this choice implies that XTX = XX? = nI. In this context, let the
Demmler-Reinsch eigenvalues be

v; = (2nsin (j7/2n))?, j=1,...,n-1, (A.18)

in this way one can define

1 n—1
/ ah g (t)al,  dt = 2n Z[cos (imt,y1) — cos (imt,.)] X [cos (jwt, 1) — cos (jmt,)]
70 r=1
= 57;,3"}/]‘, i,j=1,...,j—1,
(A.19)
thus the x; are the Demmler-Reinsch basis functions under which the (A.13)
becomes
[nI + nAdiag(0,71, ..., Yn—1)]c = nb, (A.20)

where b is the vector of the sample cosine Fourier coefficients, that is b; = ,
the average response, and

by = Y2 ycon (et (21

such that for any specific value of A the linear smoothing spline is given by

=b =2,...,n. A.22
gx 1+Z]—+)\'731] y ooy TV ( )

So, at the design points one has
;) =by + V2cos((j — Dmty),i=1,...,n. A.23
1 Z — m V2 cos ((j = )ti),i = 1 (A.23)

Now it is clear that the linear smoothing spline is essentially a weighted series
estimator that smooths the data in a similar manner to that of kernel estimator,
relying on the information in the sample Fourier coeflicients and weighting them
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by a damping factor (i.e. (1 + Ay;)~!), so the smoothing parameter controls
the mix of high and low frequency information that is used in the estimation of
g(+), as this goes to infinity damping becomes severe and the estimator reduces
to the sample average, while when it goes to zero the interpolation touches any
data point so no smoothing is performed and no damping appears, leading to
a behaviour of the estimator that is very similar to the kernel estimator, and
to an asymptotic equivalence between the two types of estimators. To continue
this discussion, is useful to rearrange the latter equation in the following way

= n71 ZyiKn(tati; )\)7

cos(jms)x 41 (t)
t,s;A) =1 —_— e
Kot s +fz e

(A.24)

with z; and v; the now (almost) usual Demmler-Reinsch basis functions and
eigenvalues. Thus one can expect for large n the smoothing spline can be ap-
proximately given by 1+ 23772, cos (j7s) cos (jmt)/(1 + A(jn?)) and through

some simplifications achieve?

e —a(m—|z) a(m—|z|)
Somlie) _ x D e ot L
2a2

prd a?+ k2 2a e — g—om

_ A.25
. cos(kr)  w e~elm=lel) 4 galm—fzl) 1 (4.25)
;GQJer ~ % eaT — e—am 2¢2’ o] < 2.

Thus with a = (VA7) ™! one see that K, (¢, s; \) is approximately equal to
ef\t75|\/>7\ + 6*2\f€*|t*8‘\/x + 6*(t+$)\/§ + e(t+$*2)\/x
2V/A(1 — e2/VA)

and leading to the following theorem. Assume that n — co, A — 0 in such a
way that nA — oo.
Then,

Kt (t,s;)) =

(A.26)

K,(t,s;)) = KT (t,s;)\) + O (L)\) (A.27)
n

uniformly for ¢, s € [0,1]2. Thus asymptotically K, is the sum of a weight func-
tion e~ 1=//VA and terms e~ (t+9)/VA /(2/X) and e(t=15=D/VA /(2\/X). thus for
large n and fixed t the functions behave like a kernel estimator with Laplace
kernel K (u) = ¢~ 1% and bandwidth v/A.

For general m or nonuniform designs there isn’t, at the best of my knowledge,
any simple form of the Demmler-Reinsch basis functions and eigenvalues. How-
ever their properties are known and one can make some comparison with the

2The following approximation results are from Gradshteyn and Ryzhik (2007)
3The proof of the theorem is in Eubank(2000) p.248.
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former framework.
Demmler-Reinsch showed that a natural spline basis z1,...,z,, may be chosen
so that:
1) x1, ..., T, span the space of polynomials of order m,
2) the functlon x; has at least j — 1 sign changes over (0,1),

3) XT'X = nI = XX7,

) Q dmg( 'vou'ylv-'-v’)/n—m)v

\,_/

5) v; = C(jm)?>™(1 + o(1)) fir C' a constant that depends only on m and the
design.
So the general representation for the m-th order smoothing spline is

gr = Zb z; + Z x5, (A.28)

Jj= m+1 77 m

with bj = n~! 3700 bjay + 300 T/\iﬁxj, the Demmler-Reinsch Fourier
coefficients, not the cosine Fourier coefficients, but they still can be compared to
the cosine functions due to the sign change property, thus still providing a parti-
tioning of the frequency content of the data with larger values of the coefficient
index signifying higher frequencies. With this interpretation in mind and with
property 5) one has essentially the same conclusion as for the linear smoothing
spline case, therefore a smoothing spline is a type of damped series estimator
with A controlling the relative amount of low and high frequency information
that is used in estimating g.

Another version of the Theorem 3.2.1 can be derived for a more general smooth-
ing crieterion as

1211)2 yi — g(t:))? +)\/1 m) ()2t (A.29)
0

with positive weights w; > 0, taking w; = [Var(y;)]~1,i = 1, ..., n, this criterion
becomes useful for heteroskedastic observations.

A.3 Large Sample Properties

Theorem 3.2.2 allows the parallel between kernel estimators and smoothing
spline, but it is also the starting point to analyze the point-wise variance and
bias of the linear smoothing spline using techniques similar to those employed
for kernel estimators. Define K (¢,s;\) in (A.27) as

1
K(t,s;0) = == { e Tsl/VA L em(@a)/VA 4 ottt/ VAL A.30
(450 =5~ { b (30

if t is a lower boundary pont such as t = v/Aq for some ¢ > 0 then,

1
K(tsiN) =5~ {e—lf—sl/ﬁ e 4 e(t—s)/ﬁ} +O (N7, (A31)
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gives a first order boundary correction which makes the integral K (¢, -; \) asymp-
totically the same as for ¢ point, formally

1
/ 2V {e‘lt_sl/ﬁ + 6_2(16("’_5)/\5} ds=1+ (’)(e_l/ﬁ). (A.32)
0
Then one can show that
1
Ega(t) = n! Zg Kon(t £ M) = / 9V K (t, 5 N ds + O(n\) 1) (A.33)
0
and

Var(gx(t)) = 3 ZK2 (t,ti; N)

(A.34)

2
_ y \/_{1_|_62(f 1)/f( Q(t— 1)(/\)—1/2+
n

e VN1 4+ 2t/VA) + o(1)}.

In order to derive the point-wise approximation to the bias of the linear smooth-
ing spline, one can use a Taylor expansion in (A.33) to see that if ¢’ satisfies a
Lipschitz condition* of order 2n then

Ega(t) =g(t) — \/Xg’(t){e(t—l)/ﬁ VR

-1 t
A () (1 et 1)/VX —t/VX
TAg ()( T NG \/Xe (A.35)

1
+0 (— + )\1+’7> :
n

Egx(t) = g(t) + X\g"(t) + O (i + >\1+"> , (A.36)

or, when t € [0, 1]

n

therefore given the variance approximation provided in (A.34) one can state
that gy is a point-wise second order estimator since E(gy(t) — g(t))? is of order

n~%% if X is of order n=*/5. This is not true at boundary points, since while
the variance will be of order (nv/X)~!, the bias becomes
1
Ega(t) — g(t) = VA (0)e ™ + O (/\ + ﬁ) , (A.37)

4A regularity condition stating that, given a function g : X x Y — R there is a constant
L > 0 such that for a point of its domain

llg(z,yi) — g(z,y;)|l < Lllys — yjll2n, for any « € X and any y;,y; € Y.
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thus if nA%/2 — oo, gy is only first order in boundary regions unless ¢’(0) =
g'(1)=0.

Globally the performance of the estimator can be assessed as the approximation
E(gx(t;) — g(t;))%,i = 1,...,n,, by (A.34) and (A.35), averaged over the design
to approximate the following criterion

R,(\)=n"" ZE(g(tn —aa(t:)% (A.38)

Now, since nv/A — 0o

nt gvm(g,\(ti)) = 4:\2& {1 + /01 [eg(t_l)/ﬁ <1 a 2(t—\/_X1)> *

o2tV (1 2P a0 (A.39)
. (1 5)] et}
= o),
thus ) |
nh Y (Ega(ts) — g(t:))* = %/2[9/(0)2 + (1) + o(N/2),

while in the case where ¢'(0) = ¢’(1) =0
n 1
n~t Z(Egk(ti) —g(t))* = )\/ g"(1)2dt 4 o(N\?).
i=1 0

So combining these expressions one can obtain global risk of smoothing spline
under different assumptions about the boundary properties of the regression
function. For example, if g’ is bounded and at least one of g’(0) or g’(1) is not
zero one achieves an estimator that, with an optimized smoothing parameter,
decay at the rate of n=3/4 the same of a second order kernel estimator but
without using any boundary correction.

Similar asymptotic results have been established for more general cases aside
from the uniform design and m = 1 case. Nychka (1995) showed that under
conditions similar to the latter case, a general smoothing spline behaves as a
second order kernel estimator with bandwidth /A /w(t) for any w which empir-
ical distribution is ”enough” close to a continuous one with a strictly positive
density function. This bandwidth has the property to be easily expandable or
contractable to adjust to rich and sparse regions of the design, extending the
kernel approximations developed by Silverman(1984b), Messer(1991) and Ny-
chka(1995).

A smoothing spline with penalty function J,,, can generally attain the O(n‘zm/ (2m+1))
optimal decay rate for its risk when the regression function is in W3[0, 1], with
the advantage of a faster convergence due to a less computational intensive
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boundary adjustment.?

What is left to explain regarding smoothing spline is the comparison of their
estimation risk related to other nonparametric estimators. Carter,Eagleson and
Silverman(1992) compare the the risk behavior of smoothing splines with the
one of the minimax spline estimator of Speckman(1985), which is the best pos-
sible in terms of average risk over all regression functions in W3[0, 1] for which
Jm(g) < p, they show that when m = 2 and under optimal levels of smoothing
for both estimators, the cubic smoothing spline is only 8,3% less efficient than
the fully efficient minimax estimator, therefore the cubic smoothing spline is
very nearly optimal as a second order estimator.

A.4 Penalized B-Spline

In the last section I have showed off some asymptotic results about the smooth-
ing spline estimator, during such discussion I have highlighted several times
that these results are valid mostly for uniform design and always with an al-
ready fixed smoothing parameter A, meaning that in order to achieve gratifying
results the analyst has to select the knots which the spline should pass through,
and has to rely on some strategy for the selection of the smoothing parameter
by usually optimizing an information criterion. While this latter topic will be
discussed in the next section, since the scientific debate has already shrinked the
range of alternative produced in the last decades to a narrow set of established
selection techniques, the knots location problem has not been solved yet.

The problem is that for some fixed K knots there are Zqu:o (}f ) = 2K possi-
ble models and, because the locations has additionally a marked effect on the
fit, the usual selection procedures become unfeasible. This instance caused the
blooming of several approaches for the selection both of the amount and position
of knots, each of them has revealed complicated and computationally intensive.
Instead of developing some variety of spline smoother a growing branch of liter-
ature relied on a combination of B(asis)-spline and difference penalties (on the
estimated coefficients), which emerged with the name of P(enalized)-splines. De-
spite the first attempts are dated back to the papers of Parker and Rice(1985)
and O’Sullivan(1986), this estimation technique became popular after that Eil-
ers and Marx(1996) illuminated the numerical practicability and flexibility of
this approach.

A B-spline consists of polynomial pieces connected in a special way, at the join-
ing points not only the ordinates of the pieces match, but their first derivatives
are equal. Since these basis overlap each other in the joining points, the degree
of the B-splines explains how much they overlap. De Boor(1978) gives a simple

5More information on the topic is available in Rice and Rosenblatt(1983) and Cox(1983).
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recursive formula for defining B-splines based on a set of knots
0
Bj () = I[tj7tj+1](m)’

Bm,—l(m) + tj+1 -z Bp*l

: L
tjgm — 1 7 tigmir —tip1 0T

where Bj" (2) denotes the j-th B-spline of degree m and t;,j = 1,..., K are the
knots. Eiler and Marx(2004) showed that B-splines can be computed by differ-
encing of the correspondent truncated polynomials, with the following general
formula

Bl'(z) = (—l)m“Am“ZJ’T’”(ac)/(hmm!), (A.41)

where h = t;_1—t;, Z"(x) = (v—t;) and A™ is the difference operator applied
to the spline coefficients at the m-th order, thus a complete B-spline matrix of
degree m for n observations based on K knots has dimension n x (K + 1+ m).
Now consider the regression of n data points (y;,x;) on a set of m B-splines
B;(-). The least square objective functions to minimize is

2

Q= Z Yi — Z a;Bj(z;) ¢ (A.42)
i=1 =1

Let the number of knots be relatively large, such that the fitted curve will be
more variable than how much the data would justify. O’Sullivan(1986,1988)
introduced a penalty on the second derivative of the fitted curve and so formed
the objective function

2 2
n m

Qors = Z Yi — Zaij(xi) +A / ZajB;-’(a:) dr. (A.43)
i=1 j=1 ¥ Tmin j=1

Eilers and Marx(1996) proposed to base the penalty on (higher-order) finite
differences of the coefficients of adjacent B-splines

n

2
Qreem = Z Yi — Z%‘Bj (i) p +A Z (Akaj)Qa (A.44)
j=1

i=1 j=k+1

thus reducing the dimensionality of the problem to m, the order of the spline,
therefore obtaining robustness to the placement of the knots.
The system of equation that one has to solve in the minimization of (A.44) can
be written as:

BTy = (B"B + AD} Dy)a, (A.45)

where D), represent the matrix of the difference operator A*, and the elements
of B are b; ; = Bj(x;). When 0 < A < oo (the burden cases have been already
discussed) the penalty only influences the main diagonal and k sub-diagonals
(on both sides of the main diagonal) of the system, giving him a banded struc-
ture.
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In a generalized linear model (GLM) we introduce a linear predictor n; =
2?21 b; ja; and a link function 7; = g(u;) where p; is the expectation of y;,
the penalty is subtracted from the likelihood function

L=lfy:a) - 3 (k) (A.46)
j=k+1
and the subsequent optimization leads to the following system of equation
BT (y — ) = AD{ Dya (A.47)
that can be solved with the system
B™W (y — ji) + BTW Ba = (BT (W)B + AD} Dy )a, (A.48)
where a and i are the approximations to the solution and W is a diagonal

matrix of weights
Wi = L (Ow (A.49)
vt on; ) '

V5

P-spline have a number of useful properties, in first place P-splines have no
boundary effects, meaning that there is no problem in the spreading the fitted
curve outside of the (physical) domain of the data. Also P-splines can fit poly-
nomial data exactly, then if y; are a polynomial in x of degree k, the B-splines
of the same degree (or even higher) will exactly fit the data, and this is true
also for P-splines, if the order of the penalty is k + 1 or higher, whatever the
value of A.

P-spline conserve the moments of the data, such that for GLM's with canonical

links it holds that . N
> afyi=> 2, (A.50)
i=1 i=1

for all values of A, with g; = Z;nzl b; ja;, leading to a substantial advantage
related to many kernel smoothers that inflate the variance increasingly with
stronger smoothing.

In conclusion, as the smoothing is controlled by the penalty parameter, for the
P-spline the number of knots is not a crucial one. However, simple simulation
studies showed in Ruppert (2002) showed that there must be enough knots to
fit features in the data, thus there is a minimum necessary number of knots to
reach. Also there are specific situation where an higher number of knots may
increase the MSE by a moderate amount. Thus, he suggest the application of
a GCV-like procedure to verify the right number of knots.

A.5 Smoothing parameter selection

Given the minimum acceptable number of knots, the P-spline estimator achieves
the same results as the natural smoothing spline estimator, given a fixed smooth-
ing parameter, and outperforms the latter in non-uniform situations. This last
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section will be devoted to a brief discussion of smoothing parameter selection
procedures emerged and established in the recent literature about this kind of
estimators.
Following the scheme of Kauermann(2005) one has to think to the spline esti-
mation through the Bayesian interpretation, in connection with Linear Mixed
Models and thus one has to think that the basis coefficients are considered as
random effects and the penalization as a priori distribution imposed on the basis
coefficients, leading to the equivalence of the spline smoothing to the maximum
posterior Bayes estimation. In this scenario the smoothing parameter will plays
the role of the a priori variance of the basis coefficients and this interpretations
allows its estimation through Maximum Likelihood estimators or Residual Max-
imum Likelihood estimators.
In this context P-spline estimation is pursued by replacing ¢(-) by the parametric
form

yi=x:B+zlb+e, (A.51)

where x; is a low-dimensional parametric basis, the linear basis x; = (l,xi)T,
and z; is a high-dimensional basis inliearly indipendent of z;, Kauermann sug-
gest to choose the latter in a ”lush” and ”generous” way to achieve that the
difference 6(z;) = g(x;) — xI' B + zI'b is negligible, thus the introduction of the
penalty parameter lead to the following penalized likelihood

1(B;b; \) = —%(Y - X3 -Zb)T (Y - XB - Zb) — %bTDKb//\, (A.52)

where Dy is a K x K dimensional penalty matrix, differentiating the former
equation leads to the following estimating equations:

B =(X"X)"'XT(Y — Zb),

b= (ZTZ+Dg/NTZT(Y - X3). (A.53)

In this context a reasonable choice for A is obtained by minimizing the Mean-
Squared Error (MSE) leading to the following optimal value

bTDKFZ7xDKb =+ 30‘62tT‘(FZ’XDKFZ;XDK)/7’L

~2), (A54
o2tr(Fz xDy) +0(n™?), (A.54)

AMSE =

where Fz x is the Fisher information matrix.
If one makes the following distributional assumption, then (A.52) appears as
the likelihood of the Linear Mixed Model:

b~ N(0,0iD:"), Y|b~ N(XB + Zb,s1,). (A.55)

Then if one considers b as random effect, on can marginalize the former model
and obtain

Y ~ N(XB,0%V,), (A.56)
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where Vy = I, + AZD'Z” and \ = 0}/02, that can be estimated through
REML

(Y - XB)'V (Y - X0)

IrEML(B; M) = — p —log |Vy| — log X"V 'X],
‘ (A.57)
thus to the following optimal A equation
] b"Db/o? + tr(FzxD
AREML = xb/oc 1 tr(FaxDy/n) +0(n™?). (A.58)

K

Another strand of literature about the smoothing parameter selection is based
upon the Generalized Cross Validation technique, thus a data-driven approach,
as defined by Craven Whaba(1979)

v Yi — Ui -~ RSS/n
Govi =n E{l—msn/n}‘ T—o@ome A

where S is the smoothing matrix.
Notice that in expectation the GCV approximate the average MSE, indeed

E[GCV (\)] ~ % {aftr(si) {1 - 2@} +[lm(z)(I = 8))|? [1 + ztr(:A)] }
+ 0% = MASE(\) + 02+ o(n ).

A similar approach is the famous Mallow’s C),, in order to motivate this approach
let make a step backward in the GCV definition, indeed

E[RSS/n] = MASE()\) + 02 — 262tr(Sy)/n

In this expression if one substitutes the o2 with its estimates achieves the C,
statistic:

C(A) = RSS(\)/n + 2tro2tr(Sy)/n,

bTDxFy x Db (A.60)
€y = g e {14 Op(n7 ),
O¢ t?"(FZ’)(DK)

i.e. something like a plug-in estimate of (A.54).

A relatively new and active branch of literature focuses on the problem on
the numerical side, so treating it as an ill-posed problem to be solved through a
regularization method, thus trying to obtain solutions that are robust to small
perturbation of the problem. The approach taken is to use generalized singu-
lar value decomposition (GSVD) to overcome the problems associated with the
condition’s number by replacing the problem with a ”nearby” well-conditioned
problem whose solution approximates the required solution and is more satisfac-
tory than the one obtained with ordinary least squares. The idea, firstly illus-
trated in the book by Lawson and Hanson, and then developed in Hansen(1992)
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is to display the plot of the norm of the regularized solution , ||D&a(\)]|, versus
the norm of the corresponding residual vector, ||y — B&a(\)||, obtaining the L-
curve, that is the relation of this two measure with respect to a A that has value
on [0,00). When some regularity conditions are satisfied the L-curve exhibits a
”corner” behavior as a function of A, wherefore is the optimal one. In fact the
"corner” A yields a good balance between a small residual norm ||y — Ba(\)]|
and a small solution semi-norm ||Da(\)]|, and also tend to balance the regular-
ization and perturbation errors.

The V-curve criterion simplifies this selection by requiring the minimization
of the Euclidean distance between adjacent points lying on the L-curve, thus
obtaining the following expression

AV curve = a’rg’nLi’rL\/{A log|ly — Ba(M\)||}2 + {Alog || Da())] }2, (A.61)
A

whereas the A is the first order difference operator.



