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SUMMARY 
 
 
Breast Cancer (BC) patient stratification is driven by receptor status and histological grading and 
subtyping, with about 20% of patients for which absence of any actionable biomarkers results in 
no clear therapeutic intervention. Clinical decision for breast cancer patients still relies primarily 
on the expression status of three biomarkers of therapeutic agents: the estrogen and progesterone 
receptors (ESR1 and PgR, respectively), and the aberrant expression/amplification of the 
epidermal growth factor receptor 2 (HER2/ERBB2). However, current clinical approaches for the 
diagnosis of such biomarkers do not account for the whole transcriptional landscape of the cell and 
the intrapopulation gene expression heterogeneity of tumors, that may be responsible for drug 
resistance in cancer patients. It is therefore necessary to discover and establish new predictive and 
prognostic biomarkers for patient stratification and personalized medicine that take into account 
tumor heterogeneity.  

Here, I evaluated the potentiality of single-cell RNA-sequencing (scRNA-seq) for 
automated diagnosis and drug treatment of BC. To this end, I implemented Drop-seq in the lab, a 
droplet-based microfluidic platform that enables to measure the gene expression profile in single-
cell for thousands of cells. By means of Drop-seq, I transcriptionally profiled 35,276 individual 
cells from 32 cell lines covering all BC subtypes, showing that with scRNA-seq we successfully 
measured the expression of clinically relevant receptors. This breast cancer single-cell atlas can be 
used to computationally map single cell transcriptional profiles of patients’ tumor biopsies to the 
atlas to determine their composition in terms of cell lines. By this approach, I found that each 
tumor is heterogeneous and composed of multiple cell lines mostly, but not exclusively, of the 
same subtype. I observed that in most cell lines there is a high degree of heterogeneity in the 
expression of BC receptors. I focused on whether such heterogeneity impacts a cell line's overall 
drug sensitivity. By correlating the percentage of cells expressing a given drug target (e.g. HER2, 
etc.) to the known toxicity of the relevant drug across the 33 cell lines, I observed a significant 
negative correlation (the higher the % of cells, the higher the toxicity). I then focused on the MDA-
MB-361 cell-line of the luminal B subtype with a gain in genomic copy number of the locus 
containing the ERRB2 gene coding for HER2. Despite HER2 amplification, scRNA-seq showed 
that only about 70% of cells express its mRNA. To investigate the origin of this heterogeneity, I 
performed fluorescence-activating cell sorting (FACS) to isolate HER2 expressing cells (HER2+) 
from non-expressing cells (HER2-) in the MDA-MB-361 cell population. After approximately 
three weeks, both subpopulations re-established the original heterogeneity, thus showing that 
heterogeneity in HER2 expression in these cells is dynamic and not regulated by genetic 
mechanisms. This observation led us to the development of a bioinformatic approach named 
DREEP (DRug Estimation from Expression Profiles) to automatically predict responses to more 
than 450 anticancer agents starting from scRNA-seq and confirmed the validity of the approach 
using published large-scale studies on drug sensitivity.  

Application of DREEP to the MDA-MB-361 cell line identified drugs able to selectively 
inhibit the growth of the HER2- subpopulation. Etoposide was predicted to selectively inhibit the 
growth of the HER2- cells but not HER2+ cells. I experimentally validated the DREEP prediction 
of the effect of etoposide on the HER2- subpopulation. However, DREEP predicted afatinib, a 
specific and selective HER2 inhibitor, to be equally effective on both subpopulations, even though 
HER2- cells do not express the target of afatinib. Surprisingly, the experimental validation that I 
performed confirmed this counter-intuitive prediction. We thus developed a mathematical model 



6 
 

to explain this counterintuitive result, in which we show that the afatinib treatment has the same 
effect on both subpopulations if the interconversion time between the two HER2 states is 
comparable to the cell cycle duration. Finally, I experimentally validated the model prediction by 
testing the interconversion dynamics of the HER2 state upon afatinib perturbation in MDA-MB-
361 cell line.  

 
In Chapter 1, I summarize the current molecular stratification of breast cancer, highlighting 

the main molecular features of each subtype with a brief discussion of some therapeutical 
strategies. I motivate the potentiality of single-cell RNA sequencing as a powerful method for 
cancer diagnosis.  

In Chapter 2, I focus on the relevant technologies for single-cell RNA sequencing. I 
illustrate the next generation sequencing (NGS) with Illumina technology and droplet-based 
microfluidic as a powerful tool for single-cell RNA sequencing. I introduce Drop-seq, a droplet-
based microfluidic platform that enables single-cell transcriptome profiling of thousands of cells, 
with low costs. Finally, I compare the Drop-seq performance with other droplet-based microfluidic 
platforms. 

In Chapter 3, I describe in detail the Drop-seq platform that I implemented in the lab, the 
main components of the system, and all tests I carried out to set an optimized experimental 
procedure to perform single-cell RNA sequencing of breast cancer CCL. In addition, I show the 
improvement that I operated to the microfluidic implementation. 

In Chapter 4, I show the single-cell RNA sequencing of a panel of 32 breast cancer cell 
lines and the generation of a breast cancer single-cell atlas. I aslo show the potentiality of the atlas 
for automated breast cancer diagnosis. 

In Chapter 5, I focus on the intrapopulation biomarker heterogeneity within cancer cell 
lines, and specifically on the heterogeneous expression state of HER2 in the MDA-MB-361 cell 
line. I also show that the HER2 heterogeneity is driven by non-genetical mechanisms. Finally, I 
investigate a possible role of the cell cycle as a driver of the HER2 heterogeneity in MDA-MB-
361. 

In Chapter 6, I show that the intrapopulation heterogeneity of a drug target (i.e. HER2) 
affects drug response against that drug target inhibitors. I describe DREEP (DRug Estimation 
from Expression Profiles), an algorithm that I contributed to develop and that is able to 
automatically predict the drug response to more than 450 anticancer agents starting from scRNA-
seq. By applying DREEP to the MDA-MB-361 cell lines, I demonstrated that etoposide has a 
specific effect on HER2- cell subpopulation.  

In Chapter 7, I draw final considerations of the possible outcomes of my work. 
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CHAPTER 1 - Introduction to breast cancer 
 
 
Breast cancer (BC) is one of the most frequently diagnosed cancer in women worldwide [1]. 
Currently, therapeutic improvements have led to increasing chances for a cure in about ~70% of 
early breast cancer patients, however advanced breast cancer with distant organ metastases is 
considered incurable with currently available therapies [1]. Moreover, BC is a highly 
heterogeneous disease composed by multiple subtypes [2]. Immunohistochemical (IHC) 
biomarkers, together with traditional clinicopathological variables including, tumor size, tumor 
grade and nodal involvement, are conventionally used for patient prognosis and management [2], 
[3]. In this Chapter, I summarize the molecular classification and subtyping of breast cancer and 
breast cancer cell lines (CCLs). 
 
 
1.1 – Molecular subtyping of breast cancer 
 
The current breast cancer stratification relies on the systematic detection of the expression status 
of clinically relevant biomarkers, in particular the estrogen and progesterone receptor (respectively 
ESR1 and PgR) and overexpression or aberrant expression of the epidermal growth factor receptor 
2 (HER2/ERBB2).  

Gene expression profiling of breast cancer has identified two biologically distinct ESR1 
positive subtypes of breast cancer, defined luminal A and luminal B [3], which are stratified 
according to the HER2 status. Luminal A breast cancer is characterized by the sole positivity for 
ESR1 and/or PgR, while the luminal B subtypes shows in addition positivity for HER2 [2]. 
Aberrant expression of HER2 with ESR1 and PgR negativity characterizes the HER2 positive 
(HER2+) breast cancer while tumors with no expression of those three biomarkers define the triple 
negative breast cancer (TNBC). Table 1.1 and Figure 1.1 summarize this classification. 
Each breast cancer subtype differs for risk factors, clinical grade, histopathological features, 
outcome, and response to systemic therapies [4]. 
 

                   
 
 
1.1.1 – Luminal A and B breast cancer subtypes 
 

Subtype ESR1 PgR HER2 Other Names

Luminal A + +/- -
Luminal

Luminal B + +/- +
HER2 positive - - +

Triple Negative A - - - Basal A

Triple Negative B - - - Basal B or claudin-
low

Immunoprofile

Table 1.1 – Breast cancer subtyping, adapted form Dai et al. (2017). ESR1 = estrogen receptor; PgR = progesterone 
receptor; HER2 = ERBB2 = epidermal growth factor receptor 2. 
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Luminal tumors are the most common subtypes of breast cancer, with luminal A constituting the 
majority of the cases [2], [5]. ESR1 plays a crucial role in breast carcinogenesis, whose inhibition 
forms the mainstay of breast cancer endocrine therapy [4]. ESR1 positive tumors are largely well-
differentiated, less aggressive, and associated with better outcome after surgery than ESR1 
negative ones Luminal B cell lines are, in principle, more invasive and consequently more 
aggressive than luminal A cells, as HER2 overexpression is shown to be associated with ESR1 
downregulation [2], [6]. 

Luminal features of breast cancer include expression of luminal cytokeratins 8/18 
(KRT8/18) [7], and transcription factors like FOXA1 and GATA3, that has been shown to be 
involved in the expression regulation of ESR1 target genes and associated with favourable 
prognosis [8], [9].  
Overall, luminal cancer cell lines are comparably more differentiated to the other subtypes, and 
have less propensity for migration due to tight cell-cell junctions, consistent with that at the tumor 
level [2]. However, luminal A tumors have higher expression of ESR1-related genes and lower 
expression of proliferative genes than luminal B [10], [11], with luminal B tumors characterized 
by higher grade and proliferation and poorer prognosis than luminal A tumors [3]. 
Luminal breast cancer patients benefit from endocrine therapy, that can be administered for 5-10 
years, such as tamoxifen or aromatase inhibitors therapy [12]. 
 
 
1.1.2 – HER2 positive breast cancer subtype 
 
The HER2 positive subtype is present in 13-15% of breast cancers [1] and is characterized by 
overexpression of HER2 (chromosome 17) caused by gene amplification, as assessed by 
immunostaining or fluorescence in situ hybridization (FISH) [13]. Cell lines that are classified in 
this subtype are heterogeneous and encompass both luminal and basal features. HER2 positive 
tumors are more aggressive and show higher cell migration behaviors than luminal, since HER2 
over-expression is associated with the breakdown of cell-cell junctions [2], [6]. Overall, HER2 
positive tumors are characterized by a poorer prognosis than luminal ones, due to a higher risk of 
early relapse in case of no complete eradication of tumor cells [14]. HER2 positive tumors are 
sensitive to anthracycline and taxane-based neoadjuvant chemotherapy [10], [15], [7]. Besides the 
chemotherapy backbone, targeted therapy is available for HER2 positive breast cancer patients 
[12]. Targeted therapies for HER2 positive cancer patients include the monoclonal antibody 
trastuzumab, directed against HER2, that demonstrated a reduction in the rate of recurrence [16]. 
However, many HER2 positive tumors show trastuzumab resistance. For example, the HER2 
positive cell line JIMT1 has been studied for the resistance against trastuzumab and lapatinib [17]. 
Other studies show that PTEN loss [18] and CXCR4 upregulation [14] are implicated in 
trastuzumab resistance. It has been reported that MEK (S217/219), ESR1, TYK2, FASN, GRB7, 
and MAPK1/3 (Thr202/Tyr204) strongly correlate with trastuzumab response, while SFN, CAV2, 
GRB2, RB1, and FLNA associated with resistance, highlighting that upregulation of genes 
involved in insulin/MAPK signaling predicts response to trastuzumab, whereas the mTOR 
pathway, Toll-like receptor pathway, N-Glycan biosynthesis, and inositol-phosphate signaling are 
associated with resistance [19].  
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1.1.3 – Triple negative breast cancer subtype 
 
The TNBC subtype is the most heterogenous type of breast cancer and is diagnosed when no 
expression of the three clinically relevant biomarkers is detected, for example by IHC (ESR1-, 
PgR-, HER2-). TNBC subtype accounts for the 15-20% of breast cancers [20]. Dai et al. [2] 
reviewed the literature to categorized TNBC, including different subtypes, in triple negative A 
(TNA) and triple negative B (TNB), based on their respective molecular features. TNBC is 
characterized by high Ki67 and PCNA proliferation markers, and expression of EGFR [2]. TNA 
cell lines are enriched FOR basal markers like KRT5/6 and KRT14/17, integrins (ITGA6, 
ITGB4/6), LAMB3, LAMC2, TRIM29, S100A2, SLPI, ANXA8, COL17A1, BNC1, 
CD10/14/58/59, MET, LYN, CD133, GABRK, VTCN1, BST2, FABP7 [2]. TNB shows 
expression of mesenchymal features and has been reported to designate the mesenchymal cluster 
or normal-like/claudin-low [2]. TNB is characterized by gene signatures for extracellular matrix 
remodeling (COL1A2, COL5A1/2, SPARC, FN1, LOX, TIMP1/3, MMP2/14) and cytoskeletal 
modification (VIM, MSN) to enable cell migration, expression of collagens (including COL3A1, 
COL6A1/2/3, COL8A1), indicative and epithelial-to-mesenchymal transition (EMT) process, and 
other markers of aggressive features and drug resistance (AXL), such as PLAT, TGFB1, TGFBR2, 
CTSC, PLAU, PLAUR, SERPINE1/2, HAS2, PRG1, as well as stemness features like 
CD44+/CD24- [21], [22], [12], [23], [2]. Although both TNA and TNB are comparatively more 
aggressive than the other subtypes, TNA shows more differentiated features than TNB, that 
phenotypically appear more mesenchymal-like and are more likely invasive.  

Overall, TNBC patients have shown poor prognosis when compared to hormone receptor-
positive tumors, with increased likelihood of distant recurrence and death within 5 years of 
diagnosis [24]. Currently, since the ESR1-, PgR-, HER2- status of TNBC and the lack of other 
molecular targets, for this subtype there is no effective targeted therapy [24], with chemotherapy 
the only therapeutic strategy for breast cancer patient clinical care. It has been suggested that EGFR 
could be a possible target for TNBC targeted therapy, however, early phase clinical trials failed to 
demonstrate a significant activity of EGFR-targeted monoclonal antibodies as well as tyrosine 
kinase inhibitors [25]. 
 
 
 

                        
   
 
 Figure 1.1 – Main features of the different BC subtypes. 
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1.2 – The potential of single-cell RNA sequencing in personalized breast cancer therapy  
 
One of the main roadblocks to personalized medicine of cancer is the lack of biomarkers to predict 
outcome and drug sensitivity from a tumour biopsy. Systematic methods for diagnosis and 
classification of breast cancer patient to drive clinical decisions still relies on the identification of 
a few biomarkers. For example, ISH or in situ hybridization (FISH) are the standard for the HER2 
status determination of HER2 protein expression of a cancer biopsy, or assessment of HER2 gene 
amplification [26]. However, these methods do not account for the whole transcriptional 
landscape, that may reveal the presence of drug resistant subpopulations and the likelihood of 
cancer relapse [27]. Expression-based biomarkers measured from bulk RNA-sequencing of a 
tumor biopsy have been shown to be the most powerful predictors of drug response in vitro [28]–
[30]; one limitation, however, is that the population average gene expression measurements (so 
called bulk gene expression profiles) are performed in samples containing mixed populations of 
cells, and thus the intrinsic heterogeneity of cancer samples cannot be quantified, such as rare 
tumor subpopulations and subclones that contribute to cell diversity [31]. 

Multigene assays such as MammaPrint3, Oncotype DX4,5, and PAM506 can classify 
breast cancer (BC) tumor types and risk of relapse [1]. However, their clinical utility is limited to 
the prediction of sensitivity to chemotherapy in a subset of high-risk estrogen receptor positive 
breast cancers [1], [32].  

Overall, genomic and transcriptional biomarkers of drug sensitivity have been found only 
for a restricted number of drugs [28], [29], [33]. As a consequence, BC patient stratification is still 
mainly driven by receptor status and histological grading and subtyping [1], with about twenty 
percent [34] of patients for which paucity of actionable biomarkers limits the potential for the 
development of personalized therapies. Moreover, even when a targeted treatment option is 
available, drug resistance may arise [1] partly because of rare drug-tolerant cells characterized by 
distinct transcriptional or mutational states [35]–[38]. Recently, advanced in technologies based 
on microfluidics, have made measurements of single-cell transcriptomics (scRNA-seq) possible. 
scRNA-seq yields a molecular profile of each individual cells and thus takes tumour heterogeneity 
into account, opening up new avenues of investigation, as schematically shown in Figure 1.2. 
Single-cell transcriptomics offers rapid and comprehensive molecular phenotyping of the tumour 
at affordable costs, thus making it a prime candidate for routine clinical applications. 
Understanding the underlying subpopulation and marker expression diversity within the 
population has the potential to unravel resistance mechanisms that are masked at 
the bulk population level [39].  
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Figure 1.2 – Application of single-cell RNA-seq. Single-cell transcriptome profiling enables to study the intra-
tumor heterogeneity that can drive metastasis formation and drug resistance.  
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CHAPTER 2 - Technologies for single-cell RNA sequencing 
 
 
In the past decade, bulk RNA sequencing (RNA-seq) technologies have been widely used as 
standard assays to measure the gene expression profile of cell populations and to identify 
differences between conditions. However bulk methods average the gene expression profile across 
all the cells in the sample, basically assuming that the average response is representative of each 
cell. Complex cell samples, such as cancer cells, contain heterogeneous populations that include 
many cell types with different gene expression programs. Single-cell RNA sequencing (scRNA-
seq) provides the possibility to explore this gene expression variability at the single-cell level, thus 
unmasking the existence of different subpopulation with unique behaviors and answering key 
biological questions such as cell heterogeneity and differentiation. 

Conventionally, bulk RNA-seq protocols include RNA extraction from samples, that is 
converted into a cDNA library with sequencing adapters for the so-called Next Generation 
Sequencing (NGS) technology, which enables massive parallel sequencing of the sample and 
reconstruction of the transcriptome in term of genes expressed and the relative level. Compared to 
bulk, scRNA-seq includes additional steps, such as the isolation of the RNA from individual cells 
and tagging the cell-of-origin of the captured RNA by labeling it with a specific cell identifier (i.e. 
cell barcode). Here, I illustrate the main technologies proposed so far to perform single-cell RNA 
sequencing of mammalian cells. I show that scRNA-seq platforms differ for the method of cell 
isolation and the throughput (i.e. the number of cells that a platform has the potential to yield). In 
what follow, I focus on the droplet-based technologies, and I describe in detail the Drop-seq 
platform for scRNA-seq. Finally, I conclude with a comparative analysis of Drop-seq with other 
droplet-based scRNA-seq technologies. 
 
 
2.1 – Main technologies for single-cell RNA-seq 
 
Single-cell sequencing of RNA, that is scRNA-seq, requires the combination of two main 
technologies: (i) single-cell isolation technologies to capture the cell transcriptome and generate 
cDNA libraries for sequencing; and (ii) Next Generation Sequencing technologies for massive 
parallel sequencing of the libraries obtained from the previous step.  
 
 
2.1.1 – Single-cell isolation technology 
 
Isolation of single cells from a complex population is the first step of all scRNA-seq methods.  
Over time, many sensitive and accurate scRNA-seq platforms have been introduced, improving 
from low to high throughput platforms, defined as the number of cells that a scRNA-seq platform 
is able process. The number of cells processed reflects the technological advances and it has rapidly 
increased over the years, from few cells up to hundreds of thousands of single cells [40], (Figure 
2.1). The most common implementations of scRNA-seq are well-based, microfluidic-based and 
droplet microfluidics-based methods [41]. In well-based methods, single cells are deposited 
manually, or automatically by Fluorescent Activation Cell Sorter (FACS), or within microfluidic 
chips, into wells that contain cell lysis buffer, oligos with different barcodes and other reagents 
able to convert the captured RNA into cDNA. For example, Smart-seq2 [42] is a well-based 
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methods that generates full-length cDNA from FACS isolated cells deposited in a standard 384 
well-plates, but yields low cell throughput. Higher throughput methods have been reported susch 
as Seq-Well [43], a well-based low-cost platform in which cells are deposited by pipetting the cells 
onto a polymer chip patterned with thousands of micro-wells able to trap single cells.  
Microfludics-based applications include the commercial Fluidigm C1 [44] platform consisting of 
an automated microfluidic-based system that can capture and process up to 96 individual cells, 
generating full-length cDNA; cell capture, lysis, reverse transcription, and cell multiplexing occur 
in an integrated fluidic circuit chip [45]. Finally, droplet-microfluidics based methods have been 
recently introduce that have the potential to process thousands of single-cells with high throughput. 
In Section 2.3, I will describe in detail the Drop-seq technology [46], which is the one I 
implemented in this thesis, and I will briefly compare it to the InDrop [47] and 10x Chromium 
(10X Genomics Chromium, 10X Genomics, Pleasanton, CA) technologies.  
 
 

 
 
 
 
 
 
 
 
2.1.2 - Illumina next generation sequencing technology 
 
The Illumina technology is currently the standard and the most widely used technology for the 
sequencing of libraries generated from scRNA-seq platforms.  
Overall, Illumina NGS involves three main steps: library preparation, sequencing, and data 
analysis [48]. Sequencing libraries are typically generated from RNA by first retrotranscribing 
these to cDNA and then adding Illumina adapters to both ends of cDNA fragments. The cDNA 
cleavage in short fragments and the addition of adapters relies on several protocols, of which one 
of the most used is the tagmentation process. In this process, transposase enzymes (tagmentase) 
are employed to simultaneously cleave and tag with adapters the double-stranded cDNA 
fragments. Depending on the protocol, this step yields cDNA short fragments with an average 
length from 200 to above 600 bp. Finally, a limited-cycle PCR enables library amplification with 
complete adapter sequences.    

The library of adapter-ligated short fragments is then loaded onto a solid support (glass 
slide), defined ‘flow cell’. The fragments bind to the flow cell via hybridization of the Illumina 

High throughput pla-orms

Low throughput pla-orms

Figure 2.1 – Technologies for single-cell isolation, developed over the years. x-axis:  publication date; y-axis: 
the number of cells reported in the study. Adapted from Svensson et al. – 2018 
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adapters (referred as P5/P7) with complementary oligonucleotide sequences onto the flow cell 
surface [27], as depicted in Figure 2.2. Subsequently, each cDNA fragment that have bound the 
flow cell surface is amplified (clonal amplification) to generate clusters composed of thousands of 
identical copies of the same fragment.  

Once each fragment has been clonally amplified, the next step is the sequencing process. 
The Illumina technology relies on the sequencing by synthesis (SBS) technique. In SBS, a single 
strand of the cDNA fragments acts as template for the activity of a polymerase, which introduces 
chemically modified nucleotides to synthetize the complementary strand. Each modified 
nucleotide contains a fluorescent tag and a reversible terminator. The fluorescent tag consists of a 
nucleotide-specific fluorochrome that indicates which nucleotide has been added (base call). The 
role of the reversible terminator is to block incorporation of the next base and therefore further 
polymerization. In this way, the SBS process consists of multiple consecutive steps, defined 
‘cycles’. During each cycle, after nucleotide incorporation, first unincorporated nucleotides are 
washed away, and then the flow cell is imaged by total internal reflection fluorescence (TIRF) 
microscopy using either two or four laser channels (two color or four color chemistry), for base 
call. In the four color chemistry, the imaging system is capable of detecting 4 different 
fluorochromes (each of the 4 nucleotides carries a different fluorescent tag), while in the two color 
chemistry the system identifies the incorporated nucleotide from 4 different possibilities: detection 
of the combination of the 2 color, color 1, color 2 or no color. Each of such possibilities correspond 
to a specific nucleotide. Since each fragment has been amplified in thousands of identical copies 
(cluster), the incorporation of a fluorescently labelled nucleotide, results in a signal sufficiently 
above the background noise, to determine which base has been incorporated. However, a quality 
score is assigned to each base, that indicates how confident is the assignment of each base call by 
the sequencer. 

At the end of each cycle, the reversible terminator is cleaved and so the next base can bind 
and the sequencing process go on until all cycles are completed. The result is a string of ACGT 
characters, defined ‘read’, that represents the nucleotide sequence of a specific transcript. The 
sequencing process can be accomplished in two modes: sequence only the forward strand (read1) 
or both forward and reverse strand (read1 and read2). The latter mode is called ‘paired-end’ mode, 
that offers several benefits during the bioinformatic analysis. In scRNA-seq the paired-end mode 
is required to capture both the information from the transcript (usually read2) and the information 
of a barcode (read1) that specifically indexes the paired transcript, and allow to correctly assign it 
to the cell from which it come from (see below) [48]. Indeed, the length of the sequenced read1 
and read2 depends on the number of cycles during the sequencing process, that in turn depends on 
the Illumina reagent kit utilized. 

Different Illumina sequencing machines provide varying levels of throughput, defined as 
the total amount of reads that the system is capable of sequencing, including the MiniSeq, MiSeq, 
NextSeq, NovaSeq and HiSeq models. The MiniSeq provides 7.5 Gb with 25 million reads/run at 
2x150bp reads. The MiSeq can perform 2x300 bp reads, 25 million reads for an output of 15 Gb. 
The NextSeq can provide 120Gb with 400 million reads at 2x150 bp read length [49]. The recently 
developed NovaSeq 6000 sequencer further improves the sequencing performances, providing up 
to 500Gb with 2x150 bp kit for the S1 flow cell and up to 3,000 Gb with the 2x150bp read length 
for the S4 flow cell. 
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2.2 - Droplet-based microfluidic for single-cell transcriptomics. 
 
Microfluidics technology enable precise formation and handling of small fluid volumes dispersed 
as droplets that contain just a few fLs to nLs [50]. Droplet-based microfluidic enables to isolate 
and capture cells with high throughput (up to thousands of cells) in aqueous droplets, to perform 
large-scale gene expression profiles at the single-call level for transcriptomic studies, as 
schematically shown in Figure 2.3. Droplets can be generated in the channels of a microfluidic 
device with high frequency (Hz–kHz) by pressure-driven flows, producing an emulsion, that 
consists of two immiscible fluids, one of which is dispersed as droplets in the continuous phase of 
the other. Typically, a surfactant (surface active agents, which mainly act at the oil/water interface 
by reducing surface tension) is essential to stabilize the droplets against coalescence as they are 
thermodynamically metastable [50]. In droplet-based microfluidic transcriptomic application, the 
droplet dispersed phase is an aqueous suspension and the continuous phase is an immiscible inert 
oil (water-in-oil emulsion). In this way, each droplet behaves as an individual micro-reactor or 
micro-chamber to encapsulate biological samples, such as cells [50], [51]; compared to 
conventional cell culture vessels, a single droplet can accommodate up to 103–109 times less 
volume, making droplet-based microfluidic a powerful tool to increase the throughput. Droplet 
generation can be achieved within a microfluidic device channels by active production (that 
involves the use of valves or electric fields) or passive production methods. Passive production 
can be achieved using pressure-driven flows and a specific geometry of the microfluidic channels, 
as shown in Figure 2.3, such as T-junction, flow-focusing, or co-flowing geometry [51]. In the T-
junction geometry, droplets are generated when the aqueous phase flow is orthogonally sheared 

Figure 2.2 – Main steps of the Illumina sequencing. The NGS library is prepared by adding adapter sequences to 
both ends of the double-stranded cDNA fragments. Then, the library fragments bind the solid support of the flow 
cell, where sequencing occurs. Modified nucleotides are added to the flow cell for the sequencing. These 
nucleotides have a reversible 3' fluorescent blocker so the DNA polymerase can only add one nucleotide at a time 
onto the DNA fragment during each sequencing cycle. Wavelength detection of the fluorescent tag by a computer 
allows to identify what base was added. The process continues until the full DNA molecule is sequenced. 
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by oil and thereby generates droplets. The flow-focusing geometry produces droplets by shearing 
the aqueous stream from two directions. In the co-flow geometry, the aqueous phase is forced 
through a channel, which is placed co-axially inside a bigger channel, through which immiscible 
oil is pumped.  
 
 

                                 
 
 
 
 
 
 
 
 

Droplets can be generated by several mechanisms, among which squeezing, dripping and 
jetting [52]. In the squeezing mechanisms the emerging dispersed phase obstructs the flow of the 
continuous phase, causing the pressure to rise, that in turn, allows the continuous phase to squeeze 
on the dispersed phase, forming a droplet. The dripping mechanism occurs when shear stresses 
overcome the interfacial tension, and drop breakup is caused by the shearing of the dispersed phase 
by the continuous phase. The jetting mechanism is characterized by the formation of long threads 
in the dispersed phase, which are broken due to the Plateau–Rayleigh instability, in which liquids, 
by virtue of their surface tension, tend to minimize their surface area [53].  

The flow-focusing geometry in the droplet-generating junction offers a stable dripping 
mode for a certain range of flow rates, as studied by Moon et al. [54], that optimized the flow rates 
for droplet generation with a flow-focusing geometry, using water as dispersed phase and oil as 
continuous phase (Figure 2.4). The flow-focusing geometry allows the formation of a cylindrical 
thread of the aqueous stream. Importantly, the ratio between the water and the oil flow shapes the 
thread features at the flow-focusing geometry, such as thickness and breakup behaviors, 
determining the generation of either a dripping or jetting mechanism as well as either a stable or 
unstable droplet formation (depending on the consistency of the breakup frequency and uniformity 
of the resulting droplets). Droplet generation with dripping mode is widely used for cell 

Figure 2.3 – Different droplet-generating geometries. (A) In the T-junction geometry, the perpendicular flow of 
the aqueous phase is sheared by oil and thereby generates droplets. (B) The flow-focusing geometry produces 
droplets by shearing the aqueous stream from two directions. (C) In the co-flow geometry, the aqueous phase is 
forced through a capillary, which is placed co-axially inside a bigger capillary, through which immiscible oil is 
pumped. Adapted from (Shembekar et al. – 2016) 



17 
 

encapsulation in droplets [51], [55], that can be achieved by operating a comparatively small water 
flow rate with a wide range of oil flow rates. 
 

                                 
 
 
 
 
 
 

Soft lithography is one of the most common techniques to fabricate microfluidic devices 
for droplet-based single cell sequencing [56]. Overall, a microfluidic device consists of micro-
channels and ports for input and output material, and, in droplet-based microfluidics, one of the 
specific channel geometries, described in Figure 2.3. Generally, the microfluidic chip contains at 
least two layers: a substrate layer, which is usually made of glass or polydimethylsiloxane 
(PDMS), and another layer with the channel network [51]. In droplet-based microfluidics, the chip 
material also has to be highly hydrophobic to ensure efficient wetting of the channel walls by the 
carrier phase, while preventing surface interactions of the aqueous droplets [51]. Channel coating 
with hydrophobic chemicals, allows to achieve a high degree of hydrophobicity. Some examples 
are silanes [57], [58] and Aquapel (PPG Industries) [59]. 
 
 
 
 
 
 

Figure 2.4 – Image showing droplet-generation modes (top) and diagram showing the influence of flow rates of 
the dispersed water phase and carrier oil phase (Qw and Qo) on the droplet-generation mode and frequency. 
Adapted from (Moon et al. – 2017). 
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2.3 - Drop-seq platform for high throughput transcriptome profiling of single cells  
 
Drop-seq technology is a droplet-based microfluidic method, first developed in 2015 by Macoscko 
et al., which enables highly parallel genome-wide expression profiling of individual cells [46]. The 
Drop-seq method is based on the co-encapsulation of single cells together with barcoded beads in 
aqueous nL-scale droplets, formed by precisely combining aqueous and oil flows in a microfluidic 
device (Figure 2.5).  
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The Drop-seq microfluidics chip consists of three main channels, one containing a highly 
diluted cell suspension, another individually barcoded beads in a lysis buffer and a third channel 
with oil. By means of the flow-focusing geometry of the microfluidic device, millions of nanoliter 
aqueous droplets-in-oil are generated per hour. Thousands of generated droplets contain exactly 
one barcoded bead and one cell, whereas the majority contains either no beads, or no cell. Indeed, 
cells are randomly distributed when arriving at the droplet-generating junction and get 
encapsulated randomly in droplets according to Poisson distribution (assuming that the droplet 
volume is much greater than the barcoded bead and cell volume) [51], [60], [61]: 
 
𝑃!(𝑘) =
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Where P is the fraction of droplets that will contain 𝑘 cells (e.g. 𝑘 =1 is the fraction of droplet that 
contain 1 cell) and λ is the mean number of cells per droplet and is calculated by multiplying cell 
concentration by the droplet volume. It should be emphasized that, regardless of λ, the majority of 
droplets will not contain single cells. Highly diluted cell suspension (e.g. λ = 0.05) yields only 
~5% of droplets with one cell (𝑘 =1) but enables to largely reduce the droplets with two or multiple 
cells (~0.1%, for 𝑘 =2), at the price of an increased fraction of empty droplets. Hence, setting the 
cell concentration is crucial to find the optimal trade-off between the occurrence of multiple cells 
and throughput. The number of cells and barcoded beads that get encapsulated at the droplet-
generating junction is described by two independent Poisson variables. The probability of the 
occurrence of i barcoded beads and j cells per droplet is given by [63]: 
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Where λb and λc are respectively the average number of barcoded beads and cells per droplet. 

In droplets containing both a cell and a barcoded bead, cell lysis occurs, and cell’s poly(A)-
RNA is captured by the ~100 million oligonucleotides attached to the bead surface. These beads 
are then collected, reverse-transcribed in bulk to form STAMPs (i.e. Single-cell Transcriptomes 
Attached to Microparticles), and cDNA amplified for sequencing. In Drop-seq technology, the 
barcoded beads consist of 30µm diameter resin microparticles, which bound onto the surface DNA 
oligonucleotides (primers). The primers on all barcoded beads contain a common sequence (PCR 
handle) to enable PCR amplification after STAMP formation. All individual primers onto the same 

Figure 2.5 – Overview on the Drop-seq single-cell transcriptome capturing and processing. (A) Cells and 
barcoded beads co-flow in the microfluidic devices and get encapsulated in aqueous droplets. Within the droplet 
environment, cell lysis occurs since the presence of the lysis buffer. Then, the cell transcriptome is captured by the 
primers onto the barcoded bead surface. Following emulsion breakage, Barcoded beads are recovered, and the 
transcriptome reverse transcribed in bulk, yielding uniquely barcoded STAMPs. Each STAMP represents the 
transcriptome of the cell of origin. STAMPs are then amplified and prepared for next generation sequencing. (B) 
Main features of the Drop-seq microfluidic device, highlighting the droplet generation at the flow-focusing 
geometry. (C) Illustration of the paired-end sequencing mode: read1 covers UMI and barcode, while read2 includes 
the treanscript. (D) Sequencing reads are aligned to the reference genome, then are organized by their barcode (to 
assign transcripts to the cell of origin), for each gene in a cell transcript are counted through UMI count, and the 
digital expression matrix is created. Adapted from (macoscko et al. – 2015) 
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barcoded bead share the same “cell barcode” (12 bp) but have different unique molecular 
identifiers (UMIs; 8bp). UMIs are molecular tags that are used to detect and quantify unique 
mRNA transcripts, enabling mRNA transcripts to be digitally counted, and to avoid double-
counting sequence reads that arose from the same mRNA transcript. A 30 bp oligo dT sequence is 
present at the end of all primer sequences for capture of mRNAs. The cell barcode is a strategy to 
infer the cell of origin of each transcript. In the bioinformatic analysis, all transcripts that share the 
same barcode, are assigned to the same cell of origin.  

The Drop-seq procedure to sequence single-cell transcriptomes consists of collecting all 
barcoded beads after the droplet generation and reverse transcribe the captured transcriptome in 
STAMPs. Then, an exonuclease I reaction is performed to chew back primer that have not captured 
any transcript. STAMPs are amplified and then NGS single cell library are generated for high 
throughput next generation sequencing. During sequencing, the first read (read1) yields the cell 
barcode and UMI. The second, paired-read (read2) interrogates sequence from the cDNA. 
Following data pre-processing, single-cell transcriptomes are reconstructed by computational 
pipelines. Sequencing reads are aligned to a reference genome to identify the gene-of-origin of the 
cDNA. Next, reads are organized by their cell barcodes, and individual UMIs are counted for each 
gene in each cell. The result, is a ‘digital expression matrix’ in which each column corresponds to 
a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected 
from that gene, in that cell. 
 
 
2.4 - Comparison of Droplet-based single-cell RNA sequencing platforms 
 
Other strategies employing droplet-based microfluidics have been developed for transcriptome 
profiling of single cells with high throughput. Currently, there are other two droplet-based systems 
for high throughput scRNA-seq in addition to Drop-seq, namely the inDrop technology and the 
commercial 10x Chromium technology. [46], [47], (Figure 2.6). All of these droplet-based 
platforms are based on the same barcoded bead and cell co-encapsulation methods, and have been 
demonstrated to be robust at generating NGS single-cell libraries in single-cell RNA sequencing 
experiments. However, they are based on different barcoded bead manufacturing approaches, 
barcode design, and cDNA amplification and thus have different experimental protocols. The 
DNA sequences of barcoded bead primers share a common structure, containing a PCR handle, 
cell barcode, UMI, and poly-T. However, the beads are fabricated with different materials. The 
beads used in 10X and inDrop systems are made of hydrogel, while Drop-seq uses resin 
microparticles [62]. In Drop-seq, the resin microparticles are small hard beads, the encapsulation 
step follows the Poisson distribution. The capture rate of one bead and one cell within a single 
droplet follows the Poisson distribution (as shown above; Section 2.3), therefore yielding a large 
number of empty droplets [62]–[64]. On the contrary, for both InDROP and the 10x Chromium 
system the hydrogel beads are soft and deformable, closely packed in the microfluidic channel, 
and their encapsulation can be synchronized to achieve a super-Poissonian distribution (Figure 
2.6). This highly affects the cell capture rate and the throughput of the plastform. The capture 
efficiencies have been reported to be 2-4%, 75% and 50% respectively for Drop-seq, inDrop and 
10x chromium. The input cell material is also very different: Drop-seq requires >200,000 cells, 
from 1,000-2,000 to 10,000 cells for InDrop, and >1,000 cells for the 10x Chromium system [41], 
[62]. Interestingly, Zheng et al. (2019) in their study show that, although 10x Chromium captured 
the highest average number of genes per cell (∼3,000), Drop-seq captured a comparable number 
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of genes (∼2,500), even higher than InDrop (∼1,250) [62]. However, although Drop-seq performs 
slightly worse than the 10X Chromium system, it is substantially cheaper, making it an attractive 
choice when the sequencing of a very large number of samples is required. Nevertheless, both 
Drop-seq and InDrop require operator expertise in the microfluidic field. Thus, the implementation 
of such scRNA-seq platforms may not be accessible to all laboratories [64]. 

To conclude, the choice of the most suitable droplet-based microfluidic platform, strictly 
depends on the research requirements and the field of study. 10x Chromium allows to capture more 
genes, and, as well as InDrop, to process samples with very few cells, such as biopsy sample. On 
the other hand, Drop-seq enables low-cost sample processing and high throughput sequencing, at 
the price of large sample as input and, as for InDrop, microfluidics expertise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 – Schematic and comparison of experimental features of the three systems. Adapted from (Zhang et 
al. – 2019) 
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CHAPTER 3 - Implementation of the Drop-seq microfluidic platform 
 
  
The Drop-seq microfluidics platform was first developed in 2015 [46] to perform highly parallel 
transcriptome profiling of individual cells from a complex cell suspension.  A detailed description 
of this technology in reported in Chapter 2, section 2.3.  Here, I describe in detail, the components 
and the functioning of the Drop-seq microfluidics set-up that I implemented in the lab, as well as 
the protocol I optimized to successfully perform scRNA-seq experiments. To this end, I performed 
several experimental tests to refine experimental conditions and in addition I carried out a human-
mouse mixture experiment in order to estimate the cell doublet rate, defined as the occurrence of 
two cells together with a barcoded bead in specific conditions. Finally, in collaboration with 
Gianmarco Nocera, PhD, we optimized the performance of the microfluidic device, by 
implementing a spiral channel for barcoded bead ordering. We observed an improvement of the 
filtering efficiency of the microfluidic device, and a reduction in reagent loss during the 
experiments. 
 
 
3.1 - Drop-seq microfluidic system implementation 
 
As described in Macosko et al., I implemented the Drop-seq set-up in the lab from scratch. As 
shown in detail in Figure 3.1A, the microfluidics set-up consists of the following devices: 
  

• Polydimethylsiloxane (PDMS) microfluidics device 
 

• Three Syringe pumps 
 

• Flexible PTFE tubes 
 

• Magnetic stirrer system 
 

• Inverted optical microscope 
  
I employed three syringe pumps to drive three fluids: (I) carrier inert oil connected to port 1 in 
Figure 3.1B; (II) a highly diluted cell suspension connected to port 2 in Figure3.1B, and (III) 
barcoded bead in lysis buffer suspension connected to port 3 in Figure .3.1B. Syringe pumps are 
set to apply constant pressure that drives the flows of cells, barcoded beads and oil from syringes 
to the PDMS microfluidic device under specific flow rates. I used PTFE flexible tubes to link 
aqueous flows and oil flow from syringes to the respective microfluidics device inlet ports. 
I used syringe pumps in two different orientations: horizontal for cell suspension and oil syringe 
pump, and vertical for the barcoded bead syringe pump to uniformly distribute the barcoded beads 
in suspension in the syringe. 
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3.1.1 – PDMS microfluidic device for droplet generation 
 
The Drop-seq PDMS microfluidic device (Figure 3.1B) consists of the following main 
components:  
 

• Four ports: 3 inlets and 1 outlet 
 

• Passive filters 
 

• Flow-focusing geometry 
  
The PDMS microfluidic device is composed of three inlet ports, respectively for oil, cell and 
barcoded bead suspension and one outlet port for collecting droplets, while passive filters 
implemented to each inlet port help to prevent channels from clogging. The cross-sections of the 
rectangular channel are 125μm x 100μm (depth x width). Aqueous and oil flows enter the 
microfluidic device through the respective inlet port; cell and barcoded bead suspensions co-flow 
and converge with the oil flow in the flow-focusing geometry where single cells co-encapsulation 
with barcoded beads in aqueous droplets occurs and the water-in-oil emulsion is generated (Figure 
1C,D). The droplet outflow in the oil continuous phase then exits the microfluidic device channel 
through the outlet port in a PTFE tube and is collected in an ice-cold reservoir. A serpentine-shaped 
channel improves the mixing of the lysis buffer with cell suspension within the droplet, before exit 
from the outlet port, enabling correct cell lysis for barcoded bead transcriptome capturing. The 
microfluidic device is placed on an inverted microscope stage: this allows to continuously check 
the correct droplet generation in the device. The main feature indicative of a good droplet 
generation is the triangle formation (Figure 1E) at the flow-focusing junction where all the flows 
(beads, cells, and oil) come together to form the droplets. A triangle with well-defined outlines is 
key to perform a good quality Drop-seq experiment because it implies uniform droplets production 
and allows to troubleshoot any flow problems that might be contributing to poor droplet quality. 
Downstream of the triangle, the emulsion outflow should appear blurred without any flickering of 
the flow, indicative of good quality droplet generation, while well-defined outflow outlines, as 
well as flickering triangle tip, are both indicative of non-uniform or poor quality droplet 
generation. 

The microfluidics device was produced applying the replica molding technique to fabricate 
PDMS devices from a silicon wafer (see Methods). Briefly, I treated the Drop-seq custom master-
mold under a fume hood for 5 minutes with trimethylchlorosilane (TMCS); then I poured a 10:1 
PDMS-curing agent mix onto the master, rest 2 hr in a vacuum chamber to remove bubbles and 
then baked at 80 °C for 2 hr for PDMS reticulation and polymerization. After the peeling-off the 
reticulated PDMS, channels and ports are reproduced on the PDMS surface. I used a biopsy punch 
to drill all ports and subsequently I cut and washed in 2-propanol each single PDMS device. In 
addition, I washed glass slides with acetone, then water and eventually 2-propanol. After overnight 
incubation in a vacuum chamber, I performed oxygen plasma irreversible bonding on glass slides, 
to produce complete PDMS microfluidic devices.    
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3.1.2 – Magnetic stirrer system 
  
Barcoded beads consist of 30μm mean resin microparticle and this feature causes rapid 
precipitation in the syringe. I experienced that this represents a weakness of the system since 
precipitated barcoded beads increase the chance of obstructing the microfluidics system by 
forming clogs both in syringe/PTFE tubes and in the channels of the device. To solve this issue, 
as shown in Figure 1F,G, I installed a magnetic stirrer system in close proximity to the bead pump. 
The system includes two main components: (I) magnetic tumble stirrer with neodymium iron 
boron magnet, (II) magnetic stir disc (5mm diameter, 1.7 mm thick) placed in the barcoded bead 
syringe. The magnetic tumble stirrer generates a magnetic field coming from the neodymium iron 
boron magnet, causing an ‘up and down’ movement of the magnetic stir disc along the syringe. 
Thereby, barcoded beads are continuously stirred and resuspended in the lysis buffer medium, 
preventing precipitation during microfluidic experiments. In addition, the vertical mode of the 
syringe pump allows to best fit the magnetic stir disc movement along the syringe. 
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3.2 – Barcoded bead functionality test: poly(A) RNA capturing in bulk mode  
  
Following the Drop-seq platform setup, I decided to test the barcoded bead functionality before 
performing any experiment with the platform. To this end, I mixed barcoded beads with purified 
RNA in batch mode (i.e. in a tube) to perform RNA poly(A) tail binding, along with poly(A) RNA 
capturing with oligo(dT)20 primer as positive control (Figure 2A) and barcoded bead without any 
RNA addition as negative control (mock). Oligo(dT)20 primer is a string of 20 deoxythymidylic 
acid residues that hybridizes to the poly(A) tail of mRNA triggering enzymatic RNA reverse 
transcription. In brief, the test consists of the following main steps: (I) poly(A) RNA capturing; 
(II) reverse  
 

 

RNA extrac+on 
from cells

Barcoded beads + RNA
(lysis buffermedium)

Barcoded b ead  batch ol igo(dT) 20 batch

oligo(dT)20 + RNA
(RT buffermedium)

poly(A) RNA capture
5 min

Barcoded bead washing

Reverse transcrip+on Reverse transcrip+on

Exonuclease I

cDNA amplifica+on cDNA amplifica+on

Purifica+on and cDNA library analysis

A



27 
 

transcription; (III) cDNA amplification and analysis. All the experimental parameters I used for 
both tests are reported in Table 1. 

First, I optimized the medium condition for the barcoded bead hybridization with poly(A) 
RNA. During a Drop-seq microfluidics run, lysis buffer and PBS co-flow in the channel and mix 
1:1 in the droplet; I reproduced this condition by preparing the capturing medium with lysis buffer 
and PBS in 1:1 ratio, thus keeping the poly(A) capturing environment similar to the droplet. For 
the oligo(dT)20 primer protocol, I decided to use reverse transcription buffer as capturing medium. 
This decision was driven by the fact that N-lauroylsarcosine (sarkosyl), the cell lysis agent of the 
lysis buffer used in Drop-seq, is a powerful denaturating agent (see methods). Thus, for the 
oligo(dT)20 primer protocol, I performed the reverse transcription step directly in the capturing 
medium, bypassing the problem of sarkosyl that would have inactivated the reverse transcription 
enzyme in the subsequent reverse transcription step. I set the capturing medium volume relatively 
small, approximately to 21 μL for both tests, to improve the RNA chance to successfully hybridize. 

I then combined 400ng of total RNA with either 20,000 beads or 500ng oligo(dT)20 primer 
for 5 min. Then, for the barcoded beads batch, I performed several washes to remove the lysis 
buffer denaturating condition before going on with reverse transcription, while for the oligo(dT)20 
primers batch I added directly in the capturing medium the reverse transcription enzyme (see 
methods).  
Both oligo(dT)20 and barcoded bead batch yielded successful RNA capture, reverse transcription, 
and amplification, as shown in Figure 2B, although the barcoded bead batch displayed RNA 
degradation (shorter cDNA fragments); this was not a problem because I performed this test with 
the purpose of testing the bead functionality. I analyzed results with TapeStation chip D1000 high 
sensitivity, but I evaluated this device not suitable to perform cDNA fragment population analysis 
from transcriptome, since the expected distribution spreads in a wide range around a peak at 1300-
1500 bp that is near the upper detection limit of this device. Thus, for the next experiments I 
decided to switch to the Agilent Bioanalyzer high sensitivity chip, that better fits the bp range of 
cDNA fragments in my experiments.  
 

 
 
  
  
 
 

Barcoded bead batch Oligo(dT)20 batch
Amount 20,000 beads 500 ng
RNA amount 400 ng 400 ng
Capturing medium Lysis buffer RT buffer

Medium volume 21 μL 21 μL
Capturing time 5 min 5 min
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3.3 – Testing the microfluidics implementation 
  
Once I implemented the microfluidics system and assessed barcoded bead functionality, I set to 
establish a customized protocol to optimize scRNA-seq experiments. Specifically, may aims were: 
  

(I) Customize a tailored protocol for cDNA and NGS library preparation with Drop-seq; 
 

(II) Experimentally estimate the number of sequenced cells, in specific condition (i.e. cell 
concentration) and microfluidic run duration; 

 
(III) Estimate the doublet rate. 

  
The number of cells obtained (exposed to a barcoded bead) over the total number of cells processed 
in droplet during the microfluidic run (input cells), has been expressed by Moon et al. (2018) [54] 
as cell yield; specifically, it is defined as the fraction of cells encapsulated one-to-one with a 
barcoded bead for all cells encapsulated in droplets, expressed as percentage, and calculated by: 
 

𝑐𝑒𝑙𝑙	𝑦𝑖𝑒𝑙𝑑 =
𝑐𝑒𝑙𝑙 + 𝑏𝑒𝑎𝑑	#	
𝑡𝑜𝑡𝑎𝑙	𝑐𝑒𝑙𝑙	# 	× 100 

 
 
Practically, I found more useful the barcoded bead yield: 
 
 

𝑏𝑒𝑎𝑑	𝑦𝑖𝑒𝑙𝑑 =
𝑐𝑒𝑙𝑙 + 𝑏𝑒𝑎𝑑	#	
𝑡𝑜𝑡𝑎𝑙	𝑏𝑒𝑎𝑑	# 	× 100 

 
 
This because during a Drop-seq experiment I work with barcoded beads rather than cells, since 
cell lyse because of the lysis buffer, to allow barcoded bead capturing of poly(A)-RNA, and hence 
they cannot be observed. On the other hand, after the microfluidic run, the total amount of 
recovered barcoded beads can be counted, and from the barcoded bead yields it is possible to 
estimate the proportion of cell transcriptomes captured (STAMPs), since it expresses the 
percentage of barcoded bead exposed to a cell among the recovered barcoded beads. This is very 
helpful to decide how many single cell transcriptomes to sequence over the total barcoded beads 
obtained from the microfluidic run.  

The cell doublet estimation consists of performing a mixed-species experiment: this 
experiment involves mixing cells from two different species in a 1:1 ratio, typically human and 
mouse species; captured transcriptomes from isolated cells are sequenced, and then is checked the 
percentage of species-specific transcripts assigned to each unique barcode. A barcode can be 
considered species-specific when ³99% (depending on the protocol), of assigned transcripts match 
the same genome, either human or mouse genome; on the contrary, a barcode with assigned a 
mixed pool of human-mouse transcripts (i.e. matched both human and mouse genome) is 
considered a no species-specific barcode since captured transcripts come from two different 
species from the occurrence of one barcoded bead with two cells (one human and one mouse cell); 
such condition represents a cell doublet. 
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3.3.1 – Doublets events are technical artifact that confound scRNA-seq data analysis  
  
Cell doublets (or multiplets) consist of two or more cells encapsulated with a barcoded bead in the 
same droplet, causing the bead unique barcode to tag more than one cell. In this condition, the 
transcriptome coming from multiple cells is recognized as if it belongs to a single cell (or barcode). 
In droplet-based single-cell methods, the cell doublet rate is defined as the proportion of two or 
multiple cells occurring together with a barcoded bead in the droplet and therefore tagged with the 
same barcode. The cell suspension concentration affects the chance of two cells occurrence the 
droplet; highly diluted cells are encapsulated in droplets according to the Poisson distribution, and 
increasing the cell concentration, proportionally increases the number of cells processed in 
droplets, but proportionally increases also the cell doublet rate. From time to time, I also 
experienced that cell aggregates in suspension contribute to increasing the cell doublet rate. Indeed, 
cells can stick together in suspension because of DNA release in the medium from dying cells may 
cause cells to clump together, due to its sticky nature. This is a critical point since high degree of 
aggregation prevents a successful single cell sequencing experiment. 
Barcode doublets or multiplets arise when a cell get encapsulated with two or more barcoded beads 
and in such event cell transcripts are captured by both barcodes.  
 
 
3.3.2 – Experimental workflow optimization and cell doublet estimation 
  
In order to perform scRNA-seq experiments, I set to optimize the experimental workflow with the 
implemented microfluidic setup. Here, in what follows I refer to cell and barcoded bead 
concentrations as the ones loaded in the syringe. Indeed, in the droplet, each concentration is the 
half of the concentration loaded in the syringe, since in the microfluidic channel cell and barcoded 
bead flows mix 1:1 before encapsulation at the droplet generating junction. For example, 100 
cell/μL concentration loaded in the syringe yields a cell concentration in the droplet volume of 50 
cell/μL.  Macoscko et al. reported sequencing data for a set of cell concentrations,  and provide a 
cell reference concentration of 100 cell/μL in the Drop-seq experimental procedure, with a 
barcoded bead yield of ~5% (percentage of barcoded beads that have been exposed to a cell) and 
a doublet rate of 1.9% on a total of 1,020 sequenced cells (Drop-seq lab protocol version 3.1); 
December 28, 2015 I decided to test a further cell concentration of 500 cell/μL while I kept 
barcoded bead concentration to 120 bead/μL, as protocol. I set flow rates for aqueous suspensions 
(cells and barcoded beads) to 66.6 μL/min, while oil flow rate to 250 μL/min. 

In order to experimentally estimate the cell doublet rate with 500 cell/μL, I performed the 
mixed-species human-muse mixture experiment. I mixed MDA-MB-453 human breast cancer cell 
line with NIH-3T3 mouse fibroblast cell line in a 1:1 ratio; cells from the two species were 
randomly resuspended at the cell loading concentration of 500 cell/μL, in order to obtain in the 
droplet volume 250 cell/μL final concentration.  

I performed cell and barcoded bead droplet encapsulation in the microfluidic device for 
poly(A) RNA capturing for 15 minutes. Since barcoded beads flow at 66.6 μL/min, with a 
concentration of 120 bead/μL, ~8,000 barcoded beads get encapsulated per min, and ~120,000 in 
15 min. After droplet breakage and enzymatic steps to obtain STAMPs (see Methods), I counted 
the barcoded beads with a hemocytometer. The resulting total number of barcoded beads I obtained 
was ~105,000 (average of three counts).  
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I decided to go on with the PCR amplification with 40,000 barcoded beads, in order to have 
a barcoded bead reservoir backup in case of amplification failure. From the 40,000 barcoded bead 
sample, I aliquoted ~2000 beads in PCR tubes, then each aliquot underwent PCR, with the 
following program: 
 
95 C 3 minutes 
4 cycles of: 
98 C 20 s 
65 C 45 s 
72 C 3 min 
11 cycles of: 
98 C 20 s 
67 C 20 s 
72 C 3 min 
Then: 
72 C 5 min 
4 C forever 
 
The amplified cDNA population was expected to have the bp average ranging from 1000bp and 
1500bp. To purify the cDNA population from the PCR master mix, I used Ampure XP beads for 
cDNA library clean-up and size selection. I purified the amplified cDNA library using a volume 
of Ampure XP beads 1.8x the cDNA library sample volume. However, at this ratio, the Ampure 
XP beads were not capable of excluding primer dimers from the cDNA library, which appear as a 
strong peak at approximately 100bp (Figure 3A). In order to overcome primer dimer carryover, I 
decided to change the Ampure XP beads volume to 0.6x the cDNA library sample volume; this 
ratio resulted suitable to selectively purify the cDNA population while excluding primer dimers. 
With this purification condition, the resulted cDNA population appeared smooth and with no 
contaminant and/or primer dimer peak (Figure 3B). The final cDNA library, after Ampure XP 
beads 0.6x clean up, resulted with the bp average at 1428 bp, and concentrated 11.84 ng/μL. 

In the subsequent step, I generated Illumina indexed NGS library from the cDNA library 
(see Methods for details). I generated four NGS libraries, each with 600 pg of the cDNA library 
sample (four independent reactions) in order to ensure that the NGS library would have enriched 
for all captured transcripts. Nevertheless, in other tests, I observed that even one single reaction is 
enough to this purpose, but I kept four reactions for all experiments I performed. Then, I carried 
out the PCR as reported in the Drop-seq experimental procedure, to amplify and complete Illumina 
adapter addition to each of the four tagmented libraries. After PCR, I pooled together the reactions. 
Subsequently, I purified each NGS library with 0.6x Ampure XP beads, as above. However, since 
this ratio did not exclude primer dimers from the sample, I directly removed adapter dimers by 
agarose 2% gel purification, immediately after the 0.6X Ampure XP beads clean up (see Methods). 
In brief, I run the NGS library on 2% agarose gel, then using a scalpel, I specifically cut and 
recovered the library population to purify while excluding the primer dimers. Figure 3C shows the 
NGS library that I obtained with the bp average at 425 bp and concentrated 2.46 ng/μL. 

NGS library was now ready for sequencing. Next generation sequencing was performed 
with the Illumina NextSeq 500 sequencer for high-capacity parallel sequencing. In paired-end 
mode, shown in Figure 3E, the first read (read1) yields the cell barcode and UMI (12bp barcode + 
8bp UMI), while the second read (read2) includes the paired transcript sequence from cDNA. I set 
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20 bp for base calling of the read1 barcode and UMI (12 bp barcode + 8 bp UMI), while 64 bp for 
read2 to call the paired transcript sequence. In addition, 8 bp included the read1 index (Figure 3D 
and Methods). 

In collaboration with Gennaro Gambardella, PhD, a computer scientist in the lab, we 
analyzed the sequencing data from the Drop-seq human-mouse experiment. Sequenced reads were 
aligned both to the human genome (hg19) and mouse genome (mm10). Cellular barcodes (cell-
assigned barcodes), arising from STAMPs, were called and background barcodes excluded. 
Background barcodes tagged no cells (in empty droplets), however, can be contaminated with 
ambient RNA incorporated into droplets, that is the pool of mRNA molecules that have been 
released in the cell suspension, likely from apoptotic cells or damaged cells that have leaked out 
RNA [65]. Usually, cell barcodes have associated significantly more transcript counts than the 
background barcodes (e.g. that sampled ambient RNA). To select cell-assigned barcodes, we thus 
filtered out all barcodes with less than approximately 10,000 UMI total counts, corresponding to 
the steep slope inflection point in the barcode-UMI plot, as shown in Figure 3G, recovering 4918 
transcriptomes from cell-assigned barcodes. 
The scatter plot in Figure 3G shows the cell doublet analysis of the human-mouse mixture 
experiment. Each dot represents a transcriptome (cellular barcode) with the number of associated 
human and mouse transcripts respectively on the x and y-axis. Blue dots indicate human-specific 
transcriptomes (average of 99% human transcripts), while green dots indicate transcriptomes that 
were mouse-specific (average of 99% mouse transcripts). Red dots represent transcriptomes with 
a significant proportion of transcripts associated with both the human genome and mouse genome 
and represent cell doublet (i.e. barcodes that occurred with two or more cells in the droplet). We 
obtained a cell doublet proportion of 14.9% working with the cell concentration of 500 cell/μL.  
Overall, we processed 40,000 barcoded beads obtaining 4,918 cells, from a microfluidic run with 
500 cell/μL, with a cell doublet rate of 14.9% from the human-mouse mixture experiment. Since 
4918 represents the number of barcoded beads that have been exposed to a cell in the 40,000 
barcoded bead sample, the barcoded bead yield was: 
 

𝑏𝑒𝑎𝑑	𝑦𝑖𝑒𝑙𝑑 =
4918	
40,000	× 100	 ≈ 12% 

 
This value resulted greater than the value reported in the Drop-seq experimental procedure of 5%, 
with the reference cell concentration of 100 cell/μL (doublet rate of 1.9%). Because of the higher 
cell doublets rate, we decided that the 500 cell/μL concentration was not suitable to perform 
scRNA-seq experiment. Hence, we reduced the cell concentration to 200 cell/μL for all subsequent 
experiments, in order to reduce the cell doublet rate. 

To estimate the cell yield, I had to do some approximations: 40,000 barcoded beads yielded 
4,918 cells, therefore I approximated that 105,000 barcoded beads (the total amount I obtained) 
would yield ~12,800 cells, although this is an approximation since this value could fluctuate 
depending on the bioinformatic filtering (that is influenced by the quality of the data). During the 
microfluidic run, cells flowed at 66.6 μL/min at the concentration of 500 cell/μL, yielding 
~500,000 cells in droplets in 15 min: 
 
 

𝑐𝑒𝑙𝑙	𝑦𝑖𝑒𝑙𝑑 =
12,800	
500,000	× 100	 ≈ 2.5% 
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This means that, on overage, the platform is able to capture the ~2.5% of cells. This highlights that 
one of the drawbacks of the Drop-seq platform is that this it is not suitable for processing small 
sample such as biopsy sample or rare primary cells. It is worth noting that a similar cell capture 
rate was reported also by Ziegenhain et al. (2018) [41], where they show that Drop-seq allows to 
capture from 2 to 4% of input cells, and the need of a relatively high number of starting cells 
compared to other droplet-based techniques for scRNA-seq. 	 
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Figure 3. (A) Example of encapsula@on of different events. Red circles highlight barcoded bead doublets; the blue circle
highlights a cell double event; green circles highlight the occurrence of a cell together with a (B) Bionalyzer high sensi@vity
analysis of the cDNA library purified with Ampure XP beads in a ra@o of 1.8X with the sample volume. This ra@o do not
exclude primer dimers, that appear as a strong peak at approximately 100 bp (highlighted by a green arrow). (C) cDNA library
cleaned from primer dimers with an Ampure XP bead ra@o set to 0.6X and; the cDNA distribu@on appear smooth with a bp
average at approximately 1300 bp. The green arrow shows the absence of the primer dimer peak. (D) NGS library distribu@on
analyzed by bioanalyzer high sensi@vity chip, with a bp average around 500 bp. No primer dimer peak is detectable aXer
agarose 2% gel purifica@on. (E) schema@c representa@on of the paired-end sequencing for the human-mouse mixture
experiment. Read1 covers unique barcode (12 bp) and UMI (8 bp), and together account for 20 bp. Read2 covers the
transcript sequence paired to read1; up to 64 bases were called for human-mouse mixture experiments. (F) Barcode-UMI
plot. The steep inflec@on point (dashed line) is the threshold to exclude cell barcodes from background barcodes. We
recovered up to 4918 barcodes aXer filtering. (G) Cell doublet rate for the human-mouse mixed experiment resulted 14.9%.
Barcodes with associated ³ 99% of transcripts from the same species (i.e. align on the same genome, either human or
mouse), were considered to come from the occurrence of one single cell with a barcoded bead. Below this percentage,
barcodes were considered non-species specific and classified as doublet.
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3.4 – Improvement of the microfluidic platform 
 
The Drop-seq platform is a powerful tool for automatic, high-throughput scRNA-seq. However, 
the main drawback is the need of highly diluted cell and barcoded bead suspension to avoid high 
rate of multiple encapsulation events (i.e. cell doublets, barcoded bead doublets). This results in 
the great majority of droplets being empty (relatively low throughput), since cell and barcoded 
bead encapsulation at the droplet generation junction is stochastic and follows the Poisson 
distribution 
 
 
3.4.1 - Implementation of a spiral channel microfluidic device for barcoded bead ordering 
 
Recently, Moon et al. reported a modified version of the Drop-seq microfluidic device to overcame 
random distribution of the barcoded beads in droplets by implementing a spiral channel at the 
barcoded bead port [54]. The spiral channel, through inertial effect, orders highly concentrated 
barcoded beads to form a train (Figure 4A). Thus, ordered barcoded beads are equally spaced when 
entering the flow-focusing junction, resulting in deterministic encapsulation events. This 
modification of the original Macoscko microfluidic device improves the capture rate of cells, as it 
increases the fraction of cells encountering a single bead. Indeed, the use of the spiral channel 
allows to increase concentration of beads as these will be orderly spaced thus increasing the 
number of droplets containing a single bead. Cells are still randomly encapsulated, whereas the 
barcoded bead will be deterministically encapsulated. Therefore, I implemented the Moon version 
of the Drop-seq microfluidic device to improve the microfluidic setup in the lab. Moon et al. 
optimized the aqueous and oil phase flow rate values to generate droplet in a stable dripping mode 
at the flow-focusing geometry. I set the cell suspension and barcoded bead flow rate to 3.2 mL/hr 
and the oil flow rate to 12 mL/hr, by selecting from a range of flow rate values provided in the 
paper. As shown by Moon et al., the flow rate I selected were suitable to generate a stable dripping 
mode for droplet generation.  

I then selected the cell and barcoded bead concentration. I set the cell loading concentration 
to 250 cell/μL, as reported in the paper. Moon et al. analyzed a range of barcoded bead 
concentration from 100 and 1250 bead/μL, showing that the microfluidic device yields very low 
barcoded bead doublets (<0.5%) even at the highest barcoded bead concentration with throughput 
and cell yield increasing over barcoded bead concentration. Moon et al. performed the human-
mouse mixture experiments with 1000 bead/μL, however, I decided to not work with that 
concentration, because, from time to time, I experienced that a high barcoded bead concentration 
increases the chance to form clogs not only in the microfluidic device channels, but also in the 
syringe needle, PTFE tubes and inlet port. I set the barcoded bead concentration to 250 cell/μL, 
that is reported in the paper to yield 5% and ~500 cell/min of respectively cell yield and throughput. 
With this setting I operated droplet generation using the Moon microfluidic device (flow rates and 
concentration for this experiment are summarized in Table 2). Barcoded bead stirring was the same 
as the Macoscko microfluidic device. 
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3.4.2 – Performance test with deterministic barcoded bead encapsulation  
 
In order to estimate the performance of the Moon microfluidic device in terms of cell and barcoded 
bead yield, I generated droplets using the Moon microfluidics device with the setup (syringe 
pumps, microscope, etc…) implemented for the Drop-seq platform. For this test I resuspended 
cells in a buffer (as described in Moon et al.) with no sarkosyl, in order not to lyse cells and thus 
to count intact cells in droplet. I collected droplets in a 60 mm plastic dish, rather than in a tube, 
to distribute them in a monolayer onto a larger surface. Then, I captured random fields in order to 
count bead and cell occupancy in the droplets (example in Figure 4B, full data in Appendix C – 
Supp Figure C1) under an optical microscope. I counted 27 fields, with a total of:  
 

• 88 droplets with one barcoded bead 
 

• 35 droplets with one cell 
 

8 droplets contained one barcoded bead and one cell together. In my hands, the microfluidic device 
yielded no droplets with more than one barcoded bead, suggesting an efficient barcoded bead 
ordering in the spiral channel. Surprisingly, in this test, no cell doublet occurred as well. I 
compared my results with results in the paper, by calculating the cell yield: 
 
  

𝑐𝑒𝑙𝑙	𝑦𝑖𝑒𝑙𝑑 =
8
35	× 100 = 22% 

 
And the barcoded bead yield: 
 

𝑏𝑒𝑎𝑑	𝑦𝑖𝑒𝑙𝑑 =
8	
88 	× 100 = 9%	 

 
 
 
The cell yield I obtained was 22%, resulting much higher than the reported value in the Moon et 
al. publication of ~5%, in the same cell and barcoded bead conditions.  
Barcoded bead yield is a suitable parameter to work with, since the barcoded beads get recovered 
after droplet breakage, irrespective of cells that lyse in the droplets. The resulted barcoded bead 
yield I obtained, was 9%; this result was comparable with the value I found with the Macoscko 
microfluidic device with 500 cell/μL (12%). Moreover, 9% of barcoded bead yield was higher than 
the barcoded bead yield reported in Macoscko et al. with the reference settings and cell 
concentration reported in the paper (~5% barcoded bead yield, with 100 cell/μL), with the 
advantage that the Moon microfluidic device and settings significantly reduced doublet events, 
such as bead doublets, that contributes to errors in cell barcoding. 
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3.4.3 – Implementation of a new passive filter for barcoded beads  
 
Over time, I experienced that one of the main challenges during a Drop-seq microfluidic run is to 
uniformly input barcoded beads in the channel and avoid clog formation. Debris flowing in the 
barcoded bead port can obstruct the channel causing barcoded beads to aggregate and clog (Figure 
4C). For the cell suspension I experienced much less clog events; this is particularly due to the 
smaller size of the cells (15 μm average) compared to the barcoded beads (30 μm average). In 
addition, the passive filter at the cell suspension inlet port has been designed with closer pillars 
than the barcoded bead inlet port filter, preventing more efficiently debris from passing the filter 
barrier; indeed, this is due to the smaller size of cells. Nevertheless, in some cases, I noticed that 
primary cells or starved cells that I processed with the Drop-seq platform, showed high sticky 
features that led cells to stuck in the filter and blocking in turn the other cells flowing through the 
inlet port eventually decreasing the number of cells encapsulated over time at the droplet 
generation junction. All of this events often force to switch microfluidics device for continuing the 
generation of droplet, and indeed I experienced that, in this issue, the barcoded beads filter 
represents the component with the higher chance of clog formation.  

However, the Macoscko microfluidic device consists of an exhaustive passive filter at the 
barcoded bead inlet port compared to the Moon passive filter. The latter consists of only three 
pillars and the port ends with an angle of approximately 90° to the spiral channel for (Figure 4D); 
I experienced this design to be very inefficient in filtering, and from test to test I was forced to 
switch microfluidic device almost every time the barcoded bead port was clogged, with no few 
possibilities of recovering the microfluidic device. In order to solve this problem, I decided to 
implement the Macoscko passive filter of the barcoded bead inlet port to the Moon microfluidic 
device. The wafer master mold was fabricated by Gianmarco Nocera, PhD using standard 
photolithography protocol. The new passive filter implemented in the Moon microfluidic device 
is shown in Figure 4E. This new device resulted efficient as much as the Macoscko passive filter 
in preventing channels from clogging. 
 
  
                         
 

                    
     

                    
 
 
 
 
 

Cells Barcoded beads Oil
Flow rate 3.2 mL/hr 3.2 mL/hr 12 mL/hr
Concentration 250 cell/μL 250 bead/μL -

Table 2. Concentrations and flow rates set for the Moon microfluidic device test.
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C D E

Figure 4. (A) Example of iner@al ordering of barcoded beads in the spiral channel; adapted from Moon et al. (B) Two
representa@ve fields for coun@ng cell and barcoded bead occupancy in droplets (20x magnifica@on). Red circles highlight the
occurrence of one cell with one barcoded bead. (C) Example of barcoded bead clog in the Macoscko microfluidic device.
Upper image 10x magnifica@on, lower image 5x magnifica@on. (D) Passive filter in the Moon microfluidic device (10x
magnifica@on). (E) Passive filter we implemented to decrease the chance of bead clog forma@on.



38 
 

CHAPTER 4 - Single-cell transcriptome profiling of breast cancer cell 
lines (CCLs) for automated cancer diagnosis 
 
 
By means of the Drop-seq technology that I described in Chapter 2 and implemented in Chapter 
3, I performed the next generation sequencing of single cells from a panel of 32 breast cancer cell 
lines (CCLs). Here, I describe the sequencing of the 32 cell lines, and the subsequent data 
processing to generate a comprehensive single-cell transcriptomics atlas enabling automated 
cancer diagnosis. Data processing and computational analysis was performed in collaboration with 
Gennaro Gambardella, PhD. 
 
 
4.1 – Single cell RNA-seq of breast cancer cell lines. 
 
4.1.1 – Selection of comprehensive panel of breast cancer cell lines. 
 
A panel of 32 cell lines was selected for single-cell sequencing, of which 31 breast cancer cell 
lines (CCLs) and one additional non-tumorigenic CCL from fibrocystic breast disease. To fully 
explore the whole transcriptome landscape of breast cancer at the single-cell resolution, the 
selected panel covered all breast cancer subtypes as detailed below: 
 

• 9 luminal A 
 

• 2 luminal B 
 

• 5 HER2+ 
 

• 8 triple negative A 
 

• 7 triple negative B 
 
I collected data from the literature and public databases for each CCL, including the expression 
status of clinically relevant biomarkers, the growth condition, and the derivation site (Appendix D 
- Supp. Table D1). Most of the CCLs were derived from pleural effusion and other metastatic sites; 
for example, MDA-MB-361 cell line was established from brain metastatic site. 
 
 
4.1.2 – Single-cell RNA-seq of CCLs 
 
By means of the Drop-seq microfluidic platform, I performed single-cell RNA-seq of 31 CCLs 
and 1 basal-like normal breast epithelium cell line. I performed all experiments with 200 cell/µL 
and 120 bead/µL, by applying the experimental procedure that I previously optimized and 
described in Chapter 3; the sequencing of single-cell NGS libraries was performed with the 
NovaSeq 6000 Illumina sequencer. For each CCL, I prepared single-cell NGS libraries to sequence 
1,000 cells, and I loaded libraries in the S1 flow cell with the 2×50 bp reagent kit, which yields as 
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output 1.3-1.6 Billion of single-reads CPF (cluster passing filters). The Illumina indexing strategy 
during NGS library generation allows to pool together more samples to parallelize the sequencing 
of multiple libraries (multiplexing). I pooled together up to eight single-cell NGS libraries with a 
unique index to parallelize the sequencing of CCLs and enable demultiplexing. I diluted each 
library of the pool to the library with the lowest concentration (in nM), to assign the same amount 
of reads to each CCLs. Then, I sequenced the pool of libraries in paired-end mode, where the read1 
covered 24 bp to include 20 bp for barcode and UMI (the surplus of 4 bp was due to technical 
issues of the sequencer), 84 bp to the read2 for base calling of the paired transcript, and 8 bp for 
the read1 index.  
 
 
4.2 – Sequencing reads alignment and gene expression quantification 
 
Following sequencing of the cDNA single-cell libraries, we processed raw data using the Drop-
seq tools package version 1.13 and we followed the pipeline described in the Drop-seq Core 
Computational Protocol (http://mccarrolllab.org/dropseq). We filtered raw sequence data to 
remove all read pairs with at least one base in their barcode or UMI with a quality score less than 
10. We trimmed read2 at the 5’ end to remove any adapter sequence, and at the 3’ end to remove 
polyA tails. Then, we aligned reads using the STAR  bioinformatics pipeline [66] on human 
genome (hg38 primary assembly, version 28) downloaded from the GENCODE database [67]. 
Following reads alignment, the UMI tool [68] was applied to perform UMI de-duplication and 
quantify the number of gene transcripts in each cell. In order to identify the number of sequenced 
cells; we used a simple (knee-like) filtering rule as implemented by the CellRanger 2.2 software. 
In this process, we retained only cells with: (i) at least 2,500 UMIs; (ii) morre than 1,000 captured 
genes, and (iii) with less than 50% of reads aligned to mitochondrial genes used as marker of dead 
cells (apoptosis). We discarded putative cell doublets by identifying outliers in the count depth 
distribution by applying the Tukey's method based on lower and upper quartiles with k equal to 3. 
Following pre-processing, we eventually retained a total of 35,276 cells, with an average of 1,069 
cells per cell line and 3,248 genes captured per cell, as reported in Figure 4.1. 
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4.3 - Breast cancer cell line single-cell atlas construction 
 
Single-cells expression profiles were normalized by means of the GF-ICF (Gene Frequency – 
Inverse Cell Frequency) normalization, a method recently described in the literature and available 
as an R package (gficf) [69] (https://github.com/dibbelab/gficf). GF-ICF is based on a data 
transformation model called term frequency-inverse document frequency (TF-IDF) that has been 
extensively used in the field of text mining. Briefly, given a set of 𝑁 cells, let 𝑓+, be the number of 
transcripts of the gene 𝑖	in the cell 𝑗, the gene frequency 𝐺𝐹+, of gene 𝑖 in the cell 𝑗, can be defined 
as: 𝐺𝐹+, = 𝑓+, 	 ∑ 𝑓",-

"./⁄  and represents its number of transcripts divided by the total number of 
transcripts of the cell. The Inverse Cell Frequency of gene 𝑖 can be instead defined as 𝐼𝐶𝐹+ =
log	(𝑁 + 1 𝑛+⁄ + 1) where 𝑛+ denotes the number cells that contain gene 𝑖 among the 𝑁 sequenced 
cells. The GF-ICF score for gene 𝑖 in cell 𝑗 is finally defined as 𝐺𝐹+, × 𝐼𝐶𝐹+. GF-ICF values of 
each cell are then re-scaled to have Euclidean norm equal to one (L2 normalization) to account for 
cell depth biases. We applied GF-ICF transformation on CPM (count per million) after EdgeR 
normalization [70] and discarded genes expressed in less than 5% of the total number of sequenced 
cells. Finally, we summarized each cell with its first 10 Principal Components (PCs) and projected 
to a two-dimensional space with the UMAP package (uwot package, R statistical environment 3.6) 
[71]. We chose the number of principal components equal to 10 by selecting the elbow plot of the 
first 50 PCs.  

The breast cancer (BC) single-cell atlas (http://bcatlas.tigem.it) encompassing 32 cell lines 
is shown in Figure 4.2A and was obtained by combining data across cell lines. In the atlas, cell 
lines derived from the same cancer subtypes tend to cluster together, while being separated from 
the other subtypes: luminal BC cell lines form a big “island” with multiple “peninsulas” with 
intermixing of cells from distinct cell lines; on the contrary, triple-negative breast cancer (TNBC) 
cell lines give rise to an “archipelago”, where cells tend to separate into distinct islands according 
to the cell line of origin, thus suggesting that TNBC cell lines represent instances of distinct 

Figure 4.1 – Violin plot of the captured genes per cell line. Distribution of the number of captured genes per cell, 
across cell lines (x-axis); between parenthesis is specified the number of captured genes in the cell line.   
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diseases. Single-cell expression of clinically relevant biomarkers (Figure 4.2B,C) including 
oestrogen receptor 1 (ESR1), progesterone receptor (PGR), Erb-B2 Receptor Tyrosine Kinase 2 
(ERBB2 a.k.a. HER2) and the epithelial growth factor receptor (EGFR)  across the different cell 
lines are in agreement with their reported status.  
 
 
4.4 – Biomarker analysis of Breast Cancer Cell lines in the atlas. 
 
To gain further insights into each cancer cell line, we analysed the expression of 48 literature-
based biomarkers of clinical relevance, as reported in Figure 4.2D. Luminal cell lines highly 
express luminal epithelium genes, but neither basal epithelial nor stromal markers. We detected 
higher expression of FOXA1 and GATA3 in luminal cell lines compared to TNBC, which have 
been found to be involved in ESR1-induced target genes transcriptional regulation [8], [9] as well 
as with luminal specific phenotype identity [72]; FOXA1 expression has been shown to control 
plasticity between basal and luminal breast cancer cells, not only by inducing luminal genes but 
also by repressing the basal phenotype [73]. In addition, both FOXA1 and GATA3 have been 
identified as favorable prognostic factors and associated with good survival in breast cancer 
patients [74], [75]. 

Unlike luminal cell lines, TNBC cell lines (11 out of 15) show a basal-like phenotype with 
the expression of at least one of cytokeratin 5, 14, or 17, with triple-negative subtype B (TNB) cell 
lines also expressing vimentin (VIM) and Collagen Type VI Alpha Chains (COL6A1, COL6A2, 
COL6A3), genes typically found in fibroblastic cells [76]. In agreement with the knwon TNBC 
features [2], we detected high expression of genes associated with tumor invasiveness, in particular 
for TNB cell lines, expressed genes include ZEB1, TWIST, SNAI2 (SLUG) transcription factors. 
SNAI2 is a well-known gene associated with malignant biological properties of cancer cells [77] 
and together with ZEB1 and TWIST plays a critical role in malignant transformation and tumor 
progression; ZEB1 and TWIST have been shown to downregulate CDH1 (E-cadherin), which play 
a migration-suppressive role, promoting the EMT process[78]. Moreover, we detected in TNBC 
cell lines, and in particular in the TNB subtype, expression of CDH2 (N-cadherin), a stromal 
marker, which, irrespective of CDH1, endows tumor cells with enhanced migratory and invasive 
capacity [79]. 

Two out of five HER2 overexpressing (HER2+) cell lines (JIMT1 and HCC1954) in the 
atlas are in the triple-negative “archipelago” and express cytokeratin 5 (KRT5), a basal marker in 
breast cancer, linked to poor prognosis and unfavourable overall survival [80]. HER2+ cell lines, 
including JIMT1, expressing basal markers (i.e. KRT5) were classified in the basal-HER2+ 
subgroup, characterized by resistance to trastuzumab [81]. JIMT1 and HCC1954 cell lines have 
been reported to be resistant to trastuzumab and anti-HER2 treatments, and in particular, JIMT1 
has been studied as a cancer cell line model for anti-HER2 treatment resistance [82], [17]. Indeed, 
cells overexpressing KRT5 are more invasive, sphere-forming, and quiescent with increased 
resistance to endocrine and chemotherapy and trastuzumab resistance [83], [84]. Interestingly, 
excluding the TNBC cell lines, JIMT1 cell line is the only one that shows the expression of CDH2 
stromal marker and EMT regulator genes, like SNAI2 and TWIST1, with in addition CD44, a 
marker associated with stemness features.  
Finally, the non-tumorigenic MCF12A cell line lacks expression of ESR1, PGR, and HER2 and 
displays a basal-like phenotype. Indeed, I detected basal markers in MCF12A as reported in the 
literature, such as expression of VIM, TP63, and no expression of ACTA2 [85], as well as 
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KRT8/18 positivity and KRT19 negativity according to the marker analysis reported in ATCC in 
this cell line. 

Overall, these results show that single-cell transcriptomics can be successfully used to 
capture the overall expression of clinically relevant markers. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
4.5 – Single-cell RNA sequencing captures the expression of clinically relevant 
signatures across CCLs 
 
By clustering the 35,276 single-cells in the atlas, we identified 22 clusters, as shown in Figure 
4.3A. Interestingly, within the luminal island, cells did not cluster according to their cell line of 
origin, indeed four out of the five luminal clusters contain cells from distinct cell lines (Figure 
4.3B and Appendix C – Supp. Figure C2). On the contrary, triple-negative cell lines clustered 
according to their cell line of origin, with each cluster containing mostly cells from the same cell 
line. 

Figure 4.2 - The Breast Cancer Single Cell Atlas. (A) UMAP representation of single-cell transcriptomics of 32 
cell lines for a total of 35,276 cells color-coded according to cancer subtype (LA=Luminal A, LB=Luminal B, 
H=Her2 positive, TNA = Triple Negative A, TNB = Triple Negative B). (B) Expression levels of the indicated 
biomarker genes in individual cells in the atlas, with red indicating expression, together with their (C) distribution 
within the cell lines, shown as a violin plot. (D) Dotplot of biomarker genes along the columns for each of the 32 
sequenced cell lines along the rows. Biomarker genes are grouped by type (Basal Epith. = Basal Epithelial, Luminal 
Epith. = Luminal Epithelial, L.P. = Luminal Progenitor, EMT = Epithelial to Mesenchymal Transition) 



43 
 

We identified genes specifically expressed among cells in the same cluster for a total of 22 
biomarkers, one for each cluster (Figure 4.3C,D). Interestingly, neither ESR1 nor HER2 were part 
of this set. Literature mining confirmed the significance of some of these markers: clusters in the 
luminal island (Figure 4.3C) were associated to genes involved in cancer progression (BCAS3 [86] 
cluster 2), dissemination (SCGB2A2 [87], [88] cluster 6), proliferation (DRAIC, cluster 1), 
migration and invasion (CLCA2, cluster 8 and PIP, cluster 18). Interestingly, whereas DRAIC is 
correlated with poorer survival of luminal BC patients [89], both CLCA2 and PIP are significantly 
associated with a favourable prognosis.CLCA2 was shown to be downregulated in several primary 
breast tumors and breast CCLs, and loss of CLCA2 was associated with tumorigenicity and 
invasion potential ([90], [91]) while overexpression showed decreased proliferative, migrating and 
invasive features [92]. SCGB2A2 is a member of the uteroglobin protein family and has been 
identified to be breast specific and a candidate breast cancer associated marker [93], [94]. Several 
studies show that SCGB2A2 is mainly expressed in luminal ESR1 positive and HER2 positive 
subtypes compared to TNBC subtype [95], [96]. Correlation of SCGB2A2 with oestrogen and 
progesterone receptor expression, histological and nuclear grade and cell proliferation in breast 
cancer patient specimens indicated that SCGB2A2 expression is associated with a less aggressive 
tumor phenotype [88], [97]. 

To examine the clinical relevance of these 22 biomarkers, we analysed their expression 
across 937 breast cancer patients from the TGCA collection encompassing all four BC types. Out 
of the 22 biomarkers, two (MAGEA4 and XAGE2) could not be mapped to the TGCA dataset. As 
shown in Figure 4.3D, there is a marked difference in the expression of the 20 cluster-derived 
biomarkers across Luminal A, Luminal B, HER2 positive and TNBC patients. Moreover, it is 
possible to distinguish subtypes within each category, which may lead to novel 
diagnostic/prognostic biomarkers (Figure 4.3D). For example, one subset of triple-negative 
patients strongly expresses the protease kallikrein-10 (KLK10), which has been associated with 
poor prognosis, poor response to tamoxifen treatment and identified as potential target to reverse 
trastuzumab resistance [98], [99]. Whereas a second subset is characterised by actin gamma 2 
expression (ACTG2), involved in different cellular processes including cell motility [100], whose 
overexpression has been linked in BC to cell proliferation and platinum-based chemotherapy 
sensitivity, including paclitaxel [101], [102], [103], [104].   

Finally, we compared the performance of the 20 biomarker genes in classifying BC 
subtypes from bulk RNA-seq data (Appendix A - Methods) against the PAM50 gene signature (50 
genes) [89] used in clinics to identify breast cancer subtypes (Figure 1I). The performances were 
overall comparable, with the obvious exceptions of HER2-overexpressing cancers. Indeed, when 
adding ERBB2 to the list of 20 cluster-based biomarkers, classification of this subtypes markedly 
improved (Figure 4.3E).  

Altogether, these analyses confirm that the single cell BC cell line atlas allows identifying 
novel clinically relevant gene signatures useful for patient stratification and tumor type 
classification. 
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4.6 – The breast cancer single-cell atlas for automated cancer diagnosis 
 
The BC atlas can be used as a reference against which to compare single cell transcriptomics data 
from a patient’s tissue biopsy and to perform cancer subtype classification and assessment of 
tumour heterogeneity. To this end, I applied an algorithm developed by Gennaro Gambardella, 
PhD, able to map single-cell transcriptional profiles from a patient onto the BC atlas and to assign 
a specific cell line to each of the patient’s cells. We first tested the ability of the algorithm in 
correctly classifying the very cells in the atlas starting from their single-cell transcriptional profiles 
and correctly classified 92% of the cells (Appendix C – Supp. Figure C3). We then turned to single-
cell transcriptional profiles obtained from five triple-negative breast cancer patients [105]. As 
shown in Figure 4.4A, most, but not all the patients’ cells mapped to the triple-negative 
“archipelago”, except for the TNBC5 sample, for which most cells mapped to the luminal island. 
As the algorithm assigns a specific cell line to each tumour cell, it is also possible to look at the 
cell line composition of each patient, as reported in Figure 4.4B. For the samples TNBC1, TNBC2, 
TNBC4 and TNBC5 most single cell profiles (79%, 91%, 79% and 75% respectively) were 

A B C D

E

Figure 4.3 – Clinically relevant signatures across CCLs. (A) Graphical representation of 35,276 cells color-coded 
according to their cluster of origin. Clusters are numbered from 1 to 22. (B) For the indicated cluster, the 
corresponding pie-chart represents the cluster composition in terms of cell lines. Cell lines in the same pie-chart are 
distinguished by colour. Only the top 10 most heterogenous clusters are shown. Cluster 2 is the most heterogeneous 
while cluster 19 is the most homogeneous. Cell line with less than 1% of cells in a cluster have been merged and are 
represented with the grey slice. (C) Expression levels in the atlas of the five luminal biomarkers identified as the 
most differentially expressed in each of the five luminal clusters (1, 2, 6, 8 and 18). (D) Expression of 20 out of 22 
atlas-derived biomarkers in the biopsies of 937 breast cancer patient from TCGA. (E) Accuracy in classifying tumour 
subtype for 937 patients from TCGA by using either PAM50 or the 22 atlas derived biomarker genes (scCCL) alone 
or augmented with HER2 gene (scCCL + HER2). 
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assigned to two cell lines (MX1 and HCC1187 for TNBC1 and TNBC2; MX1 and DU4475 for 
TNBC4, and ZR751 and T47D for TNBC5). These results demonstrates that heterogeneity is 
present in all the samples, as no patient’s biopsy mapped to a single cell line. Moreover, 
information on the drug sensitivity of the individual cell lines composing the tumour may prove 
useful in guiding therapeutic choices. 

We next tested the algorithm on spatial transcriptomics dataset obtained from the tissue 
biopsy of two patients, one diagnosed with ESR1+/ERBB2+ lobular estrogen positive carcinoma 
and the other with ESR1+/ERBB2+ ductal carcinoma (Figure 4.4C, and Appendix C – Supp. Figure 
C4) [106]. The dataset consists of 3,808 transcriptional profiles for patient 1 and 3,615 profiles for 
patient 2 (Appendix C – Supp. Figure C4), each obtained from a different tissue “tile” of size 100 
µm x 100 µm x 100µm. The algorithm projected each of the spatial tiles onto the BC atlas and 
assigned a cell line to each tile. The algorithm projected each of the spatial tiles onto the BC atlas 
and assigned a cell line to each tile. We coloured the tiles according to the cell line and the BC 
subtype of the cell line to yield an automatic cancer subtype classification of tiles. Most of the tiles 
for both patients were assigned to just two cell lines and correctly classified as luminal (A or B); 
the remaining 13% of the tiles for patient 1 and 20% for patient 2 were instead classified either as 
HER2-overexpressing or Triple Negative, which could be an important information to guide 
therapeutic choice and to predict the occurrence of drug resistance. 

As bulk gene expression profiles are more clinically relevant than single-cell gene 
expression profiles, we next trained a deconvolution algorithm [107] (Appendix C – Supp. Figure 
C5) by leveraging our single-cell atlas to predict the cell line composition from the bulk gene 
expression profile of a tumour sample. To test the effectiveness of this approach, we collected 
from the TGCA database, 937 gene expression profiles from breast cancer patients whose BC 
subtypes were annotated. The deconvolution algorithm assigned to each of the 937 patients the 
predicted cell line composition, which we then used to cluster patients, as shown in Figure 4.4D,E. 
Reassuringly, patients diagnosed with a specific breast cancer subtype tend to have a tumour cell 
line composition consisting of cell lines of the same subtype. We quantified this observation in 
Figure 4.4F and observed some interesting exceptions: JIMT-1 is an HER2+ cell line with an 
amplified ERBB2 locus, but no HER2+ patient was mapped to this cell line. Interestingly, JIMT-
1 are resistant to anti-HER2 treatments [108]; another example is the cancer cell line HS578T 
which is reported to be triple-negative, however the majority of patients who map to this cell line 
are luminal; surprisingly, this cell line has been reported to be sensitive to fulvestrant [28], [29], 
an anti-ESR1 drug used for luminal patients.  

These results show that this single cell atlas of cancer cell can be used to automatically 
assign cell line composition and cancer subtypes both from single-cell expression profiles and bulk 
gene expression profile. 
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Figure 4.4 – Clinically relevant signatures across CCLs. (A) Cancer cells from triple negative breast cancer 
(TNBC) biopsies of 5 patients sequenced with 10X genomics technology are embedded in the BC atlas to predict 
their tumour type using K-nn algorithm. (B) Pie chart that show how cells of each TNBC patient are classified after 
their repositioning into the atlas. Cell lines represented with a percentage less than 5% are merged and represented 
with a grey slice of the pie-chart. (C) Top-left: Tissue-slide of an estrogen positive breast tumour biopsy sequenced 
using 10x visium spatial transcriptomics. Top-right: Cancer cells sequenced with 10X visium technology are 
embedded in the BC atlas to predict which cell-line they are similar. Bottom-left: Classification of each pseudo cell 
to show predicted cell-line in the spatial context. Bottom-right: Classification of each pseudo cell to show predicted 
tumour type in the spatial context. (D) Bulk RNA-seq of 937 TCGA patients are deconvolved into cell lines and 
hierarchically clustered. (E) Example of predicted cell-line composition of 4 out of 937 TCGA patients. (F) The BC 
subtype covered by each cell line TCGA patient deconvolution. 
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CHAPTER 5 - Intrapopulation gene expression heterogeneity of cancer 
cell lines 
 
 
Single-cell transcriptomics has the potential to investigate cell-to-cell transcriptional 
heterogeneity. In this Chapter, I show the experiments I performed to assess the gene expression 
intrapopulation heterogeneity, using three representative breast cancer cell lines (MDA-MB-361, 
AU565, and HCC38) to investigate the heterogeneity in HER2 expression. By means of flow 
cytometry, I checked that the HER2 state is not only heterogeneous at the mRNA level, as assessed 
by scRNA-seq, but also at the protein level. I focused on the MDA-MB-361 cell line, with 
approximately 70% of cells expressing HER2, to demonstrate that sorted HER2+ and HER2- 
homogenous subpopulations spontaneously give rise to heterogeneous populations, thus 
confirming that heterogeneity that I observed is not caused by genomic heterogeneity. Finally, in 
collaboration with Gennaro Gambardella, PhD I investigated the differences in the expression 
programs between these two subpopulations and we found upregulated pathways indicative of 
epithelial-to-mesenchymal transition (EMT) in the HER2+ subpopulation, while cell cycle related 
pathways were upregulated in the HER2- subpopulation, suggesting the cell-cycle status could 
have a role in causing the observed heterogeneity. 
 
 
5.1 – scRNA-seq shows intrapopulation heterogeneity within CCLs 
 
Single-cell RNA-seq is a powerful method to unravel intrinsic heterogeneity in gene expression 
profiles within cells in a population. Clinically relevant receptors are heterogeneously expressed 
across cells belonging to the same cell line, as assessed by computing the percentage of cells in a 
cell line expressing the receptor in Figure 5.1A. Overall, within cell lines, I found variability in the 
percentage of cells expressing clinically relevant biomarkers. Consider the seven Luminal B and 
HER2+ cell lines present in the BC atlas, which by definition overexpress HER2: whereas more 
than 90% of cells in AU565, BT574, and HCC1954 cell lines express ERBB2, in the remaining 
four cell lines ERBB2 expression ranged from 31% of EVSAT cells to 46% of JIMT1 cells and up 
to 64% of MDA-MB-361 cells. This happens despite both JIMT1 and MDA-MB-361 harbor a 
copy number gain of the locus containing the ERBB2 gene [109].  The HER2 protein, encoded by 
ERBB2 gene, is a receptor that can be pharmacologically targeted by small molecule inhibitors, 
like Afatinib, or by antibodies such as trastuzumab. 

Therefore, I decided to assess whether the observed gene expression heterogeneity reflects 
the same heterogeneity at the protein level. To this purpose, I employed flow cytometry analysis 
to measure the HER2 protein in three representative cell lines: AU565 (high HER2 expression, 
95%), MDA-MB-361 (heterogeneous HER2 expression, 64%), and HCC38 cell lines (low HER2 
expression, 3%). Flow cytometry provides single-cell analysis of a statistically significant number 
of cells (events) employing optical filters to measure the physical features of cells and fluorescence 
emission. To measure the rate of HER2 (HER2+) cells in the selected cell lines, I stained cells with 
a dye-conjugated antibody that specifically binds HER2 protein (mouse anti-human HER2 BB700 
conjugated antibody from BD biosciences). For each stained sample, I used an unstained sample 
to define the boundary between HER2+ and HER2- cells. The fluorescence of both stained and 
unstained samples of each cell line was measured with the Accuri C6 instrument (640LP BD 
standard filter in FL3), and then I analyzed data with the BD Accuri C6 software. The results in 
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Figure 5.1B show that single-cell transcriptional data agree with the cytometric analysis: the 
AU565 cell line resulted to be homogeneous for HER2 expression with 93% of cells stained with 
the for HER2 antibody, while the MDA-MB-361 population showed 69% of HER2+ cells, and a 
very low rate of HER2+ cells was present in the HCC38 population (6%). 
 
 
 
 

 
 
 
 
 
 
 
 
 
5.2 – HER2 expression state is dynamically regulated in MDA-MB-361 cells 
 
To exclude hereditable genetic differences as a source of heterogeneity, I sorted MDA-MB-361 
cells into HER2+ and HER2- subpopulations and checked whether these homogenous 
subpopulations were stable over time, or rather spontaneously gave rise to heterogeneous 
populations. To fluorescently label HER2+ cells, I stained cells with the BB700 mouse anti-human 
HER2 antibody as described above, and I performed fluorescence-based sorting with the FACS 

Ab

A B

Figure 5.1 - (A) Percentage of cells expressing the indicated genes in each of the sequenced cell lines. (B) FACS 
analysis of HCC38, MDA-MB-361 and AU565 cell lines stained with an antibody against HER2 (BD BB700 mouse 
anti-human HER2). 
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aria III sorter instrument, with the standard PerCP-Cy set (data analysis with the FACS DIVA 
software 8.1). As reported in Figure 5.2A, the stained MDA-MB-361 sample showed a HER2 
antibody positivity of 78% when gated on the unstained sample, a value comparable with what I 
observed in the previous analysis, considering variability in the staining procedure and the semi-
quantitative nature of flow cytometry. Then, I sorted HER2+ and HER2- cells into two 
subpopulations. I cultured separately 4.0 × 105 cells of both subpopulations, with the same culture 
medium (Appendix A. - Methods) and in the same incubation environment, to avoid any bias in 
the outcome due to different culture conditions. Both subpopulations re-established the original 
heterogeneity, demonstrating that HER2 expression in these cells is dynamic and driven by a yet 
undiscovered mechanism (Figure 5.2A). Interestingly, after literature mining, I found that Jordan 
et al. (Nature, 2016) published data that corroborate our observation; they show that HER2+ 
circulating tumor cells, from an ER+/HER2− breast cancer patient, spontaneously interconvert 
from HER2− and HER2+, with cells harboring a phenotype producing daughters of the opposite 
one.  

In order to identify the biological processes differing between the two subpopulations, we 
computed the differentially expressed genes (DEGs) from the single-cell transcriptional profiles 
of HER2+ cells against HER2− cells.  Gene Set Enrichment Analyses (GSEA) against the ranked 
list of DEGs can be used to identify biological pathways specifically enriched for DEGs. The 
results of this analysis are reported in Figure 5.2B and revealed seven significantly enriched 
pathways (FDR<10%): four of which were upregulated in HER2+ cells, but downregulated in 
HER2− cells, and included adipogenesis, myogenesis and OXPHOS, all indicative of Epithelial to 
Mesenchymal Transition (EMT) engagement, which has been reported in HER2+ cells [110], 
[111]; EMT is a complex remodelling process that causes epithelial cell to change their nature and 
become able to spread to other tissues. The remaining three pathways were upregulated in HER2− 
cells and related to cell-cycle and specifically to G2/M phase, in agreement with our previous 
analysis, suggesting that cell cycle may play a role in HER2 expression in this cell line.  
 
 
 

 
 
 
5.3 – Cell cycle analysis   
 

A B

Figure 5.2 - (A) Expression of HER2 protein in MDA-MB-361 cells is dynamic and re-established in about 3 weeks. 
(B) Gene set enrichment analysis performed against the ranked list of differentially expressed genes obtained by 
comparing the single-cell transcriptional profiles of the two subpopulations of MDA-MB-361 cells: HER2+ versus 
HER2- 
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Pathways related to cell cycle, DNA damage repair and mitotic checkpoint regulation were found 
to be upregulated in the HER2− subpopulation of MDA-MB-361 cells. This motivated me to 
further check if the cell cycle phase could explain the observed heterogeneity in the MDA-MB-
361 cell line.  

The cell cycle is the sequence of events in which a cell grows and duplicates. The eukaryotic 
cell cycle is divided into four sequential phases: G1, S, G2, and M phase (Figure 5.3), and the 
progression through cell cycle phases are tightly regulated. The interphase includes G1, S, and G2 
phases, in which the cell grows and DNA replication occurs, while chromosome segregation and 
the division process occur in the M phase or mitosis. The G1 phase (gap 1) is the beginning of the 
interphase. During G1 the cells double the amount of organelles and proteins (growth of the non-
chromosomal components). From this phase, the cell may enter S or G0 phase, depending on 
several factors, including nutrient and mitogens availability, cell density, but also, as have been 
described for drug-tolerant cells, in response to cytotoxic or genotoxic agents [112]. G0 is a 
quiescent phase, in which cells are not actively dividing; cells can reversibly withdraw from the 
cell division cycle and enter G0 for long time or irreversibly withdraw from cell cycle into 
terminally differentiated or senescent state, while other cell types never enter G0 by continuously 
dividing [113]. DNA duplication occurs during the S phase (synthesis), and then, in the G2 phase, 
the cell prepares for entry in mitosis. 
 

 
 

                    
 
 

 
 
 
 
 
 

Figure 5.3 – Cell cycle representation of eucaryotic cells. Adapted from Alberts B et al., 2008.  
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5.3.1 – Cell cycle in silico prediction of the MDA-MB-361 cell line 
 
We computationally predicted (Appendix A - Methods) the cell cycle phase of each cell in both 
the HER2− and HER2+ subpopulations from single cell transcriptomics data [114]. To predict the 
cell cycle phase of each sequenced cell, we used the function CellCycleScoring of the Seurat tool 
with default parameter. A list of cell cycle marker genes was provided to Seurat (Tirosh et al., 
2016), comprising both markers of G2/M and markers of S phase, while cells expressing neither 
are considered to be in G1 phase. A cell cycle score is then assigned to each cell based on the 
expression level of these cell cycle phase marker genes. As shown in Figure 5.4, a higher 
proportion of HER2− cells was predicted to be in S/G2/M phases when compared to HER2+ cells. 
This result is consistent with previous observations that report cell cycle arrest in G2/M phase 
following HER2 inhibition [115]. 
 
 
 
 

                          
 
 
 
 
 
5.3.2 – DNA staining protocol optimization for cell cycle analysis  
 
I next set to experimentally validate the cell cycle phase prediction based on the single-cell 
transcriptomics data, in the MDA-MB-361 cell line. Since cell cycle prediction showed that the 
HER2− subpopulation is enriched for the G2/M phase biomarkers, while HER2+ subpopulation 
for the G0/G1 biomarkers, I planned to perform cell cycle arrest of MDA-MB-361 cells in either 
G0/G1 or G2/M phase and check whether the percentage of HER2+ cells change or not, to assess a 
possible dependency of the HER2 state to the cell cycle phase. 

Figure 5.4 – Percentage of HER2+ or HER2- MDA-MB-361 cells predicted to be in either G1 or S/G2/M phase 
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A method to obtain the cell cycle phase of a cell sample through DNA content analysis is 
to stoichiometrically stain the DNA with a dye and then detect the emission intensity by flow 
cytometry, which is proportional to the DNA amount in the cell. Usually, cells in G2/M phase 
display a 2x DNA amount than G0/G1 cells, since the DNA content has been doubled; cells in S 
phase, with DNA being synthesized, display an amount of DNA in the range between G0/G1 and 
G2/M intensity peak. 

To stain the DNA of MDA-MB-361 cells I used the propidium iodide (PI) staining 
protocol. PI is a stoichiometric DNA-binding dye, used from the earliest application of flow 
cytometry for quantitation of DNA content. I checked the literature to set-up a protocol for PI 
staining and cell cycle analysis. The procedure consists of two main steps: first fix cells and then 
stain cells with a staining buffer that includes the PI or other DNA dye.  Alcohol fixation is very 
suitable for DNA staining; I thus added ice-cold ethanol 70% (EtOH 70%) to pelleted cells while 
gently vortexing them, to prevent cell aggregating during fixation. Then, I stored fixed cells 
overnight at -20°. During washing steps to remove EtOH, I noticed that centrifugation causes 
consistent loss of cells. The best practice that I found from literature mining to limit cell loss was 
to increase the relative centrifugal force (g) to 800g for 8-10 min, rather than using common 
settings (i.e. 300g for 3 min). 
To stain cells with PI staining buffer, 0.025µg/mL of PI (per ~105 cells) was suitable for successful 
DNA staining. However, PI binds RNA in addition to DNA (contributing to unspecific signal), 
therefore, to achieve specific DNA staining, I added RNase A 50 µg/mL to the staining buffer. 
After 15 min of room temperature incubation, I analyzed the stained sample with the FACS Accuri 
C6 (with the 640LP BD standard filter in FL3) and analyzed data with the BD Accuri C6 software. 
Overall, this procedure yielded a good quality staining (Figure 5.5). Most of the cells were in G0/G1 
(65.2%), while the G2/M phase displayed 8.9% of cells and 13.9% in S phase. Other fluorescence 
signals come from sub-G0 cells and polynucleated cells with intensity above the G2/M distribution. 
The next necessary step to assess the cell cycle phase dependency of the HER2 state was to include 
in the experimental procedure the conditions for cell cycle arrest to enrich cells in G0/G1 and G2/M 
phases.  
 
 

                                                 
 
 
 

Figure 5.5 – Cell cycle distribution of MDA-MB-361 cells with propidium iodide staining.  
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5.3.3 – Nocodazole and HBSS protocol optimization for cell cycle arrest and analysis  
 
After literature mining, I selected nocodazole to perform cell cycle arrest in G2/M phase, and 
nutrient deprivation with HBSS (starvation) to arrest cells in G0/G1. Nocodazole is a compound 
commonly used to cause cell cycle arrest and subsequent release for cell cycle synchronization; 
nocodazole inhibits microtubule function by binding β-tubulin and suppressing microtubule and 
mitotic spindle dynamics, or inducing microtubule depolymerization [116]–[118] arresting cells 
in M phase (with G2/M DNA content in flow cytometry analysis).  

Starvation with HBSS medium causes arrest of the cell cycle in G0/G1 phase; indeed, under 
HBSS starvation conditions [119]–[121]. Before performing the cell cycle arrest experiment, I 
optimized the nocodazole and HBSS starvation conditions for MDA-MB-361 cells, in order to 
minimize toxicity while efficiently arresting cells. To optimize nocodazole concentration and 
treatment time, I performed two dose-response curves, at 24hr and 48hr of treatment, in 5 
nocodazole concentration points, with the max concentration of 800µg/mL and 2-fold dilution 
series for the other concentration points (Figure 5.6). 
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Figure 5.6 – Nocodazole dose-response curves following either 24 hr (blue line) or 48 hr (orange line). Each point 
is the average of three replicates (± S.D.) 
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I reported cell viability measurement of nocodazole response normalized to the DMSO negative 
control. 48 hr of treatment resulted toxic at all concentration points, with cell viability of ~60% 
((treated/control)´100); this effect was independent of the nocodazole concentration. By contrast, 
24 hr of treatment showed no effect on cell viability at all concentrations (more than 90%). 
Therefore, I set 800 µg/mL for 24hr condition to perform nocodazole treatment. Then I optimized 
the recovery of nocodazole M phase arrested cells from the culture vessel, with mitotic shake-off. 
Indeed, M-phase cells are weakly attached to the culture vessel surface because of their more 
rounded-up shape, compared to cells in other cell cycle phases. This feature allows enriching for 
nocodazole M-phase arrested cells with mitotic shake-off, by gently hitting several times the 
culture vessel to detach M-phase weakly attached cells. However, I made some modifications to 
the protocol for the MDA-MB-361 cell line to carry out mitotic shake-off. In my experience, 
MDA-MB-361 cells attach very strongly to both one another and to the culture vessel surface. 
Hence, I improved the mitotic shake-off for this cell line by prior washing with PBS 1x and then 
adding a few mL of trypsin; although non-M-phase cells do not detach upon mitotic shake-off 
since the strong surface binding, this procedure should be fast and gentle as much as possible, to 
avoid retrieval of cells from other cell cycle phases. 

To test HBSS starvation, I cultured cells in either HBSS for 24hr and 72hr or with growth 
medium as negative control. 24hr of treatment yielded very low cell death when, with a cell 
viability fold change of -0.20 ± 0.062, calculated as log2(HBSS/control) ± S.D (average of three 
replicates), where HBSS and control are respectively the cell viability that I measured in HBSS 
and in growth medium. I selected 24 hr of HBSS starvation as a condition to perform cell cycle 
arrest in G0/G1 since 72 hr of HBSS starvation strongly decreased the cell viability (-0.20 ± 0.062; 
average of three replicates) 
 
 
5.3.4 – Assessment of the cell cycle contribution to the HER2 of the MDA-MB-361 cell line 
 
In order to check the influence of the cell cycle on the percentage of HER2+ cells in the MDA-
MB-361 cell line, I perfomed cell cycle arrest experiments: I incubated MDA-MB-361 cells for 
24 hr with either nocodazole 800µg/mL or HBSS starvation, while a DMSO condition served as 
negative control, to show normal cell cycle distribution. I recovered nocodazole treated cells with 
mitotic shake-off (described above), while with common cell culture protocol for DMSO and 
HBSS incubated cells. I then divided each sample into two aliquots: the first one for BB700 mouse 
anti-human HER2 antibody staining to detect the percentage of HER2+ cells, while the other one 
for DNA content analysis by PI staining. In addition, I stained HCC38 and AU565 as respectively 
negative and positive control respectively of the antibody staining. As shown in Figure 5.7A,B, 
nocodazole treatment successfully enriched cells in G2/M phase, while cells under HBSS nutrient 
deprivation displayed arrest in G0/G1. Compared to DMSO control (80% HER2+ cells), cells 
enriched in G0/G1 condition showed an increase in the HER2+ cells to ~88%; G2/M enriched 
sample, on the contrary, showed a reduction in HER2+ cells (~63%). We observed a contribution 
of the cell cycle in the HER2 cellular. However, the HER2 state variation, when cells are enriched 
in either G0/G1 or G2/M phase, is too faint to address to cell cycle as the solely driver of the 
interconversion between HER2+ and HER2- cell state, highlighting the existence of undiscovered 
mechanisms in the HER2 state transition. 
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Figure 5.7 – (A) Cell cycle analysis of MDA-MB-361, with propidium iodide staining, in two different conditions 
(NOCO = nocodazole 800µg/mL; HBSS = HBSS starvation), plus the negative control in DMSO. (B) FACS analysis 
of MDA-MB-361, stained with the BD BB700 mouse anti-human HER2 in the same condition reported in panel A. 
I used HCC38 and AU565 as respectively negative and positive control of the antibody staining. Each bar represent 
the percentage of HER2+ cells in each condition. 
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CHAPTER 6 - Impact of gene expression heterogeneity on drug 
response 
 
 
Intrapopulation transcriptional heterogeneity of clinically relevant biomarkers was found to be 
present in most breast cancer cell lines, raising the possibility that it could be linked to a cell line 
sensitivity to anti-cancer drugs. In this chapter, I illustrate the experiments I performed to study 
the impact of intrapopulation heterogeneity on drug response. Then, I describe DREEP, a 
computational method we developed to predict in single cells the effect of a panel of 450 drugs. 
With DREEP, we found that etoposide, a common chemotherapeutic agent, is more effective on 
the HER2- subpopulation as compared to the HER2+ subpopulation of the MDA-MB-361 cell 
line. I performed the experimental validation of the effect of etoposide on both HER2+ and HER2- 
sorted subpopulations, which confirmed the computational predictions. Surprisingly, afatinib, an 
HER2 inhibitor, was equally effective on both subpopulations. To explain this observation, we 
formalized the interconversion between the HER2+ and HER2- cell state with a mathematical 
model and eventually I experimentally validated its predictions. 
 
 
6.1 – Drug sensitivity correlates with intrapopulation drug target heterogeneity 
 
To investigate the role of heterogeneity in gene expression within a cell line on the efficacy of 
targeted anticancer treatment, we collected large-scale in vitro drug screening data [28], [29] 
reporting the effect of 450 drugs on 658 cancer cell lines from solid tumours. We correlated the 
percentage of cells expressing the HER2 receptor in the cancer cell line using our single-cell breast 
cancer cell line atlas, with the toxicity caused in the cell line by treatment with specific HER2 
inhibitors. The toxicity is expressed as the relative Area Under the Curve (AUC) of dose-response 
curves measuring the effect of the drug on cell viability. The AUC is a robust metric to measure 
the effect of a drug across cell lines [122], [123].  When the response to a drug is reported as cell 
viability of the treated sample normalized to the untreated negative control, the lower the AUC the 
higher the effect of the drug, over the concentration range. However, the AUC metric depends on 
the range of tested drug concentrations, which often varies between studies. 

As show in Figure 6.1A, the sensitivity of the breast cancer cell lines to HER2 inhibitors 
was significantly correlated with the percentage of cells in the cell line expressing HER2. For 
example, afatinib has a stronger effect (i.e. lower relative AUC) in AU565, which is homogeneous 
for HER2 expression, as compared to the more heterogenous MDA-MB-361 cell lines, while lower 
effect on MDA-MB-361 cell lines, which is more heterogeneous, while no effect on cells not 
expressing HER2 (e.g. HCC38). Interestingly, receptor expression level is substantially the same 
across cells expressing it, irrespective of the cell line they belong to (Figure 6.1B), except for cell 
lines harbouring CNVs of the ERBB2 locus. 

Furthermore, I found that the correlation between drug target expression and drug 
sensitivity holds true also for several other targets (Figure 1C), thus suggesting that variability in 
gene expression within cells of the same tumour may cause some cells to respond poorly to the 
drug treatment. 
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A

B

Figure 6.1 – Drug target heterogeneity affects drug response. (A) Relationship between percentage of cells 
expressing ERBB2 in the cell line [y-axis] and the drug potency in the same cell line [x-axis] for the indicated 
molecules. The more negative the value on the x-axis, the more potent the drug. Drug potency data were retrieved 
from the CTRPv2 or GDSC databases. Each dot represents a cell line we have sequenced with single cell 
transcriptomics. (B) ). Overall expression receptor across cell lines. The expression level is the same, except for 
CNV, such as ERBB2 or EGFR copy number gain. 
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To confirm the results reported in the literature, I decided to evaluate the impact of HER2 intra-
population heterogeneity by testing the effect of afatinib on AU565, MDA-MB-361 and HCC38 
as representative CCL models. For each CCL, I performed the drug response assay to afatinib at 
24 and 72 hr of treatment, spanning five concentrations, with the maximum concentration at 4µM 
(Figure 6.2A,B). To read out the effect of afatinib at 24 and 72 hr, I performed a luminescence-
based assay to measure the luminescence intensity of metabolically active cells (viable cells) of 
the treated samples, and I normalized this value to the DMSO negative control luminescence 
intensity (Methods). In this way, I obtained a measurement of the cell viability, that I expressed as 
percentage ((treated/DMSO) ´ 100). Overall, the effect of afatinib reflected the intra-population 
HER2 expression heterogeneity. Following 24 hr of treatment, HCC38 cell line showed no 
response over the whole concentration range. For both AU565 and MDA-MB-361 cell lines, 
afatinib showed mild effect at 24 hr, but still at the higher concentrations the AU565 cell viability 
dropped down (53%) compared to MDA-MB-361 that never decreased below 72%. Following 72 
hr of treatment, AU565 resulted highly sensitive to afatinib, even at a low concentration, with full 
response at 4µM (10%), while HCC38 responded only at the highest concentration of 4µM (56%), 
with a weak toxicity at 1µM (85%). Interestingly, the MDA-MB-361 cell line resulted partially 
sensitive to afatinib at 1µM (53%) and highly responsive at 4µM of afatinib (20%). Indeed, the 
dose-response curve of MDA-MB-361 cell line to afatinib lies in the middle between AU565 (high 
sensitivity) and HCC38 (low or no sensitivity). Overall, in this experiment I assessed that a 
homogenous cell line for a drug target like AU565 tend to be more sensitive to the drug target 
inhibitor than a more heterogenous cell line (MDA-MB-361), and in this condition the 
concentration of drug needed to observe a toxic effect is lower for the homogenous population. 
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6.2 – DREEP: a bioinformatics tool to predict drug response at the single cell level 
 
The observations described in Section 6.1 led us to develop DREEP (DRug Estimation from 
single-cell Expression Profiles), a novel bioinformatics tool, that, starting from single-cell 
transcriptional profiles, allows to predict drug response at the single cell level. To this end, we first 
detected expression-based biomarkers of drug sensitivity for 450 drugs [29], as schematised in 
Figure 6.3A (Appendix A - Methods). Briefly, we crossed data from the Cancer Cell Line 
Encyclopaedia (CCLE) on the response to 450 drugs across 658 cancer cell lines from solid 
tumours with their gene expression profiles from bulk RNA-seq. In the CCLE, drug potency is 
evaluated as the inverse of the Area Under the Curve (AUC) of the dose-response graph, with low 
values of the AUC indicating drug sensitivity, while high values implying drug resistance.  For 
each gene and for each drug, we computed the correlation between the expression of the gene 
across the 658 cell lines with the drug potency in the same cell lines. Hence, genes positively 
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Figure 6.2 – The percentage of cells expressing HER2 affects the effect of afatinib. Afatinib dose response curves 
following 72hr (A) and 24hr (B) against HCC38 (blue line), AU565 (grey line) and MDA-MB-361 (orange line); 
S.D. = standard deviation; each point is the average of three replicates.  
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correlated with the AUC are potential markers of resistance, vice-versa, negatively correlated 
genes are markers of sensitivity. In this way, we generated a ranked list of expression-based 
biomarkers of drug sensitivity and resistance for each of the 450 drugs. We then used these 
biomarkers to predict drug sensitivity at the single-cell level. To this end, for each cell in the single-
cell BC atlas, we selected the 250 genes most expressed in that cell and compared them against 
the ranked list of biomarkers for each one of 450 drugs by means of Gene Set Enrichment Analysis 
(GSEA) [124]. A negative enrichment score implies that highly expressed genes in that cell are 
enriched for biomarkers associated to sensitivity, whereas a positive enrichment score implies 
enrichment for resistance-associated biomarkers. At the end of this process, each cell in the atlas 
is associated to the drug it is most sensitive to, or to no drug, if no significant enrichment score 
from GSEA is found (Figure 6.3B). 

To assess the algorithm’s performance, we applied it to the single-cell BC atlas and 
estimated its performance by checking how well we could predict sensitivity of the 32 BC cell 
lines to 86 drugs for which this information was publicly available from GDSC database 
(Genomics of Drug Sensitivity in Cancer) [125]. To convert single-cell predictions to predictions 
at the cell line level, we simply used the percentage of cells in the cell line deemed to be sensitive 
to the drug by the algorithm. The algorithm precision is shown in Figure 6.3C. 
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6.3 – Experimental validation of DREEP drug sensitivity prediction  
 
To experimentally validate DREEP, I turned to the MDA-MB-361 cell line for which we found 
coexistence of two distinct and dynamic cell subpopulations (HER2+ and HER2−). We applied 
DREEP to each subpopulation to identify drugs able to selectively inhibit growth of either the 
HER2− subpopulation or the HER2+ subpopulation: 42 drugs (FDR < 1%, Appendix D – Supp. 
Table D2) were predicted to preferentially inhibit growth of HER2− cells; the most overrepresented 
class among these drugs was that of inhibitors of DNA topoisomerases (TOP1/TOP2A) (Figure 
6.4A) such as etoposide, that is a TOP2A poison (TOP2A resulted more expressed in the HER2− 

subpopulation). Surprisingly, no drug was found to specifically inhibit growth of HER2+ cells, 
whereas 44 drugs (FDR <1%) were predicted to be equally effective on both subpopulations and 
unexpectedly included HER2 inhibitors, such as afatinib (Figure 6.4B,C).  
 
 
 

Figure 6.3 – DREEP drug sensitivity prediction and PPV analysis. (A) Construction of the ranked list of drug 
sensitivity biomarkers for 450 drugs. For each gene and for each drug, the expression of the gene is correlated with 
the potency of a drug expressed as a function of Area Under the Curve (AUC) across 658 cell lines. (B) The top 250 
most expressed genes of a cell are used as input for a Gene Set Enrichment Analysis (GSEA) against the ranked list 
of biomarkers for each one of the 450 drugs, to predict single cell drug sensitivity. At the end of the process, each 
cell in the sample is associated to the drug it is most sensitive to, or to no drug, if no significant enrichment score 
from GSEA is found. Finally, for each of the 450 drugs, the number of cells predicted to be either sensitive, resistant, 
or not classified in the considered sample are estimated. (C) Validation of the computational method using the Breast 
Cancer Single Cell atlas data to predict drug sensitivity to 86 drugs for which the corresponding half maximal 
inhibitory concentration (IC50) was available from the GDSC database. The PPV (Positive Predicted Value) is 
shown as a function of the percentage of cells predicted to be sensitive for each drug-BC CCL interaction. Dashed 
line represents the performance of a random algorithm. 
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I selected etoposide and afatinib for the experimental validation of DREEP. The experimental plan 
I designed consisted of separating by FACS sorting the two subpopulations (HER2+ and HER2-) 
in the MDA-MB-361, and then check the differential drug sensitivity between the HER2+ and 
HER2- cells against etoposide and afatinib, as schematized in Figure 6.5A. Here, I decided to read 
out the cell viability by nuclei staining with Hoechst 33342 and nuclei count with the Operetta 
microscope (Appendix A - Methods). To sort the MDA-MB-361 into HER2+ and HER2− 

subpopulations, I stained MDA-MB-361 cells with the mouse anti-human HER2 BB700-
conjugated antibody. The staining allowed to selectively label the HER2+ cells, and then cells were 
sorted in HER2+ and HER2− subpopulations with the FACS Aria III flow cytometer (PerCP-Cy 
set; data analysis with the FACS DIVA software 8.1). I collected both subpopulations to perform 
the drug sensitivity assays against etoposide and afatinib. To this purpose, I seeded 15,000 cells 
per well both for the HER2+ and HER2− subpopulation in 96-well plate and after overnight 
incubation, I exposed cells to either etoposide or afatinib for 72 hr, spanning five different 
concentrations. In addition, I used DMSO for the negative control, in order to normalize viability 

C

Figure 6.4 – Drug sensitivity prediction for HER2+ and HER2- cells of MDAMB361 cell-line. Classification of 
drugs predicted to specifically inhibit growth of the HER2- subpopulation, or both HER2+ and HER2- subpopulations. 
(A) Drugs predicted to significantly inhibit the growth of HER2- cells in the MDAMB361 cells are grouped 
according to their target genes. (B) Drugs predicted to significantly inhibit the growth of both HER2- and HER2+ 
cells in the MDAMB361 cells are grouped according to their target genes. (C) Relationship between the median 
enrichment score of cells expressing ERBB2 in the MDAMB361 cell line [y-axis] and the median enrichment score 
of cells ERBB2 deficient in the same cell line [x-axis] for a list of 450 different drugs. The more negative the value 
of the enrichment score is, the more potent is the drug predicted. Each dot represents a drug we have predicted the 
effect. In red are reported drugs predicted significantly reduce cell-viability (FDR<0.01). 
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data. In agreement with DREEP predictions, HER2− cells were much more sensitive to etoposide 
than HER2+ cells, which responded only at the higher concentrations, while afatinib was equally 
effective on both subpopulations (Figure 6.5B). This counterintuitive result was similar to that 
observed by Jordan et al. [126] using a BC patient’s circulating tumor cells sorted into HER2− and 
HER2+ subpopulations, which were found to be equally sensitive to Lapatinib (another HER2 
inhibitor), but no mechanism of action was put forward.  
 
 

 
 
 
 
 
 
 
 
I then performed a dose response curve to etoposide on the MDA-MB-361 cell line (without 
sorting) to validate what we observed in the sorting experiment on the two subpopulations, as 
shown in Figure 6.6. I obtained viability date by means of a luminescence assay, as described 
above. In Figure 6.6, I overlapped in the same plot the etoposide dose response curve result with 
the etoposide curves of the sorted HER2− and HER2+ subpopulations in the previous experiment. 
The effect on the mixed population was very similar to the effect on the HER2+ subpopulation; 
indeed, the percentage of HER2+ cells in MDA-MB-361 cell line is approximately 70-80%, 
therefore the etoposide response of the HER2+ cells contributes much more to the overall response 
than the HER2−  subpopulation. 
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Figure 6.5 – Afatinib and etoposide drug sensitivity assay on sorted HER2+ and HER2- subpopulations. (A) 
Depiction of the MDA-MB-361 HER2+ and HER2- subpopulation sorting o. (B) Dose-response curve for afatinib 
and etoposide on sorted MDA-MB-361 cell populations (triplicate experiment); S.D = standard deviation. 
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6.4 – Mathematical model to explain the HER2 state dynamic interconversion  
 
We hypothesised that the dynamic interconversion of MDA-MB-361 cells between the HER2− and 
the HER2+ state may explain the counterintuitive effectiveness of Afatinib on the HER2- 
subpopulation of MDA-MB-361 cells. Indeed, cells not expressing HER2 should not respond to 
HER2 inhbition.  We hypothesised that when the starting population consists of HER2− cells only, 
as following FACS sorting described in section 6.2, some of these cells will nevertheless 
interconvert to HER2+ cells during afatinib treatment, and they will thus become sensitive to HER2 
inhibition, explaining the observed results. We mathematically formalised this hypothesis with a 
simple mathematical model depicted in Figure 6.7 and Appendix B. In the model, two species 
(HER2+ and HER2− cells) can replicate and interconvert, but only one (HER2+) is affected by 
afatinib treatment. The model shows that if the interconversion time between the two cell states is 
comparable to the cell cycle duration, then afatinib treatment will have the same effect 
independently of whether the initial population consists of HER2+ cells only, or HER2− cells only. 
If instead the interconversion time is much longer than the cell cycle, then afatinib will have little 
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Figure 6.6 – Etoposide drug sensitivity assay. Orange and blue line are respectively the dose response curves 
obtained for the experiment in Figure 6.5; here, the blue line represents the dose response curve of the HER2- 
subpopulation, while the orange line represents the dose response curve of the HER2+ subpopulation. I removed the 
higher drug concentration point for both curves. The grey line represents the etoposide dose response curve of the 
MDA-MD-361 cell line without sorting. For simplicity, I show only error bars for the 72hr treatment with etoposide 
of the unsorted MDA-MB-361 population (grey curve); refer to Figure 6.2 for all information about the blue and the 
orange curve. 
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effect on HER2− sorted cells, but maximal effects on HER2+ sorted cells, and vice-versa, if the 
interconversion time is much shorter than the cell cycle, then afatinib’s effect would be minimal 
on both HER2− and HER2+ sorted cells.  
 
 
 

                           
 
 
 
 
 
 
 
 
Comparison of the modelling results with the experimental results thus suggests that the 
interconversion rate should be of the same order of the cell cycle (about 72h for MDA-MB-361 
cells). The model further predicts that treating the unsorted population of MDA-MB-361 cells with 
afatinib will reduce the percentage of HER2+ cells, since only HER2+ will be affected, but that this 
percentage would quickly recover once afatinib treatment is halted (Figure 6.8A,B).  
 
 
 
 

Figure 6.7 – A two state model of interconversion of MDAMB361 cells. A two-state model of interconversion of 
MDAMB361 cells with arrows indicating reactions occurring at the rates reported on the arrow with values in the 
table. 
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Figure 6.8 – Simulation of the effect of afatinib. (A) Numerical simulations of the effect of Afatinib on 
MDAMB361 cell line. Three different sets of parameters’ values were used to investigate the effect of changing the 
interconversion rate on the response of MDMA261 cells to afatinib treatment. Simulations start with a total of 1 
million cells, of which 0.8 million HER2+ and 0.2 million HER2-. In the first row, the green line stands for HER2+ 
cells and the blue line for HER2- cell. (B) Simulated dose response curve to afatinib for MDAMB361 cells. The 
simulated cell viability was obtained by setting both the HER2- and HER2+ populations at 5x105 cells at simulation 
time zero and then running the simulation with or without Afatinib at the indicated concentrations for 10 days, and 
then dividing the resulting number of HER2- cells (resp. HER2+) treated with Afatinib by the number of HER2- cells 
(resp. HER2+) grown in the absence of Afatinib. Cell viability was simulated for the three different set of parameters’ 
values. Green line refers to HER2+ cells while the blue line to HER2- cells. 
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6.5 – Experimental validation of the modelling prediction 
 
In order to validate the modelling predictions, I exploited the MDA-MB-361 cell line without 
sorting to check for a possible variation in the percentage of HER2+ cells upon afatinib and 
etoposide treatment, as assessed by flow cytometry. I incubated MDA-MB-361 for 72 hr with 
either 10µM etoposide or 1µM afatinib, and DMSO for the negative control. Following treatment, 
I stained cells with the mouse anti-human HER2 BB700-conjugated antibody and processed cell 
by flow cytometry with the FACS Accuri C6 (detection with the 640LP standard filter) and then 
analyzed data with the Accuri C6 software. As negative and positive control of the antibody 
staining, I respectively stained, HCC38 and AU565 cell lines. As shown in Figure 6.9B, etoposide 
and afatinib had the same effect on the MDA-MB-361 cell viability by luminescence assay 
(normalized to the DMSO negative control), however, as reported in Figure 6.9A, etoposide 
increased the percentage of HER2+ cells, in agreement with the increased sensitivity of HER2− 
cells to this treatment, whereas afatinib treatment strongly decreased the percentage of HER2+ 
cells, confirming that its effect is specific for HER2+ cells only.  
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Figure 6.9 – FACS analysis and cell viability of the effect of afatinib and etoposide on the MDA-MB-361 cell 
line. (A) Percentage of HER2+ cells in MDA-MB-361 after 72h treatment with either afatinib (statistic: two-sided 
t-test, *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) or etoposide, with the number of replicates specified for each 
measurement, and (B) measured cell viability after the treatment (average of three replicates ± S.D.).  
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To further confirm the modelling results, I then decided to test the interconversion 

dynamics of HER2 in MDA-MB-361 following afatinib perturbation (Figure 6.10). I incubated 
MDA-MB-361 with afatinib 0.1 µM for 48 hr, and also HCC38 and AU565 cell lines in the same 
conditions; HCC38 here is a negative control for the toxicity of afatinib (since nearly no cells 
express HER2), while AU565 was meant as positive control of the afatinib toxicity and also to 
compare the HER2 state variation with the MDA-MB-361. I measured the percentage of HER2+ 
cells and cell viability following afatinib removal from the medium at three time points: t0, 72 hr 
and 144 hr, where t0 corresponded exactly to afatinib removal (Figure 6.10). Results of the 
experiment are reported in Figure 6.11; as expected, for the HCC38 cell line, no HER2+ cell 
percentage variation occurred and HCC38 cells were not sensitive to afatinib by checking the cell 
number over time, with the exception of the 144 hr time point, where cells died for overgrowth in 
the culture vessel. In the case of MDA-MB-361 cells, afatinib showed very little toxicity effect 
following 48 hr at 0.1 µM, while the percentage of HER2+ cells in the population decreased as 
expected (41% of HER2+ cells at t0). Within 72 hr following afatinib removal, the percentage of 
HER2+ cells quickly increased from 41% to 74% (compared to the DMSO) and was fully 
recovered at 144 hr (85%). This observation successfully confirmed our modelling prediction of 
the HER2 state interconversion dynamic. By checking the cell number over time, the growth of 
afatinib treated cells resulted slower than DMSO, suggesting that afatinib treated cells where not 
growing until drug removal; a possible explanation is that afatinib exerted a cytostatic effect at 0.1 
µM. Interestingly, AU565 lost the HER2 homogenous state at 72 hr (66% at 72hr compared to 
91% of the DMSO), showing a slower drop down of the HER2+ cell percentage than MDA-MB-
361, while after 144 hr the HER2 state returned to the original proportion.  

All together our results show that dynamic heterogeneity in gene expression does play a 
significant role in how the cell population will respond to the drug treatment. 
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Figure 6.10 – Schematic representation of the experimental protocol to measure interconversion dynamics of 
MDA-MB-361 cells following afatinib treatment and the HER2 state measurement by flow cytometry. I 
incubated cells with afatinib for 48hr, after incubation of 24hr. At t0 I removed the medium with afatinib and replaced 
with growth medium without afatinib. At t0, 72 and 144hr I checked by flow cytometry the percentage of HER2+ 

cells.  
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Figure 6.11 – HER2 interconversion dynamics following afatinib treatment. (A) Percentage of HER2 
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6.6 – Normalized growth rate inhibition to assess the afatinib effect on growth rate 
 
In the experiments described on Section 6.5, I noticed a possible cytostatic effect of afatinib on the 
MDA-MB-361 cell line at a concentration 0.1 µM. In order to confirm this effect, and to find the 
concentration at which afatinib switches from cytostatic to cytotoxic, I decided to perform follow-
up experiments. In drug sensitivity experiments metrics of drug potency and efficacy (i.e. IC50 and 
Emax) are used to estimate the drug effect, which takes into account the relative cell viability of the 
treated sample normalized to the negative control. However, differences in the proliferation rates 
can confound the drug effect read out and a cytostatic effect, that blocks treated cell growth, could 
be confounded as cytotoxic when compared to the negative control. To verify the cytostatic effect 
of afatinib on MDA-MB-361, I used the drug-induced growth rate inhibition with the GR metric 
[127]. The GR metric is based on comparing growth rates between the treated samples and the 
negative control (in the presence and absence of drug), which allows compensating for the 
confounding effects of division rate on drug response measurements. A GR value that depends 
only on the drug concentration is calculated as: 
 

𝐺𝑅(𝑐) = 2
"(&)
"(0)		 − 1 

 
where k(c) is the growth rate of drug-treated cells and k(0) is the growth rate of untreated control 
cells, and calculated as: 
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Where x(c) is the count in the presence of drug and xctrl is the cell count for control cells (i.e. 
DMSO), while x0 is the cell count from a sample grown in parallel and measured just prior to drug 
exposure. Therefore, it is possible to calculate a GR value for each drug concentration; As reported 
in the paper [127], the sign of the GR value relates directly to response phenotype: it lies between 
0 and 1 in case of partial growth inhibition, equals 0 in the case of complete cytostasis and lies 
between 0 and −1 in case of cell death. Values of 1 or higher means that the drug is probably 
enhancing the growth, however no description of this specific case has been reported in the paper. 

I seeded MDA-MB-361 cells and after overnight incubation, I treated cells for 72 hr with 
five drug concentrations (c1,…,c5) in order to obtain each x(c) value (five GR values). I added 
DMSO in an additional sample as negative control and to obtain xctrl , and, in addition, a further 
sample to be measured exactly at the time of the afatinib and DMSO exposure to obtain x0, that 
correspond to the measurement at time zero. I performed all measurements with a luminescence 
assay, as described above. All the results are reported in Table 6.1. 
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At 0.1 µM of afatinib the GR value is very close to 0. According to my hypothesis, this means that 
0.1 µM is the concentration at which afatinib exerts a cytostatic effect, and the switch to cytotoxic 
approximately happens at 1 µM (at least one order of magnitude more), where the negative GR is 
indicative of cell death. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

µM Luminescence_value
0.001 1.96E+05

0.01 1.70E+05
0.1 1.36E+05

1 1.21E+05
4 7.82E+04

x0 1.41E+05
DMSO 2.02E+05

µM k(c) GR_values
0.001 0.4719813 0.88515964

0.01 0.26728638 0.43196241
0.1 -0.0545002 -0.0705945

1 -0.217235 -0.2530909
4 -0.8522205 -0.6817085

k(0)
0.51600324

Parameter calculation

Table 6.1 – Normalized growth rate inhibition values (GR) for afatinib treatment of the MDA-MB-361 
cell line.  
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CHAPTER 7 - Conclusions 
 
 
In this thesis, I describe how I implemented the Drop-seq single-cell sequencing technology from 
scratch in the laboratory, by employing microfluidic techniques in order to fabricate the 
microfluidic devices to generate droplets able to capture and isolate single cells. In addition, I 
optimized an experimental procedure to produce single-cell cDNA libraries and I improved the 
Drop-seq microfluidic device to increase the single-cell capture efficiency.  

The Drop-seq technology enabled me to perform single-cell transcriptional profiling of 
35,276 cells from 31 breast cancer cell lines, and 1 non-tumorigenic breast cell line, including all 
relevant breast cancer subtypes (i.e. luminal A and B, HER2 positive and TNBC). With single-cell 
transcriptomic, I was able to demonstrate that it is possible to successfully measure the expression 
of clinically relevant biomarkers, and that these are heterogeneously expressed across cells within 
the same cell line.  

Indeed, an important achievement of my thesis work, is the observation that gene 
expression intrapopulation heterogeneity not only is present and it is dynamic. To further 
investigate the intrapopulation heterogeneity, I focused on the MDA-MB-361 cell line, for which 
approximately the 70% of cells express the HER2 receptor. I carried out the separation of the 
HER2+ subpopulation from the HER2- by means of the fluorescence-activated cell sorting, and I 
separately cultured these homogenous subpopulations. I assessed by flow cytometry, that both 
subpopulations re-established the HER2 expression heterogeneity of the initial population after a 
period of approximately three weeks in culture.  

This surprising result, highlights that there exists a dynamic plasticity in the regulation of 
HER2 expression in the MDA-MB-361 cell line, a phenomenon recently observed also in 
circulating tumour cells (CTC) of a breast cancer patient (Jordan et al., 2016). Moreover, this 
observation excluded the possibility that this mechanism is driven by genetic mechanisms. I 
performed the cell cycle analysis of the MDA-MB-361 cell line to evaluate a possible implication 
of cell cycle in the HER2 state. However, I found that cell cycle status only partially explains the 
observed results. 

Another key result of my work is the demonstration that drug target expression 
heterogeneity in a cell line is correlated with drug response. By combining publicly available drug 
sensitivity data from large-scale in vitro drug screening with breast single-cell dataset, I was able 
to observe negative correlation between the percentage of cells in the same cell line that express 
the drug target (e.g. HER2) and the sensitivity of the cell line to the specific drug inhibitor.  

This observation led us to develop DREEP, a computation algorithm that predicts the effect 
of 450 anticancer drugs in single cells. Thanks to DREEP, I was able to show that a common 
chemotherapeutic agent, etoposide, is able to specifically target HER2- cells in the MDA-MB-61 
cell lines, and it may be thus used in conjunction to HER2 inhibitors to improve the effectiveness 
of these drugs and to prevent a resistant subpopulation to arise during the treatment. Future work 
will be needed to establish whether this observation is true also in more relevant clinical model of 
HER2+ breast cancer, such as breast cancer organoids and mouse PDX models. 

To conclude, my thesis work shows the importance of performing single-cell RNA 
sequencing on the available cancer models, including cell lines and organoids to build a set of 
known cell cancer states with known phenotypes and drug response to which patients’ tumour can 
be mapped to. 
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APPENDIX A - Materials and Methods 
 
 
Cell culture 
 
We obtained the 32 cell lines used in this study from commercial providers. I cultured cell lines in ATCC 
recommended complete media at 37°C and 5% CO2. 
 
 
Drop-seq platform set-up 

 I performed the single-cell transcriptomic of the 32 cell lines with Drop-seq platform. I fabricated the microfluidics 
device for the generation of droplet using a bio-compatible, silicon-based polymer, polydimethylsiloxane (PDMS) 
that was rendered hydrophobic with Aquapel® treatment. In each sequencing experiment, I loaded cell suspension, 
barcoded bead suspension and carrier oil (QX200 droplet generation oil, Bio-Rad) in syringes and then I placed them 
in syringe pumps (Leafluid). Flow rates of syringe pumps were set at 4,000 µL/hr for both cell and barcoded bead 
suspensions while carrier oil syringe pump was set at 15,000 µL/hr. In the human-mouse mixture experiment, I 
resuspended cells at the concentration of 500 cell/µL (250 cell/µL in the droplet final volume) and barcoded beads at 
the concentration of 120 bead/µL. For CCL sequencing experiments, I diluted cells at the concentration of 200 cell/µL 
in PBS with BSA 0.01% (Merck) and 120 bead/µL in lysis buffer. I used the self-built magnetic stirrer system to keep 
in suspension barcoded beads. I performed tests to count the occurrence of a single cell together with a barcoded bead 
without lysis buffer in the barcoded bead suspension. To break the water-in-oil emulsion, I collected droplets in a 50 
mL falcon and I added 1 mL of Perfluoro-1-octanol. Captured RNA was reverse transcribed in a single reaction 
following the original protocol described in and then digested with exonuclease 1 to degrade unbound primers. 

 

Cell clustering and identification of marker genes 

We found transcriptionally similar subpopulations of cells using a Phenograph like approach as implemented in the 
clustcells function of gficf package. Briefly, we initially built a graph of cells by using the K-Nearest Neighbours 
(KNN) algorithm applied on the PC-reduced space where each cell was connected to its 50 most similar cells using 
the manhattan distance. Then, to build the final graph of cells edge weight between any two cells was refined with 
Jaccard similarity by computing the proportion of neighbours they share. We used the Louvain algorithm with 
resolution parameter equal to 0.25 to find communities of cells in this graph of cells. We identified differentially 
expressed genes in each cluster by using findClusterMarkers function of gficf package that compare the expression of 
a gene in each cluster versus all the other by using the Wilcoxon rank-sum test. 

 

TCGA BC bulk expression dataset and deconvolution into BC cell-lines 

We collected raw BC bulk expression data and relative patient clinical information from the Genomic Data Commons 
(GDC) portal by using the TCGAbiolinks package. Then, we normalized raw counts using the EdgeR package into R 
statistical environment 3.6. We used Bisque tool (available at https://github.com/cozygene/bisque) to estimate the cell-
line proportion in BC TCGA bulk expression. Specifically, we used the ReferenceBasedDecomposition function with 
parameter bulk.eset equal to the BC TCGA expression dataset in log2 scale, the parameter sc.eset equal to our BC 
atlas were normalized raw counts were rescaled in log2, use.overlap parameter equal to FALSE and markers parameter 
equal to the marker genes across the 32 BC cell-lines estimated by using the function findClusterMarkers function of 
gficf package. As in the original manuscript of Bisque tool [107], only marker genes with an FDR<0.5 and Log2 fold 
change greaten then 0.25 were used for deconvolution purpose. Before to be used both  
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Spatial sequencing data 
We downloaded spatial transcriptomic data of BC patient from 10x Genomic website 
(https://www.10xgenomics.com/resources/datasets). We used only tiles reported to be “in tissue” according to the 
related metadata of each patient slide. 

 

Embed new cells into the BC atlas and prediction of the cancer type 

We embedded new points into the UMAP space via embedNewCells function of gficf package. Briefly, we normalized 
tiles from 10x spatial transcriptomic with GF-ICF method as described above but using the ICF weight estimated on 
the BC atlas. Then, tiles are projected in the existing PC space using gene loadings estimated on the BC atlas. After 
this transformation, we embedded tiles in the BC atlas via umap_transform function of uwot package. Finally, we 
predicted the cancer type of each new embedded point using the function classify.cells of the package gficf with the k 
parameter equal to 7. This function performs a k-nearest neighbour classifier to classify the new embedded points 
using the coordinates of the UMAP space. 

 

Single-cell drug sensitivity prediction 

We obtained the basal expression profile of about 1,000 cancer cell line from RNA-sequencing data downloaded from 
the Cancer Cell Line Encyclopaedia (CCLE) portal. We discarded cell line belonging to liquid tumour and we retained 
only 658 cell lines belonging to solid tumours for further analysis. We normalized the raw counts of each gene with 
edgeR package and transformed in log10(CPM+1). Lowly expressed genes and genes whose entropy was in the fifth 
percentile were excluded from the analysis. We crossed the expression profiles of the 658 CCLs with drug sensitivity 
data from work of Rees and colleges [29]. This dataset was originally composed by 481 small molecules, but after 
removing drugs for which the in vitro response was available for more than 25 CCLs only 450 small molecules were 
retained for further analysis. Then, we computed for each gene and for each of the 450 drugs the Pearson correlation 
coefficient (PCC) between the expression of the gene and the effect of the drug expressed in terms of Area Under the 
Curve (AUC) across the 658 cell lines. Since the AUC reflects the in vitro response of a cell line to different 
concertation of a drug in a timeframe of 72 hours, lower values of AUC are associated with sensitivity whereas higher 
values with resistance to the drug by the tested cell line. Hence, genes positively correlated with the AUC are potential 
markers of resistance (the more expressed the gene, the higher the concentration needed to inhibit growth), vice-versa, 
negatively correlated genes are markers of sensitivity. With this approach, we generated a ranked list of expression-
based biomarkers of drug sensitivity and resistance for each of the 450 drugs where genes positively correlated with 
the AUC are at the top, and those negatively correlated at the bottom. Finally, to predict drug sensitivity at the single-
cell level, we used the top 250 expressed genes of each cell as input of Gene Set Enrichment Analysis (GSEA) against 
the ranked list of biomarkers for each one of 450 drugs built as described above. Hence, while a negative enrichment 
score implies that genes associated to drug sensitivity are highly expressed by the cell, a positive one indicates the cell 
express genes conferring drug resistance. GSEA and associated p-values were estimating using the fgsea package in 
the R statistical environment version 3.6. 

 

Differential drug sensitivity prediction between HER2+ and HER2- cells in the MDA-MB-
361 cell line 

For each sequenced cell of the MDA-MB-361, we predicted the effect to 450 anticancer drugs as described above. 
Then, for each of the 450 drugs, we used the Mann-Whitney test to assess if there was a difference between enrichment 
scores of HER2+ (UMI>0) and HER2- cells. Obtained pvalues were corrected for false discovery rate using 
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Benjamini-Hochberg correction. We considered a drug specific for HER2- cell population if and only if its FDR was 
less than 0.05 and the median enrichment score across HER2- cells less than zero while its median enrichment score 
across HER2+ cells greater than zero. Conversely, we considered a drug specific for HER2+ cell population if and 
only if FDR was less than 0.05 and the median enrichment score across HER2+ cells less than zero while its median 
enrichment score across HER2- cells greater than zero. 

 

Validation of drug sensitivity prediction 

Precision of the proposed method in predicting drug sensitivity was evaluated using an independent drug screening 
dataset produced from Iorio and colleagues 9 composed by 1,001 CCLs and their maximal inhibitory concentration 
(IC50) values at 265 small molecules. Hence, we used the described method on our 32 BC cell lines to predict from 
single cell transcriptional data the percentage of sensitive cells at 86 common drugs between the two datasets. The 
“golden standard” was built by assigning to each of 32 x 86 (=2,752) cell line/drug pair the value 1 if the cell line was 
sensitive to the drug and 0 otherwise. To determine if a cell line was sensitive or not to a specific drug, we converted 
for each drug its IC50 distribution in Z-scores using all the 1,001 available cell lines and then defined a cell line 
sensitive to the drug if and only if its Z-score was in the 5% percentile. Finally, Positive Predicted Values (PPV) were 
defined as TP/(TP+FP) where TP represents the number of true positives and FP the number of false positives 
predicted cell lines/drug pairs. 

 

Prediction of cell cycle phase from scRNA-seq 
We predicted the cell cycle phase of each sequenced cell using the function CellCycleScoring of the Seurat tool with 
default parameter and we followed what was suggested in the corresponding vignette (https://satijalab.org/seurat). 

 

HER2 antibody staining procedure for flow cytometry analysis 
 
Before staining, I first washed cells with phosphate-buffered saline (PBS) 1x, detached with 0.05% trypsin-EDTA, 
resuspended and harvested with the appropriate medium in single-cell suspension. Then, I counted cells, washed with 
PBS-FBS 1%, and finally incubated for 15 min at 4° in the dark at the concentration of 1.0 × 106 cell/mL with staining 
buffer. I prepared the staining buffer by diluting the mouse anti-human HER2 antibody (BD BB700) at the final 
concentration of 0.00114 ng/mL. Then, to remove unbound antibody, I washed cells three times with PBS-FBS 1%. I 
performed flow cytometry measurements on either BD Accuri C6 or BD FACSAria III instruments. To define 
antibody positive and negative cells, I used the unstained samples to set the threshold. 
 
 
HER2 expression dynamics experiment 
 
I performed the sorting of MDA-MB-361 HER2-positive and HER2-negative cells following the antibody staining 
procedure that I described above with the only exception that before sorting, I resuspended each sample in sorting 
buffer (PBS 1x, FBS 1%, trypsin 0.1%, EDTA 2mM). Then, I collected 4.0 × 105 cells for each cell subpopulation (i.e. 
HER2-positive and HER2-negative); I seeded cells in their appropriate medium, and incubated at 37°. After 18 days, 
I checked the percentage of cells expressing HER2 protein by performing the antibody staining procedure described 
above. 
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Drug sensitivity assay 
 
I seeded cells in the appropriate format (96-well microplates (PerkinElmer)); I specifically optimized the seeding 
cell confluency for each cancer cell line to have cells in growth phase at the end of the assay. After overnight 
incubation at 37°, I treated cells with DMSO (Merck) for the negative control and with selected drugs in triplicate, 
depending on the assay, as well as for the incubation time at 37°. I assessed cell viability by measuring either 
luminescence with GloMax® Discover instrument from Promega or by nuclei count using the Operetta instrument 
from PerkinElmer. I normalized luminescence measurements using background wells as manufacturer protocol. For 
luminescence measurement, I treated cells with Promega CellTiter-Glo® Luminescent Cell Viability Assay 
according to the manufacturer protocol. For nuclei count, I washed attached cells with PBS 1x, fixed with 
paraformaldehyde (PFA) 4% for 10 min at room temperature, washed again with PBS 1x, incubated at room 
temperature in the dark with HOECHST 33342 (Thermo Fisher Scientific) diluted 1:1000 in PBS 1x for 10 min and 
finally I washed with PBS 1x. I performed nuclei count by using the Columbus image analysis software 
(PerkinElmer). All drugs I used in this study were purchased from Selleckchem. 
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APPENDIX B – Mathematical model of the HER2 interconversion 
dynamics 
 
The model assumes that each cell can be in either one of two states (HER2- and HER2+) and can switch dynamically 
between the two with rates  𝜆, 𝛿. Moreover, independently of the state, the cell can replicate with rates k1 and k2. 
Finally, the effect of anti-HER2 drugs is present as an additional degradation term on HER2+ cells.  
Using standard mass action kinetics, the following equations describing the model in Figure 6.7 can be derived: 
 

$ ℎ&̇ = (𝑘' − 𝜆)ℎ& + 𝛿ℎ(

ℎ(̇ = (𝑘) − 𝛿)ℎ( + 𝜆ℎ& − 𝑢ℎ(
 

 
Where ℎ& stands for HER2- cells, and ℎ( for HER2+ cells, whereas 𝑢 quantifies the effect of anti-HER2 drugs (e.g., 
Afatinib). To simplify the model, the replication rates k1 and k2 are assumed to be the same.  The parameters values 
for 𝜆, 𝛿   determine the percentage of HER2+ cells in the cell population, which can be shown to be equal to  *

*(+
  

after a transient, when no drug is present (u=0).  The parameters’ values, reported in Supplementary Figure 13, were 
set to yield a doubling rate of the total cell population (ℎ& + ℎ() of approx. 3.5 days, like the observed cell cycle rate 
of the MDAMB361 cell line, and a percentage of HER2+ cells of 60%, close to the value tha we measured (Figure 
5.1). With these nominal values, the replication rates and the interconversion rates are of the same order of 
magnitude.  
Figure 6.A shows the numerical simulations of the model behaviour following treatment with afatinib, with a 
starting population of 1x106 cells, of which 0.9x106 are HER2+ cells and 0.1x106 HER2- cells (i.e. 90% HER2+ 
cells): for nominal values of the parameters, in the absence of Afatinib, both HER2- and HER2+ cells grow 
exponentially, while the percentage of Her2+ cells quickly stabilises at 60%; upon Afatinib treatment for 3 days, 
both the number of HER2+ and HER2- cells decrease, while the percentage of HER2+ cells settles at 30%. Finally, 
upon removal of Afatinib, the number of cells increases while the percentage of HER2+ cells recover to 60%. When 
the interconversion rates (𝜆, 𝛿)  are much slower than the growth rate (k), then in the absence of Afatinib the 
percentage of HER2+ cells take longer to stabilise at 60%, whereas the effect of a 3 days Afatinib is much more 
pronounced, causing the percentage of HER2 cells to quickly drop to approx. 10%. This can be explained by the fact 
that HER2- cells keep increasing in number during Afatinib treatment as their growth rate is much faster than their 
interconversion rate, while HER2+ are removed by Afatinib treatment and cannot escape its effect as they convert to 
HER2- cells too slowly. Upon Afatinib removal, both the number of cells and the percentage of HER2+ cells start 
increasing. For fast interconversion rates, the situation is reversed, that is cells increase in number in the absence of 
Afatinib with the percentage of HER2+ cells quickly reaching 60%. Interestingly, while the effect of Afatinib is 
almost absent in terms of changes in the percentage of HER2+ cells, the total number of cells drops substantially, as 
HER2- are much more affected by Afatinib treatment because of their fast interconversion to HER2+ cells. 
We also simulated dose response curves at increasing concentrations of drugs (i.e., the value of u in the model) for 
the model for each set of parameters’ values (slow, nominal and fast), as reported in Figure 6.8B. As expected, only 
in the case of slow interconversion, it is possible to appreciate a difference in the response of HER2- cells versus 
HER2+ cells following treatment with Afatinib. 
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APPENDIX C – Supplementary Figures 
 
 
Supp. Figure C1 - Fields I captured to count the cell and barcoded bead occupancy (red circles) for the experiment 
described in Chapter 3, Section 3.4.2. 
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Supp. Figure C2 - Composition of the clusters in the Atlas. For the indicated cluster, the corresponding pie-chart 
represents the cluster composition in terms of cell lines. Cell-lines in the same pie-chart are distinguished by colour. 
 
 
 

                                            
 
 
 
 
 
 
 
Supp. Figure C3 - Single cell cancer type classification performances. Seventy five percent of cells of each cell-line 
were collected and used as the training set while the remaining 25% was used as test set. Cells in the training set 
were used to reconstruct the breast cancer atlas from scratch while the cell line type of each cell in the test set was 
predicted by mapping them into the atlas as “new cells”. Finally average classification accuracy as a function of the 
number of neighbourhood cells was estimated by using the function classify.cells of the package gficf (Methods). 
The analyses described in the main text were performed using a number of neighbours K=100. 
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Supp. Figure C4 - Automatic detection of cell line composition of spatial transcriptomics profiles. (A) Tissue-slide 
of the lobular BC tumour biopsy (presented in Figure 2C) sequenced by 10x spatial transcriptomics and the spatial 
expression of ESR1, PGR, ERBB2 and EGFR genes. (B) Tissue-slide of a ductal BC tumour biopsy sequenced by 
10x spatial transcriptomics and the spatial expression of ESR1, PGR, ERBB2 and EGFR genes. (C) Top-left: Cancer 
cells sequenced with spatial 10X genomics technology are embedded in the BC atlas to predict which cell-line they 
are similar using K-nn algorithm. Top-right: Classification of each pseudo cell to show predicted cell-line in the 
spatial context with the pie-chart showing the percentage of cells predicted to be similar a specific cell-line. Bottom-
left: Classification of each pseudo cell to show predicted tumour type in the spatial context. Bottom-right: 
Quantification of bottom-left plot where the percentage of pseudo cells predicted for each tumour type is reported. 
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Supp. Figure C5 - Performance in predicting cell line composition from bulk RNA-seq using computational 
deconvolution. The Bisque deconvolution algorithm was first trained on the BC single-cell atlas and then its 
performances estimated by predicting cell-line composition from bulk RNA-seq obtained by averaging single cell 
expression profiles for each cell-line. 
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APPENDIX D – Supplementary Tables 
 
 
Supp. Table D1 – Cancer cell lines information table. ER=ESR1= estrogen receptor; PR=PgR=progesterone 
receptor; H= HER2+; LA = Luminal A; LB = Luminal B; TNA = triple negative A; TNB = triple negative B. In 
each column is reported the (A) cell line name; (B-D) expression marker status; (E) BRCA mutational status; (F) 
subtype; (G) culture condition; (H) derivation site of the cell line. 
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Supp. Table D2 – Drug prediction for HER2+ and HER- cell subpopulations of MDAMB361 cell-line. For each 
predicted drug we report: (A) its name; (B) its Enrichment Score computed on HER2+ cells; (C) its Enrichment 
Score computed on ES HER2- cells; (D) for which cells drug is specific; (E) The P-value; (F) Bonferroni corrected 
P-value; (G) the target gene of the drug; (H) the drug Mode of Action. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


