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Abstract 

Multiphase electric drives are today one of the most relevant research topics for the 
electrical engineering scientific community, thanks to the many advantages they offer 
over standard three-phase solutions. The employment of a multiphase machine allows to 
split the input power over multiple phases, thus reducing the voltage and/or current 
capabilities of the supplying converter, keeps the capability to generate a rotating 
magnetic field at the air gap even after fault events, and offers a higher number of degrees 
of freedom which can be conveniently exploited to optimize some desired system 
performances. For these reasons, multiphase configurations are considered promising 
solutions in many areas, ranging from industrial to traction applications, and especially 
in presence of high power or high-reliability requirements.  

However, contrarily to the three-phase counterparts, multiphase drives can assume 
a wider variety of different configurations, concerning both the electrical machine (e.g., 
symmetrical/asymmetrical windings disposition, concentrated/distributed windings, 
etc…) and the overall drive topology (e.g., single-star configuration, multiple-star 
configuration, open-end windings, etc…). This aspect, together with the higher number 
of variables of the system, can make their analysis and control more challenging. 

This Ph.D. thesis is focused on the mathematical modelling and on the control of 
multiphase electric drives. The aim of this research is to develop a generalized model-
based approach that can be used in multiple configurations and scenarios, requiring 
minimal reconfigurations to deal with different machine designs and/or different 
converter topologies, and suitable both in healthy and in faulty operating conditions.  

Standard field-oriented approaches for the analysis and control of multiphase drives, 
directly derived as extensions of the three-phase equivalents, despite being relatively 
easy and convenient solutions to deal with symmetrical machines, may suffer some 
hurdles when applied to some asymmetrical configurations, including post-fault layouts. 
Indeed, in these cases, the definition of a proper vector space decomposition may not be 
a trivial process, and the resulting model may show additional coupling effects, which 
need to be properly compensated in the machine control. 

To address these issues, a different approach, completely derived in the phase 
variable domain, is here developed. The method does not require any vector space 
decomposition or rotational transformation but instead explicitly considers the 
mathematical properties of the multiphase machine and the effects of the drive topology, 
which typically introduces some constraints on the system variables. The phase variable 
domain is a natural reference frame for the analysis of the machine and of the drive, 
because each variable is directly associated with a physical quantity. In this framework, 
the machine modelling is derived through the standard tools of electromechanical 
conversion theory, while the drive topology is modelled through a multiport network 
analysis. The drive control algorithm is also developed in the phase variable domain. It 
is based on a torque control strategy, aimed at optimally developing the desired 
electromagnetic torque considering the available degrees of freedom, on a decoupling 
algorithm, aimed at neutralizing the mutual interaction effects between the machine 
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variables, and on a feedback current controller, aimed at tracking the required references. 
In this thesis work, the proposed approach is particularized for multiphase permanent 

magnet synchronous machines and for multiphase synchronous reluctance machines. All 
the results are obtained through rigorous mathematical derivations, and are supported 
and validated by both numerical analysis and experimental tests. As proven considering 
many different configurations and scenarios, the main benefits of the proposed 
methodology are its generality and flexibility, which make it a viable alternative to 
standard modelling and control algorithms.  

Future studies will develop further analysis and extension to other machine types. 
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1 Introduction  

Human progress has always been strictly related to the availability of machines 
capable of producing power in an effective and controllable way. Today, the 
electromechanical conversion plays a key role in many aspects of everyday life, and 
electric drives are of fundamental relevance for both industrial and traction applications.  

Up to the late 1980s, DC electric machines were primarily used for variable-speed 
drives, especially thanks to the simplicity of their control, while AC machines, despite 
having many advantages in terms of construction and maintenance, were instead 
primarily used for fixed-speed operations, because of the intrinsic limitations coming 
from the power grid supply. However, in the last decades, the huge improvements in the 
power electronics technology have allowed the production of semiconductor devices with 
increased efficiency and reduced cost. This aspect, together with the development and 
diffusion of digital control platforms, has made it possible to feed AC machines with 
controllable power converters and has led to the genesis of variable-frequency AC drives, 
which have progressively replaced the traditional DC electric drives in almost all power 
applications. 

The power converter acts as a decoupling interface between the electrical machine 
and the supplying energy source, which can either be in AC (e.g., the main three-phase 
grid for industry applications) or in DC (e.g., battery packs for automotive and traction 
applications). This offers several advantages not only for the variable speed control, but 
also for the electric drive design. For example, the machines do not necessarily need to 
be designed for 50 Hz or 60 Hz operations, the winding can be configured to operate with 
non-sinusoidal voltages and currents, and the number of phases is not limited to three. 
Under this framework, electric drives employing AC machines with more than three 
phases are named multiphase electric drives (Fig. 1.1). 

While the first examples and applications of multiphase drives can be traced back to 
the 1960s, this technology has witnessed the main progress and developments during the 
1990s, especially as a solution for high-power applications. Indeed, one of the main 
benefits of these configurations is the possibility to split the machine power into multiple 

phases, thus allowing the use of semiconductor devices with limited voltage and/or 
current ratings. This aspect has made their development of great interests in some 
specific applications (e.g., ship propulsion, wind turbine generation systems, liquified 
natural gas production plants, etc…).  

However, multiphase configurations also have many other benefits which can be 
considered of practical interests in many applications. One of these is related to the 
intrinsic fault-tolerance capability. Indeed, given the redundancy coming from both the 
power electronics converter and the electrical machine, the same drive can operate 
(although with reduced capabilities) even after the fault of one or more phases, as long 
as the healthy phases can generate a rotating magnetic flux density field at air gap. For 
this reason, the employment of multiphase machines is of particular interest in some 
safety-critical applications, like in the aerospace and aircraft industry, where they are 
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gaining more and more attention thanks to the concept of a More Electric Aircraft.  
Finally, another aspect that is attracting the interests of the scientific community is 

that the higher number of machine phases offers a higher number of degrees of freedom, 
which can be exploited for additional control purposes. Some examples are the torque 
enhancement through the utilization of multiple spatial harmonics of the air-gap flux-
density field, the independent torque, power or flux control between multiple machine 
subsets, and the realization of multi-motor drives. 

This preliminary chapter, by describing the main research topics and results 
presented in the technical literature, is aimed at giving some general background 
regarding the fundamental concepts of multiphase electric drives. It then introduces the 
main research objectives and provides the structural organization of this Ph.D. thesis. 

1.1 Literature review 
The scientific literature offers many surveys and review papers, which can provide a 

rich and detailed state of the art on multiphase electrical drives [1]–[8]. This section gives 
a general overview of the main results regarding different aspects of technical interest.  

1.1.1 Applications 
Multiphase drives are a convenient solution for both high-power and high-reliability 

systems. Many application areas can benefit from their advantages, including both 
traction and industry applications.  

The marine applications are today the most relevant field where multiphase drives 
are employed, for both the ship propulsion [9]–[17] and for the energy generation onboard 
[18], [19]. This is especially due to the high installed power that, as previously mentioned, 
can be more conveniently split among multiple phases. 

For the same reason, multiphase drives are successfully being employed also in 
stationary high-power application areas, like in wind power generation systems [20]–[22] 
or high power pumps or compressors [23]–[28], where the installed power ranges from 
several hundreds of kW to some MW. Another notable application example is for high-
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Fig. 1.1 – Schematic representation of a multiphase electric drive. 
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speed elevator systems [29].   
The aerospace industry also offers some notable examples of multiphase solutions 

[30], [31]. The interest is here primarily focused on the fault-tolerant capabilities of these 
architectures, which have been applied for high-reliability actuators [32]–[38] and for the 
onboard electrical generation [39], [40]. However, some recent studies have also started 
investigating these solutions for hybrid aircraft propulsion systems, with the aim to 
reduce the emissions related to fuel consumptions [31]. 

Finally, the scientific community is also exploring some possible uses of multiphase 
drives for automotive applications [30]. Some examples regard auxiliary services, like 
starter/alternators or low-voltage generators [41]–[43]. However, thanks to the increasing 
interests in Hybrid Electric Vehicles (HEVs), Battery Electric Vehicles (BEVs) and Fuel-
Cells (FC) traction systems, in future times multiphase configurations may also represent 
viable solutions for vehicle traction [44]–[49]. 

1.1.2 Machine design 
The different types of designs can be classified in the same categories as for standard 

three-phase configurations [1]. In other words, a multiphase machine can be designed to 
be an induction machine (IM), an excited synchronous machine (ESM) a permanent 

magnet synchronous machine (PMSM, with either surface-mounted or interior-mounted 
permanent magnets), a brushless DC machine (BLDC), a synchronous reluctance 

machine (SynRM), and so on.    
Similarly, each stator phase winding can be realized either with a distributed layout 

or with a concentrated layout [1], [3]. The first choice is aimed at producing a sinusoidal 
magneto-motive force distribution at the air gap, while the second layout allows the 
generation of non-sinusoidal magnetomotive force distributions with a specific harmonic 
content. This aspect may be of interest for multiphase configurations because, as also 
previously mentioned, the higher number of degrees of freedom offered for the machine 
control can be exploited for torque enhancement purposes by separately controlling 
multiple spatial harmonic contributions. A special case of concentrated windings design 
is the modular layout, finalized at the minimization of the magnetic, mechanical and 
thermal influence among different phases, especially for high-reliability applications. A 
graphical example is depicted in Fig. 1.2. 

Contrarily to standard three-phase machines, multiphase configurations may show 
different winding dispositions along the stator periphery. If the stator windings are 
uniformly spaced along the stator periphery, the machine has a symmetrical 

configuration, otherwise it has an asymmetrical configuration. For a symmetrical �-phase 
machine the electrical angle between two consecutive magnetic axes is 2	 �⁄ . An 
asymmetrical configuration could, in theory, have an arbitrary angular shift between the 
magnetic axes. However, most of the asymmetrical configurations examined in the 
technical literature refer to the case where the � machine phases can be grouped into � 
symmetrical subsets of � phases each (i.e., � = � ⋅ �), and the first phases of two 
consecutive subsets are shifted by 	 �⁄ . In this context, machines for which the number 
of phases � is a prime number are typically designed with a symmetrical configuration.  
Conversely, machines for which � is not a prime number can be designed by either a 
symmetrical or an asymmetrical winding disposition [1] (as exemplified in Fig. 1.3 for a 
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nine-phase configuration). A frequently adopted solution is represented by machines 
designed with multiple symmetrical three-phase subsets, which are also named multi-

three-phase machines (e.g., dual-three-phase machines). 

1.1.3 Converter architectures and drive topologies 
The supply of a multiphase machine for variable speed operations is normally 

achieved through a Voltage Source Inverter (VSI). Most of the currently adopted 
solutions consist of two-level converters. However, the supply of multiphase machines 
from multilevel converters is currently under development [15], [50]–[53] and has already 
found some practical uses in high-power applications [15], [25].  

Many drive topologies can be conceived regarding the electrical connection between 
the machine and the converter and among the phase windings of the machine itself [7]. 
A few examples are here provided: 

 all the phases can be connected in a star configuration with a single neutral 
point and supplied by a single inverter unit (single-star configuration),  

 the machine phases can be split into different star-connected subsets with 
multiple isolated neutral points and be supplied either with a common or with 
multiple independent converter units (multiple-star configuration),  

 the phases can be accessed and supplied at both terminals by two independent 

a) b) c)

 

Fig. 1.2 – Different winding designs for a five-phase machine: a) Distributed layout; 
b) Concentrated layout; c) Modular layout. 

1 

2 

3 

7
8

9

4
5

6 

40° 20°

1

2

3

4
5

6

7

8
9

a) b)

 

Fig. 1.3 – Different dispositions of the magnetic axes for a nine-phase machine. 
a) Symmetrical layout; b) Asymmetrical layout.  
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converters (open-end configuration),  
 each phase can be separately supplied by an independent full-bridge converter. 

Different topologies can have a different impact on the overall drive control, by 
introducing some constraints on the machine phase currents and leading to different 
common-mode voltage injection strategies for the inverter modulation. These aspects 
will be covered in more detail in Chapter 3 and Chapter 4. 

1.1.4 Machine modelling and control 
The mathematical model of a multiphase machine can be found with the classical 

tools of electromechanical conversion theory. This approach, which will be analysed and 
revisited in Chapter 2, results in a set of differential and algebraic equations in the phase 
variable domain. The mathematical model of the machine is then typically reformulated 
with some transformations of the phase variables.  

Many modelling approaches are based on the vector space decomposition (VSD) [1]. 
The machine variables are combined into a set of space-vector components through the 
proper definition of a generalized Clarke’s transformation matrix, which is typically built 
basing on the magnetic axes disposition of the machine phase windings. For symmetrical 
configurations, the definition of the transformation matrix is the generalization of the 
theory of symmetrical components [54] and it leads to the decoupling of the dynamics of 
all the space vector components of the machine [55]. The definition of a proper 
transformation matrix for asymmetrical configurations is instead not a trivial process. 
Many different solutions have been proposed in the technical literature with the aim to 
give a general solution to this problem but, in general, the dynamic decoupling is not 
always guaranteed [55]–[58]. 

For VSD-based modelling approaches, the developed control algorithms are direct 
extensions of the same approaches adopted for three-phase machines [1], [7]. 

Field-oriented control (FOC) algorithms are today the most commonly adopted 
approaches for multiphase variable-speed drives. They are based on an additional 
rotational transformation applied to the mathematical model obtained by the VSD. The 
combined effect of the VSD and rotational transformation is represented by a generalized 

Park’s transformation matrix, which projects each space vector in a moving reference 
frame synchronous with the spatial harmonic components of the magnetic flux density 
field at the air gap. A set of reference currents is computed from a torque/flux control 
strategy, and is then controlled either in the stationary or in the synchronous reference 
frame. In most cases, the reference currents in the synchronous reference frame are 
constant, and they can be therefore regulated with standard Proportional-Integral (PI) 
controllers, similarly to the three-phase case. When the reference currents are not 
constant (e.g., in case the current control is performed in the stationary reference frame, 
in some asymmetrical configurations, in case of harmonic injections for torque 
improvements, etc…) the controller is properly modified with additional feedback actions 
capable of tracking periodic references (e.g., Resonant controllers, multiple Rotating-
Integral controllers, Vector Proportional-Integral controllers, etc…) [59]–[63]. Moreover, 
some other alternative current controllers have also been proposed in the technical 
literature, like the Model-Predictive Controller (MPC) [64]–[66]. An application of FOC 
algorithms to asymmetrical PMSMs will be analysed in Chapter 5. 
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An alternative approach to FOC is represented by the direct torque control (DTC) 
algorithm. It is based on the direct regulation of the electromagnetic torque and of the 
fundamental component of the stator flux, without relying on inner current control loops 
[1]–[3], [7]. Its implementation can either rely on optimal switching tables and hysteresis 
controllers [67]–[71], or on the computation of a set of reference voltages which are then 
applied through a pulse-width-modulation algorithm [72]. However, the proper definition 
of optimal switching tables becomes exponentially harder for an increasingly higher 
number of phases. Additionally, in multiphase configurations, there are generally 
multiple non-torque and non-flux producing current components, which are not directly 
limited by standard DTC schemes. Since these current components may assume excessive 
values and decrease the energetic efficiency of the drive [3], they need to be reduced, for 
example by properly modifying the definition of the switching tables [70], [73]–[76]. These 
aspects have strongly limited the spread and extensions of DTC controllers for machines 
with a high number of phases.  

A different modelling method adopted in multiphase configurations is the multi-stator 
approach (MS) [29], [39], [54], [77], [78]. This method is convenient when the machine 
phases can be grouped in multiple symmetric subsets (e.g., in multi-three-phase 
configurations), which are analysed and controlled independently from one another. To 
be more specific, each subset is separately analysed by applying a VSD-based 
transformation (developed for a reduced number of phases), and is typically controlled 
in the fundamental synchronous reference frame as in a standard three-phase FOC 
algorithm. The main benefit of this approach is its intrinsic modularity [54]. Moreover, 
by independently controlling each subset, it is relatively easy to implement power, torque 
or flux sharing strategies [79], [80]. However, as a drawback, the resulting model is 
typically characterized by strong coupling effects between the different subsets [28], [54], 
[58]. This can severely affect the machine control and may even cause instability [81]. 
To overcome this issue, some additional decoupling transformations have been proposed 
in the technical literature [29], [82]–[84]. 

1.1.5 Converter modulation 
When the first multiphase drives have been employed, the semiconductor devices 

technology was still immature, and the voltage source inverters were primarily driven in 
180° conduction mode (i.e., six-step mode for three-phase configurations). In that 
context, multiphase configurations were not only exploited due to their benefits in terms 
of power segmentation and fault-tolerance, but also to decrease the torque ripple 
generated by the additional harmonics in the machine supply [1]. 

Nowadays, given the huge progress in power electronics, the voltage source converters 
are controlled by means of pulse width modulation (PWM) techniques. For two-level 
architectures, they have been developed with the same approaches as for three-phase 
converters, and most of them can be classified as carrier-based (CBPWM) and the space-
vector (SVPWM) techniques.  

Carrier-based approaches are a direct extension of the analogous techniques 
developed for single-phase and three-phase systems. They are based on the direct 
comparison between modulating signals proportional to the voltage references with a 
common carrier signal. As known, these approaches can use a proper injection of a 
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common-mode voltage component to extend the linear modulation region of the VSI [50], 
[85]. 

Space-vector approaches are instead related to the variable transformations used for 
the machine modelling (e.g., to the chosen VSD transformation), and are based on the 
choice of a proper switching pattern between different VSI voltage vectors. However, for 
multiphase configurations, the selection of a proper set of voltage vectors and of their 
switching pattern is much more challenging than in three-phase configurations. This is 
both due to the exponential increase of the overall number of voltage vectors (which, for 
a two-levels �-phase converter, are 2�) and due to the presence of multiple planes in the 
transformed coordinates. The technical literature presents many possible approaches to 
deal with these aspects [86]–[92]. However, it has been proven that most space-vector 
techniques are completely equivalent to carrier-based algorithms with a proper common-
mode voltage injection [50], [88], [93]. 

Similar considerations can also be applied for multilevel architectures. Again, carrier-
based approaches are the easiest and most straightforward implementation [52], [94], 
while space-vector approaches are strongly affected by the increase of the possible 
switching states [95], [15], [96], [92], [97], [98]. Again, an equivalence between many 
space-vector and carrier-based approaches has been proved in the scientific literature 
[50], [99]–[102]. The redundancy of states in multilevel converters can also be exploited 
for additional control purposes (e.g., equalization of the DC-bus capacitors voltages, 
harmonic content optimization, switching losses minimization, etc…) [50], [103]–[105].  

These topics will be also discussed in more detail in Chapter 3. 

1.1.6 Post-fault operations 
As previously mentioned, a multiphase machine can operate even after one or more 

faults, as long as the healthy phases can generate a rotating magnetic field at the air 
gap. Among the different kinds of faults which can occur in an electric drive, the open-
phase fault events are the most analysed in the technical literature [4].  

The post-fault operation requires a preliminary diagnosis through a proper detection 
method [106]–[110] and a subsequent control reconfiguration, which is always 
accompanied by some performance deratings. Several possible approaches can be 
implemented according to the specific application.  

A possible strategy is to preserve the same electromagnetic torque as in the healthy 
configuration. This choice can lead to the same mechanical behaviour of the overall drive, 
but at the expenses of higher currents in the remaining phases [4]. Therefore, assuming 
the VSI current ratings are not violated, it is a viable option only for short periods 
because, if prolonged in time, it may increase the thermal stress and reduce the life-span 
expectations of the drive.  

Other more conservative approaches can mitigate this drawback by including some 
limitations on the phase currents. These limits can be imposed on the maximum current 
peaks or can be formalized by referring to the stator losses, which are related to the Root 
Mean Square (RMS) currents [111]–[114]. However, in this case, the electromagnetic 
torque which can be produced by the machine is reduced with respect to the healthy 
configuration and, consequently, the mechanical performances of the drive are derated. 

The overall impact of a fault on the drive operation and on its performances derating 
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depends both on the drive topology and on the adopted reconfiguration strategy. For 
machines designed with multiple independent subsets (e.g., multi-three-phase machines), 
the easiest fault-tolerant implementation can be achieved by disconnecting the whole 
subset where the fault has taken place [2], [54], [115]. This approach leads to an easy 
control reconfiguration and makes the post-fault currents to be equally distributed 
between the remaining sets, but usually limits the post-fault capabilities more than 
necessary, since also some healthy phases are penalized by the entire unit disconnection.  

Under this perspective, it has been shown that, in most cases, the machine 
configuration with a single neutral point can achieve better performances [1], [2], [111]. 
Similar benefits can also be achieved through different kinds of topologies like, for 
example, the individual supply of each phase winding through a separate full-bridge 
converter [36], [116], [117]. 

However, in this case, the post-fault reference currents may show an asymmetrical 
distribution or additional harmonic components. Therefore, the current controller may 
also need modifications with respect to the original healthy configuration [4]. 

1.2 Research objectives 
This thesis is focused on the modelling and control of multiphase electric drives. In 

particular, the aim of this research is to develop a generalized model-based approach 
that can be used in multiple configurations and scenarios. The same approach should 
apply with minimal reconfigurations to different machine designs (e.g., 
distributed/concentrated windings layouts, symmetrical/asymmetrical disposition of the 
phase windings, sinusoidal/non-sinusoidal flux-density field at the air-gap, etc…), to 
different converter architectures (e.g., single-star, multiple-star with single/multiple DC 
sources, individual supply of each phase, open-end winding configurations, etc…) and in 
both healthy and faulty conditions. 

The analysis is carried out by first modelling the electric machine and the power 
converter independently from one another, and then by mathematically formalizing their 
mutual interaction considering the drive topology. It is shown how different architectures 
can have a different impact on the electric drive behaviour, by acting as internal feedback 
actions for its dynamics. 

The development of a control algorithm is first examined with a field-oriented 
approach applied to multiphase PMSMs. Some torque improvement strategies, based on 
the use of non-sinusoidal currents, are formalized for a generic disposition of the phase 
windings, and a strong emphasis is given to the main differences between symmetrical 
and asymmetrical configurations, regarding both the torque and the currents control. 

An alternative control strategy is then proposed, and it is first developed for 
multiphase PMSMs and then extended for multiphase SynRMs. Contrarily to standard 
approaches, this algorithm is entirely formalized in the phase variable domain, and it 
explicitly considers the drive architecture. The proposed approach can generalize more 
easily to different machine configurations and drive topologies, including post-fault 
operations, and is therefore a viable alternative to standard control algorithms. 

The results of this dissertation, obtained through rigorous mathematical derivations, 
are supported and validated by both numerical analysis and experimental tests. 
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1.3 Thesis organization 
The thesis is composed of 8 chapters, which can be grouped into two main parts: the 

first part, which includes Chapter 2, Chapter 3 and Chapter 4, addresses the 
mathematical modelling of multiphase electric drives, while the second part, which 
includes Chapter 5, Chapter 6 and Chapter 7, is instead focused on the drive control. A 
brief overview of the main topics of each chapter is presented as follows. 

 Chapter 2 is focused on the modelling of the electric machine. The adopted 
analytical approach is based on the standard theory of electromechanical 
conversion and, starting from a given set of simplifying assumptions, it derives 
a generalized mathematical model in the phase variable domain. The main 
properties of the resulting system are derived and discussed. 

 Chapter 3 discusses the main architectures and modulation strategies for the 

power electronics converter. The chapter deals both with two-level and 
multilevel topologies, and presents some of the different multiphase 
architectures proposed in the technical literature. A mention and some 
examples are also provided regarding some pulse-width-modulation strategies. 

 Chapter 4 presents a novel modelling approach, based on a multiport network 

analysis, aimed at describing the mutual interactions between the converter 
and the machine according to the physical configuration of the system. This 
formalism considerably simplifies the analysis of the same machine under 
various drive topologies, coming either from different architecture designs or 
from post-fault reconfigurations. Some of its results are the core of the control 
algorithm developed in Chapter 6 and Chapter 7. 

 Chapter 5 develops a field-oriented-control algorithm for asymmetrical 

multiphase PMSMs. This control strategy, which is commonly adopted for 
symmetrical machines, is particularized for a generic asymmetrical winding 
configuration, with an arbitrary magnetic axes disposition. The main differences 
and properties are analysed and discussed. The chapter also presents and 
compares some torque enhancement strategies based on the exploitation of non-
sinusoidal currents.  

 Chapter 6 presents and discusses a novel control strategy for multiphase 

permanent magnet synchronous machines. The approach is completely derived 
in the phase variable domain and takes advantage of the results of the modelling 
approach developed in Chapter 4. It is based on a maximum-torque-per-ampere 
strategy and on a decoupled current control algorithm, which are both 
completely general with respect to the machine parameters and winding 
configuration, and which are also intrinsically suited both in healthy and in 
faulty operations. 

 Chapter 7 shows the extension of the control strategy presented in Chapter 6 
to multiphase drives employing synchronous reluctance machines. It rederives 
the maximum-torque-per-ampere algorithm basing on the different torque 
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development mechanism, and discusses the required adaptations for the 
decoupled current controller. 

 Finally, Chapter 8 summarizes the work described in this Ph.D. thesis, and 
derives the main conclusions, emphasising the novel results and contributions, 
and introducing the main ideas for future developments. 

All the analysis and results of this dissertation have been addressed and treated with 
mathematical rigour. However, in order not to overcomplicate the reading, most of the 
mathematical proofs and derivations, which typically require many analytical 
computations, have been grouped together and collected in the Appendix of Chapter 9. 
In this way, the reader can proceed more easily with the main thesis chapters, while the 
mathematical derivations can be explored in a separate reading. The same chapter also 
includes some other auxiliary technical considerations.  

Additionally, a side activity that has been carried out during the Ph.D. is the 
development of advanced pulse-width-modulation techniques for multilevel converters, 
aimed at directly addressing the voltage equalization of the DC-bus capacitors. As 
known, multiphase drives and multilevel converter can benefit from each other, especially 
in applications that both require high voltage and high reliability (e.g., wind turbine 
systems, marine transportation, etc…). However, from the mathematical point of view, 
their control can be analysed separately. For this reason, since a detailed and general 
analysis of multilevel converters would require much more details, some of the main 
results related to the developed multilevel converter modulations are briefly presented 
in Chapter 3.  

1.4 List of publications 
This thesis contains material from the scientific publications listed in the following. 

Other future technical works, based on still unpublished results shown in this 
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2 Electrical Machine Model 

This chapter is focused on developing a generalized approach for the mathematical 
modelling of a multiphase electrical machine. As for any physics problem, a good 
mathematical representation strictly depends on the application where this model is used 
and, therefore, it is the result of a trade-off between two opposing requirements. The 
model should be detailed enough to accurately describe the key functional aspects of the 
system but, at the same time, it should be simple enough to be effectively and adequately 
used in the application of interests. In other words, different models of the same physical 
system may be better suited for the design, for the control, for the diagnosis and/or for 
other purposes. 

In what follows, the electrical machine modelling approach, which is based on several 
simplifying hypothesis and approximations, is derived considering the machine control 
as the main purpose.  

The analysis is conducted as follows. First, Section 2.1 introduces the electrical and 
mechanical equations of the machine. Section 2.2 describes the machine magnetic 
behaviour, analysing the properties of the magnetic field inside the machine. The torque 
and fluxes expressions are then explicitly computed by using the electromagnetic energy 
conservation principle. Then, Section 2.3 outlines the overall machine model in the phase 
variable domain, which will be particularized in the next chapters for each specific case 
study. A brief mention is also given to some reference frame transformations which are 
typically adopted for the analysis and control of multiphase machines. Finally, 
Section 2.4 summarizes the main results. 

2.1 Electrical and mechanical equations 
The electrical machine can be considered as an electromechanical energy conversion 

interface between an electrical network and a mechanical system. Generally, the machine 
presents � different current-carrying phase windings, connected to the supplying 
electrical network, and two independent mechanical rigid bodies, named stator and rotor, 
in relative motion with one another, and firmly connected to other objects. The 
schematic model of the machine is depicted in Fig. 2.1. 

2.1.1 Electrical equations 
By using a passive sign convention, for each �-th machine phase winding (with � =1,… , �) it is possible to write the electrical equation: 

 �� = �� ⋅ �� + d��d�  (2.1)

which is directly derived from Faraday’s law1, where: 

 �� denotes the voltage between the two terminals of the winding, 
 

1 The plus sign in (2.1) is related to the passive sign convention. 
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 �� denotes the current flowing into the winding, 
 �� denotes the induced magnetic flux linkage, and 
 �� denotes the winding resistance. 

By using a matrix notation, the expression (2.1) can be written as: 

 � = � ⋅ � + d�d�  (2.2)

where: 
 � = [�1,… , ��]T is the � × 1 vector of windings voltages, 
 � = [�1,… , ��]T is the � × 1 vector of windings currents, 
 � = [�1,… , ��]T is the � × 1 vector of induced flux linkages, and 
 � is the � × � machine resistances matrix (which is diagonal and positive 

definite). 

2.1.2 Mechanical equations 
For a rotating electrical machine, the stator is considered as rigidly connected to a 

spatial reference frame, while the rotor is in relative motion to it. By using a motoring 
sign convention, the rotor dynamics is represented by the mechanical equations: 

 d%d� = & (2.3)

 ' ⋅ d&d� + ((&) ⋅ & = +,- − +- (2.4)

where: 
 % is the rotor position with respect to a chosen reference (which can vary in the 

interval  [0, 2	]), 
 & is the rotor angular speed, 
 '  is the rotor moment of inertia, 
 (  is a mechanical friction coefficient (which, generally, can depend on the rotor 

speed &), 
 +,- is the electromagnetic torque, generated by the electrical machine by 

ω 

TemTm

Rotor

 

Fig. 2.1 – Schematic model of a rotating electrical machine. 
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electromechanical conversion, and 
 +- is the mechanical braking torque at the rotor shaft. 

2.2 Magnetic model 
The equations (2.1)-(2.4) are completely general but, by themselves, are unable to 

describe the electrical machine behaviour, since neither the windings induced flux 
linkages �� (with � = 1,… , �) nor the developed electromagnetic torque +,- have been 
explicitly linked to the machine internal behaviour. This section derives their expressions 
in a generalized way by exploiting the energy conservation principle. 

2.2.1 Electromagnetic energy conservation principle 
From the electrical and mechanical equations (2.1)-(2.4), it can be proven that the 

electromagnetic energy /,- of the machine is dynamically governed by the equation2: 

 d/,-d�  =  �T ⋅ d�d� − +,- ⋅ & =  ∑ �� ⋅ d��d�
�

�=1
− +,- ⋅ d%d� (2.5)

A first simplifying hypothesis in the machine modelling, which usually is implicitly 
done, is to consider the electromagnetic energy /,- to be a state function of the system, 
which only depends on the instantaneous value assumed by the electrical quantities �� 
or �� and on the instantaneous rotor position %, but which does not depend on their 
derivatives or their past behaviour [127], [128]. This hypothesis leads to a conservative 
magnetic model, which neglects the magnetic losses (e.g., the iron losses due to hysteresis 
and eddy currents)3.  

Then, assuming the electromagnetic energy /,- to be a function of the induced 
fluxes �� (with � = 1,… , �) and of rotor position %, its time derivative is: 

 

d/,-d� = dd� [/,-(�1, … , ��, %)] =  
= 3/,-3�1 ⋅ d�1d� + ⋯+ 3/,-3�� ⋅ d��d� + 3/,-3% ⋅ d%d� 

(2.6)

By comparing (2.5) and (2.6) (which hold for any change of the fluxes and/or the 
rotor position), it can be concluded that: 

 �� = 3/,-3��   (with � = 1,… , �) (2.7)

 
2 Proven in Appendix 9.2.1. 
3 The hysteresis and eddy current losses depend on hysteretic and on dynamical constitution 

laws for ferromagnetic materials. They could be explicitly introduced in the system model by 
considering the electromagnetic energy /,- to also have a hysteretic or dynamical functional 
relationship with respect to the system variables (i.e., currents, fluxes and position). However, 
this approach usually makes the model much more complex than needed. For this reason, in 
many cases these effects are either neglected or semi-empirically approximated through additional 
lumped parameters in the electrical or in the mechanical subsystem model (e.g., with a set of 
additional resistors). 
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 +,- = − 3/,-3%  (2.8)

While (2.7) does not give much insight into the machine behaviour (since the aim is to 
compute the machine flux linkages ��), the expression (2.8) allows getting an explicit 
formulation of the electromagnetic torque +,-, which can be found from the %-derivative 
of the energy /,-, computed at constant fluxes. Nevertheless, /,- is not generally 
formalized with respect to the machine fluxes, but it is instead computed in terms of the 
machine currents, which can be accessed and measured at the phase winding terminals. 

A deeper characterization of the machine behaviour can be obtained by introducing 
the electromagnetic coenergy /,-′  as4: 

 /,-′ = �T ⋅ � − /,- = ∑ �� ⋅ ��
�

�=1
− /,- (2.9)

Considering (2.5), the time derivative of the coenergy is: 

 

d/,-′d� = d�T
d� ⋅ � + �T ⋅ d�d� − d/,-d� =  

= d�T
d� ⋅ � + +,- ⋅ d%d�  =  

=  ∑ �� ⋅ d��d�
�

�=1
+ +,- ⋅ d%d� 

(2.10)

Similarly to the previous case, assuming the electromagnetic coenergy /,-′  to be a 
function of the windings currents �� and of rotor position %, its time derivative is also 
expressed as: 

 

d/,-′d� = dd� [/,-′ (�1, … , ��, %)] =  
= 3/,-′3�1 ⋅ d�1d� + ⋯+ 3/,-′3�� ⋅ d��d� + 3/,-′3% ⋅ d%d� 

(2.11)

and by comparing (2.10) and (2.11) (which hold for any change of the currents and/or 
the rotor position), it can be concluded that: 

 �� = 3/,-′3��   (with � = 1,… , �) (2.12)

 +,- = 3/,-′3%  (2.13)

The expression (2.12) is significantly useful to find an explicit formulation of the flux 
linkages ��, each of which is the partial derivative of the coenergy with respect to the 
corresponding current ��. Similarly, (2.13) can be used to find an explicit formulation of 
the electromagnetic torque +,-, which is the %-derivative of the coenergy /,-′ , computed 
at constant currents.  

 
4 This change of the differential variables in a state function is a Legendre transformation, 

like the analogous transformations adopted in analytical mechanics and in thermodynamics. 
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2.2.2 Energy density, coenergy density and materials 
Given the relationships (2.7)-(2.8) and (2.12)-(2.13), the complete characterization 

of the machine variables can be obtained once the analytic expressions of the 
electromagnetic energy /,- and of the electromagnetic coenergy /,-′  are given.  

As known from the theory of electromagnetic fields5, the spatial density of the 
electromagnetic energy in each point of space is: 

 ;,- = ∫ =⃗⃗⃗⃗(B⃗⃗⃗⃗⃗) ⋅ dB⃗⃗⃗⃗⃗ (2.14)

where =⃗⃗⃗⃗ is the magnetic field and B⃗⃗⃗⃗⃗ is the magnetic flux density field. Similarly, the 
spatial density of the electromagnetic coenergy is: 

 ;,-′ = ∫ B⃗⃗⃗⃗⃗(=⃗⃗⃗⃗) ⋅ d=⃗⃗⃗⃗ (2.15)

The two expressions (2.14) and (2.15) depend both on the value of the fields and the 
constitutive relation of the material at each point of space6. 

The materials used in an electric machine can be classified as: 
 Dielectric materials, like the air and the insulating materials: they are mostly 

a-magnetic and show a proportional relationship between =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗ with a 
relative permeability close to 1, 

 Conductor materials, like the copper or the aluminium used for the machine 
windings: they are also almost a-magnetic and show a proportional relationship 
between =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗ with a relative permeability close to 1, 

 Soft ferromagnetic materials, like the iron used for the stator and rotor cores: 
they show a hysteretic behaviour between =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗, the coercive magnetic field 
has reasonably low values (typically =D < 100 A/m) and the relative 
permeability around the origin is relatively high (typically IJ,,L,M > 800), and 

 Hard ferromagnetic materials, like the rare-earth metal alloys (e.g., NdFeB or 
SmCo) or the hard iron alloys (e.g., AlNiCo) used for permanent magnets: they 
show a hysteretic behaviour between =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗, the coercive magnetic field is 
typically high (typically =D > 100 kA/m) and the local (B⃗⃗⃗⃗⃗, =⃗⃗⃗⃗) relationship7 is 
affine with a relative differential permeability close to 1. 

A usual approximation, which is frequently done in electrical machine modelling 
approaches oriented to control purposes, is to linearize the materials constitutive 
relations around a rated working point. Then, a constitutive law that can be applied to 
all the materials is the affine relation: 

 B⃗⃗⃗⃗⃗ = I=⃗⃗⃗⃗ + B⃗⃗⃗⃗⃗QR  (2.16)

where I identifies the magnetic permeability of the material and B⃗⃗⃗⃗⃗QR  is a constant 
 

5 This is a consequence of Poynting’s Theorem [129]. 
6 The expressions (2.14) and (2.15) are given as indefinite integrals because the physical 

system is only influenced by the change of the energy and coenergy. In other words, any constant 
offset added to their evaluation would not affect the overall system behaviour. 

7 Far from the bending knees of the hysteresis loop. 
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permanent magnetization field contribution.  
Fig. 2.2 shows a qualitative behaviour of the constitutive relations of the materials 

and their linearized approximation: 
 for dielectric and conductor materials I ≅ I0 and B⃗⃗⃗⃗⃗QR = 0, 
 for soft ferromagnetic materials I ≅ IJ,,L,M ⋅ I0 and B⃗⃗⃗⃗⃗QR = 0 (i.e., the 

saturation effects are disregarded), and 
 for hard ferromagnetic materials I ≅ I0 and B⃗⃗⃗⃗⃗QR  has the same direction of the 

permanent magnetization with a non-zero magnitude8 (i.e., the demagnetization 
effects are disregarded).  

From the constitutive relation (2.16) the integrals (2.14) and (2.15) can be explicitly 
computed, resulting in: 

 
8 For rare-earth materials (e.g., NdFeB and SmCo), the bending knee of the main hysteresis 

loop is in the third quadrant of the (B, =) plane, and the magnitude of B⃗⃗⃗⃗⃗QR  is equal to the 
remanence flux density field of the same characteristic. For ferromagnetic iron alloys (e.g., 
AlNiCo), the bending knee of the main hysteresis loop is in the second quadrant of the (B, =) 
plane, and the linear approximation is to be computed with respect to a minor hysteresis loop 
located inside the main loop. The corresponding magnetic permeability is called recoil 

permeability IU and the magnitude of B⃗⃗⃗⃗⃗QR  is lower than the remanence flux density field. Its 
value can be computed as BQR = IU ⋅ =D′, where =D′ is called apparent coercivity, which is 
typically higher than the real coercive magnetic field of the material [127]. 

 

 

Fig. 2.2 – Qualitative (B,=) constitutive relations of materials and linearization 
around a rated working point. 



2.2 - Magnetic model 19 

 

 ;,-  = ∫ =⃗⃗⃗⃗ ⋅ dB⃗⃗⃗⃗⃗  = ∫ =⃗⃗⃗⃗ ⋅ d(I=⃗⃗⃗⃗ + B⃗⃗⃗⃗⃗QR)  = ∫I=⃗⃗⃗⃗ ⋅ d=⃗⃗⃗⃗  =  12 I=2 (2.17)

 ;,-′  = ∫ B⃗⃗⃗⃗⃗ ⋅ d=⃗⃗⃗⃗  = ∫ B⃗⃗⃗⃗⃗ ⋅ d (B⃗⃗⃗⃗⃗I − B⃗⃗⃗⃗⃗QRI ) = ∫ B⃗⃗⃗⃗⃗I ⋅ dB⃗⃗⃗⃗⃗  = 12 B2
I  (2.18)

It is worth emphasizing that, in presence of permanent magnets, the expressions (2.17) 
and (2.18) for ;,- and ;,-′  are not equivalent, meaning that the electromagnetic energy 
and coenergy are not equal. 

2.2.3 Energy and coenergy expressions 
The overall electromagnetic energy /,- and coenergy /,-′  are found by integrating 

their density ;,- and ;,-′ , expressed by (2.17) and (2.18) over the whole volume Z of 
the electrical machine: 

 /,- = ∭;,- d\
]

= ∭ 12 I=2 d\
]

 (2.19)

 /,-′ = ∭;,-′  d\
]

= ∭ 12 B2
I  d\

]
 (2.20)

The last step to find a general expression for the electromagnetic energy and coenergy 
is to compute the magnetic field =⃗⃗⃗⃗ and the magnetic flux density field B⃗⃗⃗⃗⃗ as a function 
of the rotor position % and the phase currents �� (with � = 1,… , �). For each rotor 
position %, the  magnetic behaviour of the machine is governed by the magnetoquasistatic 
(MQS) model9, which is based on the Gauss’s and Ampère’s equations: 

 

⎩{{
{⎨
{{{
⎧∯ B⃗⃗⃗⃗⃗ ⋅ �̂ dd

ef
= 0

∮=⃗⃗⃗⃗ ⋅ � ̂dh
i

= ∬ 'l⃗ ⋅ �̂ dd
em

 (2.21)

where 'l⃗ is the current density field. In a machine with � windings, 'l⃗ is a linear 

combination of the phase currents �� (with � = 1,… , �): 

 'l⃗ = ∑�� ⋅ nl⃗,�
�

�=1
 (2.22)

where each nl⃗,� (with � = 1,… , �) is a known solenoidal vector field being non-zero only 

in the physical region occupied by the �-th winding10. 
A convenient choice for the boundary conditions in the MQS problem for an electrical 

machine is to consider: 
 

9 In the MQS model the magnetic fields =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗ are computed by solving a magnetostatic 
problem (as if the system were “frozen” in time), but are then updated dynamically to find the 
induced back-EMFs through Faraday’s law [129]. 

10 The MQS model does not consider charge accumulations phenomena inside the machine, 
meaning that the current density field '  ⃗ (and all the normalized contributions nl⃗,�) must be 

solenoidal to respect the electric charge conservation principle [129]. 
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 B⃗⃗⃗⃗⃗ ⋅ �̂ = 0    on 3Z (2.23)

where Z is the domain occupied by the machine and 3Z its boundary11. 
The system of equations (2.21), (2.22) and (2.23), together with the constitutive 

relation (2.16), is linear and has a unique solution12 which can be expressed as the linear 
combination: 

 =⃗⃗⃗⃗ = =⃗⃗⃗⃗ (0) + ∑ ℎ⃗(�) ⋅ ���
�=1

     and     B⃗⃗⃗⃗⃗ = B⃗⃗⃗⃗⃗(0) + ∑�⃗(�) ⋅ ���
�=1

 (2.24) 

where (=⃗⃗⃗⃗ (0), B⃗⃗⃗⃗⃗(0)) are the fields due to the sole permanent magnets contribution (i.e., 
when all the currents are zero), while (ℎ⃗(�), �⃗(�)) are the fields driven by the sole �-th 
phase current contribution (i.e., when �� = 1 A and �ℎ = 0 for ℎ ≠ �) with the permanent 
magnets fully demagnetized (i.e., B⃗⃗⃗⃗⃗QR = 0 in (2.16)). 

Since the fields =⃗⃗⃗⃗ and B⃗⃗⃗⃗⃗ in (2.24) are linearly dependent on the machine currents, 
the overall machine energy /,- and coenergy /,-′ , which depend on the square 
magnitude of the fields, are quadratic functions of the machine currents. They can be 
therefore expressed as: 

 /,- = /,-(0) + ∑ /,-,�(1) ⋅ ���
�=1

+ ∑ ∑ /,-,�1,�2
(2) ⋅ ��1

�
�2=1

⋅ ��2
�

�1=1
 (2.25) 

 /,-′ = /,-′ (0) + ∑ /,-,�′ (1) ⋅ ���
�=1

+ ∑ ∑ /,-,�1,�2
′ (2) ⋅ ��1

�
�2=1

⋅ ��2
�

�1=1
 (2.26) 

where the superscript (0) has been used to denote the terms independent from the 
currents, the superscript (1) has been used to denote the terms varying linearly with the 
currents, and the superscript (2) has been used to denote the terms varying quadratically 
with the currents. The coefficients defined in (2.25) and (2.26) are reported in equation 
(9.8) of Appendix 9.2.4. They are all periodic functions of the rotor position % and satisfy 
the following properties13: 

 
/,-(0) + /,-′ (0) = ∭ 12 BQR2

I  d\
]

 ,        /,-,�(1) = 0 ,  
/,-,�1,�2

(2)  =  /,-,�2,�1
(2)  =  /,-,�1,�2

′ (2)  =  /,-,�2,�1
′ (2)  

(2.27) 

2.2.4 Induced flux linkages expression 
From the coenergy expression (2.26) it is possible to compute the fluxes induced in 

the machine windings by applying (2.12). By recalling that the coenergy coefficients are 
periodic functions of the rotor position %, each induced flux linkage can be expressed as: 

 
11 This boundary condition corresponds to neglecting all the magnetic fields outside the 

external surface of the machine, and to considering all the magnetic phenomena to only happening 
inside it. Other boundary conditions can be also considered, leading to similar results. 

12 Proven in Appendix 9.2.3 basing on the results of Appendix 9.2.2. 
13 Proven in Appendix 9.2.4. 
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��1 = 3/,-′3��1
= /,-,�1

′ (1) + ∑ 2 /,-,�1,�2
′ (2) ⋅ ��2

�
�2=1

= 
= wQR,�1(%) + ∑ x�1,�2(%) ⋅ ��2

�
�2=1

 
(2.28)

with wQR,� = /,-,�′ (1)  and x�1,�2 = 2 /,-,�1,�2
′ (2) .  

By grouping all the � machine phases and using a matrix notation, the induced flux 
linkages can be expressed as: 

 � = yQR(%) + z(%) ⋅ � (2.29)

where yQR(%) is the � × 1 vector of flux linkages induced by the permanent magnets and z(%) is the � × � inductances matrix of the machine. Both yQR  and z are periodic in %. Their fundamental period defines the pole pairs periodicity of the machine and depends 
on its internal design.  

It can be proven that the inductances matrix z(%) is symmetric and positive 
definite14. Then, it is invertible and its inverse {(%) = z−1(%), named reluctances matrix, 
is also a � × � symmetric and positive definite matrix periodically varying with the rotor 
position %. The machine currents can be therefore univocally identified by the machine 
flux linkages as: 

 � = {(%) ⋅ [� − yQR(%)] (2.30)

Given these positions, the energy and coenergy expressions (2.25) and (2.26) can be 
rewritten in a matrix notation as: 

 /,- = /,-(0)(%)  + 12 �T ⋅ z(%) ⋅ � (2.31)

 /,-′ = /,-′ (0)(%)  +  yQRT (%) ⋅ �  +  12 �T ⋅ z(%) ⋅ � (2.32)

2.2.5 Electromagnetic torque expression 
From the coenergy expression (2.26), which has been rewritten as (2.32), the 

electromagnetic torque developed by the machine can be computed by applying (2.13): 

 +,- = 3/,-′3% = 3/,-′ (0)
3% + (3yQR3% )T⋅ � + 12 �T ⋅ 3z3% ⋅ � =  

= +0(%)  + �QRT (%) ⋅ �  +  12 �T ⋅ z′(%) ⋅ � 
(2.33)

with +0(%) = 3/,-′ (0) 3%⁄ , �QR(%) = 3yQR 3%⁄  and z′(%) = 3z 3%⁄ . It can be proven that 
the same expression (2.33) can be also obtained by applying (2.8) to the electromagnetic 
energy expression (2.31)15.  

 
14 Proven in Appendix 9.2.5. 
15 Proven in Appendix 9.2.6. 
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The electromagnetic torque computed as per (2.33) is given by the superposition of 
three contributions: 

 the term +0(%), which is unaffected by the currents and only depends on the 
field generated by the permanent magnets, 

 the term �QRT (%) ⋅ �, which is linearly varying with the currents and depends on 
their interaction with the permanent magnets, 

 the term (�T ⋅ z′(%) ⋅ �) 2⁄ , which is quadratically varying with the currents and 
is independent of the permanent magnets. 

The torque contributions can be also classified according to the different stator/rotor 
interactions. Indeed, the magnetic fields in the machine can be generated or modified 
from current sources, reluctance variations or permanent magnets. Then, as 
schematically exemplified in Fig. 2.3, different electromagnetic torque producing 
mechanisms can be identified: 

 Currents/Currents interaction (Fig. 2.3.a): it is related to the quadratic term (�T ⋅ z′(%) ⋅ �) 2⁄ . It manifests, for example, in induction machines from the 
interaction between the currents in the stator windings and the currents in the 
rotor windings (in case of a wound rotor) or bars (in case of a squirrel cage 
rotor). It also manifests in excited synchronous machines from the interaction 
between the currents in the stator windings and the excitation current in the 
field winding on the rotor. 

 Currents/Reluctance interaction (Fig. 2.3.b and Fig. 2.3.d): it is related to the 
quadratic term (�T ⋅ z′(%) ⋅ �) 2⁄ . It manifests, for example, in synchronous 
reluctance machines because of the flux barriers on the rotor or in excited 
synchronous machines in case of a rotor with salient poles. 

 Currents/Magnets interaction (Fig. 2.3.c and Fig. 2.3.g): it is related to the 
linear term �QRT (%) ⋅ �. It manifests, for example, in permanent magnets 
synchronous machines or brushless DC machines from the interaction of the 
stator currents and the rotor magnets. 

 Magnets/Reluctance interaction (Fig. 2.3.f and Fig. 2.3.h): it is related to the 
uncontrollable term +0(%). Usually this is not a desired effect for the machine 
design. It is the origin of the cogging torque existing in machines with 
permanent magnets on the rotor due to the interaction with the stator cages. 

 Magnets/Magnets interaction (Fig. 2.3.i): it is related to the currents 
independent term +0(%). Since it is uncommon for electrical machines to have 
permanent magnets both on the stator and on the rotor, this term is seldom 
observed.  

 Reluctance/Reluctance interaction (Fig. 2.3.e): theoretically, this interaction 
does not produce any torque, because there would not be magnetic field sources 
inside the machine. However, due to the remanence field which also exists in 
soft ferromagnetic materials (and which in the linearized model is neglected), 
this interaction can be sensed as coming from the interaction between the stator 
and rotor cages. It behaves similarly to a magnets/reluctance or a 
magnets/magnets interaction, thus producing a current independent torque 
contribution like +0(%). 



2.2 - Magnetic model 23 

 

2.2.6 Induced back-EMFs expression 
For each �-th machine winding (with � = 1,… , �), the induced electromotive force 

(EMF) is defined as ��RJ = − d�� d�⁄ . The opposite voltage ���RJ = + d�� d�⁄  is named 

counter-electromotive force (cEMF) or, more frequently, back-EMF.  

The explicit expression of the induced back-EMFs in the machine windings can be 
found by computing the time derivative of the fluxes (2.29), resulting in: 

���RJ = d�d� = dyQRd� + dzd� ⋅ � + z(%) ⋅ d�d� =  
= 3yQR3% ⋅ d%d� + 3z3% ⋅ d%d� ⋅ � + z(%) ⋅ d�d� =  
= & �QR(%) + & z′(%) ⋅ � + z(%) ⋅ d�d� 

(2.34)

where, again, �QR(%) = 3yQR 3%⁄  and z′(%) = 3z 3%⁄ . 
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Fig. 2.3 – Electromagnetic torque development mechanisms. 
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It can be seen that the induced back-EMFs are given by three terms: 
 the permanent magnets motional-induced back-EMFs contribution & �QR(%), 

which is proportional to the rotor speed & and is independent of the machine 
currents �, 

 the phase currents motional-induced back-EMFs contribution & z′(%) ⋅ �, which 
is proportional to both the rotor speed & and the machine currents �, 

 the phase currents transformer-induced back-EMFs contribution z(%) ⋅ (d� d�⁄ ), 
which is unaffected by the machine speed & and is proportional to the time 
derivative of the machine currents d� d�⁄ . 

2.3 Complete machine model 
This section formalizes the overall machine model in the phase variable domain and 

gives a quick overview of some of the variable transformations normally used in standard 
analysis and control algorithms. Some examples of these reference frame transformations 
will be provided and analysed in more detail in Chapter 5. 

2.3.1 Phase variable domain 
By focusing on the electrical equations (2.2), with the induced back-EMFs expressed 

as per (2.34), and on the electromagnetic torque expression (2.33), the overall machine 
model is given by: 

 
z(%) ⋅ d�d�  +  � ⋅ �  +  �  =  � 
+,-  =   +0(%)  +  �QRT (%) ⋅ �  +  12 �T ⋅ z′(%) ⋅ � (2.35)

with � = & �QR(%) + & z′(%) ⋅ � representing the overall motional-induced back-EMFs. 
The set of equations (2.35) represents a dynamic model of order �, in which the state 

variables are the machine phase currents �, the input variables are the machine voltages � and the output variable of interests is the electromagnetic torque +,-. Under the 
simplifying assumptions made in Section 2.2, this model can be applied to any kind of 
machine, being it with symmetrical or asymmetrical magnetic axes disposition, 
concentrated or distributed windings, equal or different number of turns, sinusoidal or 
non-sinusoidal magnetic field at the air-gap, and so on. 

2.3.2 Fixed reference frame transformations 
Considering any � × � invertible transformation matrix � , here supposed to be time-

invariant, the phase variable model (2.35) can be formulated in a different reference 
frame by imposing the relationships: 

 �̃ = � ⋅ �   ⟺    � = � −1 ⋅ �̃ (2.36)

for any � × 1 vector � of (2.35)16. The general expression of the transformed model is: 
 

16 In general, it is also possible to use different transformation matrices for the different sets 
of variables (e.g., a transformation matrix �� for the currents and a different transformation 
matrix �� for the voltages). Similar results and conclusions would apply. 
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z̃(%) ⋅ dı̃d�  +  �̃ ⋅ ı ̃  +  �̃  =   � ̃
�̃  =  & �Q̃R(%)  +  & z̃�′ (%) ⋅ ı ̃
+,-  =   +0(%)  +  �Q̃R T (%) ⋅ �̃ ⋅ ı ̃  +  12 ıT̃ ⋅ z̃�′ (%) ⋅ ı ̃

(2.37)

whose parameters are reported in equation (9.10) of Appendix 9.2.7. 
The transformed model (2.37) is significantly simplified if the transformation matrix �  is unitary. Indeed, in such a case, � −1 = � T and, from (9.10) it can be verified that: 
 �̃ = � , 
 z̃(%) is symmetric and positive definite, 
 z̃�′ (%) = z̃�′ (%) = 3z̃ 3%⁄  is symmetric, 
 �̃ is symmetric and positive definite. 

In these conditions, the transformed model (2.37) has the same form as the model in the 
phase variable domain (2.35) and can be interpreted as being related to an equivalent 
machine with different parameters. 

This kind of transformation is typically done in the standard multiphase machines 
analysis with the vector space decomposition (VSD) [1], [2], [55]. In this case, the adopted 
transformation is typically denoted as: 

 �VSD = � ⋅ �   ⟺    � = �−1 ⋅ �VSD (2.38)

The matrix � is named generalized Clarke’s transformation matrix, and depends on the 
magnetic axes disposition of the machine phase windings. For machines with both stator 
and rotor windings (e.g., induction machines), the transformation (2.38) is separately 
applied to the �� stator and to the �L rotor phases. Similarly, in multi-stator approaches 
(MS), the reference frame transformation (2.38) is also separately applied to each 
symmetrical subset of the machine phase windings [29], [39], [54], [77], [78]. 

2.3.3 Moving reference frame transformations 
In many cases, the adopted transformation matrix is not constant, but it is time-

varying. Usually, the time dependence is defined through a rotational angle �. The 
transformation is therefore referred to a moving reference frame and the positions (2.36) 
are rewritten as: 

 �̃ = � (�) ⋅ �   ⟺    � = � −1(�) ⋅ �̃ (2.39)

In this case, the general formulation of the transformed model (2.37) is modified to: 

 

z̃(%, �) ⋅ dı̃d�  +  �̃(�) ⋅ ı ̃  +  �̃  =   � ̃
�̃  =  & �Q̃R(%, �)  +  & z̃�1′ (%, �) ⋅ ı ̃  +  Ω z̃�2′ (%, �) ⋅ ı ̃
+,-  =   +0(%)  + �Q̃R T (%, �) ⋅ �̃(�) ⋅ ı ̃  +  12 ıT̃ ⋅ z̃�′ (%, �) ⋅ ı ̃

(2.40) 

with Ω = d� d�⁄  denoting the angular speed of the moving reference frame. The 
transformed parameters, many of which depend both on the rotor angle % and on the 
moving reference frame angle � (which, in general, can be different from each other), are 
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reported in equation (9.11) of Appendix 9.2.8. 
Again, the model is simplified when the transformation matrix � (�) is unitary, 

because � −1(�) = � T(�). Then, by considering the parameters defined in (9.11) it can 
be verified that: 

 �̃(�) = �, 
 z̃(%, �) is symmetric and positive definite, 
 z̃�1′ (%, �) = z̃�′ (%, �) is symmetric, 
 �̃(�) is symmetric and positive definite. 

However, contrarily to the case discussed in Section 2.3.2, now the system (2.40) would 
still be different from the phase variable model (2.35) because of the additional term Ω z̃�2′ (%, �) ⋅ ı ̃in the expression of �,̃ which acts as an additional motional induced term 
related to the moving reference frame time variation.  

This kind of transformation is typically used in field-oriented control (FOC) 
algorithms. The adopted transformation is defined as: 

 �dq = �(�) ⋅ �   ⟺    � = � −1(�) ⋅ �dq (2.41)

where the transformation matrix �(�), named generalized Park’s transformation matrix, 
is defined as the matrix product: 

 �(�) = �(�) ⋅ � (2.42)

In the expression (2.42), � is the generalized Clarke’s transformation matrix of the 
vector space decomposition (2.38) and �(�) is a rotational transformation matrix [1], 
[2]. In multi-stator approaches, the transformation (2.41) is separately applied to each 
symmetrical phases subset. For permanent magnets machines, the rotational angle � is 
typically chosen to be equal to the rotor electrical angle (i.e., � = %,M = ��  %, where �� 
is the pole pairs number). For induction machines, the transformation (2.41) is instead 
separately applied to the stator and rotor phases, and the corresponding rotational angles �� and �L are usually chosen to make the moving reference frame to be aligned to the 
rotor induced field. 

2.4 Summary and remarks 
This chapter has been focused on the formulation of a generalized mathematical 

model of a multiphase electrical machine.  
First, the electrical and mechanical equations have been introduced. They depend on 

the explicit formulation of the induced fluxes �� and of the electromagnetic torque +,-, 
which have been computed in a general way by exploiting the energy conservation 
principle. By introducing the electromagnetic coenergy /,-′ , the induced flux �� in each �-th winding is the partial derivative of /,-′  with respect to the current �� flowing in 
the same winding, while the electromagnetic torque +,- is the partial derivative of /,-′  
with respect to the rotor position %. 

The analytical expression of /,-′  has been found by modelling all the machine 
materials through an affine B⃗⃗⃗⃗⃗, =⃗⃗⃗⃗ constitutive relation, with a proportional term related 
to the material permeability and with an offset term related to the permanent 
magnetization. The resulting coenergy expression /,-′  is the superposition of three 
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terms: a term independent from the currents, a term linearly varying with the currents 
and a term quadratically varying with the currents.  

From the knowledge of /,-′ , the induced flux linkages set � and the developed 
electromagnetic torque +,- have been computed. The fluxes set is the superposition of 
two terms: a magnets-induced term yQR(%) and a currents-induced term z(%) ⋅ �, which 
depends on the inductances matrix z(%). The torque is given by the superposition of 
three contributions: a term +0(%) only related to the permanent magnets generated fields, 
a term �QRT (%) ⋅ � proportional to the currents and related to their interaction with the 
permanent magnets, and a term (�T ⋅ z′(%) ⋅ �) 2⁄  quadratically varying with the currents 
and related both to the mutual interactions between different windings (e.g., stator and 
rotor windings) and to variable reluctance effects.  

Then, the machine back-EMFs, which are the time derivative of the fluxes, have been 
computed. They are the superposition of three terms: a transformer induced term z(%)⋅(d� d�⁄ ) related to the derivatives of the phase currents, a motional induced term (dz d�⁄ )⋅� related to the variation of the inductances matrix, and a motional induced 
term dyQR d�⁄  related to the variation of the flux linkages induced by the permanent 
magnets. The motional terms are proportional to the rotor angular speed & = d% d�⁄ . 

Finally, the overall electrical machine model in the phase variable domain has been 
formalized, resulting in a set of differential and algebraic equations. A brief mention has 
also been given to some state transformations which are typically used in classical 
multiphase machine analysis approaches and control algorithms. 

The results of this chapter represent the starting point for the overall electrical drive 
analysis and the development of the proposed control algorithms, which are presented 
in the following chapters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 





3 Converter Architectures and 

Modulation Techniques 

This chapter presents the most common architectures and modulation techniques for 
power electronics converters employed in multiphase electrical drives. Again, the analysis 
is targeted for control purposes, meaning that the physical nature of the semiconductor 
devices is not relevant for the electrical drive mathematical modelling. 

The converter architecture under analysis is a voltage source inverter (VSI). It is a 
circuital structure realized with controllable power electronics devices which, supplied 
by a single or multiple voltage sources, is aimed at providing a desired set of voltages to 
the multiphase electrical machine. Any VSI leg architecture can generate at its output 
terminals only a discrete set of voltages. Therefore, a modulation algorithm is needed to 
control the converter and make the overall drive evolve, on average, as if it is supplied 
by the desired set of reference voltages computed by the drive control algorithm.  

The chapter is structured as follows. First, Section 3.1 introduces the main VSI 
architectures adopted in multiphase electrical drives, by first addressing a single VSI leg 
(in both the two-level and multilevel configurations), and then by focusing on how 
multiple legs can be organized in different multiphase architectures. Secondly, Section 
3.2 recalls the working principle of pulse width modulation (PWM) techniques used to 
supply the converter, and briefly mentions how these techniques are adapted for 
multiphase and multilevel topologies. Then, Section 3.3 provides some examples of 
modified modulation techniques specifically addressed to guarantee the DC-bus voltage 
balancing in a multilevel configuration1. Finally, the main contents of this chapter are 
summarized in Section 3.4. 

3.1 VSI architectures 
This section briefly presents the most common VSI architectures, by first addressing 

the structure of a single VSI leg and then by showing some of the topologies typically 
adopted for multiphase drives.  

All the VSI architectures are realized through the proper connection of several 
electronics components. Depending on the operating conditions of the specific application 
(e.g., rated voltage, current, switching frequency, etc…) different kind of semiconductor 
devices can be implemented (e.g., MOSFET, IGBT, BJT, GTO, etc…). In the following, 
the semiconductor devices will be modelled as ideal controllable switches, characterized 
by a negligible voltage drop in the ON state, a negligible leakage current in the OFF 
state, and instantaneous switching transitions. 

 
1 As also mentioned in Chapter 1, this topic has been a side research activity carried out 

during the Ph.D. course. Since these modulation techniques can be analysed separately from the 
machine control algorithm, some of the main results are here briefly presented. 
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3.1.1 Leg architectures 
As previously mentioned, a VSI leg is a power electronics structure that is supplied 

at the input terminals by a single or multiple voltage sources and which can be actively 
controlled in a way to generate a desired voltage at its output terminals. If the output 
voltage can only be controlled to assume two distinct values, the structure is a two-level 

converter leg. If the leg output voltage can assume more than two different values, it 
represents a multilevel converter leg. 

The typical two-levels VSI leg architecture is represented in Fig. 3.1. It has two 
controllable semiconductor devices which are piloted in a complementary way (i.e., when 
the top device is ON, the bottom device is OFF, and vice-versa)2. By taking as reference 
the negative DC-bus node and by neglecting the semiconductor voltage drops, the leg 
output voltage �� can only assume two possible values, being 0 and the total DC-bus 
voltage \��. The presence of the freewheeling diodes connected in anti-parallel with the 
controllable switches ensures that the output voltage �� is independent of the sign of the 
output current ��.  

Several different architectures have been proposed for multilevel voltage source 
converters, each of which has some benefits and drawbacks. The most common 
architectures for a multilevel VSI leg can be grouped in [130], [131]3: 

 Multi-point clamped (MPC) converters4, where the overall DC-bus is realized 
through the series connection of multiple DC sources, whose connection point 
can be linked to the leg output terminal through a proper switching signals 
configuration (as in Fig. 3.2a), 

 Flying capacitors (FC) converters, which has a set of isolated capacitive 
sources, whose connections can be changed by a proper switching signal 
configuration to generate multiple output voltages (as in Fig. 3.2b), and 

 Modular multi-cell (MMC) converters, which is built upon the cascaded 

 
2 The subscript � denotes the generic �-th phase leg of the converter. The switching signals 

have been represented as  � ∈ {0,1} and  �̂ = 1 −  �. 
3 These architectures represent special cases of a generalized multilevel topology [132]. 
4 The most common architecture is the three-level one, named neutral point clamped (NPC) 

[133]. Different hardware topologies can be addressed as MPCs (e.g., diode clamped, T-type, 
etc…); they differ in some design aspects (e.g., number of semiconductor devices, voltage/current 
ratings, etc…) but behave equivalently from the functional point of view. 
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Fig. 3.1 – Schematic representation of a two-level VSI leg. 
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connection of multiple conversion modules with a basic VSI architecture5 (as in 
Fig. 3.2c). 

Similarly to the two-level VSI leg, in multilevel architectures for each controllable 
semiconductor device it is possible to identify a corresponding device which is piloted in 
a complementary way (i.e., when the considered device is ON, the complementary one 
is OFF, and vice-versa). As a result, for a multilevel converter leg with ¤  couples of 
complementary devices, there are 2¥  possible switching combinations among which to 
choose. However, some architectures also show additional constraints on the switching 
signals6, while other architectures, instead, may show redundant combinations of the 
switching signals to supply the same output voltage. These peculiarities influence the 
modulation strategy used to control the multilevel leg. 

 
5 This topology is also called cascaded multicell inverter [131]. According to the nature of the 

basic cell, some special cases are named differently (e.g., cascaded half-bridge, cascaded full-
bridge, etc…).  

6 An example is the MPC converter leg where, to guarantee that the leg output voltage is 
independent of the output current sign, only some switching signals combinations are allowed. A 
more detailed explanation is given in the examples of Section 3.3. 
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Fig. 3.2 – Schematic representation of different multilevel VSI leg architectures: 
a) Multi-point clamped (MPC); b) Flying capacitors (FC); c) Modular multi-cell (MMC). 
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3.1.2 Multiphase architectures 
The control of a multiphase machine requires the use of a multiphase converter, 

which is built upon multiple legs. In this context, several different multiphase topologies 
can be realized. They can be either with a single DC voltage source or with multiple 
independent DC voltage sources [7]; moreover, the corresponding number of legs (further 
on denoted as ¦) can even be different from the number of phases of the electrical 
machine (further on denoted as �). The following examples illustrate these differences7. 
The mathematical analysis of these configurations will be studied in more detail in 
Chapter 4 by using a multiport network approach. 

In typical configurations with a single DC source, the number of converter legs is 
equal to the number of machine phases (i.e., ¦ = �). The positive terminal of each �-th 
machine phase is connected to the output of the corresponding �-th converter leg, while 
the negative terminals are usually connected in a star or multiple-star configurations 
(see Fig. 3.3a and Fig. 3.3b).  

As will be discussed in more detail later on, a star connection with an isolated neutral 
point introduces a constraint on the machine phase currents, whose sum is forced to be 
zero. In some cases, to allow the free recirculation of this current, the neutral point is 

 
7 All the examples are given for two-level converter architectures, but are also valid for 

multilevel configurations. 
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Fig. 3.3 – Star configurations of a six-phase machine with isolated neutrals: a) Single-
star; b) Double-star. 
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either connected to an additional converter leg (as in Fig. 3.4a) or to the DC-bus 
midpoint (as in Fig. 3.4b). In the first case, it results that ¦ > �, while in the second 
case it still results ¦ = �, but the neutral current may introduce a disbalance among 
the converter DC-bus capacitors voltages.  

Extensions of delta connections are also possible for multiphase drives. A simple 
example is a pentagon or a pentacle connection for a five-phase machine, as in Fig. 3.5a 
and Fig. 3.5b, respectively. In this case ¦ = �, but the cyclic connection of the machine 
windings leads to a circuit loop whose current (which behaves as a “recirculating current” 
inside the machine) cannot be directly controlled by the converter voltages.  

In presence of multiple isolated DC sources, the previous configurations can also be 
used for specific subsets of machine windings, as exemplified in Fig. 3.6 for multiple star-
connected subsets8.  

Fig. 3.7 shows another architecture with multiple DC sources, where each machine 
winding is separately supplied with a dedicated full-bridge converter. This topology, 
which is of special interests in fault-tolerant applications, leads to ¦ = 2 � and can be 
considered as a special case of the previous example. 

 
8 This is a common approach in case the machine is realized with multiple three-phase 

subsets, each of which is supplied through an isolated three-phase VSI. These multiphase 
architectures are also known in the technical literature as Multi-Three-Phase configurations. 
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Fig. 3.4 – Star configurations of a six-phase machine with neutral connection: a) 
Additional VSI leg; b) DC-bus midpoint connection.  
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Additionally, other configurations are also possible. An example is the double-sided 
supply configuration of Fig. 3.8, also known as open-end configuration, where the 
machine phases are separately supplied at both terminals by two isolated �-phase 
converters (resulting in ¦ = 2 �). 

All the discussed architectures have a different influence on the mathematical model 
of the drive. Indeed, both the dependence of the machine voltages from the converter 
voltages and the constraints on the machine currents are influenced by the chosen 
configuration. The impact of these architectures on the overall electrical drive 
mathematical model will be discussed in Chapter 4 by studying the electrical connection 
between the converter and the machine through a multiport network analysis approach. 
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Fig. 3.5 – Cyclical configurations of a five-phase machine: a) Pentagon configuration; 
b) Pentacle configuration. An alternative representation of the connections has been 
added to facilitate the circuit understanding.  
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Fig. 3.6 – Six-phase machine in a double-star configuration with two star-connected 
subsets supplied by isolated DC voltage sources. 
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3.2 Modulation 
As discussed in the previous section, any VSI leg architecture can produce at its 

output terminal only a finite set of voltages, which are related both to the voltage of the 
DC sources and to the driving signals applied to the switching devices. Generally, the 
leg voltage reference computed by the drive control algorithm does not match any of 
these values. Then, to make the machine variables evolve as closely as possible to the 
ideal desired behaviour, a modulation technique is required. 

The most common modulation approach used in electrical drives is the pulse width 

modulation (PWM) technique. This section briefly recaps its working principle, starting 
from the analysis for a single two-level VSI leg and then discussing its extension to 
multiphase and multilevel configurations. 

1
s1 s2

ŝ1 ŝ2

2
s3s4

ŝ3ŝ4

3
s5 s6

ŝ5 ŝ6

4
s7s8

ŝ7ŝ8

5
s9 s10

ŝ9 ŝ10

+

− 
VDC,1

+

− 
VDC,2

+

− 
VDC,3

+

− 
VDC,4

+

− 
VDC,5

 

Fig. 3.7 – Five-phase machine with independent supply of each phase winding with 
an independent full-bridge converter. 
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Fig. 3.8 – Five-phase machine in open-end configuration, supplied at both sides by 
two isolated five-phase converters.  
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3.2.1 Pulse width modulation principles 

As discussed in Section 3.1.1, by neglecting the semiconductor voltage drops, the 
output voltage of a two-level VSI leg can only assume two possible values, being 0 and 
the total DC-bus voltage \��. Then, the inverter output voltage can be realized through 
a PWM technique, which consists of the application of a sequence of rectangular pulses 
with a fixed height (equal to \��) and variable temporal width. By properly varying the 
width of these pulses, the converter voltages can force the electrical machine to follow, 
on average, the same evolution it would have with the original reference voltages. 

For a given modulation period +Q§R , the pulse width in each modulation interval is 
chosen in a way that the average value of the leg voltage matches the average value of 
the corresponding desired reference. The switching instants of the leg voltage are 
typically obtained by comparing a modulating signal 9 obtained from the reference leg 
voltage with a carrier signal 10 with the period +Q§R .  

Consider a generic �-th converter leg (with � = 1,… ,¦) piloted with a PWM 
technique. By denoting as �ℎ the initial instant of the ℎ-th modulation period, the average 
voltage ⟨��⟩[ℎ] supplied by the leg in the same period is: 

 ⟨��⟩[ℎ] = 1+Q§R ⋅ ∫ ��(�) d�
ªℎ+�¬®

ªℎ  
= \�� ⋅ +�,¯¥ [ℎ]+Q§R = \�� ⋅ °�[ℎ] (3.1) 

where +�,¯¥  is the leg output voltage pulse width and °� = +�,¯¥ +Q§R⁄  is the duty cycle 
of the converter leg. 

To obtain the same average behaviour, in each modulation period the duty cycle is 
computed to make the average leg voltage equal to the average reference voltage (i.e., ⟨��⟩[ℎ] = ⟨��∗ ⟩[ℎ]). Assuming �∗(�) does not show a significant variation within the 
modulation period11, it results: 

 ⟨��∗ ⟩[ℎ]  = 1+Q§R ⋅ ∫ ��∗ (�) d�
ªℎ+�¬®

ªℎ  
 ≅  ��∗ (�ℎ) (3.2)

By comparing (3.1) and (3.2), the duty-cycle can be computed to be: 
 

9 If the modulating signal is analogic, the modulation is said to work in natural sampling 
mode. If the modulating signal is digital the modulation is said to work in regular sampling mode. 
In this latter case (which, thanks to the diffusion of digital controllers, is nowadays the most 
common scenario) the sampling period +� of the modulating signal is generally synchronized with 
the carrier period +Q§R . 

10 Typically, the carrier signal is either a sawtooth signal or are triangle wave signal, in a way 
that it is piecewise linear in each modulation period. In a digital PWM implementation, for a 
sawtooth carrier, the modulating signal is updated with the same period of the carrier, meaning 
that +Q§R = +�. For a triangular carrier, if the modulating signal is updated with the same 
period of the triangular wave (i.e., +Q§R = +�), the modulation is called symmetrical or single 

edge; if the modulating signal is updated twice for each carrier period, (i.e., +Q§R = 2 +�) the 
modulation is called asymmetrical or double edge.  

11 Which is an exact (i.e., not approximate) condition in case of a regular sampling mode, 
since ��∗  is digitally implemented and is kept constant for each modulation interval. 
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 °�[ℎ] = ��∗ (�ℎ)\��  (3.3)

To guarantee a feasible behaviour for the converter leg, the reference leg voltage must 
be in the range 0 ≤ ��∗ ≤ \��, meaning that 0 ≤ °� ≤ 1. The duty-cycle computed as 
per (3.3) is used as the modulating signal for the PWM and compared to the chosen 
carrier signal varying from 0 to 1 to compute the switching instants for the converter 
leg. The schematic representation of this carrier-based PWM technique is schematically 
shown in Fig. 3.9. 

It can be proven12 that, if the bandwidth of the reference voltage ��∗  is low enough if 
compared to the modulation frequency ³Q§R , then the leg output voltage ��(�) (which 
is a pulses sequence) has the same low-frequency harmonic content of ��∗ (�), but it is 
applied with a time delay of +Q§R 2⁄ . In other words, the leg output voltage can be 
written as: 

 ��(�) = ��∗ (� − +Q§R2 ) + ∆��(�) ≅ ��∗ (� − +Q§R2 ) (3.4) 

where ∆��(�) is a residual voltage, whose low-frequency harmonic content is negligible 
with respect to the reference ��∗ (�). 

This is exemplified in the diagram of Fig. 3.10, which shows the time and frequency 
behaviour of a reference analog signal ��∗  and of the corresponding pulse-width-
modulated signal ��, both normalized by \��. The analog signal has a fundamental 
frequency of 50 Hz, while the carrier signal (red triangle-wave of Fig. 3.10) has a 
frequency of 1 kHz. As can be seen, while the analog signal ��∗  has a smooth behaviour, 
the PWM signal �� is a sequence of rectangular pulses of fixed height and variable width. 
However, the low-frequency harmonic content of both signals (for ³ < 500 Hz) is almost 
identical. The high frequency harmonics of the PWM signal �� are centered around the 
multiple integers of the carrier frequency. 

Therefore, by applying the pulse width modulated voltage ��(�) to a dynamical 
system with a low-pass filter behaviour, the voltage ∆��(�) is neutralized and its effect 
can be neglected. This is what usually happens in an electrical drive, where the ohmic-

 
12 Proven in Appendix 9.3.1. 

+

− 
uk

ik
+

− 
VDC

sk

ŝk

Control 
Algorithm

V

VDC

uk
*

≥ sk

dk

PWM

 

Fig. 3.9 – Carrier-based PWM technique for a two-level VSI leg. 
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inductive nature of the electrical machine can filter out the effect of the high-frequency 
harmonic content of the voltages on the machine currents. Then, ∆�(�) only produces a 
current ripple which, for the drive control purposes, can be disregarded. 

For a digital controller working with a sampling period of +�, the duty-cycles 
computed as per (3.3) during a generic ℎ-th sampling interval are usually applied at the 
beginning of the (ℎ + 1)-th sampling interval13. This introduces an additional time delay 
to the modulation. Therefore, for control purposes, by neglecting the effect of ∆��(�), 
the combined action of the discrete-time behaviour and the pulse width modulation 
technique can be modelled through the relation: 

 ��(�) ≅ ��∗ (� − +� − +Q§R2 ) = ��∗ (� − µ¶,M) (3.5)

where µ¶,M = +� + +Q§R 2⁄  is the overall time delay introduced by both the digital control 
and by the modulation technique.  

3.2.2 Multiphase modulation techniques 
Several different approaches have been proposed for the modulation of multiphase 

converters [50], [93], [134]–[136]. They are typically referred to ¦-phase star connected 
systems with a single isolated neutral point but, with relatively few changes, they can 
be also easily extended to other configurations (for example, in case of a multiple star-
connected configuration, the same modulation approach can be separately applied to 
each star-connected subsystem). 

The most simple and straightforward approach is to use a carrier-based PWM 
method to separately control each converter leg independently from the others. In other 
words, the switching signals for the semiconductor devices are obtained by comparing ¦ 
modulation signals with a common carrier signal with the period +Q§R . 

 
13 This is typically called shadow mode. 

Fig. 3.10 – Example of a two-level PWM technique.  
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Similarly to the approach used in most of the standard three-phase drives, a common-
mode voltage injection can be superimposed to the leg voltage references. Indeed, for a ¦-phase/¦-wires architecture, the common-mode voltage does not affect the supplied 
system, because the converter imposes the phase-to-phase voltages, which are unaffected 
by the common-mode component. To be more specific, given a ¦ × 1 set of reference 
voltages ·̃∗ = [�̃1∗ , �2̃∗ ,… , �-̃∗ ]T, the reference leg voltages for the carrier-based modulation 
can be obtained as: 

 ·∗ = ·̃∗ + ��R∗ ⋅ ¸-    ⇒   ��∗ = �̃�∗ + ��R∗  (3.6)

where ¸- = [1, 1,… , 1]T, while ��R∗  is the aforementioned common-mode voltage 
component.  

Since the basic two-level VSI leg architecture is not capable of generating negative 
output voltages, the common-mode component must be chosen in a way that 0 ≤ ��∗ ≤\�� for all � = 1,… , ¦, where \�� is the DC-bus voltage. As a result, the common-
mode voltage must be in the range14: 

 −min{·̃∗}  ≤  ��R∗  ≤  \�� − max{·̃∗} (3.7)

The condition (3.7) simply requires that the maximum phase-to-phase voltage (i.e., max{·̃∗} − min{·̃∗}) is lower than the overall DC-bus voltage \��. 
The simplest common-mode voltage injection is: 

 ��R∗ = \��2  (3.8)

which is just a shift of the reference voltages towards the DC-bus midrange. Again, 
similarly to the techniques employed for three-phase systems, different injections can be 
used to improve some converter performances. Among the different approaches which 
have been presented in the technical literature, it is worth mentioning the so-called min-

max injection [50], [85], which computes the common-mode component ��R∗  at the 
midrange of its feasibility range, as: 

��R∗ = (\�� − max{·̃∗}) + (− min{·̃∗})2 = \��2 − max{·̃∗} + min{·̃∗}2  (3.9)

in a way that the reference voltages ��∗ = �̃�∗ + ��R∗  are centred around \�� 2⁄ . In this 
way, similarly to three-phase drives, the DC-bus utilization in the linear modulation 
region is maximized. However, as proven in [85], for symmetrical and sinusoidal drives, 
the benefit of the min-max injection technique (3.9) over the basic DC injection (3.8) is 
lower and lower for an increasing number of phases. 

An example of a common-mode voltage injection is given in Fig. 3.11 for a five-phase 
symmetrical set of purely sinusoidal voltage references. As expected, the injection (3.8) 
(top subplot of Fig. 3.11) keeps all the voltage waveforms sinusoidal and only shifts them 
by \�� 2⁄ . On the contrary, the min-max injection (3.9) (bottom subplot of Fig. 3.11) 
modifies the waveform of the leg voltage references, which are not sinusoidal anymore. 
The injected common-mode voltage reference (black dashed trace) has a pseudo-

 
14 Proven in Appendix 9.3.2.  
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triangular waveform and, as previously explained, can reduce the peak values of the leg 
voltage references without altering the supplied phase-to-phase voltages.  

A different approach for the generation of the switching signals is the space vector 
modulation, which is based on the computation of voltage vectors (which are defined 
with the variable transformations introduced in Section 2.3) and on the generation of 
proper switching patterns among the vector combinations which can be supplied through 
the converter legs [88]. This approach, which is commonly adopted for standard three-
phase drives, is not of straightforward application in multiphase configurations, both 
because of the rapid increase in the number of possible output voltage vectors (which 
grows up exponentially as 2-) and the presence of multiple planes which must be 
controlled simultaneously [50].  

As an example, by considering a five-phase converter (¦ = 5) and by referring to the 
transformation: 

⎣⎢
⎢⎢
⎢⎡�x1�y1�x3�y3�0 ⎦⎥

⎥⎥
⎥⎤ = √25 ⋅

⎣⎢
⎢⎢
⎢⎡

cos(0 Ç) cos(1 Ç) cos(2 Ç) cos(3 Ç) cos(4 Ç)sin(0 Ç) sin(1 Ç) sin(2 Ç) sin(3 Ç) sin(4 Ç)cos(0 Ç) cos(3 Ç) cos(6 Ç) cos(9 Ç) cos(12 Ç)sin(0 Ç) sin(3 Ç) sin(6 Ç) sin(9 Ç) sin(12 Ç)
1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ ⎦⎥

⎥⎥
⎥⎤ ⋅

⎣⎢
⎢⎢
⎢⎡�1�2�3�4�5⎦⎥

⎥⎥
⎥⎤ 

with Ç = 2	 5⁄ , Fig. 3.12 shows the mapping of all the 25 = 32 voltage vectors which can 
be generated, both in the {�x1, �y1} and in the {�x3, �y3} planes. 

Given a reference voltage vector, the space vector algorithm applies it on average in 
a modulation period by using some of the nearest applicable vectors. However, the choice 
of the voltage vectors to be applied and of their application pattern is not 
straightforward. Moreover, it has been shown that most of the available space vectors 
techniques are completely equivalent to carrier-based methods, once a proper selection 

 

Fig. 3.11 – Example of a common-mode voltage injection to a five-phase symmetrical 
set of sinusoidal voltage references. Left: DC-bus midrange voltage injection; Right: min-
max injection. 
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of the common-mode voltage injection is given15 [50], [93], [99], [137]. 

 
15 This is not surprising, since the space vector approach can be interpreted as applying a 

carrier-based technique in a different reference frame. Under this point of view, the common-
mode voltage injection is implicitly done with the space vector approaches, while it is explicitly 
imposed in carrier-based ones. 

 

 

Fig. 3.12 – Representation of the voltage vectors of a two-level five-phase VSI in the {�x1, �y1} and in the {�x3, �y3} planes.   
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3.2.3 Multilevel modulation techniques 

For multilevel VSI architectures, the presence of multiple devices for each leg results 
in a higher number of degrees of freedom for the converter control, which can be exploited 
to optimize some desired performances. Some of the improvements which are usually 
demanded to the converter modulation include, for example, the optimization of the 
switching harmonic content, the losses minimization or the voltage balancing among 
multiple DC sources. When the voltage sources are implemented by capacitors, a voltage 
equalization technique is required to guarantee the correct behaviour of the converter 
[131], [138], [139].  

When the number of levels is sufficiently high, the switching signals are typically 
chosen in a way to approximate the reference leg voltage ��∗  with the closest feasible 
level. This approach is called nearest level modulation and is mainly characterized by a 
reduced switching transitions rate [138] (see Fig. 3.13a). 

In case the number of levels is not sufficiently high to neglect the approximation 
error introduced by the nearest level modulation, it is possible to use extensions of PWM 
techniques. Contrarily to a two-level leg, for a multilevel leg the same average output 
voltage ⟨��∗ ⟩ can be generated in multiple different ways. Different PWM techniques can 
be classified according to the waveform of the leg output voltage �� corresponding to the 
reference ��∗ . A possible classification is: 

 single-step mode (SS), if in each modulation period the voltage �� only switches 
among the two feasible levels closest to ��∗  (see Fig. 3.13b), 

 multi-step mode (MS), if in each modulation period the voltage �� switches 
among multiple feasible levels (see Fig. 3.13c), and 

 two-level mode (TL, which is the extreme case of an MS mode), if the multilevel 
leg behaves similarly to a two-level VSI leg by only switching among the 
extreme feasible output voltage levels (see Fig. 3.13d). 

Generally speaking, the generation of the switching signals to supply the 
semiconductor devices can still be obtained through a carrier comparison approach, 
similarly to the two-level case. However, given the higher number of devices, the 
comparison approaches can be performed in different ways and can be classified as: 

 single reference/multiple carriers approaches (as in Fig. 3.14a), where a single 
reference (i.e., modulating) signal is compared with multiple carrier signals16 
(each of which refers to a couple of complementary devices),  

 multiple references/single carrier approaches (as in Fig. 3.14b), where a single 
carrier signal is compared with multiple references (each of which refers to a 
couple of complementary devices), and 

 multiple references/multiple carriers approaches (as in Fig. 3.14c), where each 
couple of complementary devices is separately controlled by comparing a 
reference and a carrier signal. 

 
16 These are the most commonly used techniques and, according to the nature of the different 

carrier signals, they are further classified in different subcategories, like Phase Shifted (PS), In-

Phase Disposition Level Shifted (PD-LS), Phase Opposition Disposition Level Shifted (POD-LS), 
Alternate Phase Opposition Disposition Level Shifted (APOD-LS), etc… [140], [141]. 
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For what concerns multilevel multiphase architectures, the independent control of 
each leg is nowadays the most common approach. Indeed, the application of space vector 
modulation approaches to multilevel architectures drastically increases the algorithm 
complexity and is not suited for multiphase scenarios. Some space vector approaches 
have been proposed in the technical literature but, again, most of them are completely 
equivalent to an independent control of each converter leg with a superposition of a 
properly chosen common-mode voltage component [50], [99]–[102]. 

The proper choice of the modulation technique to be used is strictly related to the 
converter architecture (which, as previously mentioned, may have its specific constraints 
or redundancies) and to the desired performances to be met. Section 3.3 presents some 
examples of PWM techniques aimed at the voltage balancing in multilevel converters. 

 

Fig. 3.13 – Example of output voltage waveforms with different modulation 
techniques for a multilevel converter leg.  
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Fig. 3.14 – Some possible carrier comparison techniques for multilevel converters. 
a) Single reference/multiple carriers; b) Multiple references/single carrier; 
c) Multiple references/multiple carriers.  
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3.3 Multilevel modulation examples 
The present section gives some examples concerning the application of multilevel 

pulse width modulation techniques with voltage balancing capabilities. The analysis is 
focused on neutral point clamped (NPC) and multi-point clamped (MPC) architectures, 
and briefly addresses the main results proposed in [120], [121], [124]–[126]. 

3.3.1 Hybrid NPC modulation with voltage balancing 
Considering some of the basic three-level neutral point clamped converter leg 

architectures represented in Fig. 3.15a and Fig. 3.15b, it can be noted that the output 
node can be connected to any of the three DC-bus nodes through proper control of the 
semiconductor devices. This connection not only determines the output voltage �� of the 
converter leg, but also the current �¥Q,� absorbed from the neutral point. Consequently, 
from the functional point of view, the converter behaves as the ideal switching circuit of 
Fig. 3.15c. Generally speaking, the overall DC-bus voltage \�� = \��,� + \��,Ð is 
imposed externally and can be approximately considered to be constant, while the 
voltages of the top and bottom DC-bus capacitors \��,�  and \��,Ð dynamically depend 
on the converter operating condition. In other words, they can vary in time and can be 
different from one another. Since the converter operation can lead to high steady-state 
voltage fluctuations and, in some cases, even to instability [142]–[145], a voltage 
balancing technique is required to equalize \��,�  and \��,Ð. 

As previously mentioned, the four active semiconductor devices of each leg are 
grouped in two couples which are controlled in a complementary way. The 22 = 4 
possible switching states, together with the corresponding values of the leg output 
voltage �� and of the neutral point current �¥Q,�, are summarized in Table 3.I. The 
correct operation of the converter requires the state {1,0} to be avoided: indeed, for the 
diode clamped architecture of Fig. 3.15a, it would make the output leg voltage to be 
dependent on the sign of the output current (i.e., it would result �� = \�� ⋅(1 − sign(��)) 2⁄ ), which is not desirable, whereas for the T-type architecture it would 
short-circuit the whole DC-bus, thus compromising the converter safety. A simple way 
to avoid the exploitation of the state {1,0} is to guarantee that 0 ≤  �,� ≤  Ð,� ≤ 1, 
which can be interpreted as a functional constraint imposed to the switching signals. 
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Fig. 3.15 – Neutral Point Clamped converter leg architectures: a) Diode clamped; 
b) T-type; c) Ideal topology. 
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To consider all the possible operating mode of the pulse width modulation technique 
(being the SS, MS and TL modes), the switching signals are considered as obtained 
through a multiple references/single carrier comparison17. This means that each signal  (� Ð⁄ ),� is obtained by comparing a duty-cycle °(� Ð⁄ ),� with a common triangular carrier 

signal, with period +Q§R . The different switching modes are represented in Fig. 3.16 for 
a general case in which the top and bottom DC-bus capacitors have different voltage 
levels (i.e., \��,� ≠ \��,Ð ≠ \�� 2⁄ ). 

As can be deduced from the graphical interpretation, the aforementioned constraints 0 ≤  �,� ≤  Ð,� ≤ 1 are automatically satisfied once the same relationship holds for the 
duty cycles (i.e., once 0 ≤ °�,� ≤ °Ð,� ≤ 1). It can also be noticed how for SS and TL 
mode the duty cycles are univocally determined for a given reference voltage ��∗ , while 
this is not the case for the MS mode, which allows to freely choose °�,� and °Ð,� in 
multiple ways, while still developing the desired average output voltage.  

By applying a standard averaging procedure over a +Q§R  time interval, the average �-th converter leg voltage and NP current are18: 

 
�� = °Ð,� ⋅ \��,Ð + °�,� ⋅ \��,�  �¥Q,� = (°Ð,� − °�,�) ⋅ �� = °¥Q,� ⋅ �� (3.10)

The difference °¥Q,� = °Ð,� − °�,� in (3.10) is an important parameter, which 
represents the fraction of the modulation period for which the output node is connected 
to the neutral point. A graphical interpretation of °¥Q,� is shown in Fig. 3.16. Its 
minimum value is 0 and is obtained in TL mode (i.e., the output node of the leg is never 
connected to the NP). Its maximum value is obtained in SS mode and depends on the 
output voltage reference ��∗  according to the rule: 

 °¥Q,max(��∗ ) = min { ��∗\��,Ð ,   \�� − ��∗\��,� } (3.11)

which is a piece-wise linear function of ��∗ . All the intermediate values of °¥Q,� represent 
a possible MS mode and can be identified through the normalized parameter: 

 Ç� = °¥Q,� °¥Q,max(��∗ )⁄  (3.12)

 
17 Many single references/multiple carrier approaches (like, for example, the level shifted 

PWM) can be also realized with a multiple references/single carrier approach with a proper 
choice of the modulation signals. 

18 For notation ease, all the variables (unless otherwise specified) implicitly refer to the 
corresponding average value in a single modulation period. 

Table 3.I – SWITCHING STATES FOR AN NPC LEG. 

State  �,�  Ð,� �� �¥Q,� 
{0,0} 0 0 0 0 
{0,1} 0 1 \��,Ð �� 
{1,0} 1 0 (undetermined) 0 
{1,1} 1 1 \�� 0 
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named MS gain factor. When Ç� = 0% the �-th NPC leg works in TL mode, when Ç� =100% the NPC leg works in SS mode, and in all the other cases it works in MS mode. 

The previous reasoning can be applied to all the converter phases, which share the 
same DC-bus capacitors.  

As also mentioned in Section 3.2.2, in absence of a neutral wire connection, a 
common-mode voltage ��R∗  can be injected in the reference leg voltages without affecting 
the overall behaviour of the supplied load (which, in this case, is the electrical machine). 
As a result, each �-th leg voltage references can be written as ��∗ = ��̃∗ + ��R∗ , coherently 
with (3.6). The common-mode voltage ��R∗  is a degree of freedom for the modulation. 

Therefore, by considering the superimposed contribution of all the ¦ converter legs, 
the dynamics of the voltage disbalance between the two DC-bus capacitors is given by: 

 
× ⋅ dd� (\��,� − \��,Ð) = �¥Q =  

= ∑ �¥Q,�
-

�=1
= ∑ �� ⋅ Ç� ⋅ °¥Q,max(�̃�∗ + ��R∗ )-

�=1
 

(3.13)

In (3.13), all the reference voltages ��̃∗  are known (e.g., they are imposed by the machine 
control algorithm), while all the phase currents �� behave as uncontrollable inputs for 
the DC-bus capacitors voltage disbalance dynamics.  

Standard modulation techniques, like the single reference/multiple carriers ones, by 
default, only work in SS mode by taking all the gain factors Ç� to 100%. The common-
mode voltage ��R∗  is chosen with a standard min-max injection strategy and, 
consequently, there is not any active control of the NP current �¥Q . As previously stated, 
in some operating conditions the effect of the load might lead to high DC-bus voltage 
fluctuations and even instability. To counteract these drawbacks, some techniques have 

Fig. 3.16 – Qualitative behaviour of the different switching modes of an NPC leg for 
the same output voltage reference: Top) Duty-cycles; Middle) Switching signals; 
Bottom) NPC leg output voltage.   
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been proposed to achieve control of the NP current by modifying the modulation 
technique, without any need for external balancing circuits.  

The voltage balancing can be obtained by controlling in feedback the voltage 
difference (\��,� − \��,Ð) and, according to the model equation (3.13), by computing 
a reference neutral point current �¥Q∗  to be injected into the DC-bus midpoint. Since the 
voltages �̃�∗  and the currents �� (which are related to the drive control algorithm) should 
not be altered by the balancing technique, the available degrees of freedom to control �¥Q  are the common-mode voltage ��R∗  and the gain factors Ç1,… , Ç-. 

Some of the proposed strategies only work in SS mode (i.e., all Ç� at 100%) and use 
a proper common-mode voltage injection to minimize (or, if possible, to nullify), the 
error between the NP current �¥Q  and the reference NP current �¥Q∗  [104], [146], [147]. 
The expression (3.13) (for any given choice of the gain factors Ç�) is a piecewise linear 
function of the common-mode voltage ��R∗ , whose breaking points19 are obtained when 
one phase is such that °¥Q,max(��̃∗ + ��R∗ ) is either 0 or 1. Then, the choice of the optimal 
common-mode voltage reference can be graphically interpreted through a diagram like 
the one depicted in Fig. 3.17. To be more specific, in the function �¥Q (��R∗ ) it is always 
possible to identify a breaking point which minimizes the distance from �¥Q∗  (e.g., the 
voltage ��R,Ø�ª,-,∗  in Fig. 3.17) and, in some cases, it is also possible to identify a 

common-mode voltage for which �¥Q∗ = �¥Q  (e.g., the voltage ��R,Ø�ª,,D∗  in Fig. 3.17). 

Then, the optimal common-mode voltage to guarantee the DC-bus voltage balancing is 
chosen to minimize (and, if possible, to nullify) the error |�¥Q∗ − �¥Q |. This approach 
leads to a reduced number of switching transitions, but it becomes unreliable for 
operating conditions with high modulation index values, since the feasible interval for 
the common-mode voltage injection may be too narrow to control �¥Q . 

Other proposed algorithms, instead, only uses the MS mode operation by properly 

 
19 The breaking points (i.e., the points where the slope of the function �¥Q (��R∗ ) changes) 

are obtained when the output terminal of one of the converter legs is clamped to one of the DC-
bus nodes. Therefore, for a ¦-phase NPC there are, at most, ¦ + 2 breaking points. 

 

Fig. 3.17 – Neutral point current function with the common-mode voltage injection-
based balancing algorithm. 
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reducing the gain factors Ç� in a way to condition the function (3.13) and again, if 
possible, to nullify the error |�¥Q∗ − �¥Q | [103], [148]–[150]. The common-mode voltage ��R∗  is instead chosen according to a standard approach, like the min-max injection 
strategy (3.9) [103]. A graphical interpretation of these kind of approaches is given in 
Fig. 3.18, where it can be seen that the decrease of one gain factor Ç� from 100% (i.e., 
SS mode) to a lower value (i.e., MS mode) can change the shape of the overall function �¥Q (��R∗ ). For a given (i.e., fixed) common-mode voltage injection, changing one or more Ç� can allow to find an intersection with the reference current �¥Q∗ . However, despite 
always being able to guarantee the equalization (even in operations with high modulation 
index values), the MS mode introduces additional switching transitions to the system, 
and therefore reduces the converter energetic efficiency. 

A proper combination of a simultaneous common-mode voltage injection and MS 
operation allows the modulation to take advantage of the main benefits of the proposed 
approaches, while at the same time neutralizing their respective drawbacks. This has led 
to the development of the hybrid technique proposed in [120], [124], whose graphical 
interpretation is given in Fig. 3.19. In this case, the reduction of one gain factor Ç� is 

 

Fig. 3.18 – Neutral point current functions with the MS-based balancing algorithm. 

 

Fig. 3.19 – Neutral point current functions with the proposed hybrid balancing 
algorithm.  
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supported by the choice of a common-mode voltage at the breaking point of one phase 
(e.g., the voltage ��R,Ø�ª,-,∗  in Fig. 3.19). In this way one converter leg is clamped to 

one of the DC-bus nodes, and partially neutralizes the increase of the switching 
transitions rate. In other words, if one NPC leg is required to work in MS mode (with 
more switching transitions), another leg is clamped to one of the DC-bus nodes (and 
does not have any switching transition in the same modulation interval).  

The logical flow-chart of this hybrid technique is depicted in Fig. 3.20. The algorithm 
starts with all the NPC leg in SS mode (i.e., all the gain factors Ç� = 100%) and finds 
all the available breaking points of �¥Q (��R∗ ). Then, it first looks for possible 
intersections between �¥Q (��R∗ ) and �¥Q∗  and, if present, it uses the same approach as in 
Fig. 3.17 to compute the reference common-mode voltage injection. In case there is no 
intersection, the algorithm chooses the breaking point which minimizes the distance from �¥Q∗  (i.e., the voltage ��R,Ø�ª,-,∗  of the previous examples) and evaluates the 

corresponding evolution of (\��,� − \��,Ð) via (3.13). In case the disbalance decreases 

 

Fig. 3.20 – Flow-chart of the proposed hybrid NPC modulation technique.  
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with an acceptable slope, a “Natural balancing” mechanism is recognized, and the 
algorithm stops. Otherwise, one NPC leg is selected to work in MS mode and the shape 
of the function �¥Q (��R∗ ) is changed as in Fig. 3.19 until an intersection with the 
reference neutral point current �¥Q∗  is found. For three-phase converters, it is always 
guaranteed that at most only one phase is needed to work in MS mode [124]. However, 
for multiphase converters this may not be the case, and the same approach is iteratively 
repeated until the balancing conditions are met [120]. 

The proposed technique has been experimentally validated with a multiphase NPC 
converter based on Semikron SKM50GB12T4 modules. The results are depicted from 
Fig. 3.21 to Fig. 3.25. In all operating conditions, the total DC-bus voltage is stabilized 
at 300 V (through a Sorensen SGI 600/25 voltage supply), while the converter switching 
frequency has been set to 2 kHz. The proposed hybrid approach (column a of all the 
figures) has been compared to the purely Common-Mode-Injection based technique of 
[146] (CMI method – column b of all the figures), and to the purely Multi-Step based 
technique of [103] (MS method – column c of all the figures). Additionally, a standard 
NPC modulation technique (i.e., not addressing the balancing requirement) has been 
added as a reference for comparisons (CBPWM method – column d of all the figures). 
All the modulation techniques have been implemented on a dSpace ds1006 platform with 
a 2 kHz sampling rate, while the measurements have been recorded through a Tektronix 
DPO/MSO 2014 oscilloscope and LEM transducers. The figures show the voltages \��,�  

 

a) Proposed method b) CMI method c) MS method d) Standard CBPWM 
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Fig. 3.21 – Comparisons between different NPC modulation algorithms 
(Symmetrical three-phase RL load, steady-state conditions). 

 

a) Proposed method b) CMI method c) MS method d) Standard CBPWM 
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Fig. 3.22 – Comparisons between different NPC modulation algorithms 
(Symmetrical three-phase RL load, transient results).  
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and \��,Ð of the DC-bus capacitors (light blue and magenta traces), one leg voltage �� 
(dark blue trace) and the corresponding leg phase current �� (green trace). 

Different operating conditions have been analysed. Fig. 3.21 and Fig. 3.22 depict the 
steady-state and transient results for a three-phase symmetrical ohmic-inductive load 
(with � ≅ 20 Ω and x ≅ 360 mH). Fig. 3.23 and Fig. 3.24 show the steady-state and 
transient result for a five-phase symmetrical induction machine (with �� ≅ �L′ ≅ 0.75 Ω, xM� ≅ 11.25 mH, xML′ ≅ 3.75 mH and x- ≅ 128.75 mH). Finally, Fig. 3.25 shows the 
steady-state result for an unbalanced five-phase induction machine (with an external 5 Ω 
resistor connected in series to phase 5).  

From the results, it can be seen that the pure CMI based approach works effectively 
for low modulation index values (i.e., with output voltages with a peak value of 100 V), 
but, instead, it performs poorly for higher modulation index values. On the contrary, the 
pure MS-based method is always capable of guaranteeing the DC-bus voltages 
equalization, but at the price of a higher number of switching transitions (as can be 
noted from the leg output voltage waveforms, which also switch between all the three 
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Fig. 3.23 – Comparisons between different NPC modulation algorithms 
(Symmetrical five-phase induction machine, steady-state conditions). 

a) Proposed method b) CMI method c) MS method d) Standard CBPWM 

  

Fig. 3.24 – Comparisons between different NPC modulation algorithms 
(Symmetrical five-phase induction machine, transient results, 150 V/50 Hz). 

a) Proposed method b) CMI method c) MS method d) Standard CBPWM 

  

Fig. 3.25 – Comparisons between different NPC modulation algorithms (Unbalanced 
five-phase induction machine, steady-state conditions, 150 V/50 Hz). 
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NPC voltage levels). The proposed hybrid technique can also always guarantee the 
desired voltage balancing but, thanks to the voltage clamping due to the simultaneous 
common-mode voltage injection, it has fewer transitions than the MS-based approach.   

A quantitative comparison of the average switching transitions per leg in a single 
modulation period is reported in Table 3.II. The results reveal that, in the examined 
conditions, the total number of switching transitions obtained with the proposed 
approach are around 22% − 25% less than with the baseline MS approach (which is the 
only other balancing method that always guarantees the active control of the DC-bus 
voltages). Moreover, the proposed approach also results in faster transient dynamic 
performances (as can be noted from the results obtained during the equalization tests).  

To sum up, it can be concluded that, thanks to the combination of the MS working 
mode with a proper CMI, it is possible to achieve both better transient responses and 
less switching transitions, leading to a better energetic efficiency. For more details, 
including additional quantitative comparisons of switching transition rates, losses, and 
equalization effectiveness, the reader can refer to [120]. 

3.3.2 Multistep MPC modulation with voltage balancing 
The generalization of the balancing modulation algorithm for multi-point clamped 

converters is not straightforward.  
Again, different topologies can be addressed as MPC (e.g., Diode Clamped, T-Type, 

etc…, see Fig. 3.26). They differ in some design aspects (e.g., number, voltage and/or 
current ratings of semiconductor devices) but behave equivalently from the functional 
point of view. Generally speaking, a ¤ -level MPC is built upon the series connection of (¤ − 1) DC-bus capacitors, and the output terminal of each leg can be connected to one 
of their terminals through a proper switching signals control. This means that all the 
MPC architectures can be referred to the ideal topology of Fig. 3.26d. Therefore, the 
DC-bus has 2 extreme terminals, and (¤ − 2) accessible internal points.  

As a direct extension of the NPC architecture, a ¤ -level MPC leg is realized through (¤ − 1) couples of controllable semiconductor devices, which are switched in a 
complementary way (as exemplified in Fig. 3.26). However, the correct operation of the 
system also imposes the switching signals to respect the additional condition:  

Table 3.II – AVERAGE SWITCHING TRANSITIONS RATE COMPARISON. 

Operating Conditions 
Proposed 
method 

CMI 
method 

MS  
method 

Standard 
CBPWM 

Three-phase RL load     
100 V/20 Hz 199 201 267 198 
150 V/20 Hz 207 140 266 198 
173 V/20 Hz 211 135 272 198 

Five-phase Induction Machine     
100 V/33.3 Hz 110 112 138 120 
150 V/50 Hz 81 64 98 83 

158 V/52.5 Hz 77 63 84 76 
Unbalanced Five-phase Induction Machine     

150 V/50 Hz 91 53 102 80 

     



3.3 - Multilevel modulation examples 53 

 

 0 ≤  ¥−1 ≤ ⋯ ≤  ℎ+1 ≤  ℎ ≤  ⋯  ≤  1 ≤  1 (3.14)

This means that the number of feasible combinations for the switching signals is reduced 
from 2¥  to just ¤ .  

Again, by using the same reasoning of Section 3.3.1, the condition (3.14) can be 
automatically verified by using a multiple references/single carrier comparison once the 
duty-cycles of the semiconductor devices satisfy the same conditions: 

 0 ≤ °¥−1 ≤ ⋯ ≤ °ℎ+1 ≤ °ℎ ≤  ⋯  ≤ °1 ≤  1 (3.15)

(for a graphical interpretation it is possible to refer to Fig. 3.16). 
Under these conditions, and by using an averaging procedure20 over a time period of +Q§R , the output leg voltage � can be expressed as a linear combination of the DC-bus 

voltages {\��,1,… , \��,¥−1} as: 
 

20 For notation ease, all the variables (unless otherwise specified) implicitly refer to the 
corresponding average value in a single modulation period. Additionally, the subscript � denoting 
the converter phase will be omitted in this section to simplify the notation. 
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Fig. 3.26 – Multi-point clamped converter architectures (5 level example): 
a) Standard Diode Clamped; b) Pyramidal Diode Clamped; c) T-Type; d) Ideal topology. 
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 � = ∑ °ℎ ⋅ \��,ℎ
¥−1
ℎ=1

 (3.16)

while the current driven from the ℎ-th DC-bus node is: 

 ���,ℎ = (°ℎ − °ℎ+1) ⋅ � = °¥Q,ℎ ⋅ � (3.17)

The current ���,ℎ actively influences the dynamics of the DC-bus capacitors. In other 

words, a positive ���,ℎ has a charging effect on all the capacitors located above the ℎ-th 
DC-bus node, and a discharging effect on all the capacitors located below the ℎ-th DC-
bus node. Since it always results °ℎ − °ℎ+1 ≥ 0, the sign of ���,ℎ in (3.17) cannot be 
controlled, and these currents typically have an unbalancing effect on the whole 
converter.  

Many standard modulation techniques do not address this problem, which often leads 
to an unstable behaviour. In these cases, the voltage balancing is typically done with 
external equalization circuits, resulting in a more complex converter architecture. 
However, by properly acting on the converter modulation, it is possible to reverse this 
phenomenon and exploit the output leg currents to equalize the DC-bus capacitors. 

A possible MS technique, developed in [121], [126], derives as an extension of the 
NPC modulation presented in Section 3.3.1, and is again based on the reformulation of 
the ℎ-th node duty cycle as: 

 °¥Q,ℎ = °ℎ − °ℎ+1 = Çℎ ⋅ Þ (3.18)

where Çℎ is a normalization gain factor, which varies from node to node in a way that ∑ Çℎ¥−2ℎ=1 = 1, while Þ is named balancing strength factor and is equal for all the nodes 

of a single MPC leg. To give a physical interpretation, Þ represents the time for which 
the output leg node is connected to the MPC DC-bus internal points, while Çℎ is the 
percentage of this time referred to the ℎ-th node. For example, Þ = 0.8 means that the 
MPC leg output node is connected to the DC-bus internal nodes for 80% of the 
modulation period. Then, if Çℎ = 0.3, the ℎ-th node duty-cycle is °¥Q,ℎ = 0.3 ⋅ 0.8 =0.24, meaning that the MPC leg output node is connected to the ℎ-th DC-bus node for 24% of the entire modulation period. 

To guarantee the equalization with the considered converter leg, it is possible to set 
the gain factors as: 

 Çℎ =
⎩{⎨
{⎧0 if   ∆\��,ℎ ⋅ � < 0∆\��,ℎ∑ ∣∆\��,�∣�

if   ∆\��,ℎ ⋅ � ≥ 0 (3.19)

with ∆\��,ℎ = \��,ℎ − \��,ℎ+1 denoting the voltage disbalance between the ℎ-th and 
the (ℎ + 1)-th DC-bus capacitor. 

In this way, if the current � has an unbalancing effect on the voltage disbalance ∆\��,ℎ, the choice Çℎ = 0 bypasses the ℎ-th DC-bus node leading to �¥Q,ℎ = 0. On the 

contrary, if the current � has a balancing effect on ∆\��,ℎ, the ℎ-th gain factor Çℎ and, 
consequently, the ℎ-th NP current �¥Q,ℎ are set to be proportional to the measured 
voltage disbalance (i.e., the couple of capacitors with higher disbalance are given a higher 
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priority on the equalization algorithm). Naturally, the relationship between Çℎ and ∆\��,ℎ given in (3.19) can also be replaced by a different strategy (e.g., by using a 
quadratic proportionality relation).  

The choice (3.19) guarantees that, in every operating condition, the modulation of 
the chosen MPC leg has a balancing effect on the DC-bus capacitors. Then, to maximize 
the equalization effectiveness, the control strategy requires to choose the strength factor Þ (defined in (3.18)) to be the maximum feasible value compatible with the supply of 
the average reference output voltage �∗.  

With some algebraic manipulations it can be proven that this approach can be 
studied as the balancing modulation of an equivalent three-level NPC converter with the 
equivalent top and bottom voltages: 

     \Σ� = ∑ (Çℎ⋅ ∑ \��,�
¥−1

�=ℎ+1
)¥−2

ℎ=1
     and      \ΣÐ = ∑ (Çℎ⋅∑ \��,�

ℎ
�=1

)¥−2
ℎ=1

 (3.20)

In particular, with these positions, the balancing strength factor Þ corresponds to the 
equivalent NP duty cycle °¥Q  of this equivalent NPC converter leg, whose maximum 
value is given by the same expression (3.11) which is: 

 Þmax(��∗ ) = min { �∗
\ΣÐ ,   \�� − �∗

\Σ� } (3.21)

Then, the same approach developed in Section 3.3.1 can be followed, and once Þ has 
been chosen, the duty-cycles of all the MPC leg devices can be computed as: 

°1 = 1,    °2 = °1 − Þ ⋅ Ç1, …     … °¥−1 = °¥−2 − Þ ⋅ Ç¥−2 if �∗
\ΣÐ  ≥ \�� − �∗

\Σ�

°¥−1 = 0,   °¥−2 = °¥−1 + Þ ⋅ Ç¥−2,…     … °1 = °2 + Þ ⋅ Ç1 if �∗
\ΣÐ  < \�� − �∗

\Σ�

 (3.22)

This modulation technique is always guaranteed to achieve the voltage equalization 
of all the DC-bus capacitors. The drawback of this procedure is that, being based on an 
intrinsic MS approach, it may result in a higher switching transition rate, which can 
reduce the overall efficiency and worsen the output voltage harmonic content.  

To neutralize this effect, it is possible to apply it only to a subset å ∈ {2,… ,¤} of 
the converter levels, which is properly selected to reduce the switching transitions rate. 
In this context, since the output voltage can only switch among the levels between ¤ÐØª 
and ¤�Ø�, the converter behaves like an equivalent å -level MPC connected to the overall 
DC-bus through additional capacitors. A graphical interpretation of this concept is given 
in Fig. 3.27. 

To adapt the previous strategy to this configuration, it is only necessary to apply the 
following substitutions: 

 ¤ → å, ℎ → ℎ + ¤ÐØª, �∗ → �∗ − \��,ÐØª (3.23)

where \��,ÐØª is the DC-bus voltage of the bottom ¤ÐØª capacitors. 
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The number of levels å  can be chosen with an iterative procedure aimed at 
guaranteeing a stable behaviour of each converter leg. This has been done by initializing å = 2 (i.e., SS mode) and by changing the minimum and maximum levels ¤ÐØª and ¤�Ø� until either an extreme level is reached or it results: 

 {∆\��,ÐØª ⋅ � = (\��,¥èéê − \��,¥èéê+1) ⋅ � ≥ 0
∆\��,�Ø� ⋅ � = (\��,¥ìéí − \��,¥ìéí+1) ⋅ � ≥ 0 (3.24)

In this way, it is guaranteed that the NP current absorbed from both the extreme levels ¤ÐØª and ¤�Ø� has an overall balancing effect on the structure. 

The flowchart of the described algorithm, which is separately applied to each MPC 
leg, is schematically depicted in Fig. 3.28. 

This approach has been validated through hardware-in-the-loop (HIL) tests and 
compared to other MS-based modulation techniques for MPC converters. The tests have 
been carried out with respect to a three-phase nine-level grid-connected MPC. Since the 
proposed algorithm is separately applied to each single MPC leg, analogous results could 
be obtained by considering a multiphase architecture. The comparisons have been carried 
out concerning the multi-step technique previously developed in [126] and the multi-step 
technique of [151], which has been considered as a baseline approach for the voltage 
balancing of an MPC converter using a modified PWM technique. The proposed 
technique has been implemented by considering a hysteresis threshold of 1.5% − 5% of 
the rated DC-bus voltage to activate the adaptation rule (3.23). 

Fig. 3.29 shows the results for different power absorption values (i.e., at no-load, at 
half of the rated load and at the full rated load). The acquisitions show two of the MPC 
output currents (yellow and green traces), one phase-to-phase output voltage (blue 
traces) and one output leg voltage (red traces). The corresponding quantitative results 
are summarized in Table 3.III.  
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Fig. 3.27 – Equivalent circuit for a ¤ -level MPC in å -level operating mode. 
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From the leg voltage waveforms and from the transitions count, it can be noted that, 
if compared with the other approaches, the proposed solution can effectively reduce the 
overall number of switching transitions needed to guarantee the correct MPC 
functioning. This result is achieved thanks to the adaptive choice of the switching levels.  

All the methods can keep all the DC-bus voltages within a desired threshold, and 
they also lead to similar total harmonic distortion (THD) values for the line-to-line 
voltages and for the line currents. However, with the proposed adaptive approach, the 
average number of switching transitions can be reduced by around 30% − 45% with 
respect to the adaptive MS technique presented in [126] and by around 49% − 80% with 
respect to the MS technique of [151]. Generally speaking, the best improvements are 
obtained for reduced loads, since the disbalance effect on the internal DC-bus capacitors 
is less intense and can be neutralized more easily. 

Fig. 3.30 shows the results of the proposed approach for different values of the 
modulation index, defined as ¦��¶ = �̃�,ï�∗ (\�� 2⁄ )⁄ . These results have been obtained 

by changing the overall DC-bus voltage while keeping the output reference voltages and 
the corresponding currents unaltered (at the full rated load of the converter). The 
corresponding quantitative results are summarized in Table 3.IV.  

As can be noted, despite a small increase in the maximum DC-bus capacitors voltage 
disbalances, the highest modulation index values are characterized by the lowest 
switching transitions rate. This effect can be explained by considering that the common 
mode voltage injection needed when ¦��¶ > 1 (which allows to extend the linear 

 

Fig. 3.28 – Flow-chart of the proposed adaptive multistep modulation technique.  
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modulation region) produces in some intervals a clamping of the leg output voltage either 
to 0 or to \��, and forces the corresponding devices not to switch for several modulation 
periods. This behavior has also a positive influence on the THD of the line-to-line 
voltages and of the output currents.  

Table 3.III – COMPARISONS OF MULTISTEP MPC MODULATION TECHNIQUES. 

 
a) Proposed 
Adaptive 
Technique 

b) Original 
Adaptive 
Technique 

c) Baseline 
Multistep 
Technique 

0%
 L

oa
d Number of Switching Transitions 1150 2350 7372 

Maximum DC Voltage Deviation 1.92% 1.07% 1.03% 
Leg Voltages THD 0.216 0.607 1.028 
Line-to-Line Voltages THD 0.093 0.348 0.607 

50
%

 L
oa

d 

Number of Switching Transitions 3671 5145 7372 
Maximum DC Voltage Deviation 3.26% 2.34% 0.38% 
Leg Voltages THD 0.681 0.824 1.010 
Line-to-Line Voltages THD 0.421 0.502 0.593 
AC Grid Currents THD 0.070 0.085 0.103 

10
0%

 L
oa

d Number of Switching Transitions 3820 6950 7372 
Maximum DC Voltage Deviation 5.01% 5.00% 0.35% 
Leg Voltages THD 0.728 0.923 1.003 
Line-to-Line Voltages THD 0.452 0.564 0.591 
AC Grid Currents THD 0.038 0.047 0.049 
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Fig. 3.29 – Comparison between different MPC modulation algorithms. 
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For more details, including both the DC-bus capacitors voltages waveforms and 
quantitative comparisons of switching transition rates, losses and harmonic content the 
reader can refer to [121].  

3.4  Summary and remarks 
This chapter has focused on the analysis of voltage source inverter (VSI) 

architectures used in multiphase electrical drives and of their modulation strategies. 
The circuital architectures have been first shown concerning a single VSI leg, both 

in the classic two-level configuration and in some common multilevel configurations. Since 
the nature of the semiconductor devices is not relevant for control purposes, the power 
electronics components have been treated as ideal controllable switches.  

Then, several multiphase topologies, commonly adopted in electrical drives, have been 
presented. Different circuital architectures can be used, with either a single or multiple 
independent DC sources. The same machine can be supplied in many different 

Table 3.IV – RESULTS FOR DIFFERENT MODULATION INDEX VALUES. 

 mind = 0.7 mind = 0.8 mind = 0.9 mind = 1.0 mind = 1.1 
Total DC Voltage 4230 V 3700 V 3300 V 2965 V 2700 V 
Number of Switching Transitions 3860 3870 3820 3690 3140 
Maximum DC Voltage Deviation 4.07% 4.65% 5.01% 5.06% 5.07% 
Leg Voltages THD 0.974 0.849 0.728 0.635 0.519 
Line-to-Line Voltages THD 0.480 0.468 0.452 0.409 0.341 
AC Grid Currents THD 0.043 0.040 0.038 0.038 0.034 
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Fig. 3.30 – Effectiveness of the proposed algorithm for different modulation index 
values (¦��¶ = �̃�,ï�∗ (\�� 2⁄ )⁄ ).  
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configurations and, in general, the number of converter legs can also differ from the 
number of machine phases. As will be discussed in detail in Chapter 4, some circuital 
configurations introduce some constraints on the machine currents, which should be 
properly considered in the drive modelling. 

The output voltage generated by any VSI leg architecture can only assume a discrete 
number of different values. Then, to make the supplied electrical drive follow a desired 
behaviour, a modulation technique is required.  

The most common modulation technique for a two-level VSI is the pulse width 

modulation (PWM) technique, whose working principle has been briefly recalled. The 
switching signals to control the semiconductor devices are typically found with a 
reference/carrier comparison, and the leg output voltage is a sequence of rectangular 
pulses with fixed height and variable width. The low-frequency harmonic content of the 
leg voltage is the same as the desired reference voltage, while its high-frequency content 
is filtered out by the ohmic-inductive nature of the electrical machine and can be 
neglected for control purposes.  

The modulation of a two-level multiphase converter can be implemented by 
separately controlling each VSI leg. In absence of a neutral wiring connection, a common-
mode voltage can be superimposed to the leg reference voltages without altering the 
overall converter behaviour. Similarly to some of the approaches used in three-phase 
drives, this common-mode voltage injection can be exploited to maximize the DC-bus 
utilization. Space vector modulation approaches have also been proposed in the technical 
literature, but their implementation for multiphase converters is much more challenging 
than in three-phase systems because of the higher number of available vectors, 
modulation planes and switching sequences to combine. 

For a multilevel VSI leg with many levels, the output voltage can be approximated 
as the closest feasible level to the desired reference voltage. This approach, called nearest 

level modulation, is however not suited in case the voltage modulation error is not 
negligible. In such cases, it is possible to use multilevel PWM approaches. Given the high 
number of levels, the extension of a PWM technique can be implemented in many 
different ways. This redundancy allows more degrees of freedom which can be used to 
improve the converter performances. 

In case the multilevel converter has multiple capacitive sources, a voltage balancing 
among different capacitors is required to guarantee its correct behaviour. Some proposed 
algorithms able to guarantee the voltage balancing through the modulation technique 
are finally shown regarding neutral point clamped (NPC) and multi-point clamped 
(MPC) converters.  

 
 
 
 
 
 
 
 
 



4 Electrical Network Model 

The electrical machine model found in Chapter 2 depends on the set of voltages 
applied to each phase winding. For the drive analysis and control, it is necessary to know 
how the machine windings voltages are linked to the converter leg voltages. This 
relationship does not only depend on the connection between the converter and machine 
terminals, but is also strictly related to how the machine windings are connected to one 
another. Indeed, many typical electrical drive configurations (both in healthy and in 
faulty cases) introduce some algebraic constraints on the machine currents, which 
strongly influence the overall drive dynamical behaviour and, therefore, should be 
explicitly considered in the overall electrical drive mathematical model. 

This chapter is then focused on formalizing in a general fashion the electrical 
interconnection network linking the electrical machine to the power electronics converter. 
This approach, seldom applied in standard multiphase drives analysis, can be adequately 
exploited to study the same machine under different configurations, which can result 
either from architecture designs or from post-fault reconfigurations. For this reason, the 
main properties and results of this analysis will be the core of the control algorithms 
developed in Chapter 6 and Chapter 7. 

The chapter is structured as follows. First, Section 4.1 briefly introduces the 
equivalent representations of both the machine phase windings and the converter legs 
for the considered network analysis. Secondly, Section 4.2 discusses the proposed 
multiport analysis in case the machine currents are not subject to any algebraic 
constraint coming from the hardware configuration. The presence of these hardware-
related constraints is explicitly addressed in Section 4.3, which extends the previous 
results to a more general configuration. Then, a different formulation of the constrained 
drive model is presented in Section 4.4 by introducing the concept of the configuration 
space of the system, which allows obtaining an equivalent reduced-order model of a 
multiphase electrical drive subject to current constraints. Finally, Section 4.5 
summarizes the main results of this chapter. 

To facilitate the reading, in the following analysis the electrical machine variables 
will be denoted with the subscript “ðå” and the power electronics converter variables 
will be denoted with the subscript “\dñ”. All the voltages and currents will be denoted 
as � and �, respectively. Additionally, the explicit dependence of the machine parameters 
on the position % will be omitted for notation simplicity. 

4.1 Equivalent sources representation 
The machine electrical behaviour is governed by the electrical equations (2.1), which 

have been expressed in a matrix notation in (2.2). This set of equations describes a 
dynamical system in which the fluxes ��R = [��R,1, … , ��R,�]T are the state variables. 
By considering the electromagnetic energy of the machine as a state function of the 
system, the machine currents ��R = [��R,1, … , ��R,�]T are univocally identified by the 
instantaneous value of the fluxes ��R  and of the rotor position %�R . Indeed, they can 
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always be found from the expression (2.7) and, by considering the simplifying hypothesis 
adopted in Chapter 2, they can be explicitly computed from the expression (2.30). As a 
result, the currents can also be considered as state variables for the machine and, from 
the circuital point of view, each �-th winding (with � = 1,… , �) can be modelled as an 
ideal current source1 forcing the corresponding machine current ��R,�. 

The converter electrical behaviour depends on the switching signals used to control 
the semiconductor devices. For a voltage source converter, all the feasible states 
univocally identify the output voltage of all the legs. As a result, from the circuital point 
of view, each �-th converter leg (with � = 1,… ,¦) can be modelled as an ideal voltage 
source forcing the corresponding leg voltage ��R,�.  

A schematic depiction of these equivalent source modelling is depicted in Fig. 4.1. It 
is worth emphasizing again that, for a generic drive configuration, it may be ¦ ≠ �.  

4.2 Unconstrained network model 
Consider a drive configuration in which all the currents are free to flow independently 

from one another. The connection between the power electronics converter and the 
electrical machine can be modelled through a linear a-dynamical multi-port network, 
whose forcing inputs are the ¦ converter voltages �ôeõ = [�ôeõ,1,… , �ôeõ,-]T and the � 

machine currents ��R = [��R,1,… , ��R,�]T.  
The complementary variables are the converter currents �ôeõ = [�ôeõ,1,… , �ôeõ,-]T 

and the electrical machine windings voltages ��R = [��R,1,… , ��R,�]T. They can be 
expressed as linear combinations of the forcing inputs. By using an active sign convention 
for the ¦ converter ports and a passive sign convention for the � machine ports, the 
linear relationship can be synthetically represented by the hybrid matrix of the network2: 

 [ �ôeõ−��R] = [øôeõ,ôeõ øôeõ,�Rø�R,ôeõ ø�R,�R] ⋅ [�ôeõ��R ] (4.1)

 
1 This can be also interpreted in terms of the associated resistive circuit of a dynamical 

electrical network, where all the inductive elements are replaced by current sources forcing their 
instantaneous current (which is the corresponding state variable), called substitution sources. 

2 The negative sign appearing at the first term for ��R  is because the characterization of 
multiport systems through a hybrid matrix is typically done by using the active sign notation 
for all the forcing inputs. 
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Fig. 4.1 – Equivalent sources representation for the network analysis: a) Electrical 
machine phase winding; b) Voltage source inverter leg. 
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From the reciprocity properties of linear multiport networks, it can be proven3 that: 

 

øôeõ,ôeõ = øôeõ,ôeõT = ù¥��  ø�R,�R = ø�R,�RT = �¥��  øôeõ,�R = −ø�R,ôeõT = ú  
(4.2)

where: 
 ù¥��  is a ¦ × ¦ network conductances matrix related to the converter 

variables, and is responsible for the leakage currents. Indeed, its parameters 
represent the currents that would be absorbed from the converter if the 
machine windings are open (i.e., ��R = û). Usually, they are only related to 
shunt parasitic effects, which can be disregarded leading to ù¥�� ≅ 0. 

 �¥��  is a � × � network resistances matrix related to the electrical machine 
variables, and is responsible for the voltage drops across the network. Indeed, 
its parameters represent the voltages that would be measured on the machine 
windings if all the converter legs are short-circuited (i.e., �ôeõ = û). Usually, 
they are only related to the wiring resistances, which also can be disregarded 
leading to �¥�� ≅ û. 

 ú  is a � × ¦ matrix here named network interconnection matrix. Its 
parameters define both the effect of the converter voltages on the machine 
voltages and the effect of the machine currents on the converter currents. 

Then, the expression (4.1) can be rewritten as: 

          [�ôeõ��R] = [ù¥�� úT
ú −�¥�� ] ⋅ [�ôeõ��R ] ≅ [ û úT

ú û ] ⋅ [�ôeõ��R ] (4.3)

A schematic depiction of the analysed network representation is depicted in Fig. 4.2. 

 
3 Proven in Appendix 9.4.3 basing on the results of Appendix 9.4.2 and Appendix 9.4.1. 
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Fig. 4.2 – Multiport representation of an unconstrained electrical network. 
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4.2.1 Electrical equations 
By isolating the voltages of the machine phase windings in (4.3), it results that: 

 ��R  =  ú ⋅ �ôeõ − �¥�� ⋅ ��R  ≅  ú ⋅ �ôeõ (4.4)

The expression (4.4) shows that, once the converter leg voltages set �ôeõ (and, 
eventually, the machine currents ��R) are known, the machine phase voltages ��R  are 
univocally identified. By combining the voltages expressed by (4.4) with the electrical 
machine dynamic model (2.35), the overall drive satisfies the equation: 

 z�R ⋅ d��Rd� + (��R + �¥�� ) ⋅ ��R + ��R = ú ⋅ �ôeõ (4.5)

The equation (4.5) describes a dynamical system of order �, whose functional block 
diagram is schematically represented in Fig. 4.3. The input of this system is represented 
by the ¦ × 1 set of converter voltages �ôeõ , and acts through the input matrix ú , which 
is only related to the network configuration. 

The dynamical model (4.5) is represented in the descriptor form.  The canonical 

state-space representation of the system is obtained by multiplying both sides of (4.5) 
by the matrix {�R = z�R−1  and by isolating the current derivatives, resulting in: 

 

d��Rd� = [−{�R ⋅ (��R + �¥�� )] ⋅ ��R + ⋯ 
            ⋯+ [{�R ⋅ ú] ⋅ �ôeõ + [−{�R ⋅ ��R ] =  

= ü�R ⋅ ��R + ý�R ⋅ �ôeõ + þ�R  

(4.6)

where ü�R  is the state matrix of the system, ý�R  is the state space input matrix of the 
system and þ�R  is an equivalent disturbance input for the system. Note that, in the 
canonical form (4.6), all these terms depend on the machine parameters, including the 
rotor position %, meaning that they are time-variant. Moreover, in presence of variable 
reluctance effects, the term þ�R  may also depend on the machine currents through the 
effect of the motional induced back-EMFs & z�R′ (%) ⋅ ��R . 

4.2.2 Examples 
To better explain the proposed modelling approach of the electrical network in case 

the phase currents are not subject to any constraint, some examples are here provided 
to show how the matrices in (4.3) can be computed. The examples refer to some of the 

 N
vVSI

dt
iEMd

 LEM ·  +REM ·iEM +eEM =vEM

 RNET

iEMvEM

 
 

Fig. 4.3 – Functional block diagram of the electrical equations in case of an 
unconstrained interconnection network. 
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configurations introduced in Section 0. All the examples will assume the effects of wiring 
resistances and parasitic conductances to be negligible, leading to �¥�� = û and ù¥�� = û as in the simplified results of (4.3).  

Note that all the following examples, by focusing on the electrical interconnection 
network, are valid regardless of the kind of machine which is supplied (e.g., PMSM, IM, 
SynRM, etc…). 

Separately excited windings 
Consider a five-phase machine (� = 5) whose windings are all supplied by isolated 

full-bridge converters (¦ = 10), as schematically represented in Fig. 4.4. By neglecting 
the wiring resistances and leakage conductances of the semiconductor devices, the 
relationship between the machine and converter variables can be immediately derived as 
the system of equations: 

�ôeõ,1 = ��R,1, �ôeõ,2 = −��R,1, ��R,1 = �ôeõ,1 − �ôeõ,2,�ôeõ,3 = ��R,2, �ôeõ,4 = −��R,2, ��R,2 = �ôeõ,3 − �ôeõ,4,�ôeõ,5 = ��R,3, �ôeõ,6 = −��R,3, ��R,3 = �ôeõ,5 − �ôeõ,6,�ôeõ,7 = ��R,4, �ôeõ,8 = −��R,4, ��R,4 = �ôeõ,7 − �ôeõ,8,�ôeõ,9 = ��R,5, �ôeõ,10 = −��R,5, ��R,5 = �ôeõ,9 − �ôeõ,10

 

By using a matrix notation, the converter voltages and currents can be grouped in 
the 10 × 1 sets �ôeõ = [�ôeõ,1, … , �ôeõ,10]T and �ôeõ = [�ôeõ,1,… , �ôeõ,10]T, respectively. 
Similarly, the electrical machine voltages and currents can be grouped in the 5 × 1 sets ��R = [��R,1,… , ��R,5]T and ��R = [��R,1,… , ��R,5]T, respectively. 

From the previous equations, it results that: 
 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 

that ù¥�� = û, 
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Fig. 4.4 – Five-phase machine with independent supply of each phase winding with 
an independent full-bridge converter. 
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 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 5 × 10 network interconnection matrix 

ú =
⎣⎢
⎢⎢
⎢⎡1 −1 0 0 0 0 0 0 0 00 0 1 −1 0 0 0 0 0 00 0 0 0 1 −1 0 0 0 00 0 0 0 0 0 1 −1 0 00 0 0 0 0 0 0 0 1 −1⎦⎥

⎥⎥
⎥⎤

 

Note that the same model would have been also valid in case all the full-bridges were 
with a common DC-bus (and not isolated with each other). In this case, the configuration 
could also be interpreted as a five-phase machine supplied by a ten-leg converter. 

Single-star configuration with additional VSI leg 
Consider a six-phase machine (� = 6), with the windings which are star-connected 

with an accessible neutral point, which is itself connected to an independent VSI leg as 
in Fig. 4.5. In this case, ¦ = 7 and, by using the same assumptions of the previous 
example, the following equations can be written: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − �ôeõ,7,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − �ôeõ,7,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − �ôeõ,7,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − �ôeõ,7,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − �ôeõ,7,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − �ôeõ,7

 

�ôeõ,7 = −��R,1 − ��R,2 − ��R,3 − ��R,4 − ��R,5 − ��R,6 
With the same approach of the previous example, the converter voltages and currents 

can be grouped in the 7 × 1 sets �ôeõ = [�ôeõ,1, … , �ôeõ,7]T and �ôeõ = [�ôeõ,1,… , �ôeõ,7]T, 
respectively, while the electrical machine voltages and currents can be grouped in the 6 × 1 sets ��R = [��R,1,… , ��R,6]T and ��R = [��R,1, … , ��R,6]T, respectively. 
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Fig. 4.5 – Six-phase machine in a single-star configuration with neutral point 
connected to an additional VSI leg. 
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From the previous equations it results that: 
 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 

that ù¥�� = û, 
 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 

that �¥�� = û, and 
 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 

identified by the 6 × 7 network interconnection matrix 

ú =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 0 −10 1 0 0 0 0 −10 0 1 0 0 0 −10 0 0 1 0 0 −10 0 0 0 1 0 −10 0 0 0 0 1 −1⎦⎥

⎥⎥
⎥⎥
⎤
 

Single-star configuration with DC-bus midpoint connection 
Consider again a star-connected six-phase machine (� = 6), but in this case with the 

neutral point connected at the DC-bus midpoint of the supplying converter, as in Fig. 
4.6. In this case, ¦ = 6 and the equations describing the system are: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − \�� 2⁄ ,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − \�� 2⁄ ,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − \�� 2⁄ ,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − \�� 2⁄ ,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − \�� 2⁄ ,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − \�� 2⁄
 

The presence of \�� 2⁄  can be easily dropped out by referring the VSI voltages to 
the DC-bus midpoint instead of referring them to the DC-bus negative node. In this 
case, the same expressions become: 

 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6

 

Then, the converter voltages and currents can be grouped in the 6 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,6]T and �ôeõ = [�ôeõ,1,… , �ôeõ,6]T, while the electrical machine voltages 

and currents can be grouped in the 6 × 1 sets ��R = [��R,1, … , ��R,6]T and ��R =
[��R,1, … , ��R,6]T, respectively. 

From the previous equations, it results that: 
 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 

that ù¥�� = û, 
 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 

that �¥�� = û, and 
 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
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identified by the 6 × 6 network interconnection matrix 

ú =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1⎦⎥

⎥⎥
⎥⎥
⎤

= � 

If compared to the previous example, this configuration does not require an additional 
converter leg. However, in case the DC-bus is realized with capacitors, the presence of a 
DC component or of low-frequency AC components in the neutral point current could 
lead to a significant disbalance or to heavy fluctuations between the voltages of the DC-
bus capacitors, which may negatively affect the converter behaviour.  

Pentagon configuration 
Consider a five-phase machine (� = 5), where this time the windings are cyclically 

connected in a pentagon configuration as in Fig. 4.7. The equations of the system are: 

 

�ôeõ,1 = ��R,1 − ��R,5, ��R,1 = �ôeõ,1 − �ôeõ,2�ôeõ,2 = ��R,2 − ��R,1, ��R,2 = �ôeõ,2 − �ôeõ,3�ôeõ,3 = ��R,3 − ��R,2, ��R,3 = �ôeõ,3 − �ôeõ,4�ôeõ,4 = ��R,4 − ��R,3, ��R,4 = �ôeõ,4 − �ôeõ,5�ôeõ,5 = ��R,5 − ��R,4, ��R,5 = �ôeõ,5 − �ôeõ,1

 

The converter voltages and currents can be grouped in the 5 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,5]T and �ôeõ = [�ôeõ,1,… , �ôeõ,5]T, respectively, while the electrical 
machine voltages and currents can be grouped in the 5 × 1 sets ��R =[��R,1,… , ��R,5]T and ��R = [��R,1,… , ��R,5]T, respectively. 

From the previous equations, it results that: 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 
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Fig. 4.6 – Six-phase machine in a single-star configuration with neutral point 
connected the DC-bus midpoint.   
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 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 5 × 5 network interconnection matrix 

ú =
⎣⎢
⎢⎢
⎢⎡ 1 −1 0 0 00 1 −1 0 00 0 1 −1 00 0 0 1 −1−1 0 0 0 1 ⎦⎥

⎥⎥
⎥⎤ 

In this case, contrarily to the previous examples, ú  is not a full-ranked matrix. This 
is the direct consequence of the cyclical connection and means that the 5 electrical 
machine voltages cannot be controlled independently from one another. Indeed, they are 
always subject to: 

 ��R,1 + ��R,2 + ��R,3 + ��R,4 + ��R,5 = 0 

A similar model can be also applied to other cyclical configurations (e.g., to the 
pentacle configuration of the examples in Section 3.1.2).  

4.3 Constrained network model 
Most typical electrical drive configurations include some physical constraints on the 

machine currents. The most common example is a star connection of a group of windings 
with an isolated neutral point, in which the sum of the corresponding currents is forced 
to be zero, but another example of practical interests is the case of an open-circuit fault 
on one phase, which forces the current of the same winding to zero.  

This section mathematically formalizes these constraints in a way to model them 
with the same multi-port formalism adopted in the previous case. It is also shown how 
the presence of algebraic constraints for the phase currents can alter the machine 
behaviour by introducing some internal feedback actions on its dynamical model4. 

 
4 It is worth emphasizing that this modified modelling approach is required because the 
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Fig. 4.7 – Five-phase machine in pentagon configuration. 
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4.3.1 Current constraints formalization 
Each ℎ-th physical constraint (with ℎ = 1,… , �D) can be found by applying 

Kirchhoff’s current law (KCL) to the node (or, more generally, to the cutset) involving 
the constrained machine phases, and is represented by an algebraic equation in the form: 

 ∑åℎ� ⋅ ���
�=1

= 0 (4.7)

where åℎ� ≠ 0 only if the ℎ-th constraint involves the �-th machine winding. The set of 
all the �D algebraic constraints can be written in matrix form as: 

 �T ⋅ ��R = û (4.8)

and �  is a � × �D matrix, here named constraints matrix. Each column of �  represents 
a single specific algebraic constraint introduced by the physical connection of the 
machine windings.  

By neglecting the linearly dependent columns of �  (which identify the same 
algebraic constraints and, therefore, are redundant), the rank of �  is �D. The maximum 
number of constraints is limited by the number of windings itself (because there cannot 
be more constraints than the number of currents). This means that �D ≤ �. 

Note that the same set of algebraic constraints can be modelled in different ways. 
This means that the same electrical configuration can be associated with different 
constraints matrix � . As explained and exemplified in the following, this does not affect 
the validity of the resulting mathematical model.  

4.3.2 Augmented network model 
The presence of algebraic constraints on the machine currents makes the 

interconnection network harder to model as a multiport system, because it forces the 
machine currents (which are input variables for the system) to be dependent on one 
another. Therefore, it is convenient to modify the interconnection network topology to 
obtain an equivalent unconstrained system with the same behaviour as the original (i.e., 
physical) one. This can be done by adding, for each ℎ-th node or cutset identifying a 
current constraint (with ℎ = 1,… , �D) an auxiliary voltage source �¥�� ,ℎ connected to 

the rest of the physical system. In this modified circuit topology, the current �¥��,ℎ 
flowing in the ℎ-th auxiliary voltage source with a passive sign convention is: 

 �¥��,ℎ = ∑åℎ� ⋅ ���
�=1

 (4.9)

which, in the original system, was constrained to zero. Fig. 4.8 exemplifies how an 
algebraic constraint on the machine phase currents can be modelled with a modified 
system with an auxiliary voltage source.  

 
constraints are applied to the machine currents, which are state variables for the system. In other 
words, since the state variables of the dynamical system cannot evolve freely, the whole drive 
exhibits a different behaviour. On the contrary, other constraints related to the electrical 
configuration (like, for example, constraints on the converter currents), would not require any 
modification in the mathematical model as long as they do not involve any state variable. 
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In this unconstrained augmented system, the relationship between the independent 
sources and the complementary variables is similar to the expression (4.1) and can be 
formalized through a hybrid matrix as: 

 

⎣⎢
⎢⎡ �ôeõ−��R−�¥�� ⎦⎥

⎥⎤ =
⎣⎢
⎢⎡

øôeõ,ôeõ øôeõ,�R øôeõ,¥��ø�R,ôeõ ø�R,�R ø�R,¥��ø¥��,ôeõ ø¥��,�R ø¥��,¥�� ⎦⎥
⎥⎤ ⋅

⎣⎢
⎢⎡ �ôeõ��R�¥�� ⎦⎥

⎥⎤ (4.10)

where �¥�� = [�¥��,1, … , �¥�� ,��]T is the set of auxiliary net voltages, which act as 

independent sources, and �¥�� = [�¥��,1, … , �¥��,��]T is the set of auxiliary net current, 

which act as complementary variables. 

Similarly to (4.2), from the reciprocity properties of linear multiport networks and 
from (4.9), it can be proven that: 

øôeõ,ôeõ = øôeõ,ôeõT = ù¥�� ≅ û, øôeõ,¥�� = −ø¥��,ôeõT = û
ø�R,�R = ø�R,�RT = �¥�� ≅ û, ø¥��,¥�� = ø¥��,¥��T = û
øôeõ,�R = −ø�R,ôeõT = ú, ø�R,¥�� = −ø¥��,�RT = �

 (4.11)

where the matrices ù¥�� , �¥��  and ú  have the same meaning of (4.2), while �  is 
the constraint matrix defined in (4.8). 

The expression (4.10) can be therefore rewritten as: 

⎣⎢
⎢⎡ �ôeõ��R�¥�� ⎦⎥

⎥⎤ =
⎣⎢
⎢⎡ù¥�� úT ûú �¥�� −�û �T û ⎦⎥

⎥⎤ ⋅
⎣⎢
⎢⎡ �ôeõ��R�¥�� ⎦⎥

⎥⎤ ≅ 

≅
⎣⎢
⎢⎡ û úT  ûú û −�û �T  û ⎦⎥

⎥⎤ ⋅
⎣⎢
⎢⎡ �ôeõ��R�¥�� ⎦⎥

⎥⎤ 

(4.12)

A schematic illustration of the analysed network representation is depicted in Fig. 4.9. 

Note that the auxiliary voltages set ��R  is strictly related to the choice of the 
constraints matrix � . As previously stated, the same electrical configuration can be 
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Fig. 4.8 – Network representation of a constraint through the introduction of an 

auxiliary voltage source. 
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associated with different algebraic equations and, therefore, to different constraints 
matrices � . This means that the auxiliary voltages set ��R  must be chosen depending 
on � , in a way to meet (4.9). However, as also explained and exemplified in the 
following, this does not affect the overall model validity and only changes the physical 
interpretation given to the elements of ��R . 

4.3.3 Network internal feedback action 
The introduction of the auxiliary set of voltages �¥��  has made it possible to replace 

the constrained physical network with an unconstrained augmented network, which can 
be modelled through (4.12) as a linear a-dynamical multiport system. 

From (4.12) the machine voltages set can be written as: 

 ��R  =  ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥��  ≅  ú ⋅ �ôeõ − � ⋅ �¥��  (4.13)

By comparing (4.13) with (4.4) it can be seen that the set �¥��  of additional auxiliary 
voltage sources actively affects the phase windings voltages set ��R  of the electrical 
machine, according to the same matrix �  which defines the currents constraints. In this 
case, the sole knowledge of the converter leg voltages set �ôeõ and of the machine 
currents ��R  is not enough to completely analyse the system, and the block diagram of 
Fig. 4.3 is modified to the diagram of Fig. 4.10. 

To make this augmented system behave exactly like the physical one (i.e., like the 
original constrained system), the set �¥��  cannot assume any arbitrary value, but it 
must adapt itself in a way that it always results �¥�� = �T ⋅ ��R = û. This happens 
when �¥��  is exactly equal to the open-circuit voltage measured in the physical system.  
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Fig. 4.9 – Multiport representation of a constrained electrical network with the 

introduction of the auxiliary network voltages. 
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Then, from a different perspective, each auxiliary voltage �¥��,ℎ (with ℎ = 1,… , �D) 
can be interpreted as the electrical potential shift between two different nodes of the real 
physical system. In this context, the possibility to model the same physical system with 
multiple formulations (depending on the choice of �) can be interpreted as modelling 
the same network with respect to the open-circuit voltage between different nodes.  

However, the auxiliary voltage set �¥��  does not only depend on the converter 
voltages �ôeõ , but it is also influenced by the internal behaviour of the electrical machine, 
as schematically represented by the “Auxiliary Network Voltages Computation” block of 
Fig. 4.10. Consequently, the voltages ��R  at the machine windings are also linked to 
the machine parameters. 

As an example, it can be proven that, for the machine model provided in (2.35), the 
general expression of the auxiliary voltages set is5:  

 �¥�� = (�T ⋅ {�R ⋅ �)−1 ⋅ �T ⋅ {�R ⋅ [ ú ⋅ �ôeõ + ⋯ 
⋯ − (��R + �¥�� ) ⋅ ��R − ��R  ] (4.14)

This expression is influenced by all the electrical machine parameters. By substituting it 
in (4.13) and by defining the matrix: 

 � = � ⋅ (�T ⋅ {�R ⋅ �)−1 ⋅ {�R  (4.15)

the machine voltages could be rewritten as: 

 ��R = ú,�ª ⋅ �ôeõ − �¥��,,�ª ⋅ ��R + ��R,,�ª (4.16)

where the expression of these equivalent parameters is: 

ú,�ª = ( � − �  ) ⋅ ú �,�ª = ( � − �  ) ⋅ �¥�� − � ⋅ ��R  ��R,,�ª = −� ⋅ ��R  
(4.17)

Physically, the expressions (4.14) and (4.16) can be interpreted as a result of a 
 

5 Proven in Appendix 9.4.4. 
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Fig. 4.10 – Functional block diagram of the electrical equations in case of a 
constrained interconnection network. 
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feedback action acting inside the constrained electrical network, which automatically 
links the voltages set �¥��  to the internal machine dynamical behaviour. This feedback 
action is weighted by the matrix �  defined in (4.15) which, for this reason, is here named 
network internal feedback matrix. This matrix is non-dimensional and depends both on 
the network configuration (via the constraint matrix �) and on the machine parameters 
(via the reluctances matrix {�R , which is worth recalling that, in general, is a function 
of the rotor position %). For an unconstrained network, the expression (4.16) is reduced 
to the expression (4.4) by simply putting � = û, which can be interpreted as the absence 
of any internal feedback action. 

Considering (4.14), a more detailed representation of the schematic block diagram of  
Fig. 4.10 is reported in  Fig. 4.11, where the functional dependence of �¥��  on �ôeõ and ��R  is given explicitly. 

4.3.4 Full order electrical drive model 
By combining the machine model (2.35) with the network equation (4.13), it is 

possible to describe the electrical machine equations as: 

 

z�R ⋅ d��Rd� + ��R ⋅ ��R + ��R = ��R = 
=  ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥�� = 

         = ú,�ª ⋅ �ôeõ − �¥�� ,,�ª ⋅ ��R + ��R,,�ª 
(4.18) 

By substituting the parameters expression (4.17) and by properly grouping the 
various terms, the overall drive electrical equations are6: 

 
6 Proven in Appendix 9.4.5. 
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Fig. 4.11 – Explicit representation of the functional block diagram of the electrical 
equations for the machine model developed in Chapter 2.  
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          z�R ⋅ d��Rd� + ( � − �  ) ⋅ [(��R + �¥�� ) ⋅ ��R + ��R ] =  
= ( � − �  ) ⋅ ú ⋅ �ôeõ 

(4.19)

The equation (4.19) represents a dynamical system of order �, which again refers to the 
schematic block diagram given in Fig. 4.11. Similarly to (4.5), the input of this system 
is represented by the ¦ × 1 set of converter voltages �ôeõ , but in this case the input 
matrix ( � − �  ) ⋅ ú  depends both on the network configuration and on the system 
parameters (in general, including also the rotor position %). 

Together with the electromagnetic torque equation (2.33) and to the mechanical 
equations (2.3)-(2.4), the equation (4.19) completely describes the electrical behaviour 
of the considered drive and, through the matrix � , this model automatically includes 
the effects of the current constraints on the machine behaviour. Again, for an 
unconstrained network, the expression (4.19) can be reduced to the expression (4.5) by 
simply putting � = û. 

Similarly to (4.6), the canonical state-space representation corresponding to (4.19) 
can be found by multiplying both terms by {�R  and by isolating the current derivatives, 
resulting in: 

          d��Rd� = [−{�R ⋅ (� − � ) ⋅ (��R + �¥�� )] ⋅ ��R + ⋯  
⋯+ [{�R ⋅ (� − � ) ⋅ ú] ⋅ �ôeõ + [−{�R ⋅ (� − � ) ⋅ ��R ] =  

= ü�R ⋅ ��R + ý�R ⋅ �ôeõ + þ�R   
(4.20)

where ü�R  is the state matrix of the system, ý�R  is the state space input matrix of 
the system and þ�R  is an equivalent disturbance input. 

4.3.5 Examples 
To better explain the proposed modelling approach of the electrical network in 

presence of constraints on the phase currents, some examples are here provided to show 
how the matrices in (4.12) can be computed. Again, most of the examples refer to the 
architectures introduced in Section 3.1.2. In the following, the wiring resistances and 
parasitic conductances will always be neglected, meaning that it will always result �¥�� = û and ù¥�� = û. Then, the examples will focus on the computation of ú  and � . Again, all the following examples, by focusing only on the network model, are valid 
regardless of the nature of the supplied machine (e.g., PMSM, IM, SynRM, etc…). The 
effect of the machine internal behaviour (which, as previously explained, act as an 
internal feedback in the overall model through (4.14)), depends on the specific machine 
parameters and is not here explicitly addressed. 

Single-star configuration 
Consider a six-phase machine (� = 6) supplied by a six-leg converter (¦ = 6) and 

connected in a single-star configuration with a single isolated neutral point, as depicted 
in Fig. 4.12.  
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The single isolated neutral point forces the sum of all the phase currents to be zero, 
meaning that there is a single current constraint (�D = 1) which can be expressed as: 

 ��R,1 + ��R,2 + ��R,3 + ��R,4 + ��R,5 + ��R,6 = 0 

By considering the auxiliary network voltage �¥��  to be the voltage between the 
machine neutral point and the converter reference node, by applying Kirchhoff’s laws it 
results that: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − �¥�� ,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − �¥�� ,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − �¥�� ,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − �¥�� ,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − �¥�� ,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − �¥��

 

The converter voltages and currents can be grouped in the 6 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,6]T and �ôeõ = [�ôeõ,1,… , �ôeõ,6]T, respectively, while the electrical 
machine voltages and currents can be grouped in the 6 × 1 sets ��R =[��R,1,… , ��R,6]T and ��R = [��R,1,… , ��R,6]T, respectively.  

From the previous equations, it results that: 
 the constraint on the phase currents set ��R  and the effect of the auxiliary 

network voltage �¥��  to the machine voltages set ��R  can be modelled by the 6 × 1 constraint matrix: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡111111⎦⎥

⎥⎥
⎥⎥
⎤

 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 

 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
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Fig. 4.12 – Six-phase machine in a single-star configuration. 
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that �¥�� = û, and 
 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 

identified by the 6 × 6 network interconnection matrix 

ú = � =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1⎦⎥

⎥⎥
⎥⎥
⎤

 

Multiple-star configuration 
Consider again a six-phase machine (� = 6) supplied by a six-leg converter (¦ = 6), 

but connected in a double-star configuration with two isolated neutral points, as shown 
in Fig. 4.13 

The two isolated neutral points force the sum of the corresponding phase currents to 
be zero, meaning that there are two current constraints (�D = 2) which can be expressed 
as the equations: 

 
��R,1 + ��R,2 + ��R,3 = 0, ��R,4 + ��R,5 + ��R,6 = 0 

By considering the auxiliary network voltages �¥��,1 and �¥��,2 to be the voltages 
between the machine neutral points and the converter reference node, by applying 
Kirchhoff’s laws it results that: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − �¥��,1,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − �¥��,1,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − �¥��,1,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − �¥��,2,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − �¥��,2,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − �¥��,2

 

The converter variables can be grouped in the 6 × 1 sets �ôeõ = [�ôeõ,1,… , �ôeõ,6]T 
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Fig. 4.13 – Six-phase machine in a double-star configuration. 
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and �ôeõ = [�ôeõ,1,… , �ôeõ,6]T, respectively, while the electrical machine variables can be 

grouped in the 6 × 1 sets ��R = [��R,1,… , ��R,6]T and ��R = [��R,1,… , ��R,6]T, 
respectively. The auxiliary voltages can be grouped in the 2 × 1 set �¥�� =[�¥��,1, �¥��,2]T. 

From the previous equations, it results that: 
 the constraints on the phase currents set ��R  and the effect of the auxiliary 

network voltages set �¥��  on the machine voltages set ��R  can be modelled 
by the 6 × 2 constraint matrix: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡1 01 01 00 10 10 1⎦⎥

⎥⎥
⎥⎥
⎤
 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 

 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 6 × 6 network interconnection matrix 

ú = � =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1⎦⎥

⎥⎥
⎥⎥
⎤

 

Generally speaking, when the number of machine phases is equal to the number of 
converter legs and each machine phase is directly connected to the positive terminal of 
the corresponding converter leg, all the single and multiple-star configurations are such 
that ú = � . As will be shown in Chapter 6, this can drastically simplify the machine 
control. 

The same configuration could also have been studied by modelling the constraints 
differently. Indeed, the same algebraic constraints could have also been modelled as: 

 
��R,1 + ��R,2 + ��R,3 + ��R,4 + ��R,5 + ��R,6 = 0, ��R,1 + ��R,2 + ��R,3 = 0 

which is a different set of equations describing the same constraints (they are linear 
combinations of the previously computed constraints equations). In this case, the 
corresponding constraints matrix would be: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡1 11 11 11 01 01 0⎦⎥

⎥⎥
⎥⎥
⎤
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and it can be directly found by the previous equations since �T ⋅ � = û. 
In this case, the auxiliary network voltages �¥�� ,1 and �¥�� ,2 related to �  must be 

chosen with a different physical interpretation. Indeed, to meet the conditions (4.9), the 
voltage sources of �¥�� ,1 and �¥��,2 must be chosen to identify the voltages between 
the neutral point ¤1 and the converter node 	 and the voltage between the neutral 
point ¤2 and the neutral point ¤1, respectively. A physical interpretation can be 
deduced by Fig. 4.14. By applying Kirchhoff’s laws it is possible to write: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − �¥��,1,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − �¥��,1,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − �¥��,1,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − �¥��,1 − �¥��,2,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − �¥��,1 − �¥��,2,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − �¥��,1 − �¥��,2

 

By using a matrix notation, it can be verified that ú  is still the 6 × 6 identity matrix, 
while the effect of the new set of auxiliary voltages �¥�� = [�¥��,1, �¥�� ,2]T on the 
machine voltages set ��R  refers to the new constraint matrix � . 

The two models are completely equivalent and only differ in the physical 
interpretation given to �¥�� . Generally speaking, since there can be multiple approaches 
to model the same drive, it is convenient to first compute �  from the equations of the 
constraints applied to the machine currents (which can be written in an arbitrary way) 
and then deduce the physical meaning of �¥��  from the matrix �  via (4.9). However, 
as shown later on, a physical interpretation of �¥�� , although useful to better 
understand the drive behaviour, is not required for control purposes, for which the simple 
computation of �  from the constraints equations is typically enough. 

Open-circuit faults 
Consider the same six-phase machine example of the previous case and suppose there 

is a fault on phase 1, as in Fig. 4.15.  
Again, the two isolated neutral points force the sum of the corresponding phase 

currents to be zero, but in this case an additional constraint is introduced by the open-
circuit fault. Then, �D = 3 and the expressions of these constraints can be written as: 
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Fig. 4.14 – Six-phase machine in a double-star configuration; alternative 

formalization of the auxiliary network voltages.  
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��R,1 + ��R,2 + ��R,3 = 0, ��R,4 + ��R,5 + ��R,6 = 0, ��R,1 = 0, 

By considering the auxiliary network voltages �¥��,1 and �¥��,2 to be the voltages 
between the machine neutral points and the converter reference node, and the network 
voltage �¥�� ,3 to be the voltage at the open-circuit fault, by applying Kirchhoff’s laws 
it results that: 

�ôeõ,1 = ��R,1, ��R,1 = �ôeõ,1 − �¥��,1 − �¥��,3,�ôeõ,2 = ��R,2, ��R,2 = �ôeõ,2 − �¥��,1,�ôeõ,3 = ��R,3, ��R,3 = �ôeõ,3 − �¥��,1,�ôeõ,4 = ��R,4, ��R,4 = �ôeõ,4 − �¥��,2,�ôeõ,5 = ��R,5, ��R,5 = �ôeõ,5 − �¥��,2,�ôeõ,6 = ��R,6, ��R,6 = �ôeõ,6 − �¥��,2

 

The converter voltages and currents can be grouped in the 6 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,6]T and �ôeõ = [�ôeõ,1,… , �ôeõ,6]T, respectively, while the electrical 
machine voltages and currents can be grouped in the 6 × 1 sets ��R =[��R,1,… , ��R,6]T and ��R = [��R,1,… , ��R,6]T, respectively. The three auxiliary 

voltages can be grouped in the 3 × 1 set �¥�� = [�¥��,1, �¥�� ,2, �¥��,3]T. 
From the previous equations, it results that: 
 the constraints on the phase currents set ��R  and the effect of the auxiliary 

network voltages set �¥��  on the machine voltages set ��R  can be modelled 
by the 6 × 2 constraint matrix: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 11 0 01 0 00 1 00 1 00 1 0⎦⎥

⎥⎥
⎥⎥
⎤
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Fig. 4.15 – Six-phase machine in a double-star configuration with an open-circuit 

fault on phase 1. 



4.3 - Constrained network model 81 

 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 

 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 6 × 6 network interconnection matrix 

ú = � =
⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1⎦⎥

⎥⎥
⎥⎥
⎤

 

As can be seen, the fault did not change ú , which is still equal to the identity matrix. 
For machine modelling and control purposes, this is very convenient, since the 
adaptation of the drive model to the faulty configuration only requires changing the 
constraints matrix � . Additional faults can also be analysed in the same way. 

Again, it is worth recalling that the fault could have also been modelled with a 
different set of constraints equations. The resulting matrix �  would have been different, 
but the system behaviour would have been the same (it would have only changed the 
physical interpretation of �¥�� ). 

Open-end winding configuration 
Consider a five-phase machine (� = 5) whose windings are supplied at the two 

terminals by two independent five-leg converters (¦ = 10) as in Fig. 4.16.  
Since, for the considered configuration, the two converters are isolated from one 

another, the sum of all the phase currents is zero. Then, there is a single constraint (�D =1) which is: 

 ��R,1 + ��R,2 + ��R,3 + ��R,4 + ��R,5 = 0 
By considering the auxiliary network voltage �¥��  to be the voltage between the 

reference nodes of the two converters, by applying Kirchhoff’s laws it results that: 
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Fig. 4.16 – Five-phase machine with open-end winding supplied at both sides by two 

isolated five-phase converters. 
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�ôeõ,1 = ��R,1, �ôeõ,6 = −��R,1, ��R,1 = �ôeõ,1 − �ôeõ,6 − �¥�� ,�ôeõ,2 = ��R,2, �ôeõ,7 = −��R,1, ��R,2 = �ôeõ,2 − �ôeõ,7 − �¥�� ,�ôeõ,3 = ��R,3, �ôeõ,8 = −��R,1, ��R,3 = �ôeõ,3 − �ôeõ,8 − �¥�� ,�ôeõ,4 = ��R,4, �ôeõ,9 = −��R,1, ��R,4 = �ôeõ,4 − �ôeõ,9 − �¥�� ,�ôeõ,5 = ��R,5, �ôeõ,10 = −��R,1, ��R,5 = �ôeõ,5 − �ôeõ,10 − �¥��

 

The converter voltages and currents can be grouped in the 10 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,10]T and �ôeõ = [�ôeõ,1, … , �ôeõ,10]T, respectively, while the electrical 
machine voltages and currents can be grouped in the 5 × 1 sets ��R =[��R,1,… , ��R,5]T and ��R = [��R,1,… , ��R,5]T, respectively.  

From the previous equations, it results that: 
 the constraint on the phase currents set ��R  and the effect of the auxiliary 

network voltage �¥��  to the machine voltages set ��R  can be modelled by the 5 × 1 constraint matrix: 

 � =
⎣⎢
⎢⎢
⎢⎡11111⎦⎥

⎥⎥
⎥⎤ 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 

 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 5 × 10 network interconnection matrix 

ú =
⎣⎢
⎢⎢
⎢⎡ 1 0 0 0 0 −1 0 0 0 00  1 0 0 0 0 −1 0 0 00 0  1 0 0 0 0 −1 0 00 0 0  1 0 0 0 0 −1 00 0 0 0  1 0 0 0 0 −1⎦⎥

⎥⎥
⎥⎤ 

Note that the constraint on the phase currents would not have been present in case 
a common-mode current had a possible flowing path. This would have been the case, for 
example, of converters with the same DC-bus or simply with the same common ground. 

Symmetrical/Asymmetrical reconfiguration 
Consider a nine-phase machine (� = 9) supplied by a nine-leg converter (¦ = 9) in 

a single-star configuration (�D = 1).  
As explained in [152], a nine-phase machine can be rearranged in a symmetrical 

configuration or in an asymmetrical configuration by just changing the order of the phase 
windings. In the first case, the machine windings can be grouped in three symmetrical 
three-phase sets mutually shifted by 40° with each other. In the second case, the machine 
windings can be grouped in three symmetrical three-phase sets mutually shifted by 20° 
with each other.  
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When the machine is in a symmetrical configuration, by using the same approach as 
in the previous examples, it can be easily verified that the drive model results in ú = � 
and in � = [1,1,1,1,1,1,1,1,1]T. 

With reference to Fig. 4.17, in the asymmetrical configuration it is sufficient to do 
the following rearrangements: 

 the set {1,2,3} of the symmetrical configuration is equal to the set {1′, 2′, 3′} 
of the asymmetrical configuration, 

 the set {4,5,6} of the symmetrical configuration becomes the set {7′, 8′, 9′} of 
the asymmetrical configuration, and 

 the set {7,8,9} of the symmetrical configuration is connected with opposite 
polarity and becomes the set {6′, 4′, 5′} of the asymmetrical configuration. 

By taking as reference the symmetrical configuration, the electrical connection in the 
asymmetrical scenario can be done as in Fig. 4.17b. 

In this case, the single isolated neutral point constraint is: 

��R,1′ + ��R,2′ + ��R,3′ + ��R,4′ + ��R,5′ + ��R,6′ + ��R,7′ + ��R,8′ + ��R,9′ =  
= ��R,1 + ��R,2 + ��R,3 − ��R,7 − ��R,8 − ��R,9 + ��R,4 + ��R,5 + ��R,6 = 0 

The auxiliary network voltage can be again considered as the voltage between the 
single isolated neutral point and the converter reference node. By applying Kirchhoff’s 
laws it results that: 
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Fig. 4.17 – Two possible reconfigurations of a nine-phase machine: a) Symmetrical; 
b) Asymmetrical. The magnetic axes disposition has been added to facilitate the 
physical interpretation. 
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�ôeõ,1 = ��R,1′ = ��R,1, ��R,1′ = ��R,1 = �ôeõ,1 − �¥���ôeõ,2 = ��R,2′ = ��R,2, ��R,2′ = ��R,2 = �ôeõ,2 − �¥���ôeõ,3 = ��R,3′ = ��R,3, ��R,3′ = ��R,3 = �ôeõ,3 − �¥���ôeõ,4 = ��R,4′ = −��R,8, ��R,4′ = −��R,8 = �ôeõ,4 − �¥���ôeõ,5 = ��R,5′ = −��R,9, ��R,5′ = −��R,9 = �ôeõ,5 − �¥���ôeõ,6 = ��R,6′ = −��R,7, ��R,6′ = −��R,7 = �ôeõ,6 − �¥���ôeõ,7 = ��R,7′ = ��R,4, ��R,7′ = ��R,4 = �ôeõ,7 − �¥���ôeõ,8 = ��R,8′ = ��R,5, ��R,8′ = ��R,5 = �ôeõ,8 − �¥���ôeõ,9 = ��R,9′ = ��R,6, ��R,9′ = ��R,6 = �ôeõ,9 − �¥��

 

The converter voltages and currents can be grouped in the 9 × 1 sets �ôeõ =[�ôeõ,1,… , �ôeõ,9]T and �ôeõ = [�ôeõ,1,… , �ôeõ,9]T, respectively. The electrical machine 
voltages and currents can be grouped in the 9 × 1 sets ��R = [��R,1, … , ��R,9]T and 

��R = [��R,1, … , ��R,9]T, respectively, in a way to identify the same variables of the 
symmetrical configuration (and using the same machine model to analyse the system).  

From the previous equations it results that: 

 the constraint on the phase currents set ��R  and the effect of the auxiliary 
network voltage �¥��  to the machine voltages set ��R  can be modelled by the 9 × 1 constraint matrix: 

 � =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 111111−1−1−1⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

 the VSI current set �ôeõ  is independent of the VSI voltages set �ôeõ , meaning 
that ù¥�� = û, 

 the EM voltages set ��R  are unaffected by the EM currents set ��R , meaning 
that �¥�� = û, and 

 the mutual relationship between ��R  and �ôeõ and between ��R  and �ôeõ  are 
identified by the 9 × 9 network interconnection matrix 

ú =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 1 0 0 0 0 0 0 0 00  1 0 0 0 0 0 0 00 0  1 0 0 0 0 0 00 0 0  0 0 0  1 0 00 0 0 0  0 0 0  1 00 0 0 0 0 0 0 0  1 0 0 0 0 0 −1 0 0 00 0 0 −1 0 0 0 0 00 0 0 0 −1 0 0 0 0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤
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Once again, the set of equations describing the system can be represented 
synthetically with the matrix formalism as (4.12)-(4.13). Thanks to this approach, the 
change of the machine configuration can be studied with the same mathematical model 
of the original machine formulation, with the only difference being in �  and ú . In other 
words, once the machine parameters have been identified in the symmetrical 
configuration, the asymmetrical machine (which is simply obtained by rearranging the 
windings connection) does not need a new parameters identification.     

4.4 Configuration space modelling 
The electrical equation (4.19) completely describes the electrical drive behaviour in 

presence of currents constraints through the introduction of the network internal 
feedback matrix � . However, the resulting model, despite correctly describing the 
machine dynamics, is not convenient for control purposes, since the matrix � , which 
depends on the machine parameters, also multiplies the converter voltages set �ôeõ . 

A different formulation, which is more convenient for control purposes, is here derived 
basing on the algebraic properties of the constrained system. This formalism will be 
useful for the decoupled control of the machine phase currents developed in Chapter 6. 

4.4.1 Configuration space 
Mathematically speaking, the machine currents set ��R  is a vector of the �-

dimensional space ℝ�. All the feasible currents, which satisfy the constraints (4.8), belong 
to the null-space7 (�T) of the constraints matrix �T, which is identified from the 
equation �T ⋅ � = û. This null-space (�T) is a vector subspace of ℝ� and can be 
mathematically interpreted as a hyperplane. It is here named configuration space of the 
system8. The orthogonal complement9 of the configuration space ⊥(�T) is here named 
complementary configuration space of the system. For a known linear algebra property10, 
this space is equal to the range11 ℛ(�) of the constraint matrix � .  

4.4.2 Configuration space representation 
As previously stated, the configuration space (�T) is a subspace of ℝ�. Since it is 

defined by �D constraints, the dimension of (�T) is �l = � − �D and represents the 

number of degrees of freedom for the machine currents. Similarly, the complementary 
configuration space ℛ(�) = ⊥(�T) is a subspace of ℝ� with dimension �D. To better 
identify the properties of the system, it is convenient to explore the properties of these 
vector spaces. 

 
7 The null-space, or kernel, of a � × � matrix ü, is the set of all vectors � ∈ ℝD such that ü ⋅ � = û. 
8 This name has been chosen due to the similarity to the configuration space introduced in 

analytical mechanics to study the motion of rigid bodies in presence of mechanical constraints. 
9 Given a subspace � ⊆ ℝ�, its orthogonal complement �⊥ is the set of vectors � ∈ ℝ� such 

that, for any � ∈ �, it results that �T ⋅ � = 0.  
10 Recalled and proven in Appendix 9.4.6. 
11 The range, or column space, of a � × � matrix ü, is the set of all the vectors � ∈ ℝL which 

can be expressed as � = ü ⋅ �. 
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This operation can be done through the singular value decomposition (SVD) of the 
constraints matrix � . The � × �D constraints matrix �  can be expressed as [118]: 

 �  =  � ⋅ � ⋅ � T  =  [�D �l ] ⋅ [�̃û] ⋅ � T  =  �D ⋅ �̃ ⋅ � T (4.21)

where: 
 �  is a � × � unitary matrix (i.e., � ⋅ �T = �T ⋅ � = �) whose columns are 

called left singular vectors of � , which has been split into two rectangular 
submatrices: 

o �D, which is the set of the first �D left singular vectors, 
o �l , which is the set of the last �l  left singular vectors, 

 �  is a �D × �D unitary matrix (i.e., � ⋅ � T = � T ⋅ � = �) whose columns are 
called right singular vectors of � , and 

 � is a � × �D rectangular matrix, whose non-diagonal elements are all zero (i.e., Σ�,ℎ = 0 with � ≠ ℎ) and whose diagonal elements, called singular values of � , 

are all positive (i.e., Σ�,� = Þ� > 0, with � = 1,… , �D). The singular values have 

been grouped in the �D × �D diagonal matrix �̃, which is therefore symmetric 
(i.e., �̃ = �̃T) and positive definite (i.e., �T ⋅ �̃ ⋅ � > 0,∀� ≠ û) and, as a 
consequence, it is invertible.  

A graphical representation of the decomposition (4.21) is depicted in Fig. 4.18. 
The left singular vectors satisfy the following properties12: 

 
�DT ⋅ �D = �, �lT ⋅ �l = �, �lT ⋅ �D = û, �DT ⋅ �l = û, (4.22)

 
12 Proven in Appendix 9.4.7. 
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Fig. 4.18 – Singular Value Decomposition of the constraints matrix � . 
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 �D ⋅ �DT + �l ⋅ �lT = � (4.23)

 �T ⋅ �D = � ⋅ �̃, �T ⋅ �l = û (4.24)

From these properties it is possible to derive the following important conclusions13: 
 the matrix �l  is a basis of the configuration space (�T) and, for this reason, 

is here named configuration matrix, and 
 the matrix �D is a basis of the complementary configuration space ⊥(�T) =ℛ(�) and, for this reason, is here named complementary configuration matrix. 

Since �  is a � × � unitary matrix, it can be used as a different basis for the whole 
space ℝ�. Therefore, any vector � ∈ ℝ� can be written as: 

 � =  � ⋅ � = [�D �l ] ⋅ [�D�l] = �D ⋅ �D + �l ⋅ �l  (4.25)

where, from the properties (4.22), it can be verified that: 

 � = �T ⋅ �, �D = �DT ⋅ �, �l = �lT ⋅ � (4.26)

The � × 1 vector � represents the coordinates of � expressed in the new reference frame 
defined by � . The �l × 1 vector �l  and the �D × 1 vector �D represent the components 

of the vector � in the directions defined from the configuration matrix �l  and from the 

complementary configuration matrix �D, respectively. 
By combining (4.25) and (4.26), any vector � ∈ ℝ� can be written as: 

 � = (�l ⋅ �lT) ⋅ � + (�D ⋅ �DT) ⋅ � (4.27)

The � × 1 vector (�l ⋅ �lT) ⋅ � represents the projection of � in (�T), and the matrix 

(�l ⋅ �lT) is the projection operator in the configuration space. Similarly, the � × 1 
vector (�D ⋅ �DT) ⋅ � represents the projection of � in ℛ(�) = ⊥(�T) and the matrix (�D ⋅ �DT) is the projection operator in the complementary configuration space. 

4.4.3 Machine equations in the configuration space 
As discussed in Section 4.3, the constrained network model makes the electrical 

machine satisfy the vector equations: 

 
�T ⋅ ��R = �¥�� = û ��R = ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥��  (4.28)

Having introduced the configuration space, these equations can be reinterpreted in a 
different way. 

The first equation of (4.28) means that the feasible machine currents set ��R  must 
belong to the configuration space (�T). From the results obtained in Section 4.4.2, 
this means that ��R,D = �DT ⋅ ��R = û and that the vector ��R  can be expressed as: 

 ��R = �l ⋅ ��R,l ,    with    ��R,l = �lT ⋅ ��R  (4.29)

 
13 Proven in Appendix 9.4.8. 
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The �l × 1 vector ��R,l represents the unconstrained current components of the system, 

which are the available degrees of freedom in the constrained system.  
The second equation of (4.28) highlights that the electrical machine voltages depend 

on the auxiliary network voltages set �¥��  through the constraints matrix � . By 
projecting both sides of the equation in the configuration space (�T) through the 
projection operator (�l ⋅ �lT) it results that: 

(�l ⋅ �lT) ⋅ ��R = (�l ⋅ �lT) ⋅ (ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥�� ) = = (�l ⋅ �lT) ⋅ (ú ⋅ �ôeõ − �¥�� ⋅ ��R) (4.30)

The equation (4.30) shows that the electrical machine voltages set ��R  in the 
configuration space is only related to the converter voltages set �ôeõ and to the electrical 
machine currents ��R , and is therefore independent of the auxiliary network voltages 
set �¥�� , contrarily to the full-order model (4.13). 

4.4.4 Reduced order electrical drive model 
The electrical drive mathematical model (4.19) can be simplified by considering the 

configuration space concept. By pre-multiplying both sides of (4.18) for �lT and by 

considering (4.29), it can be proven14 that the machine behaviour in the configuration 
space satisfies the equation: 

     z�R,l ⋅ d��R,ld� + (��R,l + �¥�� ,l) ⋅ ��R,l + ��R,l = úl ⋅ �ôeõ (4.31)

where the equivalent parameters are: 

 

z�R,l = �lT ⋅ z�R ⋅ �l  , ��R,l = �lT ⋅ ��R��R,l = �lT ⋅ ��R ⋅ �l  , ��R,l = �lT ⋅ ��R�¥��,l = �lT ⋅ �¥�� ⋅ �l  , úl = �lT ⋅ ú
 (4.32)

The equation (4.31) is a dynamical system of order �l ≤ �. Similarly to the model (4.19), 

this equation automatically includes the machine current constraints. However, 
contrarily to (4.19), in this case the ¦ × 1 input vector of the converter voltages �ôeõ is 
weighted by the input matrix úl = �lT ⋅ ú , which only depends on the network 

configuration (i.e., it is independent of the machine parameters). The block diagram of 
this system is schematically represented in Fig. 4.19. This model will be used to develop 
the control algorithm proposed in Chapter 6 and Chapter 7. 

The equation (4.31) describes the evolution of the machine currents within the 

 
14 Proven in Appendix 9.4.9. 
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Fig. 4.19 – Functional block diagram of the reduced order system. 
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configuration space, which has fewer degrees of freedom than the number of phases of 
the electrical machine. For this reason, it represents a reduced order drive model. It has 
the same form of the equation (4.5) for the unconstrained system and, in case the network 
is not subject to any constraint, it can be reconducted to the model (4.5) (schematically 
depicted in Fig. 4.3) by simply putting �l = �.  

Since the matrix z�R,l  defined in (4.32) is symmetric and positive definite, there 

exists its inverse {�R,l = z�R,l−1 . Then, the canonical state-space representation of the 

reduced-order system (4.31) can be found by pre-multiplying both sides for {�R,l  and 

by isolating the current derivatives, resulting in: 

d��R,ld� = [−{�R,l ⋅ (��R,l + �¥��,l)] ⋅ ��R,l + ⋯ 
          ⋯+ [{�R,l ⋅ úl ] ⋅ �ôeõ + [−{�R,l ⋅ ��R,l ] =  

= ü�R,l ⋅ ��R,l + ý�R,l ⋅ �ôeõ + þ�R,l  

(4.33)

where ü�R,l , ý�R,l  and þ�R,l  are the state matrix, the state space input matrix and 

the equivalent disturbance input of the reduced-order system, respectively. Similarly to 
the unconstrained system (4.6), also for the canonical representation (4.33) these terms 
also depend on the machine parameters, including the rotor position %, thus making the 
canonical representation (4.33) a time-variant system. 

It is worth emphasizing that the variable transformation introduced through this 
configuration space approach is conceptually different from a Vector Space 
Decomposition (VSD). Indeed, the VSD is a variable transformation intrinsically linked 
to the machine design and parameters (e.g., to the disposition of the magnetic axes of 
the phase windings), while the proposed configuration space approach only depends on 
the electrical connection of the windings and to the corresponding constraints introduced 
to the machine phase currents (which are unrelated to the machine design and 
parameters). However, in some specific cases (e.g., symmetrical machines in a star 
configuration with a single isolated neutral point), the two approaches might lead to 
similar results, and the VSD transformation may also separate the configuration space 
variables from the complementary configuration space variables.   

4.4.5 Examples 

Two examples are here given about the computation of the configuration matrix �l  

and of the complementary configuration matrix �D starting from the knowledge of the 
constraints matrix � . They are referred to the first two configurations exemplified in 
Section 4.3.5. The extension to all the other examples are straightforward and only 
requires numerical computations from the knowledge of � . Other examples will also be 
given in Chapter 6 and in Chapter 7. 

Single-star configuration 

Consider again the six-phase configuration of Fig. 4.12, previously exemplified in 
Section 4.3.5. In this case � = 6 and �D = 1; the constraint matrix has been found to be: 



90 4 - Electrical Network Model 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡111111⎦⎥

⎥⎥
⎥⎥
⎤

 

Its singular value decomposition has been computed numerically15 and the 
corresponding matrices are: 

� =
⎣⎢
⎢⎢
⎢⎢
⎡0.41 −0.41 −0.41 −0.41 −0.41 −0.410.41 0.88 −0.12 −0.12 −0.12 −0.120.41 −0.12 0.88 −0.12 −0.12 −0.120.41 −0.12 −0.12 0.88 −0.12 −0.120.41 −0.12 −0.12 −0.12 0.86 −0.120.41 −0.12 −0.12 −0.12 −0.12 −0.12⎦⎥

⎥⎥
⎥⎥
⎤

,  � =
⎣⎢
⎢⎢
⎢⎢
⎡2.4500000 ⎦⎥

⎥⎥
⎥⎥
⎤

,   � = [1] 

It can be verified that �T ⋅ � = � ⋅ �T = � (i.e., it is the 6 × 6 identity matrix) and 
that � T ⋅ � = � ⋅ � T = 1 (i.e., it is the 1 × 1 identity matrix). 

The configuration matrix �l  is given by the last � − �D = 4 − 1 = 5 columns of � , 

while the complementary configuration matrix �D is instead only the first column of � : 

�D =
⎣⎢
⎢⎢
⎢⎢
⎡0.410.410.410.410.410.41⎦⎥

⎥⎥
⎥⎥
⎤

, �l =
⎣⎢
⎢⎢
⎢⎢
⎡−0.41 −0.41 −0.41 −0.41 −0.410.88 −0.12 −0.12 −0.12 −0.12−0.12 0.88 −0.12 −0.12 −0.12−0.12 −0.12 0.88 −0.12 −0.12−0.12 −0.12 −0.12 0.86 −0.12−0.12 −0.12 −0.12 −0.12 −0.12⎦⎥

⎥⎥
⎥⎥
⎤
 

It can be verified that the properties (4.22)-(4.24) are satisfied, and that �DT ⋅ �D = 1 
(i.e., it is the 1 × 1 identity matrix), �lT ⋅ �l = � (i.e., it is the 5 × 5 identity matrix), 

and �lT ⋅ �D = û (i.e., it is a 5 × 1 vector with all the elements equal to zero). 

Finally, the projection matrices in the configuration space and in the complementary 
configuration space are: 

�l ⋅ �lT =
⎣⎢
⎢⎢
⎢⎢
⎡ 0.83 −0.17 −0.17 −0.17 −0.17 −0.17−0.17 0.83 −0.17 −0.17 −0.17 −0.17−0.17 −0.17 0.83 −0.17 −0.17 −0.17−0.17 −0.17 −0.17 0.83 −0.17 −0.17−0.17 −0.17 −0.17 −0.17 0.83 −0.17−0.17 −0.17 −0.17 −0.17 −0.17 0.83 ⎦⎥

⎥⎥
⎥⎥
⎤

, 

 
15 The singular value decompositions in the proposed examples have been computed in 

MATLAB through the “svd” command. The results here reported have been rounded to the 
second decimal unit. 
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�D ⋅ �DT =
⎣⎢
⎢⎢
⎢⎢
⎡0.17 0.17 0.17 0.17 0.17 0.170.17 0.17 0.17 0.17 0.17 0.170.17 0.17 0.17 0.17 0.17 0.170.17 0.17 0.17 0.17 0.17 0.170.17 0.17 0.17 0.17 0.17 0.170.17 0.17 0.17 0.17 0.17 0.17⎦⎥

⎥⎥
⎥⎥
⎤
 

Note that, while �lT ⋅ �l = � and �DT ⋅ �D = � (i.e., the columns of �l  and �D are 

orthogonal), �l ⋅ �lT ≠ � and �D ⋅ �DT ≠ � (i.e., the rows of �l  and �D are not 

orthogonal). Again, it can be verified that the property (4.23) is satisfied. 
From the numerical evaluation of the projection matrices, it can be noted that the 

matrix �l ⋅ �lT, once applied to any 6 × 1 vector � = [�1, … ,�6]T, results in subtracting 

the average value 16 ∑ ��6�=1  from all the terms of �. The projection matrix �D ⋅ �DT, 

instead, results in a 6 × 1 vector whose elements are all equal to 16 ∑ ��6�=1 . These 

considerations may help to better understand the physical meaning of the configuration 
space and of the complementary configuration space. 

Multiple-star configuration 
Consider again the six-phase configuration of Fig. 4.13, previously exemplified in 

Section 4.3.5. In this case � = 6 and �D = 2; the constraint matrix has been found to be: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡1 01 01 00 10 10 1⎦⎥

⎥⎥
⎥⎥
⎤
 

Its singular value decomposition has been computed numerically, resulting in: 

� =
⎣⎢
⎢⎢
⎢⎢
⎡−0.58 0 −0.58 0.33 0.33 0.33−0.58 0 −0.21 −0.46 −0.46 −0.46−0.58 0 0.79 0.12 0.12 0.120 −0.58 0 0.67 −0.33 −0.330 −0.58 0 −0.33 0.67 −0.330 −0.58 0 −0.33 −0.33 0.67 ⎦⎥

⎥⎥
⎥⎥
⎤

,� =
⎣⎢
⎢⎢
⎢⎢
⎡1.73 00 1.730 00 00 00 0 ⎦⎥

⎥⎥
⎥⎥
⎤

, 

� = [−1 00 −1] 

and, again,  �T ⋅ � = � ⋅ �T = � (with dimension 6 × 6) and � T ⋅ � = � ⋅ � T = � 

(with dimension 2 × 2). 
The configuration matrix �l  is given by the last � − �D = 6 − 2 = 4 columns of � . 

The complementary configuration matrix �D is given by the first �D = 2 columns of � . 
Again, it can be verified that the properties (4.22)-(4.24) are satisfied.  

The projection matrices in the configuration space and in the complementary 
configuration space are: 
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�l ⋅ �lT =
⎣⎢
⎢⎢
⎢⎡

0.67 −0.33 −0.33 0 0 0−0.20 0.67 −0.33 0 0 0−0.33 −0.33 0.67 0 0 00 0 0 0.67 −0.33 −0.330 0 0 −0.20 0.67 −0.330 0 0 −0.33 −0.33 0.67 ⎦⎥
⎥⎥
⎥⎤ , 

�D ⋅ �DT =
⎣⎢
⎢⎢
⎢⎢
⎡0.33 0.33 0.33 0 0 00.33 0.33 0.33 0 0 00.33 0.33 0.33 0 0 00 0 0 0.33 0.33 0.330 0 0 0.33 0.33 0.330 0 0 0.33 0.33 0.33⎦⎥

⎥⎥
⎥⎥
⎤
 

and again it can be easily verified that �l ⋅ �lT + �D ⋅ �DT = �.  

From the numerical matrices, it can be observed that the projection matrix �l ⋅ �lT, 

once applied to any 6 × 1 vector � = [�1, … ,�6]T, results in subtracting the average 
value 13 ∑ ��3�=1  from the three-phase set {�1,�2,�3} and the average value 13 ∑ ��6�=4  

from the set {�4, �5, �6}, which are the two star-connected subsets of the considered 
configuration. The projection matrix �D ⋅ �DT, instead, results in a 6 × 1 vector whose 
first three elements are all equal to 13 ∑ ��3�=1  and the last three elements are all equal 

to 13 ∑ ��6�=4 . Again, this helps to get a better physical insight into the meaning of the 

configuration space and of the complementary configuration space. 

If, alternatively, the system had been represented with the matrix: 

 � =
⎣⎢
⎢⎢
⎢⎢
⎡1 11 11 11 01 01 0⎦⎥

⎥⎥
⎥⎥
⎤
 

obtained from the same electrical configuration, the singular value decomposition would 
have been: 

� =
⎣⎢
⎢⎢
⎢⎢
⎡−0.49 −0.30 −0.41 −0.41 0.41 0.41−0.49 −0.30 −0.41 0.41 0.41 0.41−0.49 −0.30 0.82 0 0 0−0.30 0.49 0 0.67 −0.33 −0.33−0.30 0.49 0 −0.33 0.67 −0.33−0.30 0.49 0 −0.33 −0.33 0.67 ⎦⎥

⎥⎥
⎥⎥
⎤

,  � =
⎣⎢
⎢⎢
⎢⎢
⎡2.80 00 1.070 00 00 00 0 ⎦⎥

⎥⎥
⎥⎥
⎤

, 

� = [−0.85 0.53−0.53 −0.85] 

This means that, by choosing a different �  to analyze the same electrical network, the 
matrices �l  and �D are also different. However, it can be verified that the new matrices 

still satisfy all the conditions (4.22)-(4.24) and that the projection matrices �l ⋅ �lT and 

�D ⋅ �DT are equal to the previously computed ones. 
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4.4.6 Electromagnetic torque expression in the 

configuration space 
The electromagnetic torque +,- developed by the electrical machine has been 

formalized through the equation (2.33). It is worth recalling that it is composed of the 
superposition of three terms: 

 a term +0(%) which is independent of the machine currents and which mainly 
identifies the cogging torque phenomena, 

 a term �QRT (%) ⋅ ��R  which is linearly depending on the machine currents and 
which identifies their interaction with the permanent magnets, 

 a term (��RT ⋅ z�R′ (%) ⋅ ��R) 2⁄  which is quadratically depending on the 
machine currents and which identifies both the variable reluctance phenomena 
and the mutual interaction between the stator and the rotor currents. 

When the machine currents ��R  are subject to the algebraic constraints (4.8), since 
the relationship (4.29) holds, the torque expression can be formalized with respect to the �l × 1 set of unconstrained current components ��R,l = �lT ⋅ ��R , resulting in: 

 +,- = +0(%) + �QRT (%) ⋅ ��R + 12 ⋅ ��RT ⋅ z�R′ (%) ⋅ ��R =  
= +0(%) + �QR,lT (%) ⋅ ��R,l + 12 ⋅ ��R,lT ⋅ z�R,l′ (%) ⋅ ��R,l  

(4.34)

where the equivalent parameters are: 

 z�R,l′ (%) = �lT ⋅ z�R′ (%) ⋅ �l  ,       �QR,l(%) = �lT ⋅ �QR(%) (4.35)

Since the configuration matrix �l  is only linked to the machine current constraints, 

which are constant in time, it can be easily proven that the parameters in (4.32) and the 
parameters in (4.35) satisfy the relationships: 

 z�R,l′ (%) = 3z�R,l3% , 
��R,l = & �QR,l(%) + & z�R,l′ (%) ⋅ ��R,l  

(4.36)

As a result, by considering both the equations (4.31) and (4.34) it can be concluded that 
an electrical machine with � windings, supplied through a constrained network with �D 
current constraints, behaves, both electrically and mechanically, exactly as an equivalent 
machine with only �l = � − �D windings. 

4.5 Summary and remarks 
This section has developed the mathematical modelling of the electrical drive basing 

on the interconnection network between the electrical machine and the power electronics 
converter. The interconnection network, which has been formalized as a linear time-
invariant multiport system, is responsible for both the link between the machine 
windings and the converter leg voltages and for the presence of algebraic constraints on 
the machine currents. 

The direct relationship between the converter voltages and the machine voltages has 
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been represented through a network interconnection matrix ú . The effects of resistive 
and conductive elements in the network (if present) can also be included through a 
network resistances matrix �¥��  and a network conductances matrix ù¥�� , 
respectively. Their contributions can almost always be neglected for electrical drive 
modelling targeted at control purposes. 

The presence of current constraints is particularly relevant for the whole drive 
functioning, because it has the same effect of an internal feedback action which alters 
the machine voltages according to the system overall functioning. It has been modelled 
by introducing a constraint matrix �  and a set of auxiliary network voltages �¥�� , 
which can physically be interpreted as the voltages existing between some nodes of the 
physical system. 

By explicitly considering the effect of the auxiliary voltages set �¥��  is has been 
possible to develop the complete model of the electrical drive in presence of currents 
constraints. This model depends on a network internal feedback matrix � , which is 
related both to the constraints and to the machine parameters. 

A different formulation of the constrained drive model has been then obtained by 
introducing the concept of the configuration space of the system. The constrained drive 
equations, projected in the configuration space, result in a reduced order model, which 
can describe the dynamic evolution of the electrical drive while at the same time 
intrinsically taking into account the constraints on the machine currents. This set of 
equations depends on a configuration matrix  �l , which is only related to the current 

constraints and does not depend on the machine parameters. 
The modelling approach adopted in this chapter is heavily based on linear algebra 

properties. A rich set of examples has been provided for each case, in a way to make the 
results and the applications more intuitive. The results and properties of this analysis 
are the core basis of the control algorithms developed in Chapter 6 and in Chapter 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



5 Field Oriented Control of 

Asymmetrical PMSMs 

The Field Oriented Control (FOC) is currently the most common approach for the 
control of multiphase machines. It is directly derived from three-phase machines and is 
based on a proper reference transformation of the machine phase variables. The chosen 
reference frame is directly related to the spatial displacement of the magnetic flux density 
field in the air-gap1 of the machine, and is based on the proper definition of space vectors 
related to the electrical variables of the machine. 

Symmetrical machines have, by design, many special properties which make their 
modelling to be particularly convenient in this moving reference frame, and FOC 
algorithms for this kind of machines have been deeply analysed in the technical literature. 
On the contrary, asymmetrical machines do not meet many of those features and, by 
using the same field-oriented approach, their analysis and control become more 
challenging.  

The present chapter derives and analyses the field-oriented control approach for a 
generic �-phase surface-mounted permanent magnet synchronous machine (PMSM)2. 
The analysis is presented for a generic winding disposition (i.e., asymmetrical, with an 
arbitrary angular shift) and with a single isolated neutral point configuration. The 
presence of multiple spatial harmonics of the magnetic field at the air gap is explicitly 
addressed to identify the field-oriented reference frames and to introduce some torque 
enhancement control strategies based on the injection of harmonic currents.  

For the present analysis, the asymmetry is either resulting from the machine design 
(i.e., intrinsically asymmetrical configurations) or coming from a post-fault configuration 
of an originally symmetrical machine3. One of the aims of this analysis is to emphasize 
the main differences between symmetrical and asymmetrical machines, in a way to point 
out which properties are kept, and which properties are lost. 

The chapter is structured as follows. Section 5.1 focuses on the machine 
mathematical model. First, the phase variable model (whose generalized formulation has 
been given in Chapter 2), is particularized to the specific case study. Then, coherently 
with the field-oriented approach, the model is reformulated in a reference frame whose 
components are synchronous with a set of spatial harmonics of the magnetic field at the 
air gap, which allows to emphasize the currents/fluxes interactions for the 
electromagnetic torque generation. Section 5.2 is then focused on the torque control 
strategy, which is finalized at computing a set of reference currents to develop a desired 
electromagnetic torque. As known, for a multiphase machine it is possible to exploit 

 
1 Hence the name “Field Oriented”. 
2 The same approach can also be used for a Brushless DC (BLDC) machine. 
3 As an example, a �1-phase machine subject to �2 open-circuit faults is here analysed as an 

asymmetrical machine with � = �1 − �2 phases. 
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higher-order spatial harmonics for the torque development through a proper injection of 
harmonic currents. Some different strategies are presented to generalize this torque 
enhancement to asymmetrical machines while, at the same time, optimizing the drive 
energetic performances. Section 5.3 addresses the current control strategy, by first 
presenting the standard control strategy applied in symmetrical machines, and then by 
showing how it can be adapted to deal with asymmetrical configurations. The overall 
control scheme is summarized in Section 5.4, and is then particularized to a specific nine-
phase case study in Section 5.5 and Section 5.6. Finally, Section 5.7 sums up the 
conclusions of this chapter. 

For notation simplicity, the subscripts “EM” and “VSI” adopted in Chapter 4 will 
not be used anymore. The output voltages of the converter legs will be further on denoted 
as �, while the voltages at the machine winding terminals will be denoted as �. Moreover, 
the network wiring resistances will be neglected. 

5.1 Mathematical model 
The PMSM under analysis is assumed to have � identical stator windings arranged 

in �� pole pairs and distributed along the stator periphery of the machine so that their 
magnetic axes have an electrical phase displacement of Ç� (with � = 1,… , � being the 
phase index) measured from an arbitrary reference position. All the windings are star-
connected with a single isolated neutral point. This architecture is schematically 
represented in Fig. 5.1.  

For a symmetrical machine design, all the windings are evenly placed along the stator 
periphery, with a reciprocal displacement of (2	 �⁄ ). This leads to magnetic axis 
displacement of the �-th phase which can be simply expressed as  Ç� = (2	 �⁄ ) ⋅ (� − 1). 
On the contrary, for an asymmetrical configuration, the magnetic axes angles Ç� can 
assume any arbitrary value. 

This section particularizes the generalized machine model presented in Chapter 2 to 
the examined configuration. 
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Fig. 5.1 – Schematic representation of the multiphase drive under analysis: 
a) Circuital architecture; b) Phase windings magnetic axes disposition. 
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5.1.1 Phase variable domain 
Under the linearity hypothesis, the fluxes induced in the � stator windings are given 

by the superimposed contribution of the magnetic field generated by all the phase 
currents and by the permanent magnets on the rotor. The generalized model (2.29) is 
particularized into: 

 � = z ⋅ � + yQR(%) (5.1)

The magnetic flux density field generated at the air gap by the permanent magnets, 
once decomposed in a Fourier series with respect to the stator angle, is given by the 
superposition of an infinite number of spatial harmonics. These harmonics produce in 
each �-th machine winding an induced flux linkage wQR,�, which is a periodic function 

of the rotor electrical position %,M = �� ⋅ %.  
Then, the flux linkage induced in the �-th machine phase (with � = 1,… , �) can be 

expressed as the Fourier series: 

 wQR,�(%,M) = ∑ΨRℎ ⋅ cos(ℎ ⋅ (%,M − Ç�) + �ℎ)+∞
ℎ=1

 (5.2)

with ΨRℎ and �ℎ denoting the magnitude and the phase displacement of the ℎ-th spatial 
harmonic contribution4. The magnitudes ΨRℎ depend both on the rotor magnets and on 
the stator windings design. For a purely sinusoidal machine, only the fundamental 
harmonic (with index ℎ = 1) is present, whereas, for a non-sinusoidal machine, multiple 
harmonics are present.  

For a surface-mounted PMSM, once the variable reluctance effects linked to the 
stator slots are disregarded, the � × � inductances matrix z in (5.1) can be assumed to 
be invariant with respect to the rotor position. Moreover, as proven in Chapter 2, z is 
always symmetric and positive definite. Finally, in the particular case of symmetrical 
windings designs, z is a circulant matrix, meaning that x�,ℎ = x�+1,ℎ+1 for all the 
couples �, ℎ = 1,… , � [55], [153] 5. 

From the fluxes expression (5.1), the induced back-EMFs can be split in the 
transformer induced contribution and in the motional-induced contribution as: 

 
d�d� = z ⋅ d�d� + dyQRd� = z ⋅ d�d� + � (5.3)

From the expression (5.2), the PM-induced back-EMF in the �-th phase is equal to: 

 �� = �QR,� = dwQR,�d� = 3%,M3� ⋅ 3wQR,�3%,M = 
= − &,M ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ sin(ℎ ⋅ (%,M − Ç�) + �ℎ)+∞

ℎ=1
 

(5.4)

where &,M = �� ⋅ & is the rotor electrical speed. 
 

4 The harmonic index ℎ is a strictly positive integer, ranging from 1 to +∞. The spatial 
harmonic of order 0 is absent because the magnetic flux density B⃗⃗⃗⃗⃗ is a solenoidal field. 

5 This is because any permutation of the phase indexes leaves the overall structure unaffected. 
This property is not guaranteed for an asymmetrical windings design. 
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Given the single isolated neutral point machine configuration, the sum of all the 
phase currents is forced to be zero. The network model developed in Chapter 4 is 
therefore simply represented by imposing ú = � and � = ¸� = [1 1 ⋯ 1]T. The 
constraint equation is then represented as: 

 ¸�T ⋅ � = ∑ ���
�=1

= 0 (5.5)

while the machine phase voltages set is: 

 � = · − ¸� ⋅ �¥��  (5.6)

where �¥��  represents the voltage between the inverter reference node 	 and the neutral 
point ¤  of the machine phase windings (as represented in Fig. 5.1).  

Since the windings have been supposed to be equal, the resistances matrix is simply � = � ⋅ � . 
To sum up, the electrical equations of the considered PMSM multiphase drive can 

be written in the phase variable domain as: 

 z ⋅ d�d� + � ⋅ � + � =  � =  · − ¸� ⋅ �¥��  (5.7)

The electromagnetic torque developed by the machine, expressed in terms of phase 
variables, is instead expressed as: 

 +,- = �QRT (%) ⋅ � = ∑ 3wQR,�3% ⋅ ���
�=1

= �� ⋅ ∑3wQR,�3%,M ⋅ ���
�=1

 (5.8)

5.1.2 Space vector formalism 
The stator currents flowing in the machine windings modify the overall flux density 

field at the air gap by generating a field distribution which, similarly to the one generated 
by the PMs, can also be decomposed in the superposition of an infinite number of spatial 
harmonics. Each ℎ-th spatial harmonic of this magnetic flux density field at the air-gap 
can be synthetically identified through a single complex variable, which is proportional 
to the ℎ-th order space vector of the machine currents, defined as6: 

 �ℎ = �xℎ + j ⋅ �yℎ = √2� ⋅ ∑ �� ⋅ e j ℎ !"
�

�=1
 (5.9)

In other words, �ℎ identifies, through its magnitude and phase, the intensity and local 
displacement of a spatial harmonic of the magnetic flux density field generated at the 
air gap by the stator currents7. 

 
6 The definition (5.9) is typically named power invariant. Other space vectors definitions (e.g. 

amplitude invariant) have also been introduced in the technical literature. They would lead to 
similar analysis and results. 

7 To be more specific, the radial component of the magnetic flux density at the air-gap can 
be expressed as B(#) = ∑ Re{�ℎ ⋅ �ℎ ⋅ e−jℎQíi} =+∞ℎ=1 ∑ �ℎ ⋅ |�ℎ| ⋅ cos(ℎ��# − ∠�ℎ)+∞ℎ=1 , where �ℎ is 

a weighting factor depending on the machine design (e.g., number of turns, winding factor, 
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Coherently with the field-oriented approach, and extending what is typically done 
for three-phase machines, each current space vector can be expressed in a reference frame 
synchronous to the corresponding harmonic of the PM induced fluxes (and, consequently, 
synchronous to the corresponding spatial harmonic of the magnetic field at the air-gap). 
In this context, the space vector �ℎ can be redefined by applying a complex rotation as: 

 �ℎ⟨dq⟩ = �dℎ + j ⋅ �qℎ = �ℎ ⋅ e−j (ℎ &'(+)ℎ) (5.10)

The complex variable �ℎ⟨dq⟩ defined as per (5.10) represents the same space vector �ℎ in a 
synchronous “field-oriented” reference frame, which rotates at the speed ℎ ⋅ &,M. The real 
part �dℎ = Re{�ℎ⟨dq⟩} and the imaginary part �qℎ = Im{�ℎ⟨dq⟩} represent the direct axis 

component and the quadrature axis component of �ℎ⟨dq⟩, respectively. 
Given the positions (5.9) and (5.10), with simple algebraic manipulations the 

electromagnetic torque +,- developed by the machine and expressed via (5.8) can be 
rewritten through the space vector formalism as8: 

 +,- = ∑ (√�2 ⋅ ℎ ⋅ �� ⋅ ΨRℎ) ⋅ �qℎ
+∞
ℎ=1

= ∑ +ℎ ⋅ �qℎ
+∞
ℎ=1

 (5.11)

with +ℎ = √� 2⁄ ⋅ �� ⋅ ℎ ⋅ ΨRℎ being a torque gain coefficient related to the ℎ-th spatial 
harmonic. It is also worth noticing that each gain +ℎ (which, dimensionally, is equivalent 
to a flux) is proportional to the magnitude of the ℎ-th harmonic in the motional induced 
back-EMFs (5.4). 

By using this field-oriented approach, from (5.11) it can be deduced that only the 
quadrature axis components of the space vectors of the machine currents, by interacting 
with the corresponding harmonics of the fluxes induced by the PMs, are contributing to 
the electromagnetic torque production. From (5.11), each ℎ-th spatial harmonic 
contributes to the torque +,- as if it were produced by an equivalent machine with ℎ ⋅�� pole pairs and with an induced flux magnitude equal to ΨRℎ. Usually, the lowest 
odd-order harmonics have the highest gains +ℎ and, therefore, they are preferable for 
torque control. 

Together with the space vectors defined in (5.9), it is also convenient to introduce 
the zero-sequence component of the machine phase currents as the scalar variable: 

 �0 = 1√� ⋅ ∑ ���
�=1

 (5.12)

With the position (5.12), the phase currents constraint (5.5) due to the isolated neutral 
point configuration is simply expressed as: 

 �0 = 0 (5.13)

 
mechanical dimensions, etc…) and # is the angle with respect to the magnetic axis of the first 
machine phase. This expression, which is a Fourier series in the spatial angle �� ⋅ #, highlights 
how the magnitude and phase of the space vector �ℎ influence the ℎ-th spatial harmonic of the 
flux-density field generated by the machine stator currents.  

8 Proven in Appendix 9.5.1. 
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5.1.3 Vector space decomposition 
As typically done, the mathematical model of the multiphase machine can be 

reformulated through a variable transformation known as vector space decomposition 
(VSD) [1]. 

As mentioned in Section 2.3.2, this change of variables is identified by the linear 
transformation (2.38), which is here repeated: 

 �VSD = � ⋅ �   ⟺    � = �−1 ⋅ �VSD (5.14)

where � is the generalized Clarke’s transformation matrix and � is a generic � × 1 phase 
variable vector. 

The field-oriented approach consists in choosing the transformation matrix � in a 
way that the transformed currents vector �VSD = � ⋅ � includes a set of space vector 
components {�xℎ, �yℎ} to be controlled. Given (5.9), the components of the ℎ-th space 

vector �ℎ = �xℎ + j ⋅ �yℎ can be included in the transformed set �VSD through the rows: 

 �ℎ = √2� ⋅ [cos(ℎ Ç1) cos(ℎ Ç2) ⋯ cos(ℎ Ç�)sin(ℎ Ç1) sin(ℎ Ç2) ⋯ sin(ℎ Ç�)] (5.15)

Similarly, given (5.12), the zero-sequence component �0 can be included in the 
transformed set �VSD through the row: 

 �0 = 1√� ⋅ [1 1 1 ⋯ 1] (5.16)

Indeed, with the positions (5.15)-(5.16), it can be verified that: [�xℎ  �yℎ]T = �ℎ ⋅ �  and  

�0 = �0 ⋅ �.  
The proper choice of the transformation matrix �, which can be built as the 

concatenation of the 1 × � row vector �0 defined as per (5.16) and of several 2 × � 
submatrices �ℎ defined as per (5.15), is crucial for proper machine control. 

From (5.11), to achieve a complete control of all the (infinite) spatial harmonics 
interactions, it would be desirable to control all the (infinite) space vectors of the 
machine currents. However, since the set of machine phase currents constitutes a system 
of � variables, the number of degrees of freedom is limited, and only up to � scalar 
components can be set arbitrarily. Moreover, the winding configuration further reduces 
the number of controllable components by forcing to 0 the zero-sequence component �0, 
which should be therefore included in the set �VSD.  

Then, for a machine with an odd number of phases, it is possible to freely control at 
most (� − 1) 2⁄  space vectors at the same time whereas, for a machine with an even 
number of phases, the number of independently controllable space vectors is (� − 2) 2⁄ . 
In this latter case, the transformed set �VSD can be completed by introducing a second 

zero-sequence component �0− through an additional row �0−, typically built as [2], [154]: 

 �0− = 1√� ⋅ [ 1 −1  1 ⋯ −1 ] (5.17)

Moreover, the generalized Clarke transformation matrix � must be a full rank matrix 
to guarantee the existence of its inverse �−1 and, therefore, to preserve the overall 
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number of state variables (i.e., to allow for the inverse transformation � = �−1 ⋅ �VSD). 
This means that a chosen set of space vectors can be controlled only if the corresponding 
rows �ℎ in the transformation matrix are linearly independent.  

As a result, a practical way to establish whether a set of space vectors can be freely 
controlled is to compute the rank of the matrix � built upon the submatrices �ℎ and 
the zero-sequence row �0 (and, eventually, of the second zero-sequence row �0−), which 
only depend on the magnetic axes disposition of the machine windings. If some rows are 
linearly dependent on some others, there are certain algebraic constraints between the 
corresponding space vector components, which therefore cannot be imposed arbitrarily9. 

In many applications the Clarke transformation matrix is built by considering the 
lowest order space vectors [57], resulting in10: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ �1

�2
�3
⋮

(�0−)
�0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

= √2� ⋅

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ cos(Ç1) cos(Ç2) ⋯ cos(Ç�)sin(Ç1) sin(Ç2) ⋯ sin(Ç�)cos(2 Ç1) cos(2 Ç2) ⋯ cos(2 Ç�)sin(2 Ç1) sin(2 Ç1) ⋯ sin(2 Ç�)cos(3 Ç1) cos(3 Ç1) ⋯ cos(3 Ç�)sin(3 Ç1) sin(3 Ç2) ⋯ sin(3 Ç�)⋮ ⋮ ⋱ ⋮(1 √2⁄ ) (−1 √2⁄ ) ⋯ (− 1 √2⁄ )

1 √2⁄ 1 √2⁄ ⋯ 1 √2⁄ ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (5.18)

with �VSD = [�x1, �y1, �x2, �y2, �x3, �y3,… , (�0−), �0]T. 

Another common choice is to select only the lowest odd-order space vectors [57] as:  

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ �1

�3
�5
⋮

(�0−)
�0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

= √2� ⋅

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ cos(Ç1) cos(Ç2) ⋯ cos(Ç�)sin(Ç1) sin(Ç2) ⋯ sin(Ç�)cos(3 Ç1) cos(3 Ç2) ⋯ cos(3 Ç�)sin(3 Ç1) sin(3 Ç1) ⋯ sin(3 Ç�)cos(5 Ç1) cos(5 Ç1) ⋯ cos(5 Ç�)sin(5 Ç1) sin(5 Ç2) ⋯ sin(5 Ç�)⋮ ⋮ ⋱ ⋮(1 √2⁄ ) (−1 √2⁄ ) ⋯ (− 1 √2⁄ )

1 √2⁄ 1 √2⁄ ⋯ 1 √2⁄ ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (5.19)

 
9 A simple example of this incompatible control is related to the mapping of different space 

vectors to the same transformed components. For instance, considering a symmetric five-phase 
machine, since Ç� = (� − 1) ⋅ (2	 5⁄ ), it can be immediately verified by application of (5.9) that �9 is the complex conjugate of �1. This means that the ninth spatial harmonic torque contribution 
cannot be controlled independently from the fundamental component contribution. Similar 
relationship can also be found for different space vectors and for different number of phases. For 
a generic (i.e., asymmetrical) winding configuration the relationship between different space 
vectors components might be harder to directly investigate through (5.9), but it can easily 
addressed by evaluating the rank of �. Some examples can be found in [119]. 

10 For symmetrical machines the definition (5.18) represents a special case of a Discrete 
Fourier Transformation (DFT) applied to a set of � equally spaced samples [154]. 
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with �VSD = [�x1, �y1, �x3, �y3, �x5, �y5,… , (�0−), �0]T. In this way, it is possible to take 

advantage of the lowest odd-order spatial harmonics of the machine, which are usually 
related to the highest torque gains +ℎ. 

Other approaches are also possible. Generally, the most convenient choice depends 
on the machine design through the effect of both the torque gains +ℎ and of the magnetic 
axes disposition.  

It is worth noticing that, in case the required number of rows of � exceeds the 
number of spatial harmonics to be controlled (like in case of sinusoidal machines, where 
only ΨR1 ≠ 0), the other rows of � can be arbitrarily chosen. 

By using the VSD transformation (5.14), the model (5.7) is modified into: 

         zVSD ⋅ d�VSDd� + � ⋅ �VSD + �VSD  =  �VSD  = ·VSD − 1 ⋅ �¥��  (5.20)

with: 
 zVSD = � ⋅ z ⋅ �−1 being the inductances matrix in the chosen VSD reference 

frame, and 
 1 = � ⋅ ¸� being responsible for the mutual interaction among the VSD 

components related to the isolated neutral point configuration. 
The constraint (5.5) is instead simply modified to: 

 �0 = [0 0 0 ⋯ (0) 1] ⋅ �VSD = 0 (5.21)

The model (5.20) represents the particularization of (2.37) to this specific case study.  
Several simplifications apply for symmetrical machines, which are instead generally 

not true for asymmetrical configurations.  
First, for a symmetrical machine with an odd number of phases, it can be proven11 

that the generalized Clarke transformation matrix � chosen either as (5.18) or as (5.19) 
not only is invertible, but it is also unitary (i.e., �−1 = �T).  

Moreover, since the inductances matrix z in the phase variable domain is a circulant 
matrix, (i.e., x2,� = x2+1,�+1), it can be proven12 that the columns of the generalized 

Clarke transformation matrix � chosen either as (5.18) or as (5.19) are the eigenvectors 
of z. Consequently, the computation of the transformed matrix zVSD = � ⋅ z ⋅ �−1 =� ⋅ z ⋅ �T performs the diagonalization of z.  

Additionally, the transformed self-inductance parameters related to the same space 
vector components are equal (i.e., xxℎ = xyℎ = xℎ). 

Finally, since the magnetic axes are equally shifted from one another, it also results 1 = � ⋅ ¸� = [ 0 0 0… (0) √� ]T. 
Given these properties, all the components of (5.20) are decoupled from one another 

and can be written element by element. The ℎ-th space vector components satisfy the 
set of first-order differential equations: 

 
11 Proven in Appendix 9.5.2. 
12 Proven in Appendix 9.5.3. A similar proof can also be found in [55] basing on the properties 

of the complex Fortescue transformation. 
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⎩{{
⎨{
{⎧xℎ ⋅ d�xℎd� + � ⋅ �xℎ + �xℎ = �xℎ = �xℎ

xℎ ⋅ d�yℎd� + � ⋅ �yℎ + �yℎ = �yℎ = �yℎ
 (5.22)

The second zero-sequence component (if present) satisfies the differential equation: 

 x0− ⋅ d�0−d� + � ⋅ �0− + �0− = �0− = �0− (5.23)

The zero-sequence component equation in (5.20), since �0 = 0, is the algebraic equation: 

 �0 = �0 = �0 − √� ⋅ �¥��  (5.24)

and it only defines the neutral point potential shift13 �¥�� = (�0 − �0) √�⁄ . 
These properties drastically simplify the modelling and control of symmetrical 

machines, which can be analysed with the same well-known techniques of three-phase 
machines. However, they are instead not guaranteed for a generic (i.e., asymmetrical) 
winding configuration. In such cases, there might be coupling effects among different 
transformed variables, due both to the magnetic effects (through zVSD) and to the 
electrical winding configuration (through 1).  

5.1.4 Rotational transformation 
Once the generalized Clarke transformation matrix � has been built, the VSD 

current set �VSD can be further modified by transforming each couple {�xℎ, �yℎ} related 

to the ℎ-th space vector �ℎ into the corresponding couple {�dℎ, �qℎ} of the synchronous 

space vector �ℎ⟨dq⟩. 
Given (5.10), this operation can be done with the matrix formalism by defining, for 

each ℎ-th space vector, a rotational submatrix built as: 

 �ℎ(%,M) = [ cos(ℎ %,M + �ℎ) sin(ℎ %,M + �ℎ)− sin(ℎ %,M + �ℎ) cos(ℎ %,M + �ℎ)] (5.25)

in a way that: 

[�dℎ�qℎ] = �ℎ(%,M) ⋅ [�xℎ�yℎ] ,         and        [�xℎ�yℎ] = �ℎT(%,M) ⋅ [�dℎ�qℎ] (5.26)

This operation, applied to all the chosen components, defines a further variable 
transformation as: 

 �dq = �(%,M) ⋅ �VSD    ⟺   �VSD = �−1(%,M) ⋅ �dq (5.27)

where �(%,M) is a rotational transformation matrix, which is built as a block-diagonal 
matrix by combining the rotational submatrices �ℎ(%,M) defined as per (5.25). No 
rotation is instead applied to the zero-sequence component �0 and to the second zero-
sequence component �0− (if present). 

 
13 It can be interpreted as the particularization of (4.14). 
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Given the property (5.26), the rotational matrix �(%,M) is always unitary, meaning that �−1(%,M) = �T(%,M). 
The cascaded application of the Clarke’s transformation matrix � and of the 

rotational transformation matrix �(%,M) represents a generalized Park’s transformation 
from the phase variable domain into the multiple synchronous variable domain. 

Different choices of the Clarke transformation matrix � also lead to different 
rotational matrices �(%,M). For instance, the rotational matrix associated with the matrix � defined via (5.18) is: 

 

�(%,M) =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡�1(%,M) û û ⋯ (û) û

û �2(%,M) û ⋯ (û) û
û û �3(%,M) ⋯ (û) û
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

(û) (û) (û) ⋯ (1) (0)
û û û ⋯ (0) 1 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (5.28)

with �dq = [�d1, �q1, �d2, �q2, �d3, �q3, … , (�0−), �0]T, while the rotational matrix associated 
with the definition (5.19) is: 

 

�(%,M) =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡�1(%,M) û û ⋯ (û) û

û �3(%,M) û ⋯ (û) û
û û �5(%,M) ⋯ (û) û
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

(û) (û) (û) ⋯ (1) (0)
û û û ⋯ (0) 1 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (5.29)

with �dq = [�d1, �q1, �d3, �q3, �d5, �q5, … , (�0−), �0]T. 

By applying the rotational transformation (5.27) to the system (5.20), the electrical 
equation of the machine, expressed with the matrix formalism, becomes: 

 zdq1(%,M) ⋅ d�dqd� + &,M ⋅ zdq2(%,M) ⋅ �dq + � ⋅ �dq + �dq(%,M)  = 
= �dq  =  ·dq − 3(%,M) ⋅ �¥��  

(5.30)

with: 
 zdq1(%,M) = �(%,M) ⋅ zVSD ⋅ �T(%,M) being responsible for the transformer 

induced back-EMFs in the synchronous domain,  
 zdq2(%,M) = �(%,M) ⋅ zVSD ⋅ (3� 3%,M⁄ )T being responsible for the motional 

induced back-EMFs due to the moving reference frame transformation, and 
 3(%,M) = �(%,M) ⋅ 1 being responsible for the mutual interaction among different 

synchronous components related to the isolated neutral point configuration. 
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The model (5.30) represents the particularization of (2.40) to the specific case study. 
If the chosen set of space vectors completely describes all the spatial harmonics of 
interests, the rotational submatrices (5.25) constraint to zero the direct axis components 
of the motional induced back-EMFs set �dq. 

Again, in case of a symmetrical machine, several simplifications can apply. Indeed, 
in such a case, the application of the rotational transformation can be applied to each 
space vector related couple (5.22), resulting in the familiar synchronous equations: 

 

⎩{{
⎨{
{⎧xℎ ⋅ d�dℎd� − ℎ &,M  xℎ �qℎ + � ⋅ �dℎ + �dℎ = �dℎ = �dℎ

xℎ ⋅ d�qℎd� + ℎ &,M  xℎ �dℎ + � ⋅ �qℎ + �qℎ = �qℎ = �qℎ
 (5.31)

while the equations for the zero-sequence component and the second zero-sequence 
component (if present) are the same as in (5.23)-(5.24). If the chosen space vectors 
completely identify all the spatial harmonics of the machine, it can be proven that14 the 
transformed PM-induced back-EMFs are simply �dℎ = 0 and �qℎ = √� 2⁄ ⋅ ℎ &,M ⋅ ΨRℎ. 

However, similarly to the VSD model (5.20), this decoupling is not guaranteed in 
case of an asymmetrical winding disposition, and the differential equations governing the 
machine behaviour show additional interactions among different subsets. As exemplified 
further on in a specific case study, this can have an important impact on the multiphase 
machine control. 

5.1.5 Torque expression in the synchronous domain 
In case the chosen set of space vectors can completely describe all the spatial 

harmonics of interests, the expression (5.11) is simplified and can be reformulated in the 
matrix formalism as: 

 +,- = 4T ⋅ �dq (5.32)

where 4 is a � × 1 vector grouping the gain factors of the considered spatial harmonics.  
As an example, under the reasonable assumption that all the even-order spatial 

harmonics of the magnetic flux density field at the air-gap are absent, and that the odd-
order harmonics with index ℎ ≥ � are negligible, by using the VSD transformation (5.19) 
the vector 4 would be expressed as: 

4 = [0 +1 0 +3 0 +5 ⋯ (0) 0]T =  
= �� ⋅ √�2 ⋅ [0 ΨR1 0 3 ΨR3 0 5 ΨR5 ⋯ (0) 0]T

 
(5.33)

where the terms related to the direct axes components �dℎ and to the zero-sequence 
component �0 (and, eventually, to the second zero-sequence component �0−) are zero. 

The corresponding electromagnetic torque would be: 

+,- = �� ⋅ √�2 ⋅ (ΨR1 ⋅ �q1 + 3 ΨR3 ⋅ �q3 + 5 ΨR5 ⋅ �q5 + ⋯ ) (5.34)

 
14 Proven in Appendix 9.5.4. 
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5.1.6 Power losses expression 
By only considering the Joule losses in the stator windings15, the instantaneous power 

dissipated by the machine can be expressed as: 

 5U = ∑ � ⋅ ��2�
�=1

= � ⋅ (�T ⋅ �) = � ⋅ ñURe 2  (5.35)

where the term 

 ñURe = ‖ � ‖ = √�T ⋅ � = √∑��2�
�=1

 (5.36)

is an equivalent root mean square (RMS) current for the whole machine. 

Considering the variable transformations (5.14) and (5.27), the instantaneous power 
losses can be written in terms of the synchronous current set �dq as: 

5U = � ⋅ ñURe2 = � ⋅ �T ⋅ � =  
= � ⋅ (�−1 ⋅ �T(%,M) ⋅ �dq)T ⋅ (�−1 ⋅ �T(%,M) ⋅ �dq) =  
= � ⋅ �dqT ⋅ (�(%,M) ⋅ �−T ⋅ �−1 ⋅ �T(%,M)) ⋅ �dq =  
= � ⋅ �dqT ⋅ ù(%) ⋅ �dq 

(5.37)

where ù(%) = �(%,M) ⋅ �−T ⋅ �−1 ⋅ �T(%,M) is a weighting matrix for the instantaneous 
power losses computation16. The matrix ù(%) only depends on the chosen VSD and 
rotational transformations and, therefore, it can be computed analytically. 

The steady-state average power losses �U of the machine can be simply found by 
averaging 5U over a full 2	 electrical rotor cycle. If the synchronous current set �dq is 
constant, this results in: 

 

�U  = 12	 ∫ 5U(%,M) d%,M
28

0
 =  12	 ∫ � ⋅ �dqT ⋅ ù(%) ⋅ �dq  d%,M

28
0

 =  
 =  � ⋅ �dqT ⋅ ( 12	 ∫ ù(%) d%,M

28
0

) ⋅ �dq  = � ⋅ �dqT ⋅ ø ⋅ �dq 
(5.38)

where ø = (1 2	⁄ )∫ ù(%,M) d%,M28
0  is a weighting matrix for the average power losses 

computation. The matrix ø is simply given by the element-by-element average of ù(%,M) 
and can also be computed analytically. 

It can be proven that all the non-diagonal terms of ù(%,M) are trigonometric functions 
with a zero average value over a full cycle of %,M, and that the diagonal terms related to 
the same ℎ-th space vector components have an equal average value =ℎ > 0 over a full 
electrical rotor cycle17. Therefore, ø is a positive definite diagonal matrix. 

 
15 This is coherent with the approximations introduced in the generalized mathematical model 

developed in Chapter 2. 
16 It is worth recalling that the notation �−T stands for �−T = (�−1)T = (�T)−1. 
17 Proven in Appendix 9.5.5. 
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Considering, as an example, the VSD and rotational transformations (5.19) and 
(5.29), the corresponding matrix ø is: 

 

ø =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡=1 0 0 0 0 0 ⋯ (0) 0

0 =1 0 0 0 0 ⋯ (0) 0
0 0 =3 0 0 0 ⋯ (0) 0
0 0 0 =3 0 0 ⋯ (0) 0
0 0 0 0 =5 0 ⋯ (0) 0
0 0 0 0 0 =5 ⋯ (0) 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

(0) (0) (0) (0) (0) (0) ⋯ (=0−) (0)
0 0 0 0 0 0 ⋯ (0) =0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (5.39)

meaning that the corresponding expression (5.38) for the average power losses is: 

 �U = � ⋅ ( =1 ⋅ �d12 + =1 ⋅ �q12 + =3 ⋅ �d32 + =3 ⋅ �q32 + ⋯  
⋯ + =5 ⋅ �d52 + =5 ⋅ �q52 + ⋯ + (=0− ⋅ �0−2) + =0 ⋅ �02  ) 

(5.40)

Again, a drastic simplification is obtained for symmetrical machines. Indeed, as 
previously stated, for a symmetrical machine the Clarke transformation matrix � is 
unitary, meaning that �−1 = �T. Therefore, the power losses weighing matrix are 
simplified to18 ø = ù(%,M) = �. Therefore, the power losses expression simply becomes: 

�U = 5U = � ⋅ (�dqT ⋅ �dq) = � ⋅ ∥ �dq  ∥2 =  
= � ⋅ (�d12 + �q12 + �d32 + �q32 + �d52 + �q52 + ⋯ + (�0−2) + �02) 

(5.41)

meaning that it simply results ñURe = ‖ � ‖ = ∥ �dq  ∥. In this case, the average power losses 
are equal to the instantaneous power losses, and all the components of the synchronous 
current set �dq are equally weighted in their computation19. On the contrary, for an 
asymmetrical machine configuration, this property is not generally true, meaning that 
different components of �dq may have a different impact on the overall power losses. 

5.1.7 Mechanical model 
The electrical machine mechanical model is governed by the dynamical equations 

(2.3)-(2.4), which are here reported: 

 ' ⋅ d&d� + ((&) ⋅ & = +,- − +- (5.42)

 
d%d� = & (5.43)

 
18 Proven in Appendix 9.5.6. 
19 This explains why the definition (5.9) is also known as power invariant.   
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where it is worth recalling that '  represents the rotor inertia of the electrical machine, ((&) represents a mechanical friction coefficient and +- is the mechanical braking torque 
applied to the rotor shaft. 

The electrical machine rotor shaft is typically connected to other rigid bodies through 
a mechanical transmission system. Both the rigid bodies and the transmission system 
can actively influence the mechanical behaviour of the electrical machine. This effect 
depends on the mechanical braking torque +- which, in many common applications, can 
be modelled through the simple equation: 

 +- = '- ⋅ d&d� + (-(&) ⋅ & + +MØï¶ (5.44)

This simplified model considers three contributions: 
 the term '- ⋅ d& d�⁄  represents an inertial torque contribution, which is related 

to the moment of inertia of the rotating mechanical bodies '-, 
 the term (-(&) ⋅ & represents a friction torque contribution, and 
 the term +MØï¶ represents a loading mechanical torque, related to the mechanical 

power absorbed by the connected system. 
By properly combining (5.44) with (5.42), the dynamics of the rotor speed is: 

 ',; ⋅ d&d� + (,;(&) ⋅ & =  (' + '-) ⋅ d&d� + [((&) + (-(&)] ⋅ & =  +,- − +MØï¶ (5.45)

which has the same form as the expression (5.42), but with different values for the 
parameters. Therefore, the speed control can just refer to the overall mechanical group 
inertia ',; = (' + '-) and friction coefficient (,;(&) = [( (&) + (-(&)] of (5.45).  

The difference between (5.42) and (5.45) can be relevant in case of torque 
measurements done at the joint between the electrical machine and the mechanical load, 
which would provide the value of +-. However, +- is generally not equal to the actual 
torque +,- developed by the electrical machine or to the torque +MØï¶ required by the 
mechanical load, because it does not consider the machine inertia and friction 
contributions. Further details are given in Appendix 9.1.2. 

5.2 Torque control strategy 
The machine control strategy is aimed at developing a desired electromagnetic torque +,-∗  coming, for example, from a speed feedback controller. Since the electromagnetic 

torque is produced by the mutual interaction between fluxes and currents, this 
requirement can be obtained by formulating a proper strategy to compute the reference 
currents for the machine.  

In field-oriented control algorithms, the problem is formalized in the multiple 
synchronous domain by considering the torque expression (5.32), which is used to 
compute a reference current set �dq∗  to be tracked. Once the synchronous reference 

current set �dq∗  has been computed, the corresponding set of phase reference currents can 

be simply found through an inverse Park transformation, as: 

 �∗ = �−1 ⋅ �T(%,M) ⋅ �dq∗  (5.46)

Considering the general case in which multiple spatial harmonics are present in the 
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magnetic field at the air gap, different strategies can be formulated to compute �dq∗  for a 

given reference torque +,-∗ . This section presents some of these torque control strategies, 
specifically addressed to asymmetrical machine configurations. 

5.2.1 Fundamental currents control strategy 
This torque development strategy is directly derived from standard FOC algorithms 

developed for three-phase PMSMs. It consists of controlling only the component �q1 of 
the synchronous current set �dq, while keeping all the other terms to zero. 

With this choice, the torque expression (5.34) simply becomes: 

 +,- = +1 ⋅ �q1 = �� ⋅ √�2 ⋅ ΨR1 ⋅ �q1 (5.47)

and the reference current to develop a desired electromagnetic torque +,-∗  is simply 
found by inverting (5.47), resulting in: 

 �q1∗ = +,-∗+1 = +,-∗√� 2⁄ ⋅ �� ⋅ ΨR1
 (5.48)

The functional block diagram of this torque control strategy is schematically represented 
in Fig. 5.2.  

The synchronous current set �dq∗ = [0 �q1∗ 0 0 … (0) 0]T can be transformed 

into the phase variable domain by applying (5.46). The only rotational submatrix to 
multiply non-zero terms is �1(%,M). Consequently, the optimal phase currents are 
sinusoidal functions of the rotor electrical position %,M and, in steady-state conditions 
with a constant angular speed and a constant reference torque, they are also sinusoidal 
in time.  

The average losses obtained when only the fundamental current component is used 
can be found via (5.40) to be: 

Tem* iq1*

id1* = 0

id3* = 0

iq3* = 0

i0* = 0

...

idq*

n/2·Pp·ΨM1√ 
1

 

Fig. 5.2 – Functional block scheme of the fundamental current control algorithm. 
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 �U(FUND) = � ⋅ =1 ⋅ �q1∗ 2 = � ⋅ +,-∗ 2 ⋅ =1+1  (5.49)

and are quadratically increasing with the reference torque +,-∗ .  

An example of this strategy will be given in Section 5.6.1. 

5.2.2 Third harmonic injection strategy 
For machines with significant higher-order spatial harmonics in the PM-induced flux 

linkages, it is possible to exploit the quadrature components of some higher-order space 
vector components to contribute to the electromagnetic torque development. This results 
in a higher number of degrees of freedom, which can be used to optimize some 
performances of the drive. 

The simplest enhancement can be obtained by also controlling the �q3 current 
component. In steady-state conditions at a constant speed and constant torque, due to 
the 3 %,M rotation in the �(%,M) matrix, the application of a constant �q3 corresponds to 
a third harmonic injection (THI) into the machine phase currents [119], [123]. 

 In this case, the torque expression (5.34) becomes: 

 +,- = +1 ⋅ �q1 + +3 ⋅ �q3 = �� ⋅ √�2 ⋅ (ΨR1 ⋅ �q1 + 3 ΨR3 ⋅ �q3) (5.50)

Contrarily to the previous case, there are now two available degrees of freedom for the 
torque control (being �q1 and �q3). Therefore, their reference value can be chosen to 
optimize some system performances while, at the same time, developing the desired 
reference torque +,-∗ . 

The choice of the proposed optimization is to minimize the average power losses �U. 
Considering (5.40), their expression is: 

 �U = � ⋅ ñURe2 = � ⋅ (=1 ⋅ �q12 + =3 ⋅ �q32 ) (5.51)

As a result, the proposed strategy can be formalized as the constrained minimization 
problem: 

 min{�q1,�q3}{=1 ⋅ �q12 + =3 ⋅ �q32 }    subject to    +1 ⋅ �q1 + +3 ⋅ �q3 = +,-∗  (5.52)

This problem can be easily reformulated in terms of a third-harmonic injection ratio, 
defined as [119], [123]: 

 � = �q3 �q1⁄  (5.53)

With the position (5.53), the torque development requirement becomes: 

 +,-∗ = +1 ⋅ �q1∗ + +3 ⋅ � ⋅ �q1∗ = (+1 + � ⋅ +3) ⋅ �q1∗  (5.54)

and the currents �q1 and �q3 can be expressed as: 

 �q1 = +,-∗+1 + � ⋅ +3        and      �q3 = � ⋅ +,-∗+1 + � ⋅ +3 (5.55)

The minimising function is therefore reformulated as a function of �: 
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 �U(�) = � ⋅ ñURe2 (�) = � ⋅ +,-∗ 2 ⋅ =1 + =3 ⋅ �2
(+1 + � ⋅ +3)2 (5.56)

The function (5.56) is convex with respect to the injection ratio � and its minimum can 
be found by nullifying its derivative 3�U 3�⁄ . Then, the optimal injection ratio is20: 

 �∗ = +3 +1⁄=3 =1⁄  (5.57)

and the corresponding optimal currents are: 

        �q1∗ = =3 ⋅ +1=1⋅+32 + =3⋅+12 ⋅ +,-∗         and       �q3∗ = =1 ⋅ +3=1⋅+32 + =3⋅+12 ⋅ +,-∗  (5.58)

A schematic block diagram of this strategy is represented in Fig. 5.3. 
From (5.57) and (5.58) it can be concluded that currents are proportional to the 

reference electromagnetic torque +,-∗  and their ratio depends both on the induced fluxes 
magnitudes (via +1 and +3) and on the magnetic axes disposition (via =1 and =3). 

The average losses with the optimal injection ratio are: 

 �U(THI) = �U(�∗) = � ⋅ +,-∗ 2 ⋅ =1 ⋅ =3=1 ⋅ +32 + =3 ⋅ +12 (5.59)

They can be compared with the losses �U(FUND) obtained when only the current �q1 is 
exploited. Their ratio is: 

 
�U(THI)

�U(FUND) = =3 ⋅ +12=1 ⋅ +32 + =3 ⋅ +12 (5.60)

which can be easily verified to always be less than 1, meaning that �U(THI) ≤ �U(FUND). In 
other words, from the energetic point of view, it is always convenient to exploit 
(whenever possible), this third harmonic injection strategy. 

 
20 Proven in Appendix 9.5.7. 

Tem*

H3·κ1

H1·κ3 + H3·κ1
2 2

H3·κ1

H1·κ3 + H3·κ1
2 2

iq1*

id1* = 0

id3* = 0

iq3* = 0

i0* = 0

...

idq*

 

Fig. 5.3 – Functional block scheme of the third harmonic injection strategy.  
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In case ΨR3 = 0 (like in machines with a sinusoidal magnetic field at the air-gap), 
since it results +3 = 0, the expression (5.57) simply becomes �∗ = 0, meaning that �q3∗ =0 and that the third harmonic injection cannot be exploited for torque enhancement.  

It is worth emphasizing that the proposed harmonic injection strategy does not lead 
to torque ripple, since it is formalized basing on the instantaneous torque expression, 
which is forced to be constant. It is also worth noticing that the same strategy can also 
be applied for different harmonic injection (e.g., fifth-harmonic injection). 

An example of this strategy will be given in Section 5.6.2. 

5.2.3 Multi-harmonic injection strategy 
The previous strategy can be extended to allow for the simultaneous exploitation of 

multiple harmonics at the same time. Indeed, considering (5.40), all the quadrature 
components �qℎ of the transformed set �dq can contribute to the torque development.  

By choosing a constant �dq set each subset {�dℎ, �qℎ} is subject to a rotation of ℎ %,M 
in the inverse transformation (5.46). Then, in steady-state conditions at a constant speed 
and constant torque, this corresponds to a multi-harmonic injection (MHI) into the 
machine phase currents [122]. 

Again, the higher number of degrees of freedom can be used to minimize the average 
stator power losses in the machine. Considering the general expressions (5.32) and (5.38), 
this strategy can be mathematically formalized as the constrained optimization problem: 

 minEdq
{�dqT ⋅ ø ⋅ �dq}       subject to      4T ⋅ �dq = +,-∗  (5.61)

which is the generalization of the problem (5.52). 
The problem (5.61) can be solved analytically by using the Lagrange multiplier 

method. A Lagrangian function for (5.61) can be chosen as: 

 G(�dq, I) = 12 �dqT ⋅ ø ⋅ �dq − I ⋅ (4T ⋅ �dq − +,-∗ ) (5.62)

where I is the Lagrange multiplier associated with the torque development requirement. 
The solution to the constrained optimization problem is found by nullifying the gradient 
of G(�dq, I), which results in the linear algebraic system: 

 

3G3�dq = ø ⋅ �dq − I ⋅ 4 = û  
3G3I = 4T ⋅ �dq − +,-∗ = 0 

(5.63)

which leads to the optimal synchronous current set21: 

 �dq∗ = ø−1 ⋅ 44T ⋅ ø−1 ⋅ 4 ⋅ +,-∗  (5.64)

and to the simple functional block diagram of Fig. 5.4. 
 

21 Proven in Appendix 9.5.8. 
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Generally speaking, by using (5.64), the zero-sequence component �0∗ , the second zero-
sequence component �0−∗ (if present) and all the direct axes components �dℎ∗  are zero, 
because they dissipate power without actively contributing to the torque development. 
The quadrature axis components �qℎ∗  are instead non-zero and each one of them is 

proportional to the reference electromagnetic torque +,-∗  and to the ratio (+ℎ =ℎ⁄ ) of the 
corresponding harmonic. This result is also expected because it favours the spatial 
harmonic components with the highest induced fluxes ΨRℎ (and, hence, the highest 
values of +ℎ, which does not depend on the magnetic axes disposition) and the lowest 
contribution to the average power losses (and, hence, the lowest values of =ℎ, which are 
instead related to the magnetic axes disposition). 

To give an example, given the VSD and rotational transformations (5.19) and (5.29), 
the expression (5.64) is particularized in: 

            �dq∗ = [0 +1 =1⁄ 0 +3 =3⁄ 0 +5 =5⁄ ⋯ (0) 0]T+12 =1⁄ + +32 =3⁄ + +52 =5⁄ + ⋯ ⋅ +,-∗  (5.65)

The average machine losses with the optimal currents set (5.64) are: 

 �U(MHI) = �U(�dq∗ ) = � ⋅ +,-∗ 2 ⋅ 14T ⋅ ø−1 ⋅ 4 (5.66)

They can be compared with the losses �U(FUND) obtained when only the current �q1 is 
exploited. Their ratio is: 

 
�U(MHI)

�U(FUND) = =1 +1⁄4T ⋅ ø−1 ⋅ 4 = =1 +1⁄∑ (=ℎ +ℎ⁄ )ℎ
 (5.67)

which can be easily verified to always be less than 1, meaning that �U(MHI) ≤ �U(FUND). 
Similarly, by comparing (5.66) with the losses expression (5.59) obtained with the 
optimal third harmonic injection strategy of Section 0, it can be verified that it also 
results �U(MHI) ≤ �U(THI). This means that, from the energetic point of view, it is always 
convenient to exploit this multi-harmonic harmonic injection strategy. 

In case of a symmetrical machine, since ø = � , the expression (5.65) is simplified to: 

            �dq∗ = [0 +1 0 +3 0 +5 ⋯ (0) 0]T+12 + +32 + +52 + ⋯ ⋅ +,-∗ =  
= √2� ⋅ [0 ΨR1 0 3 ΨR3 0 5 ΨR5 ⋯ (0) 0]TΨR12 + 9 ΨR32 + 25 ΨR52 + ⋯ ⋅ +,-∗��  

(5.68)

Given the common denominator, each ℎ-th quadrature current component is 
proportional to ℎ ΨRℎ, which is the same proportionality ratio of the induced back-

Tem* idq*H−1·κ
κ

T·H−1·κ
 

Fig. 5.4 – Functional block scheme of the multiple harmonic injection strategy.  
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EMFs. This means that, for a symmetrical �-phase machine with only the odd-order 
harmonics with index ℎ ≤ �, the optimal phase currents have the same waveform of the 
induced back-EMFs.  

An example of this strategy will be given in Section 5.6.3. 

5.2.4 Maximum torque per ampere strategy 
The injection strategies proposed in the previous sections made use of a constant 

reference current set �dq∗  and exploited the higher number of degrees of freedom to 

minimize the average stator losses �U expressed by (5.38). The choice of a constant �dq∗  

allow for an easier implementation of the control strategy in a real-time application, 
since the optimization can be conveniently computed offline. Moreover, as discussed later 
on, by computing a constant synchronous set �dq∗ , the current control can be performed 

with standard regulators (e.g., PI controllers). 
However, the drive energetic performances can be further improved by allowing the 

reference current set �dq∗  to be variable with the electrical rotor position %,M and by aiming 

at the minimization of the instantaneous power losses 5U. 
Since 5U = � ⋅ ñURe2 , the minimization of 5U for a given reference torque +,-∗  can be 

also interpreted as the maximization of the developed torque +,- for a given overall 
RMS current ñURe . As a result, this approach represents a maximum torque per ampere 
(MTPA) strategy. 

Considering the generalized formulation of the torque (5.32) and the instantaneous 
power losses (5.37), the problem can be formalized as: 

 minEdq
{�dqT ⋅ ù(%,M) ⋅ �dq}       subject to      {4T ⋅ �dq = +,-∗�0 = 0  (5.69)

where the additional constraint �0 = 0 (required by the isolated neutral point 
configuration) must now be directly enforced in the optimization procedure because ù(%,M) is, in general, not diagonal22. 

The problem can be reformulated similarly to (5.61) and solved analytically through 
the Lagrange multipliers method. The optimal current set is23: 

 �dq∗ (%,M) = ù,;′ (%,M) ⋅ 44T ⋅ ù,;′ (%,M) ⋅ 4 ⋅ +,-∗  (5.70)

where the weighting matrix ù,;′ (%,M) is defined as24:  

 ù,;′ (%,M) = [ù−̂1(%,M) ûû 0] (5.71)

and ù(̂%,M) is a (� − 1) × (� − 1) matrix obtained by removing the last row and the last 
 

22 The additional constraint �0 = 0 was not needed in the problem formulation (5.61) because 
it was always inferred by the optimal solution (5.64). This is because ø is diagonal and does not 
lead to coupling effects among different components of �dq in the evaluation of �U. 

23 Proven in Appendix 9.5.9. 
24 This operation is needed to enforce �0∗ = 0, which is required by the hardware configuration.  
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column from of ù(%,M) (i.e., the row and the column related to the zero-sequence 
component �0). The functional block diagram of this control strategy is represented in 
Fig. 5.5. 

Again, the optimal currents in (5.70) are proportional to the reference torque +,-∗ . 
However, contrarily to the reference currents set (5.64) the solution (5.70) now depends 
on the instantaneous electrical rotor position %,M.  

Since ù,;′ (%,M) is, in general, not diagonal, the set �dq∗ (%,M) can also present non-zero 

direct axis components �dℎ∗ . These components, despite not developing any torque, can 
reduce the overall machine losses by interacting with the other components of �dq∗ .  

Since �dq∗  periodically depends on %,M, when applying the inverse transformation 

(5.46), the resulting optimal phase currents set may also show additional harmonics 
which are absent in the fluxes and induced back-EMFs spectra (even in case of sinusoidal 
machines). These additional harmonics do not develop any average electromagnetic 
torque (because they do not interact with any corresponding term in the induced fluxes), 
but they can neutralize the torque ripple introduced by the interaction of the other 
harmonics. 

The expression of the instantaneous power losses obtained with this current 
references computation strategy is: 

 5U(MTPA)(%,M) = � ⋅ +,-∗ 2 ⋅ 14T ⋅ ù,;′ (%,M) ⋅ 4 (5.72)

The corresponding average losses �U can be found by averaging the expression (5.72) 
over a full 2	 electrical rotor cycle: 

 �U(MTPA) = � ⋅ +,-∗ 2  ⋅  12	 ∫ 14T ⋅ ù,;′ (%,M) ⋅ 4 28
0

d%,M (5.73)

About �U(MTPA), for which an analytical expression is not given (since the resolution 
of (5.73) is, in general, not easily computed) it can still be said that, since the expression �dq∗ (%,M) given by (5.70) results in the minimization of 5U for any value of %,M, by 

averaging, it results �U(MTPA) ≤ �U(MHI) ≤ �U(THI) ≤ �U(FUND). This means that, from the 
energetic point of view, the proposed MTPA strategy is always more convenient than 
the other injection strategies developed in the previous subsections. A comparison 
example is provided in Section 5.6.5. 

However, for real time applications, the computation of (5.70) should be based on 
the value of the electrical rotor position %,M, which might not be easily addressed given 

i*

κ

Tem*

Geq(θel)́ 
θel

κ·Geq(θel)·κT
́ 

Geq(θel)·κ́ 

 

Fig. 5.5 – Functional block scheme of the MTPA strategy.  
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the matrix inversion in (5.71). Moreover, as will be discussed further on, the presence of 
a non-constant reference �dq∗  may require a more complex current controller to effectively 

track the higher-order current harmonics. 
As previously stated, for symmetrical machines it results 5U = �U = � ⋅ �dqT ⋅ �dq. In 

this case, the proposed MTPA strategy is equal to the multi-harmonic injection strategy 
developed in Section 5.2.3, and the optimal current set �dq∗  computed via (5.70) is equal 

to the set provided in (5.64) (which it is worth recalling to be independent of %,M). 
An example of this strategy will be given in Section 5.6.4. A generalization of this 

MTPA approach, directly derived in the phase variable domain and computationally 
more convenient for real-time applications, will be derived in Chapter 6. 

5.3 Current control 
Once the chosen torque development strategy is executed, the controller must 

compute a set of converter voltages in a way to drive the synchronous current set �dq 
towards the desired references set �dq∗ . In field-oriented controllers this is typically done 

in the multiple synchronous domain by referring to the mathematical model (5.30).  
In other words, the current controller, by properly processing the error (�dq∗ − �dq), 

computes a set ·dq∗  of reference voltages for the converter, which are then transformed 

back into the phase variable domain through the inverse Park transformation: 

 ·∗ = �−1 ⋅ �T(%,M) ⋅ ·dq∗  (5.74)

The set ·∗ is then used as the input of a pulse-width modulation technique, which 
computes the switching signals for the converter devices. 

This section describes how the computation of ·dq∗  is typically accomplished by 

standard techniques developed for symmetrical machines, and what are instead the 
differences in case of asymmetrical configurations. 

5.3.1 Current controller for symmetrical configurations 
For symmetrical machines, the electrical equations in the synchronous reference 

frame are given by (5.31). As previously discussed, each space vector couple {�dℎ, �qℎ} is 

decoupled from the others, while the mutual coupling between �dℎ and �qℎ is only due to 
the rotational transformation (5.27). Moreover, in symmetrical machines, all the torque 
control strategies presented in Section 5.2 result in a constant reference synchronous 
current set. 

As a result, in this case, similarly to how it is done for three-phase machines, the 
control can be easily achieved with proportional-integral (PI) controllers and simple 
compensation actions. The reference converter voltages in the synchronous domain are 
computed as: 

 {�dℎ∗ = ;dℎ∗ − ℎ &,M  xℎ �qℎ + �dℎ
�qℎ∗ = ;qℎ∗ + ℎ &,M  xℎ �dℎ + �qℎ

 (5.75)

and correspond to the functional block diagram of Fig. 5.6, where: 
 the terms ;dℎ∗  and ;qℎ∗  are the output of PI controllers respectively acting on 
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the errors (�dℎ∗ − �dℎ) and (�qℎ∗ − �qℎ),  
 the terms (−ℎ &,M  xℎ �qℎ) and (+ℎ &,M  xℎ �dℎ) are the compensation terms for 

the motional-induced back-EMFs due to the rotational transformation (5.27), 
and 

 the terms �dℎ and �qℎ are the compensation terms for the motional-induced 
back-EMFs due to the permanent magnets on the rotor (and it is worth 
recalling that, typically, �dℎ = 0 and �qℎ = √� 2⁄ ⋅ ℎ &,M ⋅ ΨRℎ). 

The second zero-sequence current component (if present), whose dynamical 
behaviour is governed by the differential equation (5.23), can be controlled by computing 
the second zero-sequence voltage as: 

 �0−∗ = ;0−∗ + �0−  (5.76)

and corresponds to the functional block diagram of Fig. 5.7, where: 
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Fig. 5.6 – Functional block diagram of the decoupled current controller in the ℎ-th
synchronous reference frame for a symmetrical machine.  
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Fig. 5.7 – Functional block diagram of the second zero-sequence current controller 
for a symmetrical machine. 
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 the term ;0−∗ is the output of a PI controller acting on (�0−∗ − �0−), and 
 the term �0− compensate (if present) the second zero-sequence component of 

the motional induced back-EMF related to the permanent magnets. 
Naturally, since �0 = 0 because of the isolated neutral point configuration, no control 

action is needed for the zero-sequence current component. Consequently, the zero-
sequence voltage �0∗  can be arbitrarily chosen with any typical common-mode injection 
strategy proposed for star-connected systems (e.g., min-max injection, higher-order 
harmonic injection, etc…, as mentioned in Section 3.2.2).  

The equations (5.75)-(5.76) can be grouped and rewritten with a matrix notation as: 

 ·dq∗ = Kdq∗ + &,M ⋅ zdq2 ⋅ �dq + �dq (5.77)

which corresponds to the schematic block diagram of Fig. 5.8, where 
 the set Kdq∗  is composed of the output voltage references computed by all the 

feedback PI controllers, 
 the term &,M ⋅ zdq2 ⋅ �dq is the compensation of all the motional induced back-

EMFs generated by the machine model transformation into a moving reference 
frame, and 

 the term �dq is the compensation of the motional induced back-EMFs due to 
the permanent magnets on the rotor (which, for a symmetrical machine, can be 
computed as �dq = & ⋅ 4). 

5.3.2 Current controller for asymmetrical configurations 
As previously discussed, for asymmetrical configurations the dynamical model (5.30) 

presents additional mutual interactions between the state variables, which not only 
depend on the magnetic behaviour of the machine (through the effect of the inductances 
matrices zdq1 and zdq2), but also on the electrical connections of the phase windings, 
which are represented by the term 3(%,M) ⋅ �¥��  in (5.30). In this case, the current control 
may be more challenging.  
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Fig. 5.8 – Functional block diagram of the field-oriented current controller for a 
symmetrical machine.   
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A possible way to adapt the current controller to this new configuration without 
significantly altering the basic control scheme25 (5.77) is to compute the references 
voltages set as:   

 ·dq∗ = Kdq∗ + &,M ⋅ zdq2(%,M) ⋅ �dq + �dq(%,M) + 3(%,M) ⋅ �¥��∗  (5.78)

The block scheme of this controller structure is represented in Fig. 5.9. Its structure is 
similar to the one of Fig. 5.8, but with the additional term 3(%,M) ⋅ �¥��∗ , aimed at 
compensating the mutual interactions due to the electrical configuration.  

The term �¥��∗  can be computed from the zero-sequence equation in (5.30) to 
compensate for the steady-state effects of the electrical network. A general formulation 
in case of a constant synchronous current set �dq∗  is provided in (9.21) of Appendix 9.5.10, 

while a simple application example in which this additional compensation is computed 
analytically will be given in Section 5.5 and Section 5.6. Since the strategy (5.78), by 
keeping the same structure of (5.77), compensates only the motional-induced coupling 

 
25 Other approaches can also be applied for the current control. For example, in case the 

asymmetry is coming from the post-fault reconfiguration of an originally symmetrical machine, 
another convenient option is to use the same VSD transformation and compensation terms of 
the healthy machine. In this case, however, the current references computed by any of the 
strategy presented in Section 5.2 are always non-sinusoidal and, contrarily to the healthy 
configuration, the current controller would also require additional control terms to follow the 
higher order harmonics (e.g., negative sequence synchronous PI controllers, resonant controllers, 
VPI controllers, etc…). 
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Fig. 5.9 – Functional block diagram of the field-oriented current controller for an 
asymmetrical machine.   
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terms of �¥�� , and neglects the transformer-induced terms (i.e., the terms related to d�dℎ d�⁄  and d�qℎ d�⁄ ), the stability robustness of the controller may be negatively 
affected, thus requiring a more conservative tuning of the controller parameters. 

Moreover, for a generic winding configuration, the expressions of the PM-induced 
back-EMFs �dℎ = 0 and �qℎ = √� 2⁄ ⋅ ℎ &,M ⋅ ΨRℎ (which have been adopted in the 

schemes of Fig. 5.6 and Fig. 5.8) are not generally guaranteed, meaning that �dq may 
also depend on %,M. In this case �dq, if not properly compensated, behaves as a periodic 
disturbance input for the current control. 

In case of a constant reference current set �dq∗  the same PI-based structure of 

symmetrical configurations can still be applied for the computation of Kdq∗ . On the 

contrary, the feedback controller structure might also need additional changes in case 
the reference current set �dq∗  is not constant (e.g., for the MTPA strategy developed in 

Section 5.2.4). Indeed, for a non-constant synchronous current set, the feedback control 
may require additional control terms to follow the higher harmonics of �dq∗ (%,M) (e.g., 

negative sequence synchronous PI controllers, resonant controllers, etc…) [62], [63]. 

5.4 Complete drive control algorithm 
The functional block scheme of the overall field-oriented controller is represented in 

Fig. 5.10. 
First, the “Speed Controller” compares the reference speed &∗ with the machine speed & and computes the reference electromagnetic torque +,-∗  to be applied. The machine 

speed dynamics is described by the model (5.48), which is unrelated to the electrical 
machine parameters and configuration. As a result, any standard speed controller 
structure, like a PI regulator, can be used (as represented in Fig. 5.10). 

The “Torque Control Strategy” block is then executed, by using one of the strategies 
presented in Section 5.2 to compute the reference currents set �dq∗  to be tracked. In case 

the MTPA algorithm is chosen, this block also needs to know the instantaneous rotor 
electrical position %,M. 

The generalized Park transformation, obtained by the cascaded application of the 
Clarke transformation matrix � and of the rotational transformation matrix �(%,M), is 
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Fig. 5.10 – Functional block diagram of the field-oriented controller. 
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applied to compute the transformed currents set �dq from the knowledge of the phase 
currents set �. 

The “Current Controller” block can then be executed. Following the discussion of 
Section 5.3, this block compares the reference currents set �dq∗  with the measured currents 

set �dq, and processes this error with a feedback controller to compute the reference 
voltage Kdq∗ . As previously mentioned, for a generic machine configuration a simple PI 

controller may not be suited to properly track the reference current �dq∗ . Therefore, the 

scheme of Fig. 5.10 has been explicitly represented considering a Proportional-Integral-
Resonant (PIR) controller architecture. As discussed in Section 5.3, the reference 
voltages set ·dq∗  is found by adding the proper compensation actions to the set Kdq∗ . 

The transformed voltages set ·dq∗  is finally transformed back into the phase variable 

domain by applying an inverse Park transformation (5.74). The resulting set ·∗ is 
processed by a pulse width modulator to compute the switching signals for the 
semiconductor devices. 

The generalized Clarke transformation matrix � and its inverse �−1 (which it is 
worth recalling that, for asymmetrical machine configurations, may be different from �T) can be computed offline or during the algorithm initialization to reduce the overall 
computational burden of the algorithm for a real-time application. The rotational 
transformation matrix must be instead computed in real time for each measured value 
of the rotor electrical position %,M. 

5.5 Application example 
The general analysis of the previous sections has been particularized to a specific 

application, which has been selected as an asymmetrical nine-phase PMSM. This section 
describes the mathematical modelling of the machine, by mainly focusing on the variable 
transformations adopted for the selected configuration. The numerical and experimental 
results regarding the same machine are then discussed in Section 5.6. 

5.5.1 Machine under analysis 

The electrical machine under analysis is based on the prototype represented in Fig. 
5.11. It is a nine-phase surface mounted PMSM with 1 pole pair, obtained by rewinding 
an originally three-phase machine.  

All the 18 machine windings are available externally and, according to their 
connection, the machine configuration can be either symmetrical or asymmetrical26. For 
the present analysis, the machine has been arranged in an asymmetrical configuration. 
The 9 machine phases are star connected with a single isolated neutral point. 

The stator windings (geometrically identical) can be grouped into three symmetrical 
 

26 Further information about multiphase machine design compatible with both symmetrical 
and asymmetrical configurations can be found in [152]. The analysis of this same machine in the 
symmetrical configuration can be found in [155]–[157]. An example of the asymmetrical 
reconfiguration of a symmetrical nine-phase machine has been previously given in Section 4.3.5. 
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three-phase sets whose magnetic axes are mutually shifted by 20° from each other. It is, 
therefore, possible to define the angles set: 

L = [0° 120° 240° 20° 140° 260° 40° 160° 280°] 
which identifies the magnetic axes angles of all the machine phase windings.  

The PM-induced back-EMFs have been found by measuring the terminal voltages 
while the machine was spinning at a constant speed and all the phases were disconnected. 
The back-EMFs have the same waveforms for all the 9 phases and are not sinusoidal. 
The back-EMF induced by the permanent magnets in phase 1, found by spinning the 
machine at around 1500 rpm, is depicted in Fig. 5.12.  

For the present analysis, all the even-order harmonics and the odd-order harmonics 
with index ℎ ≥ 9 are neglected. 

As a result, the �-th PM-induced flux linkage (with � = 1,… ,9) can be modelled as: 

wQR,�(%) = ∑ ΨRℎ ⋅ cos(ℎ ⋅ (% − Ç�) + �ℎ)
ℎ=1,3,5,7

= 
= ΨR1 ⋅ cos(% − Ç�) + ΨR3 ⋅ cos(3 (% − Ç�) + �3) + ⋯  

⋯ + ΨR5 ⋅ cos(5 (% − Ç�) + �5) + ΨR7 ⋅ cos(7 (% − Ç�) + �7)  

The corresponding induced back-EMFs is then modelled as: 

³QR,�(%) = 3wQR,�3% = − ∑ ℎ ⋅ ΨRℎ ⋅ sin(ℎ ⋅ (% − Ç�) + �ℎ)
ℎ=1,3,5,7

= 
= −ΨR1 ⋅ sin(% − Ç�) − 3 ΨR3 ⋅ sin(3 (% − Ç�) + �3) + ⋯  

⋯− 5 ΨR5 ⋅ sin(5 (% − Ç�) + �5) − 7 ΨR7 ⋅ sin(7 (% − Ç�) + �7)  

The fluxes magnitudes and phases are reported in Table 5.I. 
The inductances parameters have been computed with the machine in the 

symmetrical configuration by individually exciting a single space vector at a time. The 

 

Fig. 5.11 – Nine-phase PMSM under analysis (left) coupled to a DC machine used 
for loading (right).   
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inductances matrix, reported in Table 5.II, has been found by computing the inverse 
VSD transformation from the parameters found in the symmetrical configuration. It can 

 

Fig. 5.12 – Waveforms of the PM-induced back-EMF in phase 1 (acquired at no load 
at 1500 rpm).  

 

Fig. 5.13 – Waveforms of the PM induced flux and normalized back-EMF in phase 
1 as a function of the rotor position (modelled only considering the 1st, 3rd, 5th and 7th

harmonics).   

Table 5.I – PMSM INDUCED FLUXES HARMONICS 

ℎ 1 3 5 7 ΨRℎ [mWb] 385 119 38 7 �ℎ [deg] 0° 180° 0° 165° 
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be verified that, coherently with the mathematical model presented in Chapter 2, z is 
symmetric and positive definite27.  

All the windings have approximately the same resistance � ≅ 31.3 Ω (which has been 
measured in DC).  

5.5.2 Machine model in the synchronous domain 

For the control of the analysed machine, the generalized Clarke transformation 
matrix � has been built according to (5.19), in a way to control the space vectors �1, �3, �5 and �7 and, therefore, take advantage of the fundamental, the third, the fifth and the 
seventh spatial harmonics in the machine. Its explicit formulation is28: 

 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡�1

�3
�5
�7
�0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤

= √29 ⋅

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ cos(Ç1) cos(Ç2) cos(Ç3) cos(Ç4)sin(Ç1) sin(Ç2) sin(Ç3) sin(Ç4)cos(3Ç1) cos(3Ç2) cos(3Ç3) cos(3Ç4)sin(3Ç1) sin(3Ç2) sin(3Ç3) sin(3Ç4)cos(5Ç1) cos(5Ç2) cos(5Ç3) cos(5Ç4)sin(5Ç1) sin(5Ç2) sin(5Ç3) sin(5Ç4)cos(7Ç1) cos(7Ç2) cos(7Ç3) cos(7Ç4)sin(7Ç1) sin(7Ç2) sin(7Ç3) sin(7Ç4)1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄

  ⋯ 

 
27 The inductances matrix could have also been found directly in the phase variable domain, 

by separately supplying each phase at a time and measuring the induced voltage in the other 
windings. This method has been used to characterize the machine analysed in Chapter 6. It has 
a more general applicability, but typically requires more measurements to be done. 

28 The numerical values have been rounded to the second decimal unit. 

Table 5.II – PMSM INDUCTANCES MATRIX PARAMETERS  

x�1�2 
[mH] 

�2 
1 2 3  4 5 6  7 8 9 

�1 

1 263 −35 −35  81 −58 −12  58 −81 12 
2 −35 263 −35  −12 81 −58  12 58 −81 
3 −35 −35 263  −58 −12 81  −81 12 58 
            
4 81 −12 −58  263 −35 −35  81 −58 −12 
5 −58 81 −12  −35 263 −35  −12 81 −58 
6 −12 −58 81  −35 −35 263  −58 −12 81 
            
7 58 12 −81  81 −12 −58  263 −35 −35 
8 −81 58 12  −58 81 −12  −35 263 −35 
9 12 −81 58  −12 −58 81  −35 −35 263 
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     ⋯  

cos(Ç5) cos(Ç6) cos(Ç7) cos(Ç8) cos(Ç9)sin(Ç5) sin(Ç6) sin(Ç7) sin(Ç8) sin(Ç9)cos(3Ç5) cos(3Ç6) cos(3Ç7) cos(3Ç8) cos(3Ç9)sin(3Ç5) sin(3Ç6) sin(3Ç7) sin(3Ç8) sin(3Ç9)cos(5Ç5) cos(5Ç6) cos(5Ç7) cos(5Ç8) cos(5Ç9)sin(5Ç5) sin(5Ç6) sin(5Ç7) sin(5Ç8) sin(5Ç9)cos(7Ç5) cos(7Ç6) cos(7Ç7) cos(7Ç8) cos(7Ç9)sin(7Ç5) sin(7Ç6) sin(7Ç7) sin(7Ç8) sin(7Ç9)1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

= 

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡0.47 −0.24 −0.24 0.44 −0.36 −0.08 0.36 −0.44 0.080 0.41 −0.41 0.16 0.30 −0.46 0.30 0.16 −0.460.47 0.47 0.47 0.24 0.24 0.24 −0.24 −0.24 −0.240 0 0 0.41 0.41 0.41 0.41 0.41 0.410.47 −0.24 −0.24 −0.08 0.44 −0.36 −0.44 0.08 0.360 −0.41 0.41 0.46 −0.16 −0.30 −0.16 0.46 −0.300.47 −0.24 −0.24 −0.36 −0.08 0.44 0.08 0.36 −0.440 0.41 −0.41 0.30 −0.46 0.16 −0.46 0.30 0.160.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

It can be verified that the rank of � is equal to 9, meaning that all the chosen space 
vector components can be controlled simultaneously.  

The inverse matrix �−1, computed analytically29, is: 

�−1 = √29 ⋅

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡cos(Ç1) sin(Ç1) cos(3Ç1) − 1 sin(3Ç1) − √3

cos(Ç2) sin(Ç2) cos(3Ç2) − 1 sin(3Ç2) − √3cos(Ç3) sin(Ç3) cos(3Ç3) − 1 sin(3Ç3) − √3
cos(Ç4) sin(Ç4) cos(3Ç4) + 1 sin(3Ç4) + √3
cos(Ç5) sin(Ç5) cos(3Ç5) + 1 sin(3Ç5) + √3
cos(Ç6) sin(Ç6) cos(3Ç6) + 1 sin(3Ç6) + √3
cos(Ç7) sin(Ç7) cos(3Ç7) − 1 sin(3Ç7) − √3
cos(Ç8) sin(Ç8) cos(3Ç8) − 1 sin(3Ç8) − √3
cos(Ç9) sin(Ç9) cos(3Ç9) − 1 sin(3Ç9) − √3

  ⋯ 

      ⋯  

cos(5Ç1) sin(5Ç1) cos(7Ç1) sin(7Ç1) 1 √2⁄ + √2
cos(5Ç2) sin(5Ç2) cos(7Ç2) sin(7Ç2) 1 √2⁄ + √2
cos(5Ç3) sin(5Ç3) cos(7Ç3) sin(7Ç3) 1 √2⁄ + √2
cos(5Ç4) sin(5Ç4) cos(7Ç4) sin(7Ç4) 1 √2⁄ − 2√2
cos(5Ç5) sin(5Ç5) cos(7Ç5) sin(7Ç5) 1 √2⁄ − 2√2
cos(5Ç6) sin(5Ç6) cos(7Ç6) sin(7Ç6) 1 √2⁄ − 2√2
cos(5Ç7) sin(5Ç7) cos(7Ç7) sin(7Ç7) 1 √2⁄ + √2
cos(5Ç8) sin(5Ç8) cos(7Ç8) sin(7Ç8) 1 √2⁄ + √2
cos(5Ç9) sin(5Ç9) cos(7Ç9) sin(7Ç9) 1 √2⁄ + √2 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

= 

 
29 With the aid of the Symbolic Math Toolbox of MATLAB. The numerical values are 

approximated to the second decimal unit. 



126 5 - Field Oriented Control of Asymmetrical PMSMs 

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0.47 0 0 −0.82 0.47 0 0.47 0 1−0.24 0.41 0 −0.82 −0.24 −0.41 −0.24 0.41 1−0.24 −0.41 0 −0.82 −0.24 0.41 −0.24 −0.41 10.44 0.16 0.71 1.22 −0.08 0.46 −0.36 0.30 −1−0.36 0.30 0.71 1.22 0.44 −0.16 −0.08 −0.46 −1−0.08 −0.46 0.71 1.22 −0.36 −0.30 0.44 0.16 −10.36 0.30 −0.71 −0.41 −0.44 −0.16 0.08 −0.46 1−0.44 0.16 −0.71 −0.41 0.08 0.46 0.36 0.30 10.08 −0.46 −0.71 −0.41 0.36 −0.30 −0.44 0.16 1 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

The corresponding rotational matrix �(%,M) = �(%) takes the structure of (5.29). 

Through the matrices � and �(%) it has been possible to apply the generalized Park 
transformation to the machine mathematical model. 

It can be verified that the equations describing the first, the fifth and the seventh 
space vector components are decoupled from each other and assume the standard form: 

 

⎩{⎨
{⎧xℎ ⋅ d�dℎd� − ℎ & xℎ  �qℎ + � ⋅ �dℎ  =  �dℎ  =  �dℎ

xℎ ⋅ d�qℎd� + ℎ & xℎ �dℎ + � ⋅ �qℎ + �qℎ  =  �qℎ  = �qℎ
 (5.79)

with ℎ = 1,5,7 and �;ℎ = √9 2⁄ ⋅ ℎ & ΨRℎ. 

The third space vector components show, instead, the additional coupling effect of 
the neutral point potential shift through 3(%), and are: 

 

⎩{{
{{⎨
{{{
{⎧x3 ⋅ d�d3d� − 3 & x3 �q3 + � ⋅ �d3  = �d3 = 

              = �d3 − 2√2 cos(3% + �3 − 	3) ⋅ �¥��
x3 ⋅ d�q3d� + 3 & x3 �d3 + � ⋅ �q3 + �q3  =  �q3  = 
              = �d3 − 2√2 cos(3% + �3 + 	6) ⋅ �¥��

 (5.80)

with �;3 = √9 2⁄ ⋅ 3 & ΨR3 = 3 √2⁄ ⋅ & ΨR3. 
Additionally, given the asymmetrical configuration, the voltage �¥��  is itself 

dependent on �d3 and �q3. The explicit dependence can be found from the zero-sequence 
equation of the mathematical model in the synchronous domain and by imposing the 
constraints �0 = 0 and d�0 d�⁄ = 0 (which are hardware-related). The following functional 
relationship is obtained: 

            �¥�� = − x-39 ⋅ [2√2 sin(3% + �3 + 	6) ⋅ (d�d3d� − 3 & �q3) + ⋯  
⋯+2√2 cos(3% + �3 + 	6) ⋅ (d�q3d� + 3 & �d3)] − �0 − �03  

(5.81)

where x-3 = x3 − x0 is the mutual inductance related to the space vector �3 (i.e., it 
does not include the leakage effects) and �0 = −6 & ΨR3   sin(3% + �3 − 	 6⁄ ). 
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The transformed inductance parameters appearing in the equations (5.79)-(5.81) are 
reported in Table 5.III.  

From the equations (5.80) and (5.81) it might seem that the common-mode inverter 
voltage, by changing the voltage �0 and, consequently, the neutral point potential shift �¥��  via (5.81), might affect the dynamics of �d3 and �q3 through (5.80). However, this 
dependence (that would negate the exploitation of a common-mode voltage injection for 
modulation purposes) is only apparent. Indeed, given the asymmetrical configuration of 
the machine axes (and, consequently, the asymmetrical nature of the VSD and rotational 
transformation matrices), any change in the common-mode voltage of the supplying 
inverter not only affects the zero-sequence component �0, but at the same time it also 
changes the components �d3 and �q3. Their simultaneous variations perfectly compensate 
and does not affect the dynamics of �d3 and �q3. Similarly, it can be verified from 
inspection of �−1 that the change of the zero-sequence component �0 (while keeping the 
components �d3 and �q3 unchanged) is not equivalent to the change of the VSI common-

mode voltage (which, indeed, also requires a coherent change of �d3 and �q3). As a result, 
for control purposes, the compensation of �0 in (5.81) can also be achieved by changing �0 (as it will be exemplified in Section 5.6.6). This imbalance effect appearing in 
asymmetrical machines with a single isolated neutral point configuration has also been 
verified in [56]–[58]. 

5.5.3 Power losses weighting matrices 
From the chosen VSD and rotational transformation matrices, it is possible to 

compute the instantaneous power losses weighting matrix ù(%) = �(%) ⋅ �−T ⋅ �−1 ⋅�T(%) introduced in Section 5.1.6.  
The computation has been performed analytically30, and results in: 

       ù(%) =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 1 0 0 0 0 0 0 0 00  1 0 0 0 0 0 0 00 0 Td3,d3(%) Td3,q3(%) 0 0 0 0 Td3,0(%)0 0 Tq3,d3(%) Tq3,q3(%) 0 0 0 0 Tq3,0(%)0 0 0 0  1 0 0 0 00 0 0 0 0  1 0 0 00 0 0 0 0 0  1 0 00 0 0 0 0 0 0  1 00 0 T0,d3(%) T0,q3(%) 0 0 0 0 9 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (5.82)

where the %-dependent terms have the following expressions: 

 
30 With the aid of the Symbolic Math Toolbox of MATLAB. 

Table 5.III – INDUCTANCES PARAMETERS IN THE SYNCHRONOUS DOMAIN. 

x1 [mH] x3 [mH] x5 [mH] x7 [mH] x0 [mH] 
460 120 96 87 85 
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 Td3,d3(%) = 5 − 4 cos(6% + 2�3 + 	 3⁄ )  
Tq3,q3(%) = 5 + 4 cos(6% + 2�3 + 	 3⁄ )  
Td3,q3(%) = Tq3,d3(%) = 4 sin(6% + 2�3 + 	 3⁄ )  
Td3,0(%) = T0,d3(%) = −3√6 sin(3% + �3) − 3√2 cos(3% + �3)  
Tq3,0(%) = T0,q3(%) = 3√2 sin(3% + �3) − 3√6 cos(3% + �3)  

(5.83)

Since �0 = 0, the instantaneous power losses are expressed by: 

 5U = �d12 + �q12 + 5 �d32 + 5 �q32 + ⋯ 
⋯+ 4  cos(6% + 2�3 + 	 3⁄ ) ⋅ (�q32 − �d32 ) + ⋯  
⋯+ 8  sin(6% + 2�3 + 	 3⁄ ) ⋅ (�d3 ⋅ �q3) + ⋯  
⋯+ �d52 + �q52 + �d72 + �q72  

(5.84)

The average power losses weighting matrix ø, introduced in Section 5.1.6, is 
obtained by simply averaging ù(%) in a 2	 period of %. Only the constant terms of (5.82) 
are preserved, resulting in the simplified expression: 

 

ø =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 1 0 0 0 0 0 0 0 00  1 0 0 0 0 0 0 00 0  5 0 0 0 0 0 00 0 0  5 0 0 0 0 00 0 0 0  1 0 0 0 00 0 0 0 0  1 0 0 00 0 0 0 0 0  1 0 00 0 0 0 0 0 0  1 00 0 0 0 0 0 0 0  9 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (5.85)

This means that, by using a constant set �dq, the average machine losses are: 

 �U = �d12 + �q12 + 5 �d32 + 5 �q32 + �d52 + �q52 + �d72 + �q72  (5.86)

Then, it can be concluded that, contrarily to what would happen for a symmetrical 
machine, in this asymmetrical configuration the third space vector components {�d3, �q3} 
are weighted 5 times more than the other components for the power losses computation. 

5.6 Numerical and experimental results 
This section presents the numerical and experimental results obtained for the 

analysed asymmetrical nine-phase PMSM, with special focus on the different torque 
development strategies introduced in Section 5.2. 

5.6.1 Fundamental currents control strategy 
The fundamental current control strategy, as explained in Section 5.2.1, only exploits 

the quadrature current �q1 for the machine torque control. For the present analysis the 
expression (5.48) is particularized in: 

 �q1∗ = +,-∗+1 = +,-∗√9 2⁄ ⋅ ΨR1
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The synchronous current set is �dq∗ = [0 �q1∗  0 0 0 0 0 0 0]T and it can be transformed 

into the phase variable domain by applying (5.46).  
The optimal phase currents waveforms31 and their harmonic spectra are shown in 

Fig. 5.14. They are normalized by the peak current ñFUND = (2 9⁄ ) ⋅ (+,-∗ ΨR1⁄ ).  
It can be noted that all the current waveforms are perfectly sinusoidal in % (i.e., only 

the 1st harmonic is present). Moreover, the currents have the same magnitude for all the 
phases. This means that the overall stator power losses are equally shared by all the 9 
machine windings. The currents in each of the symmetrical three-phase subsets {1,2,3}, {4,5,6} and {7,8,9} are shifted by 120° from each other, while the different sets are 
mutually shifted by 20° (i.e., they follow the same phase shift of the magnetic axes angles 
set L).  

5.6.2 Third harmonic injection strategy 
This section particularized the third harmonic injection strategy presented in 

Section 5.2.2 to the specific case study32. This strategy exploits both �q1 and �q3 for the 
torque development. By particularizing (5.57) to the present case study, the optimal 
injection ratio is: 

 �∗ = �q1∗
�q3∗ = 3ΨR3 ΨR1⁄5 1⁄ ≅ 0.19 

and the corresponding values (5.58) of the optimal quadrature axes currents are: 

 
31 Obtained for varying % and for a constant reference torque +,-∗ . 
32 Additional details, and further examples for machines with different number of phases, can 

be found in [119]. 

Fig. 5.14 – Waveforms and harmonic spectra of the reference currents obtained with 
the fundamental current control strategy.  
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�q1∗ = √92 ⋅ 5 ΨR19 ΨR32 + 5 ΨR12 ⋅ +,-∗    and   �q3∗ = √92 ⋅ 3 ΨR39 ΨR32 + 5 ΨR12 ⋅ +,-∗  

The power losses reduction can be computed via (5.60) and is: 

 
�U(THI)

�U(FUND) = 5 ΨR12
9 ΨR32 + 5 ΨR12 ≅ 0.853 

To highlight that the computed injection ratio does indeed minimize the power losses, 
Fig. 5.15 shows the normalized33 ratio �U(�)/�U(FUND) for different values of � = �q3 �q1⁄ . 
It can be noted that, coherently with the analytical expressions, the minimum ratio of 
the power losses (denoted by the red point in Fig. 5.15) is around 0.85 and is obtained 
for an injection ratio of � ≅ 0.19. This means that the proposed optimal third harmonic 
injection allows reducing the power losses of around 15% if compared to the sole 
fundamental currents exploitation. 

The corresponding optimal phase currents are shown in Fig. 5.16, together with their 
harmonic spectra. Again, they are normalized by ñFUND = (2 9⁄ ) ⋅ (+,-∗ ΨR1⁄ ), which is 
the peak phase current needed to supply the same electromagnetic torque by only 
exploiting the fundamental component �q1. 

In agreement with the analytical results, only the first and the third harmonics are 
present in the Fourier decomposition of the phase currents. The waveforms within each 
of the symmetrical three-phase subsets {1,2,3}, {4,5,6} and {7,8,9} are identical and just 
mutually shifted by 120°. Nevertheless, it can be noted that the three subsets behave 
differently from one another. This leads to an unequal distribution of the third-harmonic 
current components among the different phase sets, which is required to satisfy the 
condition �0 = 0 imposed by the hardware configuration. 

 
33 It is here recalled that the power �U(FUND) represents the overall machine power losses 

obtained when only the fundamental current components related to �q1 are exploited. 

 

Fig. 5.15 – Normalized power losses obtained with the proposed third harmonic 
injection strategy, as a function of the third harmonic injection ratio.   
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To be more specific, the magnitude of the third harmonic components are equal in 
the sets {1,2,3} and {7,8,9}, but are 

√3 times higher in the set {4,5,6}. This unequal 
distribution of the currents also leads to an unequal distribution of the overall stator 
power losses: they can be computed to be 31.3% for the subsets {1,2,3} and {7,8,9}, and 37.4% for the subset {4,5,6}. 

Finally, despite the reduction of the RMS current with respect to the sole exploitation 
of �q1, it can be noted that the normalized peak currents are higher than 1, with the 
most affected set being {4,5,6}. 
5.6.3 Multi-harmonic injection strategy 

The multi-harmonic injection strategy developed in Section 5.2.3 is here 
particularized for the analysed asymmetrical nine-phase machine34. The optimal 
synchronous current set is now computed as: 

�dq∗ = √29 ⋅ [0 5 ΨR1 0 3 ΨR3 0 25 ΨR5 0 35 ΨR7 0]T5 ΨR12 + 9 ΨR32 + 125 ΨR52 + 245 ΨR72 ⋅ +,-∗  

which is the particularization of (5.64) and (5.65). 
The power losses reduction can be computed via (5.67) and is: 

�U(MHI)
�U(FUND) = 5 ΨR12

5 ΨR12 + 9 ΨR32 + 125 ΨR52 + 245 ΨR72 ≅ 0.698 
which represents a reduction of the losses of around 30% with respect to the sole 
fundamental harmonic exploitation. 

Fig. 5.17 shows the corresponding optimal phase currents (normalized by ñFUND), 
 

34 Additional details can be found in [122]. 

Fig. 5.16 – Waveforms and harmonic spectra of the reference currents obtained with 
the third harmonic injection strategy.  
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together with their harmonic spectra. Coherently with the theoretical analysis, the 
Fourier decomposition shows the presence of the 1st, the 3rd, the 5th and the 7th harmonics. 

Similarly to the previous case, the currents of a single three-phase subset (i.e., the 
subset {1,2,3}, {4,5,6} or {7,8,9}) are equal and just mutually shifted by 120°. On the 
contrary, the three subsets behave differently from one another. Again, this is due to the 
3rd harmonic contributions which, to satisfy the single isolated neutral point constraint, 
are again unequally distributed among the sets, and are 

√3 times higher in the set {4,5,6}. All the other harmonics (i.e., the 1st, the 5th and the 7th) are instead equally 
shared by all phases. 

Once again, the unequal distribution of the currents also leads to an unequal 
distribution of the power losses. In this case the losses in the subsets {1,2,3} and {7,8,9} 
are around 31.7% of the overall losses, while the subset {4,5,6} is responsible for the 
remaining 36.6%. 

Finally, despite the RMS current reduction, the normalized peak currents are again 
higher than 1, and the most affected subset is {4,5,6} where the peak current is around 50% higher than in case of the sole fundamental harmonic exploitation. 

5.6.4 Maximum torque per ampere strategy 
The MTPA strategy developed in Section 5.2.4 is here applied to the analysed 

machine. The optimal synchronous currents are now computed by processing (5.70) for 
each value of the rotor position %.  

The results of the optimization procedure (5.69) are depicted in Fig. 5.18, which 
shows the synchronous current components and their harmonic spectra35 in the whole 
range [0°; 360°] of %. They have been normalized by ñq1 = √2 9⁄ ⋅ +,-∗ ΨR1⁄ , which is the 

 
35 The currents in the synchronous domain have not been shown for the other strategies 

because they all lead to constant references. 

Fig. 5.17 – Waveforms and harmonic spectra of the reference currents obtained with 
the multi-harmonic injection strategy.  



5.6 - Numerical and experimental results 133 

 

value of the quadrature current �q1 when the fundamental current control strategy is 
implemented. The zero-sequence current �0 is always null (to meet the isolated neutral 
point constraint) and, therefore, is not shown. 

As can be noted, now the synchronous current components are not constant but, 
instead, they are varying with the rotor position with a 6 % periodicity. While �d1, �d5 
and �d7 are zero, the direct axis component �d3 is actively controlled during the machine 
functioning and is also an alternating function of 6%, but with a zero average value.  

It has been numerically computed that the normalized average power losses with this 
strategy are: 

�U(MTPA)
�U(FUND) = √29 ⋅ 1ΨR1 ⋅ 12	 ∫ 14T ⋅ ù,;′ (%) ⋅ 4

28
0

d% ≅ 0.590 
which represents a reduction of the losses of around 41% with respect to the sole 
fundamental harmonic exploitation. 

The corresponding optimal phase currents, obtained through the inverse 
transformation (5.46), are depicted in Fig. 5.19, together with their harmonic spectra. 
Similarly to the previous cases, they are normalized by ñFUND = √2 9⁄ ⋅ ñq1 = (2 9⁄ ) ⋅(+,-∗ ΨR1⁄ ), which is the peak current obtained with the fundamental current control 
strategy presented in Section 5.6.1. 

Contrarily to the previous case, now also higher-order harmonics (i.e., 9th, 11th, 13th, 
etc…) are present in the Fourier decomposition of the optimal currents. This is expected, 
because of the interaction between the rotational transformation �(%) and the %-varying 
set �dq∗ (%).  

Once again, the currents of the same three-phase subset (i.e., {1,2,3}, {4,5,6} or 

Fig. 5.18 – Waveforms and harmonic spectra of the reference currents obtained in 
the synchronous domain with the MTPA strategy.  
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{7,8,9}) are equal and only shifted by 120° from each other, while the currents in the 
three sets are different. The magnitude differences are now not only limited to the 3rd 
harmonic components but are also present in the other orders. 

Similarly to the previous cases, this asymmetry leads to an unequal distribution of 
the power losses. In this case the losses in the subset {1,2,3} are around 33.5%, the losses 
in the subset {4,5,6} are around 33.3% and the losses in the subset {7,8,9} are around 33.2% of the overall dissipation. If compared with the other harmonic injection strategies, 
it can be noted that the proposed MTPA algorithm also leads to a more uniform 
redistribution of the power losses among the machine phases.  

Again, despite the RMS current reduction following the power losses minimization, 
the peak currents are higher than in case of the sole fundamental current exploitation. 

As explained in Section 5.2.4, the additional harmonics introduced by the MTPA 
strategy do not develop any average electromagnetic torque, but are needed to cancel 
out the ripple introduced by the interaction of the other harmonic components. In other 
words, if these higher-order current harmonics are not fully controlled in a real-time 
application, the electromagnetic torque developed by the machine would show a periodic 
ripple, but its average value would be unaffected. 

5.6.5 Torque control strategies comparison 

The analysed torque control strategies working principles and main properties can 
be summarized as follows: 

 the fundamental current control strategy only exploits �q1∗  for the torque 
development and results in all the phase currents to be sinusoidal with the same 
magnitude; 

 the THI strategy exploits a constant �q1∗  and a constant �q3∗  to develop the 
electromagnetic torque, the phase currents show both a fundamental and a 

Fig. 5.19 – Waveforms and harmonic spectra of the reference currents obtained with 
the MTPA strategy.  
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third harmonic component, and their waveforms are not equal for all the 
windings; 

 the MHI strategy exploits a constant synchronous current set �dq∗  for the torque 

development, the phase currents are not sinusoidal but also include a 3rd, a 5th 
and a 7th harmonic, and the 3rd harmonic is unequally shared by different phase 
windings; and 

 the MTPA strategy exploits a %-varying synchronous current set �dq∗ (%) for the 

torque development, the phase currents show multiple harmonics (even with an 
order higher than 7), which are all unequally shared by the different phase 
windings. 

Table 5.IV summarizes some of the overall features obtained from the previous 
numerical analysis, while Fig. 5.20 shows the comparison of the overall machine stator 
losses obtained with the analysed strategies in the whole range [0; 360°] of the rotor 
position % (considering a constant reference torque +,-∗ ). The solid traces represent the 
instantaneous power losses 5U = � ⋅ ∑ ��29�=1 , while the dashed traces represent the 

average losses �U = (1 2	⁄ ) ⋅ ∫ 5U(%) d%28
0  of the machine in a full rotor cycle. All the 

traces of Fig. 5.20 have been normalized by the power �U(FUND) = � ⋅ (2 9⁄ ) ⋅ (+,-∗ ΨR1⁄ )2, 
which is the average dissipation in case of the sole fundamental harmonic exploitation. 

From the results of Fig. 5.20 it can be noted that the instantaneous power losses are 
constant when only the fundamental current components are exploited whereas, for all 
the other strategies, they depend on the rotor position with a 6% periodicity. As expected, 
and as confirmed both by Table 5.IV and by Fig. 5.20, it can be concluded that �U(FUND) ≥ �U(THI) ≥ �U(MHI) ≥ �U(MTPA), meaning that a progressive reduction of the 
power losses can be fulfilled by implementing more advanced control strategies. 

Given the machine asymmetrical configuration, the higher-order harmonics are not 

 

Fig. 5.20 – Comparison of the overall power losses obtained with the different torque 
development strategies.   
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equally distributed in all the phases, leading also to an unequal distribution of the power 
losses, which however becomes progressively less relevant as the number of exploited 
harmonics increases. 

5.6.6 Simulation results 
The proposed control strategies have been tested numerically in the 

MATLAB/Simulink environment. 
The machine model has been realized in the phase variable domain using the 

parameters described in Section 5.5. 
The supplying inverter has been simulated with an average model in a way to filter 

out the effects of the harmonics introduced by the PWM technique. Its overall DC-bus 
voltage has been set to  450 V.  

A digital implementation of the controller described in Section 5.4 has been applied 
and executed with a 10 kHz sampling frequency.  

The feedback controller has been implemented in the multiple synchronous domain 
and it has been realized with a proportional action, an integral action and a single 
resonant action synchronized with 6 &.  

Given the model equations (5.79), the controller for the fundamental, the fifth and 
the seventh space vectors components of the currents have been set similarly to a 
traditional FOC algorithm as: 

 {�dℎ∗ = ;dℎ∗ − ℎ &,M  xℎ �qℎ + �dℎ
�qℎ∗ = ;qℎ∗ + ℎ &,M  xℎ �dℎ + �qℎ

 (5.87)

with ℎ = 1,5,7 and �qℎ = √9 2⁄ ⋅ ℎ & ΨRℎ (where ;dℎ∗  and ;qℎ∗  are the output of the 

feedback PIR controllers).  
On the contrary, the compensation terms of the third space vector components have 

been set differently to neutralize the effect of �¥�� . Basing on the equations (5.80), they 
have been set as: 

Table 5.IV – TORQUE CONTROL STRATEGIES COMPARISON. 

 
Fundamental 

Only 
THI  

strategy 
MHI 

strategy 
MTPA 
strategy 

Synchronous 
current 

components 

�q1 �q1 and �q3 �q1, �q3, �q5, �q7 
�q1, �d3, �q3, �q5, �q7 

(constant) (constant) (constant) (%-varying) 

Phase currents 
harmonics 

1st 1st and 3rd 
1st, 3rd, 5th and 

7th 
1st, 3rd, 5th, 7th, 9th, 

11th, 13th, … 
Average stator 
losses reduction 

0% 15% 30% 41% 

Losses in the 
subset {1,2,3} 33.3% 31.3% 31.7% 33.5% 

Losses in the 
subset {4,5,6} 33.3% 37.4% 36.6% 33.3% 

Losses in the 
subset {7,8,9} 33.3% 31.3% 31.7% 33.2% 
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⎩{⎨
{⎧�d3∗ = ;d3∗ − 3 & x3 �q3 − 2√2 cos(3% + �3 − 	3) ⋅ �¥̃��∗

�q3∗ = ;q3∗ + 3 & x3 �q3 − 2√2 cos(3% + �3 − 	3) ⋅ �¥̃��∗ + �q3
 (5.88)

where ;d3∗  and ;q3∗  are the output of the feedback PIR controllers, while �¥̃��∗  has been 
chosen as: 

     �¥̃�� ∗ = 2√2 &x-33 ⋅ [�d3 ⋅ cos(3% + �3 + 	6) − �q3 ⋅ sin(3% + �3 + 	6)] (5.89)

The term �¥̃�� ∗  expressed in (5.89) has been computed from (5.81) by neglecting the 
transformer induced back-EMFs and by compensating the effect of �0 with the injection: 

 �0∗ = �0 = −6 & ΨR3  sin (3% + �3 − 	3) (5.90)

The computed reference set ·dq∗  has been transformed back into the phase variable 

domain by using the inverse Park transformation (5.46). A constant common-mode 
voltage injection of 225 V (i.e., half of the total DC-bus voltage) has been added after 
the inverse Park transformation to obtain positive reference voltages for the computation 
of the duty-cycles for the semiconductor devices. 

The testing scenario is described as follows. During the whole simulation, the machine 
is controlled to be at a constant speed of 600 rpm and is subject to an external 
mechanical loading torque of 2 Nm. The test involves 4 different time intervals of 200 ms 
each (i.e., 2 fundamental periods). Initially, in the interval [�0, �1], the machine is 
controlled by only using the fundamental current harmonic components by following the 
torque control strategy presented in Section 5.2.1 and particularized in Section 5.6.1. 
Then, in the [�1, �2] time interval, the current references are changed and are computed 
by using the third harmonic injection strategy described in Section 0 and particularized 
in Section 5.6.2. In the third time interval [�2, �3] the strategy is modified into the 
multiple harmonic injection approach described in Section 5.2.3 and particularized in 
Section 5.6.3. Finally, in the interval [�3, �4], the MTPA algorithm of Section 5.2.4 and 
Section 5.6.4 is executed. Since the machine is always kept at the same speed and subject 
to the same loading torque, the analysis of the proposed torque control strategies can be 
done through the machine currents and power losses. 

The results are depicted in Fig. 5.21. All the currents are shown both in the multiple 
synchronous domain and in the phase variable domain. The numerical results also 
include the developed electromagnetic torque +,- and the average machine power losses �U, which have been computed from the instantaneous losses through a moving average 
algorithm as: 

 �U(�) = 1+0 ⋅ ∫ 5U(µ) dµ
ª

ª−�0
= 1+0 ⋅ ∫ ∑ � ⋅ ��2(µ)9

�=1
 dµ

ª

ª−�0
 (5.91)

where +0 = 100 ms is one fundamental period. 
As can be seen, for the first 200 ms only the current component �q1 is controlled to 

a constant non-zero value, and the resulting phase currents are perfectly sinusoidal in 
time, as in Fig. 5.14. The average power losses are around 188 W. 



138 5 - Field Oriented Control of Asymmetrical PMSMs 

When the third harmonic injection is executed, a constant �d3 is applied and the 
current �q1 is reduced accordingly (because the machine is asked to develop the same 
electromagnetic torque). The average power losses, after a 100 ms transient due to the 
moving average procedure (5.91), stabilize around 160 W. The waveforms of the currents 
follow the ideal references of Fig. 5.16. 

Then, the multiple harmonic injection of Section 5.6.3 is performed, and all the 
quadrature current components (i.e., �q1, �q3, �q5 and �q7) are exploited for the torque 
development. The phase currents become highly non-sinusoidal, coherently with the 
waveforms of Fig. 5.17, and the average losses further decrease to around 131 W. 

Finally, the MTPA algorithm is implemented. Coherently with the results of 
Section 5.6.4, the synchronous currents are no longer constant but, instead, show a 
periodic variation with a 6 & angular frequency (with the same waveform of Fig. 5.18). 
While the direct axis components �d1, �d5 and �d7 are still kept to zero, the component �d3 is now actively controlled to track a non-zero reference. The corresponding phase 
currents follow the waveforms depicted in Fig. 5.19 and the average power losses decrease 
down to the final value of around 111 W. 

For each of the torque control algorithm, the numerical results are coherent with the 
theoretical results discussed in Section 5.6.5. The electromagnetic torque, apart from 
small transient deviations during the control strategy transitions, is always kept to 2 Nm. 

5.6.7 Experimental results 

Some of the theoretical analysis of this chapter have been also validated 
experimentally. 

In this case, the machine prototype (represented in Fig. 5.11) has been supplied by 
two custom-made two-level multiphase voltage source inverters, based on Infineon 
FS50R12KE3 IGBT modules. All the 9 inverter legs have a common DC-bus, whose 
voltage is supplied by a Sorensen SGI600/25 single quadrant DC-voltage source and has 
been set to \�� = 450 V. A standard triangular carrier-based PWM algorithm, working 
with a modulation frequency of 5 kHz, has been implemented to operate the converter. 
The dead-time is implemented via hardware and is approximately equal to 5 µs. 

The control algorithm has been implemented with a dSPACE DS1006 platform. It is 
executed with a 10 kHz sampling rate and it is synchronized with the converter PWM 
period. All the 9 machine currents have been measured through external LEM 
transducers, which are connected to a DS2004 ADC board. The machine speed and 
position have been provided through an incremental encoder and acquired through a 
DS3002 encoder board. Additional measurements have been recorded using a Tektronix 
DPO/MSO 2014 oscilloscope, equipped with TCP0030A current probes. 

The testing scenario has been developed to validate the third harmonic injection 
strategy developed in Section 5.6.2 and it has been conducted as follows. The machine 
is feedback-controlled to keep a constant angular speed of 500 rpm. It has been 
mechanically coupled to a DC machine, whole armature terminals are connected to an 
external resistor in a way that the PMSM subject to a mechanical loading torque of 
around 2 Nm.  
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Fig. 5.21 – Simulation results. 
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The torque control strategy has been performed by linearly varying the third 
harmonic injection ratio � = �q3 �q1⁄  in a 20 s time window. All the other component of 
the reference synchronous set �dq∗  have been kept to zero. Since the reference current set 

�dq∗  is constant, a simple PI controller has been used to drive all the components of the 

synchronous current set �dq. The compensation terms in the current controller have been 
set as in (5.87)-(5.89). 

Fig. 5.22 shows the average power losses �U and the quadrature currents �q1 and �q3 
during the testing interval. The obtained waveform is similar to the theoretical results 
depicted in Fig. 5.15. The minimum dissipation is obtained for � ≅ 0.22 which is 
reasonably close to the theoretical optimal ratio �∗ ≅ 0.19 obtained from (5.57). 

An oscilloscope capture of the results is also shown in Fig. 5.23. It shows the measured 
currents �1, �4 and �7 (measured with current probes with 4 turns) without and with the 
optimal third harmonic injection. They have been obtained by step-changing the 
injection ratio � from zero to the theoretical optimal value �∗ ≅ 0.19. As it is evident, 
after an initial transient, the current controller can track the desired references and there 
is good agreement with the corresponding theoretical current waveforms of Fig. 5.14 and 
Fig. 5.16. 

For comparison, Fig. 5.24 shows the same currents when the neutral point potential 
shift �¥��  is not properly compensated in the current control algorithm. In this case, it 
can be noted that the current waveforms are distorted, especially in the first 500 ms. 

 

Fig. 5.22 – Quadrature current components and average power losses for a linearly 
varying third harmonic injection ratio in a 20 s time window. 
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This highlights that the proper compensation of �¥��  is crucial to ensure the current 
controller effectiveness. 

Finally, Fig. 5.25 shows the measured rotor speed & (reported with a scale of 40 mA/(rad/s)) and the torque +- developed at the rotor shaft (reported with a scale 
of 1 A Nm⁄ ) in the same operating conditions of Fig. 5.23. They have been measured by 
a Datum Electronics M425 torque meter positioned at the joint between the PMSM and 
the DC machine. As can be noted, the adopted third harmonic injection does not alter 
the depicted waveforms, which are practically the same both before and after the change 
of the torque development strategy. This is a further confirmation that it is possible to 
alter the waveforms of the machine phase currents in a way to take advantage of the 
available degrees of freedom without affecting the overall torque developed by the 
machine36.  

 
36 For the analysed setup, the oscillations of +- are mainly due to unmodelled or neglected 

phenomena (e.g., cogging torque, imperfect mechanical coupling, etc…). 

 

Fig. 5.23 – Phase currents �1, �4 and �7 without and with the optimal third harmonic 
injection (with the correct compensation of �¥�� ). 

 

Fig. 5.24 – Phase currents �1, �4 and �7 without and with the optimal third harmonic 
injection (with an incomplete compensation of �¥�� ). 
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5.7 Summary and remarks 
The present chapter has focused on the control of permanent magnet synchronous 

machine using a field-oriented approach. The analysis has been carried out considering 
a generic winding configuration (i.e., asymmetrical, with an arbitrary angular shift), in 
a way to explicitly emphasize the main difference with respect to standard symmetrical 
configurations.  

First, Section 5.1 has focused on the modelling of the machine. A space vector 

formalism has been introduced to link the spatial harmonics of the magnetic field at the 
air gap to the machine currents. It has been shown that the electromagnetic torque can 
be expressed as a linear combination of the quadrature components of the currents space 
vectors, each of which is related to a specific spatial harmonic.  

However, for control purposes, only a limited set of space vector components can be 
controlled at the same time. The choice of these components is done by a vector space 
decomposition (VSD), by properly selecting a full-ranked Clarke transformation matrix. 
In asymmetrical configurations, many transformation matrices chosen with a field-
oriented approach are usually not unitary. This affects the power losses expression (which 
can weight differently each current harmonic component) and the transformed 
mathematical model (which may show additional coupling effects among different space 
vector components). 

After the model analysis, some torque control strategies have been developed in 
Section 5.2. It has been shown that also for asymmetrical machine configurations it is 
possible to exploit higher-order spatial harmonic contributions for torque development. 
Considering the fundamental current control as a baseline technique, a third harmonic 

injection, a multi-harmonic injection and a maximum torque per ampere strategies have 
been formulated, emphasizing their benefits and, once again, what are the differences 
between symmetrical and asymmetrical machine configurations. 

 

Fig. 5.25 – Speed and torque acquisitions without and with the optimal third 
harmonic injection. 
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Then, Section 5.3 has focused on the current control strategy, by first introducing 
the standard field-oriented control approach used in symmetrical configurations, and 
then by indicating some changes (like additional compensation terms) to adapt it to 
asymmetrical cases. 

The theoretical analysis, which has been done for a generic machine, has then been 
particularized for a specific asymmetrical nine-phase PMSM, whose details have been 
given in Section 5.5. Finally, Section 5.6 has shown the numerical analysis of the 
proposed torque control approaches, the simulation results in a closed-loop control and 
the experimental results with a real machine prototype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  





6 Decoupled Phase Variable 

Control of PMSMs 

In Chapter 5 it has been shown that field-oriented controllers, despite being viable 
and convenient solutions for symmetrical machines, suffer significant hurdles when 
applied for asymmetrical configurations, including post-fault layouts. Indeed, in such 
cases, the implementation of a proper VSD and rotational transformation may be more 
complex, while the coupling effects between different current components can make the 
current control more challenging. The aim of the present chapter is to propose an 
alternative control algorithm that can automatically overcome the aforementioned 
drawbacks and limitations, therefore being suitable for any machine design and 
configuration [118]. 

The basic idea of the proposed approach is to re-derive the control algorithm without 
using any VSD or rotational transformation, but instead by addressing it directly in the 
phase variable domain. This is done while explicitly taking into account the electrical 
topology of the drive, by exploiting the properties and results of the network modelling 
approach developed in Chapter 4.  

The concept of developing a machine control directly in the phase variable domain 
is not new, but its application has never spread out if compared to FOC algorithms, 
since the majority of electrical drives (both in industrial and in traction applications) 
are three-phase and are intrinsically symmetrical. On the contrary, as it has been 
previously discussed, multiphase drives can be realized in several different configurations, 
regarding both the machine design and the electrical topology. Moreover, even 
symmetrical multiphase machines may expose an asymmetrical behaviour when subject 
to faults. 

The main benefit of the proposed approach is its generality. Indeed, the same 
controller structure can be applied for any machine design (e.g., different magnetic axes 
disposition, back-EMFs waveforms, etc…) and for any electrical configuration (e.g., single 
or multiple neutral points, open-end windings, etc…). This also makes it possible to use 
the same controller in case of post-fault reconfigurations of the same machine, which is 
an undoubted benefit for fault-tolerant multiphase drives. Based on these properties,  the 
proposed approach can be considered a viable alternative to standard multiphase drives 
control algorithms. 

The chapter is structured as follows. Section 6.1 summarizes the mathematical model 
of the analysed PMSM drive, which strongly relies on the network model properties 
derived in Chapter 4 and represents the analytical core for the control derivation. Section 
6.2 describes a current references computation strategy based on a maximum torque per 
ampere (MTPA) approach, analyses its properties and explains how it can also be 
implemented for independent torque control strategies. Then, the current control is 
examined. The proposed current controller consists of two components, which are 
described in detail in Section 6.3 and in Section 6.4, respectively. The first component is 
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a decoupling algorithm, aimed at neutralizing the mutual interactions among the 
different machine phases, which come both from the magnetic phenomena inside the 
machine and from the electrical connection among the phase windings. The second 
component is a decoupled controller, which individually drives each phase current to 
seek the corresponding reference computed by the MTPA algorithm. The overall control 
algorithm is summarized in Section 6.5. Its experimental validation is described in 
Section 6.6 (which describes the adopted nine-phase PMSM setup) and in Section 6.7 
(which discusses different testing scenarios). Finally, Section 6.8 sums up the conclusion 
of the work.  

Again, as done in Chapter 5, the subscripts “EM” and “VSI” adopted in Chapter 4 
will not be used anymore. The converter leg voltages set will be denoted as · and the 
electrical machine phase voltages set will be denoted as �. Additionally, the network 
resistance matrix �¥��  is supposed to be negligible. 

6.1 Mathematical model 
The drive under analysis consists of a �-phase PM machine supplied by a ¦-leg 

converter. All the � machine windings are located on the stator and the permanent 
magnets are placed on the rotor surface. The analysis is done considering magnetically 
isotropic machines, for which the rotor does not present any variable reluctance effect. 
Additionally, the effects of the stator slots are also disregarded. 

Contrarily to the analysis of Chapter 5, no other assumptions are made regarding 
the machine phase windings design and the converter architecture.  

This section particularizes the generalized machine model presented in Chapter 2 to 
the examined configuration, explicitly considering the drive architecture model analysed 
in Chapter 4 through the multiport network approach. Fig. 6.1 shows a schematic 
representation of a multiphase drive with the explicit identification of the PMSM, of the 
VSI (average model) and of the interconnection network. 

6.1.1 Machine model 
As also presented in Chapter 2, under the linearity hypothesis, the fluxes induced in 

each of the � stator windings is given by the superimposed contribution of the magnetic 
field generated by all the phase currents and by the permanent magnets on the rotor. 
The generalized model (2.29) is particularized into: 

 � = z ⋅ � + yQR(%) (6.1)

For magnetically isotropic machines the � × � inductances matrix z does not depend 
on the rotor position %. As shown in Chapter 2, for energy-related reasons, z is always 
symmetric and positive definite. As discussed in Chapter 5, in the special case of a 
symmetrical machine design (i.e., when all the windings are identical and equally shifted 
along the stator periphery), z is also a circulant matrix, meaning that it also results x�,ℎ = x�+1,ℎ+1 for all �, ℎ = 1,… , �. 

The � × 1 PM induced fluxes set yQR  is a periodic function of the rotor position %. 
The waveforms of the flux linkages depend both on the magnetic field distribution 
generated at the air gap by the permanent magnets (e.g., sinusoidal, trapezoidal, etc.) 
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and on the spatial distribution of the stator windings (e.g., distributed or concentrated 
windings). A Fourier decomposition can be applied with respect to the mechanical 
position 0 ≤ % < 2	 to identify the different harmonic contributions, each of which is 
related to a specific spatial harmonic of the magnetic field at the air gap. The 
fundamental harmonic of this Fourier decomposition identifies the pole pair periodicity 
of the machine. In other words, for a machine with �� pole pairs, the set yQR  varies 

with the electrical angle %,M = �� ⋅ %. For purely sinusoidal machine only one fundamental 
harmonic is present. On the contrary, for a non-sinusoidal machine, multiple harmonics 
are present. In the special case of a symmetrical machine design, the flux linkages induced 
by the PMs in two consecutive phases expose identical waveforms, which are shifted 
from one another by the angle Ç = 2	 ���⁄ . This property is not guaranteed for a generic 
machine configuration, for which the flux linkages induced in different phase windings 
can also differ from one another.  

From the fluxes expression (6.1), the induced back-EMFs can be split in the 
transformer induced contribution and the motional induced contribution as: 

 
d�d� = z ⋅ d�d� + & �QR(%) (6.2)

where it is here recalled that & = d% d�⁄  is the rotor mechanical speed, and �QR(%) =3yQR 3%⁄  is the � × 1 set of normalized PM-induced back-EMFs. Similarly to yQR , also �QR  periodically varies with the rotor position % and can be studied as the superposition 
of different harmonics of its Fourier spectrum. The same properties regarding the pole 
pair periodicity and harmonic content are also valid. 
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Fig. 6.1 – Schematic representation of a six-phase multiphase PMSM drive architecture, 
with explicit identification of the VSI (average model) and of the electrical interconnection 
network (double-star configuration with two isolated neutral points).  
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By denoting as � = & �QR(%) the motional-induced back-EMFs, the machine 
electrical equations can be written in a matrix formalism as: 

 z ⋅ d�d� + � ⋅ � + � = � (6.3)

Since for magnetically isotropic PM machines the variable reluctance effects are 
absent, the electromagnetic torque expression (2.33) only depends on the interaction 
between the stator currents and the rotor magnets, and is therefore simplified to: 

 +,- = �QRT (%) ⋅ � (6.4)

6.1.2 Drive electrical model 

As explained in Chapter 4, the machine phase windings are connected with each 
other and to the supplying converter through a known interconnection network, which 
typically introduces some algebraic constraints to the machine currents. The �D ≤ � 
constraints be modelled through the vector equation: 

 �T ⋅ � = û (6.5)

where �  is the � × �D constraints matrix. By neglecting the network resistive voltage 
drops1, the machine electrical equation (4.18) is therefore expressed as: 

 z ⋅ d�d� + � ⋅ � + �  =  �  =  ú ⋅ · − � ⋅ �¥��  (6.6)

where · is the ¦ × 1 set of converter leg voltages and �¥��  is the �D × 1 set of auxiliary 
network voltages representing the potential shift due to the constraints on the currents. 

As explained in Chapter 4, the model dependence on the auxiliary network voltages 
set �¥��  can be dropped out by projecting the system equation (6.6) in the configuration 
space, which is identified by the � × �l configuration matrix �l  (with �l = � − �D). As 

explained in Section 4.4, the matrix �l  can be computed from the singular value 

decomposition of �  and is such that: 

 � = �l ⋅ �l ,       and       �lT ⋅ � = û (6.7)

where �l  is a �l × 1 set of free current components and can be found from the original 

set of phase currents as �l = �lT ⋅ �.  
The electrical equations (6.6) of the drive model can be therefore transformed in the 

reduced-order equations: 

 zl ⋅ d�ld� + �l ⋅ �l + �l  =   �l  =  úl ⋅ · (6.8)

where, coherently with the definitions of Section 4.4.4, the projections of the variables 
and the parameters in the configuration space is given by: 

 
1 The network resistive drops could however also be explicitly considered by merging the 

network resistances matrix �¥��  to the machine resistances matrix �.  
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zl = �lT ⋅ z ⋅ �l  �l = �lT ⋅ � ⋅ �l  úl = �lT ⋅ ú �l = �lT ⋅ � �l = �lT ⋅ � = �lT ⋅ & �QR(%) 
(6.9)

6.1.3 Mechanical model 
Similarly to how it has been discussed in Section 5.1.7, the equivalent mechanical 

model of the electrical machine and of the connected rigid bodies can be represented 
through the equations: 

 ',; ⋅ d&d� + (,;(&) ⋅ & = +,- − +MØï¶ (6.10)

 
d%d� = & (6.11)

where it is recalled that ',; = ' + '- and (,;(&) = [((&) + (-(&)] respectively 
represent the overall inertia and the overall friction coefficient of the mechanical group 
(i.e., including both the electrical machine and the mechanical load). In this framework, +MØï¶ identifies the loading torque applied to the drive (which it is worth recalling to be 
different from the mechanical torque +- applied at the rotor shaft of the electrical 
machine).  

6.2 Torque control strategy 
The machine control strategy is aimed at developing a desired electromagnetic torque +,-∗ , typically coming from a speed controller. Given (6.4), this requirement can be 

obtained by formulating a proper strategy to compute the reference currents set �∗.  
Naturally, for the reference currents to be feasible, the � × 1 set �∗ must satisfy the 

algebraic constraints �T ⋅ �∗ = û related to the network configuration. This means that, 
for a �-phase machine subject to �D algebraic constraints, there are �l = � − �D free 
current components which can be chosen. Moreover, the torque development requirement 
can be also formalized as an additional constraint for choosing the current references set. 
As a result, there are �l − 1 degrees of freedom to choose the set �∗ while producing the 

desired torque +,-∗  and respecting the network algebraic constraints at the same time. 
These degrees of freedom can be properly exploited to optimize some system 

performances by choosing a convenient objective function. The present section proposes 
a maximum torque per ampere (MTPA) strategy to compute �∗. 

6.2.1 Maximum torque per ampere algorithm 
The MTPA strategy is aimed at developing the maximum possible electromagnetic 

torque for a given machine equivalent current ñ,;. This requirement is perfectly 

equivalent to develop the given reference torque +,-∗  while minimizing ñ,;. 
In the present analysis, the machine equivalent current is chosen to be an overall 

root mean square (RMS) current ñURe computed as the Euclidean norm of the machine 
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currents set �: 
 ñURe = ‖ � ‖ = √�T ⋅ � = √ ∑��2�

�=1
  (6.12)

For a machine with equal windings resistances, the current ñURe is directly related 
to the machine losses. Indeed, in such a case, the instantaneous Joule losses of the 
machine would be expressed as: 

 5U = ∑ � ⋅ ��2�
�=1

= � ⋅ ñURe2  (6.13)

Therefore, the minimization of ñURe would lead to the minimization of the Joule losses 
in the machine windings. Consequently, the thermal stress on the machine would be 
reduced and the energetic efficiency of the drive would be optimized2. 

Since the minimization of ñURe can be also addressed by minimizing ñURe2 , the 
proposed MTPA algorithm is formalized as the constrained optimization problem3: 

 minE {�T ⋅ �}     subject to   {�QRT ⋅ � = +,-∗�T ⋅ � = û  (6.14)

The optimization problem (6.14) is the minimization of a quadratic function of � 
variables subject to a set of �D + 1 linear constraints. As known, it could be solved with 
a pseudo-inverse algorithm. However, since the set �QR  of normalized PM-induced back-
EMFs varies with the rotor position %, the corresponding pseudo-inverse matrix could 
not be computed offline. Therefore, this resolution approach is unfeasible for real-time 
applications using typical digital controllers. 

For this reason, an analytical solution for (6.14), suitable for a real-time 
implementation, is here derived by using the Lagrange’s multiplier method. By 
considering both the objective function ñURe2 = �T ⋅ � and the linear constraints �QRT ⋅� = +,-∗  and �T ⋅ � = û, a possible choice for the Lagrangian function is: 

 G(�, I,Y) = 12 �T ⋅ � − I ⋅ (�QRT ⋅ � − +,-∗ ) − YT ⋅ (�T ⋅ �) (6.15)

where: 
 I is the Lagrange multiplier related to the reference torque development 

requirement, and  
 Y is the �D × 1 vector of Lagrange multipliers related to the �D algebraic 

constraints on the machine currents expressed by (6.5). 
The optimal solution to the minimization problem (6.14) is found by nullifying the 

 
2 For a machine with different windings resistances, the windings losses minimization can be 

achieved by formulating the overall machine RMS current differently. For example, a possible 
formulation would be ñURe = (√�� ⋅ ��2) �0⁄ = (√�T ⋅ � ⋅ � ) �0⁄  for any value of �0. The overall 
machine windings losses would be 5U = �0 ⋅ ñURe2  and all the proposed arguments of this section 
would still be valid, with only some slightly different formulations for the final results. 

3 The explicit dependence of �QR  on the rotor position % has been omitted for notation 
compactness. 
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gradient of the Lagrangian G(�, I, Y). This leads to the following linear algebraic system 
of (� + �D + 1) equations in (� + �D + 1) variables: 

 

3G3� = � − I ⋅ �QR − � ⋅ Y = û 
3G3I = �QRT ⋅ � − +,-∗ = 0 
3G3Y = �T ⋅ � = û 

(6.16)

The linear system (6.16) has a unique solution which, since the objective function (6.12) 
is convex, is the global minimum of the optimization problem (6.14). Then, the analytical 
formulation of the optimal current set �∗ is4: 

 �∗ = Z ⋅ �QR�QRT ⋅ Z ⋅ �QR ⋅ +,-∗  (6.17)

where Z  is a � × � MTPA weighting matrix defined as: 

 Z = � − � ⋅ (�T ⋅ �)−1 ⋅ �T (6.18)

The matrix Z  only depends on the algebraic constraints imposed on the machine 
currents. Therefore, it can be computed offline, and the computation of �∗ via (6.17) is 
suitable for real-time applications. The set �∗ is then the input reference for the current 
control algorithm.  

The functional block scheme of the algorithm (6.17) is schematically represented in 
Fig. 6.2.  

It can be proven5 that the weighting matrix is equal to the configuration space 
projection matrix Z = �l ⋅ �lT. This property may be convenient for the algorithm 

numerical implementation, especially in case of ú = � , because it provides an alternative 
way to compute the projection matrix �l ⋅ �lT via (6.18), without using the singular 

value decomposition of � . As will be seen in Section 6.3, the matrix �l ⋅ �lT has an 

important role for the decoupled current control. 

The same MTPA strategy can also be completely formalized in the configuration 
space, resulting in the expression (9.23), which gives the same reference currents obtained 
via (6.17)6. 

In case of a single isolated neutral point configuration (in which the constraint matrix 
is simply � = [1, 1, 1,… , 1]T) the solution (6.17) is completely equivalent to the solution 
(5.70) obtained in the synchronous domain (it is indeed the same optimization problem, 
which is only formulated with a different variable representation).  

 
4 Proven in Appendix 9.6.1. 
5 Proven in Appendix 9.6.2. 
6 Proven in Appendix 9.6.3. 
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6.2.2 MTPA solution properties 
Several properties can be deduced from the inspection of (6.17).  

First, as expected, the optimal phase currents set �∗ is proportional to the reference 
torque +,-∗  and depends periodically on the rotor position % through the effect of �QR(%). 
As a result, when the machine works in steady-state conditions at a constant speed and 
with a constant loading torque, the reference currents are periodic in time and their 
period is proportional to the rotor speed & (to be more specific, their period is linked to 
the machine electrical speed &,M = �� ⋅ &). 

In many typical operating conditions, the denominator (�QRT ⋅ Z ⋅ �QR) in the 
expression (6.17) is constant and the optimal reference current set �∗ is proportional to 
the normalized back-EMFs set �QR . As a result, in steady state conditions, the currents 
have the same harmonic content as the PM-induced back-EMFs. All the harmonics 
contribute to the development of the electromagnetic torque and their mutual interaction 
does not lead to any torque ripple. This is, for example, what typically happens for 
sinusoidal machines in healthy configurations, either when the magnetic axes disposition 
is symmetrical or when the � windings can be split in multiple symmetric subsets (e.g., 
multiple three-phase configurations). In other words, for these configurations, the 
optimal currents are also sinusoidal functions of %. 

On the contrary, in all the other cases when (�QRT ⋅ Z ⋅ �QR) is not constant, the 
optimal currents set �∗ is not proportional to �QR  and, in steady-state conditions, it 
shows also harmonic components which are absent in the PM-induced back-EMFs 
spectra. These additional harmonics do not develop any average electromagnetic torque, 
but are only needed to neutralize the torque ripple caused by the mutual interactions of 
the other harmonics appearing in both �∗ and �QR  harmonic spectra at the same time. 
This behaviour not only exists in machines with highly non-sinusoidal back-EMFs but 
can also be observed for machines with sinusoidal PM-induced back-EMFs in case of 
post-fault reconfigurations. In other words, the optimal currents computed via (6.19) in 
healthy configurations might be sinusoidal, while in case of post-fault conditions (where 
the only difference is in the weighting matrix Z ) they might be non-sinusoidal. 

Some problems may arise when the denominator (�QRT ⋅ Z ⋅ �QR) of (6.17) is close 
to zero. Indeed, in this case, the computed reference currents would tend towards infinity 
and be unfeasible for real applications. When this happens, it means that the machine 
is not capable of supplying the required electromagnetic torque +,-∗  while satisfying the 
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Fig. 6.2 – Functional block scheme of the MTPA algorithm. 
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hardware constraints at the same time7. For example, this is what would happen in case 
the stator currents cannot generate a rotating magnetic field at the air gap (as it happens 
for a single-phase machine). Anyway, this occurrence seldom occurs to multiphase drives8 
and, therefore, it can be disregarded in this context. A proper saturation of the set �∗ 
computed by (6.17) should be nevertheless implemented in order to avoid unreasonable 
high values of the reference currents, thus preventing overcurrent phenomena. 

6.2.3 Torque sharing strategy 
The proposed MTPA strategy (6.14) can also be applied to some machine windings 

subsets. This may be useful in case different groups of windings are supplied by 
independent sources, because it allows the control to transfer power between them, as 
depicted in Fig. 6.3.  

By considering a total number �e��  of isolated windings groups, this capability is 
met by simply partitioning both the vector �QR  and the vector � into �e��  subsets and 
applying (6.14) to each one of them. Mathematically speaking, the expressions (6.17) 
and (6.18) are particularized in: 

 �e��ℎ
∗ = Ze��ℎ ⋅ �QR,e��ℎ�QR,e��ℎ

T ⋅ Ze��ℎ ⋅ �QR,e��ℎ
⋅ +,-,e��ℎ

∗  

Ze��ℎ = � − �e��,ℎ ⋅ (�e��ℎ
T ⋅ �e��ℎ)−1 ⋅ �e��ℎ

T  

(6.19)

 (6.20)

which must be applied to each ℎ-th subset (with ℎ = 1,… , �e�� ), as schematically 
represented in Fig. 6.4.  

The constraint matrix �e��ℎ and, consequently, the weighting matrix Ze��ℎ only 

 
7 This limitation is unrelated to the electrical drive control algorithm, and is instead 

intrinsically related to the drive configuration. When this happens, the torque development 
strategy cannot be imposed instantaneously as in (6.14) but, for example, only on average in a 
full rotor cycle (like it is done in single-phase machines). 

8 Given the presence of many phases, being unable to generate a rotating field at the air-gap 
would require a high number of faults. 

SET1 SET2

SET3  
Fig. 6.3 – Power transfer between isolated phase windings subsets.  
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refer to the phases of the ℎ-th windings group, just as if they were referred to a different 
PMSM with a reduced number of phases. Also, note that the different windings groups 
can also have a different number of phases (as exemplified in the illustration of Fig. 6.3). 

The reference torque +,-,e��ℎ
∗  of each ℎ-th subset can be chosen according to a 

desired power-sharing requirement. To give a practical example a windings subset with 
a higher reference torque will provide more power than one with a lower reference torque. 
Similarly, a subset with a reference torque in opposition to the rotor speed would absorb 
mechanical power instead of supplying it (i.e., it would behave as a “braking” subset 
instead of a “motoring” subset). The only condition to meet to keep guaranteeing the 
overall torque development (which is usually needed for the speed control), is: 

 ∑ +,-,e��ℎ
∗�[\ì

ℎ=1
= +,-∗  (6.21)

From the electromechanical point of view, this approach can be interpreted as 
applying the MTPA strategy to different PM machines having the same rotor. However, 
it is worth emphasizing that generally, from the electromagnetic point of view, the 
different subsets dynamically interact with one another. Consequently, contrarily to the 
current references computation strategy, the current control (which will be discussed in 
the following sections) cannot be separately applied to the different subsets. 

6.3 Decoupling current control algorithm 
Once the reference currents set �∗ has been computed, the control algorithm must 

find a set of reference converter voltages ·∗ to drive the measured currents set � towards �∗. However, the dynamical equation (6.6) regulating the machine currents can be 
interpreted as a multi-input/multi-output control problem and, therefore, the 
simultaneous control of all the phase currents is not a trivial process.  

Indeed, as already discussed, the currents are subject to multiple mutual interactions, 
which can be caused both by the magnetic phenomena in the machine (through the effect 
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Fig. 6.4 – Application of the MTPA strategy for torque sharing purposes.  
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of the mutually induced back-EMFs) and by the phase windings connection (due to the 
internal feedback actions caused by the constraints of the current). 

This section presents and discusses a decoupling algorithm scheme, aimed at 
neutralizing the aforementioned mutual interactions. In this way, the machine phase 
currents can be controlled independently from one another by using a decoupled 
controller design, which will be analysed in Section 6.4. 

6.3.1 Decoupling algorithm principle 

The basic idea of the proposed solution is simple. It consists of replicating the 
equation (6.8) describing the drive model (in the configuration space), but by 
substituting the real current derivatives d�l d�⁄  with a set ]�l∗  of reference current 

derivatives. This operation results in a desired set of voltages �l∗  which is computed as: 

 zl ⋅ ]�l∗ + �l ⋅ �l + �l  =   �l∗  (6.22)

The reference derivative set ]�l∗  is computed basing on �∗ and � through the procedure 

which will be described in Section 6.4. 

Proving that the position (6.22) does achieve the desired currents dynamics 
decoupling is straightforward. Indeed, if �l = �l∗  (i.e., if the voltage supply is done 

properly), (6.22) can be substituted into the reduced-order drive model (6.8) and the 
following formula is obtained: 

 zl ⋅ d�ld� + �l ⋅ �l + �l  =  zl ⋅ ]�l∗ + �l ⋅ �l + �l (6.23)

Then, by cancelling out the resistive term �l ⋅ �l  and the motional induced back-EMFs 

term �l and by grouping the remaining terms, it results that: 

 zl ⋅ (d�ld� − ]�l∗ ) = û (6.24)

Since zl is a �l × �l symmetric and positive definite matrix, the only solution to the 

homogeneous vector equation (6.24) is obtained when the multiplying vector is zero or, 
in other words, when: 

 
d�ld� = ]�l∗  (6.25)

This equation can be separately applied to each of the �l  current components, resulting 

in the system of equations: 

 
d�l,�d� = ^�l,�∗      (with � = 1,… , �l) (6.26)

This means that, by only acting on the �-th reference derivative ^�l,�∗ , each �-th current 

component �l,� can be controlled independently from all the others. Therefore, thanks 

to the position (6.22), it has been possible to achieve the dynamic decoupling of the 
current components in the configuration space. The working principle of this decoupling 
algorithm is schematically represented in the block diagram of Fig. 6.5.  
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6.3.2 Decoupling algorithm requirements 
This paragraph shows what are the mathematical properties that the drive model 

must satisfy to meet the condition (6.22), which achieves the desired decoupling. 
The controller must compute a set of reference converter voltages set ·∗ in a way to 

supply the desired �l∗ . This requirement can be interpreted as the resolution of the linear 

system: 

 úl ⋅ ·∗ = �l∗  (6.27)

where �l∗  is known and has been computed as per (6.22).  

Since úl = �lT ⋅ ú  is a �l × ¦ matrix, the vector equation (6.27) is a system of �l  

equations in ¦ unknowns. Usually ¦ ≠ �l  and special attention must be given to the 

resolution of (6.27). Indeed, the existence and uniqueness of the solution may not be 
satisfied. 

To guarantee the existence of the solution for any possible value of the reference 
vector �l∗ , the number of equations �l  should not be greater than the number of 

unknowns ¦. Therefore, it must result ¦ ≥ �l , meaning that úl  should be either a 

square matrix or a horizontal rectangular matrix (i.e. the number of converter legs ¦ 
should be greater than the number of free current components �l = � − �D).  

As a trivial example, a three-leg converter (¦ = 3) cannot fully control the phase 
currents of a five-phase machine (� = 5) with a single isolated neutral point configuration 
(�D = 1), because it would result �l = � − �D = 5 − 1 = 4 > 3 = ¦.  

The condition ¦ ≥ �l  is not sufficient, by itself, to always guarantee the solvability 

of the system (6.27). Indeed, another requirement is that all the �l  equations of (6.27) 

must be compatible with each other. This condition is satisfied when all the rows of úl  

are linearly independent from one another (i.e., when the rank of úl  is equal to �l). If 

this prerequisite is not met, the equation (6.27) may not have a solution because two or 
more equations conflict with one another. Physically, this condition would mean that 
some winding voltages (or some combinations of winding voltages) in the electrical 
machine cannot be directly affected by the VSI leg voltages.  
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Fig. 6.5 – Working principle of the proposed decoupling algorithm: a) Expanded 
functional block diagram; b) Equivalent block diagram of the decoupled system (i.e., 
simple integrator).  
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As a trivial example, a converter leg that is not connected to any machine terminal 
cannot influence any machine winding voltage and the matrix úl  would have a row 

with all zeros.  

Another trivial example is represented by the parallel connection of two windings: in 
this case, the corresponding voltages would always be equal, and the converter would 
not be able to individually influence them. The matrix úl  would have two identical 

(and therefore, linearly dependent) rows, meaning that its rank would be lower than �l . 

To sum up the results of this section, the decoupling algorithm (6.22) can be applied 
if that the matrix úl  is full-ranked and with ¦ ≥ �l . This prerequisite is met by most 

of the typical multiphase drive configurations, and is automatically verified if ú  is a 
full-ranked � × ¦ matrix9. For this reason, the solvability of (6.27) will be further on 
taken for granted. 

6.3.3 Pseudo-inverse based decoupling algorithm 
Provided that (6.27) can be solved and, therefore, that the decoupling algorithm 

(6.22) can be applied, it is here shown what is the resulting analytical expression of the 
converter references voltages set ·∗. 

If úl  is a square matrix, the system (6.27) only has one solution which can be 

computed by a simple matrix inversion as: 

 ·∗ = úl−1 ⋅ �l∗ = úl−1 ⋅ (zl ⋅ ]�l∗ + �l ⋅ �l + �l) (6.28)

If úl  is a rectangular matrix, the system (6.27) has infinite solutions. The general 

formulation of a solution can be decomposed into two parts: 

 ·∗ = ·Ø�ª∗ + ·0∗ (6.29)

The voltage set ·Ø�ª∗  in (6.29) is the minimum-norm solution10 of (6.27), and can be 
computed as: 

 ·Ø�ª∗ = úl† ⋅ �l∗ = úl† ⋅ (zl ⋅ ]�l∗ + �l ⋅ �l + �l) (6.30)

where úl† is the Moore-Penrose pseudo-inverse of úl , and is such that úl ⋅ úl† = �. It 

can be noted that the expression (6.30) takes the same form of (6.28) and can be 
interpreted as being its generalization when úl  is not a square matrix.  

The voltage set ·0∗  is any ¦ × 1 vector belonging to the null-space of úl  (i.e., such 

that úl ⋅ ·0∗ = û). Since úl  has a rank �l ≤ ¦, the number of degrees of freedom for 

choosing �0∗ is ¦ − �l = (¦ − �) + �D. This means that ·0∗  can be related both to the 

presence of more converter legs than the number of machine phases (i.e., when ¦ > �) 
and to the presence of algebraic constraints for the machine currents (i.e., when �D > 0). 

 
9 Proven in Appendix 9.6.4. 
10 This means that the vector ·Ø�ª∗  is the solution of (6.27) which minimizes the Euclidean 

Norm of the VSI reference voltages set, which is ‖·∗‖ = √(·∗)T ⋅ ·∗. 
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In this latter case, ·0∗  can be interpreted as the generalized formulation of the common-
mode voltage injection which is typically applied in star connected system with isolated 
neutrals. This means that a lack of degrees of freedom for the machine phase currents 
leads to the presence of more degrees of freedom for the converter leg voltages.  

Since the minimum norm set ·Ø�ª∗  computed as per (6.30) usually requires some 
converter leg voltages to be negative, and given that this requirement cannot be achieved 
through most of the inverter architectures, the set ·0∗  can be chosen to properly condition 
the overall leg voltages set ·∗ to be in a feasible range. Then, a general formulation for 
this injection set is11: 

 ·0∗ = (� − úl† ⋅ úl) ⋅ ·Øll∗  (6.31)

where ·Øll∗  is a desired offset voltages vector, which can be chosen as the set of midrange 

voltages values associated with each converter leg (e.g., half of the DC-bus voltage) or 
through other known common-mode voltage injection algorithms (e.g., min-max 
injection, higher harmonic injections, etc.). It can be proven12 that, with the position 
(6.31), the voltage set ·∗ = ·Ø�ª∗ + ·0∗ is the solution of (6.27) that minimizes the 

Euclidean norm ∥· − ·Øll∗ ∥, which represents a distance between the leg voltages set · 

and the desired offset voltage vector ·Øll∗ .  

The proposed decoupling algorithm is general and can be applied to a wide range of 
different machine and drive configurations, including concentrated or distributed 
windings design, symmetrical or asymmetrical magnetic axes configuration, sinusoidal or 
non-sinusoidal induced back-EMFs, single or multiple-star connections, healthy and 
faulty scenarios, and so on. Its schematic block diagram is represented in Fig. 6.6. 

6.3.4 Decoupling algorithm in the phase variable domain 
The decoupled algorithm presented in the previous sections has been completely 

formalized within the configuration space of the drive, concerning the reduced-order 
model (6.8). This approach can be directly reformulated for the whole full-order drive 
model (6.6) with relatively few changes. 

 
11 Proven in Appendix 9.6.5. 
12 Proven in Appendix 9.6.6. 
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Fig. 6.6 – Functional block scheme of the decoupling algorithm implemented in the 
configuration space.  



6.3 - Decoupling current control algorithm 159 

 

Consider the reference derivative set for the free current components ]�l∗ . This set is 

a �l × 1 vector of the configuration space. The corresponding reference derivatives set 

for the real machine currents is a � × 1 vector ]�∗ such that: 

           �T ⋅ ]�∗ = û,           ]�∗ = �l ⋅ ]�l∗ ,        and       ]�l∗ = �lT ⋅ ]�∗ (6.32)

By pre-multiplying both sides of (6.25) for �l  and by considering (6.32), it results: 

 
d�d� = ]�∗ (6.33)

which, once expressed in components, is: 

 
d��d� = ^��∗      (with � = 1,… , �) (6.34)

This consideration means that, by using a reference set ]�∗ compatible the hardware 
constraints, the proposed decoupling algorithm not only works for the configuration 
space components �l , but also for the actual (i.e., �-dimensional) set of the machine 

phase currents �. 
The expressions (6.30) of the minimum-norm voltage reference ·∗ is computed as13: 

 ·Ø�ª∗ = [(�lT ⋅ ú)† ⋅ �lT] ⋅ (z ⋅ ]�∗ + � ⋅ � + �) (6.35)

This expression is given by the product of two terms: 

 the ¦ × � matrix [(�lT ⋅ ú)† ⋅ �lT], which is only related to the interconnection 

network and does not depend on the machine parameters, and 

 the � × 1 vector (z ⋅ ]�∗ + � ⋅ � + �), which is only related to the machine 
parameters and does not depend on the interconnection network. 

The expression (6.31) of the injection voltage set ·0∗  is instead unaltered by referring 
to the full-order drive model. By recalling that úl = �lT ⋅ ú , the same expression is 

here explicitly rewritten as: 

 ·0∗ = [� − (�lT ⋅ ú)† ⋅ (�lT ⋅ ú)] ⋅ ·Øll∗  (6.36)

The schematic diagram of the decoupling algorithm implemented directly in the 
phase variable domain is depicted in Fig. 6.7. As can be seen, the algorithm can be 
grouped in two separate sections: 

 the “Machine Compensation” block, that identifies the machine-related terms, 
which are independent of the electrical topology of the system, and  

 the “Network Compensation” block, that identifies the network-related terms, 
which are independent of the machine parameters.  

 
13 Proven in Appendix 9.6.7. 
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The expressions (6.35)-(6.36) are simplified when ú = � , which is the case of most 
star and multiple-star connected drive configurations (both in healthy and in faulty 
scenarios). Indeed, in such a case, the expressions simply become: 

 ·Ø�ª∗ = (�l ⋅ �lT) ⋅ (z ⋅ ]�∗ + � ⋅ � + �) (6.37)

 ·0∗ = (�D ⋅ �DT) ⋅ ·Øll∗  (6.38)

Then, in this case, it can be concluded that: 
 the minimum-norm voltages set ·Ø�ª∗  is the projection of the reference vector (z ⋅ ]�∗ + � ⋅ � + �) in the configuration space, 
 the injection vector ·0∗  can be computed by projecting any offset vector ·Øll∗  in 

the complementary configuration space. 
The functional block diagram of Fig. 6.7 is modified into the diagram of Fig. 6.8. As can 
be seen, the machine compensation block is still the same, while the network 
compensation block is simplified and does not require any Moore-Penrose pseudo-
inversion. 

All the formerly addressed generality properties of the proposed decoupling algorithm 
are still valid. Additionally, by directly formulating it in the phase variable domain, it 
can be concluded that: 

 Once the electrical machine parameters are given, the vector �∗ =(z ⋅ ]�∗ + � ⋅ � + �) (i.e., the machine compensation blocks of Fig. 6.7 and Fig. 
6.8) is always computed with the same expression, regardless of how the 
different phases influence each other. Any detectable change in the machine 
parameters (for example, related to thermal effects) can be directly considered 
by properly updating the corresponding terms. 

 Once the network configuration is given, all the pre-multiplying matrices in 
(6.35)-(6.36) (i.e., the network compensation blocks of Fig. 6.7 and Fig. 6.8) 
are univocally identified. For a real-time implementation, they can be computed 
during the algorithm initialization and can be updated only in case of network 
reconfigurations (for example, after a fault recognition). 
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Fig. 6.7 – Functional block scheme of the decoupling algorithm implemented in the 
phase variable domain. 
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6.4 Decoupled current control algorithm 
Once the proposed decoupling algorithm is implemented, the machine currents can 

be independently controlled from one another. This means that the multi-input/multi-
output control problem is conveniently reduced in multiple single-input/single-output 
control problems, which can be solved through well-known tools of control theory. 

The decoupled current control aims to drive the � × 1 machine currents set � towards 
the desired references current set �∗. Naturally, to be feasible, the reference current set �∗ must satisfy the same hardware constraint �T ⋅ �∗ = û of the actual machine currents, 
which is automatically guaranteed by the current references computation strategy 
presented in Section 6.2.  

If executed in the configuration space, the decoupled current control algorithm is 
asked to compute the �l × 1 reference derivatives set ]�l∗  to be used in (6.30). If executed 

in the phase variable domain, the decoupled current control algorithm is instead asked 
to compute the � × 1 reference derivatives set ]�∗ to be used in (6.35). The two 
approaches are perfectly equivalent.  

Any single-input/single-output feedback controller structure can be used (e.g., linear, 
hysteresis, dead-beat, sliding mode, model-predictive, etc.). The different current 
components could also be driven by different controller architectures. Moreover, the 
feedback controller structure can be also supported by an additional feedforward action. 

The present section proposes a simple linear controller architecture which can be 
used in most of the typical applications. Given the linearity, the proposed controller 
properties can be conveniently studied both in the Laplace domain and in the frequency 
domain by using standard dynamical systems analysis tools (e.g., transfer functions, 
Bode diagrams, etc.). 

6.4.1 Decoupled system transfer function 
When the decoupling algorithm (6.35) is implemented, it has been shown that each �-th current �� (with � = 1,… , �) is governed by the corresponding reference derivative ^��∗  through the dynamical equation (6.34), which represents a simple integrator. Then, 

the transfer function of the decoupled system in the Laplace domain would be: 
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Fig. 6.8 – Functional block scheme of the decoupling algorithm if ú = � . 
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 `( ) = ℒ[��]( )ℒ[^��∗ ]( ) = 1  (6.39)

Nevertheless, as explained in Chapter 3, the actual leg voltages set · does not 
coincide with the reference voltages set ·∗. Indeed, it has been shown that for a pulse-
width modulated converter driven by a digital controller, by focusing on the low-
frequency harmonic content of the output voltages, from (3.5) it results that: 

 ��(�) ≅ ��∗ (� − µ¶,M) (6.40)

where µ¶,M = +� + +Q§R 2⁄  is the overall time delay introduced by both the discrete-time 
control and by the modulation technique. This time delay can be represented, in the 
Laplace domain, by the transfer function: 

 ℳ( ) = ℒ[��]( )ℒ[��∗ ]( ) ≅ e−� cd'( (6.41)

which, in the frequency domain, has unitary magnitude but introduces a phase delay 
which increases with the frequency. 

As a result, by explicitly taking into account this delay effect, the overall decoupled 
system transfer function (6.39) can be better approximated as14: 

 `( ) = ℒ[��]( )ℒ[^��∗ ]( ) ≅ 1  ⋅ e−� cd'( (6.42)

This additional delay effect is particularly important for the decoupled controller tuning,  
since it significantly affects the stability margin of the system.  

6.4.2 Decoupled controller 
The proposed feedback controller architecture is equal for all the � machine phase 

currents. Each �-th single-input/single-output linear controller (with � = 1,… , �) 
processes the �-th current tracking error (��∗ − ��) and computes the reference derivative 
set ^��∗  which is then used in the decoupling algorithm (6.35). 

As shown in Section 6.2, each reference current ��∗  is a periodic function of the 
electrical angle %,M = ��  %. This means that, in steady state conditions at a constant rotor 
speed, all the reference currents are periodic in time, with the fundamental angular 
frequency &,M = ��  &.  

Contrarily to standard FOC algorithms, since the proposed controller directly works 
in the phase variable domain, a simple proportional-integral (PI) structure is not 
effective, since it cannot nullify the tracking error in case of periodic current references. 
Therefore, to guarantee the steady-state tracking error to be zero, the standard PI 
structure is enforced by adding multiple resonant controllers actions.  

Indeed, similarly to how an integral action results into an infinite magnitude gain for 
constant references (which are at zero frequency) each ℎ-th resonant action leads to an 
infinite magnitude gain at its resonance frequency &ℎ, and is therefore suited to track 
sinusoidal references [158]–[161]. The total number of resonant actions �L,� required to 

 
14 Proven in Appendix 9.6.8. 
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track a generic periodic reference is related to the number of harmonics of its Fourier 
series expression. 

The proposed controller transfer function in the Laplace domain is: 

 e( ) = ℒ[^��∗ ]( )ℒ[��∗ − ��]( )  =  fQ  + fõ   + ∑ fU,ℎ ⋅   2 + &ℎ2
�g'h

ℎ=1
 (6.43)

where: 
 fQ  is the proportional controller constant, 
 fõ is the integral controller constant, and 
 fU,ℎ is the ℎ-th resonant controller constant. 

An additional benefit of this multiple resonant structure is that, similarly to how an 
integral action can perfectly reject constant disturbances, each ℎ-th resonant action can 
perfectly reject sinusoidal disturbances at its resonance frequency &ℎ. In real 
applications, these disturbances may come, for example, from an imperfect compensation 
of the induced back-EMFs vector � = & �QR(%) or from an imperfect knowledge of the 
machine parameters in the decoupling algorithm (6.35). 

To allow the controller to work with variable speed drives, each ℎ-th resonance 
frequency &ℎ should be synchronized in real-time with the measured machine angular 
speed &. The implementation algorithm used in this work is described in Appendix 9.1.1 
and relies on the synchronization with the rotor position %. Because of sampling effects, 
for a digital control, the maximum resonance frequency is limited by the Nyquist 
frequency ³� 2⁄  and, therefore, it should be sufficiently lower than &� = 2	 ⋅ ³� 2⁄ = 	 ³�. 
The resonant actions in (6.43) can also be replaced by different controllers with an 
equivalent behaviour (e.g., multiple rotating integrators, vector proportional-integral 
controllers, repetitive controllers, etc…). 

As known, for feedback-controlled systems many properties can be found from the 
analysis of the open-loop transfer function: 

 ℋ( ) = e( ) ⋅ `( ) (6.44)

For the proposed current control algorithm a qualitative open-loop frequency 
response is graphically represented in the Bode diagram of Fig. 6.9. In this example, the 
feedback controller transfer function e( ) in (6.43) has been realized with three resonant 
terms synchronized with &,M, 3 &,M and 5 &,M. It can be clearly seen that the magnitude 
gain for these frequencies is infinite, meaning that the resonant actions can perfectly 
track the fundamental, the third and the fifth harmonic of the desired current reference. 
Each resonant term is also responsible for a 180° jump of the phase diagram. 

The progressive increase of the phase delay with the frequency is instead due to the 
time delay effect introduced by the term e−� cd'( in (6.42), which approximately describes 
the combined effect of the PWM technique and of the discrete-time control.  

As for any linear controller, the 0 dB crossover frequency15 &0dB of the open-loop 

 
15 For a feedback controlled system with open-loop transfer function ℋ( ), the 0 dB crossover 

frequency is the angular frequency &0dB for which |ℋ(j &0dB)| = 1, [162]. Under the normally 
adopted assumption that |ℋ(j &)| ≫ 1 for & < &0dB and |ℋ(j &)| ≪ 1 for & > &0dB, the 0 dB 
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transfer function frequency response (which mostly depend on fQ ) should be chosen as 
a trade-off between the closed-loop controller dynamic requirements and its robustness. 
Indeed, higher values of &0dB would be preferable to make the closed-loop transient 
performances to be faster but, given the phase delay in (6.42) caused by the modulation 
procedure and by the digital controller implementation, high values of &0dB may also 
lead to low values for the stability phase margin16 of ℋ( ), which might compromise the 
stability of the closed-loop system. 

The choice of the integral and resonant parameters fõ and fU,ℎ (with ℎ =1,… , �L,�) also depend on the required dynamic response of the system towards tracking 
errors. Generally speaking, higher values lead to faster settling transients, but too high 
values may also lead to overshooting effects. Moreover, as previously stated, an imperfect 
compensation of the machine parameters in the decoupling algorithm (due, for example, 
to measurement uncertainties and neglected or unmodelled phenomena) can be 
neutralized in steady-state thanks to the resonant controllers. However, these effects can 
also reduce the stability robustness of the closed-loop control. To avoid instability 
phenomena, it is possible to reduce the 0 dB crossover frequency &0dB with respect to 

 
crossover frequency can give an estimation of the dynamic performances of the closed-loop 
system: the higher is &0dB, the faster is its transient behaviour. 

16 For a feedback controlled system with open-loop transfer function ℋ( ), the phase margin 
is the angle �- = 	 − |∠ℋ(j &0dB)|, [162]. Under the normally adopted assumption that |ℋ(j &)| ≫ 1 for & < &0dB and |ℋ(j &)| ≪ 1 for & > &0dB, the phase margin can give an 
estimation of the stability properties of the closed-loop system: the higher is �-, the more robust 
is the system stability with respect to parameter uncertainty and unmodelled dynamics. However, 
in case of more 0 dB crossover frequencies, the stability properties of the system cannot be 
directly addressed through �- and the use of Nyquist’s theorem may be required. 

 

Fig. 6.9 – Qualitative Bode diagram of the open-loop decoupled system.  
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the theoretical value17. The required reduction should be verified on the specific machine. 
Finally, it is worth recalling that the chosen structure of (6.43) is only a possible 

choice for the current controller, which could have also been realized with different 
architectures or implementations, naturally resulting in different transient performances 
and different parameter tuning approaches. 

6.5 Complete drive control algorithm 
The overall structure of the proposed drive control algorithm is schematically 

represented in Fig. 6.10.  
First, the “Speed Controller” compares the reference speed &∗ with the machine speed & and computes the reference electromagnetic torque +,-∗  to be applied. The machine 

speed dynamics is described by the model (6.10)-(6.11), which is unrelated to the 
electrical machine parameters and configuration. As a result, any standard speed 
controller structure, like a PI regulator, can be used (as represented in Fig. 6.10).  

Next, the “Back-EMFs Estimation” block is executed to compute both the 
normalized PM-induced back-EMFs vector �QR  (which is required from the current 
references computation strategy) and to estimate the motional induced back-EMFs 
vector � = & ⋅ �QR  (which is instead used in the decoupling algorithm). 

The “MTPA” block (whose structure has been previously represented in Fig. 6.2) is 
then executed to find the references currents set �∗ via equation (6.17). In case of torque 
sharing strategies, as explained in Section 6.2.3, this block is separately executed for all 
the chosen subsets of the machine windings (as it will be exemplified in Section 6.7.8).  

The “Current Controller” block is finally executed. The Proportional-Integral-
Resonant (PIR) feedback controller described in Section 6.4 compares the reference 
currents set �∗ with the actual currents set � and, through this error, it computes the 
reference derivative currents set ]�∗ to be applied18. The decoupling algorithm (6.35)-

 
17 The value which would have been chosen in presence of a perfect decoupling algorithm. 
18 To guarantee the feasibility of the current control, it is convenient to pre-multiply both �∗ 

and � for the projection matrix (�lT ⋅ �l) before the execution of the decoupled controller, in a 
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Fig. 6.10 – Functional block diagram of the proposed controller. 
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(6.36) (whose functional block diagram has been previously represented in Fig. 6.7) is 
then executed to find the reference voltages set ·∗, which is finally applied through a 
pulse width modulation algorithm.  

All the matrices needed for the execution of the proposed algorithm can be 
conveniently computed offline or during the algorithm initialization to reduce the 
computational burden for real-time applications (and, therefore, to make the algorithm 
execution faster). In case of configuration or parameters changes, these matrices can be 
updated in real-time without altering the drive control scheme (as it will be exemplified 
in Section 6.7.7). 

6.6 Experimental setup 
The proposed control algorithm has been experimentally validated with the setup 

depicted in Fig. 6.11. 

6.6.1 Electrical machine 

The electrical machine under analysis (see Fig. 6.12) is a nine-phase surface-mounted 
PMSM with 3 pole pairs19.  

The machine windings have been designed as 3 symmetrical three-phase sets whose 
magnetic axes are mutually shifted by 15° in the electrical reference frame (i.e., 5° 
mechanically). It is, therefore, possible to define the angles set: 

L = [0° 120° 240° 15° 135° 255° 30° 150° 270°] 
The set L identifies the magnetic axes electrical angles. All the 18 windings terminals 
(the positive/negative couples for all the � = 9 machine phases) are available externally.  

The PM-induced back-EMFs have been found by measuring the terminal voltages 
while the machine was spinning at a constant speed and all the phases were disconnected. 
All the back-EMFs are sinusoidal functions of the electrical rotor position %,M = 3 % and 
are mutually shifted with each other according to their magnetic axes angles. As a result, 
the �-th PM induced flux linkage and the corresponding normalized back-EMF (with � = 1,… ,9) can be respectively modelled as: 

 wQR,�(%) = ΨQR,� ⋅ cos(3 % − Ç�) 
 ³QR,�(%) = 3wQR,�3% = −3 ⋅ ΨQR,� ⋅ sin(3 % − Ç�) 

 
way to enforce (6.32). In theory, this operation would not be required. However, in real 
applications, it can neutralize both the effects of computation errors for the reference set �∗ and 
of measurement noises in the actual currents set �.  

19 The machine has been obtained by re-wounding an originally three-phase PMSM. The 
analysis of this machine with a VSD-based approach can be found in [84]. 
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The flux magnitudes ΨQR,� are reported in Table 6.I. It can be noted that they are 
equal for the windings belonging to the same symmetrical three-phase set. They also 
have the same value for the sets {1,2,3} and {7,8,9}, but are lower for the set {4,5,6}20. 

 
20 It is worth emphasizing that the machine analysed in this chapter is fundamentally different 

from the machine analysed in Chapter 5. Indeed, while both are nine-phase PMSMs with an 
asymmetrical configuration, the machine of Chapter 5 was with a single pole pair and with non-
sinusoidal back-EMFs (being equal for all the phases). On the contrary, the machine analysed in 
this chapter has 3 pole pairs and sinusoidal back-EMFs (but they are not equal for all the phases). 

 

Fig. 6.11 – Experimental setup.  

Table 6.I – PMSM INDUCED FLUXES MAGNITUDES. 

� 1 2 3 4 5 6 7 8 9 ΨQR,� [mWb] 268 268 268 259 259 259 268 268 268 
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All the windings have approximately the same resistance � ≅ 8 Ω (measured in DC). 
As a result, the resistances matrix is the scalar matrix � = � ⋅ � . 

The machine inductances matrix parameters x�1,�2 have been found at blocked rotor 

by individually supplying each �1-th machine phase with a 50 Hz voltage ��1(�) and by 

measuring the corresponding current ��1(�) and the induced voltage ��2 (with �2 ≠ �1) 
in all the other phases, which have been left in open circuit. The results have been 
reported in Table 6.II. It can be verified that, coherently with the mathematical model, z is symmetric and positive definite.  

The rotor inertia has been estimated to be around ' ≅ 2 ⋅ 10−3 kg m2. The 
mechanical friction due to the bearings is approximately linear with the rotor speed and 
it has been estimated to develop a braking torque of about 0.2 N m when the machine 
speed is 500 rpm, meaning that the friction coefficient is ( ≅ 4 ⋅ 10−3 (N m) (rad s⁄ )⁄ . 

    

    

Fig. 6.12 – Nine-phase PMSM under analysis. Top-left: Front view; Top-right: Side 
view; Bottom-left: Stator; Bottom-right: Rotor.   
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6.6.2 Power electronics converter 
The machine has been supplied by two custom-made two-level multiphase voltage 

source inverters, based on Infineon FS50R12KE3 IGBT modules (see Fig. 6.13). All the ¦ = 9 inverter legs have a common DC-bus, whose voltage is supplied by a Sorensen 
SGI600/25 single quadrant DC-voltage source and has been set to \�� = 200 V. 

Table 6.II – PMSM INDUCTANCES MATRIX PARAMETERS. 

x�1�2 
[mH] 

�2 
1 2 3  4 5 6  7 8 9 

�1 

1 25.2 −3.3 −3.3  13.9 −6.2 −2.1  8.3 −7.3 0.4 
2 −3.3 25.2 −3.3  −2.1 13.9 −6.2  0.4 8.3 −7.3 
3 −3.3 −3.3 25.2  −6.2 −2.1 13.9  −7.3 0.4 8.3 
            
4 13.9 −2.1 −6.2  17.2 −3.3 −3.3  13.9 −6.2 −2.1 
5 −6.2 13.9 −2.1  −3.3 17.2 −3.3  −2.1 13.9 −6.2 
6 −2.1 −6.2 13.9  −3.3 −3.3 17.2  −6.2 −2.1 13.9 
            
7 8.3 0.4 −7.3  13.9 −2.1 −6.2  25.2 −3.3 −3.3 
8 −7.3 8.3 0.4  −6.2 13.9 −2.1  −3.3 25.2 −3.3 
9 0.4 −7.3 8.3  −2.1 −6.2 13.9  −3.3 −3.3 25.2 

 

 

Fig. 6.13 – Voltage Source Inverter.  
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A standard triangular carrier-based PWM algorithm, working with a modulation 
frequency of 10 kHz, has been implemented to operate the converter. The modulation 
dead-time is implemented via hardware and is approximately equal to 5 µs. 
6.6.3 Interconnection network 

Each converter leg output node is directly connected to one machine phase positive 
terminal. As a result, the network interconnection matrix ú  is always the 9 × 9 identity 
matrix. On the contrary, the machine negative terminals have been connected differently 
for each testing scenario, meaning that the constraints matrix �  is not always the same. 

6.6.4 Controller board and algorithm implementation 
The proposed control algorithm has been implemented with a Plexim RT Box 1 

platform (see Fig. 6.14). The control is executed with a 10 kHz sampling rate and it is 
synchronized with the converter PWM period. 

All the 9 machine currents have been measured through external LEM transducers, 
which are connected to the platform ADC channels. The machine speed and position 
have been provided through the incremental encoder Omron E6B2-CWZ1X, with a 
resolution of 1000 pulses/revolution. 

For each testing scenario, the configuration matrix �l , the complementary 

configuration matrix �D and the MTPA weighting matrix Z  have been computed during 
the algorithm initialization, basing on the provided constraint matrix � .  

For all the tests the network interconnection matrix is always equal to ú = � . As a 
result, the decoupling algorithm described in Section 6.3.4 does not require any pseudo-
inverse matrix computation and simplifies to the one described in equations (6.37)-(6.38). 

The implemented speed controller has a standard PI-based structure. For safety 
reasons the reference torque +,-∗  computed by the speed controller has been limited to 
a feasible range of ±5 N m. 

The feedback current controller has been implemented in the phase variable domain 

 

Fig. 6.14 – Plexim RT Box 1 controller board. 
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with the transfer function (6.43). It has been designed with a proportional action, an 
integral action and six resonant actions synchronized with the lowest odd-order integer 
multiples of the machine electrical speed &,M = 3 &. In other words, the chosen resonance 
frequencies are &ℎ = ℎ ⋅ 3 &, with ℎ = 1,3,5,7,9,11. 

The offset vector ·Øll∗  for the VSI leg voltage injection (6.38) has been set to half of 

the DC-bus voltage (i.e., 100 V) for all the 9 converter legs. 

6.6.5 Mechanical load 
The PMSM has been mechanically coupled to a DC machine, used for loading (see 

Fig. 6.15).  
The DC machine inertia is around '- ≅ 6 ⋅ 10−3 kg m2, making the overall group 

inertia to be ',; ≅ 6 ⋅ 10−3 kg m2, approximately. Similarly to the PMSM, the 
mechanical friction of the DC machine has also been estimated to be roughly linear with 
the machine speed and with a similar friction coefficient (- ≅ 4 ⋅ 10−3 (N m) (rad s⁄ )⁄ . 

The armature of the DC machine has been connected to an external resistor through 
a controllable contactor. When the contactor is open, the only braking torque acting on 
the system is due to the mechanical friction. When the contactor is closed, the DC 
machine develops the additional torque +MØï¶, which is proportional to the speed & and 
is such that +MØï¶ ≅ 2 N m when the machine speed is equal to 500 rpm. 

A Magtrol Torquemaster TM 210 has been positioned between the PMSM and the 
DC machine rotor shafts. This torque meter has been used to measure the torque +- 
developed at the joint between the two machines21.  

 
21 Note that this measurement does not correspond to the overall electromagnetic torque +,- 

developed by the PMSM, since it neglects the PMSM inertia and friction torque contributions. 

 

Fig. 6.15 – Mechanical coupling between the nine-phase PMSM under analysis and 
the DC machine used for loading. The torquemeter has been positioned at the joint 
between the two machines. 
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6.7 Experimental results 
To validate the proposed algorithm and to emphasize its generality and flexibility, it 

has been tested in several different scenarios, discussed and analysed in this section22. 
For each scenario, the constraint matrix � , the configuration matrix �l  and the 

MTPA weighting matrix Z  are explicitly shown23. However, note that for a real-time 
implementation only �  is required, and that the other matrices can be numerically 
computed from it (i.e., the user does not need to provide them). The figure representing 
the layout of each examined configuration also shows the corresponding constraint 
matrix �  and the corresponding physical interpretation of the auxiliary voltages set �¥�� . To facilitate the interpretation of the constraints, different colours have been used 
to denote both the machine phase windings and the columns of � . The DC-bus negative 
node has been considered as the reference node for the VSI leg output voltages.  

6.7.1 Single neutral point healthy configuration 
This testing scenario is aimed at showing the effectiveness of the proposed control 

algorithm in a healthy machine configuration, both at varying speed and at varying load. 
The configuration under analysis is represented in Fig. 6.16. All the machine phases 

are star-connected to a single isolated neutral point. The sum of all � = 9 phase currents 
is forced to be zero, meaning that the system is subject to �D = 1 algebraic constraint. 
The constraints matrix �  and the configuration matrix �l  are: 

�  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡111111111⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡−0.33 −0.33 −0.33 −0.33 −0.33 −0.33 −0.33 −0.330.92 −0.08 −0.08 −0.08 −0.08 −0.08 −0.08 −0.08−0.08 0.92 −0.08 −0.08 −0.08 −0.08 −0.08 −0.08−0.08 −0.08 0.92 −0.08 −0.08 −0.08 −0.08 −0.08−0.08 −0.08 −0.08 0.92 −0.08 −0.08 −0.08 −0.08−0.08 −0.08 −0.08 −0.08 0.92 −0.08 −0.08 −0.08−0.08 −0.08 −0.08 −0.08 −0.08 0.92 −0.08 −0.08−0.08 −0.08 −0.08 −0.08 −0.08 −0.08 0.92 −0.08−0.08 −0.08 −0.08 −0.08 −0.08 −0.08 −0.08 0.92 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

The corresponding MTPA weighting matrix Z  is: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0.89 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11−0.11 0.89 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11−0.11 −0.11 0.89 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11−0.11 −0.11 −0.11 0.89 −0.11 −0.11 −0.11 −0.11 −0.11−0.11 −0.11 −0.11 −0.11 0.89 −0.11 −0.11 −0.11 −0.11−0.11 −0.11 −0.11 −0.11 −0.11 0.89 −0.11 −0.11 −0.11−0.11 −0.11 −0.11 −0.11 −0.11 −0.11 0.89 −0.11 −0.11−0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 0.89 −0.11−0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 0.89 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

 
22 These tests have also been analysed in [118]. 
23 The configuration matrix has been found through the “svd” command in Matlab. The 

MTPA weighting matrix has been found by applying equation (6.18). All the parameters reported 
here are rounded to the second decimal unit. 
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It can be verified that, in this configuration, the denominator �QRT ⋅Z⋅�QR  of the 
MTPA algorithm (6.17) is independent of %, meaning that the steady state reference 
currents are sinusoidal. This is expected since the machine windings are designed in a 
multiple three-phase configuration and that the only constraint involves the overall 
common-mode current. The waveforms and harmonic spectra of the optimal phase 
currents are depicted in Fig. 6.17 for a whole [0°; 360°] electrical cycle. Since the optimal 
current set �∗ computed via (6.17) is proportional to the torque, the results of Fig. 6.17 
are normalized by +,-. 

Note that the matrix Z , once applied to any 9 × 1 vector �, simply subtracts its 
average value 19 ∑ ��9�=1 . This provides a much easier physical interpretation of the 

weighting matrix related to the MTPA algorithm. This property comes from the fact 
that Z  is equal to the configuration space projection matrix �l ⋅ �lT. 
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Fig. 6.16 – Schematic diagram and constraint matrix for the single neutral point 
healthy configuration.   

Fig. 6.17 – Waveforms and harmonic spectra of the optimal reference currents in the 
single neutral point healthy configuration. 
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The experimental test has been conducted as follows. Initially, the machine works at 
no load at the speed of −500 rpm, and therefore the electromagnetic torque +,- only 
needs to balance the mechanical friction. Then, the machine reference speed &∗ is 
changed to +500 rpm. After the speed inversion has been performed and the machine 
has reached the steady-state conditions, the mechanical load is changed by commanding 
(via RT Box platform) the closing of the DC machine contactor. 

The results are depicted in Fig. 6.18. The first three subplots show the machine phase 
currents (solid lines) and the corresponding references (black dashed lines). The fourth 
subplot shows the developed electromagnetic torque +,- (solid line) and the controller 
reference torque +,-∗  (dashed line); the torque has been estimated by computing (6.4) 
with the measured currents. The last subplot shows the machine speed & (solid line) and 
the corresponding reference value &∗ (dashed line); a zoomed version of the speed 
dynamics after the load torque step change is shown in a box inside the same subplot24. 

For the first 100 ms, the machine is in steady-state conditions at −500 rpm. The 
currents are sinusoidal and develop a torque of around −0.5 Nm to neutralize the overall 
drive train friction.  

 
24 Note that the timing instants are shared by all the subplots, including the zoom of the speed.  

 

Fig. 6.18 – Experimental results in the single neutral point healthy configuration. 
Solid lines: measured variables; Dashed lines: reference variables. 
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Immediately after the speed reference change, the torque reference jumps to the 
maximum value of +5 Nm and the reference currents increase accordingly (coherently 
with the MTPA strategy). When the machine speed approaches its reference value, the 
torque decreases down to the final value of around 0.5 Nm (which is again only related 
to the drive train friction). The speed inversion is completed in around 250 ms and the 
steady-state currents are again sinusoidal functions of time, but their phase displacement 
is reversed (e.g., initially �2 was ahead of �1, while now it is the opposite).  

At around 600 ms the controlled contactor is closed, and the DC machine terminals 
are connected to the external resistor. The drive loading torque increases and the speed 
drops down from the reference value. Then, to counteract this drop, the speed controller 
increases the reference torque +,-∗  and, because of the MTPA strategy, the PMSM 
current references ��∗  (with � = 1,… ,9) increase proportionally to it. The speed reaches 
the minimum value of around 460 rpm after 50 ms and is regulated back to the reference 
value of 500 rpm in around 350 ms. At steady-state conditions, the currents are again 
sinusoidal functions of time and develop an overall torque of around 2.3 Nm. 

As can be seen, all the steady-state currents of the experimental results depicted in 
Fig. 6.18 are consistent with the theoretical currents computed numerically and 
represented in Fig. 6.17. 

An oscilloscope capture of the experimental results is also shown in Fig. 6.19. It 
includes the measured currents �1, �4 and �7 (measured with current probes with 4 turns) 
and the torque +- developed at the rotor shaft (measured by the torque meter at the 
joint between the PMSM and the DC machine and reported with a scale of 100 mV Nm⁄ ). 

6.7.2 Two neutral points healthy configuration 
This testing scenario is very similar to the previous one, with the only difference 

being represented by a different machine windings connection.  
In this case, the machine configuration is schematically represented in Fig. 6.20. The 

machine windings are divided into two star-connected groups with two isolated neutral 

 

Fig. 6.19 – Oscilloscope capture of the experimental results in the single neutral 
point healthy configuration. 
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points. The first group includes the windings {1,2,3,7,8,9} and, given the machine design, 
it behaves like an equivalent six-phase machine (with two symmetrical three-phase 
windings sets mutually shifted by 30°, electrically). The second winding group includes 
the remaining windings sets {4,5,6} and is equivalent to a symmetrical three-phase 
machine. The � = 9 phase currents are now subject to �D = 2 constraints, identified by 
the two isolated neutral points.  

The constraint matrix �  and the configuration matrix �l  are: 

�  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 01 01 00 10 10 11 01 01 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡−0.41 0.24 0.24 0.24 −0.41 −0.41 −0.41−0.12 −0.51 −0.51 −0.51 −0.12 −0.12 −0.120.88 0.07 0.07 0.07 −0.12 −0.12 −0.120 0.67 −0.33 −0.33 0 0 00 −0.33 0.67 −0.33 0 0 00 −0.33 −0.33 0.67 0 0 0−0.12 0.07 0.07 0.07 0.88 −0.12 −0.12−0.12 0.07 0.07 0.07 −0.12 0.88 −0.12−0.12 0.07 0.07 0.07 −0.12 −0.12 0.88 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

The corresponding MTPA weighting matrix, computed via (6.18), is: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0.83 −0.17 −0.17 0 0 0 −0.17 −0.17 −0.17−0.17 0.83 −0.17 0 0 0 −0.17 −0.17 −0.17−0.17 −0.17 0.83 0 0 0 −0.17 −0.17 −0.170 0 0 0.67 −0.33 −0.33 0 0 00 0 0 −0.33 0.67 −0.33 0 0 00 0 0 −0.33 −0.33 0.67 0 0 0−0.17 −0.17 −0.17 0 0 0 0.83 −0.17 −0.17−0.17 −0.17 −0.17 0 0 0 −0.17 0.83 −0.17−0.17 −0.17 −0.17 0 0 0 −0.17 −0.17 0.83 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

Again, it has been verified that, in this configuration, the product �QRT ⋅ Z ⋅ �QR  
appearing as the denominator of the MTPA algorithm (6.17) is independent of %, 
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Fig. 6.20 – Schematic diagram and constraint matrix for the two neutral points 
healthy configuration. 
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meaning that the optimal reference currents are still sinusoidal in steady-state 
conditions. They have been reported in Fig. 6.21. As could be expected, they are identical 
to the previous case. This is because, as a result of the multiple three-phase symmetry, 
the optimal currents obtained in the single neutral configuration were already satisfying �1∗ + �2∗ + �3∗ + �7∗ + �8∗ + �9∗ = 0 and �4∗ + �5∗ + �6∗ = 0, which are the constraints of this new 
machine configuration. 

Similarly to the previous case, a physical interpretation of the weighting procedure 
of the proposed MTPA strategy can be obtained by observing that, in this case, the 
matrix Z , once applied to any 9 × 1 vector �, subtracts the average value 
16 (∑ ��3�=1 + ∑ ��9�=7 ) from the set {1,2,3,7,8,9} and the average value 13 ∑ ��6�=4  from 

the set {4,5,6}, which correspond to the isolated windings subsets of the analyzed 
machine configuration. 

The testing scenario is the same as the previous case study. The results, shown in 
Fig. 6.22, are almost identical to the single neutral point configuration. Again, an 
oscilloscope capture has been reported in Fig. 6.23 to show the measured currents �1, �4 
and �7 and the torque developed at the rotor shaft +-. 

6.7.3 Two neutral points with one faulty phase 
This test is aimed at showing the performances of the proposed controller in a post-

fault machine configuration. 

The windings configuration, schematically represented in Fig. 6.24, is modified from 
the previous case study by physically disconnecting phase 1 of the machine. This 
introduces an additional algebraic constraint on the phase currents (which is �1 = 0) and 
the constraints matrix �  is therefore modified to include an extra column. 

The numerical values of the matrices �  and �l  are: 

Fig. 6.21 – Waveforms and harmonic spectra of the optimal reference currents in the 
two neutral points healthy configuration.  
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Fig. 6.22 – Experimental results in the two neutral points healthy configuration. 
Solid lines: measured variables; Dashed lines: reference variables. 

 

 

Fig. 6.23 – Oscilloscope capture of the experimental results in the two neutral points 
healthy configuration. 
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� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 0 11 0 01 0 00 1 00 1 00 1 01 0 01 0 01 0 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0 0 0 0 0 0−0.50 −0.50 −0.50 −0.14 −0.14 −0.140.26 0.26 0.26 −0.45 −0.45 −0.450.67 −0.33 −0.33 0 0 0−0.33 0.67 −0.33 0 0 0−0.33 −0.33 0.67 0 0 00.08 0.08 0.08 0.86 −0.14 −0.140.08 0.08 0.08 −0.14 0.86 −0.140.08 0.08 0.08 −0.14 −0.14 0.86 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

To have an easier physical interpretation, the open phase winding and the corresponding 
column of �  have been denoted with a different colour in Fig. 6.24. Note that, with the 
chosen constraint matrix, the auxiliary network voltages �¥�� ,1 and �¥�� ,2 still 
represent the potential of the two isolated neutral points (as in the previous example), 
while the new auxiliary voltage �¥�� ,3 is the voltage between the neutral point of the 
six-phase group and the open terminal of phase 1. 

The MTPA weighting matrix is modified to: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  0  0 0 0 0 0 0 0 00 0.80 −0.20 0 0 0 −0.20 −0.20 −0.200 −0.20 0.80 0 0 0 −0.20 −0.20 −0.200 0 0 0.67 −0.33 −0.33 0 0 00 0 0 −0.33 0.67 −0.33 0 0 00 0 0 −0.33 −0.33 0.67 0 0 00 −0.20 −0.20 0 0 0 0.80 −0.20 −0.200 −0.20 −0.20 0 0 0 −0.20 0.80 −0.200 −0.20 −0.20 0 0 0 −0.20 −0.20 0.80 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

In this case, it can be verified that the denominator �QRT ⋅ Z ⋅ �QR  of the MTPA 
algorithm is not anymore constant with the rotor position %. As a result, the optimal 
currents computed by the MTPA algorithm (6.17) are not anymore sinusoidal functions 
of the rotor electrical angle %,M = 3 %. This is a direct consequence of the symmetry loss 
due to the open-circuit fault and means that, in steady-state, the optimal currents are 
not sinusoidal in time. Their waveforms and harmonic spectra are depicted in Fig. 6.25 
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Fig. 6.24 – Schematic diagram and constraint matrix for the two neutral points 
configuration with one faulty phase. 
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for a full [0°, 360°] electrical rotor cycle. Coherently with the open phase constraint, all 
the harmonics of �1 are zero, while the other phases now also show some higher-order 
harmonics, and especially a third-harmonic contribution. As previously explained, only 
their fundamental components develop a non-zero average torque (in a full rotor cycle), 
while all the other higher-order harmonics are only needed to neutralize the torque ripple.  

The magnitude of the currents is not equally distributed among all the phases and 
is higher than in the healthy configuration. From the optimal reference current 
waveforms of Fig. 6.25, it can be computed that the overall RMS current ñURe is (on 
average in a full rotor cycle) around 9% higher than in the healthy configuration. This 
behaviour is expected because the faulty machine is asked to develop the same 
electromagnetic torque of the healthy configuration, but at the same time it is subject 
to an additional constraint (which is �1 = 0)25. 

In this case, the weighting matrix Z , once applied to any 9 × 1 vector �, nullifies 
the component �1 and subtracts the average value 15 (∑ ��3�=2 + ∑ ��9�=7 ) from the set 

{2,3,7,8,9} and the average value 13 ∑ ��6�=4  from the set {4,5,6} (which, again, are 

related to the isolated windings groups in this new machine configuration).  
The same testing scenario of the previous cases has been repeated here. The 

 
25 As also previously mentioned in Section 1.1.6, the choice of not limiting the currents in 

the post-fault configuration (and to develop the same torque) allows to keep the machine 
mechanical behaviour unchanged but, if prolonged in time, it may increase the thermal stress 
and reduce the machine life-span expectations with respect to the healthy configuration. Different 
options can also be chosen to deal with post-fault conditions. For example, a different approach 
is to fix the maximum allowed RMS current or the maximum allowed peak current. These other 
options are more conservative and can be tolerated for longer operations, but the maximum 
electromagnetic torque of the drive would be lower than in the healthy configuration, meaning 
that the machine mechanical capabilities would be changed. 

Fig. 6.25 – Waveforms and harmonic spectra of the optimal reference currents in the 
two neutral points configuration with one faulty phase.  
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experimental results are depicted in Fig. 6.26 and the corresponding oscilloscope captures 
are reported in Fig. 6.27. 

 

 

Fig. 6.26 – Experimental results in the two neutral points configuration with one 
faulty phase. Solid lines: measured variables; Dashed lines: reference variables. 

 

Fig. 6.27 – Oscilloscope capture of the experimental results in the two neutral points 
configuration with one faulty phase. 
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If compared with the healthy configuration, both the speed and the torque show the 
same dynamics (because they refer to the same speed controller). On the contrary, the 
current waveforms are different and it can be immediately noticed that they are not 
sinusoidal anymore. These non-sinusoidal references can still be perfectly tracked thanks 
to the resonant actions included in the feedback current controller. It is worth 
emphasising that the controller structure and parameters have not been altered at all, 
and only a different constraint matrix has been provided. 

6.7.4 Two neutral points with two faulty phases 
The same strategy of the previous tests can be also applied in case of more than one 

fault is present.  
In this test, the winding configuration is represented in Fig. 6.28. If compared to the 

configuration of the previous case study, an additional fault has been simulated by 
physically opening phase 6 of the machine. The matrices �  and �l  are now: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 0 1 01 0 0 01 0 0 00 1 0 00 1 0 00 1 0 11 0 0 01 0 0 01 0 0 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0 0 0 0 0−0.35 −0.79 −0.14 −0.14 −0.140.18 0.41 −0.45 −0.45 −0.45−0.64 0.29 0 0 00.64 −0.29 0 0 00 0 0 0 00.06 0.13 0.86 −0.14 −0.140.06 0.13 −0.14 0.86 −0.140.06 0.13 −0.14 −0.14 0.86 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

and the last column of �  identifies the additional constraint �6 = 0. Again, different 
colors have been used to identify the two open-circuit faults in Fig. 6.28. The physical 
interpretation of the voltages �¥�� ,1, �¥�� ,2 and �¥��,3 is the same of the previous case 

study, while the additional auxiliary voltage �¥��,4 is the voltage between the neutral 
point of the three-phase subset and the open terminal of phase 6. 

The MTPA weighting matrix is now: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  0  0 0 0 0 0 0 0 00 0.80 −0.20 0 0 0 −0.20 −0.20 −0.200 −0.20 0.80 0 0 0 −0.20 −0.20 −0.200 0 0 0.50 −0.50   0  0 0 00 0 0 −0.50 0.50 0 0 0 00 0 0 0 0 0 0 0 00 −0.20 −0.20 0 0 0 0.80 −0.20 −0.200 −0.20 −0.20 0 0 0 −0.20 0.80 −0.200 −0.20 −0.20 0 0 0 −0.20 −0.20 0.80 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

and, similarly to the previous post-fault scenario, the denominator of the MTPA 
algorithm is not constant and, therefore, the optimal currents are not sinusoidal. Their 
waveforms and harmonic spectra are depicted in Fig. 6.29. It can be seen that, because 
of the opening of phase 6, the currents in phases 4 and 5 are opposite (in other words, 
they behave as an equivalent single-phase winding). 
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Given the additional constraint, the overall machine RMS current is, on average, 
around 19% higher than in the healthy configuration and a similar reasoning to the 
previous example can also be applied to obtain a physical interpretation for the weighting 
matrix Z . 

The experimental results are reported in Fig. 6.30 and Fig. 6.31. Again, the speed 
and torque responses are the same, while the currents follow the waveforms of Fig. 6.29.  
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Fig. 6.28 – Schematic diagram and constraint matrix for the two neutral points 
configuration with two faulty phases. 

 

Fig. 6.29 – Waveforms and harmonic spectra of the optimal reference currents in the 
two neutral points configuration with two faulty phases. 
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Fig. 6.30 – Experimental results in the two neutral points configuration with two 
faulty phases. Solid lines: measured variables; Dashed lines: reference variables.

 

 

Fig. 6.31 – Oscilloscope capture of the experimental results in the two neutral points 
configuration with two faulty phases. 
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6.7.5 Three neutral points with one faulty phase 
The windings configuration is represented in Fig. 6.32.  
The nine machine phases have been grouped into the three symmetrical three-phase 

groups {1,2,3}, {4,5,6} and {7,8,9}, each of which is star connected and with an isolated 
neutral point. Additionally, phase 1 has been physically disconnected. As a result, the 
system is subject to �D = 4 algebraic constraints and the constraints and configuration 
matrices are: 

� =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 0 0 11 0 0 01 0 0 00 1 0 00 1 0 00 1 0 00 0 1 00 0 1 00 0 1 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,   �l =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0 0 0 0 0−0.21 −0.21 0.37 0.37 0.370.21 0.21 −0.37 −0.37 −0.37−0.53 −0.53 −0.19 −0.19 −0.190.76 −0.24 0.10 0.10 0.10−0.24 0.76 0.10 0.10 0.100 0 0.67 −0.33 −0.330 0 −0.33 0.67 −0.330 0 −0.33 −0.33 0.67 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

where the first three columns of �  identify the constraints on the three neutral points, 
while the last column represents the constraint �1 = 0. 

The MTPA weighting matrix is: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  0  0 0 0 0 0 0 0 00 0.50 −0.50 0 0 0 0 0 00 −0.50 0.50 0 0 0 0 0 00 0 0 0.67 −0.33 −0.33 0 0 00 0 0 −0.33 0.67 −0.33 0 0 00 0 0 −0.33 −0.33 0.67 0 0 00 0 0 0 0 0 0.67 −0.33 −0.330 0 0 0 0 0 −0.33 0.67 −0.330 0 0 0 0 0 −0.33 −0.33 0.67 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

and, once again, it leads to non-sinusoidal optimal currents, as shown in Fig. 6.33.  
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Fig. 6.32 – Schematic diagram and constraint matrix for the three neutral points 
configuration with one faulty phase. 
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As expected, the optimal currents are different from the ones of Fig. 6.25, which were 
computed after the fault of phase 1 in case of two isolated neutral points. In particular, 
it can be observed that the currents in phases 2 and 3 are opposite, meaning that they 
behave as an equivalent single-phase winding. 

Under this perspective, it can be also realized that, in a machine configured with 
multiple isolated three-phase windings sets (which is a commonly adopted solution in 
practical multiphase drives applications), the opening of one phase does not require the 
disconnection of the entire three-phase subset where the fault has occurred. Indeed, the 
two remaining phases of the subset behave as an equivalent single-phase winding, which 
can still contribute to the overall electromagnetic torque development. 

Moreover, these optimal currents also behave differently on the torque development 
algorithm. Indeed, it has been verified that the average RMS current in this condition is 
around 10% higher than in the healthy configuration (against 9% of the case study of 
Section 6.7.3). This confirms that, as could be expected, different constraints can change 
the machine behaviour and that the same open-circuit fault is more penalising in case of 
three isolated neutral points (�D = 3 + 1 = 4) than in case of two isolated neutral points 
(�D = 2 + 1 = 3). 

Finally, if compared to the results of Section 6.7.4 (where it also results �D = 4), it 
is also confirmed that, as could be expected, different winding configurations, although 
characterized by the same number of constraints, can have a different impact on the 
drive performances. 

The experimental results obtained under the same dynamical tests of the previous 
subsections are depicted in Fig. 6.34 and in Fig. 6.35.  

Once again, the dynamic behaviour of the system is the same as in the previous 
examples, and the phase currents can effectively track their non-sinusoidal references 
thanks to the contribution of the resonant controller actions. 

Fig. 6.33 – Waveforms and harmonic spectra of the optimal reference currents in the 
three neutral points configuration with one faulty phase. 
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Fig. 6.34 – Experimental results in the three neutral points configuration with one 
faulty phase. Solid lines: measured variables; Dashed lines: reference variables. 

 

 

Fig. 6.35 – Oscilloscope capture of the experimental results in the three neutral 
points configuration with one faulty phase. 



188 6 - Decoupled Phase Variable Control of PMSMs 

6.7.6 Highly asymmetrical configuration 
This testing scenario considers an unrealistic machine configuration, with the aim to 

emphasize the generality of the proposed approach.  
In this case, the machine windings are divided into two star-connected groups with 

two isolated neutral points, as schematically depicted in Fig. 6.36. The first group 
includes the five phases {1,5,6,7,8}, while the second group include the remaining four 
phases {2,3,4,9}. The corresponding constraints and configuration matrices are: 

�  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 00 10 10 11 01 01 01 00 1⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0 0 −0.45 −0.45 −0.45 −0.45 0−0.50 −0.50 0 0 0 0 −0.500.83 −0.17 0 0 0 0 −0.17−0.17 0.83 0 0 0 0 −0.170 0 0.86 −0.14 −0.14 −0.14 00 0 −0.14 0.86 −0.14 −0.14 00 0 −0.14 −0.14 0.86 −0.14 00 0 −0.14 −0.14 −0.14 0.86 0−0.17 −0.17 0 0 0 0 0.83 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

while the MTPA weighting matrix, computed via (6.18), is: 

Z  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0.80 0 0 0 −0.20 −0.20 −0.20 −0.20 00 0.75 −0.25 −0.25 0 0 0 0 −0.250 −0.25 0.75 −0.25 0 0 0 0 −0.250 −0.25 −0.25 0.75 0 0 0 0 −0.25−0.20 0 0 0 0.80 −0.20 −0.20 −0.20 0−0.20 0 0 0 −0.20 0.80 −0.20 −0.20 0−0.20 0 0 0 −0.20 −0.20 0.80 −0.20 0−0.20 0 0 0 −0.20 −0.20 −0.20 0.80 00 −0.25 −0.25 −0.25 0 0 0 0 0.75 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤
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Fig. 6.36 – Schematic diagram and constraint matrix for the highly asymmetrical 
configuration.  
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The optimal phase currents computed by the MTPA algorithm (6.17) are depicted26 
in Fig. 6.37. They are almost sinusoidal, and only a small third-harmonic contribution 
(following the machine asymmetry) is present. Again, the currents harmonics (and the 
resulting losses) are not evenly distributed between all the machine phases. This may be 
more or less relevant for thermal analysis depending on the machine internal design. 

The experimental results in this testing scenario are shown in Fig. 6.38 and Fig. 6.39.  

 
26 The currents depicted in the numerical and experimental results have been grouped 

differently than in the previous cases.  

Fig. 6.37 – Waveforms and harmonic spectra of the optimal reference currents in the 
highly asymmetrical configuration. 

 

Fig. 6.38 – Experimental results in the highly asymmetrical configuration. Solid lines: 
measured variables; Dashed lines: reference variables.  



190 6 - Decoupled Phase Variable Control of PMSMs 

In this case, the speed and torque still have the same dynamics, while the currents, 
follow the waveforms of Fig. 6.37. The combined effect of the decoupling algorithm and 
the resonant actions in the feedback controller make the currents follow their desired 
references even in such an uncommon winding configuration.  

Again, it is worth emphasising that the controller structure and parameters have 
been kept unaltered from the previous cases, and only a different constraint matrix �  
has been provided to the initialization routine. Similarly to the post-fault scenarios of 
the previous sections, minimal changes are required to adapt the algorithm to this new 
configuration. Conversely, the control implementation would have been much more 
challenging if carried out with a FOC-based approach. 

6.7.7 Real-time post-fault reconfiguration 
This testing scenario is aimed at showing the fundamental role of the configuration 

matrix �l  for the machine current control. This is done by emulating an open-winding 

fault event and the consequent real-time controller reconfiguration27.  
The circuit configuration is schematically depicted in Fig. 6.40. At the beginning of 

this experiment, the contactor in series to phase 1 is closed, and the machine windings 
are star connected with a single isolated neutral point. This configuration, which 
represents a healthy machine, is the same as the case study developed in Section 6.7.1 
and represented in Fig. 6.16.  

After 80 ms from the beginning of the experiment, phase 1 of the machine is 
physically disconnected by commanding (via the RT Box platform) the opening of the 
serially connected contactor.  

The controller matrices (which depend on the constraint matrix �) are kept 
unaltered for another 200 ms (i.e., they still refer to the healthy configuration of Fig. 
6.16) and are finally updated to the post-fault condition by considering the correct 
system matrices. 

For the whole test, the machine is kept at an angular speed of around 500 rpm and 
 

27 The fault detection algorithm has not been considered in this study. 

 

Fig. 6.39 – Oscilloscope capture of the experimental results in the highly 
asymmetrical configuration.  
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is subject to a mechanical load of around 2.3 Nm applied at the shaft through the DC 
machine. 

The constraints matrix � , the configuration matrix �l  and the MTPA weighting 

matrix Z  of the healthy configuration are the same as the case study of Section 6.7.1. 
The same matrices in the post-fault configuration are, instead: 

�  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡1 11 01 01 01 01 01 01 01 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

,  �l  =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 0 0 0 0 0 0 0−0.35 −0.35 −0.35 −0.35 −0.35 −0.35 −0.350.91 −0.09 −0.09 −0.09 −0.09 −0.09 −0.09−0.09 0.91 −0.09 −0.09 −0.09 −0.09 −0.09−0.09 −0.09 0.91 −0.09 −0.09 −0.09 −0.09−0.09 −0.09 −0.09 0.91 −0.09 −0.09 −0.09−0.09 −0.09 −0.09 −0.09 0.91 −0.09 −0.09−0.09 −0.09 −0.09 −0.09 −0.09 0.91 −0.09−0.09 −0.09 −0.09 −0.09 −0.09 −0.09 0.91 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

Z   =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡  0  0 0 0 0 0 0 0 00 0.88 −0.12 −0.12 −0.12 −0.12 −0.12 −0.12 −0.120 −0.12 0.88 −0.12 −0.12 −0.12 −0.12 −0.12 −0.120 −0.12 −0.12 0.88 −0.12 −0.12 −0.12 −0.12 −0.120 −0.12 −0.12 −0.12 0.88 −0.12 −0.12 −0.12 −0.120 −0.12 −0.12 −0.12 −0.12 0.88 −0.12 −0.12 −0.120 −0.12 −0.12 −0.12 −0.12 −0.12 0.88 −0.12 −0.120 −0.12 −0.12 −0.12 −0.12 −0.12 −0.12 0.88 −0.120 −0.12 −0.12 −0.12 −0.12 −0.12 −0.12 −0.12 0.88 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

The optimal currents in the post-fault scenario, together with the corresponding 
harmonic spectra, are depicted in Fig. 6.41. As in all the other analysed post-fault 
configurations, they are not sinusoidal and show some higher-order harmonics (especially 
a third-harmonic contribution). Moreover, the currents harmonics (and the 
corresponding losses) are not equally shared by all the healthy phases. 
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Fig. 6.40 – Schematic diagram for the real-time post-fault reconfiguration scenario, 
with the constraint matrix after the opening of the contactor.  
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The experimental results are depicted in Fig. 6.42, while Fig. 6.43 shows the 
corresponding oscilloscope acquisitions. 

During the first 80 ms, coherently with the results of Section 6.7.1, all the machine 
currents follow the corresponding references, which are sinusoidal. Then, the current �1 
is forced to zero (via hardware), without altering the controller parameters. 

All the current references (dashed traces) are still sinusoidal waveforms, but the 
measured currents are unable to follow them. This is expected because the references are 
not compatible with the new system configuration. This effect is particularly evident in 
the current �4, which is severely increased with respect to the others. Since the currents 
cannot follow their references, also the developed torque +,- cannot follow the desired 
value +,-∗  and periodically oscillates between around 2 Nm and 2.3 Nm. This torque 
decrease also leads to a slight reduction of the machine angular speed &. 

At the time � = 280 ms the controller parameters are finally updated by using the 
correct constraint matrix �  (i.e., the one corresponding to the faulty scenario) and by 
coherently updating �l  and Z . All the other controller parameters (e.g., speed and 

current feedback controller coefficients, inductances and resistances matrix, estimated 
back-EMFs, etc.) are kept unchanged. Again, the structure update required no changes 
to the controller architecture and minimal modifications to the control matrices. 

Coherently with the post-fault configuration, the reference current �1∗  is kept to zero, 
while all the other current references become non-sinusoidal. Again, this is expected 
because of the asymmetrical structure of the post-fault machine configuration. The 
machine currents are quickly and effectively driven towards the corresponding references, 
the electromagnetic torque can again follow the reference value +,-∗  and the machine 
speed & is slowly kept back to the reference &∗ = 500 rpm. 

The analysed results highlight how the proposed approach can be a viable and 
interesting solution for fault-tolerant applications. 

Fig. 6.41 – Waveforms and harmonic spectra of the optimal reference 
currents in the single neutral post-fault configuration.   
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Fig. 6.42 – Experimental results in the real-time post-fault reconfiguration scenario. 
Solid lines: measured variables; Dashed lines: reference variables. 

 

 

Fig. 6.43 – Oscilloscope capture of the experimental results in in the real-time post-
fault reconfiguration scenario. 
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6.7.8 Torque sharing scenarios 
This testing scenario is aimed at showing the torque sharing capabilities of the 

proposed current references computation strategy.  

In this case, the machine windings are divided into two independent subsets, further 
on identified as dð+1 and dð+2, respectively. The first windings subset works in 
“motoring” mode, with the aim to keep the angular speed of the machine at the reference 
value of &∗ = 500 rpm. The second windings subset, instead, works in “braking” mode 
and is controlled to develop a desired braking torque +,-,nL∗  in opposition to the 

mechanical speed. In such a way it is possible to transfer power from the motoring 
windings set to the braking windings set. For the whole test, the machine is subject to 
the sole mechanical friction torque, which is around 0.5 Nm. 

The experiment is here done with the healthy machine configuration analysed in 
Section 6.7.2 and schematically represented in Fig. 6.20. The machine windings are 
divided into two star-connected groups with isolated neutral points. The motoring group 
includes the windings {1,2,3,7,8,9}, while the breaking group includes the remaining 
windings {4,5,6}. The decoupling algorithm is executed considering the constraints and 
configuration matrices �  and �l  given in Section 6.7.2. 

 The current references are found by separately applying the MTPA strategy 
presented in Section 6.2.3 to the two windings subsets. Their waveforms and harmonic 
spectra are shown28 in Fig. 6.44. 

To be more specific, the reference currents �e��1
∗ = [�1∗ , �2∗ , �3∗ , �7∗ , �8∗ , �9∗ ]T of the six-

phase motoring group are found by applying (6.19) with �QR,e��1 =
[³QR,1, ³QR,2, ³QR,3, ³QR,7, ³QR,8, ³QR,9]T. The reference torque for the motoring set is 

computed as: 

 +,-,e��1
∗ = +,-∗ + +,-,nL∗  

where +,-∗  is the overall electromagnetic torque computed by the speed controller, while +,-,nL∗  is the compensation of the torque applied by the braking windings group. The 

MTPA weighting matrix Ze�� 1 of the motoring group is: 

Ze��1  =
⎣⎢
⎢⎢
⎢⎢
⎡ 0.83 −0.17 −0.17 −0.17 −0.17 −0.17−0.17 0.83 −0.17 −0.17 −0.17 −0.17−0.17 −0.17 0.83 −0.17 −0.17 −0.17−0.17 −0.17 −0.17 0.83 −0.17 −0.17−0.17 −0.17 −0.17 −0.17 0.83 −0.17−0.17 −0.17 −0.17 −0.17 −0.17 0.83 ⎦⎥

⎥⎥
⎥⎥
⎤
 

and it has been found by computing (6.20) with the matrix  

 �e��1 = [1 1 1 1 1 1]T 

which identifies isolated neutral point constraint of the six-phase group. Given the 
symmetry of the considered subset, the corresponding currents of Fig. 6.44 are sinusoidal. 

 
28 Note that, contrarily to the previous cases, now the currents of each of the two subsets are 

normalized by the corresponding reference torques, which can be different from one another. 
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Similarly, the references �e��2
∗ = [�4∗ , �5∗ , �6∗ ]T of the three-phase braking group are 

found by applying the same equation (6.19), but with the set �QR,e��2 =
[³QR,4, ³QR,5, ³QR,6]T. The reference torque for this group is simply imposed to be the 

desired braking torque: 

 +,-,e��2
∗ = −+,-,nL∗  

The MTPA weighting matrix Ze��2 of the braking group is simply: 

 Ze��2  =⎣⎢
⎢⎡ 0.67 −0.33 −0.33−0.33 0.67 −0.33−0.33 −0.33 0.67 ⎦⎥

⎥⎤ 

and, once again, it has been computed via (6.20) with the matrix: 

 �e��2 = [1 1 1]T 

which identifies the three-phase group isolated neutral point constraint. Again, since the 
three-phase subset is symmetrical, the corresponding currents in Fig. 6.44 are sinusoidal.  

Note that, despite the different current references computation strategy, the current 
control algorithm of this testing scenario is equal to the one described in Section 6.7.2 
(i.e., it refers to the same �  and �l  matrices). 

Fig. 6.45 and Fig. 6.46 show the experimental results obtained in this testing scenario. 
Initially, +,-,nL∗  is set to 0 Nm; then, after 80 ms, +,-,nL∗  is changed to 2 Nm. 

By observing the machine phase currents it can be noted that, since for the first 80 ms the three-phase set is asked not to produce any torque, the corresponding currents 
are zero. The currents of the six-phase windings group are sinusoidal and with the same 

Fig. 6.44 – Waveforms and harmonic spectra of the optimal reference currents for 
the torque sharing scenario. The currents of the motoring set {1,2,3,7,8,9} are referred 
to the torque +,-,e��1

∗ = +,-∗ + +,-,nL∗ . The currents of the braking set {4,5,6} are 

referred to the torque +,-,e��2
∗ = −+,-,nL∗ . 
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magnitude (coherently with Fig. 6.44). They only need to balance the mechanical loading 
torque due to the friction.  

After the reference torque +,-,nL∗  is changed to 2 Nm, the currents of the braking 

group increase to follow the corresponding references which, given the symmetrical 
configuration of the three-phase set, are also sinusoidal waveforms (coherently with Fig. 
6.44). To balance the braking torque, the currents of the six-phase motoring set have 
their magnitude increased of around 5 times. Indeed, to compensate for the effect of +,-,nL∗ , they now need to develop an overall torque of around 2.5 Nm against the initial 

value of around 0.5 Nm which was only due to the mechanical load. Following an initial 
transient, all the currents can perfectly track their references.  

The fourth subplot of Fig. 6.45 shows both the overall torque +,- and the torques +,-,e��1 and +,-,e��2 developed by the two windings subsets29. As can be noted, after 

an initial transient, +,-,e��2 reaches the desired value of −2 Nm and +,-,e��1 the 

corresponding value of 2.5 Nm. The overall torque +,- developed at the rotor shaft, 
which is given by the combined contribution of the two subsets, is almost unaffected by 

 
29 Again, these are torque estimations computed by applying the analytical expression (6.4) 

and by only selecting the phase indexes related to the two subsets.  

 

Fig. 6.45 – Experimental results for the torque sharing scenario in healthy conditions. 
Solid lines: measured variables; Dashed lines: reference variables. 
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the current transient and is kept to the constant value of around 0.5 Nm. This is also 
confirmed by the measurement of the torque meter (the green trace of Fig. 6.46).  

As can be seen from the last subplot of Fig. 6.45, the machine speed & is unaffected 
by the change of +,-,nL∗  and stays at the value of 500 rpm. 

As also analysed in Section 6.2.3, this torque sharing capability can be conveniently 
used to transfer power between different sets (e.g., from the motoring subset to the 
braking subset). 

The same torque sharing strategy can be also applied to a faulty machine 
configuration. This is here exemplified by repeating the same testing scenario for the 
post-fault configuration analysed in Section 6.7.3 and represented in Fig. 6.24, in which 
phase 1 of the machine has been physically disconnected. 

In this case, the only difference in the current references computation strategy is 
related to the weighting matrix Ze��1 , which is now computed with the constraints 

matrix: 

 �e��1 = [1 1 1 1 1 11 0 0 0 0 0]
T
 

which includes the additional constraint �1 = 0. From (6.20), it results: 

Ze��1  =
⎣⎢
⎢⎢
⎢⎢
⎡ 0 0 0 0 0 00 0.80 −0.20 −0.20 0.20 −0.200 −0.20 0.80 −0.20 −0.20 −0.200 −0.20 −0.20 0.80 −0.20 −0.200 −0.20 −0.20 −0.20 0.80 −0.200 −0.20 −0.20 −0.20 −0.20 0.80 ⎦⎥

⎥⎥
⎥⎥
⎤
 

The optimal current references in this scenario are depicted in Fig. 6.47, while the 
experimental results are shown in Fig. 6.48 and Fig. 6.49. 

 

 

Fig. 6.46 – Oscilloscope capture of the experimental results for the torque sharing 
scenario in healthy conditions.  
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Fig. 6.47 – Waveforms and harmonic spectra of the optimal reference currents for the 
torque sharing scenario in faulty conditions. The currents of the motoring set {1,2,3,7,8,9} 
are referred to the torque +,-,e��1

∗ = +,-∗ + +,-,nL∗ . The currents of the braking set {4,5,6} 

are referred to the torque +,-,e��2
∗ = −+,-,nL∗ .  

 
Fig. 6.48 – Experimental results for the torque sharing scenario in faulty conditions. 

Solid lines: measured variables; Dashed lines: reference variables. 
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Again, the currents of the three-phase braking set are initially zero (because +,-,nL∗  

is 0 Nm) and after the settling transient, they follow the same sinusoidal references of 
the healthy configuration, coherently with the references currents of Fig. 6.47 (indeed, 
the three-phase set has not been changed). 

On the contrary, the currents of the motoring set are not sinusoidal anymore, because 
of the asymmetrical structure of the post-fault configuration. In particular, the 
corresponding waveforms do not change during the entire experiment (i.e., they have the 
same waveform of Fig. 6.47) and only their magnitude is modified after the braking 
torque change. Initially, when +,-,nL∗ = 0 Nm, they only need to balance the mechanical 

torque of around 0.5 Nm due to the drive train friction. When, after 80 ms, the reference 
braking torque is changed to +,-,nL∗ = 2 Nm, the magnitude of the currents of the 

motoring group increases by around 5 times to balance the overall braking torque of 
around 2.5 Nm. 

Once again, the overall electromagnetic torque +,- is not affected by the change of 
the torques of the two subsets and, consequently, the machine speed & is always kept to 
the reference value of 500 rpm. 

6.8 Summary and remarks 
This chapter has presented a generalized control algorithm for a multiphase surface-

mounted PMSM drive. Contrarily to standard approaches, the proposed solution is 
completely derived in the phase variable domain and does not require any VSD or 
rotational transformation, but instead it explicitly considers the hardware connection 
among the machine phase windings and with the supplying power converter. 

First, the mathematical model of the drive has been derived. The electrical machine 
model is the particularization of the general model developed in Chapter 2, while the 
effect of the interconnection network has been done through the network interconnection 

matrix ú  and the constraints matrix � , coherently with the analysis of Chapter 4. 

Then, an MTPA algorithm has been presented to compute the machine current 
references needed to develop a desired electromagnetic torque. The approach has been 

 

Fig. 6.49 – Oscilloscope capture of the experimental results for the torque sharing 
scenario in faulty conditions. 
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formalized as a constrained optimization problem aimed at minimizing the overall 
machine RMS current while, at the same time, producing the desired reference torque 
and satisfying the algebraic constraints introduced by the drive hardware configuration. 
It has been solved analytically and only requires the computation of an MTPA weighing 

matrix Z , which only depends on the constraints matrix � . The same MTPA approach 
can also be applied to chosen subsets of the machine windings, and is therefore suitable 
for independent torque control strategies. 

The current controller has then been developed.  
The core of the proposed solution is a decoupling algorithm that, coherently with the 

system constraints, is aimed at neutralizing all the mutual interactions due both to the 
magnetic couplings and to the electrical drive topology. The proposed decoupling 
algorithm is composed of a machine compensation term (which replicates the machine 
model) and of a network compensation term (which implements a pseudo-inverse 
algorithm and depends on the configuration matrix �l). 

Thanks to the decoupled algorithm, the machine currents can be independently 
controlled through any standard single-input/single-output controller structure. The 
chosen decoupled current controller is linear and, since the steady-state currents are 
periodic, is composed of a proportional action, an integral action, and several resonant 
actions synchronized with the machine angular speed. The presence of the resonant terms 
guarantees the steady-state tracking errors to be zero. 

The whole control algorithm has been experimentally validated with a nine-phase 
PMSM drive. Several testing scenarios have been analysed and discussed in detail. All 
the results are satisfactory and coherent with the theoretical analysis. 

The main benefit of the proposed approach is its generality and flexibility. The same 
controller architecture can be applied to any machine design (e.g., different magnetic 
axes disposition, back-EMFs waveforms, etc…) and to any electrical configuration (e.g., 
single or multiple neutral points, healthy or post-fault configurations, etc…). It can also 
be adapted in real-time to different drive configurations with minimal changes, thus 
being a viable solution for fault-tolerant applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



7 Decoupled Phase Variable 

Control of SynRMs 

Chapter 6 has proposed an innovative control algorithm for multiphase PMSMs, 
which is directly derived in the phase variable domain and explicitly considers the drive 
architecture. Thanks to detailed mathematical analysis and to many experimental tests, 
the proposed approach has proven its benefits in terms of generality with respect to both 
machine designs and drive configurations, thus representing a viable alternative to 
standard multiphase control algorithms. 

This chapter is aimed at showing how this approach can be extended to an electric 
drive employing a multiphase synchronous reluctance machine (SynRM). Here, the main 
differences are related to the torque development mechanism and, consequently, to the 
generation of the motional induced back-EMFs, which are not related to the presence of 
permanent magnets but, instead, depend on variable reluctance effects. 

The chapter is structured as follows. Section 7.16.1 summarizes the mathematical 
model of the analysed SynRM drive which, again, combines the machine model developed 
in Chapter 2 and the network model developed in Chapter 4. Section 7.2 describes a 
current references computation strategy based on a maximum torque per ampere 
(MTPA) approach and analyses its properties and implementation. Next, Section 7.3 
examines the current control algorithm, which follows the same approach developed in 
Chapter 6 and is based on a decoupling algorithm and on a decoupled feedback 
controller. The overall control algorithm is then summarized in Section 7.4. The 
experimental setup used to validate the proposed approach is described in Section 7.5, 
while the corresponding results are discussed in Section 7.6. Finally, Section 7.7 
summarizes the main conclusions of this study. 

7.1 Mathematical model 
The drive under analysis consists of a �-phase SynRM supplied by a ¦-leg converter. 

All the � machine windings are located on the stator, and the variable reluctance is 
realized through the rotor design. 

This section particularizes the generalized machine model presented in Chapter 2 to 
the examined configuration, explicitly considering the drive architecture model analysed 
in Chapter 4 through the multiport network approach. Fig. 7.1 shows a schematic 
representation of the analysed multiphase drive, with the explicit identification of the 
SynRM, of the VSI (average model) and of the interconnection network. 

7.1.1 Machine model 

As presented in Chapter 2, under the linearity hypothesis, the fluxes induced in each 
of the � stator windings is given by the superimposed contribution of the magnetic field 
generated by all the machine phase currents. The model (2.29) is particularized into: 
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 � = z(%) ⋅ � (7.1)

Given the variable reluctance effects, the � × � inductances matrix z periodically 
depends on the rotor position %. As shown in Chapter 2, for each rotor position, z(%) is 
symmetric and positive definite. A Fourier decomposition can be applied with respect to 
the mechanical position 0 ≤ % ≤ 2	 to identify the different harmonic contribution of 
each coefficient of z(%). For typical designs, considering a machine with �� pole pairs, 

the inductances matrix is characterized by only even-order harmonics of the electrical 
rotor position %,M = �� ⋅ % (i.e., by the harmonics of order ℎ = 0,  2,  4,… 1). 

From (7.1), the induced back-EMFs can be split in the transformer-induced 
contribution (related to the time variation of the phase currents) and in the motional-
induced contribution (related to the time variation of the rotor position) as: 

 
d�d� = z(%) ⋅ d�d� + & ⋅ z′(%) ⋅ � (7.2)

with & = d% d�⁄  identifying the mechanical speed of the rotor, and z′(%) = 3z 3%⁄  
identifying the %-derivative of the inductances matrix, whose coefficients are related to 
the variable reluctance effects. The matrix z′(%) is also a symmetric matrix that 
periodically depends on % but, generally, it is not positive definite. 

By denoting as � = & ⋅ z′(%) ⋅ � the motional-induced back-EMFs, the machine 
electrical equations can be written in a matrix formalism as: 

 
1 This is because the rotor is typically designed with an even number of saliencies (or flux 

barriers) for each pole pair of the machine. 
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Fig. 7.1 – Schematic representation of a six-phase multiphase SynRM drive architecture, 
with explicit identification of the VSI (average model) and of the electrical interconnection 
network (double-star configuration with two isolated neutral points). 
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 z(%) ⋅ d�d� + � ⋅ � + � = � (7.3)

This equation takes the same form of the model (6.3), where the only differences are the 
dependence of the inductances matrix z by the rotor position % and the different 
definition of the motional-induced back-EMFs vector �, which in (6.3) was related to 
the permanent magnets, while in (7.3) is related to the variable reluctance effects. 

Given the absence of PMs, the electromagnetic torque generated by the machine is 
only due to the mutual interaction between the different phase currents, which depends 
on the variable reluctance effects, and the general expression (2.33) is simplified to: 

 +,- = 12 ⋅ �T ⋅ z′(%) ⋅ � (7.4)

7.1.2 Drive electrical model 
As explained in Chapter 4, and similarly to how it has been discussed in Chapter 6, 

the machine phase windings are connected with each other and to the supplying 
converter through a known interconnection network which may introduce �D algebraic 
constraints to the � machine currents. Again, as previously done in Section 6.1.2, the 
overall effect of the network can be modelled through the equations: 

 �T ⋅ � = û (7.5)

 z(%) ⋅ d�d� + � ⋅ � + �  =  �  =  ú ⋅ · − � ⋅ �¥��  (7.6)

where �  is the � × �D constraints matrix, · is the ¦ × 1 set of converter leg voltages, ú  is the � × ¦ network interconnection matrix, and �¥��  is the �D × 1 set of auxiliary 
network voltages related to the constraints on the machine currents. 

As explained in Chapter 4, the model (7.5)-(7.6) can be simplified by considering a 
configuration matrix �l  (which can be computed from the singular value decomposition 

of �), in a way that: 

 � = �l ⋅ �l ,       and       �lT ⋅ � = û (7.7)

This allows reducing the �-dimensional set of equations (7.4) and (7.6) in a set of 
equations with dimension �l = � − �D, which are: 

 zl(%) ⋅ d�ld� + �l ⋅ �l + �l  =   �l  =  úl ⋅ · (7.8)

 +,- = 12 ⋅ �lT ⋅ zl′ (%) ⋅ �l  (7.9)

In (7.8) and (7.9), the � × 1 vectors �, � and � have been reduced to the �l × 1 vectors 

�l , �l and �l through the transformations: 

 �l = �lT ⋅ �, �l = �lT ⋅ �, �l = �lT ⋅ � (7.10)

while the � × � matrices z(%), z′(%) and �, and the � × ¦ matrix ú , have been reduced 
to the �l × �l  matrices zl(%), zl′ (%) and �l , and in the �l × ¦ matrix úl  as: 
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 zl(%) = �lT ⋅ z(%) ⋅ �l , �l = �lT ⋅ � ⋅ �lzl′ (%) = �lT ⋅ z′(%) ⋅ �l , úl = �lT ⋅ ú  (7.11)

7.1.3 Mechanical model 
The mechanical model of the system is the same as the previously discussed model 

presented in Section 5.1.7 and in Section 6.1.3. The corresponding equations of the 
overall group are here repeated: 

 ',; ⋅ d&d� + (,;(&) ⋅ & = +,- − +MØï¶ (7.12)

 
d%d� = & (7.13)

7.2 Torque control Strategy 
The torque control strategy is aimed at computing a set of reference currents �∗ to 

be tracked to develop a desired electromagnetic torque +,-∗ . As also explained in 
Section 6.2, for a �-phase machine subject to �D constraints (7.5), there are �l = � − �D 
free current components which can be chosen. Then, the torque development requirement 
can be addressed as an additional constraint on the machine currents, and the remaining �l − 1 degrees of freedom can be exploited to optimize some system performances. The 

present section proposes a maximum torque per ampere (MTPA) strategy to compute 
the references currents set �∗ to be tracked.  

7.2.1 MTPA problem formulation 
Similarly to how it has been done in Section 6.2, the proposed algorithm is aimed at 

the minimization of an overall instantaneous root mean square (RMS) current for the 
whole machine, which is defined as in (6.12) to be: 

 ñURe = ‖ � ‖ = √�T ⋅ � = √ ∑��2�
�=1

  (7.14)

Then, considering (7.4) and (7.5), the proposed MTPA strategy can be formalized as 
the constrained optimization problem2: 

 minE {�T ⋅ �}     subject to    
⎩{{
⎨{
{⎧12 ⋅ �T ⋅ z′ ⋅ � = +,-∗  

�T ⋅ � = û
 (7.15)

The resolution of the problem (7.15) could in theory be addressed with the same 
approach adopted in Section 6.2. However, while the torque development requirement in 
(6.14) was a linear function of the currents set �, the same requirement in (7.15) is a 

 
2 The explicit dependence of z′ on the rotor position % has been omitted for notation 

compactness. 
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quadratic function of �. This means that the problem (7.15) is a minimization of a 
quadratic function subject, at the same time, to both linear and quadratic constraints. 
This makes its analytical resolution much more challenging. 

As will be shown, a drastic simplification is obtained by reformulating the problem 
(7.15) in the configuration space. Considering (7.7), and since �lT ⋅ �l = � , the RMS 

current (7.14) can be rewritten as: 

        ñURe  =  ‖ � ‖  =  √�T ⋅ �  = √�lT ⋅ �lT ⋅ �l ⋅ �l  = √�lT ⋅ �l  = ∥ �l  ∥ (7.16)

Moreover, by referring the problem to the set �l , the torque development requirement is 

given by the similar expression (7.9), while the constraints equation (7.5) is automatically 
verified. 

As a result, the problem (7.15) can be rewritten as: 

 minEp {�lT ⋅ �l}     subject to     12 ⋅ �lT ⋅ zl′ ⋅ �l = +,-∗  (7.17)

The simplification motivated by the fact that, contrarily to the formulation (7.15), the 
problem (7.17) is a minimization of a quadratic function subject to a single quadratic 
constraint. Moreover, it does not depend on the � × 1 set �, but it is formalized with the 
reduced order set �l , which is a �l × 1 vector (with �l ≤ �). 

7.2.2 MTPA problem resolution 
This section is aimed at analytically solving the problem (7.17). For this purpose, 

the current set �l  is decomposed as: 

 �l = ñURe ⋅ ıl̂ (7.18)

Considering (7.16), it can be derived that ∥ ıl̂  ∥ = ıl̂T ⋅ ıl̂ = 1. This means that ñURe 

represents the magnitude of the vector �l , while ıl̂ , which is a unit vector (i.e., a versor), 

represents its direction in the �l -dimensional space ℝ�p . 
For a given unit vector ıl̂ , the corresponding current ñURe can be immediately found3 

by the torque development requirement in (7.17). Indeed, on the condition that the 
quadratic form (ıl̂T ⋅ zl′ ⋅ ıl̂) has the same sign of the reference torque +,-∗ , the current 

RMS magnitude is: 

 ñURe = √  2 ⋅ +,-∗ıl̂T ⋅ zl′ ⋅ ıl̂   (7.19)

Therefore, considering (7.19) it can be deduced that: 
 if +,-∗ > 0, the minimization of ñURe is obtained by maximizing the 

denominator (ıl̂T ⋅ zl′ ⋅ ıl̂) (which must be positive), and 

 if +,-∗ < 0, the minimization of ñURe is obtained by minimizing the 
denominator (ıl̂T ⋅ zl′ ⋅ ıl̂) (which must be negative). 

The maximization or minimization of the quadratic form (ıl̂T ⋅ zl′ ⋅ ıl̂) can be solved 

by computing the eigenvalues and eigenvectors of the matrix zl′ . To be more specific, it 

 
3 Proven in Appendix 9.7.1. 
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can be proven that4: 
 if +,-∗ > 0, the optimal solution is given by the eigenvector ıl̂,max corresponding 

to the maximum (positive) eigenvalue qmax > 0 of the matrix zl′ , and it results 

that (ıl̂,maxT ⋅ zl′ ⋅ ıl̂,max) = qmax, while 

 if +,-∗ < 0, the optimal solution is given by the eigenvector ıl̂,min corresponding 

to the minimum (negative) eigenvalue qmin < 0 of the matrix zl′ , and it results 

that (ıl̂,minT ⋅ zl′ ⋅ ıl̂,min) = qmin. 
Naturally, if +,-∗ = 0, it is sufficient to set ñURe = 0 for any unit vector ıl̂ . 

To sum up, the solution to the MTPA algorithm (7.17) is obtained by computing 
the matrix zl′ = �lT ⋅ z′ ⋅ �l  and by calculating its maximum and minimum eigenvalues 

qmax > 0 and qmin < 0, and the corresponding unitary-norm eigenvectors ıl̂,max and ıl̂,min. 
Once the reference current direction set ıl̂∗  has been chosen either as ıl̂,max or as ıl̂,min 
(depending on the sign of the reference torque +,-∗ ), the term ñURe can be computed 
via (7.19) and the optimal current set �l∗  in the configuration space can be reconstructed 

via (7.18). Finally, the reference currents set in the phase variable domain, which is the 
solution to the original problem (7.15), can be found via (7.7) as �∗ = �l ⋅ �l∗ .  

However, by combining these last considerations, the solution can also be directly 
formalized in the phase variable domain. Indeed, considering (7.18), it is possible to 
define a reference current direction versor in the phase variable domain as ı∗̂ = �l ⋅ ıl̂∗  

and, through (7.19), it can be easily verified that: 

ıl̂∗ T ⋅ zl′ ⋅ ıl̂∗ = (�l ⋅ ıl̂∗ )T ⋅ z′ ⋅ (�l ⋅ ıl̂∗ ) = ı∗̂T ⋅ z′ ⋅ ı∗̂ (7.20)

Therefore, the optimal solution to the MTPA problem (7.15) is: 

�∗ = √  2 ⋅ +,-∗ı∗̂T ⋅ z′ ⋅ ı∗̂   ⋅ ı∗̂,       with    ı∗̂ = {�l ⋅ ıl̂,max if   +,-∗ ≥ 0�l ⋅ ıl̂,min if   +,-∗ < 0 (7.21)

The schematic block diagram of this algorithm is represented in Fig. 7.2. Note that, 
since z′ periodically varies with the rotor position %, also ıl̂,max and ıl̂,min (and, 

consequently, ı∗̂) should be computed considering the measured value of %. 

 
4 Proven in Appendix 9.7.2. 
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Fig. 7.2 – Functional block scheme of the MTPA algorithm.  
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7.2.3 MTPA solution properties 
Several interesting properties can be observed from inspection of the MTPA problem 

(7.15) and of the corresponding solution (7.21). 

The first property which can be immediately observed from (7.15) is that, since both 
the objective function and the constraint are quadratic in �, the solution to (7.17) is not 
unique. Indeed, opposite sets of phase currents develop the same torque. This is coherent 
with (7.21), considering that opposite eigenvectors relate to the same eigenvalue. This 
aspect, if not properly considered in a real-time implementation, might generate sharp 
transitions in the reference currents set �∗ to be tracked. However, this inconvenience is 
easy to neutralize by conditioning the reference unit vector ı∗̂ to have a smooth evolution 
in time. The easiest way for this implementation is to evaluate the scalar product ı∗̂(��)T ⋅ı(̂��−1) between the reference versor ı∗̂(��) computed at a given time instant and the 
reference versor ı(̂��−1) computed at a previous time instant. If this scalar product is 
negative, this indicates that a sharp transition would occur, and it can be prevented by 
just replacing ı∗̂(��) with −ı∗̂(��). 

Another interesting aspect is that, contrarily to the MTPA for PMSMs derived in 
Section 6.2, the reference currents given by (7.21) are proportional to the square root of 
the reference electromagnetic torque +,-∗ . As a consequence, the overall machine stator 
losses (which depend on the term ñURe2 ) are proportional to the torque +,-∗ . This means 
that, to double the torque developed by the machine, the overall losses also double, but 
the currents only need to be increased by 

√2 ≅ 1.41 times. 

However, the RMS current of (7.21) may not be constant with % and may not be the 
same for positive or negative reference torques. Indeed, it is easy to prove that, with the 
optimal reference currents, the RMS current is equal to5: 

 ñURe =
⎩{{⎨
{{⎧√ 2 ⋅ +,-∗ qmax⁄    if   +,-∗ ≥ 0

√ 2 ⋅ +,-∗ qmin⁄    if   +,-∗ < 0 (7.22)

Since the matrix zl′ = �lT ⋅ z′ ⋅ �l varies with the rotor position, also its 

corresponding eigenvalues qmax and qmin are, in general, periodic functions of %. In case 
they are not constant, according to (7.22), the overall RMS current needed to develop 
the same electromagnetic torque +,-∗  would also depend on %, meaning that some rotor 
positions would be favourable for the torque development than other rotor positions. 
Moreover, in general, it may also happen that |qmax| ≠ |qmin|. In this case, it would mean 
that the machine has (at least locally) a preferred spin direction, which would require a 
smaller overall RMS current to develop the same spinning torque. 

The average losses in a full rotor cycle are given by: 

 �U = ∑ � ⋅ ��2�
�=1

 (7.23)

Similarly to the corresponding considerations done in Section 6.2, some problems 
may arise when the denominator (ı∗̂T ⋅ z′ ⋅ ı∗̂) in (7.21) gets close to zero (i.e., when qmax 

 
5 Proven in Appendix 9.7.3. 
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or qmin have a small absolute value). Indeed, in this case, the phase currents required to 
develop a desired electromagnetic torque may become very high and be unfeasible for 
real applications. This phenomenon may happen in case of multiple faults on the machine 
phases but, again, it can be prevented by limiting the phase currents computed via (7.21) 
within a chosen feasible range, chosen for safety reasons. 

Finally, for a real-time implementation of (7.21), the computation of the directions �l ⋅ ıl̂,max and �l ⋅ ıl̂,min can either be entirely executed online through a fast eigenvalue 

computation algorithm (e.g., with the inverse iteration method, Rayleigh quotient 
iteration method, etc…) or can be partially executed offline or during an algorithm 
initialization routine, and then implemented in real-time with an interpolation algorithm 
(e.g., through a Fourier-based interpolation). 

7.3 Current controller 
Once the reference currents set �∗ has been computed, the control algorithm must 

find a set of reference converter voltages ·∗ to drive the measured currents set � towards �∗. The same strategy previously presented in Chapter 6 is here applied. It is based on a 
decoupling algorithm (derived as in Section 6.3) and on a decoupled controller (chosen 
as in Section 6.4). 

7.3.1 Decoupling current control algorithm 
The basic idea of the proposed decoupling algorithm is the same described in 

Section 6.3.1. Indeed, by comparing the reduced-order model (7.8) obtained in 
Section 7.1.2 for a generic multiphase SynRM with the corresponding model (6.8) 
obtained in Section 6.1.2 for a generic PMSM, it can be observed that they have the 
same structure, the only difference being the dependence of zl by %. 

Then, as done in Section 6.3, the VSI voltages set ·∗ which leads to the decoupling 
of the phase currents dynamics can be computed as:  

 ·∗ = ·Ø�ª∗ + ·0∗ (7.24)

where ·Ø�ª∗  and ·0∗  are respectively given by: 

 
          ·Ø�ª∗  = úl† ⋅ �l∗ = úl† ⋅ [zl(%) ⋅ ]�l∗ + �l ⋅ �l + �l ] =  

= [(�lT ⋅ ú)† ⋅ �lT] ⋅ [z(%) ⋅ ]�∗ + � ⋅ � + �] (7.25)

 

          ·0∗    = (� − úl† ⋅ úl) ⋅ ·Øll∗ =  
= [� − (�lT ⋅ ú)† ⋅ (�lT ⋅ ú)] ⋅ ·Øll∗  

(7.26)

with † denoting the Moore-Penrose pseudo-inverse, ]�∗ = �l ⋅ ]�l∗  being a � × 1 
references derivatives currents set, and ·Øll∗  being a ¦ × 1 offset vector for the VSI leg 

voltages (which is the generalization of a standard common-mode voltage injection). 
The schematic block diagram of this decoupling algorithm is depicted in Fig. 7.3. It 

is perfectly identical to the same diagram previously shown in Fig. 6.7, with the only 
differences being in the %-dependence of z. Again, in case ú = � , the expression of the 
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optimal solution is simplified by considering that [(�lT ⋅ ú)† ⋅ �lT] = (�l ⋅ �lT) in (7.25) 

and [� − (�lT ⋅ ú)† ⋅ (�lT ⋅ ú)] = (�D ⋅ �DT) in (7.26), and the corresponding block 

diagram would be the same depicted in Fig. 6.8. 

7.3.2 Decoupled current control algorithm 
Once the decoupling control algorithm is executed, the dynamics of the machine 

phase currents are independent of one another and are governed by the simple dynamical 
relation: 

 
d�d� = ]�∗   ⇔    d��d� = ^��∗   (with � = 1,… , �) (7.27)

As done in Section 6.4, each term ^��∗  can be properly computed by a single-
input/single-output controller acting on the tracking error ��∗ − ��.  

To guarantee a perfect steady-state tracking of periodic references synchronized with 
the machine angular speed, the proposed solution is again a Proportional-Integral-
Resonant controller, with multiple resonant actions synchronized with multiple integers 
of &. Its transfer function in the Laplace domain has been previously given in (6.43) and 
is here repeated: 

 e( ) = ℒ[^��∗ ]( )ℒ[��∗ − ��]( ) = fQ  + fõ   + ∑ fU,ℎ ⋅   2 + &ℎ2
�g'h

ℎ=1
 (7.28)

where: 

 fQ  is the proportional controller constant, 

 fõ is the integral controller constant, and 

 fU,ℎ is the ℎ-th resonant controller constant. 

The same considerations done in Section 6.4 are also valid for this case. 

Additional details regarding the implementation of the resonant controller actions 
are reported in Appendix 9.1.1. 
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Fig. 7.3 – Functional block scheme of the decoupling algorithm.  
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7.4 Overall drive control algorithm 
The overall structure of the proposed drive control algorithm is schematically 

represented in Fig. 7.4. As can be noted, it takes the same structure of the PMSM 
controller previously described in Section 6.5 and represented in Fig. 6.10. 

First, the “Speed Controller”, here implemented as a simple PI regulator, compares 
the reference speed &∗ with the measured machine speed &, and computes the reference 
electromagnetic torque +,-∗  to be applied.  

Next, the “Inductances and Back-EMFs Estimation” block is executed to compute 
the matrices z(%) and z′(%) = 3z 3%⁄  from the measured rotor position %. The same 
block also computes the motional-induced back-EMFs vector � = & ⋅ z′(%) ⋅ � (which is 
used in the decoupling algorithm).  

The “MTPA” block is then executed to find the references currents set �∗ as described 
in Section 7.2. The schematic block diagram of the MTPA algorithm has been formerly 
represented in Fig. 7.2. As also previously mentioned, the eigenvalues and eigenvectors 
of the matrix zl′ (%) = �lT ⋅ z′(%) ⋅ �l  can either be computed in real-time with a fast 

eigenvalue research algorithm or can be calculated during an algorithm initialization and 
then reconstructed from offline computed coefficients (e.g., through the coefficients of 
their Fourier decomposition).  

The “Current Controller” block is finally executed. The Proportional-Integral-
Resonant (PIR) feedback controller compares the reference currents set �∗ with the 
actual currents set � and, through this error, it computes the reference derivative currents 
set ]�∗ to be applied. The decoupling algorithm of (7.24)-(7.26) (whose functional block 
diagram has been previously represented in Fig. 7.3) is then executed to find the reference 
voltages set ·∗, which is finally applied through a pulse width modulation algorithm.  
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Fig. 7.4 – Functional block diagram of the proposed controller. 
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7.5 Experimental setup 
The proposed control algorithm has been experimentally validated with the machine 

depicted in Fig. 7.5. 

7.5.1 Electrical machine 
The electrical machine under analysis is a five-phase synchronous reluctance machine 

with two pole pairs6.  
The machine has been obtained from an originally three-phase induction machine. 

The stator has 40 slots and the winding have been arranged in a way that the magnetic 
axes of two consecutive phases are mutually shifted by 72° electrically (i.e., 36° 
mechanically). The variable reluctance rotor has been obtained by cutting the original 
squirrel-cage rotor to realize four salient poles. A geometric representation of the machine 
is shown in Fig. 7.6. The main geometrical data are reported in Table 7.I. The terminals 
of all the phase windings are available externally. 

The machine winding resistances have been measured in DC. They are identical for 
all five phases and equal to � = 1.8 Ω. 

The machine inductances parameters have been found in the phase variable domain 
with the following procedure. Phase 1 of the machine has been supplied with a sinusoidal 

 
6 Additional information regarding the design of this machine can be found in [163], [164]. 

 

Fig. 7.5 – Five-phase synchronous reluctance machine under analysis. 
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voltage with a peak value of 20 V and a 50 Hz frequency, while all the other phases have 
been left in open-circuit. The current in phase 1 and the induced voltages in all the other 
phases {2,3,4,5} have been measured at blocked rotor for different positions of the 
electrical angle %,M = 2 % (the position at 0° has been considered to be coincident with 
the magnetic axis of phase 1). From the voltage and current measurements, it has been 
possible to estimate the fluxes induced in the machine phases: 

 

⎩{⎨
{⎧t1(�) = ∫(�1(�) − � ⋅ �1(�))d�

t�(�) = ∫ ��(�) d�,   (with � = 2,3,4,5) (7.29)
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Fig. 7.6 – Geometric representation of the five-phase synchronous reluctance machine 
under analysis. 

Table 7.I – SYNRM GEOMETRICAL DATA. 

Pole pairs 2  
Internal stator diameter 127 mm 
External stator diameter 180 mm 
Stator slots depth 20 mm 
Number of wires per slot 54  
Number of turns per phase 216  
Minimum rotor diameter 86 mm 
Maximum rotor diameter 126 mm 
Salient poles height 20 mm 
Minimum air-gap width 0.5 mm 
Maximum air-gap width 20.5 mm 
Axial length 101.6 mm 
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All the fluxes have been plotted with respect to the machine current �1(�), in a way to 
obtain different hysteresis loops for each rotor position under test. The results are 
depicted in Fig. 7.7.  

Then, the parameters x�,1(%,M) (with � = 1,… ,5) of the inductances matrix z(%,M) 
have been found with a linear regression procedure as the slope of the linear 
characteristics t �⁄  which better approximate the different hysteresis loops. Finally, 
considering the machine symmetry, the values of the functions x�,1(%,M) have been 

extrapolated with an additional regression procedure based on the computation of the 
lowest even-order harmonics in %,M. The results of this parameter identification 
procedure, considering the harmonics of order 0, 2, 6, 10 and 14, are shown in Fig. 7.8, 
together with the corresponding values x�,1′ (%,M) of the inductances derivative matrix. 

The corresponding numerical parameters are summarized in Table 7.II. It is worth 
recalling that, because of the machine symmetry, x4,1(%,M) = x3,1(−%,M) and x5,1(%,M) =
x2,1(−%,M). 

As can be noted, the self-inductance x1,1(%,M) is always positive. Its maximum values 

are obtained for %,M = 0° and %,M = 180° (which are the positions of minimum reluctance). 
Its minimum values are instead obtained for %,M = ±90° (which are the positions of 
maximum reluctance). The mutual inductances functions x3,1(%,M) and x4,1(%,M) have a 

mirrored symmetry and are always negative (coherently with the negative slopes of the 
corresponding hysteresis loops in Fig. 7.7).  

 

Fig. 7.7 – Hysteresis loops obtained for different rotor positions by supplying the 
phase 1 with all the other phases left in open circuit. 
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The functions x2,1(%,M) and x5,1(%,M) also have a mirrored symmetry, but show both 

positive and negative values (coherently with the slope change in the corresponding 
hysteresis loops of Fig. 7.7). Given the machine symmetry, all the other inductances 
parameters xℎ,�(%,M) (with ℎ = 2,3,4,5) are obtained by just shifting the functions x1,�(%,M) by 72°, 144°, 216° and 288°. The same is also true for the matrix z′(%,M). 

 

Fig. 7.8 – Parameters of z(%,M) and of z′(%,M) of the examined SynRM. 

Table 7.II – SYNRM EXTRAPOLATED INDUCTANCES HARMONICS. 

Inductance 
Function 

Harmonic order (varying with %,M) 
0 2 6 10 14 

x1,1(%,M) 111 mWb 30.9 mWb 6.9 mWb 1.8 mWb 0.3 mWb 
- 0° 180° 0° 180° 

x2,1(%,M) 24.9 mWb 71.5 mWb 6.6 mWb 1.5 mWb 0.4 mWb 
- −72° 144° 0° −144° 

x3,1(%,M) −68.6 mWb 55.5 mWb 6.0 mWb 0.7 mWb 0.3 mWb 
- −144° 108° 180° 72° 
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7.5.2 Power electronics converter 

The machine has been supplied by one of the multiphase converters previously 
described in Section 6.6.2. For this application, the DC-bus voltage has been set to \�� = 600 V. Again, the VSI has been operated with a PWM algorithm working with a 
modulation frequency of 10 kHz. 
7.5.3 Interconnection network 

Similarly to the experiments of Chapter 6, each converter leg output node is directly 
connected to one machine phase positive terminal. As a result, the network 
interconnection matrix ú  is always the 5 × 5 identity matrix. On the contrary, the 
machine negative terminals have been connected differently according to the analysed 
scenario, meaning that the constraints matrix �  is not always the same. 

7.5.4 Controller board and algorithm implementation 

The proposed control algorithm has been implemented with the same Plexim RT 
Box 1 platform described in Section 6.6.4. The control is executed with a 10 kHz 
sampling rate and it is synchronized with the converter PWM period. The same LEM 
transducers have also been used to measure the five machine phase currents. The speed 
and position have instead been measured through a resolver integrated into the machine, 
whose signals have been properly adapted to the RT Box platform through a 
Resolver/Encoder interface. 

The implemented speed controller has a standard PI-based structure. For safety 
reasons, the reference torque +,-∗  computed by the speed controller has been limited to 
a feasible range of ±15 Nm. 

Again, as for the analogous control algorithm of Chapter 6, the constraint matrix �  
has been provided for each testing scenario, and an offline initialization routine has been 
configured to compute the corresponding configuration matrices �l  and �D.  

The same initialization routine has been used to implement the MTPA algorithm 
(7.21). The matrix zl′ (%) = �lT ⋅ z′(%) ⋅ �l  and the corresponding and eigenvectors ıl̂,max 
and ıl̂,min have been numerically computed for multiple rotor positions. Then, the 

corresponding directions ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min have been calculated, 

and have been decomposed as Fourier series in %,M. The resulting coefficients have been 
stored in the RT Box platform memory, and have been used to recompute the optimal 
reference directions of (7.21) in real-time.  

For safety reasons, all the phase currents of the reference set �∗ have been limited to 
the feasibility range of ±8.5 A before the execution of the current controller. 

The decoupling algorithm has been executed with the estimated inductances 
parameters given in Section 7.5.1. The feedback current controller has been implemented 
in the phase variable domain with the transfer function (6.43). The implemented 
resonant actions have been chosen for all the odd-order multiple integers of the machine 
electrical speed &,M = 2 &, up to the 19th harmonic. Finally, the offset vector ·Øll∗  for the 

common-mode voltage injection of the VSI has been set to half of the DC-bus voltage 
(i.e., 300 V) for all the five converter legs. 
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7.5.5 Mechanical load 
The five-phase SynRM has been mechanically coupled to a DC machine, used for 

loading. The overall group inertia has been estimated to be ',; ≅ 50 ⋅ 10−3 kg m2, while 

the overall friction coefficient has been estimated to be (,;(&) ≅ 6 ⋅ 10−3 (N m) (rad s⁄ )⁄ . 

The armature of the DC machine has been connected to an external 20 Ω resistor, 
chosen in a way that the machine develops a loading torque +MØï¶ proportional to the 
speed & and is such that +MØï¶ ≅ 2 N m when the machine speed is equal to 500 rpm.  

An additional 20 Ω resistor has been connected in parallel to the DC machine 
armature terminals through a controllable contactor. In this way, when the contactor is 
closed, the equivalent resistance connected at the DC machine terminals is reduced to 10 Ω, and the applied loading torque is doubled (i.e., +MØï¶ ≅ 4 N m when the machine 
speed is 500 rpm). 

A Datum Electronics M425 Torque transducer has been positioned between the 
SynRM and the DC machine rotor shafts. This torque meter has been used to measure 
the torque +- developed at the joint between the two machines. 

7.6 Experimental results 
To validate the proposed algorithm and to emphasize its generality and flexibility, it 

has been tested in several different scenarios, which are discussed and analysed in this 
section. 

For each scenario, the constraint matrix �  and the configuration matrix �l  are 

explicitly shown7. However, similarly to the results of Chapter 6, it is worth recalling 
that for a real-time implementation only �  is required, and that �l  is automatically 

computed during the algorithm initialization.  

7.6.1 MTPA algorithm validation 
This testing scenario is aimed at giving an implementation example of the MTPA 

strategy developed in Section 7.2 and compares it with other current references 
computation algorithms. 

The test refers to the single-star configuration depicted in Fig. 7.9. To clarify the 
working principle of the proposed MTPA algorithm, it is here explained for the 
considered case study. 

The constraints and configuration matrices for the analysed setup are: 

� =
⎣⎢
⎢⎢
⎢⎡11111⎦⎥

⎥⎥
⎥⎤ , �l =

⎣⎢
⎢⎢
⎢⎡−0.45 −0.45 −0.45 −0.450.86 −0.14 −0.14 −0.14−0.14 0.86 −0.14 −0.14−0.14 −0.14 0.86 −0.14−0.14 −0.14 −0.14 0.86 ⎦⎥

⎥⎥
⎥⎤

 

Since the configuration space has dimension �l = � − �D = 5 − 1 = 4, the matrix 

 
7 Similarly to Section 6.7, the configuration matrix has been found through the “svd” 

command in Matlab. All the parameters reported here are rounded to the second decimal unit. 
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zl′ = �lT ⋅ z′ ⋅ �l  used in the MTPA algorithm is a 4 × 4 symmetric matrix, whose 

coefficients are periodic functions of the rotor electrical position %,M = 2 %. For each rotor 
position, the matrix has 4 unitary-norm linearly independent eigenvectors. In the 
initialization routine, these eigenvectors have been numerically evaluated for different 
rotor positions, in a way to find the ones corresponding to the maximum and minimum 
eigenvalues of zl′ . The left subplot of Fig. 7.10 shows, in the whole range [−180°;+180°] 
of %,M, the eigenvalues of zl′ , computed numerically. The maximum and minimum 

eigenvalues qmax and qmin are highlighted as thick solid lines. The corresponding 
eigenvector directions ıl̂,max and ıl̂,min, are shown in the right subplots of Fig. 7.10.  

The optimal current versors in the phase variable domain have been computed as ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min, coherently with (7.21), while the corresponding 

RMS currents, computed for constant positive and negative reference torques, have been 
computed as in (7.22). They are depicted in Fig. 7.11 in the whole range [−180°,+180°] 
and have been normalized by the square root of +,-∗ . 

Finally, the optimal phase currents set has been computed as �∗ = ñURe ⋅ ı∗̂. The 
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Fig. 7.9 – Schematic diagram and constraint matrix for the healthy configuration. 

Fig. 7.10 – Eigenvalues of zl′  (left) and eigenvectors ıl̂,max and ıl̂,min (right) in the 

whole range [−180°,+180°] of %,M for the machine healthy configuration. 
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corresponding waveforms and harmonic spectra are depicted in Fig. 7.12 for both positive 
and negative reference torques, once again normalized by √+,-∗ .  

From the analysis of these results, it is possible to clarify many properties of the 
MTPA solution explained in Section 7.2.3.  

First, it can be seen in Fig. 7.10 that the eigenvalue qmax is always positive, and that 
the eigenvalue qmin is always negative. However, they are not constant with %,M but 
oscillate with a 10 %,M periodicity. As a consequence, the corresponding RMS currents ñURe , depicted in Fig. 7.11, show the same 10 %,M periodicity, coherently with (7.22). 

 

Fig. 7.11 – Overall machine RMS current (left) and optimal phase current versors  ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min (right) in the whole range [−180°, +180°] of %,M 
for the machine healthy configuration.  

 

Fig. 7.12 – Optimal phase currents waveforms and harmonic spectra in the healthy 
machine configuration: (top) Positive reference torque +,-∗ > 0; (bottom) Negative 
reference torque +,-∗ < 0. 
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These oscillations mean that, in different rotor positions, the RMS current required 
to generate the same electromagnetic torque may be different. As an example, to develop 
a torque of +1 Nm, when %,M = 0°, the required RMS current is around 1.8 A, when %,M = +9°, the required RMS current is around 2.0 A and when %,M = −9°, the required 
RMS current is around 1.7 A. 

Since |qmax| ≠ |qmin|, in different rotor positions, opposite torque signs may require 
different RMS currents. For example, when %,M = 9°, the development of +,-∗ = +1 Nm 
requires an overall equivalent RMS current of around 2.0 A, while the development of +,-∗ = −1 Nm requires an overall equivalent RMS current of around 1.7 A, indicating 
that this is a (locally) preferred spin direction. However, on average in a full rotor cycle, 
this local inequality is neutralized. 

Finally, from Fig. 7.12 it can be seen that the reference currents are highly non-
sinusoidal, and display many non-negligible odd-order harmonics. However, coherently 
with the five-phase machine symmetry, all the phase currents have the same waveform 
and are just mutually shifted from one another by 72°. Given the symmetry, the fifth 
harmonics (and their multiple integers) are homopolar components and, therefore, they 
are absent from the currents spectra. The optimal reference currents required to develop 
a negative torque have the same waveforms as the currents required to develop a positive 
torque, and are only mutually shifted by 90° from the first ones. 

For the real-time implementation, the current references have been calculated via 
(7.21), where the versors ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min are reconstructed from 

the coefficients of the Fourier decompositions of the waveforms depicted in Fig. 7.11.  
To validate the effectiveness of the proposed strategy, it has been experimentally 

compared with the sole use of sinusoidal currents and with a third-harmonic injection 
strategy based on the field-oriented analysis developed in [163]–[165]. The test has been 
executed by considering the steady-state behaviour of the machine at different speeds, 
while the loading torque has been realized by connecting the DC machine armature 
terminals to a 20 Ω resistor.  

The experimental results obtained at 500 rpm are shown in Fig. 7.13; the results 
obtained at 750 rpm are shown in Fig. 7.14, and the results obtained at 1000 rpm are 
shown in Fig. 7.15. They show, for each of the considered torque control strategies, the 
machine phase currents �1,… , �5, the overall instantaneous RMS current ñURe computed 
via (7.14) and the machine angular speed &. The solid lines represent the measured 
variables, while the black dashed lines represent the corresponding reference currents. 

Additional measurements are depicted in Fig. 7.16, Fig. 7.17 and Fig. 7.18, which 
show (for the speeds of 500 rpm, 750 rpm  and 1000 rpm, respectively) the oscilloscope 
captures of the currents �1 (dark blue traces), �2 (light blue traces), and �3 (magenta 
traces), and the electromagnetic torque +- applied at the rotor shaft (green traces). 

The difference between the three examined torque control strategies is evident in the 
waveforms of the phase currents, and it also affects the corresponding waveforms of ñURe . Indeed, considering the proposed MTPA algorithm, it can be seen that the highly 
non-sinusoidal current waveforms (based on the references of Fig. 7.12) lead to the 10 &,M 
oscillation in ñURe , coherently with the results of Fig. 7.11. On the contrary, this 
oscillation at 10 &,M is absent in case of both the sinusoidal currents strategy and the 
third harmonic injection strategy. 
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Fig. 7.13 – Steady-state results at 500 rpm: (top) Sinusoidal currents strategy; 

(middle) Third Harmonic Injection; (bottom) Proposed MTPA. 
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Fig. 7.14 – Steady-state results at 750 rpm: (top) Sinusoidal currents strategy; 

(middle) Third Harmonic Injection; (bottom) Proposed MTPA. 
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Fig. 7.15 – Steady-state results at 1000 rpm: (top) Sinusoidal currents strategy; 

(middle) Third Harmonic Injection; (bottom) Proposed MTPA. 
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No sensible difference between the three examined torque control strategies can 
instead be appreciated in the measured speeds. This indicates that the electromagnetic 
torque ripple (which is inevitably due to unmodelled phenomena, e.g., magnetic 
hysteresis of the iron) is not altered by the different strategies.  

A comparison of the average RMS current per phase8 obtained in a fundamental 
period for all the examined conditions is reported in Table 7.III. As can be seen, in all 
the examined conditions, the sinusoidal currents strategy is characterized by the highest 
values, the third harmonic injection strategy has intermediate results, and the proposed 
MTPA algorithm leads to the smallest currents. Then, the reduction of the RMS current 

 
8 Note that these RMS values are referred to the behaviour of a single machine current, 

averaged in a fundamental period. They are different from the RMS current ñURe defined in 
(7.14) and depicted in Fig. 7.11, which instead take into account the overall contribution of all 
the five machine currents in a specific rotor position (i.e at a specific time instant). 

 

Fig. 7.16 – Oscilloscope captures at 500 rpm: (left) Sinusoidal currents strategy; 
(middle) Third Harmonic Injection; (right) Proposed MTPA. 

 

Fig. 7.17 – Oscilloscope captures at 750 rpm: (left) Sinusoidal currents strategy; 
(middle) Third Harmonic Injection; (right) Proposed MTPA. 

 

Fig. 7.18 – Oscilloscope captures at 1000 rpm: (left) Sinusoidal currents strategy; 
(middle) Third Harmonic Injection; (right) Proposed MTPA. 

Table 7.III – COMPARISON OF THE AVERAGE RMS CURRENT PER PHASE. 

Mechanical speed of 
the rotor 

Sinusoidal Currents 
Strategy 

Third Harmonic 
Injection 

Proposed MTPA 
Algorithm 

500 rpm 1.303 A 1.254 A 1.242 A 
750 rpm 1.552 A 1.490 A 1.469 A 
1000 rpm 1.787 A 1.714 A 1.693 A 
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is also accompanied by a corresponding reduction of the overall machine losses. To be 
more specific, with respect to the sinusoidal currents strategy, the third harmonic 
injection can reduce the RMS currents by around 4%, which leads to a reduction of 
around 8% of the machine stator losses, while the proposed MTPA algorithm can lead 
to a reduction of around 5.5%, which leads to a losses reduction of around 10%. 

7.6.2 Healthy configuration 
This testing scenario is aimed at showing the effectiveness of the proposed control 

algorithm in a healthy machine configuration and at comparing it with a standard 
baseline controller architecture. 

The test has been done in the same single-star configuration of Fig. 7.9, and the 
current references have been computed with the MTPA algorithm described in 
Section 7.2, whose waveforms have been depicted in Fig. 7.12. The proposed decoupled 
current control algorithm has been compared with a standard VSD-based controller.  

The VSD-based controller has been realized by considering the Clarke’s matrix: 

� = √25 ⋅
⎣⎢
⎢⎢
⎢⎡

cos(0 Ç) cos(1 Ç) cos(2 Ç) cos(3 Ç) cos(4 Ç)sin(0 Ç) sin(1 Ç) sin(2 Ç) sin(3 Ç) sin(4 Ç)cos(0 Ç) cos(3 Ç) cos(6 Ç) cos(9 Ç) cos(12 Ç)sin(0 Ç) sin(3 Ç) sin(6 Ç) sin(9 Ç) sin(12 Ç)
1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ 1 √2⁄ ⎦⎥

⎥⎥
⎥⎤ 

with Ç = 2	 5⁄ . It can be verified that this matrix is orthogonal (i.e., �−1 = �T). Both 
the reference and the measured currents are transformed in the VSD domain through 
the transformation (2.38), and the corresponding error components are processed by PI 
controllers working in the multiple synchronous domain. To be more specific, considering 
the harmonic mapping for a symmetrical five-phase system, the x1 − y1 components 
have been processed with PI controllers in rotating frames synchronous with %,M, −9 %,M, 11 %,M and −19 %,M (i.e., with the progression 10 ℎ ± 1), while the x3 − y3 components 
have been processed with PI controllers in rotating frames synchronous with 3 %,M, −7 %,M, 13 %,M and −17 %,M (i.e., with the progression 10 ℎ ± 3). The computed reference voltages 
have been summed and transformed back into the phase variable domain by (2.38). 

The first set of tests has been done considering the dynamic response of the system 
to speed transients. The machine has been subject to a step change of the reference speed 
from −500 rpm to +500 rpm, while at the same time the DC machine armature 
terminals are again closed on a 20 Ω resistor (which, as also previously mentioned, 
generates a braking torque proportional to the speed with a proportionality gain of 
around 0.04 Nm/(rad/s)).  

The results obtained with the proposed decoupled phase variable controller are 
depicted in Fig. 7.19, while the results obtained with the VSD-based controller are 
depicted in Fig. 7.20. The top subplots show the machine phase currents (solid lines) 
and the corresponding references (black dashed lines). The middle subplots show the 
developed electromagnetic torque +,- (solid line) and the controller reference torque +,-∗  
(black dashed line); the torque has been estimated by computing (7.4) with the measured 
currents. The bottom subplots show the machine angular speed & (solid line) and the 
corresponding reference speed &∗ (black dashed line). 
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Fig. 7.19 – Experimental results obtained with the proposed decoupled phase 
variable controller (speed change from −500 rpm to +500 rpm). 

 

Fig. 7.20 – Experimental results obtained with the VSD-based controller (speed 
change from −500 rpm to +500 rpm). 
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As can be seen, both controller architectures produce very similar results.  

After the speed reference change (at � = 0.2 s) the torque reference jumps from −2 Nm to the limit value of +15 Nm and, consequently, the measured speed starts 
increasing. At around � = 0.45 s the torque starts decreasing and finally stabilizes to 
around +2 Nm when the speed inversion has been completed (at around � = 1 s).  

The only differences between the two approaches can be appreciated in the estimated 
torques during the initial transients, because of the different dynamic behaviour of the 
analysed current controllers. However, no sensible effect can instead be appreciated in 
the speed response.  

Fig. 7.21 and Fig. 7.22 show the system responses in the same operating condition 
but for a reference speed change from −250 rpm to +750 rpm. Here, initially, the 
machine torque is around −1 Nm, then at � = 0.2 s it again jumps at the limit value of +15 Nm and finally stabilizes at around +3 Nm. Again, the two controllers show a 
similar dynamic behaviour. 

An additional test has been done considering the dynamic response of the system to 
a load change. Here, the test has been carried out at the reference speed of 750 rpm by 
commanding (via RT Box platform) the closing of a contactor that connects an 
additional 20 Ω resistor to the DC machine armature terminals. In this way, the 
equivalent resistance applied at the DC machine armature terminals is 10 Ω, and the 
corresponding braking torque applied to the SynRM is changed from around 3 Nm to 
around 6 Nm.  

The results obtained with the proposed decoupled phase variable controller are 
depicted in Fig. 7.23, while the results obtained with the VSD-based controller are 
depicted in Fig. 7.24. 

Again, the two controller architectures show a similar behaviour. After the load 
change (at � = 0.2 s), the machine speed drops to the minimum value of around 710 rpm, 
but is quickly driven back to the reference value of 750 rpm at around � = 1 s, thanks 
to the action of the speed controller. The slightly smaller oscillation in the estimated 
torque with the proposed solution can be justified by considering that the adopted 
resonant actions, contrarily to the synchronous PI controller of the VSD-based solution, 
have an infinite gain for both positive and negative sequences actions, and can therefore 
better neutralize the machine non-idealities.  

To better appreciate the dynamics of the machine currents, Fig. 7.25 shows a zoom 
of their evolution in the interval between 0.2 s and 0.4 s, when the reference torque is 
increased from around 3 Nm to around 6 Nm. It can be seen that all the currents follow 
the corresponding references, whose waveforms match the ones obtained with the 
previously analysed MTPA algorithm, and whose magnitude increase in time to 
counteract the speed drop.  

  These results clearly show that the proposed controller architecture has a 
satisfactory behaviour in an ordinary healthy machine configuration, and that it can 
match the same performances of a standard VSD-based controller.  
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Fig. 7.21 – Experimental results obtained with the proposed decoupled phase 
variable controller (speed change from −500 rpm to +500 rpm). 

 

Fig. 7.22 – Experimental results obtained with the VSD-based controller (speed 
change from −250 rpm to +750 rpm). 
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Fig. 7.23 – Experimental results obtained with the proposed decoupled phase 
variable controller (loading torque change). 

 

Fig. 7.24 – Experimental results obtained with the VSD-based controller (loading 
torque change). 
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7.6.3 Post-fault configuration with one faulty phase 
This testing scenario analyses the proposed controller in a post-fault configuration. 
The machine configuration is changed by physically disconnecting phase 1. The 

winding configuration is depicted in Fig. 7.26, and the corresponding constraints and 
configuration matrices are: 

 � =
⎣⎢
⎢⎢
⎢⎡1 11 01 01 01 0⎦⎥

⎥⎥
⎥⎤ , �l =

⎣⎢
⎢⎢
⎢⎡ 0 0 0−0.50 −0.50 −0.500.83 −0.17 −0.17−0.17 0.83 −0.17−0.17 −0.17 0.83 ⎦⎥

⎥⎥
⎥⎤ 

 

 

Fig. 7.25 – Currents evolution during the loading torque change: Top) Proposed 
decoupled phase variable control; Bottom) VSD-based control. 
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Fig. 7.26 – Schematic diagram and constraint matrix for the post-fault configuration 
with one faulty phase. 
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The MTPA algorithm proposed in Section 7.2 has again been implemented via (7.21). 
Similarly to the previous cases, an initialization routine has been executed to compute 
the versors ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min from the eigenvectors of the 3 × 3 

matrix zl′ . The coefficients of their Fourier decomposition have been stored in the 

controller memory and reconstructed in real-time basing on the measured electrical rotor 
position %,M = 2 %. They are graphically depicted in Fig. 7.27, together with the 
corresponding waveforms of ñURe . 

Again, it can be seen that ñURe is strongly affected by the rotor position and that it 
locally differs between positive and negative torques.  

The optimal phase currents waveforms obtained in this new configuration are 
depicted in Fig. 7.28. Now, coherently with the open-circuit constraint, the current �1 
(and all its harmonics) are zero. The waveforms of the other currents, if compared to 
the waveforms depicted in Fig. 7.12 for the healthy machine configuration, have been 
severely altered by the fault.  

For symmetry reasons, it can be noted that �2 and �5 have mirrored waveforms with 
respect to the electrical rotor position %,M. Similarly, also �3 and �4 have mirrored 
waveforms from one another, which are however sensibly different from �2 and �5. If 
compared to the healthy configuration, the magnitude of all the harmonics is increased 
and also the harmonics with an order multiple of 5 are now present in the harmonic 
spectra9. Again, the waveforms obtained for negative reference torques are identical to 
the waveforms obtained for positive torques, and only shifted by 90°. 

In this case, given the additional constraint �1 = 0, the overall RMS current ñURe 

 
9 This could be expected because, given the lost of the machine symmetry after the fault, the 

harmonics with order multiple of 5 are not homopolar anymore. 

 

Fig. 7.27 – Overall machine RMS current (left) and optimal phase current versors  ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min (right) in the whole range [−180°, +180°] of %,M 
for the post-fault configuration with one faulty phase.  
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provided by (7.14) is higher than in the previous case study, which also leads to higher 
machine losses. It has been estimated that, with respect to the healthy configuration, 
the average losses in a full rotor cycle are increased by around 46%. Moreover, similarly 
to the results obtained in Chapter 5 and in Chapter 6 for PMSMs, the symmetry loss 
following the fault makes the overall losses to be unequally shared by the remaining 
phases. In this case, phases 2 and 5 are each responsible for 30% of the losses, while 
phases 3 and 4 are each responsible for 20% of the losses. 

The experimental validation has been done by considering the same testing scenarios 
analysed in Section 7.6.2. The dynamic responses following reference speed changes (with 
a DC loading resistor of 20 Ω) are shown in Fig. 7.29 (from −500 rpm to +500 rpm) and 
in Fig. 7.30 (from −250 rpm to +750 rpm).  

It can be noted that the mechanical behaviour of the machine following the reference 
speed change is similar to the healthy configuration analysed in Section 7.6.2. Only some 
small differences in the speed behaviour during the transients can be observed, and they 
are related to magnetic saturation phenomena. In other words, the higher machine 
currents in this faulty configuration (required to develop the same reference 
electromagnetic torque of the healthy case) affect the inductances with a corresponding 
deviation of the developed electromagnetic torque from the estimated one.  

The dynamic responses following a loading torque change (obtained with a reference 
speed of 750 rpm by changing the value of the resistance applied at the DC machine 
terminals) are shown in Fig. 7.31. A zoomed version of the dynamics of the currents has 
been also reported in Fig. 7.32. The machine mechanical dynamics following the loading 
torque change is also very similar to the healthy configuration analysed in Section 7.6.2, 
and it can be seen that the proposed controller can effectively track the current references 
even in this post-fault configuration. 

Fig. 7.28 – Optimal phase currents waveforms and harmonic spectra for the post-
fault configuration with one faulty phase: (top) Positive reference torque +,-∗ > 0; 
(bottom) Negative reference torque +,-∗ < 0.  
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Fig. 7.29 – Experimental results obtained for the post-fault configuration with one 
faulty phase (speed change from −500 rpm to +500 rpm). 

 

 

Fig. 7.30 – Experimental results obtained for the post-fault configuration with one 
faulty phase (speed change from −250 rpm to +750 rpm). 
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7.6.4 Post-fault configuration with two faulty phases 

This testing scenario analyses the proposed controller performances in a heavy post-
fault scenario. 

In this test, the winding configuration is represented in Fig. 7.33. If compared to the 
previous case study, the configuration has been modified by physically disconnecting also 
the phase 3 of the machine, thus emulating a fault on two non-adjacent phases10.  

The corresponding constraints and configuration matrices are: 
 

10 It has been numerically verified that, for the considered machine, the performances derating 
following the fault of two adjacent phases would be too limiting for experimental testing. 

 

Fig. 7.31 – Experimental results obtained for the post-fault configuration with one 
faulty phase (loading torque change). 

 

Fig. 7.32 – Currents evolution during the loading torque change for the post-fault 
configuration with one faulty phase. 
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 � =
⎣⎢
⎢⎢
⎢⎡1 1 01 0 01 0 11 0 01 0 0⎦⎥

⎥⎥
⎥⎤ , �l =

⎣⎢
⎢⎢
⎢⎡ 0 0−0.58 −0.580 00.79 −0.21−0.21 0.79 ⎦⎥

⎥⎥
⎥⎤ 

Again, the MTPA implementation has been executed as in Section 7.6.2 and in 
Section 7.6.3. The overall machine RMS current ñURe and the eigenvector directions ım̂ax and ım̂in obtained by the MTPA algorithm in this new configuration are depicted in 
Fig. 7.34. The optimal current waveforms are depicted in Fig. 7.35. 

In this case, both the currents �1 and �3 computed by the MTPA algorithm are zero, 
and all the torque development is achieved through the three remaining healthy phases. 
For symmetry reasons, the �4 and �5 have mirrored waveforms, which differ from �2.  
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Fig. 7.33 – Schematic diagram and constraint matrix for the post-fault configuration 
with two faulty phases. 

 

Fig. 7.34 – Overall machine RMS current (left) and optimal phase current versors  ım̂ax = �l ⋅ ıl̂,max and ım̂in = �l ⋅ ıl̂,min (right) in the whole range [−180°, +180°] of %,M 
for the post-fault configuration with two faulty phases.  
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The overall RMS current is higher than in the previous cases, and it has been 
estimated that, if compared to the healthy configuration, the overall machine losses are 
increased by around 128%. In this case, the current �2 is responsible for around 28% of 
the overall losses, while the currents �4 and �5 are responsible for around 36% each. 

Again, the machine has been experimentally tested with the same scenarios as in the 
previous cases. Fig. 7.36 and Fig. 7.37 show the results of the dynamical behaviour 
following a speed reference change from −500 rpm to +500 rpm and from −250 rpm to +750 rpm, respectively. Similarly to the results analysed in Section 7.6.2 and in 
Section 7.6.3, when the speed reference changes (at � = 0.2 s), the reference torque 
increases to the limit value of 15 Nm but, contrarily to the previous results, the 
electromagnetic torque developed by the machine is unable to follow it. This is because 
the corresponding currents computed by the MTPA algorithm (which, in this post-fault 
configuration, would have been higher than the maximum feasible currents) have been 
limited in the range of ±8.5 A. This software saturation generates the electromagnetic 
torque drops which can be seen in the middle subplots of Fig. 7.36 and Fig. 7.37. 
Consequently, the transient dynamics of the machine speed during the acceleration is 
different from the results of Section 7.6.2 and Section 7.6.3. 

The machine response following a load step change has been here done with a 
reference speed of 500 rpm. The results are depicted in Fig. 7.38. The closing (via RT 
Box platform) of the DC machine contactor changes the applied torque from around 2 Nm to around 4 Nm, and the machine speed decreases to the minimum value of around 470 rpm. However, the speed controller, by properly increasing the reference torque +,-∗  
(and, consequently, the magnitude of the reference currents) is again capable of keeping 
back the speed to the reference value of 500 rpm at around � = 1 s.  

The zoomed view of the evolution of the currents is shown in Fig. 7.39. Again, it can 
be observed that the proposed current controller can properly make the currents of the 
healthy phases track the corresponding references. 

 
Fig. 7.35 – Optimal phase currents waveforms and harmonic spectra for the post-

fault configuration with two faulty phases: (top) Positive reference torque +,-∗ > 0; 
(bottom) Negative reference torque +,-∗ < 0.  
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Fig. 7.36 – Experimental results obtained for the post-fault configuration with two 
faulty phases (speed change from −500 rpm to +500 rpm). 

 

 

Fig. 7.37 – Experimental results obtained for the post-fault configuration with two 
faulty phases (speed change from −250 rpm to +750 rpm). 
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7.7  Summary and remarks 
This chapter has presented a generalized control algorithm for a multiphase SynRM 

drive.  The approach is the direct extension of the decoupled phase variable control 
developed in Chapter 6 for PMSM drives. It is entirely derived in the phase variable 
domain and explicitly considers the hardware connection among the phase windings and 
with the supplying power converter. 

First, the mathematical model of the drive has been derived. The machine model is 
the particularization of the general model developed in Chapter 2, while the drive 
architecture has been analysed through the multiport network approach of Chapter 4. 

Then, an MTPA algorithm has been presented to compute the machine current 
references to develop a desired electromagnetic torque. Similarly to Chapter 6, the 

 

Fig. 7.38 – Experimental results obtained for the post-fault configuration with two 
faulty phases (loading torque change). 

 

Fig. 7.39 – Currents evolution during the loading torque change for the post-fault 
configuration with two faulty phases. 
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approach has been formalized as a constrained optimization problem aimed at 
minimizing the overall machine RMS current while, at the same time, developing the 
desired reference torque and satisfying the algebraic constraints introduced by the drive 
hardware configuration. It has been solved analytically and it has been shown that the 
optimal solution depends on the eigenvalues and eigenvectors of the matrix zl′ (%) = �lT ⋅
z′(%) ⋅ �l , with z′(%) = 3z 3%⁄ .  

The current controller has then been developed. The proposed controller is the same 
as the one proposed in Chapter 6, and is based on a decoupling algorithm (which 
considers both the machine magnetic interaction and the network electrical interactions) 
and on a decoupled current controller (implemented with a proportional action, an 
integral action, and multiple resonant actions). The only differences here are the %-
dependence of the inductances matrix z(%) and the different expression for the motional-
induced back-EMFs set �. 

The whole control algorithm has been experimentally validated with a five-phase 
SynRM drive. Several testing scenarios have been analysed and discussed in detail. All 
the results are satisfactory and coherent with the theoretical analysis. Some comparisons 
have also been considered both with other torque control strategies and with standard 
current control algorithms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 Conclusions 

Multiphase drives are nowadays one of the most relevant research topics in the 
electrical engineering scientific community. Thanks to the many benefits they offer over 
standard three-phase drives, it is possible to witness a progressive interest and spread of 
their implementation in many areas, ranging from industrial to traction applications, 
and especially in presence of high-power and/or high-reliability requirements. However, 
their control is generally more challenging than in standard three-phase configurations, 
because of the higher number of degrees of freedom and of the wider variety of different 
possible configurations. 

The work presented in this Ph.D. thesis has dealt with the modelling and control of 
multiphase electric drives, with the aim of developing a generalized model-based 
approach that can be used in multiple configurations and scenarios. This chapter 
summarizes the main contents presented in this dissertation, highlights the major 
novelties and suggests some possible developments for future studies. 

8.1 Summary of the thesis contents 
The dissertation has been organized by first addressing the drive modelling, and then 

by focusing on the development of control algorithms.  
The drive modelling has been intentionally developed in a generalized way, by 

introducing the required simplifying assumptions and by mathematically deriving the 
corresponding properties and results. It has been carried out by first separately modelling 
the electric machine and the power electronics converter, and then by formalizing their 
mutual interaction considering the drive topology. 

The drive control has been introduced for multiphase PMSM drives. It has first been 
addressed with a standard field-oriented approach, specifically adapted to deal with 
asymmetrical PMSM configurations, and then by introducing an innovative control 
technique based on the decoupled control in the phase variable domain. This novel 
control technique has then been extended to multiphase SynRM drives. 

In the following, a summary of the main content of each chapter is provided. 

 Chapter 1 has provided an introduction to the main topics of this 
dissertation and has briefly addressed the state of the art presented in the 
technical literature. This review has addressed different aspects related to 
multiphase electric drives, like their application areas, the different machine 
and converter designs and architectures, the standard modelling and control 
approaches, and some post-fault operation criteria.  

 Chapter 2 has developed the mathematical model of the electrical machine. 
The approach has been developed in the phase variable domain, and has 
been carried out with the standard tools of electromechanical conversion 
theory. The magnetic model of the machine has been obtained assuming a 
linear behaviour of the materials, and the analytical expressions of the fluxes 
and of the torque have been found through the energy conservation 
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principle, by referring to the electromagnetic coenergy of the system. From 
the expression of the induced fluxes, it has been possible to derive the 
induced back-EMFs, and then to recognize the transformer-induced and the 
motional-induced contributions. Different torque development mechanisms 
have also been presented and classified, both in relation to their 
mathematical dependence on the machine phase currents and in relation to 
the various possible interactions between the stator and the rotor. The 
resulting model (which is a system of differential and algebraic equations) 
can adequately describe the key functional aspects of multiple machine 
types and designs, and is therefore suited for control purposes. Finally, a 
brief mention of some of the typical transformations of the machine variable 
used in many standard multiphase analysis approaches has been provided. 

 Chapter 3 has discussed the architectures and modulation strategies for 
power electronics converters employed in multiphase drives. The chapter 
has examined both two-level and multilevel VSI configurations, briefly 
explaining the benefits and limitations of the most common structures from 
the point of view of their control. Additionally, many different multiphase 
topologies have been presented, considering architectures with both single 
and multiple DC sources. The basic principles and properties of PWM 
algorithms have then been recalled, and a brief mention has also been given 
to carrier-based and space vector modulation techniques for two-level 
multiphase drives. Finally, the chapter has also presented some novel 
carrier-based modulation techniques for NPC and MPC multilevel 
converters, which have been developed while directly addressing the voltage 
equalization of the DC-bus capacitors. These techniques have been 
developed considering a multi-step approach, meaning that the leg output 
voltage can switch among multiple levels in the same modulation period. 
By exploiting this capability, the voltage equalization can always be 
guaranteed, but at the expense of a higher switching transitions rate. In this 
context, the proposed approaches have been conceived as a trade-off 
between the equalization effectiveness and the mitigation of this switching 
transitions increase. 

 Chapter 4 has developed a novel methodology to analyse the electrical 
topology of a multiphase drive, which is based on the study of the 
connections between the multiphase machine and the power electronics 
converter through a multiport network approach. It has been shown how 
many hardware configurations, by introducing some constraints on the 
machine phase currents, modify the dynamical behaviour of the machine by 
acting as additional internal feedback terms for its mathematical model. 
Several architectures of practical interest have been exemplified with this 
approach, which has revealed to be a helpful tool for the analysis of a 
multiphase machine under various hardware topologies, coming either from 
different design choices or resulting from post-fault reconfigurations. 
Finally, the chapter has developed a different formulation of a multiphase 
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drive model subject to constraints on the phase currents, by introducing the 
concept of configuration space, which intrinsically considers the effect of 
such constraints and allows to mathematically formalize a reduced order 
model for the drive.  

 Chapter 5 has focused on the development of a FOC algorithm for 
asymmetrical multiphase PMSMs. In this framework, a space-vector 
formalism has been introduced, and the VSD and rotational transformations 
of the machine variables have been based on the choice of a set of space-
vector current components to be independently controlled. It has been 
shown that, for asymmetrical machine configurations, the transformation 
matrices chosen with a field-oriented approach may not be unitary, which 
considerably affect the machine modelling and control. Then, the chapter 
has presented and compared different torque control strategies for 
asymmetrical PMSMs, aimed at exploiting non-sinusoidal currents to 
develop the desired electromagnetic torque while, at the same time, 
optimizing some desired system performances. The current control 
algorithm has then been developed, and it has been shown how a standard 
scheme developed for symmetrical machines can be adapted to deal with 
asymmetrical configurations by introducing some additional compensation 
actions. The considered analysis has been tested, both numerically and 
experimentally, with an asymmetrical nine-phase PMSM with non-
sinusoidal back-EMFs. 

 Chapter 6 has presented an innovative control technique for a multiphase 
PMSM drive. This new approach is completely general with respect to the 
machine design and configuration, and has been directly rederived in the 
phase variable domain, without using any VSD and rotational 
transformation. An MTPA algorithm has been proposed to compute a set 
of current references to develop a desired electromagnetic torque while, at 
the same time, minimizing the machine RMS currents. The same strategy 
can also be easily extended to implement unequal torque-sharing strategies. 
The control of the machine phase currents has been based on a decoupling 
algorithm, with the aim to counteract the mutual coupling effects due both 
to the machine magnetic behaviour and to the electrical drive topology. A 
feedback regulator has then been designed to control the decoupled phase 
currents and, to guarantee the proper tracking of periodic references, the 
proposed solution has been based on the use of multiple resonant controllers. 
The conceived approach can easily generalize to different machine 
configurations and drive topologies, including post-fault operations, proving 
to be a viable alternative to standard control algorithms for multiphase 
drives. It has been successfully validated through an extensive set of 
experimental tests on an asymmetrical nine-phase PMSM. 

 Chapter 7 has shown how the proposed phase variable control technique 
can be extended from PMSMs to SynRMs drives. In this case, both the 
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electromagnetic torque and the motional-induced back-EMFs are related to 
the variable reluctance effects, exhibited by a periodic dependence of the 
machine inductances on the rotor position. Then, the MTPA algorithm has 
been rederived. Again, it is aimed at the minimization of the machine RMS 
currents for a given reference torque but, given the different torque 
development mechanism, the corresponding solution and properties are 
different than in case of PMSMs. The current control is instead almost 
identical to the previously proposed scheme. It is again based on a 
decoupling algorithm and on a decoupled feedback controller acting on each 
single machine phases, and it only requires a different estimation for the 
motional-induced back-EMFs. The proposed approach has been successfully 
tested with a five-phase SynRM drive. 

8.2 Original research contributions 
This Ph.D. thesis has addressed the mathematical modelling and the control of 

multiphase electrical drive with an innovative approach. 

Regarding the electrical drive modelling, the major novelty is represented by the 
multiport network approach, developed in Chapter 4 to analyse the mutual interactions 
between the machine and the converter according to different drive topologies. This 
approach, which is of general applicability, has made it possible to analytically formalize 
the effects of different drive configurations on the behaviour of the electrical machine, 
even in presence of one or more constraints on the machine phase currents introduced 
by the hardware architecture, which happens in many typical cases. In these 
circumstances, the introduction of the concept of configuration space can be helpful to 
identify the effects of such constraints on the machine model variables. Moreover, the 
proposed approach can also be easily adapted to drive reconfigurations, and therefore it 
can be exploited to deal with post-fault events.  

 Regarding the electric drive control, the major novelty is represented by the 
proposed decoupled phase variable control, developed in Chapter 6 for PMSMs and 
extended in Chapter 7 for SynRMs. This control approach, contrarily to most standard 
techniques, is directly derived in the phase variable domain, while explicitly considering 
the constraints imposed by the hardware topology. Thanks to its flexibility and 
generality, it can be easily adapted to different machine parameters and designs, to 
different drive topologies and to different control requirements. As proven through an 
extensive set of experimental tests, the proposed approach is a viable alternative to 
standard control algorithms for multiphase drives and it is especially suited to deal with 
asymmetrical and post-fault configurations. 

This thesis has also presented many enhanced torque control strategies, aimed at 
developing the desired electromagnetic torque while, at the same time, optimizing the 
system energetic performances. Some of the proposed techniques have been derived with 
a standard field-oriented approach, by specifically identifying different space vector 
components to be exploited; other techniques have instead been derived by directly 
addressing the machine phase variables or the configuration space variables.  

Finally, this dissertation has also briefly mentioned some novel carrier-based 
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modulation techniques for multilevel NPC and MPC converters, which have been derived 
to directly address the voltage equalization of the DC-bus capacitors and which have 
been developed as a side activity during the Ph.D. course. 

8.3 Future developments 
The work presented in this thesis reveals several possible future developments, 

concerning many different aspects. Further investigations can be especially addressed to 
the decoupled phase variable control, and include both the extension of the proposed 
approach to different multiphase drive architectures, and the study of alternative 
techniques for the torque development strategy and for the current control algorithm. 

The extension of the decoupled phase variable control algorithm to multiphase 

interior mounted PMSMs can be handled by taking advantage of the results obtained 
for surface mounted PMSMs and SynRMs. In this case, the torque control strategy needs 
to be modified in a way to consider the contributions of both the permanent magnets 
and of the variable reluctance effects at the same time. The tracking of the optimal 
reference currents can instead be carried with the same controller architecture proposed 
in this thesis, and only requires a proper estimation of the motional-induced back-EMFs.   

The extension of the decoupled phase variable control algorithm to multiphase 

induction machines is currently under development. In this case, the main challenge is 
that only the stator currents can be directly controlled by the supplying converter, while 
the rotor variables (i.e., the rotor fluxes and currents) can only be indirectly regulated 
through the effects of the inductive coupling effects. Consequently, the torque control 
strategy for the computation of the reference stator currents needs to be replaced with 
a simultaneous torque and flux control strategy, whose analytical derivation for a 
generalized configuration may be more difficult (especially in case of asymmetrical 
designs and post-fault scenarios). 

For what concerns the torque control algorithm, all the analysed techniques have not 
considered the voltage saturation phenomenon, which restricts their application below a 
certain speed. Then, for high-speed operations, the current references computation 
algorithms should be modified by developing some flux weakening strategies. However, 
their mathematical formulation may not be straightforward in asymmetrical or post-
fault configurations, which would make the development of a generalized approach more 
challenging. 

Moreover, the optimization criterion to exploit the degrees of freedom offered by the 
multiphase configuration can also be modified to maximize some different system 

performances. For example, the problem can be formulated to minimize the highest peak 
stator current (instead of the overall RMS current) or to develop a Maximum-Torque-
Per-Voltage (MTPV) algorithm.  

Regarding the current controller, other different decoupling algorithms can be 
developed and compared, both in terms of performances and in terms of robustness to 
parameters uncertainty. For examples, alternative schemes can be realized by addressing 
the decoupling to the machine fluxes (instead of the machine currents) or by introducing 
additional terms to the machine or to the network compensation actions (e.g., by adding 
some damping terms to change the dynamical behaviour of the decoupled system). 
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Similarly, many alternatives can be analysed for the decoupled controller. As also 
formerly mentioned, they can either regard different feedback control actions (e.g., 
employing VPI controllers, repetitive controllers, etc…) or can involve the use of different 

control architectures (e.g., model-predictive approaches, dead-beat algorithms, sliding-
mode controllers, etc…). 

Finally, a more detailed machine model can be developed to also explicitly consider 
non-linear effects in the drive control algorithm (e.g., magnetic saturation phenomena). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 Appendix 

This Chapter contains additional material for the analysis of the presented 
dissertation. The first section covers some technical details mentioned in the previous 
chapters, while all the other sections group the mathematical proofs of several properties 
used in the thesis. 

9.1 Additional considerations 

9.1.1 Resonant controllers implementation 
This section describes the algorithm which has been used to implement the resonant 

controllers in the experiments of Chapter 6. 
The considered resonant controller structure is a dynamical system with a resonance 

for a given desired resonance frequency ³0. Its transfer functions in the Laplace domain 
and in the frequency domain are1: 

 ℜ( ) = fU ⋅   2 + &02 ,     ℜ(j &) = fU ⋅ j &&02 − &2 (9.1)

where fU is a resonance gain and &0 = 2	³0 is the angular frequency corresponding to ³0. Its Bode diagram is shown in Fig. 9.1. 
For & → &0 the magnitude of ℜ(j &) tends to infinity. Thanks to this infinite gain, 

when used in a stable feedback control loop, the resonant controller allows a perfect 
tracking of sinusoidal reference signals with frequency ³0 and a perfect rejection of 
sinusoidal disturbances with frequency ³0. For & ≫ &0 and & ≪ &0, the magnitude of ℜ(j &) tends to zero, and its effect on the feedback control loop becomes negligible. 

Several different implementations can be used to obtain the equivalent behaviour of 
(9.1). However, not all the implementations are suited for variable frequency 
applications. Some possible implementations are given in [158], [161]. 

The implementation adopted for the control algorithm of Chapter 6 is based on the 
following expression:  

w(�) = fU ⋅ [ cos(&0�) ⋅ ∫ x(�)  cos(&0�) d� + ⋯ 
⋯ + sin(&0�) ⋅ ∫ x(�)  sin(&0�) d� ] (9.2)

where x(�) is the input error signal and w(�) is the control output signal. 
The principle behind the implementation algorithm (9.2) is to identify the Fourier 

coefficients of the error signal x(�) at the angular frequency &0 (which is done through 
the Fourier-like integrals) and to supply as a control signal a sinusoidal function at the 
angular frequency &0, whose magnitude is modulated by these Fourier coefficients.  

 
1 Note that in this framework & is used to denote a generic angular frequency (i.e., contrarily 

to the previous chapters, it is unrelated to the electrical drive).  
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In other words, if the error signal x(�) has a harmonic at frequency &0, the results of 
the integrals grow linearly in time, and therefore w(�) is a sinusoidal function whose 
magnitude grows linearly in time, coherently with the behaviour of a resonant dynamical 
system. This linearly increasing output, by acting on the dynamical system under 
control, is stabilized only when the corresponding harmonic in the error function x(�) is 
nullified. Under this point of view, a simple integrator can be interpreted as a particular 
case of (9.2) when &0 = 0: in this case w(�) would be a DC signal (i.e., not sinusoidal) 
whose magnitude linearly increases with the DC component of the error signal x(�). 

The validity of the algorithm can be mathematically justified by considering an error 
signal in the complex domain as x(�) = ðR ⋅ ejyª and by computing the output signal of 
(9.2), which is: 

w(�) = fU ⋅ [ cos(&0�) ⋅ ∫ ðR ⋅ ejyª ⋅ cos(&0�) d� + sin(&0�) ⋅ ∫ ðR ⋅ ejyª ⋅ sin(&0�) d�] = 
= fU ⋅ ðR ⋅ ejyª

&02 − &2 ⋅ [ cos(&0�) ⋅ (&0 ⋅ sin(&0�) + j& ⋅ cos(&0�) ) + ⋯ 
⋯ + sin(&0�) ⋅ (j& ⋅ sin(&0�) + &0 ⋅ cos(&0�) )] = ðR ⋅ ejyª ⋅ fU ⋅ j &&02 − &2 

This means that the frequency response of (9.2) is equal to the desired frequency response 
of (9.1). 

Since, for the control algorithm proposed in Chapter 6, the resonance frequency is 
linked to the rotor angular speed, all the terms &0� can be simply replaced by a multiple 
integer of the rotor position %. In other words, to synchronize the resonance frequency &0 with the ℎ-th multiple integer of the machine angular speed, the algorithm 
implementation (9.2) is simplified to: 

     w(�) = fU ⋅ [ cos(ℎ%) ⋅ ∫ x(�)  cos(ℎ%) d�  +  sin(ℎ%) ⋅ ∫ x(�)  sin(ℎ%) d� ] (9.3)

and the corresponding block diagram is depicted in Fig. 9.2. With this implementation, 

 

Fig. 9.1 – Bode diagram of a resonant controller (with fU = 1). 
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similarly to an integral controller implemented in the synchronous domain, the frequency 
tuning is automatically done through the rotor position %.  

Note that, in presence of multiple resonant actions, the computation of the terms cos(ℎ%) and sin(ℎ%) in (9.3) can be obtained from cos(%) and sin(%) by using the multiple-
angle formulas of sine and cosine functions. This can be particularly convenient for real-
time implementations, because it allows replacing the calculation of many trigonometric 
functions (which may be computationally demanding) with simple algebraic expressions 
(i.e., sums and products), thus allowing for a much faster and efficient execution. 

For the experiments of Chapter 6, the integrals in (9.3) have been discretized with 
the trapezoidal method. It has also been found that no sensible difference was obtained 
by using other discretization methods (e.g., forward Euler and backward Euler). A 
compensation of the phase delay introduced by the discrete-time implementation and by 
the pulse-width-modulation (i.e., 1.5 & +�) has revealed useful to improve the controller 
stability of the high-order resonant actions. This is coherent with the analogous results 
given in [161] for different resonant controller implementations. 

9.1.2 Torquemeter measurement  
This section clarifies some observations regarding the torque measurements obtained 

in Section 6.7.  
The measurements have been obtained by a torque meter positioned between the 

shaft of the multiphase machine under analysis and the shaft of the DC machine used 
for mechanical loading.  

The mechanical model of both machines can be analysed by referring to the 
expressions (5.42) and (5.44), which are here reported: 

 
' ⋅ d&d� + ((&) ⋅ & = +,- − +- 
'- ⋅ d&d� + (-(&) ⋅ & = +- − +MØï¶ 

(9.4)

Part of the electromagnetic torque +,- developed by the multiphase machine through 
the electromechanical conversion is used to compensate the multiphase machine inertial 
torque ' ⋅ d& d�⁄  and friction ((&) ⋅ &, while the remaining part +- acts as a motoring 

∫ dt 

∫ dt 

cos

sin

hθ ε 
KR

y

 

Fig. 9.2 – Resonant controller implementation.  
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torque contribution for the coupled DC machine. This torque +- is itself used in part to 
compensate the DC machine inertial torque '- ⋅ d& d�⁄  and friction (-(&) ⋅ &, and in 
part to compensate the loading torque +MØï¶ generated by electromechanical conversion 
by the DC machine (whose armature terminals are connected to an external resistor 
through a controllable contactor). 

The measurement obtained with the torque meter is the torque +- transferred 
between the two shafts. It is intrinsically different from both the electromagnetic torques +,- and +MØï¶ applied by the two electrical machines, because it does not take into 
account the inertial and friction contributions. 

To better clarify this statement, it is possible to refer to the simulation of the 
mechanical system shown in Fig. 9.3. In this simulation, the mechanical system (purple 
blocks) has been represented by splitting the overall drive train into the PMSM and DC 
machine components. An idealized torque sensor has been inserted between them. 

The PMSM torque is developed by introducing the same “Speed Controller” block 
which has been used in the experiments of Chapter 6 and by neglecting the electrical 
dynamics. In other words, for simplicity reasons, it is assumed that the output of the 
Speed Controller block is the same electromagnetic torque +,- developed by the 
machine. 

The DC machine torque, which in the experiments of Chapter 6 has been realized by 
connecting the DC machine terminals to an external 25 Ω resistor, has been simulated 
through a controlled torque whose value is proportional to the DC machine speed and is 
such that, at the speed of 500 rpm, the developed torque is around 2.1 Nm. It represents 
the applied loading torque +MØï¶ of (9.4). 

The inertia and friction contributions of both machines have been set coherently with 
the estimated data provided in Section 6.6. 

The simulation has been set to emulate the dynamical testing scenarios of the 
experiments discussed in Section 6.7. Initially, the system is in steady-state conditions 
at −500 rpm and the external resistor on the DC machine is not connected. Then, at 100 ms, the reference speed is changed to 500 rpm. Finally, at 600 ms, the braking torque 
of the DC machine is activated. 

The simulation results are depicted in Fig. 9.4 (left). They are compared with the 
corresponding experimental results obtained in Section 6.7.1 for the single-star 
connection of the multiphase PMSM, represented in Fig. 9.4 (right). These experimental 
results have also been represented in Fig. 6.18 and Fig. 6.19. It is here recalled that the 
measured speed & has been obtained with a Omron E6B2-CWZ1X incremental encoder, 
with a resolution of 1000 pulses/revolution, while the measured torque +- has been 
obtained with a Magtrol Torquemaster TM 210 has positioned between the PMSM and 
the DC machine rotor shafts. The electromagnetic torque +,- has instead been estimated 
by computing the analytical expression (6.4) of the torque with the set of measured 
PMSM currents. 

As can be noted, the qualitative behaviour of the simulated mechanical system is 
very similar to the corresponding experimental results. 



9.1 - Additional considerations 249 

 

  

 

Fig. 9.3 – Simulation scheme of the mechanical model (realized in PLECS). 

 

 

Fig. 9.4 – Comparisons of the mechanical behaviour of the drive in the dynamical 
tests. Left: PLECS Simulations; Right: Experimental results. 
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9.2 Chapter 2 Proofs 
This section contains the proof of the properties stated in Chapter 2 - Electrical 

Machine Model. 

 

9.2.1 Power balance equation for an electrical machine 

Considering a motoring power flow convention, it is possible to write the following 
power balance equation: 

 5,M = 5- + 5y + 5U + 5J + 5,- (9.5)

where: 

 5,M = ∑ �� ⋅ ����=1  represents the input electrical power absorbed from the 

network, 

 5- = +- ⋅ & represents the output mechanical power delivered at the rotor 
shaft, 

 5y = ddª ( 12  ' ⋅ &2 ) represents the kinetic mechanical power absorbed to 
accelerate the rotor mass (i.e., to increase the kinetic energy 12  ' ⋅ &2), 

 5U = ∑ �� ⋅ ��2��=1  represents the Joule losses in the machine windings,  

 5J = ((&) ⋅ &2 represents the mechanical friction losses, and 

 5,- = d/,- d�⁄  represents the electromagnetic power absorbed by the machine 
(i.e., to change the electromagnetic energy /,-). 

It is here shown that the net electromagnetic power absorbed by the machine is given 
by the expression (2.5). 

 

Proof. By considering the electrical equations (2.1), the input power absorbed from the 
electrical network can be explicitly found to be: 

 5,M = ∑ �� ⋅ ���
= �T ⋅ � = �T ⋅ � ⋅ � + �T ⋅ d�d�  

The term �T ⋅ � ⋅ � = ∑ �� ⋅ ��2��=1  can be recognized to be the overall Joule losses 5U. 

Similarly, by considering the mechanical equation (2.4), the output mechanical power 5- delivered at the rotor shaft can be explicitly computed: 

 5- = +- ⋅ & = +,- ⋅ & − ( ⋅ &2 − ' ⋅ & ⋅ d&d�  
The term ( ⋅ &2 can be recognized to be the machine friction losses 5J , while the term ' ⋅ & ⋅ d& d�⁄ = ddª ( 12  ' ⋅ &2 ) represents the mechanical power 5y to accelerate the rotor 
mass. 

By substituting these explicit expressions in the power balance equation (9.5) and 
by properly grouping the various terms it results: 
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d/,-d�  =  5,-  = 5,M − 5- − 5y − 5U − 5J  = 
= �T ⋅ � ⋅ � + �T ⋅ d�d� − +,- ⋅ & + ( ⋅ &2 + ' ⋅ & ⋅ d&d� − 5y − 5U − 5J = 
= (�T⋅ d�d� − +,-⋅&) − (5U − �T⋅�⋅�) − (5J − (⋅&2) − (5y − '⋅&⋅ d&d�) = 
= �T ⋅ d�d� − +,- ⋅ & =  �T ⋅ d�d� − +,- ⋅ d%d� 

□ 

9.2.2 Orthogonality of conservative and solenoidal fields 
It is here proven that, given a conservative vector field z ⃗and a solenoidal vector 

field B⃗⃗⃗⃗⃗ in a closed domain Z with the boundary condition B⃗⃗⃗⃗⃗ ⋅ �̂ = 0 on 3Z, then it 
results: 

 ∭z ⃗ ⋅ B⃗⃗⃗⃗⃗ d\
]

= 0 (9.6)

Proof. The property (9.6) follows from the vector manipulations: 

∭z ⃗ ⋅ B⃗⃗⃗⃗⃗ d\
]

= (z ⃗is conservative:z ⃗ = ∇³ )
= ∭∇³ ⋅ B⃗⃗⃗⃗⃗ d\

]
= ( Vector Identity:

∇ ⋅ (³ B⃗⃗⃗⃗⃗) = ∇³ ⋅ B⃗⃗⃗⃗⃗ + ³(∇ ⋅ B⃗⃗⃗⃗⃗))
= ∭[∇ ⋅ (³ B⃗⃗⃗⃗⃗) − ³(∇ ⋅ B⃗⃗⃗⃗⃗)]d\

]
= (B⃗⃗⃗⃗⃗ is solenoidal:∇ ⋅ B⃗⃗⃗⃗⃗ = 0 )

= ∭∇ ⋅ (³ B⃗⃗⃗⃗⃗) d\
]

= (∭∇ ⋅ � ⃗d\
]

= ∯ �⃗ ⋅ �̂ dd
�]

)
= ∯ ³ B⃗⃗⃗⃗⃗ ⋅ �̂ dd

�]
= 0 (Boundary Condition:B⃗⃗⃗⃗⃗ ⋅ �̂ = 0  on  3Z )

 

□ 

9.2.3 Uniqueness of the MQS solution 
It is here proven that the MQS system: 

 

⎩{{
{{⎨
{{{
{⎧∯ B⃗⃗⃗⃗⃗ ⋅ �̂ dd

ef
= 0

∮=⃗⃗⃗⃗ ⋅ � ̂dh
i

= ∬ 'l⃗ ⋅ �̂ dd
emB⃗⃗⃗⃗⃗ = I=⃗⃗⃗⃗ + B⃗⃗⃗⃗⃗QR   (with I > 0)

B⃗⃗⃗⃗⃗ ⋅ �̂ = 0  on  3Z

 (9.7)

which, in the linear approximation, describes the magnetic behaviour of an electrical 
machine with the simultaneous presence of current-carrying windings and permanent 
magnets [129], has a unique solution. 
 
Proof. Suppose there exist two solutions (=⃗⃗⃗⃗ (1), B⃗⃗⃗⃗⃗(1)) and (=⃗⃗⃗⃗ (2), B⃗⃗⃗⃗⃗(2)). Both solutions 
satisfy the system of equations (9.7). The difference fields defined as (=⃗⃗⃗⃗ (3), B⃗⃗⃗⃗⃗(3)) =
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(=⃗⃗⃗⃗ (1) − =⃗⃗⃗⃗ (2), B⃗⃗⃗⃗⃗(1) − B⃗⃗⃗⃗⃗(2)) satisfy the following homogeneous system of equations: 

 

⎩{{
{{⎨
{{{
{⎧∯ B⃗⃗⃗⃗⃗(3) ⋅ �̂ dd

ef
= 0

∮=⃗⃗⃗⃗ (3) ⋅ � ̂dh
i

= 0
B⃗⃗⃗⃗⃗(3) = I=⃗⃗⃗⃗ (3)  (with I > 0)
B⃗⃗⃗⃗⃗(3) ⋅ �̂ = 0  on  3Z

 

Meaning that the field =⃗⃗⃗⃗ (3) is conservative and the field B⃗⃗⃗⃗⃗(3) is solenoidal. Then, by 
computing the total energy stored in the system and applying the property (9.6) it results 
that: 

/,- = ∭ 12 B(3)2
I d\

]
= 12 ∭ B⃗⃗⃗⃗⃗(3) ⋅ B⃗⃗⃗⃗⃗(3)

I d\
]

= 12 ∭B⃗⃗⃗⃗⃗(3)⋅=⃗⃗⃗⃗ (3) d\
]

= 0 

but since the first term is a squared quantity, the only way for this integral to be zero 
is to have B⃗⃗⃗⃗⃗(3) = 0, which also implies =⃗⃗⃗⃗ (3) = 0. This means that =⃗⃗⃗⃗ (1) = =⃗⃗⃗⃗ (2) and that B⃗⃗⃗⃗⃗(1) = B⃗⃗⃗⃗⃗(2). Then, the solution to (9.7) is unique. 

□ 

9.2.4 Electromagnetic energy and coenergy properties 
The coefficients of the electromagnetic energy and coenergy expressions (2.25) and 

(2.26) can be computed from the integrals (2.19) and (2.20) with the magnetic field =⃗⃗⃗⃗ 
and the magnetic flux density field B⃗⃗⃗⃗⃗ given by (2.24), resulting in: 

/,-(0) = ∭ 12  I = (0)2 d\
]

/,-′ (0) = ∭ 12 B(0)2
I  d\

]
/,-,�(1) = ∭I =⃗⃗⃗⃗ (0) ⋅ ℎ⃗(�) d\

]
/,-,�′ (1) = ∭ 1I B⃗⃗⃗⃗⃗(0) ⋅ �⃗(�) d\

]
/,-,�1,�2

(2) =∭ 12  I ℎ⃗(�1) ⋅ ℎ⃗(�2)d\
]

/,-,�1,�2
′ (2) =∭ �⃗(�1) ⋅ �⃗(�2)

2I d\
]

 (9.8)

where it is worth recalling that the fields (=⃗⃗⃗⃗ (0), B⃗⃗⃗⃗⃗(0)) are the solutions to the MQS 
problem (9.7) in absence of currents, while the fields (ℎ⃗(�), �⃗(�)) (with � = 1,… , �) are 
the solution of the MQS problem (9.7) in presence of the sole �-th current and in absence 
of permanent magnetization. This means that: 

         
⎩{{
{{⎨
{{{
{⎧∯ B⃗⃗⃗⃗⃗(0) ⋅ �̂ dd

ef
= 0

∮=⃗⃗⃗⃗ (0) ⋅ � ̂dh
i

= 0
B⃗⃗⃗⃗⃗(0) = I=⃗⃗⃗⃗ (0) + B⃗⃗⃗⃗⃗QRB⃗⃗⃗⃗⃗(0) ⋅ �̂ = 0  on  3Z

     and     

⎩{{
{{⎨
{{{
{⎧∯ �⃗(�) ⋅ �̂ dd

ef
= 0

∮ℎ⃗(�) ⋅ � ̂dh
i

= ∬ nl⃗,� ⋅ �̂ dd
em�⃗(�) = Iℎ⃗(�)

�⃗(�) ⋅ �̂ = 0  on  3Z

 (9.9)

The properties (2.27) of the electromagnetic energy and coenergy coefficients (9.8) are 
here proven. 
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Proof. First, consider the symmetry properties /,-,�1,�2 (2) = /,-,�2,�1
(2)  and /,-,�1,�2 ′ (2) =

/,-,�2,�1
′ (2) . They can be directly derived from the expressions (9.8) considering that the 

dot product is commutative (i.e., ℎ⃗(�1) ⋅ ℎ⃗(�2) = ℎ⃗(�2) ⋅ ℎ⃗(�1) and �⃗(�1) ⋅ �⃗(�2) = �⃗(�2) ⋅ �⃗(�1)). 
Consider the property /,-,�1,�2

(2) = /,-,�1,�2
′ (2) . The fields (ℎ⃗(�1), �⃗(�1)) and (ℎ⃗(�2), �⃗(�2)) 

are both solutions of the demagnetized MQS problem (9.7) with  B⃗⃗⃗⃗⃗QR = 0. This means 
that �⃗(�1) = Iℎ⃗(�1) and �⃗(�2) = Iℎ⃗(�2). Then, by simple algebraic manipulations, it results: 

/,-,�1,�2
(2) = ∭ 12 I ℎ⃗(�1) ⋅ ℎ⃗(�2) d\

]
= ∭ 12I(Iℎ⃗(�1))⋅(Iℎ⃗(�1)) d\

]
=  

= ∭ 12I �⃗(�1) ⋅ �⃗(�2) d\
]

= /,-,�1,�2
′ (2)   

which is the symmetry property of (2.27).  

Consider now the property /,-,�(1) = 0. The fields (=⃗⃗⃗⃗ (0), B⃗⃗⃗⃗⃗(0)) are the solution of the 

MQS problem (9.7) with all the currents being zero. This means that the magnetic field =⃗⃗⃗⃗ (0) is conservative. The fields (ℎ⃗(�), �⃗(�)) are the solution of the demagnetized MQS 
problem (9.7) with B⃗⃗⃗⃗⃗QR = 0, meaning that �⃗(�) = Iℎ⃗(�).  

Since =⃗⃗⃗⃗ (0) is conservative and �⃗(�) is solenoidal, by applying (9.6) it results: 

/,-,�(1) = ∭I=⃗⃗⃗⃗ (0) ⋅ ℎ⃗(�) d\
]

= ∭=⃗⃗⃗⃗ (0) ⋅ (Iℎ⃗(�)) d\
]

= ∭=⃗⃗⃗⃗ (0) ⋅ �(�) d\
]

= 0 

which is the aforementioned property of the energy coefficients.  

Finally, consider the property /,-(0) + /,-′ (0) = ∭ (BQR2 2I⁄ ) d\] . The fields 

(=⃗⃗⃗⃗ (0), B⃗⃗⃗⃗⃗(0)) are the solution of the MQS problem (9.7) with all the currents being zero. 
This means that the magnetic field =⃗⃗⃗⃗ (0) is conservative and B⃗⃗⃗⃗⃗(0) is solenoidal.  

By applying the property (9.6) the computation of the energy coefficient results in: 

/,-(0) = ∭ 12 I= (0)2 d\
]

= ∭ 12 (I=⃗⃗⃗⃗ (0)) ⋅ =⃗⃗⃗⃗ (0) d\
]

= ∭ 12 (B⃗⃗⃗⃗⃗(0) − B⃗⃗⃗⃗⃗QR) ⋅ =⃗⃗⃗⃗ (0) d\
]

=  
= 12 ∭B⃗⃗⃗⃗⃗(0) ⋅ =⃗⃗⃗⃗ (0) d\

]
− ∭ 12 B⃗⃗⃗⃗⃗QR ⋅ =⃗⃗⃗⃗ (0) d\

]
= − ∭ 12 B⃗⃗⃗⃗⃗QR ⋅ =⃗⃗⃗⃗ (0) d\

]
  

Similarly, the computation of the coenergy coefficient results in: 

/,-′ (0) = ∭ 12IB(0)2 d\
]

= ∭ 12 (B⃗⃗⃗⃗⃗(0)
I ) ⋅ B⃗⃗⃗⃗⃗(0) d\

]
= ∭ 12 (=⃗⃗⃗⃗ (0) + B⃗⃗⃗⃗⃗QRI ) ⋅ B⃗⃗⃗⃗⃗(0)d\

]
=  

= 12 ∭=⃗⃗⃗⃗ (0) ⋅ B⃗⃗⃗⃗⃗(0) d\
]

+ ∭ 12I B⃗⃗⃗⃗⃗QR ⋅ B⃗⃗⃗⃗⃗(0) d\
]

= ∭ 12I B⃗⃗⃗⃗⃗QR ⋅ B⃗⃗⃗⃗⃗(0) d\
]

  
By summing these two terms it results: 

/,-(0) + /,-′ (0) = ∭ 12I B⃗⃗⃗⃗⃗QR ⋅ B⃗⃗⃗⃗⃗(0) d\
]

− ∭ 12 B⃗⃗⃗⃗⃗QR ⋅ =⃗⃗⃗⃗ (0) d\
]

=  
= ∭ 12 B⃗⃗⃗⃗⃗QR ⋅ (B⃗⃗⃗⃗⃗(0)

I − =⃗⃗⃗⃗ (0)) d\
]

= ∭ 12I BQR2  d\
]

  
which is the last property to be proven.  

□ 
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9.2.5 Inductances matrix properties 
It is here proven that the inductances matrix z is symmetric and positive definite. 

 
Proof. First, consider the symmetry property. From the definition (2.28) it immediately 
results that: 

x�1,�2 = 2 ⋅ /,-,�1,�2
′ (2) = 2 ⋅ ∭ �⃗(�1) ⋅ �⃗(�2)

2I d\
]

= 2 ⋅ /,-,�2,�1
′ (2) = x�2,�1 

Consider now the positive definiteness property. The inductances matrix coefficient 
can be computed by solving the MQS model of the machine in absence of permanent 
magnetization effects. The solution to this problem is given by (2.24) with =⃗⃗⃗⃗ (0) = 0 and B⃗⃗⃗⃗⃗(0) = 0. Then, the electromagnetic energy stored in the demagnetized model is: 

/,- = ∭ 12 I=2 d\
]

= ∑ ∑ /,-,�1,�2
(2) ⋅ ��1

�
�2=1

⋅ ��2
�

�1=1
= 12 ⋅ �T ⋅ z ⋅ � 

Since I > 0, the integral is always non-negative and is zero only in absence of any 
magnetic field =⃗⃗⃗⃗ in the whole machine domain Z. The presence of any current always 
leads to the generation of a magnetic field2. Then, for any � × 1 currents vector � ≠ û, 
it results �T ⋅ z ⋅ � > 0, meaning that z is positive definite. 

□ 

9.2.6 Torque expression from the electromagnetic energy 
It is here proven that the electromagnetic torque expression computed as +,- =− 3/,- 3%⁄  with respect to the energy expression (2.31) is equivalent to the expression 
(2.33) computed as +,- = 3/,-′ 3%⁄  to the coenergy expression (2.32). 
 
Proof. The torque computation through the energy expression first requires to 
reformulate (2.31) in terms of the machine fluxes � instead of the machine currents �. 
By inverting the relation (2.29) it results that: 

 � = {(%) ⋅ [� − yQR(%)] 
where it is worth recalling that {(%) = z−1(%) is the reluctances matrix, which is 
symmetric and positive definite. By substituting this expression in (2.31) it results that: 

/,- = /,-(0)(%) + 12 ⋅ �T ⋅ z(%) ⋅ � =  
= /,-(0)(%) + 12 ⋅ [� − yQR(%)]T ⋅ {(%) ⋅ z(%) ⋅ {(%) ⋅ [� − yQR(%)] =   
= /,-(0)(%) + 12 ⋅ [� − yQR(%)]T ⋅ {(%) ⋅ [� − yQR(%)]  

By applying the %-derivative (2.8) with fixed fluxes it results that: 
 

2 The only exception would be verified when the field generated by one current perfectly 
cancels out the field generated by another one in the whole machine domain. However, this 
behaviour (which would lead to a semi-positive definite matrix) would be an unrealistic model. 
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+,- = − 3/,-3% = − 3/,-(0)
3% + (3yQR3% )T⋅ {(%) ⋅ [� − yQR(%)] + ⋯ 

⋯ − 12 ⋅ [� − yQR(%)]T ⋅ 3{3% ⋅ [� − yQR(%)] 
Similarly to (2.33), the torque is given by three contributions: 

 the term − 3/,-(0) 3%⁄ , which is independent of the fluxes, 
 the term (3yQR 3%⁄ )T ⋅ {(%) ⋅ [� − yQR(%)], which is linearly varying with the 

fluxes, 
 the term −(1 2⁄ ) ⋅ [� − yQR(%)]T ⋅ (3{ 3%⁄ ) ⋅ [� − yQR(%)], which is 

quadratically varying with the fluxes. 
The first torque contribution, thanks to (2.27), can be rewritten as: 

− 3/,-(0)
3% = − 33%(∭ 12 BQR2

I d\
]

− /,-′ (0)(%)) = 3/,-′ (0)
3%  

because the integral ∭ (BQR2 2I⁄ )d\]  does not depend on the rotor position %. It is equal 

to the current independent term +0(%) in (2.33). 
The second torque contribution can be rewritten as: 

 (3yQR3% )T⋅ {(%) ⋅ [� − yQR(%)] = �QRT (%) ⋅ � 
where �QR(%) = 3yQR 3%⁄ . It is equal to the term in (2.33) which is linearly varying 
with the machine currents. 

The third torque contribution can be rewritten as: 

− 12 ⋅ [� − yQR(%)]T ⋅ 3{3% ⋅ [� − yQR(%)] = − 12 ⋅ �T ⋅ z(%) ⋅ 3{3% ⋅ z(%) ⋅ � 
The %-derivative of the inductances matrix z(%) can be rewritten as: 

z′(%) = 3z3% = 33% [z(%) ⋅ {(%) ⋅ z(%)] = 
= 2 ⋅ 3z3% ⋅ {(%) ⋅ z(%)  +  z(%) ⋅ 3{3% ⋅ z(%) = 
= 2 ⋅ z′(%) + z(%) ⋅ 3{3% ⋅ z(%) 

meaning that z(%) ⋅ (3{ 3%⁄ ) ⋅ z(%) = −z′(%). By substituting in the previous expression, 
it results that: 

− 12 ⋅ [� − yQR(%)]T ⋅ 3{3% ⋅ [� − yQR(%)] = 12 ⋅ �T ⋅ z′(%) ⋅ � 
which is the term in (2.33) quadratically varying with the currents. 

□ 

 

9.2.7 Fixed reference frame transformation parameters 
It is here proven that, by applying the transformation (2.36) to the phase variable 

model of the electrical machine (2.35), the transformed model is given by (2.37) and the 
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parameters are3: 

 

�Q̃R(%) = � ⋅ �QR(%) �̃ = � ⋅ � ⋅ � −1 z̃(%) = � ⋅ z(%) ⋅ � −1 z̃�′ (%) = � ⋅ z′(%) ⋅ � −1 z̃�′ (%) = � −T ⋅ z′(%) ⋅ � −1 �̃ = � −T ⋅ � −1 

(9.10)

Proof. Consider the phase variable model (2.35). By applying the transformation � =� −1 ⋅ �̃ to both the machine voltages and currents, the electrical equation is modified to: 

 z(%) ⋅ dd� (� −1 ⋅ ı)̃  +  � ⋅ (� −1 ⋅ ı)̃  +  �  =   (� −1 ⋅ �)̃ 
Since �  is constant, the matrix � −1 can be taken out from the time derivative. By pre-
multiplying both sides for �  it results that: 

 (� ⋅ z(%) ⋅ � −1) ⋅ dı̃d� + (� ⋅ � ⋅ � −1) ⋅ ı ̃ + (� ⋅ �) = � ̃

which is the first equation of (2.37) with the parameters z̃(%) and �̃ defined in (9.10). 
The transformed motional back-EMFs vector � ̃is: 

 �̃ = � ⋅ � = & [� ⋅ �QR(%)] + & [� ⋅ z′(%) ⋅ � −1] ⋅ ı ̃
which is the second equation of (2.37), with �Q̃R(%) and z̃�′ (%) defined in (9.10). 

With the same substitutions, the torque expression becomes: 

+,- = +0(%) + (� −1 ⋅ �Q̃R)T⋅ (� −1 ⋅ ı)̃ + 12 (� −1 ⋅ ı)̃T ⋅ z′(%) ⋅ (� −1 ⋅ ı)̃ =  
= +0(%) + �Q̃RT ⋅ [(� −1)T ⋅ � −1] ⋅ ı ̃ + 12 ıT̃ ⋅ [(� −1)T ⋅ z′(%) ⋅ � −1] ⋅ ı ̃

which is the third equation of (2.37) with the parameters �̃ and z̃�′ (%) defined in (9.10). 
□ 

9.2.8 Moving reference frame transformation parameters 
It is here proven that, by applying the transformation (2.39) to the phase variable 

model of the electrical machine (2.35), the transformed model is given by (2.40) and the 
parameters are: 

�Q̃R(%, �) = � (�) ⋅ �QR(%)  �̃(�) = � (�) ⋅ � ⋅ � −1(�) z̃(%, �) = � (�) ⋅ z(%) ⋅ � −1(�) z̃�1′ (%, �) = � (�) ⋅ z′(%) ⋅ � −1(�) 
z̃�2′ (%, �) = � (�) ⋅ z(%) ⋅ 33� [� −1(�)] 
z̃�′ (%, �) = � −T(�) ⋅ z′(%) ⋅ � −1(�) �̃(�) = � −T(�) ⋅ � −1(�) 

(9.11)

 
3 The notation � −T stands for � −T = (� −1)T = (� T)−1. 
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Proof. Consider the phase variable model (2.35). By applying the inverse 
transformation � = � −1(�) ⋅ �̃ to both the machine voltages and currents, the electrical 
equation is modified to: 

z(%) ⋅ dd� [� −1(�) ⋅ ı]̃  +  � ⋅ [� −1(�) ⋅ ı]̃  +  �  =   [� −1(�) ⋅ �]̃ 
Since the matrix �  depends on the variable parameter �, the time derivative is 
decomposed as: 

dd� [� −1(�) ⋅ ı]̃  =  dd� [� −1(�)] ⋅ ı ̃ + � −1(�) ⋅ dı̃d�  =  Ω ⋅ 33� [� −1(�)] ⋅ ı ̃ + � −1(�) ⋅ dı̃d� 
with Ω = d� d�⁄ . By substituting this expression and by multiplying both sides for � (�) 
it results that: 

[� (�) ⋅ z(%) ⋅ � −1(�)] ⋅ dı̃d� + [� (�) ⋅ � ⋅ � −1(�)] ⋅ ı ̃  + ⋯  
⋯ +  Ω  {� (�) ⋅ z(%) ⋅ 33� [� −1(�)]} ⋅ ı̃ + � (�) ⋅ �  =   � ̃

If the term dependent by Ω is grouped into �,̃ this is the first equation of (2.40) with the 
parameters z̃(%, �) and �̃(�) defined in (9.11). The transformed back-EMFs vector is 
therefore defined as: 

�̃ = � (�) ⋅ � + Ω  {� (�) ⋅ z(%) ⋅ 33� [� −1(�)]} ⋅ ı̃ =  
= & [� (�) ⋅ �QR(%)] + & [� (�) ⋅ z′(%) ⋅ � −1(�)] ⋅ ı ̃ + Ω  {� (�) ⋅ z(%) ⋅ 33� [� −1(�)]} ⋅ ı ̃

which is the second equation of (2.40) with the parameters �Q̃R(%, �), z̃�1′ (%, �) and z̃�2′ (%, �) defined in (9.11). 

With the same substitutions, the torque expression becomes: 

+,- = +0(%) + [� −1(�) ⋅ �Q̃R]T⋅ [� −1(�) ⋅ ı]̃ + 12 [� −1(�) ⋅ ı]̃T ⋅ z′(%) ⋅ [� −1(�) ⋅ ı]̃ =   
 = +0(%) + �Q̃RT ⋅ {[� −1(�)]T ⋅ � −1(�)} ⋅ ı ̃ + 12 ıT̃ ⋅ {[� −1(�)]T ⋅ z′(%) ⋅ � −1(�)} ⋅ ı ̃

which is the third equation of (2.40), with �̃(�) and z̃�′ (%, �) defined in (9.11). 

□ 
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9.3 Chapter 3 Proofs 
This section contains the proof of the properties stated in Chapter 3 - Converter 

Architectures and Modulation Techniques. 

9.3.1 PWM for a two-level VSI leg 
It is here proven that, for a generic �-th two-level inverter leg (with � = 1,… ,¦) 

controlled with a PWM technique, if the bandwidth of the reference voltage ��∗ (�) is low 
enough with respect to the modulation frequency ³Q§R , then the low-frequency content 
of the leg output voltage ��(�) matches the harmonic content of the reference voltage ��∗ (�). In other words, the output voltage can be expressed through (3.4) and the residual 
voltage ∆��(�) has an harmonic content that is only located at high frequencies. 
 
Proof. Consider a generic �-th two-level converter leg controlled with a PWM technique 
working in symmetrical regular sampling mode with a triangular carrier4. The leg output 
voltage generated by the PWM technique is a sequence of rectangular pulses. All the 
pulses have the same height, equal to the DC-bus voltage \��. Given (3.3), the width 
of the rectangular pulse in the ℎ-th modulation period is: 

 +¯¥ [ℎ] = +Q§R ⋅ °¯¥ [ℎ] = 1³Q§R ⋅ �∗(�ℎ)\��  

The ℎ-th modulation period lasts from the instant �ℎ to the instant �ℎ+1 = �ℎ + +Q§R . 
Each pulse is centred around the midpoint of the modulation interval, located at (�ℎ + �ℎ+1) 2⁄ = �ℎ + +Q§R 2⁄ . By placing the time origin in a way that �0 = 0, then �ℎ =ℎ +Q§R  and the output voltage can be expressed as: 

�(�) = ∑ \�� ⋅ rect���[ℎ] (� − �ℎ + �ℎ+12 )+∞
ℎ=−∞

=  
= ∑ \�� ⋅ rect���[ℎ] (� − ℎ +Q§R − +Q§R2 )+∞

ℎ=−∞
  

where rect∆� (�) is the rectangle function, which describes a rectangular pulse centred at 
the time � = 0, with magnitude 1 and time width ∆+  (denoted as the subscript of the 
function rect(�)). 

The harmonic content of the reference voltage �∗(�) (i.e., of the smooth signal to be 
applied) is identified by its Fourier transform: 

 �∗(³) = ℱ[�∗(�)](³) = ∫ �∗(�) ⋅ e−j 28l ª d�
+∞ 

−∞
 

Similarly, the harmonic content of the actual leg voltage �(�) (i.e., of the sequence of 
rectangular pulses) is also identified by its Fourier transform. By recalling that the 
Fourier transform of a rectangular pulse is the normalized sine cardinal function: 

 
4 A similar reasoning can also be applied for other PWM working modes. The leg subscript � will be omitted for notation compactness. 
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ℱ[rect∆� (�)](³) = ∆+ ⋅ sinc(³ ∆+ ) = ∆+ ⋅ sin(	 ³ ∆+ )	 ³ ∆+  

and by recalling the time delay property of the Fourier transformation 

 ℱ[�(� − µ)](³) = ℱ[�(�)](³) ⋅ e−j 28l c  
the explicit computation of the harmonic spectra of �(�) results in: 

�(³) = ℱ[�(�)](³) =  
= ℱ[ ∑ \�� ⋅ rect��� [ℎ] (� − ℎ +Q§R − +Q§R2 )+∞

ℎ=−∞
] (³) =   

= ∑ \�� ⋅ ℱ[rect��� [ℎ] (� − ℎ +Q§R − +Q§R2 )] (³)+∞
ℎ=−∞

=  
= ∑ \�� ⋅ ℱ[rect��� [ℎ](�)](³) ⋅ e−j (ℎ⋅�¬®+�¬®2 )+∞

ℎ=−∞
=  

= ∑ \�� ⋅ +¯¥ [ℎ] ⋅ sinc(³ ⋅ +¯¥ [ℎ]) ⋅ e−j ℎ�¬® ⋅ e−j �¬®2
+∞

ℎ=−∞
=  

= ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ sinc ( ³³Q§R ⋅ �∗(ℎ +Q§R)\�� ) ⋅ e−jℎ�¬® ⋅ e−j �¬®2
+∞
ℎ=−∞ 

  
Each term of this infinite sum represents the Fourier transform contribution of the 
reference voltage �∗, sampled at the ℎ-th instant ℎ +Q§R , shifted by the time delay ℎ+Q§R  (related to the ℎ-th modulation interval) and +Q§R 2⁄  (related to the center of 
the rectangular pulse) and weighted (for each frequency ³) by the non-linear function +Q§R ⋅ sinc((³ ³Q§R⁄ ) ⋅ (�∗(ℎ +Q§R) \��⁄ )). 

By directly comparing the harmonic spectra �(³) and �∗(³) it is not immediate to 
derive any conclusion. The comparison requires defining an additional auxiliary term. 
By considering an idealized sampling process, obtained in the distribution domain by 
multiplying the reference (i.e., smooth) signal �∗(�) with a periodic sequence of Dirac 

pulses of area +Q§R  and of period +Q§R , it is possible to define idealized sampled signal: 

��(�) = �∗(�) ⋅ +Q§R ⋅ ∑ ^(� − ℎ +Q§R)+∞
ℎ=−∞

= ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ ^(� − ℎ +Q§R)+∞
ℎ=−∞

 

where ^(�) is the unitary-area Dirac pulse located at � = 0. 

As known, the Fourier transform of an idealized sampled signal is the periodic replica 
of the Fourier transform of the original (i.e., smooth) signal. Therefore, the Fourier 
transform of ��(�) can be written as: 

��(³) = ℱ[��(�)](³) = ℱ[�∗(�) ⋅ +Q§R ⋅ ∑ ^(� − ℎ ⋅ +Q§R)+∞
ℎ=−∞

] (³) =  
= ∑ ℱ[�∗(�)](³ − ℎ ⋅ ³Q§R)+∞

ℎ=−∞ 
= ∑ �∗(³ − ℎ ⋅ ³Q§R)+∞

ℎ=−∞ 
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and, if the bandwidth of the reference voltage �∗(�) is low enough with respect to ³Q§R , 
then there is no aliasing5 and it results that: 

 ��(³) ≅ �∗(³)      for ³ < ³Q§R  

The same Fourier transform, however, can also be expressed differently. Indeed, by 
recalling that ℱ[^(�)](³) = 1, it is possible to directly apply the Fourier transform to the 
Dirac pulse sequence ��(�), which results in: 

��(³) = ℱ[��(�)](³) =  
= ℱ[ ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ ^(� − ℎ +Q§R)+∞

ℎ=−∞
] (³) =   

= ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ ℱ[^(� − ℎ +Q§R)](³)+∞
ℎ=−∞

=  
= ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ ℱ[^(�)](³) ⋅ e−j ℎ�¬®

+∞
ℎ=−∞

=  
= ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ e−j ℎ�¬®

+∞
ℎ=−∞

  
Each term of this infinite sum represents the Fourier transform contribution of the 
reference voltage �∗, sampled at the ℎ-th instant ℎ +Q§R , shifted by the time delay ℎ+Q§R  (related to the ℎ-th modulation interval) and weighted by +Q§R . 

By comparing this last expression of ��(³) with the Fourier transform �(³) of the 
pulse-width modulated signal �(�) (previously found), it can be recognized that many 
terms are similar to each other. Moreover, for low frequencies, ³ ³Q§R⁄ ≪ 1 and, since 0 ≤ �∗ ≤ \��, the normalized sine cardinal function which appears in the expression of �(³) can be approximated as: 

 sinc ( ³³Q§R ⋅ �∗(ℎ +Q§R)\�� ) ≅ 1 

Then, by comparing �(³) and ��(³) it results that: 

�(³) ≅ ∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ e−j ℎ�¬® ⋅ e−j �¬®2
+∞
ℎ=−∞

=  
= [∑ +Q§R ⋅ �∗(ℎ +Q§R) ⋅ e−j ℎ�¬®

+∞
ℎ=−∞

] ⋅ e−j �¬®2 =  
= ��(³) ⋅ e−j �¬®2           for ³ ≪ ³Q§R   

As a result, thanks to the introduction of the signal ��(�), it has been shown that: 
 

5 For the Nyquist-Shannon Theorem, to avoid any aliasing phenomena, the frequency ³-ï� 
identifying the bandwidth of the signal should be lower than the Nyquist frequency, which for 
the present analysis is equal to ³Q§R 2⁄ . 
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�(³) ≅ ��(³) ⋅ e−j �¬®2 ≅ �∗(³) ⋅ e−j �¬®2      for ³ ≪ ³Q§R  

To summarize, it has been shown that, if the original (i.e., smooth) signal has a narrow 
bandwidth with respect to ³Q§R , then:  

 the low-frequency harmonic spectrum of the pulse-width-modulated signal (i.e., 
the sequence of rectangular pulses) is similar to the harmonic spectra of the 
idealized sampled signal (i.e., the sequence of Dirac pulses) and just delayed by +Q§R 2⁄ , 

 the low-frequency harmonic spectrum of the idealized sampled signal (i.e., the 
sequence of Dirac pulses) is similar to the harmonic spectra of the original signal 
(i.e., the smooth reference signal), and then 

 the low-frequency harmonic spectrum of the pulse-width-modulated signal (i.e., 
the sequence of rectangular pulses) is similar to the harmonic spectra of the 
original signal (i.e., the smooth reference signal) and just delayed by +Q§R 2⁄ . 

Therefore, by anti-transforming the previous result back into the time domain, it 
results that: 

�(�) = ℱ−1[�(³)](�) ≅ ℱ−1 [�∗(³) ⋅ e−j �¬®2 ] (�) = �∗ (� − +Q§R2 ) 

which is the result given in (3.4). 

By definition, the residual voltage ∆�(�) is given by the difference between the pulse-
width-modulated signal �(�) and the shifted reference signal �∗(� − +Q§R 2⁄ ), which is: 

 ∆�(�) = ℱ−1 [�(³) − �∗(³) ⋅ e−j �¬®2 ] (�) 
and, since at low frequencies �(³) ≅ �∗(³) ⋅ e−j ì¬®2 , the harmonic content of ∆�(�) is 
only located at high frequencies, and can be therefore filtered by the supplied load.  

□ 

9.3.2 Common-mode voltage limits 
It is here proven that, given a set ·̃∗ = [�1̃∗ , �2̃∗ ,… , �-̃∗ ]T of reference leg voltages, the 

feasible range for the common-mode voltage component ��R∗  which can be injected is 
given by (3.7).  

Naturally, for the leg voltages to be feasible, it must result: 

− min{·̃∗} ≤ \�� − max{·̃∗}    ⇒   max{·̃∗} − min{·̃∗} ≤ \�� 

meaning that the maximum phase-to-phase voltage must be lower than the total DC-
bus voltage. 

 

Proof. The reference leg voltages after the common-mode injection are: 

 ��∗ = �̃�∗ + ��R∗     (with � = 1,… ,¦) 
Since it must result 0 ≤ ��∗ ≤ \�� for all converter legs, this means that ��R∗  must be 
in a certain feasible range. This range can be found by referring to the extreme minimum 
and maximum leg voltages as: 
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{min{·̃∗} = min{·̃∗} + ��R∗ ≥ 0max{·̃∗} = max{·̃∗} + ��R∗ ≤ \��    ⇒   {��R∗ ≥ − min{·̃∗}��R∗ ≤ \�� − max{·̃∗} 
which is the range provided in (3.7). 

□ 
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9.4 Chapter 4 Proofs 
This section contains the proof of the properties stated in Chapter 4 - Electrical 

Network Model. 

9.4.1 Tellegen’s theorem (virtual powers conservation) 
This section recalls Tellegen’s theorem for the virtual powers conservation, which is 

an important and well-known result for an electric circuit [166]–[168].  
Consider the same electrical circuit in two different operating conditions, here 

referred through the superscripts (′) and (″), respectively. By using the passive sign 
notation for all the circuit elements, the first operating condition is characterized by the 
voltages and currents set (�′, �′), while the second operating condition is characterized 
by the voltages and currents set (�″, �″).  

The circuit overall Virtual Powers are defined as: 

            �̂ ′,″ = �′T ⋅ �″ = ∑ ��′ ⋅ ��″-
�=1

      and     �̂″,′ = �″T ⋅ �′ = ∑ ��″ ⋅ ��′-
�=1

 (9.12)

where ¦ is the total number of elements in the circuit.  
Tellegen’s theorem states that the overall virtual powers are zero: 

 �1̂2 = �2̂1 = 0 (9.13)

When only a single operating condition is considered, �′ = �″ = � and �′ = �″ = �. 
Then, the virtual powers are equal to the real power absorbed by the circuit and 
Tellegen’s theorem corresponds to the conservation of energy principle of physical 
systems. 

A classic proof of this theorem is here recalled. 
 
Proof. Any electric circuit can be associated with an ordered graph. Generally speaking, 
the graph has � nodes and ¦ branches. The branches directions can be associated with 
the flow of the currents. By using the passive sign convention for all the circuit elements, 
the orientations of the voltages are automatically determined. 

The Incidence Matrix ü related to the graph is a � that: 

zℎ� = {+1 if the branch ℎ points out from the node � −1 if the branch ℎ points to the node �0 if the branch ℎ is not connected to the node � 

The set of circuit currents � satisfies Kirchhoff’s Current Law, which can be expressed 
as: 

 ü ⋅ � = û 

The set of circuit voltages � satisfies Kirchhoff’s Voltage Law, and each voltage can 
be therefore expressed as the difference of the electric potentials in two corresponding 
nodes. They can be expressed as: 

 � = üT ⋅ · 

where · is the set of electric potentials at the circuit nodes. 
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These properties are true regardless of the operating condition, meaning that: 

ü ⋅ �′ = û,     ü ⋅ �″ = û,     �′ = üT ⋅ ·′,     �″ = üT ⋅ ·″ 

The virtual powers can be therefore expressed as: 

�̂ ′,″ = �′T ⋅ �″ = (üT ⋅ ·′) ⋅ �″ = ·′T ⋅ (ü ⋅ �″) = ·′T ⋅ û = 0 �̂″,′ = �″T ⋅ �′ = (üT ⋅ ·″) ⋅ �′ = ·″T ⋅ (ü ⋅ �′) = ·″T ⋅ û = 0 
which is the property stated by the theorem. 

□ 

 

9.4.2 Reciprocity properties for two-port networks 
This section recalls the reciprocity properties for linear a-dynamical two-port 

electrical networks [166], [167]. 
A linear a-dynamical two-port network is an electric system that only contains 

passive linear elements (i.e., resistors) and can be accessed externally by two couples of 
terminals (i.e., two ports). The two ports, further on referred by the subscripts 1 and 2, 
can be supplied by voltage or current sources. For an independent voltage source, the 
current absorbed by the network is the complementary variable. Similarly, for an 
independent current source, the voltage at the port terminals is the complementary 
variable6. 

If both ports are supplied by voltage sources, the two-port network is mathematically 
represented by the Conductances Matrix: 

 [�1�2] = [T11 T12T21 T22] ⋅ [�1�2] (9.14)

and the reciprocity property states that T12 = T21. 
If both ports are supplied by current sources, the two-port network is mathematically 

represented by the Resistances Matrix: 

 [�1�2] = [�11 �12�21 �22] ⋅ [�1�2] (9.15)

and the reciprocity property states that �12 = �21. 
If one port is supplied by a voltage source and the other port is supplied by a current 

source, the two-port network is mathematically represented by the Hybrid Matrix: 

 [�1�2] = [=11 =12=21 =22] ⋅ [�1�2] (9.16)

and the reciprocity property states that =12 = −=21.7 
 

6 It is important to emphasize that the network ports are identified through the passive sign 
notation, which corresponds to the active sign notation for the sources connected to the ports. 

7 This is also called Anti-reciprocity property. The same property also applies if the port 1 
is fed by a current source and the port 2 is fed by a voltage source. 
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Proof. Any linear a-dynamical network is characterized by a certain number � of 
internal elements, each of which can be modelled through a resistance �� (with � =1,… , �). Their voltages and currents can be denoted as �U,� and �U,� and, given Ohm’s 

law, �U,� = �� ⋅ �U,�. 

First, refer to the conductances matrix formulation (9.14). Consider two operating 
conditions, denoted through the superscripts (′) and (″). The first operating condition is 
given by �1′ = \1 ≠ 0 and �2′ = 0. From (9.14) it results that �1′ = T11 ⋅ \1 and �2′ = T21 ⋅\1. The second operating condition is given by �1″ = 0 and �2″ = \2 ≠ 0. From (9.14) it 
results that �1″ = T12 ⋅ \2 and �2″ = T22 ⋅ \2. By applying Tellegen’s theorem (9.13) to the 
two operating conditions it results that: 

0 = �1′ ⋅ �1″ + �2′ ⋅ �2″ − ∑ �U,�′ ⋅ �U,�″�
�=1

= T12 ⋅ \1 ⋅ \2 − ∑ �� ⋅ �U,�′ ⋅ �U,�″�
�=1

 

0 = �1″ ⋅ �1′ + �2″ ⋅ �2′ − ∑ �U,�″ ⋅ �U,�′�
�=1

= T21 ⋅ \2 ⋅ \1 − ∑ �� ⋅ �U,�″ ⋅ �U,�′�
�=1

 

By comparing the two expressions, it results: 

 T12 = 1\1 ⋅ \2 ⋅ ∑ �� ⋅ �U,�′ ⋅ �U,�″�
�=1

= T21 

which is the reciprocity property of the conductances matrix. 

Refer now to the resistances matrix formulation (9.15). Again, consider two operating 
conditions, denoted through the superscripts (′) and (″). The first operating condition is 
given by �1′ = ñ1 ≠ 0 and �2′ = 0. From (9.15) it results that �1′ = �11 ⋅ ñ1 and �2′ = �21 ⋅ñ1. The second operating condition is given by �1″ = 0 and �2″ = ñ2 ≠ 0. From (9.15) it 
results that �1″ = �12 ⋅ ñ2 and �2″ = �22 ⋅ ñ2. By applying Tellegen’s theorem (9.13) to the 
two operating conditions it results that: 

0 = �1′ ⋅ �1″ + �2′ ⋅ �2″ − ∑ �U,�′ ⋅ �U,�″�
�=1

= �21 ⋅ ñ1 ⋅ ñ2 − ∑�� ⋅ �U,�′ ⋅ �U,�″�
�=1

  
0 = �1″ ⋅ �1′ + �2″ ⋅ �2′ − ∑ �U,�″ ⋅ �U,�′�

�=1
= �12 ⋅ ñ2 ⋅ ñ1 − ∑ �� ⋅ �U,�″ ⋅ �U,�′�

�=1
  

and, by comparing the two expressions, it results: 

 �12 = 1ñ1 ⋅ ñ2 ⋅ ∑ �� ⋅ �U,�′ ⋅ �U,�″�
�=1

= �21 

which is the reciprocity property of the resistances matrix. 

Finally, refer to the hybrid matrix formulation (9.16). Again, consider two operating 
conditions, denoted through the superscripts (′) and (″). The first operating condition is 
given by �1′ = \1 ≠ 0 and �2′ = 0. From (9.16) it results that �1′ = =11 ⋅ \1 and �2′ = =21 ⋅\1. The second operating condition is given by �1″ = 0 and �2″ = ñ2 ≠ 0. From (9.16) it 
results that �1″ = =12 ⋅ ñ2 and �2″ = =22 ⋅ ñ2. By applying Tellegen’s theorem (9.13) to the 
two operating conditions it results that: 
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0 = �1′ ⋅�1″ + �2′ ⋅�2″ − ∑ �U,�′ ⋅�U,�″�
�=1

= (=12+=21)⋅\1⋅ñ2 − ∑��⋅�U,�′ ⋅�U,�″�
�=1

  
0 = �1″ ⋅ �1′ + �2″ ⋅ �2′ − ∑ �U,�″ ⋅ �U,�′�

�=1
= − ∑ �� ⋅ �U,�″ ⋅ �U,�′�

�=1
  

and, by comparing the two expressions, it results 

 =12 + =21 = 1\1 ⋅ ñ2 ⋅ ∑�� ⋅ �U,�′ ⋅ �U,�″�
�=1

= 0 

meaning that =12 = −=21, which is the reciprocity property of the hybrid matrix. 
□ 

9.4.3 Reciprocity properties for multiport networks 
The reciprocity properties stated for linear a-dynamical two-port networks are here 

extended for linear a-dynamical multiport networks. 
A linear a-dynamical multi-port network is an electric system that only contains 

passive linear elements (i.e., resistors) and can be accessed externally by ¦ couples of 
terminals (i.e., ¦ ports). Each terminal can be supplied either by a voltage or by a 
current source. 

The ¦ ports can be divided into two subsets. The ¦ô  ports supplied by independent 
voltage sources are denoted by the subscript \ ; the supplying set is �ô  and the 
complementary set is �ô . The ¦õ ports supplied by independent current sources are 
denoted by the subscript ñ; the supplying set is �õ  and the complementary set is �õ . 
Naturally, it must result ¦ô + ¦õ = ¦, but the size ¦ô  or ¦õ of a single set can vary 
from 0 to ¦. 

The general formulation of this multiport system is obtained by the Hybrid Matrix: 

 [�ô�õ] = [øôô øôõøõô øõõ ] ⋅ [�ô�õ ] = [ùôô øôõøõô �õõ ] ⋅ [�ô�õ ] (9.17)

where: 
 øôô = ùôô  is the ¦ô ×¦ô  Partial Conductances Matrix, 
 øõõ = �õõ  is the ¦õ×¦õ  Partial Resistances Matrix,  
 øôõ is the ¦ô ×¦õ Currents to Voltages Partial Hybrid Matrix, 
 øõô  is the ¦õ×¦ô  Voltages to Currents Partial Hybrid Matrix. 

The Reciprocity Properties for the multiport representation (9.17) is: 

 ùôô = ùôôT , �õõ = �õõT , øôõ = −øõôT  (9.18)

meaning that the relationship among the same kind of sources is symmetric, while the 
relationship among different kind of sources is related to an anti-transposition8. 

The same property holds in case of multiple subsets. Also, when ¦ô = ¦ and ¦õ =0 the reciprocity property (9.18) particularizes into the symmetry of the overall network 
 

8 This is not an anti-symmetry property, since the hybrid matrices øõô  and øôõ may not 
be square matrices.  



9.4 - Chapter 4 Proofs 267 

 

conductances matrix, while when ¦ô = 0 and ¦õ = ¦ it particularizes into the 
symmetry of the overall network resistances matrix. 

The properties (9.18) are here proved. 
 
Proof. Consider two generic ports, here referred through the subscripts ℎ ∈ {1,… , ¦} 
and � ∈ {1,… , ¦}. The mutual interaction between the two ports is obtained when all 
the other sources are zero. This means that all the other voltage-driven ports are short-
circuited and all the other current-driven ports are left in open-circuit. Then, the overall 
multiport network is transformed into an equivalent two-port network, where the 
reciprocity properties defined in Section 9.4.2 hold.  As a result: 

 if both the ports are voltage-driven, then =ℎ� = =�ℎ (thus explaining why ùôô = ùôôT ), 
 if both the ports are current-driven, then also =ℎ� = =�ℎ (thus explaining why �õõ = �õõT ), 
 if one port is voltage driven and the other is current-driven, then =ℎ� = −=�ℎ 

(thus explaining why øõô = −øôõT ). 
□ 

9.4.4 Auxiliary network voltages expression 
It is here proven that, given the electrical machine model (2.35), the auxiliary 

network voltages �¥��  in a constrained configuration obeying (4.8) can be expressed as 
(4.14) and the equivalent network parameters in (4.16) would be expressed as (4.17). 
  
Proof. From (4.13), the machine voltages can be expressed as: 

 ��R = ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥��  

From (2.35), the machine voltages can also be expressed as: 

��R = z�R ⋅ d��Rd� + ��R ⋅ ��R + ��R  

By matching the two expressions and by isolating the currents time derivative z�R ⋅(d��R d�⁄ ), it results: 

z�R ⋅ d��Rd� = ú ⋅ �ôeõ − (��R + �¥�� ) ⋅ ��R − ��R − � ⋅ �¥��  

Both expressions can be multiplied by {�R = z�R−1  resulting in: 

d��Rd� = {�R ⋅ [ú⋅�ôeõ − (��R+�¥�� )⋅��R − ��R ] − {�R ⋅ �⋅�¥��  

By left-multiplying this last expression by �T and by recalling that, because of the 
currents constraint equation (4.8) �T ⋅ ��R = û, it results that: 

û = dd� (�T ⋅ ��R) = �T ⋅ d��Rd� = 
= �T ⋅ {�R ⋅ [ú ⋅ �ôeõ − (��R + �¥�� ) ⋅ ��R − ��R ] − (�T ⋅ {�R ⋅ �) ⋅ �¥��   

By isolating �¥��  this expression can be written as: 
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(�T ⋅ {�R ⋅ �) ⋅ �¥�� = �T ⋅ {�R ⋅ [ú ⋅ �ôeõ − (��R + �¥�� ) ⋅ ��R − ��R ] 
The matrix (�T ⋅ {�R ⋅ �) which pre-multiplies �¥��  is symmetric because {�R ={�RT . Also, it is positive definite, because {�R  is positive definite and any quadratic 
form �T ⋅ (�T ⋅ {�R ⋅ �) ⋅ � with � ≠ 0 can be rewritten as 

�T ⋅ (�T ⋅ {�R ⋅ �) ⋅ � = (� ⋅ �)T ⋅ {�R ⋅ (� ⋅ �) > 0 

where � ⋅ � ≠ û because �  is, by definition, a full-ranked matrix. Therefore, (�T ⋅ {�R ⋅ �) is invertible, and therefore it is possible to explicitly compute �¥��  as: 

�¥�� = (�T ⋅ {�R ⋅ �)−1 ⋅ �T ⋅ {�R ⋅ [ú ⋅ �ôeõ − (��R + �¥�� ) ⋅ ��R − ��R ] 
which is the expression provided in (4.14). 

With the definition of the network internal feedback matrix �  given in (4.15), the 
term � ⋅ �¥��  which appears in the expression of the machine voltages ��R  is: 

� ⋅ �¥�� = � ⋅ [ú ⋅ �ôeõ − (��R + �¥�� ) ⋅ ��R − ��R ] 
By substituting in (4.13) and by doing some algebraic manipulations it results that: 

��R = ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥�� =  
= [(� − � ) ⋅ ú] ⋅ �ôeõ − [(� − � ) ⋅ �¥�� − � ⋅ ��R ] ⋅ ��R + [� ⋅ ��R ] =   
= ú,�ª ⋅ �ôeõ − �¥��,,�ª ⋅ ��R + ��R,,�ª  

which is the expression (4.16) with the parameters ú,�ª, �¥��,,�ª and ��R,,�ª of (4.17). 
□ 

9.4.5 Full order electrical drive model parameters 
It is here proven that in a constrained network, given the electrical machine voltages 

set ��R  expressed by (2.35), the overall drive model can be written as per (4.19). 
 

Proof. By substituting the expression (4.16) in (4.13) it results that: 

z�R ⋅ d��Rd� + ��R ⋅ ��R + ��R = ��R =  
=  ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥�� =  

         = ú,�ª ⋅ �ôeõ − �¥�� ,,�ª ⋅ ��R + ��R,,�ª =  
= ( � − �  ) ⋅ ú ⋅ �ôeõ − ( � − �  ) ⋅ �¥�� ⋅ ��R + � ⋅ ��R ⋅ ��R − � ⋅ ��R  

By grouping the homologous terms and by isolating the converter voltages set �ôeõ on 
the right side, this expression can be rewritten as: 

z�R ⋅ d��Rd� + ( � − �  ) ⋅ [(��R + �¥�� ) ⋅ ��R + ��R ] = ( � − �  ) ⋅ ú ⋅ �ôeõ 

which is the full-order model expressed in (4.19). 
□ 



9.4 - Chapter 4 Proofs 269 

 

9.4.6 Range and null-space relationships 
Given a � × � matrix ü, it is here proven that: 

 ℛ⊥(ü) = (üT), and    ℛ(ü) = ⊥(üT) (9.19)

where ℛ(⋆) denotes the range, (⋆) denotes the null-space, and ⋆⊥ denotes the 
orthogonal complement. 

 

Proof. The proof focuses on the first property of (9.19). 

First, it is here proven that ℛ⊥(ü) ⊆ (üT).  
Consider a generic vector � ∈ ℛ⊥(ü). By definition, � is orthogonal to any � ∈ ℛ(ü), 
meaning that the scalar product �T ⋅ � is zero. Consider the vector defined as � = ü ⋅üT ⋅ �. Since it is obtained by pre-multiplying the vector (üT ⋅ �) by ü, � belongs to ℛ(ü), therefore: 

0 = �T ⋅ � = �T ⋅ (ü ⋅ üT ⋅ �) = (üT ⋅ �)T ⋅ (üT ⋅ �) = ‖üT ⋅ �‖2 
Therefore, üT ⋅ � = û, meaning that � ∈ (üT). Since this is true for any � ∈ ℛ⊥(ü), 
it means that ℛ⊥(ü) ⊆ (üT). 

It is now proven that (üT) ⊆ ℛ⊥(ü). 
By definition, if � ∈ (üT) it means that üT ⋅ � = û. Then, for any vector �, it results: 

0 = �T ⋅ û = �T ⋅ (üT ⋅ �) = (�T ⋅ üT) ⋅ � = �T ⋅ (ü ⋅ �) 
Since the vector ü ⋅ � belongs to ℛ(ü) and � is orthogonal to any vector built as ü ⋅ �, 
it means that � ∈ ℛ⊥(ü). Given that this is true for any � ∈ (üT), it means that (üT) ⊆ ℛ⊥(ü). 

Having shown that ℛ⊥(ü) ⊆ (üT) and (üT) ⊆ ℛ⊥(ü), it must necessarily 
result ℛ⊥(ü) = (üT), which is the first property of (9.19). 

It is now possible to immediately prove the second part of (9.19). Since, for any 
vector space �, it results � = (�⊥)⊥, from the first property of (9.19), it derives that: 

 ℛ(ü) = (ℛ⊥(ü))⊥ = ((üT))⊥ = ⊥(üT) 
which is the second property of (9.19). 

□  

9.4.7 Left singular vectors properties 
It is here proven that, given the � × �D constraint matrix �  and computing its 

singular value decomposition according to (4.21), then the properties (4.22), (4.23) and 
(4.24) are verified. 

 

Proof. The matrix �  has been split as � = [�D �l ], where �D is the set of the first �D left singular vectors of �  and �l  is the set of the last �l = � − �D left singular 

vectors of � .  

Since, as a consequence of the singular value decomposition, �  is unitary, then �T ⋅� = �. By writing the same expression in terms of �D and �l  it results that: 
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� ⋅ �T = [�DT�lT] ⋅ [�D �l ] = [(�DT ⋅ �D) (�DT ⋅ �l)
(�lT ⋅ �D) (�lT ⋅ �l)] = [ �  û  û  � ] 

and by equating term to term it results that: 

�DT ⋅ �D = �, �lT ⋅ �l = �, �DT ⋅ �l = û, �lT ⋅ �D = û 

which are the properties of (4.22). 
Since �  is unitary, it also results that �T ⋅ � = � . Therefore, by expanding the 

product in terms of �D and �l  it results that: 

 � = �T ⋅ � = [�D �l ] ⋅ [�DT�lT] = �D ⋅ �DT + �l ⋅ �lT 

which is the property (4.23). 

As per (4.21), the constraint matrix is � = �D ⋅ �̃ ⋅ � T. By pre-multiplying �  by �lT it results that: 

�lT ⋅ �  =  �lT ⋅ �D ⋅ �̃ ⋅ � T  =  (�lT ⋅ �D) ⋅ �̃ ⋅ � T  =  û ⋅ �̃ ⋅ � T  =  û 

which, once transposed, is the first property of (4.24).  
By pre-multiplying � by �DT it results that: 

�DT ⋅ �  =  �DT ⋅ �D ⋅ �̃ ⋅ � T  =  (�DT ⋅ �D) ⋅ �̃ ⋅ � T  =  � ⋅ �̃ ⋅ � T  =  �̃ ⋅ � T 

which, once transposed (since �̃ = �̃T), is the second property of (4.24). 
□ 

9.4.8 Configuration spaces basis 
It is here proven that, given the � × � left singular vectors matrix � = [�D �l ] 

corresponding to the � × �D constraint matrix � , then the � × �l  matrix �l  is a basis 

of the configuration space (�T) and the � × �D matrix �D is a basis of the 
complementary configuration space ⊥(�T) = ℛ(�).  
 

Proof. For any vector � ∈ ℝ�, since �  is a � × � unitary matrix, it is possible to 
associate a unique vector � ∈ ℝ� such that: 

 � = � ⋅ �   ⟺    � = �−1 ⋅ � = �T ⋅ � 

The vector � represents the same vector � in the new reference frame defined by � . It 
can be split into two sub-vectors �D and �l , with dimension �D × 1 and �l × 1, 
respectively. Therefore, it results that: 

 � = � ⋅ � = [�D �l ] ⋅ [�D�l] = �D ⋅ �D + �l ⋅ �l  

which is the same expression of (4.25).  
Given (4.21), the constraint matrix can be expressed through its singular value 

decomposition as � = �D ⋅ �̃ ⋅ � T. If � ∈ (�T) it means that �T ⋅ � = û. Therefore, 
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by expanding this product and by recalling the properties (4.22) it results: 

û = �T ⋅ � = (�D ⋅ �̃ ⋅ � T)T ⋅ (�D ⋅ �D + �l ⋅ �l) =  
= (� ⋅ �̃) ⋅ [(�DT ⋅ �D) ⋅ �D + (�DT ⋅ �l) ⋅ �l ] = (� ⋅ �̃) ⋅ �D  

Since both �  and �̃ are �D × �D invertible matrices, it results: 

 �D = (� ⋅ �̃)−1 ⋅ û = û 

By denoting as ·l,� the �-th column of �l  (with � = 1,… , �l), the vector � can be 

expressed as: 

 � = �l ⋅ �l = ∑ ·l,� ⋅ wl,�
�p

�=1
 

meaning that � is a linear combination of the vectors ·l,�, each of which is weighted by 

wl,�. Since this is true for any � ∈ (�T), it can be deduced that the set of ·l,� is a 
basis of the configuration space (�T). 

If a vector � ∈ ℛ(�), by definition, it means that there exists a  �D × 1 vector � 
such that � = � ⋅ �. By expanding �  it results that: 

 � = � ⋅ � = (�D ⋅ �̃ ⋅ � T) ⋅ � = �D ⋅ (�̃ ⋅ � T ⋅ �) 

and, by denoting as KD = �̃ ⋅ � T ⋅ � and as ·D,� (with � = 1,… , �D) the columns of �D, 
the vector � can be written as: 

 � = �D ⋅ KD = ∑ ·D,� ⋅ ;D,�
��

�=1
 

meaning that � is a linear combination of the vectors ·D,�, each of which is weighted by ;D,�. Since this is true for any � ∈ ℛ(�), it can be deduced that the set of ·D,� is a 

basis of the complementary configuration space ℛ(�) = ⊥(�T). 
□ 

9.4.9 Reduced order electrical drive model parameters 
It is here proven that in a constrained network, the electrical drive model in the 

configuration space satisfies the equation (4.31), with the equivalent parameters defined 
in (4.32). It is also shown that the equivalent inductances matrix z�R,l  is symmetric 

and positive definite, meaning that it can be inverted. 

 

Proof. The machine electrical equations can be written as per (4.18): 

z�R ⋅ d��Rd� + ��R ⋅ ��R + ��R =  ú ⋅ �ôeõ − �¥�� ⋅ ��R − � ⋅ �¥��  

By pre-multiplying both sides of the equation by �lT and by considering that, given the 

constraints, the machine currents can be expressed as per (4.29) in the form ��R = �l ⋅
��R,l , it results that: 
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�lT ⋅ z�R ⋅ dd� (�l ⋅ ��R,l) + �lT ⋅ ��R ⋅ (�l ⋅ ��R,l) + �lT ⋅ ��R =  
= �lT ⋅ ú ⋅ �ôeõ − �lT ⋅ �¥�� ⋅ (�l ⋅ ��R,l) − (�lT ⋅ �) ⋅ �¥��   

As per (4.24), �lT ⋅ � = û and the auxiliary network voltages term is neutralized. By 

isolating the input term depending on �ôeõ on the right side of the equation and by 
considering that �l  is constant (since it only depends on the network configuration), the 

dynamical equation can be rewritten as: 

(�lT ⋅ z�R ⋅ �l) d��R,ld� + (�lT ⋅ ��R ⋅ �l) ⋅ ��R,l + (�lT ⋅ ��R) + ⋯  
⋯ + (�lT ⋅ �¥�� ⋅ �l) ⋅ ��R,l = (�lT ⋅ ú) ⋅ �ôeõ  

which is equal to the equation (4.31) with the equivalent parameters defined in (4.32). 
The equivalent inductances matrix of the model is defined in (4.32) as z�R,l = �lT ⋅

z�R ⋅ �l . Since z�R  is symmetric, then: 

z�R,lT = (�lT⋅z�R ⋅�l)T = �lT⋅z�RT ⋅�l = �lT⋅z�R ⋅�l = z�R,l  

meaning that also z�R,l  is symmetric. Since �l  is a � × �l full-ranked matrix, given 

any �l × 1 vector � ≠ û it results that � = �l ⋅ � ≠ û. Therefore, since z�R  is positive 

definite, any quadratic form of z�R,l  can be written as: 

�T ⋅ z�R,l ⋅ � = �T ⋅ (�lT ⋅ z�R ⋅ �l) ⋅ � =  
= (�l ⋅ �)T ⋅ z�R ⋅ (�l ⋅ �) = �T ⋅ z�R ⋅ � > 0 

meaning that z�R,l  is positive definite, too. Being z�R,l  both symmetric and positive 

definite, it is invertible. 
□ 
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9.5 Chapter 5 Proofs 
This section contains the proof of the properties stated in Chapter 5 - Field Oriented 

Control of Asymmetrical PMSMs. 

9.5.1 Torque expression in the space vector formalism 
It is here proven that the analytical expression of the electromagnetic torque 

developed by a multiphase PMSM can be written as (5.11), which represents the 
superposition of all the (infinite) spatial harmonics contributions. 

 
Proof. Considering the torque expression (5.8), the definitions of the currents space 
vectors (5.9) and their expression in the multiple synchronous domain (5.10), it results: 

+,- = �� ⋅ ∑ 3wQR,�3%,M ⋅ ���
�=1

=  
= −�� ⋅ ∑ [∑ℎ ⋅ ΨRℎ ⋅ sin(ℎ ⋅ (%,M − Ç�) + �ℎ)+∞

ℎ=1
] ⋅ ���

�=1
=  

= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ [−∑ sin(ℎ ⋅ (%,M − Ç�) + �ℎ)�
�=1

⋅ ��]+∞
ℎ=1

=  
= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ [−∑ �� ⋅ Im{eℎ⋅(&'(−!")+)ℎ}�

�=1
]+∞

ℎ=1
=  

= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ Im {−∑ �� ⋅ e−jℎ!"
�

�=1
⋅ e j (ℎ &'(+)ℎ)}+∞

ℎ=1
=  

= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ Im {[∑�� ⋅ ejℎ!"
�

�=1
] ⋅ e−j (ℎ &'(+)ℎ)}+∞

ℎ=1
=  

= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ Im {√�2 ⋅ �ℎ ⋅ e−j (ℎ &'(+)ℎ)}+∞
ℎ=1

=  
= �� ⋅ ∑ ℎ ⋅ ΨRℎ ⋅ √�2 ⋅ Im{�ℎ⟨dq⟩}+∞

ℎ=1
=  

= ∑ (√�2 ⋅ �� ⋅ ℎ ⋅ ΨRℎ) ⋅ �qℎ
+∞
ℎ=1

=  
= ∑ +ℎ ⋅ �qℎ

+∞
ℎ=1

 

which is the expression (5.11). 
□ 

9.5.2 Clarke matrices orthogonality for symmetrical 

machines 
It is here proven that, considering a symmetrical machine, the generalized Clarke 

transformation matrices � built as per (5.18) or as per (5.19) are orthogonal. 
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Proof. For a symmetrical machine configuration, the magnetic axis of the �-th phase 
winding can be written as Ç� = (� − 1) ⋅ (2	 �⁄ ).  

Consider two rows 1D,� and 1D,ℎ of � built with the cosine functions of the magnetic 

axes angles: 

1D,� = √2� ⋅ [cos(0⋅�⋅ 2	� ) cos(1⋅�⋅ 2	� ) ⋯ cos((� − 1)⋅�⋅ 2	� )] 
1D,ℎ = √2� ⋅ [cos(0⋅ℎ⋅ 2	� ) cos(1⋅ℎ⋅ 2	� ) ⋯ cos((� − 1)⋅ℎ⋅ 2	� )]  

The scalar product between 1D,ℎ and 1D,� can be computed as: 

1D,�T ⋅ 1D,ℎ = 2�∑ cos(� ⋅ � ⋅ 2	� ) ⋅ cos(� ⋅ ℎ ⋅ 2	� )�
L=1

=  
= 2�∑ e jL⋅�⋅28� + e−jL⋅�⋅28�2 ⋅ e jL⋅ℎ⋅28� + e−jL⋅ℎ⋅28�2

�
L=1

=  
= 12�(∑ e jL⋅�⋅28� ⋅ e jL⋅ℎ⋅28�

�
L=1

+ ∑ e−jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
) + ⋯  

⋯ + 12�(∑ e jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
+ ∑ e−jL⋅�⋅28� ⋅ ejL⋅ℎ⋅28�

�
L=1

) =  
= 1�Re(∑ e jL⋅(�+ℎ)⋅28�

�
L=1

) + 1�Re(∑ e jL⋅(�−ℎ)⋅28�
�

L=1
)  

Each of the complex sums which appear in this expression represents the sum of a 
symmetric star of unitary norm complex vectors shifted by a multiple integer of 2	 �⁄ .  

The only way for these sums to be different from zero is that either (� + ℎ) �⁄  or (� − ℎ) �⁄  are integer numbers. This is never verified for the matrices built as per (5.18) 
or as per (5.19), unless it results � = ℎ (i.e., for the self-related scalar product), for which 
it results: 

1D,�T ⋅ 1D,� = 1�Re(∑ e jL⋅(�−�)⋅28�
�

L=1
) = 1� ⋅ ∑ 1�

L=1
= 1� ⋅ � = 1 

Similar results can also be obtained for the sine terms. By considering the row vectors 1�,� and 1�,ℎ of � built as: 

1�,� = √2� ⋅ [sin(0⋅�⋅ 2	� ) sin(1⋅�⋅ 2	� ) ⋯ sin((� − 1)⋅�⋅ 2	� )]T  
1�,ℎ = √2� ⋅ [sin(0⋅ℎ⋅ 2	� ) sin (1⋅ℎ⋅ 2	� ) ⋯ sin((� − 1)⋅ℎ⋅ 2	� )]T

 

their scalar product is: 
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1�,�T ⋅ 1�,ℎ = 2� ∑sin (� ⋅ � ⋅ 2	� ) ⋅ sin(� ⋅ ℎ ⋅ 2	� )�
L=1

=  
= 2� ∑ e jL⋅�⋅28� − e−jL⋅�⋅28�2j ⋅ e jL⋅ℎ⋅28� − e−jL⋅ℎ⋅28�2j

�
L=1

=  
= − 12�(∑ e jL⋅�⋅28� ⋅ e jL⋅ℎ⋅28�

�
L=1

+ ∑ e−jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
) + ⋯  

⋯ + 12�(∑ e jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
+ ∑ e−jL⋅�⋅28� ⋅ ejL⋅ℎ⋅28�

�
L=1

) =  
= − 1�Re(∑ e jL⋅(�+ℎ)⋅28�

�
L=1

) + 1�Re(∑ e jL⋅(�−ℎ)⋅28�
�

L=1
)  

for which the same properties hold. 

Finally, by considering the mutual interaction among sine and cosine terms, the 
scalar product between 1D,� and 1�,ℎ is: 

1D,�T ⋅ 1�,ℎ = 2�∑ cos(� ⋅ � ⋅ 2	� ) ⋅ sin(� ⋅ ℎ ⋅ 2	� )�
L=1

=  
= 2�∑ e jL⋅�⋅28� + e−jL⋅�⋅28�2 ⋅ e jL⋅ℎ⋅28� − e−jL⋅ℎ⋅28�2j

�
L=1

=  
= 12j�(∑ e jL⋅�⋅28� ⋅ e jL⋅ℎ⋅28�

�
L=1

− ∑ e−jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
) + ⋯  

⋯ − 12j�(∑ e jL⋅�⋅28� ⋅ e−jL⋅ℎ⋅28�
�

L=1
− ∑ e−jL⋅�⋅28� ⋅ ejL⋅ℎ⋅28�

�
L=1

) =  
= 1� Im (∑ e jL⋅(�+ℎ)⋅28�

�
L=1

) − 1� Im (∑ e jL⋅(�−ℎ)⋅28�
�

L=1
)  

and, given the imaginary part operator, this result is always zero regardless of the values 
of ℎ and �. 

Note that the row of � related to the zero-sequence component can be simply 
obtained as: 

�0 = 1√� ⋅ [ 1 1 1 1 ⋯ 1 1 ] =  
= 1√� ⋅ [cos(0 ⋅ 0 ⋅ 2	� ) cos(1 ⋅ 0 ⋅ 2	� ) ⋯ cos((� − 1) ⋅ 0 ⋅ 2	� )] = 1√2 ⋅ 1D,0 

and, in this case, by repeating the same procedure, the scalar product with any of the 
other rows is still zero, while the self-related scalar product is again 1 because when � =ℎ = 0 both � + ℎ and � − ℎ are 0. In other words, in the expression of the scalar product 
both the complex sum with (� + ℎ) �⁄  and the complex sum with (� − ℎ) �⁄  give non-
zero terms, which balance the gain 1 √2⁄  which multiplies 1D,0. 
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Similarly, the row of � related to the second zero-sequence component (if present) 
can be obtained as: 

�0− = 1√� ⋅ [ 1 −1  1 −1 ⋯  1 −1 ] =  
= 1√� ⋅ [cos(0 ⋅ �2 ⋅ 2	� ) cos(1 ⋅ �2 ⋅ 2	� ) ⋯ cos((� − 1) ⋅ �2 ⋅ 2	� )] = 1√2 ⋅ 1D,(� 2⁄ ) 

Again, the scalar product with any of the other rows of � is zero, while the self-related 
scalar product is again 1 because when � = ℎ = � 2⁄ , then � − ℎ = 0 and � + ℎ = �. This 
again means that, in the expression of the scalar product, both the complex sum with (� + ℎ) �⁄  and the complex sum with (� − ℎ) �⁄  give non-zero terms, which balance the 
gain 1 √2⁄  which multiplies 1D,(� 2⁄ ). 

As a result, it has been shown that the rows of the matrix � built either as per (5.18) 
or as per (5.19) are orthogonal with one another and with a unitary norm. Therefore, �T ⋅ � = � ⋅ �T = �, meaning that � is a unitary matrix, for which �T = �−1. 

□ 

9.5.3 Inductances matrix diagonalization for symmetrical 

machines 
It is here proven that, for a symmetrical machine, the VSD transformations (5.18) 

and (5.19), once applied to the electrical equations (5.20), diagonalize the inductances 
matrix z. 

 

Proof. For a symmetrical machine, z is a circulant matrix, meaning that it can be 
written in the following form: 

 z =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

xD,0 xD,�−1 xD,�−2 ⋯ xD,2 xD,1
xD,1 xD,0 xD,�−1 ⋯ xD,3 xD,2
xD,2 xD,1 xD,0 ⋯ xD,4 xD,3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

xD,�−2 xD,�−3 xD,�−4 ⋯ xD,0 xD,�−1
xD,�−1 xD,�−2 xD,�−3 ⋯ xD,1 xD,0 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 

where xD,0, xD,1,… , xD,�−1 are inductances coefficients. This property is coming from the 

symmetry itself, because it is always possible to renumber the phase windings in a 
cyclical order and obtaining the same electrical behaviour and, therefore, the same 
inductances matrix.  

For energetic reasons it has also been proven that z is symmetric. As a result, the 
inductances terms also satisfy the following properties: 

xD,1 = xD,�−1, xD,2 = xD,�−2, … , xD,ℎ = xD,�−ℎ (∀ℎ) 
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and the previous expression can be also rewritten as: 

 z =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

xD,0 xD,1 xD,2 ⋯ xD,2 xD,1
xD,1 xD,0 xD,1 ⋯ xD,3 xD,2
xD,2 xD,1 xD,0 ⋯ xD,4 xD,3
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

xD,2 xD,3 xD,4 ⋯ xD,0 xD,1
xD,1 xD,2 xD,3 ⋯ xD,1 xD,0⎦

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 

Consider now the column vector built as: 

1D,1 = [cos(0 ⋅ 2	� ) cos(1 ⋅ 2	� ) ⋯ cos((� − 1) ⋅ 2	� )]T
 

which is proportional to the 1st row of the Clarke matrix � built as per (5.18)-(5.19) 
with the cosine terms of the magnetic axes angles (the normalization term √2 �⁄  does 
not affect all the following results). 

By computing the product of the 1st row of z with 1D,1 it results: 

[xD,0 xD,1 ⋯ xD,2 xD,1] ⋅ 1D,1 = ∑ xD,� ⋅ cos(� ⋅ 2	� )�−1
�=0

= x-1 

This term can be conveniently rewritten in the complex domain as: 

 x-1 = ∑ xD,� ⋅ cos(� ⋅ 2	� )�−1
�=0

= Re{∑ xD,� ⋅ e j�⋅28�
�−1
�=0

} 

Because of the symmetry xD,ℎ = xD,�−ℎ, the complex sum in the previous expression is a 

real number. This is because the imaginary part of each term xD,ℎ ⋅ e j�⋅2��  is balanced by 

the imaginary part of the term xD,�−ℎ ⋅ e j(�−ℎ)⋅2�� = xD,ℎ ⋅ e j(�−ℎ)⋅2�� . As a result: 

 x-1 = Re{∑ xD,� ⋅ e j�⋅28�
�−1
�=0

} = ∑ xD,� ⋅ e j�⋅28�
�−1
�=0

 

By computing the product of the 2nd row of z with 1D,1 it results: 

[xD,1 xD,0 ⋯ xD,3 xD,2] ⋅ �D,1 = ∑ xD,� ⋅ cos((� + 1) ⋅ 2	� )�−1
�=0

= 
= Re{∑ xD,� ⋅ e j�28� ⋅ e j28�

�−1
�=0

} = Re{x-1 ⋅ e j28� } = x-1 ⋅ cos(1 ⋅ Ç) 
Similarly, by computing the product of the 3rd row of z, it results: 

[xD,2 xD,1 ⋯ xD,4 xD,3] ⋅ 1D,1 = ∑ xD,� ⋅ cos((� + 2) ⋅ 2	� )�−1
�=0

= 
= Re{∑ xD,� ⋅ e j�28� ⋅ e j2⋅28�

�−1
�=0

} = Re{x-1 ⋅ e j2⋅28� } = x-1 ⋅ cos(2 ⋅ Ç) 
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and so on for all the other rows. 
As a result, by grouping the result of all the rows, it results that: 

z ⋅ 1D,1 = x-1 ⋅ [cos(0 ⋅ 2	� ) cos(1 ⋅ 2	� ) ⋯ cos((� − 1) ⋅ 2	� )]T = x-1 ⋅ 1D,1 

and, by definition, this means that 1D,1 is an eigenvector of z with eigenvalue x-1. 
Consider now another column vector built as: 

��,1 = [sin(0 ⋅ 2	� ) sin(1 ⋅ 2	� ) ⋯ sin((� − 1) ⋅ 2	� )]T
 

which is proportional to the 2nd row of the Clarke matrix � built as per (5.18)-(5.19) 
with the sine terms of the magnetic axes angles.  

The product of the 1st row of z with 1�,1 results in: 

[xD,0 xD,1 ⋯ xD,2 xD,1] ⋅ 1�,1 = ∑ xD,� ⋅ sin(� ⋅ 2	� )�−1
�=0

= 
= Im {∑ xD,� ⋅ e j�⋅28�

�−1
�=0

} = Im{x-1} = 0 

The product of the 2nd row of z with 1�,1 is: 

[xD,1 xD,0 ⋯ xD,3 xD,2] ⋅ 1�,1 = ∑ xD,� ⋅ sin((� + 1) ⋅ 2	� )�−1
�=0

= 
= Im {∑ xD,� ⋅ e j�28� ⋅ e j28�

�−1
�=0

} = Im{x-1 ⋅ e j28� } = x-1 ⋅ sin(1 ⋅ Ç) 
and so on for all the other rows. 

As a result, by grouping the result of all the rows, it results that: 

z ⋅ 1�,1 = x-1 ⋅ [sin(0 ⋅ 2	� ) sin(1 ⋅ 2	� ) ⋯ sin((� − 1) ⋅ 2	� )]T = x-1 ⋅ 1�,1 

and, by definition, this means that 1�,1 is an eigenvector of z with the same eigenvalue x-1 of 1D,1. 
The same reasoning can be repeated for all the rows of the generalized Clarke 

transformation matrix �. In other words, all the rows of the matrix � are eigenvectors 
of z and the rows corresponding to the same space vector components have the same 
eigenvalue. 

Since the matrices built as per (5.18) and as per (5.19) are unitary, then �−1 = �T, 
meaning that the columns of �−1 are � linearly independent eigenvectors of z and, 
therefore, that the matrix product zVSD = � ⋅ z ⋅ �−1 (which appears in the 
transformed model (5.20)) is the diagonalization of the inductances matrix z. 

□ 

9.5.4 PM-induced back-EMFs for symmetrical machines 
It is here proven that, for a symmetrical machine, if the even-order harmonics of the 
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PM-induced back-EMFs are absent, and if the odd-order harmonics with index ℎ ≤ � 
are negligible, then, by using the VSD transformation (5.19), it results that �dℎ = 0 and �qℎ = √� 2⁄ ⋅ ℎ &,M ⋅ ΨRℎ.  

 
Proof. The expression of the PM-induced back-EMF of the machine �-th phase is given 
by (5.4) and can be rewritten as: 

�� = − &,M ⋅ ∑ℎ ⋅ ΨRℎ ⋅ sin(ℎ ⋅ (%,M − Ç�) + �ℎ)+∞
ℎ=1

=  
= − ∑ ðℎ ⋅ sin(ℎ %,M − ℎ Ç� + �ℎ)�

ℎ=1,3,…
=  

= − ∑ ðℎ ⋅ Im{ej(ℎ&'(+)ℎ) ⋅ e−jℎ!"}�
ℎ=1,3,…

=  
= ∑ − 12j ⋅ [ðℎ ⋅ ej(ℎ&'(+)ℎ) ⋅ e−jℎ!" − ðℎ ⋅ e−j(ℎ&'(+)ℎ) ⋅ ejℎ!"]�

ℎ=1,3,…
=  

= − 12j ⋅ ∑ ðℎ ⋅ ej(ℎ&'(+)ℎ) ⋅ e−jℎ!"
�

ℎ=1,3,…
+ 12j ⋅ ∑ ðℎ ⋅ e−j(ℎ&'(+)ℎ) ⋅ ejℎ!"

�
ℎ=1,3,…

 

with ðℎ = &,M ⋅ ℎ ⋅ ΨRℎ. 
To find the �-th order space vector of the induced voltages it is sufficient to apply 

the same formula (5.9), resulting in: 

�L = �xL + j ⋅ �yL = √2� ⋅ ∑ �� ⋅ e j L !"
�

�=1
=  

= √2� ⋅ ∑ − 12j ⋅ ∑ ðℎ ⋅ ej(ℎ&'(+)ℎ) ⋅ e−jℎ!"
�

ℎ=1,3,…
⋅ e j L !"

�
�=1

+ ⋯  
⋯+ √2� ⋅ ∑ 12j ⋅ ∑ ðℎ ⋅ e−j(ℎ&'(+)ℎ) ⋅ ejℎ!"

�
ℎ=1,3,…

⋅ e j L !"
�

�=1
=  

= ∑ (−√2� ⋅ 12j ⋅ ðℎ ⋅ ej(ℎ&'(+)ℎ)) ⋅ ∑ ej(L−ℎ)!"
�

�=1
�

ℎ=1,3,…
+ ⋯  

⋯+ ∑ (√2� ⋅ 12j ⋅ ðℎ ⋅ e−j(ℎ&'(+)ℎ)) ⋅ ∑ ej(L+ℎ)!"
�

�=1
�

ℎ=1,3,…
 

Given the symmetry of the magnetic axes, all the terms ∑ ej(L±ℎ)!"��=1  with � ≠ ℎ are 

zero, while for ℎ = � the sum is equal to �. Then, the previous expression simplifies to 

�L = −√2� ⋅ 12j ⋅ ðL ⋅ ej(L&'(+)g) ⋅ � = √�2 ⋅ j ⋅ ðL ⋅ ej(L&'(+)g) 

The corresponding space vector can be written in the synchronous domain by just 
applying the transformation (5.10), resulting in: 

 �L⟨dq⟩ = �dL + j ⋅ �qL = �L ⋅ e−j (L &'(+)g) = √�2 ⋅ j ⋅ ðL 
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From this expression, it immediately results that, for any ℎ-th space vector: 

 �dℎ = 0   and   �qℎ = √�2 ⋅ ðL = √�2 ⋅ ℎ &,M ⋅ ΨRℎ 

which is the property to be proven. 
□ 

9.5.5 Power losses weighting matrix properties 
It is here proven that all the non-diagonal terms of the instantaneous power losses 

weighting matrix ù(%,M) = �(%,M) ⋅ �−T ⋅ �−1 ⋅ �T(%,M) are trigonometric functions with 
a zero average value over a full cycle of %,M, and that the diagonal terms corresponding 
to the same ℎ-th space vector components have an equal average value =ℎ > 0. 
 

Proof. Consider the analytical expression of ù(%,M). The central matrix product �−T ⋅�−1 is symmetric, since 

(�−T ⋅ �−1)T = (�−1)T ⋅ (�−T)T = �−T ⋅ ((�−1)T)T = �−T ⋅ �−1 
For notation simplicity, this term (which does not need to be explicitly computed) is 
hence on denoted as: 

� = �−T ⋅ �−1 =
⎣⎢
⎢⎢
⎢⎡⋱      �ℎ,ℎ ⋯ �ℎ,�   ⋮ ⋱ ⋮   ��,ℎ ⋯ ��,�      ⋱⎦⎥

⎥⎥
⎥⎤ 

where, here, ℎ and � denote the chosen space vector components terms.  
As explained in Section 5.1.4, the rotational matrix �(%,M) is built as: 

�(%,M) =
⎣⎢
⎢⎢
⎢⎡⋱      �ℎ(%,M) ⋯ û   ⋮ ⋱ ⋮   û ⋯ ��(%,M)      ⋱⎦⎥

⎥⎥
⎥⎤    with   �ℎ(%,M) = [ cos(%ℎ) sin(%ℎ)− sin(%ℎ) cos(%ℎ)] 

where, for notation compactness, %ℎ = ℎ %,M + �ℎ. 
By computing the matrix product, the weighting matrix ù(%,M) can be written as: 

ù(%,M) =
⎣⎢
⎢⎢
⎢⎡⋱      ùℎ,ℎ(%,M) ⋯ ùℎ,�(%,M)   ⋮ ⋱ ⋮   ù�,ℎ(%,M) ⋯ ù�,�(%,M)      ⋱⎦⎥

⎥⎥
⎥⎤ = �(%,M) ⋅ � ⋅ �T(%,M) = 

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡

 

⋱     
 �ℎ(%,M) ⋅ �ℎ,ℎ ⋅ �ℎT(%,M) ⋯ �ℎ(%,M) ⋅ �ℎ,� ⋅ ��T(%,M)  
 ⋮ ⋱ ⋮  
 ��(%,M) ⋅ ��,ℎ ⋅ �ℎT(%,M) ⋯ ��(%,M) ⋅ ��,� ⋅ �ℎT(%,M)  
    ⋱

 

⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤
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Consider the non-diagonal term ùℎ,�(%,M) = �ℎ(%,M) ⋅ �ℎ,� ⋅ ��T(%,M). Since �ℎ(%,M) is 
composed of only trigonometric functions varying with ℎ %,M and ��(%,M) is composed of 
only trigonometric functions varying with � %,M, then ùℎ,�(%,M) only contains products of 

trigonometric terms with different periods (e.g., cos(ℎ %,M) ⋅ cos(� %,M) and the other 
analogous combinations).  

As a result, by averaging ùℎ,�(%,M) along a full 2	 cycle of %,M, they are zero: 

 
12	 ∫ ùℎ,�(%,M) d%,M

28

0
= û 

which is the first property of ù(%,M) to be proven. 

Consider now the diagonal term ùℎ,ℎ(%,M) = �ℎ(%,M) ⋅ �ℎ,ℎ ⋅ �ℎT(%,M). Since �ℎ,ℎ is 

symmetric, this term can be analytically computed as: 

ùℎ,ℎ(%,M) = �ℎ(%,M) ⋅ �ℎ,ℎ ⋅ �ℎT(%,M) =  
= [ cos(%ℎ) sin(%ℎ)− sin(%ℎ) cos(%ℎ)] ⋅ [�ℎ,ℎ(1) �ℎ,ℎ(2)

�ℎ,ℎ(2) �ℎ,ℎ(1) ] ⋅ [cos(%ℎ) − sin(%ℎ)sin(%ℎ) cos(%ℎ) ] =  
= [�ℎ,ℎ(1) + �ℎ,ℎ(2) ⋅ sin(2%ℎ) �ℎ,ℎ(2) ⋅ cos(2%ℎ)

�ℎ,ℎ(2) ⋅ cos(2%ℎ) �ℎ,ℎ(1) − �ℎ,ℎ(2) ⋅ sin(2%ℎ)] 

It can be seen that the diagonal terms are purely trigonometric functions of ℎ %,M, while 
the diagonal terms also have a constant term, which is the same for both elements. As 
a result, by averaging ùℎ,ℎ(%,M) along a 2	 cycle of %,M, this results in a scalar matrix: 

12	 ∫ ùℎ,ℎ(%,M) d%,M
28

0
= [�ℎ,ℎ(1) 0

0 �ℎ,ℎ(1) ] = [=ℎ 00 =ℎ] = =ℎ ⋅ � 

which is the second property of ù(%,M) to be proven. 

As a result, the average power losses weighting matrix is diagonal. The positivity of 
the terms =ℎ can be directly derived by its energetic properties, since it results that �U = � ⋅ �dqT ⋅ ø ⋅ �dq ≥ 0. 

□ 

 

9.5.6 Power losses expression for symmetrical machines 

It is here shown that, for a symmetrical machine, the instantaneous power losses and 
the average power losses are equal and are proportional to the squared Euclidean norm 
of the synchronous current set �dq. 

 

Proof. For a symmetrical �-phase machine the generalized Clarke transformation 
matrix � is unitary, meaning that �−1 = �T. By computing the instantaneous power 
losses weighting matrix ù(%,M) it results that: 



282 9 - Appendix 

 

ù(%) = �(%,M) ⋅ �−T ⋅ �−1 ⋅ �T(%,M) = = �(%,M) ⋅ (�T)−1 ⋅ �−1 ⋅ �T(%,M) = = �(%,M) ⋅ (�−1)−1 ⋅ �−1 ⋅ �T(%,M) = = �(%,M) ⋅ � ⋅ �−1 ⋅ �T(%,M) = = �(%,M) ⋅ �T(%,M) = = �(%,M) ⋅ �−1(%,M) = = � 

The average power losses weighting matrix ø is: 

ø = 12	 ∫ ù(%,M) d%,M
28

0
= 12	 ∫ � d%,M

28
0

= � ⋅ 12	 ∫ d%,M
28

0
= � 

As a result, the expressions (5.37) and (5.38) simply become: 

 �U = 5U = � ⋅ (�dqT ⋅ �dq) = � ⋅ ∥ �dq  ∥2 
which is the simplified expression (5.41). 

□ 

9.5.7 Optimal third harmonic injection strategy solution 
It is here proven that the optimal third harmonic injection ratio to minimize the 

average stator losses (5.51) in a multiphase PMSM is given by (5.57). 
 

Proof. The analytical expression of the average power losses in terms of the injection 
ratio � = �q3 �q1⁄  is given by (5.56): 

 �U(�) = � ⋅ ñURe2 (�) = � ⋅ +,-∗ 2 ⋅ =1 + =3 ⋅ �2
(+1 + � ⋅ +3)2 

The optimal injection ratio is found by nullifying the derivative of the function �U(�), 
which is: 

0 = 3�U3� = � ⋅ +,-∗ 2 ⋅ (2 ⋅ =3 ⋅ �) ⋅ (+1 + � ⋅ +3)2 − 2 ⋅ +3 ⋅ (+1 + � ⋅ +3) ⋅ (=1 + =3 ⋅ �2)(+1 + � ⋅ +3)4  

The terms � ⋅ +,-∗ 2 and (+1 + � ⋅ +3)4 are always non-negative and can be 
disregarded. The term (+1 + � ⋅ +3) is different from zero, otherwise given (5.54) it would 
always lead to +,- = 0.  

Therefore, the previous expression can be simplified to: 

0 = 2 ⋅ =3 ⋅ � ⋅ (+1 + � ⋅ +3)2 − 2 ⋅ +3 ⋅ (+1 + � ⋅ +3) ⋅ (=1 + =3 ⋅ �2) = = =3 ⋅ � ⋅ (+1 + � ⋅ +3) − +3 ⋅ (=1 + =3 ⋅ �2) = = (=3 ⋅ +1) ⋅ � + (=3 ⋅ +3) ⋅ �2 − (=1 ⋅ +3) − (=3 ⋅ +3) ⋅ �2 = = (=3 ⋅ +1) ⋅ � − (=1 ⋅ +3) 
meaning that: 

 � = =1 ⋅ +3=3 ⋅ +1 = +3 +1⁄=3 =1⁄  

which is the expression (5.57). 
□ 
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9.5.8 Optimal multi-harmonic injection strategy solution 
It is here proven that the multi-harmonic injection strategy to minimize the average 

stator losses (5.38) in a multiphase PMSM provides the optimal reference currents set 
given by (5.64). 

 
Proof. As stated in Section 5.2.3, the optimal multi-harmonic injection strategy (5.61) 
can be solved by using the Lagrange multipliers method, where the Lagrangian function 
is given by (5.62): 

 G(�dq, I) = 12 �dqT ⋅ ø ⋅ �dq − I ⋅ (4T ⋅ �dq − +,-∗ ) 
By nullifying the gradient of G(�dq, I), the linear algebraic system (5.63) is found, which 

is here recalled: 

 

3G3�dq = ø ⋅ �dq − I ⋅ 4 = û 
3G3I = 4T ⋅ �dq − +,-∗ = 0 

From the first equation, since ø is a positive definite diagonal matrix, it results: 

 �dq = I ⋅ ø−1 ⋅ 4 

By pre-multiplying this expression by 4T and by using the second equation of the system 
(5.63), it results that: 

 +,-∗ = 4T ⋅ �dq = I ⋅ (4T ⋅ ø−1 ⋅ 4) 
Since (4T ⋅ ø−1 ⋅ 4) is a positive-definite quadratic form, the previous expression can be 
solved for the Lagrange multiplier: 

 I = +,-∗4T ⋅ ø−1 ⋅ 4 

Once substituted back in the current expression, this gives: 

 �dq = I ⋅ ø−1 ⋅ 4 = ø−1 ⋅ 44T ⋅ ø−1 ⋅ 4 ⋅ +,-∗  

which is the result provided in (5.64). 
The overall machine power losses with this optimal synchronous current set are: 

�U(R�õ) = � ⋅ �dqT ⋅ ø ⋅ �dq = 
= � ⋅ ( ø−1 ⋅ 44T ⋅ ø−1 ⋅ 4 ⋅ +,-∗ )T ⋅ ø ⋅ ( ø−1 ⋅ 44T ⋅ ø−1 ⋅ 4 ⋅ +,-∗ ) = 
= � ⋅ ( +,-∗4T ⋅ ø−1 ⋅ 4)2 ⋅ (4T ⋅ ø−1 ⋅ ø ⋅ ø−1 ⋅ 4) = 
= � ⋅ +,-∗ 2

(4T ⋅ ø−1 ⋅ 4)2 ⋅ (4T ⋅ ø−1 ⋅ 4) = 
= � ⋅ +,-∗ 2 ⋅ 14T ⋅ ø−1 ⋅ 4 

which is the result provided in (5.66). 
□ 
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9.5.9 Maximum torque per ampere strategy solution 
It is here proven that the MTPA strategy developed in Section 5.2.4 for a multiphase 

PMSM can be reformulated as: 

 minıd̂q
{ıd̂qT ⋅ ù(̂%,M) ⋅ ıd̂q}       subject to      4̂T ⋅ ıd̂q = +,-∗  (9.20)

where: 

 ıd̂q is the (� − 1) × 1 set obtained by discarding the last element of �dq (which 

is the zero-sequence current component �0), 
 4̂ is the (� − 1) × 1 set obtained by discarding the last element of 4 (which 

would be the torque gain related to �0), and 

 ù(̂%,M) is the (� − 1) × (� − 1) matrix obtained by neglecting the last row and 
the last column of ù(%,M) (which would be related to the interaction between �0 and all the other components of �dq in the computation of the instantaneous 

power losses). 

It is then proven that the resulting optimal reference synchronous currents set �dq∗  is 

given by (5.70) with ù,;′ (%,M) given by (5.71). 

 

Proof. The optimization problem (5.69) considers two constraints, being the torque 
development requirement 4T ⋅ �dq = +,-∗  and the zero-sequence constraint �0 = 0. 

The problem (5.69) can be reformulated more compactly by only considering the (� − 1) degrees of freedom of �dq, consisting in all the space vector components {�dℎ, �qℎ} 

and in the second zero-sequence component �0− (if present). Indeed, by imposing �0 = 0, 
both the instantaneous losses and the electromagnetic torque can be expressed as 
functions of ıd̂q, being: 

 5U = � ⋅ �dqT ⋅ ù(%,M) ⋅ �dq = � ⋅ ıd̂qT ⋅ ù(̂%,M) ⋅ ıd̂q 

 +,- = 4T ⋅ �dq = 4̂T ⋅ ıd̂q 
In other words, the problem (5.69) in terms of the �-dimensional set �dq can be replaced 

by the problem (9.20) in terms of the (� − 1)-dimensional set ıd̂q.  
This reduced-order MTPA problem (9.20) has the same structure as the multi-

harmonic injection problem (5.61). As a result, it can be solved with the same approach 
based on the Lagrange multiplier method. The optimal reduced-order set has the form 
of (5.64), which is: 

 ıd̂q∗ = ù−̂1(%,M) ⋅ 4̂
4̂T ⋅ ù−̂1(%,M) ⋅ 4̂ ⋅ +,-∗  

The corresponding � × 1 optimal synchronous current set �dq∗  can be obtained by simply 

concatenating ıd̂q∗  and �0∗ = 0.  

By introducing the weighting matrix ù,;′ (%,M) as per (5.71), it results that: 

 ù,;′ (%,M) ⋅ 4 = [ù−̂1(%,M) ûû 0] ⋅ [4̂0] = [ù−̂1(%,M) ⋅ 4̂0 ] 
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and, therefore 

4T ⋅ ù,;′ (%,M) ⋅ 4 = [4̂T 0] ⋅ [ù−̂1(%,M) ûû 0] ⋅ [4̂0] = 4̂T ⋅ ù−̂1(%,M) ⋅ 4̂ 

As a result, the expression (5.70) is: 

�dq∗ (%,M) = ù,;′ (%,M) ⋅ 44T ⋅ ù,;′ (%,M) ⋅ 4 ⋅ +,-∗ = [ù−̂1(%,M) ⋅ 4̂0 ]
4̂T ⋅ ù−̂1(%,M) ⋅ 4̂ ⋅ +,-∗ = 

= ⎣⎢
⎡ ù−̂1(%,M) ⋅ 4̂
4̂T ⋅ ù−̂1(%,M) ⋅ 4̂ ⋅ +,-∗

0 ⎦⎥
⎤ = [ıd̂q∗

0 ] 

which is the aforementioned concatenation of ıd̂q∗  and �0∗ = 0. 

By discarding, for notation simplicity, the explicit dependence on %,M, the overall 
instantaneous power losses obtained with the optimal current set �dq∗  are: 

5U(R�Q�) = � ⋅ �dqT ⋅ ù ⋅ �dq = � ⋅ ı¶̂;T ⋅ ù̂ ⋅ ıd̂q = 
= � ⋅ ( ù−̂1 ⋅ 4̂

4̂T ⋅ ù−̂1 ⋅ 4̂ ⋅ +,-∗ )T ⋅ ù̂ ⋅ ( ù−̂1 ⋅ 4̂
4̂T ⋅ ù−̂1 ⋅ 4̂ ⋅ +,-∗ ) 

= � ⋅ ( +,-∗4̂T ⋅ ù−̂1 ⋅ 4̂)2 ⋅ (4̂T ⋅ ù−̂1 ⋅ ù̂ ⋅ ù−̂1 ⋅ 4̂) = 
= � ⋅ +,-∗ 2

(4̂T ⋅ ù−̂1 ⋅ 4̂)2 ⋅ (4̂T ⋅ ù−̂1 ⋅ 4̂) = 
= � ⋅ +,-∗ 2 ⋅ 1

4̂T ⋅ ù−̂1 ⋅ 4̂ = 
= � ⋅ +,-∗ 2 ⋅ 14T ⋅ ù,;′ (%,M) ⋅ 4 

which is the result provided in (5.72). 

□ 

9.5.10 Neutral point voltage compensation 

It is here proven that the general formulation of the steady-state compensation of 
the neutral point potential shift is: 

     �¥��∗ = [0 0 ⋯ (0) 1]⋅(·dq − &,M⋅zdq2(%,M)⋅�dq − �⋅�dq + �dq)[0 0 ⋯ (0) 1] ⋅ 3(%,M)  (9.21)

This term can be used in (5.78) to compensate for the steady-state mutual coupling 
interaction due to the electrical windings connection in asymmetrical machine 
configurations. 

 

Proof. The electrical equations of the machine in the multiple synchronous domain is 
given by (5.30), which is here recalled: 
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zdq1(%,M) ⋅ d�dqd� + &,M ⋅ zdq2(%,M) ⋅ �dq + � ⋅ �dq + �dq  = 
=  �dq  =  ·dq − 3(%,M) ⋅ �¥��  

In case of a constant synchronous reference current set �dq∗  the steady-state effects can 

be obtained by disregarding the transformer induced back-EMFs zdq1(%,M) ⋅ d�dq d�⁄ . The 

term including �¥��  can be also isolated on one side, resulting in the equation: 

3(%,M) ⋅ �¥�� = ·dq − &,M ⋅ zdq2(%,M) ⋅ �dq + � ⋅ �dq + �dq 
This vector equation is a set of � scalar equations. To only select the equation of the 

zero-sequence component (which, considering the chosen VSD transformation, is the last 
one) it is sufficient to pre-multiply it by the row vector [0 0 ⋯ (0) 1], resulting in: 

[0 0 ⋯ (0) 1] ⋅ 3(%,M) ⋅ �¥�� =  
    = [0 0 ⋯ (0) 1] ⋅ (·dq − &,M ⋅ zdq2(%,M) ⋅ �dq + � ⋅ �dq + �dq) 

The term [0 0 ⋯ (0) 1] ⋅ 3(%,M) is a scalar variable and, assuming it to be different 
from zero, it allows to compute the neutral point potential shift as: 

�¥��∗ = [0 0 ⋯ (0) 1]⋅(·dq − &,M⋅zdq2(%,M)⋅�dq − �⋅�dq + �dq)[0 0 ⋯ (0) 1] ⋅ 3(%,M)  

which is the expression provided in (9.21). 
□ 
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9.6 Chapter 6 Proofs 
This section contains the proof of the properties stated in Chapter 6 - Decoupled 

Phase Variable Control of PMSMs. 

9.6.1 MTPA problem resolution 
It is here proven that the analytical solution of the MTPA problem (6.14) is given 

by the expression (6.17). 
 

Proof. As already stated in Section 6.2.1, the MTPA problem (6.14) can be solved by 
using the Lagrange’s multiplier method. The chosen Lagrangian function G(�, I, Y) is 
given by the expression (6.15), which is here recalled: 

G(�, I,Y) = 12 �T ⋅ � − I ⋅ (�QRT ⋅ � − +,-∗ ) − YT ⋅ (�T ⋅ �) 
By nullifying its gradient, the linear algebraic system (6.16) is obtained. This system is 
here recalled: 

 

3G3� = � − I ⋅ �QR − � ⋅ Y = û 
3G3I = �QRT ⋅ � − +,-∗ = 0 
3G3Y = �T ⋅ � = û 

From the first equation of (6.16), it results that: 

 � = I ⋅ �QR + � ⋅ Y 

By pre-multiplying both terms for �T and by substituting the last equation of (6.16) 
it results that: 

 û = �T ⋅ � = �T ⋅ I ⋅ �QR + �T ⋅ � ⋅ Y 

This equation can be rewritten as: 

 �T ⋅ � ⋅ Y = −I ⋅ �T ⋅ �QR  

and solved in terms of the Lagrange multipliers set Y (related to the current constraints), 
resulting in: 

 Y = −I ⋅ (�T ⋅ �)−1 ⋅ �T ⋅ �QR  

By substituting back in the expression of the currents set � it results: 

 

� = I ⋅ �QR + � ⋅ Y = = I ⋅ �QR + � ⋅ [−I ⋅ (�T ⋅ �)−1 ⋅ �T ⋅ �QR ] = = I ⋅ [� − � ⋅ (�T ⋅ �)−1 ⋅ �T] ⋅ �QR = = I ⋅ Z ⋅ �QR  

where Z = � − � ⋅ (�T ⋅ �)−1 ⋅ �T is the MTPA weighting matrix defined in (6.18). 
By pre-multiplying both terms of this last equation by �QRT  and by substituting the 
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second equation of (6.16) it results that: 

+,-∗ = �QRT ⋅ � = �QRT ⋅ (I ⋅ Z ⋅ �QR) = I ⋅ (�QRT ⋅ Z ⋅ �QR) 
which can be solved in terms of the Lagrange multiplier I (related to the electromagnetic 
torque development requirement), resulting in: 

 I = +,-∗�QRT ⋅ Z ⋅ �QR  

Finally, by substituting this term in the currents set expression it results that the 
only stationary point of the Lagrangian function is: 

 � = I ⋅ Z ⋅ �QR = Z ⋅ �QR�QRT ⋅ Z ⋅ �QR ⋅ +,-∗  

which is the expression provided in (6.17). As also explained in Section 6.2.1, since the 
minimizing function �T ⋅ � is convex, the only stationary point of G(�, I, Y) is the only 
solution to the problem (6.14). 

□ 

9.6.2 MTPA weighting matrix and configuration space 
It is here proven that the weighting matrix Z  of the MTPA algorithm developed in 

Section 6.2.1 satisfies the relation: 

 Z = � − � ⋅ (�T ⋅ �)−1 ⋅ �T = �l ⋅ �lT (9.22)

It is here recalled that the matrix �l ⋅ �lT projects a � × 1 vector in the configuration 

space defined by the constraints matrix � . 
 
Proof. The constraints matrix �  can be written through the singular value 
decomposition (4.21) as: 

 � = �D ⋅ �̃ ⋅ � T 

It is worth recalling that �̃ is a diagonal invertible matrix, �  is a unitary matrix (i.e., � T ⋅ � = � ⋅ � T = � and � T = � −1) and �D has orthonormal columns (i.e., �DT ⋅ �D =� , but �D ⋅ �DT ≠ �). 
By computing the term � ⋅ (�T ⋅ �)−1 ⋅ �T in (6.18) it results that: 

� ⋅ (�T ⋅ �)−1 ⋅ �T = 
= (�D ⋅ �̃ ⋅ � T) ⋅ (� ⋅ �̃ ⋅ �DT ⋅ �D ⋅ �̃ ⋅ � T)−1 ⋅ (� ⋅ �̃ ⋅ �DT) = 
= (�D ⋅ �̃ ⋅ � T) ⋅ (� ⋅ �̃ ⋅ �̃ ⋅ � T)−1 ⋅ (� ⋅ �̃ ⋅ �DT) = 
= (�D ⋅ �̃ ⋅ � T) ⋅ (� ⋅ �̃−1 ⋅ �̃−1 ⋅ � T) ⋅ (� ⋅ �̃ ⋅ �DT) = 
= �D ⋅ �̃ ⋅ � T ⋅ � ⋅ �̃−1 ⋅ �̃−1 ⋅ � T ⋅ � ⋅ �̃ ⋅ �DT = = �D ⋅ �̃ ⋅ �̃−1 ⋅ �̃−1 ⋅ �̃ ⋅ �DT = = �D ⋅ �DT 

And, by recalling the property (4.23), it results that: 

Z = � − � ⋅ (�T ⋅ �)−1 ⋅ �T = � − �D ⋅ �DT = �l ⋅ �lT 

□ 
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9.6.3 MTPA strategy in the configuration space 
The MTPA strategy developed in Section 6.2.1 in the phase variable domain can be 

also entirely formalized in the configuration space. It is here proven that the optimal set 
of �l  free current components is: 

 �l∗ = �QR,l�QR,lT ⋅ �QR,l ⋅ +,-∗  (9.23)

where �QR,l = �lT ⋅ �QR  is the �l × 1 set of normalized PM-induced back-EMFs 

components in the configuration space. It is also proven that the corresponding set of 
phase current �∗ = �l ⋅ �l∗  is equivalent to the result provided in the solution (6.17). 

 
Proof. Consider the MTPA problem (6.14). If the � machine currents are subject to �D 
algebraic constraints expressed as �T ⋅ � = û, they can be expressed as � = �l ⋅ �l , 

where �l  is the configuration matrix related to �  and �l  is a vector of �l = � − �D 
components.  

Since the � × �l configuration matrix is such that �lT ⋅ �l = �, the overall machine 

RMS current can be reformulated as: 

 ñURe = √�T ⋅ � = √�lT ⋅ �lT ⋅ �l ⋅ �l = √�lT ⋅ �l  

Similarly, the electromagnetic torque can be reformulated as: 

+,- = �QRT ⋅ � = �QRT ⋅ �l ⋅ �l = (�lT ⋅ �QR) ⋅ �l = �QR,l ⋅ �l   
As a result, the MTPA optimization problem (6.14) can be reformulated for the free 

current components �l  as: 

 minEp {�lT ⋅ �l}    subject to   �QR,lT ⋅ �l = +,-∗  

where the constraints �T ⋅ � = û are intrinsically included.  
This minimization problem is equivalent to the MTPA algorithm for an 

unconstrained reduced-order machine, and its solution is given by: 

 �l∗ = �QR,l�QR,lT ⋅ �QR,l ⋅ +,-∗  

By recalling the property (6.7), it can be immediately verified that the corresponding 
optimal phase currents set is: 

�∗ = �l ⋅ �l∗ = �l ⋅ �QR,l�QR,lT ⋅ �QR,l ⋅ +,-∗ = (�l ⋅ �lT) ⋅ �QR�QRT ⋅ (�l ⋅ �lT) ⋅ �QR ⋅ +,-∗ = Z ⋅ �QR�QRT ⋅ Z ⋅ �QR ⋅ +,-∗  

which is the same result found as per (6.17). 
□ 

9.6.4 A sufficient condition for the decoupling algorithm 

application 
It is here proven that, if the � × ¦ network interconnection matrix ú  is a full-ranked 

matrix with ¦ ≥ �, then the equation (6.27) is solvable and the decoupling algorithm 
(6.22) can be applied (regardless of the machine parameters and on the hardware 
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constraints on the phase currents). 
Proof. To apply the decoupling algorithm (6.22), the equation (6.27) must be solvable. 
It is then sufficient to show that there exists at least one solution for the linear system 
(6.27) of �l  equations in ¦ variables.  

Since ú  is a full-ranked � × ¦ matrix, there exists its Moore-Penrose pseudo-inverse 
matrix ú † such that ú ⋅ ú † = �. Then, by recalling that �lT ⋅ �l = � , a possible 

solution of (6.27) can be chosen as: 

 ·∗ = ú † ⋅ �l ⋅ �l∗  

Indeed, by direct substitution, it results that: 

úl ⋅ ·∗ = �lT ⋅ ú ⋅ ú † ⋅ �l ⋅ �l∗ = �lT ⋅ �l ⋅ �l∗ = �l∗  

Since there exists at least one solution of (6.27), the system is solvable and the decoupling 
algorithm (6.22) can be applied. 

□ 

9.6.5 Injection voltage general formulation 
Given the decoupling equation (6.22), it is here shown that the general solution can 

be written as (6.29) with the minimum norm reference converter voltages set ·Ø�ª∗  

expressed by (6.30) and with  the injection voltages set ·0∗  expressed as per (6.31). 
 

Proof. Since úl  is a �l × ¦ full-ranked matrix with ¦ ≥ �l , there exists its pseudo-

inverse úl† such that úl ⋅ úl† = �. Then, consider the ¦ × 1 vector ·∗ built as: 

 ·∗ = ·Ø�ª∗ + ·0∗ = úl† ⋅ �l∗ + (� − úl† ⋅ úl) ⋅ ·Øll∗  

By simple substitution, it results that: 

úl ⋅ ·∗ = úl ⋅ úl† ⋅ �l∗ + úl ⋅ (� − úl† ⋅ úl) ⋅ ·Øll∗ = 
= �l∗ + (úl − úl ⋅ úl† ⋅ úl) ⋅ ·Øll∗ = = �l∗ + (úl − úl) ⋅ ·Øll∗ = �l∗  

This means that, for any choice of the ¦ × 1 vector ·Øll∗ , the chosen vector ·∗ is a 

solution of the linear system (6.27). In other words, the pre-multiplying matrix (� − úl† ⋅ úl) projects ·Øll∗  in the null-space of úl  and nullifies its contribution to the 

overall windings voltages set �l . 
□ 

9.6.6 Voltage injection properties 
It is here proven that the voltage vector ·∗ = ·Ø�ª∗ + ·0∗ with ·Ø�ª∗  computed via 

(6.30) and ·0∗  chosen as per (6.31), is the solution to the problem (6.27) which minimizes 
the Euclidean norm ∥· − ·Øll∗ ∥. 
 
Proof. Consider the constrained optimization problem: 

 min� {∥· − ·Øll∗ ∥}    subject to   úl ⋅ · = �l∗  
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For a given ·Øll∗ , this problem can be reformulated with the simple variable change: 

 K = · − ·Øll∗     ⟺     · = K + ·Øll∗  

Then, by simple substitution, it results: 

 min� {‖K‖}    s. t.   úl ⋅ K = (�l∗ − úl ⋅ ·Øll∗ ) 
This is a standard minimization problem with linear constraints. The minimum norm 
solution is given by: 

 K∗ = úl† ⋅ (�l∗ − úl ⋅ ·Øll∗ ) 
and the corresponding optimal solution ·∗ is: 

·∗ = K∗ + ·Øll∗ = úl† ⋅ �l∗ − úl† ⋅ úl ⋅ ·Øll∗ + ·Øll∗ = 
= úl† ⋅ �l∗ + (� − úl† ⋅ úl) ⋅ ·Øll∗ = = ·Ø�ª∗ + ·0∗ 

which is the provided expression.  
□ 

9.6.7 Full order decoupling algorithm formulation 
It is here proven that, given the minimum norm voltages set ·Ø�ª∗  computed as (6.30) 

with respect to the reduced-order machine model (6.8), the corresponding formulation 
for the full-order model (6.6) is given by (6.35). 
 

Proof. By recalling that the machine variables in the configuration space are expressed 
by (6.32), by direct substitution, it results: 

·Ø�ª∗ = úl† ⋅ �l∗ = úl† ⋅ (zl ⋅ ]�l∗ + �l ⋅ �l + �l) =  
= (�lT ⋅ ú)† ⋅ [�lT ⋅ z ⋅ �l ⋅ ]�l∗ + �lT ⋅ � ⋅ �l ⋅ �l + �lT ⋅ �] =  
= [(�lT ⋅ ú)† ⋅ �lT] ⋅ [z ⋅ ]�∗ + � ⋅ � + �] 

which is the expression (6.35). 
□ 

9.6.8 Decoupled system transfer function 
It is here proven that, by modelling the modulation process through a simple time 

delay of µ¶,M, the transfer function for the decoupled current control algorithm can be 
approximated through (6.42). 
 

Proof. Given the system linearity, it is possible to derive the whole reasoning in the 
Laplace domain. For notation simplicity, in what follows the Laplace transformation of 
each time-varying variable will be denoted with the same notation of the variable itself 
(i.e., ℒ[�(�)]( ) → �( )). Moreover, the reasoning will be conducted for the reduced-order 
model (6.8) and the reduced-order algorithm (6.22), and then it is finally extended to 
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the full-order model. 
Given the time delay due to the sampling and modulation process, the decoupling 

voltages set ·( ) is linked to the reference decoupling voltages set ·∗( ) through the 
simple relation: 

·( ) = ·∗( ) ⋅ e−�cd'( 

The reference voltages set is expressed by (6.29)-(6.31) and is: 

·∗( ) = ·Ø�ª∗ ( ) + ·0∗( ) =  
= úl† ⋅ [zl ⋅ ]�l∗ ( ) + �l ⋅ �l( ) + �l( )] + (� − úl† ⋅ úl) ⋅ ·Øll∗ ( ) 

The reduced-order machine model in the Laplace domain is: 

  zl ⋅ �l( ) + �l ⋅ �l( ) + �l( ) = �l( ) = úl ⋅ ·( ) 
By considering the pseudo-inverse matrix úl† properties, the right-side term can be 

computed to be: 

úl ⋅ ·( ) = úl ⋅ ·∗( ) ⋅ e−�cd'( = [zl ⋅ ]�l∗ ( ) + �l ⋅ �l( ) + �l( )] ⋅ e−�cd'( 

By substituting back and by grouping the various terms it results: 

zl ⋅ [  �l( ) − ]�l∗ ( ) ⋅ e−�cd'(] + (1 − e−�cd'() ⋅ [�l ⋅ �l( ) + �l( )] = û 

For a wide range of variability of the complex variable  , the term (1 − e−�cd'() is close 
to zero. Therefore, the previous relationship can be approximated as: 

 zl ⋅ [  �l( ) − ]�l∗ ( ) ⋅ e−�cd'(] ≅ û 

and, since zl is symmetric and positive definite, it means that: 

   �l( ) − ]�l∗ ( ) ⋅ e−�cd'( ≅ û 

Finally, by isolating the currents and by pre-multiplying for �l , it results that: 

�( ) = �l ⋅ �l( ) ≅ �l ⋅ ]�l∗ ( ) ⋅ 1  ⋅ e−�cd'( = ]�∗( ) ⋅ 1  ⋅ e−�cd'( 

which, once expressed in components, is the result provided in (6.42). 
□ 
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9.7 Chapter 7 Proofs 
This section contains the proof of the properties stated in Chapter 7 - Decoupled 

Phase Variable Control of SynRMs. 

9.7.1 Required RMS current for the torque development  
It is here proven that, considering the electromagnetic torque equation (7.9) and 

expressing the free currents set as �l = ñURe ⋅ ıl̂ (as done in (7.18)), once the direction 

versor ıl̂ is chosen, the corresponding RMS current ñURe is given by (7.19). 

 

Proof. By substituting the current expression (7.18) in the torque development 
requirement (7.9), it results that: 

 +,-∗ = 12 ⋅ �lT ⋅ zl′ ⋅ �l = 12 ⋅ ıl̂T ⋅ zl′ ⋅ ıl̂ ⋅ ñURe2  

The term ñURe2  can be isolated, resulting in: 

 ñURe2 = 2 ⋅ +,-∗ıl̂T ⋅ zl′ ⋅ ıl̂  

This equation is only feasible if the scalar term (ıl̂T ⋅ zl′ ⋅ ıl̂) at the denominator has the 

same sign of the reference torque +,-∗ . In this case, since by definition ñURe ≥ 0, the 
solution is given by the (7.19): 

 ñURe = √  2 ⋅ +,-∗ıl̂T ⋅ zl′ ⋅ ıl̂   
□ 

9.7.2 Optimal MTPA current unit vectors 
It is here proven that, considering the quadratic form (ıl̂T ⋅ zl′ ⋅ ıl̂), with ıl̂ being a 

unitary-norm �l × 1 vector, then: 

 its maximum is equal to the maximum eigenvalue qmax of the matrix zl′ , and 

it is obtained when ıl̂ is equal to the corresponding eigenvector ıl̂,max, and 

 its minimum is equal to the minimum eigenvalue qmin of the matrix zl′ , and it 

is obtained when ıl̂ is equal to the corresponding eigenvector ıl̂,min. 
 

Proof. The two cases can be analysed as the constrained optimization problems: 

 max/minEp
{ıl̂T ⋅ zl′ ⋅ ıl̂}     subject to     ıl̂T ⋅ ıl̂ = 1 

In both cases, these problems can be solved with the Lagrange’s multiplier method by 
referring to the Lagrangian function: 

 G(ıl̂ , I) = 12 ⋅ ıl̂T ⋅ zl′ ⋅ ıl̂ − I ⋅ (ıl̂T ⋅ ıl̂ − 1) 
By nullifying the gradient of G(ıl̂ , I) it results that: 



294 9 - Appendix 

 

3G3ıl̂ = zl′ ⋅ ıl̂ − I ⋅ ıl̂ = û 
3G3I = ıl̂T ⋅ ıl̂ − 1 = 0 

The second equation is simply the unitary-norm constraint of ıl̂ . The first equation can 

be instead rewritten as: 

 zl′ ⋅ ıl̂ = I ⋅ ıl̂ 

This is an eigenvalue equation, and means that the product zl′ ⋅ ıl̂ is parallel to the 

versor ıl̂ itself through the coefficient I.  

All the eigenvectors of zl′  are stationary points for the Lagrangian function G(ıl̂ , I). 
Since zl′  is a �l × �l symmetric matrix, it has �l  linearly independent eigenvectors 

corresponding to real eigenvalues. By denoting as ıl̂,� the eigenvector related to the �-

th eigenvalue q� (with � = 1,… , �l), the corresponding quadratic form is equal to: 

ıl̂,�T ⋅ zl′ ⋅ ıl̂,� = ıl̂,�T ⋅ (q� ⋅ ıl̂,�) = q� ⋅ (ıl̂T ⋅ ıl̂) = q� ⋅ 1 = q� 

Since the eigenvalue q� is equal to the result of the quadratic form, then it has been 
proven that: 

 the maximum value of ıl̂T ⋅ zl′ ⋅ ıl̂  is obtained for the maximum eigenvalue qmax 
of zl′ , which corresponds to the eigenvector ıl̂,max, and 

 the minimum value of ıl̂T ⋅ zl′ ⋅ ıl̂ is obtained for the minimum eigenvalue qmin 
of zl′ , which corresponds to the eigenvector ıl̂,min. 

□ 

9.7.3 RMS current with the optimal MTPA solution 
It is here proven that, provided the MTPA currents (7.21), the RMS overall machine 

RMS current is given by (7.22). 
 
Proof. For any given versor ıl̂ in the configuration space, the corresponding RMS 

current is expressed by (7.19). In the MTPA conditions, the versor ıl̂ is chosen between 

the eigenvectors of zl′ . Then, by definition, it results that: 

zl′ ⋅ ıl̂,max = qmax ⋅ ıl̂,max   and   zl′ ⋅ ıl̂,min = qmin ⋅ ıl̂,min 
As a result, the corresponding quadratic forms (ıl̂T ⋅ zl′ ⋅ ıl̂) are equal to: 

ıl̂,maxT ⋅ zl′ ⋅ ıl̂,max = ıl̂,maxT ⋅ (qmax ⋅ ıl̂,max) = qmax ⋅ (ıl̂,maxT ⋅ ıl̂,max) = qmax ıl̂,minT ⋅ zl′ ⋅ ıl̂,min = ıl̂,minT ⋅ (qmin ⋅ ıl̂,min) = qmin ⋅ (ıl̂,minT ⋅ ıl̂,min)  = qmin 
Then, by substituting in (7.19) it results that: 

 ñURe = {√ 2 ⋅ +,-∗ qmax⁄    if   +,-∗ ≥ 0
√ 2 ⋅ +,-∗ qmin⁄    if   +,-∗ < 0 

which is the expression (7.22). 

□ 
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