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“I was just guessing at numbers and figures / Pulling the puzzles apart”

Coldplay, The Scientist

“May the days be aimless. Let the seasons drift. Do not advance the action according
to a plan.”

Don DeLillo, White Noise

“Quello che devo fare.”

Luther Blissett, Q



iii

Abstract
Similitude theory allows engineers to establish the necessary conditions to design
a scaled - up or down - model of a full-scale prototype structure. In recent years,
the research on similitude methods, which allow to design the models and establish
similitude conditions and scaling laws, has grown so that many obstacles associated
with full-scale testing, such as cost and setup, may be overcome. This thesis aims
at, on the one hand, expanding the possibilities of similitude methods by means of
their application to new structural configurations; on the other hand, at the investi-
gation of new approaches. Therefore, similitude conditions and scaling laws of thin
aluminium plates with clamped-free-clamped-free boundary conditions, first, and alu-
minium foam sandwich plates with simply supported and free-free boundary condi-
tions, then, are derived. Particularly, two sets of conditions are derived for the sand-
wich plates: the first by expliciting all the geometrical and material properties, the
second by combining some parameters into just one with physical meaning, that is,
the bending stiffness. These conditions and laws are successively validated by means
of dynamic experimental tests, in which reconstructions of the natural frequencies
and the velocity response of the prototype are attempted. Also the prediction of the
radiated acoustic power is performed for the sandwich plates. All the tests highlight
that these laws do not work fine when the models are distorted, i.e., when the simil-
itude conditions are not satisfied. Therefore, the potentialities of machine learning
are investigated and used to establish degrees of correlation between similar systems,
without invoking governing equations and/or solution schemes. In particular, artificial
neural networks are used in order to predict the dynamic characteristics, first, and the
scaling parameters, then, of beams, as test (since they do not exhibit distorted mod-
els), and plates. In the latter case, the predictions of the artificial neural networks are
validated by the results provided by the experimental tests. The networks prove to be
robust to noise, very helpful in predicting the response characteristics, and identifying
the model type. Finally, the similitude methods are used as a tool for supporting, and
eventually validating, noisy experimental measurements, not for predicting the pro-
totype behavior. In this way, they can help to understand if a set of measurements is
reliable or not. Therefore, the sandwich plates are analysed with digital image cor-
relation cameras. Then, with the help of an algorithm for blind source separation,
the force spectra and velocity responses are reconstructed. It is demonstrated that
the similitude results are coherent with the quality of the experimental measurements,
since the curves overlap when the spatial patterns are recognizable. Instead, when the
displacement field is too polluted by noise, the reconstruction exhibits discrepancies.
This proves that the application of similitude methods should not be underestimated,
especially in the light of the expanding range of approaches which can extract impor-
tant information from noisy observations.
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Chapter 1

Introduction

Experimental testing is a fundamental step in the design of a product. In fact, the-
oretical and numerical approaches are valuable tools, yet their predictions must be
validated by extensive sets of experimental tests before going to production. This
way, whether applied to the validation of a simple or complex system, one achieves
the desired reliability, performance, and safety. The seminal work on structural simili-
tudes by Simitses and Rezaeepazhand (Simitses and Rezaeepazhand, 1993) may help
to illustrate the experimental effort required: the final static tests of the Lockheed
C-141A airlifter needed 8 wing tests, 17 fuselage tests, and 7 empennage tests.

Crashworthiness evaluation is another fitting example, requiring both full-scale
and drop tests. Furthermore, errors, focusing on unexpected phenomena or other un-
foreseen events may lead to the necessary repetition of some tests. Unfortunately,
full-scale experimental testing is expensive, in terms of both cost and time and, some-
times, the implementation is not straightforward (for example, when the test article
has too large or small dimensions); in extreme cases, the usefulness of the acquired
data cannot justify the required effort. For these reasons, in order to bypass many of
the problems listed, it is useful to design a scaled (up or down) model of the full-scale
system (also called prototype), that can be tested at significantly lower cost and with
less difficulty. However, even if the scaling procedure is carried out perfectly, the
model is still another structure which static and dynamic responses do not coincide
with those of the prototype. As a consequence, the recovery – or reconstruction – of
the prototype response is not guaranteed.

Actual savings of money and time provided by the use of scaled models are proved
by Holmes and Sliter (Holmes and Sliter, 1974). The authors estimate savings be-
tween 1/3 and 1/4 the cost of the full-scale building and testing for a single crash
test. The time required is reduced by 1/3 and more if also model fabrication is taken
into account. Therefore, an entire experimental program, with a mixture of subscale
and full-scale models, would lead to greater economy in both financial and temporal
terms.

Moreover, the problems do not concern only the experimental field. In fact, ana-
lytical and numerical simulations may be computationally prohibitive. For instance,
De Rosa and Franco (De Rosa and Franco, 2008b) point out that, in order to estimate
with acceptable degree of accuracy the response of a plate subjected to a Turbulent
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Boundary Layer (TBL) excitation, both structure and fluid should be discretised with
meshes, having different sizes, which should be linked with an interpolation matrix,
leading to a computationally demanding procedure. This problem may be bypassed
through similitude theory, moving towards analytical or numerical domains which
resolution would be more efficient.

Similitude theory provides the conditions to design a scaled model of a full-scale
system and to predict the prototype’s structural response from the scaled results. The
tools used are the similitude methods.

This work moves along two parallel directions. On the one hand, to expand the
application of classical similitude theory, by deriving and experimentally validating
the similitude conditions and scaling laws for thin and sandwich plates. In particular,
the conditions and laws of clamped-fixed-clamped-fixed thin plates are derived, and it
is demonstrated that they are the same if the boundary conditions change. Therefore,
it is the geometry that dictates the behavior in similitude, first. Then, simply supported
sandwich plates are investigated, since their dynamic behavior in similitude has not
been studied yet. On the other hand, new applications are investigated, namely the
application of machine learning, in order to overcome the typical limits of classical
similitude theory (i.e., partial similitudes), and the use of systems in similitude to
validate experimental measurements.

With reference to Fig. 1.1, this thesis is structured as follows. Chapter 2 reports
a thorough literature review, in which the main methods and their applications are
provided, with a particular attention to the results concerning 2D structures (that is,
plates), the advantages and disadvantages of any approach.

Chapter 3 provides the theoretical framework on the similitude method used, ex-
plains how the similitude conditions and scaling laws of the main dynamic charac-
teristics are derived, and gives an overview of the machine learning methods herein
adopted.

Chapter 4 is dedicated to the experimental validation of the scaling laws for CFCF
thin plates and simply supported sandwich plates. The natural frequencies and veloc-
ity response of both structural configurations are reconstructed, demonstrating that the
prediction of the prototype behavior is no more possible if the similitude conditions
are not satisfied. Moreover, only for the sandwich configuration, it is shown that the
number of similitude conditions can be reduced if many parameters are gathered just
in one, physically meaningful; in addition, also the radiated acoustic power is recon-
structed. Then, the same scaling laws are used with free-free sandwich plates, in order
to demonstrate, again, the validity of the set for boundary conditions other than those
used to derive the laws themselves.

Chapter 5 concerns the application of machine learning methods (namely, artificial
neural networks and principal component analysis) to similitude fields, investigating
the prediction capabilities and potentialities of this computer science branch and the
effective usefulness. Particularly, two problems are faced: prediction of dynamic
characteristics starting from the scaling characteristics, and vice versa. This is done
for both one-dimensional (i.e., beams) and two-dimensional structural configurations.
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In Chapter 6, similitude theory is applied as means for verifying the reliability
of a set of noisy experimental data. With the only knowledge of panels data and
the measurements, an algorithm is used to extract the spectra of the excitation forces
and check whether the input information is coherently retained or not into noisy data.
Then, the quality of the experimental estimation of the displacements measured with
digital image correlation technique is validated by means of similitude theory. The
process is carried out with numerical simulations, first, and real plates, then.

Chapter 7 is the last one. In here, the conclusions are drawn, briefly summarizing
the results of this work and providing ideas for further developments.

All the experimental activities discussed in this work were carried out in collab-
oration with Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, in
Santiago de Chile (Chile), during two secondments in 2019 supervised by Prof. V.
Meruane. Part of the theoretical framework was developed during a three-months
long collaboration in 2020 with École Centrale de Lyon, in Lyon (France), under the
supervision of Prof. M. Ichchou.
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Chapter 2

Literature review

The aim of this chapter is to provide a comprehensive review of similitude methods
applied to structural engineering. Few related reviews have been published up to now:
the first dates back to the early 2000s (Simitses, Starnes Jr, and Rezaeepazhand, 2000)
and focuses, after an historical review, on the the analysis of composite test articles by
means of similitude theory applied to the governing equations of plates and shells. Not
only this work is the first review on the topic, but also it explains some key terminol-
ogy related to similitude theory that lacks precise definition, specifically scaling (or
scale) and size effects. Generally, scale effects describe changes in the response to ex-
ternal causes due to changes in the geometric dimensions of a structure (or a structural
component); size effects concern changes of strength and stiffness of the material as
a consequence of the physical scaling process. According to Wissmann (Wissmann,
1968), when a size effect occurs, a physical phenomenon gains importance in a model
due to differences in size of the model and the prototype. Notwithstanding these def-
initions, the terminology scale effects are used also to refer to effects of size in many
articles. In order to avoid any ambiguity, from now on, the terminology size effects
will be used exclusively to describe the effects of physical scaling.

A comprehensive review is also provided by Coutinho et al. (Coutinho, Baptista,
and Rodrigues, 2016), which combines historical, methodological and application in-
sights to reconstruct the evolution of similitude theory. Then, Zhu et al. (Zhu et al.,
2017) reviewed vibration problems of plates and shells using similitude theory based
on the governing equations and sensitivity analysis. Recently, Casaburo et al. pro-
vided two review works on the topic: the first is organized in terms of test articles and
engineering applications (Casaburo et al., 2019), while the other focuses on the simil-
itude of plates in vibroacoustic field (Casaburo et al., 2020). Rosen (Rosen, 1989)
surveyed the literature in the late 1980s, underlining commonalities and relationships
among all the scientific fields in which similitudes are applied. Literature presents
other limited reviews, as the one on scaling models in marine structures (Vassalos,
1999), the work by Cagliostro (Cagliostro, Florence, and Abrahamson, 1979) on the
structural response of liquid metal fast breeder reactor vessels to hypothetical core
disruptive accidents, and the article by Saito and Kuwana (Saito and Kuwana, 2017)
on scale modeling applied to vibroacoustics.

This chapter is organized as follows. First, a short historical review is provided, in
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which some information is given about the first publications, manuals and textbooks
dealing with the topic. Then, similitude theory is formally defined and several simil-
itude methods are surveyed, focusing on their relative advantages and disadvantages.
Section 2.3, the core of the chapter, is divided into several subsections. In order to
provide a functional perspective on the topic, the discussion around the applications
is categorized in terms of test articles, so that all the contributions to a topic scattered
across time and research fields are organized in a new presentation. Therefore, each
subsection of Section 2.3 is focused on the application of similitude methods to a par-
ticular test article (beams, plates, and cylinders). Section 2.4 is dedicated to the use of
the theory in the study of more complex structures across several engineering fields.

An useful synopsis of the reviewed articles is provided in Appendix A, in which
the references are categorized in three tables in terms of methods, test article, and
engineering field.

2.1 Short historical review

According to Zhu et al. (Zhu et al., 2017), the first reference to similitude theory
dates back to the 18th century, as Galilei and Weston (Galilei and Weston, 1730) state
that size and strength of an object do not decrease in the same ratio: if dimensions
decrease, the strength increases. Curiously, Galilei and Weston are already facing the
problem of size effects in the 18th century. However, the first work in which scientific
models based on dimensional analysis are discussed is due to Rayleigh (Rayleigh,
1915). According to Macagno (Macagno, 1971), Rayleigh’s work aims at underlining
the importance of similitude approach in engineering field. However, thirty years have
to pass before similitude methods receives enough attention in this field, namely in the
NACA technical report by Goodier and Thomson (Goodier and Thomson, 1944) and
the book by Goodier (Goodier, 1950). In these publications, dimensional analysis is
applied, for the first time, with a systematic procedure to both simple and complex
problems: materials with nonlinear stress-strain characteristics or plastic behavior,
buckling, and large deflections.

In the following years, several textbooks are written on the topic. Simitses et
al. (Simitses, Starnes Jr, and Rezaeepazhand, 2000) cite many publications (Murphy,
1950; Langhaar, 1951; Charlton, 1954; Pankhurst, 1964; Gukhman, 1965), in which
dimensional analysis is at the base of similitudes and modeling. Similitude conditions
are derived by means of both dimensional analysis an approach based on governing
equations by Kline (Kline, 1965). Then, this latter method is accurately treated by
Szucs (Szucs, 1980), while a complete chapter is dedicated to dimensional analysis
by Singer (Singer, Arbocz, and Weller, 1997). Coutinho et al. (Coutinho, Baptista,
and Rodrigues, 2016) provide good alternatives to the previous references, such as
the works by Baker et al. (Baker, Westine, and Dodge, 1991) and Sonin (Sonin,
2001); furthermore, other manuals have the objective of explaining dimensional anal-
ysis (Harris and Sabnis, 1999; Szirtes, 2007; Tan, 2011), even though other methods
have been already introduced and successfully applied. Finally, Kuneš (Kuneš, 2012)
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gives a wider interpretation of modeling concept, while Zohuri (Zohuri, 2012) pro-
vides a perspective on classic dimensional analysis, deepening the topic further (Zo-
huri, 2017), going beyond Buckingham’s Π Theorem and approaching self-similar
solutions.

Fig. 2.1 reports an overview of similitude methods in time. The methods on
the vertical axis - which details will be given in further sections - are Dimensional
Analysis (DA), Similitude Theory Applied to Governing Equations (STAGE), En-
ergy Method based on the conservation of energy (EM), Asymptotical Scaled Modal
Analysis (ASMA), Similitude and Asymptotic Models for Structural-Acoustic Re-
search Applications (SAMSARA), Empirical Similarity Method (ESM), and Sensi-
tivity Analysis (SA). The horizontal bars represent the range of years in which each
method has been used.

1940 1960 1980 2000 2020

DA

STAGE

EM

ASMA

SAMSARA

ESM

SA

Year

FIGURE 2.1: Time overview of similitude methods.

The development and application of similitude methods has not followed a linear
path in terms of test articles. In fact, contrary to expectations, these method have not
been applied to simple test articles first and more complicated ones later. For exam-
ple, as already reported above, in the first relevant application of similitude theory to
engineering (Goodier and Thomson, 1944), the authors first provide an extensive the-
oretical study on general structures (isotropic, composite, linear, and nonlinear), then
they employ dimensional analysis to buckled thin square plates in shear, with and
without holes. After many years, dimensional analysis is then applied to a stiffened
panel by Mazzariol et al. (Mazzariol et al., 2010). Governing equations are used by
Frostig and Simitses (Frostig and Simitses, 2004) to investigate sandwich panels. It is
up to Morton (Morton, 1988) the first application of similitude concept to beams, in
which the author employs dimensional analysis. Some years later, Hamada and Ra-
makrishna (Hamada and Ramakrishna, 1995) conduct the first analysis of unstiffened
cylinders in similitude; oddly, Sato et al. have already studied stiffened cylinders by
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means of dimensional analysis in a previous work (Sato, Vecchio, and Andre, 1989).
An overview of progress in applying similitude methods to different test articles is
given in Fig. 2.2. Again, the bars illustrate the time range in which analyses concern-
ing the corresponding test articles were published.

1940 1960 1980 2000 2020

Beam

Unstiff. plate

Stiff. plate

Sand. plate

Unstiff. cylinder

Stiff. cylinder

Year

FIGURE 2.2: Time overview of test articles.

Before concluding this short historical overview, a mention to two historically
relevant works is needed. Both are dedicated to similitude applied to shells.

The first is an analysis conducted by Ezra (Ezra, 1962), motivated by a pecu-
liar behavior of shells for which, under certain conditions, they can sustain pressures
much more larger than the static buckling pressure value, yet, when applying a pres-
sure rapidly for a long time, the structures carries less than it would statically. There-
fore, the author applies dimensional analysis to determine the buckling of a thin shell
model. Such a structure has arbitrary shape and is subjected to an impulsive pres-
sure load which duration is not short enough to be considered as a pure impulse, nor
long enough to be considered static pressure. He shows that, if prototype and model
have similar materials, consistent predictions require that the magnitude of the applied
pressure must be the same while the duration must be scaled proportionally. If mag-
nitude and duration cannot be controlled, then a complete similitude can be achieved
by a suitable choice of the model material.

The second relevant work is by to Soedel (Soedel, 1971), in which the author
derives the similitude conditions for free and forced vibrations of shells from Love’s
equations. Because shells are characterized by both in-plane and transverse oscilla-
tions, when deriving exact similitude conditions from governing equations the thick-
ness is not independent from the surface geometry. However, decoupling membrane
and bending effects allows to derive two sets of approximate conditions in which the
thickness is independent of the surface geometry. The choice of the set is dictated by
the relative dominance of membrane and bending effects.
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Finally, it is worth mentioning some works by Sterrett concerning similitude and,
more generally, model in a wider manner. The epistemological setting of these ar-
ticles may help to explain the concepts underlying similitude theory. In the first
work (Sterrett, 2002), the main topic is the application of fundamental laws to scale
modeling: according to the author, scale modeling must not mediate between an ab-
stract/theoretical world and a phenomenological one, but rather to give insights into
phenomena, so that it is possible to tell what happens in a situation that is not directly
observable by means of another situation that can be observed. In other works, a direct
insight into dimensional analysis and Buckingham’s Π Theorem applied to both geo-
metrical and physical similitudes is given (Sterrett, 2009), the usefulness of models is
underlined (Sterrett, 2015a), showing how new areas of applications and investigative
research have been found. This topic is further developed in other articles (Sterrett,
2005; Sterrett, 2014; Sterrett, 2015b).

2.2 Similitude methods

Similitude theory is a branch of engineering sciences which allows to determine the
conditions of similitude between two or more systems. The full-scale system is known
as prototype, while the scaled (up or down) one is the model. When a model satisfies
the similitude conditions, it is expected to have - qualitatively - the same response
of the prototype. For this reason these methods are very useful: designing and in-
vestigating scaled models would allow to overcome all the problems associated with
full-scale testing (may it be experimental or numerical).

A remark about the terminology is necessary, as some authors refer to similitude,
while others to similarity. In fact, both terms are used interchangeably in the literature
although with a slight difference: similarity is closer to the usage in fields of math-
ematics (self-similarity solutions, for example), as the application by Polsinelli and
Levent Kavvas (Polsinelli and Levent Kavvas, 2016), in which Lie scaling method-
ology is introduced. This approach performs symmetry analysis of the governing
differential equations basing on Lie groups - special structures leading to invariant
transformations. An extensive treatise on the topic is given by Bluman and Cole
(Bluman and Cole, 1974). In this thesis, only the word similitude is used.

Similitude and similitude conditions are two fundamental concepts which need a
clear explanation before going further with the description of the several similitude
methods.

A first distinction of similitudes can be made according to the parameters taken
into account; thus, it is possible to have

• Geometric similitude, when the geometrical characteristics are scaled.

• Kinematic similitude, when homologous particles lie at homologous points at
homologous times (Baker, Westine, and Dodge, 1991). By recalling the ratio
between space and time, it follows that kinematic similitude is achieved, simply,
when homologous particles have homologous velocities.
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• Dynamic similitude, when homologous parts of a system are subject to homol-
ogous net forces.

Baker et al. (Baker, Westine, and Dodge, 1991) clarify that the term homologous
means corresponding but not necessarily equal values.

Langhaar (Langhaar, 1951) gives a formal definition of kinematic similitude, also
introducing the concept of scale factor:

The function f’ is similar to function f, provided the ratio f’/f is a con-
stant, when the functions are evaluated for homologous points and ho-
mologous times. The constant λ = f’/f is called the scale factor for the
function f.

However, there are other types of similitudes that can be defined, beyond those
listed above. For example, Baker et al. (Baker, Westine, and Dodge, 1991) add con-
stitutive similitude to the list, achieved when the stress-strain curves of prototype and
model, or the constitutive properties of these materials, are in similitude. However, in
general, only geometric, kinematic, and dynamic similitudes are considered, so that
is is possible to say that two systems are similar if they share the aforementioned
characteristics.

A useful definition of similitude conditions in given by Szucs (Szucs, 1980):

The sufficient and necessary condition of similitude between two sys-
tems is that the mathematical model of the one be related by a biunique
transformation to that of the other.

Therefore, considering two vectors Xp and Xm of N parameters, respectively, of
the prototype and the model, then they are related one to each other as

X = [Λ]X̂ or X̂ = [Λ]−1X , (2.1)

where the hat symbol ̂ denotes the model parameter. Matrix [Λ] is written as:

[Λ] =


λx1 0 . . . 0
0 λx2 . . . 0
...

...
. . .

...
0 0 . . . λxN

 (2.2)

which performs a transformation between the mathematical models for the prototype
and scaled model. The diagonal matrix provides the simplest form of transformation.

The diagonal elements of matrix Λ are the scale factors of the parameter xi (where
i = 1, 2, ..., N), that in this thesis are defined as

λxi =
x̂i

xi
, (2.3)
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although other authors use the inverse formulation.
Another distinction among similitudes can be performed in terms of similitude

conditions:

• True model: all the conditions are fulfilled; a complete similitude is achieved.

• Adequate model: first-order conditions, i.e., the conditions related to the main
parameters, are fulfilled; a first-order similitude is achieved.

• Distorted model: at least one of the first-order conditions is not satisfied; a
partial similitude is achieved.

The difference between true and adequate models is of relevance especially when
dimensional analysis is used, as special insights into a problem can be used to reason
that some of the conditions are of "second-order" importance.

To clarify this concept, Harris and Sabnis (Harris and Sabnis, 1999) provide an
interesting example: in rigid frame problems, axial and shearing forces are of second-
order importance relative to bending moments as far as deformations are concerned.
Therefore, it may be adequate to model the moment of inertia but not the cross-
sectional areas of members.

Thus, the difference between true and adequate models relies clearly on the choice
of parameters that are accounted for when deriving the similitude conditions. For
those methods working according to other principles (such as STAGE and SAM-
SARA, introduced further), such a difference is absent and the concepts of true and
adequate models can be joined.

When a system is scaled, the scaling effects, such as the change in response of the
structure due to geometric scaling procedure, must be taken into account. There are
some application, like impact response, in which size effects must also be considered;
they arise as change in material properties (such as strength and stiffness) due to the
scaling procedure. Simitses et al. (Simitses, Starnes Jr, and Rezaeepazhand, 2000)
cite a workshop on the topic (Jackson, 1993) in which, on the one hand, all the at-
tendees agree on the fact that size effect on stiffness is almost nonexistent but, on the
other hand, disagree about is influence on strength.

Several similitude methods can be found in literature; their working principles, ad-
vantages and disadvantages are presented in the following subsections. These points
are also summarized in table 2.1.

2.2.1 Dimensional Analysis (DA)

Dimensional analysis, or Traditional Similarity Method [TSM, as Coutinho et al.
(Coutinho, Baptista, and Rodrigues, 2016) refer to], is based on the definition of a
set of dimensionless parameters governing the phenomenon under investigation. It
relies on the concept of dimensional homogeneity, that is, an equation describing a
physical phenomenon must have both sides with the same dimensions. As a matter of
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TABLE 2.1: Overview of similitude methods.

Advantages Disadvantages
DA Simple Experienced analyzer is needed

Useful when governing equations
are not known

Great effort in deriving the condi-
tions
Trial-and-error approach
Non-dimensional groups may
have little physical meaning

STAGE Similitude conditions are more
specific

Governing equations must be
known

Conditions have physical meaning Effort in deriving the conditions
Scale factors can be applied to
both governing equations and so-
lutions

It cannot be implemented in an al-
gorithm

EM The procedure is more straightfor-
ward than involving the field equa-
tions

Effort in deriving the conditions

Same level of generality and re-
sults of STAGE

Problems occur when prototype
and model are made of different
materials

ASMA Reduced computational time It works well only for global re-
sponse

Applicable to FE analysis
It can be implemented in an algo-
rithm

SAMSARA Structural response completely
achieved for replicas

Structural response partially
achieved for avatars

It can be implemented in an algo-
rithm

ESM Transformation matrix is derived
empirically

Additional manufacturing and
testing

SA Reduced effort in deriving simili-
tude conditions

It is not based on physical equa-
tions

It can be implemented in an algo-
rithm

Computationally expensive

Sensitivity-based scaling laws do
not need prior knowledge of the
structural scaling behavior

Note: Table A.1 in Appendix A gives the corresponding references.
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fact, these concepts are gathered in Buckingham’s Π Theorem (Buckingham, 1914).
Let K fundamental dimensions describe the N physical variables P1,P2, ...,PN , it is
supposed that these variables can be related through the functional relation

f1(P1,P2, ...,PN) = 0. (2.4)

Eq. 2.4 may be rewritten in terms of (N −K) dimensionless products, called Π prod-
ucts, as

f2(Π1,Π2, ...,ΠN−K) = 0, (2.5)

where each Π product is a dimensionless product of K + 1 physical variables so that,
without loss of generality, it is possible to write

Π1 = f3(P1,P2, ...,PK+1)

Π2 = f4(P1,P2, ...,PK+2)

. . .

ΠN−K = fN−K+2(P1,P2, ...,PK ,PN)

. (2.6)

In most of the applications K = 3, being the fundamental dimensions mass, length,
and time (which constitutes the MLT - Mass, Length, Time - base). The repeating
variable Pi (i = 1, 2, ..., K) must include all the K fundamental dimensions, while each
dependent variable of interest should appear in just one Π product.

A complete similitude is achieved with dimensional analysis when all the dimen-
sionless Π products are scaled in such a way that they are equal for both model and
prototype, which means

Π̂ j = Π j, (2.7)

for each value of j = 1, 2, ..., (N −K).
If at least one condition is not satisfied, then the model is distorted. However, it

is possible to simplify the procedure by considering only the first-order conditions,
neglecting, therefore, the difference between a true and an adequate model even when
using dimensional analysis.

There are some applications in which dimensional analysis does not involve Buck-
ingham’s Π Theorem directly and the scaling laws are determined by defining just one
scale factor, then expressing the model/prototype ratio of parameters as a power law
of this scale factor. Because this step requires dimensional consistency, this approach
can be regarded as another version of dimensional analysis.

In conclusion, the described method is simple to apply and useful for those sys-
tems without a set of governing equations, such as complex or new systems. Nonethe-
less, a phenomenologically meaningful choice of parameters is required. In fact, on
the one hand, taking into account a parameter with low or no influence on the phe-
nomenon would complicate the derivation of the Π terms unnecessarily. On the other
hand, ignoring an important parameter would lead to incomplete, and maybe wrong,
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conclusion. Hence, using dimensional analysis would require an experienced analyzer
and a deep knowledge of the problem. Moreover, Π terms may be not unique, which
leads to a trial-and-error approach and, therefore, to a significant calculation effort;
besides, not all the Π terms have physical meaning and, generally, the characteristic
equations of the phenomena under observation can be formulated only in an incom-
plete form. Finally, the procedure is not structured, so it cannot be easily implemented
into an algorithm (Coutinho, Baptista, and Rodrigues, 2016; Casaburo et al., 2020).

2.2.2 Similitude Theory Applied to Governing Equations (STAGE)

Second only to dimensional analysis, STAGE is another common method used to
derive the similitude conditions. Kline (Kline, 1965) is the first to introduce this
method.

STAGE is applied directly to the field equations of the system, including initial
and boundary conditions, characterizing the system in terms of its variables and pa-
rameters. Because systems in similitude are governed by equivalent sets of field equa-
tions and conditions, the similitude conditions may be derived by defining the scale
factors and comparing the equations of both prototype and scaled model, as direct
consequence of the invariance defined by Szucs (Szucs, 1980) and expressed by Eq.
2.1. The derived conditions relate geometric (length, width, thickness, etc.), structural
(in terms of assembly), excitation (force amplitude, force phase, excitation frequency,
etc.), and material properties (Young’s modulus, Poisson’s ratio, mass density, etc.)
of the system to its response. Also in this case, satisfying all these conditions lead
to complete similitude; not fulfilling only one of them leads to a similitude at best
partial.

STAGE allows a certain application flexibility, as the similitude conditions can be
derived by introducing the scale factors into the solutions (exact or approximate) of
the field equations (Simitses and Rezaeepazhand, 1993) or directly into the equation
themselves, in dimensional (Ungbhakorn, 2001) and non-dimensional (Torkamani,
Jafari, and Navazi, 2008) form. In the latter case, the scale factors that appear in the
scaling laws (derived from the governing equations for the prototype and the model),
are called explicit scale factors. Those factors that disappear in the scaling laws but re-
late to the boundary condition and the excitation mechanisms are called implicit scale
factors and need to be suitably defined in order to obtain a complete set of similitude
conditions and, therefore, the complete similitude. As an example, Wu (Wu, 2003),
while investigating the scaled models of an elastically restrained flat plate under dy-
namic load, sets the scale factors of length, width, thickness, and displacement as
explicit factors. Those for translational and rotational springs, excitation frequency,
moving-load speed, damping ratios, and natural frequencies are implicit scale factors.
Up to now, no one has investigated partial similitudes in which the distortions are
introduced by changing the boundary conditions between prototype and model.
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The advantage of STAGE is allowing to derive a set of conditions more specific
than those obtained with DA, because they are equation driven and, therefore, the rela-
tionships are "forced" by the governing equations, implying that they have a physical
meaning and that the procedure is more structured with respect to the one used with
DA. However, such a procedure lacks of a standard action sequence, thus STAGE, as
DA, cannot be implemented in an algorithm. Moreover, the applications are limited
to systems which set of field equation is known and the derivation of the similitude
conditions still requires a certain calculation effort.

2.2.3 Energy methods

Besides DA and STAGE, that can be considered as the classic methods, other ap-
proaches have been proposed successively. Two of them fall into the energy ap-
proaches. One exploits the principle of conservation of energy (Kasivitamnuay and
Singhatanadgid, 2005), the other is known as ASMA (De Rosa, Franco, and Mace,
2005).

Energy Method based on the principle of conservation of energy (EM)

The EM (Kasivitamnuay and Singhatanadgid, 2005) is based on the conservation of
energy, according to which the strain energy U stored in the structure is equal to the
sum of kinetic energy T and the work made by external forces W , assuming that there
is no energy loss (in terms of heat and chemical reactions). Denoting with Xi,Yj,Zk
the complete sets of properties (geometric ones, material ones, etc.) related to each
type of energy then the principle can be explicited as

U(Xi) =W (Yj)+T (Zk), (2.8)

which includes the structural domain, the applied loads, and the boundary conditions.
Hence, the system is considered as a whole and there is no need to determine the
explicit and implicit scale factors separately.

The similitude conditions are derived by scaling all the considered energies simul-
taneously, obtaining a scaled energy equation. The prototype equation of energy Eq.
2.8 becomes

U(X̂iλi)−W (Ŷjλ j)−T (Ẑkλk) = 0, (2.9)

which can be rewritten as

φ(λi)U(X̂i)−χ(λ j)W (Ŷj)+Φ(λk)T (Ŵk) = 0, (2.10)

where φ(λi), χ(λ j), and Φ(λk) are functional relationships among scale factors.
The complete similitude is achieved when the principle of conservation is satis-

fied, which implies that, for the model under analysis, from Eqs. 2.9–2.10,
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U(X̂i)−W (Ŷj)−T (ẐK) = 0 ⇐⇒ φ(λi) = χ(λ j) = Φ(λk). (2.11)

In conclusion, EM turns out to be more straightforward than STAGE as it provides
the scaling factors even when the structure is made of several components, while keep-
ing the same level of generality and obtaining the same conditions. However, a certain
calculation effort is still required, especially when complex systems are considered,
and problems may occur when prototype and model are made of different materials.

Asymptotical Scaled Modal Analysis (ASMA)

The Asymptotic Scaled Modal Analysis (ASMA) method is conceived to deal with the
problem of spatial mesh typical of dynamic analyses executed with the Finite Element
Method (FEM). As a matter of fact, FEM is the best numerical tool for structural anal-
ysis, however its computational cost becomes overwhelming as frequency increases.
In fact, the spatial mesh is frequency dependent, thus the higher the frequency range
of the analysis, the smaller the mesh dimension. Moreover, since the Nyquist sam-
pling theorem (Nyquist, 1928) must be taken into account, the maximum frequency of
the analysis must be fixed equal to, at least, twice the maximum frequency of interest,
leading to a considerable increase of computational time. The main aim of ASMA is,
therefore, to reduce the spatial extent in order to save time during simulations.

The method is first defined invoking the Statistical Energy Analysis (SEA) (De
Rosa et al., 1997) with the objective of defining a scaled finite element model repre-
senting the energy exchange for increasing excitation frequency. The main idea is to
reduce the extension of the spatial dimensions not involved in energy transmission,
so that the original finite element mesh can be maintained, and, at the same time, to
increase artificially the damping level in order to keep the same energy level of the
prototype. ASMA is the formally justified without involving SEA (De Rosa, Franco,
and Mace, 2005) but using the Energy Distribution Analysis [EDA (Mace, 2003)],
which defines the way the scaled model can represent the main response. All the lin-
ear dimensions g not involved in the structural energy transmission are scaled down
with a scale factor σ < 1, so that the scaled dimension becomes

ĝ = σg. (2.12)

This operation moves the natural frequencies to higher frequency, thus, in order to
keep the same energy level, damping must be scaled-up by means of another scale
factor, ε, so that the scaled damping is

η̂ = εη. (2.13)

The mode shapes are retained if the boundary conditions and the material of prototype
and model do not change.

The solution of the dynamic problem with ASMA allows a reduction of both the
Degrees Of Freedom (DOFs) and eigenvalues to be extracted. This opens the way to
several possibilities of computational time saving:
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• Same number of DOFs and eigensolutions: no computational advantage, but
ASMA can represent the response at higher frequencies.

• Same number of DOFs, reduced number of eigensolutions: a certain compu-
tational advantage is acquired with dynamic response obtained, at least, in the
same frequency range of the prototype.

• Reduced number of DOFs and eigensolutions: the number of DOFs is tailored
in order to obtain both an appreciable computational advantage and the correct
dynamic response in the same frequency range of the prototype.

By definition, the method is applicable to Finite Element Analysis (FEA) but, in
general, it can be implemented in any Finite Element (FE) solver and any type of algo-
rithm. ASMA can be applied to any structural operator for which the real or complex
modal base (natural frequencies, mode shapes, and damping) is known, as it is based
on modal expansion. Furthermore, it does not require a reference solution, thus a prior
analysis of the prototype is not required. On the other hand, the response is evaluated
meaningfully only for the global frequency response, being the local information lost
due to the artificially increased value of damping. Nonetheless, the response is per-
fectly replicated when averaged on both acquisition and excitation points.

Finally, ASMA can be seen as a modulator of the original modal base that allows
the analysis of the response of a structure in the frequency domain where the response
is meaningful (De Rosa and Franco, 2008a).

2.2.4 Similitude and Asymptotic Models for Structural-Acoustic Research
Applications (SAMSARA)

In a work by De Rosa et al. (De Rosa, Franco, and Polito, 2011), a new similitude
method is proposed, justified by EDA, in order to enlarge the number of parameters
to achieve a complete similitude and to investigate the possibility to define similitude
conditions for acoustic-structural systems. Successively formalized in another work
(De Rosa et al., 2012), the method is called SAMSARA and it is a generalization of
the modal approach used in the ASMA method to define the scaling laws.

At a first stage, in order to reproduce the dynamic response by means of similitude
it is necessary to satisfy some conditions:

• Material does not change, as any modification would alter the distribution of
natural frequencies.

• The boundary conditions do not change.

• The system is excited by a concentrated harmonic force acting at the same di-
mensionless [or homologous, according to the definition of Baker et al. (Baker,
Westine, and Dodge, 1991)] location.
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• The structural damping is such that the system response can be obtained by us-
ing the real mode shapes and the undamped natural frequencies. More compli-
cated models, based on complex mode shapes, do not add further contributions
to theory development and results.

These assumptions are necessary since changes in the modal base, when SAM-
SARA is applied, must be limited. However, these are not limitations of the method
but points to be explored in further developments.

When using SAMSARA method, the model is called replica if all the geometrical
dimensions of the structure are scaled by the same scale factor. Instead, a distorted
model is called avatar. To obtain a complete similitude, all the similitude conditions -
which must not involve necessarily all the geometrical parameters - must be satisfied.
A replica is, therefore, a true model because it fulfills all the conditions, although
other scale factors, which do not appear into the scaling conditions, are involved.

In order to clarify, plates in similitude can be considered. A plate is geometrically
characterized by width, length, and thickness, therefore scaling all these dimensions
with the same scale factors leads to a true model and to a replica. However, the
similitude condition for a complete similitude requires that length and width scale
equally (De Rosa, Franco, and Meruane, 2015): thickness is a free parameter [as
already demonstrated by Soedel (Soedel, 1971)]. Satisfying the conditions leads to
a proportional sides model, which is another true model. In conclusion, to achieve
a complete similitude is sufficient fulfilling the similitude conditions (proportional
sides), however involving other parameters does not affect the similitude (replica).

When investigating systems in complete similitude, the prototype mode shapes
appear at different natural frequencies in the model (for example, higher frequencies
if the model is scaled down), but the succession of modes is retained. The energy
given by the excitation spreads in a model according to a certain succession of modes
with perturbed natural frequencies. By applying a remodulation, such succession
of modes can be brought back to prototype ones. In this way, the response of the
structure is reconstructed. This approach does not work with avatars, because the
modes succession is distorted and the remodulation process does not keep trace of
this.

An advantage of SAMSARA is that it directly involves modal parameters, such
as natural frequencies and damping, which means that their scale factors are defined;
this can be considered as the main novelty of the approach. Differently from ASMA,
which provides only mean responses, SAMSARA can furnish even local responses.
Moreover, it can be implemented in an algorithm.

2.2.5 Empirical Similarity Method (ESM)

In the field of Rapid Prototyping (RP), DA is the most used similitude method. How-
ever, some issues related to the difference in material properties between prototype
and model, sensitivity to distortions, too restrictive use of information, and depen-
dence of cost and time on geometrical complexity, has led Cho and Wood (Cho and
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Wood, 1997) to propose the Empirical Similarity Method (ESM). It is based on testing
a specimen pair: one specimen - the prototype specimen - has simple geometric fea-
tures fabricated through RP, the other - the product specimen - is fabricated through
the actual prediction process. By measuring the state vectors of this pair and the
scaled structure obtained through rapid prototyping, a state transformation is derived
in which the scale factors are replaced by weighting factors.

On the one hand, the empirical transformation matrix can be considered as the
advantage of ESM, on the other hand additional specimen pairs are needed, which
leads to additional manufacturing and testing.

2.2.6 Sensitivity Analysis (SA)

Sensitivity analysis, which can be defined as the study of how uncertainty in the output
of a system can be related to uncertainties in the input of the same system, has been
applied recently to structural similitude. Global Sensitivity Analysis (GSA) is applied
when the global behavior is of interest, while Local Sensitivity Analysis (LSA) is
applied when the response is studied at a particular point of the parameter space with
a differential approach.

The first application of SA to the derivation of similitude conditions is up to Luo
et al. (Luo et al., 2015). The authors enunciate the following four principles to get
distorted laws:

• Principle 1: In distorted scaling laws, if parameter j is directly reflected in
the governing equation, the index k of the scaling factor λk

j can be directly
determined from the governing equations.

• Principle 2: In the sensitivity analysis, if sensitivity’s absolute values satisfy
|Φa| > |Φb| in distorted scaling laws, the index relation of scaling factors λα

a

and λ
β

b is |α|> |β|. Here, Φa and Φb are the sensitivities (i.e., the change rates)
of the natural frequency with respect to geometrical parameters a and b.

• Principle 3: If Φ j > 0, λ j is positively proportional to λω (the scale factor of
the natural frequencies) in the distorted scaling law; conversely, λ j is inversely
proportional to λω if sensitivity Φ j < 0.

• Additional principle: In the distorted scaling law, the index ratio α : β of scaling
factors λα

a and λ
β

b is approximate to the ratio of the sensitivity α : β ≈ Φa : Φb.

The first three principles are used to derive approximate distorted scaling laws,
i.e., scaling laws for distorted models that return a high percentage of error between
the natural frequency of the distorted model and the predicted natural frequency. The
additional principle is used to derive accurate distorted scaling laws which return an
error lower than approximate laws (typically within 5%).

Adams et al. (Adams, Bös, and Melz, 2016) give a statistical application of GSA
by employing, first, a 2k (k = 3, in this case) full factorial design to study the effects on
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the response of the structure to changes in input parameters, then derive sensitivity-
based scaling laws through a multiple quadratic regression.

In another work, Adams et al. (Adams et al., 2018) apply LSA and derive the
following expression for the k-th response of the model, Y (m)

k ,

Y (m)
k = Y (p)

k

N

∏
i=1

(λX j)
α j,k , (2.14)

that is, as the product of the prototype response Y (p)
k and N linearly independent scale

factors λX j (where X j is a design parameter of the system, like geometrical, material,
etc.), each one weighted by an unknown power α j,k.

The approach is directly deduced from Buckingham’s Π Theorem, according to
which DA can be used to derive the weighting terms α j,k. The novelty of the method
proposed relies on the application of SA to derive these exponents, which can be
written as

α j,k =
ln
(

Y (+)
k

)
− ln

(
Y (−)

k

)
ln
(

λ
(+)
X j

)
− ln

(
λ
(−)
X j

) , (2.15)

where the symbols (+) and (-) indicate the scaling up and down procedures, respec-
tively.

As a consequence, SA does not require the derivation of dimensionless groups, as
in DA, or to compare the equations of prototype and model, as in STAGE or SAM-
SARA. Briefly, it does not provide similitude-based scaling laws, but sensitivity-based
ones obtained by just knowing the scale factors and the responses and using Eqs. 2.14-
2.15, without any prior knowledge of the scaling behavior and with minimum effort.
However, this characteristic makes both GSA and LSA lacking of physical insight into
the problem that may lead one to overlook some important phenomena. Furthermore,
too complex systems may lead to prohibitive computational costs and inefficient pro-
cedure.

2.2.7 Methods summary

As shown in this brief introduction to similitude methods, despite the increasing com-
plexity of modern applications and the emerging methods, DA and STAGE are still
the most used approaches.

According to DA, the similitude conditions are derived by defining sets of non-
dimensional ratios - the Π terms - through the investigation of the reference parame-
ters. It is not based on the knowledge of some equation (like the governing equations,
or more specific ones), which makes the method employable in a wide range of appli-
cations, even very complex ones, even though a great amount of manual calculations
may be needed. For instance, DA is used a lot in fluid dynamics in order to find the



2.2. Similitude methods 21

non-dimensional numbers representing the main characteristics of a fluid (Mach num-
ber, Reynolds number, Peclet number and many others are non-dimensional ratios) by
comparing dimensional groups with their own physical meaning.

DA is a very useful tool when the analyzer is experienced on the topic or when
the governing equations are unknown or too complex to be solved analytically or
numerically. As the choice of parameters is up to the analyzer, it can be exploited in
order to understand the influence of a particular parameter on the phenomenon under
observation.

STAGE is the second, most used method and it is based on the definition of scale
factors successively substituted into the governing equations in order to derive the
similitude conditions. On the one hand, this requires knowing the field equation;
on the other hand, the conditions obtained are more specific and the method itself
lacks the trial-and-error approach which is one of the drawbacks characterizing DA.
Generally, when the governing equations are known, it is better to employ STAGE
and DA.

Conservation of energy is the foundation of EM introduced by Kasivitamnuay
and Singhatanadgid (Kasivitamnuay and Singhatanadgid, 2005). Once the strain en-
ergy, the kinetic energy, and the work of the (possibly multicomponent) structure have
been evaluated, the scaling conditions are derived keeping the same results and level
of generality of STAGE. Despite being more straightforward than STAGE, the EM
procedure is still affected by a certain effort when dealing with complex structures.

ASMA and SAMSARA are the first methods addressing the similitude theory
toward an automatic procedure, because both of them can be implemented in an algo-
rithm.

ASMA is introduced because computational costs can sometimes be prohibitive;
its purpose is to scale down the spatial domain by means of a scale factor. Since the
energy level must be retained, an artificial increased damping is introduced. How-
ever, this damping limits the analysis to the global frequency response. Therefore,
ASMA is expected to produce a good level of accuracy only for the mean response
of a structure. Thus, the method is suitable for computationally expensive analyses
where the analyzer is interested only in the mean response or in the response at high
frequency range. Moreover, ASMA is useful in evaluating how SEA energy influence
coefficients (both direct and indirect) are affected by changes in the Modal Overlap
Factor (MOF).

SAMSARA applications exploit scale factors, just like STAGE. Modal parame-
ters are also involved in the scaling procedure. Differently from ASMA, SAMSARA
provides the local response, too. From this, with multiple acquisitions, the mean re-
sponse can be reconstructed. SAMSARA is also very useful when studying structural
dynamics and acoustic-structural systems.

ESM is used in RP applications. It derives a state transformation between a spec-
imen pair and the scaled structure obtained through RP. Its introduction is due to the
need of overcoming the problems of DA applied to RP, such as differences in ma-
terial properties and sensitivity to distortions. Additional manufacturing is the main
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disadvantage of the method.
SA is the last step, up to now, toward an automatic approach, especially in terms of

scaling laws derivation, because it can be implemented into an algorithm. It is divided
into GSA and LSA, according to the purpose. Its automatic nature allows to derive
the sensitivity-based scaling laws without knowing the scaling behavior of the system
a priori but, at the same time, it is not based on physical relationships. Moreover, it
can become computationally expensive.

2.3 Applications of similitude methods

Similitude theory has been applied in many engineering branches to elementary struc-
tures such as beams, plates, and cylinders, which may occur as stand-alone systems
or form the basic structural components of more complex ones [for example, pressure
vessels (Hu, 2000; Shi and Gao, 2001)]. In this section, the applications of similitude
theory to these systems is reviewed.

First of all, the application of similitude methods has concerned several structural
fields, such as static and dynamic behavior, impact response, and damage.

The analysis of dynamic response focuses on identifying the natural frequencies
and the mode shapes of a structure, since this information is fundamental for inves-
tigating fluid-structure interaction and other vibroacoustic phenomena, such as the
response of a structure to a TBL excitation, which is an important source of vibration
and noise, as the stochastic pressure distribution associated with the turbulence excites
significantly the structural response and radiated acoustic power. For fluid-interaction
problems like this, there are some computational issues related to the fact that solu-
tions are typically lost above the structural/aerodynamic coincidence frequency, even
if the mesh is built to simulate the dynamics at very high frequencies, that is, very
small structural wavelengths. This opens the way to other concerns associated with
dynamic response, i.e., the prediction capability at each frequency range at acceptable
computational costs (De Rosa and Franco, 2008b).

Impacts are a branch of dynamic response of particular engineering interest, as
large, short-duration forces may produce damage that can affect the load carrying ca-
pacities of a structure. There are many examples in which the resistance of structures
to penetration or perforation has primary importance: design of a structure to resist
wall perforation by a high velocity projectile, containment of fragments or projectiles
generated by possible accidents in nuclear reactors, the threat of the so-called wind-
generated missiles, containment of fragments generated in aircraft turbine engine dis-
integration, bird impacts on aircraft, etc (Magness and Farrand, 1990; Sorensen et
al., 1991; Anderson, Jr., Mullin, and Kuhlman, 1993; Rosenberg, Kreif, and Dekel,
1997).

For metallic materials, this damage involves plastic deformation and wear in con-
tact zone (Rosenberg, Kreif, and Dekel, 1997; Zhao, 1998; Oshiro and Alves, 2004),
while it takes the form of fiber failure, matrix cracking, and delamination for compos-
ites (Morton, 1988; Jackson and Fasanella, 1989; Jackson, 1990; McKown, Cantwell,
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and Jones, 2008). Things become more complicated when distinguishing between
structures localizing the damage and those for which damage is more widespread.
In structures with significant flexibility, multiple collisions may happen and a large
amount of energy is released as vibrations. For rigid bodies, impactor and body vi-
brations are negligible and deformations are confined to the vicinity of the contact
region.

These few observations demonstrate the complexity of impact problems, as they
involve many phenomena that must be accounted for, ranging from inertial effects
to material response to varying strain-rate and thermal loading, and material failure
and stability. Particularly, scaling strain-rate dependence is challenging. In fact, be-
cause of it, the material increases its resistance as the impact load is applied. The
model/prototype ratio of dynamic stress, representing how the static flow stress changes
when there is a varying strain-rate, is no longer invariant. When dealing with simil-
itudes, this translates into distortions because strain-rate phenomena do not support
scaling, at least not with the usual, geometric scaling procedures (Oshiro and Alves,
2004).

In addition to dynamic behavior, similitude theory is commonly applied to the
analysis of static behavior, too, which often schedules the loading of the test article
until failure. Being known that size effects have a strong influence on failure mech-
anisms and the ultimate strength of the structure, and because statistical models or
fracture mechanics theories fail to explain these effects, experimental tests result to
be very useful for understanding the limits of validity of similitudes (Asl et al., 2016b;
Asl et al., 2017a; Asl et al., 2017c; Asl et al., 2018).

Since their introduction more than sixty years ago, composite materials have re-
ceived significant attention, being an interesting and useful alternative to the classic,
isotropic engineering materials, thanks to their lightness and resistance capabilities.
An important example is aeronautic field, in which, being both stiffness-to-weight and
strength-to weight ratios important properties, composite materials are used for load-
bearing aircraft structures such as the upper fuselage of A380 Airbus (Vlot, 2001).

With respect to isotropic materials, such as metal alloys, composite materials non-
trivial interactions between micro- and macro-structural properties. As an example,
there are several ways in which a composite material undergoes damage (fiber frac-
ture, delamination, and matrix cracking), or the emergence of size effects. These are
all phenomena that start at the microscopic scale and then evolve, eventually, to the
macroscopic level of laminate.

These considerations suggest that both the micro- and macro-structures of a lami-
nated composite should be scaled. However, such a procedure is never executed due to
its practical complexity, therefore only the macrostructure is considered when simili-
tude conditions are derived. This approach leads to some obstacles, as the descriptions
of notch and strain-rate sensitivity, for example, are strongly dependent on the micro-
scopic characteristics of a composite material. Notably, notch sensitivity is strong in
quasi-isotropic laminates, yet weak in unidirectional laminates subject to traction in
the fiber direction. Strain-rate sensitivity depends on fiber and matrix materials; glass
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and Kevlar fibers are rate-sensitive, as the epoxy resin matrix, while carbon fibers are
not rate-sensitive. Moreover, the degree of sensitivity depends on the lay-up and the
rate of loading may affect the damage mechanisms. The interaction among all these
factors may easily lead to scaling conflicts, therefore scaling a composite laminate is
an operation to carry out carefully. Indeed, testing is required to establish guidelines
and to underline those size effects which are not modeled by any scaling procedure.

The wide usage of laminated composites is limited only by their susceptibility
to impact damage that can reduce the compressive strength even if such damage is
not visible (at the naked eye). Characterizing impact phenomena become, therefore,
necessary because the response of composites is complex, involving localized out-
of-plane loading, possible strain-rate effects, and the interaction of several failure
models.

There are many works (Kellas and Morton, 1992b; Rezaeepazhand and Simitses,
1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Rezaeepazhand, Simitses,
and Starnes, Jr., 1995b; Simitses and Rezaeepazhand, 1995; Rezaeepazhand, Simit-
ses, and Starnes, Jr., 1996a; Rezaeepazhand, Simitses, and Starnes, Jr., 1996b; Reza-
eepazhand and Simitses, 1997; Simitses, Rezaeepazhand, and Sierakowski, 1997;
Wisnom and Atkinson, 1997; Johnson et al., 1998; Johnson et al., 2000; Simit-
ses, 2001; Frostig and Simitses, 2004; Carrillo and Cantwell, 2007a; Carrillo and
Cantwell, 2007b; Rezaeepazhand and Wisnom, 2009; Rezaeepazhand and Yazdi,
2011; Yazdi and Rezaeepazhand, 2011a; Yazdi and Rezaeepazhand, 2012; Yazdi,
2013) showing that a key parameter in scaling composite materials is the stacking
sequence. Literature provides three scaling approaches, namely: ply-level scaling,
sublaminate scaling, and general reduction of the number of plies. Ply-level scal-
ing consists in adjusting the number of plies in a group having the same orientation;
thickness is scaled and the stacking sequence is retained. Sublaminate-level scaling
involves basic sublaminates, stacked together, so that thicker laminates are formed.
The general reduction of the number of plies is self-explanatory.

Obviously, each scaling strategy has significant consequences on the response of
the composite specimen, as studied in many works (Wisnom and Atkinson, 1997;
Johnson et al., 1998; Johnson et al., 2000; Carrillo and Cantwell, 2007a; Carrillo and
Cantwell, 2007b) which demonstrate how ply-level scaling applied only to thickness
or to all the geometric dimensions (respectively known as one- and three-dimensional
scaling) leads to a decreasing tensile strength with increasing size. The increasing
severity of edge delamination and debonding are the main causes of this behavior,
as they create stress concentrations that lower the strength of hybrid materials. On
the other hand, two-dimensional ply-level scaling, i.e., area scaling, exhibits an in-
creased tensile strength for larger samples. In this case, delamination affects smaller
specimens because the relative width of the delaminated zone is greater. The severity
of delamination varies due to the Poisson’s ratio mismatches between the materials.
Sublaminate-level scaling affects area scaling significantly, as it reduces the tendency
of smaller models to fail earlier.

The remainder of the section is organized in several subsections (2.3.1–2.3.3),
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one for each type of structure. For each subsection, a further partition is made in
terms of applications, highlighting the commonalities in results and the novelties of
the applied methods. The following contents are summarized in Table 2.2. The rows
show, on the left, the test article, on the right the method, while the columns separate
the applications in terms of used procedures (theoretical and experimental) and each
box is filled with the material.

TABLE 2.2: Overview of test articles, procedures, methodologies
and materials used in similitude methods

Analytical/Numerical Experimental Method
Beam Aluminium Aluminium ASMA

Aluminium, Brass,
Composite, Magnesium
alloy, Steel, Titanium,
Tungsten alloy

Composite, Steel DA

Aluminium, Steel – EM
Unstiffened plate Aluminium, Composite Aluminium ASMA

Aluminium, Composite,
Steel

Aluminium, Composite,
PVC, Steel

DA

Aluminium, Steel – EM
Aluminium Aluminium SAMSARA
Steel – SA
Aluminium, Composite,
Magnesium alloy

Composite STAGE

Aluminium, Steel Aluminium, Steel STAGE +
SA

Stiffened plate Steel Steel DA
Aluminium – STAGE

Sandwich plate – Composite + PMI (poly-
methacrylimide)

DA

TC4 Titanium alloy +
General rubber

– STAGE

Unstiffened cylin-
der

Steel Aluminium, Composite,
Concrete, Steel

DA

Aluminium – SAMSARA
Steel Steel STAGE
Aluminium – STAGE +

SA
Stiffened cylinder Composite – EM

Aluminium – SAMSARA
Aluminium, Steel Aluminium, Steel STAGE

Note: Table A.2 in Appendix A gives the corresponding references.
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In the following sections, only the most relevant works are discussed in detail. The
analytical details are provided for those analyses that are meaningful for the results
presented in this thesis. A complete list of works is provided by Tables A.1–A.2 in
Appendix A, in which the references for both methods and test articles are indicated.

2.3.1 Beams

Beams and bars are structural models constituting the main elements of frames, as
well as subcomponents of more complex systems, such as stiffeners in a stiffened
cylinder or spar caps and shear webs in wind turbine blades. Similitude methods have
been applied to investigate both the static and dynamic behavior, failure, and impact
response of beams.

Failure analysis

An important contribution to similitude theory is provided by the extensive experi-
mental and numerical tests made by Jackson and Fasanella (Jackson and Fasanella,
1989) and Jackson (Jackson, 1990), which aim at investigating the behavior to failure
of composite beams. In particular, six scaled models of a graphite-epoxy compos-
ite beam with unidirectional, angle- and cross-ply, quasi-isotropic stacking sequence,
from 1/6 to full-scale, are subjected to both static and dynamic (impulsive) eccentric
axial compression. The test articles were chosen because of the possibility of achiev-
ing large bending deflections promoting global failure away from the supported ends.

The prototype is scaled with DA, and the results highlight many important char-
acteristics of scaled models, especially in terms of size effects, that reoccur in several
subsequent works. The main experimental results are:

• In static tests, the scaled load and strain responses depend on the laminate stack-
ing sequence and on the number of 0° plies in the laminate. the responses scale
well in unidirectional and cross-ply laminates, which means that these models
do not exhibit size effects. Conversely, for angle-ply and quasi-isotropic lami-
nates, the responses deviate from those predicted with similitude theory because
the beam stiffness is altered by damage.

• In static tests, all laminates exhibit a significant size effect in strength: as the
size of the beam decreases - especially cross-ply beams - normalized loads, end
displacements, and strains at failure increase. In dynamic tests, quasi-isotropic
small models are more severely damaged.

• For dynamic tests, the predictions provided by scaled models are good for uni-
directional laminates, but inconsistent for cross-, angle-ply, and quasi-isotropic
ones, again mainly due to the size effects.

• In static tests, only the scaled models of cross-ply beams exhibit size effects
in failure mechanism (while fiber fracture was not present in larger models).
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In static and dynamic tests, failure modes are the same for the same stacking
sequence, independently of specimen scale.

• Test data from beams belonging to the same laminate family and with same
scaled size indicate similar load and strain responses in both static and dynamic
tests. The failure locations due to both static and dynamic loading are nearly
identical, with the exception of cross-ply laminates. It is therefore possible
to retrieve important information on the global dynamic response of structures
from simple static testing of scaled models.

• Bending stiffness is not affected by size for unidirectional, cross-ply, and quasi-
isotropic laminates; angle-ply laminates exhibit greater stiffness as the size de-
creases.

In addition to specific observations about scaled composite beams, these works
underline the problem of size effects which arise as noticeable departures from the
predictions of similitude methods in actual experimental tests.

Static analysis

Asl et al. dedicate many works (Asl et al., 2016b; Asl et al., 2017a; Asl et al., 2017c;
Asl et al., 2018) to static tests on composite beams, in which composite I-beams are
investigated analytically, numerically, and experimentally in the framework of sub-
component analysis for sub-component testing; the beams are equivalent to the spar
caps and shear webs of wind turbine blades. STAGE is applied to derive the similitude
conditions. The novelty of these works relies on the use of partial similitude. In
fact, it is possible theoretically to achieve complete similitude by applying ply-level
scaling and keeping the same aspect ratio. However, when the laminate thickness
is supposed to scale down below the range in which there is no integer number of
lamina left in the stack up, ply-level scaling is no more achievable (and reducing
the lamina thickness is not an available option). Ply-level scaling is applicable only
to specific lamination schemes but the possibility of keeping the same lay-up in the
scaled models (as in the prototype) is limited by manufacturing constraints, since
only fabrics with specific thicknesses are available in industry. It is therefore likely
that the outcome due to manufacturing issues is a partial similitude. Thus, aiming for
a good prediction of prototype behavior using partial similitudes, Asl et al. (Asl et al.,
2016b; Asl et al., 2017a; Asl et al., 2017c; Asl et al., 2018) introduce a permutation
algorithm which searches for the potential model having ply schemes with overall
laminate thickness less than that of the prototype. By means of the definition of error
to find the lay-up that works best with the derived scaling laws, then such a lay-up
is used for predictions. This algorithm is called Distorted Lay-up Technique (DLT)
and the tests demonstrate that the results exhibit errors smaller than 6% - and are,
therefore, satisfactory - also with distorted models. It is worth noting that, as the
number of layers in a model decreases, the probability of finding an accurate model



28 Chapter 2. Literature review

decreases, thus there is a limited amount of scaling that can be performed with DLT.
The advantage of this technique is that it is applicable to other geometries and ply
schemes.

DLT is used in a recent work (Asl et al., 2018) to test experimentally a prototype
and nine models (three small, three medium, three large) having different lay-ups
in a four-point bending test. According to the results, the strain field of the small
beams is representative of those of the medium and large models: the prescribed
loads described by similitude analysis work accurately across different scales. This
implies that a certain strain level for a composite beam geometry with specific scale
and lay-up can be accurately replicated in a smaller model with a different lay-up.
Therefore, a scaled model may facilitate and expedite the fatigue testing process for
large composite structures, leading to reduced costs and times.

In another experimental campaign (Asl et al., 2017a), analytical and numerical
results are verified by a three-point bending test measured with Digital Image Corre-
lation (DIC) executed on a composite beam in order to reproduce flapwise bending.
The results of these tests confirm those already obtained previously by Jackson and
Fasanella (Jackson and Fasanella, 1989) and Jackson (Jackson, 1990) about the ab-
sence of size effects: the bending stiffness of particular lay-ups is not affected by
scaling. However, it has to be noted that the predictions are very good because the
study is carried out in the elastic range, before yielding or failure appeared.

Frequency response

Asl et al. (Asl et al., 2017b) provide more insights on stiffness behavior with size by
means of another experimental investigation concerning the response of three models
(small, medium, and large) of a free-free beam excited with an impact hammer. The
comparisons among the models show that the Frequency Response Functions (FRFs)
agree; however, a certain decorrelation arises, increasing as moving towards higher
frequencies. This is due to the flexural stiffness, which is dominating over those
modes associated with shear, at low frequencies. Therefore, the first two peaks - for
example - exhibit a good correlation because, as already noted (Jackson, 1990; Asl et
al., 2017a), bending stiffness is not affected by scaling. At higher frequencies, shear
becomes dominant and, as the FRFs decorrelation increases in this case, it is possible
to conclude that shear stiffness is affected by scaling. Rotary inertia has a similar
influence, which shifts the frequencies of larger models to lower values.

The advantages of ASMA are demonstrated by studying the structural dynamic
behavior by De Rosa et al. (De Rosa et al., 1997) and De Rosa and Franco (De Rosa
and Franco, 2010). Six in-line rods are investigated in the first work, two flexural alu-
minium beams and two sets of, respectively, two and four in-line rods are analysed in
the second work. ASMA proves to be a valuable tool with respect to SEA and Clas-
sic Modal Analysis (CMA). Particularly, a comparison with the latter highlights how
ASMA provides good predictions only at high frequencies as it captures an average
energetic behavior. Nonetheless, it demonstrates the actual advantage of dealing with
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scaled domains or with the same number of DOFs across a larger frequency range (De
Rosa et al., 1997). ASMA is also used to evaluate the coupling loss factors providing
acceptable results in regions of low, medium, and high MOF (De Rosa and Franco,
2010).

Impact response

As previously noted, the investigation of dynamic behavior due to impacts is chal-
lenging to approach, especially within a rigorous theoretical framework. The number
of physical properties which need characterization with analytical models is quite
large, and equally large is the number of parameters within these models. Many
works provided in literature focused on the need to reduce such a number of parame-
ters to a smaller, more manageable set and, more importantly, to introduce quantities
that would allow comparison of results obtained for systems with similar geometries,
boundary conditions, and loads.

Before Jackson and Fasanella (Jackson and Fasanella, 1989) and Jackson (Jack-
son, 1990), similar size effects were already described by Morton (Morton, 1988)
while investigating experimentally the impact at the center of a composite beam of a
free-falling mass. Small specimens were found to be stronger than larger ones and
thus able to carry larger post-damage loads, while, the larger the specimen, the lower
the impact velocity causing damage.

It is still up to Morton (Morton, 1988) the interesting experimental observation
for which smaller specimens seem to exhibit smaller impact duration than larger ones.
However, the reason may not be a size effect but rather the fact that the articles ex-
hibiting this behavior are made of the same material (carbon fibers in an epoxy matrix)
coming from another, older batch. This underlines the typical experimental problem
in which the results, on the one hand, may be important and highlighting hidden phe-
nomena but, on the other hand, must be treated carefully.

As evidence of this, McKown et al. (McKown, Cantwell, and Jones, 2008) present
another example of results possibly polluted by improper experimental procedures in
which Fiber Metal Laminate (FML) beams and plates are studied with DA. While
some results, like the good agreement with predictions of load and deflections in both
static (four-point bend flexure) and dynamic (low velocity impacts) tests, or the per-
sistence of failure mechanisms, are consistent with previous works, on the other hand,
the flexural yield forces of the 1/4-scale model are said to be 15% smaller than those
of other models. This may be a size effect or, alternatively, the consequence of incor-
rect alignment of the smallest specimens on the test supports, which is a particularly
difficult task. It is important to underline that, in this investigation, only geometri-
cal scaling has been performed, therefore the approach may not work when higher
strain-rates are considered.

The dynamic plastic response of bodies subject to impacts is the main focus of
Zhao (Zhao, 1998), who uses DA to find a unique, dimensionless number to describe
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these phenomena. Such a number is called response number, it is given by the prod-
uct of Johnson’s damage number (Johnson, 1972) and the geometrical influence of the
structure, and takes into account three aspects: load inertia, material resistance, and
structure geometry. In the cited work, it is demonstrated that the response number is
suitable for representing the plastic response of beams and plates for many boundary
and loading conditions. It also considers second-order effects such as finite deflec-
tions, transverse shear, strain-rate sensitivity (which makes the Zhao’s work an early
contribution addressing this phenomenon), and dynamic tearing.

The response number is the product of a similitude parameter in impact dynamics
and a term related to the geometry of the structure. This leads to different forms
of the response number as the loading conditions change. This consideration led to
the formulation of a generalization of the response number to cover other forms of
dynamic plastic failure, such as bifurcation buckling problems (Zhao, 1999). This
application was expanded by other authors to more geometries, including circular and
quadrilateral plates (Hu, 2000), and generalized the technique to different types of
shells (Shi and Gao, 2001). These works are the evidence that the response number
is quite useful to study the dynamic plastic response and failure of structures (beams,
plates, shells, etc.) subject to large dynamic loading.

Christoforou and Yigit (Christoforou and Yigit, 1998; Christoforou and Yigit,
2009) have the same aim, thus they introduce dimensionless numbers, analytically or
numerically obtainable according to the complexity of the system, in order to reduce
the number of parameters characterizing impacts. The importance of their work relies
on the fact that their results provide both physical insights and a tool for generaliz-
ing and correlating experimental results through the use of minimum data and model
tests. In fact, different structures - such as beams and plates - made from different ma-
terials, under different boundary conditions and impacts, yet having the same values
of non-dimensional numbers, share the same normalized responses. This makes pos-
sible to scale the impact responses among different systems. However, similitude is
achievable only during the initial response or, more generally, before the mechanical
waves are reflected back by the structure interfaces (because, after a such reflection,
beams and plates exhibit different dynamics). Therefore, on the one hand, the global
response scales well in terms of impact force and deflection; on the other hand, the
local responses scale well only in terms of force. This aspect cannot be generalized
among different structures, as the transition region between global and local behavior
is not captured accurately by the dimensionless number.

The size effects are the aim of Pintado and Morton (Pintado and Morton, 1994).
The authors focus on graphite-epoxy composite beams under three-point bending ver-
tical impact loading. Lack of similitude is up to two sources: constant gravitational
acceleration and non-scaling of stacking sequence. However, the former introduces
small errors in model behavior, thus it can be neglected. It is the latter that leads
to greater discrepancies. By applying Buckingham’s Π Theorem, it is noticed that
a complete similitude is achievable only with ply-level scaling; sublaminate-level



2.3. Applications of similitude methods 31

scaling leads to partial similitudes. This behavior can be explained physically: ply-
level scaling allows to keep both in-plane and flexural moduli of the structure, while
sublaminate-level scaling changes the flexural stiffness of the laminate.

However, a correction factor allows, under certain circumstances, to adjust the dis-
tortion introduced by sublaminate-level scaling. Pintado and Morton use DA based on
bending stiffness to derive this factor but, because Classical Laminate Theory (CLT)
predicts inaccurate values of this stiffness, the correction factor is evaluated with ex-
perimental data. These countermeasures against distortions allow to replicate results
already seen (Morton, 1988; Jackson and Fasanella, 1989; Jackson, 1990): smaller
models exhibit higher energy thresholds and fail at higher loads. In certain cases, the
discrepancy in terms of failure scaled load is of 25%.

Nonetheless, the source of the size effects is not clear to the authors, who propose
two possible explanations:

• Presence of a critical defect in the material. Because the distribution of defects
of any size is uniform in the volume of the structure, the probability of finding
a critical defect in larger specimens is higher than in smaller ones.

• the size dependence of strength is driven by fracture mechanism principles. For
example, the authors refer to the fracture model of Laws and Dvorak (Laws and
Dvorak, 1988) for cross-ply laminates in which the stresses necessary to pro-
duce first ply failure depend on the absolute size. Therefore, larger specimens
are weaker than smaller ones.

However, these explanations are incomplete. Kellas and Morton (Kellas and Mor-
ton, 1992b) demonstrate that the dependence of strength on size can be inverted for
certain lay-ups and loading conditions. In fact, even though in-plane moduli are
equal for specimens with both ply- and sublaminate-level scaling, the tensile strength
of ply level laminates decreases as the specimen size and thickness increase. Us-
ing sublaminate-level scaling on angle-ply laminates, instead, the tensile strength in-
creases with size.

The interpretability of results is emphasized also by Pintado and Morton (Pintado
and Morton, 1994), as the outcomes from their tests are not easy to compare when
scaled because DA does not allow the derivation of a unique set of Π products. The
choice of bending stiffness-based DA leads to significant size effects; using, instead,
an approach which neglects the lack of similitude in stacking sequence limits the size
effects.

There are several works focused on geometric scaling issues and non-scaling ef-
fects in terminal ballistics. For example, Sorensen et al. (Sorensen et al., 1991) ana-
lyze penetration mechanics and potential benefits of high velocity for both monolithic
and segmented penetrators. Anderson et al. (Anderson, Jr., Mullin, and Kuhlman,
1993) perform two-dimensional numerical simulations to demonstrate that the strain-
rate sensitivity of the flow stress in the target material can generate some non-scaling
effects in the penetration depths of long rods. However, the differences between a full-
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and 1/10-scaled model amount to 5%, which is small enough to be neglected. Mag-
ness and Farrand (Magness and Farrand, 1990) present experimental results showing
that, for both tungsten alloy and depleted uranium penetrators, simple scaling does not
exist. Moreover, penetration capabilities for both materials are significantly improved
by increasing the penetrator scale. The primary aim of the authors is to demonstrate
that such a size effect depends on target properties. However, the comparison of
results between two different targets does not show differences (size effects are the
same), thus the authors are forced to admit that the results do not single out any defi-
nite source for the scale dependency of their tests.

The research made by Rosenberg et al. (Rosenberg, Kreif, and Dekel, 1997) is
motivated by these previous works on terminal ballistics. They share the goal with
Magness and Farrand (Magness and Farrand, 1990), but their assumption is that size
effects depend on the properties of the penetrator, not on those of the target. More pre-
cisely, failure mode is the cause of the lack of geometric scalability: geometric scaling
should hold for ductile penetrators (like copper), while semi-brittle penetrators (like
tungsten alloy or depleted uranium) may perform better at full scale because of their
different mode of failure. The authors provide some experimental observations to sup-
port their idea: copper penetrators exhibit a perfect scaling of penetration depth, while
tungsten alloy ones lead to 10% of discrepancy. As a matter of fact, the latter type of
penetrators are more prone to early failure at their interface with the target, while the
former, being very ductile metal, creates a relatively wide crater due to hydrodynamic
nature of its penetration process. Moreover, while copper penetrators create totally
clean craters, those made of tungsten alloy are full of debris. All these characteristics
highlight a totally different mechanism of penetration and erosion which the authors
think to be at the base of differences in scaling behavior. Moreover, the authors’
assumptions are supported analytically, as the main cause of such non-scalability is
traced to the plastic zone size parameter. Semi-brittle materials exhibit large values
of this parameter that, consequently, exhibit different failure mechanisms at different
scales. To give an example, as the penetrator dimensions increase, the plastic zone
ahead of cracks becomes smaller, which leads to more brittle failure.

Alves, Oshiro and their collaborators focus on the application of DA to overcome
the difficulties due to strain-rate sensitivity (Oshiro and Alves, 2004; Alves and Os-
hiro, 2006a; Alves and Oshiro, 2006b; Oshiro and Alves, 2009; Oshiro et al., 2011;
Oshiro and Alves, 2012). The authors propose a new approach to DA (Oshiro and
Alves, 2004) which allows to overcome the distortion problems in impact phenom-
ena. Instead of using a MLT base, the authors propose the VSG (initial impact veloc-
ity, dynamic yielding stress, and impact mass) base. However, the new novelty of the
work relies on the compensation of the distortion due to rate-sensitivity by means of
the definition a new model/prototype impact velocity ratio without taking directly into
account the constitutive model of the material. Two types of structures are analyzed:
a clamped beam subject to an impulsive velocity and a Calladine model (two plates
clamped together) under axial impact. The results show that the technique is robust,
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scaling different types of structures with different behaviors and undergoing differ-
ent phases of motion with errors below 1%. Strain-rate choice may be the source of
discrepancy, as it is constant through the whole motion for beams, while only during
the final phase of motion in plates. This implies that not all the motion stages can be
corrected at the same time.

The success of the method proposed by Alves and Oshiro (Oshiro and Alves,
2004) motivates the authors to expand the approach and to demonstrate that the VSG
base is versatile and overcomes some experimental constraint. For example, the au-
thors first consider a scaling based on the impact mass rather than the initial impact
velocity (Alves and Oshiro, 2006b), obtaining very good results and achieving even
effectively zero error. Then, the same scale factor is changed in order to take into
account models made of different materials (Alves and Oshiro, 2006a). This study
is motivated by size effects [which can occur as discussed previously (()morton1988,
jackson1989, jackson1990)] affecting the behavior of the models in such a way that
material properties change when models are very small or very large with respect to
the prototype. The constitutive curve changes, therefore inaccurate predictions result
when inferring prototype behavior from that of a model. The proposed method is able
to reconstruct the response of the prototype - made of mild steel - from that of a model
- made of aluminium - with an error smaller than 3%. However, the authors specify
that the method works only when it is assumed that the wave speed is the same in both
prototype and models, otherwise there would be changes in the model response when
elastic effects are important (but, in this work, these effects are ignored).

All the previous approaches have a common problem: the choice of represen-
tative strain-rate, of which an average value is chosen, although the estimation of
such an average value is not always easy to carry out. Therefore, this consideration
leads to the further expansion of the VSG method (Oshiro and Alves, 2009), consist-
ing in the change of the constitutive law choice: using Norton-Hoff law instead of
Cowper-Symonds one. Actually, the strain-rate is described as in the previous works,
however the new law allows an exact scaling without prior knowledge of the struc-
tural response. As a consequence, the already small errors obtained with the previous
approach are now totally removed.

Geometric effects are considered in addition to strain-rate effects by Oshiro and
Alves (Oshiro and Alves, 2012), so that the complexity of scaled models, whose di-
mensions are flawlessly scaled, can be considered. According to the authors, geo-
metric and strain-rate distortions can be dealt with separately. For the geometry, an
exponential scaling law is used, however some residual errors appear since the expo-
nent is difficult to determine.

Finally, Oshiro et al. (Oshiro et al., 2011) apply the VSG-based method in an
experimental test on a T-cross section beam made of low carbon steel 1006 subjected
to a quasi-static loading. The robustness of the VSG technique is noticeable when
comparisons are made with the results obtained with the MLT-based approach.
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2.3.2 Plates

Plates are the most investigated structural element, thanks to the wide range of prac-
tical applications and the extensive literature. Plates have many engineering applica-
tions: as upper and lower skins in wing boxes, spar caps of a wind turbine blade near
to its maximum chord, as well as engine blades can be regarded as cantilever plates.
Coated plates can be used as aircraft panel covered with a damping material that can
reduce the flutter caused by airflow (Friedmann, 2004) and on ocean platforms. They
are also used as propeller blades, vibrations adaptors, and to achieve anti-scour per-
formance (Bachynski, Motley, and Young, 2012; Young, 2010).

Simitses and coworkers give a significant contribution to the study of laminated
plates in similitude, thanks to the several applications and the fundamental results
obtained (Simitses and Rezaeepazhand, 1992; Rezaeepazhand and Simitses, 1993;
Simitses and Rezaeepazhand, 1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a;
Rezaeepazhand, Simitses, and Starnes, Jr., 1995b; Simitses and Rezaeepazhand, 1995;
Simitses, 2001; Frostig and Simitses, 2004; Rezaeepazhand and Wisnom, 2009; Reza-
eepazhand and Yazdi, 2011; Yazdi and Rezaeepazhand, 2011a; Yazdi and Rezaeepaz-
hand, 2012). These investigations cover a wide range of loading conditions and struc-
tural configurations: bending of laminated, cross-ply orthotropic beamplates (Simit-
ses and Rezaeepazhand, 1992; Simitses and Rezaeepazhand, 1993; Simitses, 2001),
buckling and free vibrations of laminated cross-ply orthotropic beamplates (Simitses
and Rezaeepazhand, 1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995b), sym-
metric laminated angle-ply plates (Rezaeepazhand and Simitses, 1993; Rezaeepaz-
hand, Simitses, and Starnes, Jr., 1995a; Rezaeepazhand, Simitses, and Starnes, Jr.,
1995b; Simitses and Rezaeepazhand, 1995), delaminated beamplates (Rezaeepaz-
hand and Wisnom, 2009) and sandwich plates (Frostig and Simitses, 2004), flutter
of symmetric angle-ply (Rezaeepazhand and Yazdi, 2011), antisymmetric cross-ply
(Yazdi and Rezaeepazhand, 2011a), and delaminated cross-ply and quasi-isotropic,
laminated plates (Yazdi and Rezaeepazhand, 2012). All these works aim at analyz-
ing complete similitudes and, above all, to find the scaling conditions leading to the
best predictions if partial similitudes are considered. The authors apply STAGE to the
solutions of governing equations and boundary conditions.

The results obtained by Simitses and coworkers are consistent with the observa-
tions made in Sections 2.3–2.3.1. To achieve a true model, a laminated composite
must satisfy at least these two conditions: the conservation of stacking sequence and
material properties. These conditions are satisfied, respectively, by performing ply-
level scaling and designing the model with the same material properties of the pro-
totype. However, some particular configurations require additional conditions. For
instance, mode shapes must be retained for cross-ply (Rezaeepazhand, Simitses, and
Starnes, Jr., 1995b; Yazdi and Rezaeepazhand, 2011a) and delaminated (Rezaeepaz-
hand and Wisnom, 2009) laminates.

On the other hand, partial similitudes make unfeasible to deduce a general behav-
ior because each system, with its own geometry, loading, and boundary conditions, is
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sensitive in its own way to a particular set of design parameters. This makes manda-
tory the separated analysis of each system. Nonetheless, some commonalities can be
identified, as in some applications (Simitses and Rezaeepazhand, 1992; Simitses and
Rezaeepazhand, 1993; Simitses, 2001) a distortion in number of plies still leads to
good predictions of maximum deflection and stress provided that the right scaling law
is chosen. Furthermore, the experimental validations made by Simitses and Rezaeep-
azhand (Simitses and Rezaeepazhand, 1992) show that STAGE fails in predicting any
type of damage.

It can be helpful to show how some of the conditions are derived in these works
for plates. The simplest case concerns an isotropic plate with uniform cross section
and subject to a uniform transverse load Q (Simitses and Rezaeepazhand, 1993). Its
governing differential equation is

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 =

Q
D

, (2.16)

wherein w is the displacement in the direction orthogonal to the xy plane - where the
plate lies - and D is the bending stiffness.

A prototype and its model are governed by the same equation, therefore, assuming
that Eq. 2.16 refers to the full-scale pate, it is possible to write, for the model,
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Eq. 2.17 can be rewritten in terms of scale factors and the prototype parameters
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Eq. 2.16 and Eq. 2.18 are the same if the terms in parenthesis in the last equation
are all equal, i.e.,
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and complete similitude is achieved when Eq. 2.19 is completely satisfied, which
leads to the similitude condition

λx = λy. (2.20)

Eq. 2.19 allows to derive three expressions for the orthogonal deflection scale
factor λw:
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that are absolutely equivalent and, therefore, ensure a perfect prediction of the proto-
type behavior, when Eq. 2.20 is satisfied. Conversely, not fulfilling the similitude con-
dition makes Eqs. 2.21–2.23 different and yields to different results, none of which is
ensured to be a good prediction. It is important to underline that the procedure herein
presented should be completed by also considering the boundary conditions.

Other articles (Rezaeepazhand and Simitses, 1993; Rezaeepazhand, Simitses, and
Starnes, Jr., 1995b; Simitses, 2001), which objective is to understand to which extent
it is possible to push distortions before the prototype behavior is totally unrecoverable,
are interesting example for laminated configurations. In the case of angle-ply plates,
assuming that prototype and model have similar mode shapes - which implies that
they can be well approximated by the same number of terms in the series obtained by
applying Galerkin procedure to the solution of the characteristic equation - the scale
factors associated to the integers characterizing this series are

λm = λn = λp = λq = λAmn = 1, (2.24)

where m and n are the number of half waves in x and y directions, respectively, p and
q are integer indices of the Galerkin procedure, associated to the coefficient Amn.

Then, five scaling laws for the non-dimensional frequency Ω are derived:
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where the terms Ei j and Di j are the laminate Young’s moduli and flexural stiff-
nesses, h is the total plate thickness, andA is the plate aspect ratio. The Eqs. 2.25–
2.29 depend only on material properties and the total number of plies, not on the
thickness of the single ply. All of them must be satisfied simultaneously to achieve a
complete similitude.
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By introducing a parameter β, linked only to the number of plies Np,

β =
3N2

p −1
N3

p
, (2.30)

and assuming plies with same thickness, same material properties and fiber orienta-
tion, complete similitude requires
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Satisfying all the Eqs. 2.25–2.29 leads necessarily to

λβ = λA = 1. (2.32)

Therefore, a true model is obtainable if length and width of the panel scale in the
same way, as well as the total number of plies does not change, that is, as previously
revealed, ply-level scaling. Interestingly, thickness is not directly involved into the
scaling procedure, thus it is a free parameter.

Instead, for cross-ply configurations, the dimensionless frequency scales as
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thus complete similitude requires
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that is satisfied if and only if {
λm = λn

λA = 1
. (2.37)

Once again, the aspect ratio of the plate must be retained and, in addition, the
numbers of half waves must scale in the same way.

The tests highlight that angle-ply laminated plates are very sensitive to scaling
procedures different from ply-level one, leading to the aspect ratio scale factor λA

value adapting to correct the distortion, often requiring unsuitable design conditions.
On the other hand, cross-ply constructions exhibit less sensitivity to changes in the
number of plies, which implies less constrictions in design phase.
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Concerning buckling load, its estimation is very sensitive to the number of plies -
and, therefore, thickness - and aspect ratio (Rezaeepazhand and Simitses, 1993; Sim-
itses and Rezaeepazhand, 1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a;
Simitses and Rezaeepazhand, 1995). However, it is still possible to obtain good pre-
dictions by changing the number of plies of the model provided that it is not too low
(Simitses and Rezaeepazhand, 1993) or by modulating the aspect ratio (Rezaeepaz-
hand and Simitses, 1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Simitses
and Rezaeepazhand, 1995).

Good matches with the prototype behavior are much more difficult to achieve
when there are distortions in the material properties. Discrepancies vary between 5%
and 30% depending on the chosen scaling law if the model is made of isotropic mate-
rial (like metal and plastic) and between 15% and 20% if it is made of fiber-reinforced
material (Simitses and Rezaeepazhand, 1993). Conserving the stacking sequence and
the number of plies, the choice of a proper fiber-reinforced material for the model
allows a good prediction of the buckling load without modulating the aspect ratio. To
give an example, when the prototype is made of Kevlar/epoxy composite, good ac-
curacy is achieved when the model is made of boron/epoxies, boron/polymider, and
most of the graphite/epoxies materials. Conversely, glass/epoxy is not a good choice.
When the model is made of isotropic material, modulating the aspect ratio still makes
possible an accurate prediction of the buckling load. (Rezaeepazhand and Simitses,
1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Simitses and Rezaeepazhand,
1995).

When determining the flutter speed in aerodynamic applications, good predictions
are obtainable although distortions in thickness, fiber orientation, and aspect ratio. In
contrast, the discrepancies increase as the Mach number increase. However, it is
likely that such a phenomenon does not depend on the scaling procedure but to the
aerodynamic theory used, as Rezaeepazhand and Yazdi (Rezaeepazhand and Yazdi,
2011) and Yazdi et al. (Yazdi and Rezaeepazhand, 2011a) apply the quasi-steady
aerodynamic theory, valid for M <

√
5. It is therefore expectable a loss of accuracy at

higher Mach numbers.
Complete similitudes require two more conditions if delamination is taken into

account: the buckling modes (local for both thin and large delaminations) and the
delamination position must be retained. In fact, when the delamination length is too
low or the delamination position is too close to the plate midplane, there is a loss of
accuracy precisely because the modes are no more local but global or mixed, thus the
conservation of the modes is no more observed (Rezaeepazhand and Wisnom, 2009;
Yazdi and Rezaeepazhand, 2012).

The works until now reviewed consisted in STAGE applied to the solutions of gov-
erning equations. In similar investigations (Ungbhakorn, 2001; Singhatanadgid and
Ungbhakorn, 2002; Singhatanadgid and Ungbhakorn, 2003; Ungbhakorn and Sing-
hatanadgid, 2003c; Singhatanadgid and Ungbhakorn, 2005; Singhatanadgid and Na
Songkhla, 2008), STAGE is applied no more to solutions but to governing equations
directly, deriving more general scaling conditions and laws because independent from
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boundary conditions. These studies can be seen as a natural continuation of the pre-
vious works of Simitses, Rezaeepazhand, and their collaborators (Simitses and Reza-
eepazhand, 1992; Rezaeepazhand and Simitses, 1993; Simitses and Rezaeepazhand,
1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Rezaeepazhand, Simitses,
and Starnes, Jr., 1995b; Simitses and Rezaeepazhand, 1995; Simitses, 2001; Frostig
and Simitses, 2004; Rezaeepazhand and Wisnom, 2009; Rezaeepazhand and Yazdi,
2011; Yazdi and Rezaeepazhand, 2011a; Yazdi and Rezaeepazhand, 2012).

Also in this case, several configurations and loading conditions are considered:
buckling of symmetric cross-ply (Ungbhakorn, 2001), antisymmetric cross- and angle-
ply laminated plates (Ungbhakorn and Singhatanadgid, 2003c) subject to biaxial load-
ing, symmetric plates under normal in-plane loading (Singhatanadgid and Ungbhakorn,
2003), polar orthotropic clamped annular plate under compression and torsional load,
and free vibrations of antisymmetric cross- and angle-ply laminated plates (Sing-
hatanadgid and Ungbhakorn, 2002).

These works confirm many of the results already seen, like the requirement of
ply-level scaling for complete similitude. The authors point out that, physically, this
implies retaining the flexural stiffness of the plates when scaling plates. As a matter
of fact, limiting the distortions of flexural stiffness leads to good results because.
For this reason, by changing the model material from Kevlar/epoxy to E-glass/epoxy,
the accuracy of the predictions decrease, while the discrepancies are very low when
switching from a stainless steel material to aluminium, as their flexural stiffnesses
are very close (Simitses and Rezaeepazhand, 1995; Singhatanadgid and Ungbhakorn,
2005). Further confirmations are given when considering distortions in extensional,
bending, and bending-extension stiffnesses: the discrepancies are always higher when
the flexural stiffness is changed (Singhatanadgid and Ungbhakorn, 2002).

Singhatanadgid and Na Songkhla (Singhatanadgid and Na Songkhla, 2008) per-
form experimental tests on vibrating thin plates and, as seen seen in other works (Mor-
ton, 1988; McKown, Cantwell, and Jones, 2008), one of the main aspects is the dif-
ficulty of experimental testing. In fact, the results of the test made on plates with
different boundary conditions highlight inconsistencies between the theoretical and
the experimental predictions. However, these outcomes are, likely, due to imperfec-
tions in reproducing the boundary conditions, as analyses on free plates - the simplest
boundary condition to realize - exhibit good theoretical/experimental matches.

Frequency response

Although DA is the oldest and most used similitude method, there are few interesting
applications to the analysis of the frequency response of plates; one of these is due to
Ciappi et al. (Ciappi et al., 2012). The aim of the authors is to define dimensionless
parameters so that scaling laws for excitation frequency and Power Spectral Density
(PSD) can be derived. In fact, such a dimensionless representation should provide a
universal expression for the structural response of systems excited by a TBL, which
induced vibrations in elastic structures are the source of the major noise in transport



40 Chapter 2. Literature review

engineering (naval, aerospace, and automotive). The test article under analysis is a
thin, flat elastic plate without prestresses wetted over one face by a stationary TBL.
The flow is incompressible and without pressure gradient.

This work is a demonstration of the experience needed, as the authors identify
eleven dimensionless parameters governing the problem, but, by means of a thorough
analysis of this set, it is demonstrated that not all the groups are useful. The authors
conclude that the only dimensionless ratios important for deriving a non-dimensional
form of the displacement PSD are those involving the pressure distribution PSD. Par-
ticularly, they derive three dimensionless equations of the displacement PSD by using
a particular form of non-dimensional frequency, plus another one from energy consid-
erations. The comparisons of four experimental tests - performed at different condi-
tions in both wind tunnel and towing tank - are plotted on reference axes reporting the
values of dimensionless frequency, on the horizontal axis, and one of the dimension-
less formulations of displacement PSD. The experimental data are shown to collapse
very close to each other, proving that the proposed representations allow an estimate
of displacement PSD in the whole frequency range, revealing to be useful for prelimi-
nary predictive steps. Particularly, the equation derived by energy considerations links
non-dimensional frequency and acceleration with just one, simple equation, which
provides a quick estimate of structural response in the entire frequency range. On the
other hand, the other equations provide a good response estimation when the damping
is hard to identify (for example, when the plate is part of a greater structure, like a ship
or an airplane).

The other application of DA to the investigation of the frequency response of
plates is the work of He et al. (He et al., 2020), in which the problem of middle-
frequency regions is addressed. In fact, SEA method, meant to give consistent results
in high MOF regions, would not work in a proper frequency range. Moreover, the
phase information is lost. FE approach, instead, is able to provide the phase informa-
tion but its application outside the low modal density ranges becomes computationally
inefficient. Therefore, the authors decide to apply the coupling wave FE-SEA hybrid
method, combining the advantages of both the methods and suitable for the middle
frequency range. The final aim of the work is to study the coupling between solar
arrays and a satellite, however the method is first tested on a 2-plates assembly, where
the subsystems with low modal density are modeled with FE approach, while those
at high modal density are scaled with SEA approach. Both the plates are made of
aluminium, and the excited plate is the deterministic one, while the receiver plate is
the statistical one. Under the assumption of consistent material, unchanged damping
(the internal loss factor is smaller than 0.1, thus the assumption is reasonable as the
differences between the system are quite small), and broadband concentrated force,
the authors define three fundamental scaling laws: one for the force PSD [in which,
in accordance with other works previously mentioned (Rezaeepazhand and Simitses,
1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995b; Simitses, 2001) it is assumed
that the geometrical dimensions of the plates scale in the same way], and two for the
velocity response, which scales differently according to the type of subsystem (FE
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or SEA). The predictions of the Root Mean Squared (RMS) responses are consistent.
However, SEA introduces uncertainties, therefore the reconstructions of the response
become less precise for increasing frequency. Moreover, the excited plate provides
better predictions than the receiver because of the power loss in the hybrid line con-
nection.

The advantages of ASMA are illustrated in two works. In the first one, De Rosa et
al. (De Rosa, Franco, and Mace, 2005) analyze a two-plates assembly joined at right
angle by means of ASMA, no more justified with SEA but EDA. The experiments are
conducted by exciting one plate - the driver - and acquiring the response on the other
- the receiver. Length and width of both plates are scaled down as{

â = σa
b̂ = σb

, (2.38)

where a and b are the lenght and width of one plate, respectively.
As a consequence, the j-th natural radial frequency ω j scales as

ω̂ j =
ω j

σ2 . (2.39)

In order to keep similar modal characteristics, dynamic scaling must be intro-
duced. Thus another scale factor ε < 1 is introduced purposefully and the damping η j

scales as

η̂ j =
η j

ε
. (2.40)

EDA parameters must be scaled, too. Particularly, the spatial correlation between
two modes must not change, therefore the cross-mode partecipation factors ψ jk must
remain the same:

ψ̂ jk = ψ jk. (2.41)

When characterizing frequency, instead, the auto-modal power mobilities Γ j j scale
as

Γ̂ j j = εσΓ̂ j j. (2.42)

Concerning the cross-modal power mobilities Γ jk, they can assume both large
and small values, if the modes overlap or not, respectively. This leads to different
functions of the scale factors σ and ε, i.e., different scaling procedures. In particular:

Γ̂ jk,large = εσ
2Γ jk,large, (2.43)

Γ̂ jk,small =
σ2

ε
Γ jk,small . (2.44)
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Eqs. 2.43–2.44 show how the large terms scale in the same way of the auto-modal
power mobilities, thus the small terms are the only ones which do not scale according
to the rule σ2ε.

When scaling the response of a system, or a directly excited subsystem belonging
to a generic assembly, any value 0 < σ < 1 can be chosen. Moreover, it can be
demonstrated that assuming σ = ε is a good approximation and returns acceptable
results.

Under these hypotheses, the energy terms of interest (input power PIN , kinetic
energy T , EDA energy coefficients Ars, and mean squared velocity V 2

m) scale as

P̂(s)
IN = P(s)

IN , (2.45)

T̂ (r) = εσ
2T (r) = σ

3T (r), (2.46)

Ârs = εσ
2Ars = σ

3Ars, (2.47)

V̂ 2
m = εV 2

m = σV 2
m, (2.48)

where the superscripts (s) and (r) indicate the source and receiver plates, respectively.
According to Eq. 2.45, the input power is not scaled. On the analytical side, this

results is due to scale factors erasing each other; on the physical side, it is coherent
with the energy redistribution, among the modes, imposed to the energy terms (EDA
coefficients, damping, etc.) through the scale factors.

The computational saving searched can be obtained by scaling the number of
modes NM as

N̂M = σ
2NM, (2.49)

which gives the number of modes required in the scaled response. This choice is
motivated by the decreasing modal density when the plate area is reduced. However,
N̂M gives the minimum number of modes required. In fact, one can choose not to scale
such a number and push the dynamic analysis of the model to further frequencies. In
this regard, the scale factors act as a frequency modulator, controlling the width of the
frequency window in which the model yields acceptable predictions.

The application of ASMA to the two-plates assembly shows that the predictions
are good when the MOF µ is high enough to expect a global response, which means
in the same range of validity of SEA. On the one hand, the response of the source
plate is well reconstructed, because it is dominated by the power input, which in turn
is related to the auto-modal power mobility, with which ASMA works fine. On the
other hand, the predictions on the receiving system exhibits some approximations, yet
the response is still acceptable [this is in accordance with the work due to He et al.
(He et al., 2020)]. However, a noticeable computational saving is obtained, passing
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from 400 (driver) and 320 (receiver) points in the prototype assembly to 60 and 48
points in the model assembly.

These results are successively strengthened in other investigations on the dynamic
behavior of plates (De Rosa and Franco, 2008a; De Rosa, Franco, and Polito, 2011),
assemblies of two-plates (De Rosa and Franco, 2008a; De Rosa and Franco, 2010),
and three-plates (Martini, De Rosa, and Franco, 2004; De Rosa and Franco, 2010).

The second important work on ASMA concerns a panel excited by a TBL load
(De Rosa and Franco, 2008b). Usually, the dynamic response is well estimated above
the structural/aerodynamic coincidence frequency by discretizing both structure and
fluid with meshes of different scales, successively linked with an interpolation ma-
trix. This procedure is very time consuming, however, this problem can be bypassed
with ASMA, which introduces a mesh with a scaled size for both the structural and
aerodynamic operators, recovering the global response with an acceptable approxima-
tion. Of course, the local response is not well reproduced. Furthermore, a comparison
with results obtained by means of FEM demonstrate that FEA diverges above the
coincidence region due to the spatial aliasing of TBL correlation lengths. ASMA,
instead, provides accurate results because the minimum scaled flexural wavelength is
still smaller than TBL correlation length.

Two extensions to ASMA are provided by Li (Li, 2010a; Li, 2010b). First, SEA
is combined with Skudrzyk’s mean value Theorem (Skudrzyk, 1966) to derive, first, a
general scaling law, then specific laws for a flexural plate (Li, 2010a). Modal density
θ is used as control factor and scales as

λθ =

√
λρ

λE

λA

λh
< 1, (2.50)

where ρ is the mass density, E is the elastic modulus, A is the plate area and h the
plate thickness. This scale factor is used to simulate high frequency dynamics with
coarse FE models; this is expressed by the condition λθ < 1, as scaling down the
modal density scale factor leads to a reduction of the computational cost.

The results show that both local and global responses are accurately estimated
when the control factor is closer to one, that is, modal density of the prototype close to
the model modal density. Even though the method is developed for global responses,
it works fine for local responses, too.

In the other work (Li, 2010b), Li determines the scaling laws by using random
process theory and assuming the Gaussian Orthogonal Ensemble (GOE) and that the
mode shapes are random quantities. The test article is a thin flat plate with randomly
placed masses attached, which leads to the definition of auxiliary requirements to
assure the reduction in modal density and boosting the frequency analysis. The plate
is excited by an harmonic force and the ensemble statistics (mean and variance) of
the mean squared velocities of the model are well estimated. Furthermore, the model
retains the ensemble size of the system.
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SAMSARA is applied for the first time by De Rosa et al. (De Rosa et al., 2012)
to investigate the response of an elastic homogeneous plate in contact with an acous-
tic cavity (a parallelepiped filled with fluid). Firstly, it is assumed that global mode
shapes φ j remain unaffected, i.e.,

φ̂ j = φ j, (2.51)

which implies that the mode shapes do not need to be posed in similitude. Moreover, it
ensures that the excitation and measurement points, acting at the same dimensionless
coordinates in both prototype and model, have the same behavior. Consequently, as
already seen with ASMA in Eq. 2.32, also the cross-mode participation factors do not
scale.

Concerning the auto-power mobilities, they scale as

Γ̂ j j =
1

ληλ2
ω

Γ j j. (2.52)

The cross terms involve different dependencies from the scaling parameters even
in SAMSARA; therefore, they cannot be posed in direct similitude. The large terms
and the small ones must be separated as

Γ̂ jk,large =
1

ληλ2
ω

Γ jk,large, (2.53)

Γ̂ jk,small =
λη

λ2
ω

Γ jk,small . (2.54)

With respect to ASMA, SAMSARA allows to introduce the scale factors of the
parameters directly involved into the equations, which makes easier to provide a phys-
ical explanation. On the one hand, large values of damping help to increase the overlap
between modes, therefore the small cross-power mobilities are proportional to damp-
ing. On the other hand, when the modes already overlap, to increase such an overlap
requires a negligible amount of damping. However, damping is fundamental when the
resonant response of each mode and the cross-modal power mobility must be reduced.
Thus, large cross-power mobilities must be inversely proportional to damping.

More generally, the role of the cross-modal terms is not well reproduced when
λη ̸= 1. A complete similitude necessarily requires unchanged damping between pro-
totype and model.

The spectral density force function SFF - i.e., the excitation - and other EDA
parameters already met in ASMA (Eqs. 2.45–2.51) scale as

ŜFF =
λF

λM
SFF , (2.55)

P̂IN =
λ2

F

λωλM
PIN , (2.56)
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T̂ (r) =
λ2

F

λMληλ2
ω

T (r). (2.57)

As already seen in other works (Rezaeepazhand and Simitses, 1993; Rezaeepaz-
hand, Simitses, and Starnes, Jr., 1995b; Simitses, 2001), the condition for the plate
complete similitude is to keep unitary the aspect ratio scale factor (λA = 1). For
the sake of simplicity, the authors represent the global modes as uncoupled structural
and acoustic bases, thus the natural frequencies of the plate and the fluid volume, still
uncoupled and retaining the material properties, scale as

λ
plate
ω =

λh

λ2
a

, (2.58)

λ
f luid
ω =

1
λa

, (2.59)

in which all the sides of the parallelepiped cavity scale as the sides of the plate.
However, the system as a whole is still coupled and such a coupling can be ex-

pressed by the ratio Λ between the plate and fluid natural frequencies of the same
mode order.

Λ =
ω

plate
j

ω
f luid
j

. (2.60)

In order to keep the relative distribution of natural frequencies, the ration Λ must
not change between prototype and model, i.e., λΛ = 1. This leads also to the addi-
tional conditions for which the plate thickness and area must not change. A complete
similitude is investigated; after the remodulation in frequency, the prototype behavior
is perfectly reconstructed.

In a successive work (De Rosa, Franco, and Meruane, 2015), replica and propor-
tional sides models of simply supported plates are investigated; In both cases, a good
reconstruction of the dynamic response is obtained. Therefore, as mentioned above,
a good prediction of the prototype response does not require the scaling of all the
structural dimensions (i.e., to perform a complete geometrical scaling), it is simply
necessary to satisfy the similitude conditions. Avatars are analyzed for the first time
in this work. The tests underline that the response estimation is acceptable until the
distortion is limited. It is herein proposed the definition of a metric representative of
the similitude degree. In this first attempt, the scale factor of the modal density is
used,

λθ =
λaλb

λh
, (2.61)

that is Eq. 2.50 rewritten under the assumption of unchanged material properties and
explicit area scale factor. On the one hand, the results are coherent when avatars are
considered: the scale factor increases as the distortion increases. However, they are
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totally incoherent with true models. For instance, a replica and a proportional sides
model, quite close in terms of similitude degree, exhibit values of λθ equal to 0.33
and 8, respectively. Therefore, modal density turns out to be not a a good estimator of
similitude degree.

New insights are obtained in the application of SAMSARA to cantilever plates
due to Meruane et al. (Meruane, De Rosa, and Franco, 2015). Numerical and exper-
imental comparisons exhibit good matches also when avatars are used. However, the
high frequency range is characterized, in all cases, by significant discrepancies due to
damping, as the numerical models assume constant damping for both prototype and
models (ζ = 0.005). Particularly, simulations with damping ratio ζ equal to 0.001
and 0.0075 are made. The results show that, indeed, while the experimental results of
the prototype are closer to the numerical simulations at ζ = 0.001, those provided by
the replica are closer to the numerical results at ζ = 0.0075. A possible explanation
may be linked to the added damping due to the boundary condition, which sums to
the classical internal dissipation mechanisms of the plate. Furthermore, the results
of the experimental tests are close to the numerical results in regions at low modal
density. In fact, apparently, the size of the plates affects the response in regions at
high modal density. This leads to perform other tests with two different proportional
sides models one with dimensions twice those of the prototype (proportional large),
the other with dimensions halved (proportional small). The comparisons between the
responses show that similitudes work well when the frequency range contains enough
poles among which the energy can be distributed. This explanation is highlighted by
the fact that the predictions provided by the proportional large model are quite close
to the reference one, while those provided by the proportional small model are not.
In fact, being tested in the same frequency range of the prototype, it exhibits fewer
poles, thus larger discrepancies, because many natural frequencies have moved fur-
ther. Therefore, these outcomes are in line with the results of Li (Li, 2010a), as the
modal density must be kept as unchanged as possible.

Finally, Hausdorff distance is tested as similitude metric and the results are en-
couraging, being coherent with the types of similitudes: the distances evaluated for
replica and proportional sides model are close enough, and they increase as distortions
increase.

In the last two works (De Rosa, Franco, and Meruane, 2015; Meruane, De Rosa,
and Franco, 2015), the role of modal density in similitudes is highlighted. In fact, it
is first concluded that the modal density is not a reliable similitude index as it does
not allow an acceptable interpretation of replica and proportional sides behaviors.
Therefore, it cannot be generalized to all types of similitude (De Rosa, Franco, and
Meruane, 2015). Conversely, Meruane et al. (Meruane, De Rosa, and Franco, 2015)
remark that modal density must be retained in order to reconstruct the prototype re-
sponse. This seems contradictory, because the values of modal density, in a given
frequency range, for replica and proportional sides are different, yet both of them
well predict the full-scale structure behavior. A further apparent contradiction arises
from the observation that, by definition, the replica model can act as a prototype for
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the proportional sides model. Actually, both the conclusions are true and in accor-
dance between them. The modal density represents the number of resonating modes
in a given frequency range (that can be changed according to the model considered),
thus it is a quantitative information. Two models of the same prototype may have the
same modal density, i.e., the same number of modes in a certain frequency range, but
one may be a replica, the other an avatar. In fact, distortions can change the succession
of modes, that is a qualitative information, and the response is no longer reconstructed
although the modal density is the same. The quantitative condition allows the redis-
tribution of the energy in the right number of poles, while the qualitative condition
ensures that the succession of such poles is kept.

The scaling of radiated acoustic power of a simply supported panel is attempted
by Robin et al. (Robin, De Rosa, and Berry, 2016), which is not a straightforward
operation, since the presence of the radiation resistance matrix entails the definition
of a new scaling condition for the frequency, namely

λωλd = 1, (2.62)

where d is the distance between two elementary radiators. Moreover, a new frequency
scale factor is proposed, which is an attempt, not derived from equations, of finding a
law which leads to an acceptable avatar:

λω =
2

λa +λb
, (2.63)

in which the 2 at the numerator leads to the replica scaling law when the condition
λa = λb is satisfied.

Applying Eqs. 2.62–2.63, experiments made on a proportional sides model show
that the resonance peaks of the radiated power are well reconstructed in the range
100-1000 Hz, while underestimated/overestimated (according to which plate is used
as reference) above 1000 Hz.

The scaling of radiated acoustic power is further deepened by Berry et al. (Berry
et al., 2020), who apply SAMSARA in order to examine the similitude laws for the
vibroacoustic response of rectangular orthotropic panels radiating sound in a semi-
infinite light fluid medium. Particularly, the acoustic response in similitude is studied
from the far-field and the near-field points of view. It is interesting to underline that
the proportional sides assumption is necessary for scaling all the dynamic parameters
(natural frequency, vibration response, near- and far-field acoustic responses); far-
field pressure is always scalable, while near-field radiation can be scaled exactly only
in specific situations. The laws are then validated with experimental tests involving
plates with several dimensions and made of different materials.

SAMSARA is applied by Franco et al. (Franco et al., 2019) in analyzing the re-
sponse of a plate under TBL excitation described by Corcos model. The whole engi-
neering problem is transformed into a new domain by scaling the excitation, structural
and transmitted vibration, and the structural noise. The increased complexity of the
test case is reflected by a series of new similitude conditions. In fact, in addition to the
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typical assumptions of SAMSARA, like unchanged damping and spatial dependence
of the analytical mode shapes (De Rosa et al., 2012; De Rosa, Franco, and Meruane,
2015; De Rosa, Franco, and Meruane, 2015), it is also assumed that the reduced fre-
quency is the same in both the x and y directions. This hypothesis ensures that the
ratios appearing into the Corcos model, ωξx

Uc
and ωξy

Uc
(where ξx and ξy are the stream-

wise and spatial separations, while Uc is the convective velocity), do remain constant
between the prototype and the model. This is a mandatory requirement to scale the
correlation area accordingly to the structural domain if the Corcos coefficients as-
sume fixed values. However, the basic constraint for complete similitude is expressed
in terms of joint acceptances between two modes, derived under the assumption of
similar auto-spectral densities.

For a simply supported plate, it is possible to scale the cross-spectral densities if
the Corcos coefficients are constant and the scaling law is valid for all the TBL models
using the same coherence functions (i.e., with separate space variables), because the
joint acceptances, and their scaling law, are ruled by the choice of coherence func-
tion of TBL model. Furthermore, it is also possible to take into account changes of
material.

The predictions are compared in terms of the ratio of auto-spectral densities of
acceleration with respect to the auto-spectral density of wall pressure distribution due
to TBL, versus frequency. The curves overlap for both aluminium and acrylic cast
plates. The analytical results are strengthened by the experimental measurements of
the auto-spectral densities, even though they are noisier (however, such a noise is
independent from SAMSARA, as it is due to experimental uncertainties and measure-
ment processing). It is further demonstrated that, because the TBL load acts as an
uncorrelated pressure field for increasing frequency, the solution is less affected by
acceptance integrals. Therefore, in the high frequency region, the condition related to
the reduced frequency is no more a mandatory constraint.

Finally, numerical analyses are carried out also for more complex configurations,
such as composite plates. The eigensolutions sequence is not affected if thickness and,
most importantly, the stacking sequence are unchanged, which means performing ply-
level scaling [as many authors already stated (Kellas and Morton, 1992b; Rezaeepaz-
hand and Simitses, 1993; Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Rezaeep-
azhand, Simitses, and Starnes, Jr., 1995b; Simitses and Rezaeepazhand, 1995; Reza-
eepazhand, Simitses, and Starnes, Jr., 1996a; Rezaeepazhand, Simitses, and Starnes,
Jr., 1996b; Rezaeepazhand and Simitses, 1997; Simitses, Rezaeepazhand, and Sier-
akowski, 1997; Wisnom and Atkinson, 1997; Johnson et al., 1998; Johnson et al.,
2000; Simitses, 2001; Frostig and Simitses, 2004; Carrillo and Cantwell, 2007a; Car-
rillo and Cantwell, 2007b; Rezaeepazhand and Wisnom, 2009; Rezaeepazhand and
Yazdi, 2011; Yazdi and Rezaeepazhand, 2011a; Yazdi and Rezaeepazhand, 2012;
Yazdi, 2013)]. In fact, proportional sides models provide perfect matches also chang-
ing the thickness; conversely, modifying the lay-up generates distortions.

This type of analysis is further developed by Franco et al. (Franco et al., 2020),
applying SAMSARA to stiffened plates. In particular, the plates are characterized by
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stiffeners - represented as beams - with Z and C cross-sections at the same time. The
presence of the stiffening makes achieving complete similitude harder, as distortions
are introduced by the terms linked to the bending stiffness of the beams. Also the
smearing approach leads to some discrepancies, because such a formulation requires
that the spacing between the stiffeners is small compared with the distance between
vibration nodes. However, this work highlights an interesting point: the scale factor
of frequency is not constant in all the frequency range, even though the sequence of
the structural modes is not altered. Through numerical models (but also experimental,
potentially), the function λωmn(ω) can be reconstructed by means of a polynomial in-
terpolation. However, the predictions are acceptable, although they exhibit some dis-
crepancies moving towards high frequencies; this is due to the indeterminacy linked
to the remodulation of the function λωmn(ω), which has not a physical meaning.

The scaling behavior of plates excited by TBL is the study subject of Xiaojian et
al. (Xiaojian et al., 2016), too, who propose a method very similar to SAMSARA.
The novelty of the work is the method used to determine the frequency offset between
low and high frequency regions. The numerical and experimental predictions prove
to be good, although some slight discrepancies between them (it is not known if these
errors are due to the approximated experimental fixing conditions or to the thickness
effect that strongly affects the vibration response).

Luo et al. (Luo et al., 2013) propose an innovative approach in dealing with partial
similitudes. In fact, the authors first apply STAGE to derive the scale factors, then
evaluate the applicable structure size interval to determine accurate distorted scaling
laws. The procedure consists in fixing the discrepancy value that must be returned
by partial similitudes, designed by changing the structural parameters. The method is
applied to a variety of test articles: simply supported plates numerically (Luo et al.,
2013) and experimentally (Luo et al., 2014c) investigated, and to coated thin plates
(Luo et al., 2016b). SA is then introduced to support STAGE to determine accurate
distorted scaling laws (Luo et al., 2016b). The operating principles are summarized in
four points (listed in Sec. 2.2.6) which link the design scale factors to the sensitivities
of the system. The method is used to investigate thin walled plates (Luo et al., 2016b)
and annular thin plates (Luo et al., 2015).

However, SA does not just support existing similitude methods like STAGE (Luo
et al., 2015; Luo et al., 2016b), but can also be used to derive its own similitude con-
ditions and scaling laws, as Adams et al. (Adams, Bös, and Melz, 2016; Adams et al.,
2018) show. In the first work (Adams, Bös, and Melz, 2016), GSA is used to derive
sensitivity-based scaling laws. GSA considers the design parameters space as a whole
and allows to evaluate the effect of each parameter as well as their interactions. The
test article herein investigated is a simply supported aluminium plate; the response
parameters observed are the natural frequencies and the Mean Squared Transfer Ad-
mittance (MSTA). Design Of Experiments (DOE) is first used to determine the effects
of the design parameters, employing multiple quadratic regression, too. Then, the as-
sumption of natural frequencies and MSTA quadratically modeled is made. Complete
geometrical scaling leads to satisfactory agreements, while changing the thickness
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leads to significant error in predicting MSTA, which ranges from 21% to 85%. This
implies that quadratic modeling is not sufficient; in fact, a fourth order model would
be more suitable.

In Adams et al. (Adams et al., 2018), LSA is applied, which is based on dif-
ferentiating the system under analysis at a particular point in the parameter space by
performing a first-order sensitivity analysis. This procedure leads to the derivation of
power-law sensitivity-based scaling laws. In this work, three cases are presented: an
analytical study of a simply supported plate which behavior is described by Kirch-
hoff theory, a numerical, FE analysis of the same test article described with Mindlin-
Reissner theory, and the investigation of a generic car undercarriage.

Two things are of particular interest. The first is the values of the exponents pro-
vided by SA, which leads to a frequency scale factor equal to

λω = λ
−2
a λ

1
h, (2.64)

that is the same law obtained with SAMSARA (Eq. 2.58).
The second interesting thing is the case of the plate described by Mindlin-Reissner

theory, as it highlights the pitfalls of sensitivity-based scaling laws, namely their math-
ematical origin. In fact, while similitude-based laws keep the physical meaning of the
phenomenon under analysis, sensitivity-based laws are instead obtained by means of
a mathematical procedure, therefore lacking of any link to the physical behavior of the
system. This is why, when analyzing the Mindline-Reissner plate, SA tends to over-
estimate both natural frequencies and MSTA, because it does not take into account
the influence of thickness. At high frequencies, the mode shapes also change.

Coutinho et al. (Coutinho, Baptista, and Rodrigues, 2018) introduce an interesting
modification of STAGE, based on a modular approach which leads to scaling relation-
ships as general and structured as possible because of their organization into modules.
These modules are derived by applying STAGE to the most basic equations: the gov-
erning equation derived from elasticity theory, force and moments resultant written as
integrals of stress fields, stress-strain and strain-displacements relations, and displace-
ment field. In this way, it is possible to obtain flexible groups of scaling laws that can
be efficiently re-used in a multilevel methodology. Using basic, general equations, no
simplifying assumption is made, thus the scaling relationships obtained are as general
as possible and applicable also to complex systems that lack of governing equations.
This approach is a big step forward in similitude field, as all the previous approaches
consider just specific cases and the similitude conditions are derived for each one of
them, with great effort of the analyzer. Instead, the method proposed by Coutinho et
al. derives the modular scaling laws just once and shows how they can be assembled
to solve more complex problems (e.g., acoustic and thermal). The modular approach
is applied to analyze a stiffened aluminium plate with pinned edges. The similitude
conditions and scaling laws are derived for both the plate and the beam structural op-
erators; those for the stiffened plate system are obtained by imposing the continuity of
displacements and internal forces at the interfaces. The predictions provided by this
approach are very good.
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Impact response

Geometrical scaling is the most single one when DA is applied. However, it is not
always sufficient for all the loading phenomena; for example, it is not for impact
loading, which may produce fracture and effects of strain rate that do not scale with
geometry. These limits of geometrical scaling are the subject of a series of works
aimed at studying the impact response of plates (Nettles, Douglas, and Estes, 1999;
Ambur et al., 2005; Sutherland and Guedes Soares, 2007; Viot et al., 2008; Xu et al.,
2016).

Nettles et al. (Nettles, Douglas, and Estes, 1999) execute several experimental
tests on composite plates subject to transverse load. The results underline the in-
creased scaled load of small models with respect to the prototype and other phenom-
ena, therefore confirming observations done in other works (Morton, 1988; Jackson
and Fasanella, 1989; Jackson, 1990). However, new phenomena are highlighted, like
the dents due to impacts that do not scale well and the smaller, with respect to the pro-
totype, scaled delamination area of the model (passing from 32 to 16 plies leads to a
change of 71%). Moreover, a longer matrix splitting induces a change into the delam-
ination shape when the number of stacks increases (the shape changes from circular
to a more elongated shape).

Ambur et al. (Ambur et al., 2005) focus on the effects of delamination and fiber
failure. The authors execute impact experimental tests on six flat and curved com-
posite panels, with two geometrically scaled sizes. The tests show significant size ef-
fects. The results suggest that the impact energy absorption appears to depend on the
approach used to scale the laminate. In fact, flat panels, subjected to low damage im-
pacts and scaled with the ply level procedure, are less resistant than the sublaminate-
level scaled panels. On the other hand, when subjected to high damage impacts, the
ply-level scaled panels are more damage resistant than the sublaminate-level scaled
ones (which absorb more energy through local fiber failure). When the panels are
curved, sublaminate-level scaling induces less damage resistance than ply-level scal-
ing. Moreover, damage mode and extent are influenced and, as expected, scaled-up
models exhibit more damage with respect to the prototype.

Sutherland and Guedes Soares (Sutherland and Guedes Soares, 2007) investigate
an orthotropic plate made of a marine composite material and struck by a mass. Buck-
ingham’s Π Theorem is used to derive the similitude conditions. However, the derived
scaling laws work fine only in the elastic range, as deviations are observed due to size
effects: in larger specimens, the fiber failure occurs at relatively lower load and dis-
placements [as already seen in other works (Nettles, Douglas, and Estes, 1999; Ambur
et al., 2005). Larger plates exhibit limited stiffening effects and, when the specimens
have thinner woven ravings, higher strain-rate results.

Viot et al. (Viot et al., 2008) and Xu et al. (Xu et al., 2016) also underline the
limits of geometrical scaling and the general smaller resistance to damage of large test
articles.
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The sequential similitude method is proposed by Shokrieh and Askari (Shokrieh
and Askari, 2013) for analyzing the scaling of buckling problems of structures previ-
ously impacted, therefore structures already damaged before being subjected to buck-
ling load. Sequential similitude defines scaling laws in two consecutive steps:

1. Step one: the similitude method is first applied in the case of impact loading to
produce similar damaged areas in all the plates.

2. Step two: the similitude is developed between plates under buckling loading
without considering the effect of initial damages on buckling equations. The
damaged plates are introduced in the buckling problem by setting the initial
condition of the structure to the ultimate situation of the corresponding im-
pacted plate.

STAGE is the similitude method used in these steps and the structures investigated
are three carbon/epoxy composite plates. The predictions from the models are accu-
rate even for impacts in the inelastic region: all the plates have damaged regions and
their damage patterns are similar. Buckling loads and mode shapes are predicted with
small errors.

Blasts scaling can be regarded as a particular type of impact problem, and they are
studied in some articles (Jacob et al., 2004; Neuberger, Peles, and Rittel, 2007a; Neu-
berger, Peles, and Rittel, 2007b; Neuberger, Peles, and Rittel, 2009; Noam, Dolinski,
and Rittel, 2014). The blast is a destructive wave of highly compressed air, typically
produced by an explosion. Blasts are characterized by high accelerations, which allow
to neglect other types of accelerations, for example, that of gravity. This assumption
simplifies the derivation of the scaling laws, since gravitational acceleration is one
of those phenomena that are not geometrically scalable. However, a structure under-
going blasts also exhibits other types of non-geometrically scalable phenomena, like
fracture failure and rate-sensitivity.

Neuberger et al. apply DA to investigate the response of plates subjected to ex-
plosions in free air (Neuberger, Peles, and Rittel, 2007a), due to buried charges (Neu-
berger, Peles, and Rittel, 2007b), and the springback of a circular plate under TNT
blast (Neuberger, Peles, and Rittel, 2009). The blasts are scaled with the Hopkin-
son method, also known as "cube root " method (Baker, Westine, and Dodge, 1991),
based on the assumption that self-similar blast waves are produced at identical scaled
distances when two explosive charges of similar geometries and explosive, but differ-
ent weight, are detonated in the same atmosphere. Therefore this leads to introduce a
scaled distance, a characteristic time of the blast, and an impulse.

When circular plates are subject to close-range large blasts (Neuberger, Peles,
and Rittel, 2007a), the models are geometrically scaled and the normalized midpoint
deflections and stresses scale well as a function of scaled time when using both a rate-
insensitive bilinear and a rate-sensitive material model. Changes in material properties
due to changes in material thickness are introduced to emulate possible manufactur-
ing problems. In this case, there is a certain discrepancy in the predictions of both
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midpoint deflection and stresses, reaching values of 7% for the peak values. Plastic-
ity, which is a nonlinear phenomenon, scales well, as proved by the matches between
experimental and numerical tests. This is not surprising, because, as already reviewed
by Rosenberg et al. (Rosenberg, Kreif, and Dekel, 1997), geometric scaling holds
for ductile penetrators and any deviation from this scaling should be attributed to the
failure mechanism at the penetrator’s head, not to the target properties [as suggested
by Magness and Farrand (Magness and Farrand, 1990)].

In the second part of the investigation (Neuberger, Peles, and Rittel, 2007b), the
authors consider the case in which a clamped circular plate is subject to blasts due to
large buried spherical charges. Also in this study, changes in thickness lead to discrep-
ancies in the numerical results. Moreover, the experimental/numerical comparisons
show slight disagreements when the scaled distance decreases; the source may be tha
change of material properties because of thickness variation. These works prove that
the problem of determining the dynamic response of a structure subject to blasts is
well scaled.

However, Noam et al. (Noam, Dolinski, and Rittel, 2014) underline that the
method used by Neuberger et al. (Neuberger, Peles, and Rittel, 2007a; Neuberger,
Peles, and Rittel, 2007b; Neuberger, Peles, and Rittel, 2009) works just for the struc-
tural response without addressing potential fracture failure. Moreover, Jones (Jones,
1989) states that it is not possible to scale failure in blast loaded structures when using
fracture-mechanics based (fracture toughness) considerations. Therefore, Noam et al.
(Noam, Dolinski, and Rittel, 2014) aim at providing an alternative approach based
on two scalable competitive fracture criteria so that the blast scaling approach can be
fully treated. The similitude method used is DA and it is coupled with the following
failure criteria:

1. Strain energy density criterion: this describes adiabatic shear and is derived
from the considerations of Rittel et al. (Rittel, Wang, and Merzer, 2006), ac-
cording to which the dynamic failure energy can be viewed as a failure criterion
when adiabatic shear is considered (adiabatic shear banding failure, or ASB
failure).

2. Maximum principal stress criterion: this is introduced because the authors do
not know if the blasts induce ASB failure. The criterion states that failure occurs
when a maximum principal stress, developed in an element, is greater than the
ultimate tensile stress of the material. Although this is a typical brittle fracture
criterion, the authors are not interested in describing the differences of various
types of fracture (like Rosenberg et al. (Rosenberg, Kreif, and Dekel, 1997)
do), they just want to represent the fragmentation, that is, the creation of new
surfaces.

Both criteria undergo complete scaling if the material is assumed to be rate-
insensitive, as proved by numerical results of air plates under air blasts due to spheri-
cal charge. When the meshes are fine and medium, the normalized dimensions of the
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cracks and the von Mises stresses are comparable; some slight differences appear but
they are negligible. Because the fracture is triggered when the maximum stress crite-
rion is satisfied, it is possible to consider it as a good alternative to fracture-mechanics
based criteria when the problem has to be scaled.

Finally, the extensive experimental campaign made by Jacob et al. (Jacob et al.,
2004) is worth mentioning. There, quadrangular plates are subjected to impacts and
both charge (diameter and height) and plate (thickness and aspect ratio) geometries
are changed. However, since different combinations of charge and plate properties
return a multitude of responses and interactions, the authors introduce a parameter
for localized loading of quadrangular plates in order to simplify such complexity.
It is a modification of a dimensionless parameter previously introduced by Nurick
and Martin (Nurick and Martin, 1989a; Nurick and Martin, 1989b) and it is useful
to evaluate the midpoint deflection for many loading conditions and plate geometries.
Numerical and experimental tests prove that the introduction of such a parameter leads
to a good estimation of the midpoint deflection.

2.3.3 Cylinders

Cylinders are another type of widely used structural element, as they are used to model
tubes, aeronautical structures like fuselages (especially stiffened cylinders), or other
types as containers and tanks. They are also used as casks for the storage, transporta-
tion, or final disposal of irradiated nuclear reactor fuel (Sato, Vecchio, and Andre,
1989), gasholder barrels (Yu and Li, 2016), and riser tube for fluid drilling operations
(Chouchaoui and Ochoa, 1999; Chouchaoui, Parks, and Ochoa, 1999).

Buckling and frequency response

As done for laminated plates, STAGE is applied also to composite cylinders (Rezaeep-
azhand, Simitses, and Starnes, Jr., 1996a; Rezaeepazhand, Simitses, and Starnes, Jr.,
1996b; Simitses, Rezaeepazhand, and Sierakowski, 1997; Rezaeepazhand and Simit-
ses, 1997; Ungbhakorn and Singhatanadgid, 2003a; Ungbhakorn and Singhatanadgid,
2003b; Ungbhakorn and Wattanasakulpong, 2007; Yazdi, 2013), for which the condi-
tions to obtain complete similitude are the same of the plates (in terms of lay-up), plus
the conservation of the curvature parameter (squared length over the product between
thickness and radius). Therefore, it is expected a great sensitivity when varying the
length, the radius or the thickness of the cylinder. Of course, a true model allows for
perfect reconstruction of the prototype behavior.

Rezaeepazand et al. investigate the predictive capabilities of STAGE in free vibra-
tion problems of symmetric cross-ply laminated cylindrical shells with single (Reza-
eepazhand, Simitses, and Starnes, Jr., 1996a) and double (Rezaeepazhand and Simit-
ses, 1997) curvature. Distortions in stacking sequence are allowed only if the number
of plies is odd; accuracy increases if the number of plies of the prototype increases.
Retaining the mode shapes allows for acceptable predictions of the dimensionless fre-
quency even for changing length and radius. Conversely, the investigation of flutter
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boundaries (Ungbhakorn and Singhatanadgid, 2003a) shows how length distortions
generate errors up to 20%. The response is more sensitive to variations in radius than
in length (Rezaeepazhand, Simitses, and Starnes, Jr., 1996a) and the Gaussian cur-
vature also affects considerably the estimations (Rezaeepazhand and Simitses, 1997).
Moreover, it is important to underline that retaining a mode shape is a simple mat-
ter only from the theoretical point of view, as it is enough to impose and respect the
similitude condition. This is not so easy to obtain during an experimental test.

Other investigations due to Rezaeepazhand et al. also seek to determine the buck-
ling load of cross-ply laminated cylindrical shell under axial compression (Rezaeep-
azhand, Simitses, and Starnes, Jr., 1996b) and lateral loading (Rezaeepazhand and
Simitses, 1997). Again, distortions in the stacking sequence allow good predictions
of the buckling load, while the sensitivity to variations in radius leads to high discrep-
ancies, even if the distortions are small. Instead, changing the length leads to good
results even if the mode shapes are not kept. Moreover, Simitses et al. (Simitses,
Rezaeepazhand, and Sierakowski, 1997) note that more accurate predictions result
from an increase in length than from a decrease; however, when the length reaches
very low values, the buckling load is well estimated even if the mode shapes change.

Tabiei et al. (Tabiei, Sun, and Simitses, 1997) propose a variation of STAGE in a
work that can be considered as a continuation of the investigation made on the buck-
ling behavior of cross-ply laminated cylindrical shells under lateral pressure (Simitses,
Rezaeepazhand, and Sierakowski, 1997). The proposed variation consists in a curve
fitting technique involving scale factors as a function of other scale factors. The con-
sidered factors do not need to be derived from equations, it is enough to consider those
that bring to the sought distorted model. The fitted model captures, indeed, higher-
order terms reducing, therefore, the inaccuracies, with respect to the classical scaling
laws.

Ungbhakorn et al. investigated the buckling and free vibrations of antisymmet-
ric angle-ply (Ungbhakorn and Singhatanadgid, 2003a), symmetric cross-ply (Ungb-
hakorn and Singhatanadgid, 2003b), and antisymmetric cross-ply (Ungbhakorn and
Wattanasakulpong, 2007) laminated circular cylindrical shells. They show how ne-
glecting the bending-extension coupling effects leads to small errors, typically smaller
than 1%, while neglecting the extensional and flexural effects leads to higher errors,
from 33% for the buckling load up to 100% and 200% for the natural frequencies.

These works allow to infer some information that confirm the results already ob-
tained by scaling laminated plates. Firstly, the distortions in stacking sequence are
the only one allowed; then, it is not necessary to fulfill the conditions associated to
the coupled extensional-bending stiffness, but it is important to fulfill those related to
the flexural stiffness. Therefore, the response of the system is sensitive to the number
of plies, i.e., thickness. Finally, the varying sensitivity with, for instance, length in
different systems proves that it is not easy to deduce a general behavior.

Yu and Li (Yu and Li, 2016) investigate prestressed, stiffened cylindrical panels
and shells using an approach similar to the EM (Kasivitamnuay and Singhatanadgid,
2005). Specifically, the authors relate the total energy of prototype and model by
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means of a functional relationship between transformation parameters. Complete
similitude leads to perfectly predicted buckling loads, unaffected by changes in as-
pect ratio and curvature; as long as the wavenumbers are retained, natural frequencies
and mode shapes are well reconstructed, too. Changing the stiffener material leads to
design equivalent stiffeners that support a very good prediction of both buckling load
and natural frequencies, with errors smaller than 3%. Also changes in material are
acceptable, as long as Poisson’s ratio does not vary excessively: if the model deviates
too much from the prototype, the discrepancies become significant.

A cylinder filled with air is investigated by means of SAMSARA by De Rosa et al.
(De Rosa et al., 2012). According to the scaling laws, variations of thickness and area
of the cylinder lead to a modification of both structural and acoustic natural frequen-
cies distributions. Therefore, for this type of acoustic-elastic systems, the structural
and acoustic poles scale with different laws. Furthermore, if a complete similitude is
desired, damping must be kept, too, as its change would allow a good reconstruction
of the mean response only. The similitude conditions are violated on purpose by De
Rosa et al. (De Rosa, Franco, and Polito, 2012) so that avatars of thin aluminium
cylindrical shells can be investigated. According to the scaling laws, length, radius,
and thickness should vary in the same way. In this article, instead, length and radius
vary according to scaling laws different from that of the thickness. As a matter of
fact, this choice seems to affect only the first axial-radial modes. However, the dis-
tortions alter not only the natural frequencies but also their distribution, so a partial
reconstruction of the response is feasible only in particular frequency ranges. As also
proved in a successive work (De Rosa and Franco, 2015), the smaller the distortion,
the higher the prediction accuracy.

When investigating orthogonally stiffened cylinders (De Rosa and Franco, 2015),
the smeared stiffness approach can be adopted, so that the rigidity properties of the
stiffeners are spread along an equivalent, continuous cylinder having the same geo-
metrical properties as the prototype. Since the stiffeners decrease the modal density,
there is an improvement in the agreement between prototype and avatar [for the same
reason previously illustrated (Meruane, De Rosa, and Franco, 2015)]. Some analyses
are made by changing the number and area of the stiffeners, too, which leads to good
local results when the MOF is low, and good results only in the average sense when
the MOF is high.

Longitudinally and orthogonally stiffened cylinders are numerically analyzed with
the aid of SAMSARA by Petrone et al. (Petrone et al., 2017). The results for replicas
and avatars are coherent with previous works (De Rosa et al., 2012; De Rosa, Franco,
and Polito, 2012; De Rosa and Franco, 2015). However, the novelty of the work
relies on the use of several scaling laws to describe the behavior of avatars. Thus,
two different frequency scaling laws are derived a posteriori and are used to define
the frequency ranges of validity of the laws. The results do exhibit an error lower
than the case in which just one scaling law is used. The identification of a confidence
band shows that the low frequency range dictates the confidence interval, because the
greater errors (maximum 35%) are placed in the low frequency range. Thus, it is hard
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to reconstruct the local response.
Also Torkamani et al. (Torkamani, Jafari, and Navazi, 2008; Torkamani et al.,

2009) study orthogonally stiffened cylinders, applying STAGE to the non-dimensional
solutions of governing equations. Also in this case, the stiffened structure is substi-
tuted by a smeared one and, therefore, until the wavelength is greater than the spacing
between stiffeners, accurate predictions can be obtained.

Scaling of stiffened cylinders is not a trivial matter because manufacturing con-
straints may limit the production of stiffening elements or shell thicknesses that fulfill
the scaling conditions, thus Torkamani et al. suggest some approaches to bypass the
problem. Equivalent stiffeners can be designed so that the same mode shapes are kept.
Only the cross section is changed; shell material and geometry, stiffener material and
distribution, boundary conditions and loading are kept. The conditions show that the
equivalent stiffener is obtained by conserving the cross-sectional area, the moment of
inertia, the polar moment of inertia, and the eccentricity. The most simple equivalent
stiffener has a T-shaped cross section.

Instead, to circumvent the thickness limitations, both shell and stiffeners can be
designed with different materials having better formability. The thickness of the stiff-
eners can be changed keeping, at the same time, the shape of the cross section. An-
other approach for scaling thickness is based on the modification of the number of
stiffeners. However, lowering too much such a number leads to inaccurate predic-
tions, because the smearing theory is used.

The numerical predictions are validated by experimental tests, in which the pro-
totype is made of aluminium and presents Z-shaped ribs and Ω-shaped stringers; a
one-third model is made of steel alloy and has equivalent T-shaped ribs and stringers.
All the cylinders are free on both edges. The predictions are very good: the re-
sponse peaks coincide although some small errors, which can be attributed to the
non-linearities of the model.

Impact response

Until now, cylinders made of isotropic or composite materials have been reviewed.
The analysis of Sato (Sato, Vecchio, and Andre, 1989), instead, involves concrete
cylinders, providing, therefore, an interesting insight into the scaling behavior of
material not commonly tested. Particularly, the authors perform experimental tests
on four thick-walled concrete cylinders with circumferential and tie reinforcements
made of steel. The objective is to investigate the damage modes and extent generated
by impacts on three scaled-down models. These are expected to be the same for the
prototype and models. Indeed, the damage modes are similar, as the models exhibit
the formation of a shear plug at the impact point, crushing of the concrete of the inner
surface, flexural cracking of the outer surface, and cracking of both surfaces. Con-
versely, the damage extent differs between the models and the prototype. The main
results can be summarized as follows:
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1. The end cover spalling decreases as the model size decreases. The source of
this phenomenon finds difficulties in modeling the micro-aspects of concrete
that governs fracture toughness; very high strain-rate sensitivity is observed in
the smaller models resulting in high tensile strength and lower-than-expected
deceleration forces in smaller models.

2. Smaller models exhibit a reduced extent of concrete crushing damage, because
strain rate increases the concrete compressive strength and, maybe, also en-
hances the properties of the steel reinforcements.

3. Deceleration peak and strain-rate are consistent with the scaling laws.

4. The increase of compressive strength in models leads to underpredicted foot-
print widths; cracks are sometimes overpredicted, sometimes underpredicted.
However, the predictions are good, even though these slight differences.

5. Outside cracking spacing is overpredicted, while the inside spacing is under-
predicted.

In conclusion, the models are more severely cracked. The results exhibit different
behaviors: crack data, generally, agrees with the scaling laws but is susceptible to
impact randomness of concrete scaling. Because of such randomness, the study of
scaled models should involve more specimens so that a good statistical response can
be obtained.

Jiang et al. (Jiang, Wang, and Zhang, 2006) investigate size effects in cylinders,
too, by performing experimental quasi-static compression and impact tests on thin
walled mild steel circular tubes that are geometrically scaled, but without scaling
impact velocities and mass. Strain rate affects both quasi-static and impact tests and its
influence is stronger in the smaller models. Other experimental tests were conducted
by Tarfaoui et al. (Tarfaoui et al., 2007), focusing on low velocity impact to simulate
the dynamics of underwater impacts. In this case, the observed damage consists in
local crushing of the resin at the point of contact with the projectile, without fiber
failure. The scaling laws are obtained with DA and can predict the dynamic response,
although underestimate the error. Larger tubes are more damaged.

2.3.4 Summary of similitude theory applications

The reviewed articles demonstrate the wide applicability of similitude methods, in
terms of engineering fields, loading conditions, and materials.

DA has proven to be the best method when it comes to deal with impact problems.
As a matter of fact, geometrical scaling allows good predictions of the prototype be-
havior until the plastic threshold, and even beyond if the damages are not too accen-
tuated and the material has a limited rate-sensitivity. However, the scaling procedure
fails when failure occurs and damages and rate-sensitivity are not negligible. In these
cases, DA exhibits a strong versatility: switching from MLT to a VSG-based method
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(Oshiro and Alves, 2004), as well as other applications (Christoforou and Yigit, 1998;
Zhao, 1998), prove that, by means of a suitable choice of the dimensional parameters
that constitute the dimensionless groups, some limits of geometrical scaling can be
circumvented. However, these considerations again underline the need of an experi-
enced analyzer (of the subject under examination). Knowing the underlying theory
is also important for distinguishing inaccuracies due to the limits of such a theory
from those of the adopted similitude method. A perfect example is provided by the
works due to Rezaeepazhand and Yazdi (Rezaeepazhand and Yazdi, 2011) and Yazdi
and Rezaeepazhand (Yazdi and Rezaeepazhand, 2011a), in which the discrepancies in
the predictions of prototype behavior may come from the application of quasi-steady
aerodynamic theory outside its validity boundaries.

Nonetheless, literature demonstrates that similitude methods do not allow one to
bypass all of these limits at the same time. In fact, on the one hand, in the works by
Neuberger et al. (Neuberger, Peles, and Rittel, 2007a; Neuberger, Peles, and Rittel,
2007b) plasticity scales accurately when not considering fracture; on the other hand,
Noam et al. (Noam, Dolinski, and Rittel, 2014) are able to scale fracture in terms of
failure criteria hat scale well only under the assumption of rate-insensitive material.
Moreover, DA does not provide a unique set of Π-terms, which leads to interpretabil-
ity problems, as highlighted by Pintado and Morton (Pintado and Morton, 1994). In
conclusion, the versatility of DA is not always an advantage.

STAGE is less versatile than DA, but the scaling process has a more easily inter-
pretable physical meaning because they derive from the governing equations. How-
ever, also STAGE has its inconveniences. First, prototype static and dynamic behavior
may often be predicted by means of partial similitude in an acceptable way when an
accurate set of governing equations is provided. However, since a certain scale fac-
tor may take different alternative forms, when partial similitudes are considered, it is
a good practice to investigate all of them, because some may give good predictions,
others may not. For instance, the laws obtained by Asl et al. (Asl et al., 2017a) for
the transverse deflection of a beam have two forms, one of which underpredicts the
prototype behavior, while the other overpredicts it. Generally, each equation has its
own limited applicability range of values of the design parameters. This consideration
highlights the importance of the determination of the applicable size interval (Luo et
al., 2013; Luo et al., 2014c; Luo et al., 2016b).

Such a limited validity of the scaling laws is a point in common between STAGE
and SAMSARA. While the conditions provided by STAGE are valid in intervals of
the design parameters, those provided by SAMSARA are valid in frequency intervals.
Indeed, it has also been demonstrated that different laws allow good estimation of the
dynamic response in particular frequency ranges (Petrone et al., 2017).

However, whereas DA has proven to be versatile, STAGE has been shown to be
prone to some interesting variations, such as the modular approach by Coutinho et
al. (Coutinho, Baptista, and Rodrigues, 2018), the determination of size applicable
intervals (Luo et al., 2013; Luo et al., 2014c; Luo et al., 2016b), and the support of
SA (Luo et al., 2015; Luo et al., 2016b).
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The methods until now recapitulated aim at reconstructing the response charac-
teristics in order to save costs and time in the experimental procedures. ASMA intro-
duces another point of view, which is computational time saving in numerical simula-
tions in those frequency ranges that make FE analysis unusable. The method cannot
substitute SEA, which has better prediction capabilities, but it is still useful in those
cases in which analytical solutions are not available and FE models still represent the
best tools. ASMA proves to be an efficient method to fulfill the meshing requirements
in fluid-structure interaction problems thereby avoiding a prohibitive computational
time (De Rosa and Franco, 2008b).

SA has demonstrated to be a method that can support already existing methods,
such as STAGE (Luo et al., 2015; Luo et al., 2016b), or can work stand-alone, al-
lowing the derivation of sensitivity-based scaling laws (Adams, Bös, and Melz, 2016;
Adams et al., 2018). GSA is useful to obtain the effects of the parameters and their
combinations on the structural response, even for complex systems. LSA represents
a first order derivative, which means that the system is linearized in the vicinity of
the current design point. Therefore, a certain accuracy is expected in a limited range,
typically ±5%. Conversely, similitude-based laws allow, instead, an application in a
wider range; assuming a complete similitude, the range over which the field equations
are valid.

Suitable sensitivity-based laws can always provide fitting predictions, but their
origin is mathematical, thus they totally lose sight of the physical aspects of the prob-
lem. Nonetheless, the method is further step toward the automation of the scaling
procedure. Comparing the similitude-based laws with those sensitivity-based, it is
possible to conclude that each method has its own advantages and disadvantages so
that they are balanced.

A common point of many similitude methods is the inability to predict size ef-
fects, that is, the change of strength properties of specimens when their size changes.
Usually, the smaller the structure, the more resistant it is. However, this is not a gen-
eral rule, as evidenced in some works (Sato, Vecchio, and Andre, 1989; Kellas and
Morton, 1992b). Something similar happens in the frequency domain, as highlighted
by Li (Li, 2010b) and Meruane et al (Meruane, De Rosa, and Franco, 2015). The
size decrease of the model moves the modes to higher frequencies, so analyzing their
structural response in the same frequency range of the prototype would lead to inaccu-
rate predictions. Modal density is at the base: it must be retained as much as possible
in order to reconstruct an acceptable response.

Size effects are not predictable by similitude methods, but they can be experi-
mentally observed, even though the matter is not so simple, as an improper setup may
pollute the results (Morton, 1988) to the point that it is not possible to distinguish if the
error originates from an improper experimental procedure or a physical phenomenon
not taken into account by the scaling laws (Xiaojian et al., 2016). Experimental tests
are also useful to investigate the validity of theoretical assumptions, as Meruane et
al. (Meruane, De Rosa, and Franco, 2015) do. In this work, as previously seen, the
constant damping assumption among models is shown to not be exactly fulfilled.
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Finally, all the similitude methods have dealt with partial similitudes. All the
authors, in fact, unanimously agree that complete similitude at some point becomes
unfeasible from the manufacturing point of view. As long as the distortion is limited,
that is acceptable, or even mandatory, assumption in the manufacturing error frame-
work, since the predictions have an acceptable accuracy. Nevertheless, the study of
partial similitudes is still important.

2.4 Complex structures and other fields of application

Similitude theory has also dealt with complex structures, often made of several sub-
components, such as satellites, launch vehicles, spacecrafts, aircrafts, ships, and build-
ings. This section has, therefore, the main objective of demonstrating the actual use-
fulness of similitude theory by providing examples of industrial engineering in which
the methods until now reviewed have been applied. The following fields are consid-
ered:

1. Aerospace engineering: investigations on static and dynamic behavior of struc-
tures such as spacecrafts, aircrafts, satellites, and other components. Beyond
some typical applications of similitude theory, two branches stand out for their
peculiar characteristics: aeroelastic and thermal similitudes.

2. Civil engineering: applications investigating the dynamic response of buildings
and physical infrastructure, especially when subject to seismic phenomena.

3. Impact engineering: investigations of short-lasting events caused by collision
between two bodies, characterized by rapid induced motion and deformation,
release of high kinetic energy and, often, damage of the impacted structure.

4. Rapid Prototyping: applications to quick fabrication techniques supported by
Computer Aided Design (CAD).

5. Naval and marine engineering: applications to study naval structures and ma-
rine installations.

A complete reference list of the works is given in Table A.3, while Fig. 2.3 illus-
trates the application of similitude methods over the years (on the horizontal axis) to
complex structures in the listed engineering fields (on the vertical axis).

2.4.1 Aerospace engineering

Aerospace engineering has exploited similitude methods for a long time. In fact, from
the early 1960s, NASA (National Aeronautics and Space Administration) Langley
Research Center (LaRC) investigated the structural response of space vehicles such as
landers, launchers, spacecrafts, and their subcomponents, which full-size dimensions
were very large. Therefore, considering the limitations of ground facilities, many tests
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were feasible only using scaled models. A comprehensive review about the relevant
LaRC technical reports is provided by Horta and Kvaternik (Horta and Kvaternik,
2000).

These works are not based on a complete similitude theory and its limits, neither
differences between prototype and model behavior are analyzed. Similitude methods
are used as a tool to investigate - theoretically and experimentally - the static and
dynamic behavior of structures, sloshing phenomena into fuel tanks, and to under-
stand the most suitable analyses and the most convenient construction philosophies.
Particularly, experimental tests are often used to validate new analytical models or
structural simulation software [for example, the first versions of NASTRAN (NASA
STRucture ANalysis) FE solver]. Different scale sizes are used, from 1/5 to 1/10 or
more, sometimes applying hybrid scaling (in which, for instance, geometrical and dy-
namic parameters are scaled by different factors). However, all the models are perfect
replicas, which means that all the structural elements are scaled down: hat-section
stringers, corrugated intertank sections, joints, etc. In some cases, different gravity
conditions are simulated and tested, requiring the purposeful creation of shock-chord
suspension systems. All of this work has required a substantial improvement of fab-
rication procedures: machining and chemical milling tolerances, curvature forming
techniques, aluminium forgings, machining of complex ring frames, etc.

Some reports are dedicated to early stage spacecraft and landers testing. As a
matter of fact, before encountering the hazardous space environment, a spacecraft is
indeed subjected to extreme vibrations during launch and the boost phases. It is not
feasible to design a spacecraft so that its natural frequencies are such that the structure
does not respond to the booster inputs. Considering also that instrumentation and
payloads are damaged by vibration conditions less severe than those expected during
the flight plan, it is necessary to investigate suitable procedures to reduce the severity
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of many resonant conditions. Testing of different lander designs is also performed,
considering multilegged designs with different suspension systems. These vehicles, in
fact, must land on irregular surfaces of unknown topology and must not overturn after
landing. These are some of the reasons that led NASA engineers to test spacecraft,
such as the Nimbus (Carden and Herr, 1964), and landers, such as the lunar module
(Herr and Wayne Leonard, 1967; Blanchard, 1968) or the Viking spacecraft lander
(Stubbs, 1971; McGehee and Stubbs, 1973).

A fundamental requirement of launch vehicles is a high operational reliability due
to high costs and payload preservation, thus a reliable structural design is necessary
for the launch vehicle to survive the shock and vibration environment encountered
during the transportation to the launch site, construction on the launch pad, launch,
and flight itself. Particularly, there are several phenomena that must be taken into
account during the launch and flight phases: for instance, the fuel consumption and
the resulting change in weight condition and sloshing. All these environments con-
tain many sources of transient and quasi-steady-state excitations that may produce
undesirable vibration response levels in the vehicle structure. Therefore, it becomes
important to study the feasibility of using replica models in order to obtain vibration
data necessary for the design of complex launch vehicle structures, control systems,
clustered tank configurations, etc. Many works were dedicated to test launch vehi-
cles, including a generic launch vehicle (Wissmann, 1968); Saturn SA-1 (Mixson and
Catherine, 1964a; Mixson and Catherine, 1964b; Catherine, 1965); Titan III in A
(Thompson, Jr., 1967), B (Peele, Thompson, Jr., and Pusey, 1968), and C (Morosow
and Jaszlics, 1966) configurations; and Apollo-Saturn V (Leadbetter, Wayne Leonard,
and John Brock, Jr., 1967; Adelman and Steeves, 1968; Catherines, 1968; Steeves and
Catherines, 1968; Pinson and Wayne Leonard, 1969; Leadbetter, 1970; Peele, Wayne
Leonard, and Leadbetter, 1970).

Large structures like spacecrafts, space stations, and deployable systems (such as
antennas and solar sails) defy conventional testing because of their size and flexibil-
ity. Furthermore, the static preloads and deflections due to gravity are greater than
those developed in orbit. Scaled models were used also to bypass these problems,
for example, when testing Space Shuttle subcomponents (Thornton, 1971; Bernstein
et al., 1974a; Bernstein et al., 1974b; Levy et al., 1974; Mason et al., 1974a; Mason
et al., 1974b; Pinson, 1975; Zalesak, 1975; Leadbetter et al., 1976; Blanchard, Miser-
entino, and Leadbetter, 1977). Actually, NASA established a dedicated program, the
dynamic scale model technology project, aimed at the development of model technol-
ogy for space structures too large to be tested on ground in full-scale. The Space Sta-
tion Freedom (Keith Belvin and Edighoffer, 1986b; Gronet et al., 1987; Shih, Chen,
and Garba, 1987; McGowan, Edighoffer, and Wallace, 1990; McGowan, Jaeed, and
Edighoffer, 1991; Davis et al., 1994), large antennas (Keith Belvin and Edighoffer,
1986a; Schroeder et al., 1989), and Pathfinder (Letchworth, McGowan, and Gronet,
1988) are the structures tested under this program.

Another NASA program, the in-space propulsion project, has consisted in tests
on models of solar sails. These are thrust devices consisting of a membrane-based
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structure, lightweight and large, made of gossamer, which convert solar pressure into
thrust of a spacecraft. On the one hand, such solar sails can potentially provide low-
cost propulsion and operate without the use of propellant allowing access to non-
Keplerian orbits through a constant thrust; on the other hand, solar pressure is small,
so the sails must have a significant size and, at the same time, a small enough sys-
tem mass to achieve reasonable accelerations: to give an example, these sails can
reach dimensions ranging from 200 to 104 m2. It is, therefore, expected that ground
demonstrations must be conducted at significantly smaller sizes. Thus, the limitations
of ground facilities and costs force the use of scaled models in order to test numeri-
cally and experimentally (Canfield et al., 2004; Canfield, Peddieson, and Garbe, 2010;
Murphy, Macy, and Gaspar, 2004; Gaspar et al., 2005; Gaspar et al., 2006) solar sails
coupled with booms.

Solar sail-boom systems are an example of deployable structures, i.e., structures
folded into several tight bundles for stowage that are propelled in specific directions in
space at the beginning of the deployment phase. Also in this case, testing difficulties
and costs require the use of scaled models. However, because of manufacturing limits
(e.g., thickness control and accuracy), standard geometrical scaling cannot be used.
Instead, Greschik et al. (Greschik, Mikulas, and Freeland, 1999) propose a constant
thickness scaling, which entails the uniform scaling of the global dimensions while
keeping the thickness constant. This work is then continued by Holland et al. (Hol-
land et al., 2002), who explore the computational and experimental issues (FE model
complexity, accuracy, and differences between analytical and experimental results)
arising in the modeling and testing of scale models of inflatable structures.

Jackson and Fasanella (Jackson and Fasanella, 1999; Jackson and Fasanella, 2003)
investigate fuselages crashworthiness, subjecting a 1/5-scale model to drop tower
tests. The results highlight some events characteristic of size effects. In fact, both pro-
totype and model subfloor sections exhibit the same damage modes, but the amount
of relative damage and accelerations are greater in the prototype.

All these works prove that scaled models are useful to overcome experimental
problems due to size, facility limits, and costs. Selecting with care the scale factors
and the methods of manufacture, with a judicious evaluation of deviations from di-
rect scaling duplications, replica models turn out to be technically and economically
feasible to study complex structures.

Aeroelastic similitude

Aeroelastic testing aims at verifying the numerically predicted aeroelastic character-
istics of an entire vehicle or a part of it. Generally, the scaled model must represent
exactly the prototype dynamics matching, basically, mass and stiffness distributions
(Molyneux, 1964; Hunt, 1973; French, 1990; Bisplinghoff, Ashley, and Halfman,
1996; French and Eastep, 1996). Examples of structures that need aeroelastic valida-
tion, in terms of flutter clearance, gust response, and so on, are flexible wing rotors,
high and low aspect ratio wings, and new design aircrafts.
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Typically, DA is the base of any similitude approach used in aeroelastic analysis;
in fact, aeroelastic similitude is achieved matching the nondimensional parameters
governing aerodynamics, the structural response, and their coupling. According to
Bisplinghoff et al. (Bisplinghoff, Ashley, and Halfman, 1996), these nondimensional
parameters are scale factors relating the static deflections and the modal behavior of
the model with those of the prototype. Typically, the length scale - as the ratio of
the allowable model span in the wind tunnel to the real wing span - is dictated by the
facility dimensions (Pereira et al., 2007).

Molyneux (Molyneux, 1964) reports more details on the constraints of aeroelastic
scaling. Particularly, two types of establishable similitudes are identified:

1. Aerodynamic similitude: Mach and Reynolds numbers must be kept and the
bodies must be geometrically similar at the surface, that is, same shape, same
incidences to the flow, and same static elastic deformations.

2. Structural similitude: by analyzing the force-deflection, vibration, and equi-
librium equations, the following quantities must be maintained: ratio between
stiffness and aerodynamic forces, stiffness distribution, reduced frequency, mass
ratio, and Froude number.

The above constraints lead inevitably to many conditions to fulfill. However, in
some cases, such as studies of elastic aeroelasticity (Heeg, Spain, and Rivera, 2004),
some terms can be neglected because they are relevant only for dynamic phenomena
(such as mass ratio). In other cases, like the study made by Hunt (Hunt, 1973) on
flexible wing rotors when thermal effects are neglected, some compromises must be
accepted: in the particular case of his work, Hunt states that the requirements on Mach
and Frounde numbers cannot be fulfilled at the same time. Therefore, the scaling
procedure can be applied only if one of these two conditions is relaxed.

A particular attention must be dedicated to the flow conditions (subsonic, tran-
sonic, etc.) when similitude is used.

If the full-scale flow is not wholly subsonic, the full-scale Mach number is re-
tained, leading to a structural model with same mass density and same modulus of
elasticity. On the other hand, the Froude number is retained when the dynamic phe-
nomenon is characterized by a significant weight dependence or when high-speed
flight is performed in low-speed facilities. In this case, the mass density is kept the
same while the modulus of elasticity is lower, so that an arbitrary structure or a replica
can be used.

It is clear that the structural aspect is mainly governed by material properties such
as mass density and modulus of elasticity. Considering also the aerodynamic require-
ments, an alternative manner to define the conditions for aeroelastic scaling is to keep
mass and stiffness distributions and, at the same time, the aerodynamic envelope un-
changed (Bisplinghoff, Ashley, and Halfman, 1996; French, 1990). Consequently, the
model must not necessarily resemble the internal structure of the full-scale prototype,
allowing one to fabricate simpler structures, with noticeable money saving. In the
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same investigation, Reynolds number conservation cannot be achieved at all, which
means that the model cannot be tested at full-scale Reynolds number. Nonetheless,
this number must be high enough to ensure the right type of viscous effects. Hunt
(Hunt, 1973) makes an important remark on the experimental aspects: the dimen-
sional tolerances are scaled with the same scale of linear dimensions, thus the quality
of manufacture of the model is fundamental, as spurious dynamic effects may arise
due to errors in manufacturing.

Many works in aeroelastic field are based on the coupling between scaling proce-
dures and optimization techniques (French, 1990; French and Eastep, 1996; Richards
et al., 2009; Ricciardi et al., 2012b; Ricciardi et al., 2014; Spada et al., 2017). In fact,
keeping in mind the requirements for aeroelastic scaling, the error function to mini-
mize may address the mass distribution, while the design requirements of the model
(limits on deflections under static loading, natural frequencies, flutter speed, etc.) may
be used as constraints.

French is the first who uses optimization procedures (French, 1990), aimed at
designing a scaled model of a low aspect ratio wing made of anisotropic material.
The typical assumptions made in aeroelasticity field, such as chordwise rigid wing
and consequent beam-like response, are not applicable because they apply only for
high aspect ratio wings made of metal. Therefore, in order to bypass this problem,
French proposes an approach based on optimization techniques. Successively, French
and Eastep (French and Eastep, 1996) break the optimization process into two steps:
sizing the structural stiffness, first, and then sizing the mass distribution. This ap-
proach leads to good results; furthermore, it is suitable for every structure that can
be discretized with an FE approach, and saves a lot of time otherwise required for
the correct sizing of the model. Moreover, it provides an interesting perspective on
automatic procedures when only structural influence coefficients are known.

Richards et al. (Richards et al., 2009) propose a variation of French’s method
(French, 1990; French and Eastep, 1996). The authors propose two scaling method-
ologies: one matches directly the modal response by updating mass and stiffness dis-
tributions simultaneously in a single optimization routine; the second updates mass
and stiffness in two separate optimization loops. Actually, both the methods converge
to an acceptable result; however, the single loop approach performs poorly when a
gradient-based technique is used. In the authors’ opinion, it would be much more ef-
fective if another search method, like genetic algorithms, is used. Conversely, the two-
loops method proves to be computationally more efficient and more robust. However,
the drawback of this technique is the requirement of additional information, namely
displacement sets under given loads.

The method proposed by Richards et al. (Richards et al., 2009) is expanded by
Ricciardi et al. (Ricciardi et al., 2012b), who include the match with nonlinear static
deflections in the stiffness optimization loop. The implementation is successful and
leads to a good evaluation of aeroelastic frequency, damping, and nonlinear static
responses; however, the mass and stiffness decoupling introduces some issues. The
procedure is further expanded (Ricciardi et al., 2014) by simultaneously designing
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the vehicle elastic stiffness, geometric stiffness, and nonstructural mass. The work
is based on the results obtained by Ricciardi et al. (Ricciardi et al., 2012b) and in a
successive work (Ricciardi et al., 2012a) in which the authors develop an aeroelas-
tic interface that loosely couples a custom vortex-lattice code with MSC-NASTRAN.
Successively, Spada et al. (Spada et al., 2017) propose a nonlinear scaling methodol-
ogy similar to the one due to Ricciardi et al. (Ricciardi et al., 2014), with the main
difference that the scaling of stiffness and mass is performed in two different opti-
mization loops.

Another set of works focuses on aeroservoelastic applications (Friedmann, Guil-
lot, and Presente, 1997; Presente and Friedmann, 1998a; Presente and Friedmann,
1998b; Friedmann, 1999; Pototzky, 2002; Friedmann, 2004), mainly demonstrating
that the typical aeroelastic scaling relations, developed for flutter, need to be extended
when dealing with moder aeroelasticity, that is, when active control of aeroelastic sta-
bility, response problems, and extensive use of computer simulations (Baker, Westine,
and Dodge, 1991) are introduced. For example, Friedmann and coworkers (Fried-
mann, Guillot, and Presente, 1997; Presente and Friedmann, 1998a; Presente and
Friedmann, 1998b; Friedmann, 1999; Friedmann, 2004) aim to obtain scaling laws
for aeroservoelastic problems emphasizing scaling requirements for actuator forces,
hinge moments, and actuation power. These objectives are pursued under different
flow conditions and for different control devices: subsonic flow (Friedmann, Guillot,
and Presente, 1997; Presente and Friedmann, 1998a), compressible flow (Presente
and Friedmann, 1998b), trailing edge flap (Friedmann, Guillot, and Presente, 1997;
Presente and Friedmann, 1998a), and piezoelectric induced actuation (Presente and
Friedmann, 1998b). Particularly, Friedmann (Friedmann, 2004), Presente and Fried-
mann (Presente and Friedmann, 1998b), and Friedmann (Friedmann, 1999) introduce
a two-pronged approach that perfectly fits in the framework of modern aeroelasticity,
as the classical approach is supported by parallel computer simulations playing the
role of numerically derived "similarity solutions". These solutions are applied where
innovative scaling laws are required (e.g., control power, control surfaces, and shock
wave motion in transonic flows), so that on expanded or refined set of scaling laws is
obtained.

Thermal similitude

Coutinho et al. (Coutinho, Baptista, and Rodrigues, 2016) refer to thermal similitude
as an independent or complementary branch of structural similitude. For example, it
has been used extensively in space structures modeling, as it is important to obtain
experimental validations of the mathematical methods used for predicting the thermal
performances of aircrafts and spacecrafts. As a matter of fact, aircrafts must be capa-
ble of withstanding the adverse effects of aerodynamic heating (high temperatures and
rates of change) during their mission, while spacecrafts must keep temperature values
in fairly narrow limits because of complex electronic equipment and instrumentation.
This is not a trivial matter because the space environment is hazardous, exhibiting
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high temperatures and significant gradients (for example, when space vehicles pass
from sunlight to shadows and vice versa). Thermal control is acquired through proper
design of the conductive and radiative heat-transfer paths between components in the
vehicle, in conjunction with the control of the exterior radiative exchange of the vehi-
cle with its environment. The thermal scaling can be easily derived by applying DA
(which can be seen as an additional demonstration of the versatility of this method).

The environmental simulations are typically carried out in suitable structures, the
"space chambers". Again, small models are required for the experimental tests as
small test chambers appear to offer better environmental control and reliability. Thus,
on the one hand, structural scaling must be executed; on the other hand, because of
the characteristic problem under investigation, thermal characteristics must be scaled,
too. Dictating a similitude in thermal terms means to have similar temperatures, tem-
perature distribution, heat content, and heat flow.

The work of Vickers (Vickers, 1965) is of relevant importance as identifies two
possible procedures to perform thermal scaling: temperature preservation and ma-
terial preservation. While the former considers prototype and model with the same
absolute temperature, the latter considers prototype and model made of the same ma-
terials. Another significant work is due to Watkins (Watkins, 1966), which derives
and provides all possible sets of independent similitude ratios for thermal modeling
in a simulated space environment. These ratios are defined by a computer program
which applies DA on the physical quantities of interest (e.g., energy transfer from
and to a single, elemental, and isothermal volume), using a matrix formulation of
Buckingham’s Π Theorem.

According to O’Sullivan (O’Sullivan, 1957), in an analysis of aerodynamic heat-
ing of aircraft, thermal similitude in terms of heat flow can be ensured if geometrical
similitude is coupled with material preservation. Keeping the temperature, instead,
thermal stresses and deformations are similar. Katzoff (Katzoff, 1963) demonstrates
that all conditions for thermal similitudes cannot be satisfied simultaneously because
of their complexity. An example is provided by thermal conductivity and heat ca-
pacity scaling. Rolling (Rolling, 1966) highlights that the temperature preservation
method is a better choice because it allows material change, which makes possible
the choice of a material suitable to comply with the similitude conditions. Moreover,
Gabron (Gabron, 1966) states that temperature preservation requires the conservation
of thermal paths. This requirements can be satisfied by effectively using material and
geometric distortions (of the minor dimensions as the thickness of plates, shells, etc.).
Maples and Scogin (Maples and Scogin, 1970) focus on thermal conduction and ra-
diation under transient conditions and prove that thermal similitude can be applied
to transient systems with internal generation. Shannon (Shannon, 1972) takes into
account, in addition to radiation and conduction, also convection, demonstrating that
it can be considered with both the preservation methods achieving adequate thermal
similitudes.

However, the difficulties during thermal scaling are also an important point un-
derlined by these works. The constraints on temperature or material introduce limits
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on the properties and the possible length ratios for models. More generally, the pure
adherence to thermal modeling laws is often experimentally unfeasible, due to the
limited choice of materials, fabrication difficulties, and high costs. Gabron (Gabron,
1966) provides a clarifying example, concerning a 1/5-scale model of a Voyager-type
spacecraft that is impractical to build due to the difficulties in fabricating small el-
ements. Therefore, as shown in the same article, some spacecraft appendages are
scaled-up. However, the results in terms of measured temperature are not very accu-
rate.

2.4.2 Civil engineering

Even investigations on seismic response and performances of civil structures are af-
fected by limitations in testing equipment. Usami and Kumar (Usami and Kumar,
1996) and Kumar (Kumar et al., 1997) discuss the aspects to consider in selecting a
suitable set of scaling factors, procedure often complicated by the great number of
possible sets. The authors show that the whole procedure can be divided into two
distinct types depending on whether the scale factor is chosen for mass or time.

Kim et al. (Kim, Kwak, and Chang, 2004) give a relevant contribution to the
topic. Deriving the scaling laws in the elastic range leads inevitably to discrepancies
when studying the inelastic response of small scale models. The authors compare
three scaling laws, based on mass, time, or acceleration, according to the importance
of gravity, derived with DA. The authors conclude that, when using the same scale
factors for length and force, the comparisons of pseudodynamic tests with the three
similitude laws lead to inelastic responses which are practically coincident. Pseudo-
dynamic tests on steel columns prove that these laws work well also in the inelastic
domain. Moreover, they propose a modified similitude law which considers both a
scale factor for length and a stiffness ratio, which is demonstrated to effectively sim-
ulate the seismic response of prototype structures.

Inelastic range makes similitude requirements based on geometry not suitable.
Therefore, Kim et al. (Kim, Lee, and Chang, 2009), in order to overcome some prob-
lems related to the reduction of the scale factors, propose models with dissimilar ma-
terials to those of the prototype. This is why the authors modify the acceleration-based
law, introduced in the previous work (Kim, Kwak, and Chang, 2004), into an equiv-
alent multiphase similitude law which takes into account the material non-linearities.
The equivalent modulus ratio and the peak strain ratio are the key parameters of the
model. The derived law is implemented in a numerical algorithm reproducing a pseu-
dodynamic test; the results prove that such a modified law is applicable to the seismic
simulation tests. The investigation is completed with experimental tests of a 1/5 scale
reinforced concrete model and its prototype. Results prove that a variable modulus
ratio produces similar responses, while a constant one produces large errors because
the strain level of the small scale model is not considered.
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2.4.3 Impact engineering

An important contribution to the application of similitude in the field of impact engi-
neering is provided by Atkins (Atkins, 1988). Focusing on non-scaling phenomena
occurring in scaled problems of mechanical impact and fracture, the author develops
an energy analysis according to which, when the problem presents a mixture of sur-
face and volume effects, a perfect replica scaling is unfeasible. Unfortunately, such a
mixture is present in the majority of problems.

By rigorously analyzing the governing equations and a detailed comparison be-
tween theory and test results, Atkins defines a non-dimensional parameter as the ratio
between the energy involved in volume deformation and the energy involved into
forming the crack surfaces. It is, therefore, a function of both material properties and
the absolute size of the prototype. The scaling laws derived consider both the classical
scale factors and the dimensionless parameter and explain why geometric scaling of
energy fails in problems of combined flow and fracture.

Me-Bar (Me-Bar, 1997) follows the trail of Atkins (Atkins, 1988), dividing the
impactor energy, lost during the penetration into two contributions: energy expended
in surface and volume effects, respectively. The normalized impact energy involved
in volume effects is the same in all scales, while the fraction of normalized energy
involved in surface effects increases when the scale factors decrease. Therefore, a
small structure absorbs more energy, a clear size effect. In this way, the method ex-
plains why scaling does not hold in ballistic configurations without knowledge of the
constitutive relations of the several materials involved. Actually, for simple config-
urations and when just one material is present, non-scaling due to strain-rate effects
can be considered. Instead, the method proposed by Atkins (Atkins, 1988) allows to
evaluate the energy transfer interaction for a given material at any given scale, only if
its constitutive relations and fracture.

Other theoretical studies involving, more generally, scaling of material failure are
provided for linear elastic range (Atkins and Caddell, 1974; Mai and Atkins, 1978),
plastic fracture (Atkins, 1988), nonlinear elastic range (Mai and Atkins, 1975), elasto-
plastic materials (Atkins, Chen, and Cotterell, 1998; Atkins, 1999), and epoxy and
polyether ether ketone composites (Kellas and Morton, 1992a). Bažant et al. pro-
vide an extensive treatise of failure scaling (Bažant, 1985; Bažant and Pfeiffer, 1988;
Bažant and Kazemi, 1990; Bažant, Xi, and Reid, 1991a; Bažant, Xi, and Reid, 1991b;
Bažant, 1993a; Bažant, 1993b), while the failure of quasi-brittle materials is experi-
mentally investigated by van Vliet and van Mier (van Vliet and van Mier, 2000).

Westine and Mullin (Westine and Mullin, 1987) investigate experimentally hyper-
velocity impacts into semi-infinite, shielded targets. In this case, beyond the typical
phenomena expected when impacts are involved, such as plastic flow, fragmentation,
and spalling, other mechanical and thermal phenomena must also be taken into ac-
count (for example, melting and vaporization). The authors derive scaling laws suit-
able for both semi-infinite and complex, finite-size targets. Hypervelocity impacts are
found to scale well for both replica and dissimilar materials models.
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Other works go beyond the pure theoretical investigations, in which impact anal-
ysis is applied to tests on scaled models of casks, for shipping radioactive waste (Ac-
quaro et al., 2010) or spent fuel elements (Quercetti, Müller, and Schubert, 2008).
Also automotive fields finds useful help in scaled models (Holmes and Sliter, 1974;
Lowe, Al-Hassani, and Johnson, 1974; Emori, 1973; Brownfield and Rogers, 1978).
In fact, the response of an automobile in high speed crashes is complex: the intricate
structure of an automobile undergoes large deformations, buckling, fracture, tearing,
and joints deformation. The response also depends on other elements, such as impact
velocity, angle of incidence, and the type of obstacle impacted by the car. Crashwor-
thiness phenomena have analytical solutions developed only for simple cases and de-
pend on empirically derived data, relying, therefore, strongly on experiments. Scaled-
down models allow one to perform an acceptable number of experiments reducing the
financial and temporal costs.

2.4.4 Naval and marine engineering

Similitude methods in naval and marine engineering are addressed toward two main
applications: ocean structures, that can be studied in model basins, as well as the
behavior of ships, typically during collisions.

An interesting perspective on several problems with scaling in marine environ-
ment is given by Kure (Kure, 1981). For instance, habitability is not a factor of
secondary importance when dealing with offshore structures, which are subjected to
loads easy to model as long as still water is considered. However, complex phe-
nomena, such as wave loads and drifting forces, may also need to be considered.
Moreover, oceanic environment is characterized by other types of phenomena: wind,
waves, currents, and, in come particular applications, ice flows, continuous winter sea
ice, and icebergs.

Concerning ships behavior, an interesting review by Calle and Alves (Calle and
Alves, 2011) focuses on collision scenarios. As a matter of fact, ship collisions and
grounding represent the majority of ship accidents and are cause, mainly, by human
errors, ship failure, and harsh environment. Considering that, when the review was
written, the global fleet had increased significantly in the number of ships, the risk of
a collision had increased in parallel. Moreover, ship collisions lead to many serious
damages, e.g., the degradation of marine environment (about 48% of the world fleet
consists in tankers, therefore the risk of oil leakage is high), explosions, human losses,
blocking of ship traffic, and permanent damage to ships. Thus, ship collisions are a
serious and sensitive topic which collides with the enormous difficulty in setting up
experimental collisions testing of prototypes, due to their too large sizes.

Nonetheless, there are many works on experimental testing of colliding ships
(Blok and Dekker, 1979; Hagiwara, Takanabe, and Kawano, 1983; Ohtsubo, Kawamoto,
and Kuroiwa, 1994; Lehmann and Peschmann, 2002; Tabri, Määttänen, and Ranta,
2008; Calle, Oshiro, and Alves, 2017; Oshiro et al., 2017; Aguiar et al., 2012) and,
in all of them, the ships are scaled down, sometimes significantly [1/45 (Blok and
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Dekker, 1979), 1/35 (Tabri, Määttänen, and Ranta, 2008), and 1/100 (Oshiro et al.,
2017) scaled models]. What really jumps out from these works is the difficulty in
realizing the experimental tests. For example, Hagiwara et al. (Hagiwara, Takanabe,
and Kawano, 1983), aiming at estimating the energy involved in low energy collisions,
simplify the model manufacturing by omitting some structural members, which inval-
idates the experimental results. Moreover, non-similarities in material failure appear.
These manufacturing difficulties are remarked upon also by Ohtsubo et al. (Ohtsubo,
Kawamoto, and Kuroiwa, 1994) and Calle et al. (Calle, Oshiro, and Alves, 2017).
To give an example, interior welding is limited by restricted accesses. Fabrication of
all the components would lead to a great complexity, disproportionate costs, and long
times for assembly. Simplified geometries become, perforce, a necessity: only the
main plates and stiffeners ae typically considered.

Finally, the solutions adopted by Lehmann and Peschmann (Lehmann and Peschmann,
2002) and Tabri et al. (Tabri, Määttänen, and Ranta, 2008) are quite interesting, since
they use a rigid, bulbous bow as striker, instead of making a second, scaled-down ship
model.

2.4.5 Rapid prototyping

According to Cho and Wood (Cho and Wood, 1997), between the 1980s and 1990s,
various RP techniques emerged and advanced, as a consequence of the dramatic re-
duction of fabrication cost and time that this group of industrial techniques provides,
so that at least twenty companies already commercialized diverse RP systems. Cho
et al. (Cho, Wood, and Crawford, 1998b) highlight that, in the late 1990s, there
was only limited literature about similitude methods applied to RP, most based on
DA (Dornfeld, 1994; Mahn and Bayly, 1999; Steinchen, Kramer, and Kupfer, 2008),
that just examine experimentally the test results (Dornfeld, 1994; Steinchen, Kramer,
and Kupfer, 2008) and perform predictions of aluminium prototypes by means of im-
pacted StereoLithography (SL) models (Mahn and Bayly, 1999).

However, Coutinho et al. (Coutinho, Baptista, and Rodrigues, 2016) report other
works concerning RP, many of them related to wind tunnel testing: Springer (Springer,
1998) obtaines models with Fused Deposition Method (FDM) using ABS plastic or
polyether ether ketone, SL, selective laser sintering, and laminated object manufac-
turing; Nadooshan et al. (Nadooshan, Daneshmand, and Aghanajafi, 2007) employ
FDM with polycarbonate; Chuk and Thomson (Chuk and Thomson, 1998) compare
times and costs of ten RP techniques in making wind tunnel models. However, the
authors agree on the fact that such technologies are applicable for models as long as
the loads are kept sufficiently low, because those parts made of plastic materials or
metal powders do not provide enough structural integrity for testing.

A preliminary design and manufacturing technique is introduced by Dang-guo et
al. (Dang-guo et al., 2011; Dang-guo et al., 2013), in order to improve the structural
integrity of RP models and reduce the manufacturing period and cost. This technique
is applied to hybrid high-speed wind-tunnel models with an internal frame and an
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outer resin, fabricated, respectively, with a conventional method and SL. A similar
method is already applied by Fujino et al. (Fujino, Oyama, and Omotani, 2003) to
experimentally investigate the flutter characteristics of an over-the-wing engine mount
configuration by using different scale models at different flow conditions.

Ziemian et al. (Ziemian, Ziemian, and Barker, 2010) present a different case
of study. They investigate the correlation between the dynamic behavior of a full-
scale steel prototype and a small-scale plastic model fabricated using FDM, in order
to obtain baseline information on the dynamic response on the dynamic behavior on
FDM plastic parts. The feasibility of the small-scale FDM models is assessed, by
means of a shake-table test, comparing the experimental results with those of a full
prototype study and with computational models.

Zhu et al. (Zhu et al., 2011) present a novel method to design and fabricate aeroe-
lastic wing models for wind tunnel tests. It is based on SL and derives the model
through a sequential design procedure of dimensional scaling, and stiffness and mass
optimization. The test article used to test the approach is an aluminium wing box,
scaled down to obtain the desired dynamic behavior data.

However, as reported by Coutinho et al. (Coutinho, Baptista, and Rodrigues,
2016), all these researches do not propose real innovations and do not try to bypass
the characteristic problems of RP testing by changing approach. This path is taken
by Cho and Wood (Cho and Wood, 1997), who propose the ESM and claiming that
their approach is more suitable in solving distortion problems. Particularly, this work
addresses the application of ESM to predict the deflection of an aluminium beam in
two locations with a certain distance from the clamping point, then the investigation
of a thermostructural problem in which some of the dimensionless parameters are not
kept identical. ESM is then applied to an aluminium/nylon rod and to study the tem-
perature transition of an aluminium/nylon mold (Cho, Wood, and Crawford, 1998b),
and on a numerical slotted rod and a mold (Cho, Wood, and Crawford, 1998a); more-
over, an error estimation of both DA and ESM results, with a numerical application
to the study of thermal behavior of turbine blades, are performed (Cho, Wood, and
Crawford, 1999). Then, three approaches to contruct the transformation matrix are
extensively proposed (Dutson and Wood, 2002): a pseudo-inverse approach, diago-
nal matrix approach, and circulant matrix approach. Then, a numerical analysis of
the deflection of a cantilever beam is exposed; the same application is repeated after
introducing and advanced ESM, proposed to bypass the problems of specimen distor-
tions. This novel method is applied also to the control of steady-state temperature of
central processing unit surfaces. The advanced ESM is further applied to investigate
the deflection of a cantilever beam with five holes subjected to a concentrated load
at the tip (Dutson et al., 2003). Successively, a lumped ESM is introduced to link
distorted systems made of more than one part (Cho et al., 2005); a numerical study is
then performed of an archery bow, while an experimental investigation on a heat sink
(to control the steady-state temperature of a central processing unit).
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Chapter 3

Theoretical framework

The theoretical tools used in this thesis are introduced in this chapter. First, SAM-
SARA method is applied to the derivation of the similitude conditions and scaling
laws related to the dynamic characteristics of the systems considered, namely natural
frequencies, velocity response, and radiated acoustic power. Then, the main concepts
behind machine learning, Artificial Neural Networks (ANN) and Principal Compo-
nent Analysis (PCA) are provided. Finally, the main steps of the SOBI algorithm are
briefly listed.

3.1 The similitude method: SAMSARA

In this section, SAMSARA method is applied in order to obtain the similitude con-
ditions of the dynamic characteristics of 1D and 2D structures, namely beams and
plates. In particular, plates are investigated in both the classic, thin configuration and
sandwich one. The dynamic characteristics addressed by the application of SAM-
SARA are the natural frequencies, the velocity response, and the radiated acoustic
power.

It is recalled that the scale factor of the generic parameter g are herein defined as
Eq. 2.3, that is,

λg =
ĝ
g

,

where the hat symbol ̂ describes the parameter of the model.

3.1.1 Similitude conditions and scaling laws of the natural frequencies

Scaling natural frequencies is the first step to take when similitude theory is applied
to the analysis of the dynamic behavior of systems. In fact, knowing how natural
frequencies change is fundamental for the reconstruction of the dynamic response, as
well as the distortions in models may be already conveyed through such scaling.

The structures investigated in this thesis are beams, isotropic plates, and sandwich
plates in similitude. Up to now, SAMSARA has not yet been applied to beams, that,
even though they may be considered as "simple" structures, are an interesting starting
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point because they are structural operators which do not generate distorted models.
Conversely, plates may lead to models in partial similitude. This time, the mode shape
is described by a couple of integer numbers which combination, and its succession,
may change with the model.

The beams under analysis are simply supported, while the isotropic plates are
studied with Clamped-Free-Clamped-Free (CFCF) boundary conditions [as the sim-
ply supported (De Rosa, Franco, and Meruane, 2015) and cantilever (Meruane, De
Rosa, and Franco, 2015) configurations have already been investigated]. Finally, the
sandwich plates are simply supported, too.

Table 3.1 summarizes all the scale factors introduced in this section.

Parameter Scale factor

Beam length λL =
L̂
L

Bending stiffness λD = D̂
D

Damping λη = η̂

η

Elastic modulus λE = Ê
E

Force λF = F̂
F

Angular frequency λω = ω̂

ω

Mass λM = M̂
M

Mass density λρ =
ρ̂

ρ

Panel length λa =
â
a

Panel thickness λh =
ĥ
h

Panel width λb =
b̂
b

Poisson’s ratio λν =
ν̂

ν

Velocity λV = V̂
V

TABLE 3.1: List of the scale factors.

Scaling the natural frequencies of simply supported isotropic beams

The equation describing the propagation of a flexural wave in an undamped simply
supported beam is (Fahy and Gardonio, 2007)

EI
∂4w
∂x4 = −M

∂2w
∂t2 , (3.1)
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where w is the displacement, x is the direction of the length of the beam, t is the time,
E is the Young’s modulus, I is the moment of inertia, and M = ρA is the mass per unit
length (being ρ the mass density per unit volume and A the cross sectional area).

A progressive (incident) wave is assumed as solution, given by

w+
i (x, t) = Ãexp(− jkbx)exp( jωt), (3.2)

with Ã the complex amplitude of the wave at x= 0, j the imaginary unit, kb the flexural
wavenumber, ω the angular frequency.

The presence of the support on the right end of the beam generates a reflected,
negative going wave (there is no transmitted wave, since the beam does not continue
after the supports), with expression

w−
r (x, t) = [B̃1exp( jkbx)+ B̃2exp(kbx)]exp( jωt). (3.3)

Applying the conditions associated with simply supported boundaries, then B̃1 =
−Ã, B̃2 = 0 (Fahy and Gardonio, 2007), therefore the beam displacement can be writ-
ten as

w(x, t) = 2 jÃsin(kbx)exp( jωt). (3.4)

These results show that the amplitude of the reflected wave equals that of the
incident wave, and their relative phase is π. The returning wave is reflected once more
when it reaches the left support, and so on. Under certain circumstances, the incident
and reflected waves may have phase coincidence; in particular, since the wavenumber
is the phase change per unit length, this happens in a beam when

kb(2L) = n(2π), (3.5)

where L is the length of the beam and n is the number of half waves along the x
direction, or, equivalently,

kb =
nπ

L
. (3.6)

Expliciting the flexural wavenumber, kb = (ω2M/EI)1/4, the equation of the nat-
ural frequencies of a simply supported beam is

ωn =
n2π2

L2

√
EI
M

n = 1,2, . . . . (3.7)

Since similar systems are governed by the same set of equations, Eq. 3.7 can be
analogously written, for any model, as

ω̂n =
n2π2

L̂2

√
Ê Î

M̂
n = 1,2, . . . . (3.8)

Expliciting the scale factors, Eq. 3.8 becomes
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λωωn =
n2π2

λ2
LL2

√
λEEλII
λMM

n = 1,2, . . . . (3.9)

Eqs. 3.7-3.8 are the same if the terms involving the scale factors on both sides of
the Eq. 3.9 are equal, namely

λω =
1

λ2
L

√
λEλI

λM
. (3.10)

Eq. 3.10 represents the frequency scale factor of a simply supported beam made of
isotropic material. Such a scale factor is an invariant, valid in all the frequency range,
which allows the reconstruction of the natural frequencies of the prototype from those
of the model, and vice versa, whatever the model. In fact, it is not associated to any
similitude condition which limits its validity range. Any change in length, Young’s
modulus, inertia moment, or mass can be represented in terms of the associated scale
factor. Even different cross-sectional shapes can be chosen, as the change in inertia
moment are conveyed through the specific scale factor, λI . Therefore, simply sup-
ported beams do not generate any distorted model.

Under the assumption of unchanged material and cross section dimensions, λE =
λI = λM = 1, therefore Eq. 3.10 becomes

λω =
1

λ2
L

, (3.11)

according to which only the length size affects the natural frequencies.

Scaling the natural frequencies of CFCF isotropic plates

The CFCF plates considered have clamped sides along the y direction. In order to
derive the equation of the natural frequencies of such a peculiar boundary condition,
it is possible to refer to the procedure provided by Warburton (Warburton, 1954). The
plate equation is

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 +

12ρ(1−ν2)

Eh2
∂2w
∂t2 = 0, (3.12)

where w is the plate displacement trasversal to the xy plane, x and y are the directions
of length and width of the plate, ρ is the mass per unit volume, ν is the Poisson ratio.
The displacement can be expressed as

w =Wsin(ωt), (3.13)

In order to determine the amplitude W , energy considerations allow to write

ω
2 =

Umax
ρh
2
∫ a

0
∫ b

0 W 2dxdy
, (3.14)
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where Umax is the maximum potential energy, a and b are the length and width, re-
spectively (the geometrical characteristics are schematically represented in Fig. 3.1).
The term W can be explicited by means of Rayleigh-Ritz method, in which a series is
assumed for it:

∑
α

∑
β

Aαβθα(x)φβ(y). (3.15)

In Eq. 3.15, θα(x) and φβ(y) are beam functions representing the modes of a beam
with a certain boundary condition at its ends; the coefficients Aαβ make the value ω2,
given in Eq. 3.14, a minimum. The functions θα(x) and φβ(y) are used to describe
the undulatory behavior in x and y directions of a plate having the same boundary
conditions of the beams. To give an example, the waveform of the plate in x direction,
for each position alongside y, is the same of the beam with axis in x direction and the
boundary conditions of the plate.

For any boundary condition, substituting the proper expressions for θα(x) and
φβ(y) (Warburton, 1954) into Eq. 3.12 and Eq. 3.14, the following expression for the
natural frequencies of a plate is given by

ωmn =
γ2

mn

a2

√
Eh2

12ρ(1−ν2)
, (3.16)

where the term λmn is known as the dimensionless natural frequency parameter and it
is a function of the boundary conditions, geometry, and Poisson’s ratio:

γ
2
mn = π

2

√
G4

m +G4
n

(a
b

)2
+ 2
(a

b

)2
[JmJn + 2ν(HmHn − JmJn)]. (3.17)

The coefficients Gm,Gn,Hm,Hn,Jn,Jn are dimensionless and depend on the modal pat-
tern and on the boundary conditions. Such a modal pattern is described by the sub-
scripts m and n, which chan represent both the number of half waves or nodal lines
in x and y directions, respectively. In particular, Blevins (Blevins, 2016) reports the
values, for each couple (m,n) of the six dimensionless coefficients, as a function of
the half waves, while Warburton (Warburton, 1954) provides the same coefficients as
functions of the number of nodal lines. It is worth remarking that, in the latter case,
the index m starts from 2, while the n index starts from 0, as the free sides are those
along the x direction, while the clamped sides are those along the y direction. Thus,
since the clamped sides are always nodal lines, their number, along the x direction, is
at least 2; conversely, the free sides are not nodal lines, therefore their number along
the y direction is, at least, 0. For this reason (and since the formulation given by
Blevins starts both m and n from 1), the formulation by Warburton is more complete
and, therefore, is the one herein adopted. For sake of completeness, the coefficients
proposed by Warburton are summarized in Tables 3.2-3.3.
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FIGURE 3.1: Geometrical characteristics of a rectangular panel.

m Gm Hm Jm
2 1.506 1.248 1.248

3, 4, 5, ... m− 1
2

(
m− 1

2

)2
[

1− 2
(m− 1

2 )π

] (
m− 1

2

)2
[

1− 2
(m− 1

2 )π

]
TABLE 3.2: Coefficients in Eq 3.17 along the x direction.

n Gn Hn Jn
0 0 0 0
1 0 0 12

π2

2 1.506 1.248 5.017

3, 4, 5, ... n− 1
2

(
n− 1

2

)2
[

1− 2
(n− 1

2 )π

] (
m− 1

2

)2
[

1+ 2
(m− 1

2 )π

]
TABLE 3.3: Coefficients in Eq 3.17 along the y direction.

As for the beam, also for plates the behavior of scaled-up or down models is
governed by the same set of equations of the prototype, therefore, substituting Eq.
3.16 into Eq. 3.11, the natural frequencies of any CFCF model is given by:

ω̂mn =
π2

â2

√
Êĥ2

12ρ̂(1− ν̂2)
× . . .

. . .×

√
G4

m +G4
n

(
â

b̂

)4

+ 2
(

â

b̂

)2

[JmJn + 2ν̂(HmHn − JmJn)]. (3.18)

Introducing the scale factors, Eq. 3.18 becomes:

λωωmn =
π2

λ2
aa2

√
λEEλ2

hh2

12λρρ(1−λ2
νν2)

× . . .

. . .×

√
G4

m +G4
n

(
λaa
λbb

)4

+ 2
(

λaa
λbb

)2

[JmJn + 2λνν(HmHn − JmJn)]. (3.19)
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Assuming unchanged material (λE = λρ = λν = 1), Eqs. 3.16-3.19 are the same
if

λω =
λh

λ2
a
=

λh

λ2
b
=

λh

λaλb
, (3.20)

that are all valid at the same time only if

λa = λb. (3.21)

Eq. 3.21 represents the similitude condition to fulfill in order to design model
panels in complete similitude; according to this condition, the length and the width
of the panel must scale in the same way. Thickness, on the other hand, is a free
parameter. It can be equivalently rewritten as

λA = 1, (3.22)

that is, the aspect ratio of the panel must not change.
In the particular case of the plate, if all the geometrical dimensions scale with the

same scale factor (λa = λb = λh = λl), the model is called replica. The similitude
condition is satisfied, and Eq. 3.20 reduces, inevitably, to

λω =
1
λl

. (3.23)

If only length and width scale and such a scaling procedure fulfills the condition
given in Eq. 3.21 (λa = λb = λl), then the model is called proportional sides; Eq.
3.20 reduces, in this case, to

λω =
λh

λ2
l

(3.24)

The fulfillment of the similitude condition makes Eqs. 3.23-3.24 univocal laws,
working fine into all the frequency range, that allow to reconstruct the natural fre-
quencies of the prototype. These frequencies appear different ranges in prototypes
and models (generally, higher frequencies if the model is scaled-down, lower fre-
quencies if the model is scaled-up), but, if the model is in complete similitude, the
succession of the modes is kept. Therefore, the reconstruction is possible because the
invariant λω performs a remodulation in frequency, that is, switches the frequencies
of the model back to those of the prototype, and vice versa.

If the similitude condition is not satisfied, then the model is called avatar; the
geometrical parameters scale differently, therefore Eq. 3.20 does not reduce into an
univocal scaling law, instead there are three of them:
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λω =
λh

λ2
a

, (3.25a)

λω =
λh

λ2
b

, (3.25b)

λω =
λh

λaλb
. (3.25c)

Eqs. 3.25 are not equivalent and, typically, none of them allows an accurate re-
construction of the dynamic response of the prototype, at least not in all the frequency
range. This is due to the fact that, not adhering to the similitude condition, the mode
succession is not retained and the scale factor is not able to keep track of this phe-
nomenon. This also explains why beams do not generate avatars. In fact, being the
beams 1D structures, the flexural wave travels just in one direction and the modes
follow one another in frequency for increasing n: the modes succession is always
the same and, therefore, it is always retained. Conversely, flexural waves travel in
two directions in plates, thus the modes are given by combinations of the numbers
of half waves in these directions; such a combination strongly depends on the aspect
ratio. Therefore, even small changes in the aspect ratio - which means violating the
similitude condition - may alter the succession of the modes and generate avatars.

Eqs. 3.25 always lead to discrepancies in the remodulation phase, and these dis-
crepancies increase as the distortion increases (i.e., as the aspect ratio of the plates
changes significantly). Occasionally, Eqs. 3.25 may give acceptable predictions, how-
ever it is not possible to know a priori which scaling laws return the best results, the
best choice can be determined only after the application of the law. Thus, the deter-
ministic procedure, consistent with the similitude laws, is lost.

It is interesting to note that Eqs. 3.20-3.21 are not only the similitude conditions
and scaling laws for CFCF plates, but also those of simply supported and cantilever
plates (De Rosa, Franco, and Meruane, 2015; Meruane, De Rosa, and Franco, 2015):
they do not change if the boundary conditions change. This is not surprising, as
similitude methods are based on the principle of dimensional homogeneity, for which
both the LHS (Left Hand Side) and RHS (Right Hand Side) of an equation must
have the same dimensions. Hence, even though the boundary conditions affect the
reflection of the waves in a structure, therefore influencing the phase coincidence and
the resonance, they do not have effects on the scaling laws and similitude conditions,
since the structural operator is the same and it must keep the same dependencies with
the same parameters. This concept can be extended to beams, too.

Scaling the natural frequencies of simply supported sandwich plates

The similitude conditions and scaling laws are derived for sandwich plates under sim-
ply supported conditions made of isotropic material (aluminium skins and aluminium
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foam core). As demonstrated in Sec. 3.1.1, they do not change if the boundary con-
ditions change, being based on dimensional homogeneity. Hence, simply supported
plates are considered because they are more straightforward to manage analytically,
with respect to free-free plates.

In order to derive the equation of natural frequencies of a simply supported isotropic
sandwich plate which skins and core are made of isotropic material, it is possible to
start with the equation of an orthotropic laminate. Assuming that there is no transverse
load and rotatory inertia, this equation can be written as

D11
∂4w
∂x4 + 2(D12 + 2D66)

∂4w
∂x2∂y2 +D22

∂4w
∂y4 +ρS

∂2w
∂t2 = 0, (3.26)

where the several terms Di j indicate the bending stiffnesses of the laminate, and ρS =
M/ab the mass density per unit area. Expressing the deflection in the form

w(x,y, t) = w(x, t)e jωt , (3.27)

and substituting into E. 3.26, returns

D11
∂4w
∂x4 + 2(D12 + 2D66)

∂4w
∂x2∂y2 +D22

∂4w
∂y4 −ρSω

2w = 0. (3.28)

The spatial part of Eq. 3.27 can be expressed as a double series written as

∞

∑
m=1

∞

∑
n=1

Cmnsin
(mπa

a

)
sin
(nπy

b

)
, (3.29)

that, under simply supported boundary conditions, becomes

w(x,y) =Cmnsin
(mπx

a

)
sin
(nπy

b

)
. (3.30)

The term Cmn, and the associated coefficients, are given in Berthelot (Berthelot, 2015).
Substituting Eq. 3.30 into Eq. 3.28 gives

[
m4π4

a4 D11 + 2
m2n2π2

a2b2 (D12 + 2D66)+
n4π4

b4 D22 −ρSω
2
]

Cmn = 0. (3.31)

For nonzero values of Cmn, the following equation for the natural frequencies of
an orthotropic plate is obtained:

ωmn =
π2

a2

√
1
ρS

[
m4D11 + 2m2n2

(a
b

)2
(D12 + 2D66)+ n4

(a
b

)4
D22

]
. (3.32)

Since the plate under investigation is an isotropic sandwich plate, it can be as-
sumed that D11 = D22 = D12 + 2D66 = D, therefore (Berthelot, 2015)
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ωmn =
π2

a2

√
D
ρS

√
m4 + 2m2n2

(a
b

)2
+ n4

(a
b

)4
, (3.33)

The sandwich characteristic can be inserted into Eq. 3.33 by means of the bending
stiffness. For isotropic sandwich plates, the bending stiffness can be expressed by
separating the contribution of the skins from that of the core. According to Powell
and Stephens (Powell and Stephens, 1966), the bending stiffness can be written as

D =
E f (h3 −h3

c)

12(1−ν2
f )

+
Ech3

c

12(1−ν2
c)

, (3.34)

in which the f and c subscripts describe the facing and core properties, respectively.
The equation for models, considering the bending stiffness given in Eq. 3.34 and

expliciting the mass density per unit area, is:

ω̂mn =
π2

â2

√√√√ Ê f (ĥ3 − ĥ3
c)âb̂

12M̂(1− ν̂2
f )

+
Êcĥ3

c âb̂

12M̂(1− ν̂2
c)

× . . .

. . .×

√
m4 + 2m2n2

(
â

b̂

)2

+ n4

(
â

b̂

)4

. (3.35)

Introducing the scale factors, Eq. 3.35 can be written in terms of the prototype
parameters as

λωωmn =
π2

λ2
aa2

√√√√λE f E f (λ3
hh3 −λ3

hc
h3

c)λaaλbb

12λMM(1−λ2
ν f

ν2
f )

+
λEcEcλ3

hc
h3

cλaaλbb

12λMM(1−λ2
νc

ν2
c)

× . . .

. . .×

√
m4 + 2m2n2

(
λaa
λbb

)2

+ n4

(
λaa
λbb

)4

. (3.36)

Eq. 3.36 is written under two assumptions. First, the number of half waves in
x and y direction scale equally in both the prototype and model, which means λm =
λn = 1. This assumption is not trivial, however the most reasonable choice for both
scale factors is the same (unit) value. This is true for two reasons: the same mode
shapes must be compared, thus the unit value; then, the scale factors are, basically,
invariant terms, thus the value of both λm and λn must be fixed a priori.

Secondly, it is assumed that also the Poisson’s ratios of both skins and core are
the same between prototype and model (i.e., λν f = λνc = 1), which implies that the
material may change but it will still be a metal or an alloy.

Hence, Eqs. 3.33-3.36 are the same if the following set of conditions holds:
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
λa = λb

λh = λhc

λE f = λEc

. (3.37)

Therefore, a complete similitude is obtained if length and width scale in the same
way (as for the flat plate); new conditions appear, concerning the elastic moduli of
skins and core, the total thickness and the core thickness. These are clearly associated
with the sandwich configuration of the test article. It is interesting to notice that Eq.
3.36 would have brought likewise to the additional condition λm = λn, if it would have
not been previously assumed.

Fulfilling the conditions given in Eq. 3.37 leads, as expected, to the definition of
an univocal scaling law, that is

λω =
1
λl

√
λEλ3

h
λM

, (3.38)

where λa = λb = λl and λE f = λEc = λE .
The considerations done for Eq. 3.24 in the case of CFCF plates still hold for Eq.

3.38: it allows to predict the natural frequencies of the prototype from those of the
model (and vice versa) in the whole frequency range.

Not fulfilling the conditions given in Eq. 3.37 leads to avatars also for sandwich
plates. There are several possible scaling law, depending on which condition is sat-
isfied and which not. For instance, satisfying the conditions about Young’s modulus
and thickness (λE f = λEc = λh = λhc = 1) leads to the following scaling laws (from
Eq. 3.36:

λω =
1
λa

√
1

λM
, (3.39a)

λω =
1
λb

√
1

λM
, (3.39b)

λω =

√
1

λaλbλM
. (3.39c)

Also in this case, the several scale factors provided by Eqs. 3.39 do not work fine
in all the frequency range.

However, it is possible to reduce the number of the similitude conditions if many
parameters are grouped into just one parameter with physical meaning. In particular,
considering the bending stiffness provided in Eq. 3.34 as a whole parameter, instead
of expliciting it, the similitude conditions and the scaling law for a complete similitude
reduce to Eq. 3.21 and

λω =
1
λl

√
λD

λM
, (3.40)
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respectively.
Therefore, only the first of the conditions listed in Eq. 3.37 remains, and the model

is still a proportional sides. Now, the similitude condition completely coincides with
those found for flat plates with CFCF, simply supported (De Rosa, Franco, and Meru-
ane, 2015), and clamped on one side (Meruane, De Rosa, and Franco, 2015) boundary
conditions. Thus, concerning plates, passing from a flat to a sandwich configuration
does not affect the similitude conditions, only the scaling laws.

Since Eq. 3.40 directly involves the bending stiffness, it is possible to take into
account changes of the material just by evaluating the corresponding scale factor λD,
without adding other similitude conditions.

3.1.2 Scaling the velocity response

The velocity response of a generic linear system can be written as a summation of its
vibration modes (Cremer, Heckl, and Petersson, 2005)

V (xF ,xR;ω) = jωF(ω)
∞

∑
m=1

∞

∑
n=1

φmn(xF)φmn(xR)

µmn(ω2
mn −ω2 + jηω2

mn)
, (3.41)

where xF is the excitation point, xR the receiving point, both expressed in dimension-
less coordinates, j the imaginary unit, φmn the mode shape of the mode of order (m,n),
η the structural modal damping, and ω is the excitation frequency (not to be confused
with ωmn, which represents the natural frequency). The force F(ω) harmonic, acting
at the point xF according to

F(xF ;T ) = F(ω)δ(xF0 − xF)e jωT , (3.42)

in which δ denotes the Kronecker delta function, while T is the time.
Finally, the term µmn is the generalized mass. For a plate, it is expressed by

µmn = ρh
∫ a

0

∫ b

0
φ

2
mn(x,y)dxdy. (3.43)

The term µmn is representative of the amount of mass participating to the mode of
order (m,n) and it is a fraction of the total mass M (for example, it is M/4 when the
plate is simply supported). Thus, its scaling can be taken into account in terms of the
mass scale factor, λM.

Scaling the velocity response consists in the same procedure carried out for the
natural frequencies. The model velocity response is

V̂ (xF ,xR; ω̂) = jω̂F̂(ω̂)
∞

∑
m=1

∞

∑
n=1

φmn(xF)φmn(xR)

µ̂mn(ω̂2
mn − ω̂2 + jη̂ω̂2

mn)
. (3.44)

For structures in similitude, the excitation and acquisition points always act at
the same relative dimensionless coordinates. The modes φmn(xF)φmn(xR) are eval-
uated in the same non-dimensional coordinates, therefore, for a given mode shape,
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their value does not change among the models. This implies that the mode shapes
φmn(xF)φmn(xR) do not need to be posed in similitude, whatever the model type.

Eq. 3.44 can be written in terms of the scale factors as

λVV (xF ,xR;λωω) = jλωωλFF(λωω)× . . .

. . .×
∞

∑
m=1

∞

∑
n=1

φmn(xF)φmn(xR)

λMµmn(λ2
ωω2

mn −λ2
ωω2 + jληηλ2

ωω2
mn)

. (3.45)

To derive the scaling law of velocity, it is assumed that the damping does not
change among the models, λη = 1 [although this assumption should be implicit, be-
cause, as demonstrated in literature (De Rosa et al., 2012), constant damping is re-
quired between prototype and model]; this hypothesis is acceptable if the material
and the boundary conditions do not change. Hence, the velocity scales according to
the law

V (xF ,xR;ω) =
λMλω

λF
V̂ (xF ,xR;λωω). (3.46)

Eq. 3.46 provides the scale factor of velocity. The frequency response of any
model can be predicted into two steps: first, the amplitude of the response is scaled
by means of the ratio λMλω

λF
; then, the resonance peaks are aligned by means of the

frequency remodulation λωω.
Eq. 3.46 has been derived without posing any similitude condition on the geom-

etry, thus this equation would work fine for all the types of models. However, the
distortion can be still conveyed by means of the frequency scale factor. This affects
the reconstruction of the velocity response, as both the amplitude and frequency re-
modulation involve the frequency scale factor; moreover, when the system lacks of an
univocal frequency scale factor, it also lacks of an univocal velocity scale factor.

For sake of completeness, also the mobility is considered:

Y (xF ,xR;ω) =
V (xF ,xR;ω)

F(ω)
= jω

∞

∑
m=1

∞

∑
n=1

φmn(xF)φmn(xR)

µmn(ω2
mn −ω2 + jηω2

mn)
, (3.47)

and it is straightforward to demonstrate that it scales as

λY =
1

λMλω

. (3.48)

Eq. 3.48 clearly descends from Eqs. 3.46-3.47, therefore the same considerations
hold.

3.1.3 Scaling the radiated acoustic power

The acoustic power radiated by a plate can be derived in terms of summation modes
and elementary radiators. The former formulation requires the resolution of quadruple
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integrals, which is a complex process. Thus, the approach with elementary radiators
turns out to be more straightforward (Fahy and Gardonio, 2007).

Considering a baffled panel, it is divided into a grid of R rectangular elements,
at the centres of which a velocity ver acts. If the motion is time-harmonic, then the
overall vibration of the panel can be described by the vector of complex amplitudes
Ṽ = [Ṽ1,Ṽ2, . . . ,ṼR]T . A vector of pressures acting on each element can be analogously
created, p̃ = [ p̃1, p̃2, . . . , p̃R]T .

If the dimensions of each element are small with respect to both the structural and
acoustic wavelength, the total radiated acoustic power can be written as the summation
of the powers radiated by each element, namely

Πrad(ω) =
R

∑
r=1

1
2

AeRe{Ṽ ∗
r p̃r}=

S
2R

Re{{Ṽ H}{p̃}}, (3.49)

where Ae and S are, respectively, the areas of each element and of the entire panel.
When

√
Ae << λ, the integral formulation of pressure due to Rayleigh (Rayleigh,

1896) can be written as

p̃i =
jωρ0Aee− jkRi j

2πRi j
Ṽj(x j,z j), (3.50)

where Ri j is the distance between the centres of the i-th and j-th radiators. Rewriting
Eq. 3.50 in vectorial form,

{ p̃}= [Z̃]{Ṽ}. (3.51)

Thus, substituting Eq. 3.51 into Eq. 3.49, and rearranging the terms, the acous-
tic power radiated by an elastic surface at the radial frequency ω, having a normal
velocity distribution V (ω), is given, in discrete coordinates, as (Fahy and Gardonio,
2007)

Πrad(ω) =
ω2ρ0

4πc0
{V (ω)}H [A][R(ω)][A]{V (ω)}, (3.52)

where the superscript H indicates the Hermitian matrix. The terms ρ0 and c0 are the
air density and speed of sound, respectively. Assuming NG grid points in total, [A] is
the NG ×NG diagonal matrix of equivalent nodal areas

[A] =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . ANG

 . (3.53)

For an homogeneous mesh, each equivalent nodal area Ai, corresponding to the
generic i-th grid point, is
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Ai =
ab

(Nx −1)(Ny −1)
, (3.54)

where Nx and Ny are the numbers of grid points along the x and y directions, so that
NxNy = NG.

Finally, the matrix [R(ω)] is the radiation matrix, which elements are sinc func-
tions:

[R(ω)] =


1 sin(kd1,2)

kd1,2
. . .

sin(kd1,NG )
kd1,NG

sin(kd1,2)
kd1,2

1 . . . . . .
...

...
. . .

...
sin(kd1,NG )

kd1,NG
. . . . . . 1

 , (3.55)

where k = ω/c0 is the acoustic wavenumber and di, j is the distance between the i-th
and the j-th grid points.

The NG grid points are the centres of the elementary radiators with equivalent
nodal area Ai. The differences among the velocities in the centres and in the corners
of the elementary radiator are negligible when the dimension of the element is small
with respect to the acoustic wavelength (that is,

√
Ai << λ). Moreover, Eq. 3.55

returns acceptable results when the sides of the discrete radiator are much smaller
than both the acoustic and modal wavelengths in the panel.

Until now, all the parameters considered, may they be scalar values (like geomet-
rical or material characteristics) or vectors spanning a frequency band (like velocity),
are scaled by means of single-valued scale factors. This is not the case of the ra-
diation matrix, in which the element-wise model-to-prototype ratio would lead to a
matrix made of different scale factors. For example, those along the diagonal are al-
ways equal to 1, because, by definition of sinc function, the diagonal elements of the
matrix are always unitary. Instead, all the other elements scale differently because
of the transformation caused by the sinc function. Thus, it is not possible to scale
directly this function, which prevents from the derivation of a scaling law of the radi-
ated acoustic power written only in terms of scale factors, as done for the frequency
in Eq. (3.24) and the velocity in Eq. (3.46). However, the remodulation can still be
performed by substituting the scale factors into the equation of the radiated acoustic
power of the model (keeping in mind that constants as air density and the speed of
sound do not need scaling). In particular, the argument of the sinc function is remod-
ulated, instead of the function itself, obtaining

Π̂rad =
λ2

ωω2ρ0

4πc0
{λVV (λωω)}H [λAA][R̂(λωω)][λAA]{λVV (λωω)}, (3.56)

in which every element of the model radiation matrix scales as
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R̂i j =
sin
(

λω
ω

c0
λddi, j

)
λω

ω

c0
λddi, j

. (3.57)

As the panel dimensions change, the positions of the acquisition points change
too, along with their relative distances. Therefore, because the velocity distributions
V (ω) must act at the same grid points dimensionless coordinates of both prototype
and model, the distance between them must scale in the same way of length and
width, leading to the similitude condition for the radiated acoustic power

λd = λa = λb. (3.58)

Thus, even though a scaling law of the radiated acoustic power has not been di-
rectly derived, a similitude condition has been found. Interestingly, this condition in-
corporates the similitude conditions of the natural frequencies of plates. Equivalently,
Eq. 3.58 suggests that also the elementary radiators must scale keeping constant their
aspect ratio, that is, as the plate itself.

3.2 Machine learning

Machine learning is a subset of Artificial Intelligence (AI) in which several disciplines
converge, such as computational statistics, pattern recognition, image processing, data
mining, adaptive algorithms, etc. Briefly, machine learning techniques allow to per-
form predictions in an automatic way by learning from a set of data and exploiting
the information underneath. More precisely, machine learning methods provide to a
computational device the capability to improve its performance on a specific task from
data without being explicitly programmed. A formal definition is given by Mitchell
(Mitchell, 1997), who writes

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

Some of the tasks T that can be addressed by machine learning (Goodfellow,
Bengio, and Courville, 2016) are: classification, classification with missing inputs,
regression, transcription, machine translation, structured output, anomaly detection,
synthesis and sampling, imputation of missing values, denoising, etc. The term P is a
performance index representing the degree of success into executing the task; in most
of the cases, it is a error to minimize, or a gain to maximize.

Machine learning is based on algorithms that derive models from sample inputs
providing data-driven predictions and decisions. The fact that there is not an explicit
algorithm, because the process is totally data-driven, confers to the approach a high
versatility which allows its application in several research fields and kinds of prob-
lems.
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Basically, the learning algorithm performs several iterations on a set of training
data - called training set - generating an internal model which describes the behavior
underlying this data. Each iteration aims at improving the performance index, that
in this context is a training error to minimize. The central objective is to develop the
capability of performing well on unseen data, that is, to generalize. Therefore, after
each iteration, the internal model generated by the learning algorithm is tested on a
test set in order to evaluate the test (or generalization) error. These sets of data are
organized in features and observations. The features are the characteristics describ-
ing the phenomenon under investigation; sets composed of one value of each feature
generate an observation.

Both the task T and performance index P define the type of experience E to be
gained, that can be broadly separated into three groups:

• Supervised learning: the dataset contains features and each examples is de-
scribed by a label;

• Unsupervised learning: the dataset contains features but the examples are not
described by labels (it is very useful when the purpose is to find structure in
data);

• Reinforcement learning: the algorithm interacts with a dynamic environment,
generating a feedback loop between the learning algorithm and its experiences;

The range of machine learning methods is wide and diversified. Linear models,
such as linear regression, Support Vector Machines (SVMs), etc., are simple, can be fit
efficiently and reliably, and the solution is in closed form or with convex optimization;
of course, they are limited to linear functions. Regression polynomials, on the other
hand, help to derive empirical equations fitting experimental data; however, when
data is limited, inconsistent, or it involves a large number of variables, it is difficult
to generalize empirically. As a matter of fact, data is gathered in a multidimensional
surface with complex and unknown underlying functional forms (Fu, Liang, and Li,
2007).

Among all these methods, ANNs constitute a powerful tool able to reconstruct
the functional relationships between variables with nonlinear dependencies; they also
work with noisy and/or time-varying data, and can produce solutions in short times
(independently of the complexity of the problem). All these characteristics make
ANNs an attractive method even if there are alternative techniques which can return
more accurate results (Flood and Kartam, 1993). For this reason, a part of this work
is dedicated to the investigation of the ANNs in similitude field.
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3.2.1 Artificial Neural Networks (ANNs)

ANNs are a machine learning algorithm which trains and generalizes directly on the
data set; they can work with complex, nonlinear functional relationships by learn-
ing from data obtained with analytical/numerical simulations or from experiments.
Moreover, they are robust to noise and incomplete information.

ANNs are loosely inspired to human brain; they are called "networks" because
they are composed of functions associated with a directed graph, as shown in Fig.
3.2, where the organization in layers is highlighted: input (orange), hidden (blue),
and output (green) layers. Each one is made of several computational units, called
nodes or neurons, in which the input is processed and transformed into an output.
Particularly, the network shown in Fig. 3.2 is a fully connected network, as all the
neurons of a layer are connected with all the neurons of the successive layer.

FIGURE 3.2: Scheme of an ANN.

The input processing into a neuron is shown in Fig. 3.3; it can be divided into two
steps. Being a fully connected network, the neuron receives all the R inputs. Then,
firstly (left part of the neuron), the net input of the neuron, n j, is evaluated as (Hagan
et al., 2014)

n j =
R

∑
i=1

Wp+ b j, (3.59)

where W is a matrix of adjustable parameters, called weights, b j is another adjustable
parameter, called bias, p is the vector of inputs, and R is the total number of inputs.
Thus, the net input is a linear combination of inputs and weights, plus the bias.

Secondly (right part of the neuron), the net input is transformed into the output a j

by means of an activation function f (·), so that

a j = f (n j). (3.60)



3.2. Machine learning 93

FIGURE 3.3: Scheme of an neuron (of the first hidden layer).

The activation function is used into the hidden and output layers. There is no
transformation into the input layers, they simply "pass" the input to the first hidden
layer.

The number of neurons of the input layer is equal to the number of input features,
therefore the input vector has dimensions R×1. If the first hidden layer has more than
one neuron, viz. S1 neurons, then the weight matrix dimensions are W has S1 ×R,
while the bias vector b j has S1 ×1 elements (i.e., a bias for each neuron). Therefore,
both the net input n and output a vectors have dimensions S1 × 1. The output layer
has as many neurons as the number of output features (say, D), thus the output vector
has D×1 elements.

The input layer gathers all the inputs from the training set and transfers them to
the successive layer, that is typically a hidden layer. These types of layers are funda-
mental, as they introduce the nonlinear behavior by means of the activation function.
Then, the output of the first hidden layer becomes the input of the successive layer,
that can be an output or a hidden layer. In the latter case, the operations executed in
the first hidden layers are repeated. When data is passed to the output layer, it returns
the final values of the internal model generated by the ANN.

If the calculations stop after a complete crossing of the network, then the ANN
is called feedforward (because the data moves in one direction, from the input to the
output layer). Alternatively, a backpropagation can be inserted, so that the final output
is compared with the reference value (contained into the test set). The derivatives
of the obtained error are evaluated with respect to weights and biases, following a
backward path from the output to the input layers.

In this thesis, the transfer function chosen for the hidden layers is the hyperbolic
tangent (also known as tangent sigmoid, Fig. 3.4):

a j = tanh(n j) =
en j − en j

en j + en j
. (3.61)
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It is a function defined in all R, assuming values in the interval [-1, 1]; the passage
from the y < 0 to the y > 0 region occurs with a smooth step, so that y(0) = 0. The
internal model generated by the ANN is a function which develops, for each hidden
layer, as many steps as the number of neurons. Each weight adjusts the steepness of
the associated step, while the bias takes into account translation.

FIGURE 3.4: Hyperbolic tangent.

The transfer function of the output layer is a simple linear function

a j = n j, (3.62)

since the output mapping is desired, no more transformations are wanted. Further-
more, this choice is in agreement with the universal approximation theorem (Hornik,
Stinchcombe, and White, 1989; Cybenko, 1989), which states that a forward network
with a linear output layer and at least one hidden layer with any squashing activation
function (that is, a function that compresses the input into a small interval, such as the
logistic or the tangent sigmoid) can approximate any continuous function on a closed
and bounded subset of Rn from one finite-dimensional space to another without error,
provided that the network has enough hidden units.

The performance index adopted in this thesis, for both training and test phases, is
the Mean Squared Error (MSE), defined as

MSE =
1

NE

NE

∑
i=1

(ti −ai)
2, (3.63)

where NE is the total number of examples, ti is the target output of the i-th example,
and ai is the output provided by the ANN, evaluated on the same example.

Another fundamental element is the learning algorithm; the one chosen is the
Levenberg-Marquardt (Marquardt, 1963) one; it is a backpropagation algorithm, that
is, the gradient of the error with respect to the weights is evaluated. The choice is
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due to the fact that it is the fastest training method for multilayer networks with hun-
dreds of weights and biases applied to function approximation problems (Hagan et al.,
2014).

The weights at the step k+ 1 are evaluated as (Hagan et al., 2014)

wk+1 = wk − [JT (wk)J(wk)+ µkI]−1JT (wk)v(wk), (3.64)

where J is the Hessian matrix, v is the output error, and µk regulates the step amplitude.
The algorithm starts with a small value of µk. If the MSE does not decrease in a

step, then this step is repeated with a greater value of µk, obtained by multiplying µk
by a factor Θ > 1. This operation should produce a smaller value of MSE, because
a small step in the direction of the steepest descent is taken. If this happens, then µk
is divided by Θ in the successive step. In this way, the amplitude of this new step
decreases, the step is larger, and the convergence is accelerated. This ensures that the
Levenberg-Marquardt algorithm is a very good compromise in terms of convergence
velocity and guarantee (Hagan et al., 2014).

The iterations composing the Levenberg-Marquardt algorithm are the following
(Hagan et al., 2014):

1. Presentation of the inputs, evaluation of the network output, estimation of the
errors, associated with the q-th example, as eq = tq − aM

q , and of the perfor-
mance index, F(x).

2. Calculation of the Jacobian matrix, containing the second derivatives of the
errors with respect to the weights, and of the sensitivities (derivatives of the
errors with respect to the net input).

3. Application of Eq. 3.64.

4. Re-evaluation of the performance index using wk +∆wk. If the new index is
smaller than that estimated in step 1, then the parameter µ is divided by Θ
and the algorithm restarts from step 1; otherwise, µ is multiplied by Θ and the
algorithm restarts from step 3.

In this thesis, Levenberg-Marquardt algorithm is coupled with Bayesian regular-
ization, which helps to reduce the overfitting, hence improving the generalization. The
Bayesian framework in ANNs assumes that the the weights wi j and biases b j are ran-
dom variables. Therefore, the approach aims at evaluating the weights that maximize
the conditional probability of the weights given the data.

There are several methods which objective is the selection of the regularization
parameters (Hagan et al., 2014); the one herein chosen was developed by MacKay
(MacKay, 1992) and puts the ANN training into the Bayesian framework abovemen-
tioned. The use of a Bayesian approach allows to use an ANN without a third set,
called validation set, so that there are more examples at disposal for both the training
and test sets.
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||w1
i ||= 0.7(S1)1/R, (3.65)

while the bias bi is set to an uniform random value between −||w1
i || and ||w1

i ||.
The training procedure adopts four, mutually exclusive, stopping criteria: maxi-

mum number of epochs, minimum MSE value, minimum error gradient, and maxi-
mum µ. The number of epochs indicates one complete pass through the training data
(the whole training set, in the cases considered in this work); such a number is fixed
equal to 1000, as, at this value, the test error has already stabilized or overfitting has
already appeared (Hagan et al., 2014). The minimum error is set equal to a very small
number, 10-16; the minimum error gradient is 10-7, while the maximum value of µ
parameter is 1010.

3.2.2 Principal Component Analysis (PCA)

The main reason why Principal Component Analysis (PCA) has been introduced is
data visualization, since it allows to extract information from large quantities of data.
This is very important, since the human eye and brain are a valuable pattern detection
tool, however they can handle data only in low-dimensional space. PCA is a projection
method which maps data to lower dimensional space with a linear transformation.
This is possible since many data sets have points lying close to a manifold with less
dimensions than the original data space (Bishop, 2006).

Basically, data is projected along directions called Principal Components (PCs),
and they generate the principal subspace. It is possible to demonstrate, by maximizing
variance or, equivalently, minimizing the error (Bishop, 2006), that the PCs ui are the
eigenvectors of the covariance matrix Σ, that is,

Σui = ψiui, (3.66)

where ψi is the eigenvalue corresponding to the eigenvector ui. Considering Nobs
observations xi of dimensionality H, with mean x̄, the covariance matrix is defined as

Σ =
1

Nobs

Nobs

∑
i=1

(xi − x̄)(xi − x̄)T . (3.67)

The first PC represents the maximum direction of maximum variability of the
original data, which amount is represented by the corresponding eigenvalue. The suc-
cessive PC, orthogonal to the first one, represents the second maximum contribution
in variability of the data set, and so on.

By applying PCA, the data set has a reduced dimensionality Hred , with Hred < H.
Both the variance maximization and error minimization approaches are intuitively
explains in Fig. 3.5 for a simple case with data dimensionality H = 2 reduced to a
principal subspace with Hred = 1 dimension and PC u1. Particularly, the search of the
principal subspace is executed so that the variance of the orthogonal projections (green
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FIGURE 3.5: 2D data projected onto a 1D data by means of PCA.

dots x̃i) of the data (blue dots) xi is maximized; alternatively, the error, represented by
the blue lines, is minimized.

PCA turns out to be a fast and easy to compute method. Its capability of extracting
the maximal information (in the sense of variance of projected data) is very helpful
for cases with dimensionality problems.

3.3 SOBI algorithm

The SOBI algorithm further explained is used in Chapter 6 for determining the spectra
of the exciting force. It is proposed by Jia et al. (Jia et al., 2020), who extend the
work of McNeill and Zimmerman (McNeill and Zimmerman, 2008) to the prediction
of random dynamic loads. The analytical details can be found in the referenced paper,
providing them is outside the aims of this thesis, however it may be useful listing the
computational steps, in order to give an idea of the involved parameters:

1. Obtain the structural responses in terms of time histories of point displacements.

2. Evaluate the PSD matrix of the structural responses.

3. Estimate of the modal matrix, modal damping ratio, and natural frequencies.

4. Calculate the PSD matrix of modal responses.

5. Evaluate the matrix Zφ(ω) and the matrices of the modal loads PSD.

6. Estimate of the random dynamic load PSD matrix
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The matrix Zφ(ω) is a diagonal matrix which i-th element is

Zi = µi(ω
2
i −ω

2 + jηiω
2
i ), i = 1,2, ...,N, (3.68)

being N the total number of degrees of freedom. Eq. 3.68 can be easily recognized
as the denominator of the transfer function.
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Chapter 4

Experimental validation of scaling
laws

This chapter concerns the validation of the scaling laws determined in Chapter 3. First,
five CFCF flat plates in similitude are investigated, aiming at determining the natural
frequencies and velocity response of the prototype. Then, three simply supported
sandwich plates in similitude are studied; in this case, the radiated acoustic power
of the prototype, in addition to the natural frequencies and velocity response, are
determined.

Up to now, plates with CFCF boundary conditions have never been investigated,
only with simply supported (De Rosa, Franco, and Meruane, 2015) and cantilever
(Meruane, De Rosa, and Franco, 2015) conditions. This helps to demonstrate that
the similitude conditions and scaling laws of plates do not depend of the boundary
conditions.

Concerning sandwich structures, they have received little attention in similitude
fields. Frostig and Simitses (Frostig and Simitses, 2004) investigate the buckling of
sandwich plates with a soft core, while Yang et al. (Yang et al., 2013) focus on the
size effects of sandwich plates subjected to low velocity impacts. Finally, Luo et al.
(Luo et al., 2014b) try to determine the structure size interval for vibrating sandwich
plates in similitude.

Basically, sandwich structures are three-layered media made of two thin and stiff
face sheets bonded, or welded, to a relatively thick and low density core (Vinson,
1999). They are characterized by a high bending stiffness-to-weight ratio; their par-
ticular pattern allows to improve not only the mechanical efficiency, but also proper-
ties such as fire resistance, noise control, heating and cooling performances. Zenkert
(Zenkert, 1995) provides more details; more recent insights on the vibroacoustic be-
havior are given in the review of D’Alessandro et al. ??.

In recent years, metal foams have received great attention, as they possess a pecu-
liar combination of properties, ranging from low specific weight and high stiffness-to-
weight ratio, to high energy absorption capacity and good mechanical and acoustical
damping. These characteristics make metal foams fitting for many applications, such
as bare components to manufacture energy absorbers and silencers, as well as cores for
sandwich configurations; more information is listed in the works of Bauhart (Bauhart,
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2005) and Schwingel et al. (Schwingel et al., n.d.), which focus on automotive and
aerospace engineering fields, respectively.

Metal foams are obtained by letting the liquid phase solidify and keeping, at the
same time, the morphology of the foam. However, the manufacturing process is not
fully controlled yet, which leads to randomized distributions of both mass and stiff-
ness, as it strongly depends on the morphology of the pores of the metallic matrix,
such as average size, shape, spatial distributions, etc. Therefore, due to the complex-
ity of the system and the lack of complete design information, metallic foam sand-
wich structures require an extensive experimental evaluation in order to investigate
their properties and potentialities, and how such a randomized distribution of mass
and stiffness affects these properties. Such an experimental campaign may find ad-
vantages in the exploitation of similitude methods, since easier and less costly tests
may be executed.

These are the main reasons behind the experimental tests herein illustrated. In
Chapter 3 the derivation of two sets of conditions is described. A complete set, in
which all the geometrical and material properties are explicited, and another, a re-
duced one, in which many parameters are gathered in just one term with physical
meaning. The first set of similitude conditions and scaling laws is validated by per-
forming an experimental modal analysis on three simply supported AFS plates mod-
els: the prototype, a proportional sides, and an avatar. The material characteristics
are the same (in the framework of the material uncertainties previously mentioned),
only the geometrical dimensions change so that the plate dimensions remain into the
range of engineering significance. The size of the macrostructure - the whole panel
- is never reduced so much to get closer to the size of the microstructure - the foam
voids. Thus, it is reasonable to assume that the resulting size effects are negligible and
do not affect both the scaling procedure and the dynamic response. Secondly, the tests
reported in D’Alessandro et al. (D’Alessandro et al., 2014), performed on free-free
sandwich plates, are used to validate the second set of similitude conditions and scal-
ing laws, the reduced one. Particularly, the same prototype (with free-free conditions)
is put in similitude with a proportional sides AFS plates with different core properties.

The first section of this chapter deals with the thin plates with CFCF boundary
conditions, while the second reports the results for the AFS plates.

4.1 CFCF flat plates

All the flat plates are analyzed with the same boundary condition, that is clamped-free-
clamped-free. The reference system is taken so that the long sides are those parallel
to the x direction, while the short sides - that are the clamped ones - are parallel to the
y direction. The plates are identified as a prototype (P), a replica (R), a proportional
sides (PS), an avatar 1 (A1), and an avatar 2 (A2); they are shown in Fig. 4.1, while
their geometrical and scaling characteristics are summarized in Table 4.1 (the scale
factors are evaluated with respect to the prototype P as reported in Eq. 2.3). The
material properties of the panels, used for both numerical and analytical simulations



4.1. CFCF flat plates 101

in this chapter and in the remainder of the thesis, are listed in Table 4.2. The test
articles exhibit slight differences in material properties, however they are not taken
into account for the sake of simplicity (in order to assume that the scale factors of the
material parameters reported in Table 4.2 are equal to 1).

FIGURE 4.1: Flat plates in similitude.

a [m] b [m] h [m] λa λb λh

P 0.506 0.400 0.003 1.00 1.00 1.00
R 0.337 0.267 0.002 0.67 0.67 0.67
PS 0.337 0.267 0.003 0.67 0.67 1.00
A1 0.337 0.400 0.003 0.67 1.00 1.00
A2 0.500 0.280 0.002 0.99 0.70 0.67

TABLE 4.1: Geometrical and scaling characteristics of the flat plates
in similitude.

Young’s modulus, E 55 × 109 Pa
Mass density per unit volume, ρ 2723 kg/m3

Poisson’s ratio, ν 0.33
Damping loss factor, η 0.005

TABLE 4.2: Material characteristics assumed for the numerical and
analytical simulations of flat plates.
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An Experimental Modal Analysis (EMA) is executed on the plates, which are
clamped horizontally, along the width, with bars bolted in three points (as shown
in Fig. 4.2) and excited with an electrodynamic shaker, which is suspended above
the plate with springs. The input signal is burst random; 8 PCB Piezotronics ac-
celerometers return the output, i.e., the accelerations, in a frequency range 0-18840
rad/s, at frequency steps with amplitude equal to 2.30 rad/S (approximately 8197
spectral lines). The force and the acceleration are filtered with a Hanning window.
Because a shaker is used, only one point is excited, with non-dimensional coordinates
(xF ,yF) = (0.2000,0.2875), while the response is measured in 88 acquisition points:
11 along the x direction, along the y direction. The non-dimensional coordinates of
excitation and acquisition points are the same for all the plates.

FIGURE 4.2: Experimental setup of a CFCF plate.

Once performed the tests, the results are compared with numerical simulations
performed with NASTRAN, in which all the plates are modeled with the PSHELL
property and QUAD elements. The numerical mesh replicates the experimental one.
The colorbar reports the percentage of experimental-numerical correlation between
the mode shapes. Red color indicates good correlation, green color represent medium
values, while blue is typical of low correlation levels. The outcomes of these com-
parisons are shown in Fig. 4.3 and summarized in Tables 4.3-4.7 in terms of Modal
Assurance Criterion (MAC), given by (Ewins, 2000)

MAC =
|{ψT

X}{ψA}|2

({ψT
X}{ψX})({ψT

A}{ψA})
, (4.1)
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where ψ is the mode shape vector, and the subscripts X and A indicate the experimen-
tal and theoretical-analytical results, respectively.

In particular, the tables report, from left to right, the FEA mode number, the natu-
ral frequency numerically determined, the EMA mode number, the natural frequency
experimentally determined, the percent discrepancy between the numerical and ex-
perimental natural frequency, and the percent MAC.

FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 354.94 1 313.69 13.15 96.7
2 455.24 2 456.24 -0.22 95.1
3 904.32 4 965.11 -6.30 84.3
4 979.49 3 903.82 8.37 62.6
5 1125 5 1143.27 -1.60 95.7
6 1633.62 6 1672.99 -2.36 86.7
7 1861.52 8 2014.56 -7.60 88.9
8 1923.69 7 1827.67 5.25 67.2
9 2085.96 9 2135.45 -2.32 81.6
10 2581.14 11 2742.85 -5.90 75.5
11 2647.33 10 2620.64 1.02 72.8

TABLE 4.3: Experimental-numerical comparison, prototype; mean
error: 0.13%.

FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 533.49 1 540.20 -1.24 66.8
2 683.64 2 717.49 -4.71 72.4
3 1355.41 3 1422.67 -4.73 68
4 1472.16 4 1474.17 -0.14 67.6
5 1689.95 5 1744.08 -3.10 74.2
6 2451.15 6 2616.31 -6.31 75.9
7 2787.31 8 3099.74 -10.08 48.8
8 2891.25 7 2816.14 2.67 37.5
9 3134.10 9 3317.85 -5.54 52.3

TABLE 4.4: Experimental-numerical comparison, replica; mean er-
ror: −3.69%.

Fig. 4.3 shows that it is not possible to detect, experimentally, the same number
of successive modes for all the plates; however, the first nine experimental natural
frequencies and mode shapes are determined for all the models. The percent values of
MAC are listed in Tables 4.3-4.7. In general, the numerical and experimental results
show an acceptable correlation, except for some modes, which have not high MAC
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(A) Prototype (B) Replica

(C) Proportional sides (D) Avatar 1

(E) Avatar 2

FIGURE 4.3: MAC between experimental and numerical results for
the prototype (A), replica (B), proportional sides (C), avatar 1 (D),

and avatar 2 (E).
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FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 799.88 1 817.28 -2.13 98.8
2 1024.46 2 1065.02 -3.81 69.3
3 2030.64 3 2153.60 -5.71 71.4
4 2206.35 4 2177.53 1.32 82.6
5 2531.78 6 2640.24 -4.11 95.4
6 3670.35 8 4032.14 -8.97 90.2
8 4330.94 9 4482.10 -3.37 64.3
9 4693.29 10 4904.30 -4.30 58.1
10 5791.23 11 6217.14 -6.85 54.1
11 5948.60 12 6386.76 -6.86 44.7

TABLE 4.5: Experimental-numerical comparison, proportional
sides; mean error: −4.48%.

FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 803.02 1 734.01 9.4 94.4
2 910.03 2 914.93 -0.54 87.8
3 1342.73 3 1396.48 -3.85 82.6
4 2214.64 4 2043.20 8.39 78.7
5 2250.19 6 2369.00 -5.01 91.6
6 2362.54 5 2336.16 1.13 63.9
7 2888.36 7 3057.79 -5.54 92.0
8 3693.96 8 3561.76 3.71 53.7
9 3827.35 9 3874.45 -1.22 94.4

TABLE 4.6: Experimental-numerical comparison, avatar 1; mean
error: 0.72%.

FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 241.47 1 218.98 10.26 96.7
2 364.68 2 370.33 -1.54 95.4
3 666.18 3 645.96 3.13 87.3
4 853.70 4 874.74 -2.41 85.4
5 999.46 5 1060.00 -5.71 86.0
6 1309.57 6 1324.44 -0.81 73.0
7 1525.54 8 1598.82 -4.59 59.6
8 1526.10 7 1549.59 -1.51 43.2
9 2169.17 10 2295.78 -5.51 80.5
10 2258.41 9 2158.12 4.65 52.8

TABLE 4.7: Experimental-numerical comparison, avatar 2; mean
error: −0.40%.
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percentage or same succession passing from the numerical simulation to the experi-
mental test. In the latter case, the percentage reported in Tables 4.3-4.7 refer to the
MAC evaluated for the experimental mode that best fits the numerical one.

There are several reasons behind these discrepancies, and the most relevant one
is the realization of the boundary condition. In fact, the CFCF condition is not easy
to setup as an homogeneous clamping must be assured. In this regard, aluminium
strips, having the same thickness of the plate under investigation, are placed parallel
to the clamped edges, in order to avoid a backward tilting of the bars. However,
it is not possible to keep control of the clamping force for all the bolts; moreover,
the clamping structure has its own flexibility which makes the condition not really
clamped, even though the clamping force would be uniform.

Another reason behind the numerical-experimental discrepancies may be due to
uncertainties on material properties. In fact, the numerical simulations are carried
out with the same aluminium properties (those listed in Table 4.2) for all the models,
although, as previously mentioned, the test articles exhibit slight variations in terms of
Young’s modulus and mass density. These variations are not considered for the sake
of simplicity, so that material change is not introduced into the scaling laws (and in
the creation of the training set in the further application of machine learning).

However, despite the experimental uncertainties, the tests show a correlation that
is acceptable for the purpose of validating the scaling laws of natural frequencies and
velocity response as derived by SAMSARA.

In this regard, the scaling laws given in Eq. 3.25 are used to predict the first nine
natural frequencies of the prototype. The frequency scale factors, evaluated according
to Eqs. 3.25, are summarized in Table 4.8, while the results are presented in Fig. 4.4

Eq. 3.25a Eq. 3.25b Eq. 3.25c
Replica 1.50 1.50 1.50
Proportional sides 2.25 2.25 2.25
Avatar 1 2.25 1.00 1.50
Avatar 2 0.67 1.58 1.05

TABLE 4.8: Frequency scale factors of all the models given by Eqs.
3.25.

Table 4.8 shows how Eqs. 3.25 return the same scale factor for both replica and
proportional sides, which are both true models, therefore the equations are equivalent;
this happens since the similitude condition is satisfied, thus length and width scale
equally. On the other hand, the same equations return different results when applied
to both avatar 1 and 2, since length and width scale differently. Particularly, Eq. 3.25a
provides the same scale factor for proportional sides and avatar 1, however it does not
work fine for the latter, since it is a distorted model and each natural frequency scales
differently and, generally, with scale factors different from those of the proportional
sides. Eq. 3.25b applied to avatar 1 gives another proof of the wrong evaluation of a
scale factor for partial similitudes, since the equation returns a value equal to 1, which
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means that the natural frequencies do not change. A quick look at Fig. 4.4c shows
that this is not true. In fact, the natural frequencies of the model and of the prototype
are not the same, thus the scale factor must be, necessarily, different from 1.

(A) Prototype-Replica (B) Prototype-Proportional sides

(C) Prototype-Avatar 1 (D) Prototype-Avatar 2

FIGURE 4.4: Predictions of the prototype natural frequencies from
different models: replica (A), proportional sides (B), avatar 1 (C),

and avatar 2 (D).

Fig. 4.4 illustrates the reconstruction of the natural frequencies of the prototype,
starting from each of the model considered, by using Eqs. 3.25. The natural frequen-
cies of the prototype are reported on the horizontal axis, while those of the compared
model are reported on the vertical axis. In all the figures, the blue line with empty dots
is the prototype reference, each dot representing the natural frequency. The full col-
ored dots represent the model natural frequencies, and the dashed line with empty dots
represents the prediction of the prototype natural frequencies by means of the scaling
laws. A successful prediction implies the latter curve overlapping the prototype curve.

Figs. 4.4a-4.4b illustrate the predictions from replica and proportional sides, re-
spectively. Since Eqs. 3.25 return the same scale factor, there is just one remodulation
(abbreviated to rem. in the figures) curve. In fact, Eqs. 3.25 reduce to Eq. 3.23 in
the case of the replica, and to Eq. 3.24 in the case of the proportional sides. The
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prediction is accurate for both the models; the slight decorrelation which appears with
the last natural frequencies is due to the experimental uncertainties, not to the simili-
tude method. Thus, the results agree with the similitude conditions and the change of
thickness does not lead to non-scalable effects.

The predictions provided by avatars 1 and 2 are shown in Figs. 4.4c-4.4d. This
time, there are three remodulation curves since Eqs. 3.25 return three different scale
factors for each model (the reference equation of each curve is reported in the leg-
end). Both the plots highlight how there is no scaling law which works well in all the
frequency range. Eq. 3.25a seems to work fine in the range 200-500 rad/s for avatar
1, then in the range 900-1250 rad/s, however this is not enough to state that Eq. 3.25a
allows an acceptable reconstruction of the prototype natural frequencies. The same
holds for Eq. 3.25c, which frequency remodulation is close to the prototype values
for the third and sixth natural frequencies. Eq. 3.25b fails the prediction in all the fre-
quency range. Moreover, even even though more frequencies would have been well
remodulated, a check on the mode would be mandatory, since, as written in Chapter
3, partial similitudes overturn the mode succession and this phenomenon is not taken
into account by the scaling laws derived. Finally, all Eqs. 3.25 do not work well with
avatar 2.

Concerning the reconstruction of the mobility, it develops into two steps: first,
amplitude scaling, then frequency remodulation in order to align the resonance peaks.
The amplitude scale factors are summarized in Table 4.9. There are no geometrical
similitude conditions associated to mobility (or velocity) response, thus there is just
one scaling law (Eq. 3.48 or, equivalently, Eq. 3.46). However, since the frequency
scale factor appears into the mobility scaling law, there are as many mobility scale
factors as the number of natural frequency scaling laws (Eqs. 3.25), even though the
mobility scaling law (Eq. 3.48) is unique. These scale factors are summarized in
Table 4.9

Eq. 3.25a Eq. 3.25b Eq. 3.25c
Replica 2.23 2.23 2.23
Proportional sides 1.01 1.01 1.01
Avatar 1 0.30 0.67 0.44
Avatar 2 3.26 1.37 2.07

TABLE 4.9: Mobility scale factors of all the models given by Eqs.
3.25 and Eq. 3.48.

In order to validate the mobility scaling laws, the accelerance measurements are,
first, transformed into mobility (dividing them by jω), then averaged on all the acqui-
sition points. The results are shown in Figs. 4.5-4.8 for all the models.

Figs. 4.5-4.6 report the dynamic response of replica and proportional sides mod-
els, before (Figs. 4.5a-4.6a) and after (4.5b-4.6b) the remodulation process. In both
cases, the reconstruction is acceptable; also here, the differences are due to experi-
mental uncertainties. Instead, Figs. 4.7-4.8 show that even the dynamic response is
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(A) Not remodulated. (B) Remodulated.

FIGURE 4.5: Comparisons between the spatially averaged mobilities
of prototype and replica, before (A) and after (B) the remodulation.

(A) Not remodulated. (B) Remodulated.

FIGURE 4.6: Comparisons between the spatially averaged mobili-
ties of prototype and proportional sides, before (A) and after (B) the

remodulation.

not predictable from avatars. In particular, Figs. 4.7a-4.8a report the prototype and
model (avatar 1 and 2, respectively) mobility without remodulation, Figs. 4.7b-4.7d
and 4.8b-4.8d the attempts of prediction with the scale factors given in Table 4.9. The
lack of an univocal scale factor for the natural frequencies affects, first, the amplitude
prediction, since the mobility scale factor depends on the frequency scale factor (Eq.
3.48); moreover, even the frequency remodulation is not accurate, because the natural
frequencies are not well predicted. Therefore, the mobility predictions in Figs.4.7b-
4.7d and 4.8b-4.8d are not satisfactory. The only positive aspect is that the prototype
and predicted responses are still in the same range of values.

The scaling laws work not only for the spatially averaged responses, but also for
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(A) Not remodulated. (B) Remodulated, eq. 3.25a.

(C) Remodulated, eq. 3.25b. (D) Remodulated, eq. 3.25c.

FIGURE 4.7: Comparisons between the spatially averaged mobilities
of prototype and avatar 1, before (A) and after (B)-(D) the remodu-

lation.

the local responses. This is demonstrated in Figs. 4.10-4.13, which show the remod-
ulated local mobility of three nodes (labeled 28, 54, and 67, which non-dimensional
coordinates are reported in Table 4.10) of each model. The positions of the chosen
acquisition points on the plates are shown in the top view of Fig. 4.14, obtained by
means of FEMAP Graphical User Interface (GUI); the red circle indicates the excita-
tion point, while the yellow circles indicate the acquisition points. Particularly, from
Fig. 4.10 to Fig. 4.13, the remodulations of the replica, proportional sides, avatar 1
and 2 are shown, respectively. For sake of brevity, the avatars in Figs. 4.12-4.13 are
remodulated only with Eq. 3.25a.

Again, as expected, the response is well reconstructed in the cases of replica and
proportional sides, while it is not for both avatars, still returning inaccurate results in
terms of mobility amplitude and frequency.

In conclusion, these tests validate the scaling laws determined for CFCF plates and
underline that the prototype response can be reconstructed from the response of model
in complete similitude, while this is not possible when the similitude is distorted.
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(A) Not remodulated. (B) Remodulated, eq. 3.25a.

(C) Remodulated, eq. 3.25b. (D) Remodulated, eq. 3.25c.

FIGURE 4.8: Comparisons between the spatially averaged mobilities
of prototype and avatar 2, before (A) and after (B)–(D) the remodu-

lation.

xR yR
Node 28 0.300 0.572
Node 54 0.600 0.286
Node 67 0.800 0.715

TABLE 4.10: Nondimensional coordinates of the nodes 28, 54, and
67 in which the local response is evaluated.
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FIGURE 4.9: Top view of the plate with the 88 acquisition points
numbered. The excitation point is indicated by the red circle, the
acquisition points used for the evaluation of the local response are

indicated by the yellow circles.

(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.10: Comparisons between the local mobilities of proto-
type and replica, node 28 (A), node 54 (B), node 67 (D).
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(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.11: Comparisons between the local mobilities of proto-
type and proportional sides, node 28 (A), node 54 (B), node 67 (C).
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(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.12: Comparisons between the local mobilities of proto-
type and avatar 1, node 28 (A), node 54 (B), node 67 (C).
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(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.13: Comparisons between the local mobilities of proto-
type and avatar 2, node 28 (A), node 54 (B), node 67 (C).
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4.2 Simply supported sandwich plates

This section concerns the experimental tests performed on simply supported AFS pan-
els. These plates are made of the same material and will be indicated as panels of type
A. The models are a prototype (PA), a proportional sides (PSA), and an avatar (AA).
Then, the prototype PA is put in similitude with a proportional sides model which
core is made with an aluminium foam (plate of type B, thus PSB model), having free
boundary conditions. The geometrical characteristics and their scale factors are sum-
marized in Table 4.11. Table 4.12 reports the material characteristics of the facings,
while Table 4.13 summarizes the core properties of both plates A and B [determined
by D’alessandro et al. (D’Alessandro et al., 2014)].

a [m] b [m] hf [m] hc [m] λa λb λh f λhc

PA 0.656 0.476 0.001 0.008 1.00 1.00 1.00 1.00
PSA 0.558 0.405 0.001 0.008 0.85 0.85 1.00 1.00
AA 0.656 0.405 0.001 0.008 1.00 0.85 1.00 1.00
PSB 0.656 0.476 0.0006 0.0074 1.00 1.00 0.60 0.92

TABLE 4.11: Geometrical and scaling characteristics of the AFS
plates in similitude.

Young’s modulus, Ef 71 × 109 Pa
Mass density per unit volume, ρ f 2700 kg/m3

Poisson’s ratio, ν f 0.33

TABLE 4.12: Material characteristics of panels A and B facings.

Panel Ec [Pa] ρc kg/m3 ρr νc

A 6.48 × 109 600 0.222 0.31
B 3.43 × 109 390 0.144 0.31

TABLE 4.13: Material characteristics of panels A and B cores.

In particular, the fourth column of Table 4.13 lists the values of the relative foam
density ρr, namely, the ratio between the foam density and the standard value of alu-
minium density (D’Alessandro et al., 2014). In the case considered, the change in
relative density is due only to the quantity of voids, because the average cell size of
the bubbles is unvaried and equal to 2 mm. Thus, the values listed in Table 4.13 are
representative of an aluminium foam core with the given relative density and dimen-
sion of the voids.

First, the simply supported panels are experimentally tested in order to validate
the similitude conditions given by Eq. 3.37 and the scaling laws in Eq. 3.39. Then,
the free panels are tested in order to demonstrate that, gathering many parameters into
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one with physical meaning, Eq. 3.40 still returns a true model, useful to reconstruct
the behavior of the prototype.

Simply supported panels

The simply supported boundary conditions of the panels of type A is realized accord-
ing to the instructions provided by Robin et al. (Robin et al., 2016); the test setup is
shown in Fig. 4.14. Also in this case, the excitation is generated by an electrodynamic
shaker, suspended above the models with springs, while the response is acquired by
means of accelerometers. The frequency range, number of spectral lines and non-
dimensional excitation and acquisition points are the same of the experiments made
with the CFCF plates.

FIGURE 4.14: Experimental setup of the simply supported AFS
panel.

The experimental results are then compared with numerical simulations obtained
with NASTRAN. The PSHELL property is used to create a numerical model of the
panel. The sandwich configuration is generated by describing the plates with a lay-up
made by three layers: two skins and one core, having the geometrical and material
properties reported in Tables 4.11-4.13. Thus, using a plane property, not a solid one,
the mesh is generated with QUAD elements.

The experimental-numerical comparisons are reported in terms of MAC; they are
summarized in Fig. 4.15 and Tables 4.14-4.16 and it is noticeable a very good corre-
lation between the experimental and numerical results, with values assessing between
90% and 100%. Only the third and fourth mode of the avatar (Fig. 4.15c) have



118 Chapter 4. Experimental validation of scaling laws

MAC values around 60%. According to the results provided by D’Alessandro et al.
(D’Alessandro et al., 2014), this may be due to the not homogeneous distribution of
stiffness and mass in the core of the real plate. However, these results highlight that,
generally, building the sandwich lay-up and using the PSHELL property is a satisfac-
tory approach in modelling sandwich plates made of isotropic material.

(A) Prototype. (B) Proportional sides.

(C) Avatar.

FIGURE 4.15: MAC between experimental and numerical results for
the prototype (A), proportional sides (B), avatar (C).

The panels of type A have same thickness and material properties. Only the plan-
form changes, thus λE f = λEc = λh = λhc = 1: the first two similitude conditions of
Eq. 3.37 are satisfied. The frequency scale factors are then derived by means of Eq.
3.39. They are summarized in Table 4.18. As expected, Eqs. 3.39 return the same
scale factor for the proportional sides A, being λa = λb; conversely, each law returns
different scale factors when applied to the avatar, since λa ̸= λb.
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FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 1208.08 1 1204.38 0.31 93.6
2 2443.04 2 2338.80 4.46 94.2
3 3581.92 3 3749.98 -4.48 99.0
4 4496.10 4 4600.98 2.28 98.4
5 4763.82 5 4780.40 -0.35 97.4
6 6746.60 6 6661.20 1.28 98.2
7 7323.74 7 7247.75 1.05 94.2
8 7452.48 8 7520.3 -0.91 90.4
9 8583.50 9 8610.51 -0.31 97.9
10 9500.38 10 9389.23 1.18 98.2

TABLE 4.14: Experimental-numerical comparison, prototype; mean
error: 0.45%.

FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 1658.57 1 1771.23 -6.36 99.0
2 3326.44 2 3473.47 -4.23 99.1
3 4929.41 3 5153.84 -4.36 99.5
4 6092.55 4 6336.59 -3.85 94.1
5 6508.12 5 6653.89 -2.19 97.5
6 9155.23 6 9133.87 0.24 96.5
7 9880.30 7 9913.61 -0.34 96.8
8 10217.09 8 10091.42 1.25 94.2
9 11709.97 9 11542.84 1.45 89.1
10 12817.70 10 12549.40 2.13 95.5

TABLE 4.15: Experimental-numerical comparison, proportional
sides; mean error: −1.63%.

The results about the prediction of the natural frequencies are shown in Fig 4.16.
Fig. 4.16a reports the remodulation from the proportional sides model. The remod-
ulated curve overlaps the prototype curve, hence the prediction is accurate and Eq.
3.38 or, equivalently, Eq. 3.39, works fine. The reference and remodulated curves
slightly diverge only after 7000 rad/s. This may be due to experimental uncertainties,
as well as the effect of the voids contained into the aluminium foam, which lead to
not homogeneous distributions of foam mass and stiffness. However, the difference is
small and it cannot be ascribed to the similitude method for sure.

Fig. 4.16b shows three remodulated curves, one for each scale factor provided
by Eqs. 3.39. No curve provides an accurate prediction in all the frequency range
of interest. Only the first two natural frequencies seem to be recovered with a quite
acceptable accuracy by all the scaling laws, with Eq. 3.39b working fine up to the
third natural frequency. However, after 4000 rad/s all the curves diverge, with the
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FEA ωnum [rad/s] EMA ωexp [rad/s] Diff. (%) MAC (%)
1 1518.21 1 1532.20 -0.90 96.9
2 2753.42 2 2816.12 -2.23 99.5
3 4796.46 3 4886.68 -1.85 58.4
4 4815.62 4 4932.30 -2.37 61.4
5 5966.70 5 6254.34 -4.60 97.6
6 7660.46 6 7588.20 0.95 88.6
7 7933.15 7 7704.44 2.97 78.6
8 10090.17 8 9621.44 4.87 84.6
9 10672.62 9 10283.06 3.79 91.0
10 11199.15 10 11104.27 0.86 96.8

TABLE 4.16: Experimental-numerical comparison, proportional
sides; mean error: 0.15%.

Eq.3.39a Eq. 3.39b Eq. 3.39c
Proportional sides A 1.38 1.38 1.38
Avatar 1.09 0.92 1.18

TABLE 4.17: Frequency scale factors of all the models given by Eqs.
3.39.

(A) Prototype–Proportional sides. (B) Prototype–Avatar.

FIGURE 4.16: Predictions of the prototype natural frequencies from
proportional sides (a) and avatar (b) models.

exception of that associated to Eq. 3.39c, which oscillates around the reference curve,
then converges again, recovering the last two natural frequencies. However, also in
this case, since the modes succession is not retained in avatars, even if some natural
frequencies are well predicted it is not known each frequency to which mode is asso-
ciated, therefore the reconstruction of an important information, associated with the
spatial pattern of vibration, is lost.
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Concerning FRF scaling, the scale factors for both proportional sides and avatar
are reported in Table 4.18. Again, the proportional sides is characterized by an uni-
vocal mobility scale factor, while the avatars are associated with as many frequency
scale factors as the number of scaling laws, leading to the same number of velocity
scale factors.

Eq. 3.39a Eq. 3.39b Eq. 3.39c
Proportional sides A 0.99 0.99 0.99
Avatar 1.08 0.92 1.00

TABLE 4.18: Mobility scale factors of all the models given by Eqs.
3.39 and Eq. 3.48.

The measured accelerance is transformed into mobility, then averaged on all the
acquisition points. Fig. 4.17a reports the spatially averaged mobilities of both proto-
type and proportional sides model, in the range of frequencies covering the first ten
resonance peaks of the prototype. The prototype and the only remodulated model
curve match quite accurately (Fig. 4.17b), although small discrepancies in amplitude
for the first three modes. Moreover, the slight error in predicting the natural frequen-
cies, noticed in Fig. 4.16a, is observed in Fig. 4.17b, in which the last two resonance
peaks are misaligned. The remodulation is acceptable up to 8000 rad/s. While the
discrepancies in amplitude may be due to experimental uncertainties, the likely cause
behind the slight shift of resonance peaks are those previously underlined, i.e., the not
homogeneous distribution of mass and stiffness in the core.

(A) Not remodulated. (B) Remodulated.

FIGURE 4.17: Comparisons between the spatially averaged mobili-
ties of prototype and proportional sides model, before (A) and after

(B) the remodulation.

The results obtained from avatars are shown in Fig. 4.18. Fig. 4.18a shows the
mobilities of prototype and not remodulated avatar. No scale factor from Table 4.18
works fine, as Figs. 4.18b-4.18d demonstrate. All the reconstructions exhibit some
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resonance peaks aligned, which correspond to the natural frequencies well predicted
reported in Fig. 4.16b. Particularly, Eq. 3.39c seems to return a good prediction in
terms of amplitude and frequency, especially by looking at the first resonance peak and
the last two ones (in the range 8000-10000 rad/s). Thus, although some scaling laws
seem to work fine in the specified frequency range, it is not possible to generalize this
correspondence between scaling law and range to all the other avatars, defined with
other scale factors (while it is possible, indeed, to generalize for proportional sides,
because the scaling law is univocal and works fine in all the frequency range).

(A) Not remodulated. (B) Remodulated, Eq. (3.22a).

(C) Remodulated, Eq. (3.22b). (D) Remodulated, Eq. (3.22c).

FIGURE 4.18: Comparisons between the spatially averaged mobili-
ties of prototype and avatars, before (A) and after (B)-(D) the remod-

ulation.

For sake of completeness, the remodulation of the local responses are shown also
for these panels. The local acquisitions considered are the same of the CFCF models
(refer to Fig. 4.11 and Table 4.13 for the non-dimensional coordinates). Fig. 4.19
reports the reconstruction from the proportional sides. in general, the same level of
accuracy of the averaged response is retained, with an acceptable remodulation up to
8000 rad/s even for the local response.
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(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.19: Comparisons between the local mobilities of proto-
type and proportional sides AFS plates, node 28 (A), node 54 (54),

and node (67).

The results obtained from the avatar are shown in Fig. 4.20; also here, only Eq.
3.39a is used to demonstrate that, even at local level, it is not possible to predict the
response of the prototype.

About the evaluation of the radiated acoustic power, it is estimated by introducing
the accelerometric measurements, transformed into velocity, into a MATLAB code
implementing Eq. 3.52. As a matter of fact, the experimental mesh is such that the
elements in which the panel is discretized have dimensions satisfying the requirements
to apply Eq. 3.52, using the velocities measured at the corners of each element instead
of the centers. The remodulation is carried out as described in section 3.1.3.

Fig. 4.21 reports the results obtained from the proportional sides. Firstly, it is
noticeable a strong resemblance with the behavior of the mobilities, due to the direct
involvement of velocity into Eq. 3.52. As specified in section 3.1.3, it is not possible
to derive a scaling law for the radiated acoustic power written in discrete coordinates
because of the radiation matrix; however, the prototype acoustic power can be re-
constructed from that of the proportional sides. Therefore, the acoustic power of the
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(A) Node 28. (B) Node 54.

(C) Node 67.

FIGURE 4.20: Comparisons between the local mobilities of proto-
type and avatar AFS plates, node 28 (A), node 54 (54), and node

(67).

proportional sides (Fig. 4.21a) can be remodulated (Fig. 4.21b): the predictions are
acceptable and exhibit the same amplitude and frequency inconsistencies observed in
the velocity reconstruction (Fig.4.17b) (since the correlation with mobility).

Analogously, Fig. 4.22 proves that the distortion introduced by not univocal fre-
quency scaling laws, since affecting the mobility prediction, it also has influence on
the reconstruction of the radiated acoustic power. Thus, three remodulated curves are
obtained, as Figs. 4.22b-4.22d highlight, and some resonance peaks and amplitudes
are well predicted in the same measure as shown in Figs. 4.18b-4.18d. However, no
law allows a faithful prediction of the radiated acoustic power, yet.

4.2.1 Free-free panels

In order to validate the similitude condition and scaling law given by Eq. 3.21 and Eq.
3.40, the results of vibroacoustic experiments performed by Petrone et al. (Petrone et
al., 2014), which experimental setup is shown in Fig. 4.23, are used. The prototype PA
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(A) Not remodulated. (B) Remodulated.

FIGURE 4.21: Comparisons between the radiated acoustic powers
of prototype and proportional sides model, before (A) and after (B)

the remodulation.

and the proportional sides model PSB are tested with free-free boundary conditions.
This time, the geometrical (thickness, in particular) and material characteristics of the
core (summarized in Tables 4.11-4.13), both of them affecting the bending stiffness.
The bending stiffness, frequency and mobility scale factors are summarized in Table
4.19.

λD 0.47
λω 0.88
λY 1.88

TABLE 4.19: Bending stiffness, frequency, and velocity scale factors
of the proportional sides B model.

Fig. 4.24 summarizes the remodulation of natural frequencies, spatially averaged
mobility and radiated acoustic power.

The reconstruction of the natural frequencies is illustrated in Fig. 4.24a. There is
an almost perfect overlap of the reference and remodulated curves; a slight divergence
is noticeable also in this case, starting a little bit before 4000 rad/s, this time.

Figs. 4.24b-4.24c and Figs. 4.24d-4.24e show the spatially averaged mobilities
and radiated acoustic power before and after the remodulation, respectively. There is
a good match of the curves also in this case, although at around 4000 rad/s appears
the expected misalignment of resonance peaks in both mobility and acoustic power.
However, the frequency shift is restrained up to 7000 rad/s, as in the case of sim-
ply supported panels. Instead, the amplitude level is predicted accurately in all the
frequency range. The recurrence of these shifts in a different set of experiments, in
which other boundary conditions, similitude conditions, and scaling laws are consid-
ered, strengthens the idea that they may be attributed to the effect of mass and stiffness
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(A) Not remodulated. (B) Remodulated, Eq. 3.39a.

(C) Remodulated, Eq. 3.39b. (D) Remodulated, Eq. 3.39c.

FIGURE 4.22: Comparisons between the radiated acoustic powers
of prototype and avatar model, before (A) and after (B)-(D) the re-

modulation.

inhomogeneities in the core, instead of experimental uncertainties, which become rel-
evant after 7000 rad/s.

The onset of the misalignments occurs around 7000 rad/s when investigating both
panels A and B, which differ in material properties. It is reasonable to conclude
that these shifts appear when the extent of the inhomogeneities, caused by the voids,
become comparable with the structural wavelength.

Finally, these results demonstrate that Eqs.3.21-3.40 allow the definition of a true
model, therefore the prediction of the natural frequencies is accurate, even when ma-
terial changes occur.
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FIGURE 4.23: AFS plate with free-free boundary conditions.
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(A) Remodulation of the natural frequencies
from PSB. (B) PA and PSB spatially averaged mobility.

(C) PA and PSB remodulated spatially aver-
aged mobility. (D) PA and PSB radiated acoustic power.

(E) PA and PSB remodulated radiated acoustic
power.

FIGURE 4.24: Prediction of natural frequencies (a), mobility (b)-(c)
and radiated acoustic power(d)-(e) from PSB.
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Chapter 5

Application of machine learning
methods to structures in similitude

The review provided in Chapter 2 shows how historical methods, such as DA and
STAGE, are limited by the effort to derive, manually, similitude conditions and scal-
ing laws for each system under analysis (although their wide use). On the other hand,
methods like ASMA, SAMSARA, and SA prove that the will of the scientific com-
munity is to go beyond these limits, following two parallel paths: the resolution of
complex problems (acoustic-elastic systems, multicomponent structures, etc.), and to
reduce the effort of the analysts in deriving the similitude conditions and scaling laws
by means of automated procedures by means of their implementation in an algorithm.

The results shown in Chapter 4 highlight the problems arising when the prototype
reconstruction is based on distorted models. As a matter of fact, avatars are not only
a modeling matter, they are a real issue due to several reasons, like manufacturing
constraints (technical limitations, errors, etc.), or the dimensions of the experimental
facilities that should house the model. An example is shown in Fig. 5.1, where the
internal part of a longitudinally and orthogonally stiffened cylinder is shown. The bro-
ken lines highlight the misalignment of the stiffeners, which may lead to unforeseen
behavior in all the frequency range.

FIGURE 5.1: Stiffened cylinder with misaligned stiffeners.
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All these matters, along with the impossibility of reconstructing the prototype be-
havior from avatars, may lead to unreliable predictions, as well as a waste of money
and time. For these reasons, and since the classic similitude approach stops being
deterministic when distorted models are involved, it is reasonable to investigate al-
ternative techniques which allow to exploit the information provided by all types of
models, may they be in complete or partial similitude. Thus, this chapter is dedicated
to the investigation of the prediction capabilities of ANNs in similitude field.

The wide literature concerning the application of machine learning to vibration
problems is the proof of its feasibility. Structural Health Monitoring (SHM) is one of
the fields with a very high number of employments. Alves et al. (Alves et al., 2015)
assess the structural modifications due to damage or any foreign event (like reinforce-
ment procedures, different types of traffic loads, etc.) of a simply supported beam
and a box girder bridge. The authors deal with a typical binary classification prob-
lem with damaged and undamaged classes. Particularly, they focus on two points:
the possibility of dealing with classification problems using raw data (accelerations)
acquired in situ by means of experimental tests, and the effects of environmental ef-
fects, such as changes in temperature. Different machine learning methods are used,
such as Bayesian decision trees, ANNs, and Support Vector Machines (SVMs). One
undamaged and five damaged (with holes of different diameters) beams are used for
training; for the bridge, the training is carried out with data before and after reinforce-
ment. Considering the temperature effects, the results improve, hence the definition
of features when creating the training set is fundamental. Moreover, it is proven that,
also using raw data, machine learning techniques are very efficient in determining the
states of the structures.

Krishnakumar et al. (Krishnakumar, Jain, and Singru, 2015) focus on machinery
maintenance. Being able to monitor systems would mean to generate accurate, quan-
titative information on the present condition of a machine, hence to optimally sched-
ule maintenance achieving an optimum use of resources and cost reduction. Normal
equation and ANNs are applied to monitor the mechanical conditions and derive the
approximate time of functional failure of different parts of lathes. The training set
uses data on noise and vibration (L- and g-peaks) as inputs, while the number of oper-
ating days is the output. The results show how this type of set leads to a good estimate
for scheduling regular overall maintenance of lathes.

Damage assessment by means of ANNs is the aim of Meruane and Mahu (Meru-
ane and Mahu, 2013), who exploit the changes in antiresonance frequencies, with
respect to the intact case, as inputs and damage indices as outputs. The results high-
light a well identified damage even though just antiresonance information is used.

Some works deal with the human response to noise. Sharp et al. (Sharp et al.,
2013) classify unknown vibration signals (freight and passengers railway vibrations)
so that exposure-human response relationships can be derived. A simple logistic re-
gression model with gradient descent training algorithm is employed, which success-
fully separates unknown railway vibrations with a success percentage of 97%; more-
over, useful exposure-response relationships are found.
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FEM and ANNs are combined to predict the behavior of human auditory system
by Wang et al. (Wang et al., 2017). FEs model the auditory canal and the ear tym-
panic membrane of a human ear, with the aim of studying their transmission behavior.
The ear is excited by signals reproducing the noise of a vehicle (twenty noise signals
measured under ten working conditions); Radial Basis Functions (RBFs) ANNs are
used to reconstruct the nonlinear features of human auditory system and provide, as
outputs, the A-weighted Sound Pressure Level (SPL) and the total values of loudness
and sharpness. The method works fine, and it is general in terms of applications: it
can be used not only to analyze the response to vehicle noise, but also for ear dis-
eases diagnosis, hearing repair, etc., since the model can reflect the sound transfer
mechanisms in human ear.

Kužnar et al. (Kužnar et al., 2012) address noise reduction for car passengers
comfort. In fact, at high speeds, the noise is mainly generated by the air flow around a
car and it prevails on other sources, such as engine, tires, etc. Aerodynamic improve-
ment would lead to noise reduction, however mechanical design, aesthetics, and, more
generally, time and money matters related to the number of experimental tests to per-
form in wind tunnels limit such an improvement. This opens the way to the prediction
capabilities of machine learning techniques: the strong need to automate and speed up
the process leads to the introduction of machine learning methods. Therefore, the au-
thors employ a high number of techniques and their results are compared: the results
prove that the aeroacoustic comfort field can significantly benefit a machine learn-
ing approach, leading to an improvement of engineers efficiency, shortening vehicle
development cycles and development costs.

Wei et al. (Wei et al., 2019) demonstrate how the huge data acquired witih ex-
perimental testing can be profitably employed. In fact, the authors show that the data
acquired by means of Laser Doppler Vibrometer (LDV) are suitable to create a data
set to which machine learning methods can refer to. This data is used for vehicle iden-
tification (car, bus, etc.) by submitting it to several methods, like k-Nearest-Neighbor
(kNN), Deep Belief Networks (DBNs), Convolutional Neural Networks (CNNs), etc.
All the methods return acceptable results, neural networks above all.

An example of system identification is provided by Xu et al. (Xu et al., 2004), who
aim at direct identification of structural parameters (stiffness and damping) in order to
determine the structure state. Velocities and displacements are used as inputs of Back
Propagation Artificial Neural Networks (BPANN). In particular, an emulator neural
network models the time-domain behavior of a reference structure (having the same
dimensions and topology of the object structure), while a parametric evaluation neural
network is trained to identify the parameters of the object structure. This method
proves to be resilient to noise, slow convergence, local minima, and it does not need
an a priori knowledge of the undamaged structural parameters.

Valero and Alias (Valero and Alias, 2012) address noise source classification by
testing different features (time domain, spectral domain, linear prediction, wavelet
analysis) and machine learning techniques to understand which combination provides
the best results. The objective is to successfully classify road vehicles (polluted by
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other noise sources, such as railway and air transports, industrial, and traffic noises).
It is shown that spectral features, combined with kNN, ANN and Gaussian Mixture
Models (GMMs), prove to be the best combinations. Importantly, the article demon-
strates that a hierarchical classification works fine, adding a 3% of success to the
already high success percentage of classification (equal to 89.5%), gaining a perfor-
mance equivalent to that acquired with Hidden Markov Models (HMMs). Moreover,
hierarchical classification has two advantages: lower computational cost and observ-
able states. By means of a listening test, it is demonstrated how machine learning
outperforms the human ear in nose recognition of 12%.

In the framework of lifetime improvement of gas-turbine airfoils, Martin and
Bestle (Martin and Bestle, 2018) address the automatic classification of eigenmodes
bands of compressor airfoils in presence of fixation uncertainties, which lead to un-
certainties in the stiffness of contact layers. Such indefiniteness of the boundary con-
dition leads to a change in eigenmodes which does not allow their easy identification
(at least with a low error rate). Thus, the authors apply several post-processing meth-
ods to raw data (the eigenmodes), like normalization and dimensionality reduction,
then proceed to classification with BPNNs. The result exhibits less than 5% of cross-
validated error.

To conclude this brief review on machine learning applied to vibroacoustic prob-
lems, the review due to Hossain et al. (Md et al., 2017) covers the applications to
system identification based on inverse parametric approach and using ANNs. The
articles reviewed concern input identification (vibration-inducing force identification,
force involving factors identification) and system identification (mass, damping and
stiffness identification, natural frequency and modal parameters identification, dam-
age localization and quantification, mechanical properties identification), showing the
huge amount of applications of machine learning on system identification, as well as
the impressive number of different types of neural networks and data pre-processing
methods. Another interesting review is provided by Bianco et al. (Bianco et al., 2019),
reporting the main applications of machine learning in acoustics.

Although the wide range of applications of machine learning to vibration prob-
lems, they have not been applied yet to the analysis of systems in similitude, as far
the authors know. Nonetheless, it would be interesting to understand if ANNs can
use the information provided by all type of models - true and distorted - to predict the
prototype response (or even the response of any other model) starting from the scaling
characteristics. This may result very helpful in similitude field as ANNs may provide
quick preliminary estimations of the dynamic response of models and, consequently,
evaluate how much the distortions affect their behavior. This would lead to noticeable
money and time savings, especially in those cases in which the experiments are hard
or expensive to setup (like crashworthiness or other impact tests in which the break-
age of the specimen is scheduled, as well as dynamic and acoustic investigations of
fuselages, ship hulls, etc.) or the numerical simulations may require substantial com-
putational efforts and are time consuming (such as the interaction between an elastic
structure and a TBL, or other fluid-structure interaction problems).
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On the other hand, it would be interesting to understand if it is possible to iden-
tify and quantify the distortion, starting from the dynamic characteristics. Such an
analysis would complete the investigation concerning the potentialities of ANNs in
similitude field. Moreover, it would suit peculiar scenarios in which only the analysis
results are provided, while detailed information about the material and/or geometry
may be totally or partially missing. However, this type of information is fundamental
in similitude field, since great deformations and material changes [especially if com-
posites are used (Simitses and Rezaeepazhand, 1993)] affect the dynamic response
in the whole frequency range, while small distortions have a much greater influence
when the modal overlap factor is high. Being able to determine the scaling character-
istics of both geometrical and material parameters from the dynamic behavior would
be useful to determine and quantify the distortion and, then, act on its source during
the manufacturing procedure.

In general, a machine learning algorithm that generalizes well is a powerful tool
to model systems in which it is not easy to understand the functional relationships
between the dependent and the independent variable(s). After all, it is known that the
human effort required to find patterns in data is limited and it becomes more diffi-
cult when the size of the data set increases (Bianco et al., 2019). There are machine
learning techniques that are useful even when the data is subject to uncertainties or
varies with the passage of time. Last, but not least, these methods may produce solu-
tions in less than one seconds, independently of the complexity of the problem. This
makes the approach attractive even when there are alternative techniques that can pro-
duce more accurate results (Flood and Kartam, 1993). However, machine learning
methods should not be considered as an alternative to the conventional computational
techniques, but as an efficient supplementary tool for various purposes because they
reduce drastically the computational cost when excessive iterations are needed for
convergence, there is a lack of analytical models due to the complexity of the prob-
lem, or reference data is quickly needed to validate the effectiveness of a new model.

These considerations make easy to understand why building systems that can learn
from experience has been attractive for researchers of many fields, such as computer
science, engineering, mathematics, physics, neuroscience, and cognitive science. Out
of these activities a wide range of learning techniques has been derived and all of them
have the potentialities to transform many scientific and industrial fields (Rasmussen
and Williams, 2006).

However, many publications demonstrate how machine learning is affected by a
widespread misuse. As noted by Flood and Kartam (Flood and Kartam, 1993), for
example, many users tend to submit, almost blindly, a problem to Artificial Neural
Networks (ANNs) hoping in an acceptable solution. Probably, the capability of ma-
chine learning to provide these solutions automatically encourage these habits. The
operations and the effect of a number of internal parameters are often ignored, affect-
ing negatively the model performance and the comparison among several machine
learning models.



134 Chapter 5. Application of machine learning methods to structures in similitude

Nowadays, ANNs are not always appreciated since the architecture and the num-
ber of examples cannot be determined a priori. Many authors have tried to define,
at least, boundaries on the architecture or the number of training examples, such as
Hush and Horne (Hush and Horne, 1993), Huang and Huang (Huang and Huang,
1991), or Stathakis (Stathakis, 2009). All of them agree on the fact that the number
of hidden neurons should be much more smaller than the number of training sam-
ples (otherwise the network would memorize the training set, without synthesizing
the information hidden in data). However, the truth is that the right network can be
defined only empirically, being strongly problem-dependent. Hush and Horne (Hush
and Horne, 1993) suggest a trial-and-error methodical approach, in which one starts
with the smallest possible network and increases the size gradually, until the perfor-
mances improve significantly. Nonetheless, the architecture is just one side of the
problem. In fact, if the system under analysis exhibits high variability, the number of
training examples required increases and it is not always possible to produce a large
enough statistical population to train the network (Castellini and Revel, 2000).

For these reasons, this work is executed so that the decisions about the architecture
of ANNs are, as far as possible, made purposefully and with understanding of their
consequences, by explaining the importance of all the features involved and showing
the effects of their presence. The choice of each architecture and set of features is
guided by performing a sensitivity analysis. In this way, a compromise between the
"black box" and "model" approaches is carried out. Moreover, this phase is realized
keeping an eye on the possibility of generating an experimental training set, for future
laboratory applications. Although the results herein presented regard particular case
studies, they may be considered as a guide on the topic for those that currently use (or
intend to) ANNs in similitude field.

The training sets used further are generated analytically. In fact, building an ex-
perimental training set, where each example is a structural model on which laboratory
tests must be performed, is unfeasible from both economical and working time points
of view, no matter how simple the model is. The analyses are made by using the
Deep learning Toolbox of MATLAB®. Since, as written in section 3.2.1, the weights
are randomly initialized at each training, they are, therefore, different and the chosen
architecture and training set can be only analyzed running several training and eval-
uating if (a) the errors exhibit oscillations or decrease smoothly, and (b) if the errors
of subsequent training exhibit values with the same orders of magnitude. The training
which satisfies these two points is considered to be stable and suitable for the task.

In this chapter, the potentialities of ANNs are investigated with a simple case
of structures in similitude, namely, simply supported beams, which do not exhibit
avatars. Then, a more complex case is considered, which is CFCF plates (in order to
compare the generalization capabilities of the ANNs with the results obtained exper-
imentally and described in Chapter 4). Two tasks are executed or both the structural
operators: prediction of the dynamic characteristics starting from the scaling charac-
teristics, and vice versa. Moreover, in the case of the plates, a thorough sensitivity
analysis is executed, in order to derive the best architecture and to understand which
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parameters provide more information about systems in similitude

5.1 Artificial Neural Networks applied to simply supported
beams in similitude

As previously explained, ANNs are herein applied to simply supported beams in
similitude to two cases. In Case 1, the input is the length scale factor, and the dy-
namic characteristics, in terms of the first ten natural frequencies, are the outputs.
Case 2 concerns the prediction of the length scale factor by providing the first ten
natural frequencies as input. This is, therefore a supervised regression problem.

There are several reasons why natural frequencies are chosen as representative
of the dynamic characteristics in this investigation (and in the next one). Firstly, the
length of the input/output pattern (depending on the case considered) would be lim-
ited. Then, they represent the global behavior of the structure and can be determined
experimentally. Furthermore, knowing their scale factor is fundamental for both fre-
quency and response remodulation. On the other hand, modal parameters such as
mode shapes are not suitable for the analysis with ANNs because they would pro-
vide an excessively long input/output pattern. Moreover, since they are not posed in
similitude, they would not provide interesting information about the type of model.

The data set is made of 31 models which scale factor ranges from 0.50 to 2.00 at
steps amplitude of 0.05. The prototype is identified by the length scale factor λL = 1.
For each model, the first ten natural frequencies are polluted with random noise hav-
ing a Gaussian distribution. In fact, considering the noise as the consequence of the
sum of many, independent but identically distributed external factors, then such a sum
would obey a Gaussian distribution. This happens regardless the original distribution
of each factor, according to the Central Limit Theorem (Mitchell, 1997). The param-
eters of this distribution are zero mean and standard deviation equal to 5%, since, in
the case of the beams, there are no references about their value. This is done in an
attempt of replicating the experimental error and demonstrate the robustness of ANNs
in presence of noise. For both Case 1 and Case 2, the training set is made of 20 obser-
vations (out of 31), randomly sampled. The 85% is used for training, the remaining
15% for test phase. There is no validation set since the Bayesian approach is used.

The prototype beam has geometrical and material characteristics summarized in
Table 5.1. All the models are scaled only geometrically in length; the cross sectional
dimensions and material properties (aluminium) do not change (however, they may
change without introducing further complications since another true model would be
returned).

As highlighted in Chapter 3, beams do not generate avatars and the natural fre-
quencies of two models are related by Eq. 3.11. Thus, this equation is the law that
should be underneath the model generated by the ANN. Moreover, the models are
described only by means of one scale factor, that is the length one. Therefore, this
problem is relatively simple and does not need a particularly deep sensitivity analysis.
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Length, L [m] 1.00
Cross-section sides, s [m] 0.025
Young’s modulus, E [Pa] 70×109

Mass density, ρ [kg/m3] 2700
Poisson’s ratio, ν 0.30

TABLE 5.1: Geometrical and material characteristics of the proto-
type beam.

Case Architecture No. of examples Epochs MSEtrain MSEtest
Case 1 5–10 20 1000 390 8.374×104

Case 2 2–3 20 156 4.43×10-15 4.43×10-4

TABLE 5.2: Training characteristics for Case 1 (from length scale
factor to natural frequencies) and Case 2 (from natural frequencies

to length scale factor).

The training characteristics and results for the best training are summarized in
Table 5.2. The table reports, from the left to the right column, the case under analysis,
the architecture, the number of examples for both training and test phases, the number
of epochs (that is, the number of times the entire training set is used), and the train and
test MSEs. The maximum number of epochs allowed is 1000, as it has been noticed
that it is a value at which, typically, the errors have stabilized or overfitting has already
shown up . The architecture columns is indicated in terms of neurons of hidden layers
(therefore, the number of neurons of both input and output layer are omitted). For
example, the Case 1 has architecture 5–10, which means that the neural network has
two hidden layers, the first with 5 neurons, the second with 10 neurons.

Case 1 exhibits high values of training and test MSE and an architecture more
complex than that used for Case 2. This is due to the fact that ten outputs are predicted
and that the training examples are polluted by noise, which leads to an increase of the
MSE between the real output and the estimated one.

Fig. 5.2 shows the training and test errors for Case 1. After a first phase of
assessment, the training error decreases and stabilizes around 400, while the test error
is stabilized around 104.

The results returned by the ANN are shown in Fig. 5.3; four different models are
considered (not contained into the training set, of course), with length scale factors
equal to 0.90, 1.35, 1.55, and 1.75. The red dots, representing the predictions pro-
vided by the ANN, are very close to the reference line, implying that the ANN can
reconstruct the natural frequencies with an acceptable accuracy and, moreover, it is
robust to noise.

Case 2 exhibits a less complex architecture and smaller training and test MSE.
The evolution of the errors is illustrated in Fig. 5.4. The training error exhibits a
decreasing behavior, reaching very low values around the order of magnitude 10-15.
The test error decreases smoothly, too, stabilizing around 10-4
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FIGURE 5.2: Training and test errors for Case 1.

(A) λL = 0.90. (B) λL = 1.35.

(C) λL = 1.55. (D) λL = 1.75.

FIGURE 5.3: Prediction of the natural frequencies of simply sup-
ported beams with λL = 0.90 (A), λL = 1.35 (B), λL = 1.55 (C), and

λL = 1.75 (D).
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FIGURE 5.4: Training and test errors for Case 2.

These considerations on the errors are confirmed by Fig. 5.5, showing the predic-
tion of the length scale factors of five models. In this case, it is the input to be polluted
with noise. Nonetheless, the predictions are very good, returning errors smaller than
0.05, that is the sampling step used to generate the training set.

FIGURE 5.5: Predictions of the length scale factors for five models.

5.2 Artificial Neural Networks applied to CFCF plates in
similitude

In this section, ANNs are applied to CFCF plates in similitude, using the experimental
results, discussed in Chapter 4, to validate the outputs of the network.

The architecture, the input features, and the number of training examples are iden-
tified, qualitatively, by means of a sensitivity analysis. The procedure applied is the
trial-and-error one, suggested by Hush and Horne (Hush and Horne, 1993). Each
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training example, i.e., each plate, is characterized in terms of length, width, and thick-
ness scale factors (referenced with respect to the prototype). The natural frequencies
and FRFs of models with geometrical scale factors ranging from 0.50 to 1.50 (with
steps equal to 0.05) are evaluated, for a total of 9,261 models. From this data set,
several training sets are created. All of them are made of a common basis, constituted
by a set of examples describing the boundaries of the input space in order to bypass
the risk of extrapolation (Hagan et al., 2014). Then, other examples are randomly
sampled from the set. The 85% of the examples are used for the training phase, the
remaining 15% for test. Since there is no validation set, the samples are distributed
between the sets in order to improve both the training and test phases. Also these
subsets are created randomly at each training, then standardized with respect to their
mean value and standard deviation.

This section is divided into two subsections. The first concerns the prediction of
the dynamic characteristics, in terms of natural frequencies, of plates in similitude
when the scaling characteristics used in input are characterized in terms of geomet-
rical scale factors (length, width, and thickness). The second section deals with the
prediction of the scale factors by starting from the dynamic characteristics.

5.2.1 Prediction of the natural frequencies starting from the scaling char-
acteristics

For this task, the geometrical scale factors are the inputs, while the natural frequencies
are the outputs to predict. The experimental results reported in Chapter 4 are used as
reference to test the performances of the ANN. For all the experimental models, at
least the first nine natural frequencies are available, therefore the ANN is used to
predict these frequencies.

A first data set is analytically generated and without noise pollution, and the sen-
sitivity analysis performed on this set is summarized in Fig. 5.6 and Table 5.3. Par-
ticularly, Fig. 5.6 illustrates how the training (Fig. 5.6a) and test (Fig. 5.6b) MSEs,
reported on the vertical axes, change with different output combinations (on the hor-
izontal axes). Each dot on the curves corresponds to the MSE, averaged on three
different training. Four different architectures are investigated.

Basically, two different types of output are considered. First, single natural fre-
quencies, to investigate if ANNs are able to predict natural frequencies of increasing
order with the same level of accuracy or not. Then, combinations of natural frequen-
cies are considered. In the following plots, a vertical black broken line divides the
outcomes obtained from single natural frequencies from those obtained with groups
of them.

Table 5.3 is a good reference for a better understanding of Fig. 5.6, as it gathers
the better architectures for the cases shown in the figure. The table summarizes the
characteristics of the most simple networks returning an acceptable prediction for sev-
eral output types (listed in the first column), which may be single natural frequencies
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(A) Training error. (B) Test error.

FIGURE 5.6: Training (A) and test (B) MSEs from the sensitivity
analyses on the ANN architecture. Data without noise.

or successions of them. The choice of a particular architecture is due to the fulfill-
ment of both the requirements for a stable training, previously described. Then, the
architecture, the number of examples, and the training and test errors are reported.

Output type Hidden layers No. of examples MSEtrain MSEtest
architecture examples

1st natural frequency 5 500 0.0037 0.0413
2nd natural frequency 10–10 500 0.1720 0.2790
3rd natural frequency 15–15 3000 0.1970 1.2300
9th natural frequency 20–15–10 4000 6.3000 9.9500
1st–2nd natural frequencies 10–10 500 0.0953 0.0383
1st–3rd natural frequencies 15–15 3000 0.1160 0.1670
1st–9th natural frequencies 20–15–10 4000 2.7500 2.3300

TABLE 5.3: Results of sensitivity analysis on ANN architecture. The
vertical black broken line separates the single output training from

those with multiple outputs. Data without noise.

By looking at Fig. 5.6, the blue line represents the error obtained by the sim-
plest architecture, consisting in one hidden layer having 5 neurons, trained with 500
examples. The first natural frequency is well predicted by the ANN, with satisfying
values of training and test errors equal to 0.037 and 0.0413, respectively (Table 5.3).
However, it does not perform so well with the following frequencies, as well as com-
binations of them, since the increasing error prevents from an acceptable prediction.
Such an increase in predicting the natural frequencies with order higher than the first
may be due to an excessive simplicity of the model generated by the ANN. Thus, in
order to achieve better performances, the architecture must be complicated. However,
adding more hidden layers and neurons may lead to overfitting, since the more com-
plex model of the ANN turns out to be built ad hoc on the data points and, therefore,
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lacking of good generalization capabilities. This problem can be mitigated with an
increase of the number of training examples (Hagan et al., 2014). The sensitivity
analysis is executed on the basis of a trade-off between more complicated architec-
tures and the addition of more samples.

As a consequence, passing to an ANN with two hidden layers, each one with 10
neurons, and trained by 500 examples (red line), the error is lower than the previous
case for both the first and second natural frequencies. Nonetheless, the ANN with one
hidden layer and 5 neurons would be chosen to predict the first natural frequency since
it is less complicated and, in principle, it returns an acceptable prediction requiring
less computational resources and time. However, also in this case, the architecture
performs poorly on the successive natural frequencies and combinations of them.

These considerations hold for the prediction of the successive natural frequencies:
for instance, 3000 examples and a 15–15 ANN (that is, two hidden layers with 15
neurons each, as indicated in Table 5.3) are necessary to predict only the third natural
frequency, while a 20–15–10 ANN, trained with 4000 examples, is needed to predict
the ninth natural frequency, as the training and test errors are equal to 6.30 and 9.95
(Table 5.3). On the one hand, the number of training examples is prohibitive, espe-
cially in the perspective of generating an experimental training set; on the other hand,
such a great number is necessary to avoid overfitting.

Thus, the left half of the plots in Fig. 5.6 shows that, once the architecture and the
number of training examples are fixed, it becomes harder, for an ANN, the prediction
of the natural frequencies as the frequency order increases. A possible reason may
be the characterization of the models just in terms of geometrical scale factors, since
such a description may result poor when higher order frequencies are considered.
Moreover, the increasing complexity leads to a higher number of samples, which
makes an experimental training set unrealizable.

However, the purpose of this investigation is to predict the first nine natural fre-
quencies all together, therefore the sensitivity analysis is executed with combinations
of natural frequencies, too. The outcomes of such a study are shown in the right part
of the plots in Fig. 5.6, in which successions of natural frequencies are considered.
It is possible to notice that, when combinations of natural frequencies are taken into
account, the most suitable architecture is the one that works fine with the higher order
frequency of the entire set under consideration. For instance, in the case of the 1st-
2nd natural frequencies combination, the best network is that used for just the second
natural frequency (10–10 neurons and 500 examples). In the case 1st-3rd natural fre-
quencies, the network that works fine is that used for the third frequency alone (15–15
neurons and 3000 examples), and so on. It is reasonable to conclude that the higher
order frequency fixes a lower boundary on the best architecture. Of course, more
complicated networks would work even better, at least until overfitting occurs.

The same sensitivity analysis is performed with the same training set, this time
polluted with random noise (applied only to the natural frequencies) in order to repro-
duce the experimental uncertainty. This step has a double objective: to compare these
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results with the predictions provided by the not polluted training set and the experi-
mental results, and to demonstrate the robustness of ANNs to noise. This time, the pa-
rameters of the distributions are evaluated on the basis of the experimental-numerical
differences, illustrated in Chapter 4, between natural frequencies. Since the noise
must replicate the experimental error on the evaluation of the natural frequencies, the
parameters of the Gaussian distribution used to model this noise are evaluated on the
basis of the error obtained during the experimental phase. It is estimated as the dif-
ference between the experimental natural frequencies and those obtained numerically.
Thus, the mean and standard deviation of the Gaussian distribution are equal to µ =
-0.0151 and standard deviation σ = 0.0519, respectively.

The results of this sensitivity analysis are summarized in Fig. 5.7 and Table 5.4.
The considerations developed for the training set without noise are valid also for this
case: high order frequencies require more complicated architectures and more ex-
amples. When output combinations are considered, its the lower boundary is fixed
by the best architecture working fine with the single higher order frequency of the
combination analysed.

(A) Training error. (B) Test error.

FIGURE 5.7: Training (A) and test (B) MSEs from the sensitivity
analyses on the ANN architecture. The vertical black broken line
separates the single output training from those with multiple outputs.

Data with noise.

The results show how, passing from not noisy to noisy data, the architecture must
change even though the same output type is considered. In fact, polluted data gener-
ates overfitting more easily than not polluted data, since casual patterns (i.e., structures
in data seemingly organized which are, actually, random) generated by noise may be
interpreted as regularities by the ANN, resulting in a model, tailored on these fake
regularities, that does not reflect the actual behavior underlying the data (Mitchell,
1997).

As a matter of fact, Baum and Haussler (Baum and Haussler, 1988) confirm that
an excessively complicated network would be surely capable of overfitting since it
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Output type Hidden layers No. of training MSEtrain MSEtest
architecture examples

1st natural frequency 5 1000 41.60 49.30
2nd natural frequency 5–5 2000 59.60 64.60
3rd natural frequency 5–10 4000 85.20 88.60
9th natural frequency 10–10 6000 624.70 848.50
1st–2nd natural frequencies 5–5 2000 46.30 55.70
1st–3rd natural frequencies 5–10 4000 57.70 65.90
1st–9th natural frequencies 10–10 6000 317.70 309.10

TABLE 5.4: Results of sensitivity analysis on ANN architecture.
Data with noise.

would perform an exact interpolation of the training data, without leaving any pos-
sibility to the existence of errors. Such a network may be seen as a stiff one, which
leads for sure to overfitting in presence of noise.

Polluted data require a more flexible network, capable of providing a robust ap-
proximation instead of interpolation. Therefore, when working with noisy data, all the
typical countermeasures against overfitting must be applied: namely, less complex ar-
chitecture (thus, less hidden layers and less hidden neurons), and a greater number of
training examples).

According to the results of these sensitivities analyses (Tables 5.3 and 5.4), the
most suitable architectures to predict the first nine natural frequencies are those with
20–15–10 hidden neurons and 4000 examples when the data is not noisy, and 10–
10 hidden neurons with 6000 examples when noise is considered. On the one hand,
the number of hidden neurons is not very high, resulting in relatively simple neural
networks; on the other hand, a lot of training examples are needed, especially in the
case with noise.

The suitability of these architectures is proved by the final values of the errors,
but also by the stable training, underlined by the evolution of MSE with the number
of epochs in Fig. 5.8. In both cases, the error decreases quite smoothly, without
exhibiting wild oscillations. In particular, the training on the set without noise stops
when the maximum number of epochs is reached, as the learning algorithm works on
analytical data and the error decreases epoch after epoch, as illustrated in Fig. 5.8a.
On the other hand, Fig. 5.6b illustrates that polluted data prevents the error from
decreasing too much, assessing at a quite constant value which enables the minimum
error gradient stopping criterion.

The predictions provided by the ANN are summarized in Fig. 5.9. The black line
is the analytical reference obtained with Eq. 3.16; the blue empty triangles represent
the predictions of the ANN when the training set is not polluted by noise, the red
stars represent the ANN predictions in the case of noisy data, and the black circles
represent the natural frequencies determined experimentally.

Firstly, since, in most of the cases, the experimental frequencies are not very far
from the black reference line implies that the analytical model, used to generate the
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(A) Training and test MSEs. Training set with-
out noise.

(B) Training and test MSEs. Training set with
noise.

FIGURE 5.8: Training and test MSEs in the case of data without (A)
and with (B) noise.

training set, works fine and the differences may be due to experimental uncertainties.
Then, the blue triangles lie on the reference line, therefore the predictions of the ANN
using the not noisy training set practically coincide with the analytical results: the
ANN is able to give very accurate predictions when the data is without noise. How-
ever, also the predictions provided in the case of polluted data set are very close to
the reference line. The proximity between the experimental results and the "polluted
predictions" allow to conclude that the experiments validate the results provided by
the ANN. Moreover, it is interesting to notice that, starting from data having the same
level of uncertainty of the experimental results, it is possible to achieve predictions
with the high level of accuracy characterizing the ANN predictions.

It is possible to conclude that, according to the results, when providing the scaling
characteristics as input, ANNs can predict quite accurately a certain range of natural
frequencies for systems in similitude, even with noisy data. It is, therefore, reasonable
to think that ANNs can perform with the same level of accuracy even when using ex-
perimental training set, if the tests are well executed and, above all, if the number of
examples is high enough. However, the results in Table 5.4 indicate that the number
of training example is prohibitive if the training set to create is experimental. A dif-
ferent characterization in input of the models may help, for example adding material
characteristics or changing the boundary conditions, as well as predicting less natural
frequencies (Hagan et al., 2014; Bishop, 2006; Mitchell, 1997).

5.2.2 Model identification

As already stated, avatars are an actual problem due to manufacturing constraints or
errors. Hence, an important question is whether it is possible to identify, by means of
the dynamic response, if a model is true or distorted.
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(A) Prototype. (B) Replica.

(C) Proportional sides. (D) Avatar 1.

(E) Avatar 2.

FIGURE 5.9: ANN predictions with polluted and not training set for
the prototype (A), replica (B), proportional sides (C), avatar 1 (D),

and avatar 2 (E).

The model identification task, however, is investigated as a regression task. In fact,
in case of classification a somewhat equally distributed amount of each class (replica,
proportional sides, and avatars, in this case) should be needed in the training set. Since
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the set is made of models which length, width and thickness scale factors range from
0.50 to 1.50 at steps of 0.05, the occurrences of replica and proportional sides models
would be too low for an acceptable training, moreover being outnumbered by the
amount of avatar examples. The number of replica and proportional sides models may
be replenished using other values of scale factors, but, in order to reach an acceptable
amount, it would involve models scaled with factors without any engineering sense
(for example, equal to 10), also unfeasible to create experimentally.

For these reasons, the model identification is faced as a regression task, with the
purpose of modeling the functions of length, width, and thickness scale factors and
check whether the relationships between the scale factors, which identify the type of
model, are kept or not. The final objective is not so much to predict with extreme
accuracy the values of the scale factors, but to keep the relationships among them so
that the type of model is identified.

The sensitivity analysis performed in the previous task is repeated, more focused,
this time, on which kind of features should be used as input to characterize the mod-
els at best. In the following, only the main steps of the path that leads to the final
architecture, in order to provide a cumbersome presentation.

A first attempt consists in providing, as input, the analytical, not noisy first nine
natural frequencies. The training characteristics are summarized in Table 5.5. The
predictions made with the first architecture, which has the lowest training and test
errors, are reported in Table 5.6.

Architecture No. of examples MSEtrain MSEtest
5 500 0.0422 0.0491
5–5 1000 0.456 0.0552
15 2000 0.0509 0.0533
20–15–10 8000 0.0531 0.0561

TABLE 5.5: MSEs of different architectures for the model identifi-
cation problem.

True (λa, λb, λh) Predicted (λa, λb, λh)
Prototype 1.00, 1.00, 1.00 1.17, 1.20, 1.43
Replica 0.67, 0.67, 0.67 0.90, 0.93, 1.30
Proportional sides 0.67, 0.67, 1.00 0.73, 0.75, 1.30
Avatar 1 0.67, 1.00, 1.00 0.75, 1.27, 1.48
Avatar 2 1.00, 0.70, 0.67 1.45, 1.02, 1.47

TABLE 5.6: Predictions of length, width and thickness scale factors.
Architecture: 5. Number of training examples: 500. Data without

noise.

First of all, Table 5.9 shows that it is not possible to go below a certain threshold
of MSE, even though networks of incresing complexity are used. Then, the results in
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Table 5.6 highlight that, with the order of magnitude of error reported in Table 5.9,
the predictions are not so good. In fact, the percent error ranges from 8% (length
scale factor of proportional sides) to 119% (thickness scale factor of avatar 2). The
prediction of the scale factors results to be disastrous and the model identification fails
totally.

From the error that does not goes beyond a certain value to the consequent bad
performances, the main reason is due to the fact that, even though nine features are
given in input, they are nine variations of the same characteristic. The natural fre-
quencies of different order change, more or less, in the same way across the models,
i.e., decreasing if the length or the width (or both together) increase, increasing if
the thickness increases, etc. Therefore, adding more and more natural frequencies of
different order does not add a significant amount of information that the ANN can
exploit during the learning phase. Other parameters are needed to characterize the
plates in similitude.

In addition to natural frequencies, the FRF is another fundamental and character-
istic feature of dynamic response. However, the processing of such an information is
not lacking of ambiguities.

Firstly, one should decide whether to keep the same frequency range or the same
number of modes. In the first case, care must be taken of processing the FRFs in
order to have the same number of spectral lines, referring to the same frequency.
However, this means that, changing the model, also the number of resonant modes in
a given bandwidth, namely, the modal density (Fahy and Gardonio, 2007), changes,
increasing or decreasing according with the material and geometrical properties of
the models. Conversely, the number of modes can be retained, which implies that
the frequency range and the spectral lines change with the model. Furthermore, local
responses strongly depend from the acquisition and excitation points, thus one should
gather the local FRFs evaluated at the same non-dimensional coordinates.

Moreover, another problem is placed by the dimension of the training set. Assum-
ing that each model would be described by the spatially averaged FRF, it is charac-
terized by a large number of points, which implies a large number of input neurons
(since each point would correspond to an input neuron). Therefore, the information
contained into the FRFs must be exploited in another way.

For this reason, PCA is introduced, as the whole FRF curve can be synthesized by
few representative numbers, that are the PCs eigenvalues, as suggested by Zang and
Imregun (Zang and Imregun, 2001).

However, before using the PCA, the FRFs must be evaluated. While polluting
the natural frequencies is a "easy", because a simple shift in frequency is simulated
by increasing or decreasing the value of the natural frequency, such a task is not so
straightforward for an FRF. In fact, to the shift in frequency of the resonance peaks
other factors should be added, like errors in amplitude, missing or splitting peaks, etc.
This is why the FRFs are evaluated analytically with Eq. 3.47 without adding any
noise source. The analytical FRFs are therefore estimated with excitation and acqui-
sition points having the same non-dimensional coordinates used for the experimental
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tests described in Chapter 4. In order to compare the same type of information, the fre-
quency ranges vary according to the model in order to always consider nine resonance
peaks.

Not all the PCs are necessary, only those containing most of the variance of the
system. The amount of information conveyed by the PCs can be quantified by means
of the normalized cumulative sum of all the eigenvalues. Such a normalized sum up
to the i-th eigenvalue is given by

Eξ,i =
∑

Nξ,i
j=1 ξ j

Ξ
, (5.1)

where Nξ,i is the number of eigenvalues up to the i-th one, ξ j is the j-th eigenvalue,
and Ξ is the the sum of all the eigenvalues.

The normalized cumulative sum of several models is plotted as a function of the
number of eigenvalues in Fig. 5.10. The figure highlights that, after 11 eigenvalues,
the 99% of variance threshold is reached (the 11th eigenvalue is indicated with a black
circle).

FIGURE 5.10: Normalized cumulative sum of PCs eigenvalues. The
black circles indicates the 11th eigenvalue.

The evolution of performances are summarized in Tables 5.7-5.8. In order to un-
derline how the training performances change, several combinations of input features,
applied to ANNs with the same architecture, are shown. This architecture is the final
one, chosen after several trials, with an architecture 5–7 and 200 examples.

Table 5.7 is shown just to demonstrate that ANNs trained with PCs eigenvalues
alone are susceptible of the same problem arisen with ANNs trained only with the
natural frequencies. A reduction of the error is indubitable. However, the price for a
significant reduction of the error is to use many features, as the the third and fourth
rows display. Thus, the considerations made with the natural frequencies as input
features still hold in this case: providing the same type of information, which change
in the same way, brings limited information to the ANN.
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Input combinations MSEtrain MSEtest
1st PC eigenvalue 0.0532 0.0566
1st-2nd PC eigenvalues 0.442 0.0502
1st-3rd PC eigenvalues 0.0399 0.0425
1st-11th PC eigenvalues 0.0187 0.0222

TABLE 5.7: Training performances with several combinations of
PCs eigenvalues used as inputs. Architecture: 5–7. No. of exam-

ples: 200.

Considering the combination of different input types leads to better results, as
highlighted by Table 5.8. Three characteristic parameters of dynamic response are
considered: the natural frequencies, the PCs eigenvalues, and the modal density. In
particular, modal density is evaluated in a fixed bandwidth, which covers the 0–15700
rad/s range. Such a choice is not casual, since this is the range in which the first nine
modes of the smallest model (λa = 0.50, λb = 0.50, λh = 0.50) are contained. In this
way, the resonance peaks move further as the dimensions of the models change, and
the modal density varies accordingly.

Input combinations MSEtrain MSEtest
Modal density 0.13 0.131
1st PC eigenvalue + 1st natural frequency 0.0143 0.0436
1st PC eigenvalue + 1st-2nd natural frequencies 6.77×10-5 1.29×10-4

1st PC eigenvalue + 1st-2nd natural frequencies + modal density 7.64×10-5 6.45×10-5

TABLE 5.8: Training performances with several combinations of in-
put features. Architecture: 5–7. No. of examples: 200.

Table 5.8 highlights that the modal density is a poor feature to describe the models:
both the training and test MSEs are high. In fact, modal density does not change
very much among the models. Combining different types of features, instead, returns
better results. For example, the training carried out with the first natural frequency
and the first PC eigenvalue exhibits a reduction in training and test errors equal to
73.1% and 18.04%, respectively, with respect to the case with just one eigenvalue
(Table 5.7). Adding the second natural frequency gives even better results, with an
error decrease equal to 99.53% and 99.70% with respect to the case involving the first
natural frequency and the first PC eigenvalue.

The best performances, which combine the lower number of features and the best
performance index, are obtained by combining the first PC eigenvalue, the first two
natural frequencies and the modal density. In fact, although the training error increases
of 11.4% (still remaining quite low, equal to 7.64×10-5) with respect to the case with-
out the modal density, the test error is halved, reaching the value of 6.45×10-5. There-
fore, a feature like the modal density, which performs poorly when used alone, stabi-
lizes the generalization when used in combination with other features. Thus, this set
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True (λa, λb, λh) Predicted (λa, λb, λh)
Prototype 1.00, 1.00, 1.00 1.00, 1.00, 1.00
Replica 0.67, 0.67, 0.67 0.67, 0.67, 0.65
Prop. sides 0.67, 0.67, 1.00 0.66, 0.66, 1.00
Avatar 1 0.67, 1.00, 1.00 0.67, 1.00, 1.00
Avatar 2 0.99, 0.70, 0.67 0.99, 0.70, 0.67

TABLE 5.9: Predictions of the scale factors of the experimental
plates. Architecture: 5–7. No. of examples: 200.

of input features is chosen, and the training and test performances are shown in Fig.
5.11. They are very smooth, without excessive oscillations.

FIGURE 5.11: Training and test MSEs for a 5–7 ANN, with 200
training examples.

The network trained with these inputs and architecture is used to predict the scale
factors of the experimental plates. The results are reported in Table 5.9. The prototype
is perfectly identified. There is a slight difference in the prediction of length and width
scale factors in the case of the proportional sides, but they are still the same, so the
model can be still identified as proportional sides. For both the avatars, the predictions
are exact. Concerning the replica, the thickness scale factor deviates of 3% from the
real scale factor. The error is not high per se, but it prevents the model identification.

To have an idea on the general performances of the network, it can be tested on
all the others models. For this purpose, maps of the percent error are generated for
the three scale factors. They are illustrated in Fig. 5.12. The output space of the
problem under investigation is reported in each figure. All the points are identified
by the values of length, width, and thickness scale factors along the x, y, and z axes,
respectively, and a color. This color is representative of the relative percent error made
by the ANN on the prediction of a scale factor. The black dots indicate the points used
in the training set and must not be predicted.
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(A) Prediction error on λa. (B) Prediction error on λb.

(C) Prediction error on λh.

FIGURE 5.12: Maps of the prediction percent relative errors made
on λa (a), λb (b), λh (c).
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In particular, Figs. 5.12a-5.12c illustrate the percent error made on the predic-
tion of the length, width, and thickness scale factors, respectively. The error on the
prediction of a generic scale factor λg is evaluated as

%Errλg =
|λgre f −λgpred |

λgre f

×100, (5.2)

where λgre f is the reference value, and λgpred is the value predicted by the ANN.
An example may help to clarify the read of Fig. 5.12. Let us consider the point

having coordinates (λa, λb, λh) = (0.50, 1.00, 0.50) and how the error changes when
moving parallel to the λh axis. Such a point exhibits an error almost equal to 8%
(colored in red) in Fig. 5.12a, which concerns the evaluation of the error on the scale
factor λa. Moving along the λh direction, the error decreases, assessing around 2%-
3% (light blue and blue colors), which means that the scale factor λa = 0.50, associated
with the same value λb = 1.00, but changing values of λh, is predicted better.

The same considerations can be carried out for Fig. 5.12b, which shows the pre-
diction errors of the scale factor λb. The point (λa, λb, λh) = (0.50, 1.00, 0.50) indi-
cates an error nearly equal to 4% (light green dot) in the estimation of the value λb =
1.00, which decreases at almost 1% (blue color) while moving along the λh direction.

Finally, similar reasoning can be carried out about Fig. 5.12c, in which the error
on the scale factor λh is represented. An error between 1%-2% (blue color) is given
for the point (λa, λb, λh) = (0.50, 1.00, 0.50). Moving along the vertical direction,
λh changes and the prediction error on the corresponding value of λh ranges between
1%-3% (colored in blue).

In general, the errors are very low in all the cases, oscillating in the 1%-2% inter-
val. For each scale factor there is a region of higher error, in which peaks of 7%-11%
are reached, as in the case of the scale factor λa (Fig. 5.12a). These values may lead to
wrong conclusions during the model identification, since, for example, a replica may
be confused with a proportional sides. Moreover, it is not possible to predict which
region is going to exhibit the higher error, since these areas are training sensitive. The
only information about the error is provided by the MSE. However, the points with
the higher error are limited in number, thus an acceptable prediction is guaranteed for
the majority of the scale factors.

In conclusion, ANNs prove to provide acceptable predictions of the scale factors.
Although the model identification is not completely successful, as Table 5.9 shows,
the predicted scale factors are never too far from the real ones. More importantly,
this analysis demonstrates that a mindful characterization of the systems in simili-
tude leads to a significant reduction of the number of training examples. Instead of
using many features of the same type, it is better to pick few different ones. Even
though this application is analytical, the actual possibility of reducing the number of
samples required for the training and test phases opens the way to the creation of an
experimental training set.
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Chapter 6

Support of dynamic measurements
through similitude formulation

The works listed in Chapter 2 shows that some authors, like Simitses and Rezaeep-
azhand (Simitses and Rezaeepazhand, 1993), investigate different combinations of
scale factors in order to determine the distorted model returning the best prototype
prediction. Luo et al. (Luo et al., 2016b), on the other hand, aim at deriving a dis-
torted scaling law which returns predictions within a certain discrepancy range (fixed
a priori). These types of studies are almost mandatory since not always experimental
facilities can house models, as well as some similitude conditions may require the re-
alization of geometrical dimensions beyond the capabilities of today’s technology. In
this regard, manufacturing errors must not be underestimated. However, both the ap-
proach and the results are addressed towards the final comparison with the prototype
behavior.

As illustrated in Chapter 4, it is expected that, when the similitude conditions are
satisfied, the prototype curve and the model remodulated curve overlap. Thus, as al-
ready proposed by Franco et al. (Franco et al., 2019), it is theoretically possible to
employ similitude theory may provide information about the quality of the experi-
mental tests, typically affected by uncertainties, random noise and errors due to other
sources, by observing the outcome of the remodulation process.

According to this idea, the range of applications of similitude methods widens, be-
ing applicable to purposes other than the typical ones reported in literature (namely,
predict the behavior of the full-scale model, Chapter 2). The fact that the curves of
two models in complete similitude are bound to overlap when the conditions are ful-
filled, can be used to support experimental measurements polluted by uncertainties,
to provide a criterion to decide whether a laboratory experiment is acceptable or not,
and understand to which extent noisy or missing data have an influence on the remod-
ulation process.

For instance, let us consider a campaign of experimental tests on a particular struc-
ture which turns out to be polluted by noise. Before repeating the whole set of ex-
periments (with its own financial and temporal costs) or taking decisions and drawing
conclusions on the behavior of the structure on the basis of the results obtained, it
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would be useful to perform a remodulation and compare it with a set of reference mea-
surements, considered reliable, executed on a structure of the same type but different
dimensions. The analysis of the level of discrepancy between the reference curves and
the remodulated ones may help to take a final decision concerning the non-acceptance
of the results. This procedure may be even more useful when alternative validation
methods, like analytical solutions or numerical simulations, are missing or take too
much time, as the remodulation takes few seconds.

Hence, in this chapter SAMSARA method is applied in order to corroborate the
measurements obtained by means of a DIC test on two AFS panels, in complete simil-
itude, excited by a shaker. The objective is to demonstrate that similitude methods
help to establish whether a set of measurements is reliable or not, by comparing the
experimental measurements of systems in similitude with different levels of noise.

There are some works in literature that deal with the reconstruction of the response
from experimental data and the validation of measurements in presence of noise, but
none of them relies on similitude theory. Chen et al. (Chen et al., 2019) propose a
method for expanding the dynamic response from a sparse set of points to a much
larger set without utilizing a FE model. Successively, Chen et al. (Chen, Avitabile,
and Dodson, 2020) propose a function to check the consistencies of measurements to
all of the data of the entire set.

DIC cameras are extensively used to analyse the estimate the structural stress
and analyze vibrational behavior. In fact, they allow to quickly collect high-density
spatial information from structures remotely. This reveals to be an advantage in all
those cases in which contact sensors may induce mass-loading effects (like in the case
of lightweight structures), or the large scale of the test article implies long sessions
of intensive human work and results time consuming. Recently, Sarrafi (Sarrafi et al.,
2018) have applied Phase-based Motion Estimation (PME) and video magnification to
execute an Operational Modal Analysis (OMA) on turbine blades, aiming at executing
vibration-based SHM. Recently, Zhihui et al. (Zhihui et al., 2020) have combined
DIC and Element-Free Galerkin (EFG) to characterize the strain field and extracting
the stress intensity factor of a surface crack.

However, DIC measurements are bounded by intrinsic limitations, that are the
sources of uncertainties, such as the precision of the cameras and the errors. First of
all, camera precision is linked to the pixel dimension: the displacement of a point can
be registered only if it crosses the borders of the pixel. Concerning the errors, there
exist two types (Siebert et al., 2007a; Siebert et al., 2007b): correlation and calibration
errors. The latter impacts the reconstruction of the 3D coordinates of the points, while
the former can be divided into two more contributions: statistical and systematical er-
rors. Statistical noise is influenced by several environmental conditions, ranging from
the intrinsic camera noise, to the photon shot noise, different illumination conditions
between the cameras, image intensity contrast, and spatial contrast of the stochastic
pattern covering the surface of the test article. On the other hand, systematical errors
are mainly related to situations in which the facets do not reflect the effective com-
plexity of the real present transformation, such as curved specimen or lens distortion.
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Methods to reduce the errors are the subject of many works. For instance, Jones
et al. (Jones et al., 2019) propose X-ray imaging instead of optical imaging when
the refraction of visible light, due to density gradients between DIC cameras and the
test article (caused by smoke, flame, heated object, shock waves due to explosions,
etc.) generates a substantial error that can invalidate the measurement itself. Li et al.
(Li, Wang, and Duan, 2019) investigate the discrepancy between the order of the real
deformation and that of the applied mapping function in experimental tests involving
DIC cameras.

However, even though the accurate calibration and correlation procedures used
nowadays, and the reduction methods widely proposed in literature, not all the error
sources (like the statistical noise) present in DIC techniques are under the control
of the analyzer, therefore not all the results provided by a DIC acquisition system
can be used. Hence, these results may need some post-processing to reconstruct the
vibrational responses.

In this chapter, the responses are directly extracted from the experimental mea-
surements provided by the DIC camera or with the aid of a SOBI (Second-Order
Blind Identification) algorithm (Jia et al., 2020). In particular, the SOBI algorithm
and SAMSARA are applied to numerical plates to understand to which extent the
noise affects the performances of the methods. Then, SOBI algorithm is used on
experimental data to reconstruct the spectra of the excitation forces and to estimate
the scale factor of force amplitude. Finally, SAMSARA is used to validate the DIC
measurements by overlapping the prototype and proportional sides curves.

The flowchart in Fig. 6.1 summarizes the details of the work concerning the
management of the experimental data. The rectangular red frames are assigned to
experimental procedure and results, those rounded blue are associated to numeri-
cal/analytical procedures and results.

The experimental displacement time histories, provided by DIC cameras, along
with the natural frequencies experimentally determined with accelerometric tests pre-
viously performed, are given as input to the SOBI algorithm, which extracts the spec-
tra of the excitation forces. This helps to understand whether the input information is
coherently retained into noisy data and derive the scale factor of the force amplitude.
It is used further to calculate the velocity scale factor, which allows the remodula-
tion in both frequency and amplitude of the velocity curves, analytically evaluated
starting from the displacement fields provided by DIC measurements and the exper-
imental natural frequencies, according to Eq. 3.41. This allows to determine if the
experimental estimation of the displacements for each mode is acceptable or not. In
conclusion, the same operation is performed with the mobility (estimated with Eq.
3.47), then compared with the accelerometric observations, in order to understand if
all the analytical calculations carried out are, in general, correct and coherent.

In the following, the approach described is initially applied to results numerically
derived for sake of completeness and clarity. Data is polluted with random Gaussian
noise to investigate the effect of uncertainties on the results. Then, the procedure is
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FIGURE 6.1: Work flowchart.

applied to a real, more complex, laboratory case involving the AFS simply supported
plates.
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6.1 Numerical simulations

The numerical simulations are carried out on two simply supported thin aluminium
plates in complete similitude: a prototype (P) and a proportional sides (PS). The ge-
ometrical details and the mass of each plate are summarized in Table 6.1, while the
material properties, that are the same for both the models, are reported in Table 6.2.
The scale factors are summarized in Table 6.3; they are estimated on the basis of the
geometrical and material properties of the models, as well as Eqs. 3.24-3.46 assuming
that Poisson’s ratio and damping do not change. This is an acceptable hypothesis if
the material properties and the boundary conditions are the same for both the models.

a [m] b [m] h [m] M [kg]
P 0.656 0.476 0.003 2.53
PS 0.558 0.405 0.003 1.83

TABLE 6.1: Geometrical characteristics and mass of the prototype
and the proportional sides.

Young’s modulus, E 71GPa
Mass density, ρ 2700 kg/m3

Poisson’s ratio, ν 0.33
Structural loss factor, η 0.001

TABLE 6.2: Material properties.

Length, λa 0.85
Width, λb 0.85
Thickness, λh 1.00
Mass, λM 0.72
Natural frequency, λω 1.38
Velocity, λV 1.01

TABLE 6.3: Scale factors of the proportional sides model.

The numerical plates are modeled with PSHELL property and QUAD elements.
The mesh is made by 88 points (11 along the x direction, 8 along the y direction). The
plates are excited with several sinusoidal forces, applied once at time, with frequencies
equal to the natural frequencies of the test articles. The force amplitudes are equal to
2 N and 1 N, respectively. The force PSD SFF can be evaluated as

SFF =
F(ω)F∗(ω)

∆ f
, (6.1)
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where F(ω) is the force spectrum, F∗(ω) is the force spectrum complex conjugate,
and ∆ f is the frequency spacing. Assuming the same frequency resolution (λ∆ f = 1),
the force amplitude, i.e. Re{F(ω)}, scales as

λSFF = λ
2
F . (6.2)

Therefore, the scale factors of the force amplitude and the PSD are λF = 0.5 and
λSFF = 0.25.

The SOBI algorithm is used to derive the PSD of the force from the displacements
of the plates. If the the PSD curves remodulate according to the scale factor, then the
similitude holds and the algorithm is reliable. It is reasonable to assume that this
procedure can be applied even for cases in which not all the information about the
excitation is known.

Therefore, the force PSD associated with the first two modes are evaluated. For
each mode, the time history of the displacement of each point is polluted with random
Gaussian noise with 1%, 5%, and 10% of standard deviation σ, so that the effect of
an increasing level of uncertainty is investigated.

With reference to the steps listed in Section 3.3, the structural responses needed
in step 1 are numerically derived, then noise is added. The modal matrix of step
3 is estimated with the Joint Approximated Diagonalization (JAD) of the whitened
response covariance matrix (Belouchrani et al., 1997).

The results of the PSD remodulation at the first natural frequency are summarized
in Fig. 6.2. Each figure is made of three curves. The force PSD of the prototype is rep-
resented by the blue curve, the PSD of the proportional sides by the red curve, the PSD
of the proportional sides remodulated in frequency and amplitude by the yellow curve.
In each figure, a small box displays a zoom on the peaks. All the figures demonstrate
that the amplitude remodulations carried out with the scale factors predicted are accu-
rate. However, passing from 1% (Fig. 6.2a) to 10% (Fig. 6.2c) of standard deviation,
there is a sensitive decrease in PSD amplitude. Therefore, the noise induces a loss of
information which explicates in terms of underestimated amplitude. Nonetheless, the
scaling procedure is still valid.

Moreover, the results displayed in Fig. 6.2 make clear that the SOBI algorithm
can extrapolate coherent information even though the measurements are noisy. The
input frequency is set on the basis of the natural frequencies of the plates, hence
the remodulation procedures generate curves that are accurately aligned in frequency
because the models are in complete similitude. The important information of these
plots is not so much the overlap itself, which is expected because the proportional
sides is a true model, but the fact that the overlapping curves are reconstructed by
noisy measurements and that, despite this, they scale accordingly to the same scale
factor. This implies that the input information is kept and it is not distorted.

For sake of completeness, the same procedure is carried out when the excitation
frequency is equal to the second natural frequency. The results are reported in Fig.
6.3 and confirm the previous ones: the remodulation works fine, although the noise
leads to underestimated amplitudes.
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(A) σ = 1%. (B) σ = 5%.

(C) σ = 10%.

FIGURE 6.2: Remodulation of the spatially averaged force PSD, first
natural frequency (P: 303.45 rad/s; PS: 424.59 rad/s); noise standard

deviation equal to 1% (A), 5% (B), and 10% (C).

Therefore, Figs. 6.2-6.3 demonstrate that, by means of the SOBI algorithm, the
excitation signal can be extracted from a set of polluted data. On the one hand, such
a signal is affected by the noise, in fact the PSD amplitude is underestimated; on
the other hand, the information extracted is coherent enough to follow the scaling
procedure.

Successively, Eq. 3.46 is used to evaluate the velocity response. Also the mode
shapes φmn are polluted with random Gaussian noise at three different standard devi-
ations (1%, 5%, and 10%), so that the impact of uncertainties are analyzed also on
the reconstruction of the frequency response. As in the previous case, the main aim is
verify the overlap of the velocity curves after the scaling procedure.

The results obtained at the first resonance frequency are shown in Fig. 6.4. When
the level of noise is low, the remodulation is accurate (Fig. 6.4a). However, the more
data becomes polluted, the more discrepancies in amplitude begin to appear (Fig.
6.4b), increasing significantly when the noise is high (Fig. 6.4c).

These outcomes are corroborated by applying the same procedure to the second
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(A) σ = 1%. (B) σ = 5%.

(C) σ = 10%.

FIGURE 6.3: Remodulation of the spatially averaged force PSD, sec-
ond natural frequency (P: 602.88 rad/s; PS: 852.89 rad/s); noise stan-

dard deviation equal to 1% (A), 5% (B), and 10% (C).

mode, as shown in Fig. 6.5. The pollution due to noise affects the remodulation also
in this case.

Thus, with respect to the reconstruction of excitation force spectra, the presence
of noise affects much more the evaluation of velocity response, impairing the scaling
process if the uncertainty level is too high.
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(A) σ = 1%. (B) σ = 5%.

(C) σ = 10%.

FIGURE 6.4: Remodulation of the spatially averaged velocity, first
natural frequency (P: 303.45 rad/s; PS: 424.59 rad/s); noise standard

deviation equal to 1% (A), 5% (B), and 10% (C).
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(A) σ = 1%. (B) σ = 5%.

(C) σ = 10%.

FIGURE 6.5: Remodulation of the spatially averaged velocity, sec-
ond natural frequency (P: 602.88 rad/s; PS: 852.89 rad/s); noise stan-

dard deviation equal to 1% (A), 5% (B), and 10% (C).
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6.2 Experimental tests

The test articles of the experimental tests are two AFS plates with simply supported
boundary conditions. Table 6.4 summarizes the geometrical characteristics and masses.
The material properties of the skin are the same of those listed in Table 6.2; the prop-
erties of the core are listed in Table 6.5; they were obtained by D’Alessandro et al.
(D’Alessandro et al., 2014) by means of Ashby’s laws. It must be underlined that the
foam core is not homogeneous because of the random distribution voids, which gen-
erates an inhomogeneous distribution of mass and stiffness. However, the material
properties reported in Table 6.5 refer to the equivalent, uniform material with rela-
tive density equal to 0.222. For this reason, during the scaling procedure, the core is
treated as an isotropic, homogeneous material, characterized by the Young’s modulus,
mass density, and Poisson’s ratio listed in the table. The scale factors are the same of
the thin plates used for the numerical simulations, therefore they are summarized in
Table 6.3.

a [m] b [m] hf [m] hc M [kg]
P 0.656 0.476 0.001 0.008 3.20
PS 0.558 0.405 0.001 0.008 2.34

TABLE 6.4: Geometrical characteristics and mass of the prototype
and the proportional sides.

Young’s modulus, Ec 6.48 GPa
Mass density, ρc 600 kg/m3

Poisson’s ratio, νc 0.31
Relative density, ρr 0.222

TABLE 6.5: Aluminium foam core material properties.

6.2.1 Experimental setup

The experimental setup and test articles are shown in Fig. 6.6 and 6.7, respectively.
The displacements are captured by two high-speed synchronized cameras connected
to DIC software, corresponding to the Q450 high-speed DIC system by Dantec Dy-
namics. The maximum acquisition frequency of the cameras is 7530 frames per sec-
ond at a resolution of 1 megapixel; the displacement precision is equal to 0.02 pixels.
Each acquisition consists of 1000 samples. No averaging is adopted. The frequency
range covers up to 31,400, already considering the Nyquist Theorem, thus the band-
width of interest is 0–15,700 rad/s. The cameras are arranged in stereoscopic configu-
ration, so that each point of the plate is focused on a specific pixel in the image plane
of each camera. A stochastic texture is applied to both prototype and proportional
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sides, therefore the plates surfaces result as an indistinguishable pattern to both cam-
eras. The image of the first camera is subdivided into several subimages, the so-called
facets, used by the correlation algorithm which determines a suitable transformation
of each facet, matching the homologous area in the second camera image. Executing
this procedure for every loading step of the object under test, it is possible to follow
the facet deformation during all the experiment (Siebert et al., 2007a; Siebert et al.,
2007b).

FIGURE 6.6: Experimental setup.

A signal generator produces the excitation waveform, then passed to an amplifier
and an electrodynamic shaker which excites the plate. The points of measurement
are determined by overlapping a virtual grid to the image of the test article, which is
contained into a frame known as mask. The mask separates the area of measurement
from the background and indicates which part of the field of view must undergo the
measurement procedure. The dimensions of the grid elements and facets are deter-
mined on the basis of a trade-off among several matters (Becker et al., 2006; Siebert
et al., 2007b).

In first place, the more dense the grid is, the better the spatial resolution of the
variable under investigation (that, in this case, is the displacement). On the other hand,
this leads to an increasing computational effort and required memory space, since
there would be more grid points to process. Reducing the number of points would
reduce the computational and memory burden, although the displacements would be
described more coarsely.
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FIGURE 6.7: Experimental plates with speckle patterns for DIC
analysis.

The statistical error previously introduced is directly linked to the facet size, since
the error decreases with the square root of the number of facet pixels as the facet
dimensions reduces. However, the results of the measurement are evaluated as mean
values for each fact, hence the spatial resolution is too low if the facet dimensions
decrease too much.

Taking into account all these aspects, the resulting trade-off leads to choose, for
both prototype and proportional sides model, a virtual grid made of 30x44 square
elements, with a total of 1345 grid points. The grid element and the facets of the
prototype have dimensions of 20x20 and 23x23 pixels, respectively. Since it is fun-
damental to compare the displacements of homologous points, if the DIC cameras
frame the same portion of the panel, then the grid spacing and facets dimensions must
be scaled down accordingly to the geometrical dimensions of the plates, i.e., with a
scale factor equal to 0.85. In this way, the grid elements have dimensions 17x17,
while the facets are set to 21x21.

The excitation point of the plates has non-dimensional coordinates (0.2000, 0.2875);
the load is a sinusoidal force at a specific frequency (the natural frequencies of the
plate, previously evaluated by means of EMA). The prototype and the proportional
sides are excited with the same waveform but with different and unquantified ampli-
fier gain.
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6.2.2 Reconstruction of excitation spectra

An example of the measured displacement is displayed in Fig. 6.8. The plot shows a
noticeable noise, mainly due to the contactless characteristic of the procedure itself,
but also to the precision of the DIC cameras. The AFS panels have a high stiffness-to-
weight ratio, and the simply supported boundary conditions adds an artificial stiffness.
In addition, the displacement magnitude decreases as the resonance order increases.
All these factors contribute to the generation of small displacements which values may
assess below the DIC camera precision. Considering the contribution of the sources
of statistical errors, too, the level of noise becomes noticeable, as pictured in Fig. 6.8.
As a consequence, the raw measurements cannot be used directly, and post-processing
is needed.

FIGURE 6.8: Displacement of the point no. 100 of the prototype,
mode 1 (1350 rad/s).

Concerning the excitation, only the waveform - which is sinusoidal - is a certain
information. The gain of the amplifier is unknown, hence the force amplitude is un-
known, too. The SOBI algorithm is, therefore, to determine the spectra of the input
forces. In fact, as shown in Section 6.1, the input information underlying the mea-
sured displacement time histories is retained and this information is coherent enough
to follow the scaling procedure. Hence, it would be possible, as a rule of thumb, to
derive the scale factor of both force PSD and amplitude by overlapping the prototype
curve and the curve of the proportional sides after the frequency remodulation.

With reference to the list provided in Section 3.3, the time histories required in
step 1 are experimentally gathered by means of DIC measurements. The structural
loss factor, for the AFS panels, is set to 0.02 (D’Alessandro et al., 2014).

The spatially averaged PSD of the excitation force is shown in Fig. 6.9 for the
first three excitation frequencies. In order to determine the scale factor of the force
PSD, the curves of the proportional sides model (the red curves) are first remodulated
only in frequency, then the values of the PSDs are compared at homologous points in
frequency. For this purpose, 30 points are selected for each curve (mainly clustered
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around the resonance peak), then the scale factor for each point is evaluated. The
mean value of the force PSD scale factor, obtained by averaging on all the points
and all the excitation frequencies, is λSFF = 0.67, which returns very good amplitude
scaling, as the remodulated curves (the yellow ones) illustrate.

(A) Mode 1 (P: 1350 rad/s; PS 1645 rad/s. (B) Mode 2 (P: 2562 rad/s; PS 3485 rad/s.

(C) Mode 3 (P: 3705 rad/s; PS 5130 rad/s.

FIGURE 6.9: Remodulation of the spatially averaged force PSD for
mode 1 (A), mode 2 (B), and mode 3 (C).

Fig. 6.9 shows that the SOBI algorithm can return coherent information about the
excitation even though the sources of experimental uncertainties.

As already seen in Chapter 4, the inhomogeneity of the foam leads to slight
discrepancies in frequency between the prototype and the remodulated curve of the
model. These discrepancies begin to be noticeable from the fourth resonance on, and
they increase as the frequency increases. this is the reason why only the first three
resonance peaks are used to evaluate the force PSD scale factor. In fact, the missing
overlap would have prevented the direct comparison of homologous points in fre-
quency. Moreover, it wil be demonstrated further that these modes are the only ones
well identified for both prototype and proportional sides, therefore they are considered
as the most reliable for extracting the input scaling characteristics.
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Fig. 6.9 also shows that the amplitude of the PSDs decreases in frequency, even
though the excitation amplitude is the same for each model. Probably, this is due to
the decreasing value of displacements, when moving to further modes, which become
less recognizable to the DIC acquisition system.

6.2.3 Reconstruction of the velocity response

The force spectra determined in the previous section are reliable enough to estimate
the force amplitude and inserting it into Eq. 3.41 and reconstruct, analytically, the
velocity response. All the parameters required are known: the modal mass (Eq. 3.43),
natural frequencies, and the mode shapes φmn, the latter provided by DIC measure-
ments as displacement fields.

From the force PSD scale factor, the force amplitude scale factor is estimated; it is
equal to λF = 0.82 and, by means of Eq. 3.46, it returns a velocity scale factor equal
to λV = 1.00.

Fig. 6.10 illustrates the displacement fields of both prototype (Fig. 6.10a) and pro-
portional sides (Fig. 6.10b), and the reconstruction and remodulation of the velocity
curves (Fig. 6.10c). Both the displacement fields exhibit a good representation of the
first mode shape. Substituting the normalized values of these displacements into Eq.
3.41 leads to the velocity curves of Fig. 6.10c. As before, the frequency remodula-
tion returns a satisfying overlap of the peak frequency, however this is a consequence
of SAMSARA, since the models are in complete similitude. The frequency remod-
ulation alone does not give important information on the experimental result. What
is important, instead, is the amplitude level of the prototype, which is reconstructed
accurately. This happens because the mode shapes are well reconstructed, and also be-
cause the normalized values of displacements are coherent between the prototype and
the proportional sides. Thus, the velocity curves demonstrate that the experimental
information is reliable and that the measurement is executed successfully.

These considerations are strengthened by the results obtained with the second
mode, shown in Fig. 6.11. Also in this case, the remodulated curve matches ac-
curately the prototype curve (Fig. 6.11c) in amplitude. As the mode shapes of the
prototype (Fig. 6.11a) and proportional sides (Fig. 6.11b), demonstrate, this hap-
pens because the displacement fields are recognizable and their normalized values are
coherent between the models.

When the modes become less identifiable, then the amplitude remodulation shows
some discrepancies. For example, considering the fourth mode, the prototype mode
shape (Fig. 6.12a) is quite clear, while that of the proportional sides is not (Fig. 6.12b)
(even though the right side of the displacement map exhibits some peaks that may be
associated with the right lobe of the mode). The remodulation procedure highlights
the lack of an identifiable spatial pattern, and the consequent absence of coherence
between the local displacements, as the prototype velocity curve and its reconstruction
do not overlap well (Fig. 6.12c).
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(A) Mode 1 (Prototype mode shape). (B) Mode 2 (Proportional sides mode shape).

(C) Velocity curves.

FIGURE 6.10: Mode shapes and velocity remodulation of the first
mode (P: 1350 rad/s); PS: 1645 rad/s).

The outcomes worsen when the mode shapes are not identified at all. The sixth
mode is a fitting example, illustrated in Fig. 6.13. The velocity scaled curves are
totally different, exhibiting discrepancies higher than one order of magnitude (Fig.
6.13c). In fact, the mode shapes of both prototype (Fig. 6.13a) and proportional sides
(Fig. 6.13b) are not identified at all. The plate displacements become smaller as the
frequency increases, confusing with the noise. As a consequence, the displacement
field displays totally uncorrelated values.

These results prove that, provided a reference test article - namely, the prototype
- which behavior is known, if a model fulfilling the similitude conditions is tested,
then the similitude theory helps to understand the quality of an experiment polluted
by noise and to validate it.

6.2.4 Reconstruction of mobility

The mobility can be reconstructed with Eq. 3.48, with an amplitude scale factor equal
to λY = 0.99. By doing so, the dynamic response of the plates is derived without
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(A) Mode 2 (Prototype mode shape). (B) Mode 2 (Proportional sides mode shape).

(C) Velocity curves.

FIGURE 6.11: Mode shapes and velocity remodulation of the second
mode (P: 2562 rad/s); PS: 3845 rad/s).

directly involving the force spectra obtained with the SOBI algorithm. This is a useful
alternative approach, in case of problems in deriving the force PSD.

The curve remodulations of the modes previously investigated are gathered in
Fig.6.14. These plots confirm the results shown up to now: the quality of the remod-
ulation can tell which mode is well reconstructed and which is not.

Fig. 6.14 is more than a simple reproposition of Figs. 6.10-6.13. In fact, the re-
constructions of the mobility can be overlapped to the experimental results described
in Chapter 4, in order to check the quality of the data post-processing from DIC mea-
surements. These comparisons are shown in Fig. 6.15.

With reference to Fig. 6.16, too, illustrating the experimental mode shapes of the
third and fifth modes (not yet shown), the prototype curves in Fig. 6.15a exhibit a very
good match between the accelerometric and DIC measurements. The first five modes
are well predicted, since the spatial patterns are reasonably reconstructed (Figs. 6.16a-
6.16b), in agreement with the fact that the mode shapes are well recognized by DIC
cameras. The sixth mode instead, is not identified well, and this affects the mobility
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(A) Mode 4 (Prototype mode shape). (B) Mode 4 (Proportional sides mode shape).

(C) Velocity curves.

FIGURE 6.12: Mode shapes and velocity remodulation of the fourth
mode (P: 4477 rad/s); PS: 6355 rad/s).

reconstruction, shown by the underestimated resonance peak.
These considerations are confirmed by the comparisons between the acceleromet-

ric and DIC measurements of the proportional sides (Fig. 6.16b). The good evaluation
of the first three resonance peaks is in agreement with the identification of the associ-
ated mode shapes. However, from the fourth mode on, the peaks are underestimated.

For sake of completeness, the correlation between the experimental mode shapes
of prototype and proportional sides is shown in Fig. 6.17 in terms of MAC. The cor-
relation percentage confirms the results seen until now. The first modes of prototype
and proportional sides exhibit the higher correlation, upholding that the DIC system
captures this mode satisfactorily. The second and third mode shapes follow in order
of decreasing correlation, since the cameras roughly identify the form of the mode,
but noise becomes noticeable. The fourth, fifth, and sixth mode do not exhibit any
correlation, although some shapes are well identified in one model (for example, the
fourth and fifth modes of the prototype), they are not in the other. The remaining
comparisons return MAC values approximately equal to zero, except for the 4th-1st
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(A) Mode 6 (Prototype mode shape). (B) Mode 6 (Proportional sides mode shape).

(C) Velocity curves.

FIGURE 6.13: Mode shapes and velocity remodulation of the sixth
mode (P: 6707 rad/s); PS: 9124 rad/s).

and 5th-4th couples of prototype and proportional sides. However, these values of
correlation are comprised in the range 10%-0%, and can be considered as outcomes
due to noise.
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(A) Mode 1 (P: 1350 rad/s; PS: 1645 rad/s). (B) Mode 2 (P: 2562 rad/s; PS: 3845 rad/s).

(C) Mode 4 (P: 4477 rad/s; PS: 6355 rad/s). (D) Mode 6 (6707 rad/s; PS: 9124 rad/s).

FIGURE 6.14: Mobility remodulation curves of the first (A), second
(B), fourth (C), and sixth (D) mode.

(A) Prototype. (B) Proportional sides.

FIGURE 6.15: Comparisons between the accelerometric and DIC
measurements of spatially averaged mobility.
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(A) Prototype mode 3, 3705 rad/s. (B) Prototype mode 5, 4772 rad/s.

(C) Proportional sides mode 3, 5130 rad/s. (D) Proportional sides mode 5, 6650 rad/s.

FIGURE 6.16: Spatial patterns of the third and fifth mode shapes of
both prototype and proportional sides.

FIGURE 6.17: MAC between the experimental mode shapes of pro-
totype and proportional sides.
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Chapter 7

Conclusions and further research

7.1 Conclusions

The review provided in Chapter 2 has proven that similitude methods are an interesting
and useful tool for many kinds of problems (free and forced vibrations, buckling,
and impact problems), as well as for many engineering fields (aerospace, civil, naval
engineering, etc.)

Even though the first methods are still applied, the continuous proposals of new
methodologies highlights the will of scientific community to go beyond the typical
limits (for instance, the analytical effort when deriving the similitude conditions). A
general trend can be foreseen. On the one hand, the constantly increasing computa-
tional resources push towards procedures that can be implements in an algorithm; on
the other hand, new methods try to solve more complex problems, like acoustic-elastic
systems or multicomponent structures.

However, these analytical/numerical considerations must not distract the attention
from the main purpose of similitude theory, that is, overcoming the problems related
to full-scale testing, which is fundamental for investigating real structures without the
simplifications of computer simulations (absence of noise, perfect boundary condi-
tions, etc.).

In order to demonstrate not only the effectiveness of similitude conditions and
scaling laws, but also their range of validity, the results of experimental tests on CFCF
thin plates and simply supported AFS plates are reported in Chapter 4. Concerning
the CFCF plates, the tests confirm that, fulfilling the similitude conditions, the re-
construction of the prototype response, in terms of natural frequencies and frequency
response function, is quite accurate (except for some inconsistencies due to experi-
mental uncertainties).

In the case of sandwich plates, a complete and a reduced set of similitude condi-
tions are derived. While the former is used to study simply supported AFS plates, the
latter is applied to the same type of plates with free-free boundary conditions. Com-
plete similitudes are achieved in both the cases, and the similitude conditions and
scaling laws are the same, independently of the boundary conditions. Of course, they
can be applied among models with the same boundary conditions, not among systems
which do satisfy the similitude conditions but have different boundary conditions. The
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experiments show that true models allow to predict the vibroacoustic characteristics
of the prototype with an acceptable degree of accuracy. However, some errors gener-
ates from the inhomogeneous distribution of stiffness and mass of the aluminium foam
core, which may acquire increasing importance as the frequency becomes higher. This
source of uncertainties affects the natural frequencies, therefore the reconstruction of
the FRF and radiated acoustic power, too.

For both structural configurations, namely, thin and sandwich plates, the avatars
prove that none of the scaling laws work satisfactorily in the frequency range of inter-
est; maybe a law is able to catch a natural frequency or a resonance peak, but it is not
possible to generalize such a scaling law-frequency range correspondence to all the
avatars.

Unfortunately, almost in all experimental applications, partial similitude may be
the best one can hope for, since they are not just an analytical matter, but also the
result of manufacturing constraints (methods limitations, errors, etc.). Adding non-
scaling phenomena, like size effects, which affect important properties of the speci-
mens in terms of strength and load-bearing, makes the picture even more complicated.
Moreover, the problem of partial similitudes cannot be generalized, as each system is
sensitive to different parameters; to give an example, the aspect ratio affects panels,
while cylinders are influenced by length and radius, damping is a key factor in modal
approaches, strain-rate sensitivity has an important effect in impact problems (and
more general data, such as material changes or excitation sources, is not taken into
account).

It may be interesting trying to understand if it is possible to exploit, in any manner,
avatars or, more generally, the information provided by all the types of models. This
has led to the application of machine learning techniques, ANNs in particular. In
Chapter 5, the potentialities of ANNs are investigated on simply supported beams in
similitude, in first place, and CFCF thin plates, then. The prediction of dynamic
characteristics from scaling parameters and the reconstruction of the scale factors
from dynamic characteristics are performed for both the cases.

Concerning the beams, the results are very good, since the neural networks return
prediction with high accuracy even if the training set is polluted with numerical noise.
However, simply supported beams are a relatively simple case, as the system does
not generate avatars and the target function is not complicated to "reconstruct". As a
consequence, the system characterization does not require a strong diversification of
input features: length scale factor and ten natural frequencies are enough to describe
the system.

When dealing with plates, instead, a thorough sensitivity analysis is required, in
order to identify the best architecture and the number of training examples. The results
underline that, when there is no noise in the training data, the ANNs can be pushed
up to very complex architectures, predicting the natural frequencies with great accu-
racy. Good results are achievable with noisy data, too, although there is a noticeable
increase of number of training examples. This problem is relatively reduced when
performing the task of model identification, since the possibilities of characterizing
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the models are wider, therefore allowing the choice of different input features. As
a consequence, less complex ANNs and less examples are required, simplifying the
training phase.

The robustness to noise is undoubtedly helpful in case experimental data is used
as training examples. Actually, a possible future step would be to use directly the
results of experiments, although the creation of an acceptable experimental training
set may be unfeasible for several reasons, ranging from financial costs to temporal
and human-work efforts.

However, ANNs do have some implicit disadvantages, basically related to the
lack of control on training and an a priori identification of the architecture, which has
defied, until now, any attempt of boundaries definition. Nonetheless, the sensitivity
analysis executed demonstrated that these disadvantages can be smoothed, highlight-
ing that critical thinking is the key when using machine learning methods and analyz-
ing their results. Hence, ANNs are an useful tool as they can be used with any type of
data and can help to exploit the big amount of information obtainable from numerical
simulations or experimental tests, to reduce the number of runs with consequent time
saving, and to provide quick results when reference solutions are needed.

The last activity is reported in Chapter 6 and deals with the investigation of simil-
itude methods as a mean to support noisy experimental measurements. For this pur-
pose, the displacements of two AFS plates in complete similitude are observed with
a DIC acquisition system. The response is reconstructed analytically, starting from
the experimental measurement, since the acquisitions are strongly polluted by noise.
The displacement in time is given as input to a SOBI algorithm, which returns the
spectra of the input excitations. In this way, the input information is reconstructed, its
coherence is checked, and a velocity scale factor is estimated, so that the velocity re-
modulation can be executed. Reconstructing the velocity response peak by peak, it is
demonstrated that the model curves overlap accurately when the DIC measurements
are able to identify the mode shapes. When just one spatial pattern is not sufficiently
recognized, the remodulation exhibits noticeable discrepancies.

For sake of completeness, this procedure is carried out with mobility, too, then
overlapped to the accelerometric measurements shown in Chapter 4 to check whether
the analytical reconstruction is consistent. Also in this case, the accelerometric/DIC
measurements comparison returns good matches only for the resonances correspond-
ing to the identified modes. In the other cases, the peak values are seriously underes-
timated.

In conclusion, the similitude results are coherent with the quality of the experi-
mental measurements. Similitude methods turn out to be an interesting tool for un-
derstanding if a set of measurements is reliable or not, especially in the light of an
expanding set of approaches which allow to extrapolate the information hidden in
polluted observations. The main obstacle, now, which may prevent a wider applica-
tion of similitude as validation tool is that the complete similitude is mandatory
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7.2 Further research

The results of this thesis show that further research on systems in similitude can take
different paths. Distortions may be seen as manufacturing variabilities, or perturba-
tions of a system with respect to a reference state that affects the responses [the works
(Cunefare and De Rosa, 1999; De Rosa et al., 2007) can give a better idea]. Further re-
search should concentrate on classical similitude theory, by proposing similitude con-
ditions and scaling laws in which the parameters are re-arranged in different groups,
physically meaningful, such as the structural wavenumber, since it is representative of
the wavenumber. On the other hand, the application of machine learning in this the-
sis opens the way to other types of procedures, as CNNs or RNNs (Recurrent Neural
Networks), SVM or Gaussian Processes. The choice spectrum is quite wide and can
be partially driven by the type of target and data at disposal.

A new method has recently been proposed, which aims at reconstructing the re-
sponse of a system, starting from that of a reference one. This method is called
VOODOO (Versatile Offset Operator for the Discrete Observation of Objects) and
the first results, concerning the reconstruction of the displacement of two plates, show
that an exact evaluation of the frequency response is achieved (De Rosa et al., 2021).
These results are promising indeed, as, in similitude terms, the linear transformation
matrix which links the systems allows to move from the response of the prototype to
that of the model (which is an avatar), and vice versa; moreover, similitude condi-
tions and scaling laws are not directly involved. Investigations on the properties of
the transformation matrix and the possibility to widen the range of applications are
ongoing.

Last, but not least, research efforts should be addressed towards the definition of
a metric of similitude degree; some examples are provided in Chapter 2 (De Rosa,
Franco, and Meruane, 2015; Meruane, De Rosa, and Franco, 2015), yet their results
are not always satisfying. The definition of such a metric would open the way to other,
new approaches to similitude, based on the minimum/maximum distance between a
model and a reference, as well as the minimization/maximization of an error/gain
function referring to the metric itself.
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Appendix A

Reference tables

Three reference tables will follow in order to provide a useful synopsis to the inter-
ested readers. They report the methods, Table A.1, and the test-articles, Table A.2,
respectively. The last one, Table A.3, presents the references for complex structures
and other application fields.
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Method References
DA Rayleigh, 1915; Goodier and Thomson, 1944; Goodier, 1950;

Murphy, 1950; Langhaar, 1951; Charlton, 1954; O’Sullivan,
1957; Ezra, 1962; Katzoff, 1963; Carden and Herr, 1964;
Jones, 1964; Mixson and Catherine, 1964a; Mixson and
Catherine, 1964b; Pankhurst, 1964; Adkins, 1965; Cather-
ine, 1965; Chao and Wedekind, 1965; Folkman, Baldwin,
and Wainwright, 1965; Gabron and Johnson, 1965; Gukhman,
1965; Jones and Harrison, 1965; Kline, 1965; Fowle, Gabron,
and Vickers, 1966; Gabron, 1966; Morosow and Jaszlics,
1966; Shih, 1966; Watkins, 1966; Herr and Wayne Leonard,
1967; Leadbetter, Wayne Leonard, and John Brock, Jr.,
1967; Thompson, Jr., 1967; Adelman and Steeves, 1968;
Blanchard, 1968; Catherines, 1968; Peele, Thompson, Jr.,
and Pusey, 1968; Steeves and Catherines, 1968; Wissmann,
1968; Wolowicz, Bowman, Jr., and Gilbert, 1968; Pinson
and Wayne Leonard, 1969; Rolling, Murray, and Marshall,
1969; Leadbetter, 1970; Maples and Scogin, 1970; Peele,
Wayne Leonard, and Leadbetter, 1970; Soedel, 1971; Stubbs,
1971; Thornton, 1971; Shannon, 1972; Emori, 1973; Hunt,
1973; Marshall and Foster, 1973; McGehee and Stubbs, 1973;
Bernstein et al., 1974a; Bernstein et al., 1974b; Holmes and
Sliter, 1974; Levy et al., 1974; Lowe, Al-Hassani, and John-
son, 1974; Mason et al., 1974a; Mason et al., 1974b; Pin-
son, 1975; Zalesak, 1975; Leadbetter et al., 1976; Blanchard,
Miserentino, and Leadbetter, 1977; Brownfield and Rogers,
1978; Cagliostro, Florence, and Abrahamson, 1979; Ten-
nyson et al., 1981; Duffey, Cheresh, and Sutherland, 1984;
Krayterman and Sabnis, 1984; Keith Belvin and Edighoffer,
1986b; Westine and Mullin, 1987; Letchworth, McGowan,
and Gronet, 1988; Morton, 1988; Jackson and Fasanella,
1989; French, 1990; Jackson, 1990; Magness and Farrand,
1990; McGowan, Edighoffer, and Wallace, 1990; Baker, Wes-
tine, and Dodge, 1991; McGowan, Jaeed, and Edighoffer,
1991; Swanson, Smith, and Qian, 1991; Kellas and Morton,
1992a; Moradi and Parsons, 1992; Anderson, Jr., Mullin, and
Kuhlman, 1993; Wen and Jones, 1993; Dornfeld, 1994; Pin-
tado and Morton, 1994; French and Eastep, 1996; Usami and
Kumar, 1996; Friedmann, Guillot, and Presente, 1997; Kumar
et al., 1997; Rosenberg, Kreif, and Dekel, 1997; Singer, Ar-
bocz, and Weller, 1997; Wereley and Kamath, 1997; Christo-
forou and Yigit, 1998; Presente and Friedmann, 1998a



Appendix A. Reference tables 181

DA (continued) Presente and Friedmann, 1998b; Zhao, 1998; Greschik, Miku-
las, and Freeland, 1999; Friedmann, 1999; Harris and Sab-
nis, 1999; Jackson and Fasanella, 1999; Zhao, 1999; Alves
and Oshiro, 2006a; Alves and Oshiro, 2006b; Jiang et al.,
2006; Oshiro and Alves, 2007; Yigit and Christoforou, 2007;
Neuberger, Peles, and Rittel, 2007a; Neuberger, Peles, and
Rittel, 2007b; Sutherland and Guedes Soares, 2007; Szirtes,
2007; McKown, Cantwell, and Jones, 2008; Quercetti, Müller,
and Schubert, 2008; Steinchen, Kramer, and Kupfer, 2008;
Yulong, Yongkang, and Pu, 2008; Christoforou and Yigit,
2009; Kim, Lee, and Chang, 2009; Oshiro and Alves, 2009;
Richards et al., 2009; Acquaro et al., 2010; Canfield, Ped-
dieson, and Garbe, 2010; Gang, Wang, and Su, 2010; Ramu,
Prabhu Raja, and Thyla, 2010; Sabour and Bhat, 2010; Os-
hiro et al., 2011; Liu, Zhou, and Herrin, 2011; Tan, 2011;
Bond et al., 2012; Ciappi et al., 2012; Kuneš, 2012; Oshiro
and Alves, 2012; Ricciardi et al., 2012b; Zohuri, 2012; Maz-
zariol and Alves, 2013; Ramu, Prabhu Raja, and Thyla, 2013;
Wan and Cesnik, 2013; Yang et al., 2013; Gauchìa et al., 2014;
Mazzariol and Alves, 2014; Noam, Dolinski, and Rittel, 2014;
Ricciardi et al., 2014; Zai et al., 2015; Mazzariol, Oshiro, and
Alves, 2016; Xu et al., 2016; Saito and Kuwana, 2017; Spada
et al., 2017; Zohuri, 2017; He et al., 2020

STAGE Hu, 2000; Li and Jones, 2000; Hilburger, Rose, and Starnes,
Jr., 2001; Sonin, 2001; Holland et al., 2002; Pototzky, 2002;
Cartmell, Ziegler, and Neill, 2003; Jackson and Fasanella,
2003; Canfield et al., 2004; Kline, 1965; Szucs, 1980; Qian
et al., 1990; Rezaeepazhand and Simitses, 1993; Simitses and
Rezaeepazhand, 1993; Simitses and Rezaeepazhand, 1995;
Rezaeepazhand, Simitses, and Starnes, Jr., 1995a; Rezaeepaz-
hand, Simitses, and Starnes, Jr., 1995b; Rezaeepazhand, Sim-
itses, and Starnes, Jr., 1996a; Rezaeepazhand, Simitses, and
Starnes, Jr., 1996b; Rezaeepazhand and Simitses, 1997; Simit-
ses, Rezaeepazhand, and Sierakowski, 1997; Tabiei, Sun, and
Simitses, 1997; Chouchaoui and Ochoa, 1999; Chouchaoui,
Parks, and Ochoa, 1999; Simitses, Starnes Jr, and Reza-
eepazhand, 2000; Simitses, 2001; Ungbhakorn, 2001; Sing-
hatanadgid and Ungbhakorn, 2002; Wu, Cartmell, and Whit-
taker, 2002; Singhatanadgid and Ungbhakorn, 2003; Ungb-
hakorn and Singhatanadgid, 2003a; Ungbhakorn and Sing-
hatanadgid, 2003b; Ungbhakorn and Singhatanadgid, 2003c;
Wu, 2003; Heeg, Spain, and Rivera, 2004; Friedmann, 2004;
Frostig and Simitses, 2004; Kim, Kwak, and Chang, 2004
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STAGE (con-
tinued)

Ambur et al., 2005; Singhatanadgid and Ungbhakorn, 2005;
Wu, 2005; Wu, 2006; Ungbhakorn and Wattanasakulpong,
2007; Singhatanadgid and Na Songkhla, 2008; Torkamani, Ja-
fari, and Navazi, 2008; Rezaeepazhand and Wisnom, 2009;
Torkamani et al., 2009; Ungbhakorn and Singhatanadgid,
2009; Rezaeepazhand and Yazdi, 2011; Yazdi and Rezaeepaz-
hand, 2011a; Yazdi and Rezaeepazhand, 2011b; Kuneš, 2012;
Yazdi and Rezaeepazhand, 2012; Luo et al., 2013; Shokrieh
and Askari, 2013; Yazdi, 2013; Luo et al., 2014a; Luo et al.,
2014b; Luo et al., 2014c; Luo et al., 2014d; Zhu et al., 2014;
Asl et al., 2015; Balawi, Shahid, and Mulla, 2015; Luo et al.,
2015; Luo et al., 2016b; Asl et al., 2016a; Asl et al., 2016b;
Asl et al., 2017a; Asl et al., 2017b; Asl et al., 2017c; Asl et al.,
2017d; Zhu et al., 2017; Asl et al., 2018

EM Kasivitamnuay and Singhatanadgid, 2005; Ungbhakorn and
Singhatanadgid, 2009; Kasivitamnuay and Singhatanadgid,
2017

ASMA De Rosa et al., 1997; Martini, De Rosa, and Franco, 2004; De
Rosa, Franco, and Mace, 2005; De Rosa and Franco, 2008a;
De Rosa and Franco, 2008b; De Rosa and Franco, 2010; Li,
2010a; Li, 2010b; De Rosa, Franco, and Polito, 2015; Robin,
De Rosa, and Berry, 2016

SAMSARA De Rosa, Franco, and Polito, 2011; De Rosa et al., 2012; De
Rosa, Franco, and Polito, 2012; De Rosa and Franco, 2015;
De Rosa, Franco, and Meruane, 2015; Meruane, De Rosa, and
Franco, 2015; De Rosa, Petrone, and Franco, 2016; Petrone et
al., 2017; Franco et al., 2019; Berry et al., 2020; Franco et al.,
2020

ESM Cho and Wood, 1997; Cho, Wood, and Crawford, 1998a;
Cho, Wood, and Crawford, 1998b; Cho, Wood, and Crawford,
1999; Dutson and Wood, 2002; Dutson et al., 2003; Cho et al.,
2005

SA Luo et al., 2015; Adams, Bös, and Melz, 2016; Adams et al.,
2018

TABLE A.1: Reference table of similitude methods.
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Test article References
Beam Morton, 1988; Jackson and Fasanella, 1989; Jackson, 1990;

Magness and Farrand, 1990; Sorensen et al., 1991; Anderson,
Jr., Mullin, and Kuhlman, 1993; Drazetic et al., 1994; Pintado
and Morton, 1994; De Rosa et al., 1997; Rosenberg, Kreif,
and Dekel, 1997; Christoforou and Yigit, 1998; Zhao, 1998;
Zhao, 1999; Wu, Cartmell, and Whittaker, 2002; Oshiro and
Alves, 2004; Kasivitamnuay and Singhatanadgid, 2005; Wu,
2005; Alves and Oshiro, 2006a; Alves and Oshiro, 2006b;
Carrillo and Cantwell, 2008; McKown, Cantwell, and Jones,
2008; Viot et al., 2008; Christoforou and Yigit, 2009; Oshiro
and Alves, 2009; De Rosa and Franco, 2010; Ramu, Prabhu
Raja, and Thyla, 2010; Oshiro et al., 2011; Oshiro and Alves,
2012; Ramu, Prabhu Raja, and Thyla, 2013; Balawi, Shahid,
and Mulla, 2015; De Rosa, Franco, and Polito, 2015; Zai et al.,
2015; Asl et al., 2016b; Mazzariol, Oshiro, and Alves, 2016;
Asl et al., 2016a; Asl et al., 2017a; Asl et al., 2017b; Asl et al.,
2017c; Asl et al., 2017d; Kasivitamnuay and Singhatanadgid,
2017; Asl et al., 2018
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Unstiffened
plate

Goodier and Thomson, 1944; Duffey, Cheresh, and Suther-
land, 1984; Krayterman and Sabnis, 1984; Cheng and
Lesueur, 1990a; Cheng and Lesueur, 1990b; Qian et al.,
1990; Simitses and Rezaeepazhand, 1992; Rezaeepazhand
and Simitses, 1993; Simitses and Rezaeepazhand, 1993; Wen
and Jones, 1993; Rezaeepazhand, Simitses, and Starnes, Jr.,
1995a; Rezaeepazhand, Simitses, and Starnes, Jr., 1995b;
Simitses and Rezaeepazhand, 1995; Christoforou and Yigit,
1998; Zhao, 1998; Nettles, Douglas, and Estes, 1999; Hu,
2000; Simitses, 2001; Ungbhakorn, 2001; Singhatanadgid and
Ungbhakorn, 2002; Singhatanadgid and Ungbhakorn, 2003;
Ungbhakorn and Singhatanadgid, 2003c; Wu, 2003; Mar-
tini, De Rosa, and Franco, 2004; Jacob et al., 2004; Oshiro
and Alves, 2004; Schleyer, Hsu, and White, 2004; Ambur et
al., 2005; De Rosa, Franco, and Mace, 2005; Kasivitamnuay
and Singhatanadgid, 2005; Singhatanadgid and Ungbhakorn,
2005; Wu, 2005; Alves and Oshiro, 2006a; Alves and Os-
hiro, 2006b; Wu, 2006; Yigit and Christoforou, 2007; Neu-
berger, Peles, and Rittel, 2007a; Neuberger, Peles, and Rit-
tel, 2007b; Sutherland and Guedes Soares, 2007; Carrillo and
Cantwell, 2008; De Rosa and Franco, 2008a; De Rosa and
Franco, 2008b; McKown, Cantwell, and Jones, 2008; Sing-
hatanadgid and Na Songkhla, 2008; Viot et al., 2008; Yulong,
Yongkang, and Pu, 2008

Unstiffened
plate (contin-
ued)

Christoforou and Yigit, 2009; Neuberger, Peles, and Rittel,
2009; Oshiro and Alves, 2009; Rezaeepazhand and Wisnom,
2009; De Rosa and Franco, 2010; Li, 2010a; Li, 2010b; Sny-
man, 2010; De Rosa, Franco, and Polito, 2011; Rezaeep-
azhand and Yazdi, 2011; Yazdi and Rezaeepazhand, 2011a;
Yazdi and Rezaeepazhand, 2011b; Bachynski, Motley, and
Young, 2012; Ciappi et al., 2012; Oshiro and Alves, 2012;
Yazdi and Rezaeepazhand, 2012; Luo et al., 2013; Shokrieh
and Askari, 2013; Mazzariol and Alves, 2014; Luo et al.,
2014c; Noam, Dolinski, and Rittel, 2014; Zhu et al., 2014;
Asl et al., 2015; Balawi, Shahid, and Mulla, 2015; De Rosa,
Franco, and Meruane, 2015; Meruane, De Rosa, and Franco,
2015; Luo et al., 2015; Adams, Bös, and Melz, 2016; Luo et
al., 2016a; Luo et al., 2016b; Mazzariol, Oshiro, and Alves,
2016; Xiaojian et al., 2016; Xu et al., 2016; Adams et al.,
2018; Franco et al., 2019; Berry et al., 2020; Franco et al.,
2020; He et al., 2020
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Stiffened plate Mazzariol et al., 2010; Coutinho, Baptista, and Rodrigues,
2018

Sandwich plate Frostig and Simitses, 2004; Yang et al., 2013; Luo et al.,
2014b

Unstiffened
cylinder

Cheng and Lesueur, 1990a; Cheng and Lesueur, 1990b; Swan-
son, Smith, and Qian, 1991; Moradi and Parsons, 1992;
Hamada and Ramakrishna, 1995; Rezaeepazhand, Simitses,
and Starnes, Jr., 1996a; Rezaeepazhand, Simitses, and Starnes,
Jr., 1996b; Simitses, Rezaeepazhand, and Sierakowski, 1997;
Rezaeepazhand and Simitses, 1997; Tabiei, Sun, and Simitses,
1997; Chouchaoui and Ochoa, 1999; Chouchaoui, Parks, and
Ochoa, 1999; Ungbhakorn and Singhatanadgid, 2003a; Ungb-
hakorn and Singhatanadgid, 2003b; Jiang, Wang, and Zhang,
2006; Oshiro and Alves, 2007; Tarfaoui et al., 2007; Ungb-
hakorn and Wattanasakulpong, 2007; De Rosa, Franco, and
Polito, 2012; Qin et al., 2012; Mazzariol and Alves, 2013;
Yazdi, 2013; Luo et al., 2014a; Luo et al., 2014d; De Rosa
and Franco, 2015

Stiffened cylin-
der

Sato, Vecchio, and Andre, 1989; Hilburger, Lovejoy, and
Thornburgh, 2012; De Rosa and Franco, 2015; Yu and Li,
2016; Petrone et al., 2017

TABLE A.2: Reference table of test articles.
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Engineering
field

References

Aerospace en-
gineering

O’Sullivan, 1957; Katzoff, 1963; Carden and Herr, 1964;
Jones, 1964; Mixson and Catherine, 1964a; Mixson and
Catherine, 1964b; Adkins, 1965; Catherine, 1965; Chao and
Wedekind, 1965; Folkman, Baldwin, and Wainwright, 1965;
Gabron and Johnson, 1965; Jones and Harrison, 1965; Fowle,
Gabron, and Vickers, 1966; Gabron, 1966; Morosow and Jas-
zlics, 1966; Shih, 1966; Watkins, 1966; Herr and Wayne
Leonard, 1967; Leadbetter, Wayne Leonard, and John Brock,
Jr., 1967; Thompson, Jr., 1967; Steeves and Catherines, 1968;
Blanchard, 1968; Catherines, 1968; Peele, Thompson, Jr.,
and Pusey, 1968; Adelman and Steeves, 1968; Wissmann,
1968; Wolowicz, Bowman, Jr., and Gilbert, 1968; Pinson
and Wayne Leonard, 1969; Rolling, Murray, and Marshall,
1969; Leadbetter, 1970; Maples and Scogin, 1970; Peele,
Wayne Leonard, and Leadbetter, 1970; Stubbs, 1971; Thorn-
ton, 1971; Shannon, 1972; Hunt, 1973; Marshall and Foster,
1973; McGehee and Stubbs, 1973; Bernstein et al., 1974a;
Bernstein et al., 1974b; Levy et al., 1974; Mason et al., 1974a;
Mason et al., 1974b; Pinson, 1975; Zalesak, 1975; Lead-
better et al., 1976; Blanchard, Miserentino, and Leadbetter,
1977; Tennyson et al., 1981; Keith Belvin and Edighoffer,
1986a; Keith Belvin and Edighoffer, 1986b; Gronet et al.,
1987; Shih, Chen, and Garba, 1987; Letchworth, McGowan,
and Gronet, 1988; Schroeder et al., 1989; French, 1990; Mc-
Gowan, Edighoffer, and Wallace, 1990; McGowan, Jaeed, and
Edighoffer, 1991; Davis et al., 1994; Bisplinghoff, Ashley, and
Halfman, 1996; French and Eastep, 1996; Friedmann, Guillot,
and Presente, 1997; Wereley and Kamath, 1997; Presente and
Friedmann, 1998a; Presente and Friedmann, 1998b; Fried-
mann, 1999; Greschik, Mikulas, and Freeland, 1999; Jackson
and Fasanella, 1999; Horta and Kvaternik, 2000; Holland et
al., 2002; Pototzky, 2002; Cartmell, Ziegler, and Neill, 2003;
Jackson and Fasanella, 2003; Canfield et al., 2004; Friedmann,
2004; Heeg, Spain, and Rivera, 2004; Murphy, Macy, and
Gaspar, 2004; Laue, Case, and Moore, 2005; Gaspar et al.,
2005; Gaspar et al., 2006; Richards et al., 2009; Canfield,
Peddieson, and Garbe, 2010; Sabour and Bhat, 2010; Bond
et al., 2012; Ricciardi et al., 2012b; Wan and Cesnik, 2013;
Ricciardi et al., 2014; Spada et al., 2017
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Civil engineer-
ing

Usami and Kumar, 1996; Kumar et al., 1997; Kim, Kwak, and
Chang, 2004; Kim, Lee, and Chang, 2009; Yu et al., 2010

Impact engi-
neering

Emori, 1973; Holmes and Sliter, 1974; Lowe, Al-Hassani, and
Johnson, 1974; Brownfield and Rogers, 1978; Westine and
Mullin, 1987; Atkins, 1988; Hamada and Ramakrishna, 1995;
Me-Bar, 1997; Jiang et al., 2006; Carrillo and Cantwell, 2008;
Quercetti, Müller, and Schubert, 2008; Acquaro et al., 2010

Naval engi-
neering

Blok and Dekker, 1979; Kure, 1981; Hagiwara, Takanabe,
and Kawano, 1983; Brunette and Goldsmith, 1990; Ohtsubo,
Kawamoto, and Kuroiwa, 1994; Vassalos, 1999; Lehmann and
Peschmann, 2002; Wang, Yang, and Liu, 2007; Tabri, Määt-
tänen, and Ranta, 2008; Calle and Alves, 2011; Aguiar et al.,
2012; Calle, Oshiro, and Alves, 2017; Oshiro et al., 2017

Rapid Proto-
typing

Dornfeld, 1994; Cho and Wood, 1997; Chuk and Thomson,
1998; Springer, 1998; Mahn and Bayly, 1999; Cho, Wood,
and Crawford, 1998a; Cho, Wood, and Crawford, 1998b; Cho,
Wood, and Crawford, 1999; Dutson and Wood, 2002; Fu-
jino, Oyama, and Omotani, 2003; Dutson et al., 2003; Cho
et al., 2005; Nadooshan, Daneshmand, and Aghanajafi, 2007;
Steinchen, Kramer, and Kupfer, 2008; Ziemian, Ziemian, and
Barker, 2010; Dang-guo et al., 2011; Zhu et al., 2011; Dang-
guo et al., 2013

TABLE A.3: Reference table of engineering application fields.
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Appendix B

Articles, conferences, and
collaborations

B.1 Peer reviewed articles

[1] Casaburo, A., Petrone, G., Franco, F., De Rosa, S. (2019). "A Review of Simili-
tude Methods for Structural Engineering". In: Applied Mechanics Reviews, 71(3), pp.
0.30802-1–0.30802-32, doi: 10.1115/1.4043787.

[2] Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S. (2019). "Pre-
diction of the Dynamic Behavior of Beams in Similitude Using Machine Learning
Methods". In: Aerotecnica Missili e Spazio, 98, pp. 283-291, doi: 10.1007/s42496-
019-00029-y.

[3] Casaburo, A., Petrone, G., Franco, F., De Rosa, S. (2020). "Similitude Theory
Applied to Plates in Vibroacoustic Field: a Review up to 2020". In: Progress in Scale
Modeling, an Internationl Journal, 1(1), doi: 10.13023/psmij.2020.03.

[4] Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S. (2021). "The
Vibroacoustic Behaviour of Aluminium Foam Sandwich Panels in Similitude". In:
Journal of Sandwich Structures and Materials, doi: 10.1177/1099636220986759.

[5] De Rosa, S., Franco, F., Petrone, G., Casaburo, A., Marulo, F., (2021). "A Versatile
Offset Operator for the Discrete Observation of Objects". In: Journal of Sound and
Vibration, 500, doi: 10.1016/j.jsv.2021.116019.

[6] Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S. (2021). "Sup-
port of Dynamic Measurements through Similitude Formulations". In: Experimental
Techniques, doi: 10.1007/s40799-021-00457-1.

[7] Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S. (2021). "Evalu-
ation of Plates in Similitude by Experimental Tests and Artificial Neural Networks".
In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science, accepted.
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B.2 Conferences

Adams, C., Casaburo, A., Bös, J., Petrone, G., Franco, F., De Rosa, S., Melz, T.,
"A Comparison Between Similitude Methods for Frequency Response Analyses of
Vibrating Structures", presented at Colloquium on Irregular Engineering Oscillations
and Signal Processing, 10-12 September, 2018, Hamburg (Germany).

Casaburo, A., Petrone, G., Franco, F., De Rosa, S., "Application of Pattern Recog-
nition and Machine Learning Methods to Identify Vibrating Systems in Similitude",
presented at RASD 2019, 13th International Conference on Recent Advances in Struc-
tural Dynamics, 15-17 April 2019, Lyon (France).

Casaburo, A., Petrone, G, Franco, F., De Rosa, S., "Application of Machine Learning
Methods to Structural Similitudes", presented at ISCVS12, 11th International Sympo-
sium on Vibrations of Continuous Systems, July 28-August 2, 2019, Corvara in Badia
(Italy).

Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S., "Prediction of the
Dynamic Behavior of Plates in Similitude Using Machine Learning Methods", pre-
sented at AIDAA XXV International Congress, 9-12 September 2019, Rome (Italy).

Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S., "Investigation of
th Artifical Neural Networks Capabilities Applied to Vibrating Plates in Similitude",
presented at MEDYNA 2020: 3rd Euro-Mediterranean Conference on Structural Dy-
namics and Vibroacoustics, 17-19 February 2020, Naples (Italy).

Casaburo, A., Petrone, G., Meruane, V., Franco, F., De Rosa, S., "Evaluation of
Plates in Similitude by Experimental and Machine Learning Techniques", presented
at ISMA 2020, International Conference on Noise and Vibration Engineering, 7-9
September, 2020, Leuven (Belgium).

Casaburo, A., Magliacano, D., Petrone, G., Franco, F., De Rosa, S., "Optimitzing
the Acoustic Properties of a Meta-material Using Machine Learning Techniques",
presented at Inter-Noise 2021, 50th International Congress and Exposition on Noise
Control Engineering, 1-5 August, Washington, DC (US).

Tavasso, F., Casaburo, A., Petrone, G., Franco, F., De Rosa, S., "A Linear Transfor-
mation for the Reconstruction of the Response Between Systems in Similitude", pre-
sented at AIDAA XXV International Congress, August 31-September 3 2021, Pisa
(Italy).
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B.3 Research activity collaborations

October 2020 - January 2021: remote collaboration (due to COVID pandemic) with
Ecole Centrale de Lyon, under the supervision of Prof. M. Ichchou. Activity: analysis
of advanced methods for the reconstruction of the response of systems in similitude.

September- October 2019: Visiting researcher at Facultad de Ciencias Fisicas y Matem-
aticas (Universidad de Chile) at Santiago, Chile, in collaboration with Prof. V. Meru-
ane. Activity: application of DIC techniques to systems in similitude.

March-April 2019: Visiting researcher at Facultad de Ciencias Fisicas y Matematicas
(Universidad de Chile) at Santiago, Chile, in collaboration with Prof. V. Meruane.
Activity: experimental measurements and application of machine learning methods
to systems in similitude.
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