


Summary

The process by which the cells respond and adapt to internal and external stimuli, is

almost always controlled by a complex network of genes, proteins, small molecules,

and their mutual interactions, called signalling network. Over the last years, it has be-

come apparent that quantitative and methodological tools from Biomedical and Control

Engineering can be used to understand how these networks work, but also to engi-

neer “synthetic” networks to robustly steer cellular behavior in a prescribed fashion.

This possibility will be transformative, enabling myriad applications in biotechnology,

chemical industry, health and biomedicine, food, and the environment.

Cybergenetics is a new discipline merging the tools of Synthetic Biology with those

of Biomedical and Control Engineering, with the aim of building robust synthetic gene

networks to engineer biological processes.

This Thesis is within this research topic, and comprises two different applications,

one in yeast cells and one in human cells: (1) closed-loop feedback control to syn-

chronise the cell cycle across a population of yeast cells (Saccharomyces cerevisiae);

(2) quantitative analysis and model of TFEB nuclear translocation dynamics following

mTOR inhibition in human cells (HeLa).

In Chapter 1, I introduce the concept of signalling networks, describing how the

information coming from extracellular and intracelluar environment is encoded into

the dynamical response of the Trascription Factor (TF), i.e. the final effector of the

network. Moreover, I present the novel field of Cybergenetics and of the external control

paradigm, that is the strategy employed in this Thesis.
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Analysis and control of biomolecular networks by microfluidics

In Chapter 2, I describe the microfluidic-based experimental platform used to per-

form time-lapse experiments on populations of both yeast and mammalian cells. More-

over, I provide details on the image analysis algorithms that I developed.

In Chapter 3, I illustrate how the microfluidics platform, presented in Chapter 2,

was used to implement the closed loop control strategies that I designed (the open-loop

and the stop&go controllers) to automatically synchronise the cell cycle in a population

of yeast cells.

In Chapter 4, I describe a set of experiments performed by means of the microfludics

device to probe the dynamics of the nuclear translocation of the transcription factor EB

following mTOR inhibition, together with the derivation of a dynamical model and a

set of novel hypotheses on the mechanism of action of chemical mTOR inhbitors.

Finally, in Chapter 5, final considerations are drawn on the future research pathways

opened up by the results described in this Thesis.
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Chapter 1

Introduction

In this chapter, I will give an overview of the basic concepts and tools explored in

this Thesis. Specifically, I will describe the concept of signalling network and how

their dynamical response to the stress can encode different information, and the new

discipline of cybergenetics, which applies biomedical and control engineering tools to

Synthetic Biology.

1.1 Signalling networks

The cell is the minimal unit of life. Despite its simplicity, it has to carry out many

processes to maintain cellular homeostasis and to make decisions such as whether to

divide, to differentiate, or to die. In each case, the cell responds to external stress

and/or stimuli including hormones, neurotransmitters, mechanical stretch and shear,

and ion currents. Specifically, receptor proteins sense extracellular and intracellular

environment activating a cascade of biochemical modification in downstream proteins,

which together form the signalling pathway. Protein receptors can be connected to many

different cellular processes, thus combining more signalling pathways into a signalling

network. The organization (topology) of the signaling network drives the relationship

between inputs and outputs providing the cell with decision-making capabilities.
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Introduction

Figure 1.1: Signals encoding in the dynamics of the transcription factor. (A) Differ-
ent signals can be encoded in the dynamics of a single Transcription Factor (TF), and,
specifically in the type of TF dynamics: a sustained signal (signal A) or an impulse
(signal B). Signal intensity is encoded in amplitude for signal A, and in frequency for
signal B. From [1]. (B - D) Three examples of transcription factore whose dynamics
decode the information from the protein receptors: p53 (B); NF-kB (C); and Hes1 (D)
From [2].

Final effectors of signalling pathways are the Transcription Factors (TFs), which

control the expression of thousands of genes steering the cell fate. It is quite common

for different receptors of a signalling pathway to converge into the same "master" TF,

which can, in response, give rise to different outputs depending on the activating signal,

thus regulating the expression of different subsets of target genes [1, 3–5]. Moreover, a

single TF can be the final effector of more signalling pathways. This means that genes

downstream of a TF can decode the information provided by the TF itself. Recent

studies revealed that this encoding activity is carried out by TF dynamical response to

the stimulus. Specifically, as shown in Fig. 1.1A, TF can encode the information in the

amplitude of the activation or its frequency [1]. Indeed the TF activity over time can

be regulated in terms of quasi-periodic oscillations in its concentration and/or nuclear

localisation following activation by the stimulus [4–7]. These oscillations are often due

to delayed negative feedback loops [5].

These dynamics, however, are difficult to observe and study because of the strong

2



Introduction

cell-to-cell variability in TFs activation following the stimulus. To overcome this draw-

back, cells have been treated with two types of stimuli: (i) a constant input, also known

as step input, which gives rise to a transient and unsynchronised TF response [8,9]; and

(ii) a periodic stimulus, i.e. a periodic input, whose period is chosen very close to the

natural period of the signalling pathway. This second strategy can synchronise the TF

response, generating a phase-locked response, thus reducing the cell-to-cell variabil-

ity [10–13].

Three of the most representative examples of how different dynamics can induce

different responses are the transcription factor p53, NF-kB, and Hes1. They all exhibit

quasi-periodic oscillations in their activity either in terms of nuclear localisation (p53

and NF-kB) or expression levels (Hes1).

The transcription factor p53 (Fig. 1.1B) is a tumor suppressor that responds to mul-

tiple stresses, such as DNA damage, regulating the expression of many genes which

final goal is DNA repair and cell cycle arrest, cell senescence or apoptosis [6, 8]. In

response to DNA damage, p53 periodically translocates into the nucleus, exhibiting

periodic oscillations with a fixed period and amplitude. The number of these oscilla-

tions is stimulus-dependent [5] and changes the outcome of the signalling pathway: the

presence of oscillations causes resumption of proliferation and permanent arrest if such

oscillations persist; while non-oscillatory sustained activation of p53 is associated with

permanent cell cycle arrest [8].

The Nuclear Factor kB (NF-kB) (Fig. 1.1C) is a protein complex with transcription

factor activity playing a major role in modulating the immune response to infection.

NF-κB nuclear oscillations drive the expression of three classes of genes: early, inter-

mediate and late. The expression levels of early genes are relatively constant even with

small stimuli, whereas late genes are only expressed at the strongest stimuli, suggesting

that the initial NF-κB localization burst is sufficient to express the early genes. Finally,

the expression levels of the intermediate and late genes build up slowly after persistent

NF-κB oscillations [14].

3
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The Hairy and Enhancer of Split 1 (Hes1) (Fig. 1.1D) is a transcription factor regu-

lated via the Notch signalling pathway and whose exact function is still unclear. Hes1

expression is characterised by periodic oscillation whose period is between 2 or 3h,

mediated by a feedback regulation due to repression activity of Hes1 on its own expres-

sion [15–17]. It has been recently demonstrated that these oscillations play a key role

in fate-determination steps during embryonic differentiation [18].

1.2 Cybergenetics: where Control Engineering meets

Synthetic Biology

For a long time, biology was seen as something to observe and study. Then, the in-

novative discoveries in genetic engineering have revolutionised biological sciences,

biomedicine, and biotechnology, facilitating the manipulation of individual genes. In

this context, a new field emerged, Synthetic Biology, with the aim of constructing new

biological circuits able to control cellular behaviour. Synthetic biology has broad ap-

plications in medical, biofuel, chemicals, and biomaterials fields as well as provides a

revolutionary tool in the understanding of basic life sciences. However, the noisy nature

of biomolecular interactions renders a fine regulation of such circuits necessary for their

correct operation [19].

On the other hand, Control Engineering aims at improving the stability, robustness,

and performance of physical systems in several applications, including mechanical de-

vices, electrical/power networks, space and air systems, and chemical processes [20].

The merging of principles of control engineering with synthetic biology is known

as CyberGenetics [19]. In this new exciting field, synthetic biology tools are used to

replicate the classical feedback scheme of the control theory, building biomolecular

controllers (Fig. 1.2). The benefits of this approach are countless. For example, it

improves experimental reproducibility thanks to the self-adaptability of the negative

4
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Figure 1.2: Cybergenetics: the meeting between control engineering and synthetic
biology. Synthetic biology has developed different ways to replicate the classical mod-
ules used by control engineering.

feedback system to environmental changes and the reduction of noisy effects [21].

According to control theory, the classical feedback scheme can be summarised in

two main components, shown in Fig. 1.3A: the plant, i.e. the process to be controlled,

and the controller that works with a sense and react paradigm to drive the plant to be-

have as desired. Here, the controller receives measures of the plant output and computes

the input to deliver to the plant to decrease the difference between the measured value

of the output and its desired value (i.e. the control error). To replicate this scheme to

control biological processes, three different strategies have been proposed [19, 21, 22]:

(i) the external control, where the controller is implemented as a software in a computer

(Fig. 1.3B); (ii) the embedded control, where the controller is implemented as a genetic

circuit in the same cell of the process to control (Fig. 1.3C); (iii) the multicellular con-

trol, where the controller is realised in a cell population that controls the process carried

out by a different cell population (Fig. 1.3D).

Among these three strategies, the external control, described with more details in

5



Introduction

Controller Plant

A B

DC

Figure 1.3: The negative feedback paradigm translated into cybergenetics. (A)
General feedback control architecture where a controller steers the behaviour of a plant
adapting the control input to the plant response. (B) External control: the control al-
gorithm is implemented as a computer software and interfaced with cells by dedicated
actuators. (C) Multicellular control: two cell populations coexist in a consortium, with
one population embedded with a controller driving the second population harbouring
the biological process to be controlled. (D) Embedded control: both the controller and
the process to be controlled are present within the same cell.

Section 1.2.1, is the simplest to implement because it does not require the construction

of new genetic circuits. For this reason, it is also adopted as a test-bed for the other two

strategies. Indeed, it requires just interfacing the biological process with a computer via

a set of sensors to measure the actual output of the plant and actuators to deliver the

control input to the cells.

For embedded controllers, systematically reviewed in [19, 21, 23], both the process

and the controller are present within the cell. In this case, the controller is implemented

by a synthetic gene regulatory network (GRN) encoding new functions into living cells.

Despite the great advantage of having a cell population whose bioproduction is robust

to perturbations, the embedded control has two main drawbacks: the extra metabolic

burden, and the lack of modularity. Indeed, cells have limited resources, and, there-

fore, producing the needed to implement the controller can be hindered. Moreover,

the absence of modularity means that any change of the controller requires a complete

redesign of the embedded GRN.

Despite a growing number of researchers are working to solve the extra burden [24–
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26] and the modularity [27, 28] problems, one of the most promising approach to over-

come the limitations of embedded control, while at the same time preserving its advan-

tages, is the multicellular control strategy [19]. Here, the controller and the process to

be controlled reside in two distinct cell populations that co-exist in the same cellular

consortium. The interactions between the process and controller happen through dif-

fusible molecules [29–32], the so-called quorum sensing mechanism [33]. A critical

requirement for a correct operation of a multicellular control architecture is keeping

the ratio between the two populations within an acceptable range, otherwise a popula-

tion may surpass the other. If the target population becomes predominant, the control

population will be no longer able to regulate it. If the contrary happens, the controller

population will have nothing to modulate.

1.2.1 External control strategies to steer biological processes

The External or, in silico, control strategy consists of interfacing the biological pro-

cess to be regulated with a computer in which the control algorithm is implemented as

computer software (Fig. 1.3B). Over the last years, different platforms, summarised in

Fig. 1.4, have been developed to implement external control [34–39]. In each of these

cases, the regulation of a biological process, i.e. the plant, needs four basic modules

(Fig. 1.4A), which can be assembled into different configurations.

In a cybergenetic system, cells can grow either in a microfluidic device or in a

turbidostat (Fig. 1.4B). Both of them are useful to grow cells in an optimal environment

in which temperature, pH, CO2, and many others growth conditions are fine regulated.

While yeast and bacteria cells can grow both in microfluidic devices [34, 37–39] and

turbidostats [36], mammalian cells are, until now, cultured only in microfluidic devices

because of their higher sensitivity to growth conditions and the need for most cell types

to grow attached to a solid surface [35, 40].

A feedback-based control system needs to measure the actual output of the plant (y)

7
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Figure 1.4: Experimental platforms for the application of external control. (A) Ex-
ternal control platforms consist of four basic modules: (i) the controller, i.e. a computer
algorithm; (ii) cells, i.e. the plant; (iii) the sensor to measure the output, and (iv) the ac-
tuation system to provide the control input. Each module can be implemented in a vari-
ety of ways. (B) Cells need a suitable environment to grow. Either microfluidic devices
or turbidostats have been used for long term culture of cells in control applications. (C)
A variety sensors can be used to measure the system output, which is usually propor-
tional to a fluorescent reporter protein. To this end, microscopy and flow-cytometers are
used in combination respectively with a microfluidic device or turbidostats. Other cel-
lular features can be used as system output. For example, microelectrods can be used to
measure the cellular impedance, considered as proxy of colony growth. (D) Actuation
includes changing the concentration of a specific inducer (microfluidic-based input) or
exposing the cells to light of a specific wavelength (optogenetic-based input). While
the first strategy can be used only on cells cultured in a microfluidic device, light can be
used both in the case of microfluidics and turbidostats.

to compute the input to deliver to the plant. In the case of a cybergenetic system, the

output of the process to be controlled is usually proportional to a fluorescent protein. To

measure this kind of output, therefore, cells in a microfluidic device are usually imaged

through an epifluorescence microscope [34–39] while the fluorescent protein emitted

by a suspension of cells in turbidostat is measured employing a flow-cytometer [36]

(Fig. 1.4C). Recently, in place of a fluorescent protein, cellular impedance was used as

a proxy of bacterial colony growth [41]. Indeed, during bacterial growth, charged ions

8
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are naturally released because of metabolic processes making the surrounding medium

more conductive. Thus, Din et al. [41] had cells grown in turbidostat or a customised

microfluidic device in contact with microelectrodes to measure cellular impedance.

Another fundamental part of an in silico control system is the actuator that delivers

the input (ua) to the cells. Major actuation methods are syringes and pumps to change

the concentration of a chemical or metabolite (microfluidic-based input) [34, 35, 37],

or lasers or LEDs to expose cells, previously engineered, to the light of specific wave-

lengths (optogenetic-based input) [36,38,39] (Fig. 1.4D). Microfluidic-based input has

the advantage of being simple to implement and that the control input can be biolog-

ically relevant (a drug, a hormone, etc.). Moreover, each cell will receive the same

control input. On the other hand, although the requirement of extensive engineering of

the cell, optogenetic-based input offers precise spatio-temporal modulation of protein

function with low-to-no toxicity. Indeed, making use of a Digital Micromirror Device

(DMD) projector, consisting of millions of independently controlled MEMS mirrors, it

is possible to deliver a different input to each cell [39]. In bioreactors, i.e. turbidostats,

an optogenetic input may be the only option as changing the concentration of a chemi-

cal input may be very challenging and expensive. Therefore, a growing effort in devel-

oping robust optogenetics circuits is ongoing and it has been systematically reviewed

in [42, 43].

Finally, the last module of an external control system is the controller implemented

in a computer. Over the years, both model-free and model-based control algorithms

have been designed and implemented. Simple model-free controllers, e.g. relay [40,

44, 45] and Proportional Integral Derivative (PID) controllers [34, 36, 37, 44, 46], were

the first attempts of strategies used to regulate gene expression in bacteria, yeast, and

mammalian cells. More complex controllers include model-based controllers, such as

Model Predictive Control (MPC) [34, 36, 38–40, 46–48] and the Zero Average Dynam-

ics (ZAD) control scheme [34], achieving satisfactory results despite the simplicity of

the models used. Recently, a reinforcement learning control strategy was proposed,
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even if only in simulation, to control microbial co-cultures in bioreactors, optimizing

bioproduction despite the resource competition between the two species [49].

The first applications of external control were aimed to demonstrate the feasibility

of controlling GRNs. Specifically, the expression of a fluorescent protein was controlled

by using different inputs, such as osmotic pressure [47] and carbon source [34, 50] in

yeast cells or inducible drugs in different types of mammalian cells, including mouse

embryonic stem cells [35, 40, 45], and, obviously, light [36]. Then, the same platforms

were used to steer signaling pathways, i.e. endogenous networks, in mammalian cells,

such as the Erk [51] and mTORC1 [40] pathways. More recently, these strategies were

applied to steer more and more complex cellular mechanisms. For example, Lugagne

et al. [37] applied the external control platform with an open-loop control strategy to

a bistable nonlinear genetic circuit, the toggle-switch in bacterial cells, that exhibits

two stable states resulting from two proteins mutually repressing their production. By

applying a periodic input in which the two input molecules alternate each other, they

were able to maintain the majority of cells close to the unstable equilibrium point. Then,

in [46,52], the authors proposed and tested in simulation different control strategies able

to keep the toggle switch in its unstable equilibrium point, demonstrating the feasibility

of maintaining cells in an undifferentiated state. In a similar fashion, in [53], the authors

proposed for the first time a reinforcement learning approach, a model-free strategy

very robust to biological stochasticity. With cell-in-the-loop, instead, Perkins et al. [54]

were able to induce cellular patterning emulating cell-to-cell communication signals

calculated in silico from real-time measurements using light.

Notwithstanding, the complexity of the platform needed for the application of ex-

ternal control and the necessity to measure in real-time the system output, limit the

application of external control in the clinics. Indeed external control is most used in

biotechnological applications, i.e. bioproduct production, or in research to study and

better understand unknown biological and pathological mechanisms. For example, Har-

rigan et al. [48] applied closed-loop optogenetic compensation (CLOC) to investigate

10
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the dynamics of endogenous cellular feedback loops, replacing them with their syn-

thetic light-inducible version and closing the loop externally with an MPC. With this

tool, the authors elucidated the time scales of the yeast pheromone response MAPK

pathway, which cannot be fully interrogated by compensation with static genetic alleles.

Similarly, a microfluidics-based feedback platform was used to control the α-synuclein

in yeast cells to elucidate the mechanisms of the formation of α-synuclein aggregates

demonstrating that the mutant form, responsible for Parkinson’s Disease, forms inclu-

sions at a concentration that is half of that of the wildtype form [55].

11



Chapter 2

An automated microfludics platform

for yeast and mammalian cells

In this Chapter, I will present the microfluidic-based experimental platform that I used

in this Thesis (Fig. 2.1). This platform, already used for controlling gene expression

in living cells [34, 35, 40, 50, 56], is based on the closed-loop feedback paradigm per-

forming the following steps: (i) cell culture in a microfluidic device that allows the fine

control of the micro-environment; (ii) acquisition of phase-contrast and epifluorescence

images in real-time by a microscope; (iii) computer implementation of a controller al-

gorithm that evaluates the system output (through a custom image analysis algorithm)

and computes the correct input to deliver to the cells; and (iv) an actuation system com-

prising a pair of syringes delivering the input to the cells.

2.1 Microfluidic device

Microfluidics allows to grow cells and to precisely change their environmental condi-

tions in real-time. Indeed, microfluidic devices allow to isolate cells from external dis-

turbances as well as to continuously refresh or change their growing medium to avoid

the depletion of nutrients due to cell consumption. At the same time, a microfluidic

12
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Figure 2.1: Microfluidic-based experimental platform. Cells loaded in a microfluidic
device were imaged through an epifluorescence microscope. The images are analysed
with a custom image analysis algorithm implemented in a computer that controls also
the actuation system, i.e. a couple of syringes filled with the inducer or normal medium.

device can be mounted on standard microscope slides allowing the imaging through a

microscope to evaluate the effects of the input provided to the system. These devices

are, essentially, chips (mostly in PDMS), where fluid dynamics at the microliter scale

are exploited. The principle is to have an area where the cells are forced to be in (cell

trap), together with a series of channels to provide one or more compounds to the trap

to regulate cells environment or to collect cells and fluids wastes.

2.1.1 Microfluidic device for yeast cells culture

For the experiments performed with yeast cells, I chose to use the MFD0005a device,

designed by the Biodynamics Laboratory of Prof. Jeff Hasty (UCSD) [57] and shown

in Fig. 2.2A. Briefly, this device consists of a micro-chamber (height: 3.5 µm) which

”traps” yeast cells, that can only grow in a mono-layer, thus allowing to have cells al-

ways in focus and thus enabling automated image analysis. A fluidic mixer network,

13
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Figure 2.2: Microfluidic device for yeast cells culture. (A) Overview of the
MFD0005a chip’s architecture. (B) Dial–A–Wave junction. (C) Staggered herringbone
mixer (SHM). (D) DAW working principle. Adapted from [40, 57].

named the Dial-a-Wave (DAW) (Fig. 2.2B), to deliver any desired waveform of bio-

chemical inducer for dynamic stimulation of cells inside the culture chambers. Specif-

ically, fluids from ports 1 and 2 (inlets) arrive at the DAW that precisely combines the

two incoming fluid streams in any desired ratio determined by modulating the differ-

ence in hydrostatic pressures at the two inlets, as schematised in Fig. 2.2D, increasing

the pressure at one inlet while decreasing it at the other by the same amount so that the

flow rate out of the junction remains constant. Because of the laminar profile of the flu-

ids into a microfluidic device, the fluid leaving the junction has to be mixed to deliver

a uniform inducer concentration in the whole cell chamber. To this end, a staggered

herringbone mixer (SHM) (Fig. 2.2C) [58] is present downstream of the DAW.

I produced replicas of the device designed by Ferry et al. [57] thanks to the mas-

ter–mold that Prof. Jeff Hasty kindly provided to us as a blueprint, according to the

protocol procedures described in Appendix B.1.1 and published in [57].

14
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A B

Figure 2.3: Microfluidic device for mammalian cells culture. (A) Overview of the
mammalian chip’s architecture. (B) Vacuum-assisted loading of cells. Upon application
of a vacuum, fluid containing cells is rapidly drawn into the culture chambers and fills
the traps. Adapted from [59].

2.1.2 Microfluidic device for mammalian cells culture

Differently from yeasts, mammalian cells are much more sensitive to small changes in

pH, osmolarity, shear stress, and other external factors than most microbial model or-

ganisms. To overcome these problems, for experiments in which mammalian cells were

involved, I chose to use another microfluidic device, always developed in the laboratory

of Prof. Jeff Hasty [59]. This device, shown in Fig. 2.3A, consists of 33 individual

cuboid culture chambers (each has a 230 µm by 230 µm footprint, 40 µm height), that

are isolated from the shear stress. A main perfusion channel of identical height runs

adjoining to the chambers and allows delivery of the input to the cell via a 50 µm wide

opening on one side of each chamber. A separate channel for the application of a tem-

porary vacuum runs parallel to the column of culture chambers at a distance of 160 µm

between the wall of this channel and the closest wall of each cuboid chamber. This

channel is used during the cell loading (see Section B.3.3) to draw a fluid containing a

cell suspension into the culture chambers upon the application of a temporary vacuum at

the gas-permeable PDMS interface, as shown in Fig. 2.3B. Upstream the main perfusion

channel, there are the same DAW and SHM previously described (see Section 2.1.1).

Even in this case, I produced replicas of the Kolnic device [57] thanks to the mas-
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ter–mold that Prof. Jeff Hasty kindly provided us as a blueprint, according to the pro-

tocol procedures described in Appendix B.1.1 and published in [59].

2.2 Actuation system

As mentioned previously, the DAW is designed to combine the inputs from input ports

of both microfluidic devices in a precise ratio by changing the relative pressures at the

DAW, while keeping the total pressure constant. Thus, the input concentration in cell

chambers depends only on the pressure difference at the inlets. To this end, the pressure

of one inlet is increased and the other decreased by the same amount.

Theoretically, by controlling the inlet pressures as a function of time, one can gen-

erate precise waves of inducer concentration reaching the cell trap. The actuation aim

is to establish this pressure difference. Physically, this can be achieved by changing the

hydrostatic pressure of the syringes linked to the two inlet ports.

To accomplish this, we used two vertically mounted linear actuators, shown in

Fig. 2.4, to physically move the filled syringes up and down, thereby altering their

hydrostatic pressures. The syringes in this design have no plunger since they are used

simply as tanks to store the media. Namely, each syringe will exert a hydrostatic force

over the fluids in the channel that is simply proportional to its height.

The actuation system comprises two linear guides; every linear actuator is designed

to move independently from the other; the motion is realised through a stepper motor,

while the transmission by using a timing belt and two pulleys. Further details regarding

the sizing and the specifications of the actuation system are reported in [60, 61]

2.3 Microscopy and image analysis

Phase-contrast and epifluorescence images were acquired at 2min (yeast cells) or 15min

(mammalian cells) intervals at 40x magnification (CFI Plan Fluor DLL 40x dry objec-
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Figure 2.4: Linear actuators and Nikon Eclipse Ti fluorescence microscope. The
picture shows the fluorescence microscope (Nikon Eclipse TI) and the linear actuator
used in this study.

tive, NA 0.75; Nikon Instruments) using a Nikon Eclipse Ti-E inverted microscope

(Nikon Instruments) coupled with an EMCCD cooled camera (iXon Ultra 897; Andor

Technology) (Fig. 2.4). The microscope stage was surrounded by an opaque cage in-

cubator (Okolab) able to maintain the temperature at either 30◦C (nominal condition)

or 27◦C (perturbed condition) for yeast cells and 37◦C for mammalian cells. Time-

lapse experiments were conducted with the Perfect Focus System (Nikon Instruments)

enabled. Appropriate filter cubes were used to acquire the yellow (FITC; Nikon Instru-

ments), the red (TRITC HYQ; Nikon Instruments), and the green (Piston GFP Bandpass

Emission; Nikon Instruments) fluorescence channels. Time-lapse image acquisition

was controlled by the NIS-Elements Advanced Research software (Nikon Instruments).
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Figure 2.5: Yeasts segmentation pipeline. It is based on the tessellation of phase-
contrast images, upon nuclei recognition, to better distinguish single cells.

2.3.1 Segmentation of yeast cells

For the experiments that involved yeast cells, I processed raw phase-contrast and epi-

fluorescence images using custom scripts implemented in the MATLAB environment

and available on GitHub (see Appendix B.4). With this algorithm, whose pipeline is

shown in Fig. 2.5, I localised yeast cells in real-time, frame-by-frame, by processing

the raw images with a custom segmentation and tracking algorithm based on the Htb2-

mCheery protein used as a nuclear marker. Then, I quantified single-cell fluorescence

by measuring the intensity of the pixels in fluorescence images.
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Firstly, raw phase-contrast images were enhanced by using the MATLAB function

imadjust of the Image Processing Toolbox. Then, I used the MATLAB function

fspecial of the Image Processing Toolbox to design a Gaussian low pass filter, which

was applied to the enhanced images with the MATLAB function imfilter of the Im-

age Processing Toolbox. Next, background pixels were detected in both fluorescence

images (yellow and red fluorescence channels) by performing a morphological open-

ing using the MATLAB function imopen of the Image Processing Toolbox, which

removes objects that do not completely contain a specific structuring element. I chose a

disk-shaped structuring element (radius equals to 5px) to detect the fluorescence emit-

ted by histone Htb2-mCherry, i.e. the cell nuclei, in the red images acquired. Instead, I

chose a disk-shaped structuring element (radius equals to 10px) to detect the cytosolic

fluorescence emitted by YFP expressed from the endogenous promoter PCLN2 in the yel-

low images acquired for the non-cycling strain. Each structuring element was created

through the MATLAB function strel of the Image Processing Toolbox. The selected

background was then removed by subtraction from the raw fluorescence image by us-

ing the MATLAB function imsubtract of the Image Processing Toolbox. Next,

cell nuclei were detected in the red background-removed images. Specifically, I first

binarized each red image using Bradley’s method [62] implemented in the MATLAB

function imbinarize of the Image Processing Toolbox. Then, I removed connected

components (i.e., objects) that had fewer than 20px from the resulting binarized images

using the MATLAB function bwareaopen of the Image Processing Toolbox. As-

suming a circular shape for each nucleus, I detected the cell nuclei in the red images

employing the circular Hough Transform [63] implemented in the MATLAB function

imfindcircles of the Image Processing Toolbox. This function returned a two-

column matrix containing the centroids of the nuclei found in the red binarized images.

The red binarized images were also used to quantify the nuclei’s fluorescence using

the MATLAB function regionprops of the Image Processing Toolbox. Specifi-

cally, the function regionprops quantified the mean fluorescence signal of every
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single connected component identified in the red binarized image. Note that the fluo-

rescence intensities are measured in arbitrary units (a.u.). Single connected components

with a mean fluorescence intensity below a threshold value (i.e., 45a.u. in our setup)

were not considered as nuclei, thus the corresponding centroids were discarded from

the image processing algorithm. Next, the nuclei centroids were used as seeds for a

Voronoi tessellation to generate a single-cell region mask for each Voronoi cell area.

The creation of region masks from the Voronoi tessellation was performed through the

function vonoroi2mask available at the MATLAB Central File Exchange [64]. Re-

gion masks were then used to define rectangular boundaries that were used to crop the

phase-contrast images around each cell. Next, a Gaussian low pass filter was once more

applied on the cropped phase-contrast images. Then, I applied a Niblack local thresh-

olding method [65] to the cropped phase-contrast images through the function niblack

available at the MATLAB Central File Exchange [66]. Finally, a watershed algorithm,

implemented through the MATLAB function watershed of the Image Processing

Toolbox, was applied on the resulting phase-contrast images to generate a binary mask

defining the region of a single cell.

At this stage, each nucleus detected in the red images should be associated with

one single-cell mask. However, two or more cells could be detected in a single Voronoi

region. In this case, I identified the centroid and the corresponding radius of each single-

cell mask detected in the same Voronoi region using the function regionprops.

Specifically, the centroid and the corresponding radius were defined as the centroid and

the half of the major axis length (measured in px) of the ellipse that has the same nor-

malised second central moments as the region defined by the single-cell binary mask.

Then, I evaluated the Euclidean distance between the centroid’s nucleus (i.e., the cen-

troid detected in the red binary image) and the centroid detected for each single-cell

mask. I associated the cell nucleus to the single-cell mask whose Euclidean distance

was less than the associated cell radius. Also, I applied the function regionprops

to all the single-cell mask to quantify the radius of each cell. The radius was defined
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as stated previously, that is the half of the major axis length (measured in px) of the

ellipse that has the same normalised second central moments as the region defined by

the single-cell binary mask. Correction strategies were employed when the custom al-

gorithm failed in associating a nucleus to a binary mask. In the case that the nucleus

was detected for the first time, a circular binary mask was generated using a circular

shape centred on the centroid of the detected nucleus and having a radius equals to 3px

(i.e., the measured cell dimension at birth). In the case that the nucleus was already

recognised in the previous frame, then the algorithm considered the binary cell mask

detected in the previous frame. The same correction was also applied when the Niblack

local thresholding method failed. Specifically, the thresholding method failed when the

single-cell mask area was less than one and half times the single-cell mask area com-

puted in the previous time frame. The single-cell mask area was computed with the

MATLAB function regionprops.

Fluorescence intensities were then quantified by processing the yellow fluorescence

images with the binary single-cell masks described above. Specifically, the binary mask

defines the pixels of the phase-contrast and fluorescence images associated with the

single yeast cell. The fluorescence is quantified using the function regionprops.

Specifically, the fluorescence is quantified as the average fluorescence intensity in the

region selected by the binary mask.

Single-cell traces were tracked in real-time using a custom tracking module, which

was previously described [56], that searches for the correspondences between the ob-

jects (i.e., the centroids of the nuclei) detected in two consecutive red fluorescence

images by minimising a cost configuration (i.e., the displacements among the centroids

of two consecutive images). To improve the single-cell traces, I devised an offline im-

plementation of the tracking module that performs also reverse tracking of the cell pop-

ulation, which means that the tracking module was run a second time starting however

from the last time frame towards the first frame. Thus, I obtained a reverse single-cell

traces dataset. Then, the algorithm combines the forward and the reverse datasets to
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improve the single-cell traces by performing the following steps: (i) the algorithm ex-

trapolates the first and the last frame of each single-cell trace in both datasets. Note that

I mean as first frame the frame in which the cell is tracked for the first time, while as last

frame the frame in which the cell appears for the last time in the time-lapse experiment;

(ii) identification of forward and backwards traces that have in common the first and the

last frame in time. For each set of cell traces that overlap for the full time interval, I first

evaluated the Euclidean distance of the centroids between the forward and the reverse

single-cell traces over time. The algorithm evaluated the Euclidean norm of the vector

composed by the Euclidean distances between each pair of forward and reverse traces.

If the Euclidean norm is less than 1px, then the algorithm combines the forward trace

and the reverse trace in a unique single-cell trace. To compute the Euclidean norm, I

use the MATLAB function norm; (iii) identification of forward and backward traces

overlapping only for a partial time interval. The algorithm computes the Euclidean dis-

tance between the centroids of the forward and reverse single-cell traces by considering

only the overlapping time interval. If the Euclidean norm of the vector containing the

Euclidean distances between the forward and the reverse overlapping traces is less than

1px, then the algorithm merges both traces in a single-cell trace. This step is iteratively

repeated until no other matches were found; (iv) correction strategies to reconstruct

the final single-cell traces. To this end, the algorithm considers the case in which the

tracking algorithm failed in following a single cell between two frames. Specifically,

the algorithm searches for consecutive single-cell traces, meaning that the first frame

of one trace should be the last frame of the other trace. The algorithm merges the two

single-cell traces if the Euclidean distance between the centroids belonging to the two

boundary frames (i.e., the last frame of one and the first frame of the other trace) is less

than 5px. This step is iteratively repeated until no other matches are found. A second

correction considers the case in which the tracking algorithm failed in following a sin-

gle cell assuming that the cell could be lost for one frame. In this case, the algorithm

applies the same correction strategy illustrated previously. Since every step is iteratively
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repeated, duplicates of single-cell traces could appear in the final dataset. Thus, a filter-

ing step is also implemented through the unique identification of each single-cell trace

used to perform the merging algorithm. Specifically, each merged single-cell trace is

associated with the single-cell label used for the merging. If the same labels are saved

in more than one single-cell trace, just the longest trace is conserved by the algorithm.

2.3.2 Segmentation of mammalian cells

In the case of mammalian cells, I quantified single-cell fluorescence by analysing epi-

fluorescence images using a custom algorithm, whose pipeline is depicted in Fig. 2.6,

implemented by combining a machine-learning based approach and a MATLAB script,

available on GitHub (see Appendix B.4).

First, I process the raw phase-contrast images by using a machine-learning algo-

rithm, FastER [67] (available on the website), which gives as output the binary masks

used as input for the custom algorithm described below.

Background pixels are removed in both green and red fluorescence images by per-

forming a morphological opening as done for yeast cells images. In the case of mam-

malian cells, however, I chose a disk-shaped structuring element with a radius equals

to 40px to apply to both images. Then, the nuclear fluorescent protein H2b-mCherry is

used to localise the nuclei in the fluorescence images in the red spectrum. To this end,

I enhance the contrast in the background-removed red images through the MATLAB

function imadjust of the Image Processing Toolbox. Next, I binarize these images

using Otsu’s method [68] implemented with the MATLAB function imbinarize of

the Image Processing Toolbox. Two cells may be too close to each other or a single cell

may have more than one nucleus. In these cases, the binarised images may incorrectly

merge two or more different nuclei in one single object. To avoid this problem, after

having filled the holes in the binary images through the MATLAB function imfill of

the Image Processing Toolbox, the algorithm applies a new method to separate touch-
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Figure 2.6: Mammals segmentation pipeline. It is a combination of a machine-
learning based algorithm (FastER [67]) for phase-contrast image segmentation and a
custom script implemented in MATLAB environment for nuclei segmentation.

ing cells, known as pixel replication [69], that combines the Euclidean distance trans-

form and Gaussian mixture models to better delineate objects with elliptical boundaries.

Specifically, this method is applied only to those nuclei whose area, computed with the

MATLAB function regionprops of the Image Processing Toolbox, is a multiple of

1400px, which is the mean area of the mammalian cells imaged in this Thesis (HeLa).

At this point, for each image, two binary masks are built: (i) the mask for the entire

cell obtained with FastER, and (ii) the nuclei mask obtained by the described algo-
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rithm. Through logic operations between these two images, I obtain also the mask to

measure cytosol fluorescence. Each nucleus in the nuclei mask is then associated to a

single cell in the cell mask, by computing, through the MATLAB function norm, the

Euclidian distance between the centroids of the two masks evaluated by the function

regionprops. Specifically, the nucleus is associated with the cell whose radius is

longer than the Euclidian distance. The cell radius is defined as the half of the minor

axis length (measured in px) of the ellipse that has the same normalised second cen-

tral moments as the region defined by the single-cell binary mask, estimated through

the function regionprops. Since FastER works on the contrast difference between

foreground and background, it may not always be able to detect all the cells in the image

or it may partially detect other cells. To improve the quality of FastER masks, I em-

ployed some correction strategies. Specifically, I combined the single-cell mask with

the single-nucleus mask through the logical operator OR, in case FastER had detected

only part of a cell. However, if a nucleus cannot be associated with any cell detected by

FastER, the cell mask is recovered from the previous frame. Once that each nucleus is

associated to a cell, the cytosol mask can be computed by applying the AND operator

between the single-cell mask and the negative of the single-nucleus mask.

Finally, the green fluorescence of both the whole cell and of the individual com-

partments (nucleus and cytoplasm) can be estimated. Specifically, making use of the

function regionprops, I evaluate the intensity of each pixel in each mask (whole

cell, cytoplasm, and nucleus) and the compartment fluorescence is defined as the sum

of the intensity of all pixels formed the compartment.

Also for mammalian cells, single-cell traces are tracked through the tracking module

previously described (Section 2.3.1) [55].

During the experiment, cells can divide or can die and these events affect also the

single-cell fluorescence traces. During cell division and cell death, a cell loses its nor-

mal shape and compartmental division. Therefore, since I was interested in observing

the nuclear translocation of a fluorescent protein (see Section 4.3), these phenomena
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can interfere with the signal. Moreover, some cells are not fluorescence at all making

observing the translocation impossible. To avoid these problems, I performed a cell se-

lection, discarding the non-fluorescent cells and cutting the signals during cell division

or death.
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Chapter 3

Automatic control of the yeast cell cycle

In this Chapter, I will illustrate the potentiality of cybergenetics. As discussed in Sec-

tion 1.2, cybergenetics approaches have been used to steer simple biological processes.

In this work, for the first time, we applied cybergenetics tools to a very complex bio-

logical pathway: the cell cycle. Normally, yeast cells cycle asynchronously, increasing

cellular heterogeneity and allowing the survival of the population in unfavourable con-

ditions [70]. However, in several cases, a synchronised population is desirable. For

example, a synchronised population can be used to study the mechanisms steering the

eukaryotic cell cycle or to optimise cell-cycle modulated production of metabolites and

heterologous proteins [71, 72]. Here, I describe the design and implementation of an

external control strategy to synchronise the cell-cycle across a population of yeast cells

through the experimental platform illustrated in Chapter 2.

The work illustrated in this Chapter was realised in collaboration with Giansimone

Perrino, a post-doc previously worked in Prof. Diego di Bernardo’s group. Part of these

results have been published in a peer-reviewed journal [73].
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3.1 The cell-cycle machinery

The cell cycle is the succession of events whereby a cell grows and divides into two

daughter cells, each one containing the information and machinery necessary to repeat

the process. In unicellular species, such as bacteria and yeast, each cell division pro-

duces a completely new organism, while in multicellular species, long and complex

sequences of cell divisions are required to produce a functioning organism.

The details of the cell cycle vary from organism to organism, even if certain charac-

teristics are universal. Specifically, some steps of this process are fundamental to pass

the genetic information to the daughter cell, which is the main task of the cell division

process. To this end, indeed, the DNA has to be accurately replicated and distributed

between the two daughter cells. To ensure that this task is properly performed, a com-

plex network of regulatory proteins, known as cell-cycle control system, was evolved

in eukaryotic cells. This system monitors the progression through the cell cycle and

delays later events until earlier ones have been completed [74, 75].

The cell cycle is traditionally divided into four phases: (i) the Gap1 (G1) phase;

(ii) the Synthesis (S) phase; (iii) the Gap2 (G2) phase; and (iv) the Mitosis (M). The

two gap phases are needed to allow cells to grow and double their mass of proteins

and organelles to pass to the daughter cells. The synthesis phase is the set of processes

that leads to the DNA synthesis (from which it takes its name); while mitosis is the

actual cell division. The combination of the two gap phases with the S phases is also

known as interphase. During the gap phases, the cells also monitor internal and external

environments to ensure that external conditions are suitable for cell division and that

the cell has completed the preparation for the next step. In this context, another cell-

cycle phase was identified: the G0 or gap zero phase. In case of unfavorable conditions,

indeed, a cell uses this phase to wait for more suitable circumstances to progress through

an irreversible point at the end of the G1 phase: the Start (in yeast) [76] or the restriction

point (in mammalian cells) [74,75]. After passing this point, cells enter the S phase. In

28



Automatic control of the yeast cell cycle

addition to this transition, there are other points in the cell cycle, called checkpoints, at

which the cell cycle can be arrested if the conditions are not ideal to progress towards the

cell cycle or if previous events have not been completed. First of all, the entry in mitosis

is prevented when DNA replication is not complete (DNA replication checkpoint), and

chromosome separation in mitosis is delayed if some chromosomes are not properly

attached to the mitotic spindle (spindle-attachment checkpoint). Moreover, progression

towards G1 and G2 is delayed in case of DNA damages to give the cell the time to repair

the DNA [74, 75].

The budding yeast Saccharomyces cerevisiae is the model organism most used to

study the cell cycle [75]. It is an oval cell that divides by forming a bud, which first

appears in the late G1 phase and grows to become the daughter cell at the end of the

mitosis when it separates from the mother cell. The advantages of using this organ-

ism as a model to study the cell cycle are that it reproduces quite rapidly (in about

80min [77]) and can be easily genetically manipulated by deleting, replacing, or al-

tering some genes [75]. Moreover, it is quite simple to identify a cell-cycle arrest by

observing the bud, particularly its presence - or absence - and its size [75].

The cell-cycle control system is mainly regulated by the oscillatory activity of a

family of proteins known as cyclin-dependent kinases (Cdks), which cyclically phos-

phorylate intracellular proteins that regulate major cell-cycle events. In budding yeast

cells, a single Cdk protein (Cdk1, previously known as Cdc28) exists [78]. The oscil-

lations in Cdk activity are controlled by a complex network of enzymes and proteins,

including the cyclins (from which Cdk takes its name) [78]. Indeed, the binding of a

cyclin to Cdk activates the phosphorylation activity of Cdk itself. Moreover, cyclins

direct Cdk to its specific target proteins, with the result that each cyclin-Cdk complex

phosphorylates a different set of proteins. Cyclins are classified based on the phase of

the cell cycle during which they bind Cdk: (i) G1-cyclins, i.e. the Cln3 protein in bud-

ding yeast [76], promote the passage through the Start (or restriction point) in late G1;

(ii) G1/S-cyclins, i.e. Cln1 and Cln2 in yeast [76], bind Cdk at the end of G1 preparing
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the cell for the DNA replication; (iii) S-cyclins, i.e. Clb5 and Clb6 in yeast, bind Cdk

during the S phase allowing the DNA replication; (iv) M-cyclins, i.e. Clb1, Clb2, Clb3

and Clb4 in yeast, promote the mitosis [74, 75].

To enable the oscillatory activation of Cdk, the cell-cycle control system depends

crucially on proteolysis that inactivates it, through a ubiquitin-dependent mechanism.

Two different ubiquitin ligases (enzymes that catalyse the ubiquitin-transfer reaction)

are important in the cyclin destruction and act in different cell-cycle stages: the SCF

complex that is responsible for the ubiquitylation during the G1 and S phase; and the

anaphase-promoting complex (APC) responsible for the proteolysis of the M-cyclins

regulating the spindle-attachment checkpoint [79, 80]. The APC complex activity is

stimulated by M-cyclins themselves. This means that it can be rapidly deactivated dur-

ing the G1 phase leading to a too fast M-cyclins accumulation, that does not allow the

cell growth during gap phases [81]. Thus, most cells employ several mechanisms to en-

sure that Cdk reactivation is prevented after mitosis. Specifically, Cdk inhibitor proteins

(CKIs) suppress the Cdk activity during the G1 phase. Budding yeast cells, particularly,

contain a CKI named Sic1, which binds to and inactivates the M-Cdk in late mito-

sis [81,82]. Meanwhile, the accumulation of G1 cyclins leads to an increase in G1-Cdk

activity allowing the progression towards the S phase. This complex mechanism is,

however, regulated at many levels. Particularly, the activity of a cyclin-Cdk complex

can be inhibited also by phosphorylation through a protein kinase known as Wee1, while

the phosphatase Cdc25 dephosphorylates the complex increasing Cdk activity [83, 84].

Specifically, this de/phosphorylation modulation is fundamental for the regulation of

the DNA replication checkpoint and in the activation of the M phase [83, 84].

A simplification of the cell-cycle control system is shown in Fig. 3.1 [85]. The

complex network previously described, indeed, can be summarised by considering the

interactions between the G1-cyclins, the M-cyclins, and the APC complex. This simpli-

fied version of the cell-cycle control system is formed by: (i) a PFL in the production of

G1 cyclins, which can induce their transcription; (ii) an IFFL that regulate the transcrip-
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Start genes
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Mitotic cyclins
Clb1,2

Start cyclins
Cln1,2

Cln3

Figure 3.1: Schematic of Cdk–APC/C cell cycle control system in budding yeast.
Adapted from [85]

tion of G1 cyclins through the G1 cyclins themselves and the M cyclins; (iii) two early

NFL involving the G1 cyclins, their genes, and the M cyclins; and (iv) a late NFL based

on the M cyclins and the APC complex that controls the exit from the cell cycle [85].

For most cells, the cell cycle is strictly coupled to cell size homeostasis. Indeed,

the duration of the cell cycle must match the time it takes for the cell to double in size:

if the cycle time is shorter than this, the cells will get smaller with each division; if it

is longer, the cell will get bigger after each division. However, the mechanisms that

steer this coupling are not completely understood. For a long time, it was assumed that

budding yeasts coordinate their growth and cell cycle by monitoring the total amount of

Cln3 [78, 86, 87]. Because Cln3 is synthesised in parallel with cell growth, its concen-

tration remains constant while its total amount increases as the cell grows [88, 89]. To

monitor the amount of Cln3, probably, cells have a fixed amount of Cln3 inhibitor that

can bind to Cln3 and block its activity. When the Cln3 amount exceeds the inhibitor

amount, the extra Cln3 triggers G1-Cdk activation. However, cells in which Cln3 was

deleted are still able to trigger cell division and to keep the coordination between cell

growth and division [90]. This suggests that other mechanisms are implicated in this

coupling enabling the robustness of the cell-cycle machinery. Although cell growth and

division are usually coordinated, they can be regulated independently: yeast cells can

grow even when cell-cycle progression is blocked by a mutation.

31



Automatic control of the yeast cell cycle

3.1.1 Biological methods to synchronise the cell-cycle

In some situations, a synchronised population (i.e. a population able to replicate in

a synchronised manner) is required. To this end, several experimental approaches to

synchronise cells have been proposed over more than 20 years of research [91–95].

They can be divided into two classes: physical selection or chemical induction. In the

first case, the strong interconnection between the cell-cycle phase and the cell size is

exploited. Indeed, with these methods, cells are separated according to their size and

then cells of the same size are grown together. In the case of chemical induction, instead,

cells are forced to start cycling from the same initial condition. Particularly, cells are

blocked in the same cell-cycle phase thanks to the presence, or absence, of one or more

chemicals in the growth medium and, then, released all together by changing the growth

medium. Moreover, different cell-cycle mutants are used. In this case, the mutants were

made to start in response to temperature shift or metabolite concentrations.

These approaches, however, can not synchronise cells for a long time. The syn-

chronisation is, indeed, lost in a few cycles [96], demonstrating the robustness of the

cell-cycle machinery. This desynchronisation is due to the coupling between cell size

and division. Accordingly, the asymmetry in size between mother (larger) and daughter

cells (smaller) is the main reason for the loss of synchronisation [97]. Indeed, cells need

to reach a critical volume before entering the cell cycle, thus limiting the duration of

synchronisation [72]. Moreover, when cells are grown in secondary carbon sources (e.g.

galactose), the cell cycle slows down thus enhancing the difference between mother and

daughter cells and causing desynchronisation after only one cycle [72].

Finally, continuous culture systems have also been proposed to keep the synchro-

nisation for longer. With this technique, cells are periodically starved to block cell

division and released by exposing them to nutrients. This approach presents numerous

drawbacks: it is stressful for the cells and not robust since the frequency and mag-

nitude of starvation pulses need to be known beforehand [92, 98]. To overcome this
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issue, a self-cycling fermenter was developed. In this fermenter, the dissolved oxygen

is measured and used to detect the nutrient depletion and trigger the removal of half the

fermenter content and its replacement with fresh medium [98]. Although this approach

allows the scale-up to larger cultures, it is stressful for the cells as it causes the periodic

exit from the exponential growth phase reaching the stationary phase and slowing down

the cell growth.

3.2 A yeast strain to control the cell-cycle

To tackle the synchronisation task, I made use of a budding yeast strain genetically en-

gineered to start the cell cycle upon the application of an external input, as schematised

in Fig. 3.2A. Specifically, I exploited a methionine-repressible system that allows cell

division upon removal of the amino acid methionine from the growth medium [99].

This strain, that we named non-cycling strain, was engineered by Rahi et al. [82].

As shown in Fig. 3.2B, in this strain, endogenous control of cell cycle initiation is dis-

rupted by deletion of the genes encoding for the G1 cyclins Cln1, Cln2, and Cln3 [100].

To enable the cell-cycle progression towards the S phase, an exogenous CLN2 is placed

downstream of the methionine-repressible promoter PMET3 to allow its inducible expres-

sion [99]. Therefore, cells are blocked in the G1 phase when grown in a methionine-rich

medium, as highlighted in Fig. 3.2C. Furthermore, remembering that yeast cells grow in

size mainly during the G1 phase, it is expected that cells grown methionine-rich medium

tend to become very huge, as confirmed by phase-contrast images in Fig. 3.2C. These

images, indeed, are representative of non-cycling strain behaviour: in methionine-rich

medium (upper line), cells do not replicate and continue to grow in size; in methionine-

poor medium (lower line), cells replicates and last in their physiological size.

To track the cell-cycle progression in time, a yellow fluorescent protein (YFP) was

placed downstream of the endogenous PCLN2 promoter. Following the expression of

the G1 cyclins, the YFP has an oscillatory expression peaking in the late G1 phase, as
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Figure 3.2: Non-cycling strain: a yeast strain to control the cell-cycle. (A). The
yeast strain was manipulated genetically to place Start, the point of irreversible com-
mitment to cell division (i.e., G1/S transition), under control of an exogenous input.
Particularly, in this strain cells can cycle only in the presence of the external input (as
highlighted by the dashed line). (B). The endogenous genes encoding for the G1 cycling
Cln1-3 are deleted and an exogenous G1 cycling gene CLN2 is placed under the con-
trol of the methionine-repressible promoter PMET3. A yellow fluorescent protein (YFP)
is expressed under the control of the endogenous PCLN2 promoter. (C). Representative
phase contrast images from two independent time-lapse experiments of cells grown in
methionine-rich medium (top) and methionine-depleted medium (bottom) at the indi-
cated time points. Scale bar, 5 µm. (D-F). YFP fluorescence intensity measured in three
representative cells grown in methionine-depleted medium.

shown in Fig. 3.2D-F, where an example of the YFP expression of three different cells

is plotted. Finally, a constitutively expressed histone Htb2-mCherry acts as a nuclear

fluorescence marker for facilitating image analysis.
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3.2.1 Cell-cycle phase estimation from fluorescent data

The cell-cycle phases of individual cells are not directly measurable but they have to

be estimated from fluorescent data. To this end, I implemented a custom algorithm,

available on GitHub (see Appendix B.4), based on the characteristics of the fluorescent

signal. Particularly, the cell-cycle phase ϑ ∈ [0,2π] was estimated by comparing the

single-cell CLN2-YFP trace with a periodic reference signal [73].

The periodic reference signal CLN2re f was constructed according to the expected

dynamical expression of the essential G1 cycling gene CLN2. Specifically, it is formed

by two part. The first part is used to describe the situation in which the cell is halted

in the G1 phase, which means that the cell has a flat fluorescence signal. The second

part, instead, models the oscillatory CLN2-YFP expression in a cell that is cycling, i.e.

when it is fed with the methionine-free medium. Therefore, the reference signal can be

written as follows:

CLN2re f (t) =


0 if kT ≤ t < kT +Tf lat

1
2 −

1
2 cos(2π

T0
t) if kT +Tf lat ≤ t < (k+1)T

, (3.1)

where T = T0 +Tf lat is the period of the reference signal Tf lat , set equal to the length

of the compared fluorescence signal, is a fake time interval in which the cell is assumed

to be halted in the G1 phase, and T0 = 75min is the nominal cell cycle period [85].

At each sampling time t, the measured fluorescence signal was cross-correlated

with the periodic reference signal by evaluating the Pearson’s correlation coefficient

r through the MATLAB function corr. Specifically, the last part of the measured fluo-

rescence signal of duration Tf lat = 30min, CLN2-YFP(t−Tf lat , t), was cross-correlated

with the periodic reference signal using a shifting time window in the interval [τ −

Tf lat ,τ], where τ ∈ [Tf lat ,T ]. The time point τ at which the correlation r assumed its

maximum value was used as time reference to estimate the cell-cycle phase ϑ̂ as fol-
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lows:

ϑ̂ =
2π

T0
(τ−Tf lat)+

π

2
. (3.2)

At the M/G1 transition, the cell-cycle phase was set ϑ̂ = 0, while the length of the

G1 phase was set to 25% of the nominal cell-cycle period [101].

The cell-cycle phase estimation enables to compute the Budding Index (B.I.), that

is the percentage of cells in budding phase (i.e. S-G2-M phases):

B.I.(t) =
NS-G2-M(t)

N(t)
100 , (3.3)

where N(t) is the total number of cells at time t and NS-G2-M(t) is the number of budded

cells at time t. The B.I. can be, in fact, used as a synchronisation measure: if the cells

were synchronized, they should simultaneously in the budded or unbudded phase. Thus,

in a synchronised population, the budding index should switch between 0% and 100%

in a periodic manner.

3.2.2 Experimental characterization of the non-cycling strain

I carried out an experimental characterisation of the non-cycling strain to check its

behaviour in nominal conditions: in methionine-rich and -depleted medium. To this

end, yeast cells from non-cycling strain were let to grow into the microfluidic device

delivering them either a medium enriched or depleted in methionine for 1000min. The

results of these experiments are shown in Fig. 3.3.

In a methionine-rich medium, cells grow in volume (Fig. 3.2C) but fail to divide

for at least 6h, as shown in Fig. 3.3A-C. Indeed, some cells were able to replicate after

this time, albeit very slowly, possibly because of the accumulation of CLN2 caused by

the promoter’s leakiness. Because of the stop in the G1 phase and the abnormal cellu-

lar growth, cells started to have not physiological shapes, size, and protein production,

making image segmentation and tracking (see Section 2.3.1) difficult and, then, failing
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Figure 3.3: Experimental characterisation of the non-cycling yeast strain. Yeast
cells were let to grow in the microfluidic device in methionine-rich (A-C) or -depleted
medium (D-H) for 1000min. (A, D) Distribution of the YFP fluorescence signals
measured across the cell population over time. Fluorescence values are binned into
4 colours, corresponding to the quartiles, for clarity of visualisation. (B, E) Time-series
of the mean YFP fluorescence signal measured across the cell population. (F) Single-
cell fluorescence traces over time. Each horizontal line corresponds to one cell. (G)
Time-series of the budding index (blue) signal. The red line denotes the expected value
of the budding index in the case of a totally desynchronised cell population. (C, H)
Growth medium delivered to the cells as a function of time. +MET: methionine-rich
medium, -MET: methionine-depleted medium.

in the fluorescence quantification and, consequently, in estimating cell-cycle phase. In-

deed, as shown in Fig. A.1, going on with the experiment, the nuclei became darker and

darker getting worse the segmentation.

In a methionine-depleted medium, instead, cells can cycle, exponentially increasing

their number over time (Fig. 3.3D), as shown also by representative phase-contrast im-

ages in Fig. 3.2C. Despite the cyclic expression of the YFP reporter in individual cells

(Fig. 3.2D, Fig. 3.3F), the YFP fluorescence intensity averaged across the population

shows a flat profile (Fig. 3.3E). This is because the individual oscillations in fluores-

cence were deleted when averaged. Indeed, the average of oscillatory signals, such as

those of single-cell fluorescence, is an oscillatory signal itself only if most of the oscilla-

37



Automatic control of the yeast cell cycle

tors are in phase and the amplitude of these oscillations are strictly correlated with how

many oscillators are in phase with each other. Finally, the desynchronisation is attested

also from the B.I. (Eq. 3.3)(Fig. 3.3G). As expected, as the average YFP fluorescence,

it shows a flat profile over time.

This experimental characterisation of the non-cycling strain thus confirmed that it

behaves as originally described [82].

3.3 Dynamical model of yeast cell-cycle

The molecular machinery of eukaryotic cell-cycle control is known in more detail for

budding yeast S. cerevisiae than for any other organism. Hundreds of models have

been published with always increasing complexity. Indeed, while early models (and

a few more recent ones) were mainly based on a small number of ordinary differ-

ential equations relating a few time-dependent variables to each other and to a few

time-independent kinetic parameters [102, 103], the last models consist of dozens of

variables and regulatory processes [104]. These models are built by using different ap-

proaches: ordinary differential equations (ODE) modelling [102–106]; boolean mod-

elling [106–108]; and stochastic modelling [109, 110]. The ODE-based one is what

most researchers have focused on since it gets at the basic solution of cell-cycle regu-

lation biochemistry. An almost complete model of yeast cell-cycle, born from the col-

laboration of three research groups and able to explain most of the possible cell-cycle

mutants, is presented on Prof. Tyson’s website [111].

Since the abundance of details of these models, they are too complex for the aims of

this Thesis. Therefore, we explored the phase reduction method [112,113], as explained

in [55, 73, 114, 115]. Briefly, as schematised in Fig. 3.4, the cell cycle was modelled as

a phase oscillator, which can be depicted as a clock with a single moving arm whose

position indicates the phase of the cell and whose length is proportional to the cell

volume. Specifically, we derived a deterministic agent-based mathematical model. In
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θG1/S

θ
V

G 1

S - G2 - M

Figure 3.4: Graphical representation of the mathematical model of the non-cycling
strain. A cycling cell can be represented as circle, where the cell-cycle phase ϑ cor-
responds to the angle between the red line and the dashed blue line. The length of the
dashed blue line represents the cell volume. The yellow shaded sector corresponds to
the G1 phase, while the green shaded sector corresponds to the S–G2–M phases. The
cell cycle phase evolves counter-clockwise.

this agent-based model, each agent represents a cell in the population. The model of

a single agent i is based on a set of two ordinary differential equations (ODEs), that

describe the dynamics of the cell cycle phase ϑi and cell volume Vi in the i-th cell:

ϑ̇i =


0 if 0≤V <VC

f (ϑ)+ z(ϑ)u if V ≥VC

, (3.4)

V̇i = g(ϑi) , (3.5)

where θi ∈ S1 is the 2π-periodic cell cycle phase on the unit circle, Vi ∈ R>0 is the

cell volume, Vc ∈ R>0 is the critical volume, and u ∈ {0,1} is the external trigger in-

put, where u = 1 corresponds to methionine-depleted (-MET) medium and u = 0 to

methionine-supplemented medium (+MET). The critical volume defines the minimum

volume required to start the cell-cycle, and it is also used to discern between mother

(Vi ≥Vc) and daughter (0≤Vi <Vc) cells. The switching function f : R>0→ S models

the phase oscillator dynamics taking into account that the cell will stop in the G1 phase
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as long as methionine is present in the medium:

f (ϑ) =


0 if 0≤ ϑ < ϑG1/S

ω if ϑG1/S ≤ ϑ < 2π

, (3.6)

where ω = 2π

T ∈ R+ is the angular velocity depending from the cell cycle period T ∈

R>0. The phase-dependent switching function g : S → R+ defines the cell volume

growth rate. To simplify the model, we assumed that volume growth in the mother cell

occurs only during the G1 phase, whereas the bud grows in volume only during the

S-G2-M phases [90]:

g(ϑ) =


β V if 0≤ ϑ < ϑG1/S

0 if ϑG1/S ≤ ϑ < 2π

, (3.7)

where β ∈R>0 is the volume growth rate, and ϑG1/S is the cell cycle phase value at the

G1 to S transition. Finally, we used the following phase response curve z : S1→ R+ to

model the effect of the control input on the cell cycle phase evolution:

z(ϑ) =


ωz if 0≤ ϑ < ϑG1/S

0 if ϑG1/S ≤ ϑ < 2π

, (3.8)

where ωz ∈R+ is the angular velocity added to the cell cycle phase dynamics when the

cell is fed with methionine-free medium.

To simulate a growing population of yeast cells, the agent-based model also con-

siders cell division events. Indeed, when a cell passes through the M to G1 transition

(i.e., ϑM/G1 = 2π) then a new cell (i.e., a new agent) is added to the model. The initial

condition of the daughter cell depends on the state of the mother cell. Specifically, the
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initial condition is set to

ϑ0 = 0 , (3.9)

V0 = γ VM/G1 . (3.10)

where VM/G1 is the volume of the mother cell at the division time (i.e., at the M/G1 tran-

sition) and γ is a constant parameter depicting the linear relationship between the size

of the mother cell at the division and the size of the newborn daughter cell. Therefore,

the number of cells in the agent-based model is an increasing value.

We took the nominal values used to simulate the agent-based model from the liter-

ature and are: Vc = 1 (critical volume), β = 0.0083min−1 (volume growth rate) [90],

T = 75min (nominal cell cycle period) [85], ωz =
π

T (angular velocity in methionine-

free medium), ϑG1/S =
π

2 (phase value at G1/S transition) [101], and γ = 0.61 [90].

3.4 Open-loop control

Inspired by the work of Charvin et al. [90], I applied an open-loop control strategy to

synchronise a population of the non-cycling yeast strain. To this end, the expression

of CLN2 was periodically induced through methionine starvation (-MET) pulses whose

period (Tu) and duration (D−Met) have been changed to explore different situations.

Specifically, I varied Tu between 60min and 150min, while D−Met was set to 20 or

30min.

Firstly, I stimulated cells in the microfluidic device at their nominal cell cycle pe-

riod (75min) with a stimulus duration equal to 30min. Experimental results, shown

in Fig. 3.5A-E, demonstrate that this strategy is effective to synchronise the cell cycle.

Indeed, the fluorescence intensities of cells over time, in Fig. 3.5A, show a clear vertical

pattern, indicating that cells are mostly in the same cell cycle phase; additionally, the

number of cells increases in a stepwise fashion, rather than exponentially, as most of the
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Figure 3.5: Open-loop control of non-cycling strain. Experimental validation of the
open-loop control of non-cycling yeast strain cells with four different period-duration
combination: Tu = 75min, D−Met = 30min (A-E); Tu = 75min, D−Met = 20min (F-J);
Tu = 60min, D−Met = 30min (K-O); Tu = 150min, D−Met = 30min (P-T). (A, F, K, P)
Distribution of the YFP fluorescence signals measured across the cell population over
time. Fluorescence values are binned into 4 colours, corresponding to the quartiles, for
clarity of visualisation. (B, G, L, Q) Time-series of the mean YFP fluorescence signal
measured across the cell population. (C, H, M, R) Single-cell fluorescence traces over
time. Each horizontal line corresponds to one cell. (D, I, N, S) Time-series of the
budding index (blue) signal. The red line denotes the expected value of the budding
index in the case of a totally desynchronised cell population. (E, J, O, T) Growth
medium delivered to the cells as a function of time. +MET: methionine-rich medium,
-MET: methionine-depleted medium.
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cells bud together. Furthermore, the population-averaged YFP fluorescence intensity

(Fig. 3.5B) displays an oscillatory behaviour, as cells become synchronised. A similar

result was obtained by computing the budding index (Fig. 3.5D) from single-cell traces

(Fig. 3.5C). However, just a shorter stimulation period (Tu = 60min) (Fig. 3.5K-O) or a

shorter pulse duration (D−Met = 20min) (Fig. 3.5F-J) causes a decrease in synchronisa-

tion. Indeed, in the first case (D−Met = 30min and Tu = 60min), cells’ synchronisation

is less effective as highlighted by the smaller oscillations in both population-averaged

YFP fluorescence and B.I.. In the second case (D−Met = 20min and Tu = 75min), in-

stead, the synchronisation takes considerably longer (700min) as compared to longer

pulses (D−Met = 30min and Tu = 75min). Note that, in this experiment, fluorescence

values are much higher than in all the others. This is because this experiment was per-

formed starting from cells in a plate and not from frozen cells (see Section B.2.4). This

could be also the reason for the delay in the entrainment between the cell cycle and the

external input, which starts at the fourth pulse to become effective at 700min.

Finally, since this strain is halted in the G1 phase in the absence of the external trig-

ger, waiting for a longer time allows achieving a stronger synchronisation, as demon-

strated by administering an input with Tu = 150min with D−Met = 30min (Fig. 3.5P-T).

However, the cost of this higher degree of synchronisation is the excessive growth in

cell size.

3.5 Feedback control: the stop&go strategy

To overcome the drawbacks of open-loop control (e.g. the need to know beforehand

the period and duration of stimulation), I implemented a control strategy based on the

closed feedback loop paradigm. As illustrated in Fig. 3.6A, closed-loop feedback con-

trol relies on a sense and react paradigm, adapting the input to deliver in response to

real-time measurements of the quantity to regulate. Specifically, yeast cells from a

non-cycling strain population are grown in the microfluidics device while a microscope
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Figure 3.6: Automatic feedback control of the non-cycling strain: the stop&go
strategy. (A) Automatic feedback control enables the synchronisation of the cell-cycle
across a non-cycling strain population. (B) Schematisation of the stop&go strategy.
The controller waits for cells to stop in the G1 phase and then restarts their cell cycle by
removing methionine from the medium. (C-F) Numerical simulation of the stop&go
control strategy. (G-K) Experimental implementation of the stop&go control strategy.
An initial calibration phase of 30min was required to set up the phase estimation algo-
rithm. Dashed lines indicate the start and the end of the control experiment, after which
cells are grown in methionine-rich medium. (C, G) Distribution of the YFP fluores-
cence signals measured across the cell population over time. Fluorescence values are
binned into 4 colours, corresponding to the quartiles, for clarity of visualisation. (D, H)
Time-series of the mean YFP fluorescence signal measured across the cell population.
(I) Single-cell fluorescence traces over time. Each horizontal line corresponds to one
cell. (E, J) Time-series of the budding index (blue) signal. The red line denotes the
expected value of the budding index in the case of a totally desynchronised cell pop-
ulation. (F, K) Growth medium delivered to the cells as a function of time. +MET:
methionine-rich medium, -MET: methionine-depleted medium.

acquires in real-time phase contrast and fluorescence images. A control algorithm, im-

plemented in a computer, estimates the cell-cycle phase of each cell from fluorescent
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data and decides the duration and the timing of the methionine starvation pulses to

achieve the control objective (e.g. synchronisation of cell cycle across cells). Finally, a

pair of syringes (Section 2.2) delivers the control input to the cells.

To design a closed-loop feedback control strategy to synchronise the cell cycle

across the non-cycling yeast cells, I exploited the characteristics of this strain of be-

ing blocked in the G1 phase in methionine-rich medium (+MET) and to cycle upon its

depletion (−MET). Specifically, at each sampling time the controller, which we named

stop&go, evaluates the percentage of cells in the G1 phase. If this percentage is higher

than a fixed threshold, then the controller delivers an exogenous pulse of −MET of

duration D−Met = 30min, thus enabling the cell cycle to start in all G1 phase cells, as

depicted in Fig. 3.6B. The threshold value has to be chosen as a trade-off between the

synchronisation level to achieve and the constrain on the cell growth.

To test the feasibility of the stop&go control strategy in achieving the synchronisa-

tion task, we used the dynamical model presented in Section 3.3 to carry out a numerical

simulation with a threshold value set to 50%, whose results are shown in Fig. 3.6C-F.

We performed the simulation starting with an initial population of N0 = 3 homogeneous

cells. The initial phases ϑi,0 of individual cells were uniformly spaced in the interval

[0,2π[, while the initial volumes Vi,0 were set equal to the critical volume Vc, that is

all the initial cells are assumed to be mother cells. The agent-based system was solved

using the MATLAB ode15s solver. The total simulation lasts t f = 800 min. Since we

considered the same numerical parameters for each cell agent, the cell-to-cell variability

across the cell population inherently arose from the cell division events. To mimic the

dynamical behaviour of the experimental output, we transformed the single-cell phases

ϑi in a fluorescent signal according to the CLN2re f signal in Eq. 3.1. The code used to

perform this simulation, developed by Giansimone Perrino, is available on GitHub (see

Appendix B.4). Numerical results show that the stop&go controller can in principle

synchronise the cell cycle across a population of cells, without any prior knowledge of

the cell cycle duration and growth conditions. As expected for a synchronised popula-
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tion, the simulated fluorescence signal in individual cells over time in Fig. 3.6C presents

a clear vertical pattern and a step-wise increase in cell number. Equally, the population-

averaged YFP fluorescence intensity in Fig. 3.6D and the B.I. in Fig. 3.6E present an

oscillatory behaviour.

Encouraged by the numerical results, I performed a series of microfluidic exper-

iments implementing the stop&go feedback control strategy with a threshold set to

50%. Specifically, cells were grown overnight in a methionine-depleted medium and

thus were desynchronised at the beginning of the experiment. Moreover, an initial cali-

bration phase of 30min was required to set up the phase estimation algorithm; after that,

the stop&go controller was activated for 500min and then deactivated. The closed-loop

stop&go control strategy was able to automatically synchronise the cell population as

corroborated by the vertical pattern arising at both population (Fig. 3.6G; Fig. A.2A,F)

and single-cell traces (Fig. 3.6I; Fig. A.2C,H) and by the step-wise population growth

(Fig. 3.6G; Fig. A.2A,F). The synchronisation is also confirmed by the oscillating be-

haviour of the population-averaged YFP fluorescence (Fig. 3.6H; Fig. A.2B,G) and

B.I. (Fig. 3.6J; Fig. A.2D,I) signals. Moreover, they also show how the synchroniza-

tion is lost in one cell cycle when the controller is deactivated, in both methionine-rich

(Fig. 3.6G-K; Fig. A.2F-J) and methionine-depleted (Fig. A.2A-E) conditions. Inter-

estingly, when cells are left in a methionine-depleted medium, the cell number remains

constant (Fig. A.2A) at a value dependent on the chamber size. Instead, when cells are

left in the methionine-rich medium the cell number decrease (Fig. 3.6G; Fig. A.2F).

This is because the cells are halted in the G1 phase and continue to grow in volume

throwing some of the cells out of the chamber.

The codes used to control the platform and to perform the feedback control experi-

ments are available on GitHub (see Appendix B.4).
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3.6 Robustness of stop&go control in perturbed condi-

tions

One of the main advantages of the closed-loop feedback control strategy is that it can

steer systems behaviour with robustness to perturbations and uncertainties. With the

open-loop control, indeed, one needs to know beforehand the period and the duration

of pulsatile input; however, changes in carbon source, temperature, or any other per-

turbation that alters the metabolic rate of the cell, will cause changes to the cell cycle

duration, so that the chosen open-loop control input may no longer able to synchronise

the cell population. To demonstrate the robustness of the simple stop&go control strat-

egy, I performed a series of experiments perturbing cells by changing either the growth

temperature or the carbon source.

When the cell growth temperature was set to 27◦C, cells slightly slow down their

cell cycle period [116]. In this condition (Fig. 3.7), the closed-loop controller was still

able to synchronise the cell population (Fig. 3.7F-J) with a similar performance as in

the unperturbed case. Instead, the open-loop control (D−Met = 30min and Tu = 75min)

(Fig. 3.7A-E), although able to achieve synchronisation across the population, exhibits

worse performances compared with the correspondent open-loop in nominal conditions

(T = 30◦C, D−Met = 30min and Tu = 75min) (Fig. 3.5A-E), as attested by the smaller

oscillation in both population-averaged YFP fluorescence (Fig. 3.7B vs. Fig. 3.5B)

and in B.I. (Fig. 3.7D vs. Fig. 3.5D). Moreover, in temperature-perturbed condition,

the open-loop controller needed more time to reach a stable synchronisation: while in

nominal condition, it is achieved since the third input pulse; in perturbed condition,

cells are stably synchronised and entrained with the external input only after the fifth

pulse.

Next, I applied a stronger perturbation, growing cells in galactose (Fig. 3.8), which

is known to slow down the cell cycle [117]. Particularly, cells were grown overnight in

nominal condition, i.e. glucose (@2%w/v), and then switched in galactose (@2%w/v)
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Figure 3.7: Stop&go control is robust to temperature perturbation. Temperature
was set to 27◦C, rather than the nominal 30◦C, to assess the robustness of the open-loop
(A-E) and closed-loop control (F-J) strategies in perturbed environmental conditions.
(A, F) Distribution of the YFP fluorescence signals measured across the cell population
over time. Fluorescence values are binned into 4 colours, corresponding to the quartiles,
for clarity of visualisation. (B, G) Time-series of the mean YFP fluorescence signal
measured across the cell population. (C, H) Single-cell fluorescence traces over time.
Each horizontal line corresponds to one cell. (D, I) Time-series of the budding index
(blue) signal. The red line denotes the expected value of the budding index in the case of
a totally desynchronised cell population. (E, J) Growth medium delivered to the cells
as a function of time. +MET: methionine-rich medium, -MET: methionine-depleted
medium.

when loaded into the microfluidic device. In these conditions, the open-loop control

(Fig. 3.8A-E) completely fails to achieve the synchronisation task; while the stop&go

control (Fig. 3.8F-J) is still able to synchronise the population with comparable perfor-

mances to the case of nominal conditions (Fig. 3.6G-K). Interestingly, cells grown in

galactose failed to cycle for the first 300min. This is in line with the results Nguyen-

Huu et al. [117], who demonstrate that this delay is due to the diauxic shift.

Finally, the extent of synchronisation was quantified for each experiment and re-

ported in Fig. 3.9. Specifically, I measured two different indices: (i) the time-average of

the mean phase coherence (R); and (ii) the time-average of the mean cell radius. Both

of them are computed between 330 and 530min (the last 200min of controller function-
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Figure 3.8: Stop&go control is robust to carbon source perturbation. Cells were
grown in galactose (@2%w/v), rather than in glucose (@2%w/v), to assess the ro-
bustness of the open-loop (A-E) and closed-loop control (F-J) strategies in perturbed
environmental conditions. (A, F) Distribution of the YFP fluorescence signals measured
across the cell population over time. Fluorescence values are binned into 4 colours,
corresponding to the quartiles, for clarity of visualisation. (B, G) Time-series of the
mean YFP fluorescence signal measured across the cell population. (C, H) Single-cell
fluorescence traces over time. Each horizontal line corresponds to one cell. (D, I) Time-
series of the budding index (blue) signal. The red line denotes the expected value of the
budding index in the case of a totally desynchronised cell population. (E, J) Growth
medium delivered to the cells as a function of time. +MET: methionine-rich medium,
-MET: methionine-depleted medium.

ing). The mean phase coherence R ∈ [0,1] is defined as the magnitude of the Kuramoto

order parameter [112]:

R(t) =

∣∣∣∣∣ 1
N(t)

N(t)

∑
i=1

e jϑi(t)

∣∣∣∣∣ , (3.11)

where N(t) is the time-varying number of cells, while ϑi is the phase of the i-th cell,

both evaluated at time t. When R is equal to 1, all cells are synchronised. Conversely,

when R is equal to 0, cells are desynchronised. The time-average of the mean cell ra-

dius, estimated as explained in Section 2.3.1, was evaluated to consider that a perfect

synchronisation can be achieved waiting enough time but at the cost of excessive vol-

ume growth. This quantitative analysis (Fig. 3.9) confirmed that the closed-loop feed-
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Figure 3.9: Quantification of cell cycle synchronisation and cell size (A) Time-
average of the mean phase coherence R for all the experiments performed. The time-
average was computed between 330 and 530min. (B) Time-average of the mean cell
radius. T: temperature shifted to 27◦C. G: cells grown in Galactose. *: not reliable,
because of the difficulties in image analysis and phase estimation in +MET experiment.

back strategy, even if very simple, is more effective in achieving the synchronisation

keeping the cell volume in physiological conditions, particularly in the face of new and

unexpected environmental perturbations. Note that the synchronisation index for the

uncontrolled experiment performed in presence of methionine is higher than expected

(even higher than some open-loop control experiments). This is because the phase es-

timation algorithm failed for the bad conditions of these cells. This is confirmed by

looking at the population-averaged YFP fluorescence in Fig. 3.3B, which exhibits a flat

profile.

The codes to perform the quantitative analysis here described are available on GitHub

(see Appendix B.4).
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Chapter 4

Quantitative characterization and

modelling of the nuclear shuttling

dynamics of the Transcription Factor

EB (TFEB).

In this Chapter, I will describe how microfluidics can be used to investigate and model

the dynamics of regulatory and signalling networks in the cell by presenting the mTOR

pathway as a study case. mTOR signalling is one of the most studied pathways in mam-

malian cells as it is involved in cell metabolism, growth, proliferation, and survival in

the presence of nutrients. It involves a large number of proteins and organelles through

both protein-protein interactions and transcriptional regulation. Despite the importance

of this pathway in cellular homeostasis, very little is known about its dynamics. By

means of a microfluidic-based experimental platform to grow and probe mammalian

cells, I have quantitatively measured the nuclear shuttling dynamics of the transcrip-

tion factor (TFEB), whose nuclear localisation is controlled by the mTOR complex 1

(mTORC1) activity in single-cells. The observed dynamics are very complex and I put

forward a set of possible mechanisms controlling this behaviour.
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The experiments and the model presented in this Chapter were designed and im-

plemented in collaboration with Iacopo Ruolo, a Ph.D. student of XXXV cycle of the

Ph.D. program in Industrial Product and Process Engineering.

4.1 TFEB and the mTOR pathway

Cell metabolism is controlled by complex networks of genes, proteins, and metabolites

that sense the cellular environment and regulate the appropriate responses. The mam-

malian target of rapamycin (mTOR) lies at the heart of many major signalling pathways

and plays a key role as a central regulator of cell metabolism, growth, proliferation, and

survival [118–120]. The mTOR pathway integrates both intra- and extracellular signals

about the availability of energy and nutrients to coordinate the synthesis or breakdown

of new cellular components. Since this pathway is deregulated in a number of common

human diseases, such as cancer, obesity, and type 2 diabetes [120], studies about mTOR

mechanisms of action are attracting an increasing number of scientists and the mTOR

inhibitors are being investigated in a growing number of pathological settings, first of

all for treatment of solid tumors [121].

Among others, mTOR regulates autophagy, which is a self-degradative process im-

portant for organelle degradation and protein turnover. During nutrient deficiency, au-

tophagy is used by the cell to recycle cytoplasmic components, damaged proteins, and

entire organelles to provide biological material to sustain anabolic processes [119].

The mTOR pathway

The mTOR protein is a 289kDa serine-threonine kinase that belongs to the phospho-

inositide 3-kinase (PI3K)-related kinase family. The mTOR domain structure, shown in

Fig. 4.1A, consists of six functional areas: (i) the HEAT motifs, involved in protein-

protein interaction; (ii) the focal adhesion targeting (FAT) domain and (iii) the C-

terminal focal adhesion targeting (FATC) domain, needed to form a spatial structure
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Figure 4.1: The mTOR pathway. (A) Schematic structure of the mTOR protein. (B)
A simplified version of the mTOR pathway. Adapted from [122]

which can expose the mTOR catalytic domain; (iv) the FKBP12 rapamycin binding

(FRB) domain; (v) the kinase (KIN) domain, that is the mTOR’s catalytic domain

where ATP and the substrates to be phosphorylated bind; and (vi) the NRD domain,

contained in the KIN domain [120]. In mammals, it constitutes the catalytic subunit of

two distinct complexes known as mTOR complex 1 (mTORC1) and mTORC2. They
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are distinguished from each other by the other proteins that form the complexes and

by their unique substrates and functions. Particularly, mTORC1 primarily controls cell

growth and proliferation by promoting biosynthesis of proteins, lipids, and organelles,

and by limiting autophagy. Instead, mTORC2 participates in the control of cell survival

and proliferation [118, 120].

While little is known about mTORC2 signalling, mTORC1 activity is toggled by

the cell in response to nutrient oscillation and it is switched on when energy, growth

factors, and macromolecular building blocks - amino acids and nucleotides - are plen-

tiful [118–120]. To monitor and respond to these stimuli, a mTORC1 recruitment com-

plex and a mTORC1 activator colocalise acting as an "AND" gate, so that the mTORC1

can only be activated when it is recruited on the lysosomal surface where it interacts

with its activator [119]. The input of the first side of the AND gate are growth factors

and cellular stress signals that activate the small GTPase Rheb (RAS homologous en-

riched in the brain) which directly stimulates mTOR kinase activity when it is bound to

GTP [123]. Instead, the other side of the AND gate is regulated by nutrients through

the heterodimeric Rag GTPases that localise mTORC1 on the lysosomal membrane

allowing its interaction with Rheb (Fig. 4.1B) [124, 125].

The main Rheb regulator is the tuberous sclerosis complex (TSC), which is a het-

erodimer that comprises TSC1 and TSC2. It acts as a GTPase-activating protein (GAP)

for Rheb and therefore serves as a negative regulator of mTORC1 signalling [126].

Several patterns converge on TSC. Upon insulin stimulation, insulin and/or insulin-like

growth factor-1 (IGF-1) stimulate PI3K signalling, which, through mTORC2, recruits

and activates AKT that phosphorylates at multiple sites to dissociate TSC from the lyso-

somal surface and relieve inhibition of Rheb and mTORC1 [127]. To tune the extent

and duration of mTORC1 activation and restore TSC regulation after this stimulus, the

mTORC1 substrate S6K1 directly phosphorylates insulin receptor substrate 1 (IRS-1)

as part of a negative feedback loop, blocking further insulin-mediated activation of the

PI3K–Akt pathway [128]. In addition, TSC is subject to inhibitory phosphorylation
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from ERK, a downstream substrate of the Ras receptor tyrosine kinase signalling path-

way [129]. Because mutations that activate the Ras and PI3K–Akt pathways occur in

many cancers, TSC regulation of mTORC1 is often lost in oncogenic contexts, resulting

in constitutive mTORC1 activity even in the absence of appropriate growth factor sig-

nals [120]. The TSC axis is activated also under other kinds of stress conditions. Under

energetic stress, the cell can consume the ATP storage, triggering the AMP-activated

protein kinase (AMPK) complex that inhibits mTORC1 both indirectly, by activating

the TSC axis, and directly, by phosphorylating Raptor, one of the main component

of mTORC1 [130, 131]. Finally, also hypoxia can activate the TCS complex through

REDD1 (regulated in development and DNA damage responses 1), a small protein with

a very short half-life [132, 133].

The other components of the AND gate in mTORC1 regulation are the RAGs. They

are obligate heterodimers, configured such that RagA or RagB is bound to RagC or

RagD. Recruitment of mTORC1 to the lysosomal surface depends on the Rag nucleotide-

loading state, which is tightly regulated by numerous mechanisms, including interac-

tions within the Rag heterodimers themselves [134]. Particularly, the Rags can be found

in one of two stable conformations: an "on" state, in which RagA/B is bound to GTP

and RagC/D to GDP; and an "off" state, in which the reverse is true. These stable

nucleotide-loading states are maintained by intersubunit crosstalk between the Rags,

but they can be modulated by the amino acid and nutrient status through a series of

upstream factors [120]. First of all, Ragulator, a pentameric complex containing Lam-

tor1–Lamtor5, affects the nucleotide loading of RagC or RagD through a noncanonical

guanine nucleotide exchange factor (GEF) mechanism, in which GTP release is accel-

erated. Moreover, Ragulator anchors the Rags on the lysosome surface [135]. Another

complex acting on the Rags is GAP activity towards the Rags (GATOR1). When cy-

tosolic amino acid levels fall, GATOR1 hydrolyses the GTP bound to RagA/B and

inhibits the mTORC1 pathway [136]. In turn, GATOR1 is itself regulated by other up-

stream factors. Among them, the large KICSTOR complex localise GATOR1 on the
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lysosome and is required for cellular sensitivity to amino acid deprivation [137]. Two

additional complexes regulate the Rags. The first is the folliculin complex (FLCN with

FNIP1 or FNIP2) that has GAP activity for RagC and/or RagD. Amino acids regulate

the localization of the Folliculin complex to the lysosome [138]. The second is an argi-

nine sensor, SLC38A9, that monitors amino acid levels inside the lysosomal lumen and

defines the lysosomal branch of the nutrient-sensing machinery. SLC38A9 resides on

the lysosomal membrane and transports neutral amino acids out of the organelle in an

arginine-gated fashion. This efflux activity may enable the products of autophagic pro-

tein degradation to reactivate the mTORC1 pathway after prolonged starvation. Specif-

ically, lysosomal arginine frees the N terminus domain of SLC38A9 that collaborates

with Ragulator to push the Rags into the active state activating mTORC1 [139].

In response to these signals, mTORC1 phosphorylates its substrates to balance cel-

lular resources by regulating the protein production and autophagic breakdown of cel-

lular components. Specifically, in full growth condition, mTORC1 promotes protein

synthesis by phosphorylating the eukaryotic initiation factor 4E-binding proteins (4E-

BPs) and p70 S6 kinase 1 (S6K1) [140]. In its unphosphorylated state, 4E-BP1 sup-

presses translation by binding and sequestering eukaryotic translation initiation factor

4E (eIF4E), an essential component of the eIF4F cap-binding complex. Upon phospho-

rylation by mTORC1, 4E-BP1 releases eIF4E and enhances 5′ cap-dependent transla-

tion of mRNAs. At the same time, mTORC1 phosphorylates S6K1 which subsequently

phosphorylates the ribosomal protein S6, a component of the 40S subunit. More di-

rectly, S6K1 and mTORC1 upregulate transcription of rRNA, the dominant component

of newly-assembled ribosomes [141]. On the other hand, mTORC1 controls the au-

tophagic flux through the inhibition by direct phosphorylation of proteins required for

the initiation of autophagosome formation such as Unc-51 like autophagy activating ki-

nase (ULK) 1 and ULK2, and ATG13 [142], and of the Transcription Factor EB (TFEB)

and the related transcription factor E3 (TFE3), master regulators of a transcriptional pro-

gram promoting lysosomal biogenesis and autophagic flux. Therefore, when mTORC1
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Figure 4.2: TFEB activation in response to stress. Under normal fed conditions,
TFEB is phosphorylated by mTORC1 and is sequestered in the cytoplasm through
binding with 14-3-3. In stress conditions, TFEB is dephosphorylated by calcineurin
and can freely translocate to the nucleus where it transcriptionally activates the lysoso-
mal/autophagic pathway. From [145]

is inhibited by nutrient deprivation, autophagosome initiation is restored and TFEB and

TFE3 translocate to the nucleus to active their transcriptiona programs [143, 144].

TFEB regulation

The activity of TFEB is strictly regulated through post-translational modifications, protein-

protein interactions, and spatial organization, as shown in Fig. 4.2. In resting cells,

under nutrient-rich conditions, TFEB is directly phosphorylated by mTORC1 and lo-

calised in the cytoplasm and thus inactive. Upon starvation or under conditions of

lysosomal dysfunction, TFEB rapidly translocates into the nucleus and activates the

transcription of its target genes.

TFEB localisation and, consequently, its activity are regulated via protein phos-

phorylation. Despite the presence of at least ten different phosphorylation sites [146],

three of them have been found to be essential for TFEB localisation. Serine residues

S142 and S138 are located adjacent to the TFEB nuclear export signal (NES) and are,

then, implicated in TFEB nuclear export, probably by regulating the access of the ex-
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portin chromosomal maintenance 1 (CRM1) to the hydrophobic export signal, or by

affecting the retention of TFEB to a nuclear anchor [122, 147]. Instead, S211 serves

as a recognition site for TFEB binding to the chaperon 14–3–3 and cytosolic retention,

probably by masking its nuclear localization signal (NLS). Nutrient availability regu-

lates TFEB nucleo-cytoplasmic shuttling through hierarchical phosphorylation of these

serine residues mainly by mTORC1 [147]. This mechanism ensures that only a fully

phosphorylated TFEB is completely cytosolic and inactive, indicating that nutrient lev-

els finely control TFEB subcellular localization via modulation of its shuttling kinetics.

mTORC1 and extracellular signal-regulated kinase 2 (ERK2, also known as MAPK1)

are the main protein kinases known to phosphorylate TFEB under nutrient-rich condi-

tions in most cell types. Despite S142 is a site for both ERK- and mTOR-mediated phos-

phorylation, whereas S138 has been proposed as a GSK3β -phosphorylated site [122],

it has been shown that phosphorylation on both S142 and S138 entirely depends on

mTOR activity [147], suggesting that mTOR-mediated phosphorylation is the predomi-

nant mechanism regulating TFEB subcellular localization. Indeed, the phosphorylation

of TFEB is strictly dependent on the amino acid-mediated activation of Rags but is

insensitive to Rheb activity induced by growth factors [148, 149].

In response to amino acid limitation, mTORC1 is released from the lysosomal mem-

brane and becomes inactive preventing de novo phosphorylation of TFEB (Fig. 4.2.).

Interestingly, nutrient deprivation concomitantly induces the release of lysosomal Ca2+

through the Ca2+ channel mucolipin 1 (MCOLN1); this activates the phosphatase cal-

cineurin, which in turn dephosphorylates TFEB and promotes its nuclear translocation

(Fig. 4.2) [145].

TFEB has been shown to directly bind to DNA regulatory sites named "coordi-

nated lysosomal expression and regulation" (CLEAR) motifis, thereby promoting the

expression of a set of genes that contains the CLEAR regulatory motif in their proxi-

mal promoter. Consistent with its role as a modulator of the CLEAR network genes,

TFEB positively regulates the expression of lysosomal genes and induces an increase
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in the number of lysosomes, thus promoting the ability of cells to degrade lysosomal

substrates [150]. Moreover, TFEB orchestrates the expression of a other genes partici-

pating to increase lysosomal exocytosis and the autophagic flux [151, 152].

By modulating the processes of lysosomal biogenesis, autophagy, and lysosomal ex-

ocytosis, TFEB coordinates a transcriptional program able to control the main cellular

degradative pathways and to promote intracellular clearance. Intriguingly, many factors

that regulate TFEB activity (i.e. the Ca2+ channel MCOLN1, the lysosomal ‘platform’

itself, and RagD) are themselves transcriptionally regulated by TFEB, providing evi-

dence that lysosomal adaptation to environmental changes is a self-sustaining response

that is regulated by multiple feedback loops [148, 153]. In addition, TFEB activation

also promotes its own transcription, which represents an additional feedback loop that

further sustains lysosomal signalling and function [153].

In addition to promoting lysosome biogenesis in response to amino acid limitation,

TFEB can also enhance the integrated stress response (ISR) and acts as a nexus for nu-

trient sensing and resolution of any supply-demand disequilibrium. Indeed, amino acid

starvation leads to repression of cap-dependent translation through the ISR pathway,

thus decreasing global protein synthesis in the cell. However, as a transcription factor,

to regulate the autophagic flux, TFEB requires protein synthesis, thus conflicting with

the repression of general translation. To this end, TFEB fine-tunes protein synthesis

during starvation by transcriptionally regulating GADD34 allowing translation of the

starvation-induced transcriptional program to occur [154].

4.2 Pharmacological mTOR inhibition

Since the mTOR pathway is deregulated in many pathological conditions, including

cancer and neurodegeneative disease, several pharmacological inhibitors of its activity

are being developed. The chemical inhibitors of mTOR can be divided into three gen-

erations [156]: the first generation, also known as allosteric inhibitors, is formed by
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Figure 4.3: mTOR inhibitors. Adapted from [155]

naturally occuring compounds such as Rapamycin and other rapalogs; the second gen-

eration, known as ATP-competitive inhibitors, consists of synthetic small molecules that

targets the catalytic site of the enzyme; while the third generation, known as rapalink,

have a dual mechanism of action comprising acting both as rapalogs and inhibitors of

the catalytic site [156] (Fig. 4.3).

The first generation of mTOR inhibitors: the rapalogs

Rapamycin is the prototype of the first generation of mTOR inhibitors [121]. It is a

macrocyclic polyketide discovered as an antifungal agent. It functions as a molecular

glue by binding FK506-binding protein-12 (FKBP12), a small cytosolic protein, allow-

ing it to interact with mTOR to form a ternary complex [157]. The rapamycin-FKBP12

dimer binds to mTOR in the FRB region that is outside of the KIN domain [121]. As

such, the binding itself does not inhibit the kinase activity of mTOR, but probably in-

terferes with the association of the kinase with its substrates.

The rapalogs, as suggested by the name, are rapamycin analogs. Indeed, rapamycin

bioavailability is affected by its poorly water solubility, which has led to a non ex-

ploitation of the drug in cancer therapy, despite its anti-cancer activity was well doc-

umented [121]. Because the drug requires two binding sites for FKBP12 and mTOR,

it is poorly modifiable. Thus all the rapalogs are created by replacing the hydrogen at

C-40-O position with different moieties [121].
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Originally, mTORC2 was defined rapamycin insensitive, since acute exposure to

the drug did not affect its activity. However, it was shown that rapalogs can to sup-

press mTOR activity in both mTORC1 and mTORC2, but at very different concentra-

tions [158]. Moreover, low doses of rapalogs, inhibiting mTORC1, trigger a feedback

mechanism that lead to an IGF1-dependent mTORC2 activation through PI3K, increas-

ing also the Akt phosphorylation [158, 159]. This is likely one of the reason why ra-

palogs activity as monotherapies in cancer treatment did not appear as promising as

initially expected.

Since rapamycin and rapalogs do not interfere with mTOR kinase domain, their

inhibition is not entirely effective. Indeed, different mTOR targets not responding to

rapamycin treatments were identified, and among them there is TFEB [151]. Therefore,

since, in this study, TFEB localisation was used as a proxy of mTOR activity, the first

generation of mTOR inhibitors were not analysed.

The second generation of mTOR inhibitors: the ATP-competitive inhibitors

The problems linked with rapamycin and rapalogs use have led to the development

of new drugs able to inhibit mTOR by a different mechanism of action. Particularly,

small molecules that compete for the binding pocket with ATP (from which the name

of this class) should be able to inhibit mTOR both in mTORC1 and mTORC2 and,

consequently, block the mTORC2 dependent activation of Akt [155].

Because of the sequence similarity of mTOR with PI3K, many ATP competitive

PI3K inhibitors were found to display various degrees of mTOR inhibitory activity.

These inhibitors were often used as prototype compounds for the PI3K/mTOR dual

inhibitors [155]. These dual PI3K/mTOR modulators contain "classical hinge kinase

binders" and docking studies performed with homology modelling suggest that the in-

teractions mediated by the core scaffold are similar to the ones described for other

ATP-competitive modulators (e.g., canonical H-bond interactions with residues in the

hinge region of the lipid kinase) [160]. These dual PI3K/mTOR modulators have
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demonstrated significant, concentration-dependent cell growth inhibition and induction

of apoptosis in a variety of tumor cancer cells. However, while simultaneously tar-

geting PI3K and mTOR circumvents the limitation of rapalogs in blocking PI3K/AKT

signalling, the potential toxicity associated with this type of inhibitors presents a big

concern, owing to the diverse functions of different isoforms of PI3K. It is generally

believed that inhibitors more selective for mTOR may be better tolerated than the dual

inhibitors [121].

Torin1 is a pyridinone-quinoline compound [161] that utilizes a pharmacophore

space to achieve specificity [155]. This space consists in a channel that runs from the

bottom surface of mTOR inward toward the ATP and substrate pockets. The longitudi-

nal axis of ATP is perpendicular to the axis of this channel. Torin1 has a ring roughly

perpendicular to this axis. Torin1 inhibits both mTOR-containing complexes with IC50

values between 2 and 10nM [161] and shows an 800-fold selectivity versus PI3K [162].

The AstraZeneca AZD8055 has been one of the first optimized ATP-competitive

mTOR inhibitors to enter clinical trials [160]. It belongs to the pyrido[2,3-d]pyrimidines

class. It displays a good selectivity for mTOR (IC50 = 0.8nM) inhibiting the rapamycin-

resistant phosphorylations [155] and shows excellent selectivity (∼ 1,000-fold) against

PI3K [163].

4.3 Probing and modelling of TFEB nuclear transloca-

tion dynamics by microfluidics

Despite the growing number of studies regarding the mTOR pathway and TFEB translo-

cation, very little is known about their dynamics. Therefore, we set to quantitatively

measure and model TFEB translocation dynamics to the nucleus following mTOR in-

hibition and activation.

62



Quantitative characterization and modelling of TFEB nuclear shuttling dynamics.

A

Target Genes Target Genes

StarvationFeeding

mTORC1 mTORC1
TFEB

GFP

P

TFEB

GFP

B
20

C
20

Figure 4.4: Experimental model: HeLa TFEB-GFP monoclonal cell line. (A)
Schematic representation of TFEB nuclear translocation. In fed conditions, the fu-
sion protein TFEB-GFP is phosphorylated by mTORC1 and trapped in the cytoplasm.
In starvation condition, mTORC1 is inhibited, TFEB-GFP is no longer phosphorylated
and it is able to translocate into the nucleus. (B, C) Representative fluorescent images
in fed (B) or starvation (C) conditions.

4.3.1 TFEB nuclear shuttling in starvation conditions

To study the dynamics of TFEB nuclear shuttling, I decided to use a human HeLa cell

line overexpressing the fusion protein TFEB-GFP, already used in our experimental

set-up with which we controlled TFEB subcellular localisation [40]. This cell line is

schematically represented in Fig. 4.4A, and it was firstly developed in Settembre et

al. [143] and, then, modified in our lab by adding a nuclear mCherry protein to facili-

tate image processing [40]. The fusion protein TFEB-GFP enables to follow the protein

localisation of TFEB in response to the external stimulus. Indeed, in nutrient-rich con-

ditions, mTORC1 phosphorylates TFEB thus trapping it into the cytosol, as shown in
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Figure 4.5: Experimental measurements of TFEB translocation in starvation con-
ditions. Each figure shows single cell traces of nuclear TFEB fluorescence (shown in
the upper plot) measured in the microfluidics platform following the correspondent in-
put (shown in the lower plot): a train of starvation pulses (A) or a single starvation
stimulus (B). The average of the single-cell traces is highlighted with a solid line in
the upper plot. In the middle plot, instead, traces of cytosolic TFEB fluorescence are
shown. The darkest and bold line is the average of the single-cell traces, while the bold
traces are single cells in which the cytosolic relocalisation is visible.

Fig. 4.4B. In the absence of amino-acids (starvation), mTORC1 is inhibited and TFEB

is free to translocate into the nucleus as shown in Fig. 4.4C.

To characterise this cells line, I performed a series of preliminary experiments by

taking advantages of the experimental platform described in Chapter 2. Cells were

grown in the mammalian microfluidic device allowing the precise regulation of their

micro-environment, while fluorescence microscopy followed by image analysis enable

quantitative measurement of TFEB cytoplasmic and nuclear localisation. Cells were

exposed to a train of alternating pulses of nutrient-rich medium (RPMI) and amino-acid

starvation (HBSS), as shown in Fig. 4.5A. Single-cell nuclear and total fluorescence

was measured with an off-line image analysis algorithm described in Section 2.3.2.

Then, the total fluorescence was filtered with a moving average filter with a window
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of 20 samples (that corresponds to 300min). Finally, the nuclear fluorescence was

normalized with respect to the filtered version of the total fluorescence to obtain the

percentage of nuclear TFEB over time. In the upper plot of Fig. 4.5A, single-cell sig-

nals are shown with thin green lines while their average is shown with a bold green

one. These results indicate that cells were able to respond to each pulse exhibiting

always the same dynamics. Interestingly, after a very fast nuclear translocation in re-

sponse to starvation, a slower and smaller cytoplasmic relocalisation occurs, which we

termed an "overshoot"; a similar but much smaller effect is present also when switching

from starvation to nutrient-rich medium. When treated with a single starvation pulse,

as shown in Fig. 4.5B, cells exhibit the same behaviour: a slower relocalisation that fol-

lows the fast translocation in response to starvation, followed by constant level (about

the 70% of nuclear TFEB in the average signal), which is maintained over time, despite

the stress being still present. The appearence of the overshoot was quite unexpected,

although a subsequent analysis of the literature revealed that a similar phenomenon

was observed by Zapata et al. [164]. The authors suggested that the rapid rheostatic

response, mediated by mTOR, allows the cell to quickly adapt to metabolic changes,

while the long-term, mTOR-independent homeostatic response controls the magnitude

and duration of TFEB activation, and presumably limits excessive autophagy. However

no mechanism was put forward to explain the origin of this dynamic behaviour.

4.3.2 A dynamical model for TFEB nuclear translocation

To analyse and better understand the mechanisms that cause the overshoot observed

in experimental data, we derived a dynamical model based on the current literature.

Specifically, we considered a multi-compartmental model [165] shown in Fig. 4.6A.

The model has two distinct compartments, nucleus and cytoplasm, within which de/phos-

phorylation reactions occur. To consider the transport between compartments, two irre-

versible reactions were added. We considered four species for TFEB, according to lo-
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Figure 4.6: A bicompartimental model for TFEB nuclear translocation. (A)
Schematic representation of reactions involved in TFEB post-translational regulation.
In this scheme, TFEBcyt represents cytoplasmatic TFEB; TFEBnuc the nuclear one;
TFEB∗cyt and TFEB∗nuc are the respective phosphorylated species; ki are the phospho-
rylation rates; k−i the dephosphorylation ones; βi the transport rates. (B) Comparison
of experimental measurements and numerical simulations of TFEB translocation in the
presence of a train of starvation pulses. Numerical simulation of nuclear TFEB fluores-
cence following a simulated train of starvation pulses is shown with a blue line. The
average signal across the experimental single-cell traces is shown with a green line.

calisation and phosphorylation status: (i) phosphorylated cytoplasmic TFEB (TFEB∗cyt),

(ii) dephosphorylated cytoplasmic TFEB (TFEBcyt), (iii) phosphorylated nuclear TFEB

(TFEB∗nuc), and (iv) dephosphorylated nuclear TFEB (TFEBnuc). The external input

u ∈ [0,1] represents either nutrient-rich medium (0) or starvation (1). Its effect it is to

drive the direction of the reactions by promoting the phosphorylation, in presence of

nutrients, or the dephosphorylation, otherwise.

Following the assumption in [166], we assumed that each de/phosphorylation reac-

tion follows a first order kinetics:

Ẋ∗ = K(u)X , (4.1)

where X∗ is the phosphorylated form of X and K(u) is the phosphorylation rate that de-

pends on the external input u. We modelled the described effect of input on de/phospho-
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rylation rates as follows:

K(u) =


k(1−u) for phosphorylation rates

ku for dephosphorylation rates
(4.2)

where k is a constant.

Let x1, x2, x3 and x4 be respectively TFEBcyt, TFEB∗cyt, TFEBnuc and TFEB∗nuc.

Combining Eqs. 4.1 and 4.2 and adding the transport reactions, TFEB model can be

described as follow:

ẋ1 = k−1ux2− k1(1−u)x1−β1x1 (4.3a)

ẋ2 = k1(1−u)x1− k−1ux2 +β2x4 (4.3b)

ẋ3 = k−2ux4− k2(1−u)x3 +β1x1 (4.3c)

ẋ4 = k2(1−u)x3− k−2ux4−β2x4 (4.3d)

where k1 and k2 are the phosphorylation rates in cytoplasm and in nucleus, k−1 and

k−2 are the dephosphorylation rates in cytoplasm and in nucleus, β1 is the cytoplasm-

nuclear transport rate and β2 is the nuclear-cytoplasm transport rate.

Since de/phosphorilation reactions and transport are much faster than protein pro-

duction and degradation, we further assumed that the total concentration of TFEB is

conserved inside the cell. Therefore, we added to the model the following concentra-

tion rule:

x1 + x2 + x3 + x4 = 1 (4.4)

where the overall concentration of TFEB is assumed to be equal to 1. Hence, we can

reduce the number of equations by considering, for example, x1 = 1− x2− x3− x4. To

further simplify the model, we considered symmetric the transports and the reactions,

thus reducing the system parameters to two: (i) k = k1 = k−1 = k2 = k−2, that is the

reaction rate, and (ii) β = β1 = β2, that is the transport rate. This simplification is
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justified by the observation that nuclear import of dephosphorylated TFEB and nuclear

export of phosphorylated TFEB have similar kinetics [147]. In the end, the following

final three dimensional dynamical model is obtained:

ẋ2 = k(1−u)(1− x2− x3− x4)− kux2 +βx4 , (4.5a)

ẋ3 = kux4− k(1−u)x3 +β (1− x2− x3− x4) , (4.5b)

ẋ4 = k(1−u)x3− kux4−βx4 . (4.5c)

Despite the model being non-linear, it becomes a piece-wise linear system if the

input is switched between two fixed values [167]. This allows to study the system with

the simplified techniques developed for linear systems. In our setting, starvation (u = 1)

and fed conditions (u = 0) are the most relevant cases. The equilibrium points of the

system described by Eqs. 4.5 for a constant input u are:

x̄ =


x̄2

x̄3

x̄4

=


1−u− k

β+k u(1−u)

u− k
β+k u(1−u)

k
β+k u(1−u)

 . (4.6)

Computing the equilibrium points in the two most interesting cases (u = 0 and

u = 1), it is possible to appreciate that the model is able to recapitulate what is bi-

ologically expected. Indeed, during starvation (u = 1), TFEB is completely nuclear

and dephosphorylated: x̄ = [0 1 0 ]T . Instead, during refeeding, TFEB is completely

cytosolic and phosphorylated: x̄ = [1 0 0 ]T .

Using Matlab Symbolic Toolbox, we computed the Jacobian matrix and its eigen-

values (depending on a generic constant u) at the equilibrium point:

λ =


−k

−β

−k−β

 . (4.7)
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Interestingly, the eigenvalues are strictly negative and independent on input u, meaning

that the equilibrium points are always stable nodes.

Model parameter were estimated from the literature [147]. Specifically, Napolitano

et al. [147] demonstrated that TFEB nuclear translocation dynamics in both starvation

and refeeding can be described as a linear combination of two exponentials driven by

two fixed time constants (τslow = 216s and τfast = 70s). Since the experiments per-

formed in [147] were performed in a constant environment (i.e. u is constant), the

model in Eqs. 4.5 will be linear and its simulated dynamics will be driven by exponen-

tial modes with the eigenvalues in Eq. 4.7, which are independent of the exact value

of u. Therefore, the trajectories of the model when close to the equilibrium points will

be governed by three time constants that are independent of the value of u (τ1 = 1
k ,

τ2 =
1
β

and τ3 =
1

k+β
). Considering that transport reaction rates (β ) are at least an or-

der of magnitude smaller than de/phosphorylation rates (i.e. k� β ) [166], it can be

assumed τ3 ≈ τ1. Hence, trajectories will be a combination of two exponentials driven

by two time constants (τ1 and τ2), in perfect agreement with the experimental results of

Napolitano et al. [147]. Hence, we set k = 1
70 s−1 and β = 1

216 s−1.

To check whether the model could recapitulate the observed experimental data,

we performed a numerical simulation by applying the same experimental input to the

model. The simulation was performed in MATLAB enviroment by using the ode45

solver. Actually, for a better comparison between the experimental and numerical data,

the simulation was performed by considering an input u = 0.3 for the fed condition

and u = 0.7 for the starvation and adapting the initial conditions to the experimental

data (x0 = [0.7 0.3 0 ]T ). The result is shown in Fig. 4.6B. It is possible to appreci-

ate that the model can replicate the fast dynamics observed in the experiments during

medium switches, but it cannot replicate the slower overshoot dynamics. It is important

to note that, in the experiment, the overshoot dynamics are slower than the initial rise.

In particular, TFEB enters the nucleus in about 20min, while the overshoot takes about

110min. Accordingly, it is reasonable to think that the overshoot is due to a different
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Figure 4.7: Closed-loop model of TFEB nuclear translocation. (A) Schematic repre-
sentation of the feedback regulation hypothesised for the overshoot dynamics. (B) Com-
parison of experimental measurements and numerical simulations of TFEB transloca-
tion in the presence of a train of starvation pulses. Numerical simulation of nuclear
TFEB fluorescence following a simulated train of starvation pulses is shown with a
blue line. The average signal across the experimental single-cell traces is shown with a
green line.

(and slower) biological mechanism.

Considering the biological role of TFEB, it is plausible to hypothesize that it can

regulate its activity through a negative feedback loop. Indeed, as a transcription factor,

the final aim of its activity is the production of its targets whose aim is to counteract

the starvation to allow the cell survival. This contrasting action could have the effect of

limiting also TFEB activity, as shown in Fig. 4.7A.

In order to model this feedback action, we added to the model another species that

represent the TFEB targets and whose dynamics are modelled as follows:

ẋ5 =−ax5 +b(x3 + x4) (4.8)

where x5 is the new state variable, modelling the possible feedback species, x3 + x4 is

the total nuclear TFEB concentration, a and b are respectively the degradation and the

production rates. In particular, a and b are assumed to be constant. To set these param-

eters, we considered that the overshoot lasts approximately 110 minutes (as shown in
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Fig. 4.5). Therefore, we chose the parameter a to respect this constrain (a= 0.00015s−1).

We chose the parameter b = 0.000088s−1, instead, to best fit the concentration of nu-

clear TFEB at the equilibrium point in the closed loop with the experimental data.

Finally, since the effect of this new species is counteracting the starvation, its con-

centration is subtracted to the external input:

û = u− x5 . (4.9)

This new input û is then provided to the system thus closing the loop.

The simulation performed with this complete model is shown in Fig. 4.7B. As

done in the previous simulation, to have a better comparison between the experimen-

tal and numerical data, we adapted the input and the initial condition used for the

simulation. We thus set u = 0.5 for the feeding condition, u = 1 for starvation, and

x0 = [x0,2 x0,3 x0,4 x0,5 ]
T = [0.65 0.35 0 0.18 ]T as initial condition. The sim-

ulation indicates that the closed-loop model is now able to recapitulate the TFEB over-

shoot dynamics, despite the real dynamics being slower; it is possible to infer the "cor-

rect" parameters to best fit the model to the data, however I did not pursue this as I

was interested only in understanding whether the qualitative overshoot dynamics could

be captured by this new model. At each pulse, the simulation shows clearly the fast

rise, the slower overshoot, the new equilibrium, and the fast decrease. This suggests

that the hypothesis formulated could be plausible, revealing a novel feedback loop bi-

ological mechanism. A delay in TFEB response to the input in experimental data is

present if compared with the simulation. This delay is probably due to the fact that the

microfluidic device takes 10min to complete the media changing in the cell chamber.

Furthermore, since RPMI is a medium enriched in nutrients, cells could need extra time

to sense the starvation medium and to adapt to the lacking of nutrients.

The code to run all the simulations shown in this Section was developed in collabo-

ration with Iacopo Ruolo, and it is available on GitHub (see Appendix B.4).
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Figure 4.8: Hypothesis on an autophagy-related feedback. (A) During starvation,
TFEB is dephosphorylated and translocates into the nucleus activating the transcription
of its target genes whose final product is a pull of amino acids. The amino acid sen-
sor mTOR is consequently reactivated and can phosphorylate TFEB again. (B) Treat-
ing cells with Bafilomycin A1, an autophagy inhibitor, prevents amino acid formation,
breaking the loop. (C) Treating cells with Torin1, an mTOR inhibitor, keeps mTOR
not active. (D-E) Each figure shows single cell traces of nuclear TFEB fluorescence
(shown in the upper plot) measured in the microfluidics platform following a train of
starvation pulses (shown in the lower plot). The average of the single-cell traces is
highlighted with a solid line in the upper plot. In panel (D), the cells were treated with
Bafilomycin A1 (@100nM), an autophagy inhibitor, for the entire experimental time-
span. In panel (E), the cells were treated with Torin1 (@300nM), an mTOR inhibitor,
during the starvation pulses.

4.3.3 Testing the hypothesis on an autophagy-related feedback

As discussed in Section 4.1, under starvation, TFEB is dephosphorylated and translo-

cates into the nucleus activating its target genes and, in particular, autophagic genes.

Autophagy promotes the generation of a pool of amino acids used by the cell to sur-

vive in this situation of stress. The cell amino acid sensor is mTOR that is the kinase

that mainly phosphorylates TFEB. Therefore, it is conceivable that mTOR can sense,

probably through SLC38A9 (the lysosomal sensor of amino acids), the pool of amino
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acids produced with autophagy reactivating itself and thus phosphorylating TFEB again

trapping it into the cytosol, as schematised in Fig. 4.8A. However, in this hypothesis,

mTOR activity will be proportional to the nutrient amount, and therefore it is not able

to completely re-phosphorylate TFEB that, as a consequence, can not complete its full

relocalisation, giving rise to the overshoot.

To test this hypothesis, we performed two kinds of experiments schematised in

Fig. 4.8B-C and whose results are shown in Fig. 4.8D-E.

In the first experiment, we inhibited autophagy through Bafilomycin A1, a potent

and selective inhibitor of vacuolar-type H+ ATPase (V-ATPase). It suppresses macroau-

tophagy by preventing the acidification of lysosomes [168]. As shown in Fig. 4.8B,

the effect of Bafilomycin A1 on the hypothesised feedback loop should be to prevent

the production of the extra pool of amino acids and thus prevent mTOR reactivation.

However, as shown in Fig. 4.8D, Bafilomycin A1 treatment is not able to remove the

overshoot, neither in starvation nor in refeeding conditions.

The second experiment is schematised in Fig. 4.8C. In this case, Torin1, which, as

discussed in Section 4.2, is a potent mTOR inhibitor, counteracts the mTOR reactivation

in response to amino acid. Since Torin1 by itself can induce TFEB translocation by

inhibiting mTORC1, I used it only during starvation. As shown in Fig. 4.8E, Torin1 can

not remove the overshoot, as also observed following Bafilomycin A1 treatment.

Taken together, these experiments indicate that the overshoot present in TFEB translo-

cation dynamics is nor due to autophagy not mTOR reactivation. This leads to alter-

anative explanations: there is another kinase, not yet known, that can phosphorylate

TFEB blocking it into the cytosol and that is produced following mTOR inhibition; or

some unknown mechanism of TFEB nuclear export is implicated in this long-term reg-

ulation, or still nuclear TFEB is partailly degraded giving rise to the overshoot. This

latter hyopothesis is the least plausible as we can clearly observe in some cells in the ex-

periments that when nuclear TFEB decreases during the overshoot, cytoplasmic TFEB

increases (Fig. 4.5A-B, middle plots), thus pointing to a relocation to the cytoplasm
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Figure 4.9: Hypothesis on an on a protein synthesis-related feedback or a protein
degradation-related feedback. (A) Treating cells with Cycloheximide, a translation
inhibitor, prevents the translation of TFEB target genes, breaking the loop. (B) Treating
cells with Bortezomib, a proteasome inhibitor, blocks the likely action of the protea-
some on TFEB localisation. (C-D) Each figure shows single cell traces of nuclear TFEB
fluorescence (shown in the upper plot) measured in the microfluidics platform follow-
ing a train of starvation pulses (shown in the lower plot). The average of the single-cell
traces is highlighted with a solid line in the upper plot. During the experiments the
cells were treated either with Cycloheximide (@50 µg/ml), a translation inhibitor, (C)
or with Bortezomib (@100nM), a proteasome inhibitor (D), for the entire experimental
time-span.

rather than a degradation.

4.3.4 Testing the hypothesis on a protein synthesis-related feedback

or a protein degradation-related overshoot

The CLEAR network is a very large set of genes whose expression is activated by

TFEB. Theoretically, one or more of the 557 genes identified by Gambardella et al. [154]
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can be implicated in TFEB negative feedback regulation highlighted by the model. As

schematised in Fig. 4.9A, once in the nucleus, TFEB activates the transcription of its tar-

get genes leading to the production of different proteins, that can, in some way, promote

TFEB relocalisation. To test this hypothesis, I performed an experiment by treating the

cells with Cycloheximide, an antifungal antibiotic that inhibits protein synthesis in eu-

karyotes. Particularly, it interferes with translation initiation by inhibiting the binding

of initiator tRNA to ribosomes or binding of the ribosome 60S subunits to form an initi-

ation complex [169]. The results of this experiment are shown in Fig. 4.9C. In this case,

TFEB exhibits a strikingly different dynamics, as the overshoot disappears, and TFEB

reaches a 70% nuclear ratio with slower dynamics. Although this experiment seems

to have been successful, it gave very little information about the mechanisms leading

to the overshoot. Indeed, since it completely blocks protein synthesis, its interference

in cell metabolism is too strong. Therefore, these new dynamics could be not directly

related to a TFEB target and these results need to be further investigated.

To degrade proteins the cell makes use of the ubiquitin-proteasome system (UPS).

The UPS degrades mostly short-lived proteins through a multistep process that requires

the tagging activity of a sophisticated system. The tagging molecule is a small protein,

ubiquitin, that once covalently linked to proteins, earmarks them for destruction by

the 26S proteasome, a highly conserved multicatalytic ATP-dependent protease com-

plex [170]. The UPS and autophagy have long been considered independent and paral-

lel degradation systems. They were once thought to target different types of proteins;

that is, the proteasome system degraded short-lived proteins, while the autophagy path-

way degraded long-lived, large protein complexes and damaged organelles. One of the

most important manifestations of the association between the UPS and autophagy is

the upregulated functions of autophagy caused by UPS damage, which is often con-

sidered a compensatory mechanism that enables cells to prevent the accumulation of

UPS substrates [171]. Moreover, autophagy and UPS share certain ubiquitin recog-

nition molecules or shuttling factors. Indeed, ubiquitin binds to other protein lysine
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residues and labels them with degradation signals as a substrate that can be hydrolyzed

by the proteasome or lysosome [171]. Driven by this strong correlation between these

pathways and by the results of Zapata et al. [164], I decided to test if UPS is someway

related to TFEB dynamics by causing its degradation in the nucleus. To this end, I

pharmacologically inhibited the proteasome through Bortezomib, a highly selective, re-

versible inhibitor of the 26S proteasome [172], as schematised in Fig. 4.9B. The results

of this experiment are shown in Fig. 4.9D. Bortezomib treatment alters the dynamics of

TFEB but the overshoot in TFEB translocation dynamics is still present, thus suggest-

ing that degradation is not involved in the overshoot dynamics. These results confirm

the presence of a regulatory mechanism involved in TFEB nuclear translocation, even

if the biological mechanism connected with this feedback has to be further investigated.

4.4 TFEB nuclear translocation dynamics upon mTOR

inhibitors treatments

During starvation, cells activate a lot of compensatory mechanisms to survive the stress.

The mTOR pathway, thus, is not the only one that responds to this kind of stimulus.

Consequently, the results presented in Section 4.3 could be due to additive or synergistic

effects of different pathways. Therefore, I performed a validation of previous results by

using an mTOR inhibitor.

Since Rapamycin and rapalogs are not able to induce TFEB translocation [151], I

used two different ATP-competitive inhibitors: Torin1, which is the most used mTOR

inhibitor, and AZD8055, which was used to confirm the results obtained with Torin1.

Recapitulating what was done with starvation, I first treated cells with a train of

Torin1 (@300nM) pulses or with a single long Torin1 (@300nM) treatment. The re-

sults of these experiments are shown in Fig. 4.10A-B. TFEB dynamics exhibits a similar

behaviour to what was observed in starvation conditions (Fig. 4.5): a fast nuclear accu-
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Figure 4.10: Experimental measurements of TFEB translocation during pharma-
ceutical mTORC1 inhibition. Each figure shows single cell traces of nuclear TFEB
fluorescence (shown in the upper plot) measured in the microfluidics platform follow-
ing the correspondent input (shown in the lower plot): a train of Torin1 (@300nM)
pulses (A), a single Torin1 (@300nM) stimulus (B), a train of Torin1 (@1 µM) pulses
of increasing duration (C), or a single Torin1 (@1 µM) pulse of 12h (D). The average
of the single-cell traces is highlighted with a solid line in the upper plot.

mulation followed by the "overshoot", that is a slower relocalisation to the cytoplasm.

In this case, however, upon Torin1 removal, TFEB cytosolic localisation is much slower

than in refeeding, after the starvation stress. As for the case of starvation, these results

are in line with what was observed by Zapata et al. [164]. Indeed, upon Torin1 treat-

ment, they observed a total TFEB activation within 0.5h, even if for a limited duration

of 1.5h.

These effects were confirmed by other experiments in which the Torin1 concentra-

tion was changed, as shown in Fig. A.3. Indeed, both by decreasing Torin1 concentra-

tion at 50nM (Fig. A.3A) or by increasing it at 1 µM (Fig. A.3B), TFEB response does
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not change: it translocates into the nucleus with fast dynamics followed by an over-

shoot of slower cytosolic relocalisation. This behaviour is corroborated by the other

mTOR inhibitor AZD8055, as shown in Fig. 4.12A. Also with this treatment, indeed,

TFEB dynamics manifest the two usual responses: a fast rise and a slower overshoot.

AZD8055, however, seems better imitating starvation conditions. Indeed, upon drug

removal, TFEB relocalises to the cytosol with dynamics comparable with those mani-

fested during refeeding.

Interestingly, in the experiments with a pulsatile Torin1 treatment (Fig. 4.10 and

Fig. A.3), it is possible to observe that TFEB presented different dynamics in response

to the second and third pulses. Indeed, TFEB translocates into the nucleus with slower

dynamics reaching the steady-state with no overshoot (as happened in response to the

co-treatment of starvation and Cycloheximide). Similar behaviour is also present in the

AZD8055 pulsatile experiment, even if, in this case, TFEB was not able to respond to

the second treatment (Fig. 4.12).

These alterations of TFEB dynamics during the second and third pulses could be due

either to cell memory or to drug degradation in the microfludics device. To test these

hypotheses, I performed an experiment in which the first pulse of Torin1 (@300nM)

was skipped, as shown in Fig. A.4. If TFEB dynamics in this experiment had recapitu-

lated the ones exhibited during the first pulse of Torin1 treatment in Fig. 4.10A, then the

difference in dynamics could be attributed to some sort of cell memory. However, re-

sults are more similar to the ones of the second pulse of Torin1 treatment in Fig. 4.10A,

indicating that drug degradation in the microfluidics device is the likely cause of the

observed behaviour.

Finally, I investigated the mechanisms driving the slower dynamics in TFEB nuclear

export upon Torin1 removal. Interestingly, these dynamics are not present following

AZD8055 treatment. Therefore, I first investigated if this behaviour were due to the

timing of Torin1 treatment. To this end, I performed a first experiment in which cells

were treated with a train of Torin1 (@1 µM) pulses of increasing duration (0.5h −
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1h − 2h − 3h). Interestingly, as shown in Fig. 4.10C, TFEB responds very fast and

very effectivly at each Torin1 pulse but then it localises with much slower dynamics

into the cytosol upon Torin1 removal. These dynamics became slower and slower at

each Torin1 pulse, until TFEB was not able to relocalise into the cytosol anymore. This

experiment suggests that Torin1 accumulates over time in the cells. To confirm the

hypothesis, I performed an experiment, shown in Fig. 4.10D, by treating the cells with

12h of Torin1 (@1 µM). Also in this case, upon Torin1 removal, TFEB was no longer

able to relocalise in the cytosol, thus confirming the hypothesis of the time-dependent

drug accumulation.

4.4.1 Synergistic effect of mTOR inhibitors with other compounds

Considering the promising results obtained by inhibiting protein synthesis or degrada-

tion in starvation experiments, I decided to see whether they affect TFEB dynamics

also during Torin1 treatments. The results of these experiments are shown in Fig. 4.11.

Specifically, I performed both fixed duration and variable duration pulses experiments

for both drugs.

Surprisingly, as shown in Fig. 4.11A-B, both treatments have a dramatic effect on

TFEB localisation. In both cases upon Torin1 removal, TFEB gets trapped in the nu-

cleus. Moreover, this behaviour is time-dependent. As matter of fact, as shown in

Fig. 4.11C-D, when Torin1 treatments lasted for 0.5h or 1h and, in the case of Cyclo-

heximide, also 2h, TFEB was still able to exit from the nucleus, even if less and less

after each treatment.

Furthermore, I performed a similar experiment this time by combining Bortezomib

with another ATP-competitive mTOR inhibitor (AZD8055), as shown in Fig. 4.12B.

Also with this other drug, the co-inhibition of mTOR and proteasome blocks TFEB in

the nucleus, even if this effect is much more effective after the second treatment. In-

terestingly, in Baumann et al. [173], the authors tested a different dual PI3K-mTOR in-
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Figure 4.11: Experimental measurements of TFEB translocation during pharma-
ceutical mTORC1 inhibition combined with synthesis or degradation inhibition.
Each figure shows single cell traces of nuclear TFEB fluorescence (shown in the up-
per plot) measured in the microfluidics platform following a train of Torin1 (@1 µM)
pulses (shown in the lower plot). The average of the single-cell traces is highlighted
with a solid line in the upper plot. During the experiments the cells were treated either
with Cycloheximide (@50 µg/ml), a translation inhibitor, (A, C) or with Bortezomib
(@100nM), a proteasome inhibitor (B, D), for the entire experimental time-span.

hibitor NVP-BEZ235 as a chemotherapeutic agent in three different multiple myeloma

cell lines. They observed a synergistic effect in reducing cell vitality when NVP-

BEZ235 was used in combination with Bortezomib, although they did not put forward

any mechanistic explanation for this behaviour.

It is important to observe that inhibition of mTOR by starvation combined with

Bortezomib treatment does not have the same effect, as TFEB is able to translocate to

the nucleus once cells are switched to full medium, even in the presence of Bortezomib

(Fig. 4.9D). Therefore, the effect is specific for chemical inhibitors of mTOR such as

Torin1.
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Figure 4.12: Experimental measurements of TFEB translocation in pharmaceuti-
cal mTORC1 inhibition. Each figure shows single cell traces of nuclear TFEB fluores-
cence (shown in the upper plot) measured in the microfluidics platform following a train
of AZD8055 (@300nM) pulses (shown in the lower plot). The average of the single-
cell traces is highlighted with a solid line in the upper plot. During the experiments
the cells were treated either with only AZD8055 (A) or with AZD8055 in presence of
Bortezomib (@100nM), a proteasome inhibitor (B), for the entire experimental time-
span.
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Figure 4.13: Biological hypothesis on synergistic effect. In presence of an mTOR
inhibitor, mTORC1 is bound to it and inhibited by preventing the interaction with its
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mTORC1 and recycles the mTOR inhibitor. The recycled mTOR inhibitor can either
leave the cell through diffusion, if the drug concentration in the external medium is
lower than in the cell, or target the new synthesised mTORC1.

Biological hypothesis on synergistic effect.

A possible explanation for this synergistic effect could be the one shown in Fig. 4.13.

According to this hypothesis, the protein synthesis machinery produces mTOR, which

is the main component of the mTORC1 complex. When an mTOR inhibitor is present

in the growth medium, it enters into the cell through diffusion and binds mTOR thus

inhibiting it. However, the complex formed by mTORC1 and the inhibitor is targeted

by the proteasome that degrades the protein and thus the inhibitor is released and free

to diffuse across the cell membrane. In the presence of Bortezomib (the proteasome

inhibitor), the cell is no longer able to degrade the mTORC1-inhibitor complex thus

maintaining mTORC1 inhibited and the chemical inhibitor trapped inside of the cell, as

it is not able to diffuse across the membrane. In the case of Cycloheximide (the protein

translation inhibitor), the explanation could be that the cell is not able to produce new

mTOR able to replace the degraded one. Consequently, there is no new Torin1-free

mTORC1 in the cell able to phosphorylate TFEB, which thus remains trapped in the
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Figure 4.14: Dynamical model of biological hypothesis on the synergistic effect.
(A) Schematic representation of the feedback regulation hypothesised for the overshoot
dynamics. (B) Comparison of experimental measurements and numerical simulations
of TFEB translocation in the presence of a train of Torin1 (@1 µM) pulses. Numeri-
cal simulation of nuclear TFEB fluorescence following a simulated train of starvation
pulses is shown with a blue line. The average signal across the experimental single-cell
traces is shown with a green line. The fitting percentage between the estimated model
and the experimental data is 56.57%. (C) Comparison of experimental measurements
and numerical simulations of TFEB translocation in the presence of a train of Torin1
(@1 µM) pulses. Numerical simulation of nuclear TFEB fluorescence following a sim-
ulated train of starvation pulses is shown with a blue line. The average signal across
the experimental single-cell traces is shown with a green line.The fitting percentage
between the estimated model and the experimental data is 57.18%.

nucleus.

To test this hypothesis, I derived a dynamical model to describe the effect of Torin1

treatment on mTOR inhibition and, specifically, the hypothesis described in Fig. 4.13.

I considered the reactions showed in Fig. 4.14A (left box): (i) the diffusion of Torin1

(TI) through the cellular membrane both in input, in presence of Torin1 in the external

medium (TE), and in output; (ii) the production and the degradation of the mTOR active

form (mTORA); (iii) the inhibition of mTOR when it reacts with TI producing the mTOR

inactive form (mTORI); and (iv) the degradation of mTORI that releases TI . Finally,
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the inhibited mTOR can induce TFEB nuclear translocation behaving as input for the

closed-loop model showed in Fig. 4.14A (right box).

Let x6 be the concentration of intracellular Torin1, and x7 and x8 the concentrations

of active and inactive mTOR, respectively. I added to the dynamical model described

by Eqs. 4.5 and 4.8 the following ODEs:

ẋ6 = a1uE −b1x6 +b2x7− c1x6x7 , (4.10a)

ẋ7 = a2−b2x7− c1x6x7 , (4.10b)

ẋ8 = c1x6x7−b2x8 , (4.10c)

where a1 is the diffusion rate through the cellular membrane in input, b1 is the diffu-

sion rate for the cellular export, a2 is the production rate due to the protein synthesis

machinery, b2 is the degradation rate due to the proteasome, c1 is the reaction rate for the

inhibition of mTOR by Torin1, and uE ∈ {0,1} represents the absence or the presence

of Torin1 in the growth medium. As I said, mTORI is the species able to induce TFEB

nuclear translocation, thus x8 should be the input for the closed loop model. However,

that model was derived considering an input limited between 0 and 1. Therefore, I de-

cided to use as input the percentage of inactive mTOR out of the total mTOR. Hence,

the û in Eq. 4.9 becomes:

û =
x8

x7 + x8
− x5 . (4.11)

To obtain the values of the parameters for the mTOR inhibition model, I performed

the classical system identification procedure by starting from the input-output data taken

from the experiments depicted in Fig. 4.10A,C where the system input is represented

by pulses of Torin1 rich medium and standard medium (i.e. uE in Eq. 4.10-1) and

the system output is the average signal representing the TFEB nuclear percentage (i.e.

x2 + x3 in Eqs. 4.5), renormalized between its minimum and maximum value. Since

I already had the equations describing the process to identify, I performed a grey-box
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Parameter Description Value
a1 [s−1] Torin1 diffusion rate in input 29.57
b1 [s−1] Torin1 diffusion rate in export 0.0021
c1 [s−1] mTOR inhibition rate 2.16 ·10−4

a2 [s−1] mTOR traslation rate 2 ·10−4

b2 [s−1] mTOR degradation rate 0.97 ·10−4

k [s−1] TFEB phosphorilation rate 0.0027
β [s−1] TFEB transport rate 5.6 ·10−4

a [s−1] feedback species consumption 0.86 ·10−4

b [s−1] feedback species production 0.89 ·10−4

Table 4.1: Parameters of mTOR inhibition model identified by the grey box identi-
fication approach.

identification using the MATLAB function nlgreyest of the System Identification

Toolbox [174] on the selected data set. The estimated model parameters are reported in

Table 4.1, while the response of the identified model to the input signals are shown in

Fig. 4.14B,C where they are also compared to the experimental output. The code used

for this identification is available on GitHub (see Appendix B.4).

Using this final model, I simulated TFEB translocation when mTOR is inhibited

in combination with either protein synthesis or proteasome inhibitions. Specifically,

to simulate the effect of Cycloheximide (the protein synthesis inhibitor), I imposed

the mTOR translation rate (i.e. a2 in Eq. 4.10-2) equal to 0. While to simulate the

effect of Bortezomib (the proteasome inhibitor), the mTOR degradation rate (i.e. b2 in

Eqs. 4.10). The simulations (Fig. 4.15) show that the biological hypothesis formulated

is able to explain TFEB nuclear accumulation even upon the end of the Torin1 treatment

in presence of Cycloheximide (Fig. 4.15A) or Bortezomib (Fig. 4.15B), but it can not

explain the overshoot disappearing suggesting that two different biological processes

are involved.

The code to run all the simulations shown in this Section is available on GitHub (see

Appendix B.4).

Beyond the biological explanation for the phenomena that I have observed, the data

shown in this Chapter could be of great interest for clinical research. Indeed, as I said,
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Figure 4.15: Dynamical model of mTOR inhibition upon Torin1 treatment. (A) Nu-
merical simulation of TFEB translocation in the presence of a train of Torin1 treatments
in combination with a constant protein synthesis inhibition. (B) Numerical simulation
of TFEB translocation in the presence of a train of Torin1 treatments in combinantion
with a constant proteasome inhibition.

both mTOR inhibitors and Bortezomib are both being investigated as cancer treatment,

even if not in combination. However, following our results, their combination could be

tested in cancer therapy to increase the greatly potentiate the effect of mTOR inhibition.
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Chapter 5

Conclusions

In this Thesis, I combined experimental approaches from Molecular and Cell Biology

with Biomedical Engineering methodologies for quantitative investigation and control

of gene regulatory networks. Specifically, I focused on two different biological pro-

cesses: the cell cycle in yeast and the mTORC1 pathway in human cells. To achieve

this aim, I took advantage of the tools of Cybergenetics, a novel discipline at the edge

between Synthetic Biology and Biomedical and Control engineering. Cybergenetics,

indeed, provides quantitative and methodological tools to understand how gene net-

works work and to robustly steer their behavior in a prescribed fashion. My research

has been focused on an external control strategy, as reviewed in Chapter 1, using an

automated microfluidic-based experimental platform described in Chapter 2, already

implemented in the lab and that I have refined with custom segmentation algorithms.

In Chapter 3, I used the microfluidics platform with yeast cells to implement control

strategies that I designed (the open-loop and the stop&go controllers) to automatically

synchronise the cell cycle in a population of yeast cells. Both control strategies suc-

cessfully achieved the control task, as demonstrated by all the synchronisation indices I

evaluated. However, while the open-loop strategy has to be finely tuned to set the right

conditions for the synchronisation, the closed-loop stop&go control strategy is much

more robust to environmental disturbances, e.g. the changes in temperature and carbon
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source. Indeed, the stop&go strategy is able to self-adapt to alternation in the cell cycle,

which is an intrinsic characteristic of feedback loop control strategies.

In Chapter 4, I used a similar platform but in human cells and for a different purpose,

that is to quantitatively measure and model the dynamics of TFEB nuclear transloca-

tion, and to understand the underlying biological mechanisms driving it. The results I

obtained allowed me to observe complex and rich dynamics following amino-acid star-

vation and chemical inhibition of mTOR, which were previously unreported; I then

developed a dynamical mathematical model describing TFEB nuclear shuttling and

mTORC1 activity. Moreover, I was able to propose a new mechanism of action for how

drugs that inhibit mTORC1 work. Indeed, experimental data highlighted the presence

of a novel mechanism never observed before. I speculated that the particular behaviour

observed was due to negative feedback regulation, but I was not able to identify the in-

volved pathway. Nevertheless, the experiments done to identify the feedback regulation

have shown that a combination of mTOR inhibitors with other pharmacological agents

inhibiting the proteasome or protein synthesis have a synergistic effect, as demonstrated

by the TFEB nuclear accumulation upon mTOR inhibitor removal, leading to new pos-

sible therapies for those diseases where mTORC1 inhibition is beneficial, such as cancer

and neurodegenerative diseases.

5.1 Future perspectives

5.1.1 Self-synchronised yeast population

The results shown in Chapter 3 open the way for the construction of the first ever self-

synchronised yeast population. Such a strain will present all the advantages highlighted

in Chapter 3, allowing to study the cell-cycle phases and to increase production of

biomolecules, without the drawbacks of an external controller, e.g. the need for real-

time measurements of cell-cycle phase.
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The theoretical work presented in [175] shows the feasibility of creating such a

yeast strain by implementing in the cell the stop&go control strategy through a quorum

sensing mechanism. In brief, such controller could be achieved by engineering a strain

where the cell cycle stops in G1 if the quorum sensing molecule does not reach a pre-

defined threshold, and by having the cells produce the quorum sensing molecule only

in the G1 phase. Hence, if enough cells are in the G1 phase, then the quorum sensing

molecule will accumulate and start the cell cycle in all the cells synchronously; dur-

ing the cell cycle the quorum sensing is not produced and thus will decrease below the

threshold, and thus stopping cells in G1 again. Such a strain is now being engineering

in our lab.

5.1.2 mTORC1 inhibitors in cancer treatment

As described in Chapter 4, the mTOR pathway is deregulated in different pathologi-

cal conditions, including cancer and neurodegenerative disorders. Therefore, mTOR

inhibitors are often used for the treatment of these conditions. I showed that combin-

ing mTOR inhibitors with other compounds, such as protein synthesis and degradation

inhibitors, can prolong the effect of the treatment. Furthermore, in [173], the authors

demonstrated a synergistic effect in reducing cell vitality by combining an mTOR in-

hibitor with a proteasome inhibitor in three different multiple myeloma cell lines, con-

firming the data I have obtained.

It would be interesting to understand the biological mechanism steering this be-

haviour and to test the hypothesis presented in Chapter 4 regarding the cellular accu-

mulation of the inhibitor. To this end, we are performing an experiment in which we

will take advantage of the nature of these drugs. Briefly, these compounds compete

with the ATP in the binding with mTOR. Thus, by providing enough ATP to the cell,

it should be possible to prevent drug binding to mTOR. Therefore, if the hypothesis on

the Torin1 persistence in the cell is correct, then by treating with ATP the cell should
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recover its wild-type phenotype, i.e. TFEB should become again cytosolic, even in the

presence of protein synthesis and degradation inhibitors.

Finally, these data may have great relevance in clinics. Therefore, it would be im-

portant to test if cancer cell lines are sensitive to co-treatment of mTOR inhibiton with

Bortezomib, a proteasome inhibitor currently in clinical trial for melanoma. If these ex-

periments confirm this synergistic effect, these combinations could be tested in clinical

trials to improve the treatment in some forms of cancer.

90



Appendix A

Supplementary Data

Uncontrolled (+MET)
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Figure A.1: Htb2-mCherry expression in methionine-rich medium. Representative
phase contrast (top) and fluorescence (bottom) images from a time-lapse experiments
of cells grown in methionine-rich medium at the indicated time points. Scale bar, 5 µm.
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Figure A.2: Closed-loop stop&go control experiments in the non-cycling yeast
strain. Experimental implementation of the stop&go control strategy. An initial cali-
bration phase of 30min was required to set up the phase estimation algorithm. Dashed
lines indicate the start and the end of the control experiment, after which cells are grown
in methionine-depleted (A-E) or methionine-rich medium (F-J). (A, F) Distribution of
the YFP fluorescence signals measured across the cell population over time. Fluores-
cence values are binned into 4 colours, corresponding to the quartiles, for clarity of
visualisation. (B, G) Time-series of the mean YFP fluorescence signal measured across
the cell population. (C, H) Single-cell fluorescence traces over time. Each horizontal
line corresponds to one cell. (D, I) Time-series of the budding index (blue) signal. The
red line denotes the expected value of the budding index in the case of a totally desyn-
chronised cell population. (E, J) Growth medium delivered to the cells as a function of
time. +MET: methionine-rich medium, -MET: methionine-depleted medium.
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Figure A.3: Experimental measurements of TFEB translocation in pharmaceutical
mTORC1 inhibition at different concentrations. Each figure shows single cell traces
of nuclear TFEB fluorescence (shown in the upper plot) measured in the microfluidics
platform following the correspondent input (shown in the lower plot): a train of Torin1
(@50 nM) pulses (A) or a single Torin1 (@1 µM) stimulus (B). The average of the
single-cell traces is highlighted with a solid line in the upper plot.
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Figure A.4: Experimental measurements of TFEB translocation in pharmaceutical
mTORC1 inhibition. The upper plot shows single cell traces of nuclear TFEB fluores-
cence measured in the microfluidics platform following a train of Torin1 (@300 nM)
pulses (shown in the lower plot). The average of the single-cell traces is highlighted
with a solid line in the upper plot.
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Appendix B

Material and Methods

B.1 Microfluidics

B.1.1 Device fabrication protocol

I have used replica molding technique to obtain polydimethylsiloxane (PDMS) repli-

cas of both devices presented in Section 2.1 [57, 59] by using a master mold of the

features as blueprint. The master mold has been produced using a 4” silicon wafer as

substrate (Silicon Valley Microelectronics, US) by a way of layer-by-layer photolithog-

raphy [176].

Before the fabrication of the microfluidic devices the master is exposed to chloro-

trimethylsilane (Sigma-Aldrich Co.) vapours for 10min to create an anti-sticking silane

layer for PDMS. PDMS is prepared by mixing Sylgard 184 Elastomer curing agent and

base (DOW corning) in a 1 : 10 ratio. PDMS is poured onto the master mold, degassed

for 30 minutes, cured for 2h at 80◦C, allowed to cool to room temperature and then

peeled from the wafer. PDMS was then autoclaved for 30min at 121◦C to ensure long-

term viability of cells in the devices. Holes for the ports were punched using a 22-

guage (for Ferry’s device) and 24-gauge (for Kolnik’s device) blunt needle in order to

create fluidic ports for the access of cells and liquid substances. The PDMS devices
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obtained are rinsed in isopropyl alcohol and distilled water to remove debris. For each

PDMS piece containing microchannels a thin glass slide (0.16mm and 25mm, VWR)

is cleaned in methanol and 70% ethyl alcohol. Finally the PDMS layers and glass

slides are exposed to oxygen plasma in Plasma Cleaner machine (ZEPTO version B,

Diener electronic GmbH) for 1min and brought into contact forms a strong irreversible

bond between two surfaces. As last step, all devices were checked for faults inside and

outside the channels.

B.2 Yeast strain protocols

B.2.1 Yeast strain derivation

The Saccharomyces cerevisiae strain used in this study is congenic with W303 strain.

It is the SJR14a4d strain from [82] (a kind gift from S. J. Rahi).

B.2.2 Cell culture

Unless otherwise specified, yeast cells were grown at 30◦C in either synthetic complete

medium, composed of yeast nitrogen base (0.67%w/v) with all amino acids; or syn-

thetic complete drop-out medium, composed of yeast nitrogen base (0.67%w/v) with

all amino acids except methionine; both supplemented with glucose (2%w/v) as car-

bon source. For the carbon source perturbation experiments, synthetic complete media

were supplemented with galactose (2%w/v).

B.2.3 Microfluidic device cell loading protocol

For microfluidics experiments, cells from a frozen glycerol stock (−80◦C) were re-

suspended in 10mL of either methionine-free growth medium, grown overnight in a

shaking incubator at 220r.p.m. and 30◦C, and then injected in the microfluidics de-

vice as previously described [34] by pouring the batch culture in a syringe that was
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temporarily connected to the loading port of the microfluidics device.

B.2.4 Microfluidic experiments protocol

The microfluidics experimental platform was initialised as previously described [34].

Briefly, a microfluidics device was filled with double distilled water for removing air

bubbles. Next, two syringes filled with −MET and +MET media were first mounted

on the automated actuation system and connected to the inlet ports of the microfluidics

device. Afterwards, three syringes filled with double distilled water were connected to

the remaining ports of the microfluidics device for balancing the flow pressure inside

the device. Finally, the microfluidics device was placed in the opaque cage incubator

of the microscope that was preheated to either 30◦C (nominal condition) or 27◦C (tem-

perature perturbed condition). Unless otherwise specified, after loading, cells were left

to settle in the chamber for 15min fed with either methionine-depleted growth medium.

After that, the operator run the image acquisition and the custom MATLAB software.

At the beginning of the experiment, a region of interest (ROI) was selected on the first

acquired phase contrast image. Specifically, the ROI defines the area containing the S.

cerevisiae cells that have to be segmented and tracked, and whose fluorescence signals

have to be quantified.

B.2.5 Perturbed experiments protocol

For perturbed experiments, the microfluidic platform was set as described in Section B.2.4.

For the carbon source perturbation experiments, cells were treated as in the nominal

conditions except that galactose was the only carbon source added to the growth me-

dia. For the temperature perturbation experiments, cells were grown as in the nominal

conditions except that the temperature was maintained at 27◦C in lieu of 30◦C.
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B.3 Mammalian cells protocols

B.3.1 Cell line derivation

The HeLa cell line was built starting from the cell line described in the Settembre et

al. [143], In which I stably integrated by the Tol2 transposon vector system [177] a plas-

mid constitutively expressing the nuclear marker H2B-mCherry, as described in [40]. In

order to generate the monoclonal cell population mCherry/eGFP double positive cells

were sorted at single cell level by using a BD FACS Aria III (Becton Dickinson) and

subsequently they were expanded.

B.3.2 Cell culture

HeLa cells are cultured in RPMI (EuroClone) supplemented with 10% FBS (Euro-

Clone), 1% Penicillin/Streptomycin (EuroClone), 2mM Glutamine (EuroClone) and

1mg/ml G418 (Sigma-Aldrich Co.) and are kept in a standard tissue culture incubator

at 37◦C, 5% CO2 and 98% of humidity.

Cells are splitted twice per week using PBS (Gibco) and trypsin (Gibco) and seeded

at 2000 cells/cm2.

The day before the loading of the microfluidic device cells were splitted 1 : 3 and

placed back into the incubator.

B.3.3 Microfluidic device cell loading protocol

For device loading, cells are washed with sterile Phosphate-Buffered Saline (PBS,

Gibco), detached from the culture dishes by exposing to 0.25% Trypsin EDTA for 1

minute and centrifuged to form a pellet. Then, to obtain a seeding density of about 10

cells per chamber, the cells pellet is re-suspended in complete media.

The channel of the device are then completely filled with fluid (except for the culture

chambers) by applying complete media first through port 5 and then through port 2 once
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it is filled with fluid. The cell suspension is loaded into the main channel of the device

from port 2 and a vacuum is applied in the channel adjacent to the culture chambers

(ports 3 and 4) to evacuate air and replace the chamber volume with fluid containing

cells. Remaining untrapped cells in the main channel are washed away at a high flow

rate without disturbing cells inside the traps. Fluidic connections from the ports of the

device to syringes containing growth medium are then established using 24 gauge PTFE

tubing (Cole-Parmer Inc.) interfaced via 22 gauge stainless steel luer stub pins.

Once cells are loaded in the microfluidc device, they are allowed in a cell culture

incubator for 24h in perfusion conditions providing that the cells in chambers receive

fresh medium from syringe connected to port 5 and the waste medium is washed trough

port 1, while all the other ports (2, 6 and 7) are plugged.

B.3.4 Experimental protocol

The microfluidics experimental platform was initialised as previously described [40].

The device is secured on the microscope stage within an environmental chamber main-

tained at 37◦C with humidified 5% CO2 and 60mL syringes are connected to its ports

and hanged at different heights, in order to regulate the flow from the inlets (ports 6

and 7) to the outlets (ports 5, 1 and 2) according to hydrostatic pressure. The syringes

connected to the outlets port contain 10mL of standard complete culture medium and

they serve as a waste tanks. The syringes connected to the inlets port are filled as in-

dicated in each experiment, i.e. with the drugs indicated in Table B.1, and secured on

the linear actuator. Specifically, the not inducer syringe was filled with standard growth

medium eventually enriched with the indicated inhibitor (Bafilomycin A1, Bortezomib

or Cycloheximide), whereas the inducer syringe was filled with either HBSS (Gibco) or

medium with Torin1 at the indicated concentration, both eventually enriched with the

indicated inhibitor (Bafilomycin A1, Bortezomib or Cycloheximide).
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Table B.1: Compounds used for microfluidic experiments in mammalian cells
Drug Concentration Company

Torin1 50nM, 300nM or 1 µM Selleck Chemicals
AZD8055 300nM Selleck Chemicals

Bafilomycin A1 100nM Selleck Chemicals
Bortezomib 100nM Selleck Chemicals

Cycloheximide 50 µg/ml Sigma

B.4 Code availability

The source code used for the cell cycle synchronisation is available on GitHub at

https://github.com/dibbelab/Cycloop49.

The source code used for the study of mTORC1 inhibition dynamics is available

from GitHub at https://github.com/dibbelab/s.napolitanoPhd/tree/

main/TFEB_QuantitativeAnalysis.

100

https://github.com/dibbelab/Cycloop49
https://github.com/dibbelab/s.napolitanoPhd/tree/main/TFEB_QuantitativeAnalysis
https://github.com/dibbelab/s.napolitanoPhd/tree/main/TFEB_QuantitativeAnalysis


Bibliography

[1] A. S. Hansen and E. K. O’Shea, “Limits on information transduction through

amplitude and frequency regulation of transcription factor activity,” Elife, vol. 4,

p. e06559, 2015.

[2] A. Isomura and R. Kageyama, “Ultradian oscillations and pulses: coordinating

cellular responses and cell fate decisions,” Development, vol. 141, no. 19, pp.

3627–3636, 2014.

[3] J. E. Toettcher, O. D. Weiner, and W. A. Lim, “Using optogenetics to interrogate

the dynamic control of signal transmission by the ras/erk module,” Cell, vol. 155,

no. 6, pp. 1422–1434, 2013.

[4] Y. E. Antebi, N. Nandagopal, and M. B. Elowitz, “An operational view of in-

tercellular signaling pathways,” Current opinion in systems biology, vol. 1, pp.

16–24, 2017.

[5] J. H. Levine, Y. Lin, and M. B. Elowitz, “Functional roles of pulsing in genetic

circuits,” Science, vol. 342, no. 6163, pp. 1193–1200, 2013.

[6] A. L. Paek, J. C. Liu, A. Loewer, W. C. Forrester, and G. Lahav, “Cell-to-cell

variation in p53 dynamics leads to fractional killing,” Cell, vol. 165, no. 3, pp.

631–642, 2016.

101



Bibliography

[7] A. S. Hansen, N. Hao, and E. K. O’shea, “High-throughput microfluidics to con-

trol and measure signaling dynamics in single yeast cells,” Nature protocols,

vol. 10, no. 8, pp. 1181–1197, 2015.

[8] J. Stewart-Ornstein and G. Lahav, “p53 dynamics in response to dna damage

vary across cell lines and are shaped by efficiency of dna repair and activity of

the kinase atm,” Science signaling, vol. 10, no. 476, 2017.

[9] K. Lane, D. Van Valen, M. M. DeFelice, D. N. Macklin, T. Kudo, A. Jaimovich,

A. Carr, T. Meyer, D. Pe’er, S. C. Boutet et al., “Measuring signaling and rna-seq

in the same cell links gene expression to dynamic patterns of nf-κb activation,”

Cell systems, vol. 4, no. 4, pp. 458–469, 2017.

[10] S. Zambrano, I. De Toma, A. Piffer, M. E. Bianchi, and A. Agresti, “Nf-κb

oscillations translate into functionally related patterns of gene expression,” Elife,

vol. 5, p. e09100, 2016.

[11] M. Junkin, A. J. Kaestli, Z. Cheng, C. Jordi, C. Albayrak, A. Hoffmann, and

S. Tay, “High-content quantification of single-cell immune dynamics,” Cell re-

ports, vol. 15, no. 2, pp. 411–422, 2016.

[12] R. A. Kellogg, R. Gómez-Sjöberg, A. A. Leyrat, and S. Tay, “High-throughput

microfluidic single-cell analysis pipeline for studies of signaling dynamics,” Na-

ture protocols, vol. 9, no. 7, pp. 1713–1726, 2014.

[13] R. A. Kellogg and S. Tay, “Noise facilitates transcriptional control under dy-

namic inputs,” Cell, vol. 160, no. 3, pp. 381–392, 2015.

[14] S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert,

“Single-cell nf-κb dynamics reveal digital activation and analogue information

processing,” Nature, vol. 466, no. 7303, pp. 267–271, 2010.

102



Bibliography

[15] M. Santorelli, D. Perna, A. Isomura, I. Garzilli, F. Annunziata, L. Postiglione,

B. Tumaini, R. Kageyama, and D. di Bernardo, “Reconstitution of an ultradian

oscillator in mammalian cells by a synthetic biology approach,” ACS synthetic

biology, vol. 7, no. 5, pp. 1447–1455, 2018.

[16] S. Yoshiura, T. Ohtsuka, Y. Takenaka, H. Nagahara, K. Yoshikawa, and

R. Kageyama, “Ultradian oscillations of stat, smad, and hes1 expression in re-

sponse to serum,” Proceedings of the National Academy of Sciences, vol. 104,

no. 27, pp. 11 292–11 297, 2007.

[17] H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, and

R. Kageyama, “Oscillatory expression of the bhlh factor hes1 regulated by a

negative feedback loop,” Science, vol. 298, no. 5594, pp. 840–843, 2002.

[18] I. Imayoshi, A. Isomura, Y. Harima, K. Kawaguchi, H. Kori, H. Miyachi, T. Fu-

jiwara, F. Ishidate, and R. Kageyama, “Oscillatory control of factors determining

multipotency and fate in mouse neural progenitors,” Science, vol. 342, no. 6163,

pp. 1203–1208, 2013.

[19] M. Khammash, M. Di Bernardo, and D. Di Bernardo, “Cybergenetics: Theory

and methods for genetic control system,” in 2019 IEEE 58th Conference on De-

cision and Control (CDC). IEEE, 2019, pp. 916–926.

[20] K. J. Åström and P. R. Kumar, “Control: A perspective.” Autom., vol. 50, no. 1,

pp. 3–43, 2014.

[21] D. Del Vecchio, A. J. Dy, and Y. Qian, “Control theory meets synthetic biology,”

Journal of The Royal Society Interface, vol. 13, no. 120, p. 20160380, 2016.

[22] G. Perrino, A. Hadjimitsis, R. Ledesma-Amaro, and G.-B. Stan, “Control engi-

neering and synthetic biology: working in synergy for the analysis and control of

microbial systems,” Current Opinion in Microbiology, vol. 62, pp. 68–75, 2021.

103



Bibliography

[23] V. Hsiao, A. Swaminathan, and R. M. Murray, “Control theory for synthetic bi-

ology: recent advances in system characterization, control design, and controller

implementation for synthetic biology,” IEEE Control Systems Magazine, vol. 38,

no. 3, pp. 32–62, 2018.

[24] F. Ceroni, A. Boo, S. Furini, T. E. Gorochowski, O. Borkowski, Y. N. Ladak,

A. R. Awan, C. Gilbert, G.-B. Stan, and T. Ellis, “Burden-driven feedback control

of gene expression,” Nature methods, vol. 15, no. 5, pp. 387–393, 2018.

[25] T. Frei, F. Cella, F. Tedeschi, J. Gutiérrez, G.-B. Stan, M. Khammash, and V. Si-

ciliano, “Characterization and mitigation of gene expression burden in mam-

malian cells,” Nature communications, vol. 11, no. 1, pp. 1–14, 2020.

[26] R. D. Jones, Y. Qian, V. Siciliano, B. DiAndreth, J. Huh, R. Weiss, and

D. Del Vecchio, “An endoribonuclease-based feedforward controller for decou-

pling resource-limited genetic modules in mammalian cells,” Nature communi-

cations, vol. 11, no. 1, pp. 1–16, 2020.

[27] G. Lillacci, Y. Benenson, and M. Khammash, “Synthetic control systems for

high performance gene expression in mammalian cells,” Nucleic acids research,

vol. 46, no. 18, pp. 9855–9863, 2018.

[28] H.-H. Huang, M. Bellato, Y. Qian, P. Cárdenas, L. Pasotti, P. Magni, and

D. Del Vecchio, “dcas9 regulator to neutralize competition in crispri circuits,”

Nature communications, vol. 12, no. 1, pp. 1–7, 2021.

[29] G. Fiore, A. Matyjaszkiewicz, F. Annunziata, C. Grierson, N. J. Savery,

L. Marucci, and M. di Bernardo, “In-silico analysis and implementation of a

multicellular feedback control strategy in a synthetic bacterial consortium,” ACS

Synthetic Biology, vol. 6, no. 3, pp. 507–517, 2017.

104



Bibliography

[30] F. Annunziata, A. Matyjaszkiewicz, G. Fiore, C. S. Grierson, L. Marucci,

M. di Bernardo, and N. J. Savery, “An orthogonal multi-input integration system

to control gene expression in escherichia coli,” ACS synthetic biology, vol. 6,

no. 10, pp. 1816–1824, 2017.

[31] L. Pasotti, M. Bellato, N. Politi, M. Casanova, S. Zucca, M. G. C. De Angelis,

and P. Magni, “A synthetic close-loop controller circuit for the regulation of an

extracellular molecule by engineered bacteria,” IEEE transactions on biomedical

circuits and systems, vol. 13, no. 1, pp. 248–258, 2018.

[32] B. Shannon, C. G. Zamora-Chimal, L. Postiglione, D. Salzano, C. S. Grierson,

L. Marucci, N. J. Savery, and M. di Bernardo, “In vivo feedback control of an

antithetic molecular-titration motif in escherichia coli using microfluidics,” ACS

Synthetic Biology, vol. 9, no. 10, pp. 2617–2624, 2020, * An in-vivo study in

microfluidics showing that it is possible to finely regulate gene expression in a

population embedding an integral feedback control.

[33] M. Whiteley, S. P. Diggle, E. P. Greenberg, and E. O. Wilson, “Bacterial quorum

sensing: the progress and promise of an emerging research area,” Nature, vol.

551, no. 7680, pp. 313–320, 2017.

[34] G. Fiore, G. Perrino, M. Di Bernardo, and D. Di Bernardo, “In vivo real-time

control of gene expression: a comparative analysis of feedback control strategies

in yeast,” ACS synthetic biology, vol. 5, no. 2, pp. 154–162, 2016.

[35] C. Fracassi, L. Postiglione, G. Fiore, and D. Di Bernardo, “Automatic control of

gene expression in mammalian cells,” ACS synthetic biology, vol. 5, no. 4, pp.

296–302, 2016.

[36] A. Milias-Argeitis, M. Rullan, S. K. Aoki, P. Buchmann, and M. Khammash,

“Automated optogenetic feedback control for precise and robust regulation of

105



Bibliography

gene expression and cell growth,” Nature communications, vol. 7, no. 1, pp. 1–

11, 2016.

[37] J.-B. Lugagne, S. S. Carrillo, M. Kirch, A. Köhler, G. Batt, and P. Hersen, “Bal-

ancing a genetic toggle switch by real-time feedback control and periodic forc-

ing,” Nature communications, vol. 8, no. 1, pp. 1–8, 2017.

[38] R. Chait, J. Ruess, T. Bergmiller, G. Tkačik, and C. C. Guet, “Shaping bacte-
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