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ABSTRACT 

 

 

 

Campi Flegrei is a large volcanic complex located west of the city of Naples, Italy. 

The area has been the site of volcanic activity for more than 60 ka and represents a 

potential volcanic hazard owing to the large local population. In this study, the 

geochemistry of the magma associated with two different eruptions at Campi Flegrei 

has been characterized, with the aim to identify geochemical trends that may help to 

predict the style and nature of future eruptions. Two eruptions of different age and 

eruptive style have been selected for study, Fondo Riccio (9.5 ka) and Minopoli 1 

(11.1 ka). A scoria (CF-FR-C1) and a bomb (CF-FR-C2) were collected from the 

Fondo Riccio eruption, and two scoria samples were collected from Minopoli 1 (CF-

Mi1-C1 and C2) eruption. 

The pre-eruptive volatile content of magma plays an important role in the style 

of eruption and can be assessed from studies of melt inclusions (MI) contained in 

phenocrysts. Major and trace elements in Fondo Riccio MI show a wider variation 

compared to those in Minopoli 1 MI suggesting that the Fondo Riccio magma 

residence time was longer compared to the Minopoli 1 magma. Analyses of volatile 

contents in MI suggest that Fondo Riccio magma may have been more water-rich 

than Minopoli 1 magma, consistent with the more explosive character of this eruption 

compared to Minopoli 1. Trace element data suggest a combination of arc volcanic 

and upper continental crust magma as the source for the Fondo Riccio and Minopoli 1 

eruptions. 
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Cap. 1 
 
 
 
INTRODUCTION 
 
 
 
 
 

The geochemical evolution of an active volcanic system and identification 

of the parameters that play a role in determining the style of an eruption are of 

fundamental importance to understand the past behavior of a magmatic system 

and to forecast future behavior. Development of geochemical models for volcanic 

eruption forecasting require information on the volatile content of the magma 

before an eruption, because volatiles play a major role in controlling the nature 

and style of eruptive events (Anderson, 1976; Burnham, 1979).  The exsolution 

and expansion of volatiles (especially H2O) provides the mechanical energy that 

drives explosive volcanic eruptions.  The original volatile content of magma can 

be estimated by analyzing melt inclusions (MI) contained in phenocrysts 

(Anderson, 1974; Clocchiatti, 1975; Roedder, 1979; Belkin et al., 1985; Sobolev, 

1990; Lowenstern, 1994; Anderson, 2003; Wallace, 2005). Moreover, MI may 

provide information concerning crystallization and mixing histories of magmas 

and also the conditions of primary melt generation and extraction (Roedder, 1984; 

Carroll and Holloway, 1994; Lowenstern, 1994; Sobolev, 1996; Marianelli et al., 

1999; Danyushevsky et al., 2000; Frezzotti, 2001). 

The Campi Flegrei volcanic complex is an active volcanic field in the 

Neapolitan area (Italy) that has experienced predominantly explosive volcanic 

activity for more than 60,000 years. The city of Pozzuoli lies close to the Solfatara 

crater (actually it was built on the deposits of numerous eruptions of the past 10 

ka) while Naples, with 1.5 million inhabitants, is nearby, between Campi Flegrei 

and Vesuvius. The volcanic risk in this area is significant because of the large 
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population and is a compelling reason to better understand the evolution of the 

Campi Flegrei complex and the mechanisms that lead to explosive eruptions. We 

studied the products of two eruptions that occurred in Campi Flegrei during the 

First Cycle: Fondo Riccio (9.5-10.3 ka) and Minopoli 1 (10.3-11.5 ka). Fondo 

Riccio was an explosive strombolian eruption that occurred near the center of the 

Campi Flegrei caldera, whereas Minopoli was an explosive hydromagmatic 

eruption that occurred along the regional fault system in the northern portion of 

the Campi Flegrei caldera.  Data from MI were used to constrain the evolution of 

major and volatile (H2O, Cl, S and F) element concentrations, with the goal to 

reconstruct the crystallization history of the magmas and assess pre-eruptive 

volatile abundances for the two eruptions. 
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Cap. 2 
 
CAMPI FLEGREI (PHLEGRAEAN FIELDS) 
 
 
 
 
 

 
 

2.1 Tectonic Setting 
 
 

The Campanian Province, the southernmost sector of the Plio-Quaternary 

volcanic belt along the Italian peninsula, is formed by the active volcanoes 

Somma-Vesuvius, Ischia and Campi Flegrei (Phlegraean Fields) and by the 

islands of Procida and Vivara (Fig.2.1). Sometimes the Pontine islands (Ponza, 

Palmarola, Zannone, Ventotene and Santo Stefano) are included in the Campanian 

Province even if petrological data suggest that just Ventotene, Santo Stefano and 

the youngest rocks of Ponza (1 Ma) have similar composition with those from 

Campanian Volcanoes.  

The volcanic centers of the Campanian Province developed in Quaternary 

extensional basins along the Tyrrhenian Sea border at the intersection between 

NE-SW and NW-SE fault systems. The Pontine Islands form a row of volcanoes 

(W-E trend) along the 41st parallel tectonic Line (Serri 1990; Bruno et al., 2000).  

The thickness of the lithosphere along this transect varies from about 50km along 

the Tyrrhenian Sea border to more than 110 km in the Apulia foreland.  The depth 
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of Moho has a range between 20-25 km offshore the Tyrrhenian Sea cost, 40km 

beneath the central zone of the Apennine chain and 30km beneath the Apulia 

foreland (Piromallo and Morelli, 2003).  
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Fig. 2.1  Schematic tectonic map of Italy showing the main tectonic blocks. The box A 
outlines the region of the Campi Flegrei volcanic complex shown in the enlargement. (A) 
map of Campi Flegrei (by Google Earth).   
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The area between the Campanian Province and Vulture  (located east of 

the Apennine chain on the western border of the Apulia foreland)  is characterized 

by a moderate elevation and positive Bouguer anomaly, which crosses the 

Apennines from Tyrrhenian sea to Apulia. Such a lineament is sited along the 

continuation of 41st Parallel Line which divides the northern and southern section 

of the Tyrrhenian basin (Bruno et al, 2000).  

The Campi Flegrei Volcanic District lies in the Campanian Plain (CP), 

between the western side of the Southern Apennine Chain and the eastern border 

of the Tyrrhenian abyssal plain. Since late Miocene-early Pliocene, the Tyrrhenian 

Sea has been opening (Scandone, 1979; Doglioni, 1991) and the Calabrian arc has 

migrated to the SE following rollback of the subducted Ionian plate under 

Calabria (Selvaggi and Chiarabba, 1995; Piromallo and Morelli, 1997; Gvirtzman 

and Nur, 2000), as shown in Fig.2.2. Extension in the Tyrrhenian basin was 

accompanied by contemporaneous compression in the Apennine chain (Meletti et 

al., 2000). As a result of motions of the Tyrrhenian and Ionian blocks, the CP 

became a structural depression bordered by NW-SE and NE-SW trending faults 

(D’Argenio et al., 1973; Ippolito et al., 1975; Hippolyte et al., 1994). Geological, 

geophysical and petrologic evidence (Selvaggi and Amato, 1992; Serri et al., 

1993; Peccerillo, 1999) suggest that subduction of oceanic lithosphere (from the 

relict Ionian basin) beneath the Apennines occurred concomitant with thinning of 

the continental lithosphere in the region of the Adriatic Sea, Sicily and North 

Africa. 
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Fig.2.2  Schematic representation of the rotation of the Italian Peninsula. (A) 65 Ma; (B) 
46 Ma; (C) 15 Ma; (D) 0 Ma. 
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2.2 Volcanic Setting 

 

 

The Campi Flegrei caldera (Fig, 2.3) is one of the most active volcanic 

systems in the Mediterranean region. The area is known for intense hydrothermal 

activity, frequent earthquakes and bradyseismic events that occurred between 

1969-1972 and 1982-1984.  

 

 

 

Fig. 2.3     DEM (Digital Elevation Model) of Campi Flegrei volcanic complex. 
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The area has been volcanically active for 60 ka (Pappalardo et al., 2002) 

and many studies have been devoted to understanding its activity (Di Girolamo et 

al., 1984; Rosi and Sbrana, 1987; Barberi et al., 1991; Pappalardo et al., 1999; De 

Vivo et al., 2001; Rolandi et al., 2003). At Campi Flegrei, numerous eruptions 

from multiple sources have produced lava and pyroclastic deposits (Fig. 2.4), 

including several lava dome structures. Some authors (Rosi and Sbrana, 1987; 

Orsi et al., 1996) relate the origin of Campi Flegrei either to the eruption of the 

Campanian Ignimbrite (CI) (39 ka, De Vivo et al., 2001), or to the Neapolitan 

Yellow Tuff (NYT) (15 ka, Deino et al., 2004). An interpretation that considers 

the eruption of the CI to be a unique event originating in the Campi Flegrei 

caldera has been questioned by De Vivo et al. (2001) and Rolandi et al. (2003). 

These authors describe a sequence of eruptive events from fractures activated 

along the neotectonic Apennine fault system parallel to the Tyrrhenian coastline. 

These events, of ignimbritic origin, lasted from >300 ka to 19 ka and are not 

confined to a unique volcanic center in Campi Flegrei (Rosi and Sbrana, 1987; 

Orsi et al., 1996). Only the Neapolitan Yellow Tuff (NYT) (15ka, Deino et al., 

2004) erupted within Campi Flegrei, whereas the CI (39 ka, De vivo et al., 2001) 

has a much wider source area (Rolandi et al., 2003). According to Pappalardo et 

al. (2002), the time between the CI and NYT eruptions is characterized by a large 

number of significantly less powerful events. Volcanism in this interval is poorly 

defined, primarily because of limited exposure due to cover by younger deposits, 

restriction to submarine exposure, and intense urbanization. Since the NYT 

eruption the edge of the caldera has been the site of at least 65 eruptions during 

three periods of activity (15.0–9.5; 8.6–8.2; and 4.8–3.8 ka), as shown in Fig. 2.5. 
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Fig. 2.4 Chronostratigraphy of the volcanic activity in Campi Flegrei (Di Vito et al., 
1999). 
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Fig. 2.5 Chronology of the volcanic activity in Campi Flegrei (modified from 
http:/www.ov.ingv.it/) 
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These eruptions were separated by quiescent periods marked by two 

widespread paleosoils (Di Vito et al., 1999). During each eruptive period, 

eruptions were separated by short-time intervals, on the order of tens of years. The 

last eruption in 1538 formed the Monte Nuovo cone (Di Vito et al., 1987) after 3.4 

ka of quiescence . 

Campi Flegrei eruptions were mostly explosive with variable degrees of 

magma/water interaction; only a few events were effusive. The volcanic products 

range from trachybasalt to alkali-trachyte and phono-trachyte, and are 

characterized by variable Sr-Nd-Pb-B isotope ratios (D’Antonio et al., 1999a; 

Pappalardo et al., 2002; Tonarini et al., 2004) and involve different magma types 

(i.e. from different sources and/or with different history) or source processes.  
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2.3 Bradyseismic Events 

 
 

 

Several theories were formulated regarding the dynamic of eruptions in 

Campi Flegrei area, but they are all based on limited evidence. The only eruption 

occurred in ancient period at Campi Flegrei described by contemporary reporters 

is the eruption that generated Monte Nuovo, a little volcanic cone with elevation 

of 150 m near Pozzuoli. We know that Monte Nuovo represents one of the minor 

events of the eruptive history of Campi Flegrei, consisting in the eruption of a 

relatively small volume of magma (about 25 millions of m3). Reading 

contemporary chronicles it is possible to assess the existence of remarkable 

bradiseismic events during the period before the eruption. 

At the beginning of XVI century the area between Baia and Pozzuoli 

developed a progressive elevation, evidenced by the migration of the coast line. 

This bradiseismic phenomenon is confirmed by several seismic events occurred 

two years before the eruption of 1538 A.D. First interpretations of bradiseismic 

events were in 1792, when some scientists started to study the traces of marine 

organisms on the Roman column of Serapide Temple, the ancient market of 

Roman Age, near the Port of Pozzuoli (Fig. 2.6). From that moment the variation 

of the sea level in Serapide Temple and in general of bradiseismic phenomena 

were interpreted in various ways. A good description is given by Parascandola 

(1947), where the author reconstructed the variations of level in Serapeo Temple 

relatively to the last 2000 years sea level. The reconstructed trend shows a general 

subsidence starting from the eruption of Monte Nuovo. 

In the last 30 years bradiseism at Campi Flegrei made often the news, 

because of an abrupt inversion of ground movement, characterized by two 

episodes of fast uplift occurred within a decade from one another. The first of this 

episodes occurred between 1970 and 1972 when the ground, accompanied by 

several earthquakes, raised about 70 cm in the Port of Pozzuoli.  

 A
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Fig. 2.6  Serapide Temple, Pozzuoli. A-B) It is  easy to observe the difference of the water 
level due to a phase of deflation of the ground. C) Traces of marine organisms on the 
Roman column of Serapide Temple. 
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The most important episode occurred between 1982 and 1984 when a very 

fast uplift of the ground level was recorded (Fig. 2.7); this level didn’t change in 

the previous ten years but showed only few oscillations. The ground uplift started 

during summer 1982 and continued with a mean velocity of about 6 cm every 

month (but it pikes of 0.5 cm per day were recorded) until 1984, when the total 

uplift reached the value of 1.80 m. During the autumn of 1984 uplift velocity 

decreased, and at the end of that year inflation ended and a new phase of deflation 

started which continues today. Uplift episodes are also characterized by horizontal 

deformations whose value is approximately equal to the half of vertical uplift. 

 

 

 
 

Fig. 2.7  Variation of elevation (in mm)  measured at datum point number 25, in 
Pozzuoli. In the table it is showed the amount of deformation (in cm) for each observed 
period.  
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Ground deformations in volcanic areas are generated by the rising of the 

pressure of the rocks at a certain depths; the expansion source depth is determined 

by the amplitude of deformed area. Ground deformations in Campi Flegrei, 

limited to a circular zone with radius from Pozzuoli less than 3 km, showed a 

source centre at a depth of 2-3 km. 

In this area proposed causes for the deformations are: 1) the migration of 

hot flows under pressure (Oliveri del Castillo e Quagliariello, 1969; Casertano et 

al., 1976; Oliveri del Castillo e Montagna, 1984); 2) overpressure in a magmatic 

chamber (Corrado et al., 1977; Berrino et al., 1984; Bonafede et al., 1986; Bianchi 

et al., 1987); 3) overpressure of the magmatic chamber and heat convective 

transfer to confined superficial aquifers (Bonafede, 1990; De Natale et al., 1991).  

The latter hypothesis is supported by De Vivo et al. (1989, personal 

communication) who suggest that ground deformations could be generated by the 

heating of the aquifers overlying the magmatic chamber. Heated fluids would 

remain under lithostatic pressure for long periods and the heat, supplied by 

continuous input of magma, could determine overpressure in the upper area 

confined by impermeable rocks, causing uplift of overlying rocks (positive 

bradisism). A crisis would occur with a change from lithostatic to hydrostatic 

pressure, with consequent boiling, hydraulic fracturing, volcanic tremor and then 

pressure release. At this point the area would experience maximum rising, then 

followed by pressure release and beginning of subsidence. Afterward the system, 

saturated with boiling fluids, begins to seal again. The beginning of a new positive 

bradisism phase will occur only after several years when the system “reloads” 

with new lithostatic pressure. Ground deformations and the seismicity are 

associated with the presence of intense fumarolic and hydrothermal activity, 

concentrated in the crater of Solfatara where CO2 and H2O fluxes are particularly 

intense and probably originated by a magmatic degassing system (Chiodini et al., 

2001). 
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Cap. 3 
 
MELT INCLUSIONS 

 
 
 

3.1 What are they?  
 

 

Silicate-melt inclusions (MI) are small droplets (in volcanic rocks usually 

>50 μm) of silicate melt containing some combination of crystals, glass and vapor 

entrapped in different minerals during their growth. They can form at high 

pressure and temperatures and are contained within relatively incompressible 

phenocrysts, so they retain high concentrations of volatile elements that normally 

escape from magma during the degassing. For this reason they represent a unique 

chance to reconstruct the chemical composition of magma at a specific stage of its 

evolution. After trapping of MI, these Microsystems closed and evolved 

independently from the host minerals and the enclosing lava. MI  have been 

studied for nearly 150 years, although most of the early studies were simply 

descriptive, with little or no interpretations of their significance in terms of 

geological processes. During this same period, a parallel but much more intensive 

study was under way of aqueous inclusions. In contrast with the study of MI, the 

aqueous inclusions studies almost immediately began to yield data on many 

geological and economically important processes (temperature of hydrothermal 

ore-formations, compositions of fluids actively involved in many environments). 

Similar studies of MI can in theory yield similar information of nature, origin and 

evolution of the fluid (melt) that was trapped and the process that took place in the 

past. The two areas of research that have been most fruitful are: 

 

 

a) stable isotopes (especially O, C, S, B, Cl , etc.) 

b) the volatiles. 
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For a better understanding of the next paragraphs, the following table summarize 

some of the key concepts about Melt and Fluid Inclusions:  

 

 

MELT INCLUSIONS (MI)  Contains glass or crystallized glass. 

FLUID INCLUSIONS (FI)  Contains one or more fluids at Troom and no glass  

VAPOR-RICH FI  FI with >50 vol % bubble at Troom; i.e., low density fluid.

MIXED INCLUSIONS  More than one magmatic phase trapped. 

HYDROSALINE MELT  Molten solution of salts and H2O 

 

 

 
The study of MI allows researchers to have information about dissolved 

volatile concentrations in magmas (H2O, CO2, Cl, S, F, B, Li), the minimum 

pressure of crystallization, the approximate temperature during crystallization, the 

existence and the approximate composition of coexisting exsolved fluids. They 

are also important to investigate about the process of magma mixing and the 

existence of a time scale of magmatism/volcanism. It is not possible to obtain 

from the study of MI any information about the composition of bulk magma, the 

maximum pressure of entrapment (and therefore depth) and the role of magma in 

the formation of epithermal ore deposits. 
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3.2 History of MI 

 
 

 

In his pioneering detailed study, Sorby (1858) gave rigorous descriptions 

and drawings of MI and FI  (Fig. 3.1) in a wide variety of intrusive and extrusive 

rocks. He speculated on the origin of the bubbles within the inclusions and 

recognized that MI had marked promise for interpretations of the origin of 

igneous rocks. He was among the first to recognize that the coexistence of MI and 

FI is synonymous of entrapment in a volatile-saturated magma. For a variety of 

reasons, decades would pass before other worker followed Sorby and studied MI 

in igneous phenocrysts. The first modern studies of MI were undertaken in ’60, 

’70, ’80, by workers interested primarily in the systematic of FI in the field of 

economic geology (Roedder). 

At this time the international FI community championed the use of MI 

for studies of lunar samples (Roedder and Weiblen 1970, 1971), pegmatites, 

granoitoids and volcanic rocks (Sobolev and Kostyuk, 1975; Roedder 1979).  

The apparent low impact of MI studies on the volcanological and 

petrologic communities can be related to the uncertainty of MI as truly 

representative of the composition of the host magmas. In 1995 Eichelberg said: 

“Interpretations of melt inclusions is not without difficulties: 10-14g samples are 

taken to represent 1010 g systems.....”. 

Roedder (1979, 1984) gave a thorough discussion of MI, their origins, the 

methods of study and work and more recently (1992) the information which melt 

inclusions provide on magmatic immiscibility processes.  In 1993 Touret & 

Frezzotti describe the study techniques of MI in granitic rocks and the information 

they can provide in plutonic environments. 
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Fig. 3.1 Original drawings of silicate-melt inclusions in effusive and intrusive rocks by 
Sorby (1858). 
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In 1994 Johnson et al., discussed about the information MI provide about 

the pre-eruptive volatile contents of four magmatic systems: Kilauea, Mt. S. 

Helens, the Bishop Tuff and Mt. Pinatubo. Bodnar (1995), Kamenetsky et al 

(1999), Davidson & Kamenetsky (2001) discussed and analyzed the melt-volatile 

immiscibility process in porphyry copper deposits. The reviews by Lowenstern 

(1995, 2003), Sobolev (1996) and Wallace (2005), focused on the applications of 

silicate-melt inclusions for the study of magmatic volatiles and on the formation 

mechanisms of silicate-melt inclusions, gave further details about the study 

techniques.  

In the last decade improvements in analytical methods and careful studies 

of MI systematics made scientists more convinced of the utility of these features 

to explain the complexities of volcanic systems. The reliance on MI has come 

only after several decades of concerted effort to improve analytical techniques, to 

assess the reliability of MI due to host-inclusion equilibration (pre-, syn- or post-

trapping), and to recognize the effects of trapping multiple fluid phases. 

Additional effort has been placed on characterization of  bubbles within MI, 

which can be present for a variety of very different reasons.  

Using microbeam analysis of the quenched MI, scientist were able to 

quantify the pre-eruptive concentrations of dissolved volatile gases (i.e., H2O, 

CO2, S, and Cl), they can estimate the formation pressures of melt-vapor 

equilibration (Anderson et al., 1989). Studies of MI also allow workers to 

recognize that elements such as B, P, and F have higher concentrations in MI than 

degassed matrix glass. Studies of ore metals such as Cu, Zn and Sn show that they 

also can be transported as volatiles in magmatic systems. The reliance on MI has 

come only after several decades of concerted effort to improve analytical 

techniques, to assess the reliability of MI due to host-inclusion equilibration (pre-, 

syn- or post-trapping), and to recognize the effects of trapping multiple fluid 

phases. Additional effort has been placed on characterization of  bubbles within 

MI, which can be present for a variety of very different reasons.  

Only within the past 10-15 years volcanologists and petrologists have 

regularly accepted MI utility for characterizing magmatic systems. Their 

relatively slow acceptance was due to several reasons: 1) Lack of reliable 
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analytical techniques; 2) Concern that MI could represent anomalous boundary-

layer melts or could be  affected by leakage or post-entrapment crystallization; 3) 

Data sets indicative of heterogeneous melts; 4) Homogenization temperatures 

greater than those calculated by other techniques.  

Much of the work on MI focused on traditional homogenization 

experiments, primarily to assess magmatic temperatures, developing several 

experimentally based geothermometers.  The temperatures found from MI 

homogenization studies were in general greater than those inferred by analysis of 

coexisting Fe-Ti oxides. Roedder (1979b) suggested several reasons for high 

homogenization temperatures, such as slow diffusion of melt components, thermal 

gradients in the stage, diffusive loss of H2 or H2O. Recent studies have verified 

that homogenization studies can provide uncertain  data because of diffusion of 

volatiles through the host and stretching of the phenocryst container during 

laboratory experiments at atmospheric pressure (Massare et al., 2002). Another 

uncertainty  in the acceptance of MI studies was the large variation in apparent 

volatile concentrations in MI from some eruptive units. There are a number of 

geological reasons that can result in a spread of H2O concentrations in MI from 

volcanic phenocrysts from a single unit. Potential explanation for this variation of 

volatiles can be related to magma mixing, crystal settling, degassing-induced 

crystallization and lava drain back and recycling. Another possibility is that MI 

can decrepitate and leak during or after eruptive ascent and scientists have to be 

careful to avoid that leaked/degassed inclusions.  

Another important barrier to widespread use of melt inclusions was the 

lack of micro-analytical techniques, and the exploding development of high-

precision bulk techniques. In the 1980s, techniques such as x-ray fluorescence 

(XRF) and instrumental neutron-activation analysis (INAA) spurred a revolution 

in trace element geochemistry of whole rocks. Lots of improvements in mass 

spectrometers allowed  researchers to focus on isotopic studies of terrestrial and 

planetary samples. The new data were interpreted in light of recently developed 

plate-tectonic theory and recognition that different magma types and 

environments had their unique trace element and isotopic characteristics. Until the 

1990s, MI could not be analyzed reliably for trace elements, and analysis of 
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volatile elements was qualitative therefore volcanologists chose not to use MI to 

understand petrogenesis and volcanic phenomena. 

It had long been recognized that magmatic volatiles had a crucial role in 

the generation, ascent and crystallization of magmas (Bowen, 1928). Until 1980s 

a variety of high profile experimental studies were undertaken to determine the 

thermodynamic controls on volatile solubilities (Burnham and Jahns, 1962; 

Burnham and Davis, 1971; Eggler and Burnham, 1973; Wyllie, 1979; Whitney, 

1984). Many workers suggested that data on natural samples could not be 

properly understood without an experimental and thermodynamic basis for 

interpretation. In natural samples, volatile concentrations were estimated by bulk 

analytical techniques on lavas quenched at the surface or underwater. H2O 

fugacity was later estimated by thermodynamic models and the pressure of H2O 

was believed to be far below total pressure in most igneous systems. Many 

scientists concluded that most crustal magmas were water and vapour 

undersaturated, because of the absence of high abundances of other volatiles 

(CO2, SO2, H2, N2, Cl-bearing species.  

Nowadays, MI are used as a volcanological tool to unravel the 

complexities of very recent eruptions. Dunbar et al. (1989) undertook one of the 

first studies to use the ion microprobe to quantify H2O in MI. Roggensack et al. 

(1997) studied the degassing history of eruptions from Cerro Negro (Nicaragua) 

finding  that magmas erupted explosively in 1992 had equilibrated at greater 

depths than lavas erupted three years later as effusive lavas. Shallow subsurface 

degassing led to the decrease in explosivity. In a subsequent paper Roggensack 

(2001a) looked at the products of an 1867 eruption at Cerro Negro and found that 

MI glass composition and gas saturation pressures correlated with crystal size, 

implying that large crystals grew at greater depth (up to >15 km).  Similar studies 

on Italian volcanoes demonstrate the  importance of degassing and crystallization 

in determining eruptive style. Métrich et al. (2001) looked at crystal-rich scoria at 

Stromboli (erupted during  mild strombolian activity) and found that the MI are 

degassed and contain more evolved glass than MI from compositionally 

equivalent whole-rocks erupted as crystal-poor pumices during more energetic 

explosive activity. They suggested that volatile-rich magma batches can either 
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ascend rapidly to produce the explosive eruptions, or they can intrude to shallow 

depths and degas quietly to spur the typical strombolian eruptions. These  orts of 

studies provide new opportunities for evaluating the relationship between crystal 

growth, ascent rate, degassing and eruptive style. Besides these volcanological 

studies, petrologists have increasingly used MI to understand magma generation 

and the diversity of melt sources available to volcanic systems (Sobolev, 1996; 

Frezzotti, 2001). A recent compilation (Hauri et al., 2002) provides an excellent 

assembly of papers on MI systematics and analysis, primarily focussed on the 

petrology of mafic magma systems. The petrological and volcanological 

communities have become familiar with MI analysis and  have accepted them as a 

very powerful tool to understand magmatic systems. 
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3.3 Classification of MI 
 

 

The common terminology for categorizing aqueous or carbonic fluid 

inclusions cannot be easily applied to silicate MI hosted in volcanic rocks.. For 

example, most non-silicate FI are described by Roedder (1984) as: 

 

 1) primary; 

 2) secondary; 

 3) pseudo secondary.  

 

Primary inclusions contain any phase present at the time of crystal growth. 

Secondary inclusions contain phases that enter crystals along fractures (after 

primary crystal growth has ceased) and then are trapped as the fractures heal. 

Pseudo secondary inclusions are also trapped along fractures, but before the 

crystal has ceased growing at its periphery. Most igneous petrologists suggest that 

both primary and pseudo secondary MI are "primary" in the sense that they are 

trapped within growing crystals and yield information on the composition of the 

silicate liquid during its evolution. Under some circumstances (such as magma 

mixing), there may be more than one primary melt from which the host crystal 

grew. It is difficult to envision how secondary MI may be trapped in volcanic 

phenocrysts (because of the high viscosity of silicate melts), though Pasteris et al. 

(1996) convincingly showed how non-silicate fluids can be trapped as secondary 

inclusions, particularly during fracturing events associated with magma ascent. 

Metasomatic secondary MI are commonly described in xenoliths found in 

volcanic ejecta (Schiano et al. 1994) and can potentially form in plutonic 

environments if a silicate melt infiltrates a previously crystallized rock. Several 

studies have been conducted about the formation of crystallized MI (Roedder 

1979, 1984, Lowenstern 1995, Frezzotti, 2001). It has been noted that for a given 

inclusion size, the slower the cooling rate, the more likely the melt in the 

inclusions will crystallize. Furthermore, for a given cooling rate, the bigger the 

inclusion, the faster it will crystallize respect to a small one.  Roedder (1984) and 
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Student & Bodnar (1999) noted that in addition to cooling rate and inclusions size, 

the composition of the melt can affect the crystallization process.  In particular 

these authors suggest that the high H2O content of the melts and the fact that 

during trapping the melt was saturated in water, might have promoted 

crystallization during cooling.  

One of the most important aspects of a MI or FI study is determining 

which inclusion to study and whether these inclusions are representative of the 

physical and chemical conditions at the time of trapping. It is important to 

constrain the time of the trapping of an inclusion relative to the formation of the 

host phase, as well as the position of the host in the overall paragenesis. In 1975 

Sobolev and Kostyuk summarized the different temporal occurrence of MI during 

magmatic crystallization. They distinguish between zonal and azonal primary MI. 

Zonal inclusions define a growth zone and are common in minerals like 

plagioclase, nepheline and pyroxene, but less common in olivine.  Azonal 

inclusions are isolated and randomly distributed and are not associated with a 

specific growth feature.  

Within the FI community has been developed a procedure that allows 

researchers to select inclusions and be confident with the obtained results. This 

procedure consists in identifying a group of FI that are all trapped at the same 

time, temperature and pressure and from fluids of the same composition. This 

group of inclusions is called Fluid Inclusions Assemblage (Goldstein and 

Reynolds, 1994)  or FIA and is the most finely discriminated trapping event that 

can be identified on petrography. Because similar petrographic techniques are 

required to study MI, similarly a Melt Inclusions Assemblage, or MIA has to be 

chosen. MIA represents a group of MI trapped at the same time, temperature and 

pressure and from a melt of the same composition. In volcanic rocks, MI consist 

of glass ± one or more gas bubbles ± daughter mineral phases (Fig.3.2a). The size 

of the bubble is important because it depends mainly on cooling behavior, melt 

composition and volatile content of the inclusion. In general in volatile-poor 

melts, a single shrinkage bubble can be observed and some inclusions contain 

only glass (Fig.3.2b), while in volatile-rich melts, fluids under pressure may be 
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present within the bubble. It is sometimes difficult to detect these fluids because 

of their low density.  

 

 
 

Fig.3.2  Examples of MI in volcanic rocks. a) MI consist of glass ± one or more gas 
bubbles ± daughter mineral phases; b) MI with a single little shrinkage bubble (volatile-
poor melts); c) MI with one  big shrinkage bubble and two small bubble (volatile-rich 
melts);d) MI with a solid inclusion (www.dst.unisi.it/geofluids-lab/). 
 

 

If the magma is volatile-rich, the trapped MI will contain a large bubble at 

Troom, composed by vacuum and gas (Fig. 3.2c). The formation of primary MI is 

in general  related to irregularities in crystal growth, such as defects of growth due 

to different processes (undercooling, stagnation, kinking), wetting by an 

immiscible fluid phase, or trapping of solid inclusions (Fig. 3.2d). These 

irregularities of growth may control the distribution of inclusions within a single 

crystal (Fig. 3.3) In a b-quartz crystal (Fig. 3.3a and 3.3b) the preferential 

distribution of melt inclusions is in the {1120} faces; in olivine and pyroxene 

crystals the tendency is to trap inclusions in a more random way (Fig. 3.3c); in 

plagioclase MI fare trapped along the growth zones of the crystal (Fig. 3.3d).  
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Fig. 3.3 Irregularities of growth of the host crystal control the distribution of MI. a-b) 
Quartz; c) Pyroxene; d) Feldspar (www.dst.unisi.it/geofluids-lab/).  
 
 

A variation in temperature and/or XH2O or mixing processes have an 

important role  in the formation of melt inclusions in plagioclase. The resulting 

inclusion shapes can vary, having very often smooth morphologies and following 

the symmetry of the host mineral phases. Similarly to FI, regularly shaped 

inclusions, for example negative crystals, can be the result of re-equilibration 

processes between host mineral and the inclusions.  

Many researchers have avoided the study of bubbles, or inclusions 

containing bubbles, to simplify interpretation of MI compositions. However 

bubbles, with their size, composition and distribution can reveal the history of 

fluid immiscibility, degassing and ascent rate of the host magma. A bubble can be 

found within a MI for several reasons: 

 

1) it can be formed during near-constant-volume cooling of homogenous 

silicate melt; 
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2) it can be formed during decrepitation/leakage of the MI; 

3) it can represents magmatic vapor that was co-trapped with melt in a 

mixed inclusion. 

 

Similarly with FI, a bubble can nucleate due to isochoric (constant 

volume) cooling of a trapped homogeneous liquid, causing depressurization and 

resultant saturation with a low-density phase. The bubble that forms is often 

called a “shrinkage bubble” and Roedder (1984) suggested to considered it as a 

separate phase formed by immiscibility of the melt and vapor. Typically, such 

bubbles appear empty, or at least without a liquid phase, allowing H2O pressures 

no greater than that for liquid  saturation at 25°C (2.6x10– 3 MPa). Some workers 

interpret the empty bubbles to reflect extreme hydration of the glass adjacent to 

the bubble rim during cooling of the MI (Lowenstern, 1995).  The volume of 

bubbles have a wide range, from 0.1 to 5 vol.% and depends on the cooling 

history of the MI. Small MI often don’t have bubbles because of surface-tension 

effects (Roedder, 1979b). Many studies have shown that MI from rapidly 

quenched Plinian pumice often lack bubbles entirely (Clocchiatti, 1972; Sommer, 

1977; Beddoe-Stephens et al., 1983), also confirmed by both theoretical and 

experimental studies.  In intrusions, crystallization of the melt at near-magmatic 

temperatures will allow the MI-hosted bubbles to reach as much as 15-20 % of the 

total inclusion volume (Student and Bodnar, 1996). 

When the host crystal cools more slowly the bubble has time to form, 

causing the internal pressure of the MI to rise. Often these slowly cooled rocks 

contain cracked crystals with MI that contain numerous large bubbles 

(Lowenstern, 1995; Best and Christiansen, 1997) that can often be attributed to 

the decrepitation of MI during eruption. Infact, MI partially or fully decrepitated, 

are likely to have numerous large bubbles and degassed.  Anderson (1991) 

defined another category of leaked MI, called “hourglass”, which consist of glass 

or crystallized melt connected to the outside of the host crystal by a canal or 

capillary that at magmatic  temperatures allows the melt to be expelled from such 

inclusions.  
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The entrapment of FI or mixed inclusions in igneous phenocrysts is a clear 

evidence for the presence of vapors or other non-silicate fluids. In intrusive rocks 

it is common to observe vapor-rich FI trapped contemporaneously with (and 

separately from) silicate melt (Roedder, 1984, 1992; Frezzotti, 1992; Touret and 

Frezzoti, 1993;  Lowenstern et al., 1997; Audétat et al., 2000; Dietrich et al., 

2000; Frezzotti, 2001). Such inclusions are rare in volcanic rocks, which instead 

contained silicate MI. Reasons for the absence vapor-rich FI in the crystals within 

volcanic rocks have been discussed by Anderson (1991) who concluded that any 

MI with a trapped vapor bubble would create a pressure gradient during magma 

ascent, preventing the inclusion from sealing. Tait (1992) suggested that MI with 

co-trapped vapor are more likely to  break  during the eruption. Another 

explanation is that small bubbles are rare in long-lived magma chambers, and 

bubbles are unlikely to be trapped within sub-cm-sized crystals. As the magma 

becomes crystal-rich and the liquid is closer to saturation with a pure-H2O vapor, 

small bubbles may nucleate and would be trapped more commonly.  
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Cap. 4 
 
TECHNIQUES 
 
 
 
 

 

 

4.1 Preparation of the samples for heating experiments  

 

Doubly polished thin sections 30µm - 1.5mm thick were prepared from all 

samples, with the thickness varying as a function of phenocryst size and clarity. 

Sections were examined petrographically, and those samples containing  

recognizable and useable melt inclusions were selected for further study. The 

selected samples were washed in distilled water and then dried in vacuum 

conditions at 100° C. The rocks were then crushed and sieved (10 and 20 mesh) 

and phenocrysts (pyroxene, plagioclase, and olivine) that were hand picked under 

a binocular microscope. For each sample, about 50-60 crystals for each mineral 

phase were hand picked. Phenocrysts removed by crushing were mounted on glass 

slides, ground to produce a flat surface and then polished. The phenocrysts were 

then removed from the slide and remounted with the polished side down, and the 

second side was ground and polished to produce doubly polished wafers ranging 

from 30µm to 1.5mm thick. Once the phenocrysts were polished both sides, the 

slide was placed in acetone for 12-24 hours to remove the crystals from the slide. 
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4.2 Heating experiments 

 

 

All the inclusions examined in this study consisted of a heterogeneous 

mixture of crystals and/or glass plus a volatile phase. In order to produce a 

homogeneous glass for microbeam analyses, it was necessary to heat the 

inclusions to melt the crystalline phases and dissolve the volatiles back into melt 

(homogenization). Then the melt was rapidly cooled to form a homogeneous 

glass. The main factor that complicated homogenization of melt inclusions was 

the decrepitation of volatile-rich melt inclusions during heating. The two methods 

for melt inclusion homogenization that were utilized and evaluated in the course 

of this study are: 

 

 1) heating in a microscope heating stage; 

 2) heating in a 1 atmosphere vertical tube furnace. 

 

 
The main  advantage of studying melt inclusions in doubly polished 

wafers is that inclusions can be observed not only before and after, but also during 

heating (Danyushevsky et al., 2002). Also, MI may trap solid phases along with 

the melt, and if these solids are incorporated back into the melt during heating, a 

wide range in melt compositions would result, with the variability being a 

function of the relative size of the trapped solid phases. If the inclusions are not 

observed before and during heating, the heterogeneous nature of the inclusions 

would not be recognized and the resultant range in MI compositions might be 

incorrectly interpreted to be the result of petrogenetic processes.  In order to 

observe the melting behavior of the inclusions, we used microscope-mounted 

heating stages with slow heating rates.  

We selected 3 crystals-bearing MI for each mineral phase present in each 

sample and we heated them in order to homogenise the MI. Crystal-bearing melt 

inclusions in quartz phenocrysts were initially heated on a Vernadsky Stage 

(Sobolev et al., 1980), designed to flow He gas (that had been deoxygenated by 
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passing through a tube of powdered Ti metal heated to 600°C) over the sample, 

thus preventing oxidation and darkening of iron-bearing phases. The stage was 

mounted on a Leitz petrographic microscope equipped with a 20x-long working-

distance objective (Fig. 4.1). After homogenization the power was turned off and 

the temperature decreased several hundred degrees in the first few seconds.  

 

 

 

HH22OO  

HH
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B 

C

 

 

Fig. 4.1  Vernadsky Stage. (A) Tube of powdered Ti metal passing in the furnace heated 
at 600°C; (B) Stage; (C) Central control and variac (on the right) to regulate the 
intensity of power (and therefore the heat).   
 
 
 

All the experiments were conducted in controlled (inert gas) atmosphere to 

avoid oxidation of the crystal according to the procedure described in 

Danyushevsky et al. (2000) and Lima (2000). The precision of temperature 

measurements is ± 3ºC at 1200ºC (measured by thermocouple), based on 

calibration using known melting points of Ag (938º C) and Au (1064ºC).  
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Once we conducted these preliminary experiments, we had an idea of the  

homogeneization temperatures of MI in each mineral phase in each sample.  

Therefore we use the vertical furnace to speed up the homogenization procedure. 

A group of crystals-bearing MI was incrementally-heated in a 1-atmosphere 

vertical tube furnace. The crystals were placed in a Pt foil with a drop of oil, 

inserted in a capsule and suspended from the top of the furnace trough a Platinum 

wire  (Fig. 4.2). The sample was positioned within the "hot-spot" of the furnace, 

where previous tests had determined a thermal gradient of ± 5°C over a distance 

of ± 8 cm from the centre of the "hot spot".  

 

B
A 

Hot Spot

 

C

 

 

Fig. 4.2 Vertical Furnace. (A) “Hot spot”. (B) Detail of the inserting of the capsule; (C) 
Platinum capsule and the Pt wire. 

 
 

The furnace thermocouple was calibrated using pure silver at 961°C, and 

at lower temperatures this thermocouple was calibrated against another well-

calibrated thermocouple. The accuracy and precision of temperature 

measurements at 800°C is estimated at ± 10°C. 
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3.3 Preparation of the samples for EMP and SIMS analyses  
 

 

 

After homogenizing the inclusions, host phenocrysts were ground and 

polished by hand to expose homogenized melt inclusions for Electron and Ion 

microprobe analysis. Phenocrysts were polished and prepared for analyses 

following the procedure described in Thomas and Bodnar (2002), mounting 

crystals on polycarbonate rods.  

 

 

 
 
 

Fig. 4.3 Drawing of the polishing tool, adjusting screw for mounting crystals.  
 

 

 

To mount the crystal to the epoxy tipped rods, a small droplet of crazy 

glue is placed on the pre-flattened surface and spread to the appropriate thickness 

(thinner than the crystal to be mounted) with a dissecting needle. This thin layer 

of crazy glue fixes the crystal to the surface prior to the final application of epoxy. 

Using a binocular microscope, a single crystal is placed onto the end of the rod 

containing the thin layer of crazy glue, and a final drop of epoxy is added to cover 

the crystal. Epoxy should be mixed and allowed to react for ~30 min prior to 

application.  
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After curing, the rods are placed into the polishing tool (Fig. 4.3) and 

ground with 1200 grit polishing paper and water. Grinding progress is monitored 

through repeated grinding and observation under a binocular microscope using 

reflected light until the crystal is exposed on the surface. After exposing the 

crystal surface, the rod is removed from the polisher and observed under a 

petrographic microscope using both transmitted and reflected light. The rod acts 

as an optical fiber and transmits light to the crystal. If the desired level within the 

crystal is reached, it is necessary to achieve a final polishing using 0.3 mm 

aluminum oxide-coated polyester film and water. The rods are positioned in a 

stainless steel holder (4 rods for each holder) until sets of samples are ready for 

EMP and SIMS analysis (Fig. 4.4).  

 

 
Fig. 4.4 Drawing of the electron microprobe mount containing rods with polished 
crystals.  
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4.4  Electron Microprobe  
 

 

 

EPMA (or Electron Probe Micro Analysis) can probe a specimen as small 

as 5 microns, and not only identify the elements present but measure them with a 

small degree of error. These instrument represent a  great advances in scientific 

instrumentation, however it does have limits. For example, not all specimens can 

be exposed to the high vacuum within the specimen chamber. Also, elements 

lighter than atomic number 8 (oxygen) can not be measured without reservations, 

and EPMA is not sensitive to many elements below 100 ppm.  Materials are 

bombarded with accelerated electrons with high energies. Our microprobe, on the 

other hand, is designed with its wave The heart of EPM is the wave dispersive 

technology (WDX) for detecting and counting x-rays. These spectrometers are 

much more sensitive to low elemental concentrations than are EDX detectors 

usually associated with SEM. Concentrations in the range of 500-1000 ppm can 

generally be measured, and for some elements within some types of materials, the 

detection limit can be near 20 ppm.  

 

 
 
Fig. 4.5 Scheme of an EMPA. (A) Filament; (B) beam; (C) Aberrations; (D) focused 
beam; (E) sample; (F) reflectant crystal; (G) detector. 

 

 36



Electrons are produced by heating a filament similar to the filament in a 

light bulb (Fig.4.5A). These electrons are then formed into a beam by accelerating 

them down a column at very high voltages, typically 15 to 20 thousand volts. The 

electrons pass through lenses that condense the beam (Fig.4.5B), remove 

aberrations (Fig.4.5C) and focus the beam (Fig.4.5D). When the electrons arrive 

at the sample (Fig.4.5E) the beam is focused into a spot much smaller than 0.001 

millimeter in diameter. Upon entering the sample, the electrons interact with the 

atoms in the sample in what is called the interaction volume, causing X-rays to be 

produced. Each element produces X-rays with characteristic energies. These X-

rays can then be counted by reflecting them through a crystal (Fig.4.5F) and 

sending them on to a detector (Fig.4.5G). By counting the X-rays generated by 

each element in the sample and comparing that number to the number of X-ray 

generated by a standard of known composition, it is possible to determine the 

chemical composition of a spot one one-thousandth of a millimeter in diameter 

with great accuracy. 

Quantitative electron microprobe analyses (EMPA) were performed at 

Virginia Tech and at University of Rome “La Sapienza” (IGAG-CNR, Rome, 

Italy) on a Cameca SX50 equipped with four wavelength dispersive spectrometers 

(Fig.4.6). The analytical schemes was chosen for major/minor oxide analyses. 

Analysis of SiO2, TiO2, Al2O3, FeO, MnO2, MgO, CaO, Na2O, K2O, NiO, Cr2O3, 

P2O5, and Cl, S and F and standardization were preformed using silicate, oxide, 

phosphate and glass standards, and the data were corrected with the PAP method, 

developed by Pichou and Pouchoir (1985), using vendor supplied software. 

Analyses were performed at 15kV, using a current of 20nA with a defocused 

beam diameter of 10 µm and counting time 10 seconds, as recommended by 

Morgan and London (1996). Relative one-sigma precision is estimated to be 1 to 2 

% for major elements and 5 to 10 % for minor elements. In each analytical run, 

alkalis were counted first, and no correction has been made for Na loss. Test runs 

made prior to the beginning of the analysis on synthetic and natural glass 

standards of known composition showed no significant alkali migration under the 

specified analytical conditions.  
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          Fig.4.6 Electron Microprobe Cameca SX/50 (Virginia Tech). 

 

Two points were analyzed in larger MI, whereas only one point was 

analyzed in smaller inclusions (<10µm). When no significant difference in 

composition was detected, an average of the two analyses was used. If the two 

analyses were significantly different the results were discarded. If just one spot 

was possible, a comparison between the obtained data and data for other MI in the 

same sample was made to test for consistency. Note, however, that two or more 

analyses were obtained on ~90% of the MI. Host phenocrysts were analyzed at 

distances of about 20 μm from MI with accelerating voltage of 15kV and beam 

current of 20 nA. 

The analytical sequence and counting times on 4 spectrometers were:  

 

spectrometer 1 (TAP) Na2O;  Al2O3; P2O5  and MnO.  

spectrometer 2 (PET) MgO; SiO2 ; K2O and Cr2O3.  

spectrometer 3 (PET)  F ; TiO2  and NiO.  

spectrometer 4 (LIF)  FeO; CaO; Cl and S.  

 

Standards were analyzed at 15 kV, using a current of 20nA with 10 µm rastered 

beam.  
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4.5 SIMS (Secondary Ion Mass Spectroscopy) 

 

The technique of Secondary Ion Mass Spectrometry (SIMS) is the most 

sensitive of all the commonly-employed surface analytical techniques because of 

the inherent sensitivity associated with mass spectrometric-based techniques.  In 

SIMS the surface of the sample is subjected to bombardment by high energy ions; 

this leads to the ejection (or sputtering) of both neutral and charged (+/-) species 

from the surface. The ejected species may include atoms, clusters of atoms and 

molecular fragments. In traditional SIMS it is only the positive ions that are mass 

analysed, primarily for practical ease but it does lead to problems to quantify the 

compositional data since the positive ions are but a small, non-representative 

fraction of the total sputtered species. Furthermore the displaced ions have to be 

energy filtered before they are mass analysed (i.e. only ions with kinetic energies 

within a limited range are mass analysed). The most commonly employed incident 

ions used for bombarding the sample are argon ions (Ar+) but other ions (e.g. 

alkali metal ions, Ga+ ) are preferred for some applications. The mass analyser is 

typically a quadrupole MS analyser with unit mass resolution, but high 

specification time-of-flight (TOF) analysers are also used and provide 

substantially higher sensitivity and a much greater mass range (albeit at a higher 

cost).  A simplified synoptic of the original IMS 3f design is shown in Fig. 4.7. 

primary ions, usually O- or O2
-, are produced in a duoplasmatron ion source (DP) 

and extracted into the primary column through potenzials of 12.5 kV. A pair of 

Einzel-type electrostatic lenses is used to focused the primary ions to a small 

diameter spot on the sample surface. Simple four plate deflectors are used to 

center the primary ion beam through these lenses.  
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Fig.4.7  Simplified synoptic of the original IMS 3f design.  

 

The deflector plates can also be enabled to deliver a square-rastered primary 

beam to the sample, or to deflect it into a faraday cup to measure the primary 

current. An eight palte stigmator is also associated with the deflector and and 

enables further shaping of the beam. The instrument also uses a double focusing 

(Nier-type) mass spectrometer, which accommodates energy filtering and modest 

mass resolution to eliminate isobaric interferences.  

 Selected MI were analyzed for H (reported as H2O), Li, Be, B, Rb, Sr, Y, 

Zr, Nb, Cs, Ce, Sm, Dm, Yb, Th and U by Secondary Ion mass Spectrometry 

(SIMS) at the Woods Hole Oceanographic Institution (Fig.4.8), using techniques 

detailed by Shimizu and Hart (1982) and Webster et al. (1996). Accelerating 

potential was 10kV and beam current was 1-2 nA. The inclusions were analyzed 

in one spot, five times each in depth profile mode. Precision and accuracy were 

monitored with NBS (National Bureau of Standards) reference glasses NBS 610. 

 40



Results on the NBS glasses are similar and within 5% of the accepted values; H2O 

concentrations are reproducible to + 0.3 to 0.4 wt% and trace elements to 5 to 

15% (for more details see Webster et al., 2001). 

 

 

 
 
 
Fig. 4.8 Cameca IMS 3f, Woods Hole Oceanographic Institution (WHOI) in Woods Hole, 
Massachusetts, USA. 
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4.6 Raman Spectroscopy 
 

 

 

Raman spectroscopy is based upon the Raman effect which is described as 

the scattering of light from a gas, liquid or solid with a shift in wavelength from 

that of the usually monochromatic incident radiation.  When a transparent medium 

was irradiated with an intense source of monochromatic light, and the scattered 

radiation was examined spectroscopically, not only is light of the exciting 

frequency, ν0, observed (Rayleigh scattering), but also some weaker bands of 

shifted frequency are detected. Moreover, while most of the shifted bands are of 

lower frequency ν0 - νi, there are some at higher frequency, ν0 + νi. By analogy to 

fluorescence spectrometry, the former are called Stokes bands and the latter anti-

Stokes bands. The Stokes and anti-Stokes bands are equally displaced about the 

Rayleigh band; however, the intensity of the anti-Stokes bands is much weaker 

than the Stokes bands and they are seldom observed (Fig. 4.9).   

 

 

ν r = ν 0 + ν1 ν r = ν 0 – ν1

Fig.4.9 Anti-Stokes and Stokes bands. 
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This phenomenon was predicted by Adolf Gustav Smekal (1895-1959) in 

1923, theoretically described by Kramers and Heisenberg (1925), Schrödinger 

(1926), Dirac (1927) and for the first time experimentally identified by the Indian 

physicist, Chandrasekhara Venkata Raman (1888-1970) in 1928.  G.S. Landsberg 

(1890-1957) and L.I. Mandelstam (1879-1944) found this effect independently 

and almost simultaneous in Moscow. This effect has also been called the Smekal-

Raman effect.  If the polarizability of a molecule changes as it rotates or vibrates, 

incident radiation of frequency ν0, according to classical theory, should produce 

scattered radiation, the most intense part of which has unchanged frequency. 

Recently, two studies have shown that Raman spectroscopy can be applicable for 

routine analysis of the water content in silicate glasses (Thomas 2000; Chabiron et 

al. 2004). This method has the advantage of allowing analyses of small (down to 5 

μm) and unexposed melt inclusions, of a broad availability and a short analytical 

time. The area of the water band in the Raman spectra is normalized to the area of 

the wide band centred at 480 cm-1, which is assigned to asymmetric stretching 

vibration of T–O–T linkages (Fig. 4.10).  

 

 
 

Fig.4.10 Raman Spectra for water rich inclusion. We can notice the water peak at around 
3560 cm-1 (Chabiron et al., 2004).  
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Thomas et al., 2006 describe a good linear correlation between the 

normalized area of the water peak and the total water content of their samples.: 

 

A standard : A sample = H2O standard : H2O sample 

 

Total water concentration (H2OT) is measured using a JY Horiba LabRam 

HR800 Visible Raman with a SensIR FTIR system equipped with a Andor 

electronically cooled CCD detection system (1024x256), a LaserPhysics Reliant 

100S-514nm argon laser (adjustable to 100mW maximum), a 25mW-633nm He-

Ne laser and an Olympus optical microscope, with a long working distance 80× 

objective (required for imaging deep inclusions). For all measurements a confocal 

pinhole of 150 µm was used (see Thomas 2002). All spectra were measured in the 

high-frequency range between 2800 and 3900 cm–1. For simplicity we have 

adopted a linear background correction in the integration limits between 3100 and 

3750 cm–1. 
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Cap. 5 

 

 

SAMPLES 

 

 

 

The deposits of Campi Flegrei eruptions have been selected based on age, 

eruptive characteristic, mineralogical and chemical compositions, structural 

position of eruptive centre to verify the existence of possible change of the 

feeding system among several eruptions. The study of the products of eruptions 

occurred before and after the Neapolitan Yellow Tuff event, can help to 

understand if eruptions with great magnitude values and characterized by caldera 

collapse could vary the chemical- physical conditions of a magmatic feeding 

system. The study of the products of eruptions occurred in the 3 epochs 

subsequent to the Neapolitan Yellow Tuff event,  are helpful to verify the possible 

stability (regarding composition, residence depth, magma temperature) of a 

magmatic feeding system in the last period of volcanic activity. From the study of 

products of different chemical and mineralogical composition, such as those 

characterized by a different eruptive mechanism, we can learn if difference in 

chemical-physical conditions of the feeding system of a single eruption exist and 

if it is possible to outline the chemical and thermal evolution of magma during its 

rising. The study of the deposits, produced from centres located in different 

structural settings, may allow to understand if differences exist in chemical-

physical conditions of the feeding system of volcanoes that develop along the rim 

or the centre of caldera. 
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5.1 SENGA (o FOSSA LUPARA) 
 

Senga eruption occurred in the Third Epoch, about 3.8 ka ago and it is  

dated with the C14 method. It was an explosive hydromagmatic and magmatic 

eruption occurred at the centre of the Flegrei caldera.  

 

 
 

Gulf of NaplesGulf of Naples

 
 

Fig. 5.1    Location of the sample “Senga”.  

 

Deposits from this site are on cineritic levels, for the most part in the 

bottom of stratigraphic succession, formed by pumices and scoriae, with lava litic 

fragments; they lay on Astroni and Solfatara deposits.  
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5.2  SOLFATARA 
 

Solfatara eruption occurred during the Third Epoch, between 4.1 and 3.8 

ka. It was explosive hydromagmatic and magmatic and was located at the centre 

of the Flegrei caldera. Deposits are on cineritic cohesive levels with pumices, 

scoriae, and lava litic tuff fragments that are hydrothermalized. Deposits are 

strongly altered and lay on Monte Olibano and Accademia deposits underling the 

Astroni deposits.  

 

 
 

 
 

Fig. 5.2    Location of the sample “Solfatara”.  
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5.3  ACCADEMIA 

 

Accademia eruption was an effusive eruption occurred to the East of Starza 

terrace, with the formation of a dome. Sampled deposits are breccias and lavas, of 

trachytic and porphyric composition, with the presence of feldspar, pyroxene and 

biotite crystals. These deposits lay on top of the Agnano Monte Spina and 

Solfatara deposits. The eruption occurred in the Third Epoch, between 4.1 and 3.8 

ka. 

 

 
 

 
Fig. 5.3    Location of the sample “Accademia”.  
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5.4  FONDO RICCIO 

 
 Fondo Riccio eruption was a very explosive eruption of strombolian type 

occurred from an eruptive center sited on the western side of Gauro volcano, at 

the center of the Flegrei caldera. The deposits are a succession of levels with 

chaotic texture of scoriae and cineritic and sandy levels; they are scoriae (black, of 

angular shape and at different vesciculation grade) and one bomb. It is present a 

compositional variation between the basal scoriae and those at the top of the 

succession. The eruption occurred between 10.3 and 9.5 ka, during the First 

Epoch. 

 

 
 

 
Fig. 5.4    Location of the sample “Fondo Riccio”.  
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5.5  MINOPOLI 2 

 

Minopoli 2 eruption was a strombolian eruption with hydromagmatic phases 

occurred at an eruptive center sited in the Northern side of the caldera. Deposits 

are scoriae and ash levels lying on top of the Soccavo 1 deposits. Scoriae are grey-

black with trachybasaltic, alkali-trachytic and porphyric composition, with the 

presence of olivine pyroxene and biotite crystals. The eruption occurred between 

10.3 and 9.5 ka, during the First Epoch. 

 
 

 
 

Fig. 5.5   Location of the sample “Minopoli  2”.  
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5.6  MINOPOLI 1  

 

Minopoli 1 eruption was an explosive strombolian eruption with hydromagmatic 

phases occurred at an eruptive center sited in the Northern side of the caldera. 

Deposits are constituted by scoriae and ash levels, lay on Mean Pumices deposits 

and underlay the Montagna Spaccata deposits. Scoriae are grey-black with 

trachybasaltic, alkali-trachytic and porphyric composition for presence of olivine 

pyroxene and biotite crystals. The eruption occurred between 11.1 and 10.3 ka, 

during the First Epoch. 

 

 
 

 
 

Fig. 5.6   Location of the sample “Minopoli 1”.  
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5.7  CAPO MISENO 

  

Capo Miseno eruption was an explosive hydromagmatic eruption occurred by an 

eruptive centre sited on the western side of caldera. The deposits, consisting in 

tuff, pumices, scoriae and few litics, lay on Porto Miseno deposits and underlay 

the “A” paleosoil. Grey scoriae are well vesciculated with trachytic and porphyric 

composition for the presence of feldspar, pyroxene and biotite. The eruption 

occurred between 14-12 and 8.6 ka, during the First Epoch. 

 

 
 

 
Fig. 5.7  Location of the sample “Capo Miseno”.  
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5.8  PORTO MISENO 

 

Porto Miseno eruption was an explosive hydromagmatic eruption and latterly 

magmatic occurred from a centre sited on the eastern side of the caldera. The 

deposit is well hardened tuff with ash on pumices and lithics; in the upper part it is 

present a fall level with pumices and lavas lithic; the pumices in the tuff are 

distributed discontinuously. The deposits lay on Bacoli and Capo Miseno deposits 

and are grey, well vesciculated, trachytic and porphyric pumices, with pyroxene, 

feldspar and biotite crystals. The eruption occurred between 14-12 and 8.6 ka, 

during the First Epoch. 

 

 
 

 

 
  

Fig. 5.8  Location of the sample “Porto  Miseno”.  
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5.9   TORREGAVETA 

  

Torregaveta eruption was an explosive eruption of subplinian type occurred in the 

South-Western side of the caldera. The deposits are constituted by two scoria 

levels with altered material fragments and lava blocks and an intermediate ash-

sandy level. These deposits lay on Breccia Museo and underlay to Solchiaro and 

the Neapolitan Yellow Tuff. Scoriae are dark beige, angular and vesciculated, 

with latitic and porphyric composition for the presence of pyroxene, biotite and 

feldspar. The eruption occurred between 39-37 and 17.2 ka. 

 
 

 
 
 

 

 Fig. 5.9  Location of the sample “Torregaveta”.  
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Cap. 6 

 

 

DATA AND RESULTS  

 

 
 

Products from two eruptions that occurred in the First Epoch were studied. 

The Fondo Riccio eruption occurred at 9.5 ka from an eruptive center on the 

western side of the Gauro volcano, near the center of the Phlegraean caldera. The 

eruption was explosive, with strombolian character. The eruptive deposits are 

composed of coarse scoria beds with subordinate coarse-ash beds and overlay 

Montagna Spaccata tephra and are in turn overlain by paleosol A (Di Vito et al., 

1999). The Minopoli 1 eruption was a magmatic eruption, with hydromagmatic 

phases, that occurred at 11.1 ka, along a regional fault system in the northern 

sector of the Phlegraean caldera. The eruptive products are composed of 

alternating pumice lapilli fallout and mainly massive ash fallout, and less 

abundant cross laminated ash surge beds. The deposits overlay Pomici Principali 

and are overlain by Montagna Spaccata (Di Vito et al., 1999).   

Sample CF-FR-C1 is a scoria and sample CF-FR-C2 is a lava bomb from the 

Fondo Riccio unit.  Both samples are porphyritic latite, with abundant crystals in a 

glassy, vesicular groundmass, and were deposited between 9.5 and 10.3 ka (Di 

Vito et al., 1999). The bulk rock contains less than 10% phenocrysts, which 

include clinopyroxene, olivine and biotite with subordinate plagioclase and 

magnetite. In thin section clinopyroxene and plagioclase are found in small clots; 

these minerals also occur among microlites. Silicate MI in olivine and pyroxene 

phenocrysts from sample FR-C1 and in clinopyroxenes for the sample FR-C2 

were studied. For the Minopoli 1 unit, sample MI1-C1 is a scoria and sample 
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MI1-C2 is a cohesive scoria sampled along the caldera rim, and was likely erupted 

during the final magmatic stage of the eruption. The deposits include scoria and 

ash layers. Both samples are porphyritic trachybasalt and range from 11.1 and 

10.3 ka (Di Vito et al, 1999). The bulk rock contains about 20% phenocrysts, 

which include clinopyroxene, olivine and biotite. Silicate MI in olivine and 

pyroxene from Mi1-C1 and in clinopyroxene from MI1-C2 were studied.  

The abundance of MI varies from crystal to crystal in the same sample. Melt 

inclusions consist of silicate glass, generally devitrified, with a shrinkage bubble 

and daughter crystals (usually apatite or Fe/Ti oxides). MI generally have 

elongated rectangular shapes and range from 30 to 80 µm (most between 20 and 

50 µm) (Fig. 6.1). Rock samples were hand crushed and phenocrysts were hand 

picked, mounted on a glass slide, and doubly polished to improve the optical 

clarity during microscope heating experiments.  

 
 

Fig. 6.1 Change in appearance of a silicate melt inclusions hosted in clinopyroxene in 
Fondo Riccio scoria as a result of heating from room temperature (22ºC) to the 
homogenization temperature (1137ºC). After heating to 1137ºC the inclusion contains 
only a vapour bubble. The MI is approximately 40 µm in diameter. 
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Fondo Riccio olivine compositions range from Fo84 to Fo87, while Minopoli 

1 olivines range from Fo77 to Fo78 (Fig. 6.2). Clinopyroxene compositions fall in 

the diopside-salite field (Wo44-48, Fs5-19) and Mg # (calculated based on total Fe) 

varies from about 73.4 to 88.6 for Fondo Riccio samples (with a compositional 

gap between 78 and 83) and from about 85.1 to 89.9 for Minopoli 1 samples. 

Clinopyroxenes are low-Ti, which is a characteristic of "HKS"- type lavas of the 

Roman Comagmatic Province (Cundari and Fergusson, 1982).  

 
Fig. 6.2 Classification diagrams for pyroxene and olivine phenocrysts (Morimoto, 1988). 
Filled squares = compositions of MI hosted in clinopyroxene from FR-C1 (scoria); filled 
circles = composition of MI hosted in olivine from FR-C1 (scoria); filled triangles = 
compositions of MI hosted in clinopyroxene from FR-C2 (bomb); open squares = 
compositions of MI hosted in clinopyroxene from Mi1-C1; open circles = compositions of 
MI hosted in olivine from Mi1-C1; open triangles = composition of MI hosted in 
clinopyroxenes from Mi1-C2. 
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Homogenization temperatures of MI in clinopyroxene and olivine from the 

scoria of Fondo Riccio (FR-C1) average 1135 ± 3°C and 1155 ± 3°C, 

respectively, whereas MI in clinopyroxene from the bomb sample (FR-C2) 

average 1159 ± 3 °C. Homogenization temperatures of Minopoli 1 MI in 

clinopyroxenes average 1132 ± 3°C and those in olivine average 1145 ± 3°C. 

The maximum temperature achieved during heating experiments does not 

equal the trapping temperature because a bubble still remained in the inclusions. 

MI compositions can be depleted in the host mineral components if the maximum 

temperature of heating is below the trapping temperature. Thus, the concentrations 

of most elements in the quenched MI may not reflect their original values in the 

trapped melt. However, ratios of elements that are incompatible in the host, and 

also concentrations of elements that are present at similar levels in the melt and 

the host, should not be significantly affected by over- or under-heating. Moreover, 

Fedele et al. (2003) have shown that compositions of MI obtained from inclusions 

that were heated until all of the solids had melted (with the bubble still present) 

and quenched were in good agreement with melt compositions predicted by the 

MELTS program (see also Thomas et al, 2002). 

Representative compositions of MI (average values) hosted in Fondo Riccio 

clinopyroxene and olivine are shown together with MI size, maximum 

temperature (Trun) and host crystal Mg# in Table 6.1 (FR-C1) and Table 6.2 (FR-

C2). Representative compositions of MI from Minopoli 1 are shown in Table 6.3. 

All MI are characterized by analytical totals < 100. This is interpreted to reflect 

the presence of H2O in the MI, as confirmed by secondary ion mass spectrometry 

(SIMS) analyses that show average H2O contents between 3.3 - 6.9 wt% for 

Fondo Riccio samples and between 1.3-5.2 wt % for Minopoli 1 samples (Tables 

6.1-6.3). 

 MI from Fondo Riccio show a broad range for SiO2 (46.8 - 59.3 wt%), CaO 

(3.66 - 12.4 wt%), Na2O (1.3-3.7 wt%) and K2O+Na2O (4.19 - 9.73 wt%). 

Conversely, MI from Minopoli 1 show narrow ranges for SiO2 (49.6 -51.8 wt%), 

CaO (7.6 – 13.3 wt%), Na2O (1.0-1.8 wt%) and K2O+Na2O (4.19 - 9.73 wt%) as 

shown in Tables 6.1-6.3. 
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Table 6.1  Fondo Riccio C1 . MI composition determined by EMPA and SIMS. *T(run) = 
maximum temperature of heating experiment. Cpx = clinopyroxene host crystal. Ol = 
olivine host crystal. 
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Table 6.2  Fondo Riccio C2 . MI composition determined by EMPA and SIMS. *T(run) = 
maximum temperature of heating experiment. Cpx = clinopyroxene host crystal. Ol = 
olivine host crystal. 
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Table 6.3  Minopoli 1 C1 and C2 . MI composition determined by EMPA and SIMS. 
*T(run) = maximum temperature of heating experiment. Cpx = clinopyroxene host 
crystal. Ol = olivine host crystal. 
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On the total alkali-SiO2 classification diagram (Fig.6.3; Le Bas et al., 

1986) the Fondo Riccio bulk-rock composition is in the latite field. Fondo Riccio 

MI data show two trends: from latite to trachyte for MI in Fe-rich diopside 

(sample CF-FR-C1) and from trachybasalt to shoshonite for MI in both Mg-rich 

diopside (sample CF-FR-C2) and olivine (sample CF-FR-C1). The Minopoli 1 

bulk-rock composition is in the trachyandesite field, whereas MI data show two 

different compositions: basalt for MI in clinopyroxenes from the lower unit (Mi1-

C1) and trachybasalt for MI in olivine (Mi1-C1) and clinopyroxenes from the 

upper unit (Mi1-C2). Except for clinopyroxene in FR-C1, MI are generally less 

evolved than the corresponding host rock. In particular, MI in olivine from CF-

FR-C1 scoria show the same, less evolved composition as MI in clinopyroxene 

from CF-FR-C2 bomb sample.  

 

 
Fig. 6.3 Total alkali-silica diagram (Le Bas et al., 1986) showing compositions of MI 
hosted in clinopyroxene and olivine from Fondo Riccio and Minopoli 1. Bulk rock 
compositions are also shown. 
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The Fondo Riccio bulk rock is depleted in K2O (not shown in the variation 

diagrams) and enriched in TiO2 and Na2O compared with MI with similar Mg# 

hosted in clinopyroxene from the CF-FR-C1 scoria sample. Harker diagrams 

showing major element concentrations of MI as a function of SiO2 show a wider 

range in composition in Fondo Riccio samples than Minopoli 1 (Fig. 6.4). MI in 

clinopyroxene and olivine from both samples show decreasing Al2O3 (Fig. 6.4a) 

and Na2O (Fig. 6.4f) and increasing FeOtot (Fig. 6.4b), TiO2 (Fig. 6.4c), MgO (Fig. 

6.4d) and CaO (Fig. 6.4e) with decreasing SiO2. These trends are consistent with 

crystallization of olivine and clinopyroxene from alkali basalt magma. In 

particular, the trends described above suggest earlier crystallization of olivine in 

the CF-FR-C1 sample and clinopyroxene in the CF-FR-C2 sample compared with 

the timing of crystallization of clinopyroxene in the CF-FR-C1 scoria sample. The 

TiO2 contents of these MI are consistent with the low Ti-contents of lavas from 

the Roman Comagmatic Province. To explain Ti enrichment in the bulk rock 

compared with MI (whose compositions should represent the melt composition 

before the eruption), the studied rocks would have to contain about 60% 

groundmass and ≈ 40% phenocrysts (clinopyroxene, olivine, feldspar and biotite), 

which is a higher phenocryst abundant than that observed in thin sections. If we 

assume that the groundmass has a composition similar to MI in more evolved 

clinopyroxene, then TiO2 bulk-rock contents are compatible with analyzed values 

(Table 6.1-6.3and Table 6.4).  

It is more difficult to explain Na2O enrichment in the bulk rock, even 

though Na2O in the melt is expected to increase during crystallization (Na behaves 

as an incompatible element during magma fractionation). We also observe a 

greater Na enrichment in Fondo Riccio bulk rock compared to Minopoli1 bulk 

rock. Hydrothermal activity is present in the vicinity of the Fondo Riccio eruption 

and, as explained for similar behavior at Vesuvius (Lima et al., in press), Na2O 

enrichment in the bulk rock most likely represents the effects of hydrothermal 

fluids. During explosive eruptions associated with decompression during magma 

ascent, the reaction of NaCl with H2O at low pressure (< 300 bars) becomes 

important and hydrolysis reactions produce HCl and NaOH that remain 

preferentially in the melt (Veksler, 2004). Note that the trend in Na enrichment 
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observed here is the opposite of that observed during subsolidus hydrothermal 

alteration of melt inclusions in porphyry copper systems (Student and Bodnar, 

2004). 

 
 
Table 6.4 Fondo Riccio and Minopoli 1 bulk rock compositions  determined by XRF. 
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Fig. 6.4 Harker variation diagrams for MI plotted versus SiO2: (a). Al2O3; (b). CaO; (c) 
Na2O.; (d). P2O5; (e) TiO2; (f) FeOtot. 
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The volatile content of MI as a function of SiO2 for the two eruptions are 

shown in Fig.6.5. The SO2 content of MI in clinopyroxene from scoria (C1) varies 

between 0.04 and 0.29 wt%; and from 0.25 to 0.40 wt% for MI in olivine from the 

scoria (C1) and from 0.13 to 0.34 wt% for MI in clinopyroxene from the bomb 

(C2). For Minopoli 1 MI, SO2 varies from 0.09 to 0.11 wt% for clinopyroxene 

from C1, from 0.21 to 0.34 wt% for MI in olivine from C1, and from 0.31 to 0.37 

wt% for MI in clinopyroxene from C2. The SO2 concentration decreases with 

increasing SiO2, consistent with degassing during magma crystallization. MI 

hosted in clinopyroxene from FR-C1 shows little variation in S content as a 

function of SiO2. One Minopoli 1 MI containing approximately 48 wt.% SiO2 and 

0.91 wt% SO2 falls well outside the range of all other values. This data point was 

not discarded because it represents the average of two nearly identical analyses on 

the same MI.  

Decreasing P2O5 with increasing SiO2 (Fig. 6.5b) is consistent with apatite 

crystallization during magma evolution. No systematic variation in F is 

observable for the two samples (Fig. 6.5c).   

Chlorine abundance (Fig. 6.5d) in the Fondo Riccio MI ranges from 0.32 to 

0.72 wt % in MI in clinopyroxene from the scoria (mean of 0.54 wt%), whereas 

Cl shows much less variation in MI in clinopyroxene from the bomb sample (CF-

FR-C2) (between 0.42 and 0.57 wt % with a mean of 0.49 wt%) and in MI in 

olivine from CF-FR-C1 sample (between 0.42 and 0.47 wt % with a mean of 0.44 

wt %). Minopoli 1 MI show a smaller variation in Cl content compared to Fondo 

Riccio. Cl varies from 0.34 to 0.2 wt% in MI in clinopyroxenes from Mi1-C1 

(mean 0.27 wt%), 0.43±0.01 wt% for MI in olivine from Mi1-C1 and from 0.39 to 

0.42 wt.% for MI in clinopyroxene from Mi1-C2. These results suggest that the 

magma that generated the Fondo Riccio scoria phenocrysts was not affected by Cl 

loss. The Cl content is slightly higher in more evolved MI than in less evolved MI 

for Fondo Riccio samples (Fig. 6.5d), whereas such a trend is not observed for 

Minopoli 1 MI. 

The average H2O content, measured by EMPA, is consistent with the H2O 

obtained by SIMS (Fig.6.6).  In general, less evolved MI have higher 

concentrations of water and Fondo Riccio MI are enriched in H2O compared to 
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Minopoli 1 MI (even though the concentrations overlap). This may explain the 

more explosive character of the Fondo Riccio eruption compared to the Minopoli 

1 eruption. 

 
Fig 6.5 Volatile concentrations in MI from Fondo Riccio and Minopoli 1 plotted versus 
SiO2 concentration. 
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Fig. 6.6 Water contents of MI obtained by EMPA and SIMS. 
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In order to better understand the origin of the magma that fed these two 

eruptions, trace element systematics have been examined. Compositions of MI 

from both eruptions have B and Be concentrations that fall close to the B/Be = 4 

line that divides rocks that originate in volcanic arc environments and those that 

are sourced in an ocean island volcanic setting (Fig. 6.7).  

 
Fig. 6.7 Relationship between B and Be for Fondo Riccio and Minopoli 1 MI. The 
diagonal line corresponds to B/Be = 4 and divides arc volcanic magmas from ocean 
island volcanic magmas. Both samples fall along the boundary line, suggesting a mixed 
arc volcanic and ocean island origin. Two data points for samples Mi1-C1-p6 M2 and 
FR-C1-o4 M1 have not been plotted. 

 

 

Rb versus Y+Nb systematics of MI straddle the boundary between rocks 

associated with “within plate” volcanism and those generated in volcanic arc 

settings (Fig. 6.8). Y/Nb versus Zr/Nb systematics of MI are consistent with 

magmas generated in the upper continental crust, but also point towards the island 

arc environment (Fig. 6.9). An upper continental crust origin for the MI is also 

suggested by the Sr, Rb, Th, Nb, Ce, Zr, Sm, Y and Yb spider diagram (Pearce, 

1984) (Fig.6.10).  
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Fig. 6.8   Relationship between Rb and Y+Nb for Fondo Riccio and Minopoli 1 MI. MI 
compositions are near the boundary between the volcanic arc and “within plate” fields, 
suggesting a mixed magma source (see also Fig.1 in Piochi et al.,  2005). 

 

 

 
Fig. 6.9 Relationship between Y/Nb and Zr/Nb for Fondo Riccio and Minopoli 1 MI. 
Compositions of MI from both samples suggest an upper crustal magma source. 
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Fig. 6.10  Spider diagram for Fondo Riccio and Minopoli 1 MI (Pearce, 1983). The   
heavier lines show the upper continental crust (Upper CC) and the oceanic island basalt 
(OIB) trends. 

 

 

The relationship between Rb and Cs for MI from Somma-Vesuvius (SV) 

and the Campanian Ignimbrite (CI) (shaded areas) from Webster et al., 2003 are 

compared with MI from this study in Fig. 6.11. The data suggest that Fondo 

Riccio and Minopoli 1 eruptive products were more likely generated from a 

magma similar to that which fed Somma Vesuvius rather than that which 

produced the Campanian Ignimbrite rocks.  

The trace element data presented above are consistent with the tectonic 

setting of the Neapolitan area, and with the possible involvement of slab-derived 

fluids, as suggested by Piochi et al. (2005).  
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Fig. 6.11 Relationship between Rb and Cs for Fondo Riccio and Minopoli 1 MI.  The 
data suggest that the feeding mechanism of these two eruptions is more similar to the 
Somma-Vesuvius (SV) magma source than the Campanian Ignimbrite source. 
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Cap 6 
 
 
 
 
 

CONCLUSIONS 

 

 

 

MI from Fondo Riccio and Minopoli 1 show systematic variations in 

composition compared to the bulk-rock compositions. Major and trace element 

composition of MI are consistent with an evolving magma chamber in which 

olivine and clinopyroxenes are crystallizing. The composition of MI in olivine 

from Fondo Riccio scoria (CF-FR-C1) is similar to MI in clinopyroxene from the 

bomb (CF-FR-C2). Except for clinopyroxene in Fondo Riccio C1, MI are 

generally less evolved than the corresponding host rock. Major and trace elements 

in Fondo Riccio MI show a wider variation compared to those in Minopoli 1 MI. 

This could be interpreted to indicate that the Fondo Riccio magma residence time 

was longer compared to the Minopoli 1 magma. Na2O enrichment in the Fondo 

Riccio bulk rock represents the effects of hydrothermal activity in the volcanic 

system before and during the explosive eruptions (see, De Vivo and Lima, in 

press).  

The concentration of SO2 and H2O is higher in less evolved MI, whereas 

Cl is higher in more evolved MI. F shows no obvious variation as a function of 

SiO2. The generally higher volatile contents of Fondo Riccio MI are consistent 

with the more explosive character of this eruption compared to Minopoli 1. Trace 

element data suggest a combination of arc volcanic and upper continental crust 

magma as the source for the Fondo Riccio and Minopoli 1 eruptions. Major and 

trace element systematics suggest that these two eruptions, which occurred at 
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different times, were sourced from a single batch of magma that has evolved with 

time. The smaller range in compositions of the Minopoli 1 MI compared to the 

Fondo Riccio samples suggest a shorter residence time for Minopoli compared to 

Fondo Riccio magma.   
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	MELT INCLUSIONS (MI)
	Contains glass or crystallized glass.
	FLUID INCLUSIONS (FI)
	Contains one or more fluids at Troom and no glass 
	VAPOR-RICH FI
	FI with >50 vol % bubble at Troom; i.e., low density fluid.
	MIXED INCLUSIONS
	More than one magmatic phase trapped.
	HYDROSALINE MELT
	Molten solution of salts and H2O
	At this time the international FI community championed the use of MI for studies of lunar samples (Roedder and Weiblen 1970, 1971), pegmatites, granoitoids and volcanic rocks (Sobolev and Kostyuk, 1975; Roedder 1979). 
	The apparent low impact of MI studies on the volcanological and petrologic communities can be related to the uncertainty of MI as truly representative of the composition of the host magmas. In 1995 Eichelberg said: “Interpretations of melt inclusions is not without difficulties: 10-14g samples are taken to represent 1010 g systems.....”.
	  
	Fig. 3.1 Original drawings of silicate-melt inclusions in effusive and intrusive rocks by Sorby (1858).
	Only within the past 10-15 years volcanologists and petrologists have regularly accepted MI utility for characterizing magmatic systems. Their relatively slow acceptance was due to several reasons: 1) Lack of reliable analytical techniques; 2) Concern that MI could represent anomalous boundary-layer melts or could be  affected by leakage or post-entrapment crystallization; 3) Data sets indicative of heterogeneous melts; 4) Homogenization temperatures greater than those calculated by other techniques. 
	The common terminology for categorizing aqueous or carbonic fluid inclusions cannot be easily applied to silicate MI hosted in volcanic rocks.. For example, most non-silicate FI are described by Roedder (1984) as:
	 1) primary;
	 2) secondary;
	 3) pseudo secondary. 
	Primary inclusions contain any phase present at the time of crystal growth. Secondary inclusions contain phases that enter crystals along fractures (after primary crystal growth has ceased) and then are trapped as the fractures heal. Pseudo secondary inclusions are also trapped along fractures, but before the crystal has ceased growing at its periphery. Most igneous petrologists suggest that both primary and pseudo secondary MI are "primary" in the sense that they are trapped within growing crystals and yield information on the composition of the silicate liquid during its evolution. Under some circumstances (such as magma mixing), there may be more than one primary melt from which the host crystal grew. It is difficult to envision how secondary MI may be trapped in volcanic phenocrysts (because of the high viscosity of silicate melts), though Pasteris et al. (1996) convincingly showed how non-silicate fluids can be trapped as secondary inclusions, particularly during fracturing events associated with magma ascent. Metasomatic secondary MI are commonly described in xenoliths found in volcanic ejecta (Schiano et al. 1994) and can potentially form in plutonic environments if a silicate melt infiltrates a previously crystallized rock. Several studies have been conducted about the formation of crystallized MI (Roedder 1979, 1984, Lowenstern 1995, Frezzotti, 2001). It has been noted that for a given inclusion size, the slower the cooling rate, the more likely the melt in the inclusions will crystallize. Furthermore, for a given cooling rate, the bigger the inclusion, the faster it will crystallize respect to a small one.  Roedder (1984) and Student & Bodnar (1999) noted that in addition to cooling rate and inclusions size, the composition of the melt can affect the crystallization process.  In particular these authors suggest that the high H2O content of the melts and the fact that during trapping the melt was saturated in water, might have promoted crystallization during cooling. 
	  
	Fig.3.2  Examples of MI in volcanic rocks. a) MI consist of glass ± one or more gas bubbles ± daughter mineral phases; b) MI with a single little shrinkage bubble (volatile-poor melts); c) MI with one  big shrinkage bubble and two small bubble (volatile-rich melts);d) MI with a solid inclusion (www.dst.unisi.it/geofluids-lab/).
	A variation in temperature and/or XH2O or mixing processes have an important role  in the formation of melt inclusions in plagioclase. The resulting inclusion shapes can vary, having very often smooth morphologies and following the symmetry of the host mineral phases. Similarly to FI, regularly shaped inclusions, for example negative crystals, can be the result of re-equilibration processes between host mineral and the inclusions. 


