Picca, Francesca (2021) Flame-Formed Carbon Nanoparticles: Synthesis and characterization. [Tesi di dottorato]


Download (8MB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Resource language: English
Title: Flame-Formed Carbon Nanoparticles: Synthesis and characterization
Picca, Francescafrancesca.picca@unina.it
Date: 13 April 2021
Number of Pages: 169
Institution: Università degli Studi di Napoli Federico II
Department: Ingegneria Chimica, dei Materiali e della Produzione Industriale
Dottorato: Ingegneria dei prodotti e dei processi industriali
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
D'Anna, Andreaanddanna@unina.it
Date: 13 April 2021
Number of Pages: 169
Keywords: Combustion, Soot, PAHs
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/25 - Impianti chimici
Date Deposited: 21 Apr 2021 10:27
Last Modified: 07 Jun 2023 11:02
URI: http://www.fedoa.unina.it/id/eprint/13886

Collection description

Nanoparticles and nanostructured materials characterize an increasing research area, gaining strong attention from the scientific community in several fields. During the last decades, many and extraordinary technological advances have been obtained by nano-materials due to their physicochemical properties. In nature, at micro- and nano-scale, materials have existed for a long time before, but it is only through the advent of the technological era, and consequently, the development of nanotechnology, that they have come to the fore. There are several forms of nanoparticles: metal-based, organic-based or organic/inorganic combination and carbon-based ones. Carbon nanoparticles are the most widely studied as carbon is suitable and available raw material. Except for hydrogen, carbon has the most significant number of known compounds and is present on the planet in various forms: from carbon to light and heavy hydrocarbons. Carbon-based nanoparticles have shown a wide variety of structural arrangements that make them a great advantage as they are suitable for various purposes. Several techniques exist to cope with the production of the nano-size materials in both liquid and gas phase; examples are arc-discharge, laser ablation, chemical vapour deposition. The more the process allows to have a production (functional to specific final characteristics of the material) on a large scale and in an economical way, the more it is taken into consideration and studied. Among the various techniques, the use of flame and, therefore, combustion technology is increasingly taken into consideration. Traditionally, combustion is associated with the study of particulate matter and undesired products released into the atmosphere daily to understand the onset of their formation and reduce, if not abate, their emissions. Nevertheless, on the other hand, flame-formed carbon nanoparticles have been the subject of increasing interest in recent decades as a new procedure for synthesizing engineered nanoparticles. In order to obtain flame nanoparticles with desired characteristics and with the highest yield, it is necessary to have an in-depth knowledge of their formation process through the reaction system, the flame. It is necessary to delve into the chemical and physical details of the various steps of the mechanism that lead to the final product; pay attention to the inherent characteristics of the particles, such as size distribution, chemical composition, and physical characteristics. Moreover, depending on the final product to be obtained, flames can be modulated and varied in parameters such as temperature, residence time, mixing effect, and the fuel or additive structure. This PhD thesis focuses on studying and characterizing the carbon nanoparticles synthesized in the well-controlled combustion conditions of premixed fuel-rich flame, using a lab-scale reactor constituted by flat laminar ethylene/air premixed flame. The primary purpose of this activity has been to perform an experimental study on flame-formed carbon nanoparticles, with great attention on the still too unclear step of particle formation in flame, i.e. the nucleation. The first year of the PhD was primarily centred on the study and preliminary characterization of physicochemical evolution of flame-formed carbon nanoparticles. In order to produce different sizes of particles, carbon nanoparticles were collected at different distances from the flame front, i.e., the residence time in the flame was changed. Then, various techniques were used to characterize the produced particles. One of the first investigations was performed in the flame by the on-line differential mobility analyzer to study the particle size distribution. Subsequently, the analytical tools continued with ex-situ techniques such as Raman spectroscopy and Electron Paramagnetic Resonance, the former for chemical and structural information on particles modification and the latter to reveal and confirm the presence of radicals and to identify them. In this thesis, great attention was laid on the presence and role of radical species, above all, in the determining step of nucleation. For this reason, the research continued in the second year with a more detailed analysis of radical formation in the flame products mechanism and a more specific structural characterization of carbon nanoparticles. Indeed, a density functional theory study investigated some aspects related to the behaviour of radical molecules in flame in terms of dimerization and formation of cluster structures. Notably, the study was helpful in the differentiation between - and -radicals. Following the theoretical evaluation of the radical molecules, the question was raised about how such radicals could form, i.e., whether specific structural elements could facilitate their formation and, consequently, direct carbon particles' formation through a specific mechanism. This type of structural investigation was performed through the Proton Nuclear Resonance Spectroscopy ,1H-NMR; for the first time used in a system such as the one studied in this thesis work. Then, in the third and final year of this PhD research work, a comparative physicochemical evolution study in an aromatic fuel environment has been performed. The addition of an aromatic dopant, such as benzene, leads to some change in the flame and the particle formation in terms of particles size distribution, Raman features, and especially radical production, allowing to face up the same questions in such environment and to investigate the effect of aromatic fuel on the nature and the role of radicals in particle nucleation and growth.


Downloads per month over past year

Actions (login required)

View Item View Item