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0 Preface

During the work developed in this PhD Thesis, it has been faced a number
of problems concerning Theoretical Cosmology especially with respect to the
dynamical evolution of the Universe near the cosmological singularity.

Wide space has been devoted to the study of the subtle question concerning the
covariance chaoticity of the Bianchi type VIII and IX model, which has led to
important issues favourable to the independence of the “chaos” with respect to
the choice of the temporal gauge.

Such analysis found its basis either on the standard approach using the Jacobi
metric (a scheme allowed by the existence of an energy-like constant of motion),
either by a Statistical Mechanics approach in which the Mixmaster evolution
is represented as a billiard on a Lobatchevski plane and therefore admitting a
Microcanonical ensemble associated to such an energy-like constant.

Furthermore, an important step consisted in searching a physical link between
the chaoticity characterizing the system at a classical level and the quantum in-
determinism appearing in the Planckian era for such a model.

More precisely, it was constructed the canonical quantization of the model via
a Schrodinger approach (equivalent to the Wheeler-DeWitt scheme) and then
developed the WKB semiclassical limit to be compared with the classical dy-
namics.

As an issue, it resulted a correspondence between the continuity equation of the
microcanonical distribution function and that one describing the dynamics of
the first-order corrections in the wave function for 7 — 0.

A detailed discussion was pursued in view of clarifying the peculiarity existing
to characterize chaos in General Relativity; in particular, it has been provided
a critical discussion on the predictability allowed by the fractal basin boundary
approach in qualifying the nature of the Mixmaster dynamics; the main issue
on this direction relies on the numerical approximations limits when treating

iterations of irrational numbers and overall on the potential methods commonly
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0 Preface

adopted in the dynamical systems approach.

With respect to this, it is emphasized the ambiguity of describing chaos in
terms of geodesic deviation when the background metric is a pseudo-Riemannian
one; a correct characterization of the Lyapunov exponents required a projection

of the connecting vector over a Fermi basis.

The investigation performed about a quasi-isotropic inflationary solution has
allowed to confirm how there is no chance for classical inhomogeneous perturba-
tions to survive after the de Sitter phase; such an analysis supports strongly the
idea that only quantum fluctuations of the scalar field can provide a satisfactory
explanation for the observed spectrum of inhomogeneous perturbations, when

requiring the matter to dominate the first order of the solution.

Finally, it has been provided a generic inhomogeneous solution concerning
the dynamics of a real self interacting scalar field minimally coupled to grav-
ity in a region of the configuration space where it performs a slow rolling on
a plateau of its potential. During the generic inhomogeneous de Sitter phase
the scalar field which dominates zero- and first-order of approximation is a
function of the spatial coordinates only. This solution specialized nearby the
Friedmann-Lemaitre-Robertson-Walker (FLRW) model allows a classical origin

for the inhomogeneous perturbations spectrum.

The opposite nature of the results obtained in such a general case with respect
to the one proper of the quasi-isotropic solution relies on the negligibility of the
matter contribution up to first-two orders of approximation considered in the

former case.

The motivations of this work rely on the properties of the Einstein equations
general solution near a cosmological singularity which exhibit an oscillatory
stochastic behaviour — of which the Bianchi types VIII and IX provide a valu-
able prototype. This feature of the Very Early Universe is in striking contrast
with the Universe as described by the well-tested theory of the Standard Cos-
mological Model, which is based on the highly symmetric FLRW geometry. The
experimental evidence for the homogeneity and isotropy of the present state Uni-
verse concerns relatively late stages of evolution. Indeed the good agreement
of the light element nucleosynthesis prediction with the observed abundances
implies that the Standard Cosmological Model is surely valid since 1073-1072
seconds after the Big Bang, but yet says nothing about the very early dynamics

12



0 Preface

before this time — indeed recent observations of the cosmic microwave back-

ground radiation seem to support the existence of an inflationary scenario.

The FLRW metric solution is unstable when regarded as running backwards in
time: from the existence of structures in the Universe, like galaxies and clusters
of galaxies, we infer that such a symmetric geometry cannot continue all along
up to the initial singularity, even in the presence of an inflationary scenario.
The clumpiness of the Universe implies very early perturbations of homogeneity
and isotropy, which unavoidably “explode” when approaching the Big Bang.
Such an instability, when regarded backwards in time, states the existence of
an instant of time ¢, before which the evolution of the Universe was described
by a “generic” inhomogeneous model — the Belinski, Khalatnikov and Lifshitz
(BKL) picture.

This peculiar moment represents a free parameter depending on initial con-
ditions and on specific properties of matter.

In vacuum case such a picture is described by the inequality L, < L;,, Ly ~ t
being the horizon size and L;, the characteristic scale of inhomogeneity, respec-
tively.

Thus, in the vacuum case, the moment ¢, = ¢;, when the Mixmaster phase
(i.e. the oscillatory regime) ends corresponds to Ly, ~ L;,, roughly considerable
as a boundary over the BKL approximation.

The reversibility of the Einstein equations implies the BKL picture validity in

both directions of time.

The chaotic nature of the evolution — temporally as well as spatially — implies
a stationary statistical distribution for the geometry of the Very Early Universe,
even if “geometry” has to be intended only in an average sense; the mean val-
ues of all the geometrical quantities (lengths, scalar products, etc.) during the
oscillatory regime are unstable in the sense that higher moments have the same
order of magnitude as the average values and therefore the cosmological back-
ground near the singularity is unstable itself.
Exactly the same situation holds for the chaoticity of the Bianchi types VIII and
IX models that we will discuss in detail in this work, especially with respect its
covariant nature; therefore, many of the results obtained by our analysis have
to be yet valid even when they are referred point by point in space for a generic

inhomogeneous cosmological model.

The same situation holds in the quantum evolution of the inhomogeneous

Mixmaster Universe, although in the quantum case the statistical distribution

13



0 Preface

has a different — but somehow related — nature.

The problem of the origin of a stable background and how it could arise out
of the chaos and be compatible with the notion of isotropy is solved considering
a bridge solution, so that the strong correlation between the appearance of a
stable background and its isotropic character is displayed as a key feature of the
Very Early Cosmology.

The isotropic component of the metric tensor — measuring the volume of the
Universe —, is a monotonic function of the time variable and can be chosen as the
temporal coordinate while the physical degrees of freedom are entirely contained
in the anisotropic components, either on the quantum or on the classical level.
A stable background metric can appear only when the anisotropy of the universe
is damped enough.

In vacuum inhomogeneous models a classical background can arise from the
Planckian epoch of the Universe when the oscillatory regime is over, i.e. in cor-
respondence of the matching between the characteristic scale of inhomogeneity
L;,, with the horizon size Lj,.

A classical quasi-isotropic Universe may emerge, up to suitable initial condi-
tions, from general cosmological dynamics, essentially by virtue of an inflation-

ary expansion due to the real scalar field potential term.

It is worth noting how the inflationary scenario provides a mechanism to si-
multaneously dump out anisotropic (see the bridge solution) and inhomogeneous

(see quasi-isotropic model) contributions.

Thesis Outline

In Chapter 1 we discuss the physical and mathematical reasons to consider
the framework of the homogeneous cosmological models, with respect to
the original work by Luigi Bianchi and the application to Cosmology by
Belinski, Khalatnikov and Lifshitz, discussing in the details the dynamical
properties of the solutions for the Bianchi types I and IX (which is equiv-

alent to the type VIII) in the natural choice of a synchronous reference

14



0 Preface

system.

We show how chaotic features emerge even from the original formalism,
while appearing an indefinite sequence of Kasner solutions, bringing to
light the fundamental problems at the basis of a proper chaoticity charac-

terization.

In Chapter 2 we develop the Hamiltonian formulation of the cosmological
problem showing how it can be reduced to the dynamics of a billiard-ball.
In particular, in Section 2.3 is presented an original reformulation of the
Bianchi type IX dynamics by using a set of Misner—Chitre-like variables
which a generic function of one coordinate.

This permits to overcome the ambiguities of many assessments found in
the literature, due to the dependence of the choice of the time parameter
and developments are shown in details in the following of the Chapter.
Our reformulation is not affected by such a possibility and permits to
discuss the dynamics via a standard Arnowitt-Deser-Misner (ADM) ap-
proach in the reduced phase space.

The Jacobi metric obtained induces the derivation of an invariant formu-
lation of the Liouville measure within the microcanonical ensemble frame-
work.

This new approach permits to derive, within the potential approximation,
an analytic expression for the Lyapunov exponents, independently of the
choice of the temporal gauge and a discussion about a correct formulation
of the same problem in General Relativity.

We conclude then with some deep criticism about the methods to be used

in order to characterize a chaotic system.

In Chapter 3, considering the Universe evolution towards the initial singular-
ity, we deal with the canonical quantization of gravity and apply such a
theoretical formalism to the Mixmaster, in order to obtain the correspond-
ing Schrodinger-like equation, equivalent to the Wheeler-DeWitt one.
We then find the wave-function solution, considered in the semiclassical

limit, and show how it induces a continuity equation of the same form as

15
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the one discussed within the microcanonical ensemble description of the

deterministic approach.

In Chapter 4 we consider the inflationary scenario as the possible way to inter-

polate the rich and variegate Kasner dynamics of the Very Early Universe
discussed so far with an inflationary scenario, in order to reach the present
state observable FLRW Universe, via a bridge solution. The Einstein-
Hamilton-Jacobi equation is solved in presence of a real self-interacting
scalar field.

Hence we show how it is possible to have a quasi-isotropic solution of the
Einstein equations in presence of the ultrarelativistic matter and a real
self-interacting scalar field. In this case, the spatial distributions of both
admit an arbitrary form but such a small inhomogeneity is incompatible

with structures formation of classical origin.

Finally, we discuss a generic inhomogeneous solution of the Einstein equa-
tions in presence of a scalar field minimally coupled to gravity. The max-
imal degree of generality allowed in this case in terms of free functions
allows the leading order of the scalar field to be a spatial function, leaving

open the possibility for it to be seed of structure formation.

This PhD work has been developed within the Universita degli Studi di Napoli
“Federico II" — Dipartimento di Fisica , with the co-financing of the European
Community .

The scientific activity has been supported also by Istituto Nazionale di Fisica
Nucleare (INFN) — Sezione di Napoli, Gruppo IV, the grant Progetto Giovani
Ricercatori— Universita “Federico II”, Napoli and by International Center for
Relativistic Astrophysics (ICRA) .
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1 Anisotropic Homogeneous
Cosmological Dynamics

1.1 Theoretical Approach

The general approach by which it is customary to open a description of cosmol-
ogy is strictly referred to what is the actually observed cosmological image of
the global universe structure. The observational data of the Cosmic Microwave
Background Radiation (CMBR) show how the actual universe agrees in what the
Standard Cosmological Model of homogeneity in space and isotropy in evolution
provides, as well as also on a large scale of the matter distribution.

The essential feature which we are going to consider is how long this can
happen and how it can be related with some deeper details of the observations.

First of all, structures exist.

The Standard Cosmological Model (SCM) gives, nevertheless, an adequate
description of the present day state of the universe considered on a large scale.
Moreover it has to be considered an essential result (LIFSHITZ AND KHALAT-
NIKOV, 1963) that perturbations which do not affect the uniformity of the distri-
bution of matter are either damped with time or remain constant. The universe
evolution is naturally led to increase the degree of homogeneity and isotropy.
In the same way, for the reversibility of the Einstein field equations, the universe
evolution backward in time reveals the same attitude to increase perturbations.
A detailed picture is then needed of the time scales at which various approaches
remain valid: as a first step the CMBR observational data offer a picture of how
the universe looked like at an age of approximately 3 - 10° years, homogeneous
and isotropic, up to a degree of accuracy of the order of one part in 10%; nucle-
osynthesis up to 1072 s then the seeds of density perturbations date back to an

earlier epoch.
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1 Anisotropic Homogeneous Cosmological Dynamics

The study of the large scale structure of the universe is most often accom-
plished by using some cosmological model, i.e. a mathematical idealization with
some precise assumptions to tackle the details of problems relying on the de-
scription of kinematics and dynamics. For the kinematical approach the focus
is on the space-time metric on which some symmetry condition is imposed and
on the adopted coordinates; as far as dynamics is concerned one needs to ob-
tain field equations to describe geometry as well as the matter involved, like

Einstein’s and matter’s equations, of the kind

Gaﬁ + Agaﬁ =k Ta,@ (111)
N——— N~~~
geometry matter

where the terms on the left /right-hand side refer to Einstein tensor together with
a “cosmological constant” term and to energy-momentum tensor for matter,

respectively, to which is coupled a set of constraint and state equations as
Ta;ﬂﬂ =0, p=(y—1)p, etc. (1.1.2)

whose details will be described in the following.

1.1.1 Model for Matter

The next clue to the field mathematical structure, lying in the Einstein’s equa-
tions, is the connection with a model for matter, whose details depend deeply
on the astronomical scale distances to which one refers and to the time scale of
the universe evolution: if the description of the actual universe is satisfactory as
a dust fluid model, with zero pressure at very low temperature, going backward
to the Big Bang is necessary to consider a plasma gas before the creation of
nuclei, stars, galaxies an other structures; “very” near the Big Bang then quan-
tum vacuum energy dominates and particle physics is the key representation to
describe the universe, meanwhile “very very” near the Bang quantum gravita-
tional effects become important requiring quantum cosmology for the geometry
(ARNOWITT ET AL., 1959a,b,c), (DEWITT, 1967a,b,c) (ROVELLI, 1991a,b).

1.1.2 Model for Geometry

When equations are too difficult to solve, as it happens in the general form
of the Einstein equations, it is customary to impose symmetry to simplify as

a practical approach in view of the fact that to the highest symmetry there

18



1.1 Theoretical Approach

corresponds a set of equations easier to solve. This way of approach is clearly
equivalent to a philosophical approach in terms of a “cosmological principle”:
why should our position and time in the universe be special?

With this in mind, in a symmetry breaking models order, the

(i) first try lies in the consideration of a universe which is the same at all
places, all times, all directions: homogeneous and isotropic space-time,
like Einstein static universe allowed by A # 0 with symmetry as [R x S?],

but not the same at all times, requiring expansion.

(7) The second try takes under analysis a model for the universe which is
the same at all places and in all directions at a given time, but evolves
with time, breaking homogeneity and isotropy in time direction: spatially
homogeneous and isotropic space-time, like Friedmann-Lemaitre-Robert-
son-Walker (FLRW) models.

(74i) The curiosity leads to consider a universe not the same in all spatial
directions: spatially homogeneous anisotropic universe in which isotropy
is broken in space, like Bianchi models (see below and BIANCHI (1897);
BELINSKI ET AL. (1970)).

(7v) Finally more curiosity considers a universe not the same at every place
at cosmological distance scales: inhomogeneous universe, breaking homo-

geneity in space.

What we have here considered as curiosity clearly is based on the physical

property of the quasi-isotropic solution to Einstein equations (LIFSHITZ AND
KHALATNIKOV, 1963) which describes trajectories close to the isotropic and
homogeneous FRLW space-time: perturbations to energy density are damped
when considering evolution forward in time but, reversely, this corresponds to a
divergence in the evolution towards the singularity, hence supporting the neces-
sity of considering a more general solution then the symmetric (homogeneous
and isotropic) one able to describe well only the recent stages of universe evo-
lution.
The mathematical degree of difficulty is the counterpart of the symmetries that
can be imposed on the space-time properties (see for example CAPOZZIELLO
ET AL. (1996)).

As a possible perspective one has to suppose that, perhaps, observable uni-

verse is only a small part of a inhomogeneous anisotropic space-time which

19



1 Anisotropic Homogeneous Cosmological Dynamics

seems very symmetric at large scales, as indicated by the Cosmic Microwave
Background Radiation (CMBR).

The general way to approach a universe model is then based on assuming a
highly symmetric universe model for the “largest scale” structure of the uni-
verse, whose dynamics can be handled exactly, qualitatively or numerically, by

means of ordinary differential equations.

The structure at smaller distance scales which breaks this symmetry evolves
by a much more complicated dynamics (partial differential equations). Only by
perturbation techniques (coupled with harmonic analysis) can they be handled,
but this is good enough to study certain questions like galazy formation and
clustering, since these are relatively small deviations from the large scale be-

haviour of the universe.

Classical relativity together with the observed expansion tells us there should
be an initial cosmological singularity of some kind (Big Bang?) but the condi-
tions of high energy and density near such an event invalidate the classical theory
there. One needs quantum gravity, which still is not definitely formulated, so
semiclassical calculations or possibly unrealistic model quantum calculations are

performed.

At very early times the theory of matter becomes extremely important, so
GUTS (Grand Unified TheorieS) and their consequences, string theories, higher
dimensional space-times, etc....all complicate the picture, offering the possibil-
ity to understand why is the universe the way it is.

The main feature that anyway can be accomplished by Friedmann universe so-

lution is essentially non stationarity coupled to the existence of a singular point.

1.2 Lie Algebra

We will not discuss the details of the FLRW models to whom a wide literature
is devoted, but will simply recall their main feature as a starting point for
our forward analysis: they are Riemannian spaces of constant curvature and

maximally symmetric as can be classified considering the isometries of the space:

i) homogeneous, say there exists a translation which can move a point to

any other point of the space, without changing any relative distances or

20



1.2 Lie Algebra

angles, i.e. so that the metric (and therefore the geometry) of the space

is invariant;

i) they are isotropic, say at any given point there exists a rotation about
the point which maps any given direction to any other direction; when
expressed as a linear transformation (of the directions) in an orthonormal
basis, the matrix of such a rotation lies in the special orthogonal group of

the same dimension of the space.

The line element can be summarized

52 k=1
ds? = —dt*> + R*(t) | Spda®da’® k=0 (1.2.1)
dl'? k=-1

where R(t) is the scale factor and terms in brackets represent the line elements
of spherical, flat and hyperbolic spaces corresponding to the curvature sign in
the last column.

Homogeneity and isotropy determine completely the space metric, apart from

the curvature sign which is the only arbitrary parameter.

1.2.1 Killing Vector Fields

More useful than the group of motions of various spaces are the Lie algebras
of Killing vector fields which generate the groups of motions via infinitesimal
motions. They yield conserved quantities and make it possible to classify ho-
mogeneous spaces.

Suppose a group of transformations
at — Tt = fH(x,a) (1.2.2)

on a space M (eventually a manifold), where {a®},_,  are r independent vari-
ables which parametrize the group and let ay correspond to the identity trans-

formation
ff(x,a0) = ™. (1.2.3)

Consider an infinitesimal transformation corresponding to ag+da, i.e. one which

is very close to the identity transformation

I
ot — ' = P (x,a0 + da) = f* (x,a0) + <8f ) (x,a9) da* (1.2.4)
SN—— da®
=zh —
=&k (z)

21



1 Anisotropic Homogeneous Cosmological Dynamics

le.
ot — 7t at + Y (x) da® = (1 + aE,) zt (1.2.5)

where r first-order differential operators {{,} are defined by &, = (’ja% corre-
sponding to the r vector fields with components {#}. These are the “generating
vector fields” and when the group is a group of motions, they are called Killing

vector fields, satisfying also L¢g = 0 in terms of the Lie derivative.

The generating vector fields have the interpretation that, under the infinites-
imal transformation corresponding to ay + da, all points of the space M are

translated by a distance dz* = da®&" in the coordinates {z*} and moreover
T (14 6a%,) ot ~ @ Cagh (1.2.6)
In fact, the finite transformations of the group may be represented as
T — gt = el gt (1.2.7)

where {0} are r new parameters on the group.
Generating vector fields form a Lie algebra, i.e. a real r-dimensional vector space
with basis {,}, which is closed under commutation, i.e. the commutators of the

basis elements can be expressed as constant linear combinations of themselves

[é‘a: é‘b] = fafb - é‘bfa = iCCabﬁc (128)

where C°¢, are the structure constants of the Lie algebra ((+) refers to left-
invariant groups, while (—) to right-invariant ones).

Suppose {e,} is a basis of the Lie algebra g of a group G
[€q, €8] = C, e (1.2.9)

and define
Yab = C0C%. = Voa (1.2.10)

which is symmetric by definition. This provides a natural inner product on the
Lie algebra

Yab = €a - €5 =Y (€as€p) ; (1.2.11)
When det (74) # 0 this inner product is non-degenerate and groups for which

this is true are called semi-simple.
The r vector fields {e, } may be used instead of the coordinate basis {%} as

a basis in which to express an arbitrary vector field on GG. This basis is a frame.
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1.2 Lie Algebra

Let us consider briefly the action of an abstract group G' with a given multi-
plication law
a1a9 = ¢ (Cll, ag) s (1212)

next suppose this group acts on a manifold M as a group of transformations
= fH(z,a) = fH(x) . (1.2.13)

In order for the transformations {f, | a € G} to form a group, the product of

two transformations must correspond to the product of group elements

T = foy (far () = (fay © fay) (%) = farar (2) (1.2.14)
i.e. the group property
fay © faz = faraz 5 (1.2.15)
together with the identity element ay and identity transformation f,,
apa = aay = a, (1.2.16)
fao © fo = faga = Ja- (1.2.17)

1.2.2 Homogeneous Spaces

Let us define the orbit of z

fa (@) =A{fu(2)]acG} (1.2.18)

as the set of all points that can be reached from z under the group of transfor-
mations.

The isotropy group at x is
Gy={aeG| f,(x) =z} (1.2.19)

as the subgroup of G which leaves z fixed.

Suppose G, = {ap} and fg () = M, i.e. every transformation of G moves the
point x and every point in M can be reached from z by a unique transformation.
Since G|G, = {aag |a € G} = G, G is diffeomorphic to M and one may identify
the two spaces.

If g is a metric on M invariant under G, it corresponds to a left-invariant one
on (G, specified entirely by the inner products of the basis left-invariant vectors

fields e,. For three dimensions one obtains the family of spatially homogeneous

23



1 Anisotropic Homogeneous Cosmological Dynamics

space sections of the spatially homogeneous space-times.

Given a basis {e,} of the Lie algebra of a three dimensional Lie group G, with

c

., the spatial metric at each moment of time is specified

structure constants C

by the spatially constant inner products

€a €y = gav (1) , (1.2.20)

which are six functions of time. The Einstein equations, as we will apply, become
ordinary differential equations for these six functions, plus whatever functions
of time are necessary to describe the matter of the universe.

In four dimensions one obtains the homogeneous space-times. Einstein’s equa-
tions then become a set of algebraic equations for g, and C%, which may not
have solutions for every group (in general, for non vacuum space-times, other
constants describing the matter occur in the equations).

For both homogeneous and spatially homogeneous space-times, one needs
only consider a representative group from each equivalence class of isomorphic
Lie groups of dimension four and three respectively. In three dimensions the
classification of inequivalent three dimensional Lie groups is called the Bianchi
classification (B1ANCHI, 1897) and determines the various symmetry types possi-
ble for homogeneous three spaces just as (k = +1,0, —1) classifies the symmetry

types possible for homogeneous and isotropic three spaces (FRW).

1.2.3 Bianchi Classification

Scheme from Geometry

In the work done by BiaNcHI (1897), in 1897 following the works by RIEMANN
(1868) and LIE AND ENGEL (1888), a Lie group is a continuous and finite
group G, generated by r infinitesimal transformations. The problem to deter-
mine which spaces possess a continuous group of movements is reduced to the
classification of all possible forms for ds? corresponding to which, under G, ds?
is self-transformed.

The relation between the number of transformations r and the dimension of
the space n, with the maximum degree of freedom is given by

n(n+1)

=—" 1.2.21
=20 (1:2.21)

giving constant curvature spaces. For ordinary manifolds n = 2 was already a

solved problem, giving only the two possibilities

r=1, r=3 (1.2.22)
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1.2 Lie Algebra

i.e. self-similar manifolds and constant curvature ones, respectively (r = 3 —
k=+1,0).
The work by Bianchi spans the case n = 3 for different degrees of freedom.
The main difference between the n = 2 and n = 3 cases lies essentially in the
fact that a manifold admitting a transitive group of movements is necessarily a
constant curvature one, that is to say that if a point can be moved to any other,
then the manifold can also rotate. In dimension three this situation does not
require the constancy of the curvature, admitting 3 or 4 parameters.

For n > 3 the classification becomes rapidly more involved.
Let us introduce the Killing (KiLLing, 1892) notation for the differential form

d82 == Z aikda:ida:k (1223)
i,k=1
and
"0
Xf= g 1.2.24
f ;s o (1.2.24)

for the infinitesimal transformation over the function f of the n variables x,, &,

being n unknown functions of the coordinates to be determined in terms of

X(ds?) = Z X (ai)dzdrg+
ik

+ ) apdX (dzy)dwy + Y aipdX (da,)da; (1.2.25)

7.k 1,7

The symmetry conditions to be imposed will distinguish the number of the r
independent infinitesimal transformations X f admitted by the differential form

(1.2.23) in a finite number

r< w (1.2.26)

and these r transformations
X f, Xof, ..., X, f, (1.2.27)

will generate the continuous group G, of movements over the chosen n-dimensional
space S,. In general, if two infinitesimal movements over the space S,, have tra-
jectories in common, then they must coincide. The different behaviour of the
movements under different composite transformations is what will characterize

different spaces.
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1 Anisotropic Homogeneous Cosmological Dynamics

If we set in general

X, f = Zg 8% (=1,2,...,n), (1.2.28)
we will have the composition formula
(XoXg) = capy Xy f (1.2.29)
v

Capy being the composition constants. The explicit form of a;; is given by a
system of total differential, linear and homogeneous; in terms of &Ea) (x) it is
determined by the symmetry imposed on the transformation group.

To any group of transformations G3, transitive over three variables, there al-
ways correspond three-dimensional spaces admitting such a G5 as a group of
movements. With this in mind, for real groups it is straightforward to consider
the classification first given by LIE AND SCHEFFERS (1893) for the integrable
groups divided in types as

I (X ) 0, (XoX3) = X, f, (1.2.30b)
111 (X 3) le, (XQ X3) = 0, (1230C)
IV (X 3) le, (X2 X3) - X1f+X2f, (1230d)
A% (X ) le, (XQ X3) = ng, (12306)
with (h #0,1), and
VII (XiX3) =X f, (XoX5)=-X1 f+hXof, (1.2.30g)

where the constant h satisfies 0 < h < 2 while for all seven types

Considering the case in which the group (3 is non-integrable, Lie adds also the

following:
Type VIII (X1 XQ) = le, (X1 X3) = 2X2f, (XQ Xg) = X3f, (1232)
to which Bianchi added the ninth one

Type IX (X1 XQ) == ng, (X2 X3) = X1 f, (X3 Xl) == ng, (1233)
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1.2 Lie Algebra

which differs from the type VIII for the fact that the last one has no two-
parameter real subgroup. In particular, integration of type VIII requires the
elliptic Weierstrass function p(x; g9, g3), with elliptic invariants go, g3 specified
for the model (WEIERSTRASS, 1886), while type IX admits also a G4 group of

movements, containing a three-parameter transitive subgroup Gj.

Scheme from Cosmology

In this Section we will specify the calculation outlined in the previous one in a
way well suited for cosmology.
The homogeneity means that the metric properties are identical at all points of
the space.

Consider the group of transformations of coordinates which transform the
space into itself, i.e. leave the metric unchanged: if the line element before the

transformation has the form
dl® = a5 (', 2%, 2%) da®da’ (1.2.34)
then it is transformed into
dl* = 45 (2", 2", 2") da'*dz’” (1.2.35)

where 7,43 has the same form in the new coordinates.

In the general case of a non Euclidean homogeneous three-dimensional space,
there are three independent differential forms which are invariant under the
transformations of the group of motions. However they do not represent the

total differential of any function of the coordinates. We shall write them as

esdx” (1.2.36)

[0}

where the Latin index here enumerates three independent vectors, functions
of the coordinates, to be used as basis vectors. Hence the metric (1.2.35) is

re-expressed as
dI* = gy (eldz®) (ehda’) (1.2.37)

so that the metric tensor reads as

Yap = nabege%, (1.2.38)
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1 Anisotropic Homogeneous Cosmological Dynamics

where 1, is function of time only, symmetric in ab and in contravariant compo-

nents we have
o = pbeley 1.2.39
Y =n%ege,, (1.2.39)

where 1% should be viewed as the components of the inverse matrix so that
N*Ney = 0f and

eqey =0y, elel = 05 - (1.2.40)
The tensor 7., will be used to operate over indices in the new basis according

to

nabeg = €, nabeai = 6,? (1241)

and for any generic co-vector A; or tensorial T;; expression when projected on

the tetradic basis e) obtaining the tetradic components

A, = ey A =elA;, A'=e A" =e"A, (1.2.42)
AT = A, = efAT = eV A (1.2.43)
and in general
T = eelTij = e Ty, (1.2.44)
Ty = eleiToy =eiT,;. (1.2.45)

Clearly, in these formulae the indices 7, j are used to show the tetradic algebra
and enumerate the Lorentz ones, labelled otherwise with greek letters.
The relationship between the covariant and contravariant expression for the

three basis vectors is

I TR

e = U[e /\e}

e = % [’ ne'] (1.2.46)
I R

e; = U[e A €%

where e® and e, are to be understood formally as Cartesian vectors with com-

a « 1
ponents e2 and e while v represents

v=lel|=¢"-[e?Ane’] . (1.2.47)

a

The determinant of the metric tensor (1.2.38) is given by

v = nv? (1.2.48)

28



1.2 Lie Algebra

with 7 the matrix 7,, determinant.
The invariance of the differential form (1.2.35) and the expression (1.2.36) means
that

el () dz® = el (2') dz'® (1.2.49)

(o] [0}

where now we put tetradic indices in brackets to avoid misunderstandings and
el on both sides of (1.2.49) are the same functions expressed in terms of the
old and the new coordinates.

The algebra for the differential forms permits to rewrite (1.2.49) as

ox'P n (a
e e?a) (z') e () . (1.2.50)

This is a system of differential equations which define the change of coordinates
2'%(z) in terms of given basis vectors.

Integrability over the system (1.2.50) is rewritten in terms of the Schwartz con-

dition
823715 a2x/ﬂ
0x®ox” - OO (1.2.51)
which, explicitly, leads to
aeﬂa (;E') aeﬁb (LEI)
[Hal)ty - “B ] o e -
0c) (z) _ 0et? (v)
— ! ¥ _ o
= €l )[ O Py (1.2.52)

Multiplying both sides of (1.2.52) by efy (z)e/,, (x)e(ﬂf) (') and differentiating,
the left-hand side becomes

del (a) de’ (z')
(f) (o (d) 6 (0 () ) n| _
e (2 [ 55 o (@) = —5 5o ()| =
, , ae(f) (xl) ae(f) (ZL'I)
= e, (') ely (@ [ gxl& — gxw (1.2.53)

and the right hand side the same function expressed in terms of x.
Since z and 2’ are arbitrary, both sides must be constant, then last equation

reduces to

ae(of) deld) . .
( oxB - afa e(a)el(gb) =C ab (1254)
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1 Anisotropic Homogeneous Cosmological Dynamics

(now brackets around indices are superfluous): this provides the expression in
terms of the group structure constants C¢,. Multiplying (1.2.54) by ezc) finally

leads to B¢ Do
e e
a (b) 15} (a) _ e
€0 Fpa O Gy = C €l - (1.2.55)

By construction, we have the antisymmetry property from (1.2.53) or (1.2.54)

Ccab —- — Cba . (1256)

To use the notation of the previous Section,

0
X, =¢} 1.2.57
€a) Hpa (1.2.57)
and (1.2.55) rewrites
[Xa, Xb] = XaXb — XbXa = Ccach . (1258)
Homogeneity is expressed as the Jacobi identity
[ Xa: Xo| s Xe| 4+ [ X, Xe|, Xa] + [ Xe, Xa) . Xo) =0 (1.2.59)
and explicitly
cl,cl + ot et + el ch=o0. (1.2.60)

With this formalism, Einstein equations for a homogeneous universe can be
written in the form of a system of ordinary differential equations which involve
only functions of time, once all three-dimensional vectors and tensors are ex-
panded as stated before. To obtain the equations ruling the dynamics it is not
necessary to use the explicit coordinate dependence of the basis vectors. Such

choice in fact is not unique as
ea) = Awyaye” (1.2.61)

yields again a set of basis vectors.

Let us introduce the two-index structure constants which will be used later as
C¢ = EapaC™ (1.2.62)

where g4, = €%¢ is the Levi-Civita tensor (193 = +1); the Jacobi identity
(1.2.60) becomes
£4eaCC" = 0. (1.2.63)
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1.2 Lie Algebra

The problem of classification of all homogeneous spaces reduces to the problem

of finding all inequivalent sets of structure constants. Condition (1.2.63) leads

to
(X1, Xo] = —aXy+n3X;3
[XQ,X:;] == anl (1264)
[X3,X1] = TLQXQ + CLX3

where a > 0 and (ny,n9,n3) are constants related to the structure constants
and in particular the n; are reducible to unity. Similarly to what found in the

previous Section we finally find the Bianchi classification as in the Table 1.2.3.

Type a n; no ns
I 0 0 0 0
IT 0 1 0
VII 0 1 1 0
VI 0 1 -1 0
IX 0 1 1 1
VIII 0 1 1 -1
V 1 0 0 0
v 1 0 0 1
VII a 0 1 1

11 (a = 1) } N , |
VI (a # 1)

Table 1.1: Inequivalent structure constants corresponding to the Bianchi classi-

fication

Not all anisotropic dynamics are compatible with a satisfactory SCM but,
as shown in the early Seventies, some can be represented, under suitable con-
ditions, as a FLRW model plus a gravitational waves packet (LUKASH, 1974),
(GRISCHCHUK ET AL., 1975).

The interest in the IX model — the so-called Mixmaster (MISNER, 1969)- re-
lies on the property to have invariant geometry under the SO(3) group, shared
with the closed FLRW universe. For such a inhomogeneous dynamics, the line

element allows a decomposition as

ds? = dsg? — 800y G0 daid® (1.2.65)
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1 Anisotropic Homogeneous Cosmological Dynamics

where dsy denotes the line element of an isotropic universe having positive con-
stant curvature, GEZ)((’) is a set of spatial tensors and ¢)@)(t) are amplitude
functions, resulting small sufficiently far from the singularity. The tensors in-
troduced in (1.2.65) satisfy the equations

GOV — (2 _ 3Gl GO0k _o GO _g (12.66)

3

in which the Laplacian is referred to the geometry of the sphere of unit radius.

1.3 Synchronous Reference and Einstein’s

Equations

1.3.1 Generality of the Solution

Let us come back to the application of the progressive symmetry reduction
scheme to cosmological models in the homogeneous anisotropic case treated in-
dependently by what discussed so far by Belinski, Khalatnikov and Lifshitz in
1969 (BELINSKI ET AL., 1970).

The discussion will take always into account the question about generality of
the solution considered, in the sense that the general solution is the one which
allows completely arbitrary conditions (distribution of matter and gravitational
field) at any chosen initial moment of time. Then the criterion for the degree of
generality of a solution is the number of arbitrary functions of the space coordi-
nates contained in it, bearing in mind also that some functions are arbitrary by
virtue of the arbitrariness of the choice of the reference system allowed by the
equations, and hence we will focus our attention only over “physically arbitrary”
functions, independently of the choice of reference system.

The (1.1.1) equations read a bit more explicitly

1
Ry = 5Rgu = 87GT,, . (1.3.1)

1.3.2 Synchronous Reference

The most general properties of the cosmological solutions, namely those which
involve their singularities, do not depend on the presence or absence of matter.
In connection with this it is not necessary to use the comoving reference sys-

tem, widely used elsewhere, but the natural choice is a system subject to the
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1.3 Synchronous Reference and Finstein’s Equations

conditions for the components of the metric tensor gq (a,b6=0...3)
gOa:O, g(]():l, (@:13) (132)

In particular, the first in (1.3.2) is the condition which allows the synchronization
of clocks at different points of space, while the second relation sets the time
coordinate 2° = t as the proper time at each point of space. The elementary

interval in such a system is given by the expression
ds* = dt* — dI*, (1.3.3)

where
di* = a5 (t,27) dz®da” (1.3.4)

in which the three-dimensional tensor 7,4 defines the space metric.
In the synchronous reference system, lines of equal times are geodesic lines in

the four-space, as implied by the splitting definition. Indeed the four-vector

,da’

i M 1.3.5
s (1.3.5)

u

which is tangent to the world line (2”7 = const.), has components u° = 1, u® = 0
and automatically satisfies the geodesic equations
du’

-+ ufu' =Th =0, (i,k1=0,.3). (1.3.6)
S

The choice of such a reference is always possible and moreover the choice is not
unique, since a metric of the form (1.3.4) allows for any transformation of the

three space coordinates which does not involve time as

{i . o) (1.3.7)

In the reference defined and with a metric as in (1.3.3) the Einstein equations

are written in mixed components as

10 , 1 4., 1
Rg = —§a/§;a — Z/{'gﬁ;ﬂ = 81(# (T(? — §T> (138&)
1
Rg = 5 (chgz;ﬂ - Hg;a) = SWGT(S (1'3'8b)
Rl = —pio L 2( VKD) = 8nG (T — Lo (1.3.8¢)
a * 2,40t ° @ 2
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1 Anisotropic Homogeneous Cosmological Dynamics

where

a
Rap = atﬂa Y E| Yap | 3 (139)

T, is the energy-momentum tensor describing the system and P,z is the three-
dimensional Ricci tensor obtained through the metric 7,3 which is used to raise
and lower indices within the spatial sections.
The metric 7,5 allows to construct the three-dimensional Ricci tensor P? =
yﬁVPcw as
Pag = 0,705 — 0a N}, + AL gA05 — ALsAy, (1.3.10)

in which appear the pure spatial Christoffel symbols

7 (0avsp + O8Yas — OsVap) (1.3.11)

also used to form the covariant derivative ( ).,.

From (1.3.8a) it is straightforward to derive, even in the isotropic case, the
Landau-Raychaudhuri theorem (RAYCHAUDHURI, 1955), stating that the metric
determinant v has to vanish in a finite instant of time.

The singularity with respect to the time variable is a physical one, character-
ized by scalar quantities, such as the density of matter and the invariants of the

curvature tensor, which are becoming infinite.

1.4 BKL Approach to the Mixmaster Chaos

The Einstein equations (1.3.8a)-(1.3.8¢) for a homogeneous universe can be writ-
ten in the form of a system of ordinary differential equations which involve only
functions of time, expanding all three dimensional terms on the tetradic basis

built in the previous Section. In empty space such projections take the form

1., 1,.

Ry = _5’%_152’% (1.4.1a)
1

R = —55 (b, —8tC,) (1.4.1b)

a 1 9 b a

Ry = ———(VnKl) — Py (1.4.1c)

where we obtain

Ragpy = 7;]ab (142&)
KD = fen®. (1.4.2b)
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1.4 BKL Approach to the Mixmaster Chaos

On denoting with the dot differentiation with respect to ¢, the projection
Poy = mhe Py (1.4.3)
of the three-dimensional Ricci tensor becomes
Pay = 5 (0% Cta + O s — 50, Cova +
+ CuC + CuCia) (1.4.4)

At this stage the Einstein equations have reduced to a much simpler differential
system, involving only ordinary derivative with respect to the temporal variable
t

In this part we will first discuss the Kasner solution which will be generalized

in the discussion of the dynamics of Bianchi types VIII and IX.

1.4.1 Kasner Solution

The simplest and paradigmatic solution of the Einstein equations (1.3.8a)-
(1.3.8b) in the framework of the Bianchi classification is the type I model, first
obtained by KASNER (1921) which is appropriate to the gravitational field when
considering (1.3.8a)-(1.3.8b) in empty space.

The simultaneous vanishing of the three structure constants and consequently

also of the three-dimensional Ricci tensor provides

a — 504
a = % }:> Py =0. (1.4.5)
Cs =
Then (1.4.1a)-(1.4.1c¢) describe uniform space and reduce to the system
1
f2+ 5/{2/{2 = 0 (1.4.6)
1 0

b
= = 0 1.4.7
\/,.7 at (ﬁﬁa) 3 ( )
whose solution is a Euclidean metric depending on time as
di* = t*P1dx* + t*P2 dy® + t°72d2* (1.4.8)

Here pq, po, p3 are three arbitrary numbers, so-called Kasner indices, satisfying
the relations
pr+petps=pi+ps+p;=1, (1.4.9)
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1 Anisotropic Homogeneous Cosmological Dynamics

therefore only one of these numbers is independent. Except for the cases (0,0, 1)

and (—%, %, %), such indices are never equal, one of them being negative and two

positive; in the peculiar case p; = ps = 0,p3 = 1 the metric is reducible to a
Galilean form by the transformation

tsinha® = ¢, tcosha® =7, (1.4.10)

i.e. with a fictitious singularity in a flat space time. Once that Kasner indices

have been ordered according to

P <p2 <p3, (1.4.11)

their corresponding variation ranges are

1 2 2
—2<m <0, 0<p<5, - <ps<1 (1.4.12)
3 3 3
In parametric form we have the representation
—u
pl) = e
1+u
= 1.4.13
P2 (u) 1+ u+ u ( )
u (1l +u)
ps(v) = 14+ u+u?
as the parameter u varies in the range
1 <u < +o0. (1.4.14)

The values u < 1 lead to the same range as

P <1> =pi(u), pa (%) =p3(u), ps <l> =p2 (u) . (1.4.15)

u u

This solution clearly corresponds to a completely uniform but anisotropic
space, when in the Friedmann solution all distances had a contraction towards
the singularity with the same power law in any direction.

In a generalized solution the limiting metric expressed by the principal terms
as expansion in powers of ¢ has the form analogous to (1.4.8), hence as (1.3.3)

with line element

A’ = (a’lolg + >mamg + *nang) de“dz” (1.4.16)

36



1.4 BKL Approach to the Mixmaster Chaos
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Figure 1.1: Evolution of Kasner indexes in terms of the parameter u.
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where

a=t, b=t c=1t". (1.4.17)

The three-dimensional vectors 1, m, n define the directions along which the spa-
tial distances vary with time according to the power laws (1.4.17). These vectors
and the Kasner indices are functions of the spatial coordinates: their relation
with the structure constants defined in (1.2.55) is given in Section 1.2.3. Since
the exponents in (1.4.17) are all different, the spatial metric (1.4.16) is always
anisotropic.

The degree of generality is not diminished by the presence of matter: this can be
brought into the metric (1.4.16)-(1.4.17) with all the four new functions of the
coordinates which are necessary to provide the initial distribution of density of
matter and the three components of the velocity of its motion. The behaviour of
matter in the neighbourhood of a singular point is determined by the equations
of motion of matter in a given gravitational field as hydrodynamic equations
(see (4.6.15) below).

1.4.2 Piecewise Representation of the Model

The Kasner solution is compatible with the situation in which the Ricci tensor
appearing in the Einstein equations P,s is of higher order in 1/t with respect
to all other terms involved. However, since one of the Kasner exponents is neg-
ative, terms of order higher than ¢~ appear in the tensor P,5. In such a case
the discussion of solutions has to be extended to the general anisotropic case, in
the search of a general behaviour of the universe towards the initial singularity.
In fact, the Kasner regime outlined relies on a restriction over the phase space
of the solution (not discussed here in the details, see BELINSKI ET AL. (1970),
§3) which causes an instability with perturbations which violate this condition.
A general solution is, by definition, completely stable, i.e. application of any
perturbation is equivalent to a change in the initial conditions at some moment
of time and, since the general solution satisfies arbitrary initial conditions, the
perturbation cannot change the form of the solution. Nevertheless, the cited
restriction over the Kasner solution makes it unstable with respect to perturba-
tions violating it: the transition to a new state cannot be treated as small ans

lies outside the region of infinitesimal perturbations.

The Einstein equations in a synchronous reference system and for a generic
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1.4 BKL Approach to the Mixmaster Chaos

homogeneous cosmological model in empty space are given by the system

, (abe) 1 - ) 2 B
—th = abe 2a2b2c? [)\ N (’Ub —ve ) } =0 (1.4.18a)
(abe)
—R™ = 274 2 22 _
Hon = ae | 2a2e [“ bt — (Aa® — ve?) ] 0 (1.4.18b)
no__ (Cle) 1 9 4 9 o 2 B
—Hn = abc + 2a2b?c? [V ©- ()\a —pb ) } =0 (1.4.18c)
and )
o a b ¢
T T Ty = 1.4.1
Ry u + b + - 0 ( 9)

where [, m,n label the three spatial directions and the other off-diagonal com-
ponents of the four-dimensional Ricci tensor vanish identically as a consequence
of the choice of the diagonal form for the metric tensor according to ;3 =
a?, Yoo = b?, 33 = 2. The constants \, i, v correspond to the structure con-
stants C11, Cay, C33 respectively, introduced earlier in Section 1.2.3, which for
the Bianchi type IX read as p = v = A = 1 while for type VIIl p=v = -\ = 1.
All these equations contain only functions of time, reflecting homogeneity of
space, being exact ones, without any restriction for the closeness to the singular
point ¢ = 0. Through the notation

a=¢e*, b=ée, c=¢ (1.4.20)

and the new temporal variable 7

dt = abc dr (1.4.21)
(1.4.18) and (1.4.19) simplify to
20, = (ub® — 1/02)2 — \a* (1.4.22a)
26,, = (M — 1/02)2 — p2bt (1.4.22b)
2y, = (Aa® — ub?)” — 3¢ (1.4.22¢)
! (a+B+7),, =a:b: +ary + By (1.4.23)

2
where subscript 7 denotes derivation with respect to 7. Manipulating system

(1.4.22) and using (1.4.23), one obtains the first integral
057/87_‘_057’77 + /87"77' =
1
=1 ()\2a4 + 170" + v+

— 2\ pa*h? — 2 va*c? — 2;wb2c2> (1.4.24)
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involving only first derivatives. The Kasner regime (1.4.17) is the solution of
equations (1.4.22) corresponding to the case when all terms on the right hand
side of (1.4.22) can be neglected. However, such a situation cannot persist
indefinitely (¢ — 0) since there are always such terms on the right-hand side of
(1.4.22) which are increasing.

Let’s consider for instance the case in which the negative power corresponds to
the function a(t) (that is to say p; = p1): the perturbation of the Kasner regime
results from the terms A\2a* while the other terms decrease with decreasing ¢, in
fact

a ~ —|pi|Int
p <0—=p=—[pl, 1 S fort — 0 (1.4.25)

~J
tlp1l

and along other directions

P2 >0 —=py=|paf, B~ |poflnt ™\

fort — 0. (1.4.26)
ps>0—=p3=|[ps|, v~ |ps|lnt ™

Preserving on the right-hand side of equations (1.4.22) only the increasing terms

we obtain
1 4o
Arr = —56
1
/87'7' = Yrr = 56404‘ (1427&)

The solution of these equations describes the evolution of the metric from its
initial state (1.4.17). Since in the following we will consider the dynamics of
Bianchi types VIIT and IX only (in particular the last one) we will set A = 1

without loss of generality in the properties discussed. Let

DI=D1, DPm=D2, Dn=D03, (1.4.28)
so that
a~ P, bt PR (1.4.29)
and then
abc = At
1
T = Klnt + const. (1.4.30)
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1.4 BKL Approach to the Mixmaster Chaos

where A is a constant, therefore the initial conditions to (1.4.27) can be formu-

lated as

Qr = Apl ) /87' = Ap27 Vr = Ap3 ; (1431)

for T — 00.

The system (1.4.27) with (1.4.31) is integrated to
2 2 | D1 | A

= 1.4.32
cosh (2 | p1 | A7) (14.32a)
b? = bo® exp [2A (po— | p1 |) 7] cosh (2 | py | AT) (1.4.32D)
¢ = co?exp [2A (ps— | p1 |) 7] cosh (2 | py | A7) (1.4.32c¢)

where by and ¢, are integration constants. Let us consider solutions (1.4.32) in

the limit 7 — oo: towards the singularity

a ~ exp [—Ap;7] (1.4.33a)
b~ exp[A(p2 + 2p1) 7] (1.4.33b)
¢~ exp[A (ps + 2p1) 7] (1.4.33¢)

( )

t ~exp[A(1+2p)7] 1.4.33d

that is to say, in terms of ¢
a~t?, bt e tPn ) gbe = A't (1.4.34)

where the primed exponents are related to the un-primed ones by

) | p1 | , 2| pi| —po

=1t po =12 1.4.35a

1 -2p | 1-2]p | ( )

/ p3_2|p1| !

p =" 1A N=01-2|pmA. 1.4.35b
R (1-21m) (1.435b)

Summarizing these results, we see the effect of the perturbation over the Kasner
regime: a Kasner epoch is replaced by another one so that the negative power
of ¢ is transferred from 1 to m direction, i.e. if in the original solution p; is
negative, in the new solution p/, < 0. The previously increasing perturbation
A2a* in (1.4.18) is damped and eventually vanishes. The other terms involving
u? instead of A\? will grow, therefore permitting the replacement of a Kasner
epoch by another. Such rules of rotation in the perturbing property can be

summarized with the rules

= p1(u) py=p2(u—1)
Pm=pa2(u) p =4 p,=p(u—1) (1.4.36)
Pn = p3(u) p% =P3 (U - 1)

41



1 Anisotropic Homogeneous Cosmological Dynamics

which constitutes the so-called BKL map, the greater of the two positive powers
remains positive.

The following changes according to (1.4.36) accompanied by a bouncing of the
negative power between the direction 1 and m continue as long as the integral
part of the initial value of u is not exhausted, i.e. until u becomes less than one.
At that point, according to (1.4.15), the value u < 1 is turned into u > 1; at this
moment either the exponent p; or p,, is negative and p, becomes the smaller
one of the two positive numbers, say p, = ps. The next sequence of changes

will bounce the negative power between the directions n and 1 or n and m.

1.4.3 Dynamics and Gauss Map

For an arbitrary, irrational initial value of u the changes (1.4.36) repeat indef-
initely. In the case of an exact solution the exponents p;, p,, and p, lose their
literary meaning. In general, it has no meaning to consider any well defined, for
example rational, value of u. Only the conclusions which refer to the general
(irrational) u have real meaning.

The evolution of the model towards the singularity consists of successive pe-
riods, so-called eras, in which distances along two axes oscillate and along the
third axis decrease monotonically while the volume decreases to a law near to
~ t. In the transition from one era to another, the axes along which the dis-
tances decrease monotonically are interchanged. The order in which the pairs of
axes are interchanged and the order in which eras of different lengths (number of
Kasner epochs contained in it) follow each other acquire a stochastic character.
Successive eras ‘condense’ towards a singularity. Such general qualitative prop-
erties are not changed in the case of space filled in with matter, however the role
of the solution would change: the model so far discussed would be considered

as the principal terms of the limiting form of the metric as t — 0.

The discussion needs some more comments. To every s-th era there cor-
responds a decreasing sequence of values of the parameter u. This sequence,

from the starting era has the form uﬁ,ﬁm, uﬁfﬁw -1, uﬁfﬁw —2,... ,uff;zn

We can
introduce the notation

u® = k) 4 709 (1.4.37)
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1.4 BKL Approach to the Mixmaster Chaos

then
ugn =20 <1, ul®) =k 4 ) (1.4.38)
where i), is the greatest value of u for an assigned era and k¥ = [USZJ,:C]

(square brackets denote the greatest integer less or equal to ug;?w) The number
k®)denotes the era length, i.e. the number of Kasner epoch contained into it.

For the next era we obtain

wer = L e 2 [L] _ (1.4.39)

mazx ($) (s+1)

For large u the Kasner exponents approaching the values (0,0, 1) correspond to

1 1 1
pmR-——, pR—-, prl-—, (1.4.40)
u u u

and the transition to the next era is governed by the fact that not all terms in
the Einstein equations are negligible and some terms are comparable: in such a
case, the transition is accompanied by a long regime of small oscillations lasting
until the next era, whose details are not relevant for the purposes of this work
(for details see BELINSKI ET AL. (1970)), after which a new series of Kasner
epochs begins. The probability A of all possible values of 2(® which lead to a
dynamical evolution towards this specific case, expressed as a fraction of the
unit interval, is strongly converging to a number A < 1. If the initial value of
29 is outside this special interval for )\, the special case cannot occur; if z(? lies
in this interval, a peculiar evolution in small oscillations can occur, but after this
period the model begins to evolve regularly with a new initial value z(%), which
can fall only accidentally in the dangerous interval (with probability A). The
repetition of this situation can lead to dangerous cases only with probabilities

A, A2, ... which converge asymptotically to zero.

If the sequence begins with £ +2(%, the lengths £, k) ... are the numbers

appearing in the expansion for z(°) in terms of the continuous fraction

2 = ! , (1.4.41)

which is finite if related to a rational number, but in general is an infinite one.
For the infinite sequence of positive numbers u ordered as (1.4.39) admitting

the expansion (1.4.41) it is possible to note that

43



1 Anisotropic Homogeneous Cosmological Dynamics

i) a rational number would have a finite expansion;

ii) periodic expansion represents quadratic irrational numbers (i.e. numbers

which are roots of quadratic equations with integral coefficients)

iii) irrational numbers have infinite expansion.

All terms &M, k@ kG in the first two cases having the exceptional prop-
erty to be bounded in magnitude are related to a set of numbers (%) < 1 of zero
measure in the interval (0, 1).

An alternative to the numerical approach in terms of continuous fractions

9 over the

is the statistic distribution of the eras’ sequence for the numbers !
interval (0,1), governed by some probability law. For the series z(*) with in-
creasing s these distributions tend to a stationary one w(z), independent of s,
in which the initial conditions are completely forgotten
1
wr) = ——.
(z) (1+ z)n2

Consider, instead of a well defined initial value as in (1.4.37) with s = 0, a

(1.4.42)

probability distribution for (%) over the interval (0, 1), Wy(z) for (% = z in such
an interval. Then also the numbers z(®) are distributed with some probability.
Let w,(x)dz be the probability that the last term in the s-th series z(*) = x
lies in the interval dz. Then the last term of the previous series must lie in the
interval between 1/(k + 1) and 1/k, in order for the length of the s-th series to
be k.

Then the probability for the series to have length k is given by

1

%
W(k) = / ws_1(x)dx. (1.4.43)

T+
The fact that the last term of the (s + 1)-st series z(*) = 2 can be generated
by the initial term of the same series u'aes’ = z + k (where k = 1,2,...) and

correspond to the numbers 2(*) = 1/(k + z) from the preceding series for each
pair of subsequent series can be re-expressed in terms of the recurrence formula

relating the distribution w, 1(z) to wy(x)

= 1 1
wsi1(x)de =)y  w; < ) ‘d
i ;; k+z)| (k+2)

or, simplifying the differential interval,

o) =5 ! ws< ! ) (1.4.45)

— (k+:v)2 k+x

, (1.4.44)
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1.4 BKL Approach to the Mixmaster Chaos

If for increasing n the wsy, distribution (1.4.45) tends to a stationary one,

independent of s, w(x) has to satisfy

=~ 1 1
w(z) = w . 1.4.46
B=3 i () (1410
A normalized solution to (1.4.46) is
1
= —. 144
v = T me (1.4.47)

The corresponding stationary distribution of the lengths of the series k is ob-
tained substituting (1.4.47) in (1.4.43) and evaluating the integral

VVM%:[kuﬂﬂdx:E%mg%%%y (1.4.48)

1

+k

Finally, £ and x being not independent, they must admit a stationary cumulative
probability distribution

1
k = 1.4.49
wk o) = G T e D (1.4.49)
which, for u = k 4 x, rewrites as
(W)= (1.450)
o ~u(u+1)In2 o

say a stationary distribution for the parameter .

The formalism developed so far and the method used give clear indications
on how the singularity in the general solution of the gravitational equations is
of the same type as the one discussed here. In fact, the oscillatory approach
to the singular point is caused by that type of perturbation which makes the
Kasner solution unstable. In the same way, it is shown that there is no direct
connection between the singular point and the finiteness or infiniteness of the
universe, in view of the existence of open and closed homogeneous models with
oscillatory singular points.

The infinite number of oscillations between any finite moment of the world

time ¢ and the moment ¢ = 0 modify the notion of finiteness of time, as relies
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1 Anisotropic Homogeneous Cosmological Dynamics

in the approach in term of the logarithmic one 7 in terms of which the whole
evolution is stretched to —oc.

The nature of this singularity and its generality is peculiar: for a singular
point in the future, one has to assume arbitrary initial conditions at any pre-
ceding moment of time while for a singularity in the past there is no way to
connect straightforwardly the initial conditions on the equations as related to
the present state of the universe with arbitrary conditions in the past, without
the assumption of some mechanism to connect the various eras of the universe
evolution.

Let us outline one other important task related to homogeneous dynamics
marking a deep difference between isotropic and anisotropic ones (MISNER,
1969): the standard model metric for the radiation dominated early phase FRW

1S

ds® = n*(dn® — dI*) (1.4.51)

then the coordinate time An required for a light signal with ds? = 0 to connect

two regions of spatial separation Ax is
Az = An, (1.4.52)

so that at a fixed epoch 7y > 0 no causal interactions subsequent to the singu-
larity at 7 = 0 have occurred between regions of spatial separation Ax > 7,
leaving unexplained, as the so-called horizon paradox, the strong homogeneity
of the last scattering background radiation. Quite a different situation occurs,
for example, in the closed Bianchi type IX: considering the propagation of a
light signal during a long era, i.e. when evolution is in the dynamical regime
of small oscillations, in which the distances vary according to the law ~ ¢, the
spatial element is given by dI?> = t?dl? and the corresponding four-dimensional

elementary interval by
ds® = n?(dn® — dI*) (1.4.53)

similar to the previous one, but with n = Int. Then, in contrast to the (1.4.51),
now 7 varies from —oo to 4o00: therefore, for every given moment of time,
any finite distance can be covered by a signal in the time available since the
singularity. Thus, during a long era, the world horizon opens in one spatial
direction. The duration of such eras is finite while their number is infinite: in
the present model the causal connection between events could be possible in the

whole volume of the universe.
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1.4 BKL Approach to the Mixmaster Chaos

The effect of matter on the evolution of the universe will become dominant
after some time and this effect will lead gradually to more isotropic models of

space, approaching the Friedmann model.

Non Diagonal Case

The metric 7,4 considered so far to describe the dynamics was supposed to
be diagonal and the Einstein equations were found always to be compatible,
but this was a very peculiar situation: the most general case of homogeneous
spaces and inhomogeneous ones allows for new qualitative properties of the
oscillatory modes. The universality of the alternation law of Kasner exponents
is confirmed but moreover associated to a rotation of the axes themselves, with
the asymptotic laws contained as a limit in the general solution (BELINSKI
ET AL., 1982).

The metric .43 related to the spatial line element
dI* = va(t) (eldz®) (eydz”) (1.4.54)

is expected to have siz unknown functions of time which reduce to three (a, b, c)

in the diagonal case
di?> = <a2e(116113 + bPeles + CQQiQ%) dz®dz” . (1.4.55)

In this case the symmetry of the space types did not lead to inconsistencies
because the off-diagonal components of the Ricci tensor vanished identically
while the rest of the Einstein equations for te field in empty space constituted a
consistent system. Non-diagonality of the metric tensor implies some properties
peculiar of this more general case. On considering such a non diagonal situation,
an exact solution exists only for a matter filled space, otherwise the equations R
would automatically lead to the disappearance of the off-diagonal components
of 7,5 (BELINSKI ET AL., 1982).
In the non-diagonal metric case, the metric is solved for the spatial line element
as (1.4.16)

Yo = a*LoLg + b*MyMg + >N, Np (1.4.56)

where L., M,, N, are constant coefficients in terms of which the solution to the

Einstein equations is analogous to (1.4.16)

dl* = (a’lalg + V> mamg + nang) da®dz” (1.4.57)
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1 Anisotropic Homogeneous Cosmological Dynamics

where
l1=L,e*, m=DMe*, n=Nj.e* (1.4.58)

in terms of which is then written the temporal variation for the Kasner azes
1, m, n. Transformation (1.4.58) is not orthogonal, then 1, m, n cannot be chosen
as frame vectors. Introducing the angles defining the Cartesian vectors L, M, N

and their relative orientations as

L = (1,0,0), (1.4.59)
M = (cosbp,sinb,,0), (1.4.60)
N = (cosb,,sinb, cos ¢,,sin b, sin ¢,) (1.4.61)

it is possible to find the dependence of the directions evolution in terms of the
parameter u labelling each Kasner epoch as

tanf), = 2u—1 tanf, u—2

- L - . 1.4.62
tan 6, 2u+1" on =9 tan@, u+2 ( )

In the diagonal case the Kasner axes are rigidly fixed to the frame vectors and do
not change when the Kasner epochs are replaced. In the non-diagonal case the
Kasner axes are not fized and their directions change from one epoch to another
according to (1.4.62), the law of replacement of the Kasner exponents (1.4.36)
being the same as the diagonal case. By (1.4.62) we see that |6/, /6,,] < 1 and
0/,/0,| < 1, which means that with each replacement of the epochs the Kasner
axes approach each other and similarly for the change from one era to the next
one. Kasner axes with an irregular evolution approach the common direction C
which is defined as a three-vector whose components are exact solutions of the
a — [ Einstein equations summarized as components of the vectorial equation

given by

p[L x [M x N]|+ p, [M x [N x L] +
+p, [N X[LxM] =C (1.4.63)

where C = (C},Cs, C3) and all vector operations are performed in terms of

Cartesian vectors. Equations (1.4.62) can be rewritten in the suggestive form

' =1, (1.4.64a)
4py cot O,
m = m-1-20m , (1.4.64Db)
P2+ 3y
4 t 0,
n = n-1—2 % (1.4.64c)

p3 + 3p1sin @,
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1.4 BKL Approach to the Mixmaster Chaos

Summarizing, the dynamical evolution is characterized by an irregular approach
to the direction C.

The role of matter, as in the diagonal case, is reduced only to a change in the
relations imposed on the spatial functions entering the solution, with no specific
new physical implications. Nevertheless, in contrast with the diagonal case,
we have sketched how in the general homogeneous model exists the preferred
direction given by the vector C which is connected to the evolution of matter

by the corresponding 0 — o Einstein equation as

4
c. = _gﬁm)ugm (%()0) Nb) (1.4.65)

being C, three arbitrary constants, 6(0),u20) constants related to the energy

density and four velocity respectively. Homogeneous models with rotating axes
require the presence of matter while in empty space exist only homogeneous
models with fixed axes.

To conclude the discussion on homogeneous cosmological models we spend a
few words on the general solution for non-homogeneous geometries. Similarly
to the former case, the line element and the expression for the metric in terms
of Kasner indices read as (1.4.16) and (1.4.29), where the frame vectors 1, m, n
are also functions of the coordinates and arbitrary ones, subjected only to the
conditions imposed by the 0 —a components of the Einstein equations, not close
or similar to the expressions introduced in the homogeneous case. In the non-
homogeneous space there is no reason to introduce a fixed set of frame vectors,
also independent of the Kasner axes.

The rules for the process of replacement of two Kasner epochs is similar to the
(1.4.18) as

o labe) , @
Ri= " X =0 (1.4.66a)
(abc) , a2
o abc 2b2¢? 0 (1.4.66b)
(abc) 5 a?
_pn— -\ = 1.4.
I abc 2b%¢c? 0 (1.4.66¢)

while equation (1.4.19) remains the same. The difference from the corresponding

former set explored for the homogeneous models relies in the expression for A

1-V Al

:l-[mxn]

A (1.4.67)
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1 Anisotropic Homogeneous Cosmological Dynamics

which is no longer a constant but a function of the coordinates: since the set
(1.4.66a) is still a system of differential equations with respect to time, this
difference doesn’t affect the solution of the alternation rule of Kasner exponents
deriving from it remains the same as (1.4.34) and following (1.4.35a)-(1.4.35b).
Despite of this, during the evolution the turning of the Kasner axes is reduced
to the appearance in the final epoch of off-diagonal projections of the metric
tensor Gim, 9ins Gmn-

The general solution of homogeneous models contains the largest possible
number of unremovable arbitrary constants. This solution is contained as a par-
ticular case in the general inhomogeneous solution. The homogeneous model can
also admit some particular solutions of the equations, with eventually a lesser
number of arbitrary constants, but such particular homogeneous solutions are
not contained in the general inhomogeneous one, belonging to certain inhomo-
geneous classes of solutions of a lesser degree of generality. The metric involves
the spatial displacements only because the spatial derivatives don’t influence
the character of the solution: metric changes with time in every point of the
space with its own Kasner exponents and axes.

The choice adopted of considering all quantities in the synchronous reference
system in which the singularity is attained simultaneously at ¢ = 0 in the entire
space doesn’t affect the generality of the solution, which by itself is the property
guaranteeing its robustness.

The spontaneous stochastization of the solution, as outlined in Section 1.4.2
and 1.4.3 and more deeply discussed in the following Chapter 2, means that on
sufficient recession towards the singularity from the moment ¢ = ¢y > 0 at which
initial conditions are imposed these conditions are forgotten and the evolution
admits a statistical description, as discussed in Section 1.4.3. The stability of
the solution with respect of the choice of initial conditions as well as its gen-
erality remains as the notion describing the existence of the oscillatory regime

and the described asymptotic stochastic properties.
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2 Hamiltonian Formulation and
Mixmaster Chaos

2.1 Mixmaster Dynamics in Misner Variables

Up to now we have considered as “chaotic” the dynamics of a system if, after
some “time” of evolution the initial conditions are “forgotten”: we have used so
many quotes because we will show how such common terms for the description
of dynamical properties have to be accurately specified for a task in General
Relativity.

The sense of chaoticity has appeared for the discussion of the parameter u as
a multiple fraction expansion; irrationality of the initial value reflects evolu-
tion towards a singularity and mixing properties of the general solution. The
complexity of the sequence in terms of quasi-similar eras has been described
through the choice of a very specific time gauge and we will show, in a different
framework, how the chaoticity features are independent of such a choice (IMPO-
NENTE AND MONTANI, 2001; IMPONENTE AND TAVAKOL, 2003; IMPONENTE
AND MONTANTI, 2004a, 20025, 2003¢).

Apart from the conclusions of the previous Section 1.4.2, the structure of the
Einstein field equations prevents from saying anything about relevant classes of
solution not having asymptotic behaviour corresponding to the BKL scenario,
essentially due to the choice of a local system of coordinates. In virtue of this
we take the motivations for the next Chapters, checking the covariance or the
properties found up to now for the Bianchi models of type VIII and IX close to
the singularity and their link far from it.
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2 Hamiltonian Formulation and Mixmaster Chaos

2.1.1 Towards Continuous Kasner Dynamics

In order to implement the formalism to our purposes we start allowing a more
general time dependence for the parameters p;, preserving the simple conditions
(1.4.9) (ARNOWITT ET AL., 1962). For a metric of the kind (1.3.2), (1.3.4),

(1.4.8), such exponents satisfy the relations

dlngn
= 2.1.1
b ding ( )
dIngas
= 2.1.1b
b2 ding ( )
dings;
= 2.1.1
Ps dlng ( ¢)
in order to parametrize the spatial 3 x 3 part as
gij = €*° (62’6)1.]. (2.1.2a)
or, equivalently,

where 3;; is a three-dimensional matrix with null trace of the kind diag(/511, f22, B33)
and the exponential matrix has to be intended as a power series of matrices, so
that

det 2} = 2 W8 = 1 (2.1.3)

and
g =%, (2.1.4)

from (2.1.4) follow the relations
Vg = ée* (2.1.5a)

and
Ing = 6a, (2.1.5b)

considering the structure formalism

d (Ing),;
= 2 2.1.6
Pij dindet g ( )
From equations (2.1.2a) and (2.1.5a) follows
1 d,BU
= 2§ 2.1.
Pij =3 [61] + ( T )} (2.1.7)

52



2.1 Mixmaster Dynamics in Misner Variables

so that the first Kasner condition (1.4.9) rewrites as

_ L (dp

which is an identity in view of being the trace trf;; = 0.

The second Kasner relation (1.4.9) rewrites
tr(p?) =1 (2.1.9)

which, by virtue of (2.1.7) becomes
1 df:i dBii\* 1 1/dB.\*
—tr|1+2—2+ (2] |=z+-(=2) =1 2.1.1
9r<+ da+<da>) 3+9<da ’ ( 0)

dBi;\" _
<E> i (2.1.11)

which is no longer an identity but a consequence of the Einstein equations in

and then

empty space.

2.1.2 Bianchi | Example

For example, in the simple Bianchi I case, with the choice of a matrix 3

diagonal, metric is explicitly
ds> = —dt* + e (e*?). da'da’ . (2.1.12)
ij

Following on our discussion, Einstein equations 0 — 0 and 25 within this system
of coordinates are

o da’\ ?
—3— = OR4+9(— 2.1.13
dt? * <dt> (2.1.13a)
©F d dpr
T —3a " 3a g — T T
e [e ( — )] 87T<TU 47TT(SU), (2.1.13b)

respectively, being ()R the three-dimensional curvature scalar.
First and second derivatives of the function « with respect of the synchronous

time ¢ re-express as

1 -\ 2
36 = —66% — 5t <%> - g (2.1.14)
1 (dB;\’
3% — 5tr < 5;) = 87Ty, (2.1.15)
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and finally inserted in the Einstein equations lead to

da\> 8n 1 dBii\>
— ) == |70+ —¢ *J 2.1.1
(dt) 3[0+167rr<dt> (2.1.16)
d dg: 1 .
3a —3a _ 1 3 7

where )T is the three-dimensional part of the trace of the tensor T¢. The
choice of the metric in a diagonal form, as discussed in details in the previous
Section 1.3 gives a redundant character to the other non-diagonal terms of the

energy-momentum tensor. The second Kasner condition

dop’=1 (2.1.18)

in terms of the new variables (3;; then becomes
dB;\*
=6. 2.1.19
(‘%) (2.1.19)

2.1.3 Misner Approach to Mixmaster

Once seen how to perform the convenient change of variables for such a diagonal
case, we step further to approach with this formalism the Mixmaster case, say
the Bianchi types VIII and IX.

The matrix 3;; has only two independent components and we adopt the parametriza-

tion in terms of the anisotropy parameters

B = B+ V30 (2.1.20a)
B = Bs— V36 (2.1.20b)
Bz = —20B4. (2.1.20c)

Then the Kasner relation (2.1.19) becomes

s \* | (dp-\’
— — ) =1. 2.1.21
< do ) * < do ( )
The variables 31 together with « are the Misner coordinates. The relation

(2.1.21) in terms of the Kasner exponents now is

% _ %(1_31,3) (2.1.22a)
dj_ 1
% = V3 -p) (2.1.22b)
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and with the u parameter

dpy 3 1
T - Yitrure (2.1.23a)
g 1+2u
i __\/_1+u+u2 (2.1.23b)
Such quantities represent the anisotropy velocity '
dpy dp-
g = (d—oj %) (2.1.24)

which is a measure for the variation in the anisotropy amount with respect to
the expansion parametrized by the o parameter. The volume of the universe
behaves as €** and tends to zero towards the singularity and the temporal
parameter itself is directly related.
Eventually the presence of matter as well the effects of the spatial curvature can
lead the norm ||§'|| to a deviation from the Kasnerian unity.

In order to develop a general metric for a homogeneous space-time we rewrite

the line element in the general form
ds* = —N(n)’dn® + ¢**(e*?) ;0" 07 (2.1.25)

where N (n) denotes the lapse function which measures the lapse of proper time
between hypersurfaces corresponding to different values of the temporal param-
eter 1, o* are the 1-forms associated to the angular basis for the rotation group
associated to the homogeneity constraint.

In order to discuss homogeneous spaces, the cosmological problem reduces to
the equations involving the functions «, N, 3;; in terms of the independent tem-
poral parameter 7, independently of the spatial coordinates. Explicitly, dual
1-forms associated to the Bianchi types VIII and IX are, respectively,

ol = —sinheysinhfdé + coshdd
(VIII) o* = —coshsinhfd$ + sinhpdf (2.1.26a)
0> = coshfdy + dy
ol = sinysinfdey + cosydd
(IX) o0® = —cosiysinfdé + sinidf (2.1.26Dh)
o> = cosfde + di).
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For example, the Einstein equation involving 7% with N = 1 reads

1/6:\° 1
T a2 — P =8rT" 2.1.2
3 2<dt> +5P% 81T, ( 7)

being P¢ the three-dimensional curvature tensor and then

) .2 ) 1
3 <a2 — 42— 5 ) +5 ("Rs) = 8775 (2.1.28)
where 3Rp is the curvature scalar for the three-dimensional spatial surface cor-
responding to ¢t = const. and index B refers to the symmetry properties for the
Bianchi cosmological models. In such a term lies the peculiar difference between
the nine types of the Bianchi classification, to be evaluated through expressions

(1.4.4) in terms of the structure constants.

For the models referring to types VIII and IX such curvature scalar reads,

respectively,

1
‘Ryir = 56_20‘ (4e7% — 2tr €70 — tr ') (2.1.29a)

1
PRix = e (27 = V) (2.1.29b)

and the trace operation has to be intended over the exponential of diagonal
matrices, without ambiguity.

Equation (2.1.28) with (2.1.29b) or (2.1.29a) can be interpreted as a contribu-
tion of anisotropy energy, connected to the term T, to the volume expansion
&2, so that it appears as a potential term together with the kinetic ones ﬁi
Close to the singularity, this term is negligible for small values of the anisotropy
parameters .

Finally, equation (2.1.28) has to be regarded as a fundamental constraint over

the field equations.

2.2 Lagrangian Formulation

The variational principle that we are going to use specified for the Bianchi

cosmological models has the general expression

1

[=———
167

1 __L/ -
/,Cd:v— T6m R\/—g dQ (2.2.1)
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2.2 Lagrangian Formulation

where L is the four-dimensional Lagrangian density. Integration with respect
to the spatial coordinates leads to the integral form
2
o Ldn=0 (2.2.2)
7

in which 7, and 7y (12 > 1) are two values of the temporal coordinate.
Integration for the Bianchi type VIII is considered over a spatial volume (47)?,
in order to have the same integration constant used for the type IX (and keep

a uniform formalism) using

/01 No*No® = /sin Odp A dO A dip = (4m)> . (2.2.3)
With this choice, Lagrangian L is written
6
L=—20e o= 5,7 = 8.7 + NZeU® (5, 8.) (2.2.4)
/! d B) : . . . B . .
where ()" = ot UP) is a function linear in R®) with a potential role. The
Ui
variational principle rewrites explicitly
515 [ (pac! oy + p-0 = NH)dy =0 (2.2.5)

in which H represents a super Hamiltonian given in detail as

e—3a

247

H = ( —p2+pd +pi+ V) (2.2.6)

and the potential term V as
Y = —1272*UB (., B_) (2.2.7)
having U(P) specified for the two Bianchi models under study as
UVITT — =86+ 4 4e=%+ cosh(2V/36_) + 2%+ ( cosh(4v/36_) — 1) (2.2.8a)

UIY = ¢ 8%+ — 4e %+ cosh(2V/36.) + 2¢*+ ( cosh(4V/33.) — 1) . (2.2.8b)

From Lagrangian (2.2.4) it is standard to derive the conjugate momenta

oL 127 5, ,
= 2 T 2.9.
Da Sa N e o (2.2.9a)

oL 127 ,, .,
— = ¢, 2.2.9b
b oJo I N © Pe ( )
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2 Hamiltonian Formulation and Mixmaster Chaos

2.2.1 ADM Hamiltonian

In order to obtain Einstein equations, the variational principle requires 61 to be
null for arbitrary and independent variations of p., p., f+, «, N. Variation with

respect to NV leads to the fundamental equation
H=0 (2.2.10)

which behaves as a constraint for the Hamilton equations. Such a standard for-
mulation treated with the method introduced by Arnowitt, Deser and Misner
(the so-called ADM) permits to reduce the variational principle to the canonical
Hamiltonian form. The procedure prescribes the choice of one of the field vari-
ables, or one of the momenta, as a temporal coordinate and subsequently solving
the constraint (2.2.10) with respect to the corresponding conjugate quantity.

It is customary, as in this general approach, to set t = o and solve H = 0 as

Hapm = —Pa = \/DP} P2+ V. (2.2.11)

Within this equation it is defined a relation between the temporal gauge de-
scribed by the function N and the dynamical quantity Hapas.
Through (2.2.11) we explicit p, in the action integral, so that the reduced

variational principle in a canonical form reads
6[reduced =0 (2212)

being I equceq Written as

Ireduced — / (p+dﬁ+ +p7d/87 — %ADMde) (2213)

together with the equation defining the temporal gauge.

2.2.2 Mixmaster Dynamics

In the present Section we will write in general the approach to the Mixmaster
dynamics and later in it will be applied to prove specific properties, such as
chaoticity in a covariant approach, with respect to the temporal gauge and
subsequent statistical effects.

The Hamiltonian introduced so far differs from the typical expression of clas-
sical mechanics for the non positive definiteness of the kinetic term, i.e. the sign
in front of p?, and for the peculiar form of the potential as a function of a (say
time) and [, reduced to the study of a function of the kind V' (3, 5_).

58



2.2 Lagrangian Formulation

Bianchi VIII Equipotential Lines

B+

S
-

Figure 2.1: Equipotential lines of the Bianchi type VIII model in the 3., 5

plane.
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2 Hamiltonian Formulation and Mixmaster Chaos

Bianchi IX Equipotential Lines

=
I

—

Figure 2.2: Equipotential lines of the Bianchi type IX model in the 3., 5_ plane.

Hamiltonian approach permits to derive the equations of motion as

, _ OH , . OH
o = Opa Pa= =35 (2.2.14a)
OH OH
o= Ty =T 2.2.14h
O opr’ * 0P+ ( )

This set considered with the explicit form of the potential (see Figure 2.1 and
2.1), can be interpreted as the motion of a “point-particle” in a potential. The
term V is proportional to the curvature scalar and describes the anisotropy
of the universe, i.e. in the regions of the configuration space where it can be
negligible, the dynamics resembles the pure Kasner behaviour, corresponding
to |#'| = 1. In general, it is necessary a detailed study of the potential form
and each Bianchi model has its own potential form, depending on the specific
structure constants.

U behaves, for the Bianchi types VIII and IX, as a potential wall with the
same symmetries of an equilateral triangle in the plane 3., (3 .

Asymptotically close to the origin, i.e. (4 = 0, equipotential lines for the
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2.3 Covariant Mixmaster Chaos

Bianchi type IX are circles

U™ (81, B-) =~ =3+ (B2 + B-2) +0(5), (2.2.15)

while for Bianchi type VIII are ellipses

UV (By, B-) ~ (403,° +248-) =8 (B4 + ) +5+0(5%).  (2.2.16)

The expressions for large values of 3 are common for both types

UB)~e ™, By — —o0 (2.2.17)
or
U(B) ~48B_%*+, By — 400 (2.2.18)
when
| 6|« 1. (2.2.19)

In the figures 2.1 2.2 are represented some of the equipotential lines U () =
const., for which corresponding to A3 ~ 1 the potential value has an increment
of a factor e® ~ 3 x 103.

Universe evolution is described as the motion of a point-like particle under
the influence of such potentials. Such evolution corresponds to bounces on the
potential walls evolving towards the singularity. The behaviour of the anisotropy
parameters [ in this regime consists of a Kasner epoch followed by a bounce
and then a new epoch with different Kasner parameters, in correspondence with

the description given in Section 1.4.2 according to the BKL approach.

2.3 Covariant Mixmaster Chaos

2.3.1 The Fundamental Questions on the Mixmaster

We have discussed the oscillatory regime whose properties characterize the be-
haviour of the Bianchi types VIII and IX cosmological models in the BKL for-
malism (BELINSKI ET AL., 1970, 1982; MISNER, 1969) near a physical singu-
larity, in which it is outlined the appearance of chaotic properties: firstly, the
dynamics evolution for Kasner exponents characterized the sequence of Kasner
epochs, each one described by its own line element, with the epochs sequence
nested in multiple eras. Secondly, the use of parameter u and its relation to

dynamical functions offered the statistical treatment connected to each Kasner
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2 Hamiltonian Formulation and Mixmaster Chaos

era, finding an appropriate expression for the distribution over the space of vari-
ation: the entire evolution has been decomposed in a discrete mapping in terms
of the rational/irrational initial value attributed to w.
The limits of this approach reside essentially in the non-continuous evolution
of the description towards the initial singularity and the lack of an assessment
of chaoticity in accordance with the indicators commonly used in the theory
of dynamical systems, say in terms of the criterion based on the estimate of
Lyapunov exponents.
A wide literature faced over the years this subject in order to provide the
best possible understanding of the resulting chaotic dynamics (BELINSKI, 2000;
BERGER, 1990).

The research activity developed overall in two different, but related, direc-

tions:

(i) on one hand the dynamical analysis was devoted to remove the limits
of the BKL approach due to its discrete nature (by analytical treatments
BARROW (1982); CHERNOFF AND BARROW (1983); BURD ET AL. (1991);
CORNISH AND LEVIN (19974a,b); KIRILLOV AND MONTANI (19974); MON-
TANI (2000a) and numerical simulations (BERGER, 1991, 1994; BERGER
ET AL., 1997),

(77) on the other one to get a better characterization of the Mixmaster chaos
(especially in view of its properties of covariance (FERRAZ ET AL., 1991;
FERRAZ AND FRANCISCO, 1992; SZYDLOWSKI AND KRAWIEC, 1993; HO-
BILL ET AL., 1994).

The first line of investigation provided satisfactory representations of the
Mixmaster dynamics in terms of continuous variables (BOGOYAVLENSKII AND
Novikov, 1973), mainly studying the properties of the BKL map and its refor-
mulation as a Poincaré one BARROW (1981).

Parallely to these studies has been performed detailed numerical descrip-
tions allowing to make precise validity tests on the obtained analytical results
BERGER (1994).

The efforts (BIESIADA, 1995; CONTOPOULOS ET AL., 1994; RUGH, 1994) to
develop a precise characterization of the chaoticity observed in the Mixmaster
dynamics found non-trivial difficulties due to the impossibility, or in the best
cases the ambiguity, to apply the standard chaos indicators to relativistic sys-

tems. However, chaotic properties summarized so far were questioned when
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2.3 Covariant Mixmaster Chaos

numerical evolution of the Mixmaster equations yielded zero Lyapunov expo-
nents (BURD ET AL., 1990; HOBILL ET AL., 1989; FRANCISCO AND MATSAS,
1988). Nevertheless, exponential divergence of initially nearby trajectories was
found by other numerical studies yielding positive Lyapunov numbers. This
issue was understood when by BERGER (1991) and FRANCISCO AND MATSAS
(1991) was shown numerically and analytically how such calculations depend on
the choice of the time variable and parallely to the failure in the conservation
of the Hamiltonian constraint in the numerical analysis by ZARDECKI (1983),
but was still debated by HOBILL ET AL. (1994).

In particular, the first clear distinction between the direct numerical study of
the dynamics and the map approximation, stating the appearance of chaos and
its relation with the increase of entropy has been introduced by BURD ET AL.
(1991). The puzzle consisted simulations providing even in the following years
zero (FERRAZ AND FRANCISCO, 1992) Lyapunov numbers, claiming that the
Mixmaster universe is non chaotic with respect to the intrinsic time (associated
with the function « introduced for the Hamiltonian formalism) but chaotic with
respect to the synchronous time (the temporal parameter t). The non-zero
claims (SZyDLOWSKI AND KRAWIEC, 1993) about Lyapunov exponents, using
different time variables, have been obtained reducing the universe dynamics to
a geodesic flow on a pseudo-Riemannian manifold: on average, local instability
has been discussed for the BKL approximations. Nevertheless, a geometrized
model of dynamics defining an average rate of separation of nearby trajectories
in terms of a geodesic deviation equation in a Fermi basis has been interpreted
for detection of chaotic behaviour as a principal Lyapunov exponent. A non
definitive result was given: the principal Lyapunov exponents result always
positive in the BKL approximations but, if the period of oscillations in the long
phase (the evolution of long oscillations, say when the particle enters the corners

of the potential) is infinite, the principal Lyapunov exponent tends to zero.

Such contrasting results have found a clear explanation realizing the non-
covariant nature of these indicators and their inapplicability to hyperbolic man-
ifolds (GURZADYAN AND KOCHARYAN, 1986). The existence of such difficulties
prevented, up to now, to say a definitive word about the covariance of the
Mixmaster chaos, with particular reference to the possibility of removing the
observed chaotic features by a suitable choice of the time variable, apart from
the indication provided by CORNISH AND LEVIN (1997a,b) (a detailed discus-

sion about the method based on a fractality property used in such work will be
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2 Hamiltonian Formulation and Mixmaster Chaos

discussed in details IMPONENTE AND TAVAKOL (2003)).

Interest in these covariance aspects has increased in recent years in view of
the contradictory and often dubious results that have emerged on this topic.
The confusion which arises regarding the effect of a change of the time variable
in this problem depends on some special properties of the Mixmaster model
when represented as a dynamical system, in particular the vanishing of the
Hamiltonian and its non-positive definite kinetic terms (a typical feature of a
gravitational system). These peculiar features prevent the direct application
of the most common criteria provided by the theory of dynamical systems for
characterizing chaotic behaviour (for a review, see HOBILL ET AL. (1994)).

Although a whole line of research opened up, following this problem of co-
variant characterization for the chaos in the Mixmaster model (PuLrLin, 1991;
SZYDLOWSKI AND SZCZESNY, 1994), the first widely accepted indications in
favour of covariance were derived with a fractal formalism by CORNISH AND
LEVIN (1997a,b) (see also MOTTER AND LETELIER (2001b)). Indeed the re-
quirement of a complete covariant description of the Mixmaster chaoticity when
viewed in terms of continuous dynamical variables, due to the discrete nature
of the fractal approach, leaves this subtle question open and prevents a general

consensus in this sense from being reached.

2.3.2 Anisotropy Parameters and Misner-Chitre-like Variables

A valuable framework of analysis of the Mixmaster evolution, able to join to-
gether the two points of view of map approach and continuous dynamics evo-
lution, relies on a Hamiltonian treatment of the equations in terms of Misner-
Chitre variables (CHITRE, 1972). This formulation allows to individualize the
existence of an asymptotic (energy-like) constant of motion when performed an
ADM reduction. By this result the stochasticity of the Mixmaster can be treated
either in terms of the statistical mechanics (by the microcanonical ensemble)
(IMPONENTE AND MONTANI, 2002a), either by its characterization as isomor-
phic to a billiard on a two-dimensional Lobachevsky space (ARNOLD, 1989b)
and such scheme can be constructed independently of the choice of a time vari-
able, simply providing very general Misner-Chitre-like coordinates (IMPONENTE
AND MONTANI, 2001, 2002b).

Let us define the anisotropy parameters H; (i = 1,2, 3) as in (KIRILLOV, 1993;
KIRILLOV AND MELNIKOV, 1995), (MONTANI, 1995; KIRILLOV AND MONTANI,
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2.3 Covariant Mixmaster Chaos

1997a) as the functions

1 By +V3A

— g —+ 3a (2.3.1&)

1, By — VBB

= 3+ 7 (2.3.1b)
1 2

= 3 % (2.3.1¢)

excluding the pathological cases when two or three anisotropy parameters H,

coincide.
We then introduce the Misner

«

B
B

where 0 < ( < o0, 0 < 6 < 2,

-Chitre variables {7, (, 0} as

= —e" cosh( (2.3.2a)
= e’ sinh(cosf (2.3.2b)
= €’ sinh(sind (2.3.2¢)

and 7 plays the role of a “radial” coordinate

coming out from the origin of the 1 space (MISNER ET AL., 1973). In terms of
these variables it is possible to study the first interesting approximation of the
potential (2.2.8) as independent of 7 towards the singularity, i.e. for &« — —oc.

To discuss the contrasting results concerning chaoticity and dynamical proper-
ties which arose from numerics, it is necessary to introduce a slight modification
to the set (2.3.2) via the Misner-Chitre-like coordinates {I'(7), £, 0} through the

transformation

a = —e'¢ (2.3.3a)
B, = €'M\/e2 —1cosh (2.3.3b)
B. = 'D\/e2 —1sind (2.3.3¢)

where 1 < £ < oo, and I'(7) stands for a generic function of 7: Chitre took
simply I'(7) = 7 and set also & = cosh (.

This modified set of variables permits to express the anisotropy parameters
(2.3.1) H; (i =1,2,3) as independent of the variable I'

H, = % — 7°€;€_1 (COS 0 + V/3sin 9) (2.3.4a)
Hy, = % - 7”6;_1 (cos 0 — \/3sin 0) (2.3.4b)
H; = %—F 2% cosf. (2.3.4c)
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2 Hamiltonian Formulation and Mixmaster Chaos

All dynamical quantities, if expressed in terms of (2.3.4) will be independent of

T too.

2.3.3 The Invariant Measure

The first results after the pioneeristic ones obtained by LIFSHITZ ET AL. (1970)
over the statistical distribution function describing the system rely in the work
of Barrow BARROW (1981); CHERNOFF AND BARROW (1983), stating how it is
not necessary that random or chaotic behaviour in dynamical systems depends
on the distribution of initial data: moreover, also simple recursive systems, like
iterated maps over the unit interval, are very sensitive to the initial data so that
the evolution itself has to be considered unpredictable. In particular, the first
analysis of the BKL map in terms of u has been reduced to a Poincaré one, for
the sequence of Kasner states coded as a one dimensional map with a sensitive
dependence on initial conditions: two Mixmaster universes beginning arbitrarily
close to each other will diverge exponentially fast as they evolve. For such map

is has been derived the invariant normalized measure 1y(6) simply as

1

M= g = @R (2:3.5)

where z; and k are the parameters introduced in Section 1.4.3. This quantity
permits to derive the information loss under the iteration in the u sequence,
evaluated for the measure pyg, represents exactly the metric (or K-) entropy

that, for the system under consideration, is evaluated to be

7T2

T o) = 5ina)e

(2.3.6)

where T specifies the mapping and the positive value of h gives a chaotic in-
dication for the system evolution, still in the map framework (MOSER AND
ANS S. VARADHAN, 1975a,b): this is an ergodic characterization for the Mix-
master universe. In CHERNOFF AND BARROW (1983) it has been constructed
the invariant measure for the system with a peculiar application to all degrees
of freedom involved in the Mixmaster dynamics, regarding the special case of
the finite expansion of Kasner parameters with continuous fraction as a non-
physically interesting one. In KIRILLOV AND MONTANI (1997a) the use of
Misner-Chitre variables (CHITRE, 1972) (see above Section 2.3.9) has permitted
a reduction of the invariant measure in the continuous approach containing ex-

plicit informations about durations of Kasner eras, while the measure in the case
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2.3 Covariant Mixmaster Chaos

of BKL map didn’t. Complete measure theoretic distributions, describing sta-
tistical properties of the BKL map were constructed already in LIFSHITZ ET AL.
(1970); KHALATNIKOV ET AL. (1983). In fact, the treatment in KIRILLOV AND
MONTANTI (1997a) poses a direct correspondence between the anisotropy func-
tions Q1, @2, @3 (KIRILLOV, 1993; KIRILLOV AND MELNIKOV, 1995; MONTANTI,

1995) and the Kasner exponents as

—u
Ql(u’v)_u2+u+1+v2
1+u
Q2(u,v) = EruriT o (2.3.7)
u(u+1) + v?
Q3(U7U): ( )

u? +u+ 1+ 02
where the v parametrizes the inverse sequence of Kasner eras and the (); satisfy

3

Y Q= (Q)*=1, (2.3.8)

a=1

similarly to (1.4.9).

2.3.4 The Hamiltonian Equations

The main advantage relying in the reformulation of the dynamics as a chaotic
scattering process consists of replacing the discrete BKL map by a geodesic flow
in a space of continuous variables (CHERNOFF AND BARROW, 1983; KIRILLOV
AND MONTANI, 1997a)— (BARROW, 1982; MONTANTI, 20000), (IMPONENTE AND
MONTANTI, 2003¢).

The canonical variational principle (2.2.2) describing the dynamics in the
Misner variables (MISNER, 1969; MISNER ET AL., 1973) has explicitly the La-

grangian L written

6D N

L=z o+ 8"+ 5] = SV (0,81 5). (2:3.9)

in which the metric determinant is D = €3® and the function representing the
potential V' («, 5, f_) reads as

= %(D“Hl + D g D)

_ D2H1+2H2 + D2H2+2H3 + D2H3+2H1, (2310)

where (+) and (—) refer respectively to Bianchi type VIII and IX.
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In terms of (2.3.3) the Lagrangian (2.3.9) becomes

12

6D Fé-/ 2 ’
=% (gez _)1 +(€0)° (€ = 1) ()| +
N
— 5v(r (1),€.0). (2.3.11)
In terms of I'(7), £ and 6 we have D as
D =exp {-3¢"} | (2.3.12)

and since D — 0 towards the singularity, independently of its particular form,
the only property required for I' is to approach infinity in this limit.
The Lagrangian (2.3.9) leads to the conjugate momenta

12D ( dU
= 2.3.1
Dr ~ ( dT) 7! (2.3.13a)
12D %
=— 2.3.13b
12D
po = Te2F &-1)¢ (2.3.13c)

which by a Legendre transformation make the variational principle assume the
form (IMPONENTE AND MONTANI, 2001)

N6—2F
! / I —
5/ <]9§§ ol +pem - < %) dn =0, (2.3.14)
where
P Po’ oar
H=——"—+p (& —-1)+ aoit 24Ve (2.3.15)

dl’
()
2.3.5 Dynamics in the Reduced Phase Space

By variating (2.3.14) with respect to N we get

0ol
—=0=>H=0 2.3.16
hence such constraint solved provides the expression for Hspas
dl’ dl’ \/27
—pr = — = 24V el 2.3.17
pr = Hapy = Ve T e ( )
where )
Do

= (€ —-1)p’+ (2.3.18)

g1
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2.3 Covariant Mixmaster Chaos

in terms of this constraint, principle (2.3.14) reduces to the simpler form

5/ (pg«S’ + pot) — F”HADM)dn =0. (2.3.19)

This variational principle (2.3.19) provides the Hamiltonian equations for £ and
¢’ (IMPONENTE AND MONTANI, 2001)

F/
g = (& —1)pe (2.3.20a)
Hapm
I’ Do
0 = . 2.3.20b
Hapm (& — 1) ( )
The first of (2.3.13a) and (2.3.17) lead to the time gauge relation
12D ,dl

N (n)

= 2.3.21
%ADMe dr’ ( )

our analysis remains fully independent of the choice of the time variable until
the form of I and 7’ is not fixed.

By the choice I" = 1 the principle (2.3.19) reduces to the two-dimensional one
(IMPONENTE AND MONTANI, 2001)

5/ (pe€" +pot — Hapu) dn =0, (2.3.22)
where
Hapyw = Ve2+U, U=24Ve™ (2.3.23)
moreover, the choice 7/ = 1 for the temporal gauge lets the lapse function as
12D
Napu (1) = e’ (2.3.24)
Hapum

The reduced principle (2.3.22) provides the Hamiltonian equations (IMPONENTE
ET AL., 2002)

(€2 —1)

{ = o e (2.3.25)

0 = HAlDM (gff ol (2.3.26)

e _%fDM [pgz - (g?pj:)Q} B 2%31DM88—[£’ (2.3.27)

o= HjDM‘Z_g, (2.3.28)
d

where, because of the choice of the time gauge, () = o
T
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2.3.6 Billiard Induced from the Asymptotic Potential

The Hamiltonian equations are equivalently viewed through the two time vari-
ables T' and 7 then, for this Section only, we choose the natural time gauge
7' =1, so that the variational principle (2.3.19) in terms of the time variable T’

reads

d dé
(5/ <p§d—1€ +p9d—r - %ADM> dl' = 0. (2329)

Nevertheless for any choice of time variable 7 (i.e. 7 = 1), there exists a cor-
responding function I'(7) (i.e. a set of MCI variables leading to the scheme
(2.3.29)) defined by the (invertible) relation

dl'  Hapm
dr 12D

The metric determinant D vanishes asymptotically approaching the initial

N(r)e . (2.3.30)

singularity: in fact, by applying the Landau-Raichaudhury theorem® near the
initial singularity (which occurs by convention at 7' = 0, where T now denotes
the synchronous time, i.e. dT'= —N (7)dr), for T — 0 we have dIlnD/dT > 0;

in terms of the adopted variable 7
D—0 = T(r)— o0, (2.3.31)

then by (2.3.12) and (2.3.30) we have
dnD _dnDdT _ dnD
dr — dT dr  dT

and therefore D vanishes monotonically even in the generic time gauge as soon

N (7) (2.3.32)

as dI'/dr > 0 for increasing 7 according to (2.3.30).

Thus, approaching the initial singularity, the limit D — 0 for the Mixmaster
potential (2.3.10) implies for the second three terms to be negligible with respect
to the first ones (excluding the particular cases when two or three anisotropy
parameters H; coincide).

Furthermore, by (2.3.17) holds the important relation
d(HapmI') O (HapuI”
(Hapul") (Hapul") N

dn - on
d(HapuT") 0 (HapmI")
— T = or , (2.3.33)

!This theorem, based on the mathematical assumptions underlying the dynamics of the

Einstein equations, states that in a synchronous reference frame there always exists a
value of the time at which the metric determinant vanishes and that in this time variable
the zero is approached monotonically (LANDAU AND LiFsHITZ, 1975).
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i.e. explicitly

2r
OHapw _ ¢ 24( av> . (2.3.34)

= o + 2
aC Hapm tar

In this reduced Hamiltonian formulation, the functional I'(n) plays simply the

role of a parametric function of time and we recall how actually the anisotropy

parameters H; (i = 1,2,3) are functions of the variables &, 0 only (see 2.3.4).
By the expressions (2.3.10, 2.3.4, 2.3.12) and (2.3.34), we see that

Vo~ DY exp (—€') = Z_‘; =0 (V) (2.3.35)

denoting by O() terms of the same order of the enclosed ones. With these

asymptotic values, right hand side of (2.3.34) is over-exponentially depressed.
Let’s define 1y, as the region in the phase space where all the H; are simul-

taneously greater than 0, the potential term U = €2’V can be modelled by the

potential walls

Uso = O (Hy (£,0)) + O (Hy (£,60)) + O (Hs (€, 6)) (2.3.36)
Ou (z) = +o0 %f x <0
0 if >0
therefore in Iy the ADM Hamiltonian becomes (asymptotically) an integral of
motion
OHapm 0— OF
V{0 € Ty or — _ or (2.3.37)

Hapy = Ve2+24 U =2 e = FE = const. .

(see Fig.2.3).
In the region 1Ty where the potential vanishes, equation (2.3.37) permits to
conclude that the ADM Hamiltonian asymptotically approaches an integral of

the motion.

2.3.7 Equivalence of the ADM Reduction

It is interesting to check if and how the ADM formalism is consistent with
respect to the complete dynamical scheme, i.e. to obtain a statement about the
properties characterizing the Mixmaster when expressed in terms of the four
degrees of freedom {N,a, B, 3} (Misner variables) as well as in the reduced
Hamiltonian formulation relying on {3,, 5 } only and induced by the ADM

prescription: we will compare the dynamic equations obtained without and
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E . . . . ..10

Figure 2.3: Asymptotic potential domain in the plane 6, &.
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2.3 Covariant Mixmaster Chaos

with such framework for the Bianchi I (with zero potential) and Bianchi VIII
(or IX, as well for any with non-zero potential) model, respectively.
As a first instance, let us recall the variational principle for the simple case

of the Bianchi type I — as in (2.2.5) considered with ¥V = 0 — in order to have

51 = 5/ (paa' Fpa By +p B — NH)dn —0 (2.3.38)

where the super Hamiltonian reads

—3a

247

H = ( —p2 4 +p3) . (2.3.39)

For such a dynamical system, the equations of motion for the coordinates ex-

pressed in terms of the temporal variable 7 read as

N
o = —Ee*%a (2.3.40a)

N
Bs' = e s (2.3.40D)

and
! N —3a 2 2 2

Pa = —S—We (—pa+p++p,) (2.3.41a)
p' =0 (2.3.41b)

for the conjugate momenta, respectively. In particular, the variation of the
action (2.3.38) with respect to NV provides the constraint

ol B e 3¢
SN 247

(=2 +sA+02) =0 (2.3.42)
hence, by virtue of the first of (2.3.41) induces
pa =0, (2.3.43)

and consequently the three conjugate momenta are constant. These equations
represent the evolution of the system and are easily integrable starting by the
(2.3.40a), which in particular suggests how the variable a can assume the role
of time-parameter due to its direct dependence on 7). In fact, the ratio of the
two equations in (2.3.40) leads to the equations of motion

Bei B _px (2.3.44)

o do Da
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where, by virtue of (2.3.42), p, can be expressed in terms of the remaining

—Pa = VP12 +p-2 (2.3.45)

in which it is customary to adopt the choice of the plus sign in front of the

momenta as

square root.
Let us now apply the ADM prescription: if we put straightforwardly (2.3.45),

the momentum conjugate to a can be re-expressed to define H opys as

%ADM = \/p+2 + p,2 , (2346)

hence we are free to choose the gauge in which o/ = 1, i.e. @ = 1 and conse-

quently
243

Napm = (2.3.47)

Pa

The variational principle (2.3.38) can be reduced to the one

d di_
oI = 5/da (p+% +p_% — /2 +p_2>d77 =0. (2.3.48)

The Hamilton equations provided by (2.3.48) read as

b+

B = 2.3.49
C VpEp? ( )
and 4
P+
IS ap—| 2.3.50
dO{ bl ( )

where the over-dot here denotes the derivative with respect to the new temporal
parameter «, i.e. exactly the same as in (2.3.44).

By this calculations, we see that in the dynamical case with potential equal
to zero the information is reduced, nevertheless the two systems (before and
after ADM reduction) have an equivalent dynamics, provided that one of the

variables has assumed the temporal parameter role.

In the discussion performed through the present Chapter concerning the dy-
namics, its chaoticity and statistical mechanics issues, we always had an infi-
nite potential barrier and therefore we dealt with a free motion interrupted by
bounces on the potential walls: in the calculations, the explicit expression for

V never appears.
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2.3 Covariant Mixmaster Chaos

Let us apply the ADM prescription to the case with potential, in the approx-
imation used in Section 2.3 to Bianchi types VIII or IX and in terms of the
Misner-Chitre variables (2.3.2).

Firstly, let us recall the variational principle (2.3.14) which, with the choice

['(7) = 7, reads as

5/ &t ol +prr — X3 dy = 0 (2.3.51)
D¢ Do DT 24D n=yu, +J.

where now H is given by

2

H=—p>+p(C—1)+ gf(’_ -2V (2.3.52)
Hence we derive the equations of motion for 7, &, 60 in terms of n
N672T
/ —_ R —
o= S (2.3.53a)
N672T )
¢ = 455 (€ —1Dre (2.3.53b)
Ne 2™ pg
/
= 2.3.
oD €-1 (2.3.53¢)
N672T
o= 2.3.54
b 12D (2:3.54a)
Ne 27 1 1
= ——— 0 | = — |0 2.3.54b
i = S (o) (5) ] eaow
Ne 27 1 1
= Oy | = — |0 2.3.54
W= S (p)e (5)w] e

together with the constraint H = 0 which permits to simplify the right-hand
side of (2.3.54), and straightforwardly to obtain

—pr = \/ng (2-1)+

2

oo TAver (2.3.55)

The consequence of the cited constraint induces the equation
p, =0 (2.3.56)
together with the natural choice 7/ = 1 and 7 = 7, and moreover

1
Napy = —12De*™ — . (2.3.57)
Pa
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We then compute the Hamilton equations after the ADM reduction

¢ = —(&2-1) gﬁ (2.3.58a)

/ 1 Do

o = ——2. 2.3.58b
1y (2.3.58b)

a similar system is obtained by the ratio between (2.3.53b)-(2.3.53¢) and (2.3.53a)
through the use of the gauge choice (2.3.57), reading as

'3 d§ 9 De

e Gy 2.3,

> I (€ )pT (2.3.592)
0 d9 1 p

= e Eoe (2.3.59h)

in this system, the dynamics is naturally re-expressed in terms of the coordinate
7, which assumes the role of the temporal variable 7.

The same remains valid for the relations regarding the momenta (2.3.54b) and
(2.3.54c).

Hence we have shown for the simple case of the Bianchi type I as well as
for the more interesting type VIII and IX that the dynamics, together with
the induced constraint, leads to the same system of equations in the standard
Hamiltonian approach and in the ADM one.

2.3.8 The Jacobi Metric and the Billiard Representation

Since above we have shown that asymptotically to the singularity (I' — oc,
ie. @ = —o0) dHapy/dU =0, i.e. Hapy = € = E = const., the variational
principle (2.3.29) reduces to

5/@y&+mw—Eﬂﬁ:5/@wk+mw):m (2.3.60)

where we dropped the third term on the left hand side since it behaves as an
exact differential.
By following the standard Jacobi procedure (ARNOLD, 19895) to reduce our

al —

variational principle to a geodesic one, we set x ¢*p,, and by the Hamilto-
nian equation (2.3.20) we obtain the metric (IMPONENTE AND MONTANTI, 2001,

2002a)

Fl
& _— _

rr 1
00
= ——. 2.3.61
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2.3 Covariant Mixmaster Chaos

By these and by the fundamental constraint relation obtained rewriting (2.3.18)

2
2_ 1) pt4 2L = g 2.3.62
we get
al bl_r’ 2 2 p62 _FIE
"'z = (f — 1) pe” + i ) (2.3.63)
By the definition
dz® ds ds
al — — =u'— 2.3.64
ds dn “ dn’ ( )
equation (2.3.63) is rewritten
ds\ 2
Gap it (d—5> ~T'E, (2.3.65)
n

which leads to the key relation

anb
dn:,/gal’:fLE“ ds. (2.3.66)

Indeed the expression (2.3.66) together with pe£’ + py6’ = ET” allows us to put

the variational principle (2.3.60) in the geodesic form
5/F'E dn = (5/ V gaputuT'E ds =
= (5/ VGaputub ds =0 (2.3.67)

where the metric G, = I'"E g, satisfies the normalization condition Ggu®u® = 1

and therefore

Z—Z = FI" = ;l—li =F, (2.3.68)
where we take the positive root since we require that the curvilinear coordinate
s increases monotonically with increasing value of I', i.e. approaching the initial
cosmological singularity.
Summarizing, in the region I15 the considered dynamical problem reduces to a
geodesic flow on a two dimensional Riemannian manifold described by the line

element (IMPONENTE AND MONTANI, 2001)
dg¢?
&1

The above metric has negative curvature, since the associated curvature scalar

ds* = E* + (& -1)do?| . (2.3.69)

reads R = 5 therefore the point-universe moves over a negatively curved
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bidimensional space on which the potential wall (2.3.36) cuts the region IIg.
By a way completely independent of the temporal gauge we provided a satisfac-
tory representation of the system as isomorphic to a billiard on a Lobachevsky
plane (ARNOLD, 19890).

From a geometrical point of view, the domain defined by the potential walls
is not strictly closed, since there are three directions corresponding to the three
corners in the traditional Misner picture from which the point universe could in
principle escape (see Fig.2.3).

However, as discussed in Section 1.4.2 for the Bianchi models under consider-
ation, the only case in which an asymptotic solution of the field equations exists
with this behaviour corresponds to two scale factors equal to each other (i.e.
0 = 0); but, as shown by BELINSKI AND KHALATNIKOV (1969), these cases are
dynamically unstable and therefore correspond to sets of zero measure in the
space of the initial conditions. Thus, it has no sense to speak of a probability
to reach certain configurations and the domain is de facto dynamically closed.

The bounces (billiard configuration) against the potential walls together with
the geodesic flow instability, with a formalism true for any Bianchi type model,
on a closed domain of the Lobachevsky plane imply the point-universe to have
a stochastic feature. Indeed the types VIII and IX are the only Bianchi models
having a compact configuration space, hence the claimed compactness of the
domain bounded by the potential walls guarantees that the geodesic instability
is upgraded to a real stochastic behaviour. On the other hand, the possibility to
speak of a stochastic scattering is justified by the constant negative curvature
of the Lobachevsky plane and therefore these two notions (compactness and

curvature) are both necessary for our considerations.

2.3.9 Invariant Measure

Here we show how the derivation of an invariant measure for the Mixmaster
model (performed by KIRILLOV AND MONTANI (1997a); MONTANI (2000b)
within the framework of the statistical mechanics) can be extended to a generic
time gauge (IMPONENTE AND MONTANI, 2002a, 2004d) (more directly than
in previous approaches relying on fractal methods by CORNISH AND LEVIN
(1997a,b)) provided the Misner-Chitre-like variables used so far. We have seen
how the (ADM) reduction of the variational problem asymptotically close to the
cosmological singularity permits to modelize the Mixmaster dynamics by a two-

dimensional point-universe randomizing in a closed domain with fixed “energy”
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2.3 Covariant Mixmaster Chaos

(just the ADM kinetic energy) (2.3.37); the key point addressed here is that we
consider an approximation dynamically induced by the asymptotic vanishing of
the metric determinant.

From the statistical mechanics point of view, such a stochastic motion within
closed domain ITy of the phase-space, induces a suitable ensemble representation
which, in view of the existence of the “energy-like” constant of motion, has to
have the natural feature of a microcanonical one. Therefore the stochasticity of

this system can be described in terms of the Liouville invariant measure
do = const x 6 (E — &) d{dfdpedpy (2.3.70)

characterizing the microcanonical ensemble, having denoted by § (x) the Dirac
function.

The particular value taken by the constant ¢ (¢ = F) cannot influence the
stochastic property of the system and must be fixed by the initial conditions.
This useless information from the statistical dynamics is removable integrating

over all admissible values of . Introducing the natural variables (e, ¢) in place

of (pe, pg) by

oS ¢ (2.3.71a)

g
be = \/éﬁ
pe = €/ —1sing, (2.3.71b)

0<¢<2rm

the integration removes the Dirac function, leading to the uniform (normalized)
invariant measure (IMPONENTE AND MONTANI, 2002q)

1
dp = dédfde—— . 2.3.72
= dédods—; (2:3.72)

The approximation on which our analysis is based (i.e. the potential wall model)
is reliable since it is dynamically induced no matter what time variable 7 is

adopted.

2.3.10 Stationary Statistical Distribution

In order to outline how the existence of this invariant measure (i.e. a sta-
tionary probability distribution for the reduced phase space) is independent
of the adopted temporal gauge, we derive it as a solution of the continu-

ity equation relative to the whole phase space I1 = {£,0,¢,¢}, i.e. clearly,
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2 Hamiltonian Formulation and Mixmaster Chaos

N=Iz® Sé ® {RT U{0}}; by other words, we consider the probability distri-
bution = = Z(T, &, 6, ¢, ) and write down the continuity equation (IMPONENTE
AND MONTANI, 2002a)

_ _de¢ _df
o= =0 <~d—r> — % <~d—r> *
_do _de

With a rather simple algebra (see MONTANI (20006, 2001)), the Hamiltonian

equations in terms of (£, 6, ¢, ¢) read

d§  fe
T (2.3.74a)
o fo
— = 2.3.74b
dl’ h’ (2.3.74b)
dp 1 dlne
dlne 1 sin ¢
_— = 21 — 2.3.74
T 52 <8§U\/§ cos ¢ + 89U\/§27_1> , (2.3.74d)
where we introduced the notations
hzﬂfw, fe= /€2 —1cos g, (2.3.75a)
sin ¢ Esing
= —), = 2.3.75b
= e fom s (23.75b)

The probability distribution = has to verify the boundary condition of vanishing
at JII, i.e. ¢ =0, ¢ = oo and on the border of Il ® Sqls.

2.3.11 Continuity Equation in the Reduced Phase Space

Let us consider the probability distribution w = w(T, &, 0, ¢), restricted to the
reduced phase space Il ® 5015, defined as

w@@ﬁ@ﬁzlwanga¢@@, (2.3.76)

and take the corresponding integral in (2.3.73), to get

%w:_éwPJ?%)+@<%%)+@(%%ﬂda (2.3.77)
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2.3 Covariant Mixmaster Chaos

In the limit I' — oc € becomes an integral of motion de/dl" = 0, assuming the
constant value E (fixed by the initial conditions).
As a direct consequence, the probability distribution = approaches the limit

w X §(E — ¢) and therefore, using the identities

dlne dlne
2
O¢fe 4+ 0y fy + O, = 0 — | = 2.3.
gfg o fo ¢f¢ 0, ¢< l ) l ) ( 378)

we write down the Liouville theorem for the reduced phase space I'y ® Sé

8pw + —gag’w + —Hagw + @&ﬁw =
=0rw + /&2 — 1 cos pO:w+
sin ¢ §smd)

=0. (2.3.79)

VR R

Multiplying (2.3.79) by dI'/dr it rewrites in the gauge free form

d¢ do d¢ .
E&gw + E@gw + %%w =

=0, w + \/&? — 1 cos pOsw+
smd) §smgz§
1/ /€2 —

o,w +

=0, (2.3.80)

where w = w(T,&, 0, ¢).
When using a generic time variable 7, the right-hand side of equation (2.3.80) in
general is no longer (asymptotically) vanishing, but yet negligible with respect
to the left-hand one. The same result is obtainable by writing the Hamiltonian
equations and the continuity one directly in term of 7.
The invariant measure (2.3.72) is a stationary solution of the continuity equa-
tion (2.3.80) (IMPONENTE AND MONTANI, 2002a).
The key point is that any stationary solution of the Liouville theorem like
(2.3.70), remains valid for any choice of the time variable 7. Clearly the knowl-
edge of the invariant measure (2.3.72) provides a satisfactory statistical rep-
resentation of the system for any choice of time variable, since it allows one
calculate the asymptotic average values (as well as higher order moments) of
any dynamical variable involved in the problem.

By the above argument, the claim made at the beginning of this Section
which joins together, on one hand the existence of a formulation for the system

dynamics (based on the use of generic MCI variables) leaving open the choice
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2 Hamiltonian Formulation and Mixmaster Chaos

of the temporal gauge N and, on the other one, the derivation of the Mixmas-
ter invariant measure as gauge independent solution of the Liouville theorem
restricted to Iy ® Sé.

We remark that when one approaches the singularity I' (1) — oo (i.e. Hapy —
E), the time gauge relation (2.3.30) simplifies to

dr e 2U+3¢e"

— =N - e, 2.3.81
o N0 e (23.81)
According to the analysis presented by MONTANI (20006, 2001), by virtue of
(2.3.20) and (2.3.68) the asymptotic functions &£ (I'),0 (L), ¢ (I') during free

geodesic motion are governed by the equations

% = V& —1cos¢ (2.3.82a)
j_? _ \/S% (2.3.82D)
% = —%. (2.3.82c¢)
Once the solution & (I") is obtained in the parametric form
£0) = 4 (2.3.83a)
sin” ¢
['(p) = %arctanh <%'02a+pi%j¢> +5b (2.3.83b)

p=1/a%+sin*¢ a,b=const. € N

equation (2.3.81) reduces to a simple differential equation for the function I' (7).

However the global behaviour of ¢ along the whole geodesic flow is described
by the invariant measure (2.3.72) and therefore the relation (2.3.81) acquires a
stochastic character:if we assign one of the two functions I' (7) or N (7) with
an arbitrary analytic functional form, then the other one will exhibit stochastic
behaviour. Finally, by retaining the same dynamical scheme adopted in the
construction of the invariant measure, we see how the one-to-one correspondence
between any lapse function N (7) and the associated set of MCI variables (2.3.3)
guarantees covariance with respect to the time-gauge of the Mixmaster universe

stochastic behaviour, when viewed in the framework of statistical mechanics.
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2.4 Invariant Lyapunov Exponent

In order to characterize the dynamical instability of the billiard in terms of an
invariant treatment (with respect to the choice of the coordinates &, 0), let us
introduce the following (orthonormal) tetradic basis (IMPONENTE AND MON-
TANI, 2001, 2004b)

vlo= (%v@—lcosqﬁ,% sin ¢ ) (2.4.1a)

&1
- 1 1 cos¢
i 2 -7
w' = ( E\/§ 1 sin ¢, 7 52—1> (2.4.1Db)
Indeed the vector v* is nothing else than the geodesic field, i.e.
Dvt dvt ;

s Ikl =0, (2.4.2)
while the vector w’ is parallely transported along the geodesic, according to the
equation ‘ ‘

Dw*  duw' ;
Pty + I‘klvkwl =0, (2.4.3)

where by T, we denoted the Christoffel symbols constructed by the metric
(2.3.69). Projecting the geodesic deviation equation along the vector w' (its
component along the geodesic field v* does not provide any physical information
about the system instability), the corresponding connecting vector (tetradic)
component 7 satisfies the following equivalent equation
>z Z
ds? ~ E?

This expression, as a projection on the tetradic basis, is a scalar one and there-

(2.4.4)

fore completely independent of the choice of the variables. Its general solution

reads

ST

Z(s) =cief + e, ¢y = const., (2.4.5)

and the invariant Lyapunov exponent (LyApunov, 1907) defined by PESIN
(1977)

In (224 (% ?
Ay = sup lim ( (dS) )

§—00 2s

, (2.4.6)
in terms of the form (2.4.5) takes the value (IMPONENTE AND MONTANTI, 2001,
2004b,a)

1
A= —>0. 2.4.7
7> (2.4.7)
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When the point-universe bounces against the potential walls, it is reflected from
a geodesic to another one thus making each of them unstable. Though up to
the limit of our potential wall approximation, this result shows without any am-
biguity that, independently of the choice of the temporal gauge, the Mixmaster
dynamics is isomorphic to a well described chaotic system. Equivalently, in
terms of the BKL representation, the free geodesic motion corresponds to the
evolution during a Kasner epoch and the bounces against the potential walls
to the transition between two of them. By itself, the positive Lyapunov num-
ber (2.4.7) is not enough to ensure the system chaoticity, since its derivation
remains valid for any Bianchi type model; the crucial point is that for the Mix-
master (type VIII and IX) the potential walls reduce the configuration space to
a compact region (I ), ensuring that the positivity of A, implies a real chaotic
behaviour (i.e. the geodesic motion fills the entire configuration space).
Summarizing, our analysis shows that for any choice of the time variable, we
are able to give the above stochastic representation of the Mixmaster model,

provided the factorized coordinate transformation in the configuration space

a =—e'Ma(8,¢) (2.4.8a)
By = Dby (0,¢) (2.4.8b)
G = " Db_(8,¢), (2.4.8¢)

where I', a, by denote generic functional forms of the variables 7,6, &.

It is worth noting that the success of our analysis, in showing the time gauge
independence of the Mixmaster chaos, relies on the use of a standard ADM re-
duction of the variational principle (which reduces the system by one degree of
freedom) and overall because, adopting Misner-Chitre-like variables, the asymp-
totic potential walls are fixed in time. The difference between our approach and
the one presented in SZYDLOWSKI AND LAPETA (1993); SZYDLOWSKI (1993)
(see also for a critical analysis BURD AND TAVAKOL (1993)) consists effec-
tively in these features, though in those works is even faced the problem of the
Mixmaster chaos covariance with respect to the choice of generic configuration
variables.

2.5 Lyapunov Exponents in General Relativity

Chaos in the Einstein equations, as discussed in detail in IMPONENTE AND
MONTANI (2001, 2002a); IMPONENTE ET AL. (2002); IMPONENTE AND MON-
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TANI (2004b), is expected to be a typical property of multidimensional non-
linear dynamical systems, nevertheless such a genuine feature within various
approaches lead to an increase in the doubts instead of giving solid corner-
stones about it (CHERNOFF AND BARROW, 1983; KIRILLOV AND MONTANI,
1997a; MoONTANI, 20006; CORNISH AND LEVIN, 1997a,b; BERGER, 1994; HO-
BILL ET AL., 1994; BERGER, 2000) etc.

Such contrasting results were due to the absence of the chaos descriptions

for relativistic systems via the standard methods of dynamical systems theory
(ARNOLD, 1989b,a): indeed the classical treatment is quite different from Gen-
eral Relativity and cosmological problems because in the last one one deals with
pseudo-Riemannian spaces and hence with the impossibility of using the theory
of Lyapunov exponents which were developed only for Riemannian spaces (as
calculated after the ADM reduction in Section 2.4).
This is a fundamental issue since on Lorentzian spaces nearby geodesics can
diverge while the connecting vector (whose norm is involved in the definition
of Lyapunov numbers, see Section 2.4 above and Section 2.6.2 below) can re-
main finite and even vanish. Such risk is overcome applying to the study of
the chaotic properties of Mixmaster models the covariant definition of Lya-
punov exponents for N-dimensional pseudo-Riemannian manifolds introduced
in GURZADYAN AND KOCHARYAN (1986, 1987a,b).

2.5.1 The Hamiltonian Reduction to the Geodesic Flow

The dynamical evolution of the Mixmaster cosmological model has been formu-
lated in Section 2.2 in terms of the variational principle (2.2.1) which has led to
the Hamiltonian H that we rewrite in a form suitable for the present discussion

as 3
e~ 3a

™ [0}
0 (—pi+pl+p2)— §N6 UB (B4, 8-) (2.5.1)

and the corresponding conjugate momenta are the same as (2.2.9a). The action

H =

takes the form
I= /pad:va — NHdn, (2.5.2)

where the sum over the index a runs through the variables «, 3y, [f_, and the
variation carried out with respect to NV, as discussed in Section 2.2, leads to the
constraint equation H = 0.

Thus we have a dynamical system with a Hamiltonian

1
H = §gabpapb + VN(SE) (253)
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where
T
Vn(z) = NV(Oz,m,ﬁf)=N§6“U(ﬂ+,ﬂf), (2.5.4a)
—3a
@ _ N ab “ — diag(—1,1,1). 2.5.4
g DA diag(—1,1,1) (2.5.4b)

In a generic temporal gauge we define the following quantities

d a
¢ ¥ = ppg®, u = ;9 , (2.5.5a)

Pa = g, gag™ =0, (2.5.5b)

v

where s is an arbitrary parameter along the geodesic. Following GURZADYAN
AND KOCHARYAN (1987b), we denote the two regions of the configuration space

Wt ={z|Vy() >0}, W ={z|Vy(z) <0}, (2.5.6)

and let v, be a solution of the Hamiltonian equations, extremizing the action
01(7Y(eaty) = 0. We have

st(1) o = ext ([ e o, ) =
= ext (/ gabvavbdn |’H(gabvb,m)=0> s (257)

where ext() represents the extremizing of the quantity enclosed in brackets.
As shown by GURZADYAN AND KOCHARYAN (1987b), in both cases when g is

Riemannian and pseudo-Riemannian metric one can write in the region W~

gapv™0’ = —2Vy >0 (2.5.8)
and
gbuaub 1/2
dn = ( a2V ) ds; (2.5.9)
—2Vy

then the last integral in (2.5.7) becomes equal to
ext/(—QVN)dn = ext/ vV Ggputubds

where G, = —Vngay and s is chosen in a way to satisfy the condition || u ||2 =

Gauu® =1, and finally results

ds = +V2Vydn (2.5.10)
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where the positive and negative signs correspond to the growth of the curvilinear
abscissa when the dynamical system evolves forward or backward in synchronous
time dt = N(n)dn, respectively; though for the study of the Mixmaster dynamics
we are interested to the backward choice, in this Section only we retain the
positive one in agreement with the standard behaviour of chaotic systems.

Thus the Hamiltonian system is reduced to a geodesic flow in the region W~

M= %g“bpapb +Vy «— {Gab = —VNGab,
ds = N2(=Vy)dn, | ul|f = 1} . (25.11)
Analogously in W one obtains
Hes {Gab =| Vi | gapy ds =2 | Vi | dn, || u ] = —signvN} . (2.5.12)

Thus the Hamiltonian system is represented by a geodesic flow on a pseudo-

Riemannian manifold

H e {Gay = G, ds = V2| Viy | d, || u | = —signVy },
G = 1213 |V | (2.5.13)

where now s denotes a curvilinear coordinate along the geodesic. It is important
to observe that the metric Gg, = 12me3®n,, is independent on the lapse func-
tion N, so leading to a time-gauge independent formulation of the dynamical
problem.

Summarizing, after the geodesic reduction the dynamical content of the above

Hamiltonian formulation is summarized by the line element
ds® = Gnda"ds” = G(a, By, B-) (do® — dB7 — dB?) | (2.5.14)

with p,v =0,1, 2.

2.6 Geodesic Deviation and Lyapunov Exponents

2.6.1 Geodesic Deviation and the Fermi Basis

In this formalism the Hamiltonian equation corresponds to the geodesic one for

_ da*

the four-velocity ut = %

du®
% + Flf'j‘puyup =0, (261)
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where the Christoffel symbols I'*, | correspond to the above (2.5.14) (conformally

flat) metric tensor. The stability of the Hamiltonian equations solutions with

respect to different initial conditions is therefore, in this formalism, understand-

able on the basis of the geodesic deviation equation (each geodesic corresponds

to the same Hamiltonian solution having different initial data).

Consider the equation of geodesic deviation (Jacobi) for the four-vector &
D¢

ds?

For dynamical systems defined on Riemannian manifolds this equation is the

+ R, ,u"ufE” = 0. (2.6.2)

fundamental one to analyse the statistical properties of the geodesic flows (see
e.g. ANOsoOvV (1967); ARNOLD (1989a)). However, in pseudo-Riemannian man-
ifolds as the one (2.5.14) or (2.5.10) the norm of the connecting vector || £* ||
cannot be a correct characteristic of the geodesic flow instability, since it can
eventually vanish (for instance in the case of a null vector) even when the con-
nected geodesics are diverging.
Consider the component of £# orthogonal to the 4-velocity u* (satistying utu, =
—1)

ZF = &' 4+ (uy)u”, (2.6.3)

and substitute it into the expression

pze  Dgr  Dg
= 2.6.4
ds ds | as (26.4)

ut

where = 0 since u* satisfies the geodesic equation. For the second covariant

s
derivative we get
DQZM _ D2£u D2£V

- St 2.6.5
ds? ds? + ds? vt ( )

so that
D2z

ds?
but the last term in the left-hand side is zero due to the antisymmetry of R, .
with respect to pv. From (2.6.3) and (2.6.6) we then obtain

+ R#Upguuupgrf + RrypguuupgauTuN — 0’ (266)

D2z
ds?

where the last term in the left-hand side is again zero for the same reason. Thus

+ R”Vpgulful’ (ZU o (gsug)ua) =0, (267)

ZH also satisfies the geodesic deviation equation

D2z~
ds?

+ RF, ,u"u’Z% = 0. (2.6.8)
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This result (in which the Riemann tensor is calculated by the given metric
(2.5.14)) is coupled to the geodesic one (2.6.1) and the solution to the system
(2.6.1, 2.6.8) is simplified by the use of a Fermi basis.

Indeed, let us introduce a basis {e%} in which the time-like vector coincides
with the geodesic field (62 = u,), i.e. parallely transported along the geodesic
v(s), and require for the other vectors to be Fermi transported, hence the other
vectors satisfy (IMPONENTE ET AL., 2002)

Deg
ds
When we project equations (2.6.1, 2.6.8) on this basis, the geodesic one disap-

=u'Vie =0, a,0,1=0,1,2. (2.6.9)

pears while the geodesic deviation equation acquires a simpler form.
Each vector ZeT,s\W (T is the tangent space to W) can be expressed in

terms of the Fermi basis
Z™M(s) = Z“el’f m=20,1,2, (2.6.10)

then by means of (2.6.3) and (2.6.10) we project (2.6.7) onto the Fermi vectors,

thus getting a scalar equation for the triadic components

d;im + R u"u" 27 =0, (2.6.11)
. D2zm  d*Zm
since R and
Ryq = RY, pe epeleg - (2.6.12)

which is invariant with respect to space-time coordinates transformations, while
it is covariant with respect to Lorentzian transformations of the triadic index.
Because of the identically vanishing of the 0 component in (2.6.12), the
Lorentzian (invariant) norm of the triad vector Z% \/nu,ZeZ°, coincides with
the Euclidean one which is positively defined. This means that we have arrived
at our goal: namely the possibility of the introduction of the notion of Lyapunov

exponents.

2.6.2 Lyapunov Exponents

For an Hamiltonian system described by

_OH . 0H
_apza pz— aqza

i i=0,1,2, (2.6.13)
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the variations of the canonical variables dq , 0p satisfy

. 0 H 02 H

A i 2.6.14
o4 Omp; " * OPmOp; O (26.14a)
) 2 2
op; = o1 oH OPms (2.6.14b)

" Oan 00" Opnda
since d¢q; O0p; are functions of time.

The Lyapunov exponents are defined (e.g. PESIN (1977); GURZADYAN AND
KOCHARYAN (1987¢)) as

. o In|é 2
A(g:p, dq,0p) = lim % ;6= (d¢° + 6p®) (2.6.15)

i=1
in terms of which, as proved in the theory of dynamical systems (ARNOLD,
1989a), the existence of non-zero ones on compact manifolds indicates the mix-
ing (chaotic) property of the dynamical system.

It Z = Z%, is the deviation vector of the geodesics the Lyapunov exponents
can be rewritten as PESIN (1977); GURZADYAN AND KOCHARYAN (1987b)

A((0), ) = lim n (7 + (&) .

§—00 2s

(2.6.16)

The notion of Lyapunov exponents involves only the Euclidean (i.e. Lorentzian)
norm of the vector Z¢ and its derivative, so that such norms can be computed
in any suitable reference frame, i.e. independently of the choice of the space-
time coordinates as well as the specific triad vectors, which are fixed up to a
Lorentzian transformation with respect to the triadic index depending point by

point in the configuration space on the curvilinear abscissa s.

2.6.3 The Jacobi Equation for the Mixmaster Model

The Jacobi equation (2.6.11) in the case under study reads
A
ds?
where the index a = 0,1, 2 runs for «, 3;, f_ and the non-zero components of

+w'Z% =0, (2.6.17)

the Riemann tensor in triadic form are

1| d®F &F dF \?
LRl =—— |- 2.6.18
w 001 G | daz + 432 <dﬂ+> ( a)
1| &@F &F dF \?
2_R2 o _ | _ 2.6.18b
w 002 G | 7 de2 + 5,2 + <dﬁ> ( )
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2.6 Geodesic Deviation and Lyapunov Exponents

where G = Gy, G = det Gy = 12me3* |V |, F = %lnG. We can consider
the equations for Z' and Z2, (Z° = 0), distinguishing the two cases: Z =
(0,2%,0), Z = (0,0,72), i.e. Z along the first or the second vectors of the

basis.

2.6.4 Equations of Motion and Instability

For Bianchi VIII and IX we have obtained a potential term Vy(z) as in (2.5.13)
and (2.5.4a)
Vn(z) = —e**7RBIN (2.6.19)

where the three-curvature R®) of the Bianchi models has the explicit form given
by (2.1.29a),(2.1.29b) and the potential is (2.2.8).
The constraint H = 0 (2.3.16) leads to

_pa/Q +p+12 —I—p,IQ — 1271’264(1[](3) , (2.6.20)

leaving the choice of a temporal gauge.

The Hamiltonian equations yield

, OH e3¢
o = % = —Nmpa (2621&)
oH e 3
,  OH  m.o
P = —5-=NeU (2.6.21c)
OH ou
"= ——— = —Ne*—. 2.6.21d
e T Ton 2V op 20214

One can introduce the arc-length parameter s along each time-like geodesic
related to the generic time variable 1 by ds = ++/2 | V | Ndn. Thus we reduce
the Mixmaster dynamics to a geodesic flow on the pseudo-Riemannian manifold
with metric (2.5.14). This corresponds to time-like geodesics in the type VIII
case where V' is always positive, and sufficiently far from isotropy in the type
IX one (where V > 0).

The orthonormal coordinate frame {e(q)} has a dual one
{e'}amo12 = (127€™ | V |)/*{da,dB",dB }. (2.6.22)

The system of first-order differential equations (2.6.21) in terms of the curvi-

linear coordinate s can finally be reduced to the following one (IMPONENTE
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ET AL., 2002), independent of the temporal gauge, i.e. of the lapse function
N(n)

do e3 1
R S 2.6.23
ds - 127 /2 |V |p ( 2)
dp+ e 3 1
_ = +— 2.6.23b
ds 121 /2 |V |pi ( )
dp,, 1
— = 2re*———U 2.6.23¢
ds V2|V ( )
dp4 7 1 oU
Y Sl 2.6.23d
ds 2 V2|V |0Bs ( )

where U is the specific U®), so that the cosmological singularity at ¢t — 0 lies
in the limit o — —o0, corresponding to the lower signs in these formulas. These
Hamiltonian system has to be coupled to the Jacobi equation (2.6.2) in order
to get the Lyapunov numbers (2.6.16).

The stability properties of the Hamiltonian dynamics (2.6.23) are described
by the geodesic deviation properties of the corresponding metric (2.5.14); how-
ever, we consider the projection Z* of the connecting vector & to represent
the flow (in)stability, onto the space-like platform orthogonal to the time-like
geodesics flow. Let us introduce the Fermi frame with its dual one {¥e(®} along
a time-like geodesic, having the time-like element "¢ gy equal to the unit tangent
along the geodesic, in order for the projected connecting vector in this frame to
have components Z() = ¢ FeEA), (A = 1,2); in this frame the component Z(©
vanishes by construction.

We can finally re-express the stability problem in terms of the system (2.6.23d)
coupled to (a =0,1,2)

dA@ (b) i a Dez(‘d)
- + 6(())A( )(d) s - 0’ (2624&)
Fel@ = 4@ o (5) el (2.6.24D)
d?ZN)
o+ FRA 0 ZP) =0, (2.6.24c¢)

together with (2.6.16) where the 3 x 3 matrix A 4 defines the Lorentz trans-
formation from the dual frame e(® to the Fermi dual frame Fe(®, FR%, , are
the Fermi frame components of the Riemann tensor and finally A denotes the

Lyapunov exponent calculated in the Euclidean norm [|-||. The characterization
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via A of the Mixmaster instability is completely covariant with respect to both
the choice of the time variable (the scheme is independent of the lapse function

N) as well as of the choice of generic configuration variables.

2.7 On Occurrence of Fractal Boundaries

In order to give an invariant characterization of the dynamics chaoticity have
been proposed many methods along the years, but not all approaches have been
reached an undoubtable consensus. A very interesting one, relying on tech-
niques considering fractality of the basin of initial conditions evolution has been
proposed in 1997 by CORNISH AND LEVIN (1997a) which has opened a whole
line of debate. The conflict among different approaches has been tackled by
using an observer-independent fractal method, nevertheless leaving open some
questions about the conjectures lying at the basis of it.

As we have seen in Section 1.4.3, the asymptotic behaviour towards the initial
singularity of a Bianchi type IX trajectory depends on whether or not we have
a rational or irrational initial condition for the parameter u in the BKL map.

In such a scheme, it has been considered the effect of the Gauss map together
with the evolution of the equations of motion in order to “uncover” dynamical
properties about the possible outcoming configurations with the varying of the
corresponding initial conditions.

Nevertheless, such an approach has led to some doubts regarding the reliability
of the method itself.

In fact, let us observe that rationals initial conditions are dense and yet con-
stitutes a set of measure zero and, moreover, they correspond to fictitious sin-
gularities (BELINSKI ET AL., 1970; MISNER, 1969). The nature of this initial
set needs to be compared with the one regarding the complete set of initial con-
ditions, having finite measure over a finite interval: the conclusions obtained
after the dynamical evolution are not necessarily complementary between the
two initial assumptions (IMPONENTE AND TAVAKOL, 2003).

The approach used in CORNISH AND LEVIN (19974a) is based on the method
firstly stated in BLEHER ET AL. (1988) where it is shown how fractal boundaries
can occur for some solutions involving chaotic systems. The space of initial
conditions is spanned giving rise to different exit behaviours whose borders have
fractal properties: this constitutes a conjecture as a typical property of chaotic

Hamiltonian dynamics with multiple exit modes.
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2 Hamiltonian Formulation and Mixmaster Chaos

For the case of the Bianchi IX model potential (see Figure 2.2) the opening are
obtained widening the three corners, on the basis that the point representing
the evolution spends much of the time there nearby.

This method has three essential fallacies:

1. the case-points chosen as representatives within this framework are the

ones whose dynamics proceeds never reaching the singularity;

2. the “most frequent” dynamical evolution is the one in which the point
enters the corner with the velocity not parallelly oriented towards the
corner’s bisecting line and, after some oscillations, it is sent back in the

middle of the potential;

3. the artificial opening up of the potential corners adopted in the basin

boundary approach could be creating the fractal nature of it.

In particular, the third observation is supported by the existence of strange

attractors that are not chaotic, as counter-exampled by GREBOGI ET AL. (1984)
and discussed by HEAGY AND HAMMEL (1994). The choice of the method
adopted to characterize the property of chaos or it absence is very relevant,
especially when based on the presence of fractal boundaries in the dynamics
underlying Bianchi IX models. This is important to be checked, first of all,
because the result of CORNISH AND LEVIN (1997a) relies on the conjecture as
in BLEHER ET AL. (1988) that opening gates in a chaotic Hamiltonian system
can result in the presence of fractal basin boundaries (which needs in principle
to be checked in the case of Bianchi IX), not satisfying the necessity of a general
statement concerning chaos: even the opening of the corners does not solve the
question about what happens when taking the limit of closing them and if there
is an universal behaviour (for general systems).
Secondly, it is needed to integrate the Bianchi IX flow and this operation is
not necessarily commuting with the statement regarding the remaining (and
equally relevant) part of the set of initial conditions constituted by the irrational
numbers, which needs to be checked (IMPONENTE AND TAVAKOL, 2003).

MOTTER AND LETELIER (2001a) in the criticism to the paper of CORNISH
AND LEVIN (19974), find some conceptual flaws in their conclusion. They claim
the same results with more accurate comprehension of the global chaotic tran-
sient and afford calculations involving a more stable constraint check and a

higher order integrator.
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Again is followed the same criteria used by CORNISH AND LEVIN (1997q)
to get the same results. The informations obtained following the Farey map
approach are not relevant (only rational values of u are led to the three peculiar
outcomes) because the corresponding invariant set contains almost every point
of phase space. But they claim it is possible to get strict indications of chaos
with the Hamiltonian exit method (BLEHER ET AL., 1988; SCHNEIDER AND
NEUFELD, 2002; DE MOURA AND GREBOGI, 2002, 2001; BLEHER ET AL.,
1989).

Firstly one has to fix the width (<— i) of the open corners, then let the
system evolve. The future invariant set leads to a box-counting dimension Dy
(estimated from the uncertainty exponent method OTT (1993)) coherent with
previous results, which is, by construction, a function of the width itself. The
value of D, found, equal numerically to 1.87, is dependent on the change done
to the original potential, and converges to the value of 2, which is an indicator of
non-chaoticity DE OLIVEIRA ET AL. (2002). Any of such fundamental property,
if outlined in a specific case, must be jointed through a limit procedure to the

general case.

PIANIGIANI AND YORKE (1979) study the evolution of a ball on a billiard
table with smooth obstacles so that all trajectories are unstable with respect
to initial data. This is a system energy conserving and then they open a small
hole on such table in order to allow the ball to go through. Such two differences

have not been taken account of.

The map counterpart of such a system requires a mapping 1" twice differen-
tiable, while the Farey map is not smooth for 0 < u < 1 either for © — oo and
hence with this procedure is forced a system, supposing it to be chaotic, to show

peculiar features.

In the work by SCHNEIDER AND NEUFELD (2002) Schneider et al. it is
supposed to show the existence of a chaotic saddle, whose signature is the chaotic
basin.

The paper by DE OLIVEIRA ET AL. (2002) declares the absence of such points,
in a model with A = 0, hence we infer the inapplicability of that method to dis-
cover a supposed unknown feature of a dynamical system.

They stress too that the limit (not unnatural) for A — 0 doesn’t matches: it
doesn’t permit to characterize the chaos in mixmaster vacuum model: a contin-
uous change in a parameter of the theory affects heavily the method’s applica-

bility, mainly while the study of Bianchi IX dynamics is of interest towards the
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initial singularity, where the BKL approach applies: in such approximation, the
domain walls close to a circle.

Hence there are objections which are subject for interesting further investigation

(i) has the opening of a polygonal domain the same effect as the opening a

circle (which has curvature)?
(7 ) Is the system truly independent from temporal reparameterization?

(730 ) Is the opening independent of temporal (either spatial) reparameteriza-

tion?

(v ) Could exist a temporal reparameterization whose effect is to close the

artificial openings?
(v) How to interpret this eventuality?

Even if this is not relevant for dynamical system in classical mechanics, in
General Relativity it is.

Cornish and Levin claim that they open a non compact domain

Misner introduced the variables (84, 3_) (MISNER, 1969) in the search for new

insights on mixmaster dynamics, in view of the solution of the horizon paradox
and making a detailed study of the potential corners: billiard balls escaping
the potential represent exceptional cases of homogeneous cosmologies. Then the
Hamiltonian treatment, introduced by Misner in 1969, provides, regardless of
the BKL map, the most general evolution.
In such a case remains to deepen the study of the potential domain, near the
origin of the (34, 5_) plane, where equipotential lines are closed curves, V < 1,
and between two close equipotential lines, where V' increases steeply (i.e. to an
increase of A & 2 it corresponds AV =~ 10?).

The cuncurrent motion of the point particle, as well as of the potential walls,
are described by two velocity terms, d(/dS) and df,4;/dS) (in Misner formalism
2 = «), whose directions change in an ergodic way in the corresponding phase-
space.

The corners of this triangular potential are flared open:

V(B) = 4B+ +1 B —+oo | Bl |1 (2.7.1)

but equipotentials
B~ e P+ (2.7.2)
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narrow down exponentially: is the corner opening an artefact?

Because of the very steep potential rising for large f3, little € time is spent
with the point bouncing against the potential wall and most of the time is spent
in free motion, where V' can be neglected. If the system point finds itself run-
ning towards a corner rather then a wall of the potential, the velocities of the
particle and of the walls are in first approximation equal and Kasner behaviour
with this parameters will last for a long €2 time.

These directions of 4 motion are those required to remove horizons in a partic-
ular direction.

When the point-universe velocity is closely parallel to one of the three cor-
ner axes, horizons along the corresponding one of the three expansion axes of
the universe would approach the circumference of the universe. If such a com-
munication phase (u = —1,0,00) persisted as {2 — oo, then casual influence
could circumnavigate the universe only in one direction (Taub metric ), but
with /- = 0 (TAuB, 1951). This is an unstable case and cannot occur: say
| B_ |< 1; the point, after some time, starts oscillating in the corner and is
drifted away towards the centre of the potential, to resume bouncing on the flat
walls as the small §_ approximation breaks down.

Almost all solutions come arbitrarily close to the values u = —1,0, 0o, as states
giving communication along the three corresponding expansion axes of the uni-

verse, but such behaviour is unstable.
Summarizing, many questions remain open:

(i) Is the generality of the solution found affected by the choices done for the

exits?

(73 ) If one let the system evolve for a very long time, is the fractal boundary

picture dependent on the criteria one choose to select the initial data?

(733 ) (If possible) the choice of initial data from a grid of different irrational

values for u, would lead to the same fractal basin boundaries?

(v ) During the course of evolution the solution will come close to Kasner
exponents (0,0, 1), for all the times when u &~ 0 (or u & oc). Assuming
the precise value u = 0 is a particular case which leads to the elimination

of the physical singularity; the general solution is, by definition, stable.
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(v) In the specific Bianchi IX case, whose evolution depends on a numeric-
dependent property (rational/irrational initial value), does it make sense
to use this method?

(vi) Is there, in numerics, some possibility to distinguish a rational by an

irrational number?

The case in which the evolution gets close to the Kasner one (the small oscil-
lation evolution) lasts for a finite amount of time until the dynamics becomes
general again: the probability for such cases to occur tends asymptotically to
zero and then the the claim of adding exits to a chaotic billiard does not solve, by

itself, the problem in how to know it is chaotic — and justifying the method itself.

For all the criticism here outlined we consider an analytical approach crucial
to distinguish among chaos indicators relying on numerical properties not well-

manageable via numerical simulations.
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3.1 Canonical Quantization of Gravity

The Mixmaster dynamics discussed so far in the details regarding chaoticity
and with its properties about statistical approach is of great interest looking
for a the connection with the dynamics quite close to the singularity: in the
very beginning, close to the Planck epoch (t < 107%3) the Universe could have
performed a still different scenario which needs to be connected with the stage
of well formulated theories as the BKL study of the Einstein equations as well
as the chaotic behaviour.

The framework for the description of the earlier stages of the universe evolu-
tion relies in the quantum cosmology approach whose later stages are connected
via a semi-classical approach to the classical-general-relativity dynamics (L1F-
SHITZ AND KHALATNIKOV, 1963).

However, before tackling such a semi-classical approximations (IMPONENTE
AND MONTANTI, 20035, 2002¢), it is necessary to choose a way by which quantize
the gravitational degrees of freedom (PULLIN, 1991; ZINN-JUSTIN, 1996): a first
approach to construct an appropriate theory is based on a canonical quantization
procedure through the standard correspondence between canonical variables
and operators. The application of such prescription leads to a Schrodinger-like
equation for the wave function describing the universe, governing in a unitary
expression the geometry of the space-time as well as any other matter or scalar
fields involved. This is the Wheeler-DeWitt equation (WDE) (DEWITT, 1967a)
(KUCHAR, 1981) which we later will specify for the Mixmaster model in Section
3.3.1 as in IMPONENTE AND MONTANI (2002¢, 2003b).

The Hamiltonian formulation discussed so far needs to be reformulated in a

general way, in order to underline the effects of the 3 4+ 1 split on the slicing of
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the space-time: the dynamical degrees of freedom are the spatial components
of the metric (see also TOMONAGA (1946)).

As a different approach to proceed towards quantization, instead of consider-
ing spaces with continuously varying curvature, it is possible to deal with spaces
where the curvature is restricted to subspaces of codimension two. This ap-
proach of discretization was first introduced by REGGE (1961), see also (REGGE,
1997), while for a more recent proposals via spin-foam methods see (ORITI,
2001).

3.1.1 Hamiltonian Formulation of the Geometrodynamics

The canonical formalism implemented to the gravitational field quantization,
leads to the Wheeler-DeWitt equation (WDE) (DEWITT, 1967a; MISNER ET AL.
1973), which consists of a functional approach where the states of the theory
are represented by wave functionals taken on the three-geometries and, in view
of the requirement of general covariance, they do not possess any real time de-
pendence.

Let us introduce a four-dimensional manifold M* over which is defined the
metric tensor g, (2”) and consider the temporal parameter ¢. Spatial hypersur-
faces can be parametrized as y*(z') (u = 0,...,3) (: = 1,...,3) and in each
point it is possible to define a basis via the tangential vectors e/ and the normal

vector n*, which satisfy
guwein” =0, guntn" =-1. (3.1.1)

Set up a one-parameter family of hypersurfaces depending on the parameter ¢
as y* = y*(t, 2*) in order to reduce the originary four-dimensional manifold to a
direct product of a three-dimensional one by the real axis as M* = 33 ®@®R. The
deformation vector connecting two points having common spatial coordinate
and belonging to adjacent surfaces can be split in the basis (3.1.7) introduced

as
N* = 9" (t, x') = Nn* + N'e (3.1.2)

where the functions N and N* are the lapse-function (identically to the (2.1.25)
introduced in Section 2.1.3) and the shift vector, respectively. The geometric
interpretation is straightforwardly obtained by the definition: dr = Ndt is
the proper distance between the point P, on ¥; and P, on ¥, 4 lying on the
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intersection of the normal vector coming out from ¥ in P, while the shift
vector N’ represents the distance between the point P, and the corresponding
P;, which represents corresponding point with the same spatial coordinates as
P, belonging to ¥;, 4. The spatial metric induced by the four-dimensional one

is the projection of (3.1.1)
hij = guei €j = gij + minj . (3.1.3)

From the definition of co-vectors

n, = guunya 62 - hijgpyegg N1 = hiij (314)
follows the orthonormality condition ef'e/, = 4.
Evaluating
dy" = dy"dt + Oiy"dx’ (3.1.5)

we can express the distance between any two points from ¥; to ¥, 4
ds® = g, dy"dy” (3.1.6)
in terms of (3.1.2) as
ds? = — (Ndt)* + hy; (N'dt + dz') (N7dt + da?) | (3.1.7)

where, for this Section only, we adopt the standard signature (-+++) (DEWITT,
1967a). The comparison of (3.1.6) with (3.1.7) gives an expression of the metric

and its inverse as functions of N, N* and h;; explicitly

—N? 4+ N;N:h N;
Guv = - ! I ) (318&)
Ni hij
1 NI
wo N2 N2
g - NZ i NZNJ 9 (318b)
N? E

in consequence of which holds the relation among determinants \/—g = Nv/h.
If we introduce the extrinsic curvature
8hij
ot

1
Kij = o7 | Nitg + Njji —

i = g5 (3.1.9)

where the covariant differentiation ( )| is performed with respect to the induced

connection on Y, the Ricci scalar in four dimensions multiplied by /—g in
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terms of the current functions reads

V=9R(9) = VAN (KyK" = K*+ *R) +
~ 9 (x/ﬁK) t+2(\/ﬁKNi—\/EhijN|j) (3.1.10)

|4
>

vV vV
surface term divergence term

where *R is the Ricci scalar on the spatial surface and the trace K = K, =
h9K;;.

In suitable units (A = ¢ = 167G = 1), we can than express the gravitational
Lagrangian density using (3.1.10) as

L% 9u] = V—gR (3.1.11a)
L[N,N' hij] = VhN|[K;K"7 - K*+ *R] (3.1.11b)

Hence by virtue of (3.1.11) we obtain the global action

St = / dtd*zL"" [g,.] , (3.1.12)
M4
and by virtue of (3.1.12) we have

S9 =St 2/ dPzVhEK (3.1.13)
»3

where the second integral is a surface term (YORK, 1972; GIBBONS AND HAWK-

ING, 1977) which is present if the space-time is compact, we dropped the integral

of the divergence term and &Y is the Einstein—Hilbert action contribution which

explicitly reads
SY = / dtd’zL [N, N', h;j| =
M3IXR
= / dtd*xNVh (KK — K* + *R) (3.1.14)
M3IXR

which, as already used in a different form earlier, is well suited to obtain a
manageable form for the Hamiltonian terms. In view of (3.1.9) we see that
in (3.1.14) there are only spatial derivatives of h;; as well there are no time
derivatives of N and N;, hence the conjugate momenta (standardly defined)
read

=95 _ _h (K7 — h"K) (3.1.15a)
ahij
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and
T o= 8_420 (3.1.15b)
ON
L= 8—4:0, (3.1.15¢)
ON;

respectively. The primary constraints (3.1.15b) and (3.1.15¢) give N and N; the
role of Lagrange multipliers not being dynamical variables.
The prescription to obtain the Hamiltonian formulation require to perform the

Legendre transformation (written generically in ¢* coordinates and p; momenta)
H= /d% > (i - £q") (3.1.16)
i

hence straightforwardly we have

H :/d3x (Wijilij +7'N; + 7N — L) =

:/d% (NHa + N (3.1.17)
where
HG = \/E<K”KZJ - K2 — 3R) =
1 y
—— (p. B h. — h.. ijkl 3
= 2\/E (hzkhﬂ + hllh]k hzjhkl)ﬂ ™ \/ﬁ R
= Gyur™ —Vh R (3.1.18)
and
H = —27r”‘j. (3.1.19)

In the expression (3.1.18) the super-metric introduced by DEWITT (1967a) as

1
Giju = —2\/5 (hikhjl + hithj, — hijhkl) (3.1.20)
satisfies
klmn mn 1 msn msn
GijnG =0;;" = 5(51 07 +0; 52-) (3.1.21)

and integrating over the three-space permits to define a “distance” between the

metric h;; and its variation h;; + dh;; as

§s? = / G Sh S hy . (3.1.22)
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3 Canonical Quantization of the Mixmaster

In view of the primary constraints (3.1.15b) and (3.1.15¢), the Poisson brack-

ets giving the Hamilton equation for the evolution in time of 7 and 7 always

vanish
o0H
r = —{H = — = 1.2
T {H,7} AN 0, (3.1.23a)
. . 0H
Tt = —{H 7l = = 1.2
T {Hr P 0, (3.1.23b)

Since now N and N' are, in principle, dynamical variables, they have to be
varied, so leading to the secondary constraints H? = 0 and HY = 0 which are
equivalent to the u — 0-components of the Einstein equations and therefore play
the role of constraints for the Cauchy data.

Indeed behaving like Lagrange multipliers, the lapse function and the shift vec-
tor have not a real dynamics and their specification corresponds to assign a
particular slicing of M?*, i.e. a system of reference.

From (3.1.23) follows (i) that H is independent of N and V; and consequently
these are not dynamical variables and (ii) the secondary constraints over the

functional forms

He=H =0. (3.1.24)

In particular, the first equality in (3.1.24) explicitly reads

He = Gurn® —Vh PR =0 (3.1.25)

3.1.2 Wheeler-DeWitt Equation

In order to proceed towards the quantization of the still classical formalism, the
constraint equation obtained become equations between operators and moreover
commutation relations are taken to correspond to Dirac-bracket relations.

Hence we firstly consider the constraint equation Hg = 0 as a zero-energy
Schrodinger equation for the wave function of the Universe described by the

state vector W[h;;] in terms of the canonical variables h;;, 7;;
%G (7Tij, h”) \Il[h”] =0 3 (3126)

secondly we proceed following the canonical quantization prescription imple-

menting the canonical variables to operators acting on this wave functional

~

hij — hi]’, (3127&)
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3.1 Canonical Quantization of Gravity

and the super-momentum with the derivative with respect to the “coordinate”

to which is conjugate as

- - 5
T 74 = (3.1.27h)
6hij

and finally obtaining the Wheeler-DeWitt (DEWITT, 1967a) equation in its

general form

)

Gz’jkl%%

+Vh *R| Wlhy] =0. (3.1.28)

The effect given by the ordering of the operators when setting up together the
terms in (3.1.28) is known as the normal-ordering one: when written for an
explicit metric, the momenta are multiplied by functions of the coordinates and
the effect given by the order of calculation is crucial. We will find in the following
Section 3.3 a result relying on a specific choice, nevertheless there is no any a
priori rule to solve the problem.

Finally, the interpretation to W[h;;] is clearly fastened to the role of time,
since we are discussing a general-relativity system and we will dedicate the next
Section 3.1.3 to some considerations.

Our application will study the semiclassical limit of the wave function to find
a correspondence with some classical quantity.

The primary constraints, in general, are weakly zero (ESPOSITO, 1994): when
working out Poisson brackets on phase space involving functions that are compo-
sitions of quantum constraints, it is mandatory to follow the Dirac prescription
(DIRAC, 1964), setting to zero such functional forms only after these brackets
have been computed, hence also the appearance of the normal-ordering ambi-
guity.

In order to build a quantization procedure assume the states be represented by
a wave functional W({h;;}, ¢) (the notation {h;;} means all the three-geometries
connected by a three-diffeomorphism). Let us define the operators iLij and 7"

over the state vector represented by the functional W({hy}) as

hig (@)U ({ha}) = hiy¥({ha}), (3.1.29a)
T (2)T({hey}) = —z%};”}) (3.1.29b)

where {h,} underlines the dependence of the wave functional by the three-
geometries and not by the three-metric, a property related to the invariance

under the transformations induced by the group of spatial diffeomorphisms.
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3 Canonical Quantization of the Mixmaster

The equations regarding the two constraints read explicitly

N i
He(2)V = —: Gum(z)————— : —Vh3RU =0, 3.1.30a
N o

U =2ih = .1.30b
7‘[1( ) 1 lkvjdhjk( ) 0, (3 30 )

where in the first row (3.1.30a) we have rewritten the Wheeler-DeWitt equation
equivalent to (3.1.28) in which the double dots “:...:” underline the necessity
of a choice for the operators ordering, eventually requiring for the constraints
either to satisfy some algebra (as discussed below) or to be satisfied under coor-
dinate transformations over the Riemannian manifold 3%; in the second row, the
super-momentum constraint equation (3.1.30b) defines the diffeomorphisms.
In the Wheeler-DeWitt equation there is no explicit time dependence and this
feature, known as frozen formalism, reflects the absence of a proper parameter
measuring time in General Relativity and the consequent need to use variables
inner to the system, such as even the matter.

In particular, a wave functional satisfying (3.1.30b) is invariant under the trans-
formations induced by the group Dif f(X?), justifying the notation ¥ = W ({h}).
For this purpose, let us consider a generic spatial diffeomorphism z/* = z'*(z*)

which for an infinitesimal transformation reads
it =24 € (3.1.31)
whose effect is an infinitesimal variation of the metric h;;

Bt a'") = haj(t, a')+0hy(t, 27 (3.1.32)
Ohij = =V ;& — Vig;.

The dependence of the functional ¥ on the metric together (3.1.32) induces the

variation 50
W(hi;) = W(hi) +/ d*x Shij— i (3.1.33)
»3 zy
and the cited invariance expresses as \Il(h;j) = W(h;j), say
g
d*z 6hy; : 1.34
/23 € ]5hz3 =0 (3 3 )

The variation dh;; is related to the infinitesimal vector &, by (3.1.32), then
(3.1.34) transforms to

5w U
—2/ &’V ;& —— 2/ rhipFV =0 (3.1.35)
(5h” »3 ]5h2j
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3.1 Canonical Quantization of Gravity

where we have used the property of the product derivation together with the
vanishing of the integral of the divergence term over a compact space; the ar-
bitrariness of the transformation induced by &* leads to the vanishing of the

integrand
o

Shij

which, apart from the eventual multiplying constant, is exactly the expression

hieV; 0 (3.1.36)

for the super-momentum (3.1.30b).
Some limits of the Wheeler-DeWitt equation (ISHAM AND KUCHAR, 1985;
IsHAM, 1992) are shared with the equations related to analogous approaches to

a canonical quantization and can be briefly summarized as

(7) the products of differential operators evaluated in the same points involved
in the equations lead to a theory containing divergences when acting over

a variety of state functionals, requiring some regularization procedures;

(7i) the physical interpretation of the wave function is not as straight as in
classical quantum mechanics, essentially with respect to the notion of time
and the corresponding evolution, unless considered as an external degree

of freedom:;

(749) last but not least remark, the procedure to find a solution for such a
differential equation in not well defined, leaving the possibility to different
algorithms of solution; if the eigenvalue equation refers to a null one it
should be considered the problem of suitable boundary conditions induced
by the theory itself.

The operator algebra relies on the canonical re-writing of the Poisson brackets
for the dynamical variables as commutation relations among operators. For such

commutator defined over the three-dimensional manifold Y3 we have

[ﬁa,,(x), i}ab(x')} ~0, (3.1.37a)
[ (), 9 ()] = 0, (3.1.37h)
[ﬁa,,(x), ﬁcd(x')} — ilocds(z — '), (3.1.37¢)

without considering any specific time dependence in a Schrodinger approach.
As in the Dirac quantization prescription, constraints have been imposed in

an operatorial form via the substitution of each canonical variable with the
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3 Canonical Quantization of the Mixmaster

corresponding operator as constraints on the allowed physical states as

A~

H(:c; ﬁ,ﬁ)\lf -0 (3.1.384)

~

Hi (a:; fz,ﬁ) U= 0 (3.1.38D)

which are the equation discussed above (3.1.30a) and (3.1.30b).

Moreover, it has to be required that no new constraints come out from the com-
mutation relations, i.e. the operatorial constraints generate an algebra formally
identical to the classical one, simply following the standard replacing of the
Poisson brackets with the commutators multiplied by (:)~" (or eventually set

h = 1) obtaining

% (), Fsl)] = Fa(2)0 0 — ) — FHuly)Osly — ). (3.1.39)
[Aue). 2] = A@)sate ), (3.1.390)
% (), A0)] = HE @)oo — )~ H ()3l — ) (3.1.39¢)

At a classical level, the constraints are equivalent to the dynamical equations
if they are satisfied on every spatial hypersurface of a four-dimensional metric

g and hence such metric is compatible with the vacuum Einstein equations.

3.1.3 The Problem of Time and the Constraints

The first formulation obtained by DeWitt (DEWITT, 19674a,b,¢) for the quan-
tization of gravity, as it stands in the previous Section, has been followed by a
huge number of papers (for example HALLIWELL (1988) has dedicated a whole
work to list the bibliography as well as HARTLE (1988) to introduce a detailed
discussion) and still manifests its open problems (HARTLE, 1991): in particular,
the meaning of time is peculiar in view of the special role played in any physical
theory (HALLIWELL, 1991), as well as the proper meaning of the wave-function
of the Universe (HARTLE AND HAWKING, 1983).
In Newtonian mechanics, for example, the time has the role of a parameter ex-
ternal to the system and this reflects directly in quantum mechanics to build
the temporal evolution of an operator as it stands in the Schrodinger-like time
dependent equation

in??

—H 3.1.40
=1y, (3.1.40
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3.1 Canonical Quantization of Gravity

which is a functional differential equation: v is the wave function and H the
suitably defined operator corresponding to the Hamiltonian obtained consider-
ing a first class constraint.

Let us call with C; the additional constraints: these induce the supplementary

conditions which, at the next step, have to be imposed as to the wave function
Cp=0, (3.1.41)

as well as, for [ # m,
Conth = 0. (3.1.42)

Multiplying both equation for different operators and subtracting we find
[Cy, Cm} b =0 (3.1.43)

which is not a priori obviously satisfied: in the classical theory, by defini-
tion, the Poisson bracket of any two primary constraints provides again a linear

combination of primary constraints, while in this quantum theory the condition

[Clcm} = o (3.1.44)
has to hold as an additional one. In fact, the coefficients ¢;,,,,, depend on all the
field variables and, in general, do not commute with the C, in quantum theory,
hence one has to check that they appear on the left of (3.1.44), and no extra
terms occur.

The time variable in General Relativity is no longer a parameter but one of
the four coordinates, over which are defined transformations, tensors, covariant
derivatives and so on: as a consequence, time would be a candidate for the
quantization algorithms to obtain operators. The foliation introduced in Sec-
tion 3.1.1 is the simplest way to give to the temporal coordinate the role of
characterizing the various hypersurfaces >, >4, ... and the starting point to
tackle quantization.

Conceptually, the non-operatorial role of time is reflected in the notion of mea-
surement for an observable, in the definition of a scalar product, in the con-
straints on its evolution conservation and finally in the commutation relations
in Hilbert space for observables. The first limit posed to the Newtonian time
relies in the impossibility of a representation as a physical observable. The ques-
tion raised by the General Relativity scenario comes out from the property of
a covariant formulation with respect to changes of space-time coordinates and

such choice freedom has to be compatible with normal quantum theory.
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3 Canonical Quantization of the Mixmaster

A large number of unsatisfactory features (DEWITT, 1999) flows out from
the WDE hyperbolic nature, strongly supporting the idea that is impossible
any straightforward extension to the gravitational phenomena of procedures
well-tested only in limited ranges of energies; however, in some contexts, like
the very early cosmology (HARTLE, 1988; KOLB AND TURNER, 1990) (where
a suitable internal time variable is provided by the universe volume) the WDE
can give interesting information about the origin of our classical universe, (KIR-
ILLOV AND MONTANI, 1997a), which may be expected to remain qualitatively
valid even for the outcoming of a more consistent approach (IMPONENTE AND
MONTANTI, 2003f,d).

Over the last ten years the canonical quantum gravity found its best improve-
ment in a reformulation of the constraints problem in terms of the so-called
Ashtekar variables, leading to the loop quantum gravity theory (ROVELLI, 1998;
QGY9, 1992); this more recent approach overcomes some of the WDE limits,
like the problem of constructing an appropriate Hilbert space, but under many

aspects is yet a theory in progress.

3.2 The Multi-time and Schrodinger Approach

In this section we provide a schematic formulation of the so-called multi-time
approach and of its smeared Schrédinger version.

The multi-time formalism is based on the idea that many gravitational degrees
of freedom appearing in the classical geometrodynamics have to be not quantized
because are not real physical ones; indeed we have 10 xo0o? variables, i.e. the
values of the functions (N, N, h;;) at each point of the hypersurface ¥, but it
is well-known that the gravitational field possesses only 4 x co® physical degrees
of freedom (in fact the gravitational waves have, at each point of the space, only
two independent polarizations and satisfy second order equations).

As a first instance, let us rewrite the canonical action (3.1.17) taking account
of (3.1.24) as

SY = / (Wifathij — NHY — N%f) d>xdt . (3.2.1)
M4

The first step is therefore to extract the real canonical variables by the trans-
formation
hij,m = & m, H, P’ (3.2.2)

iJ s

(n=0,1,2,3),(r = 1,2) where H,, P" are the four real degrees of freedom,
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3.2 The Multi-time and Schrodinger Approach

while £#, 7, are embedding variables.
In terms of this new set of canonical variables, the gravity-“matter” action
(3.2.1) rewrites

S9 — / (Wﬂatgu L P'O,H, — NHY — N’Hf) Brdt (3.2.3)
M4

where H9 = HY(¢*, 7y, H,, P") and H} = H{ (¢, 7, H,, PT).
An ADM reduction of the dynamical problem is obtained provided that it is

possible to solve the Hamiltonian constraint with respect to the momenta 7,
T+ hu (&4, H,, P") =0, (3.2.4)

reducing the action (3.2.1) to the form

S = / (P?"atHr — hﬁ#) d*xdt . (3.2.5)
M4

The Hamiltonian equations lost with the ADM reduction fix the lapse function
and the shift vector as soon as the functions 9;£* are assigned.

A choice of particular relevance is to set 9;£* = ¢f which leads to

SY = {P"0,H, — ho} d*zdt . (3.2.6)

M4
The canonical quantization of the model goes through replacing all Poisson
brackets with the corresponding commutators; assuming that a wave functional

U = (&, H,) represents the states of the quantum system, the evolution is
described by (let us take h # 1)

where Bu are the operator version of the classical Hamiltonian densities.

Denoting by J the quantum counterpart to the smeared Hamiltonian
J = (hu0 ") dxdt (3.2.8)
M4

the smeared formulation reduces the multi-time approach to the Schrodinger
equation
W0 =Jv, U =U(tH,). (3.2.9)
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3 Canonical Quantization of the Mixmaster

For example, it is useful to implement such approach in an explicit mini-superspace
model like a Bianchi type IX Universe for which the classical action using Mis-
ner variables («, (4, f—) as in MISNER ET AL. (1973) (see Section2.1.3) the

classical action describing this system reads

S = / |:pad +pﬁ+ﬂ‘+ +p,@—ﬁ;+

_ cNe_3a( — P24 ph, 405+ V(a, 5¢))] dt (3.2.10)
where ¢ is a constant, clearly () = d( )/dt and the precise form of the potential
term V' has been shown in Section 2.2 but is not relevant for the present discus-
sion.

In this model the Hamiltonian density is independent of the spatial coordinates,
hence the multi-time approach and its smeared Schrédinger version overlap.

The multi-time approach requires preliminarily to perform an ADM reduction
of the dynamics (3.2.10). The Hamiltonian constraint obtained by varying N is
solved to find

Do = hapy = \/pg+ P 4V (3.2.11)

therefore the action (3.2.10) rewrites as

S = /(pﬂ+ﬂ'+ +ps_ B — dhADM) dt . (3.2.12)

Here « plays the role of the embedding variable (indeed it is related to the Uni-
verse volume), while 1 are the real gravitational degrees of freedom describing
the Universe anisotropy.
By the Hamilton equation lost when varying p, in (3.2.10) in the ADM reduction
we get

&= —2cNe2*p, = 2cNe > hapu (3.2.13)

hence, by setting & = 1, we fix the lapse function as

63a

N=—— . 3.2.14
2chapm ( )

Concluding, the quantum dynamics in the multi-time approach is summarized
by

ih0, U = \/—h2 (a§+ + ag_) YVO, U= T(a,fs). (3.2.15)

In this approach the variable a, corresponding to the volume of the Universe,

assumed the role of a “time”-coordinate and therefore the quantum dynamics
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cannot prevent the Universe from reaching the cosmological singularity (o —

—00).

3.3 Mixmaster Canonical Quantization

The highly symmetric Standard Cosmological Model (SCM) and its agreement
with observational data (CMBR and nucleosynthesis of light elements) does not
prevent a more general dynamics in the very early stages, followed by isotropiza-
tion only in a later phase up to a complete agreement with actual experimental
data.

The intrinsic nature of the chaotic Mixmaster dynamics and its very early

appearance in the Universe evolution lead to believe in the existence of a relation
with the quantum behaviour the system performs during the Planckian era.
A precise meaning to this relation relies in the construction of the semiclassical
limit of the Schodinger approach to the canonical quantization of the Arnowitt-
Deser-Misner (ADM) dynamics whose corresponding probability distribution
we will show to coincide with the (deterministic) microcanonical one in Section
2.3.9-2.3.11.

Within the framework developed in Section 2.3 above (IMPONENTE AND
MONTANI, 2001), we will show following IMPONENTE AND MONTANI (20030,
2002¢) the existence of a direct correspondence between the classical and quan-
tum dynamics outlined by the common form of the continuity equation for the
statistical distribution and the one for the first order approximation in the semi-
classical expansion.

We have seen how the dynamics is described by the canonical variational
principle

51:6/Ldn:0, (3.3.1)

where details have been already specified (see Section 2.3).

By the use of the MCI variables {£, 0,7} defined in (2.3.2) and a standard
ADM reduction (based on the vanishing nature of the original Hamiltonian) we
have seen how the asymptotic properties of the potential term has led in Il
(see Figure 2.3)) the ADM Hamiltonian to become asymptotically an integral

of motion

V{0 € Ty Hapyv = Ve2+U = e = E = const. , (3.3.2)

113



3 Canonical Quantization of the Mixmaster

independently from the time parameter.

The billiard representation (Section 2.3.8) has reduced the dynamics to a
point-universe moving over a negatively curved two-dimensional space (Lobachevsky
plane (ARNOLD, 1989b)). The invariant Lyapunov exponent calculated as (2.4.7)
(KIRILLOV AND MONTANI, 1997a; MONTANI, 20000) and by IMPONENTE AND
MONTANI (20024, 2004d) in Section 2.4 has given to the bounces against the
potential walls and the instability of the geodesic flow a stochastic feature. The
“energy-like” constant of motion (¢ = E) has been shown to correspond, by a

microcanonical ensemble, to a uniform invariant measure reading as (2.3.72)
1
dp = we (€, 0, ¢) dédody = Wd&i&dd) (3.3.3)
T
hence over the reduced phase space {&, 0} ® Sé the distribution w., behaves like

the step-function (Section 2.3.9)

1
Weo (€,6,0) =< 8n2 V {£0,6}ellp®S;

0 v {£,6,0} €11y ®S)

For the sake of clarity, we rewrite here the equations in that Chapter describing

(3.3.4)

the free geodesic motion over Ily in the asymptotic limit U - U, = ¢ = F =
const., (MONTANI, 20000)

% _ /@ Tcosd, (3.3.52)

9 sing
dp  Esing

and the stationary continuity equation for the distribution function wy (&, 6, @)

describing the ensemble representation

OWoo sin¢g  Owee §sing Jws
VE —1cos ¢ o€ + GRS — &1 00 =0, (3.3.6)

reduced on the configuration space Iy to

0(6,0) = / " (6,6, 8) do (3.3.7)

and where the two dimensional continuity equation reads

0050 sing  00s
/€2 — 1cos ¢ o€ +\/€27_1 20 =0. (3.3.8)
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The microcanonical solution on the configuration space {&, 0} reads

1
000 (£,0) =3 4r v {£.0}elly

0 v {£ 0 ¢ 1l

(3.3.9)

3.3.1 Semiclassical Limit of the Quantum Mixmaster

Dynamics

The intrinsic chaos resulting from IMPONENTE AND MONTANI (2001) and IM-
PONENTE AND MONTANI (2002a) appears close enough to the Big Bang, with
the indeterministic quantum dynamics the model performs in the Planckian era,
in the sense of a semiclassical limit for a canonical quantization of the model.
The asymptotical principle corresponding to (3.3.2) describes a two dimen-
sional anholonomic Hamiltonian system, which can be quantized by a natural
Schrédinger approach
mg—d) = Hapmh, (3.3.10)

Y = (7, &,0) being the wave function for the point-universe when Hapas is

implemented (see (3.3.2)) to an operator, i.e.

§—-¢, 00, (3.3.11a)
— Pe = —ihé — Pp = —ihﬁ (3.3.11b)
De = Pe = o€’ Po — Po = 90 -9
for which the only non vanishing canonical commutation relations are
[ép}] = ih, [é,p}} = ifi. (3.3.12)

The equation (3.3.10) rewrites explicitly, in the asymptotic limit U — Uy
(IMPONENTE AND MONTANI, 20035, 2002¢)

W e, U
“or ~ 62+—2¢:

[

35
19 1 o v 2513
- Emwa—wtw| v 631
VE—100 \/er -1

where we took an appropriate symmetric normal ordering prescription and we

kept Uy to stress that the potential cannot be neglected on the entire configura-

tion space {&, } and, being infinity out of Iy, it requires as boundary condition

115



3 Canonical Quantization of the Mixmaster

for 1 to vanish outside the potential walls
Y (0llg) = 0. (3.3.14)

The quantum equation (3.3.13) is equivalent to the Wheeler-DeWitt one for
the same Bianchi model (3.2.15), once separated the positive- and negative-
frequency solutions (KUCHAR, 1981; KUCHAR AND TORRE, 1991), with the
advantage that now 7 is a real time variable and the equivalence can be trivially
checked by taking the square of the operators on both sides of the equation.

Since the potential walls U, are time independent and the domain turns
out to be closed, we infer that the energy-spectrum be a discrete one, hence a
solution of (3.3.13) has the form

(1,&,0) ch —iEnt/h, (€,0) (3.3.15)

where ¢,, are constant coefficients; for the quantum point-universe restricted in
the finite region Iy, via the position (3.3.15) in (3.3.13) we find the eigenvalue

problem

1 0 1 0
—\/52—1—¢52 85 \/52_@\/52_@]%=

En2 - Uoo Eooi

In what follows we search the semiclassical solution of this equation regarding

the eigenvalue E.., as a finite constant (i.e. we consider the potential walls
as finite) and only at the end of the procedure we will take the limit for U,
(2.3.36).

We infer that in the semiclassical limit when 2 — 0 and the occupation number
n tends to infinity (but nh approaches a finite value) the wave function ¢,

approaches a function ¢ as

lim ¢, (,0) = ¢ (£,0), lim Ee,, = Ex . (3.3.17)
h=0 h=0

The expression ¢ is taken as a semiclassical expansion up to the first order, i.e.

0 (£,0)=+/r(0) exp{is(%a)} , (3.3.18)
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where 7 and S are functions to be determined.
Substituting (3.3.18) in (3.3.16) and separating the real from the complex part

we get two independent equations, i.e.

a8 1 05\ 2
= _1)<65> +£2—1<%>J+

~”

classical term

12 9 [0, 1@
- {\/52 e VE gt o 1892] NG (3.3.19)

where we multiplied both sides by /A2 and, respectively,

0 oS 1 0 0S
Ve 15 (F a_£>+£2—1%< 89> . (3320

o(1/h)

In the limit & — 0 the second term of (3.3.19) is negligible, meanwhile the first
one reduces to the Hamilton-Jacobi equation

95\ > 1 [0S\’

The solution of (3.3.21) can be easily checked to be

1 L
S(.0) _/ (ﬁ’/ﬂ” o e dH), (3.3.22)

k = const. .
We observe that (3.3.21), through the identifications
oS 0S
- = - = — S= d do 3.3.2
o =P g /(pg€+po ) (3.3.23)
is reduced to the algebraic relation
1
2 —1)pe’ ’=FEx”. 3.24
(€ = 1)pe + o (3.3.24)

The constraint (3.3.24) is nothing more than the asymptotic one H% ), = E* =

const. and can be solved by setting

aS _ B

a—é_ =pe = ? COS¢, (3325&)
aS .

5= pg = Eog\/E2 — 1sing, (3.3.25b)
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where ¢ € [0, 27 is a momentum-function related to £ and 6 by the dynamics,
o(1) = ¢ (&(7),0(7)). On the other hand, by (3.3.22) we get

1 k2
- - JE _
D¢ /762 1 1) 52 1
k;

Po =

(3.3.26a)
(3.3.26b)

apart from the bounces against the potential walls the equations of motion
(3.3.5) describe the whole evolution of the system and permit to check the
compatibility of these expressions with (3.3.25) providing

d 2
£ = _526— 1ctg<p = VE —1sinp =c, (3.3.27)
¢ = const. .

The required compatibility comes from the identification k£ = E,.c. Since

lim EOO:{ E ViE 0} € Iy
U—Uso

3.3.28

we see by (3.3.22) that the solution ¢ (£, 6) vanishes, as it should occur in
presence of infinite potential walls, outside II.

The substitution in (3.3.20) of the positions (3.3.25) leads to the new relation

/€2 — 1cos qﬁg—g + %% =0. (3.3.29)
This equation coincides with (3.3.8), provided the identification r = g, is made;
this is the correspondence between the statistical and the semiclassical quantum
analysis, ensuring the quantum chaos of the Bianchi IX model approaches its
deterministic one in the considered limit.

Any constant function is a solution of (3.3.29), but the normalization condition

requires 7 = 1/471 and therefore we finally get

1

— 0 I1
Jim g =l g P= g =] dr (SO (3.3.30)
h—0 0 v {570} Q/ Iy

i.e. the limit for the quantum probability distribution as n — oo and A — 0

associated to the wave function
i Es
Y (1,0,6) =@ (£, 0)e""" =

— /¥ exp [2/ (pédg + ppdf — EOOdT):| (3.3.31)
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3.3 Mixmaster Canonical Quantization

coincides with the classical statistical distribution on the microcanonical ensem-
ble.

Though this formalism of correspondence remains valid for all Bianchi models,
only the types VIII and IX admit a normalizable wave function ¢(&, 6), being
confined in Iy, and a continuity equation (3.3.8) with a real statistical meaning
(IMPONENTE AND MONTANI, 20024, 2003b).

Since referred to stationary states ¢,(&,6), the considered semiclassical limit
has to be intended in view of a “macroscopic” one and is not related to the
temporal evolution of the model (KIRILLOV AND MONTANI, 19975).
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4 Inhomogeneous Inflationary
Dynamics

4.1 The Standard Cosmological Model

So far we have discussed the Very Early Universe, underlining some peculiar
features regarding the evolution towards the initial singularity, on the basis
of the general behaviour expected by Einstein equation especially in relation
with the instability of density perturbations when evolving backwards in time
(LIFSHITZ AND KHALATNIKOV, 1963).

We will discuss how to connect the Mixmaster dynamics and its properties
as seen in IMPONENTE AND MONTANI (2003¢) with an inflationary scenario
(IMPONENTE AND MONTANI, 2003e,a), as well as how such a scheme can
be connected with a quasi-isotropic solution of the Einstein equations (IMPO-
NENTE AND MONTANI, 2003f,d, 2004c¢), in order to recover the homogeneous

and isotropic Universe so far observed.

In the present Section, we need to sketch what is expected from such a rich
dynamics, say the scenario which is considered to be well representing of actual
Universe, i.e. the Standard Cosmological Model, based upon the assumption
spatial homogeneity and isotropy. The observed Universe manifests a signifi-
cant degree of inhomogeneity at the scale of galaxies, clusters, etc., nevertheless
observational evidences on sufficiently large scales (of the order of 100 Mpc)
show that inhomogeneities are smoothed out and the properties of isotropy and
homogeneity are reached as in the FLRW model. Even the early Universe ex-
hibits an isotropy and an homogeneity by far higher than now, as testified by the
extreme uniformity (of the order of 10™*) of the Cosmic Microwave Background
Radiation (CMBR).
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4 Inhomogeneous Inflationary Dynamics

The Robertson-Walker Metric

The most general metric which is spatially homogeneous and isotropic is the
FLRW one (1.2.1), which in terms of the comoving coordinates (t,r,0, ¢) reads

dr?
1— kr?

ds® = dt* — R*(t) < + r2d#® + r? sin” 9d¢>2> (4.1.1)
where the scale factor R(t) is a generic function of time only and, for an ap-
propriate rescaling of the coordinates, the factor £ = 0,£1 distinguishes the
sign of constant spatial curvature. Such coordinates represent a reference frame
participating in the expansion of the Universe: an observer at rest will remain

at rest; leaving the effects of the expansion to the cosmic scale factor R(t).

4.1.1 The Friedmann Equation

The FLRW dynamics is reduced to the time dependence of the scale factor R(t)
once solved the Einstein equations (1.3.1) with a stress-energy tensor 7),, for all
the fields present (matter, radiation, etc.) which then must be diagonal, with
the spatial components equal to each other for the homogeneity and isotropy
constraints. A simple realization of it is the one of a perfect fluid, characterized

by a space-independent energy density p(¢) and pressure p(t)

TMV = dlag(p’ —D, =D _p) ’ (412)
and in this case the 0 — 0 component of the Einstein equations reads

R? k871G
— == — 4.1.3
TR 3" (4.1.3)
which is the Friedmann equation, while the 1 — ¢ components are
R R* Kk
The difference between (4.1.3) and (4.1.4) leads to
R A7 G

EZ_T(p—F?)p)’ (4.1.5)

which is solved for R(¢) once provided an equation of state, i.e. a relation be-
tween p and p.
When the Universe was radiation-dominated, as in the early period, the radia-

tion component provided the greatest contribution to its energy density and for
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4.1 The Standard Cosmological Model

a photon gas we have p = p/3.

“particles”

The present time Universe is on the contrary matter-dominated: the
(i.e. the galaxies) have only long-range (gravitational) interactions and can be
treated as a pressureless gas (“dust”): the equation of state is p = 0.

In order to find an equation providing the temporal evolution of p we are
going to we have to use the energy tensor conservation. Nevertheless, such
energy tensor appearing in the right-hand side of the Einstein field equation
describes the complete local energy due to all non-gravitational fields, while
gravitational energy has a non-local contribution. An unambiguous formulation
for such a non-local expression is found only in the expressions used at infinity for
an asymptotically flat space-time (PENROSE, 1982; ARNOWITT ET AL., 1962).
This is due to the property of the mass-energy term to be only one component
of the energy-momentum tensor which can be reduced only in a peculiar case
to a four-vector expression which can not be summed in a natural way.

Bearing in mind such difficulties, such a conservation law T*,, = 0 leads to
d(pR*) = —pd(R?) (4.1.6)

i.e. the first law of thermodynamics in an expanding Universe which, inserted
in the equation of state leads to a differential equation for p and hence giving
the dependence of the energy density on the scale factor. If we take its solution

together with the Friedmann equation (4.1.3) with & = 0 is summarized by

RADIATION p xR, RotY? (4.1.7)
MATTER p xR, Rot? (4.1.8)

where as long as the Universe is not curvature-dominated the choice of £k = 0
is not relevant. The special equation of state p = —p leads to p = const. and
R x e, i.e. a phase of exponential expansion, equivalent to adding a constant
term to the right-hand side of the Einstein equation mimicking a cosmological
constant: this is exactly what the inflationary paradigm proposes to overcome
the paradoxes of the standard model outlined in the next Section 4.1.2.

The Hubble parameter H = R/R and the critical density p, = 3H2/87G make
it possible to rewrite (4.1.3) as

ko p

= —-1=0-1
H?R? 3H?/8rG

, (4.1.9)

where € is the ratio of the density to the critical one Q = p/p,; since H2R? is
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4 Inhomogeneous Inflationary Dynamics

always positive, the relation between the sign of £ and the sign of (2 — 1) reads

k=+1 = Q>1 CLOSED
k=0 = Q=1 FLAT (4.1.10)
k=-1 = Q<1 OPEN

The Friedmann equation describes how the matter distribution influences the
curvature of the Universe, coherently with the meaning of the Einstein equations

coupling the matter with geometry.

4.1.2 Shortcomings of the Standard Model: Horizon and

Flatness Paradoxes

Despite the simplicity of the Friedmann solution (in view also of the thermo-
dynamic property which can be studied in detail) some paradoxes occur when
taking into account the problem of initial conditions. The observed Universe has
to match very specific physical conditions in the very early epoch, but COLLINS
AND HAWKING (1973)showed that the set of initial data that can evolve to a
Universe similar to the present one is of zero measure and the standard model

tells nothing about initial conditions.

Flatness

Let us assume that all particle species present in the early Universe have the
same temperature as the photon bath, i.e. T; = T, and are far from any mass
threshold. Then the average number of degrees of freedom for the photons and

fermions bath ¢* is a constant and T oc R~!. The average energy density

71'2

p= %g*T‘* (4.1.11)
substituted in the (4.1.3) reads
7\ 4
(T) Fe(T)T? = %Gg*T‘l, (4.1.12)
where
B k 271’2 g* 2/3
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4.1 The Standard Cosmological Model

S = R3s is total entropy per comoving volume and the entropy density reads

272

=——g'T°. 4.1.14
$= 159 ( )
Today p ~ p., then by taking p < 10p. in (4.1.9) we have
k 2
7| <OH”. (4.1.15)

For k = £1 (the case k = 0 is regained in the limit R — co), we have for today
R > iH '~ 3-10° years and T, ~ 2.7 K; from (4.1.13), the present photon

contribution to the entropy has the lower bound
S, >3.10% (4.1.16)

expressed in units of the Boltzmann constant kp = 1.3806 - 107'¢ erg/K. The
relativistic particles present today together with photons are the three neutrino

species and their contribution to the total entropy is of the same order of mag-

nitude
S > 10%, (4.1.17)
and finally with
le| < 10758/ (4.1.18)
we gain
— De 45 2 B 2
Lo - A <y ()
p T g

where mp is the Planck mass (hc/G)"? = 2.1768 - 10 °g = 1.2211 - 10" GeV.
When taking 7' = 10'” GeV, all species in the standard model of particle inter-
actions — 8 gluons, W, Z° 3 generations of quark and leptons — are relevant

and relativistic: then ¢* &~ 100 and finally

<107, (4.1.20)
T=1017GeV

‘p_pc
p

A flat Universe today requires a curvature of the original one close to unity up
to a part in 10%°. A little displacement from flatness at the beginning — for
example 1073% — would produce an actual Universe either very open or very
closed, so that 2 =1 is a very unstable condition: this is the flatness problem.
The natural time scale for cosmology is the Planck time (~ 10~** sec): in a time
of this order a typical closed Universe would reach maximum size while an open
one would become curvature dominated. The actual Universe has survived 10%°

Planck times without neither recollapsing nor becoming curvature dominated.
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4 Inhomogeneous Inflationary Dynamics

Horizon

Neglecting the €T term, (4.1.12) is solved by

4 3 —1/2
T2 = (4—7;g*> . (4.1.21)

A light signal emitted at ¢t = 0 travelled during a time ¢ the physical distance

I(t) = R(t) /0 Rd(i',) py (4.1.92)

in a radiation-dominated Universe with R o t!/2, measuring the physical horizon
size, i.e. the linear size of the greatest region causally connected at time t. The
distance (4.1.22) has to be compared with the radius L(t) of the region which

will evolve in our currently observed region of the Universe. Conservation of

L(t) = (%)1/3 Lo, (4.1.23)

where s is the present entropy density and Ly ~ H~! ~ 10'%years is the radius

entropy for s oc T? gives

of the currently observed region of the Universe. The ratio of the volumes

provides

3 3
=410 1 (%) (4.1.24)

and, as above, for g* ~ 100 and T' ~ 10'"GeV we obtain

l3

73 ~107%. (4.1.25)

T=101"GeV

The currently observable Universe is composed of several regions which have
not been in causal contact for the most part of their evolution, preventing an
explanation about the present days Universe smoothness. In particular, the
CMBR is uniform up to 10=%. Moreover, we have at the time of recombination,
i.e. when the photons of the CMBR last scattered, the ratio [*/L3 ~ 10°: the
present Hubble volume consists of about 10° causally disconnected regions at
recombination and no process could have smoothed out the temperature differ-
ences between these regions without violating causality. The particle horizon at
recombination subtends an angle of only 0.8° in the sky today, while the CMBR

is uniform across the sky.
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4.2 The Inflationary Paradigm

4.2 The Inflationary Paradigm

The basic ideas of the theory of inflation rely firstly on the original work by
GUTH (1981), i.e. the old inflation, which provides a phase in the Universe evo-
lution of inflationary expansion; then formulation of new inflation by LINDE
(1983a), introduces the slow-rolling phase in inflationary dynamics; finally,

many models have sprung from the original theory.

4.2.1 Old Inflation: the Original Idea

In GuTH (1981)describes a scenario capable of avoiding the horizon and flatness
problems: both paradoxes would disappear dropping the assumption of adia-
baticity and in such a case the entropy per comoving volume S would be related
as

So = Z°Seanty (4.2.1)

where Sy and Seary refer to the values at present and at very early times, for
example at T = T, = 10'” GeV, and Z is some large factor.
With this in mind, the right-hand side of (4.1.19) is multiplied by a factor Z*
and the value of |[p — p.|/p would be of the order of unity if

Z > 3-10%" (4.2.2)

getting rid of the flatness problem.
The right-hand side of (4.1.23) is multiplied by Z~!: for any given temperature
the length scale of the early Universe is smaller by a factor Z than previously
evaluated, and for Z sufficiently large the initial region which has evolved in our
observed one would have been smaller than the horizon size at that time.
Let us evaluate Z considering that the right-hand side of (4.1.23) is multiplied
by Z3: if

Z >5-10%" (4.2.3)

the horizon problem disappears.

Making some ad hoc assumptions the model accounts for the horizon and flatness
paradoxes while a suitable theory needs a physical process capable of such a
large entropy production. A simple solution relies on the assumption that at
very early times the energy density of the Universe was dominated by a scalar
field ¢(7,t), i.e. p = ps + Prad + Pmat + --. With pg > praq, mat, ete and hence
P = Po-
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4 Inhomogeneous Inflationary Dynamics

The quantum field theory Lagrangian density for such a field is

ote o
L— ¢2 b _y(4) (4.2.4)
and the corresponding stress-energy density
T = 0"¢ 0,0 — LON (4.2.5)

by which for a spatially homogeneous and isotropic Universe the form of a
perfect fluid leads to (LIDDLE, 1989)

pe = LAV + 5V, (4.2.6a)
©2
Py = g —V(¢)—év2¢. (4.2.6b)

Spatial homogeneity would induce a slow variation of ¢ with position, hence
the spatial gradients are negligible and the ratio w = p/p reads

Py (4.2.7)

¢

~2 7
¢
2

If the field is at a minimum of the potential, ¢ = 0, and (4.2.7) becomes an

equation of state
Ps = —Po (4.2.8)

giving rise to a phase of exponential growth of R o< e’!, the inflationary or de
Sitter phase.

The field evolution is very different when in vacuum or in a thermal bath and
such a coupling can be summarized by adding a term —(1/2)AT%¢? to the La-
grangian. The potential V(@) is replaced by the finite-temperature effective

potential '
V() =V (9) + ZAT°¢". (4.2.9)

In the old inflation, V' (¢) appearing in (4.2.9) has the form of a Georgi-Glashow
SU(5) theory

Vi(g) = iqﬁ“ - %(A + B)¢* + %ABqﬁ? (4.2.10)

with A > 2B > 0, and possesses a local minimum at ¢ = 0 and a global

minimum at ¢ = A, separated by a barrier with a maximum at ¢ = B. The
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4.2 The Inflationary Paradigm

temperature-dependent term —(1/2)\T?¢?* leaves the local minimum unchanged
and raises the global minimum as well as the maximum — the former by a larger
amount than the latter.

At sufficiently high temperature Vr(¢) has only one global minimum at ¢ = 0
and as long as T decreases a second minimum develops at ¢ = o(T), with
V(0) < V(o), and ¢ = 0 is still the true minimum of the potential. At a certain
critical temperature 7T, the two minima are exactly degenerate as V' (0) = V(o)
and at temperatures below T, V(o) < V(0) and ¢ = 0 is no longer the true

minimum of the potential.

Let us consider when at some initial time, corresponding to 7" = T; > T,
the field ¢ is trapped in the minimum at ¢ = 0 (false vacuum) with constant
energy density, given by (4.2.6a) V7 (0) ~ T2. The temperature lowers with the
Universe expansion up to the critical value 7,: the scalar field begins dominating
the Universe and a second minimum of the potential develops at ¢ = 0. The

inflationary phase is characterized by
R(t) oc e (4.2.11)

where the Hubble parameter H = R/R is a constant; ¢ = 0 becomes a
metastable state, since there exists a more energetically favourable one at ¢ = o
(true vacuum,).

The potential barrier lying within cannot prevent a non-vanishing probability
per unit time that the field performs a first order phase transition via quantum
tunnelling to the true vacuum state, proceeding along by bubble nucleation:
bubbles of the true vacuum phase are created expanding outward at the speed
of light in the surrounding “sea” of false vacuum, until all the Universe has
undergone the phase transition.

If the rate of bubble nucleation is low, the time to complete the phase transition
can be very long if compared to the expansion time scale: when the transition
ends, the Universe has cooled to a temperature 7y many orders of magnitude
lower than T,. On the contrary, when approaching the true vacuum, the field
¢ begins to oscillate around this position on a time scale short if compared to
the expansion one, releasing all its vacuum energy in the form of ¢-particles,
the quanta of the ¢ field. The oscillations are damped by particles decay and
when such products thermalize, the Universe is reheated to a temperature 7T,
of the order of T.. This represents the release of the latent heat associated

with the phase transition after which the scalar field is no longer the dominant
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component of the Universe: inflation comes to an end and the standard FLRW

cosmology is recovered.

The non-adiabatic reheating process releases an enormous amount of entropy
whose density is increased by a factor of the order of (T, /Ty)?* ~ (T./T})?, while
R remains nearly constant and the entropy is increased by a factor (7./T})? too.
Flatness and horizon paradoxes are solved if the Universe super-cools of 28 or
more orders of magnitude during inflation. Even if this looks very difficult to
achieve, it is enough that the transition takes place in about a hundred Hubble
times: the inflationary expansion is adiabatic and the entropy density s ~ R73.

Since s o< T3, then T oc ™! oc e and finally

1.
e (4.2.12)

where At is the duration of the de Sitter phase. From the requirement (7;./T}) >
10% it follows

At > 50H". (4.2.13)

The critical temperature is estimated to be of order of the energy typically

involved for GUT spontaneous symmetry-breaking phase transition, 10 GeV,

and
8t 811G T
H2 =75 = Ty () ~ ¢ — H™'~107%s. (4.2.14)
3 3 mp

The inflation removes the discussed paradoxes if the transition takes place in a
time ¢ ~ 107325, nevertheless leaving some open problems regarding its dynam-

1CS:

(7) in the old scenario inflation never ends, due to smallness of the tunnelling

transition rate, so that the nucleation of true vacuum bubbles is rare;

(7i) the energy released during the reheating is stored in the bubbles kinetic
energy so that the reheating proceeds via bubble collisions which remain
too rare due to low transition rate to produce sufficient reheating: the

phase transition is never completed;

(#4) such a discontinuous process of bubble nucleation via quantum tunnelling

should produce a lot of inhomogeneities which aren’t actually observed.
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4.2.2 New Inflation: the Slow Rolling Model

In 1982, both LINDE (1983a) and ALBRECHT AND STEINHARDT (1982) pro-
posed a variant of Guth’s model, now referred to as new inflation or slow-rolling
inflation, in order to avoid the shortcomings of the old inflation. Their original
idea is to consider a different mechanism of symmetry breaking, the so-called
Coleman-Weinberg (CW) mechanism. The potential of the CW model for a
gauge boson field with a vanishing mass reads

V() = Bo’ + Bg! [ln <¢—2> — 1} : (4.2.15)

2 o? 2

where B is connected to the fundamental constants of the theory and is ~ 1073,
while o gives the energy associated with the symmetry breaking process and is
~ 210" GeV.
The finite-temperature effective potential is obtained as above in (4.2.9) by
adding a term of the form (1/2)\T?¢?. Expression (4.2.15) can be generalized by
adding a mass term of the form —(1/2)m?¢?. Defining a temperature-dependent

mass

mp =vV-—m?+ \T?, (4.2.16)

the temperature-dependent potential becomes

4 2
V() = BTU + Bg! [111 (%) — ﬂ + %m%& (4.2.17)

The quantity m2. can be used to parametrize the potential (4.2.17):

1. when m2. > 0, the point ¢ = 0 is a minimum of the potential, while when
m2 < 0 it is a maximum;
o? -
2. when m? < — ~ 1.50%, a second minimum develops for some ¢ > 0;
initially this minimum is higher than the one at 0, but when my becomes
lower than a certain value mi (0 < m} < 1.50?) it will eventually become

the global minimum of the potential.

If at some initial time the ¢-field is trapped in the minimum at ¢ = 0, as
the temperature lowers the true minimum of the potential can eventually disap-
pear. In this case, as my approaches 0, the potential barrier becomes low and
can be easily overcome by thermal (not quantum) tunnelling, i.e. due to clas-

sical (thermal) fluctuations of the ¢ field around its minimum; the barrier can
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disappear completely when m7 = 0. Independently of what really happens, the
phase transition doesn’t proceed via quantum tunnelling —a very discontinuous
and a strongly first order process— but it evolves either by a weakly first order
(thermal tunnelling) or second order (barrier disappearing at my = 0).

Hence the transition occurs rather smoothly, avoiding the formation of unde-
sired inhomogeneities: inflation is not yet started, so the requirement for the
field to take a long time to escape the false vacuum is not necessary; the tran-
sition rate can be very close to unity, and completed without problem.

When the ¢-field has passed the barrier (if any), it begins to evolve towards its
true minimum. However, the potential (4.2.17) has a very interesting feature: if
the coefficient of the logarithmic term is sufficiently high, the potential is very
flat around 0, and then the field ¢ “slow rolls” rather than falling abruptly in
the true vacuum state: during this slow roll phase the inflation takes place,
lasting enough to produce the required supercooling, as seen in the previous
Section. When the field reaches the minimum, it begins to oscillate around it
thus originating the reheating, exactly as seen in the previous Section.

The problems of Guth’s originary model are skipped moving the inflationary
phase after the field has escaped the false vacuum state, by adding the slow-
rolling phase.

Virtually all models of inflation are based upon this principle.

4.2.3 Alternative Models

Many models in the following years have used the idea of an inflationary phase
in the early Universe, but none of them is fully satisfactory, nor completely
free from any drawback. For instance, in new inflation, we have to keep the
potential very flat near the origin in order for sufficient inflation to occur, thus
requiring very unnatural fine tuning of the parameters. Moreover, the density
perturbations produced are too large and disagree with the observed uniformity

of the cosmic microwave background.

Chaotic

Among the many inflationary models sprung from the original theory, one of the
first has been suggested by LINDE (1983b)the chaotic inflation, characterized
by the simple potential

V(g) = A¢". (4.2.18)
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The field is initially displaced from its minimum at ¢ = 0, but its initial value ¢;,,
is not homogeneous across the Universe, assuming different values in different
regions, following a chaotic distribution (hence the name). This model has
nothing to do with spontaneous symmetry breaking and GUT, showing that

inflation is a concept much more general than previously thought.

Power Law

In power law inflation (LIDDLE, 1989), the potential
V(g) = Voer? (4.2.19)

typical of higher dimensional theories gives rise to an expansion phase in which
the scale factor evolves as R(t) ox t?, with ¢ > 1. This permits to better control

the evolution of density perturbations, avoiding an excessive growth.

Double

In double inflation (SILK AND TURNER, 1987), inflation is obtained not in-
troducing some new scalar field, but modifying Einstein’s equations. This is
common in modern quantum gravity theories, in which higher order terms such
as R? (R is the Ricci scalar) are added to the gravitational Lagrangian and their
presence is similar to consider more than one (chaotic) scalar field. This yields
two inflationary epochs and two perturbation spectra, yielding firstly very-large
scale structures (i.e. clusters of galaxies) and then small large-scale structures

(i.e. galaxies), in a top-down structure formation scenario.

All these models suffer from a fine tuning problem, being all based on the
slow rolling idea, and on the potential flatness close to the origin.
With the spirit of Guth’s original work in the late 80’s some models have recon-
sidered a meta-stable vacuum decay to the true vacuum state via a first order
phase transition. In such extended inflation, the phase transition is implemented
in an extended theory of gravitation as in double inflation, seeming to avoid the
shortcomings of old inflation but unfortunately, until few years ago there existed
very little experimental data to test these models.
The situation is rapidly changing and the new experiments measuring the CMBR

could distinguish which model is viable and which is not.
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4.2.4 Testing Inflation

A theory as inflation involving energy scales far beyond those testable in parti-
cle accelerators leads nevertheless to some “inescapable” predictions, providing

some severe tests for the model as, among others
1. Q¢ =1, i.e. the density has the critical value;
2. homogeneity and isotropy;
3. Harrison-Zeldovich spectrum for density perturbations;

4. Gaussian fluctuations of the CMBR temperature.

0o = 1: a Flat Universe

Inflation has been developed to explain why the Universe is not yet curvature
dominated and having critical density: such a scenario requires very peculiar
initial conditions in the early Universe to obtain now a value of 2 differing sig-
nificantly from 1. Since the smoothness and flatness problems are solved by the
same amount of inflation, then {2y = 1 implies that a Universe after the de Sitter
phase is very homogeneous and isotropic, even though it began quite differently.
The present determinations of {2y are the kinematical ones, relying on the Hubble
diagram, the galaxy-number count red-shift test, the rotation curves of galaxies,
etc. However, these methods simply constrain €y in the interval [0.1, 0.2]: this
supports the flatness problem, but not yet confirms inflation.

For recent developments on the Wilkinson Microwave Anisotropy Probe (WMAP)
temperature correlation interpretation has been recently proposed an approach
concerning the questions about curvature and topology (LUMINET ET AL.,
2003), accounting for WMAP’s observations without fine-tuning parameters us-
ing as a geometrical model for finite space the Poincaré dodechaedral one.

A more precise test is given by the analysis of the CMBR angular power
spectrum, which reflects the power of the cosmic microwave background tem-
perature fluctuations for a given angular scale, parametrized by the multipole (.
The two point angular correlation function is expanded in a series of Legendre

polynomials with power spectrum C;

C(9) = <AT$1) ATéﬁ2)> = % > (21 + 1)CiPy(cos 0) (4.2.20)
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where T is the mean temperature of the CMBR (T = 2.75K), the average is
taken over all pairs of points separated by an angle # such that cosf = ny - 1o,
and P, is the Legendre polynomial of order .

In the case of Gaussian temperature fluctuations, all the information is stored
in the C; themselves.

The power spectrum behaviour strongly depends on the model and on the cos-
mological parameters and a large literature exists on this topic. In particular,
in the context of a CDM model, the theory predicts a dominant peak at angular
scales of about 1° (I ~ 200) for Qy = 1 and the results from the most recent
experiments measuring the CMBR spectrum (DE BERNARDIS, 2002; NETTER-
FIELD ET AL., 2002; LEE ET AL., 2001) strongly agree with this prediction;
from the peak position, the BOOMERanG collaboration finds €2y = 1.03 +0.06,
while DASI finds Qy = 1.00 4+ 0.04 (HALVERSON, 2001; PRYKE ET AL., 2002).

The temperature fluctuations are approximatively proportional to their seeds
density fluctuations and the CMBR can trace the distribution of matter at the
epoch of decoupling. Since the CMBR is homogenous and isotropic in about a
part in 104, apart from extrinsic factors, the Universe should exhibit a similar

degree of homogeneity and isotropy.

4.3 The Bridge Solution

An inflationary scenario is of crucial importance to understand how an anisotropic
universe like the one described by the Bianchi IX type cosmological solution can
approach an isotropic universe when the volume expands enough.

In fact, during the inflation, the dominant term in the Einstein equations corre-
sponds to the effective cosmological constant associated with the false-vacuum
energy; such a term is an isotropic one and when dominates it produces an ex-
ponential decay of the universe anisotropies.

In this Section, following IMPONENTE AND MONTANI (2004 ¢, 2003¢) we show
how it is possible to interpolate a Kasner-like behaviour with an isotropic stage
of evolution. We will refer to this scheme as the bridge solution by KIRILLOV
AND MONTANI (2002), because it allows to match the chaotic dynamics of the
Bianchi IX model together with the later isotropic dynamics of the SCM.

With respect to this, let us observe that in the presence of an effective cos-
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4 Inhomogeneous Inflationary Dynamics

mological constant the action of the Bianchi IX framework takes the form

6T = 6 / (Pac! + P8 +p B+ pod — NH)dy = 0 (4.3.1)
where we recall that H reads as
—3a
:Z4ﬂ(—pi+pi+p2_+pi+v+66“/x) (4.3.2)

and the Bianchi IX potential is
V= —1272UP (5,,8_) . (4.3.3)

The variation of the action (4.3.1) with respect to N provides the super-hamiltonian
constraint to be H = 0.

Near the Big Bang, a — —o0, the Bianchi IX potential (4.3.3) turns out to be
negligible with respect to the cosmological constant term and then, by replacing

the conjugate momenta as

ol
Px — B—X 3 X = «, ﬁ:l:a d) (434)

we get the Hamilton-Jacobi equation

o1\ > oI\’ ar \* [(or\* ...
“(5) *(35) ~(55) +(5g) vema=0 a9

The general solution of (4.3.5) takes the form

2 K |K,—K
I(x",a) = ZKTXT +-K,+ —In

glat 3T =% | (4.3.6)

where x, = {3, 5_, ¢}, K, are constants of integration and

K = /Z K? (4.3.7)

in which the index 7 is the label for 34, ¢, while

Ko(K,, o)==+ \/Z K2 + 6A exp (3a) (4.3.8)

by which we adopt the negative sign in order to describe universe expansion; in

fact, we have

Oa Npe
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4.4 Quasi-isotropic Cosmological Solution

According to the Hamilton-Jacobi method, we differentiate with respect to the
quantities K" and then, by putting the resulting expressions equal to arbitrary

constant functions as

ol

' X( = const. (4.3.10)

we find the solutions describing the trajectories of the system to be

K K,— K
"(a) = x§ "] - . 4.3.11
X(Oé) XO+3|K|nKa—|—K ( )
Let us now consider the two opposite limits:
a — —oo  we find the solution
K,

X' () = xg — ?(a — ap) (4.3.12)

corresponding to a Kasner-like behaviour which can be regarded as the

last epoch of the oscillatory regime:;

a — oo we get the isotropic stage of evolution
X (@) = Xx§ - (4.3.13)

In fact, when the anisotropies 4 approach constant values, they are no
longer dynamical degrees of freedom and the solution looks homogeneous
and isotropic. In the same limit, the scalar field frozens to a constant value

too and it disappears from the dynamics as soon as the inflation starts.

Our analysis provides an interpolation between the two relevant stages of the
universe evolution and is a convincing feature in favour of the idea that inflation
can isotropize the universe. In this sense, the inflationary scenario constitutes
the natural mechanism by which the chaotic dynamics of the Bianchi IX model

can be smoothed out towards a closed FLRW dynamics.

4.4 Quasi-isotropic Cosmological Solution

The study of the general properties of the Cosmological solution to the Einstein
field equations has led to outline many properties of modern Cosmology, in
particular with respect to the chaoticity (as discussed in details in Chapter 2),
as well as with the questions regarding the existence of a singularity in a general

theory framework. The presence of a singularity with respect to time is not a
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4 Inhomogeneous Inflationary Dynamics

necessary property of cosmological models, however this result does not exclude
the possibility that in some restricted classes of cosmological solutions of the
Einstein equations. In order to discuss any model is necessary to match the
mathematical properties with some deep physical requirements.

In order to consider the eventuality that the present state Universe — as look-
ing homogeneous and isotropic from experimental observations at large scales—,
it is interesting to investigate its gravitational stability. The perturbations of the
distribution of matter not affecting uniformity are damped with time or remain
constant (LIFSHITZ AND KHALATNIKOV, 1963) in the isotropic model. Hence,
the evolution backwards in time of small density perturbations is of particular
interest when considering cosmological models more general then the homoge-
neous and isotropic one, being the assumption of uniformity justified only at an
approximate level.

The Friedmann solution is a particular case of a class of solutions in which
space contracts in a quasi-isotropic way, in the sense that linear distances change
with the same time-dependence in all directions, such a solution existing only
in a space filled with matter.

When considered the isotropic solution in the synchronous reference frame,
isotropy and homogeneity are reflected in the vanishing of the off-diagonal metric
components ¢o,. The approach to zero of such functions depends upon the
equation of state of matter: for the ultrarelativistic equation p = €/3, the
metric is linear in ¢, hence the metric g, is supposed to be expandable in
integral powers of ¢.

In the case ultra-relativistic matter equation of state p = ¢/3, the Einstein

equations reduce to the partial differential system

1.., 1 o €

§8tka + Zkgk'g = §(4U0U0 + ].) (441&)

1 B B 4 0

§(ka;ﬁ — ki) = S€tlatl (4.4.1b)
1 €

2@& (VAKD) + P? = g(uauﬂ +67), (4.4.1¢)

where, as stated earlier, P? = yﬁVPM represents the three-dimensional Ricci
tensor obtained by the metric 7,5 and u; (i = 0,1,2,3) denotes the matter
four-velocity vector field.

Let us consider a spatial metric of the form

Gop = taop + t7bas + . . . (4.4.2)
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4.5 Quasi-isotropic Solution Towards Singularity

whose inverse reads as
g =171 — b 4 (4.4.3)

being a®’ the inverse tensor to a,s which is the one used for the operations of
rising and lowering indices, as well as for the covariant differentiation. Once
(4.4.2) is substituted in the field equations (4.4.1), to leading order we find the
energy density

3 b

12 s
ta = 5 (ba=t0s) - (4.4.4D)

The three-dimensional Christoffel symbols and the tensor P,z are, to first ap-

proximation, independent of time and (4.4.1¢) gives

3 5
pBL2pB L 258y 4.4,
o+ 70+ 50 b =0 (4.4.5)
and then A .
b =—--PP+—=6/P. (4.4.6)

“ 3¢ 18
The six functions a,g are arbitrary and once these are given the coefficients b,z
are determined by (4.4.6) and hence also the density of matter and its velocity
can be derived. When ¢ — 0 the distribution of matter becomes homogeneous
and its density approaches a value which is coordinate independent. The ex-

pression giving the distribution of velocity follows from (4.4.4b) explicitly as

Uy = —b.g . (4.4.7)

Such a framework is completed considering that an arbitrary transformation
of the spatial coordinates (for example to reduce a,s to a diagonal form) leaves
to three the number of arbitrary functions allowed in this quasi-isotropic solu-
tion, while the fully isotropic model is recovered in the specific choice of a,g

corresponding to the space of constant curvature P,3 = const. X dug.

4.5 Quasi-isotropic Solution Towards Singularity

In this Section we show how, following MONTANI (1999, 20006), in the asymp-
totic limit to the cosmological singularity, the quasi-isotropic universe dynamics

in presence of ultrarelativistic matter and a real self-interacting scalar field, while
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4 Inhomogeneous Inflationary Dynamics

in the next Section, following IMPONENTE AND MONTANI (2003f) we will see
the opposite limit far from the singularity and its generalization (IMPONENTE
AND MONTANI, 2003d).

In particular, the presence of the scalar field kinetic term allows the existence
of a quasi-isotropic solution characterized by an arbitrary spatial dependence
of the energy density associated with the ultrarelativistic matter. To leading
order, there is no direct relation between the isotropy of the universe and the
homogeneity of the ultrarelativistic matter in it distributed.

However, as discussed deeply in Chapter 1 and 2 the general behaviour of the
universe near the initial Big-Bang is characterized by a completely disordered
dynamics and an increasing degree of anisotropy, up to develop a fully turbulent
regime.

Hence, the contrast between such a general tendency to anisotropy and the
evidence that in the forward evolution since a given age the universe should have
performed an highly symmetric behaviour, is a problem related to properties of
the universe evolution at very different stages of anisotropy.

The quasi-isotropic solution allows, far enough from the initial singularity, the
oscillatory regime (BELINSKI ET AL., 1970, 1982) to be decomposed in terms
of a quasi-isotropic component plus suitable wawe-like small corrections. An
analogous decomposition has been obtained in GRISCHCHUK ET AL. (1975) for
the Bianchi type IX model as a homogeneous prototype of the general inhomo-
geneous case.

Here we summarize the feature acquired by a quasi-isotropic solution (i.e.
one in which the three spatial directions are dynamically equivalent) in pres-
ence of ultrarelativistic matter and a real self-interacting scalar field. Then a
quasi-isotropic model solution exists and is characterized, asymptotically to the
Big-Bang, by an arbitrary distribution of the ultrarelativistic matter and in
which the spatial curvature component has no dynamical role in the first two
orders of approximation. The presence of the scalar field kinetic term, close
enough to the singularity, modifies deeply the general cosmological solution,
leading to the appearance of a dynamical regime characterized, point by point
in space, by the monotonical collapse of the three spatial directions (BELINSKI
AND KHALATNIKOV, 1973; KIRILLOV AND KOCHNEV, 1987).

Let us consider a synchronous reference frame in which the line element reads

as

ds? = dt* — vu5(t, 27)dx*da” (4.5.1)
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4.5 Quasi-isotropic Solution Towards Singularity

the matter is described by a perfect fluid with ultrarelativistic equation of state
p = § and the scalar field ¢(¢,27) admits a potential term V'(¢); the Einstein

equations reduce to the partial differential system

1 1

0K+ 4R = x|~ ~ 1 - 007 +V(9) (45.22)

2( ;8 ﬁ;a) X 3€uau0 + c ad) tqs ( .9. )
1

B B —
2\/,—}/8?5(\/,_}/]{(1) + Pa

~x [W <§6uaug + aaqﬁagqﬁ) +(5+ V() 63} (4.5.2¢)

where, as usual, y is the Einstein constant y = (with ¢ = 1), obvious

4
notation for derivatives (see also (1.3.9) and following formulas for details).
The partial differential equation describing the scalar field ¢(¢, 27) dynamics,

deeply coupled to the Einstein ones reads as

dV
Bttgzﬁ + ath ’Yaﬂd) af + — d(]5 =0 (453)

and finally the hydrodynamic equations accounting for the matter evolution are
explicitly (LIFSHITZ AND KHALATNIKOV, 1963)

%8,5(\/’763/%0) + %aa(ﬁe:*/‘lua) =0 (4.5.4a)

< at’LL(] +u 0, Ug + kaﬂu u ) =
= (1 — U ) Or€ — UgU Op€ (4.5.4Db)
1
4e <u08tua + uﬂagua + §uﬁu78afym> =

= —UuUyO€ + ((55 — uauﬂ) Oge (4.5.4¢)

Any kind of matter described by a perfect fluid energy-momentum tensor
with equation of state p = ce (here ¢ is a generic constant and not the speed of
light), ¢ # 0, is dynamically equivalent to a scalar field ¢ (¢, 27) with Lagrangian
density

L= %\/_( *9; wakq/))é( +) (4.5.5)
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once identified

€ = %C(gikaiwakw)é(i“) , (4.5.6a)
p o= (o) ) (45.6b)

V g*0inh Ok
where g;x (i,k = 0,1,2,3) is the four-dimensional covariant metric. The con-
sidered (Klein-Fock) scalar field ¢ (¢ = 1) corresponds to a perfect fluid with
equation of state p = €, as well as the ultrarelativistic matter (p = £) is dynam-
ically equivalent to a scalar field 7, described by the above Lagrangian density
1

in the case ¢ = 3

The Einstein equations follow by the variational principle
58 =6 / V=g {R = x|g" 00006 + (6" 0w0rw)’| } d'a (4.5.7)

where R is the four-dimensional curvature scalar.
The quasi-isotropic solution, as seen in Section 4.4 (and in LIFSHITZ AND KHA-
LATNIKOV (1963)), near the cosmological singularity refers to a Taylor expansion

of the three-dimensional metric time dependence as (see 4.4.2)

Yap(t;27) = a™ap(27) (%) (4.5.8)

where on
(n) — 9 Tap
aaﬁ (1-'7) = o

in which ¢ is an arbitrarily fixed instant of time (¢ < ¢;) and the existence of

the singularity implies a&oﬂ) = 0. In LiFsHITZ AND KHALATNIKOV (1963) only

" (4.5.9)
t=0

the first two terms appear, i.e. Y45 = asﬂ)i + a(oig (%)2)

The presence of the scalar field permits to relax the assumption of expandability
in integer powers.

In order to introduce in a quasi isotropic scenario (eventually inflationary, see
below Section 4.7) small inhomogeneous corrections to the leading order, we

require a three-dimensional metric tensor having the following structure

Yag (t,27) = a®(t)&ap (27) 4 0*(t)0ap (z7) + O (b*) =
= @(t) [€as (47) + 0(1)6as (+7) + O (i) (4.5.10)
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2

where we defined 7 = — and suppose that 7 satisfies the condition
a

lim 7n(t) = 0. (4.5.11)

t—o0

In the limit of the considered approximation, the inverse three-metric reads

1
1) = (€7 (2) =m0 (27) + O (i) ) . (4.5.12)
where £ denotes the inverse matrix of .5 and assumes a metric role, i.e. we

have
ey =05, 00 =€670,. (4.5.13)

The covariant and contravariant three-metric expressions lead to the important

explicit relations

[0}

K=2268 100l = kS =6+, 0=0°. (4.5.14)
a a
Since the fundamental equality 0,(Iny) = k2 holds, then we immediately get
v =jabe™ = V= \/ja?’e%"e

~+/ja (1 + %na + O(n2)> , (4.5.15)

once defined j = det {,3.
The Landau-Raychaudhury theorem applied to the present case implies the
condition
lima(t) =0. (4.5.16)

t—0

The set of field equations 4.5.2 is solved retaining only the terms linear in  and
its time derivatives and neglecting all terms containing spatial derivatives of the
dynamical variables, in order to obtain asymptotic solutions in the limit ¢ — 0
and then checking the self-consistence of the approximation scheme. The pos-
sibility to neglect the potential term V' (¢) is not ensured by the field equations
but is based on the idea that, in an inflationary scenario, the scalar field poten-
tial energy becomes dynamically relevant only during the “slow-rolling phase”,
far from the singularity, while asymptotically the kinetic term dominates. With

this in mind, it is possible to find the solution for a(t)

a(t) = <£>% : (4.5.17)
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where ¢, is an integration constant, for 7(¢)

n(t) = <i> , (4.5.18)

and u,

o (t,27) = v (27) ( f )‘l’ +0 ( ! ) | (4.5.19)

to to
respectively, in order to obtain for the tensor 6,4(x7) the expression

p
0,5 =
AT 3 a2

[ (1= 20%) €as + 10000s] = 0=p. (4.5.20)

where p(z7) denotes an arbitrary function of the spatial coordinates.
The energy density of the ultrarelativistic matter is found, to leading order, to

have the expression

e(t,z7) = op(a’) +0 ( t) , (4.5.21)

3x [3 + 41}2(x7)} to2/3t4/3 to

which permits to integrate the scalar field equation (4.5.3) to obtain

o(t,27) = \/g [ln (%) —~ % (%) % p(z) + o(a7)

where o(x7) is an arbitrary function of the spatial coordinates.

L0 (}) (4.5.22)

0

Finally, equation (4.5.2¢) yields the expression for the functions v, in terms of

p and of the spatial gradient 0,0 as

3(3 + 4v?)
v = —— 0 40,0, 4.5.23a
10pV/1 + 02 ° ( )
247% — 14 /1= 1272
o= ST i (4.5.23b)

2(1 — 1672)

where 7 represents the quantity

3t
T= ﬁ\/@ﬂaaaaga. (4.5.23c¢)

The particular and simple case ¢ = 0, in correspondence to which v?2 = 0
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(vq = 0) leads to the solutions

Haﬁ = %p(w7)§a5 (4.5.24&)
5 1 t
2 t 3 [2 [(t\Y? t
o(t,z") = \/%ln (5) — Z\/% <%> p(z”)+ O <%> (4.5.24c¢)
Ua(t, 27) = gaaln(p(:ﬂ))t +0 (;) : (4.5.24d)
0

Finally we obtain the three-dimensional metric tensor as

Teslt ) = <f>/ b (ti)/ p(?)] Eap(z?) + O (ti)

On the basis of equations (4.5.24) the hydrodynamic ones (4.5.4) reduce to an

—~

4.5.24e)

identity in the considered approximation.

The solution here shown is completely self-consistent to the first-two orders in
time and contains five physically arbitrary functions of the spatial coordinates:
three out of the six functions &, (the remaining three of them can be fixed
by pure spatial coordinates transformations), the spatial scalar p(z?) and the
function o(z7).

The independence among the functions &,3, p and o implies the existence of a
quasi-isotropic dynamics in correspondence to an arbitrary spatial distribution
of ultrarelativistic matter.

6 and

The kinetic term of the scalar field behaves, to leading order, as ~ a~
therefore, in the limit @ — 0, dominates over the ultrarelativistic energy density
which diverges only as ~ a~* with respect to which the spatial curvature term
~ a~? is negligible.

Concluding, for a generic equation of state p = ce the corresponding matter
energy density behaves asymptotically as ~ a=30+  but the above dynamical
scheme is not qualitatively affected when considering values of ¢ in the range

—3 < ¢ < 1 instead of the ultrarelativistic case ¢ = 3

4.6 Quasi-isotropic Inflationary Solution

In this Section we find a solution for a quasi-isotropic inflationary Universe

which allows to introduce in the problem a certain degree of inhomogeneity
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(IMPONENTE AND MONTANI, 2003f,a). We consider a model which generalizes
the (flat) FLRW one by introducing a first order inhomogeneous term, whose
dynamics is induced by an effective cosmological constant. The three-metric
tensor consists by a dominant term, corresponding to an isotropic-like com-
ponent, while the amplitude of the first order one is controlled by a “small”
function n(t).

In a Universe filled with ultra relativistic matter and a real self-interacting
scalar field, we discuss the resulting dynamics, up to first order in 7, when the
scalar field performs a slow roll on a plateau of a symmetry breaking configura-
tion and induces an effective cosmological constant.

We show how the spatial distribution of the ultra relativistic matter and of the
scalar field admits an arbitrary form but nevertheless, due to the required infla-
tionary e-folding, it cannot play a serious dynamical role in tracing the process of
structures formation (via the Harrison—Zeldovich spectrum). As a consequence,
we find reinforced the idea that the inflationary scenario is incompatible with a

classical origin of the large scale structures.

4.6.1 Quasi-isotropic Inflation and Density Perturbation

As we have seen, the inflationary model (GuTH, 1981; COLEMAN AND WEIN-
BERG, 1973) is, up to now, the most natural and complete scenario to make
account of the problems outstanding in the Standard Cosmological Model, like
the horizons and flatness paradoxes (KOLB AND TURNER, 1990) (for pioneer
works on inflationary scenario and the spectrum of gravitational perturbation,
see also STAROBINSKY (1980, 1979)); indeed such a dynamical scheme, on one
hand is able to justify the high isotropy of the cosmic microwaves background
radiation (characterized by temperature fluctuations O(10™*) DE BERNARDIS
(2002)) and, on the other one, provides a mechanism for generating a (scale in-
variant) spectrum of inhomogeneous perturbations (via the scalar field quantum
fluctuations).

Moreover, as shown in KIRILLOV AND MONTANI (2002); STAROBINSKY (1983),
a slow-rolling phase of the scalar field allows to connect the generic inhomoge-
neous Mixmaster dynamics (BELINSKI ET AL., 1970; IMPONENTE AND MON-
TANI, 2002a) with a later quasi-isotropic Universe evolution, in principle com-
patible with the actual cosmological picture, (VAN ELST ET AL., 1995).

With respect to this, we investigate the dynamics performed by small inhomo-

geneous corrections to a leading order metric, during inflationary expansion.
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The model presented in IMPONENTE AND MONTANI (2003f) has the relevant
feature to contain inhomogeneous corrections to a flat FLRW Universe, which
in principle could take a role to understand the process of structure formation,
even in presence of an inflationary behaviour; however, a careful analysis of our
result prevents this possibility in view of the strong inflationary e-folding, so
confirming the expected incompatibility between an inflationary scenario and a

classical origin of the Universe clumpyness.

In what follows, we will use the quasi isotropic solution which was introduced
in LIFSHITZ AND KHALATNIKOV (1963) (see Section 4.4) as the simplest, but
rather general, extension of the FLRW model; for a discussion of the quasi
isotropic solution in the framework of the “long-wavelength” approximation,
see TOMITA AND DERUELLE (1994) while for the implementation of such a
solution after inflation (KHALATNIKOV ET AL., 1983; BELINSKY ET AL., 1985)
to generic equation of state and to the case of two ideal hydrodynamic fluid see,
respectively, KHALATNIKOV ET AL. (2002) and KHALATNIKOV ET AL. (2003).
In the previous Section 4.5 this solution is discussed in the presence of a real
scalar field kinetic energy, which leads to a power-law solution for the three-
metric, and predicts interesting features for the ultra relativistic matter dynam-

1cs.

We analyse here the opposite dynamical scheme, when the scalar field un-
dergoes a slow-rolling phase since the effective cosmological constant dominates
its kinetic energy. We provide, up to the first two orders of approximation
and in a synchronous reference, a detailed description of the three-metric, of
the scalar field and of the ultra relativistic matter dynamics, showing that the
volume of the Universe expands exponentially and induces a corresponding ex-
ponential decay (as the inverse fourth power of the cosmic scale factor), either
of the three-metric corrections, as well as of the ultra relativistic matter (the
same behaviour characterizes roughly even the scalar field inhomogeneities). It
is remarkable that the spatial dependence of such component is described by a
function which remains an arbitrary degree of freedom; in spite of such freedom
in fixing the primordial spectrum of inhomogeneities, due to the inflationary
e-folding, we show there is no chance that, after the de Sitter phase, such relic
perturbations can survive enough to trace the large scale structures formation
by an Harrison—Zeldovich spectrum.

This behaviour suggests that the spectrum of inhomogeneous perturbations (M A
AND BERTSCHINGER, 1995) cannot arise directly by the classical field nature,
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but by its quantum dynamics.

Finally, we recall that the presence of the kinetic term of a scalar field, here
regarded as negligible, induces, near enough to the singularity, a deep mod-
ification of the general cosmological solution, leading to the appearance of a
dynamical regime, during which, point by point in space, the three spatial di-
rections behave monotonically (BELINSKI AND KHALATNIKOV, 1973; BERGER,
2000).

4.6.2 Inhomogeneous Perturbations from an Inflationary

Scenario

The theory of inflation is based on the idea that during the Universe evolu-
tion a phase transition takes place (for instance associated with a spontaneous
symmetry breaking of a Grand-Unification model of strong and electroweak
interactions) which induces an effective cosmological constant dominating the
expansion dynamics. As a result, an exponential expansion of the Universe
arises and, under a suitable fine-tuning of the parameters, it is able to “stretch”
so strongly the geometry that the horizon and flatness paradoxes of the SCM
are naturally solved.

In the new inflation theory (see Section 4.2.2), the Universe undergoes a de-
Sitter phase when the scalar field performs a “slow-rolling” behaviour over a
very flat region of the potential between the false and true vacuum. The expo-
nential expansion ends with the scalar field falling down in the potential well
associated to the real vacuum and the scalar field dies via damped (by the ex-
pansion of the Universe and particles creation) oscillations which reheat the cold
Universe left by the de-Sitter expansion (the relativistic particles temperature is
proportional to the inverse scale factor). Indeed, the decay of this super-cooled
bosons condensate into relativistic particles — as a typical irreversible process
— generates a huge amount of entropy, which allows to account for the present
high value (~ O(10%)) of the Universe entropy per comoving volume.

Apart from the transition across the potential barrier between false and true
vacuum, which takes place in general via a tunnelling, the whole inflationary
dynamics can be satisfactorily described via a classical uniform scalar field ¢ =
¢(t). The assumption that the field behaves in a classical way is supported by its
bosonic and cosmological nature, but the existence of quantum fluctuations of
the field within the different inflationary “bubbles” leads to relax the hypothesis
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of dealing with a perfectly uniform scalar field.
In general, when analysing density perturbations, it is convenient to introduce
the dimensionless quantity (KOLB AND TURNER, 1990; PADMANABHAM, 1993)

X o
sp(t,ay = 22T _p=p (4.6.1)

p 7

where p denotes the mean density and 7 = 1,2,3. The best formulation of the
density perturbations theory is obtained expanding dp in its Fourier components,

or modes,

1 y (a3
Spr = W/d% e*a® §p(t, 7). (4.6.2)

As long as the perturbations are in the linear regime, i.e. dp, < 1, it is possible
to follow appropriately the dynamics of each mode with wave number k&, which
corresponds to a wavelength A\ = —7T; however, in an expanding Universe, the
physical size of the perturbations evolves via the cosmic scale factor which, in
order to avoid ambiguities, from now on, we write as a(t).

Since in the Standard Cosmological Model, the “Hubble radius” scales as
H 1 oc t, while a(t) oc t" with n < 1, then every perturbation, now inside the
Hubble radius, was outside it at some earlier time. We stress how the pertur-
bations with a physical size, respectively smaller or greater than the Hubble
radius, have a very different dynamics, the former ones being affected by the
action of the microphysics processes.

In the case of an inflationary scenario, the situation is quite different. Since
during the de Sitter phase the Hubble radius remains constant, while the cos-
mic scale factor “blows up” exponentially; hence, all cosmologically interesting
scales have crossed the horizon twice, i.e. the perturbations begin sub-horizon
sized, cross the Hubble radius during inflation and later cross back again inside
the horizon.

This feature has a strong implication on the initial spectrum of density pertur-
bations predicted by inflation. We present a qualitative argument to understand
how this spectrum can be generated.

During inflation, the density perturbations are expected to arise from the
quantum mechanical fluctuations of the scalar field ¢; these are, as usual, de-

composed in their Fourier components d¢y, i.e.

Sy, =

(er)3 / B et 5(t 27) (4.6.3)
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4 Inhomogeneous Inflationary Dynamics

The spectrum of quantum mechanical fluctuations of the scalar field is defined

as 1 k3
2 e —

where )V denotes the comoving volume. For a massless minimally coupled scalar

166 (4.6.4)

field in a de Sitter space-time, which approximates very well the real physical
situation during the Universe exponential expansion, it is well known that (see
KoLB AND TURNER (1990))

(Ag); = (E)Q : (4.6.5)

2T

then the mean square fluctuation of ¢, (A¢)?, takes the following form

(Ag)? = (27:)3‘/ / P |52 = / (%)zd(lnk). (4.6.6)

Since H is constant during the de Sitter phase of the Universe, each mode k

contributes roughly the same amplitude to the mean square fluctuation. Indeed,
the only dependence on k takes place in the logarithmic term, but the modes of
cosmological interest lay between 1 Mpc and 3000 Mpe (it is commonly adopted
the convention to set the actual cosmic scale factor equal to unity), correspond-
ing to a logarithmic interval of less than an order of magnitude.

Thus we can conclude that any mode k crosses the horizon having almost a
constant amplitude d¢p ~ H/2m. A delicate question concerns the mechanism
by which such quantum fluctuations of the scalar field achieve a classical na-
ture(POLARSKI AND STAROBINSKY, 1996); here we simply observe how each

mode k, once reached a classical stage, is governed by the dynamics
. . k2
0Py + 3HOPy + ?(Sd)k =0; (467)

according to this equation, super-horizon modes k < aH (i.e. Appys > H™Y)
admit the trivial dynamics (4.6.7) with d¢y ~ const.. This simple analysis im-
plies the important feature that any mode re-enters the horizon with roughly
the same amplitude it had at the first horizon crossing. The spectrum of pertur-
bations so generated is then induced into the relativistic energy density coming
from the reheating phase, associated with the bosons decay; since that moment
the evolution of the perturbation spectrum follows a standard paradigm.

The density perturbations discussed so far are related to the scalar field by

oV
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4.6 Quasi-isotropic Inflationary Solution

where, because of the potential is very flat during inflation, 9V/0¢ is approxi-

matively constant and then we have
dp =~ const. X d¢ (4.6.9)

The spectrum of density perturbations has a Harrison-Zeldovich form, charac-
terized by constant amplitude: this is a very generic prediction of inflation,
based on the features of the potential flatness common to nearly all inflationary
models. On the other hand, the spectrum amplitude is model dependent and
accurate measures could discriminate between the various models.

Finally, we discuss another feature of the quantum mechanical fluctuations
generated by the inflation, regarding their Gaussian distribution: as long as
the field ¢ is minimally coupled, it has a low self interaction and each mode
fluctuates independently; hence, since the fluctuations we actually observe are
the sum of many of its quantum ones, their distribution can be expected to be
Gaussian (as it should be for the sum of many independent variables).

This is reflected on the distribution of temperature fluctuations of the CMBR
as a powerful test inflation. In a detailed analysis by Wu (2001),82 (even if not
independent) hypothesis tests for Gaussianity are implemented, showing how
the MAXIMA map is consistent with Gaussianity on angular scales between 10’

and 5°, where deviations are most likely to occur.

4.6.3 Geometry, Matter and Scalar Field Equations

We have already discussed in Section 1.3 the line element in a synchronous
reference frame of coordinates (¢, 27) (in units ¢ = 1) which we re-write here for
simplicity as
ds? = dt* — ap(t, 37 )dzda” (4.6.10)

where o, 3,7 =1, 2, 3.

Let us describe the matter by a perfect fluid with ultra relativistic equation of
state p = ¢ (p and € denote respectively the fluid pressure and energy density)
and a scalar field ¢(¢,27) with a potential term V (¢).

In what follows, we write the Einstein equations as
Z ]- Z
RE=y ¥ (7;’“( ) 5557}” )> (4.6.11)
(2)=m,¢

where x denotes the Einstein constant x = 87G (G being the Newton constant)
and Tf(m) and Tf(@ indicate, respectively, the energy-momentum tensor of the

matter and the scalar field.
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4 Inhomogeneous Inflationary Dynamics

We have to add to the set (1.3.8) used in Chapter 1 those interactions and

explicitly reduce such partial differential equations to the system

1 1
SOk + TkOKG = X [— (4u? — 1) g — (0,0)? + V(qﬁ)} (4.6.12a)
5 (ka;ﬂ - kﬂ;a) =X <§6UQUU + 8a¢8t¢> (4612b)

1
2,/

4
a (VAKS) + PP = x lv‘” (5%% + 8a¢87q5> +

+ (% + V(gzﬁ)) 65] , (4.6.12¢)

(for details, see equations (1.3.10) and (1.3.11) in Section 1.3) where the vector
field u* (i = 0,...,3) represents the matter four-velocity, the three-dimensional
Ricci tensor P? = v#7P,, is constructed via the metric 7,5 which is also used

to form the covariant derivative ( ).,; we recall also the notations
v = det Va5, ko = O1Yap kg =Y s . (4.6.13)

The dynamics of the scalar field ¢(¢, 27) is described by a partial differential
equation, coupled to the above Einsteinian system, which in a synchronous

reference reads ) v
y —~B A

0%()
R
tions, taking into account for the matter evolution, in a synchronous reference

0 (4.6.14)

where we adopted the obvious notation dy () = The hydrodynamic equa-

and for the ultra relativistic case, possess the structure

1 3/4 1 3/4, N __
0 (ﬁe / uo) n ﬁaa(\/'_ye /@) = 0 (4.6.152)

4e <%8tu02 + u* 0y ug + %kaﬂuo‘uﬁ> =

= (1 —uo®) e — ugu®dye (4.6.15b)
4e <u08tua + u'gagua + %uﬁlﬂacﬁm) =

= —uauode + (87 — uau”)dge. (4.6.15¢)

In view of the chosen feature for (4.6.11), equation (4.6.15a) doesn’t contain

spatial gradients of the three-metric tensor and of the scalar field. This scheme is
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4.7 Quasi Isotropic Inflationary Solution

completed by observing how it can be made covariant with respect to coordinate

transformations of the form
t'=t+ f(27), z =2 (27) (4.6.16)

f being a generic space dependent function.

4.7 Quasi Isotropic Inflationary Solution

In order to introduce in a quasi isotropic (inflationary) scenario small inhomo-
geneous corrections to the leading order, we require a three-dimensional metric
tensor having the structure as in (4.5.10)-(4.5.13) and (4.5.14)-(4.5.15).

We shall analyse the field equations (4.6.12a)-(4.6.12¢) retaining only terms
linear in 7 and its time derivatives. Equations (4.6.12a)-(4.6.12¢) are analysed
via the standard procedure of constructing asymptotic solutions in the limit ¢ —
00, by verifying a posteriori the self-consistency of the approximation scheme,
i.e. that the neglected terms were really of higher order in time (IMPONENTE
AND MONTANI, 2003f).

In the quasi-isotropic approach, we assume that the scalar field dynamics, in

the plateau region, is governed by a potential term as
V(p)=A+K(¢), A= const. (4.7.1)

where A is the dominant term and K(¢) is a small correction to it. The role of
K, as shown in the following, is to contain inhomogeneous corrections via the
¢-dependence; the functional form of K can be any one of the most common
inflationary potentials, as they appear near the flat region for the evolution of
0.

What follows remains valid, for example, for the relevant cases of the quartic
and Coleman—Weinberg expressions already introduced in some detail in Section
4.2.2

A
_Z¢ , A = const.

N _ , 4.7.2
(¢) B¢4 [ln <%> _ %} , o = const. ( )

viewed as corrections to the constant A term, although explicit calculations are
developed below only for the first case.

Our inflationary solution is obtained under the standard requirements

L@0) < V(9 (4.7.3a)
| Oud | < [kGO0 | (4.7.3b)
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4 Inhomogeneous Inflationary Dynamics

The above approximations and the substitution of (4.5.14) reduce the scalar
field equation (4.6.14) to the form

a 1.

where we assumed that the contribution of the ¢ spatial gradient is negligible.

Similarly, the quasi-isotropic approach (in which the inhomogeneities become
relevant only for the next-to-leading order), once neglecting the spatial deriva-
tives, in (4.6.15a), leads to

Ve tug = 1(z7) =

1473 2 )
where [(27) denotes an arbitrary function of the spatial coordinates.

Let us now face, in the same approximation scheme, the analysis of the Ein-
stein equations (4.6.12a)-(4.6.12¢). Taking into account (4.7.3a), up to the first

order in 7, equation (4.6.12a) reads

a 1 a €
i+ Inl 0= vA = —v— 4y? 4.7.
3a+[2n+an} X X3 (3 + 4u?) (4.7.6)
having set
1
u? = —Euqus = ug=VI14u?, (4.7.7)
a

Equation (4.6.12c) reduces to the form

g(a3) y 6P + (a3 777,5) . 0° + % [(a3) . n} t 057 + aAP =
— X[—2 <§57 — n@“) éeuo/uﬁ—
€ Bl943 Uid
+ <3+A> 5a]2a <1+ 2) , (4.7.8)

where we adopted the notation (), = d/dt and ()4 = d?/dt* for simplicity of
writing. In this expression, the spatial curvature term reads, to leading order,

as

POt 27) = a;(t) AB(z7) | (4.7.9)

where A,3(27) = £3,A), denotes the Ricci tensor corresponding to &ys5(27).
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4.7 Quasi Isotropic Inflationary Solution

The trace of (4.7.8) provides the additional relation

2 (a?’)’tt + (a377)’tt 0+ aA =

€

=X g(3+4u?)+3/\

6
24 (1 + %) . (4.7.10)
Comparing (4.7.6) with the trace (4.7.10), via their common term (3 + 4u?)e/3,
and estimating the different orders of magnitude, we get the following equations:

(a*) , +3a*ay — 4xa’A =0 (4.7.11)
A =0 (4.7.12)

3 (a377) ut 3a’n u + 2 (a?’)’lt N+
+9a°n a4 — 12xa*An = 0. (4.7.13)

Since (4.7.12) implies the vanishing of the the three-dimensional Ricci tensor
and this condition corresponds to the vanishing of the Riemann tensor too,
then we can conclude that the obtained Universe is flat up to the leading order,
i.e.

Eap = Oap = j=1 (4.7.14)
Equation (4.7.11) admits the expanding solution

)

a(t) = agexp <7t (4.7.15)

3

ag being the initial value of the scale factor amplitude, taken at the instant ¢ = 0
when the de Sitter phase starts.

Expression (4.7.15) for a(t), when substituted in (4.7.13) yields the differential
equation for n

4
i+ gv3xAn=0, (4.7.16)
whose only solution, satisfying the limit (4.5.11), reads
4 an 4
n(t) = noexp (—g 3y A t) = n=m (;‘]) , (4.7.17)

and, of course, we require 7y < ao.
Equations (4.7.5) and (4.7.6), in view of the solutions (4.7.15) for a(t) and
(4.7.17) for n(t), are matched with consistency, by posing

ua(t,27) = va(27) + O (1?)

(0> =1+0 <l> ~1, (4.7.18)

a?
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4 Inhomogeneous Inflationary Dynamics

and respectively

1
€= —ghnp, (4.7.19)

which implies # < 0 for each point of the allowed domain of the spatial co-
ordinates. The comparison between (4.7.5) and (4.7.19) leads to the explicit

expression also for [(z7) in terms of §

3/4
I(z7) = (%Anoao‘*) (—6)%/* . (4.7.20)

Defining the auxiliary tensor with unit trace ©,45(z7) = 6,43/6, the above anal-
ysis permits, from (4.7.8), to obtain for it the expression
Oa

o = 5 (4.7.21)

By (4.7.4), the explicit form for a, once expanded in 7, yields the first two

leading orders of approximation for the scalar field

t, 1 n
7 = 1— 4.7.22
¢(ta7) =C tr—t< 4\/3><Atr—t9> : (4.7.22)

V3xA
C22)\ 7

where C is an integration constant; finally, equation (4.6.12¢) provides v, in

t, =

terms of 6 5 1
Vo = —Zﬁaaln |1 6] . (4.7.23)

On the basis of (4.7.21)-(4.7.23), the hydrodynamic equations (4.6.15a)-(4.6.15¢)
reduce to an identity, to leading order of approximation; in fact such equations
contain the energy density of the ultra relativistic matter, which is known only
to first order (the higher one of the Einstein equations). Therefore it makes
no sense to take into account higher order contributions, coming from those
equations.

As soon as (t, — t) is sufficiently large, it can be easily checked that the
solution here constructed is completely self-consistent to the all calculated orders
of approximation in time and contains one physically arbitrary function of the
spatial coordinates, #(x7) which, indeed, being a three-scalar, is not affected by
spatial coordinate transformations.

In particular, the terms quadratic in the spatial gradients of the scalar field are

of order

(0a9)’ = O (Z—jﬁ) (4.7.24)
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4.7 Quasi Isotropic Inflationary Solution

and therefore can be neglected with respect to all the inhomogeneous ones.
Such a solution fails when ¢ approaches ¢, and therefore its validity requires that
the de Sitter phase ends (with the fall of the scalar field in the true potential

vacuum) when ¢ is yet much smaller than ¢, (see below).

4.7.1 Physical considerations

The peculiar feature of the solution constructed above lies in the independence
of the function # which, from a cosmological point of view, implies the existence
of a quasi-isotropic inflationary solution in correspondence with an arbitrary
spatial distribution of ultra-relativistic matter and of the scalar field.

We get an inflationary picture from which the Universe outcomes with the
appropriate standard features, but in presence of a suitable spectrum of clas-
sical perturbations as due to the small inhomogeneities which can be modelled
according to an Harrison—Zeldovich spectrum; in fact, expanding the function 6

in Fourier series as

1 O N
0@ = —— | 0 (k) £33, 4.7.25
@)= [ 0(F)e (4.7.25)
we can impose an Harrison—Zeldovich spectrum by requiring
~ 2 Z
16| = ek Z = const. . (4.7.26)

However, the following three points have to be taken into account to give a

complete picture for our analysis:

(i) limiting (as usual) our attention to the leading order, the validity of the

slow-rolling regime is ensured by the natural conditions

O (\/XA(t — tr)) <1, A O(x*A), (4.7.27)
which respectively translate (4.7.3b) and (4.7.3a);

(ii) denoting by t¢; and ¢; respectively the beginning and the end of the de-
Sitter phase, we should have ¢, > t; and the validity of our solution is

guaranteed if

(a) the flatness of the potential is preserved, i.e. A\¢* < A: such a
requirement coincides, as it should, with the second of inequalities
(4.7.27);

157



4 Inhomogeneous Inflationary Dynamics

(b) given A as the width of the flat region of the potential, we require
that the de-Sitter phase ends before ¢ becomes comparable with ¢,

i.e.

o(ty) — o(ti) ~ 3%§”;“~cwm, (4.7.28)

where we expanded the solution to first order in ¢; ;/¢,; via the usual
position (t; — ;) ~ O(10%)/y/XA, the relation (4.7.28) becomes a

constraint for the integration constant t,.

(iii) In order to get an inflationary scenario, able to overcome the shortcomings
present, in the Standard Cosmological Model, we need an exponential ex-
pansion sufficiently strong. For instance we have to require that a region of
space, corresponding to a cosmological horizon O(1072*¢m) when the de-
Sitter phase starts, now covers all the actual Hubble horizon O(10%°cm);
the redshift at the end of the de Sitter phase is 2 ~ O(10%*), then we should
require ay/a; ~ €% ~ O(10%). Let us estimate the density perturbations
(inhomogeneities) at the (matter-radiation) decoupling age (z ~ O(10%))
as 0;, ~ O(107); if we start by this same value at the beginning of infla-
tion (8%,), we arrive at the end with 67 ~ (17/n;)8%, ~ O(107'%). Though

2 once they are at scale greater than

these inhomogeneities increase as z
the horizon, nevertheless they reach only O(107%) at the decoupling age.
This result provides support to the idea that the spectrum of inhomo-
geneous perturbations cannot have a classical origin in presence of an

inflationary scenario.

In the considerations above developed, we regard the ratio of the inhomoge-
neous terms €, and ¢; as the quantity dp and now we show how this assumption
is (roughly) correct: after the reheating the Universe is dominated by a homo-
geneous (apart from the quantum fluctuations) relativistic energy density p, to

which is superimposed the relic €; after inflation; therefore we have

4

€ €f € a; \ €

@:i:ii:<i)i. (4.7.29)
Pr € Pr ayr Pr

Hence our statement follows as soon as we observe that the inhomogeneous rel-

ativistic energy density before the inflation ¢; and the uniform one p,, generated

by the reheating process, differ by only some orders of magnitude.
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4.8 Generic Inflationary Solution

In this Section, following IMPONENTE AND MONTANI (2003d) we provide a
generic inhomogeneous solution concerning the dynamics of a real self interact-
ing scalar field minimally coupled to gravity in a region of the configuration
space where it performs a slow rolling on a plateau of its potential. During the
generic inhomogeneous de Sitter phase the scalar field dominant term is a func-
tion only of the spatial coordinates. This solution specialized nearby the FLRW

model allows a classical origin for the inhomogeneous perturbations’ spectrum.

4.8.1 Generality Requirements

When referred to a homogeneous and isotropic FLRW model, the de Sitter
phase of the inflationary scenario rules out so strongly the small inhomogeneous
perturbations, that makes them unable to become seeds for the later struc-
tures formation (TOMITA AND DERUELLE, 1994; IMPONENTE AND MONTANI,
2003f). This picture emerges sharply within the inflationary paradigm and it
is at the ground level of the statements according to which the cosmological
perturbations arise from the scalar field quantum fluctuations (POLARSKI AND
STAROBINSKY, 1996).

Though this argument is well settled down and is very attractive even be-
cause the predicted quantum spectrum of inhomogeneities takes the Harrison-
Zeldovich form, nevertheless the question remains open whether, in more general
contexts, it is possible that classical inhomogeneities can survive up to a level
to be relevant for the origin of the actual Universe large scale structures.
Indeed here we investigate the behavior of a generic cosmological model (MAC-
CALLUM, 1979; BELINSKI ET AL., 1982) which undergoes a de Sitter phase
(STAROBINSKY, 1983; KIRILLOV AND MONTANI, 2002) and show how such
general scheme allows the scalar field to retain, at the end of the exponential
expansion, a generic inhomogeneous term on its leading order (for connected
topic see BARROW (1987)).

Thus our analysis provides relevant information either with respect to the mor-
phology of a generic inflationary model, either stating that within this framework
the scalar field is characterized by an arbitrary spatial function which plays the
role of its leading order. We consider a generic inhomogeneous model in the same
way as Belinski, Khalatnikov and Lifshitz (BKL) (BELINSKI ET AL., 1982) (see
also BELINSKI AND KHALATNIKOV (1973); MONTANI (20000)) did when they
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4 Inhomogeneous Inflationary Dynamics

discussed the chaotic cosmologies, i.e. we refer to a cosmological model which
contains a number of physically (gauge independent) arbitrary spatial functions,
sufficient to assign a generic Cauchy problem on a non-singular space-like hy-
persurface.

The model taken into account as in IMPONENTE AND MONTANTI (2003d, 20044d)
refers to the coupled dynamics of a cosmological model with a real self-interacting
scalar field and the solution we construct concerns the phase of the evolution
when the potential associated to the scalar field performs a plateau behaviour
and the Universe evolution is dominated by the effective cosmological constant
associated with the plateau level over the true vacuum state of the theory. We
are in a position to neglect the contribution due to the non-relativistic matter
because it would be relevant only for higher order terms and becomes increas-

ingly negligible as the exponential expansion develops.

4.8.2 Generic Inflationary Model

The Einstein equations in the presence of a self interacting scalar field {¢(t, 27), V (¢)}

without involving ultra-relativistic matter read

Lok + TSRS = x[ — (26 + V()] (48.1a)
5 (K~ F3) = x(0,0010) (4.8.10)
! (kD) + PP =x [76” 00 0y + V(0) 5§] : (4.8.1¢)

2,/
and is still valid notation (4.6.13). This system is coupled to the dynamics of

the scalar field ¢(t,27) by (4.6.14).

In what follows we will consider the three fundamental statements:

(i) the three metric tensor is taken in the general factorized form

Vaﬂ(ta I’y) = FQ(ta I’y)gaﬂ(mw) (482)

where .5 is a generic symmetric three-tensor and therefore contains six
arbitrary functions of the spatial coordinates, while I" is to be determined

by the dynamics. The inverse metric reads

1

af (¢ 7)) =

P (7Y, € 5= 85; (4.8.3)
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(73 ) the self interacting scalar field dynamics is described by a potential term
which satisfies all the features of an inflationary one, say a symmetry

breaking configuration characterized by a relevant plateau region;

(77 ) the inflationary solution is constructed under the assumptions (4.7.3a) and
(4.7.3b).

Our analysis concerns the evolution of the cosmological model when the scalar
field slow rolls on the plateau and the corresponding potential term is described
as

V(p) =N — AU(0), (4.8.4)

where Ay behaves as an effective cosmological constant of the order 10'° —

10'6 GeV and A (< 1) is a coupling constant associated with the perturbation
U(¢).

Since the scalar field moves on an almost flat plateau, we infer that in the lower
order of approximation ¢(t,z7) ~ a(z”) (see below (4.8.10)) and therefore the

potential reduces to a space-dependent effective cosmological constant
A7) = ANy — AU (a(z7)). (4.8.5)

In this scheme the 0 — 0 (4.8.1a) and o — 8 (4.8.1c¢) components of the Einstein
equations reduce respectively, under condition (7ii) and neglecting all the spatial

gradients, to the simple ones

30yInT + 3 (9InT)* = xA(z") (4.8.6a)
(OuInD)é5 + 3 (9InD)*65 = xA(z7)d5 . (4.8.6b)
A simultaneous solution for T" of both equations (4.8.6a) and (4.8.6b) takes the

form

[(z7) =To(x) exp

3

XA(@) (1~ to(gﬂ))] , (4.8.7)

where I'g(27) and to(2”) are integration functions. Under the same assumptions
and taking into account (4.8.7) for I', the scalar field equation (4.6.14) can be
re-expressed now as

3H (27)0y — AW (¢) =0, (4.8.8)

where we naturally defined

7y — — XA (e _ @
H() = 0nl =\ [AG), W(9) =" (4.8.9)
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We search a solution of the dynamical equation (4.8.8) in the form

o(t,27) = a(a?) + B(z") (t - to(x7)> . (4.8.10)

Inserting expression (4.8.10) in (4.8.8) and considering it at the lowest order,

we get the relation

SHB =AW (a),  W(a)= % | (4.8.11)
d=a

This equation allows to express [ in terms of «

AW ()

= . 4.8.12
v V3xAo — AU(a) ( )
Of course the validity of solution (4.8.12) takes place in the limit
AO U(Ck)
t—to(x7) —_— 4.8.13
o) < |5 = [ yaa - 5 (1.8.13

where the ratio Ag/\? takes, in general, very large values.
At this point it remains to solve the 0 — a component (4.8.1b) of the Einstein
equations. In view of (4.8.7) and (4.8.10) through (4.8.12) this provides the

relation
—2\/?97 (VA) =x(0,0) 8= /55 AU (4.8.14)

or, simplifying easily,
Oy (A+AU) =0, (4.8.15)

which is reduced to an identity by (4.8.5) for A(x7).

The validity of the obtained inflationary solution is guaranteed by considering
that all spatial gradients, either of the three-metric field or of the scalar one,
behave like I'"? and therefore decay exponentially. If we take into account the
coordinate characteristic lengths L and [ for the inhomogeneous scales respec-
tively regarding the functions I'y and &,p, i.e.

1—‘0 é‘aﬁ
f ; a’y gaﬂ ~ T 3

then negligibility of the spatial gradients at the initial instant ¢y leads to the

9, ~ (4.8.16)

inequalities for the physical quantities

Lol = lpnys>H™', (4.8.17a)
ToL = Lpns> H ' (4.8.17Db)
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These conditions state that all inhomogeneities have to be much greater then the
physical horizon H !; such estimates do not involve the #o(z7) spatial gradients,
since we expect the inflation starts almost simultaneously everywhere and then
they are negligible.

The assumption made on the negligibility of the spatial gradients at the be-
ginning of inflation is required (as well known) by the existence of the de Sitter
phase itself; however, spatial gradients with a passive dynamical role allow to
deal with a fully inhomogeneous solution. This feature simply means that, to
leading order, space point dynamically decouple.

The analysis is completed by stressing that the condition (4.7.3a) becomes

W?(a) < x (%)2 : (4.8.18)

or equivalently by (4.8.5)
MW a) < x (A — AU(a))? (4.8.19)

which, neglecting all terms in A2, simply states that the dominant contribution

in A(z7) is provided by Ay, i.e.
AU () < Ag; (4.8.20)

meanwhile (4.7.3b) is always naturally satisfied. By other words, we get the

only important restriction on the spatial function «(z?) which reads
o] < [U™" (Ao/N)] - (4.8.21)

As is well known, to get a satisfactory exponential expansion able to overcome

the SCM shortcomings, we require that at each point of space the condition
H(t; —t;) ~ O(10?) (4.8.22)

holds, where ¢; and ¢ denote respectively the instants when the de Sitter phase
starts and ends. We may take ¢; = ¢y and ¢; must satisfy the inequality

tp <t =to+ % . (4.8.23)
Hence we have
H(ty—t;) < Ht" —t) = H % (4.8.24a)
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or equivalently
A(] (0%
A | W(a)

where we made use of (4.8.12). Being Ag/\ a very large quantity, no serious

H(ty —t;) < : (4.8.24b)

restrictions appear for the e-folding of the model.

A fundamental feature of our analysis relies on the generic nature of the
obtained solution; in fact, once satisfied all dynamical equations, there still
remain nine arbitrary spatial functions, i.e. six for {,5(z?), and then I'q(z?),
a(x7) and to(x7).

However, taking into account the possibility to choose an arbitrary gauge via
the choice of the spatial coordinates, we have to kill three degrees of freedom;
so finally there remain six physically arbitrary functions: four corresponding to
gravity degrees of freedom and two related to the scalar field.

This picture corresponds exactly to the possibility of specifying a generic Cauchy

problem for the dynamics, on a spatial non singular hypersurface.

4.8.3 Coleman—Weinberg Model

Let us specify our solution in the case of the Coleman—Weinberg zero-temperature
potential (COLEMAN AND WEINBERG, 1973)

Bo* 1

V(g)=—-+ By* {ln (f—i) - 5} (4.8.25)

where B ~ 1072 is connected to the fundamental constants of the theory, while
o ~ 2-10GeV gives the energy associated with the symmetry breaking process.
In the region | ¢ |<| o | the potential (4.8.25) approaches a plateau behavior
profile similar to (4.8.4) and acquires the form

Bo* )

V(g) ~ TO -39 A=80B=0.1. (4.8.26)
This is effectively reducible to (4.8.4) when
Bo? ¢4

Ao = 9 U(g) = 1 W(g) = ¢’ (4.8.27)

and the relations (4.8.12) and (4.8.18) are rewritten as
Aa?
= 4.8.2
= (4.8.280)

and

8 A ot

3 0

— —_—~ 4.8.28b
a <a+”3X><< Y~ 160 ( )
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4.8 Generic Inflationary Solution

respectively. The inequality in (4.8.28b) is equivalent to fulfill the initial as-

sumption

A
Ao > MU (a) ~ Zo/*, (4.8.29)

like in (4.8.20).
The restriction (4.8.21) affects the free function « so that

A
o] < ‘4/70 ~o. (4.8.30)

4.8.4 Towards the FLRW Universe

Though, in view of (4.8.7) and (4.8.17) the Universe described by our solution
at the end of the de Sitter phase is actually homogeneous and isotropic on the
horizon scale, nevertheless we consider the FRW case in order to match the
standard literature on the inflation.

Let us now specify as in IMPONENTE AND MONTANI (2003d) the solution
found nearby the FLRW case by requiring the following conditions over all the

quantities involved in the dynamical problem.

(a) The spatial metric tensor &,4 specifies to
Lap(2”) = hap(07), (4.8.31)

where h,s denotes the FRW spatial part of the three metric and {67} are

the usual three angular coordinates;

(b) the leading order of the scalar field ¢ must be independent of the spatial

coordinates and therefore we have to require
a(z?) = ay+oa(d7), (4.8.32)
where oy = const. and da/ay < 1;

(c) the quantities ¢, and I'y must be independent of the spatial coordinates,
i.e. {to,v} = const..

Hence, we easily get
A~ Ay — AW (aq) b (4.8.33)

where
A~ [\0 — )\W(CY()) (SO[, Ag = Ag — )\U(O[O) ~ AO . (4834)
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4 Inhomogeneous Inflationary Dynamics

By this expression (4.8.34) and expanding I' to first order in da we get

T(t,2?) ~ T(1) [1—%@—%)5@(07)] (4.8.35a)
[(t) = Tgexp [,/gﬁo(t—to)}, (4.8.35b)
< 3
A= )\ﬂW(O[O)

The physical implications of this nearly homogeneous model with respect to the
density perturbation spectrum rely on the dominant behaviour of the potential
term over the energy density p, associated to the scalar field during the de Sitter

phase and therefore

A= ‘5& N ‘dan

P do

In particular, for the Coleman-Weinberg case, (4.8.36) reduces to

5¢‘ ~ AAOW(ao)aa(m) | (4.8.36)

160

Acw ~ —ap’ da(0) . (4.8.37)
g

However, to get information about the problem of computing the physically
relevant perturbations after the re-entry of scales in the horizon, we have to
deal with the gauge invariant quantity ( (GUTH AND P1., 1982; BARDEEN
ET AL., 1983) which when the perturbations leave the horizon has the form

op ., N da

= —— 2 3y— 4.8.38
being p + p = (0;¢)?; for the CW case we have
ot da

=3y— —. 4.8.39

ST (48.39)

Since ¢ remains constant during the super-horizon evolution of the perturba-
tions, then at re-entry to the causal scale in the matter-dominated era, we get

Cup ~ dp/p ~ Cow.
By restoring physical units and assuming g <

~J

10~%0/v/he in agreement with
(4.8.30), then in order to have perturbations dp/p ~ 10~* at the horizon re-entry
during the matter-dominated age, it is required da/ay < 1072

Hence the expression (4.8.39) explains how the perturbation spectrum after the

de Sitter phase can still arise from classical inhomogeneous terms. Indeed, the
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4.8 Generic Inflationary Solution

function da(x?) is arbitrary and a Harrison-Zeldovich spectrum can be chosen

for it by assigning its Fourier transform as

const.

k3

Sa(k)? x (4.8.40)

Thus, the pre-inflationary inhomogeneities of the scalar field remain almost of
the same amplitude during the de Sitter phase as a consequence of the lin-
ear form of the scalar field solution (4.8.10). Hence we get that the Harrison-
Zeldovich spectrum can be a pre-inflationary picture of the density perturbations
and it survives to the de Sitter phase, becoming a classical seed for structure
formation. The existence of such a classical spectrum is not related with the
quantum fluctuations of the scalar field whose effect is an independent contri-
bution to the classical one.

The merit of the analysis in the present Section relies on having provided
a dynamical framework within which classical inhomogeneous perturbations to
a real scalar field minimally coupled with gravity can survive even after the
de Sitter expansion of the universe stretched the geometry; the key feature
underlying this result consists (i) of constructing a generic inhomogeneous model
for which the leading order of the scalar field is provided by a spatial function
and then (7i) of showing how the general case contains as a limit a model close
to the FRW one.
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Conclusions

We have studied in the details the Hamiltonian formulation of the Mixmaster
cosmological model and its property of chaoticity, reducing the system, via an
ADM prescription, to the dynamics of a “billiard-ball”; in fact, asymptotically,
it exists an energy-like constant of the motion which allows to recognize the
point-Universe moving over a Lobatchevsky plane on which the potential cuts
a closed domain. Lyapunov exponents have been calculated for this system and
they result to be positive, independently of the choice of the temporal gauge.
Thus, we have shown the covariance of chaos and linked it to a natural treat-

ment in Statistical Mechanics.

The evolution towards the singularity has been analysed from a Quantum
point of view in terms of a natural Schrodinger-like formulation; in fact, the
ADM Hamiltonian picture provides a valuable scheme to quantize the real phys-
ical degrees of freedom of the Bianchi IX Cosmology, i.e. its anisotropies. It has
been shown the coincidence between the Liouville theorem, as restricted to the
configuration space and the continuity equation coming from the semiclassical

limit of the wave function.

Such a rich dynamics of the Universe performed at “the very beginning” has
been shown to be compatible with a quasi-isotropic Cosmology through a bridge

solution based on an inflationary phase of expansion.

In a much more general context a generic cosmological solution to the Ein-
stein equations in presence of a scalar field has been investigated, in order to
show the possibility of a classical origin of density perturbations in our Universe,

compatible with the inhomogeneous seeds for structure formation.

Such result supports the idea that the classical origin of density perturba-
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tions requires a dominant role of the scalar field up to first-two orders in the
cosmological dynamics; in fact, our analysis of the quasi-isotropic solution, in
which the matter dominates the first dynamical order, is a proof that under

such hypothesis no classical perturbations survive to the de Sitter phase.

All these issues call attention for further developments, especially in view of
the gravitational waves associated with the relic anisotropies. The possibility for
a detection of such waves is an intriguing scenario of investigation; in fact, the
knowledge of the amplitude and spectrum of a cosmic microwave background
would provide important insights on the initial conditions for the dynamical

regimes here discussed.
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