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“And although I have seen nothing but black crows in my life, it doesn’t mean that there’s
no such thing as a white crow. Both for a philosopher and for a scientist it can be important
not to reject the possibility of finding a white crow. You might almost say that hunting for
’the white crow’ is science’s principal task.”

Jostein Gaarder, Sophie’s World

“I will not go so far as to say that to construct a history of thought without profound study
of the mathematical ideas of successive epochs is like omitting Hamlet from the play which is
named after him. That would be claiming too much. But it is certainly analogous to cutting
out the part of Ophelia. This simile is singularly exact. For Ophelia is quite essential to the
play, she is very charming - and a little mad. ”

Alfred North Whitehead
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In this thesis we price several financial derivatives by means of radial basis func-
tions. Our main contribution consists in extending the usage of said numerical
methods to the pricing of more complex derivatives - such as American and bas-
ket options with barriers - and in computing the associated risks. First, we derive
the mathematical expressions for the prices and the Greeks of given options; next,
we implement the corresponding numerical algorithm in MATLAB and calculate the
results. We compare our results to the most common techniques applied in practice
such as Finite Differences and Monte Carlo methods. We mostly use real data as in-
put for our examples. We conclude radial basis functions offer a valid alternative to
current pricing methods, especially because of the efficiency deriving from the free,
direct calculation of risks during the pricing process. Eventually, we provide sugges-
tions for future research by applying radial basis function for an implied volatility
surface reconstruction.
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Summary

In the last decades, financial engineers and firms have emphasized the importance of
investigating alternative models and numerical methods to solve well-known prob-
lems in Mathematical Finance. Through mathematical models and their numerical
implementation, it is indeed possible to price certain financial products, and derive
the quantities which represent the risks of keeping such products in a given port-
folio. By challenging the hypotheses of simpler models - such as a classical Black-
Scholes framework [4] - prices and risks can be calculated more accurately, which
translates in a profit from the deal, or in the reassurance the risks the firm will face
are not higher than a predefined threshold. More complex models [15] [27] may bet-
ter capture the uncertainty of the market drivers, allowing the portfolio manager to
have a better overview of her positions.
The price of a product is usually derived as the solution of a partial differential equa-
tion associated to a given model. On the other hand, risks - or Greeks - are defined as
the mathematical derivative or sensitivity of the price to a change in the inputs of the
models. It can be argued that a correct and unique price does not exist, essentially
because the models we deal with assume hypotheses which are not satisfied in the
real world. For example, in the real market we will find a bid and an ask price for the
same product, which correspond to a price respectively offered by the buyer and by
the seller: in case of illiquidity of the product, such prices will hardly converge. On
the other hand, if the product is continuously traded on the same market, bid and
ask price will get closer and closer. There are mathematical theories which formalize
a market with more than one price per product - e.g. conic Finance [35] - in which
they distantiate themselves from a unique, risk neutral price and allow for a certain
amount of risk, seen as acceptable by the portfolio manager. Classical models are
derived in a risk neutral world and assume a complete market: this ensures that
the price of an asset is equal to the discounted expected value of the future payoff
under the associated, unique risk-neutral measure. Since we solve the equations de-
rived from such models, we basically assume the resulting price is correct, and all
numerical methods converge to the same price. Indeed, as George Box stated [5]:
’Essentially, all models are wrong, but some are useful.’
Since not all the proposed mathematical models in literature exhibit an analytical
solution - id est the price and/or risk can be computed via a single formula, it is
necessary to rely on numerical methods. Monte Carlo methods [23] are the easiest
to implement and adapt in case of high-dimensional problems, but do not provide
the best achievable accuracy. Finite-Difference Methods (FDM) [13] prove to be the
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best numerical technique in terms of accuracy when the given problem involves a
low number of variables, but cannot always guarantee smooth risks profiles.
Meshless methods, in particular Radial Basis Functions (RBF) [17], are a valuable al-
ternative numerical method to Monte Carlo and FDM. In this thesis we research
the behavior of RBF in solving the partial differencial equations associated to mod-
els such as Black-Scholes or Heston. We derive the appropriate mathematical for-
mulation in order to apply RBF framework and compute the solution which corre-
sponds to a price. Furthermore, we derive the equations for the risks - or Greeks -
associated to such price. We also explore eventual improvements to the numerical
method through localization techniques such as Partition of Unity methods (PUM).
Our main contribution relies in applying RBF with PUM to the pricing of more exotic
financial products - such as barrier, American or Basket options - and in calculating
the associated Greeks.
We compare the results with Monte Carlo and FDM, which represent the most known
and used numerical methods by practitioners. The improvements achieved by RBF
mainly consist in less computational effort in order to output the same results as
FDM and Monte Carlo, and furthermore in the simplicity and elegance risks can be
obtained with the new proposed methodology: resulting Greeks are even smoother
and accurate than FDM-computed risks.
This thesis is structured as follows: we start with an introduction to financial mod-
els and products, then we show how to apply the above mentioned numerical tech-
niques and eventually present our results. In the first chapter, we introduce the
financial preliminaries required to understand the financial problems we address,
explaining how introducing new hypotheses and model inputs helps better capture
the market movements. We describe how to derive the associated partial differential
equations and how to adapt them in order to price several financial products. In the
second chapter we focus on a short description of Monte Carlo and FDM methods,
before exploring RBF methods. We then move to the financial applications of such
methods and show the numerical resolution associated to Black-Scholes and Heston
models. In the third chapter, we present the corresponding results and investigate
the advantages and the drawbacks of each method. We eventually provide our con-
clusions.
Most of the research presented in this thesis is covered by our work in:

• Greeks computation in the option pricing problem by means of RBF-PU methods, pub-
lished in Journal of Computational and Applied Mathematics, 2020, by Sica Feder-
ica, Cuomo Salvatore and Toraldo Gerardo;

• RBF methods in a Stochastic Volatility framework for Greeks computation, published
in Journal of Computational and Applied Mathematics, 2020, by Sica Federica,
Cuomo Salvatore and Piccialli Francesco;

• A Note on the Numerical Solution of Heston PDE, published in Ricerche di Matem-
atica, 2019, by Sica Federica, Cuomo Salvatore and Di Somma Vittorio;
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• Implied volatility surface reconstruction by means of radial basis functions, work-
ing paper, by Sica Federica, Cuomo Salvatore, Alessandra De Rossi and Rizzo
Luca.

We also refer to our work regarding Monte Carlo methods and the analysis of a
financial Internet of Things system in:

• Remarks on a financial inverse problem by means of Monte Carlo Methods, published
in Journal of Physics Conference Series, 2017, by Sica Federica, Cuomo Salvatore
and Di Somma Vittorio;

• Analysis of a data-flow in a financial IoT system, published in Procedia of Computer
Science, 2017, by Sica Federica, Cuomo Salvatore and Di Somma Vittorio;

• An application of the one-factor Hull-White model in an IoT financial scenario, pub-
lished in Sustainable Cities and Society, 2018, by Sica Federica, Cuomo Salvatore
and Di Somma Vittorio.
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Chapter 1

Financial Preliminaries

Through our work, we aim to explore several numerical methods which can be ap-
plied to solve certain types of financial problems. We focus on pricing models, id
est mathematical formulations which allow to calculate - analytically and non - the
price of a financial product.
We will deal with typical instruments in the financial markets, such as interest rates
or stocks. Interest rates represent the return - usually in percentage - of a cash invest-
ment in a given currency. For example, by investing an amount A of Euros today,
the market tells us we will get an amount (rois · A + A) of Euros tomorrow, where
r is today’s overnight Euro interest rate expressed in percentage. If we prefer to in-
vest the same amount A tomorrow, and get tomorrow’s overnight rate in two days
from now, we may choose to fix the future overnight rate today: such rates are called
forward rates. Rates are implied from the market expectations of the market partici-
pants, and therefore reflect what the market players believe will be a fair rate for an
investment made at a certain time t, with expected return in a day, months or years.
Different from rates but still important bricks of several, more complex financial
products, are stocks or, equivalently, equities. Investing in Apple’s or Tesla’s stocks
means being entitled to a proportion of the company’s assets and profits propor-
tional to how much equity is owned. Stocks can be sold or bought in the market,
and may also pay dividends, i.e. the part of profit that is due to the stocks’ owner.
Financial derivatives are products which base their value on an underlying asset, which
may be an interest rate or an equity. A set of financial instruments and derivatives is
called portfolio, and sums up all the information about the positions takes by a trader.
One of the first historical examples of the derivative we will price - options - is
to be found in Aristotle’s ’Politics’ or ’Politiká’. Aristotle tells the tale of Thales
(624/623− 548/545 BC), a Greek philosopher and mathematician, who bought for
a low price all the olive oil mills in Miletus: he had indeed predicted a good year for
olives production, and was able to later rent the mills for a higher price. An option is
a financial derivative, based on an underlying such as a stock, that allows - without
obligation - the owner to sell or buy the underlying at a prefixed price in the future.
By buying the mills, Thales had basically bought an option to rent them in the future
at a fixed - and of course higher - price, making a profit.
We try to predict the future movements of financial instruments like options through
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mathematical models: by looking at the price action of their underlyings in the mar-
ket, we suppose they follow certain mathematical distributions, i.e. their price may
move just like a normally or a lognormally distributed variable. Given the distribu-
tions of their underlyings, we can derive a Partial Differential Equation (PDE) which
represents the movement of the price of the options that depends on them.
For example, rates - in all currencies - have been positive for a long time and there-
fore have been represented by lognormal distributions. However, the recent eco-
nomical developments of countries in the Euro, US dollar (USD), Japanese Yen zones
- and more - brought the corresponding rates to fall below zero, hence becoming
negative. This suggests a normal distribution is more appropriate to capture their
movements in the market. On the other hand, equities cannot have a negative value
and a lognormal distribution shows to be still a relatively accurate hypothesis: the
Black-Scholes model relies on it.
The derivation of the Black-Scholes-Merton model, appeared for the first time in 1973
[4], is perhaps he most famous result in Mathematical Finance. The classical model
for option pricing, referred to as Black-Scholes standard equation (BS), is a linear
parabolic partial differential equation:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0, (1.1)

which models the price V(S, t) of a financial contract whose value depends on the
time t and the price S(t) of an underlying asset. σ is the volatility of the underlying,
which represents how much the underlying is expected to vary in time. Among the
adopted hypotheses, there are the assumptions of constant volatility σ and risk-free
interest rate r that appear in the equation: in this special case, an analytical solution
for (1.1) is available. The solution matches the market price of European options on
a single underlying S, i.e. one of the simplest derivatives to price.
For more exotic types of options, original hypotheses for equation (1.1) must be en-
riched resulting in a more complex partial differential equation with parameters de-
pending on time and on the underlying S. For example, if the price V depends on
more than one underlying S, equation (1.1) becomes a multi-dimensional equation.
Models that assume the volatility to be a process σ(S(t), t) are called local volatil-
ity models; models with a stochastic volatility process are referred to as stochas-
tic volatility models. The need for these extensions derives from observations of
the market implied volatility: plotting the volatility against the option’s maturity
or strike shows a skew that is not foreseen by the classical Black-Scholes equation.
Thus, a stochastic or local volatility model will provide a more accurate estimation
of the price.
For extended versions of the classical Black-Scholes PDE, analytical solutions are not
any more available. Numerical techniques are required to compute an accurate so-
lution, i.e the price of the derivative V. Furthermore, traders are interested in the
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sensitivity of the price V to its parameters: S, σ, r and T. Such quantities have a sig-
nificant impact on the portfolio management and are generally referred to as Greeks,
since they are indicated by Greek alphabet’s letters. Greeks are basically the deriva-
tives of a certain order of the price V with respect to its parameters.
The purpose of this thesis consists in exploring the adaptation of new numerical
methods to existing financial models in order to efficiently price several types of op-
tions and compute the corresponding Greeks.
In this chapter we introduce the financial concepts and formulae which are relevant
for this research. We present the classical Black-Scholes framework and its exten-
sions respectively in sections (1.1) and (1.2). Additionally, in section (1.3) we de-
scribe the financial products for which we will derive and calculate the price. We
eventually explain the importance of Greeks, i.e. the sensitivities of the price to the
model’s factors, in section (1.4).

1.1 Classical framework

The Black-Scholes-Merton model was originally conceived in 1969, but it was later
published with its derivation in 1973 [4]. The model consists in a linear parabolic
partial differential equation which defines the behavior of a financial product, whose
value V(S(t), t) depends on an asset S(t) and, naturally, on time t. We will refer to
S(t) as the underlying, and it may represent a stock, a forward rate or another asset
price.

1.1.1 Black-Scholes derivation

We will now heuristically derive the Black-Scholes equation. Let us consider the
value of a portfolio Π which we build as following:

• We buy a derivative V(S(t), t). We say we have a long position in V(S(t), t).

• We sell a quantity ∆ of the underlying S(t). We say we have a short position in
S(t).

Therefore, the value of the portfolio Π will be:

Π = V(S(t), t)− ∆S(t). (1.2)

The first hypothesis of Black-Scholes-Merton model consists in assuming the under-
lying S(t) is lognormally distributed. Formally:

dS = µSdt + σSdW, (1.3)

where µ is the drift, σ the volatility of the asset and W a Brownian motion. In the
original BS framework, such parameters are simply constants. S(t) is therefore a
Geometric Brownian motion (GBM).
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We can now calculate the change of the portfolio Π from time t to time t + dt, where
dt stands for an infinitesimal change in time:

dΠ = dV(S(t), t)− ∆dS(t). (1.4)

By applying Itô’s formula [48], we obtain dV(S(t), t):

dV(S(t), t) =
∂V
∂t

dt +
∂V
∂S

dS(t) +
1
2

σ2S2 ∂2V
∂S2 dt. (1.5)

Substituting (2.15) in equation (2.10), we have:

dΠ =
∂V
∂t

dt +
∂V
∂S

dS(t) +
1
2

σ2S2 ∂2V
∂S2 dt− ∆dS(t) (1.6)

=
∂V
∂t

dt +
(

∂V
∂S
− ∆

)
dS(t) +

1
2

σ2S2 ∂2V
∂S2 dt.

To obtain a risk-free portfolio, we would like to get rid of the randomness factors,
which means we need to cancel out the terms in dS and leave only the deterministic
terms in dt. The easiest way to reach our goal is to choose:

∆ :=
∂V
∂S

. (1.7)

The process of eliminating risk deriving from the underlying S(t) is called delta
hedging. Hence, if at each time step we choose a quantity ∆ as defined, we will
obtain a deterministic portfolio Π:

dΠ =
∂V
∂t

dt +
1
2

σ2S2 ∂2V
∂S2 dt, (1.8)

consisting in only deterministic terms.
In order to continue with the derivation of the BS equation, we require another im-
portant assumption: the no arbitrage principle. Indeed, in an arbitrage-free world
the deterministic portfolio Π must benefit of the same return of a riskless portfolio:

dΠ = rΠdt, (1.9)

where r is the risk-free rate of the market. Imposing such equality and plugging in
(2.38) in (1.8) holds:

rΠdt =
∂V
∂t

dt +
1
2

σ2S2 ∂2V
∂S2 dt, (1.10)

and substituting (2.10) for Π:

r
(

V(S(t), t)− ∆S(t)
)

dt =
∂V
∂t

dt +
1
2

σ2S2 ∂2V
∂S2 dt. (1.11)

Considering that we chose a ∆ quantity as defined in (1.7) and simplifying the ex-
pression above, we finally obtain the Black-Scholes partial differential equation
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(PDE):

Black Scholes PDE

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0. (1.12)

It is interesting to note that the drift term, µ, of the underlying S(t) does not
appear as a parameter in the final equation. By considering that µ is the average
return we expect from the underlying S(t), it is clear why it is dropped: we cannot
expect any other return than the risk-free rate from a riskless, deterministic portfolio.

1.1.2 Black-Scholes solution

Most of the financial partial differential equations are of the type of (1.12): they are
linear, meaning that the sum of two solutions is still a solution, and parabolic, i.e.
they can be reduced to a heat equation [16]. In particular, even if there exists some
discontinuity in the terminal conditions, the solution will always be smooth. Fur-
thermore, if the solution does not grow too fast with the underlying S(t), the solu-
tion will also be unique.
The great advantage of the BS model consists in providing an exact solution. Exact
solutions are quite rare in Finance and applied sciences in general. The analytical
expression can be derived by means of different methods: by transforming the BS
equation into a basic diffusion equation, by Fourier or Laplace transforms, by using
Green’s function or Fourier series.
The particular BS solution depends on the type of contract V(S(t), t) we aim to price.
Each contract yields a different terminal condition which will impact the analytical
expression of the corresponding solution. Furthermore, it is important to notice the
BS model allows for analytical formulae for the sensitivities of the solution to the
main risk-factors. We will provide the BS solution and sensitivities for several con-
tracts in sections (1.3) and (1.4).

1.2 Black-Scholes extensions

First we summarize and briefly discuss the main hypotheses under which the clas-
sical BS framework is valid and analyze the limits of each assumption:

• HP 1. The lognormality of the underlying S(t). In particular, we assumed a
constant volatility. This hypothesis is too simplistic, and does not allow for a
thorough description of the market dynamics.

• HP 2. There are no transaction costs and no arbitrage opportunities. Hence, we as-
sume the market is complete and arbitrage-free. This restriction is clearly valid
only in theory: there are always transactions costs involved and, moreover, in
the real world the same cashflows may have a different price, consequently
causing arbitrage opportunities from which market makers will profit.
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• HP 3. The underlying S(t) pays no dividends. This restriction can be easily
dropped by slightly extending the model.

• HP 4. The constant or time-dependent risk-free rate is known in advance. Fur-
thermore, the borrowing and landing rates coincide. In general, interest rates
are stochastic and therefore unknown: the model can be extended to the case
of stochastic rates.

• HP 5. Delta hedging is continuously done. In practice, this would mean we
continuously buy and sell a ∆ quantity of the underlying S(t) in order to keep
a risk-neutral portfolio. This is not true in the real world, since transactions
can be done only in discrete time.

Clearly, the need to overcome such limitations resulted in several extensions of
the original BS model.

1.2.1 Dividend paying assets

The BS framework can be easily extended to take into account dividend paying as-
sets [42]. Indeed, if we assume the asset S(t) pays a continuous, constant dividend
return D, then at each dt it is paid the following quantity:

DS(t)dt. (1.13)

This translates in an extra deterministic factor −D∆Sdt in equation (2.18):

dΠ =
∂V
∂t

dt +
(

∂V
∂S
− ∆

)
dS(t) +

1
2

σ2S2 ∂2V
∂S2 dt− D∆Sdt. (1.14)

After similar manipulations to the equations in section (1.1), we obtain the modified
Black-Scholes equation for dividend paying assets:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + (r− D)S

∂V
∂S
− rV = 0. (1.15)

The corresponding analytical solution is similar to the original Black Scholes for-
mula, and can be obtained by simply exchanging the term r with r− D.

1.2.2 Time-dependent parameters

Another simple extension consists in considering deterministic, time-dependent risk-
free rate r, drift µ and volatility σ of the underlying asset.
We assume the following dynamics for the risk-free rate:

dΠ(t) = r(t)Π(t)dt, (1.16)

which naturally yields:
Π(t) = e

∫ t
0 r(s)ds. (1.17)
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Secondly, we keep the lognormal dynamics for the asset S(t), and introduce time-
dependent drift and volatility. The solution to the stochastic differential equation
(SDE) (1.3) becomes:

S(t) = S(0)e
∫ t

0 σ(s)dW(s)+
∫ t

0 (µ(s)−
σ2(s)

2 )ds. (1.18)

Following section (1.1), we obtain the same BS equation with time-dependent pa-
rameters. The analytical solution will show integrals over time of the risk-free rate
and the volatility, instead of their corresponding constant values.

1.2.3 Multi-dimensional problem

In case that the derivative V(S(t), t) depends on multiple underlyings S0(t), S1(t),
. . . , Sn(t). We shall consider the dynamics for each asset Si(t):

dSi = µiSidt + σiSidWi, i = 0, . . . , n (1.19)

where µi, σi and Wi are the drift, the volatility and the Brownian motion associated
to the asset Si(t), respectively. Each Brownian motion Wi is correlated with the other
assets’ Brownian motions by the correlation coefficients ρij:

E[dWidWj] = ρijdt. (1.20)

We define the correlation matrix Σ as:

Σ =


1 . . . ρ1n
...

. . .

ρn1 1


with entries ρii = 1 on the diagonal and ρij = ρji. Correlations are usually estimated
from time series or implied from the market.
Using the multidimensional Itô’s lemma [48], we obtain the multi-dimensional Black-
Scholes:

Multi-dimensional Black Scholes PDE

∂V
∂t
− 1

2

n

∑
i,j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

n

∑
i=1

rSi
∂V
∂Si
− rV = 0. (1.21)

Following the reasoning established in section (1.2.1), we obtain the multi-dimensional
Black-Scholes for dividend-paying assets:

∂V
∂t
− 1

2

n

∑
i,j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

n

∑
i=1

(r− Di)Si
∂V
∂Si
− rV = 0. (1.22)
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1.2.4 Volatility smile

BS model assumes a constant or time-dependent volatility. Since the model also pro-
vides an analytical formula for the price of simple derivatives, it is natural to try
to derive the volatility of the underlying S(t) by inverting the given formula. Such
volatility is called implied volatility, and can be interpreted as the expected value
of the future volatility by market participants. By simply plotting the values corre-
sponding to the same type of contract with various parameters, traders observed the
well-known shape of a volatility smile: volatility is actually not constant, but varies
with the derivative’s V(S(t), t) parameters.
To capture the volatility smile, researchers have enriched the BlackâĂŞScholes model
by modeling the volatility as a function of both underlying asset and time: the most
famous attempt is the local volatility model by Dupire, Derman and Kani ([15], [10],
[14]). Such model is easy to calibrate and guarantees the completeness of the market.
A further extension consists in considering a stochastic volatility, which exhibits an
intrinsic source of randomness given by a Brownian motion. The Heston model [27]
is a stochastic volatility model which considers a more realistic asset distribution
than the original, lognormal distribution of the BS framework. Furthermore, it pro-
vides an analytical solution for European options: this result is extremely useful for
the calibration of the model itself.

The dynamics introduced by Heston for the underlying asset S(t) are:

Heston model dynamics

dS(t) = rS(t)dt +
√

ν(t)S(t)dW1(t) (1.23)

dν(t) = k[θ − ν(t)]dt + σ
√

νdW2(t) (1.24)

dW1(t)dW2(t) = ρdt (1.25)

where we have defined:

• r is the constant risk-free interest rate;

• ν is the volatility of the underlying;

• σ is the volvol or volatility of volatility;

• k is the mean reversion speed of the volatility;

• θ is the mean reversion level;

• W1(t) and W2(t) are two correlated Wiener processes with correlation ρ.

It can be shown that the value V(S, t) of a derivative with underlying S(t) that
follows Heston model’s dynamics satisfies the following Heston PDE:
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Heston PDE

∂V
∂t

+
1
2

νS2 ∂2V
∂S2 + ρσνS

∂2V
∂S∂ν

+
1
2

σ2ν
∂2V
∂ν2 + rS

∂V
∂S

+ k(θ − ν)
∂V
∂ν
− rV = 0. (1.26)

1.2.5 Continuous hedging and transaction costs

Among the other BS hypotheses, it is assumed the continuity of delta hedging. In
practice, it is not only impossible to continuously hedge, but it could also be too
expensive due to transaction costs. Boyle and Emanuel [6] studied the behavior of
continuous and discrete hedging: they considered a small timestep δt = 0.01 for the
first case and a larger time interval for the discrete case. They found the hedging er-
ror is a random variable with a chi-squared distribution, which can have an impact
on the total profit and loss (P&L) of the portfolio.

BS also assumes that no transaction costs take place when hedging: in equity
and emerging markets derivatives this is definetely not true because of illiquidity.
In 1985, Leland [34] proposed a model which allows for hedging at any timestep
including cases in which the strategy would be sub-optimal. Leland formulates the
following discrete dynamics for the underlying S(t):

Leland model

δS = µSδt + σ̂SdW, (1.27)

where δt is a finite, constant and rebalancing interval, and σ̂ is the augmented, hedg-
ing volatility defined as:

σ̂ = σ

√
1 +

k 2
π

σ
√

δt
(1.28)

where k is the proportional transaction costs rate - measured as a fraction of the
value of transactions - and σ is the actual volatility of the asset S(t). Hence, in this
framework, transaction costs are proportional to the underlying value.
The model can be extended to an arbitrary payoff, leading to a non-linear parabolic
partial equation, i.e. the value of a portfolio is not anymore the sum of the values of
its components.

1.3 Overview of financial products

In this section we will provide the main definitions for the financial products we will
price. One of the most common derivatives traded in the market are options. The
idea behind this derivative is to have a sort of protection or gain against the rise or
fall of the price of the underlying S(t). An important quantity related to options is
the payoff:
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Definition 1.3.1. We define as payoff φ(S, t) the gain or loss function of an option
on the underlying S(t) at any time t of the option life.

In the following subsections, we will present various types of options, with their
definition and boundary conditions. We will also show the analytical solution for
their price, if any.

1.3.1 European options

Definition 1.3.2. A European call (respectively put) option on the amount of S units
of currency, with strike price K and exercise date T, is a contract written at t = 0 with
the following property: the holder of the contract has, exactly at the time t = T, the
right but not the obligation to buy (respectively sell) S at the price K.

The adjective European defines the time at which the option can be exercised, i.e.
the holder can decide to sell or buy the underlying at price K. The adjectives call or
put simply define if the holder can buy or sell the underlying. The option expires
on a date T, which denotes the maturity of the contract. After such date, the option
cannot be exercised anymore and loses any value.
European options are also referred to as vanilla, meaning they are the simplest option
contract to price. Indeed, we can use the analytical BS formula to find their price: in
order to do so, we require additional information regarding the initial and boundary
conditions of the Black-Scholes PDE (1.12).

Black-Scholes analytical formulae. Since the Black Scholes is typically solved back-
wards in time, we will refer to the initial condition as the terminal condition at time
t = T.

Terminal Conditions for European Options

V(S, T) = φ(S, T) := max(S(T)− K, 0) for a call (1.29)

V(S, T) = φ(S, T) := max(K− S(T), 0) for a put. (1.30)

Therefore, the terminal condition is defined by the payoff function φ. The bound-
ary conditions associated to the PDE for European options are:

Boundary Conditions for European Call Options

V(S, t) = 0 as S→ 0 (1.31)

V(S, t) = S as S→ +∞. (1.32)
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Boundary Conditions for European Put Options

V(S, t) = Ke−r(T−t) as S→ 0 (1.33)

V(S, t) = 0 as S→ +∞. (1.34)

Given terminal and boundary conditions, the Black-Scholes analytical formulae
for European call and put options become:

Black Scholes formulae for European Options

Vcall(S, t) = SN(d1)− Ke−r(T−t)N(d2) (1.35)

Vput(S, t) = Ke−r(T−t)N(−d2)− SN(−d1) (1.36)

where N(·) is the cumulative normal distribution and:

d1 :=
log
( S

K

)
+ (r + 1

2 σ2(T − t))
σ
√

T − t
(1.37)

d2 := d1 − σ
√

T − t (1.38)

We show in figure (1.1) the price for a European call option calculated via Black-
Scholes formulae.

FIGURE 1.1: Price of a European call option calculated via Black-
Scholes formulae, as function of time and stock price in EUR.

Heston analytical formulae. For a European option, the Heston model provides
an analytical formula as well. For sake of simplicity, we will provide the formula for
a European call option.
Let us consider a rectangular spatial domain of [0, S∗]× [0, ν∗], where S∗ and ν∗ are
truncated values of S and ν. Then, the natural boundary conditions for a European
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call option with maturity T and strike K are [3]:

Terminal and Boundary Conditions for European Call Options

V(S, ν, T) = max(S− K, 0), (1.39)

V(0, ν, t) = 0, (1.40)

∂V(S∗, ν, t)
∂S

= 1, (1.41)

V(S, ν∗, t) = S, (1.42)

rS
∂V(S, 0, t)

∂S
+ kθ

∂V(S, 0, t)
∂ν

− rV(S, 0, t) +
∂V(S, 0, t)

∂t
= 0. (1.43)

Following Heston’s paper [27], the analytical solution for the price of a vanilla
European option is given by:

Heston formula for European Call Options

V(S, ν, t) = SP1 − Ke−r(T−t)P2 (1.44)

where:

Pk∈{1,2}(ln S, ν, T; φ) =
1
2
+

1
π

∫ +∞

0
Re
[

e−iφ ln K fk(ln S, ν, T; φ)

iφ

]
dφ (1.45)

with fk the characteristic functions as described in [27].

1.3.2 American options

Definition 1.3.3. An American call (respectively put) option on the amount of S
units of currency, with strike price K and exercise date T, is a contract written at
t = 0 with the following property: the holder of the contract has, at any time t ≤ T,
the right but not the obligation to buy (respectively sell) S at the price K.

Since in the American case the holder can exercise the option at any time, the
value of this option will be greater than the respective European option with the
same properties.

Penalty method formulation. An American option can be exercised at every time
t: this implies a free-boundary problem. A common technique to solve free-boundary
value problems is applying a penalty method. Basically, a penalty term is added to the
equation to convert the problem into a fixed domain one. In this way we will obtain
new and more feasible initial and boundary conditions ([29], [40]). The advantage
of the penalty term formulation consists in using the same mathematical techniques
for one or more underlyings, allowing the resolution of the PDE by means of any
numerical method.
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In order to apply a penalty method, we now want to formulate the Linear Comple-
mentarity Problem (LCP) for an American put option V(S(t), t) [42]. Let us consider
what happens when we are given the right to exercise the option at each time t. From
a no-arbitrage argument, we easily obtain the constraint:

V(S, t) ≥ φ(S, t), (1.46)

where we recall φ(S, t) to be the payoff of the option at time t. Indeed, if V(S, t) <
φ(S, t), then we can easily achieve arbitrage by purchasing the option, exercising it,
and eventually buying the underlying S in the market, realizing a risk free profit of
K−V − S.
Therefore, we are left with two cases:

• V(S, t) = φ(S, t): it is more profitable to exercise the option. The equality in
the BS PDE (1.12) is satisfied.

• V(S, t) > φ(S, t): it is more profitable to keep the option and maybe exercise it
at a later time. The BS PDE (1.12) becomes an inequality:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV ≤ 0 (1.47)

We can summarize such reasoning by formalizing it with the following:

LCP for American Options

LV ≥ 0 (1.48)

V − φ ≥ 0 (1.49)

(LV = 0) ∨ (V − φ) = 0 (1.50)

where we have defined the operator:

L :=
∂

∂t
+

1
2

σ2S2 ∂2

∂S2 + rS
∂

∂S
− r. (1.51)

We introduce a positive penalty parameter ε ∈ R+ such that [29]:

Penalty method formulation for American Options

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV − max(φ−V, 0)

ε
= 0. (1.52)

Indeed, for ε → 0 we ensure that for a small δ ∈ (0, 1) the quantity φ− V ≤ δ. In
practice, if φ−V ≥ 0, we re-obtain the Black-Scholes equation; in case 0 ≤ φ−V ≤
δ, we impose an inequality as in (1.47).
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1.3.3 Barrier options

Definition 1.3.4. A Barrier option is a European or American call or put option with
the property of changing its value when the underlying price S touches a pre-defined
barrier B. We can distinguish between:

• knock-in: the price of the underlying hits the barrier and the option comes into
existence;

• knock-out: the price of the underlying hits the barrier and the option ceases to
exist.

The payoff for a knock-out, call barrier option is:

φ(S, t) =

max(S(t)− K, 0) if S(t) < B

0 if S(t) ≥ B
(1.53)

There exist no analytical formulae for barrier options. However, several numeri-
cal methods can be applied to estimate the price.

1.3.4 Basket options

Definition 1.3.5. A Basket option is a European or American call or put option on
a basket of N underlyings S1, S2, . . . , SN : its value is based on the average of the
underlyings’ prices.

The payoff of a basket call option is typically:

φ(S, t) = max(
1
N

n

∑
i=1

wiSi(t)− K, 0). (1.54)

where wi denote the weights to apply to each underlying Si.
As for the barrier options case, there exist no analytical formulae for most of

basket options. In general, semi-analytical formulae are available or, for more com-
plicated payoffs, numerical methods remain the only viable option.

Penalty method formulation. In case of American basket options, we can derive
the penalty method formulation similarly to section (1.3.2).
We define:

q := K−
n

∑
i=1

wiSi(t), (1.55)

for an American put option. We define the following penalty term for basket options:

P(V) =
ε(rK−∑n

i=1 widiSi)

V + ε− q
(1.56)

where ε ∈ (0, 1). Because of its formulation, the penalty term will be very large as
we approach the payoff and negligible when far from it. This choice will imply an
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error of O(ε). Hence, the penalty formulation for this case will be [40]

Penalty method formulation for American Basket Options

∂V
∂t
− 1

2

n

∑
i,j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

n

∑
i=1

rSi
∂V
∂Si
− rV − P(V) = 0. (1.57)

1.4 Introducing Greeks

A crucial numerical issue in derivatives pricing consists in determining the values
of the so-called Greeks, or hedge ratios, for each product [30]. Greeks are defined as
the sensitivities of the derivative price with respect to a certain risk factor: e.g. the
underlying S(t), the interest rates, the volatility, the time, etc. These quantities are
extremely meaningful in the hedging of an option position: it is usually more im-
portant to get an accurate estimate of the Greeks while renouncing precision in the
option’s price itself. Greeks represent the possible future uncertainty of the portfo-
lio and the trader’s exposure to market movements. A correct calculation of Greeks
means protecting the portfolio from expected future losses.
For European options and other simple contracts that are priced via Black-Scholes
model, there exist analytical formulae for Greeks. In other cases, numerical meth-
ods are required to calculate such quantities. In the following subsections we will
describe the most common Greeks and show an example for the simple case of a
European call option.

1.4.1 Delta

Definition 1.4.1. We define the Greek Delta as the first derivative of the option price
with respect to its underlying price:

∆ :=
∂V(S, t)

∂S(t)
. (1.58)

Definition (1.4.1) can be extended to the value Π of a portfolio: the total delta
of Π will simply be the sum of the deltas of its individual components. If the delta
of a certain portfolio is zero, the portfolio is said to be delta neutral. Maintaining
a delta neutral portfolio by continuously buying and selling a delta quantity of the
underlying is called delta hedging. This technique allows the trader to eliminate the
risk associated to any movement in the underlying.

Delta for a European Call Option. The delta for a European call option in the
classical Black-Scholes framework is:

∆ = φ(d1). (1.59)
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Therefore, ∆ in such case is always a positive, bounded quantity:

0 < ∆ < 1. (1.60)

The price of a European call option is therefore an increasing function of the under-
lying S(t). Furthermore, we observe from (1.37) that:

lim
S(t)→0+

d1 = −∞ (1.61)

lim
S(t)→+∞

d1 = +∞ (1.62)

hence, for the price of a European call option VC(S, t) and its delta ∆ the following
holds:

lim
S(t)→0+

VC(S, t) = 0 (1.63)

lim
S(t)→+∞

VC(S, t) = +∞ (1.64)

lim
S(t)→+∞

∆ = 0 (1.65)

lim
S(t)→+∞

∆ = 1. (1.66)

We show in figure (1.2) the delta for a European call option.

FIGURE 1.2: Delta of a European call option calculated via Black-
Scholes formulae.
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1.4.2 Gamma

Definition 1.4.2. We define the Greek Gamma as the second derivative of the option
price with respect to its underlying price:

Γ :=
∂2V(S, t)

∂S2(t)
. (1.67)

While the ∆ of an option indicates how much the price of the option will move
for a single unit of currency movement in the underlying price, the Γ determines
how fast this movement will be: it measures the change in ∆ with respect to the
underlying. Γ gives information about how many times we have to hedge a position
in order to keep it delta neutral: since hedging too often may be expensive, it is
natural to wish for a low Gamma position.

Gamma for a European Call Option. The gamma for a European call option in the
classical Black-Scholes framework is:

Γ =
φ′(d1)

σS(t)
√

T − t
. (1.68)

As for the ∆ case, Γ is always a positive quantity. Hence, the ∆ and the price VC

of a European call option are respectively an increasing and convex function of the
underlying S(t). Furthermore, we observe that:

lim
S(t)→0+

Γ = 0 (1.69)

lim
S(t)→+∞

Γ = 0. (1.70)

We show in figure (1.3) the gamma for a European call option calculated via Black-
Scholes formulae.

1.4.3 Theta

Definition 1.4.3. We define the Greek Theta as the first derivative of the option price
with respect to time:

Θ :=
∂V(S, t)

∂t
. (1.71)

Theta measures the change of the value of the option with respect to the passage
of time: as the option approaches its maturity, its value will decrease. Because of this
reason, Theta is also referred to as time decay.

Theta for a European Call Option. The theta for a European call option in the
classical Black-Scholes framework is:

Θ = −rKe−r(T−t)φ(d2)−
σS(t)

2
√

T − t
φ′(d1). (1.72)
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FIGURE 1.3: Gamma of a European call option calculated via Black-
Scholes formulae.

We observe that theta is always negative for a call option and decreases with time.
We show in figure (1.4) the theta for a European call option calculated via Black-
Scholes formulae.

FIGURE 1.4: Theta of a European call option calculated via Black-
Scholes formulae.
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1.4.4 Vega

Definition 1.4.4. We define the Greek Vega as the first derivative of the option price
with respect to volatility:

ν :=
∂V(S, t)

∂σ
. (1.73)

Vega is usually indicated by the Greek letter ν. In general, the option price in-
creases with volatility, since more uncertainty in the underlying increases the chances
of a larger future payoff. Nevertheless, there are cases in which this is not true: for
example, an option with a gamma that changes sign.

Vega for a European Call Option. The vega for a European call option in the clas-
sical Black-Scholes framework is:

ν = S(t)
√

T − tφ′(d1). (1.74)

We observe that vega is always positive for a call option and, in this case, the price VC

of the call option is strictly increasing with the volatility. Therefore, we may derive
an inverse function of the price to calculate the implied volatility, i.e. the unique
volatility value associated to the Black-Scholes price of the option. We show in figure
(1.5) the vega for a European call option calculated via Black-Scholes formulae.

FIGURE 1.5: Vega of a European call option calculated via Black-
Scholes formulae.
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Chapter 2

Numerical methods for PDE
solving

In this chapter we are going to show several numerical techniques which are re-
quired to compute an accurate solution of the proposed financial equations, i.e the
price of the derivative V: the most common methods are Finite-Difference or Monte-
Carlo based.
Finite-difference Metods (FDM) are more suitable for contracts which present an
early-exercise feature or callable derivatives. For Greeks computation, FDM are the
standard practice. On the other hand, they are usually harder to implement and
slow in case of high-dimensionality problems. The initial and boundary conditions
must be chosen in such a way to guarantee the stability of the solution.
Meshless methods have been recently proposed to solve the Black-Scholes PDE [49].
The advantages of methods such as Radial Basis Functions (RBF), together with lo-
calization techniques as Partition of Unity (PU), consist in obtaining a stable and
accurate solution in a reasonable amount of time. Furthermore, they have a high
potential as computational method for the Greeks’ estimation: the method can be
easily extended to calculate the Greeks values almost for free without affecting com-
putational time. Our research focuses on meshfree methods: following the work in
[49], we apply and extend meshless methods to solve financial PDEs: we discretize
the spacial elliptic operator of the PDEs by means of RBFs and Partition of Unity
method to calculate the price of vanilla and more exotic derivatives [53], [52], [50].
As a further novelty, we derive the formulae for the Greeks of the option under the
RBF-PUM scheme.
Eventually, Monte-Carlo methods are the easiest to implement and more suitable
for high-dimensional problems and some path-dependent derivatives. They consist
in simulating the random walk and cashflows of the underlying S, calculating the
average payoff and eventually returning its current value. It is slower than finite-
difference methods up to four dimensions, but faster in case of more factors or un-
derlyings. The error is of the order of the inverse square root of the number of
simulations, i.e. an increase of 10% of the accuracy requires an increase by a factor
of 100 in the number of simulations. In our work [51] we study an application to
barrier option pricing, focusing on particle filtering techniques.
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The chapter is organized as follows: in section (2.1) Finite-Difference methods are
presented; in section (2.2) we describe meshfree methods and, eventually, section
(2.1) is dedicated to Monte Carlo methods. Each section will contain a short descrip-
tion of the numerical method itself, together with its applications to solve financial
PDEs.

2.1 Finite differences methods

Finite differences methods are the most common numerical resolution method for
financial PDEs. Similarly to RBF, FDM solve a PDE by discretising both time and
space derivatives as divided differences, and calculate the solution by iteratively ap-
plying the finite difference formulae at each time step.
As an example, let us consider a differentiable and real function f : x ∈ < 7−→
f (x) ∈ <: we aim at finding appropriate approximations for its derivatives at some
point x̄. We indicate with h a small, positive number, which will denote the mesh
distance. We may consider the following quantities to approximate the first deriva-
tive of f :

Forward difference formula

f ′(x̄) f wd =
f (x̄ + h)− f (x̄)

h
; (2.1)

Backward difference formula

f ′(x̄)bwd =
f (x̄)− f (x̄− h)

h
; (2.2)

Central difference formula

f ′(x̄)cen =
f (x̄ + h)− f (x̄− h)

2h
. (2.3)

For the second order derivative, we may consider the following finite-difference
approximation:

f ′′(x̄) =
f (x̄ + h)− 2 f (x̄) + f (x̄− h)

h2 . (2.4)

Such formulae naturally derive from the Taylor expansion of the function f around
the point x̄. Clearly, the accuracy of the method is highly dependent on the continu-
ity and differentiability order of the function f .
A finite-difference method may be explicit or implicit: if we are able to directly isolate
and calculate at each step the value required for the next step, the method is explicit;
otherwise, we may need to solve an implicit equation and use more time consuming
root finding methods, such as Newton Raphson. In general, if we approximate the
first derivative of an ordinary differential equation (ODE) via forward differences,
the method will be explicit. If we involve backward or central difference formulae,
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the method will likely be implicit. If an explicit method is simpler to implement, the
implicit method will in general provide a better accuracy in the resolution.

2.1.1 FDM applications to Finance

We will provide three different and known approximations of the classical Black-
Scholes equation via finite-difference methods: the Euler explicit method, the Euler
implicit method, and eventually the Crank-Nicolson method. We consider a mesh
of N equidistant space points for the underlying S and J equidistant time points: we
indicate with Vn,j := V(Sn, tj) the price V calculated at the mesh point (n, j). We de-
fine the constant mesh distances ∆S := Sn − Sn−1 and ∆t := tj − tj−1. The boundary
conditions will depend on the particular financial derivative we are pricing.

Explicit Euler method for Black-Scholes equation.
We discretize equation (1.12) by an explicit Euler method. The main difference with
the other proposed FDM is the presence of the term Vn,j+1, at time point j + 1, only
on the left side of the equation.

Vn,j+1 −Vn,j

∆t
≈ 1

2
σ2S2

n
Vn+1,j − 2Vn,j + Vn−1,j

∆S2 + rSn
Vn+1,j −Vn−1,j

2∆S
+ rVn,j. (2.5)

Implicit Euler method for Black-Scholes equation.
We discretize equation (1.12) by a fully implicit method. Terms at time point j + 1
are present on both side of the equation, from which the implicitness of the method.

Vn,j+1 −Vn,j

∆t
≈ 1

2
σ2S2

n
Vn+1,j+1 − 2Vn,j+1 + Vn−1,j+1

∆S2 + rSn
Vn+1,j+1 −Vn−1,j+1

2∆S
+ rVn,j+1.

(2.6)
Crank-Nicolson method for Black-Scholes equation.

We discretize equation (1.12) by the Crank-Nicolson method, which is an average
of the explicit and implicit methods. To approximate the solution, the method will
involve six different nodes per time.

Vn,j+1 −Vn,j

∆t
≈

1
4

σ2S2
n

Vn+1,j+1 − 2Vn,j+1 + Vn−1,j+1

∆S2 +
1
4

σ2S2
n

Vn+1,j − 2Vn,j + Vn−1,j

∆S2

+ rSn
Vn+1,j+1 −Vn−1,j+1

2∆S
+ rSn

Vn+1,j −Vn−1,j

2∆S
+

1
2

rVn,j+1 +
1
2

rVn,j.

Alternate Direction implicit method for Heston equation.
Alternating direction implicit (ADI) scheme has been originally developed to solve
parabolic equation such as the heat diffusion equation. It has the advantage of cre-
ating banded matrices with a lower width with respect to other finite difference
methods such as Crank-Nicolson scheme. It has been proved that this method is
unconditionally stable and second order in time and space [11].
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With respect to the Black-Scholes case, Heston assumes a stochastic volatility pro-
cess: we are approximating the solution over a grid [Sxν]xT, with equidistanced
volatility and underlying points Sj and νi, at each timestep tn. We can apply the ADI
scheme to Heston PDE (1.26) and discretize the equation in the following way [27]:

Vn
j,i −Vn−1

j,i

∆t
≈
[
(Sj)

2νi
Vj+1,i − 2Vj,i + Vj−1,i

2∆2S

+ ρσSjνi
Vj+1,i+1 + Vj−1,i−1 −Vj−1,i+1 −Vj+1,i−1

4∆S∆ν

+ σ2νi
Vj,i+1 − 2Vj,i + Vj,i−1

2∆2ν
+ rSj

Vj+1,i −Vj−1,i

2∆S

+ k(θ − νi)
Vj,i+1 −Vj,i−1

2∆ν
− rVj,i

]
(2.7)

where Vn
i,j is the approximate solution at time tn computed at nodes (Sj, νi). In

time direction, we apply the classical theta scheme as described in section (2.46).

FDM approximations for Greeks
Following market practice, we choose a forward difference approximation for the first
derivative and a central difference approximation for the second derivative:

∆ :=
∂V(S)

∂S
≈ V(S + ∆S)−V(S)

∆S
, (2.8)

Γ :=
∂V2(S)

∂S2 ≈ V(S + ∆S)− 2V(S) + V(S− ∆S)
∆S2 . (2.9)

2.2 Meshfree methods

Meshfree methods have become extremely popular in the last years in several fields,
such as Mathematics and Engineering. One of the main reasons to opt for this type
of methods is the need for a tool which can handle high-dimensional problems. Fur-
thermore, they are suitable for more complex geometries of the domain considered.
Eventually, as the name itself may suggest, they are independent of the generation
of a mesh, thus avoiding its computational cost.
Nowadays typical applications of the two most famous meshfree methods, radial
basis functions and moving least squares, can be found in engineering, geodesy, geo-
physics, meteorology, through the formulation and resolution of a scattered data prob-
lem. Also, there exist meshfree formulations to solve partial differential equations in
physics, chemistry, financial engineering. Moreover, these methods are used in nan-
otechnology, in non-uniform sampling for medical imaging and tomography. Applica-
tions as neural networks, for data mining and optimization have also been proposed.
We can summarize the main historical landmarks as:
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• In 1960s, the inverse distance weighted Shepard method was developed and
published by Donald Shepard [47].

• In 1970s, multiquadrics were introduced by Rolland Hardy [26]. Also, thin plate
splines [25] and surface splines [36], which are today known as polyharmonic
splines, appeared in literature for the first time.

• In 1981, the first paper regarding moving least squares method was published by
Lancaster and S̆alkauskas [32].

• Finally, in the 1990s, the first compactly supported radial basis functions were
introduced by Shaback and Wendland [44], [56].

2.2.1 Multivariate Scattered Data Interpolation

Historically, the reason to develop Radial basis functions (RBFs) methods is the need
to solve Multivariate Scattered Data interpolation problems: given a set of data with
no special structure (scattered), we want to find a rule which provides information
regarding the studied process also at points different from the ones at which we
measure the input data. Formalizing [9], [18]:

Definition 2.2.1. Problem (P): given the data (xj, yj) ∈ Rd ×R, j = 1, . . . , N, find a
continuous function u f depending on f such that u f (xj) = yj, j = 1, . . . , N.

If u f is a linear combinations of functions φk, i.e.:

u f (x) =
N

∑
k=1

αkφk(x), x ∈ Rd (2.10)

the problem (P) can be reduced to solving a linear system of the kind:

Aα = y (2.11)

with A as interpolation matrix such that Ajk = φk(xj), j, k = 1, . . . , N, α = [α1, . . . , αN ]
T

and y = [y1, . . . , yN ]
T.

In general, solving the system (2.47) is a serious problem, depending on the non-
singularity of the interpolation matrix A. Nevertheless, one of the main advantages
of using radial basis functions is to go around this issue: we will later define special
RBFs which have also the important property of being positive definite. Such inter-
polant functions will guarantee the solvability of system (2.47).
Another important property of multivariate scattered data problems is to be highly
dependent on the input data. Indeed, the reconstruction of multivariate functions
from data is possible only if the space providing the trial functions is not fixed in
advance [45], but is data-dependent. This is a consequence of Haar-Mairhuber-Curtis
theorem. Let us start with the definition of a Haar space:
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Definition 2.2.2. Let the finite-dimensional linear function space V ⊂ C(Ω), with
Ω ⊂ Rd, have a basis {V1, . . . , VN}. Then V is a Haar space of dimension N on Ω if

det(A) 6= 0

for any set of distinct points xi in Ω, where A is the matrix such that Ai,j = Vj(xi).

We can now state the following theorem:

Theorem 2.1. Haar-Mairhuber-Curtis
If Ω ⊂ Rd with d ≥ 2 contains an interior point, then there exist no Haar spaces of
continuous functions except for the 1-dimensional case.

Proof. Let us suppose that V is a Haar space of dimension N ≥ 2 on Ω, with a
basis {V1, . . . , VN} and let d ≥ 2. Let xi be distinct N points in Ω and A the matrix
defined by Ai,j = Vj(xi). Then we have by definition:

det(A) 6= 0.

Since Ω contains an interior point by assumption, there exists a path that connects
the points x1 and x2 without passing through the other points of the defined set.
Therefore we can exchange the position of the two points continuously along the
path, still without moving the other points xi 6=1,2. As a consequence, the first and sec-
ond row of the determinant of A can be exchanged and the determinant has changed
sign. Being det(A) a continuous function of x1 and x2, the determinant must have
assumed the value 0, which contradicts our hypothesis.

Examples of data-dependent spaces of multivariate functions are generated by shifted
and scaled instances of radial basis functions.

2.2.2 Radial Basis Functions

Definition 2.2.3. We define radial basis function any multivariate function with the
following property:

Φ(x) = φ(‖x‖2) = φ(r), x ∈ Rd, (2.12)

where φ is a scalar function and r = ‖x‖2 is called radius.

The unknown function u f in (2.10) can be written as a linear combination of RBF:

u f (x) =
N

∑
k=1

αkφ(‖x‖2), x ∈ Rd (2.13)
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FIGURE 2.1: Example of RBF methods application: in (a) scattered
data are shown; in (b) RBF are applied to the knots; in (c) the interpo-

lation produces the final results [20]

or, more generally, as a linear combination of translated RBFs:

u f (x) =
N

∑
k=1

αkφ(‖x− yk‖2), x, yk ∈ Rd (2.14)

where yk are called centers. Since there are no assumptions on the position of the
centers, RBF related methods are purely meshless.
Given the initial data (xj, u f (xj)) ∈ Rd ×R, the coefficient matrices

Ax := (φ(‖xj − yk‖))j,k (2.15)

are called kernel matrices.

We now define the concept of positive-definiteness, which allows the solvability
of the system (2.47). Indeed, if the considered φ satisfies this property, the matrix A
is non-singular and the system can be solved.

Definition 2.2.4. A radial basis function φ on [0,+∞) is positive definite on Rd, if
for all choices of sets X := {x1, . . . , xm} of finitely many points in Rd and arbitrary
m the symmetric m×m matrices Ax of (2.15) are positive definite.

Not all radial basis functions are positive-definite. Some of them fail to be and,
in this case, polynomials of a certain degree must be added to the approximating
function: these RBF will be called conditionally positive-definite of order Q, where
Q− 1 is the degree of the polynomial to add. We provide in table (2.1) a list of the
most widely known RBF.

We eventually provide a theorem that summarizes some usefeul properties of
positive-definite functions (for the proof, we refer to [17]):

Theorem 2.2. Positive-definite functions properties
Some basic properties of positive definite functions are:



28 Chapter 2. Numerical methods for PDE solving

RBF name RBF Q
Gaussian exp(−r2) 0

Inverse Multiquadrics (1 + r2)
β
2 , β < 0 0

Matern or Sobolev Kν(r)rν, ν > 0 0

Multiquadrics (1)d
β
2 e(1 + r2)

β
2 , β > 0, β 6∈ 2N d β

2 e
Polyharmonics (1)d

β
2 erβ, β > 0, β 6∈ 2N d β

2 e
Thin-plate spline r2logr 2

TABLE 2.1: Q− 1 is the degree of the polynomial to add to the func-
tion to make it positive definite. RBF with Q = 0 are positive definite

[45].

• Non negative finite linear combinations of positive definite functions are pos-
itive definite. If Φ1, . . . , Φn are positive definite on Rd and cj ≥ 0, with j =

1, . . . , n, then

Φ(x) =
d

∑
j=1

cjΦj(x), x ∈ Rd (2.16)

is also positive definite. Moreover, if at least one of the Φj is strictly positive
definite definite and the corresponding cj > 0 then Φ is also strictly positive
definite.

• Φ(0) ≥ 0.

• Φ(−x) = Φ(x).

• Any positive definite function is bounded: |Φ(x)| ≤ Φ(0).

• If Φ is positive definite with Φ(0) = 0, then Φ ≡ 0.

• The product of (strictly) positive definite function is (strictly) positive definite.

2.2.3 Collocation approach for PDEs

The first appearance in literature of partial differential equations solving by means
of RBFs and collocation methods is due to Ed Kansa [31].
This method can be applied to different types of PDEs, such as non-linear elliptic
PDEs and time-dependent parabolic or hyperbolic PDEs [37]. Unfortunately already
Kansa pointed out that the so-built interpolant matrix could be not well-defined for
some center points. To overcome this issue, a similar collocation approach, based
on the Hermite interpolation method, was formulated. The Hermite approach en-
sures the well-posedness of the collocation matrix, but on the other hand it requires
smoother interpolating functions.
We can choose to use linear combinations of RBF plus a polynomial of a certain de-
gree, such that we could obtain a pre-defined order of positive definiteness.
To pose the problem, we will use collocation methods following [7] and [45]. Let
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the following linear Dirichlet boundary value problem:

Lu = f Ω Ω ⊂ Rd (2.17)

u = f γ γ := ∂Ω

where L is a linear differential or integral operator. The idea behind collocation
methods is to discretize the equations and impose a finite number of pointwise con-
ditions:

Lu(xΩ
j ) = f Ω(xΩ

j ) xΩ
j ∈ Ω, 1 ≤ j ≤ mΩ (2.18)

u(xγ
j ) = f γ(xγ

j ) xγ
j ∈ γ, 1 ≤ j ≤ mγ

and let m be the total number m = mγ + mΩ of test points.
As a consequence, the exact solution of (2.18) will satisfy also (3.3): we have to fix an
m-dimensional space of trial functions in which different solutions u can be chosen.
The issue with collocation methods is now clear: the solvability of the system in
(2.18). However, we can see (2.18) as a generalization of problem (P), so that we
could think of applying all the RBF theory reviewed until now.
Following Kansa, we can write the general collocation equations with RBFs:

ΣN
k=1αk∆φ(‖xΩ

j − yk‖2) + ΣQ
l=1βl∆pl(xΩ

j ) = f Ω(xΩ
j ) 1 ≤ j ≤ mΩ

ΣN
k=1αkφ(‖xγ

j − yk‖2) + ΣQ
l=1βl pl(x

γ
j ) = f Ω(xγ

j ) 1 ≤ j ≤ mγ

ΣQ
l=1αl pl(yk) = 0 1 ≤ l ≤ Q

which form a linear n× n = (mΩ + mγ + Q)× (mΩ + mγ + Q) system of equations.
The system can be converted to a symmetric one by choosing the same test points
xΩ

j and xγ
j as trial points, in place of the yk. We indeed would define:

u(x) := ΣmΩ
k=1αΩ

k ∆φ(‖x− xΩ
j ‖2) + Σmγ

k=1α
γ
k φ(‖x− xγ

j ‖2) + ΣQ
l=1βl pl(x) (2.19)

obtaining a symmetric square linear system. The convergence of the method was
studied by Franke and Shaback [22]: they found out the solution is required to be
very smooth. An important result on the convergence of RBF collocation is due to
Wendland [57]:

Theorem 2.3. Error Bound for Elliptic PDE solving via RBF Collocation
Let Ω be a polygonal and open subset of Rd. Let L be a non-null, second order,
linear elliptic differential operator with coefficients in C2(k−2)(Ω̄) that either vanish
on Ω̄ or have no zeros. Let us suppose also that Φ ∈ C2k(Rd) is a strictly positive
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definite function and that the boundary value problem

Lu = f Ω Ω ⊂ Rd (2.20)

u = f γ γ := ∂Ω

has a unique solution u ∈NΦ(Ω) for a given f . Let ū be the approximate collocation
solution. Then:

||u− ū||L∞(Ω) ≤ Chk−2||u||NΦ(Ω)

for all sufficiently small h, where NΦ(Ω) is the native space of Φ and h is the largest
of the filling distances in the interior of Ω and its boundary.
As a consequence, a good distributions of centers should imply a fill distance smaller
on the boundary than in the interior. The space we work with is also an important
choice: optimality theorems tell us that, in native spaces of RBFs, the RBFs provide
the best interpolant of a given data function [17].

2.2.4 Least Squares Radial Basis Functions

A different approach from collocation is using least squares techniques in combina-
tion with radial basis functions. This approach has the computational advantage of
avoiding the system resolution required by the collocation method.
This method avoids interpolation and is useful in case the data are contaminated by
noise. The idea is to use the theoretical results according to which the kernel inter-
polant minimizes the native space norm. We want to determine a function u such
that:

u =
n

∑
j=1

cjΦj(x, xj). (2.21)

To find the coefficients cj we need to minimize the quadratic form:

1
2

cTQc (2.22)

where Q is a positive definite matrix that satisfies the linear constraint with given f:

Ac = f. (2.23)

This quadratic form can be exactly (excluding the the 1
2 factor) the native space norm

of the interpolant function u. Equation (2.22) can be interpreted as a minimization
problem by introducing Lagrange multipliers λ for the convex functional:

1
2

cTQc− λT[Ac− f]. (2.24)
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Consequently we obtain:

Qc− ATλ = 0

Ac− f = 0.

Therefore, being Q invertible by hypothesis we can apply Gaussian elimination to
find:

λ = (AQ−1AT)−1f

c = Q−1AT(AQ−1AT)−1f.

The constraint implies that u(xi) = fi and the Lagrange multipliers are nothing else
but:

λ = A−1f (2.25)

with
c = λ. (2.26)

Eventually, we call the regularized least squares approximation problem the
following:

1
2

cTQc + ω
n

∑
j=1

(u(xj)− f j)⇔
1
2

cT + ω(Ac− f)T(Ac− f), (2.27)

where the paramter ω controls the accuracy in points fitting and the quadratic form
controls the accurancy of the fitting function itself.
In RBFs formulation, u would be the interpolant function built as a linear combina-
tion of RBFs Φ and coefficients c, which are the least squares solution of the con-
straint Ac = f. Therefore, we minimize the quantity:

||u−
n

∑
j=1

f 2(xj)||22. (2.28)

2.2.5 Localization techniques

In case of large systems (2.47), localization techniques are necessary. By means of
localized basis functions, the system coefficient matrix becomes sparse and easily
solvable. This is possible with RBF if we use positive definite scaled functions with
compact support.
The most famous compactly supported radial basis function are the Wendland func-
tions, introduced by Wendland in 1995 [56]. The first and most known Wendland
function is:

ψ(r) =

(1− r4)(1 + 4r) 0 ≤ r ≤ 1

0 r > 1
(2.29)
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which is strictly positive definite and radial in Rd when d ≤ 3.
The following theorem groups the Wendland functions and states that these func-
tions are the polynomial functions with the smallest degree that can be compactly
supported on C2k and strictly positive definite and radial on Rd:

Theorem 2.4. Wendland Functions
The functions ψs,k are strictly positive definite and radial on Rd and are of the form:

ψs,k(r) =

ps,k(r) r ∈ [0, 1]

0 r > 1

with a univariate polynomial ps,k of degree b 1
2c+ k + 1. Furthermore, ψs,k ∈ C2k(R)

and are unique up to a constant factor, with a polynomial degree which is minimal
for given space dimension d and smoothness 2k.

By scaling the support of the basis functions appropriately, the interpolant matrix
becomes sparse. The trick consists in using the shape parameter ε: a large ε will
imply a smaller radius support r := 1

ε .
Partition of Unity methods (PUM) are a localization technique that allows for fast
computation, by splitting the main problem in smaller ones without affecting accu-
racy.
The method applied to PDEs solving appeared in literature for the first time in 1996,
with Babus̆ka and Melenk paper [1].
The idea is to divide the domain in more subdomains, such as in picture (2.2), and
different RBFs are associated to each of them.

Definition 2.2.5. A partition of unity subject to an open-cover {Ωr} of Ω is a collec-
tion of smooth, non-negative functions {ρr}R

r=1 , such that their support is contained
in each corresponding Ω̄r and

R

∑
r=1

ρr(x) = 1, x ∈ Ω. (2.30)

In practice, a local interpolant uj is constructed by means of RBFs on each Ωr;
consequently the sum of R interpolants will give the final solution [56]:

u(x) =
R

∑
r=1

uj(x)ρr(x), x ∈ Ω. (2.31)
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In particular, if the local interpolant uj interpolates at xm, then also the global inter-
polant will fit that point:

u(x) =
R

∑
r=1

uj(xm)ρr(xm)

=
R

∑
r=1

f (xm)ρr(xm) = f (xm),

where f is the given function that provides the input data. This result is valid since
the point xm is contained only in one of the subdomains. It is proved [17] that PUM
does not affect the global error estimates.

FIGURE 2.2: PUM: example of sub-domains identifications [49].

A common choice in literature is Shepard’s method to build the {ρr}R
r=1:

ρr(x) =
ξr(x)

∑R
j=1 ξ j(x)

(2.32)

where the ξr are functions with compact support on each Ωr. Usually, the Wendland
function is used as ξr:

ξ(l) =

(1− l)4(4l + 1) 0 ≤ l ≤ 1

0 l > 1
(2.33)

The ξr will be scaled to match the chosen shape of the subdomain. In our case,
we use circular patches so that ξr will be applied to the distance from x to the center
of the patch, divided by its radius. Furthermore, we notice that the ξr must be at
least Ck on its domain, where k is the order of the derivative required to solve the
PDE.

2.2.6 RBF applications to Finance

In this section we finally provide the resolution via RBF for the Black-Scholes and
Heston models. We refer to our work in [50], [53], and [52].
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Discretization of Black-Scholes equation in time

Any simple method for the discretization in time can be chosen for this purpose. In
literature, examples with Crank Nicolson or other FDM schemes are available: we
consider the so-called theta method, which is a generalization of the already presented
FDM. For θ = 0, we obtain the explicit method; for θ = 0.5 we obtain the Crank-
Nicolson methods and eventually for θ = 1 we get the fully implicit method.
Let us consider the time interval [0, T] and divide it in Nt steps with length δn =

tn − tn−1 for n = 1, . . . , Nt. We will make use of a simple backward differential
scheme:

(I − αn
0 L)V1

? = V0
? (2.34)

(I − αn
0 L)Vn

? = αn
1Vn−1

? − αn
2Vn−2

? − αn
0 P(Vn−2

? ) (2.35)

with V? solution in the interior of Ω, I the identity operator and with the notation
θn := δn

δn−1 :

αn
0 := δn 1 + θn

1 + 2θn
, αn

1 := δn (1 + θn)2

1 + 2θn
, αn

2 := δn θ2
n

1 + 2θn
. (2.36)

The conditions on the boundary are continuously imposed, leading to a the resolu-
tion of a linear system at each time step.

Discretization of Black-Scholes equation in space via RBF

We will use RBF methodology to discretize the value of V in the space variable. Let
us use the notation Vn(S) to indicate the value of V at time point tn. Then:

vn := Vn(S) =
n

∑
k=1

αn
k φ(ε‖S− Sk‖2)

vn = Aλn

where ε is the shape parameter, from which the solution is also dependent. If we con-
sider positive-definite RBF, the matrix A is not singular for distinct knots. Therefore:

λn = A−1vn. (2.37)

We can finally derive the approximations for the derivatives matrices:

∂vn

∂Sk
= A(k)λn = A(k)A−1vn

∂2vn

∂Sk∂Si
= A(ki)λn = A(ki)A−1vn.

To solve equation (1.7), we now only require the the discretization of both the
operator L and the penalty term. Plugging in the formulae we obtained, we have:
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Lvn =

(
1
2

n

∑
k,i

ΣkiSkSi A(ki) +
n

∑
k=1

(r− dk)Sk A(k) − rA
)

A−1vn (2.38)

P(v(i)n ) =

e
(

rK−∑n
k=1 wkdkSk

)
v(i)n + e− q

(2.39)

Greeks derivation for Black-Scholes PDE. The space discretization via RBFs al-
lows us to easily calculate the Greeks. Indeed, we can derive the solution Vn(S)
with respect to the underlying S.

The Greek Delta will be:

∂V(S)
∂S

=
n

∑
i=1

λi ∂φ(ε‖S− Sk‖2)

∂S
; (2.40)

and the Greek Gamma will be:

∂2V(S)
∂S2 =

n

∑
i=1

λi ∂2φ(ε‖S− Sk‖2)

∂S2 . (2.41)

Since the coefficients λ(t) are the only time-dependent part, we can also derive
the expression for the Greek Theta, i.e. the derivative of the solution with respect to
time, with negative sign:

−∂V(S)
∂t

= −
n

∑
i=1

∂λi

∂t
φ(ε‖S− Sk‖2). (2.42)

In finite-difference methods, the Greeks are calculated via difference approxima-
tions: the resulting Delta and Gamma are not usually smooth functions. Via RBF
formulation, we can calculate the risks by simply multiplying the newly found coef-
ficients λ for the corresponding derivative matrix.

If we also apply PU, we need to consider the dependence of the weights on the
space variable. Differentiating, we obtain:

∂V(S)
∂S

=
n

∑
i=1

m

∑
r=1

(
ξr(S)λi ∂φ(ε‖S− Sk‖2)

∂S
+

∂ξr(S)
∂S

λiφ(ε‖S− Sk‖2)

)
, (2.43)

∂V2(S)
∂S2 =

n

∑
i=1

m

∑
r=1

λi
(

ξr(S)
∂2φ(ε‖S− Sk‖2)

∂S2 + 2
∂ξr(S)

∂S
∂φ(ε‖S− Sk‖2)

∂S
(2.44)

+
∂2ξr(S)

∂S2 φ(ε‖S− Sk‖2)

)
, (2.45)

−∂V(S)
∂t

= −
n

∑
i=1

m

∑
r=1

∂λi

∂t
ξr(S)φ(ε‖S− Sk‖2). (2.46)
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Algorithm 1 Greeks computation

a. Calculate and save the derivatives matrices at each step following (2.38);
2: b. Derive the lambda coefficients by solving the final system in (2.50);

c. Calculate the derivative of lambda coefficients with respect to time;
4: d. Eventually evaluate the derivatives in Equations (2.43), (2.44), (2.46).

The derivatives matrices with respect to the space variable are already calculated
at each step to price the option. As an extra operation, we only need to calculate the
derivative of the lambda coefficients with respect to time: this can be done by a sim-
ple forward finite-difference method.

Discretization of Heston PDE

We now describe how to solve the Heston PDE (1.26) by means of Radial Basis Func-
tions techniques [18], [31]. We follow and further extend our work published in [50]
and [53]. We mainly refer to our recent article [52].
Similarly to the Black-Scholes case, the problem described in equation (1.26) can be
reduced to solving a linear system of the kind [17] [31] [49]:

Aα = y (2.47)

with A as interpolation matrix such that Ajk = φk(xj), j, k = 1, . . . , N, α = [α1, . . . , αN ]
T

and y = [y1, . . . , yN ]
T.

It is clear that we need to discretize the elliptic spatial operator L and eventually
solve the equation in time direction. We fix a point at time tn and we consider the
solution at this particular point, which we will denote by vn. Therefore, according
to RBF theory:

vn := V(S, ν, tn) =
N

∑
k=1

αn
k φ(ε‖(x− xi,j)‖2) (2.48)

vn = AS,νλn (2.49)

where ε is the shape parameter, from whose choice the solution is also dependent.
xi,j represents the node (Si, νj), which means the RBF radius we are considering is:

ri,j =
√

S2
i + ν2

j . If we consider positive-definite RBFs, the matrix AS,ν is not singular
for distinct knots. Therefore we can imply the λn coefficients by inverting equation
(2.49):

λn = A−1
S,νvn. (2.50)

Eventually, by assuming that (2.48) is true we can discretize the operator L as:
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L = rSi
∂φ(Si, νj)

∂Si
+ k(θ − νj)

∂φ(Si, νj)

∂νj
+

1
2

νjS2
i

∂2φ(Si, νj)

∂S2
i

+ ρσνjSi
∂2φ(Si, νj)

∂Si∂νj
+

1
2

σ2νj
∂2φ(Si, νj)

∂ν2
j

− rφ(Si, νj). (2.51)

We only miss the discretization in time, which is done by a classic Crank-Nicolson
scheme [58]. Indeed, such a method has been proved to be stable under specific con-
ditions and it is relatively easy to implement [13].

Greeks derivation for Heston PDE. Choosing RBF to price options has the im-
portant advantage of providing a fast and accurate method to calculate the Greeks.
Indeed, while solving the PDE, we are already calculating the matrices that we will
need to directly calculate the derivatives to the underlying S(t), i.e. the Greeks we
are interested in.
According to its definitions (2.43) and (2.44), for a particular point in time tn associ-
ated to the coefficients λn, the Greek Delta will be:

∂V
∂S

=
N

∑
k=1

λn ∂φ(ε‖x− xk‖2)

∂S
; (2.52)

and the Greek Gamma will be:

∂2V
∂S2 =

N

∑
k=1

λn ∂2φ(ε‖x− xk‖2)

∂S2 . (2.53)

Clearly, the values of such Greeks also depend on the volatility value ν we are con-
sidering and we will give as fixed at the time of calculation.

Volatility surface interpolation via RBF

Since RBFs are mainly used as an interpolation method, it is simply natural to apply
such method to reconstruct a volatility surface. Given initial market data points,
consisting in implied volatilities σ(K, T) associated to the corresponding option with
Black-Scholes price, we can interpolate said points and imply a volatility value for
missing market data.
Formally, given a grid of strikes times maturities of the respective options, i.e. [KxT],
with known points σ(Ki, Tj) ∀(Ki, Tj) ∈ {K1, . . . , Kn}x{T1, . . . , Tm}, where m, n ∈ N,
we aim to find values of σ(Kl , Th) where l 6∈ {1, . . . , n} and h 6∈ {1, . . . , m}. For sake
of simplicity, if we define x := (K, T) ∈ R2 we are required to solve the following
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scattered data problem in R2:

σ̂(x) =
N

∑
k=1

ckφ(||x− xk||2) (2.54)

where ˆσ(x) is approximation the volatility function we want to recover; φ the
chosen radial basis function; ck ∈ R are the coefficients we need to find in order to
calculate the linear approximation of the volatility function given above; and xk ∈ R2

are the chosen centers. Equation (2.54) is a straightforward adaptation of the theory
explained in (2.2.1). Hence, in order to obtain the coefficient ck and compute the
volatility function we need to solve the following system:


φ(||x1 − x1||2) . . . φ(||x1 − xN ||2)
φ(||x2 − x1||2) . . . φ(||x2 − xN ||2)

. . . . . . . . .
φ(||xN − x1||2) . . . φ(||xN − xN ||2)




c1

c2

. . .
cN

 =


σ(x1)

σ(x2)

. . .
σ(xN)

 . (2.55)

In order to compute the interpolated matrix, we implement the following algo-
rithm, which can be generalized for a generic two-dimensional RBF interpolation:

Algorithm 2 RBF interpolation for a 2D implied volatility surface

a. Define the chosen RBF in terms of the distance r ∈ R between data points;
2: b. Compute the distance matrix DM between the given data points and centers;

c. Compute the distance matrix DME between the new evaluation points and
centers;

4: d. Compute the interpolation matrix I by applying the chosen RBF to the dis-
tance matrix DM;
e. Compute the evaluation matrix IE by applying the chosen RBF to the distance
matrix DME;

6: f. Compute the interpolation system solution ISS by dividing the interpolation
matrix IM by the array filled with the volatility input values;
g. Compute the interpolated solution given by the product of the evaluation
matrix IE and the interpolation system solution ISS.

Future work may consist in exploring how RBFs behave in case of extrapolated
points and deriving conditions in order to get an arbitrage-free volatility surface: we
are currently dealing with such questions in our working paper [54]. Deriving an
arbitrage-free volatility surface is still an open question: constraints have been for-
mulated and listed in [28], [41], [19]. Furthermore, this technique could be improved
by using a least square approach we mentioned in section (2.22), partly following
[24].
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2.3 Monte Carlo methods

In a complete and arbitrage-free market, the price of a derivative may be viewed as
the discounted expected value of its future payoff. Thus, the valuation of the price
translates to the computation of an integral or, more attractively, to the Monte Carlo
evaluation of such expectation. Typically, a certain number of paths is simulated
for each stochastic parameter involved in the model: in case of high dimensions -
i.e. more parameters - the square-root convergence rate of Monte Carlo becomes ap-
pealing.
Monte Carlo (MC) is an alternative method to price derivatives which avoids the
direct resolution of the PDE associated to the price process. Furthermore, the al-
gorithm is relatively easy to understand and implement especially in case of path-
dependent derivatives, such as American or Barrier options. Path-dependent deriva-
tives are indeed defined as those derivatives whose value cannot be fully expressed
as the expectation of the discounted future value, and depends also on extra features
such as exercises strategies or barriers.
The main idea behind Monte Carlo is to calculate the volume of a given set and
translate this information into a probability. We can imagine to draw a square of one
unit length, containing a circle of the same diameter: by sampling a certain number
of points in the square and calculating the number of points which fall within the
circle, we are able to estimate the circle’s area. The result will be better as the number
of sampled points increase, according to the law of large numbers. The relative error
may be estimated by the central limit theorem.
More formally, let us consider a real function h : x ∈ < 7−→ h(x) ∈ <, square-
integrable over [0, 1] ⊂ <. We want to calculate the following integral via Monte
Carlo:

s =
∫ 1

0
h(x)dx. (2.56)

Given a random generator that produces a number n of independent and uniformly
distributed random draws ui from the interval [0, 1], the Monte Carlo result for (2.56)
is:

ŝn :=
1
n

n

∑
i=1

h(ui), (2.57)

and according to the strong law of large numbers:

ŝn −→ s for n −→ +∞. (2.58)

The error associated with Monte Carlo is clearly:

εn = ŝn − s, (2.59)
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and is proven to be [23] normally distributed, with mean 0 and a standard deviation
of σ√

n , where:

σ2 :=
∫ 1

0
(h(x)− s)2dx. (2.60)

Since we do not know σ, we may value its unbiased, empirical estimator:

σ̂ =

√
1

n− 1

n

∑
i=1

(h(ui)− ŝn)2. (2.61)

The Monte Carlo error is thus dependent on the number n of draws, following a
square-root convergence rate.

2.3.1 Monte Carlo applications to Finance

For this section we mostly refer to our work in [51]. The option pricing can be in-
terpreted as a classical example of inverse problem. From a formal point of view, we
have two stochastic processes Yt and Xt, where Yt represents a phenomenon and Xt

its stochastic casual factors, and we suppose that a functional dependence between
them, indicated with Ft, exists:

Yt = Ft(Xt, θt),

where θt is a time-depending vector. An inverse problem aims at the estimation
of Ft and θt, given a set of observations of Yt.
In our context, the stochastic process Yt is identified as the option price, the stochastic
process as the underlying, the parameter vector is the risk-free interest rate and the
volatility of the underlying. In [51] we aim to determine the function Ft and we
assume that in our market the interest rate and the volatility are known constants.
In the following we fix a time interval [0; T], a Brownian motion Wt and a probability
space (Ω; Ft; P) for all stochastic processes; we denote the constant risk-free interest
rate with r. The lognormal risk asset St with constant volatility σ and drift µ solves
the Geometric Brownian motion stochastic differential equation:

dS(t) = µS(t)dt + σS(t)dWt. (2.62)

The drift parameter is the difference between the interest rate r and a constant
dividend q. We recall the no arbitrage vanilla option price Pbs

0 at the instant 0 is given
by the Black-Scholes formula [4], which we recall for sake of simplicity:

Pbs
0 =

S0Φ(d1)− Ke−rTΦ(d2) for a Call

Ke−rTΦ(−d2)− S0Φ(−d1) for a Put
(2.63)

where:
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d1 =

log
(

S0
K

)
+

(
r + σ2

2

)
T

σ
√

T

d2 = d1 − σ
√

T Φ(d) =
1√
2π

∫ d

−∞
e−

x2
2 dx.

Let us use the following notation for the payoff function H:

H(St) =

{
max{ST − K, 0} for a Call
max{K− ST, 0} for a Put

In the following we indicate the expected value of a random variable X with E[X]

and the indicator function of an interval ]a; b[ with 1]L;U[(x).
The prices of a knock-in and knock-out barrier option at time t = 0, with underlying
St and pay-off function H(St), are expressed in the following way:Pout

0 = e−rTE
(

H(ST)∏t∈[0;T] 1]L;U[(St)
)

Pin
0 = Pbs

0 − Pout
0 .

(2.64)

We decompose the time interval [0; T] with N equidistant points 0 = t0 < ... <
tN−1 = T and we indicate the value of the underlying at the instant tn and the dis-
cretization step respectively with the symbols Sn and h; for each n, the variables
H(SN) and 1]L;U[(Sn) are uncorrelated. Under such assumptions, the following ap-
proximations of the knock-out and knock-in barrier option prices are valid:Pout

0 ≈ e−rTE[H(SN−1)]∏N−1
n=0 E

[
1]L;U[(Sn)

]
Pin

0 ≈ Pbs
0 − Pout

0 .
(2.65)

At each step n, our numerical procedure consists in approximating the value Sn

of the previous system by the mean of M particles and in estimating the price values
in (2.65) by a Monte Carlo approach. More in detail, our procedure consists of the
following steps:

a. generation of a number M of the particles S(m)
n , with 1 ≤ m ≤ M and 0 ≤ n ≤

N − 1;
b. rejection of the underlying values (the particles) with the lowest probability to

stay in the interval ]L, U[;
c. determination of the values in (2.65).

We set Xt := logSt and we transform the system (2.62), obtaining:

dXt

dt
= µ + σ

dWt

dt
. (2.66)
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The numerical solutions X(m)
n of this equation, which represent the logarithms of

the particles S(m)
n , are found by applying a first-order numerical method as follows:

X(m)
n+1 = µm

n +
√

hσz(m)
n+1 z(m)

n+1 ∼ N(0; 1) µm
n = X(m)

n + hr

Next step consists in (re)sampling such particles. This is achieved by defining
two suitable functions g and G in the following way:

g(X(m)
n+1; X(m)

n ) := P(X(m)
n+1 ∈] ln L; ln U[ | X(m)

n ) (2.67)

=
1

σ
√

2hπ

∫ log U

log L
e−

(x−µm
n )2

2h2σ2 dx.

G(X(m)
n+1, X(m)

n ) :=

g(X(m)
n+1; X(m)

n ), if X(m)
n+1 ∈] log L; log U[

0, otherwise.
(2.68)

We briefly explain the re-sampling technique. We only choose the particles with
the highest values of the function G. At each step, we sum the values of the function
G until its sum does not become greater than a drawn uniform number uk, with k
an integer, and we indicate the number of the addends with sk: at this point, we set
all the previous particles equal to sk-th particle. For each time step, this procedure
stops when the sum of such indices sk is equal to M, in order to consistently obtain
a number M of particles.
Eventually, estimators for the knock-out and knock-in price Pout and Pin have been
determined according to the law of large numbers:

Pout
0 = e−rT

(
1
M ∑M

m=1 H
(

S(m)
N−1

))
∏N−1

n=0
1
M ∑M

m=1 1]L;U[

(
S(m)

n

)
Pin

0 = Pbs
0 − Pout

0 .
(2.69)

The input variables for the pricing algorithm are the upper bound T of the time
interval, the number N of time steps, the number M of particles at every time step,
the barriers L and U, the strike price K, the risk-free interest rate r, the assumed con-
stant volatility σ, the spot value of the underlying S0, the theoretical Black-Scholes
vanilla price Pbs

0 .
The algorithm will eventually output the knock-out barrier option price Pout

0 and the
knock-in barrier option price Pin

0 .
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Algorithm 3 Algorithm for Barrier Option pricing via Particle Filtering

Require: T, M, N, L, U, K, r, σ, S0, Pbs
0

Ensure: P(out)
0 , P(in)

0

X(m)
1 = log S(m)

0 ; h =
T
N

m = 1, ..., M. Initialization

for n = 1, N − 1 do
for m = 1, M do

X(m)
n+1 = X(m)

n + hr +
√

hσz(m)
n+1; z(m)

n+1 ∼ N(0; 1).

µm
n = X(m)

n + hr. Generation of the values X(m)
n

g(X(m)
n+1; X(m)

n ) =
1

σ
√

2hπ

∫ ln U

ln L
e
− (x−µm

n )2

2(hσ)2 dx.

if X(m)
n+1 ∈] ln L; ln U[ then

G1(X(m)
n+1; X(m)

n ) = g(X(m)
n+1; X(m)

n ) G(X(m)
n+1; X(m)

n ) =
G1(X(m)

n+1)

∑M
k=1 G1(X(k)

n+1; X(k)
n )

.

else G(X(m)
n+1; X(m)

n ) = 0. Computing of the functions g and G
end if

end for

for m = 1, M do (G = 0 j = 1 u(m) ∼ Uni f orm(0, 1))
while G < u(m) and j ≤ M do Re-sampling of the particles.

G =
j

∑
k=1

G(X(k)
n+1); X(k)

n ) j← j + 1.

end while

X(k)
n+1 = X(j)

n+1; G(X(k)
n+1; X(k)

n ) = G(X(j)
n+1; X(j)

n ) k = 1, ..., j− 1.

end for
end for

S(m)
n = exp(X(m)

n ); Pout
0 = e−rT

(
1
M

M

∑
m=1

H
(

S(m)
N−1

)) N−1

∏
n=0

1
M

M

∑
m=1

1]L;U[

(
S(m)

n

)
Pin

0 = Pbs
0 − Pout

0 . Option pricing





45

Chapter 3

Option pricing and Greeks
evaluation: numerical evidence

In this chapter we are going to illustrate the main results we have obtained by pricing
several types of financial derivatives by means of the described numerical methods,
and we will furthermore compare such results.
In section (3.1) we will present the results concerning the classical Black-Scholes
framework: we will discuss the error resulting from each technique; we will enumer-
ate and comment the results for pricing and eventually for the Greeks calculation.
In section (3.2) we will show the main results regarding the Heston model.

3.1 Numerical results for Black-Scholes model

We provide several numerical experiments: a vanilla American option, an American
basket option with two underlyings and eventually a barrier option. We calculated
the prices by means of RBF and we studied the change in the result with respect to
different shape parameters ε. In all experiments we use multiquadrics and Gaussian
radial basis functions. We used market data as inputs.
Furthermore, we compare Greeks calculated via finite difference methods and RBF-
PUM expressions. In order to do this, we choose a step of circa 0.1, which allows
for an accurate FDM result and for a direct comparison between the two methods.
Eventually, we present the results of the Particle Filtering algorithm to price a barrier
option and we compare them to a standard Monte Carlo algorithm.

3.1.1 Pricing comparison via RBF and FDM

We start by applying the described methods to price an American vanilla option. In
figure (3.1) we show the calculated price of an American call option with RBF meth-
ods, varying with respect to underlying price. We used real data to price an option
with strike price 225 USD on the Apple stock, with maturity 16-11-2018 and pricing
time 10-09-2018. We considered a fixed dividend of 2.72%, a fixed market implied
volatility of 26.33 and we considered OIS as risk free rate, equal to 198 bps on the
valuation date.
We chose a penalty term of 0.05: numerical experiments showed that the shape of
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FIGURE 3.1: American Call Option price in USD via RBF methods,
compared with Black Scholes classical solution.

the solution becomes sensitive to the penalty term choice if it is bigger than 1. In-
deed, in this case the price of the option becomes negative for low underlying prices.
Eventually, we chose a shape parameter ε equal to 1.5 for Multiquadrics and 0.7 for
Gaussians: we noticed that for very low ε values the matrix of coefficients A be-
comes singular. Both basis functions performed well: the choice of applying PU
method improves the results in case of Multiquadrics, which otherwise could prove
quite unstable [8], [38].
We also added a comparison with the MATLAB function that calculates the value of
an European option with the same parameters: opting for a penalty term equal to 0,
we recover the European case, in line with theory, as showed in figure (3.2).

We priced an Americal Call Basket Option, with two underlyings having a cor-
relation of 0.94 ≈ 1. We considered as underlyings the stocks of CitiGroup and
Morgan Stanley, with implied volatilities of respectively 23.21 and 22.60; respective
dividends of 1.41% and 1.05%; a strike price of 44.62 USD, which corresponds to
100% of Morgan Stanley starting price. The risk free parameter is set to 218, which
is the value of OIS on the pricing date. We chose a penalty parameter of 10−4 and
a shape parameter ε = 1. Resulting price surface is represented in figure (3.3). In
figure (3.4) we show how a bad choice of shape parameters and penalty parameters
may easily result in the failure of RBFs interpolation.
Moreover, we price knock-out call barrier options with the same input data of the
American call, with one underlying and barriers equal to 600 USD and 700 USD. We
show the results in figure (3.5) and (3.6). In the first figure, we can notice the payoff
at time t = 0 with its typical discontinuity. In the second figure, we see how the
discontinuity is smoothed way down to the option value at time t = T of expiry.
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FIGURE 3.2: Comparison between European option with analytical
solution of Black Scholes and RBF method with a null penalty term.

Price in USD.

FIGURE 3.3: American call basket option price in USD via RBF.

3.1.2 Pricing comparison via standard MC and sequential MC

In this section we compare the standard Monte Carlo method and the improved
sequential Monte Carlo. More in detail, we have studied the pricing problem of a
knock in down put with a single barrier B (i.e. in our model we have set L = −∞ and
U = B), with Volkswagen company stocks as underlying and 6M EURIBOR as the
risk-free interest rate. We have applied our procedure and compared the values and
the ones of a standard Monte Carlo method (as presented in [42]) with the real price
P = 0.36e for different values of N and M between 10 and 100. In the following we
list all the values of the input variables:

(r, q, S0, B, K, σ, T, Pbs
0 ) = (0.0056, 0.00005, 75, 100, 0.09, 1 year, 78.46e).
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FIGURE 3.4: American call basket option price in USD via RBF: results
in case of unsuitable shape and penalty parameters.

FIGURE 3.5: American call barrier option price in USD via RBF: pay-
off at time t = 0.

We show the results through table (??), constructed in the following way: i) the
first and the second column contain respectively the values of N and M; ii) the third,
the fourth and the fifth columns contain respectively the estimations of the price by
the algorithm described in section (2.3.1) (indicated with SMC), the corresponding
absolute error values (indicated with Error SMC) and the average time to complete
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FIGURE 3.6: American call barrier option price in USD via RBF: solu-
tion at time of expiry.

a simulation (indicated with Time SMC); iii) the sixth, the seventh and the eighth
columns contain respectively the approximations of the price by the standard Monte
Carlo (indicated with MC), the corresponding absolute error values (indicated with
Error MC) and the average time to complete a simulation (indicated with Time MC).
All the numerical values have been expressed in Euro.
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N M SMC Error SMC Time SMC (seconds) MC Error MC Time MC (seconds)
100 20 0.23 0.14 0.05 0 0.36 0.04
80 80 0.55 0.19 0.18 0.73 0.37 0.01
80 20 0.35 0.01 0.06 0.51 0.15 0.003
60 50 0.16 0.26 0.09 0.77 0.41 0.004
60 40 0.34 0.02 0.12 0.21 0.15 0.02
60 30 0.37 0.01 0.06 1.43 1.07 0.003
40 50 0.04 0.33 0.07 1.23 0.87 0.003
40 20 0.74 0.39 0.03 1.05 0.7 0.003
20 50 0.43 0.07 0.07 0.34 0.02 0.01
20 20 0.84 0.48 0.03 0.85 0.49 0.003
10 20 0.78 0.42 0.01 1.49 1.13 0.003
10 100 0.38 0.02 0.04 0.83 0.47 0.003
100 100 0.60 0.24 0.43 0.69 0.33 0.01
100 150 0.42 0.07 0.47 1.06 0.70 0.03
150 150 0.60 0.24 0.64 0.33 0.03 0.13
200 150 0.44 0.08 0.83 0.79 0.43 0.02
200 200 0.68 0.31 1.11 0.99 0.63 0.02

TABLE 3.1: Simulations of barrier option prices for different values of
N and M.

Our results suggest that:

• for high values of N and M both the sequential and the standard Monte Carlo
methods have similar results on average;

• for low values of N and M the sequential Monte Carlo method gives better
results than a standard Monte Carlo procedure.

In conclusion, our method is more suitable than a standard Monte Carlo with respect
to low values of N and M: this is due in particular to three factors: the discretization
of the underlying, the re-sampling technique and the chosen price estimator.

3.1.3 Greeks calculation

In this section we show the main results concerning Greeks calculation. We calcu-
lated Delta, Gamma and Theta for different kind of options and compared them with
the corresponding finite-difference results.
We remind that in case of Monte Carlo pricing, Greeks are usually calculated via
finite-difference method as well: thus, we will focus on Greeks generated by means
of RBF and FDM.
Especially for cases in which finite-difference is not sufficient to provide a smooth
solution, RBFs show themselves to be definitely superior.
In figures (3.7, 3.8, 3.9) we show Delta, Gamma and Theta functions calculated by
means of RBF. The solutions are smooth: especially in case of Gamma, we can notice
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an improvement of the smoothness around the peak of the function, when compared
with the finite-difference solution.

FIGURE 3.7: American call option delta calculated via RBF and FDM.

FIGURE 3.8: American call option gamma calculated via RBF and
FDM.

Eventually, we show our results in case of a knock-out barrier option. It is a
well-known issue to provide smooth Greeks for this kind of product because of the
discontinuity caused by the barrier. Via finite-difference methods, we hardly get a
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FIGURE 3.9: American call option theta calculated via RBF.

continuous function; by means of RBF formulae, we indeed obtain satisfying results
(3.10, 3.11). We also show in Figure (3.12, 3.13) the finite-difference solutions for
Delta and Gamma.

FIGURE 3.10: American call knock-out barrier option delta calculated
via RBF. Barrier level at 600 USD.
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FIGURE 3.11: American call knock-out barrier option gamma calcu-
lated via RBF. Barrier level at 700 USD.

FIGURE 3.12: American call knock-out barrier option delta calculated
via FDM. Barrier level at 600 USD.

3.1.4 Error estimation

Let us denote the time step as ∆t. For finite difference methods, the error can be
estimated as:

EFD(t) = O(∆t) + O(∆S2), (3.1)
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FIGURE 3.13: American call knock-out barrier option gamma calcu-
lated via FDM. Barrier level at 700 USD.

for forward difference methods, while for central difference methods we have:

ECD(t) = O(∆t2) + O(∆S2). (3.2)

In [43], the error of RBF-PU methods with a fixed partition number is estimated
as:

||ERBF−PU(t)||∞ ≤ Ce−
γ√
∆S max

0≤τ≤t
max

i
||V(τ)||N , (3.3)

where γ is a constant which is taken as the minimun over the patches. Equation
(3.3) results in an exponential convergence rate for RBF-PU methods, in optimal
conditions. Thus, for the same space step ∆S and time step ∆t, we expect a better
result for RBF-PU than for finite-differences methods.
It should be pointed out that FDM may be applied to solve a PDE derived from
(1.12), whose solution is already one of the defined Greeks. Therefore, FDM would
imply a better solution than the proposed one in terms of error and smoothness.
However, it is computationally too expensive to solve a PDE for each Greek: this is
the reason why we compare RBF with the proposed approach, which is in practice
the most common choice.

3.1.5 Implied Volatility Interpolation via RBF

We conclude the section regarding the Black-Scholes model results with the BS-
implied volatility surface reconstruction via RBF methods.
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By selecting several, common basis functions such as Gaussians and inverse mul-
tiquadrics, we were not able to perfectly recover the surface by also matching the
values of the initial volatility points. By trial and error - and also helped by the idea
of how the surface behaves at the limit regions - we finally obtained a smooth sur-
face via thin plate splines or via multiquadrics: such functions better fit the final type
of shape we aim for. We chose a shape parameter quite high: ε = 40, while in our
pricing experiments we dealt with very small epsilon values.
We used Apple stocks data, and considered the BS-implied volatility for strikes vary-
ing between 80% and 120% of the stock price on valuation date as shown in table
(3.2) and in figure (3.14). Resulting interpolated surface is shown in figure (3.15).
Results seem to be promising given the sufficiently monotone and convex surface
recovered via RBF. Further improvements would involve data filtering in order to
filter out any initial data point which already violates theoretical constraints for an
arbitrage-free volatility surface.

Maturity/Strike 80 % 90 % 95 % 97.5 % 100 % (ATM) 102.5 % 105 % 110 % 120 %
05-Feb-21 75.44 56.98 51.06 50.45 50.62 51 51.79 56.78 69.21
12-Feb-21 62.77 50.81 47.46 47.28 47.34 47.33 47.43 49.57 57.58
19-Feb-21 56.89 47.27 45.16 44.85 44.64 44.5 44.57 45.92 51.45
26-Feb-21 54.15 46.74 44.88 44.61 44.53 44.52 44.58 45.29 49.87
05-Mar-21 52.34 46.39 44.85 44.55 44.44 44.45 44.53 45 48.33
12-Mar-21 51.71 45.80 44.77 44.49 44.3 44.17 44.12 44.4 47.1
19-Mar-21 50.45 45.49 44.71 44.48 44.3 44.17 44.11 44.29 46.33
16-Apr-21 46.82 43.82 43.29 43.15 43.05 42.99 42.97 43.09 44.19
18-Jun-21 45.09 43.20 42.88 42.78 42.7 42.62 42.55 42.43 42.55
16-Jul-21 43.84 42.46 42.12 41.99 41.87 41.77 41.68 41.58 41.77
17-Sep-21 43.03 41.97 41.63 41.49 1.36 41.24 41.14 40.99 40.94
21-Jan-22 42.19 41.38 41.17 41.1 41.03 40.97 40.91 40.80 40.6
17-Jun-22 41.42 40.84 40.71 40.67 40.64 40.62 40.60 40.55 40.46
16-Sep-22 40.61 40.21 40.14 40.12 40.11 40.1 40.1 40.09 40.06
20-Jan-23 39.63 39.41 39.39 39.4 39.41 39.43 39.45 39.5 39.60
17-Mar-23 40.06 39.97 40 40.02 40.05 40.05 40.13 40.22 40.39

TABLE 3.2: Input data points for the implied volatility surface in func-
tion of strike and maturity. In the first row, values of strikes in per-

centage; in the first column, corresponding maturities.

3.2 Numerical results for Heston model

In this section we present the option pricing and Greeks results under the Heston
model. We conclude the section with error estimates.
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FIGURE 3.14: Input data points for the implied volatility surface.

FIGURE 3.15: Resulting interpolated volatility matrix via RBFs.

3.2.1 Option pricing

In all experiments we use multiquadrics as radial basis functions: we opted for a
common type of RBF which is also easy to implement together with its derivatives.
Multiquadrics are not in general the optimal choice for instability reasons. However,
by also applying PUM, results were already satisfying for a selected range of values
for the shape parameter. We used market data as inputs.
In Figure (3.16) we show the main examples of grid we worked with: a classical
equidistant grid and a non-uniform grid, with a greater density of points around the
critical strike region. In Figure (3.17) we show the prices of a European call option
with maturity of half a year, risk-free parameter r = 0.03, ρ = −0.05, k = 2, σ = 0.25
and θ = 0.0225, for two different grids.
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(A) Non-uniform Underlying per Volatil-
ity grid.

(B) Equidistant Underlying per Volatility
grid.

FIGURE 3.16: Example of two different grids: in Figure (3.16a) the dis-
tribution of points is denser around the strike region; Figure (3.16b)

shows an uniform grid.

(A) Price calculated using an uniform grid. (B) Price calculated using a non-uniform grid.

FIGURE 3.17: Price of a European call option via RBF resolution of
Heston PDE with different grids.

We conclude from our pricing experiments that an uniform grid is sufficient to
estimate an accurate enough price for a European call option. This choice also allows
for a direct comparison of RBF methods with mesh-dependent ones, without having
to increase the complexity of calculation and the computation time of, for example,
a finite-difference scheme. Furthermore, we noticed that by increasing the density of
the points around the strike region we also increase the chance of creating interpola-
tion matrices which are badly scaled and ill-conditioned: this resulted in the failure
of RBFs.
In pictures (3.18) and (3.19) we show the prices of a European option calculated with
both methods for the same inputs and grid. In picture (3.20) we plotted the absolute
difference between RBF and ADI prices.

In particular, the prices of a European vanilla option with volatility ν = 1 and
underlying value S = 4 units of currency, which we chose as limit values of our grid,
are reported in table (3.3).
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FIGURE 3.18: Price
of a European option
modeled with Hes-
ton model via RBF

methods.

FIGURE 3.19: Price
of a European option
modeled with Hes-
ton model via ADI

scheme.

FIGURE 3.20: Absolute difference between RBF and ADI prices.

TABLE 3.3: European call option prices in USD calculated with dif-
ferent methods.

European call option price
RBF Method ADI Method Analytical for-

mula
3.0013 3.2251 3.0013
3.0021 3.0056 3.0022
2.1561 2.1439 2.1566

For the same input grid, RBF almost exactly matches the price generated by He-
ston analytical formula on most cases, up to an order of 10−05 in the worst cases.
On the other hand, ADI is not able to equally perform. Differences seem to increase
with higher underlying and volatility values: absolute differences between ADI and
the analytical formula may reach the order of 10−02. Furthermore, we noticed RBF
produce results closer to the analytical formula in case of longer maturities of the op-
tion. Therefore, we can conclude RBF methods provide a more precise and efficient
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tool to solve Heston PDE.

3.2.2 Greeks calculation

We will now present the results for Delta and Gamma profiles. In Figure (3.21) we
show the surfaces created by applying the derivatives of RBFs to the grid points: by
multiplying for the lambda coefficients at today’s time t = 0, we can finally smooth
out the surfaces and obtain the Delta and Gamma of the option.
In Figure (3.22) we show the Delta profile of the same European call option, plotted
against the volatility and underlying values. Eventually, in Figure (3.23) we present
the Gamma profile of said option. Resulting surfaces are reasonably smooth, and
we were able to obtain them without slowing down the computation of the pricing
algorithm: this is a clear improvement with respect to mesh-dependent schemes, for
which we are required to increase the computation time to obtain a not so smooth
Delta or Gamma profile.

(A) First RBF derivatives surface. (B) Second RBF derivatives surface.

FIGURE 3.21: Surfaces representing the first and second derivatives
RBF matrices with respect to the underlying, applied at the grid

points.

FIGURE 3.22: Delta profile of a European call option calculated by
RBF methods in a Heston model framework.
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FIGURE 3.23: Gamma profile of a European call option calculated by
RBF methods in a Heston model framework.

3.2.3 Error estimation

We define the errors respectively committed by RBF and ADI in calculating the so-
lution to the Heston model as:

∆uRBF
max = maxK|uRBF(S0, ν0, 0)− ū(S0, ν0, 0)|, (3.4)

∆uADI
max = maxK|uADI(S0, ν0, 0)− ū(S0, ν0, 0)| (3.5)

where ū(S0, ν0, 0) denotes the solution computed by applying the ADI method
with a greater number of steps. We calculate the error as a function of time for both
methods. As shown in figure (3.24), ADI seems to have a faster convergence to a low
error, while RBF solution presents a larger error at the beginning of the computation
and later starts to lower to a reasonable error value, outputting a solution faster than
ADI.

FIGURE 3.24: Error results for a European option under the Heston
model.
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3.3 Operational framework

In many application scenarios, processes make use of huge amounts of interrelated
data: this explains the necessity of techniques for their classification and managing.
Internet of Things (IoT) frameworks are very suitable to this kind of contexts for sev-
eral reasons, in particular: the diffusion of sophisticated tools such as smart phones,
tablets and smart watches; the possibility of real time data; efficient communication
models among devices, e.g. Device-to-Device Communications, i.e. two or more de-
vices that directly connect and communicate between one another; Device-to-Cloud
Communications, where the IoT device connects directly to an Internet cloud service
like an application service provider to exchange data and control message traffic;
and Device-to-Gateway Model, where there is an application software operating on
a local gateway device, which acts as an intermediary between the device and the
cloud service and provides security and other functionality such as data or protocol
translation.
In banking context, IoT applications are able to improve underwriting processes for
several purposes: obtaining more information of goods; monitoring the condition
of different assets market; helping traders to choose the best opportunity. In par-
ticular, data retrieving, analysis e management are usually known as complex task
in financial contexts. In an IoT system data-flow, processes represent the knowl-
edge base used in mathematical models for credits and financial products. Several
sources such as distributed database systems, portals and local information are gen-
erally used as input of inferring models.
In this section we describe an overview of software tools, methodologies and strate-
gies in real data-flow system. In (3.3.1) we describe an example of a real data-flow
system; in (3.3.2) we focus on software commonly used and we eventually present
a simple parallelization experiment in (3.3.3). We will mainly refer to our work in
[parallelJournal] and [damis].

3.3.1 Databases and data flow

In Finance, data can be involved in a complex and long process which allows the
financial institution to properly treat and make advantage of them [30]. Data losses,
misinterpretation and optimization are one of the main issues financial - and non -
institutions must face.
We can wrap up the data-flow process in three main phases:

• Data retrieving: the financial institution retrieves data from more than one
source, often causing operational risk.

• Data analysis and management: data are extracted from the database to be
used for analysis purposes.

• Data reporting: data are transferred again to the main database and/or exter-
nally reported.
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This general and simplified scheme is represented with more details in figure (3.25).

FIGURE 3.25: Data-flow example.

The ideal situation for a financial institution would be gathering all data from only
one database. Nowadays, Business Intelligence is taking care of this aspect and is
facing the tough challenge of joining old databases in a new, functional one.
Typically, given the huge size of banks and their step by step adjustment to new soft-
ware and technologies, it is still hard to combine all data, particularly when treating
historical ones. This is the reason why also - if not especially - huge financial insti-
tutions are still working with more than one database, generating overlapping data
which in general do never exactly match.
We will here provide an example of how databases containing data for a Risk Man-
agement department could be structured. We can picture a database for credit risk
data and a second database for market risk data retrieval.

• Credit Risk database.

This database contains all data for credit risk purposes. Data are gathered,
filtered, checked and finally used as input for credit risk models. Eventually,
data are reported to other departments or saved in the main database, such
that it will be possible to use them again. Given the different goals, various
libraries are available in the database:

1. A first library would contain historical data. It could be a copy of an old
database, or just a static collection of tables ready to be read and used.

2. A second library contains external sources data, that are uploaded and
remain static or/and are continuously updated.
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3. Some calculations can be performed directly in the database, so a library
will be used to store all the calculators and their results. These data are
read to be analyzed.

4. When analyses are performed, results are stored in a particular library
that everyone can access from their local environment.

5. Since calculations and analyses may take a long time, it is useful to pro-
duce tables in intermediate steps to check the process status. Given the
large amount of resulting data, it is better to store these intermediate re-
sults in a local library which will be deleted at the end of the process.

In each library, tables with all data can be selected and filtered or exported.
We can assume data are uploaded at different time intervals: new loans can be
added daily; calculators perform monthly; etc.

• Market Risk database. A Market Risk database will contain more data coming
from external sources, often not free. Data are used to monitor traders and
bank portfolios, develop and validate market risk models, and price financial
instruments with advanced techniques.

Data will be provided by:

1. External sources:

a. Mainly Bloomberg, with a specific add-in that allows to download
market risk data directly to the database, minimizing operational risk;

b. Markit, Superderivatives, TriOptima etc., id est further market data
providers similar to Bloomberg. Excel files can be manually down-
loaded from their websites and later properly formatted and loaded
into the database.

2. Internal sources: traders, who upload data regarding every new product
they sell or buy. Usually this process is manually done, producing opera-
tional risk. Market risk managers or Product Control analysts check data
quality of inserted data.

3.3.2 Software

Data are processed to be filtered, checked, and eventually used as input for models
or analyses. There are different types of software that can be chosen for these tasks.
We will present the most common in financial world.

1. Data Management Tools.
To manage databases and perform filters, data quality check or to build basic
calculators, financial institutions use SQL Management Studio or/and SAS.
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a. SAS. Useful for data storage and filtering, but commonly preferred be-
cause of its predefined models for Statistics and Data Analysis. SQL pro-
cedure allows to use SQL syntax; SAS programming language is not easy
to fully understand. User-friendly, it can be used even without knowing
how to program. Not fast for modelling as other programming languages
could be.

b. SQL Management Studio. Specialized in data storage and filtering, it can
easily produce reports. It is free-source and very fast. The syntax is clear
and easy to learn.

2. Data Analysis and Modelling Tools.
Various programming languages can be chosen for modelling, depending on
the specific requirements. Some languages are faster than others, but they take
time to efficiently program.

a. R/RStudio. The most common for data analysis and Statistics. Free-
source, can be adjusted to become object-oriented. Usually fast, it can be
faster thanks to parallel computing techniques. C + + and Fortran pro-
grams can be easily ran in R. It works better with csv files. Easily linked
to SQL.

b. MATLAB. Not free-source, but more reliable. It offers packages for paral-
lel computing, global optimization, financial modelling. Already fast and
with a user-friendly IDE. Not object-oriented. Easily linked to Excel and
SQL.

c. Python. Free-source, it is fast and very precise. Good for heavy computa-
tional tasks.

d. C++ and Fortran. Faster than other languages, but they require more
time for coding. Object-oriented. Definitely more precise in computa-
tion. They are preferred for heavy computational tasks.

Financial institutions usually prefer to use programs/types of software they have
to pay for, since this allows them not to take responsibility on the results of the
model. Indeed, if a particular package of a free-source software contains a bug, it
will be the bank’s responsibility to justify the mistake.
Eventually, data are ready to be reported to an external institution or to another
department. Excel files are the easiest way to send data and tables, but more sophis-
ticated software can be used. Data-flow can be automatized so that the operational
risk of copying and pasting in excel disappears. E.g., reports can be produced di-
rectly with RStudio, which performs calculations on input data and then returns
dataframes or datatables that can be already passed to the report.
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Packages such as Rmarkdown and Knitr allow to use only one function to create a re-
port, just passing the input parameters to the function. The process is fully described
in figure (3.26): an .Rmd file with markdown text (similar to latex syntax) and R code
chunks is passed to Knitr, that executes the chunks and creates a new markdown file
with extension .md. Finally, the .md file is processed by pandoc that creates the final
output: a Word file. Other types of output can be selected, such as a pdf or htlm file,
opportunely choosing LaTeX or other document converters.

FIGURE 3.26: Rstudio: final output creation.

The purpose of data analysis and quality check in our example is to furnish input
data for risk models: hence, models heavily depend on data retrieving. This concept
is well shown in figure (3.27).

FIGURE 3.27: Data modelling: from data retrieval to resulting output.

3.3.3 Parallelization techniques

Several processes in Quantitative Finance require the usage of high-performance
computing and efficient software. Different programming languages, modeling tools
and fast calculators are employed for better performances.
Parallel Computing techniques may be useful in different kind of issues:

• Data retrieval: split the incoming amount of data in more buckets to channel
to the database to obtain a low latency with cluster machines;
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• Monte Carlo simulation: chunks of the code can be parallelized since they are
independent in the calculation. Up to a number of simulations in time, a bucket
can be created. Depending on heavier products, there will be uneven blocks;

• Derivatives Pricing: data parallel programming languages such as High Per-
formance Fortran for advanced applications (HPF+) with extensions for clus-
ters of symmetric multiprocessing (SMPs) have been employed in derivatives
pricing, when the algorithms are of lattice type.

Massive daily calculations require the usage of specific tools, such as Graphics Pro-
cessing Unites (GPUs) (3.28):

• Monte Carlo VaR: all the products in the portfolio are re-priced with stressed
values in the future time. All the simulations are sorted, which is also an ex-
pensive operation.

• XVA calculations: the main issue where GPU computing makes the real differ-
ence. CVA, DVA, etc. involve the simulation of at least 1000 point, daily and
in future time until the contract maturity for each risk factor: 1000 · 17600 · 3
points for a single contract of maturity 50y and dependent on 3 risk factors.
This calculation is daily for all the products in the portfolio. Eventually, expo-
sures are computed and collateral is modeled and added.

FIGURE 3.28: Gpu outline.

As an example of parallelization techniques, we will show a simple interest rate
model implementation using parallel computing techniques in R: the one-factor Hull-
White model under risk-neutral measure [HW2].
We consider the filtered, real-world probability space (Ω,F , {Fn},P) and the mar-
tingale measure Q, associated with a classical bank account numeraire B(t). The
One-factor Hull-White model is represented by the following equation:

dr(t) = (θ(t)− ar(t))dt + σdW(t). (3.6)



3.3. Operational framework 67

where a - the mean reversion parameter - and σ - the volatility - are constants; r(t)
is the interest rate at time t; θ is the mean reversion speed at time t and W is a one-
dimensional Wiener process.

The solution of this equation is provided by:

r(t) = EQ[r(t)|Fs]±
√

VarQ(r(t)|Fs) · Z (3.7)

EQ[r(t)|Fs] = r(s)e−a(t−s) + α(t)− α(s)e−a(t−s) (3.8)

VarQ(r(t)|Fs) =
σ2

2a
[1− e−2a(t−s)] (3.9)

α(t) = f (0, t) +
σ2

2a2 (1− e−at)2 (3.10)

f (0, t) = −∂lnP(0, t)
∂t

(3.11)

where Z is a standard normal random variable, f (0, t) is today’s instantaneous for-
ward rate for maturity t and P(0, t) is today’s discount bond price for maturity t.
To be able to use parallel computing in R, the package parallel is required. We use
the command n_cores = detectCores() to calculate the number of available cores and
then we subtract one to that number: we will create n− 1 clusters.
To simulate this simple model, we retrieve all data from the database and from
Bloomberg. We precisely need the forward rates and the bond prices. The mean
reversion a and the volatility σ are given by a proper calibration. We choose EURI-
BOR 6M as yield curve and NumSims = 10000 as number of simulations.
he simulation is implemented in R language, on a multicore, x86-64 Windows ma-
chine. We can calculate α(t) in R, since it is still fast, and then export it with all the
other inputs to the clusters through the function clusterExport(cluster, "input_name",
envir=environment()). We export the function that calculates the rates and, at the same
time, we run the function by using clusterEvalQ(cluster, HW_Rates()).
We conclude that in this case the parallel technique speeds up the calculation, pro-
ducing three different results, i.e. 10.000 · 3 = 30.000 simulations, in about 40 sec-
onds. The same calculation in R without parallel computing takes approximately 20
seconds for only one result (10.000 simulations). Furthermore, calculations can be
even faster if we include in the cluster the α function and the calculation of other
inputs, since exporting large data to the clusters could take further time.
We present the results for the calculated forward rates in (3.29). Given the spiky
behavior of the forward rates, the simulated Hull White rates will replicate such be-
havior for the first days. We show Hull White rates plotted for the 100-th simulation
in (3.30).
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Eventually, we report in table (3.4) part of the results of the simulation. We can ob-
serve from the table how the results become more and more volatile as we go further
in time.

FIGURE 3.29: Forward rates.

FIGURE 3.30: 100th Simulation of Hull White Rates.
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TABLE 3.4: Hull White Rates simulation. We indicate by n the number
of simulations.

Hull White Rates Simulation.
Days n = 1 n = 2 n = 500 n = 9999 n = 10000
1 -0.0033 -0.0032 -0.0033 -0.0033 -0.0033
10 -0.0041 -0.0039 -0.0033 -0.0031 -0.0032
100 -0.0039 -0.0002 -0.0012 -0.0059 -0.0039
1000 -0.0056 0.0059 0.0068 -0.0016 0.0055
2000 0.0077 0.0076 0.0103 0.0064 0.0192
3000 0.0142 0.0149 0.0198 0.0049 0.0315
3650 0.0168 0.0210 0.0063 0.0152 0.0374
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Conclusions

In this thesis we have explored the usage of Radial Basis Functions numerical meth-
ods to solve mathematical problems in Finance, such as the pricing of financial
derivatives and the calculations of Greeks. Our main contributions lie in extending
such methods to the pricing of more complex financial derivatives, and in deriving
the theoretical formulae to numerically compute the associated Greeks.
We started by applying RBFs to a standard Black-Scholes equation, and we evolved
the PDE step by step by adapting the methods to the new hypotheses, dealing in
particular with the Heston model. Furthermore, we compared the results to the
most reknown techniques, such as Finite Difference Methods. We also reproposed
an alternative Monte Carlo, namely the Particle Filtering numerical technique, and
commented the results.
Overall, our method outperformed FDMs in both Black-Scholes’ and Heston model’s
cases: resulting prices’ plots seem to be smoother than the corresponding FDMs
ones. Our results also show a gain in efficiency when choosing RBFs: we can de-
rive the Greeks almost for free - i.e. without much more computational effort - with
respect to the FDMs and Monte Carlo cases. Moreover, RBF-derived Greeks are
clearly smoother. Eventually, we have also set up the framework for eventual future
research by showing how to construct a RBF interpolation of an implied volatil-
ity surface. Further work could consist in extending the idea to local or stochastic
volatility surfaces.
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Appendix A

Stability and Trade-off principles
for Radial Basis Functions

In this appendix we are going to summarize the main properties of radial basis func-
tions. Being radial basis functions an approximation method, it is meaningful to
study its condition number. The condition number of an interpolation method mea-
sures how much its output can vary for a small change in the input argument. By
doing this, we can measure how sensitive the method is to changes or errors in the
input, and how much the error in the input will modify the error in the output.
Let us consider the interpolation matrix A associated to a given problem, and which
we have defined with entries Aij := Φ(xi − xj) with xi, xj points of the input set X.
Its l2-condition number cond(A) is defined as:

cond(A) := ||A||2||A−1||2 =
σmax

σmin
, (A.1)

where σmax and σmin are the largest and smallest singular values of the interpolant
matrix A. If the matrix A is also positive-definite, the condition number may be
computed as:

cond(A) :=
λmax

λmin
, (A.2)

where λmax and λmin are the largest and smallest eigenvalues of A. Bounds can
be easily found for λmax. In fact, by using Gershgorin’s theorem:

|λmax − Aii| ≤
N

∑
j=1,j 6=i

|Aij| (A.3)

for some i ∈ {1, . . . , N}. Hence, by applying the definition of the interpolant
matrix A we have:

λmax ≤ Nmaxi,j=1,...,N |Aij| = Nmax{xi ,xj}∈X|Φ(xi − xj)|. (A.4)
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Being Φ strictly positive definite, we obtain (see properties of strictly positive
definite functions in chapter (2) [17]):

λmax ≤ NΦ(0). (A.5)

This means λmax will not grow too fast if the input data are decently distributed.
Regarding λmin, several papers have covered the subject [2], [39], [55]. In particu-
lar, Ward and Narkowich establish bounds in terms of separation distance - or, as
sometimes it is referred to, the packing radius - qX of the data points:

qX :=
1
2

mini 6=j||xi − xj||2, (A.6)

which we can imagine as the radius of the largest ball which we can draw around a
data point without intersecting the balls centered in the remaining points. It can be
actually calculated as half the minimum of the matrix of distances.
The dependence of the error on the separation distance qX results in the so-called
first trade-off or uncertainty principle, which consists in the inverse proportion be-
tween accuracy and stability of the radial basis function interpolation. This principle
has led researchers to search for an optimal shape parameter ε which would result in
the best achievable accuracy without deteriorating stability.
The second trade-off or uncertainty principle involves the shape parameter. Stud-
ies such as [12], [33], [59], [21] propose the Contour-Padé integration algorithm to
compute multiquadrics with an extremely small value of ε in order to obtain maxi-
mum accuracy. However, such method is limited to small data sets.
The last but not least, third trade-off or uncertainty principle regards compactly
supported functions. In case of stationary interpolation, we may apply methods
that are numerically stable but are not efficient [46]: convergence is obtained at the
cost of getting densely populated and/or ill conditioned interpolation matrices.
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Appendix B

Catalog of RBFs with Derivatives

In this appendix we provide the main formulae for mentioned RBFs [60], [18].

Guassian RBF
This function is globally supported and strictly positive definite. It is C∞ at the
origin.

φ(r) := e−(εr)2
, (B.1)

d
dr

φ(r) = −2ε2re−(εr)2
, (B.2)

d2

dr2 φ(r) = 2ε2(2(εr)2 − 1). (B.3)

Inverse Multiquadric RBF
This function is globally supported and strictly positive definite. It is C∞ at the
origin.

φ(r) :=
1√

1 + (εr)2
, (B.4)

d
dr

φ(r) = − ε2r

1 + (εr)2
3
2

, (B.5)

d2

dr2 φ(r) = ε2 2(εr)2 − 1

1 + (εr)2
5
2

. (B.6)

Linear Matérn RBF
This function is globally supported and strictly positive definite. It is only C2 at the
origin.

φ(r) := e−εr(1 + εr), (B.7)

d
dr

φ(r) = −ε2re−εr, (B.8)

d2

dr2 φ(r) = ε2e−εr(εr− 1). (B.9)
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Multiquadric RBF
This function is globally supported and strictly conditionally positive definite of or-
der 1. It is C∞ at the origin.

φ(r) :=
√

1 + (εr)2, (B.10)

d
dr

φ(r) =
ε2r√

1 + (εr)2
, (B.11)

d2

dr2 φ(r) =
ε2

1 + (εr)2
3
2

. (B.12)

Thin Plate Splines
This function is globally supported and strictly conditionally positive definite of or-
der 2. First and second derivatives’ singularities at the origin are removable; third
derivative’s singularity is not.

φ(r) := r2log(r), (B.13)

d
dr

φ(r) = r(2log(r) + 1), (B.14)

d2

dr2 φ(r) = 2log(r) + 3. (B.15)

Wendland’s function
This function is compactly supported and strictly positive definite in (R)3. Not dif-
ferentiable at the origin.

φ(r) := max((1− εr)2, 0). (B.16)



77

List of Figures

1.1 Price of a European call option calculated via Black-Scholes formulae,
as function of time and stock price in EUR. . . . . . . . . . . . . . . . . 11

1.2 Delta of a European call option calculated via Black-Scholes formulae. 16
1.3 Gamma of a European call option calculated via Black-Scholes formulae. 18
1.4 Theta of a European call option calculated via Black-Scholes formulae. 18
1.5 Vega of a European call option calculated via Black-Scholes formulae. . 19

2.1 Example of RBF methods application: in (a) scattered data are shown;
in (b) RBF are applied to the knots; in (c) the interpolation produces
the final results [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 PUM: example of sub-domains identifications [49]. . . . . . . . . . . . . 33

3.1 American Call Option price in USD via RBF methods, compared with
Black Scholes classical solution. . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Comparison between European option with analytical solution of Black
Scholes and RBF method with a null penalty term. Price in USD. . . . . 47

3.3 American call basket option price in USD via RBF. . . . . . . . . . . . . 47
3.4 American call basket option price in USD via RBF: results in case of

unsuitable shape and penalty parameters. . . . . . . . . . . . . . . . . . 48
3.5 American call barrier option price in USD via RBF: payoff at time t = 0. 48
3.6 American call barrier option price in USD via RBF: solution at time of

expiry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 American call option delta calculated via RBF and FDM. . . . . . . . . 51
3.8 American call option gamma calculated via RBF and FDM. . . . . . . . 51
3.9 American call option theta calculated via RBF. . . . . . . . . . . . . . . 52
3.10 American call knock-out barrier option delta calculated via RBF. Bar-

rier level at 600 USD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.11 American call knock-out barrier option gamma calculated via RBF.

Barrier level at 700 USD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.12 American call knock-out barrier option delta calculated via FDM. Bar-

rier level at 600 USD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 American call knock-out barrier option gamma calculated via FDM.

Barrier level at 700 USD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.14 Input data points for the implied volatility surface. . . . . . . . . . . . . 56
3.15 Resulting interpolated volatility matrix via RBFs. . . . . . . . . . . . . . 56



78 List of Figures

3.16 Example of two different grids: in Figure (3.16a) the distribution of
points is denser around the strike region; Figure (3.16b) shows an uni-
form grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.17 Price of a European call option via RBF resolution of Heston PDE with
different grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.18 Price of a European option modeled with Heston model via RBF meth-
ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.19 Price of a European option modeled with Heston model via ADI scheme. 58
3.20 Absolute difference between RBF and ADI prices. . . . . . . . . . . . . 58
3.21 Surfaces representing the first and second derivatives RBF matrices

with respect to the underlying, applied at the grid points. . . . . . . . . 59
3.22 Delta profile of a European call option calculated by RBF methods in

a Heston model framework. . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.23 Gamma profile of a European call option calculated by RBF methods

in a Heston model framework. . . . . . . . . . . . . . . . . . . . . . . . 60
3.24 Error results for a European option under the Heston model. . . . . . . 60
3.25 Data-flow example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.26 Rstudio: final output creation. . . . . . . . . . . . . . . . . . . . . . . . . 65
3.27 Data modelling: from data retrieval to resulting output. . . . . . . . . . 65
3.28 Gpu outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.29 Forward rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.30 100th Simulation of Hull White Rates. . . . . . . . . . . . . . . . . . . . 68



79

List of Tables

2.1 Q− 1 is the degree of the polynomial to add to the function to make it posi-

tive definite. RBF with Q = 0 are positive definite [45]. . . . . . . . . . . . . 28

3.1 Simulations of barrier option prices for different values of N and M. . 50
3.2 Input data points for the implied volatility surface in function of strike

and maturity. In the first row, values of strikes in percentage; in the
first column, corresponding maturities. . . . . . . . . . . . . . . . . . . 55

3.3 European call option prices in USD calculated with different methods. 58
3.4 Hull White Rates simulation. We indicate by n the number of simula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69





81

Acknowledgements
Throughout the writing of this dissertation I have received a great deal of support
and assistance.

Prima facie, I would first like to thank my supervisor, Professor Emilia Di Lorenzo,
whose guidance and support were crucial during these years. You provided me with
trust and gifted me with the opportunity to start my journey. Your feedback pushed
me to reach for a higher level of research.

I would like to thank my tutor, Professor Salvatore Cuomo, for the continuous
assistance and perseverance in following my path. Our weekly meetings helped me
sharpen my thinking and showed me the right direction to complete my dissertation.
Your patience and optimism were determining factors in achieving my goals.

In addition, I would like to thank my boyfriend, Alfonso, who sacrificed un-
countable weekends and holidays to spend with me in order to support my research.
I would not be writing a dissertation without your infinite patience and uncondi-
tional faith in me. Finally, I could not have completed this dissertation without the
support of my friends, Roberta and Costantino, Amalia, Giuseppe, for their sympa-
thetic ear every time I needed to be cheered up.

Last but not least, I thank my grandparents: Nonno Sabato, who thought me the
importance of studying and the love for Mathematics since I was a child; and Nonna
Sabina, who used to tell me how important it is to think with my own head in order
to become, one day, an independent woman.





83

Bibliography

[1] I. Babus̆ka and M. Melenk. “The partition of unity method”. In: Int. J. Numer.
Meths. Eng. 40 (1997), pp. 727–758.

[2] K. Ball, N. Sivakumar, and J.D. Ward. “On the sensitivity of radial basis inter-
polation to minimal data separation distance”. In: Constructive Approximation
8 (1992), pp. 401–426.

[3] T. Bjork. “Arbitrage Theory in Continuous Time”. In: Oxford University Press
(2004).

[4] F. Black and M. Scholes. “The Pricing of Options and Corporate Liabilities”.
In: The Journal of Political Economy 81.3 (1973), pp. 637–654.

[5] G.E.P. Box and N.R. Draper. “Empirical Model-Building and Response Sur-
faces”. In: Wiley (1987).

[6] P. Boyle and D. Emanuel. “Discretely adjusted option hedges”. In: Journal of
Financial Economics 8 (1980), pp. 259–282.

[7] M.D. Buhmann. “Radial basis functions”. In: Acta Numerica 9 (2000), pp. 1–38.

[8] R. Cavoretto and A. De Rossi. “On the search of the shape parameter in radial
basis functions using univariate global optimization methods”. In: Journal of
Global Optimizations 2 (2019), pp. 1–23.

[9] S. De Marchi. “Lectures on radial basis functions”. In: (2018), pp. 1–64.

[10] E. Derman and I. Kani. “Riding on a Smile”. In: Risk magazine 7 (1994), pp. 32–
39.

[11] J. Douglas. “Alternating direction methods for three space variables”. In: Nu-
merische Mathematik 4.1 (1962), pp. 41–63.

[12] T.A. Driscoll and B. Fornberg. “Interpolation in the limit of increasingly flat
radial basis functions”. In: Computational Mathematics Applications 43 (2002),
pp. 413–422.

[13] D.J. Duffy. “Finite Difference Methods in Financial Engineering: A Partial Dif-
ferential Equation Approach”. In: Wiley Finance (2006).

[14] B Dupire. “A Unified Theory of Volatility”. In: Derivatives Pricing: The Classic
Collection (1996), pp. 185–196.

[15] B. Dupire. “Pricing with a Smile”. In: Risk magazine 7 (1994), pp. 18–20.

[16] L.C. Evans. “Partial Differential Equations: Second Edition”. In: American Math-
ematical Society (2010).



84 BIBLIOGRAPHY

[17] G.E. Fasshauer. “Meshfree Approximation Methods with MATLAB”. In: Inter-
disciplinary Mathematical Sciences 6 (2007).

[18] G.E. Fasshauer. “Solving partial differential equations by collocation with ra-
dial basis functions”. In: Surface Fitting and Multiresolution Method 2 (1997),
pp. 131–138.

[19] M.R. Fengler. “Arbitrage-Free Smoothing of the Implied Volatility Surface”.
In: SFB 649 Discussion Paper 2005-019, Economic Risk Berlin (2005).

[20] B. Fornberg and N. Flyer. “Solving PDEs with radial basis functions”. In: Acta
Numerica 24 (2015), pp. 215–258.

[21] B. Fornberg and G.B. Wright. “Scattered node compact finite differente type
formulas generated from radial basis functions”. In: Journal of Computational
Physics 212 (2006), pp. 99–123.

[22] C. Franke and R. Schaback. “Convergence orders of meshless collocation meth-
ods using radial basis functions”. In: Adv. in Comput. Math. 8 (1998), pp. 381–
399.

[23] P. Glasserman. “Monte Carlo Methods in Financial Engineering”. In: Stochastic
Modelling and Applied Probability Series 53 (2003).

[24] J. Glover and M.M. Ali. “Using radial basis functions to construct local volatil-
ity surfaces”. In: Applied Mathematics and Computation (2011), pp. 4834–4839.

[25] R.L. Harder and R.N. Desmarais. “Interpolation using surface splines”. In: J.
Aircraft 9 (1972), pp. 189–191.

[26] R. Hardy. “Multiquadric equations of topography and other irregular sur-
faces”. In: J. Geophys. 76 (1971), pp. 1905–1915.

[27] S.L. Heston. “A Closed-Form Solution for Options with Stochastic Volatility
with Applications to Bond and Currency Options”. In: The Review of Financial
Studies 6 (1993), pp. 327–343.

[28] C. Homescu. “Implied Volatility Surface: Construction Methodologies and Char-
acteristics”. In: SSRN Electronic Journal (2011).

[29] J. Huang and J.S. Pang. “Option pricing and linear complementarity”. In: Jour-
nal of Computational Finance 2 (1998), pp. 31–60.

[30] J. Hull and A.D. White. “Efficient procedures for valuing European and Amer-
ican path-dependent options”. In: The Journal of Derivatives 1.1 (1993), pp. 21–
31.

[31] E.J. Kansa. “Multiquadrics: A scattered data approximation scheme with ap-
plications to computational fluid-dynamics, part I and part II”. In: Computa-
tional Mathematics Application 19 (1990), pp. 127–145, 147–161.

[32] P. Lancaster and K. S̆alkauskas. “Surfaces generated by moving least squares
methods”. In: Math. Comp. 37 (1981), pp. 141–158.



BIBLIOGRAPHY 85

[33] E. Larsson and B. Fornberg. “Theoretical and Computational aspects of multi-
variate interpolation with increasingly flat radial basis functions”. In: Compu-
tational Mathematics Applications 49 (2005), pp. 103–130.

[34] H.E. Leland. “Option pricing and replication with transaction costs”. In: Jour-
nal of Finance 40 (1985), pp. 1283–1301.

[35] D. Madan. “Conic Portfolio Theory”. In: SSRN paper (2015).

[36] J. Meinguet. “Multivariate interpolation at arbitrary points made simple”. In:
Z. Angew. Math. Phys. 30 (1979), pp. 292–304.

[37] G.J. Moridis and E.J. Kansa. “The Laplace transform multiquadric method: A
highly accurate scheme for the numerical solution of linear partial differential
equations”. In: J. Appl. Sc. Comp. 1 (1994), pp. 375–407.

[38] MS. Mukhametzhanov, A. De Rossi, and R. Cavoretto. “An Experimental Study
of Univariate Global Optimization Algorithms for Finding the Shape Param-
eter in Radial Basis Functions”. In: International Conference on Optimization and
Applications (2020), pp. 326–339.

[39] F.J. Narkowich and J.D. Ward. “Norm estimates for the inverses of a general
class of scattered data radial basis function interpolation matrices”. In: Journal
of Approximation Theory (1991), pp. 84–109.

[40] B.F. Nielsen, O. Skavhaug, and Tveito A. “Penalty methods for the numerical
solution of American multi-asset option problems”. In: Journal of Computational
and Applied Mathematics 222 (2008), pp. 3–16.

[41] Q. Niu. “No Arbitrage Conditions and Characters of Implied Volatility Sur-
face: A Review for Implied Volatility Modelers”. In: SSRN paper (2016).

[42] A. Pascucci. “Calcolo stocastico per la finanza”. In: Springer (2007).

[43] A. Safdari Vaighani, A. Heryudono, and E. Larsson. “A radial basis function
partition of unity collocation method for convection-diffusion equations”. In:
Journal of Scientific Computing 64.2 (2015), p. 341.

[44] R. Schaback. “Creating surfaces from scattered data using radial basis func-
tions”. In: Mathematical Methods for Curves and Surfaces (1995), pp. 477–496.

[45] R. Schaback. “Multivariate interpolation by polynomials and radial basis func-
tions”. In: Constr. Approx. 21 (2005), pp. 293–317.

[46] R. Schaback. “On the efficiency of interpolation by radial basis functions”. In:
Surface fitting and Multiresolution Methods (1997), pp. 309–318.

[47] D. Shepard. “A two dimensional interpolation function for irregularly spaced
data”. In: Proc. 23rd Nat. Conf. ACM (1968), pp. 517–524.

[48] S. Shreve. “Stochastic Calculus for Finance II: Continuous-Time Models”. In:
Springer Finance (2010).



86 BIBLIOGRAPHY

[49] V. Shscherbakov and E. Larsson. “Radial Basis function partition of unity meth-
ods for pricing vanilla basket options”. In: Computers and Mathematics with Ap-
plications 71 (2016), pp. 185–200.

[50] F. Sica, S. Cuomo, and V. Di Somma. “A Note on the Numerical Solution of
Heston PDEs”. In: Ricerche di Matematica (2019), pp. 1–8.

[51] F. Sica, S. Cuomo, and V. Di Somma. “Remarks on a financial inverse problem
by means of Monte Carlo Methods”. In: Journal of Physics Conference Series 904
(2017).

[52] F. Sica, S. Cuomo, and F. Piccialli. “RBF methods in a Stochastic Volatility
framework for Greeks computation”. In: Journal of Computational and Applied
Mathematics 380 (2020).

[53] F. Sica, S. Cuomo, and G. Toraldo. “Greeks computation in the option pric-
ing problem by means of RBF-PU methods”. In: Journal of Computational and
Applied Mathematics 376 (2020).

[54] F. Sica et al. “Implied volatility surface reconstruction by means of radial basis
functions”. In: Working paper (2021).

[55] J.D. Ward. “Least squares approximation using radial basis functions: an up-
date”. In: Advances in Constructive Approximation: Vanderbilt 2003 (2004), pp. 499–
508.

[56] H. Wendland. “Piecewise polynomial, positive definite and compactly sup-
ported radial basis functions of minimal degree”. In: Adv. in Comput. Math. 4
(1995), pp. 389–396.

[57] H. Wendland. “Scattered Data Approximation”. In: Cambridge University Press
(1995).

[58] P. Wilmott. “Derivatives: The Theory and Practice of Financial Engineering”.
In: Wiley (1998).

[59] G.B. Wright. “Radial Basis Function Interpolation: Numerical and Analytical
Developments”. In: Ph.D. dissertation (2003).

[60] Z. Wu. “Compactly supported positive definite radial basis functions”. In: Ad-
vances in Computational Mathematics 4 (1995), pp. 283–292.


	Abstract
	Financial Preliminaries
	Classical framework
	Black-Scholes derivation
	Black-Scholes solution

	Black-Scholes extensions
	Dividend paying assets
	Time-dependent parameters
	Multi-dimensional problem
	Volatility smile
	Continuous hedging and transaction costs

	Overview of financial products
	European options
	American options
	Barrier options
	Basket options

	Introducing Greeks
	Delta
	Gamma
	Theta
	Vega


	Numerical methods for PDE solving
	Finite differences methods
	FDM applications to Finance

	Meshfree methods
	Multivariate Scattered Data Interpolation
	Radial Basis Functions
	Collocation approach for PDEs
	Least Squares Radial Basis Functions
	Localization techniques
	RBF applications to Finance
	Discretization of Black-Scholes equation in time
	Discretization of Black-Scholes equation in space via RBF
	Discretization of Heston PDE
	Volatility surface interpolation via RBF


	Monte Carlo methods
	Monte Carlo applications to Finance


	Option pricing and Greeks evaluation: numerical evidence
	Numerical results for Black-Scholes model
	Pricing comparison via RBF and FDM
	Pricing comparison via standard MC and sequential MC
	Greeks calculation
	Error estimation
	Implied Volatility Interpolation via RBF

	Numerical results for Heston model
	Option pricing
	Greeks calculation
	Error estimation

	Operational framework
	Databases and data flow
	Software
	Parallelization techniques


	Stability and Trade-off principles for Radial Basis Functions
	Catalog of RBFs with Derivatives
	Acknowledgements

