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Abstract

The first part of this thesis is devoted to the study of asymptotic symmetries in the theory of general
relativity. We investigate properties of the Bondi-Metzner-Sachs (BMS) group in four dimensions, that is
the asymptotic symmetry group of a certain class of asymptotically flat spacetimes. Particular emphasis is
given on the construction of surface charges associated to BMS symmetries and on their connection with
the soft graviton theorems, that are important cornerstones of the recently explored infrared structure
of asymptotically flat gravity. Furthermore, in the context of asymptotically locally AdS3 spacetimes,
we define conformally flat boundary conditions and, consequently, analyze the corresponding asymptotic
symmetry and surface charge algebras. We construct a new sector of Weyl charges and examine the
features of the holographic boundary theory. In the second part of this work, we deepen the notion
of modular invariance and temperature dualities in quantum field theory. We show that the partition
function of certain theories living on partially compactified manifolds exhibits modular covariance, allowing
to derive interesting high-/low-temperature dualities. Moreover, we apply these results to the case of
electromagnetism and linearized gravity in the Casimir effect setup. Even if the two subjects studied in
this thesis are not directly related, they both share and make use of techniques in conformal field theory
and strongly rely on the role of boundary conditions in gauge theories.
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Part I

Asymptotic Symmetries in General Relativity,
the BMS group and asymptotically locally AdS3

1 Introduction

Gauge theories play a pivotal role in the understanding of fundamental laws governing nature. On the
one hand, they comprise electromagnetism, weak and strong interactions and, as such, they provide the
description of the Standard Model of particle physics, which is one of the most experimentally tested the-
ories. On the other hand, the theory of general relativity (GR) also falls in this class. In particular, the
recent direct detection of gravitational waves and the observation of both supermassive and intermediate
mass black holes, entirely predicted by GR, is shedding new light on the nature of strongly gravitating
systems existing in the universe.

On the theoretical side, gauge theories exhibit a deep mathematical structure that allows for an ele-
gant interplay between physics and geometry. The common feature shared by all gauge theories is that
they involve, in their description, a certain number of redundant degrees of freedom. Equivalently, they
are characterised by some local symmetries of the dynamics, called gauge symmetries. Thus in most cases
a gauge fixing procedure, through which the above mentioned gauge invariance is used to eliminate some
of the redundancies, is needed. The remaining allowed gauge transformations that do not spoil the gauge
fixing are referred to as residual gauge transformations.

Together with gauge invariance, the other necessary ingredient that defines the physical content of a gauge
theory is the set of boundary conditions that must be imposed on the fields and that selects, through the
equations of motion, the allowed solutions. Such conditions specify in a unique way the value of the fields
and their derivatives, or of a combination of the two, on the boundary of the system. Choosing boundary
conditions sharply distinguishes between different physical situations one wants to investigate. Indeed, if
two theories are governed by the same dynamics, i.e. by the same set of equations of motion, assigning
different boundary conditions can lead, in general, to completely different solutions. Thus, they encode
the nature of the phenomena one is willing to describe.

From the above considerations it follows that a natural requirement to ask for gauge theories is that
gauge transformations preserve the choice of boundary conditions. In general, among these transforma-
tions, some are true redundancies of the theory and are thus called trivial. However, there are some that
change the physical state of the system, i.e. that act non-trivially on the solution space. The latter, named
asymptotic symmetries, are of great relevance in physics and form a group, called asymptotic symmetry
group. More precisely, after having performed a gauge fixing, they can be defined as the set of residual
gauge transformations of the theory preserving the given boundary conditions and that carry, through
Noether’s theorem, associated non-vanishing charges. The latter are objects of interest since they encode
information about the physical and observable quantities, such as the energy or the electric charge.
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1.1 Asymptotically flat spacetimes and the BMS4 group

The study of asymptotic symmetries in GR started with the seminal works of Bondi, Metzner, Sachs and
van der Burg [1–3]. In these works, it has been shown that, under suitable boundary conditions on the
gravitational field, the asymptotic symmetry group of asymptotically flat spacetimes in four dimensions,
which comprise a certain class of solutions of Einstein’s equations with vanishing cosmological constant, is
given by an enhancement of the Poincaré group, called the BMS4 group.

In particular, the BMS4 group, in its global version, is a semidirect product between the Lorentz group
and the infinite-dimensional group of supertranslations, which is a suitable enhancement of the usual
translations:

Global BMS4 = Lorentz n Supertranslations.

More recently, the BMS group has been further enlarged with the inclusion of superrotations on the celestial
sphere, which enhance also the Lorentz group [4–6]. These works have led to the definition of extended
BMS group:

Extended BMS4 = Superrotations n Supertranslations.

We mention that there exists also a generalized BMS4 group [7–9], in which superrotations are substituted
by smooth diffeomorphisms on the 2-sphere (Diff(S2))

Generalized BMS4 = Smooth Diff(S2) n Supertranslations.

1.2 The Infrared triangle and the “soft hair” proposal

Recently, there has been a renewed interest in the infrared structure of asymptotically flat spacetimes.
In particular, it has been shown that the quantum Ward identities associated to BMS4 invariance of the
gravitational S-matrix [7–12] are equivalent to the leading orders of the soft graviton theorem [13–17].
Moreover, these aspects were shown to be just two of the three corners of a triangular equivalence relation,
the third corner consisting of the gravitational memory effect [18–20]. These connections are sometimes
referred to as the infrared triangle [21]. One of the strengths of this result relies in its universality, since
similar relations are shared by other gauge theories. It is intriguing how the infrared triangle has been
used to discuss the black hole information paradox. The existence of an infinite number of conserved
charges associated with BMS4 symmetries could equip the black hole with the soft hair needed to support
correlations between the interior of the black hole and the emitted Hawking quanta, during the evaporation
process [22].

1.3 Asymptotically AdS spacetimes and holography

The study of asymptotic symmetries has become particularly relevant in holography [23–26]. According to
the holographic principle, a theory of quantum gravity living in the bulk of the spacetime is dual to a quan-
tum field theory living on its lower-dimensional boundary. In particular, the AdS/CFT correspondence
proposes that a gravitational theory living in an asymptotically AdS spacetime is dual to a Conformal
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Field Theory living on its boundary and there exists a well-developed dictionary which translates between
observables on the two sides of the holographic correspondence. Then, such a holographic dictionary states
that the asymptotic symmetries of the theory living in the bulk should exactly match the global symmetries
of the boundary theory.

The first result in this direction has been obtained by Brown and Henneaux [27] and it is considered
one of the earliest precursors of holography. They have proven that the asymptotic symmetry algebra
of asymptotically AdS3 spacetimes consists in two commuting copies of the Witt algebra and that the
corresponding charge algebra is centrally extended by the so-called Brown-Henneaux central charge

c =
3`

2G
,

` being the AdS3 radius and G the Newton constant. This result is compatible with the AdS3/CFT2

correspondence, according to which there exists a two-dimensional CFT theory boundary theory whose
global symmetries comprise the infinite-dimensional conformal group in two dimensions.

1.4 Publications and original results

1. F. A. and G. Esposito, “On the structure and applications of the Bondi-Metzner-Sachs group”,
Int. J. Geom. Meth. Mod. Phys. 15 (2018) no. 02, 1830002, arXiv: 1709.05134 [gr-qc],

2. G. Esposito and F. A., “From parabolic to loxodromic BMS transformations”, Gen. Rel. Grav. 50
(2018) no. 11, 141, arXiv: 1806.06246 [gr-qc],

3. F. A. and M. Arzano, “A fuzzy bipolar celestial sphere”, JHEP 07 (2019) 028, arXiv: 1901.01167
[gr-qc],

4. F. A. and M. Arzano, “Note on the symplectic structure of asymptotically flat gravity and BMS
symmetries”, Phys. Rev. D 100 (2019) no. 4, 044028, arXiv: 1901.01167 [gr-qc],

5. F. A., G. Barnich, L. Ciambelli, P. Mao and R. Ruzziconi “Weyl Charges in Asymptotically Locally
AdS3 Spacetimes ”, Phys. Rev. D 103 (2021) 046003, arXiv: 2010.15452 [hep-th]
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2 Symmetries and asymptotic symmetries

In this chapter, we start in 2.1 by briefly reviewing the Noether theorems, which relate the notion of
symmetry to that of conserved quantities within a certain theory. We distinguish between the case of
global symmetries and gauge symmetries, that lead to the first and second Noether theorems, respectively.
These theorems are fundamental in physics, for they provide a procedure to construct conserved quantities,
related to important observables of the system under consideration. In 2.2 we discuss more in detail to
what extent it is possible to draw the same conclusions and what are the difficulties in the case of generally
covariant theories. In 2.3 we review the second Noether theorem for such theories with some emphasis on
the construction of surface charges and in 2.4 we will give the notion of asymptotic symmetries. In 2.5 we
provide some details on the charge algebra, while in 2.6, we explicitly discuss the case of general relativity.

The main literature used in this part is [5, 28–36]. Useful reviews can also be found in [37–39].

2.1 First and second Noether theorems

Consider a theory described by the action

S[φi] =

∫
dnxL[φi, ∂µφ

i, ∂µ∂νφ
i, ...], (2.1)

where L is the Lagrangian. Here latin indices i, j, .. run from 1 to N , where N is the number of fields in
the theory. An infinitesimal variation δφi yields a variation δL of the Lagrangian,

δL = δφi
∂L

∂φi
+ ∂µδφ

i ∂L

∂(∂µφi)
+ ∂µ∂νδφ

i ∂L

∂(∂µ∂νφi)
+ ... ≡ δφi δL

δφi
+ ∂µθ

µ(φi, δφi), (2.2)

where we have defined

δL

δφi
≡ ∂L

∂φi
− ∂µ

(
∂L

∂(∂µφi)

)
+ ∂µ∂ν

(
∂L

∂(∂µ∂νφi)

)
+ ... (2.3)

to be the Euler-Lagrange equations of motion for the field φi and where θµ comprises all the terms that
come from using repeatedly the Leibniz rule. Note that in (2.1), since we are directly interested in general
relativity, we assume that the Lagrangian may depend on higher derivatives of the fields φi. In the form
notation 1, reviewed in Appendix A, equation (2.3) can be rewritten as

δL = δφi
δL

δφi
+ dΘ[φi, δφi], (2.4)

where Θ is the presymplectic potential (n− 1) form. An infinitesimal transformation of the fields δλφ, for
some spacetime function λ that at this stage we deliberately leave arbitrary, is defined to be a symmetry
for the theory described by L if

δλL = dB[φi, δλφ
i], (2.5)

for some (n− 1)-form B. We are going to refer to λ as the generator of the symmetry.

1Throughout the remainder of this work, we will interchangeably use the vectors and the forms notation.
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We first consider the case in which λ is a constant. In this case, we talk about global symmetries. Comparing
equations (2.4) and (2.5), we obtain

δλφ
i δL

δφi
+ dΘ[φi, δλφ

i] = dB[φi, δλφ
i]. (2.6)

Defining the Noether current (n− 1)-form as

J[φi, δλφ
i] = B[φi, δλφ

i]−Θ[φi, δλφ
i], (2.7)

we get that, on-shell, i.e. provided that the equations of motion are satisfied δL
δφi

= 0, the Noether current
is conserved

dJ[φi, δλφ
i] = δλφ

i δL

δφi
≈ 0, (2.8)

where the symbol ≈ stays for equal on-shell. Note that this statement holds regardless of the nature of the
symmetry. The variation δλφ can be any symmetry, spacetime or internal. For instance, the above described
procedure for a Lorentz covariant Lagrangian yields the standard definition of stress-energy tensor whereas
for a global U(1)-invariant Lagrangian gives the electric current. Given a Cauchy (n− 1)-hypersurface Σ,
we define the charge associated to the symmetry δλφ as

QΣ =

∫
Σ

J[φi, δλφ
i]. (2.9)

Provided that the fields fall rapidly enough on the (n − 2)-boundary ∂Σ, QΣ does not depend on the
particular choice of Σ. In fact, if M is a spacetime region bounded by two Cauchy hypersurfaces Σ1 and
Σ2, i.e. ∂M = Σ1 ∪ Σ2, we have, using Stokes theorem

0 ≈
∫
M
dJ[φi, δλφ

i] =

∫
Σ1

J[φi, δλφ
i]−

∫
Σ2

J[φi, δλφ
i] = QΣ1

−QΣ2
, (2.10)

from which the result follows. If Σ is a constant time hypersurface, i.e. is described by the equation
x0 = const, (2.10) states that the charge Q is conserved in time. This procedure is sometimes referred to
as the first Noether theorem and it states that to each global symmetry it corresponds a conserved current
and hence a conserved charge. Note however that we can define a new current J′ as

J′[φi, δλφ
i] = J[φi, δλφ

i] + dQ[φi, δλφ
i] + E

[
δL

δφi

]
, (2.11)

for an arbitrary form (n− 2)-form Q and a (n− 1)-form E proportional to the equations of motion. Then

dJ′[φi, δλφ
i] = dJ[φi, δλφ

i]. (2.12)

These arguments suggest that the first Noether should be more correctly stated as follows: there exists an
isomorphism between the equivalence class of conserved currents, where two currents J and J′ are equiva-
lent if (2.11) holds, and the equivalence class of global symmetries, where two global symmetries are defined
to be equivalent if they differ by some, physically irrelevant, gauge transformation, i.e. by a symmetry
whose generator λ arbitrarily depends on the spacetime coordinates. We now proceed to investigate the
latter.
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Assume that the generator λ = λ(x) is a suitably differentiable spacetime function. In this case δλφ
i

is referred to as gauge symmetry or as local symmetry. For simplicity, we assume that φi transforms as [28]

δλφ
i = f i[φj ]λ+ f iν [φj ]∂νλ. (2.13)

and that the Lagrangian depends only on the first derivatives of φi2. Following the procedure outlined in
(2.2)-(2.3), we obtain, for θµ,

θµ[φi, δλφ
i] =

∂L

∂(∂µφi)
δλφ

i =
∂L

∂(∂µφi)

[
f i(φj)λ+ f iν(φj)∂νλ

]
. (2.14)

Similarly, we assume that the (n− 1)-form B in (2.5) can be expanded as

Bµ[φi, δλφ
i] = gµ[φi]λ+ gµν [φi]∂µλ. (2.15)

Substituting in (2.6), we get

∂µ[Jµ[φi]λ+ Jµν [φi]∂νλ] =
δL

δφj
[
f j [φi]λ+ f jν [φi]∂νλ

]
, (2.16)

where we have defined

Jµ[φi] ≡ gµ[φi]− ∂L

∂(∂µφj)
f j [φi], Jµν [φi] ≡ gµν [φi]− ∂L

∂(∂µφj)
f jν [φi]. (2.17)

The vector Jµ defined in the first of (2.17) is nothing but the usual Noether current, for note that in
the case of constant λ, (2.16) reduces to (2.8). Arbitrariness of λ in equation (2.16) implies the following
identities

∂µJ
µ[φj ] =

δL

δφi
f i[φj ], Jν [φj ] + ∂µJ

µν [φj ] =
δL

δφi
f iν [φj ], Jµν [φj ] = 0. (2.18)

Putting these equations together, we arrive at the so-called Noether identities:

4
[
δL

δφi

]
≡ δL

δφi
f i[φj ]− ∂µ

(
δL

δφi
f iµ[φj ]

)
= 0. (2.19)

These identities hold off-shell and represent a constraint that has to be satisfied by the equations of motion
δL
δφi

, so that they are not all independent and therefore the Cauchy problem is not well-posed. This is a
common feature of gauge theories. Furthermore, taking a variation δλ of the action yields

δλS[φi] =

∫
dnx

δL

δφi
δλφ

i =

∫
dnx4

[
δL

δφi

]
λ. (2.20)

Hence, the two integrands must differ by the exterior derivative of a (n− 1)-form S, i.e.

δL

δφi
δλφ

i −4
[
δL

δφi

]
λ = dS[φj , δλφ

j ]. (2.21)

2Generalizations to the case of a Lagrangian depending on higher derivatives of the field and to that of δλφ
i involving

higher derivatives of λ are discussed e.g. [29].
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Taking into account Noether identities in (2.19), equation (2.21) yields

δL

δφi
δλφ

i = dS[φj , δλφ
j ], (2.22)

The (n− 1)-form S is referred to as weakly vanishing Noether current and it satisfies

S[φi, δλφ
i] ≈ 0, dS[φi, δλφ

i] ≈ 0. (2.23)

Comparing the second of (2.23) with (2.8), we see that

d(J[φi, δλφ
i]− S[φi, δλφ

i]) ≈ 0, (2.24)

and thus, assuming trivial De-Rham cohomology,

J[φi, δλφ
i] = S[φi, δλφ

i] + dQ[φi, δλφ
i] ≈ dQ[φi, δλφ

i], (2.25)

for some (n − 2)-form Q. This shows that in gauge theories the Noether current is always formed by a
“bulk” part that vanishes on-shell and the divergence of an arbitrary skew-symmetric tensor. A direct
consequence of this result is that, when trying to define the charge associated to a certain gauge symmetry
using the same procedure used for global symmetries, it is given by

QΣ =

∫
Σ

J[φi, δλφ
i] ≈

∫
Σ
dQ[φi, δλφ

i] =

∫
∂Σ

Q[φi, δλφ
i], (2.26)

where ∂Σ is the (n−2)-dimensional boundary of Σ. The charge Q defined in (2.26) is completely arbitrary,
for Q is any, totally unconstrained (n− 2)-form.

The solution to this problem [29] consists in focusing on “lower-degree conservation laws”, i.e. on con-
servation laws of the form dk ≈ 0, for a (n − 2)-form k. In fact, assuming that there is a procedure to
uniquely determine a (n− 2)-form k, we could define a charge as

QS =

∫
S

k[φi, δλφ
i] (2.27)

for some (n− 2)-hypersurface S. Then, similarly to what happens in (2.10), we see that if ∂Σ = S1 ∪ S2,

0 ≈
∫

Σ
dk[φi, δλφ

i] =

∫
S1

k[φi, δλφ
i]−

∫
S2

k[φi, δλφ
i] = QS1

−QS2
, (2.28)

i.e. the charges defined in (2.27) are conserved. This is the core of the so-called second Noether theorem,
which states that there exists an isomorphism between the equivalence class of gauge symmetries that
satisfy δλφ

i ≈ 03, two gauge symmetries being equivalent if they are equal on-shell, and the equivalence
class of (n− 2)-forms k which are closed on-shell dk ≈ 0, where two (n− 2)-forms k and k′ are defined to
be equivalent if

k′[φi, δλφ
i] = k[φi, δλφ

i] + dI[φi, δλφ
i] + E

[
δL

δφi

]
, (2.29)

for an arbitrary (n− 3)-form I and a (n− 2)-form E proportional to the equations of motion.

3This subset of gauge transformations are called field symmetries.
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Before proceeding to analyze in more detail the case of generally covariant theories, it is instructive to
explicitly carry out the example of electromagnetism. In this case the dynamical fields are φi ≡ Aµ and
gauge transformations of Aµ read

δλA
µ = ∂µλ, (2.30)

so that fµ[Aρ] = 0 and fµν [Aρ] = ηµν . The Lagrangian of the theory and its variation corresponding to a
variation δAµ are

L = −1

4
FµνF

µν , δL = −Fµν∂µδAν = ∂µF
µνδAν − ∂µ(FµνδAν), (2.31)

so that θµ[Aρ, δAρ] = −FµνδAν , Bµ[Aρ, δAρ] = 0 and the Euler-Lagrange equations of motion are δL
δAν

=
∂µF

µν . Following the prescription in (2.7), the Noether current Jµ can be easily constructed as

Jµ[Aρ, δAρ] = −θµ[Aρ, δλA
ρ] = Fµν∂νλ. (2.32)

The Noether identities are

4
[
δL

δAν

]
= −∂µ∂νF νµ = 0, (2.33)

and note how they hold off-shell because of the anti-symmetry of Fµν . We can now construct the weakly
vanishing Noether current Sν as

δL

δAν
δλAν = ∂µF

µν∂νλ = ∂ν
(
λ∂µF

µν
)
− λ∂ν∂µFµν

(2.33)
= ∂νS

ν [Aρ, δAρ], (2.34)

where

Sµ[Aρ, δAρ] = λ∂νF
νµ. (2.35)

Note that Sµ ≈ 0 and ∂µS
µ ≈ 0. Taking now the difference Jµ − Sµ, we get

Jµ[Aρ, δAρ]− Sµ[Aρ, δAρ] = Fµν∂νλ− λ∂νF νµ = ∂ν(λFµν), (2.36)

and hence the (n− 2)-form Q of equation (2.25) has components Qµν given by

Qµν = λFµν . (2.37)

Now, in order to apply the second Noether theorem, we need to look at the gauge parameters that are
field symmetries, i.e. those λ satisfying

δλA
µ = ∂µλ ≈ 0. (2.38)

This equation is trivially solved by λ = c with c ∈ R. Thus, gauge parameters that are field symmetries
that do not vanish are just constants. Then, the representative of the equivalence class of conserved
(n− 2)-forms is

k[Aρ] = cFµν(dn−2x)µν , (2.39)

Indeed, it is well-known that the electric charge enclosed in (n − 1)-hypersurface Σ whose boundary is a
codimension 2 hypersurface S can be expressed as

QS =

∫
S

k[Aρ] = c

∫
S

F[Aρ], (2.40)

where F = Fµν(dn−2x)µν . The charge in (2.40) is conserved as a consequence of Maxwell’s equations.

13



2.2 Generally covariant theories and asymptotic symmetries

In the case of electromagnetism we have seen that the equation δλφ
i = 0 admits a simple non-trivial solu-

tion given by λ = c with c ∈ R. However, when considering more complicated, possibly non-linear theories,
gauge parameters that are field symmetries are not as easy to find. In particular, in the case of general
relativity gauge transformations are diffeomorphisms and those that are field symmetries are generated by
a vector field ξµ solving the Killing equation δξgµν = Lξgµν ≈ 0. These equations for a general metric gµν
have no solution.

However, also for generally covariant theories there are cases in which the second Noether theorem applies.
Let us consider the linearized theory around a certain fixed background solution ḡµν , obtained by expanding
the full metric as gµν = ḡµν +hµν . A crucial observation is that the linearized theory is also a gauge theory,
the field hµν transforming as δξhµν = Lξ ḡµν . A direct consequence is that isometries of the background,
i.e. those diffeomorphisms generated by a vector field ξ satisfying Lξ ḡµν = 0 are field symmetries of the
linearized theory. For instance, Pauli-Fierz theory, obtained linearizing around flat spacetime ηµν , inherits
the ten-dimensional Poincaré group of isometries of ηµν . Even if for the full, non-linear theory involving
gµν it is not possible to find gauge transformations that are field symmetries, for the linearized theory
around a background with certain non-trivial isometries, one can still apply Noether second theorem and
compute charges. Clearly, in order for this procedure to make sense, one has to work in a regime in which
the theory can be reliably described by hµν , e.g. in an asymptotic region where gravity is “weak”. Notice
that defining an asymptotic region where the gravitational field is well described by hµν implies the intro-
duction of certain boundary conditions for the full metric gµν that in most cases are expressed as fall-offs
for the metric components, such as hµν = gµν − ḡµν = O(r−1), where r is a suitably defined radial coordi-
nate 4. Under these assumptions, instead of looking for exact field symmetries and thus solve Lξ ḡµν = 0,
which gives nothing but the isometries of ḡµν , one can look at those diffeomorphisms that preserve only
the boundary conditions, e.g. Lξgµν = O(r−1). These equations are sometimes referred to as asymptotic
Killing equations and their generators as asymptotic symmetries and they are relevant only asymptoti-
cally. As already mentioned in the introduction 1, also asymptotic symmetries form a group, denoted
asymptotic symmetry group, which will be defined later in 2.4. It is worth mentioning that the notion
of asymptotic symmetry is the closest analogue to the concept of symmetry for generally covariant theories.

Clearly, exact symmetries of the background ḡµν always form a subset of the asymptotic symmetries,
for if a diffeomorphism is an exact symmetry of the background it automatically preserves boundary con-
ditions. It follows that the asymptotic symmetries corresponding to certain fall-offs can only have more
generators with respect to the ones of exact symmetries. In many case, perhaps surprisingly, the generators
of asymptotic symmetries are infinite in number. The first example of this phenomenon is the global BMS4

group, found in [3] in the context of asymptotically flat spacetimes.

Developing a procedure that allows to compute charges associated to the generators of asymptotic symme-
tries as surface integrals (i.e. codimension 2 integrals) is of crucial importance, because these definitions
would involve only the value of the gravitational field on the asymptotic boundary of the spacetime. In par-
ticular, giving a definition of energy of the gravitational field depending only on its boundary value would
mean implementing the idea that gravity is holographic (as mentioned in section 1.3) since the spectrum
of the bulk theory would be entirely governed by boundary quantities. There exists a huge literature and
different approaches to this procedure, the most relevant being [30,40–43], which we will briefly summarize

4Notice that, in order to define a radial coordinate, we need to choose a coordinate system, which in general relativity boils
down to fix a gauge.
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and review in the next sections.

2.3 Second Noether theorem and surface charges for generally covariant theories

Consider a diffeomorphisms-invariant Lagrangian n-form L[φi, ∂µφ
i, ∂µ∂νφ

i, ...] satisfying (2.4) and thus
defining a presymplectic potential (n − 1)-form Θ. The variation of a field under the action of a diffeo-
morphism generated by ξ is given by the Lie derivative, i.e. δξφ

i = Lξφi. Hence, a variation of L under a
diffeomorphism generated by a vector field ξ is given by,

δξL = LξL
(A.12)

= iξ (dL) + d (iξL) = d (iξL) , (2.41)

because L is a n-form. It is useful to introduce the notation A[φi,Lξφi] ≡ Aξ[φ
i]. Comparing equations

(2.41) and (2.5) we see that the (n− 1)-form Bξ[φ
i] is given by

Bξ[φ
i] = iξL[φi]. (2.42)

It implies that the Noether current in (2.7) can be expressed as

Jξ[φ
i] = iξL[φi]−Θξ[φ

i], (2.43)

and it satisfies, by construction

dJξ[φ
i] =

δL

δφi
Lξφi ≈ 0. (2.44)

On the other hand, repeating the procedure of the second Noether theorem of section 2.1, we can define
the weakly vanishing Noether current of (2.21) by

dSξ[φ
j ] =

δL

δφi
Lξφi =⇒ Sξ[φ

j ] ≈ 0, dSξ[φ
j ] ≈ 0. (2.45)

We have

dJξ[φ
i] = dSξ[φ

i] =⇒ Jξ[φ
i] = Sξ[φ

i] + dQξ[φ
i], (2.46)

for a (n − 2)-form Qξ, sometimes referred to as the Noether-Wald charge. Furthermore, it can be shown
that it is possible to directly obtain the expression of Qξ from the action of an operator Iξ on Θξ:

Qξ[φ
i] = −IξΘξ[φ

i], (2.47)

where the action of Iξ on an r-form Aξ depending linearly on ξ is given by

IξAξ =
1

n− r
ξν

∂

∂(∂µξν)

∂

∂dxµ
Aξ. (2.48)

Consider now equation (2.46), where we use (2.43) to express J

Sξ[φ
i] = iξL[φi, δφi]−Θξ[φ

i]− dQξ[φ
i]. (2.49)
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Taking a variation of both sides of (2.49)5

δSξ[φ
i] = δ(iξL[φi]−Θξ[φ

i])− δ(dQξ[φ
i]) = iξ(δL[φi])− δΘξ[φ

i]− dδQξ[φ
i]

= iξ

(
δL

δφi
δφi + dΘ[φi, δφi]

)
− δΘξ[φ

i]− dδQξ[φ
i] ≈ iξdΘ[φi, δφi]− δΘξ[φ

i]− dδQξ[φ
i]

= (δξΘ[φi, δφi]− δΘξ[φ
i])− d(iξΘ[φi, δφi] + δQξ[φ

i]) ≡ −ω[φi, δφi,Lξφi] + dkξ[φ
i, δφi] (2.50)

where we defined the presymplectic current (n− 1)-form ω as the antisymmetrized variation of Θ[φi, δφi]
with respect to δφi,

ω[φi, δ1φ
i, δ2φ

i] ≡ δ1Θ[φi, δ2φ
i]− δ2Θ[φi, δ1φ

i], (2.51)

and where the Iyer-Wald (n− 2)-form kξ [42] is defined up to an exterior derivative as

kξ[φ
i, δφi] = −δQξ[φ

i]− iξΘ[φi, δφi]. (2.52)

Equation (2.50) implies that

ω[φi, δφi,Lξφi]− dkξ[φi, δφi] ≈ 0, (2.53)

where here by ≈ we mean that φi and δφi solve the equations of motion and the linearized equations of
motion around φi, respectively. Before proceeding, let us mention here that (2.4) does not entirely fix Θ.
Indeed (2.4) is left invariant by

Θ[φi, δφi] −→ Θ[φi, δφi] + dY[φi, δφi], (2.54)

for some (n− 2)-form Y[φi, δφi]. Under (2.54), ω transforms as

ω −→ ω + d(δ1Y[φi, δ2φ
i]− δ2Y[φi, δ1φ

i]) ≡ ω + dωB, (2.55)

and kξ as

kξ −→ kξ + ωB. (2.56)

We define the local variation of charge between the solutions φi and φi + δφi by integrating kξ on a closed
codimension 2 surface S,

�δQξ[φ
i, δφi] =

∫
S

kξ[φ
i, δφi], (2.57)

where we use �δ in order to emphasize that (2.57) may not be an exact differential in the space of fields.
In case it is exact, there exists a functional Qξ[φ

i] such that �δQξ = δ(Qξ[φ
i]). A necessary condition for

exactness is the integrability condition

δ1

∫
S

kξ[φ
i, δ2φ

i]− δ2

∫
S

kξ[φ
i, δ1φ

i] = 0, ∀ δ1φ
i, δ2φ

i. (2.58)

5More correctly δ should be taken as the variational operator acting on (p, q)-forms on the jet bundle, for which additional
structure is required, see e.g. [30]
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If (2.58) is satisfied, we can choose a path γ in the space of fields connecting φ̄i with φi and define the
surface charge as

Qξ[φ
i, φ̄i] =

∫
γ

∫
S

kξ[φ
i, δφi] +Nξ[φ̄

i], (2.59)

where Nξ[φ̄
i] is the surface charge associated to the reference φ̄i. For what concerns (on-shell) conservation

of surface charges, we have, using Stokes theorem

Qξ[φ
i, φ̄i]|S1 −Qξ[φi, φ̄i]|S2 =

∫
γ

∫
S1

kξ[φ
i, δφi]−

∫
γ

∫
S2

kξ[φ
i, δφi] =

∫
γ

∫
Σ
dkξ[φ

i, δφi]

≈
∫
γ

∫
Σ
ω[φi, δφi,Lξφi], (2.60)

where we assumed ∂Σ = S1 ∪ S2. Thus, surface charges are conserved if and only if ω[φi, δφi,Lξφi] ≈ 0.
We can further define the symplectic structure associated with Σ as

ΩΣ[φi, δ1φ
i, δ2φ

i] =

∫
Σ
ω[φi, δ1φ

i, δ2φ
i], (2.61)

so that equation (2.60) can be equivalently expressed as

Qξ[φ
i, φ̄i]|S1 −Qξ[φi, φ̄i]|S2 =

∫
γ

ΩΣ[φi, δφi,Lξφi]. (2.62)

As already discussed in section 2.2, in general relativity there are two main cases of interest. The first
concerns exact isometries of the background metric, generated by diffeomorphisms ξ satisfying Lξg = 0.
This condition automatically implies that ω[g, δg,Lξg] = 0 and thus the associated surface charges are
conserved everywhere in the spacetime, including the bulk. Note that the ambiguity (2.55) does not affect
the value of surface charges associated to exact symmetries. The second regards asymptotic symmetries,
for which Lξg → 0 as r → ∞. In this case, the presymplectic current vanishes only asymptotically,
ω[g, δg,Lξg]→ 0 and consequently the conservation laws only hold asymptotically. From now on, we will
only be concerned about the latter.

Usually, for asymptotic symmetries, the (n − 2)-hypersurfaces over which the charges are computed are
defined by r →∞ and constant value of a time coordinate. For asymptotically AdS, they can be constant t
sections of the asymptotic cylinder and for asymptotically flat spacetimes they can be celestial spheres, i.e.
sections of null infinity I at fixed value of a retarded time coordinate u. In both cases they are spanned
by angular coordinates. If the equation ω[g, δg,Lξg] → 0 is not satisfied, we say that there is a breaking
in the conservation law. Typical examples of breaking appear in the context of radiating spacetimes, e.g.
spacetimes characterized by a non-vanishing flux of gravitational radiation or energy carried by the matter
fields. In this case, the interpretation of (2.60) is that the “time difference” between the charges is taken
into account by an outgoing flux of radiation through the asymptotic boundary, as represented in Figure
1.

We note here that finiteness of the above defined Qξ is not guaranteed a priori and it must be checked for
each set of boundary conditions one wants to implement. A general observation is that the set of boundary
conditions should be “large” enough to include several physical solutions. However, one must be careful
because if they are “too large”, they might lead to the above mentioned divergences. In this case, there
are two options. One is to check whether the divergences can be understood and eliminated in terms of
a renormalization procedure. The other is to go back to the assumptions and try with more stringent
boundary conditions. On the other hand, if they are too stringent one might be implicitly excluding the
possibility of getting interesting physics.
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Figure 1: The time difference time between two charges Qξ|S1 and Qξ|S2 is taken into account by a
non-vanishing flux of radiation (blu arrows) through the asymptotic boundary.

2.4 Asymptotic Symmetry Group

Having defined surface charges enables to discuss more concretely what it is meant by asymptotic symme-
try group. We consider the set G of field configurations obeying certain boundary conditions. A vector
field ξ is an allowed diffeomorphism if the variation of a field in G, under the action of ξ, is still in G. In
other words, the action of ξ on the fields preserves the choice of boundary conditions. For every allowed
diffeomorphism we can compute, using (2.59), its associated surface charge Qξ. Assuming it is integrable
and finite, there are two possibilities. The first is that Qξ vanishes. In this case, we say that ξ is a trivial
diffeomorphism and it has to be interpreted as a mere change of coordinates that does not carry any physi-
cal information or that, equivalently, it just describes a true redundancy of the theory. We want to exclude
trivial diffeomorphisms from the definition of asymptotic symmetries. In case the surface charge does not
vanish, it means that Qξ is physical and it generates non-trivial transformations within G, through the
Poisson bracket (see (2.63) below) or that, equivalently, it changes the physical state of the system. These
observations lead to define the asymptotic symmetry group as a quotient:

Asymptotic Symmetry Group =
Allowed Diffeomorphisms

Trivial Diffeomorphisms
.

Another way to define the asymptotic symmetry group is through a gauge fixing procedure. The idea is
to start the analysis by performing a gauge fixing that, depending on the context, can be total or partial.
In fact, in GR one can use the freedom in changing the coordinates to reach and fix certain conditions
for the metric components. This amounts to eliminate all, or part of the redundant degrees of freedom
through which the gauge theory is defined. Such procedure is in most cases equivalent to eliminating the
above defined trivial diffeomorphisms. However, having performed a gauge fixing still leaves the freedom
to perform residual gauge transformations. Then the asymptotic symmetry group can be defined as the
set of those residual transformations that do not spoil the chosen boundary conditions.
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2.5 Charge algebra

We assume that the asymptotic symmetry generators ξa form an algebra under some Lie bracket, i.e.
[ξa, ξb] = Cab

cξc with certain structure constants Cab
c = −Cbac 6. The latter is referred to as asymptotic

symmetry algebra. If the surface charges are integrable and finite, we define their Poisson bracket as

{Qξa [φi, φ̄i], Qξb [φ
i, φ̄i]} ≡ δξbQξa [φi, φ̄i] =

∫
S

kξb [φ
i, δξaφ

i]. (2.63)

where we used equation (2.59). It can be shown [30, 37, 38] that the charges form, under the Poisson
bracket, a projective representation of the asymptotic symmetry algebra,

{Qξa [φi, φ̄i], Qξb [φ
i, φ̄i]} ≈ Q[ξa,ξb][φ

i, φ̄i] +Kξa,ξb [φ̄
i], (2.64)

where Kξa,ξb = −Kξb,ξa is a background-dependent central charge. Kξ1,ξ2 is a 2-cocycle on the asymptotic
symmetry algebra

K[ξa,ξb],ξc [φ̄
i] +K[ξc,ξa],ξb [φ̄

i] +K[ξb,ξc],ξa [φ̄i] = 0, ∀ ξa, ξb, ξc. (2.65)

The central charge Kξa,ξb is non-trivial if it cannot be reabsorbed into a normalization of the charges
N[ξa,ξb][φ̄

i].

Equation (2.64) is the surface charge algebra. The main assumption behind the proof of (2.64) is that
the charges are integrable. If they are not, the theorem (2.64) may not hold. However, in these situations
it has been shown that it is still possible to split the local variation of charge into an integrable and a
non-integrable part [32,35] as

�δQξ[φ
i, δφi] = δ(Qint

ξ [φi]) + Ξξ[φ
i, δφi], (2.66)

such splitting being non-unique. Modifying the definition (2.63) to

{Qint
ξa [φi, φ̄i], Qint

ξb
[φi, φ̄i]} ≡ δξbQ

int
ξa [φi, φ̄i] + Ξξb [φ

i, δξaφ
i], (2.67)

has led to representation theorems similar to (2.64), where the 2-cocycle condition (2.65) has to be suitably
modified.

2.6 The case of general relativity

Here we consider explicitly the case of GR. We start from the Einstein-Hilbert Lagrangian with vanishing
cosmological constant,

LEH [g] =

√
−g

16πG
(gµνRµν)dnx. (2.68)

The variation of δLEH corresponding to δgµν yields

δLEH =
δLEH
δgµν

δgµν + dΘ[g, h], (2.69)

6Note that often, in the context of asymptotic symmetries, one uses the so-called “modified Lie bracket” that takes into
account a possible field dependendance of the vector fields and of the structure constants, see e.g. [5, 34].
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where

δLEH
δgµν

=

√
−g

16πG
Gµνdnx, Θ[g, h] =

√
−g

16πG

(
∇νhνµ −∇µh

)
(dn−1x)µ, (2.70)

and where we introduced the notation δgµν ≡ hµν , δgµν = −gµρgνσδgρσ = −hµν , h = gµνhµν and ∇
is the covariant derivative with respect to the background metric g. The presymplectic current [40, 43]
(n− 1)-form is

ω[g, h1 , h2 ] = δ1Θ[g, h2]− δ2Θ[g, h1]

=

√
−g

16πG

[
1

2
h2∇µh1 + h2νρ∇νhµρ1

− 1

2
h2∇νhνµ1

− 1

2
hνρ

2
∇µh1νρ −

1

2
hµρ

2
∇ρh1 − (1↔ 2)

]
(dn−1x)µ, (2.71)

or, more compactly

ω[g, h1 , h2 ] =

√
−g

16πG
Pµνρσαβ [h2νρ∇σh1αβ − (1↔ 2)](dn−1x)µ, (2.72)

with

Pµνρσαβ = gµαgβνgρσ − 1

2
gµσgναgβρ − 1

2
gµνgρσgαβ − 1

2
gνρgµαgβσ +

1

2
gνρgµσgαβ. (2.73)

Under a diffeomorphism generated by ξ the metric transforms as δξgµν = ∇µξν +∇νξµ and we thus have
for Θξ,

Θξ[g] =

√
−g

16πG
[∇ν(∇νξµ −∇µξν) + 2Rµνξ

ν ] (dn−1x)µ, (2.74)

where we used ∇µ∇νξµ = ∇ν∇µξν −Rµνξν . On the other hand we have

iξLEH =

√
−g

16πG
ξµgνρRνρ(d

n−1x)µ, (2.75)

so that the Noether current (n− 1)-form Jξ reads

Jξ[g] = iξLEH [g]−Θξ[g] = −
√
−g

8πG
Gµνξν(dn−1x)µ −

1

16πG
∂ν
[√
−g(∇νξµ −∇µξν)

]
(dn−1x)µ. (2.76)

The weakly vanishing Noether current Sξ is defined through

δLEH
δgµν

Lξgµν = −
√
−g

8πG
Gµν∇νξµdnx =

√
−g

8πG
(∇νGµν)ξµdnx− 1

8πG
∂ν [
√
−gGµνξµ]dnx = dSξ[g], (2.77)

where we used the Noether identities ∇νGµν = 0 and

Sξ[g] ≡ −
√
−g

8πG
Gµνξν(dn−1x)µ. (2.78)

Comparing with (2.76), (2.78) and (2.46) implies that

Jξ[g] = Sξ[g] + dQξ[g], Qξ[g] =

√
−g

16πG
(∇µξν −∇νξµ)(dn−2x)µν =

√
−g

8πG
∇µξν(dn−2x)µν . (2.79)
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The (n − 2)-form Qξ is the Komar term and integrated on the (n − 2)-sphere at infinity gives the mass
or angular momentum of stationary or rotationally invariant spacetimes, i.e. those admitting ξt = ∂t or
ξφ = ∂φ as Killing vectors. Indeed, for these spacetimes ξt and ξφ satisfy the Killing equation

∇µξν +∇νξµ = 0. (2.80)

In this case Qξ is conserved on-shell. We have

dQξ[g] = − 1

16πG
∂ν
[√
−g(∇νξµ −∇µξν)

]
(dn−1x)µ

(2.80)
= −

√
−g

8πG
∇ν∇νξµ(dn−1x)µ, (2.81)

where in the last step we used that Tµν = ∇µξν is antisymmetric. We also have, using repeatedly the
definition of the Riemann tensor and the Killing equation that ∇ν∇νξµ = −Rµνξν and hence

dQξ[g] =

√
−g

8πG
Rµνξ

ν(dn−1x)µ ≈ 0. (2.82)

The charge Qξ =
∫
S Qξ is conserved because of (2.82) and proportional to the mass or angular momentum

of the spacetime.

We have

iξΘ[g, h] =

√
−g

8πG

(
ξν∇ρhρν − ξν∇µh

)
(dn−2x)µν , (2.83)

and

δQξ[g] =

√
−g

8πG

(
1

2
h∇µξν − hµρ∇ρξν + ξρ∇µhρν

)
(dn−2x)µν , (2.84)

so that the Iyer-Wald (n− 2)-form kξ[g, h] is

kξ[g, h] =

√
−g

8πG

(
ξµ∇ρhνρ − ξµ∇νh+ ξρ∇νhµρ +

1

2
h∇νξµ − hρν∇ρξµ

)
(dn−2x)µν . (2.85)

If gµν and hµν satisfy Einstein’s equations and linearized Einstein’s equations around gµν , respectively, it
can be shown that dkξ ≈ 0. As mentioned in (2.56), kξ is still not completely fixed and it is defined up to
a (n − 2)-form ωB coming from a boundary contribution. Such term should vanish for exact symmetries
because their associated charges are unambiguous. In particular, it should be proportional to the Killing
equation, e.g.

ωB[g, h, δξg] =

√
−g

16πG
hρµ
(
∇µξρ +∇ρξµ

)
(dn−2x)µν . (2.86)

With this choice we get the Abbot-Deser charge (n− 2)-form k′ξ[g, h] [44]

k′ξ[g, h] = kξ[g, h] + ωB[g, h, δξg]

=

√
−g

8πG

(
ξµ∇ρhνρ − ξµ∇νh+ ξρ∇νhµρ +

1

2
h∇νξµ − 1

2
hρν∇ρξµ +

1

2
hνρ∇µξρ

)
(dn−2x)µν . (2.87)

However, k′ξ in (2.87) can be obtained directly from the weakly vanishing Noether (n − 1)-current Sξ by

acting on it with the “Anderson’s homotopy operator” In−1
δφi

,

In−1
δφi

=

[
1

2
δφi

∂

∂(∂µφi)
− 1

3
δφi∂ν

∂

∂(∂µ∂νφi)
+

2

3
∂νδφ

i ∂

∂(∂µ∂νφi)
+ ...

]
∂

∂dxµ
, (2.88)
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where ... comprise terms with higher derivatives of φi, as7

k′ξ[φ
i, δφi] = In−1

δφi
Sξ[φ

i]. (2.89)

The (n− 2)-form k′ξ in equation (2.89) is the Barnich-Brandt charge [30] and, as mentioned, in the case of
general relativity matches with the Abbot-Deser charge. The local variation of charge in general relativity
is thus

�δQξ[g, h] =

∫
S

k′ξ[g, h]. (2.90)

In the remainder of the first part of this work, we will make large use of the above considered quanti-
ties. In particular, we will explicitly compute the symplectic structure in (2.72) for asymptotically flat
spacetimes in four dimensions and, correspondingly, we will construct the supertranslation charges using
(2.62) and verify that the breaking in their conservation law is ultimately due to a non-vanishing flux of
gravitational radiation through null infinity. This will play a fundamental role in understanding the inter-
play between supertranslations symmetries and the Weinberg’s soft graviton theorem. Moreover, we will
use the Barnich-Brandt prescription in (2.90) in the context of asymptotically locally AdS3 spacetimes to
compute the surface charges associated to boundary diffeomorphisms and to diffeomorphisms generating
Weyl transformations and we will prove that they satisfy the surface charge algebra in (2.64) and exhibit
its associated central extension.

7Note that equation (2.89) yields a prescription to compute (n − 2)-conserved forms for any gauge theory and it is not
restricted to the case of general relativity.
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3 Asymptotically flat spacetimes and the BMS4 group

Flat spacetime has an interesting and useful group of isometries, but, for a generic spacetime, the isometry
group is simply the identity and hence provides no significant information. Yet symmetry groups have
important role to play in physics; in particular, the Poincaré group, describing isometries of Minkowski
spacetime plays a crucial role in the standard definitions of energy-momentum and angular momentum.
For this reason alone it would seem important to look for a generalization of the concept of isometry group
that can apply in a useful way to suitable curved spacetimes. In this chapter we introduce the notion of
asymptotic flatness, which encompasses all those solutions of Einstein’s equations that suitably approach,
at infinity, Minkowski spacetime and we study their asymptotic symmetries, given by the BMS4 group.

In sections 3.1 and 3.2 we start by reviewing the notion of conformal compactification and conformal
infinity and we outline how this is an essential feature to capture the geometrical structure underlying the
notion of asymptotic flatness. We proceed in sections 3.3 and 3.4 to introduce the retarded Bondi gauge
and consequently the notion of asymptotic flatness in terms of certain fall-offs for the metric components;
we solve Einstein’s equations corresponding to these boundary conditions. In sections 3.5 and 3.6 we iden-
tify the generators of the bms4 algebra by solving the asymptotic Killing equations and we comment on the
mathematical differences between global, local and generalized bms4 algebra, providing explicit realizations
of the first two.

3.1 Conformal infinity and the asymptotic structure of flat spacetime

Throughout this chapter, the notion of asymptotic flatness will be of crucial importance. Intuitively, this
notion specifies how a certain class of spacetimes, “at infinity”, approach Minkowski spacetime. Before
introducing the details of asymptotic flatness, it is instructive to investigate the asymptotic structure of
Minkowski spacetime itself and we do it by reviewing the notion of conformal compactification and con-
formal infinity, originally introduced by Penrose [45–47].

Let us consider Minkowski line element in spherical coordinates xµ = (t, r, xA), where the index A = 1, 2
labels angular coordinates,

ds2 = ηµνdxµdxν = −dt2 + dr2 + r2γABdxAdxB, (3.1)

with γAB standard metric on the unit 2-sphere. Notice that, as r → ∞, the line element in (3.1) is
characterized by a second order pole, due to the factor r2 multiplying γAB. Therefore Minkowski spacetime
is singular in this limit. In other words, the value r = ∞ has to be excluded from the range of the radial
coordinate. We expect similar singularities to occur for all asymptotically flat spacetimes, because their
line element, at leading order in the radial coordinate, should approach (3.1). We introduce the retarded
time and advanced time null coordinates (u, v) defined as u = t − r and v = t + r, with v ≥ u such that
curves with u = const and v = const represent outgoing and ingoing light rays, respectively. The ranges
of these coordinates are −∞ < u, v < ∞. We can further define new coordinates (p, q) as u = tan p and
v = tan q so that −π/2 < p, q < π/2. Notice that the effect of introducing (p, q) is to map “points at
infinity” to points at a finite distance. However, p, q = ±π/2 are still singular for the metric. Indeed (3.1),
in (p, q) coordinates reads

ds2 =
1

(cos q cos p)2

(
− dpdq +

sin2(q − p)
4

γABdxAdxB
)
. (3.2)
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In order to eliminate these divergences, we perform a Weyl rescaling with conformal factor Ω(q, p) =
2 cos q cos p, so that 8

ds̃2 ≡ Ω2(p, q)ds2 = −4dpdq + sin2(q − p)γABdxAdxB. (3.3)

The points p, q = ±π/2 are not singular for the rescaled line element ds̃2 and we can define an unphysi-
cal spacetime (M̃, ds̃2) by adding to the physical spacetime (M,ds2) the points at infinity p, q = ±π/2.
Consequently, for the unphysical spacetime, we can extend the range of the coordinates (p, q) to −π/2 ≤
p, q ≤ π/2. As mentioned, one of the main reasons for introducing the unphysical spacetime manifold M̃
is that the infinity of M gets mapped to a finite hypersurface in M̃, which we will denote by I , so that
asymptotic properties of the fields inM can be investigated by studying the behavior of the rescaled fields
on I . We can thus write M̃ =M∪I . Furthermore, null geodesics inM correspond to null geodesics in
M̃ because conformal transformations map null vectors to null vectors so that the light-cone structure is
preserved under (3.3).

Introducing now time and space coordinates (t′, r′) as p = (t′ − r′)/2 and q = (t′ + r′)/2 we have

ds̃2 = −dt′2 + dr′2 + sin2 r′γABdxAdxB, (3.4)

We introduce the following points in M̃:

• Future timelike infinity i+, defined by (t′, r′) = (π, 0). All the images in M̃ of timelike geodesics
terminate at this point;

• Past timelike infinity i− defined by (t′, r′) = (−π, 0). All the images in M̃ of timelike geodesics
originate at this point;

• Spacelike infinity i0 defined by (t′, r′) = (0, π). All the images in M̃ of spacelike geodesics originate
and terminate at this point.

We also introduce the following hypersurfaces in M̃:

• Future null infinity I + defined by the equation t′ = π − r′. It is the null hypersurface where all the
outgoing null geodesics terminate. In the conformal diagram 2, it connects i+ to i0;

• Past null infinity I − defined by the equation t′ = π + r′. It is the null hypersurface where all the
outgoing null geodesics originate. In the conformal diagram, it connects i− to i0.

An intuitive picture of the structure of the unphysical spacetime in (t′, r′) is given by the Penrose diagram
2. In the picture, null geodesic are described by p = const and q = const straight lines at 45

o
, starting

from I −, reflecting at r′ = 0 and terminating on I + while timelike curves start from i− and terminate
on i+. Spacelike curves start and terminate at i0. Notice that because I + is null, its induced metric is
degenerate, ds2

I + = 0 du2 + γABdxAdxB. The topology of I + is R× S2, the R and S2 components being

8Let us point out that there is however an ambiguity in the choice of the conformal factor Ω in (3.3) if the only requirement
is to eliminate the second order pole. Indeed, one could have chosen Ω′ = eωΩ with ω smooth function independent of the
radial coordinate. This will be relevant in section 5, in the context of asymptotically AdS spacetimes.
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Figure 2: A Penrose diagram for M. Note that the angular coordinates xA have been suppressed so that
each point represents a 2-sphere.

parametrized by u and xA, respectively. A celestial sphere is a section S2 of I + defined by a constant
value of the retarded time u. It will be useful to introduce the future and past boundaries of I +, denoted
by I +

+ and I +
− , respectively. It is possible to make similar considerations and give analogous definitions

for the asymptotic structure on past null infinity I −.

3.2 Asymptotic flatness in a coordinate-independent way

In the previous section, we analyzed the asymptotic properties of Minkowski spacetime. In particular, we
have shown that, starting from flat spacetime (M, ds2), it is possible to construct an unphysical space-
time (M̃,ds̃2) with ds̃2 = Ω2ds2 and M̃ = M ∪ I . The function Ω vanishes on the null boundary
I = I + ∪I − ∪ i− ∪ i0 ∪ i+, where I ± ' R× S2. It is reasonable to ask that, whatever is the definition
of asymptotic flatness, it should encompass some of the above mentioned properties. There are several
definitions in the literature of what it is actually meant by asymptotic flatness. Some of them consist in
specifying a coordinate system (i.e. a gauge) and giving certain fall-offs for the metric, e.g. g−η = O(r−1).
A study of these boundary conditions will be extensively given in the next sections. Here, we briefly men-
tion that there exist an “alternative” definition of asymptotic flatness, which has the advantage of not
relying on the choice of a coordinate system, but rather on the definition a global structure. We present it
here and for a more detailed analysis we refer the reader to [45–53].

A spacetime (M,ds2) is asymptotically flat if there exists a spacetime (M̃,ds̃2) with boundary I = ∂M̃
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and a diffeomorphism of M onto the interior M̃/I (so that M can be identified with its image in M̃
under the diffeomorphism) such that

1. There exists a smooth function Ω on M̃ with:

(a) ds̃2 = Ω2ds2 on M;

(b) Ω = 0 on I +;

(c) nµ ≡ ∇µΩ is nowhere vanishing on I ;

2. I has two connected components, I = I + ∪I − such that I ± ' R× S2 910;

3. The metric gµν satisfies Gµν = 8πGTµν , where Ω−2Tµν has a smooth limit on I ;

4. The integral curves of nµ are complete on I for any choice 11 of the conformal factor for which I
is divergence-free (i.e. ∇µnµ = 0).

It can be shown that: conditions 1b and 1c imply that Ω falls on I as 1/r as one recedes along null
directions; conditions 1 and 3 imply that I is a null hypersurface with normal vector nµ = ∇µΩ satisfying
nµnµ|I = 0 and the Bondi condition ∇µnν |I = 0; condition 4, weaker than the one originally considered
in [46] which was excluding black holes solutions, ensures that the action that the full BMS4 group is
well-defined on I and not only that of its Lie algebra.

We will not further pursue this approach and explore its consequences here. However it worth point-
ing out that it is possible to derive the asymptotic symmetries of the class of spacetimes satisfying 1-4 as
the subgroup of diffeomorphisms preserving a certain geometrical structure.

3.3 Bondi gauge and residual Killing vectors

We now proceed to introduce a suitable coordinate system adapted to study the asymptotic properties of
the gravitation field at future null infinity. This set of coordinates will be essential to describe asymptotic
flatness.

We define the retarded Bondi gauge as the set of coordinates xµ = (u, r, xA) with A = 1, 2 such that:

• The hypersurfaces given by the equations u = const are null. It implies that the orthogonal covector
to such hypersurfaces kµ = ∂µu = δuµ satisfies gµνkµkµ = 0. Consequently guu = 0.

• The angular coordinates xA are constant along the null rays, i.e.

kµ∂µx
A = gµνδuν∂µx

A = guµδAµ = guA = 0, (3.5)

for A = 1, 2.

9It is not completely clear if 2 is actually a consequence of the other conditions. A first proof of 2 can indeed be found
in [54]. However, as remarked in [55], the arguments used in [54] were incorrect and more rigorous proofs can be found
in [56,57].

10Note also that the points i± and i0 are excluded from this definition. In fact, for asymptotically flat spacetimes that are
not flat, these points might be singular for the conformal geometry [50].

11Bear in mind that Ω is ambiguous, as remarked in 8.
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• The radial coordinate r, which varies along null rays is an areal coordinate [3] so that

det[gAB] = r4det[γAB] ≡ r4b(xA), (3.6)

e.g. in spherical coordinates (θ, φ) and in complex stereographic coordinates (z, z̄) where z =
tan
(
θ
2

)
eiφ we have b(θ, φ) = sin2 θ and b(z, z̄) = 4/(1 + zz̄)2. Sometimes equation (3.6) is substituted

by the weaker condition [5]

∂r

(
det[gAB]

r4

)
= 0, (3.7)

ensuring that r is a luminosity distance. The solution of (3.7) is det[gAB] = r4b̄(u, xA), allowing for
an extra u dependence. We will use the more general (3.7) instead of (3.6).

As mentioned, the above defined set of coordinates is suited to describe the behavior of the metric at future
null infinity I +. Similarly, we could have introduced the advanced Bondi gauge, consisting in specifying a
set of coordinates (v, r, xA) describing the behavior of the fields at past null infinity I −. All the consid-
erations in the remainder can be easily extended to the case of advanced gauge.

The gauge fixing conditions guA = 0 = guu are equivalent to grr = 0 = grA and hence the most gen-
eral line element in the retarded Bondi gauge can be written as

ds2 = gµνdxµdxν = e2β V

r
du2 − 2e2βdudr + gAB(dxA − UAdu)(dxB − UBdu), (3.8)

where V,UA, β and gAB satisfying (3.7) are six arbitrary functions to be determined. Note that we have used
all the freedom coming from the gauge invariance of the theory. Indeed, a general symmetric metric tensor
in four dimensions is defined by ten arbitrary functions. Having fixed the Bondi gauge has reduced this
number to six. However, there is still some residual freedom which consists in diffeomorphisms generated
by a ξ solving

Lξgrr = 0, LξgrA = 0, Lξ∂r
(

det[gAB]

r4

)
= 0. (3.9)

The solution to (3.9) for ξ is

ξu = f, (3.10)

ξA = Y A − ∂Bf
∫ ∞
r

dr′(e2βgBA), (3.11)

ξr = −r
2

[
DAY

A −DA

(
∂Bf

∫ ∞
r

dr′(e2βgBA)

)
− UA∂Af − 2ω

]
. (3.12)

where f(u, xA), Y A(u, xB) and ω(u, xB) are independent of the radial coordinate and where DA is the
covariant derivative associated to the unit metric γAB on the 2-sphere. It follows that the residual diffeo-
morphisms preserving the Bondi gauge are parametrized by four functions (f, Y A, ω) of (u, xA).

3.4 Asymptotic flatness and solution of Einstein’s equations

Following the gauge fixing procedure outlined in 2.4, we now proceed to solve (vacuum) Einstein’s equations
Rµν = 0 introducing certain boundary conditions. We require that the angular metric gAB admits an
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analytical expansion in the radial coordinate r as

gAB = r2γAB + rCAB + D̃AB +O(r−1), (3.13)

where the first term accounts for the second order pole discussed in 3.1 and the symmetric tensors
CAB(u, xD), referred to as the asymptotic shear, and D̃AB(u, xD) are independent of the radial coordi-
nate. From now on the angular indices A,B, .. will be lowered and raised with γAB. Condition (3.7)
implies that

CAA = 0, D̃AB =
1

4
γABC

DECDE +DAB, DA
A = 0, (3.14)

with DAB symmetric and traceless tensor. We are interested in describing asymptotic flatness and hence
we require that ds2 in (3.8) approaches, at large values of r, the Minkowski line element in (3.1). It implies
the following fall-offs for β, V and UA:

β = O(r−2),
V

r
= −1 +O(r−1), UA = O(r−2). (3.15)

The set of boundary conditions in (3.13) and (3.15) defines asymptotically flat spacetimes12.

We now proceed to present the solution of Einstein’s equations corresponding to these boundary con-
ditions [1, 2, 5, 39,58,59]. They split as follows:

• Main equations:

Rrr = 0, RrA = 0, gABRAB = 0, RAB −
1

2
gABR = 0. (3.16)

Sometimes the first three of (3.16) are referred to as hypersurface equations because they determine
the radial evolution of β, V and UA, while the last of (3.16) is referred to as standard equation.

• Trivial equation:

Rur = 0. (3.17)

• Supplementary equations:

RuA = 0, Ruu = 0. (3.18)

The first three main equations in (3.16) yield the following fall-offs for β, UA and V , respectively

β = − 1

32r2
CABCAB −

1

12r3
CABDAB +O(r−4), (3.19)

UA = − 1

2r2
DCC

AC − 2

3r3

[
NA +

(
1

3
+ log r

)
DBD

BA − 1

2
CABDCC

CB

]
+O(r−4), (3.20)

V = −1 +
2m

r
+O(r−2). (3.21)

12For more general boundary conditions see e.g. [39].
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Note the appearance of the integration constants NA(u, xB) and m(u, xA) in (3.20) and (3.21). In principle
there could be an integration constant also in (3.19), β0(u, xB) which is however absent because of the
first condition in (3.15). NA(u, xB) and m(u, xA) are referred to as angular momentum aspect and Bondi
mass aspect, respectively, and they give information about the angular density of angular momentum and
energy of the spacetime, as we will further comment later on.

The last equation in (3.16) gives the retarded time evolution of all the tensors appearing in the ana-
lytic expansion (3.13) of gAB in terms of β, UA and V . However the time derivative of the shear tensor is
not fixed by the last of (3.16). It means that, introducing the Bondi news tensor NAB(u, xC) as

NAB ≡ ∂uCAB, (3.22)

it must be given as part of the free data. Taking into account the traceleness condition in (3.14), it consists
in two arbitrary functions that have to be interpreted as the two degrees of freedom of the gravitational
field. Further, it can be shown that the last of (3.16) fixes

∂uDAB = 0. (3.23)

If it is required the absence of logarithmic terms in (3.20) expansion, then one should require

DBD
BA = 0, (3.24)

which, taking into account (3.23) is solved in stereographic coordinates by

Dzz = f(z̄)(1 + zz̄)4, Dz̄z̄ = g(z)(1 + zz̄)4. (3.25)

with f and g arbitrary functions. Notice that for non-vanishing f and g, (3.25) introduce singularities on
the 2-sphere spanned by (z, z̄). In our analysis we will not be concerned about these issues and from now
on we will simply impose DAB = 0.

It can be shown that the trivial equation in (3.17), once the main equations are solved, is automatically
satisfied and hence it gives no additional information. For what concerns the supplementary equations in
(3.18), assuming that all other equations are solved, they have to be solved only at order r−2. So far we were
only concerned about vacuum Einstein’s equations. However, it can be shown that adding a non-vanishing
stress energy tensor Tµν with certain fall-offs motivated by the behavior of radiative scalar-field solutions
in Minkowski spacetime (see e.g. condition 3 and [60]) will influence the supplementary equations, that
constraint the retarded time evolution of NA and m, respectively, as

∂uNA = ∂Am+
1

16
∂A
(
CBCN

BC
)
− 1

4
NBCDAC

BC − 1

4
DB

(
DBDCCCA −DADCC

BC
)

− 1

4

(
CCBNAC − CACNCB

)
− 8πGT̂uA, (3.26)

∂um =
1

4
DADBN

AB − 1

8
NABN

AB − 4πGT̂uu, (3.27)

where TuA = r−2T̂uA(u, xB) + O(r−3) and Tuu = r−2T̂uu(u, xA) + O(r−3). Defining the Bondi mass as
M =

∫
S2 d2x

√
γm and assuming the null energy condition T̂uu ≥ 0, an interesting application of equation

(3.27) is the Bondi mass loss formula,

∂uM = −1

8

∫
S2

d2x
√
γNABN

AB − 4πG

∫
S2

d2x
√
γT̂uu ≤ 0, (3.28)
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according to which if a system emits gravitational radiation, i.e. there is a non-vanishing news tensor, the
Bondi mass always decreases in time.

The above analysis shows that for asymptotically flat spacetimes, within our setup, a generic set of initial
data on I + is χ

I + = {m(u0, x
A), CAB(u0, x

C), NAB(u, xC), NA(u0, x
B), ...}, for an arbitrary initial point

u0 on I + and where ... comprise all the infinite tower of subleading multipoles in the gAB expansion of
(3.13) at u0

13. The subset χ′
I +

= {m(u0, x
A), CAB(u0, x

C), NAB(u, xC), NA(u0, x
B)} ⊂ χ

I + forms a set

of initial data on I + at first and second subleading order in the luminosity distance r.

Putting all these results together, the line element (3.8) admits the following asymptotic expansion around
I +,

ds2 =−
(

1− 2m

r
+O(r−2)

)
du2 − 2

(
1− CABC

AB

16r2
+O(r−3)

)
dudr + r2

(
γAB +

CAB
r

+O(r−2)

)
dxAdxB

+

(
DCCAC +

4NA

3r
− CABDCC

CB

3r
+O(r−2)

)
dxAdu, (3.29)

where the retarded time evolutions of NA and m are governed by (3.26) and (3.27), respectively.

3.5 Asymptotic symmetries and asymptotic symmetry algebra

We now focus on the asymptotic symmetries of the above defined class of spacetimes, i.e. the subset of the
residual Killing vectors in equations (3.10)-(3.12) preserving the fall-off conditions in (3.29). In particular,
we ask that

Lξgur = O(r−2), LξguA = O(1), LξgAB = O(r), Lξguu = O(r−1). (3.30)

These equations constrain the form of f(u, xA), Y A(u, xA) and ω(u, xA) appearing in (3.10)-(3.12) as

∂uY
A = 0, ∂uf =

1

2
DAY

A, DAYB +DBYA = γABDCY
C , ω = 0. (3.31)

Solving the first two equations in (3.31) yields

Y A = Y A(xB), f = T (xA) +
u

2
DAY

A, (3.32)

with T (xA) arbitrary function on the 2-sphere, while the third implies that Y A is a conformal Killing vector
of γAB. The solution, in (z, z̄) coordinates, is

Y z = Y z(z), Y z̄ = Y z̄(z̄). (3.33)

The asymptotic symmetries of asymptotically flat spacetimes are thus generated by a vector field ξ
parametrized by (T, Y A), where T and Y A are an arbitrary function and a conformal Killing vector on the

13Equivalently, introducing EAB(u0, r, x
C) ≡ gAB(u0, r, x

C) − r2γAB(xC) − rCAB(u0, x
C), we have χ

I+ =

{m(u0, x
A), CAB(u0, x

B), NAB(u, xC), NA(u0, x
A), EAB(u0, x

C)}.
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2-sphere and whose components ξµ are given by

ξu = T +
u

2
DAY

A, (3.34)

ξA = Y A − ∂B
(
T +

u

2
DCY

C
)∫ ∞

r
dr′(e2βgBA), (3.35)

ξr = −r
2

[
DAY

A −DA

[
∂B

(
T +

u

2
DCY

C
)∫ ∞

r
dr′(e2βgBA)

]
− UA∂A

(
T +

u

2
DCY

C
)]
. (3.36)

Note that ξ is field-dependent because it depends on the metric components.

3.5.1 Asymptotic symmetry algebra on I +

Let us start by considering the algebra realized by the vector ξ on I + = R × S2, given by ξ = ξT + ξY ,
with

ξT = T
∂

∂u
, ξY =

u

2
DAY

A ∂

∂u
+ Y A ∂

∂xA
. (3.37)

The standard Lie bracket between vector fields yield

[ξT1 , ξT2 ] = 0, [ξY1 , ξY2 ] = ξŶ , [ξY1 , ξT2 ] = ξT̂12
, (3.38)

where

Ŷ B = Y A
1 ∂AY

B
2 − Y A

2 ∂AY
B

1 , T̂12 = Y A
1 ∂AT2 −

1

2
T2DAY

A
1 . (3.39)

The vector fields ξT and ξY in (3.37) are the generators of supertranslations and of conformal transforma-
tions (global or local, as we will discuss in section 3.6), respectively. Note that the supertranslations form
an abelian algebra. The full algebra reads

[ξ1, ξ2] = [ξY1 + ξT1 , ξY2 + ξT2 ] = ξŶ + ξT̂12
− ξT̂21

≡ ξ̂ = ξŶ + ξT̂ , (3.40)

where

T̂ = Y A
1 ∂AT2 − Y A

2 ∂AT1 +
1

2

(
T1DAY

A
2 − T2DAY

A
1

)
, (3.41)

and Ŷ is again given by the first in (3.39). The Lie algebra satisfied by ξ is denoted bms4 (Bondi-Metzner-
Sachs) and, as it is clear from the structure of the bracket (3.38), it is a semidirect sum of the algebra
of conformal vector fields on the 2-sphere with that of abelian supertranslations. The corresponding Lie
group is called the BMS4 group. Note that there is a non-trivial action of ξY on ξT , giving the structure
of semidirect sum. We can abstractly define the Lie bracket of bms4 as

[(Y1, T1), (Y2, T2)] = (Ŷ , T̂ ), (3.42)

where Ŷ and T̂ are given by the first of (3.39) and (3.41).
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3.5.2 Extension of bms4 in the bulk

We now turn to consider the vector field in (3.34)-(3.36) defined on the whole spacetime. As mentioned,
it depends on the metric through the functions β, gAB and UA. In other words, the gauge parameters are
field-dependent. We thus consider the modified Lie bracket [5], defined as

[ξ1(g), ξ2(g)]M = [ξ1(g), ξ2(g)] + δξ1ξ2(g)− δξ2ξ1(g), (3.43)

where δξ1ξ2(g) = ξ2(δξ1g), where δξgµν = Lξgµν . The last two terms in (3.43) take into account the above
discussed field dependence. We start by splitting again ξ = ξT + ξY with

ξT = T
∂

∂u
− ∂BT

∫ ∞
r

dr′(e2βgBA)
∂

∂xA
+
r

2

[
DA

(
∂BT

∫ ∞
r

dr′(e2βgBA)

)
+ UA∂AT

]
∂

∂r
, (3.44)

ξY =
u

2
DAY

A ∂

∂u
+

[
Y A − u

2
∂B
(
DCY

C
) ∫ ∞

r
dr′(e2βgBA)

]
∂

∂xA

− r

2

[
DAY

A − u

2
DA

[
∂B
(
DCY

C
) ∫ ∞

r
dr′(e2βgBA)

]
− u

2
UA∂A

(
DCY

C
)] ∂
∂r
. (3.45)

It is then possible to show that the modified Lie bracket between vector fields ξ1 = ξY1+ξT1 and ξ2 = ξY2+ξT2

in (3.44) yields again

[ξ1, ξ2]M = ξ̂ = ξŶ + ξT̂ , (3.46)

where Ŷ and T̂ are given by the first of (3.39) and (3.41). In other words the full spacetime vector fields
of the form (3.44)-(3.45) provide a representation of bms4 when equipped with the modified Lie bracket
of (3.43). This shows that bms4, though it was originally defined at null infinity, it is actually faithfully
represented everywhere in the bulk of the spacetime throught the modified Lie bracket.

3.6 Global, local and generalized bms4

So far, we have shown that the generators of bms4 depend on an arbitrary function T and a conformal
Killing vector Y A on the 2-sphere. In particular, since an arbitrary function on the 2-sphere is specified by
an infinite number of parameters, the supertranslations subalgebra is infinite-dimensional. However, both
for T and Y A we have not yet specified the space of functions under consideration. Here we discuss three
choices which lead to different definitions of bms4.

The first is to consider only the globally defined, invertible conformal transformations on the 2-sphere
into itself. This choice corresponds to the global bms4 algebra. In this approach the conformal group gen-
erated by Y A is restricted to its six-dimensional globally defined component SL(2,C)/Z2 isomorphic to the
connected component of the Lorentz group and, correspondingly, the smooth function T on the 2-sphere
is expanded into spherical harmonics. The global bms4 algebra can then be defined as the semidirect sum
between the algebra of the Lorentz group so(3, 1) and that of supertranslations, denoted by s . This is the
choice originally considered in [3] and successively in [45,61].
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Another choice, proposed in [4–6], consists in allowing Y A to generate not only the globally well-defined
Lorentz group, but all possible conformal transformations of the Riemann sphere into itself, including
the singular ones. In this case, Laurent series are used to expand the components (Y z(z), Y z̄(z̄)) of the
conformal Killing vector Y A and they form two copies of the infinite-dimensional Witt algebra. The cor-
responding transformations are referred to as superrotations. Consequently, in order for the bms4 algebra
to be well-defined, one needs to include also singular supertranslations. This choice defines the local bms4

algebra, which is then defined as the semidirect sum between superrotations and supertranslations. It is
worth pointing out that including singular conformal transformations has played a crucial role in the de-
veloping of two-dimensional conformal field theories and, in the context of asymptotically flat spacetimes,
they have been interpreted in terms of cosmic strings [62].

More recently, a third choice has been proposed in [7,8]. It was shown that, allowing the boundary metric
on the asymptotic 2-sphere to fluctuate and thus relaxing the boundary condition outlined in (3.13), it is
possible to substitute in a consistent way the above mentioned superrotations by smooth diffeomorphisms
on the 2-sphere (Diff(S2)). Correspondingly, the semidirect sum between smooth Diff(S2) and supertrans-
lations defines the so-called generalized bms4 algebra. The relevance of this proposal relies in the fact
that, differently from what happens for singular superrotation, the Ward Identities associated to smooth
Diff(S2)-invariance of the gravitational S-matrix, reproduce the subleading soft graviton theorem [15].

Note that in each of the three above spelled cases the Poincaré algebra iso(3, 1), realizing isometries
of flat spacetime, is a subalgebra of bms4. We now proceed to show the explicit realizations of the global
and local bms4.

3.6.1 Realization of the global bms4 algebra

We start by considering a realization of the global bms4 on I + ' R× S2. The generators of the Lorentz
algebra are rotations (L1, L2, L3) and boosts (R1, R2, R3) satisfying, through the ordinary Lie bracket
between vector fields, the standard commutation relations

[Li, Lj ] = εijkLk, [Ri, Rj ] = −εijkLk, [Li, Rj ] = εijkRk. (3.47)

Introducing coordinates (u, θ, φ) to parametrize I +, Li and Ri admit a representation in terms of differ-
ential operators as [51,63]

L1 = i

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (3.48)

L2 = i

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (3.49)

L3 = −i ∂
∂φ
, (3.50)

R1 = −i
(

cos θ cosφ
∂

∂θ
− sinφ

sin θ

∂

∂φ
− u sin θ cosφ

∂

∂u

)
, (3.51)

R2 = −i
(

cos θ sinφ
∂

∂θ
+

cosφ

sin θ

∂

∂φ
− u sin θ sinφ

∂

∂u

)
, (3.52)

R3 = i

(
sin θ

∂

∂θ
+ u cos θ

∂

∂u

)
. (3.53)
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On the other hand, expanding the function T (θ, φ) in the first of (3.37) in spherical harmonics Ylm(θ, φ),
the generators of supertranslations and their Lie bracket read

Plm = Ylm(θ, φ)
∂

∂u
, [Plm, Pl′m′ ] = 0. (3.54)

The algebra formed by the generators (3.48)-(3.53) and (3.54) is better expressed by introducing the stan-
dard ladder operators L± = L1 ± iL2 and R± = R1 ± iR2 and it reads

[L+, Plm] =
√
l(l + 1)−m(m+ 1)Pl,m+1, (3.55)

[L+, Plm] =
√
l(l + 1)−m(m− 1)Pl,m−1, (3.56)

[L3, Plm] = mPlm, (3.57)

[R+, Plm] = −i(l − 1)

√
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
Pl+1,m+1 − i(l + 2)

√
(l −m− 1)(l −m)

4l2 − 1
Pl−1,m+1, (3.58)

[R−, Plm] = i(l − 1)

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
Pl+1,m−1 + i(l + 2)

√
(l +m− 1)(l +m)

4l2 − 1
Pl−1,m−1, (3.59)

[R3, Plm] = i(l − 1)

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Pl+1,m − i(l + 2)

√
(l +m)(l −m)

4l2 − 1
Pl−1,m. (3.60)

The set of commutation relations (3.47),(3.54) and (3.55)-(3.60) define the global bms4 algebra. As re-
marked, it is a semidirect sum bms4 = so(3, 1) ⊕σ s, where s is the abelian ideal of supertranslations 14

and σ denotes the action of the Lorentz algebra on it [51]. The Poincaré algebra iso(3, 1) is the subalge-
bra spanned by the set {P00, P1m, Li, Ri} as clear from the factor (l−1) multiplying Pl+1,m in (3.58)-(3.60).

Now we briefly comment on the finite global BMS4 transformations of the coordinates. Ordinary four-
translations act on bulk coordinates xµ as x′µ = xµ + δxµ, δxµ being a constant. We now ask what is
the corresponding effect on the coordinates (u, xA) on I +. For large values of the radial coordinate r,
for asymptotically flat spacetimes, we have u ∼ t − r. An infinitesimal time translation t′ = t + δt and a
spatial displacement δ~x produce a shift δu = δt− ~x·δ~x

r .Therefore, for an infinitesimal four-translation δxµ

we have, using spherical coordinates xA = (θ, φ),

δu = δt− δx1 cosφ sin θ − δx2 sinφ sin θ − δx3 cos θ ≡
∑

l∈{0,1}

l∑
m=−l

αlmYlm(θ, φ), (3.61)

with

α00 =
√

4πδx0, α10 = −
√

4π

3
δx3, α1,±1 = ±

√
2π

3
(δx1 ∓ iδx2). (3.62)

Then, the effect of a supertanslation (3.54) can be easily expressed as the generalization of (3.61) to
arbitrary values of l:

u′ = u+
∞∑
l=0

l∑
m=−l

αlmYlm(θ, φ), (3.63)

14Indeed [Plm, g] ∈ s, ∀ g ∈ bms3
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with αlm satisfying the reality condition αlm = (−1)mα∗l,−m. The retarded time u gets shifted as u′ =
u + T (θ, φ) for an arbitrary smooth function T (θ, φ), whose expansion in spherical harmonics is that of
(3.63). It means that each point on the celestial sphere gets shifted by a certain amount depending on its
angular coordinates, as pictorically represented in Figure 3.

Figure 3: A supertranslation maps the celestial sphere u = u0 to the one u′ = u0 + T .

In order to describe the action of Lorentz transformations on I +, it is now convenient to parametrize
the latter with coordinates (u, z, z̄) and to use the isomorphism SO(3, 1) ' SL(2,C)/Z2 = PSL(2,C),
according to which to each Lorentz transformation it corresponds a fractional linear transformation of
(z, z̄) [64],

z′ =
az + b

cz + d
,

(
a b
c d

)
∈ SL(2,C)/Z2. (3.64)

Rotations of an angle ϕ and boosts of rapidity χ about an axis n̂′ = (cosφ′ sin θ′, sinφ′ sin θ′, cos θ′) are
described by the following SL(2,C)/Z2 matrices

Ln̂′(ϕ) = ±

cos ϕ2 − i cos θ′ sin ϕ
2 −i sin θ′ sin ϕ

2 e
−iφ′

−i sin θ′ sin ϕ
2 e

iφ′ cos ϕ2 + i cos θ′ sin ϕ
2

 , (3.65)

Rn̂′(χ) = ±

cosh χ
2 − cos θ′ sinh χ

2 − sin θ′ sinh χ
2 e
−iφ′

− sin θ′ sinh χ
2 e
iφ′ cosh χ

2 + cos θ′ sinh χ
2

 . (3.66)

Notice that Ln̂′(ϕ) is also an SU(2) transformation while Rn̂′(χ) is not. Indeed, for any rotation the con-
formal factor is K(z, z̄) = 1, because rotations are pure isometries of the 2-sphere, while boosts are only
conformal symmetries. In the complex plane spanned by (z, z̄) the former are rotations while the latter
are dilations.
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Under (3.64) the induced (degenerate) line element on I + transforms as

ds′2I + =
4

(1 + z′z̄)2
dz′dz̄′ = K2(z, z̄)ds2

I + , (3.67)

with

K(z, z̄) =
1 + zz̄

|az + b|2 + |cz + d|2
. (3.68)

It can be easily shown [65] that the retarded time u, under (3.64) transforms as

u′ = K(z, z̄)u. (3.69)

The finite form of global BMS4 transformations on the coordinates (u, z, z̄) is given by (3.63), (3.64) and
(3.69).

3.6.2 A fuzzy celestial sphere

As shown in (3.54), the generators of supertranslations are indexed by the angular momentum l of spher-
ical harmonics on the celestial sphere and are infinite in number because one can have infinite angular
resolution on such sphere. Here we show how a cut-off in the angular modes of the celestial sphere can
be consistently introduced using techniques of non-commutative geometry. In particular, we introduce
a non-commutative deformation of the algebra of spherical harmonics analogous to the one used in the
literature to describe a non-commutative analogue of the 2-sphere, the so-called fuzzy sphere [66].

The celestial sphere, as a smooth manifold, is a 2-sphere and the commutative algebra of smooth functions
defined on it, which we denote by C(S2), is generated by the spherical harmonics {Ylm(θ, φ)} that provide
an orthonormal and complete basis with inner product given by∫

dΩY ∗l1m1
(θ, ϕ)Yl2m2(θ, ϕ) = δl1l2δm1m2 . (3.70)

Thus, any smooth function f(θ, φ) ∈ C(S2) can be expanded as

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ) , (3.71)

with the coefficients flm given by

flm =

∫
dΩY ∗lm(θ, ϕ)f(θ, φ). (3.72)

The product of two spherical harmonics can expressed in terms of a linear combination of spherical har-
monics using the Clebsch-Gordan coefficients:

Yl1m1Yl2m2 =

l1+l2∑
l=|l1−l2|

l∑
m=−l

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
C l0l10l20C

lm
l1m1l2m2

Ylm. (3.73)

Note that such product is commutative, since C l0l10l20C
lm
l1m1l2m2

= C l0l20l10C
lm
l2m2l1m1

and that the maximum
value of the angular momentum l is given by lmax = l1 + l2.

36



The action of the Lorentz algebra generators given in (3.48)-(3.53) on the algebra of spherical harmonics
Ylm(θ, φ) is given by [67]:

L±(Ylm) =
√
l(l + 1)−m(m± 1)Yl,m+1, (3.74)

Lz(Ylm) = mYlm, (3.75)

R+(Ylm) = ∓il

√
(l ±m+ 1)(l ±m+ 2)

(2l + 1)(2l + 3)
Yl+1,m±1 ∓ i(l + 1)

√
(l ∓m− 1)(l ∓m)

4l2 − 1
Yl−1,m+1, (3.76)

R3(Ylm) = il

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Yl+1,m − i(l + 1)

√
(l +m)(l −m)

4l2 − 1
Yl−1,m. (3.77)

Note that since the total angular momentum L2 does not commute with the boosts, the action of a boost
on a spherical harmonic changes in general its total angular momentum l and always maps the harmonic
with given l to one with l+ 1. This is not an issue because, has already remarked, l can be any arbitrarily
large integer number because one can have infinite angular resolution on the ordinary sphere.

The first step in order to obtain a non-commutative deformation of the celestial sphere is to deform
the algebra of spherical harmonics (3.73) by introducing the so-called fuzzy spherical harmonics, which can
be thought of as the algebra of functions on a non-commutative space known as the fuzzy sphere [66,68–78].
This deformation is concretely realized in terms of a “quantization map” between the commutative algebra
of functions on the 2-sphere C(S2) and the algebra of N ×N complex matrices MN (C),

ΩN : C(S2)→MN (C) ; ΩN [Ylm(θ, ϕ)] =

{
Ŷ

(N)
lm l < N

0 l ≥ N
, (3.78)

where the mapping between the spherical harmonics Ylm(θ, φ) and the matrices Ŷ
(N)
lm is explicitly realized

as:

Ŷ
(N)
lm =

2l

l!

[
N(N − 1− l)!

(N + l)!

] 1
2

(J(N) · ∇)l
(
rlYlm(θ, ϕ)

)
, (3.79)

with J(N) = (J
(N)
1 , J

(N)
2 , J

(N)
3 ) and J

(N)
i are the N -dimensional spin matrices with spin jN

[J
(N)
i , J

(N)
j ] = iεijkJ

(N)
k , J (N)2 = jN (jN + 1)I(N), 2jN + 1 = N . (3.80)

Ŷ
(N)
lm are referred to as fuzzy spherical harmonics and they are irreducible tensor operators of rank l. In-

troducing ladder operators J
(N)
± = J

(N)
1 ± iJ (N)

2 , their adjoint action . on the fuzzy spherical harmonics is
given by

J
(N)
± . Ŷ

(N)
lm ≡ [J

(N)
± , Ŷ

(N)
lm ] =

√
(l ∓m)(l ±m+ 1)Ŷ

(N)
l,m±1, (3.81)

J
(N)
3 . Ŷ

(N)
lm ≡ [J

(N)
3 , Ŷ

(N)
lm ] = mŶ

(N)
lm . (3.82)
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Furthermore the action of the the Casimir J (N)2 is,

J (N)2 . Ŷ
(N)
lm =

[
J

(N)
+ ,

[
J

(N)
− , Ŷ

(N)
lm

]]
+
[
J

(N)
3 ,

[
J

(N)
3 , Ŷ

(N)
lm

]]
−
[
J

(N)
3 , Ŷ

(N)
lm

]

= l(l + 1)Ŷ
(N)
lm ≡ −4 Ŷ

(N)
lm , (3.83)

where we introduced the fuzzy Laplacian 4. This is the non-commutative analogue of the ordinary an-
gular Laplacian and its eigenmatrices are the fuzzy harmonics. Its spectrum is truncated at l = lmax =
2jN = N − 1. Note that the operation . is a derivation, that is the non-commutative analogue of a vec-

tor field. The product of Ŷ
(N)
l1m1

and Ŷ
(N)
l2m2

can be expanded as a linear combination of Ŷ
(N)
lm using 6j-symbols

Ŷ
(N)
l1m1

Ŷ
(N)
l2m2

=

2jN∑
l=0

(−1)2jN+l

√
(2l1 + 1)(2l2 + 1)(2jN + 1)

4π

{
l1 l2 l
jN jN jN

}
C lml1m1l2m2

Ŷ
(N)
lm . (3.84)

Notice that the 6j-symbols of (3.84) automatically vanish if the triangular conditions |l1 − l2| < l < l1 + l2
and 0 < l < 2jN + 1 are not satisfied. It means that l can assume values up to lmax = 2jN = N − 1, in
contrast to what happens for the product of ordinary spherical harmonics (3.73). From the antisymmetry
properties of the 6j-symbols, we derive the commutator

[
Ŷ

(N)
l1,m1

, Ŷ
(N)
l2m2

]
=

2jN∑
l=0

(−1)2jN+l

√
(2l1 + 1)(2l2 + 1)(2jN + 1)

4π

{
l1 l2 l
jN jN jN

}
× C lml1m1l2m2

Ŷ
(N)
lm [1− (−1)l1+l2−l]. (3.85)

Using the asymptotic behavior of the 6j-symbols [79] for large values of N{
l1 l2 l
jN jN jN

}
≈ (−1)2j+l√

(2l + 1)(2jN + 1)
C l0l10l20, (3.86)

we have that

lim
N→∞

Ω−1
N

(
Ŷ

(N)
l1m1

Ŷ
(N)
l2m2

)
= Yl1m1(θ, φ)Yl2m2(θ, φ) . (3.87)

and thus the commutator (3.85) vanishes in the large-N limit, leading to the the usual commutative algebra
of spherical harmonics. On MN (C) we can introduce a scalar product (, )(N) as

(
Ŷ

(N)
l1m1

, Ŷ
(N)
l2m2

)
(N)

=
4π

N
Tr
(
Ŷ

(N)†
l1m1

Ŷ
(N)
l2m2

)
= δl1l2δm1m2 . (3.88)

Since there are
∑2jN

l=0 (2l+ 1) = N2 independent fuzzy spherical harmonics the set
{
Ŷ

(N)
lm

}
, equipped with

(3.88) is an orthonormal basis in MN (C). Any element f̂ (N) ∈MN (C) can thus be expanded as

f̂ (N) =

2jN∑
l=0

l∑
m=−l

(
Ŷ

(N)†
lm , f̂ (N)

)
(N)

Ŷ
(N)
lm . (3.89)
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Again, note that this expansion is truncated at lmax, in contrast to what happens in (3.73). The quanti-
zation map (3.78) can be extended by linearity to arbitrary functions of (θ, φ)

ΩN : f(θ, φ) =

∞∑
l=0

l∑
m=−l

flmYlm(θ, φ)→ f̂ (N) =

2jN∑
l=0

l∑
m=−l

flmŶ
(N)
lm . (3.90)

The set CN (S2) ⊂ C(S2) of truncated functions on the 2-sphere, i.e. the set of functions whose expansion in
terms of the spherical harmonics includes only terms with l < N as f (N)(θ, φ) =

∑2jN
l=0

∑l
m=−l flmYlm(θ, φ)

is a vector space, but not an algebra with the standard definition of pointwise product of two functions,
since the product of two spherical harmonics of order say N − 1 has spherical components of order larger
than N−1, as remarked before. However, we can equip this vector space with a non-commutative ?-product
via the Weyl-Wigner map:

(
f (N) ? g(N)

)
(θ, φ) =

2jN∑
l=0

l∑
m=−l

(
Ŷ

(N)†
lm , f̂ (N)ĝ(N)

)
(N)

Ylm(θ, φ), (3.91)

turning CN (S2) into a non-commutative algebra. This non-commutative algebra of functions can be inter-
preted as functions on the fuzzy sphere. An important feature introduced by the non-commutativity is that
we now have a cut-off on the allowed values of the angular momentum lmax in a way which is compatible
with the multiplicative structure on the space of non-commutative spherical harmonics.

In what follows we show how the non-commutative deformation of spherical harmonics just presented
can be extended in order to include an action of the Lorentz algebra which is compatible with the presence
of a maximal allowed value of the angular momentum. In order to do that, we start by looking at the
finite N = N1N2-dimensional representations of the Lorentz algebra, that can be constructed in terms of
the spin matrices as

L
(N)
i = J

(N1)
i ⊗ 1(N2) + 1(N1) ⊗ J (N2)

i , R
(N)
i = i

(
J

(N1)
i ⊗ 1(N2) − 1(N1) ⊗ J (N2)

i

)
. (3.92)

It is easy to prove that these matrices satisfy the so(3, 1) Lie algebra of (3.47). For both sets of spin matrices

J
(N1)
i and J

(N2)
i we can construct their associated fuzzy spherical harmonics Ŷ

(N1)
lm and Ŷ

(N2)
lm which are

N1 ×N1 and N2 ×N2 matrices, respectively, and they satisfy all the properties discussed previously. We
can therefore construct the matrices

l1l2 Ŷ
(N)
LM =

∑
m1
m2

CLMl1m1l2m2
Ŷ

(N1)
l1m1

⊗ Ŷ (N2)
l2m2

. (3.93)

The matrices l1l2 Ŷ
(N)
LM are irreducible tensors of rank L and are eigenmatrices of J (N1)2 ⊗ I(N2) and I(N1) ⊗

J (N2)2 with eigenvalues l1(l1 + 1) and l2(l2 + 1), respectively. The allowed values of the total angular
momentum are L = lmin, ..., lmax, and M = m1 + m2 = −L, ..., L with lmin = |l1 − l2| and lmax = l1 + l2
as follows from the rules for the addition of two angular momenta. Note that, since l1max = N1 − 1 and

l2max = N2 − 1, the value of L is never grater than Lmax = N1 + N2 − 2. The set
{
l1l2 Ŷ

(N)
LM

}
is an

orthonormal basis in MN (C) with a scalar product analogous to the one of the fuzzy spherical harmonics,
given by (

l1l2 Ŷ
(N)
L1M1

, l
′
1l
′
2 Ŷ

(N)
L2M2

)
(N)

=
(4π)2

N
Tr
(
l1l2 Ŷ

(N)†
L1M1

l′1l
′
2 Ŷ

(N)
L2M2

)
= δL1L2δM1M2δl1l′1δl2l′2 . (3.94)
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The algebra realized by the matrices (3.93) is given in terms of 6j- and 9j-symbols


c b a
f e d
j g k

 as

l′1l
′
2 Ŷ

(N)
L′M ′

l′′1 l
′′
2 Ŷ

(N)
L′′M ′′ =

∑
LM
l1l2

√
N

4π

√
(2l1 + 1)(2l′1 + 1)(2l′′1 + 1)(2L′ + 1)(2l2 + 1)(2l′2 + 1)(2l′′2 + 1)(2L′′ + 1)

×
{
l′1 l′′1 l1
jN1 jN1 jN1

}{
l′2 l′′2 l2
jN2 jN2 jN2

}
(−1)2jN1

+2jN2
+l1+l2CLML′M ′L′′M ′′


l′1 l′2 L′

l′′1 l′′2 L′′

l1 l2 L

 l1l2 Ŷ
(N)
LM . (3.95)

For large values of N = N1N2 we have{
l′1 l′′1 l1
jN1 jN1 jN1

}{
l′2 l′′2 l2
jN2 jN2 jN2

}
≈ (−1)jN1

+jN2
+l1+l2√

N(2l1 + 1)(2l2 + 1)
C l10
l′10l′′1 0

C l20
l′20l′′2 0

, (3.96)

so that the algebra becomes

l′1l
′
2 Ŷ

(N)
L′M ′

l′′1 l
′′
2 Ŷ

(N)
L′′M ′′ ≈

∑
LM
l1l2

1

4π

√
(2l′1 + 1)(2l′′1 + 1)(2L′ + 1)(2l′2 + 1)(2l′′2 + 1)(2L′′ + 1)

× C l10
l′10l′′1 0

C l20
l′20l′′2 0

CLML′M ′L′′M ′′


l′1 l′2 L′

l′′1 l′′2 L′′

l1 l2 L

 l1l2 Ŷ
(N)
LM , (3.97)

which is exactly the algebra satisfied by commutative bipolar spherical harmonics (see e.g. [67]), as one
would expect. For these reason, the matrices of (3.93) can be thought of as fuzzy bipolar spherical har-
monics. Their commutator is given by[
l′1l
′
2 Ŷ

(N)
L′M ′ ,

l′′1 l
′′
2 Ŷ

(N)
L′′M ′′

]
=
∑
LM
l1l2

√
N

4π

√
(2l1 + 1)(2l′1 + 1)(2l′′1 + 1)(2L′ + 1)(2l2 + 1)(2l′2 + 1)(2l′′2 + 1)(2L′′ + 1)

×
{
l′1 l′′1 l1
jN1 jN1 jN1

}{
l′2 l′′2 l2
jN2 jN2 jN2

}
(−1)2jN1

+2jN2
+l1+l2CLML′M ′L′′M ′′


l′1 l′2 L′

l′′1 l′′2 L′′

l1 l2 L


× [1− (−1)l1+l2+l′1+l′2+l′′1 +l′′2 ]l1l2 Ŷ

(N)
LM .

These equations define our non-commutative algebra of spherical harmonics on the fuzzy celestial sphere.
It can be shown [63] that Lorentz algebra acts as

L
(N)
± . l1l2 Ŷ

(N)
LM =

√
(L∓M)(L±M + 1)l1l2 Ŷ

(N)
L,M±1, (3.98)

L
(N)
3 . l1l2 Ŷ

(N)
LM = M l1l2 Ŷ

(N)
LM , (3.99)
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R
(N)
± . l1l2 Ŷ

(N)
LM = ± i

L

√
(L∓M)(L∓M − 1)[L2 − (lmin)2][(lmax + 1)2 − L2)]

(4L2 − 1)
l1l2 Ŷ

(N)
L−1,M±1

+ i
lmin(lmax + 1)

L(L+ 1)

√
(L∓M)(L±M + 1)l1l2 Ŷ

(N)
L,M±1

∓ i

(L+ 1)

√
(L±M + 1)(L±M + 2)[(L+ 1)2 − (lmin)2][(lmax + 1)2 − (L+ 1)2]

(2L+ 1)(2L+ 3)
l1l2 Ŷ

(N)
L+1,M±1, (3.100)

R
(N)
3 . l1l2 Ŷ

(N)
LM =

i

L

√
(L+M)(L−M)[L2 − (lmin)2][(lmax + 1)2 − L2)]

(4L2 − 1)
l1l2 Ŷ

(N)
L−1,M

+ i
Mlmin(lmax + 1)

L(L+ 1)
l1l2 Ŷ

(N)
LM

+
i

(L+ 1)

√
(L+M + 1)(L−M + 1)[(L+ 1)2 − (lmin)2][(lmax + 1)2 − (L+ 1)2]

(2L+ 1)(2L+ 3)
l1l2 Ŷ

(N)
L+1,M . (3.101)

Note that the coefficients of the l1l2 Ŷ
(N)
L+1,M+q terms automatically vanish if L equals lmax and thus the

action of boosts is compatible with the existence of a cut-off in the value of L. Equivalently, the action of
Lorentz boosts on the non-commutative spherical harmonics cannot produce harmonics labelled with an
arbitrarily high angular momentum. Therefore the matrix generalization of ordinary spherical harmonics
on the celestial sphere introduced in (3.93) carries a non-trivial representation of the Lorentz algebra and
equations (3.98)-(3.101) can be thought of as the non-commutative analogue of (3.74)-(3.77). This suggests
that, since the generators of global supertranslations are proportional to the spherical harmonics on the
celestial sphere, as in (3.54), it could be possible to introduce a “fuzzy version” of the global bms4 algebra
15 characterized by a non-abelian sub-algebra of supertranslations having a finite number of generators.
Such construction might be relevant in the context of the the soft-hair proposal [21,22,82–84]. The latter
proposes that the charges associated with BMS4 symmetries [85, 86] could equip the black hole with the
soft hair16 needed to support correlations between the interior of the black hole and the emitted Hawking
quanta. However, one of the obstacles in making such identification concrete is that the actual degrees
of freedom which can be associated to BMS4 charges are too many, in fact infinite, while the Bekenstein-
Hawking entropy, albeit large, is finite and proportional to the black hole area divided by the Planck length
squared. Thus non-commutativity, or the fuzziness of the celestial sphere, could be the ingredient needed
to provide a consistent cut-off mechanism for supertranslations modes.

3.6.3 Realization of local bms4

In this section we consider a local realization of the bms4 algebra. As mentioned, the local bms4 differs
from the global bms4 by the choice of the function T and the vector field Y A on the 2-sphere. Instead
of using spherical harmonics, we use Laurent series and therefore we define ln and l̄n to be ξY with
Y z = −zn+1, Y z̄ = 0 and Y z = 0, Y z̄ = −z̄n+1, respectively and Tnm to be ξT with T = 2znz̄m/(1 + zz̄).

15For recent attempts at generalizing bms4 using quantum groups techniques see [80,81].
16The actual meaning of soft will be clarified in detail in sections 4.3-4.5.
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Explicitly, we have

ln = −zn+1 ∂

∂z
+
z̄zn+1(1− n)− (n+ 1)zn

1 + zz̄

u

2

∂

∂u
, (3.102)

l̄n = −z̄n+1 ∂

∂z̄
+
z̄n+1z(1− n)− (n+ 1)z̄n

1 + zz̄

u

2

∂

∂u
, (3.103)

Tnm =
2znz̄m

1 + zz̄

∂

∂u
. (3.104)

Then, using (3.40)-(3.41) we get the commutation relations

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)l̄n+m, [lm, l̄m] = 0, (3.105)

[ln, Tml] =

(
n+ 1

2
−m

)
Tm+n,l, [l̄n, Tml] =

(
n+ 1

2
− l
)
Tm,l+n, (3.106)

[Tmn, Tpq] = 0. (3.107)

Note that (3.105) are two commuting copies of the Witt algebra. The local bms4 is defined by (3.105)-
(3.107) and it contains iso(3, 1) as a subalgebra. In particular, the so(3, 1) component is generated by ln
and by l̄n, for n = −1, 0, 1, whereas the four-translations are realized by Tmn with m,n = 0, 1. There is
however another way to define the local bms4 algebra, which we briefly point out here. We start by defining
a tensor density of weight (h, h̄) on the 2-sphere as

F = F (z, z̄)dzhdz̄h̄. (3.108)

Under an infinitesimal conformal transformation

z′ = f(z) = z + εX(z), z̄′ = f̄(z̄) = z̄ + ε̄X̄(z̄), (3.109)

we have

δXF = X∂zF + hF∂zX, δX̄F = X̄∂z̄F + h̄F∂z̄X̄. (3.110)

We denote the vector space of tensor densities of weight (h, h̄) on the 2-sphere by Fh,h̄(S2). We can

associate to each supertranslations generator Tml a density of weight (−1
2 ,−

1
2) as

Tml = zmz̄ldz−
1
2dz̄−

1
2 , (3.111)

and therefore we have that, under a conformal transformation generated by Xn = −zn+1 and X̄n = −z̄n+1,

δXnTml =

(
n+ 1

2
−m

)
Tm+n,l, δX̄nTml =

(
n+ 1

2
− l
)
Tm,l+n. (3.112)

Hence, the local bms4 algebra is the semidirect sum of the algebra generated by vector fields ln = −zn+1 ∂
∂z

and l̄n = −z̄n+1 ∂
∂z̄ with the abelian ideal F− 1

2
,− 1

2
(S2), the bracket being induced by the module action

(3.110), i.e. [ln, Tml] ≡ δXnTml and [l̄n, Tml] ≡ δX̄nTml, as clear from (3.106).
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4 BMS4 charges, gravitational scattering and soft degrees of freedom

In this chapter, we start in section 4.1 by investigating the action of bms4 on the set χ′I + with particular
emphasis on the action of supertranslations on the asymptotic shear tensor CAB. In fact, the transforma-
tion of the latter comprises an interesting homogeneous term that breaks supertranslations invariance of
gravitational vacua. We show that, when focusing on the scattering problem in Christodoulou-Klainerman
spaces discussed in section 4.2, it turns out that the above considered homogeneous term is encoded in a
natural “soft” contribution associated to the supertranslations charges, computed in section 4.3. The final
result is that the Weinberg’s soft graviton theorem, reviewed in section 4.4, is a consequence of the gravita-
tional scattering invariance under supertranslations and vice-versa. We comment on this last point in 4.5.
We conclude by touching upon other related developments, including superrotations and the gravitational
memory effect in section 4.6.

4.1 Action of bms4 on solution space and spontaneous breaking of gravitational vacua

In this section we compute the action of bms4 on the solution space χ′
I +

, defined at the end of section 3.4.

As we will see, the coordinates in χ′
I +

transform non-trivially under bms4. It means that data differing
by bms4 tranformations are physically inequivalent, despite being diffeomorphic. To find the action, we
need to compute the Lie derivative along ξ of the on-shell metric (3.29). Denoting δ(T,Y ) = δξ, with ξ
decomposed as ξ = ξT + ξY according to (3.44) and (3.45), we find [5]17

δ(T,Y )m =
(
f∂u + LY +

3

2
DAY

A
)
m+

1

4
NABDADBf +

1

2
DAN

ABDBf +
1

8
CABDADBDCY

C , (4.1)

δ(T,Y )CAB =
(
f∂u + LY −

1

2
DCY

C
)
CAB − 2DADBf + γABDCD

Cf, (4.2)

δ(T,Y )NAB =
(
f∂u + LY

)
NAB −

(
DADBDCY

C − 1

2
γABDCD

CDDY
D
)
, (4.3)

δ(T,Y )NA =
(
f∂u + LY +DBY

B
)
NA + 3mDAf −

3

16
NBCC

BCDAf +
1

2
NBCCACDBf

− 1

32
CCDC

CDDADBY
B +

1

4
CABD

BDCD
Cf − 3

4
DBf

(
DBDCCAC −DADCC

BC
)

+
1

2

(
DADBf −

1

2
γABDCD

Cf
)
DDC

DB +
3

8
DA

(
CCBDCDBf

)
, (4.4)

where f = T + u/2DAY
A as in (3.32). Note that the action of δ(T,Y ) preserves the tracelessness of CAB

and NAB. Under a supertranslation T , equation (4.2) in (z, z̄) coordinates reads

δTCzz = T∂uCzz − 2D2
zT, (4.5)

17Note that, for a non-vanishing DAB one finds δ(T,Y )DAB = LYDAB so that if one starts with vanishing DAB , it remains
zero after the action of asymptotic symmetries.
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where δT ≡ δ(T,0). The homogeneous term in (4.5), for Tnm ≡ 2znz̄m/(1 + zz̄), becomes

D2
zTnm = (n− 1)n

2zn−2z̄m

1 + zz̄
= (n− 1)nTn−2,m, (4.6)

so that if n = 0, 1, i.e. if T is a four-translation, D2
zT vanishes and it also does the homogeneous term in

(4.5). Equivalently, spherical harmonics with l = 0, 1 are zero-modes of the operator 2DADB−γABDCD
C .

Under a superrotation

δY Czz =
(
LY −

1

2
DzY

z − 1

2
Dz̄Y

z̄
)
Czz − uD2

z(DzY
z +Dz̄Y

z̄). (4.7)

If Y z
n (z) ≡ −zn+1 and Y z̄

m(z̄) ≡ −z̄m+1, the homogeneous term in (4.7) is proportional to18

D3
zY

z
n +D2

zDz̄Y
z̄
m = −n(n2 − 1)zn−2 = n(n2 − 1)Y z

n−3. (4.8)

If n = ±1, 0, i.e. if Y A is an ordinary Lorentz transformation, the homogeneous term in (4.7) vanishes
again. We conclude that when ξ is an element of the Poincaré algebra iso(3, 1), if we start with vanishing
asymptotic shear tensor CAB = 0, after an infinitesimal Poincaré transformation it will still be zero.
However, when considering supertranslations that are not translations and superrotations that are not
Lorentz transformations, if we start with a CAB = 0, then the action of these transformations produces a
non-zero CAB. Recently, this has been interpreted as the fact that supertranslations and superrotations
spontaneously break the vacuum of Minkowski spacetime [10]. To better illustrate this concept, let us focus
only on supertranslations and let us assume to start with a vacuum Minkowski configuration, for which
m = 0, CAB = 0, NAB = 0 and NA = 0. Equations (4.1)-(4.4) are telling us that a supertranslation cannot
create gravitational radiation, inertial mass, or angular momentum. The only effect of a supertranslation
(which is not a translation) on the vacuum is to shift CAB by a homogeneous term. Being a symmetric
traceless tensor on the 2-sphere CAB can be decomposed as

CAB = −2DADBC + γABDCD
CC + εC(ADB)D

Cψ, (4.9)

C(u, xA) and ψ(u, xA) being a scalar and pseudosclar, respectively. The former will play a fundamental
role and sometimes it is referred to as supertranslations memory field [35,38,87,88]. Comparing with (4.2),
under a supertranslation, it simply transforms as

δTC = T. (4.10)

The proposed interpretation is as follows: there exists an infinite number of gravitational vacua labelled
by the field C and fixing it breaks spontaneously their supertranslations invariance. In particular, C is
the Goldstone boson associated with this breaking. In sections 4.3 and 4.5 we will deeper investigate these
properties and we will argue that the different vacua are related by the insertion of soft gravitons.

18One can also show that D2
z̄(DzY

z +Dz̄Y
z̄) = m(m2 − 1)Y z̄m−3.
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4.2 Christodoulou-Klainerman spaces and the scattering problem

We have seen that, in order to solve Einstein’s equations at first and second subleading order in the luminos-
ity distance r, we have to specify the set of data χ′

I +
= {m(u0, x

A), CAB(u0, x
C), NAB(u, xC), NA(u0, x

B)}.
In this section we focus on a particular set of solutions, namely the ones reverting to the vacuum in the
far past and in the far future. In particular, we focus on the class of spacetimes studied by Christodoulou
and Klainerman (CK) in [89], where the non-linear stability of Minkowski spacetime was proved. These
conditions are also reviewed in [10,38]. CK spacetimes are characterized by certain conditions on the data
in χ′

I +
. The Bondi news falls on the past and future boundaries of I + as

NAB = O(|u|−(1+ε)) when u→ ±∞, ε > 0. (4.11)

We also require that m|I +
+

= 0 (so that we are excluding black holes formation), m|I +
−

and NA|I +
±

to be

finite. This last condition implies that ∂uNA|I +
±

= 0 and, from (3.26), further assuming that T̂uA|I +
±

= 0,

we obtain

DB

(
DBDCCCA −DADCC

BC
)
|I +
±

= 0. (4.12)

Taking into account the decomposition (4.9) of CAB, (4.12) reduces the number of degrees of freedom of
CAB|I +

±
from two to one. Indeed, (4.12) annihilates the part of CAB containing C and it is easy to show

that it implies, for ψ

εABD
BDCD

C(DDD
D + 2)ψ|I +

±
= 0. (4.13)

Expanding ψ into spherical harmonics as ψ|I +
±

=
∑

l,m ψlmYlm, we see that (4.13) reduces to

∞∑
l=0

l∑
m=−l

ψlml(l + 1)[l(l + 1)− 2]εABD
BYlm = 0. (4.14)

which implies ψlm = 0 for l > 1. However, spherical harmonics with l ≤ 1 are also annihilated by the
operator εC(ADB)D

C , as can be easily checked, and moreover they do not break the supertranslations
invariance of the gravitational vacua. From these considerations, it follows that the solution of (4.12) is 19

CAB|I +
±

= −2DADBC|I +
±

+ γABDCD
CC|I +

±
. (4.15)

In other words, the asymptotic shear on the past and future boundaries of future null infinity is completely
determined by the value of the supertranslations memory field there. Note that, equations (4.15) is telling
us that, interpreting (4.2) as a gauge transformation, the field CAB is pure gauge on I +

± .

Introducing similar conditions for the fields living on I − and choosing the initial values u0 and v0 to
be I +

− and I −+ , the relevant set of data in CK spacetimes are

χ′I + = {m(xA)|I +
−
, C(xA)|I +

−
, NAB(u, xC), NA(xB)|I +

−
}, (4.16)

χ̃′I− = {m̃(xA)|I−+ , C̃(xA)|I−+ , ÑAB(v, xC), ÑA(xB)|I−+ }. (4.17)

In particular, we have reduced the problem of solving Einstein’s equations to the following procedure:

19In (4.15) and in the following we denote Φ(xA)|
I+
±
≡ limu→±∞ Φ(u, xA) and Φ̃(xA)|

I−±
≡ limv→±∞ Φ̃(v, xA), for any pair

of fields Φ(u, xA) and Φ̃(v, xA) living on I + and I−.
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1. Assign the fields C|I +
−

and C̃|I−+ and suitable Bondi news tensors NAB on I + and ÑAB on I − to

get the time evolutions of CAB and C̃AB on I + and I − as

CAB(u, xC) = −2DADBC(xA)|I +
−

+

∫ u

−∞
duNAB(u, xC), (4.18)

C̃AB(v, xC) = −2DADBC̃(xA)|I−+ +

∫ v

∞
dvÑAB(v, xC); (4.19)

2. Assign initial valuesNA(xB)|I +
−

, ÑA(xB)|I−+ , m(xA)|I +
−

and m̃(xA)|I−+ on I +
− and I −+ and integrate

(3.26), (3.27) and their I − counterparts to get the angular momentum aspect and the Bondi mass
aspect everywhere on I + and I −.

In principle, solving Einstein’s equations on I + and on I − are two decoupled, independent problems. A
direct consequence of this is that there exist two different asymptotic symmetry groups, preserving fall-offs
conditions of the fields on I + and I − and acting separately on the data (4.16) and (4.17). We denote
these groups by BMS+

4 and BMS−4 , respectively. Here by different we mean that, a priori, the functions
(T, Y A) and (T̃ , Ỹ A) characterizing their generators are independent. However, when focusing on the so-
called scattering problem, which consists (in CK spacetimes) in finding a map relating the set in (4.17) to
that on (4.16), the former being thought of as initial data of the latter, the fact that they can be acted
upon with two different asymptotic symmetry groups is an issue. Indeed, for a scattering problem, data
on I − and on I + can be thought of as in and out states, respectively, and we need a prescription to
relate them in order to get a unique solution for the geometry on the entire spacetime (or, at least, in a
neighborhood of the whole I ). But since the symmetry groups preserving the intrinsic structure at I ±

are given by BMS±4 , such prescription would be spoiled by their non-trivial action. Another way to phrase
it is that initial data on I +

− and I −+ are defined up to BMS+
4 and BMS−4 transformations and thus, the

total group BMS+
4 ×BMS−4 is somehow “too large” and it must be reduced to a diagonal BMS0

4 component,
preserving the given prescription. Moreover, only such BMS0

4 will be the true, physical symmetry of the
scattering problem in GR.

The Lorentz and CPT invariant conditions proposed in [10] are the so called antipodal matching con-
ditions, which in angular coordinates xA = (θ, φ) read as

m(θ, φ)|I +
−

= m̃(π − θ, π + φ)|I−+ , C(θ, φ)|I +
−

= C̃(π − θ, π + φ)|I−+ , (4.20)

NA(θ, φ)|I +
−

= ÑA(π − θ, π + φ)|I−+ . (4.21)

which are preserved under the diagonal BMS0
4 transformations generated by gauge parameters (T, Y A) and

(T̃ , Ỹ A) obeying

T (θ, φ) = T̃ (π − θ, π + φ), Y Aθ, φ) = Ỹ A(π − θ, π + φ). (4.22)

It is worth noting that antipodal matching conditions at spatial infinity are obeyed by a large class of
solutions, including Schwarzchild and Kerr, and they also play a crucial role in the derivation of infinite-
dimensional asymptotic symmetry groups, including BMS4, at spatial infinity [90–92] using the Hamiltonian
approach.
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Figure 4: A light ray crossing the past celestial sphere at (θ, φ) will come out of the future celestial sphere
at (π − θ, π + φ). The map relating the in and out points is the antipodal map.

4.3 Symplectic structure on I +, Poisson bracket and supertranslations charges

We are now interested in the symplectic geometry of radiative modes of the gravitational field at null
infinity. As outlined in section 2.3, computing the symplectic structure is an essential ingredient to study
properties of the asymptotic charges, such as their conservation, and to introduce Poisson bracket between
canonical variables. The description of the symplectic structure of the gravitational field at future null
infinity I + for asymptotically flat spacetimes was originally carried out in a series of works by Ashtekar
and collaborators [93–96]. Here we define the symplectic structure induced on null infinity ΩI + as

ΩI + = lim
Σ→I +

ΩΣ, (4.23)

where ΩΣ is the symplectic structure of (2.61) associated to the presymplectic current of (2.71)-(2.72),

ΩΣ[g, h1 , h2 ] ≡ 1

16πG

∫
Σ

(d3x)µ ω
µ[g, h1, h2], (4.24)

with ωµ given by

ωµ[g, h1, h2] =

[
1

2
h2∇µh1 + h2νρ∇νhµρ1

− 1

2
h2∇νhνµ1

− 1

2
hνρ

2
∇µh1νρ −

1

2
hµρ

2
∇ρh1 − (1↔ 2)

]
, (4.25)

and where, from the line element (3.29) we find

huu =
2

r
δm+O(r−2), hzz = rδCzz +O(r0), huz =

1

2
DzδCzz +O(r−1), hur = O(r−2), (4.26)

and correspondingly

hrr =
2

r
δm+O(r−2), hrz = − 1

2r2
DzδC

zz +O(r−3), hzz =
1

r3
δCzz +O(r−4), hur = O(r−2),

(4.27)
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For a null hypersurface in Bondi coordinates we have that
√
−g(d3x)µ = δrµ[r2γzz̄ +O(r)]du∧ dz ∧ dz̄ and

we find

√
−gωµ|I +(d3x)µ = γzz̄ lim

r→∞
r2

[
1

2r2
δ1Czzδ2N

zz +
1

2r2
δ1Cz̄z̄δ2N

z̄z̄ +O(r−3)− (1↔ 2)

]
du ∧ dz ∧ dz̄

=
1

2
γzz̄
[
δ1Czzδ2N

zz + δ1Cz̄z̄δ2N
z̄z̄ − (1↔ 2)

]
du ∧ dz ∧ dz̄. (4.28)

In terms of the ∧-product between field variations, the symplectic structure is

ΩI + =
1

32πG

∫
I +

γzz̄d
2zdu

(
δCzz ∧ δN zz + δCz̄z̄ ∧ δN z̄z̄

)
. (4.29)

So far, in (4.29), we have not specified the boundary conditions of the asymptotic shear tensor CAB on
I +
± . However, here we are interested in explicitly understanding the contributions of the boundary values

of CAB to ΩI + [97]. Hence, we assume

lim
u→±∞

Czz(u, z, z̄) = ϕ±zz(z, z̄), (4.30)

where ϕ±zz(z, z̄) are smooth, non vanishing functions on the 2-sphere. Integrating (3.24) yields∫ ∞
−∞

duNzz = ϕ+
zz − ϕ−zz ≡ ∆ϕzz. (4.31)

This last equation can be seen as the limω→0N
ω
zz, where Nω

zz is the Fourier transform of Nzz. A non-
vanishing ∆ϕzz, measuring the difference between the asymptotic shear Czz at I +

+ and I +
− , can thus be

associated to the existence of soft (i.e. zero energy) gravitons (see e.g. [10, 11,52]).

It will be fundamental to introduce the new field Ĉzz, defined as

Ĉzz(u, z, z̄) ≡
1

2

[∫ u

−∞
du′Nzz(u

′, z, z̄)−
∫ ∞
u

du′Nzz(u
′, z, z̄)

]
. (4.32)

We have

Czz(u, z, z̄) =
1

2
∆ϕzz(z, z̄) + ϕ−zz(z, z̄) + Ĉzz(u, z, z̄). (4.33)

In (4.33) we are choosing ∆ϕzz and ϕ−zz as independent variables, but we could have equally chosen ϕ+
zz

and ϕ−zz. Note also that

lim
u→±∞

Ĉzz = ±1

2
∆ϕzz. (4.34)

In equation (4.33), we have divided the asymptotic shear tensor Czz into a “bulk” contribution Ĉzz and
a pure boundary part, comprising ∆ϕzz and ϕ−zz. Working with Ĉzz rather than with Czz has several
advantages. First, it is the fastest way to highlight the role of boundary degrees of freedom. Further, it
simplifies the calculation of the symplectic form, for it has the property∫ ∞

−∞
du δĈz̄z̄ ∧ δN z̄z̄ = −

∫ ∞
−∞

du δNz̄z̄ ∧ δĈ z̄z̄ + δĈz̄z̄ ∧ δĈ z̄z̄
∣∣∣∞
−∞

= −
∫ ∞
−∞

du δNz̄z̄ ∧ δĈ z̄z̄

=

∫ ∞
−∞

du δĈzz ∧ δN zz, (4.35)
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where we used (4.34) and the antisymmetry of the wedge product in the last step. Substituting (4.32) in
(4.29), we obtain, after some algebra

ΩI + =
1

16πG

∫
I +

γzz̄d
2zdu δĈzz ∧ δN zz +

1

32πG

∫
γzz̄d

2z
(
δϕ−zz ∧ δ∆ϕzz + δϕ−z̄z̄ ∧ δ∆ϕz̄z̄

)
. (4.36)

We thus see that the symplectic structure splits into a bulk and a boundary part. We now focus on CK
spacetimes considered in the previous section. First notice that, because of the fall-off (4.11) of the Bondi
news, the integral over u in (4.36) converges. Further, the boundary values of the asymptotic shear tensor
are given by

ϕ−zz = −2D2
zC|I +

−
≡ D2

zC, ϕ+
zz = −2D2

zC|I +
+
≡ D2

zC
+, ∆ϕzz = D2

z(C
+ − C) ≡ D2

zN. (4.37)

with C and C+ real functions on the 2-sphere. Furthermore we also assume the variations δNzz and δCzz
of Nzz and Czz to be CK so that

δNzz = O(|u|−(1+ε)) when u→ ±∞, ε > 0. (4.38)

δCzz|I +
+

= D2
zδC

+, δCzz|I +
−

= D2
zδC, (4.39)

Thus, the symplectic structure in (4.36) reads

ΩI + =
1

16πG

∫
I +

γzz̄d
2zdu δĈzz ∧ δN zz +

1

16πG

∫
γzz̄d

2z D2
zδC ∧D2zδN. (4.40)

From (4.40) we can easily read off the non-vanishing Poisson bracket:

{Nz̄z̄(u, z, z̄), Ĉww(u′, w, w̄)} = 16πGδ(2)(z − w)δ(u− u′)γzz̄, (4.41)

{D2
z̄N(z, z̄), D2

wC(w, w̄)} = 16πGδ(2)(z − w)γzz̄. (4.42)

These bracket match those derived in earlier works, see e.g. [11], however in our approach it is not necessary
to add ad hoc boundary terms in the symplectic form to obtain the desired result, as suggested in [7, 98].
In fact the bulk-bulk and boundary-boundary Poisson bracket are obtained directly from the definition of
the symplectic form and from the splitting (4.32) we introduced.

We are now interested in computing the supertranslations charges. From (2.62), the key quantity to
compute is ΩI + [g, h, δTh] and therefore we need explicit expressions for δT Ĉzz, δTC and δTN . Evaluating
(4.2) on I +

± yields, due to the fall-off of the Bondi news

δTCzz|I +
+

= −2D2
zT = D2

zδTC
+, δTCzz|I +

−
= −2D2

zT = D2
zδTC, (4.43)

so that, up to irrelevant l = 0, 1 spherical harmonics δTC
+ = δTC = −2T and thus δTN = 0. Consequently,

for the bulk part we have

δT Ĉzz = TNzz. (4.44)

Substituting equations (4.43) and (4.44) into ΩI + [g, h, δTh] we find, integrating by parts and using the
vanishing of Nzz on the boundaries of I +

ΩI + [g, h, δTh] = δ

{
− 1

16πG

∫
I +

γzz̄d
2z duTNzzN

zz +
1

8πG

∫
γzz̄d

2z D2
zTD

2zN

}
. (4.45)
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From equation (2.62), integrating on a path γ in the space of fields we get the the difference between
supertranslations charges at I +

± as

QT |
I +

+

−QT |
I +
−

= − 1

16πG

∫
I +

γzz̄d
2zduTNzzN

zz +
1

8πG

∫
γzz̄d

2z D2
zTD

2zN, (4.46)

where we denoted QξT ≡ QT . The interpretation of the first term in equation (4.46) is that there is a
breaking in the conservation law of supertranslations charges whenever there is a non-vanishing flux of
gravitational radiation through null infinity. Again, note that the second term depends on the difference
between the boundary values of Czz and it is thus related to the presence of soft gravitons. Further, this
term depends on D2

zT and hence, from the discussion after (4.6), it vanishes for ordinary translations. If
we define now the supertranslations charges on a 2-sphere S at a fixed value of the retarded time u as

QT |S =
1

4πG

∫
γzz̄d

2z Tm|S , (4.47)

we get, using the evolution equation (3.27) for the Bondi mass aspect20

QT |
I +

+

−QT |
I +
−

=

∫ ∞
−∞

du
d

du
QT |S =

1

4πG

∫
I +

γzz̄d
2zduT∂um (4.48)

= − 1

16πG

∫
I +

γzz̄d
2zduTNzzN

zz +
1

8πG

∫
γzz̄d

2z D2
zTD

2zN, (4.49)

which is compatible with (4.46). Hence, the supertranslations charges are given by the codimension 2
integrals in (4.47) and, remarkably, they match exactly the ones firtsly found in [32] using (2.90). Taking
into account that for CK spacetimes m|I +

+
= 0, we get QT |I +

+
= 0 and thus

QT |
I +
−

=
1

16πG

∫
I +

γzz̄d
2zduTNzzN

zz − 1

8πG

∫
γzz̄d

2zD2
zTD

2zN ≡ QHT |I +
−

+QST |I +
−
. (4.50)

The supertranslations charges QT |
I +
−

thus split into a hard and a soft part, QHT and QST , quadratic and

linear in the fields, respectively. Note that in the case of an ordinary four-translation the soft term vanishes
whereas in the case of a pure supertranslation it does not and its contribution is proportional to the soft
mode in (4.31). Using the Poisson bracket derived in (4.41) and (4.42), it is straightforward to show that
QT canonically generates supertranslations, i.e.

{QT |
I +
−
, Ĉzz} = {QHT |I +

−
, Ĉzz} = TNzz, {QT |

I +
−
, D2

zC} = {QST |I +
−
, D2

zC} = −2D2
zT, (4.51)

and hence

{QT |I +
−
, Czz} = δTCzz = TNzz − 2D2

zT. (4.52)

These relations and in particular the soft charge QST play a central role in the connection between the Ward
identities associated to supertranslations invariance of the gravitational S-matrix and the Weinberg’s soft
graviton theorem. Before further exploring this connection, we make a brief digression on the latter.

20For simplicity, we are considering vacuum Einstein’s equations, so that T̂uu = 0.
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4.4 An aside: soft theorems

Consider a quantum mechanical scattering process characterized by m incoming particles with four-
momenta (pin

k )µ with k = 1, ...,m and n outgoing particles with four-momenta (pout
j )µ with j = 1, ..., n

and denote its scattering amplitude by MN (p), where N = m+ n and p = (pin
1 , ..., p

in
m, p

out
1 , ..., pout

n ). Now
consider the same process with an additional emission of a soft photon with momentum qµ. By soft here
we mean that we are in the limit |~q| = q0 → 0 and therefore we are allowed to Taylor expand quantities
depending on q0 around q0 = 0 and to keep only the leading terms. We denote this new amplitude by
Mµ

N+1(p, q). The setup is represented in Figure 5.

Figure 5: The first diagram represents a scattering process whose amplitude is MN (p). The second is the
same process with an additional emission of a soft photon, whose amplitude is Mµ

N+1(p, q) .

In principle, in order to compute Mµ
N+1(p, q), we should consider all diagrams in which the photon line is

attached to a “hard” particle line, external or internal. However, in the soft limit, the Feynman diagrams
that will contribute to Mµ

N+1(p, q) are only those where the photon line is attached to an external leg,
as in 6, whereas internal lines will not contribute. Indeed, the only divergences come from on-shell prop-
agators associated to physical particles. We thus consider the contributions to Mµ

N+1(p, q) coming from
each term of the sums in Figure 6. So far we made no assumptions on the nature of the incoming and
outgoing particles involved in the process and on their interaction with the electromagnetic field. Here, for
simplicity, we assume that the interaction of every particle with the electromagnetic field is governed by a
scalar QED Lagrangian

Li = |Dµφi|2 −m2
i |φi|

2 − 1

4
FµνF

µν , Dµ = ∂µ − ieiAµ, i = 1, ..., N. (4.53)

where we denoted by ei the electric charge of the scalars. The interaction term is thus Jµi Aµ where

Jµi = iei(φ
†
i∂
µφi − (∂µφ†i )φi). (4.54)

The corresponding Feynman rules are in Figure 7. In the soft limit, the j-th contribution in the first
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Figure 6: The second diagram in Figure 5, in the soft limit, is equal to the above sum of diagrams.

Figure 7: Feynman rules for the scalar QED Lagrangian of (4.68).

diagram of Figure 6 is thus given by

Mµ
j (p, q) ≡

ej(2p
out
j + q)µ

(pout
j + q)2 +m2

j

MN (pin, pout
1 , ..., pout

j + q, ..., pout
n ) =

[
ej(p

out
j )µ

pout
j · q

+O(|~q|0)

]
MN (p), (4.55)

and, similarly, the k-th contribution in the second diagram of Figure 6 by

Mµ
k (p, q) ≡

ek(2p
in
k − q)µ

(pin
k − q)2 +m2

k

MN (pin
1 , ..., p

in
k − q, ..., pin

m, p
out) = −

[
ek(p

in
k )µ

pin
k · q

+O(|~q|0)

]
MN (p). (4.56)

It follows immediately that the total amplitude Mµ
N+1(q, p), sum of (4.55) and (4.56), in the soft limit

factorizes as

Mµ
N+1(p, q) =

[ N∑
i=1

ηieip
µ
i

pi · q
+O(|~q|0)

]
MN (p), ηi =


1 outgoing

−1 incoming
(4.57)

This is the soft photon theorem, originally found by Low [99], which relates the scattering amplitude of
an arbitrary quantum process involving soft photons to the same amplitude without the soft photons in-
sertions. The proportionality factor in (4.57), at leading order in the soft expansion, is the so-called soft
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factor and it has a simple pole at |~q| = 0.

We derived (4.57) in the particularly simple case of scalar QED. However, it holds regardless of the
spin of the hard particles. For instance, we could have considered fermions instead of scalar fields and
the factorization of (4.57) would still be true. This property is sometimes referred to as universality. In
other words, we just need to specify that there is a soft photon: the details of the matter coupled to the
electromagnetic field are not important.

The soft photon theorem connects gauge invariance with the conservation of the total electric charge
of the system [13]. Indeed, if the emitted photon has polarization vector εµ(q) the amplitude is obtained
contracting Mµ

N+1(p, q) with ε∗µ(q).

MN+1(p, q) = Mµ
N+1(p, q)ε∗µ(q) =

[ N∑
i=1

ηieip
µ
i ε
∗
µ(q)

pi · q
+O(|~q|0)

]
MN (p). (4.58)

Gauge transformations act on εµ(q) as δΛε
µ(q) = Λqµ, for any complex Λ. Therefore, asking MN+1(p, q)

to be a physical, gauge invariant, amplitude, i.e. δΛMN+1(p, q) = 0 is equivalent to

Mµ
N+1(p, q)qµ = 0 =⇒

∑
incoming

ei =
∑

outgoing

ei, (4.59)

that is the total electric charge conservation. In other words, low energy photons can only couple to a
charge that is conserved by all scattering processes that have non-vanishing probability of happening.

It is possible to show that there exists a gravitational analogue of the soft photon theorem, for which
the scattering amplitude MN+1(q, p) of a process involving N hard particles and the emission of a soft
graviton with polarization tensor εµν(q) is

MN+1(p, q) = Mµν
N+1(p, q)ε∗µν(q) =

[ N∑
i=1

ηifip
µ
i p

ν
i ε
∗
µν(q)

pi · q
+O(|~q|0)

]
MN (p). (4.60)

where MN (p) is again the same amplitude without the soft graviton insertion. This equation is referred to
as the Weinberg’s soft graviton theorem [13, 14]. In (4.60), we denoted by fi the individual gravitational
coupling constants, which may in principle depend on the particle species. We can think of fi as being
defined by the gravitational analogue of the electromagnetic interaction in Figure 7. In fact, such diagram
should yield a Lorentz tensor Nµν(p1i , p2i) that in the soft limit becomes Nµν(pi), with p1i = p2i ≡ pi.
Having the structure of a Lorentz tensor, the only possibility is to have (in the simple case of a spinless
hard particle) Nµν(pi) = (αpµi p

ν
i + βηµνp2

i )fi(p
2
i ) for some constants α and β. If the particle is on-shell,

p2
i = −m2

i and thus fi(p
2
i = −m2

i ) is a constant, which we choose to be proportional to ifi.

Under a gauge transformation δΛε
µν(q) = Λµqν + Λνqµ and hence δΛM

N+1(p, q) = 0 implies that

Mµν
N+1(p, q)qν = 0 =⇒

∑
incoming

fip
µ
i =

∑
outgoing

fip
µ
i . (4.61)

This equation, together with the standard energy-momentum conservation, is telling us that fi = f ≡
1, ∀i = 1, ..., N , i.e. all particles must have the same gravitational coupling constant. Therefore the equiv-
alence principle, stating that at low energies gravity couples to all forms of energy-momentum with the
same strength, regardless of “chemical composition” of the matter, is a consequence of energy-momentum
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conservation, which is ultimately a consequence of the gauge invariance of the theory. It is also worth
remarking that the factorization (4.60) is again universal and thus independent of the nature of the hard
particles. For instance, they could have been also gravitons themselves. This last observation implies that
gravity not only does not distinguish between “ordinary” matter, but it couples with the same strength
also to itself. This feature is related to the strong equivalence principle for which, whenever gravitational
self-interactions are concerned, the energy and momentum stored in gravitational fields are indistinguish-
able from those of ordinary matter.

In [13], a generalization of the soft photon and graviton theorem to the case of higher spins has been
obtained,

M
(J)
N+1(q, p) =

[ N∑
i=1

ηig
(J)
i [pµi ε

∗
µ(q)]J

pi · q
+O(|~q|0)

]
MN (p), (4.62)

where J is the spin of the soft particle, εµ1...µJ (q) its polarization tensor and where the product in the
numerator pµ1

i ...p
µJ
i ε∗µ1...µJ

(q) has been decomposed using ε(µ1...µJ )(q) = εµ1(q)...εµJ (q). In this case, gauge
invariance requires that when one of the ε∗µ(q) in the numerator is replaced by qµ, the corresponding

amplitude M
(J)
N+1(q, p) vanishes and thus∑

incoming

g
(J)
i [pi · ε∗(q)]J−1 =

∑
outgoing

g
(J)
i [pi · ε∗(q)]J−1. (4.63)

If the energy-momentum conservation holds, the only way for the above equation to be satisfied is that

g
(J)
i = 0, ∀ i = 1, ..., N . The conclusion is that fields with spin greater than two cannot interact at zero

frequency and hence they cannot generate macroscopic fields.

Before proceeding to explore the connection of these theorems with supertranslations symmetry, we briefly
mention that, both for electromagnetism and gravity, the subleading O(|~q|0) terms have also been com-
puted in [100] and [15], respectively. In the case of gravity and of spinless hard particles, the subleading
term reads 21

MN+1(p, q) =

[ N∑
i=1

ηip
µ
i

pi · q

(
pνi − iqρJ

νρ
i

)
ε∗µν(q) +O(|~q|)

]
MN (p), (4.64)

where

Jνρi = i

(
pνi

∂

∂piρ
− pρi

∂

∂piν

)
, (4.65)

is the orbital angular momentum of the i-th particle. Gauge invariance of (4.65) requires, beside conser-
vation of energy-momentum, that ∑

incoming

Jνρi =
∑

outgoing

Jνρi , (4.66)

which is the conservation of the total orbital angular momentum of the system.

21See also e.g. [16, 17] for a derivation of the subleading and subsubleading terms from gauge invariance and for a general-
ization to gluons and hard particles with spin.
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4.5 Conservation laws and Ward identities from antipodal matching conditions

Now we return to the role played by supertranslations charges in the scattering problem outlined in section
4.2, using the antipodal matching conditions. We follow closely the discussion in [10,11,21].

Generalizing the results obtained above to the case of past null infinity I −, the BMS±4 supertranslations
charges at I +

− and I −+ read

QT |I +
−

=
1

4πG

∫
γzz̄d

2zTm|I +
−
, QT̃ |I−+ =

1

4πG

∫
γzz̄d

2zT̃ m̃|I−+ . (4.67)

Suppose now that the CK space under consideration is a solution of the scattering problem and that the
antipodal matching conditions in (4.20) and (4.22) hold, allowing to single out BMS0

4. These conditions
imply that in going from I − to I + the supertranslations charges are conserved 22

Q+
T = Q−T (4.68)

Note that (4.68) is a quite different conservation law with respect to the one discussed in (2.60) and (2.62)
of section 2.3. Indeed, the former is an equality between quantities defined on I + and I −, relating
charges of BMS+

4 to those of BMS−4 through the diagonal BMS0
4 identification as represented in Figure 8,

while the latter states the independence of the charges of BMS±4 on the particular section of I ±.

Figure 8: Conserved supertranslations charges in going from I −+ to I +
− in a scattering event.

Returning to (4.68), it expresses an infinite number of conservation laws, because the function T is arbi-
trary. We now comment on the physical meaning of these laws.

First suppose that T is a spherical harmonic Ylm with l ≤ 1 and hence it represents an ordinary four-
translation. In this case the soft term QST in (4.50) vanishes. In particular, for l = 0, the hard term is
proportional to the standard ADM mass, which is the Bondi mass measured at u = −∞, plus a possible
matter contribution in the case of a non-vanishing T̂uu. Hence, equation (4.68) expresses the total energy
conservation law in a scattering process. Similarly, when T comprises spherical harmonics with l = 1,
(4.68) is the ADM momentum conservation. When T is a pure supertranslation with harmonics with l > 1
the soft term does not vanish and the hard term has an unfamiliar form because the charges piercing
null infinity are weighted by an arbitrary function that depends on the angle at which they “exit” the

22Here and in the following we introduce the notation Q+
T ≡ QT |I+

−
and Q−T ≡ QT |I−+ for BMS0

4 supertranslations charges.
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spacetime. Before continuing, it is useful to introduce the splitting into hard and soft term also for BMS−4
supertranslations charges. Using the evolution equation for m on I −,

∂vm̃ =
1

4
ÑzzÑ

zz +
1

4

(
D2
zÑ

zz +D2
z̄Ñ

z̄z̄
)
, (4.69)

and that m|I−− = 0 in CK spacetimes, we have

QT̃ |I−+ =
1

16πG

∫
I−

γzz̄d
2zdvT̃ ÑzzÑ

zz +
1

8πG

∫
γzz̄d

2zD2
z T̃D

2zÑ ≡ QH
T̃
|I−+ +QS

T̃
|I−+ , (4.70)

similarly to (4.50). Choosing T (z, z̄) = δ2(z − w) the conservation law (4.68) becomes

(4.71)∫ ∞
−∞

du
[
NwwN

ww − 2
(
D2
wN

ww +D2
w̄N

w̄w̄
)]

=

∫ ∞
−∞

dv
[
ÑwwÑ

ww + 2
(
D2
wÑ

ww +D2
w̄Ñ

w̄w̄
)]
, (4.72)

which means that the total energy is conserved at any angle. Notice that the soft terms provide a non-
vanishing contribution to the expression of local energy on the asymptotic 2-sphere.

For later convenience we define the total soft charge operator for the diagonal BMS0
4 group as

QST ≡ QS+
T −QS−T = − 1

8πG

∫
γzz̄d

2zD2
zT

[∫ ∞
−∞

duN zz +

∫ ∞
−∞

dvÑ zz

]
, (4.73)

where we used the explicit definition of the soft mode N in terms of the Bondi news, i.e.
∫∞
−∞ duNzz = D2

zN
on I +. In the following we will show how the above construction is crucial in proving the equivalence of the
Ward identities associated to supertranslations invariance of the gravitational S-matrix with the Weinberg’s
soft graviton theorem presented in the previous section. To this aim, consider the expansion of the line
element around I + obtained in (3.29). The full metric can be written as gµν = ηµν+κhµν with κ2 = 32πG
and we are interested in the scattering processes driven by the quantized asymptotic fluctuations hµν . At
late times, on I +, the field hout

µν can be regarded as free and can thus be approximated by a standard
mode expansion

hout
µν (x) =

∑
α=±

∫
d3q

(2π)3

1

2ωq
[εα
∗
µν(~q)aout

α (~q)eiq·x + εαµν(~q)aout
α (~q)†e−iq·x], (4.74)

where q0 = ωq = |~q|, α = ± are the two helicites of the graviton and

[aout
α (~q), aout

β (~q′)†] = δαβ(2ωq)(2π)3δ(3)(~q − ~q′). (4.75)

Outgoing gravitons with momentum q satisfying qµqµ = 0 and helicity α arrive, at late times, at a point
(z, z̄) on the celestial sphere at I +. Indeed, there is a natural map from null vectors qµ to points (z, z̄)
on the sphere towards which the null vector is directed. This map is given by 23

qµ =
ωq

1 + zz̄
(1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) = (ωq, ~q). (4.76)

23Note that ~q = ωqx̂, where Cartesian coordinates (t, x1, x2, x3) are related to (u, r, z, z̄) by

t = u+ r, x1 + ix2 =
2rz

1 + zz̄
, x3 =

r(1− zz̄)
1 + zz̄

.
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The above equation shows that the three independent components of the four-momentum qµ can be equiv-
alently parametrized by (ωq, z, z̄). The polarization tensors may be written as ε±µν = ε±µε±ν , with

ε+µ(~q) =
1√
2

(z̄, 1,−i,−z̄), ε−µ(~q) =
1√
2

(z, 1, i,−z), (4.77)

and they obey the orthogonality and the tracelessness conditions ε±µνqν = 0 = ε±µµ. From (3.29), the
asymptotic shear tensor can be defined as

Czz = κ lim
r→∞

1

r
hout
zz , (4.78)

and, after using (4.74) and the stationary phase approximation, we get

Czz = − iκ

4π2(1 + zz̄)2

∫ ∞
0

dωq[a
out
+ (ωqx̂)e−iωqu − aout

− (ωqx̂)†eiωqu]. (4.79)

The “out” creation and annihilation operators in (4.79) involve the three momentum ωqx̂ pointing towards
the point (z, z̄) on the celestial sphere and therefore they annihilate positive helicity gravitons and create
negative helicity gravitons headed to the point (z, z̄). The Fourier transform Nω

zz =
∫∞
−∞ du ∂uCzze

iωu of
Nzz yields, for ω > 0,

Nω
zz = −

κωaout
+ (ωx̂)

2π(1 + zz̄)2
, N−ωzz = −

κωaout
− (ωx̂)†

2π(1 + zz̄)2
. (4.80)

The zero mode of Nω
zz can be defined in a Hermitian way as

N0
zz ≡ lim

ω→0+

1

2
(Nω

zz +N−ωzz ) = − κ

4π(1 + zz̄)2
lim
ω→0+

[ωaout
+ (ωx̂) + ωaout

− (ωx̂)†]. (4.81)

A similar construction at early times on I − leads to

Ñ0
zz = − κ

4π(1 + zz̄)2
lim
ω→0+

[ωain
+(ωx̂) + ωain

−(ωx̂)†]. (4.82)

We can construct the total soft graviton operator as

Ozz ≡ N0
zz + Ñ0

zz, (4.83)

so that the quantized total soft charge of (4.73) can be expressed in terms of Ozz as

QST = − 1

8πG

∫
γzz̄d

2zD2
zTOzz, (4.84)

and it is therefore related to an operator that creates and annihilates incoming and outgoing soft gravitons.

So far, we were only concerned about a free gravitational field. However, in order to make a connection
with the Weinberg’s soft graviton theorem, we shall include also interactions with matter. For simplicity,
we consider the case of n scalar massless particles with late times momenta (pout

j )µ and energies Eout
j ,

with j = 1, .., n and m scalar massless particles with early times momenta (pin
k )µ and energies Ein

j , with
k = 1, ..,m and we assume that they are the out and in states of a scattering process governed by an
S-matrix, as represented in Figure 9 or, equivalently, in the first diagram of Figure 5. Note that this is
precisely the setup in which the soft graviton theorem applies.
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Figure 9: A scattering between m incoming and n outgoing massless particles in an asymptotically flat
spacetime.

Similarly to (4.76), four-momenta of the outgoing particles that will cross the point (zout
j , z̄out

j ) admit the
parametrization

(pout
j )µ =

Eout
j

1 + zout
j z̄out

j

(
1, zout

j + z̄out
j ,−i(zout

j − z̄out
j ), 1− zout

j z̄out
j

)
. (4.85)

The asymptotic out state of these n massless scalar particles can be represented as |out〉 ≡
∣∣zout

1 , ..., zout
n

〉
and the T = 1 supertranslation charge, that is the Hamiltonian, acts on it as

Q+
1 |out〉 =

n∑
j=1

Eout
j |out〉 . (4.86)

For the early times asymptotic states of m incoming particles we have, with k = 1, ...,m,

(pin
k )µ =

Ein
k

1 + zin
k z̄

in
k

(
1, zin

k + z̄in
k ,−i(zin

k − z̄in
k ), 1− zin

k z̄
in
k

)
, (4.87)

and

|in〉 ≡
∣∣zin

1 , ..., z
in
m

〉
, Q−1 |in〉 =

m∑
k=1

Ein
k |in〉 . (4.88)

As remarked, the supertranslation charge obtained by taking T = 1 is the Hamiltonian H of the system
and the S-matrix governing the scattering process, for t → ±∞, is proportional to exp(iHt). Since
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supetranslations commute with themselves, they commute with the S-matrix and therefore they must be
symmetries of the gravitational scattering. Thus

〈out|Q+
T S − SQ

−
T |in〉 = 0. (4.89)

When acting on in and out states with the hard part of the supertranslations charges we have, from (4.86)
and (4.88)

QH−T
∣∣zin

1 , ..., z
in
m

〉
=

m∑
k=1

T (zin
k , z̄

in
k )Ein

k

∣∣zin
1 , ..., z

in
m

〉
, (4.90)

〈
zout

1 , ..., zout
n

∣∣QH+
T =

n∑
j=1

T (zout
j , z̄out

j )Eout
j

〈
zout

1 , ..., zout
n

∣∣ , (4.91)

and hence, when acting with the full supertranslations charges, including the soft part, we have

Q−T |in〉 = QS−T |in〉+
m∑
k=1

Ein
k T (zin

k , z̄
in
k ) |in〉 , (4.92)

〈out|Q+
T = 〈out|QS+

T +
n∑
j=1

Eout
j T (zout

j , z̄out
j ) 〈out| . (4.93)

Equation (4.89) for the BMS0
4 invariance of the S-matrix now reads as

〈out| : QSTS : |in〉 =

 m∑
k=1

Ein
k T (zin

k , z̄
in
k )−

n∑
j=1

Eout
j T (zout

j , z̄out
j )

 〈out| S |in〉 , (4.94)

where

〈out| : QSTS : |in〉 ≡ 〈out|QS+
T S − SQ

S−
T |in〉 , (4.95)

denotes the time ordered product and QST is the total soft charge defined in (4.73). This identity relates
the S-matrix elements between two asymptotic states, one of which has an additional insertion of a total
soft charge operator. Choosing T = 1

z−w and integrating by parts we have, for the total soft charge in
(4.84)

QS 1
z−w
≡ Pw =

1

8πG

∫
γzz̄d

2z∂z̄
1

z − w
∂z̄O

z̄z̄ =
1

4G
γww̄∂w̄Oww, (4.96)

where we used

∂z̄
1

z − w
= 2πδ(2)(z − w). (4.97)

The operator Pz in (4.96) is denoted soft graviton current, it involves zero-frequency integrals over I ±

and thus it creates and annihilates soft gravitons. The identity (4.94) reads, in this case

〈out| : PwS : |in〉 =

N∑
i=1

(
Eout
i

w − zout
i

− Ein
i

w − zin
i

)
〈out| S |in〉 . (4.98)

This equation relates the S-matrix element with a soft graviton current insertion to the S-matrix element
without such insertion. It can be shown [11] that, rewriting the the soft graviton theorem of (4.62) in (z, z̄)
coordinates implies (4.98) and vice-versa.
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4.6 Further developments and outlooks

The above analysis shows that the Ward identities associated to supertranslations invariance of the S-
matrix associated to a scattering process are equivalent to the Weinberg’s soft graviton theorem. At this
stage, a natural question to ask concerns the role of the full BMS4 group in the gravitational scattering
and whether similar arguments can be applied to supperrotations or smooth Diff(S2). It turns out [12]
that the subleading soft graviton theorem of (4.64) implies local bms4 superrotations invariance of the
gravitational S-matrix but the vice-versa is not true. A complete equivalence has been obtained when
considering instead the generalized bms4 smooth Diff(S2) [7, 8]. However, it must be pointed out that
there are some difficulties to construct Diff(S2) charges and, in particular, the method outlined in 4.3
for supertranslations cannot be directly applied in this framework due to a divergence in the symplectic
structure caused by a linear u term in δ(0,Y )CAB of (4.2) as also remarked in [53,97]. A possible resolution
of this issue through a renormalization procedure, based on the ambiguity (2.55) in defining ω, has been
proposed in [35]; a drawback of this approach is that the symplectic current turn out to be a not local and
not covariant functional of the fields.

As remarked in section 1.3, the discussed equivalence between soft theorems and asymptotic symme-
tries is part of a larger triangular equivalence relation that includes also the gravitational memory ef-
fect [18–20, 101–104]. In particular, the so-called displacement memory effect predicts that a couple of
inertial observers moving on timelike curves in a neighbourhood of future null infinity I +, after a burst
of gravitational waves localized in a finite retarded time interval ∆u = uf − ui, will experience a perma-
nent shift in their separation. Such separation crucially depends on the retarded time difference of the
asymptotic shear tensor ∆CAB = CAB(uf ) − CAB(ui). Assuming that first and after the transit of the
waves the spacetime is in a vacuum configuration it implies that ∆CAB is proportional to ∆C, where C is
the supertranslations memory field of (4.9) and it depends on the moments of the radiation energy flux.
However, as argued in section 4.1, different vacua are related by supertranslations and their action shifts
the value of C, as in (4.10). Therefore, performing a supertranslation on a vacuum configuration has the
same effect of a burst of gravitational waves. Further, it has been shown that the Weinberg’s soft graviton
theorem and the displacement memory effect are related by a Fourier transform. It is worth mentioning
that is has also been conjectured a subleading spin memory effect that can be connected to the action of
superrotations on the vacua and to the subleading soft graviton theorem.

The interconnection discovered between these infrared properties of gravity is stimulating growing in-
terest in the context of flat space holography and the so-called celestial CFT [105–119]. It would be in
fact appealing to describe scattering processes in four-dimensional asymptotically flat spacetimes in terms
of correlators on the celestial sphere. The idea, in the case of massless particles, is to represent in- and
out- states by the insertion of local operators Ok(z, z̄) on the point (z, z̄) of the celestial sphere, where
k is a set of quantum numbers describing the properties of the particles under consideration, e.g. their
energy. The set (z, z̄, k) replaces the components pµ of the momenta of the particles under consideration
as explicitly seen in (4.85) and (4.87). Futher, the operators Ok(z, z̄) must transform covariantly under
SL(2,C)/Z2, which is the Lorentz group acting on the celestial sphere as in (3.64) or, as discussed in the
case of local bms4, under the full, infinite-dimensional, local conformal group. More in general, n-point
scattering amplitudes of gravity could be described by n-point correlation functions on the celestial sphere

〈out| S |in〉 −→ 〈O1(z1, z̄2), ..., On(zn, z̄n)〉 . (4.99)

This is another way of interpreting the scattering problem, equivalent to the usual one, which is familiar
with the language of CFT on the 2-sphere. Understanding in detail these features also in the quantum
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regime, could provide a microscopic realization of the holographic principle in four-dimensional asymptot-
ically flat quantum gravity.
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5 Asymptotically locally AdS3 spacetimes

In this chapter, we focus on three-dimensional GR and, in particular, on solutions with negative cosmo-
logical constant (AdS3) whose holographic nature is well-established [26, 120, 121]. The absence of bulk
propagating degrees of freedom makes this theory a privileged playground to understand the role of bound-
ary conditions in gravity. Indeed, the dynamics can be described by a pure boundary theory, as shown by
the Chern-Simons formulation [122–130], reviewed in Appendix C.

In the seminal work by Brown and Henneaux (BH) [27] it was shown that the asymptotic symmetry alge-
bra of AdS3, under certain boundary conditions encompassing BTZ black holes [131–133], consists in two
commuting copies of the Virasoro algebra with central charges c± = c = 3`

2G , ` being the AdS3 radius and
G the Newton constant. This result is considered as a precursor of the AdS/CFT correspondence [23–25],
which, applied to three-dimensional general relativity, conjectures the existence of a dual Confomal Field
Theory (CFT) living on the two-dimensional boundary. Remarkably, the value of c has been used to micro-
scopically derive the Bekenstein-Hawking entropy of the BTZ black hole, using the Cardy formula [134,135].

Here, along these ideas, we relax BH boundary conditions allowing the boundary metric to be conformally
flat, the conformal factor being dynamical and explore the consequences on the asymptotic symmetry al-
gebra and, ultimately, on the dual theory [136]. Thus, the set of boundary conditions we implement in our
analysis encompasses all those spacetimes approaching a general boundary conformal structure, known in
the literature as asymptotically locally AdS3 spacetimes.

We start in sections 5.1 and 5.2 by fixing the Fefferman-Graham (FG) gauge, introducing conformally
flat boundary conditions and, correspondingly, we compute the asymptotic Killing vectors preserving these
choices, i.e. the asymptotic symmetry group. We show that the latter comprises, besides the usual left
and right Witt sectors, a new sector corresponding to Weyl rescalings of the boundary metric. In section
5.3 we solve Einstein’s equations in the conformally flat parametrization and extract the action of the
asymptotic symmetries on the solution space whereas in section 5.4 we explicitly analyze the properties
of the asymptotic symmetry algebra. In section 5.5 we compute the surface charges associated to the
solution space and to the asymptotic symmetries generators and we show that the charge algebra is cen-
trally extended in both the Witt and the Weyl sector. In section 5.6, we touch upon some features of the
boundary holographic theory. In particular, we show that, under our choice of boundary conditions, the
variational problem is not well-defined due to the presence of the Weyl anomaly. Further, we construct
the boundary Weyl currents and we show that their non-conservation can be interpreted in terms of an
anomalous Ward-Takahashi identity for the boundary Weyl transformations. section 5.7 contains a short
summary and some perspectives.

5.1 Fefferman–Graham gauge, residual diffeomorphisms and their algebra

The FG gauge [137,138] in three spacetime dimensions consists in choosing coordinates xµ = (ρ, xa), where
ρ ≥ 0 is a radial coordinate and xa = (t, φ). The three gauge-fixing conditions for the metric are

gρρ =
`2

ρ2
, gρa = 0, (5.1)
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where `2 = −1/Λ is the AdS3 radius. The boundary is located at ρ = 0 and the bulk at ρ > 0. The line
element takes the form

ds2 = gµνdxµdxν =
`2

ρ2
dρ2 + γab(ρ, x)dxadxb. (5.2)

Solving Einstein’s equations for (5.2) with boundary condition γab(ρ, x) = O(ρ−2) yields

γab(ρ, x) = ρ−2g
(0)
ab (x) + g

(2)
ab (x) + ρ2g

(4)
ab (x), (5.3)

with

gab(0)g
(2)
ab = −`

2

2
R(0), Da

(0)g
(2)
ab = −`

2

2
D

(0)
b R(0), g

(4)
ab =

1

4
g(2)
ac g

cd
(0)g

(2)
db . (5.4)

We denote by R(0) and D
(0)
a the Ricci scalar and the covariant derivative associated to g

(0)
ab , respectively.

The leading term g
(0)
ab of the expansion (5.3) as ρ→ 0 is usually referred to as the boundary metric. From

now on the indices will be raised and lowered using this metric.

Defining the holographic stress-energy tensor as [139,140]

Tab =
1

8πG`

(
g

(2)
ab +

`2

2
g

(0)
ab R

(0)

)
, (5.5)

the first two equations of (5.4) imply

Ta
a =

c

24π
R(0), D(0)

a T ab = 0, (5.6)

where c = 3`
2G is the BH central charge [27]. The first equation in (5.6) states that, for a general g

(0)
ab , the

trace of the tensor Tab defined in (5.5) is non-vanishing and proportional to the scalar curvature R(0) of g
(0)
ab ,

with a proportionality constant determined by the BH central charge. This is a signal that the dual CFT
living on the boundary is Weyl anomalous, as we will further comment in section 5.6. The full solution

space χ is therefore characterized by five functions, three contained in g
(0)
ab and two in g

(2)
ab or, equivalently,

in Tab. Furthermore, these last two functions satisfy the dynamical constraints (5.4) or, equivalently, the

second equation in (5.6). In the following, we will write χ = {g(0)
ab , g

(2)
ab }.

The residual gauge diffeomorphisms are those preserving the FG gauge conditions in (5.1). They are
thus generated by the vector field ξ satisfying

Lξgρρ = 0, Lξgρa = 0, Lξγab = O(ρ−2). (5.7)

The solution of these equations is

ξρ = ρσ(x), ξa = Y a(x)− `2∂bσ(x)

∫ ρ

0

dρ′

ρ′
γab(ρ′, x). (5.8)

In this expression, σ(x) and Y a(x) are arbitrary integration constants. Note that ξa depends on the metric
field γab. Therefore, as in (3.43), we use the modified Lie bracket to study their algebra. On defining

ξ̂ρ = ρσ̂(x), σ̂(x) = Y a
1 (x)∂aσ2(x)− Y a

2 (x)∂aσ1(x), (5.9)
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and

ξ̂a = Ŷ a(x)− `2∂bσ̂(x)

∫ ρ

0

dρ′

ρ′
γab(ρ′, x), Ŷ a(x) = Y b

1 (x)∂bY
a

2 (x)− Y b
2 (x)∂bY

a
1 (x), (5.10)

it is possible to show that the algebra is closed off-shell:[
ξ1, ξ2

]
M

= ξ̂. (5.11)

To prove this we used that
[
ξ1, ξ2

]a
M

, i.e. the a component of
[
ξ1, ξ2

]
M

=
[
ξ1, ξ2

]ρ
M
∂ρ+

[
ξ1, ξ2

]a
M
∂a, satisfies

the differential equation ∂ρ
[
ξ1, ξ2

]a
M

= − `2

ρ2γ
ab∂b

[
ξ1, ξ2

]ρ
M

with boundary condition limρ→0

[
ξ1, ξ2

]a
M

= Ŷ a.

On-shell, the residual diffeomorphism generator (5.8) admits the following expansion in powers of ρ,

ξa = Y a − ρ2

2
`2gab(0)∂bσ +

ρ4

4
`2gac(0)g

(2)
cd g

db
(0)∂bσ +O(ρ6). (5.12)

Acting with the Lie derivative along ξ on the on-shell line element (5.2) we find the general variation of
solution space

(Lξgµν) dxµdxν =
`2

ρ2
dρ2 +

(
ρ−2δξg

(0)
ab + δξg

(2)
ab + ρ2δξg

(4)
ab

)
dxadxb, (5.13)

with

δξg
(0)
ab = LY g(0)

ab − 2σg
(0)
ab , δξg

(2)
ab = LY g(2)

ab − `
2D

(0)
a D

(0)
b σ. (5.14)

The first equation in (5.14) is telling us that a general variation of the boundary metric under the action
of residual gauge diffeomorphisms has two independent contributions, one coming from σ and the other
from Y a.

5.2 Boundary conditions and boundary gauge fixing

As stressed above, once the boundary data g
(0)
ab is assigned, the full solution space, comprising also the two

functions in g
(2)
ab , is completely determined. That is, for every arbitrary choice of the boundary metric,

solving (5.4) yields a complete solution of Einstein’s equations. Before solving them explicitly, we now
proceed to impose boundary conditions, motivated by the Penrose conformal compactification described
in section 3.1.

Notice from (5.3) that the boundary data for the full metric g are located at infinite distance, due to
the second order pole. Multiplying g by Ω2, with Ω a positive function with a simple zero on the boundary,
such a pole is eliminated and an induced metric on the boundary may be defined. There is however an
ambiguity in the choice of Ω, as remarked in 8. The replacement Ω→ Ω′ = eωΩ, with ω a smooth function
independent of the radial coordinate, induces a conformal transformation g(0) → e2ωg(0) of the boundary
metric. This freedom allows one to define only an equivalence class of conformally related boundary met-
rics,

[
g(0)
]
, rather than a metric [137–139, 141–143]. In BH, a particular representative of the equivalence

class is picked up, namely the flat Minkowski metric η, and kept fixed under the action of the asymptotic
symmetry algebra. This set of Dirichlet boundary conditions defines the so-called asymptotically (globally)
AdS3 spacetimes (AAdS3). Here we focus on asymptotically locally AdS3 (AlAdS3) spacetimes [144–147],
with no restriction on their boundary conformal structure and thus we assume the boundary metric to
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be conformally flat, the conformal factor being an arbitrary smooth function independent of the radial
coordinate.24 Hence, we impose the more general condition

g
(0)
ab (x) = e2ϕ(x)ηab. (5.15)

Figure 10: The boundary metric g(0) of asymptotically locally AdS3 is not rigid, but left free to fluctuate
through its conformal factor. Here (ρ, t, φ) are FG coordinates.

Notice that every two-dimensional metric is conformally flat. That is, we can always use boundary dif-
feomorphisms to fix two components of the boundary metric in order to reach (5.15). This will constrain
the form of the vector fields Y a appearing in (5.8). Therefore (5.15) is a natural case to investigate. Note
that an arbitrary variation of the boundary metric now reduces to an arbitrary variation of its conformal

factor, i.e. δg
(0)
ab = 2(δϕ)g

(0)
ab .

Equation (5.14) becomes then

δξg
(0)
ab = LY g(0)

ab − 2σg
(0)
ab = 2(δξϕ)g

(0)
ab . (5.16)

This implies that Y a is a conformal Killing vector of g
(0)
ab

LY g(0)
ab = D(0)

a Yb +D
(0)
b Ya = 2ΩY g

(0)
ab , ΩY =

1

2
D(0)
a Y a. (5.17)

where ΩY = δξϕ− σ. Thence

δξg
(0)
ab = 2(ΩY − σ)g

(0)
ab . (5.18)

Introducing light-cone coordinates x± = t/`±φ we have g
(0)
ab dxadxb = −e2ϕ(x)dx+dx− and (5.17) is solved

by the usual chiral vectors

Y + = Y +(x+), Y − = Y −(x−), ΩY =
1

2

(
∂−Y

− + ∂+Y
+
)

+ Y +∂+ϕ+ Y −∂−ϕ. (5.19)

24The case in which the conformal factor admits a chiral splitting has been extensively analyzed in previous works [148,149].
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Consistently, the effect of residual gauge symmetries on the boundary metric is to induce a shift in its
conformal factor, given in (5.18) by δξϕ = ΩY − σ. Often, in the literature, the full set of transformations
induced by ξ is referred to as Penrose-Brown-Henneaux (PBH) [150] diffeomorphisms.

The standard BH boundary conditions [27] δξϕ = 0 are a subclass of our boundary conditions obtained by
fixing σ = ΩY . With this choice the effect of the conformal isometries generated by Y a exactly compensates
the effect of the Weyl rescalings generated by σ, as clear from the first of (5.14). Furthermore, also the
boundary conditions studied in [148] are encompassed in our analysis, as we show in Appendix B.

5.3 Solution space

In the conformally flat parametrization it is possible to explicitly solve Einstein’s equations for g
(2)
ab , given

by the first two equations in (5.4), see e.g. [5]. The first is an algebraic equation for g
(2)
+− and it yields

g
(2)
+− = `2∂+∂−ϕ, (5.20)

where we used that, for g(0) in (5.15), R(0) = 8e−2ϕ∂+∂−ϕ. The second implies

∂∓g
(2)
±± = −`2

(
2∂±ϕ∂±∂∓ϕ− ∂2

±∂∓ϕ
)
, (5.21)

whose solutions are

g
(2)
±± = `2

[
Ξ±±(x±) + ∂2

±ϕ− (∂±ϕ)2
]
, (5.22)

where Ξ±±(x±) are two arbitrary functions of x±. The holographic stress-energy tensor (5.5) reads

T+− = − `

8πG
∂+∂−ϕ, T±± =

`

8πG

[
Ξ±±(x±) + ∂2

±ϕ− (∂±ϕ)2
]
. (5.23)

While the most general solution space described in 5.1 is characterized by five independent functions of x+

and x−, the solution space in the conformally flat gauge of (5.33) is given by ϕ(x+, x−) and the two chiral
functions Ξ±±(x±). Thus, the solution space we are interested in is χ = {Ξ++(x+),Ξ−−(x−), ϕ(x+, x−)}.
Note that the presence of an arbitrary ϕ prevents a complete chiral splitting of the solution space and that,
equivalently, the holographic stress-energy tensor components T±± in (5.23) are not chiral nor anti-chiral.
This is one of the main differences with respect to [148].

A generic variation of the solution space is generated by σ and Y ±, so we symbolically write δξχ = δ(σ,Y ±)χ.
Using (5.14) and (5.17) we compute

δ(σ,0)ϕ = −σ, δ(σ,0)Ξ±± = 0, (5.24)

and

δ(0,Y ±)ϕ = ∂−Y
− + ∂+Y

+ + 2(Y +∂+ϕ+ Y −∂−ϕ), (5.25)

δ(0,Y ±)Ξ±± = Y ±∂±Ξ±± + 2Ξ±±∂±Y
± − 1

2
∂3
±Y
±. (5.26)
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Before proceeding to compute the asymptotic symmetry algebra, it is convenient to trade σ for a parameter
ω defined as

ω = ΩY − σ. (5.27)

Note that ω depends on the derivatives of ϕ and therefore it is field-dependent, contrarily to σ. Using ω,
(5.24)-(5.25) can be more compactly written as

δ(ω,Y ±)ϕ = ω, δ(ω,Y ±)Ξ±± = Y ±∂±Ξ±± + 2Ξ±±∂±Y
± − 1

2
∂3
±Y
±. (5.28)

The conformal factor ϕ transforms only under the action ω while Ξ±± transform as the components
of an anomalous two-dimensional CFT stress-energy tensor under the action of Y a [151]. Thanks to
the redefinition of the residual diffeomorphisms generators (5.27) we have isolated the total part of the
asymptotic symmetries that induces a Weyl rescaling of the boundary metric. Hence, From now on we will
refer to the sector of the asymptotic symmetries generated by ω as the Weyl sector. Note that another
more straightforward way to introduce ω is to require that the residual vector fields of (5.8) asymptotically
induce a Weyl rescaling of the boundary metric, i.e.

Lξγab = 2ωρ−2g
(0)
ab +O(ρ0). (5.29)

This equation leads to

D(0)
a Yb +D

(0)
b Yb = 2(ω + σ)g

(0)
ab , (5.30)

which implies (5.27).

Note that from the definition (5.5) of Tab and from (5.14) it follows that, under a residual Weyl transfor-
mation, Tab transforms as

δ(ω,0)Tab =
c

12π
(D(0)

a D
(0)
b ω − g(0)

ab �
(0)ω). (5.31)

Hence, if we required that the vector field generating Weyl transformations satisfied

δ(ω,0)Ta
a = −2ωTa

a − c

12π
�(0)ω ≡ −2ωTa

a, (5.32)

then the trace of Tab, or equivalently R(0), would transform as a Weyl scalar of weight −2. This condition
automatically implies that ω is an harmonic function 25

�ω = 0, (5.33)

whose general solution is

ω = ω+(x+) + ω−(x−). (5.34)

In the following, we will refer to this peculiar situation as the ω-chiral case. Note that requiring the gauge
parameter ω to satisfy (5.34) implies that ϕ can vary under the action of the asymptotic symmetry group
only as

δ(ω,Y ±)ϕ = ω+(x+) + ω−(x−). (5.35)

Therefore, under (5.33), even if the solution space does not admit a chiral splitting, its variation δξχ can
be decomposed into two sectors with definite chiralities, δξ±χ = {δ(ω±,Y ±)Ξ±±, δ(ω±,Y ±)ϕ}.

25Note that �(0) = e−2ϕ�, where � = ∂a∂
a.
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5.4 Asymptotic symmetry algebra

The on-shell residual diffeomorphisms generator in light-cone coordinates is

ξρ = ρσ(x), ξ± = Y ±(x±) + ρ2`2e−2ϕ∂∓σ + ρ4`2e−4ϕ
[
g

(2)
+−∂∓σ + g

(2)
±±∂±σ

]
+O(ρ6), (5.36)

whereas the algebra is

[
ξ1, ξ2

]ρ
M

= ξ̂ρ = ρσ̂, σ̂ = Y +
1 ∂+σ2 + Y −1 ∂−σ2 − (2↔ 1), (5.37)

[
ξ1, ξ2

]±
M

= ξ̂± = Ŷ ± + ρ2`2e−2ϕ∂∓σ̂ +O(ρ4), Ŷ ± = Y ±1 ∂±Y
±

2 − (2↔ 1). (5.38)

This algebra is a semidirect sum: by denoting an element of the algebra as the pair (σ, Y ±), the modified
Lie bracket between two elements is

[
(σ1, Y

±
1 ), (σ2, Y

±
2 )
]
M

= (σ̂, Ŷ ±), where σ̂ and Ŷ ± are given in (5.37)
and (5.38).

We now reformulate the algebra in terms of the parameter ω introduced in (5.27). The on-shell generator
is

ξρ = ρ (ΩY − ω) , (5.39)

ξ± = Y ± + ρ2`2e−2ϕ∂∓ (ΩY − ω) + ρ4`2e−4ϕ
[
g

(2)
+−∂∓ (ΩY − ω) + g

(2)
±±∂± (ΩY − ω)

]
(5.40)

+O(ρ6). (5.41)

Notice that, since ω is field-dependent, this reformulation introduces a field dependence in ξρ, which was
previously absent. This implies that we need to use the modified Lie bracket also for this component. We
now obtain [

ξ1, ξ2

]ρ
M

= ξ̂ρ = ρ
(
ΩŶ − ω̂

)
, Ŷ ± = Y ±1 ∂±Y

±
2 − Y

±
2 ∂±Y

±
1 , ω̂ = 0, (5.42)

and, as before,

∂ρ

([
ξ1, ξ2

]±
M

)
= − `

2

ρ2
gab∂b

([
ξ1, ξ2

]ρ
M

)
, lim

ρ→0

([
ξ1, ξ2

]±
M

)
= Ŷ ±. (5.43)

Integrating these equations leads to[
ξ1, ξ2

]±
M

= ξ̂± = Ŷ ± + ρ2`2e−2ϕ∂∓
(
ΩŶ − ω̂

)
+ ρ4`2e−4ϕ

[
g

(2)
+−∂∓

(
ΩŶ − ω̂

)
+ g

(2)
±±∂±

(
ΩŶ − ω̂

)]
+O(ρ6), (5.44)

where Ŷ ± and ω̂ are defined in (5.42). With this set of independent generators, the asymptotic symmetry
algebra is thus a direct sum of two copies of the Witt algebra with the abelian ideal of Weyl rescalings.
Denoting an element of the algebra as the pair (ω, Y ±), the modified Lie bracket between two elements
is
[
(ω1, Y

±
1 ), (ω2, Y

±
2 )
]
M

= (0, Ŷ ±). From now on we will work in the ω-parametrization, for it allows to
disentangle the asymptotic symmetry algebra.
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In order to describe the asymptotic symmetry algebra in a basis, we first introduce the decomposition
ξ = ζω + ξY + + ξY − where ζω = ξ|Y ±=0, ξY + = ξ|ω=0=Y − and ξY − = ξ|ω=0=Y + . From the mode expansions
Y ±n = einx

±
we have, for Ŷ ± in (5.42)

Ŷ ± = Y ±n ∂±Y
±
m − (n↔ m) = (n−m)ei(n+m)x± , (5.45)

and thus we gather [
ξ±n , ξ

±
m

]
M

= i(n−m)ξ±n+m,
[
ξ±n , ξ

∓
m

]
M

= 0, (5.46)

where we replaced the Y ± subscript by the mode number ξY ±n ≡ ξ±n . We thus have two copies of the
Witt algebra, which is expected since for ω = 0 we reach BH boundary conditions, where this algebra has
already been derived [27].

Expanding ωpq = eipx
+
eiqx

− 26 the sectors of the algebra involving Weyl rescalings read[
ζpq, ζrs

]
M

= 0,
[
ξ±n , ζrs

]
M

= 0. (5.47)

where we defined ζωpq ≡ ζpq.

In the particular subclass of ω satisfying (5.34), i.e. the ω-chiral case, we can consider the algebra of
left and right Weyl sectors separately. Expanding ω±p = eipx

±
we denote ζω±p ≡ ζ±p . The sectors of the

algebra involving Weyl rescalings now read[
ζ±p , ζ

±
q

]
M

= 0,
[
ζ±p , ζ

∓
q

]
M

= 0,
[
ξ±n , ζ

±
p

]
M

= 0,
[
ξ±n , ζ

∓
p

]
M

= 0. (5.48)

5.5 Surface charges and their algebra

We now proceed to study asymptotic surface charges under the boundary conditions spelled above, using
the Barnich-Brandt prescription in (2.90),

�δQξ[h, g] =

∫
S

k′ξ[g, h] =
1

16πG

∫ 2π

0
dφkρtξ [g, h], (5.49)

where

kµνξ [g, h] =
√
−g
[
ξν∇µh− ξν∇σhνσ + ξσ∇νhµσ +

1

2
h∇νξµ +

1

2
hνσ(∇µξσ −∇σξµ)− (µ↔ ν)

]
. (5.50)

Here hµν = δgµν are the on-shell variations of the metric, S in (5.49) is on the circle at infinity spanned by
φ at a fixed time t and hence kρtξ [g, h] is evaluated on the boundary, i.e. at ρ = 0. The charges associated
to ξY = ξY + + ξY − are integrable and found to be

QξY [g] =
`

8πG

∫ 2π

0
dφ
(
Y −Ξ−− + Y +Ξ++

)
. (5.51)

26Note that if ω is arbitrary we cannot decompose it into chiral and anti-chiral parts and therefore we need to use the most
general decomposition.
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These are the usual conserved charges associated to conformal transformations, found also with BH bound-
ary conditions. The QξY [g] in (5.51) are computed with respect to the background metric ḡ defined by
Ξ±± = 0, which is the BTZ black hole with vanishing mass and angular momentum. The ones computed
with respect to the global AdS3 background can be obtained by shifting Ξ±± → Ξ±± + 1

4 in (5.51) [152].

For the Weyl sector we find integrable charges given by

Qζω [g] =
`2

8πG

∫ 2π

0
dφ(ϕ∂tω − ω∂tϕ). (5.52)

These additional interesting charges are finite, integrable but not conserved. The non-conservation is ac-
counted for by the presence of a non-vanishing symplectic flux through the boundary, as we will emphasize
in section 5.6.

It can be shown that the same set of charges in (5.51) and (5.52) can be obtained using the Iyer-Wald
prescription in (2.85). While the charges in (5.52) are the most general Weyl charges in our setup, we
now restrict attention to the ω-chiral case (5.34), i.e. ω = ω+ + ω−. Correspondingly, the Weyl charges
decompose as

Qζω [g] = − `

4πG

∫ 2π

0
dφ
(
ω+∂+ϕ+ ω−∂−ϕ

)
≡ Qζω+ [ϕ] +Qζω− [ϕ], (5.53)

where we have integrated by parts. Hence, they split into two pieces, generating the chiral and anti-chiral
transformations of ϕ. We now proceed to compute the charge algebra.

Consistently with (2.64), it can be shown that the surface charges, under the Poisson bracket, form a
projective representation of the asymptotic symmetry algebra with modified Lie bracket, i.e.

{Qξ1 [g], Qξ2 [g]} = δξ2Qξ1 [g] ≈ Q[ξ1,ξ2]
M

[g] +Kξ1,ξ2 [g], (5.54)

where Kξ1,ξ2 is the central charge. We find, for ξi = ζωi + ξYi ,

Kξ1,ξ2 = KξY1
,ξY2

+Kζω1 ,ζω2
, (5.55)

with

KξY1
,ξY2

=
1

8πG

∫ 2π

0
dφ
(
∂φY

t
1 ∂

2
φY

φ
2 − ∂φY

t
2 ∂

2
φY

φ
1

)
, (5.56)

and

Kζω1 ,ζω2
=

`2

8πG

∫ 2π

0
dφ
(
ω2∂tω1 − ω1∂tω2

)
. (5.57)

It can be easily shown that Kξ1,ξ2 satisfies the cocycle condition (2.65). Indeed, it is automatically satisfied
for the Weyl sector and the mixed sector, while in the Witt sectors it is proved as usual. Furthermore, since
the Virasoro central charge is non-trivial and any 2-cocycles of an Abelian algebra cannot be a coboundary,
(5.57) is fully non-trivial. The central charge (5.56) in the Y sector is the well-known BH result [27], while
(5.57) is a new result. The total central charge in (5.55) has therefore two independent contributions,
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one coming from the ordinary BH central charge and an additional one coming from the sector of Weyl
rescalings of the boundary metric. Evaluating (5.56) on the basis Y ±n = einx

±
we get

KY ±n ,Y ±m = −im3 c
±

12
δn+m,0, KY ±n ,Y ∓m = 0, c± = c =

3`

2G
. (5.58)

On the other hand, evaluating (5.57) on the basis ωpq = eipx
+
eiqx

−
for the modes decomposition of the

Weyl sector yields

Kζpq ,ζrs = −i(r − q)cWωq+s,q+sδp+r,q+s, cW =
`

2G
. (5.59)

The total charge algebra then reads{
Qξ±n [g], Qξ±m [g]

}
= i(n−m)Qξ±n+m

[g]− im3 c

12
δn+m,0, (5.60){

Qξ±n [g], Qξ∓m [g]
}

= 0, (5.61){
Qζpq [g], Qζrs [g]

}
= −i(r − q)cW e

2i(q+s) t
` δp+r,q+s, (5.62){

Qξ±n [g], Qζpq [g]
}

= 0. (5.63)

This algebra is the direct sum of two Virasoro sectors and the centrally extended Weyl sector. We note that
the Weyl central charge is explicitly time dependent. As such, we are dealing here with a one-parameter
family of algebras, labelled by the time slice t at which the charges are computed.

In the ω-chiral case, the central charge for the Weyl left- and right-movers simplifies to

Kζ±p ,ζ±q = ipc±
W
δp+q,0, Kζ±p ,ζ∓q = 0, c±

W
= cW =

`

2G
. (5.64)

The charge algebra then reads{
Qξ±n [g], Qξ±m [g]

}
= i(n−m)Qξ±n+m

[g]− im3 c

12
δn+m,0, (5.65){

Qξ±n [g], Qξ∓m [g]
}

= 0, (5.66){
Qζ±p [g], Qζ±q [g]

}
= ipcW δp+q,0, (5.67){

Qζ±p [g], Qζ∓q [g]
}

= 0, (5.68){
Qξ±n [g], Qζ±p [g]

}
= 0, (5.69){

Qξ±n [g], Qζ∓p [g]
}

= 0. (5.70)

In this subcase the Weyl central charge does not depend on time and therefore the one-parameter family
of algebras reduces to a Kac-Moody current algebra. The algebra (5.65)-(5.70), up to redefinition of
generators, is the same as the one found in [148], as reviewed in Appendix B.

5.6 Holographic aspects

Thanks to the AdS/CFT dictionary, we know that the bulk gravity theory is dual to a boundary conformal
field theory. As long as the former is in the classical limit, the latter is strongly coupled. Therefore, little
is known about it: we cannot construct its perturbative action but we still have access to non-perturbative
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features such as quantum symmetries expressed in terms of Ward-Takahashi identities of the path inte-
gral [153, 154]. The goal of this section is to show that there is a breaking (see e.g. the discussion in
section 2.3) in the conservation law of the Weyl current, which has a holographic dual counterpart as a
boundary anomalous Ward-Takahashi identity [155]. Before proceeding let us briefly review the emergence
of the Weyl anomaly in the context of holographic renormalization, pioneered by Skenderis and collabora-
tors [139,146,156–164].

The renormalized action for GR in asymptotically locally AdS3 spacetimes is defined as S[g] = limε→0 Sε[g]
where Sε[g] is the regularized action, given by

Sε[g] =
1

16πG

∫
Mε

d3x
√
−g
(
R− 2

`2

)
+

1

16πG

∫
∂Mε

d2x
√
−γ
(

2K − 2

`
+
`

4
R(0) log ε

)
, (5.71)

where K is the trace of the extrinsic curvature of the constant ρ hypersurface and the last two terms are
the standards counterterms. The renormalized action S[g] is therefore defined by first introducing a cut-off
at ρ = ε that allows the divergences to cancel and then by taking the limit ε→ 0. An on-shell variation of
S[g] yields27

δS[g] =
1

2

∫
∂M

d2x

√
−g(0)T abδg

(0)
ab =

c

24π

∫
∂M

d2x

√
−g(0)R(0)δϕ, (5.72)

where in the last step we have explicitly used the conformally flat parametrization. Hence, with our choice
of boundary conditions, the variational problem is not well-defined [146,163]. Specifying δ to be the vari-

ation (5.28) induced by a Weyl diffeomorphism so that δωg
(0)
ab = 2ωg

(0)
ab , we get

δωS[g] =
c

24π

∫
∂M

d2x

√
−g(0)R(0)ω ≡

∫
∂M

d2x

√
−g(0)Aω, A =

c

24π
R(0), (5.73)

which is the standard expression for the Weyl anomaly in AlAdS3 spacetimes.28. Note that we define A
to be the integrand coefficient of ω(x) in δωS[g] [139]. In other words, regularizing the theory implies a
specific choice of radial foliation and therefore it explicitly breaks Weyl invariance, causing the emergence
of a Weyl anomaly. The latter can be seen in the on-shell variational principle of the renormalized bulk
action. When specified to a variation of the conformal factor of the boundary metric, the corresponding
variation of the on-shell renormalized action gives the Weyl anomaly, which is then interpreted as the trace
anomaly of the boundary stress tensor [140, 173, 174]. Typically, in order to achieve a well-defined varia-
tional problem, Dirichlet boundary conditions are imposed on the metric [146, 163, 175]. However, such a
condition is too restrictive when working with a conformal class of boundary metrics [146]. Therefore we
cannot insist that the variational problem be well defined.

From (5.72) we get, in terms of the wedge product ∧ between field variations, the symplectic structure
induced on the boundary ∂M [38, 97,176]

Ω∂M[g, h1, h2] =
1

2

∫
∂M

d2x δ

(√
−g(0)T ab

)
∧ δg(0)

ab = − 1

8πG

∫ 2π

0
dφ

∫ t2

t1

dt (�δϕ ∧ δϕ) , (5.74)

27For the Chern-Simons formulation of the variational problem, see Appendix C.
28For intrinsic field-theoretical studies of Weyl anomalies see [165–172].
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where we have used the conformally flat parametrization. Integrating by parts in t we have, discarding
total φ derivatives, that

Ω∂M[ϕ, δ1ϕ, δ2ϕ] = − `2

8πG

∫ 2π

0
dφ [δϕ ∧ ∂tδϕ]

t2

t1
. (5.75)

This shows that the time difference of Weyl charges is equal to the symplectic flux contracted with a Weyl
generating vector field,

Ω∂M[ϕ, δϕ, δωϕ] = δ

{
`2

8πG

∫ 2π

0
dφ [ω∂tϕ− ϕ∂tω]

t2

t1

}
= δ
{
Qζω [g]|t1 −Qζω [g]|t2

}
, (5.76)

so that, integrating on a path γ in the space of fields, we get

∆tQζω [g] =

∫
γ

Ω∂M[ϕ, δϕ, δωϕ]. (5.77)

Therefore the Weyl charges are not conserved but integrable, as already mentioned and their non conser-
vation is compensated by a symplectic flux through the boundary [41–43,177–179].

We proceed now to reduce the theory to the ω-chiral case and comment on some holographic aspects
in this framework. The presence of an anomaly indicates that, in the dual theory, a current is not con-
served at the quantum level 29. Therefore, the first step is to construct a Weyl current [182]. This procedure
is well-known for the Virasoro sector, where the currents combine in the stress tensor of the boundary dual
theory, and its conservation is interpreted in the bulk as Einstein’s equations, while in the boundary as the
Ward-Takahashi identity for the transformations generated by ξa(0,Y ±). In a similar fashion, given that the

condition �ω = 0 ensures we deal with two generators (5.53) of chiral and anti-chiral Weyl transformations,
we can define two Weyl currents. Starting from (5.50), since the charges are integrable we can define a
functional Kζω [g] such that kζω [g, h] = δ(Kζω [g]). For Kζω [g] we obtain the splitting

Kρa
ζω

[g] = Kρa
ζω+

[g] +Kρa
ζω−

[g]. (5.78)

We now use the ambiguity (2.29) in defining Kµν
ξ [g],

K ′ρaζω+
[g] = Kρa

ζω+
[g] + ∂bI

[ba]
ζω+

[g], K ′ρaζω−
[g] = Kρa

ζω−
[g] + ∂bI

[ba]
ζω−

[g]. (5.79)

Choosing I±ζω±
as

I+−
ζω+

[ϕ] = − `

8πG
ϕω+, I+−

ζω−
[ϕ] =

`

8πG
ϕω−, (5.80)

we obtain for K ′ρaξ [ϕ]

K ′ρ+
ζω+

[ϕ] = 0, K ′ρ−ζω+
[ϕ] = − `

4πG
ω+∂+ϕ, K ′ρ+

ζω−
[ϕ] = − `

4πG
ω−∂−ϕ, K ′ρ−ζω−

[ϕ] = 0. (5.81)

29see e.g. [155,180,181] for reviews
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These are precisely the integrands of the Weyl charges in (5.53). Introducing two Weyl currents Jaω+ [ϕ]
and Jω− [ϕ] for the two chirality sectors as

K ′ρaζω+
[ϕ] =

√
−g(0)ω+Jaω+ [ϕ], K ′ρaζω−

[ϕ] =

√
−g(0)ω−Jaω− [ϕ], (5.82)

such that the currents are tensors (K
′µν
ξ [g] is a tensor density) and they do not depend on the gauge

parameters ω+ and ω−. Their explicit expressions, using g
(0)
ab dxadxb = −e2ϕ(x)dx+dx−, are

J+
ω+ [ϕ] = 0, J−

ω+ [ϕ] = −`e
−2ϕ

2πG
∂+ϕ, J+

ω− [ϕ] = −`e
−2ϕ

2πG
∂−ϕ, J−

ω− [ϕ] = 0. (5.83)

We eventually compute the boundary covariant divergence of these two currents and we find:

D(0)
a Jaω+ = −A, D(0)

a Jaω− = −A, (5.84)

where A is the anomaly integrand coefficient defined in (5.73). We have thus shown that the Weyl currents
are not conserved due to the presence of the anomaly [155]. The boundary Weyl symmetry is broken, for
the bulk counterpart Weyl charges are not conserved and this process is driven by the anomaly coefficient:
for flat boundary metrics the current is conserved [148], as we thoroughly review in Appendix B.

5.7 Summary and future directions

The above analysis shows that the asymptotic symmetries corresponding to conformally flat boundary
conditions include a new abelian sector of Weyl rescalings of the boundary metric whose associated sur-
face charges are integrable but not conserved and that their charge algebra is characterised by a new,
non-trivial, central charge. As already mentioned, the holographic AdS/CFT dictionary predicts that bulk
asymptotic symmetries are dual to boundary global symmetries of a putative field theory. In our setup, af-
ter constructing new suitable Weyl boundary currents compatible with the surface charges, we proved that
the holographic counterpart of the bulk analysis is consistently described by a anomalous Ward-Takahashi
identity of the dual holographic theory. In other words, the effect of having a non-flat boundary metric is
found to be equivalent to coupling the two-dimensional boundary CFT with a fixed background field.

We have not addressed the holographic interpretation corresponding to the most general variation of the
boundary metric (i.e. ω not satisfying (5.33)), which is certainly worth exploring. In this regard, a different
choice of gauge in the bulk may be more suited, e.g. [183]. In particular, this raises the question on how
Weyl charges explicitly depend on the gauge condition [178, 179, 184, 185]. Another possible development
is the extension of these results to higher dimensions. Specifically, it is tempting to speculate that similar
patterns can be unravelled in even-boundary dimensions. On the other hand, it would also be of related in-
terest to investigate Weyl charges in odd-boundary dimensions. Furthermore, a suitable flat limit [152,186]
of these results might be relevant for the flat holography program [187–189] and the recent developments in
celestial CFT. Eventually, on the macroscopic side of holography, i.e., in the fluid/gravity correspondence,
it would be interesting to study the role of these boundary conditions from the fluid perspective [190].
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Part II

Partition functions and modular covariance

6 Introduction

Conformal field theory (CFT) has been an extraordinarily powerful tool in the development of theoretical
physics over the last decades. It has allowed for interplays between a wide spectrum of areas in physics,
leading to rich results. Among others, it has found applications that range from string theory and hologra-
phy to statistical and condensed matter physics. In particular, two-dimensional CFT, whose study started
with the seminal paper by Belavin, Polyakov and Zamolodchikov [191], appears as a natural and fundamen-
tal feature of string theory and has been extensively used to describe two-dimensional critical phenomena,
as the classification of critical behaviors of the two-dimensional Ising model.

One of the central ideas of two-dimensional CFT is modular invariance on a Euclidean torus background
T2 = S1

β ×S1
L [192,193], defined as the product between the compact euclidean time and a compact spatial

variable of periods β and L, respectively. Indeed, a torus can be defined by specifying two linearly inde-
pendent vectors on the plane, or equivalently two complex numbers (ω1, ω2), called periods of the lattice,
and then identifying points that differ by an integer combination of these. Therefore, a torus is equivalent
to a plane with periodic boundary conditions. The requirement of a torus background imposes powerful
constraints on the theory. In the first place, by conformal invariance, the properties of a CFT living on
such background cannot depend separately on the two periods but only on the ratio between them, called
modular parameter τ = ω2/ω1 = τ1 + iτ2. Secondly, a given torus can be specified by any other pair
of lattice vectors which are integer combinations of (ω1, ω2) and this implies, in turn, that the partition
function of a CFT on the torus must be modular invariant, i.e. it must be invariant under SL(2,Z)/Z2

transformations of the modular parameter τ . As a direct consequence, two-dimensional CFTs living on the
torus exhibit a peculiar duality, mapping its partition function at a given τ2 = L/β to itself at the inversely
related temperature 1/τ2 = β/L, i.e. there exists a symmetry under the swapping of the above defined
circles. It has been shown that the partition function of a two-dimensional massless scalar field theory
on the torus can be written in terms of the so-called Dedekind’s η function. The latter is an important
example of quasi-modular form. In general, modular forms are an important chapter of mathematics and
they play a crucial role in physics.

The above described dualities have been widely used and have led to strong analytic results. In this regard
it is worth to mention the Kramers-Wanniers duality [194, 195], relating the high- and low-temperature
behaviors of the free energy of the two-dimensional Ising model, that can be used to exactly determine its
critical point. The Cardy formula [135], which gives a prescription to compute the degeneracy of high energy
states of the CFT, also heavily relies on this duality. In a slightly different context, the Cardy formula has
been used to microscopically reproduce the Bekenstein entropy of certain classes of black holes [134, 196].
Remarkably, modular transformations have been used in the framework of Seiberg-Witten solution [197]
of N = 2 supersymmetric Yang-Mills theory, where they act on a modular parameter that depends both
on the vacuum theta angle and the gauge coupling constant, giving access to the non-perturbative regime
of the theory.
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The question of whether modular transformations and thus temperature dualities can be realized in dif-
ferent contexts is naturally an intriguing one and definitely worth exploring.

6.1 Modular covariance and Eisenstein series

Investigating the fate of modular invariance for CFTs living in spacetime dimensions greater than two
and on partially compactified manifolds is certainly an interesting question, see e.g. [198–203] for several
successful attempts in this direction.

It turns out [204] that, in the simple case of a (d+ 1)-dimensional massless scalar field living on T2×Rd−1,
the above described modular invariance of the partition function gets naturally replaced by modular co-
variance. In particular, the Dedekind’s η function appearing in the case of the two-dimensional CFT on
T2 is substituted by real analytic Eisenstein series [205–208]. They are important objects to consider in
the context of modular forms and feature prominently in theoretical physics, for instance in the context of
string theory amplitudes, gravitational instantons and Feynman integrals.

Similarly to modular invariance, modular covariance allows to derive certain generalized temperature du-
alities, that smoothly extend those of two-dimensional CFTs, implying an higher-dimensional analogue of
the Cardy formula. In fact, in these models the high-temperature limit of the thermal entropy and of the
density of states can be expressed uniquely in terms of the central charge of the theory. Interestingly, it has
been also shown that in the low-temperature regime the entropy of the system does not scale as the entire
volume of the manifold, as one might expect, but only as the volume of its non-compact Rd−1 component.
The Fourier analysis of the real analytic Eisenstein series allows to trace back the microscopic origin of this
behavior and to show that is due the the zero mode of the scalar field in the compact spatial direction.

6.2 Gauge theories in the Casimir setup

Modular transformations already appear naturally in the context of the quantized electromagnetic field
between two perfectly conducting plates, i.e. the well-studied setup of the Casimir effect [209] at finite
temperature [210–216] While a temperature inversion symmetry for the partition function had already
been derived originally in [217] (see also [218–222]), this result can be enhanced to transformations of a
suitably defined modular parameter under the full modular group [223]. In this case, it turns out that the
partition function of the theory transforms covariantly under modular transformations with weight 2. A
crucial role in this derivation is played by the Casimir boundary conditions, which ultimately make the
electromagnetic field between two perfectly conducting plates equivalent to a massless scalar field living on
T2 ×R2, where T2 = S1

β × S1
2L, L being the separation between the two plates. The temperature dualities

corresponding to this modular symmetry allow to easily relate the high- and low-temperature limits of
thermodynamic quantities and also in this case, at low temperatures, the entropy scales as the area of the
metallic plates [224,225].

A similar analysis [226] has shown that also in the case of linearized gravity around flat space, i.e. Pauli-
Fierz theory, the same considerations apply. Even if the gauge structure of the spin 2 theory is significantly
more complicated than that of spin 1, imposing the analogue of perfectly conducting boundary conditions
on the linearized gravitational field leads, after defining a suitable modular parameter, to a modular co-
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variant partition function. In particular, it turns out that it is equal to that of the spin 1 case, showing
that the true physical propagating degrees of freedom of free Pauli-Fierz theory in the Casimir setup, after
having eliminated all the gauge redundancies, have the same nature as those of electromagnetism.

6.3 Publications and original results

1. F. A. and G. Barnich, “Modular invariance in finite temperature Casimir effect”, JHEP 10 (2020)
134, arXiv: 2007.1133 [hep-th],

2. F. A., G. Barnich and M. Bonte “Gravitons in a Casimir box”, JHEP (2021) 216, arXiv: 2007.1133
[hep-th],

3. F. A., G. Barnich, M. Bonte and A. Kleinschmidt “Generalized modular invariance and temperature
dualities on Rd−1 × T2”. To appear soon.
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7 Path integrals and partition functions: an introduction

In this chapter we review some techniques to compute the partition function Z(β) of a quantum field theory.
Having access to the latter is essential to capture statistic and thermodynamic properties of a theory at
finite temperature. As we will see in the next chapters, understanding the symmetries of Z(β) leads to very
interesting physical consequences. In particular, as remarked in the Introduction, modular symmetries of
the partition function imply the so-called temperature dualities, for which the low- and high-temperature
regime of the theory are related. In this chapter, we will only be concerned about the very simple model of a
massless scalar field in the large volume limit and we will outline how different techniques to compute Z(β)
illustrate different but complementary aspects of the problem. The study of this toy model has a twofold
purpose. On the one hand, it will help establishing a useful notation that will be used throughout all this
part. On the other hand, the results contained in this chapter will be a useful benchmark for the case
of more realistic models, e.g. electromagnetism and linearized gravity which will be dealt with in chapter 9.

We start in section 7.1 by recalling the path-integral representation of the partition function and in 7.1.1,
7.1.2 and 7.1.3 we describe the zeta function, heath kernel and canonical techniques, respectively, to com-
pute Z(β). In section 7.2 we explicitly make use of these methods to obtain thermodynamic properties of
a real massless scalar field in (d+ 1)-dimensions. We conclude, in section 7.3, with some comments about
the independence of the partition function in the large volume limit of the choice of boundary conditions
and about the electromagnetism partition function.

A non-exhaustive list of original literature for this chapter is [227–231]. Useful books and reviews are
[232–244] and references therein contained.

7.1 Path integral representation of the partition function

Let us start by considering a non-relativistic particle of unit mass, described by the classical Lagrangian
action

S[q] =

∫ tf

ti

dt

[
q̇2

2
− V (q)

]
. (7.1)

Here by q we denoted the coordinate and by V (q) the potential acting on the particle. The classical tra-
jectory q(t) of the particle, according to Hamilton’s principle, is the one extremizing S[q]. This procedure
gives the standard Lagrange’s equations of motion q̈ = V ′(q). Equivalently, one can introduce the momen-
tum p associated to the coordinate q as p = ∂L

∂q̇ = q̇ and compute the first order Hamiltonian action as

SH [q, p] =

∫ tf

ti

dt
[
pq̇ −H(p, q)

]
, H(p, q) =

p2

2
+ V (q). (7.2)

Extremizing SH [q, p] yields the standard Hamilton’s equations of motion q̇ = ∂pH and ṗ = −∂qH.

In quantum mechanics, we introduce coordinate and momentum operators q̂ and p̂ satisfying [q̂, p̂] = i~ 30

30In this chapter we do not adopt the standard convention ~ = 1.
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with associated eigenstates |q〉 and |p〉 such that q̂|q〉 = q|q〉 and p̂|p〉 = p|p〉. They form an orthonormal
and complete set of eigenstates:

〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′), 1̂ =

∫
dq|q〉〈q|, 1̂ =

∫
dp|p〉〈p|. (7.3)

In the Heisenberg picture, q̂ and of p̂ are time dependent q̂(t) = Û †(t)q̂ Û(t) and p̂(t) = Û †(t)p̂ Û(t),
with Û(t) = exp{−iĤt/~} time evolution operator, and they have eigenstates |q; t〉 = Û †(t)|q〉 and
|p, t〉 = Û †(t)|p〉, so that q̂(t)|q; t〉 = q|q; t〉 and p̂(t)|q; t〉 = p|p; t〉. An object of interest is the quan-
tum amplitude for the particle at qf at time tf , starting from qi at ti,

〈qf ; tf |qi; ti〉 = 〈qf |e−
i
~ Ĥ(tf−ti)|qi〉, (7.4)

where in the last step we have explicitly used the time evolution opertor. We now briefly show how
(7.4) can be defined in terms of a path integral [234,241,245]. The first step is to split the interval (ti, tf )
into N+1 small intervals of length δt = (tf−ti)/(N+1) with N very large, so that, using Trotter’s formula

e−
i
~ Ĥ(tf−ti) = e−

i
~ Ĥδt...e−

i
~ Ĥδt︸ ︷︷ ︸

N+1 times

, N →∞. (7.5)

Then we insert N times the identity in coordinate space 1̂ =
∫∞
−∞ dqk|qk〉〈qk| and N + 1 times the identity

in momentum space 1̂ =
∫∞
−∞ dpk|pk〉〈pk|, so that the amplitude admits the representation

〈qf |e−
i
~ Ĥ(tf−ti)|qi〉 =

∫ ∞
−∞

(
N+1∏
k=1

dpk

)(
N∏
k=1

dqk

)
〈qf |e−

i
~ Ĥδt|pN+1〉〈pN+1|qN 〉...〈qk|e−

i
~ Ĥδt|pk〉〈pk|qk−1〉...

...〈q1|e−
i
~ Ĥδt|p1〉〈p1|qi〉. (7.6)

Using 〈p|q〉 = 1√
2π~

e−
i
~pq and 〈q|p〉 = 1√

2π~
e
i
~pq each factor in (7.6) can be computed as

〈qk|e−
i
~ Ĥδt|pk〉〈pk|qk−1〉 =

1

2π~
e
i
~

[
pk(qk−qk−1)−H(pk,qk)δt

]
. (7.7)

Note that, in order to derive this equation it is essential to assume that the classical Hamiltonian is of
the form H(p, q) = f(p) + V (q) so that there is no ambiguity in defining the quantum operator Ĥ(p̂, q̂).
More generally, the classical Hamiltonian may contain cross-terms as pnqm. In this case, once we specify
an ordering for Ĥ(p̂, q̂), we move, using the commutation relations between p̂ and q̂, all the powers of q̂ to
the left of those of p̂. The function H(p, q) we get in (7.7) using this procedure is called the p-q symbol of
the operator Ĥ(p̂, q̂). We get, defining q0 ≡ qi and qN+1 ≡ qf ,

〈qf |e−
i
~ Ĥ(tf−ti)|qi〉 =

∫ N+1∏
k=1

dpk
2π~

N∏
k=1

dqke
i
~
∑N+1
k=1

[
pk

(
qk−qk−1

δt

)
−H(pk,qk)

]
δt. (7.8)
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It is convenient to regard the qk and pk appearing in (7.8) as defining a skeletonized path in phase space
and indeed they can be thought of as specific values of some sufficiently smooth interpolating functions
q(t) and p(t) such that q(kδt) = qk and p(kδt) = pk, as shown in Figure 11.

Figure 11: The skeletonized path connecting qi with qf , through the interpolating function q(t).

In the N →∞ limit we get, for the exponent in (7.8)

N+1∑
k=1

[
pk
(qk − qk−1

δt

)
−H(pk, qk)

]
δt

N→∞
−−−−−−−→

∫ tf

ti

dt
[
pq̇ −H(p, q)] = SH [q, p], (7.9)

and for the measure we define, as usual 31

∫ N+1∏
k=1

dpk
2π~

N∏
k=1

dqk
N→∞

−−−−−−−→
∫ q(tf )=qf

q(ti)=qi

Dp(t)Dq(t)
2π~

, (7.10)

so that, in the large-N limit the amplitude can be expressed as

〈qf |e−
i
~ Ĥ(tf−ti)|qi〉 =

∫ q(tf )=qf

q(ti)=qi

Dp(t)Dq(t)
2π~

e
i
h̄
SH [q,p]. (7.11)

Equation (7.11) is a Hamiltonian path integral representation for the amplitude and it is an integral over
all possible paths q(t) and p(t) in phase space starting at q(ti) = qi and terminating at q(tf ) = qf . Note
that there is no restriction at all on the integration over the momenta p(t), contrarily to that over q(t).
The Hamiltonian is quadratic in p and hence one can explicitly perform each Gaussian integration over

31The mathematically rigorous definition of the path integral measure is a well-known problem. Note however that, as
remarked in [234], the measure Dp(t)Dq(t) should be, formally, a product over time of the phase space Liouville measures at
each time.
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the momenta pk,

∫ ∞
−∞

dpk
2π~

e
i
~

[
pk(qk−qk+1)− p

2
k
2
δt
]

=
1√

2πi~δt
e
i
~

[
(qk−qk−1)2

2δt

]
, (7.12)

so that the amplitude in (7.8) is

〈qf |e−
i
~ Ĥ(tf−ti)|qi〉 =

1

(2πi~δt)
N+1

2

∫ N∏
k=1

dqke
i
~
∑N+1
k=1

[
(qk−qk−1)2

2δt2
−V (qk)

]
δt, (7.13)

which, in the large-N limit, up to an overall (divergent) factor that does not contain dynamical informa-
tion, can be more conveniently rewritten as

〈qf |e−
i
~ Ĥ(tf−ti)|qi〉 =

∫ q(tf )=qf

q(ti)=qi

Dq(t)e
i
h̄
S[q], (7.14)

which is the standard Feynman path integral [246] representation of a quantum mechanical amplitude.
Note that, since the integral over momenta is Gaussian, performing the integration (7.13) is equivalent to
find the value p∗ = p∗(q, q̇) extremizing SH [p, q] and evaluating SH [q, p] at p∗. With this procedure, one
finds p∗ = q̇ = ∂L

∂q̇ and hence SH [q, p∗] = S[q], with S[q] given in (7.1), in agreement with (7.14). The above
arguments can be easily generalized to matrix elements between states 〈qf ; tf | and |qi; ti〉 of time-ordered

products of operators Ô[p̂(t), q̂(t)], i.e.

〈qf ; tf |T{ÔA[p̂(tA), q̂(tA)]ÔB[p̂(tB), q̂(tB)]...}|qi; ti〉

=

∫ q(tf )=qf

q(ti)=qi

Dp(t)Dq(t)
2π~

OA[p(tA), q(tA)]OB[p(tB), q(tB)]...e
i
h̄
SH [p,q]. (7.15)

The expressions we obtained for the amplitude admit an insightful interpretation. While in classical me-
chanics there is only one path associated to the motion of the particle, in quantum mechanics all possible
paths satisfying the right boundary conditions play a role. Indeed, as ~→ 0, the dominant paths contribu-
tions in (7.11) and (7.14) are given by the stationary points of SH [p, q], solutions to Hamilton’s equations
or, equivalently, by the the stationary points of S[q], solutions to Lagrange’s equations. Expressions (7.11)
and (7.14) for the amplitude are therefore equivalent. The advantage of one or the other depends on
whether one chooses to work in the Hamiltonian or Lagrangian formalism, respectively.

In general, it is difficult to use the path integral (7.11)-(7.14) for numerical computations and ampli-
tudes are better computed in Euclidean space where one introduces Euclidean time τ = it. The analytic
continuation of (7.4) to imaginary times reads

〈qf |e−
1
~ Ĥ(τf−τi)|qi〉, (7.16)

so that the rapid oscillations of the factor e
i
~S[q] are replaced by a an exponential suppression. To get a
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formula for (7.16), we can just substitute t = −iτ in the previous expressions and we obtain

〈qf |e−
1
~ Ĥ(τf−τi)|qi〉 =

∫ q(τi)=qi

q(τf )=qf

Dp(τ)Dq(τ)

2π~
e−

1
h̄
SEH [p,q] =

∫ q(τi)=qi

q(τf )=qf

Dq(τ)e−
1
h̄
SE [q], (7.17)

where we defined the first order Euclidean action and the Euclidean action as

SEH [p, q] =

∫ τf

τi

dτ

[
− ipdq

dτ
+H(p, q)

]
, SE [q] =

∫ τf

τi

dτ

[
1

2

(
dq

dτ

)2

+ V (q)

]
. (7.18)

In quantum statistical mechanics the canonical partition function is defined as

Z(β) = Tr e−βĤ =

∫
dq〈q|e−βĤ |q〉, β =

1

kBT
, (7.19)

where the trace is taken over a basis in the Hilbert space. The matrix element appearing in (7.19) is
the same as in (7.16) with the substitution τf − τi = ~β and where the initial and last point are equal
qi = qf = q, i.e. the path q(τ) has to be periodic. Therefore, also the canonical partition function admits
a path integral representation:

Z(β) = Tr e−βĤ =

∫
q(0)=q(~β)

p(0)=p(~β)

Dp(τ)Dq(τ)

2π~
e−

1
h̄
SEH [p,q] =

∫
q(0)=q(~β)

Dq(τ)e−
1
h̄
SE [q], (7.20)

with SEH [q, p] and SE [q] given in (7.18) with the replacements τi = 0 and τf = ~β. Remarkably, the imagi-
nary time path integral in (7.20) can be thought of as a partition function in classical statistical mechanics
if one interprets the Euclidean time coordinate τ as a spatial coordinate. Therefore, one can think of quan-
tum mechanics in Euclidean time as classical mechanics in one higher spatial dimension. In particular,
denoting the size of this additional dimension as L = ~β, the zero temperature limit of the quantum theory
corresponds to the usual infinite volume classical partition function in the Euclidean time/spatial direction.

So far, we were only concerned about quantum mechanics. However, when one turns to quantum field
theory similar considerations apply. The conjugate variables q and p are replaced by the field φ(t, x) and
its canonical momentum Π(t, x) satisfying canonical commutation relations [φ̂(t, x′), Π̂(t, x)] = i~δ(x−x′).
The partition function of a quantum field theory can be represented by a path integral over the fields
φ(τ, x) and Π(τ, x) as

Z(β) = Tr e−βĤ =

∫
φ(0,x)=φ(~β,x)

Π(0,x)=Π(~β,x)

DΠ(τ, x)Dφ(τ, x)

2π~
e−

1
h̄
SEH [φ,Π] =

∫
φ(0,x)=φ(~β,x)

Dφ(τ, x)e−
1
h̄
SE [φ]. (7.21)

It is important to bear in mind that, while the partition function of quantum mechanics is a finite function
of the parameters upon which the Lagrangian depends, in quantum field theory this is not true. The major
issues come from UV divergences, that have to be taken care of by a renormalization procedure.
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The partition function in (7.21) contains all the information about the statistic properties of finite temper-
ature quantum field theory [232, 233, 238, 242–244]. From this quantity other important observables such
as the the free energy F (β), the entropy S(β) or the internal energy E(β) may be derived as

F (β) = − 1

β
logZ(β), S(β) = kB(1− β∂β) logZ(β), E(β) = −∂β logZ(β). (7.22)

Since the partition function will be the main object of interest throughout next sections and chapters, we
now briefly outline few methods to explicitly compute it.

7.1.1 Zeta function technique

Consider a real, elliptic and self-adjoint operator Â with a discrete set {λk}k∈I of real eigenvalues λk ≥ 0
∀ k ∈ I associated to a complete set of orthonormal eigenfunctions {φk}k∈I , satisfying

Âφk(x) = λkφk(x),

∫
dd+1xφk(x)φk′(x) = δkk′ ,

∑
k∈I

φk(x)φk(x
′) = δd+1(x− x′). (7.23)

Here and from now on we denote the Euclidean time by τ ≡ xd+1. It is important to define a new index set
I ′ ⊆ I, such that k ∈ I ′ if an only if λk 6= 0. In other words, the set {λk}k∈I′ is equal to the set {λk}k∈I , up
to the zero modes of Â. This is crucial to define the generalized zeta function [230,235,237,240] associated
to the operator Â as

ζÂ(s) ≡ Tr Â−s =
∑
k∈I′

λ−sk . (7.24)

Here and in the following the superscript ′ means that we are excluding the zero modes from the sums/products
involving the eigenvalues of Â. The determinant of the operator Â can be written in terms of the general-
ized zeta function associated to Â as

det′ Â =
∏
k∈I′

λk = e
−ζ ′

Â
(s)
∣∣
s=0 . (7.25)

We are interested in having a formula for Z(β) in terms of ζÂ(s). To this aim, we assume that the Euclidean
action appearing in (7.21) can be rewritten as

SE [φ] =
1

2

∫
dd+1xφ(x)Âφ(x), Â =

δ2SE [φ]

δφ(x)δφ(x′)
. (7.26)

The field φ can be expanded in the basis {φk}k∈I as

φ(x) =
∑
k∈I

akφk(x), ak =

∫
dd+1xφ(x)φk(x). (7.27)
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Therefore, the Euclidean action in (7.26) becomes

SE [φ] =
1

2

∑
k∈I

a2
kλk, (7.28)

and the measure transforms as Dφ = µ
∏
k∈I dak, where µ is a normalization constant with the dimension

of a mass, so that the partition function can be written as

Z(β) =
∏
k∈I

µ

∫
dake

− 1
2~λka

2
k =

∏
k∈I

µ

√
2π~
λk

=

(
det

Â

2π~µ2

)− 1
2

. (7.29)

Clearly, the potential presence of vanishing eigenvalues of Â creates issues in the above expression. How-
ever, in most of the cases that will be considered throughout this work, we will argue that these zero modes
do not actually contribute to the partition function. This is due to the fact that the we will ultimately
consider operators on partially compactified manifold, such as Rp × Tq, whose spectrum is therefore not
discrete. An exception is represented by the case of the Bose field on the Euclidean torus, described in
detail in section 8.1, where we will explicitly comment on how to take care of the zero mode.

Assuming that I ′ = I in (7.29) and using (7.25) we eventually we arrive at 32

logZ(β) =
1

2
ζ ′
Â

(s)
∣∣
s=0

+
1

2
log
(
2π~µ2

)
ζÂ(0). (7.30)

In the above hypothesis, this equation reduces the problem of computing a path integral to that of com-
puting the zeta function associated to a certain operator Â appearing in the Euclidean action. Note that,
in general, to use the zeta function technique we need to know, even numerically, the eigenvalues of the
operator Â defining the Euclidean action and the action must be quadratic in the dynamical fields. There
are however situations where this last condition is not fulfilled, e.g. when one deals with path integrals
on curved spacetimes. In these cases, if we have access to a background solution φ0 of the classical equa-
tions of motion, it can be argued that the major contributions to the partition function come from field
configurations near the background, i.e. we can expand φ as

φ(x) = φ0(x) + φ̃(x), (7.31)

and, correspondingly the Euclidean action as

SE [φ] = SE [φ0] + SE(2)[φ̃] + ... , (7.32)

where φ̃ is a fluctuation around the background solution φ0, SE(2)[φ̃] is the term quadratic in φ̃, given by

SE(2)[φ̃] =
1

2

∫
dd+1x′

∫
dd+1x φ̃(x)

δ2SE [φ]

δφ(x)δφ(x′)

∣∣∣∣
φ0(x)

φ̃(x′), (7.33)

32In order to get (7.30) we used ζÂ/α(s) = αsζÂ(s) and thus ζ′
Â/α

(s)|s=0 = ζ′
Â

(s)|s=0 + logα ζÂ(0).
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and ... denote higher order corrections. Note that in (7.32) the term linear in φ̃ is absent because we
assumed that φ0 solves the classical equations of motion and thus it is a stationary point for the action. It
follows that

logZ(β) = −1

~
SE [φ0] + log

∫
Dφ̃ e−

1
~S

E
(2)

[φ̃]
+ higher order contributions. (7.34)

Now, since SE(2)[φ̃] is quadratic in the fields, we can apply the zeta function technique to the second term in

(7.34) and therefore the relevant zeta function to compute is the one associated with the operator appearing
in (7.33).

7.1.2 Heat kernel technique and Schwinger proper time

Consider again the operator Â satisfying the same properties listed previously. The set of equations (7.23)
can be more conveniently rewritten introducing using the bra and ket abstract notation as

Â|k〉 = λk|k〉, 〈k|k′〉 = δkk′ ,
∑
k∈I
|k〉〈k| = 1̂. (7.35)

We define the heat kernel operator [236,239] associated to Â as 33

K̂Â(τ) ≡ e−Âτ . (7.36)

The matrix elements of K̂Â(τ) between coordinates states 〈x| and |x′〉 define the heat kernel associated to

Â:

KÂ(x, x′; τ) ≡ 〈x|K̂Â(τ)|x′〉 = 〈x|e−Âτ |x′〉. (7.37)

Differentiating this equation with respect to τ yields

− ∂

∂τ
KÂ(x, x′; τ) = ÂKÂ(x, x′; τ), (7.38)

where Â is taken to act on the first argument of KÂ(x, x′; τ). When Â is the spatial Laplacian ∂i∂
i, equa-

tion (7.38) is just the standard heat equation, which is the Euclidean time counterpart of the Schrödinger
equation with zero potential energy and ~ = 1. Furthermore, inserting a resolution of the identity in (7.36)
we get

KÂ(x, x′; τ) =
∑
k∈I

φk(x)φk(x
′)e−λkτ , (7.39)

33Note that in (7.36) τ is not the Euclidean time, to which we will refer to as xd+1.
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so that, in the limit τ → 0, using the last of (7.23) KÂ(x, x′; τ) satisfies

KÂ(x, x′; 0) = δd+1(x− x′). (7.40)

Equations (7.38) and (7.40) ensure that any solution of the equation −∂τψ(x, τ) = Âψ(x, τ) with initial
condition ψ(x, 0) = ψ0(x) can be expressed using the heat kernel associated to Â as

ψ(τ, x) =

∫
dd+1x′KÂ(x, x′; τ)ψ0(x′). (7.41)

From (7.29) it follows that 34

logZ(β) = −1

2
Tr log

Â

2πµ2
, Â =

δ2SE [φ]

δφ(x)δφ(x′)
. (7.42)

Now consider the following general identity 35

log z = −
∫ ∞

0

dτ

τ

(
e−τz − e−τ

)
. (7.43)

Hence, from (7.42) and generalizing (7.43) to the case of operators, we get, up to a constant independent
of the dynamics

logZ(β) =
1

2

∫ ∞
0

dτ

τ
Tr e−Âτ =

1

2

∫ ∞
0

dτ

τ
Tr K̂Â(τ). (7.44)

The integration variable τ in the above formula is called Schwinger proper time or the parameter of
the world-line [227, 247, 248]. Note that in this approach the operator whose trace is being evaluated is
treated as the Hamiltonian for evolution in the Schwinger proper time direction and therefore the result
in (7.44) is reminiscent of a one-dimensional field theory living in the one-dimensional space of proper time.

We now briefly show that it is indeed possible to relate the zeta function introduced previously to the
trace of the heat kernel appearing in (7.44) by a Mellin transform. We start from the standard represen-
tation of the gamma function

Γ(s) = λsk

∫ ∞
0

dτ τ s−1e−λkτ , Re(s) > 0. (7.45)

34Note that the partition function can also be expressed as Z(β) = Tr e−βĤ = Tr K̂Ĥ(β), where K̂Ĥ(τ) is the heat kernel

associated to the standard Hamiltonian Ĥ of the system. This approach will be followed in the context of the canonical
approach in 7.1.3.

35Indeed, the Taylor series around z = 1 of the integrand is

− 1

τ

(
e−τz − e−τ

)
=

∞∑
n=1

(−1)n+1τn−1(z − 1)n

n!
e−t,

and the integral over t yields Γ(n) = (n− 1)! so that the right hand side of (7.43) is
∑∞
n=1

(−1)n+1(z−1)n

n
which is exactly the

Taylor series of log z around z = 1.
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Hence

ζÂ(s) =
∑
k∈I′

λ−sk =
1

Γ(s)

∫ ∞
0

dτ τ s−1
∑
k∈I′

e−λkτ =
1

Γ(s)

∫ ∞
0

dτ τ s−1 Tr
(
K̂Â(τ)− P̂

)
, (7.46)

where P̂ denotes the orthogonal projector operator into the kernel of Â, satisfying Tr P̂ = dim {KerÂ}.

7.1.3 Canonical approach

The canonical approach consists in computing the partition function by directly evaluating the trace

Tr e−βĤ in the Fock space. Clearly, in order to do so, one must have access to the full spectrum of the
Hamiltonian of the theory,

Ĥ|n〉 = En|n〉, 〈n|n′〉 = δnn′ ,
∑
n∈I
|n〉〈n| = 1̂. (7.47)

Therefore, one can choose to evaluate the trace on the above set of eigenstates

Z(β) =
∑
n∈I
〈n|e−βĤ |n〉 =

∑
n∈I

e−βEn . (7.48)

Note that the operator e−βĤ provides a tool to determine the structure of the vacuum quantum state.
Indeed, if Ĥ is bounded from below, the ground state energy E0 is given by

E0 = lim
β→∞

[
− 1

β
logZ(β)

]
. (7.49)

Usually, in free quantum field theories, the Fock space is the direct sum of infinitely many Hilbert spaces
associated to harmonic oscillators and thus the Hamiltonian is the sum of the Hamiltonians of each mode,

Ĥ =
∑
i

Ĥi, (7.50)

and thus the partition function is a product of the partition functions associated to each oscillator,

Z(β) = Tr e−βĤ =
∏
i

Tr e−βĤi =
∏
i

Zi(β). (7.51)

We will see that this method to compute Z(β) is often related to the zeta function and heat kernel
techniques by a standard Fourier series.

7.2 Thermodynamics of a free massless scalar in the large volume limit and the black
body result

Before concluding this chapter, it is instructive to explicitly use the three methods described above to
compute the partition function of a free massless scalar field φ in (d+ 1) spacetime dimensions described
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by the action

S[φ] = −1

2

∫
V

dd+1x ∂µφ∂
µφ, (7.52)

in the limit of large volume. The indices µ and i label spacetime and spatial indices, respectively so that
µ = 0, ..., d, and i = 1, ..., d. In (7.52), we take the spatial volume V of the system to be V =

∏
i Li. We

can choose without loss of generality periodic boundary conditions in all directions,

φ(t, x1, ..., xi, ..., xd) = φ(t, x1, ..., xi + Li, ..., x
d), i = 1, ...d, (7.53)

bearing in mind that in the large volume limit the result will not depend at all on this choice, see e.g.
the discussion in section 7.4. Therefore, the field φ and its conjugate momentum Π = ∂L

∂φ̇
= φ̇ can be

decomposed in the orthonormal basis {eki} of eigenfunctions of the Laplacian on the d-dimensional torus
Td = S1

L1
× ..× S1

Ld
associated with the choice of periodic boundary conditions (7.53), given by

eki(x) =
1√
V
eikix

i
, ki =

2π

Li
ni, ni ∈ Z, ∀ i = 1, ..., d, (7.54)

satisfying the orthonormality and completeness conditions

(
eki , ek′i

)
=

∫
V

ddx e∗ki(x)ek′i(x) =
∏
i

δnin′i ,
∑
ni∈Zd

e∗ki(x)eki(x
′) = δd(x− x′). (7.55)

The fields are decomposed in the above basis as

φ(t, x) =
1√
V

∑
ni∈Zd

φki(t)e
ikix

i
, Π(t, x) =

1√
V

∑
ni∈Zd

Πki(t)e
ikix

i
, (7.56)

with φki = (eki , φ) and Πki = (eki ,Π). The reality of φ and Π implies that φki = φ∗−ki and Πki = Π∗−ki and
the equal-time Poisson bracket are

{φ(t, x),Π(t, x′)} = δd(x− x′), {φki(t),Π
∗
k′i

(t)} =
∏
i

δnin′i . (7.57)

The first order action is

SH [φ,Π] =

∫
dt

[ ∫
V

ddxΠφ̇−H[φ,Π]

]
, (7.58)

where the Hamiltonian is given by

H[φ,Π] =
1

2

∫
V

ddx
(
Π2 + ∂iφ∂

iφ
)

=
1

2

∑
ni∈Zd

(ΠkiΠ
∗
ki

+ ω2
ki
φkiφ

∗
ki

), (7.59)
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with ωki =
√
kiki. The oscillators variables are defined for ki 6= 0 as usual

aki(t) =

√
ωki
2

(
φki(t) +

i

ωki
Πki(t)

)
, {aki(t), a

∗
k′i

(t)} = −i
∏
i

δnin′i , (7.60)

so that the Hamiltonian in terms of aki and a∗ki is, on denoting p ≡ Π0
36

H =
p2

2
+

1

2

∑′

ni∈Zd
ωki(a

∗
ki
aki + akia

∗
ki

), (7.61)

whereas the conjugate pair (φ,Π) is given by

φ(t, x) =
q√
V

+
1√
V

∑′

ni∈Zd

1√
2ωki

(aki(t)e
ikix

i
+ c.c), (7.62)

Π(t, x) =
p√
V
− i√

V

∑′

ni∈Zd

√
ωki
2

(aki(t)e
ikix

i − c.c), (7.63)

where we denoted q ≡ φ0. In the next chapters, another observable will be of relevance, namely the mo-
mentum of the field along the xi direction. It is given by

Pi[φ,Π] = −
∫
V

ddxΠ ∂iφ = −i
∑′

ni∈Zd
kiφkiΠ

∗
ki
, {Pi, φ(t, x)} (7.57)

= ∂iφ(t, x). (7.64)

In terms of aki and a∗ki ,

Pi =
1

2

∑′

ni∈Zd
ki(a

∗
ki
aki + akia

∗
ki

). (7.65)

7.2.1 Functional approach and zeta function

Performing a Wick rotation t = −iτ and denoting τ ≡ xd+1, the first order Euclidean action reads

SEH [φ,Π] =

∫ ~β

0
dxd+1

∫
V

ddx

[
− iΠ∂d+1φ+

1

2
Π2 +

1

2
∂iφ∂

iφ

]
, (7.66)

36Note that the classical Hamiltonian in (7.61) could be equally written as H = p2

2
+
∑′

ni∈Zd
ωkia

∗
ki
aki since a∗ki are just

complex numbers at this stage. However, the form (7.61) will be useful when we will discuss ordering issues and the Casimir
energy.
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where the fields satisfy, besides (7.53), periodic boundary conditions in the Euclidean time variable as

φ(x, xd+1) = φ(x, xd+1 + ~β), Π(x, xd+1) = Π(x, xd+1 + ~β). (7.67)

Therefore, we can mode expand φ and Π also in Euclidean time as

φ(xA) =
1√
~β

∑
nd+1∈Z

eikd+1x
d+1
φkd+1

(x), Π(xA) =
1√
~β

∑
nd+1∈Z

eikd+1x
d+1

Πkd+1
(x), (7.68)

where we introduced the index A = 1, ..., d+ 1, kd+1 = (2π/~β)nd+1 are the Matsubara frequencies and

φkd+1
(x) =

1√
~β

∫ ~β

0
dxd+1 φ(xA)e−ikd+1x

d+1
, Πkd+1

(x) =
1√
~β

∫ ~β

0
dxd+1 Π(xA)e−ikd+1x

d+1
(7.69)

satisfying φ∗kd+1
(x) = φ−kd+1

(x) and Π∗kd+1
(x) = Π−kd+1

(x).

Following the procedure outlined after (7.14) we find the stationary points of SEH as

0 =
δSEH
δΠ

∣∣∣∣
Π∗

= −i∂d+1φ+ Π∗ =⇒ Π∗ = i∂d+1φ, (7.70)

and therefore we need to evaluate the path integral

Z(β) =

∫
Dφ e−

1
~S

E [φ], SE [φ] = −1

2

∫ ~β

0
dxd+1

∫
V

ddxφ∆φ, (7.71)

where ∆ = ∂A∂
A is the Laplacian on the manifoldM = S1

~β×Td and hence, from (7.26) we have Â = −∆.

Here, the S1
~β component is the thermal cycle with period ~β. In the large volume limit the spatial torus

decompactifies to Rd. A set of normalized eigenfunctions of −∆ is given by {ekA},

ekA(x) =
1√
~βV

eikAx
A

(7.72)

satisfying

−∆ekA(x) = λnAekA(x), λnA =

(
2π

~β
nd+1

)2

+
d∑
i=1

(
2π

Li
ni

)2

. (7.73)

Therefore, for the zeta function we have

ζ−∆(s) =
∑′

nA∈Zd+1

λ−snA . (7.74)
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In the large volume limit we can replace the sums over ni into integrals as
∑

ni∈Z →
Li
2π

∫∞
−∞ dki and we

get

ζ−∆(s) =
V

(2π)d

∫ ∞
−∞

ddki
∑

nd+1∈Z

[(
2π

~β
nd+1

)2

+ kik
i

]−s
. (7.75)

Note that in going from (7.74) to (7.75) we lost information about the zero mode λ0. Indeed, when taking
some directions to be large the spectrum of the Laplacian becomes continuous and the zero mode becomes
a zero measure set which will not contribute to Z(β). In order to perform the integral in (7.75) we go the
hyperspherical coordinates and get, after changing the integration variable

ζ−∆(s) =
V

(2π)d
2π

d
2

Γ(d2)

(
2π

~β

)d−2s ∫ ∞
0

dk kd−1
∑

nd+1∈Z

[
n2
d+1 + k2

]−s
, (7.76)

where the factor 2π
d
2

Γ( d
2

)
is the area of the (d − 1)-dimensional unit ball. The nd+1 = 0 term in the above

integral, when regulated with an IR cut-off ε, yields

∫ ∞
ε

dk kd−1−2s = − εd−2s

d− 2s
, Re(s) >

d

2
. (7.77)

Since the derivative with respect to s of this expression at s = 0 vanishes in the limit ε→ 0, we can discard
this contribution. The remaining integral gives

∫ ∞
0

dk kd−1
∑′

nd+1∈Z

[
n2
d+1 + k2

]−s
=

Γ
(
d
2

)
Γ
(
s− d

2

)
Γ(s)

ζ(2s− d), Re(s) >
d

2
, (7.78)

where ζ(s) =
∑

n>0 n
−s is a representation of the Riemann zeta function for Re(s) > 1. Using the reflection

formula,

Γ

(
z

2

)
ζ(z) = π

2z−1
2 Γ

(
1− z

2

)
ζ(1− z), (7.79)

at z = 2s− d we have, for ζ−∆(s),

ζ−∆(s) =
V

(~β)d−2s

21−2s

π
d+1

2

Γ
(
d+1

2 − s
)
ζ(d+ 1− 2s)

Γ(s)
. (7.80)

Using Γ(s)−1 = s+O(s2), it follows that ζ−∆(0) = 0 and hence the full partition function can be written
as

logZ(β) =
1

2
ζ ′−∆(s)

∣∣∣∣
s=0

=
V

(~β)d
Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

. (7.81)
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This result is known as the (scalar) black body result. Using (7.22) we obtain

F (β) = − V

~dβd+1

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

, S(β) =
kBV

(~β)d
(d+ 1)Γ

(
d+1

2

)
ζ(d+ 1)

π
d+1

2

, (7.82)

that are the free energy and the entropy one would obtain from an infinite set of non-interacting harmonic
oscillators at thermal equilibrium in a bath at fixed temperature T = 1/kBβ. Note that the entropy scales
as the volume of the system, as it should being an extensive quantity. As we will see later on in chapter 8,
when we allow for one spatial dimension to be “small”, there will be a certain regime where the entropy
does not scale as the entire volume, but as the volume of the large spatial directions.

7.2.2 Heat kernel approach

We are interested in computing the (Euclidean) transition amplitude from x′ to x, i.e.

K−∆(x, x′; τ) = 〈x|e−τÂ|x′〉, ∆ = ∂A∂
A ≡

∑
A

ĤA. (7.83)

We have for K−∆(x, x′; τ)

K−∆(x, x′; τ) =
∏
A

〈x|e−τĤA |x′〉 ≡
∏
A

KĤA
(x, x′; τ). (7.84)

Therefore, we can focus on a single factor KĤA
(x, x′; τ) of the product in (7.84). Each term is a Hamiltonian

of a free particle of mass m = 1/2 given by

ĤA = − ∂2

∂xA2
= p̂2

A,
[
x̂A, p̂A

]
= i. (7.85)

In the following we omit the index A for notational simplicity. Repeating the steps (7.5)-(7.6) and substi-
tuting δt = −iδτ , we arrive at

〈x|e−τĤ |x′〉 =

∫ ∞
−∞

(
N+1∏
k=1

dpk

)(
N∏
k=1

dxk

)
〈x|e−

1
~ δτĤ |pN+1〉〈pN+1|xN 〉...〈xk|e−

1
~ δτĤ |pk〉〈pk|xk−1〉...

...〈x1|e−
1
~ δτĤ |p1〉〈p1|x′〉. (7.86)

We find, using 〈p|x〉 = 1√
2π
e−ipx and 〈x|p〉 = 1√

2π
eipx that each term appearing in the product in (7.86) is

〈xk|e−
1
~ δτĤ |pk〉〈pk|xk−1〉 =

1

2π~
e−

1
~p

2
kδτeipk(xk−xk−1), (7.87)
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and thus

〈x|e−τĤ |x′〉 =

∫ ∞
−∞

(
N+1∏
k=1

dpk
2π~

)(
N∏
k=1

dxk

)
e−

1
~p

2
N+1δτeipN+1(x−xN )...e−

1
~p

2
kδτeipk(xk−xk−1)

...e−
1
~p

2
1δτeip1(x1−x′). (7.88)

We can now perform all the N + 1 integrals over pk. We get

〈x|e−τĤ |x′〉 =

(
~

4πδτ

)N+1
2
∫ ∞
−∞

(
N∏
k=1

dxk

)
e−

~
4δτ

(x−xN )2
...e−

~
4δτ

(xk−xk−1)2
...e−

~
4δτ

(x1−x′)2
. (7.89)

We start by doing the integral over x1:

∫ ∞
−∞

dx1 e
− ~

4δτ
(x2−x1)2

e−
1

4δτ
(x1−x′)2

=

√
2πδτ

~
e−

~
8δτ

(x2−x′)2
. (7.90)

Then we perform it over x2

∫ ∞
−∞

dx2 e
− ~

4δτ
(x3−x2)2

e−
~

8δτ
(x2−x′)2

=

√
8πδτ

3~
e−

~
12δτ

(x3−x)2
. (7.91)

The k-th integral to perform is

∫ ∞
−∞

dxk e
− ~

4δτ
(xk+1−xk)2

e−
~

4kδτ
(xk−x′)2

=

√
4πkδτ

(1 + k)~
e
− ~

4(k+1)δτ
(xk+1−x′)2

. (7.92)

The final result is

〈x|e−τĤ |x′〉 =

√
~

4πδτ
e
− ~

4(N+1)δτ
(x−x′)2

N∏
k=1

√
k

k + 1
=

√
~

4πδτ(N + 1)
e
− ~

4(N+1)δτ
(x−x′)2

. (7.93)

Since τ = (N + 1)δτ , we find, for A = i

〈xi|e−τĤi |x′i〉 =

√
~

4πτ
e−

~
4τ

(xi−x′i)2
. (7.94)

When A = d + 1 we have to take into account that the particle starting from x′d+1 can arrive at xd+1

wrapping around the thermal cycle of length ~β an integer number n of times. Since in the path integral
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we sum over all possible paths we get

〈xd+1|e−τĤd+1 |x′d+1〉S1
~β

=
∑
n∈Z
〈xd+1 + n~β|e−τĤd+1 |x′d+1〉

=

√
~

4πτ

∑
n∈Z

e−
~
4τ

(xd+1−x′d+1+n~β)2

. (7.95)

The full heat kernel can be written as

K−∆(x, x′; τ) =
∏
A

〈x|e−τĤA |x′〉 =

(
~

4πτ

) d+1
2

e−
~
4τ

(xi−x′i)(xi−x′i)
∑
n∈Z

e−
~
4τ

(xd+1−x′d+1+n~β)2

, (7.96)

whose trace is

Tr K̂−∆(τ) =

∫ ~β

0
dxd+1

∫
V

ddxK−∆(x, x; τ) = ~βV
(

~
4πτ

) d+1
2 ∑

n∈Z
e−

~
4τ
n2~2β2

. (7.97)

Using (7.44), for the partition function we obtain, dropping the n = 0 mode contribution,

logZ(β) =
~
d+3

2 βV

2d+2π
d+1

2

∑′

n∈Z

∫ ∞
0

dτ τ−
d+3

2 e−
~
4τ
n2~2β2

. (7.98)

The integral yields

∫ ∞
0

dτ τ−
d+3

2 e−
~
4τ
n2~2β2

=

(
4

~3β2n2

) d+1
2

Γ

(
d+ 1

2

)
, d > 1. (7.99)

Hence, the result for the partition function is

logZ(β) =
V

(~β)d
Γ(d+1

2 )ζ(d+ 1)

π
d+1

2

, (7.100)

which is in perfect agreement with the result (7.81) found using the zeta function technique.

Before computing the partition function using the canonical approach, it is also instructive to apply to
equation (7.95) the Poisson summation formula. The latter states that, given the standard formulae for
the Fourier transform of a suitable function f(x),

f(x) =
1√
2π

∫ ∞
−∞

dk f̃(k)eikx, f̃(k) =
1√
2π

∫ ∞
−∞

dx f(x)e−ikx, (7.101)
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then

1√
2π

∑
n∈Z

f(n) =
∑
m∈Z

f̃(2πm). (7.102)

Using

f(x) =

√
~

4πτ
e−

~
4τ

(xd+1−x′d+1+x~β)2

, f̃(k) =
1

~β
√

2π
e
i(xd+1−x′d+1) k~β−

τ
~

(
k
~β

)2

, (7.103)

we have, from (7.102)√
~

4πτ

∑
n∈Z

e−
~
4τ

(xd+1−x′d+1+n~β)2

=
1

~β
∑
m∈Z

e
i(xd+1−x′d+1) 2πm

~β −
τ
~

(
2πm
~β

)2

. (7.104)

In this parametrization, the heat kernel can be written as

K−∆(x, x′; τ) =
1

~β

(
~

4πτ

) d
2

e−
~
4τ

(xi−x′i)(xi−x′i)
∑
m∈Z

e
i(xd+1−x′d+1) 2πm

~β −
τ
~

(
2πm
~β

)2

, (7.105)

and the partition function reads

logZ(β) =
V ~

d
2

2d+1π
d
2

∑′

m∈Z

∫ ∞
0

dτ τ−
d+2

2 e
− τ~
(

2πm
~β

)2

, (7.106)

where we have remove the m = 0 term. The integral yields∫ ∞
0

dτ τ−
d+2

2 e
− τ~
(

2πm
~β

)2

=

(
2πm

~β

)d 1

~
d
2

Γ

(
− d

2

)
, d < 0, (7.107)

and therefore

logZ(β) =
V π

d
2

(~β)d
Γ

(
− d

2

)
ζ(−d)

(7.79)
=

V

(~β)d
Γ(d+1

2 )ζ(d+ 1)

π
d+1

2

, (7.108)

which is again the desired result.

7.2.3 Canonical approach

When promoting the variables aki and a∗ki introduced in section 7.1 to operators 37 we have, for the
Hamiltonian (7.61),

Ĥ =
p̂2

2
+

~
2

∑′

ni∈Zd
ωki(â

†
ki
âki + âki â

†
ki

), (7.109)

Here we choose standard normal ordering : : for the Hamiltonian. One could have also chosen symmetric
ordering, but this would produce an infinite zero point energy that needs to be renormalized. This is the

37The operator âki is defined as âki =
√
ωki/2~(φ̂ki + i/ωkiΠ̂ki) so that [âki , â

†
ki

] =
∏
i δni,n

′
i
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phenomenon of the Casimir energy that will be extensively discussed in the next chapters. Here, we just
mention that the Casimir energy depends on the inverse of the distance between the sides of the volume
and therefore in the large volume limit its contribution can be neglected. We also drop the contribution
of the zero mode p̂ in (7.109) on which we will return in the next section.

We consider

: Ĥ := ~
∑′

ni∈Zd
ωki â

†
ki
âki , (7.110)

and a set of eigenstates of : Ĥ : is given by |ki〉 such that â†ki |0〉 = |ki〉, where |0〉 is the vacuum state. The
partition function is

Z(β) = Tr e−β:Ĥ: =
∏′

ni∈Zd

∞∑
Nki=0

e−~βωkinki =
∏′

ni∈Zd

1

1− e−~βωki
. (7.111)

In (7.111), Nki is the eigenvalue of the number operator N̂ki = â†ki âki . As usual we consider logZ(β)
instead of Z(β) so that the product in (7.111) over ni becomes a sum that, in the large volume limit, can
be replaced by an integral

logZ(β) = −
∑′

ni

log
(

1− e−~βωki
)

= − V

(2π)d

∫ ∞
−∞

ddki log
(

1− e−~βωki
)

= − V

(2π)d
2π

d
2

Γ(d2)

∫ ∞
0

dkkd−1 log
(

1− e−~βk
)
x=~βk

=
V

(~β)d
1

d2d−1π
d
2 Γ(d2)

∫ ∞
0

dx
xd

ex − 1
, (7.112)

where in the last step we performed an integration by parts. The integral gives

∫ ∞
0

dx
xd

ex − 1
= Γ(d+ 1)ζ(d+ 1), d > 0, (7.113)

so that

logZ(β) =
V

(~β)d
Γ(d+ 1)ζ(d+ 1)

d2d−1π
d
2 Γ(d2)

. (7.114)

We can now use the reduplication formula,

Γ(z)
√
π = 2z−1Γ

(
z

2

)
Γ

(
z + 1

2

)
, (7.115)

at z = d and Γ(d+ 1) = dΓ(d) so that (7.114) becomes

logZ(β) =
V

(~β)d
Γ(d+1

2 )ζ(d+ 1)

π
d+1

2

, (7.116)

as it should. Note that in this approach and in particular from (7.111) it is clear that the partition function
is an infinite product of partition functions of single harmonic oscillators with energies ωki .
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7.3 Contribution of the zero modes

We have seen that, in order to have an agreement between (7.116) and the result obtained with different
techniques, we have to drop the p̂ contribution in the Hamiltonian (7.109). This can be justified as follows.
Note that the p̂ term in the Hamiltonian is that of a free particle and, since p̂ commutes with Ĥ, the true
Fock space of the theory is build upon a family of vacua |p〉, where p is the real continuous eigenvalue of
p̂. Therefore, the vacua satisfy

âki |p〉 = 0, p̂|p〉 = p|p〉, p ∈ R. (7.117)

It means that, a priori, when we evaluate the trace (7.111) in the Fock space we should also include a term
Tr exp{−βp̂2/2}. In order to compute it, we compactify the field φ and we assume that it can take values
on a circle of circumference A,

φ ∼ φ+A. (7.118)

Note that, in ~ = 1 units, the canonical dimension of φ is [φ] = [L]
d−1

2 , so that also [A] = [L]
d−1

2 . Assuming
(7.118) implies that the “coordinate” q in (7.62) must also be periodic with period

√
VA

q ∼ q +
√
VA. (7.119)

Hence, when considering the quantized free particle with generalized coordinate q̂ and momentum p̂, such
that [q̂, p̂] = i, the wave function of the system ψ(q) must satisfy ψ(q) = ψ(q +

√
VA). Therefore, ψ(q)

admits the expansion

ψ(q) =
∑
n∈Z

ψnϕn(q), (7.120)

where the orthonormal basis {ϕn(q)} is given by

ϕn(q) =
1√
A
√
V
e

2πi

A
√
V
nq
,

∫ A√V
0

dq ϕ∗n(q)ϕm(q) = δnm,
∑
n∈Z

ϕ∗n(q)ϕn(q′) = δ(q − q′). (7.121)

Indeed, ϕn(q) are eigenfunctions of p̂ and denoting ϕn(q) = 〈q|n〉, we have

p̂|n〉 = pn|n〉, pn =
2πn

A
√
V
, n ∈ Z. (7.122)

Compactifying the field φ had the effect of discretizying the spectrum (7.117) of the zero mode operator
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p̂. When we evaluate its contribution to the partition function, we have

Z0(β) = Tr e−βĤ0 =
∑
n∈Z
〈n|e−βĤ0 |n〉 =

∑
n∈Z

e
−2β

(
πn

A
√
V

)2

, (7.123)

where we used Ĥ0 = p̂2

2 . Taking the large A
√
V limit, the previous expression becomes

Z0(β) =
A
√
V

2π

∫ ∞
−∞

dp e−
βp2

2 = A

√
V

2πβ
. (7.124)

Hence logZ0(β) ∼ log V and it can be neglected as V → ∞ because we have proved that logZ(β) ∼ V .
In the case of a Bose field on the torus, analyzed in section 8.1, we will see that the contribution (7.124)
not only cannot be discarded, but it will actually play a crucial role in establishing modular invariance of
the result.

7.4 Some comments

So far, we used periodic boundary conditions (7.53) in all spatial directions and claimed that in the large
volume limit the result for the partition function is independent of this choice. If one had chosen Dirichlet
conditions 38 φ(t, x1, ..., 0, ..., xd) = 0 = φ(t, x1, ..., Li, ..., x

d) the appropriate orthonormal and complete
basis in which the fields can be expanded would be

eki(x) =

√
2d

V

∏
i

sin kix
i = e∗ki(x), ki =

π

Li
ni, ni ∈ N, ∀ i = 1, ..., d. (7.125)

All mode expansions are then the same except that sums and products are restricted to ni > 0. In
particular there is no ni = (0, ..., 0) mode that has to be dealt with. The fact that the sums start from
ni > 0 is compensated by the large volume limit that now reads

∑
ni>0 →

Li
π

∫∞
−∞ dki. Equivalently, the

sums can be extended from Nd to Zd/(0, .., 0) = Zd∗ because the modes φki and Πki are even functions of
ki, i.e. φki = −φ−ki and Πki = −Π−ki and one has∑

ni∈Nd
fkif

∗
ki

=
1

2d

∑
ni∈Zd∗

fkif
∗
ki
, (7.126)

where fki is either φki or Πki .

The standard argument to get the partition function for the electromagnetic field is to multiply the result
for logZ(β) in (7.81) by 2 in order to take into account the 2 independent polarizations of the photon. We
already point out here that this argument is certainly true in the infinite volume limit. However, when the
manifold is partially compactified, e.g. in the standard setup of the electromagnetic Casimir effect, one
should be careful. Indeed, as we will discuss in section 9.1, the correct electromagnetic result (in d = 3)

38Similar consideration apply to Neumann boundary conditions ∂iφ(t, x)|xi=0 = 0 = ∂iφ(t, x)|xi=Li
where, up to zero modes,

the sines in (7.125) have to be replaced by cosines. See e.g. Appendix D.
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with Casimir boundary conditions along the x3 direction in an interval of length L3 is more correctly ob-
tained from that of a single scalar field with periodic boundary conditions on the double interval 2L3. This
shows that, since in the large volume limit logZ(β) depends linearly on L3, the correct electromagnetic
result is obtained by multiplying the scalar field result by 2. However, when some spatial direction is taken
to be “small” with respect to the other this will be no longer true.
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8 Modular covariance, temperature dualities and Eisenstein series

In this chapter, we analyze the consequences of keeping one spatial direction “small ” with respect to
the others and, in particular, we assume that such direction is compactified on a circle S1

L of circum-
ference L. As we show, this leads to the notion of temperature dualities, according to which the high-
and low-temperature and the small- and large- volume limits are related and thus not independent. The
mathematical tool to deal with these interesting dualities is the modular group SL(2,Z)/Z2. Modular
transformations naturally appear when working with theories living on partially compactified manifolds
having a two-dimensional torus component.

We start in section 8.1 with an introduction where we show the standard computation of the Casimir
energy of a massless scalar field in (d + 1)-dimensions and we comment on how the expression for such
energy is connected, through a temperature duality, to the black body result of (7.81). In section 8.2 we
review the massless two-dimensional scalar field living on T2 and we show in 8.2.1, following the canonical
approach, that the partition function of this theory is modular invariant. Despite the apparent simplicity
of this model, the computation of the partition function in two-dimensions is quite subtle because of the
presence of zero modes of the Laplacian on T2 = S1

~β × S1
L that cannot be neglected. In section 8.3 we

deal with the (d + 1)-dimensional case, where the manifold is T2 × Rd−1 and we show that the partition
function is modular covariant and that it can be expressed in terms of the real analytic Eisenstein series.
In particular, in 8.3.1, 8.3.2 and 8.3.3 we show how to compute such partition function using the zeta
function, heat kernel and canonical techniques, respectively, and what are the advantages and drawbacks
of each of these methods. In 8.4 we make use of modular transformations and the Fourier series of the
real analytic Eisenstein series to derive the high- and low-temperature expansions of the partition func-
tion and of the entropy, showing the power of temperature dualities. Remarkably, we prove that in the
low-temperature regime the entropy does not scale as the entire volume of the system, but as the volume
of the large directions only and we trace back the microscopic origin of this behavior. We conclude in 8.5
with the most general case of a manifold Tq+1×Rp, showing the transformation properties of the partition
function under the SL(q+ 1,Z) group, which naturally replaces SL(2,Z) in the case of higher-dimensional
tori.

8.1 Casimir energy

So far, we only considered the partition function of a massless scalar in the large volume limit. We started
in (7.53) by imposing periodic boundary conditions in all spatial directions of lengths Li and then we let
Li → ∞. In other words, we started with a compact manifold M = S1

~β × Td but then, after taking the

large volume limit, we decompactifiedM to S1
~β ×Rd. This crucial step allows to pass from sums over the

integers ni labelling the eigenvalues of the discrete spectrum of the Laplacian on Td to integrals over the
momenta ki and correspondingly to factorize the volume V of the system in logZ(β), leading to the black
body result (7.81).

Here we keep the length of one spatial direction, say Ld ≡ L, small with respect to the others, i.e.
L � Li for i = 1, ..., d − 1. Hence, we want to investigate the case of a partially compactified manifold
M = T2×Rd−1, where T2 = S1

β×S1
L. One of the main consequences of this is the emergence of the Casimir

energy [209]. Historically, the latter was derived for the electromagnetic field between two perfectly con-
ducting plates separated by a small distance. Here, we derive an analogue expression for the scalar Casimir
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energy, leaving a full treatment of the electromagnetic case to chapter 9.

We start from the Hamiltonian in (7.109) and we choose symmetric ordering so that, neglecting again
the contribution of Π̂0, we get

Ĥ = ~
∑′

ni∈Zd
ωki

(
â†ki âki +

1

2

)
. (8.1)

The expectation value of the Hamiltonian on the vacuum, i.e. the zero point energy is therefore divergent
and given by

E0 = 〈0| Ĥ |0〉 =
~
2

∑′

ni∈Zd
ωki . (8.2)

As mentioned, we are taking d − 1 dimensions to be large and hence it is convenient to introduce a new
index a = 1, ..., d− 1 labelling them. By taking the limit of large La, we can turn the sums over na of (8.2)
into integrals,

E0 =
~
2

∑
nd∈Z

∏
a La

(2π)d−1

∫ ∞
−∞

dd−1ka

[
kak

a +

(
2π

L
nd

)2] 1
2

. (8.3)

In order to renormalize this UV divergent expression, we use ζ function regularization. We start by defining
E0(s) as

E0(s) ≡ µ2s~
2

∑
nd∈Z

∏
a La

(2π)d−1

∫ ∞
−∞

dd−1ka

[
kak

a +

(
2π

L
nd

)2] 1−2s
2

= µ2s~
2

∑
nd∈Z

∏
a La

(2π)d−1

2π
d−1

2

Γ(d−1
2 )

∫ ∞
0

dkkd−2

[
k2 +

(
2π

L
nd

)2] 1−2s
2

, (8.4)

where 2π
d−1

2 /Γ(d−1
2 ) is the area of the d− 2 dimensional sphere and µ has the dimension of a mass. After

the regularization, we have to take the limit s → 0. The nd = 0 term can be dropped by the same argu-
ments of (7.77) and we get, introducing a new integration variable y as k = 2πnd

L y,

E0(s) = µ2s~
∏
a La

Ld−2s

π
d+1

2
−2sζ(2s− d)

22s−2Γ(d−1
2 )

∫ ∞
0

dy yd−2
(
y2 + 1

) 1−2s
2 . (8.5)

Using the reflection formula (7.79) and the integral

∫ ∞
0

dy yd−2(y2 + 1)
1−2s

2 =
1

2

Γ
(
d−1

2

)
Γ
(
s− d

2

)
Γ
(
s− 1

2

) , Re(s) >
d

2
, (8.6)
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we get,

E0(s) = µ2s~
∏
a La

Ld−2s

Γ(d+1−2s
2 )

22s−1π
d
2 Γ(2s−1

2 )
ζ(d+ 1− 2s). (8.7)

Taking the limit s→ 0 yields

E0 = −~
∏
a La
Ld

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

, (8.8)

which is the Casimir energy of a (d + 1)-dimensional massless scalar field [235, 249]. Note that E0 is
proportional to ~ so that it is a pure quantum effect and that, as claimed in section 7.2.3, it vanishes for
L→∞, so that in the large volume limit we can neglect it. Note also that the “core” of the renormalization
procedure was the use of (7.79) to do an analytic continuation of the Riemann zeta function.

The correct electromagnetic result for the Casimir setup, in d = 3, as will be shown in chapter 9.1 is
given by

Eem
0 = −~π

2L1L2

720L3
, (8.9)

which is in agreement with (8.8) for d = 3 and with the replacement L→ 2L, as discussed in the last part
of section 7.4.

Here, the zeta function technique has been used to renormalize the divergent vacuum energy. We started
with a divergent series and, after the regularization procedure, the result (8.8) is finite. The same result
can be obtained by means of other different, more “physical”, regularization schemes. For instance, it is
possible to derive the same expression (8.8) by defining the vacuum energy as

E0 = lim
δ→0

∆E0(δ), (8.10)

where ∆E0(δ) 39 is the regularized difference between the vacuum energy obtained by sending L→∞ and
that obtained by keeping L finite, i.e.

∆E0(δ) = E0(δ)− Evac
0 (δ), (8.11)

where

E0(δ) =
~
2

∏
a La

(2π)d−1

∫ ∞
−∞

dd−1ka
∑
nd∈Z

[
kak

a +

(
2π

L
nd

)2] 1
2

e
−δ
√
kaka+

(
2π
L
nd

)2

, (8.12)

39Sometimes ∆E0 in (8.11) is referred to as the Casimir subtraction.
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and

Evac
0 (δ) =

~
2

L
∏
a La

(2π)d

∫ ∞
−∞

ddki

[
kak

a + k2
d

] 1
2

e−δ
√
kiki . (8.13)

Here we have introduced in the expressions for the vacuum energies a UV cut-off function e−δk with δ > 0
in order to neglect the contributions coming from arbitrarily high frequency modes. In other words, the
presence of finite boundaries forces the field modes to be quantized. However, high energy modes are not
affected by the boundaries and they should be neglected in the computation of the free energy. A way to
get ride of them is to subtract the empty space result as in (8.11).

Notice that, for d = 1, we get E0 = −~π/6L which yields exactly the value of the central charge of a
free Bose field on the torus [193]. Indeed, the central charge is related to E0 as E0 = − πc

6L , yielding c = ~.
Generalizing this argument to d spatial dimensions yields the central charge

c = ~
∏
a La
Ld−1

6 Γ(d+1
2 )ζ(d+ 1)

π
d+3

2

. (8.14)

Besides being interesting in itself, the computation just shown of the Casimir energy allows to introduce
the notion of temperature dualities. Indeed, we expect that computing the partition function Z(β) on
M = T2 × Rd−1 would give a free energy F (β) = −β−1 logZ(β) such that, in the β → ∞ limit, it
reproduces exactly E0 (see e.g. (7.49)). Therefore, on denoting Zlow(β) the partition function in the low-
temperature limit, we expect that

logZlow(β) = −βE0 =
~β
L

∏
a La
Ld−1

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

≡ τ2

∏
a La
Ld−1

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

, (8.15)

where we defined a dimensionless quantity τ2 ≡ ~β/L. At this stage the introduction of this parameter
might seem artificial but, as we will show soon, τ2 is the (imaginary part of the) so called modular pa-
rameter τ = τ1 + iτ2 (or Teichmüller parameter) and it is a fundamental geometrical quantity to consider
when dealing with partition functions on manifolds having a two-dimensional torus component. Note that
sending β →∞ at fixed L, which is a standard low-temperature limit, is equivalent to take τ2 � 1 which,
in turn, is equivalent to take L → 0 at fixed β, which is the small-separation in the xd direction limit.
Conversely, the large separation limit L → ∞ at fixed β is equivalent to take τ2 � 1 and hence to send
β → 0 at fixed L. This naive argument suggests that somehow, taking the high-/low- temperature limits
is “equivalent” of taking the large-small L limits. Hence, on denoting Zhigh(β) the partition function at
large volumes and therefore at high temperatures, from the analysis in the previous chapter, we expect it
to be governed by the black body result (7.81),

logZhigh(β) =

(
L

~β

)d∏
a La
Ld−1

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

=
1

τd2

∏
a La
Ld−1

Γ
(
d+1

2

)
ζ(d+ 1)

π
d+1

2

. (8.16)

Comparing (8.15) and (8.16), we can more conveniently write that
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logZhigh(τ2) =
1

τd−1
2

logZlow

(
1

τ2

)
. (8.17)

This equation relates the high- and low-temperature and large- and small L limits of the partition func-
tion. Knowing the theory in a certain regime is enough to know the behavior of the theory in the opposite
regime. These powerful techniques are referred to as temperature dualities and they have led to strong
analytic results, as mentioned in the introduction 6. The “temperature inversion” symmetry of (8.17) is
just a particular case of a richer symmetry, namely

logZ(τ ′, τ̄ ′) = |cτ + d|d−1 logZ(τ, τ̄), τ ′ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)/Z2, (8.18)

in the particular case τ1 = 0, a = 0 = d and b = −1 = −c. In the following we will rigorously prove that
the partition function of a massless scalar on M = T2 × Rd−1 satisfies (8.18) by a variety of techniques
and we will explore the physical consequences of such symmetry.

8.2 The Bose field on the Euclidean torus

Here we consider the thermodynamics of a scalar field φ theory in two spacetime dimensions and we assume
that the underlying manifold over which φ lives is a Euclidean torus,M = T2 = S1

β×S1
L. Thus, we consider

the model described by the Euclidean action 40

SE [φ] =
1

2

∫ β

0
dx2

∫ L

0
dx1 ∂Aφ∂

Aφ, A = 1, 2, (8.19)

where x2 is the Euclidean time direction and φ satisfies periodic boundary conditions

φ(x1, x2) = φ(x1 + L, x2), φ(x1, x2) = φ(x1, x2 + β). (8.20)

The properties of this model have been widely investigated, see e.g. [173,192,193,250].

We consider the partition function of the theory

Z(β) = Tr e−βĤ = Tr e−
2πβ
L

(
L̂0+ˆ̄L0− c

12

)
, (8.21)

where the operators L̂0 and ˆ̄L0 are the n = 0 Virasoro modes defined in Appendix E and c = 1. Equation

40From now on we set ~ = 1.
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(8.21) can be written as

Z(τ) = Tr e2πiτ
(
L̂0− c

24

)
−2πiτ̄

(
ˆ̄L0− c

24

)
, τ = i

β

L
= iτ2. (8.22)

Note that if we considered instead of (8.21) the more general partition function

Z(β, µ) = Tr e−β(Ĥ−iµP̂1) = Tr e−
2πβ
L

[
L̂0+ˆ̄L0− c

12
−iµ(L̂0− ˆ̄L0)

]
, (8.23)

where P̂1 = 2π
L (L̂− ˆ̄L0) is the standard generator of translations along x1 defined in (7.64), we would have

Z(τ, τ̄) = Tr e2πiτ
(
L̂0− c

24

)
−2πiτ̄

(
ˆ̄L0− c

24

)
, τ =

β

L
(µ+ i) = τ1 + iτ2. (8.24)

When comparing equations (8.22) and (8.24), we notice that they are formally given the same expression.
However, while in the former τ is a purely imaginary number, in the latter τ has also a non-vanishing
real part, whose magnitude is controlled by µ. The geometrical interpretation of adding a real part to the
modular parameter is as follows.

Figure 12: A torus T2 generated by ω1 = iβ and ω2 = L represented in the complex plane Cω.

As remarked, the manifold over which φ lives is a torus T2, which is mathematically described by the
quotient of the flat space R2 by the lattice Λ2 generated by a pair of linearly independent vectors (~ω1, ~ω2),
denoted periods of the lattice, where we identify all the points that differ by an integer combination of ~ω1

and ~ω2:

T2 = R2/Λ2, Λ2 = {m~ω1 + n~ω2| (n,m) ∈ Z2}. (8.25)

Equivalently, one can choose two complex numbers (ω1, ω2) in the complex plane Cω, whose imaginary and
real axes are chosen to be the Euclidean time and spatial directions, respectively. We define the modular
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parameter of the torus to be τ = ω1/ω2. In the case we are considering we take

ω1 = iβ, ω2 = L, τ = i
β

L
, (8.26)

as represented in Figure 12. Such rectangular torus can be obtained by gluing the two parallel sides of the
rectangle in Figure 12. Adding a real part to the modular parameter means that, before gluing the two
sides parallel to the imaginary axis in Cω, we tilt them by an amount depending on µ, as represented in
Figure 13. Hence, taking

ω1 = βµ+ iβ, ω2 = L, τ =
β

L
(µ+ i), (8.27)

we obtain a skewed torus, denoted by T2
µ.

Therefore, we will refer to the quantity in (8.23)-(8.24) as the partition function on the skewed torus.

Figure 13: A skewed torus T2
µ generated by ω1 = β(µ+ i) and ω2 = L.

Sometimes, we will denote the latter T2
µ. Referring to the complex plane Cτ , we see that a Euclidean time

translation of length τ2 does not end up at the starting point, but is displaced in space by an amount equal
to τ1.

According to the definition (8.25) of T2, we could have defined the same torus by any other integer
combination of ω1 and ω2. In other words, if we took new independent lattice vectors (ω′1, ω

′
2) as

(
ω′1
ω′2

)
=

(
a b
c d

)(
ω1

ω2

)
,

(
a b
c d

)
∈ SL(2,Z)/Z2, (8.28)

they would define the same torus. The matrix in (8.28) has to be invertible because we must be able to
express also (ω1, ω2) in terms of (ω′1, ω

′
2) and its determinant has to be one because the area of the unit cell

must be the same whatever periods we use. Furthermore, we can reverse the sign of all its entries because
the lattice spanned by (−ω1,−ω2) is equal to the one spanned by (ω1, ω2). Under (8.28), the modular
parameter transforms as

τ ′ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)/Z2. (8.29)
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Returning to the partition function Z(τ, τ̄) we have

Z(τ, τ̄) = Tr qL̂0− c
24 q̄

ˆ̄L0− c
24 , q = e2πiτ , q̄ = e−2πiτ̄ . (8.30)

Note that Z(τ, τ̄), because of conformal invariance, does not depend separately on the two periods, but
only on their ratio τ and further, from (8.30), we expect an holomorphic/anti-holomorphic factorization
for Z(τ, τ̄). Because of the above arguments, we also expect Z(τ, τ̄) to be invariant under modular trans-
formations of the modular parameter τ .

8.2.1 Partition function on T2 and modular invariance

We now proceed to explicitly compute the partition function Z(τ, τ̄). We use the canonical approach and
hence we are interested in the quantized Hamiltonian and momentum, given by 41

Ĥ ′ =
∑′

n∈Z

2π|n|
L

â†nân −
π

6L
, P̂ =

∑′

n∈Z

2πn

L
â†nân, (8.31)

where Ĥ ′ is the Hamiltonian without the zero mode, that we will consider separately. We have

Z ′(β, µ) = Tr e−β(Ĥ′−iµP̂ ) = e
πβ
6LTr e−β

∑′
n∈Z

2π
L

(|n|−iµn)â†nân) = e
πβ
6L

∏′

n

∑
Nn≥0

e−
2πβ
L

(|n|−iµn)Nn

=
∏′

n

e
πβ
6L

1− e−
2πβ
L

(|n|−iµn)
. (8.32)

where Nn is the eigenvalue of the number operator N̂n = â†nân. As usual, we are interested in logZ ′(β, µ),

logZ ′(β, µ) =
πβ

6L
−
∑′

n∈Z
log
(

1− e−
2πβ
L

(|n|−iµn)
)

(8.33)

=
πβ

6L
−
∑
n∈N

log
(
1− e2πiτn

)
−
∑
n∈N

log
(
1− e−2πiτ̄n

)
(8.34)

where we used the Taylor expansion of log(1− x) around x = 0 and we introduced τ = β
L(µ + i). Note

that the modular parameter appears naturally during the computation of Z(β, µ). Taking into account
the definition of q in (8.30),

logZ(τ, τ̄) = − log
(
|q|

1
12

)
−
∑
n∈N

log(1− qn)−
∑
n∈N

log(1− q̄n) (8.35)

41Here, since k = 2πn
L

, we use the convention ak ≡ an.
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.
We define the Dedekind’s η function as

η(q) = q
1
24

∏
n∈N

(1− qn). (8.36)

Clearly,

Z ′(τ, τ̄) =
1

|η(q)|2
. (8.37)

As mentioned, the partition function must be invariant under the modular group. In order to check this
we just need to prove that it is invariant under T and S transformations generating the whole SL(2,Z)/Z2,
defined as

T : τ ′ = τ + 1, S : τ ′ = −1

τ
, (8.38)

satisfying (ST )3 = S2 = 1. It can be shown42 that the Dedekind’s eta function transforms as

η(τ + 1) = e
iπ
12 η(τ), η

(
−1

τ

)
=
√
−iτ η(τ), (8.39)

and therefore the Z ′(τ, τ̄) is not modular invariant. This happens because we have excluded the zero mode.
Indeed, by taking into account the contribution coming from the continuous eigenvalue of Π̂0 we have, from
(7.124),

Z0(β) = A

√
L

2πβ
= A 1√

2πτ2
. (8.40)

Hence, up to irrelevant factors, the full partition function is

Z(τ, τ̄) =
1
√
τ2

1

|η(q)|2
, (8.41)

consistently with what was originally found in [193] using the zeta function technique. This expression,
using (8.38) and that under a modular transformation τ2 transforms as

τ ′2 =
τ2

|cτ + d|2
, (8.42)

turns out to be exactly modular invariant

Z(τ ′, τ̄ ′) = Z(τ, τ̄), τ ′ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)/Z2. (8.43)
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Figure 14: Swapping of thermal and spatial cycles of T2.

Setting µ = 0 and considering S transformations, equation (8.43) reduces to

Z(τ2) = Z

(
1

τ2

)
. (8.44)

It is worth remarking that here the contribution to the partition function of the zero mode of the field is
fundamental to achieve modular invariance. Contrarily to the arguments of 7.3, here it cannot be discarded
and this is due to the fact that, in this model, there are no large directions. The manifold is just T2, so
that the spectrum of the Laplacian is purely discrete and there is no large volume limit that could allow
us to neglect the zero mode.

Swapping the thermal and spatial cycles of the torus, as schematically shown in 14, yields the same
partition function, in agreement with what conjectured in (8.17), for d = 1. If we consider the high-
temperature limit of logZ(τ2), defined by τ2 � 1, we see from (8.44) that it is the same of taking the limit
of logZ(τ2) for τ2 � 1, which is the low-temperature limit.

8.3 Partition functions on M = T2 × Rd−1 and modular covariance

In the previous section we have seen that, provided that the underlying manifold is T2, the partition
function of the theory is exactly modular invariant. We now investigate in detail the case of a partially
compactified manifold having a T2 component, i.e. M = T2 ×Rd−1 where we choose T2 = S1

β × S1
L [204].

In particular, we are interested in the effect of mixing extended and compact dimensions on the partition
function

Z(β, µ) = Tr e−β(Ĥ−iµP̂d). (8.45)

where Ĥ and P̂d are the quantized operators corresponding to the classical observables in (7.61) and (7.65),

42See e.g. [173] and Appendix F.1, (F.21).
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Figure 15: The manifold T2
µ × Rd−1 obtained by tilting the period ω1.

respectively. Further, we want to investigate what is its modular behavior and to understand to what extent
the arguments of the previous section can be applied to this case. Again, by including the observable P̂d
in (8.45), we are tilting the period ω1 of the torus adding to it a real part of magnitude βµ, as represented
in Figure 16.

In the following we consider again the case of a massless scalar field and we compute Z(β, µ) using the
zeta function, heat kernel and canonical approaches.

8.3.1 Functional approach and zeta function

From the discussion in section 7.2.1 we can infer that Z(β, µ) admits the Hamiltonian path integral repre-
sentation,

Z(β, µ) = Tr e−β(Ĥ−iµP̂d) =

∫
DΠDφ

2π
e−S̃

E
H [φ,Π], (8.46)

where we integrate over momenta and fields periodic in the Euclidean time direction and where, using
(7.64),

S̃EH [φ,Π] =

∫ β

0
dxd+1

∫
V

ddx

[
− iΠ∂d+1φ+

1

2
Π2 +

1

2
∂iφ∂

iφ+ iµΠ∂dφ

]

= SEH [φ,Π]− iµ
∫ β

0
dxd+1Pd[φ,Π], (8.47)
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The stationary points of S̃EH are solutions of

0 =
δS̃EH
δΠ

∣∣∣∣
Π∗

= −i∂d+1φ+ Π∗ + iµ∂dφ =⇒ Π∗ = i∂d+1φ− iµ∂dφ. (8.48)

The partition function is then given by the path integral

Z(β, µ) =

∫
Dφ e−S̃E [φ], (8.49)

where S̃E [φ] = S̃EH [φ,Π∗] and hence,

S̃E [φ] = −
∫ β

0
dxd+1

∫
V

ddx

[
1

2
(∂d+1φ− µ∂dφ)2 +

1

2
∂iφ∂

iφ

]
. (8.50)

The operator Â appearing in the above Euclidean action is the ordinary Laplacian with the substitution
∂d+1 → ∂d+1 − µ∂d, which we denote by ∆µ. It implies that the eigenvalues of the Euclidean time part of
the Laplacian are shifted by −µ 2π

Ld
nd with respect to the ones appearing in (7.73) and they are explicitly

given by

λnA =

(
2π

β
nd+1 − µ

2π

L
nd

)2

+

(
2π

L
nd

)2

+

d−1∑
a=1

(
2π

La
na

)2

=

(
2π

β

)2

|nd+1 − τnd|2 +

d−1∑
a=1

(
2π

La
na

)2

, τ =
β

L
(µ+ i). (8.51)

Note again that the modular parameter on T2
µ appears naturally in the expression of the eigenvalues of the

Laplacian.

The zeta function is ζ−∆µ(s) =
∑′

nA∈Zd+1 λ−snA . Taking the xa dimensions to be large, we can turn the
sums over na into integrals and we get, for ζ−∆µ(s),

ζ−∆µ(s) =

∏
a La

(2π)d−1

2π
d−1

2

Γ(d−1
2 )

(
2π

β

)−2s+d−1 ∫ ∞
0

dy yd−2
∑

(nd,nd+1)∈Z2

[
|nd+1 + τnd|2 + y2

]−s
, (8.52)

where we have changed the integration variable with y = β
2πk. The (nd, nd+1) = (0, 0) mode is not relevant

because its contribution, using an IR regulator ε, is proportional to

∫ ∞
ε

dy yd−2−2s = − εd−2s−1

d− 2s− 1
, Re(s) >

d− 1

2
, (8.53)

111



to which the same arguments of (7.77) apply. Performing the integral in (8.52) yields

∑′

(nd,nd+1)∈Z2

∫ ∞
0

dy yd−2[|nd+1 + τnd|2 + y2]−s =
1

2

Γ(d−1
2 )Γ(s− d−1

2 )

Γ(s)

∑′

(nd,nd+1)∈Z2

1

|nd+1 + τnd|
2s+1−d.

(8.54)

We define the real analytic Eisenstein series fs(τ) to be

fs(τ) =
∑′

(n,m)∈Z2

τ s2
|n+ τm|2s

, Re(s) > 1. (8.55)

where τ = τ1 + iτ2, see e.g. [205, 206, 208, 235] for recent reviews. Some properties of interest of fs(τ) are
also reviewed in Appendix F.2. We have

ζ−∆µ(s) =

∏
a La

Ld−1−2sτ
d−1

2
−s

2

π
d−1

2
−2s

22s

Γ(s− d−1
2 )

Γ(s)
fs− d−1

2
(τ). (8.56)

Using the functional equation (F.30)

Γ(z)fz(τ) = π2z−1Γ(1− z)f1−z(τ), (8.57)

at z = s− d−1
2 , we get

ζ−∆µ(s) =

∏
a La

Ld−1−2sτ
d−1

2
−s

2

1

22sπ
d+1

2

Γ(d+1
2 − s)
Γ(s)

f d+1
2
−s(τ). (8.58)

Expanding Γ(s)−1 = s+O(s2) we get for the partition function

logZ(τ, τ̄) =
1

2
ζ ′−∆µ

(s)

∣∣∣∣
s=0

=
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(d+1
2 )

π
d+1

2

f d+1
2

(τ). (8.59)

This is the final result for the partition function on T2
µ × Rd−1. It is worth pointing out that here the

renormalization procedure is achieved using the functional relation (8.57) that allows to do an analytic
continuation of the real analytic Eisenstein series, whereas in section 8.1, in order to renormalize the vac-
uum energy, it was just necessary to use the Riemann zeta function reflection formula. Note also that,
contrarily to what happens for the result (7.81) on S1

β × Rd, the total volume is replaced by the volume
associated to the large directions and the Riemann zeta function is replaced by the real analytic Eisenstein
series. The advantage of expressing logZ(τ, τ̄) in terms of the latter is that it makes its modular properties
very transparent. Indeed, using (8.42) and that

fs(τ
′) = fs(τ), τ ′ =

aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)/Z2, (8.60)
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i.e. the modular invariance of fs(τ), it follows that under a modular transformation the partition function
transforms as

logZ(τ ′, τ̄ ′) = |cτ + d|d−1 logZ(τ, τ̄). (8.61)

Hence, logZ(τ, τ̄) is modular covariant and transforms with a weight d − 1, in agreement with (8.18). In
the µ = 0 case and when considering S transformations (8.61) implies (8.17). However, here we can drop
the labels “high” and “low” and extend (8.17) to all orders in τ2,

logZ(τ2) =
1

τd−1
2

logZ

(
1

τ2

)
. (8.62)

Again, (8.62) is telling us that taking the high-temperature limit of logZ(τ2) is the same, up to an overall
weight factor, of taking its low-temperature limit. Note that, if we are interested in the low- and high-

Figure 16: The effect on the partition function of swapping the thermal and spatial cycles in (d + 1)-
dimensions is to get a weight factor as in (8.62).

temperature limits, τ2 � 1 and τ2 � 1, the leading contributions are due to nd = 0 and nd+1 = 0 terms in
the double sum appearing in the Eisenstein series and they are given by

logZ(τ, τ̄) =
1

2
τ2

∏
a La
Ld−1

Γ(d+1
2 )

π
d+1

2

∑′

nd+1∈Z

1

|nd+1|d+1
+O(τ0

2 ) = −βE0 +O(τ0
2 ), (8.63)

logZ(τ, τ̄) =
1

2

1

τd2

∏
a La
Ld−1

Γ(d+1
2 )

π
d+1

2

∑′

nd∈Z

1

|nd|d+1
+O(τ1−d

2 ) =
V

βd
Γ(d+1

2 )ζ(d+ 1)

π
d+1

2

+O(τ1−d
2 ), (8.64)

respectively, where E0 is the Casimir energy in (8.8). Hence the above computation of the partition func-
tion “naturally” contains the renormalized Casimir energy and the standard black body result. Applying
an S transformation to logZ(τ, τ̄) implies a swapping of the indices nd+1 ↔ nd in the Eisenstein series:
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fs

(
−1

τ

)
=

∑′

(nd+1,nd)∈Z2

1

|τ |d+1

τd+1
2

|nd+1 − τ−1nd|d+1
=

∑′

(nd+1,nd)∈Z2

1

|nd + τnd+1|d+1
= fs(τ). (8.65)

Therefore we see that the swapping of the thermal and spatial cycles is mathematically implemented
through an S transformation and this is explains why the the Casimir and black body results are “dual”
and mapped one into the other through an inversion of the modular parameter. We will return more in
the detail on the low- and high-temperature limits and their connection with S transformations in section
8.4, using the Fourier analysis.

Note that for d = 1 equations (8.61) and (8.62) imply (8.43) and (8.44) proved in the previous sec-
tion. However, one must be careful because, in d = 2 the partition function cannot be expressed in terms
of the real analytic Eisenstein series at s = 1. In other words, the expression

logZ(τ, τ̄) =
1

2π
f1(τ), (8.66)

is meaningless because fs(τ) is not absolutely convergent for s = 1, and hence not convergent since for
real s the Eisenstein series coincides with the series of its absolute values. This is reviewed in Appendix
F.3. Two spacetime dimensions is a peculiar case that deserves a special treatment, for it is the only case
where the zero mode plays a role and where we cannot express the partition function in terms of the real
analytic Eisenstein series, but we have to use the Dedekind’s η function instead.

8.3.2 Heat kernel approach

In (7.96), we derived an expression for the heat kernel KÂ(x, x′; t) 43on S1
β × Rd as the product of single

heat kernels KĤA
associated to the Hamiltonians ĤA of free particles of mass m = 1/2. In that expression,

the sum over n ∈ Z was due to the fact that a particle starting from x′d+1 could arrive at xd+1 by wrapping
an integer number n of times around the thermal cycle of periodicity β, as clear from (7.95). If we now
momentarily set µ = 0, generalizing this argument to two compact dimensions is quite easy. In this case,
in addition to the sum over n we would have an additional sum over an integer m labelling the number of
times that the particle, starting from x′d, wraps around the spatial cycle of length L in order to arrive to
xd. Concretely, for a Hamiltonian

Ĥ = p̂2
d+1 + p̂2

d, (8.67)

the heat kernel would be

43In this section, we denote by t the Schwinger proper time in order to avoid confusion with the modular parameter τ .
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〈xd+1, xd|e−tĤ |x′d+1, x
′
d〉T2 = 〈xd+1|e−tp̂

2
d+1 |x′d+1〉S1

β
〈xd|e−tp̂

2
d |x′d〉S1

L

=
∑

(n,m)∈Z2

〈xd+1 + nβ|e−tp̂
2
d+1 |x′d+1〉〈xd +mL|e−tp̂2

d |x′d〉

(7.95)
=

1

4πt

∑
(n,m)∈Z2

e−
1
4t

(xd+1−x′d+1+nβ)2

e−
1
4t

(xd−x′d+mL)2
, (8.68)

i.e. it admits a complete factorization. However, we have seen in the previous section that when turning
on µ, the operator appearing in the Euclidean action is −∆µ,

−∆µ = −∂a∂a − (∂d+1 − µ∂d)2 − ∂2
d . (8.69)

Correspondingly, in the heat kernel formalism, the presence of a non-vanishing µ creates a cross-term be-
tween the Hamiltonian Ĥd and Ĥd+1 as

Ĥ = p̂2
d+1 + p̂2

d

µ 6=0

−−−−−−−→ Ĥµ = (p̂d+1 − µ p̂d)2 + p̂2
d. (8.70)

which is the Hamilitonian of a particle moving on the skewed torus T2
µ. The relevant heat kernel that we

have to compute is now, instead of (8.68)

〈xd+1, xd|e−tĤµ |x′d+1, xd〉T2
µ
, (8.71)

that does not directly admit a factorization. We remark here that the periodicity of the coordinates is

xd+1 ∼ xd+1 + nβ, xd ∼ xd +mL, (n,m) ∈ Z2. (8.72)

We define new coordinates (Xd+1, Xd) as

Xd+1(xd+1, xd) = xd+1 Xd(xd+1, xd) = xd + µxd+1. (8.73)

Their periodicity is inherited from that of (xd+1, xd)

Xd+1 ∼ Xd+1 + nβ, Xd ∼ Xd +mL+ nµβ. (8.74)

These coordinates have the effect of rectangularize the skewed torus. Indeed
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p̂d+1 − µp̂d =
∂

∂xd+1
− µ ∂

∂xd
=
∂Xd+1

∂xd+1

∂

∂Xd+1
+

∂Xd

∂xd+1

∂

∂Xd
− µ∂Xd+1

∂xd

∂

∂Xd+1
− µ∂Xd

∂xd

∂

∂Xd

=
∂

∂Xd+1
= P̂d+1, (8.75)

p̂d =
∂

∂xd
=
∂Xd+1

∂xd

∂

∂Xd+1
+
∂Xd

∂xd

∂

∂Xd
=

∂

∂Xd
= P̂d, (8.76)

so that the Hamiltonian, in the new coordinates, is

Ĥµ = P̂ 2
d+1 + P̂ 2

d , (8.77)

Thus, we have

〈xd+1, xd|e−tĤµ |x′d+1, x
′
d〉T2

µ
=

∑
(n,m)∈Z2

〈Xd+1 + nβ|e−tP̂
2
d+1 |X ′d+1〉〈Xd +mL+ nµβ|e−tP̂ 2

d |X ′d〉

=
1

4πt

∑
(n,m)∈Z2

e−
1
4t

[(Xd+1−Xd+1+nβ)2+(X′d−Xd+mL+nµβ)2]

=
1

4πt

∑
(n,m)∈Z2

e−
1
4t
{(x′d+1−xd+1+nβ)2+[x′d−xd+mL+µ(x′d+1−xd+1+nβ)]2}, (8.78)

Taking also into account the contribution of the large dimensions xa, the full heat kernel is

K−∆µ(x, x′; t) =

(
1

4πt

) d+1
2

e−
1
4t

(xa−x′a)(xa−x′a)

×
∑

(n,m)∈Z2

e−
1
4t
{(x′d+1−xd+1+nβ)2+[x′d−xd+mL+µ(x′d+1−xd+1+nβ)]2}, (8.79)

The trace of the heat kernel is

Tr K̂−∆µ(t) =

∫ β

0
dxd+1

∫
V

ddxK−∆µ(x, x; t)

= βL
∏
a

La

(
1

4πt

) d+1
2 ∑

(n,m)∈Z2

e−
1
4t

[n2β2+(mL+nµβ)2]

= βL
∏
a

La

(
1

4πt

) d+1
2 ∑

(n,m)∈Z2

e−
L2

4t
|nτ+m|2 , τ =

β

L
(µ+ i). (8.80)
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The partition function is therefore given by

logZ(τ, τ̄) =
βL
∏
a La

2d+2π
d+1

2

∑′

(n,m)∈Z2

∫ ∞
0

dt t−
d+3

2 e−
L2

4t
|nτ+m|2 , (8.81)

where we dropped the contribution of the zero mode n = 0 = m. The integral gives, analogously to (7.99),

∫ ∞
0

dt t−
d+3

2 e−
L2

4t
|nτ+m|2 =

(
4

L2

) d+1
2
(

1

|nτ +m|2

) d+1
2

Γ

(
d+ 1

2

)
, d > 1. (8.82)

The full partition function reads

logZ(τ, τ̄) =
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(d+1
2 )

π
d+1

2

f d+1
2

(τ), (8.83)

This expression agrees completely with (8.59) found with the zeta function technique.

Again, it is possible to use the Poisson summation formula (7.102) to the double sum appearing in (8.78).
The result can be shown to be

1

4πt

∑
(n,m)∈Z2

e−
1
4t
{(x′d+1−xd+1+nβ)2+[x′d−xd+mL+µ(x′d+1−xd+1+nβ)]2}

=
1

βL

∑
(nd+1,nd)∈Z2

e
i(xd+1−x′d+1)

2πnd+1
β

+i(xd−x′d)
2πnd
L
−t
(

2π
β

)2
|nd+1+ndτ |2 . (8.84)

Having applied the Poisson summation formula, the full heat kernel can be written as

K−∆µ(x, x′; t) =
1

βL

(
1

4πt

) d−1
2

e−
1
4t

(xa−x′a)(xa−x′a)

×
∑

(nd+1,nd)∈Z2

e
i(xd+1−x′d+1)

2πnd+1
β

+i(xd−x′d)
2πnd
L
−t
(

2π
β

)2
|nd+1+ndτ |2 , (8.85)

and hence the partition function is

logZ(τ, τ̄) =

∏
a La

2dπ
d−1

2

∑′

(nd+1,nd)∈Z2

∫ ∞
0

dt t−
d+1

2 e
−t
(

2π
β

)2
|nd+1+ndτ |2 . (8.86)

The integral gives

∫ ∞
0

dt t−
d+1

2 e
−t
(

2π
β

)2
|m+lτ |2

=

(
2π

β

)d−1

Γ

(
− d− 1

2

)
|nd+1 + τnd|d−1, d < 1 (8.87)
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and thus

logZ(τ, τ̄) =
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(1−d
2 )

π
1−d

2

f 1−d
2

(τ)
(8.57)

=
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(d+1
2 )

π
d+1

2

f d+1
2

(τ), (8.88)

giving again the correct result.

8.3.3 Canonical approach

Here we repeat the same computation of Z(β, µ) following the canonical approach. Remarkably, the result
obtained with this method will be expressed directly in terms of the Fourier transform of the real analytic
Eisenstein series displayed in (F.25). We start from the operators Ĥ ′ and P̂d, given by

Ĥ ′ =
∑′

ni∈Zd
ωki â

†
ki
âki + E0, P̂d =

∑′

ni∈Zd
kd â

†
ki
âki , (8.89)

where E0 is the Casimir energy given in (8.8). We have

Z(β, µ) = e−βE0
∏′

ni

∑
Nki≥0

e−β(ωki−iµkd)Nki = e−βE0
∏′

ni

1

1− e−β(ωki−iµkd)
. (8.90)

Hence, taking logZ(β, µ) and turning the sums over na into integrals we get

logZ(β, µ) = −βE0 −
∏
a La

(2π)d−1

2π
d−1

2

Γ(d−1
2 )

∑
nd∈Z

∫ ∞
0

dk kd−2 log
[
1− e−β(

√
k2+k2

d−iµkd)
]
. (8.91)

Introducing a new integration variable as z = β
√
k2 + k2

d we have

logZ(β, µ) = −βE0 −
∏
a La
βd−1

1

2d−2π
d−1

2 Γ(d−1
2 )

∑
nd∈Z

∫ ∞
β|kd|

dzz(z2 − β2k2
d)

d−3
2 log

[
1− e−z+iµβkd

]
. (8.92)

Now we expand the log(1− x) around x = 0, with x = e−z+iµβkd ,

log
[
1− e−z+iµβkd

]
= −

∑
l∈N

e−lz+ilµβkd

l
, (8.93)

and thus, using y = lz

logZ(β, µ) = −βE0 +

∏
a La
βd−1

1

2d−2π
d−1

2 Γ(d−1
2 )

∑
nd∈Z

∑
l∈N

eilµβkd

ld

∫ ∞
lβ|kd|

dy y(y2 − l2β2k2
d)

d−3
2 e−y. (8.94)
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The integral in the above expression yields

∫ ∞
lβ|kd|

dy y(y2 − l2β2k2
d)

d−3
2 e−y = 2

d−2
2

Γ(d−1
2 )
√
π

(lβ|kd|)
d
2K d

2
(lβ|Kd|), (8.95)

where Kn(x) is the modified Bessel function of the second kind [251]. We have, using kd = (2π/L)nd,

logZ(β, µ) = −βE0 +

∏
a La

L
d
2β

d−2
2

∑
nd∈Z

∑′

l∈Z

∣∣∣nd
l

∣∣∣ d2K d
2

(
2πβ|lnd|

L

)
e2πindl

βµ
L , (8.96)

where we have extended the sum to l ∈ Z∗ using (F.27). For later convenience, we isolate the term nd = 0
in the above sum. Using that, for small value of x and for n > 0,

Kn(x) = Γ(n)2n−1x−n +O(x−n+1), x > 0, (8.97)

the nd = 0 term in equation (8.96) gives a contribution

∏
a La

L
d
2β

d−2
2

2
d−2

2 Γ

(
d

2

)(
2πβ

L

)− d
2 ∑′

l∈Z
|l|−d =

∏
a La

βd−1π
d
2

Γ

(
d

2

)
ζ(d). (8.98)

Taking into account the explicit value (8.8) of the Casimir energy, the previous equation can be factorized as

logZ(τ, τ̄) =
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(d+1
2 )

π
d+1

2

[
2ζ(d+ 1)τ

d+1
2

2 + 2
√
π

Γ(d2)ζ(d)

Γ(d+1
2 )

τ
1−d

2
2

+ 2τ
1
2

2

π
d+1

2

Γ(d+1
2 )

∑′

nd∈Z

∑′

l∈Z

∣∣∣nd
l

∣∣∣ d2K d
2

(2π|ln|τ2) e2πindlτ1

]
, (8.99)

where τ = β
L(µ + i). Comparing the expression between square bracket with (F.25), we see that it is

exactly the Fourier series of the real analytic Eisenstein series f d+1
2

(τ), as claimed in section 7.2.3. We can

conclude again that

logZ(τ, τ̄) =
1

2

∏
a La

Ld−1τ
d−1

2
2

Γ(d+1
2 )

π
d+1

2

f d+1
2

(τ). (8.100)

In Appendix F.5 we consider the d = 3 case and we explicitly show the equivalence between the series
(8.99) and the Eisenstein series f2(τ).

We point out here that the main advantage of working with the Fourier series (8.99) instead of the real
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analyitic Eisenstein series is that it allows to trace back the contribution of each field mode to the parti-
tion function and, as explained in the next section, it will be extremely useful to take the high- and low-
temperature limits. For the moment let us just mention that the nd = 0 contribution in (8.98) is exactly a
black body contribution for a scalar field living in one dimension less. In other words, it can be obtained
from the black body result computed previously in (7.81) by substituting d → d − 1. Indeed, from the
mode expansion of φ in (7.56), isolating the zero mode of the field in the compact direction, we get

φ(t, x) =
1√
V

∑
na∈Zd−1

φka(t)eikax
a

+
∑′

nd∈Z

∑
na∈Zd−1

... (8.101)

The first term in the above expression is nothing but the mode expansion of a scalar field living in (d− 1)
spatial large dimensions xa and therefore its thermodynamics is described by the black body result.

8.4 Generalized high-/low- temperature dualities

Let us start by considering the low-temperature limit of the partition function, i.e. the τ2 � 1 limit of
Z(τ, τ̄). In this limit we expect, from the discussion in section 8.1 and from equation (8.15), logZ(τ, τ̄) to
be proportional, through β, to the scalar Casimir energy E0 in (8.8). In order to show that, it is convenient
to use the Fourier series of the partition function in (8.99) and the asymptotic expansion for large positive
values of x of the modified Bessel Kn(x),

Kn(x) =

√
π

2x
e−x
[
1 +O(x−1)

]
. (8.102)

Therefore, we see that all the terms appearing in the double sum in (8.99) are exponentially suppressed
for large values of τ2. There are only two terms left,

logZ(τ, τ̄) =

∏
a La
Ld−1

[
τ2

Γ(d+1
2 )ζ(d+ 1)

π
d+1

2

+
1

τd−1
2

Γ(d2)ζ(d)

π
d
2

]
+O(e−τ2)

≡ logZlow(τ, τ̄) +O(e−τ2). (8.103)

The leading term is indeed the Casimir contribution, as claimed, and the first subleading term is the one
coming from the nd = 0 term of the field mode expansion which is the lower-dimensional scalar field intro-
duced previously.

In order to have access to the high-temperature limit, defined by τ2 � 1, we make explicit use of the
modular properties of the partition function. We start by considering an S transformation obtained by
taking a = 0 = d and b = −1 = −c in (8.61),

τ ′ = −1

τ
, τ ′1 = − τ1

|τ |2
, τ ′2 =

τ2

|τ |2
. (8.104)
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under which the partition function transforms as

logZ(τ ′, τ̄ ′) = logZ

(
−1

τ
,−1

τ̄

)
= |τ |d−1 logZ(τ, τ̄). (8.105)

Inverting this relation and using the Fourier series representation for logZ(τ, τ̄), we get

logZ(τ, τ̄) =

∏
a La
Ld−1

[
τ2

|τ |d+1

Γ(d+1
2 )ζ(d+ 1)

π
d+1

2

+
|τ |d−1

τd−1
2

Γ(d2)ζ(d)

π
d
2

+
1

|τ |τ
d−2

2
2

∑′

nd∈Z

∑′

l∈Z

∣∣∣nd
l

∣∣∣ d2K d
2

(
2π|ln|τ2

|τ |2

)
e
− 2πindlτ1

|τ |2

]
. (8.106)

In the high-temperature limit we take τ2 � 1 and hence |τ | = τ2|µ+ i| � 1. It implies that the terms in
the double sum in (8.106) are again exponentially suppressed because of the asymptotic behavior of the
modified Bessel function in (8.102). Therefore, we get, in the high-temperature limit

logZ(τ, τ̄) =

∏
a La
Ld−1

[
τ2

|τ |d+1

Γ(d+1
2 )ζ(d+ 1)

π
d+1

2

+
|τ |d−1

τd−1
2

Γ(d2)ζ(d)

π
d
2

]
+O(e

− 1
τ2 )

≡ logZhigh(τ, τ̄) +O(e
− 1
τ2 ). (8.107)

The leading term of this expression is

V

βd(1 + µ2)
d+1

2

Γ(d+1
2 )ζ(d+ 1)

π
d+1

2

µ→0

−−−−−→ V

βd
Γ(d+1

2 )ζ(d+ 1)

π
d+1

2

, (8.108)

which gives, as expected, the scalar black body result for vanishing µ. The subleading term is independent
of the temperature and depends only on the parameter µ. Clearly we have

logZhigh(τ, τ̄) =
1

|τ |d−1
logZlow

(
−1

τ
,−1

τ̄

)
µ→0

−−−−−→ logZhigh(τ2) =
1

τd−1
2

logZlow

(
1

τ2

)
. (8.109)

Notice that taking the high-temperature limit has become possible after having used the modular proper-
ties of the partition function. In particular, we have used first its behavior under S and then the Fourier
series. The analysis shows that once we have access to the low-temperature limit, we can directly infer,
using (8.109) the high-temperature regime and vice-versa. These are the so-called generalized temper-
ature dualities. As already pointed out, the black body result, under the duality, maps to its opposite
regime counterpart, which is the Casimir term. Analogously, the subleading term in the low-temperature
expansion, which is due to the nd = 0 term of the field mode expansion, is mapped through the duality
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to the subleading, temperature-independent term in the high-temperature expansion (8.108). Even if the
subleading contribution in the high-temperature expansion can be simply understood by applying the in-
version symmetry argument to the lower-dimensional scalar, it would however be wrong to think that it
also comes from the nd = 0 mode in the field expansion. In fact, even if we are able to trace back this
term in the low-temperature limit, we cannot do the same in the high-temperature one. Inverting the
temperature implies a re-summation and a re-shuffling of all the modes, through the Poisson resummation
formula. In fact, the full partition function is covariant under the symmetry, but its Fourier coefficients
are not separately covariant.

Before proceeding to analyze the low- and high- temperature behavior of the entropy of the system, it
is useful to introduce the completed Riemann zeta function as

ξ(d) ≡
Γ
(
d
2

)
ζ(d)

π
d
2

. (8.110)

Note that most of the formulae shown in this chapter can be more conveniently rewritten in terms of ξ(d).
This happens because it is a dimensionless quantity characterizing the geometry of the system. In order
to make contact with [201], we introduce εvac(d) ≡ ξ(d+ 1). The Casimir, black body and their subleading
terms in the expansions of logZ(τ, τ̄) can be expressed in terms of εvac(d).

The low-temperature expansion of the entropy is given by

Slow(τ2) =

(
1− τ2

∂

∂τ2

)
logZlow(τ2) =

∏
a La

Ld−1τd−1
2

d εvac(d− 1) =

∏
a La
βd−1

d εvac(d− 1). (8.111)

Hence, in the low-temperature regime the entropy is governed, up to exponentially suppressed terms, by
the lower-dimensional scalar contribution, i.e. by the zero mode of the field in the compact direction. In
fact, in (8.111) the Casimir term drops being linear in τ2. Equation (8.111) shows that the entropy at
low-temperatures does not scale as the entire volume of the system, but only as the volume of the large
directions. Indeed, the length L of the compact direction does not appear in (8.111).

In the high temperature regime, up to exponentially suppressed terms we have for µ = 0,

Shigh(τ2) =

(
1− τ2

∂

∂τ2

)
logZhigh(τ2) =

∏
a La

Ld−1τd2
(d+ 1) εvac(d) =

V

βd
(d+ 1)εvac(d), (8.112)

in complete agreement with [201]. Note that, differently from the low-temperature case, here the entropy
scales as the entire volume V of the system, as one would expect in the large L limit.

Using Zhigh(β) we obtain the asymptotic microcanonical density of states as 44

ρ(E) =

∫ ∞
0

dβ Zhigh(β)eβE =

∫ ∞
0

dβ e
V εvac(d)

βd eβE . (8.113)

44In equation (8.113) we neglect in Zhigh(β) the subleading term.
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We can use the saddle point approximation to evaluate this integral. The stationary point of the exponent
in (8.113) is given by β∗ such that f ′(β∗) = 0, where

f(β) =
V

βd
εvac(d) + βE =⇒ β∗ =

(
dV εvac(d)

E

) 1
d+1

. (8.114)

Thus

ρ(E) ≈ e
V εvac(d)

β∗d eβ
∗E =⇒ log ρ(E) ≈ d+ 1

d
d
d+1

[εvac(d)V ]
1
d+1E

d
d+1 . (8.115)

Since εvac(d+ 1) is related to the central charge c in (8.14) by

εvac(d) =
πLd

6V
c, (8.116)

both the high-temperature entropy and the asymptotic density of states in (8.112) and (8.116) can be
expressed in terms of c as

Shigh(β) =

(
L

β

)d
(d+ 1)

π

6
c, log ρ(E) ≈

(
EL

d

) d
d+1

(d+ 1)

(
πc

6

) 1
d+1

. (8.117)

Equations (8.112),(8.115) and (8.117) can be though of as higher-dimensional generalizations of the Cardy
formula to the case of partially compactified manifolds [135,199], expressing the high-temperature entropy
and the asymptotic density of states in terms of a dimensionless number εvac(d) characterizing the Casimir
energy and in terms of the central charge c of the theory [252].

8.5 Higher-dimensional tori and SL(n,Z) Eisenstein series

In this section, we consider the most general case where there are p large and q small spatial directions, such
that p+ q = d. Here it is convenient to introduce indices a = 1, ..., p and α = (i, d+ 1) with i = p+ 1, ...d
labelling the large spatial directions and an the small spatial and Euclidean time directions, respectively.
We assume La � Li, ∀ a and ∀ i and consider the partition function

Z(β, µ1, ..., µq) = Tr (e−β(Ĥ−i
∑
i µiP̂i), (8.118)

on a partially compactified manifold M = Tq+1 × Rp, where Tq+1 = S1
β × S1

Lp+1
× ... × S1

Ld
[198, 201].

Mathematically, the torus Tq+1 is defined to be the quotient of Rq+1 by the lattice Λq+1 generated by a
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set of q + 1 linearly independent vectors ~ωα ∈ Rq+1,

Tq+1 = Rq+1/Λq+1, Λq+1 =
{∑

α

mα~ωα|mα ∈ Zq+1
}
. (8.119)

We choose ~ωα to be

~ωi = (0, .., Li, ..., 0), ~ωd+1 = β(µ1, µ2, ..., µd, 1). (8.120)

Figure 17: Geometry of the manifold associated with the choice of ~ωα in (8.120).

Using the lattice vectors, we can define a metric on Tq+1 as g̃αβ = ~ωα · ~ωβ. We have

g̃ij = 0, g̃ii = L2
i , g̃i,d+1 = βµiLi, g̃d+1,d+1 = β2, (8.121)

and
√

det [g̃αβ] = Vq+1, where Vq+1 = βLp+1...Ld is the volume of the (q + 1)-dimensional torus. The
torus we are considering is not rectangular, but the Euclidean time lattice vector ~ωd+1 has non vanishing
components on the spatial directions xα as represented in Figure 17. When turning off the parameters µα,
the torus becomes rectangular. It is also important to introduce the inverse lattice vectors ~Kα are defined by

~Kα · ~ωβ = δαβ . (8.122)

It is easy to show that the K̂α corresponding to the choice of ~ωα in (8.120) are given by
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~Ki =
1

Li
(0, .., 1, ..., 0,−µi), ~Kd+1 =

1

β
(0, ..., 0, 1). (8.123)

The matrix g̃αβ = ~Kα · ~Kβ, by construction, is the inverse of g̃αβ and its components are explicitly given by

g̃ij =
µiµj
LiLj

, g̃ii =
1

L2
i

(1 + µ2
i ), g̃i,d+1 = − µi

Liβ
, g̃d+1,d+1 =

1

β2
, (8.124)

whereas its determinant is
√

det [g̃αβ] = V −1
q+1. It is convenient to introduce a normalized metric gαβ =

(Vq+1)
2
q+1 g̃αβ so that det [gαβ] = 1 = det [gαβ].

Repeating similar arguments to those of section 8.3.1 the partition function in (8.118) admits the path
integral representation

Z(β, µ1, ..., µq) =

∫
Dφ e−S̃E [φ], (8.125)

where

S̃E [φ] = −
∫ β

0
dxd+1

∫
V

ddx

[
1

2

(
∂d+1φ−

∑
i

µi∂iφ
)2

+
1

2
∂iφ∂

iφ+
1

2
∂aφ∂

aφ

]
, (8.126)

and hence the relevant zeta function is, taking p dimensions to be large and thus turning the sum over the
integers na into integrals,

ζ(s) =

∏
a La

(2π)p
2π

p
2

Γ(p2)

∫ ∞
0

dk kp−1
∑′

nα∈Zq+1

[(
2πnd+1

β
−
∑
i

µi
2πni
Li

)2

+
∑
i

(
2πni
Li

)2

+ k2

]−s
, (8.127)

where we have already excluded the nα = 0 modes. Integrating over k we get

ζ(s) =

∏
a Laπ

p
2
−2sΓ(s− p

2)

22sΓ(s)

∑′

nα∈Zq+1

[(
nd+1

β
−
∑
i

µi
ni
Li

)2

+
∑
i

(
ni
Li

)2] p
2
−s

(8.128)

It is immediate to verify that the above equation can be more compactly rewritten in terms of gαβ as

ζ(s) =

∏
a Laπ

p
2
−2sΓ(s− p

2)

22sΓ(s)(Vq+1)
p−2s
q+1

∑′

nα∈Zq+1

[
nα g

αβnβ
] p

2
−s
. (8.129)
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We define the SL(n,Z) Eisenstein series fs(n; g) [205] to be 45

fs(n; g) =
∑′

mα∈Zn
[mα g

αβmβ]−s, Re(s) >
n

2
, (8.130)

where gαβ is the metric on a n-dimensional torus normalized to have unit determinant. For n = 2, using
(8.124), the metric gαβ on T2 can be written as

gαβ =

 β

L
(µ2 + 1) µ

µ
L

β

 =


|τ |2

τ2

τ1

τ2

τ1

τ2

1

τ2

 , (8.131)

once we take into account τ = β
L(µ+ i) so that

fs(2; τ) =
∑′

(n,m)∈Z2

τ s2
|n+mτ |2s

, (8.132)

is the real analytic Eisenstein series of (8.55), that therefore can be interpreted as the SL(2,Z) Eisenstein
series, according to the definition (8.130). The SL(n,Z) Eisenstein series satisfies the functional equation

Γ(s)fs(n; g) = π2s−n
2 Γ

(
n

2
− s
)
fn

2
−s(n; g). (8.133)

Note how this equation reduces to the one satisfied by the real analytic Eisenstein series fs(τ) in (8.57) for
n = 2 and to the reflection formula in (7.79) satisfied by Riemann zeta function ζ(2s) for n = 1. The zeta
function in (8.129) can be written in terms of the SL(q + 1,Z) Eisenstein series fs− p

2
(q + 1; g):

ζ(s) =

∏
a Laπ

p
2
−2sΓ(s− p

2)

22sΓ(s)(Vq+1)
p−2s
q+1

fs− p
2
(q + 1; g). (8.134)

so that, applying as usual (8.133),

ζ(s) =

∏
a LaΓ(p+q+1

2 − s)

22sΓ(s)π
p+q+1

2 (Vq+1)
p−2s
q+1

f p+q+1
2
−s(q + 1; g). (8.135)

Taking into account that p+ q = d, we get for the partition function

logZ(g) =
1

2
ζ ′(s)|s=0 =

1

2

∏
a LaΓ(d+1

2 )

π
d+1

2 (Vq+1)
p
q+1

f d+1
2

(q + 1; g). (8.136)

45It is possible to consider also a GL(n,Z) Eisenstein series fs(n; g̃) where g̃αβ has not a unit determinant, but
√

det [g̃αβ ] =
Vn. Here we choose to work with a metric with normalized determinant.
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This is the final result for the partition function on Tq+1 × Rp. Note that, even if it was derived it in the
particular case of a metric g̃αβ in (8.124), equation (8.136) holds for an arbitrary manifold whose Tq+1

component has a volume Vq+1, regardless of the choice of the lattice vectors. The particular torus geometry
we are considering is motivated by the specific form of the partition function in (8.118). Equation (8.136)
includes all the main results for the partition function shown so far as particular cases. For p = d− 1 and
q = 1 it correctly reduces to the partition function on T2 × Rd−1 in (8.59) covariant under SL(2,Z)/Z2

transformations of the modular parameter. For p = d and q = 0 it reproduces the black body result in
(7.81).

The SL(n,Z) Eisenstein series is a natural object to consider on Tn. Indeed, it is invariant under SL(n,Z)
transformations of the lattice vectors defining Tn, i.e. under the diffeomorphisms of the torus into itself.
Indeed, consider an SL(n,Z) transformation of the lattice vectors ~ωα,

~ω′α = Sα
β ~ωβ, g′αβ = (S−1)αγg

γη(S−1)βη, Sα
β ∈ SL(n,Z). (8.137)

Correspondingly the SL(n,Z) Eisenstein series transforms as

fs(n; g′) =
∑′

mα∈Zn
[mα g

′αβmβ]−s =
∑′

mα∈Zn
[mα(S−1)αγg

γη(S−1)βηmβ]−s =
∑′

m′α∈Zn
[m′γg

γηm′η]
−s

= fs(n; g). (8.138)

We are now interested in introducing a set of q modular parameters τi for each torus T2
i = S1

β ×T2
Li

and to
understand how SL(q + 1,Z) transformations act on them and, correspondingly, on the partition function
in (8.136). We define τi as

τi = τi1 + iτi2 =
β

Li
(µi + i). (8.139)

The components of the rescaled inverse metric gαβ can be expressed in terms of τi as follows:

gij =
µiµj(βLp+1...Ld)

2
q+1

LiLj
=

τi1τj1

(τ12 ...τq2)
2
q+1

, (8.140)

gii =
(1 + µ2

i )(βLp+1...Ld)
2
q+1

L2
i

=
|τi|2

(τ12 ...τq2)
2
q+1

, (8.141)

gi,d+1 =
µi(βLp+1...Ld)

2
q+1

Liβ
=

τi1

(τ12 ...τq2)
2
q+1

, (8.142)

gd+1,d+1 =
(βLp+1...Ld)

2
q+1

β2
=

1

(τ12 ...τq2)
2
q+1

. (8.143)
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Note that in the case q = 1 the above equations imply that

g11 =
|τ |2

τ2
, g12 =

τ1

τ2
, g22 =

1

τ2
, (8.144)

in agreement with (8.131). The volume Vq+1 can be expressed in terms of τi as

Vq+1 = βLp+1...Ld =
(
τ12 ...τq2

) 1
q (Lp+1....Ld)

q+1
q . (8.145)

Therefore,

logZ(τi, τ̄i) =
1

2

∏
a LaΓ(d+1

2 )

π
d+1

2 (Lp+1...Ld)
p
q (τ12 ...τq2)

p
q(q+1)

f d+1
2

(q + 1; g). (8.146)

The transformation laws of τi under SL(q + 1,Z) is derived in detail in Appendix F.6. The final result in
(F.76) for an SL(q + 1,Z) transformation ~ω′α = Sα

β~ωβ is

logZ(τ ′i , τ̄
′
i) =

[
(Sd+1

d+1S1
1 − Sd+1

1S1
d+1)...(Sd+1

d+1Sq
q − Sd+1

qSq
d+1)∣∣S1

d+1τ1 + S1
1

∣∣2...|Sqd+1τq + Sqq|2

]− p
q(q+1)

logZ(τi, τ̄i), (8.147)

that correctly reduces to (8.61) in the q = 1 case.

8.6 Conclusions

In this chapter, we have shown how real analytic Eisenstein series naturally appear in the computation of
partition functions of massless scalar fields living on partially compactified manifolds having some torus
components. However, it has to be pointed out that the literature on these topics and, in general, on
the dependence of the partion function on the boundary conditions, is substantial. In particular, Casimir
energies and partition functions for the configurations considered in this chapter were originally computed
in [249] in terms of the Epstein zeta functions (see e.g. Appendix F.4) and, moreover, they had also been
derived in the context of conformal field theories in higher dimensions in [198], including a discussion on
modular invariance and an extension to higher-dimensiional tori. More recently, general considerations
on modular invariance in higher dimensions and its relation to Casimir energies have appeared in [202].
Therefore, the results derived here necessarily have large overlaps with existing literature.

In the context of finite temperature Casimir effect, our discussion and techniques follow closely the approach
developed in [219–222] in order to derive and understand temperature inversion symmetry, originally dis-
covered in [217] through the method of images, in terms of functional methods and Epstein zeta functions.
Our addition here consists in including a chemical potential for the linear momentum in the compact
direction, which brings one from Epstein zeta functions with temperature inversion symmetry to the real
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analytic Eisenstein series with full modular invariance.

From the viewpoint of modular invariance in higher dimensions, as compared to the analysis in [198],
our derivation provides the full analytic expression for the partition function in the case of the simplest
model of a free massless scalar on a spatial section of the form Tq×Rp for p+q = d, in terms of SL(q+1,Z)
Eisenstein series, with an explicit proof on modular transformations built in. As compared to [202], for
the model under consideration, there is full control on finite-size corrections, and also a new formula, valid
now at low rather than at high temperature, that relates the leading contribution to the entropy to the
Casimir energy density of a massless scalar field in one dimension lower.

For what concerns the relevance of Eisenstein series in physical applications, we have shown that, in
the context of quantum statistical physics, partitions functions of massless scalars are among the simplest
physical observables that are directly expressed through such series. Various approaches to computing
these partition functions, such as functional, heat kernel/worldline and canonical quantization methods
illustrate complementary aspects of Eisenstein series.
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9 Gauge theories in the Casimir setup

In this chapter we consider an application of the techniques shown in the previous chapters to the case of
gauge theories in the Casimir setup. In particular, we will focus on spin 1 and spin 2 gauge fields. We
start in section 9.1, where we consider the electromagnetic field placed in a slab geometry with two infinite
perfectly conducting parallel planes separated by a distance L and we outline what are the correct boundary
conditions that have to be imposed on the fields on such planes. In sections 9.2 and 9.3 we analyze in
two different but equivalent ways the reduced phase space of the theory in the above described setup. In
particular, we show that the full dynamics of the electromagnetic field can be, and has to be, described
in terms of that of two single scalar fields, one satisfying Dirichlet conditions and the other Neumann
conditions on the metallic plates. In section 9.4 we present an additional, more convenient reformulation
of the theory in terms of a “fictitious” single scalar field living on the double volume satisfying periodic
boundary conditions on an interval of length 2L. Correspondingly, in section 9.5, we use this result to
exactly compute the partition function of the theory, showing its modular properties and the associated
high-/low-temperature dualities. Surprisingly, the momentum of the scalar field in the compact direction,
that according to the discussion in section 8.2 has to be included in the partition function in order to
consistently add a real part to the modular parameter, does not coincide with the standard momentum
of the original electromagnetic field and we show that instead it is related to the spin angular momentum
of the photon. We also emphasize that the thermodynamic entropy in the low-temperature regime scales
as the area of the conducting plates and we argue that this behavior can ultimately be traced back to
the non-triviality of the boundary conditions. In sections 9.6 and 9.7 we prove in detail that, imposing
the analogue of perfectly conducting boundary conditions on the linearized gravitational field, the same
conclusions can be drawn also in the case of spin 2 fields. We conclude in section 9.8 with some outlooks
and future directions.

9.1 Casimir geometry and boundary conditions

The Casimir effect setup consists in considering the electromagnetic field between two perfectly conducting
plates separated by a distance L in the x3 direction, as represented in Figure 18. It is useful to introduce
the following index notation: spacetime coordinates are denoted by xµ = (t, xa, x3), where µ = 0, ..., 3 and
a = 1, 2. The area of the plates is A = L1L2, where La are the lengths of the sides of the plates and we
assume that La � L. This implies that we can take without loss of generality periodic boundary conditions
for the electromagnetic field components in the xa directions, for in the large La limit the result for the
thermodynamic quantities we are interested in will not depend at all from this choice.

In order to make connection with the results of the previous chapters, we are interested in a Hamilto-
nian analysis of the system, so we consider the first order action

SH [A,Π] =

∫
dt

∫
V

d3x

(
ΠiȦi +At∂iΠ

i − 1

2
ΠiΠ

i − 1

2
BiB

i

)

=

∫
dt

∫
V

d3x
(
ΠiȦi +At∂iΠ

i −H[A,Π]
)
, H[A,Π] =

1

2

∫
V

d3x
(
ΠiΠ

i +BiB
i
)
, (9.1)
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Figure 18: Electromagnetic field between two metallic plates separated by a distance L along the x3

direction.

where V = AL3, Πi = ∂L
∂Ȧi

= Ȧi−∂iAt = −Ei, we denoted by H[A,Π] the Hamiltonian and Bi = εijk∂jAk

is the magnetic field. The Gauss law constraint ∂iΠ
i = 0 follows from setting to zero the derivative of the

Lagrangian with respect to the Lagrangian multiplier At. The requirement that the plates are perfectly
conducting imposes that the tangential components of the electric field and the normal component of the
magnetic field must vanish on the plates surfaces,

Πa(t, xa, 0) = 0 = Πa(t, xa, L), B3(t, xa, 0) = 0 = B3(t, xa, L). (9.2)

The standard gauge invariance δεAi = ∂iε can be used to reach the standard radiation gauge

At = 0, ∂iA
i = 0, (9.3)

that leaves the freedom of performing residual gauge transformations parametrized by a time-independent
ε satisfying ∂i∂

iε = 0. Since B3 = εab∂aAb, imposing the second in (9.2) implies that Ab is pure gauge on
the boundary, i.e. there exists a field φ(xa) such that Aa|x3=0,L = ∂aφ. Using residual gauge freedom it is
possible to set φ = 0, so that the set of boundary conditions on the canonical variables (Aa,Π

a) reads

Πa(t, xa, 0) = 0 = Πa(t, xa, L), Aa(t, x
a, 0) = 0 = Aa(t, x

a, L). (9.4)

These boundary conditions are Dirichlet conditions for the canonical fields components parallel to the
plates. We need also boundary conditions on the components (A3,Π

3) perpendicular to the plates.
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Asking the Coulomb gauge condition ∂iA
i = 0 and the Gauss law ∂iΠ

i = 0 to hold on the bound-
ary [223–225,253,254] implies that, taking into account (9.4),

∂3Π3(t, x)|x3=0 = 0 = ∂3Π3(t, x)|x3=L, ∂3A
3(t, x)|x3=0 = 0 = ∂3A

3(t, x)|x3=L, (9.5)

that are Neumann conditions. As already mentioned, we also impose periodic boundary conditions in the
xa directions,

Πi(t, 0, x3) = Πi(t, La, x
3), Ai(t, 0, x3) = Ai(t, La, x

3). (9.6)

Having defined the set of boundary conditions, we can now mode expand the field components into the
appropriate orthonormal bases. The orthonormal bases for functions satisfying Dirichlet and Neumann
conditions in x3 = 0 and in x3 = L and periodic conditions at xa = 0 and xa = La are {eDki} and {eNki},

{eDki(x)} =

{√
2

V
sin
(
k3x

3
)
eikax

a

}
, {eNki(x)} =

{
1√
V
eikax

a
,

√
2

V
cos
(
k3x

3
)
eikax

a

}
, (9.7)

respectively, where ka = 2πna
La

and k3 = πn3
L , with na ∈ Z and n3 ∈ N. The orthonormality is

(
eDki , e

D
k′i

)
=

∫
V

d3x eD∗ki (x)eDk′i
(x) =

∏
i

δnin′i ,
(
eNki , e

N
ki

)
=

∫
V

d3x eN∗ki (x)eNk′i
(x) =

∏
i

δnin′i , (9.8)

and the completeness

∑
na∈Z2,n3∈N

eD∗ki (x)eDki(x
′) = δ3(x− x′),

∑
na∈Z2,n3∈N0

eN∗ki (x)eNki(x
′) = δ3(x− x′). (9.9)

Because of the perfectly conducting boundary conditions in (9.4) and (9.5), the fields admit the mode
expansions 46,

φa(t, x) = i

√
2

V

∑
na∈Z2,n3∈N

φaki(t) sin
(
k3x

3
)
eikax

a
, (9.10)

φ3(t, x) =
∑
na∈Z2

[
1√
V
φ3
ka,0(t) +

√
2

V

∑
n3∈N

φ3
ki

(t) cos
(
k3x

3
)]
eikax

a
, (9.11)

with

φaki(t) = (eDki , φ
a), φ3

ki
(t) = (eNki , φ

3), (9.12)

46see, e.g. Appendix D.
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where by φi we denote either Ai or Πi. The unusual i factor in (9.10) is chosen for later convenience. From
now on, since we will not be concerned about the time evolution of the fields, for notational purposes we
denote φiki(t) simply by φiki . The reality conditions and parity in the x3 direction are

φaka,k3
= −φ∗a−ka,k3

, φ3
ka,k3

= φ∗3−ka,k3
φaka,k3

= −φaka,−k3
, φ3

ka,k3
= φ3

ka,−k3
. (9.13)

So far, we only imposed boundary conditions on the fields components. However, since we are dealing
with a gauge theory, not all the modes appearing in (9.10)-(9.11) are physical and there is therefore a
redundancy. Indeed, these modes do not automatically satisfy the Coulomb gauge and the Gauss law. In
the next section we proceed to identify the reduced phase space of the theory comprising only the physical
degrees of freedom, where we have eliminated all the redundancies.

9.2 Reduced phase space I: algebraic approach

We start by inserting the mode decompositions (9.10)-(9.11) in the Hamiltonian H[A,Π] of (9.3). We find
H = Hn3 6=0 +Hn3=0, where

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

[
Πa
ki

Π∗aki + Π3
ki

Π∗3ki + k2
1(A2

ki
A∗2ki +A3

ki
A∗3ki ) + k2

2(A1
ki
A∗1ki +A3

ki
A∗3ki )

+ k2
3(A1

ki
A∗1ki +A2

ki
A∗2ki )− k2k3(A2

ki
A∗3ki +A3

ki
A∗2ki )

− k1k3(A1
ki
A∗3ki +A3

ki
A∗1ki )− k1k2(A1

ki
A∗2ki +A2

ki
A∗1ki )

]
, (9.14)

and

Hn3=0 =
1

2

∑
na∈Z2

Π3
ka,0Π∗3ka,0 + k2

⊥A
3
ka,0A

∗3
ka,0, (9.15)

where k⊥ =
√
kaka. Note that, because of Neumann conditions, there is also a ni = 0 mode, contributing

to the Hamiltonian as a free particle. Indeed, on denoting p ≡ Π3
0,

Hn3=0 = Hni=0 +
1

2

∑′

na∈Z2

Π3
ka,0Π∗3ka,0 + k2

⊥A
3
ka,0A

∗3
ka,0, Hni=0 =

p2

2
. (9.16)

As remarked in section 7.3, since we will ultimately be concerned about the partition function in the
large area of the plates limit, the contribution of Hni=0 will be negligible. However, if one is interested in
considering metallic plates equipped with an electric charge distribution the zero mode p will also give a
non-vanishing contribution to the partition function in the large area limit [224,225].

Applying the Gauss law constraint and the Coulomb gauge condition ∂iφ
i = 0 to the mode expansions
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(9.10)-(9.11) we get,

φ3
ki

= −ka
k3
φaki , φ∗3ki = −ka

k3
φ∗aki , k3 6= 0. (9.17)

Note that the k3 = 0 modes automatically satisfy the constraint and gauge conditions. Inserting the rela-
tions of (9.17) into Hn3 6=0 we get

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

Π1
ki

Π∗1ki

(
1 +

k2
1

k3
3

)
+ Π2

ki
Π∗2ki

(
1 +

k2
2

k3
3

)
+ Π1

ki
Π∗2ki

k1k2

k2
3

+ Π∗1kiΠ
2
ki

k1k2

k2
3

+ k2

[
A1
ki
A∗1ki

(
1 +

k2
1

k3
3

)
+A2

ki
A∗2ki

(
1 +

k2
2

k3
3

)
+A1

ki
A∗2ki

k1k2

k2
3

+A∗1kiA
2
ki

k1k2

k2
3

]
, (9.18)

where k =
√
kiki. Contrarily to (9.14), Hn3 6=0 in (9.18) is a quadratic form expressed only in terms of

physical modes, satisfying the constraint and the gauge condition. In fact, in this expression appear only
the two physical components of the electromagnetic field. It can be more conveniently rewritten as

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

Π∗aki Maa′(ki) Πa′
ki

+ k2A∗aki Maa′(ki)A
a′
ki
, Maa′(ki) =


1 +

k2
1

k2
3

k1k2

k2
3

k1k2

k2
3

1 +
k2

2

k2
3

 . (9.19)

We now proceed to diagonalize the quadratic form in (9.19) and hence the matrix Maa′(ki). Note that
det[Maa′(ki)] = k2/k2

3 and hence it is always non-vanishing as long as ki 6= 0. The eigenvalues of Maa′(ki)
are λH = 1 and λE = k2/k2

3. The corresponding properly normalized eigenvectors are

φHki =
1

k⊥
εabk

bφaki , φEki =
1

k3

k

k⊥
kaφ

a
ki
, (9.20)

satisfying the reality and parity conditions

φHka,k3
= φ∗H−ka,k3

, φEka,k3
= φ∗E−ka,k3

, φHka,−k3
= −φHka,k3

, φEka,−k3
= φHka,k3

, (9.21)

inherited from those of φiki in (9.13). Further, on denoting

φEka,0 ≡ −φ
3
ka,0, (9.22)

the full Hamiltonian, including the n3 = 0 sector, becomes H = HH +HE with

HH =
1

2

∑
na∈Z2,n3∈N

ΠH
ki

Π∗Hki + k2AHkiA
∗H
ki
, HE =

p2

2
+

1

2

∑′

na∈Z2,n3∈N0

ΠE
ki

Π∗Eki + k2AEkiA
∗E
ki
, (9.23)
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where N0 = N ∪ {0} and where we included the ni = 0 mode in HE . Hence, the total Hamiltonian is
the sum of two Hamiltonians of a scalar field. We denote φH and φE the H and E fields and, comparing
with (D.5) and (D.12), they satisfy Dirichlet and Neumann conditions in x3 = 0, L, respectively. This
comes from the fact that the in HE there is an additional n3 = 0 mode, coming from the Neumann basis
element eNka,0(x), which is absent in HH . Therefore the physical degrees of freedom of electromagnetism
in the Casimir setup are encoded into two scalar fields, one satisfying Dirichlet and the other Neumann
conditions. Introducing an index α = H,E the Poisson bracket on the reduced phase space are

{Aαki ,Π
∗β
k′i
} = δαβ

∏
i

δnin′i , {AEka,0,Π
∗E
k′a,0
} =

∏
a

δnan′a , {p, q} = 1, (9.24)

where we introduced q ≡ AE0 . These brackets are automatically satisfied if the modes φaki in the full phase
space satisfy the Dirac bracket

{Aaki ,Π
∗b
k′i
}∗ =

∏
i

δnin′i

(
δab − kakb

k2

)
, (9.25)

Furthermore, from (9.24) and (9.25) it is possible to derive the other bracket as

{A3
ki
,Π∗3k′i

}∗ =
∏
i

δnin′i
k2
⊥
k2
, {Aaki ,Π

∗3
k′i
}∗ = {A3

ki
,Π∗ak′i

}∗ = −
∏
i

δnin′i
kak3

k2
, (9.26)

so that, putting together (9.25) and (9.26) we have

{Alki ,Π
∗m
k′i
}∗ =

∏
i

δnin′i

(
δlm − klkm

k2

)
. (9.27)

9.3 Reduced phase space II: polarization vectors and Bromwich-Borgnis fields

We consider the basis of vectors in momentum space (~eH , ~eE , ~e‖) = (~eα, ~e‖) = (~eA), where α = H,E as in
the previous section and A = α, ‖, satisfying

~e‖ =
~k

k
, ~eH × ~eE = ~e‖, ~k × ~eα = kεα

β~eβ, ~k · ~eα = 0, (9.28)

together with the completeness and orthonormality relations

eA
ieAj = δij , eA

ieBi = δAB. (9.29)

The basis is defined as long as ki 6= 0. The vectors ~eA are referred to as polarization vectors.
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Figure 19: The decomposition of a vector ~φki in the polarization vector basis (~eA).

Any vector field ~φki = (φaki , φ
3
ki

) in momentum space can be expanded as (see Figure 19)

φaki = eα
aφαki + e‖

aφ
‖
ki
, φ3

ki
= eα

3φαki + e‖
3φ
‖
ki
. (9.30)

The inverse of these relations is

φαki = eαaφ
a
ki

+ eα3φ
3
ki
, φ

‖
ki

= e‖aφ
a
ki

+ e‖3φ
3
ki
. (9.31)

It is easy to show that the Hamiltonian Hn3 6=0 in (9.14) can be more compactly written as

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

Πki jΠ
∗j
ki

+ (~k × ~Aki)j(
~k × ~A∗ki)

j , (9.32)

Using the third property in (9.28) and since Πki jΠ
∗j
ki

= Πki AΠ∗Aki , we have

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

Πki AΠ∗Aki + k2Aki αA
∗α
ki
, (9.33)

Note that the Gauss Law constraint and the Coulomb gauge condition can be written as

∂iφ
i = −

√
2

V

∑
na∈Z2,n3∈N

k φ
‖
ki
eikax

a
sin
(
k3x

3
)
. (9.34)
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Therefore the reduced phase space in the polarization vectors formalism is defined by φ
‖
ki

= 0. This is com-
patible with the usual statement according to which the components of the electromagnetic field parallel
to the momentum are pure gauge degrees of freedom and hence not physical. The Hamiltonian Hn3 6=0 in
the reduced phase space is

Hn3 6=0 =
1

2

∑
na∈Z2,n3∈N

(Πki αΠ∗αki + k2Aki αA
∗α
ki

). (9.35)

The n3 = 0 mode contributes to the magnetic and electric fields as

Ba(0) =
i√
V

∑
na∈Z2

εabkbA
3
ka,0e

ikaxa , Π3(0) =
1√
V

∑
na∈Z

Π3
ka,0e

ikaxa . (9.36)

Thus, on defining analogously to (9.22) the k3 = 0 modes as

φ3
ka,0 ≡ −φ

E
ka,0, ki 6= 0 (9.37)

we have

Hn3=0 =
p2

2
+

1

2

∑′

na∈Z2

(ΠE
ka,0Π∗Eka,0 + k2AEka,0A

∗E
ka,0), (9.38)

and hence, the full Hamiltonian in the reduced phase space is again

H = HH +HE , (9.39)

where Hα were defined in (9.23). The Poisson bracket on the reduced phase space are thus the same as
those in (9.24).

So far, we have not yet specified the form of the ~eα vectors. Consider the following choice of ~eα (see
e.g. [255]),

~eH =
1

k⊥
(k2,−k1, 0), ~eE =

1

kk⊥
(k1k3, k2k3,−kaka). (9.40)

It is easy to verify that they satisfy all the properties in (9.28). Using (9.30) and (9.31), we have

φHki =
εabk

b

k⊥
φaki , φEki =

kak3

k⊥k
φaki −

k⊥
k
φ3
ki
, φ‖ =

ki
k
φiki , (9.41)

φaki =
εabkb
k⊥

φHki +
kak3

k⊥k
φEki +

ka

k
φ
‖
ki
, φ3

ki
= −k⊥

k
φEki +

k3

k
φ
‖
ki
, (9.42)
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The reality and parity conditions are, using (9.13)

φHka,k3
= φ∗H−ka,k3

, φEka,k3
= φ∗E−ka,k3

, φHka,−k3
= −φHka,k3

, φEka,k3
= φEka,−k3

, (9.43)

in agreement with what was found using the algebraic approach in (9.21). Note also that the k3 = 0
modes, using (9.41) are automatically given by φ3

ka,0
= −φEka,0, consistently with the definitions in (9.22)

and (9.37). Using (9.41) and (9.42) we obtain, in the reduced phase space φ
‖
ki

= 0,

φHki =
1

k⊥
εabk

bφaki , φEki =
1

k3

k

k⊥
kaφ

a
ki
, (9.44)

again in agreement with (9.20). Therefore, using the polarization vectors technique, we recover all the re-
sults obtained in section 9.2 with the algebraic method. However, because of the geometric properties of the
polarization vectors, it is easier to attach the problem in this approach. This will be fundamental in section
9.1, when we will deal with the linearized gravitational field and we will exclusively use the polarization ten-
sors formalism. To conclude, once again, we see that the physical degrees of freedom of electromagnetism
with Casimir boundary conditions can be organized in a way so that the theory is described by a sum of
two scalar fields, the H and E fields, satisfying respectively Dirichlet and Neumann conditions in x3 = 0, L.

For ki 6= 0 we define the oscillator variables aαki as

aαki =

√
k

2

(
Aαki +

i

k
Πα
ki

)
, {aαki , a

∗β
k′i
} = −iδαβ

∏
i

δnin′i , (9.45)

aEka =

√
k⊥
2

(
AEka,0 +

i

k⊥
ΠE
ka,0

)
, {aEka , a

∗E
k′a
} = −i

∏
a

δnan′a . (9.46)

The Hamiltonian in (9.39) reads, using the just defined oscillator variables

H =
p2

2
+

1

2

∑
na∈Z2,n3∈N

k(a∗Hki a
H
ki

+ aHkia
∗H
ki

) +
1

2

∑′

na∈Z2,n3∈N0

k(a∗Eki a
E
ki

+ aEkia
∗E
ki

). (9.47)

Using (9.42), we have

φa = i

√
2

V

∑
na∈Z2,n3∈N

(
εabkb
k⊥

φHki +
kak3

k⊥k
φEki +

ka

k
φ
‖
ki

)
sin
(
k3x

3
)
eikax

a
, (9.48)

φ3 =
∑
na∈Z2

[
− 1√

V
φEka,0 +

√
2

V

∑
n3∈N

(
− k⊥

k
φEki +

k3

k
φ
‖
ki

)
cos
(
k3x

3
)]
eikax

a
. (9.49)
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Notice that the map between field modes in (9.42) and consequently that in (9.48) is algebraic in momen-
tum space but non-local in coordinate space, since it involves inverse derivatives. In terms of the oscillators
in (9.45) and (9.46) we have

Aa = i

√
2

V

∑
na∈Z2,n3∈N

[(
εabkb√
2kk⊥

aHkie
ikaxa +

kak3

k⊥k
√

2k
aEkie

ikaxa − c.c.

)
+
ka

k
A
‖
ki
eikax

a

]
sin
(
k3x

3
)
, (9.50)

Πa =

√
2

V

∑
na∈Z2,n3∈N

[(√
kεabkb√
2k⊥

aHkie
ikaxa +

kak3√
2kk⊥

aEkie
ikaxa + c.c.

)
+ i

ka

k
Π
‖
ki
eikax

a

]
sin
(
k3x

3
)
, (9.51)

and

A3 =
q√
V
− 1√

V

∑′

na∈Z2

1√
2k⊥

(aEkae
ikaxa + c.c.) (9.52)

+

√
2

V

∑
na∈Z2n3∈N

[
− k⊥√

2kk
(aEkie

ikaxa + c.c.) +
k3

k
A
‖
ki
eikax

a

]
cos
(
k3x

3
)
, (9.53)

Π3 =
p√
V

+
i√
V

∑′

na∈Z2

√
k⊥
2

(aEkae
ikaxa − c.c.)

+

√
2

V

∑
na∈Z2n3∈N

[
ik⊥√

2k
(aEkie

ikaxa − c.c.) +
k3

k
Π
‖
ki
eikax

a

]
cos
(
k3x

3
)
. (9.54)

9.3.1 Bromwich-Brognis fields

We define the real fields

ϕH =

√
2

V

∑
na∈Z2,n3∈N

1√
2kk⊥

(aHkie
ikaxa + c.c.) sin

(
k3x

3
)
, (9.55)

ϕE = − 1√
V

∑′

na∈Z2

1√
2k⊥k

2
⊥

(aEkae
ikaxa + c.c.)−

√
2

V

∑
na∈Z2,n3∈N

1√
2kkk⊥

(aEkie
ikaxa + c.c.) cos

(
k3x

3
)
, (9.56)
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and the momenta

πH = −i
√

2

V

∑
na∈Z2,n3∈N

√
k√

2k⊥
(aHkie

ikaxa − c.c.) sin
(
k3x

3
)
, (9.57)

πE =
i√
V

∑′

na∈Z2

√
k⊥√
2k2
⊥

(aEkae
ikaxa − c.c.) + i

√
2

V

∑
na∈Z2,n3∈N

1√
2kk⊥

(aEkie
ikaxa − c.c.) cos

(
k3x

3
)
. (9.58)

We denote by ψα either ϕα or πα. ψH and ψE satisfy Dirichlet and Neumann conditions in x3 = 0, L,
respectively. We have

Aa = εab∂bϕ
H + ∂a∂3ϕ

E + i

√
2

V

∑
na∈Z2,n3∈N

kaA
‖
ka,k3

eikax
a

sin
(
k3x

3
)
, (9.59)

Πa = εab∂bπ
H + ∂a∂3π

E + i

√
2

V

∑
na∈Z2,n3∈N

kaΠ
‖
ka,k3

eikax
a

sin
(
k3x

3
)
, (9.60)

A3 =
q√
V
− (∆− ∂2

3)ϕE +

√
2

V

∑
na∈Z2n3∈N

k3

k
A
‖
ki
eikax

a
cos
(
k3x

3
)
, (9.61)

Π3 =
p√
V
− (∆− ∂2

3)πE +

√
2

V

∑
na∈Z2n3∈N

k3

k
Π
‖
ki
eikax

a
cos
(
k3x

3
)
, (9.62)

Ba = −εab∂b∆ϕE + ∂a∂3ϕ
H , (9.63)

B3 = −(∆ + ∂2
3)ϕH . (9.64)

In the reduced phase space φ
‖
ki

= 0, one obtains

Aa = εab∂bϕ
H + ∂a∂3ϕ

E , Πa = εab∂bπ
H + ∂a∂3π

E , (9.65)

A3 =
q√
V
− (∆− ∂2

3)ϕE , Π3 =
p√
V
− (∆− ∂2

3)πE , (9.66)

Ba = −εab∂b∆ϕE + ∂a∂3ϕ
H , B3 = −(∆ + ∂2

3)ϕH , (9.67)

which is the original construction in [256,257] (see also [213,229,258] for related modern discussions). Note
that from (9.65)-(9.67) ∂iφ

i = 0 i.e. the Coulomb gauge and the Gauss law constraint are automatically
satisfied. Also, if φa and φ3 satisfy Dirichlet and Neumann conditions in x3 = 0, L, it follows immediately
that ϕH and ϕE satisfy Dirichlet and Neumann conditions as well. Equations (9.65)-(9.67) emphasize that
the true physical degrees of freedom of electromagnetism in the Casimir setup can be encoded in the pair
of scalar fields (ϕH , ϕE) whose boundary conditions automatically follow from those of Ai.
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9.4 Single scalar field formulation

In sections 9.2 and 9.3 we have seen that the dynamics of electromagnetism in the Casimir setup is equiv-
alently described by a pair of scalar fields, one satisfying Dirichlet and the other Neumann conditions on
the metallic plates. In practice, the standard electromagnetic action

S[A] = −1

4

∫
V

d4 xFµνF
µν , (9.68)

after having taken into account the right boundary conditions, fixed the radiation gauge and solved the
Gauss law constraint becomes equivalent to

S[φH ] + S[φE ] = −1

2

∫
V

d4x ∂µφ
H∂µφH − 1

2

∫
V

d4x ∂µφ
E∂µφE , (9.69)

with boundary conditions

φH(t, xa, 0) = 0 = φH(t, xa, L), ∂3φ
E(t, x)|x3=0 = 0 = ∂3φ

E(t, x)|x3=L, (9.70)

and periodic boundary conditions in the xa directions. This shows that, when dealing with finite bound-
aries, the usual statement that polarization effects just double the number of modes can turn out to be
inaccurate. Now we proceed to present an alternative reformulation of electromagnetism in the Casimir
setup in terms of a single scalar field which will be fundamental for the computation of the partition
function.

We start by defining new field and momentum modes Φki and Πki as

Ψki =
φEki − iφ

H
ki√

2
, k3 6= 0 Ψka,0 = φEka,0, (9.71)

where by Ψki we denote either Φki or Πki , satisfying the reality condition

Ψ∗−ki =
φ∗E−ka,−k3

+ iφ∗H−ka,−k3√
2

(9.43)
=

φEki − iφ
H
ki√

2
= Ψki , Ψ∗−ka,0 = Ψka,0. (9.72)

It is immediate to verify that the Hamiltonian in (9.39), in terms of Φki and Πki is

H =
1

2

∑
ni∈Z3

ΠkiΠ
∗
ki

+ k2ΦkiΦ
∗
ki
, (9.73)

or,

H =
p2

2
+
∑′

ni∈Z3

k(a∗kiaki + akia
∗
ki

), (9.74)
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in terms of the oscillator variables

aki =

√
k

2

(
Φki +

i

k
Πki

)
, ki 6= 0. (9.75)

Note that now n3 ∈ Z as well. Comparing H in (9.74) and (9.75) with that in (7.59) and (7.61), we see
that it is the Hamiltonian of a single real scalar field Φ(t, x) satisfying periodic boundary conditions in all
directions and, in particular along x3 with periodicity 2L. This comes from the simple observation that
k3 = π

Ln3 = 2π
2Ln3. Therefore, the field Φ and its conjugate momentum can be decomposed in the basis

adapted to the volume V ′ = 2V as

Φ =
1√
V ′

∑
ni∈Z3

Φkie
ikix

i
=

q√
V ′

+
1√
V ′

∑
ni∈Z3

1√
2k

(akie
ikix

i
+ a∗kie

−ikixi), (9.76)

Π =
1√
V ′

∑
ni∈Z3

Πkie
ikix

i
=

p√
V ′
− i√

V ′

∑
ni∈Z3

√
k

2
(akie

ikix
i − a∗kie

−ikixi). (9.77)

Figure 20: The H (in red) and E (in blue) modes φHk and φEk satisfying Dirichlet and Neumann conditions
in x3 = 0, L are equivalent to a single Ψk satisfying periodic conditions on the double interval of length
2L.

By “gluing” together the H and E fields, we have further mapped the dynamics of the full electromagnetic
field to that of a single scalar field governed by the standard action

S[Φ] = −1

2

∫
V ′

d4x ∂µΦ∂µΦ, (9.78)
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with

Φ(t, xa, 0) = Φ(t, xa, 2L). (9.79)

and periodic boundary conditions along the xa directions, as represented in Figure 20. Equations (9.78)
and (9.79) replace (9.69) and (9.70), respectively.

Before concluding this section it is worth pointing out that, as remarked in the end of section 7.4 and
in section 8.1, the correct black-body and Casimir energies for the electromagnetic field can be obtained by
those of a scalar field in (7.82) and (8.8) just by setting d = 3 and replacing L by 2L. This is compatible
with the single scalar field formulation we have just presented. Further, the black body and the Casimir
energies are mapped one into the other by the temperature inversion symmetry considered in chapter 8,
as we discuss in the next section.

9.5 Modular covariance in finite temperature Casimir effect

Here we turn to investigate the properties of the partition function of electromagnetism in the above de-
scribed setup. Having completely reformulated the theory in terms of a single scalar field living on the
Euclidean manifold M = T2 × R2, where T2 = S1

β × S1
2L, the result for the partition function follows di-

rectly from that in section 8 in (8.59), for d = 3 with the substitution L→ 2L. Consequently, the relevant
modular parameter to consider here is

τ =
β

2L
(µ+ i), (9.80)

in terms of which the partition function Z(τ, τ̄) = Tr e−β(Ĥ−iµP̂3) reads [223]

logZ(τ, τ̄) =
A

8L2τ2π2
f2(τ), (9.81)

and it transforms covariantly with weight 2 under modular transformations,

logZ(τ ′, τ̄ ′) = |cτ + d|2 logZ(τ, τ̄), τ ′ =
aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z)/Z2. (9.82)

This result consistently enhances the temperature inversion symmetry discovered in [217] to the full set
of SL(2,Z)/Z2 transformations. Indeed, as shown in Appendix F.4, for µ = 0, the modular parameter
becomes purely complex, τ = iτ2, and the partition function in (9.82) can be expressed in terms of the
Epstein zeta function as

logZ(τ2) =
Aτ2

2π2L2
ζ(2, τ2

2 , 1), logZ(τ2) =
1

τ2
2

logZ

(
1

τ2

)
. (9.83)
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Here, the observables used for the computation of Z(τ, τ̄) are the Hamiltonian Ĥ, that is the quantum
operator corresponding to H in (9.74) including the electromagnetic Casimir energy Eem

0 of (8.9), i.e.47

H[Φ,Π] =
1

2

∫
V ′

d3x(Π2 + ∂iΦ∂
iΦ), Ĥ =

p̂2

2
+
∑′

ni∈Z3

k â†ki âki −
π2A

720L3
, (9.84)

and P̂3 is the quantized linear momentum of the field Φ in the compact x3 direction,

P3[Φ,Π] = −
∫
V ′

d3xΠ∂3 Φ, P̂3 =
∑′

ni∈Z3

k3â
†
ki
âki . (9.85)

Note however that there is subtlety regarding the interpretation of P3. While H can be equivalently in-
terpreted as the Hamiltonian of the electromagnetic field in (9.3) or as that of the single scalar field Φ in
(9.84), it would be wrong to draw the same conclusions for P3. Indeed, it is certainly true that it is the lin-
ear momentum of the single scalar field along x3, as emphasised in (9.85) but it does not coincide with the
standard momentum of the electromagnetic field in the x3 direction, which is the observable discussed in
almost all other investigation of the Casimir effect. In terms of the electric and magnetic fields, it is given by

P em
3 =

∫
V

d3x ( ~E × ~B)3, (9.86)

and it easy to show that it does not match with P3. Therefore, a natural question to ask at this stage
regards the electromagnetic interpretation of P3, which is the only observable that allows to consistently
add a real part to the modular parameter, enhancing the inversion symmetry of the partition function to
full modular covariance. The key is to use the map we have constructed in the previous sections between
the original electromagnetic field modes φiki and the scalar field modes Ψki in momentum space. As shown

in Appendix G.1, the observable P3 is, in terms of the original electromagnetic variables ~A and ~Π is given
by the gauge-invariant expression,

P3 =

∫
V

d3x ∂3
~B · 1√

−∆
~Π =

∫
V

d3x(~∇× ∂3
~A) · 1√

−∆
~Π =

∑
na∈Z2,n3∈N

k3(Π∗Hki A
E
ki
−Π∗Eki A

H
ki

)

= i
∑

na∈Z2,n3∈N

k3(a∗Hki a
E
ki
− a∗Eki a

H
ki

). (9.87)

Note that this observable is usually not considered in the context of the Casimir effect and this is explains
why full modular covariance, that can be interpreted as a suitable enhancement of the standard temper-
ature inversion symmetry discovered in [217], has never been previously discussed in the literature. The
non-locality of the expression in (9.87) is a direct consequence of the non-locality in coordinate space of
the maps (9.41) and (9.42). Comparing the expression of P3 with that of the spin angular momentum of
the electromagnetic field along the x3 direction

47Note that the Casimir energy in (9.84) reproduces exactly the Casimir force [209] F em = − ∂E
em
0
∂L

= − π2A
240L4 .
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J3 =

∫
V

d3x εabA
a
⊥Πb
⊥ =

∑
na∈Z2,n3∈N

k3

k
(Π∗Eki A

H
ki
−Π∗Hki A

E
ki

) = −i
∑

na∈Z2,n3∈N

k3

k
(a∗Hki a

E
ki
− a∗Eki a

H
ki

), (9.88)

where φi⊥ are given in (9.50)-(9.54) having set φ
‖
ki

= 0, we see that P3 has the same mode expansion of J3

up to an overall sign and a multiplication of each term in the sum by k. For what concerns the action of
P3 on the reduced phase space variables, we have

{P3,Φ} = ∂3Φ, (9.89)

on the single scalar field Φ and

{P3, A
H} = ∂3A

E , {P3, A
E} = ∂3A

H , (9.90)

on the E and H fields. Note how the action of P3 on them, besides generating shifts in the x3 direction,
flips their “polarization”.

Having the complete result for the partition function in (9.81) in terms of the real Eisenstein series satis-
fying (9.82), it is possible to extend the considerations done in 8.4 also to the case of electromagnetism in
the Casimir setup. In particular, for µ = 0 we get in the low-temperature regime τ2 � 1,

logZ(τ, τ̄) =
A

L2

[
τ2
π2

360
+

1

τ2
2

ζ(3)

8π

]
+O(e−τ2), (9.91)

S(β) =
A

β2

ζ(3)

2π
+O(e−τ2), (9.92)

and in the high-temperature regime τ2 � 1,

logZ(τ, τ̄) =
A

L2

[
1

τ3
2

π2

360
+
ζ(3)

8π

]
+O(e

− 1
τ2 ), (9.93)

S(β) =
V

β3

4π2

45
+O(e

− 1
τ2 ). (9.94)

Note that in the low-temperature regime the entropy scales as the area of the metallic plates and not as
the volume of the system. It has already been shown that the n3 = 0 mode of the mode expansion of the
scalar field Φ is the one that is responsible for this contribution. Tracing back the origin of this mode from
the electromagnetic analysis, it is immediate to check that it comes from the n3 = 0 mode of the expansion
of the electromagnetic conjugate pair φ3 in the direction orthogonal to the plates. Ultimately, it comes
from the Neumann boundary conditions in (9.5). Hence, the electromagnetic Casimir effect just presented
provides, in the low-temperature regime, an example of a microscopic model whose thermodynamic entropy
scales as the area and not as the volume of the system and it is due to a specific sector of the theory that
comes about because of non-trivial boundary conditions on the metallic plates.
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Figure 21: The leading low-entropy contribution in (9.91) is due to the n3 = 0 photons that oscillate on
planes parallel to the plates.

9.6 Gravitons in a Casimir box

Now we turn to describe what are the features of the linearized gravitational field around Minkowski
spacetime with Casimir-type boundary conditions [226]. Again, we consider the same setup as the one just
discussed in the electromagnetic case. We do not address here the problem of whether one may in principle
confine gravitons to a box in order to achieve thermal equilibrium [259–262]. Neither we speculate on the
physical meaning of perfect conductors for gravitons nor comment on the relation to a recent study of the
gravitational Casimir effect at zero temperature with non-idealized boundary conditions [263]. We will
limit ourselves to deriving the exact analytic and modular covariant result that allows one to access the
qualitatively very different high and low temperature expansions, in line with what has been discussed for
electromagnetism.

The Hamiltonian formulation of massless spin 2 fields may be obtained by linearizing the ADM formulation
of full general relativity around flat space. The first order action is

SH [h,Π] =

∫
dt

[ ∫
V

d3x
(
Πij ḣij − niHi − nH⊥

)
−H[h,Π]

]
, (9.95)

where (hij ,Π
ij) is the conjugate pair and where ni = h0i and n = −1

2h00 are the linearized shift and lapse
and appear in SH as Lagrange multipliers implementing the constraints

Hi = −2∂jΠij = 0, H⊥ = ∆h− ∂i∂jhij = 0, (9.96)

and where H is the standard Pauli-Fierz Hamiltonian

H[h,Π] =

∫
V

d3x

(
ΠijΠij −

1

2
Π2 +

1

4
∂lhij∂lhij −

1

2
∂ih

ij∂lhlj +
1

2
∂ih∂jhij −

1

4
∂ih∂ih

)
. (9.97)
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Indices are lowered and raised with the flat space metric δij and its inverse, h = hii, Π = Πi
i. We choose

to work in the gauge48

h00 = 0, h0i = 0, Gi = −2∂jhij = 0, G⊥ = ∆Π− ∂i∂jΠij = 0. (9.98)

We remark that the above choice does not eliminate all the gauge redundancy and we still have the freedom
of performing residual gauge transformations preserving the conditions in (9.98). Note also that the choices
Gi = 0 and G⊥ = 0 can be obtained from Hi = 0 and H⊥ by exchanging the roles of Πij and hij . In analogy
with the electromagnetic case, we define Casimir-type boundary conditions by requiring that (hab,Π

ab) and
(h33,Π

33) satisfy Dirichlet conditions, while (ha3,Π
a3) satisfy Neumann conditions on the plates. Explicitly,

Πab(t, xa, 0) = 0 = Πab(t, xa, L), hab(t, x
a, 0) = 0 = hab(t, x

a, L), (9.99)

Π33(t, xa, 0) = 0 = Π33(t, xa, L), h33(t, xa, 0) = 0 = h33(t, xa, L), (9.100)

∂3Πa3(t, x)|x3=0 = 0 = ∂3Πa3(t, x)|x3=L, ∂3ha3(t, x)|x3=0 = 0 = ∂3ha3(t, x)|x3=L. (9.101)

Note that, a priori, imposing boundary conditions on the gauge-dependent quantities Πij and hij might
be dangerous. Indeed, one could spoil (9.99)-(9.101) by acting on them with the residual gauge trans-
formations preserving (9.98). More correctly, boundary conditions should be imposed on gauge-invariant
quantities. However, it can be shown that it is always possible to further restrict the form of the param-
eters ξi generating residual gauge transformations in order to reach (9.99)-(9.101). This will be clearer a
posteriori, once we have identified the reduced phase space of the theory in section 9.2. Therefore, the
conjugate variables admit the mode expansions

φab(t, x) =

√
2

V

∑
na∈Z2,n3∈N

φabki sin
(
k3x

3
)
eikax

a
, (9.102)

φ33(t, x) =

√
2

V

∑
na∈Z2,n3∈N

φ33
ki

sin
(
k3x

3
)
eikax

a
, (9.103)

φa3(t, x) = −i
∑
na∈Z2

[
1√
V
φa3
ka,0 +

√
2

V

∑
n3∈N

φa3
ki

cos
(
k3x

3
)]
eikax

a
. (9.104)

where we have used the Dirichlet and Neumann bases in (9.7) and where φabki = (eDki , φ
ab), φ33

ki
= (eDki , φ

33)

and φa3
ki

= (eNki , φ
a3). The modes satisfy the reality and parity in the x3 direction conditions

48Bear in mind that the gauge parameters ξµ act on the conjugate pair (hij ,Π
ij) as δξhij = ∂iξj + ∂jξi and as δξΠ

ij =
(∂i∂j − δij∆)ξ0.
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φabka,k3
= φ∗ab−ka,k3

, φ33
ka,k3

= φ∗33
−ka,k3

, φa3
ka,k3

= −φ∗a3
−ka,k3

, (9.105)

φabka,k3
= −φabka,−k3

, φ33
ka,k3

= −φ33
ka,−k3

, φa3
ka,k3

= φa3
ka,−k3

. (9.106)

In terms of the modes φijki , the Pauli-Fierz Hamiltonian in (9.97) reads

HPF = HPFn3 6=0 +HPFn3=0, (9.107)

where

Hn3 6=0 =
∑

na∈Z2,n3∈N

[
ΠijΠ∗ij −

1

2
ΠΠ∗ +

1

4
k2hijh

∗ij − 1

2
kik

lhijh∗lj +
1

2
kikjhh∗ij −

1

4
k2hh∗

]
, (9.108)

and

Hn3=0 =
∑
na∈Z2

[
2Πa3Π∗a3 +

1

2
k2
⊥ha3h

∗a3 − 1

2
kak

bha3h∗b3

]
. (9.109)

In the above expressions, for notational simplicity we omitted the ki dependence of the Fourier coefficients.
Once again, because of the Neumann conditions in (9.101) there is a contribution to Hn3=0 coming from
the ni = 0 modes, which we denote by Hni=0. Explicitly, introducing pa ≡ 2Πa3

0 , we have

Hn3=0 = Hni=0 +
∑′

na∈Z2

[
2Πa3Π∗a3 +

1

2
k2
⊥ha3h

∗a3 − 1

2
kak

bha3h∗b3

]
, Hni=0 =

pap
a

2
. (9.110)

Contrarily to what happens in the electromagnetic case, here the ni = 0 sector is characterized by two free
particles.

Now, in order to identify the reduced phase space of the theory we should solve the constraints and
gauge conditions. Similarly to the electromagnetic case, this would boil down to find certain relations
between the modes φijki specifying the constraint hypersurface. Injecting these relations in the Hamiltonian
in (9.107) and (9.108), we would find a non-diagonal quadratic form, whose eigenvectors would give the
physical degrees of freedom of the theory. Here, we do not pursue this approach and instead we choose to
work directly with the polarization tensors.

Consider the basis (eA
i) of polarization vectors defined in (9.28) and (9.40). Let Ξ = (TTs, T, LTα,LL),

with s = (+,×). When ki 6= 0, an orthonormal basis for symmetric tensors (eΞ
ij) can be constructed as

follows (see, e.g. [264,265]).
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1. The transverse-traceless (TT) tensors eTTs
ij are defined as

eTT+
ij =

1√
2

(eH
ieH

j − eEieEj), eTT×
ij =

1√
2

(eH
ieE

j + eE
ieH

j), (9.111)

and they satisfy

ki eTTs
ij = 0, δij eTTs

ij = 0; (9.112)

2. the transverse (T) tensor eT
ij is defined as

eT
ij =

1√
2

(
δij − e‖ie‖j

)
, (9.113)

satisfying

ki eT
ij = 0, δij eT

ij =
√

2; (9.114)

3. the longitudinal-traceless (LT) tensors are

eLTα
ij =

1√
2

(e‖
ieα

j + eα
ie‖

j), (9.115)

satisfying

kieLTα
ij =

k√
2
eα
j , δijeLTα

ij = 0; (9.116)

4. the longitudinal (LL) tensor is defined as

eLL
ij = e‖

ie‖
j , (9.117)

and it satisfies

kieLL
ij = kj , δijeLL

ij = 1. (9.118)

The above basis basis is orthonormal and complete,

eΞ
ijeΓ

ij = δΓ
Ξ, eΞ

ijeΞ
mn =

1

2
(δimδ

j
n + δinδ

j
m). (9.119)

The explicit expressions for the basis elements (eΞ
ij) are given in Appendix H. The decompositions of the

Fourier components φij of the conjugate pair in (eijΞ ) and their inverse are

φijki = eΞ
ijφΞ

ki
, φΞ

ki
= eΞ

ijφ
ij
ki
. (9.120)

From (H.1)-(H.7), it is immediate to verify that the reality conditions on the components φΞ
ki

are, using
(9.105)

φTTska,k3
= φ∗TTs−ka,k3

, φTka,k3
= φ∗T−ka,k3

, φLTαka,k3
= φ∗LTα−ka,k3

, φLLka,k3
= φ∗LL−ka,k3

, (9.121)

149



whereas the parity conditions are, using (9.106),

φTT+
ka,k3

= −φTT+
ka,−k3

, φTT×ka,k3
= −φTT×ka,−k3

, φTka,k3
= −φTka,−k3

(9.122)

φLTHka,k3
= −φLTHka,−k3

, φLTEka,k3
= φLTEka,−k3

, φLLka,k3
= −φLLka,−k3

. (9.123)

In terms of the fields φΞ
ki

, the Hamiltonian Hn3 6=0 is

Hn3 6=0 =
∑

na∈Z2,n3∈N

[
πTTsπ∗TTs + πLTλπ∗LTλ +

1

2
πLLπ∗LL −

1√
2

(πTπ∗LL + π∗Tπ
LL)

+
1

4
k2(hTTsh

∗TTs − hTh∗T )
]
. (9.124)

9.7 Reduced phase space and single scalar field formulation

We are now interested in studying the reduced phase space of the theory and therefore in solving the
constraints in (9.97) and the gauge conditions in (9.98).

We start by considering the n3 6= 0 sector. In Fourier space, equations (9.97) and (9.98) are equiva-
lent to

Fa = −2i

√
2

V

∑
na∈Z2,n3∈N

k

(
eαa

φLTαki√
2

+ e‖aφ
LL
ki

)
eikax

a
sin
(
k3x

3
)

= 0, (9.125)

F3 = −2

√
2

V

∑
na∈Z2,n3∈N

k

(
eα3

φLTαki√
2

+ e‖3φ
LL
ki

)
eikax

a
cos
(
k3x

3
)

= 0, (9.126)

F⊥ = −
√

2

V

∑
na∈Z2,n3∈N

√
2k2φTkie

ikaxa sin
(
k3x

3
)

= 0, (9.127)

where by Fi and F⊥ we denoted either Hi or Gi and either H⊥ or G⊥. Contracting the first two equations
with eβ

i we see immediately that the above set of equations are equivalent to

φLTαki
= 0, φLLki = 0, φTki = 0, ki 6= 0. (9.128)

These relations are somehow expected because it is well-known that the longitudinal and trace components
of gravitons are pure gauge degrees of freedom and hence not physical.

150



In the n3 = 0 sector we have

F (0) 3 =
1√
V

∑′

na∈Z2

kaφ
a3
ka,0e

ikaxa = 0. (9.129)

The solution is

Πa3
ka,0 = εab

kb√
2k⊥

fka , ha3
ka,0 = εab

kb√
2k⊥

gka , ki 6= 0, (9.130)

with fka and gka complex numbers depending on ka. The normalization in (9.130) has been choosen for
later convenience. Note that the constraint F (0) 3 reduces the number of degrees of freedom in the n3 = 0
sector from two to one, as clear from equation (9.130). From the reality condition in (9.105), the we have

fka = f∗−ka , gka = g∗−ka . (9.131)

Taking into account (9.128) and (9.130), the Hamiltonian in the reduced phase space is given by H =
Hn3 6=0 +Hn3=0 where, from (9.124) we read

Hn3 6=0 =
∑

na∈Z2,n3∈N

ΠTTsΠ∗TTs +
1

4
k2hTTsh∗TTs, (9.132)

together with

Hn3=0 =
pap

a

2
+
∑′

na∈Z2

ff∗ +
1

4
k2
⊥gg

∗. (9.133)

We introduce the following notation for ki 6= 0:

Πs
ki
≡
√

2ΠTTs
ki

, hski ≡
1√
2
hTTski

, Π×ka,0 ≡
√

2fka , h×ka,0 ≡
1√
2
gka . (9.134)

The full Hamiltonian can be written as H = H+ +H×, with

H+ =
1

2

∑
na∈Z2,n3∈N

Π+
ki

Π∗+ki + k2h+
ki
h∗+ki , H× =

pap
a

2
+

1

2

∑′

na∈Z2,n3∈N0

Π×kiΠ
∗×
ki

+ k2h×kih
∗×
ki
. (9.135)

The Hamiltonian is again the sum of two Hamiltonians of a single scalar field. The only difference with
respect to the Hamiltonian of the electromagnetic field in (9.23) is the presence of an additional zero mode
that, in any case, will not contribute to partition function. Hence it would be slightly incorrect to say that
the + and × fields satisfy Dirichlet and Neumann conditions, respectively. The degrees of freedom in the
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reduced phase space of the theory satisfy the Poisson bracket

{hski ,Π
∗s′
k′i
} = δss

′∏
i

δnin′i , {h×ka,0,Π
∗×
k′a,0
} =

∏
a

δnan′a , {pa, qb} = δab. (9.136)

Repeating the same steps in (9.71)-(9.75) replacing E with × and H with +, it is possible to further
reformulate the theory in terms of a single scalar field Φ satisfying periodic boundary conditions on the
double volume V ′ = 2V , its Hamiltonian being

H =
pap

a

2
+
∑′

ni∈Z3

k(a∗kiaki + akia
∗
ki

). (9.137)

This shows that, even if Pauli-Fierz theory is described by the gauge invariant action,

S[h] =
1

2

∫
V

d4x

(
− 1

2
∂ρhµν∂

ρhµν + ∂µhνλ∂
νhµρ − ∂µhµν∂νh+

1

2
∂ρh∂

ρh

)
, (9.138)

the dynamics of the linearized gravitational field with Casimir-type boundary conditions, in the reduced
phase space and up to zero modes, can be rearranged in terms of a single scalar field Φ governed by the
action (9.78) with periodic boundary conditions on the double interval, as in (9.79), equivalently to what
happens for electromagnetism. The result for the partition function is again given by

logZ(τ, τ̄) =
A

8L2τ2π2
f2(τ), τ =

β

2L
(µ+ i), (9.139)

and the same considerations on high-/low- temperature dualities of section 9.5 apply here.

The main difference regards the expression of P3 that is needed to consistently add a real part to the
modular parameter in terms of the original variables (hij ,Π

ij). Its expression is most transparent in terms
of generalized vector calculus operations that feature prominently in the context of the Hamiltonian ap-
proach to duality invariance [266–270]. Therefore, we consider the action of the generalized curl ~∇× and
of the operator P on symmetric spacetime tensor φij , defined as

(~∇× φ)ij ≡ 1

2
(εilm∂

lφmj + εj lm∂
lφmi), (9.140)

(P φ)ij ≡ −∆φij + ∂i∂lφ
jl + ∂j∂lφ

il. (9.141)

Some properties and explicit expressions for the various components of the action of ~∇× and of P on sym-
metric tensors in Fourier space are given in Appendix G.2. From (G.32) we see that the gauge invariant
expression P3 in terms of the conjugate variables (hij ,Π

ij) is

P3 =

∫
V

d3x ∂3(~∇× h)ij
1

√
−∆

3 (P Π)ij =
∑

na∈Z2,n3∈N

k3(Π∗+ki h
×
ki
−Π∗×ki h

+
ki

)

= i
∑

na∈Z2,n3∈N

k3(a∗+ki a
×
ki
− a∗×ki a

+
ki

). (9.142)
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Also in the case of linearized gravity the non-locality in coordinate space of the maps in (9.120) reflects
into a non-locality of the gauge invariant expression of the observable P3 in (9.142) and, comparing its
expression with that of the spin angular momentum of the graviton in (G.35)

J3 =

∫
V

d3xΠij
TT (~e3 × hTT )ij =

∑
na∈Z2,n3∈N

k3

k
(Π∗×ki h

+
ki
−Π∗+ki h

×
ki

)

= −i
∑

na∈Z2,n3∈N

k3

k
(a∗+ki a

×
ki
− a∗×ki a

+
ki

), (9.143)

we see that they have the same mode expansion up to a multiplication by k in momentum space of each
term in the sum and an overall sign.

9.8 Conclusions and open questions

As shown in detail by the Hamiltonian analysis, the perfectly conducting boundary conditions implemented
in this chapter for both spin 1 and spin 2 fields are fully consistent with gauge invariance and are non-
trivial, as mentioned for instance in [249]. Further, as highlighted by the polarization vectors and tensors
technique, they allow to reshuffle and reorganize the physical degrees of freedom in terms of those of a pair
of scalar fields satisfying Dirichlet and Neumann boundary conditions or, equivalently, in terms of a single
scalar field with periodic boundary conditions on the double interval 2L. In turn, after having identified
the correct modular parameter and the correct observable to include in the partition function besides the
Hamiltonian, this gives access to the exact expression of the partition function in terms of the real analytic
Eisenstein series and therefore to its SL(2,Z)/Z2 symmetries. It is worth emphasizing that, evaluating the
central charge in equation (8.14) in chapter 8 at d = 3 and replacing in that formula L→ 2L, we obtain for c

c =
A

L2

π

60
, (9.144)

that can be used to determine the asymptotic values of both the entropy and the microcanonical density
of states in the high-temperature regime as

Shigh(β) =
L3c

β

16π

3
, log ρ(E) ≈

(
ELc

1
3

) 3
4 π

1
4 4
√

2

3
, (9.145)

where we used (8.117). This shows that techniques originally developed in the context of two-dimensional
CFTs combined with modular invariance (see e.g. [252]) can be consistently applied in the framework of
the Casmir effect in order to produce exact results.

The fact that the final result for the partition function is the same for spin 1 and spin 2 is suggesting
that, at the level of free field theories, they are both characterized by the same number and nature of prop-
agating degrees of freedom, as also underlined by the reduced phase space analysis. Indeed, a consequence
of the boundary conditions we have chosen is that the gravitational Casimir force on the “walls” is the
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same as the electromagnetic one. Trying to give a meaning to this brings one back to the discussion in
the beginning of section 9.6 of what should be the physical nature of the walls implementing the boundary
conditions on the gravitational field in (9.99)-(9.101). More generally, in order to distinguish the result for
linearized gravity from that for electromagnetism and to begin to discuss potential implications, one needs
to consider interactions, and thus bring in Newtons constant, in one way or another. Indeed, none of the
results contained in this chapter depend at all on the electromagnetic or gravitational coupling constant.
Therefore, it is legitimate to expect that also in the case of more complicated gauge structures, such as
those of free higher spin fields, similar patterns can be unravelled.

An open question concerns ADM surface charges for the setup we are considering. This might be rel-
evant in relation to black holes because in the Gibbons-Hawking treatment [271] they play a crucial role.
In particular, it would be interesting to see whether they can be understood in terms of the free par-
ticles (i.e. zero modes) in the spectrum. Recent investigations in this directions have been done e.g.
in [224, 225]. Another question of interest would be to understand whether traces of modular covariance
can emerge by exploring the case of more general, non necessarily flat, boundary geometries and that of
curved backgrounds.
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A The forms notation

In this appendix we briefly review the form notation. Greek indices µ, ν, ... are spacetime indices µ = 0, ..., d
so that n = d+ 1 is the full dimension of spacetime. The index µ = 0 labels a time coordinate. Consider
a r-form A ∈ Ωr(M) on a n = (d+ 1)-dimensional Lorentzian manifold (M, g).

A =
1

r!
Aµ1...µrdx

µ1 ∧ ... ∧ dxµr . (A.1)

Then the Hodge dual ∗ is a map

∗ : Ωr(M)→ Ωn−r(M), (A.2)

such that

∗A ≡ A =

√
−g

r!(n− r)!
Aµ1...µrεµ1...µrµr+1...µndxµr+1 ∧ ... ∧ dxµn ≡

√
−gAµ1...µr(dn−rx)µ1...µr , (A.3)

where εµ1µ2...µn is the skew-symmetric Levi-Civita pseudo-tensor with the convention ε01...d = 1 and where
we have introduced

(dn−rx)µ1...µr ≡
1

r!(n− r)!
εµ1...µrµr+1...µndxµr+1 ∧ ... ∧ dxµn . (A.4)

Using Hodge duality, we can associate to a Lagrangian density L =
√
−gL a n-form L = Ldnx. Similarly,

it is possible to associate to a vector J with components Jµ a (n− 1)-form J =
√
−gJµ(dn−1x)µ and to a

skew-symmetric tensor with components K [µν], a (n− 2)-form K =
√
−gK [µν](dn−2x)µν .

The exterior derivative is a map d

d : Ωr(M)→ Ωr+1(M), (A.5)

such that

dA =
1

r!
∂µAµ1...µrdx

µ ∧ dxµ1 ... ∧ dxµr . (A.6)

Simbolically, d can be written as

d = dxµ∂µ. (A.7)

The exterior derivatives of a (n− 1)-form J and of a (n− 2)-form K are given by

dJ = ∂µJ
µdnx, dK = ∂νK

µν(dn−1x)µ, (A.8)

so that, if a vector Jµ and skew-symmetric tensor K [µν] are conserved, ∂µJ
µ = 0 = ∂νK

µν , the correspond-
ing Hodge dual (n− 1) and (n− 2)-forms satisfy dJ = 0 and dK = 0. Note that the exterior derivative of
a Lagrangian n-form vanishes, i.e. dL = 0.

The interior product iξ with respect to a vector ξ is a map

iξ : Ωr(M)→ Ωr−1(M), (A.9)
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such that

iξA =
1

(r − 1)!
ξµAµµ2...µrdx

µ2 ∧ ... ∧ dxµr . (A.10)

Note that iξ can also be written as

iξ = ξµ
∂

∂dxµ
. (A.11)

Furthermore, the exterior derivative and the interior product satisfy the Cartan’s magic formula:

Lξ = d iξ + iξ d, (A.12)

where Lξ is the Lie derivative along a vector ξ. Applying this formula to a Lagrangian n-form yields

LξL = d iξL. (A.13)

Stokes theorem is ∫
Σn−r+1

dA =

∫
∂Σn−r

A, (A.14)

where Σn−r+1 is an (n− r + 1)-dimensional hypersurface and ∂Σr its (n− r)-dimensional boundary.
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B Chiral splitting of the conformal factor

This Appendix is devoted to the comparison of chapter 5 with [148]. There, one requires an additional
boundary condition, namely

�(0)ϕ = 0. (B.1)

This implies that the variational principle is well defined. Indeed, the solution of (B.1) is, in light-cone
coordinates,

ϕ = ϕ+(x+) + ϕ−(x−). (B.2)

The boundary line element is thus

g
(0)
ab dxadxb = −e2ϕ+(x+)dx+e2ϕ−(x−)dx−. (B.3)

Notice in particular that, with these boundary conditions, the boundary metric is flat

R(0) = 8e−2ϕ∂+∂−ϕ = 0. (B.4)

Clearly, in order to preserve (B.1), the parameter ω generating Weyl transformations must be of the form

ω = ω+(x+) + ω−(x−), (B.5)

i.e. it admits a splitting into a chiral and an anti-chiral part. Note that (B.5) is exactly the ω-chiral
condition of (5.34). However, in this framework, it comes automatically from preserving the additional
boundary condition in (B.1). Thus, we can repeat the same arguments of section 5.4 and the asymptotic
symmetry algebra sector involving Weyl generators is again given by (5.48),[

ζ±p , ζ
±
q

]
M

= 0,
[
ζ±p , ζ

∓
q

]
M

= 0,
[
ξ±n , ζ

±
p

]
M

= 0,
[
ξ±n , ζ

∓
p

]
M

= 0. (B.6)

In this setup the Weyl charges become explictly

Qζω [g] = − `

4πG

∫ 2π

0
dφ(ω+∂+ϕ

+ + ω−∂−ϕ
−) ≡ Qζω+ [ϕ+] +Qζω− [ϕ−], (B.7)

and therefore they admit a complete chiral/anti-chiral splitting, differently from what happens in (5.53).
Furthermore, since the Weyl central charge (5.57) is independent of ϕ, it is given again by

Kζ±p ,ζ±q = ipcW δq+p,0, Kζ±p ,ζ∓q = 0, c±
W

= cW =
`

2G
(B.8)

just as in (5.64). Therefore the centrally extended charge algebra with these boundary conditions is the
same as (5.65)-(5.70), {

Qξ±n [g], Qξ±m [g]
}

= i(n−m)Qξ±n+m
[g]− im3 c

12
δn+m,0, (B.9){

Qξ±n [g], Qξ∓m [g]
}

= 0, (B.10){
Qζ±p [g], Qζ±q [g]

}
= ipcW δp+q,0, (B.11){

Qζ±p [g], Qζ∓q [g]
}

= 0, (B.12){
Qξ±n [g], Qζ±p [g]

}
= 0, (B.13){

Qξ±n [g], Qζ∓p [g]
}

= 0. (B.14)
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Some comments are in order here. First, we remark that the charges obtained here are conserved, integrable
and finite. This is expected: the non-conservation of our charges was due to the non-flatness of the boundary
metric. Secondly, just as in the ω-chiral case, also here the charge algebra is not explicitly time-dependent.
Lastly, note that in our basis the algebra is a direct sum of the Virasoro and the Weyl piece, while in [148]
the algebra was represented as a semidirect sum. This is ultimately a consequence of our field-dependent
redefinition (5.27).
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C Chern-Simons formulation

We reformulate here our results in the Chern-Simons formulation. This has a twofold purpose: it allows on
the one hand to compare our results with [149] while on the other hand to perform the Gauss decomposition
which outlines the role played by the Weyl anomaly and the absence of propagating bulk degrees of freedom.
In particular, we will show that the conformal factor decouples from the other dynamical fields of the
theory. This Appendix extends to our boundary conditions results obtained originally in [125, 126] and
further discussed in [130,149].

C.1 Conventions and solution space

Three-dimensional GR with a negative cosmological constant can be described by a Chern-Simons theory
for an so(2, 2) valued connection [123,272]. In particular, since so(2, 2) is isomorphic to sl(2,R)⊕sl(2,R),49

the Einstein-Hilbert action can be written, up to boundary terms, as the sum of two Chern-Simons actions

SEH [A, Ā] = SCS [A]− SCS [Ā], (C.1)

where we have denoted by A and Ā the chiral and anti-chiral connections, respectively, and where

SCS [A] = −κ
∫
M

d3xTr
(
A ∧ dA+

2

3
A ∧A ∧A

)
, κ =

`

16πG
. (C.2)

Following the conventions used in [149], we choose the generators of sl(2,R) as

j+ = − 1√
2

(
0 0
1 0

)
, j− = − 1√

2

(
0 1
0 0

)
, jz =

1

2

(
1 0
0 −1

)
, (C.3)

so that the Killing form is

Tr
(
ja jb

)
=

1

2
ηab, ηab =

0 1 0
1 0 0
0 0 1

 , (C.4)

where the latin indices a and b take the values +,−, z. The dreibein eaµ satisfy

gµν(x) = eaµ(x)ebν(x)ηab, (C.5)

or, defining the one-forms ea = eaµdxµ,

ds2 = gµνdxµdxν = ηabe
aeb = (ez)2 + 2e+e−. (C.6)

The Hodge dual of the spin connection ωab = ωabµdxµ is defined as

ωa = −1

2
εabcωbc, εz+− = −εz+− = 1, (C.7)

49We are going to refer to the two copies of sl(2,R) as the left or chiral sl(2,R)L and right or anti-chiral sl(2,R)R.
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whereas the chiral and anti-chiral connections as

A =

(
ωa +

ea

`

)
ja, Ā =

(
ωa − ea

`

)
ja. (C.8)

The one-forms ea are chosen to be

e± = − 1√
2

[
eϕ

ρ
dx± − ρe−ϕ

(
g

(2)
∓∓dx∓ + g

(2)
+−dx±

)]
, ez = − `

ρ
dρ, (C.9)

and the dual of the spin connection

ω± = − 1√
2`

[
eϕ

ρ
dx± + ρe−ϕ

(
g

(2)
∓∓dx∓ + g

(2)
+−dx±

)]
, ωz = ∂−ϕdx− − ∂+ϕdx+. (C.10)

It follows that the left and right connections are given by A = Aµdxµ and Ā = Āµdxµ with

A+ =


−1

2
∂+ϕ

e−ϕρ

`
g

(2)
++

eϕ

`ρ

1

2
∂+ϕ

 , A− =


1

2
∂−ϕ

e−ϕρ

`
g

(2)
+−

0 −1

2
∂−ϕ

 , Aρ =


− 1

2ρ
0

0
1

2ρ

 , (C.11)

Ā+ =


−1

2
∂+ϕ 0

e−ϕρ

`
g

(2)
+−

1

2
∂+ϕ

 , Ā− =


1

2
∂−ϕ

eϕ

`ρ

e−ϕρ

`
g

(2)
−− −1

2
∂−ϕ

 , Āρ =


1

2ρ
0

0 − 1

2ρ

 . (C.12)

Note that with BH boundary conditions defined by ϕ = 0, A+ is chiral, A− = 0 and Ā− is anti-chiral,
Ā+ = 0.

C.2 Variational problem, Weyl anomaly and WZW reduction

Let us now discuss the action principle and the variatonal problem associated with (C.1). We find it
convenient to discuss it in terms of FG coordinates (ρ, t, φ). The action contains a pure boundary term
that does not change the dynamics and that we ignore. Indeed, we define our starting action as

S̃CS [A] = −κ
∫
M

d3xTr
(
AρȦφ −AφȦρ + 2AtFφρ

)
. (C.13)

Taking a variation of (C.13) yields

δS̃CS [A] = −κ
∫
M

d3xTr
(
2δArFtφ − 2δAφFtr + 2δAtFφr

)
+ 2κ

∫
∂M

d2xTr
(
AtδAφ

)
≈ 2κ

∫
∂M

d2xTr
(
AtδAφ

)
, (C.14)

where in the last step we have imposed the equations of motion, F = dA = 0. In total, considering also
the contribution of the anti-chiral sector, we have

δS̃CS [A]− δS̃CS [Ā] = 2κ

∫
∂M

d2xTr
(
AtδAφ − ĀtδĀφ

)
. (C.15)
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With BH boundary conditions, in order to have a well-defined variational problem, it is sufficient to add
to the action the so-called Coussaert-Henneaux-Van Driel boundary term [125],

S̃[A, Ā] = S̃CS [A]− S̃CS [Ā]− κ

`

∫
∂M

d2xTr
(
A2
φ + Ā2

φ

)
, (C.16)

whose variation cancels exactly the right-hand side of (C.15), since on-shell At = 1
`Aφ and Āt = −1

` Āφ.
However, with our choice of boundary conditions the variation of the action is

δS̃[A, Ā] = −δ
{
κ`

∫
∂M

d2x (∂tϕ)2

}
+

2κ

`

∫
∂M

d2x(`2∂2
t − ∂2

φ)ϕδϕ. (C.17)

The first term is exact and can be hence compensated by adding an additional boundary term to the
action. The last term is not exact, due to the Weyl anomaly. With the decomposition

Aµ = Aaµja =⇒ Azφ = Āzφ = −`∂tϕ, (C.18)

we can eventually write the action as

S[A, Ā] = S̃CS [A]− S̃CS [Ā]− κ

`

∫
∂M

d2xTr
(
A2
φ + Ā2

φ

)
+
κ

`

∫
∂M

d2xAzφĀ
z
φ. (C.19)

The variational problem for this action is ill-defined, for the theory is Weyl anomalous. In other words, it
is not possible to add more boundary terms to the action in order to achieve δS = 0.

Let us now perform the reduction to a WZW model [273–276]. Solving the constraints, the spatial com-
ponents of the connection are given by

Ai = G−1∂iG, Āi = Ḡ−1∂iḠ, (C.20)

for some group elements G ∈ SL(2,R)L and Ḡ ∈ SL(2,R)R. The constraints Fρφ = 0 and F̄ρφ = 0 imply
that G and Ḡ have the form

G = g(t, φ)h(ρ, t), Ḡ = ḡ(t, φ)h̄(ρ, t), (C.21)

as can be easily verified. Furthermore we assume that ∂th(ρ, t)|∂M = ∂th̄(ρ, t)|∂M = 0. Plugging this into
S[A, Ā], we have, after some algebra,

S̃[A, Ā] =
κ

`

∫
∂M

d2xTr
[
g−1∂φg(`−1g−1∂tg − g−1∂φg)

]
+
κ

3

∫
M

Tr
(
G−1dG ∧G−1dG ∧G−1dG

)
−κ
`

∫
∂M

d2xTr
[
ḡ−1∂φḡ(`−1ḡ−1∂tḡ + ḡ−1∂φḡ)

]
− κ

3

∫
M

Tr
(
Ḡ−1dḠ ∧ Ḡ−1dḠ ∧ Ḡ−1dḠ

)
+
κ

`

∫
∂M

d2xAzφĀ
z
φ. (C.22)

This is the WZW reduced action.

C.3 Gauss decomposition

Let us focus on the chiral part of the action in (C.22) and consider the following decomposition of g

g =

(
1 0
σ 1

)(
e−χ/2 0

0 eχ/2

)(
1 τ
0 1

)
=

(
e−χ/2 τe−χ/2

σe−χ/2 στe−χ/2 + eχ/2

)
, (C.23)
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from which it follows that

g−1∂µg =

(
−e−χτ∂µσ − 1

2∂µχ −e−χτ2∂µσ + ∂µτ − τ∂µχ
e−χ∂µσ e−χτ∂µσ + 1

2∂µχ

)
. (C.24)

In terms of the Gauss fields (σ, χ, τ), the boundary term is

κ

`

∫
∂M

d2xTr
[
g−1∂φg(`−1g−1∂tg − g−1∂φg)

]
=
κ

`

∫
∂M

d2x

[
1

2
χ′(`χ̇− χ′) + `e−χ(τ ′σ̇ + τ̇σ′)− 2e−χτ ′σ′

]
. (C.25)

For the bulk term first note that, decomposing G as

G =

(
1 0
Σ 1

)(
e−X/2 0

0 eX/2

)(
1 T
0 1

)
, (C.26)

we gather

Tr
(
G−1dG ∧G−1dG ∧G−1dG

)
= −3εµνλ∂µ

(
e−X∂νΣ∂λT

)
dρ ∧ dt ∧ dφ. (C.27)

Hence, applying Stokes theorem,

κ

3

∫
M

Tr
(
G−1dG ∧G−1dG ∧G−1dG

)
= −κ

∫
∂M

d2xe−X(Σ̇T ′ − Σ′Ṫ )
∣∣
∂M. (C.28)

Furthermore, for the matrix h(ρ, t) we have

Aρ = h−1∂ρh =

− 1
2ρ 0

0 1
2ρ

 =⇒ h =

√ `
ρ 0

0
√

ρ
`

 . (C.29)

Since G = g(t, φ)h(ρ, t) we have the equality

(
e−X/2 Te−X/2

Σe−X/2 ΣTe−X/2 + eX/2

)
=

 e−χ/2
√

`
ρ , e−χ/2

√
ρ
` τ

e−χ/2
√

`
ρσ e−χ/2

√
ρ
` (e

χ + στ)

 , (C.30)

which gives

e−X =
`

ρ
e−χ, T =

ρ

`
τ, Σ = σ. (C.31)

Hence the second term in (C.28) in terms of Gauss fields is −κ
∫
∂M d2xe−χ(σ̇τ ′−σ′τ̇). The full chiral part

of the action thus reads

κ

`

∫
∂M

d2x

[
1

2
χ′(`χ̇− χ′) + 2e−χσ′(`τ̇ − τ ′)

]
. (C.32)
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Assuming also for ḡ and Ḡ the Gaussdecompositions

ḡ =

(
1 σ̄
0 1

)(
eχ̄/2 0

0 e−χ̄/2

)(
1 0
τ̄ 1

)
=

(
σ̄τ̄ e−χ̄/2 + eχ̄/2 σ̄e−χ̄/2

τ̄ e−χ̄/2 e−χ̄/2

)
, (C.33)

Ḡ =

(
1 Σ̄
0 1

)(
eX̄/2 0

0 e−X̄/2

)(
1 0
T̄ 1

)
=

(
Σ̄T̄ e−X̄/2 + eX̄/2 Σ̄e−X̄/2

T̄ e−X̄/2 e−X̄/2

)
, (C.34)

and noting that h̄(ρ, t) is given by

h̄ =

√ρ
` 0

0
√

`
ρ

 . (C.35)

The procedure used for the chiral part can be repeated for the anti-chiral part of the action that can be
written as

κ

`

∫
∂M

d2x

[
− 1

2
χ̄′(` ˙̄χ+ χ̄′)− 2e−χ̄σ̄′(` ˙̄τ + τ̄ ′)

]
. (C.36)

Summing (C.32) and (C.36), the total action in terms of the Gauss fields is then

S[A, Ā] =
κ

`

∫
∂M

d2x

[
1

2
χ′(`χ̇− χ′) + 2e−χσ′(`τ̇ − τ ′)− 1

2
χ̄′(` ˙̄χ+ χ̄′)− 2e−χ̄σ̄′(` ˙̄τ + τ̄ ′) +AzφĀ

z
φ

]
.

(C.37)

Note that it is possible to express Azφ and Āzφ in terms of the Gauss fields as

Azφ = −2e−χτσ′ − χ′ = Āzφ = 2e−χ̄τ̄ σ̄′ + χ̄′. (C.38)

On defining

C =
Azφ
2

=
Āzφ
2

= − `
2
∂tϕ. (C.39)

we can rewrite the last term in (C.37) as 4C2. We perform now the Hamiltonian analysis of the action
(C.37). The canonical momenta πφi = ∂L

∂φ̇i
are

πχ =
κ

2
χ′, πτ = 2κe−χσ′, πσ = 0, (C.40)

πχ̄ = −κ
2
χ̄′, πτ̄ = −2κe−χ̄σ̄′, πσ̄ = 0, (C.41)

together with πC = 0. The Hamiltonian density is

H = φ̇iπφi − L =
κ

`

(
1

2
χ′2 +

1

2
χ̄′2 + 2e−χσ′τ ′ + 2e−χ̄σ̄′τ̄ ′ − 4C2

)
. (C.42)
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Now we implement our boundary conditions, using the equalities g−1∂φg = hAφh
−1
∣∣
∂M

and ḡ−1∂φḡ =

h̄Āφh̄
−1
∣∣
∂M

. We obtain the following set of relations:

C = −e−χτσ′ − 1

2
χ′ = e−χ̄τ̄ σ̄′ +

1

2
χ̄′, (C.43)

e−χσ′ =
eϕ

`2
= −e−χ̄σ̄′, (C.44)

− e−χτ2σ′ + τ ′ − τχ′ = e−ϕ(g
(2)
++ − g

(2)
+−) (C.45)

− e−χ̄τ̄2σ̄′ − τ̄ ′ + τ̄ χ̄′ = −e−ϕ(g
(2)
−− − g

(2)
+−). (C.46)

Plugging these equations in the Hamiltonian of (C.42) we have

H =
κ

`

(
1

2
χ′2 +

1

2
χ̄′2 − χ′′ − χ̄′′ + ϕ′(χ′ + χ̄′)− 4C2

)
, (C.47)

xx where we note that C cannot be further expressed in terms of other independent fields. Note also that
the Hamiltonian can be simply expressed as

H =
2κ

`3
(
g

(2)
++ + g

(2)
−− − 2g

(2)
+−
)

= `Ttt, (C.48)

as it is reasonable, using (C.43)-(C.46). Let us consider the equations of motion. The Hamiltonian action
is

SH =

∫
∂M

d2x (πφi φ̇i −H) =

∫
∂M

d2x
(
πχχ̇+ πχ̄ ˙̄χ+ πτ τ̇ + πτ̄ ˙̄τ −H

)
, (C.49)

and, using equations (C.40) and (C.41), together with the relations (C.43)-(C.46), we get

SH =
κ

`

∫
∂M

d2x

[(
1

2
χ′ + ϕ′

)(
`χ̇− χ′

)
−
(

1

2
χ̄′ + ϕ′

)(
` ˙̄χ+ χ̄′

)
+ 4`Cϕ̇+ 4C2

]
. (C.50)

It follows from (C.50) that C is proportional to the canonical momentum conjugate to ϕ. The Poisson
bracket

{ϕ(t, φ), C(t, φ′)} =
1

4κ
δ(φ− φ′) =⇒ {ϕ(t, φ)∂tϕ(t, φ′)} = −8πG

`2
δ(φ− φ′), (C.51)

where we have used (C.39) to express C in terms of ∂tϕ. Using again (C.39) in (C.51), we get

SH =
κ

`

∫
∂M

d2x

[(
1

2
χ′ + ϕ′

)(
`χ̇− χ′

)
−
(

1

2
χ̄′ + ϕ′

)(
` ˙̄χ+ χ̄′

)
− `2ϕ̇2

]
. (C.52)
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The action (C.52) mixes χ and χ̄ with ϕ, but it is straightforward to show that, introducing new fields

ψ = χ+ ϕ, ψ̄ = χ̄+ ϕ, (C.53)

it admits a simple rewriting

SH =
κ

`

∫
∂M

d2x

[
1

2
ψ′(`∂t − ∂φ)ψ − 1

2
ψ̄′(`∂t + ∂φ)ψ̄ − `2(∂tϕ)2 + (∂φϕ)2

]
. (C.54)

From (C.54) it is clear that the dynamics of ψ and ψ̄ is independent of ϕ, which is the desired result. The
action (C.54) can be shown to be equivalent to a Liouville theory [130,277–279] coupled to an external two-
dimensional metric in conformal gauge. Eventually, we stress again that the Chern-Simons construction
carried out so far shows that the ϕ reduced boundary action (i.e. the last terms in (C.54)) is completely
disentangled from the rest.
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D Scalar field with Dirichlet or Neumann boundary conditions

Dirichlet boundary conditions

Consider a scalar field φ(t, x) in 1+1 spacetime dimensions satisfying Dirichlet conditions in x = 0 and
x = L,

φ(t, 0) = 0 = φ(t, L). (D.1)

The appropriate basis to expand φ is given by the set of eigenfunctions {eDki} of the Laplacian ∂2
x, defined as

eDk (x) =

√
2

L
sin(kx), k =

π

L
n, n ∈ N, (D.2)

satisfying the orthonormality and completeness relations

(eDk , e
D
k′) =

∫ L

0
dx eDk (x)eDk′(x) = δnn′ ,

∑
n∈N

eDk (x)eDk (x′) = δ(x− x′). (D.3)

The field φ and its conjugate momentum Π can be expanded in {eDk } as

φ(t, x) =

√
2

L

∑
n∈N

φk(t) sin(kx), Π(t, x) =

√
2

L

∑
n∈N

Πk(t) sin(kx), (D.4)

with reals φk(t) = (eDk , φ) = φ∗k(t) and Πk(t) = (eDk ,Π) = Π∗k(t). Therefore, the modes are odd functions
of k, i.e. φk(t) = −φ−k(t) and Πk(t) = −Π−k(t). The Hamiltonian reads

H[φ,Π] =
1

2

∫ L

0
dx(Π2 + ∂xφ

2) =
1

2

∑
n∈N

(Π2
k + ω2

kφ
2
k), ωk =

π

L
|n|, (D.5)

or

H =
1

2

∑
n∈N

ωk(a
∗
kak + aka

∗
k), (D.6)

in terms of the oscillator variables

ak =

√
k

2

(
φk +

i

k
Πk

)
. (D.7)
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Neumann boundary conditions

Assume now that φ(t, x) satisfies Neumann conditions,

∂xφ(t, x)|x=0 = 0 = ∂xφ(t, x)|x=L. (D.8)

The basis of eigenfunctions {eNki} of the Laplacian is now

eN0 (x) =
1√
L
, eNk (x) =

√
2

L
cos(kx) k =

π

L
n, n ∈ N, (D.9)

satisfying

(eNk , e
D
k′) =

∫ L

0
dx eNk (x)eNk′(x) = δnn′ ,

∑
n∈N0

eNk (x)eNk (x′) = δ(x− x′). (D.10)

Note that there is an additional zero mode in the basis {eNk } with respect to the {eDk }. The field φ and its
conjugate momentum Π can be expanded in {eNk } as

φ(t, x) =
φ0(t)√
L

+

√
2

L

∑
n∈N

φk(t) cos(kx), Π(t, x) =
Π0(t)√
L

+

√
2

L

∑
n∈N

Πk(t) cos(kx), (D.11)

with reals φk(t) = (eNk , φ) = φ∗k(t) and Πk(t) = (eNk ,Π) = Π∗k(t). In this case the modes are even functions
of k, i.e. φk(t) = φk(t) and Πk(t) = Π−k(t). The Hamiltonian reads

H[φ,Π] =
1

2

∫ L

0
dx(Π2 + ∂xφ

2) =
p2

2
+

1

2

∑
n∈N0

(Π2
k + ω2

kφ
2
k), ωk =

π

L
|n|, (D.12)

where we denoted p ≡ Π0, or

H =
p2

2
+

1

2

∑
n∈N

ωk(a
∗
kak + aka

∗
k), (D.13)

in terms of the oscillator variables

ak =

√
k

2

(
φk +

i

k
Πk

)
, k 6= 0. (D.14)
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E Stress energy tensor of a scalar field

Here we consider the stress-energy tensor of a massless scalar field living in d + 1 spacetime dimensions.
The standard definition of the stress-energy tensor yields,

Tµν =
2√
−g

δS[φ]

δgµν

∣∣∣∣
g=η

= ∂µφ∂νφ−
1

2
ηµν∂ρφ∂

ρφ, (E.1)

where S[φ] is that in (7.52). Note that Tµν is traceless in two dimensions. Introducing light-cone coordinates
(x+, x−) as

x± = t± xd, (E.2)

the Minkowski line element reads

ds2 = −dx+dx− + δabdx
adxb, (E.3)

so that

ηµν =


0 −1/2 0 . . . 0
−1/2 0 . . . . . . 0

0 0 1 . . . 0

0 0 0
. . . 0

0 0 0 . . . 1

 , ηµν =


0 −2 0 . . . 0
−2 0 . . . . . . 0
0 0 1 . . . 0

0 0 0
. . . 0

0 0 0 . . . 1

 . (E.4)

For the energy density we have

T00 = (T++ + T−− + 2T+−), (E.5)

where

T++ = ∂+φ∂+φ, T−− = ∂−φ∂−φ, T+− =
1

4
∂aφ∂

aφ. (E.6)

The time evolution of φ can be obtained from that of aki and a∗ki . We have, from (7.61)

ȧki = {aki , H} = −iωkiaki , (E.7)

so that the time evolution of φ is

φ(t, x) =
q√
V

+
1√
V

∑′

ni∈Zd

1√
2ωki

(aki(0)e−iωki t+ikdx
d
eikax

a
+ c.c.), (E.8)

and hence, in terms of x± coordinates

φ(t, x) =
q√
V

+
1√
V

∑′

ni∈Zd

1√
2ωki

(akie
−i

ωki
2

(x++x−)+i
kd
2

(x+−x−)+ikaxa + c.c.). (E.9)
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It is straightforward to calculate the following integrals∫
V

ddx ∂+φ∂+φ =
1

8

∑′

ni∈Zd

1

ωki

[
(k2
d − ω2

ki
)(akia−kie

−2iωki t + a∗kia
∗
−kie

2iωki t) + (kd − ωki)
2(a∗kiaki + akia

∗
ki

)
]
,

∫
V

ddx ∂−φ∂−φ =
1

8

∑′

ni∈Zd

1

ωki

[
(k2
d − ω2

ki
)(akia−kie

−2iωki t + a∗kia
∗
−kie

2iωki t) + (kd + ωki)
2(a∗kiaki + akia

∗
ki

)
]
,

∫
V

ddx ∂aφ∂
aφ =

1

2

∑′

ni∈Zd

kak
a

ωki

[
akia−kie

−2iωki t + a∗kia
∗
−kie

2iωki t + akia
∗
ki

+ a∗kiaki
]
.

Using these expressions one obtains the Hamiltonian as

H ′ =

∫
V

ddxT00 =
1

2

∑′

ni∈Zd
ωki(a

∗
ki
aki + akia

∗
ki

). (E.10)

Further, the other observable of interest is the spatial integral of

T0d = (T++ − T−−), (E.11)

which gives again, as it should

Pd ≡ −
∫
V

ddxT0d =
1

2

∑′

ni∈Zd
kd(a

∗
ki
aki + akia

∗
ki

), (E.12)

where Pd is the spatial momentum in the compact xd direction, defined in (7.64).

On defining

L0 =
L

2π

∫
V

ddx(T−− + T+−), L̄0 =
L

2π

∫
V

ddx(T++ + T+−), (E.13)

we have

L0 =
L

8π

∑′

ni∈Zd
(ωki + kd)(a

∗
ki
aki + akia

∗
ki

), L̄0 =
L

8π

∑′

ni∈Zd
(ωki − kd)(a

∗
ki
aki + akia

∗
ki

), (E.14)

and therefore the Hamiltonian in (E.10) and the momentum in (E.13) can be written as

H =
2π

L
(L0 + L̄0), Pd =

2π

L
(L0 − L̄0). (E.15)

Using symmetric ordering, the operators corresponding to L0 and L̄0 are

L̂0 =
L

4π

∑′

ni∈Z
(ωki + kd)â

†
ki
âki −

c

24
, ˆ̄L0 =

L

4π

∑′

ni∈Z
(ωki − kd)â

†
ki
âki −

c

24
, (E.16)
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where we used (8.14) for the value of the central charge c,

c =

∏
a La
Ld−1

6 Γ
(
d+1

2

)
ζ(d+ 1)

π
d+3

2

. (E.17)

With a slightly incorrect notation we will denote by L̂0 and ˆ̄L0 the terms of (E.16) that do not contain c.
Therefore, the operators corresponding to the Hamiltonian and momentum along xd are written as

Ĥ ′ =
2π

L

(
L̂0 + ˆ̄L0 −

c

12

)
, P̂d =

2π

L

(
L̂0 − ˆ̄L0

)
. (E.18)

Note that Hamiltonian receives a contribution from the central charge, while the momentum does not.

The d = 1 case is peculiar. Indeed, from the equations of motion

∂+∂−φ = 0 =⇒ φ = φ+(x+) + φ−(x−), (E.19)

we get

T++ = T++(x+), T−− = T−−(x−), T+−(x) = 0. (E.20)

Furthermore, the theory is conformally invariant and the conformal group in two dimensions is infinite
dimensional and generated by chiral and anti-chiral transformations of coordinates

x
′+ = f(x+), x

′− = g(x−), (E.21)

and the infinitely many associated conserved charges are given by

Q−g =
L

2π

∫ L

0
dx1 g(x−)T−−(x−) Q+

f =
L

2π

∫ L

0
dx1 f(x+)T++(x+). (E.22)

In the case g(x−) = 1 = f(x+) we retrieve (E.13),

Q−1 ≡ L̄0 =
L

2π

∫ L

0
dx1 T−−(x−) Q+

1 ≡ L0 =
L

2π

∫ L

0
dx1 T++(x+). (E.23)

In general, f(x+) and g(x−) can be any pair functions of x+ and x− and we can expand them in the basis
fn(x+) = exp{2πinx+/L} and gn(x+) = exp{2πinx−/L}. We denote the corresponding charges L̄n and
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Ln, respectively:

Ln =
L

2π

∫ L

0
dx1 T−−(x−)e

2πin
L

x− , L̄n =
L

2π

∫ L

0
dx1 T++(x+)e

2πin
L

x+
. (E.24)

satisfying two commuting copies of the Witt algebra under the standard Poisson bracket

{Ln, Lm} = i(n−m)Ln+m, {L̄n, L̄m} = i(n−m)L̄n+m, {Ln, L̄m} = 0. (E.25)

Introducing Euclidean time x2 = ix0, we have x− = −(x1 +ix2) ≡ −z and x+ = x1 +ix2 ≡ z̄, and therefore
(Ln)∗ = L̄n.
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F Eisenstein series

In this Appendix we review some properties of the various Eisenstein series used in chapter 8. The main
literature for this Appendix is [205,206,208,235,280,281], to which we refer for rigorous proofs.

F.1 Holomorphic Eisenstein series

Consider the upper-half complex plane H defined as H = {z = x+ iy | x, y ∈ R and y > 0}.

Definition F.1.

A holomorphic modular form of weight w ≥ 0 is a holomorphic function f : H→ C transforming as

f

(
az + b

cz + d

)
= (cz + d)wf(z),

(
a b
c d

)
∈ SL(2,Z). (F.1)

Equation (F.1) implies that f(z) is periodic of period 1, i.e. f(z + 1) = f(z) and therefore it admits a
Fourier expansion of the form

f(z) =
∑
n∈Z

a(n)qn, q ≡ e2πiz, (F.2)

where

a(n)e−2πny =

∫ 1

0
dx e−2πinxf(x+ iy). (F.3)

Proposition F.1.

The holomorphic Eisenstein series E2w(z), defined as

Ew(z) =
1

2

∑′

(n,m)∈Z2

1

(nz +m)2w
, (F.4)

is, for integer w > 1, a holomorphic modular form of weight 2w satisfying

Ew(∞) = ζ(2w), (F.5)

where ζ(n) is the Riemann zeta function.
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Remark 1.

Notice that, in order to prove the previous proposition, one just need to prove that Ew(z) is invariant
under T and S transformations defined in (8.38). The invariance under T is trivial to verify, whereas, for
S, one has

Ew

(
−1

z

)
=

1

2

∑′

(n,m)∈Z2

z2w

(−n+mz)2w
= z2w

∑′

(m,n)∈Z2

1

(nz +m)2w
= z2wEw(z). (F.6)

In the last step we used that, for w > 1, the double sum in (F.4) is absolutely convergent so the we could
exchange the order of the sums. This is no longer true for w = 1 as we will discuss below.

Consider the well-known formula

π cotπz =
1

z
+

∞∑
m=1

(
1

z +m
+

1

z −m

)
. (F.7)

On the other hand we have

π cotπz = iπ
q + 1

q − 1
= πi− 2πi

1− q
= πi− 2πi

∞∑
m=1

qm, q = e2πiz, (F.8)

and hence, comparing (F.7) and (F.8), we get

∑
m∈Z

1

z +m
= πi− 2πi

∞∑
m=1

qm. (F.9)

Taking (k − 1)-derivatives with respect to z of both members the above equality yields

∑
n∈Z

1

(z +m)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

nk−1qm. (F.10)

Consider now Ew(z) for integer w > 1,

Ew(z) =
1

2

∑′

(n,m)∈Z2

1

(nz +m)2w
= ζ(2w) +

∑
n∈N

∑
m∈Z

1

(nz +m)2w

(F.10)
= ζ(2w) +

(−2πi)2w

(2w − 1)!

∑
n∈N

∑
m∈N

m2w−1qmn

≡ ζ(2w) +
(2πi)2w

(2w − 1)!

∞∑
n∈N

σ2w−1(n)qn, (F.11)

where we defined

σ2w−1(n) ≡
∑
d|n

d2w−1, (F.12)
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the sum of the (2w − 1)-th powers of the positive divisors of n. Equation (F.11) is the Fourier expansion
(F.2) of the holomorphic Eisenstein series. Starting with Ew(z), we can define, for w > 1 a modular
invariant object as

Fw(z) = ywEw(z), Fw

(
az + b

cz + d

)
= Fw(z), (F.13)

where we used (8.42) for the transformation of y.

Because of the relevance for the case of a scalar field living on T2 discussed in section 8.2.1 we are in-
terested in the properties of Ew(z) in the case of w = 1. The crucial point is that, for w = 1, the double
sum appearing in (F.4) is not absolutely convergent and therefore we must specify the order of summation.
As discussed in Remark 1, this issue prevents E1(z) from being a modular form. We define

E1(z) =
1

2

∑
n∈Z

∑′

m∈Z

1

(nz +m)2
= ζ(2) +

∑
n∈N

∑
m∈Z

1

(nz +m)2
, (F.14)

where ′ here means the m 6= 0 if n = 0. It can be shown, similarly to (F.11), that the above defined E1(z)
is a holomorphic function on H whose Fourier expansion is given by

E1(z) = ζ(2)− 4π2
∑
n∈N

σ1(n)qn. (F.15)

Let us now investigate the behavior of E1(z) under S transformations. We have

z−2E1

(
−1

z

)
= ζ(2) +

∑
n∈N

∑
m∈Z

1

(−n+mz)2
= ζ(2) +

∑
m∈N

∑
n∈Z

1

(nz +m)2
6= E1(z). (F.16)

Hence, extent to which E1(z) fails to satisfy the “right” transformation rule is a reflection of the alteration
produced by reversing the order of summation. The error is explicitly given by the following Proposition.

Proposition F.2.

z−2E1

(
−1

z

)
= E1(z) +

π

iz
. (F.17)

Consider now the Dedekind’s η function defined in (8.36),

η(z) = e
πiz
12

∏
n∈Z

(1− qn). (F.18)
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We have

η′(z)

η(z)
=

d

dz
log(η(z)) =

πi

12

[
1− 24

∑
n∈Z

n
e2πinz

1− e2πinz

]
=
πi

12

1− 24
∑
n∈N

∑
m≥0

ne2πinz(m+1)


=
πi

12

[
1− 24

∑
n∈N

∑
m∈N

nqnm

]
(F.15)

=
iπ

12ζ(2)
E1(z). (F.19)

Hence, using (F.17)

z−2 η
′(−1/z)

η(−1/z)
=

iπ

12ζ(2)
z−2E1(−1/z) =

iπ

12ζ(2)

[
E1(z) +

π

iz

]
=
η′(z)

η(z)
+

1

2z
. (F.20)

Integrating this equation yields

η

(
−1

z

)
=
√
−izη(z), (F.21)

which is the transformation rule of the Dedekind’s η function under S in (8.39).

F.2 Real analytic Eisenstein series

Definition F.2.

We define the real analytic Eisenstein series the non-holomorphic function on H

fs(z) =
∑′

(n,m)∈Z2

ys

|nz +m|2s
, (F.22)

which converges absolutely for Re(s) > 1.

Under a modular transformation, fs(z) transforms as

fs

(
az + b

cz + d

)
= fs(z),

(
a b
c d

)
∈ SL(2,Z). (F.23)
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Proposition F.3.

Consider the operator ∆ = y2(∂2
x + ∂2

y). Then

∆fs(z) = s(s− 1)fs(z), (F.24)

i.e. fs(z) is an eigenvector of of ∆ with eigenvalue s(s− 1).

The function fs(z) clearly satisfies fs(z) = fz(z + 1). Therefore, it admits a Fourier series.

Proposition F.4.

The Fourier series of fs(z) is given by

fs(z) = 2ζ(2s)ys + 2
√
π

Γ(2s−1
2 )ζ(2s− 1)

Γ(s)
y1−s + 2y

1
2
πs

Γ(s)

∑′

n∈Z

∑′

m∈Z

∣∣∣ n
m

∣∣∣s− 1
2
Ks− 1

2
(2π|nm|y)e2πinmx,

(F.25)

or, equivalently, by

fs(z) = 2ζ(2s)ys + 2
√
π

Γ(2s−1
2 )ζ(2s− 1)

Γ(s)
y1−s + 4y

1
2
πs

Γ(s)

∑′

m∈Z
|m|

1
2
−sσ2s−1(m)Ks− 1

2
(2π|m|y)e2πimx,

(F.26)

where Kn(x) is the modified Bessel function of the second kind [251] and σs(n) is defined in (F.12), satis-
fying respectively

Kn(−x) = (−)
d
2Kn(x) (F.27)

Kn(x) = K−n(x), x > 0, (F.28)

σs(n) = |n|sσ−s(n). (F.29)

Further, the real analytic Eisenstein series satisfies the functional relation

Γ(s)fs(z) = π2s−1Γ(1− s)f1−s(z). (F.30)
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F.3 Eisenstein series at s = 1 and the two-dimensional scalar field on T2

We have seen that, in equation (8.33) of section 8.2.1, the partition function on T2
µ without the zero mode

is given by

logZ ′(τ, τ̄) =
πβ

6L
+
∑
l∈N

[∑
n∈N

e2πiτln

l
+
∑
n∈N

e−2πiτ̄ ln

l

]
=
πβ

6L
+
∑
l∈N

i

2l

[
e−πilτ

sin(πlτ)
− eπilτ̄

sin(πlτ̄)

]
− 2

l

=
βπ

6L
+
∑
l∈N

i

2l
[cot(πlτ)− cot(πlτ̄)]− 1

l
. (F.31)

Note that the series is convergent. The general term of the series, for large values of n, behaves as

|an| ∼ e−
2πβ
L
n which is exponentially suppressed. The fact that n 6= 0 is essential to achieve the conver-

gence. In the last step in (F.31), we split a convergent series into two divergent series, whose divergent
contributions cancel. Using now (F.7) we have

logZ ′(τ, τ̄) =
βπ

6L
−
∑
l∈N

∑
m∈Z

1

2lπi

[
1

(m+ lτ)
− 1

(m+ lτ̄)

]
− 1

l
=
βπ

6L
+
∑
l∈N

∑
m∈Z

1

2πi

(τ − τ̄)

|m+ lτ |2
− 1

l

=
βπ

6L
+

1

2π

∑′

l∈Z

∑
m∈Z

τ2

|m+ lτ |2
− 1

2|l|
(F.32)

The full series appearing in (F.32) is convergent. However the two series having general terms the ones
appearing in (F.32) are clearly divergent. Equivalently, if we defined

f1(τ) =
∑′

l∈Z

∑
m∈Z

τ2

|m+ lτ |2
, (F.33)

it would diverge and the degree of divergence would be such that

∑
l∈Z

∑′

m∈Z

τ2

|m+ lτ |2
− 1

2|l|
<∞. (F.34)

F.4 From the real analytic Eisenstein series to the Epstein zeta function

Now we show how in the case of z = iy, the above listed properties of the real analytic Eisenstein series
can be rephrased in terms of those of the Epstein zeta function, defined as

ζ(s; a1, ..., ap) =
∑′

n1,...,mp∈Zp

1

(a1n2
1 + ...+ apn2

p)
s
, (F.35)
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satisfying the functional relation

Γ(s)ζ(s; a1, ..., ap) =
π2s− p

2

√
a1...ap

Γ

(
p

2
− s
)
ζ

(
p

2
− s; 1

a1
, ...,

1

ap

)
. (F.36)

From equation (F.22), we have, using z = iy,

fs(iy) =
∑′

(n,m)∈Z2

ys

(ny2 +m2)s
= ysζ(s; y2, 1). (F.37)

Now we show that the Fourier transform of the real analytic Eisenstein series in (F.25)-(F.26), in the case
of real z reduces to a standard application of the well-known Sommerfeld-Watson transform, which we
briefly review here. Consider the series

S =
∑
m∈Z

f(m), (F.38)

and the complex function

F (z) = πf(z) cot(πz), (F.39)

having simple poles in z = m, with m ∈ Z, with residues

Res
[
F (z)

]
|z=m = f(m). (F.40)

Assuming that

f(z)
|z|→∞
−−−−−−→ 1

|z|1+ε , ε > 0, (F.41)

then the integral along a circle CR of radius R centred at the origin vanishes as R→∞

0 =

∮
C∞

F (z)dz = 2πi

[∑
m∈Z

Res
[
F (z)

]
|z=m +

∑
i

Res
[
F (z)

]
|z=zi

]
, (F.42)

where we used the residue theorem and where zi are other poles of F (z), at points different from z = m.
It follows that

∑
m∈Z

f(m) = −
∑
i

Res
[
F (z)

]
|z=zi . (F.43)
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Consider now explicitly the series

S(a) =
∑
m∈Z

1

a2 +m2
. (F.44)

The function F (z) = π
z2+a2

cos(πz)
sin(πz) has two simple poles in z = ±ia, with residues

Res

[
π

z2 + a2

cos(πz)

sin(πz)

]∣∣∣∣
z=±ia

= − π

2a
coth(πa). (F.45)

Therefore, using (F.43), we have

∑
m∈Z

1

a2 +m2
=
π

a
coth(πa) (F.46)

It can be easily shown by induction that

∑
m∈Z

1

(a2 +m2)s
=

(−)s−1

2s−1(s− 1)!

(
1

a

d

da

)s−1 ∑
m∈Z

1

a2 +m2

(F.46)
=

(−)s−1

2s−1(s− 1)!

(
1

a

d

da

)s−1(π
a

coth(πa)

)
. (F.47)

The Epstein zeta function ζ(s; y2, 1) is

ζ(s; y2, 1) =
∑′

(n,m)∈Z2

1

(n2y2 +m2)s
=
∑′

m∈Z

1

m2s
+
∑′

n∈Z

∑
m∈Z

1

(n2y2 +m2)s
. (F.48)

Applying (F.47) to the last term in (F.48), setting a = ny,

ζ(s; y2, 1) = 2ζ(2s) +
(−)s−1

2s−1(s− 1)!

∑′

n∈Z

1

m2s−1

[(
1

y

d

dy

)s−1 π

y
coth(πy)

]
. (F.49)

This is a general expression of the Epstein zeta function in terms of derivatives of trigonometric functions.
It would be tempting to say that (F.49) represents the Fourier series of the Epstein zeta function, by
analogy with the Fourier series of the real analytic Eisenstein series in (F.25). However, the Epstein zeta
function, unlike the real analytic Eisenstein series, is not periodic and therefore it does not admit a Fourier
series. It is worth pointing out that there exists an analogous expansion for the real analytic Eisenstein
series, which we give here without proof:

∑′

(n,m)∈Z2

ys

|nz +m|2s
= ys

{
2ζ(2s) +

[
i(−1)s−1

2s(s− 1)!

∑′

n∈Z

(
1

y

d

dy

)s−1 π

y
cot(πmz) + c.c.

]}
. (F.50)

The expression between curly bracket in (F.50) correctly reduces to (F.49) when z = iy.
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F.5 The explicit resummation of the Fourier series in d = 3

In the case d = 3 the integral in (8.95) can be explicitly performed and splitting the sum over n3 ∈ Z into
n3 > 0, n3 = 0 and n3 < 0, it yields for the partition function

logZ(β, µ) =
L1L2βπ

2

90L3
3

+
L1L2

2πβ2

∑
l∈N

[ ∑
n3∈N

e
2πln3

(
i βµ
L3
− β
L3

)
l2

2πβn3

L3
+
e

2πln3

(
i βµ
L3
− β
L3

)
l3

+
1

2l3

+
∑
n3∈N

e
−2πln3

(
i βµ
L3

+ β
L3

)
l2

2πβn3

L3
+
e
−2πln3

(
i βµ
L3

+ β
L3

)
l3

+
1

2l3

]

=
L1L2τ2π

2

90L2
3

+
L1L2

2πL2
3τ

2
2

∑
l∈N

[ ∑
n3∈N

e2πiln3τ

l2
2πn3τ2 +

e2πiln3τ

l3
+

1

2l3
+ c.c.

]
. (F.51)

We now use the following identities

1

2
+
∑
n∈N

e2αn =
1

2
cothα

∑
n∈N

n e2αn =
1

4 sinh2(α)
, Re(α) < 0, (F.52)

so that (F.51) becomes

logZ(τ, τ̄) =
L1L2τ2

2π2L2
3

{
π4

45
+
π

2

∑
l∈N

[
− π

τ2
2 l

2

1

sin(πlτ)2 +
i

τ3
2 l

3
cot(πlτ) + c.c.

]}
. (F.53)

Consider now the following chain of identities

∑′

(l,m)∈Z2

1

|l +mτ |4
=
∑′

l∈Z
l−4 +

∑′

m∈Z

∑
l∈Z
|l + τm|−4. (F.54)

We have

2

(l +mτ)(mτ −mτ̄)3
+

1

(l +mτ)2(mτ −mτ̄)2
+ c.c.

=
2(l +mτ) +mτ −mτ̄
(l +mτ)2(mτ −mτ̄)3

+
2(l +mτ̄) +mτ̄ −mτ
(l +mτ̄)2(mτ̄ −mτ)3

=
2l + 3mτ −mτ̄

(l +mτ)2(mτ −mτ̄)3
+

2l + 3mτ̄ −mτ
(l +mτ̄)2(mτ̄ −mτ)3

=
(2l + 3mτ −mτ̄)(l +mτ̄)2 − (2l + 3mτ̄ −mτ)(l +mτ)2

|l +mτ |4m3(τ − τ̄)3
=

2iIm[(2l + 3mτ −mτ̄)(l +mτ̄)2]

|l +mτ |4m3(τ − τ̄)3
. (F.55)

The expression inside Im in the numerator of (F.55) is

(2l + 3mτ −mτ̄)(l +mτ̄)2 = 2l3 + 3l2m(τ̄ + τ) + 3m3|τ |3τ̄ + 6lm2|τ |2 −m3τ̄3, (F.56)
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and hence

Im[2l3 + 3l2m(τ̄ + τ) + 3m3|τ |3τ̄ + 6lm2|τ |2 −m3τ̄3] = Im[m3τ̄(3|τ |2 − τ̄2)] = −4m3τ3
2 . (F.57)

We get

2

(l +mτ)(mτ −mτ̄)3
+

1

(l +mτ)2(mτ −mτ̄)2
+ c.c. =

−8im3τ3
2

|l +mτ |4m3(τ − τ̄)3
=

1

|l +mτ |4
. (F.58)

Thus we have

∑
l∈Z
|l +mτ |−4 =

∑
l∈Z

[
2

(l +mτ)(mτ −mτ̄)3
+

1

(l +mτ)2(mτ −mτ̄)2
+ c.c.

]
. (F.59)

Using

∑
l∈Z

1

(l + z)
= π cot(πz),

∑
l∈Z

1

(l + z)2
=

π2

sin2(πz)
, (F.60)

we have that (F.59) reads

∑
l∈Z
|l +mτ |−4 =

π

4

[
− π

m2τ2
2

1

sin2(πmτ)
+

i

τ3
2m

3
coth(πmτ) + c.c.

]
. (F.61)

Eventually, we get, from (F.54)

∑′

(l,m)∈Z2

1

|l +mτ |4
=
π4

45
+
π

4

∑′

m∈Z

[
− π

m2τ2
2

1

sin(πmτ)2 +
i

m3τ3
2

cot(πmτ) + c.c.

]

=
π4

45
+
π

2

∑
m∈N

[
− π

m2τ2
2

1

sin(πmτ)2 +
i

m3τ3
2

cot(πmτ) + c.c.

]
. (F.62)

from which follows, using (F.53)

logZ(τ, τ̄) =
L1L2

2π2L2
3τ2

∑′

(l,m)∈Z2

τ2
2

|l + τm|4
=

L1L2

2π2L2
3τ2

f2(τ). (F.63)

Therefore in d = 3 we have explicitly shown the Fourier series in (F.51) to be equivalent to the real analytic
Eisenstein series. Consider now the case of a rectangular torus, i.e. µ = 0 and hence τ1 = 0. We have,
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|l + τm|2 = l2 + τ2
2m

2 and thus

logZ(τ2) =
L1L2τ2

2π2L3
3

∑′

(l,m)∈Z2

1

(l2 + τ2
2m

2)2
=
L1L2τ2

2π2L3
3

ζ(2, τ2
2 , 1), (F.64)

where ζ is the Epstein zeta function of (F.35). On the other hand, from (F.53), the partition function for
τ1 = 0 becomes

logZ(τ2) =
L1L2τ2

2π2L2
3

{
π4

45
+
π

2

∑
l∈N

[
π

τ2
2 l

2

1

sinh(πlτ2)2 +
1

τ3
2 l

3
coth(πlτ2) + c.c.

]}
=
L1L2τ2

2π2L2
3

{
π4

45
+
π

2

∑′

l∈Z

[
π

τ2
2 l

2

1

sinh2(πlτ2)
+

1

τ3
2 l

3
coth(πlτ2)

]}
. (F.65)

Using the general expansion of the Epstein zeta function in equation (F.49), for s = 2 yields immediately
the connection between (F.64) and (F.65).

F.6 SL(q + 1,Z) transformation of the partition function on Tq+1 × Rd−1.

The modular parameters τi in (8.139), in terms of the lattice vectors ~ωα in (8.120) are given by 50

τi =

(
~ωd+1

)
i
+ i
(
~ωd+1

)
d+1(

~ωi
)
i
+ i
(
~ωi
)
d+1

. (F.66)

Under SL(q + 1,Z) transformations of the lattice vectors

~ω′i = Si
j~ωj + Si

d+1~ωd+1, ~ω′d+1 = Sd+1
i~ωi + Sd+1

d+1~ωd+1, (F.67)

and thus

(
~ω′d+1

)
d+1

= Sd+1
i
(
~ωi
)
d+1

+ Sd+1
d+1
(
~ωd+1

)
d+1

= Sd+1
d+1β, (F.68)

(
~ω′d+1

)
i

= Sd+1
j
(
~ωj
)
i
+ Sd+1

d+1
(
~ωd+1

)
i

= Sd+1
iLi + Sd+1

d+1βµi, (no sum on i) (F.69)

(
~ω′i)d+1 = Si

j
(
~ωj
)
d+1

+ Si
d+1
(
~ωd+1

)
d+1

= Si
d+1β, (F.70)

(
~ω′i)i = Si

j
(
~ωj
)
i
+ Si

d+1
(
~ωd+1

)
i

= Si
iLi + Si

d+1βµi. (no sum on i). (F.71)

50Note that in (F.66) the component
(
~ωi
)
d+1

is 0, but in general after a modular transformation it will be non-zero.
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The modular parameters τi transform as

τ ′i =

(
~ω′d+1

)
i
+ i
(
~ω′d+1

)
d+1(

~ω′i
)
i
+ i
(
~ω′i
)
d+1

=
Sd+1

iLi + Sd+1
d+1βµi + iSd+1

d+1β

SiiLi + Sid+1βµi + iSid+1β
=
Sd+1

d+1τi + Sd+1
i

Sid+1τi + Sii
. (F.72)

In the case q = 1, we recover usual modular transformations τ ′ = aτ+b
cτ+d , with ad − bc = 1. However, the

transformation in (F.72) for τi is not modular since in general Sd+1
d+1Si

i−Sd+1
iSi

d+1 6= 1. The imaginary
part of τi transforms as

τ ′i2 =
Sd+1

d+1Si
i − Sd+1

iSi
d+1

|Sid+1τi + Sii|2
τi2 , (F.73)

and thus

τ ′12
...τ ′q2

=
(Sd+1

d+1S1
1 − Sd+1

1S1
d+1)...(Sd+1

d+1Sq
q − Sd+1

qSq
d+1)∣∣S1

d+1τ1 + S1
1

∣∣2...|Sqd+1τq + Sqq|2
τ12 ...τq2 . (F.74)

The volume transforms as

V ′q+1 =
(
τ ′12
...τ ′q2

) 1
q (L1....Lq)

q+1
q

=

[
(Sd+1

d+1S1
1 − Sd+1

1S1
d+1)...(Sd+1

d+1Sq
q − Sd+1

qSq
d+1)∣∣S1

d+1τ1 + S1
1

∣∣2...|Sqd+1τq + Sqq|2

] 1
q

Vq+1 (F.75)

The full partition function on Tq+1 × Rp, under (F.72), transforms as

logZ(τ ′i , τ̄i) =

[
(Sd+1

d+1S1
1 − Sd+1

1S1
d+1)...(Sd+1

d+1Sq
q − Sd+1

qSq
d+1)∣∣S1

d+1τ1 + S1
1

∣∣2...|Sqd+1τq + Sqq|2

]− p
q(q+1)

logZ(τi, τ̄i). (F.76)

Again, for p = d− 1 and q = 1 we have

logZ(τ ′, τ̄ ′) =

[
(ad− bc)
|cτ + d|2

]− d−1
2

logZ(τ, τ̄) = |cτ + d|d−1 logZ(τ, τ̄), (F.77)

as we should.
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G The linear momentum observable in terms of gauge fields

G.1 Electromagnetic case

Consider the linear momentum along x3 of the scalar field Φ defined in (9.85),

P3 = −
∫
V ′

d3xΠ∂3Φ = −i
∑
ni∈Z3

k3Π∗kiΦki

(9.71)
= − i

2

∑
ni∈Z3

k3(Π∗Eki + iΠ∗Hki )(AEki − iA
H
ki

)

(9.43)
= −1

2

∑
ni∈Z3

k3(Π∗Eki A
H
ki
−Π∗Hki A

E
ki

)
(9.43)

=
∑

na∈Z2,n3∈N

k3(Π∗Hki A
E
ki
−Π∗Eki A

H
ki

)

(9.31)
=

∑
na∈Z2,n3∈N

k3Π∗ikiA
j
ki

(eHie
E
j − eHjeEi). (G.1)

From the second equation in (9.28) we have

εijkeH
jeE

k =
ki
k

=⇒ eH
ieE

j − eHjeEi = εijk
kk
k
, (G.2)

and hence

P3 =
∑

na∈Z2,n3∈N

k3Π∗ikiA
j
ki
εijk

kk

k
=

∑
na∈Z2,n3∈N

k3(~Π∗ki × ~Aki) · k̂. (G.3)

Now consider the gauge invariant expression

∫
V

d3x(~∇× ∂3
~A) · ~Π = −

∑
na∈Z2,n3∈N

k3(~k × ~Aki) · ~Π
∗
ki

= −
∑

na∈Z2,n3∈N

k3( ~Aki × ~Π
∗
ki

) · ~k

=
∑

na∈Z2,n3∈N

k3(~Π∗ki × ~Aki) · ~k. (G.4)

Therefore, on comparing (G.4) and (G.3) we get

P3 =

∫
V

d3x(~∇× ∂3
~A) · 1√

−∆
~Π =

∫
V

d3x ∂3
~B · 1√

−∆
~Π. (G.5)

Another equivalent expression for P3 is, in terms of the oscillators aαki defined in (9.45),

P3 =
∑

na∈Z2,n3∈N

k3(Π∗Hki A
E
ki
−Π∗Eki A

H
ki

) = i
∑

na∈Z2,n3∈N

k3(a∗Hki a
E
ki
− a∗Eki a

H
ki

). (G.6)
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Now consider the spin angular momentum of light, defined on the reduced phase space as

Ji =

∫
V

d3x εijkA
j
⊥Πk
⊥, (G.7)

where φi⊥ are given in (9.50)-(9.54) having set φ
‖
ki

= 0. It is easy to show that

J3 =
∑

na∈Z2,n3∈N

k3

k
(Π∗Eki A

H
ki
−Π∗Hki A

E
ki

) = −i
∑

na∈Z2,n3∈N

k3

k
(a∗Hki a

E
ki
− a∗Eki a

H
ki

). (G.8)

Hence, we find that and P3 has the same mode expansion of J3, up to an overall sign and to multiplication
of each term in momentum space by k.

G.2 Pauli-Fierz case

In order to obtain a gauge invariant expression for P3 in the Pauli-Fierz case, one starts by considering the
generalized curl for a symmetric spacetime tensor defined in (9.140),

(~∇× φ)ij ≡ 1

2
(εilm∂

lφmj + εj lm∂
lφmi). (G.9)

We have, using explicitly the Fourier expansions in (9.102)-(9.104)

(~∇× φ)ab =
1

2

∑
na∈Z2

[
1√
V

(εack
cφ3b
ka,0 + εbck

cφ3a
ka,0)

+

√
2

V

∑
n3∈N

[εac(k
cφ3b
ki
− k3φbcki) + εbc(k

cφ3a
ki
− k3φacki )] cos

(
k3x

3
)]
eikax

a

=
∑
na∈Z2

[
1√
V

(Ôφka,0)ab +

√
2

V

∑
n3∈N

(Ôφki)
ab cos

(
k3x

3
)]
eikax

a
, (G.10)

(~∇× φ)a3 =
i

2

√
2

V

∑
na∈Z2,n3∈N

[εab(k
bφ33
ki
− k3φb3ki ) + εbck

bφcaki ] sin
(
k3x

3
)
eikax

a

= i

√
2

V

∑
na∈Z2,n3∈N

(Ôφki)
a3 sin

(
k3x

3
)
eikax

a
, (G.11)
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(~∇× φ)33 =
1

2

∑
na∈Z2

[
1√
V
εabk

aφb3ka,0 +

√
2

V

∑
n3∈N

εabk
aφb3ki cos

(
k3x

3
)]
eikax

a

=
∑
na∈Z2

[
1√
V

(Ôφka,0)33 +

√
2

V

∑
n3∈N

(Ôφki)
33 cos

(
k3x

3
)]
eikax

a
, (G.12)

where the operator Ô acts on momentum space symmetric tensors φijki as

(Ô φki)
ij ≡ k

2
(εilme‖

lφmjki + εj lme‖
lφmiki ). (G.13)

Acting with Ô on a symmetric tensor rotates its electric and magnetic components and projects out both
its trace part (T) and its longitudinal part (LL) :

(Ô φki)
ij = k

(
eTT×

ijφTT+
ki
− eTT+

ijφTT×ki
+

1

2
eLTE

ijφLTHki
− 1

2
eLTH

ijφLTEki

)
. (G.14)

Another operator relevant for our analysis is P, whose action on a symmetric tensor φ is defined as

(P φ)ij ≡ −∆φij + ∂i∂lφ
jl + ∂j∂lφ

il. (G.15)

Similarly to (G.10)-(G.11), it is possible to show that

(P φ)ab =

√
2

V

∑
na∈Z2,n3∈N

(P̂ φki)
ab sin

(
k3x

3
)
eikax

a
, (G.16)

(P φ)a3 = −i
∑
na∈Z2

[
1√
V

(P̂ φki)
a3 +

√
2

V

∑
n3∈N

(P̂ φki)
a3 cos

(
k3x

3
)]
eikax

a
, (G.17)

(P φ)33 =

√
2

V

∑
na∈Z2,n3∈N

(P̂ φki)
33 sin

(
k3x

3
)
eikax

a
, (G.18)

where the operator P̂ acts on momentum space symmetric tensors φijki as

(P̂ φk)ij ≡ k2(φijki − e‖
ie‖lφ

lj
ki
− e‖je‖lφliki). (G.19)

Acting with P̂ on a symmetric tensor projects out the transverse components of the longitudinal part:

(P̂ φk)ij = k2(eTT+
ijφTT+

ki
+ eTT×

ijφTT×ki
+ eT

ijφTki − eLL
ijφLLki ). (G.20)
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It can be shown that the projector onto the transverse-traceless part of the symmetric tensor φij can be
obtained by combining the actions of ~∇× and P:

(PTT φ)ij = −(P ~∇× φ)ij = −(~∇×P φ)ij . (G.21)

The observable P3 is given by

P3 = −
∫
V ′

d3xΠ∂3Φ = −i
∑
ni∈Z3

k3Π∗kiΦki =
∑

na∈Z2,n3∈N

k3(Π∗+ki h
×
ki
−Π∗×ki h

+
ki

)

=
∑

na∈Z2,n3∈N

k3Π∗ijki h
lm
ki

(eTT+
ije

TT×
lm − eTT×ijeTT+

lm). (G.22)

After some algebra, we get

eTT+
ije

TT×
lm − eTT×ijeTT+

lm =
1

2k

[
εimk

(
δjl −

kjkl
k2

)
+ εjlk

(
δim −

kikm
k2

)]
kk, (G.23)

and hence, substituting in (G.22),

P3 =
∑

na∈Z2,n3∈N

k3

k
εimkh

lm
ki

(
δjl −

kjkl
k2

)
Π∗ijki k

k. (G.24)

Consider

(P̂ Π∗ki)
i
l = (k2δjl − kjkl)Π∗ijki − k

iknΠ∗nlki
. (G.25)

Contracting both sides of this equation with εimkk
k, we obtain

εimk(P̂ Π∗ki)
i
lk
k = εimk(k

2δjl − kjkl)Π∗ijki k
k, (G.26)

and P3 can be rewritten as

P3 =
∑

na∈Z2,n3∈N

k3

k3
εimkh

lm
ki
kk(P̂ Π∗ki)

i
l. (G.27)

Consider

(Ô hki)
l
i =

1

2
(εlkmk

khmiki
+ εikmk

khmlki ). (G.28)
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Contracting both sides of this equation with (P̂ Π∗ki)
i
l yields

(Ô hki)
l
i(P̂ Π∗ki)

i
l = εikmk

khmlki (P̂ Π∗ki)
i
l, (G.29)

and therefore P3 reads

P3 = −
∑

na∈Z2,n3∈N

k3

k3
(Ô hki)ij(P̂ Π∗ki)

ij . (G.30)

Now consider the gauge invariant expression

∫
V

d3x ∂3(~∇× h)ij
1

√
−∆

3 (P Π)ij = −
∑

na∈Z2,n3∈N

k3

k3
(Ôhki)ij(P̂Π∗ki)

ij . (G.31)

Comparing with (G.30), we get

P3 =

∫
V

d3x ∂3(~∇× h)ij
1

√
−∆

3 (P Π)ij . (G.32)

Another equivalent expression for P3 is, in terms of the + and × oscillators is

P3 =
∑

na∈Z2,n3∈N

k3(Π∗+ki h
×
ki
−Π∗×ki h

+
ki

) = i
∑

na∈Z2,n3∈N

k3(a∗+ki a
×
ki
− a∗×ki a

+
ki

). (G.33)

Now consider the spin angular momentum in linearized gravity, defined on the reduced phase space by

Ji =

∫
V

d3xΠij
TT (~ei × hTT )ij . (G.34)

It is easy to show that

J3 =
∑

na∈Z2,n3∈N

k3

k
(Π∗×ki h

+
ki
−Π∗+ki h

×
ki

) = −i
∑

na∈Z2,n3∈N

k3

k
(a∗+ki a

×
ki
− a∗×ki a

+
ki

). (G.35)

Hence, we find again that and P3 has the same mode expansion of J3, up to an overall sign and to
multiplication of each term in momentum space by k.
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H Polarization tensors

Using the expressions of (eA
i), the explicit expressions for the basis elements (eΞ

ij) are

eTT+
ab =

1√
2

(k2εackcε
bdkd − k2

3k
akb)

k2
⊥k

2
, eTT×

ab =
k3√

2

(εackck
b + kaεbckc)

k2
⊥k

, (H.1)

eTT+
a3 =

1√
2

kak3

k2
, eTT×

a3 = − 1√
2

εackc
k

, (H.2)

eTT+
33 = − 1√

2

k2
⊥
k2
, eTT×

33 = 0, (H.3)

eT
ij =

1√
2

(k2δij − kikj)
k2

, (H.4)

eLTH
ab =

1√
2

(εbckakc + εackbkc)

kk⊥
, eLTE

ab =
√

2
kakbk3

k2k⊥
, (H.5)

eLTH
a3 =

1√
2

εabkbk3

kk⊥
, eLTE

a3 =
√

2
ka(k2

3 − k2
⊥)

k2k⊥
, (H.6)

eLTH
33 = 0, eLTE

33 = −
√

2
k3k⊥
k2
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