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Abstract

The light manipulation at the nanoscale is the leitmotif of the research field of
nanophotonics. Over the last decades, the classical limits imposed by diffraction
have been largely surpassed by virtue of technological and theoretical breakthroughs
in the field of light-matter interaction. Properly engineered metallic and dielectric
nanostructures provide an unprecedented level of control over the electromagnetic ra-
diation in subwavelength spatial regions. This is enabled by their resonant behavior
at the optical frequencies. Thus, the development in this research field necessarily
depends on an effective electromagnetic modeling of these resonances.

Hand in hand with the technological progress, there have been growing efforts
in providing a complete and accurate framework for the description of resonances in
metallic and dielectric nanostructures. The most powerful tools have certainly been
represented by the spectral theories, in which the object electromagnetic behavior
is characterized by its resonant modes. These modes are calculated as solutions of
an auxiliary eigenvalue problem, i.e., the source-free Maxwell’s equations. Several
spectral theories have been developed, and in each of them the nanostructure geo-
metric parameters, material, and resonant frequencies are intertwined in a different
way, according to the choice of spectral parameter. For instance, the quasi-normal
modes, widespread in the nanophotonics community, adopt, as the spectral parame-
ter, the operating frequency, and hence the modes depend on both the nanostructure
material and its shape.

In the recent years, a spectral method that uses the object relative permittivity
as spectral parameter, has proved very useful in the modeling of the electromagnetic
scattering from homogeneous isotropic nanostructures. This method relies on modes,
called material-independent modes, that depend on the object geometry and the
operating frequency, but not on the nanostructure dielectric permittivity.

The goal of this thesis is to develop the description of electromagnetic scattering
by homogeneous objects in terms of material-independent modes. In particular,

In Chapter 1, we briefly review recent highlights in the modeling and applications
of resonant metallic and dielectric nanostructures, and contextualize the spectral
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theory of the material-independent modes.
In Chapter 2, we develop the formalism to describe the resonances in objects

smaller than the incident wavelength. Specifically, we show that the resonances in
metal and dielectric nanostructures of any shape are electro- and magneto-quasistatic
in nature, respectively, and can be described through eigenfunctions (quasistatic
modes) of compact and self-adjoint integral operators. Through means of a per-
turbative approach, we then provide an extension to the quasistatic analysis, and we
link the radiation corrections to the frequency shift and radiation quality (Q ) factor
of the quasistatic modes, through closed-form expressions. In the derived expressions,
the dependencies on the material and the size of the object are factorized.

In Chapter 3, we exploit the quasistatic mode framework introduced in the pre-
vious chapter for the calculation of the optimal current distribution supported by
an object of dimension smaller than the wavelength, yelding the minimum Q fac-
tor. This part has been developed during my stay at the Photonics Initiative at
the Advanced Science Research Center, in New York, under the supervision of Prof.
Andrea Alù. The provided representation leads to analytical and closed form expres-
sions of the electric and magnetic polarizability tensors of arbitrary shaped objects,
whose eigenvalues are known to be linked to the minimum Q factor. Many examples
are worked out, in three-dimensional, two-dimensional (surfaces), and translational
invariant objects.

In Chapter 4, we introduce the full-wave material-independent modes for the
description of the scattering from an arbitrary sized 3D object. As a case of study,
we investigate the modes and resonances of the prototypical structure of a sphere.
We show how the analysis of the object modes and eigenvalues provides a systematic
classification of resonances and interference effects. In particular, in this framework,
we are able to justify the differences in the power spectrum scattered by dielectric
and metal nanoparticles.

In Chapter 5, we investigate the resonances and resonance modes in the elec-
tromagnetic scattering from metallic and dielectric sphere dimers in the full-wave
regime, by using the material-independent modes. Along the lines of the well-known
plasmon hybridization model, we see the dimer modes as the result of the hybridiza-
tion of the modes of the two constituent spheres, whose importance is quantified by
hybridization weights. In this way, as we vary the spheres arrangement, although
the dimer modes change, they are still represented in terms of the same set of single-
sphere modes, but with different hybridization weights. This study represents the
first full-Maxwell theory of hybridization in dielectric dimers, and it also constitutes
an extension of the plasmon-mode hybridization theory.
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Chapter 1

Introduction

Over the last decades, particular interest has been raised by the resonant electromag-
netic scattering from metal and dielectric nanostructures.

Metal nanostructures can support coherent oscillations of their free electron
plasma, known as localized surface plasmons, which generate a high electric field-
enhancement [1, 2]. This property makes them particularly effective in light concen-
tration into deep-subwavelength volumes, enabling the boosting of linear and non-
linear optical processes [3]. This fact stimulates a variety of potential applications,
including high-sensitivity biosensors [4], nonlinear optics [5], and energy harvesting
[6, 7]. Furthermore, due to their control capabilities of electromagnetic fields at the
nanoscale, metals are largely employed in electromagnetic metamaterials, i.e., ag-
gregates of elementary deep-subwavelength units arranged in repeating patterns to
provide an unconventional electromagnetic response [8, 9, 10], for a plethora of appli-
cations, including cloaking devices [11, 12, 13], analog optical computing [14, 15, 16],
super-resolution imaging [17, 18, 19, 20]. Nevertheless, the available metals for these
applications, mostly noble metals (e.g., gold and silver), are plagued by high losses
at the optical frequencies, which are inhibiting the development of practical devices
[21].

Recently, dielectric resonators are gaining increasing attention in nanotechnology,
and many researchers currently suggest that high-index dielectrics may be a feasible
alternative to noble metals for many applications [22, 23, 24, 25, 26]. This interest
has been prompted by the evidence that the enhancement of electric and magnetic
fields in dielectric nanostructures is of the same order of magnitude of the one achiev-
able in their metal counterpart. Dielectric objects of small dimensions compared to
the free-space wavelength, in fact, may display a resonant behavior, provided their
dielectric permittivity is sufficiently high [27, 28, 29]. This fact is well-known at radio
frequencies, where low-loss dielectrics with high (≈ 100) relative dielectric permittiv-
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1.1 Motivations for a modal analysis

ity are exploited in several applications, such as resonators and filters [30, 31, 32],
while a series of perovskites has been measured at a relative permittivity larger than
1000 [33, 34, 35]. In the visible and near-infrared frequency ranges of the spectrum,
resonances in high-index nanostructures, such as AlGaAs, Si, and Ge nanoparticles,
have been experimentally observed, e.g., [36, 37, 25], and have been employed in
various applications, e.g., [38, 39, 40, 41, 42, 43, 44]. In the nano-optics community,
these resonances are known as “Mie resonances” [25].

The physics governing the scattering from high index dielectric nanoparticles is
far richer than the physics behind the scattering from metal nanoparticles, due to
the possibility of exciting magnetic modes [37, 36, 45, 46] and due to the presence
of multimode interference, which may lead to the formation of Fano-resonances [47,
48].

1.1 Motivations for a modal analysis

The understanding of the resonant electromagnetic behavior of nanostructures is
elemental for the analysis and engineering of the field-matter interaction. In this
direction, the characterization of the scattering by nanostructures in terms of their
resonant modes is enlightening. In fact, compared to the direct solution of the scatter-
ing problem, the description in terms of resonances and modes, which solely depend
on the inherent properties of the nanostructure

• offers intuitive insights into the physics of the problem;

• enables the rigorous comprehension of interference phenomena, including Fano
resonances, as the interplay among well-identified modes;

• suggests how to shape the excitation to achieve a prescribed tailoring of the
scattering response.

In closed electromagnetic systems, the definition of resonances and modes is straight-
forward [49]. On the contrary, in open systems, where the electromagnetic field
occupies an unbounded domain, this definition is challenging. In an oversimplified
but widespread approach, the electromagnetic resonances of a body are found as
the peaks of its scattered power spectrum when a frequency-tunable probe field il-
luminates it. The corresponding electromagnetic field distributions are denoted as
“modes”. This approach is flawed for several reasons: it hides the modes that cannot
be excited by the chosen incident field; it disregards the fact that a peak can be due
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1.2 Quasistatic modal decomposition

to the interplay of two or more modes; it is not useful in the interpretation of the
interference phenomena.

Several more rigorous approaches are possible, grounded in different choices of
the modes. The quasi-normal modes are the most widely used ones for the inves-
tigation of the resonances of open systems [50, 51, 52, 53, 54].They are also known
as resonant states [55]. They depend on both the material and the geometry of the
scatterer. They are not orthogonal in the usual sense and diverge exponentially at
large distances [56], thus they need to be normalized [57, 58, 59]. Another approach,
increasingly used in nanophotonics, is represented by the characteristic modes [60, 61,
62, 63]. They are real and satisfy a weighted orthogonality. Moreover, they depend
on the frequency, on the geometry, and on the material composition of the scatterer.

An alternative strategy, which we embrace throughout this work of thesis, is the
material-independent mode decomposition [64, 65]. The material-independent modes
allow separating the role of the geometry, material, and incident electromagnetic
field; thus, they provide a very different perspective in the modeling of the resonant
electromagnetic behavior of bodies than the aforementioned approaches. They are
bi-orthogonal but, unlike the quasi-normal modes, they satisfy by construction the
radiation conditions at infinity. Over the years, material-independent modes have
been calculated in the quasi-static limit [66, 67, 68, 69, 70, 71, 72], in the long
wavelength limit [64], and for the scalar Mie scattering [73]. They have been also
derived within the quasi-static [74] and retarded [75] single dipole approximation.

More recently, the material-independent modes have been derived for the full-
retarded vector scattering by a homogeneous sphere [65], by a coated sphere [76], by
a flat slab [77], and by arbitrary shaped objects [78]. Furthermore, it has been also
shown that the investigation of the eigenvalues associated to the material-independent
modes unveils important structural properties of plasmonic and dielectric resonances
[79]. These modes have also been proved effective in the design the permittivity
of the object to pursue a prescribed tailoring of the scattered field, including the
cancellation of the backscattering, the suppression of a given multipolar order, and
the maximization of the scattered field in the near-field zone [80, 76]. They have been
also employed in the modeling of complex lasing media [81].

1.2 Quasistatic modal decomposition

When the object is much smaller than the operating vacuum wavelength, its res-
onances and resonance modes are well described by the electro- and magneto-
quasistatic approximations of the Maxwell’s equations.
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1.2 Quasistatic modal decomposition

The electro-quasistatic approximation covers the (plasmon) resonance mechanism
occurring in small metal nanoparticles with negative dielectric permittivity, arising
from the interplay between the energy stored in the electric field and the kinetic
energy of the metal free electrons. In this limit, there exist spectral theories modeling
plasmon resonances. For instance, for a spherical nanoparticle of relative dielectric
permittivity εR, and size much smaller than the incident wavelength, the Fröhlich
condition [82], i.e., min

ω
|εR(ω) + 2|, predicts the resonant value of permittivity, and

hence of the resonant frequency. Moreover, Mayergoyz et al. [70, 83] introduced a
more general electro-quasistatic approach based on a surface integral equation. This
approach is applicable to arbitrary shaped particles, whose resonances are associated
with negative values of permittivity in correspondence of which source-free solutions
exist [70, 84, 85, 86]. The applicability domain of these techniques has been extended
through perturbation approaches to include first-order radiation corrections [70, 87].

For the modeling of metallic complex nanostructures, a very popular and useful
approach is the plasmon hybridization model [88, 89]. The plasmon hybridization
consists in the representation of the modes of a complex plasmonic nanostructure, i.e.,
“plasmonic molecule”, in terms of the modes of its constituent parts, i.e. “plasmonic
atoms”. Thus, even if the mutual spatial arrangement of the atoms is changed, the
modes of the plasmonic molecule are represented in terms of the same set of atomic
modes, while only the atomic modes weights change. Many studies have demonstrated
that very complex molecular modes arise from the hybridization of just few atomic
modes [84, 90, 91, 92, 89].

Instead, dielectric resonators have been traditionally analyzed by using perfect
magnetic wall boundary conditions (PMW) [33, 35, 31]. However, because electro-
magnetic fields do exist beyond the geometrical boundary of the cavity, this condition
is unable to accurately predict resonances [93, 94, 95]. Many ad hoc corrections to
the PMW conditions have been proposed, including the Cohn model [96], where an
idealized waveguide with PMW walls is considered, and the Itoh-Rudokas model [97].
Instead, Van Bladel investigated these resonances without ad hoc assumptions, using
an asymptotic expansion of the Maxwell’s equation in differential form in terms of
the inverse of the index of refraction [27]. Glisson et al. [98, 99] obtained the resonant
frequencies of rotationally symmetric dielectric bodies by searching the frequencies at
which the determinant of the impedance matrix is zero; they assembled the impedance
matrix by discretizing a surface integral formulation of the full-Maxwell equation.

By using an integral formulation, the authors in [100] showed that the resonances
of small objects with positive and high permittivity are described by the magneto-
quasistatic approximation of the Maxwell’s equations, and are due to the interplay
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1.3 Quality factor of electrically small objects

between the polarization energy stored in the dielectric and the energy stored in
the magnetic field. These resonances are associated with values of permittivity and
frequency for which source-free solutions exist, in which the normal component of the
displacement current density field vanishes on the surface of the particle.

Each quasistatic resonance also exhibits a radiation Q factor [101], which, in the
limit of high Q and noninteracting modes, is equal to the inverse of the fractional
bandwidth. In [101], the authors derived closed-form expressions for the frequency
shift and radiation Q factor of objects of dimensions smaller than the incident wave-
length in terms of the radiation corrections of the quasistatic modes. In the derived
expressions, the dependencies on the material and the size of the object are factorized.

The aforementioned material-independent modes for the analysis of scattering
from arbitrary sized objects are the full-wave extension of these quasistatic modes. In
this framework, the investigation of the resonant modes in plasmonic and dielectric
homogeneous nanoparticles of size smaller then the operating wavelength revealed
that these resonances are electro- and magneto-quasistatic in nature [102, 100, 101].

For this reason, to provide a complete picture of the modeling of electromagnetic
resonances in plasmonic and dielectric objects, we start this thesis with a description
of their quasistatic modes, for different geometries. Later, we extend this analysis to
the full-retarded scenario, by examining the an isolated sphere and a dimer.

1.3 Quality factor of electrically small objects

The technological advancement in the fabrication process has driven a reduction in
the footprint of electromagnetic resonant devices, progressively scaled to fit sub-
wavelength domains [103, 104, 105]. However, this generally comes at the cost of
bandwidth (and therefore, e.g., operational speed). This fundamental trade-off be-
tween volume, peak field enhancement or scattering, and bandwidth has been inves-
tigated using various analytical and numerical methods [106, 107, 108, 109, 110], the
most well-known of which is perhaps the Chu limit [111].

The Chu limit determines the minimum radiation quality factor (Q factor) of
electrically small radiators, i.e., objects that fit inside a sphere of radius equal to the
inverse of the field wave number [112]. This limit does apply to both self-resonant
objects, and non self-resonant objects, provided that a convenient tuning network
is used. The minimum Q factor is associated with an optimal current, which is
the particular current density distribution supported by the radiator yielding the
minimum Q .

The search for such lower bounds originated with the works of Chu [111],
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1.3 Quality factor of electrically small objects

Wheeler [113], and Harrington [114], and several techniques were proposed over the
years by many contributors including Collin and Rothschild [115], and McLean [116].
Thal [107] noticed that the previous approaches did not account for either the energy
stored within the antenna or for any energy stored in the space between the actual
antenna’s physical boundary and the enclosing sphere (in cases where they are not the
same), thus leading to loose bounds. By including these contributions, he arrived to
more strict bounds compared to his predecessors. Then, in a series of contributions,
starting in [106], Gustafsson and co-workers provided shape-dependent bounds on the
minimum radiator’s Q , linking it to the available volume in which the search of the
optimal current is constrained. They also reduced the variational problem of finding
the minimum Q of radiators to determining the largest eigenvalues of either electric or
magnetic polarizability tensors. In the subsequent years, Gustafsson and co-workers
refined and extended their original idea [117, 108], including also the very important
contributions of Vandenbosch [118, 110]. Efficient numerical determination of opti-
mal currents in terms of a mode expansions was also recently demonstrated [119, 120,
121].

Even though these limits have been originally conceived having small radio-
frequency antennas in mind, they are also applicable to optical nanoantennas, which
are often self-resonant, as in the case of plasmonic (metal) and dielectric resonators.
In the long-wavelength limit, their resonances are well modeled by the quasistatic
modes, and their Q factor.

Interestingly, the recent literature on Q factor bounds divides radiators into two
categories (e.g., [118, 110, 122]), depending on the characteristics of the currents they
support. Radiators of electric-type support currents with zero curl, i.e., longitudinal
currents, while radiators of magnetic type support currents with zero divergence, i.e.
transverse currents. This distinction naturally applies also to nanoantennas, since
the plasmon resonances are driven by longitudinal currents, while the resonances in
high-permittivity dielectric objects are driven by transverse currents.

In this work of thesis, we introduce a representation of the optimal current in
terms of the quasistatic scattering resonance modes. This representation not only
unveils the intimate connection between the optimal current yielding the minimum
Q factor and the modes supported by plasmonic and high-permittivity resonators,
but has several appealing advantages. A quasistatic mode expansion of the current
density leads to analytical and closed form expressions of the electric and magnetic
polarizability tensors of arbitrary shaped objects, whose eigenvalues have been linked
by Gustafsson and coworkers to the minimum Q . This fact implies that the mini-
mum Q and the corresponding optimal current can be directly determined from the
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1.4 Full-wave hybridization

knowledge of the eigenvalues and the dipole moments of quasistatic scattering modes.

1.4 Full-wave hybridization

Interacting nanoparticles, which can be either metallic or dielectric, constitute an
example of composite open electromagnetic system. In particular, interacting metal
nanoparticles have been extensively investigated [1]: they exhibit larger electric field
enhancement with respect to their isolated constituents [3], they feature tunability of
the resonance position [123, 124] and of the scattering directionality as the particle
arrangement changes, and novel physical properties, such as Fano resonances [47,
125, 126].

As stated in the previous section, the plasmon hybridization theory has been a
cornerstone for the modeling of such metal systems, within the electrostatic frame-
work. As such, it is based on compact Hermitian operators and orthogonal electric
field modes. This theory is only applicable to metal structures much smaller than the
incident wavelength, because the magnetic interactions and radiation effects are not
present. In other words, the plasmon resonators are treated as they effectively were
closed resonators. For this reason, although its validity domain can be extended to
include weak radiative contributions by using the aforementioned perturbation ap-
proaches [71] or by adding retardation to the Coulomb potential [127], it completely
fails to describe dielectric resonators, which are dominated by magnetic interactions
[37].

Dielectric particle dimers coupled in the near field zone may exhibit significant
enhancement of both electric and magnetic fields [128, 129, 130, 131, 132, 133] with
reduced heat conversion [134, 135], directional Fano-resonances [136], and strong
directional scattering [137, 138]. A theory of hybridization in silicon (Si) dimers,
although limited to electric and magnetic dipole-dipole interactions, has been theo-
retically proposed in [129] and experimentally validated in [131]. More recently, the
hybridization in Si [45] and AlGaAs [139] dimers has been experimentally studied.

An important result of this thesis is the derivation of resonances and modes of a
sphere dimer in the full-Maxwell regime [140]. In particular, we extended the scheme
proposed by Bergman and Stroud [64], valid only in the long-wavelength limit, when
all radii, as well as the interparticle distance, are small compared to the wavelength
outside the scatterers. Along the lines of the plasmon hybridization model, we de-
scribe the dimer modes as the hybridization of the modes of the two constituent
spheres: each dimer mode is expanded in terms of a complex weighted linear com-
bination of a set of isolated-sphere modes. The method here proposed, permits the
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rigorous modeling of the resonant behavior of either palsmonic or dielectric homoge-
neous dimers, regardless of their size. This fact enables us to address, for the first
time, the mode analysis and the hybridization in silicon dimers in the full-Maxwell
regime, and to refine the understanding of plasmon-mode hybridization in a full-wave
scenario.

1.5 Author’s main contribution

I was the lead contributor to the

• formulation of the theory of hybridization, its numerical implementation, and
interpretation of the results [140] (included in the fifth chapter of the present
thesis),

• formulation of the spectral theory of a coated sphere, by using material-
independent modes [76] (not included in the thesis).

During my stay at the Photonics Initiative at the Advanced Science Research Center,
in New York, under the supervision of Prof. Andrea Alù, I developed

• an analysis of the Q factor of singular plasmonic nanoresonators (not included
in the thesis),

• a method for the calculation of the minimum Q factor of electrically small
radiators, through quasistatic scattering modes (described in the third chapter
of the thesis),

• a formalism for the analysis of the resonances and the Q factor of translational
invariant structures (included in the second and third chapter of the thesis).

The papers including these results are currently under preparation.
I also contributed to the following works:

• description of resonances in high-permittivity small dielectric objects through
magneto-quasistatic scattering modes (included in the second chapter of the
thesis) [100];

• description of modes and resonances in two-dimensional (surfaces) bodies (in-
cluded in the second chapter of the thesis) [102];

• directional scattering cancellation for an electrically large dielectric sphere (not
included in the thesis) [141];
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1.5 Author’s main contribution

• resonances in a long and narrow nanoribbon of finite length (not included in
the thesis) [142];

• material-independent modes for the design and analysis of electromagnetic scat-
tering [48, 80] (included in the third chapter of the thesis).
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Chapter 2

Modes and resonances of
electrically small objects

In the linear regime, a nonmagnetic, homogeneous object, assumed small compared
to the incident wavelength in vacuum, may resonate through two mechanisms. The
first one occurs in small particles with negative dielectric permittivities, e.g., metals
at frequencies near their plasma frequency. For metals, it arises from the interplay
between the energy stored in the electric field and the kinetic energy of the free
electrons. When the object is very small compared to the wavelength in vacuum,
these resonances are well described by the electro-quasistatic approximation of the
Maxwell’s equations and are associated with the negative values of the dielectric
permittivity in correspondence of which source-free solutions exist [71, 143].

The second resonance mechanism occurs in small objects of high and positive di-
electric permittivity, and it arises from the interplay between the polarization energy
stored in the dielectric and the energy stored in the magnetic field. Manifestation
of this kind of resonance can be found at microwave [144, 31] and optical [24, 145]
frequencies. When the object is very small compared to the free-space wavelength,
and the permittivity is very high, these resonances are well described by the magneto-
quasistatic approximation of the Maxwell’s equations, where the normal component
of the displacement current density field vanishes on the surface of the particle [100].

Each quasistatic resonance mode may be characterized by a radiation quality
factor (Q factor), which links the stored energy to the energy radiated toward infinity.
In the limit of high Q and noninteracting modes, it is equal to the inverse of the
fractional bandwidth.

In this chapter, we introduce the electro-quasistatic and magneto-quasistatic
modes and resonances of linear, nonmagnetic, homogeneous and isotropic objects,

10



2.1 Three-dimensional objects

using an integral formulation of the Maxwell’s equations. We derive their radiation
corrections through means of a perturbation approach, treating the size parameter of
the object x = k0`c, being k0 the wave number and `c a characteristic length of the
object, as a small parameter. Then, we provide closed-form expressions of the relative
resonance frequency shift and the radiation Q factor of the quasistatic modes, as a
function of their radiation corrections. We carry out this study for arbitrary shaped
three-dimensional (3D) and translational-invariant (TI) objects, and surfaces (2D).

2.1 Three-dimensional objects

Let us consider a linear material occupying a domain Ω, bounded by a closed surface
∂Ω with normal n̂, sketched in Fig. 2.1. This material is assumed nonmagnetic,
isotropic, homogeneous, nondispersive in space, time-dispersive, with relative dielec-
tric permittivity εR, and it is surrounded by vacuum. The object is illuminated by a
time-harmonic electromagnetic field incoming from infinity Re {Einc(r)e−iωt}, where
ω is the angular frequency. We characterize the electromagnetic scattering from an
arbitrary shaped object in the quasistatic regime, starting from the full-wave descrip-
tion.

n

Ω

x

y

z

r

O

Figure 2.1 – A three-dimensional domain Ω, with normal n̂.

The scattering problem is formulated by considering as unknown the current den-
sity field J(r) induced in the object, which particularizes into: conduction current, in
metals at frequencies below interband transitions; polarization current, in dielectrics;
sum of conduction and polarization currents, in metals in frequency ranges where
interband transitions occur.

We have J(r) = −iωε0χE(r), where E is the total electric field (induced and
incident), ε0 is the vacuum permittivity, and χ = (εR − 1) is the electric suscepti-
bility. Both the vector fields E and J are divergence-free (div-free) in Ω due to the
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2.1 Three-dimensional objects

homogeneity and isotropy of the material. The current density J is governed by the
full-wave volume integral equation [146, 147, 148]:

J(r)
χ

+∇
˛
∂Ω

J(r′) · n̂′G (r− r′) dS ′ − k2
0

ˆ
Ω

J(r′)G (r− r′) dV ′

= −iωε0 Einc(r), ∀r ∈ Ω, (2.1)

where k0 = ω/c0, being c0 the speed of light in vacuum, and G (r− r′) =
eik0|r−r′|/4π|r− r′| is the Green’s function in vacuum.
The surface integral represents the contribution of the scalar potential to the in-
duced electric field and the volume integral represents the contribution of the vector
potential [146]. We introduce the dimensionless size parameter x defined as

x = ω

c0
`c, (2.2)

being `c a characteristic linear length of the region Ω (e.g., the radius of the smallest
sphere enclosing the object).
Then, Eq. (2.1) is recast as follows

J(r)
χ
− L{J} (r) = −iωε0 Einc(r), ∀r ∈ Ω, (2.3)

where the spatial coordinates have been normalized by `c, i.e., r→ r/`c,

L{W} (r) = −∇
˛
∂Ω

W(r′) · n̂′g (∆r, x) dS ′ + x2
ˆ

Ω
W(r′)g (∆r, x) dV ′, (2.4)

Ω is the corresponding scaled domain, ∇ is the scaled gradient operator, and g (∆r, x)
is the dimensionless scalar Green’s function in vacuum

g (∆r, x) = eix∆r

4π∆r , (2.5)

with ∆r = |r− r′|.
We now study the solution of Eq. (2.3) in the quasistatic limit, namely for x→ 0.

We introduce a complete basis for representing the unknown J, which is obtained
from the union of two orthogonal sets [100]. The first set {j‖h} is given by the solution
of the eigenvalue problem

Le
{
j‖h
}

(r) = 1
χ
‖
h

j‖h(r), ∀r ∈ Ω, (2.6)

12



2.1 Three-dimensional objects

where Le is the electrostatic integral operator that gives the electrostatic field as a
function of the surface charge density [143]:

Le{W} = −∇
˛
∂Ω

W(r′) · n̂′g0 (∆r) dS ′, (2.7)

where
g0 (∆r) = 1

4π∆r (2.8)

is the dimensionless static Green’s function in vacuum. The spectrum of Le is count-
able infinite [143], and the eigenfunctions {j‖h}h∈IN are longitudinal vector fields: they
are both div-free and curl-free in Ω but have nonvanishing normal component to ∂Ω
[71]. Moreover, Le is self-adjoint and definite negative, therefore the eigenvalues χ‖h
are real and negative, and the eigenfunctions are orthogonal according to the scalar
product

〈A,B〉Ω =
ˆ

Ω
A ·B dV. (2.9)

We then assume this set orthonormal, i.e.,

〈j‖h, j
‖
k〉Ω = δh,k, (2.10)

where δh,k is the Kronecker delta function.
To complete the basis for the vector space of square integrable div-free functions in Ω,
it is sufficient to add to {j‖h} a set of transverse vector fields {j⊥h }, which are div-free
in Ω, with vanishing normal component to ∂Ω, i.e.

j⊥h · n̂
∣∣∣
∂Ω

= 0, (2.11)

and are solutions of the eigenvalue problem in weak form

Lm
{
j⊥h
}

(r) = 1
κ⊥h

j⊥h (r), ∀r ∈ Ω, (2.12)

where Lm is the magnetostatic integral operator

Lm{W}(r) =
ˆ

Ω
W(r′)g0 (∆r) dV ′. (2.13)

Lm has a countable infinite spectrum, and is self-adjoint and definite positive, there-
fore the eigenvalues {κ⊥h }h∈IN are real and positive, and the eigenfunctions {j⊥h }h∈IN
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2.1 Three-dimensional objects

are orthogonal according to the scalar product (2.9), and assumed normalized, i.e.

〈j⊥h , j⊥k 〉Ω = δh,k. (2.14)

Furthermore, the eigenfunctions {j⊥h } are orthogonal to the eigenfunctions {j‖h}. Both
the sets of eigenvalues-eigenfunctions of the operators Le and Lm are material inde-
pendent, and do not depend on the size of the object, but only on its shape.

The union of the two sets {j‖h} and {j⊥h } is a complete basis for the vector space
of square integrable div-free vector fields in Ω. Therefore, the current density J in
the quasistatic regime (x→ 0) can be expressed as

J = −iωε0χ
∞∑
h=1

 χ
‖
h

χ
‖
h − χ

〈j‖h,Einc〉Ω j‖h + κ⊥h
κ⊥h − x2χ

〈j⊥h ,Einc〉Ω j⊥h

 . (2.15)

This expansion disentangles the dependence on the material, in the form of polyno-
mial functions of χ, from the dependence on the geometry, buried in the material
independent eigenvalue-eigenfunction systems [64].
The expression of the current density J clearly highlights two distinct resonance con-
ditions for χ, arising from different physical mechanisms: the first one is

Re {χ} = χ
‖
h, (2.16)

with the resonant excitation of the eigenfunction j‖h; the second one is

Re {χ} = κ⊥h
x2 , (2.17)

with the resonant excitation of the eigenfunction j⊥h .
Thus, the sets {j‖h} and {j⊥h } can be interpreted as the density current modes of
the body in the quasistatic limit, and {χ‖h} and {κ⊥h /x2} can be interpreted as the
corresponding eigen-susceptibilities. The scalar products 〈j‖h,Einc〉 and 〈j⊥h ,Einc〉 in
Eq. (2.15) describe the coupling of the current modes with the external excitation.

2.1.1 Electroquasistatic modes and resonances

We now investigate in detail the electro-quasistatic resonances associated with the
eigenvalues χ‖h and the eigenfunctions j‖h of the electrostatic integral operator Le in
Eq. (2.6). We call the eigenfunctions j‖h electroquasistatic (EQS) current modes, and
the eigenvalues χ‖h EQS eigen-susceptibilities.

The EQS current modes j‖h are longitudinal vector fields: they are square inte-
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2.1 Three-dimensional objects

grable in Ω (j‖h ∈ L2(Ω)), and are both curl-free and div-free within the object, but
have nonvanishing normal component to the object surface, i.e., j‖h ∈ L2

‖(Ω),

L2
‖(Ω) =

{
L2(Ω) | ∇ · j‖ = 0,∇× j‖ = 0 in Ω \ ∂Ω

}
. (2.18)

The normal component of j‖h to the object’s boundary is related to the induced surface
charge density on ∂Ω, and satisfies the charge-neutrality condition, namely

˛
∂Ω

j‖h · n̂ dS = 0. (2.19)

An important property of the spectrum of Le is that the eigenvalues χ‖h accumulate
at a finite value [71], specifically

lim
h→+∞

χ
‖
h = −2, (2.20)

independently from the shape of the object. For a time-dispersive metal described
by the Drude model [1]

χ = −
ω2
p

ω(ω + iν) , (2.21)

where ωp and ν � ωp are the plasma and collision angular frequencies, the resonance
frequencies corresponding to the eigen-susceptibilities χ‖h accumulate at ωp/

√
2, being

ωp the plasma frequency of the metal.
Under the normalization (2.10), i.e.,

∥∥∥j‖h∥∥∥Ω
= 11, the scaled 2 electrostatic energy of

the h-th EQS current mode j‖h is

We

{
j‖h
}

= − 1
2ε0

˛
∂Ω

˛
∂Ω
g0 (∆r)σh(r)σh(r′)dS ′dS = 1

2ε0

1(
−χ‖h

) , (2.22)

where σh = j‖h · n̂ is the surface charge density related to the h-th EQS current mode.
The electric dipole moment Ph of the EQS current mode j‖h is defined as 3

Ph =
ˆ

Ω
j‖hdV =

˛
∂Ω

r
(
j‖h · n̂

)
dS. (2.23)

If the mode j‖h exhibits a vanishing electric dipole moment Ph, it is called dark,

1
∥∥∥ · ∥∥∥

Ω
is the norm induced by the scalar product in Eq. 2.9, namely

∥∥∥j‖
h

∥∥∥2

Ω
= 〈j‖

h, j
‖
h〉Ω.

2To obtain the dimension of an energy, we have to multiply for `3
c

ω2 .
3With respect to the standard definitions of surface charge density and electric multipoles [149],

the prefactor 1/(−iω) is omitted.
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2.1 Three-dimensional objects

otherwise bright. When the object exhibits a density current mode that is spatially
uniform in Ω, and directed along a given direction c (as it happens for instance for a
sphere or a spheroid), the orthogonality condition (2.10) implies that all the remaining
current modes exhibit a vanishing electric dipole moment along that specific direction,
namely ˆ

Ω
c · j‖k dV = c ·Pk = 0. (2.24)

Since the EQS operator Le is definite negative, its eigen-susceptibilities are nega-
tive valued, therefore, according to the resonance condition (2.16), the corresponding
current modes {j‖h} can be resonantly excited only in objects with negative dielectric
permittivity, e.g., in metal nanoparticles at frequencies near their plasma frequency.
For metals, they correspond to the resonant plasmon modes, deriving from the inter-
play between the energy stored in the electric field and the kinetic energy of the free
electrons [143].

2.1.2 Magnetoquasistatic modes and resonances

We now investigate in detail the resonance mechanism associated with the eigenvalues
κ⊥h and the eigenfunctions j⊥h of the integral operator Lm in Eq. (2.13), which is
magnetostatic in nature.
Indeed, we now briefly prove that the eigenfunctions j⊥h are source-free solutions
of the Maxwell’s equations in high-permittivity dielectric objects, in the limit x �
1 ( small object), where x is the size parameter of the object, introduced in Eq.
(2.2). Under these conditions, the electromagnetic field is primarily determined by
the displacement current density field J induced inside the object itself [27]. Thus, we
look for the values of the parameter β = (x/`c)2χ for which there exists a nontrivial
solution of the source-free magnetoquasistatic (MQS) problem [150]

∇×A = µ0H, (2.25a)
∇×H = J, (2.25b)

with the constitutive relation
J = β

µ0
AΠΩ, (2.26)

where χ = (εR − 1) is the electric susceptibility, ΠΩ is the characteristic function on
the set Ω, i.e., ΠΩ = 1 for r ∈ Ω and 0 otherwise, µ0 is the magnetic permeability in
vacuum. The MQS vector potential A satisfies the Coulomb gauge (∇ ·A = 0) in Ω
and R3 \ Ω, and both A and the magnetic field H are regular at infinity. Equation
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2.1 Three-dimensional objects

(2.26) disregards the effects of the displacement current density field in vacuum. Since
the normal component of the current density field J at the boundary is equal to zero,
the current density field J is div-free everywhere in R3; on the contrary, the normal
component of the vector potential at ∂Ω may be discontinuous. The fact that J has
a vanishing normal component on ∂Ω implies also that the normal component of the
polarization current density field is zero.

After scaling the spatial coordinates by the characteristic length `c (r → r/`c),
problems (2.25) and (2.26) are solved by expressing the vector potential A in terms
of the current density J as

A(r) = µ0`
2
cLm {J} (r), (2.27)

where Lm is the MQS integral operator in Eq. (2.13), in which the presence of the
static Green’s function g0 is due to having neglected the displacement current density
in vacuum. By combining Eqs. (2.26) and (2.27), we obtain the linear eigenvalue
problem

Lm {J} (r) = 1
κ⊥

J(r), ∀r ∈ Ω, (2.28)

with
J · n̂|∂Ω = 0, (2.29)

where κ⊥ = x2χ. We recognize the eigenvalue problem (2.12) with the constraint
(2.11). Consequently, we call the eigenfunctions j⊥h MQS current modes, and κ⊥h /x2

MQS eigen-susceptibilities. It is important to remind that Eq. (2.28) holds in the
weak form in the functional space equipped with the inner product (2.9), and consti-
tuted by the transverse vector fields which are square integrable and div-free within
Ω and have zero normal component to ∂Ω [100], i.e.

L2
⊥(Ω) =

{
L2(Ω) | ∇ · j‖ = 0, in Ω \ ∂Ω and j⊥ · n̂ = 0 on ∂Ω

}
. (2.30)

The integral operator Lm is compact, positive definite, and self-adjoint. There-
fore, Eq. (2.12) admits a countable set of eigenvalues

{
κ⊥h
}
h∈IN

real and positive,
accumulating at infinity, namely

lim
h→+∞

κ⊥h = +∞, (2.31)

independently from the shape of the object. The integral operator Lm, and hence
its eigenvalues, depend on the chosen spatial coordinates normalization. Specifically,
the eigenvalues κ⊥h increase quadratically with `c.
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2.1 Three-dimensional objects

The MQS current modes j⊥h are dark, i.e., have zero electric dipole moment ac-
cording to the definition (2.23). Assuming the current modes to be unit vectors
(
∥∥∥j⊥h ∥∥∥Ω

= 1), the scaled4 magnetostatic energy of the h-th MQS current mode is

Wm{j⊥h } = 1
2

ˆ
Ω

j⊥h · A{j⊥h }dV = µ0

8π

ˆ
Ω

j⊥h (r) ·
ˆ

Ω

j⊥(r′)
∆r dV ′dV = µ0

2
1
κ⊥h
. (2.32)

The magnetic dipole moment Mh of the h-th MQS current mode j⊥h is defined as

Mh = 1
2

ˆ
Ω

r× j⊥h dV. (2.33)

If the resonator supports a mode of the form j⊥h = r̂×c, where c is a constant vector,
the orthogonality condition (2.14) implies that the generic remaining current mode
j⊥k has a vanishing magnetic dipole moment along c, i.e.,

1
2

ˆ
Ω

j⊥k · (r̂× c) dV = c ·Mk = 0. (2.34)

Among the set of MQS current modes, there exists a subset of modes generating
a transverse vector potential A

{
j⊥h
}
, i.e., with zero normal component to ∂Ω:

n̂ ·A
{
j⊥h
}∣∣∣
∂Ω

= 0. (2.35)

We refer to a MQS mode belonging to this subset as A⊥-mode. The A⊥-modes are
also solution of the problem (2.28) in a strong form (in the space of square integrable
vector fields).

The resonance angular frequencies ωh, given by

ωh = c0

`c

√√√√κ⊥h
χ
. (2.36)

accumulate at infinity, in contrast to the EQS resonance frequencies which accumulate
at a finite value (ωp/

√
2, if the object is filled with a Drude metal with plasma

frequency ωp). Moreover, the following bound on the eigenvalues hold:

κ⊥h ≥
√

3
4π

1
a2 , ∀h ∈ IN, (2.37)

where a is the radius of a sphere Ba having the same volume of Ω. The inequality
4To obtain the dimension of an energy, we have to multiply for `5c .
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2.2 Radiation corrections

(2.37) is obtained by multiplying both members of Eq. (2.28) by j⊥h , assumed nor-
malized according to Eq. (2.14), integrating over Ω and using the Cauchy-Schwarz
inequality and the inequality [151]

ˆ
Ω

1
|r− r′|2

dV ′ ≤
ˆ
Ba

1
|r′|2

dV ′ = 4πa, ∀r ∈ Ω. (2.38)

Therefore, given the inequality in Eq. (2.37) and the resonance condition (2.17),
the MQS current modes {j⊥h } can be resonantly excited in electrically small objects
(x� 1) only with positive and high dielectric permittivities.

In the MQS resonances in dielectrics, the energy oscillates back and forth be-
tween the polarization energy of the dielectric and the magnetic energy. In fact, by
combining Eqs. (2.32) and (2.36) we obtain

`3
c

ω2
h

Wm{j⊥h } = `3
c

2ε0

∥∥∥j⊥h ∥∥∥2

Ω
ω2
h χ

. (2.39)

The left-hand side is the energy stored in the magnetic field associated with the
current mode j⊥h , while the right-hand side is the energy stored in the dielectric in
the form of polarization energy at the resonance frequency ωh.

2.2 Radiation corrections

Any resonant scattering mechanism in arbitrary sized object is associated with the
solutions of the eigenvalue problem [65]

L{jh} = 1
γh

jh, (2.40)

where L is the full-retarded integral operator given Eq. (2.4), whose properties
will be discussed in depth in Chapter 3. In the previous section, we show that
in the quasistatic limit x→ 0, this eigenvalue problem splits into the EQS eigenvalue
problem (2.6) and the MQS eigenvalue problem (2.13). Starting from this property,
we introduce a classification of the eigenvalues of Eq. 2.40:

• The eigenfunctions of L that in the limit x → 0 tend to the EQS modes are
indicated with {uh}, and the corresponding eigenvalues are indicated with {χh}.
These eigenfunctions are called plasmonic modes.

• Dually, the set of eigenfunctions of L that in the limit x→ 0 tend to the MQS
modes are indicated with {vh}, and the corresponding eigenvalues are indicated
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2.2 Radiation corrections

with κh/x
2. Although in the limit x → 0, the eigenvalues κh/x2 diverge, the

quantities κh remain constant. These eigenfunctions are called dielectric modes.

The union of the two sets {uh} and {vh} is a basis for the unknown current density
field in Eq. (2.1). Its solution is expressed as

J = −iωε0χ
∞∑
h=1

[
χh

χh − χ
〈uh,Einc〉Ω uh + κh

κh − χx2 〈vh,Einc〉Ω vh
]

(2.41)

where both the sets of modes {uh} and {vh} are normalized such that 〈uh,uh〉Ω = 1
and 〈vh,vh〉Ω = 1 ∀h. This equation tends to Eq. (2.15) in the quasistatic limit
x→ 0.

We now introduce a perturbation technique to evaluate the plasmonic and dielec-
tric resonances and resonance modes of an arbitrary shaped three- dimensional elec-
trically having a dimension smaller than or almost equal to the operating wavelength,
namely with size parameter x < 1, by starting from the corresponding resonances and
resonance modes in the quasistatic regime. Moreover, we will iterate the procedure
up to the first real and imaginary radiative corrections of the quasistatic eigenvalues,
which we will demonstrate to be related to the frequency-shift and the radiation Q
factor of the current modes, respectively. The full derivation of the procedure can be
found in [101].

2.2.1 3D Plasmonic Resonances

To evaluate the plasmonic resonances of three-dimensional small particles, it is con-
venient to recast the eigenvalue problem (2.40) as

uh(r) + χh

[
∇
˛
∂Ω

uh(r′) · n̂′g (∆r, x) dS ′ − x2
ˆ

Ω
uh(r′)g (∆r, x) dV ′

]
= 0,

∀r ∈ Ω. (2.42)

When the free-space wavelength λ = 2πc0/ω is large in comparison with the charac-
teristic dimension `c, the size parameter x can be treated as a small parameter, and
the Green function g (∆r, x), the current mode uh, and the eigenvalue χh can all be
expanded in terms of x in the neighborhood of the EQS resonance with eigenvalue
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2.2 Radiation corrections

χ
‖
h and mode j‖h:

χh =
∞∑
k=0

χ
(k)
h xk , (2.43)

uh =
∞∑
k=0

u(k)
h xk , (2.44)

g (∆r, x) = 1
4π

∞∑
k=0

ik
∆rk−1

k! xk , (2.45)

where χ(0)
h = χ

‖
h and u(0)

h = j‖h.
By using Eqs. (2.43-2.45), Eq. (2.42) becomes

4π
∞∑
k=0

u(k)
h xk +

∞∑
k=0

χ
(k)
h xk

[
∇
˛
∂Ω

( ∞∑
k=0

ik
∆rk−1

k! xk
)( ∞∑

k=0
u

(k)
n,hx

k

)
dS ′

−
ˆ

Ω

( ∞∑
k=0

ik
∆rk−1

k! xk
)( ∞∑

k=0
u(k)
h xk+2

)
dV ′

]
= 0, ∀r ∈ Ω, (2.46)

where u(k)
n,h = u(k)

h · n
∣∣∣
∂Ω

and χ(0)
h = χ

‖
h.

Matching the first-order terms in Eq. (2.46), and applying the charge neutrality
condition (2.19), the following integrodifferential equation is obtained:

u(1)
h + χ

‖
h

4π ∇
˛
∂Ω

u(1)
h (r′) · n̂′

∆r dS ′ = −χ
(1)
h

4π

∇˛
∂Ω

j
‖
n,h(r′)
∆r dS ′

 , ∀r ∈ Ω, (2.47)

where the scalar field j
‖
n,h = j‖h · n̂

∣∣∣
∂Ω

is defined on the object’s surface ∂Ω. Since
χ
‖
h is an eigenvalue of the left-hand side of Eq. (2.47), a solution to (2.47) exists

only under the condition that its right-hand side is orthogonal to the corresponding
current mode j‖h, according to the scalar product introduced in Eq. (2.9). This is
the so-called normal solvability condition of Fredholm integral equations [152, 153].
Consequently,

χ
(1)
h

4π ∇
ˆ

Ω
j‖h(r) ·

ˆ
∂Ω

j
‖
n,h(r′)
∆r dS ′

 dV = χ
(1)
h

χ
‖
h

∥∥∥j‖h∥∥∥2
= 0, (2.48)

where Eq. (2.6) has been used. Thus Eq. (2.47) is only solvable if

χ
(1)
h = 0. (2.49)

Regardless of the object’s shape, the first-order correction to EQS eigenvalues van-
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ishes. As a result of (2.49), Eq. (2.47) only admits the trivial solution

u(1)
h (r) = 0 ∀r ∈ Ω. (2.50)

Collecting the second-order terms in Eq. (2.46), and applying the normal solv-
ability condition, the second-order correction χ(2)

h is derived

χ
(2)
h = −

(
χ
‖
h

)2

4π

˛
∂Ω
j
‖
n,h(r)

˛
∂Ω

∆r
2 j

‖
n,h(r′)dS ′dS +

ˆ
Ω

j‖h(r) ·
ˆ

Ω

j‖h(r′)
∆r dV ′dV

 ,
(2.51)

where the scalar field j‖n,h = j‖h · n̂
∣∣∣
∂Ω

is defined on the object’s surface ∂Ω. According
to Eq. (2.51), χ(2)

h is real. Moreover, the first term in parenthesis in Eq. (2.51)
originates from the radiative self-interaction of the surface charge density associated
with the EQS current mode through the scalar potential. The second term is instead
proportional to the magnetostatic energy of the EQS current mode j‖h. Eq. (2.51) is
in agreement with the second-order correction to the EQS modes derived in [71] by
expanding the Maxwell’s equation in differential form. It will be demonstrated in Eq.
(2.60) that χ(2)

h is associated with the frequency-shift of the h-th plasmonic mode.
The second-order correction of the associated plasmonic mode u(2)

h has both lon-
gitudinal and transverse components, denoted as u(2)‖

h and u(2)⊥
h , respectively:

u(2)
h = u(2)‖

h + u(2)⊥
h =

∞∑
k=1
k 6=h

α
(2)
h,k j‖k +

∞∑
k=1

β
(2)
h,k j⊥k , (2.52)

where the longitudinal part u(2)‖
h is represented in terms of the EQS mode basis{

j‖k
}
k∈N

, and the transverse part u(2)⊥
h in terms of the MQS mode basis

{
j⊥k
}
k∈N

.
Assuming the eigenvalues nondegenerate, the expansion coefficients are:

α
(2)
h,k = 1

4π
χ
‖
kχ
‖
h

χ
‖
k − χ

‖
h

[˛
∂Ω
j
‖
n,h(r)

˛
∂Ω

∆r
2 j

‖
n,k(r′)dS ′dS

+
ˆ

Ω
j‖h(r) ·

ˆ
Ω

j‖k(r′)
∆r dV ′dV

 , ∀k 6= h (2.53)

β
(2)
h,k = χ

‖
h

4π

ˆ
Ω

j‖h(r) ·
ˆ

Ω

j⊥k (r′)
∆r dV ′dV, ∀k ∈ N. (2.54)

Matching the third-order terms in Eq. (2.46), the third-order correction χ
(3)
h is
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obtained:

χ
(3)
h = −i

(
χ
‖
h

)2

6π |Ph|2, (2.55)

which is purely imaginary and proportional to the squared magnitude of the electric
dipole moment Ph of the h-th EQS mode, defined in Eq. (2.23). As it will be
demonstrated in Eq. (2.62), χ(3)

h determines the radiation Q factor of the h-th bright
plasmonic mode. However, for dark plasmonic modes, χ(3)

h vanishes, and a higher
order perturbation, depending on a higher order multipole moment of the EQS current
mode, has to be considered. Specifically, in this case it is mandatory to consider the
fifth order perturbation χ

(5)
h . For dark modes, it can be expressed in terms of the

electric quadrupole tensor ←→Q‖E|h of the EQS mode, and its components QE|h|ij:

χ
(5)
h = −i

(
χ
‖
h

)2

80π

 3∑
i,j=1

(
QE|h|ij

)2
− 1

3Tr
(←→Q‖E|h

)2
 (2.56)

where Tr is the trace operator, and ←→Q‖E|h is defined by Eq. (A.2) of the Appendix A.
Thus, the fifth order correction is purely imaginary and proportional to the power
radiated by a quadrupole.

The outlined procedure can be iteratively applied: if the fifth order correction
vanishes, the next order correction that may give an imaginary contribution is the
seventh, which can be calculated by matching the terms of the corresponding order
in Eq. (2.46).

2.2.2 Resonance frequency-shift and Q factor of plasmonic
modes

Let us now assume that the object is made of a time-dispersive metal, whose suscep-
tibility χ is described by the Drude model in Eq. (2.21), with plasma frequency ωp
and collision frequency ν � ωp. The EQS resonance frequency ω‖h of the h-th mode,
is generally defined as the frequency at which the real part of the metal susceptibility
Re {χ (ω)} matches the EQS eigenvalue χ‖h; in the Drude case

x
‖
h

xp
= ω

‖
h

ωp
= 1√
−χ‖h

, (2.57)

where x‖h = ω
‖
h`c/c0 and xp = ωp`c/c0 are the size parameters at the EQS resonance

frequency and at the plasma frequency, respectively.
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In the full-wave scenario, by looking at the denominator in the first summation
of Eq. (2.41), the value xh of the size-parameter at the plasmonic resonance is the
value of x at which the real part of the metal susceptibility χ (ω) matches the real
part of the corresponding eigenvalue χh (xh) of Eq. (2.40). i.e.

Re {χh} = Re {χ (ωh)} ≈ −
ω2
p

ω2
h

= −
x2
p

x2
h

, (2.58)

where ωh is the corresponding resonance frequency. Eq. (2.58) is the resonance
condition of the plasmonic modes. For small particles xp / 1, by retaining only
the real and imaginary nonzero corrections of the lowest order in Eq. (2.43), the
plasmonic eigenvalue χh (x) is approximated as

χh (x) ≈ χ
‖
h + χ

(2)
h x2 + χ

(ni)
h xni , (2.59)

where ni is the order of the first nonzero imaginary correction χ(ni)
h .

We define the frequency shift of the plasmonic resonance with respect to the EQS
resonance as ∆ωh = ωh−ω‖h, and the shift in the resonance size parameter as ∆xh =
xh−x‖h. By plugging the Eq. (2.59) into the Eq. (2.58), for ∆ωh/ω‖h � 1, and in the
small particle limit x‖h � 1, we find that

∆ωh
ω
‖
h

= ∆xh
x
‖
h

≈ −1
2
χ

(2)
h

χ
‖
h

(
x
‖
h

)2
. (2.60)

In conclusion, the relative frequency shift of any plasmonic mode is a quadratic
function of x‖h, whose prefactor is one half the ratio between the second-order
correction χ(2)

h and the EQS eigenvalue χ‖h.

The radiation Q factor Q‖h of the h-th EQS mode is obtained by considering the
inverse of the full width at half maximum (FWHM) fractional bandwidth of the h-th
addend of the first summation in Eq. (2.41), assuming negligible nonradiative losses
Im {χ} ≈ 0, and using the expansion (2.59):

Q‖h =
∣∣∣∣∣∣ χ
‖
h

χ
(ni)
h

∣∣∣∣∣∣
( 1
xh

)ni
. (2.61)

The Q factor is an inverse power function of the size parameter at the resonance,
whose exponent is the order ni of the first nonvanishing imaginary correction, while
the prefactor is the ratio between the EQS eigenvalue χ‖h and the correction χ(ni)

h .
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If the mode j‖h is bright, it follows that χ(3)
h 6= 0, ni = 3, and the Q factor is obtained

by combining Eqs. (2.55) and (2.61):

Q‖h = 6π
(−χ‖h)|Ph|2

( 1
xh

)3
. (2.62)

By expressing in Eq. (2.62) the EQS eigenvalue χ‖h in terms of the electrostatic energy
We

{
j‖h
}
of the mode j‖h (using Eq. (2.22)), Q‖h is also found equal to 2π times the

ratio of We

{
j‖h
}
to the energy radiated in a period by the electric dipole Ph at the

resonance frequency ωh.
On the other hand, for a dark mode with nonvanishing electric quadrupole, it

follows that χ(5)
h 6= 0, ni = 5, and the Q factor is obtained by using Eqs. (2.56) and

(2.61):

Q‖h = 80π

χ
‖
h

[∑
ij

(
QE|h|ij

)2
− 1

3Tr
(←→Q‖E|h

)2
] ( 1

xh

)5
, (2.63)

which is also equal to 2π times the ratio of the electrostatic energy of the h-th EQS
mode to the energy radiated in a period by the electric quadrupole ←→Q‖E|h at the
resonance frequency ωh. If the electric quadrupole moment is also vanishing, the
outlined process can be iterated by considering higher order electric multipoles.

For the sake of completeness, we also consider the opposite regime, dominated by
material losses. In this case, the dissipation Q factor Q‖dh is obtained as the inverse
of the fractional bandwidth of the h-th addend of the first summation in Eq. (2.41),
assuming negligible radiation losses. For a Drude metal, we have

Q
‖d
h = ωh

ν
, (2.64)

which was already shown by Wang and Shen in [84].
In an intermediate regime, the resulting resonance Q factor, indicated with Qh,

can be obtained through the parallel formula [154]

1
Qh

= 1
Q‖h

+ 1
Q‖d

. (2.65)
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2.2.3 3D Dielectric resonances

To evaluate the dielectric resonances of three-dimensional small particles, it is con-
venient to recast the eigenvalue problem (2.40) as

x2vh(r) + κh

[
∇
˛
∂Ω

vh(r′) · n̂′ g (∆r, x) dS ′ − x2
ˆ

Ω
vh(r′)g (∆r, x) dV ′

]
= 0,

∀r ∈ Ω. (2.66)

As for the plasmonic case, the mode vh and the corresponding eigenvalue κh are
expanded at x = 0 in the neighborhood of MQS eigenvalue κ⊥h and mode j⊥h

κh =
∞∑
k=1

κ
(k)
h xk, (2.67)

vh =
∞∑
k=1

v(k)
h xk. (2.68)

By substituting Eqs. (2.67), (2.68), and (2.45) in Eq. 2.66

4π
∞∑
k=0

v(k)
h xk+2 +

∞∑
k=1

κ
(k)
h xk

[
∇
˛
∂Ω

( ∞∑
k=1

ik
∆rk−1

k! xk−2
)( ∞∑

k=0
v

(k)
hnx

k

)
dS ′

−
ˆ

Ω

( ∞∑
k=1

ik
∆rk−1

k! xk
)( ∞∑

k=0
v(k)
h xk

)
dV ′

]
= 0 ∀r ∈ Ω, (2.69)

where v(k)
hn = v(k)

h · n
∣∣∣
∂Ω
, κ(0)

h = κ⊥h and v(0)
h = j⊥h .

By matching the terms of the corresponding order in Eq. 2.69, it is possible to
demonstrate that first-order corrections vanish regardless of the shape of the object:

κ
(1)
h = 0, (2.70)

v(1)
h (r) = 0, ∀r ∈ Ω. (2.71)

The second-order correction κ(2)
h is a real quantity, namely

κ
(2)
h =

(
κ⊥h
)2

8π

ˆ
Ω

j⊥h (r) ·
ˆ

Ω
j⊥h (r′)∆r dV ′dV +

∞∑
k=1

χ
‖
k

4µ0

∣∣∣WmI{j‖k, j⊥h }
∣∣∣2
 , (2.72)

where WmI{j‖k, j⊥h } is the magnetostatic interaction energy between the MQS current
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mode j⊥h and the EQS current mode j‖k, i.e.

WmI{j‖k, j⊥h } = µ0

8π

ˆ
Ω

j‖k(r) ·
ˆ

Ω

j⊥h (r′)
∆r dV ′dV. (2.73)

The first term in parentheses in Eq. 2.72 originates from the radiative self-interaction
of the MQS mode j⊥h through the vector potential. The second term is a summation,
whose addends are proportional to the ratio of the magnetostatic interaction energy
between the MQS current mode j⊥h and the EQS current mode j‖k, to the electrostatic
energy of the EQS mode j‖k (using Eq. (2.22)).

The MQS current mode j⊥h may be an A⊥-mode, generating a transverse vector
potential, according to the definition (2.35). In this case, since every EQS current
mode is longitudinal, and transverse and longitudinal functions are orthogonal ac-
cording to the scalar product (2.9), the energy WmI{j‖k, j⊥h } vanishes ∀k, and Eq.
(2.72) further simplifies:

κ
(2)
h =

(
κ⊥h
)2

4π

ˆ
Ω

j⊥h (r) ·
ˆ

Ω

∆r
2 j⊥h (r′)dV ′dV, for A⊥-modes. (2.74)

As it will be demonstrated in Eq. (2.87), κ(2)
h is associated with the frequency-shift

of dielectric modes.
The second-order correction v(2)

h to the current density mode has both longitudinal
and transverse components, denoted as v(2)‖

h and v(2)⊥
h , which can be in turn expanded

in terms of EQS and MQS current modes, respectively:

v(2)
h = v(2)‖

h + v(2)⊥
h =

∞∑
k=1

α
(2)
h,k j‖k +

∞∑
k=1
k 6=h

β
(2)
h,k j⊥k (2.75)

where, assuming the eigenvalues are nondegenerate, the expansion coefficients α(2)
h,k

and β(2)
h,k are

α
(2)
h,k = −2χ‖k

µ0
WmI{j‖k, j⊥h }, ∀k ∈ IN, (2.76)

β
(2)
h,k = κ⊥k κ

⊥
h

κ⊥h − κ⊥k
1

4π

[ˆ
Ω

j⊥k (r) ·
ˆ

Ω

∆r
2 j⊥h (r′)dV ′dV (2.77)

−
∞∑
s=1

α
(2)
h,s

ˆ
Ω

j‖s(r′) ·
ˆ

Ω

j⊥k (r′)
∆r dV ′dV

]
, ∀k 6= h. (2.78)

Although any magnetoquasistatic mode has a zero electric dipole moment, its second-
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order radiative correction v(2)
h may exhibit a nonzero electric dipole moment P(2)

h ,
given by

P(2)
h =

∞∑
k=1

α
(2)
h,k Pk, (2.79)

where Pk is the electric dipole moment of the k-th EQS mode j‖k. For A⊥-modes the
longitudinal part of v(2)

h vanishes, and they do not display electric dipole moment up
to this order.

The third-order correction κ(3)
h is purely imaginary and depends on the magnetic

dipole moment Mh of the mode j⊥h :

κ
(3)
h = −i

(
κ⊥h
)2

6π |Mh|2, (2.80)

where Mh is defined in Eq. 2.33. As it will be shown in (2.89), the correction κ(3)
h , if

nonvanishing, determines the radiative Q factor of the h-th dielectric mode. However,
it vanishes when the corresponding magnetic dipole moment is zero. In this case, the
next imaginary correction has order 5 and has the following expression:

κ
(5)
h = −i

(
κ⊥h
)2

π

 3∑
i,j=1

(
Q⊥M|h|ij

)2

80 +
∣∣∣P⊥E2|h −P(2)

h

∣∣∣2
 (2.81)

where ←→Q⊥M|h is the magnetic quadrupole tensor of the h-th MQS mode, defined in
Eq. (A.5), Q⊥M|h|ij are its components, and P⊥E2|h is the toroidal dipole, defined in
Eq. (A.4), and P(2)

h is the electric dipole moment of the second-order correction v(2)
h ,

introduced in Eq. (2.79). In conclusion, the fifth order correction is determined by
two contributions: they account for the power radiated to infinity by the magnetic
quadrupole ←→Q⊥M|h, and by an effective electric dipole resulting from the interference
between the P⊥E2|h and P(2)

E|h.
For A⊥-modes, Eq. (2.81) further simplifies

κ
(5)
h = −i

(
κ⊥h
)2

π

∑
ij

(
Q⊥M|h|ij

)2

80 +
∣∣∣P⊥E2|h

∣∣∣2
 . (2.82)

The outlined procedure can be iteratively applied. If the fifth order correction
vanishes, the next order correction that may give an imaginary contribution is the
seventh, which can be calculated by matching the terms of nine-th order in Eq. (2.69).
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2.2.4 Resonance frequency-shift and Q factor of dielectric
modes

It is now assumed that the object is made of a nondispersive dielectric material with
positive susceptibility χ, with Im {χ} � Re {χ}. The size parameter x⊥h at the
resonance of the h-th MQS mode j⊥h is defined as the value of x at which the real
part of the susceptibility χ matches the eigenvalue κ⊥h /x2, namely:

x⊥h = ω⊥h
c0
`c =

√√√√ κ⊥h
Re {χ} , (2.83)

and ω⊥h is the corresponding MQS resonance frequency.
In the full-wave regime, the resonance of the dielectric mode vh is defined by

zeroing the real part of the denominator of the h-th addend of the second summation
of Eq. (2.41). Thus, the value of size parameter xh = ωh`c/c0 at the dielectric
resonance is

Re {κh} = Re {χ}x2
h, (2.84)

This is the resonance condition for dielectric modes, and ωh is the dielectric resonance
frequency. For small particles, xh / 1 and by keeping only the real and imaginary
nonzero corrections of the lowest order in Eq. (2.67), the dielectric eigenvalue κh (x)
is approximated as

κ (x) ≈ κ⊥h + κ
(2)
h x2 + i κ

(ni)
h xni . (2.85)

where ni is the order of the first nonzero imaginary correction κ
(ni)
h . By using Eq.

(2.85) in (2.84), we find that

xh = ωh
c0
`c ≈

√√√√ κ⊥h

Re {χ} − κ(2)
h

= x⊥h√
1− κ(2)

h /Re {χ}
. (2.86)

From this equation, for high-index dielectrics Re {χ} � 1, we obtain the relative
frequency shift of the h-th dielectric resonance with respect to the MQS resonance
frequency ∆ω⊥h /ω⊥h = (ωh − ω⊥h )/ω⊥h , or the corresponding relative shift in the reso-
nance size parameter, i.e., ∆x⊥h /x⊥h = (xh − x⊥h )/x⊥h

∆ωh
ω⊥h

= ∆xh
x⊥h
≈ 1

2
κ

(2)
h

Re {χ} = 1
2
κ

(2)
h

κ⊥h

(
x⊥h
)2
, Re {χ} � 1. (2.87)

In conclusion, the relative frequency-shift of any dielectric mode is a quadratic func-
tion of x⊥h , whose prefactor is approximately half the ratio between the second-order
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correction κ(2)
h and the quasistatic eigenvalue κ⊥h .

The radiation Q factor Q⊥h of the h-th MQS mode is obtained by considering
the inverse of the FWHM fractional bandwidth of the h-th addend of the second
summation in Eq. (2.41), assuming negligible nonradiative losses Im {χ} ≈ 0, and
using the expansion (2.85):

Q⊥h =
∣∣∣∣∣ κ⊥hκ(ni)

h

∣∣∣∣∣
( 1
xh

)ni
. (2.88)

The Q factor is an inverse power function of the size parameter at the resonance,
whose exponent is the order ni of the first nonvanishing imaginary correction, while
the prefactor is the ratio between the MQS eigenvalue κ⊥h and the correction κ(ni)

h .
If the mode j⊥h exhibits nonvanishing magnetic dipole moment, the Q factor is ob-
tained by combining Eqs. (2.80) and (2.88):

Q⊥h = 6π
κ⊥h |Mh|2

( 1
xh

)3
. (2.89)

By expressing in Eq. (2.89) the MQS eigenvalue κ⊥h in terms of the magnetostatic
energy Wm

{
j⊥h
}
of the mode j⊥h (using Eq. (2.32)), Q⊥h is also found equal to 2π

times the ratio ofWm

{
j‖h
}
to the energy radiated in a period by the magnetic dipole

Mh at the resonance frequency ωh.
Furthermore, if the magnetic dipole vanishes, but at least one among the mag-

netic quadrupole moment ←→Q⊥M|h, and the effective dipole moment resulting from the
interference between the toroidal dipole moment P⊥E2|h and the dipole moment of the
second-order mode correction P(2)

E|h is nonzero, the radiation Q factor has the following
expression:

Q⊥h = 1

κ⊥h

 1
80π

∑
ij

(
Q⊥M|h|ij

)2
+ 1

6π
∣∣∣P⊥E2|h −P(2)

h

∣∣∣2

( 1
xh

)5
, (2.90)

which is equal to 2π times the ratio of the magnetostatic energy of the h-th MQS
mode to the sum of the energies radiated in a period by the magnetic quadrupole
←→Q⊥M|h and by the effective dipole moment P⊥E2|h−P(2)

h , at the resonance frequency ωh.
If they are all vanishing, the outlined process can be iterated by considering higher

order magnetic multipoles.
In dielectric resonators, the opposite regime, dominated by material losses, is
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less common. Nevertheless, it is now considered for completeness. In this case, the
dissipation Q factor Q⊥dh is obtained as the inverse of the factional bandwidth of the
h-th addend of the second summation in (2.41), assuming dominating nonradiative
losses:

Q⊥dh = (κ⊥h )2

Im {χ}
1
x2
h

≈ Re {χ}
Im {χ} . (2.91)

In an intermediate regime, the total Q factor, indicated with Qh is obtained as [154]

1
Qh

= 1
Q⊥h

+ 1
Q
‖d
h

. (2.92)

2.2.5 Sphere

As a case of study, we consider the plasmonic and dielectric resonances of an electri-
cally small sphere of radius R. The object characteristic length `c is assumed equal to
the radius R, and hence the size parameter x is x = ω

c0
R. The formulas of the radia-

tion corrections here presented can be extrapolated by perturbing the denominators
of the Mie coefficients in the neighborhood of their EQS and MQS resonances, and
they can also be directly obtained from the Padè expansion of the Mie coefficients
found by Tzarouchis and Sihvola in [155, 156].

In particular, the EQS eigenvalues of a sphere and their radiation corrections are:

χ‖n = −2n+ 1
n

, (2.93a)

χ(2)
n = − 2

n2
(n+ 1) (2n+ 1)
(3 + 2n) (2n− 1) , (2.93b)

χ(2n+1)
n = −i (n+ 1)

[n (2n− 1)!!]2
, (2.93c)

where n ∈ IN, and (2n− 1)!! = 1× 3× 5× · · · × (2n− 1). The index n is the mode
multipolar order: the modes with n = 1 are dipolar, n = 2 quadrupolar, and so
on. Each eigenvalue χ‖n is associated with a set of 2n + 1 degenerate current modes
j‖pmn with m = 0, 1, 2, . . . , n, whose analytical expressions are given in Eq. (B.1) in
Appendix B. The subscript p distinguishes between even (e) and odd (o) modes with
respect to the azimuthal variable. The sphere EQS modes j‖e1n for n = 1, 2, 3, 4 are
shown in Fig. 2.2.

The radiation Q factor of the plasmonic resonances is obtained by applying Eqs.
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Figure 2.2 – Quasistatic modes of a sphere. Electroquasistatic modes j‖e1n with
n = 1, 2, 3, 4. The magnetoquasistatic modes are divided into two subsets: the TM MQS
mdoes j⊥TM

e1nl, and the TE (A⊥) modes j⊥TE
o1nl, with n = 1, 2, 3, 4 and l = 1, 2. Their projection

on the y = 0 plane is shown, except for j⊥TE
o121 (y = 0.35R plane), j⊥TE

o131 (y = 0.3R plane),
j⊥TE
o141 (y = 0.25R plane), and j⊥TE

o1n2

∣∣∣
n=2,3,4

(y = 0.15R plane).

(2.93a) and (2.93c) in Eq. (2.61):

Q‖n = n [(2n+ 1)!!]2

(n+ 1)(2n+ 1)
1

x2n+1
n

. (2.94)

For instance, for the electric dipole, quadrupole, and octupole, we have Q‖1 =
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3
2

1
x3

1
, Q‖2 = 30

x5
2
, Q‖3 = 1181

x7
3

, respectively. Eq. (2.94) coincides with the formulas
provided by G. Colas des Francs in [157].

The MQS modes are divided into two sets. The first set is composed by the current
modes which have no radial component. Since the corresponding electric field has
the same property, these modes are called transverse electric or TE modes. They
also generate a vector potential, which has nonvanishing normal component to the
particle-surface, so they are also A⊥-modes. Their eigenvalues and the corresponding
corrections are [155, 156]:

κ⊥ TE
nl = (zn−1,l)2 , (2.95a)

κ
TE (2)
nl = −2n+ 1

2n− 1 , (2.95b)

κ
TE (2n+1)
nl = −i 2

[(2n− 1)!!]2
, (2.95c)

where zn,l denotes the l-th zero of the spherical Bessel function jn. Each eigenvalue
κ⊥ TE
nl is associated with a set of 2n + 1 degenerate current modes j⊥TE

pmnl, with m =
0, 1, 2, . . . , n and with even and odd parity, whose analytical expression is given in Eq.
(B.3) in Appendix B. The odd MQS modes j⊥TE

o1nl with n = 1, 2, 3, 4, and l = 1, 2, 3
are shown in Fig. 2.2. The radiation Q factor of the TE MQS modes is obtained by
combining Eq. (2.95) and (2.88):

Q⊥TE
nl = [zn−1,l (2n− 1)!!]2

2

( 1
xnl

)2n+1
. (2.96)

For instance, for the magnetic dipole modes, we have

Q⊥TE
1l = (lπ)2

2
1
x3

1l
, ∀l ∈ IN. (2.97)

The second set of current modes generate a magnetic field with vanishing radial
component, so they are called TM modes. Their eigenvalues and the corresponding
corrections are [155, 156]:

κ⊥ TM
nl = (zn,l)2 , (2.98a)

κ
TM (2)
nl = −n+ 2

n
, (2.98b)

κ
TM (2n+3)
nl = +i 2

n2 [(2n− 1)!!]2
. (2.98c)
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2.2 Radiation corrections

Each eigenvalue κ⊥ TM
nl is associated with a set of 2n + 1 degenerate current modes

j⊥TM
pmnl, with m = 0, 1, 2, . . . , n and with even and odd parity whose analytic expression
is given in Eq. (B.5) in Appendix B. The MQS modes j⊥TM

e1nl with n = 1, 2, 3, 4 and
l = 1, 2, 3 are shown in Fig. 2.2. The radiation quality factor of the TE MQS modes
is obtained by combining Eq. (2.98) and Eq. (2.88):

Q⊥TM
nl = [n zn,l (2n− 1)!!]2

2

( 1
xnl

)2n+3
(2.99)

As an example, the toroidal electric dipole mode has radiation Q factor Q⊥TM
11 = z2

11
2x5

11
.
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Figure 2.3 – (a) First peak of the absorption cross-section σabs of a Drude metal sphere
with radius R = `c as a function of ω/ωp = x/xp, for xp = 0.05 (top panel), xp = 0.3
(middle panel), xp = 0.6 (bottom panel). (b) First peak of the σabs of a dielectric sphere
with susceptibility χ = 104 + i (top panel), χ = 103 + 0.1i (middle panel), χ = 102 + 0.01i
(bottom panel), as a function of x

√
Re {χ}. The resonance position obtained by Eq. (2.60)

(case (a)) and Eq. (2.87) (case (b)) are shown with vertical dashed lines. Horizontal lines
show the peak FWHM.

With the aid of Fig. 2.3, we now briefly investigate the resonances of an electrically
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2.2 Radiation corrections

small sphere under plane-wave excitation, in two different scenarios: in the first
one, the sphere is made of a Drude metal; in the second one, it is filled with a
high-index dielectric (Re {χ} � 1). In both cases, low material losses are assumed
(Im {χ} � 1): this hypothesis is essential for a fair comparison between the predicted
radiation Q factor and the fractional bandwidth of the peaks, otherwise dominated
by nonradiative (material) losses. As physical observable, we choose the absorption
efficiency σabs, defined as

σabs = Pabs

Ii πR2 = x

π
Im {χ}

ˆ
Ω

∣∣∣∣ E
E0

∣∣∣∣2 dV, (2.100)

where Pabs is the absorbed power, Ii = ε0c0/2E2
0 the incident irradiance, and E0

the incident amplitude. It is calculated using the standard Mie theory [87]. The
radiative shift of the first peak of σabs and its Q factor are investigated as the object
size increases. In particular, the plasmonic and dielectric resonance frequencies are
compared against the frequency at which the curve has the peak, denoted as ωres.
Similarly, the Q factor of the plasmonic and dielectric modes are validated against
the corresponding heuristic Q factors, given by the inverse of the full-width at half
maximum FWHM [158]. In the σabs spectra of Fig. 2.3, a segment joining the two
ordinates at half maximum is also shown.

xp ω1/ωp ωres/ωp Q‖d Q‖1 Q1 FWHM−1

0.05 0.577 0.577 5772 62416 5283 4641
0.3 0.570 0.570 5704 299 284 286
0.6 0.550 0.552 5496 42 42 42

Table 2.1 – Resonance frequency ω1 and Q factors Q‖d, Q‖1, Q1 of the first plasmonic
mode of a Drude metal sphere (ν = 10−4ωp) with different values of xp, and their heuristic
estimates ωres and FWHM−1 at the peak of σabs in Fig. 2.3a.

In Fig. 2.3a, we plot the σabs for a sphere made of a low-loss Drude metal, with
the dispersion relation given in Eq. (2.21), in which ν = 10−4ωp. We evaluate σabs for
three different values of xp = 0.05, 0.3, 0.6, which for a gold sphere (ωp = 6.79Prad/s
[159]) correspond to R ≈ 2 nm, 13 nm, 26 nm. The resonance position of the first
excited plasmonic mode, which in the quasistatic limit tends to the dipolar EQS
mode j‖e11 (if the impinging plane wave is x̂-polarized), is obtained using Eq. (2.60),
and is shown with a vertical dashed line. In Tab. 2.1, the resonance frequency ω1

is compared against the corresponding peak position ωres, and the resonant mode
Q‖1 against its heuristic counterpart FWHM−1. The dissipation Q‖d and the total Q1
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2.2 Radiation corrections

factors, calculated using Eqs. (2.64) and (2.65), respectively, are also shown.
For xp = 0.05 (top panel), the radius R is much smaller than the plasma wavelength
λp, and hence the EQS approximation works very well: Eq. (2.57) exactly predicts
the occurrence of the considered peak. In this case, the resonance is dominated by
material losses, as confirmed by the values of the dissipation Q‖d and the inverse of
the FWHM in Tab. 2.1.
Increasing xp to xp = 0.3 (middle panel) and xp = 0.6 (bottom panel), the peak
undergoes a broadening and a shift from its quasistatic position. Neverthless, the
resonance position obtained through Eq. (2.60), which incorporates the radiation
corrections, accurately predicts the occurrence of the peak. This time, the resonance
is dominated by radiation losses, as confirmed by the good agreement between the
mode Q‖1 and FWHM−1 in Tab. 2.1.

χ x11

√
Re {χ} xres

√
Re {χ} Q⊥d Q⊥11 Q11 FWHM−1

104 + i 3.141 3.141 104 15920 9409 8955
103 + 0.1i 3.137 3.137 104 5048 3355 3181
102 + 0.01i 3.094 3.097 104 164 161 171

Table 2.2 – Resonance position x11
√
Re {χ} and Q factors Q⊥d, Q⊥11, Q11 of the first

dielectric mode of a high-index dielectric sphere (Re {χ} = 10−4Im {χ}) with different
values of susceptibility χ, and their heuristic estimates xres

√
Re {χ} and FWHM−1 at the

peak of σabs in Fig. 2.3b.

In Fig. 2.3b, we investigate the first peak of the σabs of a sphere made of
nondispersive high-index dielectric with low losses, as a function of the param-
eter x

√
Re {χ}. We consider three different values of susceptibility χ, namely

χ = 104 + i, 103 + 0.1i, 102 + 0.01i. In all cases, we have Re {χ} = 104Im {χ},
and hence the dissipation Q, calculated using Eq. (2.91), is Q⊥d = 104. The reso-
nance position of the dielectric mode that tends to the MQS dipolar mode j⊥TE

o111 (if the
impinging plane wave is x̂-polarized) is obtained by Eq. (2.87), and highlighted with
a vertical dashed line. In Tab. 2.2, the resonance parameter x11 is compared against
the corresponding peak position xres, and the resonant mode Q⊥1 against its heuristic
counterpart FWHM−1. The dissipation Q⊥d and the total Q11, calculated using Eq.
(2.92), are also shown.
For χ = 104 + i (top panel), the size parameter x ∈ [0.030, 0.032] is very small, and
the MQS approximation works well: Eq. (2.83) exactly predicts the occurrence of
the σabs peak. Here the resonance is dominated by material losses, as confirmed by
the values of the dissipation Q⊥d and the inverse of the FWHM in Tab. 2.2.
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2.3 Translational Invariant (TI) objects

Decreasing Re {χ} to the cases χ = 103+0.1i (middle panel) and χ = 102+0.01i (bot-
tom panel), the size parameter is increased to x ∈ [0.096, 0.101] and x ∈ [0.304, 0.320],
respectively, and the σabs peak experiences a broadening and a red shift with respect
to its quasistatic position. As confirmed by the third and fourth columns of Tab. 2.2,
Eq. (2.87), which takes into account the radiation corrections, correctly estimates
the occurrence of the peak. In the last case Re {χ} = 102, the resonance is dominated
by radiation losses, and there is very good agreement between the mode Q⊥11 and the
FWHM−1.

2.3 Translational Invariant (TI) objects

We now investigate the scattering from a translational invariant (TI) object, using
the methods developed so far. In this case, the domain of concern is the object
cross-section, which we label Σ, with its boundary, which we label ∂Σ, as sketched in
Fig 2.4. We denote with r the in-plane coordinates (x,y), and the operators such as

z

Σ
y

x

r

n̂

∂Σ

Figure 2.4 – A translational invariant object cross-section Σ, with boundary ∂Σ. n̂ is the
in-plane outgoing normal to ∂Σ.

divergence or gradient are assumed to only act on these coordinates. All the fields
are assumed independent of z.

The object is made of a linear, isotropic, homogeneous, nonmagnetic material
with relative dielectric permittivity εR and susceptibility χ, and it is surrounded by
vacuum. It is illuminated by a time-harmonic electromagnetic field Re {Einc(r)e−iωt}.
As for the 3D case, we introduce the dimensionless size parameter x = ω

c0
`c, being

`c a characteristic linear length of the region Σ, e.g., the radius of the smallest circle
enclosing the object cross-section.
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2.3 Translational Invariant (TI) objects

The current density field J induced in the object is governed by the full-wave
two-dimensional integral equation

J(r)
χ
− LTI{J}(r) = −iωε0 Einc(r), ∀r ∈ Σ, (2.101)

where the spatial coordinates have been normalized by `c (r→ r/`c),

LTI{W}(r) = ∇
ˆ
∂Σ

W(r′) · n̂′g2D (∆r, x) dl′ − x2
ˆ

Σ
W(r′)g2D (∆r, x) dS ′, (2.102)

Σ is the scaled domain, ∇ is the scaled 2D gradient operator, n̂ is the outgoing
in-plane normal to ∂Σ, and g2D (∆r, x) is the 2D Green’s function in vacuum

g2D (∆r, x) = − i4H
(1)
0 (x∆r), (2.103)

with ∆r = |r− r′|, and H(1)
0 is the 0-order Hankel function of the first kind [160].

As for the 3D case, in order to represent the solution of Eq. (2.101) in the
quasistatic limit (x→ 0), we build a complete basis joining two orthogonal sets. The
first set {j‖h} is given by the solution of the eigenvalue problem

LTI
e {j

‖
h}(r) = 1

χ
‖
h

j‖h(r), ∀r ∈ Σ, (2.104)

where LTI
e is the two dimensional electrostatic integral operator that gives the elec-

trostatic field as a function of the linear boundary charge density [143]:

LTI
e {W} = ∇

˛
∂Σ

W(r′) · n̂′g2D
0 (∆r) dl′, (2.105)

where
g2D

0 (∆r) = 1
2π log ∆r (2.106)

is the static Green’s function in vacuum.
The spectrum of LTI

e is countable infinite [143], and the eigenfunctions {j‖h}h∈IN

are longitudinal vector fields: they are both div-free and curl-free in Σ but have
nonvanishing normal component to ∂Σ. Moreover, LTI

e is self-adjoint and definite
negative, therefore the eigenvalues χ‖h are real and negative, and the eigenfunctions
are orthogonal according to the scalar product

〈A,B〉Σ =
ˆ

Σ
A ·B dS. (2.107)
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We then assume this set orthonormal, i.e., 〈j‖h, j
‖
k〉Σ = δh,k.

The second set is made up by transverse vector fields {j⊥h } orthogonal to the eigen-
functions {j‖h}, which are div-free in Σ, with vanishing in-plane normal component
to ∂Σ, and are solutions of the eigenvalue problem in weak form

LTI
m{j⊥h }(r) = 1

κ⊥h
j⊥h (r), ∀r ∈ Σ, (2.108)

where LTI
m is the two-dimensional magnetostatic integral operator

LTI
m{W}(r) = −

ˆ
Σ

W(r′)g2D
0 (∆r) dS ′. (2.109)

LTI
m has a countable infinite spectrum, and is self-adjoint and definite positive, there-

fore the eigenvalues {κ⊥h }h∈N are real and positive, and the eigenfunctions {j⊥h }h∈IN are
orthogonal according to the scalar product (2.107), and assumed normalized, namely
〈j⊥h , j⊥k 〉Σ = δh,k.

Eventually, as in the 3D case (see Eq. (2.15)), the current density J in the
quasistatic regime (x→ 0) can be expressed in the form

J = −iωχε0

∞∑
h=1

 χ
‖
h

χ
‖
h − χ

〈j‖h,Einc〉Σ j‖h + κ⊥h
κ⊥h − x2χ

〈j⊥h ,Einc〉Σ j⊥h

 , (2.110)

and the resonance conditions for the eigenfunctions j‖h and j⊥h are Re {χ} = χ
‖
h and

Re {χ} = κ⊥h /x
2, respectively. Thus, the sets {j‖h}h∈IN and {j⊥h }IN can be interpreted as

the EQS and MQS current modes of the body, respectively, and {χ‖h}h∈IN, {κ⊥h /x2}h∈IN

their eigen-susceptibilities.
The 2D electrostatic and magnetostatic operators, as well as their eigenfunctions

and eigenvalues, share the same properties of their 3D counterparts. All the quantities
introduced for 3D objects modes, such as the dipole moments, are defined over the
TI object cross-section (see Appendix A.2).

Maxwell’s equations show that a two-dimensional field can be separated into a
contribution from an H-wave (or TE), with the electric field lying in the cross-section
Σ, and an E-wave (or TM), with the electric field directed along the z-direction [146].
The current density of H-waves lie in the cross-section Σ, and in the quasistatic
limit are represented by both the sets {j‖h} and {j⊥h }. On the contrary, the currents
in an E-wave are directed along the z-direction, and in the quasistatic limit can
be represented only by the set of modes solution of the MQS eigenvalue problem
(2.108), but orthogonal to the cross-section Σ. This set of current modes are therefore
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2.3 Translational Invariant (TI) objects

independent from and orthogonal to the MQS current modes needed by the H-waves.
Any resonant scattering mechanism in 2D objects with arbitrary sized cross-

section is associated with the solutions of the eigenvalue problem

LTI{jh} = 1
γh

jh, (2.111)

where L2D is the full-retarded operator in Eq. (2.102). The operator L2D is compact,
symmetric, but not self-adjoint. For any value of the size parameter x, its eigenvalues
are complex with negative imaginary part. The eigenfunctions corresponding to two
different eigenvalues are biorthogonal [64, 65]. This eigenvalue problem splits in the
EQS eigenvalue problem (2.104) and in the MQS eigenvalue problem (2.108) in the
quasistatic regime x → 0. The eigenfunctions of L2D that in the limit x → 0 tend
to the EQS modes are indicated with {uh} and the corresponding eigenvalues are
indicated with {χh}. These eigenfunctions are called plasmonic modes. Dually, the
set of eigenfunctions of L2D that in the limit x → 0 tend to the MQS modes are
indicated with {vh} and the corresponding eigenvalues are indicated with κh/x

2.
Although in the limit x→ 0, the eigenvalues κh/x2 diverge, the quantities κh remain
constant. These eigenfunctions are called dielectric modes. The union of the two sets
{uh} and {vh} is a basis for the unknown current density field in equation (2.111).
Its solution is expressed as

J = −iωε0χ
∞∑
h=1

[
χh

χh − χ
〈uh,Einc〉Σ uh + κh

κh − χx2 〈vh,Einc〉Σ vh
]

(2.112)

where both the set of modes {uh} and {vh} are normalized such that 〈uh,uh〉Σ = 1
and 〈vh,vh〉Σ = 1, ∀h. This equation tends to Eq. (2.110) in the quasistatic limit
x→ 0.

We now apply the perturbation technique developed in Section 2.2 to TI objects, in
order to evaluate the plasmonic and dielectric resonances of a TI object with arbitrary
cross-section shape and size parameter x < 1, by starting from the corresponding
modes in the quasistatic regime.

2.3.1 TI Plasmonic Resonances

To evaluate the plasmonic resonances of TI objects whose cross-section is smaller than
or almost equal to the operating wavelength, it is convenient to recast the eigenvalue
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problem (2.111) as

uh(r) + χh

[
−∇
˛
∂Σ

uh(r′) · n̂′g2D (∆r, x) dl′ + x2
ˆ

Σ
uh(r′)g2D (∆r, x) dS ′

]
= 0,

∀r ∈ Σ. (2.113)

We treat x as a small parameter, and expand the Green’s function g2D (∆r, x), the
current mode uh, and the eigenvalue χh in terms of x in the neighborhood of the
EQS resonance associated with the eigenvalue χ‖h and mode j‖h.
The 2D Green’s function admits the following expansion [160]

g2D (∆r, x) = − i4 + 1
2π

∞∑
k=1

(−1)k−1

(k!)2

(
π

2 i+ 1 + 1
2 + · · ·+ 1

k

)(
x∆r

2

)2k

+ 1
2π

∞∑
k=0

(−1)k−1

(k!)2

(
x∆r

2

)2k (
log x∆r

2 + γ̄

)
, (2.114)

where γ̄ is the Euler-Mascheroni constant. We assume the same expansion for uh and
χh, keeping only the terms tending to 0 for x→ 0, namely 5

χh =
∞∑
k=0

χ
(2k)
h x2k +

∞∑
k=1

χ
(2k|L)
h x2k log x, (2.115)

uh =
∞∑
k=0

u(2k)
h x2k +

∞∑
k=1

u(2k|L)
h x2k log x, (2.116)

where χ(0)
h = χ

‖
h, and u(0)

h = j‖h. We then plug the expansions (2.114-2.116) into the
equation (2.113), and match in sequence the (x2k log x)- and (x2k)-terms.

Collecting the (x2 log x)-terms in Eq. (2.113), and applying the normal solvability
condition of Fredholm integral equations [152, 153], the correction χ(2|L)

h is derived

χ
(2|L)
h = (χ‖h)2

4π |P
‖
h|2 (2.117)

which is real and proportional to the squared magnitude of the electric dipole moment
P‖h of the h-th EQS mode, defined in Eq. (2.23), where the integration is now
performed over the cross-section Σ.
The (x2 log x)-correction of the associated plasmonic mode is entirely longitudinal,

5It can be shown, through means of a proof by strong induction, that the odd-powers coefficients
vanish.
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and can be represented in terms of the EQS mode basis {j‖h}h∈IN:

u(2|L)
h =

∞∑
k=1
k 6=h

α
(2|L)
h,k j‖k, (2.118)

where the expansion coefficients α(2|L)
h,k are

α
(2|L)
h,k = χ

‖
hχ
‖
k

χ
‖
h − χ

‖
k

P‖h ·P
‖
k

4π , ∀k 6= h. (2.119)

Mathching the (x2)-terms in Eq. (2.113), we obtain the real and imaginary parts
of the correction coefficient χ(2)

h :

Re
{
χ

(2)
h

}
=
(
χ
‖
h

)2
[

1 + γ̄ − log 2
4π |P‖h|2 + 1

8π

˛
∂Σ
j
‖
n,h(r)

˛
∂Σ
j
‖
n,h(r′)∆r2 log ∆rdl′ dl

+ 1
2π

ˆ
Σ

j‖h(r) ·
ˆ

Σ
j‖h(r′) log ∆r dS ′ dS

]
, (2.120a)

Im
{
χ

(2)
h

}
=−

(
χ
‖
h

)2

8 |P‖h|2. (2.120b)

where the scalar field j
‖
n,h = j‖h · n̂

∣∣∣
∂Σ

is defined on the cross-section boundary ∂Σ.
According to Eq. (2.120a), the real part of χ(2)

h is split into three contributions:
the one corresponding to the first term in parenthesis is proportional to the squared
magnitude of the electric dipole moment P‖h, and hence to its radiated power; the
contribution corresponding to the second term originates from the radiative self-
interaction of the boundary charge density associated with the EQS current mode
through the scalar potential; the third contribution is instead proportional to the
magnetostatic energy of the EQS current mode j‖h, defined in Eq. (2.32) (the integral
is now extended over the cross-section Σ). As for the (x2 log x)-correction, according
to Eq. (2.120b), the imaginary part of χ(2)

h is entirely determined by the squared
magnitude of the dipole moment P‖h.

We will demonstrate in Eq. (2.127) that Im
{
χ

(2)
h

}
determines the radiation Q-

factor of the h-th bright EQS mode. Moreover, we will illustrate in Eq. (2.125) that
the coefficients χ(2|L)

h and χ(2)
h are linked to the frequency-shift of the h-th plasmonic

resonant mode.
If the mode j‖h is dark, i.e., P‖h = 0, the expansion coefficient χ(2|L)

h and the
imaginary part of the expansion coefficient χ(2)

h vanish. In this case, the first-order
perturbation is the (x2)-term, whose expansion coefficient χ(2)

h is real, and is obtained
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by substituting P‖h = 0 in Eqs. (2.120). Furthermore, the first imaginary contribution
comes from the imaginary part of the (x4)-term χ

(4)
h , that, for dark modes, can be

expressed in terms of the two-dimensional electric quadrupole tensor ←→Q‖E|h of the h-th
EQS mode, and its components QE|h|ij:

Im
{
χ

(4)
h

}
= −

(
χ
‖
h

)2

64

 2∑
i,j=1

(
QE|h|ij

)2
− 1

2Tr
(←→Q‖E|h

)2
 (2.121)

where ←→Q‖E|h is defined in Eq. (A.7) in Appendix A. Thus the first imaginary correction
for dark modes is proportional to the power radiated by a 2D quadrupole.

On the basis of low-order correction calculations, we infer that a zero imaginary
part of the (xn)-correction implies a zero imaginary part of the (xn log x)-correction,
as well.

2.3.2 Resonance frequency-shift and Q factor of plasmonic
modes

Assuming the object is filled with a Drude metal, whose susceptibility χ(ω) is in
Eq. (2.21), the EQS resonance frequency ω

‖
h of the h-th mode, is defined as the

frequency at which the real part of the metal susceptibility Re {χ (ω)} matches the
EQS eigenvalue χ‖h, i.e.

x
‖
h

xp
= ω

‖
h

ωp
= 1√
−χ‖h

, (2.122)

where x‖h = ω
‖
h`c/c0 and xp = ωp`c/c0 are the size parameters at the EQS resonance

frequency and at the metal plasma frequency, respectively.
In the full-wave regime, by looking at the denominator in the first summation of

Eq. (2.112), the resonance condition of the plasmonic resonance is

Re {χh} = Re {χ (ωh)} ≈ −
ω2
p

ω2
h

= −
x2
p

x2
h

, (2.123)

where xh and ωh is the corresponding resonance size parameter and resonance fre-
quency, respectively. For small particles xp / 1, by retaining only the real and imagi-
nary nonzero corrections of the lowest order in Eq. (2.115), the plasmonic eigenvalue
χh (x) is approximated as

χh (x) ≈ χ
‖
h+x2

(
Re

{
χ

(2)
h

}
+ χ

(2|L)
h log x

)
+i

(
Im

{
χ

(ni)
h

}
xni + Im

{
χ

(niL|L)
h

}
xniL log x

)
,

(2.124)
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where niL and ni are the orders of the first nonzero imaginary corrections Im
{
χ

(niL|L)
h

}
and Im

{
χ

(ni)
h

}
. From the considerations made in the previous section, niL > ni.

By plugging the Eq. (2.124) into the Eq. (2.123), we find that the relative frequency
shift of the plasmonic resonance with respect to the EQS resonance ∆ωh/ω‖h = (ωh−
ω
‖
h)/ω

‖
h, or the relative shift in the resonance size parameter ∆xh/x‖h = (xh− x‖h)/x

‖
h,

in the small cross-section limit x‖h � 1, and for ∆ωh/ω‖h � 1, can be approximated
as

∆ωh
ω
‖
h

= ∆xh
x
‖
h

≈ − 1
2χ‖h

[
Re

{
χ

(2)
h

}
(x‖h)2 + χ

(2|L)
h (x‖h)2 log x‖h

]
. (2.125)

Thus, the relative frequency shift of any 2D plasmonic mode is linked to the
(x2 log x)-correction coefficient χ(2|L)

h and to the real part of the (x2) correction
coefficient χ(2)

h .

The radiation Q factor Q‖h of the h-th EQS mode is obtained by considering the
inverse of the FWHM fractional bandwidth of the h-th addend of the first summation
in Eq. (2.112), assuming negligible nonradiative losses Im {χ} ≈ 0, and using the
expansion (2.124):

Q‖h = χ
‖
h

Im
{
χ

(ni)
h

} ( 1
xh

)ni
. (2.126)

If the mode j‖h is bright, the Q factor is obtained by combining Eqs. (2.120b) and
(2.126):

Q‖h = 8
(−χ‖h)|Ph|2

( 1
xh

)2
. (2.127)

By expressing in Eq. (2.127) the EQS eigenvalue χ‖h in terms of the electrostatic
energy We

{
j‖h
}
of the mode j‖h (using Eq. (2.22), adapted for TI objects), Q‖h is also

found equal to 2π times the ratio of We

{
j‖h
}
to the energy radiated in a period by

the 2D electric dipole Ph at the resonance frequency ωh.
On the other hand, for a dark mode with nonvanishing electric quadrupole, the

Q factor is obtained by using Eqs. (2.121) and (2.126):

Q‖h = 64

χ
‖
h

[∑2
ij

(
QE|h|ij

)2
− 1

2Tr
(←→Q‖E|h

)2
] ( 1

xh

)4
, (2.128)

which is also equal to 2π times the ratio of the electrostatic energy of the h-th EQS
mode to the energy radiated in a period by the electric quadrupole ←→Q‖E|h at the
resonance frequency ωh. If the electric quadrupole moment is also vanishing, the
outlined process can be iterated by considering higher order electric multipoles.
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In the opposite regime, dominated by material losses, the dissipation Q factor Q‖dh
is obtained as in the 3D case, namely as the inverse of the fractional bandwidth of the
h-th addend of the first summation in Eq. (2.110), and has the same expression as
in Eq. (2.64). In the intermediate regime, where both the loss kinds are significant,
the resulting resonance Q factor is obtained through Eq. (2.65).

2.3.3 TI Dielectric Resonances

To evaluate the dielectric resonances of 2D objects with small cross-section, it is
convenient to recast the eigenvalue problem (2.111) as

x2vh(r) + κh

[
−∇
˛
∂Σ

vh(r′) · n̂′g2D (∆r, x) dl′ + x2
ˆ

Σ
vh(r′)g2D (∆r, x) dS ′

]
= 0,

∀r ∈ Σ. (2.129)

As for the plasmonic modes, the mode vh and the corresponding eigenvalue κh are
expanded at x = 0 in the neighborhood of MQS eigenvalue κ⊥h and mode j⊥h in the
form:

κh =
∞∑
k=0

κ
(2k)
h x2k +

∞∑
k=1

κ
(2k|L)
h x2k log x, (2.130)

vh =
∞∑
k=0

v(2k)
h x2k +

∞∑
k=1

v(2k|L)
h x2k log x, (2.131)

where κ(0)
h = κ⊥h , and v(0)

h = j⊥h . We then substitute Eqs. (2.130), (2.131), and
(2.114) into the equation (2.129), match in sequence the (x2k log x)- and (x2k)-terms,
and apply the normal solvability condition of Fredholm integral equations.

By matching the (x4 log x)-terms in Eq. (2.129), we obtain:

κ
(2|L)
h = −

(
κ⊥h
)2

2π |M⊥
h |2, (2.132)

which is real and proportional to the squared magnitude of the magnetic dipole
moment M⊥

h of the h-th MQS mode, defined in Eq. (2.33), where the integration
domain has to be replaced by the cross-section Σ.
The (x2 log x)-correction of the associated dielectric mode is entirely transverse, and
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can be represented in terms of the MQS current mode basis {j⊥h }h∈IN:

v(2|L)
h =

∞∑
k=1
k 6=h

α
(2|L)
h,k j⊥k , (2.133)

where the expansion coefficients α(2|L)
h,k are

α
(2|L)
h,k = κ⊥k

κ⊥h − κ⊥k
M⊥

h ·M⊥
k

2π , ∀k 6= h. (2.134)

By matching the (x4)-terms in Eq. (2.129), we obtain the real and imaginary
parts of the correction coefficient κ(2)

h :

Re
{
κ

(2)
h

}
=
(
κ⊥h
)2
[
γ̄ − 1 + log 2

2π |M⊥
h |2

− 1
8π

ˆ
Σ

j⊥h (r′) ·
ˆ

Σ
j⊥h (r′)∆r2 log ∆r dS ′ dS

]
, (2.135a)

Im
{
κ

(2)
h

}
= −

(
κ⊥h
)2

4 |M⊥
h |2. (2.135b)

According to Eq. (2.135a), the real part of κ(2)
h is split into two contributions: the

one corresponding to the first term in parenthesis is proportional to the squared
magnitude of the magnetic dipole moment M⊥

h , and hence to its radiated power;
the contribution corresponding to the second term originates from the radiative
self-interaction of the MQS current mode through the vector potential. As for the
(x2 log x)-correction, according to Eq. (2.135b), the imaginary part of κ(2)

h is entirely
determined by the squared magnitude of the dipole moment M⊥

h .
We will illustrate in Eq. (2.89) that Im

{
κ

(2)
h

}
determines the radiation Q-factor

of the h-th MQS mode with nonvanishing magnetic dipole moment. Moreover, we
will demonstrate in Eq. (2.125) that κ(2|L)

h and Im
{
κ

(2)
h

}
are associated with the

frequency-shift of the resonant dielectric modes.
Nevertheless, if the mode j‖h has zero magnetic dipole moment, i.e., M⊥

h = 0, the
expansion coefficient κ(2|L)

h and the imaginary part of the expansion coefficient κ(2)
h

vanish. In this case, the first-order perturbation is the (x2)-term, whose expansion
coefficient κ(2)

h is real, and is obtained by substituting M⊥
h = 0 in Eqs. (2.135).

Furthermore, for modes with zero magnetic dipole moment, the first imaginary con-
tribution comes from the imaginary part of the (x4)-term κ

(4)
h , that can be expressed
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as

Im
{
κ

(4)
h

}
= −

(
κ⊥h
)2

16

3
8

2∑
i,j=1

(
QM|h|ij

)2
+ 5|P⊥E2|h|2

 (2.136)

where QM|h|ij are the components of the two-dimensional magnetic quadrupole tensor
←→Q⊥M|h, introduced in Eq. (A.10), and P⊥E2|h is the two-dimensional toroidal dipole,
defined in Eq. (A.9). In conclusion, the first imaginary correction for modes with
zero magnetic dipole moment is determined by two contributions, accounting for the
power radiated by the 2D magnetic quadrupole ←→Q⊥M|h and by the 2D toroidal dipole
P⊥E2|h.

As for the plasmonic corrections, on the basis of low-order correction calculations,
we infer that a zero imaginary part of the (xn)-correction implies a zero imaginary
part of the (xn log x)-correction, as well.

2.3.4 Resonance frequency-shift and Q factor of dielectric
modes

Assuming the object is made of nondispersive dielectric material with positive suscep-
tibility χ, with Im {χ} � Re {χ}, the size parameter x⊥h at the resonance of the h-th
MQS mode j⊥h is defined as the value of x at which the real part of the susceptibility
χ matches the eigenvalue κ⊥h /x2, namely:

x⊥h = ω⊥h
c0
`c =

√√√√ κ⊥h
Re {χ} , (2.137)

and ω⊥h is the corresponding MQS resonance frequency.
In the full-wave regime, the resonance condition for the dielectric mode vh is

defined by zeroing the real part of the denominator of the h-th addend of the second
summation of Eq. (2.112):

Re {κh} = Re {χ}x2
h, (2.138)

being xh = ωh`c/c0 the size parameter at the dielectric resonance.
For small particles xh / 1, by keeping only the real and imaginary nonzero corrections
of the lowest order in Eq. (2.130), the dielectric eigenvalue κh (x) is approximated as

κh (x) ≈ κ⊥h +x2
(
Re

{
κ

(2)
h

}
+ κ

(2|L)
h log x

)
+i

(
Im

{
κ

(ni)
h

}
xni + Im

{
κ

(niL|L)
h

}
xniL log x

)
,

(2.139)
where niL and ni are the orders of the first nonzero imaginary corrections Im

{
κ

(niL|L)
h

}
and Im

{
κ

(ni)
h

}
. From the considerations made in the previous section, niL > ni. By
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plugging the Eq. (2.139) into the Eq. (2.138), we find that the relative frequency
shift of the dielectric resonance with respect to the MQS resonance ∆ωh/ω⊥h = (ωh−
ω⊥h )/ω⊥h , or the relative shift in the resonance size parameter ∆xh/x⊥h = (xh−x⊥h )/x⊥h ,
in the small cross-section limit x⊥h � 1, and for ∆ωh/ω⊥h � 1, can be approximated
as

∆ωh
ω⊥h

= ∆xh
x⊥h
≈ − 1

2κ⊥h

[
Re

{
κ

(2)
h

}
(x⊥h )2 + κ

(2|L)
h (x⊥h )2 log x⊥h

]
. (2.140)

Thus, as for the plasmonic counterpart, the relative frequency shift on any 2D
dielectric mode is linked to the (x2 log x)-correction coefficient κ(2|L)

h and to the
(x2)-correction coefficient κ(2)

h .

The radiation Q factor Q⊥h of the h-th MQS mode is obtained by considering
the inverse of the FWHM fractional bandwidth of the h-th addend of the second
summation in Eq. (2.112), assuming negligible nonradiative losses Im {χ} ≈ 0, and
using the expansion (2.139):

Q⊥h = κ⊥h

Im
{
κ

(ni)
h

} ( 1
xh

)ni
. (2.141)

If the mode j⊥h has nonvanishing magnetic dipole moment, its Q factor is obtained
by combining Eqs. (2.135b) and (2.141):

Q⊥h = 4
κ⊥h |Mh|2

( 1
xh

)2
. (2.142)

By expressing in Eq. (2.142) the EQS eigenvalue κ⊥h in terms of the magnetostatic
energy Wm

{
j⊥h
}
of the mode j⊥h (using Eq. (2.32), adapted for TI objects), Q⊥h is

also found equal to 2π times the ratio of Wm

{
j⊥h
}
to the energy radiated in a period

by the 2D magnetic dipole Mh at the resonance frequency ωh.
On the other hand, if the magnetic dipole vanishes, but at least one among

the magnetic quadrupole moment ←→Q⊥M|h and the “toroidal" dipole moment P⊥E2|h is
nonzero, the Q factor is obtained by using Eqs. (2.121) and (2.141):

Q⊥h = 16

κ⊥h

3
8

2∑
i,j=1

(
QM|h|ij

)2
+ 5|P⊥E2|h|2


( 1
xh

)4
, (2.143)

which is equal to 2π times the ratio of the magnetostatic energy of the h-th MQS
mode to the sum of the energies radiated in a period by the magnetic quadrupole
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←→Q⊥M|h and by the toroidal dipole moment P⊥E2|h, at the resonance frequency ωh.
If they are all vanishing, the outlined process can be iterated by considering higher

order magnetic multipoles.
In the opposite regime, dominated by material losses, the same considerations

made for the 3D case in Sec. 2.2.4 apply. Specifically, the dissipation Q factor Q⊥dh is
obtained as the inverse of the factional bandwidth of the h-th addend of the second
summation in (2.110), assuming dominating nonradiative losses, and has the same
expression as in Eq. (2.91).

In an intermediate regime, the total Q factor, indicated with Qh has the same
expression as in Eq. (2.92).

2.3.5 Cylinder

As an example, we consider the plasmonic and dielectric resonances of an infinite
cylinder with circular cross-section. The characteristic length `c of the object is
assumed equal to the cylinder radius R, and the size parameter x is x = ω

c0
R.

All the EQS eigenvalues have the same eigen-susceptibility [83], i.e.

χ‖n = −2, ∀n ∈ IN. (2.144)

Each eigenvalue is associated with 2 degenerate current modes j‖pn, where n ∈ IN is
the multipolar order of the mode, and p distiguishes between even (e) and odd (o)
modes with respect to the azimuthal variable. The expression of the EQS modes is
given in Eq. (C.1) in Appendix C. The modes j‖on for n = 1, 2, 3 are shown in Fig.
2.5.

The MQS modes are divided into two sets. The first set is composed by the TE
modes, whose vector field lies in the cross-sectional plane. Their eigenvalues κ⊥TE

nl are

κ⊥TE
nl = Z2

n,l, (2.145)

where n ∈ IN0, l ∈ IN, and Znl is the l-th zero of the n-th order Bessel function of the
first kind Jn. Each eigenvalue is associated with a set of 2 degenerate current modes
j⊥TE
pnl , with even and odd parity p ∈ {e, o}, whose expression is given in Eq. (C.2) in
Appendix C. The modes j⊥TE

enl for n = 0, 1, 2, 3 are shown in Fig. 2.5.
The second set is made of TM vector fields directed along the cylinder axis ẑ.

Their eigenvalues are κ⊥TM
nl have the following expression

κ⊥TM
nl = Z2

n−1,l, (2.146)
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where n ∈ IN0, l ∈ IN. Each eigenvalue is associated with a set of 2 degenerate current
modes j⊥TM

pnl , p ∈ {e, o}, whose analytic expression is given in Eq. (C.3) in Appendix
C. The modes j⊥TM

onl for n = 0, 1, 2, 3 are shown in Fig. 2.5.

EQS MQS
TMTE

n=
0

l=1 l=2 l=1 l=2

n=
1

n=
2

n=
3

min max

Figure 2.5 – Field lines of the quasistatic modes of an infinite cylinder with circular
cross-section. Electroquasistatic modes j‖on with n = 1, 2, 3. The magnetoquasistatic modes
are divided into two subsets: the TE MQS modes j⊥TE

enl , and the TM modes j⊥TM
e1nl, with

n = 0, 1, 2, 3 and l = 1, 2. The MQS TM modes are vector fields oriented along the cylinder
axis, and only their intensity over the cross-section is shown.

To the author’s knowledge, a recurrence relation for the radiation corrections of
the cylinder plasmonic and dielectric eigenvalues is not available in the literature.
However, they can be calculated by applying the iterative method described in the
previous sections. For instance, the (x2 log x)- and x2-radiation corrections of the
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EQS dipolar eigen-susceptibility χ‖1 = −2 is obtained by employing the expression of
one of the uniform current modes, e.g., j‖o1 = ŷ/

√
π (see Sec. C.1) and the magnitude

of its electric dipole moment |P‖1| =
√
π in Eqs. (2.117) and (2.120), leading to

χ
(2|L)
1 = 1, (2.147)

χ
(2)
1 = 1 + γ̄ − log 2− i π2 . (2.148)

From Eq. (2.127), its radiation Q is

Q‖1 = 4
π

1
x2

1
. (2.149)

Similarly, the (x2 log x)- and x2-radiation corrections of the MQS dipolar κ⊥0l = Z2
0,l,

l ∈ IN, is obtained by plugging the expression of one of the associated current modes,
e.g., j⊥TE

e0l = φ̂
J1(Z0,lr)√
π|J1(Z0,lr)|

, with (r, φ) the in-plane cylindrical coordinates (see Fig.

C.1), and the magnitude of its magnetic dipole moment |M0l
⊥| = 2

√
π/Z0,l in Eqs.

(2.132) and (2.135), leading to

κ
(2|L)
0l = −2, (2.150)
κ

(2)
0l = 2(γ̄ + log 2)− i π. (2.151)

From Eq. (2.142), their radiation Q is

Q⊥TE
0l =

Z2
0,1

π

1
x2

0l
. (2.152)

On this basis, we now briefly investigate the resonances of an infinite cylinder
with electrically small cross-section under excitation by an in-plane propagating and
polarized plane wave. As for the sphere case in Sec. 2.2.5, we carry this analysis
in two scenarios: in the first one, the cylinder is made of a Drude metal, while in
the second one, of a high-index dielectric (Re {χ} � 1). In both cases, we assume
low material losses (Im {χ} � 1) in order to compare the predicted radiation Q

factor with the fractional bandwidth of the peaks. As physical observable, we choose
absorption efficiency σabs, defined as σabs = Pabs

Ii2R
, where Pabs is the per-unit-length

absorbed power, and Ii is the incident irradiance. Its expression is the same as in
Eq. (2.100), where the integration is now performed over the cylinder cross-section
Σ. It is calculated using the formulas in Eq. (8.37) in [87]. The radiative shift of
the first peak of σabs and its Q factor are investigated as the object size increases. In
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particular, the plasmonic and dielectric resonance frequencies are compared against
the frequency at which the curve has the peak, denoted as ωres. Similarly, the Q
factor of the plasmonic and dielectric modes are validated against the corresponding
heuristic Q factors, given by the inverse of the full-width at half maximum FWHM [158].
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Figure 2.6 – (a) Absorption cross-section σabs of a Drude metal cylinder with circular
cross section of radius R = `c as a function of ω/ωp = x/xp, for xp = 0.02 (top panel),
xp = 0.2 (middle panel), xp = 0.3 (bottom panel). (b) First peak of the σabs of a dielectric
cylinder of circular cross-section, with susceptibility χ = 104 + i (top panel), χ = 103 + 0.1i
(middle panel), χ = 102 + 0.01i (bottom panel), as a function of x

√
Re {χ}. The resonance

position obtained by Eq. (2.125) (case (a)) and Eq. (2.140) (case (b)) are shown with
vertical dashed lines. Horizontal lines show the peak half-FWHM (a) and FWHM (b).

In Fig. 2.6a, we plot the σabs for a cylinder made of a low-loss Drude metal,
with the dispersion relation given in Eq. (2.21), in which ν = 10−4ωp. We evaluate
σabs for three different values of xp = 0.02, 0.2, 0.3, which for a gold cylinder (ωp =
6.79Prad/s [159]) correspond to R ≈ 1 nm, 9 nm, 13 nm. The resonance position of
the first excited plasmonic mode, which in the quasistatic limit tends to the dipolar
EQS mode j‖e11 (if the impinging plane wave is x̂-polarized), is obtained using Eq.
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(2.125), and is shown with a vertical dashed line. In Tab. 2.3, the resonance frequency
ω1 is compared against the corresponding peak position ωres, and the resonant mode
Q‖1 against its heuristic counterpart FWHM−1. Since other resonances occur very closely
to the one under exam by increasing the size parameter, we calculate the FWHM as twice
the relative half-bandwidth, obtained as the distance between ωres and the smallest
frequency at which the curve reaches half the maximum. In Fig. 2.6a, we mark this
half-bandwidth with a red segment.

The dissipation Q‖d and the total Q1 factors, calculated using Eqs. (2.64) and
(2.65), respectively, are also shown.
For xp = 0.02 (top panel), the radius R is much smaller than the plasma wavelength
λp, and hence the EQS approximation well describes the resonance phenomenon: Eq.
(2.122) exactly predicts the occurrence of the considered peak. In this case, the radi-
ation and material losses are comparable, as confirmed by the values of the Q factors
and the inverse of the FWHM in Tab. 2.3.
Increasing xp to xp = 0.2 (middle panel) and xp = 0.3 (bottom panel), the peak un-
dergoes a broadening and a shift from its quasistatic position. However, the resonance
position obtained through Eq. (2.125), which incorporates the radiation corrections,
accurately predicts the occurrence of the peak. This time, the resonance is dominated
by radiation losses, as confirmed by the good agreement between the mode Q‖1 and
FWHM−1 in Tab. 2.3. Furthermore, another sharp peak arises from the power spectrum,
due to the coupling with the impinging radiation of the plasmonic mode that in the
quasistatic limit tends to the EQS quadrupolar mode j‖e2, with eigen-susceptibility
also equal to χ

‖
2 = −2. Since this mode has zero dipole moment, according to

Eq. (2.117), the x2 log x-correction of the EQS eigen-susceptibility vanishes, and the
frequency-shift is dominated by the next order, which is the x2-correction. Thus, as
the size parameter increases, its resonance red shifts more slowly than the dipolar
one.

xp ω1/ωp ωres/ωp Q‖d Q‖1 Q1 FWHM−1

0.02 0.707 0.707 7071 6366 3350 4752
0.2 0.699 0.699 6990 64 63 64
0.3 0.692 0.692 6923 29 28 29

Table 2.3 – Resonance frequency ω1 and Q factors Q‖d, Q‖1, Q1 of the first plasmonic mode
of a Drude metal (ν = 10−4ωp) cylinder with circular cross-section, for different values of
xp, and their heuristic estimates ωres and FWHM−1 at the peak of σabs in Fig. 2.6a

In Fig. 2.6b, we investigate the first peak of the σabs of a cylinder made of
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nondispersive high-index dielectric with low losses, as a function of the param-
eter x

√
Re {χ}. We consider three different values of susceptibility χ, namely

χ = 104 + i, 103 + 0.1i, 102 + 0.01i. In all cases, we have Re {χ} = 104Im {χ},
and hence the dissipation Q, calculated using Eq. (2.91), is Q⊥d = 104. The reso-
nance position of the dielectric mode that tends to the MQS TE dipolar mode j⊥TE

e01 (if
the impinging plane wave is x̂-polarized) is obtained by Eq. (2.140), and highlighted
with a vertical dashed line. A red segment joining the two ordinates at half maxi-
mum is also shown. In Tab. 2.4, the resonance parameter x01 is compared against
the corresponding peak position xres, and the resonant mode Q⊥01 against its heuristic
counterpart FWHM−1. The dissipation Q⊥d and the total Q01, calculated using Eq.
(2.92), are also shown.
For χ = 104 + i (top panel), the size parameter x ∈ [0.022, 0.025] is very small, and
the MQS approximation works well: Eq. (2.137) exactly predicts the occurrence of
the σabs peak. Moreover, as for the examined plasmonic case, the radiation and ma-
terial losses, as well as their Q factor, are comparable, as confirmed by the values of
the dissipation Q⊥d, radiation Q⊥01, and the inverse of the FWHM in Tab. 2.4.
Decreasing Re {χ} to the cases χ = 103+0.1i (middle panel) and χ = 102+0.01i (bot-
tom panel), the size parameter is increased to x ∈ [0.067, 0.078] and x ∈ [0.220, 0.248],
respectively, and the σabs peak experiences a broadening and a red shift with respect
to its quasistatic position. As confirmed by the third and fourth columns of Tab. 2.4,
Eq. (2.140), which takes into account the radiation corrections, correctly estimates
the occurrence of the peak. In both cases, the resonance is dominated by radiation
losses, and there is very good agreement between the mode Q⊥01 and the FWHM−1.

χ x01

√
Re {χ} xres

√
Re {χ} Q⊥d Q⊥01 Q01 FWHM−1

104 + i 2.403 2.403 104 3183 2415 2683
103 + 0.1i 2.398 2.398 104 318 308 320
102 + 0.01i 3.094 3.097 104 32 32 35

Table 2.4 – Resonance position x01
√
Re {χ} and Q factors Q⊥d, Q⊥01, Q01 of the first di-

electric mode of a high-index dielectric cylinder (Re {χ} = 10−4Im {χ}) with circular cross-
section, for different values of susceptibility χ, and their heuristic estimates xres

√
Re {χ}

and FWHM−1 at the peak of σabs in Fig. 2.6b

54



2.4 Two-dimensional objects (Surfaces)

2.4 Two-dimensional objects (Surfaces)

We now consider the long-wavelength limit of the scattering problem for a thin body,
namely an object whose thickness W is much smaller than its characteristic length
`c and the operating wavelength λ. The complete full-wave analysis can be found in
[102].

x

y

z

O

r

n

∂Σ

Σ

m

Figure 2.7 – An open surface Σ, with boundary ∂Σ and normal n̂. m̂ is the outgoing
normal to ∂Σ, tangent to Σ.

The object is illuminated by a time harmonic electric field Re {Einc(r)e−iωt}. In
this case, only the surface electromagnetic response of the material is relevant, and the
body may be treated as it is two-dimensional (e.g., [161]). A two-dimensional (2D)
material may be characterized in the frequency domain by either the susceptibility χ
or, equivalently, the optical surface conductivity σ,

σ = −iωε0χW. (2.153)

The surface of the 2D object and its boundary are denoted by Σ and ∂Σ, respectively,
n̂ is the normal to Σ, and m̂ is the outgoing normal to ∂Σ, which is tangent to Σ, as
sketched in Fig. 2.7.

The electromagnetic scattering by the 2D body is modeled by the integro-
differential equation for the induced (free or polarization) surface current density
Js [102]. The constitutive relation of the 2D material is

Js(r) = σ
↔
TE(r), ∀r ∈ Σ, (2.154)

where
↔
T is the projector that extracts the tangential component of the electric field
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2.4 Two-dimensional objects (Surfaces)

E(r) to the oriented surface Σ,

↔
TE(r) = −n̂× [n̂× E(r)] , ∀r ∈ Σ. (2.155)

The total electric field is expressed as E = Einc + Esca, with Esca being the electric
field scattered by the object.

A surface charge density ρs arises on Σ, whose expression is ρs = −∇s · Js/iω,
where ∇s denotes the surface nabla operator on Σ. Eq. (2.154) expresses Js in
terms of the electric field E through the surface conductivity of the material. On the
other hand, the scattered field can be expressed in terms of Js by the electromagnetic
potentials in the Lorenz gauge, as for the 3D case in Eq. (2.1) [146, 102],

Esca(r) = ζ0

[
1
i x
∇
ˆ

Σ
∇s ·W g (∆r, x) dS ′ − i x

ˆ
Σ

W g (∆r, x) dS ′
]
, ∀r ∈ IR3,

(2.156)
where the spatial coordinates have been normalized by `c, i.e., r → r/`c, ζ0 is the
vacuum impedance, and g (∆r, x) is the dimensionless scalar Green’s function in
vacuum, given in Eq. (2.5). The first term on the right-hand side of Eq. (2.156) is
the contribution of the electric scalar potential to the electric field, while the second
term is the contribution of the magnetic vector potential.

By combining Eqs. (2.154) and (2.156), we obtain the integro-differential equation
governing the induced surface current density field

Js(r)
σ
− ζ0L2D {Js} (r) =

↔
TEinc(r), ∀r ∈ Σ, (2.157)

where

L2D {W} = 1
i x
∇s

ˆ
Σ
∇s ·W g (∆r, x) dS ′−i x

ˆ
Σ

W g (∆r, x) dS ′, W ∈ Σ, ∀r ∈ IR3,

(2.158)
which is solved with the boundary condition

Js · m̂|∂Σ = 0, (2.159)

which arises from the requirement that the average energy of the scattered electro-
magnetic field must be limited.

As for the 3D and TI cases, in order to represent the solution of Eq. (2.157) in
the quasistatic limit x → 0, we set up a complete basis joining two orthogonal sets.
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2.4 Two-dimensional objects (Surfaces)

The first set {j‖h} is given by the solution of the eigenvalue problem

L2D
e

{
j‖h
}

(r) = 1
χ
‖
h

j‖h(r), ∀r ∈ Σ, (2.160)

where L2D
e is the electrostatic integral operator that gives the electrostatic field as a

function of the surface charge density:

L2D
e {W} (r) = ∇s

ˆ
Σ
∇s ·W g0 (∆r) dS ′, W ∈ Σ, ∀r ∈ Σ (2.161)

where g0 (∆r) is the dimensionless static Green’s function in vacuum, given in Eq.
(2.8). The spectrum of L2D

e is countable infinite, and the eigenfunctions {j‖h}h∈IN are
nonsolenoidal (∇s · j‖h 6= 0) and irrotational (∇s × j‖h = 0). Moreover, L2D

e is self-
adjoint and definite negative, and hence the eigenvalues χ‖h are real and negative and
the eigenfunctions are orthogonal according to the scalar product in Eq. (2.107). We
then assume this set orthonormal, i.e., 〈j‖h, j

‖
k〉Σ = δh,k. We label these eigenfunctions

as the EQS modes of the surface Σ. The electric dipole moment Ph of the EQS mode
j‖h can be obtained from Eq. (2.23), where the integration is now performed on the
surface Σ, while the Q factor is given by Eq. (2.61).

The second set is composed by solenoidal (∇s · j⊥h = 0) and rotational (∇s× j⊥h 6=
0) functions {j⊥h }h∈IN, orthogonal to the eigenfunctions {j‖h}, and solutions of the
eigenvalue problem

L2D
m

{
j⊥h
}

(r) = 1
κ⊥h

j⊥h (r), ∀r ∈ Σ, (2.162)

where L2D
m is the magneostatic integral operator

L2D
m {W} (r) =

ˆ
Σ

W g0 (∆r) dS ′, W ∈ Σ, ∀r ∈ Σ. (2.163)

L2D
m has a countable infinite spectrum, and is self-adjoint and definite positive, there-

fore the eigenvalues {κ⊥h }h∈N are real and positive, and the eigenfunctions {j⊥h }h∈IN are
orthogonal according to the scalar product (2.107), and assumed normalized, namely
〈j⊥h , j⊥k 〉Σ = δh,k. We label these eigenfunctions as the MQS modes of the surface Σ.
The magnetic dipole moment Mh of the MQS mode j⊥h is expressed as in Eq. (2.33),
where the integration is now performed on the surface Σ, while the Q factor is given
by Eq. (2.88).

Eventually, the surface current density induced on the surface Σ can be expressed
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2.4 Two-dimensional objects (Surfaces)

as

Js = σ
∞∑
h=1

 σ
‖
h

σ
‖
h − ζ0σ

〈j‖h,
↔
TEinc〉Σ j‖h + σ⊥h

σ⊥h − ζ0σ
〈j⊥h ,

↔
TEinc〉Σ j⊥h

 , (2.164)

where
σ
‖
h = i xχ

‖
h,

σ⊥h = i
κ⊥h
x
,

(2.165)

are the EQS and MQS eigen-conductivities, respectively. They are purely imaginary.
Since χ‖h < 0, the EQS eigen-conductivities σ‖h has negative imaginary part. Moreover,
they tend to 0 for x→ 0, but the EQS eigenvalue χ‖h remains finite. Conversely, since
κ⊥h > 0, the MQS eigen-conductivities σ‖h has positive imaginary part. Furthermore,
they diverge for x→ 0, but the MQS eigenvalue κ⊥h remains finite.

The expression of the surface current density Js highlights two resonance condi-
tions for σ. The first one is

Im {σ(ωh)} = χ
‖
h

ωh
c0
`c, (2.166)

with the resonant excitation of the EQS mode j‖h. Eq. (2.166) suggests that in qua-
sistatic limit, the EQS modes can be resonantly excited in conducting 2D materials,
whose conductivity has negative and small imaginary part.

The second resonance condition is

Im {σ(ωh)} = κ⊥h
c0

ωh`c
, (2.167)

with the resonant excitation of the MQS mode j⊥h . Eq. (2.167) implies that the MQS
modes can be resonantly excited in 2D dielectric objects of conductivity with positive
and high imaginary part (unless active materials are used [102]).

As an example, in Fig. 2.8 we show the first three EQS and MQS modes of
a spherical surface (sometimes called spherical inductor), whose expression is given
in Eq. (B.8) and (B.9) in Appendix B. The EQS and MQS eigenvalues have the
following expression [102]:

χ‖n = − 2n+ 1
n(n+ 1) , (2.168)

κ⊥n = (2n+ 1), ∀n ∈ IN, (2.169)

where n is the mode multipolar order, and the corresponding eigen-conductivities are
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EQS MQS

n=
1

n=
2

n=
3

max

min

Figure 2.8 – Plots of the EQS j‖n and MQS j⊥n modes (n = 1, 2, 3) of a spherical surface
[102]. The direction of each arrow represents the direction of the mode at the corresponding
point on the spherical surface, while the length of the arrow and the color describe its
amplitude.

obtained by applying Eq. (2.165).

2.5 Conclusions

The electromagnetic scattering response of an object is exhaustively characterized by
the Maxwell’s equations. When the object is much smaller than the vacuum wave-
length, the complexity of the Maxwell’s equations could be broken down into two
more manageable units: the electro-quasistatic and magneto-quasistatic approxima-
tions, i.e., the ones behind the modelling of capacitors and inductors. The electro-
quasistatic approximation covers the resonances in small particles with negative di-
electric permittivity, e.g., the plasmon resonances in metals at optical frequencies.
The magneto-quasistatic one describes the resonace mechanism in small objects of
high and positive permittivity, such as in AlGaAs and Si nanoparticles [36].

In this chapter, we built the mathematical apparatus needed to describe these two
resonance mechanisms in the quasistatic regime, for homogeneous isotropic nonmag-
netic objects. We considered three different geometries: three-dimensional, transla-
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tional invariant, and two-dimensional (surfaces) objects. In each scenario, we linked
the electro-quasistatic and magneto-quasistatic resonances to two linear eigenvalue
problems involving compact and self-adjoint integral operators, in which the spectral
parameter is the electric susceptibility χ. These eigenfunctions are the quasistatic cur-
rent modes of the object, and the eigenvalues are related to its eigen-susceptibilities.
The current modes and the eigen-susceptibilities only depend on the geometry of the
body, and they are material independent.

Unfortunately, both approximations are unable to predict the resonance frequency
shift and the radiation Q factor arising from the coupling with the radiation. For
this purpose, we derived closed-form expressions for the radiation corrections to the
quasistatic eigenvalues and modes. These corrections only depend on the quasistatic
current mode distribution. On this basis, we provided closed-form expressions of the
frequency shift and the radiation Q factor of both plasmonic modes (corrections of
the EQS modes) and dielectric modes (corrections of the MQS modes), where the
dependencies on the material and the size of the object are factorized.

For arbitrary shaped 3D objects and surfaces of dimension smaller than the op-
erating wavelength, the relative frequency shift of any mode is a quadratic function
of the size parameter x at the quasistatic resonance, whose prefactor depends on the
ratio between the second-order correction coefficient of the quasistatic eigenvalue and
the quasistatic eigenvalue.
The radiation Q factor is an inverse power function of x whose exponent is the order
ni ≥ 3 of the first nonvanishing imaginary correction, and the prefactor only depends
on the quasistatic eigenvalue and the multipolar components of the quasistatic modes.

For translational invariant structures with arbitrary shaped cross-section, the rel-
ative frequency shift ∆ωh

ωh
of any mode is in the form ∆ωh

ωh
= (Ax2 + Bx2 log x),

where A depends on the ratio between the real part of the second-order correction
coefficient of the quasistatic eigenvalue and the quasistatic eigenvalue, and B on the
ratio between the (x2 log x)-correction coefficient and the quasistatic eigenvalue.
The radiation Q factor for TI structures has the same form as for the 3D structures,
but the order ni of the first nonvanishing imaginary correction is now ni ≥ 2.
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Chapter 3

Lower Bounds to Quality Factor of
Small Radiators

The problem of finding the optimal current distribution supported by an electrically
small radiator yielding the minimum Q factor is a classic problem in electromag-
netism. In this chapter, a representation of the optimal current in terms of electro-
quasistatic and magnetoquasistatic scattering resonance modes, investigated in the
previous chapter, is introduced. The provided representation leads to analytical and
closed form expressions of the electric and magnetic polarizability tensors of arbitrary
shaped objects, whose eigenvalues are known to be linked to the minimum Q. Hence,
the minimum Q and the corresponding optimal current are determined from the sole
knowledge of the eigenvalues and the dipole moments associated with the quasistatic
scattering modes. It was found that when the radiator exhibits two orthogonal re-
flection symmetries, its minimum Q factor can be simply obtained from the Q factors
of its quasistatic modes, through a simple parallel formula. If an electric-type radia-
tor, which supports solenoidal and irrotational currents, admits a spatially uniform
quasistatic resonance mode, then this mode is guaranteed to have the minimum Q

factor. Analogously, a magnetic-type resonator, which supports solenoidal currents
with vanishing normal component to the object, admitting a mode of the form r̂× c,
where r̂ is the radial direction and c is a constant vector, has as minimum Q factor
the one of the mode. Many examples are worked out, exemplifying the application
of the introduced method to arbitrary shaped radiators, both three-dimensional and
translational invariant, of both electric and magnetic type.
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1234567
b

ℓc `c

Σ
(a) (b)

Ω

Figure 3.1 – `c is the radius of the minimum sphere circumscribing the 3D object (a), or
the minimum circle enclosing the TI object cross-section (b). The search of the minimum
current is constrained to the 3D radiator volume Ω (or surface Σ), and the TI radiator
cross-section Σ.

3.1 Minimum Q factor of 3D radiators of the elec-
tric type

Let us consider a homogeneous, isotropic, non-magnetic, linear material occupying
a domain, either a volume Ω or a surface Σ, of characteristic linear dimension `c.
From now on, we choose `c to be the radius of the minimum sphere enclosing the
three-dimensional object, as shown in Fig. 3.1a. The material has relative dielectric
permittivity εR, electric susceptibility χ = εR − 1, and it is surrounded by vacuum.
The object is assumed electrically small, namely x = ω

c0
`c < 1.

3D radiators of the electric type support longitudinal current distributions, which
belongs to the functional space L2

‖(Ω) = {L2(Ω) | ∇ · j = 0,∇× j = 0 in Ω \ ∂Ω}.
Their Q factor can be expressed as 2π times the ratio of the electrostatic energy
stored in the whole space to the energy radiated toward infinity in a period [118, 110,
108]:

Q = 3

˛
∂Ω
σ(r)
˛
∂Ω

σ(r′)
|r− r′|

dS ′dS
˛
∂Ω
σ(r)
˛
∂Ω
σ(r′) |r− r′|2 dS ′dS

1
x3 , (3.1)

where σ = j · n̂, and the spatial coordinates have been normalized by `c, i.e., r →
r/`c. The problem of finding the minimum quality factor consists in the search
of the optimal current density j which belongs to L2

‖, yielding the minimum value
of the functional x3Q. The above expression for the radiation Q factor and the
considerations we make in this section also hold for surface current densities supported
on a two-dimensional domain Σ provided the quantity j · n̂ is replaced by ∇s · j, being
∇s the surface nabla operator.
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3.1 Minimum Q factor of 3D radiators of the electric type

The minimization of the Q factor functional in Eq. (3.1) can be tackled by means
of the Lagrange’s multipliers method [108]: we fix the amplitude P of the electric
dipole moment P of the optimal current, and search for the stationary points of the
auxiliary Lagrangian

LE(σ, λ) =
˛
∂Ω
σ(r)
˛
∂Ω

σ(r′)
|r− r′|

dS ′dS − τ

∣∣∣∣∣
˛
∂Ω

rσ(r)dS
∣∣∣∣∣
2

− P 2

 , (3.2)

where τ is a Lagrange multiplier, and σ is subjected to the charge neutrality condition˛
∂Ω
σdS = 0. . The variational problem (3.2) yields the critical equation [122]

˛
∂Ω

σ(r′)
|r− r′|

dS ′ = τr ·
˛
∂Ω
σ(r′)r′dS ′, ∀r ∈ ∂Ω. (3.3)

Then, upon multiplying Eq. (3.3) with σ and integrating over ∂Ω, we find that Q in
Eq. (3.1) also satisfies [122]

x3Q = 6πmin
σ
τ. (3.4)

Using the constraint
∣∣∣∣∣
˛
∂Ω

rσ(r)dS
∣∣∣∣∣ = P > 0, we recast Eq. 3.3 as

˛
∂Ω

σ(r′)
|r− r′|

dS ′ = τP ê · r, ∀r ∈ ∂Ω, (3.5)

for some unknown unit vector ê.
We now introduce the electric polarizability tensor: a linear correspondence be-

tween an homogeneous external displacement field ε0E0ê and the electric dipole mo-
ment P, defined as

P =
˛
∂Ω
σr dS, (3.6)

where σ is the solution of the surface integral equation
˛
∂Ω

σ(r′)
4π |r − r′|dS

′ = ε0E0ê · r ∀r ∈ ∂Ω, (3.7)

and it is subjected to the charge neutrality condition. Thus, the electric polarizability
tensor γe is a 3× 3 matrix, defined as the map γe · êε0E0 = P.1

Comparing Eq. (3.7) with Eq. (3.5), we identify the generic external displacement
1The electric and magnetic polarizability tensors have the dimension of volume. However, we will

refer to a dimensionless polarizability tensor (γ → γ/`3c) since the spatial coordinates normalization
(r→ r/`c).
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field amplitude ε0E0 with τP ê, and the dipole moment defined in Eq. (3.6). Thus,
we can further recast Eq. (3.5) as

γe · ê = 1
τ

ê, (3.8)

which is an eigenvalue problem in (τ, ê) for γe. Finally, by combining Eq. (3.4) with
Eq. (3.8), the minimum Q factor is [122]:

(
x3Q

)
min

= 6π
γe,max

, (3.9)

where γe,max is the maximum among the eigenvalues of the (dimensionless) electric
polarizability tensor γe of the scaled object.

The surface integral operator in Eq. (3.7) is tightly related to the operator

Le{w} = −∇
˛
∂Ω

w(r′) · n̂′
4π |r− r′|

dS ′, introduced in Sec. 2.1.1, describing the electro-

static (plasmon) resonances. We aim at determining the polarizability tensor through
means of an EQS modes expansion.

The procedure consists in expanding the charge density σ solution of problem
(3.7), in terms of the EQS current modes {j‖h}h∈IN, solutions of the EQS eigenvalue
problem Le{j‖h} = j‖h/χ

‖
h, which constitute a complete basis for the search space

L2
‖ (Ω), namely:

σ(r) =
∞∑
h=1

ah j‖h(r) · n̂(r) on ∂Ω. (3.10)

The charge density σ(r) constructed in this way naturally satisfies the charge neu-
trality condition. By employing the above expansion in Eq. (3.7), multiplying both
members by j‖k · n̂ and integrating over the surface boundary ∂Ω, we obtain

∞∑
h=1

ah

ˆ
∂Ω

j‖k(r) · n̂(r)
˛
∂Ω

j‖h(r′) · n̂′
4π |r− r′|

dS ′dS = (ε0E0ê) ·
ˆ

Ω

(
j‖k · n̂

)
r dV. (3.11)

By exploiting the EQS current modes and eigensusceptibilities {χ‖h, j
‖
h}h∈IN are so-

lution of the EQS eigenvalue problem, and using the orthonormality condition
〈j‖h, j

‖
k〉Ω = δh,k, we derive the expansion coefficients ah of the charge density dis-

tribution
ah = −χ‖h (ε0E0ê) ·Ph, (3.12)
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and the corresponding dipole moment

P = −
∞∑
h=1

χ
‖
h (ε0E0ê ·Ph) Ph =

[
−
∞∑
h=1

χ
‖
hPh ⊗Ph

]
· (ε0E0ê) , (3.13)

where Ph is the dipole moment of the EQS current mode j‖h, given in Eq. (2.23),
and Ph⊗Ph is the dyad resulting from the tensor (dyadic) product [162] of Ph with
itself.
Therefore, the 3× 3 electric polarizability tensor γe is 2

γe = −
∞∑
h=1

χ
‖
h Ph ⊗Ph. (3.14)

The above closed-form identity is one of the main results of the spectral theory
proposed in this work: it bridges the polarizability tensor with the EQS (plasmon)
modes.

In the general case, the maximum eigenvalue γe,max of the γe is associated with
the minimum quality factor. The corresponding (normalized) eigenvector returns
the direction of the dipole moment of the optimal current, which we call p̂opt. The
optimal current is readily obtained in terms of the EQS (plasmon) modes:

jopt(r) = −
∞∑
h=1

χ
‖
h (p̂opt ·Ph) j‖h(r). (3.15)

As we will see in the next sections, only few EQS modes have to be considered to
have a good estimation of the minimum Q factor and the optimal current.

Symmetries in the shape of the radiator can markedly simplify the expression of
the polarizability tensor, and the calculation of the optimal current and the minimum
Q. Specifically, if the shape of the resonator has two orthogonal reflection symmetries,
γe can be diagonalized by choosing a co-aligned coordinate system (e1, e2, e3), (e.g.,
for an ellipsoid it is oriented along its principal axes). The dipole moments of the
EQS mode are also aligned along these directions. In this case, the three occurrences
of γe are given by:

γi = −
∑

h
ei−aligned

χ
‖
h |Ph|2 , i = 1, 2, 3 (3.16)

where the summation only runs over the EQS modes exhibiting dipole moment di-
rected along ei. In this case, the minimum Q along the axis ei is obtained by the

2Since the EQS operator Le is negative definite, the eigensusceptibilities {χ‖
h}h∈IN are negative

valued, and the polarizability tensor is clearly semi-positive definite, as it should be [163].
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parallel formula
1

(x3Q)min
=

∑
h

ei−aligned

1
x3
hQ
‖
h

, (3.17)

where Q‖h and xh are the Q factor and the resonant size parameter 3 of the bright
EQS mode j‖h, respectively (see Sec. 2.2.2), i.e.

x3
hQ
‖
h = 6π

(−χ‖h)|Ph|2
. (3.18)

Then, the global minimum Q factor is taken among the Q for each axis.
In conclusion, if the shape of the resonator has two orthogonal reflection symme-

tries, the minimum Q factor along a particular direction ei can be obtained as the
parallel of the quality factor of the bright EQS (plasmon) modes aligned along that
direction.

In addition, due to the orthonormality condition, when there exists a current
mode which is spatially uniform along a given direction, there exists one and only
one EQS mode with nonvanishing dipole moment along each symmetry axis (see Eq.
(2.24)), which is guaranteed to exhibit the minimum quality factor.

The algorithm that we propose to determine the minimum Q factor of an electric
type (alongside a magnetic type, see Sec. 3.2) radiator is summarized in Fig. 3.2.
First, we preliminary calculate the EQS current modes associated with the assigned
shape in which the search for the optimal current is performed. Then, if the object
has two orthogonal reflection symmetry, the minimum Q along the principal axes is
immediately obtained from the Q factor of the EQS mode oriented along that axis.
If no such symmetries are present, then we analytically assembly the polarizability
tensor by using the dipole moment and the eigenvalues of the modes, and eventually
find its eigenvalues and eigenvectors. The minimum Q and optimal currents are then
immediately obtained.

In the next three subsections, some examples are worked out, exemplifying the
introduced method for the calculation of the minimum Q and the optimal current
for radiators of the electric type. From a computational standpoint, the electrostatic
eigenvalue problem (2.6) is solved by the surface integral method outlined in Refs.
[70, 83].

3In Chapter 1 we used the symbol x‖
h or x⊥

h to indicate the resonant size parameter of the EQS
j‖
h or MQS j⊥

h mode. Here we choose to use simply xh to lighten the notation.
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Input
Object shape (3D) or Object cross-section shape (TI)

EQS Eigenvalues and Modes{
χ
‖
h, j

‖
h

}
h∈N

Electric Dipole moment and Q factor

{Ph}h∈N
{
xn
rQ

‖
h

}
h∈N

n=3 (3D)
n=2 (TI)

MQS Eigenvalues and Modes{
κ⊥
h , j

⊥
h

}
h∈N

Magnetic Dipole moment and Q factor

{Mh}h∈N
{
xn
rQ

⊥
h

}
h∈N

n=3 (3D)
n=2 (TI)

(n-1) orthogonal
reflection

symmetries?

Qmin and Optimal Current
Electric Type

γe =
∞∑

h=1

(−χ
‖
h)Ph ⊗Ph

(
x3Q

)
min =

6π
γe,max

(3D)
(
x2Q

)
min =

8
γe,max

(TI)

jopt =
∞∑

h=1

(−χ
‖
h) (Ph · p̂opt) j

‖
h

Magnetic Type

γm =
∞∑

h=1

κ⊥
hMh ⊗Mh

(
x3Q

)
min =

6π
γm,max

(3D)
(
x2Q

)
min =

4
γ(TI)

jopt =
∞∑

h=1

κ⊥ (Mh · m̂opt) j
⊥
h

Qmin and Optimal Current
Electric Type

{ei} ≡ co-aligned coordinate system
1

(xnQ)min
= min

i∈[1,n]

∑
h

ei−aligned

1

xn
hQ

‖
h

j
‖
opt =

∞∑

h=1

(−χ
‖
h) (Ph · ei) j‖h

Magnetic Type
1

(xnQ)min
= min

i∈[1,n]

∑
h

ei−aligned

1

xn
hQ

⊥
h

jopt =
∞∑

h=1

κ⊥ (Mh · ei) j⊥h

ELECTRIC
TYPE

MAGNETIC
TYPE

YES NO

1234567

Figure 3.2 – Algorithm for the calculation of the minimum quality factor and optimal
current of an arbitrary shaped 3D or TI radiator of the electric and magnetic types, using
the quasistatic modes.

3.1.1 Shapes supporting uniform electrostatic mode

A homogeneous sphere supports three degenerate EQS bright modes, associated with
the eigenvalue χ‖ = −3 (Fröhlich condition [2]). The surface charge density of one
of these modes is shown on the left of Fig. 3.3a, and is associated with the spatially
uniform TM current mode j‖1 =

√
3/ (4π)ẑ, denoted in Sec. 2.2.5 and Sec. B.1.1

with j
‖
e01. For the considerations made in the previous section, they are the only

three bright modes (one for each coordinate axis) exhibited by this shape. Thus,
these modes correspond to the optimal current, and their Q factor coincides with the
minimum allowed Q factor supported by longitudinal currents constrained within this
shape: (

x3Q
)

min
= x3

1Q
‖
1 = 1.5. (3.19)
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3.1 Minimum Q factor of 3D radiators of the electric type

In conclusion, the plasmonic (EQS) dipole modes supported by a plasmonic sphere
exhibit the minimum Q factor of radiatior of the electric type, in line with the results
of Thal [107].

Similarly, a spheroid supports three uniform modes directed along the principal
axes, and hence they are the only bright modes. We consider a prolate and an oblate
spheroids with aspect ratio 2 : 1. On the right of Fig. 3.3a we show the surface
charge density associated with the EQS current mode oriented along the major axes,
and having eigenvalues χ‖ = −5.76 (prolate) and χ‖ = −4.23 (oblate) [164]. Thus,
the modes’ Q factor coincides with the minimum allowed Q factor supported by
longitudinal currents constrained within this shape. Specifically, (x3Q)min = 3.16
and (x3Q)min = 2.13 for the considered prolate and oblate spheroids, respectively, in
agreement with the closed-form expressions provided by Gustafsson at al. [106].

3.1.2 Shapes with two reflection symmetries

We now consider a rod with radius R, and height H = 4R, aligned along ẑ. Following
the algorithm outlined in Fig. 3.2, we compute the EQS modes by solving Eq. (2.6),
and among them we select the bright ones. The surface mesh used for the mode
calculation has 1885 nodes, and 3766 triangles. Their Q factor can be immediately
calculated using their eigenvalues and electric dipole moment by Eq. (3.18). The
four bright modes with the lowest Q are shown in Fig. 3.3b to the right of the “ = ”
sign. The minimum Q supported by a longitudinal current confined in this volume
is obtained by Eq. (3.17) from the parallel of the quality factors x3

hQ
‖
h of the modes

exhibiting nonvanishing dipole moment along ẑ: it has value (x3Q)min = 3.98. We
note that the Q factor of the first EQS mode is very close to the Q bound. This is
because this particular mode is almost spatially constant, thus the dipole moment
of the remaining modes is nearly vanishing. The relative error in the calculation of
(x3Q)min by considering only the first three modes is below 0.2%.

We then consider a sphere dimer of radius R, aligned along the ẑ-axis with edge-
edge gap δ = R/10. On the left of the “ = ” sign in Fig. 3.3c we show the surface
charge density associated with the optimal current distribution, on the right the
three plasmon modes with lowest Q factors. The minimum Q factor is obtained
by combining the quality factor of the bright modes, by using the parallel formula.
Differently from the rod, where the fundamental plasmon mode exhibits a Q factor
very close to the minimum Q, for a sphere dimer, the first mode exhibits a Q quite
larger than the minimum. This is because the dimer of two nearly touching spheres
support modes concentrated in the dimer gap, and hence strongly deviating from
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Figure 3.3 –Minimum Q and corresponding optimal charge density supported by radiators
of the electric type of assigned shape: (a) a sphere, and prolate and oblate spheroids
with aspect ratio 2 : 1, which have only one uniform bright EQS mode which coincides
with the optimal charge density; geometries exhibiting two reflection symmetries, namely
a rod with radius R and height H = 4R (b) and a dimer of spheres with radius R and
edge-edge gap R/10 (c); a shape with no symmetries (d). In (b-d), to the right of the
“ = ” sign/arrow, plasmon modes with lowest Q factor, their individual Q factor (top) and
eigenvalues (bottom).
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3.2 Minimum Q factor of 3D radiators of the magnetic type

uniform distributions.

3.1.3 Shapes with no symmetries

We now examine a tetris-like block with three orthogonal arms of different lengths
and no reflection symmetries. We first compute the EQS resonances of this object,
selecting the bright modes. The four bright modes with lowest Q factor are shown
in Fig. 3.3 to the right of the “ = ” sign. The direction of the dipole moment Ph

of each mode is also shown in the insets. Aiming at determining the minimum Q

factor achievable by currents confined within the object, and considering that there
are no symmetries, we have to preliminary assembly the electric polarizability tensor
γe using Eq. (3.14), using the dipole moments of the modes Ph. The maximum
eigenvalue of γe is associated with the minimum Q factor by Eq. (3.9). The optimal
current is then obtained by using Eq. 3.15, and shown on the left of Fig. 3.3d. The
relative error in the estimation of (x3Q)min by taking into account only the three
modes shown in Fig. 3.3d is 26%. We have to consider at least 25 modes to have an
error below 10%.

3.2 Minimum Q factor of 3D radiators of the mag-
netic type

We now consider three-dimensional radiators of the magnetic type, supporting
transverse volume currents j, which belong to the functional space L2

⊥(Ω) ={
L2(Ω) | ∇ · j‖ = 0, in Ω \ ∂Ω and j⊥ · n̂ = 0 on ∂Ω

}
. Their Q factor can be ex-

pressed as 2π times the ratio of the magnetostatic energy stored in the whole space
to the energy radiated to infinity in a period [118, 110, 108]

Q = 6

ˆ
Ω

j(r) ·
ˆ

Ω

j(r′)
|r− r′|

dV ′dV
ˆ

Ω
j(r) ·

ˆ
Ω

j(r′) |r− r′|2 dV ′dV

1
x3 . (3.20)

This expression holds also in the case of the surface current density defined on the
2D object Σ provided that the volume integrals are replaced by surface integrals.

Following the same steps used for the radiators of the electric type, the minimiza-
tion of the Q factor functional in Eq. (3.20) leads to [108]

(
x3Q

)
min

= 6π
γm,max

, (3.21)
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3.2 Minimum Q factor of 3D radiators of the magnetic type

where γm,max is the maximum eigenvalue of the 3 × 3 (dimensionless) magnetic po-
larizability tensor γm of the scaled object.

The polarizability tensor γm is a linear correspondence between an homogeneous
external magnetic field H0ê and the magnetic dipole moment of the volume current
density distribution, defined as

M = 1
2

ˆ
Ω

r× j dV, (3.22)

having zero-average over Ω (and therefore zero electric dipole moment) and solving
the integral equation problem [122]:

ˆ
Ω

j(r′)
4π |r− r′|

dV ′ = 1
2 (H0ê)× r, ∀r ∈ Ω. (3.23)

Thus, the magnetic polarizability tensor γm is a 3 × 3 matrix, defined as the map
γm · êH0 = M.

The volume integral operator in Eq. (3.23) is exactly the same operator Lm oc-
curring in Eq. (2.12), which describes the magnetostatic (dielectric) resonance. One
of the main contributions of the present work is the analytical closed-form calculation
of the polarizability tensor by using the MQS modes set.

We expand the transverse current density solution of problem (3.23), in terms
of the MQS current modes {j⊥h }h∈IN, solutions of the MQS eigenvalue problem
Lm

{
j⊥h
}

= j⊥h /κ⊥h in weak form, which constitutes a complete basis for L2
⊥(Ω):

jopt(r) =
∞∑
h=1

bh j⊥h (r) ∀r ∈ Ω. (3.24)

The resulting current jopt exhibits zero average (or zero electric dipole moment) over
Ω by construction. By plugging the above expansion in Eq. (3.23), taking the scalar
product of both members with j⊥k , and using the orthonormality condition 〈j⊥h , j⊥k 〉Ω =
δh,k, we obtain the expansion coefficients bh of the current density distribution

bh = κ⊥h (H0ê) ·Mh (3.25)

and the corresponding magnetic dipole moment

M =
∞∑
h=1

κ⊥h (H0ê ·Mh) Mh =
[ ∞∑
h=1

κ⊥h Mh ⊗Mh

]
· (H0ê) , (3.26)

where Mh is the magnetic dipole moment of the MQS current mode j⊥h , given in Eq.
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3.2 Minimum Q factor of 3D radiators of the magnetic type

(2.33).
Thus, the 3× 3 magnetic polarizability tensor γm is

γm =
∞∑
h=1

κ⊥h Mh ⊗Mh. (3.27)

Eq. (3.27) bridges the magnetic polarizability tensor with the MQS (dielectric)
modes.

The maximum eigenvalue γm,max of γm is associated with the minimum Q factor
of a radiator of the magnetic-type by Eq. (3.21). The corresponding (normalized)
eigenvector returns the direction of the dipole moment of the optimal current, which
we call m̂opt. The optimal current is readily obtained in terms of the MQS modes:

jopt(r) =
∞∑
h=1

κ⊥h (m̂opt ·Mh) j⊥h (r) (3.28)

As we will see in the next sections, in many scenarios, only a few MQS modes have
to be considered to have a good estimation of the minimum Q factor and the optimal
current.

As in the electric type case, if the shape of the resonator has two orthogonal
reflection symmetries, γm can be diagonalized by choosing a co-aligned coordinate
system (e1, e2, e3). In this case the dipole moments Mh are also aligned along either
one of these directions. Thus, the three occurrences of γm are given by:

γi =
∑

h
ei−aligned

κ⊥h |Mh|2 , i = 1, 2, 3 (3.29)

where the summation only runs over the MQS modes exhibiting dipole moment di-
rected along ei. In this case, the minimum Q for the axis ei is obtained by the parallel
formula

1
(x3Q)min

=
∑

h
ei−aligned

1
x3
hQ
⊥
h

, (3.30)

where Q⊥h and xh are the Q factor and the resonant size parameter of the MQS mode
j⊥h with nonvanishing magnetic dipole moment, respectively (see Sec. 2.2.4), i.e.

x3
hQ
⊥
h = 6π

κ⊥h |Mh|2
. (3.31)

Eventually, the global minimum Q is taken among the Q for each axis.
In addition, due to the orthogonality of the MQS modes, if there exists a current

mode of the form r × c, with c a constant vector, this same mode is guaranteed to
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3.2 Minimum Q factor of 3D radiators of the magnetic type

be the only one with non vanishing magnetic dipole moment along direction c (see
Eq. (2.34)). Thus, it necessarily exhibits the minimum Q factor.

The algorithm that we propose to determine the minimum Q of a radiator of the
magnetic type is summarized in Fig. 3.2.

As for the electric type case, we now illustrate some examples for the calculation
of the minimum Q and the optimal current for 3D and 2D (surfaces) radiators of
the magnetic type. In the cases in which the analytical solution is not available, the
surface current modes have been evaluated by applying the Galerkin method and the
Rao-Wilton-Glisson (RWG) functions have been used as basis functions to represent
the surface current density (see Supplemental Material of [102]).

3.2.1 Shapes supporting a MQS mode of the form r̂× c

We now consider a radiator of the magnetic type having the form of a spherical shell.
The MQS modes associated with this shape are given in Eq. (B.9) in Appendix B.
Among them, three degenerate current modes have nonvanishing magnetic dipole
moment, namely

j⊥h =
√

3
8π r̂× ch, (3.32)

where ch ∈ {x̂, ŷ, ẑ}, with eigenvalue κ⊥h = 3, h = 1, 2, 3. In Sec. 2.4 and in Sec.
B.1.2, they are denoted with j⊥TE

e11 , j⊥TE
o11 , and j⊥TE

e01 , respectively. Their magnetic dipole
moment is oriented along the three orthogonal axes, namely

Mh = 2π
3 ch. (3.33)

Thus, according to the discussion in the previous section, there is one and only one
mode with magnetic dipole moment along each coordinate axis. We show one of these
current modes in Fig. 3.4a. Applying Eq. (3.30) this MQS mode also exhibits the
minimum quality factor, namely

(
x3Q

)
min

=
(
x3
hQ
⊥
h

)
= 3 (3.34)

This is in agreement with the seminal work of Thal [107].

3.2.2 Shapes with two reflection symmetries

We now consider a small radiator of the magnetic type having the shape of a solid
sphere. The quasistatic modes and eigenvalues of this shape are investigated in Sec.
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Figure 3.4 – Minimum Q and corresponding current distribution supported by radiators
of the magnetic type of assigned shape: (a) a sphere shell which supports only one mag-
netoquasistatic mode of the form r̂ × c which coincides with the optimal current density;
geometries exhibiting two reflection symmetries, namely a solid sphere (b) and a ellipsoid
(c); a shape with no symmetries, namely a block with three arms of different lengths (d).
In panel (b-d), to the right of the “ = ” sign, dielectric modes with lowest Q factor, their
individual Q factor (top) and eigenvalues (bottom)
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3.2 Minimum Q factor of 3D radiators of the magnetic type

2.2.5. Unlike the sphere shell, this shape does not support a mode of the form
r̂× c. Among the transverse current modes, we limit our analysis to the ones having
nonvanishing magnetic dipole moment along ẑ. These MQS current modes are

j⊥h (r, ϑ, φ) =
√

3π
2 j1 (hπr) r̂× ẑ (3.35)

where r = (r, ϑ, φ) is a spherical polar coordinate system centered in the sphere
center, h ∈ IN, j1 is the spherical Bessel function of the first kind and order 1. They
are associated with the eigenvalues

κ⊥h = (hπ)2 , h ∈ N, (3.36)

and have magnetic dipole moment

Mh = (−1)h 2
√

3π
κ⊥h

ẑ. (3.37)

In Sec. 2.2.5 and Sec. B.1.1, these MQS modes and eigenvalues are denoted with{
j⊥TE
e01l

}
l∈IN

and
{
κ⊥ TE

1l

}
l∈IN

, respectively.
Applying Eq. (3.31), we find their Q factor:

(
x3
hQ
⊥
h

)
= (hπ)2

2 . (3.38)

The projection of the first four current modes on the equatorial section of the
sphere is shown to the right of the “ = ” sign in Fig. 3.4b, with their Q factor.
The minimum Q factor (x3Q)min achievable by transverse currents confined to this
volume is obtained by applying Eq. (3.30). This formula consists in the parallel of
the quality factors of MQS modes exhibiting magnetic dipole moment along ẑ:

1
(x3Q)min

=
∞∑
h=1

1(
xhQ⊥h

) = 2
π2

∞∑
h=1

1
h2 = 1

3 . (3.39)

In this parallel, by only considering the first 4 modes we obtain an estimation of
(x3Q)min of 3.44 (error of 15.4%). We have to consider at least 13 modes to have an
error below 5%.

The optimal volume current jopt is obtained applying (3.28). Interestingly, it is
localized on the sphere’s boundary

jopt(r, ϑ, φ) =
√

3
2π δ (r − 1) r̂× ẑ, (3.40)

75



3.2 Minimum Q factor of 3D radiators of the magnetic type

where δ is the Dirac delta function. Thus, it corresponds to a surface current
localized on the sphere’s surface, which is the same optimal current found for a
spherical shell. In conclusion, the minimum quality factor and the corresponding
optimal current are in agreement with the results achieved by Thal [107] for a
spherical inductor (see previous section). Therefore, in contrast with a plasmonic
homogeneous sphere which supports a mode with minimum Q for electric type
radiator, the first (fundamental) mode of homogeneous high-permittivity sphere
does not exhibit the minimum Q for magnetic-type radiators.

We then consider a high-conductivity prolate spheroidal shell with aspect ratio
4 : 1, with major axis aligned along ẑ. Also this shape does not support a mode
of the form ĉ × r̂. We preliminary compute the MQS resonances by solving the
eigenvalue problem (2.162). We only consider the set of MQS modes exhibiting non-
vanishing magnetic dipole moment along ẑ. In Fig. 3.4c, we show the surface current,
eigenvalue, and Q factor of the modes with the lowest Q factor. The minimum qual-
ity factor (x3Q)min of magnetic-type radiators supported by surface current density
fields confined on this shape is obtained using the parallel formula in Eq. 3.30, and is
(x3Q)min = 39. If the parallel is only limited to the three modes shown in Fig. 3.4c,
an error < 1% is achieved.

3.2.3 Shapes with no symmetries

We consider a shell with no reflection symmetries, defined as the surface of a tetris-
like block with three orthogonal arms of different lengths. We preliminary compute
its MQS resonances, selecting the modes with nonvanishing magnetic dipole moment.
We then calculate their magnetic dipole moment Mh, and Q factor by Eq. (3.31).
The surface mesh used for the calculation has 1885 nodes, and 3766 triangles. The
four modes with the lowest Q factor are shown in Fig. 3.4d to the right of the “ = ”
sign, with their Q factor (above), and eigenvalue (below). Aiming at determining the
minimum Q factor achievable by surface currents confined on this surface, and con-
sidering that there are no symmetries, we have to preliminary assembly the magnetic
polarizability tensor γm using Eq. (3.27) from the dipole moments Mh of the modes.
The maximum eigenvalue γm,max of γm is associated with the minimum Q factor by
Eq. (3.21). The optimal current is then obtained by using Eq. (3.28), and shown
on the left of the “ = ” sign in Fig. 3.4d. By only considering the first 3 modes, we
obtain an estimation of (x3Q)min of 13.2 with an error of 12%.
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3.3 Minimum Q factor of TI radiators of the electric type

3.3 Minimum Q factor of TI radiators of the elec-
tric type

In this section, we find the minimum quality factor of longitudinal current density
distributions supported by translational invariant radiators having electrically small
cross-section, i.e., x = ω

c0
`c < 1, being `c the radius of the minimm circle enclosing

the object cross-section (see Fig. 3.1b).
The expression of the Q factor is

Q = − 8
π

˛
∂Σ
σ(r)
˛
∂Σ
σ(r′) log |r− r′|dl′dl

˛
∂Σ
σ(r)
˛
∂Σ
σ(r′) |r− r′|2 dldl′

1
x2 , (3.41)

where the per unit length (p.u.l.) surface charge density σ = j · n̂, and n̂ lies in the
cross-sectional plane. Once the shape of the cross-section Σ is assigned, the functional
x2Q can be minimized, yielding the minimum Q factor. For electric type radiators,
the search space is constituted by the currents belonging to L2

‖(Σ).
The same line of reasoning used for 3D radiators leads to the expression of the

minimum Q factor: (
x2Q

)
min

= 8
γe,max

, (3.42)

where γe,max is the maximum among the eigenvalues of the 2×2 electric polarizability
tensor γe. We then expand the charge density p.u.l. in terms of the EQS current
modes solutions of the eigenvalue problem L2D

e {j
‖
h} = j‖h/χ

‖
h, being LTI

e the 2D elec-
trostatic operator (see 2.3), which constitute a complete basis for the funcitonal space
L2
‖(Σ). As a result, we arrive at the analytical expressions for γe, identical to Eq.

(3.14), and for the optimal current identical to Eq. (3.15).
If the shape of the object cross-section has a reflection symmetry, γe can be

immediately put in the form of diagonal matrix by choosing a coordinate system
(e1, e2), in which one of the two basis vectors is oriented along the symmetry axis. In
this case, the dipole moment of the EQS modes is also aligned along these directions,
and the minimum Q for the axis ei can be obtained through a parallel formula

1
(x2Q)min

=
∑

h
ei−aligned

1
x2
hQ
‖
h

, (3.43)

where Q‖h and xh are the Q factor and the resonant size parameter of the bright EQS
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mode j‖h, respectively (see Sec. 2.3.2), i.e.

x2
hQ
‖
h = 8

(−χ‖h)|Ph|2
. (3.44)

Then, the global minimum Q factor is taken among the Q for each axis.
In addition, due to the orthogonality of EQS modes, if there exists a current

mode spatially uniform along a given direction, this same mode is guaranteed to
be the only one with nonvanishing dipole moment along that direction. Thus, it
necessarily exhibits the minimum quality factor.

The algorithm that we propose to determine the minimum Q of a TI radiator of
the electric type is summarized in Fig. 3.2.

In the next three subsections, some examples are worked out, exemplifying the
introduced method for the calculation of the minimum Q and the optimal current for
TI radiators of the electric type. The EQS current modes and eigenvalue solution of
the problem (2.104) are found using the linear integral method outlined in Refs. [70,
83].

3.3.1 Shape supporting a uniform EQS mode

Let us consider a TI object of circular cross-section. It supports two degenerate EQS
bright modes, associated with the eigen-susceptibility χ‖ = −2. The linear charge
density of one of this modes is shown in Fig. 3.5a, and is associated with the spatially
uniform TE current mode j‖1 = ŷ/π, denoted in Sec. 2.3.5 and Sec. C.1 with j‖o1.

For the considerations made in the previous section, these current modes coincide
with the optimal currents supported by the TI radiator of the electric type, and their
Q factor is the minimum allowed Q supported by longitudinal currents constrained
within this shape:

x2Q
‖
min = 4

π
. (3.45)

To the author’s best knowledge, this lower bound for the Q factor of translational
invariant radiators of the electric type has not been reported before.

3.3.2 Shape with reflection symmetry

We now investigate a cylinder homo-dimer of radius R, with edge-edge gap δ. This
system has reflection symmetries, but does not support any uniform current mode.
The expression of the EQS modes is given in Eq. (C.6). In Sec. C.2 in Appendix C,
we derive the Q factor of the bright ones with electric dipole moment directed along
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Figure 3.5 – Minimum Q and corresponding optimal charge density distribution supported
by TI radiators of the electric. Optimal charge density supported by: (a) a cylinder of
circular cross-section: this shape has only one uniform bright mode which coincides with
the optimal charge density; (b) a geometry exhibiting two reflection symmetries, namely a
dimer of cylinders with radius R and edge-edge gap δ = R/10, and EQS modes with the
lowest Q factor.

the dimer axis, and we display here their expression:

x2
hQ
‖
h = 4 + δ/R

2πh δ/R
(
e2hµ − 1

)
, (3.46)

where µ = arccosh
(
1 + δ

2R

)
, being arccosh the inverse hyperbolic cosine.

In Fig. 3.5b, we show the linear charge density associated with the bright modes,
with their individual Q , for a cylinder dimer with δ/R = 0.1. The minimum Q factor
(x2Q)min achievable by longitudinal currents supported by this structure is obtained
by plugging the expression of the bright mode Q factor in Eq. (3.46) in the parallel
formula in Eq. 3.43. In this parallel, by only considering the first 5 modes (shown in
Fig. 3.5b), the relative error in the estimation of (x2Q)min is below 12%.
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3.4 Minimum Q factor of TI radiators of the magnetic type

3.4 Minimum Q factor of TI radiators of the mag-
netic type

Here we find the minimum Q factor of TI radiators of magnetic type, which support
transverse current density distributions j belonging to L2

⊥(Σ). The expression of the
Q factor is

Q = 8
π

ˆ
Σ

j(r) ·
ˆ

Σ
j(r′) log |r− r′|dSdS ′

ˆ
Σ

j(r) ·
ˆ

Σ
j(r′) |r− r′|2 dSdS ′

1
x2 . (3.47)

In this configuration, the magnetic polarizability tensor γm is a scalar, defined as the
map γmêH0 = M. Thus, the minimization of the Q factor functional in Eq. (3.47)
leads to: (

x2Q
)

min
= 4
γ
. (3.48)

We then expand the transverse current density j in terms of the MQS current
modes {j⊥h }h∈IN, solutions of the MQS eigenvalue problem LTI

m

{
j⊥h
}

= j⊥h /κ⊥h , being
LTI
m the 2D magnetostatic operator (see Sec. 2.3), which constitutes a complete basis

for L2
⊥(Σ). As a result, we arrive at the closed form expressions of the magnetic po-

larizability tensor γm, identical to Eq (3.27), and of the optimal current jopt identical
to Eq. (3.28).

In this case, the dipole moments Mh are always aligned along the structure axis
the minimum Q is obtained by the parallel formula

1
(x2Q)min

=
∞∑
h=1

1
x2
hQ
⊥
h

(3.49)

where Q⊥h and xh are the Q factor and the resonant size parameter of the MQS mode
j⊥h with nonvanishing magnetic dipole moment, respectively (see Sec. 2.3.4), i.e.

x2
hQ
⊥
h = 4

κ⊥h |Mh|2
. (3.50)

The algorithm that we propose to determine the minimum Q of a TI radiator of
the magnetic type is summarized in Fig. 3.2.

3.4.1 Shapes supporting a single MQS mode

We consider the shell of infinite cylinders with arbitrary cross-section. Since any
linear current density supported by these structures is constrained on a closed line,
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Figure 3.6 – Minimum Q factor and corresponding optimal current density distribution
supported by TI radiators of the magnetic type of assigned shape: (c) a cylinder shell
supporting only one uniform bright magnetoquasistatic mode of the form r̂×c, being r̂ the
radial direction and c a constant vector, which coincides with the optimal current density;
(d) a geometry exhibiting two reflection symmetries, namely a solid cylinder.

there exists one and only one MQS current mode with nonvanishing magnetic dipole
moment. This mode is also uniform, and hence exhibits the minimum Q factor
supported by the structure, whose expression is given in Eq. (3.50). In Fig. 3.6a we
consider the shell of an infinite cylinder of circular cross-section. This shape supports
a MQS mode with eigenvalue κ⊥ = 2 and magnetic dipole moment oriented along
the cylinder axis. The resonant linear current density is

j⊥(r, φ) = 1√
2π

ẑ× r̂, (3.51)

where r = (r, φ) are the in-plane cylindrical polar coordinates, and ẑ the cylinder
axis direction. This MQS mode exhibits the minimum quality factor, namely

(
x2Q

)
min

=
(
x2Q⊥

)
= 4
π
. (3.52)
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3.4 Minimum Q factor of TI radiators of the magnetic type

On the right of Fig. 3.6a we consider the shell of an infinite cylinder with an
L-shaped cross-section and no reflection symmetries. This shape supports a uniform
MQS current mode with eigenvalue κ⊥ = 4.7, and x2Q⊥ = (x2Q)min = 3.

3.4.2 Shape with reflection symmetry

We now examine a solid infinite cylinder with circular cross-section. The quasistatic
modes and eigenvalues of this shape are investigated in Sec. 2.3.5. Despite the high
symmetry, this shape does not support modes of the form r̂×c. The cylinder supports
transverse current modes with nonvanishing magnetic dipole moment

j⊥h (r, φ) = J1 (Z0,hr)√
π |J1 (Z0,h)|

ẑ× r̂, r ∈ [0, 1], h ∈ IN, (3.53)

shown in Fig. 3.6b to the right of the “ = ” sign. They are associated with the real
and positive eigenvalues κ⊥h

κ⊥h = Z2
0,h, (3.54)

where (r̂, ẑ) are the radial unit vector in the cross-section and the cylinder axis unit
vector, respectively, J1 is the Bessel function of the first kind with order 1, and Z0,h

is the h-th zero of the Bessel function of the first kind with order 0. In Sec. 2.3.5
and Sec. C.1, these MQS modes and eigenvalues are denoted with {jo0l}l∈IN and{
κ⊥TE

0l

}
l∈IN

, respectively.
Their magnetic dipole moment Mh has the expression

Mh = (−1)h+1 2
√
π

κ⊥h
ẑ, (3.55)

and, according to Eq. (2.152), their Q factor is given by x2
hQ
⊥
h =

Z2
0,h

π
.

The optimal current is obtained applying Eq. (3.28), and is a current loop local-
ized on the cylinder cross-section’s boundary, i.e.

jopt =
√
πδ(r − 1) ẑ× r̂, ∀r, (3.56)

where δ is the Dirac delta function. The optimal current jopt is shown in Fig. 3.6b.
The minimum Q factor (x2Q)min achievable by transverse currents confined to the

cylinder cross-section is obtained through Eq. (3.49), which consists in the parallel
of the quality factors of the infinite set of MQS modes exhibiting non-zero magnetic
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dipole moment along the cylinder axis ẑ:

(
x2Q

)
min

=
( ∞∑
h=1

1
x2
hQ
⊥
h

)−1

= 4
π
, (3.57)

where we used the identity ∑∞h=1 Z
−2
0,h = 1/4 [165].

In this parallel, by considering only the first 4 modes we obtain an estimation of
(x2Q)min of 4.42/π (relative error of 9.4%). Using the first 8 modes leads to an error
below 5%. The lower bound in Eq. (3.57), and its corresponding optimal current
coincide with those of the shell of an infinite cylinder with circular cross-section.

To the author’s best knowledge, the lower bound in Eq. (3.57) (or in Eq (3.52))
for the Q factor of translational invariant radiators of magnetic type has not been
reported before.

3.5 Conclusions

Optimization problems defined on small radiators often consist in the search of the
optimal current distribution which leads to the minimization of a chosen quantity. In
these problems, the choice of a convenient basis for the description of the tentative
optimal current density is a fundamental and unavoidable step. Upon this choice
depends not only the efficacy of the numerical computation of the optimal solution,
but also the attribution of meaningful physical insights to the results.

Since small electromagnetic radiators are considered, a convenient basis choice
may be constituted by the quasistatic scattering modes supported by that shape,
corresponding to source-free solution of the electrostatic and magnetoquasistatic lim-
its of the Maxwell’s equations. Specifically, electroquasistatic modes describe the
resonances of small objects with negative permittivity (e.g., as in metals at optical
frequencies). Magnetoquasistatic modes describe the resonances of small objects with
very high and positive real part of the permittivity.

We demonstrated that an expansion of the current density in terms of quasistatic
modes leads to analytical closed form expressions of the electric and magnetic po-
larizability tensors. Hence, the minimum Q and the corresponding optimal current
is determined from the knowledge of the eigenvalues and dipole moments associated
with the quasistatic scattering modes.

We found that when the radiator exhibits two orthogonal reflection symmetries,
its minimum quality factor can then be simply obtained from the Q factors of the
quasistatic modes associated with the radiator’s shape, through a simple parallel
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formula.
Moreover, when an electric radiator supports a spatially uniform electroquasistatic

resonance mode, this mode is guaranteed to have the minimum quality factor. Dually,
when a magnetic radiator supports a magnetoquasistatic mode of the form r̂×c where
c is a constant vector and r̂ is the radial direction, this mode exhibits the minimum
quality factor.

Eventually, we applied the proposed method to arbitrary shaped three-
dimensional, two-dimensional, and translational invariant radiators, of both electric
and magnetic type.

The introduced framework bridges a classic antenna problem with nano-antennas
resonances, and may be especially appealing to researchers and engineers working in
nano-optics, where a description in terms of modes is widely used.
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Chapter 4

Material-independent modes

The approaches proposed so far well describe the resonances in the electromagnetic
scattering from electrically small objects. However, they fail when the objects size is
comparable to the incident wavelength.

In this chapter, we introduce a full-wave spectral theory for the description of the
scattering from an arbitrary sized three-dimensional object. This technique is the
natural extension of the quasistatic theory derived in Chap. 2. It is based on the rep-
resentation of the scattered field in terms of eigenvalues and eigenfunctions (modes)
of a full-retarded integral operator, which only depend on the object morphology, and
are independent of the material of the object. For this reason they are denoted as
material-independent modes. This representation has the merit of separating the role
of the geometry of the object from the role played by its the material composition.

We apply this theory to investigate the modes and resonances a sphere, where most
of the results are analytical or semi-analytical. The analysis of the sphere eigenvalues
and modes allows a systematic classification of resonances and interference effects.
In particular, the resonances and resonances modes are divided into plasmonic and
dielectric modes, based on their long-wavelength behaviour. From the investigation
of the loci spanned by the eigenvalues in the complex plane as a function of the
sphere’s size parameter, we classify the modes in terms of their bandwidth, separating
them into narrow and broad modes, regardless of the excitation conditions. In this
framework, we are able to explain the differences in the power spectrum scattered by
dielectric and metal nanoparticles.

This paradigm has also been applied to the investigation of modes and resonances
of other shapes with analytical solution, such as a coated sphere in [76], and a sphere
dimer in [140], and shapes where the numerical approach is needed, such as a finite
cylinder in [78], or two-dimensional triangles and rectangles in [102].
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4.1 Full-wave modes and resonances

4.1 Full-wave modes and resonances

Let us consider a linear, isotropic, homogeneous material occupying a volume Ω,
which is bounded by a closed surface ∂Ω with outward-pointing normal n̂. The
medium is nonmagnetic, time-dispersive, with relative dielectric permittivity εR(ω),
electric susceptibility χ = εR − 1, and surrounded by vacuum. The object is excited
by a time-harmonic electromagnetic field incoming from infinity Re {Einc(r)e−iωt},
where ω is the angular frequency. Let E−sca and E+

sca be the scattered electric fields in
the interior of Ω and in IR3 \ Ω̄.

We have J = −iωε0χE, where E = E+
sca + Einc is the total electric field. Both the

vector fields E and J are div-free in Ω due to the homogeneity and isotropy of the
material. The current density J is governed by the full-wave volume integral equation
[146, 147, 148]:

J(r)
χ
− L{J} (r) = −iωε0 Einc(r), ∀r ∈ Ω, (4.1)

where the operator L{·} is

L{J} (r) = −∇
˛
∂Ω

J(r′) · n̂′ e
ix|r−r′|

4π|r− r′|
dS ′ + x2

ˆ
Ω

J(r′) eix|r−r′|

4π|r− r′|
dV ′, (4.2)

in which the spatial coordinates have been normalized by a characteristic linear length
`c of the domain Ω, i.e., r→ r/`c, and x = ω

c0
`c is the object size parameter.

The spectrum of the operator L is countable infinite. Moreover L is symmetric
[65]

〈J′,LJ′′〉Ω = 〈LJ′,J′′〉Ω (4.3)

where 〈A,B〉Ω =
ˆ

Ω
A ·B dV , but not self-adjoint.

A spectral basis for representing the unknown J is given by the solutions of the
auxiliary eigenvalue problem

L{wh} = 1
γh

wh. (4.4)

For any value of the size parameter x, its eigenvalues are complex, with Im {γh} < 0.
The eigenfunctions wh and wk corresponding to different γh and γk are not orthogonal
in the usual sense, i.e., 〈w∗h,wk〉Ω 6= 0: they are biorthogonal [64, 65]

〈wh,wk〉Ω = 0 for γh 6= γk. (4.5)

As anticipated in Chap. 2, in the quasistatic regime x → 0, the eigenvalue
problem in Eq. (4.4) splits in the electro-quasistatic (2.6) and magneto-quasistatic
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4.1 Full-wave modes and resonances

(2.13) eigenvalue problems. In particular,

• The eigenfunctions of L that in the limit x → 0 tend to the EQS modes are
indicated with uh, and the corresponding eigenvalues are indicated with 1/χh.
These eigenfunctions are called plasmonic modes.

• Dually, the set of eigenfunctions of L that in the limit x→ 0 tend to the MQS
modes are indicated with vh, and the corresponding eigenvalues are indicated
with x2/κh. Although in the limit x → 0, the eigen-susceptibilities κh/x2

diverge, the quantities κh remain constant. These eigenfunctions are called
dielectric modes.

The union of the two sets {uh} and {vh} is a basis for the unknown current density
field in Eq. (4.1). Its solution is expressed as

J = −iωε0χ
∞∑
h=1

[
χh

χh − χ
〈uh,Einc〉Ω
〈uh,uh〉Ω

uh + κh
κh − χx2

〈vh,Einc〉Ω
〈vh,vh〉Ω

vh
]

(4.6)

In the following, we denote these modes as material independent modes (MIMs), since
they do not depend on the permittivity or susceptibility of the object, but only on
its morphology.

We denote with Wh the electric field produced by the generic MIM wh. The fields
Wh are extended in IR3 by requiring that they satisfy the wave equation in IR3 \ Ω̄,
the boundary conditions on ∂Ω, i.e.

∇2W−
h + x2W−

h = 0 in IR3 \ Ω̄, (4.7a)
n̂×

(
W−

h −W+
h

)
= 0 on ∂Ω, (4.7b)

n̂×
(
∇×W−

h −∇×W+
h

)
= 0 on ∂Ω, (4.7c)

and the Silver-Müller conditions at infinity, namely

W−
h + 1

ix r̂×∇×W−
h = o

(1
r

)
,

W−
h = o

(1
r

)
, ∇×W−

h = o
(1
r

)
,

(4.8)

which constraint the scattered field Wh to be an outgoing wave.
By integrating the quantity ∇ · (Wh ×∇×W∗

h) over IR3 \ Ω̄, exploiting the
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4.1 Full-wave modes and resonances

divergence theorem and the properties of the eigenfunctions, we obtain

Re {γh} = 1
‖Wh‖2

Ω

[
‖∇ ×Wh‖2

IR3

x2 − ‖Wh‖2
IR3

]
, (4.9a)

Im {γh} = − 1
‖Wh‖2

Ω

˛
S∞

|Wr|2

x
dS, (4.9b)

where ‖A‖2
V = 〈A∗,A〉V and S∞ is a far zone surface enclosing the object. Eq.

(4.9a) suggests that Re {γh} does not have a definite sign, while Eq. (4.9b) implies
that Im {γh} is non-positive. Specifically, Im {γh} is proportional to the contribution
of the corresponding mode to the power radiated toward infinity, accounting for its
radiating losses. This is in line with the expression of the quasi-static modes Q factor
of an electrically small object, given in Eqs. (2.61) and (2.88), in which the imaginary
part of the eigen-susceptibilities appears at the denominator.

In the limit of size parameter x tending to infinity, Eq. (4.7a) suggests that
W−

h → 0 in IR3 \ Ω̄, therefore from Eqs. (4.9), we have

lim
x→∞

γh = −1, ∀h ∈ IN. (4.10)

Accordingly, we have the following limits for the plasmonic and dielectric eigen-
susceptibilities:

lim
x→∞

χh = −1, lim
x→∞

κh = −∞, ∀h ∈ IN. (4.11)

Since all the quantities {κh}h∈IN related to the dielectric eigen-susceptibilities diverge
for x → ∞, from now on we switch from the eigen-susceptibilities {γh}h∈IN to the
eigen-permittivities {ξh}h∈IN, such that

ξh = γh + 1, ∀h ∈ IN. (4.12)

We denote with εh the eigen-permittivity corresponding to the plasmonic eigen-
susceptibility χh, and with ηh/x

2 the eigen-permittivity corresponding to the di-
electric eigen-susceptibility κh/x2, i.e.

εh = χh + 1, ηh = κh + x2, ∀h ∈ IN. (4.13)

By doing so, the quantity ηh tends to the MQS eigenvalue κ⊥h in the limit of x tending
to 0, i.e.

lim
x→0

ηh = κ⊥h , (4.14)
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4.1 Full-wave modes and resonances

while, for finite κ⊥h (they accumulate at infinity, see Sec. 2.1.2) it remains finite in the
limit of x tending to infinity. Specifically, by using Eqs. (4.9) in the limit x → ∞,
we find that

lim
x→∞

ηh = lim
x→∞

‖∇ ×Wh‖2
Ω

‖Wh‖2
Ω

< +∞ ∀h ∈ IN. (4.15)

Within this slightly different framework, from Eq. (4.6), the scattered electric
field in IR3 can be expressed as

Esca = (εR − 1)
∞∑
h=1

[
1

εh − εR
〈uh,Einc〉Ω
〈uh,uh〉Ω

Uh + 1
ηh/x2 − εR

〈vh,Einc〉Ω
〈vh,vh〉Ω

Vh

]
, (4.16)

where Uh and Vh are the extension of the modes uh and vh in IR3, respectively.
The expansions in Eqs. (4.6) and (4.16) in terms of MIMs lead to a natural

disjunction of the contribution of the material from the one of the geometry: the
object permittivity appears only as rational functions in the expansion coefficients,
while the object morphology is buried in the material independent eigenvalues and
eigenfunctions. The terms 〈uh,Einc〉Ω and 〈vh,Einc〉Ω account for the coupling of the
external excitation with the modes uh and vh, respectively.

The simple functional dependence of Esca on εR makes the MIM expansion par-
ticularly suitable for the design of a scatterer permittivity to achieve a prescribed
tailoring of the scattered field, such as backscattering cancellation, maximization of
the scattered field in a given point of space, or multipolar order suppression [65, 76,
141, 80].

4.1.1 Resonance condition. Broad and narrow resonances

Furthermore, the MIM expansion (4.16) effectively predicts the resonant behavior
of 3D objects, as their shape, size, and permittivity vary. Since Im {ξh} ≤ 0, the
quantity (ξh − εR) does not vanish in passive materials (where Im {εR} > 0) as ω or
x varies. Nevertheless, for fixed geometry and material of the object, the amplitude
of the generic mode wh reaches its maximum in a neighbourhood of the frequency
ωh such that

min
ω

∣∣∣∣∣ξh(ω)− εR(ω)
εR(ω)− 1

∣∣∣∣∣ = ρ{wh} (4.17)

This is the resonant condition for the mode wh: ωh is its resonant frequency, xh = ωh
c0
`c

is its resonant size parameter, and ρ{wh} is the corresponding residuum. They do not
depend on the incident field.1 The width of the corresponding resonance is related to

1The coupling coefficient 〈wh,Einc〉Ω also depends on ω or x, but it varies very slowly if compared
with 1/(ξh − εR).
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4.1 Full-wave modes and resonances

the value of the residuum: a larger residuum is associated with a broader resonance.
We denote a given mode wh as narrow if its residuum ρ{wh} is much smaller than
1, and as broad otherwise. Thus, we set a threshold equal to 0.2, beyond which the
mode is considered broad, i.e.

ρ{wh} < 0.2 → narrow mode,
ρ{wh} ≥ 0.2 → broad mode.

(4.18)

It is particularly useful to analyze the modes resonance condition in a material
picture, where the object geometry and the operating frequency are fixed, and the
role of the spectral parameter is played by the permittivity. In this framework, the
size parameter x is fixed, and the mode wh undergoes a boost in the neighbourhood
of the optimal permittivity εRh such that

min
εR

∣∣∣∣∣ξh(x)− εR
εR − 1

∣∣∣∣∣ = ρ̄{wh}(x). (4.19)

The material picture allows us to characterize a mode resonance independently of the
object permittivity. Specifically, for any size parameter x, the residuum ρ̄{wh}(x)
from Eq. (4.19) is the lower bound of the residua ρ{wh} at the resonant size parameter
x, found by applying Eq. (4.17). In other words, if a mode wh is resonantly excited
in an object of permittivity εR, at the resonant size parameter xh, and with residuum
ρ{wh}, we will always have

ρ̄{wh}(xh) ≤ ρ{wh}. (4.20)

By solving Eq. (4.19), we find the optimal permittivity εRh(x)

εRh(x) = 1 + |ξh(x)− 1|2
Re {ξh(x)} − 1 , (4.21)

which is real valued, and the residua lower bound ρ̄{wh}(x)

ρ̄{wh}(x) = −Im {ξh(x)}
|ξh(x)− 1| , (4.22)

such that 0 ≤ ρ̄{wh}(x) ≤ 1, ∀x.
An immediate outcome of this method is that, at a specific size parameter x, according
to the definition of narrow modes in Eq. (4.18), if ρ̄{wh}(x) ≥ 0.2 then the mode wh

can only generate a broad resonance, independently of the object material.
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The real part of the eigen-permittivities ξh can be either negative or positive. If
negative, the condition (4.21) can be satisfied (or approached) by metals in the visible
spectral range (Re {εR} < 0), causing a plasmon resonance, hence the label “plasmon
modes”. If positive, the condition (4.21) is verified by dielectrics (Re {εR} > 0),
causing a dielectric resonance, hence the label “dielectric modes”. Furthermore, the
eigen-permittivities ξh only depend on the size parameter x, therefore they can be
exhaustively described by the loci they span in the complex plane as a function of
x. The resulting diagrams, as well as the residua lower bounds, are universal, being
applicable to every possible homogeneous object of given geometry, and constitute
an invaluable tool to investigate its resonances.

4.2 Material-independent modes of a sphere

From now on, we assume that the region Ω is a sphere of radius R, which is chosen
as the characteristic length `c = R of the object. Accordingly, the size parameter x
is x = ω

c0
R.

x

y

z

R

Ω+

θ

φ

Ω−

r

Figure 4.1 – Spherical polar coordinate system r = (r, ϑ, φ) centered on a sphere of radius
R.

The MIMs of a sphere can be expressed analytically in terms of the vector spherical
wave functions (VSWF) [65], using a spherical polar coordinate system r = (r, ϑ, φ)
(Fig. 4.1). We indicate the plasmonic modes with uTM

pmn, which generate a magnetic
field with vanishing radial component, so they are called transverse magnetic (TM)
modes, tending to the TM EQS current modes j‖pmn for x→ 0. The dielectric modes
are given by the union of two sets {vTM

pmnl,vTE
pmnl}: the current modes vTM

pmnl of the
first set tend to the TM MQS modes j⊥TM

pmnl for x→ 0; the current modes vTE
pmnl of the

second set, and their corresponding electric field, have no radial component, so they
are called transverse electric (TE) modes, and tend to the TE A⊥-modes j⊥TE

pmnl for
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4.2 Material-independent modes of a sphere

x→ 0, which generate a magnetic vector potential with vanishing normal component
to the object’s boundary (see Sec. 2.1.2). Following Mie [166, 87], we also indicate the
TM modes with electric type modes,2 and the TE modes with magnetic type modes.
The subscript p distinguishes between even (e) and odd (o) modes with respect to
the azimuthal variable. The indices n ∈ IN and 0 ≤ m ≤ n characterize the angular
dependence of the modes: m is the number of oscillations along the azimuth and n is
the multipolar order. The mode number l ∈ IN is related to the number of maxima of
the mode amplitude along the radial direction inside the sphere. Due to the spherical
symmetry, the plasmonic eigen-permittivities depend only on the n index, while the
dielectric eigen-permittivities depend on the indices {n, l}.

The expression of the sphere plasmonic and dielectric MIMs is

uTM
pmn(r) = N(1)

pmn

(√
εTM
n xr

)
, (4.23)

vTM
pmnl(r) = N(1)

pmn

(√
ηTM
nl r

)
, (4.24)

vTE
pmnl(r) = M(1)

pmn

(√
ηTE
nl r

)
, ∀r ∈ Ω (4.25)

where {εTM
n }n∈IN are the plasmonic eigen-permittivities, {ηTM

nl/x
2, ηTE

nl/x
2}(n,l)∈IN2 are the

dielectric TM and TE eigen-permittivities, N(1)
pmn and M(1)

pmn are the VSWFs regular
at the center of the sphere, whose expression is given in Eq. (B.17) in Appendix B.
The MIMs are extended in IR3 by requiring that they satisfy the wave equation in
IR3 \ Ω̄ and the boundary conditions on ∂Ω (4.7), and the Silver-Müller conditions at
infinity (4.8). We denote the extension of the modes uTM

pmn, vTM
pmnl, vTE

pmnl in IR3 with
UTM
pmn, VTM

pmnl, VTE
pmnl, respectively, and their expression is:

UTM
pmn(r) =

 uTM
pmn(r) r ∈ Ω
τ TM
n N(3)

pmn(xr) r ∈ IR3 \ Ω̄
, (4.26)

VTM
pmn(r) =

 vTM
pmn(r) r ∈ Ω
σTM
nlN(3)

pmn(xr) r ∈ IR3 \ Ω̄
, (4.27)

VTE
pmn(r) =

 vTE
pmn(r) r ∈ Ω
σTE
nlM(3)

pmn(xr) r ∈ IR3 \ Ω̄
, (4.28)

where the superscript (3), appended to the VSWFs, denotes that the radial depen-
2Here, the label “electric type” has a different meaning than the one used in Chap. 3, in which

it is used for electrically small radiators that support longitudinal current modes, which in this
framework would only contain the TM plasmonic modes uTM

pmn for x→ 0, and not the TM dielectric
modes vTM

pmnl, supported by radiators of the magnetic type for x→ 0.
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4.2 Material-independent modes of a sphere

dence is given by the Hankel function of the first kind h(1)
n (·), and

τ TM
n =

√
εTM
n jn(

√
εTM
n x)

h
(1)
n (x)

,

σTM
nl =

√
ηTM
nl jn(

√
ηTM
nl )

xh
(1)
n (x)

,

σTE
nl =

jn(
√
ηTE
nl )

h
(1)
n (x)

.

(4.29)

The modes with n = 1 are dipolar modes, those with n = 2 are quadrupolar
modes, and so on. We indicate the plasmonic modes uTM

pmn and the TE dielectric
modes vTE

pmnl

∣∣∣
l=1

also as fundamental electric and magnetic type modes, respectively.
Consistently, we denote the TM dielectric modes vTM

pmnl and the TE dielectric modes
vTE
pmnl

∣∣∣
l>1

as higher-order electric and magnetic type modes, respectively.
The biorthogonality condition in Eq. (4.5) particularizes in

〈uTM
pmn,vνp′m′n′l′〉Ω = 0, ∀ (p, m, n, p′, m′, n′, ν) ,

〈vνpmnl,vν
′

p′m′n′l′〉Ω = 0, ∀ (ν, p, m, n, l) 6= (ν ′, p′, m′, n′, l′) ,
(4.30)

where ν, ν ′ ∈ {TM, TE}. Moreover, due to the spherical symmetry, we also have that
a subset of the modes is orthogonal in the usual sense, namely

〈
(
uTM
pmn

)∗
,vTE

p′m′n′l′〉Ω = 0, ∀ (p, m, n, p′, m′, n′) ,

〈
(
uTM
pmn

)∗
,vTM

p′m′n′l′〉Ω = 0, ∀ (p, m, n) 6= (p′, m′, n′) ,

〈
(
vνpmnl

)∗
,vν′

p′m′n′l′〉Ω = 0, ∀ (ν, p, m, n) 6= (ν ′, p′, m′, n′) .

(4.31)

All the electric modes (TM) are orthogonal to the magnetic modes (TE), while, for
instance, two dielectric modes sharing the values of the indices ν, p, m, n are not,
even if they have different values of l. On the contrary, any two modes differing in at
least one of the indices ν, p, m, n are orthogonal.

The sphere MIMs for x → 0 are plotted in Fig. 2.2. Since they are weakly
sensitive to changes of the size parameter x,3 and since we will make extensive use
of them in the following, we introduce a stylized version of them in Fig. 4.2. The
TM mode uTM

e11 shown in the top-left corner of Fig. 2.2 exhibits an electric dipole
character. The TM mode vTM

e111 has an electric “toroidal" dipole character [167],
3In [140], we plot the MIMs of a sphere of radius R = λ/4, and size parameter x = π/2, and

they appear almost identical to their quasi-static version.
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4.2 Material-independent modes of a sphere
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Figure 4.2 – Stylized version of the TM and TE modes of a sphere.

localized in an inner sphere region than the mode uTM
e11, and it is characterized by

two oscillations along the (vertical) radial direction. Increasing the index l, while
keeping fixed the order n = 1, we observe one more oscillation of the mode along the
radial direction for l = 2. Furthermore, as l increases, the region where the field is
localized is increasingly squeezed in proximity of the sphere center. For these reasons,
the stylized representation of uTM

e11 is a single arrow, representing the electric dipole,
enclosed by one circle, while the stylized version of vTM

e11l is a single arrow enclosed
by l + 1 circles, and squeezed as l increases. The mode uTM

e12 shows a quadrupolar
character with two sources and two sinks of the field lines, whereas the mode uTM

e13

is of octupolar type with three sources and three sinks, and so on. In all cases, the
higher-order modes vTM

e12l, vTM
e13l, vTM

e14l exhibit a number of oscillations growing with l,
and a region of maximum intensity increasingly squeezed in proximity of the sphere
center. The stylized representations of uTM

e1n and vTM
e1nl visually highlight both the

number of sources-sinks, and the number of oscillations along the radial direction.
The mode vTE

o111 has a magnetic dipole character: it exhibits one vortex, associated to
a magnetic dipole moment directed orthogonally to the vortex plane. By increasing l,
we note that one (l = 2) or two (l = 3) additional contra-rotating vortices arise. For

94



4.3 Resonance properties of a sphere

this reason, the stylized representation of the mode vTE
o11l is a current loop, enclosed

by l concentric circles. By increasing n to 2, the mode vTE
o121 shows two identical

vortices with antiparallel magnetic dipole moments. Also in this case, by increasing
l, additional vortices appear. The number of oscillations of the mode along the radial
(vertical) direction is l. The field lines of the magnetic octupole (n = 3, l = 1) and
the magnetic hexadecapole (n = 4, l = 1) form three and four identical vortices,
respectively. As we increase l, the number of oscillations of the mode along the radial
(vertical) direction increases. The stylized representations of the TE modes highlight
the number of vortices of the mode, and the number of oscillations along the radial
direction.

The eigen-permittivities εTM
n and the quantities ηTM

nl , η
TE
nl are obtained by zeroing the

denominator of the Mie scattering coefficients [87] (see Eq. (B.11)), or are equivalently
found as the roots of two power series [65], given in Eq. (B.12) of Appendix B.

4.3 Resonance properties of a sphere

We now investigate the behavior of the sphere plasmonic and dielectric eigen-
permittivities by varying the size parameter x, deriving general properties of the
electromagnetic scattering from the object.

4.3.1 Loci of the plasmonic modes

In Fig. 4.3 we show the loci spanned by the eigen-permittivities εTM
n , for n = 1, 2, 3, 4,

associated to the plasmonic electric dipole, quadrupole, octupole, and hexadecapole
modes, respectively. As shown in Sec. 2.2.5, the loci start at the electrostatic values
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Figure 4.3 – Loci spanned in the complex plane by the plasmonic eigen-permittivities
εTM
n of a homogeneous sphere by varying x ∈ [0,∞). We show the loci associated to the
fundamental electric dipole (n = 1), quadrupole (n = 2), octupole (n = 3), hexadecapole
(n = 4).
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4.3 Resonance properties of a sphere

lim
x→0

εTM
n = −n+ 1

n
. (4.32)

In particular, the eigen-permittivity εTM
1 , associated to the plasmonic dipole mode,

approach −2 for x→ 0. According to the resonance condition for quasistatic modes
in Eq. (2.58), or full-wave modes in Eqs. (4.19) and (4.21), the resonant permittivity
is also εR = −2, in agreement with the Fröhlich condition [2]. Therefore for finite
values of x, the condition (4.19) or (4.17) applied to the fundamental dipole represents
the natural extension of the Fröhlich condition to the full retarded case. By increasing
x, both the real and the imaginary part of εTM

1 and all the other plasmonic eigenvalues
εTM
n move toward more negative values. The decrease in the real part implies, for
low losses Drude metals, a red shift of the corresponding resonant frequency [1], as
shown in Sec. 2.2.2 with Eq. (2.60). When x ≈ 0.72, the quantity Re {εTM

1 } reaches
a minimum, and then starts increasing. For larger x, εTM

1 lies in the fourth quadrant
of the complex plane. Then, Re {εTM

1 } increases until x ≈ 2 when it reaches the
maximum value of 0.48, and eventually εTM

1 asymptotically approaches the origin of
the complex plane.

The eigen-permittivities εTM
2 , ε

TM
3 , ε

TM
4 have a similar dynamic, with two main dif-

ferences: as n increases, they trace a progressively wider trajectory, i.e., they reach
increasingly negative imaginary part and large magnitude of the real part (see Fig.
B.1, in which we show the loci of εTM

n for n up to n = 25); as n increases, the loci
are swept with decreasing speed by the parameter x. This can be easily visualized in
Fig. 4.3 by following the position of an eigen-permittivity for a fixed x as the order
n varies: the eigen-permittivity at x = π, for instance, distinctly moves toward the
beginning of the locus as n grows.

On the left of Fig. 4.4 we plot the lower bounds ρ̄{uTM
pmn} for the residua associated

with the resonances of the plasmonic modes under exam as a function of x, calculated
by particularizing Eq. (4.22) to the plasmonic eigen-permittivities, namely

ρ̄{uTM
pmn}(x) = −Im {εTM

n (x)}
|εTM
n (x)− 1| . (4.33)

For the considerations made in Sec. 4.1, the residua lower bounds of a mode separate
the size parameter axis into two intervals, viz. the size parameters at which the
mode is intrinsically broad, and the size parameters at which the mode can generate
a narrow resonance. The extremes x′n, x′′n of the broad-resonances interval of a mode
are found by solving the equation ρ̄{uTM

pmn} = 0.2. In the table on the right of Fig. 4.4,
we list these extremes for the considered plasmonic modes. It tells us, for instance,
that a narrow resonance of the dipole mode for 0.63 ≤ x ≤ 5, or equivalently for a
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n x′n ( ) x′′n ( )

1 0.63 5.00
2 1.40 6.96
3 2.22 8.88
4 3.06 10.69

ρ̄(x′n) = ρ̄(x′′n) = 0.2

Figure 4.4 – Residua lower bounds of the plasmonic modes uTM
pmn for n = 1, 2, 3, 4, as a

function of the size parameter x, calculated by using Eq. (4.33). On the right, the values
x′, x′′ at which the residua lower bounds reach the value 0.2.

sphere with radius R such that 0.1λ ≤ R ≤ 0.8λ, is inherently forbidden.
As a consequence of the decreasing speed of parametrization in the eigen-

permittivity loci with the multipolar order n, the corresponding residua curves, and
therefore the broad-resonances interval, shift toward larger x. Moreover, due to the
widening of the loci, the interval length grows with n: for instance, the interval for the
quadrupole mode starts at x′2 = 1.4, and has length 5.56, while for the octupole mode,
it starts at x′3 = 2.22, and has lenght 7.63. Furthermore, all loci spanned by the eigen-
permittivities under exam are confined in a limited region of the complex plane, in
particular −3 ≤ Re {εTM

1 } ≤ 0.48, −2.94 ≤ Re {εTM
2 } ≤ 0.71, −3.16 ≤ Re {εTM

3 } ≤ 1.02,
−3.43 ≤ Re {εTM

4 } ≤ 1.4, respectively. Consequently, as we will see in Sec. 4.6 these
modes are broad in spheres with moderately positive permittivity, e.g., silicon (Si,
εR ≈ 16 [168]), since their residua ρ{uTM

n }, defined in Eq. (4.17), exceed 1. On the
contrary, for size parameters x at which the modes are not inherently broad, they
may be narrow for metal spheres in the visible spectral range, whose permittivity lies
in the second quadrant of the complex plane.

4.3.2 Loci of the dielectric modes

In Fig. 4.5 we show the loci spanned by the quantities ηTM
nl and ηTE

nl , which give the
dielectric TM and TE eigen-permittivities if normalized by x2. We display the loci
associated to the higher order electric dipole modes (n = 1), for l = 1, 2, and to the
fundamental (l = 1) and higher order (l = 2) magnetic dipole (n = 1) and quadrupole
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Figure 4.5 – Loci spanned in the complex plane by the sphere’s ηTM
nl (a) and ηTE

nl (b)
quantities, which, normalized by the squared size parameter x2, give the dielectric TM and
TE eigen-permittivities, respectively, by varying x ∈ [0.∞). We plot ηTM

nl of the higher order
electric dipole modes (n = 1), for l = 1, 2, and ηTE

nl of the fundamental (l = 1) and higher
order (l = 2) magnetic dipole (n = 1) and quadrupole (n = 2) modes.

(n = 2) modes. The loci start at the values

lim
x→0

ηTM
nl = κ⊥TM

nl = (znl)2 lim
x→0

ηTE
nl = κ⊥TE

nl = (zn−1 l)2, (4.34)

where znl is the l-th zero of the spherical Bessel function jn, and end at the values

lim
x→∞

ηTM
nl = gnl, (4.35)

lim
x→∞

ηTE
nl = κ⊥TE

n+1 l = κ⊥TM
nl , (4.36)

where gnl is the l-th zero of the derivative of the Riccati-Bessel function ψn(y) =
y jn(y), i.e., ψ′n(gnl) = 0. Interestingly, for a fixed mode index l, the end of a locus
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4.3 Resonance properties of a sphere

for ηTE
nl at a multipolar order n, coincides with both the beginnings of the locus for

ηTE
n+1,l at the next multipolar order n+ 1 and the locus for ηTM

nl at the same multipolar
order n.
As discussed in Sec. 2.1.2, in the long-wavelength limit (x � 1), the eigen-
permittivities associated to these modes diverge, and therefore they cannot be prac-
tically excited in electrically small metal particles, but only in spheres with positive
and high permittivity.

As for the plasmonic eigen-permittivities, by increasing x, both the real and imag-
inary parts of ηTM

nl and ηTE
nl move toward more negative values. Moreover, from Eq.

(2.87), the decrease in the real part lead to a red shift in the corresponding resonant
frequency in high permittivity materials.
After reaching the minimum, both their real and imaginary parts start increasing
until they asymptotically reach their maximum, which for the former is given in Eq.
(4.35) while for the latter is 0. Thus, every locus covers a bounded region of the
fourth quadrant of the complex plane. Furthermore, the normalized dielectric TM
ηTM
nl and TE ηTE

nl eigen-permittivities share two properties with the plasmonic eigen-
permittivities, viz. by increasing the multipolar order n and keeping fixed l (and
vice versa), their loci have a progressively wider dynamics, and they are swept with
growing speed by the parameter x.

At the top of Fig. 4.6, we plot the lower bounds ρ̄{vTM
pmnl} and ρ̄{vTE

pmnl}, for
the residua associated with the resonances of the considered dielectric modes, as a
function of x, calculated by applying Eq. (4.22), namely

ρ̄{vνpmnl}(x) = − Im {ηνnl(x)}
|ηνnl(x)− x2|

, (4.37)

where ν ∈ TM,TE.
As for the plasmonic residua lower bounds, we calculate the extremes x′nl, x′′nl of the
size parameter intervals in which the modes are inherently broad, and we list them in
the table at the bottom of Fig. 4.6. We notice, for instance, that a narrow resonance
of the fundamental magnetic dipole mode vTE

pm11 for 1.14 ≤ x ≤ 6.95, or equivalently
for a sphere with radius R such that 0.18λ ≤ R ≤ 1.12λ, is inherently forbidden.

Due to the decreasing speed of parametrization in the dielectric loci with either
the multipolar order n or the index l, the corresponding residua curves, and hence the
intervals in which the modes are intrinsically broad, shift toward larger x. Moreover,
the widening of the loci with the indices n and l produces an increase in the intervals’
length: for instance, the interval for the second order (l = 1) electric dipole mode
(vTM

pm11) starts at x′11 = 1.25, and has length 7.83, while for the third (l = 2) order
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2 2.01 10.79 4.74 14.51
3 2.90 12.44 5.45 16.11
4 3.85 14.04 5.95 17.70

l = 1 l = 2

n x′nl ( ) x′′nl ( ) x′nl ( ) x′′nl ( )

1 1.14 6.95 2.97 10.91
2 2.11 8.58 4.09 12.53
3 3.09 10.08 5.21 14.07
4 4.06 11.50 6.33 15.54
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Figure 4.6 – Residua lower bounds of the dielectric TM modes vTM
pmnl, for l = 1 (a) and

l = 2 (b), and TE modes vTE
pmnl, for l = 1 (c) and l = 2 (d), all for n = 1, 2, 3, 4, as a

function of the size parameter x, calculated by using Eq. (4.33). Below, the values x′, x′′
at which the residua lower bounds reach the value 0.2.

electric dipole mode (vTM
pm12), it starts at x′12 = 3.88, and has length 8.95.

As we will see in Sec. 4.5, these modes are broad in spheres with permittivity of
negative real part, e.g., silver (Ag) or gold (Au) [169], since their residua, defined in
Eq. (4.17), are greater than 1. Conversely, for size parameters x at which the modes
are not intrinsically broad, they may be narrowly excited in spheres with permittivity
of positive real part, e.g., Si.
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4.4 Scattering efficiency

Let us now consider the scattering of an x-polarized plane wave propagating along z,
i.e., Einc = E0e

ixzx̂, by a sphere. By applying Eq. (4.16), we find the expression of
the scattered electric field inside the sphere, in terms of its MIMs [65, 48]:

E+
sca(r) = (εR − 1)

∞∑
n=1

En

{
ATM
n uTM

e1n(r) +
∞∑
l=1

[
BTM
nlvTM

1enl(r) +BTE
nlvTE

1enl(r)
]}
, ∀r ∈ Ω

(4.38)
where En = in

√
2(2n+1)

n(n+1) , and the scattering coefficients ATM
n , B

TM
nl , B

TE
nl are given in Eqs.

(B.18-B.20) of Appendix B. Due to the symmetry of Einc, only even electric modes
and odd magnetic modes with m = 1 are excited.
The field outside the sphere is readily obtained by extending the MIMs in IR3, using
Eqs. (4.26-4.28):

E−sca(r) = (εR − 1)
∞∑
n=1

En

[(
aTM
n +

∞∑
l=1

bTM
nl

)
N(3)
e1n(xr) +

( ∞∑
l=1

bTE
nl

)
M(3)

o1n(xr)
]
,

∀r ∈ IR3 \ Ω̄. (4.39)

where the external scattering coefficients aTM
n = τ TM

n A
TM
n , bTM

nl = σTM
nlB

TM
n , bTE

nl = σTE
nlB

TE
n ,

with τ TM
n , σ

TM
nl , σ

TE
nl given in Eqs. (4.29).

The scattering cross-section for an arbitrary shaped object occupying a domain Ω
of characteristic length `c, and size parameter x = ω

c0`c, can be defined as [87, 170]:

Csca = `2
c

|E0|2x

˛
Sc

r̂ · Im
{

(∇× E−sca)∗ × E−sca

}
dS, (4.40)

where Sc is an auxiliary surface enclosing Ω. We also define the scattering efficiency
σsca as [87, 170]

σsca = Csca

G
, (4.41)

where G is the particle cross-sectional area projected onto a plane perpendicular to
the incident beam (e.g., G = πR2 for a sphere of radius R). By combining Eqs.
(4.39), (4.40), and (4.41), assuming the auxiliary surface Sc to be a spherical surface
concentric with Ω, and exploiting the orthogonality of the VSWFs, we finally get for
a sphere:

σsca = |εR − 1|
x2

∞∑
n=1

∣∣∣∣∣aTM
n +

∞∑
l=1

bTM
nl

∣∣∣∣∣
2

+
∣∣∣∣∣
∞∑
l=1

bTE
nl

∣∣∣∣∣
2
 . (4.42)

The expression of the scattering efficiency σsca in Eq. (4.42) shows that two electric
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(magnetic) modes sharing the multipolar order n, may interfere: for instance, a plas-
monic mode uTM

e1n of index n may interfere with any TM dielectric mode vTM
e1nl, ∀l ∈ IN.

On the contrary, any two modes differing in the multipolar order n, or any electric
and magnetic modes, cannot interfere.
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Figure 4.7 – Scattering efficiencies σsca of a dielectric sphere with size parameter x = π
(a) and x = 2π (b) excited by a linearly polarized plane wave, as a function of εR ∈
[−4, 6], calculated by applying Eq. (4.42) (solid lines), and by using the standard Mie
theory (dashed line) [87]. In the calculations, we have truncated the external summation
to nmax = 11, and the internal summation to lmax shown in the panels’ legend.

We define the partial scattering efficiency of a mode as the σsca that we would
have if that only mode was excited, which is calculated using Eq. (4.42) by only
considering the corresponding term in the summation: for instance, the partial σsca

of the fundamental magnetic dipole mode vTM
o111 is given by σsca = |(εR − 1)bTE

11|
2 /x2.

It is important to note that the total σsca is not the sum of the partial scattering
efficiencies because the involved modes may interfere. Nevertheless, as we will see
in the following, the partial scattering efficiencies enable us to identify the modes
responsible for each peak of the total σsca.

In Fig. 4.7 we compare the scattering efficiency σsca of a sphere with x = π

(panel a) and x = 2π (panel b), calculated by using Eq. (4.42), with the standard
Mie theory [87]. We truncate the outer sum running over the multipolar orders n to
nmax = 11, and vary the index lmax at which the inner sums are truncated. In the
case x = π, we truncate the inner sums to lmax = 1 (red line), having agreement with
the Mie theory only for small values of εR, and to lmax = 3 (green line), for which
the two results overlap almost perfectly. If we increase the size parameter to x = 2π,
more modes are needed to reach convergence. Specifically, the MIMs expansion and
the Mie theory give almost indistinguishable results for lmax = 6.
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4.5 Resonances and interferences in Ag spheres

4.5 Resonances and interferences in Ag spheres

Here we investigate the scattering efficiency σsca of a silver sphere as a function of x,
under linearly polarized plane wave excitation.
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Figure 4.8 – Scattering efficiency σsca of an Ag sphere of radius R = 67.5 nm, as a function
of x. The partial scattering efficiencies (in color) of the two dominant modes uTM

e11, uTM
e12,

the position of their resonant size parameters (dashed lines), and their stylized version (on
the right), are also shown.

n xn εTM
n (xn) ωn

[Prad/s] εR(xn) ρ ρ̄(xn) #peak xpeak

1 0.86 -2.71 -2.28i 3.84 -7.39 + 0.25i 0.63 0.52 (1) 0.93
2 1.11 -2.20 -0.19i 4.94 -2.26 + 0.23i 0.13 0.06 (2) 1.11

Table 4.1 – Resonant size parameter xn, eigen-permittivity εTM
n (xn), Ag permittivity

εR(xn), residuum ρ and residua lower bound ρ̄ of the plasmonic sphere modes which domi-
nate the scattering efficiency σsca of Fig. 4.8. The position of the peaks of the total σsca is
also shown.

In Fig. 4.8, we plot σsca for a sphere of radius R = 67.5 nm, with permittivity
εR modeled by using experimental data [171]. We also show in color the partial
scattering efficiencies of the two dominant plasmonic modes, viz. the fundamental
electric dipole uTM

e11 (red line) and quadrupole uTM
112 (blue line) modes. Moreover, we

list in Table 4.1 their resonant size parameters, calculated by using Eq. (4.17), the
corresponding plasmonic eigen-permittivities, and the resonant frequencies, obtained
from the size parameter definition x = ω

c0
R. It is worth noting that these values do not

depend on the excitation. The search interval for the resonance condition is the range
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4.5 Resonances and interferences in Ag spheres

mode xnl ηnl/x
2
nl

ωnl
[Prad/s] ρ

vTM
e111 0.21 439.90 -0.02i 0.95 3.27

vTM
e121 0.21 726.16 -0.00i 0.95 4.75

vTE
o111 1.41 4.39 -1.14i 6.27 1.63

vTE
o121 0.21 441.32 -0.00i 0.95 3.28

Table 4.2 – Resonant size parameter, eigen-permittivity, and residuum ρ of the dielectric
vTM
e111, vTM

e111, vTE
o111, vTE

o111 sphere modes, for an Ag sphere.

x ∈ [0.21, 1.41], imposed by the available experimental data of the Ag permittivity
in the frequency interval [0.95, 6.26]Prad/s. The table also highlights the residua
ρ{uTM

e11}, ρ{uTM
e12} associated to the modes’ resonance, and the residua lower bound

calculated at the resonant size parameters, using Eq. (4.33). The residuum assciated
with the fundamental electric dipole mode exceeds 0.2: according to the definition of
narrow and broad modes, given in Eq. (4.18), this mode is broad. Moreover, since
the value of the residua lower bound at the resonant size parameter x1 exceeds 0.2
itself, the mode uTM

e11 is inherently broad, independently from the material filling the
sphere. On the contrary, the fundamental electric quadrupole mode uTM

e12 is narrow.
In Table 4.1, we also show the values of the size parameters in correspondence of
the two σsca peaks. The position of the first peak is slightely shifted with respect to
the resonant size parameter of the first dominant mode uTM

e11: this is due to both the
coupling of the mode with the impinging plane wave, and the fact that the mode is
broad. On the other hand, the position of the second peak coincides with the resonant
size parameter of the second dominant mode uTM

e12, because of its narrow resonance.
In Tables 4.2, we list the resonant size parameters, the associated eigen-

permittivities, the resonant frequencies, and residua of some representative dielectric
modes, viz. the fundamental vTE

o111 and second order vTE
o112 magnetic dipole modes,

and the higher order electric dipole modes vTM
e111, vTM

e112. Their residua is one order
of magnitude larger than the ones of the fundamental electric modes, and therefore
they are all broad.

In conclusion, the power spectrum of the Ag nanospheres can be exhaustively
described by considering only the fundamental electric dipole and quadrupole modes.
For the considerations made in Sec. 4.4, there are no asymmetries in the σsca curve.
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4.6 Resonances and interferences in Si spheres

4.6 Resonances and interferences in Si spheres

Here we study the scattering efficiency σsca of a silicon sphere as a function of x. We
employ permittivity εR = 16, non-dispersive in time. By doing so, the σsca does not
depend on R and λ separately, but only on x.
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Figure 4.9 – Scattering efficiency σsca of a Si sphere, as a function of x. The partial
scattering efficiencies (in color) of the seven dominant modes, and their stylized version (on
the right), are also shown.

Mode xres ξ(xres) ωres
[Prad/s] ρ ρ̄(xres) #peak xpeak

vTE
o111 0.75 16.05 -1.07i 2.26 0.07 0.07 (1) 0.76

uTM
e11 2.19 0.48 -0.97i 6.56 1.04 0.88 (2) 1.02

vTM
e111 1.06 16.09 -2.16i 3.18 0.14 0.14 (2) 1.02

vTE
o121 1.10 15.98 -0.21i 3.29 0.01 0.01 (3) 1.10

vTM
e121 1.38 16.05 -0.31i 4.13 0.02 0.02 (4) 1.38

vTE
o131 1.42 15.98 -0.04i 4.26 0.00 0.00 (5) 1.42

vTE
0112 1.54 16.01 -0.96i 4.62 0.06 0.06 (6) 1.57

Table 4.3 – Resonant size parameter xres, eigen-permittivity ξ, resonant frequency (when
R = 100nm), residuum ρ and residua lower bound ρ̄ of the plasmonic sphere modes which
dominate the scattering efficiency σsca of Fig. 4.9. If the mode is plasmonic, we have
ξ = εTM

n , while if it is dielectric xi = ηTM
nl /x

2 or ξ = ηTE
nl /x

2. The position of the peaks of the
total σsca is also shown.

In Fig. 4.9 we plot the total σsca (black line), and the partial scattering efficiences
(colored lines) of the dominant modes responsible for the σsca peaks. In Table 4.3, we
list the resonant size parameters, the eigen-permittivities, the resonant frequencies
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4.6 Resonances and interferences in Si spheres

(assuming R = 100 nm), the residua of the dominant modes, and the size parameters
in correspondence of the σsca peaks. All σsca peaks but one can be attributed to the
prevalent contribution of a single resonant mode. In particular, the first peak from
the left occurs very closely to the resonant size parameter xres of the fundamental
magnetic dipole mode vTE

o111, where its contribution is maximum. This fact is con-
firmed by Fig. 4.9, where the partial scattering efficiency of vTE

o111 is also peaked in
correspondence of xres and it is dominant compared to the remaining partial efficien-
cies. Moreover, the value of the residuum associated with this resonance suggests
that this mode is narrow.

Interestingly, no mode resonates in correspondence of the second peak. This peak
occurs at x = 1.02 from the interplay between two off-resonance modes, namely
the fundamental electric dipole uTM

e11 and the second order electric dipole vTM
e111, as

demonstrated by the partial scattering efficiency of the two modes combined (solid
blue line), calculated as σsca = |(εR − 1) (aTM

1 + bTM
11)|2/x2, being aTM

1 , b
TM
11 the modes

external scattering coefficients. We also plot their individual scattering efficiency,
highlighting the broad and narrow characters of the fundamental and second-order
dipole modes, respectively. It is worth noting that the fundamental electric dipole
mode significantly contributes to the scattering efficiency along all the considered
spectrum: this is due to its strong coupling with the exciting plane wave, and its
strong radiation into the far field [79, 48].

In addition, the destructive interference of the fundamental and second order
dipole modes according to Eq. 4.42 produces the scattering dip enclosed by the
second and the third peaks at x = 1.07, and the corresponding Fano lineshape of
σsca. In correspondence of this dip, the values of the scattering coefficients are aTM

1 =
1.103− 1.343i and bTM

11 = 0.151 + 2.578i.
The third peak is due to the resonance of the narrow fundamental magnetic

quadrupole vTE
o121 at its resonant size parameter xres = 1.1. Despite the close prox-

imity of the resonance of vTE
o121 to the preceding scattering dip, this mode cannot be

held responsible for it, because of its orthogonality with the electric modes uTM
e11 and

vTM
e111. Right after the third peak there is a dip, called anapole in the recent literature,

which is also due the destructive interference of the fundamental and second order
dipole modes.

The last three peaks are caused by the resonance of the narrow second order
electric quadrupole vTM

e121, fundamental magnetic octupole vTE
o131, and second order

magnetic dipole vTE
o112, respectively.

It is possible to qualitatively compare the σsca of a Si nanoparticle, shown in Fig.
4.9, with the dark-field scattering spectrum measured by Kuznetsov et al. [37] for a
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R = 91 nm Si nanoparticle laying on a Si substrate. The experimental and theoretical
peaks are found into one to one correspondence.

4.7 Conclusions

We introduced a representation of the scattered electromagnetic field from a linear,
nonmagnetic, homogeneous, and isotropic object, in terms of a set of eigenfunctions
of an auxiliary eigenvalue problem, which are independent of the object dielectric
permittivity. We denoted them as material-independent modes.

These modes are divided into two sub-subsets, depending on their long-wavelength
behaviour. They are denoted as plasmonic and dielectric modes, if in the qua-
sistatic limit tend to the electro-quasistatic or magneto-quasistatic modes, respec-
tively. Within this framework, we derived rigorous resonance conditions of the full-
wave modes, independent from the excitation conditions. Through the resonance
conditions, we defined the resonance residuum, i.e., a synthetic parameter that allows
the classification of modes into broad and narrow ones, according to the resonance
width. At a given resonance frequency, and hence a resonance size parameter, the
lower bound for the modes residua is obtained from the sole knowledge of the cor-
responding eigenvalues, and thus is independent from both the material permittivity
and the impinging field. This fact enables the identification of size parameter (or
frequency) intervals in which the modes are inherently broad, and therefore their
narrow resonance is forbidden in any material condition.

We carried out this analysis for a sphere, investigating its resonances through the
material-independent mode expansion. We showed that, consistently with the qua-
sistatic analysis in Chap. 2, the sphere plasmonic modes are the only ones resonantly
excitable in a metal sphere with negative permittivity. Among them, only a subset is
composed by narrow modes. Conversely, only the dielectric modes can be resonantly
excited in a moderately high-index dielectric sphere, while the plasmonic modes are
all broad. Therefore, since the excitable modes of metal and dielectric spheres con-
stitute two disjoint sets, dielectric and metal nanoparticles of comparable size exhibit
very different resonant behaviours.

On this basis, we were able to predict the resonance peaks in the scattering ef-
ficiency of a sphere made of either silver or silicon. In a silver sphere excited by a
plane wave in the visible spectral range only the plasmonic dipolar and quadrupolar
modes are resonantly excited. Among them, only the quadrupolar mode is narrow.
Since they have different multipolar orders, their interference is inherently forbidden,
and the scattering power spectrum has no asymmetry. On the contrary, in the case
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4.7 Conclusions

of a silicon sphere, excited by a plane wave in the visible / near-IR, the scattering
power spectrum has multiple sharp peaks, most of them due to the resonant excita-
tion of narrow dielectric modes. Interestingly, in this case, the interference between
modes having the same multipolar order occurs. Specifically, the broad electric dipole
plasmonic mode, which efficiently couples to the plane wave excitation, destructively
interferes with the narrow higher order electric dipole (dielectric) mode, producing a
Fano lineshape in the scattering power spectrum.
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Chapter 5

Full-wave electromagnetic modes
and hybridization in nanoparticle
dimers

We investigate the resonances and modes of a sphere dimer by using the full-wave
material-independent modes illustrated in the previous chapter. We describe the
dimer modes in terms of the hybridization of the modes of the two constituent spheres:
each dimer-mode is expressed in terms of a weighted linear combination of a set of
isolated-sphere modes. The mathematical problem thus becomes a system of linear
algebraic equations for the expansion coefficients. This scheme has been proposed by
Bergman and Stroud [64] in 1980. However, they applied this method only in the
long-wavelength limit when all radii, as well as the interparticle separations, are small
compared to the wavelength outside the scatterers. The approach we propose applies
to both plasmonic and dielectric dimers regardless of their size. This fact enables
us to address, for the first time, the mode analysis and the hybridization in silicon
dimers in the full-Maxwell regime, and to refine the understanding of plasmon-mode
hybridization in a full-wave scenario.

5.1 Material-independent modes of a sphere dimer

We introduce the MIMs of a sphere dimer surrounded by vacuum. The spheres have
radii R1 and R2, a gap size ∆, and a center-center separation D. They occupy the
regions Ω1 and Ω2, while the surrounding space is denoted as Ω3. We use two polar
spherical reference frames centered in each sphere, and sharing the z-axis, which is
also chosen as the dimer axis, as shown in Fig. 5.1. The two spheres are made of the
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5.1 Material-independent modes of a sphere dimer

same linear material, which is also nonmagnetic, isotropic, homogeneous in time and
space, and time-dispersive. We define the dimensionless quantities

R1

R2

Ω1

Ω2

D

φ1 ≡ φ2

ϑ1

r1

x

y

z

O2

O1

ϑ2
r2

P

Ω3

∆

Figure 5.1 – Spherical polar coordinate systems centered on the spheres composing a
dimer. The spheres have radii R1 and R2, edge-edge separation ∆, and center-center
interparticle distance D.

x1 = ω

c0
R1,

x2 = ω

c0
R2,

d = ω

c0
D,

δ = ω

c0
∆,

(5.1)

and a general size parameter x
x = ω

c0
`c, (5.2)

being `c a characteristic length of the sphere dimer, ω the operating radianfrequency.
As for the general case, introduced in Sec. 4.1, the dimer modes {wh}h∈IN can be

subdivided into two subsets: the plasmonic subset {uh}h∈IN with eigen-permittivity
{εh}h∈IN and the dielectric subset {vh}h∈IN with eigen-permittivity {ηh/x2}h∈IN.

Now we determine the modes of the dimer by using as basis functions the modes
of the isolated spheres, introduced in Sec. 4.2. We denote the plasmonic modes of
the j-th sphere as uTM|j

pmn, and its dielectric modes as {vTM|j
pmnl} with j ∈ {1, 2}. Then,
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5.1 Material-independent modes of a sphere dimer

for the generic dimer mode we have (see Sec. D.1 in Appendix D):

wpmq(r) =
∞∑
n=

max(1,m)

{
cTM|j
pmq n uTM|j

pmn (r) +
∞∑
l=1

[
d

TM|j
pmq nl v

TM|j
pmnl(r) + d

TE|j
p̄mq nl v

TE|j
p̄mnl(r)

]}
∀r ∈ Ωj,

(5.3)
with j = 1, 2, wpmq = {upmq,vpmq}, and cTM|j

pmq n, d
TM|j
pmq nl, d

TE|j
p̄mq nl, are the projections of

the dimer mode on the j-th single-sphere mode

cTM|j
pmq n = Pj

{
uTM|j
pmn,wpmq

}
,

d
TM|j
pmq nl = Pj

{
vTM|j
pmnl,wpmq

}
,

d
TE|j
p̄mq nl = Pj

{
vTE|j
p̄mnl,wpmq

}
,

(5.4)

where,
Pj {A,B} = 〈A,B〉Ω1∪Ω2

〈A,A〉Ω1∪Ω2

, (5.5)

with 〈A,B〉Ω1∪Ω2 =
ˆ

Ω1∪Ω2

A · BdV . As shown in Sec. D.1 of Appendix D, the math-

ematical problem of determining such modes becomes a system of linear algebraic
equations for the expansion coefficients cTM|j

pmq n, d
TM|j
pmq nl, d

TE|j
p̄mq nl [140, 64], whose explicit

expression is given in Eq. D.16.
The dimer modes depend on three indices: p ∈ {e, o} ( in Eq. (5.3) the symbol

p̄ indicates the complement of p), m ∈ IN0, and q ∈ IN. Due to the azimuthal
symmetry, the dimer eigen-permittivities depend only on the indices {m, q}. In the
limit x → 0 the plasmonic eigen-permittivities εmq and the dielectric quantities ηmq
are sorted in ascending order of magnitude, for any given m (e.g., lim

x→0
εm1 > lim

x→0
εm2,

or lim
x→0

ηm1 < lim
x→0

ηm2). The same order is kept for finite values of x, by following the
eigen-permittivities on the complex plane as x varies.

An intrinsic property of the structure is the splitting of the spectrum, indepen-
dently from the dimension of the spheres: as the particles approach from a large
distance (d� max{x1, x2}), any single-sphere eigenvalue degenerates into two differ-
ent eigenvalues. For instance, we will see in Sec. 5.2.1 that, for an homo-dimer, the
fundamental electric dipole eigenvalue εTM

1 turns into the ones related to the bonding
and antibonding dipole modes [89].

In order to weight the contribution of the single-sphere modes uTM|j
pmn, vTM|j

pmnl, vTE|j
pmnl

of the j-th sphere in the expansion (5.3) of the dimer mode wpmq, we introduce the
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5.2 Modes hybridization

following synthetic parameters:

h̃TM|j
pmq n = max

r∈Ω1∪Ω2

∣∣∣Re{cTM|j
pmq nuTM|j

pmn (r)
}∣∣∣ ,

h
TM|j
pmq nl = max

r∈Ω1∪Ω2

∣∣∣Re{dTM|j
pmq nlvTM|j

pmn (r)
}∣∣∣ ,

h
TE|j
p̄mq nl = max

r∈Ω1∪Ω2

∣∣∣Re{dTE|j
p̄mq nlv

TE|j
p̄mn (r)

}∣∣∣ .
(5.6)

The parameter h̃TM|j
pmq n, h

TM|j
pmq nl, or h

TE|j
p̄mq nl represents the maximum magnitude of the

real part of the dimer mode within the j-th sphere (which corresponds to the am-
plitude at t = 0) that we would have if only the mode uTM|j

pmn, vTM|j
pmnl, or vTE|j

p̄mnl in the
expansion (5.3) were considered, respectively. In the following sections, for any given
dimer mode wpmq we normalize the parameters h̃TM|j

pmq n, h
TM|j
pmq nl, h

TE|j
p̄mq nl to the overall

maximum, i.e., max
nl

{
h̃TM|j
pmq n, h

TM|j
pmq nl, h

TE|j
p̄mq nl

}
. These normalized parameters will be

denoted as
H̃
α|TM|j
pmq nl =

h̃TM|j
pmq n

max
nl

{
h̃

TM|j
pmq n, h

TM|j
pmq nl, h

TE|j
p̄mq nl

} ,
H
α|TM|j
pmq nl =

h
TM|j
pmq nl

max
nl

{
h̃

TM|j
pmq n, h

TM|j
pmq nl, h

TE|j
p̄mq nl

} ,
H
α|TE|j
p̄mq nl =

h
TE|j
p̄mq nl

max
nl

{
h̃

TM|j
pmq n, h

TM|j
pmq nl, h

TE|j
p̄mq nl

} ,
(5.7)

with α ∈ {‖,⊥} according to whether the dimer mode is plasmonic (wpmq → upmq)
or dielectric (wpmq → vpmq), respectively. We call them hybridization weights.

From now on, for the sake of simplicity, we will only deal with homo-dimers, i.e.,
with the case R1 = R2 = R. In this configuration, due to the structure symmetry,
we have that H̃α|TM

pmq nl = H̃
α|TM|1
pmq nl = H̃

α|TM|2
pmq nl, H

α|TM
pmq nl = H

α|TM|1
pmq nl = H

α|TM|2
pmq nl, and H

α|TE
pmq nl =

H
α|TE|1
pmq nl = H

α|TE|2
pmq nl. Furthermore, we choose as characteristic length `c, the spheres’

radius R, i.e., `c = R, and hence the structure size parameter x will be x = ω
c0
R.

5.2 Modes hybridization

The sphere dimer MIMs in Eq. (5.3) are expressed in terms of a weighted linear
combination of the single-sphere modes, namely in terms of the hybridization of the
modes of the dimer’s building blocks. By varying the arrangement of the constituent
spheres, i.e., their distance, the single-sphere modes do not change: the only varying
quantities are the expansion coefficients in Eq. (5.4), or equivalently the hybridization
weights in Eq. (5.7). Thus, in order to monitor the behavior of the dimer modes
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5.2 Modes hybridization

by varying the constituent spheres’ arrangement, we have to follow the expansion
coefficients or the hybridization weights. On the other hand, if we fix the dimer
geometry, i.e., the spheres radius R and the separation ∆, and vary the operation
frequency ω, or, in other words, we keep fixed the ratio ∆/R and vary the size
parameter x, both the expansion coefficients and the single-sphere modes vary and
need to be recalculated.

As shown in Sec. 4.3 for a single sphere, the loci spanned by the structure’s
eigen-permittivities in the complex plane as a function of a parameter, constitute
an invaluable tool to investigate the structure’s resonances. In the specific case of a
sphere homo-dimer, we have two scenarios: the first one consists in fixing the sphere
radius and the operating frequency, and varying the interparticle separation; the
second one consists in fixing the structure geometry, and varying the size parameter
x (or the frequency).

In the following two sections, we consider the first scenario. Specifically, we inves-
tigate the hybridization of three representative sphere modes, viz. the fundamental
electric dipole mode uTM

pm1, the second (l = 1) order electric dipole mode vTM
pm11, and

the fundamental magnetic dipole mode vTE
pm11, for two choices of size parameter x:

x = π/100, and hence R � λ, and x = 2π, and hence R = λ. We investigate the
dimer eigen-permittivity behavior moving the spheres from the configuration in which
they are very far from each other (δ � x) to the one in which they are relatively close
(δ < x). In the first configuration, the spheres interaction vanishes, and therefore
the dimer eigen-permittivities simply degenerate into the single-sphere ones. In this
way, we are able to identify the single-sphere eigen-permittivities and follow their
transformation as the interparticle separation decreases.

5.2.1 Quasistatic hybridization

Here, we examine the case of a dimer of spheres of dimension much smaller than
the wavelength λ, namely for x = π/100, that can be described by the quasistatic
framework introduced in Chap. 2. In Fig. 5.2, we monitor the dimer eigenvalues by
varying the dimensionless gap size δ from π to π/200. In particular, we start from the
limit case δ → ∞, in which the dimer eigenvalues approach the quasi-static single-
sphere eigenvalues εTM

1 , ηTM
11, and ηTE

11, for the azimuthal quantum numbers m = 0, 1.
We then consider the shift of three selected dimer eigenvalues as the gap distance
decreases with respect to the corresponding isolated sphere one. As δ decreases, two
branches depart from all considered single-sphere eigenvalues, for both the azimuthal
numbers m = 0, 1: one branch exhibits a negative shift, which we denote as the lower
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Figure 5.2 – Dimer eigenvalues as a function of the dimensionless edge-edge separa-
tion δ. Branches departing from the single-sphere plasmonic fundamental electric dipole
eigen-permittivity εTM

1 (a), dielectric second-order electric dipole quantity ηTM
11 (b), dielectric

fundamental magnetic dipole quantity ηTE
11 (c). The quantity ηTM

11 (ηTE
11), normalized by the

squared size parameter x2, give the second-order electric (fundamental magnetic) dipole
eigen-permittivity. On the right, the stylized version of the corresponding modes is also
shown.
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5.2 Modes hybridization

branch, and the other shifts in the opposite way, and we denote it as the upper branch.
From the definition of the electrostatic energy of the EQS modes in Eq. (2.22), and
of the magnetostatic energy of the MQS modes in Eq. (2.32), associated with the
dimer eigenvalues, the lower branch corresponds to lower energy configurations, while
the upper branch corresponds to higher energy configurations. Furthermore, it can
be shown that the nature of the dimer modes corresponding to the branches does not
change as δ decreases: the single-sphere modes remain almost unaltered in the dimer
structure. Thus, on the right of Fig. 5.2, we represent the dimer modes using the
stylized version of the single-sphere modes, depicted in Fig. 4.2.

In panel (a) we display the two branches departing from the fundamental electric
dipole eigenvalue εTM

1 , which in the electro-quasistatic regime x→ 0 is εTM
1 = χ

‖
1 + 1 =

−2. For m = 0, the dimer modes associated with the lower branch correspond to
the interaction of two co-aligned electric dipoles, while the modes associated with
the upper branch correspond to the counter-directed dipoles. Following Prodan and
Nordlander [88, 89], we denote the former configuration (lower energy) as bonding, and
the latter (higher energy) as antibonding. Form = 1, the coupling of the fundamental
dipole modes has opposite sign with respect to the casem = 0: the antibonding dimer
modes are the combination of two co-oriented fundamental dipole modes, while the
bonding dimer modes correspond to the negative parity of the dipole modes. This is
in agreement with Nordlander et al. [89].

In panel (b) we show the branches departing from a dielectric eigenvalue, namely,
the second-order electric dipole quantity ηTM

11 (also known as toroidal dipole), which
if normalized by x2 gives the corresponding eigen-permittivity. In the magnetoqua-
sistatic regime x → 0, it has the expression ηTM

11 = κTM⊥
11 = z2

1,1 = 20.19, where zn,l is
the l-th zero of the spherical bessel function jn. Both the lower branches for m = 0, 1
shift downward much faster than the upper branches shift upward: the latters remain
very close to the isolated sphere ηTM

11. The assignment of the bonding and antibond-
ing configuration follows the same rules of the fundamental electric dipole modes
hybridization: for m = 0, the bonding configuration is constituted by co-oriented
dipoles, while the antibonding one is constituted by the negative parity of the dipole
modes; the opposite happens for m = 1.

In panel (c) we examine the case of the fundamental magnetic dipole quantity
ηTE

11, which has the expression ηTE
11 = κTE⊥

11 = z2
0,1 = 9.87. For m = 0, the bonding

mode is due to the combination of two in-phase fundamental magnetic dipole modes
vTE
e011, whose magnetic dipole is directed along the dimer axis, and therefore they are

represented with current loops lying in the spheres’ equatorial plane. Instead, the
antibonding mode is the interaction of two fundamental magnetic dipole modes with
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negative parity. As in the aforementioned scenarios, for m = 1 the parity of the
dipole moments of the bonding and antibonding modes is reversed with respect to
the case m = 0.

5.2.2 Full-wave hybridization

We now investigate the case of a dimer of spheres of radius R equal to the wavelength,
i.e., for x = 2π, for which a full-wave description is needed. When δ →∞ the dimer
eigenvalues approach the isolated sphere eigenvalues. In Fig. 5.3, we plot the loci
spanned in the complex plane by the dimer eigenvalues originating from the single-
sphere eigenvalues εTM

1 = 0.17− 0.08i, ηTM
11 = 29.55− 12.78i, and ηTE

11 = 17.54− 6.80i,
for the azimuthal quantum numbers m = 0, 1, by varying the dimensionless gap size
δ from 18π to π/100.

As in the quasistatic case, because of the splitting property of the spectrum,
two branches depart from all single-sphere eigenvalues as δ decreases. In this case,
both branches’ trajectories start as spiral curves, moving farther away as they revolve
around the single-sphere eigenvalues. Similarly to the quasistatic scenario in Fig. 5.2,
the dimer modes corresponding to the beginning of each branch are simply symmetric
and antisymmetric combinations of the single-sphere modes. In Fig. 5.3, we plot the
branches of the symmetric dimer modes with black curves, while the branches of the
antisymmetric modes with red ones. Moreover, to better follow the dimer eigenvalues
as δ varies, we add to the branches depicted in Fig. 5.3 dot marks in correspondence
of selected values of gap size δ = kπ, for k = 1, . . . , 18.

In Fig. 5.3(a-b) we plot the dimer plasmonic eigen-permittivity branches depart-
ing from the single-sphere eigen-permittivity εTM

1 , for m = 0, 1, respectively. In both
cases, all branches’ dynamics occur very closely to εTM

1 , and far from other single-
sphere eigen-permittivities: as we will see for the branches emanating from ηTM

11 and
ηTE

11 for m = 1, the proximity of the single-sphere eigenvalues in the complex plane
to the dimer loci not only influences their trajectory, but also it has a key role in
the hybridization process. In the case under exam, the absence of nearby single-
sphere eigen-permittivities results in a negligible hybridization: the nature of the
dimer modes corresponding to the two branches is preserved as δ decreases, and the
single-sphere modes remain almost unaltered in the dimer configuration, as confirmed
by Fig. 5.4, in which we display the considered dimer mode for m = 0 (panel a) and
m = 1 (panel b) at δ = 18π (beginning of the branch), and δ = π/100 (end of the
branch). Thus, in both cases m = 0, 1, the dimer modes corresponding to the two
whole branches can be simply represented as symmetric and antisimmetric combina-
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Figure 5.3 – Loci spanned in the complex plane by the eigenvalues of a sphere dimer with
x = 2π (R = λ), by varying the dimensionless gap size δ ∈ [π/100, 18π]. The loci originate
from the single-sphere fundamental electric dipole eigen-permittivity εTM

1 , for m = 0 (a) and
m = 1 (b), second order electric dipole quantity ηTM

11, for m = 0 (c) and m = 1 (d), and
fundamental magnetic dipole quantity ηTE

11, for m = 0 (e) and m = 1 (f). The dot marks
are placed in correspondence of δ = kπ, for k = 1, . . . , 18. The branch corresponding to
the symmetric (antisymmetric) mode configuration is plotted with a black (red) line. The
single-sphere eigenvalues, origin of the loci, are plotted with green marks, while the others
with blue marks.
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δ = 18π δ = π/100

m = 0(a)

δ = 18π δ = π/100

max

min

m = 1(b)

Figure 5.4 – Real part of the projection on the y = 0 plane of the dimer mode corre-
sponding to the symmetric branch (black line) emanating from the single-sphere fundamen-
tal electric dipole eigen-permittivity εTM

1 for m = 0 (a) and m = 1 (b), at δ = 18π and
δ = π/100.

tions of fundamental electric dipole modes uTM
pm1, as in the quasistatic case sketched

on the right of Fig. 5.2a.
For m = 0 (panel a), the minimum magnitude of the imaginary part is reached

by the antisymmetric branch at the value 0.168−0.079i, for the minimum considered
distance, i.e., δ = π/100. At the same δ, the symmetric branch reaches the value
0.166−0.082i, with an higher magnitude of the imaginary part. From Eq. (4.9b), we
recall that the imaginary part of a structure eigen-permittivity accounts for the radi-
ating losses of the corresponding mode. This means that for the considered distance
δ = π/100, and hence very close spheres, the symmetric configuration has higher ra-
diation losses than the antisymmetric one: this is due to the constructive interference
of the fundamental dipole modes of the two spheres, which have a center-to-center
distance D approximately equal to 2λ. Following the spiral trajectories, at δ = π

(first dot on the branch trajectories), the assignment of the configuration of greater
radiation losses is reversed: the dimer eigen-permittivity belonging to the antisym-
metric branch has an imaginary part magnitude greater than the one belonging to
the symmetric branch. From δ = π/100 to this case δ = π, the center-to-center dis-
tance has increased by λ/2: now the symmetric fundamental dipole modes interfere
destructively, while the antisymmetric dipole modes interfere constructively. Then,
every time the edge-edge distance δ is increased by π, the dimer eigen-permittivities
will all make half a turn on the spirals until eventually they reach the single-sphere
eigenvalue. It is important to point out that due to the modes spatial profile, dif-
ferent from the one of simple point dipoles placed at the spheres center, the minima
and maxima for the imaginary part are not reached at δ equal to multiples of π, but
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are delayed by 0.32π, i.e., the maxima and minima for the imaginary part occur at
approximately δ ≈ (0.32 + k)π, k ∈ IN0.

The loci originating from εTM
1 form = 1 (panel b) follow a dynamics very similar to

the case m = 0. This time, the antisymmetric configuration reaches the maximum for
the imaginary part magnitude for δ = 0.82π at the value 0.167− 0.096i. Instead, the
symmetric dimer mode reaches the minimum for δ = 0.66π at the value 0.169−0.074i.
Increasing the dimensionless gap size δ by multiples of π, the imaginary part of
the dimer eigen-permittivities oscillates between its maximum and minimum until
the branches degenerate into the single-sphere eigen-permittivities. From the same
considerations made for m = 0, the minima and maxima for the imaginary part do
not coincide with δ equal to multiples of π.

In Fig. 5.3(c-d) we plot the dimer dielectric branches departing from the single-
sphere quantity ηTM

11 (second order electric dipole or toroidal dipole), for m = 0, 1,
respectively. The branches for m = 0 (panel c) are again spirals emanating from ηTM

11,
but they occupy a region in the complex plane wider than the aforementioned dimer
plasmonic eigen-permittivities. Moreover, their trajectories are not influenced by any
other single-sphere eigenvalue, and no other mode (different from the considered sec-
ond order electric dipole) comes into play in the hybridization process. Thus, as for
the plasmonic eigen-permittivities, the nature of the dimer modes corresponding to
the two branches is preserved as δ decreases, and the single sphere modes remain
unchanged in the dimer configuration. Hence, the dimer modes corresponding to the
entire branches can be simply represented as symmetric and antisymmetric combina-
tions of second-order electric dipole modes vTM

p011, as on the right of Fig. 5.2b.
The symmetric branch reaches the maximum for the imaginary part magnitude

at 29.494− 13.186i, for δ = 0.51π. At the same distance, the antisymmetric branch
achieves its minimum for the imaginary part magnitude, and therefore the corre-
sponding mode has the minimum radiation losses. As for the examined plasmonic
dielectric eigen-permittivities, every π added to the dimensionless gap size δ will
let the dimer eigenvalues make half a turn on the spirals until they asymptotically
approach the spirals center ηTM

11.
The case m = 1 (panel b) is characterized by a very different dynamics. For

δ ' 8π both the branches remain close to ηTM
11, while for smaller distances they move

toward greater values for the real part, following paths unravelling among several sin-
gle sphere eigenvalues. We now discuss the properties of the antisymmetric branch,
with the aid of Fig. 5.5, where we show the corresponding dimer mode at four rep-
resentative distances δ = 18π, 6π, 2π, π. To the right of the dimer mode, we display
the single-sphere modes involved in the hybridization, on top of their hybridization
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Figure 5.5 – Decomposition of the dimer mode corresponding to the antisymmetric branch
(red line, Fig. 5.3d) emanating from the single-sphere second order electric dipole quantity
ηTM

11, in terms of hybridizing single-sphere modes, for the dimensionless gap sizes δ = 18π
(a), δ = 6π (b), δ = 2π (c), and δ = π/100 (d). The real part of the projection on the
y = 0 plane of the dimer mode is shown. Below each stylized version of the single-sphere
mode we also show its hybridization weight, defined in Eq. (5.7).

weights, defined in Eq. (5.7).
At δ = 18π, the dimer eigenvalue is very close to ηTM

11, and it corresponds to a dimer
mode resulting from the simple antisymmetric combination of the spheres’ second-
order electric dipole modes vTM

e111. In this case, no other modes are involved in the
hybridization, as confirmed by Fig. 5.5a. After following a spiral trajectory around
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5.2 Modes hybridization

ηTM
11, the dimer locus passes very close to the single-sphere dielectric quantity ηTE

31 at
δ = 6π. As shown in Fig. 5.5b, the corresponding dimer mode is significantly differ-
ent from the one at δ = 18π, and now the hybridization mechanism is relevant. In
particular, the single-sphere mode vTE

o131 corresponding to the encountered eigenvalue
ηTE

31 is dominant among all other single-sphere modes in the hybridization mechanism,
as testified by their hybridization weights. A significant contribution comes also from
the fundamental electric dotriacontapole uTM

e15, second-order electric quadrupole vTM
e121,

second-order electric dotriacontapole vTM
e151. Interestingly, the eigenvalues correspond-

ing to these single-sphere modes are not close to the considered dimer eigenvalue.
Furthermore, the second-order electric dipole mode vTM

e111, from whose eigenvalue this
locus has originated, has a very low hybridization weight, and therefore its effect in
the dimer mode expansion is almost negligible.

Decreasing δ, the antisymmetric branch passes close to ηTM
21 at δ ≈ 5π, and then

to ηTE
12 at δ ≈ 3π. At δ = 2π, the dimer eigenvalue remains in proximity of ηTE

12, and
the corresponding dimer mode is shown in Fig. 5.5c. Also in this case, the dom-
inant single-sphere mode in the dimer mode expansion is the mode corresponding
to the closest single-sphere eigenvalue, i.e., the second order magnetic dipole mode
vTE
o112. The other modes involved in the hybridization are the fundamental and sec-

ond order electric dotriacontapole uTM
e15, vTM

e151, second-order electric quadrupole vTM
e121,

fundamental magnetic octupole vTE
o131, and second order electric octupole vTM

e131.
Further decreasing δ to δ = π, the branch is in proximity of ηTE

41. At this dimen-
sionless gap size, we show the corresponding dimer mode in Fig. 5.5d, for which
the dominant single-sphere mode is the fundamental magnetic hexadecapole vTE

o141,
corresponding to the closest single-sphere eigenvalue. Unlike the other investigated
scenarios, at this distance the dimer mode arises from the hybridization of many (>15)
single-sphere modes, whose eigenvalues are relatively distant from the dimer branch.
In particular, the most relevant modes are the fundamental and second order electric
dotriacontapole uTM

e15, vTM
e151, second order electric octupole vTM

e131 and quadrupole vTM
e121,

second order magnetic dipole vTE
0112, and the third order electric dipole vTM

e112.
For smaller δ, the branch passes near ηTE

22, η
TE
51 for δ ≈ 0.67π, 0.56π, respectively,

and eventually, for δ = π/100 it achieves the maximum for the imaginary part at the
value 58.53− 10.78i.

The symmetric branch unwinds closely to the antisymmetric one, until δ ≈ 2π.
On the other hand, its parametrization does not follow the one of the symmetric
branch, but is delayed by exactly π: a point reached by the symmetric branch at
δ is approached by the antisymmetric branch at δ + π. At δ = 2π, the symmetric
branch assumes the value 23.90− 7.20i and then follows a loop that closes at δ = 3π:
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5.3 Resonance properties

there exist two distinct values of δ, namely δ = 2π, 3π, which correspond to the same
dimer eigen-permittivity. In other words, there exist two dimers of spheres of the
same dimension, but at different distances, which share the same eigen-permittivity
originating from the single-sphere ηTM

11. As we will see in the next section, loops
can also occur in the eigen-permittivity loci of a sphere dimer with fixed geometry
by varying the size parameter x. Furthermore, this noose-like shape has been also
observed in the plasmonic and dielectric eigen-permittivities of other structures, e.g.,
the coated sphere [76].

At δ < 2π, the symmetric branch moves toward greater values for the imaginary
part, until it assumes the value 55.58− 12.72i at δ = π/100.

In Fig. 5.3(e-f) we follow the two branches of dimer dielectric eigenvalues ema-
nating from the single-sphere eigenvalue ηTE

11, associated to the fundamental magnetic
dipole mode, for m = 0, 1, respectively. Both the branches for m = 0 (panel c)
are spirals departing from ηTE

11, and their trajectories are not influenced by any other
single-sphere eigenvalue, and no other mode is involved in the hybridization pro-
cess. Thus, the dimer modes corresponding to the entire branches can be simply
represented as symmetric and antisymmetric combinations of fundamental magnetic
dipole modes vTE

e011, as on the right of Fig. 5.2c. The antisymmetric branch achieves
the maximum imaginary part magnitude at the value 17.5233−6.9458i for δ = 0.36π.
At the same distance, the symmetric branch reaches the minimum imaginary part
magnitude at the value 17.53− 6.66i. As the other examined eigen-permittivities, by
raising δ of multiples of π, the dimer eigenvalues will make half a turn on the spirals
until they asymptotically approach ηTE

11.
In the case m = 1 (panel d), the branches are still spirals, but for subwavelengths

gaps δ / π the two branches follow different trajectories. The antisymmetric branch
remains close to the isolated sphere eigenvalue ηTE

11, and far from other singles-sphere
eigenvalues, and no other mode is involved in the hybridization process in this case.
Conversely, the symmetric branch moves toward lower imaginary parts, and eventu-
ally achieves the value 20.07−14.66i at π/100, very close to the (normalized with x2)
eigen-permittivity εTM

3 . Thus, for very close spheres, the single-sphere fundamental
electric octupole mode uTM

p13 dominates the hybridization for the dimer mode origi-
nating from the fundamental magnetic dipole eigenvalue ηTE

11.

5.3 Resonance properties

We now investigate the plasmonic and dielectric eigen-permittivities behavior of a
sphere dimer of fixed relative gap size, by varying the size parameter x. In particular,
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we consider a dimer of spheres with radius R and gap size ∆ = R/4. As anticipated
in Sec. 4.1 for the general case, all dimer plasmonic eigen-permittivities εmq tend
to a negative finite value for x → 0, while they tend to 0 for x → ∞. Instead, the
dielectric quantities ηmq tend to different finite real and positive values for x → 0
and x → ∞. As discussed in Sec.2.1.2, in the long-wavelength limit (x � 1), the
eigen-permittivities associated to ηmq diverge, and therefore the associated modes
cannot be practically excited in electrically small metal dimers, but only in dimers
with positive and high permittivity.

Contrarily to the scenario examined in the previous sections, in which the size
parameter x is fixed and the interparticle separation varies, in this case, the modes
associated with the eigen-permittivity loci result from the hybridization of single-
sphere modes that change with the parameter x.

In Fig. 5.6(a-b), we display the loci spanned by the first two plasmonic eigen-
permittivities εm1, εm2, for m = 0 (panel a) and m = 1 (panel b). For x � 1,
the eigen-permittivity ε01 approaches the real value −3.17 predicted by the electro-
quasistatic approximation. The corresponding dimer mode is shown on the left of
Fig. 5.7a. By increasing x, both the real and imaginary part of ε01 move toward more
negative values. The decrease in the real part implies, for low loss Drude metals, a
red shift of the corresponding resonant frequency [1], as shown in Sec. 2.2.2 with Eq.
(2.60). When x ≈ 0.55, the quantity Re {ε01} reaches a minimum value of −4.66, and
then starts increasing. For x ' π/3, ε01 lies in the fourth quadrant of the complex
plane. Then, Re {ε01} increases until x ≈ 1.5 when it reaches the maximum value of
0.49, and finally ε01 asymptotically reaches the origin of the complex plane.

The eigen-permittivity ε02 starts at the real value −1.82 (consistent with the
electro-quasistatic prediction), and then features a similar dynamics to ε01: it reaches
a minimum value for the real part (−4.24) at x = 1.48, then a maximum (1.18) at
x = 2.13, and eventually it asymptotically approaches the origin of the complex
plane. The corresponding dimer mode in the limit x → 0 is shown on the right of
Fig. 5.7a. The main difference with the case q = 1 is that the locus of ε01 is swept
with higher speed than the locus for ε02, as the parameter x varies. This can be easily
visualized in Fig. 5.6(a) by following the position of an eigen-permittivity for a fixed
x as the order q varies: the eigen-permittivity at x = π/5, for instance, distinctly
moves toward the beginning of the locus as q increases.

For m = 1, the eigen-permittivities ε11 and ε12 approach the values −2.48 and
−1.76, respectively, for x � 1. Their corresponding dimer mode is plotted in Fig.
5.7b. By increasing x, they develop a dynamics of the same nature of the m = 0
counterpart. Moreover, as for the m = 0 case, the loci are swept with decreasing
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Figure 5.6 – Loci spanned in the complex plane by the plasmonic eigen-permittivities
εm1, εm2 of a dimer of spheres with radius R and gap ∆ = R/4, by varying x ∈ [0,∞),
for m = 0 (a) and m = 1 (b). The corresponding modes in the limit x → 0 are shown in
Fig. 5.7. Residua lower bounds of the corresponding modes (c), and the values x′mq, x′′mq
at which the residua lower bounds reach the value 0.2 (d).

speed of parametrization with the order q. Interestingly, unlike the case of the single
sphere, investigated in Sec. 4.3.1, the locus corresponding to the higher order ε12 is
wider than the one for the lower order ε11.

In Fig. 5.6c, we plot the lower bounds ρ̄{upmq} for the residua associated with
the resonances of the plasmonic modes under exam as a function of x. We recall that
the mode residuum ρ, introduced in Sec. 4.1.1 in Eq. (4.17), is associated to the
width of the corresponding resonance: if ρ > 0.2 the mode is broad, otherwise it is
narrow. The lower bound ρ̄ for the plasmonic modes has the same expression as for
the sphere in Eq. (4.33), and it is independent of the dimer material. In the table
in Fig. 5.6d, we list the values x′mq, x′′mq at which ρ̄ = 0.2 for each considered mode.
These values are the extremes of an interval of size parameters in which the modes
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Figure 5.7 – Projection on the y = 0 plane of the dimer modes uemq, q = 1, 2, for m = 0
(a) and m = 1 (a) in the limit x → 0, whose eigenvalue loci in the complex plane as a
function of x are plotted in Fig. 5.6(a-b).

cannot be narrowly excited. For instance, in a sphere dimer with gap ∆ = R/4, a
narrow resonance of the mode up01 for 0.47 ≤ x ≤ 5.05, or equivalently for a dimer
of spheres with radius R such that 0.07λ ≤ R ≤ 0.80λ, is inherently forbidden.

For any m, as a consequence of the decreasing speed of parametrization in the
eigen-permittivity loci with the order q, the corresponding residua curves, and hence
the broad-resonances interval, shift toward larger x.

All loci spanned by the eigen-permittivities under exam are confined in a limited
region of the complex plane. From the same considerations made for the single sphere
in Sec. 4.3.1, the considered modes are broad in sphere dimers with moderately
positive permittivity, e.g., silicon, while they can be narrowly excited in metal dimers
(e.g., silver or aluminium) in the visible spectral range.

In Fig. 5.8, we show the loci spanned in the complex plane by the first two
dielectric quantities ηm1, ηm2, for m = 0 (panel a) and m = 1 (panel b). In the long
wavelength limit x � 1, the quantities η01, η02 approach the real values 9.35, 10.4,
respectively, consistently with a magneto-quasistatic description. The corresponding
dimer modes are shown in Fig. 5.9a. By increasing x, they feature a very similar
dynamics. In fact, at first, both the real and imaginary parts of η01, η02 move toward
more negative values: from Eq. (2.87), this results in a red shift in the corresponding
resonant frequency in high index materials. Then, their real part increases until both
the eigenvalues asymptotically reach the real axis at the value 20.21. The speed of
parametrization in the considered loci, this time, is comparable.

We now discuss the case m = 1. The dimer modes corresponding to η11 and
η12 are shown in Fig. 5.9b. The quantity η11 starts at the value 9.61, reaches the
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Figure 5.8 – Loci spanned in the complex plane by the dielectric quantities ηm1, ηm2 of
a dimer of spheres with radius R and gap ∆ = R/4, by varying x ∈ [0,∞), for m = 0 (a)
and (b). ηmq, if normalized with the squared size parameter x2 give the dimer dielectric
eigen-permittivities. Residua lower bounds of the corresponding modes (c), and the values
x′mq, x

′′
mq at which the residua lower bounds reach the value 0.2 (d).

minimum for the real part at x = 1.85 for Re {η11} = 7.89, and the minimum for
the imaginary part at x = 4.36 for Im {η11} = −9.33. Eventually, both the real and
imaginary parts increase till η11 reaches the real axis at η11 = 14.54.

The quantity η12 approaches the value 10.13 in the long wavelength limit x� 1.
After the usual decrease in the real and imaginary part, the locus follows a loop:
there exist two distinct values of x, namely 0.67 and 1.62, which correspond to the
same η12 = 9.94 − 2.36i. In other words, there exist two sphere dimers with gap
∆ = R/4, but with different radius (or operating frequency), which share the same
value of η12. Then, the locus reaches a minimum for the imaginary part at x = 5.07
for Im {η12} = −7.15, and eventually, in the limit x → ∞, it tends to the real value
η12 = 20.18.
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q = 1 q = 2

m = 0(a)

q = 1 q = 2

m = 1

max

min

m = 1
(b)

Figure 5.9 – (a) Projection on the spheres’ equatorial plane of the dimer modes vo0q, for
q = 1, 2, in the limit x → 0. (b) Projection on the y = 0 plane of the dimer modes ve1q,
for q = 1, 2, in the limit x → 0. They correspond to the eigenvalues of the loci plotted in
Figs. 5.8a and 5.8b, respectively, in the quasistatic limit x→ 0.

In Fig. 5.8c, we plot the lower bounds ρ̄{vpmq} for the residua associated with
the resonances of the considered dielectric modes, as a function of x, calculated by
applying Eq. (4.37). In the table in Fig. 5.8d, we list the extremes x′mq, x′′mq of
the size parameter intervals in which the modes are inherently broad. We notice,
for instance, that a narrow resonance of the mode vp02 for 1.35 ≤ x ≤ 6.96, or
equivalently 0.21λ ≤ R ≤ 1.12λ, is intrinsically forbidden. Since the dielectric loci
under exam are similar, and the speed of parametrization is comparable, the residua
lower bound curves are almost superimposed. Interestingly, the loop in the locus of
η12 results in a small sub-interval [1.08, 1.31] of size parameters (not shown in the
table in Fig. 5.8d), in which the narrow resonance of the mode vp12 is allowed.

Contrarily to the plasmonic modes, the examined dielectric modes can be narrowly
excited in sphere dimers of permittivity with positive real part, while they can only
lead to broad resonances in materials with permittivity of negative real part, such as
Ag or Au.

5.4 Full wave hybridization in Ag and Si dimers

We consider an homo-dimer with R1 = R2 = R (x = x1 = x2), and two different
edge-edge separations of ∆ = R/4 and ∆ = R, corresponding to a center-center
separation of D = 9/4R and ∆ = 3R, respectively. We vary the size parameter x in
the interval [0.6, 1.7]. The total number of considered dimer modes is N = 1600, with
q = 1, . . . , 320, m = 0, . . . , 4, p = e. Nevertheless, in each of the considered scenarios,
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5.4 Full wave hybridization in Ag and Si dimers

the scattering is dominated by different subsets of dimer modes whose number is
much smaller than N . The single-sphere modes used to represent the dimer modes
are uTM

emn, vTM
emnl, vTE

omnl with n = 1, . . . , 8, l = 1, . . . , 10, and m = 1, . . . , 4.

5.4.1 Transversely polarized Ag dimer

First, we study a silver homo-dimer with R = 67.5 nm, and edge-edge separation ∆ =
R/4 = 16.875 nm. We model the silver permittivity εR,Ag by using experimental data
[169, 171], while we employ a constant non-dispersive in time permittivity εR,Si = 16
for the silicon [168]. We consider the modes that are excited by an incident field Einc

that is polarized along the dimer axis ẑ, while it is propagating along the transverse
direction x̂ (see Fig. 5.1), i.e., Einc = E0e

i ω
c0
zx̂.
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Figure 5.10 – Scattering efficiency σsca of an Ag homo-dimer as a function of the size
parameter x, obtained via material-independent-mode expansion (black line) and by direct-
calculation (red dots). The radius of each sphere is R = 67.5nm, the edge-edge distance
∆ = R/4 = 16.9 nm. The dimer is excited by a plane wave propagating along the dimer’s
axis and polarized along the transverse direction. Partial scattering efficiency (in color) of
two dominant dimer modes whose y = 0 plane projections are shown on the right.

In Fig. 5.10, we plot the scattering efficiency σsca obtained by using the material-
independent-mode expansion (4.16) (black line), and by a direct calculation (red dots)
as a function of the size parameter x. For the direct calculation, we use the code
“Generalized Multiparticle Mie solution (GMM)” by Yu-lin Xu [172]. Specifically, we
use in the GMM two VSWF sets centered in the two spheres, each of them described
by Eq. (4) of Ref. [172] with 1 < n ≤ 8. The two results are in very good agreement.
As expected, the scattering efficiency is significantly different from the one obtained
in the quasi-electrostatic limit approximation [71] which is shown in Fig. D.1b in

128



5.4 Full wave hybridization in Ag and Si dimers

Appendix D. We also show in color the partial scattering efficiencies of the dimer
modes ue1 1, ue1 4 dominating the scattering response. Their projections (real part)
on the y = 0 plane are represented on the right. The partial scattering efficiency is
the scattering efficiency that we would have if only one dimer mode is excited at a
time. It is important to note that the total scattering efficiency is not the sum of the
partial scattering efficiencies because the modes with same index m may interfere.
Nevertheless, the partial scattering efficiencies enable us to identify the dimer modes
responsible for each peak of the total scattering efficiency.

mode xemq
ωemq

[Prad/s] εmq εR,Ag ρemq ρ̄emq #peak xpeak

ue1 1 0.85 3.76 -5.35-2.80i -9.88 + 0.31i 0.505 0.403 (1) 0.89
ue1 4 1.17 5.22 -2.18-0.22i -2.33 + 0.26i 0.15 0.07 (2) 1.18

Table 5.1 – Resonant size parameter x, corresponding value of the resonant frequency,
eigen-permittivity, Ag permittivity, residuum and residua lower bounds of the dimer modes
which dominate the scattering efficiency of Fig. 5.10. The positions of the peaks of the
total scattering efficiency are also shown.

We list in Tab. 5.1 the values of the resonant size parameter x of the two domi-
nant modes, together with the corresponding resonant frequency, eigen-permittivity,
Ag permittivity, residuum, and residua lower bound. The resonant frequencies are
obtained through the relation ω = c0

R
x.

It is apparent that the two resonant frequencies are in very close proximity to the
two σsca peaks, namely x = 0.892 and x = 1.183. The modes residua and their lower
bounds tell us that the mode ue1 1 is inherently broad, while ue1 4 is narrow: this is
consistent with the fact that the first partial scattering efficiency has a broader peak
than the second one. As in the Ag single sphere (Fig. 4.8), and in the longitudinally
polarized Ag dimer (see Fig. D.4 in Appendix D), the relevant dimer modes are all
plasmonic.

In Fig. D.2 in Appendix D, we also plot within the two spheres the scattered
electric field calculated at the two σsca peaks. The effects of the field propagation
along the dimer axis are now important.

The dimer mode ue1 1, responsible for the first σsca peak, originates from the
hybridization of the single-sphere modes shown in Fig. 5.11. In particular, the
fundamental electric dipole uTM

e11 and quadrupole uTM
e12 interact destructively in the

close proximity of the gap. On the contrary, in the regions on the left and on the
right of the dimer gap, the fundamental quadrupole uTM

e12, octupole uTM
e13, hexadecapole

uTM
e14 interact constructively, determining a maximum in intensity.
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Figure 5.11 – Decomposition of the dimer mode ue1 1 at x = 0.892 in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each single-sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H̃‖|TM

e11nl (H
‖|TM
e11nl), defined in Eq. (5.7).

The mode ue1 1 has a zero total dipole moment and it cannot be excited by a
plane wave in the quasielectrostatic approximation. Nonetheless, in the presented
full-Maxwell scenario its coupling to the plane-wave is different from zero. This is
because the center-center distance between the two spheres is approximately one-third
of the wavelength: thus the incident wavelength undergoes a phase inversion during
its propagation within the dimer. The quasielectrostatic approximation also fails to
predict the scattering efficiency (Fig. D.1b in Appendix D): the quasielectrostatic
σsca features one peak which is due to the mode ue1 2 characterized by field lines all
oriented in the same direction.

0 1

ue1 4 uTMe12 uTMe13 uTMe14 uTMe11

0.38 0.21 0.201.0

z
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y
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4

Figure 5.12 – Decomposition of the dimer mode ue1 4 at x = 1.183, in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each single-sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H̃‖|TM

e14nl, defined in Eq. (5.7).
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5.4 Full wave hybridization in Ag and Si dimers

The dimer mode ue1 4, which is behind the second σsca peak, arises from the
interaction among the single-sphere modes shown in Fig. 5.12. The fundamental
electric quadrupole uTM

e12 and octupole uTM
e13 interact destructively in the proximity of

the gap and constructively within the region of each sphere opposite to the gap. A
minor contribution to the hybridization process also comes from uTM

e14 and uTM
e11.

As the edge-edge distance between the two spheres increases to R the scatter-
ing efficiency changes (Fig. D.6 in Appendix D). The first σsca peak is even more
dominated by the fundamental electric dipole (Fig. D.7 in Appendix D). The mode
responsible for the second peak remains the fundamental electric quadrupole (Fig.
D.8 in Appendix D).

5.4.2 Longitudinally polarized Si dimer

Now, we study the scattering from a homo-dimer of the same geometry but made of
silicon, with permittivity εR = 16. We investigate the modes excited by a plane wave
Einc polarized along the dimer axis ẑ, while it is propagating along the transverse
direction x̂, i.e., Einc = E0e

i ω
c0
xẑ.

In Fig. 5.13, we plot the scattering efficiency obtained by the material-
independent-mode expansion (4.16) (black line) and by the direct GMM calculation
[172] (red dots) as a function of the size parameter x. It is worth to note that σsca

does not depend on R and λ separately, but only on x, because we have assumed that
Si is nondispersive in time. We also show in color the partial scattering efficiencies
of the eight dominant dimer modes, whose real projections on the y = 0 plane are
represented on the right.

In Fig. 5.14, we show the σsca calculated by using only these 8 dimer modes, and
the agreement with the GMM remains satisfactory.

We list in Tab. 5.2 the resonant size parameter of the eight dominant modes and
the corresponding resonant frequency (assuming R = 100 nm), eigen-permittivity,
residuum, and residua lower bound. Looking at the residuum of the considered
modes, we note that the plasmonic mode ue0 1 is the only (inherently) broad mode,
according to the definition in Eq. (4.18). Instead, all other dominant dielectric modes
are narrow: for these modes, there always exists a value of x in correspondence of
which Re {ηmq/x2} = εR,Si, as it is also apparent from the fourth column of Tab. 5.2.
As a consequence, the partial scattering efficiency of the mode ue0 1 is very broad
compared to the ones of dielectric modes. Nevertheless, as for the scattering from
a single sphere analysed in Sec. 4.6, the mode ue0 1 has to be considered because it
strongly couples to the plane wave and it also has a stronger radiative strength [79].
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Figure 5.13 – Scattering efficiency σsca of a Si-spheres homo-dimer as a function of the size
parameter x, obtained via material-independent-mode expansion (black line) and by direct-
calculation (red dots). The radius of each sphere is R, the edge-edge distance ∆ = R/4.
The dimer is excited by a plane wave polarized along the dimer’s axis ẑ and propagating
along the transverse direction x̂. Partial scattering efficiency (in color) of eight dominant
dimer modes whose xz-plane projections (real part) are shown on the right.

Furthermore, only the dielectric modes and the fundamental electric dipole mode of
the dimer are needed to correctly reproduce σsca: the plasmonic modes cannot be
resonantly excited in homogeneous dielectric objects and, except for the fundamental
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Figure 5.14 – Scattering efficiency σsca of a Si-spheres homo-dimer as a function of the
size parameter x, obtained via the material-independent-mode expansion considering all
the dimer modes (black line), only the eight dimer modes shown on the right of Fig. 5.13
(green line), and by the GMM direct-calculation (red dots). The radius of each sphere is
R, the edge-edge distance ∆ = R/4. The dimer is excited by a plane wave polarized along
the dimer axis and propagating orthogonally to it.

electric dipole, their coupling with a plane wave is weak [65, 48]. In Fig. D.3 in
Appendix D, we display the scattered electric field in correspondence of the seven
σsca peaks. It is apparent that at any σsca peak, the near-field distributions only
roughly resemble the modes that dominate the scattering response.

As shown in Fig. 5.15, the dimer mode ve1 2, which is responsible for the first peak
of σsca, arises from the hybridization of the fundamental magnetic dipole vTE

o111 and
the fundamental and second-order electric dipoles, i.e., uTM

e11, vTM
e111. The modes uTM

e11

and vTM
e111 constructively interact with vTE

o111 within the region of each sphere located in
between the gap and the center. The net effect is to move the vortex core away from
the gap. We also introduce in Fig. 5.16 the frequency hybridization diagram for the
dimer mode ve1 2, where we show in the middle the dimer mode, on the left and on the
right the TE and TM single-sphere modes that take part in the hybridization. The
vertical position at which both the single-sphere and dimer modes are centred in the
diagram is proportional to their resonant frequency obtained assuming R = 100 nm
(Tab. 5.2 and, for instance, Tabs. 4.1-4.3). We also show their hybridization weights.

Going back to the analysis of Fig. 5.13, the shoulder to the right of the first peak
is due to the plasmonic mode ue0 1. Then we found a dip of σsca, which is due to the
destructive interference between the dimer modes ve0 3 and ue0 1.

The next peak, labeled with (3), is mainly due to the mode ve2 1, with minor
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mode xres
ωres

[Prad/s] ξmq ρ ρ̄ # peak xpeak

ve1 2 0.760 2.29 16.11-2.23i 0.149 0.146 (1) 0.771
ue0 1 1.696 5.08 -0.70 - 3.96i 1.038 0.919 (2) 0.901
ve0 3 1.126 3.37 15.67-2.50i 0.168 0.168 (3) 1.099
ve2 1 1.099 3.29 15.99-0.32i 0.021 0.021 (3) 1.099
ve1 8 1.366 4.09 16.00-0.26i 0.017 0.017 (4) 1.336
ve3 1 1.421 4.26 15.98-0.05i 0.004 0.003 (5) 1.423
ve1 12 1.571 4.71 15.96-1.02i 0.068 0.068 (6) 1.584
ve1 14 1.692 5.07 15.99-0.07i 0.005 0.005 (7) 1.688

Table 5.2 – Values of x minimizing the residua, corresponding value of the resonant
frequency (when R = 100nm), eigen-permittivity ξmq, and residuum and residua lower
bound of the dimer modes which dominate the scattering efficiency of Fig. 5.13. For a
plasmonic mode, we have ξmq = εmq, while for a dielectric mode ξmq = ηmq/x

2. The
positions of the peaks of the total scattering efficiency are also shown.
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Figure 5.15 – Decomposition of the dimer mode ve1 2 at x = 0.771 in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each single-sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H̃⊥|TM

e11 11, H
⊥|TM
e11 11, H

⊥|TE
o11 11, defined in Eq. (5.7).

contributions from the modes ve0 3 and ue0 1. The dimer modes ve2 1 and ve0 3 arise
from the dominant contributions of the fundamental magnetic quadrupole vTE

o121 and
of the second-order electric dipole vTM

e111, respectively. Then we found another low
scattering region, which is once again due to the destructive interference between the
dimer modes ve0 3 and ue0 1.

The dimer mode behind the σsca peak labelled with (4) is ve1 8. As shown in
Fig. 5.17, it arises from the hybridization among the second-order magnetic dipole
vTE
o112, the second-order electric quadrupole vTM

e121, the third order electric dipole vTM
e112,
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Figure 5.16 – Frequency levels describing the hybridization of the TE and TM modes of a
100 nm single-sphere into the dimer mode ve1 2. The vertical axis represents the frequency
(expressed in Prad/s). Next to each single-sphere mode we report its hybridization weight
H̃
⊥|TM
e11 11, H

⊥|TM
e11 11, H

⊥|TE
o11 11, defined in Eq. (5.7).

and the fundamental magnetic quadrupole vTE
o121. In particular, vTE

o112 and vTM
e121 con-

structively interact along the horizontal diameter of both spheres and destructively
along the vertical diameter of both spheres. The “horseshoe” shape of this dimer
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Figure 5.17 – Decomposition of the dimer mode ve1 8 at x = 1.366 in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each single-sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H⊥|TM

e18nl( H
⊥|TE
o18nl), defined in Eq. (5.7).

mode is determined by the action of the fundamental magnetic quadrupole vTE
o121

that constructively interferes with the second-order magnetic quadrupole vTE
o122 in

the hemispheres of the two spheres closer to the gap, and destructively interferes in
the remaining hemispheres. The contribution of the third order electric dipole vTM

e112

pushes the vortex core within each sphere toward the gap, because it destructively
interacts with vTE

o112 in the semicircle closer to the gap, and constructively interacts
in the opposite half. In Fig. 5.18 we also show the frequency hybridization diagram
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Figure 5.18 – Frequency levels describing the hybridization of the TE and TM modes of a
100 nm single-sphere into the dimer mode ve1 8. The vertical axis represents the frequency
(expressed in Prad/s). Next to each single-sphere mode we report its hybridization weight
H
⊥|TM
e18nl ( H

⊥|TE
o18nl), defined in Eq. (5.7).

for the dimer mode ve1 8.
In Fig. 5.19 we show the hybridization diagrams of the remaining modes of Fig.

5.13. Specifically, the dimer mode ue0 1 (second peak) arises from the hybridization
among the fundamental electric dipole uTM

e01, quadrupole uTM
e02, octupole uTM

e03, hexade-
capole uTM

e04, and the second-order electric dipole vTM
e011. The dimer mode ve0 3 (third

peak) is dominated by the second-order electric dipole vTM
e011. The dimer mode ve2 1

(third peak) is dominated by the fundamental magnetic quadrupole vTE
o221. The dimer

mode ve3 1 (fifth peak) is dominated by the fundamental magnetic octupole vTE
o331. No

other mode besides the magnetic octupole is involved in the hybridization process, in
these three cases. The mode ve1 12 (sixth peak) arises from the hybridization of the
second-order magnetic dipole vTE

o112, second-order electric quadrupole vTM
e121, second

vTM
e111 and third order vTM

e112 electric dipoles, second-order magnetic quadrupole vTE
o122,

and fundamental magnetic octupole vTE
o131. Finally, the mode ve1 14 (seventh peak) re-

sults from the hybridization of second-order magnetic dipole vTE
o122, third order electric

dipole vTM
e112, and second-order electric quadrupole vTM

e121.
As for the Ag dimer, when we increase the edge-edge distance, the dimer modes

change. Nevertheless, the single-sphere modes used as basis set remain the same,
while the hybridization weights vary. For instance, when the edge-edge distance
increases from R/4 to R the contribution of the fundamental magnetic dipole to
the dimer mode that causes the first σsca peak increases compared to the remaining
modes (Fig. D.10 in SI). This mode is the only one to survive when the distance
goes to infinity (Fig. 4.9). Similarly, the dimer mode ve1 7 associated to the peak (4)
(Fig. D.11 in Appendix D), arises mainly from the second-order electric quadrupole
vTM
e121, while the second-order magnetic dipole vTE

o112 that was dominant for edge-edge
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Figure 5.19 – Decomposition of the dimer modes ue0 1, ve0 3, ve2 1, ve3 1, ve1 12, ve1 14,
at x = 0.901, 1.099, 1.099, 1.423, 1.584, 1.688, respectively, in terms of hybridizing single-
sphere modes (real part of the projection on the y = 0 plane). Each single-sphere modes
is multiplied by the expansion coefficients of Eq. (5.4). Above each single-sphere mode we
also show its hybridization weight, defined in Eq. (5.7).

distance of R/4 (Fig. 5.17) now plays a minor role. The mode vTM
e121 is the only to

survive when the distance goes to infinity (Fig. 4.9).
For the sake of completeness, in Fig. D.5 of Appendix D we show the scattering

efficiency and the dominant modes for a transversely polarized Si homo-dimer.

5.5 Conclusions

We have investigated the resonances and the resonance modes in the electromagnetic
scattering from a dimer of spheres by using the full-retarded material-independent
modes. The electromagnetic scattering response of the dimer is described by a set of
dimer modes. Each dimer mode is seen as the result of the hybridization of the modes
of two constituent spheres, whose importance is quantified by hybridization weights.
As we vary the gap size, although the dimer modes change, they are still represented
in terms of the same set of single-sphere modes, but with different hybridization
weights. This study represents the first full-Maxwell theory of hybridization in Si
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dimers, and it also constitutes an extension of the plasmon-mode hybridization theory
to the full-retarded scenario. In the full-wave regime every dimer mode arises from
the complex superposition of different single-sphere modes. Through the loci spanned
by the dimer eigen-permittivities in the complex plane by varying the gap size, we
provide a method to identify and justify the dominant single-sphere modes in the
hybridization mechanism.

As for the full-wave modes of a sphere, investigated in the previous chapter, the
modes are classified according to their behaviour in the long-wavelength limit, into
plasmonic and dielectric modes. The dielectric modes cannot be resonantly excited
in metal dimers, because their eigenpermittivities always have positive real part. In
general, the plasmonic and dielectric modes of the dimer arise from the hybridization
of both the plasmonic and dielectric modes of the isolated-sphere.

We parametrically investigate the eigenvalues associated to both plasmonic and di-
electric modes as a function of the gap-size. In particular, starting from the very large
gap size, we determine the shift of eigenvalue as the gap-size reduces. In the full-wave
regime, we found that retardation effects play an important role, in particular the
constructive (destructive) interference between the current densities induced within
the two spheres determine a increase (decrease) of the amplitudes of the imaginary
part of the eigenpermittivities. Thus the eigenvalues will describe spiral trajectories
on the complex plane as a function of the gap-size.

By using this theoretical framework, we investigate the resonant scattering from
metal and dielectric dimers with dimensions of the order of the incident wavelength
under different plane-wave illuminations and different gap sizes. The scattering effi-
ciency can be accurately described by a very limited number of dimer modes. Then,
we quantitatively decompose these dimer modes into the modes of the constituent
spheres, providing the corresponding hybridization weights. The plasmonic dimer
modes are sufficient to describe the far-field scattering from metal dimers. On the
contrary, the far field scattering from dielectric dimers involves resonant dielectric
dimer modes and off-resonance plasmonic dimer modes. In dielectric dimers, in-
terference effects between dielectric and plasmonic dimer modes may determine a
suppression of the scattering cross section.

To offer an intuitive understanding we extend the hybridization diagrams intro-
duced by Prodan et al. to the full-Maxwell analysis, showing the hybridization of the
electric and magnetic modes of an isolated Si sphere into the dimer modes and the
corresponding frequency levels.
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Appendix A

Multipoles

A.1 Three-dimensional objects

The electric dipole moment Ph of the three-dimensional electro-quasistatic current
mode j‖h of an object occupying a domain Ω with boundary ∂Ω is defined as

Ph =
ˆ

Ω
j‖hdV =

˛
∂Ω

r
(
j‖h · n̂

)
dS, (A.1)

where r → r/lc and Ω are the coordinates and domain, respectively, scaled by the
characteristic linear lenght lc of the region Ω.
The electric quadrupole tensor ←→Q‖E|h is defined as

←→Q‖E|h =
ˆ

Ω

(
r j‖h + j‖h r

)
dV =

˛
∂Ω

(
j‖h · n̂

)
rr dS. (A.2)

With respect to the standard definitions of surface charge density and electric multi-
poles [149], the prefactor 1/(−iω) is omitted.

The magnetic dipole moment Mh of the h-th magneto-quasistatic current mode
j⊥h is defined as

Mh = 1
2

ˆ
Ω

r× j⊥h dV, (A.3)

the toroidal dipole P⊥E2|h is defined as

P⊥E2|h = 1
6

ˆ
Ω

r× (j⊥h × r) dV, (A.4)
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A.2 Translational invariant objects

and the magnetic quadrupole tensor ←→Q⊥M|h as

←→Q⊥M|h = 1
3

ˆ
Ω

[(r× j⊥h )r + r(r× j⊥h )] dV. (A.5)

A.2 Translational invariant objects

The electric dipole moment P‖h of the two-dimensional electro-quasistatic current
mode j‖h of a translational invariant object with cross-section Σ and linear boundary
∂Σ is defined as

P‖h =
ˆ

Σ
j‖hdS =

˛
Σ

r
(
j‖h · n̂

)
dl, (A.6)

where r → r/lc and Σ are the coordinates and domain, respectively, scaled by the
characteristic linear lenght lc of the region Σ.
The electric quadrupole tensor ←→Q‖E|h is defined as

←→Q‖E|h =
ˆ

Σ

(
r j‖h + j‖h r

)
dS =

˛
∂Σ

(
j‖h · n̂

)
rr dl. (A.7)

The magnetic dipole moment M⊥
h of the h-th magneto-quasistatic current mode

j⊥h is defined as
M⊥

h = 1
2

ˆ
Σ

r× j⊥h dS, (A.8)

the toroidal dipole p⊥E2|h is defines as

P⊥E2|h = 1
6

ˆ
Σ

r× j⊥h × r dS, (A.9)

and the magnetic quadrupole tensor ←→Q⊥M|h as

←→Q⊥M|h = 1
3

ˆ
Σ

[(r× j⊥h )r + r(r× j⊥h )] dS. (A.10)
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Appendix B

Sphere

B.1 Quasistatic regime

B.1.1 Solid sphere

We consider a sphere of radius R and a characteristic dimension `c equal to the radius
`c = R. We utilize a polar spherical reference frame (see Fig. 4.1), and we normalize
the coordinates r = (r, ϑ, φ) by the chosen characteristic length `c, i.e. r→ r/R, and
hence r ∈ [0, 1].

The electro-quasistatic modes j‖pmn have the following expression

j‖e
omn

(r, ϑ, φ) = 1
√
αmn

 cosmφ
sinmφ

nPm
n (cosϑ) r̂ +

 cosmφ
sinmφ

 dPm
n (cosϑ)
dϑ

ϑ̂

+
 − sinmφ

+ cosmφ

mPm
n (cosϑ)

sinϑ φ̂

 rn−1, (B.1)

where the subscripts p = e and p = o denote even and odd, Pm
n are the associated

Legendre functions of the first kind of degree n and orderm as defined and normalized
in [173]. The prefactor αmn guarantees that ‖j‖e

omn
‖2 = 1, and has the expression

αmn = 2πn (δm + 1) (m+ n)!
(2n+ 1) (n−m)! , (B.2)

in which δm is the Kronecker delta.
The magneto-quasistatic modes are divided in two subsets. The first one is com-
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B.1 Quasistatic regime

posed by the A⊥-modes j⊥TE
pmnl, which have the form

j⊥TE
e
omnl

(r, ϑ, φ) = 1√
βmnl

m
 − sinmφ

+ cosmφ

 Pm
n (cosϑ)

sinϑ ϑ̂

−

 cosmφ
sinmφ

 dPm
n (cosϑ)
dϑ

φ̂

 jn (zn−1,l r) , (B.3)

where zn,l is the l-th zero of the n-th order spherical bessel function jn, and the
prefactor βmnl, which guarantees that ‖j⊥TE

e
omnl
‖2 = 1, is

βmnl = π (δm + 1) n (n+ 1) (m+ n)!
(2n+ 1) (n−m)! j

2
n (zn−1,l) . (B.4)

The second one is made of the TM modes j⊥TM
pmnl

j⊥ TM
e
omnl

(r, ϑ, φ) = 1
√
γmnl


 cosmφ

sinmφ

n (n+ 1)Pm
n (cosϑ) jn (znl r)

znl r
r̂

+
 cosmφ

sinmφ

 dPm
n (cosϑ)
dϑ

1
znl r

d

dr
[rjn (znlr)] ϑ̂

+m
 − sinmφ

+ cosmφ

 Pm
n (cosϑ)

sinϑ
1

znl r

d

dr
[rjn (znlr)] φ̂

 , (B.5)

where the prefactor γmnl, which guarantees that ‖jTM⊥
e
omnl
‖2 = 1, is

γmnl = π (1 + δm) n (n+ 1) (n+m)!
(2n+ 1) (n−m)! j

2
n−1 (znl) . (B.6)

The EQS and MQS eigenvalues have the following expression:

χ‖n = −2n+ 1
n

,

κ⊥TE
nl = (zn−1,l)2 ,

κ⊥ TM
nl = (zn,l)2 , ∀n ∈ IN, l ∈ IN.

(B.7)
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B.1 Quasistatic regime

B.1.2 Spherical shell

The EQS modes j‖e
omn

of a closed spherical surface have the following expression

j‖e
omn

(ϑ, φ) = 1√
ᾱmn

 cosmφ
sinmφ

 dPm
n (cosϑ)
dϑ

ϑ̂

+
 − sinmφ

+ cosmφ

mPm
n (cosϑ)

sinϑ φ̂

 , (B.8)

The prefactor ᾱmn = αmn(1 + δm), with αmn given in Eq. (B.2), guarantees that
‖j‖e
omn
‖2

Σ = 1. The plasmonic eigenvalues are χ‖n = − 2n+ 1
n(n+ 1) , ∀n ∈ IN.

The MQS modes j⊥e
omn

have the form

j⊥TE
e
omn

(r, ϑ, φ) = 1√
β̄mn

m
 − sinmφ

+ cosmφ

 Pm
n (cosϑ)

sinϑ ϑ̂

−

 cosmφ
sinmφ

 dPm
n (cosϑ)
dϑ

φ̂

 , (B.9)

the prefactor β̄mn, which guarantees that ‖j⊥e
omnl
‖2

Σ = 1, has the following expression

β̄mn = 2π (δm + 1) n (n+ 1) (m+ n)!
(2n+ 1) (n−m)! . (B.10)

The dielectric eigenvalues are κ⊥n = (2n+ 1), ∀n ∈ IN.
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B.2 Full-wave regime

B.2 Full-wave regime

B.2.1 Material-independent modes

The plasmonic εTM
n and the dielectric ηTM

nl , η
TE
nl are found by solving the following equa-

tions √
εTM
n

ψn(
√
εTM
n x)

ψ′n(
√
εTM
n x)

= ξn(x)
ξ′n(x) ,

√
ηTM
nl

ψn(
√
ηTM
nl )

ψ′n(
√
ηTM
nl )

= xξn(x)
ξ′n(x) ,

1√
ηTE
nl

ψn(
√
ηTE
nl )

ψ′n(
√
ηTE
nl )

= ξn(x)
xξ′n(x) ,

(B.11)

which are obtained by zeroing the denominator of the standard Mie theory coefficients
an (for εTM

n and ηTM
nl ) and bn (for ηTE

nl ) for the scattering from a plane wave, given in
Eqs. (4.56) and (4.57), respectively, in [87].

We recast the equations above in the following power series expansions:

Pn
(
εTM
n

)
=
∞∑
h=0

pnh(x)
(
εTM
n − 1

)h
= 0,

QTM
n

(
ηTM
nl

)
=
∞∑
h=0

qTM
nh(x)

(
ηTM
nl − x2

)h
= 0,

QTE
n

(
ηTE
nl

)
=
∞∑
h=0

qTE
nh(x)

(
ηTE
nl − x2

)h
= 0,

(B.12)

where the coefficients pnh, qTM
nh, and qTE

nh are defined for any given n, x, and h ≥ 1 as
follows:

pn0 = qTM
n0 = qTE

n0 = h
(1)
n+1 (x) jn (x)− h(1)

n (x) jn+1 (x) ,

qTE
nh = − (−1)h−1

xh+1 (h− 1)!
1

(2)h−1

[
h(1)
n (x) jn+h (x)

]
+

(−1)h

h!

(
x

2

)h [
h

(1)
n+1 (x) jn+h (x)− h(1)

n (x) jn+h+1 (x)
]
,

qTM
nh = qTE

nh −
(−1)h−1

xh+1 (h− 1)!
1

(2)h−1

[
xh(1)

n (x)
]′

x
jn+h−1 (x) ,

pnh = x2h qTE
nh −

(−1)h−1

(h− 1)!

(
x

2

)h−1
[
xh(1)

n (x)
]′

x
jn+h−1 (x) ,

(B.13)

jn are the spherical Bessel functions of the first kind, hn are the Hankel functions of
the first kind.
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B.2 Full-wave regime

In Fig. B.1, we plot the loci spanned in the complex plane by the plasmonic
eigen-permittivities εTM

n , for n = 1, . . . , 25.

−8 −6 −4 −2 0 2 4 6

0
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−4
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−10

−12
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n

Re{εn}

Im
{ε

n
}

Figure B.1 – Loci spanned in the complex plane by the plasmonic eigen-permittivities εTM
n

of a homogeneous sphere by varying x ∈ [0,∞), for n = 1, 2, ..., 25.

The expression of the full-wave material-independent modes uTM
pmn, vTM

pmnl, vTE
pmnl is

uTM
pmn(r) = N(1)

pmn

(√
εTM
n xr

)
, (B.14)

vTM
pmnl(r) = N(1)

pmn

(√
ηTM
nl r

)
, (B.15)

vTE
pmnl(r) = M(1)

pmn

(√
ηTE
nl r

)
, ∀r ∈ Ω (B.16)

where N(1)
pmn and M(1)

pmn are the VSWFs regular at the center of the sphere. The
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B.2 Full-wave regime

general explicit expressions of the vector spherical wave functions (VSWF) are [87]:

Ne
omn

(ξ r) = n (n+ 1)
 cosmφ

sinmφ

Pm
n (cosϑ) zn (ξ r)

ξ r
r̂

+
 cosmφ

sinmφ

 dPm
n (cosϑ)
dϑ

1
ξ r

d

dr
[rzn (ξ r)] ϑ̂

+m

 − sinmφ
cosmφ

 Pm
n (cosϑ)

sinϑ
1
ξ r

d

dr
[rzn (ξ r)] φ̂,

Me
omn

(ξ r) = m

 − sinmφ
cosmφ

 Pm
n (cosϑ)

sinϑ zn (ξ r) ϑ̂

−

 cosmφ
sinmφ

 dPm
n (cosϑ)
dϑ

zn (ξ r) φ̂,

(B.17)

where the subscripts e and o denote even and odd, and Pm
n (·) are the associated Leg-

endre function of the first kind of degree n and order m. Moreover, the superscripts
(1) and (3) are appended to the functions Me

omn
and Ne

omn
to denote the function zn,

namely Bessel functions of the first kind jn and Hankel functions of the first kind hn,
respectively.

B.2.2 Scattering coefficients

The expansion coefficients ATM
n , B

TM
nl , B

TE
nl for the scattered electric field in Eq. (4.38)

have the following expression

ATM
n = −2i

En

ÃTM
n

(εTM
n − εR) , (B.18)

BTM
nl = −2i

En

B̃TM
nl

(ηTM
nl − x2εR) , (B.19)

BTE
nl = −2i

En

B̃TE
nl

(ηTE
nl − x2εR) , (B.20)
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B.2 Full-wave regime

where

ÃTM
n = ε3/2

n

(εn − 1)xh(1)
n (x)jn(

√
εTM
n x) {q2

n(x)ε2
n + [qn(x) + x2]εn − n(n+ 1)}

, (B.21)

B̃TM
nl = x4 (ηTM

nl )
3/2

(ηTM
nl − x2)h(1)

n (x)jn(
√
ηTM
nl )

{
q2
n(x) (ηTM

nl )
2 + [qn(x) + x2]ηTM

nl − n(n+ 1)x4
} ,
(B.22)

B̃TE
nl = xηTE

nl

(ηTE
nl − x2)h(1)

n (x)jn(
√
ηTE
nl ) {ηTE

nl + gn(x) [xgn(x)− (2n+ 1)]x}
, (B.23)

with

gn(x) = h
(1)
n+1(x)
h

(1)
n (x)

,

qn(x) = n+ 1− xgn(x).
(B.24)
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Appendix C

Quasistatic modes of some
translational invariant structures

C.1 Circular cylinder

We consider an infinite cylinder with circular cross-section of radius R and a char-
acteristic dimension `c equal to the radius `c = R. We shall use a cylindrical polar
reference frame (Fig. C.1), and we normalize the in-plane coordinates r = (r, φ)
by the chosen characteristic length `c, i.e. r → r/R, and hence r ∈ [0, 1]. The

x

y

z

r

φ

R

Figure C.1 – Cylindrical polar coordinate system. The z-axis is oriented along the cylinder
axis.

electro-quasistatic normalized modes j‖pn have the following expression

j‖e
on

(r, φ) =
 cosnφ

sinnφ

 r̂ +
 sinnφ

cosnφ

 φ̂
√n

π
rn−1, (C.1)

where the subscripts p = e and p = o denote even and odd, and n ∈ IN is the mode
multipolar order. The EQS eigen-susceptibilities χ‖n are all equal to −2 [83].

The magneto-quasistatic modes are divided into two subsets. The first one is

148



C.2 Cylinder dimer

composed by modes whose vector field lies in the cross-sectional plane, and hence
they are called TE modes. We denote them with j⊥TE

pnl , and they are in the form

j⊥TE
e
onl

(r, φ) =
 cosnφ

sinnφ

nJn(Zn,lr)
rZn,l

r̂

+
 sinnφ

cosnφ

(Jn−1(Zn,lr)− n
Jn(Zn,lr)
rZn,l

)
φ̂

 1
πJn−1(Zn,l)

, (C.2)

where n = IN0, l ∈ IN, Jn is the n-th order Bessel function of the first kind, and Zn,l
is the l-th zero of Jn. They have unit norm over the cylinder cross-section. The MQS
TE eigenvalues κ⊥TE

nl are κ⊥TE
nl = Z2

n,l.
The second set is made of normalized modes directed along the cylinder axis ẑ.

We denote them with j⊥TM
pnl , and they have the following expression

j⊥TM
e
onl

(r, φ) =
√

2
π

 cosnφ
sinnφ

 Jn(Zn−1,lr)
Jn(Zn−1,l)

ẑ, (C.3)

where n = IN0, l ∈ IN. The MQS TM eigenvalues κ⊥TM
nl are κ⊥TM

nl = Z2
n−1,l.

The quasistatic eigenvalues can be obtained by zeroing the denominator of the
an (for χ‖n and κTE⊥

nl ) and bn (for κTM⊥
nl ) coefficients for the scattering from a plane

wave, given in Eqs. (8.32) and (8.30), respectively, in [87], in the limit x → 0. As
for the sphere, the full-wave plasmonic and dielectric eigenvalues can be found by
following these solutions as x varies.

C.2 Cylinder dimer

We now consider only the electroquasistatic modes of a cylinder homo-dimer with gap
size δ and radius R, and total linear dimension D, as sketched in Fig. C.2. We choose
the radius of the smallest circle enclosing the dimer cross-section as characteristic
length `c of the object, i.e. `c = D/2. Accordingly, the object size parameter x is
x = ω

c0

D

2 . We shall use a bipolar coordinate system (u, v), which are related to the
rectangular coordinates (x,y) by the formulas [174]:

x = R sinh u
sinhµ(cosh u− cos v) , y = R sin v

sinhµ(cosh u− cos v) , (C.4)
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C.2 Cylinder dimer

where −∞ ≤ u ≤ ∞, 0 ≤ v < 2π, and

µ = arccosh
(

1 + δ

2R

)
, (C.5)

being arccosh the inverse hyperbolic cosine. The circular boundaries of the cylin-
der dimer coincide with the lines at u = µ and u = −µ. We then normalize the
coordinates by the characteristic length `c, namely r→ r/(0.5D).

R

δ

D

y

x

Figure C.2 – Cross-section of two infinite identical circular cylinders.

The structure normalized electroquasistatic modes j‖±n have the following expres-
sion [83]:

j‖±n (u, v) =
√
n

8π (cosh u− cos v)

e−nu
(
e2nµ − 1

) v̂

 sinnv
cosnv

+ û

 cosnv
− sinnv

 , u ≥ µ

2
v̂

 sinnv
− cosnv

 sinhnu− û

 cosnv
− sinnv

 coshnu
 , −µ ≤ u ≤ µ

enu
(
e2nµ − 1

) −v̂

 − sinnv
cosnv

 sinnv + û

 cosnv
sinnv

 cosnv
 , u ≤ −µ

(C.6)

where n ∈ IN. The corresponding EQS eigen-permittivities are mirror symmetric, i.e.
ε‖+n ε‖n = 1, and have the following expression:

ε‖+n = − cothnµ, (C.7)
ε‖−n = − tanhnµ. (C.8)

The eigen-susceptibilities can be obtained as χ‖±n = ε‖±n − 1. Both the modes and the
eigenvalues depend only on the ratio between the gap size δ and the radius R. The
modes j‖+n and j‖−n are bright and dark, respectively, as they exhibit non-zero and
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C.2 Cylinder dimer
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Figure C.3 – Bright (ε‖+n ) and dark (ε‖−n ) eigen-permittivities of a cylinder homo-dimer
with radius R and gap-size δ, as a function of δ/R. On the right, field lines of the first EQS
bright j‖+n and dark j‖−n current modes for δ/R = 1/2.

zero electric dipole moment, defined in Eq. (A.6).
In Fig. C.3, we plot the eigen-permittivities ε‖+n (black) and ε‖−n (red) as a func-

tion of the relative gap size δ/R, parametrized by the mode index n, and an example
of bright and dark modes for δ/R = 0.5. For any relative gap size, as n → ∞,
all the eigen-permittivities tend to −1, which is the accumulation point of trans-
lational invariant plasmonic objects, regardless of their shape [71]. In the limit of
well separated cylinders, i.e. δ/R → ∞, all the eigen-susceptibilities approach −1,
and the scattering problem reduces to that of two non-interacting cylinders, whose
eigen-susceptibilities are all located at −1. As δ decreases, the bright and dark eigen-
susceptibilities shift toward more negative and positive values, respectively. Lower
order eigen-susceptibilities shift more than high order eigen-susceptibilities.

The electric dipole moment Pn of the bright modes j‖+n has the following expres-
sion:

Pn =

√√√√8π δ/R

δ/R + 4k e−nµ x̂, (C.9)

where x̂ is the unit vector directed along the structure axis (see Fig. C.2). Their
radiation Q factor Q‖n is obtained by applying Eq. (2.127) of the main text:

x2
nQ‖n = 8

|χ‖+n |
1
|Pn|2

= 4 + δ/R

2πn δ/R
(
e2nµ − 1

)
. (C.10)
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Appendix D

Sphere dimer

D.1 Methods

In this methods section, we show the derivation of the modes of a sphere dimer, by
representing each dimer mode in terms of a weighted combination, i.e. hybridization
of single-sphere modes. We also provide the explicit expressions for the corresponding
hybridization coefficients given in Eq. 5.4.

At the very basis of any extension of the Mie theory to sphere dimers lies the
vector spherical wave function (VSWF) addition theorem. This theorem enables
the representation of the radiating VSWFs centred on one origin as an expansion of
regular VSWFs centered on a different origin. The addition theorem was first derived
in Refs. [175, 176], and it was later combined with the Mie theory in Refs. [177, 178].
Subsequently, it was significantly improved by many authors including Borghese et
al. [179], Fuller et al. [180], and Mackowski [181, 182]. Very detailed introductions
can be found in Refs. [183, 184].

Let us consider the problem of scattering by a dimer of spheres in free space. The
geometry of the problem is sketched in Fig. 5.1. The spheres have radius R1 and R2,
respectively, and they occupy the regions Ω1 and Ω2, while the surrounding space is
denoted with Ω3. The sphere Ω1 is centred on the origin of a Cartesian coordinate
system O1r1 , while the sphere Ω2 is centred on the origin of a second Cartesian
coordinate system O2r2. The coordinate system O2r2 is obtained by translating the
coordinate system O1r1 through a distance D along the z axis. The dimer is aligned
along the direction of the z-axis in both coordinate systems. The size parameters
x1, x2 of the spheres are defined in Eq. (5.1). The two spheres have the same material
composition, which is assumed to be linear, nonmagnetic, isotropic, homogeneous in
time and space, nondispersive in space, and time-dispersive with relative permittivity
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D.1 Methods

εR (ω). The object is excited by a time harmonic electromagnetic field incoming from
infinity Re {Eince

−iωt}. The expression of the scattered field Esca in the whole space
IR3 is

Esca = (εR − 1)
∞∑
q=1

1
ξq − εR

〈wq,Einc〉Ω1∪Ω2

〈wq,wq〉Ω1∪Ω2

Wq, (D.1)

where ξq,wq are the q-th dimer material-independent mode and eigen-permittivity,
solution of the homogeneous problem in Eq. (4.4), and Wq its extension to IR3,
satisfying Eqs. (4.7)-(4.8). Here, 〈A,B〉Ω1∪Ω2 =

ˆ
Ω1∪Ω2

A ·BdV .

Exploiting the symmetry of the problem, we can expand the vector field W in
terms of the material-independent modes (extended in IR3) of the two isolated spheres
UTM
pmn, VTM

pmnl, VTE
pmnl, given in Eq. (4.26-4.28), where p ∈ {e, o} denote even and odd

azimuthal dependence, n ∈ IN is the mode multipolar order, 0 ≤ m ≤ n is the
azimhutal quantum number, and l ∈ IN is the mode order (see Sec. 4.2). Thus, the
dimer modes will depend on the indices p,m, and have the following expansion:

Wpm =
2∑
j=1

W(j)
pm, (D.2)

where W(j)
pm in the reference system Ojrj assumes the following form:

W(j)
pm (rj) =

∑
nl

{
aTM|j
pmn UTM|j

pmn(rj) +
∞∑
l=1

[
b

TM|j
pmnl V

TM|j
pmnl(rj) + b

TE|j
p̄mnl V

TE|j
p̄mnl(rj)

]}
, (D.3)

where
∑
nl

=
∞∑

n=max(1,m)

∞∑
l=1

, (̄·) is the binary operator defined as ē = o and ō = e. By

using Eqs. (4.26-4.28) into D.3 we obtain:

W(j)
pm (rj) =



∑
nl

[
aTM|j
pmnN(1)

pmn

(√
εTM
n xjrj

)
+ b

TM|j
pmnlN(1)

pmn

(√
ηTM
nl rj

)
+bTE|j

p̄mnlM
(1)
p̄mn

(√
ηTE
nl rj

)]
rj ∈ Ωj,

∑
nl

[(
aTM|j
pmnτ

TM|j
n + b

TM|j
pmnlσ

TM|j
nl

)
N(3)
pmn (xjrj)

+bTE|j
p̄mnlσ

TE|j
nl M(3)

p̄mn (xjrj)
]

rj ∈ Ωj
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(D.4)

where M(1)
pmn,N(1)

pmn and M(3)
pmn,N(3)

pmn are the regular and radiating VSWFs. given in
Eq. (B.17). We have defined the following binary operator (̄·): 1̄ = 2 and 2̄ = 1.
Furthermore, we have implicitly normalized the coordinates in the j-th sphere by its
radius (rj → rj/Rj).
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The field incident on the j-th sphere is only the field produced by the remaining
j̄-th sphere. Therefore, by applying Eq. (D.1) to the j-th sphere, we obtain:

aTM|j
pmn = ξ − 1

ε
TM|j
n − ξ

Pj
{
uTM|j
pmn,W(j̄)

pm

}
,

b
TM|j
pmnl = ξ − 1

η
TM|j
nl /x

2
j − ξ

Pj
{
vTM|j
pmnl,W(j̄)

pm

}
,

b
TE|j
p̄mnl = ξ − 1

η
TE|j
nl /x

2
j − ξ

Pj
{
vTE|j
p̄mnl,W(j̄)

pm

}
,

(D.5)

where the operator Pj {·} is defined in Eq. (5.5) of the main text.
In order to apply D.5, and take full advantage of the orthogonality among VSWFs,

we have to represent the field W(j̄)
pm in the reference system Oj̄rj̄. We now use the

VSWF translation-theorem, which enables us to represent the radiating VSWF cen-
tred at one origin, i.e. rj̄, as an expansion of regular VSWF centered about another
origin rj. It can be written as:

 M(3)
pmn

(
xjrj

)
N(3)
pmn

(
xjrj

)  =
∞∑

ν=max(1,m)

 Q
(j)
MMmnν (d) M(1)

pmν (xjrj)
Q

(j)
NNmnν (d) N(1)

pmν (xjrj)


+
 Q

(j)
MNpmnν (d) N(1)

pmν (xjrj)
Q

(j)
NMpmnν (d) M(1)

pmν (xjrj)

 (D.6)

where the translation-addition coefficients are given by [172, 185]:

Q
(j)
MMmνn(d) = Q

(j)
NNmνn(d) = 1

2

[
Amnmν (d, j → j) + Γmν

Γmn
A−mn−mν (d, j → j)

]
,

Q
(j)
MNo
emνn

(d) = Q
(j)
NMo
emνn

(d) = ± i2

[
Bmn
mν (d, j → j)− Γmν

Γmn
B−mn−mν (d, j → j)

]
,

(D.7)
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Γmn = (−1)m (n−m)!
(n+m)! ,

Amnmν (d, j → j) =


(−1)n+νEmν

Emn
C0

min (n,ν)∑
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ipCp a−mnνmq h
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Emν
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Cp = (ν + 1)ν + (n+ 1)n− p(p+ 1),

(D.8)

amnνmq are the Gaunt coefficients and bmnνmq are combinations of the Gaunt coeffi-
cients, whose expression can be found in Refs. [172, 185].
By substituting Eq. D.4 into Eq. D.5 and by using the Eq. D.6-D.8, and truncating
the summation indices n and l to the values Nmax and Lmax, we obtain three coupled
sets of homogeneous equations for any given pair of m ∈ IN0 and p = e, o

1
ε

TM|j
n − 1

{
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1
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n = max (1,m) , . . . , Nmax

l = 1, . . . , Lmax

j = 1, 2

 (D.11)

where χ = ξ−1 is the eigen-susceptibility of the two sphere. For any given m and
p indices, we have a system of Qmax = [6Lmax (Nmax −max (1,m) + 1)] equations. It
can be written in the matrix form:

T(m,p)y(m,p) = 1
χ(m,p) y(m,p) (D.12)

where ypm =
[
aTM|j
pmn, b

TM|j
pmnl, b

TE|j
pmnl

]T
is the vector containing the expansion coefficients.

We numerically evaluate the finite number of eigenvectors of the matrix T(m,p).
For any pair of indices p,m, we have the eigenvalues χ(p,m)

q for q = 1, . . . , Qmax.
Starting from the eigenvalues χ(p,m)

q , it is possible to obtain the dimer eigen-
permittivities ξpmq through the relation: ξpmq = χ(p,m)

q +1. The q-th eigenvector of the
discrete problem is denoted as ypmq, and its coefficients are [aTM|j

pmq n, b
TM|j
pmq nl, b

TM|j
pmq nl].

The electric-field modes can be obtained from the coefficient eigenvector ypmq by
using Eqs. D.2-D.4

W(j)
pmq =

2∑
j=1

W(j)
pmq, (D.13)

W(j)
pmq (rj) =

∑
nl

{
aTM|j
pmq n UTM|j

pmn(rj) +
∞∑
l=1

[
b

TM|j
pmq nl V

TM|j
pmnl(rj) + b

TE|j
p̄mq nl V

TE|j
p̄mnl(rj)

]}
,

(D.14)
In Eq. D.13 the mode Wpmq within each sphere is represented in terms of the
superposition of two contributions W(1)

pmq and W(2)
pmq centered in different reference

systems. In other words, the dimer mode within each sphere is represented in terms
of the isolated sphere modes of the sphere 1 and of the sphere 2. Nevertheless, it
is possible to overcome this problem by representing the dimer electric field mode
Wpmq within the j-th sphere exclusively in terms of the isolated sphere modes UTM

pmn,
VTM
pmnl, VTE

pmnl by using the translation-addition theorem for the VSWFs. Thus, we
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obtain the following representation of Wpmq:

Wpmq(rj) =
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(D.15)

where the coefficients {cTM|j
pmq n, d

TM|j
pmq nl, d
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(D.16)

D.2 Scattering from an Ag dimer in the quasielec-
trostatic approximation

In this section, we investigate the scattering response of the Ag homo-dimer studied
in Sec. 5.4.1, assuming this time the quasielectrostatic approximation. We use the
formulation proposed in Chap. 2. The radius of each sphere is R and the edge-edge
distance is ∆ = R/4. It is worth to remember that in the quasielectrostatic regime
only the bright modes, i.e. modes that have a nonvanishing total dipole moment,
contribute to the scattering efficiency.

Let us consider the scenario in which the dimer is excited by an electric field
polarized along the dimer axis (z-axis). In Fig. D.1a we show the corresponding
scattering efficiency. The two σsca peaks are caused by the modes j‖e0 1 and j‖e0 2.
These modes exhibit nonvanishing total dipole moments along the z-axis. Their
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(a)

(b)

Figure D.1 – Scattering efficiency σsca of an Ag-spheres homo-dimer as a function of the
spheres size parameter x = ωR/c0, obtained under the Q-ES approximation. The radius of
each sphere is R, the edge-edge distance is R/4. The dimer is excited by an electric field
polarized parallel to the dimer’s axis (a), and orthogonally to the dimer axis (b). Partial
scattering cross section (in color) of the two dominant dimer-modes whose projections on
the y = 0 plane are shown on the right.
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eigen-permittivities are ε‖e0 1 = −3.16 and ε‖e0 2 = −1.82. The corresponding resonant
frequencies are ω = 5.01 Prad/s and ω = 5.36 Prad/s, respectively, while the resonant
size parameters are x = 1.13 and x = 1.21, respectively which are highlighted in Fig.
D.1a with vertical dashed lines.

In Fig. D.1b we show the scattering efficiency of the Ag dimer when it is excited
by an electric field polarized transversely with respect to the dimer axis. The peak
of σsca is due to the mode j‖e1 2. The mode j‖e1 4 gives a very small contribution. Their
eigen-permittivities are ε‖e1 2 = −1.83, ε‖e1 4 = −1.40. The corresponding resonant
frequencies are 5.35 Prad/s and 5.46 Prad/s and the corresponding resonant size
parameters are x = 1.20 and x = 1.23, which are highlighted in Fig. D.1b with
vertical dashed lines.

D.3 Additional results on the homo-dimer with
gap size ∆ = R/4

D.3.1 Scattered electric field

We investigate the spatial distribution of the scattered electric field within the dimer
in correspondence of the peaks of the scattering efficiency for the scenarios investi-
gated in Sec. 5.4.

First, we consider the Ag homo-dimer with R = 67.5 nm and edge-edge distance
∆ = R/4. In Fig. D.2 we show the projection of the real part of the scattered electric
field on the plane y = 0, for an Ag dimer, in correspondence of the σsca peaks of Fig.
5.10 at x = 0.892 (left) and at x = 1.183 (right). The homo-dimer is excited by
a plane wave propagating parallel to the dimer axis and polarized orthogonally to
it. It is apparent that the near field distribution at x = 0.892 consistently differs
from the modes ue1 1 which dominates the far-field response. On the contrary, at
x = 1.183 (right) the near-field distribution closely resembles the mode ue1 4, which
is responsible for the second peak of σsca. Now, we investigate the scattering from
a homo-dimer of the same geometry but made of a dielectric material, i.e. Silicon,
with permittivity εR = 16. In Fig. D.3 we show the projection of the real part of
the scattered electric field on the plane y = 0 in correspondence of the σsca peaks of
Fig. 5.13, The homo-dimer is excited by a plane wave propagating orthogonally to
the dimer axis and polarized along it. It is apparent from Fig. D.3 the effect of the
propagation along the horizontal horizontal direction. Nevertheless, the electric field
distributions in correspondence of the peaks only roughly resemble the modes shown
in Fig. 5.13.
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Figure D.2 – Real part of the projection on the y = 0 plane of the scattered electric field
normalized by the incident magnitude E0, at the first and second peak of the scattering
spectrum of an Ag homo-dimer (shown in Fig. 5.10) when it is excited by a plane wave
polarized orthogonally to the dimer axis.
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Figure D.3 – Real part of the projection on the y = 0 plane of the scattered electric field
normalized by the incident magnitude E0 at the peaks of the scattering spectrum of a Si
homo-dimer (from left to right x = 0.771, x = 0.901 x = 1.099, x = 1.366, x = 1.423,
x = 1.584, x = 1.688). The homo-dimer is excited by a plane wave polarized along to the
dimer axis, and propagating orthogonally to it.

D.3.2 Scattering efficiencies

We consider the modes that are excited in an Ag homo-dimer by an incident field
that is polarized along the dimer’s axis ẑ, while it is propagating along the transverse
direction x̂. In Fig. D.4, we plot the scattering efficiency σsca obtained by using
the material-independent-mode (MIM) expansion of Eq. 4.16 (black line), and by
the direct GMM calculation (red dots) as a function of the size parameter x. The
two results are in very good agreement. We also show in color the partial scattering
efficiencies of three dominant dimer modes, whose real projections on the y = 0 plane
are represented on the right. The analysis of the partial scattering efficiences reveals
that the dimer mode ue0 1 dominates the total scattering efficiency at its first peak,
while the second peak is dominated by two different modes, viz. ue0 3 and ue1 3. Now,
we investigate the scattering from a homo-dimer of the same geometry but made of
a dielectric material, i.e. Silicon, with permittivity εR = 16.
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Figure D.4 – Scattering efficiency σsca of an Ag homo-dimer as a function of the spheres
size parameter x, obtained via material-independent-mode expansion (black line) and by
direct-calculation (red dots). The radius of each sphere is R = 67.5 nm, the edge-edge
distance ∆ = R/4 = 16.875 nm. The dimer is excited by a plane wave polarized along the
dimer axis ẑ and propagating along the transverse direction x̂. Partial scattering efficiencies
(in color) of the three dominant dimer-modes whose y = 0-plane projections are shown on
the right.

In Fig. D.5, we consider the scattering from a silicon homo-dimer. The incident
plane wave is propagating along the dimer axis ẑ, and polarized orthogonally to it. We
plot the scattering efficiency obtained by the material-independent-mode expansion
4.16 (black line) and by direct GMM calculation [172] (red dots) as a function of the
size parameter x. We also show in color the partial scattering efficiency of the eight
dominant dimer modes, whose real projections on the y = 0 plane are represented on
the right. The first and third peaks are dominated by the narrow dielectric modes
ve1 1 and ve1 5, respectively. The peaks from four to seven are dominated by the
narrow dielectric modes ve1 6, ve1 7, ve1 9, ve1 11, respectively. The second peak is due
to the interference of the broad plasmonic mode ue1 1 and the narrow dielectric mode
ve1 3, as confirmed by Tab. 4 in [140].

D.4 Scattering from an homo-dimer with gap size
∆ = R

In this section, we increase the gap size of the dimer from R/4 to R. Although, as we
vary the distance between two spheres, the dimer modes change, we still denote, by
an abuse of notation, the modes in this new configuration as upmq and vpm q. The
sorting of the dimer modes is induced by the corresponding eigen-permittivities. In
the limit x→ 0, the eigen-permittivities are real and they are sorted in an ascending
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Figure D.5 – Scattering efficiency σsca of a Si-spheres homo-dimer as a function of the
spheres size parameter x, obtained via the material-independent-mode expansion (black
line) and by direct-calculation (red dots). The radius of each sphere is R, the edge-edge
distance is ∆ = R/4. The dimer is excited by a plane wave propagating along the dimer’s
axis ẑ and polarized along the transverse direction x̂. Partial scattering efficiency (in color)
of eight dominant dimer-modes whose real part projections on the y = 0 plane are shown
on the right.

order. The same ordering is kept for finite values of x, by following each eigen-
permittivity on the complex plane as x increases.
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D.4.1 Transversely polarized Ag homo-dimer

We study a silver homo-dimer with R = 67.5 nm, and edge-edge separation 67.5nm.
We study a silver homo-dimer with R = 67.5 nm, and edge-edge separation ∆ =
67.5 nm. We consider the modes that are excited by an incident field polarized along
the x̂-direction, and propagating along the direction ẑ. In Fig. D.6, we plot the cor-
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Figure D.6 – Scattering efficiency σsca of an Ag-spheres homo-dimer as a function of the
spheres size parameter x = ωR/c0, obtained via the material-independent-mode expansion
(black line) and by direct-calculation [172] (red dots). The radius of each sphere is R =
67.5 nm, the edge-edge distance is ∆ = R = 67.5 nm. The dimer is excited by a plane wave
propagating along the dimer’s axis and polarized orthogonally to it. Partial scattering cross
section (in color) of two dominant dimer modes whose real part projections on the y = 0
plane are shown on the right.

responding scattering efficiency obtained from both the mode expansion 4.16 (black
line) and by direct GMM calculation (red dots). We also show in color the partial
scattering efficiency of the dimer modes ue1 1, ue1 4 dominating the scattering re-
sponse. Their projections on the y = 0 plane (real part) are shown on the right. The
dimer mode ue1 1, responsible for the first σsca peak originates from the hybridization
of the single-sphere modes shown in Fig. D.7. In particular, the fundamental electric
dipole uTM

e11 and quadrupole uTM
e12 and magnetic dipole vTE

o111 interfere destructively in
the close proximity of the gap, where the mode reaches a minimum.

The dimer mode ue1 4 arises from the interaction of the single-sphere modes shown
in Fig. D.8. The fundamental electric quadrupole uTM

e121 and octupole uTM
e13 interfere

destructively in the proximity of the gap. The fundamental electric quadrupole and
the electric dipole also interfere destructively in this region. The modes uTM

e12 and uTM
e13

interfere constructively in the region of each sphere opposite to the gap.
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Figure D.7 – Decomposition of the dimer mode ue1 1 at x = 0.874, in terms of hybridiz-
ing single-sphere modes (real part of the projection on the y = 0 plane). Each isolated
sphere mode is multiplied by the corresponding expansion coefficient of Eq. (5.4). Below
each single-sphere mode its hybridization weight H̃‖|TM

e11nl, H
‖|TM
e11nl, or H

‖|TE
e11nl is shown. The

nanoparticles distance is not to scale.

ue1 4 uTMe12 vTMe112

z

x
y

uTMe11 vTEo111

0 1 0.791.0 0.25 0.20

= + + +

(2)

R

Figure D.8 – Decomposition of the dimer mode ue1 4 at x = 1.165, in terms of hybridiz-
ing single-sphere modes (real part of the projection on the y = 0 plane). Each isolated
sphere mode is multiplied by the corresponding expansion coefficient of Eq. (5.4). Below
each single-sphere mode its hybridization weight H̃‖|TM

e14nl, H
‖|TM
e14nl, or H

‖|TE
e114nl is shown. The

nanoparticles distance is not to scale.

D.4.2 Longitudinally polarized Si homo-dimer

Now, we investigate the scattering from a homo-dimer of the same geometry but made
of silicon, with permittivity εR = 16. The incident plane wave is polarized along the
dimer axis ẑ, while it is propagating along the transverse direction x̂. In Fig. D.9, we
plot the scattering efficiency obtained by the material-independent-mode expansion
4.16 (black line) and by direct GMM calculation [172] (red dots) as a function of the
size parameter x. We also show in color the partial scattering efficiency of the seven
dominant dimer modes, whose real projections on the y = 0 plane are represented on
the right.

As shown in Fig. D.10, the dimer-mode ve1 2, which is responsible for the first
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Figure D.9 – Scattering efficiency σsca of a Si-spheres homo-dimer as a function of the
size parameter x, obtained via material-independent-mode expansion (black line) and by
direct-calculation (red dots). The radius of each sphere is R, the edge-edge distance ∆ = R.
The dimer is excited by a plane wave propagating orthogonally to the dimer and polarized
along the dimer axis. Partial scattering efficiency (in color) of seven dominant dimer modes
whose y = 0-plane projections are shown on the right.

peak of σsca, arise from the hybridization of the fundamental magnetic dipole vTE
o111,

and the fundamental and second order electric dipoles, i.e. uTM
e11, vTM

e111. The modes
uTM
e11 and vTM

e111 constructively interact with vTE
o111 within the two hemispheres located

closer to the gap and destructively in the remaining half-spheres. The net effect is to
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Figure D.10 – Decomposition of the dimer mode ve1 2 at x = 0.779 in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each isolated sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H̃⊥|TM

e12nl, H
⊥|TM
e12nl, H

⊥|TE
o12nl. The nanoparticles

distance is not to scale.

move the vortex core away from the gap in each sphere.
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Figure D.11 – Decomposition of the dimer mode ve1 7 at x = 1.372 in terms of hybridizing
single-sphere modes (real part of the projection on the y = 0 plane). Each isolated sphere
modes is multiplied by the expansion coefficients of Eq. (5.4). Below each single-sphere
mode we also show its hybridization weight H⊥|TM

e17nl (H
⊥|TE
o17nl). The nanoparticles distance is

not to scale.

The second σsca peak arise from the interference between the dimer-modes ue0 1

and ve0 3. The third peak is mainly due to the mode ve2 1. In Fig. D.11 we show the
dimer mode behind the fourth σsca peak, namely ve1 7. It arises from the hybridization
among the second order electric quadrupole vTM

e121, which dominates the hybridization,
and the second order magnetic dipole vTE

o112, the third order electric dipole vTM
e112, and

the fundamental magnetic quadrupole vTE
o121. We recall that for a gap size of R/4, the

corresponding dimer-mode obtained shown in Fig. 5.17 of the main manuscript, the
hybridization was dominated by the second order magnetic dipole.
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