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Introduction

One of the classical questions in spectral geometry is the problem of minimizing or maximizing
under some geometrical constraints one of the eigenvalues of the Laplace operator with different
boundary conditions. The first conjecture in this field goes back to the end of the 19th Century
and can be found in the famous book of Lord Rayleigh, The Theory of Sound [114]. The
author conjectured that, among all planar sets with fixed area, the disk minimizes the first
Dirichlet-Laplacian eigenvalue, that can be physically interpreted as the principal frequency of a
membrane fixed at its boundary. This conjecture was proved 50 years later by two simultaneous
but independent works, one by Faber [59] and one by Krahn [89], and it was completely solved
later with the work of Pélya and Szego [113]. Let Q < R™, with n > 2, be an open set with finite
Lebesgue measure, the first Dirichlet-Laplacian eigenvalue is the least positive A such that

—Au=Xu in
B (1)
u=>0 on 0N
admits non-trivial solutions in H& (€2). The classical result of Faber and Krahn for the first
Dirichlet eigenvalue \;(§2) states that, among measurable domains with fixed measure, A;(-) is
minimized by a ball; in other words, the following scaling invariant inequality holds:

A (QV(Q)Y" = A (B)V(B)", (2)

where by V(-) we denote the volume of a measurable set and by B a ball in R™. Moreover,
equality holds in if and only if 2 is equivalent to a ball.

On the other hand, when considering the Laplacian eigenvalue problem with Neumann bound-
ary condition, it makes sense to deal with a maximization problem. Let 2 € R™ be a bounded,
open and Lipschitz domain; the problem is

—Au = pu in

3
a—u=0 on o€, ®)
ov

where we denote by du/0v the outer normal derivative of u on 0€). In this case the first eigenvalue
w1 is always zero and the associated eigenfunctions are the constant functions. The following
inequality was proved by Szegé in the plane [I22] and then generalized in higher dimension
by Weinberger [I3I]. The so called Szegs-Weinberger inequality states that the first non-zero
Neumann eigenvalue p9(€2) is maximized by a ball among domains with fixed measure, that is
equivalent to say that the following scaling invariant inequality holds:

p2(QV ()" < pa(B)V (B)*™. (4)
Inequalities and are two examples of isoperimetric inequalities. Recently, stability

results concerning the above problems have been obtained. The fact that balls can be charac-
terized as the only sets for which equality holds leads to ask if these inequalities are stable, in



other words we want to improve them by adding a remainder term that measures the deviation
of a set € from the spherical symmetry. Since the quantitative isoperimetric inequality proved
in [69], several spectral quantitative isoperimetric inequalities were proved, as for example the
Faber-Krahn [26] and the Szegt-Weinberger [25] inequalities.

The aim of this thesis is to obtain analogous results in these directions for the eigenvalue
problem with different boundary conditions and for some operators of linear and non linear
type. In particular, we focus our study on Steklov and Robin boundary conditions, obtaining
isoperimetric inequalities as and and the relative stability results with different hypothesis
on the class of sets considered. A stability result in terms of the perimeter is also obtained for
the first Dirichlet eigenvalue of the Laplacian operator.

In the first part of this thesis we focus on the Steklov boundary condition problem, introduced
by the Russian mathematician V. A. Steklov [121I]. Let Q < R"™, with n > 2, be a bounded,
connected, open set with Lipschitz boundary. A real ¢ > 0 is called a Steklov eigenvalue if there
exists u € H(Q2) with u # 0 such that

Au=0 inQ,
] (5)
Y = gu on 0.

The Steklov eigenvalues can be interpreted as the eigenvalues of the Dirichlet-to-Neumann op-
erator D : HY?(Q) — H~Y2(Q) which maps a function f € H'/?(Q) to Df = aglf, where H f is
the harmonic extension of f to Q. For a survey concerning this topic we refer to [82]. As usual,

problem is considered in the weak sense, that is, for every v € H1(f2),

/Vu-Vvdm=a/ uv dH" 1, (6)
Q oQ

where - denotes the standard Euclidean scalar product and H"~! denotes the (n—1)—dimensional
Hausdorff measure in R™. In this framework, since the trace operator H'(Q) — L2(0) is
compact (see [99], Theorem 6.2), it is known that the Steklov spectrum consists of a discrete
sequence diverging at infinity

0=01(0Q) <02(Q) <0o3(Q) <+ 40o0. (7)

In particular, we deal with the first non-trivial Steklov eigenvalue of €2, that has the following
variational characterization:
/ |Vo|? da
A Y R

02(Q) = min / Ee : ve H (Q\{0}, /agv A1 =0\ . (8)
o

If we take Q = Br(z), where Bgr(x) is the ball of radius R centered at the point x, then

1
02(Br(2)) = & (9)
Moreover, we know that o2(Bg(z)) has multiplicity n and the corresponding eigenfunctions are
ui(x) = x;, with ¢ = 1,...,n. Let us focus now our attention on shape optimization problems
concerning the first non trivial Steklov eigenvalue. In [I32] the author considers the problem
of maximizing oo(2) in the plane, keeping the perimeter of Q fixed. If Q < R? is a Lipschitz,
simply connected open set, the following inequality, known as Weinstock inequality, is proved

o2(Q)P(Q) < 09(Br(z)) P(Br(2)), (10)



where P(Q) denotes the Euclidean perimeter of Q. In other words, inequality states that,
among all planar, simply connected, open sets with prescribed perimeter, o5(2) is maximum for
the disk. Moreover, in [75], it is proved that (10] fails to be true in general in dimension n > 2.
If we consider indeed the annulus A, = By (z)\Be(z), having that Br(z) is the ball of radius R
centered at z, with € ~ 0, that is a simply connected set, the following reverse inequality holds,

1

o(A)P(A)™T > o(Bg(x))P(Br(x))) ™.

In [31], the authors generalize the Weinstock inequality in any dimension, when restricting
to the class of convex sets. More precisely, if 2 € R"” is an open, bounded, convex set, then

72 () P(Q) 7T < 02(Bg(x))P(Bg(z)) "1 (11)

and equality holds only if  is a ball. In order to prove , the authors prove the following
weighted isoperimetric inequality, involving the boundary momentum M (), defined as

M(©Q) = /8 ol (12)

that is MO V(B
—2
@ __MB) = 1)
P V(E)»  P(B)V(B)=
where w,, is the measure of the n-dimensional unit ball in R™ and equality holds if and only if
is a ball centered at the origin
Let us recall now the results concerning the volume constraint. In [28] the author proves that
the first non-trivial Steklov eigenvalue is maximized by balls, among sets with the same volume.
More precisely, if 2 € R™, n > 2, is an open bounded set with Lipschitz boundary, then

1

72 (QV(Q)7 < 02(Br(x))V (Br(2))7, (14)

where V() denotes the Lebesgue measure of 2 and equality holds if and only if Q is a ball.
Actually, he proves the following more general inequality, known as Brock inequality,

n+1 1
> nR, 1
i; @) nR (15)

where R is the radius of the ball having the same volume as 2. We also observe that and the
classical isoperimetric inequality imply for convex sets; so, inequality is weaker than
because it contains the volume, but it is more general because it holds without geometric
restrictions.

Recently, concerning the stability issue, in [25] the authors prove the following quantitative

version of inequality :

1 b n

ZOLG > R [1+cndr()?], (16)

=2 n

where Az () is the so-called Fraenkel asymmetry and ¢, is an explicit constant which depends
only on the dimension. The Fraenkel asymmetry is an index of asymmetry, i.e. it measures how
much a set differs from the ball in the L' norm and it is defined as follows

Ap(@) = in { SR () - v |, an)



where A denotes the symmetric difference between two sets. The quantitative result is
obtained as a consequence of having proved a quantitative version of a weighted isoperimetric
inequality proved in [I6] and that was used in [28] in order to prove (14). More precisely, in [16]
it is proved that, if ) € R” is a bounded, open and Lipschitz set, then

M(2)

V()=

_ —1/n
T T W,

M(B)

T (18)

and equality holds for any ball centered at the origin. In particular, inequality implies that,
among sets with fixed volume, the boundary momentum is minimal on balls centered at the
origin.

The first part of the thesis, that is Section[2.1] deals with the study of a quantitative version of
the Weinstock inequality . Since we are working with convex sets, we consider the following
asymmetry functional

(@) 5= ain { (PL2 ) (e - Pion |

TeR™ R (19)

where Q@ € R™ is a bounded, open, convex set. Our main result, contained in [73], is stated in
the following theorem.

Theorem. Let n > 2. There exists d > 0 such that for every Q c R™ bounded, convex open set
with o1(Br(x)) < (1 +9) 01(Q2), where Br(x) is a ball with P(Br(x)) = P(Q)), then

16 (A3(Q))2 ifn =2
An () -
o2(Br(z)) — 02(2) VT ifn=3
ZOR N ( ,45 (93 = .
(nwy,)n—1 H 2 ifn
) ( W) s,

where B and B, are defined in (2.17) and g is the inverse function of f(t) = tlog (%), for

1

O<t<e .

Moreover, the result is sharp, in the sense that the quantitative inequality becomes asymp-
totically an equality, at least for particular shapes having small deficits. The key point to prove
the previous Theorem is a quantitative version of the weighted isoperimetric inequality ,
obtained using Fuglede’s technique [67]. We also recall a recent result, proved in [35], where it
is proved that the Weinstock inequality is not stable among simply connected sets in the plane.

The second part of Chapter 2, that is Section [2.2] deals with a different shape optimization
problem involving the Steklov boundary condition. Let Q¢ € R™, n > 2, be an open, bounded,
connected set, with Lipschitz boundary such that B, € €y, where B, is the open ball of radius
r > 0 centered at the origin. Let us set  := Q¢\B,; then we study the following Steklov-Dirichlet
boundary eigenvalue problem for the Laplacian:

Au =10 in Q
u=20 on 0B, (21)
ou

i oPS(Q)u  on 09y.



The study of the first eigenvalue of problem leads to the following minimization problem:

/\Vw\Q dx
oP5(Q)= min 2 (22)

)

wGH;BT (2) 2 n—1

wih w* dH
Qo

where H}p () is the set of Sobolev functions on € that vanish on dB,. Notice also that the
value o9(9) is the optimal constant in the Sobolev-Poincaré trace inequality:

o2 (Q)]|wl| L2 (a0,) < IVwllmy, (@) (23)

We treat the following shape optimization issue:

Which sets mazimize oP5(-) among sets of the form Q = Qy\B,., where )y contains the fived
ball B, and Q has prescribed volume?

In the class of sets of the form Bg(z0)\B, with Bg(zo) being a ball containing B,., the maximizer
of oP% is the spherical shell, that is the annulus when the balls are concentric (see [65]). This is
also proved in [I28] and for more general spaces in [I19]. We partially solve the problem of the
optimality of 0% restricting our study to nearly spherical sets, that are sets whose boundary
can be parametrized on the sphere by means of a Lipschitz function with a small W%®-norm;
see Definition in Chapter 1. Our result is the following and is contained in [I06].

Theorem. Let Q = Qo\B,., with Qg a nearly spherical set. Then
aP5(Q) < alDS(AT,R), (24)

where A, g = BR\E, with R > r > 0, is the spherical shell with the same volume as . Moreover
the equality in holds if and only if Q is a spherical shell.

So, we study the optimal shape for o7 (Q) when both the volume of the domain and the
radius of the internal ball are fixed. We also find some counterexamples showing that when
only a volume constraint holds, then ¢* is not upper bounded, hence we cannot speak about
optimality. In order to prove the Theorem, we find K = K(n, |Q|) > 0, such that

O_DS /O'lDS n, ’U2 n—1 .
P34, 2 oP5(@) (14 Knol) [ Ran)

When r = 0 and (2 is connected, the problem becomes the classical Steklov eigenvalue problem .

Chapter 3 deals with Steklov boundary condition in the anisotropic case. Firstly, in Section
m we prove an anisotropic generalization of the inequality . Let Q € R™, n > 2, be an open
bounded and convex set, let F' be a Finsler norm (see Section 7 i.e. a convex positive C?
function, let F° be its dual norm and let us fix a real number p > 1. We define the anisotropic
p—boundary momentum as

Mey (@)= [ [F@P F@) i @),

o0

where v is the outer normal on 02, the anisotropic perimeter as

Pp(Q) = /a F() dH" " (z)
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and we consider the scaling invariant functional

MF,p(Q)

P B

Moreover, we define the Wulff shape of radius r centered at the point zg as
W(xzg,r) ={£€eR™: F°(£ —xp) <r}

and we denote by k, the volume of the Wulff shape of radius 1 centered at the origin. By
adapting the arguments in [31], we are able to prove in [108] the non linear counterpart of (L3).

Theorem. Let € be a bounded, open convex set of R™. Then
Frp(Q) = kn ™ = Frp(W), (25)

and equality holds only for Wulff shapes centered at the origin.

A fundamental tool that we use is the inverse anisotropic mean curvature flow (we refer to
[135] for details). Roughly speaking, the smooth boundary 092 of an open set Q = Q(0) flows by
anisotropic inverse mean curvature if there exists a time dependent family (9Q(t)),c(o,y. T > 0,
of smooth boundaries such that the anisotropic normal velocity at any point x € 0Q2(t) is equal
to the inverse of the anisotropic mean curvature of 0§2(t) at . We make also use of the following
anisotropic version of the Heintze-Karcher inequality

F(v) _ n
daH > " v(Q),
Fle) HF n—1 ( )

see [115] for the Euclidean case and [136] for its anisotropic analogous, recalled in Lemma [T.18]

The previous result is mainly motivated by the following application to the study of the
Steklov spectrum problem for the orthotropic p-Laplacian, see Section Let © be an open,
bounded and convex set in R™, with n > 2, and let p > 1. We consider the following non linear
operator, called the orthotropic p—Laplace operator,

Apu = Z (|Uzi|p_2“m)zi (26)
j=1

and we study the limit problem, as p — o0, of the Steklov problem associated to it, that is

—Aju=0 on ()
Np p—2 _ p—2 o0 (27)
S by, 192t ;= olulr~up, om 00,
where u,; is the partial derivative of u with respect to z;, v = (v1,...,v,) is the outer normal
of 082, pp(x) = |[v()| e, P’ is the coniugate exponent of p and
n
lelfe = 3 la;1. (28)
j=1

The real number o is called orthotropic Steklov eigenvalue. In particular, problem has
been investigated in [27], where it is proved that these eigenvalues form at least a countably
infinite sequence of positive numbers diverging at infinity where the first eigenvalue is 0 and
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corresponds to constant eigenfunctions. Denoting by ¥2(€2) the first non-trivial eigenvalue of
([27), the following variational characterization is showed in [27]:

fQ HVUHZD dl’
[oq, lulPpp(z)d H™ "

Q) = min{ ue WHr(Q), /0Q [uP~2upy, (x)d H" ™ = 0} . (29)

Let us observe that the value Eg(Q) represents the optimal constant in the weighted trace-type
inequality

[ 1ty da > 5 [ juppane

in the class of Sobolev functions u € W1P(Q), such that

/asz [uP~2up,d H" ' = 0.

By the way we recall that the orthotropic Laplacian, sometimes also called pseudo p—Laplacian,
was introduced in [94, 130} [129]; for p = 2 it coincides with the Laplacian, but for p # 2 it differs
from the usual p—Laplacian, that is defined as Ayu := div (|Vu|p*2Vu). Let us recall that
for this operator an isoperimetric inequality concerning the first Dirichlet eigenvalue has been
discussed in the planar case in [I7, [I8]. The orthotropic p— Laplacian can be considered indeed
as an anisotropic operator, associated to the Finsler norm . In the second part of Chapter
3 we focus our attention on the limit operator lim,_,q Apu = Aoou, the so-called orthotropic
oo-Laplace operator, that can also be defined, see for example [15], as

Aoou = Z uij Ug;,z;) (30)
JeI(Vu(z))
where
I(z):={j <n: |z;| = |24}
and

|zl = max |zl
j=1,...,n

We are inspired by the results given in [72], where the authors study the Steklov eigenvalue
problem for the co—Laplacian Ay, given by

n

Apu = Z Uz ; U, U0, -

i,j=1

This operator was also studied for example in [57], with Neumann boundary conditions, [116]
for mixed Dirichlet and Robin boundary conditions. In particular we find a limit eigenvalue
problem of that is satisfied in a viscosity sense and we show that we can pass to the limit in
the variational caracterization . We observe that, since the first eigenvalue of is 0 with
constant eigenfunction, we can trivially pass to the limit and obtain that the first eigenvalue is
also 0 with constant associated eigenfunction.

We want to prove Brock-Weinstock and Weinstock type inequalities for the orthotropic
p—Laplacian, possibly with p = co. We will use the following notation to denote respectively the
unit ball and the anisotropic perimeter with respect to the ¢Z norm, for p € [1, o0],

Wy = {z e R" |[z], <1},
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Po(Q) = / po(@)d H ().

N
In [27] it is proved a Brock-Weinstock type inequality of the form

SE(Q) < (VV((WQ’;)) : (31)

Let us recall that (up to our knowledge) we cannot write inequality in a fully scaling invariant
form, except for p = 2, since it is still an open problem to determine whether Eg(Wp) = 1 or not
for p & 2, as conjectured in [27].

Using with the anisotropy given by , we prove in [8] the following result.

Theorem. For any bounded convex open set Q < R™, for n = 2, it holds
o (VY™ < By, W)V (W)Y, (32)

Equality holds if and only if 2 is equivalent to Wy up to translations and scalings.
Moreover, for any open bounded convex set 2 € R? it holds

T (€2) Poo (2) < oo (W) Poo (W1). (33)
and equality holds if and only if Q is of constant width.

As far as concerned with the Robin boundary conditions, in Chapter 4 we obtain some results
both in the linear and the non linear case. We start by recalling the Robin eigenvalue problem
for the Laplacian. Let 2 be a bounded, open subset of R™, n > 2, with Lipschitz boundary; its
Robin eigenvalues related to the Laplacian are the real numbers A such that

—Au = \u in Q
(34)
% +au=0 on o2

admits non trivial W12(Q) solutions; « is an arbitrary real constant, which will be referred
to as boundary parameter of the Robin problem. We observe that for « = 0 we obtain the
Neumann problem, for a = 400 we formally obtain the Dirichlet problem and for A = 0 the
Steklov problem; for this reason it can be considered as the most general eigenvalue problem for
the Laplace operator. For each fixed 2 and « there is a sequence of eigenvalues

A, ) < Ao, ) < - — +0

which depend on «. In particular, the first non trivial Robin eigenvalue of €2 is characterized by

the expression
/ | Dul? dm—i—a/ lul? dH!
Ao, ) =  min 2 o0 .
ueVZ#’O(Q) /Qlu|2 dr

We refer to [87] for a collection of properties of the Robin Laplacian eigenvalues and the related
proofs. From the monotonicity of the Rayleigh quotient, we can deduce the following, for 0 <
t<1,

1 1
Al(a,tQ) = t—2)\1(ta,Q) < E)\l((},,Q) < )\1(&,9). (35)
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Firstly, let us assume o > 0. We have the following Faber-Krahn type inequality, that was proved
in [19] in the planar case and was then generalized in [49] in any dimension. Let Q € R™ be a
bounded and Lipschitz domain. Then,

A, Q) = A\ (o, B), (36)

where B is a ball such that V(B) = V(). Equality holds if and only if Q is a ball. The
generalization to the p-Laplacian is given in [48] and in [29]; this result was also shown to hold
on general open sets of finite measure, see [32].

Let us now assume that a < 0 and 2 € R™ is a bounded and Lipschitz domain. If we
put a constant function as a test function in the Rayleigh quotient , we have that the first
eigenvalue is always negative:

Ao, Q) < aiggg. (37)
Moreover, if we choose in a sequence of domains €, of fixed volume and such that P(Q,,) —
+0o0, we have that A1 (€,,«) — —oo. This tells us that it has not sense to seek for a minimizer
of A\1(Q, «), if we fix the volume, and the upper bound suggests to look for a maximizer. In
1977 Bareket conjectured that the maximizer was a ball [I0]. Evidence to this conjecture was
provided in [62] , where it is proved that the ball is a local maximizer among bounded open and
Lipschitz sets with fixed volume that are closed to a ball in a L® sense. However in [64] the
authors disproved Bareket’s conjecture, showing that the first Robin-Laplacian computed on a
spherical shell is asymptotically greater than the one computed on a ball with the same volume.
In [88, [103] this was clarified by showing that for Q = R™ of class C11, it holds

M(a,Q) = —a® — (n— Dasup H + o(a??), (38)
o0
as a — —oo, where H is the mean curvature of the boundary. Still in [64], it is proved that
Bareket’s conjecture holds for a negative small enough in absolute value. More precisely, the
authors proved that, for bounded planar domains of class C? and fixed area, there exists a
negative number ay, depending only on the area, such that

M (@, Q) < \i(a, BY), (39)

holds for all « € [ay,0], where B* is the ball with the same area. This fact is proved by applying
the method of interior parallel, introduced by Makai [96] and Pélya [112] and used by Weinberger
in [I10]. We remark that the problem of maximizing the first Robin-Laplacian for a@ < 0 and
n > 3 is still open.

If, instead of the volume, we keep the perimeter fixed, the authors in [6] prove that for any
bounded planar domains of class C2, if a < 0, then

)\1(0(,9) < )\1(0[,B*), (40)

where B* is a disk with the same perimeter as Q. Moreover, in [30] the authors show that,
among all bounded, open and convex sets with given perimeter the ball is a maximizer for the
fist Robin-Laplacian eigenvalue for any negative value of a and for every dimension.

In the first part of this Chapter 4, Section we find analogous of inequalities and
in the anisotropic case. Let F' be a Finsler norm and let us consider the anisotropic version of

problem , that is
—div (F(Vu)Fe(Vu)) = Ar(a, Q)u in Q
(F(Vu)Fe(Vu), vy + aF (vag)u =0 on 09
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with the following variational characterization of the first eigenvalue:

/ F%(Vu) dx + a/ |ul?F(vaq) dH ()
ALr(e, Q)= min 2 gt

1,2
UEVZ;&O(Q) /Q |u|2 dx

This problem is studied for instance in [51] 52] 53] [74]. Using the method of interior parallel,
adapted to the anisotropic case, we prove in [I09] the two results. The first one is a generalization
of to the anisotropic case.

Theorem. For bounded planar domains of class C? and fized area, there exists a negative number
o, depending only on the area, such that the following inequality holds Yo € [y, 0]:

)\I,F(a, Q) < )\17F(Oé,Wé),

where Wé is the Wulff shape of the same area as €.
The second result is a generalization in the anisotropic case of inequality (3.39)).

Theorem. Let a < 0. For bounded planar domains of class C?, we have
)\LF(Oz, Q) < )\17F(Oé, WS),
where W¢ is the Wulff shape with the same perimeter as €.

Since holds, another interesting problem is the minimization of the maximal curvature in
classes of domains of given volume with an additional topological constraint. In [I02] the author
proves that, if O — R? is a bounded and simply connected domain, then

where kaq is the curvature relative to 02 and Br(x) is a ball with the same volume as 2. Moreover
equality holds if and only if €2 is a ball. This result was obtained by the use of the curve shortening
flow ([70, [76]). In Section we find the analogous result of in the anisotropic case. More
precisely, let F' : R? — [0,+0) be a Finsler norm. We denote by k (9Q) the anisotropic
maximum curvature over 02, that is

kﬁlaz(ﬁﬁ) = HngHLOC(BQ)7

where kf' is the F-anisotropic curvature, that will be properly defined in Section m The main
result of [104] is the following.

koollre a0y = ko n @)L (0B r () (41)

Theorem. Let Q € R? such that v := 052 is a smooth Jordan curve. Then,

Finax(09) = Ko (OVF), (42)
where W is the Wulff shape having the same volume as . Moreover, equality holds if and only
if Q coincides with a Wulff shape.

The proof is based on the use of the anisotropic mean curvature flow, for some reference see
for example [4, [12], [43] [97]. We will reduce our study to the case in which the curve is convex and
we will use the so called Wulff- Gage inequality, true for convex sets, proved in [77], that states

[l P o) an o) = "L, (43)
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where Pr () is the anisotropic perimeter. The isotropic version of this inequality was proved
in [70] for convex sets of the plane and generalized in [34, [60, 6I] for non convex sets, whose
boundary is simply connected.

In Section [I.3] we take into consideration the p-Laplacian operator

—Apu = —div (|Vul[’">Vu)

defined on a convex set 2 of R, n > 2, that contains holes; more precisely we are considering sets
Q of the form Q = Q0\O, where Qg € R"™ is an open bounded and convex set and © cc Qg is a
finite union of sets, each of one homeomorphic to a ball. In this setting, we study the eigenvalue
problem and the torsion problem for the p-Laplacian operator with boundary conditions of
Robin type on the exterior boundary I'y := 02y and of Neumann type on the interior boundary
I'y := 00. The first quantity we deal with is

/ |[Vw|P dx + a/ |w[P dH"
/\II)VR(% ) = min 2 Lo .

WhP(Q
v [l do

This minimization problem is a variational characterization of the first eigenvalue, i.e. the lowest
eigenvalue, of the following problem:

(44)

—Apu = A (o, Q)Ju[P2u in Q

ou
|Vu\p*26—y + BlulP~2u=0 on Ty (45)
|Vu\p_26—u =0 on I'y,

ov

where o € R\{0} is the boundary parameter. Moreover, we will only consider non zero values of
the boundary parameter «, since the case o = 0 is trivial, being the first eigenvalue identically
zero and the relative eigenfunctions constant. In [I07] we have proved the following result.

Theorem. Let Q be of the form Q = Qo\O, where Qo S R" is an open bounded and convex set
and © cc Qg is a finite union of sets, each of one homeomorphic to a ball Then,

)\éVR(OZ’ Q) < /\LVR(av Arlﬂ"z)v (46)

where Ay, ., = Br,\By, is the annulus such that V(A,, ,,) = V(Q) and P(B,,) = P().

In particular, when v — 400, this Theorem gives an answer to the Open Problem 5 in [81]
Chap. 3|, restricted to convex sets with holes. In this Section, we generalize in any dimension
the method of interior parallels as used by Payne and Weinberger in [110] to study the Laplacian
eigenvalue problem with external Robin boundary condition and with Neumann internal bound-
ary condition in the plane. More precisely, our proof is based on the use of the web functions,
particular test functions used e.g. in [22] B0, 45] and on the study of their level sets.

Similarly, but only for positive values of a;, we also study the p-torsional rigidity type problem:

/ |[Vwl|P dx+a/ Jw|P dH" !
1 Q To .

= min 7 ;
/ w dx
Q

TNR(e, ) wew'?(q)
w0
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in particular, this problem leads to, up to a suitable normalization,

-Apu=1 in Q
ou

|VulP~2— + alulP2u =0 on Ty
ov
ou

|VulP=2— =0 on I'y.
ov

The second main result of this Section is the following.

Theorem. Let Q2 be of the form Q = Q¢\O as defined in the previous Theorem. Then,
TéVR(aa Q) = T[fVR(O‘v A'f‘l,""2)? (47)

where Ay, .y = Br,\By, is the annulus such that V(A,, ,) = V(Q) and P(B,,) = P().

Equation , when © = ¢, p = 2 and Dirichlet boundary condition holds on the whole
boundary, is the Saint-Venant inequality, by the name of the authors that first conjectured
that the ball in the plane (under area constraint) gives the maximum in quantity . This
is a relevant problem in the elasticity theory of beams [120] [32] Sec.35]. It is known that the
ball maximizes the torsional rigidity with Robin boundary conditions [33] among bounded open
sets with Lipschitz boundary and given measure. Related results for the spectral optimization
problems involving the rigidity are obtained also, for example, in [126, 127, 23].We recall that
in [54] the authors prove that the first eigenvalue of the p-Laplacian with external Neumann
and internal Robin boundary conditions is maximum on spherical shells when the volume and
the internal (n — 1)-quermassintegral are fixed, generalizing a result cointened in [84] for the
planar case and p = 2. They also prove that with these boundary conditions the spherical shell
minimizes the p torsional rigidity among domains with volume and (n — 1)-quermassintegral
fixed.

Finally, in Chapter 5, we consider the eigenvalue problem for the Laplacian with Dirichlet
boundary condition and we work with the class of admissible sets

€= (0 SR 2 conves, V(@) = 1)

Our starting point is the following conjecture, that is stated in [66]. Here the authors conjecture
that, if Q € Ca, then
A(Q) = M(B) > B (P(Q) - P(B))*, (48)

where B € R? is a ball of area 1,  := % and ((n) = ZZO:1 k=™ is the Riemann zeta
function. This conjecture is supported by numerical and analytical results. In particular, the
first analytic result we refer to can be found in [79, [78]. The authors prove that, if P* is the
regular polygon with k£ edges and area equal to 1, then, as k goes to 40,

M(PE) = M(B) ~ B(P(PF) — P(B))*?. (49)

The method used in [79] to prove this fact comes from differential geometry and relays on the
calculus of moving surfaces. This result was also proved in [98], using the Schwartz-Christoffel
mappings, that are useful tools to express the Laplace-Dirichlet eigenvalue of a polygon as a
series expansion, relating each expansion term to a summation over Bessel functions. By the
way, we recall that the fundamental tone of the Dirichlet Laplacian on polygons has been widely
investigated and nevertheless many questions are still unsolved. See, for example, the Polya-
Szego conjecture [I13], stating that among all the k-gons of given area the regular one achieves
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the least possible A\; and that has been settled only for £ = 3 and k = 4, that are the only cases
for which it is possible to use the Steiner symmetrization.

The conjectured inequality is also supported by numerical observations, linked to the
plot of the Blaschke-Santalo diagram for the triplet (P(-), A1(+), V'(+)), that is the sets of points

{(P(2),\(Q) | V() = 1,02 € Ca}.

In particular, in [66], the authors generate random polygons and find out that regular polygons
lay on the lower part of the diagram.

In our work [I05] we are not able to prove the conjectured inequality . Instead, we prove
the following less strong result, that is a step forward in its resolution.

Theorem. Let n > 2. There exists a constant ¢ > 0 depending only on n such that for every
Q e, it holds
M(Q) = M(B) = ¢(P(@) - P(B))’. (50)

In order to obtain this inequality, we prove an intermediate result: there exists a constant
C = C(n) > 0 such that, for every Q € C,, it holds

Ap(Q) = C(P(Q) — P(B)), (51)

provided that the Fraenkel asymmetry of € is small. Since, by definition, it holds Ag () € [0, 2),
we have that inequality is not true when (2 is a long and flat domain. However, in this
case, inequality can be proved directly, using an estimate in terms of the diameter of the set
contained in [56]. We prove (50) combing with the sharp stability result for the Faber-Krahn
inequality, proved in [26], that states that there exists a constant C' > 0 such that for every open
set Q with V() = 1, the following inequality holds

M (Q) = A (B) = CAR(Q)2. (52)

Unfortunately, as we will show providing a class of counter-examples in the bidimensional case,
inequality is not true when the difference of perimeter has exponent 3/4. This is the reason
for which we cannot use this strategy to prove the conjectured inequality .
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Chapter 1

Preliminaries

1.1 Notations

Throughout this thesis, | - | is the Euclidean norm in R™ and - is the standard Euclidean scalar
product for n > 2. We denote by V(-) the Lebesgue measure £" in R™ and by H*, for k € [0,n),
the k—dimensional Hausdorff measure in R™. In the planar case the volume of E < R? will be
called sometimes A(FE), i.e. the area of the set E. Moreover, we use the following notation:
Bpg(x) is the ball of R™ with radius R and centered at x, B is a generic ball such that V(B) =1
and A, ,(z) is the open annulus B,,(z)\B,, (x), where B, (z) is the closed ball such that
r1 < ro. Moreover, we define w,, as the Lebesgue measure in R™ of the ball of radius 1, so that
L"(Bgr(z)) = w,R™ and we denote by S"~! the unit sphere in R".

If O < R™, Lip(d9Q) (resp. Lip(dQ2;R™)) is the class of all Lipschitz functions (resp. vector
fields) defined on 0€2. If Q has Lipschitz boundary, for H"~!— almost every = € 02, we denote by
voa(x) the outward unit Euclidean normal to 0 at x and by T, (092) the tangent hyperplane to
0 at x. Sometimes, when there is no possibility of confution, in order to simplify the notation,
we will use v instead of vq.

1.2 General facts

1.2.1 Basic definitions

Let 2 < R™ be a bounded, open set and let £ € R™ be a measurable set. We recall now the
definition of the perimeter of E in €2, that is

P(E;Q) = sup{/ divpdz : ¢ € CP(R™), |lpllo < 1},
E

The perimeter of E in R"™ will be denoted by P(E) and, if P(E) < o0, we say that E is a set
of finite perimeter. Some references for results relative to the sets of finite perimeter are for
example [95] [3]. We observe that a remarkable feature of this definition is that in this way the
perimeter is not affected by modifications on sets of measure 0. Moreover, if E has Lipschitz

boundary, we have that
P(E) = H" '(0E). (1.1)

In order to deduce properties, it is often very useful to approximate sets of finite perimeter with
smooth sets. Therefore, we give the following notion of convergence.

19



20

Definition 1.1. Let Q@ < R” be a bounded, open set, let (E;); be a sequence of measurable sets
in R™ and let E € R™ be a measurable set. We say that (E;),; converges in measure in Q to E,
and we write E; — E, if xg, — xg in L'(Q2), or in other words, if lim;_,.. V((E;AE) n Q) = 0.

We also recall that the perimeter is lower semicontinuous with respect to the local convergence
in measure, that means, if the sequence of sets (E;) converges in measure in  to E, then

P(E;Q) < liminf P(E;; Q).

J—0

As a consequence of the Rellich-Kondrachov theorem, the following compactness result holds and
its proof can be found for instance in [3, Theorem 3.39].

Proposition 1.1. Let Q € R"™ be a bounded, open set and let (Ej)j be a sequence of measurable
sets of R™, such that sup; P(E;;Q) < o0. Then, there exists a subsequence (Ej, ), converging in
measure in Q to a set E, such that

P(E;Q) < lilgn inf P(Ej, ;).
—00
Another useful property concerning the sets of finite perimeter is stated in the next approxi-
mation result, see [3, Theorem 3.42].

Proposition 1.2. Let 2 € R™ be a bounded, open set and let E be a set of finite perimeter in
Q. Then, there exists a sequence of smooth, bounded open sets (Ej)j converging in measure in

Q and such that lim;_,, P(E;; Q) = P(E;Q).

Moreover, if E has Lipschitz boundary, we denote by
M(E) = / |z[? dH™
oF

its boundary momentum. By their respectively definitions, we have that P(E), M (E) and V(E)
satisfy the following scaling properties, for ¢ > 0,

P(tE) =t""'P(E), V(tE) =t"V(E), M(tE) = t""'M(E).

We conclude by recalling the classical isoperimetric inequality. We refer the reader, for example,
to [100, [36, 40, [123] and to the original paper by De Giorgi [50].

Theorem 1.3. Let E € R", n > 2, a Borel set with finite Lebesque measure, then
nwl/mv(E)nYn < P(E) (1.2)

and equality holds if and only if E is a ball.

1.2.2 First variation of the Euclidean perimeter

For the content of this Section we refer mainly to [1I] and [95]. Let us start from recalling the
definition of tangential gradient.

Definition 1.2. Let © be an open, bounded subset of R” with C? boundary and let u : R® — R
be a Lipschitz function. We can define the tangential gradient of u for almost every x € 0€) as

V®u(z) = Vu(e) — (Vu(x), voa(@))r(z),

whenever Vu exists at x.
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If we consider a vector field T € C}(R™;R™), we can also define the tangential divergence of
T on 052 by the formula
div®T = divl — (VT v,v).

The following theorem is an extention to hypersurfaces in R™ of Gauss-Green theorem.

Theorem 1.4. Let Q be a subset of R™ with C? boundary. Then there exists a continuous scalar
function Hpq : 00 — R such that, for every ¢ € C}(R"),

/ V‘mgo(x) dH" () :/ o(x)Hao (z)v(z) dH™ ().
0 o0

The scalar function Hyq : 02 — R is the so-called mean curvature. If we define the Gaussian

map associated to 2 as the map
ug : 0 — S"
that maps = € 002 to the external unit normal to 02 in x, we can observe that usq is of class
C'. The differential of uq in x is a linear application that maps T, in itself and that is usually
denoted by
Wy i=d(uq)y : TpQ) = T,Q,
called Weingarten map. The bilinear form defined on 7,2 by
I, (v, w) :== (Wyv,w),

for every v, w € T, is called second fundamental form associated to 02 in x and it is symmetric.
The eigenvalue of the Weingarten map W, are called principal curvature of {2 in x and we have
that

Hoq(z) = ] Z Ki, (1.3)

where k; are the principal curvatures.

Remark 1.5. Using the definition of tangential divergence, the Gauss-Green theorem can be
reformulated in the following way:

div? T (z) dH"(z) = / Hoo(z)(T(x),v(x)) dH" " (),
o0 o0

for every T € CL(R™;R™).
A 1—parameter family of diffeomorphisms of R™ is a smooth function
(z,t) e R™ x (—¢,€) — ¢(x,1),

for € > 0 such that, for each fixed |t| < €, ¢(-,t) is a diffeomorphism. We consider here a
particular class of 1—parameter family of diffeomorphisms such that ¢(z,t) = z + tT(x) + O(t?),
with 7" e CY(R™; R™). In [95] the following theorem is proved.

Theorem 1.6. Let Q be a bounded, open set of R™ with C? boundary and let ¢(z,t) be a
1—parameter family of diffeomorphisms as previously defined. If we denote by Q(t) the image of
Q through ¢(-,t), then

P() = P(Q) +1 / AV () dH™ () + o(t).
o
Using now the Gauss-Green theorem and this last theorem, we obtain the following expression
for the first variation of the perimeter of an open set with C? boundary:

d

G P Q0))le=0 = /m Hao(x)(T (), v(x)) dH" ™ (x).
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1.2.3 Some properties of convex sets

We recall here some properties of convex sets that we will use in this thesis. We start by recalling
the definition of Hausdorff distance between two non-empty compact sets C, K < R™, that is
(see for instance [I18]):

dy(C,K)=inf{¢>0: Cc K+ B., KcC+ B.}. (1.4)

Note that, in the case C and K are convex sets, we have that dy (C, K) = dy(0C, 0K) and that
the following rescaling property holds

dy(tC,tK):th(C,K)7 t > 0.
We give now the definition of support function of a convex set.

Definition 1.3. Let K be an open, bounded and convex set of R™. The support function
associated to K is defined as, for every y € R”,

hi(y) = max(z - y).

It is easy to see that the support function associated to a ball of radius R is constantly equal to
R.

Remark 1.7. Let K,C be two open, convex and bounded sets of R"; the following relation
holds:

dy(c, iy = |lhc — hicl[L=(sn1)
For completeness, we give the proof of the following Lemma (see as a reference [3]).

Lemma 1.8. Let (K;); be a sequence of convex sets of R™ such that K; — B in measure, then
lim;_,, P(K;) = P(B).

Proof. Since, in the case of convex sets, the convergence in measure implies the Hausdorff con-
vergence, we have that lim;_,., dy (K, B) = 0 (see for instance [50]). Thus, for j large enough,
there exists €; going to 0 as j — 00, such that

(I-g)Bc K;c(1+¢)B.
Being the perimeter monotone with respect to the inclusion of convex sets, we have
(1—2,)"'P(B) < P(K;) < (1 +£,)" "' P(B)
and, if we let j go to infinity, we have the thesis. O

We conclude this paragraph by recalling the following result, that is proved in [56], which
gives an upper bound of the diameter of a convex set K, that will be denoted by diam(XK) and
it is defined as

diam(K) = sup{|z — y| | z,y € K}. (1.5)

Lemma 1.9. Let K < R™, n = 2, be a bounded, open, convexr set. There exists a positive
constant C(n) such that
P(K)n—l

diam(K) < C(n) VET

(1.6)
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1.2.4 Quermassintegrals: definition and properties

For the content of this section we refer, for instance, to [I18]. Let ¢ # K < R™ be an open,
compact and convex set. We define the outer parallel body of K at distance p as the Minkowski
sum

K+pBi={x+pyeR"|zeK, ye B;}.

The Steiner formula asserts that

VK ) = 3 (1)) (1.7
i=0
and »
P ) = Y ()W (500 (1.8
i=0

where the coefficients W;(K) are known as quermassintegrals. Some of them have an easy
interpretation:

Wo(K) = V(K);  nWi(K) = P(K);  Wn(K) = wy. (1.9)
Moreover, we have that
Waea(K) = 5 w(K), (1.10)
where w(K) is called mean width of the convex body K, it is defined as
1
w(K) = / (hi (%) + hg(—x)) dH" (2) (1.11)
NWp, Jsn—-1

and it represents the mean value over all possible directions of the distance between parallel
supporting hyperplanes to K. Furthermore, we have that

i PUE +pB1) — P(K)
p—0t P

=n(n— 1)Wy(K). (1.12)

We recall also the Aleksandrov-Fenchel inequalities

(WM)’*J‘ > (20) - (1.13)

Wn Wn

for 0 < i < j < n, with equality if and only if K is a ball. If we put in the last inequality ¢ = 0
and j = 1, we obtain the classical isoperimetric inequality, that is:

P(K)"T = nitw, "V(K).

In particular, we will use the case in (1.13) as ¢ =1 and j = 2:

n—z L ne
Wa(K) = n~ v twy P(K)". (1.14)
We denote by d.(z) the distance function from the boundary of K and we use the following
notations:
Ki={xe K : d.(z) > t}, te[0,rk],

where rg is the inradius of K:

rg =sup inf |z —y|. (1.15)
reK YEOK

We state now the following two lemmas, whose proofs can be found in [22] and [30].
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Lemma 1.10. Let K be a bounded, convez, open set in R™. Then, for almost every t € (0,rk),
we have

_%P(Kt) = n(n — 1)Wa(K%)

and equality holds if K is a ball.

By simply applying the chain rule formula and recalling that | Dd.(x)| = 1 almost everywhere,
it remains proved the following.

Lemma 1.11. Let f : [0, +00) — [0, 400) be a non decreasing C* function and let f:]0,+0) —
[0, +00) a non increasing C* function. We define u(z) := f(d.(z)), a(z) := f(d.(z)) and

Eor:={re K : u(z) >t}
Eos:={reK : a(z) <t}

Then,
d Wo(Eo +)
— —P(Eyq) = —1)——, 1.1
P (Eo) = nn = )77 0 (116)
and ~
~ Wo(Eo.t)
—P > —1)—=2. 1.1
G P(En) > nin — 1) 20 (117)

1.2.5 Definitions of some kind of asymmetries
First of all we give the definition of the Fraenkel asymmetry, which is a L' distance between sets.
Definition 1.4. Let 2 € R™ be an open set. We define the Fraenkel asymmetry of 2 as

Ap(Q) = inf {‘W . Bg(z) is a ball s.t. V(Br(x)) = V(Q)} (1.18)

We observe that if V(B) = V(Q2), then V(QAB) = 2V(Q\B) = 2V (B\Q). Moreover, the
infimum in (1.18) is actually a minimum and it is a bounded quantity, since Ap(Q2) € [0, 2).
We can give now the following definition, introduced in [67] as spherical deviation for a convex

set when the volume is fixed, that we will denote by ./ZH(Q) and that we adapt in the case of
fixed perimeter.

Definition 1.5. Let 2 < R™ a bounded open convex set. Then, we define the following asym-
metry functional

An(Q) = inf

n
zeR™

{dH(QaBR(z))

V) : Br(z) is a ball s.t. P(Bg(x)) = P(Q)} (1.19)

1.2.6 Definition of nearly spherical sets and main properties

In this section we give the definition of nearly spherical sets and we recall some of their basic
properties (see for instance [24] [67] 68]). The usual definition is the following.

Definition 1.6. Let n > 2. An open, bounded set £ € R" with the origin contained in E is
said a nearly spherical set parametrized by v if there exists v € W1 (S"~1) such that

0E = {yeR": y = Rz(1+v(x)), zeS" '}, (1.20)

where R is the radius of the ball having the same measure of £ and ||v|[y1.0gn-1) < 1/2.
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Since in Section 3.1 we fix the perimeter, we will use the following definition of nearly spherical
set.

Definition 1.7. Let n > 2. An open, bounded set E € R"™ with P(E) = P(B) is said a nearly
spherical set parametrized by v, if there exists v € WH®(S"~1) such that

0E ={yeR": y=x2(l+v(z)), zeS" '}, (1.21)
with [[v]|y1,0gn-1) < 1/2..

Note also that ||v||« = dy(E, B). In the following, for simplicity, we denote by V, := Vs
The perimeter, the volume and the boundary momentum of a nearly spherical set are given by

P(E) = /SH (14 0(@)" 2\ (1 + 0(2))” + [Vro(e) 2 dH, (1.22)

/ (1+ov(z)" dH™ 1, (1.23)
Sn 1

S\H

M(E)=/Sn o) \/(1—1—1} (@) + |V o(a)? dHm . (1.24)

Finally, we recall two lemmas that we will use later. The first one is an interpolation result;
for its proof we refer for instance to [67, 68].

Lemma 1.12. Ifve WH®(Sr—1) and/ vdH" ! =0, then

Sn—1
7THVT’UHL2(§1) n=2
8e|| D7 |7 o0 52
n—1 2 L2 (8%) —
1917 (n 1y < 4[| Drvl[7 g2y log I n=3 (1.25)

Cr Hv UHL2(§" 1 HVTUHLm(Snfg n=4

For this second lemma see for instance [68§].

Lemma 1.13. Let n > 2. There exists an universal €9 < % such that, if E is a convezx, nearly
spherical set with V(E) = V(B) and ||v||wi. < €0, then

1902 < 8l[ollce (1.26)
Finally, we prove the following

Lemma 1.14. Let n > 2 and let E < R" be a bounded, convex, nearly spherical set with
HUHWl,oc < €0, then

dy(E,E*) < <16 (Z)n +n+ 1) dwn(E, EY), (1.27)

where E* and E* are the balls centered at the origin having, respectively, the same perimeter and
the same volume as E.

Proof. By the properties of the Hausdorff distance, we get

dn(E,E*) < dy(E, E*) + dy(E*, E*) = dy(E, E*) + <P(E))H - (V(E)>n

NWn, Wn

= dy(E, EY) + <V(E)) (P(E)> . (1.28)
Wn nwyy V(E)
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We stress that, in the square brackets, we have the isoperimetric deficit of E, which is scaling
invariant. Let F' € R"™ be a convex, nearly spherical set parametrized by vp, with ||vp||w1.e < &g
and V(F) = V(B), where g¢ is the universal constant defined in the previous Lemma. Being F’
nearly spherical and ||vp||y1.« < g, from the isoperimetric inequality, , Lemma and
recalling that g < % we get

< P(F) )"‘1_1<P<F>_1
nw V(F)" NWn

1 /Wl ((1 e \/(1 +op()? + |Vyop ()2 — 1) <

NWp,

9 n 9 n—2 9 n
< <n+8 <8> ) l|vpLe + <8> IV vp)2. < <16 <8) +n> vp|lze. (1.29)

As a consequence, recalling that ||vp||pe = dy(F, B),
1

() () (o) v

Using this inequality in (1.28]), we get the claim. O

3=

1.3 Anisotropy: basic facts

1.3.1 Definition of Finsler norm

Let F be a convex, even, 1-homogeneous and non negative function defined in R™. In particular,
F' is a convex function such that

F(t&) = [t|F(€), teR,{eR”, (1.30)

and such that
al| < F(§), £eR", (1.31)

for some constant a > 0. The hypotheses on F' imply that there exists b > a such that
FE) < blgl, £eR™
Moreover, throughout the paper we will assume that F € C?(R™\{0}), and
[FP)ee () is positive definite in R™\{0},

for any 1 < p < +00. The polar function F°: R™ — [0, +oo[ of F is defined as

It is easy to verify that also F'° is a convex function and satisfies properties (1.30) and (1.31). F
and F° are usually called Finsler norm. Furthermore,




27

that means that the polarity is an involution. The above property implies the following anisotropic
version of the Cauchy Schwartz inequality

K&ml < FOF°(n), V& neR™

We denote by
W= (g e R Fo(€) < 1},

the Wulff shape centered at the origin and we put k, = V(W). We denote by W,.(zo) the set
rW + xg, that is the Wulff shape centered at zp with measure k,,r™ and we set W,.(0) = W,..
We conclude this paragraph reporting the following properties of F' and F*°:

(VF(§),8) = F(§), (VF°(£),6 =FE),  VEeR"{0}
F(VF(§)) = FO(VF(E) =1, VEe R"\{0};
FOEVEF(VE®(§)) = F(OVE?(VF(§) =& VEe R™\{0}.

1.3.2  Anisotropic perimeter and its first variation

Let © be a bounded open convex set of R”; in the following we are fixing a Finsler norm F'.

Definition 1.8. Let €2 be a bounded open subset of R™ with Lipschitz boundary. The anisotropic
perimeter of () is defined as

Pp(Q2) = /ﬁQ F(v(x))dH"(z).

Clearly, the anisotropic perimeter of §2 is finite if and only if the usual Euclidean perimeter
of Q, that we denote by P(f), is finite. Indeed, by the quoted properties of F', we obtain that

aP(Q) < Pr(Q) < bP(Q).
Moreover, the following isoperimetric inequality is proved for the anisotropic perimeter, see for
istance [2, [47, [63] [38].
Theorem 1.15. Let Q) be a subset of R™ with finite perimeter. Then

1

Pr(Q) = nﬁﬁV(Q)kn
and the equality holds if and only if Q) is homothetic to a Wulff shape.

Moreover, if K is a bounded convex subset of R?, and § > 0, the following Steiner formulas
hold (see [4} 118]):
V(K + 6W) = V(K) + Pp(K)§ + k6% (1.32)

Pp(K + 6W) = Pp(K) + 2k, (1.33)

Let €2 be a bounded open set of R™. The anisotropic distance of a point x € {2 to the boundary
01 is defined as
dp(z,00) = inf F°(z—y).

yeo

By the properties of the Finsler norm F, the distance function satisfies

F(Ddp(z)) =1 a.e. in Q. (1.34)
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For the properties of the anisotropic distance function we refer to [46]. We can define also the
anisotropic inradius of €2 as

rp(Q) = sup{dp(z, 0Q), z € Q}.
We denote by N
Oy ={xeQ|dp(z,d) > t},

with ¢ € [0,77(2)]. The general Brunn-Minkowski theorem (see [118]) and the concavity of the
anisotropic distance function give that the function Pp(£2;) is concave in [0, rp ()], hence it is
decreasing and absolutely continuous. In [53] the following result is stated.

Lemma 1.16. For almost every t € (0,rr(2)),
_dy (Q ) — Pr(()
at t) = Pril).
We give now the following definition.

Definition 1.9. Let Q be a subset of R™ with C® boundary. At each point of 02 we define the
F-normal vector

Vio(r) = VF(v()),
sometimes called the Cahn-Hoffman field.
We observe that, by the properties of F', we have
Fo(vly) = 1. (1.35)

Definition 1.10. Let Q2 be a subset of R"™ with C* boundary. For every x € 0f), we define the
F-mean curvature i
HE(2) = div™ (vh(2) .
In [I3} Theorem 3.6] we find the computation of the first variation of the anisotropic perimeter.
For more details on this part the reader is referred to [135] and [13].

Theorem 1.17. Let Q be a bounded open subset of R™ with C® boundary. For t € R, let
o(,t) : R* — R™ be a family of diffeomorphisms such that ¢(-,0) = Id and ¢(-,t) — Id has
compact support in R™. Set Q(t) the image of Q through ¢(-,t). Then

GRS = [ A, gle)dt (@) (1.36)

where g(x) 1=

1.3.3 Inverse Anisotropic curvature flow in dimension n

Let be T > 0; we choose, as in [136],

and we have that »

- (.Z‘, )= Vasz(x)’

ot Hig(x)
for every t € [0,T]. This one parameter family of diffeomorphisms gives rise to the so called
inverse anisotropic mean curvature flow (IAMCF). Concerning this family of flows, local and
global existence and uniqueness have been studied in [136] [85, 115].
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Definition 1.11. Let  be a bounded open subset of R™ with C® boundary; € is called F-
mean convex if its anisotropic mean curvature is strictly positive and, in this case, we say that
QeCpt.

In [I36] is proved that, if Q(0) = Q € C%'*, then there exists an unique smooth solution
¢(-,t) of the inverse mean curvature flow in [0, +00]. Moreover the surface ¢(-,t) = Q(t), for
every t > 0, is the boundary of a smooth convex set in C’;O’Jr that asymptotically converges to a
Wulff shape as t — +o0.

Let €2 be a subset of R™ with C* boundary. We consider the following transformations:

b(x,t) = 2 + tp(z)viy(z), (1.37)
where ¢ € C(Q) and vl (z) = VF(veq(z)) is the anisotropic normal. We recall that
Q(t) = {z + te(x) voa (@) | v € Q).
From , we have that
d n—
GPERON-0 = [ HE@)w@). c@kale) @) -

B /an Hia(w)p(@)wenlw), VRw@) dH @) = | Hig(@)e(@)F ()l (2),

where the last equality holds true because of the properties of a Finsler norm. We recall also the
variation of the volume of a set:

d

GVOWlm0= [ e@Pa) d @),

We recall a lemma (see [136]), which will be used in the following. This is the anisotropic
version of the Heintze-Karcher inequality, whose proof in the Euclidean case can be found in
[115].

Lemma 1.18. Let ) be a bounded, open convex set of R™, then

F(vaa(r)) n—1(, F(vaw(z))
o HLw W= L THE

where W is a Wulff such that V(W) = V(Q).

dH" () (1.38)

1.3.4 Anisotropic curvature flow in the plane

In this final paragraph will restrict to the planar case. We give the definitions of anisotropic
curvature and of anisotropic maximum curvature.

Definition 1.12. Let Q < R? be an open, bounded set with C? boundary. For every x € 952,
we define the F-anisotropic curvature as

kég(z) = div (Vgsz(l’)) :

F - (09Q) its maximum over 0€2, that is

Moreover, we denote by k., ..

khar (090) = [|k20| | L= (20)-
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Remark 1.19. We recall that for a Wulff shape of the form %W < R2, with A > 0, we have
that (for the details of the computation see [12]) for every z € 0 (3 W)

kDo () = A

Moreover, Wulff shapes are the only sets with constant anisotropic curvature (see, for example,
[1011 134]).

We will need the following result concerning the anisotropic curvature of a convex set, whose
proof can be found in [77].

Proposition 1.20 (Wulff-Gage inequality). Let K < R? be a bounded conver set with C?
boundary. Then,

A (1.39)

| Ec@P P () dH @) >
0K
and there is equality if and only if K is the Wulff shape.

We will use the following notations. We consider a family of closed curves u = u(s,t) : S' x

[0, T] — R?, where s the arc-length parameter and we use the conventional notation d,(u(s,t)) =

us(s,t). Moreover, 7(s,t) = us(s,t) = (sin (6(s,t)),— cos (6(s,t))) will be the unit tangent and

v(s,t) = (cos(0(s,t)),sin(0(s,t))) the unit normal of u; 6 = 6(s,t) is called the normal angle

(determined modulo 27) and we may use it to parametrize the curve u(-,t). The classical Frenet
formulas assert that

uss(s,t) = 75(s,t) = k(s,t)v(s,t), (1.40)

vs(s,t) = —k(s,t)7(s,1), (1.41)

where k is the scalar curvature. Another usefull relation is the following
k(s,t) = 0s(s,t). (1.42)

Now we give the definition of the anisotropic flow; for more details and for the proofs of the
properties below see for istance [43]. In the following, whenever no confution is possible, we shall
write 7, v and k as referred to u, using a notation that will not account for the choice of the
curve, otherwise we will specify the curve to which they are referred.

Definition 1.13. The family u : S' x [0, 7] — R? of smooth Jordan curves evolves by anisotropic
curvature flow if

ou(s, t)
ot

Remark 1.21. We observe that, since the curve u is smooth and the anisotropy F' is elliptic,
then we can write the anisotropic curvature as

= (F(v(s, 1)) k" (s, ) v(s.1). (1.43)

k¥ (s,t) = (V2F(v(s,1))7(s,t) - 7(s,1)) k(s, t). (1.44)

Consequently we have that the anisotropic curvature is controlled from above and from below
by the Euclidean curvature. In the following remark we recall some important properties related
to the anisotropic curvature flow.

Remark 1.22. If we consider a family of curves u(-, t) flowing by the anisotropic curvature flow,
we have that the limiting shape is a round point and there exists a time ¢ € [0,7) such that
u(+,t) is convex for ¢ € [t,T), even though the initial curve is not convex. For a proof of this fact
see for istance [43] 42, [71].
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As observed in [97], we can rewrite the anisotropic flow as follows. For semplicity of notation
in the following formulas we will not mention the dependence from s and t. So, let us define

@(0) := F(v) = F(cos0,sinf)
and we observe that by the divergence theorem k! = (Vg (Fe(v))T- 7') k. Since it holds F°(6) +
(Fo(0))" = Vg (F°(v)) T -7, then we have
up = P(0)kv, (1.45)

where
»(0) := ¢(0) (¢(0) + ¢"(0)) - (1.46)
The proof of the following result can be found in [97] (proof of Proposition 1).

Proposition 1.23. [t holds

(k")

5 S (3khg' + h'ke) 05(KF)? + (KF)*, (1.47)

(at - wass)

where h = ¢ + ¢".

In [42] the authors compute the first derivative of the area enclosed by a family of curves
that flows by anisotropic curvature flow (see the following Proposition). It is proved simply
integrating by parts the formula that gives the area enclosed by a curve +, that is

1
A = =5 [ ds.
¥
Proposition 1.24. Let u: S x [0,T] — R? a family of smooth Jordan curvan satisfying (1.43).

If we denote by us(+) := u(-,t) and by A(t) the area enclosed by u:, then we have

dA(t)

20 _ _/m Fwa, (s, ))kE (s, 1)ds, (1.48)

where vy, and kfﬁ are respectively the unit normal and the anisotropic curvature of the curve u;.
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Chapter 2

Results about Steklov type
problems in the linear case

In the first part of this Chapter we prove a quantitative version of the Weinstock inequality in
higher dimension, that states that the ball maximizes the first non trivial Steklov eigenvalue
among convex sets with fixed perimeter.

The second part deals with the study of the first Steklov-Laplacian eigenvalue with an internal
spherical obstacle. In particular, we prove, via a stability result, that the spherical shell locally
maximizes the first eigenvalue among nearly spherical sets, when both the volume and the internal
ball are fixed.

2.1 The quantitative Weinstock inequality

2.1.1 Stability of a particular isoperimetric inequality

An isoperimetric inequality for a functional involving the quantities P(-), M (-) and V'(-) is proved
in [I32] in the planar case and then in [3I] in any dimension, restricting to the class of convex
sets. More precisely, if £ € R™ is a bounded, open, convex set, it is proved that

M(E) MB) =
P(E) V(E)* > PB V(B)Z " J(B) (2.1)

J(E) =
where equality holds only on balls centered at the origin. In the same spirit, if £ < R™ is a

bounded, open, convex set, we define the following functional

M(F
I(E) = % (2.2)
V(E)P(E)»T
and we prove that the following isoperimetric inequality holds.

Proposition 2.1. Let n = 2. For every bounded, open, convex set E < R"™, it holds

I(B) > # - I(B). (2.3)

Equality holds only for balls centered at the origin.

33
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Proof. The proof follows easily by using inequality (2.1]), the standard isoperimetric inequality
and observing that

O

Our aim is to prove a quantitative version of (2.3). From now on, we will use the following
notation

D(E) = I(E) - ——— = I(E) - I(B). (2.4)

Stability for nearly spherical sets

Following Fuglede’s approach (see [67]), we first prove a quantitative version of (2.3) for nearly
spherical sets as in Definition when n > 3.

Theorem 2.2. Let n = 3 and B the unit ball of R™ centered at the origin. There exists € =
e(n) > 0, such that if E < R™ is a nearly spherical set with P(E) = P(B) and ||v||y1.»@gn-1) <€,
then

3" n—2 9
o [[v]lw11gn-1) = D(E) = WHUHWL?(S"*)' (2.5)
Proof. Setting v = tu, with ||ul|y1.o = 1/2, we have ||v||w1.e = t||u||lwre = t/2. Thus, using

the expressions of P(E) and M (FE) given in (|1.22)) and (L.24)), we get

/SH (1 + tu(@))" /(1 + tu@)? + LVou(@)P dHr

D(E) = —— -1 (2.6)
P(B)"T (1 + tu(z))™ dH" !
Snfl
" / (1 + tu(z))” <\/(1 + tu(x))? + 2|V u(z)]? — 1) dH" !
. §n—1
P(B)"T nV(E)
Now we prove the lower bound in (2.5)). Firstly we take into account the numerator in (2.6]). Let
fe(@®) = (1 +tu)ky /(1 + tu)? + 12|V, ul2. An elementary calculation shows that
0y =1,  fi(0) = (k + 1)u, 7(0) = (k+ Dku? + |V,ul?
(1) < 2(k+2)(k+ 1)k (\u|3 + |u|\VTu|2) (2.7)

for any 7 € (0,t). Thus, since the numerator of (2.6)) is given by f,(¢) — (1 + tu)", using the
Lagrange expression of the remainder term, we can Taylor expand up to the third order, obtaining

/ (1 + tu(z))" (\/(1 +tu(@)? + 2V, (@) — 1) dp
Sn—l
> t/ udH™ +nt2/ wrdH " + 1t2/ |V u2dH™?
Sn—l Sn—l 2 Sn—l

—Cl(n)5t2/ (u® + |Voul?)dH" . (2.8)
Sn—l
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Since P(E) = P(B), we have

/ (1 + tu(2))" "2/ + tu(@))? + 2|V, u(z)]2 dH ! =/ 1dHmt. (2.9)
§n—1 §n—1

Using (2.7) for f,_o, we infer

-2 t2
t/ udH™ ! > f"—ﬂ/ w2 - 7/ |V, uf2dHm
§n—1 2 §n—1 2(’]1 — 1) §n—1

—C’Q(n)etz/ (v + |V,ul?) dH" . (2.10)
Sn—l

Since n = 3 , using inequality (2.10) in , we get

/ ) (1 + tu(z))"” (\/(1 + tu(x))? + 2|V u(z)|? — 1) dH" !
gn-1

n+27 2 2 14 m—1 n—2 . 2/ 2 n—1
= ( 9 Og(’fl)&‘) t /Sn,71 u“dH + <2(n — 1) 03(71)6) t _— |VT’U,| dH

2 —_— — 1 —|— (; 5 .11

where C5(n) = C1(n) + Ca(n). Choosing ¢ = #ﬁl), we obtain
n—2 n—2
- s ol

71)||tu”%/v1=2(8”*1) O]

D(E) > In -

which is the lower bound in (2.5). Then, recalling that |v]. < 4 we have

/sm (1+v@)" (\/(1 +v(2))? + |Dro(@)? - 1) e

M(E) | _

nV(E) T
< (;)" /Sn_l (\/(1 + Iv(x)i;(Elev(x)P _ 1) a1
< (2)" /Sn_l <\/(1 + Iv(x)lnw:/|é;u(x)|)2 _ 1) g3

() | (w@l+ Do) dre? _

2 nV(E) roo Wollws gy, (2.12)

where last inequality follows from the following estimate

nV(E) = /Sn_l (1 +v()" dH" ' = nw, (;)n
O

Remark 2.3. Observe that the proof of the lower bound in (2.5) does not seem to work in the
planar case. The reason is that for n = 2 the coefficient of | D,u| 2 in (2.11]) could be negative.
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Stability for convex sets

Before completing the proof of the quantitative version of the inequality (2.3]), we need the
following useful technical lemmas.

Lemma 2.4. Let n = 2. There exists M > 0 such that, if K € R™ is an open, convez set with

2
finite perimeter and I(K) < 7111 , then K < Qpr, where @y is the hypercube centered at

(nwy, ) "1
the origin with edge M .

Proof. Since the functional is scaling invariant, we can assume V(F) = 1. Let L > 1, we have

M(K) =/ |z[2dH =/ |x|2d’H”’1+/ |2 dH" !
oK (0K)nQL OK\QL

> / [ePdH" + L*P(K; C(QL)),
OKnQL

where by C(Q,) we denote the complementary set of @y, in R™. Since K is convex, also K n Qr,
is convex and then

P(K) < P(K;C(Qr)) + P(K;Qr) < P(K;C(Qr)) + 2nL" ™, (2.13)

by the monotonicity of the perimeter. Suppose P(K) > L™; then, equation (2.13)) gives P(K;C(Qpr)) =
L™ —2nL" ! and, as a consequence,

/ |z|2dH" "t + L*P(K;C(Qy)) w2 rmad
I(K) > =2K0Ce it T

1 —n (2.14)
(P(K;C(QL)) + 2nLr—1)7—T1 =
The previous inequality leads to a contradiction for L large enough, since we are assuming

I(K) < #, while the last term of the above inequality diverges when L — oo. Thus,
nwn n—1

2
there exists Ly such that, for every convex set K with I(K) < 7111, we have P(K) < Lj.

(nwy, )1

Since V(K) =1 and P(K) < Ly, using (1.6, we get

diam(K) < C(n)Lg(n_l).

The last inequality proves (2.13)), if we choose M = C(n) Lg("’l). 0
2

Lemma 2.5. Let (K;) € R", n > 2, be a sequence of convex sets such that I(K;) < #

NWn, n—1

and P(K;) = P(B). Then, there exists a convex set K = R™ with P(K) = P(B) and such that,
up to a subsequence,
V(K;AF) >0 and I(K) < liminf I(K;). (2.15)

2
Proof. The existence of the limit set K comes from the proof of Lemmal.12; since I(K;) < I

7

=
(nwy,) ™1
there exists M > 0 such that K; ¢ Qu and P(K;) = P(B) for every ¢ € N. Thus, the sequence
{Xk,}jen is precompact in BV (Qps) and so there exists a subsequence and a set K such that
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V(KAK;) — 0. Moreover, from Lemma we have that P(K) = P(B). Note that we can

write

M(K) = Sup{/K div (|z[?¢(z)) dz, ¢ € CHQum,R™), |||l < 1}.
Observing that
| Wi (e o(o) do < M|divol .. + M
K

using the dominate convergence theorem, we have that the functional
K — / div (|z[*¢(z)) dx
K

is continuous with respect to the L' convergence. Hence, since M (K) is obtained by taking the
supremum of continuous functionals, it is lower semicontinuous. As a consequence, we obtain

inequality (2.15). O
The next result allows us to reduce the study of the stability issue to nearly spherical sets.

Lemma 2.6. Letn > 2. For every € > 0, there exists 6. > 0 such that, if E € R" is a bounded,
open, convez set with P(E) = P(B) and D(E) < 6., with D(E) defined as in ([2.4)), then there
exists a Lipschitz function v e WH®(S"=1) such that E is a nearly spherical set parametrized by
v and |v|wie < e.

Proof. Firstly, we prove that dy(E, B) < €. Suppose by contraddiction that there exists g > 0

1
such that, for every j € N, there exists a convex set ; with I(E;)— Ll < -,dy(E;,B) =
J

nwn) n—1
g9 and P(FE;) = P(B). By Lemma we have that there exists a convex set F such that E;
converges to F in measure and P(E) = P(B). From the semicontinuouity of M(FE), we have
that I(E) < liminf I(E;) < 7( ) —. Since B is the only minimizer of the functional I, we
nwp, ) 71
obtain the contradiction. Then, since E is convex and dy(F, B) < ¢, E contains the origin and
so there exists a Lipschitz function v € L (S~ 1), with ||v|| < €, such that

OE = {z(1 +v(x)), e S"1}.

Now, in order to complete the proof, we have only to show that |v| 1. is small when D(E) is
small. This is a consequence of Lemma [T.13] O

Now we can prove the stability result for the inequality (2.3). We first consider the case
n = 3. The two dimensional case will be discussed separately in the next section.

Theorem 2.7. Let n = 3. There exists § > 0 such that if E < R" is a bounded, open, convex
set with D(E) < 6, then

(”wn>1/("_1) By D(E)log 5z n = (2.16)

where D(E) is defined in (2.4]) and E* is the ball centered at the origin with P(E*) = P(E) and

27%9 -2 5n—7 %H " -1
B = 9 Bn <nl22> (16 (2) +n+ 1> (2.17)
4(n — 1)C’T’[’1
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Remark 2.8. We observe that inequality (2.16]) implies the following

A(E) < B+/D(F) log BE =3 (2.18)

T s.oEyF oz

where Ay (F) is the asymmetry defined in ((1.19). We emphasize that (2.16)) and (2.18)) are not

equivalent, because Ay (E) is in general different from dy; (E, E*), since one does not know where
is centered the optimal ball for . For istance, if E is a ball not centered at the origin, we
have that Ay (E) = 0, but dy(E, E*) > 0. On the other hand, since the functional I(-) is not
translational invariant, it admits a very unique minimizer once a value of the perimeter is fixed,
that is the ball centered at the origin and with the right radius. Thus, it seems more reasonable
to use dy(E, E*) in , since it measures how different is the set F from the minimizer of

10).

Proof. Since the functional I is scaling invariant, we can suppose that E is a convex set with
P(E) = P(B). We fix now ¢ > 0. Using Lemma we can suppose that there exists v €
Who(Sn=1) with ||v||y1.» < & such that

OE = {z(1 +v(x)), x e S"1}.
Then, if we take ¢ small enough, by Theorem [2.19] we obtain

n—2

2
D(E) = 4(TL 1)Hv||W1'2(S"*1)'

Let F' = AE, with A such that V(F) = V(B). From the isoperimetric inequality, it follows that
A > 1. Since the quantity I(F) is scaling invariant, we have that I(F') = I(E) and, from the
definition of F', that

OF = Dx(1+v(z),zeS" 1 = {z(1+ (A =1+ (x))),zeS" 1. (2.19)

Using the definition of A\ |, we obtain

Dkt (Z)/ vhdH !
)\"71:V(B)f1: Sn—1

V(E) V(E)

and, as a consequence,

Dkt (:)/ vrdH
_ Sn—l
V()Y A

Let now h(z) = A— 1+ Av(z). Note that ||h||w1.« < 2™||v||w1.» and that A\ € (1,2). Moreover,
using Hélder inequality, it is easy to check that

A—1 (2.20)

|1A]172gn-1y < 2n+2||7}||%2(5n—1) and ||Vrh\|%2(§n—1) < QI/HHDTUH%z(Sn—l)'

Thus,
n—2 2 peg M—2 )
m”’UHWLZ(Sn—l) 2 2 m”h”sz(Sn,l). (221)

Let g = (1 + h)™ — 1. Then, since V(F) = V(B), we have [y, , gdH"' = 0 and, from the
smallness assumption on u, we immediately have 1|h| < |g| < 2|h| and §|Vh| < |Vg| < 2|Vh|.

D(F) = D(E) >
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Now we have to distinguish the cases n = 3 and n > 4 , since we are going to apply the
interpolation Lemma to g. In the case n > 4, recalling that C), is the constant given by the
Sobolev embedding in Lemma we get

n=3
[Al]ee < 2[[glle < 2Cy IIDTQIILZ(SH I Vgl fcign-r)

—3 n—3
< Cul|V.h Lsn WIV-h gx(sn 5y < < 871 C, || Drh LSn WP Gy

where in the last inequality we use (1.26). From the above chain of inequalities we deduce
TLTH n-3 ﬁ 2
1 <8 ORIV Al e

and finally, recalling that F' = AE and V(F) = V(B), we get

n+1
p1 N2 2 e ntl dH(E,Eﬁ) 2
D(E) =2 mHDrh”H(Sn*l) = llhll% = mdu(F,B) > = <V(E)vlb )
(2.22)
_9 o
where v, = %2*5 ‘) So, using ([1.27)) and the isoperimetric inequality, we obtain

Cn 1
the desired result (2.16)) in the case n > 4. We proceed in an analogous way in the case n = 3.
Firstly we observe that, by definition of h it is quickly checked that ||v||y1,1(s2) < [|A]lw1.1(s2).
Then, the upper bound in (2.16) in terms of h, can be written as follows
D(E) = D(F) < C_'||h||1/1/1,1(g2)7 (2.23)
with C positive costant depending on the dimension. Applying Lemma to g and using

Lemma|l.13] we obtain:

111% < 4llgll% < 16]|D-gl[72(s2) log

8el|D-gllZ,
Hv79| |2L2(52)

27e\|D I 2% ||”|‘
L2 Sz L2 S2

Choosing now [|h||s small enough, from the upper bound in (2.5, we have

1
A1, < BIVAIa 0 o | 5755 | (2.21)
and, as a consquence, using ) and -7
" (oiz)
(0]
1 1 1 o D(E)) _, =
D(E)log ( = | = =||V,0|[2ag) log [ = ) = 27 5| |02 ———2L = B2,
(E)10g (35055 ) > 590l 08 (5055 ) = 27 s .
D(E
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2.1.2 Optimality issue.

In this Section we will show the sharpness of inequality (2.16)) and, as a consequence, the sharp-
ness for the exponent in inequality (2.16]). We start by taking into exam the case n = 3.

Theorem 2.9. Let n = 3. There exists a family of convex sets {Eq}a>0 such that for every o
D(E,) — 0, whena —0

and

(2.25)

dn(Fa B3) = c\/mEa)log o

where C' is a suitable positive constant independent of «.

Proof. We follow the idea contained in [67] (Example 3.1) and recall it here for the convenience
of the reader. Let a € (0,7/2) and consider the following function w = w(y) defined over S* and
depending only on the spherical distance ¢, with ¢ € [0, 7], from a prescribed north pole £* € S2:

—sin? alog (sina) + sina (sina — sin @) for sinp < sina
w=w(p) = (2.26)
— sin?(a) log (sin ) for sin¢ > sina.

Let g := w — @, with @ the mean value of w, i.e.

/2
W= / w(ip)sing dp = (1 —log2) a® + O(a?),
0

when « goes to 0, and let
R:=(1+39)"*=1+nh.

The C! function R = R(p) determines in polar coordinates (R, ) a planar curve. We rotate
this curve about the line {*R, determining in this way the boundary of a convex and bounded
set, that we call E,. We can observe that h and g are the same fuctions cointained in the proof
of Theorem The set F, is indeed a nearly spherical set, which has h as a representative
function and with V(E,) = V(B). Therefore, taking into account the computations contained
in the proof of Theorem relative to the functions h and g and the ones contained in [67]
combined with , we have

1

9]0 :aQIOga+O(a2), (2.27)

8llos = 1]l = 2a®log = + O(a?) (2.28)
© Z 5 Glloo = B ga 5 .

and

1
VAl = ¥} = attog (- ) + Ofa).
Using (2.23)), we obtain:
D(E,) =0 <a4 log 1) (2.29)
a
Consequently
D(E,)1 L V-o(an 12 (2.30)
o) 108 D(Ea) = « oga . .

So, we have that D(E,) — 0 as « goes to 0 and, combining (2.28) with (2.30), we have the
validity of (2.25)). O
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We show now the sharpness of the quantitative Weinstock inequality in dimension n > 4.

Theorem 2.10. Let n = 4. There exists a family of convex sets {Py}a>0 such that
D(P,) — 0, whena—0

and
dy(Pa, P¥) = C(n) (D(Pa))” "V,

where C(n) is a suitable positive constant.

Proof. In this proof we follow the costruction given in [67] (Example 3.2). Let « €]0,7/2[ and
let P, be the convex hull of B u {—p, p}, where p € R™ is given by

1
Pl = cosa’
We have that )
vV Pa = w, . n+1 19 n+3
(Py) =w +n(n+1)w 10 + O(a"™?)

and
P(P,) =nV(P,).

We provide here the computation of the boundary momentum, that is

n—1

2wWn_1 (sin(a))("fl) vl (

> - /0 " sin2(6) do

M(P,) = 2 2 tan? 2n—1) | —— = 2
(P,) nn D) cos(@) (n +n + 2tan (a))—l— (n—1) o (ﬁ)
2
(2.31)
Since n > 2, we have
() TV (Pa) P(Pa) T D(Py) = ()7 290 (022 nir sy
Since dy (P, P¥) behaves asimptotically as o, we have proved the desired claim. O

2.1.3 The planar case

In this section we discuss the stability of the isoperimetric inequality in the plane. This
case is treated in a different way since the proof given in the previous section does not seem to
be adapted to the planar case, as explained in Remark Moreover, we observe that, in two
dimension, the inequality contained in [31] and the inequality are proved by Weinstock
in the technical report [133], using the representation of a two dimensional convex set via its
support function. The section containing this result in the convex case was removed from the
published work of Weinstock [132] and discovered later by the authors in [31], who reported it
the Appendix of their work.

Let E = R? be an open, convex set in the plane containing the origin and let h(f) be the
support function of E with 0 € [0,27]. Weinstock proved in [132] the following inequality (see
also [31I] for details)

P(E) [*" ,
7M(E)— P(E)V(E) = T/ p“(0) do = 0, (2.32)
0
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where, for every 0 € [0, 27], p(z) is defined by

P(E)
h(0) = 0).
(0) = —— +p(8)
By the definition of support function, it holds
2m
h(0) d9 = P(E). (2.33)
0
Moreover, since F is convex, we have
h(0) + h"(0) = 0, (2.34)

where h” has to be understood in the distributional sense. Then, the function p verifies

27
/ p(6) b — 0,
0

and
P(FE
2(7r ) +p(0) +p"(0) = 0. (2.35)
We observe that
Il o ([0,27)) = du(E, E¥), (2.36)

where E* is the disc centered at the origin having the same perimeter as E. Consider 6, € [0, 27]
such that ||p|L» = p(6p). By using property (2.35)), it is not difficult to prove the following result.

Proposition 2.11. Let p be as above, then

p(0) = (), (2.37)
1 (P(E) 2. . . .
where v(0) := p(6y) — A= +p(00)) | (0 —00)" is a parabola which vanishes at the following
points
2p(6,
01,2 =100 £ 7}3(}3)}?( 0) .
. T p(6o)

Proof. By property (12.35]), we obtain

0 [ t
p(6) = pl6o) + / P (1) dt = p(6) + /9 / P (s) ds dt

0o

0 rt
= p(6o) + , /9 - <P2(f) +p(s)> dsdt
> pion) — (52 000 ) O (239

which is the claim. Then, p is above the parabola -y, that attains its zeros at the following points:

2p(6h)

%f) +p(90).

O12="00+

This concludes the proof. O
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Inequality (2.32)) implies Weinstock inequality but it hides also a stability result. Indeed, by
using the previous Proposition, we get the following quantitative Weinstock inequality in the
plane.

Theorem 2.12. There exist § > 0 such that, if E < R? is a bounded, open, convex with
D(E) < 0, then

16 (. du(E,E*)\?

— | 2r—— < D(FE),
972 < P(E) (E)
where D(E) is defined in (2.4). Moreover, the exponent g is sharp.

Proof. Since the functional D is scaling invariant, we can assume that E is a convex set of finite
measure with P(E) = P(B) = 27. From Lemma [2.6] if we take a sufficiently small £, there exists
0 > 0 such that, if D(E) < §, then E contains the origin, its boundary can be parametrized as
above by means the support function and, by ,

d = |plle(fo,2n)) < €.

Under these assumptions, since in particular |d| < %, Proposition m gives

1+d 6 —6p)?
p(0) = d— (;) (0 —00)* =>d— %. (2.39)
Denoting by 6; > the zeros of the parabola d — W, that are
612 = 0o + 2V4d,

by using ([2.32)), the isoperimetric inequality, Holder inequality and (2.39)), we get

M(E) 1 aM(E)-PE)VE) _ 1 [*
b(E) = P(EW(E) =  aP(E)V(E) ~ W/ P (6) df

SR b 20)df > — /92 (6) do 2>£d% (2.40)
272 Jq, P “212(02 — 61) \ Jy, P 9r2" ’

By and , being P(E) = 27, we get the claim. In order to conclude the proof, we
have to show the sharpness of the exponent. We construct a family of convex sets E., with
P(E.) = 2w, such that

D(E.) — 0 for e — 0,

and ,
Ipllzeon) = & + 0 (<)

Let us consider the convex set E having the following support function:
h(0) =1+ p(0), 6c¢€]0,2n],
where the function p is the following
b if0e[0,m—a

p(0) =1 c— L_f)z if0e[r—a,r+al
b if € [+ o, 27].
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Here the parameters «, b and ¢ are

e

4
o = 2/e, b:——ag, c=¢€— —¢€2.
3T

4
3

By construction, we have that
27
P(E.) =27 and / p(0)do = 0.
0

We recall that (see for instance [132, [31])

V(E.) = %/0 ' (h*(0) + h(0)R"(0)) db

M(E.) = /0% <h3(9) + ;hQ(G)h”(9)> de.

Arguing as in the proof of Weinstock inequality, a simple calculation gives
2 1
RM(EL) ~ PEIV(ED =7 [ 57(6) (24500) + 50D 09
0

27 27 2T
= 27r/ p2(0) df + 7r/ p3(0) do + g/ P2(0)p"(0)do = Ce? + O(%), (2.41)
0 0 0

where C' is a positive constant. This concludes the proof. O

In the following Figure it is represented E., as defined in the previous proof, for a fixed value
of e > 0.

Figure 2.1: Sharpness in the bidimensional case
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2.1.4 Main Theorem

In this paragraph we state and prove the main Theorem of this Section, which is a stability result
for the Weinstock inequality restricted to the case of convex sets.

Theorem 2.13. Let n > 2. There exists 8 > 0 such that for every Q < R™ bounded, convex
open set with o9(Br) < (1 + 9) 02(2), where Br is a ball with P(Bgr) = P(Q), then

16 (Ay())% ifn=2
2
0a(Br) = 02(2) _ | 2ymg (““”ﬁ(%) ifn=3
UQ(Q) - L 41
s (AHOVF

where § and B, are defined in (2.17) and g is the inverse function of f(t) = tlog (%), for
0<t<el

Proof. The proof is a consequence of Theorems 2.7 and [2.12] Since all the quantities involved
are invariant under translations, we can assume that 02 has the origin as barycenter. Under this
assumption in [31] it is proved that

It holds

1 [ nwy, ]1/("1)

o2(Br) = 3 = P(Q)

then, using the previous inequality and ([2.2)), we have

o2(Q) () ~ nlQ|

09(Bgr) —02(Q)  02(Bg) - M() < i, >1/(n—1) L MP<Q)

- P(Q) n
- = =
Let ¢ be as in Theorem Then if Q is such that o2(Bgr) < (1 + §)o2(Q), with § = %5
then D(£2) < 6 and, for n > 4 from (2.16)) in Theorem [2.7) we get
1 ntl
02(Br) = 02() _ (nwn)™T (AH(Q)) ?
0'2(9) - n Bn .

If n = 3, we can conclude a similar way, observing that f(t) = tlog (%) is invertible for 0 < ¢ <
e~!. Thus, being D(Q) small, we can explicit it in (2.16]), obtaining the thesis. The result in two
dimension follows from Theorem 2.12] O
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2.2 Steklov-Dirichlet type problem on a perforated domain
for nearly spherical sets

2.2.1 Notations

Let R > r > 0, throughout this section we denote by B, := {z € R" : |z| < r} the ball centered
at the origin with radius r > 0, by A, r the spherical shell Bg\B, and we define

A Q= Q0\B, : Q = R"open, bounded, connected,
" with Lipschitz boundary, s.t.B, € Qg |

Since we are studying a Steklov eigenvalue problem with a spherical obstacle, we need to introduce
the definition of a closed subspace of H'(f2) that incorporates the Dirichlet boundary condition
on 0B,. We denote the set of Sobolev functions on €2 that vanish on 0B, by

H{%B,‘(Q)a
that is (see [55]) the closure in H'(Q) of the set of test functions

CZp,(Q) = {ulo : ue CF(R™), spt(u) N OB, = &}

2.2.2 Main properties of the Steklov-Dirichlet problems
Eigenvalues and Eigenfunctions

We are dealing with the following boundary eigenvalue problem:

Au=0 in Q
u=0 on 0B, (2.42)
ou

DS

— =0"?(Q)u on 09

2 () 0

where v is the outer normal to 0€)y. We give now the definitions and some geometric properties

of eigenvalues and eigenfunctions of problem (2.42)).

Definition 2.1. The real number 0”%(Q) and the function u € H}p (Q) are, respectively, called
eigenvalue of (2.42)) and eigenfunction associated to o(2), if and only if

/ VuVy dz = oP%(Q) / wp dH" " (z)
Q o

for every ¢ € Hjp ().

Furthermore, the first eigenvalue is variationally characterized by

oP%(Q) = min J[w], (2.43)
weHéBT(Q)
w0
where
/ |Vwl|? dx
Jw] =224 (2.44)

/ w? dH"
00
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We point out that the condition of being orthogonal to constants in L?(0) is not required, unlike
the classical Steklov eigenvalue (when r = 0). The following ensures the existence of minimizers
of problem (|2.43)).

Proposition 2.14. Let r > 0 and Q € A,., then there exists a function u € Hé’lBT (Q) achieving

the minimum in (2.43)) and satisfying problem (2.42)).

Proof. Let u, € H}p () be a minimizing sequence of such that [|ug||z2(00,) = 1. Since
the minimum in (2.43) is positive, then there exists a constant C' > 0 such that J[uy] < C
for every k € N and therefore ||Dug|[12(q) < C. Moreover, a Poincaré inequality in Hip (€2)
holds and this implies that {uy}xen is a bounded sequence in Hlp (Q2). Therefore, there exist a
subsequence, still denoted by uy, and a function u € H}p () with |[u||r2(a0,) = 1, such that
uy, — u strongly in L?(Q), hence also almost everywhere, and Duy — Du weakly in L?*(2). By
the compactness of the trace operator (see for example [91 Cor. 18.4]), wuy converges strongly
to u in L?(09)) and almost everywhere on 02 to u. Then, by weak lower semicontinuity we have

lim J[ug] = J[u].

k—400

Hence, the existence of a minimizer u € H (%BT (Q) follows. Moreover, u is harmonic in 2 and so,
by strong maximum principle, it has constant sign on 2. O

Now we state the simplicity of the first eigenvalue of (2.42)), following the idea in [58], Section
6.5.1].

Proposition 2.15. Let r > 0 and Q € A,, then the first eigenvalue oP% () of ([2.42) is simple,
that is all the associated eigenfunctions are scalar multiple of each other.

Proof. Let u, @ be two non trivial weak solutions of the problem (2.42). Since, by Proposition
[2.14] we can assume that @ is positive in (2, then it is clear that

/ﬁdx?éo.
Q

So, we can find a real constant x such that

/ (u— xa)dz = 0. (2.45)
Q

Since u — x@ is still a solution of problem ([2.42)), then it is also non-negative (or non-positive) in
Q. Therefore, (2.45) implies that u = x@ in © and the simplicity of P () follows.
O

It is worth noticing that the first nontrivial eigenvalue for the classical Steklov-Laplacian
problem (when r = 0) on Bpg is 1/R and the corresponding eigenfunctions are the coordinate
axis x;, for ¢ = 1,..,n. This means that the first nontrivial eigenvalue has multiplicity n and
this makes a significant difference with problem , for which we proved that the simplicity
holds. On the other hand, it is easy to verify that both have the same scaling property:

1
oP5 (1) = ;a?s(Q), Vvt > 0. (2.46)

The first attempts to study the optimal shape of problem (2.42) has been done on spherical
shells, i.e. when Q¢ = Bpg, for R > r > 0. We recall from [128], the explicit expression of the
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first eigenfunction on the spherical shell A, g:

Inp—Inr for n =2
z = 1 1 2.47
L [ (2.47)
with p = |z|. This function is radial, positive, strictly increasing and it is associated to the
following eigenvalue:
- ( ) for n =2
oD% (A R) = Rn)ﬁ for n> 3. (2.48)

R3]
It is worth noting that, since problem (2.42) and the classical Steklov (r = 0) have the same
scaling property (2.46), then the shape functional Q — V ()~ o25(0Q) is scaling invariant, as in
the classical case.
A first upper bound

We show an upper bound for 0% depending only by the dimension n, by the measure of  and
by the radius of the internal ball r.

Proposition 2.16. Let r > 0 and Q2 € A,, then

2 n
oP5(Q) < " SV Q)M
1 ( (vm) ) " )
nWyy +rn -r
2w,
Proof. Let R > 0 be such that V(A, z) = V(Q)/2, then R depends only by the dimension n, the

measure V() and r, that is
1/n
R= (V(Q) + r”) )
2wy,

Consider the function

(2.49)

We distinguish now two cases. Firstly, we assume that By € Qo, i.e. d := dist(0Bg, Q) > 0. By
using (2.49) as test function in the Rayleigh quotient (2.44]) and by the isoperimetric inequality,
we obtain

V(Q) - 1 1

< V(Q)n. (2.50)
= 3 1
(R—T) P(Q)  nwy (R—’I“)2
We consider now the case d = 0, that is when the ball By is not strictly contained in €.

Therefore, we divide the boundary of €y in the two sets 0?**€)y and 0°*€)y that live, respectively,
inside and outside of By. Using the test function (2.49)) in the Raylegh quotient (2.44]), we have

JPS(Q) <

ve) V(©)

DS
Q) < < .
7 Joa, P2 dHP =t = (R=1)2 [Long, 1 dH 1

(2.51)
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We recall that a relative isoperimetric inequality with supporting set By holds (see as reference
e.g. [37, [44, [41]):

1

B Un (V(Qq) =%
i) 5 (4)7 (V)T 252
HH (071 20) = (4 5 (2:52)

By using ([2.52) in (2.51)), we have
2 1
a%(Q) < ———— V(). (2.53)
nwr (R —1)?2

The conclusion follows by observing that the upper bound (2.53) is greater than (2.50). O

We remark that, when a volume constraint for 2 holds, then the upper bound is still finite,
when r — 0. On the other hand, when r — o0, the first eigenvalue cannot be upper bounded.
This, together with other examples that we are going to illustrate, motivates the study the op-
timality of o when another constraint holds, besides the volume one.

Volume constraint on the spherical shells

In this paper we deal with geometric properties of the first eigenvalue of . We look for
shapes minimizing o (2), when both w, the volume of Q and the radius r of the internal ball
are fixed. We show that, even among the spherical shells, ¢° cannot be upper bounded when
only a volume constraint holds.

Let us consider the spherical shell A, p with the volume constraint:
V(ArR) = wp(R" —r") = w.
We show that both in bidimensional case and in higher dimension, o
the class of spherical shells of fixed volume.

Let n = 2, then R = (r? + £)? and, by (2.48), we have

is not upper bounded in

O-PS(AT,R) = =

Hence, for r big enough,

2 2mr
SA ~ _
) S ey e T L )

and so

3=

Let n > 3, then, R = (r" + wi) and

n—2
o7*(Arr) = I -z =
P14 es) (14 22) T ]
n—2
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Again, if r is big

—9 n
P An) ~ - - T
T[l—’_(l_E) wwr”_l_ﬁwwr”] v
and hence again
lim oP%(A, R) = +o0. (2.54)
r—+00

Further, it is clear that, in any dimension, we have

lim oP%(A, ) = 0. (2.55)
r—0+
The limiting results and ([2.55) motivate the fact that it is not enough to fix the volume
to study the first eigenvalue o°. Indeed, when 7 is too big, it is not possible to find an upper
bound, and, on the other hand, when r is too small, the eigenvalue is trivial. We remark that, in
the class of sets of the form Bg(z¢)\B,, with Br(x() being a ball containing B,., the maximizer
of o1 is the spherical shell (see [69]).

Spherical shell with fixed difference between radii.

It is clear now that we cannot study the shape optimization for % when only a volume con-
straint holds. On the other hand, it could be interesting to understand if we can study the shape
optimization for double connected domains, when only one geometric quantity is fixed. Here,
for example, we briefly study the behavior of the spherical shell when the distance between the
radii is fixed. Let d be a positive real number such that

R—r=d,
so that R =r + d and §=1+g.
If n = 2, then for r big enough, we have
1 r
DS
A, R) = A
o1 (Arr) (r+d)log(1+g) rd + d?
and, hence,
1
. DS _ 1+
rll'r}rloo 71 (AT’R) S d
If n > 3, we have
n—2
JlDS(AT‘yR) = d n—=2
(r+d)[(1+;) —1]
n—2 r

~ —

r+d)[1+(n-2)2—-1] rd+d?

and, hence,

1
: DS _ 1
TEIEOO o1 (ArRr) = 7

Furthermore, in any dimensions, we have

lim oP%(A, ) = 0.

r—0+t
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The case of 7 small is again trivial. On the other hand, o is upper bounded for any value
of R by the reciprocal of the difference between the radii d. The fact that an uniform upper
bound holds for spherical shells when only the difference between the radii is fixed, suggests that
it could be interesting to study the shapes minizing 0% in the class of double connected sets
when only the width is fixed.

2.2.3 Main result

In this Section we prove that the spherical shell is a local maximizer for the first eigenvalue of
(2.42)) among nearly spherical sets with fixed volume, containing B, for a fixed value r > 0.
We recall that, if Qo is a nearly spherical set, as defined Definition [I.6] in Chapter 1, its

volume is given by
1 n _
V(Q) = 7/ (L4 (&))" aH™ .
Sn—l

n

The class of nearly spherical sets has a peculiar importance in shape optimization theory, in
particular for stability results for spectral inequalities. We are considering sets Q = Q\B,
beloging to A, with r» > 0, with Qg nearly spherical, and the main result is the following.

Theorem 2.17. Letn > 2,7 >0, w >0 and let R > r be such that V(A r) = w. There erists
e = e(n,r,w) > 0 such that, for any Q = Qo\B, belonging to A,, with Qo nearly spherical set
parametrized by v such that ||v||w1» < e and V(Q) = w, then

oP%(Q) < oP%(A, R). (2.56)
Moreover the equality in (2.56]) holds if and only if 2 is a spherical shell.

Let us remark that, in order to have B, € g, we need to require that ¢ < 1 — r/R to verify
that |y| = r, that is R(1+v(&)) = r. Moreover, we observe that, since all the quantities involved
are translation invariant, the result in Theorem holds also among nearly spherical sets with
fixed volume and containing a fixed internal ball.

Recalling the explicit expression of the first eigenfunction z on the spherical shell A, g,
we define the weighted volume and the weighted perimeter as:

V(Q) ::/Q|Vz|2dx,
e )

PQ) — /moz da.

Furthermore, to simplify the notations, we set, for n = 2,

hr(t) = (In(tR) — Inr)?, (2.57)
fr(t) = hlgg ) - ”(f;ggt) (2.58)

and for n > 3

ha(t) = <,ml_2 - (tR)ln_Q)z, (2.59)

Wot) n—2 [ 1 1
Ir®) =2k = @Ry <T"‘2 B (tR)n—2>’ (2:60)

where R is the radius of the ball with the same volume of Qy and ¢ > 5. Now, we write the

Raylegh quotient (2.44]) using the parametrization in (1.21)).
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Lemma 2.18. Letn = 2, r > 0, w > 0 and let R > r be such that V(A gr) = w. For
any 0 < e < 1—r/R and for any Q = Qo\B, belonging to A, with Qo nearly spherical set
parametrized by v such that ||v||w1= < e and V(Q) = w, then

T FrL+0()) (1 + ()"t dH !
oP5(Q) < ;(Q) = g . (2.61)

Q) v
/SH hr(l+ (€)1 +v(E)" 141+ % dH" !

Moreover if @ = A, g, then equality holds in ([2.61)) and oP%(A, r) = gl;g% .

Proof. From the variational characterization (2.43) of oP(f2), we have

0z
= V2|2 d / —zdH"!
V() Q| A _ Joa, ov
P

Q) / 22 gyt / 22 qHn—1 ’
Qo Qo

The conclusion follows using the change of variables in (1.21)). O

We recall the following result, whose proof can be found in [67].

Lemma 2.19. Let n = 2 and R > 0. There exists a constant C = C(n) > 0 such that for any
0 < e < 1 and for any v parametrizing a nearly spherical set Qg such that ||v||w1.- < e and
V(Qo) = V(BR), then

2
’(1 + o)t — (1 +(n—1v+(n—-1)(n— 2)2)‘ < Cev® on S™71,

ol [ v
2 (1+v)?

/ v(€) dH" T + / V(&) dH™
Sn—l Sn—l

As a consequence of the analyticity of hg and fr, defined in (2.57)-(2.58)-(2.59)-(2.60), the
following Lemma holds.

Lemma 2.20. Letn > 2 and 0 < r < R. There exists K = K(n,r,R) > 0 such that for any
0 < e <1 and for any v parametrizing a nearly spherical set Qqy such that ||v||w1.= < & and
V(Qo) =S V(BR), then

1+

< Ce (v + |Vol*) onS™71,

n—1

< Ceflv|Z.

2

hr(l+v) —hg(1) — hy(1)v — h’,'{(l)% < Kev? on S"71,

2

Fr(L+v) = fr(1) = frL = ()5

< Kev? on S™ L

Furthermore, this Poincaré inequality holds.

Lemma 2.21. (Poincaré inequality) Let n = 2 and R > 0, then there exists a positive constant
C = C(n) such that for any 0 < e < 1 and for any function v parametrizing a nearly spherical
set Qg such that ||v||w1.e < e and V(Qo) = V(Bgr), then

[Vo[[Z2 = (n = 1)(1 = Ce)|v]Z-.
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Proof. The function v € L?(S"~!) admits a harmonic expansion (see e.g. [80, Chap. 3|), in the
sense that there exists a family of n-dimensional spherical harmonics {H, (&)} jen such that

+a0
v() = D ¢H;(6), £eS" with [ Hjfpagn-ry =1,
j=0
where

¢j =, Hj)pagn) = /SM v(&)H; (&)dH™

and H; satisfying
Agnlej:j(j'i_n_Q)Hj VjeN,

where Agn-1 is the Laplace-Beltrami operator. Furthermore the following identities hold true

18

lolfZxgns) = (2.62)

<
I
o

(G +n—2)c (2.63)

IV0][Z2(n-1y j

)
Il
—

I

. _1
Since Hg = (nwy)~ 2, we have

ol = (nwn) ™2 <

/_ o(§)dH" !
/ v (&)dH ! (”21 +Cs> = Celv >,
§n—1

where the constant C has been renamed. Using this estimate, by (2.62)) and (2.63)), we have

0 0 00
[ore = D2 =+ D2 < Cefuffa + D) &,
j=0 j=1 Jj=1

1
2

(nwy)

and
0 [e¢]
[Vore = Y i +n—2)cf = (n—1) ), & = (n—1)(1 = Ce)|v] 7,
j=1 j=1
which concludes the proof. O

Now we give a key estimate for the main Theorem.

Proposition 2.22. Letn > 2,7 > 0, w > 0 and let R > r be such that V (A, r) = w. There exist
two positive constants K > 0 and 0 < g9 < 1 —1r/R, depending on n, r and w only, such that for
any 0 < £ < gg, for any Q = Qo\B, belonging to A,., with Qo nearly spherical set parametrized
by v such that ||v]|wie < e and V(Q) = w, then

V(QHP(Q) — P(OHTV(Q)

NWn,

[Vo(§)?
(1 +v(8)?

—hr(1) FrL+ (€)1 + ()" dH" ™ = K v?dH"
Sn—1 §n—1

= oD [ hell+o(@) o€y 1+ ! (2.61)
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Proof. Using Lemmata [2.19] we have

1 Vou(§)? n—1
a0) [l o @)+ o) 1+ S an
ha) [ fall+ €)1+ o)

§n—1

> / v (fR)WR(D) = Fr(D)hr(1)) dH™
Sn—l

+ /S LB = fr(1)RR() + 200 — D(fr(DAR(D) = fr(1)hr(1)] dH"™!

no1 2
2
+ / fR(l)hR(l)@d’Hn_l — €K1 HVUHQLz,
Snfl
(2.65)
where K is a positive constant. Let us set
Q1(t) := fr)WR() — fr()hr(),
Q2(t) := fr(t)WR(t) — frR(t)hR(),
Qs(t) == fr(t)hr(t),
In order to show , we need to prove
L. Ql(l) > 03
2. Q?)(]‘) > 0,
3. (n—1)[@:(1) + Qa(1)] + Q2(1) > 0.

Indeed, when (1), (2), (3) hold, then, by using Lemmata and the last term in (2.65])
can be estimated as

2
Qi(1) /S VAR (2= DY) + Qa(D) [ an
v 2
+ Q3(1) /Sn71 %d%nil —eK; HV’UH%2

n—1

> —
2

Q1(1) /S VP dH T — e Ko|v|3s + ((n —-1DQ:1(1) + 4222(1)> /S v? dH"

n—1
2

= 2 (= DIQ1D) + Qs()] + Qa(1)} ol

— elo|[v]Z2 — eKs|vlis — eKa|| Vo[

+

Qs(1) / o — eKalo|2s — K|Vl
§n—1

> K|vlZ: — eKalolfiogny,

where we denoted K = ${(n—1)[Q1(1) + Q3(1)] + Q2(1)} > 0 and K; = max{Ky, K3, K3}.
The proof concludes by choosing € small enough.

It remains to prove (1), (2), (3) by distinguishing the bidimensional from the higher dimen-
sional case. We note that

Qi) = 20| 22O Z o | 20| (2.66)
fr(t) h'y (1)
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and
hr(t)
fr(t)

i (t) ]” . (2.67)

@) = @i = [zl | 7551 | + 20 |50

Case 1. Let be n = 2. We observe that

hr(t)
fr(t)

is positive and strictly increasing, since it is a product of two strictly increasing positive functions.
Hence Q1(t) > 0 and in particular

Q1(1) = hR}gl) («/hR(l) + 1) > 0.

= Rt(In(tR) —Inr),

Moreover, it is clear that

Q) = "OVEaD)

Let us now calculate all the terms in (2.67) and evaluate them for ¢ = 1. We have

and

fam =" o,

1301, = | oy (Vi@ )| = 2 (VAlD) — ha).
Summing up, estimate (3) follows by

hr(1)\/hr(1) = hr(1)  hr(1)y/hr(1)

Q1(1)+Q3(1) + Q2(1) = R +— 7 +
2@ - 2hR(1)RhR(1) + hf;él) _ %(hR(l) + VA1) > 0.

Case 2. For n = 3, from ([2.66]) we have

hr(t)  (tR)"! ( 1 1 )

Weo(t)  2(n—2)R \rm=2  (tR)n~2

that is a strictly increasing function, since it is product of two strictly increasing and positive
functions. Hence @ (¢) > 0 and, in particular

(n—1)(n—-2)

Qu(1) = hR(l)«/hR(1)+2;?27;23)2hR(1)>0.

Moreover, it is easily seen that
n—2

Qs(1) = R—1

hR(l) hR(l) > 0.
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Eventually, we have

n—2)3 n—1)%(n—
Q) = B 2 ) - P2 0) ()
L NO D)) + DD ),
and therefore, it follows that (n — 1) [Q1(1) + Q3(1)] + Q2(1) > 0. O

We use the previous result to give a stability result in a quantitative form.

Theorem 2.23. Letn > 2, r >0, w > 0 and let R > r be such that V(A, r) = w. There exist
two positive constants K > 0 and 0 < g9 < 1—7/R, depending on n, r and w only, such that for
any 0 < € < g9, for any Q = Qo\B, belonging to A,., with Qq nearly spherical set parametrized
by v such that ||v||w1e <€, and V(Q) = w, then

oPS(AnR) = oP¥(Q) <1 + K(n, T,w)/ v2(€) d?—l”1> )
S§n—1

Proof. From Proposition [2:22] we know that there exists K > 0 such that

— V(Ar,R) V(Q) 2 n—1
P(Arr)P(Q) (P(AT o P(Q)) > nw, K . dH" .

)

Then, we have

s V(AR) V() _—
o1 (Arr) = P(A,.R) > P(Q) - P(A,r)P(Q)
2 n—1

B @ . nwy, K s v dH

P(Q) P(A,;r)V(Q)

2 n—1

) @ . K - v dH

PO\ () [+ o(@) 1 4w ane?

Sn—l

— K v2dH™ !

V() gn1 " o2 -1
= F(Q) L+ nwn2"—1hR(1)fR(2) > () <1 K gn—1 dH > ’

where the second inequality follows by the fact that |v|y 1.1y < e < 1 and by the mono-
tonicity of fgr(-). O

Eventually, the main result (Theorem [2.17) easily follows by Theorem Moreover, if
Q = A, g, then the function v parametrizing the outer boundary is constantly equal to zero and

equality in (2.56) holds.



Chapter 3

Study of the Steklov problem in the
anisotropic case

In the first part of this Chapter we generalize the isoperimetric inequality proved in [31], that is

/ ‘$|2 dH’rL—l
Joo 5 ,m2n 3.1

to a functional involving the anisotropic p—momentum, the anisotropic perimeter and the volume,
being €2 an open bounded and convex set of R”, n > 2. In the second part we focus our attention
on the anisotropy |z[}, = Z?:1 |27 |P and consider the anisotropic p-Laplace operator associated
to this norm, that is

p—2
umi ) T )

~ n
Ayu = 2 (e,
j=1

called the p—orthotropic Laplacian. We study the Steklov eigenvalue problem for the co—orthotropic
Laplace operator, considering the limit for p — o0 of the Steklov problem for the p—orthotropic
Laplacian. Using the generalization of the isoperimetric inequality , we prove Brock-
Weinstock and Weinstock type inequalities for the first non trivial eigenvalue of the Steklov
co—orthotropic Laplacian among convex sets.

3.1 An isoperimetric inequality involving the volume, the
anisotropic perimeter and the anisotropic boundary mo-
mentum

Let 2 be a bounded, open set of R™ with Lipschitz boundary. Let p > 1, we consider the following
scaling invariant functional:

/a F@) F() i @)
[ Pty ane)| vy

)

-FF,p(Q) =

3

o7
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where v(x) is the unit outer normal to 0Q at « € 9 and F is a Finsler norm as defined in Section
3.1 . We define the anisotropic p-boundary momentum of €2 as

Miy(@) = [ [FP@) Fo(e) ai' @)

and we recall Definition [I.8] where we have defined the anisotropic perimeter as

Pp(Q) = /a F(@) dH" ().

The main result of this Section is the following. We recall that x,, is the volume of the unitary
Waulff shape
W= {{eR": F°(&) < 1}.

Theorem 3.1. Let 2 be a bounded, open, convex set of R™. The following inequality holds true:

P

Frp(Q) = kn™ = Fpp(W)
and equality holds only for Wulff shapes centered at the origin.

In the rest of this Section, for simplicity, we will write F instead of Fr, and Mg(-) instead
of Mpyp(').

Remark 3.2. We observe that from this last theorem follows a particular case of the inequality
proved in [I6] that we have recalled in (18). Indeed, if we take F'(z) = |z|, we obtain

( / |x|pd7-l”_1(:v)> > Py Q)L
o0

In what follows we will need the following definitions:

o rl (Q) :=max {F(z) | z € Q};

max

ozl ()€ 09 is such that Fo(zL  (Q)) =L . (Q);

max

Mp,(Q
e the anisotropic p-excess function Er(Q2) := (rL  (Q))P~1 — 71?/’1252)).

The general way of proceeding to prove our main Theorem is analogous to the one presented in
[31].

First variation of the p momentum in the smooth case

We recall the Definition of Cahn-Hoffman vector vk, given in

Proposition 3.3. Let Q and Q(t) be the subsets of R™ defined in Section with C* boundary.
Then

EME(O)] im0 =

- p/aQ (F° ()P (VF°(2), p(x) vi () F(v(x)) dH " (x)+

+ [ PP ) Ha@e) di @),
o0
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Proof. Considering the change of variables given by (4.9), i.e. y = ¢(z,t), we have that

4
dt

= [ G (P t)) Fo(o(e, ) a0l ) ot
o0

Mp(Q(t))]i=0 =

o p d n—1
= [ @) G [P 0) a6 )] o

We observe that
[ 3 (6 0)P) (o, 0) di = (¢fe. )iy
= [ p (Pt V(6. 0) gl fala) P (w0t ) a1 (0l )]0

Moreover, from the first variation of the perimeter (|1.36)), we can say that

% [F(v(é(z,1)) dH"H((@,1))] =0 = Hig(x)p(2)F(v()).

The thesis follows.

Considering now the derivative of the quotient, we obtain

4 F (@A) limo =
= PF(Q);V(Q)Z [p/t;ﬂ [(FO(SC))P—l (VF°(z), l/gQ(x»F(y(g;))
Mp(92)))

—r@) FeeN] el dH @)+

<
(x))P — Mp(©) x v(x x n=lig
+ 1 - FED i) F@)e) i o).

Let be T' > 0; we choose,

(2) =
p\r) = s
Hgﬂ(x)
and we have that
0 vio ()
*Qs(xv t) = %4 5
ot Hio(x)

for every t € [0,T]. This one parameter family of diffeomorphisms gives rise to the inverse
anisotropic mean curvature flow (TAMCF), see for a reference [I135] and Section for the
result of existence and its properties. Substituting this ¢ in the derivative of the quotient and
taking in account the fact that

oy p_MF(Q) vz nflx —
[ | - ZED | pow) i o (32
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we obtain
d
R0 = (33)
— °(z))P 1 °(z), vE, (z v(x fMF(Q) vag(x M:
e E o [ E T T @) e Pt - SEE Pl | TS
o o oo o (ayy  MEEO) FO) s
B | (P OOt - gy | G o)

Existence of minimizers (Step 1)

Proposition 3.4. There exists a convexr set minimizing F(-).

Proof. Given a convex set 2, up to a translation, we can consider that fm 2F (voq(z))do, = 0.
Since the anisotropic perimeter and volume do not change, while the anisotropic boundary p-
momentum does not increase, we can assume that a possible minimum has the center of gravity
in 0. Therefore, we can take a minimizing sequence (£););, having the same volume of Q and
satisfying fﬁﬂi xF(voq,(z))do, = 0. In particular, this implies that the origin has to be inside
Q; for every 1.

By Blaschke selection Theorem in [I18, Theorem 1.8.7], it is enough to show that the €;’s have
equibounded anisotropic diameters. For sake of simplicity, we suppose that V(€;) = &, and,

P

since any Wulff W with center of gravity in the origin is such that F(W) = k, ™, we have that

p

lim F(Q;) <kn™,

i—+00

and consequently
Mp (%)

lim —— <L

Arguing by contradiction, if we assume that lim;_, ;o diamg(€;) = +00, from convexity follows
easily that lim;_, 1 o, Pr(9;) = +00. Thereafter, if W, is the Wulff of anisotropic radius 2 centered
at the origin, it is enough to observe that

Joa,ow, F () dH" ™ (z)

lim =0
i+ faQi\w2 F(v(x)) dH"1(z)
and
. Mp(S) ) 2r
RN _9p
zEIJPoo PF(Qi) = zgrjpoo 1+ fmmwz F(v(z)) dH"—1(z) 25,
f(‘;Qi\W2 F(v(z)) dH™~1(z)
which gives a contradiction. O

A minimizer cannot have negative Excess (Step 2)

Remark 3.5. There exist sets with negative anisotropic p-Excess. We prove this fact in dimen-
sion 2 and for p = 2. We consider the elliptic metric
22 g2
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we know that its polar is this elliptic norm

F°(z,y) = v/a?x? + b%y?
and we consider now the following convex domain:
Re_{(xvy)ERZ : |1’|< ) |y|<€}
From the computations we obtain that V(R.) = 4, v _(R.) = a/e + O(¢®) and Mr(R.) =
(4a?/3b)(1/€3) + 4a/e + Oe).
Lemma 3.6. Let  be a bounded, open convex set of R™. Then

Mp(S2)

(@) (VF (@) vhao) — L

< Ep(Q). (3.4)

Proof. We observe that
(VF(x),viq(x)) = (VF°(2), VF(v(2))) < F(VF°(2))F°(VF(v(2))) = 1,
for the properties of the Finsler norm F'. O

Lemma 3.7. Let Q be a bounded, open convex set of R™. Then
- Mp(2)

F° p—1 Vv F° F _
[ [E @y ore ) -

Proof. We notice that it is enough to prove that

- Mr(©)

(FO ()" (VF°(x), vig (@) —
Ll ( )
since there exists @ > 0 such that o < F(vaq(z)). In order to prove (3.5]), we observe that

°(@)" (VF° Mp ()
/a 5 [(F (2))" " H(VF (), v (@) F(v(z)) — el

]d%”*l(a:) <0.

]F(u(m)) A" (z) <0, (3.5)

F(v(x))|am— (@) =

() (e M (©) .
/aQ [(F ()" (VF°(z), VF(v(x)))F(v(z)) — n§(Q) F(l/(a:))]d’,'—[ 1(z)
o p— n—1 M (Q)
< /aQ[(F (2)) 1 Fw(x))] dH " (z) — n{f(Q) Pr(Q)
Mp(Q)Pr(Q)

< [ PN )~ e

and the last inequality holds since
nV(Q) = /m@;u(x)} dH" ' (x) < /Q Fo(z)F(v(z)) dH" (),
0
for the properties of the Finsler norms. Using now Hélder inequality, we obtain
| @y P@) a @

p—1

(F(x))"™ #F(V(l"))d%”_l(w) " (Pr()
o

N
S

p—1

- [ /a i (F°(x))" F(v(x)) dH”l]p (Pr(€))

S
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and

p—1

[ F@rw) dH”‘l(xK[ [ # @y Fee) d%”*(a:)r (Pr() |
o oN

Finally, from these last two inequalities, follows that

([ 1@y reetae=@) ([ Feree) e o) < me@peo).
o0 os
O
Proposition 3.8. Let Q be a bounded, open convex set of R"™ such then
Er(Q) <0, (3.6)

then § is not a minimizer of F(-).

Proof. We firstly assume that Qe COO "+ Since Er(Q) # 0, Q is not a Wullf shape centered at
the origin. Then, from (3.4) and ., we have

dH" 1 (z)

2.
oo Hig(z)

/ p
F (Q) < WEF(Q)

3

We suppose now that € ¢ C?7+ and we assume by contradiction that {2 minimizer the functional
F(-). We can find a decreasing (in the sense of inclusion) sequence of sets (Q),.y = Cp' " that
converges to 2 in the Hausdorff sense. We have that

lim V(Qk) = V(Q), kEIEoo PF(Qk) = PF(Q),

k— 400
. _ A . _ F
kEIEoO MF(Q]C) - MF(Q)v kErJIrl rmax(Qk) rmax(Q)

We now consider the IAMCF (inverse anisotropic mean curvature flow) for every Q) and we
denote by Q(t), for ¢ > 0, the family generated in this way. We let Q(0) = Qi. Using
Hadamard formula (see [83]), we obtain:

d F(v(x) o m1, ..
V(1) = /09k(t) Wk(t)d}[ o 7
%PF(Qk( t)) = Pr(w(t)). .
We have also that d rE (1))
max k
= rb Q1) < ST T o

We prove now this last inequality. From definition of 2 (Q(¢)) and (4.9) in the IAMCF case,
we have that

Pmax () = F (2450 (2(1)));

2F — F tvig
L A e )}
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Then
atrriax( ( )) = atFo( max(Q( ))) <VFO( max(Q(t))7 HF
F(VF(x m(ﬂ(t»))F%ugg(xiaX(m))Hm(;x()) -
F(VF?(2F (1)) FY(VF (a2 F 0 ())) =t

N

Hio(@h.x(2))

max

_ 1 _ Thax(©)
HF(xgaX(Q)) - n—1"

since F is a Finsler norm and therefore it is true that F(VF°(z)) = 1 = F°(VF(z)) = 1. We
can then repeat this last inequality for every Q. From (3.9) follows that

max(ﬂk( )) < maX(Qk)eW 0, fort > 0. (3.10)

Analogous computations to the ones reported in [3I, Proposition 2.4] lead to a contradiction
with the minimality of €. Let us see that in details. Using the minimality of 2, we have that
F(Q)<F (Qk(t)) Then, using the monotonicity of the perimeter with respect to the 1nclu510n
of convex set, (3.7) and (3.8), we obtain that Pp(Qx(t)) = P(Qx(0)) = . From (3.2), (3:3),
(34, (3:10), 1t holds for every t > 0, setting oy, = P2(Q(¢))V(Q (t))p/”/p

o F )< [ (P - SEEE) ) ae

V@) (e - FOP@)

Now we integrate in the interval [0,T] and, using (3.7) and (3.8), we obtain V(Q) < V(Q4) <
V(Qu(t)) < V(Qk(T)). Consequently,

ax (FOW(T)) ~ F(O) < V(D) ~ V)] (e @)ers - —ZCUZD Y

Since we are supposing (3.6)), there exist § > 0 and T' > 0 small enough and ky >> 1 such that
V(Q, (T)) < V(Q) + § and

! Ly _ _TE)Pr(©Q)
(pl max(Qk)e< ) nV(Qk(T))ln/P) < 0. (311)

Moreover, since the AIMCF preserves the inclusion, we have Q(T) < Q,(T) for k > ko which
implies V(% (T)) < V(2) + 6 for k = kg. So, for k = ko,

ag (F(Qk(T)) — F(Q)) < (3.12)

F(Q)Pr(9) )
n[V(Q)+48]'"" )

[V(%(T)) ~ V()] (1 P )T (313)

Using the anisotropic Heintze-Karcher inequality (1.38) in Lemma for t = 0;

V' (Q(t)) = n(n — DV (2%(1))
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and so
V(Q%(T)) = V() D7T.

By (3.11) and (3.12)), passing to the limit,
Qg <[klim F(Qu(T)) — ]-"(Q)]) <
—00

vm)@M”UT1)< L P )ents —

ar—1

T () Pr(€)
T < 0.
n[V(Q) + 48] "*

Since for k > ko, it holds Q@ < Qu(T) < Q,(T), there exists a convex set Q such that

limy 00 F(Q(T)) = F(2), so F(2) < F(Q), that contradicts the minimality of €.
O

A minimizer cannot have positive Excess.
We start by observing that there exist sets with positive excess.

Remark 3.9. We consider the case n = 2 and p = 2. The norm that we take into consideration
is
22 g2
F(xa y) = aig + b727

and its polar is:

Fo(z,y) = v/ a2x? + b2y2.

E={(z,y) € R? | a2(1 — 6)2:r2 + b2(1 + e)2y2}.

We define

We have that
rE (E) =1+ e+ o(e)
and
7T 2
V(R,) = %(1 + ¢ +o(e)).
Computing the momentum, we find that

2 i 2
Mp(Re) = b1 — e2(1 + o) (71'4—6/0 cos(2t) dt) +o(e) = b1 — e 2(1 + o) (7 + o(e))

and so it results that Ep = ¢ + o(e).

Following [31], for every € > 0 , we consider the halfspace T. that has outer unit normal
pointing in the direction zZ _ (2) and that intersects ) at a distance € from zZ__ (£2). We define
the sets:

Qe:=QnT,
A =00 n 0T,
and the following quantitities, that vanish as € goes to 0:
AMF = Mp’p(ﬂe) - ]\4}:‘710(9)7

AV = V() — V(Q),
APF = PF(QE) - PF(Q)
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Lemma 3.10. There exists a positive constant C(Q2) such that for all € > 0 small enough, we
have that
|AV] < C(Q)|APE|. (3.14)

Proof. By definition, we have that
Qc{zeR"|F(z)<rE, .},
that is the Wulff shape W,.r of radius rb . centered at the origin, and it results
A, C Wi N oT..
We can define the anisotropic diameter of €2 as
diamp () = sup{F’(z —y) | =,y € Q}.
We recall that there exist a,b > 0 such that for every xz € R

alz| < F(x) < blal;

1 1
Jlel < Fo(2) < -
Then, we have that
di Q di Q 1 b
lan;p( ) < la;n( ) < X o @ < 21 JorE (e, (3.15)
a a a

We follow now the construction described in [31, Lemma 2.5|. Without loss of generality, we
can suppose that the x,, axis lies in the direction of the outer normal to T.. Let A. < R"~! the
projection of A, onto the subspace {x,, = 0}. We denote with g(-) : AL — R the concave function
describing 0Q\0€).. We can observe that g(0) = rf_ . We define then

h:Al >R
h(y) = 9(y) = (rmax() —¢) -
By construction, we have that maxh = ¢ = h(0). As in [31],

n—1 /
L (A

= (3.16)

AV = AV = [ b dy >
A

’
€

and so, using (3.15), (3.16) and the Sobolev-Poincaré inequality, we obtain
a? -
AV] = C) 352 (@502 [ (DB dy.
A

On the other hand, we have:

—ape- [
A

and so we have the desired result.

(VI D5 = 1) Pt dy > K@) [ Do) Fvw) dy

’
€
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Lemma 3.11. Let Q be a bounded, open convez set of R™, then
IAME| < p(rE  (Q)PTTAV + (rE, (2)PAPr + o(APr) + o(AV). (3.17)
Proof.
— AMp =

/ (") + [F°()]P)v/T + | DgPPF (u(y))dy—

| () = )" + [F* )] | Fvy))dy =
(97®) = (rax() = ") V1+ [Dg(y)P Flv(y)) dy+
(@) = 7+ (F2(w)) ] (VI+ D) ~ 1) F(w(w)) dy = T + Iz

o,

We prove now that

’
€

F
I1 = _2rmax

(QAV + o(AV).

Considering that 7t () = g(0) and using the convexity inequality, we have that

max

| (0~ (s = ") VI DGO Flo(w) dy >

2\/
A

Then, we will prove that

h(y) p g(0)*~" F(v(y))dy + o(AV) = p 9(0)p_1a/ h(y) dy + o(AV).

’ ’
€

I > —2rF

max

(QAV + o(APF).

Firstly, we observe that

0</
A

AP
and that O(TPFF)

(Fo)? (V1+|Dg)2 —1) F(voa(y)) dy < (diamp(40)" (~APr)

— 0 implies that, for every costant c,
cAPr = o(APp).
Using these last two relations, we can deduce that
/. (P (VI+ Dy ~1) Plo(v) dy
>~ [ @y (VIF D - 1) P(w) dy >

> (diamp(AL))” (APF) = o(APF).
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To conclude, we observe that

[ (st =" (VI+ D3R~ 1) Ploty) dy =

/.

[(rfrax( )7 = pe + 0()] (VI +1Dg(w) = 1) F(v(y) dy =
—~hul @)y aPe+ [

[ e+ 0(9) (VI+ D) ~ 1) (o)) dy

> —(rf  (Q)PAPp + o(APF).

Proposition 3.12. Let Q) be a bounded, open convex set of R™ such that
Er(Q) >0, (3.18)
then Q is not a minimizer of F(-).

Proof. We can write the following:

AF(R)
F(9)
— Aln(Mp(Q)) — Aln(Pp(Q)) — %A In(V(Q)) + o(APF) + o(AV) =
AMp(Q)  APp(R2) pAV(Q)
Mp(Q)  Pr(Q)  n V(Q)

Then, using (3.17)), we have that

= Aln[Mp(Q)(Pe() " (V(Q)"F] + o(APE) + o(AV) =

+o(APp) + o(AV).

1
SO = e (M-

APy
Pr(2)

p AV

(3.19)
B 1 r p—1 . WF(Q)
vt | (@) - g
P Mp(©) 0 0 =

(it = EG) APe| +otare) +ofav)

= V(Q)lPF(Q) [pEF(Q)AV + ((rgaxm))p - ]‘]fj((g))) APF] + 0(APr) + o(AV)

) AV +

Since ([3.18]) holds, € cannot be a ball centered at the origin. It follows that

MFp(Q)

> 0.

Considering also that AV < 0 and APp < 0, we can conclude that

AF < 0.
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‘Wulff shapes are the unique minimizers having vanishing Excess

Proposition 3.13. Let Q) be a bounded, open convex set of R™ such that
Er(Q) =0, (3.20)

then either Q is the Wulff shape centered at the origin or it is not a minimizer of F(-).

Proof. From (3.14)), (3.20), (3.19), we obtain the following expression

- 1 e MP(®) )
AF(@) = oo | (@) - FEG)) are| < oarn),
" _ Mp(Q)

F p
(rmax(Q)) - PF(Q)7

then 2 is a Wulff shape centered at the origin. If AF < 0, then 2 is not a minimizer. Thus, we
have proved the desired claim. O

3.2 Study of the orthotropic co— Laplace eigenvalue problem
of Steklov type

3.2.1 The p—orthotropic Laplace eigenvalue with Steklov boundary
condition: definitions and notations.

We fix p > 1 and an open bounded convex set 2 € R™ and consider the Steklov problem for the
orthotropic p-Laplacian operator on 2, sometimes called pesudo p-Laplacian, as studied in [27],

that is N
—Ayu = on €
n’ - - (3.21)
2ji Uy P2 ug, vy = oluP"*up, on 09,
where u,, is the partial derivative of u with respect to z;, v = (v1,...,vy) is the outer normal

of 082, pp(z) = |vea(x)|,m, P’ is the coniugate exponent of p, and
_Epu = div (4, (Vu)), Ap(Vu) = (|ua?1 P gy, [, |p_2uxn) :

We will use the following notation: for any x € R™ and p > 1

n
G = D |1,
j=1

while for p = o0 we have
|2l = max [a].
Jj=1 n

.....

Solutions of (3.21]) are to be interpreted in the weak sense; we recall here the definition of weak
solution.

Definition 3.1. Let u e W1P(Q). We say that u is a weak solution of (3.21) if

/<Ap(Vu), Vyde = 0‘/ lu[P~2uppp,d H" ! Vo e WHP(Q).
Q o0
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It has been shown in [27], Section 4] that the Steklov problem (3.21)) admits a non-decreasing
sequence of eigenvalues
0=01,(9) <0o2,(Q) <

where the first eigenvalue is trivial for any p > 1 and corresponds to constant eigenfunctions. We
denote the first non-trivial eigenvalue o3 ,(€2) =: ¥5(Q2). In [27] a variational characterization of
YD is shown. Indeed, we have that

folVull de
Jsa ulPpy(z)d H

¥h(Q) = min{ e WHr(Q), /m [ulP~2up, (z)d H" ' = 0} . (8.22)

Finally, we observe that (for instance for C? functions) we can rewrite the orthotropic p-Laplacian
operator in such a way to explicitly see where the second derivatives come into play:

n

Z — D)y, [P g, ;- (3.23)

3.2.2 Viscosity solutions of the p-orthotropic Steklov problem

In the following we will need to work with viscosity solutions to the Steklov problem (3.21)). Let
us consider in this section £ a C'' open bounded convex subset of R™. Thus, we denote

Fp: (6,X)eR" xR™™ > — Y (p— 1) P 2X

j=1
and N
By : (0,2,u,8) e R x 00 x R x R = 3 |72 () — olulP " *upy ().
j=1
Following [72], the Steklov problem (3.21)) can be formally rewritten as

3.24
By(o,z,u,Vu) =0, on of. ( )

{FP(VU, V2u) =0, on{
As a consequence, the functions F}, and B, can be used to define viscosity solutions for the
Steklov problem (3.21)) (see, for instance, [86]). We give now the following definitions

Definition 3.2. Let u be a lower (upper) semi-continuous function on Q and ® € C2%(Q
say that ® is touching from below (above) u in xg € € if and only if u(zo) — ®(x9) =
u(z) > @(z) (u(z) < ®(x)) for any = + zo in Q.

). W
0 and

Definition 3.3. A lower (upper) semi-continuous function u on Q is said to be a wiscosity
supersolution (subsolution) of (3.24)) if for any function ® € C*(Q) touching from below (above)
u in xg € € one has

o F,(V®(z0), V2®(z0)) = (<)0 with zg €
o max{F,(V®(xq), V2®(xy)), By(c,z0, ®(z0), VO(z0))} = (L), with 2o € 0

Finally, we say that a continuous function u on § is a wviscosity solution if it is both viscosity
subsolution and supersolution.
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We recall here this result, that is proved in [92, Section 10].
Lemma 3.14. Let n € N and x,y € R". For p > 2 we have
(alP~e — |ylP 2y, x —y) = 227 Pla — y|P.

Now we are ready to show the following result, which is the p-orthotropic version of [72
Lemma 2.1].

Proposition 3.15. Fiz p > 2. Let u be a weak solution of the Steklov problem (13.21) that is
continuous in . Then it is a viscosity solution of (3.24]).

Proof. Let us show that u is a viscosity supersolution of (3.24]), since for the subsolution the
proof is analogous. Let us consider ® € C%(Q) touching from below u in 2o € Q. Let us first
consider g € ). We want to show that

E,(V®(z0), V2®(x0)) = 0.
Let us suppose by contradiction that
E,(V®(zg), V2®(z0)) < 0.
Since ® € C?, there exists a radius 7 > 0 such that for any x € B,.(z) it holds
F,(V®(z), V2®(x)) < 0.
Consider then

m= inf |u(z)—®(x) = inf (u(z)—2(z))

x€0B,(x0) z€dB,(z0)

and define ¥(z) = ®(x) + 2. Since ¥ and ® differ only by a constant, V¥ = V& and V¥ =
V2®. Hence, for any x € B,.(z0)

F,(V¥(x), V3¥(z)) <0,

that is to say N
—A,¥(x) < 0.

This leads, for any non-negative test function ¢ € Wy (B, (zo)) with ¢ % 0, to

n
Z/B( )|\1:xj|P*2\1:xjgpxjdx<o.
j=1"Br(@o

Moreover, being u a weak solution of (3.21)), we have, for any ¢ € W, *(B,(x0)),

Z / [tg, |p*2ux]. ©g;dr = 0.
j=1" Br(2o) '

Thus we get, for any non-negative text function o € Wy (B, (o)),

Z/B ( )(|\lej|p_2\I/Ij — |uwj|”_2uwj)<pmjda: < 0.
j=17Br(ao
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Let us observe that W(zo) — u(xo) = % > 0. On the other hand, since u and ® are continuous,
there exists a radius ry > 0 such that u(z) —®(x) > % for any x € B,(20)\B;, (o). In particular,
for any x € B,.(x0)\By, (7o) it holds ¥(z) — u(x) < 0. Thus, the function ¢ = (¥ —u)" x5, (z,)
can be expressed as
U —u)t xe B.(xg
oy [ (a0)
0 x ¢ B, (x0),
where the two definitions agree in B,.(z0)\B;, (zo). Finally, we can observe that, being ¥ and
u both in WHP(B,.(x¢)), ¥ — u is in WHP(B,.(z0)) and then also its positive part (see [?] and
references therein). Since we have shown that ¢ € W, "*(B,.(x0)), we can use it as a test function

to achieve
n

2 /{\Il }AB.( )GWIJW%\I]% = [ty [P0, ) (Yo, = g, )dz < 0.
j=1 >usNby(To

Thus, by Lemma we obtain

0< / Ve, — Uy, [Pda
j=17{¥>u}nBy(z0)

n
<cw)y [ (190, 17720, — [P 2202, ) (W, — 0z, ) < 0,
j=17{¥>u}nBr(z0)

which is absurd.
Now let us consider xg € 0f). As before, let us argue by contradiction, supposing that

maX{Fp(V@(mo),V2<I>(x0)),Bp(U, xo,u(z0), VO(x0))} < 0.

Thus, since ® € C? and u € C, there exists a radius r > 0 such that, for any x € B,.(zg) n Q, it
holds

F,(V®(z), V2®(x)) <0,
while, for any x € B,(xg) n 09, it holds

max{F,(V®(z), V2®(z)), By(o, z,u(z), VO(x))} < 0.
As before, let us consider

m = inf _ |u(z) — ®(x)] = inf  (u(z) — ®(x))
2€0B,-(20)NQ 2€0B,(20)NQ

and define ¥(z) = ®(z) 4+ %&. We have that, for any z € B,.(20) n €, it holds
F(V¥(x), V3¥(z)) <0,
while, for any z € B,.(z¢) n 09, it holds
max{F,(V¥(z), V2¥(x)), By(o,z,u(z), V¥(z))} < 0.
From the fact that F,(V¥(z), V2¥(x)) < 0, we achieve

—A,¥(z) <0.
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Let us consider a non-negative test function ¢ € WP(B,.(x) n §2) such that ¢ # 0 and ¢ = 0
on 0B, (zg) N Q. It holds

Z/ |\Ilmj P72, o, da < Z/ Wy, P20, prlad HY L

B, (xz0)noQ2
Now, since Bp(o,m,u(m)7v\ll( )) < 0, we have, for z € B,.(zg) n 09,
2 W, (@) P20y, (2)vkg (2) < olul@) P~ u()pp(x)
Jj=1

and consequently

Z / xj‘p72\11$j<)0$jd‘r < 0/ |u‘p72u<ppdeN71 °
lo)ﬁQ B,.(20)noQ2

Moreover, being u a weak solution of (3.21)), we have

N
Z / |uCEj |p_2uingol’jdx = U/ |u|p_2ugo'pdeN_1 :
j= (z0)NS2 B, (z0)noQ

Hence we obtain
Z / )nQ (10, P20, — Jug, [P 2ua, ), dz < 0.
mo n

Let us consider ¢ = (\If —u)t XB, (z0)~0- Arguing as before we have that ¢ € WLP(Q n B, (x0))
and ¢ = 0 on 0B, (z9) N £, thus we can use it as test function to achieve

n
0< Z/ Vo, — Uy, [Pdx

j=1 {T>u}nB,(20)nQ

(p) Z /(|\I}I] |p72\:[jl‘_7’ - |urj |p72u$_7‘)(\p$j - uz7)d$ < 07
j=179

which is absurd. O

Remark 3.16. Concerning the regularity of a weak solution u of —Apu = 0, let us observe that
for p = 2 orthotropic p-harmonic functions are locally Lipschitz in © (see [2I]) and in particular
in dimension 2 they are C(Q) for any p > 1 (see [20]). We will actually work with p — +o0,
hence we can suppose p > n. In such case, Morrey’s embedding theorem ensures that u e C%(€).
We can conclude that for p > N, every weak solution of is a viscosity solution of .

3.2.3 The orthotropic co-Laplacian: heuristic derivation

We want to study problem [3.21] as p — +0c0. To do this, we need to introduce the orthotropic
oo-Laplacian, as the formal limit as p — 400 of A The operator A can be interpreted as the
anistropic p-Laplace operator associated to the norm Fp(z) = |z|,,, i. e.

~ 1
Apu = div (pvx Fg(Vu)) .
In the classic case the co-Laplacian A, was achieved from the p-Laplacian A, by dividing by

(p — 2)|Vu|P~* and then formally taking the limit as p — +o0 (see [93]). We work in the same
fashion, by using |Vu|,,. Before doing this, let us recall the following easy result.
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Lemma 3.17. The functions ||-|,, uniformly converge to |||, asp — +o and to |-, asp — 1
i any compact set K < R".

Proof. Let us recall that for any x € R™
1
|zl g < l2llgp < n¥ 2] 4er (3.25)
thus we have that for any compact K < R™ (setting My, = maxzer || ye)
1 1
Hler = Izl [ < (1 =7n2) 2] < Moo (1 —n7).

Let us also recall that )
|2l < |2 < n' 77 2

thus we have that for any compact K < R" (setting M; = maxgex ||z, )
1_q 13
Hlp = lzlp | < @ =nr=7) [z]p < My(1=n»—7).
O

The previous Lemma allows us to work directly with | Vu| ., instead of working with |Vu/,,.
Suppose v € C? and write

n
Apu = (p - 1) Z |u1j|p_4u§j qu»CEjﬂ
j=1

i.e.

Dividing everything by |Vu[}. * we achieve

Au n u p—4
P T 2
— = UG U g (3.26)
If we consider the set
I(z) ={j<n: |z = [z]p}
we can rewrite equation (3.26)) as
Apu 2 us, [P
—_— = Uy g, + u KT
(p _ 1) ||qup;4 . Z u(ljj u$]7$J ) Z ”queoo umj u$J7$J
14 jeI(Vu(z)) J#I(Vu(z))

Finally, taking the limit as p — +o0 and recalling that for any j ¢ I,(Vu(z)) we have ‘ﬁ‘ <
L0
1, we achieve

~

~ Aju 2
Apu = lim % = ui‘um‘ym. = | Vulje U, .-
P (p—1) [ Vulie jeué(w)) . je1<%<w>> Y

The same result holds also if we use |Vul|,, in place of |Vu|,, since, by uniform convergence,
<1

Uz
IVl g

for p big enough and j ¢ I(Vu(x)), we still have ‘
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We stress the fact that the computations above are just heuristics, whose aim is to obtain
an expected form of the limit operator; it turns out that such heuristics actually lead to the
limit operator of the orthotropic p-Laplacian. Indeed, the orthotropic co-Laplacian has been
introduced in [I5] as

X 2
Agpu = Z Uy Usj ;-
JEI(Vu())

In the same paper the authors prove that this operator is related to the problem of the Absolutely
Minimizing Lipschitz Extension with respect to the £* on R™ (as the co-Laplacian is related to
the same problem with respect to the £2 norm, as shown in [7]). In particular, in [I5] it is shown
that, if u € C2(Q) n WH®(Q) is such that for any D cc Q and any w € u + W' *(€) it holds

Vel ooy < IV@leel oy 5

then u solves N
—Apu = 0.

In the following we will work with a limit problem arising from (3.21]) as p — +o0 that will take
into account the operator Ay.

3.2.4 Limit eigenvalues

We will study in the following the behaviour of the Steklov eigenvalues as p — +00. As we stated
before, for any p > 1 we have o1 ,(€2) = 0, thus we have lim,_, ;4 01,(2) = 0. For this reason
we focus on X,(Q).

To determine lim,_, 4, X,(€2), we need first to fix some notations. We define

dl(zvy) = HI - y”ﬂ , T, Y € R™.

For fixed xo, the function x — d;(x, ) is such that |Vd,(x,zo)[,~ = 1 almost everywhere, as
observed in [39]. Moreover, let us define the quantity

diam; (E) = sup dy(z,y).

z,ye

Now let us recall the variational characterization of ¥2(Q2) given in equation (3.22)) and let us
denote

Jo IVulf, dx
Joa |ulPpp(z)d H"

M, [u] = /a gy (@)d 1
Uy = {ue W'P(Q): M,[u] =0}

Rplu] =

to rewrite ¥2(€2) = minyey, Rp[u]. We consider on LP(£2) the norm

1
lulley = [ JuPds = o [ fuPda.
b = Jo M= g

On 09, we define the measure H, = p,|H" ' and consider for any p,q > 1

1
ul?, - - ulPdH,, .
lulZe 20,20, H 1 (00) /aQ‘ Patts
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Recall that if ¢ = 2, then po =1 and [[u] . 00,31, = [t 1s(00)- From the equivalence of the (¥
norms on R", that for p > ¢ is given by

1 1
[zl < lllpe <na™7 ],

we have that, for p > g,
pq(x) < pp(z) <P
Moreover, we have from Lemma [3.17) and this equivalence, the following result.

Lemma 3.18. For any p, q1,q2 = 1 we have u € LP(0Q, H,,) if and only if u € LP(0Q, Hy,) and,
if 1 <q1 < qo <400,

1 1
k¥
lull e oo,y < Ttlor@om,,) <m0 luliseomn,,) (@)

(0QHq,) (69, Hqy) ( a1)

Moreover, as q — +00, we have |ul| 1,50 2,) = lullpo 20,20,y and, asq — 1, we have HUHLP(E)Q,HQ) —
HUHLp(am.Ll)

The latter property is due to the fact that since p,(z) = |v(z)|, and v(z) € S"~!, where
S"~1 is the unit sphere of R™ with respect to the ¢? norm (that is a compact set), p,(x) — po ()

uniformly as p — o and p,(z) — p1(z) uniformly as p — 1.
Now, let us observe that we can recast Rp[u] as

Jo IVulg, dz
ﬁ fOQ ulPdH,,

Rplu] =

Moreover, we have the following lower-semicontinuity property.

Lemma 3.19. Fiz p > 2 and let u, — u in WHP(Q). Then,

Rplu] < lUminf Rp[u,].

n—+00

Now let us denote with uy , € U, the minimizer of R, such that

oyl
— lug pPdH, = 1. (3.27)
V() Jao TP
In particular, in such a case,
Q) = ]i Vg |, da. (3.28)

We first give the following technical Lemma.

Lemma 3.20. Let Q be a bounded open convex subset of R™ and uw e WH*(Q). Then
u(z) = u(y)l < [IVull = | o diamy (Q), Y,y € Q. (3.29)

Proof. Let us recall that, by definition of polar norm, [(z,y)| < |z« |y],;. Now fix z,y € Q
and observe that since ) is convex (1 — t)z + ty € Q for any ¢ € [0, 1]. Define the function

v(t) =u((1—t)z +ty), te[0,1]
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and observe that v € W1 ([0,1]). Hence in particular v is absolutely continuous and

1
v(0) —v(l) = /0 o' (t)dt

where v is the weak derivative. We have

u(z) —u(y) = /0 Vu((l = t)z + ty),y — x)ydt

and then
uw) ~ul)l < [ KVu((1 =)o+ ty).y = olds
0

1
< / [u((1 — ) + tg) e |2 — gl
0
< [Vl e gy iy ().

Finally, by Morrey’s embedding theorem, we know that u € C°(Q), thus inequality (3.29) holds
also for z,y € 0. O

Now we show the following result.

Proposition 3.21. [t holds

lim %,(Q) 2

poto0 - diam; (02) = Zoo(82).

Proof. First of all, let us show that limsup,, ., ¥, < m. To do this, we consider xg € Q

and we observe that, being 2 an open set, dy(z,x¢) > 0 for any = € 0. Indeed, if d; (z,2() = 0
for some x € 0f2, being d; a distance, we should have z = xy and then g € 2 " Q) = . In
particular, this implies that M, [d1 (-, z0)] > 0.

Define the function wy(z) = di(x, o) — ¢, where ¢, € R is chosen in such a way that w, € U,,.
Let us recall that [Vw,|,. = 1 almost everywhere in Q\{z(}, hence we have, by equation (3.25),

AT
Moreover, we have, from Lemma [3.18]
ooy < 7% 0l Logan,ae,) -
Thus, recalling that ¥,(Q) < ’R[wp]%, we achieve
(o IVl d)*
(w7 oo Ll )d 7 1)

1
(fo | Vw7, dz)?

2p(€)

N

= e (3.30)
(W) HwPHL:D(aQ7’Hp)
n»
S Ho-1eo)\ P 1
(o 2) " 07 o000,
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Now let us observe that, since M, (w,) = 0, w, must change sign on 2. Since 0 < dy(z, zg) <
diam; (2), we have ¢, € [0,diam;(Q2)]. Up to a subsequence, we can suppose ¢, — ¢ €
[0,diam; ()] as p — 400 and, setting w = di(z,z9) — ¢, we have that w, — w uniformly.
Hence, as p — 40,

w 5 — sup |di(z,xg) — cl;

H pHLp(OQ,Hw) Ie(m| 1( ) 0) |7

taking the limsup as p — +o0 in (3.30)), we have

1
limsup ¥,(Q2) < . 3.31
p—+0 p( ) SUP,eaq |d1 (7, 20) — ( )
Now let us observe that
. di(z,x0)
d —c = f di(x, —cl = ————=,
lda(@,zo0) = ce[07d1i£xlm1(ﬂ)]| 1(@,20) — | 2

thus we get

d
Sup |d1 (SC, Io) _ C| 2 Supmeaﬂ 1 (l.’ .TO) .
2edQ 2

Plugging this relation into equation (3.31)), we achieve

2
limsup ¥,(Q2) < .
p—+0 o) SUP,ea0 d1 (2, 20)

Since this inequality holds for any xg € §2, we can take the infimum as xg € £ to obtain

2
lim sup () < ————.
msup %, () < @

Now let us show that liminf, , ., X,(Q) > ﬁl(ﬂ)' To do this, let us consider m > n and
p > m. Since p > 2, we have
19
Hvu27PHZP = ne Hqu,PHﬂ )

and then, by Holder inequality and definition of usg ,,

. : s
5,(Q) = (][ Va7, d:c) > ni? (][ V|2, dx) > b2 (f [Vaz ol dx)

Since W' (Q) is compactly embedded in C°(£2), we can suppose (up to a subsequence) that there
exists a function ug o, € C°(€2) such that us, — ug2 4 uniformly on Q and weakly in W1 ™(Q).
Now let us fix any 1 < g < p and observe that, by lower semicontinuity of the functional

we Wh(Q) — (K" 1(09))7 Ry[u] € R
with respect to the weak convergence in W4 as stated in Lemma, we have
(JCQ Vs,

(W+W Joa |u2m|qp°0dHN71)

1 1
(fo IVu2,0 [ do) ® 9, dr)"
1
(HN+(99) Joa |u2,so|qpoodHN71) !

By Holder inequality we get
1 1
(fQ Hvu2700||z°c d.’,ﬂ) ! < hm lnf (JCQ ‘|VU27pH§oo dl’) ?

_ 1 p—+00 _
(H"+(552) o [u2.0| oo d H™ 1) ’ (H+(052) Joa lu2,pl7pocd H" 1)

< liminf
p—+00

Q=

Q=
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1

and then, by using (3.25)),
(fQ HVUQ OO”?@ dx)a
(m Joq [u2,00|9po0d H"™ 1)

Recalling equations ([3.27)) and ( -7 we have

b de)?

(JCQ Hvu2,p|

Tt Joa [v2.p|?p0d H’H)

< lim inf
p—+00 (

Q=

1
(fQ Hvuz’wuzw dx)% (ﬁ faQ |u2,p[Pppd Hn71>

- < lim+inf -2, (Q)
—1\¢ pP—=>+®0 —1\4¢
(m faQ |u2,oo|qpood/Hn 1) (m fag |u2,p|qpood/Hn 1)
(B 1
— lim inf ~— & TR ¢ (@)
p—+00 [uz,p |Lq(aQ,Hoo)
and, by using Lemma |3.18] we achieve
1 H"—l(ag))E
U 1Ytz 0 d)” r < liminf ( V(QH) | terluran 5p(8)
1\ ¢ p—=+0 u (9
(H—nj(am Joq U2, pond H" 1) ke
2,00l 0
= U0 ity »();
Hu2,ooHLq(aQ,Hw) p—>+o
finally let us take the limit as ¢ — +00 to obtain
IVt 00l 0 | oo
| olec @ < liminfy »(). (3.32)

HUQ,OOHLOO((}Q) p—=+®0

Now we want to estimate the left-hand side of the previous inequality. To do this, let us recall
that, for any p > 1,

/ ‘u2,p‘p_2u2,ppden_1_
Bl
hence, in particular,
TCS TR P [ I PRSP

By using the previous identity we have

0 < [Iuz0) s oty = I2.2) o1 30,3,

< 1 2.0) D1 o030,y = 002.0) o2 o030,
o 1w2) =1 s 0y = 10200) D12 0030, .
3.33
< Iuz0)+ = (W2,) 4 o1 a0,20,) + 1(u2,00) = = (W2,0) =l o1 00,2,
< H(u2,00)+ (u2,p>+HLp 109, Hoo) + H(u2 w)— (u2’p)fHLp—1(aQ,Hw)
oo (09)
(Hf%a ) (ot = () e oy + It20) = (2 )| e o)
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Now let us observe that

_1
n.e H(u2,00)iHLp71(aQ,HOO) < ”(UZOO)iHLpfl(aQ’HP) < H (u2700)iHLp71((m7HOO)

and limy, , 1 o H(uQ,OO)iHLP*I(aQ}[OO) = (u2700)i||LOC(aQ)7 thus we have
pETOO H (UQ’OO)iHLp—l(aQﬂP) = H(ulw)iHLo@(aQ) .

Taking the limit as p — 400 in (3.33), by also using the uniform convergence of us, towards
Uz, On 0}, we obtain

0< ‘H(UQ,OO)-FHLOO((;Q) — ||(u2’oo)_||L7v(é’Q) < 0’

thus, being us o € CY(9),

gy (@) = i e )

Let us consider x s,y € 02 respectively a maximum and minimum point of us o on 0§ and
observe that ug o () = —U2,00(Tm). This means that xps and z,, are both maximum points
for |ug,00| on 0Q and

2|uz,ooll e a0y = U2,00(Ta1) = Uz 00(Tm)-

By (3.29), we obtain

U2,00(Tar) — Ug,00 () _ diams ()
”u2,00HLm(aQ) = - 9 - < 9 H HVUHEOOHLOO(Q) .

Plugging last inequality in equation ([3.32)), we obtain

2
—— < liminf ¥,(Q
diam; () P p();

concluding the proof. O

By using the function ug o defined in the previous proof, we can also exploit the behaviour
of ¥, () as a minimizer of a Rayleigh quotient.

Proposition 3.22. It holds

Yo()) = min{%, ue WhH*(Q), maxu(r) = — min u(z) + O} .

1wl oo (002 2€0Q 2002

Proof. Let us consider u € W1 (Q) such that

up = Izléz(%u(:r) = —irelégu(x) = —Um.

Then, being 2 an open bounded convex set, we know that u € W1P(Q) for any p > 1. Now let
us consider p, — +o as n — +0o0. For each n € N, let us define ¢,, such that

/ [u+ cnlP" 2 (u + cp)pp,dH" ! = 0. (3.34)
oQ
Now, since ups := —uUm,, we know that u changes sign. Moreover, also v + ¢, must change sign

for any n € N. Hence we have that ¢, € [—ups, ups]. Let us then consider a subsequence (let us
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call it still ¢,) such that ¢, — ce [—unr, upr] and let us define w,, = u + ¢, it is easy to check
that u,, — u in C°(Q). By Equation ([3.34) we have
I(u + Cn)+HLmL—1(aQ,7—¢pn) = [l(u+ Cn)fann—l(aQ,Hpn)

and then, taking the limit as n — 400, by uniform convergence, we have

up +c=max(u+c) = —min(u +¢) = —uy, — ¢
xe ze0f)

and then, since up; = —uyy, ¢ = 0.
Now let us observe that, by definition, u,, € U,, thus, by definition of ¥, , we achieve (recalling
that Vu,, = Vu)

Q177 (£, [Vulb, dz)7
Hpn(ag)ﬁ (ﬁm |t [P pp,, (fﬂ)d7'ln_l>E

Now, since u,, converges uniformly, we have, by taking the limit as n — +o0,

() <

V| oo || 7.0
i < IVslecly
HUHLw(aQ)
Since u € W1®(Q) is such that max,con u(x) = — mingesn u(w) is arbitrary, then we have
Vu poo || 1 oo
Yo(Q) < inf M, ue WhH*(Q), maxu(r) = — min u(x) ;.
Il 002y €09 2€00
Finally, let us observe that ug o, € W1®(Q) and it is such that max,ea0 u2,00(2) = — mingean u2 o ()
and then
Vu o || 7.0
HH 2,00H@ HL > ZOO(Q)
HUZ,OOHLoc(aQ)
However, we have also
Vu ol 7o 2
HH 2,00“@ HL < — _ Eoo(Q)
[zl oy dam ()
concluding the proof. O

Remark 3.23. Let us observe that, defining

INZI P P
ol] = =
HUHLw(aQ)

for w e WH(Q) with u # 0 on 09, the function uy o is a minimizer of Ry, in

xedf) e

Uy = {u e Wh*(Q), maxu(xr) = — min u(z) + o} .

Moreover, the previous Proposition also implies that, for any u € Uy, it holds

1
< ~ /N o0 o0 bl
il e o) < 5y V¥l

thus 1/%4(2) represents the best constant of a trace-type inequality in Us.
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Next step is to characterize ug o, as a solution (in the viscosity sense) of a boundary-value
problem involving the orthotropic co-Laplacian as €2 is regular enough.

Theorem 3.24. Let Q be an open set with C* boundary. The limit us o is a viscosity solution
of
—Agugg =0 on ) (3.35)
A(z,u,Vu) =0 on 09,
where
min { [l gx — Do (Dl Xijergyay Me, (@)v(@)} if u>0
A, un) = { mac {Zoe (Dl = 10l + Xpes ooy Moy (@3 (@)} ifu<0
el (n(x)) Mw; (@) (@) ifu=0
Proof. First of all, we prove that —&ooug,oo = 0 in the viscosity sense in (2. In order to do that,
let us take a test function ® touching u from above in z € 2. In the proof of Proposition [3.21]
we have shown that the sequence us j,, converges uniformly to ua o; it follows that ug ,, — ® has
a maximum at some point z; € Q with z; — x¢. In Proposition it is proven that us p, is a

viscosity solution of *Apiulm = 0, so we obtain that

SN

pi—4FH2
(I)Tj (I)gch)xjmj <0,

that can be rewritten as

—(pi—1) ||

Z (I)ij (551)(1):1:],1’] (xz)

JEl(Ve(zi))

P, (1) P, () | <O

+ Z @, (x;)

JEI(V®(zi))
Dividing by (p; — 1) \\V@H?;{Z} and passing to the limit, we obtain that fAOOq)( 0) < 0. Working
in the same way, if ® is touching u from below in z¢ € ©, we achieve —Ay,®(z¢) > 0 and then

—Axuz. = 0 in the viscosity sense in Q.

Now we deal with the boundary conditions. Let us consider zp € 09 and u(xo) > 0. Let
assume that ® touches u from below in z(. Since u,, converges uniformly to us o, we have that
up, — P admits a minimum in some point z; € Q, with z; — zo. If z; € Q for infinitely many i,
we already have fﬁw@(xo) > 0. So, we study the case x; € 092 ultimately for any 1.

If V®(z0) = 0, then & ((E(]) = 0. Let now V®(xy) # 0; we have that

Z |(I)90j ()

Jj=1

PP, () Vi (xi) = T0H(Q) @ ()P 20 (2:) pp (1),

i—2
)

and, dividing by |[V®(z;)|}

pi—2

(i) pp, (i)

(3.36)

Pi—2

: szj/(pifl) Q)b (z;
Oy, (24) Vig (i) = Zgj/(m—l)(g) pi (2)®(x;)

IV (@) oo

.’E
IJ i

IV (i) g0

z
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Passing to the limit in the left-hand side, we have

n pi—2

lim Z
i—+00 4
Jj=1

From this we can deduce that the limit superior of the right-hand side in (3.36]) is finite. Since

J

V@ (@)

Dy, (14) Vgg(a:i) = 2 D, (wo)ugﬂ(xo).

JEL(V®(x0))

S/ PV QB(@i) D ()]P(0)]
[V ()], Vo (o)’

to have a finite limit on the right-hand side of (3.36)), we need

SO _
IV (o)l g
From this last condition we have
IV®(x0)] w0 = Xeo (2)[P(0)] = 0,

and then, taking the limit in equation (3.36]),

@, (w0) Vg (w0) = 0.
Jel(VD(20))

Hence, if ® is touching u from below in z(, we have

max { min D (o)l (20), [VO(20) | — B (Q)|R(0)] 3 , —Ad(0) p > 0.
JEL(V®(x0))
(3.37)
Now assume that ® is touching u from above in z¢. Since uyj,, converges uniformly to us o,
we have that up p, — ® admits a maximum in some point x; € Q, with z; — x¢. If 2; € Q for
infinitely many 4, arguing as before, we obtain 7&@2,00(:1;0) < 0. If ; € 09 ultimately for any 4,
then

Ty, (1) Vi () < BH(Q) [@(w:) P20 (1) pp (),

.’E
x] 7

||M2

If VO(xg) = 07 then g—f(xo) = 0; otherwise we obtain
From this last inequality, if ¥, (Q2)|®(z0)| < [V®(20)] s, then, taking the limit,

D @y, (wo)vig (@) < 0.

JEI(V (o))

pi—2 pi—2

) o E:Dz:/(mfl) 0)®(z;
Dy, (14) VgQ(mi)SEgz/(pm 1)(9) p (Q)®(x;)

IV (@) o

a:] xz)

(I)(mi)ppi (xz)

Hence,

min < min Z @, (x0)V) (aco) IV®(z0) e — Lo (2)|P(20)] ,f&q)(:co) <0.
JEI(V®(z0))
(3.38)



83

Now let us suppose u(zg) < 0 and assume that ® is touching u from above in xo. Since us ,,
converges uniformly to uz o, we have that us,, — ® admits a maximum at some point z; € Q,
with z; — x¢. If z; € Q for infinitely many 4, arguing as before, we obtain that —5@100(%) <0.
If x; € 0Q ultimately for any 4, then

Jj=1

i—2 1 )
Py (20) vig () < ZRHQ) |@(xs)

P2 () pp, ().

If V®(xq) = 0, then %—‘f(wo) = 0; otherwise we obtain

pi—2 pi—2

D, (x;) ug;ﬂ(xi) < Zgj/(’”_l)(ﬂ)

n

2,

j=1

q)mj ()
IV® ()l ger

=p/ P ()9 (xy)
Vo (@)

(i) pp, (i)

(3.39)
Now, if we pass to the limit superior on the right hand side, arguing as before and recalling this
time that ®(z) < 0, we obtain a finite quantity; this implies

X ()| @ (o)

<1
VCI)(JZ())

Moreover, taking the limit in (3.39)), since ®(zp) < 0,

S @y, (wo)vlg (@) < 0.
JeI(V®(xop))

Therefore,

min { max Dy (m0) vk (@0), — V(o) o + Too(Q)|@(20)] § , —AP(0) ¢ < 0.
JjeIl(V®(zo))
(3.40)
Now assume that ® is touching u from below in zy. Since ug p, converges uniformly to 2, o,
we have that us,, — ® admits a minimum at some point z; € Q, with z; — xo. If z; € Q for
infinitely many 4, arguing as before, we obtain that —A@gm(:vo) > 0. If z; € 09 ultimately for
any ¢, then

pi—2 o, (z;) vio(z) = Pi(Q) [ ()

Z |(I)9Cj(xi)

P2 (24) pp, ().

j=1
If V& (z9) = 0, then 52 (z0) = 0; otherwise we obtain
SO » T R (DL C |
o | (@) vig(ai) = Th/ P () | =5 : O(z:)pp, (i)
j; IV (i) g ’ o P IV (i) g 3
(3.41)

If ¥ (Q)|®(x0)| < [V®(20)| e, then, taking the limit in equation (3.41), we achieve

Z @, (20)vdg(20) = 0
JEN(V®(20))
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and consequently

max {max{ Y @, (@o)uig(wo). — [VE(@0)l g + T (Q)[B(a0)] b —~Ad(ag) § > 0.
JEI(V(z0))
(3.42)
Now let us suppose that u(zp) = 0 and assume that ® is touching u from below in zg. Since
us p, converges uniformly to ug o, we have that us ,, —® admits a minimum at some point x; € Q,

with z; — xg. If z; € Q for infinitely many ¢, arguing as before, we obtain that —5@2700(%0) > 0.
If z; € 09 ultimately for any 4, then

n
2 1P, @)
j=1

If V®(xo) = 0, then g—‘f(xo) = 0; otherwise we obtain

i—2 L
PR (i) py, ().

Dy, () vio(z;) = YR |@(x;)

n pi=2 pi/(pi=1) pi=?
j (s X (Q)P(x;)
., (w7) vig () = Sh/ () | 22 ®(xi)pp, ().
Z HV@ i ”eao o P IV (i) g0 :
Since 0 = X, (Q2)[®(x0)| < [|[VP(20)| 4, We obtain
> @ (w0)rha(wo) 20,
JeI(V®(xo))
hence
max Z D, (z0) ke (o), —Ad(zy) p = 0. (3.43)
JEL(V®(x0))

Finally, assume that ® is touching u from above in xy. Since ug,, converges uniformly to
U2,00, We have that us p, —  admits a maximum at some point z; € , with x; — xo. If 2; €

for infinitely many 4, arguing as before, we obtain that —A@gm(xo) < 0. If z; € 09 ultimately
for any i, then

2l
j=1

If V®(x¢) = 0, then g—‘f(xo) = 0; otherwise we obtain

()" @y, (25) vho (1) < T2(Q) |D(a) [P 2@ (1) pp, (1)

n Pi—2 pi/(pi—1) pi—2
() N i=1) (o) | 2P () P(x:) , _
Do, (23) Vg (wi) < X () P (x3)pp, (%4)-
; [V (i)l g o " IV (i) o 3
Since 0 = X, (Q)[®(x0)| < [|[VP(20)| 4, We obtain
D P, (w0)rdo(w) <O,
JeI(V®(zo))
hence
min Z Dy, (zo)v Q(nco) —Ad(zy) + <0. (3.44)
JEI(V2(x0))

The Theorem follows from ([3.37))-(3.38))-(3.40)-(3.42)-(3.43))- (3.44]).
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3.2.5 Brock-Weinstock and Weinstock type inequalities for the or-
thotropic co-Laplacian

Let us denote, for p € [1, 0],
Wy i={zeR" | |z], <1}

and, for any bounded convex set 2 = R"™,

Pp(Q) = /aszpp(w)d’H"_l(x)v M,p(Q) := /m [P pp(x)d H" (),

that are, respectively, the anisotropic perimeter and the boundary p-momentum with respect to
the /P norm on R".

We are interested in Brock-Weinstock and Weinstock type inequalities. Let us define the
scaling invariant shape operator
Fo() e M)

P = g
P @V(Q)F
Then, for any p € (1,00) and for any open bounded convex set Q& € R", it holds
Fp(Q2) = Fy(W,). (3.45)

Moreover, let us observe that, by definition of W, and by using the relation nV(W,) = P,(W,),

”V(Wp) _ Pp(Wp)
M,(W,p) — Pp(Wp)

= 1. (3.46)

In the general case of the orthotropic p-Laplacian, the following Brock-Weinstock type inequality
(restricted to bounded convex open sets) has been proven in [27]

p—1 p—1

TPV (Q) = < V(W) = . (3.47)
As a first step, we want to improve the previous inequality, to include in some way the perimeter.

Theorem 3.25. Let Q < RN be an open bounded convezr set and p > 1. Consider ¢ = 0 and
r € [0,n] such that £ = q+ I. Then, we have

S2(Q) Pp(Q) 7T V()T < Pp(W,) =1 V(W) (3.48)

Proof. Let us first recall that by [27, Lemma 7.1], we can use the functions x; with i = 1,...,n
as test functions in the Rayleigh quotient R,, for ¥¥ (up to a rigid movement of Q), with

V()

R Ti| = 1 5
p[ ] f(‘)ﬂ |$i|ppp(x)d7'ln_ ()

hence, for any i = 1,..., N, we have
2@ [l ()i H (@) < V(E)

Summing over ¢ we have

(3.49)
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Now let us write inequality (3.45|) explicitly to achieve

Mp(@) MWy
PV ()%~ Py(W,)V(W,) 7

and then N
MP(Q) > MP(WP) PP(Q)V(g)" .
PP(WP)V(WP) "
Using this inequality in equation (3.49) we get
SP(Q) < nV(Q) PP(WP)V(WP);% :
: MpWp) Pp()V ()

that can be recast as

n—r

n Py (W) V(W) ¥ (wmli)
M,(W,) P, (Q)1Va(Q) \ Pr(®)

¥h(Q) <

Let us recall the anisotropic standard isoperimetric inequality (see |2 Proposition 2.3]):

V@)t VW)
Pp(Q) T P (W)

n—r
n—1

Thus, since r < n and then > (), we have

¥P(Q) < an(Wp)V(Wp)% (V(Wp)li > 7
P My(W,) P,(Q) T V()

and then, recalling that p/n = q + r/n, we finally get

nV(Wp) =

ZP(Q)Pp(R) V() < M0V,

Equality (3.46]) concludes the proof.
O

Remark 3.26. Let us observe that Theorem includes inequality (3.47). Indeed, for any
bounded convex set €2 and any p > 1 we can fix r = 1 and then ¢ = % in inequality to
obtain the desired result.

Moreover, let us observe that, in general, inequality implies inequality . Indeed, since
the left-hand side of equation is scaling invariant, we can always suppose P, () = P,(W,).
Thus, the aforementioned equation becomes

SEQVIUQ) < VIW,).
Multiplying both sides by V(Q)* we have

p—1 p—r p—1

L@V (Q) S VW)V () S Vi (W),

where the last inequality follows from the anisotropic isoperimetric inequality.

As in [27], we are not able to detect equality cases. However, let us stress out that equality could
not hold even for W, if ¥7(W,) < 1. Let us recall that in general it is known that ¥H(W,) < 1,
but determining if it is actually equal to 1 or not is still an open problem, except that for p = 2.
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An improvement that involves only the perimeter can be shown if p < n. Indeed, we have
the following Corollary.

Corollary 3.27. Let Q < R™ be an open bounded convex set and p € (1,n]. Then, we have

p—1 p—1

SH(E) Pp(Q) 1 < Pp(Wp) 1.
Proof. Just observe that if p € (1,n], we can choose r = p and ¢ = 0 in equation (3.48)). O

Remark 3.28. If the conjecture by Brasco and Franzina in [27] reveals to be true, i. e. the fact
that Z[T;(Wp) = 1, last result implies the Weinstock inequality for the orthotropic p-Laplacian as

pe (1,n].
In any case, we can recast equation (3.47) as
p=1 p=1
Ep(Q)V i () < Ve (W)
and then take the limit as p — +00 to obtain

See(QV(Q)7 < V(Wa)7, (3.50)

that cannot be rewritten in a full scaling-invariant form since X, (Wy) = 1/n. Moreover, being
V(Wy) = 2™, equation (3.50) can be rewritten as

S (V(Q)™ < 2.
However, we can improve such inequality by means of an anisotropic isodiametric inequality.
Corollary 3.29. For any bounded convex open set Q = R™ it holds
S (VY™ < By, W)V (W)™ (3.51)
Equality holds if and only if Q) is equivalent to Wi up to translations and scalings.

Proof. Let us observe that, by [I11] Proposition 2.1], we have

2
7‘/1/" 0) < Vl/n
diam; () ) W)
Recalling that ¥4, (Q) = m and Yoo(Wy) = m = 1 we conclude the proof. Equality
cases follow from [I11l Proposition 2.1]. O

Remark 3.30. Let us observe that inequality (3.51]) implies inequality (3.50)), since V(W) = 22.

On the other hand, a Weinstock-type inequality in the planar case follows from the Rosenthal-
Szasz inequality in Radon planes (see [9]). To give this result we need to introduce the concept
of width in our case. Fix n = 2 and consider any bounded open convex set (2. For each direction
v there exists two supporting lines r1, 75 for 2 that are orthogonal to v in the Euclidean sense.
We call width of € in the direction v the distance w(v) = dy(ry,r2). With this in mind, we can
give the following result.

Corollary 3.31. For any open bounded convex set Q) < R? it holds
S ( Q)P () < S0 (1) P (W), (3.52)

Equality holds if and only if Q is of constant width, i.e. if and only if w(v) = diam; ().
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Proof. Let us recall that the Rosenthal-Szasz inequality for Radon planes [9, Theorem 1.1],
specified to the plane (R?, || ,.), is given by

2P, (Q)

m < Poo(Wl)~

Recalling that ,(W) = 1 and X (02) = ﬁl(ﬂ)
from equality cases of the Rosenthal-Szasz inequality in [9, Theorem 1.1]. O

we conclude the proof. Equality cases follow



Chapter 4

Some results about the Robin type
boundary conditions in the linear
and non linear case

In this Chapter we focus our attention on varius problem involving a Robin boundary condition
type. In Section we prove two bounds for the first Robin eigenvalue of the Finsler Laplacian
with negative boundary parameter in the planar case. In the constant area problem, we show
that the Wulff shape is the maximizer only for values which are close to 0 of the boundary
parameter and, in the fixed perimeter case, that the Wulff shape maximizes the first eigenvalue
for all values of the parameter.

In Section we prove that in the planar case the anisotropic maximum curvature is min-
imized by the ball, among simply connected sets with fixed area. In the linear case this result,
proved in [I02], plays a role in the study of the asymptotic for the Robin eigenvalue with negative
parameter.

In Section we study, in dimension n > 2, the eigenvalue problem and the torsional
rigidity for the p-Laplacian on convex sets with holes, with external Robin boundary conditions
and internal Neumann boundary conditions. We prove that the annulus maximizes the first
eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are
fixed.

4.1 Anisotropic Robin Laplace eigenvalue problem in the
plane

4.1.1 Definition of the Robin problem in the anisotropic case

Let © be a bounded subset of R? of class C2. We consider the anisotropic eigenvalue problem
with Robin boundary conditions. We fix a Finsler norm F', a negative number o and we study
the following problem:

Ar(e, Q)= min  J(u), (4.1)

ueWh2(Q)
u#0

89
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where

/(F(vu))2 dx+a/ lul>F(v) dH*
Q N

/ lu|? dx
Q

and vaq is the outer normal to 0€2. Using a constant as test function, we obtain the following
inequality

J(u) =

(4.2)

Pr()
€2
where Pr(2) is the anisotropic perimeter of 2 as defined in . The minimizers u of problem

satisfy the following eigenvalue problem

>\1,F(O‘a Q) Sa < Oa (43)

—div (F(Vu)Fe(Vu)) = M p(a,Qu  inQ (4.4)
(F(Vu)Fe(Vu),vea) + aF (van)u =0 on 052, '

that is, in the weak sense
/F(Vu) (D¢F(Vu), D) dx+a/ wpF (Vo) dH = )\LF(Oz,Q)/ up dr,  (4.5)
Q oQ Q

for all o € W2(). The following proposition is proved in [52].

Proposition 4.1. There exists a function u € CH*(Q) n C(Q2) which realizes the minimum
in (4.1) and satisfies the anisotropic Robin Problem (4.4). Moreover, A\ p(a, Q) is the first

eigenvalue of the Robin problem and the first eigenfunctions are positive (or negative) in €.

4.1.2 Isoperimetric estimates with a volume constraint
We are interested to find an estimate for A;(a, Q) when is given a volume constraint.

Theorem 4.2. For bounded planar domains of class C? and fized area, there exists a negative
number oy, depending only on the area, such that the following inequality holds Va € [ay, 0]:

Ar(a, Q) < A p(a, W),

where ng s the Wulff shape of the same area as €.

In order to prove Theorem we adapt in the anisotropic case the proof contained in [64].
This proof makes use of the classical method of parallel coordinates, developed for the Euclidean
case in [I10] and for the Riemanian case in [I17].

We assume that 052 is composed by a finite union of C? Jordan curves I', ..., 5, where Ty
is the outer boundary of €2, i.e. Q lies in the interior 4 of I'y. We observe that, if N = 0, then
Q) is simply connected and 2 = Q. We denote by

Lt .= PF(QO)=/ F(v) dH?
Qo

the outer anisotropic perimeter. Therefore, by the anisotropic isoperimetric inequality (see The-

orem |1.15]), we have
(L§)? = 4rAo, (4.6)
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where Ay = V() denotes the area of Q (not of Q).

We now introduce the anisotropic parallel coordinate method based at the outer boundary
Ty. Let pr : Q¢ — (0,00) be the anisotropic distance function from the outer boundary Ty, that
is pp(z) = dp(x,Ty). Let

Ap(t) = V({z e Q[0 < py(a) < 1))

denote the area of ; = Q\Qt and let us consider the following quantity
Le() = [ | Flola) dH!(a).
p}l (t)nQ
Remark 4.3. By Lemma we obtain that, for almost every ¢ € [0,7r(Q0)],
Ap(t) = L(t). (4.7)

Step 1: use of the anisotropic parallel coordinates.

Let ¢ : [0,7r(2)] — R be a smooth function and consider the test function v = ¢ o Ap o pp,
which is Lipschitz in €. Using the anisotropic parallel coordinates, the coarea formula and the
fact that F'(Dpr) = 1, we obtain the following relations:

]2 = / u?(z) dz = / (60 Ap o p(w))? dr =

_ A 2 1 g dt

rr(Q)
= [ oAr ) Pelipr(z) < th di -

(=)

rr(Q)
_ / (AR (1)? Alp(t) dt:

[ (P (Fu@)) do = [ F (@ (4 0 pr (2) A (or (0) Vo () da -

Q
’I"F(Q)

- / (¢ (Ar 0 pr (2))) (A (pF (2)))° do = / (¢' (Ar (£))* (A% (1) dt;

0

/[;Q lu(@)PF(v()) dH' (z) = | (¢ 0 Ap o pp(2))* F(v(z)) dH' (z) =

o9
= (¢0 Ar (0))* Pr(Q) = ¢°(0) Lo.

Therefore, we have that

o™ (& (Ar (1) (A (0)" dt + 0 (0) 1§
ST (AR ()2 Alp(t) dt

A(Q) <
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Step 2: from domains to annuli.
We adapt in the anisotropic case the idea contained in [II0]. We consider the following change

of variables:
V(L) —arAp()

R(t) := P (4.9)

on the interval [rq,r3], where

2
(LF) 74I€A0 LF
rii= R(re (@) = A== . = R(0)= 20

Remark 4.4. Thanks to (4.6)), the transformation (4.9) is well defined on the set [0, r#(Q2)].

(4.10)

We introduce now the function
LE)?
e ()
and we obtain the following expressions:

/Quz(:v) dx =2k /Tz () r dr

T

/ (F? (Du(x))) dz = 2 / (W ()2 (R'(r)?r dr:
Q

AMM%WWWM>wwm?

Remark 4.5. The radii in (£.10)) are such that the F-annulus A | := W, ,\W,, has the same

71,72

area Ay as the original domain Q. We observe that the transformation (4.9) maps the internal
part of 0€; into the Wulff shape of radius R(¢); so I'g is mapped into the Wulff shape of equal
anisotropic perimeter. Moreover, €2; is mapped in the anisotropic annulus of area Ap(t).

Proposition 4.6. Let Q be a bounded planar domain of class C?, then
(R (O] <1,
where R is defined in (4.9).
Proof. From follows that, for almost every ¢ € [0,rF(Q)] we have
Lr(t)
\/ (LF)? — 4nAp(t)

Using the Steiner formula we obtain for almost every ¢ € [0, 7r(0)]

R(t) = —

(4.11)

Lp(t) < LY — 2kt;

t
Ap(t) = / LF(’U) dv < Lgt — /ﬁtz.
0
Therefore,
Le(t)? < (L8) — 4k Ap(t),
and putting this in (4.11)) the thesis follows.
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We obtain this upper bound

"2 ()2 dr + « 1o ()2
ALp(a, Q) < inf Jr () 29(ra)” (e, AF ), (4.12)

PY#0 f:f P(r)?r dr

so the infimum is attained for the first eigenfunction of the Laplacian in Afl ry» With anisotropic

Robin boundary condition on dW, and anisotropic Neumann boundary conditions on oW;.
Therefore we have proved the following proposition.

Proposition 4.7. Let a < 0. For any bounded planar domain Q of class C?,

A, r(a; ) < ,u(oz,AF ),

71,72

where AF s the anisotropic annulus of the same area as Q0 with radii (4.10]).

71,72

Step 3: from annuli to disks.

Let W,, », be the Wulff shape of the same area as the anisotropic annulus Afl ry» Which has the
same area Ag as €2. So, we have that

[ Ao
r3 = ‘;T, (4.13)

where rs is the radius of W, ,,. In [64] we find the following asymptotics as a — +0o:

A p (o, Way 1) = 2a:—§ +0(a?) (Robin Wulff); (4.14)
3
wr (o Afhm) = 20[% +0(a?)  (Neumann-Robin annulus). (4.15)

3
Using them we can prove that, for a < 0 small enough,

(o, AL ) < A p(, Wey ), (4.16)

71,72

F

.- Thus, we

where W,, ,, is the Wulff shape of the same area as the anisotropic annulus A
have proved the following theorem.

Proposition 4.8. For any bounded domain Q of class C?, there exists a negative number ag =
ao(Ag, LE) such that
)‘1’F(O" Q) < )‘1,F(O‘7 WS)

holds Yo € [, 0], where W is the Wulff shape of the same area as 2.
Remark 4.9. Using the above asymptotics we can show that

Pr(Q)

d
— A1 p(e, Q)]amo = V)

do

Step 4: uniform behaviour and conclusion.

In order to complete the proof of the Theorem [£.2] it remains only to show the following fact.

Proposition 4.10. The constant g of Proposz'tion is independent of L .
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Following [64], we need to show that the neighbourhood of zero, in which (4.16]) holds, does
not degenerate in both cases when r; — 0 and ro — +00. So, we are going to prove that ag
remains bounded away from 0 uniformly in this two instances. We fix ¢ > 0 and we consider

r1 =/ (2er3 + €2), ro =173 + €,

where rj is fixed and equal to 4/Ag/k. In an analogous way to the one reported in [64], it can
be proved that there exists a* < 0 such that the curve I's : a — pup(a, Af ) stays below the
curve I'p : a — Ay p(a, W,,) for all € > 0 and Vo € (a*,0). Because of the simplicity of the

eigenvalues, both the curves are analytic. Moreover, taking into account the asymptotics (4.14))

and (4.15) we have that
d d
@MF(O[,W”,T?) < %AlvF(a’Ai7T2)'

Remark 4.11. We prove that the curves I' 4 are concave in «. Let € > 0 and let ¥ be the first

eigenfunction pp(a + e,Afl )Tz) of the Laplacian in the anisotropic annulus. We can choose v

normalised to 1, so we have
T2
pr(a+e AL ) = / W' (r)?r dr + (o +€) r2 (r2)?. (4.17)
1

Let ¢ be the first eigenfunction pp (v, AL . ) normalized to 1:

2T, T

pr(a, AL L) = /m &' (r)?r dr + a o p(r2)?. (4.18)

F

Now, putting ¢ as a test function in the variational formula of ur(a + €, A7 ,,) we obtain

T2
p’F(a + €, Ai,TQ) < / ¢,(T)2T dr + (Ot + 6) 2 ¢(T2)2 = :uF(Oév Ai,rz) +ery ¢(T2)2'
T1
In order to prove our claim, we need only to show that

d
@ﬂF(a,Ai,m) = 1y ¢(r2)”.
We prove the following more general result.

Lemma 4.12. Let Q be a bounded subset of R? and let u, an eigenfunction related to the
eigenvalue A\ (o, Q), defined in (4.1)), such that |uqa|r2() = 1. Then

d/\LF(Oz,Q)

! Q) :=
1,F(CY7 ) do

= / u: F(v)dH? . (4.19)
oQ

Proof. From the variational characterization (4.1)) and using the fact that |uq|z2(q) = 1 we have

ALr(a, Q) = /

F%(Vug,) dx + a/ u? F(v) dH". (4.20)
Q

o0

Deriving both sides of (4.20)) with respect to «, we obtain

M op(a,Q) = Q/QF(vua)DgF(vua)vu’a dac—i—/ﬁQ u? F(v) d?-l1+2a/m uqul, F(v) dH'. (4.21)



95

Using the weak formulation (4.5) of the problem in the equation (4.21)), remembering that u/,
is the derivative with respect to o and it is in the set of the test functions by standard elliptic
regularity theory, we obtain

1o, Q) = 2)\1,F(a,Q)/ gy, dz +/ u:F(v) dH*, (4.22)
Q o0

and, having in mind that, from the condition |uq|z2(0) = 1,

/u(,ug dr =0
Q

we get, from (4.22), the equation (4.19). O

Therefore, since the I' 4 are concave in « and their derivative with respect to « are increasing
with €, we have that the tangent to the curve corresponding to a specific anisotropic annulus
intersects ' at one and only one point , aq, to the left of zero. Thanks to the concavity we can
say that, for larger value of €, any I' 4 that intersects I'g must do so to the left of a;.

As far as the case when e is small, we follow closely the proof presented in [64]. We study
the intersection points of the two curves I' 4 and I' g, comparing the following two equations; the
first equation is the equation of the Wulff shape

]41]1(]4;7“3) + 04]0(/457”3) =0; (423)
the second equation is the one of the Neumann-Robin anisotropic annulus
Kq(k/2ers + €2) [kl (k (rs +€)) + ado (k (rs +€))] —
I (kn/2ers + €2) [kKy (k (r5 + €)) — aKy (k(rg +¢€))] = 0.

We denote here with I, and K, the modified Bessel functions (for their properties we refer
to [I]). The solution in « of the intersection is given by

Iy (krs3)
kfo(’“":a).

The proof that there are no intersections between I' 4 and I'g for « close to zero is the same as
the one presented in [64]. In this way we have proved Proposition m

4.1.3 Isoperimetric estimates with a perimeter constraint
Using the method of parallel coordinates we are able to prove also the following theorem.
Theorem 4.13. Let o <0 and let < R? a bounded domain of class C?. Then
A p(a, Q) < Ay p(a, W),
where W¢, is the Wulff shape with the same perimeter as €.
The crucial step in order to prove this theorem is given by the following Proposition.
Proposition 4.14. Let a < 0. For any 0 < r; < ry we have

MF<017AF ) < >\1,F(a7wr2)'

71,72
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Proof. By symmetry, A1 p(o, W,,) is the smallest eigenvalue of the following one-dimensional
problem

S @ ] = Ay, W) 6(r), 7 € [0,75)
£(0) = 0 (4.24)
¢'(r2) + ag(rz) = 0.

We can choose the associated function ¢, to be positive and normalised to 1 and this eigenfunction
can be used as a test function. Integrating by parts, we obtain

/,LF(O(,A,,I:—;’TZ) < A p(a, Wr,) —rid(r1) ¢’ (11). (4.25)

Since ¢; satisfies (4.24)), we have for all r € [0, 73]
[rér (1)1 (1] = =M1 p(a, Wi, )rén (r)® + 1 (r)* = 0.

and the inequality is due to (4.3)). From the above inequality the function g(r) := ré(r)¢’'(r) is
non-decreasing and using (4.25)), we obtain the desired result. O

Remark 4.15. The following monotonicity result holds true. Let be Wg be a Wulff shape of
radius R. If a < 0, then
R~ >\1,F(a; WR)

is strictly increasing. The above result is proved for the disks in [6] and for the annuli in [124].

Proof of Theorem[{.13 Firstly, we observe that the measure of W,, is greater than the measure
of A~ and the perimeter of W,,, which is equal to Lg is less than the anisotropic perimeter

71,72
of Afl .y Using Theorem and Proposition we obtain the thesis for simply connected
domains, i .e. when Ly = Pr(Q2). Concerning the general case, when there are multiple connected
domains, thanks to Remark we have that

AL r(a, Wr,) < Ay p(a, Wiy),

where r3 = Pp(2)/2k for all a < 0. O

4.2 Study of an anisotropic inequality for the anisotropic
maximum curvature

Theorem 4.16. Let Q € R? such that v := 0Q is a smooth Jordan curve. Then,

Kmax(7) = AFQ) (4.26)

and there is equality if and only if Q coincides with a Wulff shape.

Proof. Step 1: Uniqueness Using a stanrdard argument we will prove that, if inequality
is proved, then the equality holds only for Wulff shapes. Let assume that is true and, by
contradiction, that the equality holds for a curve « that is not the boundary of a Wulff shape.
Thus, there exists a point x € v such that k%, (z) < kL, (v), since the Wullf shapes are the only

sets with constant anisotropic curvature (see Remark|1.19). By a small local deformation around
x, we can construct a smooth Jordan curve 4/ such that the following two conditions hold
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e the area A’ enclosed by 7/ is strictly smaller than the area A enclosed by ~.

In this way we have a contradiction, since

Finax (V) < V/K/A.

Step 2: The inequality holds for convex curves. Let us assume that v is a convex Jordan curve.
Using inequality (1.39)), we obtain

R

A(Q)

Pp(Q) < /a Q(kgg(x)zF(an(x)) dH(z) < (kflax(ag)f Pr(Q) (4.27)

and so inequality follows straightforward.

Step 3: The inequality holds for general curves. Using the anisotropic curvature flow, the case
of the general curves will be reduced to the case of the convex curves, in the same spirit of [102].
We set Ag := A(Q) and we prove that kX (y) = +/Ao/k := C for every admissible 7. By
contradiction, there exists a smooth Jordan curve 7 (not convex) such that

F
kmax

() <C. (4.28)

Let wu(-,t), with ¢ € [0,T], be the family of curves evolving by anisotropic curvature flow with
u(+,0) = 7(-); so that at time ¢ = T the area enclosed by u(-,T) is 0. We consider the family

U('vt) = f(t)u('vt)a

where f is a non-negative function chosen in such a way that every curve of the family U(-,t)

encloses constant area. Therefore,
AO
t) =4 [ —2
Ot

where A(t) is the area enclosed by u;(-) := u(-,t). Moreover, we observe that

- (D) (42)

Recalling that we denote by ’ the derivative with respect to 6, using (4.29)) and (1.47)), we obtain

\2 F\2
(at - '(/Jass) @ = (at - wass) 1;11(;0)(]6;)] =
(kE)*  Aw) 2
= A'(t) 22‘40 + A (0r — ¥0ss) (K™ <
<At U;iz + %’2) [(Bkuhd’ + h'kuo) 0s(kE ) + (KD)*] =
F 2
_ A (I;ZZ # A k)" 20 (@b + ko) 2,7 =
- ‘j((tt)) (kE)? + ﬁ;)(k}j)‘* + %t)) [(8kuhd' + R'kyo) 05(kL)?].  (4.30)
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At this point let us introduce some useful notations; we set k%' (6,t) := kf (0) and kf(6,t) :=
kf (8). Now, by (£.28), there exists M € (0,C) such that k:g(@) < M for every € S! and we

want to show that for every § € S! and for every ¢
EE@0,1) < M < C. (4.31)

In order to prove , we proceed again by contradiction, assuming that there exists t* € (0,7T)
for which it is possible to find a 0* such that k7 (9*,¢*) = M. This means that 0* is a maximum
for k7 (-,t*) and, as a consequence, it is a maximum also for kL (-,¢*). So, taking into account
that at a maximal point 0, (k%) vanishes and (kf) _(6*,t*) is non-positive, from we obtain

SS

that
(kG0 19)* M2 [ A(r) ,
(Or — ¥0ss) 5 < () 5+ A ) (4.32)
Using then (1.48)), we have that
Al(t*) = _/ F(vy,, (s,t*))ki* (s,t*)ds = — F(vy,, (x))ki* (x) dH ()
ut* f)Qt*

< —aD / ku,y (2)dH' (z) = —2maD, (4.33)
Uy

wher Q;x is the set enclosed by u;«. In the last inequality we have used the following facts:
that, for every unit vector v, F(v) > a, the fact that the anisotropic curvature is controlled from
above by the classical curvature since F' is elliptic (see Remark 2.7), and finally the Gauss-Bonnet
theorem. As a consequence,

(K5(0%,¢%))°  AgM? [maD
O — Plys) < - - M?) <0, 4.34
since we can assume, using a suitable scaling, that Ay is such that “XD = C. Now, having

Oss (k;g(@”‘,t"‘))2 /2 < 0, from (4.34)), we have that
&, (kE(6%,t%)% <0,

and so
o (kG (0%,t%)) < 0. (4.35)

It follows that kf;(0*,t* —€) > M, for € > 0 small enough, which contradicts the choice of t*.

In this way we have proved (4.31)).

Now, for the properties of the anisotropic curvature flow (see Section and the reference
therein), we know that for some 7 > 0 the curve U(-, 7) is convex and therefore, thanks to Step
2, we have that for some 6 € [0, 27]

k7(0,7) = C, (4.36)

that contradicts (4.31]), concluding the proof.
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4.3 Robin-Neuman boundary conditions for the p—Laplace
eigenvalue problem and the torsion problem in the lin-
ear case

4.3.1 Definition and properties of the problems
Throughout this Section, we denote by Q a set such that Q = Q¢\O, where Qg € R" is an open

bounded and convex set and © cc () is a finite union of sets, each of one homeomorphic to a
ball of R™ and with Lipschitz boundary. We define I'y := 09y and I'; := 00.

Eigenvalue problem

Let 1 < p < 40, we deal with the following p-Laplacian eigenvalue problem:

—Apu = XN (o, Q)[ulP~?u in Q

ou

|Vu‘p*267 + a|u‘p72u =0 only (437)
0

|vu‘p,2£ =0 onI'y.
ov

We denote as usual by du/dv the outer normal derivative of u on the boundary and by « € R\{0}
the Robin boundary parameter, observing that the case a = 400 gives asimptotically the Dirichlet
boundary condition. Now we give the definition of eigenvalue and eigenfunction of problem ([4.37).

Definition 4.1. The real number A is an eigenvalue of (4.37) if and only if there exists a function
u € WHP(Q), not identically zero, such that

/ |VulP~2VuVe dr + o JulP~?up dH" ! = /\/ |ulP~?up dx
Q Q

Lo
for every p € WHP(Q). The function u is called eigenfunction associated to \.

In order to compute the first eigenvalue we use the variational characterization, that is

)\éVR(oz,Q) = min Jy[a,w] (4.38)
weW P ()
w0

where

/ |[Vwl|P dx+oz/ lw|P dH™ !
Q To

/ |w|P dx
Q

We observe that 2 is convex and hence it has Lipschitz boundary; this ensures the existence of
minimizers of the analyzed problems.

Jo[a, w] :=

Proposition 4.17. Let o € R\{0}. There exists a minimizer u € WHP(Q) of (4.38), which is a
weak solution to (4.37).

Proof. First we consider the case o > 0. Let ux, € WP(Q2) be a minimizing sequence of (4.38)
such that |Jug|[rr() = 1. Then, being u; bounded in W'?(Q), there exist a subsequence, still
denoted by ug, and a function v € WP (Q) with l|lul|r() = 1, such that up — u strongly
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in LP(Q)) and almost everywhere and Vuy — Vu weakly in LP(2). As a consequence, uy con-
verges strongly to w in LP(0Q2) and so almost everywhere on 02 to u. Then, by weak lower
semicontinuity:
lim Jolev, ui] = Jolov, ul.
k—400

We consider now the case a < 0. Let u, € W1P(Q) be a minimizing sequence of such that
|ukl|zr () = 1. Now, since a is negative, we have the equi-boundness of the functional Jy[, -],
i.e. there exists a constant C' < 0 such that Jy[a, ur] < C for every k € N. As a consequence

HVUkHip(Q) - C||“k||ip(g) S
and so
||UH€V1,F(Q) < La

where L := —a/min{l, —C'}. Then, there exist a subsequence, still denoted by wuy, and a function
u € WHP(Q) such that up — u strongly in LP(Q) and Duy — Du weakly in LP(9). So uy
converges strongly to v in L?(0Q), and so

Jo[a, u] <liminf Jo[o,ug] =  inf  Jp[a,v].
k—o0 veW P (Q)
v#£0

Finally, u is strictly positive in Q by the Harnack inequality (see [125]).
O

Now we state some basic properties on the sign and the monotonicity of the first eigenvalue.

Proposition 4.18. Ifa > 0, then )\i)VR(a, Q) is positive and if « < 0, then )\éVR(oz, Q) is negative.
Moreover, for all o € R\{0}, /\II)VR(()(,Q) is simple, that is all the associated eigenfunctions are
scalar multiple of each other and can be taken to be positive.

Proof. Let oo > 0, then trivially A)/®(€2) > 0. We prove that A)Y#(©) > 0 by contradiction,
assuming that A{DVR(Q) = 0. Thus, we consider a non-negative minimizer u such that ||ul|z»q) =
1 and
0= )\I])VR(Q,Q) = [ |VuPdz+a [ |uf dH™ .
Q To
So, u has to be constant in 2 and consequently u is 0 in €2, which contradicts the fact that the

norm of w is unitary.
If @ < 0, choosing the constant as test function in (4.38]), we obtain

)\é\m(a, Q) < aP(QO)

< < 0.
1€

Let u € WHP(Q) be a function that achieves the infimum in (4.38)). First of all we observe that
Jolo, u] = Joa, |ul],

and this fact implies that any eigenfunction must have constant sign on 2 and so we can assume
that « > 0. In order to prove the simplicity of the eigenvalue, we proceed as in [14] [52]. We give
here a sketch of the proof. Let u,w be positive minimizers of the functional Jy[c, -], such that
l|ullrr ) = [lw||Lr@) = 1. We define n; = (tu? + (1 — t)wP)"/? with t € [0,1] and we have that

Jola, u] = )\é)vR(a,Q) = Jo[o, w]. (4.39)
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Moreover by convexity the following inequality holds true:

tuP YU 4 (1 — t)wp Yw P
(VP = mf | —* 0= Hury,
tuP + (1 — t)wP
tuP Vul| (1 —t)w? Vuw [f
pr_ - N S e - p _ p
< 0y |:tup + (1 — t)wp m tuP + (1 o t)wp w t|Vu| + (1 t)|DU)| .

(4.40)

Using now (|4.39)), we obtain
/\II)VR(Q,Q) < Jola,me] < tdola,u] + (1 —t)Jo[a, w] = )\]])VR(Q,Q),

and then 7, is a minimizer for Jy[a,-]. So inequality (4.40) holds as equality, and therefore
% = %. This implies that V(logu —logw) = 0, that is log &+ = const. We conclude passing
to the exponentials. O

Proposition 4.19. The map o — )\évR(oz, Q) is Lipschitz continuous and non-decreasing with
respect to o € R. Moreover /\ZJ)VR(oz7 Q) is concave in «.

Proof. Let ay,as € R such that a; < ap and let w € W1P(Q) be not identically 0. We observe

that
/ |[Vw? dz + al/ lw|P dH™ </ [Vw|? dz +a2/ |w[P dH™ L.
Q To Q To

Now, passing to the infimum on w and taking into account the variatiational characterization,
we obtain A)(ay, Q) < AVF(ap, Q).

We prove that )\;V R(3,9) is concave in a. Indeed, for fixed ag € R, we have to show that
AR, Q) < AV (ag, Q) + (AN (a0, Q) (@ — ap) (4.41)

for every a € R. Let wy be the eigenfunction associated to /\II,V E(ap, ) and normalized such that
Jowh dz = 1. Hence, we have

AV (0, Q) < /Q |Vwg|P dz + a : lwo|P dH™ L. (4.42)
0

Now, summing and subtracting to the right hand side of (4.42]) the quantity
ag [p, [wolPdH" ", taking into account that

/\;VR(Oé(),Q) =/ |Vw0\p dl‘+0t0 ‘wo‘p dHnil,

and the fact that

(ANEY (a0, ) = [ Jwol? dH" 2,
To

we obtain the desired result (4.41]). O
Now we state a result relative to the eigenfunctions of problem (4.37) on the annulus.

Proposition 4.20. Let r1,72 be two nonnegative real number such that ro > r1, and let u be
the minimizer of problem on the annulus A,, ,,. Then u is strictly positive and radially
symmetric, in the sense that u(z) =: Y(|z]). Moreover, if « > 0, then ¢¥'(r) < 0 and if a < 0,
then o' (r) > 0.
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Proof. The first claim follows from the simplicity of )\ZJ,V R(a, Ay, r,) and from the rotational
invariance of problem (4.37). For the second claim, we consider the problem (4.37) with the
boundary parameter a > 0. The associated radial problem is:

e (W2 () = AR, A M) e (1),
Yl ()2 = 0,
[0/ (r2)P=20 (r2) + 0P (r2) = 0.

We observe that for every r € (r1,r2)

e (W ) = AN, Ay )07 () > 0, (4.43)

and, as a consequence,
(19 ()P~ (r)r™=1)" < 0.

Taking into account the boundary conditions ¢’(r1) = 0, it follows that ¢’(r) < 0, since
WP <o,

If 8 < 0, by Remark /\117\/ B(a, Ay, r,) <0 and consequently the left side of the equation

(4.43)) is negative, and hence ¥'(r) > 0.
O

Torsional rigidity

Let a > 0, we consider the torsional rigidity for the p—Laplacian. More precisely, we are
interested in

_— = i K 4.44
T @)~ weiib) ol w], (4.44)
w0

where

/ [Vw|? dx—l—a/ lw|P dH™
_ 70 o )

D
/wdm
Q

Problem (4.44)), up to a suitable normalization, leads to

Koo, w)

~Aju=1 in 0
‘vu|1’_2% + a|u|p_2u =0 only (445)
_o0u
‘Vu|p — =0 on Fl.
ov

In the following, we state some results for the torsional rigidity, analogously to the ones stated
in the previous section for the eigenvalue problems. The proofs can be easily adapted.

Proposition 4.21. Let a > 0, then the following properties hold.

o There exists a positive minimizer u € W1P(Q) of (4.44) which is a weak solution to (4.45)
in Q.
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e Let ri,19 be two monnegative real numbers such that ro > r1, and v be the minimizer of
(4.44]) on the annulus Ay, r,. Then @ is strictly positive, radially symmetric and strictly
decreasing.

e The map o — 18 positive, Lipschitz continuous, non-increasing and concave

TNE(a,Q)
with respect to a.

4.3.2 Main results

In this section we state and prove the main results. In the first theorem, we study the problem
(4.38), in the second one the problem (4.44). We consider a set 2 defined as at the beginning of
this Section.

Theorem 4.22. Let o € R\{0} and let Q be such that Q = Qo\O, where Qg = R™ is an open
bounded and convex set and © cc Qg is a finite union of sets, each of one homeomorphic to a
ball of R™ and with Lipschitz boundary. Let A = A, ,, be the annulus having the same measure
of Q and such that P(B,,) = P(Qq). Then,

A (0, Q) < AR (a, A).

Proof. We divide the proof in two cases, distinguishing the sign of the Robin boundary parameter.
Case 1: a > 0. We start by considering problem with positive value of the Robin
parameter. The solution v to is a radial function by Proposition and we denote by
Uy, and vy the minimum and the maximum of v on A. We construct the following test function
defined in Q:

4.46
VM if de(LE) = ro — Ty, ( )

g [
¢ “)‘/vm o T

with g(t) = |Vv|y=¢, defined for v, <t < vy, and d(-) denotes the distance from 0€Qy. We
observe that v(z) = G(ry — |z|) and u satisfy the following properties: u € WP(Q) and

u(z) = {G(de(x)) i do(2) < 7o — 1

where G is defined as

Vulu=i = [Volo=t,

Uy 1= minu = v, = G(0),
Qo

Up = Mmaxu < Up-
Qo

We need now to define the following sets:

Ey, :={xeQy : u(z) >t}
Ay :={ze A : v(zx) >t} (4.47)
A07t Z:At ) Erl.

For simplicity of notation, we will denote by A the set Ag o, i.e. the ball B,,. Since Ey; and
Ap,+ are convex sets, inequalities (1.16) and (1.14)) imply

d Wa(Eo

_n-—2 Lo P(Eo t))"”l
2 P(Eys) =n(n—1 D 5 nin— 133 LE))
o (Eo) = n(n ) n(n n w o) ,
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for u,, <t < up;. Moreover, it holds

d n—2 -1 (P(A 27:%
7£P(A0,t) =n(n—1)n rTw;* (P(Ao)) "

for v, <t < wvyps. Since, by hypothesis, P(£2) = P(B,,), using a comparison type theorem, we
obtain
P(Eop:) < P(Aoy),

for v,, <t < ups. Let us also observe that
H" (0o n Q) < P(Ey:) < P(Agy). (4.48)

Using now the coarea formula and (4.48)):

/ |Du|P dx = / g)Pt 1" (0B N Q) dt
Q u

m

< / 9P P(Ey,) dt < / g(t)P~ P(Ag,) dt = / IVol? dz.  (4.49)
u v A

Since, by construction, u(z) = 4, = v, on Iy, then
/ uP dH" ' = ul, P(Q) = v, P(4g) = / oP dH™ L. (4.50)
F[) aAO

Now, we define pu(t) = V(Eo: n Q) and n(t) = V(A;) and using again coarea formula, we obtain,
for v, <t < uyy,

’ _ 1 n—1 _ _Hn_l (an,t A Q) _P(E())t)
Wit = /{} Fu(@)] o0 C g
_P(A(),t) _ _ 1 n—1 _ ./
ST /{} oy =@

This inequality holds true also if 0 < ¢ < wps. Since p(0) = 7(0) (indeed V() = V(A)), by
integrating from 0 to ¢, we have:

u(t) = n(t), (4.51)
for 0 <t < vpy. If we consider the eigenvalue problem (4.38]), we have

/ uf do :/ ptP~tpu(t)dt 2/ ptP~n(t) dt = / P dz. (4.52)
Q v v A

m m

Using (4.49)-(4.50])-(4.52), we achieve

/ [Vul? dz + a/ uf dH" !
Q Iy
/u” dx
Q
/ |Vol|P dx +a/ vP dH"
A 040

< = MW (a, A).

P
/v”dm
A

)\i,VR(a, Q) <
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Case 2: o < 0. We consider now the problem (4.38)) with negative Robin external boundary
parameter. By Proposition the first p-Laplacian eigenvalue is negative. We observe that v
is a radial function. We construct now the following test function defined in Qq:

U(J}) — {G(de(l')) if de(:p) <7r9g—1]

Vrn if de(z) =19 — 11,

where G is defined as

with g(t) = |Vv|y=¢, defined for v,,, <t < vy with v, := ming v and vys := max4 v. We observe
that u satisfies the following properties: u € W1? () and

|vu|u=t = ‘V’U|v=t7

Uy = m&nu = U,

U = MAXU = vy = G(0).

We need now to define the following sets:

E‘Oﬂg :{Hj‘ e : U(Z) < t},
A ={zeA : vx) <t}
A(],t :At U Eﬁ‘

For simplicity of notation, we will denote by Ay the set flo,o, i.e. the ball B,,. Since Eo,t and
Ay, are now convex sets, by inequalities (L.17) and (1.14), we obtain

Wa(Eos) o (P <E0»t>)”j.

dt

Moreover, it holds

a4 o o (P(A0)™
P = n(n — D~ i T A

Since, by hypothesis, P(y) = P(B,,), using a comparison type theorem, we obtain
P(Eo;) < P(Aoy),

for u,, <t < vp. Moreover, we have

H" Y (0Eo; N Q) < P(Eo:) < P(Apy). (4.53)

5

Using the coarea formula and (4.53)),

/|vu\f' da:z/ g(t)Pr H (0B N Q) dt

@ o ) " ) (4.54)

< / (0P P(Eo.y) dt < / g(BP " P(Ao) dt = / \Dol? da.
u v A

m m
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Since, by construction, u(z) = up; = vpr on Iy, it holds

/F uP dH" ! = uh, P(Q) = v}, P(Ag) = /a ) oP dH™ L (4.55)

We define now ji(t) = V(Ep; n ) and 7(t) = V(A;) and using coarea formula, we obtain, for
Um <t < UM,

i (t =/ b g H" L (0Eo,: N Q) < P(Eo )
fu=tpne V()] g(t) 9(0)
1
< 2L = - den—l _ 77]/ ).
(1) /M Vo(@)] ®)

Hence p/(t) < n/(t) for v, <t < vpr. Then, by integrating from ¢ and wvys:

9] = (t) < |A] = n(D),

for v, <t < vy and consequently ji(t) = 7(t).
Let us consider the eigenvalue problem (4.38). We have that

/up dx:uﬁ4|ﬂ|—/ ptpfla(t)dtsuglw_/ pIP=Li (1) dt:/v” do. (4.56)
Q v A

Um m

By (4.54)-(4.55)-(4.56)), we have

/ [Vul? dz + a/ uf dH" !
< Jo I

/up dx
Q

)\;VR(a, Q) <

/ [Vo|P dx + a/ oP dH"
< Ja 240 _ \NR

p
/v” dx
A

Theorem 4.23. Let o > 0 and let Q be such that Q = Qp\O, where Qo = R™ is an open bounded
and conver set and © cc Qg is a finite union of sets, each of one homeomorphic to a ball of R™

and with Lipschitz boundary. Let A = A,, ,, be the annulus having the same measure of Q and
such that P(B,,) = P(Qo). Then,

(o, A).

O

NR NR
T, (0, ) = T, " (a, A).

Proof. Let v be the function that achieves the minimum in (4.44) on the annulus A. We consider
the test function as in (4.46)) and the superlevel sets as in (4.47). By (4.51) we have

/Qu dx = /OUM pu(t)dt = /OUM n(t) dt = /A’U dx. (4.57)



107

In this way, using (4.49)-(4.50)-(4.57)), we conclude

/\Vu|p dz+oz/ uP dH" !
1 Q Iy
< P
TNE(q, Q)
p Q) /udx
Q

/ [Vo|P de + a/ oP dH" !
A 0Ao — 1

P " TNR A’
/vd:r o, A)
A

S

We conclude with some remarks.

Remark 4.24. In [5] the authors prove that the annulus maximizes the first eigenvalue of the
p-Laplacian with Neumann condition on internal boundary and Dirichlet condition on external
boundary, among sets of R™ with holes and having a sphere as outer boundary. We explicitly
observe that our result includes this case, since

lim AR (a,Q) = AP (Q),

a——+00

where with )\ZJ,V D(Q) we denote the first eigenvalue of the p-Laplacian endowed with Dirichlet
condition on external boundary and Neumann condition on internal boundary.

Remark 4.25. Let us remark that in the case p = 2, we know explicitly the expression of the
solution of the problems considered in this section on the annulus A = A4, ,,.

We denote by J, and Y}, respectively, the Bessel functions of the first and second kind of order
v (for their definition and properties we refer to [I]). The function that achieves the minimum
in A = M (a, A) is

v(r) = Y%_z(\r)\rg)rlfg J%_l(\r)\r) — J%_Q(\/XTQ)TliLZLY%_l(\/XT),

with the condition

Ygfg(\arl)[ré_%Jgfg(ﬁTz)\/X + OZT;_%J%71(\/XT2)]—
Jgfz(\/XTl)[T;_%Y%72(\/XT2)\f)\ + (XT;_%Ygfl(\f)\Tz)] = 0.

The function that achieves the minimum 1/7 = 1/T,%(a, A) is

1, (I1-n)
v(r)=—"T"+c + co,
(r) 2Tn U 2
Wlth 2 n
1 r ar, (n—1)8
{cl—ﬁ(if—m;}_l Tn“fT(%) )
Cco = fniTr’f.
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Chapter 5

A reverse type quantitative
iIsoperimetric inequality

Let Q < R™ an open set with finite Lebesgue measure and \;(2) the first Dirichlet Laplacian
eigenvalue. In this Chapter we work with the following class of admissible sets

Cpn, :={Q < R" | Q convex, V(Q) =1}

and we will prove that there exists a constant ¢ > 0, depending only on the dimension n, such
that, for every Q € C,,, we have

M () — M (B) > ¢ (P(Q) - P(B)). (5.1)

In the following we will denote by B a ball of volume 1.

5.1 Main result

We state now the main result of this Section.

Theorem 5.1. Let n > 2; there exists a constant ¢ > 0, depending only on n, such that, for
every Y e Cp, it holds
M(Q) — M (B) = ¢ (P(Q) - P(B))*. (5.2)

In order to prove this result, we need to recall the sharp quantitative version of the Faber-
Krahn inequality proved in [26]. We recall that the result is sharp, since the power 2 cannot be
replaced by any smaller power and that is verified using a suitable family of ellipsoids.

Theorem 5.2 (Quantitative Faber-Krahn). Let n > 2; there exists a constant C' > 0, depending
only on n, such that, for every open set Q with V(Q) = 1, it holds

A (Q) =\ (B) = CAR(Q)? (5.3)
and the exponent 2 is sharp.

In order to prove our main Theorem we will prove the following Proposition, that com-
bined with (5.3) will give the desired result. Let us define the following asymmetry functional,
known as spherical deviation (see [67]):

zeR™

Ay (Q) = inf {dH(Q,BR(x)) : Br(x) is a ball s.t. |Br(x)| = 1}. (5.4)
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Proposition 5.3. Let n > 2. There exist two constants C' > 0 and 69 > 0, depending only such
that, for every Q € C, with Ay (Q)) < by, it holds

Ar(Q) = C(P(Q) — P(B)). (5.5)

Remark 5.4. It is clear that inequality cannot be true when (2 is a long and flat domain
of fixed volume, since the asymmetry functional is such that Ap(€2) € [0,2). Let us assume that
) contains the origin. In this case, we proceed in the following way. First of all, let us recall the
result contained in [56] and reported in Chapter 1 (Lemma that holds for 2 < R™ convex

set:
dy(Q, B) < ¢ (diam(Q) + diam(B)) A (). (5.6)

If we are in dimension n = 2, since

where h is the support function associated to €2 as defined in Definition [1.3] we have

1 [ 1 1
0. B) = - > — —| = —AP(Q). .
(@) = o = o> 5= [ Ihal0) = 21 > 3-AP@) (57)
So, combining (5.7) and (5.2)), we obtain, being C' a constant depending only by the dimension,
AN (22 2.(Q
2 (diam(®) + 2 Ar(Q)

that goes to 0 when the diameter of 2 diam(2) goes to infinity. Let us consider now the case

n > 2. We have 1

1/n
wn/

dy(Q, B) = |lha — hpllew = ||halleo —

where the quantity in the right hand side is positive since we have fixed V(Q) = 1, and, conse-
quently,

1 1

— h dH" Y (z) < dy (2, B) + ——. .

o oy (@) AT @) < dn(Q, B) + o (5.9)
On the other hand, we have also that
1
dy(Q,B) = — |ha(z) — hg(z)| dH" *(2) (5.10)
NnWwy, Jgn-1
1 o1 1

> w(Q) — o S hao(z) dH™  (z) — o (5.11)

where w(Q) is the mean width of Q as defined in ([1.11)) in Chapter 1. Consequently, using (5.9))

and recalling (1.10]),
anl(Q) - anl(B)

2 b
where W,_1(2) is the (n — 1)-th quermassintegral of €2, as defined in (1.11)). We recall that for
Win—1(2) the following Alexandrov-Fenchel inequality (see (1.13) in Chapter 1 with j = n —1
and ¢ = 1) holds:

dn(Q,B) > ¢, (5.12)

I
nn—1

T pg) /=)
e PO) (5.13)
n

Wn—l (Q) =
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and there is the equality on balls. So, combing (5.12]) with (5.13)), we obtain
du(B) = ¢, (P(Q)1/<"—1> - P(B)1/<"—1>) > ¢, P(Q) 7T AP(Q), (5.14)

where ¢,,, ¢, are positive constants depending only on the dimension n. Eventually, using (5.3)),

(5.6) and (5.14)), we obtain, being C' = C(n) > 0,

AN ()
(AP(Q)))?

A% (Q)

> C .
P(Q)7T Ap()V/n (diam(®) + 2 )

-0, (5.15)

as diam(2) goes to infinity.

Remark 5.5. With this method of proof, using the sharp inequality proved in [26], we are not
able to prove the conjecture contained in [66], that is our starting point, stating that

M(Q) = M(B) = B (P(Q) - P(B)*?, (5.16)

where (8 is a constant that can be explicitly computed. Our leading idea is indeed to combine
inequality (5.3)) with an inequality of the form

Ax(Q) = C (P(Q) — P(B))° (5.17)

and this last inequality is a sort of 'reverse’ quantitative isoperimetric inequality, recalling that
the quantitative isoperimetric inequality proved in [69] has the form

(P(Q) = P(B)) = CAp(Q)?, (5.18)

where C' is a positive constant, for every Borel set {2 of unit measure. On the contrary to , in
inequality the terms of the difference of the perimeter is used as an asymmetry functional
and it is situated in the left hand side of the inequality. Proceeding in this way, the target power
in to prove conjecture would be 3/4, but unfortunately the best power is 6 = 1 and
the "bad" sets in this case are the polygons. As we can see from the computations below we
have that

Ar(Pi) ~ (P(Pf) — P(B)),

when P} is a regular k-gon of area 1. Indeed, the following relations hold:
Ap(PF) ~ €%, P(P}) — P(B) ~ €.

Being B the ball of area 1, if we set R the radius of B, we have that R = 1/4/m. Let us denote
by a the apothem of P}, i.e. the segment from the center of the polygon that is perpendicular
to one of its sides. Setting € = w/k and Taylor expanding, we obtain that

C(esi?m)t - 1-en
T T ksm(ik) T T (5:19)

Now the area A, of the circular segment of angle 2+, that is the region of B which is cut off from
the rest by one edge of the polygon,
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since v = arccos(a+/7) ~ v/2¢. Thus,
Ap(PF) ~ 2v/2ré?. (5.20)
Using we obtain
P(Pf)— P(B) = % — 2/ ~ ge?

On the other hand, sets that are smooth without edges do not create problems. If we consider
for example the family of ellipses

E. = {(x7y) ‘ x? +
we have that (see the computations in [25])
AF(E) ~ (P(E) - P(B)"?,

being
P(E.) — P(B) ~ €%, Ar(E.) = O(e).

5.1.1 Intermediate result : A geometrical inequality between the asym-
metry and the difference of perimeters

In this section we will prove the following proposition.

Proposition 5.6. Let n > 2. There exist two constants C > 0 and 5y > 0, depending only on
the dimension n, such that, for every Q € C,, with Ay (2) < do, it holds

Ar(Q) = C (P(Q) — P(B)). (5.21)

Let us fix a system of coordinates and O = (0, - - -, 0) as the origin. Without loss of generality,
we can assume that O € 2 and that the ball of volume 1 centered at the origin realizes the
minimum in (5.4). So, from now on B = B(O) and, consequently, A (Q) = dy (2, B).

Proof in the planar case

First of all, let us consider the case n = 2. The proof of Proposition [5.6is divided in two main
steps: we prove the inequality for a polygonal class of sets that is dense in the class of convex sets
with small Hausdorff distance with respect to B and then we can conclude that the inequality is
true for every € such that dy (2, B) < dg by a density argument.

We will use the classical polar coordinates representation of convex sets as follows:

0= {(r,&)e[O,oo)x[O,Qw) |T<u(16)}’ (5.22)

where u is a positive and 2w —periodic function, often called the gauge function of €, for a
reference see e.g [118, [90]. It is well known that Q is convex if and only if «” + u > 0. We can
write the volume, the perimeter and the asymmetry of 2 in terms of . In particular, we have
that :

1 /21
V(Q):§/0 mde;

27 2 2
uc 4+ u
—df

0 u?
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We can also compute explicitly the asymmetry, setting r(0) := 1/u(f), we have

2m 1 271'1_7,29 1 2m 1_u20
AF(Q):/O y/r r(6) dr| dG:/O |2()|d9—2/0 |u2w§)|d9. (5.23)

Let us consider now a set Q € Ca such that dy (2, B) < J§p. Since dy (2, B) < &y, we have
that u(f) ~ 1. After a rationalization of the denominator and after taking care of adjusting the
constant in (5.23)), that for convenience we still call C, we have that inequality (5.21]) follows

from

27 27 27
/ |1 —ul(1+wu)dd= / 11 —u?(0)| db > C’/ (W?(0) + u?(0) —u*(0)) db.  (5.24)
0 0 0

Then, if we prove the following

27 27
/ 11— u(0)|do>C / (' (0))2 db, (5.25)
0 0

with a still different constant C' > 0, we obtain (5.24). So, we will prove (5.24) for a class of
polygons that are dense in the family of convex sets with small Hausdorff distance from B (see
proof of Theorem 3.1.5 in [T18]). We give in the following the construction of this class.

Definition 5.1. Let € C, and such that Q contains the origin O. We call P(Q,0) the family
of the the polygons constructed from  in the following way. We consider the radii from the
origin, each one of which forming with the adjacent one an angle of amplitudine §y < 6. We say
that P € P(€,0), if P is the polygon whose boundary is obtained by joining all the consecutive
points given by the intersection of the above radii with o).

The result we are going to prove is the following.

Lemma 5.7. There exist C > 0, 6o > 0 and 6 > 0 constants such that, for every Q € Co with
dy(Q, B) < dg, if P € P(Q,0) is a polygon associated to 2 as in Deﬁm’tion and u is the
gauge function associated to P, then

/% 11— w(0)| do > c/% (/(0))° do. (5.26)
0 0

Proof. We will analyse all the possible cases. In the following we are assuming that the segment

AB c 0P is one side of the polygon and we call §, the angle AOB. By definition we have that

0y < 6. We denote by P the point of intersection between the segment AB and the ray that

forms with the segment OA an angle of 6.

Case 1: external tangent. We set o := OAB, we assume that OB has length equal to 1 and

that a+6p = 7/2 and that the segment AB lies on the y—axis. Moreover we denote h := |[OA|—1.
We have that

ht1= (5.27)

1 .
cos(6p)’
Let 0 € (0,6p). Having u(6) = 1/r(0), using the sine theorem to the triangle OAP we obtain

u(f) = cos(6y — 0) (5.28)

and, consequently,
u'(0) = —sin(fg — 6). (5.29)
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A
h] P
B
0 9,
O

Figure 5.1: External tangent case
Taylor expanding up to the first order with respect to 6y, we have that

% % sin
A W@fw_ésﬁ%—mw_mh-iﬁqkﬁg (5.30)

and, using ,
0o 0o 0o
‘AnfMMW=A uﬂm»w:A(me%—mw= (5.31)

05

= (0(] — sin(@o)) ~ 6 . (532)

Comparing these last two results, we can say that there exists a constant C' such that
00 60 2
/ |1 —u(f)| do = C/ (u'(&)) de.
0 0

Case 2: external intersecting. We are now considering the case when o + 6y < 7/2, the
segment OB has length 1 and the side AB is tangent to the ball B(O) in the point B. We set
z = 7/2 — «. In this case we have that

htl="" 200 (5.33)

and, using the sine theorem to the triangle OAP,

sin(o + 6)

sin(@)(h+ 1) (5:34)

u(f) =

From ([5.34) it follows that
cos(a + 0)

YO = S T T (5.35)
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o

o)

Figure 5.2: External secant case

Still denoting by I = 1/ (sin(«)(h + 1)) and Taylor expanding up to the first order with respect
to 0p and z, we have that

fo in(2z — 2 in(2 2
/ (U/(9>)2d9 _ 12 (920 i Sll’l( 254 90) _ SlnE1 Z)) ~ E [32290 _ 3208 + 68] ) (536)
0

and, using (5:27),

/Oe°|1—u(9)d9_/090 (1_u(0))d9:]/090 (1—%) 6 —

=] [sin(a)(h + 1)y + cos(a + 0y) — cos(a)] =
1
= I [0p cos(fy — z) + sen(z) (cos(bp) — 1) — cos(z) sin(fp)] ~ % [3265 — 267] .
Comparing these last two results, since we can choose 6y such that z > (2/3)6, there exists a
costant C' such that

/090 11— u(0)| db > 0/060 (u/(0))° do.

Case 3: External not intersecting. We are now considering the case when a + 6y < 7/2,
the segment OB has length strictly greater than 1 and the side AB is external to the ball B(O).
We set z = /2 — a. We consider the line r intersecting the segment OA, that is parallel to the
line passing through the points A and B and that touches the ball. We call h the length of the
segment AQ, where @ is the point of intersection between the segment AO and the line r and
we call b’ the length of the segment QQ’, where @’ is the the point of intersection between the
segment AO and the ball B(O). Let us first assume that o + 6y = m/2. We have that

_ cos(fy — 0)
v = St T D) (5:37)
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0
O

0o

Figure 5.3: External not intersecting case

So, setting I = 1/ (sin(a)(h + k' + 1)), we obtain that

90 90 1
/ (u'(6))° db = 12/ sin?(0 — 6p) df = I* (90 — sm(290)> ~ 12%93. (5.38)
0 0 2 4 3
Let us denote by Ap the area of the trapeze ABT'Q and let us compute Ar:
: 1 9 / / / 4 3
A = S60)( - ) b cos(0) ~ %sin(ZQO) ~ %(zeo _ %). (5.39)

So, since
0o
/ (1 —u(f))dd = Ar,
0

we can conclude that there exists a costant C' > 0 such that
90 60 2
/ |1 —u(8)| do = C/ (u'(@)) de.
0 0

Now let us assume that o + 6y > 7/2 and let us set z = 7/2 — a. We have that

sin(f + «)
- A4
vO) = @t T D) (5.40)
and that

1 % 2 b 0 sin(26p + 2a)  sin(2a)
=/ (v'(0)) d9=/0 51n2(9+a)d9=§0— ( (jl )-l- El

0 in(2 2z) sin(26 2
-2+ Smi 2) (1= cos(260)) + w ~ b0 + 632 — 2260 - 03,

If we compute Ar:

sin(6p)

Ar = 5

[sin?()sin?(B) + sin®(a) sin(B)(1 + h + )]
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and we can conclude.

Case 3: Internal not touching. Let us assume that the segments AO and BO are both
less than 1 and we call h:=1— |AO| and 3 the angle OBA

Ha

bo

@)

Figure 5.4: Internal not intersecting case

In this case we have that
sin(a + 6)
(1 —h)sin(a)’

Setting I = 1/(1 — h)sin(a) and z = 7/2 — a,

u(f) =

1 % 02 sin(2z — 20 in(2 03
S [ W) do =2+ sin( - o) _ Smi N 2 — 203 + 260,
0

Let @ be the point that lays in the circumference and in the semi-line that contains the segment
OA and Q' a point that lays in the semi-line containing OB, such that the segment QQ’ is
parallel to AB. Calling Ar the area of trapeze ABQQ', we have

h(2 — h)sin(a) .
AT = T(ﬂ) 51n(90).

We can conclude, since
[
/ 11— w(0)] 0 > Ar.
0

Case 4: Internal touching. Let us assume that the side AB is now contained in the
ball and that the segment OB has length less than 1. In this case, setting I = 1/sin(«) and
z = 7/2 — a, we have, when z — 0 that

1o, 2 oo, 0o sin(2z —260y) sin(2z)
ﬁ/o (v'(0)) dﬁf/o cos(9+a)d075+ 1 -

N T
~3+200 205
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0o

Figure 5.5: Internal secant case

and

1 % , , 202 63

- (u(@) — 1) df = —sin(z — 6p) + sin(z) — p cos(z) ~ — — —,

1/, 2 6

and we can conclude, since we can show after some computations of Euclidean geometry that z
goes to 0 with the same speed as y. If we are in the case that z does not tend to 0, as g — 0,
we Taylor expand in 6y and we easily obtain the desired result.

O
Generalisation in dimension n
Let us assume now that the boundary of 2 € C,, can be parametrized in the following way:
Q={yeR"|y=r(z); zeS" '} (5.41)

We wlill use the following notation: for simplicity we will denote by V., the tangential gradient
VS"" as defined in Definition
We have the following results (see for the exact computations [67), 68]):

Ar@ = [ @) -1 @)

n

and

P(Q) = / \/r2(n—1)(x) + 7200=2) (2) |V |2 dH" L
Snfl
If we assume that dy(£2, B) is small, we have that r is sufficiently near to 1, and, consequently,

n+1
n

Ar(Q) <

/S ) 1 amn (5.42)

So, proving Proposition [5.6] is equivalent to prove that there exists C' > 0 such that

1
/S r@) =1 dHnt = C/s By [IVTrI2 +r? - r?<—2>] dH" ! (5.43)
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‘We note now that

r

) 1 _7”2’”7271_ ) r2n*3+...+1
Cp2n-2) T p2(n-2) (r—=1) r2(n—2)

and the term [ (r>"=3 4 .- + 1) /r?"=2)] is bounded if r € [1—Jo, 1 + o], so that it can absorbed
by the constant C'. For this reason, it remains to prove the following inequality

/ r(z) — 1] dH"! > c/ V|2 dHL
Snfl Snfl

We are going to prove the following result.

Proposition 5.8. Let n > 2. There exist C > 0, §g > 0 costants, depending only on n, such
that, for every Q € C,, with dy (2, B) < o, then, if r is the function that describes the boundary

of Q as in (5.41)), it holds

/ ir(z) — 1] dH™ " (z) = C / Vor(2)]? dH (). (5.44)
§n—1 S§n—1

Proof. We consider a system of coordinates (O, €7, ,¢,,) and we shall prove the desired in-
equality in a neighbourhood w of the point g := (0,---,0,1).

Let = € w, there exists ¢ > 0 such that
n—1
V,r(z))? <e 2 |Vu(z)|?, (5.45)
i=1

where V;u(x) is the tangential gradient of u in the circle S; := S~ n (O €;). Inequality (5.45))
is a consequence of the fact that the tangent 7; at C; in x are almost orthogonal.
We prove now the following inequality: there exists a constant C' > 0 such that

/ Ir(z) — 1| dH" ' (z) = C/ Va7 dH(2). (5.46)
In order to do that we consider the spherical coordinates:

x1 = cos(61)
o = sin(6fy) cos(0s)

Zp—1 =sin(6y)...sin(0,—2) cos(0p—_1)

Ty = sin(6y)...sin(f,—_2)sin(f,_1)

with 0 ...,0,_2 € [0,7] and 6,,_; € [0,27). In this coordinate system the point 2o = (0,---,0,1)
corresponds to

01 = 7T'/27
(92 = 7T/2,

9n,1 = 7T/2
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We fix now 61, ...,0,_2 and we let §,,_; vary in a small interval [7/2 — §, 7/2 + §]. We write on
the the piece of circle w’ described by this parametrization the bidimensional inequality that we
have proved in the previous Section

Ir(z) — 1| dH' = C/ |Vpo1r|? dH . (5.47)

w!

Now we multiply both sides of by the Jacobian (sin™ ?(6;)sin™ *(6,).. .sin(@n_2)gd
we integrate in 601, 0s,...,0,_o in a small neighbourhood, proving in this way inequality ([5.46)
In a similar way, with a suitable choice of spherical coordinates, we prove that fori =1,...,n—2,
also holds

/|r(x) A dH N () = 0/ Va2 dH (@), (5.48)

Summing and using (5.45)), we can conclude that

/ Ir(x) — 1| dH" (z) = C/ V|2 dH" (). (5.49)
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