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Introduction

Diffusion processes, in particular Brownian motion, have been the main mod-
elling tool to describe some form of irregular dynamics of particles in media (see,
for instance, [54])1. However, not all physical phenomena linked with irregular
(or chaotic) motion of particles can be described in terms of standard diffusions.
This happens in particular when the mean square displacement of the particles
follows a different time scale. It is the case of anomalous diffusions (see [107]).
Among anomalous diffusions, we can recognize subdiffusions (with a mean square
displacement whose time scale is given by tγ with γ < 1) and in particular frac-
tional diffusions (see [77]). With the introduction of fractional diffusion, we have
to abandon the Markov property to describe subdiffusive phenomena. Indeed, such
kind of phenomena are shown to exhibit a behaviour described by a time-fractional
Fokker-Planck equation. To model phenomena that happens in a different time
scale, we have to rely on fractional calculus, which is a branch of mathematics that,
despite the not-so-recent origin (the actual problem of finding an operator D such
that D2 is the classical derivative was posed by de l’Hopital to Leibniz2 in 1695),
has become now a trendy argument, since the useful consequences Leibniz wished
for are now reality (for some history of fractional calculus, we refer to [52]).

As the link between Brownian motion and the heat equation is well-known (see
[112]), the search for processes whose probability laws solved in some sense time-
fractional heat equations has been carried on to describe subdiffusions. From this, a
new branch of stochastic calculus was born: stochastic models of fractional calculus
(see for instance [104]). As a main tool to describe such kind of processes, Lévy
processes, in particular stable subordinators, became the main characters. Indeed,
the very good path properties of subordinators (see [35, 36]) made them a good
candidate to substitute the time scale of the Brownian motion. However, composi-
tion of Lévy processes is still a Lévy process (and then a Markov process), thus we
cannot expect these new processes to solve a time-fractional heat equation. Just
think of the subordinated Brownian motion, that is the stochastic representation of
the space-fractional heat equation (i.e. the heat equation in which we consider the
fractional Laplacian in place of the standard one). However, the first passage time
process of a stable subordinator still provides a good candidate to substitute such
time scale. Moreover, the composition between a Lévy process and the generalized

1Despite for a formal theory of Brownian motion we have to wait for the works of Einstein

[54], Smoluchovski [140] and Perrin (see, for instance, [119]), the idea that Brownian motion is
strictly linked with diffusion processes precedes such works. For instance, such idea was already

present in [32]. For the history of Brownian motion up to Perrin we refer to [41].
2It will lead to a paradox [...]. From this apparent paradox, one day useful consequences will

be drawn.
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INTRODUCTION 2

left-continuous inverse of a subordinator is not a Markov process. As it can be seen,
the composition of the Brownian motion with the inverse of a stable subordinator
provides a stochastic representation of the time-fractional heat equation. Thus, the
idea is the following: time-changing with the inverse of a stable subordinator could
transform diffusive processes in subdiffusive processes.

In this context, this kind of time-changed processes became the first tool of
investigation of time-fractional differential equations. Starting from the introduc-
tion of the fractional Poisson process (see [93]) and then to the study of some more
complicated time-changed birth-death processes (see for instance [116, 117]), to
arrive also to fractional Poisson fields ([8]), to spectral decomposition for fractional
diffusions ([94]) and fractional mean-field games ([45]).

However, using only stable subordinators was restrictive. Indeed, new models
relying on new fractional derivatives were considered. To cite, for instance, a recent
result, in [64] a fractional derivative with respect to another function (see [9]) was
used to obtain some new Gompertz models that better fit some particular popula-
tion growth phenomena.

Working with the limitation of the standard fractional calculus was not enough.
Thus, the link between Bernstein functions (see [132]) and subordinators has been
exploited to define some new general fractional derivative operators. Such kind of
operators were introduced in [88] and then in [143], with different approaches. In
particular, the latter exploits the link between the density of inverse subordinators
and such non-local derivatives induced by general Bernstein functions. From this
introduction, different probabilistic models have been considered to discuss the
equations of what is usually called generalized fractional calculus (see, for instance,
[47, 118, 106] and many others).

This thesis focuses on some results linked to such generalized fractional calculus.
Here, after some preliminaries on Bernstein functions and non-local derivatives, we
will consider different topics of generalized fractional calculus. In particular we first
explore some existence and uniqueness results for non-linear non-local differential
equations (via a fixed point argument) and then we exploit a generalized version of
the Grönwall inequality for such kind of operators. Then, we move to some problems
related to probabilistic representation of solutions of non-local equations, focusing
in particular on some birth-death process with known spectral decomposition and
on time-changed non-Markov process, such as the fractional Ornstein-Uhlenbeck
process introduced in [48]. Moreover, we also explore some properties of the first
exit times of time-changed Markov process from open sets and then we show the
link between the first passage time of a time-changed drifted Brownian motion
and a particular non-local parabolic problem. Such techniques are then used in
some applications (in particular to queueing theory). Finally, we explore also some
properties linked to non-local operators in space, focusing in particular on isotropic
Lévy processes obtained by subordination of the Brownian motion and on fractional
operators on a sphere. In particular the work is structured as follows:

• The first chapter presents some preliminaries on Bernstein functions, sub-
ordinators and non-local derivatives induced by Bernstein functions. In
this chapter we introduce the main tools we will work with.
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• The second chapter relies on theoretical results on generalized fractional
calculus and stochastic representation of solutions of non-local equations.
In particular one can recognize four main topics in such a chapter:

– Existence, uniqueness and Grönwall inequality for non-local non-
linear differential equations.

– Spectral decomposition of strong solutions of some non-local differ-
ential equations in Banach sequence spaces.

– Theoretical results related to the time-changed fractional Ornstein-
Uhlenbeck process and its generalized Fokker-Planck equation.

– Asymptotic behaviour of first exit times of time-changed processes
from open sets and link with some non-local partial differential equa-
tions.

All these arguments are linked together by one main scope: exploiting sto-
chastic representation of non-local differential equations, eventually non-
local partial differential equations.

• The third chapter presents two applications of the aforementioned theoret-
ical results. The first one is the introduction of fractional queues, together
with some results on some performance parameters. The second one is an
application to computational neurophysiology, where time-changed pro-
cess are shown to exhibit some qualitative properties that better explain
the behaviour of spike trains of some particular neurons (see [124]). Fi-
nally, in such chapter, we provide some simulations procedures to repro-
duce time-changed processes.

• Finally, in the fourth chapter, we move toward some problems related
to non-locality in space. First, we give some asymptotics of the jump
functions of subordinated Brownian motions (which are useful to study the
properties of potentials for non-local Schrödinger equations that exhibit
zero-energy eigenvalues, as done in [24]). In the second part of the fourth
chapter, we study the eigenvalue problem for the fractional integral on the
sphere Sd−1 ⊆ Rd and for a Marchaud-type integral on Sd−1. In particular
we show the link between the first non-trivial eigenvalue of the Marchaud-
type integral on the sphere and the moments of the length of random
segments in the unit ball (which is a first step towards a quantitative
version of Groemer-Pfiefer inequality, as in [17]).



Common Symbols and Definitions

• We denote N = {1, 2, . . . } while N0 = N∪{0};
• We denote R+ = (0,+∞) while R+

0 = [0,+∞);
• We denote H = {z ∈ C : ℜ(z) > 0} and H0 = {z ∈ C : ℜ(z) ≥ 0};
• We denote D1 = {z ∈ C : |z| ≤ 1};
• We denote R∗ = R \{0};
• We denote Sd−1 = {x ∈ Rd : |x| = 1}, where we use | · | to denote both

the Euclidean norm3 and the Lebesgue measure of a subset of Rd;
• We denote Br(x) = {x ∈ Rd : |x| < r} and ωd = |B1(0)|;
• In the whole text, we fix a complete probability space (Ω,F ,P);
• Given two functions f, g, we denote f ≍ g if and only if there exists a

constant c > 1 such that g
c ≤ f ≤ cg;

• Given two functions f, g defined in a neighbourhood of x0 ∈ Rd, we denote
f ∼ g as x→ x0 if limx→x0

f
g = 1.

• Given a suitable measure µ on [0,+∞) the Laplace-Stieltjes transform of
µ is defined as

LS [µ](λ) =

∫︂ +∞

0

e−λtµ(dt);

• Given a function f of bounded variation defined on [0,+∞), we denote

by LS [f ] the Laplace-Stieltjes transform of its distributional derivative df
(that is a Radon measure);

• Given a suitable function f defined on [0,+∞) the Laplace transform of
f is given by

L[f ](λ) =
∫︂ +∞

0

e−λtf(t)dt;

• For any measure space (X,Σ, µ), we denote by Lp(X) for p ≥ 1 the Banach
space of measurable functions f : X → R such that

∥f∥pLp(X) =

∫︂
X

|f |pdµ < +∞;

• For any measure space (X,Σ, µ), we denote by L∞(X) the Banach space
of measurable functions f : X → R such that

∥f∥L∞(X) = inf{M > 0 : µ({x ∈ X : |f(x)| > M}) = 0} < +∞,

where we set inf ∅ = +∞;

3Here we use | · | in place of ∥ · ∥ to avoid confusion whenever both the Euclidean norm of a
point and any other functional norm is used.
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• For any topological (Borel-)measure space (X,Σ, µ) where Σ is the com-
pletion of the Borel σ-algebra ofX with respect of µ, we denote by Lp

loc(X)
for p ≥ 1 (eventually p = ∞) the Banach space of measurable functions
f : X → R such that for any compact set K ⊆ X the function f1K belogs
to Lp(X), where 1K is the indicator function of the compact K;

• For any numerable measure space (E,P(E), µ), where P(E) it the set
of all subsets of E, we denote ℓp(µ) with p ≥ 1 the Banach space of all
sequences (f(x))x∈E such that

∥f∥pℓp(µ) =
∑︂
x∈E

|f(x)|pµ({x}) < +∞;

• For any numerable measure space (E,P(E), µ), where P(E) it the set of
all subsets of E, we denote ℓ∞(µ) with the Banach space of all sequences
(f(x))x∈E such that

∥f∥ℓ∞(µ) = sup
x∈E

|f(x)| < +∞;

• For any measurable space (X,Σ, µ) and any Banach space (Y, | · |) we
denote by Lp(X;Y ) for p ≥ 1 the Banach space of Bochner-measurable
functions f : X → Y (i.e. f(x) = limn→+∞ fn(x) almost everywhere in
X, with fn(X) a countable set and f−1n ({y}) measurable for any y ∈ Y )
such that

∥f∥pLp(X;Y ) =

∫︂
X

|f |pdµ < +∞;

• For any measurable space (X,Σ, µ) and any Banach space (Y, | · |) we
denote by L∞(X;Y ) the Banach space of Bochner-measurable functions
f : X → Y such that

∥f∥L∞(X;Y ) = inf{M > 0 : µ({x ∈ X : |f(x)| > M}) = 0} < +∞,

where we set inf ∅ = +∞;
• With Hn we denote the Hausdorff measure of dimension n.



CHAPTER 1

Preliminaries

1.1. Bernstein functions

In this section we will introduce the main class of functions we will work with.
We mainly refer to [132].

Definition 1.1.1. Let Φ : (0,+∞) → R be a C∞ function. We say that Φ is
a Bernstein function if Φ(λ) ≥ 0 and for any n ∈ N and λ > 0 it holds

(−1)n−1Φ(n)(λ) ≥ 0.

The set of Bernstein functions will be denoted by BF .

Let us also recall the definition of Lévy measure, as given in [35].

Definition 1.1.2. For any d ≥ 1, a measure µ on (Rd \{0},B(Rd \{0})) (where
with B(Rd \{0}) we denote the Borel σ-algebra of Rd \{0}) is said to be a Lévy
measure if and only if ∫︂

Rd \{0}
(|x|2 ∧ 1)µ(dx) < +∞.

The set of Lévy measures will be denoted by LMd.
Moreover, let us denote by BLM the subset of LM1 such that µ ∈ BLM if and
only if for any (a, b) ⊆ (−∞, 0) it holds µ(a, b) = 0 and∫︂ +∞

0

(t ∧ 1)µ(dt) < +∞.

The link between Bernstein functions and Lévy measures is established by the
following representation theorem (see [132, Theorem 3.2]).

Theorem 1.1.1 (Lévy-Khintchine representation theorem). A function
Φ : (0,+∞) → R+ belongs to BF if and only if there exists a triplet (aΦ, bΦ, νΦ) ∈
R+

0 ×R+
0 ×BLM such that

Φ(λ) = aΦ + bΦλ+

∫︂ +∞

0

(1− e−λt)νΦ(dt).

Moreover, any Φ ∈ BF determines a unique triplet (aΦ, bΦ, νΦ) and vice versa.

Given a Bernstein function Φ ∈ BF , the triplet (aΦ, bΦ, νΦ) identified by the
Lévy-Khintchine representation theorem is called the characteristic triplet of Φ.
In particular aΦ is said to be the killing coefficient, bΦ the drift coefficient and
νΦ the Lévy measure of Φ.
From this representation theorem, one achieves, by direct calculations, the following
limits for Φ ∈ BF

Φ(0+) = aΦ, lim
λ→+∞

Φ(λ)

λ
= bΦ.

6



1.1. BERNSTEIN FUNCTIONS 7

Concerning the structure of the set BF , let us recall [132, Corollary 3.7].

Corollary 1.1.2. BF is a convex cone closed under pointwise limits and com-
positions.

Actually, we will identify Bersntein functions with Laplace exponents of a par-
ticular class of Lévy processes, hence we need to understand the behaviour of these
functions for complex variables. To do this, we recall [132, Proposition 3.5].

Proposition 1.1.3. Every Bernstein function Φ ∈ BF admits a continuous
extension Φ : H0 → H0 that is holomorphic on H.

Now we want to introduce some more regular classes of Bernstein functions.
To do this, we first need to introduce the following class of functions (see [132,
Chapter 1])

Definition 1.1.3. We say a function f : (0,+∞) → R is completely mono-
tone if f ∈ C∞ and for any n ∈ N0 and λ > 0 it holds (−1)nf (n)(λ) ≥ 0. We
denote by CM the set of completely monotone functions.

In particular, denoting with LS the Laplace-Stieltjes transform operator, the
following Theorem (see [132, Theorem 1.4]) holds true.

Theorem 1.1.4 (Bernstein Theorem). If f ∈ CM then there exists a unique

measure µ on [0,+∞) such that for any λ > 0 it holds f(λ) = LS [µ](λ). Vice versa,

if µ is a measure on [0,+∞) such that for any λ > 0 it holds LS [µ](λ) < +∞, then

λ ↦→ LS [µ](λ) is a completely monotone function.

Concerning the structure of the set CM, we have the following Proposition (see
[132, Corollary 1.6])

Proposition 1.1.5. CM is a convex cone closed under multiplication and
pointwise convergence.

We can now use completely monotone functions to define a more regular class
of Bernstein functions (see [132, Chapters 6 and 7]).

Definition 1.1.4. We say Φ ∈ BF is a complete Bernstein function if its
Lévy measure νΦ(dt) is absolutely continuous with respect to Lebesgue measure
and admits a density νΦ(t) that belongs to CM. The set of all complete Bernstein
functions will be denoted as CBF .

Again, we can investigate the structure of the set CBF (see [132, Corollary
7.6])

Proposition 1.1.6. CBF is a convex cone closed under pointwise limits and
compositions.

To investigate some other representation theorems for complete Bernstein func-
tions, we need the following definition (see [132, Chapter 2]).

Definition 1.1.5. We say a measure s on (0,+∞) is a Stieltjes measure if∫︁ +∞
0

(1 + t)−1 s(dt) < +∞. We denote the set of Stieltjes measures as SM.

We say a function f : R+ → R+
0 is a Stieltjes function if there exists a triplet

(af , bf , sf ) ∈ R+
0 ×R+

0 ×SM such that

f(λ) =
af
λ

+ bf +

∫︂ +∞

0

1

λ+ t
sf (dt).
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We denote the set of Stieltjes functions as S.

Concerning the structure of the set S, we have the following Proposition (see
[132, Theorem 2.2]).

Proposition 1.1.7. S ⊂ CM is a convex cone closed under pointwise limit.

Let us now stress out the link between complete Bernstein functions and Stielt-
jes functions (see [132, Theorems 6.2 and 7.3])

Proposition 1.1.8. Φ ∈ CBF if and only if λ ↦→ Φ(λ)
λ belongs to S. Moreover,

if Φ ̸≡ 0, Φ ∈ CBF if and only if 1/Φ ∈ S.

From last proposition, we obtain another representation result for complete
Bernstein functions. Indeed, for any Φ ∈ CBF there exists a triplet (aΦ, bΦ, sΦ) ∈
R+

0 ×R+
0 ×SM such that

Φ(λ) = aΦ + bΦλ+

∫︂ +∞

0

λ

λ+ t
sΦ(dt).

Last class of Bernstein functions we will work with is the following (see [132,
Chapter 10]).

Definition 1.1.6. A function Φ ∈ BF is said to be a special Bernstein
function if Φ⋆(λ) = λ

Φ(λ) ∈ BF .

The function Φ⋆ is called the conjugate Bernstein function of Φ and the set of
special Bernstein function will be denoted by SBF .

Unlike all the other family of functions we introduced up to now, let us stress
out that the structure of SBF is still unknown (see [132, Remark 10.20]). However,
let us recall [132, Proposition 7.1]:

Proposition 1.1.9. Φ ∈ CBF if and only if Φ⋆ ∈ CBF .

Last proposition gives us the following inclusion order for CBF , SBF and BF :

CBF ⊂ SBF ⊂ BF .

In what follows, we will say that Φ ∈ BF is a driftless Bernstein function if its
characteristic triple is given by (0, 0, νΦ) and νΦ(0,+∞) = +∞.1

1.2. Subordinators and inverse subordinators

Let us recall here the definition of subordinator and of killed subordinator as
given in [35, Chapter 3].

Definition 1.2.1. A subordinator σ(t) is an almost surely increasing Lévy
process on R.

Let us observe that, being it increasing, it must be also non-negative. Indeed,
for any t ≥ 0, we have σ(t) − σ(0) ≥ 0. But, since σ is a Lévy process, we are
asking for σ(0) = 0 almost surely and then σ(t) ≥ 0. The converse also holds true,
i.e. if σ(t) is a non-negative Lévy process, then it is a subordinator.
Concerning killed subordinators, we have the following definition.

1In literature, Φ ∈ BF is a driftless Bernstein function if its drift coefficient bΦ = 0.
However, together with the assumption bΦ = 0 we will always need also aΦ = 0 and νΦ(0,+∞) =

+∞, thus we add these requirements in the definition.
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Definition 1.2.2. Let σ(t) be a subordinator and τa be an exponential random
variable of parameter a > 0 and independent of σ(t). Then the killed subordi-
nator associated to σ with rate a > 0 is defined as

ˆ︁σ(a)(t) =

{︄
σ(t) t ∈ [0, τa)

+∞ t ∈ [τa,+∞)

Let us stress out the link between subordinators and Bernstein functions, as a
consequence of [132, Theorem 5.2 and Proposition 5.5]:

Theorem 1.2.1. For any Bernstein function Φ ∈ BF with characteristic triplet
(aΦ, bΦ, νΦ) there exists a unique subordinator if aΦ = 0 or killed subordinator if
aΦ > 0 σΦ(t) such that

E[e−λσΦ(t)] = e−tΦ(λ).

Viceversa, if σ is a (killed) subordinator, then

Φ(λ) = − log(E[e−λσ(1)]) ∈ BF .

For any subordinator we can define the inverse subordinator as done in [36] as
a first passage time process.

Definition 1.2.3. Let σ(t) be a subordinator. Then its inverse subordina-
tor L(t) is defined as

L(t) = inf{y > 0 : σ(y) > t}.

Let us first investigate some regularity property of the random variables σ(t)
and L(t). Concerning the subordinator σ(t), the existence of a density is linked to
some regularity property of the Lévy measure. Indeed, by a direct application of
[84, Theorem 27.10] one can show the following result.

Proposition 1.2.2. Let Φ ∈ BF be a driftless Bernstein function with Lévy
measure νΦ that is absolutely continuous with respect to the Lebesgue measure.
Then, for any t > 0, σΦ(t) is an absolutely continuous random variable.

On the other hand, inverse subordinators are generally more regular even if the
subordinator is not, as stated in [103, Theorem 3.1].

Proposition 1.2.3. Let Φ ∈ BF be a driftless Bernstein function with Lévy
measure νΦ and let σΦ(t) be the associated subordinator with probability law gΦ(ds; t).
Let LΦ(t) be the inverse subordinator. Then, for any t > 0, the random variable
LΦ(t) is absolutely continuous with density fΦ(s; t) given by

fΦ(s; t) =

∫︂ t

0

νΦ(t− τ,+∞)gΦ(dτ ; s).

From now on we will denote by gΦ(dt; s) the law of the random variable σΦ(s)
(eventually gΦ(dt; s) = gΦ(t, s)dt) and with fΦ(s; t) the density of the random
variable LΦ(t).
Actually, the last proposition implies something more. Indeed, by definition, we
have

P(σΦ(s) ≥ t) = P(LΦ(t) ≤ s),

thus, since for any t > 0 we know that LΦ(t) is absolutely continuous whenever
Φ ∈ BF is driftless, it holds that the function s ↦→ P(σΦ(s) ≥ t) is differentiable in
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s and so it is s ↦→ P(σΦ(s) ≤ t), leading to

(1.2.1) fΦ(s; t) = − ∂

∂s
P(σΦ(s) ≤ t).

Finally, let us observe that from the last proposition, since gΦ(dτ, 0) = δ0(dτ), it
holds f(0+; t) = νΦ(t,+∞) for any t > 0.
Concerning some pathwise properties of subordinators and inverse subordinators,
as first result, let us recall that, from [84, Theorem 21.3] it directly follows:

Proposition 1.2.4. Let Φ ∈ BF be a driftless Bernstein function. Then σΦ is
almost surely strictly increasing.

Moreover, let us recall [35, Chapter 3, Theorems 16 and 17] concerning the
Hausdorff dimension of the range of a subordinator.

Theorem 1.2.5. Let Φ ∈ BF and σΦ be the associated subordinator. Let us
define the upper index and the lower index respectively as

ιu := sup{α > 0 : lim
λ→+∞

λ−αΦ(λ) = ∞}

ιl := inf{α ≥ 0 : lim
λ→+∞

λ−αΦ(λ) = 0}

and let us denote by Hdim the Hausdorff dimension of a set in R. Then:

• For any s > 0 it holds Hdim({σΦ(t) : t ∈ [0, s]}) = ιu almost surely;
• For any s > 0 and any measurable set E ⊆ [0, s] it holds

ιuHdim(E) ≤ Hdim({σΦ(t) : t ∈ E}) ≤ ιlHdim(E).

On the other hand, the sample paths of L(t) are generally more regular, as
stated in [35, Chapter 3, Lemma 17].

Theorem 1.2.6. Let Φ ∈ BF with upper index ιu > 0. Then LΦ is almost
surely locally Hölder continuous of exponent ιu − ε for any ε ∈ (0, ιu).

To obtain some other properties, we need to introduce a particular measure
associated to σΦ, following the definitions given in [35].

Definition 1.2.4. Let σΦ be a subordinator. Then we call potential measure
of σΦ the Borel measure

UΦ(A) = E
[︃∫︂ +∞

0

χ{σΦ(t)∈A}dt

]︃
, A ∈ B(R)

where, for any set E, χE is the indicator function of E. In particular we define the
renewal function

UΦ(x) = UΦ([0, x]).

Let us stress out that the function UΦ(x) is subadditive.

It is easy to check, by definition, that UΦ(t) = E[LΦ(t)] and then, by Hölder-
continuity property of LΦ(t), we know that t ↦→ UΦ(t) is a continuous increasing
function. In particular this means that the potential measure is diffusive (i.e. does
not admit any atomic part). This, together with the fact that any Lévy measure
ν ∈ BLM can admit at most a countable number of atoms, leads to the proof of
[35, Chapter 3, Proposition 2, point ii] that we recall here.

Proposition 1.2.7. For any t > 0 it holds

P(σΦ(LΦ(t)−) < t = σΦ(LΦ(t))) = 0.
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As a direct consequence we get that σΦ cannot admit any fixed discontinuity.
On the other hand, driftless subordinators are pure jump processes, as stated in
[35, Chapter 3, Theorem 4]:

Proposition 1.2.8. Let Φ ∈ BF be a driftless Bernstein function. Then

P(σΦ(LΦ(t)) > t) = 1.

Concerning the asymptotic behaviour of the renewal function, let us introduce
the tail of the Lévy measure νΦ of a Bernstein function Φ ∈ BF as ν̄Φ(t) =
νΦ(t,+∞) and the integrated tail of the Lévy measure νΦ

IΦ(t) =

∫︂ t

0

ν̄Φ(τ)dτ.

Then we can state (see [35, Chapter 3, Proposition 1]):

Proposition 1.2.9. Let Φ ∈ BF with drift coefficient b and Lévy measure νΦ.
Then

UΦ(x) ≍
1

Φ
(︁
1
x

)︁ , Φ(x)

x
≍ IΦ

(︃
1

x

)︃
+ bΦ.

Now let us investigate some properties concerning the Laplace transform of the
density of the inverse subordinators and their moments of any order. First of all,
let us observe that, as a consequence of Proposition 1.2.3 we have (as also stated
in [103, Equation 3.13]) for Φ ∈ BF a driftless Bernstein function, denoting by L
the Laplace transform operator, for any s, λ > 0,

Lt→λ[fΦ(s; t)](λ) =
Φ(λ)

λ
e−sΦ(λ).

From this formula, we can easily obtain the Laplace-Stieltjes transform of the re-
newal function UΦ(t) (or, directly, of the potential measure) as stated in [35]

LS [UΦ](λ) =
1

Φ(λ)
.

Actually, we obtain the Laplace-Stieltjes transform of the moment of any order of
LΦ(t). Indeed, in [145, Equation 12], the authors prove the following statement

(1.2.2) LS
t→λ[E[L

γ
Φ(t)]](λ) =

Γ(1 + γ)

Φγ(λ)
.

Let us give some names to particular class of subordinators (as given in [132])

Definition 1.2.5. If Φ ∈ SBF , then the associated subordinator σΦ is said to
be a special subordinator. If Φ ∈ CBF , then the associated subordinator σΦ is
said to be a complete subordinator.

Concerning special subordinators, one can characterize them by means of their
potential measure. Indeed we have the following Theorem (see [132, Theorem 10.3
and Equation 10.9])

Theorem 1.2.10. Let σΦ be a subordinator with potential measure UΦ and
Φ ∈ BF with characteristic triplet (aΦ, bΦ, νΦ). Then σΦ is a special subordinator
if and only if there exists a constant cΦ ≥ 0 and some non-increasing function

uΦ : (0,+∞) → (0,+∞) with
∫︁ 1

0
uΦ(t)dt < +∞ such that

UΦ(dt) = cΦδ0(dt) + uΦ(t)dt
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where δ0 is a Dirac delta. In such case it holds:

cΦ =

{︄
0 bΦ > 0

1
aΦ+νΦ(0,+∞) bΦ = 0.

Thus, according to our definition of driftless Bernstein function, we have that
if σΦ is a driftless special subordinator, the potential measure UΦ is absolutely
continuous with respect to the Lebesgue measure with density uΦ called potential
density.
Finally, let us observe that if Φ ∈ CBF is a driftless Bernstein function, then the
one-dimensional law of the complete subordinator σΦ is absolutely continuous with
respect to Lebesgue measure.

1.2.1. α-stable subordinators. A particularly regular case is given by the α-
stable subordinator for α ∈ (0, 1). It is the subordinator associated to the complete
Bernstein function Φ(λ) = λα. In particular let us recall the following definition
(see [12, Section 1.2.5]).

Definition 1.2.6. Let (Yn)n∈N be a sequence of i.i.d. random variables,
(bn)n∈N a sequence of real numbers and (σn)n∈N a sequence of positive real numbers.
Let us define

Sn =
1

σn

(︄
n∑︂

k=1

Yk − bn

)︄
and suppose that there exists a random variable X such that, for any x ∈ R,

lim
n→+∞

P(Sn ≤ x) = P(X ≤ x).

In such case X is said to be a stable random variable.

From this definition we can see that normal random variables are stable (by
Lindeberg–Lévy central limit theorem). However, these are not the only stable
random variable. One can achieve a characterization of stable random variables via
the following result.

Proposition 1.2.11. A random variable X is stable if and only if for any
n ∈ N there exist two constants cn and dn such that, denoting by X1, . . . , Xn n
independent copies of X,

n∑︂
k=1

Xk
d
= cnX + dn.

In particular cn = σn
1
α for some constant σ > 0 and α ∈ (0, 2].

A stable r.v. is said to be strictly stable if dn = 0 for any n ∈ N. Moreover,
the exponent α ∈ (0, 2] is said to be the index of stability. If α = 2, one can
show that X must be a normal random variable.
If we want to work with subordinators, we need to exclude the case of stable random
variables whose support is not contained in (0,+∞). Actually, one can show, by
a characterization of the characteristic function, that if X is a non-negative stable
random variable, then its index of stability is α ∈ (0, 1).
Now we can define the α-stable subordinator.

Definition 1.2.7. A stable Lévy process is a Lévy process X(t) such that
for any t > 0 X(t) is a stable random variable. An α-stable subordinator is a
stable non-decreasing Lévy process with index of stability α ∈ (0, 1).
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Let us denote by σα(t) an α-stable subordinator. Then, since Φ(λ) = λα, one
can easily show that σα is self-similar of exponent 1

α . The Lévy measure of Φ is
given by

να(dt) =
t−α

Γ(1− α)
dt.

Being in particular Φ(λ) a complete driftless Bernstein function, then σα(t) is ab-
solutely continuous for any t > 0. Let us denote by gα(s) the probability density
function of σα(1). Let us also denote by Lα(t) the inverse α-stable subordinator
and fα(s; t) its one-dimensional probability density function. Then, by using the
self similarity property of σα, together with Equation (1.2.1), one obtains (as stated
in [105]),

(1.2.3) fα(s; t) =
t

α
s−1−

1
α gα(ts

− 1
α ).

Finally let us recall that as s→ +∞ we have gα(s) ∼ α
Γ(1−α)s

−α−1.

1.2.2. Tempered α-stable subordinators. It is not difficult to check that
E[σα(t)] = +∞ for any t > 0. For this reason, we could look for a more regular
subordinator, in the sense that we could ask for some subordinator that preserves
some properties of the α-stable distribution but at the same time admits finite
moments. To do this, we use a tempering procedure.
Indeed, to obtain a more integrable subordinator, we could add an exponential
term to its Lévy measure. Let us consider a constant θ > 0 and let us define the
tempered stable Lévy measure (see [104, Section 7.3])

νθ,α(dt) =
αe−θtt−α−1

Γ(1− α)
dt.

The Bernstein function Φ ∈ CBF with characteristic triplet (0, 0, νθ,α) is given by

Φ(λ) = (λ+ θ)α − θα

and the subordinator σθ,α(t) associated to it is called the tempered stable sub-
ordinator with stability index α and tempering parameter θ. Let us recall that
such subordinator is also called massive relativistic stable subordinator for
reasons that will be explained later.
Concerning the density of the tempered stable subordinator σθ,α(t), let us stress out
the following relation between its density and the density of the stable subordinator,
as shown in [92, Equation 2.2]:

gθ,α(s; t) = e−λs+λαtgα(s; t).

Concerning the density of the inverse tempered stable subordinator, [92, Theorem
2.1] provides an integral representation from which, setting θ = 0, one obtains also
an integral representation of the inverse stable density.
The last property we want to stress out here is that, since gα(s; t) behaves like a
power function as s → +∞, now gθ,α(s; t) admits an exponential tempering and
then we have E[σn

θ,α(t)] < +∞ for any n ∈ N.
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1.3. Regular variation

Together with Bernstein functions, another class of functions we will often
consider to is the class of regularly varying functions. For the definition we refer to
[79].

Definition 1.3.1. Let f : (x0,+∞) → R+ be a measurable function. It is said
to be regularly varying at ∞ with index α ∈ R if for any t > 0 it holds

lim
x→+∞

f(tx)

f(x)
= tα.

If α = 0 then f is said to be slowly varying at ∞.
Moreover, f is regularly varying at x0 with index α ∈ R if the function x ↦→
f(x0 + x−1) is regularly varying at ∞.

Let us state the following results for functions that are regularly varying at
infinity, recalling that such results can be easily extended to the case in which the
functions are regularly varying at a point x0.
From the definition it is obvious that if f is regularly varying of order α ∈ R then
f(x)/xα is slowly varying. In particular we have:

Proposition 1.3.1. Let f be a regularly varying function. Then there exists a
slowly varying function ℓ such that f(x) = xαℓ(x).

One can show the following representation formula for regularly varying func-
tions f :

f(x) = xαc(x) exp

(︃∫︂ x

x0

ϵ(y)

y
dy

)︃
where c and ϵ are measurable functions such that limx→+∞ c(x) = c0 ∈ (0,+∞)
and limx→+∞ ϵ(x) = 0. For a more precise statement of the representation theorem,
we refer to [108], while for proofs of such formula we refer to the encyclopedic work
[39].
From the representation formula for α = 0, one can show that, for any p > 0 and
any slowly varying function ℓ, it holds

lim
x→+∞

x−pℓ(x) = 0 lim
x→+∞

xpℓ(x) = +∞.

Moreover, it can be shown that the convergence in the definition of regularly varying
function is uniform (with respect to t) in any compact set (see [39]).
Let us now state some theorems we will use in the following. First of all, let us
recallKaramata’s Theorem: we will use the compact statement of [108] referring
directly to regularly varying functions, while a complete extensive proof is given in
[39, Chapter 1, Sections 1.5− 1.6].

Theorem 1.3.2 (Karamata’s Theorem). Let f : [x0,+∞) → R be a locally
bounded regularly varying function with index α ∈ R. Then

• For any σ ≥ −(α+ 1)

(1.3.1) lim
x→+∞

xσ+1f(x)∫︁ x

x0
tσf(t)dt

= σ + α+ 1.
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• For any σ < −(α+ 1)

(1.3.2) lim
x→+∞

xσ+1f(x)∫︁ +∞
x

tσf(t)dt
= −(σ + α+ 1).

Last property holds also for σ = −(α+ 1) if
∫︁ +∞
x

t−(α+1)f(t)dt < +∞.

Vice-versa, let f : [x0,+∞) → R be a positive, measurable and locally integrable
function. If, for some σ > −(α+1), property (1.3.1) holds, then f varies regularly
with index α. If, for some σ < −(α + 1), property (1.3.2) holds, then f varies
regularly with index α.

Let us also recall the following Tauberian theorem that links the asymptotic
behaviour of a monotone function with the one of its Laplace-Stieltjes transform.
As for the previous theorem, we refer to the compact statement given in [108],
while a full proof of this theorem is given in [39].

Theorem 1.3.3 (Karamata’s Tauberian theorem). Let U be a non-decreasing
right-continuous function defined on [0,+∞), ℓ a slowly varying function, c > 0
and α ≥ 0. Let us denote by ˜︁u(λ) the Laplace-Stieltjes transform of U . Then the
following statements are equivalent

• U(x) ∼ cxα ℓ(x)
Γ(1+α) as x→ +∞;

• ˜︁u(λ) ∼ cλ−αℓ(1/λ) as λ→ 0+.

The same holds if we consider x→ 0+ and λ→ +∞.

Moreover, in the case of regularly varying asymptotic behaviour, one can link
the asymptotic behaviour of an absolutely continuous function with the behaviour
of its density.

Theorem 1.3.4 (Monotone density theorem). Let U(x) =
∫︁ x

0
u(y)dy or

U(x) =
∫︁ +∞
x

u(y)dy where u is ultimately monotone, i.e. there exists z > 0 such
that u is monotone in (z,+∞). Let c > 0, α ∈ R and ℓ a slowly varying function.
If U(x) ∼ cxαℓ(x) for x→ +∞, then u(x) ∼ cαxα−1ℓ(x).

Let us observe that Karamata’s Theorem provide a sort of converse statement
of the latter theorem.
Finally, let us recall the following global bounds, for which we refer to [39, Theorem
1.5.6].

Theorem 1.3.5 (Potter’s Theorem). Let ℓ : [0,+∞) → R+ be a slowly
varying function, A > 1 and δ > 0. Then there exists x0(A, δ) > 0 such that for
any x, y ≥ x0(A, δ) it holds

(1.3.3)
ℓ(y)

ℓ(x)
≤ Amax

{︄(︃
x

y

)︃δ

,

(︃
x

y

)︃−δ}︄
.

Moreover, if ℓ is bounded away from 0 and ∞ on any compact subset of [0,+∞),
then for any δ > 0 there exists A(δ) > 1 such that relation (1.3.3) holds for any
x, y > 0.

Let us finally recall that a definition of regular variation of infinite index is still
available. These kind of functions are called rapidly varying functions (see [39,
Section 2.4]) and they can be characterized in some sense as the left-continuous
inverse of slowly varying functions (see [39, Theorem 2.4.7]). As for this class of
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functions Tauberian theorems are not known, we need to introduce a different class
of functions to study some rapid behaviour at 0+.

1.3.1. Rapidly decreasing functions at 0+. In order to work with some
rapid behaviour, in [28] we had to introduce a class of functions that satisfied in
some sense our requirement and for which a Tauberian theorem could be shown.

Definition 1.3.2. A function f : [0,+∞) → [0,+∞) is said to be rapidly
decreasing at 0+ if for any α > 0 it holds

lim
t→0+

f(t)

tα
= 0.

One can easily prove the following characterization of smooth rapidly decreasing
functions (see [28, Lemma 2.4.1])

Proposition 1.3.6. Let f : [0,+∞) → [0,+∞) be a function such that there
exists δ > 0 for which f ∈ C∞(0, δ). Then the following assertions are equivalent:

• f is rapidly decreasing at 0+;
• f ∈ C∞([0, δ)) and f (n)(0) = 0 for any n ≥ 0;
• For any n ≥ 0, f (n) is rapidly decreasing at 0+.

In order to show a Tauberian theorem for rapidly decreasing functions, we
need to recall the Initial-Value Theorem for the Laplace transform (see [46, Section
17.8]).

Theorem 1.3.7 (Initial Value Theorem). Let f : [0,+∞) → [0,+∞) be

Laplace transformable and let ˜︁f be its Laplace transform. Then it holds

lim
t→0+

f(t) = lim
λ→+∞

λ ˜︁f(λ)
supposed that at least one of the two involved limits exists.

This Theorem, together with the formula for the Laplace transform of the
derivative of a function, are the main tool to show the following result (which is
[28, Lemma 2.4.2])

Theorem 1.3.8 (Tauberian Theorem for rapidly decreasing functions).
Let f ∈ C∞(0, δ) be Laplace transformable together with all its derivatives. Denote

with ˜︁f the Laplace transform of f . Then f is rapidly decreasing at 0+ if and only

if for any α > 0 it holds limλ→∞ λα ˜︁f(λ) = 0.

Proof. Let us first show that if f is rapidly decreasing then for any α > 0 it

holds limλ→∞ λα ˜︁f(λ) = 0. It is easy to observe that one has only to prove such
property for α ∈ N. First of all, let us consider α = 1. Then we have, by the
Initial-Value Theorem and the characterization given in Proposition 1.3.6

lim
λ→+∞

λ ˜︁f(λ) = f(0+) = 0.

Now let us consider α = n > 1. Then we can write

lim
λ→+∞

λn ˜︁f(λ) = lim
λ→+∞

λλn−1 ˜︁f(λ) = lim
t→0+

f (n−1)(t) = 0

where we used again the characterization of smooth rapidly decreasing functions
and the Initial-Value Theorem.
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To show the converse let us work by induction. First of all, let us observe that by
hypothesis

lim
t→0+

f(t) = lim
λ→+∞

λ ˜︁f(λ) = 0.

Now let us suppose we have shown that f (n)(0+) exists and it is equal to 0. Then

we have that the Laplace transform of f (n+1) is given by λn+1 ˜︁f . Thus, by using
the Initial-Value Theorem, we have

lim
t→0+

f (n+1)(t) = lim
λ→+∞

λn+2 ˜︁f(λ) = 0

concluding the proof by the characterization given in Proposition 1.3.6. □

1.3.2. Regular variation and Lévy processes. Now let us consider a com-
plete probability space (Ω,F ,P) and a non-negative random variable X on it. We
denote by FX(x) = P(X ≤ x) its distribution function and FX(x) = 1 − F (x) its
tail or survival function. For the following definition we refer to [108].

Definition 1.3.3. The random variable X is said to be regularly varying
of index α ≥ 0 if and only if FX is a regularly varying of index −α.

Concerning regularly varying random variables, all the Theorems we have
stated before apply on their tails. All these restatement are given in [108, Propo-
sition 1.3.2]. Here, let us only recall one of the properties we are going to use.

Proposition 1.3.9. If X is a regularly varying non-negative random variable
with index α > 0 then:

• For any β < α it holds E[Xβ ] < +∞;
• For any β > α it holds E[Xβ ] = +∞.

Now let us consider a subordinator σΦ and let X = σΦ(1). Actually, the
asymptotic behaviour of the tail of any variable σΦ(t) for t ≥ 0 can be reconstructed
starting from X = σΦ(1) by means of Lévy-Khintchine representation.
Concerning the regular variation of X, let us recall the following Theorem, that is
[39, Theorem 8.2.1].

Theorem 1.3.10. Let X = σΦ(1) and FX(x) be its tail. Let νΦ be the Lévy
measure of σΦ(t) and νΦ(x) = νΦ(x,+∞) be the tail of the Lévy measure. Then X
is regularly varying of index α ≥ 0 if and only if νΦ is regularly varying of index
−α. In particular, in such case we have FX(x) ∼ νΦ(x).

Let us recall the case of the α-stable subordinator σα(t). For such subordinator

we have να(x) =
x−α

Γ(1−α) that is actually regularly varying of index −α. Thus we

have that σα(1) is regularly varying and then, by Proposition 1.3.9 we know that
σα(t) admits moments up to order α.
Concerning the renewal function UΦ of a subordinator σΦ we have the following di-
rect consequence of both the Tauberian theorem and the monotone density theorem
(see [35])

Proposition 1.3.11. Let Φ be regularly varying at ∞ (resp. at 0+) with index
α ∈ [0, 1] and characteristic triplet (aΦ, bΦ, νΦ). Then the renewal function UΦ of
the subordinator σΦ satisfies the following asymptotic relation as x→ 0+ (resp. at
∞):

UΦ(x) ∼
1

Γ(1 + α)Φ
(︁
1
x

)︁ .
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Moreover, if α ∈ [0, 1), then, as t→ 0+ (resp. as t→ +∞) it holds

ν̄Φ(t) ∼
Φ
(︁
1
t

)︁
Γ(1− α)

.

Together with the asymptotic behaviour, one can also get Hölder regularity of
the renewal function.

Proposition 1.3.12. Let Φ ∈ BF be regularly varying at infinity of index
γ ∈ (0, 1) and let UΦ be the renewal function of the associated subordinator σΦ.

Then, for any ε ∈ (0, γ) it holds UΦ ∈ Cγ−ε
loc (R+

0 ). Moreover, if the killing coefficient

a > 0, then UΦ ∈ Cγ−ε(R+
0 ).

Proof. Let us consider, without loss of generality, t > s > 0. Since UΦ is
increasing and subadditive, we have

|UΦ(t)− UΦ(s)|
|t− s|γ−ε

≤ UΦ(t− s)

|t− s|γ−ε
.

By using Proposition 1.2.9 we know that there exists a constant C such that

UΦ(t− s)

|t− s|γ−ε
≤ C

Φ
(︂

1
t−s

)︂
|t− s|γ−ε

.

Now let us define

ℓ(t) = Φ(t)t−γ

and observe that ℓ(t) is slowly varying at infinity. In particular, this implies

lim
t→0

t−εℓ(t−1) = +∞

and then we know there exists δ > 0 such that if t ∈ (0, δ) then t−εℓ(t−1) > 1.
Now fix an interval [a, b] ⊂ R+

0 and consider a ≤ s < t ≤ b. Moreover, define
K = b− a. Without loss of generality, we can suppose K ≥ δ.
Now, let us observe that t− s ∈ (0,K]. If t− s ∈ (0, δ), by definition of δ we have

UΦ(t− s)

|t− s|γ−ε
≤ C

Φ
(︂

1
t−s

)︂
|t− s|γ−ε

< C.

Now let us suppose t− s ∈ [δ,K] and set m = minλ∈[ 1
K , 1δ ]

Φ(λ). Then we have

UΦ(t− s)

|t− s|γ−ε
≤ C

Φ
(︂

1
t−s

)︂
|t− s|γ−ε

≤ C

mδγ−ε
.

Thus we have that UΦ is Hölder continuous of exponent γ − ε in [a, b], with Hölder
constant given by Cmax

{︁
1, 1

mδγ−ε

}︁
. Let us stress out that the Hölder constant

does not depend on the compact set itself, but on its diameter K, since, being Φ(λ)
increasing, we have m = Φ

(︁
1
K

)︁
.

On the other hand, if the killing coefficient a > 0, we know there exists a constant
K > 0 such that for any λ ∈

(︁
0, 1

K

)︁
it holds Φ(λ) > a

2 > 0. Let us consider
t > s > 0. If t− s ≤ K, then t, s are contained in the same compact set of diameter

K, thus there exists a constant ˜︁C > 0 such that UΦ(t−s) ≤ ˜︁C|t−s|γ−ε. If t−s > K,
then Φ(1/(t− s)) > a/2 and we have

UΦ(t− s) ≤ 2C

aKγ−ε |t− s|γ−ε
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concluding the proof. □

Remark 1.3.13. Let us observe that the Hölder continuity property of UΦ in
this case is coherent with the Hölder continuity property of LΦ. Indeed, if Φ is
regularly varying at ∞ with index γ ∈ (0, 1), then the upper index ιu = γ and also
LΦ is almost surely Hölder continuous of exponent γ − ε.

Hölder continuity property implies also a power control on the growth of UΦ.

Corollary 1.3.14. Let Φ ∈ BF be regularly varying at infinity of index γ ∈
(0, 1) and let UΦ be the renewal function of the associated subordinator σΦ. Then,
for any ε ∈ (0, γ) and any T > 0 there exists a constant C(ε, T ) such that for any
t ∈ [0, T ] it holds

UΦ(t) ≤ C(ε, T )tγ−ε.

Proof. Let us consider t ∈ [0, T ]. Then, by local Hölder continuity and the
fact that U(0) = 0, we obtain

UΦ(t) = UΦ(t)− UΦ(0) ≤ C(ε, T )tγ−ε.

□

Finally, let us consider the special case. Indeed, if Φ ∈ SBF is a driftless Bern-
stein function, we achieve also the asymptotic behaviour of the potential density
uΦ(t).

Proposition 1.3.15. Let Φ ∈ SBF be a driftless Bernstein function that is
regularly varying at ∞ with index α ∈ (0, 1). Let σΦ be the associated subordinator
and UΦ the renewal function, with potential density uΦ. Then, as t→ 0+ it holds

uΦ(t) ∼
1

tΓ(α)Φ(1/t)
.

Proof. By Proposition 1.3.11 we have

UΦ(t) ∼
1

αΓ(α)Φ(1/t)
.

Now let us define ℓ(λ) = Φ(λ)
λα and ˜︁ℓ(t) = 1

ℓ(1/t) . Then ˜︁ℓ(t) is slowly varying at 0+

and

UΦ(t) ∼
tα

αΓ(α)
˜︁ℓ(t).

Hence, since uΦ(t) is non-increasing, by the monotone density theorem, we have

uΦ(t) ∼
tα−1

Γ(α)
˜︁ℓ(t),

concluding the proof. □

1.4. Convolutionary derivatives

In this section we will introduce the main non-local operators we will work
with. These operators generalize the so-called fractional derivatives of Caputo-
Dzhrbashyan type. They were first introduced in [88] for complete Bernstein func-
tions, but we will refer to the weaker but more general approach given in [143]. In
particular we first refer to [143, Definition 2.1], but asking for b = 0 for simplicity.
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Definition 1.4.1. Let Φ ∈ BF be a driftless Bernstein function with Lévy
measure νΦ. Let us denote by ν̄Φ(t) = νΦ(t,+∞) its tail. Then the Riemann-
Liouville type convolutionary derivative induced by Φ on an absolutely
continuous function u : (0,+∞) → R is defined as

DΦ u(t) =
d

dt

∫︂ t

0

u(τ)ν̄Φ(t− τ)dτ.

The Caputo-Dzhrbashyan type convolutionary derivative induced by Φ
on an absolutely continuous function u : (0,+∞) → R is instead defined as

∂Φu(t) =

∫︂ t

0

u′(τ)ν̄Φ(t− τ)dτ.

We will refer to them directly as non-local derivatives.

Let us give two important examples:

• If Φ(λ) = λα, then we have that ν̄α(t) = t−α

Γ(1−α) . Thus the Riemann-

Liouville type convolutionary derivative induced by Φ is given by

Dα u(t) =
1

Γ(1− α)

d

dt

∫︂ t

0

u(τ)(t− τ)−αdτ,

while the Caputo-Dzhrbashyan one is given by

∂αu(t) =
1

Γ(1− α)

∫︂ t

0

u′(τ)(t− τ)−αdτ.

In this case we obtain the classical Riemann-Liouville and Caputo-Dzhrbashyan
derivatives (see, for instance, [104, Chapter 2]).

• If we consider Φ(λ) = (λ+ θ)α − θα, then we have ν̄θ,α = α
Γ(1−α)Γ(−α; t),

where Γ(α; t) is the upper incomplete Gamma function defined as

Γ(α; t) =

∫︂ +∞

t

sα−1e−sds.

Hence we obtain

Dθ,α u(t) =
αθα

Γ(1− α)

d

dt

∫︂ t

0

u(τ)Γ(−α; t− τ)dτ

and

∂θ,αu(t) =
αθα

Γ(1− α)

∫︂ t

0

u′(τ)Γ(−α; t− τ)dτ,

that are the tempered Riemann-Liouville and Caputo-Dzhrbashyan deriva-
tives. The Marchaud-type tempered fractional derivative is, for instance,
discussed in [104, Section 7.4].

These two examples are classical in fractional calculus and then help us understand
why we refer to the calculus with respect to these operators as generalized fractional
calculus (as done in [88]).
First of all, one could ask when such operators can be inverted. As shown in [106],
this can be done in the special case.
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Definition 1.4.2. Let Φ ∈ SBF be a driftless Bernstein function with asso-
ciated subordinator σΦ and potential density uΦ. Then we define the Riemann-
Lioville type integral induced by Φ on any sufficiently regular measurable
function u : R+ → R as

IΦ u(t) =

∫︂ t

0

u(τ)uΦ(t− τ)dτ.

In particular it holds, for absolutely continuous functions,

IΦ DΦ u(t) = u(t), ∂Φ IΦ u(t) = u(t).

Let us also stress out what are the Laplace transform of these convolutionary
derivatives. Indeed, it is easy to see that if u is an absolutely continuous function,
it holds (whenever the involved Laplace transform exist)

L[DΦ u](λ) = Φ(λ)L[u](λ),

L[∂Φu](λ) = Φ(λ)L[u](λ)− Φ(λ)

λ
u(0+),

L[IΦ u](λ) =
1

Φ(λ)
L[u](λ).

Finally, let us stress out that the domain of DΦ actually contains absolutely con-
tinuous functions (as it can be applied to less regular functions). Moreover, on
absolutely continuous functions, the following relation holds

(1.4.1) ∂Φu = DΦ(u− u(0+)).

Thus one can define the regularized Caputo-Dzhrbashyan type convolution-
ary derivative induced by Φ on a function u belonging to the domain of DΦ

such that u(0+) < +∞ by means of Equation (1.4.1). Now let us focus on two
main problems on such non-local derivatives:

• The link between non-local derivatives and inverse subordinators;
• The eigenvalue problem for non-local derivatives.

1.4.1. Cauchy problems for the density of inverse subordinators. Let
us consider Φ ∈ BF a driftless Bernstein function, σΦ the associated subordinator
and LΦ its inverse.
Let us first focus on the case in which σΦ is absolutely continuous. It has been
shown in [143, Theorem 4.1]:

Theorem 1.4.1. Let Φ ∈ BF be a driftless Bernstein function with Lévy mea-
sure νΦ absolutely continuous with respect to Lebesgue measure. Then the one-
dimensional probability density function gΦ(s; t) of σΦ(t) satisfies the following
Cauchy problem

(1.4.2)

⎧⎪⎨⎪⎩
∂tgΦ(s; t) = −∂Φs gΦ(s; t) s > 0, t > 0

gΦ(0; t) = 0 t > 0

gΦ(s; 0) = δ0(s) s ≥ 0

On the other hand, less hypotheses are needed to ensure that LΦ(t) is absolutely
continuous. Thus, let us recall [143, Theorem 4.1] for LΦ, but let us also remark
that, despite the hypotheses on νΦ, on can achieve the same result in a mild sense
(i.e. in terms of Laplace transforms) without asking for such hypotheses.
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Theorem 1.4.2. Let Φ ∈ BF be a driftless Bernstein function with Lévy mea-
sure νΦ absolutely continuous with respect to Lebesgue measure. Then the one-
dimensional probability density function fΦ(s; t) of LΦ(t) satisfies the following
Cauchy problem

(1.4.3)

⎧⎪⎨⎪⎩
∂sfΦ(s; t) = −∂Φt fΦ(s; t) s > 0, t > 0

fΦ(0; t) = νΦ(t) t > 0

fΦ(s; 0) = δ0(s) s ≥ 0.

Let us stress out that last result leads to an extension of heat-like equations.
This is doable by means of the theory of semigroups. Indeed, it is already well
known that the theory of semigroups can be used to describe the solution of linear
evolution equations (see, for instance, [58]). On the other hand, semigroups are
important objects in the study of Markov processes (see, for instance, [83]). Com-
bining the both of these approaches to semigroup theory, one can provide, on one
hand, stochastic representation of solutions of some partial differential equations
while, on the other hand, characterize Markov processes via integro-differential
equations, called backward and forward Kolmogorov equations. To give a simple
example, if we consider the Cauchy problem for the classical heat equation

(1.4.4)

{︄
∂tg(x, t) =

1
2∆g(x, t) x ∈ Rd, t > 0

g(x, 0) = f(x) x ∈ Rd

where we suppose, for ease of the example, f ∈ C2(Rd). In such case we can define

the heat semigroup as the family of operators (Tt)t>0 acting on L2(Rd) such that

Ttf(x) =
1

(2π)
d
2

∫︂
Rd

t−
d
2 e−

|x−y|2
2t f(y)dy.

The name semigroup follows from the fact that TtTs = Tt+s, that is called semigroup
property. The generator of Tt is given by the operator 1

2∆ with operator core

C2(Rd), that means, in short terms, that the function g(x, t) = Ttf(x) is solution

of the Cauchy problem (1.4.4) for any f ∈ C2(Rd). On the other hand, if we denote

p(t, y;x) =
1

(t2π)
d
2

e−
|x−y|2

2t ,

that is the transition density of a d-dimensional Brownian motion B(t), we have

Ttf(x) =

∫︂
Rd

p(t, y;x)f(y)dy = E[f(B(t))|B(0) = x],

which gives a stochastic representation of the solution of (1.4.4) in terms of the
Brownian motion. For some more precise arguments we refer to [78]2 With this
idea in mind, one could try to extend the theory of semigroups to the case of non-
local differential equations. This is the main objective of the following Theorem
(see [33] in the case Φ(λ) = λα, [143, Theorem 5.1] and [47] in the general case).

2Some easy arguments to derive backward and forward Kolmogorov equations for general

diffusion processes are given in [83], however the theory covers more general processes. Stochastic
representation results are also given, for instance, in the context of Schrödinger equations, with

the name of Feynman-Kac formulae, see [97].
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Theorem 1.4.3. Let Φ ∈ BF be a driftless Bernstein function with Lévy mea-
sure νΦ absolutely continuous with respect to the Lebesgue measure. Let also Tt be
a strongly continuous C0 semigroup on a Banach space (X, ∥·∥X). For any u ∈ X
define the Bochner integral

T t u = E[TLΦ(t)u] =

∫︂ +∞

0

TsufΦ(s; t).

Then

• (T t)t>0 is a uniformly bounded family of linear operators on X;
• (T t)t>0 is strongly continuous on X.

Moreover, let A be the generator of Tt and D(A) its domain. If u ∈ D(A), then
q(t) = T t u solves the following Cauchy problem

(1.4.5)

{︄
∂Φt q(t) = Aq(t) t > 0

q(0) = u

where the integrals involved in ∂Φt are to be interpreted in Bochner sense.

As a direct consequence of such Theorem, we get the following Corollary.

Corollary 1.4.4. Let Φ ∈ BF be a driftless Bernstein function with Lévy
measure νΦ. Let M(t) be a Feller process with (topological) state space (X,X) and
generator A and LΦ(t) be independent from M(t). Let f ∈ D(A), where D(A) is
the domain of A on C0(X) and C0(X) is the space of continuous functions on X
vanishing at infinity. Let MΦ(t) = M(LΦ(t)) and u(t, x) = E[f(MΦ(t))|MΦ(0) =
x]. Then u solves the following Cauchy problem

(1.4.6)

{︄
∂Φt u(t, x) = Au(t, x) t > 0

u(0, x) = f(x)

Proof. Just apply the previous theorem to the strongly continuous C0 semi-
group Ttf = E[f(M(t))|M(0) = x], defined on the Banach space (C0(X), ∥·∥C0(X)),

where the norm is the usual supremum norm. □

Remark 1.4.5. Let us remark that better regularity of solutions can be ob-
tained in the case Φ ∈ CBF , as shown in [33] for Φ(λ) = λα and in [21] in the
general case, and Φ ∈ BF but bΦ > 0, as shown in [47].

The previous Corollary establishes a link between time-changed Feller processes
and linear Cauchy problems that are non-local in time (in particular heat-like equa-
tions). This link will be better investigated in Chapter 2.

1.4.2. Eigenfunctions of ∂Φ and the relaxation equation. Now we want
to investigate the solutions of the Cauchy problem

(1.4.7)

{︄
∂Φu(t) = λu(t) t > 0

u(0) = 1

for λ ∈ R. In the case λ = 0, an obvious solution is given by the constant function
u(t) ≡ 1. Indeed, despite DΦ 1(t) = ν̄Φ(t), it still holds ∂

Φ1 = 0.
A first particular case of such equation for λ < 0 has been studied for Φ ∈ CBF .
In particular let us recall [88, Theorem 2].
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Theorem 1.4.6. Let Φ ∈ CBF be a driftless unbounded Bernstein function such

that limλ→0+
Φ(λ)
λ = +∞. Then, for any λ < 0, the Cauchy problem (1.4.7) admits

a unique solution eΦ(t;λ) that is completely monotone with respect to −λ > 0 and
t > 0 and continuous for t ∈ [0,+∞).

Actually, under suitable hypotheses on the Lévy measure νΦ, one can show
that the previous theorem is actually a characterization. To do this, let us first
introduce the following notation.

Definition 1.4.3. We say νΦ satisfies Orey’s condition (see [115]) if there
exist γ ∈ (0, 2), C > 0 and r0 > 0 such that for any r ∈ (0, r0) it holds∫︂ r

0

s2νΦ(ds) < Crγ

This condition, together with the absolute continuity of νΦ, implies the infinite
differentiability of the density of the subordinator σΦ(t) (see [115]). With this in
mind, let us recall a part of [106, Theorem 2.1]

Theorem 1.4.7. Let Φ ∈ SBF be a driftless Bernstein function with Lévy
measure νΦ absolutely continuous with respect to Lebesgue measure and satisfying
Orey’s condition. Then, for any λ < 0, the Cauchy problem (1.4.7) admits a unique
exponentially bounded solution eΦ(t;λ) that is completely monotone with respect to
−λ > 0 and continuous for t ∈ [0,+∞). Moreover, eΦ(t;λ) is completely monotone
for t > 0 if and only if Φ ∈ CBF .

Concerning the case λ > 0, a first result for Φ ∈ CBF has been shown in [89].

Theorem 1.4.8. Let us consider the function p0(z) such that Φ(p0(z)) = z
for any z > 0. Then for any λ > 0 the solution eΦ(t;λ) of (1.4.7) admits a
holomorphic continuation in the complex sector Σv = {reiθ : r > 0, θ ∈ (−v, v)}
for some v ∈

(︁
0, π2

)︁
.

In any case, it is not difficult to show that

(1.4.8) eΦ(t;λ) = E[eλLΦ(t)]

that is to say the moment generating function of LΦ(t) if λ > 0 or the Laplace
transform of the density of LΦ(t) if λ < 0. Let us stress out that such function
is well-defined for any λ ∈ R and t ≥ 0 (see [15, Lemma 4.1]). Moreover, for
Φ(λ) = λα, the eigenfunctions are known. Indeed we have eα(t;λ) = Eα(λt

α) (see
[38]) where Eα are the Mittag-Leffler function defined as

Eα(z) =

+∞∑︂
k=0

zk

Γ(αk + 1)
, z ∈ C .

Let us now show with a different approach that eΦ(t;λ) is well-defined. If we use
(1.4.8) as definition of eΦ(t;λ) in place of the fact that it should be solution of
(1.4.7), we can observe that for λ ≤ 0 e(t;λ) is always well-defined for any t > 0
and any Φ ∈ BF (without any other hypotheses), while this is true for a t belonging
to a compact set [0, t0(λ)) for λ > 0 and any unbounded Bernstein function Φ. Last
statement follows from the bound (see [35])

E[L(t)n] ≤ n!

Φn
(︁
1
t

)︁
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and t0(λ) is defined in such a way that λ < Φ
(︂

1
t0(λ)

)︂
. However, we can show the

following technical Lemma.

Lemma 1.4.9. Fix λ > 0 and let Φ ∈ BF be a driftless Bernstein function.
Then eΦ(t;λ) is well defined for any t > 0, Laplace transformable with abscissa of
convergence given by p0(λ) and in L∞loc(R

+
0 ).

Proof. First of all, let us observe that, since we are working with non-negative
functions, we have, by Fubini’s theorem and considering η > p0(λ) (and then
Φ(η)− λ > 0)

L[eΦ(t;λ)](η) =
∫︂ +∞

0

e−ηt
∫︂ +∞

0

eλsfΦ(s; t)dsdt

=

∫︂ +∞

0

eλs
∫︂ +∞

0

e−ηtfΦ(s; t)dtds

=
Φ(η)

η

∫︂ +∞

0

e−(Φ(η)−λ)sds =
Φ(η)

η(Φ(η)− λ)
.

Moreover, it is easy to see that if η ≤ p0(λ), then L[eΦ(t;λ)](η) = +∞. Thus, we
obtain that abs(eΦ(·;λ)) = p0(λ).
Now let us show that eΦ(·;λ) ∈ L1

loc(R
+
0 ). Consider any compact set [a, b] ⊆ R+

0

and fix any η > p0(λ). Then we have∫︂ b

a

eΦ(t;λ)dt ≤ e−ηb
∫︂ +∞

0

e−ηt eΦ(t;λ)dt =
Φ(η)e−ηb

η(Φ(η)− λ)
< +∞.

Now, let us observe that this implies that eΦ(t;λ) < +∞ for any t > 0; indeed,
since LΦ(t) is almost surely increasing, eΦ(t;λ) is increasing and if eΦ(t0;λ) = +∞
so it is for any t > t0 and then eΦ(t0;λ) ̸∈ L1

loc(R
+
0 ), which is a contradiction.

Finally, let us consider any compact set [a, b] ⊆ R+
0 . Then, since eΦ(t;λ) is increas-

ing we have, for any t ∈ [a, b];

eΦ(t;λ) ≤ eΦ(b;λ) < +∞,

concluding the proof. □

Remark 1.4.10. Let us observe that if λ ≤ 0, then eΦ(t;λ) ≤ 1 and then it is
obviously L∞(R+

0 ), with abs(e(·;λ)) ≤ 0.

Thus, we can argue in a sort of converse way : instead of showing that (1.4.7)
admits a unique solution, we show that eΦ(t;λ) (whenever it exists for any t > 0
and is locally bounded) is the unique solution of (1.4.7). This is the spirit of [15,
Proposition 4.3]:

Proposition 1.4.11. Let Φ ∈ BF be a driftless Bernstein function. Then
eΦ(t;λ) is the unique Laplace transformable solution of (1.4.7).

Proof. Since eΦ(t;λ) belongs to L1
loc(R

+), then we can define the function

F (t) =
∫︁ t

0
eΦ(s;λ)ds that is an absolutely continuous function. By a simple appli-

cation of [13, Theorem 1.4.3], we know that F (t) is Laplace transformable and, if
z0 is the abscissa of convergence of eΦ(t;λ), then abs(F ) ≤ z0.
Taking the Laplace transform f̄(z) of f(t) = eΦ(t;λ) as z ≥ z0, we obtain (as shown
before),

f̄(z) =
Φ(z)

z(Φ(z)− λ)
,



1.4. CONVOLUTIONARY DERIVATIVES 26

that can be rewritten as

(1.4.9)
Φ(z)

z

(︃
f̄(z)− 1

z

)︃
=
λ

z
f̄(z).

Let us also observe that∫︂ t

0

ν̄Φ(t− s)|f(s)− 1|ds =
∫︂ t

0

ν̄Φ(s)|f(t− s)− 1|ds ≤ |f(t)− 1|IΦ(t)

where we recall that IΦ(t) is the integrated tail of the Lévy measure. In particular
this means that the function FΦ(t) = (νΦ ∗ (f(·)−1))(t) is well defined and belongs
to L∞loc. Moreover, being the convolution product of two Laplace transformable
functions, it is Laplace transformable (with abscissa of convergence abs(FΦ) ≤ z0).
Now we can consider the inverse Laplace transform of equation (1.4.9) to obtain

FΦ(t) = λF (t).

Since F (t) is the integral of a L1
loc(R

+) function, it is absolutely continuous and
then also FΦ is absolutely continuous. Taking the derivative (almost everywhere)
on both sides, we obtain

∂Φf(t) = λf(t),

thus f(t) is a solution of (1.4.7).
Next step is to show the uniqueness. However, considering any other Laplace

transformable solution, arguing as before, we have that G(t) =
∫︁ t

0
g(s)ds is also

Laplace transformable. Moreover, taking the Laplace transform on both sides of
the relation

(1.4.10)

∫︂ t

0

ν̄Φ(t− s)(g(s)− 1)ds = λ

∫︂ t

0

g(s)ds

we obtain, after some algebraic manipulation,

L[g](z) = Φ(z)

z(Φ(z)− λ)
= f̄(z).

The injectivity of the Laplace transform concludes the proof. □

For λ < 0 we can actually obtain a bound on λ eΦ(t;−λ) for fixed t > 0, as
done in [22, Proposition 3.2].

Proposition 1.4.12. Fix t > 0. Then there exists a constant K(t) such that
for any λ ∈ [0,+∞) it holds

λ eΦ(t;−λ) ≤ K(t)

Proof. Let us observe that eΦ(t;−λ) is completely monotone in λ for fixed
t > 0 and eΦ(t; 0) = 1, thus one only has to check that limλ→+∞ λ eΦ(t;−λ) < +∞.
This can be done by means of the initial value theorem. Indeed eΦ(t;−λ) is the
Laplace transform of fΦ(s; t) in s, thus it holds

lim
λ→+∞

λ eΦ(t;−λ) = f(0+; t) = ν̄Φ(t) < +∞,

concluding the proof. □

In the case Φ(λ) = λα the constant K(t) can be explicitly computed. Indeed
we have, as in [20, Lemma 4.2]:
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Proposition 1.4.13. Fix t > 0. Then for λ ≥ 0 it holds

(1.4.11) λEα(−λtα) ≤
Γ(1 + α)

tα
.

Proof. Let us recall, as shown in [138], that

Eα(−λtα) ≤
1

1 + tα

Γ(1+α)λ
.

Consider the function f(λ) = λ
1+ tα

Γ(1+α)
λ
. We have f(0) = 0 and limλ→+∞ f(λ) =

Γ(1+α)
tα . Finally, let us observe that

f ′(λ) =
1(︂

1 + tα

Γ(1+α)λ
)︂2 > 0,

concluding the proof since f(λ) ≤ f(+∞) for any λ ≥ 0. □

Remark 1.4.14. Let us consider a fractional Poisson process Nα(t) of rate
λ > 0 as introduced in [93], i.e. a counting process with i.i.d. inter-jump times
(Ti)i∈N distributed as a random variable T whose cumulative distribution function
is given by

P(T ≤ t) =

{︄
1− Eα(−λtα) t ≥ 0

0 t < 0.

It has been shown in [93] that E[Nα(t)] =
λtα

Γ(1+α) . Hence, we can rewrite inequality

(1.4.11) as

P(T > t) ≤ 1

E[Nα(t)]
, t > 0.

Concerning the asymptotic behvaiour of e(t;−λ), for λ > 0, with respect to
t → +∞, let us observe that we can link it to the behaviour at 0+ of Φ (see [22,
Proposition 6.4]).

Proposition 1.4.15. Let Φ ∈ BF be a driftless Bernstein function.

(1) Suppose Φ is regularly varying at 0+ with order α ∈ (0, 1). Then, for fixed
λ > 0, eΦ(t;−λ) is regularly varying at +∞ with order −α;

(2) Suppose limλ→0+
Φ(λ)
λ = l ∈ (0,+∞). Then, for fixed λ > 0, eΦ(t;−λ) is

integrable in (0,+∞).

Proof. Let us define the function J(t) =
∫︁ t

0
eΦ(s;−λ)ds and take the Laplace-

Stieltjes transform of J . We have

J(z) = LS [J ](z) =
Φ(z)

z(Φ(z) + λ)
.

Now let us suppose that Φ is regularly varying at 0+ with order α. Then J(z) is
regularly varying at 0+ of order α−1. By Karamata’s Tauberian theorem, we have
that J(t) is regularly varying at infinity with order 1− α and finally, by monotone
density theorem, we have property (1).

Concerning property (2), if limz→0
Φ(z)
z = l, then, being Φ(z) driftless, we have

lim
z→0+

J(z) =
l

λ
.
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Still by Karamata’s Tauberian Theorem, we get

lim
t→+∞

J(t) =
l

λ
,

concluding the proof. □

If we focus on the special Bernstein functions case, we can also obtain a series
decomposition of eΦ(t;λ) in terms of a sequence of functions constructed start-
ing from the renewal function. Indeed, let us define, in what follows, UΦ,k(t) =
E[(LΦ(t))

k]. Moreover, for Φ ∈ SBF a driftless Bernstein function, let us define
the following sequence of functions:

(1.4.12)

⎧⎪⎨⎪⎩
u∗0(t) ≡ 1;

u∗1(t) = UΦ(t);

u∗k+1(t) =
∫︁ t

0
uΦ(t− s)u∗k(s)ds k ≥ 1,

where uΦ is the potential density.
Then, before obtaining the series representation, let us show the following technical
Lemma (i.e. [15, Lemma 4.4]).

Lemma 1.4.16. Let Φ ∈ SBF be a driftless Bernstein function that is regularly
varying at ∞ with index γ ∈ (0, 1). Then, for any λ > 0 the function series

+∞∑︂
k=1

λku∗k(t)

is normally convergent in any set of the form [0, T ] for any T > 0.

Proof. First of all, let us fix T > 0, ε ∈ (0, γ) and β = γ − ε. By Corollary
(1.3.14) and Proposition 1.3.15 there exist two constants C1, C2 > 0 such that, for
any t ∈ [0, T ],

UΦ(t) ≤ C1t
β , uΦ(t) ≤ C2t

β−1.

Let us suppose the following claim holds true:

• For any k ≥ 1 it holds

(1.4.13) u∗k(t) ≤ C1C
k−1
2

β

Γ(kβ + 1)
(Γ(β)tβ)k.

Then we have
+∞∑︂
k=1

λku∗k(t) ≤
C1β

C2

+∞∑︂
k=1

(λC2Γ(β)T
β)k

Γ(kβ + 1)

where the series on the right-hand side converges since the power series
∑︁+∞

k=1
yk

Γ(kβ+1)

admits +∞ as radius of convergence.
Now we only need to show the claim. Equation (1.4.13) obviously holds true for
k = 1. Suppose it holds true for some k ≥ 1. Then we have, by definition

u∗k+1(t) ≤ C1C
k
2

βΓ(β)k

Γ(kβ + 1)

∫︂ t

0

(t− s)β−1skβds.

By using the change of variables w = s
t and the definition of Euler’s Beta function

as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫︂ 1

0

(1− w)a−wb−1dw,
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we get

u∗k+1(t) ≤ C1C
k
2

βΓ(β)k

Γ(kβ + 1)
t(k+1)βB(β, kβ + 1) = C1C

k
2

βΓ(β)k+1

Γ((k + 1)β + 1)
t(k+1)β ,

concluding the proof. □

Now that we have shown this technical lemma, we have the following series
expansion of eΦ(t;λ) (see [15, Theorem 4.5])

Theorem 1.4.17. Let Φ ∈ SBF be a driftless Bernstein function that is regu-
larly varying at ∞ with index γ ∈ (0, 1). Then, for any λ ∈ R, it holds

(1.4.14) eΦ(t;λ) =

+∞∑︂
k=0

λku∗k(t), t > 0.

Proof. Since this is trivial for λ = 0, let us consider λ ̸= 0. Let us first work
with λ > 0. By monotone convergence theorem, it is easy to show that

eΦ(t;λ) =

+∞∑︂
k=0

λkUΦ,k(t)

k!
.

Now, recalling Equation (1.2.2) and using Laplace transform in place of the Laplace-
Stieltjes one, we have, again by monotone convergence theorem,

L[eΦ(t;λ)](z) =
+∞∑︂
k=0

λk

zΦk(z)
.

Let us suppose the following claim holds true:

• For any k ≥ 1 it holds

(1.4.15) L[u∗k(t)](z) =
1

zΦk(z)
.

Then we have, again by monotone convergence theorem,

L

[︄
+∞∑︂
k=0

λku∗k(t)

]︄
=

+∞∑︂
k=0

λk

zΦk(z)
= L[eΦ(t;λ)](z),

concluding the proof by injectivity of the Laplace transform. For λ < 0, one has
only to observe that

+∞∑︂
k=0

|λ|kUΦ,k(t)

k!
=

+∞∑︂
k=1

|λ|ku∗k(t) < +∞

and then use dominated convergence theorem in place of the monotone convergence
one.
Now we only need to show the claim. For k = 1 this follows from the fact that
LS [U(t)](z) = 1

Φ(z) and then L[UΦ](z) =
1

zΦ(z) . Let us suppose Equation (1.4.15)

holds true for some k ≥ 1. Then

L[u∗k+1](z) = L[uΦ](z)L[u∗k](z) =
1

zΦk+1(z)
,

concluding the proof. □

We will use this series representation in Chapter 2 to show a generalization of
Grönwall’s inequality.
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1.5. Bochner subordination and Phillips formula

In the previous Section we considered some one-dimensional non local deriva-
tives that arise after time-changing via inverse subordinator. However, since also
the subordinators are themselves non-negative and increasing, one could use a time-
change directly via a subordinator. Let us consider the approach described in [40].

Definition 1.5.1. LetM(t) be a Feller process on Rd and Φ ∈ BF a Bernstein
function. Let σΦ be the associated subordinator and let us suppose it is independent
from M . Then we define the subordinated process MΦ(t) =M(σΦ(t)).

Let (Tt)t≥0 be a one-parameter strongly continuous C0 semigroup on C∞(Rd) with
the supremum norm. Denote by gΦ(ds; t) the probability law of σΦ(t). Then we
define the subordinated semigroup as

TΦ
t u =

∫︂ +∞

0

TsugΦ(ds; t).

Since we are integrating over a Banach space, this whole procedure takes the
name of Bochner subordination. Let us stress out the link between subordinated
Feller processes and subordinated semigroups (see [40, Lemma 4.5]).

Proposition 1.5.1. Let M(t) be a Feller process. The subordinated process
MΦ(t) is still a Feller process. Moreover, if Tt is the semigroup induced by the
Feller process M(t), TΦ

t is the semigroup induced by MΦ(t).

Now we need to investigate what happens to the generators of such semigroups.
In this direction, let us refer to [40, Theorem 4.6].

Theorem 1.5.2 (Phillips’ formula). Let M(t) a Feller process with gener-
ator A whose domain is D(A) and consider a Bernstein function Φ ∈ BF with
characteristic triple (a, b, νΦ). Then the generator AΦ of MΦ(t) is given by

AΦu = −au+ bAu+

∫︂ +∞

0

(Ttu− u)νΦ(dt).

Moreover, D(A) is an operator core for AΦ.

First of all, let us observe that another notation for AΦ is Φ(A). We shall use
this second notation.
Let us focus on a standard case, i.e. choosing as Feller process the Brownian motion
B(t) on Rd. Then it is well known that A = −∆ (up to a constant, hence we are
considering a Brownian motion with variance 2t in place of t). If we consider a
subordinated Brownian motion BΦ(t), it is easy to see that the Levy measure of
such process is given by µ(dx) = jΦ(|x|)dx where

(1.5.1) jΦ(r) =

∫︂ +∞

0

˜︁p(r; t)νΦ(dt)
where ˜︁p(r; t) = p(x; t) for any x ∈ Rd such that |x| = r and p(x; t) is the heat-kernel

in Rd, i.e.

p(x; t) =
1

(4πt)
d
2

e−
|x|2
4t .

The function jΦ(r) is called the jump function of BΦ(t). Now, let us write the
semigroup in terms of resolvent operators, i.e. Ttu − u = (et∆ − 1)u and consider
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a driftless Bernstein function Φ ∈ BF . We have that

−Φ(−∆)u =

∫︂ +∞

0

(et∆ − 1)uνΦ(dt).

However, we know that et∆ is a convolution semigroup, hence we obtain the follow-
ing representation of Φ(−∆) in terms of the jumping function (see [24, Proposition
2.6]).

Proposition 1.5.3. Let f : Rd → R with f ∈ L∞(Rd) and let us denote
D2

hf(x) = f(x + h) − 2f(x) + f(x − h) and D1
hf(x) = f(x + h) − f(x). Suppose

x ∈ Rd such that |D2
hf(x)| ≤ C|h|2 for |h| ≤ R1. Let Φ ∈ BF be a driftless

Bernstein function. Then

−Φ(−∆)f =
1

2

∫︂
Rd

D2
hf(x)j(|h|)dh = lim

ε→0+

∫︂
Bc

ε

D1
hf(x)j(|h|)dh

where Bε is a ball centered in 0 with radius ε > 0 and Bc
ε = Rd \Bε.

Proof. First of all, let us rewrite −Φ(−∆) as

−Φ(−∆)f(x) =

∫︂ +∞

0

∫︂
Rd

(f(x)− f(y))p(x− y; t)dyνΦ(dt)

where we also used the fact that
∫︁
Rd p(x − y; t)dx = 1. Now let us consider the

inner integral. We have in particular∫︂
Rd

(f(y)− f(x))p(x− y; t)dy =
1

2

∫︂
Rd

(f(x+ h)− f(x))p(h; t)dh

+
1

2

∫︂
Rd

(f(x− h)− f(x))p(−h; t)dh

=
1

2

∫︂
Rd

D2
hf(y)˜︁p(|h|; t)dh.

Now we want to show that we can use Fubini’s theorem. To do this, let us observe
that ∫︂

Rd

|D2
hf(y)|

∫︂ +∞

0

˜︁p(|h|; t)νΦ(dt)dh =

∫︂
Rd

|D2
hf(y)|j(|h|)dh

Let us split the integral in two parts. We have∫︂
BR1

|D2
hf(y)|j(|h|)dh ≤ C

∫︂
BR1

|h|2j(|h|)dh < +∞

since j(|h|)dh is a Lévy measure. On the other hand we have∫︂
Bc

R1

|D2
hf(y)|j(|h|)dh ≤ 4 ∥f∥L∞(Rd)

∫︂
Bc

R1

j(|h|)dh < +∞

as before, since j(|h|)dh is a Lévy measure.
Thus we can use Fubini’s theorem to achieve

−Φ(−∆)f =
1

2

∫︂
Rd

D2
hf(x)j(|h|)dh.

Concerning the second relation, let us observe that, by dominated convergence
theorem, we have

−Φ(−∆)f =
1

2
lim
ε→0

∫︂
Bc

ε

D2
hf(x)j(|h|)dh.



1.5. BOCHNER SUBORDINATION AND PHILLIPS FORMULA 32

However, we have∫︂
Bc

ε

D2
hf(x)j(|h|)dh =

∫︂
Bc

ε

D1
hf(x)j(|h|)dh+

∫︂
Bc

ε

D1
−hf(x)j(|h|)dh

= 2

∫︂
Bc

ε

D1
hf(x)j(|h|)dh,

concluding the proof. □

Remark 1.5.4. Last Proposition still holds if we substitute in place of |h|2 a
modulus of continuity β(|h|) such that there exists R2 > 0 for which∫︁ R2

0
rd−1β(r)j(r)dr < +∞.

Let us also observe that for some particular choices of Φ one achieves some
quite known operators:

• For Φ(λ) = λα, denoting by β = 2α, one obtains the fractional Laplacian

(−∆)
β
2 . The representation obtained in the previous theorem coincides

with the one given in [1, Equation 2.2];

• For Φ(λ) = (λ + (c2m)
1
α )α − c2m we obtain the relativistic Laplacian,

which is a commonly used operator for the study of non-local Schrödinger
equations in relativistic context.

We will go into details in the properties of the jumping functions in Chapter 4.



CHAPTER 2

Non-local operators in time and time-changes

2.1. Existence and uniqueness of solutions for some time non-local
Cauchy problems

In Subsection 1.4.2 we introduced the relaxation equation for the non-local
derivative ∂Φ induced by a driftless Bernstein function Φ ∈ BF . However we are
interested in more general Cauchy problems of the form

(2.1.1)

{︄
∂Φf(t) = F (t, f(t)) t ∈ [0, T ]

f(0) = f0.

In particular, we want to prove an existence and uniqueness theorem for such
problem. First of all, by interpreting all the integrals as Bochner integrals (see
[13]), we can consider F : [0, T ] × X → X and f : [0, T ] → X with (X, ∥·∥X) a
Banach space. Moreover, we want to transform the Cauchy problem (2.1.1) in an
integral equation. To do this, we show the following Lemma (see [15, Lemma 3.1]).

Lemma 2.1.1. Let Φ ∈ SBF be a special driftless Bernstein function and
(X, ∥·∥X) a Banach space. Consider F : [0, T ]×X → X. Then f : [0, T ] → X is a
solution of the abstract Cauchy problem (2.1.1) if and only if

(2.1.2) f(t) = f0 + IΦ F (·, f(·))(t), t ∈ [0, T ].

Proof. Let us consider f : [0, T ] → X a solution of (2.1.1). Then, by Equa-

tion (1.4.1) and the fact that IΦ DΦ is the identity operator, we obtain (2.1.2) by

applying IΦ on both sides of the first equation of (2.1.1) and then using f(0) = f0.

Vice versa, if we suppose f satisfies (2.1.2), then, since IΦ F (·, f(·))(0) = 0, we
have f(0) = f0. Moreover, applying ∂Φ to both sides of (2.1.2) we obtain the first
equation of (2.1.1). □

The fact we are able to transform the non-local Cauchy problem in an integral
equation permits us to recognize solutions of (2.1.1) as fixed point of some Picard
operator. This has been done for instance for Φ(λ) = λα in [150, Section 3.4]. In
general, under suitable hypotheses on Φ and F , one can show the following local
existence and uniqueness theorem (see [15, Theorem 3.2]).

Theorem 2.1.2. Let Φ ∈ SBF and F : [0, T ] ×X → X where (X, ∥·∥X) is a
Banach space. Let us suppose the following conditions hold:

• Φ is regularly varying at ∞ with index γ ∈ (0, 1);
• For any ball BR in X centered in 0 with radius R there exists a constant
CR > 0 such that ∥F (t, x)∥X ≤ CR for almost any t ∈ [0, T ] and for any
x ∈ BR;

33
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• For any ball BR in X centered in 0 with radius R there exists a constant
LR > 0 such that ∥F (t, x)− F (t, z)∥X ≤ LR ∥x− z∥X for almost any
t ∈ [0, T ] and for any x, z ∈ BR.

Fix R > 0. Then, for any f0 ∈ BR there exists a constant T1 > 0 such that the
Cauchy problem (2.1.1) admits a unique solution f ∈ Cγ−ε([0, T1];BR(f0)) for any
ε ∈ (0, γ).

To show this theorem, we first need some preliminary definitions and Lemmas.
First of all, let us observe that, if we set J = [0, T ], then the space C(J ;X) is a
Banach space when equipped with the supremum norm, i.e.

f ∈ C(J ;X) ↦→ ∥f∥C(J;X) = max
t∈J

∥f(t)∥X .

Now let us consider η > 0 and let us observe that

e−ηT max
t∈J

∥f(t)∥X ≤ max
t∈J

e−ηt ∥f(t)∥X ≤ max
t∈J

∥f(t)∥X .

Thus, let us define the Bielecki-type norm

∥f∥η = max
t∈J

e−ηt ∥f(t)∥X

and observe that ∥·∥C(J;X) and ∥·∥η are equivalent. Hence (C(J ;X), ∥·∥η) is still a
Banach space equivalent to (C(J ;X), ∥·∥C(J;X)). Now let us introduce the following

operator on C(J ;X):

AΦf(t) = f0 + IΦ F (·, f(·))(t).
By Lemma 2.1.1, we know that any solution of (2.1.1) is a fixed point of AΦ.
Now let us show the following Lemma (that is [15, Lemma 3.3 and 3.4]).

Lemma 2.1.3. Under the hypotheses of Theorem 2.1.2 for fixed ε ∈ (0, γ), f0 ∈
X and R > 0, there exists T1 such that, setting J1 = [0, T1], AΦ : C(J1;BR(f0)) →
Cγ−ε(J1;BR(f0)) is well-defined.

Proof. Let us first show that if f ∈ C(J ;BR(f0)), then AΦf ∈ Cγ−ε(J ;X).

To do this, define ˜︁R = R+ |f0|, fix δ > 0 and ε ∈ (0, γ). Then we have

∥AΦf(t+ δ)−AΦf(t)∥X ≤
∫︂ t

0

|uΦ(t− s)− uΦ(t+ δ − s)| ∥F (s, f(s))∥X ds

+

∫︂ t+δ

t

uΦ(t+ δ − s) ∥F (s, f(s))∥X ds

:= I1(t) + I2(t).

Let us first consider I2(t). Since f : J → BR(f0) ⊆ B ˜︁R and ∥F (s, x)∥X ≤ C ˜︁R for
any s ∈ J and x ∈ B ˜︁R, it holds

I2(t) ≤ C ˜︁RUΦ(δ),

where UΦ is the renewal function of Φ. Now, by Corollary 1.3.14 and since δ < T ,
we have that there exists a constant C > 0 such that

I2(t) ≤ Cδγ−ε.

Now let us consider I1. Since u is non-increasing, we have

I1(t) ≤ C ˜︁R(U(t+ δ)− U(t) + U(δ)).
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As before, by Corollary 1.3.14 and Proposition 1.3.12, there exists a constant C > 0
such that

I1(t) ≤ Cδγ−ε,

concluding that AΦf ∈ Cγ−ε(J,X).
Now we want to show that there exists T1 such that maxt∈[0,T1] ∥AΦf(t)− f0∥X ≤
R. To do this, let us observe that, being UΦ(t) Hölder-continuous with UΦ(0) = 0,

there exists T1 > 0 depending on ˜︁R such that C ˜︁RUΦ(T1) < R. Thus, since UΦ is
increasing, we have, for any t ∈ [0, T1],

∥AΦf(t)− f0∥X ≤ C ˜︁RUΦ(t) ≤ C ˜︁RUΦ(T1) < R.

Taking the maximum on [0, T1] we conclude the proof. □

Now we are ready to prove the main Theorem of this section (we incorporate
in the proof of the Theorem also the proof of [15, Proposition 3.6]).

Proof of Theorem 2.1.2. We need to show thatAΦ : (C(J1;BR(f0)), ∥·∥η) →
(C(J1;BR(f0)), ∥·∥η) is a contraction for some η > 0. To do this, let us consider

f, g ∈ C(J1;BR(f0)) and observe that, by uniform local Lipschitz-continuity of F ,

∥AΦf(t)−AΦg(t)∥X ≤
∫︂ t

0

u(t− s) ∥F (s, f(s))− F (s, g(s))∥X ds

≤ L ˜︁R
∫︂ t

0

uΦ(t− s) ∥f(s)− g(s)∥X ds

≤ L ˜︁R ∥f − g∥η
∫︂ t

0

uΦ(t− s)eηsds.

Now, by Proposition 1.3.15, we know that uΦ is regularly varying at 0+ of index
γ − 1, thus, if we consider ε1 ∈ (0, γ), there exists a constant C > 0 such that for

any t ∈ [0, T1] it holds u(t) ≤ Ctγ−1−ε1 . Now consider p ∈
(︂
1, 1

1+ε1−γ

)︂
, denote by

p′ the conjugate exponent of p and use Hölder inequality:

∥AΦf(t)−AΦg(t)∥X ≤ CL ˜︁R ∥f − g∥η
∫︂ t

0

(t− s)γ−1−ε1eηsds

≤ CL ˜︁R ∥f − g∥η

(︃∫︂ t

0

(t− s)p(γ−1−ε1)ds

)︃ 1
p
(︃∫︂ t

0

ep
′ηsds

)︃ 1
p′

≤ CL ˜︁R ∥f − g∥η
T

p(γ−1−ε1)+1
p

1

(p(γ − 1− ε1) + 1)
1
p

(︃
1

p′η

)︃ 1
p′

eηt.

Multiplying both sides of last inequality by e−ηt and taking the supremum on J1
we get

∥AΦf −AΦg∥η ≤ CLR ∥f − g∥η
T

p(γ−1−ε1)+1
p

1

(p(γ − 1− ε1) + 1)
1
p

(︃
1

p′η

)︃ 1
p′

.

Now, let us observe that

lim
η→+∞

CLR
T

p(γ−1−ε1)+1
p

1

(p(γ − 1− ε1) + 1)
1
p

(︃
1

p′η

)︃ 1
p′

= 0,
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hence there exists η∗ such that

L∗ := CLR
T

p(γ−1−ε1)+1
p

1

(p(γ − 1− ε1) + 1)
1
p

(︃
1

p′η∗

)︃ 1
p′

< 1.

From last relation we get

∥AΦf −AΦg∥η∗
≤ L∗ ∥f − g∥η∗

and then AΦ is a contraction. Thus, by contraction theorem (see [85]) it admits
a unique fixed point in C(J1;BR(f0)). Let f be such fixed point. Then, since
f = Af , it holds f ∈ Cγ−ε(J1;BR(f0)) for any ε ∈ (0, γ), concluding the proof. □

Now we have a more or less general result of local existence and uniqueness.
We want to understand if under some cases one can show global existence and
uniqueness of the solution. Let us restrict this study to the affine autonomous case.

2.1.1. The affine autonomous case: global uniqueness. Before going
into details, let us introduce some other notation. Let us define by L(X,X) the
space of bounded linear operators F : X → X equipped with the norm ∥F∥L(X,X) =

sup∥x∥X=1 ∥Fx∥X . Moreover, let us consider the renewal function UΦ and let us

define its left-continuous inverse on u > 0:

U←Φ (u) = min{x > 0 : UΦ(x) ≥ u}.
It is not difficult to show that, being UΦ continuous, UΦ(U

←
Φ (u)) = u.

Now we want to focus on abstract Cauchy problems of the form

(2.1.3)

{︄
∂Φf(t) = ξ + Ff(t) t ∈ [0, T ]

f(0) = f0,

where F ∈ L(X,X) and ξ, f0 ∈ X. For such kind of problems, we can show the
following Proposition (see [15, Corllary 3.7]).

Proposition 2.1.4. Let Φ ∈ SBF be a driftless Bernstein function that is
regularly varying at infinity with index γ ∈ (0, 1), F ∈ L(X,X) and ξ, f0 ∈ X. Then
there exists a time horizon T > 0 depending only on ∥ξ∥X , ∥f0∥X and ∥F∥L(X,X)

such that the problem (2.1.3) admits a unique continuous solution f ∈ C(J,X)
where J = [0, T ].

Proof. Let us consider the Picard operator AΦ and fix R = ∥f0∥X + 1. Ar-
guing as in Lemma 2.1.3 we have, for any T > 0, t ∈ [0, T ) and δ > 0 such that
t+ δ ∈ (0, T ],

∥AΦf(t+ δ)−AΦf(t)∥X ≤ (∥ξ∥X + ∥F∥L(X,X)R)(UΦ(t+ δ)− UΦ(t) + 2UΦ(δ))

and then, sending δ → 0+, we have that AΦf ∈ C([0, T ];X).
Concerning boundedness, we have

∥AΦf(t)∥X ≤ (∥ξ∥X + ∥F∥L(X,X)R)UΦ(T );

thus, if we consider

T = U←Φ

(︄
R

2(∥ξ∥X + ∥F∥L(X,X)R)

)︄
,

we have
∥AΦf(t)∥X < R.
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Now let us show that all the other quantities involved in the proof of Theorem 2.1.2
can be chosen only depending on T . To do this, let us first observe that setting

ε1 = γ
2 , there exists a constant C(T ) such that u(t) ≤ C(T )t

γ−2
2 for any t ∈ [0, T ].

Then, to conclude the proof, one can fix

p =
4− γ

2(2− γ)
,

η∗ =

⎛⎝2C(T ) ∥F∥L(X,X)

(︃
4

8− γ

)︃ 2(2−γ)
4−γ

T
(2−γ)(8−γ)

2(4−γ)

(︃
γ

4− γ

)︃ 4−γ
γ

⎞⎠
γ

4−γ

to achieve, for any f, g ∈ C(J ;BR),

∥AΦf −AΦg∥η∗
≤ 1

2
∥f − g∥η∗

and conclude the proof. □

Remark 2.1.5. After we fixed T > 0, Theorem 2.1.2 guarantees (γ−ε)-Hölder
regularity of the solution for any ε ∈ (0, γ).

Thus, if the linear operator is continuous, any affine autonomous Cauchy prob-
lem admits a local solution. However, we want to show something more: indeed,
we did not need to chose T1 after we already had T > 0 and then we can ask when-
ever the existence interval can be extended. For the classical fractional differential
equations, such problem is considered in [18, Corollary 2] and then reconsidered in
[15, Corollary 3.9].
Before giving the proof, we need to introduce some other operators. Let us denote:

t0 D
Φ f(t) =

d

dt

∫︂ t

t0

ν̄Φ(t− τ)f(τ)dτ

and t0∂
Φf(t) = t0 D

Φ(f(t) − f(t0)). For this kind of non-local derivative, we can
show again Theorem 2.1.2 using t0 in place of 0 for the initial datum.
Concerning the link between ∂Φ and t0∂

Φ, let us observe that, for t > t0,

∂Φf(t) =
d

dt

(︃∫︂ t0

0

ν̄Φ(t− τ)(f(τ)− f(0))dτ +

∫︂ t

t0

ν̄Φ(t− τ)(f(τ)− f(0))dτ

)︃
=

d

dt

(︃∫︂ t0

0

ν̄Φ(t− τ)(f(τ)− f(0))dτ +

∫︂ t

t0

ν̄Φ(t− τ)(f(τ)− f(t0))dτ

)︃
+ (f(t0)− f(0))ν̄Φ(t− t0)

=
d

dt

∫︂ t0

0

νΦ(t− τ)(f(τ)− f(0))dτ + t0∂
Φf(t) + (f(t0)− f(0))ν̄Φ(t− t0).

Suppose f ∈ C([0,+∞);BR) is a solution of (2.1.3). Let us set

g(t) :=
d

dt

∫︂ t0

0

ν̄Φ(t−τ)(f(τ)−f(0))dτ+(f(t0)−f(0))ν̄Φ(t−t0) = ∂Φf(t)−t0∂
Φf(t).

Then we have that f solves also

t0∂
Φf(t) = ξ + Ff(t)− g(t) t ∈ [t0, t0 +∆T ]

which, for f(t0) assigned, admits a unique solution for a certain ∆T . This is
actually the spirit of the proof of [15, Corollary 3.9] which ensures uniqueness of
global solutions:
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Corollary 2.1.6. Under the hypotheses of Proposition 2.1.4, if νΦ(dt) is ab-
solutely continuous with respect to the Lebesgue measure and f ∈ C([0,+∞), X) is
a solution of (2.1.3), then it is the unique solution.

Remark 2.1.7. Observe that g(t) is uniquely determined by the values of f(t)
for t ∈ [0, t0].

The same result in the non-linear case is given in [15, Proposition 6.7]

2.2. Generalized Grönwall inequality for special non-local time
derivatives

Now let us consider X = R. Let us recall that, for classical ODEs, an indis-
pensable tool to show continuity with respect to initial datum and other parameters
is what is usually called Grönwall’s Inequality (see [11]). In the easiest case, such
inequality compares the behaviour of a solution of an integral inequality with the
behaviour of the exponential functions (which are eigenfunctions of the classical de-
rivative). In [149] a similar inequality has been shown in the context of fractional
differential equations, where the comparing function is the Mittag-Leffler function
(which is the eigenfunction of the Caputo-Dzhrbashyan derivative). Thus we ex-
pect, if we want to generalize Grönwall’s Inequality to the non-local case, that the
comparing functions will be given by eΦ(t;λ), which are the eigenfunctions of the
generalized Caputo-Dzhrbashyan type derivatives.
To do this, we first need to introduce the following special functions (see [86]).

Definition 2.2.1. Let α ∈ H and β ∈ C. Then the two-parameters Mittag-
Leffler function is defined as

Eα,β(t) =

+∞∑︂
k=0

tk

Γ(kα+ β)
, t ∈ C .

Let us observe that Eα,1 = Eα.

The main theorem of this section is the following (see [15, Theorem 5.1]).

Theorem 2.2.1. Fix T > 0 and let a, g ∈ L1([0, T ]) be non-negative functions
with g non-decreasing and consider f ∈ L1([0, T ]). Let Φ ∈ SBF be a driftless
Bernstein function that is regularly varying at ∞ with index γ ∈ (0, 1). Suppose
the following integral inequality holds:

(2.2.1) f(t) ≤ a(t) + g(t) IΦ f(t) t ∈ [0, T ].

Let us denote by B0 the identity operator and define, for any function x ∈ L1([0, T ]),

Bx(t) = g(t)

∫︂ t

0

uΦ(t− s)x(s)ds,

where uΦ is the potential density. Then:

• For any t ∈ [0, T ], it holds

f(t) ≤
+∞∑︂
k=0

Bka(t);
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• For any ε ∈ (0, γ), setting β = γ − ε there exists a constant C2 non
depending on f such that, for any t ∈ [0, T ],

f(t) ≤ a(t) + C2Γ(β)g(t)

∫︂ t

0

Eβ,β(C2Γ(β)g(T )(t− s))(t− s)β−1a(s)ds;

• If a is non-decreasing we have, for any t ∈ [0, T ],

f(t) ≤ a(t) eΦ(t, g(T )).

To show this theorem, we first need to stress out some properties of the operator
B (see [15, Lemmas 5.2 to 5.6]).

Lemma 2.2.2. Fix T > 0 and let g ∈ L1([0, T ]) be non-negative and non-
decreasing. Let Φ ∈ SBF be a driftless Bernstein function that is regularly varying
at ∞ with index γ ∈ (0, 1). Then:

(1) If f1, f2 ∈ L1([0, T ]) are such that f1(t) ≤ f2(t) almost everywhere in
[0, T ], then Bf1(t) ≤ Bf2(t) for any t ∈ [0, T ];

(2) For any ε ∈ (0, γ), setting β = γ − ε, there exists a constant C2 > 0 such
that for any k ≥ 1 and any non-negative function f ∈ L1([0, T ]) it holds,
for any t ∈ [0, T ],

(2.2.2) Bkf(t) ≤ (C2Γ(β)g(t))
k

Γ(kβ)

∫︂ t

0

(t− s)kβ−1f(s)ds;

(3) For any k ≥ 1 and t ∈ [0, T ], it holds

(2.2.3) Bk1(t) ≤ (g(t))ku∗k(t)

where u∗k(t) are defined in (1.4.12);

(4) For any function f ∈ L1([0, T ]) the series
∑︁+∞

k=1B
kf(t) normally con-

verges for any t ∈ [0, T ];
(5) For any function f ∈ L1([0, T ]) it holds limk→+∞Bkf(t) = 0 uniformly

in [0, T ];
(6) For any non-negative functions fi ∈ L1([0, T ]) with i = 1, 2 such that f1 is

non-decreasing, it holds Bk(f1f2)(t) ≤ f1(t)B
k(f2)(t) for any t ∈ [0, T ].

Proof. Concerning property (1), it is obvious since g and uΦ are non-negative.
Let us show property (2) by induction. First of all, let us observe that, by Propo-
sition 1.3.15, we know that, for fixed ε ∈ (0, γ), there exists a constant C2 > 0 such
that u(t) ≤ C2t

γ−1−ε = C2t
β−1 for any t ∈ [0, T ]. Then we have

Bf(t) = g(t)

∫︂ t

0

uΦ(t− s)f(s)ds ≤ C2g(t)

∫︂ t

0

(t− s)β−1f(s)ds.



2.2. NON-LOCAL GRÖNWALL INEQUALITY 40

Now let us suppose that (2.2.2) holds true for some k ≥ 1. Then, by property (1)
and Fubini’s theorem, we have

Bk+1f(t) = B(Bkf(t)) ≤ B

(︃
(C2g(·)Γ(β))k

Γ(kβ)

∫︂ ·
0

(· − s)β−1f(s)ds

)︃
(t)

= g(t)
(C2Γ(β))

k

Γ(kβ)

∫︂ t

0

uΦ(t− s)g(s)

∫︂ s

0

(s− τ)kβ−1f(τ)dτds

≤ (C2g(t)Γ(β))
k+1

Γ(β)Γ(kβ)

∫︂ t

0

(t− s)β−1
∫︂ s

0

(s− τ)kβ−1f(τ)dτds

=
(C2g(t)Γ(β))

k+1

Γ(β)Γ(kβ)

∫︂ t

0

f(τ)

∫︂ s

τ

(t− s)β−1(s− τ)kβ−1dsdτ

=
(C2g(t)Γ(β))

k+1

Γ((k + 1)β)

∫︂ t

0

f(τ)(t− τ)(k+1)β−1dτ.

Let us also show property (3) by induction. Indeed we have

B1(t) = g(t)

∫︂ t

0

uΦ(t− s)ds = g(t)UΦ(t).

Now let us suppose (2.2.3) holds true for some k ≥ 1. Then we have, by property
(1)

Bk+11(t) = B(Bk1(·))(t) ≤ B((g(·))ku∗k(·))(t)

= g(t)

∫︂ t

0

uΦ(t− s)(g(s))ku∗k(s)ds ≤ (g(t))k+1u∗k+1(t).

Now let us show property (4). First of all, observe that |Bf(t)| ≤ B|f |(t). Thus
we can consider f ≥ 0 without loss of generality. Then we have, by property (2),

+∞∑︂
k=1

Bkf(t) ≤
+∞∑︂
k=1

(C2Γ(β)g(t))
k

Γ(kβ)

∫︂ t

0

(t− s)kβ−1f(s)ds

≤
∥f∥L1([0,T ])

T

+∞∑︂
k=1

(C2Γ(β)g(T )T
β)k

Γ(kβ)
< +∞.

Thus we have normal convergence of the series
∑︁+∞

k=0B
kf(t) for any t ∈ [0, T ].

Moreover, this implies Bkf → 0 as k → +∞ uniformly in [0, T ], thus showing also
property (5).
Finally, let us show property (6) by induction. We have

B(f1f2)(t) ≤ g(t)f1(t)

∫︂ t

0

uΦ(t− s)f2(s)ds = f1(t)B(f2)(t).

Now suppose that for some k ≥ 1 it holds Bk(f1f2) ≤ f1B
k(f2). Then we have, by

property (1),

Bk+1(f1f2) = B(Bk(f1f2)) ≤ B(f1B
k(f2)) ≤ f1B

k+1(f2).

□

Now we are ready to prove Theorem 2.2.1.
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Proof of Theorem 2.2.1. Let us first rewrite (2.2.1) as

(2.2.4) f(t) ≤ a(t) +Bf(t).

We want to show that, for any n ∈ N and t ∈ [0, T ],

(2.2.5) f(t) ≤ a(t) +

n−1∑︂
k=1

Bka(t) +Bnf(t).

Let us show it by induction. For n = 1 we obtain again equation (2.2.1). Suppose
inequality (2.2.5) holds for some n ∈ N. Then applying Bn on both sides of (2.2.4)
and using property (1) of the previous Lemma, we obtain

(2.2.6) Bnf(t) ≤ Bna(t) +Bn+1f(t).

Using this inequality in (2.2.5) we obtain the proof.
Now let us observe that, being a, f ∈ L1([0, T ]), by properties (4) and (5) of the

previous Lemma we obtain
∑︁+∞

k=1B
ka(t) < +∞ and limn→+∞Bnf(t) = 0, thus,

taking the limit as n→ +∞ in inequality (2.2.5), we obtain

(2.2.7) f(t) ≤ a(t) +

+∞∑︂
k=1

Bka(t),

that is the first assertion. By properties (3) and (4) of the previous Lemma, we
also have

+∞∑︂
k=1

Bka(t) ≤
∫︂ t

0

+∞∑︂
k=0

(C2Γ(β)g(t)(t− s)β)k+1

Γ(kβ + β)
(t− s)β−1a(s)ds

≤ C2Γ(β)g(t)

∫︂ t

0

Eβ,β(C2Γ(β)g(T )(t− s))(t− s)β−1a(s)ds,

obtaining the second assertion.
Concerning the third one, let us reconsider (2.2.7) and, by using properties (3) and
(6) of the previous Lemma, we obtain

Bka(t) ≤ a(t)Bk1(t) ≤ a(t)(g(T ))ku∗k(t).

Thus, by Equation (1.4.14), we have

f(t) ≤ a(t)

(︄
1 +

+∞∑︂
k=1

g(T )ku∗k(t)

)︄
= a(t) eΦ(t, (g(T ))),

concluding the proof. □

2.2.1. Consequences of the Generalized Grönwall Inequality. Now let
us take into account some consequences of the generalized Grönwall Inequality.
First of all, let us show the following bound on the distance between the solutions.

Proposition 2.2.3. Let Fi : [0, Ti] × R → R with i = 1, 2 and Φ ∈ SBF a
driftless Bernstein function such that hypotheses of Theorem 2.1.2 are verified. Let
fi : [0, Ti] → R (i = 1, 2) be solutions of

(2.2.8)

{︄
∂Φfi(t) = Fi(t, fi(t)) t ∈ (0, Ti]

fi(0) = f i0
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with ∥fi∥C([0,Ti])
≤ R for some R > max{|f10 |, |f20 |}.

Set T = min{T1, T2} and suppose that for any R > 0 there exists a constantMR > 0
such that

|F1(t, x)− F2(t, x)| ≤MR ∀t ∈ [0, T ], ∀x ∈ [−R,R]
Then it holds

∥f1 − f2∥C([0,T ]) ≤ (|f10 − f20 |+MRUΦ(T )) eΦ(T, LR).

Proof. Define h : t ∈ [0, T ] ↦→ |f1(t)− f2(t)| ∈ R. As fi is solution of (2.2.8)
and fi(t) ≤ R for t ∈ [0, T ], we have

h(t) ≤ |f10 − f20 |+
∫︂ t

0

uΦ(t− s)|F1(s, f1(s))− F2(s, f2(s))|ds.

Now, since fi(s) ∈ [−R,R], we have

|F1(s, f1(s))− F2(s, f2(s))| ≤ LRh(s) +MR

and then
h(t) ≤ |f10 − f20 |+MRUΦ(t) + LR IΦ h(t).

Finally, by Theorem 2.2.1, being UΦ non-decreasing, we conclude the proof. □

With the same spirit, we can now investigate continuous dependence with re-
spect to the initial datum and some parameters in a certain parameter space. To
do this, let us first stress out that if F and Φ satisfy the hypotheses of Theorem
2.1.2, then the guaranteed existence and uniqueness interval is given by [0, T ] where

T = U←Φ

(︂
R
C ˜︁R
)︂
where R > |f0| and ˜︁R = R+ |f0|+ 1.

2.2.1.1. Continuous dependence on the initial datum. Let us first investigate
the continuous dependence on the initial datum. To do this, let us first observe
that if we fix f0 ∈ R and δ ∈ (0, 1), then there exists a common interval of guaranteed
existence as the initial datum varies in (f0 − δ, f0 + δ) (see [15, Proposition 6.1]).

Lemma 2.2.4. Let F : [0, T ]× R → R satisfy the hypotheses of Theorem 2.1.2.
Fix R = |f0| + 1 and δ ∈ (0, 1). Then there exists T1 > 0 such that for any˜︁f0 ∈ (f0 − δ, f0 + δ) the problem

(2.2.9)

{︄
∂Φf(t) = F (t, f(t)) t ∈ (0, T1],

f(t) = ˜︁f0
admits a unique solution in

⋂︁
ε∈(0,γ) C

γ−ε([0, T1]).

Proof. We only have to observe that | ˜︁f0| ≤ |f0| + δ < |f0| + 1 = R, thus we

can choose T1 = U←Φ

(︂
R
CR

)︂
. □

Remark 2.2.5. Here we considered only δ ∈ (0, 1), but, obviously, we can revert
in some sense the argument. Indeed, consider a compact set K ⊆ R. Without loss
of generality we can consider K = [a, b] for some a, b ∈ R with a < b. Then define

f0 = a+b
2 , δ = b−a

2 and R > |f0| + δ = b. Then we can choose T1 = U←Φ

(︂
R
CR

)︂
for such choice of R to obtain that the Cauchy problem (2.2.9) admits solution in

[0, T1] for any ˜︁f0 ∈ [a, b].

Now we can show the continuity of the solutions with respect to initial datum,
as done in [15, Proposition 6.2].
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Proposition 2.2.6. Fix f0 ∈ R and δ ∈ (0, 1) and set R = |f0|+1 and T > 0 as
in Lemma 2.2.4. Suppose F : [0, T ]×R → R and Φ ∈ SBF satisfy the hypotheses of

Theorem 2.1.2. Define the function Ψ : ˜︁f0 ∈ (f0 − δ, f0 + δ) → Ψ(·; ˜︁f0) ∈ C0([0, T ])
where {︄

∂ΦΨ(t; ˜︁f0) = F (t,Ψ(t; ˜︁f0)) t ∈ [0, T ]

Ψ(0; ˜︁f0) = ˜︁f0.
Then Ψ is Lipschitz with constant LΨ ≤ eΦ(T ;LR).

Proof. Fix f10 , f
2
0 ∈ (f0 − δ, f0 + δ) and define h(t) = |Ψ(t; f10 ) − Ψ(t; f20 )|.

Then we have

h(t) ≤ |f10 − f20 |+
∫︂ t

0

uΦ(t− s)|F (s,Ψ(s; f10 ))− F (s,Ψ(s; f20 ))|ds.

Now, by our choice of T , we have that |Ψ(s; f i0)| ≤ R, thus we obtain

h(t) ≤ |f10 − f20 |+ LR IΦ h(t).

By using the third part of Theorem 2.2.1 and the fact that eΦ(t, LR) is increasing
in t we conclude the proof. □

2.2.1.2. Continuous dependence on a parameter. Now let us suppose the non-
local Cauchy problem we are considering depends on some additional parameters,
varying in some metric space. As before, we first want to show that we can choose
a constant T > 0 such that the solutions of the parametric Cauchy problem exists
in [0, T ] as the parameters belong to some set (see [15, Proposition 6.4]).

Lemma 2.2.7. Let (V, d) be a metric space, F : [0, T ] × R×V → R and Φ ∈
SBF . Suppose, for any fixed v ∈ V , F (·, ·; v) and Φ satisfy the hypotheses of
Theorem 2.1.2. Moreover, suppose that for any fixed R, r > 0 and v0 ∈ V , there
exists a constant L(r,R, v0) such that ∀v ∈ Br(v0) it holds

|F (t, x; v)− F (t, x; v0)| ≤ L(r,R, v0)d(v, v0) ∀x ∈ [−R,R], ∀t ∈ [0, T ].

Fix v0 ∈ V . Then there exists a constant T1(r, f0, v0) > 0 such that the Cauchy
problem

(2.2.10)

{︄
∂Φf(t) = F (t, f(t); v) t ∈ (0, T1],

f(t) = f0

admits a unique solution for any v ∈ BR(v0).

Proof. Fix R = |f0| + 1 and consider x ∈ [−R,R]. Then we have, by the
hypotheses of Theorem 2.1.2,

|F (t, x; v0)| ≤ CR(v0).

Now consider any v ∈ Br(v0). Then we have

|F (t, x; v)| ≤ |F (t, x; v0)|+ |F (t, x; v)− F (t, x; v0)| ≤ CR(v0) + rL(r,R, v0).

Thus, the constant T1 we are searching for is given by

T1 = U←Φ

(︃
R

CR(v0) + rL(r,R, v0)

)︃
.

□
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Now we are ready to show continuity with respect to the parameters in (V, d)
(see [15, Proposition 6.5]).

Proposition 2.2.8. Let (V, d) be a metric space, F : [0, T ] × R×V → R and
Φ ∈ SBF . Suppose, for fixed v ∈ V , F (·, ·; v) and Φ satisfy the hypotheses of
Theorem 2.1.2. Moreover, suppose that for any fixed R, r > 0 and v0 ∈ V , there
exists a constant L(r,R, v0) such that ∀v ∈ Br(v0) it holds

|F (t, x; v)− F (t, x; v0)| ≤ L(r,R, v0)d(v, v0) ∀x ∈ [−R,R], ∀t ∈ [0, T ].

Fix v0 ∈ V , r > 0 and f0 ∈ R. Consider R = |f0|+ 1 and let T1 > 0 as in Lemma
2.2.7. Define the function Ψ : v ∈ Br(v0) ↦→ Ψ(·; v) ∈ C0([0, T1]) where

(2.2.11)

{︄
∂ΦΨ(t; v) = F (t,Ψ(t; v); v) t ∈ (0, T1]

Ψ(0; v) = f0.

Then Ψ is continuous in v0. In particular, it holds

∥Ψ(·; v)−Ψ(·; v0)∥C([0,T1])
≤ L(r,R, v0)UΦ(T1) eΦ(T1;LR)d(v, v0), ∀v ∈ Br(v0).

Proof. For any v ∈ Br(v0), define the function

h(t) = |Ψ(t; v)−Ψ(t; v0)|
and observe that

h(t) ≤
∫︂ t

0

uΦ(t− s)|F (s,Ψ(s; v); v)− F (s,Ψ(s; v0); v0)|ds.

By definition of T1 > 0 we have that Ψ(s; v) ∈ [−R,R] for any s ∈ [0, T1] and
v ∈ Br(v0), thus we obtain

|F (s,Ψ(s; v); v)− F (s,Ψ(s; v0); v0)| ≤ L(r,R, v0)d(v, v0) + LRh(s).

Hence we achieve

h(t) ≤ L(r,R, v0)d(v, v0)UΦ(T1) + LR IΦ h(t).

The third part of Theorem 2.2.1 and the fact that eΦ(t;LR) is increasing conclude
the proof. □

2.3. Non-local Cauchy problems in ℓ2 and birth-death polynomials

In Section 2.1 we gave some conditions to obtain local existence and uniqueness
of solutions of non-local abstract Cauchy problems in the form (2.1.1) (hence also
in the non-linear case) for some Bernstein function Φ ∈ SBF that is regularly
varying at infinity. However, in Subsection 1.4.2 we studied the eigenvalue problem
for the non-local convolutionary derivative ∂Φ for any Φ ∈ BF . Thus, one could
ask if such results on the eigenfunctions of ∂Φ can be used to obtain solutions of
problems of the form (2.1.1) where the right-hand side of the equation is a linear
function. This is done, for instance, in the local case by means of Fourier series
for the heat equation, which, after giving an L2 initial datum, can be seen as an
abstract Cauchy problem in a L2 space.
In this section we will consider some non-local difference-differential equations that
can be seen as abstract Cauchy problems in some ℓ2 spaces. In particular such
Cauchy problem arise from a specific class of birth-death processes that we will
call solvable, and are strictly linked to classical orthogonal polynomials of discrete
variable. In particular, we will show existence and uniqueness of the solutions
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of these particular equations by means of a spectral decomposition in terms of
suitable orthogonal polynomials and then, in the next section, we will provide some
stochastic representation of the solutions.

2.3.1. Solvable birth-death processes. The theory of birth-death polyno-
mials and spectral decomposition of birth-death processes is presented in the sem-
inal papers [80, 82]. Here we focus on a particular class of birth-death processes
whose spectral measure is actually the invariant measure and the spectrum of the
generator is purely discrete, real and non-positive.
Let us first introduce some notation. Let E ⊆ N0 be a finite or at most countable
set and N(t) a time-homogeneous continuous-time Markov chain with state space
E. Let us denote by

p(t, x; y) = P(N(t+ s) = x|N(s) = y), x, y ∈ E, t ≥ 0

the transition probabilities and P (t) = (p(t, x; y))x,y∈E the transition matrix. Then
P (t) can be seen as a semigroup acting on a suitable Banach sequence space b and
we can consider its generator G. N(t) is a birth-death process if and only if there
exist two non-negative functions b, d : E → R+

0 such that for any f ∈ D(G)

G f(x) = (b(x)− d(x))δ+f(x) + d(x)δ2f(x), x ∈ E,

where

δ+f(x) = f(x+ 1)− f(x) δ−f(x) = f(x)− f(x− 1)

and

δ2f(x) = δ−δ+f(x) = δ+δ−f(x) = f(x+ 1)− 2f(x) + f(x− 1).

Let us observe that δ+ = D1
1, δ

− = D1
−1 and δ2 = D2

1, according to the notation
introduced in Section 1.5. The functions b and d are called respectively birth and
death rates. Moreover, if we suppose N(t) is irreducible, then E has to be a
segment in N (i.e. if n1, n2 ∈ E and n1 ≤ n ≤ n2, then n ∈ E). We can always
suppose that minE = 0 and N(t) does not admit a cemetery (i.e. d(0) = 0). In
particular, we define the following class of birth-death processes (as done in [22])

Definition 2.3.1. We say that a birth-death process N(t) is solvable if

• N(t) is irreducible and recurrent;
• N(t) admits an invariant and stationary measure m on E;
• The function m(x) = m({x}) solves the discrete Pearson equation

(2.3.1) δ+(d(·)m(·))(x) = (b(x)− d(x))m(x) x ∈ E;

• d is a polynomial of degree at most 2 and b− d is a polynomial of degree
at most 1;

• G is a diagonalizable operator with non-positive eigenvalues (λn)n∈E , such
that λ0 = 0 and λn < 0 for any n ≥ 1, and its eigenfunctions (Pn)n∈E are
classical orthogonal polynomials of discrete variable whose orthogonality
measure is actually m.

Observe that any invariant measure m satisfies Equation (2.3.1). We refer to
it as discrete Pearson equation since d and b are polynomials (in analogy to the
Pearson equation, see [62].)
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First of all, let us remark that if N(t) is a solvable birth-death process, then the
eigenvalues of G can be obtained by using the formula

(2.3.2) λn = nδ+(b(·)− d(·))(x) + 1

2
n(n− 1)δ2d(x),

where, since d is a polynomial with degree at most 2 and b−d is a polynomial with
degree at most 1, δ2d(x) and δ+(b − d)(x) do not depend on x. Concerning the
semigroup P (t), it can be seen as defined on ℓ2(m) and then D(G) = ℓ2(m).
Moreover, if E = N0, let us observe that equation (2.3.1) can be rewritten as

(2.3.3) d(x+ 1)m(x+ 1) = b(x)m(x),

hence it is easy to see that a solution m exists if and only if

(2.3.4)

+∞∑︂
x=0

x∏︂
k=0

b(k)

d(k + 1)
< +∞.

In particular, since both b and d must be polynomials, then limx→+∞
b(x)

d(x+1) exists

and condition (2.3.4) implies that

lim
x→+∞

b(x)

d(x+ 1)
≤ 1.

However, we can easily exclude the cases in which limx→+∞
b(x)

d(x+1) = 1. Indeed this

could happen if and only if b(x) and d(x) are polynomials of the same degree and
with the same director coefficient. However, if b and d are polynomials of degree
0 or 1, then we should have λn = 0 for any n ∈ N0, which is absurd. If b and d
are polynomials of degree 2, then, since we need λn < 0 for any n ≥ 1, the director
coefficient of d must be negative, which is absurd since in such case there exists
x0 ∈ E for which, for any x ≥ x0, it holds d(x) < 0. Thus we conclude that

(2.3.5) lim
x→+∞

b(x)

d(x+ 1)
< 1.

Concerning the orthogonal polynomials Pn, let us observe that the orthogonality
relation can be written as∑︂

x∈E
Pn(x)Pm(x)m(x) = d2n δn,m

where dn = ∥Pn∥ℓ2(m) and δn,m is the Kronecker delta symbol. The orthonormal

polynomials will be denoted as Qn = Pn

dn
. Moreover, the function ˜︁m(x) = 1

d2
x
defined

on E induces a measure on E. Then, by using Gram-Schmidt orthogonalization

procedure on the monomials (xn)n∈E , one obtains the family of polynomials ˜︁Pn(x)
that are orthogonal with respect to the measure ˜︁m on E defined by ˜︁m({x}) = ˜︁m(x).
In particular it holds, for any n,m ∈ E,∑︂

x∈E

˜︁Pn(x) ˜︁Pm(x)˜︁m(x) =
1

m(n)
δn,m.

For this reason, the family of polynomials ( ˜︁Pn)n∈E is called the dual family of
(Pn)n∈E (see [113]). We say that a family of classical orthogonal polynomials of
discrete variable (Pn)n∈E is self-dual if the dual family coincides with (Pn)n∈E and
Pn(x) = Px(n) for any n, x ∈ E.
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We can also introduce the forward operator, that for a birth-death process N(t)
is given by

(2.3.6) F f(x) = −δ−[(b(·)− d(·))f(·)](x) + δ2[d(·)f(·)](x).

An interesting property concerning solvable birth-death processes is that the for-
ward operator admits the same eigenvalues of the generator and the eigenfunctions
are given by mQn (as shown in [22, Lemma 2.1]):

Lemma 2.3.1. Let N(t) be a solvable birth-death process, F be its forward op-
erator and m be its stationary measure. Let (Qn)n∈E be the associated family of
orthonormal polynomials. Then, for any n, x ∈ E it holds

F(m(·)Qn(·))(x) = λnm(x)Qn(x)

where (λn)n∈E are the eigenvalues of the generator G.

Proof. Before proceeding with the proof, let us recall the discrete Leibniz rule
for the difference operators δ±:

δ+(fg)(x) = f(x+ 1)δ+g(x) + g(x)δ+f(x)

δ−(fg)(x) = f(x)δ−g(x) + g(x− 1)δ−f(x).

Moreover, let us use the notation δ±z and δ2z to refer to the variable we are working
on.
We have, by definition of F

F(m(·)Qn(·))(x) = −δ−z ((b(z)− d(z))m(z)Qn(z))(x) + δ2z(d(z)m(z)Qn(z))(x)

= δ−z [−(b(z)− d(z))m(z)Qn(z) + δ+y (d(y)m(y)Qn(y))(z)](x).

Now we can use the discrete Leibniz rule for δ+ to achieve

F(m(·)Qn(·))(x) = δ−z [−(b(z)− d(z))m(z)Qn(z) +Qn(z)δ
+
y (d(y)m(y))(z)

+ δ+Qn(z)(d(z + 1)m(z + 1))](x)

= δ−z [δ+Qn(z)(d(z + 1)m(z + 1))](x),

where the first inner summand is actually 0 by the discrete Pearson equation (2.3.1).
Now let us use the discrete Leibniz rule for δ− to achieve

F(m(·)Qn(·))(x) = δ2Qn(x)(d(x)m(x))(x) + δ+Qn(x)δ
−
z (d(z + 1)m(z + 1))(x)

= δ2Qn(x)(d(x)m(x))(x) + δ+Qn(x)δ
+(d(·)m(·))(x)

= m(x)GQn(x) = λnm(x)Qn(x),

where we also used the relation δ+f(x) = δ−z (f(z + 1))(x) and, again, the discrete
Pearson equation (2.3.1). □

Concerning the existence of the moments of N(t), in the stationary case we
have that N(t) admits moments of any order. This is obvious when E is finite.
However, to show this property for E = N0, we need the following proposition.

Proposition 2.3.2. Let N(t) be a solvable birth-death process with stationary
measure m and state space E = N0. Then there exists a constant ρ < 1 and a state
x0 ∈ E such that for any x ≥ x0 it holds

(2.3.7) m(x) ≤ ρx−x0m(x0).
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Proof. Let us reconsider the discrete Pearson equation written as in (2.3.3):

m(x+ 1) =
b(x)

d(x+ 1)
m(x).

Let us recall that, by (2.3.5), it holds limx→+∞
b(x)

d(x+1) = l < 1. Fix ρ ∈ (l, 1) and

observe that there exists a state x0 ∈ N0 such that b(x)
d(x+1) < ρ for any x ≥ x0.

Then we obtain
m(x+ 1) < ρm(x).

Thus, inequality (2.3.7) follows inductively from the previous one. □

From this Proposition we have directly the following Corollary.

Corollary 2.3.3. Let N(t) be a solvable birth-death process with stationary
measure m such that N(0) admits distribution m. Then N(t) admits moments of
any order for any t ≥ 0.

The most important result concerning solvable birth-death processes is strictly
linked with the backward and forward Kolmogorov equations. Let us first consider
the backward one

(2.3.8)

{︄
du
dt (t, y) = G u(t, y) t ≥ 0, y ∈ E

u(0, y) = g(y) y ∈ E

and let us denote u : t ∈ [0,+∞) ↦→ u(t, ·) ∈ ℓ2(m) the solution map. Let us recall
the definition of strong solution of (2.3.8).

Definition 2.3.2. We say that u is a strong solution of (2.3.8) if:

• u(t, ·) belongs to ℓ2(m) for any t ≥ 0 (and then u is well defined);
• u ∈ C([0,+∞); ℓ2(m)) ∩ C1((0,+∞); ℓ2(m));
• the equations in (2.3.8) hold pointwise.

The same definition holds for the forward problem

(2.3.9)

{︄
dv
dt (t, x) = F v(t, x) t ≥ 0, x ∈ E

v(0, x) = f(x) x ∈ E.

For solvable birth-death processes the following spectral decomposition theorem
holds.

Theorem 2.3.4. Let N(t) be a solvable birth-death process with state space E,
invariant measure m, generator G, forward operator F (with eigenvalues (λn)n∈E)
and associated family of orthonormal polynomials (Qn)n∈E. Then the following
assertions hold true:

• The transition probability function p(t, x; y) admits the following spectral
representation:

p(t, x; y) = m(x)
∑︂
n∈E

eλntQn(x)Qn(y) x, y ∈ E, t ≥ 0;

• If g ∈ ℓ2(m) with decomposition g(y) =
∑︁

n∈E gnQn(y) for any y ∈ E

where (gn)n∈E belongs to ℓ2(E), then the Cauchy problem (2.3.8) admits
a unique strong solution given by

u(t, y) =
∑︂
n∈E

eλntQn(y)gn =
∑︂
x∈E

p(t, x; y)g(x) y ∈ E, t ≥ 0.
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In particular, p(t, x; y) is the fundamental solution of ∂u
∂t (t, y) = G u(t, y).

Moreover, denoting by Ey[·] = E[·|N(0) = y], then one obtains

u(t, y) = Ey[g(N(t))];

• If f/m ∈ ℓ2(m) with decomposition f(x) = m(x)
∑︁

n∈E fnQn(x) for any

x ∈ E where (fn)n∈E belongs to ℓ2(E), then the Cauchy problem (2.3.9)
admits a unique strong solution given by

v(t, x) = m(x)
∑︂
n∈E

eλntQn(x)fn =
∑︂
y∈E

p(t, x; y)f(y) x ∈ E, t ≥ 0.

In particular, p(t, x; y) is the fundamental solution of ∂v
∂t (t, x) = F u(t, x).

Moreover, if f ≥ 0 and ∥f∥ℓ1(E) = 1, denoting by Pf (·) the probability

measure obtained by P conditioning with the fact that N(0) admits distri-
bution f , then one obtains

v(t, x) = Pf (N(t) = x).

The previous Theorem gives us spectral decompositions and stochastic rep-
resentations of the solutions of the backward and the forward Kolmogorov equa-
tions. We can use such decomposition to obtain informations, for instance, on the
moments of the process N(t). In particular, we can obtain informations on its
covariance.

Proposition 2.3.5. Let N(t) be a solvable birth-death process with invariant
measure m. Let us denote by Covm(·, ·) the covariance operator conditioned under
the fact that N(0) admits distribution m. Then there exists a constant a1 ∈ R such
that for any t, s ≥ 0 it holds

Covm(N(t), N(s)) = a21e
λ1|t−s|.

In particular, being N(t) a second-order stationary process if N(0) admits distribu-
tion m, it is short-range dependent.

Proof. First of all, let us observe that since m admits moments of any order,
Covm(N(t), N(s)) is well-defined. Since N(t) is stationary it holds for any t ≥ s
(2.3.10)
Covm(N(t), N(s)) = Covm(N(t− s), N(0)) = Em[N(t− s)N(0)]− Em[N(0)]2.

Let us denote by ι(x) = x. Since ι is a polynomial of degree 1, it can be written as
a linear combination of Q0 = 1 and Q1(x), obtaining

ι(x) = a0 + a1Q1(x)

for some constants a0 and a1. Now let us evaluate Em[N(0)]. We have, by definition,

(2.3.11) Em[N(0)] =
∑︂
x∈E

xm(x) = a0 + a1
∑︂
x∈E

Q1(x)m(x) = a0

since
∑︁

x∈E Q1(x)m(x) =
∑︁

x∈E Q0Q1(x)m(x) = 0 by orthogonality relation. On
the other hand, we have

Em[N(t)N(0)] =
∑︂
x∈E

Ex[N(t)N(0)]Pm(N(0) = x) =
∑︂
x∈E

xEx[N(t)]m(x).

By Theorem 2.3.4 we have that

Ex[N(t)] = Ex[ι(N(t))] = a0 + a1Q1(x)e
λ1t.
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Thus, we get

(2.3.12) Em[N(t)N(0)] =
∑︂
x∈E

(a0+a1Q1(x))(a0+a1Q1(x)e
λ1t)m(x) = a20+a

2
1e

λ1t.

Substituting equalities (2.3.11) and (2.3.12) in (2.3.10) we conclude the proof. □

Let us now make a classification of such solvable birth-death processes. Let us

focus on the case E = N0. First of all, let us observe that since limx→+∞
b(x)

d(x+1) < 1,

we have deg b(x) ≤ deg d(x). If deg d(x) = 0, then also deg b(x) = 0, which is absurd
since in such case λn = 0 for any n > 0. Thus we have that deg d(x) ≥ 1. Let us
consider then deg d(x) = 1. Thus we have deg b(x) ≤ 1.

• If deg b(x) = 0 and the director coefficient of d is positive, then we are
considering an immigration-death process, as described in [7]. In such case
the orthogonal polynomials are Charlier polynomials (see [113, 133]).
Indeed, since d(0) = 0, it must be d(x) = d0x and b(x) = b0 for some
constants d0 > 0 and b0 > 0. Setting ρ = b0

d0
, the invariant measure

m(x) = e−ρ ρx

x! is a Poisson distribution and the orthogonal polynomials
are actually Charlier polynomials of parameter ρ.

• If deg b(x) = 1, to obtain a state space E = N0, one has b(x) = b0(x+ β)
and d(x) = d0x with b0, d0 > 0. The invariant measure is given by

m(x) =
(β)xρ

x

x!(1− ρ)β

where (β)x = Γ(β+x)
Γ(β) . In such case we are considering a Meixner process as

discussed in [81] and the orthogonal polynomials are Meixner polynomials
of parameters ρ = b0

d0
and β.

Concerning the case deg d(x) = 2, one has to observe that, to achieve λn < 0, the
director coefficient of d must be negative. Then we should have d(x) < 0 for x
sufficiently big, which is absurd. We can conclude the following proposition.

Proposition 2.3.6. Let N(t) be a solvable birth-death process with state space
E. Then, one of the following properties holds true:

• E is finite;
• N(t) is an immigration-death process;
• N(t) is a Meixner process.

In particular E is either finite or the orthogonal polynomials Pn are self-dual.

2.3.2. Strong solutions of the non-local Kolmogorov equations. Now
we can focus on the following non-local Cauchy problem

(2.3.13)

{︄
∂Φt u(t, y) = G u(t, y) t > 0, y ∈ E

u(0, y) = g(y) y ∈ E,

for some suitable initial datum g, where G is the generator of some solvable birth-
death process N(t) with state space E. Let us define the function u : t ∈ [0,+∞) ↦→
u(t, ·) ∈ ℓ2(m) as before. Now we can give the definition of strong solution for the
Cauchy problem (2.3.13).

Definition 2.3.3. We say u is a strong solution of (2.3.13) if:

• u(t, ·) belongs to ℓ2(m) for any t ≥ 0 (and then u is well defined);
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• u ∈ C([0,+∞); ℓ2(m));
• ∂Φt u(t, y) exists for any t > 0 and y ∈ E;
• ∂Φt u(t, ·) belongs to ℓ2(m) (and then ∂Φt u is well defined);
• ∂Φt u ∈ C((0,+∞); ℓ2(m));
• the equations in (2.3.13) hold pointwise.

The idea is to apply some spectral decomposition technique to obtain strong
solutions of the non-local Cauchy problem (2.3.13). Before doing this, let us give
some heuristics to show what is the expected form of the solutions. Suppose we
want to find a solution u(t, y) = T (t)φ(y) by separation of variables. Then the first
equation of (2.3.13) can be decoupled, leading to two eigenvalue problems:{︄

G φ(y) = λφ(y) y ∈ E

∂ΦT (t) = λT (t) t > 0.

Now, since we know that G is the generator of some solvable birth-death process,
if we consider the family of orthonormal polynomials (Qn)n∈E associated to it, we
have that φ = Qn up to a multiplicative constant and λ = λn for some n ∈ N0.
Then, concerning the second equation, it is a relaxation equation for the non-
local derivative ∂Φ with λn ≤ 0, thus we have, up to a multiplicative constant,
T (t) = eΦ(t;λn). In general we expect our solution to be a linear combination of
these simple ones, i.e.

u(t, y) =
∑︂
n∈E

unQn(y) eΦ(t;λn)

for some coefficients un. Now let us suppose the initial datum g ∈ ℓ2(m). Then
we have g =

∑︁
n∈E gnQn(y) for some coefficients gn. However, since eΦ(0;λn) = 1

and (Qn)n∈E constitute an orthonormal system in ℓ2(m), we obtain, from u(0, y) =
g(y), un = gn for any n ∈ E. We conclude that the expected solution is of the form

u(t, y) =
∑︂
n∈E

gnQn(y) eΦ(t;λn),

where gn are the coordinates of g ∈ ℓ2(m) with respect to the orthonormal basis
(Qn)n∈E .
As we will see in the following, if E is finite this heuristic argument is formal. The
real problem arises when E is infinite and then the sums are actually series. In this
case we need to show the convergence of the involved series and the fact that we
can exchange the operators ∂Φ and G with the summation operator.
To do this, we first need to identify in some sense the fundamental solution. Thus,
let us prove the following Lemma (see [22, Lemma 4.1]).

Lemma 2.3.7. Let N(t) be a solvable birth-death process with state space E,
generator G, invariant measure m and family of associated orthogonal polynomials
(Pn)n∈E. Then the summation

(2.3.14) pΦ(t, x; y) := m(x)
∑︂
n∈E

eΦ(t;λn)Qn(x)Qn(y)

absolutely converges for any fixed t ≥ 0 and x, y ∈ E.

Proof. Let us first observe that if E is finite, then the summation is finite.
Thus, let us work in the case E = N0 (and N(t) is either an immigration-death
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process or a Meixner process). By using the definition ˜︁m(n) = 1
d2
n

together with

the self-duality of (Pn)n≥0 we get

pΦ(t, x; y) = m(x)

+∞∑︂
n=0

˜︁m(n) eΦ(t;λn)Pn(x)Pn(y)

= m(x)

+∞∑︂
n=0

˜︁m(n) eΦ(t;λn)Px(n)Py(n).

Let us denote by root(x) the set of the roots of the polynomial Px(n). Then,
by fundamental theorem of algebra, the cardinality of root(x) is at most x. In
particular we can define

n0 = ⌈max(root(x) ∪ root(y))⌉+ 1

and observe that the series (2.3.14) absolutely converges if and only if the series

+∞∑︂
n=n0

˜︁m(n) eΦ(t;λn)Px(n)Py(n)

absolutely converges. Now let us observe (see, for instance, [113, Table 2.3]) that
the director coefficient of Px(n) is positive if x is even and negative if x is odd.
Thus we have, by also using eΦ(t;λn) ≤ 1 since λn ≤ 0,

+∞∑︂
n=n0

|˜︁m(n) eΦ(t;λn)Px(n)Py(n)| ≤ (−1)x+y
+∞∑︂
n=n0

˜︁m(n)Px(n)Py(n).

Now let us observe that the series
∑︁+∞

n=n0
˜︁m(n)Px(n)Py(n) converges if and only if

the series
∑︁+∞

n=0 ˜︁m(n)Px(n)Py(n) converges. In particular, we have

+∞∑︂
n=0

˜︁m(n)Px(n)Py(n) =
1

m(x)
δx,y < +∞,

concluding the proof. □

Now that we have shown the convergence of the series that will be our funda-
mental solution, let us show a technical Lemma concerning the convergence of some
useful series (see [22, Lemma 4.2]).

Lemma 2.3.8. Let N(t) be a solvable birth-death process with state space E =
N0, generator G, invariant measure m and family of associated classical orthogonal
polynomials (Pn)n∈E. Let g ∈ ℓ2(m) such that g(x) =

∑︁
n∈E gnQn(x) for x ∈ E

with (gn)n≥0 ∈ ℓ2. Then

(1) For any x ∈ E it holds

+∞∑︂
n=0

|gnQn(x)| ≤
∥g∥ℓ2(m)√︁
m(x)

;

(2) For any fixed x ∈ E the sum
∑︁+∞

n=0 eΦ(t, λn)gnQn(x) normally converges
for t ∈ [0,+∞);

(3) For any fixed x ∈ E and T1 > 0 the sum
∑︁+∞

n=0 λn eΦ(t, λn)gnQn(x) nor-
mally converges for t ∈ [T1,+∞).
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Proof. Let us first show property (1). Let us observe that, since (Qn)n∈E
is an orthonormal basis of ℓ2(m), we get

∑︁
n≥0 g

2
n = ∥g∥2ℓ2(m). By using Cauchy-

Schwartz inequality and the self-duality relation (let us recall that if E = N0, then
N(t) is either an immigration-death process or a Meixner process) we get⎛⎝∑︂

n≥0

|gnQn(x)|

⎞⎠2

≤ ∥g∥2ℓ2(m)

∑︂
n≥0

Q2
n(x) = ∥g∥2ℓ2(m)

∑︂
n≥0

˜︁m(n)P 2
x (n) =

∥g∥2ℓ2(m)

m(x)
.

To show property (2), let us just recall that since λn ≤ 0 then eΦ(t, λn) ≤ 1 and∑︂
n≥0

|gn eΦ(t, λn)Qn(x)| ≤
∑︂
n≥0

|gnQn(x)|.

Finally, concerning property (3), let us observe that for t ≥ T1 it holds eΦ(t, λn) ≤
eΦ(T1, λn). Thus, by using Proposition 1.4.12, we get∑︂

n≥0

|λngn eΦ(t, λn)Qn(x)| ≤
∑︂
n≥0

|λngn eΦ(T1, λn)Qn(x)| ≤ K(T1)
∑︂
n≥0

|gnQn(x)|,

concluding the proof. □

Now we are ready to show the two main results of this section. The first one
concerns strong solution of (2.3.13) (see [22, Theorem 4.3]).

Theorem 2.3.9. Let N(t) be a solvable birth-death process with state space
E, generator G, invariant measure m and family of associated classical orthogonal
polynomials (Pn)n∈E. Let g ∈ ℓ2(m) with g =

∑︁
n∈E gnQn in ℓ2(m). Then the

Cauchy problem (2.3.13) admits a unique strong solution

(2.3.15) u(t, y) =
∑︂
n∈E

eΦ(t, λn)gnQn(y) t ≥ 0, y ∈ E

with ∥u∥C([0,+∞);ℓ2(m)) = supt≥0 ∥u(t, ·)∥ℓ2(m) ≤ ∥g∥ℓ2(m). Moreover, pΦ(t, x; y)

is the fundamental solution of (2.3.13), in the sense that it is the unique strong
solution of (2.3.13) for g(y) = δx,y as x, y ∈ E and, for any g ∈ ℓ2(m), it holds

u(t, y) =
∑︂
x∈E

pΦ(t, x; y)g(x).

Proof. By Lemma 2.3.8 we know that the summation in (2.3.15) is well de-
fined. Moreover, we have, for the single summand,

G[eΦ(t, λn)gnQn](y) = eΦ(t, λn)gn GQn(y) = λn eΦ(t, λn)gnQn(y)

= ∂Φt eΦ(t, λn)gnQn(y) = ∂Φt [eΦ(·, λn)gnQn(y)].

In particular this ensures that u is a strong solution of (2.3.13) whenever E is
finite.
Let us consider the case in which E = N0. First of all, let us show that u is
well-defined. To do this, define the partial sum

uN (t, y) =

N∑︂
n=0

eΦ(t, λn)gnQn(y) t ≥ 0, y ∈ E
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for some N ∈ N. Consider N < M in N and observe that, since eΦ(t, λn) ≤ 1 being
λn ≤ 0, it holds

∥uN (t, ·)− uM (t, ·)∥2ℓ2(m) ≤
M∑︂

n=N+1

g2n,

that, since (gn)n≥0 ∈ ℓ2, ensures that the series in (2.3.15) converges in ℓ2.
Let us consider the integrated tail IΦ of the Lévy measure νΦ that is an increasing
and non-negative function. In particular we have∫︂ t

0

(u(τ, y)− u(0+, y))νΦ(t− τ)dτ =

∫︂ t

0

(u(τ, y)− u(0+, y))dIΦ(t− τ).

In Lemma 2.3.8 we have shown that the series defining u(t, y) normally converges
for fixed y, thus we can exchange summation and integral sign by [126, Theorem
7.16], obtaining∫︂ t

0

(u(τ, y)− u(0+, y))νΦ(t− τ)dτ =

+∞∑︂
n=0

(︃∫︂ t

0

(eΦ(τ, y)− 1)νΦ(t− τ)dτ

)︃
gnQn(y).

Now we want to show that we can take the derivative in t term by term. To do
this, let us observe that

+∞∑︂
n=0

∂

∂t

(︃∫︂ t

0

(eΦ(τ, y)− 1)νΦ(t− τ)dτ

)︃
gnQn(y) =

+∞∑︂
n=0

∂Φt eΦ(t, λn)gnQn(y)

=

+∞∑︂
n=0

λn eΦ(t, λn)gnQn(y),

where the series on the right-hand side normally converges in any compact interval
[T1, T2] with T1 > 0. Thus we can exchange the derivative operator with respect to
the summation one, obtaining

∂Φt u(t, y) =

+∞∑︂
n=0

λn eΦ(t, λn)gnQn(y) =

+∞∑︂
n=0

eΦ(t, λn)gn GQn(y).

Now we have to show that we can exchange the operator G with the summation
operator. To do this, we just have to observe that, since the involved series normally
converge for t ∈ [0,+∞), we have

δ+
+∞∑︂
n=0

eΦ(t, λn)gn GQn(y) =

+∞∑︂
n=0

eΦ(t, λn)gn G δ+Qn(y),

δ2
+∞∑︂
n=0

eΦ(t, λn)gn GQn(y) =

+∞∑︂
n=0

eΦ(t, λn)gn G δ2Qn(y).

Thus, we finally obtain

∂Φt u(t, y) =

+∞∑︂
n=0

eΦ(t, λn)gn GQn(y) = G
+∞∑︂
n=0

eΦ(t, λn)gnQn(y) = G u(t, y).
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Now that we have shown that the first equation of (2.3.13) holds pointwise, we have
to check for the second one. To do this, just observe that eΦ(0, λn) = 1 and then

u(0, y) =

+∞∑︂
n=0

gnQn(y) = g(y).

Let us also observe that, arguing as we did for u, we have ∂Φt u(t, ·) ∈ ℓ2(m) and
∂Φt u is well-defined.
Now we have to show that u is continuous in [0,+∞). Let us show continuity in
0+, since for any other t > 0 the proof is analogous. Let us consider n(ε) ≥ 0 such

that
∑︁+∞

n=n(ε) g
2
n ≤ ε. Then we have

∥u(t)− g∥2ℓ2(m) ≤
n(ε)∑︂
n=1

(1− eΦ(t, λn))
2g2n + ε.

Sending t→ 0+ and then ε→ 0+ we obtain the assertion.
Concerning the continuity of ∂Φt u in (0,+∞), let us fix t0 > 0 and t1 ∈ (0, t0).
Consider t ≥ t1 and observe that⃦⃦

∂Φt u(t)− ∂Φt u(t0)
⃦⃦2
ℓ2(m)

≤
n(ε)∑︂
n=1

(eΦ(t, λn)− eΦ(t0, λn))
2g2n +K(t1)ε,

obtaining the claim by sending t→ t0 and ε→ 0+.
Uniqueness follows from the fact that (Qn)n∈E is an orthonormal basis of ℓ2(m)
(both in the finite and countably infinite case). Moreover, since (Qn)n∈E is an
orthonormal basis of ℓ2(m), we have

∥u(t)∥2ℓ2(m) =
∑︂
n∈E

e2Φ(t, λn)g
2
n ≤ ∥g∥ℓ2(m)

and then, taking the supremum, we obtain the desired bound on the norm of u.
Now let us show that pΦ(t, x; y) is the fundamental solution. To do this, let us
observe that, since all the involved sums are normally convergent in compact sets
containing t, we can use Fubini’s theorem to obtain∑︂

x∈E
pΦ(t, x; y)g(x) =

∑︂
x∈E

m(x)

(︄∑︂
n∈E

eΦ(t, λn)Qn(x)Qn(y)

)︄
g(x)

=
∑︂
n∈E

Qn(y) e(t, λn)

(︄∑︂
x∈E

m(x)Qn(x)g(x)

)︄
=
∑︂
n∈E

Qn(y) e(t, λn)gn = u(t, y).

Finally, fix z ∈ E and consider g(x) = δz,x. Then we have

u(t, y) =
∑︂
x∈E

pΦ(t, x; y)g(x) = pΦ(t, z; y),

concluding the proof of the Theorem. □

Now we want to do the same thing with the non-local forward equation

(2.3.16)

{︄
∂Φt v(t, x) = F v(t, x) t > 0, x ∈ E

v(0, x) = f(x) x ∈ E,
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where f is some suitable initial datum and F is the forward operator of some
solvable birth-death process. We define the function v as done for u and we refer
to the definition of strong solution as given in 2.3.3. Now we are ready to show the
second main result of this section, concerning strong solutions of (2.3.16) (see [22,
Theorem 4.4]).

Theorem 2.3.10. Let N(t) be a solvable birth-death process with state space
E, forward operator F , invariant measure m and family of associated classical
orthogonal polynomials (Pn)n∈E. Let f/m ∈ ℓ2(m) such that f = m

∑︁
n∈E fnQn

in ℓ2(m). Then the non-local Cauchy problem (2.3.16) admits a unique strong
solution

(2.3.17) v(t, x) = m(x)
∑︂
n∈E

eΦ(t, λn)gnQn(x), t ≥ 0, x ∈ E

satisfying the following norm estimates:

• ∥v∥C([0,+∞);ℓ2(m)) = supt≥0 ∥v(t, ·)∥ℓ2(m) ≤ ∥f/m∥ℓ2(m);

• supt≥0 ∥v(t, ·)/m(·)∥ℓ2(m) ≤ ∥f/m∥ℓ2(m).

Moreover, pΦ(t, x; y) is the fundamental solution of (2.3.16), in the sense that it
is the strong solution of (2.3.16) as f(x) = δy,x for fixed y ∈ E and for any
f/m ∈ ℓ2(m) it holds

v(t, x) =
∑︂
y∈E

pΦ(t, x; y)f(y).

Proof. Once we have checked that a single summand of (2.3.17) is a solution
of the first equation of (2.3.16), the proof is analogous to the one of Theorem 2.3.9,
except for the first norm bound. Let us then observe that

Fz[m(z) eΦ(t, λn)Qn(z)] = λn eΦ(t, λn)m(z)Qn(z) = ∂Φt [m(z) eΦ(t, λn)Qn(z)].

Concerning the first norm estimate, let us recall that m is a probability measure
on E, thus 0 ≤ m(x) ≤ 1 for any x ∈ E. Then it holds

∥v(t, ·)∥2ℓ2(m) =
∑︂
x∈E

m3(x)

(︄∑︂
n∈E

eΦ(t, λn)fnQn(x)

)︄2

≤
∑︂
x∈E

m(x)

(︄∑︂
n∈E

eΦ(t, λn)fnQn(x)

)︄2

=
∑︂
n∈E

e2Φ(t, λn)f
2
n ≤ ∥f/m∥2ℓ2(m) ,

completing the proof. □

In the next section we will focus on stochastic representation of the strong
solutions we obtained here.

2.4. Non-local solvable birth-death processes

To give a stochastic representation of the strong solutions of the non-local
Cauchy problems (2.3.13) and (2.3.16), we need to introduce a particular class of
time-changed processes.
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Definition 2.4.1. Let N(t) be a solvable birth-death process and Φ ∈ BF a
driftless Bernstein function. Then the non-local solvable birth-death process
induced by N(t) and Φ is defined as

NΦ(t) = N(LΦ(t)), t ≥ 0

where LΦ(t) is an inverse subordinator associated to Φ independent of N(t).

Let us observe that in the local case, the transition probability function p(t, x; y) =
P(N(t) = x|N(0) = y) is the fundamental solution of the Cauchy problems related
to the backward and forward Kolmogorov equations. Concerning the non-local,
case, the process NΦ(t) is not a Markov process, but only a semi-Markov one.
However, we can still define the transition probability function as:

pΦ(t, x; y) = P(NΦ(t) = x|NΦ(0) = y), t ≥ 0, x, y ∈ E.

Let us observe that we have used the same notation as the fundamental solution
of the non-local problems (2.3.13) and (2.3.16). Indeed we can show the following
Theorem (see [22, Theorem 5.1]).

Theorem 2.4.1. Let NΦ(t) be a non-local solvable birth-death process with state
space E. Then the transition probability function pΦ(t, x; y) coincides with the sum-
mation in Equation (2.3.14).

Proof. Let us first observe that NΦ(0) = N(0) by the fact that LΦ(0) = 0
almost surely. Thus, by conditioning, we easily get

pΦ(t, x; y) =

∫︂ +∞

0

p(s, x; y)fΦ(s; t)ds, t ≥ 0, x, y ∈ E

where fΦ(·; t) is the density of LΦ(t).
Now, by Theorem 2.3.4, we know that

pΦ(t, x; y) =

∫︂ +∞

0

m(x)
∑︂
n∈E

eλnsQn(x)Qn(y)fΦ(s; t)ds,

where (Qn)n∈E is the family of orthonormal polynomials associated to the solvable
birth-death process N(t), of which NΦ(t) is the time-changed process, and m is
its invariant measure. Thus, if E is finite, recalling that by definition eΦ(t, λn) =
E[eλLΦ(t)], we conclude the proof.
Let us consider the case in which E = N0. We need to change the order of integral
and series. To do this, let us consider again n0 = ⌈max(root(x) ∪ root(y))⌉ + 1 as
done in the proof of Lemma 2.3.7. Then we have

pΦ(t, x; y) =

∫︂ +∞

0

m(x)

n0∑︂
n=0

eλnsQn(x)Qn(y)fΦ(s; t)ds

+

∫︂ +∞

0

m(x)

+∞∑︂
n=n0

eλnsQn(x)Qn(y)fΦ(s; t)ds.

Since the first summation is finite, we can exchange the summation sign with the
integral one. Concerning the second summation, let us observe that

Qn(x)Qn(y) = ˜︁m(n)Px(n)Py(n)
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that are of fixed sign for n > n0 and we can use Fubini’s theorem to exchange the
integral sign with the summation one. Thus, we finally get

pΦ(t, x; y) = m(x)

+∞∑︂
n=0

Qn(x)Qn(y)

∫︂ +∞

0

eλnsfΦ(s; t)ds,

concluding the proof. □

The previous Theorem gives us a stochastic representation of the fundamental
solution of both problems (2.3.13) and (2.3.16). By using such result, we can easily
exploit stochastic representations for strong solutions of (2.3.13) and (2.3.16) (see
[22, Proposition 5.2]).

Corollary 2.4.2. Let NΦ(t) be a non-local solvable birth-death process with
state space E. Then

(1) For any g ∈ ℓ2(m) the function u(t, y) = Ey[g(NΦ(t))] is the unique strong
solution of (2.3.13);

(2) For any f ∈ ℓ1 such that f/m ∈ ℓ2(m), f ≥ 0 and ∥f∥ℓ1 = 1, the function
v(t, x) = Pf (NΦ(t) = x) is the unique strong solution of (2.3.16).

Proof. Concerning assertion (1), it follows from the fact that

u(t, y) =
∑︂
x∈E

g(x)pΦ(t, x; y)

and Theorem 2.3.9. Instead, concerning assertion (2), we have

v(t, x) =
∑︂
y∈E

f(y)pΦ(t, x; y),

thus Theorem 2.3.10 concludes the proof. □

Now that we have such representation, we can use the spectral decomposition
provided in Theorem 2.3.10 to show that m is also the invariant measure and the
limit distribution for NΦ(t) (see [22, Corollary 5.3]).

Proposition 2.4.3. Let NΦ(t) be a non-local solvable birth-death process with
state space E. Then

(1) If NΦ(0) admits distribution m, then NΦ(t) is first-order stationary with
distribution m for any t ≥ 0;

(2) If NΦ(0) admits distribution f such that f/m ∈ ℓ2(m), then
limt→+∞ Pf (NΦ(t) = x) = m(x).

Proof. Let us first show assertion (1). To do this, let us observe that 1 ∈
ℓ2(m) and then v(t, x) = Pm(NΦ(t) = x) is the unique strong solution of (2.3.16)
with initial datum f ≡ m. Now we need to determinemn such that

∑︁
n∈E mnQn(x) ≡

1. However, deg(Qn) = n for any n ∈ E, thus the unique possibility is that m0 = 1
while mn = 0 for any n ∈ E \ {0}. Finally, by Equation (2.3.17) and the fact that
λ0 = 0, we get

v(t, x) = m(x)
∑︂
n∈E

mn eΦ(t, λn)Qn(x) = m(x).
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Concerning property (2), let us consider f ∈ ℓ1 with f ≥ 0 and
∑︁

x∈E f(x) = 1,

such that f/m ∈ ℓ2(m) and suppose NΦ(0) admits distribution f . Consider the
decomposition f/m =

∑︁
n∈E fnQn(x) and let us determine f0. We have

f0 =
∑︂
x∈E

m(x)
f(x)

m(x)
Q0(x) =

∑︂
x∈E

f(x) = 1.

Thus, by Equation (2.3.17), we get

v(t, x) = Pf (NΦ(t) = x) = m(x) +
∑︂
n∈E
n≥1

fn eΦ(t, λn)Qn(x)

Now let us also observe that f ∈ ℓ2(m) since f/m ∈ ℓ2(m) and 0 ≤ f(x) ≤
f(x)/m(x) for any x ∈ E. Thus in particular the series

∑︁
n∈E
n≥1

fn eΦ(t, λn)Qn(x)

normally converges for t ∈ [0,+∞). Thus we can exchange the limit sign with the
summation one. Let us determine limt→+∞ eΦ(t, λn). We know that limt→+∞ LΦ(t) =
+∞ almost surely (driftless subordinators are unbounded) and eΦ(t, λn) is decreas-
ing (since λn < 0 for any n ≥ 1) with eΦ(t, λn) ≤ 1. Thus, by monotone convergence
theorem, we have

lim
t→+∞

eΦ(t, λn) = E[ lim
t→+∞

eλnLΦ(t)] = 0.

Hence we finally get

lim
t→+∞

v(t, x) = m(x) +
∑︂
n∈E
n≥1

fn lim
t→+∞

eΦ(t, λn)Qn(x) = m(x).

□

In particular we have shown that the process NΦ(t) is first-order stationary if
NΦ(0) admits m as distribution. However, we can show that it is not even second-
order stationary in such case, since it is not stationary in wide sense. To do this,
we need a preliminary technical Lemma (see [29, Theorem 2]).

Lemma 2.4.4. Consider Φ ∈ BF a driftless Bernstein function. For any t, s ≥ 0
define the measure

F
(2)
Φ (t, s, A) = P((LΦ(t), LΦ(s)) ∈ A), ∀A ∈ B(R2).

Then for any λ > 0 and t ≥ s > 0 it holds

(2.4.1)

∫︂ +∞

0

∫︂ +∞

0

e−λ|u−v|F
(2)
Φ (t, s, dudv)

= λ

∫︂ s

0

eΦ(t− y;−λ)dUΦ(y)− 2 + 2 eΦ(s;−λ) + eΦ(t;−λ).

Proof. Denote G(u, v) = e−λ|u−v|. Let us first observe that, by monotone
convergence theorem,
(2.4.2)∫︂ +∞

0

∫︂ +∞

0

G(u, v)F
(2)
Φ (t, s, dudv) = lim

a→+∞
lim

b→+∞

∫︂ a

0

∫︂ b

0

G(u, v)F
(2)
Φ (t, s, dudv).
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To work with the integral in the right-hand side, we want to use the bivariate
integration by parts formula (as given in [70, Lemma 2.2]), obtaining
(2.4.3)∫︂ a

0

∫︂ b

0

G(u, v)F
(2)
Φ (t, s, dudv) = I1(a, b)+I2(a, b)+I3(a, b)+F

(2)
Φ (t, s, [0, a]× [0, b]),

where

I1(a, b) =

∫︂ a

0

F
(2)
Φ (t, s, [u, a]× [0, b])G(du, 0),

I2(a, b) =

∫︂ b

0

F
(2)
Φ (t, s, [0, a]× [v, b])G(0, dv),

I3(a, b) =

∫︂ a

0

∫︂ b

0

F
(2)
Φ (t, s, [u, a]× [v, b])G(du, dv).

Observe that

G(du, v) = (−λe−λ(u−v)χu≥v(u, v) + λe−λ(v−u)χu<v(u, v))du

G(u, dv) = (λe−λ(u−v)χu>v(u, v)− λe−λ(v−u)χu≤v(u, v))dv

thus, for u ∈ [0, a], it holds G(du, 0) = −λe−λudu. Hence we can use monotone
convergence theorem to obtain

lim
a,b→+∞

I1(a, b) = −
∫︂ +∞

0

F
(2)
Φ (t, s, [u,+∞)× [0,+∞))λe−λudu

=

∫︂ +∞

0

P(LΦ(t) ≥ u)d(e−λu)

= −1 +

∫︂ +∞

0

e−λufΦ(u; t)du = eΦ(t;−λ)− 1.

(2.4.4)

Arguing in the same way we get

(2.4.5) lim
a,b→+∞

I2(a, b) = eΦ(s;−λ)− 1.

Moreover, we have

(2.4.6) lim
a,b→+∞

F
(2)
Φ (t, s, [0, a]× [0, b]) = 1.

Finally, let us observe that F
(2)
Φ (t, s, ·) is a probability measure on R+ ×R+ and

G(u, v) is bounded by 1, thus the integral on the left-hand side of (2.4.2) is finite.
Combining inequalities (2.4.4), (2.4.5) and (2.4.6), we know that lima,b→+∞ I3(a, b) =
I4 is finite. Now let us consider

(2.4.7) I4 =

∫︂∫︂
R+×R+

P(LΦ(t) ≥ u, LΦ(s) ≥ v)G(du, dv) = I5 + I6 + I7

where

I5 =

∫︂∫︂
u<v

P(LΦ(t) ≥ u, LΦ(s) ≥ v)G(du, dv)

I6 =

∫︂∫︂
u=v

P(LΦ(t) ≥ u, LΦ(s) ≥ v)G(du, dv)

I7 =

∫︂∫︂
u>v

P(LΦ(t) ≥ u, LΦ(s) ≥ v)G(du, dv).
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Let us first work with the integral in I6. Let us observe that G(du, dv) admits a
jump part on u = v. In particular we have, on u = v, G(du, dv) = 2λdu. Moreover,
since LΦ is increasing, we have that LΦ(s) ≥ u implies LΦ(t) ≥ u. Thus, we obtain

(2.4.8) I6 = 2λ

∫︂ +∞

0

P(LΦ(s) ≥ u)du = 2λUΦ(s).

Now let us consider I5. As before, we have LΦ(s) ≥ v implies LΦ(t) ≥ u, thus we
get, since G(u, v) is C2 in the region of R+ ×R+ such that u < v,

I5 = −
∫︂ +∞

0

P(LΦ(s) ≥ v)λe−λv
(︃∫︂ v

0

λeλudu

)︃
dv

= −
∫︂ +∞

0

P(LΦ(s) ≥ v)λ(1− e−λv)dv

= −λ
∫︂ +∞

0

P(LΦ(s) ≥ v)dv +

∫︂ +∞

0

P(LΦ(s) ≥ v)d(e−λv)

= −λUΦ(s) + eΦ(s;−λ)− 1.

(2.4.9)

Concerning I7, things are more complicated. First of all, let us define the set

A(t, s) = {(x, y) ∈ R2 : y ∈ [0, s], x ∈ [0, t− y]}.

Let us denote by gΦ(du; t) the law of σΦ(t). Then we have, for u > v, since σΦ is a
Lévy process,

P(LΦ(t) ≥ u, LΦ(s) ≥ v) = P(σΦ(u) ≤ t, σΦ(v) ≤ s)

= P(σΦ(u)− σΦ(v) + σΦ(v) ≤ t, σΦ(v) ≤ s)

=

∫︂ s

0

(︃∫︂ t−y

0

gΦ(dx;u− v)

)︃
gΦ(dy; v)

=

∫︂∫︂
A(t,s)

gΦ(dx;u− v)gΦ(dy; v).

(2.4.10)

Now we can substitute such formula in the definition of I7 to achieve

I7 = −
∫︂∫︂

A(t,s)

∫︂∫︂
u>v

λ2e−λ(u−v)dudvgΦ(dx;u− v)gΦ(dy;u)

= λ

∫︂∫︂
A(t,s)

∫︂ +∞

0

g(dy; v)

(︃∫︂ +∞

v

(−λe−λ(u−v))gΦ(dx;u− v)du

)︃
dv,

where the order of the integrals has been exchanged by using the properties of
mixture measures.
Now let us use the change of variables u− v = w in the inner integral to obtain

I7 = λ

∫︂∫︂
A(t,s)

(︃∫︂ +∞

0

g(dy; v)dv

)︃(︃∫︂ +∞

0

(−λe−λw)gΦ(dx;w)dw
)︃
.

Now we have decoupled the two inner integrals. Let us define the mixture measures

I8(dy) =

∫︂ +∞

0

gΦ(dy; v)dv I9(dx) =

∫︂ +∞

0

(−λe−λw)gΦ(dx;w)dw.
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To better understand what are these measures, let us consider their Laplace-Stieltjes
transforms. Concerning I8(dy), we have

LS [I8](z) =

∫︂ +∞

0

e−zy
∫︂ +∞

0

g(dy; v)dv =

∫︂ +∞

0

e−vΦ(z)dv =
1

Φ(z)
= LS [dUΦ](z),

thus we have I8(dy) = dUΦ(y), that is well-defined since UΦ is locally of bounded
variation. Rewriting I7, we have

I7 = λ

∫︂ s

0

(︃∫︂ t−y

0

I9(dx)

)︃
dUΦ(y).

Now let us determine
∫︁ t−y
0

I9(dx). We have∫︂ t−y

0

I9(dx) =

∫︂ t−y

0

∫︂ +∞

0

(−λe−λw)gΦ(dx;w)dw

=

∫︂ +∞

0

(−λe−λw)
(︃∫︂ t−y

0

gΦ(dx;w)

)︃
dw

=

∫︂ +∞

0

P(σΦ(w) ≤ t− y)d(e−λw)− 1

=

∫︂ +∞

0

e−λwfΦ(t− y;w)dw − 1 = eΦ(t− y;−λ)− 1.

Hence we get

(2.4.11) I7 = λ

∫︂ s

0

eΦ(t− y;−λ)dUΦ(y)− λUΦ(s).

Substituting Equation (2.4.8), (2.4.9) and (2.4.11) in (2.4.7) we obtain

(2.4.12) I4 = eΦ(s;−λ)− 1 + λ

∫︂ s

0

eΦ(t− y;−λ)dUΦ(y).

Finally, substituting (2.4.4), (2.4.5), (2.4.6) and (2.4.12) in (2.4.3) we conclude the
proof. □

Concerning the autocovariance function we get then

Proposition 2.4.5. Let NΦ(t) be a non-local solvable birth-death process with
state space E, invariant measure m and family of associated classical orthogonal
polynomials (Pn)n∈E. Suppose that ι = a0 + a1Q1 (where ι(x) = x). Then it holds,
for any t ≥ s,

Covm(NΦ(t), NΦ(s)) = a21

(︃
−λ1

∫︂ s

0

eΦ(t− y;λ1)dUΦ(y)− 2 + 2 eΦ(s;λ1) + eΦ(t;λ1)

)︃
.

In particular

(2.4.13) Covm(NΦ(t), NΦ(0)) = a21 eΦ(t;λ1).

Proof. It directly follows from Covm(N(t), N(s)) = a21e
λ1|t−s| and Lemma

2.4.4. □

We have that NΦ(t) is not second-order stationary. However, if we want to
study how memory affects the process, we need to adapt some definitions to our
non-stationary case. In particular, referring to [34, Lemmas 2.1 and 2.2], we give
the following definitions:
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Definition 2.4.2. Set γ(n) = Covm(NΦ(n), NΦ(0)) for n ∈ N.
• NΦ(t) is said to be long-range dependent with respect to the initial
datum if γ(n) ∼ ℓ(n)n−α where ℓ is a slowly varying function and α ∈
(0, 1);

• NΦ(t) is said to be short-range dependent with respect to the initial

datum if
∑︁+∞

n=1 |γ(n)| < +∞.

In particular we get the following result (see [22, Corllary 6.5])

Corollary 2.4.6. Let NΦ(t) be a non-local solvable birth-death process. Then:

• If Φ is regularly varying at 0+ with order α ∈ (0, 1), then NΦ(t) is long-
range dependent with respect to the initial datum;

• If limz→0+
Φ(z)
z = l ∈ (0,+∞), then NΦ(t) is short-range dependent with

respect to the initial datum.

Proof. The first statement is a direct consequence of Propositions 2.4.5 and
1.4.15. The second statement also follows from the same propositions with the
application of the integral criterion for the convergence of the series. □

We are currently working on a non-local extension of the spectral decompo-
sition of Pearson diffusions [62] by using the techniques used in [94] and [95].
The extension of such techniques to Student diffusions is quite complicated, as the
eigenfunctions of the absolutely continuous part of the spectrum of the generator
are expressed by means of technically difficult formulas (see [96]) or, as in the case
of skew Student distributions, such eigenfunctions are not explicitly known (see
[31]). See [21] for technical details.

2.5. The Time-Changed fractional Ornstein-Uhlenbeck (TCfOU)
process

As we saw in the previous sections, time-changing a time-homogeneous Feller
process generally leads to a substitution of a non-local derivative in place of the
classical one in the Kolmogorov equations of the process. Even if the process is not
uniquely determined by these equations (since we lose Markov property), we can
provide a stochastic representation of the solutions of some non-local difference-
differential Cauchy problems or some non-local (in time) parabolic equations (in
general, for non-local heat-like equations whose operator in the right-hand side is
the generator of a Feller process, as stated in Corollary 1.4.4). However, there are
different processes that, despite not being Feller process (even non Markov), are
still associated to some partial differential equations.
This is the case of Gaussian processes. Indeed, if we consider a centred one-
dimensional Gaussian process G(t) with differentiable variance function V (t) =
E[G2(t)] and such that G(0) = 0 almost surely, then its probability density func-
tion p(x; t) is solution of the non-autonomous heat-like equation:

∂p

∂t
(x; t) =

1

2
V ′(t)

∂2p

∂x2
(x; t) (x, t) ∈ R×R+ .

This leads to a natural question: what happens if we apply a time-change to G(t)?
The answer for this question is given for instance in [75], in the case of the inverse
stable subordinators and the inverse of a mixture of stable subordinators (leading
to a distributed order fractional derivative). However, the proofs of [75, Theorems
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3 and 4] both rely on a property that can be resumed as: The Laplace transform
of the product of two function is the complex convolution of the Laplace transform
of the function. Actually, this is true if both the Laplace transform can be inverted
by using Paley-Wiener inversion for holomorphic Fourier transforms (thus if these
Laplace transforms are L2 on vertical lines in the region of convergence). Hence,
we are relying on the regularity of both the variance of the Gaussian process and
the its probability density function. Here we want to consider the case in which
one of the two involved functions cannot be inverted by means of Paley-Wiener
inversion (but we can still use complex inversion formula), thus the operator on
the right-hand side is generally much more complicated with respect to the one
presented in [75].
To consider an interesting example, let us work with a modified version of a quite
regular process: it has been shown in [67] that, for the general time-changed
Ornstein-Uhlenbeck process, the spectral decomposition theorems given in [94] for
fractional Pearson diffusions still hold, using a different function in place of the
Mittag-Leffler one. Here, let us consider the fractional Ornstein Uhlenbeck pro-
cess introduced in [48]. In this section we will focus on the main properties of the
time-changed fractional Ornstein Uhlenbeck (TCfOU) process and then, in the next
section, we will follow the path to the construction of the generalized Fokker-Planck
equation for such process.

2.5.1. Properties of the fractional Ornstein-Uhlenbeck process. Let
us first give the definition of fractional Brownian motion (fBm, see [109]) and
fractional Ornstein-Uhlenbeck (fOU) process (see [48]).

Definition 2.5.1. The fractional Brownian motionBH(t) with Hurst index
H ∈ (0, 1) is a centred Gaussian process such that BH(0) = 0 almost surely and
the auto-covariance function is given by

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H).

The fractional Ornstein-Uhlenbeck process UH(t) with initial point 0, Hurst
index H ∈ (0, 1) and relaxation parameter θ > 0 is a centered Gaussian process
that is solution of the following stochastic differential equation driven by a fractional
Brownian noise:

dUH(t) = −UH(t)

θ
dt+ dBH(t), UH(0) = 0

and can be expressed as

UH(t) = e−
t
θ

∫︂ t

0

e
s
θ dBH(s)

for t ≥ 0, where the integral is a path-wise Riemann-Stieltjes integral (since the
integrand is a C1 function and then one can integrate by parts, see [147]).

From now on, let us consider H ∈
(︁
1
2 , 1
)︁
. By a direct application of the

fractional Itô isometry (see [37]), we have the following variance function:

(2.5.1) V2,H(t) := E[U2
H(t)] = H(2H − 1)θ2H

∫︂ t
θ

0

∫︂ t
θ

0

e−(s+u)|u− s|2H−2duds.
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Moreover, let us denote by Vn,H(t) := E[|UH(t)|n]. Since UH is a Gaussian process
we have

V2n,H(t) =
(2Hθ2H(2H − 1))nΓ

(︁
2n+1

2

)︁
√
π

(︄∫︂ t
θ

0

∫︂ t
θ

0

e−(s+u)|u− s|2H−2duds

)︄n

.

Concerning the behaviour of V2,H at infinity, the following limit has been shown in
[91] and in [25] with different strategies:

V2,H(∞) := lim
t→+∞

V2,H(t) = θ2HHΓ(2H).

It will be extremely useful to recall the following representation formula for V2,H
given in [91]:

(2.5.2) V2,H(t) = H

(︃∫︂ t

0

e−
z
θ z2H−1dz + e−

2t
θ

∫︂ t

0

e
z
θ z2H−1dz

)︃
.

Now, let us observe that, by Equation (2.5.1), it is easy to observe that V2,H(t) is
increasing, hence V2,H(t) ≤ V2,H(∞) for any t ≥ 0. Being V2,H(t) bounded, the
Laplace transform is well-defined for any λ ∈ H. Now let us determine this Laplace
transform, as done in [27, Lemma 5.1].

Lemma 2.5.1. The abscissa of convergence of V2,H is 0 and, for any λ ∈ H,
the Laplace transform of V2,H is given by

L[V2,H ](λ) =
2Hθ2HΓ(2H)

λ(θλ+ 2)(θλ+ 1)2H−1
,

where, for β > 0, zβ = eβLog(z) and Log is the principal value of the complex
logarithm.

Proof. Without loss of generality, we can consider λ ∈ R+ and then define
L[V2,H ] on the whole semi-plane H by holomorphic extension. Since all the involved
quantities are non-negative, we can use Fubini’s theorem, together with Equation
(2.5.2), and the change of variables y =

(︁
λ+ 1

θ

)︁
z to get

L[V2,H ](λ) = H

∫︂ +∞

0

z2H−1
(︃
e−

z
θ

∫︂ +∞

z

e−λtdt+ e
z
θ

∫︂ +∞

z

e−(λ+
2
θ )tdt

)︃
dz

=
2Hθ2H

λ(θλ+ 2)(θλ+ 1)2H−1

∫︂ +∞

0

e−yy2H−1dy =
2Hθ2HΓ(2H)

λ(θλ+ 2)(θλ+ 1)2H−1
.

□

Concerning the asymptotics of V2,H at 0+, it is not difficult to check that
V2,H ∼ t2H as t→ 0+. Indeed we have

lim
t→0+

∫︁ t

0
e−

z
θ z2H−1dz

t2H
= lim

t→0+

e−
t
θ

2H
=

1

2H

while

lim
t→0+

∫︁ t

0
e

z
θ z2H−1dz

e
2t
θ t2H

= lim
t→0+

e
t
θ(︁

2H + 2
θ t
)︁
e

2t
θ

=
1

2H

thus

lim
t→0+

V2,H(t)

t2H
= 1.
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Now, since we want to work with the Fokker-Planck equation of UH(t), we need to
show that V2,H is a C1 function. This is easy, by working directly with Equation
(2.5.2). In particular, we can also obtain some asymptotic results for V ′2,H (see [27,

Lemma 5.2 and Corollary 5.1]).

Lemma 2.5.2. The function V2,H belongs to C1([0,+∞)). Moreover it holds

V ′2,H ∼ 2H(2H − 1)θe−
t
θ t2H−2 as t → +∞, V ′2,H ∼ 2Ht2H−1 as t → 0+. Finally,

V ′2,H ∈ L2(0,+∞).

Proof. Let us first observe that, differentiating Equation (2.5.2) and then
integrating by parts, we get

V ′2,H(t) = 2H(2H − 1)e−
2
θ t

∫︂ t

0

e
z
θ z2H−2dz

thus we already have V2,H ∈ C1(0,+∞). Concerning the (right) differentiability in
0, we have

lim
t→0+

V2,H(t)

t
= 0

since V2,H(t) ∼ t2H and 2H > 1, being H > 1
2 . Hence we have V ′2,H(0) = 0 and

V2,H ∈ C1([0,+∞)).
Now, concerning the asymptotics of V ′2,H , we have

lim
t→0+

V ′2,H(t)

t2H−1
= lim

t→0+

2H(2H − 1)
∫︁ t

0
e

z
θ z2H−2dz

t2H−1e
2
θ t

= lim
t→0+

2H(2H − 1)e−
t
θ

2H − 1 + 2
θ t

= 2H,

and

lim
t→0+

V ′2,H(t)

e−
t
θ t2H−2

= lim
t→+∞

2H(2H − 1)
∫︁ t

0
e

z
θ z2H−2dz

e
t
θ t2H−2

= lim
t→+∞

2H(2H − 1)θ

1 + θ(2H − 2)t−1
= 2H(2H − 1)θ.

Finally, the fact that V ′2,H ∈ L2(0,+∞) follows from the fact that V ′2,H ∈ C([0,+∞))

and V ′2,H(t) ∼ 2H(2H − 1)θt2H−2e−
t
θ as t→ +∞. □

Now, let us focus on the Laplace transform of V ′2,H . We have the following

result (see [27, Lemma 5.3]).

Lemma 2.5.3. The abscissa of convergence of V ′2,H is −1/θ and

L[V ′2,H ](λ) =
2Hθ2HΓ(2H)

(θλ+ 2)(θλ+ 1)2H−1
.

Moreover, for any c > − 1
θ the function ω ∈ R ↦→ L[V ′2,H ](c+ iω) belongs to Lp(R)

for any p ≥ 1.

Proof. From the asymptotics we obtained in the previous Lemma, it is easy
to see that V ′2,H is of exponential order and the abscissa of convergence abs(V ′2,H) ≤
− 1

θ . Moreover, for any λ ∈ H we have

L[V ′2,H ](λ) = λL[V2,H ](λ) =
2Hθ2HΓ(2H)

(θλ+ 2)(θλ+ 1)2H−1
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that admits a unique holomorphic extension up to ℜ(λ) > − 1
θ . Thus we have

abs(V2,H) = − 1
θ . Now let us fix c > − 1

θ and observe that

| L[V ′2,H ](c+ iω)| = 2Hθ2HΓ(2H)

|cθ + 2 + ωθi||cθ + 1 + ωθi|2H−1
.

For ω ∈ [−1, 1], being the function ω ↦→ | L[V ′2,H ](c + iω)| continuous, it is also

bounded. For |ω| > 1 we have

| L[V ′2,H ](c+ iω)| = 2Hθ2HΓ(2H)

|ω|2| cθ+2
ω + θi|| cθ+1

ω + θi|2H−1
≤ 2HΓ(2H)

|ω|2
,

that is in Lp(R \[−1, 1]) for any p ≥ 1, concluding the proof. □

Since we have some informations on V2,H , we can also deduce some properties
of the one-dimensional probability density function pH(x; t) of UH(t). Indeed, being
UH(t) a Gaussian process with variance V2,H(t) and zero mean, it holds

(2.5.3) pH(x; t) =
1√︁

2πV2,H(t)
e
− x

2V2,H (t) , (x, t) ∈ R×R+ .

Starting from this equation, one obtains Laplace transformability of pH (with re-
spect to t) and some properties of the Laplace transform of pH on vertical lines (see
[27, Lemma 6.1 and Corollary 6.1]).

Lemma 2.5.4. For any x ∈ R∗ there exists a constant CH(x) such that
supt∈(0,+∞) pH(t, x) ≤ CH(x). Moreover, pH(x; t) is Laplace transformable with

respect to t for fixed x ∈ R∗ with abscissa of convergence abs(pH(x; ·)) ≤ 0. More-
over, for any c > 0 the function ω ∈ R ↦→ L[pH(x; ·)](c+ iω) is bounded.

Proof. Let us first show that for x ∈ R∗ the function pH(x; ·) is bounded.
Since V2,H(t) ∼ t2H as t → 0+, there exist two positive constants C1(H) and
C2(H) such that, for any t ∈ [0, 1],√︂

2πV2,H(t) ≥ C1(H)tH 2V2,H(t) ≤ C2(H)t2H .

Hence in particular we have, for any t ∈ (0, 1] and x ∈ R∗,

0 ≤ pH(x; t) ≤ 1

C1(H)tH
e
− x2

C2(H)t2H .

Taking the limit as t → 0+ we obtain that for any x ∈ R∗ it holds pH(x; 0+) = 0.
Moreover

lim
t→+∞

pH(x; t) =
1√︁

2πV2,H(∞)
e
− x

2V2,H (∞) < +∞.

Thus we can extend by continuity the function pH(x; ·) to [0,+∞] and Weierstrass’
theorem completes the proof.
Concerning the Laplace transform, since pH(x; ·) is bounded, it holds abs(pH(x; ·)) ≤
0. Moreover, if we fix c > 0, we have

| L[pH(x; ·)](c+ iω)| ≤
∫︂ +∞

0

e−ctpH(x; t)dt ≤ CH(x)

c

concluding the proof. □

Remark 2.5.5. Let us observe that, since V2,H(t) ∼ t2H as t → 0+, we have
that pH(0; t) is also Laplace transformable with abs(pH(0; ·)) = 0.
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Finally, let us work with the time-derivative of pH(x; t). Indeed we can show
that pH(x; ·) ∈ C1(0,+∞) and it is also Lipschitz. Thus, as a consequence, we will

obtain Laplace transformability of ∂pH

∂t (x; t) (see [27, Lemma 6.3]).

Lemma 2.5.6. For any x ∈ R∗ the function pH(x; ·) ∈ C1(0,+∞)∩W 1,∞(0,+∞).

Moreover, ∂pH

∂t (x; ·) is Laplace transformable with abs
(︂

∂pH

∂t (x; ·)
)︂
≤ 0 and then, for

any λ ∈ H, it holds

L
[︃
∂pH
∂t

(x; ·)
]︃
(λ) = λL[pH(x; ·)](λ).

Proof. Let us first of all observe that, from Equation (2.5.3), we easily get

∂pH
∂t

(x; t) =
V ′2,H(t)

2

(︄
−V2,H(t) + x2

V 2
2,H(t)

√︁
2πV2,H(t)

)︄
e
− x2

2V2,H (t) .

Moreover, it is easy to see that limt→+∞
∂pH

∂t (x; t) = 0. Now let us consider t ∈
[0, 1]. Then, by Lemma 2.5.2, we know there exists a positive constant C1(H) such
that V ′2,H(t) ≤ 2C1(H)t2H−1 for any t ∈ [0, 1]. Moreover, there exist two positive

constants C2(H) and C3(H) such that⃓⃓⃓⃓
⃓ −V2,H(t) + x2

V 2
2,H(t)

√︁
2πV2,H(t)

⃓⃓⃓⃓
⃓ e− x2

2V2,H (t) ≤ C2(H)
t2H + x2

t5H
e
− x2

C3(H)t2H ,

thus, we have ⃓⃓⃓⃓
∂pH
∂t

(x; t)

⃓⃓⃓⃓
≤ C1(H)C2(H)

t2H + x2

t3H+1
e
− x2

C3(H)t2H .

Taking the limit as t → 0+ we achieve, for any x ∈ R∗, limt→0+
∂pH

∂t (x; t) = 0.

Thus we can extend ∂pH

∂t (x; ·) on [0,+∞] and Weierstrass’ theorem completes the
proof. □

Now that we have these properties on the fOU process before we apply the time-
change, we can define the TCfOU process and then consider some basic properties.

2.5.2. Definition and first properties of the Time-Changed fractional
Ornstein-Uhlenbeck process. Now let us define the time-changed fractional
Ornstein-Uhlenbeck process, as done in [27].

Definition 2.5.2. Let us consider Φ ∈ BF a driftless Bernstein function, UH(t)
a fOU process and LΦ(t) the inverse of the subordinator associated to Φ. Suppos-
ing that LΦ and UH , are independent we define the time-changed fractional
Ornstein-Uhlenbeck (TCfOU) process as UH,Φ(t) := UH(LΦ(t)).

Before going into details of the main characteristics of the process UH,Φ(t), let
us state the following easy technical lemma.

Lemma 2.5.7. Let f : R+
0 → R be a measurable function and Φ ∈ BF a driftless

Bernstein function. Define fΦ(t) = E[f(LΦ(t))].

• If there exists a constant M such that for any t ≥ 0, f(t) ≤M , then also
fΦ(t) ≤M ;
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• If f is non-negative and Laplace transformable with abs(f) ≤ 0, then also
abs(fΦ) ≤ 0 and it holds

L[fΦ](λ) =
Φ(λ)

λ
L[f ](Φ(λ));

• If f is increasing (resp. decreasing) also fΦ is increasing (resp. decreas-
ing).

Proof. The first property is obvious by monotonicity of the expectation op-
erator. Concerning the the second property, we have, by Fubini’s theorem,

L[fΦ](λ) =
∫︂ +∞

0

f(y)

∫︂ +∞

0

e−λtfΦ(y; t)dtdy

=
Φ(λ)

λ

∫︂ +∞

0

e−yΦ(λ)f(y)dy =
Φ(λ)

λ
L[f ](Φ(λ)).

Finally, concerning last property, we have, since f is increasing and LΦ is almost
surely increasing, for t ≥ s,

fΦ(t)− fΦ(s) = E[f(L(t))− f(L(s))] ≥ 0.

□

As a first step, let us prove that the process UH,Φ admits all non-negative finite
order moments (see [27, Lemma 3.1])

Proposition 2.5.8. Let Vn,H,Φ(t) = E[|UH,Φ(t)|n]. Then

Vn,H,Φ(t) =

∫︂ +∞

0

Vn,H(s)fΦ(s; t)ds.

Moreover, setting, for n ≥ 1, Vn,H(∞) =
√︂

2n

π Γ
(︁
n+1
2

)︁√︂
V n
2,H(∞), we have that,

for any n ≥ 1, Vn,H,Φ(t) is increasing and limt→+∞ Vn,H,Φ(t) = Vn,H(∞).

Proof. Let us first observe that, by conditioning and using the fact that UH

and LΦ are independent:

Vn,H,Φ(t) =

∫︂ +∞

0

E[UH(s)|LΦ(t) = s]fΦ(s, t)ds =

∫︂ +∞

0

Vn,H(s)fΦ(s; t)ds.

Thus, in particular, we can write Vn,H,Φ(t) = E[Vn,H(LΦ(t))]. First of all, since
Vn,H(t) is increasing, this implies that also Vn,H,Φ(t) is increasing. Now, let us
observe, by final value theorem (see [46]), it holds

lim
λ→0+

λL[Vn,H ](λ) = Vn,H(∞).

Hence, we have, by Lemma 2.5.7, since Φ(0) = 0,

lim
λ→0+

λL[Vn,H,Φ](λ) = lim
λ→0+

Φ(λ)L[Vn,H ](Φ(λ)) = Vn,H(∞).

By final value theorem again, we have limt→+∞ Vn,H,Φ(t) = Vn,H(∞). □

Now we want to obtain some information on the one-dimensional law of UH,Φ.
First of all, let us show that UH,Φ admits a one-dimensional probability density
function, via the characteristic function (see [27, Proposition 4.1 and Corollary
4.1]).
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Proposition 2.5.9. If for any t > 0 it holds E[L−HΦ (t)] < +∞, then UH,Φ(t)
is absolutely continuous and its probability density function pH,Φ(x; t) satisfies:

(2.5.4) pH,Φ(x; t) =

∫︂ +∞

0

pH,Φ(x; s)fΦ(s; t)ds.

Moreover, if for some n ∈ N, it holds E[L−(n+1)H
Φ (t)] < +∞, then pH,Φ(x; t) is

differentiable in x n times.

Proof. Let us consider the characteristic functions φH(z; t) = E[eizUH(t)] and
φH,Φ(z; t) = E[eizUH,Φ(t)]. Arguing as in Proposition 2.5.8 we have

φH,Φ(z; t) =

∫︂ +∞

0

φH(z; s)fΦ(s; t)ds.

Since UH(t) is Gaussian with zero mean and variance V2,H(t), it holds

φH(z; t) = e−
z2

2 V2,H(t)

thus we have

φH,Φ(z; t) =

∫︂ +∞

0

e−
z2

2 V2,H(s)fΦ(s; t)ds.

Now we want to show that z ↦→ φH,Φ(z; t) belongs to L
1(R), since, in such case, a

simple application of Lévy’s inversion theorem implies the existence of pH,Φ. To do
this, let us use Fubini’s theorem, since all the integrands involved are non-negative,
to obtain ∫︂

R
φH,Φ(z; t)dz = (2π)

1
2

∫︂ +∞

0

1√︁
V2,H(s)

fΦ(s; t)ds.

Now, since V2,H is increasing, we have∫︂ +∞

1

1√︁
V2,H(s)

fΦ(s; t)ds ≤
1√︁

V2,H(1)
.

On the other hand, since as s → 0 it holds V2,H ∼ s2H , there exists a constant
C1(H) > 0 such that for any s ∈ [0, 1] it holds V2,H(s) ≥ C1(H)s2H and then∫︂ +∞

1

1√︁
V2,H(s)

fΦ(s; t)ds ≤
1√︁

C1(H)
E[L−HΦ (t)] < +∞.

Thus φH,Φ(·; t) ∈ L1(R) and then there exists pH,Φ(x; t). Moreover, Lévy’s inversion
theorem gives us a formula to obtain pH,Φ(x; t):

pH,Φ(x; t) =
1

2π

∫︂
R
e−izxφH,Φ(z; t)dz =

1

2π

∫︂
R
e−izx

∫︂ +∞

0

φH(z; s)fΦ(s; t)dsdz.

Applying again Fubini’s theorem and Lévy’s inversion theorem we get

pH,Φ(x; t) =

∫︂ +∞

0

1

2π

∫︂
R
e−izxφH(z; s)dzfΦ(s; t)ds =

∫︂ +∞

0

pH(x; s)fΦ(s; t)ds.

Finally, suppose that E[L−(n+1)H
Φ (t)] < +∞. Setting Cn =

∫︁ +∞
0

zne−
z2

2 dz, we
have ∫︂ +∞

0

znφH,Φ(z; t)dz = Cn

∫︂ +∞

0

(V2,H(s))−
n+1
2 fΦ(s; t)ds.
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Arguing as before and using the fact that the function |z|nφH,Φ(z; t) is even, we
have that z ↦→ znφH,Φ(z; t) belongs to L1(R) and then, by [127, Theorem 9.2], it
is enough to obtain n-times differentiability of pH,Φ(x; t) in x. □

Remark 2.5.10. Let us observe that the hypotheses E[L−2HΦ (t)] < +∞ gives
a sufficient condition for differentiability on the whole real line. However, this is
actually a sufficient condition to achieve differentiability in 0, since for any x ̸= 0
it holds

∂pH
∂x

(x; t) = − x√︂
2πV 3

2,H(t)
e
− x2

2V2,H (t) .

Thus it is easy to check that if x ∈ (a, b) such that 0 ̸∈ (a, b), then ∂pH

∂x (x; t) is

dominated by a L1(0,+∞) function depending on t and then we can differentiate
under the integral sign in (2.5.4).
Moreover, we have

∂pH,Φ

∂x
(x; t) = −

∫︂ +∞

0

x√︂
2πV 3

2,H(s)
e
− x2

2V2,H (s) fΦ(s; t)ds.

The same holds for the second derivative.
Let us observe that if H ≥ 1/2, then E[L−(n+1)H

Φ (t)] = +∞ for any t > 0. However,
despite we fixed the case H > 1/2, the proof of the previous Proposition easily
adapts to the case H < 1/2, in which we can gain some regularity. Indeed, if we
consider a tempered α-stable inverse subordinator, then pH,Φ admits any derivative
in x up to n = ⌊ 1

H − 1⌋ − 1, since we will not have integrability problems near 0
(where fΦ(0+; t) = ν̄Φ(t) > 0) while the asymptotic exponential bound given in
[10, Lemma 4.6] gives us integrability at infinity.

Let us give the main example.

Example 2.5.1. If we consider Φ(λ) = λα and then Lα(t) an inverse α-stable
subordinator, then we have for any n ∈ N0, by using Equation (1.2.3) and the

change of variables z = ts−1−
1
α ,

E[L−(n+1)H
α (t)] =

t

α

∫︂ +∞

0

s−(n+1)H−1− 1
α gα(ts

− 1
α )ds = t−α(n+1)H E[σα(n+1)H

α (1)].

However, α(n + 1)H < α if and only if H < 1
n+1 . If we are considering H ≥

1/2, then the only case is n = 0. Thus we obtain the existence of pH,α(x; t) but
not its differentiability in x = 0. In particular, as we stated before, pH,α(x; t) is
differentiable for any x ̸= 0 and its derivative is given by

∂pH,α

∂x
(x; t) = −

∫︂ +∞

0

x√︂
2πV 3

2,H(s)
e
− x2

2V2,H (s) fα(s; t)ds.

Now let us make some observation concerning Bernstein functions before ex-
ploiting an important property of the Laplace transform of pH,Φ. We know by
Proposition 1.1.3 that any Bernstein function Φ admits an homolorphic extension
on H. In particular this means that Φ is locally invertible in H \Z where Z is
at most countable (since the zeros of the derivative Φ′ are at most countable, be-
ing Φ analytic). If, by contradiction, for any c > 0 there exists z ∈ R such that
Φ′(c + iz) = 0, then the zeros of Φ′ are not countable. Thus there exists a whole
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vertical line rc := {c + iz, z ∈ R} such that Φ′(c + iz) ̸= 0. In particular we have
that Φ is invertible on such vertical line. Moreover, this argument still holds if we
ask for c ∈ (a, b) whenever a < b.
Thus, we have that Φ is invertible on any vertical line rc for c ∈ R+ \ZR where ZR
is the projection of Z on the real axis.
On the other hand, we have, by Lemma 2.5.7, that pH,Φ is bounded and Laplace
transformable for λ ∈ H and

L[pH,Φ(x; ·)](λ) =
Φ(λ)

λ
L[pH(x; ·)](Φ(λ)).

Now let U ⊂ H \Z be an open set in which Φ is invertible. Then we have, for any
λ ∈ Φ(U):

Φ−1(λ)

λ
L[pH,Φ(x; ·)](Φ−1(λ)) = L[pH(x; ·)](λ).

Now let us consider another local invertibility open set V ⊆ H \Z and λ ∈ Φ(U) ∩
Φ(V ) if Φ(U)∩Φ(V ) ̸= ∅. Let Φ−1∗ be the local inverse on V . Since the right-hand
side of the previous relation does not depend on Φ, we have

Φ−1(λ)

λ
L[pH,Φ(x; ·)](Φ−1(λ)) =

Φ−1∗ (λ)

λ
L[pH,Φ(x; ·)](Φ−1∗ (λ)).

In particular we have show the following result.

Lemma 2.5.11. The quantity Φ−1(λ)
λ L[pH,Φ(x; ·)](Φ−1(λ)) is well defined for

any λ ∈ Φ(H \Z). In particular it is independent of the choice of the local inverse
map.

Concerning the time-derivative of pH,Φ(x; t), as exploited in Equation (2.5.4),
it strictly depends on the regularity of the density of the inverse subordinator.
In case Φ(λ) = λα, for instance, we are able to show the following result (see [26,
Proposition 3.5]).

Proposition 2.5.12. Let α ∈ (0, 1) and x ̸= 0. Then pH,α(x; ·) ∈ C1(0,+∞).

Proof. By using the change of variables w = ts−
1
α we have

(2.5.5) pH,α(x; t) =

∫︂ +∞

0

pH

(︃
x;

(︃
t

w

)︃α)︃
gα(w)dw.

Let us fix t > 0 and 0 < t1 < t2 such that t ∈ (t1, t2). Fix x ̸= 0. First of all, let us
observe that

d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃
= αtα−1w−α

∂pH
∂y

(x; y)|y=( t
w )

α

and
∂pH
∂y

(x; y) =
V ′2,H(y)(x2 − V2,H(y))√︂

8πV 3
2,H(y)

e
− x2

2V2,H (y) .

By using Lemma 2.5.2 and the fact that V2,H ∼ t2H as t→ 0+, we have⃓⃓⃓⃓
∂pH
∂y

(x; y)

⃓⃓⃓⃓
≤ C1y

−3H−1e
− x2

C2y2H

and then ⃓⃓⃓⃓
d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ αC1t

−3αH−1
1 w3Hαe

−w3Hαx2

C2t2αH
2
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as w > t. Defining

C3 := sup
w>t1

w3Hαe
− w3Hαx2

C2(H)t2αH
2 and C4 := αC1(x,H)t−3αH−11 C3,

we have ⃓⃓⃓⃓
d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ C4

for w ≥ t.
On the other hand, for y ≥ 1, we have, by using the asymptotics as y → +∞ given
in 2.5.2, ⃓⃓⃓⃓

∂pH
∂y

(x; y)

⃓⃓⃓⃓
≤ C5y

2−2He−
y
θ

and then, as w < t,⃓⃓⃓⃓
d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ αC5t

(3−2H)αH−1
∗ w(2H−3)αe−

tα1
θwα ,

where

t∗ =

{︄
t1 (3− 2H)α− 1 < 0

t2 (3− 2H)α− 1 ≥ 0.

As before, setting

C6 := sup
w∈(0,t2)

wα(2H−3)e−
tα1

θwα and C7 := αC5t
(3−2H)αH−1
∗ C6,

we have, for any w < t, ⃓⃓⃓⃓
d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ C7.

Finally, taking C8 = max{C6, C7}, it holds, for any w ∈ (0,+∞),⃓⃓⃓⃓
d

dt
pH

(︃
x;

(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ C8.

Being gα(w)dw a probability measure, this is enough to guarantee that pH,α(x; t)
is differentiable in t as x ̸= 0 by differentiating under the integral sign. □

Now let give some final considerations concerning the existence of a limit dis-
tribution. As H = 1/2, it has been shown in [67] that despite the time-changed
Ornstein-Uhlenbeck process is not Gaussian anymore, its limit distribution is still
Gaussian. The adopted technique relies on the spectral decomposition, that here is
missing. However, in some cases, we are still able to prove that the process admits
a Gaussian limit distribution. For instance, let us refer to [26, Propositiomn 3.4]
for the α-stable case.

Proposition 2.5.13. It holds

lim
t→+∞

pH,α(x; t) =
1√︁

2πV2,H(∞)
e
− x2

2V2,H (∞) .

Proof. Starting from equation (2.5.5), let us consider the function h1(t) =

(2πt)−1/2e−x
2/2t and let us observe that it is bounded for x ̸= 0. Hence we easily

conclude that we can take the limit under the integral sign by dominated conver-
gence theorem.
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Let us now consider x = 0 and suppose t > t0 > 0. Let us observe that the func-

tion h2(t) =
V2,H(t)√
t2H∧1

is positive on (0,+∞). Moreover limt→0 h2(t) = 1 > 0 and

limt→+∞ h2(t) = V2,H(∞) > 0, thus there exists C1 = inft>0 h2(t) > 0. Setting

C2 = (2πC1)
−1/2 and defining h3(w) = C2h2((t0/w)

α), we have

pH

(︃
0,

(︃
t

w

)︃α)︃
≤ h3(w).

Finally, observe that h3(·)gα(·) ∈ L1(0,+∞), since gα is a probability density
function and h3 is bounded near 0, while E[σHα

α (1)] < +∞ being Hα < α. Thus,
even in this case, we can take the limit inside the integral sign, concluding the
proof. □

2.6. The Generalized Fokker-Planck equation of the TCfOU process

In this section we will introduce the Generalized Fokker-Planck equation for the
TCfOU process and will discuss some issues concerning uniqueness and regularity
of its solutions. To do this, we first need to study a particular class of functions
that will be introduced in the following.

2.6.1. Inverse-subordinated functions and weighted
inverse-subordinated functions. We have already seen that, generally, func-
tions of the form fΦ(t) = E[f(LΦ(t))] inherit different properties from both the
Bernstein function Φ and the transformed function f . Thus, let us consider this
kind of transformation from an operator point of view. Before doing this, let us
stress out that, despite in [26, Section 4] the operators are called subordination
operators, here the name could create confusion with Bochner subordination, hence
we will opt for a name related to the fact we are time-changing with an inverse-
subordinator.

Definition 2.6.1. Let Φ ∈ BF be a driftless Bernstein function and fΦ(s; t) the
density of the associated inverse subordinator. Then we denote by
SΦ : L∞(0,+∞) → L∞(0,+∞) the inverse-subordination operator as

SΦv(t) = E[v(LΦ(t))] =

∫︂ +∞

0

v(s)fΦ(s; t)ds.

Moreover, we define the weighted inverse-subordination operator as an oper-
ator SΦ,H : L∞(0,+∞) → L∞(0,+∞) such that

SΦ,Hv(t) = E[V ′2,H(LΦ)v(LΦ(t))] =

∫︂ +∞

0

V ′2,H(s)v(s)fΦ(s; t)ds.

In particular we denote by SΦ the range of SΦ and a function vΦ ∈ SΦ will be
called an inverse-subordinated function.

Let us state some basic properties of the operators SΦ and SΦ,H ([26, Lemma
4.1]).

Proposition 2.6.1. Both the operators SΦ and SΦ,H are continuous and bounded.
Moreover

∥SΦ∥L(L∞(0,∞),L∞(0,∞)) ≤ 1

and

∥SΦ,H∥L(L∞(0,∞),L∞(0,∞)) ≤
⃦⃦
V ′2,H

⃦⃦
L∞(0,+∞)

.
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Proof. Concerning SΦ, it is easy to see that ∥SΦv∥L∞(0,+∞) ≤ ∥v∥L∞(0,+∞)

by Lemma 2.5.7. Concerning SΦ,H , one has only to check that

SΦ,Hv(t) = SΦ(V
′
2,Hv)(t)

and then Lemma 2.5.7 concludes the proof. □

Concerning the Laplace transform, let us work first only on SΦ (see [26, Propo-
sition 4.2]).

Proposition 2.6.2. Let v ∈ L∞(0,+∞) and Φ ∈ BF be a driftless unbounded
Bernstein function. Then abs(SΦv) ≤ 0 and, for any λ ∈ H,

L[SΦv](λ) =
Φ(λ)

λ
L[v](Φ(λ)).

In particular, SΦ and SΦ,H are injective.

Proof. First of all, let us observe that the Laplace transform relation fol-
lows from Lemma 2.5.7 and the fact that v ∈ L∞(0,+∞). Concerning injectivity,
let us consider only real λ > 0. Φ is invertible in (0,+∞) and, being Φ drift-
less and unbounded, limλ→0 Φ(λ) = 0 and limλ→+∞ Φ(λ) = +∞. Thus Φ−1 :
(0,+∞) → (0,+∞). Since SΦ is linear, we only have to show that Ker(SΦ) = {0}.
Thus, suppose SΦv = 0. Taking the Laplace transform on both sides we have
Φ(λ)
λ L[v](Φ(λ)) = 0. Since Φ(λ)

λ ̸= 0 for any λ > 0 (if Φ is not constant, then it

must be strictly increasing), we have L[v](Φ(λ)) = 0. Now, considering λ = Φ−1(η)
for any η > 0, we obtain L[v](η) = 0 for any η > 0. Thus, being the Laplace
transform injective, it holds v ≡ 0.
With a similar argument, for SΦ,Hv = 0 we have L[V ′2,Hv](η) = 0 for any η > 0.

Thus, by injectivity of the Laplace transform we have V ′2,Hv ≡ 0. Since we have

shown that V ′2,H > 0 for any t ∈ (0,+∞), it holds v ≡ 0, concluding the proof. □

Now let us consider the action of the operators SΦ and SΦ,H on functions of
more variables. In particular, let I ⊆ R be a closed bounded interval. Then we say

that a function v ∈ L∞(R+;Ck(I)) if v : I × R+ → R, ∂kv
∂xk (x; t) is well defined for

any x ∈ I and continuous for fixed t ∈ R+ and

∥v∥L∞(R+;Ck(I)) = sup
t∈R+

k∑︂
j=0

⃦⃦⃦⃦
∂kv

∂jk
(·; t)

⃦⃦⃦⃦
L∞(I)

< +∞.

With this norm, the space L∞(R+;Ck(I)) is a Banach space. Moreover, as a direct
consequence of dominated convergence theorem, we obtain the following result.

Proposition 2.6.3. Fix I ⊆ R a closed bounded interval. The operators SΦ :
L∞(R+;Ck(I)) → L∞(R+;Ck(I)) and SΦ,H : L∞(R+;Ck(I)) → L∞(R+;Ck(I))
are well-defined, linear and bounded.

Let us stress out that such proposition easily follows from the actual statement
of [26, Lemma 4.1], in which the inverse subordination operators are defined via
Bochner integrals.
In the special case of the inverse α-stable subordinator, let us denote the operators
as Sα and Sα,H . As another direct consequence of dominated convergence theorem,
together with the expression of fα(s; t), we get the following easy result (see [26,
Proposition 4.6]).
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Proposition 2.6.4. Suppose v ∈ C1(R+). If there exist two constants C > 0
and β ∈

(︁
α−1
α , 2

)︁
such that |v′(t)| ≤ Ct−β, then Sαv ∈ C1(R+) and

d

dt
Sαv(t) = αt−1Sα(zv

′(z))(t).

Proof. We can rewrite

Sαv(t) =

∫︂ +∞

0

v

(︃(︃
t

w

)︃α)︃
gα(w)dw.

If we derive under the integral sign we have

d

dt
v

(︃(︃
t

w

)︃α)︃
= αtα−1w−αv′

(︃(︃
t

w

)︃α)︃
.

By hypothesis, considering t ∈ [t1, t2] for some 0 < t1 < t2, we have⃓⃓⃓⃓
d

dt
v

(︃(︃
t

w

)︃α)︃⃓⃓⃓⃓
≤ αtα−11 wβα−αt−βα∗ ,

where t∗ =

{︄
t1 β > 0

t2 β ≤ 0.
Thus, since wβα−αgα(w) belongs to L1(0,+∞), we can

differentiate under integral sign to obtain

d

dt
Sαv(t) =

∫︂ +∞

0

αtα−1w−αv′
(︃(︃

t

w

)︃α)︃
gα(w)dw

=

∫︂ +∞

0

αtα−1t−αzv′(z)
1

α
tz−

1
α−1gα(tz

− 1
α )dz

= αt−1
∫︂ +∞

0

zv′(z)f(z; t)dz,

concluding the proof. □

2.6.2. The weighted Laplace transform. Now we need to introduce an-
other operator. For any function v ∈ L∞(R+) we consider

LHv(λ) = L[V ′2,Hv](λ) λ ∈ H,
that we call a weighted Laplace transform. As one can easily deduce from
Proposition 2.6.2, there is a link between the weighted Laplace transform and the
weighted inverse subordination operator (see [26, Corollary 4.3]).

Proposition 2.6.5. Let v ∈ L∞(R+). Then we have, for any λ ∈ H,

L[SΦ,Hv](λ) =
Φ(λ)

λ
LHv(Φ(λ)).

Proof. It easily follows from

L[SΦ,Hv](λ) = L[SΦ(V
′
2,Hv)](λ) =

Φ(λ)

λ
L[V ′2,Hv](Φ(λ)) =

Φ(λ)

λ
LH(Φ(λ)).

□

Moreover, if we consider a function v ∈ L∞(R+;Ck(I)) for some compact in-

terval I ⊂ R, being ∂k

∂xk a closed operator, it holds ∂k

∂xkLHv(·;x) = LH

(︂
∂k

∂xk v(·;x)
)︂
,

by means of [13, Proposition 1.7.6].
Now let us observe that under suitable hypotheses on v we can write a different
representation of the operator LH (see [26, Proposition 4.4]).
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Proposition 2.6.6. Fix c1 < 0 < c2 with c1− c2 > −1/θ and let v ∈ L∞(R+).
Suppose one of the following properties hold:

a) v is Lipschitz and x ∈ R ↦→ L[v](c2 + ix) is in L1(R);
b) v belongs to L2(R+) and x ∈ R ↦→ L[v](c2 + ix) is in L2(R).

Then it holds

LHv(λ) =
1

4π2

∫︂ +∞

0

e−λt lim
R→+∞

∫︂ +∞

−∞
e(c1+iw)t

×
∫︂ R

−R
L[V ′2,H ](c1 − c2 + i(w − u))L[v](c2 + iu)dudwdt.

Proof. Let us define the function

I(r,R) =

∫︂ r

−r
e(c1+iw)t

∫︂ R

−R
L[V ′2,H ](c1 − c2 + i(w − u))L[v](c2 + iu)dudw.

Since, for fixed c1, c2, all the involved functions are bounded, we can use Fubini’s
theorem to achieve

I(r,R) =

∫︂ R

−R
e(c2+iu)t L[v](c2 + iu)

∫︂ r

−r
e(c1−c2+i(w−u))t L[V ′2,H ](c1 − c2 + i(w − u))dwdu

=

∫︂ R

−R
e(c2+iu)t L[v](c2 + iu)

∫︂ r−u

−r−u
e(c1−c2+iy)t L[V ′2,H ](c1 − c2 + iy)dydu.

Now, let us observe that for u ∈ [−R,R] we have | L[v](c2 + iu)| < C for some
constant C, thus it holds⃓⃓⃓⃓

e(c2+iu)t L[v](c2 + iu)

∫︂ r−u

−r−u
e(c1−c2+iy)t L[V ′2,H ](c1 − c2 + iy)dy

⃓⃓⃓⃓
≤ Cec1t

∫︂ +∞

−∞
| L[V ′2,H ](c1 − c2 + iy)|dy < +∞,

since L[V ′2,H ] belongs to L1 with respect to any vertical line. Hence, by dominated
convergence theorem, we can take the limit inside the integral sign. Moreover, since
L[V ′2,H ] belongs to L2 with respect to any vertical line and V ′2,H belongs to L2, we

can apply Paley-Wiener theorem (see [127, Theorem 19.2]) to obtain

lim
r→+∞

I(r,R) = 2πV ′2,H(t)

∫︂ R

−R
e(c2+iu)t L[v](c2 + iu)du.

Moreover, we have

1

4π2
lim

R→+∞
lim

r→+∞
I(r,R) = V ′2,H(t)v(t),

where we used the complex inversion theorem (see [13, Theorem 2.3.4]) under
hypothesis a) or Paley-Wiener theorem under hypothesis b).
Taking the Laplace transform on both sides of last identity we complete the proof.

□

Remark 2.6.7. Let us observe that if we can take the limit as R→ +∞ inside
the integral, we actually obtain that the inner integrals represent a convolution
product between the Laplace transform of V ′2,H and v on a vertical line, as obtained

in [75].



2.6. THE GENERALIZED FOKKER-PLANCK EQUATION OF THE TCFOU PROCESS 78

Now that we have this new particular form for LH , let us consider another
operator, which transforms the action of LH be means on Φ. To do this, let us fix
c1, c2 as in the previous proposition, but such that Φ is invertible on the vertical
line rc2 . Now, for any function v̄ : H → C, we can define the operator

ˆ︁LΦ,H v̄(λ) =
1

4π2

∫︂ +∞

0

e−Φ(λ)t lim
R→+∞

∫︂ +∞

−∞
e(c1+iw)t

×
∫︂ R

−R
L[V ′2,H ](c1 − c2 + i(w − u))

Φ−1(c2 + iu)

c2 + iu
v̄(Φ−1(c2 + iu))dudwdt

(2.6.1)

provided that the involved integrals exist and are finite.
Despite the complicated form of the operator, let us remark that for inverse subor-
dinated functions it is much easier to evaluate (see [26, Proposition 4.5]).

Proposition 2.6.8. Let vΦ = SΦv and let v̄Φ = L[vΦ]. Suppose the hypotheses
of Proposition 2.6.6 hold. Then, for any λ ∈ H,ˆ︁LΦ,H v̄Φ(λ) = LHv(Φ(λ)).

Proof. By Proposition 2.6.2 we know that for any λ ∈ H it holds

v̄Φ(λ) =
Φ(λ)

λ
L[v](Φ(λ)).

Let us consider λ = c2 + iu with c2 defined as before. Then Φ is invertible on rc2
and we have

Φ−1(c2 + iu)

c2 + iu
v̄Φ(Φ

−1(c2 + iu)) = L[v](c2 + iu).

By using last identity in definition (2.6.1) we get

ˆ︁LΦ,H v̄Φ(λ) =
1

4π2

∫︂ +∞

0

e−Φ(λ)t lim
R→+∞

∫︂ +∞

−∞
e(c1+iw)t

×
∫︂ R

−R
L[V ′2,H ](c1 − c2 + i(w − u))L[v](c2 + iu)dudwdt = LHv(Φ(λ)).

□

2.6.3. The generalized Fokker-Planck equation. Now let us consider a
function v : I × R+ → R, where I is some compact interval of R, belonging to
L∞(R+;C2(I)) and let us define, whenever it exists, the operator

FΦ,H v(x; t) = L−1λ→t

[︃
Φ(λ)

λ

∂2

∂x2
ˆ︁LH L[v(x; ·)](λ)

]︃
(t),

where the operator ˆ︁LH acts on the variable t. Let us denote by D(FΦ,H , I) the
domain of the operator FΦ,H . Now we have all the ingredients we need to introduce
the generalized Fokker-Planck equation of the TCfOU process.

Definition 2.6.2. We define the generalized Fokker-Planck equation of
the TCfOU (in I × (0, T ] for I ⊆ R any interval and T > 0, eventually T = +∞)
as:

(2.6.2) ∂Φt v(x; t) =
1

2
FΦ,H v(x; t) (x; t) ∈ I × (0, T ].
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Given the equation, now we have to establish what is a solution for such equa-
tion. Thus let us first give the following definition of classical solution (which is
actually the analogous of a Caratheodory solution of a Banach-space valued Ordi-
nary differential equation, see for instance [49]).

Definition 2.6.3. We say that a function v ∈ L∞([0, T ];C2(I)) is a classical
solution of Equation (2.6.2) if:

• v ∈ D(FΦ,H , I);
• v(x; ·) belongs to the domain of ∂Φt for any x ∈ I;
• Identity (2.6.2) holds for any x ∈ I and almost any t ∈ [0, T ].

A classical solution is said to be a strong solution if v(x; ·) ∈ C1((0, T ]) ∪
W 1,1(0, T ) for any x ∈ I.

On the other hand, due to the definition of FΦ,H in terms of composition of
inverse Laplace transform, multiplication operator and Laplace transform, classical
solutions could be difficult to work with1, hence we need a weaker form of solution.

Definition 2.6.4. We say that a function v ∈ L∞(R+;C0(I)) is a mild solu-
tion of Equation (2.6.2) (with T = +∞) if, denoting v̄(x;λ) = L[v(x; ·)](λ) for any
λ ∈ H:

• v̄(x; ·) belongs to the domain of ˆ︁LΦ,H for any x ∈ I;
• It holds, for any λ ∈ H and x ∈ I

(2.6.3) Φ(λ)v̄(x;λ)− Φ(λ)

λ
v(x; 0) =

Φ(λ)

2λ

∂2

∂x2
ˆ︁LΦ,H v̄(x;λ).

Finding mild solutions is easier than finding classical solutions, thus we want to
exploit some criterion to determine whenever a mild solution is more regular than
we expect it to be. To do this, we need to introduce other two notions of solutions
for the Fokker-Planck equation of the fOU:

(2.6.4) ∂tv(x; t) =
1

2
V ′2,H(t)

∂2

∂x2
v(x; t).

Being this a non-autonomous heat-like equation, the notions of strong and weak
solutions are already known. However, we need a notion of solution that considers
the equation as a Banach-space valued ordinary differential equation, and another
notion that works on Laplace transform of solutions.

Definition 2.6.5. We say that a function v ∈ L∞(R+;C2(I)) is a classical
solution of Equation (2.6.4) (with T = +∞) if:

• ∂tv(x; t) exists for almost any t > 0 and for any x ∈ I;
• ∂tv(x; ·) belongs to L1

loc(0,+∞);
• Identity (2.6.4) holds for any x ∈ I and almost any t > 0.

We say that a function v ∈ L∞(R+;C0(I)) is a mild solution of Equation (2.6.4)
(with T = +∞) if, denoting by v̄(x;λ) = L[v(x; ·)](λ) for any λ ∈ H:

• It holds, for any λ ∈ H and x ∈ I

(2.6.5) λv̄(x;λ)− v(x; 0) =
1

2

∂2

∂x2
LHv(x;λ).

1For instance, it could be difficult to check if a function is a classical solution, even if it solves
the equation in terms of Lapalce transforms
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In particular we will consider inverse-subordinated solutions. Now we want to
study some features of the inverse-subordinated solutions of the generalized Fokker-
Planck equation. In particular we want to address the following issues:

• Gain of regularity: we want to investigate what are the hypotheses
under which an inverse-subordinated mild solution is also a classical solu-
tion;

• Isolation of mild solutions: we want to show that, under a certain
partial order on inverse-subordinated functions, inverse-subordinated mild
solutions are non-comparable;

• Uniqueness of strong solutions: we want to show uniqueness of strong
solutions via a weak maximum principle.

In particular in each step we will take in consideration as main example of inverse-
subordinated solution of the generalized Fokker-Planck equation the function
pΦ,H(x; t). Indeed we will show the following properties:

• pΦ,H(x; t) is a mild solution of (2.6.2) for I = R∗;
• pΦ,H(x; t) is a classical solution of (2.6.2) for I = R∗;
• pα,H(x; t) is the unique strong solution of (2.6.2) for I = R∗ with boundary-

initial values pα,H(x; 0) = 0, pα,H(±∞; t) = 0 and

pα,H(0; t) =
1√
2π

∫︂ +∞

0

(V2,H(s))−1/2fα(s; t)ds.

2.6.4. Gain of regularity. We now address the issue of the gain of regularity
of inverse-subordinated mild solutions. First of all, we need to link mild solutions of
(2.6.4) with the ones of (2.6.2). We have the following result (see [26, Proposition
5.2]).

Proposition 2.6.9. Let v ∈ L∞(R+;C2(I)) and vΦ = SΦv. Then the following
properties are equivalent:

• v is a mild solution of (2.6.4);
• vΦ is a mild solution of (2.6.2).

Proof. Let us first observe that by definition of v and vΦ and by Proposition
2.6.8, we have that vΦ belongs to the domain of L̂Φ,H . Let us show that if v is a
mild solution of (2.6.4), then vΦ is a mild solution of (2.6.2), since the converse is
analogous.
Let us consider λ > 0 in R (since, one we have shown the identity (2.6.3) for
λ > 0, it holds for any λ ∈ H since all the involved functions are holomorphic on
H). Recalling that equation (2.6.5) holds for any λ > 0, then it also holds if we

substitute Φ(λ) in place of λ. Multiplying everything by Φ(λ)
λ we achieve

Φ(λ)

(︃
Φ(λ)

λ
L[v(x; ·)](Φ(λ))

)︃
− Φ(λ)

λ
v(x; 0) =

Φ(λ)

2λ

∂2

∂x2
LHv(x; Φ(λ)).

We conclude the proof by applying Propositions 2.6.2 and 2.6.8 and recalling that
vΦ(x; 0) = v(x; 0). □

From this proposition we already obtain the following Corollary concerning
pΦ,H(x; t).

Corollary 2.6.10. pΦ,H is a mild solution of (2.6.2) for I = R∗.
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Proof. We have pΦ,H = SΦpH , where pH ∈ L∞(R+;C2(I)) as I = R∗. In
particular, pH is a strong solution of (2.6.4), thus it is also a mild solution. □

Another link we can exploit concerns the weighted inverse-subordination op-
erator SΦ,H and the Fokker-Planck operator FΦ,H under some regularity of the
inverse-subordinated function (see [26, Lemma 5.3]).

Lemma 2.6.11. Let v ∈ L∞(R+;C0(I)) and vΦ = SΦv be a mild solution of
(2.6.2). Moreover, suppose that vΦ ∈ D(FΦ,H , I) and FΦ,H vΦ(·, t) ∈ C0(I) for any
fixed t > 0. Then it holds SΦ,Hv(·, t) ∈ C2(I) and, for any x ∈ I and almost any
t ∈ I,

FΦ,H vΦ(x; t) =
∂2

∂x2
SΦ,Hv(x; t).

Proof. Let us consider λ > 0 without loss of generality (in place of λ ∈ H).
Since vΦ is a mild solution of (2.6.2), from (2.6.3) and Proposition 2.6.8 we obtain

that Φ(λ)
λ LHv(·; Φ(λ)) ∈ C2(I). Now, since vΦ belongs to the domain of FΦ,H , we

have that ∂2

∂x2

Φ(λ)
λ LHv(x; Φ(λ)) is the Laplace transform of some function.

However, let us observe that SΦ,Hv ∈ L∞(R+;C0(I)) and

L[SΦ,Hv(x; ·)] =
Φ(λ)

λ
LHv(x; Φ(λ)),

thus, being ∂2

∂x2 : C2(I) → C0(I) a closed operator, we have, by [13, Proposition

1.7.6], that SΦ,Hv(·, t) ∈ C2(I) for any t > 0 and

∂2

∂x2
SΦ,Hv(x, t) = L−1λ→t

[︃
∂2

∂x2
Φ(λ)

λ
LHv(x; Φ(λ))

]︃
(t) = FΦ,H vΦ(x, t),

concluding the proof. □

Remark 2.6.12. Let us observe that the same holds for v ∈ L∞(R+;C0(I))

mild solution of (2.6.4) if we consider FH v(x; t) := L−1
[︂

∂2

∂x2LHv(x; ·)
]︂
(t) in place

of FΦ,H and SHv := V ′2,Hv in place of SΦ,H .

The previous Lemma and Remark are the main tools to obtain the gain of
regularity result. Indeed we can show the following Theorem (see [26, Theorem
5.5]).

Theorem 2.6.13. Let v ∈ L∞(R+;C0(I)) and vΦ = SΦv be a mild solution
of (2.6.2). Suppose for fixed t > 0 it holds v ∈ D(FH , I) and FH v(·; t) ∈ C0(I).
Moreover, suppose that FH v(x; ·) ∈ L∞(0,+∞) for any fixed x ∈ I. Then vΦ is a
classical solution of (2.6.2).

Proof. By Lemma 2.6.11 and Remark 2.6.12 we know that SHv(·; t) ∈ C2(I)
and then v(·; t) ∈ C2(I) since SH is a multiplication operator.
Now let us observe that, by Proposition 2.6.9, we know that v is mild solution of
(2.6.4), thus it holds, after some algebraic manipulations of (2.6.5),

L[v(x; ·)](λ) = 1

λ
v(x; 0) +

1

2λ

∂2

∂x2
LHv(x;λ).
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Since v(·; t) ∈ C2(I) and ∂2

∂x2 : C2(I) → C0(I) is a closed operator, we have, by
[13, Proposition 1.7.6],

∂2

∂x2
LHv(x;λ) = LH

(︃
∂2

∂x2
v(x; ·)

)︃
(λ).

Now, by hypotheses, we know that FH v(x; ·) ∈ L∞(0,+∞) thus we can define

F (x; t) =
1

2

∫︂ t

0

FH v(x; s)ds

and take the Laplace transform to obtain, by definition of FH ,

L[F (x; ·)](λ) = 1

2λ
LH

(︃
∂2

∂x2
v(x; ·)

)︃
(λ).

Hence we get

L[v(x; ·)](λ) = L[v(x; 0) + F (x; ·)](λ)
and, by injectivity of the Laplace transform,

v(x; t) = v(x; 0) +
1

2

∫︂ t

0

V ′2,H(s)
∂2

∂x2
v(x; s)ds.

In particular, v(x; ·) is absolutely continuous and, taking the derivative in t, v is
classical solution of (2.6.4).
Now let us consider the function vΦ(x; t)−v(x; 0) and, observing that ν̄Φ is Laplace

transformable with Laplace transform Φ(λ)
λ , we have that

L[ν̄Φ ∗ (vΦ(x; ·)− v(x; 0))] =
Φ(λ)

λ
L[vΦ(x; ·)](λ)−

Φ(λ)

λ2
v(x; 0).

Now, since ∂tv(x; t) = 1
2 FH v(x; t) and FH v(x; ·) ∈ L∞(0,+∞), also

∂tv(x; ·) ∈ L∞(0,+∞) and we can apply SΦ to it. By Proposition 2.6.2 we have

Lt→λ

[︃∫︂ t

0

SΦ∂tv(x; s)ds

]︃
=

Φ2(λ)

λ2
L[v(x; ·)](Φ(λ))− Φ(λ)

λ2
v(x; 0)

=
Φ(λ)

λ
L[vΦ(x; ·)](λ)−

Φ(λ)

λ2
v(x; 0)

= L[ν̄Φ ∗ (vΦ(x; ·)− v(x; 0))].

By injectivity of the Laplace transform we obtain

ν̄Φ ∗ (vΦ(x; ·)− v(x; 0))(t) =

∫︂ t

0

SΦ∂tv(x; s)ds

and then we can differentiate on both sides to achieve, for almost any t ∈ R+,

∂Φt vΦ(x; t) = SΦ∂tv(x; t).

However, we also have, being vΦ a mild solution of (2.6.2),

L [SΦ∂tv(x; ·)] (λ) = Φ(λ)L[vΦ(x; ·)](λ)−
Φ(λ)

λ
v(x; 0)

=
Φ(λ)

2λ

∂2

∂x2
ˆ︁LH L[vΦ](x;λ).
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Thus we have that Φ(λ)
2λ

∂2

∂x2
ˆ︁LH L[vΦ](x;λ) is the Laplace transform of something

and then we can take the inverse Laplace transform to obtain

SΦ∂tvΦ(x; t) =
1

2
FΦ,H vΦ(x; t).

Finally we get

∂Φt vΦ(x; t) =
1

2
FΦ,H vΦ(x; t),

concluding the proof. □

As a direct consequence, we have the following Corollary.

Corollary 2.6.14. pΦ,H is a classical solution of (2.6.2) for I = R∗.

Proof. It easily follows from the fact that pH is a strong solution of (2.6.4)

and V ′2,H(·) ∂2

∂x2 pH(x; ·) ∈ L∞(0,+∞) for any x ∈ R+. □

2.6.5. Isolation of mild solutions. Now let us focus on some uniqueness
issues. Concerning mild solutions, we are not able to show uniqueness, but we can
prove a form of isolation of the solutions, in terms of a partial order.

Definition 2.6.6. Let vΦ, wΦ ∈ L∞(R+;C0(I)) with vΦ = SΦv and wΦ =
SΦw. We say that vΦ ⪯ wΦ if and only if:

• v ≤ w in I × R+;
• There exist two constants ε,M > 0 such that for any x ∈ I the function
(w − v)(x; ·) is increasing in [0, ε] and decreasing in [M,+∞).

In particular ⪯ is a partial order on the set of inverse-subordinated functions, that
is well defined by injectivity of the operator SΦ.

Now let us consider the Cauchy problem

(2.6.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ(λ)v̄Φ(x;λ)− Φ(λ)

λ vΦ(x; 0) =
Φ(λ)
2λ

∂2

∂x2
ˆ︁LΦ,H v̄Φ(x;λ) (x;λ) ∈ I × R+

vΦ(x; 0) = f(x) x ∈ Iˆ︁LΦ,H v̄Φ(a;λ) = g1(λ) λ > 0
∂
∂x
ˆ︁LΦ,H v̄Φ(a;λ) = g2(λ) λ > 0,

where I = [a, b], which is the natural Cauchy problem associated to mild solutions of
equation (2.6.2). Now we can prove the following isolation result (see [26, Theorem
6.1]).

Theorem 2.6.15. Let I = [a, b], v, w ∈ L∞(R+;C0(I)) and consider vΦ = SΦv
and wΦ = SΦw such that, denoting v̄Φ = L[vΦ] and w̄Φ = L[wΦ], these are solutions
of the Cauchy problem (2.6.6). If wΦ ⪯ vΦ, then wΦ = vΦ.

Proof. First of all, let us observe that, since all the operators involved are lin-
ear, (vΦ − wΦ) is still a mild solution of (2.6.2). Let us set
hΦ(x; t) = (vΦ(x; t)− wΦ(x; t)). It holds hΦ(x; 0) = 0 and then

Φ(λ)h̄Φ(x;λ) =
Φ(λ)

2λ

∂2

∂x2
ˆ︁LΦ,H h̄Φ(x;λ),

where h̄Φ(x;λ) := L[hΦ(x; ·)](λ). Since SΦ is linear, we can define h(x; t) = v(x; t)−
w(x; t) to obtain hΦ = SΦh. Setting h̄(x;λ) := L[h(x; ·)](λ), we have

(2.6.7) 2Φ(λ)h̄(x; Φ(λ)) =
∂2

∂x2
LHh(x; Φ(λ)).
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Now we want to transform the previous second order differential equation in a
system of first order ones and then write it in vector form. Let us define

f(x;λ) =
∂

∂x
LHh(x; Φ(λ)) and g(x;λ) = (LHh(x; Φ(λ)), f(x;λ))

to rewrite (2.6.7) in the equivalent form

∂

∂x
g(x;λ) = (f(x;λ), 2Φ(λ)h̄(x; Φ(λ))).

Now let us observe that f(a;λ) = 0 and LHh(a; Φ(λ)) = 0, thus we have

g(x;λ) =

∫︂ x

a

∂

∂x
g(y;λ)dy

and then

(2.6.8) |g(x;λ)| ≤
∫︂ x

a

⃓⃓⃓⃓
∂

∂x
g(y;λ)

⃓⃓⃓⃓
dy.

Considering LHh(x; Φ(λ)), we have

LHh(x; Φ(λ)) =

∫︂ ε

0

e−Φ(λ)th(x; t)V ′2,H(t)dt

+

∫︂ M

ε

e−Φ(λ)th(x; t)V ′2,H(t)dt

+

∫︂ +∞

M

e−Φ(λ)th(x; t)V ′2,H(t)dt

:= I1 + I2 + I3.

Now let us observe that mint∈[ε,M ] V
′
2,H(t) = m > 0, thus there exists a constant

C1 > 0 such that

I2 ≥ C1

∫︂ M

ε

e−Φ(λ)th(x; t)dt.

Concerning I1, we get

I1 =
1− e−Φ(λ)ε

Φ(λ)

∫︂ ε

0

V ′2,H(t)h(x; t)d

(︃
1− e−Φ(λ)t

1− e−Φ(λ)ε

)︃
where d

(︂
1−e−Φ(λ)t

1−e−Φ(λ)ε

)︂
is a probability measure on [0, ε]. Thus we can use Cheby-

shev’s integral inequality (see [110]), since we can suppose V ′2,H and h(x; ·) to be

comonotone in [0, ε]. Setting C2 = Φ(λ)
1−e−Φ(λ)ε

∫︁ ε

0
e−Φ(λ)tV ′2,H(t)dt > 0, we obtain

I1 ≥ C2

∫︂ ε

0

e−Φ(λ)th(x; t)dt.

Arguing in the same way for I3, we have that there exists a constant C3 > 0 such
that

I3 ≥ C3

∫︂ +∞

M

e−Φ(λ)th(x; t)dt.

Thus, taking C4 = mini=1,2,3 Ci > 0, we obtain

LHh(x; Φ(λ)) ≥ C4h̄(x; Φ(λ)).

Now let us define k(x;λ) =
⃓⃓
∂
∂xg(x;λ)

⃓⃓
and observe that

k(x;λ) =

√︂
4Φ2(λ)h̄

2
(x; Φ(λ)) + f2(x;λ).
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On the other hand we have, setting C5 = min
{︂

C2
4

4Φ2(λ) , 1
}︂
> 0,

|g(x;λ)| =
√︁
(LHh(x; Φ(λ)))2 + f2(x;λ) ≥ C5k(x;λ).

Plugging this inequality in Equation (2.6.8) and setting C6 = C−15 , we have

k(x;λ) ≤ C6

∫︂ x

a

k(y;λ)dy.

By Grönwall’s Inequality (see [11]) we conclude that k(x;λ) = 0. This implies that
h̄(x; Φ(λ)) = 0. Now, considering λ > 0, we have that Φ is invertible on the real
line, thus we conclude that h̄(x;λ) = 0 for any λ > 0. Finally, by injectivity of the
Laplace transform, we obtain h(x; t) = 0 for any t > 0 and x ∈ I, that is what we
wanted to prove. □

2.6.6. Uniqueness of strong solutions and the weak maximum prin-
ciple. Here we want to prove uniqueness of strong solutions of the generalized
Fokker-Planck equation. To do this, we need to study the value of non-local deriva-
tives at extremal points of a function. Let us recall that this has been done for
instance in [100] and [5] for the Caputo derivative and in [6] for the Riemann-
Liouville derivative. In our case, we have an adaptation of the Caputo derivative
case (see [26, Proposition 2.2]).

Proposition 2.6.16. Let Φ ∈ BF be regularly varying at infinity of index
α ∈ (0, 1). Supose f : [0, T ] → R and t0 is a maximum point for f . If f ∈
W 1,1(0, t0) ∩ C1((0, t0]), then ∂

Φf(t0) ≥ 0.

Proof. Let us consider the function g(τ) = f(t0) − f(τ) for τ ∈ [0, T ] and
observe that ∂Φg(t0) = −∂Φf(t0). Let us consider ε > 0 and write

∂Φf(t0) =

∫︂ ε

0

ν̄Φ(t0 − τ)g′(τ)dτ +

∫︂ t0

ε

ν̄Φ(t0 − τ)g′(τ)dτ := I1 + I2.

Concerning I2, by a change of variable we have

I2 =

∫︂ t0−ε

0

ν̄Φ(z)g
′(t0 − z)dz.

Now, since we know that g ∈ C1([ε, t0]) for any ε > 0, we can use dominated
convergence theorem to write

I2 = − lim
a→0

∫︂ t0−ε

a

ν̄Φ(z)dg(t0 − z).

Let us observe that ν̄Φ is monotone and finite in [a, t0 − ε], hence it is of bounded
variation and we can use integration by parts (see [147]) to obtain∫︂ t0−ε

a

ν̄Φ(z)dg(t0 − z) = ν̄Φ(t0 − ε)g(ε)− ν̄Φ(a)g(t0 − a)−
∫︂ t0

a

g(t0 − τ)dνΦ(τ).

However, since g(t0) = 0 and g ∈ C1([ε, t0]), we know that g(t0 − a) ≤ C|a|. On

the other hand, by Karamata’s Tauberian theorem, we know that ν̄Φ(t) ∼ Φ(1/t)
Γ(1−α)

as t → 0+. Hence we have that lima→0 ν̄Φ(a)g(t0 − a) = 0. Moreover, g is non
negative, hence, by monotone convergence theorem, we have

I2 = −ν̄Φ(t0 − ε)g(ε)−
∫︂ t0−ε

0

g(t0 − τ)dνΦ(τ).
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Now let us suppose ε < ε0 for some fixed ε0 > 0. Then, setting

C =
∫︁ t0−ε0
0

g(t0 − τ)dνΦ(τ), we get I2 ≤ −C.
Concerning I1, we have

I1 ≤ ν̄Φ(t0 − ε0)

∫︂ ε

0

|g′(τ)|dτ.

Since g′ ∈ L1(0, ε), we know there exists ε < ε0 such that I1 ≤ C
2 . Thus, choosing

ε > 0 as mentioned, we have

∂Φg(t0) ≤ −C
2

≤ 0,

concluding the proof. □

Remark 2.6.17. With a regularization procedure it can be shown that such
property holds even if f does not belong to C1.

Now let us observe that for strong inverse-subordinated solutions vΦ = SΦv of
(2.6.2), it holds

FΦ,H vΦ =
∂2

∂x2
SΦ,Hv.

This gives us a hint on what is missing to achieve a weak maximum principle for
such equation: we need to show that maximum points of vΦ are also maximum
points of SΦ,Hv, as done in [26, Lemma 6.2].

Lemma 2.6.18. Let v ∈ L∞(R+;C0(I)), vΦ = SΦv and vΦ,H = SΦ,Hv. Then
the following assertions are equivalent:

i (x0, t0) ∈ I × R+ is a maximum point of vΦ;
ii (x0, t0) ∈ I × R+ is a maximum point of vΦ,H .

Proof. The implication ii ⇒ i is obvious since supt>0 V
′
2,H(t) > 0. Thus let

us show i⇒ ii.
To do this, let us fix (x, t) ∈ I ×R+. First of all let us suppose that there exists an
increasing sequence Rn → +∞ and a decreasing sequence δn → 0 such that∫︂ Rn

δn

(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds ≥ 0.

Then, since mint∈[δn,Rn] V
′
2,H(t) > 0, we have

vΦ,H(x0; t0)− vΦ,H(x; t)

=

∫︂ δn

0

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ Rn

δn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ +∞

Rn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

≥
∫︂ δn

0

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ +∞

Rn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds.
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Taking the limit as n→ +∞ we obtain vΦ,H(x0; t0)− vΦ,H(x; t) ≥ 0.
Now let us suppose such sequences do not exist. Then there exists δ0, R0 such that
for any δ < δ0 and R > R0 it holds∫︂ R

δ

(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds < 0.

However, since (x0, t0) is a maximum point for vΦ, taking the limit as δ → 0 and
R→ +∞ we have∫︂ +∞

0

(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds = 0.

Since inft∈(0,+∞) V
′
2,H(t) = 0, we can consider δ0 so small and R0 so big to obtain

inft∈(δ0,R0) V
′
2,H(t) < 1. Now consider any decreasing sequence δn → 0 such that

δn < δ0 and any increasing sequence Rn → +∞ such that Rn > R0. We have

vΦ,H(x0; t0)− vΦ,H(x; t)

=

∫︂ δn

0

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ Rn

δn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ +∞

Rn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

≥
∫︂ δn

0

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ Rn

δn

(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds

+

∫︂ +∞

Rn

V ′2,H(s)(v(x0; s)fΦ(s; t0)− v(x; s)fΦ(s; t))ds.

Taking the limit as n→ ∞ we conclude the proof. □

Now we are ready to show the actual weak maximum principle (see [26]).

Theorem 2.6.19 (Weak maximum principle). Let Φ ∈ BF be a driftless
Bernstein function that is regularly varying at ∞ of index α ∈ (0, 1) and consider
vΦ = SΦv a strong solution of (2.6.2) in [a, b] × R+. Fix T > 0 and define O =
[a, b]× [0, T ]. Suppose that SΦ

(︁
T−t
T χ[0,T ](t)

)︁
belongs to C1((0, T ])∩W 1,1(0, T ). Let

∂p O be the parabolic boundary of O, i.e.

∂p O = ([a, b]× {0}) ∪ ({a, b} × [0, T ]).

Then it holds

max
(x,t)∈O

vΦ(x; t) = max
(x,t)∈∂pO

vΦ(x; t)

Proof. First of all, let us observe that for any constant C ∈ R it holds vΦ+C =
SΦ(v + C), FΦ,H(vΦ + C) = FΦ,H vΦ and ∂Φ(vΦ + C) = ∂ΦvΦ. Thus if vΦ is an
inverse-subordinated strong solution of (2.6.2), so it is also vΦ + C. In conclusion,
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we can suppose, without loss of generality, that vΦ ≥ 0.
Let us also recall that

FΦ,H vΦ =
∂2

∂x2
SΦ,Hv.

Now let us suppose vΦ admits a maximum point (x0, t0) belonging to O̊ ∪ ((a, b)×
{T}) and that M = max(x,t)∈∂pO vΦ(x; t) < vΦ(x0; t0). Fix δ = vΦ(x0; t0)−M > 0
and define for any (x, t) ∈ O the function

wΦ(x; t) = vΦ(x; t) +
δ

2
SΦ

(︃
T − τ

T
χ[0,T ](τ)

)︃
(t)

where χ[0,T ](τ) is the indicator function of the interval [0, T ]. Since T−t
T ∈ [0, 1] as

t ∈ [0, T ], it holds

vΦ(x; t) ≤ wΦ(x; t) ≤ vΦ(x; t) +
δ

2
for any (x, t) ∈ O.
For any (x, t) ∈ ∂p O it holds

wΦ(x0; t0) ≥ vΦ(x0; t0) = δ +M ≥ δ + vΦ(x; t) ≥
δ

2
+ wΦ(x; t)

hence, since (x0; t0) ̸∈ ∂p O, wΦ admits a maximum point (x1; t1) ∈ O̊ ∪ ((a, b) ×
{T}).
Now let us also recall that

(2.6.9) vΦ(x; t) = wΦ(x; t)−
δ

2
SΦ

(︃
T − τ

T
χ[0,T ](τ)

)︃
(t).

Set g(t) = T−t
T χ[0,T ](t) and gΦ(t) = SΦg(t). We want to determine ∂ΦgΦ(t). To

do this, let us suppose a priori that ∂ΦgΦ(t) admits a Laplace transform. Then we
have, since gΦ(0) = 1,

L[∂ΦgΦ] = Φ(λ)L[gΦ]−
Φ(λ)

λ
= −Φ(λ)(1− e−Φ(λ)T )

TλΦ(λ)
.

On the other hand, it holds

L[SΦχ[0,T ]] =
Φ(λ)(1− e−Φ(λ)T )

λΦ(λ)
,

thus we have

∂ΦgΦ(t) = − 1

T

∫︂ T

0

fΦ(s; t)ds.

Using this equality, together with identity (2.6.9), we get

(2.6.10) ∂ΦvΦ(x; t) = ∂ΦwΦ(x; t) +
δ

2T

∫︂ T

0

fΦ(s; t)ds.

If we define w(x; t) = v(x; t) + g(t), we obtain that wΦ = SΦw. Moreover, since

g does not depend on x, we have that ∂2

∂x2SΦ,Hw(x; t) =
∂2

∂x2SΦ,Hv(x; t). Thus we
can rewrite equation (2.6.2) as

∂ΦwΦ(x; t) +
δ

2T

∫︂ T

0

fΦ(s; t)ds−
1

2

∂2

∂x2
SΦ,Hw(x; t) = 0.

Now let us observe that (x1, t1) is a maximum point for wΦ belonging to O̊ ∪((a, b)×
{T}), hence, by Proposition 2.6.16, we know that ∂ΦwΦ(x1; t1) ≥ 0. Moreover,
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(x1, t1) is also a maximum point for SΦ,Hw(x; t), hence ∂2

∂x2SΦ,Hw(x1; t1) ≤ 0.
Thus we have

∂ΦwΦ(x1; t1) +
δ

2T

∫︂ T

0

fΦ(s; t1)ds−
1

2

∂2

∂x2
SΦ,Hw(x1; t1) ≥

δ

2T

∫︂ T

0

fΦ(s; t1)ds > 0,

which is a contradiction. □

As for regular parabolic equations, weak maximum principle directly implies
both uniqueness of the solution of a boundary-initial value problem and continuous
dependence from boundary-initial values. Moreover, it is easy to see that all we did
can be extended to the case in which a = −∞ or b = +∞ as soon as we introduce
some limit condition.
However, we have shown that pΦ(x; t) is a classical solution, but we do not know if
in general pΦ(x; t) is C

1 in t. A case in which this is known is given by Φ(λ) = λα,
thus we can conclude pα(x; t) is a strong solution of (2.6.2).

Corollary 2.6.20. pα,H(x; t) is the unique strong solution of (2.6.2) for I =
R∗ with boundary-initial values pα,H(x; 0) = 0, pα,H(±∞; t) = 0 and

pα,H(0; t) =
1√
2π

∫︂ +∞

0

(V2,H(s))−1/2fα(s; t)ds.

2.7. First exit times of time-changed Markov processes

Now that we have introduced some concepts related to time-changed processes,
let us focus on some features of these processes. In particular, here we will discuss
the asymptotic behaviour (respectively at infinity and at 0+) of the survival func-
tion and the distribution function of the exit time T of a time-changed Markov
process from an open set. Let us state that the majority of the results we are con-
sidering here are actually valid for any almost surely non-negative random variable
T independent of the subordinator σΦ.

2.7.1. Some first properties of exit times. Let us consider a Markov pro-
cess M(t) with (topological) state space (Σ,G) and Φ ∈ BF a driftless Bernstein
function. For the whole section we will fix S ∈ G and define

T = inf{y ≥ 0 : M(y) ̸∈ S}.
In the following Px(·) = P(·|M(0) = x). Moreover, to avoid trivialities, we will
always consider points x ∈ S such that Px(T > 0) > 0 (i.e. T is not degenerate
at 0) and Px(T < +∞) = 1 (i.e. T is almost surely finite). Consider σΦ(t) a
subordinator associated to Φ and independent of M and let LΦ(t) be its inverse.
The time-changed process will be denoted by MΦ(t) := M(LΦ(t)). Moreover, let
us denote

T = inf{y ≥ 0 : MΦ(y) ̸∈ S}.
As preliminary step, let us give some alternative representation of Px(T > y).

Lemma 2.7.1. It holds

(2.7.1) Px(T > y) = Px(σΦ(T ) > y) = Px(T > LΦ(y))

Proof. Let us first observe that MΦ admits the following alternative repre-
sentation

MΦ(t) =M(y), σΦ(y−) ≤ t < σΦ(y).
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From this representation we obtain that T = σΦ(T−) on any path. Now let us also
recall that σΦ does not admit any fixed discontinuity and T and σΦ are independent.
Thus we have

Px(T > y) = Px(σΦ(T−) > y) = Ex[Px(σΦ(T−) > y|T )]
= Ex[Px(σΦ(T ) > y|T )] = Px(σΦ(T ) > y),

where the central equality holds since

Px(σΦ(T−) > y|T = t) = Px(σΦ(t−) > y|T = t) = Px(σΦ(t−) > y)

= Px(σΦ(t) > y) = Px(σΦ(t) > y|T = t) = Px(σΦ(T ) > y|T = t).

Furthermore, since LΦ(t) is almost surely continuous and increasing, we get LΦ(σΦ(t)) =
t and then

Px(T > y) = Px(σΦ(T ) > y) = Px(T > LΦ(y)),

concluding the proof. □

This representation will be the main tool in our considerations.
Before going into the details of the asymptotic behaviour, let us show some prop-
erties concerning the regularity of the random variable T.

2.7.2. Smoothness of T. First of all, we are interested in the absolute conti-
nuity of T. An interesting thing we should underline is the fact that such absolute
continuity could not depend at all on the absolute continuity of T . Indeed, the fol-
lowing Theorem (see [28, Theorem 2.8, Propositions 2.9 and 2.10]) gives a sufficient
condition on absolute continuity and differentiability of the density of T.

Theorem 2.7.2. Suppose νΦ is absolutely continuous and νΦ satisfies Orey’s
condition (defnition 1.4.3). Moreover, suppose there exists ε > 0 such that E[T−1χ[0,ε](T )] <
+∞. Then T is an absolutely continuous random variable with respect to Px(·).
Moreover, if there exists n ∈ N such that E[T−n−1χ[0,ε](T )] < +∞, the probability
density function pT(t) is differentiable up to n-th derivative with bounded deriva-
tives.

Proof. By Proposition 1.2.2 we know that the subordinator σΦ(t) is absolutely
continuous for any t > 0. Let us denote by gΦ(s; t) its density. Then, by (2.7.1)
and the independence of σΦ and T , we have

(2.7.2) Px(T ≤ y) = Px(σΦ(T ) ≤ y) =

∫︂ +∞

0

Px(σΦ(s) ≤ y)µT (ds)

where µT is the law of T . Now, let us observe that Px(σΦ(s) ≤ y) is differentiable
and its derivative is given by gΦ(y; s). Let us consider the Lévy symbol of σΦ,

given by Ψ(λ) := Φ(−iλ) =
∫︁ +∞
0

(1 − eiλτ )νΦ(dτ) and the characteristic function

φΦ(λ; t) := E[eiλσΦ(t)] = e−tΨ(λ). This function is in L1(R) and we can express
gΦ(y; s), by Lévy inversion theorem, as

gΦ(y; s) =
1

2π

∫︂
R
e−iλyφΦ(λ; s)dλ.

Now let us recall that the complex extension of Φ still maps complex numbers
with non-negative real part in complex numbers with non-negative real part. Thus
ℜ(Ψ(λ)) ≥ 0. Now let us use Orey’s condition. Indeed, as shown in [115], such
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condition implies that there exists a constant c > 0 such that for |λ| sufficiently big
it holds

|φΦ(λ; 1)| ≤ e−
c
4 |λ|

2−γ

where γ ∈ (0, 2) is the exponent of Orey’s condition. Thus we have that ℜ(Ψ(λ)) ≥
c
4 |λ|

2−γ and

|φΦ(λ; t)| ≤ e−t
c
4 |λ|

2−γ

for large values of |λ|. Suppose in particular the bound holds for |λ| > M . First of
all, we obtain that

|gΦ(y; s)| ≤
M

π
+

1

π

∫︂ +∞

M

e−s
c
4λ

2−γ

dλ

=
M

π
+

4

πcs

∫︂ +∞

sc
4 M2−γ

w
1

2−γ−1e−wdλ

=
M

π
+

4

πcs
Γ

(︃
1

2− γ
;
sc

4
M2−γ

)︃
,

that is integrable by hypothesis. Thus we can differentiate under integral sign in
(2.7.2) to obtain

pT(y) =

∫︂ +∞

0

gΦ(s; y)µT (ds).

Concerning differentiability, let us observe that we can re-write

pT(y) =
1

2π

∫︂
R
e−iξs

∫︂ +∞

0

φΦ(ξ; s)µT (ds)dξ

and then consider the incremental ratio. To show that we can differentiate un-
der integral sign, one has to show that the incremental ratio is dominated by an
integrable function. In particular, we have⃓⃓⃓⃓

⃓e−iξs − e−iξs
′

s− s′

∫︂ +∞

0

φΦ(ξ; s)µT (ds)

⃓⃓⃓⃓
⃓ ≤

∫︂ +∞

0

|ξ|e−sℜΨ(ξ)µT (ds)

and then, using the same estimates as before (together with Fubini’s theorem),
we prove that the right-hand side is in L1(R). The same holds for successive
derivatives. □

As a direct consequence we obtain the following Corollary.

Corollary 2.7.3. Suppose νΦ is absolutely continuous and νΦ satisfies Orey’s
condition. If t ↦→ Px(T ≤ t) is rapidly decreasing at 0+, then T is an absolutely
continuous random variable with respect to Px(·) and the probability density function
pT is infinitely differentiable with bounded derivatives.

2.7.3. The asymptotic behaviour of the survival function. Now let
us introduce some notation. Set F (t) = Px(T ≤ t), the cumulative distribu-
tion function of T , and F̄ (t) = 1 − F (t), the survival function. Moreover, set
F(t) = Px(T ≤ t), the cumulative distribution function of T, and F̄ (t) = 1 − F(t),
the survival function. First of all, we need the following technical Lemma (see [28,
Lemma 2.1]).
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Lemma 2.7.4. Let X be a non-negative random variable and Y be an exponen-
tial random variable of parameter λ > 0 independent of X. Then

(2.7.3) Px(X > Y ) = Ex[1− e−λX ].

Proof. By using a conditioning argument we get

Px(X > Y ) = Ex[Px(X > Y |X)] = Ex[1− e−λX ].

□

Now we are ready to show the main result concerning the asymptotic behaviour
of the survival function F̄ (see [28, Theorem 2.2]).

Theorem 2.7.5. Fix x ∈ S such that the function g(s) := Ex[1 − e−sT ] is
regularly varying at zero with index β ∈ [0, 1]. Moreover, suppose Φ is regularly
varying at zero with index α ∈ [0, 1). Then

(2.7.4) F̄ (t) ∼ 1

Γ(1− αβ)
g

(︃
Φ

(︃
1

t

)︃)︃
as t→ +∞.

In particular F is regularly varying at infinity with index αβ.

Proof. Let us define the function

J(t) =

∫︂ t

0

F̄ (s)ds

and set J̄(λ) = LS [J ](λ). By using Equation (2.7.1) we obtain

J̄(λ) =

∫︂ +∞

0

e−λs Px(T > L(s))ds

=

∫︂ +∞

0

∫︂ +∞

0

e−λsF̄ (w)fΦ(w; s)dwds

=

∫︂ +∞

0

F̄ (w)

∫︂ +∞

0

e−λsfΦ(w; s)dsdw

=
1

λ

∫︂ +∞

0

Φ(λ)e−sΦ(λ)F̄ (s)ds.

Now let us define YΦ an exponential random variable independent of T and with
rate Φ(λ). Then we have

J̄(λ) =
1

λ
Px(T > YΦ).

Finally, by Equation (2.7.3), we obtain

J̄(λ) =
1

λ
Ex[1− e−Φ(λ)T ] =

1

λ
g(Φ(λ)).

In particular we have that g ◦ Φ is regularly varying at zero with index αβ, thus
there exists a slowly varying function ℓ such that

g(Φ(λ)) = λαβℓ(λ),

and then
J̄(λ) = λαβ−1ℓ(λ).

Now, by Karamata’s Tauberian theorem 1.3.3, we have

J(t) ∼ t1−αβ

Γ(2− αβ)
ℓ(1/t) as t→ +∞.
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Moreover, F̄ is monotone, thus we can use Monotone density theorem to get

F̄ (t) ∼ t−αβ

Γ(1− αβ)
ℓ(1/t) as t→ +∞,

concluding the proof. □

Let us observe that the previous theorem does not rely directly on the distribu-
tion function of T (but it actually does via the function g). Let us give a sufficient
condition for g to be regularly varying at zero (see [28, Corollary 2.3]).

Corollary 2.7.6. If for x ∈ S it holds Ex[T ] = C < +∞ and Φ is regularly
varying at zero with index α ∈ [0, 1), then it holds

(2.7.5) F̄ (t) ∼ C

Γ(1− α)
Φ(1/t) as t→ +∞.

Proof. Let us observe that 1−e−sT

s ≤ T for any s > 0. Thus, being T of finite
mean, we can use Dominated Convergence Theorem to obtain

lim
s→0

g(s)

s
= Ex[T ] = C,

concluding the proof, by using Theorem 2.7.5. □

If we consider M(t) to be a 1-dimensional Markov process and S = (−∞, c)
for some c > 0, there are several examples of processes such that E0[T ] < +∞.
In particular, in the class of the Gauss-Markov processes, we can consider the
drifted Brownian motion or the Ornstein-Uhlenbeck process. In [28], finite-mean
conditions for Gauss-Markov processes are discussed by means of some comparison
principles.
A different case is the one of the driftless Brownian motion M(t) = B(t). Indeed
it is well known that, for S = (−∞, c), E0[T ] = +∞. However, if we consider the
subordinator σ 1

2
(t), it is also known that

T = σ 1
2
(
√
2c)

and then we have g(s) = E0[1 − e−sT ] = 1 − e−c
√
2s which is regularly varying at

0 with index 1/2. Thus, in this case, we get, if Φ is regularly varying at zero with
index α ∈ [0, 1),

F̄ (t) ∼ 1− e−c
√

2Φ(1/t)

Γ(1− α/2)
as t→ +∞.

2.7.4. The asymptotic behaviour of the distribution function. Con-
cerning the behaviour of the distribution function F at zero, we need some proper-
ties on the behaviour of F at 0. Indeed, let us show the following result (see [28,
Theorem 2.13]).

Theorem 2.7.7. Fix x ∈ S such that the function F is regularly varying at
zero with index ρ > 0. Moreover, suppose that Φ is regularly varying at zero with
index α > 0. Then

F(t) ∼ Γ(1 + ρ)

Γ(1 + αρ)
F

(︄
1

Φ
(︁
1
t

)︁)︄ as t→ 0+.

In particular, F is regularly varying at 0 with index αρ.
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Proof. Let us denote by ˜︁F and ˜︁F the Laplace-Stieltjes transforms of F and
F. Since F is regularly varying at 0, by Karamata’s Tauberian theorem we have˜︁F (λ) ∼ F (1/λ)Γ(1 + ρ) as λ→ +∞.

Moreover, by using Equation (2.7.1) and denoting by µT (ds) the law of T , we have

˜︁F(λ) = ∫︂ +∞

0

e−λtdPx(σ(T ) ≤ t)

=

∫︂ +∞

0

∫︂ +∞

0

e−λtgΦ(s; dt)µT (ds)

=

∫︂ +∞

0

e−sΦ(λ)µT (ds) = ˜︁F (Φ(λ)).
In particular we get˜︁F(λ) ∼ Γ(1 + ρ)F (1/Φ(λ)) as λ→ +∞.

Now let us observe that F (1/Φ(λ)) is regularly varying at infinity with index αρ.
Thus, we can use again Karamata’s Tauberian theorem to conclude the proof. □

However, there are different cases in which F (t) is shown to be not only rapidly
varying at 0, but in particular rapidly decreasing at 0. For instance, as shown
in [28], this is the case of 1-dimensional Gauss-Markov processes M(t) and open
sets S = (−∞, c) (choosing x = 0). Thus, it could be useful to determine some
asymptotic result even in this case. This is done by using the following result (see
[28, Theorem 2.16]).

Theorem 2.7.8. Fix x ∈ S such that F is rapidly decreasing at 0+ and C∞.
Suppose ν̄Φ is absolutely continuous and νΦ satisfies Orey’s condition. Moreover,
let Φ vary regularly at infinity with index α > 0. Then T is absolutely continuous
and its probability density function pT(t) is rapidly decreasing at 0+.

Proof. First of all, let us observe that T is absolutely continuous with C∞

density pT (t) that is rapidly decreasing at 0+. Moreover, by Corollary 2.7.3 we
know that T is absolutely continuous with C∞ density pT(t). As before, we have˜︁F(λ) = ˜︁F (Φ(λ)). In particular, ˜︁F and ˜︁F are the Laplace transform respectively of
pT and pT .
Now let us observe that there exists a slowly varying function (at infinity) ℓ such
that

Φ(λ) = λαℓ(λ).

Fix k > 0 and β > 0 such that αβ > k. We have

λk˜︁F(λ) = 1

λβα−kℓβ(λ)
Φβ(λ) ˜︁F (Φ(λ)).

The Tauberian Theorem for rapidly decreasing functions ensure that

limλ→+∞ Φβ(λ) ˜︁F (Φ(λ)) = 0. On the other hand, since αβ − k > 0, we have

limλ→+∞ λβα−kℓβ(λ) = +∞. Thus we get limλ→+∞ λk˜︁F(λ) = 0. Since k > 0 was
arbitrary and F belongs to C∞, we conclude the proof by the Tauberian Theorem
for rapidly decreasing functions. □

It can be checked by hand that this is the case of the Brownian motion with
non-negative drift when we set S = (−∞, c).
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2.8. The first passage time of the time-changed Brownian motion with
non-negative drift through a constant threshold

In the previous section we obtained some asymptotics for the survival functions
and the distribution functions of first exit time from open sets of time-changed
Markov processes. In particular, we have seen that the first passage time Tc

0 of
the time-changed Brownian motion with drift δ ≥ 0 starting from 0 through the
constant threshold c > 0 and Φ ∈ BF driftless and regularly varying at 0 with
order α ∈ [0, 1) satisfies the following asymptotic relations as t→ +∞:

F̄ (t) ∼

{︄
1−e−c

√
2Φ(1/t)

Γ(1−α/2) δ = 0
c

δΓ(1−α)Φ(1/t) δ > 0,

where, to obtain the second asymptotic relation, we just use Corollary 2.7.6 with
the fact that E0[T ] =

c
δ . Moreover, if Φ is regularly varying at infinity, then we also

have that F(t) is rapidly decreasing at 0+.
Now we need to consider also the dependence of the distribution function F with
respect to the starting point x. Here, we want to show that, after some trans-
formations, the distribution function is the unique solution of a non-local Partial
Differential Equation.
Thus, let us define by T c the first passage time of the Brownian motion with non-
negative drift Bδ(t) (with δ ≥ 0) through the threshold c > 0. In particular, we
have

T c(ω) =

⎧⎪⎨⎪⎩
inf{t > 0 : Bδ(t, ω) ≥ c} Bδ(0, ω) < c

inf{t > 0 : Bδ(t, ω) ≤ c} Bδ(0, ω) > c

0 Bδ(0, ω) = c.

Here let us focus on the case Bδ(0, ω) < c. We have, conditioning to Bδ(0) = x < c,

pT c(t;x) =
c− x√
2πt3

e−
(c−x−δt)2

2t , t ≥ 0,

and then the distribution function is given by
(2.8.1)

Px(T
c ≤ t) =

∫︂ t

0

c− x√
2πs3

e−
(c−x−δs)2

2s ds =
e2δ(c−x)√

π

∫︂ t

0

(c− x)

s
√
2s

e−
(c−x)2

2s − δ2s
2 ds.

Now let us set c−x√
2s

= z to obtain

e2δ(c−x)√
π

∫︂ t

0

(c− x)

s
√
2s

e−
(c−x)2

2s − δ2s
2 ds =

2e2δ(c−x)√
π

∫︂ +∞

c−x√
2t

e−z
2− δ2(c−x)2

4z2 dz.

From this relation, we easily get that

lim
x→c−

Px(T
c ≤ t) = 1

as it was expected. Moreover, it is easy to check that the function w(z; t) =
z√
2πt3

e−
(z−δt)2

2t is decreasing for z > z1(t) where

z1(t) =
δt+

√
δ2t2 + 4t

2
.

Since z1 is a continuous function, for any fixed t > 0 there exists s∗ ∈ [0, t] such
that z1(s∗) = maxs∈[0,t] z1(s). Now, if we send x→ −∞, we have that c−x→ +∞
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and then we can suppose, for fixed t > 0, that c− x > z1(s∗). Thus, in particular,
we get for fixed t > 0, by monotone convergence theorem,

lim
x→−∞

Px(T
c ≤ t) = 0.

We can actually say much more. Indeed, specifying [101, Theorem 2.1] to our case,
we have the following result.

Theorem 2.8.1. Fix c > 0 and consider x = c− 1
y . Define v(t; y) = Px(T

c ≤ t)

and consider the operator

(2.8.2) A =
y4

2

∂2

∂y2
+ [δ2y2 + y3]

∂

∂y
.

Then v(t; y) is the unique strong solution of

(2.8.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂v
∂t (t; y) = A v(t; y) t > 0, y > 0

v(0, y) = 0 y > 0

limy→+∞ v(t, y) = 1 t > 0

v(t, 0) = 0 t > 0.

Here we do not intend strong solution in the sense of abstract Cauchy problem,
but just that v is continuous in [0,+∞)× [0,+∞), differentiable once with respect
to the variable t, twice with respect to y with continuous derivatives and the Equa-
tion (2.8.3) hold pointwise. Moreover, uniqueness of the solution follows from the
classical weak maximum principle for parabolic problems. It is also interesting to
observe that the previous Theorem do not only provide a result of existence of the
strong solution to the parabolic problem (2.8.3), but also a stochastic representa-
tion of it by actually exhibiting the unique strong solution. In this section we will
prove an analogous result for Tc, i.e. the first passage time of the time-changed
process Bδ

Φ(t) through the fixed threshold c ∈ R.

Now we want to focus on the following non-local parabolic problem

(2.8.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Φt u(t; y) = Au(t; y) t > 0, y > 0

u(0, y) = 0 y > 0

limy→+∞ u(t, y) = 1 t > 0

u(t, 0) = 0 t > 0.

where Φ ∈ BF is a driftless Bernstein function and A is defined in (2.8.2). Before
working on the actual equation, let us give the definition of strong solution.

Definition 2.8.1. A function u(t; y) defined for t ≥ 0 and y ≥ 0 is a classical
solution of the non-local parabolic problem (2.8.4) if and only if:

• u ∈ C([0,+∞)× [0,+∞));

• u is twice differentiable with respect to y and ∂u
∂y ,

∂2u
∂y2 ∈ C((0,+∞) ×

(0,+∞));
• ∂Φt u(t; y) is well defined for any t > 0 and y > 0;
• ∂Φt u(t; y) ∈ C((0,+∞)× (0,+∞));
• The Equations in (2.8.4) hold pointwise.

Moreover we say that u is a strong solution if it is a classical solution and u is
differentiable in t with continuous derivative.
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In the following we will need some upper bounds on the solution v of (2.8.3).

Lemma 2.8.2. Let v(t; y) be defined as in Theorem 2.8.1. Consider 0 < y1 < y2
and I = [y1, y2]. Then there exists a constant C(I) such that

sup
(t,y)∈(0,+∞)×[y1,y2]

(︃
|v(t; y)|+

⃓⃓⃓⃓
∂v

∂y
(t; y)

⃓⃓⃓⃓
+

⃓⃓⃓⃓
∂2v

∂y2
(t; y)

⃓⃓⃓⃓)︃
≤ C(I).

Proof. By using the first equality of Equation (2.8.1) and the stochastic rep-
resentation of v as a distribution function for a first passage time, we obtain that

v(t; y) =

∫︂ t

0

w(s; y)ds

where

w(s; y) =
1

y
√
2πs3

e
− (1−δsy)2

2sy2 .

Now let us define the function

mI(s) = min

{︃
(1− δsy1)

2

y21
,
(1− δsy2)

2

y22

}︃
.

It is easy to see that as s→ +∞ it holds

(2.8.5) mI(s) ∼ δ2s2.

Now let us observe that

w(s; y) ≤ 1

y1
√
2πs3

e−
mI(s)

2s =: hI0 (s),

where hI0 ∈ L1(0,+∞), by using Equation (2.8.5) and the fact that mI(0) =
1
y2
2
. If

we differentiate w(s; y) with respect to y, we easily get⃓⃓⃓⃓
∂w

∂y
(s; y)

⃓⃓⃓⃓
≤ 1

y21
√
2πs3

e−
mI(s)

2s

(︃
1 +

1

sy21
+

δ

y1

)︃
=: hI1 (s).

Now, since hI1 ∈ L1(0,+∞), still by Equation (2.8.5), we have

∂v

∂y
(t; y) =

∫︂ t

0

∂w

∂y
(s; y)ds, y ∈ I .

Now we can differentiate again with respect to y to get⃓⃓⃓⃓
∂2w

∂y2
(s; y)

⃓⃓⃓⃓
≤ 1

y31
√
2πs3

e−
mI(s)

2s

(︃
1

2
+

4

3sy1
+

2δ

sy51
+

1

sy41
+

⃓⃓⃓⃓
δ2 − 5

4s

⃓⃓⃓⃓
1

y21

)︃
=: hI2 (s).

As before, hI2 ∈ L1(0,+∞) and then we obtain

∂2v

∂y2
(t; y) =

∫︂ t

0

∂2w

∂y2
(s; y)ds, y ∈ I .

Finally, let us define

C(I) =
∫︂ +∞

0

(hI0 (s) + hI1 (s) + hI2 (s))ds

to conclude the proof. □

Moreover, as we stated before, to prove uniqueness we need a weak maximum
principle. Thus, now we want to prove a generalized version of [100]. To do this,
let us first introduce some notation.
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Definition 2.8.2. Let us define Rn
∞ = R+

0 ×Rn and Rn
T = [0, T ]×Rn for any

T > 0. Given an open set O ⊂ Rn
T , the parabolic interior of O is given by the

following property:

(t0, x0) ∈ O∗ ⇔ ∃r > 0 : Br(t0, x0) ∩ {(t, x) ∈ RN
T : t ≤ t0} ⊂ O

where Br(t0, x0) is the ball in Rn+1 centered in (t0, x0) with radius r > 0.
We define the parabolic boundary of O as ∂p O = Ō \ O∗ where Ō is the
closure of O. Given an opens set O ⊂ Rn

T , we define the space projection
as ORn = {x ∈ Rn : ∃t ∈ [0, T ] : (t, x) ∈ O} and the time projection as
O[0,T ] = {t ∈ [0, T ] : ∃x ∈ Rn : (t, x) ∈ O}. Moreover, let us define the space
section Ot = {x ∈ Rn : (t, x) ∈ O} for any t ∈ O[0,T ] and the time section

Ox = {t ∈ [0, T ] : (t, x) ∈ O}. Given a function u : Ō → R, we say that
u ∈ C2,1(Ō ) if and only if

• u ∈ C(Ō );
• ∀t ∈ O[0,T ] it holds u(t, ·) ∈ C2((O∗)t);
• ∀x ∈ ORn it holds u(·, x) ∈ C1((O∗)x) ∩W 1,1(Ox);
• ∀x ∈ ORn such that 0 ̸∈ Ō x it holds u(·, x) ∈ C1((Ō )x).

Now we can state the following weak maximum principle.

Theorem 2.8.3 (Weak maximum principle). Let O ⊆ Rn
T be a connected

bounded open set of Rn
T of the form O = ˜︁O× [0, T ] where ˜︁O is a bounded connected

open set of Rn. Let u ∈ C2,1(Ō ). Let u be a solution of

∂Φt u(t, x) = Au(t, x), (t, x) ∈ O
where

A = p2(x)∆ + ⟨p1(x),∇⟩
with p2 : ˜︁O → R+ and p1 : ˜︁O → Rn. Finally, suppose that Φ ∈ BF is a driftless
Bernstein function regularly varying at infinity with order α ∈ (0, 1). Then it holds

u(t, x) ≤ max
(s,y)∈∂pO

u(s, y), ∀(t, x) ∈ Ō .

Proof. First of all, without loss of generality, we can suppose that u(t, x) ≥ 0
for any (t, x) ∈ O.
Let M1 = max(s,y)∈∂pO u(s, y) and suppose by contradiction there exists a point
(t0, x0) ∈ O∗ such that u(t0, x0) = M2 > M1. Set ε = M2 −M1 and consider for
(t, x) ∈ Ō the function

w(t, x) = u(t, x) +
ε

2

T − t

T
.

Now, since T − t ≤ T , we have

u(t, x) ≤ w(t, x) ≤ u(t, x) +
ε

2

for any (t, x) ∈ O. In particular in (t0, x0) we have

w(t0, x0) ≥ u(t0, x0) = ε+M1.

Now, by definition of M1, considering (t, x) ∈ ∂p O, we get

w(t0, x0) ≥ ε+ u(x, t) ≥ ε

2
+ w(x, t).

However, by definition, w ∈ C0(Ō ), thus it must admit a maximum point (t1, x1).
The previous inequality implies that (t1, x1) ̸∈ ∂p O. w is derivable in t1, thus
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∂Φt w(t1, x1) ≥ 0. Moreover, x1 is an inner point of Ωt1 and then w(t1, ·) is twice
differentiable in x1. In particular this leads to ∇w(t1, x1) = 0 and ∆w(t1, x1) ≤ 0.
Not let us observe that

∂Φt u(x, t) = ∂Φt w(x, t) +
ε

2T
IΦ(t),

∇w(x, t) = ∇u(x, t),
∆w(x, t) = ∆u(x, t),

where IΦ(t) is the integrated tail of the Lévy measure νΦ. Thus, in (t1, x1), we get

0 = ∂Φt u(t1, x1)−Au(t1, x1) = ∂Φt w(t1, x1) +
ε

2T
IΦ(t1)− p2(x1)∆w(t1, x1) > 0

which is a contradiction. □

Now we are ready to exploit a classical solution of Equations (2.8.4) by directly
showing the stochastic representation of it. The next Theorem is a refined version
of [4, Theorem 2].

Theorem 2.8.4. Fix c > 0 and consider x = c− 1
y . Define u(t; y) = Px(T

c ≤ t)

where Tc = inf{t > 0 : Bδ
Φ(t) ≥ c} and Bδ

Φ(t) = Bδ(LΦ(t)) with LΦ independent
of Bδ. Let A be the operator defined in (2.8.2). Moreover, let Φ ∈ BF be driftless
and regularly varying at infinity with order α ∈ (0, 1) with ν̄Φ absolutely continuous
and νΦ satisfying Orey’s condition. Then u(t; y) is the unique strong solution of
Equation (2.8.4).

Proof. Let us first observe that, by Equation (2.7.1) and Theorem 2.8.1, we
have

u(t; y) =

∫︂ +∞

0

v(s; y)fΦ(s; t)ds,

where v(s; y) is the unique strong solution of (2.8.3). By definition of u(t; y), we
immediately get u(0; y) = 0 for any y > 0.
Now let us observe that v(s; y) ≤ 1, thus we can use dominated convergence theorem
to obtain

lim
y→+∞

u(t; y) =

∫︂ +∞

0

lim
y→+∞

v(s; y)fΦ(s; t)ds = 1.

The same holds as y → 0+. Moreover, we easily have that u(t; y) is continuous
in y by dominated convergence theorem. Smoothness of u with respect to t is
guaranteed by Corollary 2.7.3. On the other hand, u is twice differentiable with
respect to y with continuous derivatives by differentiation under the integral sign,
that can be done thanks to the estimates in Lemma 2.8.2. Now we only have to
show that the equation actually holds. To do this, let us observe that since u is
smooth, we can take the Laplace transform of ∂Φt u(t; y). Thus we have, denoting ū
the Laplace transform of u with respect to t

Lt[∂
Φ
t u(t; y)](λ) = Φ(λ)ū(λ; y).

On the other hand, we have, by integrating by parts,

Φ(λ)ū(λ; y) =
Φ2(λ)

λ

∫︂ +∞

0

v(s; y)e−sΦ(λ)ds =
Φ(λ)

λ

∫︂ +∞

0

∂v

∂s
(s; y)e−sΦ(λ)ds.
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Taking the inverse Laplace transform, it holds

∂Φt u(t; y) =

∫︂ +∞

0

∂v

∂s
(s; y)fΦ(s; t).

Now let us recall that v is strong solution of (2.8.3) and that we can exchange A
with the integral sign thanks to the estimates given in Lemma 2.8.2. We finally
have

∂Φt u(t; y) =

∫︂ +∞

0

∂v

∂s
(s; y)fΦ(s; t) =

∫︂ +∞

0

A v(s; y)fΦ(s; t) = Au(t; y).

Uniqueness easily follows from the weak maximum principle. □



CHAPTER 3

Some applications of time-changed processes

In this chapter we will focus on applications of the previously presented results.
The main ones are given in the context of queueing theory. Indeed, the latter
provides a fruitful soil to study and improve techniques related to methods based
on probability generating function to solve difference-differential Cauchy problems
and, at the same time, its peculiar models provide interesting examples in which
the semi-Markov character of time-changed processes arises.
Discrete models are not the only models we will consider. As application of the
time-changed Ornstein-Uhlenbeck process (as presented in [67]) with an additional
deterministic drift term, we will construct a non-local Leaky Integrate-and-Fire
(LIF) model. LIF models are one of the simplest models of neuronal activity.
However, as we will see, their simplicity leads also to a predictable behaviour of the
firing times of the modelled neuron, which is not always the most realistic result.
Indeed, we will give an explicit example in which our model seems to fit better than
the classical Markov one. Let us state that the considerations are only qualitative
due to a lack of data.
Finally, in the context of applications, some simulation procedures are presented,
with a particular attention to the generalization of Gillespie’s algorithm to time-
changed continuous time Markov chains.

3.1. Basics on queueing theory

As we stated before, we will mainly focus on queueing theory. Let us introduce
the basic ideas of queueing theory, following the lines of [134]. First of all, let us
consider a queueing system, that is to say a service facility linked to a source
(from which users arrive) and to a destination (to which users are transferred). A
queueing system can eventually handle more than one user per time unit. However,
when there are more users than the ones the system can handle, a waiting line (or
queue) is formed. Users can arrive at random times and services are not necessarily
completed in a fixed time. Queueing systems model a lot of different things, from
the more concrete ones (as a supermarket or a post office) to the more complex
ones (for instance the scheduler of an operating system [137] or telephone traffic,
which was the actual first usage queueing models [56]).
A queueing system is characterized by the following components:

• The input process: i.e. the way users arrive. In particular we will
consider single arrivals (and not group arrivals, that are still possible),
infinite source and infinite capacity of the system, thus the input process
is completely defined by the distribution of the inter-arrival times Tn,
which are the times between the arrival of the (n − 1)-th user and the
n-th user. In particular, denoting by An the arrival times, i.e. the time

101
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instants in which the n-th user enters the system, one has Tn = An−An−1
for any n ∈ N, where A0 = 0. In particular one asks that the inter-arrival
times Tn are independent from one another.

• The queue discipline: i.e. the rule applied to decide which user in the
waiting line will be served. In case of the CPU scheduler, for instance, this
is the main feature that establishes the differences between schedulers (e.g.
the usage of preemptive algorithms, or also the introduction of a priority
value, see [137]). We will always consider First-In First-Out (FIFO)
queues, i.e. queues in which the service is executed in arrival order. These
are also called First-Come First-Served (FCFS) queues. Let us stress
out that one can also combine this discipline with others. For instance,
still talking about schedulers, the FCFS scheduler can be modelled as a
classical FIFO queue, while the Round Robin (RR) scheduler still works
with a FIFO discipline, but interrupts the current service if it takes too
long and put the user again in the back of the queue (this procedure is
called preemption).

• Service mechanism: i.e. the arrangement and characteristic of the
servers. In the model we will work with, we will always consider one
server, thus the service mechanism will be described in terms of the ser-
vice times Sn, that is to say the time the n-th user takes to complete
the service. As for inter-arrival times, also service times are asked to be
independent.

A schematization of a queueing system is given in Figure 3.1.
The description of the queueing system is made by using the system state process
N(t), which is a stochastic process that counts the number of users in the system
at time t ≥ 0. It is sometimes called the queue length process, but, as we will
see, in some cases it is useful to make a distinction between the two terminologies.
Usually, one can describe much more easily the performance parameters of the
queueing in terms of the steady state of N(t) (if it exists). However, in our case,
we will focus on the transient behaviour of the queues. The main motivation of
this choice will be clear in the following section.
For the transient behaviour, the main performance parameters are given by

• The busy period: i.e. the duration B of a time interval from the moment
in which a user comes in the empty service to the moment in which the
system is empty again.

• The virtual waiting time: i.e. the duration W (t) of time a user has to
spend in the system if it enters it at time t ≥ 0.

Finally, let us recall that in general there is a convenient notation to abbreviate
the description of a queue, called Kendall notation. We will actually focus on
the notation of the form A/B/C where A describes the inter-arrival distribution,
B the service time distribution and C the number of servers. Concerning A and B,
we will use the following symbols:

• M stands for an exponential distribution;
• Ek stands for an Erlang distribution of shape parameter k ∈ N.

When A = B = M , then the queue is called Markovian (since the process N(t)
is a continuous time Markov chain).
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Figure 1. The schematization of a queueing system

3.1.1. An example: the transient behaviour of the M/M/1 queue.
Let us consider a standard M/M/1 queue, schematized as in Figure 2. Then its
inter-arrival times are given by Tn ∼ Exp(λ) and the service times are given by
Sn ∼ Exp(µ). It is not difficult to see that the process N(t) is a birth-death
process with transition matrix

Q =

⎛⎜⎜⎜⎝
−λ µ 0 0 · · · 0
λ −(λ+ µ) µ 0 · · · 0
0 λ −(λ+ µ) µ · · · 0
...

...
. . .

. . .
. . .

...

⎞⎟⎟⎟⎠ ,

where, for a continuous-time Markov chain X(t) with state space E ⊆ Z, the
transition matrix is an operator Q defined on some sequence space such that,
if we define P (t) = (p(t, n))n∈E the sequence of the state probabilities p(t, n) =
Pi(X(t) = n) for some i ∈ E, it is solution of

P ′(t) = QP (t)

(where P (t) is interpreted as a column vector). As we can see, Q is a matrix
representation of the forward operator F .
Thus, in the case of the M/M/1 queue model, the state probabilities (p(t, n))n∈N0

(with i = 0) satisfy the following difference-differential problem

(3.1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dp
dt (t, 0) = −λp(t, 0) + µp(t, 1) t > 0
dp
dt (t, n) = −(λ+ µ)p(t, n) + µp(t, n+ 1) + λp(t, n− 1) t > 0, n ≥ 1

p(0, 0) = 1

p(0, n) = 0 n ≥ 1.

We will not actually solve this system here and now, but let us show the method
of solution of such system (as in [129]). The idea is the following: let us consider
the probability generating function

G(z, t) =

+∞∑︂
n=0

p(t, n)zn

that is well defined for t ≥ 0 and z ∈ D1. For fixed t this is an analytic function on
D1 (since it is actually a power series), thus its coefficient are uniquely determined.
This means that if we are able to determine G(z, t), then we automatically have
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Figure 2. A Schematization of an M/M/1 queue

p(t, n) = 1
n!

∂nG
∂zn (0, t). Now, multiplying the second equation of (3.1.1) by zn and

then summing everything, we get the following partial differential equation:

(3.1.2) z
∂G

∂t
(z, t) = (1− z)[(µ− λz)G(z, t)− µp(t, 0)] z ∈ D1, t ≥ 0.

Consider now z > 0 and observe that, by monotone convergence theorem, one can
take the Laplace transform (in t) inside the summation operator in the definition
of G(z, t). Denoting by Ḡ(z, λ) the Laplace transform of G(z, t), one obtains an
algebraic expression of Ḡ(z, λ) in terms of z, λ and p̄(λ, 0) = L[p(·, 0)](λ) by taking
the transform on the whole equation (3.1.2).
As next step, one should notice that since such transform must converge at least
for z ∈ (0, 1), then the zeros of the numerator and the ones of the denominator of
the aforementioned algebraic expression must coincide: this gives an explicit form
of p̄(λ, 0) and then, taking the inverse transform, one obtains p(t, 0). On the other
hand, after we have explicitly p̄(λ, 0), we also have expressed explicitly Ḡ(z, λ) and
then we can take the inverse transform and use the formula

p(t, n) =
1

n!

∂nG

∂zn
(0, t)

to obtain all the state probabilities. However, this method can be actually difficult
to apply, since the inverse transform are not trivial even in this easy case. To give
an idea, let us observe that the solution of such difference-differential system is
given by (setting ρ = λ/µ)

p(t, n) = e−(λ+µ)t

[︄
ρ

n
2 In(2

√︁
λµt) + ρ

n−1
2 In+1(2

√︁
λµt) + (1− ρ)ρn

+∞∑︂
k=n+2

ρ−
k
2 Ik(2

√︁
λµt)

]︄
,

where the functions In are the modified Bessel functions of the first kind (see [72])

In(z) =

+∞∑︂
k=0

1

k!Γ(n+ k + 1)

(︂z
2

)︂n+2k

.

3.2. The fractional M/M/1 queue

In this section we will introduce the fractional M/M/1 queue as described in
[44]. However, we will do it reverting the approach, i.e. first introducing the process
and then discussing the equation. This is due to the fact that for non-Markov
processes (and this process is a semi-Markov one), knowing the fractional version
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of the forward Kolmogorov equation and its solution, does not characterize the
process. Moreover, to adapt the treatment to Kendall notation, let us fix α ∈ (0, 1)
and denote this queue model as Mα/Mα/1. So we know that there is 1 server, but
we still have to define the service mechanism and the input process. To do this,
we will make use of the classical M/M/1 queue. Consider N(t) the state process
of an M/M/1 queue with parameters λ and µ and σα(t) an α-stable subordinator
independent of it, with inverse Lα(t). Then the Mα/Mα/1 state process is defined
as Nα(t) := N(Lα(t)). Let us denote

pα(t, n) = P0(Nα(t) = n)

the state probabilities and

Gα(z, t) =

+∞∑︂
n=0

pα(t, n)z
n

the probability generating function (for t ≥ 0, n ∈ N0 and z ∈ D1). Let us
first give a system of fractional difference-differential equations whose solution is
Pα(t) = (pα(t, n))n∈N0 (see [44, Theorems 2.1 and 2.2]).

Theorem 3.2.1. Let Nα(t) be the state process of a Mα/Mα/1 queue. Then
the state probabilities pα(t, n) are the unique solution of
(3.2.1)⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂αpα(t, 0) = −λpα(t, 0) + µpα(t, 1) t > 0

∂αpα(t, n) = −(λ+ µ)pα(t, n) + µpα(t, n+ 1) + λpα(t, n− 1) t > 0, n ≥ 1

pα(0, 0) = 1

pα(0, n) = 0 n ≥ 1.

Moreover, the Laplace transform Ḡα(z, λ) of the probability generating function
Gα(z, t) is given by

Ḡα(z, λ) = λα−1
z − (1− z)[z2(λ)][1− z2(λ)]

−1

−λ[z − z1(λ)][z − z2(λ)]

where zi(λ) for i = 1, 2 are the roots of the polynomial

wλ(z) = λαz − (1− z)(µ− λz),

with z2(λ) ∈ D1.

It is also not difficult to check that

pα(t, n) =

∫︂ +∞

0

p(s, n)fα(s; t)ds

and

Gα(z, t) =

∫︂ +∞

0

G(z, s)fα(s; t)ds

where p(t, n) and G(z, t) are respectively the state probabilities and the probability
generating function of a M/M/1 queue and fα(s; t) is the density of the inverse α-
stable subordinator Lα(t). Using such relations it is possible to achieve an explicit
formula for the state probabilities pα(t, n). However, we first need to introduce a
special function as defined in [122].
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Definition 3.2.1. Let α ∈ H, β, ρ ∈ C. Then the Prabhakar function of
parameters α, β, ρ is defined as

Eρ
α,β(z) =

+∞∑︂
k=0

(ρ)kz
k

Γ(αk + β)k!
, z ∈ C

where (ρ)k = Γ(ρ+k)
Γ(ρ) if ρ is not a non-positive integer (if ρ is a positive integer, then

one could directly write (ρ)k = ρ(ρ+ 1) · · · (ρ+ k), obtaining 0 for k ≥ ρ).

Concerning Prahbakar functions, the following Laplace transform formula is
known (see [76, Formula 11.8]):

(3.2.2) L[tβ−1Eρ
α,β(wt

α)](λ) =
λαρ−β

(λα − w)ρ
, λ ∈ H .

Let us also remark that E1
α,β = Eα,β . Now let us express the state probabilities

pα(t, n) in terms of Prahbakar functions, recalling [44, Theorem 2.4].

Theorem 3.2.2. For any n ∈ N0, t ≥ 0 and α ∈ (0, 1) it holds

(3.2.3) pα(t, n) =

(︃
1− λ

µ

)︃(︃
λ

µ

)︃n

+

(︃
λ

µ

)︃n +∞∑︂
r=0

k+r∑︂
m=0

r −m

r +m

(︃
r +m

r

)︃
× λrµm−1tα(r+m)−αEr+m

α,α(r+m)−α+1(−(λ+ µ)tα).

Now that we have obtained explicitly the state probabilities, let us focus on
some features of this model. First of all, let us give some actual interpretation
to the symbol Mα. To do this, we first need to introduce a family of probability
distribution functions (that we will do in full generality, while here we will use just
one of them).

Definition 3.2.2. Let Φ ∈ BF be a driftless Bernstein function. We say that a
random variable X is distributed as a Φ-exponential random variable with rate
λ > 0 if X ≥ 0 almost surely and, for t ≥ 0, the probability distribution function
FX(t) of X is given by

FX(t) = 1− eΦ(t;−λ).
Let us denote such distribution as ExpΦ(λ). Moreover, if Φ(z) = zα, X is said to be
Mittag-Leffler distributed (see [121]). We denote the Mittag-Leffler distribution
with fractional parameter α ∈ (0, 1) and rate λ as MLα(λ).

Before proceeding with the next result, let us give some remarks. First of all,
since semi-Markov processes still admits Markov properties on jump times, given
a time-changed continuous-time Markov chain XΦ(t), we can still define its jump
chain, i.e. the Markov chain Xn = XΦ(Jn) where Jn are the jump times of X. In
particular, after a time-change, the jump chain remains unchanged: this is due to
the fact that we are only changing the temporal scale in which the events occur.
Moreover, let us observe that the new inter-arrival times are still independent each
other and so do the service times.
Moreover, the fact that the jump chain remains unchanged and that the process
still preserves Markov property at the jump times, we can consider the possibility
of modifying the process to obtain some information. For instance, suppose we
want to obtain the distribution of the inter-arrival times. Thus, we can suppose
there are already n users in the queue (and the n-th is just arrived) and no one
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is served (µ = 0). Moreover, we can fix an absorbing state in n + 1. Thus we
have a new process N b

α(t) with state space E = {n, n + 1} and state probabilities
bα(t,m) = P(N b

α(t) = m) for m = n, n + 1. In particular, let us observe that
such process describes the arrive of a single user without taking in consideration
the service mechanism. It is not difficult to see that bα(t, n) and bα(t, n + 1) are
solutions of the Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂αbα(t, n) = −λbα(t, n), t > 0

∂αbα(t, n+ 1) = λbα(t, n), t > 0

bα(0, n) = 1,

bα(0, n+ 1) = 0.

The first equation can be easily solved obtaining bα(t, n) = Eα(−λtα) and then

bα(t, n+ 1) = 1− bα(t, n) = 1− Eα(−λtα).

We have shown part of the following result (as done in [18]).

Proposition 3.2.3. Let Tn and Sn be the inter-arrival and the service times
of a Mα/Mα/1 queue. Then

Tn ∼MLα(λ) Sn ∼MLα(µ).

Moreover, let Sn be the soujourn times of Nα(t) in non-zero states. Then

Sn ∼MLα(λ+ µ)

hence Tn and Sn are not independent.

Let us observe that the last statement follows from the fact that Mittag-Leffler
functions do not exhibit semigroup properties (see [55]) and then, if Tn and Sn were
independent, the distribution of Sn = min{Tn, Sn} should not be a MLα(λ+ µ).
Finally, let us give the distribution of a performance parameter: the busy period.
In particular, let us show the following Theorem (see [18, Theorem 2]).

Theorem 3.2.4. Let Bα the busy period random variable of a Mα/Mα/1 queue
and let FBα

(t) = P(Bα ≤ t). Then it holds

FBα
(t) = 1−

+∞∑︂
n=1

+∞∑︂
m=0

Cn,mt
α(n+2m−1)En+2m

α,α(n+2m−1)+1(−(λ+ µ)tα), t ≥ 0

where

(3.2.4) Cn,m =

(︃
n+ 2m

m

)︃
n

n+ 2m
λn+m−1µm.

Proof. Let us consider a M/M/1 queue N(t) with parameters λ, µ and the
inducedMα/Mα/1 queue Nα(t). Now let us modify both processes. Let us suppose
that both processes start from N(0) = Nα(0) = 1. Moreover let us suppose 0 is an
absorbing state (thus the process stops as it reaches 0). Let us denote such new
processes as N̄(t) and N̄α(t). Observe that N̄α and Nα behave in the same way
up to reaching 0. After the first time Nα reaches 0, it holds N̄α(t) = 0. Thus we
know that N̄α(t) = 0 if and only if the first busy period of Nα lasts less than t, i.e.

p̄α(t, 0) = P1(N̄α(t) = 0) = P(Bα ≤ t).
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The same holds for N and N̄ . Let us denote with B the busy period of a M/M/1
queue with parameters λ, µ. However, we know that (see [50])

p̄(t, n) = P1(N̄(t) = n) = nt−1λ
n
2−1β−

n
2 e−(λ+µ)tIn(2

√︁
λµt), n ∈ N .

Setting Cn,m as in Equation (3.2.4) we have, by exploiting the series representation
of In,

p̄(t, n) =

+∞∑︂
m=0

Cn,m

(n+ 2m− 1)!
tn+2m−1e−(λ+µ)t, n ∈ N .

Finally, we get

p̄(t, 0) = 1−
+∞∑︂
n=1

+∞∑︂
m=0

Cn,m

(n+ 2m− 1)!
tn+2m−1e−(λ+µ)t.

Let us in particular recall that all the summands in the series are positive.
Moreover, by definition, we have that N̄α(t) = N̄(Lα(t)), thus, it holds (by a simple
conditioning argument)

p̄α(t, n) =

∫︂ +∞

0

p̄(s, n)fα(s; t)ds, n ∈ N0,

and then,

p̄α(t, 0) = 1−
+∞∑︂
n=1

+∞∑︂
m=0

Cn,m

(n+ 2m− 1)!

∫︂ +∞

0

sn+2m−1e−(λ+µ)sfα(s; t)ds.

Now let us denote πα(z, n) = L[p̄α(·, n)] and observe that, since L[fα(s; ·)](z) =
zα−1e−sz

α

, we get

πα(z, 0) =
1

z
−

+∞∑︂
n=1

+∞∑︂
m=0

Cn,m

(n+ 2m− 1)!
zα−1

∫︂ +∞

0

sn+2m−1e−(λ+µ+zα)sds

=
1

z
−

+∞∑︂
n=1

+∞∑︂
m=0

Cn,m
zα−1

(λ+ µ+ zα)n+2m
.

Finally, taking the inverse Laplace transform and using equation (3.2.2) we conclude
the proof. □

We could also argue on the virtual waiting time of the Mα/Mα/1 queue. How-
ever, we will discuss this case directly in Section 3.5

3.3. The fractional M/M/1 queue with acceleration of service

Now let us complicate the model a bit. In particular let us assume that the
server accelerates linearly with respect to the number of customers in the service.
In particular what happens is that the arrival rate λ > 0 remains constant, while
the service rate µ(n) = nµ depends on the number of customers. Thus in the
classical case we get a processN(t) that is an immigration-death process (see [133]),
while, in the time-changed case, the Mα/Mα/1 queue with acceleration of service
Nα(t) = N(Lα(t)) is a fractional immigration-death process, as better described in
[20, 22]. By using the results of Section 2.4 we directly obtain the following result.
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Theorem 3.3.1. The state probabilities pα(t, n) = P0(Nα(t) = n) are the
unique strong solutions (in ℓ2(m) where m is a Poisson measure with parameter
λ/µ) of the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂αpα(t, 0) = −λpα(t, 0) + µpα(t, 1) t > 0
∂αpα(t, n) = λpα(t, n− 1)− (λ+ nµ)pα(t, n)

+ (n+ 1)µpα(t, n+ 1)
n ∈ N, t > 0

pα(0, 0) = 1

pα(0, n) = 0 n ∈ N .

Here we have such theorem as a direct consequence of the more general theory
illustrated in Section 2.4. On the other hand, in [23], we have proved the same
result by using the probability generating function.
It is easy to check that the inter-arrival times are still MLα(λ)-distributed random
variables. However, the fact that the service rate is state-dependent leads to some
difficulty in determining the service times. Indeed, we can only obtain the distri-
bution if we suppose two services happen directly one after another. To obtain
such result, we need some further notation. In particular we denote by Ek the time
instant in which the k-th exit occurs and with Uk the time instant in which the k-th
event occurs (setting U0 = 0). Moreover let us introduce the stochastic process

U(t) = max{Uk : Uk ≤ t}

that is to say that U(t) is the last time an event occurs before time t > 0. Hence
we have the following result

Proposition 3.3.2. Let Sk+1 be the (k + 1)-th service time. Then

P(Sk+1 ≤ t|U(Ek + t) = Ek, N((Ek + t)−) = n) = 1− Eα(−nµtα).

We omit the proof since it is identical to the one we gave for the inter-arrival
times of the Mα/Mα/1 queue (by using also the conditioning to ensure all the
modifications we apply to the process do not alter the nature of the process itself).
In the same way, we can use a conditioned distribution for the sojourn times.

Proposition 3.3.3. Let Sk+1 be the (k + 1)-th sojourn time. Then

P(Sk+1 ≤ t|N((Uk + 1)−) = n) = 1− Eα(−(λ+ nµ)tα).

Now let us consider the virtual waiting times, that are actually the main quan-
tities affected by the semi-Markov property of the queue. To study them, we need
to introduce some other quantities. First of all, denoting by An the n-th arrival
time, let us define the following stochastic processes:

A(t) = max{An : An ≤ t} E(t) = max{En : En ≤ t}

for t > 0, that are respectively the last arrival time and the last exit time before t
(where we set A0 = 0 and E0 = 0).
Moreover, we need to show the following Lemma.

Lemma 3.3.4. It holds

Ls→z[Eα(−nµ(s+∆t))] = ez∆t
+∞∑︂
k=0

(−nµ)k

Γ(kα+ 1)
z−kα−1Γ(kα+ 1, z∆t).
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Proof. Let us recall that the series representation of Eα absolutely converges,
thus we can take the Laplace transform under the summation sign. In particular
we have

Ls→z[Eα(−nµ(s+∆t)α)] = ez∆t

∫︂ +∞

∆t

Eα(−nµwα)e−wzdw

= z−1e∆tz

∫︂ +∞

∆t

Eα(−nµz−αuα)e−udu

= z−1e∆tz
+∞∑︂
k=0

(−nµz−α)k

Γ(kα+ 1)

∫︂ +∞

z∆t

ukαe−udu

= e∆tz
+∞∑︂
k=0

(−nµ)k

Γ(kα+ 1)
z−kα−1Γ(kα+ 1, z∆t),

concluding the proof. □

We also need to introduce another probability distribution function, as done in
[19].

Definition 3.3.1. Let X be a non-negative random variable with distribution

FX(t) = 1− Eα(−λ(t0 + t)α)

Eα(−λtα0 )
.

Then we say that X is a residual Mittag-Leffler random variable with frac-
tional parameter α ∈ (0, 1), rate λ > 0 and starting time t0 and we denote it by
RMLα(λ, t0).

The name is due to the following easy lemma.

Lemma 3.3.5. Let X be a MLα(λ)-distributed random variable with respect to
the probability measure P. Let Q = P(·|X ≥ t0). Then X − t0 is RMLα(λ, t0)-
distributed with respect to Q.

Proof. By definition of conditional probability we obtain

Q(X − t0 ≤ t) =
P(t0 ≤ X ≤ t+ t0)

P(X ≥ t0)
=
Eα(−λtα0 )− Eα(−λ(t0 + t)α)

Eα(−λtα0 )
,

concluding the proof. □

Now we can express a formula concerning a particular conditional virtual wait-
ing time (see [23]).

Proposition 3.3.6. Define the function

FW (s; t, t0, n) = P(W (t) ≤ s|A(t+ s) = t, E(t) = t0, N(t−) = n+ 1),

for s, t, t0 ≥ 0 with t0 ≤ t and n ∈ N0, where W (t) is the virtual waiting time for a
Mα/Mα/1 queue with acceleration of the service. Then

• If n = 0 we have FW (s; t, t0, 0) = 1− Eα(−µsα);
• If n ̸= 0, then the Laplace-Stieltjes transform of FW with respect to s is
given by

LS [FW (·; t, t0, n)](z) =

⎛⎝1−
e∆tz

∑︁+∞
k=0

(−(n+1)µ)k

Γ(kα+1) z−kαΓ(kα+ 1, z∆t)

Eα(−(n+ 1)µ∆tα)

⎞⎠ n∏︂
j=1

jµ

zα + jµ
,
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where ∆t = t− t0.

Proof. For n = 0, the virtual waiting time corresponds to the service time
of a single user when there are no other users in the queue, thus the first property
follows from Proposition 3.3.2. Concerning the second one, since N(t−) = n + 1
and no other user enters the queue up to t+ s, we know that

W (t) =

n∑︂
j=1

Sj + (Sn+1 −∆t)

where ∆t = t − t0. Now, under the conditioning we imposed, we know that Sj ∼
MLα(jµ). On the other hand, we know that the user that is in service at time
t > 0 started its service at time t0 < t. Thus we are conditioning to the fact that
Sn+1 ≥ t− t0 and then we have, by Lemma 3.3.5, that Sn+1 ∼ RMLα((n+1)µ, t0).
Finally, taking in consideration the fact that the variables Sj are independent and
using Lemma 3.3.4 together with the definition of RLMα(λ, t0), we conclude the
proof. □

3.4. The fractional M/M/1 queue with catastrophes

Let us consider again a M/M/1 system state process N(t) with parameters
λ, µ > 0. Let us suppose that such queue system is subject to catastrophes, whose
effect is to instantaneously empty the queue, and that, under the conditioning that
the queue is not empty, the time of inter-occurrence of catastrophes is exponentially
distributed with rate ξ > 0. Let us denote by Nξ(t) the new system state process.
This process has been widely studied in [53], where the following Theorem is proved.

Theorem 3.4.1. Let Nξ(t) be a M/M/1 queue with catastrophes and denote
pξ(t, n) = P0(N

ξ(t) = n) the state probabilities. Then the state probabilities are the
unique solution of the difference-differential Cauchy problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dpξ

dt (t, 0) = −(λ+ ξ)pξ(t, 0) + µpξ(t, 1) + ξ t > 0
dpξ

dt (t, n) = −(λ+ ξ + µ)pξ(t, n) + µpξ(t, n+ 1) + λpξ(t, n− 1) n ∈ N, t > 0

pξ(0, 0) = 1

pξ(0, n) = 0, n ∈ N .

Moreover, Nξ(t) admits stationary state with distribution given by

(3.4.1) qn =

(︃
1− 1

z1

)︃(︃
1

z1

)︃n

, n ∈ N0

where z1 > 1 is a solution of the equation

λz2 − (λ+ µ+ ξ)z + µ = 0.

Finally, let ˜︁N(t) be a M/M/1 system state process with arrival rate λz1 and service

rate µ
z1

and Nξ be a random variable independent of ˜︁N(t) with distribution (qn)n∈N0 .

Then Nξ(t)
d
= min{ ˜︁N(t), Nξ} for any t ≥ 0.

Now we can define the Mα/Mα/1 queue with catastrophes. Indeed, let us
consider a system state process Nξ(t) of a M/M/1 queue with catastrophes and let
Lα(t) be the inverse of an α-stable subordinator independent of Nξ(t). Then the
Mα/Mα/1 system state process with catastrophes is defined as Nξ

α(t) := Nξ(Lα(t)).
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First of all, let us give an alternative representation of the considered system state
process.

Proposition 3.4.2. Let ˜︁Nα(t) be aMα/Mα/1 system state process with arrival

rate λz1 and service rate µ/z1, defined as ˜︁Nα(t) := ˜︁N(Lα(t)) for ˜︁N(t) a M/M/1
queue with the same parameters. Moreover, let Nξ be a random variable indepen-
dent of N(t) and Lα(t) with distribution (qn)n∈N0

where qn is given by Equation
(3.4.1). Then it holds

Nξ
α(t)

d
= min{ ˜︁Nα(t), N

ξ}.

Proof. Let us recall that Nξ(t)
d
= min{ ˜︁N(t), Nξ}. Thus we get

P0(N
ξ
α(t) = n) =

∫︂ +∞

0

P0(N
ξ(s) = n)fα(s; t)ds

=

∫︂ +∞

0

P0(min{ ˜︁N(t), Nξ} = n)fα(s; t)ds

= P0(min{ ˜︁Nα(t), N
ξ} = n),

concluding the proof. □

Now that we have this alternative representation, we can use it to determine a
system of fractional difference-differential equations whose unique solutions are the
state probabilities pξα(t, n) = P(Nξ

α(t) = n), as done in [18, Theorem 3].

Theorem 3.4.3. Let Nξ
α be a Mα/Mα/1 system state process with catastrophes

with rates λ, µ, ξ > 0. Then the state probabilities pξα(t, n) are the unique solutions
of
(3.4.2)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂αpξα(t, 0) = −(λ+ ξ)pξα(t, 0) + µpξα(t, 1) + ξ t > 0

∂αpξα(t, n) = −(λ+ ξ + µ)pξα(t, n) + µpξα(t, n+ 1) + λpξα(t, n− 1) n ∈ N, t > 0

pξα(0, 0) = 1

pξα(0, n) = 0, n ∈ N .

Proof. Let ˜︁Nξ
α(t) and Nξ be the M/M/1 process and the random variable

defined in Proposition 3.4.2. Then we have

pξα(t, n) = P0(N
ξ = n)P0( ˜︁Nα(t) ≥ n) + P0(N

ξ > n)P0( ˜︁Nα(t) = n)

= qn

+∞∑︂
k=n

˜︁pα(t, k) +(︄ +∞∑︂
k=n+1

qn

)︄ ˜︁pα(t, n)
= qn

+∞∑︂
k=n

˜︁pα(t, k) + (︃ 1

z1

)︃n+1 ˜︁pα(t, n),
(3.4.3)

where we used the definition of qn given in Equation (3.4.1). Now let us recall that˜︁pα(t, n) are the unique solution of (3.2.1). Working with pξα(t, 0), we have

pξα(t, 0) = q0 +
˜︁pα(t, 0)
z1

.

Hence, pξα(t, 0) admits a fractional derivative and

∂αpξα(t, 0) =
∂α˜︁pα(t, 0)

z1
= −λ˜︁pα(t, 0) + µ

z21
˜︁pα(t, 1).
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On the other hand, we have

pξα(t, 1) = q1(1− ˜︁pα(t, 0)) + ˜︁pα(t, 0)
z21

.

Thus, it holds, by recalling that q0 = 1− 1
z1
, q1 = q0

z1
and λz21−(λ+µ+ξ)z1+µ = 0,

−(λ+ ξ)pξα(t, 0) + µpξα(t, 1) + ξ = ξ − (λ+ ξ)

(︃
q0 +

˜︁pα(t, 0)
z1

)︃
+ µ

(︃
q1(1− ˜︁pα(t, 0)) + ˜︁pα(t, 0)

z21

)︃
= −λz

2
1 − (λ+ µ+ ξ)z1 + µ

z21
(1− ˜︁pα(t, 0))− λ˜︁pα(t, 0) + µ

z1
˜︁pα(t, 1)

= −λ˜︁pα(t, 0) + µ

z1
˜︁pα(t, 1) = ∂αpξα(t, 0).

Now let us consider n ∈ N and let us re-write Equation (3.4.3) as

pξα(t, n) = qn

(︄
1−

n−1∑︂
k=0

˜︁pα(t, k))︄+

(︃
1

z1

)︃n+1 ˜︁pα(t, n).
We have that pξα(t, n) admits a fractional derivative and

∂αpξα(t, n) = −qn
n−1∑︂
k=0

∂α˜︁pα(t, k) + (︃ 1

z1

)︃n+1

∂α˜︁pα(t, n)
= qn

(︃
λz1 +

µ

z1

)︃ n−1∑︂
k=1

˜︁pα(t, k) + qnλz1˜︁pα(t, 0)− qnλz1

n−2∑︂
k=0

˜︁pα(t, k)
− qn

µ

z1

n∑︂
k=1

˜︁pα(t, k)− (︃ 1

z1

)︃n+1(︃
λz1 +

β

z1

)︃ ˜︁pα(t, n)
+ λ

(︃
1

z1

)︃n ˜︁pα(t, n− 1) + µ

(︃
1

z1

)︃n+2 ˜︁pα(t, n+ 1).

On the other hand, recalling that qn−1 = z1qn,

−(λ+ µ+ ξ)pξα(t, n) + λpξα(t, n− 1) + ξpα(t, n+ 1)

= −(λ+ µ+ ξ)

(︄
qn

(︄
1−

n−1∑︂
k=0

˜︁pα(t, k))︄+

(︃
1

z1

)︃n+1 ˜︁pα(t, n))︄

+ λ

(︄
qn−1

(︄
1−

n−2∑︂
k=0

˜︁pα(t, k))︄+

(︃
1

z1

)︃n ˜︁pα(t, n− 1)

)︄

+ µ

(︄
qn+1

(︄
1−

n∑︂
k=0

˜︁pα(t, k))︄+

(︃
1

z1

)︃n+2 ˜︁pα(t, n+ 1)

)︄

=
λz21 − (λ+ µ+ ξ)z1 + µ

z1
qn

(︄
1−

n−1∑︂
k=0

˜︁pα(t, k))︄+ ∂αpξα(t, n) = ∂αpξα(t, n),

concluding the proof, since the initial conditions are verified by definition of pξα. □
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Now that we have the Equations (3.4.2) it is not difficult to check the following
statement.

Proposition 3.4.4. Let Tn be an inter-arrival time, Sn be a service time, Θα

be the first time of occurrence of a catastrophe and Sn be a soujourn time in a
non-zero state. Then we have

P(Tn ≤ t) = 1− Eα(−λtα), P(Θα ≤ t| min
s∈[0,t]

N(s) > 0) = 1− Eα(−ξtα),

P(Sn ≤ t) = 1− Eα(−µtα), P(Sn ≤ t) = 1− Eα(−(λ+ µ+ ξ)tα),

where the relations hold for any n ∈ N.

Let us observe that Θ ∼MLα(ξ) only if we suppose that the queue has not been
empty (for instance, setting µ = 0 and starting from Nξ

α(0) = 1). However, this is
enough to give some information on the busy period. Indeed, let us denote by Bξ

α

the busy period of aMα/Mα/1 queue with catastrophes with parameters λ, µ, ξ > 0
and with Bα the busy period of a Mα/Mα/1 queue without catastrophes and with
the same parameters. Then we can recognize P(Bξ ≤ t) = P1(mins∈[0,t]N

ξ
α(s) = 0),

i.e. the system state process starting from 1 reached 0 before t. This could happen
in two different situations:

• The first catastrophes occurred before t ≥ 0;
• The first catastrophes did not occur before t ≥ 0, but the process reaches
zero without the help of any catastrophe.

This means in particular that

P(Bξ ≤ t) = P1(Θα ≤ t) + P1(B
ξ
α ≤ t|Θα > t)P1(Θα > t)

= P1(Θα ≤ t) + P1(Bα ≤ t)P1(Θα > t).

A direct application of Theorem 3.2.4 leads to the following result.

Theorem 3.4.5. Let FBξ
α
(t) := P(Bξ

α ≤ t). Then

FBξ
α
(t) = 1−Eα(−ξtα)

+∞∑︂
n=1

+∞∑︂
m=0

Cn,mt
α(n+2m−1)En+2m

α,α(n+2m−1)+1(−(λ+µ)tα), t ≥ 0

where Cn,m are defined in Equation (3.2.4).

However, we still have to determine the distribution of the first occurrence of a
catastrophe Θ when the queue starts from Nξ

α(0) = 0. This can be done by means
of the following Theorem (see [18, Theorem 6]).

Theorem 3.4.6. Let Θα be the first occurrence time of a catastrophe in a
Mα/Mα/1 queue with catastrophes with parameters λ, µ, ξ > 0. Then it holds

P0(Θα ≤ t) = 1−
+∞∑︂
j=1

+∞∑︂
m=0

Cm,jt
α(2m+j−1)E2m+j

α,α(2m+j−1)+1[−(λ+ µ+ ξ)tα],

where

(3.4.4) Cm,j =
j

2m+ j

(µ+ ξ)j − λj

µ+ ξ − λ

(︃
2m+ j

m

)︃
(λµ)m.

Proof. Let us consider the system state process Nξ(t) fo a M/M/1 queue
with catastrophes with parameters λ, α, ξ > 0 and the corresponding time-changed
process Nξ

α(t). Let us modify both processes in the following way:
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• We add the state −1 to N0;
• Now a catastrophes does not empty the queue, but sends the system state
process directly to −1;

• −1 is an absorbing state.

We obtain in this way two new processes N̄
ξ
(t) and N̄

ξ
α(t) such that N̄

ξ
α(t) =

N̄
ξ
(Lα(t)). Now let us denote rξα(t, n) = P0(N̄

ξ
α(t) = n) and rξ(t, n) = P0(N̄α(t) =

n) for n ∈ N0 ∪{−1}. Let us now give an interpretation of rξ(t,−1). We have that

if N̄
ξ
(t) = −1, then a catastrophes must have occurred before t and vice-versa, if a

catastrophes occurs before t, then N̄
ξ
(t) = −1. In particular we get that, denoting

by Θ the first occurrence of a catastrophe for a M/M/1 queue with catastrophes
with parameters λ, µ, ξ > 0,

P0(Θ ≤ t) = rξ(t,−1).

Arguing in the same way for N̄
ξ
α(t), we get

P0(Θα ≤ t) = rξα(t,−1) =

∫︂ +∞

0

rξ(s,−1)fα(s; t)ds =

∫︂ +∞

0

P0(Θ ≤ t)fα(s; t)ds.

Now, from [53, Theorem 3.1], we have

P0(Θ ≤ t) = 1−
+∞∑︂
j=1

+∞∑︂
m=0

Cm,j

(2n+ j − 1)!
t2m+j−1e−(λ+µ+ξ)t,

where Cm,j are defined in Equation (3.4.4). By monotone convergence theorem we
get

P0(Θα ≤ t) = 1−
+∞∑︂
j=1

+∞∑︂
m=0

Cm,j

(2n+ j − 1)!

∫︂ +∞

0

s2m+j−1e−(λ+µ+ξ)sfα(s; t)ds.

Then, let us take the Laplace transform on both sides to get

Lt→z[P0(Θα ≤ t)](z) =
1

z
−

+∞∑︂
j=1

+∞∑︂
m=0

Cm,j

(2n+ j − 1)!
zα−1

∫︂ +∞

0

s2m+j−1e−(λ+µ+ξ+zα)sds

=
1

z
−

+∞∑︂
j=1

+∞∑︂
m=0

Cm,j
zα−1

(λ+ µ+ ξ + zα)2m+j
.

Taking the inverse Laplace transform and using Equation (3.2.2) we conclude the
proof. □

Now let us consider again the state probabilities pξα. We have shown that they
are solutions of some fractional difference-differential Cauchy problem, but we did
not write them in an explicit way. Let us indeed state the following Theorem (see
[18, Theorem 4]).



3.4. THE FRACTIONAL M/M/1 QUEUE WITH CATASTROPHES 116

Theorem 3.4.7. Let z2 be the other solution of λz2 − (λ + µ + ξ)z + µ = 0.
Then we have

pξα(t, n) = qn +

+∞∑︂
m=0

m+n∑︂
r=0

C1
n,m,rt

α(m+r−1)Em+r
α,α(m+r−1)(−(λ+ µ+ ξ)tα)

(3.4.5)

+

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C2
n,m,rt

α(m+r−1)Em+r
α,α(m+r−1)(−(λ+ µ+ ξ)tα)(3.4.6)

where

C1
n,m,r =

z1 − 1

(z1 − z2)z
n+m+1−r
1

(︃
m+ r

r

)︃
m− r

m+ r
µmλr−1

C2
n,m,r =

1− z2

(z1 − z2)z
n+m+1−r
2

(︃
m+ r

r

)︃
r −m

m+ r
µmλr−1.

(3.4.7)

Proof. Let us recall that in [53] it has been shown that

pξ(t, n) = qn +

+∞∑︂
m=0

m+n∑︂
r=0

C1
n,m,r

(m+ r − 1)!
tm+r−1e−(λ+µ+ξ)t

+

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C2
n,m,r

(m+ r − 1)!
tm+r−1e−(λ+µ+ξ)t,

where Ci
n,m,r for i = 1, 2 are defined in Equation (3.4.7). Thus we have, by mono-

tone convergence theorem

pξα(t, n) =

∫︂ +∞

0

pξ(s, n)fα(s; t)ds

= qn +

+∞∑︂
m=0

m+n∑︂
r=0

C1
n,m,r

(m+ r − 1)!

∫︂ +∞

0

sm+r−1e−(λ+µ+ξ)sfα(s; t)ds

+

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C2
n,m,r

(m+ r − 1)!

∫︂ +∞

0

sm+r−1e−(λ+µ+ξ)sfα(s; t)ds.

Now let us denote by πξ
α(z, n) the Laplace transforms of pξα(t, n) to achieve

πξ
α(t, n) =

qn
z

+

+∞∑︂
m=0

m+n∑︂
r=0

C1
n,m,r

(m+ r − 1)!
zα−1

∫︂ +∞

0

sm+r−1e−(λ+µ+ξ+zα)sds

+

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C2
n,m,r

(m+ r − 1)!
zα−1

∫︂ +∞

0

sm+r−1e−(λ+µ+ξ+zα)sds

=
qn
z

+

+∞∑︂
m=0

m+n∑︂
r=0

C1
n,m,r

zα−1

(λ+ µ+ ξ + zα)m+r

+

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C2
n,m,r

zα−1

(λ+ µ+ ξ + zα)m+r
.

Finally, taking the inverse Laplace transform and using Equation (3.2.2) we con-
clude the proof. □
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Let us now consider some simple one-dimensional limit theorems concerning
the process Nξ

α(t). Indeed, let us recall that as ξ → 0+, then Nξ(t) converges in
one-dimensional distributions to N(t) (where N(t) is the system state process of a
M/M/1 queue without catastrophes). The same happens for Nξ

α(t).

Proposition 3.4.8. Let Nξ
α(t) be the system state process of aMα/Mα/1 queue

with catastrophes with parameters λ, µ, ξ > 0 and let Nα(t) be the system state

process of a Mα/Mα/1 queue with parameters λ, µ > 0. Then we have Nξ
α(t)

d→
Nα(t) as ξ → 0+.

Proof. Let us consider Nξ(t) a system state process of a M/M/1 queue with
catastrophes with parameters λ, µ, ξ > 0 and N(t) a system state process of a
M/M/1 queue without catastrophes. Moreover, let Lα(t) be the inverse of an
α-stable subordinator independent of both N(t)and Nξ(t). Let us recall that
limξ→0 p

ξ(t, n) = p(t, n) where pξ(t, n) and p(t, n) are the state probabilities re-
spectively of Nξ(t) and N(t). Now let Nξ

α(t) = Nξ(Lα(t)) and Nα(t) = N(Lα(t))
with state probabilities respectively pξα(t, n) and pα(t, n). We have

pξα(t, n) =

∫︂ +∞

0

pξ(s, n)fα(s; t)ds.

In particular, since 0 ≤ pξ(s, n) ≤ 1 for any fixed n and ξ > 0, we can use dominated
convergence theorem to obtain

lim
ξ→0+

pξα(t, n) =

∫︂ +∞

0

lim
ξ→0+

pξ(s, n)fα(s; t)ds

=

∫︂ +∞

0

p(s, n)fα(s; t)ds = pα(t, n),

concluding the proof. □

Now let us use this limit theorem to obtain a new representation of pα(t, n).
First of all, let us recall that both z1 and z2 depend on ξ. However, being the roots
of a second degree polynomial whose coefficient depend with continuity on ξ, they
are both continuous functions of ξ. As µ ≤ λ we have

lim
ξ→0+

z1(ξ) = 1 lim
ξ→0+

z2(ξ) =
β

α
.

For this reason, also qn and Ci
n,m,r are continuous functions of ξ. In particular it

holds

lim
ξ→0+

qn(ξ) = 0 lim
ξ→0+

C1
n,m,r(ξ) = 0 lim

ξ→0+
C2

n,m,r(ξ) = C3
n,m,r,

where

(3.4.8) C3
n,m,r = λn+mµr−n−1

(︃
m+ r

m

)︃
r −m

m+ r
.

Moreover, it is not difficult to see that for fixed t and n, the series in (3.4.5) normally
converges and then we can take the limit inside the series. Thus we have proved
the following proposition.
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Proposition 3.4.9. Let Nα(t) be the system state process of aMα/Mα/1 queue
with parameters λ ≥ µ > 0. Then it holds

(3.4.9) pα(t, n) =

+∞∑︂
m=0

+∞∑︂
r=m+n+1

C3
n,m,rt

α(m+r−1)Em+1
α,α(m+r−1)+1(−(λ+ µ)tα),

where C3
n,m,r is defined in Equation (3.4.8).

Let us observe that, if we do the same with λ < µ, we obtain again (3.2.3).
Finally let us observe that in this case the virtual waiting time does not provide
any useful information from the user’s point of view, since if a catastrophe occurs
then the user is not served.

3.5. The fractional M/Ek/1 queue

Now let us move to a different model. Let us suppose that the inter-arrival times
are still exponentially distributed of parameter λ, but that the service is divided in
k subsequent phases, each one with exponential service time with rate kµ. What
we obtain is that the complete service time is not exponentially distributed, but its
distribution is an Erlang one with shape parameter k ∈ N and rate µ, that we will
denote as Erlk(µ). As one can see, an M/Ek/1 queue is not a Markovian queue.
In particular the system state process Ns(t) (let us recall that this process counts
the number of users in the system at time t > 0) is not Markov, being the service
times not exponential. However, we can still obtain a Markov representation of
such queueing system. This can be done in two equivalent ways:

• We can introduce a phase state processNp(t) that counts the remaining
number of phases the user in service has still to execute and is set to 0 when
the system is empty. In such a way, the coupled state-phase process
N c(t) = (Ns(t), Np(t)) is a actually a bivariate continuous time Markov
chain (the sojourn times are now exponentials of parameter λ+ kµ) with
state space Ec = {(n, s) : n ∈ N, 1 ≤ s ≤ k} ∪ {(0, 0)};

• We can directly count the number of phases the system has to execute
in place of the number of users. In this way, each user will contribute as
k phases (like a group entrance). In this case, the phase counter process
is called queue length process N l(t) and is actually a Markov process.
However, it jumps backward of just one unit, but forward of k units, thus
it is not really a birth-death process, despite the similarity.

As we already stated, the approaches are equivalent. Actually, one can pass from
the coupled process N c(t) to the queue length one N l(t) by using the following
transformation

N l(t) =

{︄
k(Ns(t)− 1) +Np(t) (Ns(t), Np(t)) ̸= (0, 0)

0 (Ns(t), Np(t)) = (0, 0).

It is not difficult to see that such mapping is actually a bijection from E to N and
then the procedure can be inverted. Here we will use N l(t) to describe our system.
Now let us consider p(t, l) = P0(N

l(t) = l). Let us denote by l : E → N the map

l(s, p) =

{︄
k(s− 1) + p (s, p) ̸= (0, 0)

0 (s, p) = (0, 0).
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In [98, 99] this system has been considered as particular case of group arrival
systems, leading to the following forward equations:
(3.5.1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dp
dt (t, 0) = −λp(t, 0) + kµp(t, 1), t > 0
dp
dt (t, l) = −(λ+ kµ)p(t, l) + kµp(t, l + 1), 0 ≤ l ≤ k − 1, t > 0
dp
dt (t, l) = −(λ+ kµ)p(t, l) + kµp(t, l + 1) + λp(t, l − k), l ≥ k, t > 0

p(0, 0) = 1

p(0, l) = 0 l ∈ N .

Concerning the solution of such system, we need to introduce the following special
functions.

Definition 3.5.1. The generalized modified Bessel functions of two
parameters (see [99]) is defined as

Ikn(z) =

+∞∑︂
r=0

(︁
z
2

)︁n+r(k+1)

r!Γ(n+ rk + 1)
, z ∈ C, n > 0, k ∈ N .

The generalized modified Bessel functions of three parameters (see [73])
is defined as

Ik(n,s)(z) =

+∞∑︂
r=0

(︁
z
2

)︁n+k−s+r(k+1)

(k(r + 1)− s)!Γ(n+ r + 1)
, z ∈ C, n > 0, k ∈ N, s = 1, . . . , k.

In [74] the solutions of (3.5.1) have been expressed in terms of the generalized
modified Bessel functions. In particular we have an explicit formulation only for
p(t, 0), given by

(3.5.2) p(t, 0) =

+∞∑︂
m=1

m

(︃
λ

kµ

)︃− m
k+1

Ikm

(︃
2
(︂

λ
kµ

)︂ 1
k+1

kµt

)︃
kµt

e−(λ+kµ)t.

Concerning p(t, l) for l ≥ 1 we have integral representation in terms of p(t, 0).
To give it, let us denote q(l) = (q1(l), q2(l)) where q2(l) is the remainder of the
Euclidean division of l with respect to k if it is not 0 and k if it is 0, while q1(l) =
l−q2(l)

k + 1. Let us observe that in such way q(l) belongs to Ec. On Ec we can
define the strict lexicographic order, i.e.

(n1, s1) < (n2, s2) ⇔ n1 < n2 or (n1 = n2 and s1 < s2)

and then we can define the order ≤ from this strict order. With such definition,
(E,≤) is well ordered and then we can define a successor. In particular we define
the successor of (n, s) a

(n, s) + 1 =

⎧⎪⎨⎪⎩
(n, s+ 1) s ̸= k, 0

(n+ 1, 1) s = k

(1, 1) (n, s) = (0, 0).
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By using these definitions, we have

p(t, l) =

(︃
λ

kµ

)︃ l
k+1

Ikq(l)

(︂
2(λ(kµ)k)

1
k+1 t

)︂
e−(λ+kµ)t

+ kµ

(︃
λ

kµ

)︃ l
k+1
∫︂ t

0

p(τ, 0)Ikq(l)(2(λ(kµ)
k)

1
k+1 (t− τ))e−(λ+kµ)(t−τ)dτ

− kµ

(︃
λ

kµ

)︃ l+1
k+1
∫︂ t

0

p(τ, 0)Ikq(l)+1(2(λ(kµ)
k)

1
k+1 (t− τ))e−(λ+kµ)(t−τ)dτ.

(3.5.3)

Now we want to introduce the fractional version of this process. To do this, we first
need to introduce another probability distribution function.

Definition 3.5.2. Let X be a non-negative random variable with distribution
function

FX(t) = 1−
k−1∑︂
n=0

(λtα)n

n!
E(n)

α (−λtα)

where E
(n)
α is the n-th derivative of the Mittag-Leffler function. Then we say that

X is a generalized Erlang random variable with fractional index α, shape
parameter k and rate λ (see [102]) and we denote it by Erlk,α(λ).

It particular it can be easily shown that any Erlk,α(λ) random variable is sum
of k independent MLα(kλ) random variables. Thus in particular if X ∼ Erlk,α(λ),
its Laplace transform is given by

E[e−zX ] =
(kλ)k

(kλ+ zα)k
, z ∈ C.

Now let us consider the queue length process N l(t) of a M/Ek/1 queue. Then we
define the queue length process of aMα/Ek,α/1 queue as N l

α(t) = N l(Lα(t)) where
Lα(t) is the inverse of an α-stable subordinator independent of N l(t).
As a first step, let us find the forward equations for the state probabilities pα(t, l) =
P0(N

l
α(t) = l) for l ∈ N0, as shown in [19, Theorem 3.1].

Theorem 3.5.1. The state probabilities pα(t, l) are solution of the following
fractional difference-differential Cauchy problem
(3.5.4)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂αpα(t, 0) = −λpα(t, 0) + kµpα(t, 1), t > 0

∂αpα(t, l) = −(λ+ kµ)pα(t, l) + kµpα(t, l + 1), 0 ≤ l ≤ k − 1, t > 0

∂αpα(t, l) = −(λ+ kµ)pα(t, l) + kµpα(t, l + 1) + λpα(t, l − k), l ≥ k, t > 0

pα(0, 0) = 1

pα(0, l) = 0 l ∈ N .
Proof. Let us consider the probability generating function

Gα(z, t) =

+∞∑︂
n=0

pα(t, n)z
n, z ∈ D1 .

First we want to show that the system (3.5.4) is equivalent to
(3.5.5){︄
z∂αt Gα(z, t) = (1− z)[Gα(z, t)(kµ− λ(z + ·+ zk))− kµpα(t, 0)] t > 0, z ∈ D1

Gα(z, 0) = 1 z ∈ D1 .
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Let us suppose that pα(t, n) are solutions of (3.5.4). Then multiplying both the
second and the third equations by zl and summing everything we obtain the first
equation of (3.5.5), while the initial datum follows by definition.
Vice versa, if G(z, t) is solution of (3.5.5), then we have

+∞∑︂
n=0

∂αpα(t, n)z
n+1 = kµ

+∞∑︂
n=0

pα(t, n)z
n − λ

k∑︂
r=1

+∞∑︂
n=0

pα(t, n)z
n+r − kµpα(t, 0)

− kµ

+∞∑︂
n=0

pα(t, n)z
n+1 + λ

k∑︂
r=1

+∞∑︂
n=0

pα(t, n)z
n+r+1 + kµpα(t, 0)z

Now let us define pα(t, n) = 0 for any n < 0. Thus we have

+∞∑︂
n=1

∂αpα(t, n− 1)zn = kµ

+∞∑︂
n=0

pα(t, n)z
n − λ

k∑︂
r=1

+∞∑︂
n=r

pα(t, n− r)zn − kµpα(t, 0)

− kµ

+∞∑︂
n=1

pα(t, n− 1)zn + λ

k∑︂
r=1

+∞∑︂
n=r+1

pα(t, n− r − 1)zn + kµpα(t, 0)z

= (kµpα(t, 1)− λpα(t, 0))z +

k∑︂
n=2

(kµpα(t, n)− (λ+ kµ)pα(t, n− 1))zn

+

+∞∑︂
n=k+1

(kµpα(t, n)− (λ+ kµ)pα(t, n− 1) + λpα(t, n− k − 1))zn,

and then we obtain the system (3.5.4) by identity of power series.
Hence, we only need to show that the probability generating function Gα(z, t) solves
(3.5.5). Taking the Laplace transform and denoting by Ḡα(z, ξ) and πα(ξ, 0) the
Laplace transforms respectively of Gα(z, t) and pα(t, 0), we have that (3.5.5) is
equivalent to

(3.5.6) zξαḠα(z, ξ)− zξα−1 = (1− z)[Ḡα(z, ξ)(kµ−λ(z+ · · ·+ zk))−kµπα(ξ, 0)].

Now let us consider p(t, n) the state probabilities of the queue length process N l(t)
of theM/Ek/1 queue such that N l

α(t) = N l(Lα(t)) and let us define the probability
generating function

(3.5.7) G(z, t) =

+∞∑︂
n=0

p(t, n)zn.

Then it is easy to check that

Gα(z, t) =

∫︂ +∞

0

G(z, s)fα(s; t)ds, pα(t, 0) =

∫︂ +∞

0

p(s, 0)fα(s; t)ds,

and the Laplace transforms are given by

Ḡα(z, ξ) = ξα−1
∫︂ +∞

0

G(z, s)e−sξ
α

ds, πα(t, 0) = ξα−1
∫︂ +∞

0

p(s, 0)e−sξ
α

ds.
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Substituting these relations in (3.5.6) and dividing by ξα−1 we get the equivalent
equation

zξα
∫︂ +∞

0

G(z, s)e−sξ
α

ds− z = (1− z)

[︃
(kµ− λ(z + · · ·+ zk))

∫︂ +∞

0

G(z, s)e−sξ
α

ds

−kµ
∫︂ +∞

0

p(s, 0)e−sξ
α

ds

]︃
.

Finally, observing that

ξα
∫︂ +∞

0

G(z, s)e−sξ
α

ds =

∫︂ +∞

0

∂G

∂s
(z, s)e−sξ

α

ds+ 1,

we get the equivalent equation∫︂ +∞

0

[︃
z
∂G

∂s
(z, s)− (1− z)[(kµ− λ(z + · · ·+ zk))G(z, s)− kµp(s, 0)]

]︃
e−sξαds = 0,

that is verified since G(z, t) is solution of{︄
z ∂G

∂t (z, t) = (1− z)[G(z, t)(kµ− λ(z + ·+ zk))− kµp(t, 0)] t > 0, z ∈ D1

G(z, 0) = 1 z ∈ D1 .

□

Now that we have the forward equations, we can argue as we did before to show
the following features:

• The inter-arrival times Tn are MLα(λ)-distributed;
• The phase-service times Pn are MLα(kµ)-distributed;
• The total service times Sn are Erlk,α(µ) distributed;

• The soujourn times Sl
n of the queue-length process N l(t) areMLα(kµ+λ)

distributed if the queue is not empty, MLα(λ)-distributed otherwise.
• Inter-arrival and phase-service times are not independent.

We want to determine an explicit form of the state probabilities pα(t, n). To do
this, let us first consider the case of pα(t, 0) (see [19, Theorem 5.1]).

Theorem 3.5.2. It holds

(3.5.8) pα(t, 0) =

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,rt

α(δ0m,r−1)E
δ0m,r

α,α(δ0m,r−1)+1(−(λ+ kµ)tα)

where

C0
m,r =

m

m+ r(k + 1)

(︃
m+ r(k + 1)

m+ rk

)︃
λr(kµ)m+rk−1 δ0m,r = m+ r(k + 1).

(3.5.9)

Proof. Let us write p(t, 0) in terms of power series. We have, by using the
definition of modified Bessel function of two parameters and equation (3.5.2),

p(t, 0) =

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,r

(m+ r(k + 1)− 1)!
tm+r(k+1)−1e−(λ+kµ)t,
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where C0
m,r is defined in (3.5.9). In particular, by monotone convergence theorem,

it holds

pα(t, 0) =

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,r

(m+ r(k + 1)− 1)!

∫︂ +∞

0

sm+r(k+1)−1e−(λ+kµ)sfα(s; t)ds,

and then, taking the Laplace transform, we get

πα(z, 0) =

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,r

(m+ r(k + 1)− 1)!
zα−1

∫︂ +∞

0

sm+r(k+1)−1e−(λ+kµ+zα)sds

=

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,r

zα−1

(λ+ kµ+ zα)m+r(k+1)
.

(3.5.10)

We conclude the proof by taking the inverse Laplace transform and using Equation
(3.2.2). □

To obtain pα(t, l) for l ≥ 1, we first need the following technical Lemma (see
[19, Lemma 5.4]).

Lemma 3.5.3. For any l ∈ N it holds

(3.5.11)

∫︂ +∞

0

∫︂ y

0

p(s, 0)(y − s)ne−(λ+kµ)(y−s)−yzα

dsdy

=

+∞∑︂
m=1

+∞∑︂
r=0

C0
m,r

n!

(λ+ kµ+ zα)m+r(k+1)+n+1

where C0
m,r is defined in (3.5.9).

Proof. By a direct application of Fubini’s theorem and the change of variables
w = y − s, we have∫︂ +∞

0

∫︂ y

0

p(s, 0)(y − s)ne−(λ+kµ)(y−s)−yzα

dsdy

=

∫︂ +∞

0

∫︂ +∞

s

p(s, 0)(y − s)ne−(λ+kµ)(y−s)−yzα

dyds

=

∫︂ +∞

0

∫︂ +∞

0

p(s, 0)wne−(λ+kµ+zα)w−szα

dwds

=

(︃∫︂ +∞

0

p(s, 0)e−sz
α

ds

)︃(︃∫︂ +∞

0

wne−(λ+kµ+zα)wdw

)︃
=

πα(z, 0)n!

zα−1(λ+ kµ+ zα)n+1
.

We conclude the proof by substituting πα(z, 0) with the right-hand side of Equation
(3.5.10). □

Now we are ready to give a (more or less) explicit formula for pα(t, l) (see [19,
Theorem 5.5]).
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Theorem 3.5.4. For any l ≥ 1 it holds

pα(t, l) =

+∞∑︂
j=0

Al
jt

α(al
j−1)E

al
j

α,α(al
j−1)+1

(−(λ+ kµ)tα)

+

+∞∑︂
j=0

+∞∑︂
m=1

+∞∑︂
r=0

Bl
j,m,rt

α(blj,m,r−1)E
blj,m,r

α,α(blj,m,r−1)+1
(−(λ+ kµ)tα)

−
+∞∑︂
j=0

+∞∑︂
m=1

+∞∑︂
r=0

Cl
j,m,rt

α(clj,m,r−1)E
blj,m,r

α,α(clj,m,r−1)+1
(−(λ+ kµ)tα)

where, setting q3(l) = q1(l)− q2(l),

Al
j =

(︃
q3(l) + k + kj + j

q1(l) + j

)︃
λq1(l)+j(kµ)k(j+1)−q2(l), alj = q3(l) + (j + 1)(k + 1),

Bl
j,m,r = kµC0

m,rA
l
j , blj,m,r = δ0m,r + alj ,

Cl
j,m,r = kµC0

m,rA
l+1
j , clj,m,r = δ0m,r + al+1

j ,

and C0
m,r and δ0m,r are defined in (3.5.9).

Proof. Let us recall that

pα(t, l) =

∫︂ +∞

0

p(s, l)fα(s; t)ds,

thus, by monotone convergence theorem, writing the generalized Bessel functions
in terms of power series and taking the Laplace transform, we get

πα(z, l) =

+∞∑︂
j=0

Al
j

(alj − 1)!
zα−1

∫︂ +∞

0

ya
l
j−1e−(λ+kµ+zα)ydy

+

+∞∑︂
j=0

kµAl
j

(alj − 1)!

∫︂ +∞

0

∫︂ y

0

p(s, 0)(y − s)a
l
j−1e−(λ+kµ)(y−s)−yzα

dsdy

−
+∞∑︂
j=0

kµ
Al+1

j

(al+1
j − 1)!

∫︂ +∞

0

∫︂ y

0

p(s, 0)(y − s)a
l+1
j −1e−(λ+kµ)(y−s)−yzα

dsdy.

By using Equation (3.5.11), we obtain

πα(z, l) =

+∞∑︂
j=0

Al
j

zα−1

(λ+ kµ+ zα)a
l
j

+

+∞∑︂
j=0

+∞∑︂
m=1

+∞∑︂
r=0

Bl
j,m,r

zα−1

(λ+ kµ+ zα)b
l
j,m,r

−
+∞∑︂
j=0

+∞∑︂
m=1

+∞∑︂
r=0

Cl
j,m,r

zα−1

(λ+ kµ+ zα)c
l
j,m,r

.

Finally, taking the inverse Laplace transform and using formula (3.2.2) we conclude
the proof. □

Let us observe that for k = 1 we obtain another representation of the state
probabilities of a Mα/Mα/1 queue.
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Now let us work with some performance parameters. First of all, let us determine
the distribution of busy period (see [19, Theorem 6.3])

Theorem 3.5.5. Let Bα be the duration of a busy period of a Mα/Ek,α/1
queueing system. Then it holds

P(Bα ≤ t) =

+∞∑︂
r=0

kµC0
k,rt

αδ0k,rE
δ0k,r

α,αδ0k,r+1
(−(λ+ kµ)tα),

where C0
k,r and δ0k,r are defined in (3.5.9).

Proof. Let N l(t) be the queue length process of a M/Ek/1 queueing system
and N l

α(t) = N l(Lα(t)) the respective queue length process of aMα/Ek,α/1 queue-
ing system. Let us modify both processes by setting 0 as an absorbing state and

let us denote the modified processes as N̄
l
(t) and N̄

l
α(t). First of all, it still holds

N̄
l
(Lα(t)) = N̄

l
α(t). Moreover, by definition, denoting by B the busy period of a

M/Ek/1 queuing system, we have

P(B ≤ t) = P1(N̄
l
(t) = 0) P(Bα ≤ t) = P1(N̄

l
α(t) = 0)

thus it holds

P(Bα ≤ t) = P1(N̄
l
α(t) = 0)

=

∫︂ +∞

0

P1(N̄
l
(s) = 0)fα(s; t)ds =

∫︂ +∞

0

P(B ≤ s)fα(s; t)ds.

Let us recall that in [99] it has been shown that

P(B ≤ t) =

+∞∑︂
r=0

kλr(kµ)k(r+1)

r!(rk + k)!

∫︂ t

0

sk+r(k+1)−1e−(λ+kµ)sds

=

+∞∑︂
r=0

kµC0
k,r

(k + r(k + 1)− 1)!

∫︂ t

0

sk+r(k+1)−1e−(λ+kµ)sds

thus, by monotone convergence theorem, we have

P(Bα ≤ t) =

+∞∑︂
r=0

kµC0
k,r

(k + r(k + 1)− 1)!

∫︂ +∞

0

∫︂ y

0

sk+r(k+1)−1e−(λ+kµ)sfα(y; t)ds.

Let us take the Laplace transform to obtain

Lt→z[P(Bα ≤ t)](z)

=

+∞∑︂
r=0

kµC0
k,r

(k + r(k + 1)− 1)!
zα−1

∫︂ +∞

0

∫︂ y

0

sk+r(k+1)−1e−(λ+kµ)se−yz
α

dsdy

=

+∞∑︂
r=0

kµC0
k,r

(k + r(k + 1)− 1)!
zα−1

∫︂ +∞

0

sk+r(k+1)−1e−(λ+kµ)s

∫︂ +∞

s

e−yz
α

dyds

=

+∞∑︂
r=0

kµC0
k,r

(k + r(k + 1)− 1)!
z−1

∫︂ +∞

0

sk+r(k+1)−1e−(λ+kµ+zα)sds

=

+∞∑︂
r=0

kµC0
k,r

z−1

(λ+ kµ+ zα)k+r(k+1)
.
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Taking the inverse Laplace transform and using Equation (3.2.2) we conclude the
proof. □

Finally, we can argue concerning the virtual waiting times. As for theMα/Mα/1
queue with acceleration of service, here we have to handle in some way the semi-
Markov property of the process. To do this, let us set Ep

n as the time instants in
which a phase is completed (i.e. the time instants in which the process N l(t) jumps
backward). Let Ep(t) = max{Ep

n : Ep
n ≤ t} be the last phase-time before t setting

Ep
0 = 0. Thus we have now the following result (see [19, Section 6.3]).

Proposition 3.5.6. Define the function

FW (s; t, t0, n) = P(W (t) ≤ s|Ep(t) = t0, N
l(t−) = n+ 1)

for s, t, t0 ≥ 0 with t0 ≤ t and n ∈ N0, where W (t) is the virtual waiting time for a
Mα/Ek,α/1 queue. Then

• If n = 0 we have

FW (s; t, t0, 0) = 1−
k−1∑︂
n=0

(kµtα)n

n!
E(n)

α (−kµtα);

• If n ≥ 1, then the Laplace-Stieltjes transform of FW with respect to s is
given by

LS [FW (·; t, t0, n)](z) =
(kµ)n

(kµ+ zα)n

⎡⎣1− ez∆t
∑︁+∞

j=0
(−kµ)j
Γ(jα+1)z

−αjΓ(αj + 1, z∆t)

Eα(−kµ(∆t)α)

⎤⎦ ,
where ∆t = t− t0.

Proof. Let us first consider the case in which n = 0. Then the virtual waiting
time W (t) (conditioned with N(t−) = 1, which is the only necessary conditioning
in this case) coincides with the service time, that is a Erlk,α(µ)-distributed random
variable.
Let us now work with n ≥ 1. Under our conditioning we can split W (t) as a sum
of n+ 1 random variables:

(3.5.12) W (t) =

n∑︂
j=1

Wj +Wn+1(t)

where each Wj represents the time our user has to wait due to the completion of
one of the n+1 remaining phases. In particular, let us count such phases backward,
in the sense that Wn+1(t) is the first phase to be completed, Wn the second and so
on. Thus we have that Wj for 1 ≤ j ≤ n are all MLα(kµ)-distributed independent
random variables. Let us split again W (t) as

W (t) = ˜︂W +Wn+1(t)

then ˜︂W =
∑︁n

j=1Wj is a Erln,α
(︁
k
nµ
)︁
-distributed random variable. Now let us

consider Wn+1. Then we can write Wn+1(t) = Sn+1 −∆t, where Sn+1 is a phase-
service time. In particular we know that in general Sn+1 ∼ MLα(kµ). However,
our conditioning implies Sn+1 ≥ ∆t, thus Lemma 3.3.5 implies that Sn+1 −∆t is
a RLMα(kµ, t0)-distributed random variable. Thus we conclude that Wn+1(t) is a

RLMα(kµ, t0)-distributed random variable independent of ˜︂W and then the Laplace
transform of W (t) (i.e. the Laplace-Stieltjes transform of FW with respect to s)
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is the product of the Laplace transforms of ˜︂W and Wn+1(t). This concludes the
proof. □

If, in the previous result, we consider the case k = 1, we obtain the same result
on the virtual waiting time for the Mα/Mα/1 queue.
Let us finally stress out that such techniques can be applied also to other more
complicated models, as for instance epidemics models, as done in [14].

3.6. A Semi-Markov Leaky Integrate-and-Fire model

Let us now consider an example of model with continuous state space that relies
on the time-change of some Markov process. To do this we first need to introduce
some classical models and then we will discuss our semi-Markov model.

3.6.1. The Leaky Integrate-and-Fire models. The model we are going
to describe concerns the behaviour of a single neuronal cell. Obviously, different
models could be coupled to obtain the behaviour of a local circuit of neurons (see
[135]), but we will focus on a single one. To understand such models we need
to introduce a bit of terminology. First of all, one can imagine the membrane of
a neuron as a little circuit, subject to the presence of ions in the ambient. In
particular, we will describe the membrane in terms of its potential difference (or
just potential) V (t). If the neuron is not stimulated, it reaches a fixed potential
value called resting potential VL. If it is stimulated by a current I(t) (that can
be a net current due to other neurons or an in vitro stimulus), then V (t) varies. If
V (t) exceeds a certain value Vth, it depolarizes and sends a signal, called action
potential. The act of sending a signal is generally called a spike. Let us just
stress out that, since this is a text on mathematics and not on neurophysiology,
this is just a long story short : this is just a(n) (over-)simplified description of the
(actually more complex) mechanism of synaptic transmission. For more details,
check [135].
One of the main single-neuron models has been introduced by Lapicque in 1907
(see [3]). Despite the fact that the synaptic behaviour is evidently non-linear (see
[135]), Lapicque’s model, called the Leaky Integrate-and-Fire model, is a quite
useful linear approximation of such behaviour. Following the lines of [51] for the
passive membrane model, let us denote by Rm the membrane resistance and with
Cm the membrane capacitance. Let us consider a small section of the membrane
of area A. Each section can be modelled as an RC-circuit as in Figure 3. Let us
observe that we are not distinguishing between the action of any particular pump
of the membrane1. Suppose the neuron is subject to an external current Ie(t). If
Ie(t) ≡ 0, then we want the membrane potential V (t) to decay to a steady state VL.
Such effect is produced by considering a node of constant potential VL connected
to the membrane. If Ie(t) ̸= 0, then each section of area A is subject to a current
Ie(t)
A . The whole membrane can be seen as composed of a family of circuits given

as in Figure 3, thus in particular by a family of parallel capacitors and resistors.
Thus we can define the specific membrane capacitance as cm = Cm

A and the specific

1To add, for instance, sodium, potassium and calcium pumps in the model one has to consider

some voltage-dependent resistances whose behaviour is described in terms of gating variables.
This approach leads to the more complex Hodgkin-Huxley model, see [51], of which the Leaky

Integrate-and-Fire can be seen as a linear simplification.
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Ie(t)
A

N

cm
rm

VL

V

Figure 3. Circuit schematization of a section of the neuronal membrane.

membrane resistance as rm = ARm. By Kirchhoff’s Current Law applied to the
node N we have

cm
dV

dt
(t) = − 1

rm
(V − VL) +

Ie(t)

A
.

Now let us observe that cmrm = CmRm = θ, thus, dividing everything by cm we
have

dV

dt
(t) = −1

θ
(V − VL) +

RmIe(t)

θ
.

Finally, defining I(t) = Rm

θ Ie(t), the membrane potential behaves according to the
following differential equation:

dV

dt
(t) = −1

θ
(V (t)− VL) + I(t)

where VL is the resting potential and θ is the characteristic time of the membrane,
seen as an RC circuit. To represent the action potential, we say that the neuron
spikes as V (t) > Vth and then the model is reset. For a more detailed study of such
a model, we refer to [144] and [51].

Here we want to focus on the stochastic version of this linear model, that is to
say the Stochastic Leaky Integrate-and-Fire (LIF) model. In particular the idea of
introducing the noise is due to different reasons:

• The membrane potential is affected by changes in its environment;
• The membrane potential is affected by the physical proximity of other
neurons (ephaptic connections);

• The membrane potential is affected by the action potential of a large
number of other neurons in its local circuit.

All these situations can be easily approximated by the introduction of a Brownian
noise in the equation. This leads to the stochastic differential equation

dV (t) =

[︃
−1

θ
(V (t)− VL) + I(t)

]︃
dt+ σdB(t)

where B(t) is a standard Brownian motion and σ > 0 is the amplitude of the noise:
the process V (t) is actually a drifted Ornstein-Uhlenbeck process. Concerning such
model, we refer to [42, 130]. Although this model is simple, easy to study and
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works well with different families of neurons, it has been shown to be too simple to
explain some particular dynamics.

3.6.2. The limits of the LIF model. In [43] it has been shown that if the
threshold Vth is sufficiently big, then the behaviour of the inter-spike intervals (ISIs,
i.e. the times between two spikes) is approximatively exponential. This approxi-
mation is useful when studying some large networks of neurons. However, in [136],
it has been proved that the model was not consistent for cortical neurons. The
solution was found in [131], where it has been proved that temporally correlated
inputs (and then temporally correlated noise) could lead to a better performance
of the model.
However, if we make another jump back in time, we see that the fact that the
Ornstein-Uhlenbeck process does not work well for some neurons was already ob-
served in [124]. Indeed, the authors notice that not only the exponential distri-
bution does not fit well the behaviour of a particular neuron in the cochlea of the
cat, but that the inter-spike intervals seemed to exhibit infinite expectation. This
problem was reconsidered in [69] where a Cauchy distribution was used to fit the
data.
In any case, let us stress out that for the spontaneous activity (i.e. I(t) ≡ 0), it is
true that in [43] one needs the threshold to be big enough to obtain the exponential
approximation. However, it has been shown in [28] that in any case we obtain finite
mean, which is something we want to avoid.

3.6.3. The Semi-Markov LIF model. The idea expressed in [29] is the
following. Consider the process V (t) defined by means of the classical stochastic
LIF model with initial datum V0 and a driftless Bernstein function Φ ∈ BF . Then
let us consider the time-changed process VΦ(t) := V (LΦ(t)) where LΦ(t) is an
inverse-subordinator associated to Φ independent of V (t). What we want to do is
to find some hypotheses on Φ in such a way that the process VΦ(t) exhibits some
quantitative properties that can be useful to describe neurons as the ones found in
[124].
First of all, let us observe that, without loss of generality, we can set VL = 0. Thus
we have

V (t) = −1

θ

∫︂ t

0

V (t)dt+

∫︂ t

0

I(s)ds+ σB(t).

On the other hand, we can decompose the process V (t) in two processes:

V (t) = ˜︁V (t) + J(t)

where ˜︁V (t) is an Ornstein-Uhlenbeck process with ˜︁V (0) = V0 and J(t) = e−
t
θ

∫︁ t

0
I(s)e

s
θ ds

(which is actually deterministic). Let us in particular stress out that ˜︁V (t) represents
the spontaneous activity part of the process, while J(t) is the integrated stimulus.

Thus, taking this in consideration, let us define ˜︁VΦ(t) := ˜︁V (LΦ(t)) and observe that

E[˜︁VΦ(t)] = V0 eΦ

(︃
t;−1

θ

)︃
.

From now on, let us denote λ = 1/θ. Moreover, we directly obtain

E[VΦ(t)] = V0 eΦ (t;−λ) +
∫︂ +∞

0

J(s)fΦ(s; t)ds.
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Actually, we can show that the mean of VΦ is solution of a non-local differential
equation (see [29, Proposition 2]).

Proposition 3.6.1. Let I be a continuous and bounded function. ThenMΦ(t) :=
E[VΦ(t)] is solution of{︄

∂ΦMΦ(t) = − 1
θMΦ(t) + IΦ(t), t > 0

MΦ(0) = V0,

where IΦ(t) = E[I(LΦ(t))].

Proof. Let us show that MΦ(t) is Laplace transformable in H. To do this, let
us observe that being I(t) bounded, we have

|J(t)| ≤ e−
t
θ

∫︂ t

0

|I(s)|e s
θ ds ≤ ∥I∥L∞(R+)

thus also J(t) is bounded. Moreover we have

|MΦ(t)| ≤ V0 eΦ(t;−λ) +
∫︂ +∞

0

|J(s)|fΦ(s; t)ds ≤ V0 + ∥J∥L∞(R+) .

Thus MΦ(t) is bounded and then Laplace transformable in H. Let us denote by
M̄Φ(z) its Laplace transform. Since it is not difficult to see that, denoting M(t) =
E[V (t)],

MΦ(t) =

∫︂ +∞

0

M(s)fΦ(s; t)ds

we have that

M̄Φ(z) =
Φ(z)

z

∫︂ +∞

0

M(s)e−sΦ(z)ds.

Now let us recall that M(t) := E[V (t)] is solution of{︄
dM
dt (t) = − 1

θM(t) + I(t), t > 0

M(0) = V0,

thus in particular it is derivable. Hence we have, by integrating by parts,

M̄Φ(z) =
1

z
V0 +

1

z

∫︂ +∞

0

dM

ds
(s)e−sΦ(z)ds

=
1

z
V0 −

1

zθ

∫︂ +∞

0

M(s)e−sΦ(z)ds+
1

z

∫︂ +∞

0

I(s)e−sΦ(z)ds.

Now let us multiply everything by Φ(z)
z to achieve

(3.6.1)
Φ(z)

z

(︃
M̄Φ(z)−

1

z
V0

)︃
= −Φ(z)

z2θ

∫︂ +∞

0

M(s)e−sΦ(z)ds+
Φ(z)

z2

∫︂ +∞

0

I(s)e−sΦ(z)ds.

Let us consider IΦ(t) and let us show that it is Laplace transformable. Indeed, it
holds

|IΦ(t)| ≤
∫︂ +∞

0

|I(s)|f(s; t)ds ≤ ∥I∥L∞(R+) .

Moreover, its Laplace transform is given by

L[IΦ](z) =
Φ(z)

z

∫︂ +∞

0

I(s)e−sΦ(z)ds.
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Thus, taking the inverse Laplace transform in Equation (3.6.1) (recalling that
Φ(z)
z = L[ν̄Φ]), we get∫︂ t

0

ν̄Φ(t− τ)(MΦ(τ)− V0)dτ = −1

θ

∫︂ t

0

MΦ(s)ds+

∫︂ t

0

I(s)ds.

Moreover, observing that MΦ(0) = V0 by definition and that the right-hand side is
differentiable with continuous derivative, we conclude the proof. □

From last Proposition we deduce that our model is a good candidate to repre-
sent a stochastic version of non-local LIF models. In particular for Φ(λ) = λα as
α ∈ (0, 1), MΦ(t) solves the equation of a fractional-order LIF model, as described
in [142].

3.6.4. Correlation structure of the Semi-Markov LIF model. Now let
us discuss on the covariance of VΦ(t). To study this, we first need to understand
what is the covariance of V (t). Actually, since J(t) is a deterministic term, it does
not play any role in such covariance, hence V (t) admits the same auto-covariance

function of ˜︁V (t) and then it is well known that

Cov(V (t), V (s)) =
σ2θ

2

(︂
e−λ|t−s| − e−λ(t+s)

)︂
.

Now let us consider the auto-covariance function of VΦ(t). Let us define the measure

F
(2)
Φ (t, s, A) = P((LΦ(t), LΦ(s)) ∈ A), ∀A ∈ B(R2)

and let us observe that

Cov(VΦ(t), VΦ(s)) =

∫︂
(R+)2

Cov(V (u), V (v))F
(2)
Φ (t, s, dudv)

=
σ2θ

2

(︄∫︂
(R+)2

e−λ|u−v|F
(2)
Φ (t, s, dudv)

−
∫︂
(R+)2

e−λ(u+v)F
(2)
Φ (t, s, dudv)

)︄
.

The first integral has been already determined in Lemma 2.4.4, thus let us now
focus on the second integral, which is actually the bi-variate Laplace transform of
(LΦ(t), LΦ(s)).

Lemma 3.6.2. For any λ > 0 and t ≥ s > 0 it holds∫︂
(R+)2

e−λ(u+v)F
(2)
Φ (t, s, dudv) = eΦ(t;−λ) +

1

2

∫︂ s

0

eΦ(t− y;−λ) eΦ(dy;−2λ).

Proof. Let us denote by G(u, v) = e−λ(u+v), that is a C∞ function, and fix
(a, b) ∈ (R+)2. By using the bivariate integration by parts formula (see [70]) we
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have ∫︂ a

0

∫︂ b

0

G(u, v)F
(2)
Φ (t, s, dudv) =

∫︂ a

0

∫︂ b

0

F
(2)
Φ (t, s, [u, a]× [v, b])G(du, dv)

+

∫︂ a

0

F
(2)
Φ (t, s, [u, a]× [0, b])G(du, 0)

+

∫︂ b

0

F
(2)
Φ (t, s, [0, a]× [v, b])G(0, dv)

+ F
(2)
Φ (t, s, [0, a]× [0, b])G(0, 0).

Now let us observe that

G(du, v) = −λe−λ(u+v)du,

G(u, dv) = −λe−λ(u+v)dv,

G(du, dv) = λ2e−λ(u+v)dudv,

thus we have

∫︂ a

0

∫︂ b

0

G(u, v)F
(2)
Φ (t, s, dudv) =

∫︂ a

0

∫︂ b

0

λ2F
(2)
Φ (t, s, [u, a]× [v, b])e−λ(u+v)dudv

−
∫︂ a

0

λF
(2)
Φ (t, s, [u, a]× [0, b])e−λudu

−
∫︂ b

0

λF
(2)
Φ (t, s, [0, a]× [v, b])e−λvdv

+ F
(2)
Φ (t, s, [0, a]× [0, b]).

(3.6.2)

Let us define

I1(a, b) =

∫︂ a

0

λF
(2)
Φ (t, s, [u, a]× [0, b])e−λudu

I2(a, b) =

∫︂ b

0

λF
(2)
Φ (t, s, [0, a]× [v, b])e−λvdv.

First of all, by monotone convergence theorem, we have

lim
a,b→+∞

I1(a, b) =

∫︂ +∞

0

λF
(2)
Φ (t, s, [u,+∞]× [0,+∞])e−λudu

=

∫︂ +∞

0

P(LΦ(t) ≥ u)λe−λudu

= 1−
∫︂ +∞

0

e−λufΦ(u; t)du = 1− eΦ(t;−λ).

Analogously we have

lim
a,b→+∞

I2(a, b) = 1− eΦ(s;−λ).
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Thus, taking the limit as a, b→ +∞ in (3.6.2) we obtain∫︂ +∞

0

∫︂ +∞

0

G(u, v)F
(2)
Φ (t, s, dudv)

=

∫︂ +∞

0

∫︂ +∞

0

λ2F
(2)
Φ (t, s, [u,+∞)× [v,+∞))e−λ(u+v)dudv

+ eΦ(t;−λ) + eΦ(s;−λ)− 1.

(3.6.3)

Let us denote

I4 =

∫︂ +∞

0

∫︂ +∞

0

λ2F
(2)
Φ (t, s, [u,+∞)× [v,+∞))e−λ(u+v)dudv

=

∫︂∫︂
u<v

λ2F
(2)
Φ (t, s, [u,+∞)× [v,+∞))e−λ(u+v)dudv

+

∫︂∫︂
u>v

λ2F
(2)
Φ (t, s, [u,+∞)× [v,+∞))e−λ(u+v)dudv

:= I5 + I6.

(3.6.4)

Let us first work with I5. Since t ≥ s and u < v, we have

F
(2)
Φ (t, s, [u,+∞)× [v,+∞)) = P(LΦ(t) ≥ u, LΦ(s) ≥ v)

= P(LΦ(s) ≥ v)

and then

I5 =

∫︂∫︂
u<v

λ2 P(LΦ(s) ≥ v)e−λ(u+v)dudv

=

∫︂ +∞

0

P(LΦ(s) ≥ v)(−λ)e−λv
(︃∫︂ v

0

(−λ)e−λudu
)︃
dv

=

∫︂ +∞

0

P(LΦ(s) ≥ v)(−λ)e−2λvdv −
∫︂ +∞

0

P(LΦ(s) ≥ v)(−λ)e−λvdv

= −1

2
+

1

2

∫︂ +∞

0

e−2λvfΦ(v; t)dv + 1−
∫︂ +∞

0

e−λvfΦ(v; t)dv

=
1

2
+

1

2
eΦ(s;−2λ)− eΦ(s;−λ).

(3.6.5)

Now let us consider I6. By Equation (2.4.10), setting A(t, s) = {(x, y) ∈ R2 : y ∈
[0, s], x ∈ [0, t− y]}, we have

I6 =

∫︂∫︂
u>v

(︄∫︂∫︂
A(t,s)

gΦ(dx;u− v)gΦ(dy; v)

)︄
λ2e−λ(u+v)dudv

=

∫︂∫︂
A(t,s)

∫︂∫︂
u>v

(︃∫︂∫︂
u>v

gΦ(dx;u− v)gΦ(dy; v)λ
2e−λ(u+v)dudv

)︃
=

∫︂∫︂
A(t,s)

∫︂ +∞

0

gΦ(dy; v)(−λ)e−λv
(︃∫︂ +∞

v

gΦ(dx;u− v)(−λ)e−λudu
)︃
dv.

Consider u− v = w to obtain

I6 = λ2
∫︂∫︂

A(t,s)

(︃∫︂ +∞

0

gΦ(dy; v)e
−2λvdv

)︃(︃∫︂ +∞

0

gΦ(dx;w)e
−λwdw

)︃
.
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Let us consider P(σ(w) ≤ x). We have

P(σ(w) ≤ x) = P(w ≤ L(x)) = 1− P(L(x) ≤ w).

Thus, taking the Laplace transform with respect to w we have

Lw→λ[P(σ(w) ≤ x)](λ) = Lw→λ[1− P(L(x) ≤ w)](λ) =
1

λ
− eΦ(x;−λ)

λ
.

Thus, we get ∫︂ +∞

0

gΦ(dx;w)e
−λwdw = −eΦ(dx;−λ)

λ

where eΦ(dx;−λ) is well defined as a Radon measure since eΦ(x;−λ) is of bounded
variation (being monotone and bounded). We achieve

I6 =
1

2

∫︂∫︂
A(t,s)

eΦ(dx;−λ) eΦ(dy;−2λ)

=
1

2

∫︂ s

0

(︃∫︂ t−y

0

eΦ(dx;−λ)
)︃
eΦ(dy;−2λ)

=
1

2

∫︂ s

0

eΦ(t− y;−λ) eΦ(dy;−2λ)− 1

2

∫︂ s

0

eΦ(dy;−2λ)

=
1

2

∫︂ s

0

eΦ(t− y;−λ) eΦ(dy;−2λ)− 1

2
eΦ(s;−2λ) +

1

2
.

(3.6.6)

Substituting Equation (3.6.5) and (3.6.6) in (3.6.4) we have

(3.6.7) I4 = 1− eΦ(s;−λ) +
1

2

∫︂ s

0

eΦ(t− y;−λ) eΦ(dy;−2λ)

and then substituting (3.6.7) in (3.6.3) we conclude the proof. □

By using Lemma 3.6.2 and 2.4.4 we get the following Proposition.

Proposition 3.6.3. For any t ≥ s > 0 it holds

Cov(VΦ(t), VΦ(s)) =
σ2θ

2

(︃
λ

∫︂ s

0

eΦ(t− y;−λ)dUΦ(y)− 2

+2 eΦ(s;−λ)−
1

2

∫︂ s

0

eΦ(t− y;−λ) eΦ(dy;−2λ)

)︃
.

Let us observe that the formula that gives the auto-covariance function is quite
complicated, thus we cannot use it directly to obtain some information on the
behaviour of the covariance as t− s increases. However, we can still argue on some
properties by using the integral representation in terms of the auto-covariance of
V (t) (see [29, Proposition 4]).

Proposition 3.6.4. Fix t > 0 and define the function

cΦ(s; t) := Cov(VΦ(t+ s), VΦ(t)), s ≥ 0

Then cΦ(s; t) is decreasing and infinitesimal.

Proof. Let us first show that cΦ(s; t) is decreasing. To do this fix s2 > s1 ≥ 0
and consider the measure

F
(3)
Φ (t+ s2, t+ s1, t, A) = P((LΦ(t+ s2), LΦ(t+ s1), LΦ(t)) ∈ A), A ∈ B(R3).
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Since LΦ(t) is almost surely increasing, the considered measure is concentrated on

(3.6.8) A = {(u, v, w) ∈ R3 : u ∈ (0,+∞), v ∈ (0, u), w ∈ (0, v)}.

Let us observe that s > 0 ↦→ Cov(V (t + s), V (t)) is decreasing. Thus, denoting
c(t, s) = Cov(V (t), V (s)), we have

cΦ(s2; t)− cΦ(s1; t)

=

∫︂ +∞

0

∫︂ u

0

∫︂ v

0

(c(v, w)− c(u,w))F (3)(t+ s2, t+ s1, t, dudvdw) ≥ 0,

since v ≤ u.
Now let us show that cΦ(s; t) is infinitesimal. Let us recall that limt→+∞ c(t, s) = 0.
Moreover there exists a constant C > 0 such that |c(t, s)| ≤ C for any (t, s). In
particular |c(LΦ(t + s), LΦ(t))| ≤ C and then, by dominated convergence theorem
(as lims→+∞ LΦ(t+ s) = +∞) we have

lim
s→+∞

cΦ(s; t) = lim
s→+∞

E[c(LΦ(t+ s), LΦ(t))] = 0.

□

Concerning the variance, we can prove an easier formula.

Proposition 3.6.5. It holds

Var[VΦ(t)] =
σ2θ

2
(1− eΦ(t;−2λ))

Proof. Let us recall that Var[V (t)] = σ2θ
2 (1− e−2λt). Thus we have

Var[VΦ(t)] =
σ2θ

2

∫︂ +∞

0

(1− e−2λs)fΦ(s; t)ds =
σ2θ

2
(1− eΦ(t;−2λ)).

□

It is interesting to observe that for big values of t > 0 the variance does not go

to 0. Indeed it holds limt→+∞Var[VΦ(t)] =
σ2θ
2 .

3.6.5. Properties of Inter-Spike Intervals. Now let us focus on the first
spiking time and on Inter-Spike Intervals. Let us consider a fixed excitatory input
stimuli I(t) ≡ I0 where I0 ≥ 0. Moreover, let us suppose, for simplicity, that V0 = 0
and that the process V (t) is reset to 0 after a spike. Then we have that V (t) is a
(non-centred) Gauss-Markov process. Moreover, by construction, denoting by Tn
the n-th spiking time and with Kn = Tn − Tn−1 (with Tn−1 = 0) the n-th inter-
spike intervals, the family (Kn)n∈N is constituted of i.i.d. random variables. Let us
observe that, by using the comparison results of [28], E[T1] < +∞ and P(T1 ≤ t) is
rapidly decreasing at 0. V (t) is a diffusion process, hence the survival function of
T1 is solution of a parabolic problem. It is not difficult to see, by typical arguments
concerning partial differential equations, that P0(T1 > t) is actually a C∞ function.
With this in mind, one can easily use the results of Section 2.7 to state the following
proposition (see [29, Proposition 5]).

Proposition 3.6.6. Denote by T1 the first spiking time of VΦ(t). Then the
following properties hold true:
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• If Φ is regularly varying at 0+ with order α ∈ [0, 1), then, as t→ +∞,

P(T1 > t) ∼ E[T1]
Γ(1− α)

Φ

(︃
1

t

)︃
;

• If ν̄Φ(t) is absolutely continuous and Φ satisfies Orey’s condition, then
T1 is absolutely continuous with C∞ density. Moreover, if Φ is regularly
varying at +∞, then, for any γ ∈ R, it holds

lim
t→0+

P(T1 ≤ t)

tγ
= 0

Now let us observe that, by Lemma 2.7.1, it holds Tn
d
= σΦ(Tn), where Tn is

the n-th spiking time of VΦ(t). Moreover, let us denote by Kn = Tn −Tn−1 (with
T0 = 0) the inter-spike intervals of VΦ(t). We can prove the following Proposition
(see [29, Section 5.2]).

Proposition 3.6.7. The family (Kn)n∈N is constituted of i.i.d. random vari-
ables.

Proof. First let us show that Kn
d
= σΦ(Kn). This will imply that (Kn)n∈N are

identically distributed. To do this, let us first observe that Kn
d
= σΦ(Tn)−σΦ(Tn−1).

Now let us consider the measure µ(2)(A) = P((Tn, Tn−1) ∈ A) for any A ∈ B(R2).
Then µ(2) is concentrated on

A = {(u, v) ∈ R2 : u ∈ (0,+∞), v ∈ (0, u)}

being the sequence (Tn)n∈N strictly increasing by definition. Recalling that σΦ(t)
is independent of Tn for any n ∈ N and that it is a Lévy process, it holds

P(Kn ≤ t) = P(σΦ(Tn)− σΦ(Tn−1) ≤ t)

=

∫︂ +∞

0

∫︂ u

0

P(σΦ(u)− σΦ(v) ≤ t)µ(2)(dudv)

=

∫︂ +∞

0

∫︂ u

0

P(σΦ(u− v) ≤ t)µ(2)(dudv)

= P(σΦ(Tn − Tn−1) ≤ t) = P(σΦ(Kn) ≤ t),

concluding the first part of the proof.
Now let us show independence. To do this, let us consider n,m ∈ N with m < n
and let us introduce the measure

µ(4)(A) = P((Tn, Tn−1, Tm, Tm−1) ∈ A), A ∈ B(R4).

Since m < n, then m ≤ n− 1 and we have that the measure is concentrated on

A = {(u, v, w, z) ∈ R4 : u ∈ (0,+∞), v ∈ (0, u), w ∈ (0, v), z ∈ (0, w)}.

Let us also denote s(u, t) = P(σΦ(u) ≤ t) and η
(1)
n the law of Kn. Finally, let us

denote by η
(2)
n,m the joint law of Kn and Km. Since they are independent we have
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that η
(2)
n,m = η

(1)
n × η

(1)
m . Arguing as before we have, for fixed t1, t2 > 0,

P(Kn ≤ t1,Km ≤ t2) = P(σΦ(Tn)− σΦ(Tn−1) ≤ t1, σΦ(Tm)− σΦ(Tm−1) ≤ t2)

=

∫︂ +∞

0

∫︂ u

0

∫︂ v

0

∫︂ w

0

P(σΦ(u)− σΦ(v) ≤ t1, σΦ(w)− σΦ(z) ≤ t2)µ
(4)(dudvdwdz)

=

∫︂ +∞

0

∫︂ u

0

∫︂ v

0

∫︂ w

0

P(σΦ(u)− σΦ(v) ≤ t1)P(σΦ(w)− σΦ(z) ≤ t2)µ
(4)(dudvdwdz)

=

∫︂ +∞

0

∫︂ u

0

∫︂ v

0

∫︂ w

0

P(σΦ(u− v) ≤ t1)P(σΦ(w − z) ≤ t2)µ
(4)(dudvdwdz)

= E[s(Kn, t1)s(Km, t2)]

=

∫︂ +∞

0

∫︂ +∞

0

P(σΦ(u) ≤ t1)P(σΦ(v) ≤ t1)η
(2)
n,m(dudv)

=

(︃∫︂ +∞

0

P(σΦ(u) ≤ t1)η
(1)
n (du)

)︃(︃∫︂ +∞

0

P(σΦ(v) ≤ t1)η
(1)
m (dv)

)︃
= P(σΦ(Kn) ≤ t1)P(σΦ(Km) ≤ t2)

= P(Kn ≤ t1)P(Km ≤ t2),

concluding the proof. □

Thus we have that (Kn)n∈N are i.i.d random variable that are distributed as
K1 = T1. Thus, in particular, (3.6.6) still holds for any Kn. This is true also for
spontaneous activity, since it is the case I(t) ≡ 0. Thus we can ask if our model
satisfies the qualitative observations of [124].

3.6.6. The Unit 240 − 1. Let us re-consider the problem of the models in
[124]. The authors focus on some particular neurons of the cochlea of the cat.
However, two of them, the Unit 259−2 and the Unit 240−1 exhibit some behaviour
that was initially inexplicable. Directly citing the paper:

The histogram of Unit 259−2 appears to be unimodal and asym-
metric [...] while that of Unit 240−1 is unimodal and asymmet-
ric, but on a quite different time scale that that of Unit 259− 2.
[...] The spike trains of Unit 259 − 2 and Unit 240 − 1 do not
appear to be easily characterizable.

However, in the same paper, it is shown that Unit 259− 2 sill exhibit exponential
decay and the authors suppose that the spike train is still generated by a Poisson
process but with some lag time. Concerning Unit 240−1, the situation is completely
different. Indeed:

when the histogram of Unit 240 − 1 is replotted on a semiloga-
rithmic scale, the decay is clearly seen to be non-exponential.

In this paper and [69], it is shown that Unit 240− 1 exhibit some power law decay,
reminding of stable distributions and Mittag-Leffler distributions. In particular in
[69] the proposed distribution is a Cauchy distribution (that is power-like decaying)
since it

has essentially the same invariance property as that found for
the density of interspike intervals of Unit 240− 1.

Let us observe that if we consider Φ(λ) = λα, our model recovers the power-like
decay observed in [69]. Moreover, one expects the distribution function to decay
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at 0 quite fast (as we do not expect a neuron to fire almost instantaneously),
which is something the distribution function of the Kn does. In particular, the
distribution we obtain (that cannot be characterized explicitly, but of which we
know some characteristics such as the asymptotic behaviour) is in agreement with
the phenomenological evidence concerning the behaviour of the Unit 240 − 1 as
described in [124] (non-exponential decay and heavy tail) and [69] successively
(actual power-like behaviour and some property that is similar to stability).
Finally, let us observe that we propose a model for which memory can be also
found in the covariance of the process. Indeed it has been shown in [67] that such
kind of processes exhibit a long-range dependence for Φ(λ) = λα. In the case of
spontaneous activity, we can consider the first-order stationary version (that is not
second-order stationary, neither in wide sense) and express short-range or long-
range dependence with respect to the initial datum, obtaining exactly the same
characterization as in Corollary 2.4.6.

3.7. Simulation procedures

As we have shown some applications of the theoretical results given in Chapter
2, it can be useful to present some simulation procedures for the involved stochastic
processes. Here we focus on such procedures, outlining some suitable algorithms.

3.7.1. Simulation of a subordinator. Let us consider a driftless Bernstein
function Φ ∈ BF . The first step, for any kind of simulation procedure we want
to show here, is to understand how to simulate a general subordinator. A short
description of the algorithm has been given in [28]. In particular let us argue as
follows. Consider the subordinator σΦ(t) and observe that it is a Lévy process,
hence its increments are independent and stationary. Let us denote by ˜︁σΦ the
simulated process. In particular let us choose some nodes (yn)n∈N for which we
want to simulate (σΦ(yn))n∈N and let us call the sequence (˜︁σΦ(yn))n∈N the skeleton
of our simulated process. To simplify the discussion let us suppose yn − yn−1 = y
where y is a constant that we will call increment.
The idea is the following: we can obtain σΦ(yn) recursively from σΦ(yn−1) by
observing that

σΦ(yn) = (σΦ(yn)− σΦ(yn−1)) + σΦ(yn−1),

thus, if we have ˜︁σΦ(yn−1), to achieve ˜︁σΦ(yn) we only need to simulate σΦ(yn) −
σΦ(yn−1), that is independent of σΦ(yn−1) = σΦ(yn−1)− σΦ(0). Still by using the
fact that σΦ(t) is a Lévy process, we have that

σΦ(yn)− σΦ(yn−1)
d
= σΦ(y).

Thus, if we know how to simulate σΦ(y), we can simulate the whole skeleton by
using the recursive formula:{︄˜︁σΦ(0) = 0˜︁σΦ(tn) = ˜︁σΦ(y) + ˜︁σΦ(yn−1) n ∈ N,

where ˜︁σΦ(y) is a simulated occurrence of σΦ(y). In conclusion, we only need to sim-
ulate σΦ(y). Let us first consider a simple particular case and then we will discuss
the general case. Suppose Φ(λ) = λα for α ∈ (0, 1). σα is an α-stable subordinator

and we can use the self-similarity property to write σα(y)
d
= y

1
α σα(1). In [104] a

whole chapter is dedicated to the simulation of time-changed processes in such case.
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In particular, by using the notation given in [114], our σα(1) is S(α, 1, γ(α), 0; 1)-

distributed, where γ(α) =
(︁
cos
(︁
πα
2

)︁)︁ 1
α . To understand how to simulate σα(1), we

first need to exploit how to simulate a variable S ∼ S(α, 1, 1, 0; 1). The following
equality is a generalization of the Box-Muller algorithm (see [30, 65, 146]):

S
d
=
(︂
1 + tan2

(︂απ
2

)︂)︂ 1
2α sin

(︁
α
(︁
Y2 +

π
2

)︁)︁
(cos(Y2))

1
α

(︄
cos
(︁
(1− α)Y2 − απ

2

)︁
Y1

)︄ 1−α
α

where Y1 ∼ Exp(1), Y2 is uniform in
(︁
−π

2 ,
π
2

)︁
and Y1 and Y2 are independent.

By using this equality, one can simulate S1 ∼ S(α, 1, 1, 0; 1) and set

˜︁σα(1) = γ(α)S1.

However, we are interested in the general case, that is actually much more com-
plicated. To simulate σΦ(y) in the general case, we need to combine two different
algorithm: a numerical inversion of the Laplace transform, as discussed in [2], and
an algorithm to simulate random variables from their characteristic functions (see
[123] and references therein). First of all, let us set Ψ(ξ) = Φ(−iξ), ψ(ξ) = e− yΨ(ξ)

for ξ ∈ R and φ(λ) = e− yΦ(λ) for λ ∈ H. Thus we can use the following algorithm

(1) By numerical integration set c = 1
2π

∫︁ +∞
−∞ e− yℜ(Ψ(ξ))dξ;

(2) Setting δ small enough, use the approximation

ψ′′(ξ) ≃ φ(−iξ[1 + δ]) + φ(−iξ[1− δ])− 2φ(−iξ)
δ2ξ2

to determine numerically k = 1
π

∫︁ +∞
−∞ |ψ′′(ξ)|dξ;

(3) Generate three independent random variables U, V1, V2 uniform in (0, 1);

(4) Set x =
√︂

k
c
V1

V2
and determine numerically

f(x) ≃ h

π
+

2h

π

+∞∑︂
k=1

e− yℜ(Φ(ikh)) cos(ℑ(Φ(ikh))) cos(kht)

for h small enough;
(5) If V1 ≥ V2, set ˜︁σΦ(y) = x if cU ≤ f(x), otherwise reject x;
(6) If V2 > V1, set ˜︁σΦ(y) = x if kU ≤ x2f(x), otherwise reject x.

As we can see, just the simulation of a subordinator requires different approxima-
tions and then generates a lot of approximation errors (due to the truncation of the
series for Laplace transform inversion, numerical evaluation of the integrals in c and
k, numerical approximation of the second derivative of the characteristic function
and so on). However, if we want to simulate a time-changed process, in general
we need the inverse subordinator, which requires another approximated simulation
procedure, and thus leads to much more errors.
Here we want to find some cases in which time-changed processes can be simulated
without simulating the inverse subordinator. To do this, we first need to investigate
how to simulate Φ-exponential distributions.

3.7.2. Simulations of Φ-exponential variables. Here we want to investi-
gate how to simulate a Φ-exponential random variable. To do this, we first need to
show the following Lemma.
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Lemma 3.7.1. Let Φ ∈ BF be a driftless Bernstein function and σΦ(t) the
associated subordinator. Let T be an exponential random variable of parameter
λ > 0 independent of σΦ(t). Then σΦ(T ) is a Φ-exponential random variable of
parameter λ.

Proof. Let us evaluate P(σΦ(T ) > t). By using the independence of σΦ(t)
and T we get

P(σΦ(T ) > t) =

∫︂ +∞

0

P(σΦ(y) > t)λe−λydy

=

∫︂ +∞

0

P(y > LΦ(t))λe
−λydy

=

∫︂ +∞

0

e−λyfΦ(y; t)dy = eΦ(t;−λ),

concluding the proof. □

As before, let us consider first a simple case. If Φ(λ) = λα for some α ∈ (0, 1),
then it is not difficult to show, by a conditioning argument, that

σα(T )
d
= T

1
ασα(1).

Thus, simulating a Mittag-Leffler distributed random variable is quite easy: just
simulate an exponential random variable T and a stable random variable σα(1)
independent from each other and then multiply them2.
The general case is instead more difficult. First of all, we need to determine the
Laplace transform of σΦ(T ).

Lemma 3.7.2. Let Φ ∈ BF be a driftless Bernstein function and σΦ(t) the
associated subordinator. Let T be an exponential random variable of parameter
λ > 0 independent of σΦ(t). Then

E[e−zσΦ(T )] =
λ

Φ(z) + λ
.

Proof. We have

E[e−zσΦ(T )] = λ

∫︂ +∞

0

E[e−zσΦ(y)]e−λydy

= λ

∫︂ +∞

0

e−y(Φ(z)+λ)dy

=
λ

Φ(z) + λ
,

concluding the proof. □

Now let us denote φ(z) = λ
Φ(z)+λ for z ∈ H and ψ(ξ) = φ(−iξ) for ξ ∈ R.

Arguing as before, we have the following algorithm to simulate a random variable
T ∼ ExpΦ(λ):

(1) By numerical integration set c = 1
2π

∫︁ +∞
−∞ |ψ(ξ)|dξ;

2There are different representation of Mittag-Leffler random variables in terms of stable
variables and exponential variables. For more details, we refer to [90]. Moreover, for application

of such representations to the simulation of Continuous Time Random Walks, we refer to [65].
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(2) Setting δ small enough, use the approximation

ψ′′(ξ) ≃ φ(−iξ[1 + δ]) + φ(−iξ[1− δ])− 2φ(−iξ)
δ2ξ2

to determine numerically k = 1
π

∫︁ +∞
−∞ |ψ′′(ξ)|dξ;

(3) Generate three independent random variables U, V1, V2 uniform in (0, 1);

(4) Set x =
√︂

k
c
V1

V2
and determine numerically

f(x) ≃ h

π
+

2h

π

+∞∑︂
k=1

ℜ(φ(ikh)) cos(kht)

for h small enough;
(5) If V1 ≥ V2, set T = x if cU ≤ f(x), otherwise reject x;
(6) If V2 > V1, set T = x if kU ≤ x2f(x), otherwise reject x.

3.7.3. Generalization of Gillespie’s algorithm. It is well known that a
continuous-time Markov chain M(t) can be simulated by simulating separately its
jump chainMn and the sojourn times Sn in each state. Indeed, given a continuous-
time Markov chain with transition rate matrix Q on the state space E, we can
define the rate function r(s) = −qs,s for s ∈ E. Thus, the jump chain Mn admits
transition probabilities given by

P(Mn = s2, Mn−1 = s1) = ps1,s2 =
qs1,s2
r(s1)

,

and the simulation of the jump chain can be done by simulating at each step n a
discrete random variableMn with probability distribution (ps)s∈E = (pMn−1,s)s∈E ,
supposing we already simulated Mn−1. Finally, we remain in each state Mn with
a sojourn Sn that is exponentially distributed of parameter r(Mn). Thus, we can

simulate the two vectors M⃗ = (Mn)n=0,...,N (called the event vector) and T⃗ =
(Tn)n=0,...,N (called the calendar vector), where Tn = Tn−1 + Sn and T0 = 0,

and it not difficult to see that the process ˜︂M(t) =Mn as t ∈ [Tn, Tn+1) admits the
same distribution as M(t).
This simulation algorithm is known as Gillespie’s algorithm (since it was first
presented in [71]) and it seems to be based on the Markov property of the process
M(t). Actually, it is not difficult to see that the algorithm relies on the Markov
property of M(t) only at the jump times Tn, thus the fact that M(t) is Markov
is not really needed. Indeed, we can generalize the algorithm to the case of semi-
Markov processes.
This generalization has been already applied to different contexts concerning time-
changed continuous-time Markov chains with Φ(λ) = λα. For instance, in [44]
and [19] a generalized Gillespie’s algorithm has been used to simulate fractional
queues, while in [14, 16] it has been used to exploit some properties of a time-
changed epidemic model. Algorithms for the simulation of non-Markov (precisely
semi-Markov) random link activation and deletion with Mittag-Leffler inter-event
times are also given in [68]. In the same paper, a generalization to the case in which
Markov dynamics occur on a non-Markov evolving network is also considered. Here
we want to present a general version of the generalized Gillespie’s algorithm for
time-changed continuous-time Markov chains.
The first thing we have to observe, as we already stated in this Chapter, is that
when we apply a time change to a continuous-time Markov chain M(t), then the
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jump chain remains untouched. Thus we still know how to simulate the event vector

M⃗ . The only problem is the calendar vector. However, let us denote by r the rate
function of the continuous-time Markov chainM(t) and withMΦ(t) the respective
time-changed continuous-time Markov chain. Now let us fix a state s and consider
a modification of M(t) and MΦ(t) such that:

• The process starts from the state s;
• Any other state is absorbing.

Denote by M̄(t) and M̄Φ(t) the modified process and observe that M̄Φ(t) =
M̄(LΦ(t)). It is not difficult to check that in such case the state probability
p̄(t; s) := Ps(M̄(t) = s) = P(S > t) where S is the generic sojourn time of M(t)
in the state s. Let us denote by SΦ the sojourn time of MΦ(t) in the state s and
observe that p̄Φ(t; s) := Ps(M̄Φ(t) = s) = P(SΦ > t). However we have

P(S > t) = e−r(s)t

and

P(SΦ > t) = Ps(M̄Φ(t) = s)

=

∫︂ +∞

0

Ps(M̄(y) = s)fΦ(y; t)dy

=

∫︂ +∞

0

e−r(s)yfΦ(y; t)dy

= eΦ(t;−r(s)).

In particular we have shown that

Lemma 3.7.3. Let Φ ∈ BF be a driftless Bernstein function and M(t) a
continuous-time Markov chain. Let LΦ(t) be an inverse subordinator associated to
Φ independent of M(t) and MΦ(t) =M(LΦ(t)). Let r be the rate function of M(t)
and SΦ(s) the sojourn time of MΦ(t) in the state s. Then SΦ(s) ∼ ExpΦ(r(s)).

By using such lemma, we can give the following generalized Gillespie’s al-
gorithm:

(1) Initialize M0 and T0 = 0;
(2) Suppose we have already simulated Mn and Tn:

(a) Simulate Mn+1 as a discrete random variable (see [30]) with proba-

bility distribution (ps)s∈E =
(︂

qMn,s

r(Mn)

)︂
s∈E

where Q is the transition

rate matrix of M(t) and r is the rate function of M(t);
(b) Simulate S ∼ ExpΦ(r(Mn)) as described in the previous section;
(c) Set Tn+1 = Tn + S;

(3) Repeat until the stop condition is reached.

3.7.4. Simulating a time-changed Brownian motion. As we stated be-
fore, we need to find some simulation procedures that do not rely on the sim-
ulation of an inverse subordinator. Concerning time-changed diffusions, like the
time-changed Brownian motion, it is not a simple task. In [104] it is suggested to
consider the couple (B(t), σΦ(t)) to obtain the points of the graph of BΦ(t), where
B(t) is a Brownian motion and BΦ(t) is the time-changed Brownian motion. In
[28] we used an approximated simulation procedure to obtain LΦ. Here we want
to show, in the case of the time-changed Brownian motion, a method that does
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not rely on the simulation of LΦ. To do this, we first need to recall some technical
definitions (see [148] for the definition and the subsequent theorems).

Definition 3.7.1. Let us denote by D the space of cadlag functions, i.e.
functions f defined on some interval of R that are right-continuous and such that
limt→t−0

f(t) always exists finite. Let ι(t) = t be the identity map and let us denote

by ∥·∥L∞ the supremum norm. Moreover, let Λ be the set of strictly increasing
functions. Then we define the J1 topology as the topology induced on D by the
metric

dJ1
(x1, x2) = inf

λ∈Λ
(max{∥x1 ◦ λ− x2∥L∞ , ∥λ− ι∥L∞}).

The metric space (D, dJ1
) is called the Skorohod space.

Let us denote by D0 the subspace of D such that x ∈ D0 if and only if x(0) ≥ 0.
Let D↑ be the subspace of D0 whose elements are non-decreasing functions and D↑↑
the subspace of D0 whose elements are strictly increasing function. Finally, let us
denote by C↑ = C ∩D↑ and C↑↑ = C ∩D↑↑.

An important thing to remember on (D, dJ1
) is that it is not a topological

group, i.e. addition is not continuous. However, in some sense, the composition
is a continuous map.

Theorem 3.7.4. The map (x, y) ∈ D × D↑ ↦→ x ◦ y ∈ D is continuous at
(x, y) ∈ (C ×D↑) ∪ (D × C↑↑).

Actually, such theorem comes handy when used together with the continuous
mapping theorem.

Theorem 3.7.5 (Continuous mapping theorem). Let Xn be a sequence of
random variables in a metric space (S,m) converging towards X in distribution.
Let g : (S,m) → (S′,m′) where (S′,m′) is a metric space. Let Disc(g) be the set of
discontinuity points of g. If P(X ∈ Disc(g)) = 0, then g(Xn) → g(X) in (S′,m′)
in distribution.

Let us recall the following version of Donsker’s Functional Central Limit The-
orem.

Theorem 3.7.6 (Donsker’s Theorem). Let N(t) be a Poisson process of
parameter 1 and (Xk)k∈N be a family of i.i.d. Gaussian random variables with zero

mean and unit variance. Let X(t) =
∑︁N(t)

k=1 Xk be the respective compound Poisson

process. Moreover let Xh(t) = hX
(︁

t
h2

)︁
for h ∈ N. Then the sequence Xh(t)

converges towards a Brownian motion B(t) in (D, dJ1) in distribution as h→ 0.

By combining the three previous theorem we can easily show the following
result.

Theorem 3.7.7. Consider Φ ∈ BF a driftless Brownian motion. Let N(t)
be a Poisson process of parameter 1 and (Xk)k∈N be a family of i.i.d. Gaussian

random variables with zero mean and unit variance. Let X(t) =
∑︁N(t)

k=1 Xk be the

respective compound Poisson process. Moreover let Xh(t) = hX
(︁

t
h2

)︁
for h ∈ N

and consider the time-changed processes Xh
Φ(t) := Xh(LΦ(t)) where LΦ(t) is an

inverse subordinator associated to Φ and independent of X(t). Then the sequence
Xh

Φ(t) converges towards a time-changed Brownian motion BΦ(t) in (D, dJ1
) in

distribution.
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Proof. Let us consider the sequence (Xh, LΦ) and observe that it converges
towards (B,LΦ). Now, let us observe that P(LΦ ̸∈ D↑) = 0 since LΦ is almost
surely increasing and continuous. Moreover, P(B ̸∈ C) = 0 since the Brownian
motion is almost surely continuous. Thus, denoting by g the composition map, it
holds P((B,LΦ) ∈ Disc(g)) = 0. By the continuous mapping theorem, we conclude
the proof. □

Now let us show how to use such information to obtain a simulation algorithm

for BΦ(t). First of all, let us observe that Xh(t) =
∑︁N( t

h2 )
k=1 hXk. It is not difficult

to check that N
(︁

t
h2

)︁
∼ Nh(t) where Nh(t) is a Poisson process with parameter

1
h2 . In particular, by using the consideration we made in the previous section, we

actually know that the sojourn times of Nh
Φ(t) are Φ-exponentials of parameter 1

h2 .

Now let us observe that we can simulate Xh
Φ(t) by considering two vectors:

• A state vector Y⃗ = (Yk)k∈N0
with Y0 = 0;

• A calendar vector T⃗ = (Tk)k∈N0
with T0 = 0.

Indeed, by definition, there exist two sequences of random variables Y⃗ and T⃗ such
that Xh

Φ(t) = Yk if t ∈ [Tk, Tk+1). In particular it holds Yk+1 − Yk = hXk+1 where
Xk+1 is a standard normal random variable, and Tk+1 − Tk = Sk where Sk is
the sojourn time of Nh

Φ(t). Thus, from these observations, we have the following
algorithm:

(1) Choose h big enough;
(2) Initialize Y0 = T0 = 0;
(3) Suppose we have already simulated Yn and Tn:

(a) Simulate a standard normal random variable X;
(b) Set Yn+1 = Yn + hX;
(c) Simulate S ∼ ExpΦ(1/h

2);
(d) Set Tn+1 = Tn + S.

(4) Repeat until the stop condition is reached.

After that, the simulated time-changed Brownian motion is given by ˜︁BΦ(t) = Yk
for t ∈ [Tk, Tk+1).



CHAPTER 4

Non-local operators in space: some results on
isotropic Lévy processes and isoperimetric

inequalities

Now let us focus on some problems concerning non-locality in space. In partic-
ular, we focus on two problems. The first one concerns the asymptotic behaviour
of the jump function jΦ associated with driftless Bernstein functions Φ ∈ BF .
Let us recall that jump functions are strictly linked with the Lévy measures of
subordinated Brownian motions (that are isotropic Lévy processes). Denoting
BΦ(t) = B(σΦ(t)) where B(t) is a Brownian motion in Rn with variance 2t and σΦ
a subordinator independent of it, then, by Bochner subordination, BΦ(t) is a Lévy
process with Lévy measure µΦ(x) = jΦ(|x|)dx. The generator of BΦ(t) is given by
−Φ(−∆), that is defined via Phillips’ formula. However, we have shown in 1.5.3
that −Φ(−∆) can be represented in terms of the jump function jΦ. Thus, knowing
some properties of the jump function jΦ can be useful to obtain some estimates
on the operator −Φ(−∆). This, for instance, can be applied to Schrödinger op-
erators HΦ = Φ(−∆) + V with V multiplication operator V f ↦→ V (x)f(x) where

V : Rd → R is a suitable potential. In particular, assuming that HΦ admits a zero
energy eigenvalue φ, i.e. a function φ ∈ L2(Rd) with φ ̸≡ 0 such that HΦφ = 0,
then we have V (x) = − 1

φ(x)Φ(−∆)φ(x). This leads to the usage of asymptotic esti-

mates on jΦ to deduce some conditions on the decay of the potential V (x), as done
in [24]. Moreover, the same techniques can be used to study the link between the
fractional Laplacian Lα = (−∆)

α
2 and the massive relativistic fractional Laplacian

Lα,m = (−∆+m
2
α )

α
2 −m. Indeed, it has been shown in [128] that there exists a

finite measure σα,m(x)dx such that

Lα,mf = Lαf − (σα,m − δ0) ∗ f.

For this reason, we will present also some results on the asymptotic behaviour of
the density σα,m(x).

The second problem is related to randomized isoperimetric inequalities. In
[120] the following isoperimetric inequality has been shown.

Theorem 4.0.1. Let K ⊆ Rd be a compact set and r ≤ d. Let PK
0 , ·, PK

r be
r + 1 random points in K, uniformly distributed and pair-wise independent. Let
K(r) = [PK

0 , . . . , PK
r ] be the polytope with vertices PK

0 , . . . , PK
r and V K

r := Vr(K)

be the r-intrinsic volume of K(r). Let B ⊆ Rd be any ball such that |B| = |K|.
Then, for any strictly increasing function Ψ on R+ it holds

E[Ψ(V K
r )] ≥ E[Ψ(V B

r )].

145
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Moreover, if r < d, equality holds if and only if K is a ball and, if r = d, equality
holds if and only if K is an ellipsoid.

In [63] the following quantitative version for the previous Theorem, in the case
r = 2 and Ψ(x) = xβ , has been shown.

Theorem 4.0.2. Let d ≥ 2 and β > 0. Then there exists a universal constant
C(d, β) > 0 such that for any measurable set E ⊆ Rd with |E| = ωd it holds

δ(E) ≤ C(d, β)
√︂
Dβ(E)

where δ(E) = infx∈Rd |E∆B(x)| is Fraenkel asymmetry, B(x) is a ball with radius
1 centred in x, Dβ(E) = Gβ(E)− Gβ(B) and Gβ(E) = E[(V E

2 )2].

In [17] we give an alternative proof of the previous Theorem, by means of a
Fuglede-type result on nearly spherical sets and some transportation arguments.
Let us first state that our methods led us also to the proof of another isoperimetric
inequality concerning a mixed energy given by the sum of mean length operator Gβ

defined before (that is minimized by the ball) and the Riesz potential Vα (that is
maximized by the ball), together with a fractional perimeter penalization εPs.
Here we focus on the main tool we had to introduce to handle the Fugluede-type
result. Indeed we had to consider the fractional integral on the sphere Sd−1 as
defined in [125] and a Marchaud-type fractional integral on Sd−1. In particular, we
give a closed formula for eigenvalues of the two types of integrals and then we show
the link between Gβ(B) and the first eigenvalue of the Marchaud-type fractional
integral.

4.1. Jump functions of the subordinated Brownian motion: general
properties

Let us first fix some notation. Let Φ ∈ BF be a driftless Bernstein function
whose Lévy measure νΦ(dt) = νΦ(t)dt with νΦ(t) decreasing (but not necessarily
completely monotone) and let σΦ(t) be the associated subordinator. Let B(t) be

a Brownian motion on Rd (for d ≥ 2) independent of σΦ(t) and let us define the
subordinated Brownian motion BΦ(t) = B(σΦ(t)). Let us denote by µΦ(dx) =
jΦ(|x|)dx the Lévy measure of BΦ(t) where jΦ(r) is the jump function of BΦ(t).
We want to exploit the asymptotic behaviour of jΦ(r).
Before doing this, let us show some general properties of νΦ and jΦ. First of all,
let us show the following technical result (see [24, Lemma 2.1]).

Lemma 4.1.1. For any C > 0 there exists t0(C) ∈ (0, 1) such that νΦ(t) ≤ Ct−2

for any t ∈ (0, t0(C)).

Proof. Let us argue by contradiction. Suppose there exists ˜︁C > 0 and a
decreasing sequence (tn)n≥1 such that t1 < 1, tn > 0 for any n ∈ N, tn−1−tn > tn−1

2 ,

tn → 0 and νΦ(tn) > ˜︁Ct−2n . By definition of Lévy measure of a Bernstein function,
it holds ∫︂ 1

0

tνΦ(t)dt < +∞.

On the other hand, since νΦ is decreasing, we have∫︂ 1

t1

tνΦ(t)dt ≥ t1νΦ(1)(1− t1)
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and ∫︂ tn

tn−1

tνΦ(t)dt ≥ νΦ(tn)
(tn − tn−1)(tn + tn−1)

2
≥ ˜︁C tn−1

4tn
≥
˜︁C
4
.

Thus, we obtain∫︂ 1

0

tνΦ(t)dt =

∫︂ 1

t1

tνΦ(t)dt+

+∞∑︂
n=1

∫︂ tn

tn+1

tνΦ(t)dt ≥ t1νΦ(1)(1− t1) + ˜︁C +∞∑︂
n=1

1

4
= +∞,

that is a contradiction. □

Concerning jΦ, we can show the following result that summarize some of its
main properties (see [24, Proposition 2.2]).

Proposition 4.1.2. The following properties hold:

(1) jΦ(r) < +∞ for any r ∈ R+;
(2) jΦ(r) is a decreasing function;
(3) jΦ(r) is continuous in R+;
(4) limr→+∞ jΦ(r) = 0;
(5) It holds ∫︂ +∞

1

rd−1jΦ(r)dr < +∞;

(6) It holds ∫︂ 1

0

rd+1jΦ(r)dr < +∞;

(7) the measure µΦ(dx) = jΦ(|x|)dx defined on Rd \{0} is a Lévy measure;

(8) The function x ∈ Rd ↦→ j(|x|) ∈ R+ belongs to Lp(Bc
ε(0)) for any ε > 0

and p ≥ 1 (eventually p = +∞).

Proof. By the definition of jump function given in Equation (1.5.1) we have

j(r) =
1

(4π)
d
2

(︃∫︂ 1

0

t−
d
2 e−

r2

4t νΦ(dt) +

∫︂ +∞

1

t−
d
2 e−

r2

4t νΦ(dt)

)︃
=:

1

(4π)
d
2

(I1(r) + I2(r)).

Concerning the first integral I1(r), we have that there exists a constant C(r) such

that t−
d
2 e−

r2

4t ≤ C(r)t for any t ∈ (0, 1), and then I1(r) < +∞ by definition of
Lévy measure. Concerning the second integral, instead, we have that I2(r) < +∞
since t−

d
2 e−

r2

4t ≤ 1 for any t ≥ 1. This proves property (1). Property (2) follows
from the fact that the integrand in (1.5.1) is decreasing and so we have (3) and (4)
by monotone convergence. Concerning (5), we have, by Fubini’s theorem∫︂ +∞

1

rd−1jΦ(r) =
1

(4π)
d
2

∫︂ +∞

0

t−
d
2

(︃∫︂ +∞

1

rd−1e−
r2

4t dr

)︃
νΦ(dt).

In the inner integral we can consider the change of variables r = 2
√
st leading to∫︂ +∞

1

rd−1e−
r2

4t dr = 2d−1t
d
2Γ

(︃
d

2
,
1

4t

)︃
.
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Thus we have∫︂ +∞

1

rd−1jΦ(r) =
1

2π
d
2

(︃∫︂ 1

0

Γ

(︃
d

2
,
1

4t

)︃
µΦ(dt) +

∫︂ +∞

1

Γ

(︃
d

2
,
1

4t

)︃
µΦ(dt)

)︃
.

Concerning the second integral, it is finite since Γ
(︁
d
2 ,

1
4t

)︁
≤ Γ

(︁
d
2

)︁
and νΦ is a

Lévy measure. On the other hand, it is well known that Γ(s, x) ∼ e−xxs−1 as
x→ +∞, thus in particular there exists a constant C > 0 such that Γ

(︁
d
2 ,

1
4t

)︁
≤ Ct

for t ∈ (0, 1). Thus, we have that also the first integral is finite since νΦ is a Lévy
measure.
Now let us prove (6). Arguing as before we have∫︂ 1

0

rd+1jΦ(r) =
2

π
d
2

(︃∫︂ 1

0

tγ

(︃
d

2
+ 1,

1

4t

)︃
νΦ(dt) +

∫︂ +∞

1

tγ

(︃
d

2
+ 1,

1

4t

)︃
νΦ(dt)

)︃
,

where γ(s, x) is the lower incomplete Gamma function defined as

γ(s, x) =

∫︂ x

0

ts−1e−tdt.

Concerning the first integral, we have γ
(︁
d
2 + 1, 1

4t

)︁
≤ Γ

(︁
d
2 + 1

)︁
, thus, since νΦ is a

Lévy measure of a Bernstein function and then t is integrable, it is finite.
Concerning the second integral, let us recall that γ(s, x) ∼ sxs as x → 0+, thus

there exists a constant C > 0 such that tγ
(︁
d
2 + 1, 1

4t

)︁
≤ Ct−

d
2 ≤ 1 as t ≥ 1. Thus,

in particular, the second integral is finite since νΦ(1,+∞) < +∞.
Property (7) follows from the two previous estimate, since, by coarea formula1, they
imply that ∫︂

Rd \{0}
(|x|2 ∧ 1)µΦ(dx) < +∞.

Finally, concerning property (8), it is immediate for p = 1. Concerning p = +∞, it
follows from the fact that for x ∈ Bc

ε(0) it holds |x| ≥ ε and then jΦ(|x|) ≤ jΦ(ε).
Now let us consider p ∈ (1,+∞). Since j is decreasing there exists M > 0 such
that jΦ(|x|) < 1 for any x ∈ Bc

M (0). This leads to jpΦ(|x|) < jΦ(|x|) for x ∈ Bc
M (0)

and, if ε ≥M , this completes the proof. Otherwise, we only have to observe that∫︂
Bc

ε(0)

jpΦ(|x|)dx =

∫︂
BM (0)\Bε(0)

jpΦ(|x|)dx+

∫︂
Bc

M (0)

jpΦ(|x|)dx

≤ jpΦ(ε)(M
p − εp)ωd + νΦ(B

c
M (0)) < +∞.

□

Now we can focus on the study of the asymptotic behaviour of jΦ. However,
we have to distinguish between two cases:

• The density νΦ is regularly varying at 0+ or at +∞;
• The density νΦ exhibit an exponential behaviour at +∞.

1Here we actually use only the following corollary of the coarea formula: for any measurable
set E ⊆ Rd and any integrable function f it holds∫︂

E
f(x)dx =

∫︂ +∞

0

∫︂
E∩∂Br

f(x)dHd−1(x)dr.

For a general formulation of the coarea formula we refer to [59].
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We will call the first case regularly varying case, while the second exponentially
light case. In particular, let us stress out that the first case is implied by the
regular variation of the Bernstein function Φ. In the following sections we will
always consider Φ ∈ CBF .

4.2. Jump functions of the subordinated Brownian motion: the
regularly varying case

Let us first focus on the case in which Φ is regularly varying (at 0 or at ∞).
In such case, we already have some asymptotic results on νΦ and jΦ. Indeed, the
following result has been shown (see [141, Proposition 5.24]).

Theorem 4.2.1. Let Φ ∈ CBF be a driftless Bernstein function such that there
exists a function ℓ(λ) slowly varying at infinity (at 0+) and α ∈ (0, 2) such that

Φ(λ) ∼ λ
α
2 ℓ(λ), λ→ +∞ (0+).

Then it holds

νΦ(t) ∼
α
2

Γ
(︁
1− α

2

)︁ t−1−α
2 ℓ(t−1), t→ 0+ (+∞).

This result can be improved to the case in which we only have an asymptotic
bound, as done in [87, Theorem 2.10].

Theorem 4.2.2. Let Φ ∈ CBF be a driftless Bernstein function such that
there exists a function ℓ(λ) slowly varying at infinity and α ∈ (0, 2) such that, as
λ→ +∞,

Φ(λ) ≍ λ
α
2 ℓ(λ).

Then it holds

νΦ(t) ≍ t−1−
α
2 ℓ(t−1), t→ 0+.

Concerning the jump function, the following Theorem holds (see [87, Theorem
3.4]).

Theorem 4.2.3. Let Φ ∈ CBF be a driftless Bernstein function such that
there exists a function ℓ(λ) slowly varying at infinity and α ∈ (0, 2) such that, as
λ→ +∞,

Φ(λ) ≍ λ
α
2 ℓ(λ).

Then it holds

jΦ(|x|) ≍
ℓ(|x|−2)
|x|d+α

, |x| → 0+.

In [141] it is shown that the previous result holds also if we use ∼ in place of
≍.
Here we want to focus on the asymptotic behaviour of j(r) as r → +∞. To do this,
we will need to suppose that Φ is regularly varying at 0+. Moreover, from now on,

let us denote ˜︁ℓ(t) = ℓ(t−1). We have the following result (see [24, Proposition 2.3]).

Proposition 4.2.4. Let Φ ∈ CBF , α ∈ (0, 2) and ℓ a slowly varying function
at 0+ such that Φ(λ) ∼ λ

α
2 ℓ(λ) as λ→ 0+. Then it holds

jΦ(r) ∼
αΓ
(︁
d+α
2

)︁
22−απ

d
2Γ
(︁
1− α

2

)︁r−d−α ˜︁ℓ(r2), r → +∞.
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Proof. By Potter’s Theorem we know that there exists a constant M1 such
that ˜︁ℓ(t)˜︁ℓ(s) ≤ 2max

{︄(︃
t

s

)︃α
2

,

(︃
t

s

)︃−α
2

}︄
for any s, t > M1. Moreover, by Theorem 4.2.1, we know that there exists M2 > 0
such that

νΦ(t)
α
2

Γ(1−α
2 )
t−1−

α
2 ˜︁ℓ(t) ≤ 2

for any t > M2. Let us set M = max{M1,M2}. By Lemma 4.1.1 we also know
that there exists t0 ∈ (0, 1) such that for any t ∈ (0, t0) it holds νΦ(t) ≤ t−2. By
definition of jump function, we have

jΦ(r)

r−d−α ˜︁ℓ(r2) =
1

(4π)
d
2

(︄∫︂ t0

0

t−
d
2 e−

r2

4t

r−d−α ˜︁ℓ(r2)νΦ(t)dt+
∫︂ M

t0

t−
d
2 e−

r2

4t

r−d−α ˜︁ℓ(r2)νΦ(t)dt
+

∫︂ +∞

M

t−
d
2 e−

r2

4t

r−d−α ˜︁ℓ(r2)νΦ(t)dt
)︄
.

Now let us use the change of variables s = r2

4t to obtain

jΦ(r)

r−d−α ˜︁ℓ(r2) =
1

4π
d
2

(︄∫︂ +∞

r2

4t0

rα+2 s
− d

2−2e−s˜︁ℓ(r2) νΦ

(︃
r2

4s

)︃
ds

+

∫︂ r2

4t0

r2

4M

rα+2 s
− d

2−2e−s˜︁ℓ(r2) νΦ

(︃
r2

4s

)︃
ds

+

∫︂ r2

4M

0

rα+2 s
− d

2−2e−s˜︁ℓ(r2) νΦ

(︃
r2

4s

)︃
ds

)︄

=
1

4π
d
2

(I1(r) + I2(r) + I3(r)).

Let us consider I3(r). We have that, since s > r2

4t0
, it holds r2

4s < t0 and then

νΦ

(︂
r2

4s

)︂
≤ 16s2

r4 . This leads to

I3(r) ≤
16

r2−α ˜︁ℓ(r2)
∫︂ r2

4M

0

s−
d
2 e−sds ≤ 16

r2−α ˜︁ℓ(r2)Γ
(︃
d

2
+ 1

)︃
and then to limr→+∞ I3(r) = 0.
Now let us consider I2(r). We have, since νΦ is completely monotone,

I2(r) ≤
rα+2˜︁ℓ(r2)νΦ(t0)

∫︂ r2

4t0

r2

4M

s−
d
2−2e−sds ≤ rα+2˜︁ℓ(r2)νΦ(t0)Γ

(︃
d

2
− 1,

r2

2M

)︃
.

However, there exists a constant C > 0 such that Γ
(︂

d
2 − 1, r2

2M

)︂
≤ Crd−4e−

r2

4M for

r sufficiently big. Hence it holds

I2(r) ≤
rα+d−2e−

r2

4M˜︁ℓ(r2) νΦ(t0).
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Taking the limit as r → +∞ we conclude that limr→+∞ I2(r) = 0.
Now we need to find limr→+∞ I1(r). To do this, let us denote

F (r, s) =
νΦ

(︂
r2

4s

)︂
α
2

Γ(1−α
2 )

(︁
r2

4s

)︁−1−α
2 ˜︁ℓ (︁ r24s)︁

to obtain

I1(r) =
2αα

Γ
(︁
1− α

2

)︁ ∫︂ r2

4M

0

s
d+α

2 −1e−sF (r, s)

˜︁ℓ(︂ r2

4s

)︂
˜︁ℓ(r2) ds.

By definition of M > 0 we have that for r2 > M˜︁ℓ(︂ r2

4s

)︂
˜︁ℓ(r2) ≤ 2((4s)

α
2 + (4s)−

α
2 ).

Moreover, F (r, s) ≤ 2, thus we have

s
d+α

2 −1e−sF (r, s)

˜︁ℓ(︂ r2

4s

)︂
˜︁ℓ(r2) χ(︂

0, r2

4M

)︂(s) ≤ 2α+2s
d
2+α−1e−s + 22−αs

d
2−1e−s,

that is integrable. By dominated convergence theorem, observing that limr→+∞ F (r, s) =

1 by Theorem 4.2.1 and limr→+∞
˜︁ℓ(︂ r2

4s

)︂
˜︁ℓ(r2) = 1 by definition of slowly varying func-

tions, we get

lim
r→+∞

I1(r) =
2ααΓ

(︁
d+α
2

)︁
Γ
(︁
1− α

2

)︁ ,

concluding the proof. □

Starting from the asymptotic estimate on jΦ(r) we can ask for the asymptotic
behaviour of:

• R ↦→ µΦ(B
c
R(0));

• R ↦→ J Φ(R) :=
∫︁
BR(0)

|x|2jΦ(|x|)dx;
• R ↦→ ∥j(|x|)∥Lp(Bc

R(0)).

In particular we can prove the following Corollary (see [24, Corollary 2.1]).

Corollary 4.2.5. Let Φ ∈ CBF , α ∈ (0, 2) and ℓ a slowly varying function at
0+ such that Φ(λ) ∼ λ

α
2 ℓ(λ) as λ→ 0+. Then the following properties hold:

•

µΦ(B
c
R(0)) ∼

dωdΓ
(︁
d+α
2

)︁
22−απ

d
2Γ
(︁
1− α

2

)︁R−α ˜︁ℓ(R2), R→ +∞;

•

J (R) ∼
αdωdΓ

(︁
d+α
2

)︁
(2− α)22−απ

d
2Γ
(︁
1− α

2

)︁R2−α ˜︁ℓ(R2), R→ +∞;

• For any p ∈ (1,+∞) it holds

∥jΦ(|x|)∥Lp(Bc
R(0)) ∼

(dωd)
1
pαΓ

(︁
d+α
2

)︁
22−απ

d
2Γ
(︁
1− α

2

)︁
((p− 1)d+ pα)

1
p

R−
d
q−α ˜︁ℓ(R2), R→ +∞

where 1
q + 1

p = 1.
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Proof. Let us show only the first property, as the proof of the others is anal-
ogous. First of all, let us set

A =
αΓ
(︁
d+α
2

)︁
22−απ

d
2Γ
(︁
1− α

2

)︁
and fix ε ∈

(︁
0, 12

)︁
. Thus, by Proposition 4.2.4, we know there exists R1 such that,

for any r > R1, it holds

√
1− ε ≤ j(r)

Ar−d−α ˜︁ℓ(r2) ≤
√
1 + ε.

Moreover, by Karamata’s Theorem, we know that there exists R2 > 0 such that,
for any R > R2, it holds

√
1− ε ≤

∫︁ +∞
R

r−1−α ˜︁ℓ(r2)dr
R−α

α
˜︁ℓ(R2)

≤
√
1 + ε.

Set R3 = max{R1, R2} and observe that, by coarea formula,

µΦ(B
c
R(0)) = dωd

∫︂ +∞

R

rd−1j(r)dr

thus, for R > R3 it holds

1− ε ≤
√
1− ε

∫︁ +∞
R

r−1−α ˜︁ℓ(r2)dr
R−α

α
˜︁ℓ(R2)

≤ αµΦ(B
c
R(0))

AdωdR−α ˜︁ℓ(R2)

≤
√
1 + ε

∫︁ +∞
R

r−1−α ˜︁ℓ(r2)dr
R−α

α
˜︁ℓ(R2)

≤ 1 + ε,

concluding the proof since ε is arbitrary. □

4.3. Jump functions of the subordinated Brownian motion: the
exponentially light case

Now let us move to the exponentially light case. We say that νΦ is exponen-
tially light if there exist α ∈ (0, 2] and θ, η > 0 such that

νΦ(t) ∼ θt−1−
α
2 e−ηt, t→ +∞.

In this case we will make use of the modified Bessel function of the third
kind, given by

Kρ(z) =
1

2

(︂z
2

)︂ρ ∫︂ +∞

0

t−ρ−1e−t−
z2

4t dt, z > 0, ρ > −1

2
.

In particular let us recall the well-known asymptotic formula:

Kρ(z) ∼
√︃

π

2z
e−z, z → +∞.

Now that we have set this notation, we can prove the following Proposition (see
[24, Proposition 2.4]).
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Proposition 4.3.1. Let Φ ∈ CBF be a driftless complete Bernstein function.
Suppose there exist α ∈ (0, 2], θ, η > 0 such that

νΦ(t) ∼ θt−1−
α
2 e−ηt, t→ +∞.

Then it holds

jΦ(r) ∼ θπ
1−d
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr, r → +∞.

Proof. Without loss of generality, let us set θ = 1. Fix ε ∈ (0, 1). Then there
exists t0 > 0 such that for any t > t0 it holds

(1− ε)t−1−
α
2 e−ηt ≤ νΦ(t) ≤ (1 + ε)t−1−

α
2 e−ηt.

Now let us split the integral defining jΦ in t0 to obtain

jΦ(r) =
1

(4π)
d
2

(︃∫︂ t0

0

t−
d
2 e−

r2

2t νΦ(t)dt+

∫︂ +∞

t0

t−
d
2 e−

r2

2t νΦ(t)dt

)︃
=:

1

(4π)
d
2

(I1(r) + I2(r)).

In particular we have

(4.3.1) I2(r) ≤ 2dπ
d
2 jΦ(r) = I1(r) + I2(r).

Now let us consider I1(r). We have

I1(r)

r−
d+α+1

2 e−
√
ηr

=

∫︂ t0

0

t−
d
2 r

d+α+1
2 e−

r2

8t +
√
ηre−

r2

8t νΦ(t)dt.

Let us consider the function

ft(r) = r
d+α+1

2 e−
r2

8t +
√
ηr

and let us observe that it attains its maximum at

rmax(t) = 2
√
ηt2 + 2(

√
η + d+ α+ 1)t

with the value

ft(rmax(t)) = g(t)e−
√
η(
√
ηt2+(

√
η+d+α+1)t)−

√
η

4 (d+α+1),

where g is an increasing function. In particular it holds, for t ∈ (0, t0),

ft(rmax(t)) ≤ g(t0)

and then we have

(4.3.2)
I1(r)

r−
d+α+1

2 e−
√
ηr

≤ g(t0)

∫︂ t0

0

t−
d
2 e−

r2

8t νΦ(t)dt.

Since we want to send r → +∞, let us suppose r > 1 to obtain

e−
r2

8t ≤ e−
1
8t ≤ C(d)t

d
2+2

as t ∈ (0, t0). Thus, we have that the integrand on the right-hand side of (4.3.2)
is dominated by a L1(νΦ) function and then it holds, by dominated convergence
theorem,

lim
r→+∞

I1(r)

r−
d+α+1

2 e−
√
ηr

= 0.
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Now let us consider I2(r). Since t > t0, we have

I2(r) ≤ (1 + ε)

∫︂ +∞

t0

t−1−
d+α

2 e−ηt−
r2

4t dt

≤ (1 + ε)r−
d+α

2 2
d+α

2 η
d+α

4

(︃
r

2
√
η

)︃ d+α
2
∫︂ +∞

t0

t−1−
d+α

2 e
−η

(︂
t+ r2

4ηt

)︂
dt

= (1 + ε)r−
d+α

2 2
d+α

2 η
d+α

4 K d+α
2

(
√
ηr),

where we used the integral representation (see [72, Formula 8.432.7])

Kρ(xz) =
zρ

2

∫︂ +∞

0

t−ρ−1e
− x

2

(︂
t+ z2

t

)︂
dt.

Going back to Equation (4.3.1), we get

jΦ(r)

π
1−d
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

≤ I1(r)

π
1
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

+ (1 + ε)
K d+α

2
(
√
ηr)

π
1
2 2−

1
2 η

1
2 r−

1
2 e−

√
ηr

and then, taking the limit superior, we have

lim sup
r→+∞

jΦ(r)

π
1−d
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

≤ (1 + ε).

Now let us consider again I2(r) and let us control it as

I2(r) ≥ (1− ε)

(︃∫︂ +∞

0

t−1−
d+α

2 e−ηt−
r2

4t dt−
∫︂ t0

0

t−1−
d+α

2 e−ηt−
r2

4t dt

)︃
:= (1− ε)(I3(r)− I4(r)).

Concerning I3(r), we have already shown that

I3(r) = r−
d+α

2 2
d+α
2 η

d+α
4 K d+α

2
(
√
ηr).

On the other hand, we have

I4(r)

r−
d+α+1

2 e−
√
ηr

=

∫︂ t0

0

t−1−
d+α

2 e−
r2

8t−ηtft(r)dt

≤ g(t0)

∫︂ t0

0

t−1−
d+α

2 e−
r2

8t dt.

As before, if r > 1 we have for t ∈ (0, t0)

e−
r2

8t ≤ e−
1
8t ≤ Ct1+

d+α
2

thus, by dominated convergence theorem,

lim
r→+∞

I4(r)

r−
d+α+1

2 e−
√
ηr

= 0.
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Considering again Equation (4.3.1), we have

jΦ(r)

π
1−d
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

≥ (1− ε)
I4(r)

π
1
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

+ (1− ε)
K d+α

2
(
√
ηr)

π
1
2 2−

1
2 η

1
2 r−

1
2 e−

√
ηr

and we can take the limit inferior to achieve

lim inf
r→+∞

jΦ(r)

π
1−d
2 2

α−1−d
2 η

d+α+2
4 r−

d+α+1
2 e−

√
ηr

≥ (1− ε).

Thus, sending ε→ 0+, we conclude the proof. □

As we did in the regularly varying case, let us investigate the asymptotic be-
haviour of R→ µΦ(B

c
R(0)) (see [24, Corollary 2.2.1]).

Corollary 4.3.2. Let Φ ∈ CBF be a driftless complete Bernstein function.
Suppose there exist α ∈ (0, 2], θ, η > 0 such that

νΦ(t) ∼ θt−1−
α
2 e−ηt, t→ +∞.

Then it holds

µΦ(B
c
R(0)) ∼

θdωd

η
d+α

4 π
d−1
2 2

d+1−α
2

R
d−α−3

2 e−
√
ηR, R→ +∞.

Proof. Without loss of generality, we can suppose θ = 1. Let us fix ε ∈
(︁
0, 12

)︁
and let us observe, by Proposition 4.3.1, that there exists a constant R1 > 0 such
that for any r > R1 it holds

√
1− ε ≤ jΦ(r)

Ar−
d+α+1

2 e−
√
ηr

≤
√
1 + ε

where

A = π
1−d
2 2

α−1−d
2 η

d+α+2
4 .

Now let us suppose R > R1. Then, by coarea formula, we have

dωdA
√
1− ε

∫︂ +∞

R

r
d−α−1

2 −1e−
√
ηrdr

≤ µΦ(B
c
R(0))

≤ dωdA
√
1 + ε

∫︂ +∞

R

r
d−α−1

2 −1e−
√
ηrdr.

By means of the change of variables w =
√
ηr we obtain∫︂ +∞

R

r
d−α−1

2 −1e−
√
ηrdr = η−

d−α−1
4

∫︂ +∞

√
ηR

w
d−α−1

2 −1e−wdw

= η−
d−α−1

4 Γ

(︃
d− α− 1

2
,
√
ηR

)︃
.
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Now consider R2 > 0 such that for any R > R2 it holds

√
1− εe−

√
ηRR

d−α−3
2 η

d−α−3
4

≤ Γ

(︃
d− α− 1

2
,
√
ηR

)︃
≤

√
1 + εe−

√
ηRR

d−α−3
2 η

d−α−3
4 .

Thus we have, for R > max{R1, R2}

dωdA(1− ε)e−
√
ηRR

d−α−3
2 η−

1
2 ≤ µΦ(B

c
R(0)) ≤ dωdA(1 + ε)e−

√
ηRR

d−α−3
2 η−

1
2 ,

that is to say

(1− ε) ≤ µΦ(B
c
R(0))

dωdAη
−d+α−1

4 e−
√
ηRR

d−α−3
2

≤ (1 + ε),

concluding the proof. □

Concerning the second moment of µΦ, this time we have a completely different
behaviour (see [24, Corollary 2.2]).

Corollary 4.3.3. Let Φ ∈ CBF be a driftless complete Bernstein function.
Suppose there exist α ∈ (0, 2], θ, η > 0 such that

νΦ(t) ∼ θt−1−
α
2 e−ηt, t→ +∞.

Then ∫︂
Rd

|h|2jΦ(|h|)dh < +∞.

Proof. Let us set, without loss of generality, θ = 1. Let R1 > 0 be such that
for any r > R1 it holds

1

2
≤ jΦ(r)

Ar−
d+α+1

2 e−
√
ηr

≤ 3

2
,

where
A = π

1−d
2 2

α−1−d
2 η

d+α+2
4 .

Now let us split the integral
∫︁
Rd |h|2jΦ(|h|)dh in∫︂

Rd

|h|2jΦ(|h|)dh =

∫︂
BR1

(0)

|h|2jΦ(|h|)dh+

∫︂
Bc

R1
(0)

|h|2jΦ(|h|)dh.

The first integral is finite since µΦ is a Lévy measure. Concerning the second
integral, we have∫︂

Bc
R1

(0)

|h|2jΦ(|h|)dh ≤ 3

2
dωdA

∫︂ +∞

R1

r
d−α+3

2 −1e−
√
ηrdr

≤ 3

2
dωdAη

− d−α+3
2 Γ

(︃
d− α+ 3

2

)︃
< +∞,

concluding the proof. □

Let us observe that the difference in the behaviour of the second moment will
be one of the main reasons for which, if the zero-energy eigenvalue φ of a non-
local Schr̈odinger operator decays like a power, then the best rate of decay of the
potential is |x|−2. This does not happen in the regularly varying case, as one obtains
different decay rates depending on how fast does φ decay (see [24]).
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4.4. Ryznar’s decomposition for the massive relativistic Laplacian

In Chapter 1 we referred to two particular examples, respectively given by
Φα(λ) = λ

α
2 and Φα,m(λ) = (λ+m

2
α )

α
2 −m with α ∈ (0, 2). The main difference

of these two Bernstein functions can be seen in their respective Lévy measures.
Indeed Φα is regularly varying at 0+ of index α

2 ∈ (0, 1), thus the Lévy density να
is regularly varying at infinity. However Φα,m is regularly varying at 0+ of index 1.
In particular the Lévy density να,m is exponentially light. As we have seen in the
previous Sections, this leads to a completely different behaviour of the respective
jump functions jα and jα,m.
However, in [128], a link between Lα = −Φα(−∆) and Lα,m = −Φα,m(−∆) has
been investigated in terms of a finite measure σα,m(|x|)dx. We refer to Lα (which is
classically called the fractional Laplacian) as the massless relativistic Lapla-
cian to distinguish it from Lα,m which is the massive relativistic Laplacian.
Now let us show the following result (see [24, Proposition 2.7]).

Proposition 4.4.1. Let f : Rd → R with f ∈ L∞(Rd). Denote D2
hf(x) =

f(x+ h)− 2f(x) + f(x− h). Suppose for any x ∈ Rd there exists Lf (x) and Rf (x)
such that, for any h ∈ BRf (x)(0), it holds |D2

hf(x)| ≤ Lf (x)|h|2. Then it holds

Lα,mf(x) = Lαf(x)−
1

2

∫︂
Rd

D2
hf(x)σα,m(|h|)dh,

where

σα,m(r) =
α21−

d−α
2

Γ
(︁
1− α

2

)︁
π

d
2

⎛⎝2
d+α

2 −1Γ
(︁
d+α
2

)︁
rd+α

−
m

d+α
2α K d+α

2
(m

1
α r)

r
d+α

2

⎞⎠
=

α21−
d−α

2

Γ
(︁
1− α

2

)︁
π

d
2 rd+α

∫︂ m
1
α r

0

w
d+α

2 K d+α
2 −1

(w)dw.

Proof. By Proposition 1.5.3, setting σα,m(r) = jα(r)− jα,m(r), we have

Lα,mf(x) =
1

2

∫︂
Rd

D2
hf(x)jm,α(|h|)dh =

1

2

∫︂
Rd

D2
hf(x)(jα(|h|)− σα,m)dh

and

Lαf(x) =
1

2

∫︂
Rd

D2
hf(x)jα(|h|)dh.

Now let us show that the integral
∫︁
Rd D2

hf(x)σα,m(|h|)dh is well defined. Fix x ∈ Rd.
Then we have∫︂

Rd

|D2
hf(x)||σα,m(|h|)|dh =

∫︂
BRf (x)(0)

|D2
hf(x)||σα,m(|h|)|dh

+

∫︂
Bc

Rf (x)
(0)

|D2
hf(x)||σα,m(|h|)|dh.
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Concerning the first integral, we have

(4.4.1)

∫︂
BRf (x)(0)

|D2
hf(x)||σα,m(|h|)|dh

≤ Lf (x)

∫︂
BRf (x)(0)

|h|2(jα(|h|) + jα,m(|h|))dh < +∞,

since jα(|h|) and jα,m(|h|) are densities of Lévy measures. On the other hand, we
have∫︂

BRc
f
(x)(0)

|D2
hf(x)||σα,m(|h|)|dh

≤ 4 ∥f∥L∞ (µα(B
c
Rf (x)

(0)) + µα,m(Bc
Rf (x)

(0))) < +∞.

Thus we can conclude that

Lα,mf(x) =
1

2

∫︂
Rd

D2
hf(x)(jα(|h|)− σα,m)dh

= Lαf(x)−
1

2

∫︂
Rd

D2
hf(x)σα,m(|h|)dh.

Now let us determine σα,m(r). We have, by exploiting the values of να and να,m,

σα,m(r) =
α2−d

Γ
(︁
1− α

2

)︁
π

d
2

∫︂ +∞

0

t−1−
d+α

2 (1− e−m
2
α t)e−

r2

4t dt.

However, let us observe that

1− e−m
2
α t

t
=

∫︂ m
2
α

0

e−tzdz,

thus, by Fubini’s theorem, we obtain

σα,m(r) =
α2−d

Γ
(︁
1− α

2

)︁
π

d
2

∫︂ m
2
α

0

∫︂ +∞

0

t−
d+α

2 e−
r2

4t−ztdtdz

=
α2

α−d
2 r1−

d+α
2

Γ
(︁
1− α

2

)︁
π

d
2

∫︂ m
2
α

0

z
d+α
4 −

1
2
1

2

(︃
r

2
√
z

)︃ d+α
2 −1 ∫︂ +∞

0

t−
d+α

2 e
−z

(︂
t+ r2

4zt

)︂
dtdz

=
α21−

d−α
2

rd+αΓ
(︁
1− α

2

)︁
π

d
2

∫︂ m
2
α r

0

w
d+α

4 K d+α
2 −1

(w)dw.

Finally, [72, Formula (5.52)] concludes the proof. □

We refer to the formula Lα,m = Lα−Gα,m, whereGα,mf(x) =
1
2

∫︁
Rd D2

hf(x)σα,m(|h|)dh,
as Ryznar’s decomposition (since it has been first explored in [128]).
By using the integral representation we obtained in the previous Proposition, we
can show a monotonicity property of σα,m (see [24, Corollary 2.4]).

Corollary 4.4.2. There exists R > 0 such that σα,m is decreasing in (R,+∞).
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Proof. Let us first observe that being σm,α(r) is in C
1(0,+∞) and

σ′m,α(r) = −A(d+ α)r−d−α−1
∫︂ m

1
α r

0

w
d+α

2 K d+α
2 −1

(w)dw

+Am
d+α+2

α r−
d+α

2 K d+α
2 −1

(︂
m

1
α r
)︂
,

where

A =
α21−

d−α
2

Γ
(︁
1− α

2

)︁
π

d
2

.

Now, by [72, Formula (5.52)], we have

σ′m,α(r) = A

(︃
−(d+ α)r−d−α−12

α+d+2
2 Γ

(︃
α+ d

2

)︃
+m

d+α
2α r−1−

d+α
2 K d+α

2

(︂
m

1
α r
)︂
+m

d+α+2
α r−

d+α
2 K d+α

2 −1

(︂
m

1
α r
)︂)︂

.

By means of the asymptotics of the modified Bessel functions Kν , we know there
exists R > 0 such that for any r > R it holds

m
d+α
2α r−1−

d+α
2 K d+α

2

(︂
m

1
α r
)︂
+m

d+α+2
α r−

d+α
2 K d+α

2 −1

(︂
m

1
α r
)︂

≤ d+ α

2
r−d−α−12

α+d−2
2 Γ

(︃
α+ d

2

)︃
,

thus obtaining, for r > R,

σ′m,α(r) ≤ −Ad+ α

2
r−d−α−12

α+d+2
2 Γ

(︃
α+ d

2

)︃
< 0,

concluding the proof. □

Now let us introduce the measure Σα,m(dx) = σα,m(|x|)dx, which plays the
role of µΦ in Gα,m. Concerning the asymptotic behaviour of Σα,m(Bc

R(0)) (together
with the asymptotic behaviour of the second moment of the measure and the Lp

norm of σα,m), we can state the following Corollary, whose proof is omitted since
it is identical to the one of Corollary 4.2.5 after observing that the Bessel term in
σα,m is negligible as r → +∞.

Corollary 4.4.3. The following properties hold:

•

σα,m(r) ∼
2αΓ

(︁
α+d
2

)︁
Γ
(︁
1− α

2

)︁
π

d
2

r−α−d, r → +∞

•

Σα,m(Bc
R(0)) ∼

dωd2
αΓ
(︁
α+d
2

)︁
Γ
(︁
1− α

2

)︁
π

d
2

R−α, R→ +∞

•∫︂
BR(0)

|h|2σα,m(|h|)dh ∼
dωdα2

αΓ
(︁
α+d
2

)︁
(2− α)Γ

(︁
1− α

2

)︁
π

d
2

R2−α, R→ +∞

• For any p ∈ (1,+∞)

∥σα,m(|h|)∥Lp(Bc
R(0)) ∼

(︃
dωd

(p− 1)d+ pα

)︃ 1
p α2αΓ

(︁
α+d
2

)︁
Γ
(︁
1− α

2

)︁
π

d
2

R−qd−α, R→ +∞
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where 1
p + 1

q = 1.

Moreover, it has been shown in [128, Lemma 2] that Σα,m(Rd) = m as d ≥ 2.
By using this information we easily have the following result.

Proposition 4.4.4. Let f ∈ L∞(Rd) with d ≥ 2. Then Gα,mf ∈ L∞(Rd) is
well defined and

∥Gα,mf∥L∞ ≤ 2m ∥f∥L∞ .

The proof follows just by observing that |D2
hf(x)| ≤ 4 ∥f∥L∞ .
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4.5. Eigenvalues of the fractional integral on the sphere

Now let us move to the second problem in this chapter, that is to say the
determination of the eigenvalues of some fractional integrals on the sphere. Let us
consider d ≥ 2 and denote by Sd the d-dimensional sphere in Rd+1. Thus, as done
in [125], we give the following definition.

Definition 4.5.1. Let u ∈ L∞(Sd−1). The fractional integral of u of order
β + d− 1 (for β ∈ (1− d,+∞)) is defined as

Kβ [u](ω) = cd,β

∫︂
Sd−1

|ω − ξ|βu(ξ)dHd−1(ξ)

where cd,β is a normalizing constant and Hd−1 is the (d−1)-dimensional Hausdorff
measure.

Here we will focus on the case β > 0, since the case β ∈ (1 − d, 0) has been
already considered in [61] and then used in [66] and the case β = 0 is trivial.
To simplify the treatment, since it will not play any particular role, let us suppose

cd,β = 2−
β
2 . Now we can investigate the eigenvalue problem for Kβ . To do this, we

will make use of the Funke-Hecke formula (see, for instance, [57]). Indeed we have
the following Proposition (see [17]).

Proposition 4.5.1. Let us denote by Sk the space of the k-th spherical har-
monics. For each k ≥ 0 and Yk ∈ SK it holds

Kβ [Yk](ω) = θk,βYk(ω), ω ∈ Sd−1,

where

θk,β = (d− 1)ωd−1(−1)k
2

β+2d−4
2 Γ

(︂
β+d−1

2

)︂
Γ
(︁
d−1
2

)︁
Γ
(︂

β+2
2

)︂
Γ
(︂

β+2
2 − k

)︂
Γ
(︂

β+2d−2
2 + k

)︂ .

Proof. Let us first observe that for any ω, ξ ∈ Sd−1 it holds

|ω − ξ|β = 2
β
2 (1− ω · ξ)

β
2

so that for any function u ∈ L∞(Sd−1) it holds

(4.5.1) Kβ [u](ω) =

∫︂
Sd−1

Kβ(ω · ξ)u(ξ)dHd−1(ξ)

where the kernel Kβ is defined as

Kβ(t) = (1− t)
β
2 .

Since we have expressed Kβ in terms of an integral kernel that depends only on the
scalar product between two points of the sphere, we can use Funke-Hecke formula
(see, for instance, [57]) to state that the eigenfunctions of Kβ are the spherical
harmonics and to determine the eigenvalues.
First of all, let us determine θ0,β . To do this, we can use [72, Formula 7.311.3] to
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obtain, recalling that S0 ∼ R is the space of constant functions on the sphere,

θ0,β =

∫︂
Sd−1

Kβ(ω · ξ)dHN−1(ξ)

= (d− 1)ωd−1

∫︂ 1

−1
(1− t)

β
2 (1− t2)

d−3
2 dt

= (d− 1)ωd−1
2

β+2d−4
2 Γ

(︂
β+d−1

2

)︂
Γ
(︁
d−1
2

)︁
Γ
(︂

β+2d−2
2

)︂ .

To determine the eigenvalues θk,β for k ≥ 1 we have to distinguish between the
cases d = 2 and d ≥ 3, since, as we will see in the following, we have to refer to
different families of orthogonal polynomials.
Let us start with the second one, that is actually simpler. By the Funke-Hecke
formula, we know we have to work with a normalization Pk,d(t) of the Gegenbauer

polynomials C
d−2
2

k (t) (see [72] for the definition) defined on t ∈ [−1, 1], which
constitute a family of orthogonal polynomials with respect to the measure on [−1, 1]

given by (1−t2) d−3
2 dt. In particular, according to [111, Page 16], we want Pk,d(1) =

1, while we have (see [72, Formula 8.937.4]) C
d−2
2

k (1) =
(︁
d+k−3

k

)︁
. Thus we obtain

Pk,N (t) =
k!(d− 3)!

(d+ k − 3)!
C

d−2
2

k (t).

By using the relation C
d−2
2

k (−t) = (−t)kC
d−2
2

k (t) and [72, Formula 7.311.3] we
achieve

θk,β = (N − 1)ωd−1
k!(d− 3)!

(d+ k − 3)!

∫︂ 1

−1
(1− t)

β
2 (1− t2)

d−3
2 C

d−2
2

k (t)dt

= (d− 1)ωd−1(−1)k
2

β+2d−4
2 Γ

(︂
β+d−1

2

)︂
Γ
(︁
d−1
2

)︁
Γ
(︂

β+2
2

)︂
Γ
(︂

β+2
2 − k

)︂
Γ
(︂

β+2d−2
2 + k

)︂ ,

that is the formula we are searching for.
Concerning the case d = 2, let us first consider β ̸= 2m for any m ∈ N, then we
will extend the formula by continuity. First of all, by the Funke-Hecke formula,
we know this time we have to work with the Chebyshev polynomials of the first
kind Tk(t), which are orthogonal with respect to 1√

1−t2 dt. By using [72, Formula

7.354.6] one achieves

θk,β = 2π

∫︂ 1

−1

(1− t)
β
2

√
1 + t2

Tk(t)dt

= 2π

√
π2

β
2 Γ
(︂

β+1
2

)︂
Γ
(︂

β+2
2

)︂ 4F3

(︃
−k, k, β + 1

2
,
β + 2

2
;
1

2
,
β + 2

2
,
β + 2

2
; 1

)︃(4.5.2)

where, according to [72, Formula 9.14.1], pFq is the generalized hypergeometric
series defined as

pFq(a1, . . . , ap; b1, . . . , bq; z) =

+∞∑︂
j=0

∏︁p
h=1(ah)j∏︁q
h=1(bh)j

zk

k!
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and (a)j is the Pochhammer symbol defined as

(a)j =
Γ(a+ j)

Γ(a)
.

By using the definition, it is easy to check that

4F3

(︃
−k, k, β + 1

2
,
β + 2

2
;
1

2
,
β + 2

2
,
β + 2

2
; 1

)︃
= 3F2

(︃
−k, k, β + 1

2
;
β + 2

2
,
1

2
; 1

)︃
.

Now, by Saalschutz’s Theorem (see [139, Section 2.3.1]) and by [139, Formula
2.3.2.5], we have

3F2

(︃
−k, k, β + 1

2
;
β + 2

2
,
1

2
; 1

)︃
=

(︁
1
2

)︁
k

(︂
1 + β

2 − k
)︂
k(︁

1
2 − k

)︁
k

(︂
1 + β

2

)︂
k

=

(︂
−β

2

)︂
k(︂

β+2
2

)︂
k

.

By definition it holds (︃
β + 2

2

)︃
k

=
Γ
(︂

β+2
2 + k

)︂
Γ
(︂

β+2
2

)︂ ,

while, by using Euler’s reflection formula, we have(︃
−β
2

)︃
k

=
Γ
(︂
k − β

2

)︂
Γ
(︂
−β

2

)︂ = (−1)k
Γ
(︂

β+2
2

)︂
Γ
(︂

β+2
2 − k

)︂ .
Substituting all these equalities back to (4.5.2) we obtain the desired formula. □

In particular let us remark that for β = 2m for some m ∈ N it holds θk,β = 0
for any k ≥ m+ 1. In general we can show that the sequence (θk,β)k∈N0

is always
infinitesimal (see [17]). To do this let us first fix some notation:

Cβ = (d− 1)ωd−12
β+2d−4

2 Γ

(︃
β + d− 1

2

)︃
Γ

(︃
d− 1

2

)︃
Γ

(︃
β + 2

2

)︃
,

µk,β =
1

Γ
(︂

β+2
2 − k

)︂
Γ
(︂

β+2d−2
2 + k

)︂ .
In this way we have that θk,β = (−1)kCβµk,β and then we only have to show the
following result.

Proposition 4.5.2. It holds limk→+∞ µk,β = 0

Proof. By using Euler’s reflection formula we have

Γ

(︃
β + 2

2
− k

)︃
= (−1)k+1

Γ
(︂

β
2

)︂
Γ
(︂

2−β
2

)︂
Γ
(︂
k − β

2

)︂ ,

thus we can rewrite µk,β as

µk,β = (−1)k+1
Γ
(︂
k − β

2

)︂
Γ
(︂

β
2

)︂
Γ
(︂

2−β
2

)︂
Γ
(︂

β+2d−2
2 + k

)︂ .
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Taking the absolute value and considering k > ⌊β
2 ⌋+ 3 we have

|µk,β | =
Γ
(︂
k − β

2

)︂
Γ
(︂

β
2

)︂ ⃓⃓⃓
Γ
(︂

2−β
2

)︂⃓⃓⃓ (︂
β+2d−4

2 + k
)︂
Γ
(︂

β+2d−4
2 + k

)︂ .
Since Γ is an increasing function in [2,+∞) and k− β

2 <
β+2d−4

2 + k, we have that

|µk,β | ≤
1

Γ
(︂

β
2

)︂ ⃓⃓⃓
Γ
(︂

2−β
2

)︂⃓⃓⃓ (︂
β+2d−4

2 + k
)︂ ,

concluding the proof. □

Moreover, we can actually exploit a recursive formula for µk,β (and then for
θk,β). Indeed we have the following result.

Proposition 4.5.3. It holds

µk,β =
β
2 − k

β+2d−2
2 + k

µk−1,β .

In particular this implies that |θk+1,β | ≤ |θk,β |.

We omit the proof since it easily follows from the definition of µk,β .

4.6. Eigenvalues of the Marchaud-type integral on the sphere

Now let us introduce another operator on Banach function spaces on the sphere.

Definition 4.6.1. Let u ∈ L∞(Sd−1). The Marchaud-type fractional in-
tegral of u of order β + d− 1 (for β ∈ (d− 1,+∞)) is defined as

Iβ [u](ω) = 2

∫︂
Sd−1

|ω − ξ|β(u(ω)− u(ξ))dHd−1(ξ).

The name follows from the similarity of this operator with the Marchaud frac-
tional derivative (see [60]). As for the fractional integral on the sphere, the eigen-
values of Iβ have been already determined in [61] for β ∈ (1 − N, 0), thus let us
focus on β > 0. First of all, let us observe that Iβ can be rewritten in terms of Kβ

as

Iβ [u](ω) = 21+
β
2 [θ0,βu(ω)−Kβ [u](ω)], ω ∈ Sd−1 .

Thus, we obtain the eigenvalues λk,β of Iβ as

λk,β = 21+
β
2 [θ0,β − θk,β ],

where the respective eigenfunctions are given by the spherical harmonics Sk. More-

over we have limk→+∞ λk,β = 21+
β
2 θ0,β . Finally, we also have the following formula:

λk,β = ˜︁Cβ

⎛⎝1 + (−1)k+1
k−1∏︂
j=0

β + 2j

β + 2d− 2 + 2j

⎞⎠µ0,β

where ˜︁Cβ = 21+
β
2Cβ .

Now we are interested in the distance between the maximum eigenvalue and the
other ones. In particular we have the following result (see [17]).
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Proposition 4.6.1. Let β > 0. Then it holds λ1,β = maxk≥0 λk,β. Moreover,
for any k ≥ 2, it holds

λ1,β − λk,β ≥ Dβ > 0

where

(4.6.1) Dβ =
βµ0,β

˜︁Cβ

β + 2d− 2
˜︁Dβ

and

˜︁Dβ =

⎧⎪⎨⎪⎩
1− 2−β

β+2d β ∈ (0, 2)

1 β ∈ [2, 4]

1− (β−2)(β−4)
(β+2d)(β+2d+2) β > 4.

Proof. Let us first observe that λ0,β = 0 for any β > 0. Moreover, we have

µ0,β > 0 and ˜︁Cβ > 0, thus

λ1,β = ˜︁Cβ

(︃
1 +

β

β + 2d− 2

)︃
µ0,β > 0.

For any k ≥ 2 we have

λ1,β − λk,β = ˜︁Cβ
β

β + 2d− 2
µ0,β

⎛⎝1− (−1)k+1
k−1∏︂
j=1

β − 2j

β + 2d− 2 + 2j

⎞⎠
≥ ˜︁Cβ

β

β + 2d− 2
µβ
0

⎛⎝1−
k−1∏︂
j=1

|β − 2j|
β + 2d− 2 + 2j

⎞⎠ ≥ 0,

since |β−2j|
β+2d−2+2j ≤ 1 for any j ≤ k − 1. Thus we get that λ1,β = maxk≥0 λk,β .

Now let us show that λ1,β−λk,β ≥ Dβ > 0 where Dβ is defined in Equation (4.6.1).
To do this we have to distinguish between the following five cases:

(a) β ∈ (0, 2);
(b) β = 2;
(c) β ∈ (2, 4);
(d) β = 4;
(e) β > 4.

First of all, let us consider case (a). If β ∈ (0, 2) then we can show that (λk,β)k≥1
is a decreasing sequence. Indeed, we have, since β − 2j < 0,

λk,β − λk+1,β = (−1)k+1 ˜︁Cβ
β

β + 2d− 2

⎛⎝k−1∏︂
j=1

β − 2j

β + 2d− 2 + 2j

⎞⎠
×
(︃
1 +

2k − β

β + 2d− 2 + 2k

)︃
µβ
0 ≥ 0.

Hence we have that, for β ∈ (0, 2), it holds

λ1,β − λk,β ≥ λ1,β − λ2,β =
β

β + 2d− 2
˜︁Cβµ0,β

(︃
1− 2− β

β + 2d

)︃
.

Concerning case (b), we have λk,β = ˜︁Cβµ0,β for any k ≥ 2 and then

λ1,β − λk,β ≥ λ1,β − ˜︁Cβµ0,β =
1

d
˜︁Cβµ0,β .
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Let us now consider β > 2, which is common for cases (c), (d) and (e). Exploiting
λ2,β we have

λ2,β = ˜︁Cβ

(︃
1− β(β − 2)

(β + 2d)(β + 2d− 2)

)︃
µ0,β ≤ ˜︁Cβµ0,β .

Consider case (c) and let us show that the sequence (λk,β)k≥2 is increasing. To do
this, let us observe that

λk+1,β − λk,β = (−1)k ˜︁Cβ
β(β − 2)

(β + 2d− 2)(β + 2d)

⎛⎝k−1∏︂
j=2

β − 2j

β + 2d− 2 + 2j

⎞⎠
×
(︃
1 +

2k − β

β + 2d− 2 + 2k

)︃
µβ
0 ≥ 0.

Let us also recall that λk,β → ˜︁Cβµ0,β as k → +∞ to achieve that, for any k ≥ 2

λ1,β − λk,β ≥ λ1,β − ˜︁Cβµ0,β =
βµ0,β

˜︁Cβ

β + 2d− 2
.

Concerning case (d), for any k ≥ 3 it holds λk,β = ˜︁Cβµ0,β obtaining again the
previous estimate.
Finally, for case (e), we have

λ3,β = ˜︁Cn,β

(︃
1 +

β(β + 2)(β + 4)

(β + 2d− 2)(β + 2d)(β + 2d+ 2)

)︃
µ0,β > ˜︁Cn,βµ0,β

while, with the same strategy as before, we can show that (λk,β)k≥3 is a decreasing
sequence. Hence, we have, for any k ≥ 2,

λ1,β − λk,β ≥ λ1,β − λ3,β =
βµ0,β

˜︁Cβ

β + 2d− 2

(︃
1− (β − 2)(β − 4)

(β + 2d)(β + 2d+ 2)

)︃
,

concluding the proof. □

This property reveals its usefulness as one tries to show a Fuglede-type results
for functionals giving the moments of the length of random segments (see [17]).

4.7. Moments of the length of random segments in a ball

Now let us exploit the link between the eigenvalues of Iβ and the length of
random segments with vertices in compact sets. To do this, let us introduce another
functional.

Definition 4.7.1. For any u ∈ L∞(Sd−1) and β ∈ (−d,+∞) let us denote

[u]2β =

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β |u(ω)− u(ξ)|2dHd−1(ω)dHd−1(ξ).

This is actually a Besov semi-norm on Sd−1 if β ∈ (−d,+∞).
First of all, let us stress out that [u]2β can be expressed in terms of the integral of
the Marchaud-type integral.

Lemma 4.7.1. Let u ∈ L∞(Sd−1) and β ∈ (1− d,+∞). Then it holds

(4.7.1) [u]2β =

∫︂
Sd−1

Iβ [u](ω)u(ω)dHd−1(ω).
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Proof. Let us just observe that∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β |u(ω)− u(ξ)|2dHd−1(ω)dHd−1(ξ)

=

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β(u(ω)− u(ξ))u(ω)dHd−1(ω)dHd−1(ξ)

+

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β(u(ξ)− u(ω))u(ξ)dHd−1(ω)dHd−1(ξ)

thus Equation (4.7.1) follows from Fubini’s theorem and the definition of Iβ [u]. □

Now let us give some other definitions.

Definition 4.7.2. Let K ⊆ Rd be a compact set. We say that the random
variable X : Ω → Rd is uniform on K if its law is given by 1

|K|dx.

We define a random segment [P0, P1] on K as the segment of vertices P0, P1

where P0, P1 are random variables that are uniform on K and independent each
other. In particular, the length |P1 − P0| is a 1-dimensional random variable.
Finally, we define Gβ(K) = E[|P1−P0|β ] where [P0, P1] is a random segment on K.

Let us recall that it can be shown (see [120]) that Gβ(K) ≥ Gβ(B) for any

compact set K ⊆ Rd, where B is a ball in Rd such that |B| = |K|. In particular

equality holds if and only ifK is a ball in Rd. Defining Dβ(K) = Gβ(K)−Gβ(B) the
β-moment deficit and δ(K) = infx∈RN |K∆BrK (x)| the Fraenkel asymmetry,
where rK > 0 is chosen in such a way that |K| = |Brk(x)|, in [63] it has been shown
that there exists a constant C(d, β) such that

Dβ(K) ≥ C(d, β)δ(K)

for any compact set K ⊆ Rd. This means that Dβ(K) is in some sense a way to
measure the distance between the shape of any compact set K and a ball. In [17]
we provide a different proof that relies on the Marchaud-type fractional integral.
Here, we do not want to give the proof of the previous inequality, but a first hint
on the link between the Marchaud-type fractional integral and the shape functional
Gβ , via the following result (see [17]).

Proposition 4.7.2. Fix β > 0. Then it holds

(4.7.2) λ1,β =
(β + d)(β + 2d)

d
ωd Gβ(B),

where B ⊆ Rd is the unit ball.

Proof. Let us first observe that, by definition of uniform distribution one has,
for any compact set K ⊆ Rd

(4.7.3) Gβ(K) =
1

|K|2

∫︂
K2

|x− y|βdxdy.

In particular, we have

(4.7.4) Gβ(B) =
1

ωd

∫︂
B

|x− y|βdx,

by exploiting the fact that the integral
∫︁
B
|x− y|βdx is constant with respect to y

(by the fact that B is fixed by rotations and the Lebesgue measure is invariant by
isometries).
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Now let us consider S1 the space of first spherical harmonic function. A basis for
S1 is given by the coordinate functions ω ↦→ ωi for i = 1, . . . , d. In particular, it
holds, by Equation (4.7.1),

[ωi]
2
β = λ1,β

∫︂
Sd−1

ω2
i dH

d−1(ω).

On the other hand, by definition,

[ωi]
2
β =

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β |ωi − ξi|2dHd−1(ω)dHd−1(ξ),

obtaining the identity

λ1,β

∫︂
Sd−1

ω2
i dH

d−1(ω) =

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β |ωi − ξi|2dHd−1(ω)dHd−1(ξ),

that holds true for any i = 1, . . . , d. Thus, summing over i, we get

λ1,βdωd =

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β+2dHd−1(ω)dHd−1(ξ).

Now let us define the auxiliary function L : Sd−1 → R as

L(ξ) =

∫︂
Sd−1

|ω − ξ|β+2dHd−1(ω).

Let us also define ℓ(z) = 1
β+2 |z|

β+2 so that ∇ℓ(z) = |z|βz. This leads to

(4.7.5) L(ξ) =

∫︂
Sd−1

∇ℓ(ω − ξ) · ωdHd−1(ω)−
∫︂
Sd−1

∇ℓ(ω − ξ) · ξdHd−1(ω).

Now let us denote by ∇τ the tangential gradient and with ∂
∂ν the normal derivative

(with respect to the sphere Sd−1). Hence we can split the gradient of ℓ as

∇ℓ(ω − ξ) = ∇τ ℓ(ω − ξ) +
∂ℓ

∂ν(ω)
(ω − ξ)ω

and then, multiplying by ω = ν(ω) on Sd−1, we have ∂ℓ
∂ν (ω − ξ) = ∇ℓ(ω − ξ) · ω.

Thus, also recalling that ω2 = 1 and ∇(ω · ξ) = ξ, we have, by Equation (4.7.5),
(4.7.6)

L(ξ) =

∫︂
Sd−1

∂ℓ

∂ν
(ω− ξ)(1−ω · ξ)dHd−1(ω)−

∫︂
Sd−1

∇τ ℓ(ω− ξ) ·∇τ (ω · ξ)dHd−1(ω).

Now we need to study the two integrals separately. Let us define the functions
A,B : Sd−1 → R as

A(ξ) =

∫︂
Sd−1

∂ℓ

∂ν
(ω − ξ)(1− ω · ξ)dHd−1(ω)

B(ξ) =
∫︂
Sd−1

∇τ ℓ(ω − ξ) · ∇τ (ω · ξ)dHd−1(ω).

Concerning A, we have, by divergence theorem,

A(ξ) =

∫︂
B

∇ℓ(ω − ξ) · ∇(1− ω · ξ)dω +

∫︂
B

∆ℓ(ω − ξ)(1− ω · ξ)dω.
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Observing that ∆ℓ(ω − ξ) = (β + d)|ω − ξ|β , ∇(1− ω · ξ) = −ξ and recalling that
∇ℓ(ω − ξ) = |ω − ξ|β(ω − ξ), it holds

A(ξ) =

∫︂
B

|ω − ξ|β(1− ω · ξ)dω + (β + d)

∫︂
B

|ω − ξ|β(1− ω · ξ)dω

= (β + d+ 1)

∫︂
B

|ω − ξ|β(1− ω · ξ)dω.

Concerning B, by integration by parts on Sd−1, we have

B(ξ) = −
∫︂
Sd−1

ℓ(ω − ξ)∆Sd−1(ω · ξ)dHd−1(ω)

where ∆Sd−1 is the Laplace-Beltrami operator on Sd−1. In particular, since the first
non-trivial eigenvalue of −∆Sd−1 is d− 1 and it is achieved for functions in S1, we
have −∆Sd−1(ω · ξ) = (d− 1)ω · ξ. Thus, by also using the definition of ℓ,

B(ξ) = d− 1

β + 2

∫︂
Sd−1

|ω − ξ|β+2ω · ξdHd−1(ω).

Since L(ξ) = A(ξ) + B(ξ), we get

L(ξ) = (β + d+ 1)

∫︂
B

|ω − ξ|β(1− ω · ξ)dω − d− 1

β + 2

∫︂
Sd−1

|ω − ξ|β+2ω · ξdHd−1(ω).

Integrating both sides on Sd−1 and using Fubini’s theorem, we have

dωdλ1,β = (β + d+ 1)

∫︂
B

∫︂
Sd−1

|ω − ξ|β(1− ω · ξ)dHd−1(ξ)dω

− d− 1

β + 2

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β+2ω · ξdHd−1(ω)dHd−1(ξ).

Concerning the first integral, we achieve, by using divergence theorem,∫︂
Sd−1

|ω − ξ|β(1− ω · ξ)dHd−1(ξ) =

∫︂
Sd−1

∇ℓ(ξ − ω) · ξdHd−1(ξ)

=

∫︂
B

∆ℓ(ξ − ω)dξ

= (β + d)

∫︂
B

|ω − ξ|βdξ = ωd(β + d)Gβ(B)

and then

(4.7.7) λ1,β =
ωd(β + d)(β + d+ 1)

d
Gβ(B)

− d− 1

dωd(β + 2)

∫︂
Sd−1

∫︂
Sd−1

|ω − ξ|β+2ω · ξdHd−1(ω)dHd−1(ξ).

Now we need to identify the second integral in terms of Gβ(B). To do this, let us
set G1(z) = |z|β and, observing that ∇G1(z) = β|z|β−2z, we achieve, by divergence
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theorem,∫︂
B

|ω − ξ|βdω =
1

β

∫︂
B

∇G1(ω − ξ) · (ω − ξ)dω

= − 1

β

∫︂
B

G1(ω − ξ)div(ω − ξ)dω

+
1

β

∫︂
Sd−1

G1(ω − ξ)(ω − ξ) · ωdHd−1(ω)

= − d

β

∫︂
B

|ω − ξ|β +
1

β

∫︂
Sd−1

|ω − ξ|β(ω − ξ) · ωdHd−1(ω).

Integrating both sides in B, dividing by ω2
d and using Fubini’s theorem, we have

(β + d)Gβ(B) =
1

ω2
d

∫︂
Sd−1

∫︂
B

|ξ − ω|β(ω − ξ) · ωdξdHd−1(ω).

Setting G2(z) = |z|β+2 and arguing as before, by divergence theorem, we get∫︂
B

|ξ − ω|β(ω − ξ) · ωdξ = − 1

β + 2

∫︂
B

∇G2(ξ − ω) · ωdξ

= − 1

β + 2

∫︂
Sd−1

G2(ξ − ω)ξ · ωdHd−1(ξ)

= − 1

β + 2

∫︂
Sd−1

|ξ − ω|β+2ξ · ωdHd−1(ξ).

Hence, we finally obtain

(4.7.8) − (β+2)(β+d)ω2
d Gβ(B) =

∫︂
Sd−1

∫︂
Sd−1

|ξ−ω|β+2ξ ·ωdHd−1(ξ)dHd−1(ω).

Formula (4.7.2) follows by using identity (4.7.8) in Equation (4.7.7). □
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[87] P. Kim, R. Song, and Z. Vondraček. Potential theory of subordinate Brownian motions

revisited. In Stochastic Analysis and Applications to Finance: Essays in Honour of Jia-an

Yan, pages 243–290. World Scientific, 2012.
[88] A. N. Kochubei. General fractional calculus, evolution equations, and renewal processes.

Integral Equations and Operator Theory, 71(4):583–600, 2011.

[89] A. N. Kochubei and Y. Kondratiev. Growth equation of the general fractional calculus.
Mathematics, 7(7):615, 2019.

[90] T. J. Kozubowski and S. T. Rachev. Univariate geometric stable laws. Journal of Compu-

tational Analysis and Applications, 1(2):177–217, 1999.
[91] A. Kukush, Y. Mishura, and K. Ralchenko. Hypothesis testing of the drift parameter sign

for fractional Ornstein–Uhlenbeck process. Electronic Journal of Statistics, 11(1):385–400,
2017.

[92] A. Kumar and P. Vellaisamy. Inverse tempered stable subordinators. Statistics & Probability

Letters, 103:134–141, 2015.
[93] N. Laskin. Fractional Poisson process. Communications in Nonlinear Science and Numerical

Simulation, 8(3-4):201–213, 2003.

[94] N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii. Fractional Pearson diffusions. Journal
of Mathematical Analysis and Applications, 403(2):532–546, 2013.
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[138] T. Simon. Comparing Fréchet and positive stable laws. Electronic Journal of Probability,
19, 2014.

[139] L. J. Slater. Generalized Hyptergeomtric Functions. Cambridge University Press, 1966.

[140] M. Smoluchowski. Abhandlungen über die Brownsche Bewegung und verwandte Erschein-
ungen. Number 207. Akademicshe Verlagsgesellschaft Mbh, 1923.
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The time is gone,
the song is over,
thought I’d something more to say

Pink Floyd
Time

Lyrics by Roger Waters
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