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Prefazione

Questo lavoro di tesi discute approfondimenti teorici ed applicazioni cosmografiche

dell’equazione della lente gravitazionale. Questa è l’equazione fondamentale del lensing

gravitazionale, la teoria che descrive la deflessione della luce causata da campi gravita-

zionali. Le proprietà della lente e la geometria del sistema sorgente-lente-osservatore

concorrono alla scrittura dell’equazione, derivata nelle approssimazioni di ottica ge-

ometrica per la propagazione della luce, e di campo debole e piccole velocità per la

lente sottile. Derminate con osservazioni astronomiche le caratteristiche di alcuni degli

elementi che partecipano al fenomeno, si può risalire alle proprietà dei rimanenti.

L’equazione della lente viene derivata nell’ambito di una teoria della gravità che

determini le traiettorie dei raggi luminosi in spazi-tempi curvi. La teoria usualmente

adottata è la relatività generale. Lo sviluppo tecnologico dell’astronomia di questi

anni invita comunque a sottoporre a verifica sperimentale teorie della gravità che,

sebbene ancora basate sul principio di equivalenza, differiscano dalla relatività gene-

rale nelle equazioni di campo. La prima parte di questa tesi sviluppa la teoria del

lensing gravitazionale in una generica teoria della gravità. Eventuali divergenze tra

diverse teorie emergono quando si considerino ordini superiori. In particolare, il con-

tributo del campo gravito-magnetico e le correzioni post-post-Newtoniane alle quantità

caratteristiche del lensing gravitazionale saranno esplicitamente considerati.

I risultati fondamentali ed i teoremi più importanti ricavati dallo studio della mappa

del lensing saranno estesi in modo da includere l’effetto delle correnti di massa sulla

curvatura dello spazio-tempo. Le caratteristiche di alcuni dei modelli di lente più

comunemente impiegati in astrofisica saranno esaminate.

La seconda parte della tesi considera applicazioni fenomenologiche dell’equazione

della lente gravitazionale. Note le proprietà della lente e della sorgente, osservazioni

astronomiche di fenomeni di lensing gravitazionale possono fornire significative infor-

mazioni sull’ambiente in cui i sistemi di lensing si immergono, l’universo. Assumendo

che l’universo evolva in accordo con la relatività generale, considereremo la possibilità

di determinare il suo contenuto energetico tramite osservazioni di archi luminosi gi-

ganti e di conteggi numerici di galassie di fondo in ammassi di galassie che agiscano

da lente sulle galassie retrostanti. Questo studio si inserisce nell’ambito dei due mag-

giori problemi della cosmologia osservativa moderna: la stima della materia oscura e la

vii



viii Prefazione

caratterizazione dell’energia oscura, i due ancora poco definiti componenti dell’universo

proposti per spiegare gli attuali dati sperimentali.

Il secondo problema osservativo considerato è la caratterizzazione della distanze

cosmologiche nell’universo reale. L’equazione della lente, reiterata per successivi campi

deflettenti, permette di derivare la relazione tra la distanza ed il redshift in universi

disomogenei su piccola scala. La convinzione, andatasi maturando negli ultimi anni, di

un universo in espansione accellerata è principlamente basata su misure di distanza di

luminosità. L’impatto del lensing gravitazionale su questa conclusione sarà valutato.



Introduction

Historical remarks

Gravitational lensing is the deflection of light by a gravitational field. This topic was

first considered by Isaac Newton in the Query 1 of the first edition of his Opticks “Do

not Bodies act upon Light at a distance, and by their action bend its Rays; and is

not this action strongest at the least distance?” [131]. However, he did not seem to

have really studied the problem, which was carried further almost three generations

later. John Michell in 1783 [125] and Pierre-Simon Laplace in 1796 [110] independently

investigated the action of a body on the very light it emits. So, they anticipated the

existence of black holes, sufficiently massive stars which are invisible since they capture

their own light. Around 1784, Michell’s considerations stimulated Henry Cavendish

to calculate the deflection of light from a distant source by a foreground gravitational

field. He assumed the corpuscular theory of light and Newton’s law of gravitation.

His result was reported on an “ isolated scrap” of paper but it was not published

[220]. The next closest calculation is due to Johann von Soldier in 1801 [207]. He

pointed out “Thus when a light ray passes by a celestial body it will, instead of going

on in a straight direction, be forced by its attraction to describe a hyperbola whose

concave side is directed against the attracting body”. He also calculated that a ray

grazing the sun would be deflected by 0.84 arcseconds. This is one of the first known

calculations of the history of gravitational lensing. No more queries without an answer

and mysterious scrap, finally a number.

More than 100 years later, Albert Einstein in 1911 [57] employed the equivalence

principle to re-derive the von Soldner’s estimate; he also spurred astronomers to in-

vestigate this question. A century before, von Soldier concluded that the perturbation

of light rays was beyond the possibilities of the observational astronomy of the time,

but, in a century, a small number can become large. The Einstein’s suggestion aroused

interest [142, 172], but the experiments planned to obtain an observational evidence

were unlucky. An Argentinian expedition to observe the total eclipse in Brazil in 1912

was rained out. In 1914, German astronomers, headed by Erwin Freundlich, went in

Crimea but they were arrested by Russians, just after the World War I broke out. In

a confinement there is not much light, but it is still more difficult to do astronomy. It

1



2 Introduction

was a further theoretical development and not an experimental observation to show

that the deflection angle is actually twice the early prediction of both von Soldner and

Einstein. In 1915, in fact, by applying the full field equations of general relativity,

Einstein [58] found that a light ray grazing the sun experiences a deflection of 1.7

arcseconds. During the solar eclipse of May 29, 1919, immediately following World

War I, Arthur Eddington, in collaboration with Frank Dyson, measured the displace-

ment of stars close to the sun to within 30% of the value predicted by Einstein. This

experiment was the first and, until 1979, only observational evidence of gravitational

lensing. It soon became the most famous test of general relativity and was the basis

of Einstein’s huge popularity. One may argue that, without the World War I, the

history of men would have been different, and, maybe, the Einstein’s fortune too. On

the contrary, we must also note that the relationship between Einstein and the World

War II did not concern gravitational lensing at all.

The conditions for multiple light paths connecting a source and an observer were

also explored. In 1912, Einstein considered the possibility of double images of a back-

ground star lensed by a foreground star but he did not publish his results [172]. Similar

considerations were performed by Eddington in 1920 [56] and Chwolson in 1924 [40],

who also mentioned the reversed mirror image. Chwolson first noted that in case of

perfect alignment of the source and of the foreground star, a ring-shaped image of

the background star, centred on the foreground star, would result. Ubi maior minor

cessat, since Einstein in 1936 [59] obtained the same result, such rings are known as

Einstein rings and not Chwolson rings. In the same paper, Einstein also concluded

that there is little chance of observing lensing phenomena caused by stellar-mass lenses

since the angular image splitting is too small to be resolved by an optical telescope.

Anyway, as Fritz Zwicky put in evidence in 1937 [230], this limitation does not regard

all gravitational lensing system. Zwicky first recognized the potential of galaxies as

gravitational lenses, since they “offer a much better chance than stars for the obser-

vation of gravitational lens effects”1. In a second letter [231], Zwicky estimated the

probability of lensing by galaxies and concluded that it is on the order of one per cent

for a source at reasonably large redshift.

It was not until the early 1960s that the topic of gravitational lensing began to be

reconsidered with the papers by Liebes and Refsdal, who derived the basic equations of

gravitational lensing by a point-mass. Liebes [112] also considered various applications,

such as galactic star-star lensing and lensing of stars in the Andromeda galaxy. In 1964,

Refsdal [151] also argued that geometrical optics can be a good approximation to deal

1Curiously, the last two works we have mentioned, [59, 230], were, directly or indirectly, influenced
by Rudi Mandl, a Czech electrical engineer who approached various scientists with his idea that a
foreground star may act as a gravitational lens for light coming from a background star. The not
too warm acknowledgement of Einstein was in a letter to the editor of Science: “Let me also thank
you for your cooperation with the little publication, which Mister Mandl squeezed out of me. It is of
little value, but it makes the poor guy happy” [142].
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gravitational lensing effects. In a second paper [152], he described the difference in

arrival time between two paths connecting source and observer and how the Hubble

constant could in principle be measured through gravitational lensing of a variable

source. In the same year, Shapiro [184] also pointed out the measurability of the

retardation of light signals in the gravitational fields of massive bodies.

From the late sixties to early seventies, then, the influence of gravitational lenses on

the newly discovered quasars [170] was considered. Quasars in fact revealed as an ideal

class of sources for gravitational lensing observations. They are bright enough to be

detected. Since their optical emission region is very compact, they can be considered

point-like sources and, when deflected by intervening galaxies (which is more probable

since they are distant), they can be multiply imaged with high magnifications. In those

years, gravitational lensing was considered as a fairly esoteric business by the majority

of the scientific community. On the other hand, some astrophysicists considered it as a

kind of panacea for any unexplained phenomenon. Someone tried to explain quasars as

strongly magnified active galaxies, but the basic conclusion was that the whole quasar

phenomenon cannot be explained. Also, in 1973, Press and Gunn [147] considered

statistical effects of a lens population on background sources and the possibility for

detecting a cosmologically significant density of condensed objets.

Other theoretical progresses were obtained in the seventies, when the formalism of

gravitational lensing was more fully developed. The uniform lens was explored in 1972

by Clark [42]. Bourassa and coworkers [19, 20, 21] studied the transparent gravitational

lens investigating a spheroidal mass distribution; they also gave the first discussion of

caustics. Cooke and Kantowski [43] calculated time delay for multiply imaged quasars

and separated it into two parts: the geometrical part, due to the different length of

light paths, and the potential part, due to the gravitational potential.

The breakthrough in gravitational lensing came in 1979, when it became an ob-

servational science. Walsh, Carswell and Weymann [210] accidentally detected the

first multiply imaged quasar Q0957+561. It has two images at a redshift of 1.41, 6.1

arseconds apart. Shortly thereafter, the detection of the lensing galaxy at a redshift of

0.36 confirmed the lensing nature of the system. Other evidences of the gravitational

lensing nature of the phenomenon are the similarity of the spectra of the two images,

the constancy in the flux ratio between the images in very different wave-bands, a

detailed correspondence between various knots of emission in the two radio images.

The discovery of this system triggered an enormous output of publications.

A different feature of lensing by galaxies was studied by Chang and Refsdal [36].

They considered the light curve of a background quasar that is lensed by individual

stars in a lens galaxy. Altough the image separation is not observable, the pertur-

bation of lensing by the galaxy as a whole can be detected by the corresponding

change in magnification. This phenomenon was first observed in the multiply imaged

quasar QSO 2237+0305 [92]. This regime of lensing is now known as microlensing, a
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term introduced by Paczyńsky in 1986, and refers to a problem already considered by

Einstein: lenses of stellar masses produce splitting angles of about a microarcsecond

which cannot be detected. Paczyńsky [133] considered another microlensing scenario

as a possible test for the existence of faint compact objects in the Halo of the Milky

Way. He showed that at any given time one in a million stars in the Large Magellanic

Cloud might be measurably magnified by the gravitational lens effect on an interven-

ing star in the Halo. Mass lenses between 10−6 M� and 102 M� induce events with

time scale between two hours and two years. The proposed experiment required to

frequently sample millions of light curve, but only six years after the suggestion, three

experiment reported successful detections of the microlensing signature [2, 7, 202].

This field has developed into a useful tool for studying the nature and distribution of

mass in the Galaxy. Microlensing observations represent one of the rare cases in the

history of gravitational lensing in which a theoretical prediction inspired a systematic

search so that the detection was not a serendipitous discovery.

Another type of lensed cosmological images is obtained when the source does not

involve an effectively point-like quasar component. For instance, either the diffuse lobe

of a radio galaxy or the optical image of a galaxy are smooth and extended sources.

Radio sources with a finite extent nearly aligned with a quite axial-symmetric mass

distribution can be imaged in a nearly full Einstein ring. The first example was

discovered in 1988 [84], when the extended radio lobe MG 1131+0456, at a redshift

of 1.13, turned out to be imaged in a ring with a diameter of about 1.75 arcseconds

by a foreground galaxy. By now, many other Einstein rings have been observed. The

sources often have both an extended and a compact component, multiply imaged with

separations of the order of the ring size. These systems provide many constraints on

the lens and permit to model the mass distribution of galaxies at moderate redshifts.

Compact clusters can produce spectacular luminous arcs several tens of arcseconds

in length. The source is usually a low-density galaxy at high redshift. These con-

figurations have been predicted long before their detection. In 1936 [163], Russel2,

was, maybe, the first to study lensing effects on extended sources; he also plotted a

magnified and tangentially elongated image. However, no program to search for these

phenomena was planned and even a couple of arcs seen on photographic plates were not

commented before 1986: as noted in [142], in astronomy there is “a strong tendency to

recognize only things one knows”. As a matter of fact, the first claim of giant luminous

arcs came as a surprise in 1986. Lynds & Petrosian [118] and Soucail et al. [188] inde-

pendently discovered this new gravitational lensing phenomenon: magnified, distorted

and strongly elongated images of background galaxies lying behind a foreground clus-

ter of galaxies. Soon, more examples of long and thin arcs, curved around the cluster

centre and with lengths up to about 20 arcseconds, were found in the central parts of

2Henry Norris Russel was an Einstein’s Princeton colleague. Sometimes, it is very useful for a
physicist to see a genius everyday.
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very massive clusters of galaxies. In 1987, Paczyński [135] first interpreted such arcs

as images of background galaxies strongly distorted by the gravitational tidal field

close to the cluster centre; later [190], the spectroscopic measurements of the redshifts

of such arcs confirmed this hypothesis. These lensing events provide a tool to study

objects that would be otherwise too fair to be detectable. Because of the lens induced

magnification, it is possible to take spectra and study galactic and stellar population

at high redshift.

Clusters also coherently distort the images of other faint background galaxies fur-

ther from the cluster centre. The distortions are mostly weak, and the corresponding

images are referred as arclets [65, 199]. These observations can be used to map the

lensing potential over the whole extent of the lens. The study of the coherent defor-

mation of the shapes of extended background sources, known as weak lensing, allows

to reconstruct parameter-free, two dimensional mass maps of the lensing cluster.

Plan of the thesis

The above impressive list of theoretical insights and very broad range of phenomena

have made the gravitational lensing a very useful astrophysical tool. All participants

to a gravitational lensing system, the lens, the source, the background in which the

system is embedded and a theory of gravity, which describes the phenomenon, can be

investigated by an observer who detects the phenomenon by interacting with the trans-

mitter of the information, the light. The gravitational lens equation relates all these

players. Gravitational lensing applications may be classified following and extending

the Zwicky’s ideas, already formulated in 1937. They are

i) Lensing provides a test for theories of gravity. A theory of gravity determines the

space-time in which the gravitational lensing system is embedded. Space-time

arises from a background and from a lens, which acts as a weak perturbation on

the background. We will assume that light propagates in space-time according

to the geometrical optics approximation.

ii) Lensing acts as a gravitational telescope on distant sources, physical objects that

emit light. Lensing induces a magnification effect which enables to observe ob-

jects which are too distant or intrinsically too faint to be observed without lens-

ing. Source properties well below the resolution or sensitivity limits of current

technological capabilities can be inferred for highly magnified sources.

iii) Lensing can be used to measure the lens mass distribution. The lens is a mat-

ter perturbation. A matter density variation, either positive or negative, with

respect to a homogeneous background induces light deflection. Without being

explicitly stated, we will consider positive matter perturbations. Gravitational
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lensing depends only on the mass distribution of the lens, and is independent of

both luminosity and dynamical properties.

Furthermore, as a fourth point, first addressed by Resfdal in sixties:

iv) Lensing can constrain the age, the scale and the overall properties of the uni-

verse. The distances between observer and lens, observer and source, and lens

and source, which enter the lens equation, are measured with respect to the

background and contain information on the cosmological model.

The work presented in this thesis addresses some theoretical elaborations of the

gravitational lensing equation and some cosmological applications. The first part of

the thesis faces the point i.

The measurement of the light deflection at the solar limb is one of the main check of

general relativity. However, the impressive development of observational capabilities

will make it possible, in a near future, to detect higher-order effects, such as the action

of the gravito-magnetic field and the post-post-Newtonian correction. On the basis of

such effects, it is possible to perform a comparison between general relativity and other

viable theories of gravity. In Chapter 1, we derive the gravitational lensing equation

in a generic theory of gravity in the standard framework of weak-field, thin-screen

gravitational lensing theory.

In Chapter 2, we extend the lens mapping to a generic theory of gravity by including

the gravito-magnetic effect. By introducing new definitions and correcting previous

ones, we develop a proper formalism which allows to generalize results and theorems

already known in literature. These results are proposed for the first time.

Chapter 3 considers the gravito-magnetic effect on some specific gravitational lens

models of astrophysical interest. We mainly consider the case of a deflector in rigid

rotation. The post-post-Newtonian correction is considered for the point-like deflector.

Many of these results are also proposed for the first time.

We here list the main references. For theories of gravity:

• Will, C.M., Theory and Experiment in Gravitational Physics, rev. ed., 1993,

Cambridge University Press, Cambridge; [221].

• Ciufolini, I., Wheeler, J.A., Gravitation and Inertia, 1995, Princeton University

Press, Princeton; [41].

For the standard hypotheses of gravitational lensing, a complete discussion can be

found in:
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• Schneider, P., Ehlers, J., Falco, E.E., Gravitational Lenses, 1992, Springer-

Verlag, Berlin; [172].

• Petters A.O., Levine H., Wambsganss J., Singularity Theory and Gravitational

Lensing, 2001, Birkhäuser, Boston; [142].

For a treatment of higher order effects, we remind:

• Sereno, M., Gravitational lensing by spinning and radially moving lenses, 2002,

Phys. Lett. A., in press, [astro-ph/0209148]; [179].

• Sereno, M., Gravitational lensing in metric theories of gravity, 2002, Phys. Rev.

D, submitted; [180].

• Sereno, M., Cardone, V.F., Gravitational lensing by spherically symmetric lenses

with angular momentum, 2002, A&A in press; [astro-ph/0209297]; [181].

The second part of the thesis faces the point iv.

In Chapter 4, we explore a method to determine what the universe is made of.

Once the properties of the lens and of the source are known and once we assume

a theory of gravity, we can determine, through the gravitational lens equation, some

properties of the background universe from detailed observation of gravitational lensing

phenomena. We consider clusters of galaxies acting as lenses on background galaxies.

In the framework of general relativity, we will consider as some observable quantities

depend on the geometry of the universe. The Chapter is mainly based on:

• Sereno, M., Probing the dark energy with strong lensing by clusters of galaxies,

2002, A&A, 393, 757; [178].

The light emitted by any source in the universe is affected by every matter per-

turbation in the universe. So, the measured distances to cosmic sources are affected

by gravitational lensing produced by the intervening inhomogeneities. The multi-

plane gravitational lens equation can account for this effect. In Chapter 5, we study

the distance–redshift relation and the effect of gravitational lensing when determining

cosmological parameters from measurements of distances. The discussion follows:

• Sereno, M., Covone, G., Piedipalumbo, E., de Ritis, R., Distances in inhomoge-

neous quintessence cosmology, 2001, MNRAS, 327, 517; [182].

• Sereno, M., Piedipalumbo, E., Sazhin, M.V., Effects of quintessence on observa-

tions of Type Ia SuperNovae in the clumpy Universe, 2002, MNRAS, 335, 1061;

[183].
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Chapter 1

Gravitational lensing in curved

space-times

The principle of equivalence provides a firm foundation to any conceivable theory of

gravity. On the other hand, the derivation of Einstein’s field equation contains a strong

element of guesswork. It is, therefore, very interesting to test metric theories of gravity

defined as theories such that [41, 221]: i) space-time is a Lorentzian manifold; ii) the

world lines of test bodies are geodesics; iii) the equivalence principle in the medium

strong form is satisfied. In these theories, the usual rules for the motion of particles

and photons in a given metric still apply, but the metric may be different from that

derived from the Einstein’s field equation. The basic assumption of the existence of

a dynamical space-time curvature, as opposed to flat space-time of special relativity,

still holds.

Different metric theories can be compared with suitable tests. Bending and time

delay of electromagnetic waves are two important effects predicted by theories of grav-

ity. A full analysis of higher order corrections to the lensing theory makes possible a

comparison among the predictions of general relativity and other conceivable theories

of gravity, whereas an analysis to the lowest orders might hide some differences.

Intrinsic gravito-magnetism is such an higher-order effect. Mass-energy currents

relative to other masses generate space-time curvature. This phenomenon, known as

intrinsic gravito-magnetism, is a new feature of general relativity and other conceiv-

able alternative theories of gravity and cannot be deduced by a motion on a static

background (for a detailed discussion on gravito-magnetism we refer to [41]). Peculiar

and intrinsic motions of the lenses are expected to be small second order effects. How-

ever, gravity induced by moving matter is related to the dragging of inertial frames

and the effects of mass currents on the propagation of light signals deserve attention

from the theoretical point of view. Lensing of light rays by stars with angular momen-

tum has been addressed by several authors with very different approaches. Epstein &

9
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Shapiro [60] performed a calculation based on the post-Newtonian expansion. Ibáñez

and coworkers [89, 90] resolved the motion equation for two spinning point-like parti-

cles, when the spin and the mass of one of the particles were zero, by expanding the

Kerr metric in a power series of gravitational constant G. Dymnikova [55] studied the

time delay of signal in a gravitational field of a rotating body by integrating the null

geodesics of the Kerr metric. Glicenstein [72] applied an argument based on Fermat’s

principle to the Lense-Thirring metric to study the lowest order effects of rotation

of the deflector. The listed results give a deep insight on some peculiar aspects of

spinning lenses but are very difficult to generalize. On the other hand, Capozziello et

al. [30] discussed the gravito-magnetic correction to the deflection angle caused by a

point-like, shifting lens in weak field regime and slow motion approximation. Asada &

Kasai [6] considered the light deflection angle caused by an extended, slowly rotating

lens.

The post-post-Newtonian (ppN) corrections to the metric element have also to be

considered. The ppN contribution to the deflection angle has been considered, for a

point-like deflector, by Epstein & Shapiro in [60].

On the observational side, gravitational lensing is one of the most deeply investi-

gated phenomena of gravitation and it is becoming a more and more important tool

for experimental astrophysics and cosmology. The impressive development of techni-

cal capabilities makes it possible to obtain observational evidences of peculiar metric

theories of gravity in a next future and to test the degree of accuracy of the Einstein’s

field equations. Furthermore, observations of gravitational lensing phenomena could

demonstrate the inertia-influencing effect of masses in motion. In fact, the gravito-

magnetic field, predicted in 1896-1918, has not yet a firm experimental measurement.

In this Chapter, I discuss deflection and time delay of light rays in the usual

framework of gravitational lensing as summarized in the monographs by Schneider et

al. [172] and Petters et al. [142]. The standard assumptions of gravitational lensing,

i.e. the weak field and slow motion approximation for the lens and the thin lens

hypothesis, allow us to consider higher-order approximation terms in the calculation

of lensing quantities. Now, I extend to a cosmological context the results I have

already reported in [179, 180], where the post-post-Newtonian (ppN) contribution and

the action of the gravito-magnetic field have been considered in the framework of viable

theories of gravity.

The Chapter is as follows. In Section 1, the principle of equivalence is stated. It

provides a common basis for any viable theory of gravity. The role of the field equation

is discussed in Section 2. Section 3 introduces one of the main usual simplification

of gravitational lensing theory: in most of the astrophysical systems, light propagates

in curved space-times according to the geometrical optics. Section 4 considers the

Fermat’s principle in conformally stationary space-times; this principle, based on the
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equivalence principle and the geometrical optics approximation, is independent of the

field equation, and provides a tool to derive the relevant relations in lensing theory. In

Section 5, the concept of distance in a curved space-time is discussed. Armed with the

definition of cosmological distances, in Section 6, we show as gravitational lensing, in

the approximation of geometrical optics, does not alter surface brightness. Section 7

treats the background space-time where the gravitational lensing system is embedded.

The space-time, assumed to be homogeneous and isotropic, is described by Robertson-

Walker metric. In our approximations, the lens is the only perturbing agent in an

otherwise smooth universe. Section 8 lists the main contributes to the energy budget

of the universe; besides baryonic matter, photons and neutrinos, two new kinds of

source of energy must be considered to account for the today observational constraints:

the dark matter and the dark energy. In Section 9, a generalized metric element in

the weak field and slow motion approximation is introduced. The approximate metric

element, expanded up to the ppN order, and with non diagonal components which

include the effects of gravity by currents of mass, describes the gravitational action

generated by an isolated mass distribution. The line element holds in most of the viable

theories of gravity. In Section 10, we discuss the thin lens. In most of the astrophysical

systems, the deflection angle are really small and the geometrical extension of the lens

is negligible with respect to the other characteristic distances of the gravitational

lensing system. Some features of light sources are presented in Section 11. Following

Fermat’s principle, the time delay function and deflection angle caused by an isolated

mass distribution are derived in, respectively, Sections 12 and 13. The time delay can

be separated in two contributes. The geometrical time delay, due to the extra length

path a deflected light ray undergoes with respect to the unlensed path, is evaluated in

the background universe; the deflection time delay, due to the gravitational potential

of the lens, is calculated according to the approximate metric element. By using the

Fermat’s principle, in Section 13, we select the real light path among the kinematically

possible light rays. At last, the lens equation can be stated.

1.1 The equivalence principle

The equivalence principle is at the foundation of any viable theory of gravitation. It

is one of the best tested principles in the whole field of physics [41, 220].

The equivalence principle has three important versions. The weak equivalence

principle, or Galilei equivalence principle, states that the motion of any freely falling

test particle is independent of its composition and structure. A test particle is defined

to be electrically neutral, to have negligible gravitational binding energy compared to

its rest mass, to have negligible angular momentum, and to be small enough that its

coupling to inhomogeneities in external fields can be ignored. The weak equivalence
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principle is based on the equality between the inertial mass and the gravitational

(passive) mass, so that all test particles fall with the same acceleration. It endows

space-time with a family of preferred trajectories, the world lines of freely falling test

bodies.

Einstein generalized the Galilei principle from the motion of test particles to all

the laws of special relativity. The medium strong form of the equivalence principle,

or Einstein equivalence principle, states that, for every point-like event of space-time,

there exists a sufficiently small neighbourhood such that, in every freely falling frame

in that neighbourhood, all the non-gravitational laws of physics obey the laws of

special relativity. Here, neighbourhood means a neighbourhood in space and time

small enough such that any effect of the gravitational field is unmeasurable within the

limiting accuracy of the used experimental apparatus.

If we replace all the non-gravitational laws of physics with all the laws of physics

we get the very strong equivalence principle.

The Einstein equivalence principle is at the heart of gravitation theory, for it is

possible to argue convincingly from its validity that gravitation must be a curved

space-time phenomenon, i.e. must satisfy the postulates of metric theories of gravity.

Their postulates states: i) space-time, endowed with a metric gαβ, is a Lorentzian

manifold; ii) the world lines of test bodies are geodesics; iii) the equivalence principle

in the medium strong form is satisfied. General relativity, Brans-Dicke theory and

the Rosen bimetric theory satisfy these postulates. General relativity also satisfies the

equivalence principle in the very strong version.

From the medium strong equivalence principle, it follows that space-time must

be at an event, in suitable coordinates, Minkowskian, that is, described by the metric

ηαβ = diag(1,−1,−1,−1). It is assumed the Lorentzian, pseudo-Riemannian character

of space-time. The metric gαβ determines the space-time squared distance between two

nearby events,

ds2 = gαβdx
αdxβ. (1.1)

Let us briefly recall the definition of a few basic quantities of tensor calculus on a

Riemannian manifold. The connection coefficients (or Christoffel symbols) can be

constructed from the first derivatives of the metric tensor,

Γα
βγ =

1

2
gαδ(gδβ,γ + gδγ,β − gβγ,δ). (1.2)

Gravitational acceleration depends on spatial change in the metric, so that the Christof-

fel symbols correspond roughly to the gravitational force. The Riemann curvature

tensor can be written in terms of the Christoffel symbols,

Rα
βγδ = −2(Γα

β[γ,δ] + Γε
β[γΓ

α
δ]ε), (1.3)
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where square brackets denotes the antisymmetryzation. It provides a covariant de-

scription of the curvature of the space-time. The Riemann tensor is fourth order, but

may be contracted to the Ricci tensor Rαβ , or further to the curvature scalar R

Rαβ = Rγ
αγβ , R = Rα

α (1.4)

In metric theories of gravity, the equation of motion of any test particle is a geodesic.

The equation for a geodesic is,

d2xα

dv2
+ Γα

βγ

dxβ

dv

dxγ

dv
= 0. (1.5)

Once given a space-time, mass energy moves in the same way in all metric theories

of gravity. The parameter v is called an affine parameter since a reparameterization

v → ṽ preserves the form of the equation if, and only if, it is an affine transformation

ṽ = av + b.

1.2 The field equation

Metric theories of gravity retain the whole apparatus of general covariance and recog-

nize the metric tensor as the gravitational field. The space-time structure is preserved

and formally the same equation of motion for test particles, Eq. (1.5), as for general

relativity holds.

However, the field equations are logically distinct and do not derive from this

assumptions. So, they can differ from one theory to another one. A field equation

connects the gravitational tensor potential gαβ with the density of mass energy and its

current.

1.2.1 The source of gravitation

The source of gravitation is the energy-momentum tensor T αβ. The meanings of its

components, in any local inertial frame, are: T 00 represents the energy density, the

spatial vector cT 0i represents the energy flux density and T ij is the spatial stress tensor.

The tensor is seen to be symmetric.

For most astrophysical purposes, the perfect fluid approximation holds. Then the

energy-matter tensor reduces to

T αβ = (ρc2 + p)UαUβ − pgαβ, (1.6)

where c is the speed of light in vacuum, ρ denotes the mass density and p the pressure,

both measured by a comoving observer; Uα is the 4-velocity, normalized to one,

gαβU
αUβ = 1. (1.7)
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By virtue of the conservation laws it expresses, T αβ has zero covariant divergence.

1.2.2 The Einstein’s field equation

The Einstein’s field equation states

Gαβ ≡ Rαβ − 1

2
Rgαβ =

8πG

c4
T αβ, (1.8)

where G is the Newton constant of gravitation. Eq. (1.8) relates the Einstein tensor

Gαβ to the stress-energy-momentum tensor T αβ of matter and non-gravitational fields.

1.3 Geometrical optics

In curved space-times, Maxwell’s equations read

F µν
;ν =

4π

c
Jµ, (1.9)

Fµν;λ + Fλµ;ν + Fνλ;µ = 0, (1.10)

where Fµν is the Maxwell tensor and Jµ is the charge current density four-vector;

the semicolon denotes the covariant derivative. Except in cases of high symmetry,

Maxwell’s equations do not have explicit solutions. In particular, plane waves do not

exist. In many astrophysical situations, however, and especially in gravitational lens-

ing theory, one can consider the geometrical optics regime. Maxwell’s equations are

approximately solved by “locally plane” waves, which are nearly plane and monocro-

mathic. Geometrical optics holds when, in a typical Lorentz frame, the wavelength of

light is significantly less than the scale over which the light’s amplitude, polarization,

and wavelength vary and much shorter than the radius of curvature of the space-time

through which the light travels. Now, the light beam can be considered as a beam of

null mass particles, photons, moving with the speed of light in the medium of prop-

agation. The wave nature of light is ignored since the warps in space-time are much

bigger than the wavelength.

In this approximation:

1. Light is propagated along null geodesics of space-time, called light rays, i.e. the

4-momentum of each photon is transported parallely along the photon’s world

line.

2. The amplitude, polarization, etc., of different light rays do not influence each

other. In addition, light rays lie in and are orthogonal to surfaces of constant

phase.
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3. A light ray’s polarization vector is orthogonal to the ray and parallel transported

along the ray.

4. The number of photons in a ray bundle is conserved and observer-independent.

These results can be obtained in the framework of metric tensor theories of gravity

only using the principle of equivalence and the prescriptions of the minimal coupling

[120, 172].

Astrophysical sources are very large with respect to the wavelength of the emitted

light, so that, wave effects can be neglected. Also, interference of two or more im-

ages of a lensed source is, usually, negligible since time delay between the images are

much larger than the coherence length of a light wave. In few instances, however, the

geometrical optics approximation breaks down. At caustic crossing events, we need

the wave optical treatment to avoid unphysical infinitely high magnifications. Fur-

thermore, in the case of a multiply imaged source near a fold caustic, the time delay

between images can become as small as the period of light wave in the optical band. In

general, however, the geometrical optics approximation suffices for almost all current

astrophysical lensing situations.

1.4 Fermat’s principle

In metric theories of gravity, a very intuitively way to characterize the light rays is

given by the Fermat’s principle. When expressed in a space-time context, it has the

following statement:

• A light ray (null geodesics) from a source S (space-time event) to an observer

O (timelike world line) follows a trajectory that is a stationary value, under

first order variation of the paths, of the arrival time τ (measured relative to the

observer’s proper time), within the set of smooth null curves from S to O,

δτ = 0.

This version of the Fermat’s principle, conformally invariant, states a stationary prop-

erty of the (invariant) time of arrival at O, who may be moving relative to S. Further-

more, no preferred parameters on O or on the path enter the theorem; at the observer,

one may use proper time or any monotonic function of it.

The Fermat’s principle can also be interpreted using the opposite time-orientation:

the observer can be treated as located at a space-time event with past pointing null

curves followed from the observer to a source, which is, now, a timelike curve.
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The Fermat’s principle takes a version of particular interest in stationary space-

times [120, 172]. We consider a metric whose components gαβ are functions of the

spatial coordinates xi only (roman indeces label spatial coordinates). On a null curve,

it is

ds2 = gαβdx
αdxβ = 0;

for the future directed curve,

dx0 = cdt = − gi0

g00
dxi +

dlP√
g00

, (1.11)

where dlP
2 ≡

(
−gij +

g0ig0j

g00

)
dxidxj defines the spatial metric [109]. The arrival time

of a light ray, whose spatial projection is p̂, at an asymptotic observer is given by

t =
1

c

∫
p̂

dlP√
g00

− gi0

g00
dxi. (1.12)

Then, the Fermat’s principle states

δ
∫

p
ndlP = 0, (1.13)

where the spatial paths p̂ are to be varied with fixed endpoints; n is an effective index

of refraction defined as

n ≡ − gi0

g00
ei +

1
√
g00

, (1.14)

where ei ≡ dxi

dlP
is the unit tangent vector of a ray. This version of the Fermat’s principle

is formally identical with the classical one

It is easy to generalize the Fermat’s principle to conformally stationary space-

times, i.e. space-times whose physical metric d̃s
2

is conformal to a stationary (time-

independent) metric ds2,

d̃s
2

= Ω2ds2, (1.15)

where the conformal factor Ω may depend on all four coordinates. Since conformally

related metrics have identical light rays up to an affine parameter, one may still apply

Fermat’s theorem to ds2 to find the light rays of d̃s
2
. The effective refraction index of

the metric d̃s
2
, except for the conformal factor, equals the one of ds2.

1.5 Distances

In a generic curved space-time, a theoretical definition of distance is problematic since

the dependence of the metric on the temporal coordinate [109]: distances can be

defined only locally. Furthermore, also in a conformally stationary metric, there is no

preferred notion of the distance between two objects. To overcome these difficulties,

distances must be defined by means of practical methods.
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Figure 1.1: A beam of light rays from a source element of area dAS at S with the vertex at
the observer O, of size dΩO.

The distance to an object outside the Galaxy, not counting the measurements of

redshifts, can be determined by the photometric method, based on measurements of

energetic fluxes, or by the geometrical method, which assumes the knowledge of the

sizes of the objects. These methods assume an uniformity of the sources, so that far

objects are assumed to be like the nearer ones, easier to observe.

In addition, the distance to a near enough object can be determined either by

measuring its parallax, the shift in apparent position in the sky caused by the earth’s

revolution around the sun, or its proper motion, the shift in apparent position in the

sky caused by the object’s actual motion relative to the sun. For objects beyond about

109 light years, different distances differ from each other.

Distance measures are defined in analogy to relations between measurable quanti-

ties in Euclidean space. The angular diameter distance, in a cosmological context, is a

simple generalization of an intuitive expression that holds in an Euclidean geometry.

Here, the angular diameter, δ, of a source of size d at a distance D is

δ =
d

D
;

in curved space-time, the angular diameter distance again satisfies this relation,

DA ≡ d

δ
. (1.16)
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The luminosity distance, DL, is defined as

DL ≡
(
L

4πS

) 1
2

, (1.17)

where L is the bolometric luminosity of the source, S is the total observed flux.

Let us formalize this two definitions in a more general way by showing their link

with the propagation of light. Consider a thin beam of light rays emanating from

a source-event S and reaching an observation-event O and its neighbourhood. The

area dAO of the cross section of the beam at O is well defined independently of an

assignment of a 4-velocity at O. On the other hand, the size of the beam at S in terms

of a solid angle dΩS, measured in the tangent 3-space orthogonal to the 4-velocity Uα
S

at S, depends on Uα
S itself. The corrected luminosity distance of the source at S with

4-velocity Uα
S from the observation event O is defined as

D
′
L(Uα

S , O) ≡
(
dAO

dΩS

) 1
2

. (1.18)

Similarly, interchanging the roles of source and observer, one defines the distance from

apparent solid-angular size of S as seen from (O,Uρ
O), see Fig. (1.1)

DA(Uα
O, S) ≡

(
dAS

dΩO

) 1
2

. (1.19)

The dependence of this distance on the 4-velocity of the observer causes the phe-

nomenon of aberration.

The corrected luminosity distance is strictly related to the luminosity distance. It

is easy to show the link between the two definitions by means of the conservation law

of photons.

The specific luminosity, Lω, for a source radiating isotropically, is defined as

dNωS
≡ dτSdΩSdωS

LωS

4πωS

, (1.20)

where dNωS
is the number of photons emitted during the the proper time interval,

dτS, into the solid angle dΩS with energy in the range h̄dωS. According to the photon

number conservation, the same photons forming this ray bundle pass through an area

dAO orthogonal to the ray direction in an observer’s 3-space in proper time dτO with

energies in the range h̄dωO. We can express their number in terms of the specific flux

measured by the observer, Sω,

dNωO
= τOdAOdωO

SωO

ωO
. (1.21)

Let us define the redshift z,
1

1 + z
≡ ω0

ωs
=
dτs
dτ0

, (1.22)
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where ω0 is the frequency as measured at the observer and ωs is the frequency as

emitted at the source. Equating Eq. (1.20) and Eq. (1.21) and using the definition of

D
′
L, we get

Sω =
L(1+z)ω

4π(1 + z)D
′2
L

. (1.23)

An integration over all frequencies gives the total flux S,

S =
L

4π(1 + z)2D
′2
L

. (1.24)

Comparing Eq. (1.24) to the definition of the luminosity distance, Eq. (1.17), we obtain

the relation between the two distances,

DL = (1 + z)D
′
L. (1.25)

If two events S and O are connected by a light ray and 4-velocities Uα
S , U

ρ
O are given,

both distances (1.18) and (1.19) are defined. In any space-time, they are related by

the Etherington’s reciprocity relation [62, 172]

D(Uα
S , O) = (1 + z)D(Uρ

O, S) (1.26)

where z denotes the redshift of the source as seen by the observer. From the above

relation, it follows

DL = (1 + z)2DA. (1.27)

1.6 Intensity

Gravitational lensing does not alter surface brightness. This photometric quantity is

defined as the radiative energy for unit area, time interval, solid angle and frequency

range. Surface brightness is conserved in Euclidean space. A Doppler shift causes a

change in surface brightness governed by Iν ∝ ν3, so that Iν/ν
3 is an invariant in special

relativity. Now, by the equivalence principle, light can be thought of as propagating

along a path that is locally Euclidean, but for which there is a gravitational redshift

between the start and end of any given segment of the ray; therefore, the total change

in surface brightness just depends on the total frequency change along the path.

Let us consider an extended source, that is an assembly on incoherently radiating

point sources. Changing in Eq. (1.23) from DL
′ to DA, and using the definition of DA,

Eq. (1.19), we get
dSω

dΩO

=
dL(1+z)ω

4πdAS

1

(1 + z)3
. (1.28)

In terms of the specific intensity, it is

Iω(O) =
I(1+z)ω(S)

(1 + z)3
. (1.29)
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Equation (1.29) is a relation between the specific intensity at the observer Iω(O) and

that at the source I(1+z)ω(S). So, we have shown as, in any non interacting field, the

ratio Iω/ω
3 is observer-independent and constant on each ray. Integrating on ω, we can

obtain the relativistic generalization of the law of constancy of the surface brightness,

I(O) =
I(S)

(1 + z)4
, (1.30)

These results have been obtained in the framework of geometrical optics in an arbitrary

space-time.

In cosmology, the total frequency change along the path is well approximated by

the mean redshift for the object’s distance since extra blueshifts caused by falling into

the lens potential well are balanced by redshifts on leaving.

1.7 Background space-time

A large portion of modern cosmological theory is built on the Cosmological Principle,

the hypothesis that all positions in the universe are essentially equivalent [216]. The

universe is assumed to be spatially homogeneous and isotropic. The homogeneity of the

universe does not apply to any scale, but only to a smeared-out universe averaged over

cells large enough to include many clusters of galaxies, i.e. of diameter 108 − 109 light

years. Also, the universe appears spherically symmetric about us, so the Cosmological

Principle includes the assumption that the smeared universe is isotropic about every

point.

The metric element describing such a universe was found independently by H.P.

Robertson and A.G. Walker in 1936. Due to the Cosmological Principle, there are co-

ordinates (t, R, θ, φ), where t is the cosmic time and (R, θ, φ) are comoving coordinates,

in which the geometry of the space-time takes the form

ds2 = c2dt2 − a2(t)dS2
K ; (1.31)

a(t) is the scaling function or expansion factor (which describes the expansion of the

universe). The term a2(t)dS2
K is the spatial metric of the universe at cosmic time t.

The metric in Eq. (1.31) is known as Robertson-Walker (RW) metric. The factor dS2
K

is a metric with constant curvature k = −1, 0, or 1,

dS2
K =

dR2

1 − kR2
+R2dθ2 +R2 sin2 θdϕ2 (1.32)

Since for R � 1 the factor (1 − kR2)−1 is approximately unity, the universe is

locally flat and its spatial curvature is locally negligible.
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The application of the Cosmological Principle to the energy momentum tensor, that

describes the average state of cosmic content of energy, shows that it must necessarily

take the same form as for a perfect fluid, with a density and a pressure depending on

time only. Furthermore, the contents of the universe are, on the average, at rest in the

comoving coordinate system.

The cosmological redshift of light emitted from a source at proper time ts and

received by an observer at t0 can be related to the expansion factor. It is

z ≡ λ0 − λs

λs
=
a(t0)

a(ts)
− 1, (1.33)

where λs is the wavelength of the light as measured near the source and λ0 is the

wavelength measured by the observer. Near the observer, z � 1, c(tO−tS) = D is the

distance; given the RW metric, v =
(

ȧ
a

)
O
D is the radial velocity of the source with

respect to the observer. By expanding in power series a about t0, we get the Hubble

law,

z ' v

c
' H0

c
D, z � 1, H0 ≡

(
ȧ

a

)
0
, (1.34)

where H0 is the Hubble constant.

The proper distance is the distance measured by the travel time of a light ray

(ds2 = 0). It is defined by dDP = cdt. Hence, the proper distance to a source at radial

coordinate Rs, at cosmic time t, takes the form

DP =
∫ Rs

0

√
gRR = a(t)

∫ Rs

0

dR

(1 − kR2)1/2
. (1.35)

1.7.1 Angular diameter distance in RW metric

The angular diameter distance has a quite simple expression in a homogeneous and

isotropic universe. Let us consider an observer at (R = 0, t = t0) and a source of

proper size d at (R = Rs, t = ts). Without any loss of generality, we let us consider

light rays from the source to the observer with a fixed radial direction, ϕ = ϕ1, so

that, we can rotate the coordinate system in order to place the centre of the luminous

source at θ = 0. The coordinates marking the top and the bottom of the object are,

respectively, (RS,+
dθ
2
, ϕ1) and (RS,−dθ

2
, ϕ1). Such a source subtends an angle δ = dθ

as seen at the location of the observer; then, the proper diameter of the source can be

determined by setting t = ts in the RW line element,

d = ds = a(ts)Rsdθ = a(ts)Rsδ

and the angular diameter distance is

DA =
d

δ
= a(ts)·Rs =

a0

1 + zs
Rs .



22 Chapter 1. Gravitational lensing in curved space-times

Let us evaluate the dependence of DA on the redshift [34, 216]. Along a light ray, a,

R e t are related by the equation for a null radial geodetic,

dR

cdt
=

(1 − kR2)1/2

a(t)
; (1.36)

we have

Rs = Sinn

{
c
∫ ts

t0

dt

a(t)

}
,

where “Sinn” is defined as sinh if k = −1, as sin if k = 1, and as the identity if k = 0.

The redshift z and the cosmic time t are related by

dt =
a

ȧ

dz

1 + z
=

1

H(z)

dz

1 + z
;

then, the angular diameter distance reads

DA(zs) =
a0

1 + zs
Sinn

{
c

ao

∫ zs

0

dz

H(z)

}
. (1.37)

1.7.2 The energy conservation

In general, various distinct components contribute to the total energy density of the

universe. The energy-momentum conservation equation, T µν
;µ = 0, determines how

the energy density evolves as the universe expands. Let us consider non interacting

components with density ρi and equation of state pi = wiρic
2. In the RW metric, the

energy conservation equation reads

ρ̇i = −3H(1 + wi)ρi, (1.38)

where H ≡ ȧ
a

is the time dependent Hubble parameter. Eq. (1.38) is solved by

ρi(z) = ρi(0) exp
[
3
∫ 1+z

1
[1 + wi(x)]d ln x

]
. (1.39)

Most of the relevant equations of state in cosmology can be accounted for by a constant

wi. The dominant energy condition [33] states that Tµνl
µlν ≥ 0 and T µ

ν l
µ is non-

spacelike, for any null vector lµ; this implies that energy does not flow faster than

the speed of light. For a perfect-fluid energy momentum tensor, these two conditions

become ρ+p/c2 = (1+w)ρ ≥ 0 and |ρ| ≥ |p|/c2, respectively. Thus, either the density

is positive and greater in magnitude than the pressure, or the density is negative and

equal in magnitude to a compensating positive pressure1. In terms of the equation of

state parameter w, we have either ρ > 0 and |w| ≤ 1 or negative density and w = −1.

1A negative energy density is allowed only if it is in the form of vacuum energy.
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For wi = const., Eq. (1.39) becomes

ρi ∝ a−ni, (1.40)

where the exponent is related to the equation of state parameter by

ni = 3(1 + wi). (1.41)

Massive particles with negligible relative velocities are known as dust or simply

matter; they verify wM ' 0. Their energy density is given by their number density

times their rest mass; as the universe expands, since the rest masses are constant and

the number density is inversely proportional to the volume, it is ρM ∝ a−3. Radiation

includes relativistic particles, such as photons and massless neutrinos. Their equation

of state is wγ = 1/3; since the energy of relativistic particles redshifts as the universe

expands, it is ργ ∝ a−4. Vacuum energy does not change with expansion, ρΛ ∼ const.

This implies a negative pressure, or positive tension, for a positive vacuum energy

(wΛ = −1).

It is possible to define a critical density in terms of the Hubble parameter,

ρcrit ≡
3H2

8πG
; (1.42)

the energy density can be measured in units of the critical density by introducing the

density parameters

Ωi ≡
ρi

ρcrit
. (1.43)

1.7.3 The Friedmann’s equations

The RW solutions to Einstein’s field equation in the rest frame of the comoving fluid

are known as Friedmann equations. It is

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρT − kc2

a2
, (1.44)

where H ≡ ȧ/a is the time dependent Hubble parameter, and

ä

a
= −4πG

3
(ρT + 3

pT

c2
). (1.45)

Cosmological models having a RW metric and obeying Eqs. (1.44, 1.45) are called

Friedmann-Lemâıtre-Robertson-Walker (FLRW) models.

From Eq. (1.44), we see that for any value of the Hubble parameter, when the total

energy density equals the critical value ρcrit, the spatial geometry is flat (k = 0).
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It is useful to describe the curvature as an effective energy density ρK ≡ −3kc2

8πG
a−2,

so that wK = −1/3. Specializing Eq. (1.44) to the present epoch, we see that the space

curvature today is related to the total density parameter Ω0 by

− kc2

a2
0H

2
0

≡ ΩK0 = 1 − Ω0; (1.46)

the subscript zero refers to cosmological quantities evaluated today. According to the

definition of ΩK0, we can re-express the angular diameter distance, Eq. (1.37), in a

RW metric as

DA(zs) =
c

H0

1

|ΩK0|
1
2 (1 + zs)

Sinn

{
|ΩK0|

1
2

∫ zs

0

H0

H(z)
dz

}
. (1.47)

The expression in Eq. (1.47) is only based on the properties of the RW metric and

on the definition of ΩK0. In general relativity, we have ΩK0 = 1 − Ω0 and the Hubble

parameter, Eq. (1.44), can be expressed in terms of the density parameters as

H2 = H2
0

{
ΩM0(1 + z)3 + ΩX0 exp

[
3
∫ 1+z

1
[1 + wX(x)]d ln x

]
+ ΩK(1 + z)2

}
, (1.48)

where we have only considered pressureless matter, with today energy density param-

eter ΩM0, and a second component with density ΩX0 and equation of state wX(z).

Besides the Hubble parameter, which describes the observable size of the universe

and its age, it is possible to define another number to understand the nature of the RW

universe [165, 167]. q0 ≡ −H2
0 (ä/a)0 is called the deceleration parameter and probes

the equation of state of matter and the cosmological density parameter. In a FLRW

universe filled in with fluids with constant equation of state, from Eq. (1.45), we get

q0 =
1

2

∑
i

(1 + 3wi)Ωi0. (1.49)

An accelerating universe (q0 < 0) requires some components with very negative pres-

sure (wi < −1/3).

1.8 The energy budget

Observational cosmology has devoted large efforts in the last years to characterize the

energy content of the universe. Galaxy clustering [8, 32] and large-scale structure [139,

204]) observations favour models of a universe with a subcritical matter energy density,

ΩM0 < 1 [197]. Since, according to balloon-based measurements of the anisotropy of the

Cosmic Microwave Background Radiation (CMBR) [9, 48], the total of energy content

of the universe nearly equals the critical density [93, 148]), we expect that about 2/3 of

the critical density is in form of dark energy (also called quintessence). Furthermore,
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evidence coming from type Ia supernovae that the universe is accelerating its expansion

[140, 156] demands a new contribute to the total energy density, the dark energy, with

a strongly negative pressure (wX ≡ pX/ρX < −1/3, where pX and ρX are, respectively,

the pressure and energy density of the dark energy). These observations, together with

other constraints coming from the age of the universe, gravitational lensing statistics

and Lyα forest, support a geometrically flat universe [82] (ΩM0 + ΩX0 = 1, where

ΩX0 is the dark energy density parameter of the universe) with ΩM0 ∼ 0.3-0.4 and a

constant equation of state −1 ≤ wX
<∼ −0.4 [208, 212] at the 68% confidence level

or better according to a concordance analysis [212]. A less conservative maximum

likelihood analysis suggests a smaller range for the equation of state, −1 ≤ wX
<∼ −0.6

[12, 141, 212].

1.8.1 Dark matter

There is an overwhelming evidence that most of the mass in the universe is some

non-luminous dark matter, of as yet unknown composition.

Zwicky in 1933 [229] proposed the earliest indication of dark matter. He noted

that the galaxies in the Coma cluster and other rich clusters of galaxies move so fast

that the clusters required about ten to 100 times the mass accounted by the galaxies

themselves to keep the galaxies bound. By applying Newton’s laws to the motion

of galaxies in clusters, one infers a universal mass density of ΩM0 ' 0.1-0.3. Galactic

dynamics yields another strong observational evidence for the existence of dark matter.

There is simply not enough luminous matter (ΩLUM
<∼ 0.01) observed in spiral galaxies

to account for their observed flat rotation curves. From gravitational effects, one infers

a galactic dark halo of mass 3-10 times that of the luminous component.

A few theoretical arguments also support the existence of dark matter. If the mass

density contributed by the luminous matter were the major contribution to the mass

density of the universe, the duration of the epoch of structure formation would be very

short, thereby requiring (in almost all theories of structure formation) fluctuations in

the CMBR which would be larger than those observed. These considerations imply

ΩM0
>∼ 0.3.

There are many ways in which baryons can hide in dark forms [159]. These are:

massive black holes; stellar remnants, such as neutron stars or white dwarf; brown

dwarfs; snowballs; clouds of molecular hydrogen. These baryonic dark matter can-

didates are generally known as MACHOs (Massive Astrophysical Compact Halo Ob-

jects). The universal fraction of macroscopic dark matter is still unknown. Direct

searches for MACHOs in the Milky Way have been performed by the MACHO and

EROS collaborations through microlensing surveys. According to the MACHO group

[3], the most likely halo fraction in form of compact objects with a mass in the range
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0.1 − 1 M� is of about 20%; the EROS collaboration [111] has set a 95% confidence

limit that objects less than 1 M� contribute less than 40% of the dark halo. A first

attempt to obtain information from sources in the Andromeda galaxy has been per-

formed by the SLOTT-AGAPE collaboration. By using the pixel lensing technique

[161] to observe the Andromeda galaxy with the McGraw-Hill telescope, MDM Obser-

vatory, Kitt Peak (Arizona, USA), during 1998-1999, five candidate events have been

selected [28]. However, the average cosmological fraction in macroscopic dark matter

could be significantly different from these local estimates.

Further reasons favour a non-baryonic dark matter, consisting of some new elemen-

tary particles [138]. The strongest argument in favour of non-baryonic dark matter

comes from big-bang primordial nucleosynthesis, which estimates a baryonic contribu-

tion of ΩB
<∼ 0.06, too small to account for the dark matter in the universe. Although a

neutrino species of mass ∼ 30 eV could provide the right dark-matter density, N -body

simulations of structure formation in a neutrino-dominated universe do a poor job of

reproducing the observed structure of the universe. Phase-space arguments also dis-

favour halos of galaxies made of neutrinos. It appears likely that some non-baryonic,

non-relativistic matter is required in the universe. Furthermore, the features in the

clustering power spectrum also support collisionless dark matter.

Particle physics can provide candidates. Supersymmetry and theories outside the

standard model predict the existence of a new stable elementary particle having weak

interactions with ordinary matter. Examples of such a particle, known as WIMPs

(Weakly Interacting Massive Particles), are the axion and the neutralino. However, at

present, there is no direct accelerator evidence for the existence of supersymmetry.

1.8.2 Dark energy

A positive cosmological constant Λ was introduced initially by Einstein in an attempt

to obtain a universe with a static space-time with positive spatial curvature. It is a

static, homogeneous energy component with negative pressure, wΛ = −1. A time in-

dependent cosmological constant can be provided by models which associate Λ with a

property of the vacuum, such as the vacuum energy associated with symmetry break-

ing or vacuum polarization and particle production effects in curved space-time. In

1968, Zeldovich [227] suggested a firm physical mechanism for the generation of a cos-

mological constant by showing that the vacuum within the quantum framework has

properties identical to those of a cosmological constant; the zero-point vacuum fluctu-

ation must have a Lorentz invariant form pΛ = −ρΛc
2, or equivalently TΛ

µν = Λgµν .

After this first proposal of dark energy, many other candidates have been suggested

to close the universe.

Quintessence can be parameterized by an effective equation of state, pX = wXρXc
2.
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The relevant range for wX is between 0, ordinary matter, and −1, true cosmological

constant; sources with wX > 0 redshift away more rapidly than ordinary matter and,

therefore, cause extra deceleration, while wX < −1 is unphysical according to the

dominant energy condition.

A possibility is represented by a fluid with a constant equation of state (wX =

const.), called X-matter [38, 198]. This phenomenological ansatz can describe a dark

energy density varying with time, in particular over the redshift range over which the

dark energy can be potentially observed.

One interesting idea to model the dark energy density is provided by a dynamical,

spatially inhomogeneous, scalar field rolling down an almost flat potential, known as

quintessence [29, 50, 149, 160, 162, 165, 219]. In an expanding universe, a spatially

homogeneous scalar field with potential V (φ) and minimal coupling to gravity obeys

φ̈+ 3Hφ̇+ V
′
(φ) = 0, (1.50)

where primes indicate derivatives with respect to φ. The energy density is

ρφ =
1

2
φ̇+ V (φ), (1.51)

and the pressure is

pφ =
1

2
φ̇− V (φ). (1.52)

The equation of state turns out

wφ =
1
2
φ̇+ V (φ)

1
2
φ̇− V (φ)

; (1.53)

wφ, in general, varies with time. When the field is slowly varying, i.e. φ̇ � V (φ), it

is wφ
>∼ −1, and the scalar field potential acts like a cosmological constant. Unlike a

cosmological constant, this dynamical field can support long-wavelength fluctuations

that leave an imprint on both CMBR and large-scale structures. Particle physics

theories with dynamical symmetry breaking or non-perturbative effects can generate

potentials that support negative pressure.

A motivation for considering quintessence models is to address the coincidence

problem, the issue of explaining the initial conditions necessary to yield the near co-

incidence of the densities of matter and the dark energy today. The cosmological

constant solution is affected by a fine tuning problem, since the current ratio today

is only obtained by a ratio of vacuum density to matter-radiation density to 1 part

in 10120 at the close of inflation. Since quintessence couples directly to other forms of

energy, possible interactions may cause the dark energy to adjust itself naturally to be

comparable to the matter density today.
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Another scenario alternative to scalar fields is based on a network of light non-

intercommuting topological defects [191, 205]. Within a topological defect, the field

configuration is in the false vacuum state leading to p = −ρc2 along any orthogonal

direction within the defect. So, wX = −m/3, where m is the dimension of the defect:

for a tangled cosmic string, m = 1; for a domain wall, m = 2.

Generally, the equation of state wX evolves with the redshift, and the feasibility

of reconstructing its time evolution has been investigated [37, 44, 45, 73, 88, 119,

127, 166, 214, 225]. In gravitational lensing, the cosmological parameters enter the

lensing quantities through the angular diameter distances. Since, as can be seen from

Eqs. (1.47, 1.48), in FLRW models the distance depends on wX only through a multiple

integral on the redshift [119], wX(z) can be determined only given a prior knowledge

of the matter density of the universe [70, 73, 217]. In what follows, without being

explicitly stated, we will consider only the case of a constant equation of state.

We want only to mention that dark energy is not the only theoretical explanation

for an accelerating universe. Theories which go beyond the simplest implications of

the principle of equivalence, such as a theory with non-zero torsion, in which the

connection is not symmetric, can also support a negative deceleration parameter [31].

1.8.3 Relativistic matter

The energy density in radiation today is really much less than that in matter. There are

two obvious candidates for relativistic matter, photons and neutrinos [103]. Photons,

which are readily detectable, are mostly in the 2.73◦ K CMBR. Since the CMBR has

an excellent black-body spectrum, its energy is given by the Stefan-Boltzmann law.

In terms of the cosmic density parameter, they contribute Ωγ0 ∼ 5×10−5.

If neutrinos are sufficiently low mass as to be relativistic today, conventional sce-

narios predict that they contribute approximately the same amount.

In what follows, we will consider the radiation contribution to the energy budget

to be negligible.

1.9 Space-time near a gravitational lens

The astrophysical objects that usually act as gravitational lenses are stars, galaxies

or group of galaxies (including gas dust and stars) for scales of 100 Kpc and smaller,

super-clusters and clusters of galaxies spreading over tens of megaparsec, and the large

scale structure of the universe covering scales of hundreds of megaparsec. The matter

of large scale structures is concentrated in sheets and filaments that surround large,
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roughly spherical under-dense regions, known as voids. It is a common assumption to

consider the large scale perturbations effects on a given gravitational lens system as

negligible.

Gravitational lenses are supposed to be small local perturbations of the smooth

background universe. We assume that a gravitational lens and its lensing effects are

weak and localized in a very small portion of sky. Near a deflector, the space-time is

nearly flat and can be studied by perturbation methods.

1.9.1 Weak field metric in general relativity

We suppose the metric gαβ to be close to the flat, Minkowskian metric ηαβ . It is,

gαβ =
(
1 − 1

2
h
)
ηαβ + hαβ , (1.54)

h ≡ ηαβhαβ , |hαβ � 1|. (1.55)

The effect of the distribution of matter is contained in the perturbation hαβ . In linear

approximation with respect to hαβ , we can choose, without loss of generality, the

coordinates such that the coordinate gauge condition is satisfied 2

hαβ
,β = 0. (1.56)

The Einstein’s gravitational field equation, linearized in hαβ reads

(
∇− 1

c2
∂2

∂t2

)
hαβ =

16πG

c4
T αβ. (1.57)

For an isolated source without incoming gravitational radiation, the above equations

are solved by the retarded solutions,

hαβ(t,x) =
−4G

c4

∫ T αβ
(
t− |y|

c
,x + y

)
|y| d3y, (1.58)

We describe the distribution of matter as a perfect fluid matter tensor. We assume

that:

• The mass distribution changes its position slowly with respect to the coordinate

system, so that the matter velocity is much less than the speed of light, i.e.

vi ≡ dxi

dt
obeys |v| � c;

2In this approximation, the indices of hαβ may be raised by means of the background Minkowskian
metric ηαβ rather than with gαβ.
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• matter stresses are also small (the pressure is much smaller than the energy

density times c2), |p| � ρc2.

Then,

T 00 ' ρc2, T 0i ' cρvi, T ij ' ρV ivj + pδij , (1.59)

where terms of relative order v2

c2
, p

ρc2
have been neglected.

In this weak field regime and slow motion approximation, space-time is nearly flat

near the lens. Up to leading order in c−3, the metric is

ds2 = gαβdx
αdxβ ≈

(
1 +

2U

c2

)
c2dt2 − 8cdt

V·dx
c3

−
(
1 − 2U

c2

)
dx2, (1.60)

where we have introduced the retarded potentials

U(t,x) ≡ −G
∫ ρ

(
t− |y|

c
,x + y

)
|y| d3y; (1.61)

V(t,x) ≡ −G
∫ (ρv)

(
t− |y|

c
,x + y

)
|y| d3y. (1.62)

V is a vector potential taking into account the gravito-magnetic field produced by

mass currents. In this approximation, the stresses T ij do not affect the metric. In

the near zone of the system, the retardation in Eqs. (1.58) can be neglected; then U

reduces to the Newtonian potential,

U(t,x) ' −G
∫
ρ (t,x + y)

|y| d3y, (1.63)

and

V(t,x) ' −G
∫

(ρv) (t,x + y)

|y| d3y, (1.64)

The post-Minkowskian metric in Eq.(1.60) satisfies the weak field condition if, and,

only if, in addition to the assumptions just stated, it is

|U | � c2; (1.65)

then, ∣∣∣∣∣Vc3
∣∣∣∣∣ <∼

∣∣∣∣vc
∣∣∣∣ ·
∣∣∣∣Uc2
∣∣∣∣� 1. (1.66)

For spherical bodies, U = −GM/R, with R distance from the centre of the mass.

Eq. (1.65) implies
2GM

c2
= RS � R;

Hence, the neighbourhoods of compact objects as black holes and neutron stars cannot

be considered in this approximation. For galaxies clusters Mcl ' 1015M� and Rcl '
1Mpc, so that |U | <∼ 10−4c2.
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1.9.2 A generalized space-time element in metric theories

The weak field metric derived in the slow motion approximation can be extended to

the post-post-Newtonian (ppN) order and to general metric theories of gravity [180].

Let us consider the expression of a spatially spherically symmetric metric, in the

hypotheses of spherical symmetry only and without any use of the Einstein field equa-

tion. In addition, we assume time independence of this metric. It is

ds2 = em(r)c2dt2 − en(r)dr2 + r2(dθ + sin2 θdφ2). (1.67)

In 1916, K. Schwarzschild found the solution of the vacuum Einstein’s field equation

in the form of Eq. (1.67). In isotropic coordinates, the Schwarzschild metric reads

ds2 =
(1 −GM/2r

′
)2

(1 +GM/2r′)2
c2dt2 −

(
1 +

GM

2r′

)4

(dr
′2 + r

′2dθ + r
′2 sin2 θdφ2). (1.68)

M is the mass of the source. The new variable r
′
is defined as

r
′ ≡ 1

2

[
r − GM

c2
+
(
r2 − 2

GM

c2
r
)1/2

]
.

In what follows, we will drop the apex from the new radial variable.

We expand the metric as power series in the small parameter GM
r

up to the ppN

order. Then, we multiply the terms of this expansion by dimensionless parameters.

This expression can be generalized to an arbitrary mass distribution by replacing −GM
r

with the standard Newtonian potential U . It is U ∼ ε2, with ε denoting the order

of approximation. Finally, we introduce the nondiagonal components of the metric

tensor generated by mass currents. We can write g0i ∼ −4Vi, where Vi is the gravito-

magnetic potential, Vi ∼ Uv ∼ ε3. The final expression for the approximate metric

element is

ds2 '
[
1 + 2

U

c2
+ 2β

(
U

c2

)2
]
c2dt2−

[
1 − 2γ

U

c2
+

3

2
ε
(
U

c2

)2
]
dx2−8µ

V·dx
c3

cdt. (1.69)

Asimptotically, the metric reduces to the Minkowski one. β and γ are two standard

coefficients of the post-Newtonian parametrized expansion of the metric tensor [41,

221]. β is related to nonlinearity of mass contribution to the metric; γ measures space

curvature produced by mass. In general relativity, it is β = γ = 1; in the Brans-Dicke

theory, β = 1 and γ = 1+ω
2+ω

. ε and µ are non standard parameters. ε takes into account

the ppN contribution to the metric [60]; µ quantifies the contribution to the space-

time curvature of the mass-energy currents and measures the strength of the intrinsic

gravito-magnetic field [41]. In general relativity ε = µ = 1.

The approximated metric element just introduced cannot describe every conceiv-

able metric theory of gravity. In particular, it does not consider preferred frame effects,
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violations of conservation of four momentum and preferred location effects.3 However,

the metric in Eq. (1.69) should be obeyed by most metric theories, with differences

among them occurring only in the numerical coefficients.

We will assume that during the interaction with light rays, the configuration of an

isolated distribution of matter does not change significantly. Then, the metric element

can be considered as stationary. This approximation holds for almost all observed

gravitational lensing phenomena. Clusters of galaxies have sizes of order a megaparsec

and dynamical time scale of order the Hubble time, while light takes a few million

years to cross them. A typical spiral galaxy (as Milky Way) takes about 100 million

years to complete a rotation, about 103 order of magnitude more than the time taken

by light to transverse the galaxy.

Furthermore, we can assume that the potential well of the lens does not alter the

energies of photons as they cross the deflector; so the redshift of a source’s image is

unaffected by lensing effect.

1.9.3 Cosmological lenses and background

Gravitational lenses act as small perturbations on a homogeneous and isotropic back-

ground universe. The isotropic form of the RW metric is

ds2 = c2dt2 − a2(t)
dx2(

1 + k
4
x2
)2 (1.70)

The geometry of space-time in the neighbourhood of the relevant light rays can be

approximated by

ds2 = a2(τ)

{[
1 + 2

U

c2
+ 2β

(
U

c2

)2
]
dτ 2 (1.71)

−
[
1 − 2γ

U

c2
+

3

2
ε
(
U

c2

)2
]

dx2(
1 + k

4
x2
)2 − 8µ

V·dx
c3

dτ


 ,

where we have introduced the conformal time τ , defined as

dτ = c
dt

a
. (1.72)

Equation (1.71) combines the RW metric with the local metric. Since the universe

is locally flat, near the lens the background can be assumed to be endowed with an

Euclidean geometry (k = 0). In most of the gravitational lensing phenomena, the

scale factor a changes negligibly during the time delay between different lensed light

3Even by including the complete standard set of ten parameters, the post-Newtonian parameterized
expansion cannot include every conceivable metric theory of gravity [41].
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Figure 1.2: Schematic of a gravitational lensing system.

rays connecting source and observer, and during the travel time of light across the lens

(both times being very short compared to the Hubble time). So, the scale factor attains

approximately the same value at the different cosmic proper times when different light

rays reach the lens.

The line element in Eq. (1.71) is conformally stationary, so that the Fermat’s

principle applies to it in its simpler formulation.

1.10 Thin lenses

Usually, the physical size of a lensing matter distribution along the line of sight, d,

is small compared to the distances between lens and observer, or, lens and source

[142, 172]. As an example, in practically all cases of known quasar lensing, the observer-

deflector and deflector-source separations are of order of ∼ 103 Mpc, while the diameter

of a deflector galaxy is roughly ∼ 30 Kpc and of a cluster of galaxies is ∼ 5 Mpc.

For the case of microlensing in the Galactic bulge or towards the Large Magellanic

Cloud by foreground stars, the observer-deflector and deflector-source distances are

respectively about 5 to 25 Kpc while the separation of binary-star gravitational lens

systems (∼ 10−2 pc) is lower by ∼ 105 − 106 orders of magnitude.
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In these situations, given very small deflection angles, α̂ � 1, the extent of the

deflector in the direction of the incoming light ray is so small that the value of the

transverse gravitational field strength ∇⊥U on the actual ray deviates but little from

that on the unperturbed (straight) ray. We have that the maximal deviation ∆smax ∼
α̂d of the ray is small compared to the length scale on which the field changes

|∆smax∇⊥∇⊥U | � |∇⊥U | . (1.73)

The lens is geometrically-thin. Since such a thin lens occupies a small portion of the

sky, we can treat the lens as lying in the tangent plane to the celestial sphere passing

through the lens centre and centred at the observer. This tangent plane is called the

lens plane of the system.

It is useful to employ the spatial orthogonal coordinates (ξ1, ξ2, l), centred on the

lens and such that the l-axis is along the incoming light ray direction ein. This axis

defines the optical axis; we remark that, because of the smallness of angles involved in

typical gravitational lensing systems, the exact definition of the optical axis does not

matter. The lens plane corresponds to l = 0. Since space is approximately Euclidean

in the vicinity of the deflector, the vector ξ, i.e. the position vector where a light

ray impacts the lens plane, see Fig. (1.2), determines proper distances as measured at

the lens. The angular diameter distance between the observer and the source will be

denoted as Dd.

1.11 Light sources

Physical sources emitting light are main players of gravitational lensing. In the usual

gravitational lensing situations, only a small cone around the optical axis needs to be

considered. Within such a small cone, the celestial sphere through the source can be

replaced by the corresponding tangent plane. The light source plane is supposed, for a

thin light source, to be approximately orthogonal to the line of sight passing through

the lens plane.

In addition, it is assumed that light rays connecting source and observer are neg-

ligibly affected by the gravitational fields of the source and observer. In particular,

the time delation factor on Earth is ∼ 1 + U0/c
2, with U0/c

2 ∼ 10−9. So, the gravita-

tional potential at the observer is practically irrelevant in applications of gravitational

lensing.

Depending on a source’s angular size relative to the Einstein radius, sources are

divided in point-like and extended, giving rise to different observable phenomena.

Unless contrary stated, light sources will be assumed point-like.

The vector η, Fig. (1.2), will denote the displacement of the source on the source
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plane from the origin, located by the interception with the optical axis. The angular

diameter distances between the observer and the source, measured in the homogeneous

background, will be referred as Ds; the distance from the lens to the lens as Dds.

1.12 Time delay

We consider the gravitational lens as the only agent of non-trivial perturbations to the

ray paths. A light ray follows a smooth curved trajectory, p. Since the deflection angle

is very small, we consider, as kinematically possible light rays, piecewise smooth world

lines, consisting of a null geodesic of the RW metric from a light source to the lens

plane with impact parameter ξ, and another such null geodesics from the lens plane

to the observer. At some fixed cosmic time t, the spatial paths of lensed light rays are

also approximated by piecewise-smooth geodesics of the spatial metric a2(t)dS2
K . The

source is at point η on the light source plane at cosmic time tS. Since the time delay

between paths are assumed to be extremely small, we suppose that light rays impact

the lens plane at approximately cosmic time tL, equal for all the paths.

In the absence of the lens, there will be a unique null geodesic p0 connecting the

source and the observer. Its projection into the comoving space is a smooth geodesics

of dS2
K .

The projections of p and p0 form a triangle in the comoving space.

The time delay (as measured in the lens plane at cosmic time tL) of the path p

relative to the unlensed ray p0 is

∆T L =
1

c

(∫
p
nLaL dlP −

∫
p0

aLdlP

)
, (1.74)

where aLdlP is the spatial metric of Eq. (1.71). In what follows, it will be useful

to express the refraction index as nL ≡ 1 − δnL. In Eq. (1.74), nL is the effective

refraction index referring to the approximate metric in Eq. (1.69). Equation (1.74)

can be re-written as a sum of geometrical and potential time delays

∆T L = ∆T L
geom + ∆T L

pot.

The geometrical time delay, due to the extra path length relative to the unperturbed

ray, is

∆T L
geom =

1

c

[∫
p
aLdlK −

∫
p0

dlK

]
≡ aL

c
∆p0(p); (1.75)

∆p0(p) is the difference between the lengths of p and p0 relative to dS2
K ; dlK is the

increment of length relative to the spatial metric dS2
K of the RW metric.
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The potential time delay, due to the retardation of the deflected ray caused by the

gravitational field of the lens, is

∆T L
pot = −1

c

∫
p
δnL aLdlP. (1.76)

Since we consider a locally flat background perturbed by a weak lens (δnL → 0 for

|x| → ∞), the spatial metric increment can be evaluated referring to the spatial metric

in Eq. (1.71) with k = 0.

The time delay ∆T L measured at the lens is simply related to the time delay ∆T

at the observer,

∆T = (1 + zd)∆T
L. (1.77)

Furthermore,

∆Tgeom = (1 + zd)∆T
L
geom, (1.78)

and

∆Tpot = (1 + zd)∆T
L
pot, (1.79)

where zd is the redshift of the lens.

1.12.1 The effective refractive index

Let us go, now, to evaluate the above quantities with our approximate metric element.

The proper arc length is

dlp '
{

1 − γ
U

c2
+

(
3

4
ε− γ2

2

)(
U

c2

)2

+ O(ε6)

}
dleucl, (1.80)

where dleucl ≡
√
δijdxidxj is the Euclidean arc length. Inserting Eq. (1.80) in Eq. (1.14),

we get the effective refraction index

nL =

{
1 − (1 + γ)

U

c2
+
[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
] (

U

c2

)2

+ 4µ
Vi

c3
ei

}
dleucl

dlP
. (1.81)

The potential time delay at the lens turns out

c∆T L
pot =

∫
p

{
−(1 + γ)

U

c2
+
[
3

2
− β + γ

(
1 +

γ

2

)
+

3

4
ε
] (

U

c2

)2

+ 4µ
Vi

c3
ei

}
aLdleucl.

(1.82)

1.12.2 Potential time delay

The potential time delay can be considered as the sum of three terms,

∆Tpot = ∆T pN
pot + ∆T ppN

pot + ∆TGRM
pot ; (1.83)
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the first contribution contains the post-Newtonian correction to the time delay,

c∆T pN
pot ≡ −(1 + zd)

(1 + γ)

c2

∫
p
UaLdleucl; (1.84)

the second term is the ppN correction,

c∆T ppN
pot ≡ 1

c4
(1 + zd)

[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
] ∫

p
U2aLdleucl; (1.85)

the third contribution to the time delay derives from the gravito-magnetic field,

c∆TGRM
pot ≡ (1 + zd)

4µ

c3

∫
p
V·e aLdleucl . (1.86)

The thin lens assumption greatly simplifies the calculation of the potential time delay

[142, 172]. The actual ray light is deflected, but if the deflection angle is small, it can

be approximated as a straight line in the neighbourhood of the lens. This corresponds

to the Born approximation, which allows integrating Eq. (1.82) over the unperturbed

ray ein. Both ∆T pN
pot and ∆TGRM

pot can be easily expressed in terms of the surface mass

density Σ,

Σ(ξ) ≡
∫
ρ(ξ, l) dl, dl ≡ aLleucl; (1.87)

we get,

c∆T pN
pot ' −2(1 + zd)(1 + γ)

G

c2

∫
<2
d2ξ

′
Σ(ξ

′
)ln

|ξ − ξ
′ |

ξ0
+ const., (1.88)

and

c∆TGRM
pot ' 8(1 + zd)µ

G

c3

∫
<2
d2ξ

′
Σ(ξ

′
)〈v·ein〉l(ξ

′
)ln

|ξ − ξ
′ |

ξ0
+ const.; (1.89)

〈v·ein〉l is the weighted average, along the line of sight, of the component of the velocity

v orthogonal to the lens plane,

〈v·ein〉l(ξ) ≡
∫
(v(ξ, l)·ein) ρ(ξ, l) dl

Σ(ξ)
; (1.90)

ξ0 is a scale-length in the lens plane.

On the contrary, it is not an easy task to perform the integration along the line

of sight in the case of ∆T ppN
pot ; expressions in terms of elementary functions are not

known.

1.12.3 Geometrical time delay

Let us evaluate ∆p0(p), the very small amount by which the geometrical length of p

exceeds that of p0 relative to the metric dS2
K . We will consider the Euclidean 3-space

<3. It is, see Fig. (1.3,)

∆p0(p) = lL + lL,S − lS. (1.91)



38 Chapter 1. Gravitational lensing in curved space-times

Figure 1.3: The geodesic triangle formed from the projections of p and p0 into the standard
comoving space.

Since α̂� 1, we have

lS ' lL + lL,S, (1.92)

and

1 − cos α̂ = 2 sin2 α̂

2
' α̂2

2
. (1.93)

The geodesic triangle lies in a two-dimensional (complete simply connected, totally

geodesic) submanifold of the standard space, isometric with the Euclidean plane. On

this submanifold, the law of cosines takes the form

l2S = l2L + l2L,S − 2l2Ll
2
S cos(π − α̂) (1.94)

For small angles, Eq. (1.94) reduces to

l2S ' (lL + lL,S)
2 − lLlSα̂

2. (1.95)

Eq. (1.95) yields

(lL + lL,S + lS)(lL + lL,S − lS) = (lL + lL,S)
2 − l2S ' lLlSα̂

2. (1.96)

Using Eqs. (1.92, 1.96), we can express ∆p0(p) as

∆p0(p) '
lLlL,S

lL + lL,S + lS
α̂2 ' lLlL,S

2lS
α̂2. (1.97)

The proper lengths can be expressed in terms of the angular diameter distances. For

the sides of the geodesic triangle in Fig. (1.3), we get

Dd ≡ DA(zL) = aLlL, Dds ≡ DA(zL, zS) = aSlL,S, Ds ≡ DA(zS) = aSlS. (1.98)

Finally,

α̂Dds '
∣∣∣∣∣ ξ

Dd
− η

Ds

∣∣∣∣∣ . (1.99)

Given Eqs.(1.98,1.99), we can rewrite Eq. (1.97) as

∆p0(p) '
1

aL

DdDs

Dds

∣∣∣∣∣ ξ

Dd
− η

Ds

∣∣∣∣∣
2

. (1.100)

Finally, the geometrical time delay turns out

∆Tgeom =
1 + zd

2c

DdDs

Dds

∣∣∣∣∣ ξ

Dd
− η

Ds

∣∣∣∣∣
2

. (1.101)
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1.12.4 Time delay function

Adding the geometrical contribution and the potential term, we get the total time

delay, measured at the observer, of a kinematically possible light ray with impact

parameter ξ in the lens plane, relative to the unlensed one for a single lens plane. The

time delay function is

∆T =
1 + zd
c


1

2

DdDs

Dds

∣∣∣∣∣ ξ

Dd
− η

Ds

∣∣∣∣∣
2

− ψ(ξ)


 , (1.102)

where ψ is the deflection potential up to the order v/c,

ψ(ξ) ≡ 2G

c2

[∫
<2
d2ξ

′
Σ(ξ

′
)

(
1 + γ − 4µ

〈v·ein〉l(ξ
′
)

c

)
ln
|ξ − ξ

′|
ξ0

]
+ (1.103)

1

c5

[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
] ∫

U2dl.

We have neglected the constant in Eq. (1.102), since it has no physical significance

[172]. We remind that the time delay function is not an observable, but the time delay

between two actual rays can be measured.

1.13 The deflection angle

In order to derive an equation which relates the true position of the source to its

observed position on the sky, we must determine the deflection angle, i.e. the difference

of the initial and final ray direction. Then, we have to apply the Fermat’s principle.

For each path p, the time measured on the observer’s clock when p arrives locates a

surface of arrival times. Actual light rays, given the source position, are characterized

by critical points of ∆T (ξ), i.e. ∆T (ξ) is stationary with respect to variations of

ξ. The minima, maxima and (generalized) saddle points of the arrival time surface

characterize those paths followed by the actual light rays. The lens equation is then

obtained calculating

∇ξ∆T (ξ) = 0; (1.104)

we get

η =
Ds

Dd

ξ −Ddsα(ξ); (1.105)

α ≡ −∇ξψ(ξ) is the deflection angle.

We can express the total deflection angle as the sum of three terms,

α = αpN + αppN + αGRM. (1.106)
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Once again, the post-Newtonian and the gravito-magnetic contribution to the deflec-

tion angle have a simple expression. It is

αpN(ξ) ' 2(1 + γ)
G

c2

∫
<2
d2ξ

′
Σ(ξ

′
)

ξ − ξ
′

|ξ − ξ
′|2
. (1.107)

The equivalence principle, special relativity and Newtonian gravitational theory imply

that a photon must feel the gravity field of massive body. They yield only the “1”

part of the coefficient in front of Eq. (1.107). This accounts for the deflection of light

relative to local straight lines. However, because of space curvature, local straight

lines are bent relative to asymptotic straight lines. The contribution proportional to

γ in Eq. (1.107) is just the bending due to the gii components of the space metric in

Eq. (1.69); γ measures at the post-Newtonian order the curvature generated by an

isolated mass and varies from theory to theory.

The contribution of the gravito-magnetic field to the deflection angle is

αGRM(ξ) ' −8µ
G

c3

∫
<2
d2ξ

′
Σ(ξ

′
)〈v·ein〉l(ξ

′
)

ξ − ξ
′

|ξ − ξ
′ |2
. (1.108)

The parameter µ tests intrinsic gravito-magnetism in conceivable metric theories of

gravity [41].

In the thin lens approximation, the only components of the velocities parallel to

the line of sight enter the equations of gravitational lensing. A change in position of

the deflector orthogonal to the line of sight can be noticeable in a variation of the

luminosity of the source but does not affect the individual light rays, i.e. does not

contribute to the gravito-magnetic correction.

For shifting lenses, 〈v·ein〉l(ξ) = vl, the gravito-magnetic correction reduces to a

multiplicative factor to the zero order expressions. The deflection angle and the related

quantities, such as the optical depth, up to order v/c, are derived from the zero-order

expressions just by a product by 1− 2vl/c. For deflector moving towards the observer

and far away from the source (vl > 0), the optical depth decreases; for receding lenses

(vl < 0), the deflection angle increases. In what follows, we will only consider rotating

deflector. Since the velocity v is the peculiar velocity with respect to the coordinate

system, in a cosmological context, the cosmological recession velocity of the deflector

does not contribute to the gravito-magnetic correction.

The ppN contribution to the deflection angle has not a simple form in terms of

Σ(ξ). It is

αppN(ξ) ' 1

c4

[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
]
∇ξ

∫
p
U2(ξ, leucl)dleucl (1.109)

For β, γ and ε of order of the unity, nearly 70% of the bending comes from the standard

post-Newtonian parameters β and γ, the remaining 30% arises from the non-standard

ε coefficient.
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For a given deflecting mass, Eq. (1.105) relates source and image positions. A

source, with true position η, can be seen by an observer at positions ξ satisfying the

lens equation. Given the matter distribution of the lens, Eq. (1.105) may have more

than one solution ξ, so that the same source can be seen at several positions in the

sky. In general, it is very difficult to determine the images analytically. In order to

find all the images of a source for a given matter distribution or to find, for given

image positions, a suitable matter distribution, the lens equation is often attacked

numerically.

Fermat’s principle still holds for reversed light rays, that is for light rays backwards

from the observer to the impact point ξ. The ray-trace equation (1.105) allows us to

determine directly the source position η of an image at ξ. The lens equation induces

a mapping, called lensing map, from a subset of the lens plane into the light source

plane,

η(ξ) =
Ds

Dd
ξ −Ddsα(ξ); (1.110)

the Jacobian matrix of the lensing map is symmetric.
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Chapter 2

Properties of the lens mapping

We discuss some general properties of the gravitational lens equation. As seen in

Chapter 1, the lens equation induces a lens mapping from the lens plane into the

source plane. Including higher order effects does not change the form of the lens

equation: only the physical quantities, such as the deflection angle and the time delay,

are corrected. In the framework of viable theories of gravity, we want, now, to extend

the formalism of the lens mapping by including the gravito-magnetic effect. The

gravito-magnetic correction to the lensing quantities turns out to be linear in the

surface mass density. So, regarding the lensing effects, a rotating deflector can be

identified with a non-rotating one with an appropriately modified surface mass density.

Given this analogy, it is easy to generalize standard results, which refer to static

deflectors, to rotating deflectors. Furthermore, we can perform such a generalization

in the framework of any viable theory of gravity. The ppN contribution, non linear in

the mass of the deflector, will not be considered.

The lens mapping can be converted into a dimensionless form by converting the

physical variables into a dimensionless form, using appropriate scales. To this aim, a

characteristic surface mass density, which nearly distinguishes strong lenses capable of

producing multiple images, is introduced. With respect to the usual definition, this

characteristic surface mass density contains explicitly the pN parameter γ. Some other

quantities, such as the convergence and the deflection potential, will be corrected for

the intrinsic motion of the lens mass distribution. The non standard parameter µ will

be also included.

Section 1 introduces the dimensionless form of the ray-trace equation and the re-

lated dimensionless quantities. All the new definitions which we introduce in this

Section are corrected for the dragging of the inertial frames. Viable theories of gravity

are included by considering the parameters γ and µ. By introducing the dimensionless

Fermat potential, the lens equation can be written as a gradient equation. The mag-

nification of the light source and its geometrical nature are the argument of Section 2,

43
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where the Jacobian matrix of the lens mapping and related quantities, such as shear

and convergence, are introduced. Images can be classified according to the properties

of the Jacobian matrix. Section 3 treats ordinary images; the orientation and the

shape of the image of an extended are discussed. Important counting information on

the number of images produced by a transparent, isolated deflector are stated in Sec-

tion 4, where the condition, for at least one image appears brighter than it would be

without the lensing effect, is also considered. In Section 5, some conditions for a lens to

be able to produce multiple images are presented. Section 6 treats the critical curves,

locus of all formally infinitely magnified images, and the corresponding positions in

the source plane, the caustics.

2.1 Basic equations

The lens equation,

η =
Ds

Dd

ξ −Ddsα̂(ξ), (2.1)

relates the position of a source and the impact vector, in the lens plane, of those

rays which connect source and observer. The deflection angle, including the gravito-

magnetic effect and neglecting the ppN contribution, reads

α̂(ξ) =
2(1 + γ)G

c2

∫
R2
d2ξ

′
Σ(ξ

′
)

(
1 − 4µ

(1 + γ)

〈v·ein〉l(ξ
′
)

c

)
ξ − ξ

′

|ξ − ξ
′|2
, (2.2)

The expression for the deflection angle in Eq. (2.2) is linear in the mass of the deflector.

In general, a slowly moving deflector, with surface mass density ΣSLMO, has the same

lensing effect of a really static lens with

ΣSTAT(ξ) = ΣSLMO(ξ)

(
1 − 4µ

(1 + γ)

〈v·ein〉l(ξ)

c

)
. (2.3)

The lens equation induces a mapping ξ → η, called lensing map, from the lens plane

to the source plane. It is useful to write Eq. (2.1) in dimensionless form. Let ξ0 be

a length scale in the lens plane and let η0 be the corresponding length in the source

plane, η0 ≡ ξ0Ds/Dd. We set the dimensionless vectors,

x =
ξ

ξ0
; y =

η

η0
; (2.4)

the length scale is, at this point, arbitrary. For ξ0 = Dd, x e y are the angular positions

of the image and the unlensed source relative to the optical axis.

Let us introduce the corrected critical surface mass density, Σcr,

Σcr ≡
c2Ds

2(1 + γ)πGDdDds
, (2.5)
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usually defined in the case γ = 1 [142, 172]. We can define the corrected dimensionless

surface mass density or corrected convergence,

k(x) =
Σ(ξ0x)

Σcr

(
1 − 4µ

(1 + γ)

〈v·ein〉l(ξ0x)

c

)
; (2.6)

when the deflector is static (v = 0), the corrected convergence reduces to the ratio of

the surface mass density to the critical density,

kpN ≡ Σ

Σcr

; (2.7)

in general, if we consider the gravito-magnetic field, the velocity of the lens contributes

to the total convergence. With these definitions, the lens equation (2.1) reads

y = x − α(x), (2.8)

where

α(x) =
1

π

∫
R2
d2x

′
k(x

′
)

x − x
′

|x − x′ |2 =
DdDds

ξ0Ds
α̂(ξ0x) (2.9)

will be referred as the scaled deflection angle.

Let us now introduce a dimensionless deflection potential ψ,

ψ̂ ≡ Dsξ
2
0

DdDds
ψ, (2.10)

and a dimensionless Fermat potential φ,

φ̂ ≡ (1 + zd)
Dsξ

2
0

DdDds

φ. (2.11)

We have

ψ(x) =
1

π

∫
R2
d2x

′
k(x

′
) ln |x − x

′ |, (2.12)

and

φ(x,y) =
1

2
(x − y)2 − ψ(x) (2.13)

From Eq. (2.12), since G = 1
2π

ln(x) is the Green’s function of the 2-dimensional

Laplacian, ∆G = δ(2), it follows that ψ can be expressed as [192]

ψ(x) = 2G ∗ k, (2.14)

where ∗ is the convolution operator. Given the identity ∇ ln |x| = x
|x2| , it is easy to

show that

α = ∇ψ. (2.15)

Equation (2.14) can be inverted. We get

∆ψ = 2k; (2.16)
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ψ satisfies the 2-dimensional Poisson’s equation.

The map x 7→ y can be written as a gradient map,

y = ∇
(

1

2
x2 − ψ(x)

)
, (2.17)

or, using the Fermat’s principle, as

∇xφ(x,y) = 0. (2.18)

2.2 Magnification

Gravitational light deflection affects the properties of the images of a source. Because of

deflection angle of a light ray depends on the ray’s impact parameter, the cross sectional

area of a light bundle is deformed and distorted by the deflection. In particular, the

solid angle subtended by the image, dω, will differ from the solid angle subtended

by the source in the absence of lensing, dω∗. Since photon number conservation, the

flux of the image is determined by this area variation. The flux of an infinitesimal

source with surface brightness Iν , in the absence of gravitational light deflection, is

S∗
ν = Iνdω

∗. Since the surface brightness of an image of a lensed source coincides with

the surface brightness of the unlensed source, the observed flux is given by Sν = Iνdω.

Hence, the light deflection induces a change of the flux of the observed image by a

factor,

|µ| =
Sν

S∗
ν

=
dω

dω∗ , (2.19)

which is independent of the frequency of the radiation. The factor |µ(x)| quantifies

how much gravitational lensing brightens or dims the image x of an infinitesimally

small source.

If a source is much smaller than the angular scale on which the lens properties

change, the lens mapping can be locally linearized. Then, the Jacobian matrix of

the lens mapping describes how gravitational lensing distorts images. The Jacobian

matrix of the map in Eq. (2.8) is [172],

A(x) =
∂y

∂x
, Aij =

∂yi

∂xj
. (2.20)

Since the ratio of solid angles is given by

dω

dω∗ =

∣∣∣∣∣d
2x

d2y

∣∣∣∣∣ , (2.21)

then, the magnification factor reads

µ(x) =
1

detA(x)
. (2.22)
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The absolute value of the Jacobian determinant is the ratio of an infinitesimal area in

the light source plane to its corresponding area in the lens plane. Then, the magni-

fication of a lensed image, |µ(x)|, is the absolute value of the inverse of the Jacobian

determinant at the lensed image position.

The total magnification of a point-like light source at y is

µTOT(y) =
∑
x

|µ(x)|, (2.23)

where the sums runs over all lensed images x of y. The magnification of an extended

light source with surface brightness profile I(y) is given by

µe =

∫
I(y)µTOT(y)d2y∫

I(y)d2y
,

where the integrals are over the source.

Equations (2.13, 2.17, 2.20) imply

Aij = φij = δij − ψij , (2.24)

where subscripts denotes partial derivatives with respect to xi. ψij is the Hessian of

ψ and describes the deviation of the Jacobian matrix from the identity due to the

gravitational lensing. The matrix A is symmetric. Using Eq. (2.16), the Jacobian

matrix can be written as

A =

(
1 − k − γ1 −γ2

−γ2 1 − k + γ1

)
, (2.25)

where we have introduced the components of the shear

γ1 ≡ 1

2
(ψ11 − ψ22), (2.26)

γ2 ≡ ψ12 = ψ21;

the magnitude of the shear is defined as

γ ≡
√
γ2

1 + γ2
2 . (2.27)

The convergence k describes a local effect arising only from the surface mass density

within the beam. On the other hand, the additional light deflection caused by mat-

ter far away from the light bundle is described by the shear. For asymmetric mass

distribution, there is an additional distortion on the light rays along one particular

direction.

From Eq. (2.25), we can evaluate the orthogonal invariants of A, i.e. the determi-

nant,

detA = (1 − k)2 − γ2, (2.28)
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the trace

trA = 2(1 − k) (2.29)

and the eigenvalues,

a1,2 = 1 − k ∓ γ. (2.30)

Both the determinant and the eigenvalues consist of two terms, the first arising from

the convergence and the second from the shear.

The magnification factor,

µ(x) =
1

(1 − k)2 − γ2
, (2.31)

is determined by both isotropic focusing caused by the local matter density k and

anisotropic focusing caused by shear. Introducing an angle of shear, θγ , the shear

components can be parameterized as

γ1(x) = γ(x) cos 2θγ(x), (2.32)

γ2(x) = γ(x) sin 2θγ(x). (2.33)

The shear at x produced along θγ(x) is identical to that produced along θγ(x) + π.

Consequently, it suffices to assume 0 ≤ θγ(x) < π. Shear does not transform as a

vector under rotations of the coordinate frame [138]. The matrix A can be rewritten

as

A = (1 − κ)

(
1 0

0 1

)
− γ

(
cos 2θγ sin 2θγ

sin 2θγ − cos 2θγ

)
. (2.34)

2.3 Ordinary images

For a given source position y, the images are critical points of the Fermat potential. A

critical point of φ is non-degenerate, if the Hessian, φij, is a non-degenerate quadratic

form, det φij = detA 6= 0. These conditions characterize ordinary images [142, 172].

For certain values of x, detA = 0: these points are called critical points and they forms

the critical curves in the lens plane. The critical curves are mapped onto caustics in

the lens plane.

Let us first consider ordinary images.

2.3.1 Classification

Images are located at local extrema and saddle points of the arrival time surface. The

index of such a critical point is just the number of negative eingenvalues of the Hessian

at that point. In two dimensions, there are three types of non-degenerate critical
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points. According to the Morse’s lemma [142], the ordinary image is either a local

minimum (if the index i is equal to zero), saddle (i = 1), or local maximum (i = 2).

Hence, all nondegenerate light rays are isolated. The type is readily determined by

the quadratic form of φ at x0,

q(t1, t2) = φ11t
2
1 + 2φ12t1t2 + φ22t

2
2, (2.35)

where (t1, t2) ∈ <2. Then [142],

• Type I: x0 is a local minimum if and only if q(t1, t2) > 0 for all (t1, t2) ∈ <2−{0}.
It is detA > 0 and φ11 > 0.

Since γ < 1 − k ≤ 1, it is µ ≥ 1
1−γ2 ≥ 1: the minimum is magnified.

• Type II: saddle point of φ. q(t1, t2) attains both positive and negative values. A

critical poin is a saddle if and only if detA < 0.

• Type III: x0 is a local maximum if and only if q(t1, t2) < 0 for all (t1, t2) ∈ <2−{0}
if, and only if, it is detA > 0 and φ11 < 0. We get

(1 − k)2 > γ2, k > 1. (2.36)

In what follows, we will use the notation below:

• N = total number of lensed images;

• nI = total number of minimum lensed images;

• nII = total number of saddle lensed images;

• nIII = total number of maximum lensed images;

2.3.2 Orientation

The magnification factor µ can be positive or negative; the corresponding images are

said to have positive or negative parity. Images of type I and III have positive parity;

images of type II have negative parity and are reversed with respect to the source.

Given an image at x0, not on a critical curve, and a displacement vector x − x0 ≡ X

in the lens plane, the corresponding displacement vector in the source plane is

Y ≡ y − y(x0) '
∂y

∂x
(x − x0); (2.37)

in other words, Y is mapped on X,

Y = AX. (2.38)
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Since

Y·X = AX·X =
∑
i,j

AijX
iXj, (2.39)

the position angle of the image vector differs by no more than π/2 from that of the

source for images of type I, whereas for image of type III, the source and image vectors

differ by more than π/2.

Given two displacement vectors at y, Y and Z, and the corresponding image vectors

X and W, it is

X×W =
1

detA
Y×Z. (2.40)

Since |X×W| is the area spanned by Y and Z, Eq. (2.40) restates that the magnifica-

tion is the area distortion of the lens mapping. The handness of two vectors is defined

as the sign of

Y×Z ≡ Y1Z2 − Y2Z1. (2.41)

Images of type I and III (detA > 0) have positive parity, so that the handness is

preserved, whereas for images of type II (negative parity), the handness is reversed.

2.3.3 Shape

The images are distorted in both shape and size. The shapes of the images differ

from the shape of the source because light bundles are deflected differentially. Let us

consider an infinitesimal circular source bounded by

c(t) = y +R(cos t, sin t). (2.42)

At the first order, the corresponding boundary curve of the image is

d(t) ' x + A−1R(cos t, sin t); (2.43)

the image is an ellipse with semi-axes given by

R

| 1 − κ∓ γ | =
R

| a1,2 |
, (2.44)

and oriented along and orthogonally to θγ [128, 172]. The shear γ describes the tidal

gravitational field, which determines the shape distortion, and the anisotropic focusing,

which contributes to the magnification. When γ = 0, the image is still disc-shaped.

The convergence k describes the magnification caused by isotropic focusing caused by

the local matter density. The area of the image differs by a factor |µ| = 1/| detA| from

the area of the source. The ellipse reduces to a circle also if trA = 0, that is k = 1.

If both k ' 1 and |γ| � 1, strongly magnified images, morphologically similar to the

source, can be produced. When the lens is a cluster of galaxies and the source is a

background galaxy, this condition realizes the so called GRAMORs1 [81].
1GRAvitazional deflected but MORphologically regular images.
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2.4 Some theorems on ordinary images

A gravitational lens is isolated if its lensing effects are negligible at the infinity, as

in the case of lenses with a finite total mass. A Fermat potential φ(x,y) is isolated

if, for all y not on a caustic, it is subcritical at the infinity: for |x| → ∞, both the

eingenvalues of the Hessian matrix remain positive (moreover, both the shear and

the convergence are also subcritical at the infinity) and φ(x,y) → ∞ [142]. These

conditions are fulfilled by a lens with both a surface mass density decreasing faster

than |x|−2 and a bounded deflection angle [172].

Important counting information has been derived for isolated gravitational lenses

[142, 172]. A point a is a singularity of the deflection potential ψ if, for x → a, either

ψ(x) → −∞ or ∆ψ(x) → ∞.

Then, an isolated gravitational lens with a total number of g singularities will

produce a finite total number of lensed images of a source at a noncaustic point y and

1. nI ≥ 1, nII ≥ nIII + g, nII ≥ nI + g − 1, nI + nIII = nII − g + 1.

2. N = 2(nI + nIII) + g − 1 = 2nII − g + 1, N ≥ g + 1.

3. For a locally stable lensing map:

(a) for |y| sufficiently large, it is N = g + 1, with nI = g + 1, nII = g, nIII = 0;

(b) if |y| → ∞, then all saddle images lie inside a compact set whereas the

remaining minimum lensed image xI satisfies xI → ∞.

From the above properties on the number of images it immediately follows the odd

number image theorem for nonsingular lenses: the total number of images, N = 2(nI +

nIII) − 1 = 2nII + 1, is odd.

Under the same assumptions, the magnification theorem holds. If an isolated grav-

itational lens has a positive density perturbation, then its action on any light source

will produce a lensed image with magnification of at lest one. In fact, according to

the statement of the above theorem, there is, at least, one minimum; therefore µ ≥ 1.

We stress that this theorem depends on the inequality ∆ψ ≥ 0.

2.5 Criteria for multiple imaging

A gravitational lens at distance Dd may or may not be sufficiently strong to cause

multiple images of a source at distance Ds [142, 172].
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• If an isolated deflector has at least one singularity, then, by the theorem on the

number of images, there are multiple lensed images

• An isolated transparent lens can produce multiple images if, and only if, there

is a point x with detA(x) < 0. In this case, the number of lensed images is ≥ 3

Proof. If detA(x) > 0 for all x, the lens mapping is globally invertible and thus

cannot cause multiple images. On the other hand, if detA(x0) < 0 at x0, a source at

y0 = y(x0) has a saddle lensed image. Then, there must be at least two additional

images of positive parity.

• Suppose that k is supercritical at a regular point x0, k(x0) > 1. Then a source

at y0 = y(x0) has multiple images.

Proof. Since ψ is isolated, it is nI ≥ 1. Since k(x0) > 1, x0 is either a local maximum,

so that nII ≥ nIII ≥ 1 ⇒ N ≥ 3, or a saddle lensed image, so that N ≥ 3 (since N is

odd and nI ≥ 1).

For a general lens, there is no lower limit to the surface mass density required to

produce multiple images; such conditions arise only for symmetric lenses. Nevertheless,

a strong lens with Σ > Σcr is able to produce multiple images. This condition shows

that the surface density scale Σcr does very nearly distinguish those lenses that will

produce non-trivial imaging. Gravitational lensing turns out to be very interesting

in cosmology since Σcr is of the order of that found in clusters of galaxies and in the

central parts of galaxies,

Σcr ' 3.5
(Dds/1Gpc)

(Dd/1Gpc)(Ds/1Gpc)
kg m−2. (2.45)

2.6 Critical curves and caustics

Points in the lens plane where the Jacobian is singular, detA = 0, form closed curves,

the critical curves [142, 172]. They are the locus of all images with formally infinite

magnification.

The corresponding locations in the source plane are the caustics [142, 172]; hence,

the caustics due to a gravitational lens are the critical values of the associated lensing

map. When caustics are curves, the smooth arcs are called folds, while cusps are the

points where two abutting fold arcs have coincident tangents with the folds arcs on

opposite sides of the double tangent [142, 172].

Sources on caustics are infinitely magnified. However, infinite magnification does

not occur in real astrophysical situations. First, each source has a proper finite size, and
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its magnification (given by the surface brightness-weighted point-source magnification

across its solid angle) remains finite. Second, for point-sources, near critical curves,

geometrical optics approximations fails and a wave optics descriptions should be used;

then, even point-sources are magnified by a finite value.

Images of sources near caustics are magnified and distorted substantially.

The number of images can change only if the source crosses a caustic. In fact,

at other points, the lens mapping is locally invertible and therefore, no images can

appear or disappear. Point sources which moves across a caustic have their number

of images changed by ±2, and the two additional images appear or disappear at the

corresponding critical curve in the lens plane. Hence, sources inside a caustic are

multiply imaged.
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Chapter 3

Lens models

The purpose of this Chapter is to determine the gravitational lensing signatures of some

commonly used gravitational lens models. Given a lens model, gravitational lensing

theory aims at determining the configurations of images of the background source,

i.e. their number, locations and magnification, and at characterizing the properties of

critical points and caustics. In general, this problem can be solved only numerically,

but some gravitational lensing systems allow an analytical approach.

The ray-trace equation for a spherically symmetric non-rotating lens can be re-

duced to a one-dimensional equation. However the gravito-magnetic field, induced

by rotation, breaks this symmetry. Even for very simple mass distributions, we have

to consider the full vectorial equation. In general, the inversion of the lens equation

becomes a mathematical demanding problem. But the gravito-magnetic effect is an

higher-order correction and interesting gravitational lens systems can be studied in

some details despite of their complexity using a perturbative approach. This proce-

dure is quite usual in gravitational lensing problems [22, 104].

In this Chapter, we consider gravitational lenses of astrophysical interest. Except

for the last section, we will only consider the gravito-magnetic correction to the lensing

quantities and neglect the ppN contribution. For simplicity, we will also specialize the

parameters of the approximate metric element describing the gravitational action of

the lens, introduced in Section 1.9, to general relativity; so, we will assume γ = µ = 1

and β = ε = 0. On the other hand, in the last section we will consider the point-

like deflector in a general viable theory of gravity up to the ppN order included. In

Section 1, we consider matter distributions with axial symmetry. Following [181], we

derive the deflection angle for a spherical body in rigid rotation about a symmetry-axis.

Static axially symmetric lenses are treated in Section 2: now, the lens equation is one-

dimensional. According to the shape of images close to the critical curves, these are

divided in tangential curves or radial critical curves. Some conditions for the existence

of multiple images are also listed. We next consider some specific lens models.

55



56 Chapter 3. Lens models

In Sections 3 and 4, we discuss thin lenses. The uniform sheet is the argument

of Section 3; here no gravito-magnetic field acts. This model will be employed in

Chapter 5 to derive the distance–redshift relation ia a locally inhomogeneous universe.

The thin exponential disk will be studied in Section 4. We propose original formulae

for the deflection angle, corrected for the gravito-magnetic field, for a disk with an

arbitrary inclination with respect to the optical axis.

In the following sections, we consider spherically symmetric mass distributions in

rigid rotation. The gravitational phenomena connected to intrinsic gravito-magnetism

are generated by mass-energy currents relative to other masses. The simplest lens

model, the point-like Schwarzschild lens, cannot produce such a peculiar effect since

the local Lorentz invariance on a static background does not account for the dragging

of inertial frames [41]. General relativity is a classical-nonquantized theory where the

classical angular momentum of a particle goes to zero as its size goes to zero. To

treat the gravito-magnetic field, we need a further step after the point mass as a lens

model; extended lens models have to be considered. To our knowledge, for the first

time, the effect of the gravito-magnetic field is considered on the images positions,

critical curves and caustics of extended sources. In Section 5, we will discuss the

singular isothermal sphere. The deflection potential, the Jacobian determinant and

the deflection angle will be corrected for the gravito-magnetic effect. As a second step,

we first consider the non rotating case and, then, with a perturbative approach, we

derive critical curves, caustics and image positions for a rotating system. In Sections 6

and 7, we treat, respectively, isothermal spheres with a finite core size and power

law models. The deflection angle will be corrected for the dragging of inertial frames

and critical curves and other features will be discussed for the non rotating case. In

Section 8, we consider the homogeneous sphere. We consider light rays from the source

to the observer passing inside or outside the sphere. For images outside the lens, we

proceed as for the singular isothermal sphere.

We conclude the Chapter by considering the point-like deflector in Section 9. Given

the simplicity of this lens model, a full treatment in the framework of metric theories

of gravity is possible. The ppN contributions to the deflection potential and to the

deflection angle take a very simple form. The point-like deflector is used to consider

several astrophysical systems.

3.1 Axially symmetric lenses

Let us consider a class of matter distributions with a spherically-symmetric mass den-

sity, ρ(r) = ρ(|r|) ⇒ Σ(ξ) = Σ(|ξ|), that rotates anticlokwisely about an arbitrary

axis, η̂, passing through its centre (i.e. a main axis of inertia). To specify the orien-

tation of the rotation axis, we need two Euler’s angles: ϕ is the angle between η̂ and
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the ξ2-axis; ϑ is the angle between the line of sight, l̂, and the line of nodes, located at

the intersection of the ˆl ξ1 plane and the equatorial plane (i.e., the plane orthogonal

to the rotation axis and containing the lens centre). Using the axial symmetry about

the rotation axis, we find

v·ein(ξ1, ξ2, l) = −ω(R) [ξ1 cosϕ+ ξ2 sinϕ cosϑ] ≡ −ω2(R)ξ1 + ω1(R)ξ2, (3.1)

where ω(R) is the modulus of the angular velocity at a distance R ≡ (R2
1 + R2

2)
1/2

from the rotation axis; R̂1 (that, given the spherical symmetry of the system, can be

taken along the line of nodes) and R̂2 are the axes on the equatorial plane; ω1 and ω2

are the components of the angular velocity along, respectively, the ξ1- and the ξ2-axis.

We have

R1 = l cosϑ+ ξ1 sin ϑ, (3.2)

and

R2 = −l cosϕ sinϑ+ ξ1 cosϕ cosϑ+ ξ2 sinϕ. (3.3)

Let us assume a rigid rotation, ω(R) = ω = const. It is

〈v·ein〉l = −ω2ξ1 + ω1ξ2. (3.4)

We can, now, evaluate the integral in Eq. (2.2) for γ = µ = 1; it is,

α1(ξ, θ) =
4G

c2

{
M(ξ)

ξ
cos θ +

IN(ξ)

ξ2

(
ω2

c
cos 2θ − ω1

c
sin 2θ

)
−M(> ξ)

ω2

c

}
; (3.5)

α2(ξ, θ) =
4G

c2

{
M(ξ)

ξ
sin θ +

IN(ξ)

ξ2

(
ω1

c
cos 2θ +

ω2

c
sin 2θ

)
+M(> ξ)

ω1

c

}
. (3.6)

ξ and θ are polar coordinates in the lens plane; M(ξ) is the mass of the lens within ξ,

M(ξ) ≡ 2π
∫ ξ

0
Σ(ξ

′
)ξ

′
dξ

′
; (3.7)

M(> ξ) is the lens mass outside ξ, M(> ξ) ≡M(∞) −M(ξ); and

IN(ξ) ≡ 2π
∫ ξ

0
Σ(ξ

′
)ξ

′3
dξ

′
(3.8)

is the momentum of inertia of the mass within ξ about a central axis. IN×ωi is the

component of the angular momentum along the ξi-axis.

The gravito-magnetic correction consists of the last two terms in Eqs.(3.5, 3.6),

both proportional to some components of the angular velocity. Spherical symmetry

is broken. In the first contribution, the angular momentum appears; the second one

is proportional to the mass outside ξ and can be significant for lenses with slowly

decreasing mass density.
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Let us change to dimensionless variables x and y. We define the dimensionless

mass m(x) within a circle of radius x,

m(x) = 2
∫ |x|

0
kpN(x

′
)x

′
dx

′
, (3.9)

where kpN, defined in Eq. (2.7), is the dimensionless surface density up to the order

c−2; it accounts only for the surface mass density. m(x) and M(ξ) are related by

m(x) =
M(ξ)

ξ2
0πΣcr

. (3.10)

Furthermore, we introduce the dimensionless momentum of inertia within x,

iN(x) = 2
∫ x

0
kpN(x

′
)x

′3dx
′
. (3.11)

With these notations, the scaled deflection angle α(x) ≡ DdDds

ξ0Ds
α̂(ξ) reduces to

α1(x) = m(x)
x1

x2
+ iN(x)

[
v2
x2

1 − x2
2

x4
− v1

2x1x2

x4

]
−m(> x)v2, (3.12)

α2(x) = m(x)
x2

x2
+ iN(x)

[
v1
x2

1 − x2
2

x4
+ v2

2x1x2

x4

]
+m(> x)v1, (3.13)

where

v1 ≡
ω1ξ0
c
, v2 ≡

ω2ξ0
c

(3.14)

are the circular velocity at the scale length around, respectively, ξ1 and ξ2 in units of

the speed of light.

3.2 Static axially symmetric lenses

For a non rotating, axially symmetric mass distribution, the lens equation reduces to

a one-dimensional form [172, 192]. The plane containing the centre of the lens, the

source and the observer is a totally geodesic sub-manifold of the space-time: all light

rays from the source to the observer lie in this plane. Now, k(x) = kpN(|x|). The ray

trace equation reduces to

y = x− α(x), (3.15)

and the scaled deflection angle is

α(x) =
m(x)

x
, (3.16)

where x ∈ R. Owing to the symmetry, it is enough to consider source positions y ≥ 0.

Since m(x) ≥ 0, any positive solution x of Eq. (3.15) must have x ≥ y, and any

negative one obeys −m(x)
x

> y.
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From Eq. (2.15), given the axial symmetry, we obtain

α =
dψ

dx
. (3.17)

The Poisson’s equation reads

1

x

d

dx

(
x
dψ

dx

)
= 2k(x). (3.18)

As seen before, for static axially symmetric deflectors, k(x) = kpN(|x|). Substituting

in Eq. (3.18) for Eqs. (3.16, 3.17), we obtain

dm

dx
= 2xk(x), (3.19)

as can be verified starting from Eq. (3.9). From Eqs. (3.9, 3.16, 3.17), we obtain

dψ

dx
=

2

x

∫ x

0
k(x

′
)x

′
dx

′
. (3.20)

In the above equation the right hand side is equal to

2
d

dx

∫ x

0
k(x

′
)x

′
ln
(
x

x′

)
dx

′
;

we have

ψ(x) = 2
∫ x

0
k(x

′
)x

′
ln
(
x

x′

)
dx

′
, (3.21)

where the additive constant has been put to zero1.

The Fermat potential can be written as

φ(x, y) =
1

2
(x− y)2 − ψ(x), (3.22)

and the lens equation is equivalent to

∂φ

∂x
= 0. (3.23)

3.2.1 The Jacobian matrix

The Jacobian matrix A can be obtained by differentiating the deflection angle [172],

αi(x) =
m(x)

|x|2 xi, (3.24)

It is

A = I − m(x)

|x|4

(
x2

2 − x2
1 −2x1x2

−2x1x2 x2
1 − x2

2

)
− dm(x)

dx

1

|x|3

(
x2

1 x1x2

x1x2 x2
2

)
, (3.25)

1The results about the deflection angle hold when k(x) decreases faster than x−1. Then, Eq. (3.21)
represents a potential for α [172].
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where I is the 2-dimensional identity matrix. Using Eq. (3.25), we check that the

property of the trace, Eq. (2.29), is satisfied. The convergence can be written as

k(x) =
m

′
(x)

2|x| , (3.26)

where m
′
= dm

dx
. From Eq. (2.26), we get the components of the shear,

γ1 =
1

2
(x2

2 − x2
1)

(
2m

|x|4 − m
′

|x|3

)
, (3.27)

γ2 = x1x2

(
m

′

|x|3 − 2m

|x|4

)
, (3.28)

From these relations, we can express the magnitude of the shear, Eq. (2.27), as

γ2 =

(
m

|x|2 − k

)2

; (3.29)

By using Eq. (2.28), we evaluate the determinant of A,

detA =

(
1 − m

|x|2

)(
1 +

m

|x|2 − 2k

)
. (3.30)

The determinant can be obtained also using the definition of A, Eq. (2.20). In the

symmetric case, we have

detA =
y

x

dy

dx
=
(
1 − m

x2

) [
1 − d

dx

(
m

x

)]
=

(
1 − α(x)

x

)(
1 − d

dx
α(x)

)
, (3.31)

in agreement with Eq. (3.30).

3.2.2 Critical lines

Critical curves in the lens plane are circles defined by detA(x) = 0. There are two

kinds of critical curves, those where m/x2 = 1 (tangential critical curves), and those

where d(m/x)
dx

= 1 (radial critical curves). As can be seen from the lens equation,

Eq. (3.15), tangential curves are mapped onto the point y = 0. In fact, if source,

observer and lens centre are collinear, light rays are not restricted to a single geodesic

plane and ring images can be formed. This property derives from the axial symmetry:

any perturbation in the mass distribution or a small rotation of the deflector will

remove the degeneracy.

At a critical point, an eingevalue of A reduces to zero. Let us consider a critical

point on the x1-axis, (x1 ≡ x, 0); it is

A = I − m(x)

x2

(
−1 0

0 1

)
− m

′

|x|

(
1 0

0 0

)
. (3.32)
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The vector Xt = (0, 1) is tangent to the critical curve, whereas for x1 6= 0, Xr = (1, 0)

is normal to the circle. Xt belongs to the kernel of A if the considered critical curve is

tangential; on the other hand, Xr is an eingevector with eingenvalue zero for a radial

critical curve. Critical curves are folds. As can be derived from catastrophe theory,

the point singularity at y = 0 is unstable [142, 172]. The radial critical curve, inner to

the tangential curve, is mapped in a circle centred at the point-like tangential caustic.

At the tangential critical curve, x = xt, we have

m(xt) =
∫ xt

0
2xk(x)dx = x2

t . (3.33)

The tangential circle is called Einstein ring. In angular coordinates, i.e when ξ0 = Dd

in Eq. (3.10), it is

θE =
1

Dd

(
M(θE)

πΣcr

) 1
2

. (3.34)

Given Eq. (2.6), from Eq. (3.33) we obtain

2
∫ ξt

0
Σ(ξ)ξdξ = ξ2

t Σcr; (3.35)

the total mass M(ξt) inside the Einstein ring reads

M(ξt) = πξ2
t Σcr; (3.36)

so the average surface density 〈Σ〉t within the tangential curve is equal to the critical

density,

〈Σ〉t = Σcr, (3.37)

or using dimensionless quantities, 〈k〉t = 1. These simple considerations give a prac-

tical method to determine the mass of the deflector, if the distances and the angular

position θE of the tangential curve are known. It is

M(θE) = π(DdθE)2Σcr ≈ (1.1×1014M�)

(
θE
30′′

)2 (
(Dd/1Gpc)(Ds/1Gpc)

(Dds/1Gpc)

)
. (3.38)

We want now investigate the image distortion near a critical curve. Images of

extended source near caustics are highly elongated. They are called arcs. Let us

consider a tangential critical curve. We take a point xc = (xc, 0) very close to the

tangential critical line. Then, at xc it is m/x2
c = 1 − δ with |δ| � 1. The Jacobian

matrix A can be approximated as

A '
(

2 −m
′
/xc 0

0 δ

)
, (3.39)

where δ has been neglected in the first diagonal element. Let us consider an ellipse

centred at xc and with semi-axes small compared to the distance of xc from the critical

curve,

c(ϕ) = xc +

(
ρ1 cosϕ

ρ2 sinϕ

)
.
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The ray-trace equation maps the ellipse in the image plane onto an ellipse in the source

plane,

d(ϕ) = yc +

(
(2 −m

′
/xc)ρ1 cosϕ

δρ2 sinϕ

)

where yc = y(xc). By construction, c(ϕ) is an image of the source d(ϕ). d(ϕ) reduces

to a circle when,

| ρ2 |=
2 −m

′
/xc

δ
| ρ1 |, (3.40)

The image c(ϕ) of such a disk shaped source is an arc-like image near the critical

curve. Since |δ| � 1, it is a tangentially highly elongated, along the x2-axis, ellipse

(|ρ2| � |ρ1|). For this reason, the outer critical curve is called tangential. On the

other hand, an extended source near the radial caustic has an image intersecting the

inner radial critical curve that is radially stretched.

The eingenvalues of the Jacobian matrix have a simple geometrical interpretation.

They describe the image distortion in the radial and tangential directions. Let an

ellipse, centred at x and with axes ρ1 in the radial direction and ρ2 in the tangential

direction, be the image of an infinitesimal circular source of diameter δ at y. The

source subtends an angle ϕ = δ/y, as seen from the centre of the source plane. Given

the axial symmetry, the polar coordinate is unchanged, so that, ϕ = ρ2/x. We have
δ
ρ2

= y
x
. By rewriting y/x by means of Eqs. (3.15, 3.16), we obtain that images are

stretched in tangential direction by a factor
(

y
x

)−1
=
(
1 − m

x2

)−1
.

The radial size of the source and of the image are related by δ = dy
dx
ρ1. Hence,

images are stretched in the radial direction by a factor
(

dy
dx

)−1
=
(
1 + m

x2 − 2k
)−1

.

The factor of radial deformation at the Einstein radius is

dy

dx

∣∣∣∣∣
−1

x=xt

= 2 [1 − k(xt)] . (3.41)

3.2.3 Criteria for multiple images

Besides the conditions for general isolated deflector stated in Section 2.5, axially sym-

metric lenses exhibit some additional criteria for multiple images [142, 172]. Let us

consider a transparent lens with a piece-wise continuous surface mass density, such

that

0 ≤ k(x) ≤ kmax ∀x, (3.42)

and

lim
x→∞xk(x) = 0. (3.43)

It is convenient to introduce the mean surface mass density within x

k̄(x) ≡ 2

x2

∫ x

0
k(x

′
)x

′
dx

′
=
m(x)

x2
; (3.44)
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the lens equation can be rewritten as

y = x(1 − k̄).

Then,

1. A lens can produce multiple images if, and only if, the condition dy
dx

= 1−2k+k̄ <

0 is fulfilled at lest at one point.

If dy
dx

≥ 0, y(x) increases monotonically and no multiple images can be produced.

On the other hand, since the deflection angle is bounded, dy
dx

→ 1 for x → ±∞.

If there is a point where dy
dx
< 0, then there is a local maximum x1 and a local

minimum x2 > x1 of y(x). For y(x2) < y < y(x1), there are at least three images.
dy
dx
< 0 implies the existence of the radial caustic: point sources inside the caustic

circle have three images, while a source outside the radial circle has one image.

2. Multiple images are produced only if k > 1/2 at one point.

In fact, dy
dx
< 0 implies k = 1+k̄

2
− 1

2
dy
dx
> 1+k̄

2
≥ 1

2
. This result follows from the

positiveness of the convergence.

3. Assume a deflector with a surface mass density decreasing with x, k
′ ≤ 0. Then,

multiple images are produced if, and only if, k(0) > 1.

Sufficiency follows from general criteria for multiple images, see Section 2.5. On

the other hand, dy
dx

= (1 − k̄) − xk̄
′
for x ≥ 0. Since

k̄(x) = 2
∫ 1

0
uk(ux)du,

then
dk̄

dx
= 2

∫ 1

0
u2k

′
(ux)du ≤ 0, and k̄(x) ≤ k(0) ≤ 1.

If k(0) ≤ 1, then k̄(x) ≤ k(0) ≤ 1 and dy
dx

≥ 0: multiple images cannot occur.

3.3 Uniform sheet

A sheet of continuous matter with constant mass density can approximate the central

part of clusters of galaxies with large cores [142]. The gravitational lens potential of a

uniform sheet of matter with constant surface mass density Σc is solution of

∇2
xψ = 2kc, (3.45)

where kc ≡ Σc/Σcr is a constant. The gravitational and Fermat potentials are, respec-

tively,

ψ(x) =
kc

2
x2, (3.46)

and
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φ(x,y) =
|x − y|2

2
− kc

2
x2; (3.47)

the lens equation is

y = x(1 − kc). (3.48)

The determinant of the Jacobian matrix is (1 − kc)
2, whereas A11 = 1 − kc.

The condition kc 6= 1 selects the non-critical sheets. Since detA 6= 0, no critical

points (hence, caustics) occur. Only one lensed image x0 of a source at y occurs at

x0 =
y

1 − kc

, (3.49)

with magnification

µ =
1

(1 − kc)2
, (3.50)

which is independent of the source position. If kc < 1, then detA > 0 and A11 > 0: the

lensed image is a minimum and it is magnified; for kc > 1, the image is a maximum,

which is de-magnified2 for kc > 2. As kc → 1, the lensed image goes to infinity getting

infinitely bright.

In the critical case, kc = 1, the lens equation reduces to ∆xφ = −y = 0 for all x. If

y 6= 0, no lensed image exists. If y = 0, the Fermat potential is constant, φ(x,y) = 0;

then, every point on the lens plane is a degenerate lensed image. A light source at the

point-like caustic y = 0 appears as an infinitely bright plane.

3.4 Exponential disk

Spiral galaxies, like our own and M31, contain a prominent, flattened, roughly ax-

isymmetric, disk component composed of Population I stars, gas, and dust. The

distribution of surface brightness in spiral galaxies disks obeys the exponential law

[66] with a typical length scale RD ' 3 Kpc. In the hypothesis that mass follows light,

the surface mass density in the disk plane can be written as

SD(R) = S0 exp
[
− R

RD

]
. (3.51)

The circular rotation velocity is [15]

vROT
D (R) = 4πGS0RDy

2 [I0(y)K0(y) − I1(y)K1(y), ] (3.52)

where y ≡ 1
2

R
RD

, and In and Kn are the modified Bessel function of, respectively, the

first and the second kinds.

2The potential φ is not isolated.
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3.4.1 Tilted disk

Let (R1, R2) be the coordinates in the plane of the disk. We define the angles ϕ and

ϑ as in Section 3.1. Now, since the disk is thin, we have to fix the condition R3 = 0.

It is

l = − cscϕ cscϑ+ ξ1 sin ϑ− ξ2 cotϕ cotϑ; (3.53)

then, Eqs. (3.2, 3.3) reduce to

R1 = −ξ2 cotϕ cotϑ+ ξ1 csc ϑ, (3.54)

and

R2 = ξ2 cscϕ. (3.55)

Since the disk is thin, the line of sight intercepts the matter distribution in a single

point, so that no integration along the line of sight has to be performed. The infinites-

imal area dR1dR2, at a distance R from the centre, projects itself in an element with

surface mass density ΣD in the lens plane, defined by

SD(R)dR1dR2 = ΣD(ξ1, ξ2)dξ1dξ2; (3.56)

the surface mass density reads

ΣD(ξ1, ξ2) = SD(R1(ξ1, ξ2), R2(ξ2)) |cscϕ cscϑ| . (3.57)

The velocity along the line of sight of the mass element is

v·ein = −R2

R
vROT
D (R) cosϑ+

R1

R
vROT
D (R) cosϕ sinϑ. (3.58)

3.4.2 Face-on disk

In this case, it is ϑ = π/2 and ϕ = π/2, i.e. the disk plane coincides with the lens

plane. Since the orbits are in the lens plane, there is no gravito-magnetic contribution

to the gravitational lensing effect. We can apply the formulae for an axially symmetric

system. The mass within ξ is

M(ξ) = 2π
∫ ξ

0
SD(R)RdR = 2πR2

DS0

[
1 − exp

(
− R

RD

)(
1 +

R

RD

)]
; (3.59)

then, the deflection angle reads

α̂(ξ) =
4GM(ξ)

c2ξ
=

8πGS0R
2
D

c2ξ

[
1 − exp

(
− R

RD

)(
1 +

R

RD

)]
. (3.60)
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3.4.3 Edge-on disk

Now, let us consider a disk orthogonal to the lens plane. The 2-dimensional surface

mass density reduces, by an integration along the line of sight, to a linear density λ in

the lens plane. We take the disk in the (l, ξ1) plane. It is,

λ(ξ1) =
∫ +∞

−∞
SD(ξ1, l)dl = 2S0

∫ ∞

ξ1
exp

[
− R

RD

]
RdR√
R2 − ξ2

1

= 2S0ξ1K1

(
ξ1
RD

)
. (3.61)

Then, the surface mass density in the lens plane reduces to

ΣD(ξ1, ξ2) = λ(ξ1)δ(ξ2), (3.62)

where δ(ξ2) is the Kronecker delta.

The velocity orthogonal to the lens plane must be integrated along the line of sight,

〈v·ein〉l = − 2ξ1
λ(ξ1)

∫ ∞

ξ1
|v(R)|SD(R)

RdR√
R2 − ξ2

1

. (3.63)

The deflection angle reads

α̂1(ξ1, ξ2) =
4G

c2

∫ +∞

−∞
dξ

′
1λ(ξ

′
1)
(
1 − 2

c
〈v·ein〉l(ξ

′
1)
)

ξ1 − ξ
′
1

(ξ1 − ξ
′
1)

2 + ξ2
2

, (3.64)

α̂2(ξ1, ξ2) =
4G

c2

∫ +∞

−∞
dξ

′
1λ(ξ

′
1)
(
1 − 2

c
〈v·ein〉l(ξ

′
1)
)

ξ2
(ξ1 − ξ

′
1)

2 + ξ2
2

. (3.65)

3.5 Singular isothermal sphere

Isothermal spheres (ISs) are widely used in astrophysics to model systems on very

different scales, from galaxy haloes to clusters of galaxies; also, IS can be adopted to

study microlensing by non-compact invisible objects in the Milky Way’s halo [168].

The mass profile of a singular isothermal sphere (SIS) can be derived by as-

suming an ideal isothermal gas in hydrostatic equilibrium; the equation of state is

p = (ρ/m)kBT , where ρ and m are, respectively, the mass density and the (average)

mass of a particle, and kB is the Boltzmann constant. The equation of hydrostatic

equilibrium reads
kBT

m

dρ

dr
= −ρGM(r)

r2
, (3.66)

where M(r) is the total mass interior to radius r. If we multiply Eq. (3.66) through

by r2(m/kBT ) and then differentiate with respect to r, we obtain, using the law of

conservation of mass,
dM(r)

dr
= 4πr2ρ, (3.67)
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the differential equation

d

dr

(
r2 d

dr
ln ρ

)
= −Gm

kBT
4πr2ρ. (3.68)

This equation can be obtained also in the kinetic theory starting from the Jeans

equation3. In the stationary, spherically symmetric case, we have

d

dr
(nσ2

r ) +
2n

r
(σ2

r − σ2
t ) = −ndU

dr
, (3.69)

where n is the density of particles, and σr, σt are, respectively, the radial and transver-

sal velocity dispersions.

For the special case of isotropic velocity dispersion, σ2
r = σ2

t = σ2
v = const.,

Eq. (3.69) reduces to

σ2
v

dn

dr
= −nGM(r)

r2
; (3.70)

Eq. (3.70) can identified with Eq. (3.66) for ρ = nm, and kBT = mσ2
v. A solution of

Eq. (3.70), with a power law dependence for ρ(r), is

ρ(r) =
σ2

v

2πGr2
. (3.71)

The density profile, singular at the origin, describes a model known as SIS. Regular

solutions of Eq. (3.68) are known only numerically [15].

Since ρ ∝ r−2, the mass within r, M(r), is proportional to r; the rotational velocity

of a test-particle in a circular orbit in the gravitational potential is

v2
ROT(r) =

GM(r)

r
= 2σ2

v = const. (3.72)

The observed flat rotation curves of spiral galaxies are reproduced.

The projected mass density is

Σ(ξ) =
σ2

v

2G

1

ξ
. (3.73)

Then,

MSIS(ξ) =
πσ2

v

G
ξ, (3.74)

ISIS
N (ξ) =

πσ2
v

3G
ξ3. (3.75)

Since the total mass is divergent, we introduce a cut-off radius R � ξ. The cut-off

radius must be much larger than the Einstein radius in order to not significantly affect

the lensing behavior. For the SIS, the deflection angle reduces to

α̂SIS
1 (ξ, θ) = 4π

(
σv

c

)2
{

cos θ +
ω2

c

[
ξ

(
cos 2θ

3
+ 1

)
− R

]
− ω1

c
ξ
sin 2θ

3

}
, (3.76)

3The Jeans equation can be obtained by taking the first moment of the collisionless Boltzmann
equation [15].
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α̂SIS
2 (ξ, θ) = 4π

(
σv

c

)2
{

sin θ +
ω1

c

[
ξ

(
cos 2θ

3
− 1

)
+R

]
+
ω2

c
ξ
sin 2θ

3

}
. (3.77)

The correction couples kinematics, through the angular velocity, and geometry, through

the cut-off radius. As can be easily seen, the gravito-magnetic effect is significant when

ω

c
R

>∼ 10−3; (3.78)

In particular, in the inner regions (ξ � R), the above equations reduce to

α̂SIS
1 (ξ � R, θ) ' 4π

(
σv

c

)2 {
cos θ − Rω2

c

}
, (3.79)

α̂SIS
2 (ξ � R, θ) ' 4π

(
σv

c

)2 {
sin θ +

Rω1

c

}
; (3.80)

the correction derives from the mass outside the considered radius.

We can model a typical galaxy as a SIS with σv ∼ 200 km s−1, R
<∼ 50 kpc and

J ≡ IN(R)×ω ∼ 0.1M� kpc2s−1, as derived from numerical simulations [206]. It is,

ω

c
R ∼ G

c3
J
(
c

σv

)2

R−2 ∼ 10−3. (3.81)

The gravito-magnetic correction is quite significant, increases with the ordered motion

of the stars (i.e., with the angular momentum) and decreases with the random proper

motions (i.e., with the dispersion velocity).

In order to change to dimensionless variables, we introduce a length scale,

ξ0 = RE = 4π
(
σv

c

)2 DdDds

Ds

(3.82)

We consider a sphere rotating about the ξ2-axis, ω1 = 0, ω2 = ω. The scaled deflection

angle simplifies to

αSIS
1 (x1, x2) =

x1

|x| + L

(
2x2

1 + x2
2

|x| − 3

2
r

)
, (3.83)

αSIS
2 (x1, x2) =

x2

|x| + L
x1x2

|x| , (3.84)

where L ≡ 2
3

ωRE

c
is an estimate of the rotational velocity and r is the cut-off radius in

units of RE.

The determinant of the Jacobian matrix reads

ASIS(x1, x2) = 1 − 1

|x| − L
x1

|x|

(
3 − 2

|x|

)
+ L2

(
2x2

1 − x2
2

|x|2

)
(3.85)

and the deflection potential is

ψSIS(x1, x2) = (1 + Lx1)|x| −
3

2
Lrx1. (3.86)
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The corrected convergence is

kSIS =
1 + 3Lx1

2|x| ; (3.87)

k is positive when x1 > − 1
3L

. Since we have introduced a cut-off radius, our expressions

hold for x1
<∼ r: the tighter condition Lr < 1

3
guarantees k > 0 for all points in the

lens plane.

3.5.1 Non-rotating sphere

Let us first consider a non-rotating sphere [142, 172]. We obtain

kpN(x) =
1

2|x| , (3.88)

thus

m(x) = |x|, αpN(x) =
x

|x| ; (3.89)

the strength of the deflection angle is constant at

∣∣∣α̂pN
∣∣∣ = 4πσ2

v

c2
. (3.90)

The lens equation reads

y = x− x

|x| . (3.91)

Let us consider y > 0; for y < 1, there are two images, at x+ = y + 1 and x− = y − 1,

on opposite sides of the lens centre. It is x+ + x− = 2y. The lensed image x+ is

a minimum and x− is a saddle. For y = 1, there is one lensed image x+, which is a

magnified minimum, whereas the saddle lensed image x− disappears at the singularity.

For y > 1, only one image occurs at x+ = y + 1.

The magnification for an image at x is

µpN =
|x|

|x| − 1
. (3.92)

The magnifications of the lensed images are

µ+ = 1 +
1

y
, µ− =

1

y
− 1; (3.93)

They verify the relation µ+ − µ− = 2, i.e. the semi-difference of the lensed image

magnification is the magnification of the unlensed light source. In the limit y → 1,

the inner image becomes very faint. The total magnification of a point source is

µpN
TOT =

{
2/y (y ≤ 1)

(1 + y)/y (y > 1)
. (3.94)
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A light source at the origin, y = 0, appears as an infinitely bright circle at x = 1.

The tangential critical curve, |ξt| = RE, is the Einstein radius. The corresponding

angle is given by

θE = 4π
(
σv

c

)2 Dds

Ds
' 29

′′
(

σv

103km s−1

)2 Dds

Ds
. (3.95)

For a typical cluster of galaxies with a 1-dimensional velocity dispersion σv = 500 km s−1,

and for Ds ' 2Dd, the Einstein ring is about 0.5 arcmin.

The set of caustics consists of the point y = 0.

From Eq. (3.29), we find

γpN(x) = kpN(x) =
1

2|x| .

The images are stretched in the tangential direction by a factor |x/y| = |µ|, whereas

the distortion factor in the radial direction, |dx/dy|, is unity.

The deflection potential reduces to

ψ(x) = |x|; (3.96)

we can now determine the time delay between the two images from Eq. (1.102). It is

c∆T pN = (1 + zd)

[
4π
(
σv

c

)2
]2
DdDds

Ds
2y. (3.97)

Since cosmological distances scale as H−1
0 , once measured the time delay and known

the lens parameters, the Hubble constant can be measured.

3.5.2 Perturbative analysis

When the gravito-magnetic correction is considered, the inversion of the lens mapping

is not an easy task. However, under the condition L� 1, we can obtain approximate

solutions to the first-order in L, given by

x ' x(0) + Lx(1), (3.98)

where x(0) and x(1) denote, respectively, the zeroth-order solution, i.e. is a solution

of the lens equation for L = 0, and the correction to the first-order. Substituting

Eq. (3.98) in the corrected lens equation, we obtain the first-order perturbation,

x(1)1 = x2
(0) +

(
3

2
r − 2x(0) + x2

(0)

) x2
(0)1 − x3

(0)

x2
(0)(x(0) − 1)

, (3.99)

x(1)2 =
(

3

2
r − 2x(0) + x2

(0)

)
x(0)1x(0)2

x2
(0)(x(0) − 1)

. (3.100)
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Figure 3.1: A source (the grey circle) inside the caustic of a rotating SIS is multiply imaged
in a cross shaped pattern; the four filled box locate the four images. The empty boxes
represent the positions of the two unperturbed images. The critical line is also plotted. It is
r = 15 and L = 2.5×10−3.
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Figure 3.2: A source’s track, at y2 = 0.1, and the corresponding images produced by a
rotating SIS. The grey circles represent successive positions of the source. For each source
position, the centre of the coordinate-axes, the source (grey circle) and the two unperturbed
images (empty boxes) lie on a straight line. The images (filled boxes) are anticlockwisely
rotated, about the centre, with respect to this line. The critical line is also plotted. It is
r = 15 and L = 2.5×10−3.
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Figure 3.3: Relative variation in the estimate of the Hubble constant for a source moving
with y2 = 0.1. It is r = 15 and L = 2.5×10−3.

The critical curve is slightly distorted. The solution of detA(x1, x2) = 0, with

respect to x2, is

x2(x1) = ±
{

1√
2(1 − L2)

(
1 − 2x2

1 + 2Lx1 + 7L2x2
1 + 4L3x1 + 4L4x2

1

+ (1 + 3Lx1)
√

1 − 2Lx1 − 3L2x2
1 + 8L3x1 + 12L4x2

1

) 1
2

}
(3.101)

' ±


√

1 − x2
1 +

x1√
1 − x2

1

L+
2 − 4x2

1 + x4
1

2(1 − x2
1)

3/2
L2


 , (3.102)

where the above approximate solution holds for x1 < 1. The critical curve intersects the

x1-axis in x1 = − 1
1+L

' −1+L−L2 and x1 = 1
1−L

' 1+L+L2. The gravito-magnetic

correction changes the width of the curve from 2 to 2(1 + L2). The maximum height

is for x1 ' L, when x2 ' ±
(
1 + 3

2
L2
)
; the total maximum height becomes 2(1 +3L2).

So, the area of the critical curve slightly grows and its centre shifts of L along the

x1-axis.

By mapping the four extremal points of the critical curve onto the source plane

through the lens equation, we can determine the corresponding cusps of the caustic. It

is a diamond-shaped caustic with four cusps, centred in (y1, y2) =
(
L(3

2
r − 1), 0

)
. The

axes, of semi-width ∼ L2, are parallel to the coordinate axes. The orientation and the

position on the caustic depends on both the strength and orientation of the angular

momentum and on the radius of the lens. A source outside (inside) the caustic has two
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(four) images. When the source is inside the caustic, it is imaged in a cross pattern,

see Fig. (3.1); since the axial symmetry is broken by the gravito-magnetic field, the

Einstein ring is no more produced.

In Fig. (3.2), we plot the images of a source moving in the source plane. With

respect to the non-rotating case, the images are rotated anti-clockwisely for L > 0.

Neglecting the gravito-magnetic correction in the analysis of a gravitational lensing

system induces an error in the determination of some quantities. We want to study

the case of the Hubble constant. As Refsdal realized in 1964 [152], any gravitational

lensing system can be used to determine the Hubble constant. In fact, the geometrical

time delay is simply proportional to the path lengths of the rays which scale as H−1
0 ;

the potential time delay, as can be seen from Eq. (2.10), scales as a physical length

and has the same scaling H−1
0 . We have

H0∆T = F(σv, ..., zd, zs,Ωi0). (3.103)

The dimensionless function F depends on the lens parameters and on the cosmological

density parameters, but this last dependence is not very strong. A lens model which

reproduces the positions and magnifications of the images provides the scaled time de-

lay H0∆T between the images. Therefore, a measurement of ∆T will yield the Hubble

constant. Let us consider a rotating galaxy, described by a SIS, with known dispersion

velocity and redshift, which multiply images a background quasar, at redshift zs. An

observer measures the time delay between the two images, ∆T = ∆TGRM, and their

positions, xa and xb; the source position y is unknown. If, to analyse the data, we use

a non rotating lens model, from the position of the images, the non-correct estimated

position of the source, through the lens equation, is

ySTAT =
∑
a,b

xi −
xi

|xi|
; (3.104)

the estimated Hubble constant is

HST
0 =

1

∆T
F (zd, zs, σv)2y

ST , (3.105)

where F (zd, zs, σv) ≡ (1 + zd)
[
4π
(

σv

c

)2
]2

rdrds

rs
and r is the angular diameter distance

in units of c/H0. Since

H0 =
1

∆T
F (zd, zs, σv)|φ(xa,y) − φ(xb,y)|, (3.106)

the relative error in the determination of the Hubble constant is

∆H0

H0
=

2ySTAT − |φ(xa,y) − φ(xb,y)|
|φ(xa,y) − φ(xb,y)| ; (3.107)

numerically, we find that the maximum error is ∼ 1
2

∣∣∣ L
y2

∣∣∣ for a source moving at fixed y2.

In Fig. (3.3), we plot the relative error for a source moving at y2 = 0.1 for L = 0.0025

and r = 15. These are typical values for a galaxy with σv ∼ 200Km s−1, R ∼ 50Kpc

J ∼ 0.04M�Kpc s−1, when zd = 0.3 and zs = 1. In this case, the error is
<∼ 1%.
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3.6 Isothermal sphere with finite core

Analytical solutions of Eq. (3.69), without a central singular cusp, are not known.

To obtain a regular profile, let us consider an IS with a finite core radius rc, which

determines the scale over which the distribution falls off. The mass density is

ρIS(r) =
σ2

v

2πG

(
1

r2
c + r2

)
, (3.108)

with central mass density

ρ0 =
σ2

v

2πG

1

r2
c

; (3.109)

σv is the velocity dispersion at radius much larger than rc [172]. In this model, the

velocity dispersion goes to zero at the origin. The surface mass density is

ΣIS(ξ) =
σ2

v

2G

1

(ξ2 + ξ2
c )

1/2
, ξc ≡ rc. (3.110)

We use the same length scale ξ0 as in Eq. (3.82); ξ0 can be now expressed as

ξ0 =
2πr2

cρ0

Σcr
.

The corresponding dimensionless surface mass density is

kpN(x) =
1

2
√
x2 + x2

c

, (3.111)

where xc = ξc/ξ0. We have,

M IS(ξ) =
πσ2

v

G
ξc




1 +

(
ξ

ξc

)2



1
2

− 1


 , (3.112)

or, in a dimensionless form,

m(x) =
√
x2 + x2

c − xc; (3.113)

without introducing a cut off radius, the total mass diverges.

The projected momentum of inertia is [181]

I IS
N (ξ) =

πσ2
v

3G
ξ3
c


2 +



(
ξ

ξc

)2

− 2




1 +

(
ξ

ξc

)2



1
2


 . (3.114)
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3.6.1 Non-rotating sphere

Let us consider static spheres. The potential, as derived from Eq. (3.111), is

ψpN(x) =
√
x2 + x2

c − xc ln[xc +
√
x2 + x2

c ] + const. (3.115)

where the constant depends on xc.

The convergence may or may not to be critical. Since d
dx
kpN(x) < 0, multiple

images can be produced only if

kpN(0) =
1

2xc
> 1,

that is, xc <
1
2
. This condition gives a relation between the dispersion velocity and

the core radius,

θc < 2π
(
σv

c

)2 Dds

Ds

; (3.116)

in order to produce large arcs, a deflector must have a large velocity dispersion, i.e. a

large mass, and a small core radius, well below the Einstein ring.

The tangential critical line is located at

xt =
√

1 − 2xc; (3.117)

the radial critical line is at

xr =
(
xc

2

)1/2√
2 − xc −

√
xc

√
4 + xc. (3.118)

3.7 Power law models

Power law models can be considered as a generalization of the ISs [172], and are often

adopted to model mass distribution in clusters of galaxies by lensing inversion [178].

They include models with smooth and non-singular matter distributions. The surface

mass density is

Σ(ξ) = Σ0
1 + p(ξ/ξc)

2

[1 + (ξ/ξc)2]2−p
. (3.119)

ΣPL
0 is the central surface mass density, ξc is the core radius, the slope parameter p

determines the softness of the mass profile of the lens; for ξ � ξc, Σ ' Σ0pξ
2(p−1).

The total mass diverges, so that a sufficiently large cut-off radius must be introduced.

Let us consider values 0 ≤ p ≤ 1/2. For p = 0, the distribution is called a Plummer

model; a power law model with p = 1/2 approximates the isothermal sphere at a large

radius. It is [181],

MPL(ξ) = πΣ0ξ
2


1 +

(
ξ

ξc

)2



p−1

, (3.120)
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and

IPL
N (ξ) =

πΣ0ξ
4
c

p(1 + p)




1 +

(
ξ

ξc

)2



p−1 
1 + (1 − p)

(
ξ

ξc

)2

+ p2

(
ξ

ξc

)4

− 1


 . (3.121)

3.7.1 Non-rotating sphere

In what follows, we will consider non-rotating models. As a length scale, we choose

ξ0 = ξc. The dimensionless surface mass density becomes

kpN(x) = k0
1 + px2

(1 + x2)2−p
; (3.122)

from Eq. (3.21), we obtain the deflection potential

ψpN(x) =
k0

2p

[
(1 + x2)p − 1

]
, p 6= 0, (3.123)

which, in the limit p→ 0, reduces to

ψpN(x) =
k0

2
ln(1 + x2), p = 0. (3.124)

The lens equation reads

y = x− αpN(x) = x− k0
x

(1 + x2)1−p
. (3.125)

Roots must be found numerically.

For k0 > 1, the tangential critical line is located at x = xt,

xt =
√
k

1/(1−p)
0 − 1; (3.126)

the radial critical curve, x = xr, is determined by the equation,

1 − k0(1 + x2
r )

p−2[1 + (2p− 1)x2
r ] = 0. (3.127)

which has analytical solutions for xr only for p = 0 e p = 1/2, respectively,

xr =

√√
2k0 + k2

o

4
− 1 − k0

2
, (p = 0),

xr =
√
k

2/3
0 − 1, (p = 1/2).

As can be numerically verified, xr increases with k0 and p [172]. The corresponding

caustic in the light source plane is located at | y(xr) |= yr, where

yr =
2(1 − p)x3

r

1 − (1 − 2p)x2
r

. (3.128)

Sources with | y |< yr have three images, sources with | y |> yr have only one image.

For 0 < y < yr, one image is of type I (located at x > xt), one image is of type II

(located at −xt < x < −xr) and one image is of type III (located at −xr < x < 0).

The magnification of an image is

µpN =

[
1 − k0

(1 + x2)1−p

]−1 [
1 − k0

(1 + x2)2−p
[1 + (2p− 1)x2]

]−1

. (3.129)
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3.8 The homogeneous sphere

Let us consider a homogeneous sphere of radius R and volume density ρ0. It is [181]

Σ(ξ) = 2ρ0

√
R2 − ξ2, if ξ ≤ R, (3.130)

or Σ(ξ) = 0 elsewhere;

M(ξ) = MTOT


1 −


1 −

(
ξ

R

)2



3
2


 , if ξ ≤ R, (3.131)

or M(ξ) = MTOT elsewhere, MTOT ≡ 4
3
πR3ρ0;

IN(ξ) = ITOT
N


1 −


1 −

(
ξ

R

)2



1
2

1 +

1

2

(
ξ

R

)2

− 3

2

(
ξ

R

)4



 , if ξ ≤ R, (3.132)

or IN(ξ) = ITOT
N elsewhere, ITOT

N ≡ 8
15
πR5ρ0;

For light rays outside the lens, ξ > R, the deflection angle is

α̂1(ξ, θ) =
4G

c2

{
MTOT

ξ
cos θ +

ITOT
N

ξ2

(
ω2

c
cos 2θ − ω1

c
sin 2θ

)}
, (3.133)

α̂2(ξ, θ) =
4G

c2

{
MTOT

ξ
sin θ +

ITOT
N

ξ2

(
ω1

c
cos 2θ +

ω2

c
sin 2θ

)}
. (3.134)

Let us consider a lens rotating about the ξ2-axis (ω1 = 0, ω2 = ω) and a light ray

in the equatorial plane, θ = 0. The deflection generated by the gravito-magnetic field

is

α̂GRM =
4G

c3
J

ξ2
. (3.135)

The gravito-magnetic correction is significant if

ITOT
N

MTOT

ω

c ξ
=

J

MTOT c ξ
>∼ 10−3, (3.136)

where J ≡ IN×ω is the angular momentum. To have a non-negligible gravito-magnetic

effect, the angular momentum of the lens has to be non-negligible compared to the

angular momentum of a particle of mass MTOT and velocity c in a circular orbit of

radius ξ around the rotation axis.

Let us change to dimensionless variables. As a natural length scale we introduce

ξ0 = RE =

√
4GMTOT

c2
DdDds

Ds
. (3.137)
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The scaled deflection angle inside the lens (x ≤ r, where r is the lens radius in units

of the scale length), for a lens rotating about the x2-axis, becomes

α1(x1, x2) =
x1

|x|2


1 −


1 −

(
|x|
r

)2



3
2




− U
x2

1 − x2
2

|x|4




1 −

(
|x|
r

)2



3
2

1 +

3

2

(
|x|
r

)2

− 1




− 5

2
U

1

r2


1 +

3

2

(
|x|
r

)2

 , (3.138)

α2(x1, x2) =
x2

|x|2


1 −


1 −

(
|x|
r

)2



3
2


 (3.139)

− 2U
x1x2

|x|4




1 −

(
|x|
r

)2



3
2

1 +

3

2

(
|x|
r

)2

− 1


 ,

where U ≡ J
cMTOTRE

is the ratio between the angular momentum of the lens and that

of a particle of mass MTOT and velocity c in a circular orbit at the Einstein radius.

Outside the lens radius (x > r), the scaled deflection angle reads

α1(x1, x2) =
x1

|x|2 + U
x2

1 − x2
2

|x|4 , (3.140)

α2(x1, x2) =
x2

|x|2 + 2U
x1x2

|x|4 . (3.141)

The determinant of the Jacobian matrix is

detA = 1 − 1

|x|4 − 4U
x1

|x|6 − 4U2 1

|x|6 . (3.142)

The deflection potential can be expressed as

ψ(x1, x2) = ln |x| − U
x1

x2
. (3.143)

3.8.1 Non-rotating sphere

Let us first consider the non-rotating case, U = 0. The dimensionless surface mass

density is

kpN(x) =
3

2

1

r2

[
1 −

(
x

r

)2
] 1

2

. (3.144)

The scaled deflection angles reduces to

αpN(x) =




x
x2

[
1 −

(
1 −

(
x
r

)2
) 3

2

]
, x < r

x
x2 , x ≥ r

. (3.145)
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Figure 3.4: The Paczyński curve for a source moving with y2 = 0.2.

Multiple images can be produced if kpN(0) > 1, i.e. r <
√

3/2. If r <
√

3/2, there are

both a radial critical curve and a tangential critical curve. The radial critical curve is

located at

xr =
r

2
√

2

[
(48 − 32r2 + r8)

1
2 − r4

]1/2
. (3.146)

If r < 1, the tangential curve is located at the Einstein radius, xt = 1; if 1 ≤ r ≤
√

3/2,

it is

xt =
r√
2

[
3 − r4 − (r2 − 1)3/2(3 + r2)1/2

]1/2
. (3.147)

Point mass

Let us consider a point mass (r = 0) at the origin. This model is known as the

Schwarzschild lens. The lensing quantities are like those of an homogeneous sphere,

outside the radius. For a non rotating lens, the lens equation,

y = x− 1

x
(3.148)

has two solutions

x± =
1

2

(
y ±

√
y2 + 4

)
; (3.149)

the lensed image x+ lies outside the Einstein ring (on the same side of the source), while

x− is inside (on the side opposite the source). It is x+ + x− = y. The magnification is

µpN =

(
1 − 1

|x|4

)−1

. (3.150)

It is easy to verify that x+ is a minimum and is magnified and x− is a de-magnified

saddle. As the light source moves to infinity y → ∞, the lensed image x+ goes
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to infinity too and µ(x+) → 1. The saddle image becomes dimmer and dimmer,

µ(x−) → 0, and it tends towards the point mass.

The difference in lensed image magnifications is the magnification of the unlensed

light source, |µ(x+)| − |µ(x−)| = 1. The total magnification is the sum of the absolute

values of the two magnifications. It can be expressed in terms of the source position

as

µTOT = µ(x+) − µ(x−) =
y2 + 2

y
√
y2 + 4

. (3.151)

When the source lies on the Einstein radius (y = 1), the total magnification becomes

µ = 1.34, corresponding to a brightening by 0.32 magnitudes.

Unless the lens is very massive (M > 106M� for a cosmologically distant source),

the angular separation of the two images is too small to be resolved and is is not

possible to see the multiple images. However, a lensing event by a point mass can

still be detected if the lens and the source move relative to each other, giving rise to

lensing-induced time variability of the source [36, 75]. This kind of variability, when

induced by stellar masses lens, is referred to as microlensing. Microlensing was first

observed in the multiply-imaged quasar QSO 2237+0305 [92]. As first suggested by

Paczyński [134], MACHOs in the galaxy can be searched monitoring millions of stars

to look for a light magnification in a small fraction of the sources. The corresponding

light curves, known as Paczyński curves, are described by the last term of Eq. (3.151).

In Fig. (3.4), we plot the Paczyński curve for a source moving at y2 = 0.2.

The time delay between the two images is

c∆T pN =
4GM

c2
(1 + zd)τ(y), (3.152)

where

τ(y) =
y

2

√
y2 + 4 + ln

√
y2 + 4 + y√
y2 + 4 − y

. (3.153)

If y = 0, the source appears as an infinitely magnified ring at the Einstein radius.

3.8.2 Perturbative analysis

To study how the positions of the images are perturbed by the gravito-magnetic term,

we proceed as for the SIS case. Under the condition U � 1, we can obtain approximate

solutions to the first-order in U , given by

x ' x(0) + Ux(1), (3.154)

where, again, x(0) and x(1) denote the zeroth-order solution and the correction to the

first-order. Using the expressions for the unperturbed images, we obtain the first-order
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Figure 3.5: A source’s track, y2 = 0.2, and the corresponding images produced by a homo-
geneous rotating sphere. Grey circles indicates successive source positions. As the source
moves, the centre of the coordinate-axes, the source (grey circle) and the two unperturbed
images (empty boxes) lie on a straight line. For every source position, two images (filled
boxes) are anticlockwisely rotated, about the centre, with respect to this line; a third image
forms near the centre. The main critical curve is also plotted. It is U = 10−2.
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Figure 3.6: The relative variation in the total light amplification for a point source moving
with y2 = 0.2 with respect to the static case. It is U = 10−2.
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perturbation,

x(1)1 =
x2

(0)2 − x2
(0)1 + 1

x4
(0) − 1

, (3.155)

x(1)2 =
−2x(0)1x(0)2

x4
(0) − 1

. (3.156)

Together with these two perturbed images, a third, highly de-magnified image, is pro-

duced near the centre. When the source is at (−U, 0), the third image is superimposed

to the source. The corresponding magnification factor is ∼ U4. As can be numerically

verified, for a large range of source positions, the third image forms near (−U, 0).

The gravito-magnetic correction changes the number of critical curves: besides the

main critical curve, which is a slight modification of the Einstein circle, a secondary

critical curve forms. The equation for the main critical curve is

x2(x1) = ±
{
−x2

1 +
[
54U(U + x1) +

√
27
√

(108U(U + x1))2 − 1
]− 1

3

(3.157)

+
1

3

[
54U(U + x1) +

√
27
√

(108U(U + x1))2 − 1
] 1

3

}

' ±


√

1 − x2
1 + U

x1√
1 − x2

1

+ U2 1 − 3
2
x2

1

(1 − x2
1)

3/2


 , (3.158)

where the above approximate solution in Eq. (3.158) holds for x1 < 1. The main

critical curve intersects the x1-axis in x1 ' −1 +U − 3
2
U2 and x1 ' 1 +U − 3

2
U2. The

gravito-magnetic correction changes the width of the curve from 2 to 2(1− 3
2
U2). The

maximum height is for x1 ' U , when x2 ' ±
(
1 + 3

2
U2
)
; the maximum total height

changes to ∼ 2(1 + 3
2
U2). So, the main critical curve is slightly compressed and its

centre is shifted of U along the x1-axis.

The main critical curve is mapped in a diamond-shaped caustic with four cusps.

The main caustic is centred in (y1, y2) = (U, 0) and its axes, parallel to the coordinate

axes, are of semi-width ∼ 2U2.

A secondary critical curve forms. It is centred at (x1, x2) = (−2U, 0), and has a

width ∼ O(U3). It is mapped in a secondary caustic, far away from the central one,

centred at (y1, y2) ∼
(

1
4U

− 2U ∼ 1
4U
, 0
)
.

A source moving inside a caustic changes the number of images from three to five.

When a source is inside the main central caustic, four images form near the coordinate-

axes, in a cross pattern; the fifth image forms near the centre. In Fig. (3.5), we plot

the images of a source moving in the source plane. With respect to the non-rotating

case, the images are rotated anti-clockwisely for U > 0.

Let us consider how the gravito-magnetic field perturbs the Paczyński curve. Nu-

merically, we find that the maximum relative variation for a source moving parallelly
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to the ŷ1-axis, is ∼ 1
2

∣∣∣ U
y2

∣∣∣. In Fig. (3.6), we plot the relative variation in the total

magnification, induced by a rotation with U = 0.01, for a source moving at y2 = 0.2.

3.9 Point-mass in metric tensor theories

The simplicity of the point-like lens makes it possible a full treatment of its lensing

properties in the general framework of metric tensor theories of gravity [180]. The

Newtonian potential of a particle of mass M at the centre of the system of coordinates

is

U = −GM|x| . (3.159)

The lensing quantities, Eqs. (1.84,1.107), at the post-Newtonian order, reduce to

c∆T pN
pot = −2(1 + γ)(1 + zd)

GM

c2
ln

(
ξ

ξ0

)
, (3.160)

and

αpN(ξ) = 2(1 + γ)
GM

c2
ξ

ξ2
. (3.161)

The ppN correction is easily calculated. It is

∫ source

observer
U2dl ' (GM)2

∫ +∞

−∞
1

ξ2 + l2
dl = π

(GM)2

ξ
. (3.162)

Then,

c∆T ppN
pot = π

[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
]
(1 + zd)

(
GM

c2

)2 1

ξ
, (3.163)

and

αppN(ξ) = π
[
3

2
− β + γ

(
1 − γ

2

)
+

3

4
ε
] (

GM

c2

)2 ξ

ξ3
. (3.164)

As above remarked, since metric theories of gravity are classical non-quantized

theories, the classical angular momentum of a particle goes to zero as its size goes to

zero. In order to compare the effect of dragging of inertial frames on the deflection

angle with the ppN contribution, we have to use the results for a finite homogeneous

sphere. For a deflector rotating about the ξ2-axis with angular momentum J , it is,

outside the lens radius [181]

αGRM
1 (ξ, θ) = µ

4G

c3
J

ξ2
cos 2θ, (3.165)

αGRM
2 (ξ, θ) = µ

4G

c3
J

ξ2
sin 2θ, (3.166)
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where ξ and θ are the polar coordinates in the lens plane. The gravito-magnetic field

breaks the circular symmetry. Both the ppN and the gravito-magnetic contributions

to the deflection angle decrease as ξ−2.

The magnitudes of the different contributions to the deflection angle are considered

by investigating real astrophysical systems acting as lenses. It is enough to use the

values of the coefficients in general relativity, β = γ = ε = µ = 1. We will consider

light rays in the equatorial plane (θ = 0).

The post-Newtonian deflection angle for rays grazing the solar limb is 1.75 arcsec;

αppN is about 8 µarcsec, where the contribution of the non-standard ε coefficient is

∼ 2 µarcsec. Given the angular momentum of the Sun, J� ' 1.6×1048g cm2s−1 [4],

the gravito-magnetic correction is ∼ 0.7 µarcsec. Very Long Baseline Interferometry

(VLBI) has improved the accuracy of the measurements of the deflection of radio waves

by the Sun to the milliarcsec level. This is not enough to measure the higher order

ppN and gravito-magnetic contributions, so that the parameters β, ε and µ cannot

be determined. However, strong constraints on γ can be put. It is γ = 1.000 ± 0.002

[157], an impressive confirmation of the prediction by general relativity. In Brans-Dicke

theory, this measurement constrains the ω parameter, ω
>∼ 500.

For an early type star, J = 102J�
(

M
M�

)5/3
[106]. For M = 1.4M�, R = 1.1R�

and for a light ray grazing the star’s limb, αpN ' 2.23 arcsec, αppN ' 13 µarcsec,

αGRM ' 0.10 milliarcsec. The gravito-magnetic correction is ∼ 4×10−3% of the zero

order angle; it overwhelms the ppN one by an order of magnitude.

The gravito-magnetic field becomes even more significant for a fast rotating white

dwarf, where J ∼
√

0.2GM3R [137]. For M ∼ M�, R ∼ 10−2R�, ξ ∼ 6R, αpN ' 29.2

arcsec, αppN ' 76 µarcsec, αGRM ' 0.032 arcsec. In this case, the gravito-magnetic

correction is quite important. It is ∼ 0.1% of the post-Newtonian term.

Now, we want to apply our approximation to a galaxy acting as a lens. We take

M = 1012M�, R ' 50 kpc and J ∼ 0.1M� kpc2s−1, as derived from numerical

simulations [206]. It is αpN ' 0.80 arcsec, αppN ' 1.6 µarcsec, αGRM ' 0.16 milliarcsec.

The gravito-magnetic correction overwhelms the ppN one by two orders of magnitude.



Chapter 4

Lensing by clusters of galaxies

Although the results listed in Section 1.8 are really compelling, it is still useful to

develop new tools for the determination of the cosmological parameters. Many of

the listed methods are affected by shortcomings, like poorly controlled systematic

errors or large numbers of model parameters involved in the analysis. An independent

constraint can improve the statistical significance of the statement about the geometry

of the universe and can disentangle the degeneracy in the space of the cosmological

parameters.

Gravitational lensing systems have been investigated as probes of dark energy.

Gravitational lensing statistics [44, 208, 212, 228], effects of large-scale structure growth

in weak lensing surveys [13] and Einstein rings in galaxy-quasar systems [68, 225] are

very promising ways to test quintessence. Here, we investigate clusters of galaxies

acting as lenses on background high redshift galaxies.

Clusters of galaxies are the largest gravitationally bound entities in the cosmos.

They have the higher galaxy number density in the sky, with some hundreds up to

a thousand galaxies. Several thousands of galaxy clusters are known today. Their

masses can exceed 5×1014M�, and their radii are typically 1.5 Mpc.

A hot, dilute plasma with temperature in the range 107−108 K and density of 10−3

particles per cm3 emits through thermal bremsstrahlung rendering the galaxy clusters

the most luminous X-ray sources in the sky (1043-1045 erg s−1). Assuming that the

intra-cluster gas is in hydrostatic equilibrium in the total gravitational potential, mass

estimates can be derived from X-ray observations. Typical results agree up to a factor

∼ 2 with the mass estimates from the kinematics of cluster galaxies based on the virial

theorem.

The feasibility of clusters of galaxies, acting as lenses on background galaxies,

to provide information on the universe is already known [23, 64, 69, 116, 117, 136].

Provided that the modeling of the lens is constrained, once both the position of a

85
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critical line and the redshift of the corresponding source population are measured,

it is possible to gain an insight into second-order cosmological parameters contained

in angular diameter distances ratios [39, 74]. In addition to observations of arcs, a

statistical approach based on magnification bias [25, 64, 121] can as well locate the

critical lines (locations of maximum amplification) corresponding to background source

populations.

In this Chapter, we will explore, following [178], the feasibility of clusters of galaxies

in probing both the amount and the equation of state of quintessence in the universe.

We assume general relativity holds and that the universe, assumed to be flat, expands

according to the Friedmann’s equations. We model the dark energy equation within

the ansatz wX = const. These approximations have been discussed in Section 1.8.2.

The Chapter is as follows. In Section 1, we shortly review the lensing effects pro-

duced by a cluster of galaxies on background sources. In Sections 2 and 3, we discuss

how the position of a critical line can be observationally detected. In Section 2, we

shortly remember some features of the luminous giant arcs, highly elongated images of

galaxies which form near critical curves. Section 3 discusses how the number density

of background galaxies is affected by gravitational lensing; an analysis of a depletion

curve, i.e. the radial variation in the surface number density, also allows to locate

critical curves. In Section 4, we outline the method. Cosmological parameters enter

the lens equation through the angular diameter distances. Once obtained indepen-

dent information about the lensing system, some combinations of angular diameter

distances can be determined. The method can help to distinguish between accel-

erating and decelerating models of the universe. Furthermore, since the position of

critical lines is affected, especially in low-matter density universes, by the properties of

quintessence, the observations of a suitable number of lensing clusters at intermediate

redshifts can determine the equation of state. An application of the method to the

cluster CL 0024+1654 is discussed in Section 5. It supports a flat accelerating uni-

verse dominated by dark energy. In Section 6, we discuss some systematics affecting

the method.

4.1 Lensing regimes

The shape, brightness and number density of galaxies that are located behind clusters

of galaxies are affected by the gravitational distortion of the massive galaxy cluster in

the foreground. Three distinct modes of lensing phenomena are observed with clusters:

1. The strong regime. Rich centrally condensed clusters can occasionally produce

giant luminous arcs, see Fig. (4.1), when a background galaxy happens to be

aligned with one of the cluster’s caustics. A fit to the observed images can be
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Figure 4.1: HST images of the galaxy cluster CL 0024+1654 with a multiple images of a
blue background galaxy. From http://www.nasa.gov.

performed with a parameterized lens model.

2. Every cluster produces slightly distorted images of background galaxies, known

as arclets [65, 201]. This phenomenon, referred to as weak lensing, acts on a

large region of sky. The statistically coherent small deformation of the shape

of the sources can be used to determine a parameter-free-two-dimensional mass

map of the lensing cluster [95].

3. Number counts of background galaxies are depleted in the cluster centre. This

effect provide a method for measuring the projected mass distribution of the

lens, based solely on gravitational magnification of background population by

the cluster gravitational potential.
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Both observations in points 1 and 2 help to locate critical lines.

4.2 Giant luminous arcs

Rich clusters of galaxies at redshift beyond ∼ 0.2 can be very effective lenses. In

Fig. (4.1), one of the most spectacular systems of multiple arcs is represented. Einstein

radii are, usually, of the order of 20 arcsec. Einstein rings can be produced only

by lenses with spherical mass distribution in a perfect alignment with the source.

However, intrinsic asymmetries and substructures increase the ability of clusters to

produce arcs because they increase the shear and the number of cusps in caustics

[142, 172]. The largest arcs, in fact, are formed from sources on cusp points, because

three images of a source merge to form a curved arc. At the so called lips and beak-to-

beak caustics similarly large arcs are formed [142, 172]. Sources on a fold caustic give

rise to two images close to, and on the opposite sides, of the corresponding critical curve

in the lens plane [142, 172]. They are elongated in the direction of their separation.

When the source moves onto the caustic, a fusion of the two images occurs and a fairly

straight, highly elongated image is produced.

4.3 Number density of images

Gravitational lensing by clusters of galaxies can affect the measured number counts

of background galaxies [24, 25, 175]. This effect results from the competition between

the gravitational magnification of faint sources above the observed magnitude limit

(at least for marginally resolved objects) and the deviation of light beam towards

the deflecting mass that spatially enlarge the observed area and thus decreases the

apparent density of sources.

Let us assume a homogeneous distribution of the unlensed faint galaxies. Their

number density n0(S, z), where S is the flux and z the redshift, can be expressed as

n0(S, z) = pz(z)F (S), (4.1)

where pz(z) is the normalized redshift distribution and F (S) is the distribution in

flux. n0(S, z) is the intrinsic count in the absence of the lens, as can be obtained from

counts in a nearby empty field. The factorization in Eq. (4.1) is not valid in general,

but holds over a limited range of flux. However, since magnifications are large only in

the very central parts of the cluster, Eq. (4.1) is applied over a quite small range. If

Eq. (4.1) is not assumed, then the redshift distribution of sources locally will depend

on the magnification.
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The observed number density of galaxies with redshift z and flux larger than S is

a function of the position. It is

n(> S, z, θ) = pz(z)
1

|µ(θ, z)|F
(

S

|µ(θ, z)|

)
; (4.2)

the factor 1/|µ| account for the dilatation of the projected area. The total number

density of galaxies with flux larger than S is obtained through integration in the

redshift distribution,

n(> S, θ) =
∫ ∞

0
dzpz(z)

1

|µ(θ, z)|F
(

S

|µ(θ, z)|

)
. (4.3)

If F (> S) ∝ S−α, Then Eq. (4.3) becomes

n(> S, θ) = n0(> S)
∫ ∞

0
dzpz(z)|µ(θ, z)|α−1 ≡ n0(> S)〈|µ(θ, z)|α−1〉z. (4.4)

From Eq. (4.4), we see that the number density does not change if α = 1; in regions

of magnification (|µ| > 1), the number density increases (decreases) for α > 1 (α < 1)

Averaging Eq. (4.4) over the data field U , we obtain

〈n(> S, θ)〉U ≡ 1

U

∫
U
n(> S, θ)d2θ = n0(> S)〈|µ(θ, z)|α−1〉z,U , (4.5)

where U is the area of the data field. The ratio of the number of observed galaxies

in the field U to the number U×n0(> S) which would be observed in the absence

of gravitational lensing gives 〈|µ(θ, z)|α−1〉z,U . 〈|µ(θ, z)|〉z is a local observable only

given the ansatz in Eq. (4.1) with F (> S) ∝ S−α. Without these assumptions, the

observable quantity is, in general, a different one. Galaxy counting can give both local

information, Eq. (4.4), or global information, Eq. (4.5), on the data field.

The above relations can be expressed in terms of the magnitude m of a source,

m = −2.5 log10 S + cost.

For a single source redshift, Eq. (4.4) becomes

n(< m, θ, z) = n0(< m)|µ(θ, z)|2.5ζ−1 , (4.6)

with ζ slope of the intrinsic counting of galaxies

ζ ≡ d logn(< m, z)

dm
=

α

2.5
. (4.7)

With our hypotheses,
d logn0

dm
=
d logn

dm
.

The critical value α = 1 corresponds to ζ = 0.4.

The number density n0(> S) is regarded as an universal function and has been

measured in several colours down to very faint magnitudes. For the counts in B at

26 < B < 27.5, it is ζB = 0.17 ± 0.02 [64, 199]. I-galaxies at 24 < I < 26.5 have

ζI = 0.25 ± 0.03 [64, 186].
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Figure 4.2: Depletion curve obtained in CL 0024+1654 in the range 25 < mI < 26.5 for
the I-selected galaxies. The data are the filled circles with error bars. A depletion, ending
at RI = 60 arcsec, is detected . The full line shows a fit. From [64].

4.3.1 Depletion curves

The depletion curve is the variation along the radial direction in the surface density of

background galaxies around a massive cluster of galaxies. When ζ < 0.4, a decrease of

the number of galaxies is expected in region of magnification. The effect is maximum

at the critical radius. In general, the critical radius increases with the redshift of the

background sources. Galaxies at different redshift will show different radial depletion

curves, with their minima deferring by an amount which depends on the respective

locations of the critical curves. The overall depletion curve results from the superim-

position of the depletion curves of galaxies at different redshift; the sharp minimum is

replaced by a plateau ranging from the critical line of the lower redshift population to

the critical line of the larger redshift one, see Fig. (4.2).

Let us consider a non rotating singular isothermal sphere (SIS) as a deflector. The

projected density mass Σ of the SIS is, in angular variables, see Section (3.5),

Σ(θ) =
σ2

v

2G

1

Ddθ
, (4.8)

where σv is the velocity dispersion and θ the angular position in the sky. The magni-
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Figure 4.3: The left panel shows the depletion by a SIS. The top left panel shows the
locations of the critical line for different source redshifts and the right panel shows the
corresponding depletion curves. The bottom left panel is the overall depletion curve. A
plateau appears instead of a single peaked minimum . From [122].

fication is

|µ| =

∣∣∣∣∣ θ

θ − θt

∣∣∣∣∣ , (4.9)

where θt is the angular radius of the tangential critical curve. The depletion curve, see

Fig. (4.3), turns out

n(θ) = n0

∣∣∣∣∣1 − θt
θ

∣∣∣∣∣
1−2.5ζ1

. (4.10)

When ζ1 < 0.4, the number density vanishes at the critical radius θt, whereas, at large

distances, it goes to n0; in the very inner parts of the cluster (θ < θt), the number of

galaxies is increased.

A population source with ζ2 > 0.4 has an opposite behaviour. Let us compare its

properties with those of a population with ζ1 < 0.4. We consider the ratio R,

R ≡ n2(< m, θ)

n1(< m, θ)
= R0|µ|2.5(ζ2−ζ1)(θ, z). (4.11)

An example of population of type 2 are the bluest galaxies, ζB ≈ 0.5, whereas faint red

source population have ζR ≈ 0.15 [24]. Near the tangential critical curve, the region

where giant luminous arcs are formed, the ratio in Eq. (4.11) between blue and red

galaxies is maximum: usually giant arcs are blue. On the other hand, in the inner

region of a cluster, the colour of the de-magnified galaxies will be red.

We remind that the slope of the distribution in magnitude, ζ(< m, z), is an in-

creasing function of the redshift [25].



92 Chapter 4. Lensing by clusters of galaxies

0 2 4 6 8 10
z

0

0.1

0.2

0.3

0.4

D
A

ΩM =0 .2 wX =-.6

ΩM =0.3 wX = -1

Figure 4.4: The angular diameter distance for two different flat, homogeneous FLRW uni-
verses. It is zd = 0. The distance is in units of c/H0.

4.4 How critical lines depend on dark energy

The study of critical lines in a gravitational lensing system is a potentially important

tool to probe the content of dark energy in the universe and to constrain its equation

of state, as already shown in the case of galaxy-quasar lensing in [68, 225]. This type of

cosmological investigations requires an accurate modeling of the lens, the observation

of a critical line and the knowledge of the redshifts of both the lens and the deflected

source [23, 64, 116].

For a spherically symmetric non rotating lens, the tangential critical line is deter-

mined by Eq. (3.34),

θt =

√
4GM(θt)

c2
Dds

DdDs
, (4.12)

where c is the velocity of the light and M(θ) is the lens mass within the radius θ.

As an example for our quantitative considerations, let us consider again as deflecting

cluster a SIS. For the SIS, Eq. (4.12) reduces to

θt = 4π
(
σv

c

)2 Dds

Ds
. (4.13)

Once θt and σv are known, the ratio of distances Dds/Ds can be determined.

As seen in Chapter 1, the dependence on the cosmological parameters is contained

in the angular diameter distance. In a flat FLRW universe, the angular diameter

distance between an observer at zd and a source at zs is

D(zd, zs) =
c

H0

1

1 + zs

∫ zs

zd

dz√
ΩM0(1 + z)3 + (1 − ΩM0)(1 + z)3(wX+1)

. (4.14)
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Figure 4.5: The ratio of distances Dds/Ds as a function of the source redshift for a deflector
at zd = 0.3, for different sets of cosmological parameters. The thick lines correspond to
ΩM0 = 0.3; the thin lines to ΩM0 = 0.5. The full and dashed lines correspond to, respectively,
wX = −1 and wX = −1/3.
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Figure 4.6: Contours of equal Dds/Ds on the (ΩM0, wX) plane for zd = 0.3 and zs = 1. Each
contour is drawn with a step of 0.01. The value of the contours increases from the top right
corner to the bottom left corner. The thin dashed lines correspond to lines of constant q0.
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at zd = 0.3 as a function of the source redshift, for different values of the equation of state.
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models, (ΩM0 = 0.3, wX = −1) and (ΩM0 = 0.3, wX = −1/3), in the (zd, zs) plane. Each
contour is drawn with a step of 0.01.
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At high redshift, the pressureless matter density overcomes the dark energy; for large

zd and small wX, Dds is nearly insensitive to the equation of state. In Fig. (4.4), we

plot the angular diameter distance in two flat FLRW universes.

Let us go, now, to examine the feasibility of determining wX with observations

of strong lensing events in clusters of galaxies by the study of the ratio of distances

Dds/Ds. Once the lens redshift is fixed, Dds/Ds first increases rapidly with the source

redshift and, then, for zs greater than 2.5, is nearly constant [5, 64], as can be seen in

Fig. (4.5). The change with the cosmological parameters can be significant. The ratio

increases with decreasing ΩM0 and with dark energy with large negative pressure,

i.e. it is maximum in the case of the cosmological constant. The variations with

ΩM0 and wX are comparable. Changing ΩM0 from 0.3 to 0.5 has the same effect

of increasing wX from −1 to −1/3, so that Dds/Ds is nearly indistinguishable in a

universe with ΩM0 = 0.3 filled in with string networks and in a model with ΩM0 = 0.5

and cosmological constant.

To quantify the dependence of Dds/Ds with the cosmological parameters, we con-

sider fixed redshifts for the lens and the source, see Fig. (4.6). The ratio is quite

sensitive to ΩM0. The variations due to changes in ΩM0 for wX = const. are greater

than in the case of the constant deceleration parameter q0 ≡ (1 + 3wX(1 − ΩM0))/2.

For zd = 0.3, zs = 1, and ΩM0 ranging from 0 to 0.6, when q0 = 0 the variation is

∼ 4%; when wX = −1, the variation is ∼ 15%. The dependence on the cosmological

parameters is maximum for high negative values of q0, i.e. the region today preferred

by observations. For some particular pairs (zd, zs), i.e. for low lens redshifts and

sources very near to the deflector, the ratio is nearly constant on lines of constant

deceleration parameters; these properties suggest that the method of the critical line

can help to distinguish between accelerating and decelerating universes. The depen-

dence of Dds/Ds on the equation of state increases for low matter density universes

and the sensitivity nearly doubles for small changes in ΩM0: for zd = 0.3 and zs = 1,

the relative variation from wX = −1 to wX = −1/3 is 1.9% (3.4%) when ΩM0 = 0.5

(0.3). The sensitivity is maximum for intermediate wX; for large negative pressure

(wX
<∼ −0.9), the ratio is nearly independent of variations of the equation of state.

In Fig. (4.7), the derivative of the ratio Dds/Ds with respect to wX is plotted

as a function of the redshift of the source once the redshift of the deflector is fixed.

The derivative is negative for a large range of redshifts of both source and deflector.

Transitions from negative to positive values occur for very negative wX. The source

redshift where the derivative cancels out decreases with increasing ΩM0 and zd: for

zd = 0.3 (0.6), ΩM0 = 0.3 and wX = −1, the derivative is null at zs ' 7.0 (2.1). The

sign of the derivative determines when the equation of state changes as the angular

position of the critical lines moves: when the derivative is negative (positive), as the

equation of state increases (i.e. as wX moves from −1 to 0), the angular radius in the

sky of the critical line, for fixed source and deflector redshifts, decreases (increases).
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The modulus of the derivative is an estimate of the dependence of the ratio on wX.

Independently of the value of zd, ΩM0 and wX, the dependence on wX first increases

and takes its maximum at an intermediate source redshift, and then decreases quite

slowly. For dark energy in the form of a cosmological constant (wX = −1), zd = 0.3

and ΩM0 = 0.3, the maximum is at zs ∼ 0.75. For increasing wX, the maximum moves

to higher redshifts: for domain walls (wX = −2/3), the maximum is at zs ∼ 1.02. From

Fig. (4.7), we see that for a large range of wX and ΩM0 the maximum is at zs
<∼ 2.

This trend of the derivative is connected to the properties of the ratio Dds/Ds, that

flattens at higher source redshifts.

Now, we want to search for the optimal lens and source configuration in order to

discriminate among quintessence models. For illustration, we choose two universes

with the same content of matter (ΩM0 = 0.3) but different wX; we consider a cosmo-

logical constant (wX = −1) and string networks (wX = −1/3). In Fig. (4.8), we scan

the (zd, zs) plane plotting the relative variation between the two pairs of cosmological

parameters. For a given lens redshift, the best zs is very close to the deflector, i.e.

a couple of redshifts corresponding to the rising part of the ratio Dds/Ds; the sen-

sitivity decreases for larger and larger source redshifts. So, the configurations with

high sensitivity to the quintessence are those with very low cross section for strong

lensing events. On the other hand, given a background population at zs
>∼ 1, the

optimal lens is a quite high redshift cluster at zd ∼ 0.7; however, the dependence on

the quintessence is nearly constant for lenses at zd
>∼ 0.6

In order to estimate the accuracy of the determination of the equation of state, the

variation induced on Dds/Ds by wX must be compared to the error within which the

parameters of the lens are known. For the SIS, the error in the estimate of the ratio

of distances is

∣∣∣∣∆
(
Dds

Ds

)∣∣∣∣ =
√√√√4

∣∣∣∣∆σv

σv

∣∣∣∣
2

+

∣∣∣∣∣∆θtθt
∣∣∣∣∣
2 ∣∣∣∣Dds

Ds

∣∣∣∣ , (4.15)

where ∆σv and ∆θt are the errors, respectively, on the velocity dispersion and θt.

Usually, the largest uncertainty in the modeling of a lens comes from the error in

the measurement of the velocity dispersion. Catalogues of galaxy velocities in lensing

clusters are of the order of 50, so that the uncertainty on σv is ∼ 15%. ∆θt comes

from the accuracy of the location of the arc and its radial thickness and from the

uncertainty on the geometrical properties of the lens, i.e. the accuracy of the location

of the centre, typically chosen to coincide with the brightest cluster galaxy, and the

ellipticity of the mass distribution. For tangential arcs at θt ∼ 20 arcsec [222], an error

as large as ∼ 1 arcsec can contribute a 5% error. The error on θt is generally negligible

with respect to the error in the mass normalization and will not be considered in the

rest of this section. The variation on Dds/Ds connected to changes in the equation of
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state can be expressed as ∣∣∣∣∣ ∂

∂wX

(
Dds

Ds

)∣∣∣∣∣∆wX, (4.16)

and so, comparing Eq. (4.15) and Eq. (4.16), for N clusters we have a statistical error

of
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>∼ 2√
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, (4.17)

where the average is on the redshifts of the critical lines. The error in the determination

of wX increases with ∆σv and decreases with the derivative. Since the error induced by

the velocity dispersion is proportional to the ratio of distances Dds/Ds, see Eq. (4.15),

and the variation induced by wX is proportional to the derivative, see Eq. (4.16), the

uncertainty in the estimate of wX is inversely proportional to the logarithmic derivative

of Dds/Ds, i.e. to the relative variation of Dds/Ds. The properties of the logarithmic

derivative with respect to the cosmological parameters ΩM0 and wX are the same of

the ordinary derivative; the main difference is the disappearance of the minimum. As

we have seen before, the uncertainty in the equation of state, given a deflector redshift,

increases with zs and decreases for quintessence with wX far away from −1.

The case of the cosmological constant is the more problematic one since the deriva-

tive can cancel out (when ΩM0 = 0.3 and zs = 1.5, the derivative is null at zd ' 1.13).

However, clusters at intermediate redshift (zd ∼ 0.4) are quite stable with respect to

the error in the equation of state.

As we shall see in the next section, it is possible to obtain information from a single

cluster of galaxies on more than one critical line. So, using in Eq. (4.17) the number N

of clusters, the lower limit on ∆wX is overestimated. Given a typical error of ∼ 15% on

σv, we can use Eq. (4.17) to estimate the number of deflectors necessary for estimating

wX within a given uncertainty. For mean redshifts of 〈zd〉 = 0.4 and 〈zs〉 = 1.2, an

uncertainty of ∆wX ' 0.25 needs ∼ 75 (∼ 120) lensing clusters in a universe with

ΩM0 = 0.3 and wX = −1/3 (−0.5). N increases with dark energy with large negative

pressure and large values of ΩM0. As discussed, the method is unable to constrain the

equation of state in the extreme case of a cosmological constant, when ∆wX ' 0.25

needs ∼ 800 clusters and ∆wX ' 0.5 needs ∼ 200 clusters. In general, to distinguish

dark energy with an intermediate value of wX from a cosmological constant at 95%

confidence level, in a low matter density universe, we need 100-200 strong lensing

events. These simple estimates are in agreement with the results in [225].

Together with spectroscopic analyses, X-ray observations of a lensing cluster can

help to estimate the absolute mass of the deflector. The projected X-ray cluster mass,

under the hypotheses of isothermal and hydrostatic equilibrium, is proportional to the
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cluster gas temperature, TX, and Dd [223]: X-ray data alone cannot determine the

mass without a prior knowledge of cosmological parameters. However, it has been

shown that the relation between σv and TX is not affected by cosmic evolution and is

consistent with the isothermal scenario, σv ∝ T 0.5
X [224]. Once calibrated this relation,

X-ray observations obtained with the new generation of telescopes can considerably

enlarge the data sample of lensing clusters with known mass and help to disentangle

the effect of cosmology and mass normalization of the deflector.

4.5 CL 0024+1654

Now, let us consider the application of the method outlined in Section 4.4 to a well

studied cluster of galaxies, CL 0024+1654, in order to test the feasibility of what we

are proposing, and how good the results can be.

CL 0024+1654, see Fig. (4.1), is one of the best investigated lenses in the universe.

It is an optically rich cluster of galaxies, with a relaxed structure without a single

central dominant cluster galaxy, at z = 0.395 and with a velocity dispersion of σv =

1050±75 km s−1 [46, 47, 51]. This is the formal velocity dispersion estimated with the

assumptions of virial equilibrium and random galaxy velocities, so that the reported

error is a purely statistical one. We will consider the effect of some possible systematics

in the next section. This value of σv is consistent with lensing observations [185]. X-ray

data [17, 189] also support a regular morphology with no significant substructures. The

measured value of TX = 5.7+4.9
−2.1 is compatible with the observed velocity dispersion. A

single background galaxy behind CL 0024+1654, at spectroscopic redshift z = 1.675

[26], is imaged in a well known multiple arc at θt = 30.5 arcsec [101, 187, 200, 209].

Images are characterized by a bright elongated knot, surrounded by a low surface

brightness halo, see Fig. (4.1). The knot comprises two peaks, with separations ranging

from 0.5 arcsec to 1.1 arcsec, roughly consistent with the relative lengths of the various

arc components [187]. Given this peculiar morphology, we assume an indetermination

on the critical radius ∆θt ∼ 0.7 arcsec. We do not take into account the error on

the position of the centre; in the analyses considered here, it is determined as a free

parameter in the lensing reconstruction. Based on deep images with the Hubble Space

Telescope, Tyson et al. [200] performed a multi-parameter fit, including a number of

small deflecting “mascons”, to the mass profile. Each mascon was parameterized with

a power-law model, see Section 3.7,

Σ(θ) ∝
1 + p

(
θ
θc

)2

[
1 +

(
θ
θc

)2
]2−p , (4.18)

where θc is the core radius and p is the slope. Remarkably, they found that more than

98% of the cluster matter is well represented by a single power-law model centred
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near the brightest cluster galaxies with θc = 10.0±0.9 arcsec and p = 0.57±0.02,

slightly shallower than an isothermal sphere (pSIS = 0.5). To disentangle the effect of

cosmology and absolute mass, we have to fix the central density Σ0 independently of

lensing data. It is [18],

Σ0 =
8ασ2

v

3πGθc

I2
(1+α)/2

Iα

1

Dd
, (4.19)

with α = 2(1 − p) and Iβ =
∫∞
0 (1 + u2)−βdu. For a power-law model, the angular

position θt of the tangential critical line is related to the angular diameter distances

and the parameters of the lens by

(
θt
θc

)2

=
(

4πG

c2
Σ0
DdDds

Ds

) 1
1−p

− 1. (4.20)

Substituting in Eq. (4.20) for Σ0 and using the fit parameters, we get an estimate for

the ratio Dds/Ds. It is

Dds

Ds
(zd = 0.395, zs = 1.675) = 0.76+0.18

−0.12. (4.21)

The main term in the error budget comes from the indetermination in the velocity

dispersion which contributes ∼ 75% of the total error. In Fig. (4.9), we show the

dependence of Dds/Ds on the cosmological parameters for a lens-source configuration

as in CL 0024+1654; the values of (ΩM0, wX) compatible with the estimate in Eq. (4.21)

are also plotted. Low matter density universes (ΩM0
<∼ 0.55), which are accelerating

their expansion, are favoured. We find −1 ≤ wX
<∼ −0.2, with the lower values of ΩM0

corresponding to the higher values of the equation of state.

The method of the depletion curves, i.e. the variation along the radial direction in

the surface density of background galaxies around a massive cluster of galaxies, has

been employed to further study CL 0024+1654 [52, 64, 158, 203]. Observations of

the magnification bias have been obtained in the B- and I-band [64] and in the U -

and R-band [52, 158]. Extrapolating Hubble Space Telescope data to their detection

limit, Dye et al. [52] obtained, for the background R-galaxies, a mean redshift of

〈zs〉 = 1.2±0.3. From a fit to the SIS profile of the depletion curve in the R-band, the

location of the critical curve comes out at 15±10 arcsec [52]. Using these estimates in

Eq. (4.13), we can obtain a second constraint on the ratio Dds/Ds; unfortunately, as

can be seen in Fig. (4.10), the uncertainties completely hide the second order effect of

the cosmological parameters on the ratio of distances Dds/Ds.

A more interesting result can be obtained from the I-band, see Fig. (4.2). As dis-

cussed in [64], the angular radius where the depletion curve starts to increase locates

the last critical line, that is the critical line corresponding to the farther source popu-

lation. The last critical line at ∼ 60 arcsec in the I-band corresponds to background

galaxies at redshift 2.5 < z < 6.5; however, about 20% of the very faint I selected
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galaxies should be above z = 4. As noted in [203], given the very low density of the

background I-galaxies, an appropriate radial binning to study the radial profile of the

magnification bias is 30 arcsec. So, we will consider an error of 15 arcsec. This estimate

of the location of the last critical line is independent of the assumed mass profile, and

can be used in Eq. (4.20) to obtain a new constraint on Dds/Ds, see Fig. (4.10). Since

Dds/Ds is nearly flat for zs
>∼ 2.5, the value of the ratio of distances is quite insensitive

to the value of zs corresponding to the last critical line.

Some interesting considerations are obtained from the variation of the ratio Dds/Ds

with the redshift of the source. Figure (4.10) shows Dds/Ds for a lens at z = 0.395

and for various cosmological models. Models without dark energy are rejected, with

no regard to the value of the pressureless matter density: both open (ΩM0 < 1)

and flat (the Einstein-de Sitter model, with ΩM0 = 1) dark matter models are very

poorly consistent with the experimental points. On the other hand, flat universes with

quintessence are in agreement with the data. In particular, the data from the I-band

analysis are marginally compatible (at the 68% confidence level) with a flat de Sitter

universe (ΩX0 = 1 and wX = −1). Given the large uncertainties, we cannot draw

definitive conclusions on this multi-band analysis. However, even if the data from the

R-galaxies do not give information on the cosmology, the data from the multiple arc

and the last critical line in the I-band prefer accelerating universes with subcritical

matter density.

4.6 Systematics

In the previous section, we performed a statistical analysis based on the data found in

the literature. We want now to address some systematics that can affect our results.

A very accurate knowledge of the mass distribution of the lens is required to put

meaningful constraints on cosmological parameters. One of the more important source

of indetermination comes from the modeling of the mass profile of the lens [39]. In

Eq. (4.15), we have considered only the error coming from a not very accurate mass

normalization but, in general, we have also to face the indetermination on the cluster

mass profile. As a general feature, the three-dimensional mass density of a clump, ρ, is

proportional to a typical length scale, rs, so that, with respect to the angular diameter

distance, ρ ∝ D−2
d . The mass enclosed within an angular radius θ comes out

M(θ) ∝ Ddσ
2
vPθ,

where Dd contains the cosmological dependence and σ2
v stands for an overall normal-

ization. P is a factor accounting for the deviations of the cluster mass profile from the

SIS; P is a function of θ and of some parameters, such as a core radius. Substituting
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Figure 4.9: Contours of equal Dds/Ds on the (ΩM0, wX) plane for CL 0024+1654 (zd = 0.395)
and its multiple arc (zs = 1.675). Each contour is drawn with a step of 0.01. The value of
the contours increases form 0.61 in the top right corner to 0.76 in the lower left corner. The
thick lines correspond to the data in Eq. (4.21). The thick full line corresponds to the best
parameters; the dashed one to the lower limit. The thin dashed line separates accelerating
universes (below) from decelerating ones (above).
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Figure 4.10: Dds/Ds as a function of the source redshift for CL 0024+1654 (zd = 0.395)
for different cosmological models. The thick lines are for flat models with quintessence. The
full thick line for ΩX0 = 1 and wX = −1 (de Sitter universe); the dashing thick line is for
ΩM0 = 0.3 and wX = −1. The thin lines are for universes with pressureless matter alone.
The full line is for an Einstein-de Sitter universe (ΩM0 = 1); the thin dashed line is for an
open universe (ΩM0 = 0.1). “R-band” indicates the data derived from [52] (the error in σv

is not considered); “ARC” is the data in Eq. (4.21); “I-band” indicates the data from the
depletion curve in [64].
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in Eq. (4.13), we get, for a spherically symmetric lens,

Dds

Ds
∝ θt
σ2

vP
.

To consider the uncertainty in the profile, we have to add in quadrature to the right

hand side of Eq. (4.15) an additional relative error of ∆P/P. Usually, the main

contribution to the error budget comes from the mass normalization but, in some

extreme cases, the indetermination in the mass profile can be of the same order. ∆P
is maximum when calculated between a lens with a soft core and a halo with a singular

density steeply rising towards the centre, as predicted by numerical simulations in the

standard cold dark matter framework of structure formation and approximated by a

Navarro-Frenk-White profile (NFW, [129, 130]).

A NFW model can match the mass distribution of CL 0024+1654 [26]. The re-

quired mass inside the arc’s radius for such a model, reproducing the projected mass

distribution outside the core radius, is 40% higher than the prediction of a power-law

model [200]. Without an independent information, ∆P would be a really large er-

ror. Fortunately, the NFW profile is discarded since it implies a velocity dispersion

much higher than the measured value [185]. Once we can discard models with sin-

gular central density, the indetermination in the model can be accounted for by the

errors within which we constrain the parameters of the mass profile (∆p and ∆θc in

the power-law model used in Sect. 4.5). In general, an uncertainty in the cluster mass

profile can significantly weaken the results on the cosmological parameters; but, in the

case of CL 0024+1654, the degeneracy in the fit is not the main error.

Together with the overall mass profile, sub-structures must be considered. In the

case of a lens with a rather regular morphology, even if a “not correct” potential shape

is used in the reconstruction or the contribution of small sub-structures is neglected,

the cosmological parameters are still retrieved, although with larger errors [74]. On

the contrary, neglecting a sub-structure as large as 20% of the total mass in a bi-

modal cluster completely hides the effect of cosmology [74]. Adding the contribution

of individual galaxy masses is also useful to tighten the confidence levels and can

become critical in some extreme cases, as a galaxy strongly perturbing the location of

multiple-images [74]. Deep imaging of CL 0024+1654 has made it possible to construct

a high-resolution map of the projected mass distribution of the cluster and to take into

account the effect of perturbing galaxies. The perturbing potentials of two galaxies

near the middle segment of the arc have been considered in [101, 209]. Tyson et

al. [200] assigned one or more mascons to each of the 118 cluster galaxies and 25 free

mascons for the remaining cluster mass. However, all these studies in literature agree

on a overall representation as the one in Eq. (4.18).

Some features in the 3-D space, as a possible merger scenario, can invalidate our

estimation of the cosmological parameters. A recent analysis of the distribution of the
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galaxies in the redshift space [46, 47] suggests a fairly complicated structure. A group

of galaxies lying just in front of the main cluster could be the result of a high speed

collision of two smaller clusters with a merger axis very nearly parallel to the line of

sight [47]. In particular, a bulk velocity component present in the central velocity

distribution would over-estimate the mass obtained from the formal central velocity

dispersion. Furthermore, galaxies at large projected distance from the centre are also

affected by the collision and cannot be used to derive σv [47]. The consequences on

the dark energy constraint are quite dramatic since such a scenario could entail a

systematic error on the estimation of the velocity dispersion of the same order of the

statistical one. As can be seen from Fig. (4.9), this additional error would completely

hide any dependencies on the cosmological parameters.

Even if, together with strong lensing observations, both a weak lensing analysis

out to 10 arcmin [18] and X-ray observations [17, 189] favour a regular morphology,

the points just discussed suggest caution in the interpretation of the results obtained

in the previous section.
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Chapter 5

Distances in the inhomogeneous

universe

Light propagation through an inhomogeneous universe differs from that through a ho-

mogeneous one. The gravitational fields of inhomogeneities deflect and distort light

bundles. The effect of gravitational lensing results in the appearance of shear and

convergence in images of distant sources according to the different amount and distri-

bution of matter along different lines of sight. As a consequence, cosmic distances in a

locally inhomogeneous universe differ from those in a really smooth universe. In fact,

light bundles, propagating far from clumps, experience a matter density less than the

average matter density of the universe.

There is no known exact metric for a general relativistic universe that is homoge-

neous and isotropic on average, but includes density inhomogeneities. Owing to this

lack, the framework of on average Friedmann-Lemâıtre-Robertson-Walker (FLRW)

models is usually adopted. It is assumed that the relations on a large scale are the

same of the corresponding FLRW universe, while inhomogeneities only affect local phe-

nomena like the propagation of light. The so called smoothness parameters represent,

in a phenomenological way, the magnification effect experienced by the light beam,

that is the effective fraction of pressure and energy density in the beam connecting the

observer and the source.

The importance of measurements of distances in cosmography makes necessary a

complete study of all systematics. Observations of supernovae (SNe) of Type Ia are one

of the main evidences of the acceleration of the universe’s expansion. Observational

data are taken in the inhomogeneous universe and sources most likely appear to be

de-magnified relative to the standard Hubble diagram. The effect of amplification

dispersion by gravitational lensing must be accurately considered.

In this Chapter, mainly based on [182, 183], we investigate the properties of cos-
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mological distances in a locally inhomogeneous universe with pressureless matter and

dark energy with constant equation of state, wX = const. In Section 1, we discuss the

Hubble diagram and comment on some cosmological sources which have been explored

to build the diagram. In particular, we present candidate standard candles, such as su-

pernovae of type Ia, and other sources proposed as standard rods. Section 2 introduces

the on average FLRW universes. In this framework, the gravitational lens equation is

a powerful tool to study the properties of the cosmological distances. We first discuss

as the angular diameter distance changes in presence of an intervening lens. Then we

introduce the multiple lens-plane theory and show as the distance–redshift equation,

known as generalized Dyer-Roeder (DR) equation, can be derived without referring

to the focusing equation. In Section 3, we list exact solutions for angular diameter

distances in a universe with a not specified value of the curvature. The case of only

dark matter and of dark energy in the form of either a cosmological constant or topo-

logical defects of dimension one or two have been solved. The case of a flat universe

is considered in Section 4, where we derive the general solution of the generalized DR

equation in the case of homogeneous dark energy in terms of hypergeometric functions;

the two extreme cases of both dark matter and dark energy homogeneously distributed

or totally clumped are also treated. In Section 5, we show how the general framework

of on average FLRW models makes distances degenerate with respect different cos-

mological parameters. Section 6 discusses how this degeneracy influences the critical

redshift where the angular diameter distance takes its maximum.

Since the amplification of a source at a given redshift has a statistical nature,

the smoothness parameters are direction-dependent. A dispersion in the observed

flux of a standard candle must be considered. In Section 7, we discuss the main

features of the magnification probability distribution function (pdf), such as a mode

biased towards de-amplified values and a long tail towards large magnifications, and its

dependence on the equation of state of the quintessence. We consider both microscopic

and macroscopic dark matter. From the properties of the angular diameter distance

in a clumpy universe, it follows that, with no regard to the nature of the dark matter,

the dispersion increases with the redshift and is maximum for dark energy with very

large negative pressure, being maximum for the case of the cosmological constant. In

Section 8, the degenerate effects on the lensing dispersion of microscopic dark matter

and quintessence with an intermediate wX, which both partially attenuate the effect

of the clumpiness, are considered. The extraction of cosmological parameters from the

Hubble diagram is the argument of Section 9. The noise due to gravitational lensing

strongly affects the determination of the cosmological parameters. The effect is of the

same order of the other systematics affecting observations of supernovae of type Ia.
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5.1 The Hubble diagram

The Hubble diagram is the plot of the redshift of an object versus cosmological distance

to it or viceversa. It is built by means of standard candles (rods), i.e. fictitious ob-

jects of constant luminosity (geometrical size) for which apparent magnitude (angular

diameter) is directly related to the luminosity (angular diameter) distance.

By observationally identifying a cosmological source with the properties of a stan-

dard candle, it is possible to draw the Hubble diagram with very high precision and

estimate the global cosmological parameters. Observations of standard sources at

intermediate redshifts are sensitive to the deceleration parameter q0.

Since in a generic space-time, the angular diameter distance DA and the lumi-

nosity distance DL are related by the Etherington’s principle, DL = (1 + z)2DA, see

Section (1.5), in what follows we will switch between DA and DL.

5.1.1 Supernovae

Supernovae (SNe) are the only individual objects that can be seen in distant galaxies.

They are classified in two types [137, 138]. Type I SNe are explosions triggered by

accretion in a binary system. They do not display absorption and emission lines of

hydrogen but reveal the presence of other elements, with atomic masses ranging from

helium through iron. The absence of hydrogen is understandable from the fact that

progenitors are highly evolved stars that have lost almost all their hydrogen before the

explosion.

Type I SNe are further divided in two varieties. Type Ia SNe are homogeneous

in their properties. The mass of a white dwarf, accreted from a companion star,

crosses the Chandrasekhar limit and explodes. Since the Chandrasekhar mass is a

nearly universal quantity, the resulting thermonuclear explosions are of nearly constant

luminosity. Their light curves present a characteristic rise to maximum, followed by a

symmetric fall over roughly 30 days, after which the light decay becomes less rapid.

Type Ib SNe also lack hydrogen lines but do not have any characteristic light curve.

However, all SNe Ia show similar rates of decline of their brightness after the phase

of maximum light. After 20 days, the rate is approximately 0.065± 0.007 mag day−1;

after ∼ 50 days, the dimming rate slows and becomes 0.01 mag day−1.

The SNe II do show hydrogen; they are associated with massive stars at the end-

point of their evolution, and are rather heterogeneous in their properties.

During the last years, two independent groups, the High-z SuperNova Search Team

[171] and the Supernova Cosmology Project [140] have performed a strong effort in

building the Hubble diagram with SNe of type Ia [156, 140].
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SNe Ia are very luminous (of absolute magnitude ∼ −19.5, typically comparable to

the brightness of the entire host galaxy in which they appear) and have a small intrinsic

dispersion in their peak absolute magnitude, δM
<∼ 0.3 [63]. These features make them

an impressive candidate to be the long expected standard candles for cosmology.

An analysis of some parameters of the light curve makes it possible to further reduce

the dispersion. SNe, where relative distances are known by some other independent

methods, show as the height of the light curve (apparent luminosity at maximum

light) and the width (time taken to reach maximum light, or equivalent measures) are

correlated: the maximum output scales as roughly the 1.7 power of the characteristic

timescale [143]. This relation is presumably based on the mass of the progenitor star.

A more massive star generates a more energetic explosion, but the resulting fireball has

to expand for longer in order for photons to escape, i.e. for the optical depth to reach

unity. Given a good data sample, a dispersion of 0.17 mag in the peak magnitudes

of SNe Ia, after the application of methods based on this considerations such as the

“multi-colour light curve” method [155], can be achieved.

Evolutionary uncertainty should not affect SNe data since the laws of stellar evo-

lution should be the same at all distances.

5.1.2 Other sources

Astrophysical sources other than SNe have been long investigated to draw the Hub-

ble diagram. Modified standard rods, as compact radio sources [80, 102] or double

radio galaxies [27, 77], have been used to evaluate the angular diameter distance to

cosmological sources.

Extended radio sources which include the twin radio lobes surrounding a radio

galaxy can have sizes ranging from a few Kpc to ∼ 1000 Kpc. Classical double radio

sources, in particular FR IIb radio sources, have been proposed as modified standard

yardsticks [77]. They are characterized by a typical size that predicts the lobe-lobe

separation at the end of the source lifetime. A comparison between an individual

source and the properties of the parent population at the source redshift allows to

built a standard rod.

Compact radio jets associated with quasars and active galactic nuclei (AGN) have

also been considered as standard rods. They are typically less than a hundred parsec

in extent [80, 102]. Their morphology and kinematics probably depends more on the

nature of their central engine, controlled by a limited number of physical parameters

(mass of the central black holes, the strength of the magnetic field..) confined within

restricted ranges, than on the surrounding intergalactic medium. Furthermore, since

compact radio jets have typical ages of only some tens of years, they are very young

compared to the age of the universe, at any reasonable redshift. Therefore, compact
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radio sources may be considered an evolution free sample. Usually, the characteristic

angular size of these sources is defined as the distance between the strongest component

(core) and the most distant component which has a peak brightness greater than or

equal to 2% of the peak brightness of the core [102].

A recent proposal to estimate cosmological distances is based on Gamma-Ray

Bursts (GRBs). Two independent luminosity estimators, the first one based on the

variability of GRBs [153, 154] and the second one derived from the time lag between

peaks in hard and soft energies [132], have been proposed to infer the luminosity dis-

tance to these sources. The physical origin of GRBs is still uncertain, but recent

observations suggest that they are related to the violent death of massive stars. Under

the hypothesis that GRBs trace the global star formation history of the universe, their

assumed rate is strongly dependent on the expected evolution of the star formation

rate with the redshift [146].

With no regard to their different physical origins, all these observations are affected

by gravitational lensing of the sources.

5.2 The generalized Dyer-Roeder equation

The standard Hubble diagram is usually computed with relations that hold in FLRW

models, that is assuming all gravitating energy density homogeneously distributed.

Instead, observational data are taken in the inhomogeneous universe.

In general, both dark matter and quintessence are inhomogeneous. The observed

matter content of the universe appears to be homogeneously distributed only on a large

scale (
>∼ 500 Mpc), while the propagation of light is a local phenomena. A scalar field is

not an ideal adiabatic fluid and the sound speed in it varies with the wavelength in such

a way that high frequency modes remain stable still when wX < 0 [29, 76]. Moreover,

smoothness is gauge dependent, and so a fluctuating inhomogeneous energy component

is naturally defined [29]. Inhomogeneities, both in quintessence and CDM, make the

relations for the distances derived in FLRW models not immediately applicable to the

interpretation of experimental data both in measurements of luminosity distances and

angular diameter distances.

Several attempts have addressed the problem of the redshift dependence of the

distance in a clumpy universe: by relaxing the hypothesis of homogeneity and using

the Tolman-Bondi metric instead of the RW one [35]; by quantifying the small de-

viations from the isotropy and homogeneity of the Ricci scalar [195]; by considering

a local void [194]. In lack of a really satisfactory exact solution for inhomogeneous

universes in the framework of general relativity [107], the usual, very simple framework

we shall adopt for the study of distances is the on average FLRW universe [172, 176],
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where: i) the relations on a large scale are the same of the corresponding FLRW uni-

verse; ii) the anisotropic distortion of the bundle of light rays contributed by external

inhomogeneities is not significant.

A simple way to account for this scenario is to introduce the so called smoothness

parameters αi, each one describing the degree of homogeneity of the i-th component.

In a phenomenological way, they represent the magnification effect experienced by the

light beam [193, 213]: only a fraction αi of the energy density and pressure of the

i-th component contributes to the isotropic focusing of the bundle. In general, the

smoothness parameters are redshift dependent since the degree of smoothness evolves

with time.

Sources most likely appears to be de-magnified relative to the standard Hubble

diagram. In fact, light bundles, propagating far from clumps along the line of sight

from the source to the observer, experience a matter density less than the average

matter density of the universe. Values of αi < 1, accounts for this defocusing effect;

αi = 0 represents a totally clumped universe. This limiting case, sometimes known as

“empty-beam approximation”, corresponds to the maximum distance to a source for

light bundles which have not passed through a caustic [172]. When αi = 1, we reduce

to the FLRW case. Historically, αM is defined as the fraction of pressureless matter

smoothly distributed. The distance recovered in on average FLRW models, sometimes

known as DR distance, has been long studied [53, 54, 96, 105, 114, 176, 226], and now

is becoming established as a very useful tool for the interpretation of experimental

data [71, 97, 99, 140].

In this approximation, distances are functions of a family of parameters. We will

consider a two components universe, filled in with pressureless matter and dark energy.

Then, ΩM0 and ΩX0 describe the energy content of the universe on a large scale; wX

describes the equation of state of the quintessence and varies between −1 and 0; two

clumpiness parameters, αM and αX, represent the degree of homogeneity of the universe

and characterize phenomena of local propagation.

5.2.1 Angular diameter distances and isolated lenses

As seen in Section (1.12), the distances which enter the gravitational lens equation are

the angular diameter distances as measured by an observer in a strictly homogeneous

universe. In the simpler gravitational lensing system, with only one deflector, light

propagation is not perturbed between the source and the lens and between the lens

and the observer. The distance to the source which enters the lens equation, Ds, refers

to the homogeneous background. In this section, we will denote Ds as DRW
A . However,

the observer measures an angular diameter distance to the source which is affected

by gravitational lensing, DGL
A . The angular diameter distance is defined as the square
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root of the area of the source as measured at the source, dAS, divided by the solid

angle under which we observe the source, dωGL. From the definition of magnification

|µ| ≡ dωGL/dωRW, where dωRW is the solid angle subtended by the source in absence

of lensing, we find

DGL
A =

1

|µ|1/2
DRW

A = | detA|1/2DRW
A . (5.1)

Gravitational lensing affects only the solid angle subtended by the source. Let us

consider a light bundle propagating far away from mass inhomogeneity, k = 0: only

shear affects the propagation. We have

DGL
A = |1 − γ2|1/2DRW

A . (5.2)

In realistic situations, |γ| < 2, the angular diameter distance is reduced with respect

to the absence of lensing.

Let us consider an homogeneous sheet with surface mass density kSH added to an

uniform background, with density kRW. The lensing effects derives from the variations

of density. The Jacobian matrix reads

A =

(
1 − (kSH − kRW) 0

0 1 − (kSH − kRW)

)
. (5.3)

It is

DGL
A = |1 − (kSH − kRW)|DRW

A ; (5.4)

in presence of an overdensity (kSH > kRW), the angular diameter is reduced (DGL
A <

DRW
A ); an underdensity (kSH > kRW) increases the angular diameter distance (DGL

A <

DRW
A ).

5.2.2 The multiple lens-plane equation

Let us consider N isolated thin matter distributions, with surface mass density Σi at

redshift zi, i = 1, ..., N , ordered such that zi < zj if i < j; the source is at a redshift

zs > zN . At the present cosmic time, the index of refraction due to the i-th lens can

be expressed as

ni = 1 − δni, (5.5)

where δni is a function of the gravitational potentials generated by the the i-th lens.

The total index of refraction is

ni = 1 −
N∑

i=1

δni. (5.6)

The time delay measured at the observer of the lensed ray p, which travels from the

source position η to the observer and impacts the i-th plane at ξi, relative to the
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unperturbed ray p0 is

∆T (ξ1, ..., ξN) =
a0

c

[
∆p0(p) −

N∑
i=1

∫
p
δnidlK

]
. (5.7)

The geometrical time delay can be simple expressed as a sum. Let pi,i+1 be the ray

from ξi+1 to ξi to the observer and pi the unlensed ray from ξi+1 to the observer. It is

∆p0(p) ≡
N∑

i=1

[LengthK(pi,i+1) − LengthK(pi)] ; (5.8)

here ξN+1 ≡ η. Then,

∆T (ξ1, ..., ξN ) =
N∑

i=1

∆Tξi+1
(ξi), (5.9)

where the function ∆Tξi+1
(ξi) is the time delay measured at the observer of a ray from

ξi+1 to ξi to the observer, with deflection occurring only at ξi at the i-th lens plane.

The multiple-plane time delay function reads [142]

∆T (ξ1, ..., ξN) =
N∑

i=1

1 + zi

c

DiDi+1

Di,i+1


1

2

∣∣∣∣∣ ξi

Di

− ξi+1

Di+1

∣∣∣∣∣
2

− Di,i+1

DiDi+1

ψi(ξi)


 , (5.10)

where Di,i+1 is the angular diameter distance separating the i-th and (i + 1)-st lens

plane as measured in the background metric.

To derive the ray-trace equation, we apply the Fermat’s principle. We get,

η =
Ds

D1

ξ1 −
N∑

i=1

Disα̂i(ξi), (5.11)

where α̂i is the deflection angle a light ray undergoes if it traverses the i-th lens plane

at ξi. The impact vectors are obtained recursively from

ξj =
Dj

D1
ξ1 −

j−1∑
i=1

Dijα̂i(ξi). (5.12)

Let us convert the lens equation to dimensionless form by introducing angular variables

xi = ξi/Di. It is

xj = x1 −
j−1∑
i=1

DA(zi, zj)

DA(zj)
α̂i, (5.13)

where xi is the bidimensional angular position vector in the i-th lens plane.

The solid angle distortion is described by the 2×2 Jacobianes matrices of the map-

ping equation (5.13),

Ai ≡
∂xi

∂x1
, (5.14)



5.2. The generalized Dyer-Roeder equation 113

and by the derivatives of the scaled deflection angle αi = (D1(zi, zs)/D1(zs))α̂i,

Ui ≡
∂αi

∂xi
. (5.15)

By taking the derivative of equation (5.13) with respect to the independent variable

x1, which represents the angular position of an image on the observer sky, we have the

recursion relation

Aj = I −
j−1∑
i=1

DA(zi, zj)DA(zs)

DA(zj)DA(zi, zs)
UiAi, (5.16)

with A1 = I, I being the two-dimensional identity matrix.

5.2.3 Derivation of the DR equation

As shown for a universe with pressureless matter [172, 173], it is possible to derive

the DR equation from the multiple lens-plane theory, without referring to the focusing

equation. In the framework of the on average FLRW universes, we can generalize this

result to the case of inhomogeneous quintessence [182]. The basic idea is the simulation

of the clumpiness by adding to a smooth homogeneous background a hypothetical

density distribution of zero total mass, which is made of two components: a distribution

of clumps (both in dust and dark energy) and a uniform negative energy density such

that the mean density of the sum of both components is zero. After such an addition,

the average properties of the universe on a large scale are still that corresponding to

the background FLRW model. The gravitational surface density Σ of clumps in a shell

of size ∆z centred on the observer is then

Σ = ∆z
drP
dz

T 00
cl , (5.17)

where the relation between the redshift and the proper distance rP is that valid in RW

background,
drP
dz

=
c

H(z)

1

1 + z
, (5.18)

and T 00
cl is the gravitational contribution in clumps to the 0-0 element of the total

energy-momentum tensor,

T 00
cl (z) = (1 − αM)T 00

M + (1 − αX)T 00
X (5.19)

= (1 − αM)ρM(z)c2 + (1 − αX)(1 + wX)ρX(z)c2.

We have assumed that a fraction αM (αX) of the pressureless matter (dark energy)

is homogeneously distributed. In Eq. (5.19), we have assumed that the sum of the

pressure and of energy density contributes to the focusing. In an on average FLRW
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universe, the evolutions of densities of pressureless matter and quintessence are ob-

tained by applying the conservation law in a RW background, see Section (1.7). We

obtain

ρM(z) = (1 + z)3ΩM0ρcr, (5.20)

ρX(z) = (1 + z)nXΩX0ρcr, (5.21)

where ρcr ≡ 3H2
0/(8πG) is the today critical density and nX ≡ 3(wX + 1), 0 ≤ nX < 3.

The dimensionless surface density k corresponding to equation (5.17) is

k∆z ≡ 4πG

c2
D1(z)D1(z, zs)

D1(zs)
Σ (5.22)

=
H2

0

cH(z)

(1 + z)2

2

D1(z)D1(z, zs)

D1(zs)

×
[
3(1 − αM)ΩM0 + nX(1 − αX)ΩX0(1 + z)nX−3

]
∆z,

where, hereafter, the subscript 1 refers to angular diameter distances in FLRW uni-

verses and zs is a hypothetical source redshift. The so constructed spherical shells will

act as multiple lens-planes.

In our model of a clumpy universe, the matrices Ui are given by [173]

Ui = −kiI∆z − Ti, (5.23)

where the first term accounts for the negative convergence caused by the smooth

negative surface density and Ti is the matrix that describes the deflection caused by

the clumps. In the empty beam approximation (light rays propagating far away from

clumps and vanishing shear), it is Ti = 0 and then all the Ai are diagonal, Ai = aiI.

From the properties of the uniform sheet, see Section (3.3), we see that no multiple

images are considered. Equation (5.16) becomes

aj = 1 +
j−1∑
i=1

D1(zi, zj)D1(zs)

D1(zj)D1(zi, zs)
kiai∆z, (5.24)

where the dependence on zs drops out in the product of the ratio of distances by ki.

In the continuum limit, ∆z → 0, equation (5.24) becomes

a(z) = 1 +
∫ z

0

D1(y, z)D1(zs)

D1(z)D1(y, zs)
k(y)a(y)dy. (5.25)

Multiplying equation (5.24) by D1(z) and letting DA(z) = a(z)D1(z), we obtain,

substituting for the explicit expression of k given in equation (5.22),

DA(z) = D1(z) +
1

2

(
H2

0

c

)
(5.26)

×
∫ z

0

{
(1 + y)2

H(y)

[
3(1 − αM)ΩM0 + nX(1 − αX)ΩX0(1 + y)nX−3

]
× D1(y, z)DA(z)} dy.
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Changing to zd the lower limit of the integration in equation (5.26) and DA(z) (D1(z))

with DA(zd, z) (D1(zd, z)), we have the equation for generic initial conditions,

DA(zd, zd) = 0, (5.27)

d

dz
DA(zd, z)

∣∣∣∣∣
z=zd

=
1

1 + zd

c

H(zd)
;

DA(zd, z) is the angular diameter distance between zd (that, in general, can be different

from zero, as occurs in gravitational lensing for the deflector) and the source at z. The

second initial condition is obtained by applying the Hubble law to a fictitious observer

at zd [172]. Equation (5.26), already derived with a different way of proceeding in

[114], has here been found only using the multiple lens-plane theory [182]. It is easy to

verify that equation (5.26) is equivalent to the so called the generalized DR equation

H2(z)
d2DA

dz2
+

[
2H2(z)

1 + z
+

1

2

dH2

dz

]
dDA

dz
(5.28)

+
1

2
(1 + z)

[
3αMΩM0 + nXαXΩX0(1 + z)nX−3

]
DA = 0.

The isotropic focusing effect in equation (5.28) is simply represented by the multi-

plicative factor to DA; this coefficient increases with αM, αX and nX. Changing to the

expansion factor a ≡ 1/(1 + z), equation (5.28) reads

a2
[
ΩM0 + ΩX0a

3−nX + ΩK0a
] d2DA

da2
− a

[
3

2
ΩM0 +

nX

2
ΩX0a

3−nX + ΩK0a
]
dDA

da

+
[
αM

3

2
ΩM0 + αX

nX

2
ΩX0a

3−nX

]
DA = 0,(5.29)

a form which will be useful in the next sections.

Equation (5.26) is a Volterra integral equation of the second kind [196] whose

solution is

DA(z) = D1(z) +
∫ z

0
H(y, z)D1(y)dy, (5.30)

where the resolvent kernel H(y, z) is given by the series of iterated kernels

H(y, z) =
∞∑
i=0

Ki(y, z), (5.31)

with

K1(y, z) =
1

2

(
H2

0

c

)
(1 + y)2

H(y)
(5.32)

×
[
3(1 − αM)ΩM0 + nX(1 − αX)ΩX0(1 + y)nX−3

]
D1(y, z)

if y ≤ z or K1 = 0 elsewhere; the iterated kernels Ki are defined by the recurrence

formula

Ki+1(y, z) ≡
∫ y

0
K1(y, x)Ki(x, z)dx. (5.33)
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Since for all i, Ki(y, z) and D1(y) are non negative, we see from equations (5.30-5.32)

that the angular diameter distance DA(z) is a decreasing function of both αM and αX,

DA(z, α
(1)
M ) ≤ DA(z, α

(2)
M ) for α

(1)
M ≥ α

(2)
M , (5.34)

DA(z, α
(1)
X ) ≤ DA(z, α

(2)
X ) for α

(1)
X ≥ α

(2)
X .

The above considerations apply equally well to weak lensing by large scale struc-

ture density perturbations. The basic idea is to divide the inhomogeneous matter

distribution into cubes at varying redshift and project the matter in each cube to the

middle-plane of the cube. In this multi-plane lensing model, the surface mass density

can be positive (αi > 1) or negative (αi < 1).

5.2.4 The focusing equation

Equation (5.28) is usually derived from the focusing equation [164, 172]. The equation

for the angular diameter distance DA in terms of an affine parameter λ, is

d2DA

dλ2
= −

[
|σ(λ)|2 −R(λ)

]
DA, (5.35)

where R is the Ricci focusing and σ is the optical shear. In an on average FLRW

model, Eq. (5.35) becomes

d2DA

dλ2
+

1

2
(1 + z)2

[
3αMΩM0(1 + z)3 + nXαXΩX0(1 + z)nX

]
DA = 0, (5.36)

where the relation between λ and the redshift z, in terms of the generalized Hubble

parameter is
dz

dλ
= (1 + z)2H(z)

H0
. (5.37)

Substituting for λ in equation (5.36) by using equation (5.37), we get the same form

of Eq. (5.28).

5.3 Exact solutions of the DR equation for ΩK0 6= 0

The observational data presently available are in agreement with the hypothesis of a

flat universe, but are also compatible with a non zero, although small, value of ΩK0. A

small value of ΩK0 is also allowed by some inflationary theories. These circumstances

make useful the study of the effect of the curvature on the cosmological distances since

today technology allows to put strong constraints on the cosmological parameters.
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Figure 5.1: The angular diameter distance for two universes with ΩM0 = 0.2, ΩX0 = 0.7,
αM = 0.7 and αX = 1. The full and dashed lines correspond respectively to nX = 1 and
nX = 2. The unit of distance is taken to be c/H0.

In what follows, we will consider the DR equation with constant smoothness pa-

rameters. For αX = 1, equation (5.29) reduces to

a2
[
ΩM0 + ΩK0a+ ΩX0a

3−nX

] d2DA

da2
− a

[
3

2
ΩM0 + ΩK0a+

nX

2
ΩX0a

3−nX

]
dDA

da

+
[
3

2
αM +

nX

2
ΩX0a

3−nX

]
DA = 0. (5.38)

To solve equation (5.38), we proceed as in [49]. First, we look for a solution in the

power form as when ΩX0 = ΩK0 = 0. The parameter s is constrained to fulfil the

algebraic equation

s2 − 5

2
s+

3

2
αM = 0, (5.39)

which has the solutions

s± =
5

4
±1

4

√
25 − 24αM ≡ 5

4
±β; (5.40)

we have introduced the parameter β,

β ≡
√

25 − 24αM

4
.

When ΩX0 6= 0, ΩK0 6= 0, we choose to impose the form DA = asf(a) to the solution,

being f a generic function. Inserting this expression into equation (5.38) we have for

f(a)

0 = a
[
ΩM0 + ΩK0a+ ΩX0a

3−n
] d2f

da2

−
[
ΩM0

(
2s− 3

2

)
+ ΩK0(2s− 1)a

(
s(s− 1) − nX

2
s
)

ΩX0a
3−nX

]
df

da

+
[
ΩK0s(s− 2) + ΩX0

(
s2 − s

(
1 +

nX

2

))
a2−nX

]
f. (5.41)
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The initial conditions at a = 1 for the auxiliary function f come out from equation

(5.27) evaluated at z = 0,

f(1) = 0, (5.42)

d

da
f(a)

∣∣∣∣∣
a=1

=
c

H0
.

Equation (5.41) is very useful to obtain some exact solutions of the DR equation,

corresponding to integer values of the quintessence parameter nX.

5.3.1 Only dust

The solution for a model of universe with only dust (ΩX0 = 0 or nX = 3) is well known

in terms of Legendre functions [174]. In this case, the DR equation reads

(z + 1)(ΩM0z + 1)
d2DA

dz2
+
(

7

2
ΩM0z +

ΩM0

2
+ 3

)
dDA

dz
+

3

2
αMΩM (1 + z)DA = 0,

and the boundary conditions reduce to

DA(zd, zd) = 0

dDA

dz
(zd, z)

∣∣∣∣∣
z=zd

=
c

H0

1

(1 + zd)2
√

1 + ΩM0zd
.

Let us consider 0 < ΩM0 < 1. Through a transformation of the independent and

dependent variables,

y =

√
1 + ΩM0z

1 − ΩM0
; DA =

c

H0

1

y2 − 1
f, (5.43)

we obtain the Legendre differential equation for f(y),

(1 − y2)
d2f

dy2
− 2y

df

dy
+

[
ν(ν + 1) − µ2

1 − y2

]
f = 0 , (5.44)

where

µ = 2 ; ν =
4β − 1

2
. (5.45)

Two independent solutions of Eq. (5.44) are the associated Legendre functions of first

and second type [1], P µ
ν (y) and Qµ

ν (y) respectively, unless ν = 0 or ν = 1. When

2/3 6= αM 6= 1, we get

DA(zd, z) =
c

H0

1

6(1 − αM)(2 − 3αM)
√

1 − ΩM0

1

1 + z

× [Qµ
ν (yd)P

µ
ν (y) −Qµ

ν (y)P µ
ν (yd)] , (5.46)
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where yd = y(zd). Let us introduce the dimensionless angular diameter distance r,

DA ≡ c

H0

r.

Equation (5.85) reduces to the hypergeometric equation through the transformations

[54],

x =
1 + ΩM0z

1 − ΩM0
, r(z) = r[x]; (5.47)

we find

x(1 − x)
d2r

dx2
+ [c− (1 + a+ b)x]

dr

dx
− abr = 0 , (5.48)

where

a =
5 + 4β

4
, b =

5 − 4β

4
, c =

1

2
. (5.49)

In terms of the hypergeometric functions, the dimensionless angular diameter dis-

tance reads[174],

r(zd, z) = 2(1 + zd)[V1(zd)V2(z) − V1(z)V2(zd)] , (5.50)

where

V1(z) = ΩM0(1 + ΩM0z)
−(4β+5)

4 2F1

[
4β + 7

4
,
4β + 5

4
;
4β + 2

2
;

1 − ΩM0

1 + ΩM0z

]
,

V2(z) =
ΩM0

4β
(1 + ΩM0z)

4β−5
4 2F1

[
7 − 4β

4
,
5 − 4β

4
;
2 − 4β

2
;

1 − ΩM0

1 + ΩM0z

]
, (5.51)

where 2F1 is the hypergeometric function of the second type.

The expression for the dimensionless angular diameter distance in Eq. (5.50) is

general. It still holds in the particular cases ΩM0 = 1, αM = 2/3 or αM = 1. Let us

consider these cases. The homogeneous universe is described by αM = 1 (β = 1/4). It

is

V1(z) =

√
1 + ΩM0z

ΩM0(1 + z)2
, V2(z) =

2 − ΩM0 + ΩM0z

ΩM0(1 + z)2
; (5.52)

then

r(zd, z) =
2

Ω2
M0(1 + zd)(1 + z)2

[√
1 + ΩM0zd(2 − ΩM0 + ΩM0z) (5.53)

−
√

1 + ΩM0z(2 − ΩM0 + ΩM0zd)
]
;

for zd = 0, Eq. (5.53) becomes

r(z) =
2

Ω2
M0(1 + z)2

[
ΩM0z − (2 − ΩM0)

(√
ΩM0z + 1 − 1

)]
. (5.54)

When αM = 2/3, it is β = 3/4. We get

V1(z) =
1

ΩM0(1 + z)2
, V2(z) =

√
1 + ΩM0z(ΩM0z + 3ΩM0 − 2)

3ΩM0(1 + z)2
. (5.55)
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The dimensionless angular diameter distances reads

r(zd, z) =
2

3Ω2
M0(1 + zd)(1 + z)2

(5.56)

×
[√

1 + ΩM0z(ΩM0z + 3ΩM0 − 2) −
√

1 + ΩM0zd(ΩM0zd + 3ΩM0 − 2)
]
;

When zd = 0, Eq. (5.56) reduces to

r(z) =
2

3Ω2
M0(1 + z)2

[
1

3
ΩM0z

√
ΩM0z + 1 −

(
2

3
− ΩM0

)(√
ΩM0z + 1 − 1

)]
. (5.57)

In the Einstein-de Sitter, we have ΩM0 = 1. Then,

V1(z) = (1 + z)−(4β+5)/4 , V1(z) =
1

4β
(1 + z)(4β−5)/4; (5.58)

r(zd, z) =
2

β

[
(1 + z)(β−5)/4

(1 + zd)(β+1)/4
− (1 + zd)

(β−1)/4

(1 + z)(β+5)/4

]
; (5.59)

r(z) =
2

β
(1 + z)(4β−5)/4

[
1 + (1 + z)−2β

]
. (5.60)

Let us consider the case ΩM0 > 1. We perform the transformation [174],

y =

√
1 + ΩM0z

ΩM0(1 + z)
, r =

(
ΩM0 − 1

ΩM0(1 + z)

)5/4

f . (5.61)

Once again, f(y) is a solution of the Legendre equation (5.44), with

µ = 2β; ν =
3

2
.

With the same procedure as in the case ΩM0 < 1, we find

r(zd, z) =
2√
ΩM0

Γ
(

5−4β
2

)
Γ
(

5+4β
2

) 1

(1 + zd)
1
4 (1 + z)

5
4

[Qµ
ν (yd)P

µ
ν (y) −Qµ

ν (y)P µ
ν (yd)] , (5.62)

where yd = y(zd) and Γ(x) denotes the Gamma function [1]. Again, the solution can

be expressed in terms of hypergeometric functions as

r(zd, z) = 2(1 + zd) [W1(zd)W2(z) −W1(z)W2(zd)] , (5.63)

where

W1(z) =
(

ΩM0 − 1

ΩM0

)2β

(1 + z)
−(5+4β)

4 F

[
5 + 4β

4
,
β − 3

4
;
1

2
;

1 + ΩM0z

ΩM0(1 + z)

]
, (5.64)

W2(z) =

√
1 + ΩM0z

ΩM0

(1 + z)
−(7+4β)

4 F

[
7 + 4β

4
,
4β − 1

4
;
1

2
;

1 + ΩM0z

ΩM0(1 + z)

]
.

As shown in [174], the pairs of equations (5.50, 5.51) and (5.63, 5.64) are analytic

continuations of each other.
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5.3.2 The cosmological constant

The solution for the case of the cosmological constant (nX = 0) is already known in

terms of Heun functions [97].

Let us perform the transformation of the dependent and independent variables,

ζ =
ΩM0(1 + z) + ΩK0y1

ΩK0(y2 − y1)
, h = (1 + z)r; (5.65)

in Eq. (5.65), y1 is the real root, whereas y2 e y3 are the complex solutions of the third

order equation

y3 + y2 +
Ω2

M0ΩΛ0

Ω3
K0

= (y − y1)(y − y2)(y − y3) = 0; (5.66)

the roots are constrained by the relations

y1y2y3 = −Ω2
M0ΩΛ0

Ω3
K0

, y1 + y2 + y3 = −1 , y1y2 + y2y3 + y1y3 = 0. (5.67)

By introducing

ã =
y3 − y1

y2 − y1
,

ν =
4β − 1

2
,

q =
1 + (1/4)ν(ν + 1)y1

y2 − y1
,

the DR equation can be rewritten as a standard Heun equation,

d2h

dζ2
+

1

2

(
1

ζ
+

1

ζ − 1
+

1

ζ − ã

)
dh

dζ
− (1/2)ν(1/2)(ν + 1)ζ + q

ζ(ζ − 1)(ζ − ã)
h = 0. (5.68)

Equation (5.68) is the Heun equation [61, 83], which is slightly more complicated than

the hypergeometric equation, possessing four points of regular singularity in the entire

complex plain, rather than three. For

|ζ0| =

∣∣∣∣∣ΩM0 + ΩK0y1

ΩK0(y2 − y1)

∣∣∣∣∣ < 1,

it is

D(z) = − c

H0

2

(1 + z)ΩK0

√
ΩM0

√√√√ΩM0(ΩM0 − ΩK0y1)

y1(2 + 3y1)

×

H1


a, 1 + (1/4)ν(ν + 1)y1√

y1(2 + 3y1)

√
a;−ν

2
,
ν + 1

2
,
1

2
,
1

2
;
ΩM0(1 + z) − ΩK0y1

ΩK0

√
y1(2 + 3y1)

√
a



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× H1


a, 3 + (ν2 + ν − 3)y1

4
√
y1(2 + 3y1)

√
a;−ν − 1

2
,
ν + 2

2
,
3

2
,
1

2
;

ΩM0 − ΩK0y1

ΩK0

√
y1(2 + 3y1)

√
a




−
√

ΩM0(1 + z) − ΩK0y1

ΩM0 − ΩK0y1
(5.69)

× H1


a, 3 + (ν2 + ν − 3)y1

4
√
y1(2 + 3y1)

√
a;−ν − 1

2
,
ν + 2

2
,
3

2
,
1

2
;
ΩM0(1 + z) − ΩK0y1

ΩK0

√
y1(2 + 3y1)

√
a




× H1


a, 1 + (1/4)ν(ν + 1)y1√

y1(2 + 3y1)

√
a;−ν

2
,
ν + 1

2
,
1

2
,
1

2
;

ΩM0 − ΩK0y1

ΩK0

√
y1(2 + 3y1)

√
a




 ,

where H1 are the Heun functions; although they contain complex parameters, they

are real function of the real variable z [97]. For the case |ζ0| > 1 and for further details,

we refer to [97].

5.3.3 String networks

Let us consider dark energy in the form of string networks (nX = 2) [182], when

equation (5.41) reduces to

a(c1 + c2a)
d2f

da2
+ (c3 + c2c4a)

df

da
+ c5f = 0, (5.70)

being

c1 = ΩM0,

c2 = ΩK0 + ΩX0,

c3 = c2

(
2s− 3

2

)
,

c4 = 2s− 1,

c5 = ΩK0s(s− 2) + ΩX0

(
s
(
s− 3

2
+

1

2

))
. (5.71)

Equation (5.70) is of hypergeometric type, i.e. it has three regular singularities [91],

and so, for nX = 2, f is the hypergeometric function. If we indicate with fs+ and

fs− two independent solutions for, respectively, s = s+ and s = s−, we can write the

general solution of equation (5.38) for nX = 2 as

DA = A+a
s+fs+(a) + A−as−fs−(a)

=
1

(1 + z)5/4

{
A+(1 + z)−βfs+

(
1

1 + z

)
+ A−(1 + z)βfs−

(
1

1 + z

)}
, (5.72)

where A+ and A− are constants determined by the initial conditions. In equation

(5.72) we have expressed the scale factor, a, in terms of the redshift.
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5.3.4 Domain walls

Let us consider now the case of domain walls, nX = 1 (wX = −2/3) [182]. The equation

for f becomes

a
[
ΩM0

ΩX0
+

ΩK0

ΩX0
a+ a2

]
d2f

da2
+
[
ΩM0

ΩX0

(
2s− 3

2

)
+

ΩK0

ΩX0
(2s− 1) a+

(
2s− 1

2

)
a2
]
df

da

+
[
ΩK0

ΩX0
s (s− 2) +

(
s (s− 2) +

1

2

)
a
]
f = 0. (5.73)

Equation (5.73) is a fuchsian equation with three finite regular points plus a regular

singularity at ∞ [91]. The regular points in the finite part of the complex plane are

a1 = 0,

a2 =
−ΩK0 −

√
Ω2

K − ΩM0ΩX0

2
, (5.74)

a3 =
−ΩK0 +

√
Ω2

K − ΩM0ΩX0

2
.

The transformation y = a/a2 sends a2 → 1 and a2 → ζ = a3

a2
. In terms of y, equa-

tion (5.73) reads

y (y − 1)) (y − ζ)
d2f

dy2
+
[
ΩM0

ΩX0

(
2s− 3

2

)
+

ΩK0

ΩX0

(2s− 1) a2y +
(
2s− 1

2

)
a2

2y2
]

× df

dy
+
[

ΩK0

a2ΩX0
s (s− 2) +

(
s (s− 2) +

1

2

)
a2y

]
f = 0, (5.75)

which can be reduced to the standard form

d2f

dy2
+

(
γ

y
+

δ

y − 1
+

ε

y − ζ

)
df

dy
+

(
θλy − q

y (y − 1) (y − ζ)

)
f = 0, (5.76)

where

γ + δ =
(
2s− 1

2

)
a2

2,

ΩK0

ΩX0
(2s− 1) a2 = γ (1 + ζ) + δζ + ε,

γζ =
ΩM0

ΩX0

(
2s− 3

2

)
, (5.77)

q =
ΩK0

ΩM0
s (s− 2) ,

θλ = s
(
s− 3

2

)
+

1

2
.

The constant q is the so called accessory parameter, whose presence is due to the

fact that a fuchsian equation is not completely determined by the position of the

singularities and the indices. The Heun equation can be characterized by a P symbol,
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and the solutions can be expanded in series of hypergeometric functions. Thus, the

solution of the equation (5.38) for nX = 1 can be formally written as equation (5.72),

once the functions fs+ and fs− are interpreted as Heun functions.

In Fig. (5.1), we plot some of the solutions found above.

5.4 Exact solutions of the DR equation for ΩK0 = 0

The DR equation for a flat universe has already been treated in the limiting case of the

cosmological constant in [49, 97, 99, 100]. Here, in presence of generic dark energy, we

propose the general solution in terms of hypergeometric functions [182, 183] and, then,

list particular solutions in terms of elementary functions [182]. Let us first consider

the case αX = 1. For flat universes, ΩM0 + ΩX0 = 1, it is

(1 + z)2
[
1 + µ(1 + z)3wX

] d2DA

dz2
+

(1 + z)

2

[
7 + (3wX + 7)µ(1 + z)3wX

] dDA

dz

+
3

2

[
αM + (wX + 1)µ(1 + z)3wX

]
DA = 0, (5.78)

where µ ≡ 1−ΩM0

ΩM0
. The boundary conditions of Eq. (5.78), for zd = 0, reduce to, see

Eqs. (5.27),

DA(0) = 0, (5.79)

dDA

dz

∣∣∣∣∣
z=0

=
c

H0

.

It is straightforward to obtain the corresponding equation for the luminosity distance.

Using the Etherington principle [62], DL = (1+z)2DA, we can substitute in Eq. (5.78),

(1 + z)2
[
1 + µ(1 + z)3wX

] d2DL

dz2
− (1 + z)

2

[
1 + (1 − 3wX)µ(1 + z)3wX

] dDL

dz

+
[
3αM − 2

2
+

1 − 3wX

2
µ(1 + z)3wX

]
DL = 0; (5.80)

the boundary conditions are, again,

DL(0) = 0, (5.81)

dDL

dz

∣∣∣∣∣
z=0

=
c

H0
.

The solution of Eq. (5.80), satisfying the boundary conditions in Eq. (5.81), takes the

form

DL(z) =
c

H0

D1(0)D2(z) −D1(z)D2(0)

W (0)
, (5.82)

where D1(z) and D2(z) are two linearly independent solutions of Eq. (5.80) and

W (z) ≡ D1(z)
D2(z)

dz
− dD1(z)

dz
D2(z) is the Wronskian of the solutions system.
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To solve Eq. (5.80), we perform the transformation of both the independent and

dependent variables,

u ≡ −µ(1 + z)3wX , DL(z) ≡ u
3+4β
12wXRL(z). (5.83)

With such a transformation, Eq. (5.80) reduces to the hypergeometric equation for

RL,

d2RL

du2
+

[(
1 +

2β

3wX

)
1

u
− 1

2(1 − u)

]
dRL

du

−
(

4β − 1

12wX

)(
4β + 1

12wX
+

1

2

)
1

u(1 − u)
RL = 0. (5.84)

A pair of independent solutions of Eq. (5.84) is

R1(u) = 2F1

[
4β − 1

12wX
,
4β + 1

12wX
+

1

2
,

2β

3wX
+ 1, u

]
, (5.85)

R2(u) = u
− 2β

3wX 2F1

[
−4β + 1

12wX
,
−4β + 1

12wX
+

1

2
,− 2β

3wX
+ 1, u

]
.

Inserting the expressions for R1 and R2 in Eq. (5.29) and substituting in Eq. (5.27),

we have the final expression for the luminosity distance,

DL(z) =
c

H0

1

2β
√

ΩM0

(5.86)

×
{

(1 + z)
3
4
+β

2F1

[
−4β + 1

12wX
,
1

2
+

1 − 4β

12wX
, 1 − 2β

3wX
,
ΩM0 − 1

ΩM0

]

× 2F1

[
4β − 1

12wX

,
1

2
+

4β + 1

12wX

, 1 +
2β

3wX

,
ΩM0 − 1

ΩM0

(1 + z)3wX

]

− (1 + z)
3
4
−β

2F1

[
−4β + 1

12wX
,
1

2
+

1 − 4β

12wX
, 1 − 2β

3wX
,
ΩM0 − 1

ΩM0
(1 + z)3wX

]

× 2F1

[
4β − 1

12wX
,
1

2
+

4β + 1

12wX
, 1 +

2β

3wX
,
ΩM0 − 1

ΩM0

]}
.

For the case of a cosmological constant, wX = −1, Eq. (5.86) reduces to equa-

tion (16) in [99], as we can see by using the property of the hypergeometric function

2F1 [a, b, c, x] =
1

(1 − x)a 2F1

[
a, c− b, c,

x

x− 1

]
, (5.87)

and noting that the clumping parameter ν in [99] corresponds to (β − 1)/2. The case

of the cosmological constant is also studied in [49, 97, 100].

Now, let us consider values of αX 6= 1. We can proceed as in the previous section.

When ΩK0 = 0, equation (5.29) reduces to [182]

a2
[
ΩM0 + (1 − ΩM0)a

3−nX

] d2DA

da2
− a

[
3

2
ΩM0 +

nX

2
(1 − ΩM0)a

3−nX

]
dDA

da

+
[
3

2
αMΩM0 +

nX

2
αX(1 − ΩM0)a

3−nX

]
DA = 0; (5.88)
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dividing equation (5.88) by ΩM0, we have

a2
[
1 + µa3−nX

] d2DA

da2
− a

[
3

2
+
nX

2
µa3−nX

]
dDA

da
(5.89)

+
[
3

2
αM +

nX

2
αXµa

3−nX

]
DA = 0.

To solve equation (5.89), we first look for a solution in the power form as when µ = 0.

The parameter s is constrained to fulfil equation (5.39). When µ 6= 0, we choose

to impose the form DA = asf(a) to the solution, where f is generic. Inserting this

expression into equation (5.89) and changing to x ≡ a3−nX , we have for f

x(3 − nX)(1 + µx)
d2f

dx2
+
[(

2s− nX +
1

2

)
+
(
2 − 3

2
nX + 2s

)
µx
]
df

dx

+
µ

2

[
s− 3αM − nXαX

3 − nX

]
f = 0. (5.90)

Again, this equation can be solved in terms of hypergeometric functions. Denoting

with fs+ and fs− two of such independent solutions for, respectively, s = s+ and

s = s−, we can write the general solution of equation (5.88) as

DA = A+a
s+fs+ [x(a)] + A−as−fs−[x(a)] (5.91)

=
1

(1 + z)
5
4
−β

{
A+fs+

[
1

(1 + z)3−nX

]
+ A−(1 + z)2βfs−

[
1

(1 + z)3−nX

]}
,

where A+ and A− are constants determined by the initial conditions.

Once we have the general solution of the DR equation (5.88) in terms of hypergeo-

metric functions, we go now to list some expressions of the angular diameter distance

in terms of elementary functions in two extremal cases.

5.4.1 Homogeneous universe

In this case, we have that αM = αX = 1. Eq. (5.80) is solved by

DL(z) =
c

H0
(1 + z)

∫ z

0

1√
ΩM0(1 + z′)3 + (1 − ΩM0)(1 + z′)3(wX+1)

dz
′
. (5.92)

This expression is equivalent to Eq. (5.86) when β = 1/4,

DL(z) =
c

H0

2(1 + z)√
ΩM0

{
2F1

[
− 1

6wX
,
1

2
, 1 − 1

6wX
,
ΩM0 − 1

ΩM0

]
(5.93)

− 1√
1 + z

2F1

[
− 1

6wX
,
1

2
, 1 − 1

6wX
,
ΩM0 − 1

ΩM0
(1 + z)3wX

]}
.
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Figure 5.2: The luminosity distance in a flat and smooth universe with ΩM0 = 0.3. The
distance is in units of c/H0.

Our Eq. (5.93) is equivalent to the expression found in [16], see also [71]. In the

Einstein-de Sitter case (ΩM0 = 1 or wX → 0), Eq. (5.93) reduces to

DL(z) = 2
c

H0
(1 + z)

(
1 − 1√

1 + z

)
, (5.94)

as can also be seen directly by solving the integral in Eq. (5.92). Figure (5.2) plots

the luminosity distance for different equations of state: the distance increases for

decreasing wX.

The integral in Equation (5.92) can be expressed in terms of elementary functions

for particular values of nX. It is the integral of the differential binomial

x̃µ̃(ã+ b̃x̃ν̃)ρ̃, (5.95)

where x̃ = 1 + z, ã = ΩM0, b̃ = 1 − ΩM0, µ̃ = −3/2, ν̃ = nX − 3 and ρ̃ = −1/2. We

can put this integral in rational form when

nX =
3s− 1

s
, s ∈ Z − {0}, (5.96)

performing the substitutions [144]

t =
√

ΩM0 + (1 + ΩM0)(1 + z)nX−3

when s is even, and

t =

√√√√ΩM0 + (1 + ΩM0)(1 + z)nX−3

(1 + z)nX−3

for odd s. Equation (5.96) includes all and only the rational values of nX for which

equation (5.92) can be solved in terms of elementary functions. nX varies from 2
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(wX = −1/3), when quintessence evolves like curvature, to 4 (wX = 1/3)(hot dark

matter); for s→ ±∞, nX tends to 3, giving ordinary pressureless matter. For nX = 2,

see also [113], we get

DL(zd, z) =
c

H0

2√
1 − ΩM0

(1 + z)

[
Arctanh

(√
1 + ΩM0z√
1 − ΩM0

)]z

z=zd

; (5.97)

we note that with respect to the dynamical equations, a flat universe with nX = 2

behaves like an open one with ΩK0 = 1 − ΩM0 6= 0, but, on the other hand, while

quintessence contributes to the Ricci focusing, a geometric term does not. For nX = 4,

it is

DL(zd, z) =
c

H0

2

ΩM0

(1 + z)

[√
1 + z − ΩM0z

(1 + z)1/2

]z=zd

z

. (5.98)

Equation (5.98) holds in the past history of the universe at the epoch of matter-

radiation equality (zeq ∼ 104). Other solutions with 2 < nX < 4 are easily found.

Even if they can be physically interesting when related to other behaviours of the

scale factor, they cannot explain the today observed accelerated universe. So, we will

not mention them here.

5.4.2 Totally clumpy universe

We now study very particular models of universe in which both matter and quintessence

are totally clumped, that is αM = αX = 0. In this case, the DR equation reduces to a

first order equation and the expression for the angular diameter distance becomes

DA(zd, z) =
c

H0
(1 + zd)

∫ z

zd

dz
′

(1 + z′)2
√

ΩM0(1 + z′)3 + ΩX0(1 + z′)nX

. (5.99)

The energy density supplied by a cosmological constant is homogenously distributed;

but, even if αΛ = 1, when nX = 0 (wX = −1) and αM = 0, the DR equation becomes

again of the first order independently of the values of ΩΛ0, and so the distance takes

the form

DA(zd, z) =
c

H0
(1 + zd)

∫ z

zd

dz
′

(1 + z′)2
√

ΩM0(1 + z′)3 + ΩΛ0

. (5.100)

Once again, in equation (5.99) there is the integral of a differential binomial of the

form given in equation (5.95), with, this time, ã = ΩM0, b̃ = 1−ΩM0, µ̃ = −7/2, ν̃ =

nX − 3 and ρ̃ = −1/2. When nX is rational, all and only the solutions of equation

(5.99) in terms of elementary functions occur when

nX =
3s− 5

s
, s ∈ Z − {0}; (5.101)
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for any such s we can perform the same substitutions already described for homo-

geneous universes in the previous subsection. Now, we have values of nX < 2: for

s = 2, 3, 4, respectively, we find nX (wX) = 1/2 (−5/6), 4/3 (−5/9), 7/4 (−5/12).

For nX = 1/2, it is

DA(zd, z) =
c

H0

4(1 + zd)

5(1 − ΩM0)

[√
ΩM0 +

1 − ΩM0

(1 + zd)5/2
−
√

ΩM0 +
1 − ΩM0

(1 + z)5/2

]
; (5.102)

for nX = 4/3, we get

DA(zd, z) =
c

H0

(1 + zd)
[
6

5
ΩM0

√
1 − ΩM0 + ΩM0(1 + z)5/3 (5.103)

×
(
(ΩM0 − 1)2 +

2

3
(ΩM0 − 1)2

(
1 − ΩM0 + ΩM0(1 + z)

5
3

)

+
1

5

(
1 − ΩM0 + ΩM0(1 + z)

5
3

)2
)]z

z=zd

,

and, for nX = 7/4,

DA(z) =
c

H0

8

5(1 − ΩM0)2
(5.104)

×

1

3
− ΩM0 −

1

3

(
1 − ΩM0

(1 + z)
5
4

+ ΩM0

) 3
2

+ ΩM0

√√√√1 − ΩM0

(1 + z)
5
4

+ ΩM0


 .

Other interesting results are obtained when nX = 2 (s = 5) and nX = 4 (s = −5).

For nX = 2 (string networks), the angular diameter distance is

DA(zd, z) = 2
c

H0

(1 + zd)Ω
2
M0E (5.105)

×
[
(ΩM0 − 1)3 + (ΩM0 − 1)2E +

3

5
(ΩM0 − 1)E2 +

1

7
E3
]z
z=zd

,

where E ≡
√

1 − ΩM0 + (1 + z)ΩM0 ; for nX = 4 (hot dark matter), it is

DA(zd, z) =
c

H0

1 + zd
Ω3

M0(ΩM0 − 1)
(5.106)

×

Arctan

(√
1+z−ΩM0z

(1+z)(ΩM0−1)

)
√

1 − ΩM0

+

√
(1 + z)(1 + z − zΩM0)

ΩM0




z=zd

z

.

In the limit s→ ±∞, nX goes to 3 (cold dark matter).

5.5 Parameter degeneracy

As seen, the consideration of the DR equation in its full generality, with respect to

the case of a homogeneous cosmological constant, demands the introduction of new
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Figure 5.3: The angular diameter distance for different values of αM and wX. We assume a
flat universe with ΩM0 = 0.3. The unit of distance is taken to be c/H0.

parameters. Let us study the case of homogeneous dark energy (αX = 1). For αX = 1,

equation (5.30), in units of c/H0, simplifies to

DA(z) = D1(z) +
∫ z

0

∞∑
i=1

Ki(y, z)D1(y)dy, (5.107)

while equation (5.32) reduces, for y ≤ z, to

K1(y, z) =
3

2
(1 − αM)ΩM0

H0

H(y)
(1 + y)2D1(y, z). (5.108)

Some monotonical properties with respect to the cosmological parameters are then

easily derived. Accelerated universes demands wX < −1/3; then, it is

∂

∂ΩX0

1

H(z)
> 0,

∂

∂ΩX0
D1(z) > 0 if wX < −1/3, (5.109)

and so, for every value of the clumpiness parameter αM, the angular diameter distance

increases with increasing ΩX0,

∂

∂ΩX0

DA(z) > 0 if wX < −1/3. (5.110)

When wX > −1/3, the inequalities in equation (5.109) are reversed and the distance

decreases with increasing ΩX0. With respect to the equation of state wX, it is

∂

∂wX

1

H(z)
< 0,

∂

∂wX

D1(z) < 0; (5.111)

and so
∂

∂wX
DA(z) < 0; (5.112)
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Figure 5.4: The angular diameter distance in the ΩM0−wX plane, when αM = αX = 1. The
distance increases from the top-right to the bottom-left corner. a) We assume z = 0.5; each
contour is drawn with steps of 0.01. b) We assume z = 1; the step is 0.02. c) We assume
z = 2; the step is 0.03. d) We assume z = 5; the step is 0.02. The unit of distance is taken
to be c/H0.



132 Chapter 5. Distances in the inhomogeneous universe

-1 -0.8 -0.6 -0.4 -0.2 0
wX

0

0.2

0.4

0.6

0.8

1

α M

0.48

0.46

-1 -0.8 -0.6 -0.4 -0.2 0
wX

0

0.2

0.4

0.6

0.8

1

α M

0.5
0.47

-0.8 -0.6 -0.4 -0.2 0
wX

0

0.2

0.4

0.6

0.8

1

α M

0.29

0.28

-1 -0.8 -0.6 -0.4 -0.2 0
wX

0

0.2

0.4

0.6

0.8

1

α M

0.41

0.4

Figure 5.5: The angular diameter distance in the wX − αM plane, when ΩM0 = 0.3 and
αX = 1. The distance increases from the top-right to the bottom-left corner. a) We assume
z = 0.5; each contour is drawn with steps of 0.01. b) We assume z = 1; the step is 0.01. c)
It is z = 2; the step is 0.02. d) it is z = 5; the step is 0.03. The unit of distance is taken to
be c/H0.
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large values of the distances correspond to strongly negative values of the pressure

of quintessence: for fixed ΩM0, ΩX0 and αM, the angular diameter distance takes its

maximum when the dark energy is in the form of a cosmological constant.

We now want to stress the dependence of the angular diameter distance on wX, ΩM0

and αM in flat universes with αX = 1. As Fig. (4.4) and Fig. (5.3) show, the angular

diameter distance is degenerate with respect to different pairs of parameters: the

distance in the ΛCDM model with ΩM0 = 0.3 is not distinguishable, within the current

experimental accuracy [140], from the one in a FLRW universe with less pressureless

matter but a greater value of wX or from an inhomogeneous universe with greater wX

and the same content of matter.

In Fig. (5.4), we plot the degenerate values of the distance in the ΩM0 − wX plane

when universe is homogeneous for four different source redshifts: as expected, the

dependence of the distance on the cosmological parameters increases with the redshift

of the source. A general feature is that the distance is less sensitive to the components

of the universe when ΩM0 is near unity and wX goes to 0. This is easily explained: when

ΩM0 is large, quintessence density ΩX0 is not, and the pressureless matter characterizes

almost completely the universe; moreover, a value of wX near zero describes a dark

energy with an equation of state very similar to that of the ordinary matter. So,

increasing wX mimics a growth in ΩM0. On the other side, for low values of ΩM0 (wX)

the distance is very sensitive to wX (ΩM0) and this effect increases with the redshift.

We see from Fig. (5.4) that the effects of wX and ΩM0 are of the same order for a large

range of redshifts.

In Fig. (5.5) we compare, for ΩM0 fixed to 0.3 and for different source redshifts,

the compelling effects of αM and wX on the distance. When αM goes away from the

usually assumed value (αM = 1), once fixed the redshift, the distance increases; on

the contrary, for wX that goes away from the value corresponding to the cosmological

constant (wX = −1), the distance decreases. The dependence of the distance on αM

increases very rapidly with z, and, when z = 5, the effects of αM and wX are of the

same order. From Fig. (5.5), we deduce that the dependence on αM increases when wX

goes to −1, since values of wX near zero have the effect to smooth the universe. In fact,

when wX = −1, both a fraction αM of the pressureless matter and of the cosmological

constant are uniformly distributed; when wX → 0, quintessence behaves like ordinary

matter, and so, for the same value of αM, the pressureless matter homogeneously

distributed is αMΩM0 +ΩX0 = 1− (1−αM)ΩM0. Intermediate values of wX interpolate

between these two extreme cases.
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Figure 5.6: For flat homogeneous universes zm is determined by the intercept between the
angular diameter distance and the always decreasing Hubble distance. The values on the
ordinate axis are in units of c/H0. It is ΩM0 = 0.3, wX = −1.
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Figure 5.8: zm as a function of wX for two values of ΩM0. For ΩM0 = 0.05, zm nearly halves
itself (from 2.47 to 1.25) when wX goes from −1 to 0.
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Figure 5.9: Contours of equal zm on the ΩM0 − αM plane for universes with a cosmological
constant. Contours are drawn with steps of 0.03.
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Figure 5.10: Contours of equal zm on the wX − αM plane for flat universes with ΩM0 = 0.3
and αX = 1. Contours are drawn with steps of 0.03.

5.6 The critical redshift

The critical redshift at which the angular diameter distance of an extragalactic source

takes its maximum value has already been studied for the case of a flat universe with

a cosmological constant in [108] and for a flat universe with quintessence in [113]. In

this section, we will find again their results with a new approach and will extend the

analysis to inhomogeneous flat universes [182]. Without being explicitly stated, we

assume will αX = 1.

Let us first consider the Einstein-de Sitter model. As can be easily seen, the

maximum redshift is

zm =

(
5 + 4β

5 − 4β

) 1
2β

− 1 ; (5.113)

when αM moves from 1 to 0, (β from 1/4 to 5/4 ), zm goes from 1.25 to ∞. The

maximum of the angular diameter distance is directly related to the mass within the

light bundle [54, 226].

We want now evaluate the effect of the dark energy. As can be seen cancelling

out the derivative of the right hand of equation (5.92) with respect to z, the critical

redshift zm for a flat homogeneous universe occurs when

DA(zd, zm) =
c

H(zm)
, (5.114)

so that, the angular diameter distance between an observer at z = zd and a source at zm
is equal to the Hubble distance for z = zm, as you can see in Fig. (5.6). Equation (5.114)
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is an implicit relation that gives the dependence of zm on zd,ΩM0 and wX. Throughout

this section, we will put zd = 0. In Fig. (5.7) we show zm for a homogeneous flat

universe. For a given value of wX (ΩM0), zm decreases with increasing ΩM0 (wX); when

ΩM0 = 0, zm diverges for wX = −1, but also a small value of ΩM0 is sufficient to

eliminate this divergence, see Fig. (5.8). The minimum value of zm corresponds to the

Einstein-de Sitter universe (ΩM0 = 1 or wX = 0), when zm = 1.25. As you can see

from Fig. (5.7), for values of wX in the range (−1,−0.8), once fixed ΩM0, zm is nearly

constant and this trend increases with ΩM0; on the contrary, for small ΩM0 (
<∼ 0.4)

and wX
>∼ −0.4, zm is very sensitive to wX. The small changes of zm in the region of

large ΩM0 and wX are explained with considerations analogous to those already made

in the previous section for the values of the distance in the ΩM0 − wX plane.

Let us go now to analyse the effect of αM on zm. By differentiating equation (5.99)

and equation (5.100) with respect to z, we see that the derivatives are zero only

for z → ∞: i.e., in flat universes with totally inhomogeneous quintessence or in

a generic model with cosmological constant, the critical redshift is not finite when

αM = 0. So with respect to zm, a totally clumpy universe, independently of ΩM0 and

wX, behaves like a FLRW model completely dominated by the vacuum energy. In

fact, the cosmological constant, differently from dark energy with wX > −1, does not

give contribution to the Ricci focusing and the same occurs for the pressureless matter

with αM = 0. In Fig. (5.9), we show zm in the ΩM0 − αM plane for wX = −1. The

critical redshift decreases with increasing ΩM0 and αM, and takes its minimum for the

Einstein-de Sitter universe (ΩM0 = αM = 1), that is when the focusing is maximum.

On the other side, zm is very sensitive to αM, especially for large values of ΩM0 since

αM appears in the DR equation as a multiplicative factor of ΩM0. For ΩM0 = 0.3,

zm = 1.61 and 3.23 for, respectively, αM = 1 and 0.2, a variation of 100%. So,

combining different cosmological tests to constrain the other cosmological parameters,

we can use the redshift-distance relation to guess the smoothness parameter αM in a

quite efficient way.

We conclude this section comparing the influence of αM and wX on the critical

redshift. Fig. (5.10) displays zm in the αM − wX plane, for ΩM0 fixed to 0.3 and with

αX = 1. As expected, zm increases when the focusing decreases, that is for small values

of αM and wX. We can see that the effects of αM and ΩM0 are of the same order.

5.7 The magnification probability distribution func-

tion

The amplification of a source at a given redshift has a statistical nature. For narrow

light-beams, the effect of gravitational lensing results in the appearance of shear and
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convergence in images of distant sources according to the different amount and dis-

tribution of matter along different lines of sight. So, gravitational lensing increases

the level of errors in the Hubble diagram [10, 67, 85, 86, 98, 97, 123, 145, 211]. In

the framework of the on average FLRW universe, we can account for this effect by

considering a direction dependent smoothness parameter αM. Now, αM represents the

effective fraction of matter density in the beam connecting the observer and the source

and depends on the distribution of matter in the beam [213]; values of αM greater than

one account for amplification effects. We will consider homogeneously distributed dark

energy (αX = 1).

There is a unique mapping between the magnification µ of a standard candle at

redshift z and the direction-dependent smoothness parameter at z [213]. According

to Eq. (1.17), the magnification µ of the source with respect to the maximum empty-

beam case (αM = 0) is

µ =

[
DL(αM = 0)

DL(αM)

]2

. (5.115)

Once derived the magnification (that is, once found the distance by integrating the

null-geodesic equation or using ray-tracing techniques along a line of sight) of a source

at epoch z, the corresponding smoothness parameter is determined in comparison

with the DR distance: the solution of the DR equation for that constant value of αM

matches, at redshift z, that given value of the distance [193, 213].

The shape of the magnification probability distribution function (pdf) depends

on the redshift of the source, on the cosmological parameters and on the nature of

the dark matter (DM). The dark matter can be classified according to its clustering

properties [124, 126, 177]: microscopic DM consists of weakly interacting massive

particles (WIMPs), such as neutralinos [78, 79] and clumps on galaxy halo-scales;

macroscopic DM consists of compact objects, such as massive compact halo objects

(MACHOs) or primordial black holes.

According to N-body simulations of large scale structures in cold dark matter

models, galactic halos are expected to contain a large number of small substructures

besides their overall profile. However, this type of small-scale structure does not act as

a compact object and only clumps of galaxy-size contribute appreciably to the lensing

[126].

In the framework of the on average FLRW models, the µ-pdf is characterized by

some general features with no regard to the nature of the DM. Under the assumption

that the area of a sphere at redshift z centred on the observer is not affected by the

mass distribution, the photon number conservation implies that the mean apparent

magnitude of a source at z is identical to the FLRW value [172, 215],

〈µ〉 = µFL ≡ µ(αM = 1) > 1. (5.116)
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Since the matter is clumped, most of the narrow light-beams from distant sources do

not intersect any matter along the line of sight resulting in a dimming of the image

with respect to the filled-beam case: the mode of the pdf, µpeak, is biased towards the

empty beam value,

µpeak < 〈µ〉. (5.117)

The third feature is a tail towards large amplifications which preserves the mean. In

terms of the magnification relative to the mean,

δµ ≡
[
DL(αM = 0)

DL(αM)

]2

−
[
DL(αM = 0)

DL(αM = 1)

]2

, (5.118)

the δµ-pdf has the mean at δµ = 0, the peak value at δµpeak < 0 and a long tail for

δµ > 0, with no regard to the source redshift and to the cosmological parameters. It

follows from these very general considerations that a simple way to characterize the

pdf is to consider the parameter ∆µ, defined as the difference in amplification between

the mean FLRW value and the magnification in the empty beam case (αM = 0),

∆µ ≡ −δµ(αM = 0). When ∆µ increases, the mode value moves towards greater de-

magnification: to preserve the total probability and the mean value, the pdf must both

reduce its maximum and enlarge its high amplification tail. From the properties of

the angular diameter distance in a clumpy universe discussed in the previous sections,

it follows that ∆µ increases with the redshift of the source and with dark energy with

large negative pressure. So, the dispersion in the µ-pdf due to gravitational lensing

increases with z and it is maximum for the case of the cosmological constant, see also

[14]: quintessence with wX > −1 reduces the bias towards large de-amplifications of

the peak value of the pdf, partially attenuating the effect of the clumpiness.

5.7.1 Lensing by microscopic dark matter

The gravitational lensing effect by large-scale structures on the apparent luminosity

of distant sources in the universe has been studied either with N-body simulations

[10, 11, 94, 193, 211] or with the integration of the geodesic deviation equation [14, 86]

in a universe filled with either isothermal spheres or Navarro-Frenk-White profiles

[129, 130].

The µ-pdf for the smoothly distributed DM is characterized by two main trends

with increasing redshift: an increase in the dispersion and an increasing gaussianity.

As we look back to earlier times, the universe becomes smoother on average and lines

of sight become more filled in with matter: light bundles intersect more independent

regions along their paths and the resulting µ-pdf approaches a gaussian by the cen-

tral limit theorem [177, 213]. The corresponding αM-pdf also becomes symmetric but

it reduces its dispersion and its mode goes to the filled-beam value [11, 193, 213].
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The trends in dispersions in the µ-pdf and αM-pdf are opposite since, with increas-

ing redshift, a large variation in the distance corresponds to a small variation in the

smoothness parameter [182]. Wambsganss et al. [211] used the ray-tracing method

for large-scale simulations in a cold dark matter universe, normalized to the first year

COBE data with ΩM0 = 0.4, ΩX0 = 0.6, wX = −1, with a spatial resolution on small

scales of the order of the size of a halo, to derive the µ-pdf at different redshifts.

Wang [213] was able to find empirical formulae for the fitting of the µ-pdf and of the

corresponding αM-pdf,

pµ(µ, z) = pαM
(αM, z)

∣∣∣∣∣∂αM

∂µ

∣∣∣∣∣ = pαM
(αM, z)

DA(αM = 0)

2µ3/2

∣∣∣∣∣∂DA

∂αM

∣∣∣∣∣
−1

. (5.119)

As noted in [193], the angular diameter distance depends on αM linearly for 0 ≤ z
<∼ 5

and, with high precision, we can approximate

∂DA

∂αM
' DA(αM = 1) −DA(αM = 0). (5.120)

In Fig. (5.11), we plot the δµ corresponding to the mode of the αM-pdf (as plotted in

figure (2b) in [213]) as a function of the redshift: while the mode value of the αM-pdf

goes to the filled-beam value for increasing redshift, the variation in magnification with

respect to the FLRW mean increases; that is, the bias increases with z.

To study the role of the quintessence in the magnification dispersion of standard

candles, we consider the same matter content [213], that is the same αM-pdf, for

different equations of state. Models with different cosmological parameters produce,

in general, different αM-pdf, predictable by numerical simulations; but, to consider the

influence of the dark energy on the µ-pdf, it suffices to use the same matter distribution

in Eq. (5.119). This is equivalent to assume that the dependence on quintessence enters

Eq. (5.119) through the angular diameter distances and that the effect on pαM
is of

the second order. So, for analytical convenience, we can use the same pαM
derived

in [213] for several cosmological models with the same ΩM0 but different equations of

state. In Fig. (5.12), the µ-pdf is plotted for two source redshifts and for two different

equations of state: the µ-pdf becomes more and more symmetric with z and the dark

energy reduces both the dispersion and the bias.

The effect of gravitational lensing by large-scale structures affects significantly the

determination of the cosmological parameters from observations of standard candles.

Observed SNe Ia represent individual sources at each redshift and do not sample evenly

the probability distribution: at a fixed redshift, we will observe the mode value of the

distribution and not the mean one [211, 10]. For ΩM0 = 0.4, wX = −1 and z = 1, the

mode is µpeak = 1.14 and the magnification values above and below which 97.5% of

all of the lines of sight fall are µlow = 1.11 and µhigh = 1.28. This dispersion induces

uncertainties in determining ΩM0 and the equation of state. Assuming a flat universe
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Figure 5.11: The magnification relative to the mean calculated for the peak value of the
αM-pdf as found in Wang (1999). It is ΩM0 = 0.4, ΩX0 = 0.6 and wX = −1.

with cosmological constant, a universe with ΩM0 = 0.4 will be interpreted as a model

with ΩM0 = 0.42+0.03
−0.11 only because of the gravitational lensing noise. Here and in

what follows, the error bars represent 2-σ limits. With the constraint of ΩM0 = 0.4, a

cosmological constant might be interpreted as dark energy with wX < −0.84.

For a flat universe with ΩM0 = 0.4 and wX = −0.5, at z = 1 it is µpeak = 1.11,

µlow = 1.09 and µhigh = 1.23. With the constraint wX = −0.5, we should estimate

ΩM0 = 0.43+0.05
−0.18; assuming ΩM0 = 0.4, it is wX = −0.46+0.05

−0.24.

Although the lensing dispersion is reduced in a quintessence cosmology, the errors

induced on the cosmological parameters increase. The reason is that in this models

the luminosity distance is less sensitive to the cosmology [182].

5.7.2 Lensing by compact objects

The effect of gravitational lensing is maximum when the matter in the universe consists

of point masses [86]; as seen above, this case is not included in the small-scale struc-

tures in the microscopic DM [126]. The universal fraction of macroscopic DM is still

unknown. The average cosmological fraction in macroscopic DM could be significantly

different from local estimates obtained through microlensing surveys.

The properties of the µ-pdf are essentially independent of both the mass spectrum

of the lenses (this statement is strictly true for point sources [173]) and the clustering

properties of the point masses, provided that the clustering is spherically symmetric

[86]. The dispersion in luminosity of standard candles is non-gaussian, sharply peaked

at the empty beam value and has a long tail towards large magnifications falling as
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Figure 5.12: The amplification pdf for microscopic DM as a function of δµ, the magnification
relative to the mean. The sharply peaked line are for z = 0.5, the smoother ones for z = 2.
Solid and dashed lines correspond, respectively, to wX = −1 and −1/2. It is ΩM0 = 0.4
and ΩX0 = 0.6. Solid and dashed lines have the same matter distribution but different
cosmological backgrounds.

µ−3 [134, 150, 86], caused by small impact parameter lines of sight near the compact

objects; so, its second moment is logarithmically divergent and the law of large num-

bers fails: if strongly lensed events are removed from the data sample, a bias will be

introduced towards smaller apparent luminousities [86].

A comparative analysis of the µ-pdf in the case of either microscopic DM or compact

objects has put in evidence two main differences: the high magnification tail is larger

for macroscopic DM and the mode of the distribution is nearer the average value in

the case of lensing by large-scale structures [126, 177].

The µ-pdf in a universe filled with a uniform comoving density of compact objects

depends on a single parameter, the mean magnification 〈µ〉 [150, 177]. Based on

Monte-Carlo simulations, Rauch [150] gives the fitting formula

p(µ) ∝
[
1 − eb(µ−1)

µ2 − 1

]3/2

, (5.121)

where the parameter b is related to the mean magnification by

b = 247exp
[
−22.3(1 − 〈µ〉− 1

2 )
]
.

The approximation holds for 〈µ〉−1/2 >∼ 0.8, a condition verified up to z ∼ 2 in a

universe with low matter density, with no regard to the equation of state wX.

The αM-pdf corresponding to the distribution in Eq. (5.121) is highly non-gaussian,

see Fig. (5.13). The pdf decreases monotonically from the empty beam value to high
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Figure 5.13: The αM-pdf for macroscopic dark matter. Solid and dashed lines correspond
respectively to z = 0.8 and 1.5. It is ΩM0 = 0.3, ΩX0 = 0.7 and wX = −1.

values of the smoothness parameter. With increasing redshift, the αM-pdf tends to

flatten and the probability for the filled-beam case and for high values of αM grows.

In Fig. (5.14), we show the δµ-pdf for two source redshifts and for two values of

wX: quintessence with wX > −1 reduces the effect of clumpiness. For z = 0.5, the

variation in the distance modulus from the empty-beam case to the filled-beam one

is 0.033 (0.039) mag for wX = −1/2 (−1); for z = 1, it is 0.108 (0.138) mag for

wX = −1/2(−1); for z = 1.5, it is 0.205 (0.268) mag for wX = −1/2 (−1). For

z
>∼ 1, the bias towards the empty-beam value can be compared with the dispersion

of 0.17 mag in the peak magnitudes of SNe Ia after the application of methods as

the “multi-colour light curve” method [155]. The effect of gravitational lensing is

of the same order of magnitude as the other systematic uncertainties that limit the

conclusions on the cosmological parameters based on SNe Ia Hubble diagram [63].

The correlation between host galaxy type and both luminosity and light-curve shape

of the source; interstellar extinction occurring in the host galaxy and the Milky Way;

selection effects in the comparison of nearby and distant SNe; sample contamination

by SNe that are not SNe Ia can produce changes as large as 0.1 mag in the measured

luminosities of SNe Ia.

The effect on the estimate of the cosmological parameters of gravitational lensing

by a totally clumped model with only macroscopic DM is quite dramatic. For a source

redshift of z = 1, a universe with ΩM0 = 0.3 and a cosmological constant can be

interpreted as a model with ΩM0 = 0.42 and wX = −1 or as one with ΩM0 = 0.3

and wX = −0.71. These systematic errors increase in a quintessence cosmology with

wX > −1. For z = 1, a universe with ΩM0 = 0.3 and wX = −2/3 will be interpreted

as a model with ΩM0 = 0.45 and wX = −2/3 or one with ΩM0 = 0.3 and wX = −0.46.
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Figure 5.14: The magnification pdf for macroscopic dark matter as a function of δµ, the
magnification relative to the mean. Solid and dashed lines correspond, respectively, to wX =
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Figure 5.15: Amplification dispersion relative to the mean due to gravitational lensing by
macroscopic DM for the projected 1-year SNAP sample. Thick and thin lines correspond,
respectively, to wX = −1 and −1/2. It is ΩM0 = 0.3, ΩX0 = 0.7. Intrinsic dispersion of SN
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5.8 Dark matter and lensing dispersion

Although the lensing dispersion on the luminosity of standard candles represents a

noise in the determination of the cosmological parameters, it can also be considered as

a probe of the clustering properties of the DM. Lensing dispersion has been investigated

to search for the presence of compact objects in the universe [115, 124, 150, 177]. The

possibility of determining the fraction of macroscopic DM using future samples of SNe

Ia has also been explored [126]. The planned mission SuperNova Acceleration Probe

(SNAP - Http://snap.lbl.gov) should intensively observe SNe up to z ∼ 1.7. In one

year of study, this space-born mission should be able to discover ∼ 2350 SNe, most

of which in the region 0.5
<∼ z

<∼ 1.2. The discrimination of models of universe with

different fractions of compact objects is mainly based on the shift in the peak of the

lensing dispersion [177, 126]: a shift of ∼ 0.01 mag in the peak of the lensing dispersion

in the projected SNAP sample towards lower amplifications corresponds to a growth

of 20% in the fraction of macroscopic DM in a flat universe with ΩM0 = 0.3 and a

cosmological constant (see figure (4) in [126]). In Fig. (5.15), we plot the dispersion

in amplification, for the projected redshift distribution of SNe according to the SNAP

proposal, in a universe with ΩM0 = 0.3 filled in with macroscopic DM . High de-

amplification are preferred in the case of a cosmological constant, when the maximum

of the distribution is depleted and the mode is shifted away from the mean with

respect to dark energy with wX > −1. Changing from wX = −1 to wX = −1/2, the

peak of the distribution moves for ∼ 0.015 mag towards higher amplifications. So, a

significant reduction in the fraction of compact object can be mimed by quintessence

with wX > −1. Since quintessence reduces the dispersion of gravitational lensing,

it also reduces the ability to distinguish between microscopic and macroscopic DM

from the shape of the amplification dispersion. Both quintessence and microscopic

DM reduce the bias towards the empty beam value and the high magnification tail

and their effect is of the same order. A universe with an high fraction of macroscopic

objects can be misleadingly interpreted as one with dark energy with large negative

pressure.

5.9 Determining cosmological parameters with the

Hubble diagram

Observations of SNe Ia are strongly affected by inhomogeneities in the universe. For

redshifts z
>∼ 1, the variation in the distance modulus from a standard flat FLRW

model to a clumpy universe with the same content of pressureless matter can be con-

siderably greater than other systematic effects. The effect of amplification dispersion

by gravitational lensing must be accurately considered. The prospects of future space-
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born missions, like SNAP and the Next Generation Space Telescope, of determining

properties of the dark energy have been discussed [70, 73, 217, 218]. According to

these studies, SNAP data should only distinguish between a cosmological constant

and quintessence with wX relatively far from −1. When SNe observations are com-

bined with an independent estimate of ΩM0, for example from galaxy clustering [204],

the degeneracies among the quintessence models can be significantly reduced and some

constraints on the time evolution of the equation of state can be put [70, 218]. How-

ever, these studies only consider measurement errors and intrinsic dispersion of the

sources, neglecting the systematic and redshift dependent error induced by gravita-

tional lensing. We have shown how, also assuming an exact knowledge of ΩM0, in the

redshift range covered by future missions a cosmological constant can be interpreted

as dark energy with wX > −1. For ΩM0 = 0.4 and z = 1, a constant Λ-term may be

interpreted as quintessence with wX < −0.84, only due to the lensing by large-scale

structure. A fraction of DM in form of compact objects will make the situation even

more dramatic. So, also with a prior knowledge of the remaining cosmological param-

eters, gravitational lensing can make the statements on the properties of dark energy

based on SNe data significantly less certain.

The effect of inhomogeneities dominates at high redshifts and should be one of the

main systematics in attempting to build the Hubble diagram with GRBs [132, 153,

154, 169]. While some scenarios prefer a redshift distribution of the GRB comoving

rate peaked between z = 1 and 2, according to other ones the comoving rate remains

roughly constant at z
>∼ 2 and out to very high redshift [146]. Furthermore, the lack

of strong lensing events in the fourth BATSE GRBs catalog [87] suggests that, at

the 95% confidence level, the upper limit to the average redshift of GRBs is
<∼ 3 in

a flat, low-matter density universe with cosmological constant. According to these

considerations, the effect of gravitational lensing would be really dominant in the

Hubble diagram built with GRBs.

As an example, we consider the GRB redshift distribution derived from a combined

analysis of two independent luminosity indicators [169]. Examining a sample of 112

GRBs from the BATSE catalog, Schaefer et al. [169] found redshifts varying between

0.25 and 5.9 with a median of 1.5. At z = 1.5, gravitational lensing by large-scale

structures, in a model with ΩM0 = 0.4 and wX = −2/3, induces a magnification

distribution with µpeak = 1.25, µlow = 1.20 and µhigh = 1.46. Assuming wX = −2/3,

we will estimate ΩM0 = 0.43+0.05
−0.16; assuming ΩM0 = 0.4, we will estimate wX < −0.51.
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The gravitational lens equation has been discussed. Theoretical developments and

phenomenological applications have been performed.

I have considered the gravitational lens equation in the framework of metric theories

of gravity. To this aim, I used an approximate metric element generated by an isolated

mass distribution in the weak field regime and slow motion approximation, expanded

up to the ppN order, and with non diagonal components which include the effects

of gravity by currents of mass. Fermat’s principle has been applied under the usual

assumptions of small deflection angles and geometrically thin lenses. The time delay

function and the deflection angle for a single lens plane have been derived. Simple

formulae for a general deflector have been obtained for the post-Newtonian order

and the gravito-magnetic correction. The post-post-Newtonian order has also been

included in the analysis.

Very simple expressions for the ppN corrections to the lensing quantities have been

derived for the point-like lens. This approximation for the deflector is quite rough, but,

some of the times, astrophysics can be tough. The gravito-magnetic correction and the

ppN contribution to the deflection angle are of the same order for intermediate main

sequence stars, like the Sun. For early type stars, white dwarfs and galaxies acting as

lenses, the gravito-magnetic term overwhelms the ppN one.

Ground based instrumentations, such as VLBI, or satellites, such as Hipparcos, can

measure deflection angles, respectively in the radio-wave regime and optical band, with

accuracy of nearly milliarcsec. Since the γ parameter appears in the post-Newtonian

expression of the lensing quantities, this accuracy put strong constraints on it. How-

ever, the other parameters which enter the approximate metric element, that is the

standard β term and the non-standard ε and µ coefficients, need more accurate mea-

surements. Lensing by fast rotating stars, such as white dwarfs, could give some hints

on the dragging of inertial frames, whose strength is determined by the µ parameter.

New generation space interferometric missions, such as SIM by NASA (scheduled

for launch in 2009), should greatly improve the experimental accuracy, so that gravi-

tational lensing could address, in the near future, two very interesting topics in gravi-
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tation: the detection of gravito-magnetism and possible discrepancies of gravity from

general relativity. We remark that a full analysis of higher order corrections to the

lensing theory makes possible a comparison between general relativity and viable rela-

tivistic theories of gravity. An analysis to the lowest order might hide such differences.

The formalism of the lensing mapping has been generalized to include viable the-

ories of gravity up to the post-Newtonian order and also considering the effect of

dragging of inertial frames. Classical results, such as the theorems about the num-

ber of images and the minimum magnification, up till now derived only in the case of

static deflectors in the framework general relativity, have been stated in a more general

context.

I have considered several gravitational lens models of astrophysical interest. For

spherically symmetric lenses in rigid rotation, a general expression for the deflection

angle, to the order c−3, has been derived. I have explicitly considered isothermal

spheres, power law models and the homogeneous sphere. A perturbative approach has

made it possible to discuss critical lines, caustics and image positions. Both for galaxies

and white dwarfs, the gravito-magnetic correction to the deflection angle can be as

large as 0.1%. I have also considered some gravitational lensing phenomena, such as

detections of microlensing signatures in stellar light curves and measurements of time

delays in multiple quasars. The gravito-magnetic correction is usually negligible with

respect to other systematics but in some limiting cases it can become important.

Phenomenological applications of the gravitational lens equation have been also

considered.

I have explored the feasibility of reconstructing the properties of the dark energy

in the universe by using strong lensing systems in which a cluster of galaxies acts as

deflector. With respect to other lensing systems, for cluster of galaxies, it is possible

to determine the position of the critical lines in two independent ways: with giant

arcs or with depletion curves. Provided that the properties of the background source

populations are well constrained, it is possible, in principle, to use multi-band depletion

measurements to obtain several independent estimates, each one probing a different

source redshift. These circumstances allow to study the ratio of angular diameter

distances that characterizes the angular position of the critical lines over a large range

of source redshifts, just for a single lensing cluster.

For a flat universe, the sensitivity of the angular positions of the critical lines on

quintessence becomes higher in low-density pressureless matter universes and for dark

energy with intermediate equation of state. While the analysis of only a few lensing

clusters suffices to distinguish between accelerating and decelerating models of universe

(also without a prior knowledge of ΩM0), a considerably larger sample (N ∼ 200) and

an accurate estimate of ΩM0 are needed to constrain the equation of state within an
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uncertainty of ∆wX ∼ 0.25 and discriminate, at the 95% confidence limit, between a

cosmological constant and an evolving quintessence.

Analyses of magnification bias in multi-band photometry can be combined with

observations of giant arcs to obtain some insight on cosmological parameters. A first

application of the method to the cluster CL 0024+1654 has given interesting results.

My analysis disfavours models of a universe without dark energy and favours flat

accelerating universes. These estimates agree with the currently favoured constraints

from other independent measurements. However, some features in the redshift space

of CL 0024+1654, as a possible merger scenario, could invalidate my results. Indeed,

a very accurate knowledge of the absolute mass distribution of the deflector and a

correct understanding of the pattern of sub-structures are necessary to obtain secure

constraints on the cosmological parameters.

The method which I have discussed is quite general and can be applied to several

strong lensing systems. For example, a single galaxy, whose stellar velocity dispersion

can be accurately measured, can multiply image a background quasar. Clusters of

galaxies need an accurate modelling of the pattern of substructures and present a

quite problematic measurement of σv but allow one to study the ratio Dds/Ds at

different source redshifts. Furthermore, a multiple images system of galaxies with

known redshift makes possible an absolute calibration of the total mass of the cluster.

Gravitational lensing affects cosmological distances. Shear and convergence af-

fect images of distant sources according to the different amount and distribution of

matter along different lines of sight. By iterating the gravitational lens equation, I

have obtained, in the framework of on average Friedmann-Lemâıtre-Robertson-Walker

models, the distance–redshift relation in an inhomogeneous universe. Analytic expres-

sions for luminosity distance–redshift relations in a universe with dark energy have

been corrected for the effects of inhomogeneities. This is what is necessary to study

the gravitational lensing dispersion on the Hubble diagram of standard candles. The

amplification probability distribution function in the observed luminosity of standard

candles has been discussed. It is strongly dependent on the equation of state, wX, of

the quintessence. With no regard to the nature of the dark matter (microscopic or

macroscopic), the dispersion increases with the redshift of the source and is maximum

for dark energy with very large negative pressure.

Since observational data are taken in the inhomogeneous universe, the noise in the

Hubble diagram induced by gravitational lensing strongly affects the determination of

the cosmological parameters from observations of Supernovae of type Ia. The impor-

tance of these observations makes necessary a complete study of all systematics. The

errors on the pressureless matter density parameter, ΩM0, and on wX are maximum

for quintessence with not very negative pressure, since in these models the luminosity

distance is less sensitive to the cosmology. The effect of the gravitational lensing is of
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the same order of the other systematics affecting observations of SNe Ia. Due to lens-

ing by large-scale structures, in a flat universe with ΩM0 = 0.4, at z = 1 a cosmological

constant (wX = −1) can be interpreted as dark energy with wX < −0.84 (at 2-sigma

confidence limit).



Appendix A

Some useful numbers

Constants

vacuum speed of light c = 2.9979250(10)×1010cm s−1

Newton gravitational constant G = 6.6732(31)×10−8dyn cm2 g−2

Planck constant h̄ = 1.0545919(80)×10−27 erg s

Boltzmann constant kB = 1.380622(59)×10−16 erg oK−1

Astronomical constants

Parsec 1pc = 3.0856(1)×1018 cm

Solar Mass M� = 1.989(2)×1033 g
GM�

c2
= 1.475×105 cm

Solar Radius R� = 6.9598(7) ×1010 cm

Superficial potential GM�
R�c2

= 2.12×10−6

Solar luminosity L� = 3.90(4)×1033 erg s−1
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du Circle Social Paris.



BIBLIOGRAPHY 165

[111] Lasserre, T., Afonso, C., Albert, J. N., Andersen, J., Ansari, R., Aubourg, É.,
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[189] Soucail, G., Ota, N., Böhringer, H., Czoske, O., Hattori, M., Mellier, Y., 2000,

A&A, 355, 433.

[190] Soucail, G., Mellier, Y., Fort, B., Mathez, G., Cailloux, M., 1988, A&A, 191,

L19.

[191] Spergel, D., & Pen, U., 1997, ApJ, 491, L67.

[192] Straumann, N. 1998, in “Topics on Gravitational Lensing”, Bibliopolis, Napoli.

[193] Tomita, K., 1998, Prog. Theor. Phys., 100, 79.

[194] Tomita, K., 2001, MNRAS, 326, 287.

[195] Trentham, N., 2001, MNRAS, 326, 1328.

[196] Tricomi F.G., 1985, Integral Equations, Interscience Publishers, Inc., New York.

[197] Turner, M.S., 2000, Physica Scripta, 85, 210.

[198] Turner, M.S., & White, M., 1997, Phys. Rev. D, 56, 4439.

[199] Tyson, J.A., 1988, AJ, 96, 1.

[200] Tyson, J.A., Kochanki, G.P., & Dell’Antonio, I.P., 1998, ApJ, 498, L107.

[201] Tyson, J.A., Valdes F., Wenk R.A., 1990, ApJ, 349, L1.

[202] Udalski, A., Szymanski, M., Kaluzny, J., Kubiak, M., Krzeminski, W., Mateo,

M., Preston, G.W., Paczynski, B., 1993, Acta. Astron., 43, 289.

[203] van Kampen, E., 1998, MNRAS, 301, 389.

[204] Verde, L., Heavens, A.F., Percival, W.J., Matarrese, S., Baugh, C.M., Bland-

Hawthorn, J., Bridges, T., Cannon, R., Cole, S., Colless, M., Collins, C., Couch,

W., Dalton, G., De Propris, R., Driver, S.P., Efstathiou, G., Ellis, R.S., Frenk,

C.S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Maddox,

S., Madgwick, D., Norberg, P., Peacock, J.A., Peterson, B.A., Sutherland, W.,

Taylor, K., 2002, MNRAS, 335, 432; [astro-ph/0112161].

[205] Vilenkin, A., 1984, Phys. Rev. Lett., 53, 1016.

[206] Vitviska, M., Klypin, A., Kravtsov, A.V., Wechsler, R.H., Primack, J.R., Bullock

J.S., 2001, ApJ, in press; [astro-ph/0105349].

[207] von Soldner, J., 1804, Berliner Astron. Jahrb, 161.

[208] Waga, I., & Miceli A.P.M.R., 1998, Phys. Rev. D, 59, 1035.



170 BIBLIOGRAPHY

[209] Wallington, S., Kochanek, C.S., & Koo D.C., 1995, ApJ, 441, 58.

[210] Walsh, D., Carswell, R.F., Weymann, 1979, Nature, 279, 381.

[211] Wambsganss, J., Cen, R., Xu, G., Ostriker, J.P., 1997, ApJ, 475, L81.

[212] Wang, L., Caldwell, R.R., Ostriker, J.P., & Steinhardt P.J., 2000, ApJ, 530, 17.

[213] Wang, Y., 1999, ApJ, 525, 651.

[214] Wang, Y., & Garnavich, P.M., 2001, ApJ, 552, 445.

[215] Weinberg, S., 1976, ApJ, 208, L1.

[216] Weinberg, S., 1992, Gravitation and Cosmology, Wiley, New York.

[217] Weller, J., Albrecht, A., 2001, Phys. Rev. Lett., 86, 1939.

[218] Weller, J., Albrecht, A., 2002, Phys. Rev. D, 65, 103512, [astro-ph/0106079].

[219] Wetterich, C., 1988, Nuclear Phys. B, 302, 668.

[220] Will, C.M., 1988, Am. J. Phys., 56, 413.

[221] Will, C.M., 1993, Theory and Experiment in Gravitational Physics, rev. ed.,

Cambridge University Press, Cambridge.

[222] Williams, L.L.R., Navarro, J.F., Bartelmann, M., 1999, ApJ, 527, 535.

[223] Wu, X.-P., 2000, MNRAS, 316, 299.

[224] Wu, X.-P., Chiueh, T., Fang, L.-Z., & Xue, Y.J., 1998, MNRAS, 301, 861.

[225] Yamamoto, K., & Futamase, T., 2001, Prog. Theor. Phys., 105, 707.

[226] Zel’dovich, Ya.B., 1964, Sov. Astr., 8, 13.

[227] Zel’dovich, Ya.B., 1968, Sov. Phys.-Uspekhi, 11, 381.

[228] Zhu, Z.-H., 2000, Mod. Phys. Lett. A, 15, 1023.

[229] Zwicky, F., 1933, Helv. Phys. Acta, 6, 110.

[230] Zwicky, F., 1937, Phys. Rev. Lett., 51, 290.

[231] Zwicky, F., 1937, Phys. Rev. Lett., 51, 679.


