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Abstract

Synthetic Biology is a new �eld of research that aims at engineering new func-
tionalities in living beings. Analogously to electronic circuits, more advanced
functionalities can be realised by putting together smaller functional modules
that perform elementary tasks; however, the interaction of these basic pieces is
somewhat complex and fragile. Therefore, to increase the robustness and relia-
bility of the whole system, typical tools from Control Theory, such as feedback
loops, can be employed. In the �rst part of this thesis we propose feedback con-
trol strategies to balance the gene expression of a bistable genetic circuit, known
as genetic toggle switch, in an unstable region far away from its stable equilibria
� a problem analogous to the stabilization of the inverted pendulum in mechan-
ics. The e�ectiveness of the proposed control strategies is validated via realistic
agent-based simulations of a bacterial population endowed with the genetic tog-
gle switch. Later in the thesis we move towards the growth control of bacterial
cells in bioreactors, introducing a novel open-source and versatile design of a tur-
bidostat to host in vivo control experiments. In the last part, we want to control
bioreactors to guarantee the coexistence of multiple species in the same environ-
ment. We analyse the dynamics of a simple one-chamber bioreactor, proposing
control strategies to achieve the control goal. However, simple bioreactors have
several drawback when the concentrations of multiple species are regulated at the
same time; for these reason, we propose a novel layout for a bioreactor, with two
growth chambers and a mixing one, to be used in multicellular in vivo control
experiments.
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Chapter 1. Introduction

1 Introduction

The last decades saw a signi�cant increase in the number of applications of en-
gineering tools and techniques to the �eld of biology, which gave rise to the new
and promising research �eld of system biology.

Systems biology [79] involves both computational and mathematical meth-
ods to model complex biological systems supporting the analysis of experimental
data. In this context, the process of production of proteins from the instructions
contained in the genome is seen as a complex system made up of interacting
biological modules [78]; the interactions between these components let collective
behaviours, such as life, emerge. The aim of system biology is to study protein
interactions formulating sets of di�erential equations that describe their dynam-
ics [26]; the parameters of the equations are related to the speed of the reactions
in the system and can be determined by experiments and by applying compu-
tational techniques [140, 24]. Similarly, bioinformatics [94] aims at developing
methods and tools to understand biological data combining elements from com-
puter science.

While in systems biology and bioinformatics engineering tools are applied
and developed to enhance the comprehension of living beings, synthetic biology
[15, 21, 37] aims at creating new life forms, or at modifying existing ones to
provide new functionalities to living organisms, by engineering and embedding
into them new gene regulatory networks (GRN). Biological pathways that behave
in a way that mimic memory elements, oscillators, logic gates or more complex
electrical circuits have been designed [74]. In general, GRNs can be combined
as functional modules to build more advanced and larger systems; however, the
more complicated the system, the more prone to noise and fragile it becomes
[137]. The disruptive e�ects of stochastic noise, cell-to-cell variability, retroac-
tivity, metabolic burden, and other unobservable phenomena can be mitigated
by adopting feedback loops [17]. For these reasons, control theory tools � such
as feedback control � are of crucial importance in the creation of new synthetic
living beings.

Gene expression is the fundamental mechanism by which the information
stored in the DNA is converted into proteins, determining the behaviour of the
cells [29, 30], so that living beings are capable of responding to changing envi-
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ronments, to external signals, and other stimuli. The �rst scienti�c question we
address in this thesis is to understand whether it is possible to steer the be-
haviour of living cells via feedback control strategies in a robust and
reliable manner. If so, it is of utmost importance to investigate how
these strategies can be designed to tackle the unavoidable process un-
certainties. To answer this question, we will focus on the genetic toggle switch,
a bistable gene regulatory network made up by two proteins that repress each
other's promoter. For its intrinsic bistable nature, the genetic toggle switch has
been recognised as the biological version of the inverted pendulum [93, 72], being
a valuable test bench for the control of GRNs. In particular, we propose feedback
control strategies for its stabilization in an unstable region of its state space far
away from its stable equilibrium points.

Due to some limiting factors, such as excessive metabolic burden, competi-
tion of limited resources or incompatible chemical reactions, complex functional-
ities can sometimes not be implemented in a single cell. A chance to overcome
these limitations is o�ered by multicellular systems where a �desired goal� can
be achieved via a distribution of the tasks (and their metabolic burden) over
di�erent subpopulations of cells [16]. In this way, two or more bacterial popu-
lations cooperate to achieve a �common goal�, forming a microbial consortium.
Recent examples of consortia include prey-predator systems [11], oscillators [28]
and a feedback control loop where the functions are split between species [46].
However, due to unavoidable di�erences in the cell growth in the populations
constituting the consortia it is necessary to stabilize their co-culture. Ad hoc
regulation mechanisms can be embedded into cells [117]; however, especially in
industrial applications, some external regulation strategies may be preferred to
avoid the additional metabolic burden introduced by embedded solutions. There-
fore, the second objective of this thesis is to design control strategies for
bioreactors to guarantee coexistence and regulate the ratio of com-
peting bacterial populations in the same environment. In this thesis we
analyse the dynamics of two competing bacterial species in the same environment
to reveal the conditions that lead to their coexistence. Then, we propose control
strategies that guarantee their stable coexistence and regulate the ratio of the two
populations, validating their e�ectiveness via in silico experiments. The resulting
closed-loop systems exhibit at times slow dynamics that are incompatible with
the time scale of in vivo experiments; therefore, to overcome these limitations,
we formulate the mathematical model of a new chemostat layout and propose a
possible control strategy that shows promising results in simulations.

2



Chapter 1. Introduction

1.1 Outline of the Thesis

This thesis can be conceptually divided into two parts: the �rst is focused on the
external control of some cell phenotype while the second is concerned with growth
control and the regulation of the ratio of two competing bacterial populations in
the same chemostat.

Chapter 2 illustrates the state of the art on the control of bacterial popula-
tions endowed with synthetic gene regulatory networks.

In Chapter 3, the analysis and the external control of the genetic toggle switch
is discussed; after deriving a simpli�ed mathematical description of the system,
we propose two control strategies to balance the expression of the two repressor
proteins in a target region of its state-space. The proposed control strategies are
then validated via extensive in silico experiments and their performances quan-
ti�ed and compared using some aggregate indexes. The results of this Chapter
have been presented in [44]; the control strategies have been published in [56, 57].

The focus of Chapter 4 is on bioreactors used to conducts in vivo experiments.
We present an open-source modular design of a turbidostat, which is a bioreactor
with a closed control loop that regulates the turbidity of a cells solution. The
device we assembled has a 3D printed structure and is controlled by an Arduino
microcontroller; these characteristics make the device very �exible and easy to
extend, while keeping the total assembly cost under $200. The work has been
conducted during a 3 month visiting period at the University of Bristol, in col-
laboration with Dr. Barbara Shannon; results from this Chapter were presented
in [58].

In Chapter 5 control strategies are designed to regulate the density of two
competing cell populations in a bioreactor. After showing the strong limitation
of a simple one chamber set-up, we propose a new three chambers layout � with
two growth chambers and a mixing one where the species coexist � and a simple
control strategy that shows good performances in in silico experiments. Part of
the results were obtained in collaboration with Dr. Davide Fiore and Dr. Fabio
Della Rossa from Politecnico di Milano and are available in [43].

Conclusions are drawn in Chapter 6. Appendix A provides further details
about the design of the turbidostat shown in Chapter 4.

In order for each Chapter to be self contained, the relevant background is
given at its beginning rather than all being collected in Chapter 2.
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1.2. Research Products

1.2 Research Products

During the PhD course, the following works were published in journals or con-
ference proceedings:

1. Davide Fiore, Agostino Guarino, and Mario di Bernardo. "Analysis and
control of genetic toggle switches subject to periodic multi-input stimu-
lation." IEEE Control Systems Letters 3(2): 278-283, 2019. Also IEEE
Conference on Decision and Control 2018.

2. Agostino Guarino, Davide Fiore, and Mario di Bernardo. "In-silico feedback
control of a MIMO synthetic toggle switch via pulse-width modulation." In
Proc of the 2019 18th European Control Conference (ECC), pages 680-685
2019.

3. Agostino Guarino, Barbara Shannon, Lucia Marucci, Claire Grierson, Nigel
Savery, and Mario di Bernardo. "A low-cost, open-source turbidostat design
for in-vivo control experiments in synthetic biology." IFAC-PapersOnLine,
52(26):244�248, 2019. Also discussed in 8th IFAC Conference on Funda-
tions of Systems Biology in Engineering (FOSBE) 2019.

4. Agostino Guarino, Davide Fiore, Davide Salzano, and Mario di Bernardo.
"Balancing cell populations endowed with a synthetic toggle switch via
adaptive pulsatile feedback control." ACS Synthetic Biology, 9(4):793�803,
2020.

5. Fabio Della Rossa, Davide Salzano, Anna Di Meglio, Francesco De Lellis,
Marco Coraggio, Carmela Calabrese, Agostino Guarino, Ricardo Cardona-
Rivera, Pietro De Lellis, Davide Liuzza, Francesco Lo Iudice, Giovanni
Russo and Mario di Bernardo. "A network model of Italy shows that inter-
mittent regional strategies can alleviate the COVID-19 epidemic." Nature
Communications 11(1):1�9, 2020.

6. Davide Fiore, Fabio Della Rossa, Agostino Guarino, Mario di Bernardo.
"Feedback ratiometric control of two microbial populations in a single
chemostat." Submitted to IEEE Control Systems Letters. Preprint avail-
able on bioRxiv [43].
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Chapter 2. State of the Art on Control of Bacterial Populations

2 State of the Art on Con-

trol of Bacterial Popula-

tions

In this Chapter we review the state of the art on the control of bacterial popu-
lations. We introduce the problem that will be addressed in Chapter 3 and we
discuss, in broader terms, the most relevant techniques for the control of bacteria
in micro�uidics devices and bioreactors.

2.1 Gene Regulatory Networks

Gene expression is the cellular process that allows the production of proteins from
the information encoded in sequences of nucleotides called genes [112]. Sequences
of genes and their spatial distribution in the genome regulate the behaviour of
cells, serving as target sites for transcription factors. In this sense, regions of
DNA can be seen as unitary control modules, receiving inputs from the envi-
ronment and producing proteins, that can be interconnected to form complex
networks [3, 69]. By collecting and analysing gene expression data it is possi-
ble to infer networks of genes that describe complex gene expression dynamics
[40]. These networks, known as gene regulatory networks (GRNs), are logic maps
or �blueprints� that describe the relationship between transcriptional regulatory
activities and some inputs [87].

The high degree of complexity of large-scale genetic networks can be handled
by decomposing the whole system into modules [116, 122] that are interconnected
through input and output signals. This point of view raises an interesting analogy
between electrical and genetic circuits [98, 99]: as electronic engineers design
circuits, genetic network engineers can use biologically equivalent modules to
assemble gene regulatory networks to control cellular functions [71]. Over the
past decades, simpler modules have been combined to obtain larger systems that
behave similarly to electronic circuits. This is the case of memory-like circuits
[53, 136], counters [50], logic gates [59, 144], oscillators [39] and others.
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2.1. Gene Regulatory Networks

Figure 2.1: Schematic of the genetic toggle switch circuit structure as presented
in [93]. The two genes (LacI and TetR) � respectively bound with RFP(mKate2)
and GFP(mEGFP) � mutually repress each other; the external inducers, IPTG
and aTc, modulate the strengths of the repression exerted by LacI and TetR on
each other.

Among all the synthetic GRNs that were implemented over the last few
decades, two networks raised signi�cant interest: the repressilator [39] and the
genetic toggle switch [53]. The repressilator is a GRN composed by at least three
genes arranged in a closed sequence where each gene represses its successive one;
in this way, the network forms a feedback loop through transcriptional receptors.
Hence, its design emulates an electrical circuit that exhibits stable oscillations
with �xed period [19]. The repressilator was implemented in E. coli bacteria to
build an arti�cial circadian clock that mimics its natural counterpart and it is
currently the object of research to study synchronization [52], neurodegenerative
diseases [66], and growth abnormalities in cancer cells [133]. The genetic toggle
switch, which will be used as a benchmark system in the rest of this thesis, will
be described next.

2.1.1 The Genetic Toggle Switch

The genetic toggle switch (GTS), as �rst described in [53] and shown in Figure
2.1, consists of two repressor proteins and two constitutive promoters. Both
proteins repress each other's promoter, so that only one is fully expressed at any
time. The mutually inhibitory actions make this system intrinsically bistable; in
the absence of external inducers, the system settles onto one of the two stable
states where one protein is fully expressed, while the other is repressed. A saddle
point corresponding to an equilibrium where neither of the two reporter proteins
is fully expressed is also possible, with its stable manifold separating the basins
of attraction of the two stable equilibria. The switch from one stable state to
the other is possible by acting on the external inducers, reducing the inhibitory
actions of the proteins over the promoters.

6



Chapter 2. State of the Art on Control of Bacterial Populations
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Figure 2.2: Left panel: In-cell embedded feedback control implementation. The
process and the controller are implemented by biomolecular reactions embedded
in the same cell. Central panel: In silico feedback control implementation. The
process is embedded in the cell while the controller is implemented in an external
architecture. Right panel: Multicellular feedback control implementation. The
process and the controller are implemented in two di�erent cells.

Concerning its implementation, the toggle switch is commonly implemented
via a single plasmid, although it is possible to separate its components in di�erent
plasmids without altering its functionalities [53]. This idea of separation has in-
spired a recent implementation of the toggle switch across a microbial consortium
[118].

Since its design in the year 2000, the GTS has played a fundamental role in
synthetic biology, especially in the study of cell di�erentiation [51, 148, 120, 84]
and decision making [5, 27]. Its importance comes from its ability to endow host
cells with memory of some previous stimulus reporting this information as high
expression rate of a speci�c repressor protein [53, 138, 147, 64].

2.2 Control of Bacterial Populations

In synthetic biology, biomolecular circuits are embedded in living cells with the
aim of steering cellular behaviour so as to realize new functionalities with relevant
applications in di�erent �elds of Science and Technology, from energy, to environ-
ment, to medicine [21]. However, the inner nature of the biological components,
which are non-linear, stochastic, and uncertain, undermines the modularity of the
biomolecular processes; hence, the realization of synthetic biomolecular circuits is
often a lengthy and ad hoc process [23]. To tackle these problems, control theory
techniques have been applied to engineer these systems, guaranteeing modularity
of the whole systems and its reliability in real applications.

Although promising results have been achieved, the implementation of robust
and reliable biological systems can be cumbersome. Indeed, there is no method
to simply translate existing theories developed for control systems directly to a
biomolecular setting [36]. Currently, control systems to modify gene expression in
cells can be realised according to three di�erent paradigms [76], visually reported
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2.2. Control of Bacterial Populations

in Figure 2.2. A �rst architecture (see Figure 2.2, left panel) � known as internal
or embedded control � consists of endowing the same cell with both the functional
blocks in the classical control schematic, the process P and the controller C. The
exchange of information, which is the state of the process (or its output) and the
control input, remains con�ned inside the cell without passing through the cell
membrane. A second architecture (see Figure 2.2, central panel) requires external
devices to control the process embedded in the cell; for this reason, it is known as
in silico or external control. The state of the process is measured via an external
sensor (i.e., a microscope) and is sent to a computer (the controller) that evaluates
the control input to be applied to the system. The input can be actuated using
di�erent methods, such as via inducer molecules or optogenetics techniques. The
last paradigm is one known as multicellular control (Figure 2.2, right panel) and
consists of the separation of the functional blocks in di�erent cells. Commonly,
a species is endowed with the process P and another one with the controller
C, forming together a microbial consortium. The communication between the
functional blocks requires a mechanism of intracellular communication, such as
quorum sensing [104]. Obviously, in this paradigm, the feedback loop exists only
when the two population of cells coexist in a stable manner, with the extinction
of one of the two resulting into a failure of the control strategy.

In the following sections we will review the state of the art of the three control
architectures for biological systems presented above, showing the most relevant
results and discussing the advantages and limitations of each paradigm.

2.2.1 Embedded Control

Emdedded control strategies consist of designing and directly embedding into the
cells new genetic circuits that modify their behavior so that a genetic process of
interest can be regulated as desired. The �rst result, in this sense, was in the
early years of synthetic biology when a negative feedback loop was constructed
in E. coli [14], achieving stable regulation and reducing variability. Following the
results obtained in bacteria, negative feedback loops have been implemented also
in yeast [12] and mammalian cells [124]. Comprehensive reviews of embedded
controllers can be found in [76, 36, 67].

Recently, embedded antithetic feedback controllers [89, 7] in E. coli raised
lots of interests, showing perfect rejection of constant disturbances by means of a
biological integral control action. In E. coli, the implementation of a quasi-integral
feedback controller is reported in [2] and two negative feedback circuits have
been proposed and validated in [73]. However, the implementation of embedded
controllers requires several conceptual and practical problems to be addressed.
Some of the main challenges are the presence of intrinsic stochastic noise, the
context dependence of the parameters of the cells, the lack of knowledge of some
network topologies, and, especially, the excessive metabolic burden to which the
cells are exposed.

8



Chapter 2. State of the Art on Control of Bacterial Populations

2.2.2 In Silico Control

In silico controllers require an external architecture to close a feedback loop
over the process embedded into cells, (see central panel in Figure 2.2). The
external architecture is essentially composed of three elements: a sensing device,
a computer, and an actuator. The sensing device (i.e., a microscope) is required
to measure or estimate the state of the process; this is usually done by evaluating
the expression of some �uorescent reporters. The computer evaluates the control
input on the basis of the measure and the setpoint of the experiment. The
actuators deliver the control law to the system; di�erent actuation solutions have
been used, such as optogenetics or regulation of external inducers.

Over the years, di�erent synthetic genetic components that tune transcrip-
tion processes on the basis of light stimuli they sense have been developed [90].
Optogenetics [35], by exploiting these components and controlled light sources
(i.e., LEDs), allows for the fast control � on the order of milliseconds � of gene
regulatory networks. A �rst example of a feedback loop based on this technology
was been demonstrated in yeast cells in 2002 [123]. In bacteria, over the last
few years, several applications of optogenetics have been proposed to achieve dy-
namic regulation of gene expression [103, 102, 101, 110, 109]. The applications of
optogenetics, however, are not limited to the control of synthetic gene regulatory
networks but include other �elds such as neuronal control. The fast-scale and
the versatility of this technique makes it suitable for a large number of poten-
tial applications; however, in reality, phenomena like selective expression, light
absorption spectrum interferences, and spatial response are open problems that
require further studies [150].

Alternatively to optogenetics techniques, cells can be controlled by an external
system that pumps inducer molecules into the media where the cells are hosted
and grow. Advantages of this control method are its versatility and scalability:
it can be applied to micro�uidics set-ups using controlled syringe pumps as well
as large continuous bioreactors using peristaltic pumps [80]. Micro�uidics o�ers
several advantages in terms of costs � working with limited volumes reduces the
quantities of reagents needed in the experiments � and in terms of control � the
small micro�uidic chamber is continuously monitored by a microscope, allowing
for real-time quanti�cation of reporter proteins [76]. Over the years, control with
micro�uidics-based inputs demonstrated its e�ectiveness in several applications
[113, 114, 48, 93, 47]. Theoretically, these examples of feedback controllers im-
plemented in micro�uidics can be scaled up to larger bioreactors; in doing so
hard practical challenges need to be addressed. In particular, the bottleneck is
the measurement process: usually, in larger bioreactors, samples of the solution
must be taken and analysed via �uorescence activated cell sorting (FACS) [62],
which is a slow process that introduces long delays in the control loop. In the last
few years, techniques to speed-up the measurement process have been proposed
[85, 88], however their implementation costs limit their di�usion. Alternatively,
new bioreactors have been developed and embedded with �uorescent measuring
circuits [130], allowing real-time monitoring of reporter proteins [131].

9



2.2. Control of Bacterial Populations

Figure 2.3: In-Silico control strategies proposed by Lugagne et al.; �gure taken
from [93]. Panel a: Experimental control principle. The external controller uses
�uorescence measures of a single cell to compute the control inputs. Panel b:
Ratio of RFP (LacI ) and GFP (TetR) levels of the controlled cell (in orange)
and of the other 11 cells in the population (black), when controlled by the PI
controllers. Panel c: Ratio of RFP (LacI ) and GFP (TetR) levels of the controlled
cell (in orange) and of the other 11 cells in the population (black), when controlled
by the Bang-Bang controllers.

In-Silico Control of the Genetic Toggle Switch

The problem of controlling the toggle switch dynamics has been the subject of
many papers in the literature, and was highlighted by Lugagne et al. [93] as the
genetic equivalent of controlling an inverted pendulum. Pulse Shaping Control
[126, 128, 127] and Reinforcement Learning control approaches [129] were both
proposed to drive the system from a stable equilibrium to the other. Stochastic
Motion Planning [41] and Piecewise Linear Switched Control [25] were used to
stabilize the circuit around its unstable equilibrium. In all these cases, however,
the results are only tested in-silico and no experimental validation is provided.

Lugagne et al. [93] demonstrated the potential of external feedback con-
trol strategies by stabilizing a population of toggle switches in a region near its
unstable equilibrium for an extended period of time; to do so, in-vivo control
experiments were conducted in a micro�uidic device (see Figure 2.3, panel a). In
this work, the authors at �rst propose two proportional-integral (PI) controllers
to regulate the expression of the �uorescent proteins (RFP bounded with LacI
and GFP bounded with TetR) at target levels close to the unstable equilibrium,
succeeding in the stabilization of a single cell but with the rest of the population
committing to either one of the two stable states (see Figure 2.3, panel b). Then,
they proposed a Bang-Bang control strategy that showed excellent control result
while being technically less challenging to implement, succeeding in their control
goal (see Figure 2.3, panel c). This e�ciency, however, comes with the limita-
tion that only a single cell can be controlled at a time with the control inputs
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Chapter 2. State of the Art on Control of Bacterial Populations

Figure 2.4: A cell population can be maintained in a state of balanced expression
using periodic stimulations; �gure taken from [93]. Panel a: Ratio of RFP (LacI )
and GFP (TetR) levels for 8 observed cells. The concentrations of the inducers
were varied periodically (120 min of 0.5mM IPTG, 30 min of 50 ng/ml aTc). In
such dynamic conditions, the cells were kept in a state of balanced expression.
As soon as the periodic stimulation was stopped, with aTc and IPTG set back
to their reference levels, the cells were attracted to the RFP-dominant state.
Panel b: In silico experiment (stochastic simulation) in which periodic stimula-
tion was applied as in panel a to a simulated population of 16 cells implementing
a stochastic version of the toggle switch model and showing a similar behaviour.

(aTc and IPTG) computed on its trajectory and being probably inappropriate to
drive the other cells. In principle, controlling several cells simultaneously would
require the application of a speci�c input for each cell. However, as it is possible
to stabilize di�erent pendulums (with di�erent masses and lengths) in their up-
ward positions by applying them the same mechanical force, the authors proved
that a single periodic forcing can be used to dynamically stabilize the population
of switches in a target region. Therefore, they noted that, for carefully chosen
periods and duty-cycles of two open-loop mutually exclusive pulse wave inputs,
it was indeed possible to stabilize an entire population of switches in an unstable
region (see Figure 2.4, in vivo experiments in panel a, stochastic simulations in
panel b). Too fast, or too slow, periodic stimulations lead cells to eventually
commit to either one of the two stable states. Therefore, the problem remains of
how to select the required features of the inputs and also of guaranteeing greater
robustness given that the proposed strategy is open loop.

We propose a solution to this problem in Chapter 3 where ad hoc feedback
controllers will be designed to steer the dynamics of a cell population endowed
with a genetic toggle switch.
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2.2.3 Multicellular Control

Embedded controllers can often be hard to integrate into a single cell due to the
excessive metabolic burden placed on the host [82, 145]. Another limiting aspect
is that any change in the control strategy requires re-engineering of the entire
control system; this paradigm results in poor modularity and adaptability of the
design and its parts [95]. Distributing the components of the control system, as
in Figure 2.2 right panel, across multiple species in a microbial consortium is a
promising solution to overcome these limitations. This alternative concept goes
under the name of multicellular control.

In the multicellular control paradigm, a �controller� species receives the �mea-
sures� and regulates a �target� cell population, realising a feedback control loop.
A key element that must be present in the controller species is a sort of biological
comparator to evaluate the �di�erence� between a �reference� signal and the mea-
sure of the target population output; an example of biological comparator were
implemented in E. coli in [6]. In order to close the loop, the two populations
must be able to communicate to exchange information about their state and the
control input. Usually, this is accomplished by keeping the two populations in
the same solution while they exchange quorum sensing molecules. An implemen-
tation of this control architecture has been proposed in [47], which validated its
e�ectiveness via in silico experiments.

Multicellular control strategies have shown promising results in several appli-
cations. In [9] coordinated self-organization of cells in patterns has been demon-
strated. Control strategies to control cell growth and regulate populations at a
desired equilibrium has been proposed in [121]. Other examples include main-
taining the density of E. coli at a desired level via a population control circuit
[149] or via a feedback control strategy [117]. In [42] a co-culture is controlled
by a single strain of bacteria expressing and secreting a bacteriocin that targets
a competitor. Recently, a multicellular feedback control strategy has been pro-
posed to toggle a population of genetic toggle switches [45].

In this Chapter we presented the state of the art on control of bacterial popu-
lations, discussing the di�erent control techniques and the results achieved in the
literature. In the next Chapter, we design external feedback control strategies to
balance the genetic toggle switch in a region of its state space where none of its
two competing proteins are fully expressed.
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Chapter 3. External Control of the Genetic Toggle Switch

3 External Control of the Ge-

netic Toggle Switch

3.1 Introduction

The genetic toggle switch (GTS) has been highlighted as a fundamental synthetic
circuit to endow cells with memory-like features [64] or to di�erentiate mono-
strain cultures into di�erent populations [51, 148, 120, 84]. A crucial problem
in all reversible bistable systems is the ability to reset their state by means of
appropriate inputs to balance the system in an indeterminate state located in
between the two stable states. A striking example is dedi�erentiation in stem
cells applications [20, 111] where a terminally di�erentiated cell reverts and is
maintained as an undi�erentiated stem cell.

In this Chapter, we consider the problem of balancing the genetic toggle
switch in a region surrounding its unstable equilibrium by manipulating two ex-
ternal inputs that can a�ect its dynamics. Solving this problem was suggested as
an important benchmark [93] in the applications of control theory to synthetic
biology, similar to that represented by the classical inverted pendulum (cart-pole)
stabilization in control engineering [72]. The control strategies we propose to deal
with the problem fall in the class of external control strategies, given the archi-
tecture they require to operate; their implementation needs a micro�uidic device
to host the living population of bacteria, a sensing unit that is a �uorescence
microscope to measure the state of the system and actuated syringes to deliver
the input, see Figure 3.1. A micro�uidic chamber traps and hosts a population
of E. coli endowed with the genetic toggle switch feeding it with the inducers
received from a connected actuation system made up of controlled automated
syringes. Through a �uorescence microscope that takes pictures of the cells, the
average red and green �uorescence proteins values (namely, RFP and GFP) are
evaluated through segmentation algorithms and sent to the controller. A control
algorithm compares the �uorescence values with the setpoint of the experiment
and computes online the inputs to be delivered in the solution with the cells. The
control signal is then passed to the actuators that produce the action needed to
feed the population of cells in the chamber.
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3.1. Introduction

Figure 3.1: Architecture of the external feedback control of cell populations in
micro�uidic platform: basic elements of an experimental platform.

Recently, it was experimentally observed [93], and later proved analytically
[44], that a speci�c class of pulsatile periodic inputs with carefully selected peri-
ods, duty-cycle and amplitudes can be used to dynamically balance a population
of cells, endowed with a genetic toggle switch, in a region close to their unstable
equilibrium point. To achieve this goal, it is indeed necessary to use time-varying
input signals as, for the particular implementation of the toggle switch consid-
ered in this Chapter, stabilization near the unstable equilibrium has been proved
impossible by means of constant control inputs [92]. Moreover, when periodic
forcing is used, better coherence across cells in the population was observed in
both in-silico and in-vivo experiments.

A pressing open problem is that such a balancing goal was only achieved
for certain forcing inputs whose features (amplitudes, period, and duty-cycle)
were carefully selected o�ine by trial-and-error. When di�erent periods and
amplitudes were tested in-vivo, often coherence and control were lost with many
cells in the population falling towards one of the two stable equilibria rather than
remaining balanced around the desired undi�erentiated state [93]. Moreover, cell
growth, cell-to-cell variability, uncertainties and noise can make any o�ine choice
of the forcing inputs unable to ful�ll the control goal in practice. Therefore,
closed-loop action needs to be found able to compensate against these e�ects
by adapting inputs' features in real-time to cope with changing environmental
conditions, growth, di�usion and other unmodelled e�ects.

Di�erently from previous results in the literature, here we present strate-
gies strongly oriented to assess the feasibility of a possible in-vivo implementa-
tion, taking into account for their validation realistic constraints on the inputs
and other phenomena such as cell growth and spatial di�usion of the inducers.
Therefore, we focus on designing feedback control strategies to stabilize the toggle
switch in a region where none of the two proteins are fully expressed by forcing
the system with two mutually exclusive periodic inputs.
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Chapter 3. External Control of the Genetic Toggle Switch

In the rest of this Chapter we will introduce a nonlinear, nonsmooth 6th

order model that captures the dynamics of the GTS. We will show that the
dynamics of this model, when subject to mutually exclusive square wave inputs
applied in open-loop, can be approximated on average by a 2nd order vector �eld
that captures the mean value at steady state of the oscillations exhibited by the
original system. Then, we will exploit this average model to design two control
strategies able to balance the GTS in a region surrounding its unstable equilibria.
The performance of the proposed controllers will be assessed in �rst place via
MATLAB simulations, and later with more realistic agent based simulations. A
quantitative comparison of the presented strategies concludes the Chapter.

3.2 Mathematical Model of the Genetic Toggle Switch

The model of the synthetic toggle switch we considered in our analysis was orig-
inally developed in Lugagne et al. [93]; the biological implementation of the sys-
tem were already shown in Figure 2.1. The model captures the pseudo-reactions
describing transcription

∅
𝑓 m
L (𝑇 𝑒𝑡𝑅,𝑎𝑇 𝑐)

−−−−−−−−−−−−−→ 𝑚𝑅𝑁𝐴LacI,

∅
𝑓 m
T (𝐿𝑎𝑐𝐼 ,𝐼 𝑃𝑇𝐺)

−−−−−−−−−−−−−−→ 𝑚𝑅𝑁𝐴TetR,

those describing translation

𝑚𝑅𝑁𝐴LacI

𝜅
p
L−−→ 𝑚𝑅𝑁𝐴LacI + 𝐿𝑎𝑐𝐼,

𝑚𝑅𝑁𝐴TetR

𝜅
p
T−−→ 𝑚𝑅𝑁𝐴TetR + 𝑇𝑒𝑡𝑅,

and those related to dilution/degradation

𝑚𝑅𝑁𝐴LacI

𝑔m
L−−→ ∅, 𝑚𝑅𝑁𝐴TetR

𝑔m
T−−→ ∅,

𝐿𝑎𝑐𝐼
𝑔
p
L−−→ ∅, 𝑇𝑒𝑡𝑅

𝑔
p
T−−→ ∅.

In the above equations, 𝑓L (𝑇𝑒𝑡𝑅, 𝑎𝑇𝑐) and 𝑓T (𝐿𝑎𝑐𝐼, 𝐼𝑃𝑇𝐺) are the gene regula-
tion functions de�ned as:

𝑓L (𝑇𝑒𝑡𝑅, 𝑎𝑇𝑐) := 𝜅m0
L + 𝜅mL · ℎ− (𝑇𝑒𝑡𝑅 · ℎ− (𝑎𝑇𝑐, 𝜃aTc, 𝜂aTc), 𝜃TetR, 𝜂TetR),

𝑓T (𝐿𝑎𝑐𝐼, 𝐼𝑃𝑇𝐺) := 𝜅m0
T + 𝜅mT · ℎ− (𝐿𝑎𝑐𝐼 · ℎ− (𝐼𝑃𝑇𝐺, 𝜃IPTG, 𝜂IPTG), 𝜃LacI, 𝜂LacI),

the parameters 𝜅m0
L/T, 𝜅

m
L/T, 𝜅

p

L/T, 𝑔
m
L/T, 𝑔

p

L/T are basal transcription, transcription,

translation, mRNA degradation, and protein degradation rates, respectively, and
ℎ− (𝑥, 𝜃, 𝜂) = 1/(1 + (𝑥/𝜃)𝜂) represents a decreasing Hill function.
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3.2. Mathematical Model of the Genetic Toggle Switch

The pseudo-reactions listed above can be put together to obtain the following
deterministic model of the toggle switch dynamics:

𝑑 𝑚𝑅𝑁𝐴LacI

𝑑𝑡
= 𝜅m0

L +
𝜅mL

1 +
(
𝑇 𝑒𝑡𝑅
𝜃TetR

· 1
1+(𝑎𝑇 𝑐/𝜃aTC)𝜂aTc

) 𝜂TetR
− 𝑔mL · 𝑚𝑅𝑁𝐴LacI (3.1)

𝑑 𝑚𝑅𝑁𝐴TetR

𝑑𝑡
= 𝜅m0

T +
𝜅mT

1 +
(
𝐿𝑎𝑐𝐼
𝜃LacI

· 1
1+(𝐼 𝑃𝑇𝐺/𝜃IPTG)𝜂IPTG

) 𝜂LacI
− 𝑔mT · 𝑚𝑅𝑁𝐴TetR

(3.2)

𝑑 𝐿𝑎𝑐𝐼

𝑑𝑡
= 𝜅

p
L · 𝑚𝑅𝑁𝐴LacI − 𝑔pL · 𝐿𝑎𝑐𝐼 (3.3)

𝑑 𝑇𝑒𝑡𝑅

𝑑𝑡
= 𝜅

p
T · 𝑚𝑅𝑁𝐴TetR − 𝑔pT · 𝑇𝑒𝑡𝑅 (3.4)

The model is completed by considering the di�usion dynamics of the inducer
molecules, aTc and IPTG, across the cells' membranes with the non-symmetrical
exchange dynamics as in [93] given by:

𝑑 𝑎𝑇𝑐

𝑑𝑡
=

{
𝑘 inaTc (𝑢aTc − 𝑎𝑇𝑐), if 𝑢aTc > 𝑎𝑇𝑐

𝑘outaTc (𝑢aTc − 𝑎𝑇𝑐), if 𝑢aTc ≤ 𝑎𝑇𝑐
, (3.5)

𝑑 𝐼𝑃𝑇𝐺

𝑑𝑡
=

{
𝑘 inIPTG (𝑢IPTG − 𝐼𝑃𝑇𝐺), if 𝑢IPTG > 𝐼𝑃𝑇𝐺

𝑘outIPTG (𝑢IPTG − 𝐼𝑃𝑇𝐺), if 𝑢IPTG ≤ 𝐼𝑃𝑇𝐺
, (3.6)

where 𝑎𝑇𝑐 and 𝐼𝑃𝑇𝐺 denote the concentrations of the inducer molecules inside
the cell, while 𝑢aTc and 𝑢IPTG those in the growth medium of the cells.

The values of all model parameters from [93] are listed in Table 3.1.

𝜅m0
L 3.20e-2 mRNAmin−1 𝑔mL , 𝑔

m
T 1.386e-1 min−1

𝜅m0
T 1.19e-1 mRNAmin−1 𝑔

p
L, 𝑔

p
T 1.65e-2 min−1

𝜅mL 8.30 mRNAmin−1 𝜃LacI 31.94 a.u.
𝜅mT 2.06 mRNAmin−1 𝜂LacI 2.00
𝜅
p
L 9.726e-1 a.u.mRNAmin−1 𝜃TetR 30.00 a.u.
𝜅
p
L 9.726e-1 a.u.mRNAmin−1 𝜂TetR 2.00

𝑘 inIPTG 2.75e-2 min−1 𝜃IPTG 9.06e-2 mM
𝑘outIPTG 1.11e-1 min−1 𝜂IPTG 2.00
𝑘 inaTc 1.62e-1 min−1 𝜃aTc 11.65 ng/ml
𝑘outaTc 2.00e-2 min−1 𝜂aTc 2.00

Table 3.1: Value of the parameters of the model Eqs. (1)-(6).
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Fig. 3. Top: Static nonlinear functions w1(aTc) and w2(IPTG) as in
(11) and (12). Bottom: Pulse wave sq(t): period 1, duty cycle D ∈ [0, 1].

ing protein, that LacI and TetR proteins degrade at the
same rate, that is gp

L = gp
T = gp, and using the following

dimensionless variables (similarly as done in [8], [9])

t′ = gp t, x1 =
LacI

θLacI
, x2 =

TetR

θTetR
, (7)

we obtain the following nondimensional quasi-steady state
model of the genetic toggle switch

dx1

dt′
= k0

1 +
k1

1 + x2
2 · w1(t′/gp)

− x1

dx2

dt′
= k0

2 +
k2

1 + x2
1 · w2(t′/gp)

− x2

(8)

where

k0
1 =

κm0
L κp

L

gm
L θLacI gp

, k1 =
κm

L κp
L

gm
L θLacI gp

, (9)

and

k0
2 =

κm0
T κp

T

gm
T θTetR gp

, k2 =
κm

T κp
T

gm
T θTetR gp

, (10)

are dimensionless parameters, and we have set ηLacI =
ηTetR = 2. The steps of the previous derivation are reported
in the Appendix.

The nonlinear functions w1(t) and w2(t) in (8) take into
account the static relationship between the repressor protein
(TetR or LacI) and their regulator molecule (aTc or IPTG,
respectively). They are shown in Figure 3 and are defined as

w1(aTc(t)) =
1(

1 +
(
aTc(t)
θaTC

)ηaTc
)ηTetR

(11)

w2(IPTG(t)) =
1(

1 +
(
IPTG(t)
θIPTG

)ηIPTG
)ηLacI

(12)

System (8) with the static relations (11)-(12) and diffusion
dynamics across the cell membrane (5)-(6) can be repre-
sented in block form as in Figure 4. The cell membrane acts
as a linear (non-symmetrical) first order low-pass filter for the
signals uaTc(t) and uIPTG(t) with a cut-off frequency that
depends on the diffusion exchange rates kin/out

aTc and kin/out
IPTG .

Hence, aTc(t) and IPTG(t) are filtered version of their

Fig. 4. Block diagram of system (8) with diffusion dynamics across the
cell membrane (5)-(6).

respective input signals whose attenuation depends both on
the cut-off frequency and on their spectral density.

In our analysis we make the following simplifying as-
sumption.

Assumption 1: The diffusion dynamics of the inducer
molecules, aTc and IPTG, across the cell membrane is
instantaneous, that is

aTc(t) = uaTc(t), (13)
IPTG(t) = uIPTG(t), (14)

for every t ≥ t0.
Later in in Section IV, we will compare our results derived

from system (8) under the above Assumption 1 with the
solutions of the complete toggle switch model (1)-(4) with
more realistic diffusion dynamics given by (5)-(6).

III. AVERAGING ANALYSIS OF THE TOGGLE SWITCH
UNDER PULSE WAVE INPUT SIGNALS

A. Forcing signals

The concentrations of the inducers in the growth medium
are considered to vary in time as two mutually exclusive
pulse waves of period T , duty cycle D ∈ [0, 1] and amplitude
ūaTc and ūIPTG, respectively, that is

uaTc(t) = ūaTc · (1− sq (t/T )) (15)
uIPTG(t) = ūIPTG · sq (t/T ) (16)

where sq(t) is the pulse wave taking values 0 and 1, with
period 1 and duty cycle D, reported in Figure 3. In the
experiments described in [6], the amplitude ūaTc and ūIPTG

were allowed to take values between 0 and 100 ng/ml, and
0 and 1 mM, respectively.
Note that D = 0 corresponds to “high aTc/no IPTG” in the
growth medium which in turns results in full steady-state
expression of LacI (high x1). Likewise, D = 1 corresponds
to “no aTc/high IPTG” yealding full expression of TetR (high
x2). Therefore, the duty cycle can be used to control the ratio
between the activation time of the two monostable systems
associated to the presence or absence of the two inducer
molecules whose nullclines are shown in the insets in Figure
2.

Under Assumption 1 it follows that

w1(t) = w1(aTc(t))

= w1 (ūaTc · (1− sq (t/T )))

= w̄1 + (1− w̄1) · sq (t/T ) ,

(17)
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Figure 3.2: Static non-linear functions 𝑤1 (𝑎𝑇𝑐(𝑡)) and 𝑤2 (𝐼𝑃𝑇𝐺 (𝑡)) as expressed
in the equations (3.9) and (3.10).

Quasi Steady-State Model

By assuming (i) instantaneous di�usion of the inducers across the cell membrane,
(ii) equal degradation rates for LacI and TetR (that is, 𝑔pL = 𝑔

p
T = 𝑔p), and (iii)

exploiting the fact that the time scales of the mRNA dynamics are notably faster
than those of the proteins [44], we can obtain the following non-dimensional
quasi-steady state model of the toggle switch:

𝑑𝑥1

𝑑𝑡 ′
= 𝑘01 +

𝑘1

1 + 𝑥22 · 𝑤1 (𝑡 ′/𝑔p)
− 𝑥1

𝑑𝑥2

𝑑𝑡 ′
= 𝑘02 +

𝑘2

1 + 𝑥21 · 𝑤2 (𝑡 ′/𝑔p)
− 𝑥2

(3.7)

where

𝑡 ′ = 𝑔p 𝑡, 𝑥1 =
𝐿𝑎𝑐𝐼

𝜃LacI
, 𝑥2 =

𝑇𝑒𝑡𝑅

𝜃TetR
, (3.8)

are rescaled time and states, and the dimensionless parameters are de�ned as

𝑘01 =
𝜅m0
L 𝜅

p
L

𝑔mL 𝜃LacI 𝑔
p
, 𝑘1 =

𝜅mL 𝜅
p
L

𝑔mL 𝜃LacI 𝑔
p
,

𝑘02 =
𝜅m0
T 𝜅

p
T

𝑔mT 𝜃TetR 𝑔
p
, 𝑘2 =

𝜅mT 𝜅
p
T

𝑔mT 𝜃TetR 𝑔
p
.

The nonlinear functions 𝑤1 (𝑡) and 𝑤2 (𝑡) take into account the static rela-
tionship between each repressor protein (TetR or LacI) and its corresponding
regulator molecule (aTc or IPTG, respectively). They are de�ned as

𝑤1 (𝑎𝑇𝑐(𝑡)) :=
1(

1 +
(
𝑎𝑇 𝑐 (𝑡)
𝜃aTC

) 𝜂aTc
) 𝜂TetR

(3.9)
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Fig. 3. Top: Static nonlinear functions w1(aTc) and w2(IPTG) as in
(11) and (12). Bottom: Pulse wave sq(t): period 1, duty cycle D ∈ [0, 1].

ing protein, that LacI and TetR proteins degrade at the
same rate, that is gp

L = gp
T = gp, and using the following

dimensionless variables (similarly as done in [8], [9])

t′ = gp t, x1 =
LacI

θLacI
, x2 =

TetR

θTetR
, (7)

we obtain the following nondimensional quasi-steady state
model of the genetic toggle switch

dx1

dt′
= k0

1 +
k1

1 + x2
2 · w1(t′/gp)

− x1

dx2

dt′
= k0

2 +
k2

1 + x2
1 · w2(t′/gp)

− x2

(8)

where

k0
1 =

κm0
L κp

L

gm
L θLacI gp

, k1 =
κm

L κp
L

gm
L θLacI gp

, (9)

and

k0
2 =

κm0
T κp

T

gm
T θTetR gp

, k2 =
κm

T κp
T

gm
T θTetR gp

, (10)

are dimensionless parameters, and we have set ηLacI =
ηTetR = 2. The steps of the previous derivation are reported
in the Appendix.

The nonlinear functions w1(t) and w2(t) in (8) take into
account the static relationship between the repressor protein
(TetR or LacI) and their regulator molecule (aTc or IPTG,
respectively). They are shown in Figure 3 and are defined as

w1(aTc(t)) =
1(

1 +
(
aTc(t)
θaTC

)ηaTc
)ηTetR

(11)

w2(IPTG(t)) =
1(

1 +
(
IPTG(t)
θIPTG

)ηIPTG
)ηLacI

(12)

System (8) with the static relations (11)-(12) and diffusion
dynamics across the cell membrane (5)-(6) can be repre-
sented in block form as in Figure 4. The cell membrane acts
as a linear (non-symmetrical) first order low-pass filter for the
signals uaTc(t) and uIPTG(t) with a cut-off frequency that
depends on the diffusion exchange rates kin/out

aTc and kin/out
IPTG .

Hence, aTc(t) and IPTG(t) are filtered version of their

Fig. 4. Block diagram of system (8) with diffusion dynamics across the
cell membrane (5)-(6).

respective input signals whose attenuation depends both on
the cut-off frequency and on their spectral density.

In our analysis we make the following simplifying as-
sumption.

Assumption 1: The diffusion dynamics of the inducer
molecules, aTc and IPTG, across the cell membrane is
instantaneous, that is

aTc(t) = uaTc(t), (13)
IPTG(t) = uIPTG(t), (14)

for every t ≥ t0.
Later in in Section IV, we will compare our results derived

from system (8) under the above Assumption 1 with the
solutions of the complete toggle switch model (1)-(4) with
more realistic diffusion dynamics given by (5)-(6).

III. AVERAGING ANALYSIS OF THE TOGGLE SWITCH
UNDER PULSE WAVE INPUT SIGNALS

A. Forcing signals

The concentrations of the inducers in the growth medium
are considered to vary in time as two mutually exclusive
pulse waves of period T , duty cycle D ∈ [0, 1] and amplitude
ūaTc and ūIPTG, respectively, that is

uaTc(t) = ūaTc · (1− sq (t/T )) (15)
uIPTG(t) = ūIPTG · sq (t/T ) (16)

where sq(t) is the pulse wave taking values 0 and 1, with
period 1 and duty cycle D, reported in Figure 3. In the
experiments described in [6], the amplitude ūaTc and ūIPTG

were allowed to take values between 0 and 100 ng/ml, and
0 and 1 mM, respectively.
Note that D = 0 corresponds to “high aTc/no IPTG” in the
growth medium which in turns results in full steady-state
expression of LacI (high x1). Likewise, D = 1 corresponds
to “no aTc/high IPTG” yealding full expression of TetR (high
x2). Therefore, the duty cycle can be used to control the ratio
between the activation time of the two monostable systems
associated to the presence or absence of the two inducer
molecules whose nullclines are shown in the insets in Figure
2.

Under Assumption 1 it follows that

w1(t) = w1(aTc(t))

= w1 (ūaTc · (1− sq (t/T )))

= w̄1 + (1− w̄1) · sq (t/T ) ,

(17)
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Figure 3.3: Block diagram of the system (3.7) with di�usion dynamics across cell
membrane (3.5)-(3.6).

𝑤2 (𝐼𝑃𝑇𝐺 (𝑡)) := 1(
1 +

(
𝐼 𝑃𝑇𝐺 (𝑡)
𝜃IPTG

) 𝜂IPTG
) 𝜂LacI

(3.10)

and they are shown in Figure 3.2.
System (3.7) with the static relations (3.9)-(3.10) and di�usion dynamics

across the cell membrane (3.5)-(3.6) can be represented in block form as in Figure
3.3. The cell membrane acts as a linear non-symmetrical �rst order low-pass �lter
for the signals 𝑢aTc (𝑡) and 𝑢IPTG (𝑡) with a cut-o� frequency that depends on the

di�usion exchange rates 𝑘 in/outaTc and 𝑘
in/out
IPTG . Therefore, 𝑎𝑇𝑐(𝑡) and 𝐼𝑃𝑇𝐺 (𝑡) are

�ltered versions of their respective input signals whose attenuation depends both
on the cut-o� frequency and on their spectral density.

3.3 Open Loop Analysis

Let us formulate the following assumption.
Assumption 1: The di�usion dynamics of the inducer molecules, aTc and

IPTG, across the cell membrane is instantaneous. So

𝑎𝑇𝑐(𝑡) = 𝑢aTc (𝑡) (3.11)

𝐼𝑃𝑇𝐺 (𝑡) = 𝑢IPTG (𝑡) (3.12)

for every 𝑡 ≥ 𝑡0.

Average Model

System (3.7) can be averaged when fed with two mutually exclusive pulsatile
inputs of the form

𝑢aTc (𝑡) = 𝑢aTc · (1 − 𝑠𝑞 (𝑡/𝑇))
𝑢IPTG (𝑡) = 𝑢IPTG · 𝑠𝑞 (𝑡/𝑇)

(3.13)

where 𝑠𝑞 (𝑡/𝑇) is a periodic square wave of period 𝑇 with duty-cycle 𝑑 ∈ [0, 1].
Note that 𝑑 = 0 corresponds to �high aTc / no IPTG� in the growth medium;

18



Chapter 3. External Control of the Genetic Toggle SwitchChapter 3. External Control of the Genetic Toggle Switch

Using an in-silico model this effect is explained in [6] as
due to the fact that using the two control inputs, the phase
portrait of the system can be periodically changed from one
presenting a unique high-LacI equilibrium point to another
with a unique high-TetR equilibrium point. Heuristically, this
results in an average phase-portrait having a unique attractor
in between the former two given that, as conjectured in [6],
the cell dynamics and the periodic excitation act on different
time-scales. Also, changing the characteristics of the periodic
forcing (such as period, width and amplitude of the pulses)
shifts the position of the average attractor causing cells to
evolve towards a different target solution.

Despite providing some qualitative explanation of the
experimental observations, several open questions remain.
For instance, what causes the massive reduction in standard
deviation between different cells in the population and what
the period/duty cycle should be of the control inputs to
achieve the desired stabilization. Also, the challenge remains
of designing better multi-input feedback strategies to control
populations of host cells endowed with synthetic toggle
switches.

In this paper, we address some of these open problems
by providing an analytical investigation of the phenomena
reported in [6]. We start by deriving a quasi-steady state
model of the toggle-switch system proposed therein, using
formal averaging techniques for nonlinear systems [7] to
derive an autonomous average vector field, whose solutions,
under some conditions, approximate those of the original
time-varying system. To simplify the analysis, we assume
that the diffusion of the inducer molecules across the cell
membrane is instantaneous.

We prove that if the average vector field has a unique
attracting equilibrium point, say x̄av, whose position in
the state space depends on the duty cycle D and on the
amplitude of the forcing pulse waves uaTc(t) and uIPTG(t),
then every solution of the original time-varying system
asymptotically converges to a periodic orbit inside some
neighborhood of x̄av. We compare our model predictions
with the experimental observations made in [6] and with
the mean-value trajectories of the original model proposed
therein. We use the model and its analysis to provide some
indications on how the parameters of the toggle switch may
be tuned to enhance its response to the class of periodic
inputs of interest, and exploit the results to synthesize an
external control strategy to regulate the mean-value of the
measured fluorescence of the reporting proteins in the cell at
some desired value. We wish to emphasize that the analysis
provided in this paper can be instrumental for the design of
further control strategies for this particularly relevant class
of synthetic devices and to investigate the population level
effects induced by different types of periodic stimuli to the
cells.

II. MATHEMATICAL MODEL OF THE TOGGLE SWITCH

A. Transcription-translation model

The deterministic model of the toggle switch that we start
from can be given as follows [6]
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Fig. 2. Nullclines of the toggle switch system (8). Main picture: bistability:
two stable and one unstable equilibrium points. Reference values aTc =
20 ng/ml, IPTG = 0.25 mM. Insets: a) monostability: unique high
LacI/low TetR equilibrium point. aTc = 50 ng/ml, IPTG = 0.25 mM;
b) monostability: unique high TetR/low LacI equilibrium point. aTc =
20 ng/ml, IPTG = 0.50 mM

dmRNALacI

dt
= κm0

L +
κmL

1 +
(
TetR
θTetR

· 1
1+(aTc/θaTC)ηaTc

)ηTetR

− gmL ·mRNALacI

(1)
dmRNATetR

dt
= κm0

T +
κmT

1 +
(
LacI
θLacI

· 1
1+(IPTG/θIPTG)ηIPTG

)ηLacI

− gmT ·mRNATetR

(2)
dLacI

dt
= κpL ·mRNALacI − gpL · LacI (3)

d TetR

dt
= κpT ·mRNATetR − gpT · TetR (4)

In the above equations the variables denote concentrations
of molecules inside the cell, and the parameters κm0

L/T, κm
L/T,

κp
L/T, gm

L/T, gp
L/T are leakage transcription, transcription,

translation, mRNA degradation, and protein degradation
rates, respectively. All their values are provided in [6, Sup-
plementary Table 1] and the same are used in this paper.

The inducer molecules diffuse in and out of the cell across
the membrane with non-symmetrical exchange dynamics
given by

d aTc

dt
=

{
kinaTc(uaTc − aTc), if uaTc > aTc

koutaTc(uaTc − aTc), if uaTc ≤ aTc
, (5)

d IPTG

dt
=

{
kinIPTG(uIPTG − IPTG), if uIPTG > IPTG

koutIPTG(uIPTG − IPTG), if uIPTG ≤ IPTG
, (6)

where aTc and IPTG denotes the concentrations of the
inducer molecules inside the cell, uaTc and uIPTG those in
the growth medium.

B. Quasi-steady state model
Assuming that the concentrations of the mRNA molecules

reach quasi-steady state more rapidly than their correspond-
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For instance, what causes the massive reduction in standard
deviation between different cells in the population and what
the period/duty cycle should be of the control inputs to
achieve the desired stabilization. Also, the challenge remains
of designing better multi-input feedback strategies to control
populations of host cells endowed with synthetic toggle
switches.

In this paper, we address some of these open problems
by providing an analytical investigation of the phenomena
reported in [6]. We start by deriving a quasi-steady state
model of the toggle-switch system proposed therein, using
formal averaging techniques for nonlinear systems [7] to
derive an autonomous average vector field, whose solutions,
under some conditions, approximate those of the original
time-varying system. To simplify the analysis, we assume
that the diffusion of the inducer molecules across the cell
membrane is instantaneous.

We prove that if the average vector field has a unique
attracting equilibrium point, say x̄av, whose position in
the state space depends on the duty cycle D and on the
amplitude of the forcing pulse waves uaTc(t) and uIPTG(t),
then every solution of the original time-varying system
asymptotically converges to a periodic orbit inside some
neighborhood of x̄av. We compare our model predictions
with the experimental observations made in [6] and with
the mean-value trajectories of the original model proposed
therein. We use the model and its analysis to provide some
indications on how the parameters of the toggle switch may
be tuned to enhance its response to the class of periodic
inputs of interest, and exploit the results to synthesize an
external control strategy to regulate the mean-value of the
measured fluorescence of the reporting proteins in the cell at
some desired value. We wish to emphasize that the analysis
provided in this paper can be instrumental for the design of
further control strategies for this particularly relevant class
of synthetic devices and to investigate the population level
effects induced by different types of periodic stimuli to the
cells.

II. MATHEMATICAL MODEL OF THE TOGGLE SWITCH

A. Transcription-translation model

The deterministic model of the toggle switch that we start
from can be given as follows [6]
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In the above equations the variables denote concentrations
of molecules inside the cell, and the parameters κm0
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L/T, gp
L/T are leakage transcription, transcription,

translation, mRNA degradation, and protein degradation
rates, respectively. All their values are provided in [6, Sup-
plementary Table 1] and the same are used in this paper.

The inducer molecules diffuse in and out of the cell across
the membrane with non-symmetrical exchange dynamics
given by

d aTc

dt
=

{
kinaTc(uaTc − aTc), if uaTc > aTc

koutaTc(uaTc − aTc), if uaTc ≤ aTc
, (5)

d IPTG

dt
=

{
kinIPTG(uIPTG − IPTG), if uIPTG > IPTG

koutIPTG(uIPTG − IPTG), if uIPTG ≤ IPTG
, (6)

where aTc and IPTG denotes the concentrations of the
inducer molecules inside the cell, uaTc and uIPTG those in
the growth medium.

B. Quasi-steady state model
Assuming that the concentrations of the mRNA molecules

reach quasi-steady state more rapidly than their correspond-
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portrait of the system can be periodically changed from one
presenting a unique high-LacI equilibrium point to another
with a unique high-TetR equilibrium point. Heuristically, this
results in an average phase-portrait having a unique attractor
in between the former two given that, as conjectured in [6],
the cell dynamics and the periodic excitation act on different
time-scales. Also, changing the characteristics of the periodic
forcing (such as period, width and amplitude of the pulses)
shifts the position of the average attractor causing cells to
evolve towards a different target solution.

Despite providing some qualitative explanation of the
experimental observations, several open questions remain.
For instance, what causes the massive reduction in standard
deviation between different cells in the population and what
the period/duty cycle should be of the control inputs to
achieve the desired stabilization. Also, the challenge remains
of designing better multi-input feedback strategies to control
populations of host cells endowed with synthetic toggle
switches.

In this paper, we address some of these open problems
by providing an analytical investigation of the phenomena
reported in [6]. We start by deriving a quasi-steady state
model of the toggle-switch system proposed therein, using
formal averaging techniques for nonlinear systems [7] to
derive an autonomous average vector field, whose solutions,
under some conditions, approximate those of the original
time-varying system. To simplify the analysis, we assume
that the diffusion of the inducer molecules across the cell
membrane is instantaneous.

We prove that if the average vector field has a unique
attracting equilibrium point, say x̄av, whose position in
the state space depends on the duty cycle D and on the
amplitude of the forcing pulse waves uaTc(t) and uIPTG(t),
then every solution of the original time-varying system
asymptotically converges to a periodic orbit inside some
neighborhood of x̄av. We compare our model predictions
with the experimental observations made in [6] and with
the mean-value trajectories of the original model proposed
therein. We use the model and its analysis to provide some
indications on how the parameters of the toggle switch may
be tuned to enhance its response to the class of periodic
inputs of interest, and exploit the results to synthesize an
external control strategy to regulate the mean-value of the
measured fluorescence of the reporting proteins in the cell at
some desired value. We wish to emphasize that the analysis
provided in this paper can be instrumental for the design of
further control strategies for this particularly relevant class
of synthetic devices and to investigate the population level
effects induced by different types of periodic stimuli to the
cells.

II. MATHEMATICAL MODEL OF THE TOGGLE SWITCH

A. Transcription-translation model

The deterministic model of the toggle switch that we start
from can be given as follows [6]
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Figure 3.3: Nullclines of the system (3.7). Left panel: Bistability. Two sta-
ble and one unstable equilibrium points. Reference values 𝑎𝑇𝑐 = 20 ng/ml,
𝐼𝑃𝑇𝐺 = 0.25mM. Central panel: Monostability. Unique high LacI / low TetR
equilibrium point. Reference values 𝑎𝑇𝑐 = 50ng/ml, 𝐼𝑃𝑇𝐺 = 0.25mM. Right
panel: Monostability. Unique low LacI / high TetR equilibrium point. Reference
values 𝑎𝑇𝑐 = 20ng/ml, 𝐼𝑃𝑇𝐺 = 0.50mM.

the ratio between the activation time of two monostable systems associated to
the presence or absence of the two inducer molecules whose nullclines are shown
in Figure 3.3.

Such averaging analysis yields the following average model:

𝑑𝑥1

𝑑𝜏
= 𝜀

[
𝑘01 + 𝑘1

(
𝑑

1 + 𝑥22
+ 1 − 𝑑
1 + 𝑥22 · 𝑤̄1 (𝑢aTc)

)
− 𝑥1

]
𝑑𝑥2

𝑑𝜏
= 𝜀

[
𝑘02 + 𝑘2

(
𝑑

1 + 𝑥21 · 𝑤̄2 (𝑢IPTG)
+ 1 − 𝑑
1 + 𝑥21

)
− 𝑥2

] (3.14)

where 𝜏 = 𝑡 ′/𝑔p𝑇 and 𝜀 = 𝑇𝑔p.
The most relevant property of model (3.14) is that when it possesses a unique

exponentially stable equilibrium point 𝑥av, then the solutions of the original time-
varying system (3.7), from which (3.14) is derived, will converge at steady-state
to a neighborhood of 𝑥av. Therefore, 𝑥av can be used as good approximation of
the average value of the response of (3.7) when subject to mutually exclusive
pulsatile inputs (3.13) [17].

9

Figure 3.4: Nullclines of the system (3.7). Left panel: Bistability. Two sta-
ble and one unstable equilibrium points. Reference values 𝑎𝑇𝑐 = 20 ng/ml,
𝐼𝑃𝑇𝐺 = 0.25mM. Central panel: Monostability. Unique high LacI / low TetR
equilibrium point. Reference values 𝑎𝑇𝑐 = 50ng/ml, 𝐼𝑃𝑇𝐺 = 0.25mM. Right
panel: Monostability. Unique low LacI / high TetR equilibrium point. Reference
values 𝑎𝑇𝑐 = 20ng/ml, 𝐼𝑃𝑇𝐺 = 0.50mM.

this situation turns into the full steady-state expression of LacI (high 𝑥1). Anal-
ogously, 𝑑 = 1 corresponds to �no aTc / high IPTG� that yields to the full
expression of the TetR (high 𝑥2). So, the duty-cycle 𝑑 can be used to regulate
the ratio between the activation time of two monostable systems associated to
the presence or absence of the two inducer molecules whose nullclines are shown
in Figure 3.4.

Under Assumption 1 it follows that

𝑤1 (𝑡) = 𝑤1 (𝑎𝑇𝑐(𝑡))
= 𝑤1 (𝑢aTc · (1 − 𝑠𝑞 (𝑡/𝑇)))
= 𝑤̄1 + (1 − 𝑤̄1) · 𝑠𝑞 (𝑡/𝑇),

𝑤2 (𝑡) = 𝑤2 (𝐼𝑃𝑇𝐺 (𝑡))
= 𝑤2 (𝑢IPTG · 𝑠𝑞 (𝑡/𝑇))
= 𝑤̄2 + (1 − 𝑤̄2) · (1 − 𝑠𝑞 (𝑡/𝑇)),

(3.14)

where 𝑤̄1 = 𝑤1 (𝑢aTc) and 𝑤̄2 = 𝑤2 (𝑢IPTG).
By rescaling time setting 𝜏 = 𝑡′

𝑇 𝑔p , system (3.7) can be recast as

𝑑𝑥1

𝑑𝜏
= 𝜀

[
𝑘01 +

𝑘1

1 + 𝑥22 · 𝑤1 (𝜏𝑇)
− 𝑥1

]
𝑑𝑥2

𝑑𝜏
= 𝜀

[
𝑘02 +

𝑘2

1 + 𝑥21 · 𝑤2 (𝜏𝑇)
− 𝑥2

] (3.15)

with 𝜀 = 𝑇𝑔p. The vector �eld in (3.15) is time-varying in 𝜏 with period 1.
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3.3. Open Loop Analysis

The average vector �eld, say 𝑓av (𝑥), can be obtained by integrating the vector
�eld in (3.15) over a period and considering the forcing inputs (3.13), yielding

𝑓av,1 (𝑥) =
1

1

∫ 1

0

(
𝑘01 +

𝑘1

1 + 𝑥22 · 𝑤1 (𝜏𝑇)
− 𝑥1

)
𝑑𝜏

= 𝑘01 + 𝑘1
(∫ 𝑑

0

1

1 + 𝑥22 ·1
𝑑𝜏+

∫ 1

𝑑

1

1 + 𝑥22 ·𝑤̄1

𝑑𝜏

)
−𝑥1

= 𝑘01 + 𝑘1
(

𝑑

1 + 𝑥22
+ 1 − 𝑑
1 + 𝑥22 ·𝑤̄1

)
− 𝑥1,

and similarly,

𝑓av,2 (𝑥) =
1

1

∫ 1

0

(
𝑘02 +

𝑘2

1 + 𝑥21 · 𝑤2 (𝜏𝑇)
− 𝑥2

)
𝑑𝜏

= 𝑘02 + 𝑘2
(∫ 𝑑

0

1

1 + 𝑥21 ·𝑤̄2

𝑑𝜏+
∫ 1

𝑑

1

1 + 𝑥21 ·1
𝑑𝜏

)
−𝑥2

= 𝑘02 + 𝑘2
(

𝑑

1 + 𝑥21 ·𝑤̄2

+ 1 − 𝑑
1 + 𝑥21

)
− 𝑥2.

Therefore, the resulting average system is:

𝑑𝑥1

𝑑𝜏
= 𝜀

[
𝑘01 + 𝑘1

(
𝑑

1 + 𝑥22
+ 1 − 𝑑
1 + 𝑥22 · 𝑤1 (𝑢aTc)

)
− 𝑥1

]
𝑑𝑥2

𝑑𝜏
= 𝜀

[
𝑘02 + 𝑘2

(
𝑑

1 + 𝑥21 · 𝑤2 (𝑢IPTG)
+ 1 − 𝑑
1 + 𝑥21

)
− 𝑥2

] (3.16)

Let 𝑥(𝜏, 𝜀) and 𝑥av (𝜀𝜏) denote the solutions to (3.7) and (3.16), respectively.
Assume 𝑥av is an exponentially stable equilibrium point of the average system
(3.16). Let Ω be a compact subset of its basin of attraction, and assume 𝑥av (0) ∈
Ω, and 𝑥(0, 𝜀) − 𝑥av (0) = 𝑂 (𝜀). Then, from [75, Theorem 10.4], there exists a
positive parameter 𝜀∗ = 𝑇∗𝑔p such that for all 0 < 𝜀 < 𝜀∗

𝑥(𝜏, 𝜀) − 𝑥av (𝜀𝜏) = 𝑂 (𝜀) (3.17)

for all 𝜏 > 0. That is, solutions 𝑥(𝜏, 𝜀) to system (3.7) can be approximated
by solutions 𝑥av (𝜀𝜏) to (3.16) with an error that is proportional to 𝜀. As a
consequence, if 𝑥av is the unique equilibrium point of system (3.16), then for all
0 < 𝜀 < 𝜀∗ system (3.7) has a unique, exponentially stable, periodic solution
𝑥(𝜏, 𝜀) in a 𝑂 (𝜀)-neighborhood of 𝑥av.
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(a) Equilibrium points for different values of ūaTc and ūIPTG.
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(b) Equilibrium points for ūaTc = 100 ng/ml and different
values of ūIPTG.
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(c) Equilibrium points for ūIPTG = 1 mM and different
values of ūaTc.

Fig. 5. Equilibrium points x̄av of (20) as a function of duty cycle D
rescaled in arbitrary fluorescence units using (7). Each dot represents the
location of the unique stable equilibrium point of system (20) evaluated for
D taking values in the interval [0, 1] with increments of 0.01.
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(a) D = 0.2, T ≈ 6 min (ε = 0.1).
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(b) D = 0.8, T ≈ 6 min (ε = 0.1).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T .

Figure 8]). A similar phenomenon can also occur when the
duty cycle is close to 0 or 1. Indeed, close to these values,
the amplitude of the harmonics of a pulse wave is |an| =∣∣ 2ū
n π sin(nπD)

∣∣ ≈ 2ūD, therefore low-frequency harmonics
will have amplitudes similar to those of high-frequency ones,
and the pulse wave will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can also be used for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 9 which is currently under
development and will be presented elsewhere. Indeed, as
done in Figure 5, it is possible to numerically compute x̄av

as a function of ūaTc, ūIPTG and D, and get interpolating
curves γūaTc,ūIPTG(D). From these one can then obtain, for
given values of the amplitude ūaTc and ūIPTG, the duty cycle
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(a) Equilibrium points for different values of ūaTc and ūIPTG.
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(b) Equilibrium points for ūaTc = 100 ng/ml and different
values of ūIPTG.
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(c) Equilibrium points for ūIPTG = 1 mM and different
values of ūaTc.

Fig. 5. Equilibrium points x̄av of (20) as a function of duty cycle D
rescaled in arbitrary fluorescence units using (7). Each dot represents the
location of the unique stable equilibrium point of system (20) evaluated for
D taking values in the interval [0, 1] with increments of 0.01.
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(a) D = 0.2, T ≈ 6 min (ε = 0.1).
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(b) D = 0.8, T ≈ 6 min (ε = 0.1).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T .

Figure 8]). A similar phenomenon can also occur when the
duty cycle is close to 0 or 1. Indeed, close to these values,
the amplitude of the harmonics of a pulse wave is |an| =∣∣ 2ū
n π sin(nπD)

∣∣ ≈ 2ūD, therefore low-frequency harmonics
will have amplitudes similar to those of high-frequency ones,
and the pulse wave will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can also be used for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 9 which is currently under
development and will be presented elsewhere. Indeed, as
done in Figure 5, it is possible to numerically compute x̄av

as a function of ūaTc, ūIPTG and D, and get interpolating
curves γūaTc,ūIPTG(D). From these one can then obtain, for
given values of the amplitude ūaTc and ūIPTG, the duty cycle
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(b) Equilibrium points for ūaTc = 100 ng/ml and different
values of ūIPTG.
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(c) Equilibrium points for ūIPTG = 1 mM and different
values of ūaTc.

Fig. 5. Equilibrium points x̄av of (20) as a function of duty cycle D
rescaled in arbitrary fluorescence units using (7). Each dot represents the
location of the unique stable equilibrium point of system (20) evaluated for
D taking values in the interval [0, 1] with increments of 0.01.
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(b) D = 0.8, T ≈ 6 min (ε = 0.1).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T .

Figure 8]). A similar phenomenon can also occur when the
duty cycle is close to 0 or 1. Indeed, close to these values,
the amplitude of the harmonics of a pulse wave is |an| =∣∣ 2ū
n π sin(nπD)

∣∣ ≈ 2ūD, therefore low-frequency harmonics
will have amplitudes similar to those of high-frequency ones,
and the pulse wave will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can also be used for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 9 which is currently under
development and will be presented elsewhere. Indeed, as
done in Figure 5, it is possible to numerically compute x̄av

as a function of ūaTc, ūIPTG and D, and get interpolating
curves γūaTc,ūIPTG(D). From these one can then obtain, for
given values of the amplitude ūaTc and ūIPTG, the duty cycle
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Figure 3.5: Equilibrium points 𝑥av of (3.16) as a function of duty cycle 𝑑 rescaled
in arbitrary �uorescence units using (3.8). Each dot represents the location of
the unique stable equilibrium point of system (3.16) evaluated for 𝑑 taking values
in the interval [0; 1] with increments of 0.01. Left panel: equilibrium points for
di�erent values of 𝑢aTc and 𝑢IPTG, as listed in the included table. Center panel:
equilibrium points for 𝑢aTc = 100ng/ml and di�erent values of 𝑢IPTG, as listed
in the included table. Right panel: equilibrium points for 𝑢IPTG = 1mM and
di�erent values of 𝑢aTc, as listed in the included table.

Curves of equilibria of the average model

The number and position in state space of the equilibrium points 𝑥av = [𝑥1, 𝑥2]
of the average vector �eld (3.16) depend on the speci�c choice of the amplitudes
𝑢aTc and 𝑢IPTG of the mutually exclusive pulsatile inputs, and on the value of
the duty-cycle 𝑑. For example, for the reference values 𝑢aTc = 50 ng/ml and
𝑢IPTG = 0.5 mM, system (3.16) is monostable and the position of the equilibrium
point 𝑥av varies monotonically with 𝑑 as reported in Figure 3.5 (left panel, blue
dots). Hence, given certain values of 𝑢aTc and 𝑢IPTG, it is possible to move the
position of 𝑥av on the corresponding curve Γ𝑢aTc ,𝑢IPTG

by varying 𝑑, as reported
in Figure 3.5 (center and right panels).

The phase portrait of the average system (3.16) together with a representative
solution of the time-varying system (3.7) for 𝑑 equal to 0.2 and 0.8 are depicted in
Figure 3.6. The parameter 𝜀 has been set to 0.1 which corresponds to a forcing
period 𝑇 = 𝜀/𝑔p ≈ 6min, and the system has been simulated for 𝑡 𝑓 = 𝜏 𝑓 𝑇 ≈
50 · 6 = 300min. It is possible to notice that, consistently with the curves of
equilibria shown in Figure 3.5, the system (3.7) converges towards two di�erent
solutions; namely, it settles on a periodic solution �high 𝑥1 / low 𝑥2� for 𝑑 = 0.2
and on a periodic solution �low 𝑥1 / high 𝑥2� for 𝑑 = 0.8.

The phase portrait of the average system (3.16) together with a representative
solution of the time-varying system (3.7) for 𝑑 equal to 0.5 for di�erent values of
the parameter 𝜀 are reported in Figure 3.7. The parameter 𝜀 in the right panel
has been set to 3 which corresponds to a forcing period 𝑇 = 𝜀/𝑔p ≈ 180min, and
the system has been simulated for 𝑡 𝑓 = 𝜏 𝑓 𝑇 ≈ 50 · 180 = 9000min.

Larger values of 𝜀 correspond to larger values of the forcing period 𝑇 . In turn,
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(a) Equilibrium points for different values of ūaTc and ūIPTG.
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(b) Equilibrium points for ūaTc = 100 ng/ml and different
values of ūIPTG.
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(c) Equilibrium points for ūIPTG = 1 mM and different
values of ūaTc.

Fig. 5. Equilibrium points x̄av of (20) as a function of duty cycle D
rescaled in arbitrary fluorescence units using (7). Each dot represents the
location of the unique stable equilibrium point of system (20) evaluated for
D taking values in the interval [0, 1] with increments of 0.01.
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(a) D = 0.2, T ≈ 6 min (ε = 0.1).
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(b) D = 0.8, T ≈ 6 min (ε = 0.1).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T .

Figure 8]). A similar phenomenon can also occur when the
duty cycle is close to 0 or 1. Indeed, close to these values,
the amplitude of the harmonics of a pulse wave is |an| =∣∣ 2ū
n π sin(nπD)

∣∣ ≈ 2ūD, therefore low-frequency harmonics
will have amplitudes similar to those of high-frequency ones,
and the pulse wave will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can also be used for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 9 which is currently under
development and will be presented elsewhere. Indeed, as
done in Figure 5, it is possible to numerically compute x̄av

as a function of ūaTc, ūIPTG and D, and get interpolating
curves γūaTc,ūIPTG(D). From these one can then obtain, for
given values of the amplitude ūaTc and ūIPTG, the duty cycle
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(a) Equilibrium points for different values of ūaTc and ūIPTG.

500 1000 1500 2000 2500 3000 3500
LacI

200

400

600

800

1000

1200

TetR

(b) Equilibrium points for ūaTc = 100 ng/ml and different
values of ūIPTG.
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(c) Equilibrium points for ūIPTG = 1 mM and different
values of ūaTc.

Fig. 5. Equilibrium points x̄av of (20) as a function of duty cycle D
rescaled in arbitrary fluorescence units using (7). Each dot represents the
location of the unique stable equilibrium point of system (20) evaluated for
D taking values in the interval [0, 1] with increments of 0.01.
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(a) D = 0.2, T ≈ 6 min (ε = 0.1).
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(b) D = 0.8, T ≈ 6 min (ε = 0.1).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T .

Figure 8]). A similar phenomenon can also occur when the
duty cycle is close to 0 or 1. Indeed, close to these values,
the amplitude of the harmonics of a pulse wave is |an| =∣∣ 2ū
n π sin(nπD)

∣∣ ≈ 2ūD, therefore low-frequency harmonics
will have amplitudes similar to those of high-frequency ones,
and the pulse wave will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can also be used for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 9 which is currently under
development and will be presented elsewhere. Indeed, as
done in Figure 5, it is possible to numerically compute x̄av

as a function of ūaTc, ūIPTG and D, and get interpolating
curves γūaTc,ūIPTG(D). From these one can then obtain, for
given values of the amplitude ūaTc and ūIPTG, the duty cycle
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Figure 3.6: Background: phase portrait of the average system (3.16). Red line:
the solution of the time-varying system (3.7) with 𝑢aTc = 50 ng/ml and 𝑢IPTG =

0.5mM from initial condition [1, 1]T. Left panel: 𝑑 = 0.2, 𝑇 ≈ 6min (𝜀 = 0.1).
Right panel: 𝑑 = 0.8, 𝑇 ≈ 6min (𝜀 = 0.1).
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(a) D = 0.5, T ≈ 6 min (ε = 0.1).
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(b) D = 0.5, T ≈ 180 min (ε = 3).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T.

1/T of the input pulse waves. However, due to the inevitable
attenuation of high-frequency harmonics, there will always be
a mismatch between the actual mean response of the cell and
the value predicted by (20).

The effects of relaxing Assumption 1 on the time response
of system (19) can be observed in Supplementary Figures
S4-S5. The mean steady-state response of the complete four-
dimensional system (1)-(4) with diffusion dynamics (5)-(6)
is compared in Figure 7, and the corresponding equilibrium
point x̄av(D) predicted by the autonomous two-dimensional
average system (20), for a representative value of the PWM
amplitudes and different values of D (see Supplementary
Figure S3 for a different choice). Although as expected there
is no perfect matching between the two, the observed behavior
is well captured by the average system. Note that in regulation
problems, this mismatch can be compensated by designing an
adequate feedback action.

When, on the other hand, the cut-off frequency of one of
the filters is lower than the frequency 1/T of the input pulse
waves, the input signal will be highly attenuated, resulting in
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Fig. 7. Orange dots: Mean-value, evaluated at regime, of the response of
system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with T =
240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue
dots: corresponding equilibrium point x̄av(D) of system (20) rescaled in a.u.
using (7). Amplitude of pulse waves set to ūaTc = 50 ng/ml and ūIPTG =
0.5 mM.

the simple regulation of the toggle switch to either one of the
stable equilibrium points (a phenomenon that was reported in
the experiments described in [9, Supplementary Figure 8]). A
similar phenomenon can also occur when the duty cycle is
close to 0 or 1. Indeed, close to these values, the amplitude of
the harmonics of the pulse wave is |an| =

∣∣ 2ū
n π sin(nπD)

∣∣ ≈
2ūD, therefore low-frequency harmonics will have amplitudes
similar to those of high-frequency ones, and the pulse wave
will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can be exploited for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 8 which is currently under de-
velopment and will be presented elsewhere. Indeed, as done
in Figure 5, it is possible to numerically compute x̄av as a
function of ūaTc, ūIPTG and D, and get interpolating curves
ΓūaTc,ūIPTG(D). From these one can then obtain, for given
values of the amplitude ūaTc and ūIPTG, the duty cycle
Dref corresponding to the desired average set-point x̄ref

av , that
is Dref = Γ−1

ūaTc,ūIPTG
(x̄ref

av ). The mismatch e between the
measured mean-value of the plant outputs and x̄ref

av is then
projected by π onto the curve ΓūaTc,ūIPTG

and compensated
by a PI controller. The control scheme should also take into
account the effects of the sampling time and of the slow
transients.

VI. CONCLUSIONS

We derived and analyzed a model to capture the response
of the genetic toggle switch to mutually exclusive PWM
inputs observed experimentally in [9]. The analysis was based
on the assumption that the diffusion of inducer molecules
across the cell membrane is instantaneous. From this, using
the periodic averaging method for nonlinear systems, we
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(a) D = 0.5, T ≈ 6 min (ε = 0.1).
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(b) D = 0.5, T ≈ 180 min (ε = 3).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T.

1/T of the input pulse waves. However, due to the inevitable
attenuation of high-frequency harmonics, there will always be
a mismatch between the actual mean response of the cell and
the value predicted by (20).

The effects of relaxing Assumption 1 on the time response
of system (19) can be observed in Supplementary Figures
S4-S5. The mean steady-state response of the complete four-
dimensional system (1)-(4) with diffusion dynamics (5)-(6)
is compared in Figure 7, and the corresponding equilibrium
point x̄av(D) predicted by the autonomous two-dimensional
average system (20), for a representative value of the PWM
amplitudes and different values of D (see Supplementary
Figure S3 for a different choice). Although as expected there
is no perfect matching between the two, the observed behavior
is well captured by the average system. Note that in regulation
problems, this mismatch can be compensated by designing an
adequate feedback action.

When, on the other hand, the cut-off frequency of one of
the filters is lower than the frequency 1/T of the input pulse
waves, the input signal will be highly attenuated, resulting in
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Fig. 7. Orange dots: Mean-value, evaluated at regime, of the response of
system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with T =
240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue
dots: corresponding equilibrium point x̄av(D) of system (20) rescaled in a.u.
using (7). Amplitude of pulse waves set to ūaTc = 50 ng/ml and ūIPTG =
0.5 mM.

the simple regulation of the toggle switch to either one of the
stable equilibrium points (a phenomenon that was reported in
the experiments described in [9, Supplementary Figure 8]). A
similar phenomenon can also occur when the duty cycle is
close to 0 or 1. Indeed, close to these values, the amplitude of
the harmonics of the pulse wave is |an| =

∣∣ 2ū
n π sin(nπD)

∣∣ ≈
2ūD, therefore low-frequency harmonics will have amplitudes
similar to those of high-frequency ones, and the pulse wave
will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can be exploited for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 8 which is currently under de-
velopment and will be presented elsewhere. Indeed, as done
in Figure 5, it is possible to numerically compute x̄av as a
function of ūaTc, ūIPTG and D, and get interpolating curves
ΓūaTc,ūIPTG(D). From these one can then obtain, for given
values of the amplitude ūaTc and ūIPTG, the duty cycle
Dref corresponding to the desired average set-point x̄ref

av , that
is Dref = Γ−1

ūaTc,ūIPTG
(x̄ref

av ). The mismatch e between the
measured mean-value of the plant outputs and x̄ref

av is then
projected by π onto the curve ΓūaTc,ūIPTG

and compensated
by a PI controller. The control scheme should also take into
account the effects of the sampling time and of the slow
transients.

VI. CONCLUSIONS

We derived and analyzed a model to capture the response
of the genetic toggle switch to mutually exclusive PWM
inputs observed experimentally in [9]. The analysis was based
on the assumption that the diffusion of inducer molecules
across the cell membrane is instantaneous. From this, using
the periodic averaging method for nonlinear systems, we

Figure 3.7: Background: phase portrait of the average system (3.16). Red line:
the solution of the time-varying system (3.7) with 𝑢aTc = 50 ng/ml and 𝑢IPTG =

0.5mM from initial condition [1, 1]T. Left panel: 𝑑 = 0.5, 𝑇 ≈ 6min (𝜀 = 0.1).
Right panel: 𝑑 = 0.5, 𝑇 ≈ 180min (𝜀 = 3).

from (3.17), this also implies that the solution 𝑥(𝜏, 𝜀) of (3.7) will asymptotically
converge to a periodic solution 𝑥(𝜏, 𝜀) contained in a larger set (Figure 3.7, right
panel), and hence to a worse approximation.

22



Chapter 3. External Control of the Genetic Toggle Switch

0 500 1000 1500 2000 2500 3000 3500
LacI0

200

400

600

800

1000

1200
TetR

Fig. S3. Orange dots: Mean-value, evaluated at regime, of the response of system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with
T = 240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue dots: corresponding equilibrium point x̄av(D) of system (20). Amplitude
of pulse waves set to ūaTc = 100 ng/ml and ūIPTG = 1 mM.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S4. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.5.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S5. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.8.
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Fig. S3. Orange dots: Mean-value, evaluated at regime, of the response of system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with
T = 240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue dots: corresponding equilibrium point x̄av(D) of system (20). Amplitude
of pulse waves set to ūaTc = 100 ng/ml and ūIPTG = 1 mM.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S4. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.5.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S5. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.8.
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Figure 3.8: E�ects of the membrane di�usion dynamics. Time evolution of the
system (3.7) (in solid lines) and of the average system (3.16) (dashed lines) from
initial conditions [1, 1]> with 𝑢aTc = 50 ng/ml, 𝑢IPTG = 0.5 mM, 𝑇 = 180 min.
Top panels: 𝑑 = 0.5. Bottom panels: 𝑑 = 0.8.

Di�usion e�ects

Dropping the Assumption 1, it is possible to take into account the low-pass
�ltering properties of the cell membrane. Therefore, 𝑎𝑇𝑐(𝑡) and 𝐼𝑃𝑇𝐺 (𝑡) will not
any-more be ideal pulse waves but the �ltered versions of 𝑢aTc (𝑡) and 𝑢IPTG (𝑡)
through the membrane, as shown in Figure 3.3. In order for the average system
(3.16) to continue being a good approximation of the actual cell response, the
cut-o� frequency of the two low-pass �lters should be su�ciently higher that the
fundamental frequency 1/𝑇 of the input waves.

However, due to the inevitable attenuation of high-frequency harmonics, there
will always be a mismatch between the actual mean response of the cell and the
value predicted by (3.16). The e�ects of the relaxation of the Assumption 1 can
be observed in Figure 3.8.

The mean steady-state response of the complete system (3.1)-(3.4) with dif-
fusion dynamics (3.5)-(3.6) and the corresponding equilibrium point 𝑥av (𝑑) pre-
dicted by the autonomous two-dimensional system (3.16) are compared, for rep-
resentative values of the PWM amplitudes and di�erent values of 𝑑, in Figure
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(a) D = 0.5, T ≈ 6 min (ε = 0.1).
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(b) D = 0.5, T ≈ 180 min (ε = 3).

Fig. 6. Background: phase portrait of the average system (20). Red line:
the solution of the time-varying system (19) with ūaTc = 50 ng/ml and
ūIPTG = 0.5 mM from initial condition [1, 1]T.

1/T of the input pulse waves. However, due to the inevitable
attenuation of high-frequency harmonics, there will always be
a mismatch between the actual mean response of the cell and
the value predicted by (20).

The effects of relaxing Assumption 1 on the time response
of system (19) can be observed in Supplementary Figures
S4-S5. The mean steady-state response of the complete four-
dimensional system (1)-(4) with diffusion dynamics (5)-(6)
is compared in Figure 7, and the corresponding equilibrium
point x̄av(D) predicted by the autonomous two-dimensional
average system (20), for a representative value of the PWM
amplitudes and different values of D (see Supplementary
Figure S3 for a different choice). Although as expected there
is no perfect matching between the two, the observed behavior
is well captured by the average system. Note that in regulation
problems, this mismatch can be compensated by designing an
adequate feedback action.

When, on the other hand, the cut-off frequency of one of
the filters is lower than the frequency 1/T of the input pulse
waves, the input signal will be highly attenuated, resulting in
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Fig. 7. Orange dots: Mean-value, evaluated at regime, of the response of
system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with T =
240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue
dots: corresponding equilibrium point x̄av(D) of system (20) rescaled in a.u.
using (7). Amplitude of pulse waves set to ūaTc = 50 ng/ml and ūIPTG =
0.5 mM.

the simple regulation of the toggle switch to either one of the
stable equilibrium points (a phenomenon that was reported in
the experiments described in [9, Supplementary Figure 8]). A
similar phenomenon can also occur when the duty cycle is
close to 0 or 1. Indeed, close to these values, the amplitude of
the harmonics of the pulse wave is |an| =

∣∣ 2ū
n π sin(nπD)

∣∣ ≈
2ūD, therefore low-frequency harmonics will have amplitudes
similar to those of high-frequency ones, and the pulse wave
will be highly attenuated.

V. PERSPECTIVES FOR CONTROL

We wish to emphasize that the analytical results derived
here can be exploited for the synthesis of external controllers
to regulate the mean-value of the output response of the
genetic toggle switch. Specifically, we propose the control
schematic shown in Figure 8 which is currently under de-
velopment and will be presented elsewhere. Indeed, as done
in Figure 5, it is possible to numerically compute x̄av as a
function of ūaTc, ūIPTG and D, and get interpolating curves
ΓūaTc,ūIPTG(D). From these one can then obtain, for given
values of the amplitude ūaTc and ūIPTG, the duty cycle
Dref corresponding to the desired average set-point x̄ref

av , that
is Dref = Γ−1

ūaTc,ūIPTG
(x̄ref

av ). The mismatch e between the
measured mean-value of the plant outputs and x̄ref

av is then
projected by π onto the curve ΓūaTc,ūIPTG

and compensated
by a PI controller. The control scheme should also take into
account the effects of the sampling time and of the slow
transients.

VI. CONCLUSIONS

We derived and analyzed a model to capture the response
of the genetic toggle switch to mutually exclusive PWM
inputs observed experimentally in [9]. The analysis was based
on the assumption that the diffusion of inducer molecules
across the cell membrane is instantaneous. From this, using
the periodic averaging method for nonlinear systems, we
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Fig. S3. Orange dots: Mean-value, evaluated at regime, of the response of system (1)-(4) (with membrane dynamics (5)-(6)) to PWM inputs with
T = 240 min and varying D from 0.05 to 0.95 with increments of 0.05. Blue dots: corresponding equilibrium point x̄av(D) of system (20). Amplitude
of pulse waves set to ūaTc = 100 ng/ml and ūIPTG = 1 mM.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S4. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.5.

(a) With instantaneous diffusion (b) With diffusion dynamics (5)-(6)

Fig. S5. Time evolution of the time-varying system (19) (in solid lines) and of the average system (20) (dashed lines) from initial conditions [1, 1]T with
ūaTc = 50 ng/ml, ūIPTG = 0.5 mM, T = 180 min, D = 0.8.

Figure 3.9: E�ects of the membrane di�usion dynamics. Orange dots: mean-
value, evaluated at regime, of the response of the system (3.1)-(3.4) with di�usion
dynamics (3.5)-(3.6) to PWM inputs with 𝑇 = 240 min and varying 𝑑 from 0.05 to
0.95 with increments of 0.05. Blue dots: corresponding equilibrium point 𝑥av (𝑑)
of system (3.16) rescaled in a.u. using (3.8). Left panel: Amplitude of pulse
waves set to 𝑢aTc = 50 ng/ml and 𝑢IPTG = 0.5 mM. Right panel: Amplitude of
pulse waves set to 𝑢aTc = 100 ng/ml and 𝑢IPTG = 1 mM.

3.9. Although, as expected, there is no perfect matching between the two, the
observed behaviour is well captured by the average system. However, in regu-
lation problems, this mismatch can be compensated by designing an adequate
feedback action, as we will see in the next section.

When, on the other hand, the cut-o� frequency of one of the �lters is lower
than the frequency 1/𝑇 of the input pulse waves, the input signal will be highly
attenuated, resulting in the simple regulation of the toggle switch to either one of
the stable equilibrium points, as noted in [93]. Similar phenomenon occurs when
the duty cycle of the PWM inputs is close to 0 or 1.

In the rest of this Chapter, we will focus about the design of external control
strategies to regulate the PWM inputs balancing the system (3.1)-(3.4) (with
the di�usion dynamics (3.5)-(3.6)) in a region where none of the two exclusive
proteins is fully expressed.

3.4 Proposed External Control Strategies

In this section we present a schematic that will be used to select the characteristics
� amplitudes 𝑢aTc and 𝑢IPTG and duty-cycle 𝑑 � of the mutually exclusive forcing
input, with the aim of balancing a population of toggle switches in a given region
of its phase space. The controller is based on the schematic proposed in Figure
3.10 and it is essentially composed by two control actions:

1. A feed-forward action, or Model Based Inversion algorithm, that pre-computes
the value of the inputs amplitudes 𝑢aTc and 𝑢IPTG and duty-cycle 𝑑ref re-
quired to achieve the control goal in the absence of perturbations and di�u-
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Figure 3.10: Block diagram of the proposed closed-loop hybrid control strategies.
The population of cells, together with the PWM inputs, evolve in continuous-
time. The controller is instead designed in discrete-time, computing the control
input at each time period 𝑇 . A feed-forward Model Based Inversion block evalu-
ates the amplitudes 𝑢aTc and 𝑢IPTG of the pulse wave inputs, on the basis of the
setpoint [𝐿𝑎𝑐𝐼ref , 𝑇𝑒𝑡𝑅ref ]. A Feedback duty-cycle compensator (implemented via
either the PIPWM or the MPC strategies) evaluates and adapts in real time the
duty-cycle of the inputs as a function of the desired setpoints and the (sampled)
outputs of the system. The Zero-Order Holder (ZOH) keeps the duty-cycle, com-
puted by the compensator at the beginning of each period, constant during the
rest of the period 𝑇 . The Sampler elaborates the continuous-time outputs of the
system to provide the controller with the discrete time information it requires.

sion e�ects. This component operates by inverting the simpli�ed, average
non-linear model of the toggle switch (3.16).

2. A feedback action that adapts the duty-cycle 𝑑𝑘 of the periodic inputs as
a dynamic function of the current cell behaviour, measured via the �uo-
rescence microscope. Speci�cally, this component has been implemented in
two di�erent strategies:

� a proportional-integral (PIPWM) controller that drives a pulse width
modulation block;

� a Model Predictive Controller (MPC) that selects the input duty-cycle
dynamically by optimizing a desired cost function.

By the mean of the model (3.16) we built a database of 60 curves of equilibria
Γ𝑢aTc ,𝑢IPTG

. Each curve is associated to a couple of values (𝑢aTc, 𝑢IPTG) and shows
the position of 𝑥av (𝑢aTc, 𝑢IPTG, 𝑑) varying 𝑑 in the range [0.05, 0.95] with a step
of 0.05. In this sense, the feed-forward action, by choosing the amplitudes 𝑢aTc

and 𝑢IPTG, selects a curve of equilibria Γ𝑢aTc ,𝑢IPTG
that, at steady-state, is the
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Figure 3.11: PIPWM control strategy. Given the setpoint for the average model
𝑥ref , two actions regulate the parameters of the PWM inputs that feed the system.
The feedforward action is composed by the Model Based Inversion that evaluates
the amplitudes 𝑢aTc and 𝑢IPTG and the nominal value of the duty-cycle 𝑑ref .
The nonlinear projector Π and a proportional-integral controller compose the
feedback loop. At each time period 𝑡𝑘 = 𝑘 𝑇 , the nonlinear projector Π evaluates
the projection error 𝑒𝜋

𝑘
that is minimized by a PI controller that evaluates the

correction 𝛿𝑑𝑘 to be added to 𝑑ref .

closest (in terms of Euclidean distance) to the mean state 〈𝑥〉 of the system (3.7)
over the period 𝑇 .

Both the alternative implementations of the feedback component will be in-
troduced in this Chapter. Their e�cacy will be assessed via simulations and they
will be compared by the mean of quantitative indexes.

3.4.1 Proportional-Integral Controller (PIPWM)

The basic idea behind the proportional integral PIPWM controller � depicted in
Figure 3.11 � is that of evaluating, at every time instant 𝑡𝑘 = 𝑘 𝑇 , 𝑘 ∈ N>0, the
duty-cycle 𝑑𝑘 by adding a correction 𝛿𝑑𝑘 to the reference value 𝑑ref computed by
the Model Based Inversion algorithm. This correction 𝛿𝑑𝑘 is necessary not only
to compensate the e�ects of di�usion neglected in the average model (3.16) shown
in Figure 3.8 but also to guarantee good performance and robustness properties
of the control system towards noise and stochastic e�ects. The duty-cycle is
evaluated online by the PI controller as

𝑑𝑘 = 𝑑ref + 𝛿𝑑𝑘 ,
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Figure 3.12: Working principle of the nonlinear projector block. Left panel: the
red curve Γ𝑢aTc ,𝑢IPTG

represents the closest one to the setpoint 𝑥ref selected by
the Model Based Inversion algorithm; black curves are other equilibrium curves
that are farther from the setpoint. The setpoint 𝑥ref and the mean value od the
state in the 𝑘-th period 〈𝑥𝑘〉 are projected onto the curve on the points 𝑥̂ref and
〈𝑥̂〉, respectively. The length of the curve between 𝑥ref and 〈𝑥̂〉, highlighted in
blue, is the projection error 𝑒𝜋

𝑘
at the time instant 𝑘. Right panel: even if the

projected error 𝑒𝜋
𝑘
is zero, that is | |〈𝑥̂〉 − 𝑥̂ref | | = 0, this does not necessarily imply

zero regulation error, indeed in the case represented here | |〈𝑥〉 − 𝑥ref | | ≠ 0.

𝑘 ∈ N>0, where 𝛿𝑑𝑘 is computed as:

𝛿𝑑𝑘 = 𝑘P 𝑒
𝜋
𝑘 + 𝑘I

𝑘∑︁
𝑗=0

𝑒𝜋𝑗 (3.18)

with initial condition 𝑑0 = 𝑑ref , and where 𝑘P, 𝑘I are the gains of the PI
controller and 𝑒𝜋

𝑘
is the error computed using a nonlinear projector Π.

The non-linear projector Π computes at the end of each 𝑘-th period 𝑇𝑘 the
error 𝑒𝜋

𝑘
as the length of the arc between 𝑥̂ref and 〈𝑥̂〉 on a curve of equilibria

Γ𝑢aTc ,𝑢IPTG
. The curve Γ𝑢aTc ,𝑢IPTG

is (implicitly) selected by the Model Based
Inversion algorithm by evaluating the amplitudes of the PWM inputs. The terms
𝑥̂ref and 〈𝑥̂〉 are, respectively, the projections on Γ𝑢aTc ,𝑢IPTG

of the setpoint 𝑥ref
and the mean value of the state in the 𝑘-th period 〈𝑥𝑘〉, see Figure 3.12. The
current measured mean value over a time period 𝑇 computed as

〈𝑥𝑘〉 =
1

𝑇

∫ (𝑘+1)𝑇

𝑘𝑇

𝑥(𝜏) 𝑑𝜏.

Note that the projected error 𝑒𝜋
𝑘
being equal to 0 (i.e. ‖〈𝑥̂𝑘〉 − 𝑥̂ref ‖ = 0) does

not necessarily correspond to zero regulation error of the mean state value 〈𝑥𝑘〉
onto 𝑥ref , that is ‖〈𝑥𝑘〉 − 𝑥ref ‖ = 0. Indeed, at steady-state the line connecting
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these two points is orthogonal to the curve Γ𝑢aTc ,𝑢IPTG
but its length may not

be zero (see Figure 3.12, right panel). This residual error at steady-state can be
made smaller by computing more curves Γ𝑢aTc ,𝑢IPTG

in the database.
Because of the highly nonlinear and uncertain nature of the model, the tuning

of the PI gains in the (3.18) was carried heuristically via extensive numerical
simulations in MATLAB. Speci�cally, the closed loop system was simulated for
50 periods for 40'000 pairs of gain values 𝑘P and 𝑘I selected uniformly in the
ranges 𝑘P ∈ [10−4, 1] and 𝑘I ∈ [10−5, 0.1]; both intervals were divided in 200
uniformly distributed samples. Figure 3.13 shows the value of the settling time
of the duty-cycle 𝑑𝑘 and the norm of steady-state projected error 𝑒∞𝜋 for each
pair of gain values. The values of 𝑘P = 0.0101 and 𝑘I = 0.0401 were selected as
those giving the best compromise between speed of the transient and residual
steady-state error.

In-Silico experiments

Deterministic simulations were conducted in MATLAB using the model (3.1)-
(3.4). The numerical integration of the model was carried out by implementing
an event-driven algorithm. Each event is associated with the change of the inputs
given to the system; therefore, an event is determined by the duty-cycle 𝑑𝑘 and
the period 𝑇 of the PWM inputs which is set to 240 min. The solver ode45

generates 100 non uniformly distributed time samples in each time period of the
inputs 𝑇 , leading to 1800 time samples in a total simulation time of 18 periods,
corresponding to 72 hours. The results of the deterministic simulation of the
PIPWM control strategy is reported in Figure 3.14.

Stochastic simulations were also performed in MATLAB using the Gillespie's
Stochastic Simulation Algorithm. The solver is set at a �xed time step of 5
minutes. Using this setup, we obtain 48 time samples in each period 𝑇 , leading
to 864 samples in a total simulation time of 18 periods. Stochastic simulations of
multiple cells were carried out in parallel, using the MATLAB Parallel toolbox to
speed up the computation. The PIPWM controller closes a feedback control loop
over a single target cell and evaluates the duty-cycle 𝑑𝑘 of the PIPWM inputs.
The inputs are fed to a population of 16 di�erent switches. The results of the
stochastic simulation of the PIPWM control strategy is reported in Figure 3.15.

The simulations showed in Figure 3.14 and in Figure 3.15 prove the e�ective-
ness of the PIPWM control strategy. In the deterministic simulation of a single
cell it is possible to notice that there is a residual steady-state error between the
setpoint and the mean value of the state over the period 𝑇 , especially on the
𝐿𝑎𝑐𝐼-RFP. This is due to the situation depicted in Figure 3.12 (right panel). In
the stochastic case, the mean trajectory of the population of 16 cells over the
period 𝑇 is e�ectively kept away from the two stable equilibria, even if severe
oscillations around the setpoint are present.
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Figure 3.13: Tuning of the PI controller. Top panel: Settling time of the duty-
cycle at the 10% of its �nal value, computed as a number of periods, for all pairs
(𝑘P, 𝑘I) ∈ [10−4, 1] × [10−5, 0.1]. Note that the performance was evaluated over a
simulation time of 50 periods and yellow coloured squares denote values of settling
time ≥ 50 periods. Bottom left panel: Zoom of the most signi�cant parameter
region in top panel (highlighted within the red box); Bottom right panel: Norm
of the steady-state projected error 𝑒∞𝜋 for the same range of values of control
gains as in bottom left panel. The red box in bottom panels indicates the values
of PI gains that were selected and used for all in-silico control experiments.

29



3.4. Proposed External Control Strategies

Figure 3.14: Deterministic in-silico experiments. Response of the toggle switch
controlled by using the PIPWM strategy. PI gains were set to 𝑘P = 0.0101 and
𝑘I = 0.0401. Top panel: dashed red and green lines represent the setpoint of
the experiment, respectively 𝐿𝑎𝑐𝐼ref = 750 and 𝑇𝑒𝑡𝑅ref = 300. Amplitudes of the
inputs are 𝑢aTc = 35 ng/ml and 𝑢IPTG = 0.35 mM. Solid lines show the evolution
of promoter proteins for 𝐿𝑎𝑐𝐼 (red) and 𝑇𝑒𝑡𝑅 (green). Dark solid lines, starting
from 𝑡 = 𝑇 , are the mean values of the state in the time period, evaluated with a
moving window of period 𝑇 . Middle panels: shaded areas represent the evolution
of the concentrations of the inducer molecules, 𝑢IPTG (𝑡) and 𝑢aTc (𝑡), applied
outside of the cells' membranes by the controller, while solid lines represent the
corresponding concentrations of the inducers, IPTG and aTc, inside the cells.
Bottom panel: solid blue line represents the evolution of the duty-cycle over time
and dot-dashed black line represents 𝑑ref .

Figure 3.15: Stochastic in-silico experiments. Response of a population of 16
toggle switches controlled by using the PIPWM strategy. The setup is the same
as the deterministic case. Dashed lines are the setpoint of the experiment, for
𝐿𝑎𝑐𝐼ref (red) and 𝑇𝑒𝑡𝑅ref (green). Solid red and green lines are the average
evolution of 𝐿𝑎𝑐𝐼 and 𝑇𝑒𝑡𝑅 over the population. Darker solid lines represent the
evolution of the mean trajectory in the period, evaluated with a moving window
as in the deterministic case. Shaded areas represent the values of the standard
deviation from the means, at each time instant.
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Figure 3.16: MPC control strategy. At each discrete time step 𝑘, the MPC �nds
the sequence of duty-cycles {𝑑0, 𝑑1, . . . , 𝑑𝑁−1} that minimizes the cost function 𝐽𝑘
over the prediction horizon 𝑇p = 𝑁 𝑇 . Then, only the �rst element is selected (𝑑𝑘 =

𝑑0) and the corresponding pulsatile control signals are applied to the biological
system in the time interval [𝑡𝑘 , 𝑡𝑘 + 𝑇].

3.4.2 Model Predictive Control (MPC)

As alternative to the PIPWM control strategy, we propose a Model Predictive
Controller, depicted in Figure 3.16. This kind of strategy have been widely
applied in the �eld of synthetic biology [67], demonstrating their e�ectiveness
also for in-vivo experiments [47]. Di�erently from the PIPWM controller, the
MPC directly chooses, at each sampling time 𝑡𝑘 = 𝑘 𝑇 , the duty-cycle 𝑑𝑘 to be
applied in the next control cycle (of duration 𝑇). This is done by solving an online
optimization problem on a �nite prediction horizon interval of length 𝑇p = 𝑁 𝑇 ,
with 𝑁 ∈ N.

Speci�cally, at each 𝑘-th iteration, the algorithm �nds the sequence of duty-
cycles {𝑑𝑘 , 𝑑𝑘+1, . . . , 𝑑𝑘+𝑁−1} of length 𝑁 that minimize the cost function 𝐽𝑘 ,
de�ned as

𝐽𝑘 ({𝑑0, 𝑑1, . . . , 𝑑𝑁−1}) =
𝑁−1∑︁
𝑖=0

∫ (𝑘+1+𝑖)𝑇

(𝑘+𝑖)𝑇
𝑒(𝑡, 𝑑𝑖) 𝑑𝑡, (3.19)

where 𝑒(𝑡, 𝑑) is the weighted relative squared error de�ned as

𝑒(𝑡, 𝑑𝑖) = 𝐾LacI

(
𝐿𝑎𝑐𝐼 (𝑡 ,𝑑𝑖)−𝐿𝑎𝑐𝐼ref

𝐿𝑎𝑐𝐼ref

)2
+ 𝐾TetR

(
𝑇 𝑒𝑡𝑅 (𝑡 ,𝑑𝑖)−𝑇 𝑒𝑡𝑅ref

𝑇 𝑒𝑡𝑅ref

)2
,

in which 𝐿𝑎𝑐𝐼 (𝑡, 𝑑𝑖) and 𝑇𝑒𝑡𝑅(𝑡, 𝑑𝑖) are the solution of the deterministic dynam-
ical model (3.1)-(3.4) (complemented with di�usion dynamics across cell mem-
brane (3.5)-(3.6)) when PWM pulsatile signals with duty-cycle 𝑑𝑖 are applied
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as inputs to the system. In order to make the control action robust to un-
certainties and noise, only the �rst element 𝑑0 of the sequence is used by the
controller, so 𝑑𝑘 = 𝑑0. The remaining part of the sequence of duty-cycles, that is
{𝑑1, 𝑑2, . . . , 𝑑𝑁−1} is discarded.

The optimization problem is solved at each step by using the genetic algo-
rithms[54] toolbox available in MATLAB, which also generates the sequences of
duty-cycles {𝑑0, 𝑑1, . . . , 𝑑𝑁−1}, such that 𝑑𝑖 ∈ [0, 1].

After an extensive numerical search in MATLAB, the control parameters 𝐾LacI

and 𝐾TetR in the cost function (3.19) were selected heuristically to 𝐾LacI = 1 and
𝐾TetR = 4, so as to minimize its �nal steady-state value. Speci�cally, the control
evolution was simulated for 18 periods �xing 𝐾LacI = 1 and varying 𝐾TetR over 37
values chosen uniformly in the interval [0.01, 100], so as to vary the ratio between
the two gains.

In-Silico experiments

As anticipated, genetic algorithms were used to numerically �nd the (sub)optimal
control solution at each step. We adopted the MATLAB genetic algorithm tool-
box by setting the initial population to 50 individuals randomly chosen in the
interval [0, 𝑑ref ]. The maximum number of generations was set to 150, while the
maximum number of stall generations was set to 30. All the other parameters
were kept to their default values, setting 𝑇𝑝 = 720 minutes, that is, 𝑁 = 3. Par-
allelization of the genetic algorithm optimization routine guarantee a signi�cant
reduction of the time required to compute the solution.

As in the case of the PIPWM controller, we carried out both deterministic
and stochastic simulations, using the same algorithmic setup. Details about the
simulation routines can be found in the previous Section.

The simulations showed in Figure 3.17 and in Figure 3.18 prove the e�ective-
ness of the MPC control strategy. In the deterministic simulation of a single cell
it is possible to notice that there is a residual steady-state error is lower (and
almost negligible), compared to the previous case of the PIPWM strategy shown
in Figure 3.14. In the stochastic case, the mean trajectory of the population of 16
cells over the period 𝑇 is e�ectively regulated on the setpoint values, qualitatively
showing better performances compared to the previous strategy.

3.5 Validation of the Control Strategies in BSim

Even though the stochastic simulations performed in MATLAB using the Gille-
spie algorithm are a good test-bench to test the behaviour of the control strategy
in presence of uncertainties, there is the need to take into account several phe-
nomena that are neglected in those kind of simulations. With a view towards the
in vivo implementation of these controllers, it is important to test the strategies
in a multi-physics scenario. To this aim, we conducted in silico experiments using
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Chapter 3. External Control of the Genetic Toggle Switch

Figure 3.17: Deterministic in-silico experiments. Response of the toggle switch
controlled by using the MPC strategy. Cost function weights were set to 𝐾LacI = 1
and 𝐾TetR = 4. Top panel: dashed red and green lines represent the setpoint of
the experiment, respectively 𝐿𝑎𝑐𝐼ref = 750 and 𝑇𝑒𝑡𝑅ref = 300. Amplitudes of the
inputs are 𝑢aTc = 35 ng/ml and 𝑢IPTG = 0.35 mM. Solid lines show the evolution
of promoter proteins for 𝐿𝑎𝑐𝐼 (red) and 𝑇𝑒𝑡𝑅 (green). Dark solid lines, starting
from 𝑡 = 𝑇 , are the mean values of the state in the time period, evaluated with a
moving window of period 𝑇 . Middle panels: shaded areas represent the evolution
of the concentrations of the inducer molecules, 𝑢IPTG (𝑡) and 𝑢aTc (𝑡), applied
outside of the cells' membranes by the controller, while solid lines represent the
corresponding concentrations of the inducers, IPTG and aTc, inside the cells.
Bottom panel: solid blue line represents the evolution of the duty-cycle over
time.

BSim 2.0, an advanced bacteria simulator developed in Java [55, 105]. This sim-
ulator takes into account the living dynamics of the cell, with their reproduction
and their death. Moreover, it also allows for the study the spacial di�usion of
the inducers in the hosting chamber.

Inspired by the so-called mother machine [141] in micro�uidics, we designed a
1× 30× 1 𝜇m rectangular chamber that hosts a single layer cell population where
cells are lined up. The chamber is open on the top (short side), from where the
inducers di�uses and cells are �ushed out due to their own growth and medium
�ow. The simulations start with a single E. coli cell located at the bottom of the
chamber; as the cell grows and duplicates, it pushes outside of the chamber new
cells exceeding the maximum capacity of about 10 cells.

The solver adopted in the simulations is based on the Euler-Maruyama [63]
method and generates samples at a �xed time step of 5 minutes, leading to 48
samples per period and 864 samples in the total simulation time of 18 periods.

We tested in BSim the two strategies proposed in this Chapter, the results
are shown in Figure 3.19. Videos of the experiments can be found in [57] - Sup-
plementary Material. Qualitatively comparing the two strategies, it is possible
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Figure 3.18: Stochastic in-silico experiments. Response of a population of 16
toggle switches controlled by using the MPC strategy. The setup is the same
as the deterministic case. Dashed lines are the setpoint of the experiment, for
𝐿𝑎𝑐𝐼ref (red) and 𝑇𝑒𝑡𝑅ref (green). Solid red and green lines are the average
evolution of 𝐿𝑎𝑐𝐼 and 𝑇𝑒𝑡𝑅 over the population. Darker solid lines represent the
evolution of the mean trajectory in the period, evaluated with a moving window
as in the deterministic case. Shaded areas represent the values of the standard
deviation from the means, at each time instant.

to notice that both of them are capable of regulating the population of toggle
switches on the given setpoint. However, as it possible to expect considering the
additional knowledge on the dynamics of the system acquired by predicting its
evolution, the dynamical performances of the MPC are better than the PIPWM
both in terms of settling time and amplitude of the oscillations.

3.6 Quantitative Comparison of the Strategies

A quantitative analysis of the PIPWM and the MPC strategies is reported in
Table 3.2. As a benchmark for comparison, the Open-Loop case, where PWM is
driven with duty-cycle 𝑑 = 𝑑ref , is reported.

The strategies are compared according to three di�erent performance indexes
[47] based on the following de�nition of error :

𝑒(𝑡) =



[ 𝐿𝑎𝑐𝐼 (𝑡)−𝐿𝑎𝑐𝐼ref𝐿𝑎𝑐𝐼ref

; 𝑇 𝑒𝑡𝑅 (𝑡)−𝑇 𝑒𝑡𝑅ref

𝑇 𝑒𝑡𝑅ref

]



2
, (3.20)

where 𝐿𝑎𝑐𝐼 (𝑡) and 𝑇𝑒𝑡𝑅(𝑡) are the moving averages of 𝐿𝑎𝑐𝐼 (𝑡) and 𝑇𝑒𝑡𝑅(𝑡) re-
spectively evaluated over a window of width 𝑇 , that is

𝐿𝑎𝑐𝐼 (𝑡) = 1

𝑇

∫ 𝑡

𝑡−𝑇
𝐿𝑎𝑐𝐼 (𝜏) 𝑑𝜏,

𝑇𝑒𝑡𝑅(𝑡) = 1

𝑇

∫ 𝑡

𝑡−𝑇
𝑇𝑒𝑡𝑅(𝜏) 𝑑𝜏.

Speci�cally, we used the following control metrics:

1. Integral Square Error (ISE), de�ned as

𝐼𝑆𝐸 =

∫ 𝑡 𝑓

𝑡0

𝑒(𝜏)2 𝑑𝜏,
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where 𝑡0 = 𝑇 and 𝑡 𝑓 is the time instant at the end of the in-silico experi-
ments. By integrating the square error over time, ISE penalizes large errors
much more than smaller ones. Thus, this index can be used to compare
performance during transients, in which the presence of the overshoot or a
long settling time could give rise to signi�cant errors. Small errors, even if
persistent, do not signi�cantly a�ect this metric.

2. Integral Absolute Error (IAE), de�ned as

𝐼 𝐴𝐸 =

∫ 𝑡 𝑓

𝑡0

|𝑒(𝜏) | 𝑑𝜏.

IAE integrates the absolute error, hence it penalizes small and large errors
equally.

3. Integral Time-weighted Absolute Error (ITAE), de�ned as

𝐼𝑇 𝐴𝐸 =

∫ 𝑡 𝑓

𝑡0

𝜏 |𝑒(𝜏) | 𝑑𝜏.

By integrating the absolute error multiplied by the time, ITAE tends to
penalize more small persistent errors that occur at steady-state than large
errors at the beginning of the experiment. For this reason, it is the best
index to evaluate the performance of a controller for regulation tasks.

As further validation of the performance, in addition to the simulations pre-
viously shown � where parameters were kept to their nominal values reported in
Table 3.1 � we carried out robustness tests introducing cell-to-cell variability in
the parameters. Speci�cally, the parameters of each cell in the population were
independently drawn from Gaussian distributions centred on their nominal values
with a standard deviation of 5% and 10%, respectively.

Summing up the results, shown in Table 3.2, the MPC is, globally a better
control strategy compared to the PIPWM. Interestingly, moving from the deter-
ministic case to the stochastic case and introducing variations of the parameters,
MPC performances worsen much more than PIPWM ones; this becomes very sig-
ni�cant in the case of stochastic simulation with 5% parameter variations, where
PIPWM shows better performances in all the three indexes. This situation is
explainable considering that PIPWM does not require exact knowledge of the
model and of its parameters, whereas MPC does.

The quantitative analysis of the agent based simulations in BSim does not
signi�cantly a�ect the overall performance of the two control strategies. There-
fore, the MPC controller has to be considered the one that guarantees better
regulation of a population of toggle switches, with the PIPWM being still way
more e�ective than an Open-Loop forcing.
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Deterministic simulations

Strategy Var. ISE IAE ITAE
PIPWM no (876.71) (1304.32) (2.068673) E06
MPC no (47.58) (382.04) (0.811109) E06

Stochastic simulations

Strategy Var. ISE IAE ITAE
Open-Loop no (13456.03) (7413.06) (16.822305) E06
PIPWM no 469.90 (830.52) 998.20 (1472.87) 2.903351 (3.218139) E06
MPC no 150.14 (178.50) 616.05 (724.72) 1.904908 (1.975185) E06

Stochastic simulations with parametric variations

Strategy Var. ISE IAE ITAE
Open-Loop 5% (15613.06) (7985.07) (18.091973 E06)

PIPWM
5% 687.30 (1605.77) 1224.34 (2056.69) 3.605903 (4.162760) E06
10% 4369.72 (6061.33) 3094.09 (4317.68) 9.014108 (9.968271) E06

MPC
5% 1116.21 (1459.63) 1532.02 (2109.08) 4.193415 (4.716253) E06
10% 2185.18 (2751.82) 2164.75 (2870.43) 6.153388 (6.791182) E06

Agent-based simulations with parametric variations

Strategy Var. ISE IAE ITAE
Open-Loop no 11161.13 (15543.92) 5661.29 (7923.19) 16.271114 (18.281741) E06

PIPWM
no 1483.72 (3671.39) 1510.72 (2939.98) 3.452511 (4.458611) E06
10% 1781.40 (3508.97) 1826.95 (2975.92) 4.477333 (5.217549) E06

MPC
no 173.12 (277.18) 562.83 (836.80) 1.677061 (1.947358) E06
10% 283.49 (481.36) 732.75 (1201.13) 2.097497 (2.451896) E06

Table 3.2: Quantitative assessment of the proposed control strategies. The per-
formance metrics we considered are Integral Square Error (ISE), Integral Absolute
Error (IAE) and Integral Time-weighted Absolute Error (ITAE) of the error sig-
nal 𝑒(𝑡). The metrics were computed over both the last 12 periods (13 for the
agent-based simulations) and the entire simulation time of 18 periods (reported
in brackets). Cell-to-cell variability in the population was taken into account by
independently drawing the parameters of each cell from Gaussian distributions
centred on their nominal values with standard deviation of 5% and 10%; the val-
ues reported for these cases have been obtained by averaging three simulations
each obtained using di�erent sets of value of the parameters.
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3.7 Discussion

In this Chapter we presented a model of the genetic toggle switch that describes
its complete dynamics, including the non-symmetrical e�ects of the cell mem-
brane. We conducted an open loop analysis of the time-average behaviour of the
model when subject to mutually exclusive pulse wave inputs, deriving an average
model that is capable of approximating its mean state. By exploiting this aver-
age model, we presented a set of feedback control strategies that can be used to
change and adapt the duty-cycle of the inputs in real-time and select their am-
plitudes to achieve robust stabilization of the population even in the presence of
noise and other unavoidable e�ects which render previous open-loop approaches
unviable.

Stochastic and more realistic agent-based simulations proved the e�ective-
ness of the two control strategies, suggesting that the MPC is to be preferred to
the PIPWM for regulation performance. This is essentially due to the diamet-
rically opposite ways in which the two algorithms evaluate the control inputs;
the PIPWM by using approximations on the dynamics of the biological system
and relatively light-weight numerical computations, the MPC by using complete
knowledge of the model but extensive use of numerical optimization routines.

Speci�cally, the PIPWM relies on an ensemble of analytical approximations
[44] hindering its performance. Firstly, the curves of equilibria Γ𝑢aTc ,𝑢IPTG

of the
average model used by the projector Π are computed by assuming quasi-steady
state of the transcription dynamics of mRNAs and instantaneous di�usion of
inducer molecules through the cell membrane. Secondly, the equilibrium point 𝑥av
of the average model is an approximation of the mean value of the oscillations of
LacI and TetR. This accuracy depends on the parameter 𝜀 = 𝑇 𝑔p in the average
model equations, where 𝑇 is the period of the forcing inputs, and we �xed its
value to 240min that represented a good trade-o� between the time scales of
the toggle switch itself and di�usion e�ects of the cell membrane. Moreover, the
desired setpoint 𝑥ref = [𝐿𝑎𝑐𝐼ref/𝜃LacI, 𝑇𝑒𝑡𝑅ref/𝜃TetR], to which we want regulate
the measured mean value 〈𝑥𝑘〉 of the toggle switch response, does not exactly lie
on the curve Γ𝑢aTc ,𝑢IPTG

returned by the Model Based Inversion algorithm and
employed to compute the error signal 𝑒𝜋

𝑘
for the PI (see Figure 3.12). Therefore,

the curve represents an additional constraint to the performance of the control
system.

In contrast, the MPC strategy does not require any approximation of the
available deterministic model of the biological system under control and computes
its control action to directly minimize the error between the desired setpoint
and the measured mean value of the cell behaviour. The model is also used to
predict the future evolution of the system and get better performance in the
transient response (this property, typical of the derivative action of classical PID
controllers, is missing in the PIPWM strategy).

However, the main limitation of the MPC with respect to the PIPWM is
the higher computational cost required to solve the optimization problem at the
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beginning of each control cycle requiring availability of an experimental platform
with adequate computing power for its in-vivo implementation.

The strategies presented in this Chapter can be of practical relevance to �reset�
other bistable, or multi-stable, cellular systems by balancing them in an unstable
region corresponding to some undi�erentiated state of interest. This is important,
for example, in control experiments [120] where it has been proposed that mono-
strain populations can be di�erentiated into multiple subpopulations by �ipping
the state of a synthetic toggle switch associated to di�erent functions, or in stem
cell applications where dedi�erentiation [20, 111] aims precisely at �resetting� a
di�erentiated cell.

From a theoretical viewpoint, we wish also to highlight that nonlinear aver-
age models for approximating the behaviour of biological systems under external
pulsing stimuli could be useful for the design of feedback control strategies for
future applications in synthetic biology.

We move next to the design and control of a turbidostat that was carried out
independently from Chi.Bio [132] during the course of the PhD.
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Figure 3.19: Agent-based simulation in BSim 2.0. The total simulation time is
72 hours with 𝑇 = 240min. The reference values provided by the Model Based
Inversion algorithm and used in both simulations are 𝑢aTc = 35, 𝑢IPTG = 0.35,
and 𝑑ref = 0.4. Top Figure: Response of the cells controlled by using the PIPWM
strategy. PI gains were set to 𝑘P = 0.0101 and 𝑘I = 0.0401. Top panel: evolution
over time of 𝐿𝑎𝑐𝐼; the dashed line representing the setpoint 𝐿𝑎𝑐𝐼ref = 750, while
lighter lines the evolution of the state for each cell in the simulation, and the
darker solid line the mean trajectory computed over the population, evaluated
through a moving window of period 𝑇 . Middle panel: evolution over time of
𝑇𝑒𝑡𝑅; the dashed line representing the setpoint 𝑇𝑒𝑡𝑅ref = 300, lighter lines are
the evolution of the state for each cell in the simulation, while the dark solid
line represents the evolution of the mean trajectory across the population in the
period, evaluated using a moving window of period 𝑇 . Bottom panel: evolution
of the duty-cycle over time. Bottom Figure: Response of the cells controlled by
using the MPC strategy. MPC cost function parameters were set to 𝐾LacI = 1,
𝐾TetR = 4, while the prediction horizon is 𝑁 = 3.
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4 Design and Control of a

Turbidostat

4.1 Introduction

Biological advances over recent years have enabled the synthetic design and im-
plementation of engineered bacterial populations to increase at a fast pace, see
for example the control strategies designed in the previous Chapter. However,
characterisation of the dynamic behaviour of these systems still proves di�cult,
creating a bottleneck for further advances [107]. The study and the characteri-
zation of synthetic bacterial systems have been conducted traditionally, due to
ease of propagation and scalability, with batch culture techniques. However, it
is now widely accepted that such techniques are no longer reliable. This is due
to continually changing chemical environments caused by cell growth, nutrient
depletion, waste production and cell death [106], which can lead to mischarac-
terisation of the output of synthetic systems in response to an input. Several
continuous culture platforms have been commercially developed [119, 139, 91] in
order to mitigate problems arising from batch culture. These systems add fresh
media to the culture to dilute accumulated cells and waste products and they are
generally operated as chemostats or turbidostats [31].

Chemostats maintain bacterial cultures at steady state by performing dilution
of growth media containing fresh nutrients at a �xed rate. Turbidostats use a
feedback control loop on the cell density of a culture, adding fresh growth media
with the purpose of regulating the optical density (OD) of the culture [143].
Turbidostats are generally preferred to chemostats [96] when the cells need to be
maintained at their maximum growth rate, as in experiments of characterisation
of synthetic systems [131]. However, commercially available turbidostat systems
are expensive, proprietary and often lack any �exibility in design. This lack of
�exibility makes them di�cult to adapt to changing experimental needs. As a
result many research groups have begun to develop their own designs [65].

In this Chapter we present the design and implementation of a low-cost tur-
bidostat, made up of modular components, which is inspired by the design of
Takahashi and co-workers [134]. This modularity allows for customisable experi-
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ment set up. Our design approach has the potential to be adapted and expanded
for multicellular control experiments [46], for which currently there are very lim-
ited options both commercially and otherwise. Our design consists primarily of
3D printed parts which can be produced using commercially available, widely
used 3D printers with a total cost of less than $200.

The results shown in this paper were presented in [58] and were carried out
independently from [132] .

4.2 State of the Art

Several low-cost turbidostat designs have been designed and developed entirely
by di�erent research groups in academia. The �rst key milestone design, in this
sense, was proposed by the Klavins laboratory in 2015 [134]. An open-source
multiplexed turbidostat system capable of running up to eight parallel culture
chambers was designed. Turbidity was measured via a 650 nm laser diode opti-
cally coupled with photosensors placed either side of each culture chamber. Each
turbidostat chamber houses its own electronics allowing each to take individual
turbidity measurements. By utilising a multiplexed syringe pump system, the
need for eight syringe pumps is scaled down to just a single pump, whilst still en-
abling individual chambers to be supplied with fresh media when required. The
total cost of building this open-source design is under $2000.

In 2016, researchers from the Khammash laboratory proposed a di�erent tur-
bidostat design [102] inspired by that of the Klavins lab. They added additional
optogenetic features to enable the regulation of GFP production in Escherichia
coli. In their experiments, GFP production from Escherichia coli, which depends
on the ratio of green to red light, was controlled by integral feedback. This was ac-
complished by adding an automated sampling system to connect the turbidostat
chamber to a FACS machine. Real-time FACS analysis enabled quanti�cation of
cell �uorescence pro�les. This information was then sent to the controller, which
determined the ratios of green to red light to supply to the culture chamber. This
design used a 950 nm laser diode to prevent overlap in the wavelengths absorbed
by the photosensitive proteins within Escherichia coli. Key di�erences between
this design and the Klavins design in [134] are the use of peristaltic pumps for
the dilution of culture media, automated sampling and the use of optogenetic
control.

A di�erent, more complex, turbidostat design was presented in [61]. In this
design, the optical density is calculated by comparing light absorption from the
culture �ask to a second �ask that contains only growth media, acting as a blank
solution. This method allows for online calibration of the OD measurements;
however, it complicates the overall design, increasing implementation costs.

Another turbidostat implementation was recently presented in [100], where
a �exible machine was designed. Their solution requires minimal 3D printed
structure and electronics that can be implemented on commercial boards based
on ATMEL processors.
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A full experimental platform, known as eVOLVER [146], has been developed
to control the conditions for high-throughput growth of yeast and bacteria. The
device manages up to 16 40mL culture vessels at the same time, regulating their
temperature, OD, and stir rate. The complete solution leverages several com-
mercial microcontrollers and a Python based framework and is commercialized
at the price of $9950

Finally, a new open-source design, known as Chi.Bio [130, 132], were recently
released. This device is composed by several modules that are controlled by a
microcomputer that is capable to manage up to 8 reactors simultaneously. The
main reactor hosts a standard 30mL �at-bottom tube and LEDs with di�erent
wavelengths to perform optogenetics experiments; a driver module for peristaltic
pumps is connected to each chamber, feeding them with the media and the induc-
ers required by the experiment. Potentially, the modularity of the design allows
this platform be applied to a wide range of use cases [131] .

4.3 Problem Formulation

The aim of the turbidostat design presented in this Chapter is to assemble a low-
cost, modular and �exible machine that can be easily adapted to a di�erent range
of experiments. Our design can also be extended into more complex set-ups such
as those required for the implementation of multicellular control experiments,
which will be discussed in the next Chapter. In comparison to other available
designs, our machine has the following advantages:

1. It is based on an open-source Arduino-based [1] hardware and software
code, increasing its �exibility to be used for di�erent types of experiments;

2. It allows, through some mechanical improvements, the housing of the opti-
cal density apparatus to slide, allowing the height to be adjusted to com-
pensate for the volume inside the culture chamber;

3. It contains an Input/Output user interface to run the machine without the
need for a computer connection, being e�ectively a stand-alone machine.

4.3.1 Design Principles

From a control engineering viewpoint, our turbidostat schematic can be sum-
marised as reported in Figure 4.1. Here, the culture chamber hosting the popula-
tion of bacteria is the system to control or �plant". Its output of interest (optical
density) is sensed via a light sensor and fed to the controller, which, given the
reference, evaluates the control input and drives the pump (actuator).

In the design and in the assembly of our turbidostat, we were inspired by the
following principles:

� Flexibility: both hardware and software must be �exible enough to accom-
modate di�erent experimental speci�cations.
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Controller Actuator System
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Input
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Media

Optical DensityMeasured Optical Density

Figure 4.1: Control Engineering schematic of the Turbidostat control loop.

� Modularity: the bioreactor must be made up by independent modules that
can be added or removed whenever needed.

� Adaptability to the experiment: components of the machine must not in-
terfere with the experiment it hosts, i.e. the Optical Density regulation
must not have impact on the experiment.

� Autonomy: the machine can be operated in a stand-alone mode, without
the need for a connection to a computer.

A schematic of our implementation is reported in Figure 4.2. The following
items are needed:

� An incubator, which encases the culture chamber and the media tank. It
keeps the temperature of the machine to 37◦C in order to maximize the
growth rate of the bacteria involved in the experiment.

� A media tank that stores the reservoir of culture media and a controlled
pump that injects it into the experiment chamber.

� An air pump, which supplies air to the culture chamber to guarantee bac-
teria aeration. Moreover, in our design, the air pump increases the pressure
inside the chamber creating a pressure gap with the outside. This mecha-
nism is used to push the exceeding solution to the outlet channel.

� A motor that continuously stirs the solution avoiding bacterial aggrega-
tion and creating a homogeneous solution. This motor is placed under the
chamber and it moves a magnetically connected element placed within the
culture chamber.

� An outlet channel that acts both as sample collecting line and as waste
outlet. Driving a pinch valve, it is possible to select the path of the removed
solution, choosing a path to the sample collector or to the waste bottle.
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Controller
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Figure 4.2: Schematic Representation of the Turbidostat. The test tube that
hosts the population of bacteria is magnetically connected to a motor that stirs
the solution. The bacteria and the fresh media are placed inside an incubator to
keep the temperature at 37◦C, to maximize bacteria's growth rate. The air pump
pushes out exceeding solution when new fresh media is injected in the chamber.
The removed solution ends in the sample collector or in the waste bottle
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4.4 Design

In the following section, we give an essential description of all the parts included
in the design of our turbidostat. First, we describe all the mechanical parts
involved in the design, from the housing to the actuators. Then, we focus on the
design of the electronics, introducing the main controllers and all the modules
that compose the machine. Finally, we introduce the control algorithm embedded
into the device. More details and the complete list of all parts can be found in
the Appendix A.

4.4.1 Mechanical Parts

Being focused on low cost and reproducibility, we designed all the mechanical
parts of the machine so that they can be easily 3D printed. They were designed
using a parametric CAD software, to guarantee the maximum adaptability of the
device to chambers with di�erent culture volumes. List of the 3D printable parts
can be found in the Appendix A.

The chamber support, shown in Figure 4.3, is inspired by the one designed in
[134] by Klavin's Laboratory. In our design, the stirrer slot has been adapted to
host a DC motor, in place of the stepper motor used therein yielding a simpler
speed control strategy of the motor. In this way, ad-hoc drivers are not needed
for DC motors, simplifying the entire connection schematic.

A sliding support for the sensing circuit also allows us to regulate the height at
which the measure of OD is taken. In so doing, it is possible to adapt the machine
for the use of di�erent culture volumes and test tubes. Moreover, sliding supports
can be useful to achieve redundancy: it is, indeed, possible to place more than a
single sensing circuit on the test tube. The additional circuit can be used as a
backup in case of a failure of the principal one, or to enhance a better reading of
the optical density of the solution via sensor fusion algorithms.

For the actuation, we tested two di�erent devices, both realised by 3D print-
ing. The �rst solution, see Figure 4.4, is to use a peristaltic pump driven by a
stepper motor. This pump is easy to drive and responds quickly but it is not
robust to pressure variations that might result in a backward �ow. The pump
has been designed on the basis of a parametric CAD design available online [83]
; more details can be found in the Appendix A.

The second solution that was adopted is the combination of an actuated sy-
ringe pump, shown in Figure 4.5, and a two-way 3D printed pinch valve. Its
driving requires the coordinated work of two servo motors, leading to longer ac-
tuation times but better robustness to pressure changes. The syringe pump is
the same as that proposed by Klavins Lab, while the two-way pinch valve has
been designed from scratch; see details in the Appendix A.
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Front Viewa) b)

Figure 4.3: 3D printed Chamber support. a) CAD model of the chamber support.
Size (reported in mm) is optimised for PYREX Rimless 25x200mm test tubes.
b) Assembled chamber support, with the stirrer motor mounted at the bottom,
prototype of the optical density circuit and tube connections at the top. In this
�rst prototype, for testing purposes, the prototypal optical board has been glued
onto the camber support loosing its sliding properties.

b)a)

Figure 4.4: Actuation System: Presitaltic Pump. a) 3D model of the Peristaltic
Pump; top view. b) Peristaltic pump driven by a stepper motor: A 4mm diameter
tube passes inside the rack and it is pressed on the structure by the moving gears.
During the rotation of the gears, they create a gap of pressure inside the plastic
tube, moving the pressure point, and creating a �ow in the same direction of
rotation.
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b)a)

Figure 4.5: Actuation System: Syringe Pump. a) 3D printed syringe pump. The
syringe is pushed and pulled via a gear-pinion mechanism driven by a servo motor.
b) Mutually exclusive 2-ways 3D printed pinch valve. A gear-pinion mechanism
is moved with a servo motor. In the con�guration shown in this panel, the way
on the left is open while the one on the right is closed.

4.4.2 Components: Electronics and Communication

The core of our machine is an Arduino Mega 2560 board equipped with several
modules that will be discussed below. The choice of the main board was to pro-
vide the best trade-o� between computing power, memory, device management
compatibility and costs.

The main board is interfaced with external modules in di�erent ways: ana-
logically, digitally or using a particular protocol of communication (i.e. I2C), see
Appendix A for more details.

Optical Density circuit

Optical density is measured using a photodiode in a reverse biased con�guration
[142], see Figure 4.6. In this working condition, the diode behaves as a light-
controlled current source that delivers a current that is related to the Optical
Density of the solution. In particular, the higher the optical density, the lower the
amount of light transmitted by the solution and sensed by the photodiode. This
results in a lower current and thus, a reduction in the sensed voltage. Therefore
an inverse relationship between the optical density and the voltage is established.
The Optical Density circuit is analogically connected with the main board that
reads analogically the voltage 𝑉𝑜𝑢𝑡 . In the design of the circuit in Figure 4.6, the
resistor 𝑅1 has been tuned to 220Ω in order to feed the LED with an adequate
amount of current. The resistor 𝑅2, is a tunable 10𝑘Ω resistor, that is used to
regulate the calibration of the machine. At the beginning of the experiment, a
calibration phase is required where the user is asked to place a blank sample of
fresh media and regulate the resistor 𝑅2 until the OD reading is 0. More Details
about the calibration of this optical board can be found in the Appendix A.
In order to enhance robustness against variations of light in the environment,
both the LED and the photodiode have been chosen to work with the 950nm
wavelength. In particular, the photodiode can be equipped with a pin �lter
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tuned onto the correct wavelength so as to attenuate the disturbances of light
at the other frequencies. As the 950nm light is invisible to the human eye it is
mandatory to use of ad-hoc alignment tools like the 3D printed one, shown in
Figure 4.6.

a)
5V 5V

LED

𝑅1 𝑅2 𝑉𝑜𝑢𝑡

Photodiode

b)

LED PD

Figure 4.6: Optical density measure circuit. a) On the left, a LED diode is con-
nected to a 5V source through the resistor R1. On the right, a photodiode is
connected in a reverse bias con�guration; it behaves as a light controlled current
source. The output measure 𝑉𝑜𝑢𝑡 is the voltage at the ends of the tunable resis-
tor 𝑅2. b) Prototype of optical density measure circuit hosted in a 3D printed
support. The red dashed line represents the light ray, starting from the LED (OS-
RAM SHF 4544), that hits the photodiode PD (Vishay Semi-conductors BP104).

Motors' Drivers

Independently from the particular choice of the actuators, there will be motors
that must be driven. In the previous section, however, we distinguished the
stepper motor that drives the peristaltic pump from the servo motors that control
the syringe pump. Beside the actuation, a DC motor for the stirring must always
be driven. A common and handy way to manage di�erent kinds of motors is to
use a motor shield. A motor shield is a board that is connected to the main one
and integrates all the components needed to drive motors of interest.

In our design, we adopted the Adafruit Motor Shield v2 [49]. This shield can
drive three di�erent types of motors � DC motors, stepper motors and servos �
being perfectly apt for our purpose. The module comes with a very useful I2C
based library that simpli�es the coding of the control algorithm.
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Other Interface Modules

With the aim of having a stand-alone turbidostat, we installed an interactive
LCD character display to show real-time messages on the status of the machine
to the operator. The display works with the I2C communication protocol. The
experiment can be set up via inputs collected with a simple digital membrane
keypad, useful to choose the setpoint and to start the experiment.

The device is, also, equipped with an SD card reader and a Real-Time clock
module. With the operation of these two components, it is possible to continu-
ously acquire a complete log of the experiments. The log is saved into a comma
separated value (.csv) �le, easily readable with any PC. Both components com-
municate with the main board via a set of digital pins.

4.4.3 Control Algorithm

The control code of the main Arduino board is divided into an initialization and a
routine part. During the �rst phase, all the modules are set up, the OD reference
is set via calibration and the set-point is chosen. The second phase, that is a
looping one, is divided in �ve parts, as follows:

1. Measure: The voltage 𝑉𝑜𝑢𝑡 (see Figure 4.6) is read. Multiple measures
(usually 20) are collected and averaged in order to mitigate possible read-
ing errors. The average voltage is, then converted into the OD via an
estimated conversion formula (see Appendix A for further details). During
this measure process, the stirring is stopped in order to mitigate the e�ects
of possible whirlpools.

2. Control : The measured OD is subtracted from the reference value to cal-
culate the control error. The error is then sent to an empirically tuned PI
controller that evaluates the control action in terms of mL of solution that
needs to be added into the chamber.

3. Actuation: The control action is converted into a driving signal for the
particular actuator of choice. When the driving is operated via a peristaltic
pump, this is driven at a �xed velocity for the amount of time needed to
deliver the control action. If a syringe pump is adopted instead, it is possible
to drive the servo to an angular position proportional to the desired control
action. After this conversion phase, the actuator is driven.

4. Log : At the end of the actuation, the data about the control cycle is written
down in the log �le saved on the SD card. In particular, we log information
about the time, the measured OD, the control error and the control input.

5. Waiting : the algorithms wait for the next control period, to guarantee
equally time spaced control cycles. The usual control period in our exper-
iments is 𝑇𝑠 = 60𝑠. The algorithm, then waits for 𝑇𝑠 − 𝑇𝑐 seconds, where
𝑇𝑐 is the e�ective computation time counted by the real time clock module
starting from the beginning of the last control period.

This part of code is routinely executed until the experiment is terminated by
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the user via the keypad or when the programmed duration of the experiment is
reached.

4.5 Experimental Regulation of the Optical Density

In order to test and validate our design, we conducted a 3 hour long closed-
loop optical density regulation experiment. The results of the last experiment
are reported in Figure 4.7. The goal is to regulate the OD of a Escherichia Coli
(strain MG1655) bacterial culture. The starting OD600nm is 0.04 and the desired
OD600nm value is set to 0.10. During the �rst phase, approximately 35 minutes,
the controller allows the optical density to grow until the setpoint, without any
dilution of the solution. Then the regulation phase begins and an amount of
fresh media is supplied to the solution. This correcting amount is evaluated by a
PI control law and is a function of the di�erence (and its integral) between the
measured and the desired OD value. For the entire duration of this phase, the
optical density falls within the acceptable range [0.09, 0.11], with an observed
peak of 0.12, possibly the result of measurement noise.

Samples of the solution have been taken at the beginning and at the end of the
experiment. Their OD has been measured with a commercial spectophotometer
(WPA CO 8000 Cell Density Meter) with the initial reading of 0.04 and the �nal
reading of 0.10.

4.6 Discussion and Possible Upgrades

In this Chapter we presented a low-cost turbidostat design inspired by that of
[134] that was developed to maximise �exibility and ease of implementation.
All the parts needed to assemble the turbidostat can be easily 3D printed and
assembled following the instructions in the Appendix A.

Using an Arduino micro-controller, a peristaltic or syringe pump, and a pho-
todiode in a reverse bias con�guration, the design we presented is self-contained
and can be easily driven by a provided user interface equipped with a display and
a keyboard. Closed-loop control of the OD is achieved via a PI controller tuned
heuristically. Calibration and control experiments were performed con�rming the
e�ectiveness of our design.

The design is simple and modular enough to be adapted and extended for use
in di�erent control set-ups. For example, optogenetics, which requires the use of
LEDs with �xed wavelength (red 650nm, green 535nm), does not interfere with
the optical density sensing circuit, that works using 950nm wavelength.

In the next Chapter, the problem will be addressed of designing a multi-
chamber turbidostat architecture to host multiple species of bacteria, guarantee-
ing their coexistence and regulating their relative concentration ratio, as this will
become increasingly crucial for the validation of multicellular control strategies
as described in Chapter 3.
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Figure 4.7: OD regulation Control experiment. Escherichia coli strain MG1655
was grown in LB medium. Duration of the experiment: 3 hours. The setpoint
of the experiment was 0.10; initial value of the OD was 0.05. During the �rst
30 minutes, the solution was left growing until it reached the setpoint; then
the regulation phase began. The PI controller gains are 𝐾𝑝 = 30 and 𝐾𝑖 = 1.
Sampling Time 𝑇𝑠 = 1 min.
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5 Towards a bioreactor for

Multicellular Control Exper-

iments

5.1 Introduction

In vivo experiments with coexistence of di�erent species of bacteria are of utmost
importance for the development of synthetic biology. One of the motivations
is that embedding complex gene regulatory networks in a single living cell is
hard due the excessive metabolic burden [108]. Therefore, the key to achieving
new functionalities is to decompose the complex system in elementary pieces,
distributing them across di�erent populations specialized in simple tasks [16,
46, 97]. However, this paradigm assumes that di�erent bacterial species can
coexist at the same time, a situation that is not easy to realize in practice.
Due to unavoidable di�erences in their genetic loads, all cell populations in the
consortium will grow at di�erent rates resulting in undesired dynamics, such as
oscillations or even leading to extinction [118]. To conduct in vivo experiments
where di�erent species of bacteria coexist, a host device, or bioreactor, must be
designed to compensate these dynamics and guarantee coexistence.

Moreover, in industrial applications where high production e�ciency is re-
quired, external control strategies should be preferred to embedded solutions,
because additional genetic circuits can cause further metabolic burden to the
cells and hence lower production rates of the desired metabolic end products.

Micro�uidics devices are now available and ideal to allow spatial separation
of two di�erent microbial species inside adjacent micro-chambers, guaranteeing
the exchange of metabolites via connecting nanochannels [18]. Other studies also
show that micro�uidics traps are e�ective to guarantee the coexistence of di�erent
bacterial strains, while they exchange signaling proteins [4].

Many results have been presented in the literature, both in micro�uidics and in
continuous culture devices; however, very few results are available for multiple-
strains, cultures or microbial consortia besides the above mentioned solutions.
This is due essentially to classical optical-based regulation methods being inef-
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fective to regulate more than one bacterial population at the time. However,
examples of bioreactors that guarantee coexistence of multiple species exist, but
they require very complex control mechanisms [77].

Continuous reactors are machines where the reactant � that is the substrate
in the biological case � is continuously fed into the reactor. Compared to batch
reactors, where the tank is su�ciently large to handle the entire batch cycle,
they show several advantages such as their greater �exibility and their smaller
dimension.

In this Chapter we address the problem of designing control schemes for con-
tinuous bioreactors to carry out experiments with two coexisting species of bac-
teria. Firstly, we present control strategies for a simple 1-chamber layout, with
two cell populations mixed together; we analyse the conditions under which coex-
istence is assured, we design two di�erent control strategies and we discuss their
closed loop dynamics via in-silico experiments. Then, with the aim of overcoming
some limitations that undermine the e�ectiveness of the simple 1-chamber layout,
we propose a new 3-chamber layout, with two growth chambers and a mixing one,
formulating its mathematical model and designing an e�ective control strategy.

State of the art on the dynamics of multiple competing species

The study of the dynamics of two species cocoultured in the same bioreactor has
been addressed multiple times in the literature, from di�erent points of view.
The �rst important result, in this sense, is the study of the competition between
di�erent species that live in the same vessel [68]; this may be a deliberate culture
of mixed populations or may arise as the result of contamination or mutation of
the strains being cultured. By using a general deterministic model for one sub-
strate and 𝑛 competing species � with Michaelis-Menten growth functions [70]
� the authors of [68] state that the species with the smallest Michaelis-Menten
constant wins the competition at steady-state. However, it has been proved that,
relaxing the concept of coexistence, it is possible to have the survival of multiple
species. For example, considering biological Lotka-Volterra models and moving
from coexistence at steady state (with �xed densities) to cyclic trajectories [10],
it is possible to have coexistence when the feeding source is biotic (governed by a
di�erential equation) and abiotic (result of an algebraic relationship). Then, ex-
tensive work has been conducted to study coexistence in the presence of periodic
dynamics of the limiting feeding source. Recently, it has been proved that coex-
istence is possible even in the presence of random �uctuations in the inlet �ow
of continuous bioreactors. Modelling the control input as an Ornstein-Uhlenbeck
process, it is possible to �nd conditions under which the coexistence of species is
assured [22].

Also, state feedback control of the dilution rate (i.e. the ratio between the inlet
�ow and the total working volume) can be used to ensure di�erent species coexist
in a chemostat [33]. The resulting closed loop system shows a stable equilibrium
point in the positive orthant to which all solutions converge. However, work in
[33] does not consider any other design requirement on the state of the system.
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Despite this previous research, there are still many phenomena that arise
when multiple species coexist that are not fully understood. As an example,
let us consider overyielding, that is the capacity of certain ecosystems to ex-
hibit better growth performances compared to when their composing species are
cultivated alone. Models that describe this phenomenon are rare in the litera-
ture, especially in the case of continuous bioreactors [38]. However, recent work
in [60] showed how several biological mechanisms could produce overyielding in
microbial ecosystems, using models of growth in batch cultures.

The presence of multiple species in the same environment could be the un-
wanted result of contaminations or mutations [115]. When this happens, if the
invading species have better growth properties compared to the resident one,
the continuous bioreactor must be controlled so as to mitigate the e�ects of the
invader. In recent work in [135], the authors analyse the dynamics of the com-
petition and design a geometrically-based hybrid control strategy to guarantee
resilience against species invasion in a chemostat. The control strategy does
not require precise knowledge of the growth characteristics of the invader and is
able to create a periodic solution in which the survival of the resident species is
assured.

Complex control architectures that driveMultiple Input Multiple Output (MIMO)
systems can robustly stabilize di�erent species in the same vessel of a bioreactor.
In recent work [34], a control strategy that varies the concentration of the limiting
substrate in the inlet �ow and its resulting dilution rate via Sliding Mode Con-
trollers is able to stabilize the concentrations of two species to some given desired
value. The result is of clear importance; however, there are strict limitations that
undermine its applicability as recognised by the authors themselves. It is indeed
possible to stabilize only one of the two competing species while guaranteeing
the other does not become extinct but the implementation of the control law on
a continuous bioreactor is limited by the chattering showed by the Sliding Mode
Controller in the regulation of the concentration of the limiting substrate.

5.2 The Single Chamber Bioreactor with a Single Species

The following model, proposed for the �rst time in [13] and widely adopted in
the literature [32, 135], describes the dynamics of a continuous bioreactor:

¤𝑥 = (𝜇(𝑥, 𝑠, q) − 𝐷 (𝑡))𝑥
¤𝑠 = − 1

𝑌
𝜇(𝑥, 𝑠, q)𝑥 + 𝐷 (𝑡) (𝑠𝑖𝑛 − 𝑠)

¤q = Q(𝑥, 𝑠, q, 𝐷 (𝑡))
(5.1)

In the above model, the term 𝑥 ∈ R+ represents the concentration of biomass
[mg/mL] of a bacterial species; 𝑠 ∈ R+ is the concentration of the substrate
[mmol/mL] feeding source; the vector q ∈ R𝑝

+ is a vector representative of time-
varying dynamical parameters that a�ect the growth dynamics of the biomass.
The parameter 𝑠𝑖𝑛 ∈ R+ is the substrate concentration in the inlet �ow and
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𝐷 (𝑡) ∈ R+ is the dilution rate [1/h], de�ned as the ratio between the inlet �ow
[mL/h] and the working volume [mL]. The parameter 𝑌 is the substrate-biomass
conversion rate [mmol/mg]. In this study, the parameter 𝑠𝑖𝑛 is assumed to be
constant, therefore the unique control input of the system is 𝐷 (𝑡).

Model (5.1) does note take into account any kind of cell death phenomena; in
this mathematical description, the concentration of biomass can be reduced only
by dilution.

The function 𝜇(𝑠, 𝑥, q) is the so-called growth function [1/h] that satis�es the
following assumptions:

A1. 𝜇(𝑥, 0, q) = 0;
A2. 𝜇(𝑥, 𝑠, q) > 0, ∀𝑠 > 0;
A3. 𝜇(𝑥, 𝑠, q) ≤ 𝜇max, ∀𝑥, 𝑠, q > 0;
A4. 𝜇(𝑥, 𝑠, q) ∈ C1.

The state vector q is the aggregation of some physical quantities that a�ect the
reaction � such as temperature, pH, oxygen saturation, et cetera � with complex
and partially unknown dynamics, being in some cases di�cult to measure in real
time. The level of detail reached by this kind of description goes far beyond the
scope of this study; therefore we assume that q is a vector of constant parameters
q̄, and their dynamics is thus neglected. Under this assumption, the growth
function can be approximated as 𝜇(𝑥, 𝑠, q) ' 𝜇(𝑥, 𝑠, q̄) = 𝜇(𝑥, 𝑠). Also, without
loss of generality, it is possible to set 𝑌 = 1 normalizing the biomass unit. These
manipulations yield the following simpli�ed model that describes the growth of
biomass inside the bioreactor vessel:{

¤𝑥 = (𝜇(𝑥, 𝑠) − 𝐷 (𝑡))𝑥
¤𝑠 = −𝜇(𝑥, 𝑠)𝑥 + 𝐷 (𝑡) (𝑠𝑖𝑛 − 𝑠).

(5.2)

Open-Loop Analysis

To better understand what the physical implications of the model are, we �rst
compute the equilibria of system (5.2). Suppose that the input is constant, that
is 𝐷 (𝑡) = 𝐷 ≥ 0, then the equilibrium points can be obtained by solving:[

(𝜇(𝑥, 𝑠) − 𝐷)𝑥
−𝜇(𝑥, 𝑠)𝑥 + 𝐷 (𝑠𝑖𝑛 − 𝑠)

]
=

[
0
0

]
.

If 𝐷 ≠ 0, the system has two possible equilibrium points:

� An equilibrium point in [0, 𝑠𝑖𝑛]>;
� An equilibrium point [𝑥, 𝑠̄]>, with 𝑥 > 0, 0 < 𝑠̄ < 𝑠𝑖𝑛, corresponding to the
condition such that the growth rate and the dilution rate are equal, that
is, 𝜇(𝑥, 𝑠) = 𝐷.

Without performing a proper bifurcation analysis for system (5.2), it is important
to notice that for 𝐷 > 𝜇max (from assumption A3) the system has a single globally
attractive equilibrium point in [0, 𝑠𝑖𝑛]>; this equilibrium point is a node.
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Assume system (5.2) is forced by an input 𝐷 (𝑡) such that∫ +∞

0

𝐷 (𝜏)𝑑𝜏 = +∞, (5.3)

it is possible to prove that, no matter what the initial conditions of the system,

∃ 𝑡̄ : 𝑠(𝑡) ∈ (0, 𝑠𝑖𝑛] ∀𝑡 > 𝑡̄.

This means that, there exists a time value 𝑡̄ after which the substrate is always
bounded in the range (0, 𝑠𝑖𝑛]. The reader can have an intuition on why this is
true considering the case of forcing the system (5.2) with a constant positive
input 𝐷 (𝑡) = 𝐷 > 0 from the initial state x0 = [0, 𝑠0]>. Three possible cases can
occur:

1. 0 ≤ 𝑠0 < 𝑠𝑖𝑛 : the product 𝐷 · (𝑠𝑖𝑛 − 𝑠0) is positive and the system will
converge to the equilibrium in [0, 𝑠𝑖𝑛]>;

2. 𝑠0 = 𝑠𝑖𝑛 : the product 𝐷 · (𝑠𝑖𝑛 − 𝑠0) = 0 and the system has an equilibrium
in the point x0.

3. 𝑠0 > 𝑠𝑖𝑛 : the product 𝐷 · (𝑠𝑖𝑛 − 𝑠0) is negative and 𝑠(𝑡) < 𝑠(0) = 𝑠0,∀𝑡 > 0.
As in the �rst case, the system will converge to the equilibrium in [0, 𝑠𝑖𝑛]>.

The result still holds even in the case of non-zero biomass concentrations, i.e.
𝑥(0) = 𝑥0 > 0. In this case, for 𝐷 < 𝜇max the dynamics converge towards [𝑥, 𝑠̄]>,
whereas for 𝐷 > 𝜇max they converge towards [0, 𝑠𝑖𝑛]>.

The limitation on the possible values that the substrate concentration can as-
sume, together with the assumption of unitary yield factor 𝑌 , leads to limitations
on the biomass value 𝑥 in the same range of values; in addition, the biomass can
also assume the null value. Thus, it is possible to state that

∃ 𝑡̄ ′ : 𝑥(𝑡) ∈ [0, 𝑠𝑖𝑛] ∀𝑡 > 𝑡̄ ′.

That is, similarly to the case of the substrate, there exists a time value 𝑡̄ ′ after
which the biomass is always bounded in the range [0, 𝑠𝑖𝑛].
Therefore, the subset A = {(𝑥, 𝑠) ∈ [0, 𝑠𝑖𝑛] × (0, 𝑠𝑖𝑛]} (depicted in Figure 5.1) is
attractive and forward invariant for the system (5.2).

Oppositely, when the dilution rate 𝐷 (𝑡) is vanishing∫ +∞

0

𝐷 (𝜏)𝑑𝜏 < +∞,

(for example, if it is a bounded energy signal such that 𝐷 (𝑡) = 0,∀𝑡 > 𝑡̄ or when
𝑙𝑖𝑚𝑡→∞𝐷 (𝑡) = 0) the system settles to an equilibrium point [𝑥, 𝑠̄]> such that
either 𝑥 or 𝑠̄ vanish. These are trivial and uninteresting cases that correspond to
the following physical conditions:

� when 𝐷 (𝑡) > 𝐷̄ for a given interval of time, the system converges towards
[0, 𝑠𝑖𝑛]> and the machine is in the wash-out condition; this happens when
the initial non-null biomass in the chamber is completely �ushed out by a
high value of the dilution rate.

57
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� when 𝐷 = 0 the system settles onto an equilibrium point where 𝑥 ≠ 0, 𝑠̄ = 0.
In this case, the surviving biomass has no substrate to sustain its own life;
thus, the model loses its physical sense.

Moreover, in the absence of forcing (i.e., 𝐷 (𝑡) = 0,∀𝑡 > 0 ) and starting from
a state (𝑥0, 𝑠0) with both 𝑥0, 𝑠0 > 0, the system will converge to (𝑥0 + 𝑠0, 0).
This statement �nds explanation recalling the assumption A1 on the growth
function. The biomass will increase until the substrate concentration will be
positive, stopping its growth only when 𝑠 = 0; being the yield factor unitary, the
increase of the biomass is equal to the decrease of the substrate.

Existence of an Attractive and Invariant Domain

It is possible to prove that the surface Σ := {(𝑥, 𝑠) : 𝑠𝑖𝑛 − 𝑥 − 𝑠 = 0} is attractive
and invariant for any trajectory of the system (5.2), when forced with a positive
constant input 𝐷 (𝑡) = 𝐷. The proof can be conducted considering a state function
𝜎(𝑥, 𝑠) = 𝑠𝑖𝑛 − 𝑥 − 𝑠 and showing that 𝑉 = 1

2𝜎
2 (𝑥, 𝑠) is a Lyapunov function for

the system trajectories. With this aim, we show that ¤𝑉 = 𝜎 ¤𝜎 < 0. By denoting
x = [𝑥, 𝑠]>, the proof of attractiveness follows from the fact that:

¤𝑉 = 𝜎 ¤𝜎 = 𝜎 𝑑𝜎
𝑑x

𝑑x
𝑑𝑡

= (𝑠𝑖𝑛 − 𝑥 − 𝑠) [−1 − 1]
[

(𝜇(𝑥, 𝑠) − 𝐷)𝑥
−𝜇(𝑥, 𝑠)𝑥 + 𝐷 (𝑠𝑖𝑛 − 𝑠)

]
=

= (𝑠𝑖𝑛 − 𝑥 − 𝑠) (−𝜇(𝑥, 𝑠)𝑥 + 𝐷𝑥 + 𝜇(𝑥, 𝑠)𝑥 − 𝐷 (𝑠𝑖𝑛 − 𝑠)) =
= −𝐷 (𝑠𝑖𝑛 − 𝑥 − 𝑠)2 < 0,

with 𝐷 > 0 by assumption. The fact that Σ is attractive is easily proved by
considering that:

¤𝜎 |𝜎=0 = −𝐷 (𝜎) |𝜎=0 = 0.

As noted before, the unitary yield factor 𝑌 leads to an increase of the biomass
equal to the decrease of the substrate; this means that their sum is constant when

A

𝑠

𝑥

𝑠𝑖𝑛

𝑠𝑖𝑛

Figure 5.1: Subset A for the system (5.2).
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𝐷 (𝑡) = 0. Therefore, it is trivial to conclude that the result holds also in the case
when 𝐷 (𝑡) = 0 in some intervals, as long as these intervals are limited.

Finally, we can conclude that the existence of the attractive and invariant
surface Σ implies that

lim
𝑡→∞

[𝑠𝑖𝑛 − 𝑥(𝑡) − 𝑠(𝑡)] = 0.

5.3 The Single Chamber Bioreactor with Two Species

The single species model (5.2) can be extended to the case of two biomass species
𝑥1 and 𝑥2 competing for a single substrate feeding source 𝑠 [135]. The system is
characterized by an additional equation that describes the evolution of the second
species biomass 𝑥2 and its relative consumption term in the substrate equation.
Thus, the model is given by:

¤𝑥1 = (𝜇1 (𝑥1, 𝑠) − 𝐷 (𝑡))𝑥1
¤𝑥2 = (𝜇2 (𝑥2, 𝑠) − 𝐷 (𝑡))𝑥2
¤𝑠 = −𝜇1 (𝑥1, 𝑠)𝑥1 − 𝜇2 (𝑥2, 𝑠)𝑥2 + 𝐷 (𝑡) (𝑠𝑖𝑛 − 𝑠).

(5.4)

with the obvious extensions of all the notation, symbols and assumptions on
the growth functions. Moreover, without loss of generality, it is convenient to
assume that both the two species have unitary yield factor, 𝑌1 = 𝑌2 = 1. Being
the two species hosted in the same reaction chamber, the input 𝐷 (𝑡) is common
to the three equations that compose the model; thus, assuming the well-mixed
hypothesis, the removal rates of the species are identical.

The results on convergence of trajectories of the system (5.2) � when forced
with a non-vanishing 𝐷 (𝑡) � in the subdomain A of Figure 5.1 can be extended
with ease, for model (5.4), to the three dimensional space. In this case, the
limitation on the substrate and the identical yield factors of the two species lead
the trajectories of the system to evolve in the attractive and invariant domain

D = {(𝑥1, 𝑥2, 𝑠) ∈ [0, 𝑠𝑖𝑛] × [0, 𝑠𝑖𝑛] × (0, 𝑠𝑖𝑛]}.

A representation of the domain D is shown in Figure 5.2.

Competitive Exclusion Principle and Species Survival

An important result on the coexistence of two species competing for the same
feeding source, known as the Competitive Exclusion Principle, states that at
most one species survives at steady-state in the system (5.4), when forced with a
constant and positive dilution rate 𝐷. This result holds when the growth functions
are monotonically increasing and they intersect in a single point ; typically, when
two species are present, one wins the competition for low concentration of the
substrate, the other for high concentration of the substrate [135, 125, 68]. Since
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𝑠𝑖𝑛

𝑥1

𝑠𝑖𝑛

𝑠

𝑥2𝑠𝑖𝑛

D

Figure 5.2: Geometrical representation of the domain D for the system (5.4).

𝜇 ∈ C1, this scenario is captured assuming that there exists some 𝑠̃ ∈ [0, 𝑠𝑖𝑛] such
that

(𝜇1 (𝑠) − 𝜇2 (𝑠)) (𝑠 − 𝑠̃) > 0, 𝑠 ∈ [0, 𝑠𝑖𝑛], 𝑠 ≠ 𝑠̃. (5.5)

That is, for 𝑠 < 𝑠̃ it holds 𝜇2 (𝑠) > 𝜇1 (𝑠), while for 𝑠 > 𝑠̃ it holds 𝜇1 (𝑠) > 𝜇2 (𝑠).

Existence of an attractive and invariant domain

It is possible to extend the result on the attractiveness and invariance of the
surface Σ proved for the single species model (5.2) to the case of the two species
model (5.4).

In the three dimensional case, indeed, we can prove that there exists an at-
tractive and invariant subset of R3 de�ned as:

S𝑎 = {(𝑥1, 𝑥2, 𝑠) : 𝑥1 + 𝑥2 + 𝑠 = 𝑠𝑖𝑛}.

The proof of existence can be easily conducted by extending the de�nition of the
state function 𝜎(𝑥, 𝑠) to the case of 𝜎(𝑥1, 𝑥2, 𝑠).

The geometrical interpretation of the subset S𝑎 is a plane whose intersection
with the domain D can be depicted as shown in Figure 5.3.
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𝑠𝑖𝑛

𝑥1

𝑠𝑖𝑛

𝑠

𝑥2𝑠𝑖𝑛

D

S𝑎

Figure 5.3: Geometrical representation of the domain S𝑎

Reduced Order Model

Assuming that the evolution of system (5.4) belongs to subset S𝑎, it is possible to
reduce its dynamics to that of a planar system, considering satis�ed the constraint
𝑥1 + 𝑥2 + 𝑠 = 𝑠𝑖𝑛, yielding:{

¤𝑥1 = (𝜇1 (𝑥1, 𝑥2) − 𝐷 (𝑡))𝑥1
¤𝑥2 = (𝜇2 (𝑥1, 𝑥2) − 𝐷 (𝑡))𝑥2

. (5.6)

System (5.6) is de�ned in a planar region that is the intersection of the �rst
quadrant of the plane (𝑥1, 𝑥2) and the region where the constraint 𝑥1 + 𝑥2 ≤ 𝑠𝑖𝑛 is
satis�ed. The domain of de�nition of system (5.6) is reported in Figure 5.4.

𝑥1

𝑥2

𝑠𝑖𝑛

𝑠𝑖𝑛

Figure 5.4: Domain of de�nition of the system (5.6) (cyan region). The red line
is described by 𝑥1 + 𝑥2 = 𝑠𝑖𝑛.
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5.3.1 Open-Loop Analysis

The growth function

The following section deals with the study of the dynamics of the planar system
(5.6) when the growth functions are supposed to be in the Monod form [13], that
is

𝜇𝑖 (𝑥𝑖 , 𝑠) = 𝜇𝑖 (𝑠) =
𝜇∗
𝑖
𝑠

𝑘𝑖 + 𝑠
, 𝑖 = 1, 2. (5.7)

In the reduced system (5.6), the growth functions 𝜇𝑖 (𝑠) depend only on the
concentrations of both species, due to the constraint 𝑠 = 𝑠𝑖𝑛 − 𝑥1 − 𝑥2. Thus,
their expressions become:

𝜇𝑖 (𝑠) = 𝜇𝑖 (𝑥1, 𝑥2) =
𝜇∗
𝑖
(𝑠𝑖𝑛 − 𝑥1 − 𝑥2)

𝑘𝑖 + 𝑠𝑖𝑛 − 𝑥1 − 𝑥2
, 𝑖 = 1, 2.

Recalling equation (5.5), we assume that the two growth functions 𝜇𝑖 (𝑥1, 𝑥2)
intersect each other in a single point 𝑠̃. Or equivalently,

∃! 𝑠̃ : 𝜇1 ( 𝑠̃) = 𝜇2 ( 𝑠̃).

This situation is represented in Figure 5.5, where regions of the plane in which one
species grows more than the other are depicted. Without this last assumption,
considering monotonically increasing growth functions as in (5.7), there would
be a dominance of one growth function onto the other. If this is the case, one
species will always win the competition onto the other and coexistence will not
be possible.

𝑥1

𝑥2

𝑠
=
0

𝑠
=
𝑠̃

𝜇1 (𝑠) > 𝜇2 (𝑠)

𝜇1 (𝑠) < 𝜇2 (𝑠)

𝑠𝑖𝑛

𝑠𝑖𝑛

𝑠𝑖𝑛 − 𝑠̃

𝑠𝑖𝑛 − 𝑠̃

𝑠 = 𝑠𝑖𝑛

Figure 5.5: Growth functions of the reduced order model. The domain of de�-
nition of the model (5.6) is divided in two zones: in the cyan zone, biomass 𝑥1
grows faster than biomass 𝑥2; in the green one, the opposite.
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Nullclines of the system

It is possible to compute the nullclines of system (5.6) in closed form. By looking
at the equations, each component of the vector �eld has two possible nullclines:
one is independent from the parameters of the model, the other one depends on
the species growth function and on the input 𝐷 (𝑡). The two invariant nullclines
associated to the two dynamics are

𝑥
(1)
1 = {𝑥1 = 0}, 𝑥

(1)
2 = {𝑥2 = 0}.

These two invariant nullclines always intersect in the origin of the phase plane
of model (5.6), giving birth to a persistent equilibrium (𝑥1, 𝑥2) = (0, 0) � note
that here, the word "persistent" refers to an equilibrium that is �xed and always
present, whatever the parameters of the model are. So, the equilibrium point
in the origin can only change its stability properties. The other two nullclines
depend on the parameters of growth functions � namely 𝜇∗

𝑖
and 𝑘𝑖 � and on the

value of the dilution rate 𝐷 (𝑡). Moreover, they share the same form, being lines
with slope equal to −1 on the plane (𝑥1, 𝑥2). They can be computed as:

𝑥
(2)
𝑖

= {𝑥2 = −𝑥1 + 𝑠𝑖𝑛 − 𝑠̃𝑖}, 𝑠̃𝑖 =
𝑘𝑖𝐷 (𝑡)
𝜇∗
𝑖
− 𝐷 (𝑡) , 𝑖 = 1, 2. (5.8)

Obviously, 𝑥 (1)1 always intersects 𝑥 (2)2 and 𝑥 (2)1 intersects 𝑥 (1)2 . However, here only
intersections of nullclines having physical sense � and so belonging to the domain
of de�nition of system (5.6) reported in Figure 5.4 � are considered.

Position of the equilibria

In this section, a numerical investigation about the position of the equilibria of
the system is conducted. First of all, for the sake of simplicity, the parameters of
the growth functions are set to be as in [135]:

𝜇∗1 = 0.5, 𝑘1 = 5, 𝜇∗2 = 0.16, 𝑘2 = 0.13.

These choices make the two growth functions 𝜇1 (𝑠) and 𝜇2 (𝑠) of the model (5.4)
(depicted in Figure 5.6) intersect at a speci�c value

𝑠̃1 = 𝑠̃2 = 𝑠̃ ' 2.2

where 𝑠̃ is de�ned in the equation (5.8).
Recalling that the intersection of the nullclines are always onto one of the two
axes of the phase plane so that the equilibria always have at least one of the com-
ponents equal to zero, we can plot how the non-zero coordinates of the equilibria
vary as a function of the constant input 𝐷 (𝑡) = 𝐷, see Figure 5.7.

The graph in the top panel of Figure 5.7 can be divided into three zones
(red, blue, green), according to the number of equilibrium points that the system
shows in each one of them. In the red zone, three equilibria exists: a saddle and
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Figure 5.6: Growth functions of the system, 𝜇1 (in blue) and 𝜇2(in red) as func-
tion of 𝑠.

a stable node on the two axes and an unstable node in the origin. The blue zone
is characterized by two equilibria: a saddle in the origin and a stable node on the
𝑥1 axis. The green zone corresponds to the �ush-out condition, where the only
equilibrium is the origin of the phase plane that is a stable node.

The transition from a zone to another is caused by a transcritical bifurcation
that occurs at one of the two axes of the plane, with an equilibrium point that
leaves the domain of de�nition of the reduced model (5.6). In the transition
between the red and the blue zone, a saddle point on the 𝑥2 axis collapses on the
unstable node in the origin; the two equilibria swap their stability characteristics
with the equilibria on the 𝑥2 axis (that became an unstable node) leaving the
domain of the system (5.6). A similar case is seen in the transition between the
blue and the green zone, with a stable node on the 𝑥1 axis hitting the saddle
in the origin, becoming a saddle itself and going out of the admissible domain
leaving a single globally attractive stable node at the origin.

Equilibrium set and species coexistence

The red zone, the details of which are reported for the sake of readability in the
bottom panel of Figure 5.7, is the part of the graph that shows the most complex
dynamics. Here, for two values of the input, in particular 𝐷 = 0 and 𝐷 = 𝐷𝑒𝑞,
where

𝐷𝑒𝑞 := 𝐷 = 𝜇1 ( 𝑠̃) = 𝜇2 ( 𝑠̃) (5.9)

there exists � beside the unstable node at the origin � a stable equilibrium set
E. In the case of 𝐷 = 0, the equilibrium set is the line 𝑥1 + 𝑥2 = 𝑠𝑖𝑛; in the other
case, it is the line

E := 𝑥1 + 𝑥2 = 𝑠𝑖𝑛 − 𝑠̃, (5.10)
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Figure 5.7: Top panel: non zero coordinate of the equilibria of the system (5.6)
varying 𝐷 (𝑡). A variation of the colour of a line represents a change of stabil-
ity characteristics of an equilibrium. In particular, a red branch represents an
unstable node, a green branch a stable node, a blue branch a saddle. Black dot-
dashed lines are stable equilibrium sets. The dotted line represents the non null
coordinate of the equilibrium on the 𝑥1 axis. The dashed line represents the non
null coordinate of the equilibrium on the 𝑥2 axis. The solid line represents the
equilibrium in the origin. Bottom panel: Details of the red zone.
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where 𝑠̃ : 𝜇1 ( 𝑠̃) = 𝜇2 ( 𝑠̃). These two cases are reported as dark green dash-dotted
lines in Figure 5.7. These two values, 𝐷 = 0 and 𝐷 = 𝐷𝑒𝑞, are the only two
constant values of 𝐷 (𝑡) that lead to the stable coexistence of both species. In
particular, for these values of the input there exist in�nite equilibrium points that
are not located on the axes of the phase plane. Note that for the case 𝐷 = 0, the
equilibria correspond to the condition 𝑠 = 0, which is not of particular interest;
indeed, a null concentration of substrate would lead to extinction of both species,
that always physically require a baseline substrate to survive.

When 𝐷 = 𝐷𝑒𝑞 a degenerate transcritical bifurcation occurs: the saddle on
the 𝑥1 axis collides with the stable node on the 𝑥2 axis through the creation of the
equilibrium set E. The result is that, for 𝐷 > 𝐷𝑒𝑞 they swapped their stability
properties, where the saddle belongs to the 𝑥2 axis and the stable node to the
𝑥1 axis. The equilibrium set E arises because the two nullclines of the system
(5.6) are completely overlapping, leading to the appearance of a continuum of
equilibrium points.

A complete representation of the equilibria in the plane is shown in Figure 5.8.
Here, the third dimension is the bifurcation parameter 𝐷. Each section orthogo-
nal to the 𝐷 axis shows the number, the position and the stability properties of
the equilibria in the phase plane of system (5.6).

0 1 2 3 4 5

012345
0

0.2

𝑥1𝑥2

𝐷
(𝑡)

=
𝐷

Figure 5.8: Equilibria of the system (5.6) varying 𝐷 (𝑡). A red branch represents
an unstable node, a green branch a stable node, a blue branch a saddle. Black dot-
dashed lines are stable equilibrium sets. Black diamonds are bifurcation points.

66



Chapter 5. Towards a bioreactor for Multicellular Control Experiments

Figure 5.9: Possible state portraits of system (5.6) for di�erent values of constant
dilution rate 𝐷. Blue dashed and red dotted lines correspond to the two nullclines
of the system reported in (5.11) for 𝑖 = 1 and 𝑖 = 2, respectively. Full, empty, and
half-�lled dots represent stable, unstable and saddle equilibria, respectively.

Phase Plane Analysis

Summing up the results of the phase plane analysis, we can identify the following
six cases, corresponding to di�erent positions of the two nullclines

𝑥2 = −𝑥1 + 𝑠𝑖𝑛 − 𝑠𝑖 , 𝑠𝑖 =
𝑘𝑖𝐷

𝜇∗
𝑖
− 𝐷 (5.11)

in the domain of system (5.6) (shown in Figure 5.4), that are depicted in Figure
5.9):

(I) 𝐷 = 0: when 𝑠1 = 𝑠2 = 0 the nullclines (5.11) overlap and all solutions
asymptotically converge to the stable equilibrium set E0 := {(𝑥1, 𝑥2) ∈ Sr :
𝑥1 + 𝑥2 = 𝑠in}, while the origin is locally unstable. This case corresponds to
an undesired working condition in which no new substrate is added to the
reactor and the biomass is in starvation. However, this situation can never
occur in continuous culture as it is always assumed that 𝐷 (𝑡) > 0, ∀𝑡 > 0.

(II) 0 < 𝐷 < 𝐷̄: there are two equilibrium points, each one on an axis, cor-
responding to their intersection with the nullclines (5.11). Speci�cally,
𝑥∗2 := (0, 𝑠in − 𝑠2) is a stable node and 𝑥∗1 := (𝑠in − 𝑠1, 0) is a saddle, where 𝑠𝑖
is as in (5.11), while the origin is locally unstable. This case corresponds to
a low concentration of the substrate at steady state due to its consumption
and low dilution rate. This results in species 2 prevailing over species 1.

(III) 𝐷 = 𝐷̄: the nullclines (5.11) again overlap and all solutions asymptoti-
cally converge to the stable equilibrium set (5.10) while the origin is locally
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unstable. These equilibrium points correspond to a condition of stable co-
existence between the two species.

(IV) 𝐷̄ < 𝐷 < 𝜇2 (𝑠in): this case is similar to case (II) but with opposite stability
properties of the equilibrium points, that is, 𝑥∗1 is a stable node and 𝑥∗2 is
a saddle, while the origin is still locally unstable. In this case species 1
prevails at steady state because of the high concentration of substrate.

(V) 𝜇2 (𝑠in) < 𝐷 < 𝜇1 (𝑠in): there is only one intersection in the domain Sr

between the nullclines (5.11) and the axes at the point 𝑥∗1, which is stable,
while in this case the origin is a saddle. At steady state species 2 is �ushed-
out from the chemostat due to the dilution rate 𝐷 being greater than its
maximum growth rate 𝜇2 (𝑠in).

(VI) 𝜇1 (𝑠in) < 𝐷 < 𝐷max: there is a unique stable equilibrium point in the origin
to which all solutions converge. In this case, 𝐷 being greater than the
maximum value of both growth rates causes the �ush-out of both species,
that is, the cells are removed from the chemostat faster than they can grow.

The transitions between the dynamical behaviors described above are due to
bifurcations of the equilibrium points of the system. In particular, in cases (I)
and (III) the system undergoes a degenerate transcritical bifurcation [81], in which
the equilibrium sets E0 and E appear, respectively, as the two nullclines (5.11)
overlap. These two sets are not structurally stable, since they suddenly disappear
for any small perturbation of the bifurcation parameter 𝐷 from the bifurcation
points 𝐷 = 0 and 𝐷 = 𝐷̄. On the other hand, for 𝐷 = 𝜇2 (𝑠in) (𝐷 = 𝜇1 (𝑠in))
the equilibrium points undergo a regular transcritical bifurcation, in which the
equilibrium point 𝑥∗2 (𝑥∗1) collides with the one in the origin, exchanges stability
and exits the domain Sr.
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5.4 Control Problem Formulation

The mathematical model (5.1) is derived under the assumption that cell death is
neglected. This assumption is likely true only when a cells have enough substrate
to avoid starvation. When running in-vivo experiments, a baseline substrate is
required to support the viability of the cells. This situation can be taken into
account considering the following constraint:

𝑠(𝑡) > 𝑠min, ∀𝑡 > 0. (5.12)

Note that this requirement is di�erent from imposing 𝐷 (𝑡) > 0. Indeed, there
could be a high concentration of substrate and low concentrations of biomasses;
in this case, the constraint (5.12) causes the system to be forced with 𝐷 (𝑡) = 0,
that is the best choice to let the biomass grow consuming substrate. Oppositely,
considering 𝐷 (𝑡) > 0, there will be a removal of biomass concentration � because
of the dilution � that would slow down its dynamics.

Also, the same model completely disregards several phenomena (i.e., a species
invasion or another e�ect that lowers the growth rate of the species, the case
in which stirring is not optimal and the concentration of biomass is spatially
located near the outlet line) that might cause the extinction of a species inside
the vessel, especially when its concentration is very low. Obviously, this scenario
will de�nitely terminate the multi-cellular experiment. Thus, lower bounds must
be considered for the concentrations of the two species in the control problem
of the bioreactor. This does not guarantee the absence of extinctions or �ush-
out events but reduces their probabilities. Therefore, we consider the following
additional constraints:

𝑥1 (𝑡) > 𝑥1,min,

𝑥2 (𝑡) > 𝑥2,min,
∀𝑡 > 0. (5.13)

In view of the above, constraints (5.12) and (5.13) limit the domain of system
(5.4) to the admissible subset

D𝑠 ⊂ R3 := {𝑥𝑖 (𝑡) : 𝑥𝑖,min < 𝑥(𝑡) ≤ 𝑠𝑖𝑛, 𝑖 = 1, 2, 3}

where 𝑥3 (𝑡) = 𝑠(𝑡). Geometrically, a sketch of the situation in the space is shown
in Figure 5.10.

The stabilization of system (5.4) at a generic point (𝑥1, 𝑥2, 𝑠) ∈ D𝑠 is not
reasonable. Indeed, in general, the solutions of the system converge towards the
invariant and attractive subset S𝑎. So, starting from any initial point belonging
to the subset D𝑠, the solution of system (5.4) will converge to the subset D𝑆,𝑎 :=
D𝑠∩S𝑎, depicted in dark in Figure 5.11. The set S𝑎 intersects only three edges of
the domain D𝑠: this can be understood by considering the fact that the surface
S𝑎 - in the �rst octant of the space - touches the plane 𝑠 = 𝑠𝑖𝑛 only at the point
(0, 0, 𝑠𝑖𝑛), which does not belong to the top boundary surface of the domain D𝑠.
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D𝑠

D

Figure 5.10: Geometrical representation of the domain D𝑠 (cyan) nested in the
domain D (gray)

5.4.1 Problem Statement

The control problem can then be stated as follows:
Design a feedback control law 𝐷 (𝑥(𝑡)) : R3 → R+0 such that the domain

D𝑆,𝑎 := D𝑠 ∩ S𝑎 becomes forward invariant for system (5.4) and

lim
𝑡→∞

𝑥1 (𝑡)
𝑥2 (𝑡)

= 𝑟𝑑 . (5.14)

The last statement de�nes a foliation of planes that contains the line (0, 0, 𝑠);
when �xing 𝑟𝑑, we select a plane of the foliation. Figure 5.12 shows the inter-
section of a plane belonging to the foliation with the domain D𝑠. However, the
evolution of the system will converge to the subset D𝑆,𝑎, that can be depicted
as a plane itself. The intersection of the last speci�cation (red plane) and the
subset D𝑆,𝑎 is our target region, that is a line as shown in Figure 5.13.

Taking into account the additional constraints (5.12)-(5.13), it is possible to
notice that the intersection between the region D𝑠 and the constraint on the ratio
(red plane, see Figure 5.12) exists if and only if

𝑥1,min

𝑠𝑖𝑛 − 𝑥1,min − 𝑠min
< 𝑟𝑑 <

𝑠𝑖𝑛 − 𝑥2,min − 𝑠min

𝑥2,min
(5.15)

In other words, this means that it is possible to regulate the ratio only within a
certain range, that is bounded by some quantities that depend on the minimum
values of the biomasses.

Considering that the constraints of the reduced order model (5.6) are satis�ed,
the control problem formulation can be represented as its phase plane showed in
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DS,a
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𝑠

𝑠𝑖𝑛

𝑥1

𝑠𝑖𝑛

D𝑠

S𝑎

Figure 5.11: Geometrical representation of the domain D𝑠,𝑎 (dark blue) that is
given by the intersection of the attractive and invariant subset S𝑎 (dark grey)
and the domain D𝑠 (light blue) of the other speci�cations.

Figure 5.14. Speci�cally, the closed-loop planar system must be stabilized onto
points that belong to the segment shown in green in Figure 5.14.

We further assume that the concentrations 𝑥1 and 𝑥2 are either directly or
indirectly measurable, for example by means of �uorescent reporter proteins pro-
duced by one or both species.

5.4.2 Positions of the Closed Loop System Equilibria

Notice that the previous control problem corresponds to requiring that all the
solutions of system (5.6) are stabilized at the point of intersection between the
equilibrium set E given by (5.10), where coexistence is possible, and the line
de�ned by (5.14); see Figure 5.15. The intersection point can be computed as:

𝑥𝑑 = [𝑥𝑑,1, 𝑥𝑑,2]> =

[
𝑠𝑖𝑛 − 𝑠̄
1 + 𝑟𝑑

, 𝑟𝑑
𝑠𝑖𝑛 − 𝑠̄
1 + 𝑟𝑑

]>
. (5.16)
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Figure 5.12: Intersection of the requirement about the ratio (red plane) and the
domain of the speci�cations D𝑠.

𝑥2𝑠𝑖𝑛

𝑠

𝑠𝑖𝑛
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𝑠𝑖𝑛

Figure 5.13: Intersection between the speci�cation on the ratio between 𝑥1 and
𝑥2 (in red) and the domain of attraction S𝑎 (in gray) results into a line (green).
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𝑥1 = 𝑟𝑑𝑥2 ∩ S𝑎

𝑥1𝑠𝑖𝑛𝑥1,𝑚𝑖𝑛

𝑥2

𝑠𝑖𝑛

𝑥2,𝑚𝑖𝑛

D𝑆,𝑎

𝑥1 = 𝑟𝑑𝑥2 ∩ D𝑆,𝑎

Figure 5.14: Phase plane of the system (5.6). The projection of the domain
of the speci�cation D𝑆,𝑎 (cyan) is contained in the projection of the domain of
the system {(𝑥1, 𝑥2, 𝑠) : 𝑥1 + 𝑥2 + 𝑠 = 𝑠𝑖𝑛} (grey). The speci�cation on the ratio
between 𝑥1 (𝑡) and 𝑥2 (𝑡) is a line (red) on the plane, with the goal region being
the segment (green) that results from the intersection of the regions de�ned by
the speci�cation.

𝑥1𝑠𝑖𝑛𝑥1,𝑚𝑖𝑛

𝑥2

𝑠𝑖𝑛

𝑥2,𝑚𝑖𝑛

D𝑆,𝑎 𝑥1 = 𝑟𝑑𝑥2

𝑥𝑑

E

Figure 5.15: Position of the point 𝑥𝑑. The red line represents the points that
satisfy the equation (5.14). The dark green line represents the point that belong
to the equilibrium set E (5.10). The two lines intersect at the black dot that is
the point 𝑥𝑑. The point 𝑥𝑑 belongs to the domain D𝑆,𝑎 if the ratio 𝑟𝑑 satis�es
the inequalities (5.15).
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5.5 Control Synthesis

In this section we propose two di�erent control approaches to solve the control
problem we formulated. Firstly, we design a Gain Scheduling controller that
exploits the linearised model of system (5.6) to adapt the feedback gains of a state
feedback controller. Secondly, we propose a hybrid controller that controls the
system (5.6) with discontinuous inputs. Then, the two strategies are compared
and their resulting dynamics discussed.

5.5.1 Linearised Model

The control problem formulated in the previous section can be addressed via a
Gain Scheduling technique [86, 8]. The motivation is that of adapting the closed-
loop feedback gains of a state feedback controller placing the closed-loop system's
poles in a desired position. This technique eventually guarantees convergence
towards the desired equilibrium 𝑥∗ = [𝑥∗1, 𝑥∗2], whatever its position on the line
de�ned in (5.10).

The design of a state feedback controller requires a linearised model of system
(5.6) about some equilibrium 𝑥∗ = 𝑥𝑑 , 𝑢

∗ = 𝐷𝑒𝑞 (where 𝑥𝑑 is de�ned in (5.16)
and 𝐷𝑒𝑞 in (5.9)), which is described by the following set of equations:{

𝛿 ¤𝑥 = 𝐴𝛿𝑥 + 𝐵𝛿𝑢
𝛿𝑦 = 𝐶𝛿𝑥

(5.17)

where 𝛿𝑥 is a variation, caused by the input 𝛿𝑢 from the equilibrium state 𝑥∗,
which exists when the input 𝑢∗ is applied to the system. 𝛿𝑦 is the variation of the
output from 𝑦∗ that is the output that the system shows when at the equilibrium
𝑥∗. The matrix 𝐴 is the Jacobian 𝐽 of system (5.6) evaluated at the equilibrium
𝑥∗ and forced by 𝑢∗ = 𝐷𝑒𝑞, that is:

𝐴 =


𝑥1

𝜕𝜇1 (𝑥1 ,𝑥2)
𝜕𝑥1

+ 𝜇1 (𝑥1, 𝑥2) − 𝐷𝑒𝑞 𝑥1
𝜕𝜇1 (𝑥1 ,𝑥2)

𝜕𝑥2

𝑥2
𝜕𝜇2 (𝑥1 ,𝑥2)

𝜕𝑥1
𝑥2

𝜕𝜇2 (𝑥1 ,𝑥2)
𝜕𝑥2

+ 𝜇2 (𝑥1, 𝑥2) − 𝐷𝑒𝑞


�����𝑥1 = 𝑥𝑑,1
𝑥2 = 𝑥𝑑,2

where
𝜕𝜇1 (𝑥1, 𝑥2)

𝜕𝑥1
=

(𝜇∗1 − 1) (𝑠𝑖𝑛 − 𝑥1 − 𝑥2) + 𝑘𝑚,1

(𝑘𝑚,1 + 𝑠𝑖𝑛 − 𝑥1 − 𝑥2)2

𝜕𝜇1 (𝑥1, 𝑥2)
𝜕𝑥2

=
(𝜇∗1 − 1) (𝑠𝑖𝑛 − 𝑥1 − 𝑥2) + 𝑘𝑚,1

(𝑘𝑚,1 + 𝑠𝑖𝑛 − 𝑥1 − 𝑥2)2

𝜕𝜇2 (𝑥1, 𝑥2)
𝜕𝑥1

=
(𝜇∗2 − 1) (𝑠𝑖𝑛 − 𝑥1 − 𝑥2) + 𝑘𝑚,2

(𝑘𝑚,2 + 𝑠𝑖𝑛 − 𝑥1 − 𝑥2)2

𝜕𝜇2 (𝑥1, 𝑥2)
𝜕𝑥2

=
(𝜇∗2 − 1) (𝑠𝑖𝑛 − 𝑥1 − 𝑥2) + 𝑘𝑚,2

(𝑘𝑚,2 + 𝑠𝑖𝑛 − 𝑥1 − 𝑥2)2
.
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Using equation (5.10) matrix 𝐴 becomes

𝐴 =


𝑥1

𝜕𝜇1 (𝑥1)
𝜕𝑥1

+ 𝜇1 (𝑥1) − 𝐷𝑒𝑞 𝑥1
𝜕𝜇1 (𝑥1)

𝜕𝑥1

(𝑠𝑖𝑛 − 𝑠̃ − 𝑥1) 𝜕𝜇2 (𝑥1)
𝜕𝑥1

(𝑠𝑖𝑛 − 𝑠̃ − 𝑥1) 𝜕𝜇2 (𝑥1)
𝜕𝑥1

+ 𝜇2 (𝑥1) − 𝐷𝑒𝑞


�����𝑥1 = 𝑥𝑑,1
𝑥2 = 𝑥𝑑,2

with the partial derivatives of the growth functions being:

𝜕𝜇1 (𝑥1)
𝜕𝑥1

=
(𝜇∗1 − 1) 𝑠̃ + 𝑘𝑚,1

(𝑘𝑚,1 + 𝑠̃)2

𝜕𝜇2 (𝑥1)
𝜕𝑥1

=
(𝜇∗2 − 1) 𝑠̃ + 𝑘𝑚,2

(𝑘𝑚,2 + 𝑠̃)2
.

The matrix 𝐵 is given by:

𝐵 =


𝜕 𝑓1
𝜕𝑢

𝜕 𝑓2
𝜕𝑢


�����𝑥1 = 𝑥𝑑,1
𝑥2 = 𝑥𝑑,2

=

[
−𝑥1
−𝑥2

] ���
𝑥1 = 𝑥𝑑,1
𝑥2 = 𝑥𝑑,2

Being the output of interest the state of the linearised system, matrix 𝐶 is the
2 × 2 identity matrix.

5.5.2 Gain Scheduling

The Gain Scheduling Algorithm requires a scheduling variable that, in this case,
is set equal to the desired ratio 𝑟𝑑. Feedback gains of a state feedback controller
are computed as functions of this scheduling variable to guarantee that, whatever
𝑟𝑑 is, the closed loop eigenvalues remain the same, assuring the convergence on
the same timescale. The complete feedback control law is chosen as:

𝑢(𝑥1, 𝑥2, 𝑟𝑑) = 𝐷𝑒𝑞 + [𝐾1 (𝑟𝑑), 𝐾2 (𝑟𝑑)] · [𝑥𝑑,1 − 𝑥1, 𝑥𝑑,2 − 𝑥2]> (5.18)

where 𝑥𝑑 = [𝑥𝑑,1, 𝑥𝑑,2]> is de�ned in (5.16).
To meet possible settling time requirements in the order of 6 ∼ 7 hours,

compatible with the growth properties of the bacteria, the closed loop eigenvalues
𝜆1 and 𝜆2 are set to be in the positions [−1,−1].

Even thought the problem of designing the feedback gains could be tackled
analytically, the length and the complexity of the expressions makes it cumber-
some; thus, the problem will be solved numerically. The �rst step is to design the
adaptive feedback gains that solve the pole placement problem for each value of
𝑟𝑑 in a given range. This provides values of the feedback gains 𝐾1 and 𝐾2 that
will be interpolated later. To compute these values, it is necessary to linearise
system (5.6) on the trim points belonging to the line (5.10) that satisfy the de-
sired ratio 𝑟𝑑. Once this is done, via standard control techniques (Ackerman's
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Figure 5.16: Relationship between the closed loop gains 𝐾1 (red) and 𝐾2 (blue)
and the scheduling variable 𝑟𝑑. Green dots represent the evaluated values of 𝐾1,
whereas magenta dots represent the evaluated values of 𝐾2.

formula) one can �nd the values of 𝐾1 and 𝐾2 such that the closed loop poles are
in the desired position.

A possible range of values of the scheduling variable is, for example, 𝑟𝑑 ∈
[0.25, 4] and the corresponding values of the gains 𝐾1 and 𝐾2 obtained are re-
ported as dots in Figure 5.16. Concerning the interpolation functions, a good
estimation of 𝐾1 (𝑟𝑑) is given by the following liner approximation:

𝐾1 (𝑟𝑑) = 𝑎 ∗ 𝑟𝑑 + 𝑏, 𝑎 = 2.7659, 𝑏 = 2.1015.

On the other hand, the gain 𝐾2 (𝑟𝑑) can be approximated by the following func-
tion:

𝐾2 (𝑟𝑑) = 𝑏0 +
𝑏1

𝑟𝑑 + 𝑏2
, 𝑏0 = −3.4673, 𝑏1 = −2.7533, 𝑏2 = −0.0010.

The functions 𝐾1 (𝑟𝑑) and 𝐾2 (𝑟𝑑) are depicted in Figure 5.16.
By numerical analysis, the closed-loop dynamics was found to have four equi-

librium points: a stable node in 𝑥𝑑, an unstable node in the origin, and two saddle
points on each of the axes. Therefore, under the action of the feedback control
input (5.18), all solutions converge to 𝑥𝑑 for any initial condition 𝑥0 ∈ D𝑆,𝑎.

Control validation

To assess the performances of the Gain Scheduling strategy, a MATLAB script
was developed. The simulation algorithm is based on variable step integration
carried-out by the ode45 routine. We ran two simulations based on the following
initial setup:

� initial condition x0 = [0.6, 0.4]>;
� 𝐷 (𝑡) ∈ [0.05, 2];
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Figure 5.17: Closed loop evolution driven by the Gain Scheduling controller with
setpoint 𝑟𝑑 = 2 and 𝑥𝑑 = [1.8922, 0.9461]. Top left: trajectories in the phase
plane; the dashed red line represents the position of the equilibrium set E (5.10),
when exists; the green line is the line that is de�ned by the desired ratio 𝑟𝑑; the
cyan star is the equilibrium where the system settles. Top right: evolution of the
control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue, 𝑥2 in red) over
time and setpoint (dotted).

� desired ratio 𝑟𝑑 = 2 with a total simulation time of 24 hours;
� desired ratio 𝑟𝑑 = 0.5 with a total simulation time of 48 hours.

The simulations of the closed loop evolutions are reported in Figure 5.17 and in
Figure 5.18

In both cases, regulation is successfully achieved. However, for the most of
the simulation, the controller waits for the biomass to grow: this results in a
long initial transient, where the system is forced with a static value of the input
equal to 𝐷 (𝑡) = 𝐷min = 0.05. Once trajectories reach a point close to the desired
ratio line, the controller then starts diluting the chamber, ensuring the system
converges the desired setpoint.
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Figure 5.18: Closed loop evolution driven by the Gain Scheduling controller with
setpoint 𝑟𝑑 = 0.5 and 𝑥𝑑 = [0.9461, 1.8922]. Top left: trajectories in the phase
plane; the dashed red line represents the position of the equilibrium set E (5.10),
when exists; the green line is the line that is de�ned by the desired ratio 𝑟𝑑; the
cyan star is the equilibrium where the system settles. Top right: evolution of the
control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue, 𝑥2 in red) over
time and setpoint (dotted).

Robustness towards parametric variation

To assess the robustness of the controller, parameter variations are introduced.
In particular, as a representative example we considered a variation of 20% of the
parameters of the function 𝜇1 (𝑠), by setting in (5.4) the new parameter values:

𝜇∗1 = 0.6, 𝑘𝑚,1 = 6.

We tested the same scenarios presented in the previous section with the results
showed in Figure 5.19 for 𝑟𝑑 = 2. As it is possible to appreciate from the bottom
panel, the trajectory of the system does not settle down to the setpoint. The
system instead settles at a point in the equilibrium set that is at a di�erent
quota, compared to the nominal one. This results in a steady state error that
has a norm equal to 0.1195 and gives a �nal ratio of 2.0146.

As far as the second scenario is concerned, the results of the simulations are
reported in Figure 5.20. In this case, the steady state error norm is 0.1152 and
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Figure 5.19: Closed loop evolution driven by the Gain Scheduling controller in
presence of parametric uncertainty and setpoint 𝑟𝑑 = 2. Top left: trajectories in
the phase plane; the dashed red line represents the position of the equilibrium
set E (5.10), when exists; the green line is the line that is de�ned by the desired
ratio 𝑟𝑑; the cyan star is the equilibrium where the system settles. Top right:
evolution of the control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue,
𝑥2 in red) over time and setpoint (dotted).

the �nal ratio is 0.5037.
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Figure 5.20: Closed loop evolution driven by the Gain Scheduling controller in
presence of parametric uncertainty and setpoint 𝑟𝑑 = 0.5. Top left: trajectories
in the phase plane; the dashed red line represents the position of the equilibrium
set E (5.10), when exists; the green line is the line that is de�ned by the desired
ratio 𝑟𝑑; the cyan star is the equilibrium where the system settles. Top right:
evolution of the control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue,
𝑥2 in red) over time and setpoint (dotted).
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5.5.3 Hybrid Control

In this section we move from the design of continuous control inputs to discon-
tinuous ones. In particular, we design a hybrid control strategy.

Before moving into the design phase we �rst show that a switched control
action can steer system (5.6) to the equilibrium set E (5.10) and, speci�cally, to
the desired point 𝑥𝑑 de�ned in (5.16).
Consider system (5.6) forced by the discontinuous control input:

𝐷 (𝑡) =
{
𝑑1 if 𝜎(𝑥1, 𝑥2) > 0

𝑑2 if 𝜎(𝑥1, 𝑥2) < 0

where 𝜎 is a scalar function of the state de�ned as:

𝜎(𝑥1, 𝑥2) = 𝛼𝑥1 + 𝑥2 − 𝛾,

where 𝛼 and 𝛾 are constants. The resulting closed loop system is described by
the following vector �eld:

𝐹 (𝑥1, 𝑥2) :=
{
𝐹1 (𝑥1, 𝑥2) if 𝜎(𝑥1, 𝑥2) > 0

𝐹2 (𝑥1, 𝑥2) if 𝜎(𝑥1, 𝑥2) < 0

where the two vector �elds 𝐹1 and 𝐹2 are expressions of model (5.6) being re-
spectively forced by the two constant inputs 𝑑1 and 𝑑2. So:

𝐹1 (𝑥1, 𝑥2) :=
[
(𝜇1 (𝑥1, 𝑥2) − 𝑑1)𝑥1
(𝜇2 (𝑥1, 𝑥2) − 𝑑1)𝑥2

]
, 𝐹2 (𝑥1, 𝑥2) :=

[
(𝜇1 (𝑥1, 𝑥2) − 𝑑2)𝑥1
(𝜇2 (𝑥1, 𝑥2) − 𝑑2)𝑥2

]
,

having 𝑑1, 𝑑2 > 0. The smooth �elds 𝐹1 and 𝐹2 are separated by a switching
surface Σ, de�ned as the zero-set of the scalar function 𝜎.
The existence of sliding motion onto the surface Σ can be veri�ed checking the
Lie derivatives of the function 𝜎 with respect to 𝐹1 and 𝐹2. In particular, it
must be 𝐿𝐹1

(𝜎) |𝜎=0 < 0 and 𝐿𝐹2
(𝜎) |𝜎=0 > 0. So, recalling that, when 𝜎 = 0,

𝑥2 = 𝛾 − 𝛼𝑥1, we obtain the following conditions:

𝐿𝐹1
(𝜎) |𝜎=0 = [∇𝜎 · 𝐹1] |𝜎=0 =

= [𝛼(𝜇1 (𝑥1, 𝑥2) − 𝑑1)𝑥1 + (𝜇2 (𝑥1, 𝑥2) − 𝑑1)𝑥2] |𝜎=0 < 0 ⇒
⇒ 𝛾𝑑1 > 𝛼𝜇1 (𝑥1, 𝑥2)𝑥1 + 𝜇2 (𝑥1, 𝑥2)𝑥2 = 𝛼(𝜇1 (𝑥1, 𝛼, 𝛾) − 𝜇2 (𝑥1, 𝛼, 𝛾))𝑥1 + 𝛾𝜇2 (𝑥1, 𝛼, 𝛾)

𝐿𝐹2
(𝜎) |𝜎=0 = [∇𝜎 · 𝐹2] |𝜎=0 =

= [𝛼(𝜇1 (𝑥1, 𝑥2) − 𝑑2)𝑥1 + (𝜇2 (𝑥1, 𝑥2) − 𝑑2)𝑥2] |𝜎=0 > 0 ⇒
⇒ 𝛾𝑑2 < 𝛼𝜇1 (𝑥1, 𝑥2)𝑥1 + 𝜇2 (𝑥1, 𝑥2)𝑥2 = 𝛼(𝜇1 (𝑥1, 𝛼, 𝛾) − 𝜇2 (𝑥1, 𝛼, 𝛾))𝑥1 + 𝛾𝜇2 (𝑥1, 𝛼, 𝛾)

(5.19)
Introducing the following quantity

𝑑𝑠 (𝑥1, 𝛼, 𝛾) := 𝛼(𝜇1 (𝑥1, 𝛼, 𝛾) − 𝜇2 (𝑥1, 𝛼, 𝛾))𝑥1 + 𝛾𝜇2 (𝑥1, 𝛼, 𝛾),
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the following condition must be satis�ed to have sliding on the switching surface:

𝛾𝑑2 < 𝑑𝑠 (𝑥1, 𝛼, 𝛾) < 𝛾𝑑1. (5.20)

The sliding dynamics will be governed by the sliding vector �eld 𝐹𝑠. Let us
compute this �eld with the aim of studying its equilibria. Consider the following
vector �eld as di�erence of 𝐹1 and 𝐹2

𝐹2 − 𝐹1 =

[
(𝑑1 − 𝑑2)𝑥1
(𝑑1 − 𝑑2)𝑥2

]
and the Lie derivative of 𝜎 with respect to it on the surface Σ, that is

𝐿𝐹2−𝐹1
(𝜎) |𝜎=0 = 𝛼(𝑑1 − 𝑑2)𝑥1 + (𝑑1 − 𝑑2) (𝛾 − 𝛼𝑥1) = (𝑑1 − 𝑑2)𝛾.

The sliding vector �eld 𝐹𝑠 can be computed as

𝐹𝑠 = 𝐹2 |𝜎=0 + 𝜆(𝐹2 − 𝐹1) |𝜎=0, 𝜆 = −
𝐿𝐹2

(𝜎)
𝐿𝐹2−𝐹1

(𝜎) , 𝜆 ∈ [−1, 0]

𝜆 = −𝛼(𝜇1 (𝑥1, 𝛼, 𝛾) − 𝜇2 (𝑥1, 𝛼, 𝛾))𝑥1 + 𝛾(𝜇2 (𝑥1, 𝑥2) − 𝑑2)
𝛾(𝑑1 − 𝑑2)

= −𝑑𝑠 (𝑥1, 𝛼, 𝛾) − 𝛾𝑑2
𝛾(𝑑1 − 𝑑2)

⇒ 𝐹𝑠 =

[
(𝜇1 (𝑥1, 𝑥2) − 𝑑2)𝑥1
(𝜇2 (𝑥1, 𝑥2) − 𝑑2)𝑥2

] �����
𝜎=0

+ 𝜆
[
(𝑑1 − 𝑑2)𝑥1
(𝑑1 − 𝑑2)𝑥2

] �����
𝜎=0

Finally, the sliding vector �eld 𝐹𝑠 is given by:

𝐹𝑠 =

[
(𝜇1 (𝑥1, 𝛼, 𝛾) − 𝑑𝑠 (𝑥1, 𝛼, 𝛾)𝛾−1)𝑥1

(𝜇2 (𝑥1, 𝛼, 𝛾) − 𝑑𝑠 (𝑥1, 𝛼, 𝛾)𝛾−1) (𝛾 − 𝛼𝑥1)

]
This system has four equilibrium points, namely:

1. an unstable node in (0, 0),
2. an equilibrium in (0, 𝛾),
3. an equilibrium in (−𝛾/𝛼, 0),
4. an equilibrium at the point of intersection of Σ and E (5.16) when 𝑑𝑠 (𝑥1, 𝛼, 𝛾)/𝛾 =

𝜇1 (𝑥1, 𝛼, 𝛾) = 𝜇2 (𝑥1, 𝛼, 𝛾) = 𝐷𝑒𝑞.

Therefore, using (5.20) we have a necessary condition for 𝑥𝑑 to be a pseudo-
equilibrium point of 𝐹𝑠, that is

𝛾𝑑2 < 𝛾𝐷𝑒𝑞 < 𝛾𝑑1. (5.21)

Thus, the desired point is a pseudo-equilibrium of the sliding dynamics only
if 𝛾 > 0.

By analysing the vector �eld 𝐹𝑠 in the neighbourhood of the equilibrium (0, 𝛾)
it is possible to classify the point as a stable node for 𝛾 > 𝑠𝑖𝑛 − 𝑠̃ and a saddle
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in the complementary case 𝛾 > 𝑠𝑖𝑛 − 𝑠̃. The same analysis holds for (−𝛾/𝛼, 0).
Therefore, it follows that the equilibrium point 𝑥𝑑 is stable if

0 < 𝛾 < 𝑠𝑖𝑛 − 𝑠̃.

The point 𝑥𝑑 loses its stability when 𝛾 = 𝑠𝑖𝑛 − 𝑠̃ via a degenerate transcritical
bifurcation.

�

Note that, since the sliding vector �eld vanishes only on E, setting a desired
ratio 𝑟𝑑 between the two species links the parameters 𝛼 and 𝛾 de�ning the sliding
region via the expression:

𝛼 = 𝑟𝑑 − 𝛾/𝑥1,𝑑 ,
where 𝑥𝑑,1 is the abscissa of 𝑥𝑑 as de�ned in (5.16).

Control Validation

To assess the performances of this hybrid controller, a simulation algorithm in
Stateflow was developed. Consider the following initial setup of the simulation:

� initial condition x0 = [0.6, 0.4]>;
� total simulation time 108 hours;
� 𝐷 (𝑡) can continuously vary in the range [0.05, 2], saturating to the mini-
mum or to the maximum value;

� desired ratio 𝑟𝑑 = 2 and 𝑟𝑑 = 0.5.

In the simulations, 𝛾 was chosen in order to intersect the equilibrium set E in the
desired equilibrium 𝑥𝑑 de�ned in (5.16).

The performance of the hybrid control strategy are reported in Figure 5.21
and in Figure 5.22 for two di�erent values of 𝑟𝑑.

Robustness to parameter variation

As before, we consider a variation of 20% of the parameters of the function 𝜇1 (𝑠)
in model (5.4). Speci�cally, we set:

𝜇∗1 = 0.6, 𝑘𝑚,1 = 6

and repeated same scenario presented earlier, obtaining the dynamics shown in
Figure 5.23 for the ratio 𝑟𝑑 = 2. As it is possible to appreciate from the bottom
panel, the trajectory of the system does not settle down to the setpoint. The
system settles onto a point of an equilibrium set that is at a di�erent quota,
compared to the nominal one. This results into a steady state error that, in
norm, is equal to 0.1174, with a �nal ratio of 2.0011 that guarantees a slight
regulation improvement with respect to the Gain Scheduling technique.

For the second scenario, the results of the simulations are reported in Figure
5.24. In this case, the steady state error norm is 0.1171 with a �nal ratio of
0.5001.
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Figure 5.21: Closed loop evolution of the system driven by the hybrid controller
when 𝑟𝑑 = 2, 𝑥𝑑 = [1.8922, 0.9461], 𝛼 = −0.5053, and 𝛾 = −0.10. Top left:
trajectories in the phase plane; the dashed red line represents the position of the
equilibrium set E (5.10), when exists; the green line is the line that is de�ned by
the ratio; the cyan star is the equilibrium where the system settles. Top right:
evolution of the control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue,
𝑥2 in red) over time and setpoint (dotted).

5.5.4 Advantages and Limitations

Despite the e�ectiveness of the above presented control strategies, the single
chamber bioreactor shows several limitations. It is indeed possible to regulate
the ratio only onto points of line given by (5.10), which is problematic when the
ratio is very small or very large. Indeed, in these situations, the closed loop equi-
librium will correspond to a small value of one of the two biomass concentrations
and will not be robust towards possible �ush-out events. Moreover, the regu-
lation experiments require a timescale that is quite long for a standard in vivo
experiment; over these long time periods, mutations are likely to occur leading to
the failure of the experiment. Last but not least, uncertainties of the parameters
and the growth functions � or other stochastic e�ects on the growth properties
of the living bacteria � lead to steady state errors that cannot be compensated
for, by any of the proposed control strategies.

Therefore, there is the need of alternative bioreactor layouts to overcome these
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Figure 5.22: Closed loop evolution of the system driven by the Hybrid controller
when 𝑟𝑑 = 0.5, 𝑥𝑑 = 0.9461, 1.8992, 𝛼 = −2.0106, and 𝛾 = −0.01. Top left:
trajectories in the phase plane; the dashed red line represents the position of the
equilibrium set E (5.10), when exists; the green line is the line that is de�ned by
the ratio; the cyan star is the equilibrium where the system settles. Top right:
evolution of the control input 𝐷 (𝑡). Bottom: Evolution of the state (𝑥1 in blue,
𝑥2 in red) over time and setpoint (dotted).

limitations, allowing fast and robust regulation of the di�erent biomasses.
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Figure 5.23: Closed loop evolution of the system driven by the Hybrid controller
when 𝑟𝑑 = 2, 𝑥𝑑 = [1.8922, 0.9461], 𝛼 = −0.5053, and 𝛾 = −0.10, in presence
of parametric variations. Top left: trajectories in the phase plane; the dashed
red line represents the position of the equilibrium set E (5.10), when exists; the
green line is the line that is de�ned by the ratio; the cyan star is the equilibrium
where the system settles. Top right: evolution of the control input 𝐷 (𝑡). Bottom:
Evolution of the state (𝑥1 in blue, 𝑥2 in red) over time and setpoint (dotted).

86



Chapter 5. Towards a bioreactor for Multicellular Control Experiments

0 1 2 3 4 5
0

1

2

3

4

5

[]𝑥1

𝑥
2

0 50 100
0

0.1

0.2

Time [h]

𝐷
(𝑡)

0 20 40 60 80 100 120 140
0

2

4

Time [h]

x
1
x
2

Figure 5.24: Closed loop evolution of the system driven by the Hybrid controller
when 𝑟𝑑 = 0.5, 𝑥𝑑 = 0.9461, 1.8992, 𝛼 = −2.0106, and 𝛾 = −0.01, in presence
of parametric variations. Top left: trajectories in the phase plane; the dashed
red line represents the position of the equilibrium set E (5.10), when exists; the
green line is the line that is de�ned by the ratio; the cyan star is the equilibrium
where the system settles. Top right: evolution of the control input 𝐷 (𝑡). Bottom:
Evolution of the state (𝑥1 in blue, 𝑥2 in red) over time and setpoint (dotted).
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𝑑𝐴 𝑑𝐵𝐷𝐶

𝐷𝐴𝐶 𝐷𝐵𝐶

Chamber A Chamber B

Chamber C

Figure 5.25: Sketch of the design of a bioreactor with three chambers. Chambers
A and Chamber B are "growth chambers" with a single population on the inside.
Chamber C is a mixing chambers.

5.6 Preliminary Results on a Three Chamber Bioreactor

In the remainder of this Chapter, we propose a 3-chamber bioreactor design,
together with its mathematical model and a control strategy that guarantees co-
existence of two competing bacterial species overcoming the limitations shown by
the single chamber bioreactor in the previous section. We will test the e�ective-
ness of the new layout and of the control strategy via in-silico experiments.

5.6.1 Mathematical Model

Consider the three chamber design depicted in Figure 5.25. The mathematical
model of this machine can be described by the following set of equations:



¤𝑥𝐴 = (𝜇𝐴(𝑥𝐴, 𝑠𝐴) − 𝑑𝐴(𝑡) − 𝐷𝐴𝐶 (𝑡))𝑥𝐴
¤𝑠𝐴 = −𝜇𝐴(𝑥𝐴, 𝑠𝐴)𝑥𝐴 + (𝑑𝐴(𝑡) + 𝐷𝐴𝐶 (𝑡)) (𝑠𝑖𝑛,𝐴 − 𝑠𝐴) − 𝐷𝐴𝐶 (𝑡)𝑠𝐴
¤𝑥𝐵 = (𝜇𝐵 (𝑥𝐵, 𝑠𝐵) − 𝑑𝐵 (𝑡) − 𝐷𝐵𝐶 (𝑡))𝑥𝐵
¤𝑠𝐵 = −𝜇𝐵 (𝑥𝐵, 𝑠𝐵)𝑥𝐵 + (𝑑𝐵 (𝑡) + 𝐷𝐵𝐶 (𝑡)) (𝑠𝑖𝑛,𝐵 − 𝑠𝐵) − 𝐷𝐵𝐶 (𝑡)𝑠𝐵
¤𝑥𝐴𝐶 = (𝜇𝐴(𝑥𝐴𝐶 , 𝑠𝐶 ) − 𝐷𝑡𝑜𝑡 (𝑡))𝑥𝐴𝐶 + 𝐷𝐴𝐶 (𝑡)𝑥𝐴
¤𝑥𝐵𝐶 = (𝜇𝐵 (𝑥𝐵𝐶 , 𝑠𝐶 ) − 𝐷𝑡𝑜𝑡 (𝑡))𝑥𝐵𝐶 + 𝐷𝐵𝐶 (𝑡)𝑥𝐵
¤𝑠𝐶 = −𝜇𝐴(𝑥𝐴𝐶 , 𝑠𝐶 )𝑥𝐴𝐶 − 𝜇𝐵 (𝑥𝐵𝐶 , 𝑠𝐶 )𝑥𝐵𝐶 + Δ(𝑡)

(5.22)

where

𝐷𝑡𝑜𝑡 (𝑡) = 𝐷𝐶 (𝑡) + 𝐷𝐴𝐶 (𝑡) + 𝐷𝐵𝐶 (𝑡)
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and

Δ(𝑡) = 𝐷𝐶 (𝑡) (𝑠𝑖𝑛,𝐶 − 𝑠𝐶 ) + 𝐷𝐴𝐶 (𝑡) (𝑠𝐴 − 𝑠𝐶 ) + 𝐷𝐵𝐶 (𝑡) (𝑠𝐵 − 𝑠𝐶 )

In the above equations, 𝑥𝐴, 𝑠𝐴 are respectively the concentrations of biomass
and substrate in the growth chamber A; analogously 𝑥𝐵, 𝑠𝐵 are biomass and
substrate concentration in the growth chamber B. 𝑥𝐴𝐶 , 𝑥𝐵𝐶 , 𝑠𝐶 are the concen-
trations of bio-masses (of the species A and B) and the substrate concentration
in the mixed chamber C, where the experiment takes place. The generic growth
rate function 𝜇(·) depends on biomass and substrate values. The terms 𝑠𝑖𝑛,𝐴,
𝑠𝑖𝑛,𝐵 and 𝑠𝑖𝑛,𝐶 represent the concentrations of substrate in the bottles that feed
respectively the chambers A, B and C. The term 𝑑𝐴(𝑡) + 𝐷𝐴𝐶 (𝑡) is the growth
chamber A dilution rate, while 𝑑𝐵 (𝑡) + 𝐷𝐵𝐶 (𝑡) is the analogous for the chamber
B; 𝐷𝐶 (𝑡) is the dilution rate of the mixed chamber, coming from a bottle of sub-
strate with no biomass; 𝐷𝐴𝐶 (𝑡) and 𝐷𝐵𝐶 (𝑡) are the ratios between �ows coming
from the growth chambers A and B and the total volume of the mixed chamber.

In the derivation of the model, the following assumptions have been made:

A1. Well Stirred Reactors - The content of each chamber is assumed to be in
a completely mixed condition: the composition of the medium is homoge-
neous in the reactor. Spatial e�ects of di�usion are neglected. The Reactor
is assumed to work under continuous substrate feeding and constant work-
ing volume.

A2. The dynamical behaviour of the growth of one population of microorgan-
isms depends on a single limiting substrate in a stirred tank reactor.

A3. The biomass growth and the substrate consumption terms relative to a cer-
tain species are proportional to the biomass concentrations 𝑥𝑖
(𝑖 = 𝐴, 𝐵, 𝐴𝐶, 𝐵𝐶) of the same species.

A4. The decay term of the biomass is neglected. Death occurs when cells are
�ushed out because of dilution.

A5. The growth rates 𝜇 · depend on the species concentration and the substrate
in the same chamber. Other factors that may in�uence the growth are ne-
glected.
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A6. The three chambers have the same working volume, so that the proportion-
ality factor between the dilution rates is 1.

A7. The three chambers are fed by the same bottle of media, so that the con-
centration of substrate coming from it is the same. In particular, 𝑠𝑖𝑛,𝐴 =

𝑠𝑖𝑛,𝐵 = 𝑠𝑖𝑛,𝐶 = 𝑠𝑖𝑛.

A8. The total dilution rate of the mixed chamber is the sum of three terms,
as in the above equation. 𝐷𝐶 is referred to a �ow coming from a bottle
of media with no biomass and substrate concentration 𝑠𝑖𝑛; 𝐷𝐴𝐶 is referred
to the �ow coming from the growth chamber A, having concentration of
biomass equal to 𝑥𝐴 and concentration of substrate equal to 𝑠𝐴; 𝐷𝐵𝐶 is re-
ferred to the �ow coming from the growth chamber B, having concentration
of biomass equal to 𝑥𝐵 and concentration of substrate equal to 𝑠𝐵.

A9. The out�ow that goes from the growth chambers to the mixed one is re-
placed by fresh media, to keep the volume constant. So there is an ad-
ditional term of substrate addition 𝐷 (𝑠𝑖𝑛 − 𝑠𝑖), 𝑖 = {𝐴, 𝐵} in the growth
chambers equations.

5.6.2 Control Problem

Analogously to the Single-Chamber design, it is possible to de�ne a subdomain B
as a domain where the same robustness constraints are solved. Therefore, since
the experiment happens in the chamber C,

B := {𝜒𝑖 : 𝜒𝑖,𝑚𝑖𝑛 < 𝜒𝑖 < 𝜒𝑖,𝑚𝑎𝑥 , 𝜒𝑖 = {𝑥𝐴𝐶 , 𝑥𝐵𝐶 , 𝑠𝐶 }}.

Given the vector of inputs 𝐷 (𝑡) = [𝑑𝐴(𝑡), 𝑑𝐵 (𝑡), 𝐷𝐴𝐶 (𝑡), 𝐷𝐵𝐶 (𝑡), 𝐷𝐶 (𝑡)], design
a feedback control law 𝐷 (𝑥(𝑡)) : R7+ → R5+ such that the domain B is forward
invariant for the system (5.22) and

lim
𝑡→∞

𝑥𝐴𝐶 (𝑡)
𝑥𝐵𝐶 (𝑡)

= 𝑟𝑑 .
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Control Design

To deal with the problem formulated above, we designed a controller made up of
di�erent actions. Here we de�ne the error on the ratio as

𝑒𝑟 (𝑡) = 𝑟𝑑 − 𝑥𝐴𝐶 (𝑡)
𝑥𝐵𝐶 (𝑡)

.

To regulate the ratio in the mixed chamber, we tuned two PI controllers to
regulate the inputs 𝐷𝐴𝐶 and 𝐷𝐵𝐶 as:{

𝐷𝐴𝐶 (𝑡) = 𝑘𝑃,𝐴𝐶𝑒𝑟 (𝑡) + 𝑘 𝐼 ,𝐴𝐶
∫ 𝑡

0
𝑒𝑟 (𝜏)𝑑𝜏

𝐷𝐵𝐶 (𝑡) = 𝑘𝑃,𝐵𝐶𝑒𝑟 (𝑡) + 𝑘 𝐼 ,𝐵𝐶
∫ 𝑡

0
𝑒𝑟 (𝜏)𝑑𝜏.

(5.23)

To avoid low values of the substrate in the mixed chamber, we regulated the
other input, 𝐷𝐶 , as

𝐷𝐶 (𝑡) = 𝑘𝑠 ( 𝑠̄𝑚 − 𝑠𝑚 (𝑡)), (5.24)

where 𝑠̄𝑚 is a threshold value and the input 𝐷𝐶 ∈ [0, 𝐷𝐶,max].
Two PI controllers regulate the additional dilution rates 𝑑𝐴 and 𝑑𝐵 as:{

𝑑𝐴(𝑡) = 𝑘𝑃,𝐴(𝑠𝐴(𝑡) − 𝑠̄𝐴) + 𝑘 𝐼 ,𝐴
∫ 𝑡

0
(𝑠𝐴(𝜏) − 𝑠̄𝐴)𝑑𝜏

𝑑𝐵 (𝑡) = 𝑘𝑃,𝐵 (𝑠𝐵 (𝑡) − 𝑠̄𝐵) + 𝑘 𝐼 ,𝐵
∫ 𝑡

0
(𝑠𝐵 (𝜏) − 𝑠̄𝐵)𝑑𝜏,

(5.25)

where 𝑠̄𝐴 and 𝑠̄𝐵 are two �xed values of the substrate in the growth chamber.
This is done to guarantee a su�ciently high growth rates of the two species,
minimizing the risk of biomass �ush-out from the growth chambers.

5.6.3 In-Silico Experiments

We conducted in-silico experiments to assess the performance of the proposed
control strategy. The initial conditions of the system were as follows:

� 𝑥𝐴 = 3, 𝑠𝐴 = 2,
� 𝑥𝐵 = 3, 𝑠𝐵 = 2,
� 𝑥𝐴𝐶 = 1, 𝑥𝐵𝐶 = 3, 𝑠𝐶 = 1.

In the following experiments, we empirically tuned the controllers gains to be:

� The PI gains for the inputs 𝐷𝐴𝐶 and 𝐷𝐵𝐶 in equation (5.23) are 𝑘𝑃,𝐴𝐶 = 3,
𝑘 𝐼 ,𝐴𝐶 = 0.1, 𝑘𝑃,𝐵𝐶 = −3, 𝑘 𝐼 ,𝐵𝐶 = −0.1;

� The gain chamber C substrate controller de�ned in (5.24) is 𝑘𝑠 = 0.5, with
𝑠̄𝑚 = 1 and the saturation value 𝐷𝐶,max = 1;

� The PI gains for the inputs 𝑑𝐴 and 𝑑𝐵 in equation (5.25) are 𝑘𝑃,𝐴 = 1,
𝑘 𝐼 ,𝐴 = 0.01, 𝑘𝑃,𝐵 = 1, 𝑘 𝐼 ,𝐵 = 0.01, with 𝑠̄𝐴 = 𝑠̄𝐵 = 2.

The duration of the control experiments have been set to 24 hours. In the �rst
experiment, the desired ratio in the mixed chamber is 𝑟𝑑 = 2. Numerical results
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are shown in Figure 5.26. In this case, the ratio becomes equal to the setpoint
after approximately 3 hours.

The second experiment sets the desired ratio in the mixed chamber to 𝑟𝑑 = 0.5.
Numerical results are shown in Figure 5.27. Also in this case, the ratio becomes
equal to the setpoint after approximately 4 hours.
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Figure 5.26: Numerical results of the control strategy. Each panel shows the
evolution over time of the quantities reported in legends.
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Figure 5.27: Numerical results of the control strategy. Each panel shows the
evolution over time of the quantities reported in legends.
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Robustness to parameter variation

Being controlled by PI controllers with no information about the model of the
plant, any variation in the parameters of the growth functions do not re�ect in
any change of the closed loop equilibrium. We repeated the simulations presented
in the previous section, under the same perturbations considered for the previous
layout. In both cases, 𝑟𝑑 = 2 reported in Figure 5.28 and 𝑟𝑑 = 0.5 reported in
Figure 5.29, the error on the ratio goes to 0, assuring perfect regulation.

5.7 Discussion

In this Chapter, after motivating the importance of designing a control strategy
for a bioreactor such that two cell populations can coexist in a stable manner, we
presented and analysed two possible designs for multicellular bioreactors. The
�rst design presented can exhibit long timescales of the experiments, that span
the range of days, and lack of robustness towards parameter variations. The sec-
ond multi-chamber design, conversely, has a more complex structure that guar-
antees the satisfaction of the control problem with ease. A strategy based on
PI controllers has been numerically shown to be e�ective to regulate of the ratio
between the two populations. Further improvements can involve a more precise
tuning of the control gains and the study of alternative control strategies.
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Figure 5.28: Numerical results of the control strategy. Each panel shows the
evolution over time of the quantities reported in legends.
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Figure 5.29: Numerical results of the control strategy. Each panel shows the
evolution over time of the quantities reported in legends.
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6 Conclusions

In this thesis, we explored di�erent strategies for the analysis and control of
bacterial populations.

In the �rst part of the thesis we addressed the challenging problem of balanc-
ing a genetic toggle switch in the surroundings of its unstable equilibrium point
via external (in silico) control actions. We presented two closed-loop feedback
strategies, PIPWM and MPC, for the regulation of the features of mutually ex-
clusive pulse wave inputs. We showed that both the strategies are e�ective and
satisfy the control goal, even in the presence of hard non-linearities introduced
by the cell membrane, validating the results via agent-based simulations in BSim
[55]. Then, we compared the two proposed strategies with an Open-Loop control
that has been proved to be e�ective in the stabilization of a population during in
vivo experiments. By evaluating some aggregate control indexes, we quanti�ed
the performance improvement that justify the adoption of closed-loop strategies.

An open problem concerns the implementation of these strategies in vivo.
From our in silico experiments, it follows that, in general, MPC leads to better
regulation than using PIPWM, however PIPWM has a simpler implementation
and a lower computational load. Indeed, the implementation of the MPC con-
troller requires the solution of an optimization problem via a genetic algorithm,
requiring the algorithm to be run on a high-end computer to avoid excessive
delays in the control loop. Conversely, the PIPWM requires light-weighted alge-
braic computations that can be performed by cheaper microcontrollers, signi�-
cantly simplifying the architecture of devices required to implement the control
strategies.

In the second part of the thesis, we moved from the problem of achieving the
phenotypic control of a cell population to the problem of controlling its growth.
We proposed an open-source, modular and versatile turbidostat that can be easily
assembled. The device we designed can be built with a very small budget of less
than $200, assuming access to free 3D printing services. Although the presented
design is very basic, its Arduino-based structure is very �exible and allows new
functionalities to be easily added, such as the actuation of LEDs for optogenetics
experiments or the insertion of a simple �uorescence measurement circuit.

Then, we analysed the problem of controlling the ratio of two cell popula-
tions in a chemostat to guarantee their coexistence. The motivation behind this
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comes from the idea of adapting the turbidostat we designed to host multicellular
in vivo experiments, with two competing populations fed by the same limiting
nutrient source in the same environment. We described the rich dynamics that
the system can show and we addressed the problem of designing control strate-
gies that guarantee species survival while regulating their ratio. Our in silico
experiments, however, showed some peculiar aspects of this simple solution that
limit the control performance, leading to long and unsustainable settling times
and poor rejection of model uncertainties. Therefore, in Chapter 5 we presented
a new 3-chambers layout that can overcome the above issues. Under some re-
alistic assumptions, we derived a mathematical model for this architecture and
designed a simple MIMO control strategy that is capable of guaranteeing species
survival in the experimental chamber, while perfectly regulating the ratio of the
two populations.

The evaluation of the concentration of two species mixed in the same chamber
is, probably, the most interesting problem to be faced during the implementation
of the presented 3-chambers design. Theoretically, the turbidostat designed in
Chapter 4 could be extended and rearranged to implement this design, using
peristaltic pumps to deliver �ow from the growth chambers to the mixing one.
However, the above mentioned problem still undermine its realization. Further
studies could be aimed at solving this practical problems. A possible solution
could be that of bonding di�erent �uorescence proteins to the two populations and
designing e�ective �uorescence measurement circuits to perform the measures.
However, we believe that the presented 3-chambers layout is a valuable solution
to perform large-scale multicellular in vivo control experiments.
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A Further Details about the

Turbidostat Design

Part List

The list of all the parts needed to assemble the turbidostat discussed in Chapter
4 is reported in Table A.1. The list does not include other necessary parts such
as connection jumpers, connection pins, screws and glue that can be commonly
found in each workshop.

3D printable parts can be found at https://github.com/diBernardoGroup/
Turbidostat/tree/master/3D%20Printed%20Parts/STL%20files

Electronics

In this section we report the electronics diagrams of the prototype of turbidostat
we assembled. Figure A.1 shows a sketch of how each module is connected to the
main Arduino board. Figure A.2 shows in details the connections between the
functional modules that compose the electronic diagram.
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Q.ty Name Description

1 Arduino Mega 2560 Rev3 Main control Board
1 9V Power supply Main board power supply
1 Adafruit Motor Shield v3 Motor Driver Board
1 12V Power supply Motor driver board power supply
1 Silent acquarium pump Air Pump
1 OSRAM SHF 4544 LED at 950nm
1 Vishay Semi-conductors BP104 Photodiode with 950nm pin-hole �lter
1 220Ω Resistor Used in the optical circuit
1 10𝑘Ω Potentiometer Tunable resistor for the calibration
1 6-wire Stepper Motor To drive the peristaltic pump
2 Standard Servo (180°) To drive syringe pump and pinch valve
1 Set of Plastic Gears For syringe pump and pinch valve
1 DC Motor To stir the solution
2 Magnets N50 To mount on the stirring support
1 Magnetic stirring pill To place in the chamber for stirring
1 I2C 20x4 LCD module LCD display
1 4×4 Membrane Keypad Keypad
1 DS3231 RTC module Real-time clock module
1 SPI SD card shield SD card module
1 Clear-glass Test Tube Chamber of the device
1 Rubber lid for test tubes To close the chamber
3 14 Gauge Needles To insert in the rubber lid
3 Luer Connectors To connects tubes to needles

Plastic tubes for hydraulic connections

Table A.1: Part List
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Figure A.1: Sketch of the connections of the modules that compose the turbido-
stat.
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Figure A.2: Electrical connection diagram of the turbidostat we proposed.
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Figure A.3: Calibration of the OD reading. Black dots represent the value of
the voltage against the OD for 5 di�erent samples. Dotted line is a 2nd order
polynomial obtained from data �tting.

OD600 Mean Voltage [V] 𝜎2

0.05 4.50 0.0024
0.11 4.05 0.0217
0.21 3.60 0.0077
0.28 3.28 0.0054
0.39 2.93 0.0071

Table A.3: OD calibration Table

Calibration of the optical density measure circuit

Calibration experiments were conducted to reconstruct the relationship between
voltage and optical density. In particular, 25 voltage measurements of 5 di�erent
samples (whose OD was measured independently using a spectrophotometer -
WPA CO 8000 Cell Density Meter) were performed. The test samples, together
with the results of the experiment, are reported in Table A.3. A 2nd-order
polynomial was used to interpolate the data points and obtain the voltage-OD
relationship; the result is reported in Figure A.3. To validate the interpolated
curve, the mean OD readings of the turbidostat were compared to those measured
by the spectrophotometer for samples with ODs di�erent from those used for
calibration. The results are reported in Table A.4 con�rming that the calibration
is extremely precise for OD600nm values between 0.05-0.2, which is the range the
turbidostat we designed typically work within.

The conversion formula we �tted is a 2𝑛𝑑 order polynomial curve whose pa-
rameters are 𝑎0 ≈ 1.88, 𝑎1 ≈ −3.43 · 10−3, 𝑎2 ≈ 1.56 · 10−6.
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OD600 Mean Read OD Mean Reading [V]
0.07 0.0597 4.40
0.12 0.1053 4.09
0.15 0.1366 3.92
0.26 0.3174 3.16
0.37 0.4522 2.73

Table A.4: OD Validation Table
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