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Abstract 

 

Background | The ever-growing interest towards noncoding cis-regulatory 

variants as cancer drivers is currently hampered by numerous challenges and 

limitations of variant prioritization and interpretation methods and tools. 

Methods | To overcome these limitations, I focused on active cis regulatory 

elements (aCREs) to design a customized panel for deep sequencing of 56 

neuroblastoma tumor and normal DNA sample pairs. CREs were defined by a 

reanalysis of H3K27ac ChiP-seq peaks of 25 neuroblastoma cell lines. aCREs 

were further identified by the presence of open chromatin as defined by DNase 

Hypersensitivity sites. This provided a small subset of genomic regions with 

evident regulatory functions in which to search for driver mutations. I tested 

these regions for an excess of somatic mutations and assessed the statistical 

significance with a global approach accounting for chromatin accessibility and 

replication timing. Additional validation was provided by analyzing whole 

genome sequences of 151 neuroblastomas. For the mutated regions, I 

determined their candidate target genes through HiC data analysis. 

Results | I identified a significant excess of somatic mutations in aCREs of 

diverse genes including IPO7, HAND2, and ARID3A. A gene expression 

signature built on basis of these three, and nearby, interacting genes strongly 

correlated with negative prognostic markers and low survival rates of patients 

affected by neuroblastoma. Moreover, I observed a convergence of biological 

functions of the target genes of mutated aCREs and transcription factors with 

binding motifs altered by mutations towards processes related to embryonic 

development and immune system response. 

Conclusion | My strategy led me to identify somatic mutations in regulatory 

elements that collectively can drive neuroblastoma onset. 
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1. Background 

 

 

1.1 Regulatory somatic variants as cancer drivers 

The advent of Next Generation Sequencing (NGS) has revolutionized many 

areas of research including cancer genomics. To date, hundreds of samples 

could be rapidly sequenced and thousands of mutations could be quickly 

analyzed. However, as most high throughput sequencing studies of cancer 

relied on the Whole Exome Sequencing (WES) and focused mainly on the 

protein-coding part of the genome (1% to 2%), only the contribution of coding 

mutations to oncogenesis has been largely clarified. The remaining 98% of the 

genome is still unexplored. Recently, wide international efforts have shed light 

on the characteristics of the non-coding genome. Through Chromatin 

Immunoprecipitation Sequencing (ChIP-Seq) and DNase Hypersensitive Sites 

(DHS) assays, to date, we have better knowledge of where transcription factors 

bind to DNA and where chromatin is open (or closed). In this regard, public 

data from large epigenomic projects such as ENCODE [1], as well as those 

from smaller projects, have become an essential source of information for 

researchers. 

Nevertheless, the role of somatic mutations in regulatory regions (i.e. TFBSs 

and cis-regulatory elements) remains underestimated. However, in recent 

years, there is growing interest in the study of noncoding variants as drivers of 

carcinogenesis. The most recent literature clearly demonstrates that altered 

transcriptional regulatory circuits play relevant roles in cancer development 

[2]. For instance, a re-analysis of sequencing data from 493 tumors found 

somatic mutations in TFBSs under positive selection, consistent with the fact 

that these loci regulate important cancer cell functions [3]. Another recent 

study has demonstrated that noncoding mutations can affect the gene 

expression of target genes in a large number of tumors [4]. Furthermore, 

noncoding single nucleotide variants (SNVs) in the promoters of TERT, 
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FOXA1, PLEKHS1, WDR74 and SDHD [5-7] and in a cis-regulatory element 

of ETV1 [8] have been identified as cancer drivers. 

By analyzing the whole genome sequences of 151 neuroblastoma primary 

tumors, with my group, I have recently demonstrated that somatic SNVs do not 

occur randomly across noncoding regulatory regions but rather target TFBSs of 

a specific set of tumorigenic transcription factors (TFs) suggesting that 

combining mutations within a set of regulatory regions act in network to drive 

cancer initiation [9]. 

So far, no other study has investigated the pathogenic implications of 

noncoding SNVs in neuroblastoma. 

 

 

1.2 Somatic variants in cis-regulatory elements 

Despite the above-mentioned recent advances, it remains a challenge to 

identify noncoding cancer driver mutations and assess the pathogenic 

repercussions of these variants in cancer development. A common approach to 

prioritize somatic noncoding SNVs is to determine genomic regions with high 

mutation frequency across different cancer samples. However, distinguishing 

driver from passenger noncoding mutations is challenging since mutation rates 

can be affected from replication timing [10] and chromatin conformation [11]. 

Moreover, other factors such as the complexity of the human genome, the need 

of large cohorts to recruit and the thousands of somatic mutations to analyze, 

do diminish the chances to obtain significant results after correcting for 

multiple hypothesis testing. In this regard, cis-regulatory elements (CREs) 

might represent a highly enriched subset of the regulatory regions of the 

genome in which to search for such mutations (Figure 1). Another advantage 

of focusing the analyses on CREs is that they are characterized by a peculiar 

mutation rate that is lower with respect to other genomic regions [7,8]. Thus, 

analyses of CREs may reduce the risk of obtaining false negative or positive 

results. 
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In the last years, the deep sequencing, usually exploited to study the coding 

DNA, has made a huge contribution to better understand the complex picture 

of genetic variation in cancer. Indeed, now we know that a compendium of rare 

subclones of coding variants exist in human tumors that can be responsible for 

drug resistance, invasion, metastasis, and relapse [12]. 

However, only few studies have used the targeted deep sequencing (TD-Seq) 

approach to search for somatic mutations in CREs. For instance, a recent work 

on breast cancer reported recurrent mutations in the promoter of the cancer 

driver gene FOXA1 by deep sequencing of regulatory elements [6]. 

Therefore, in view of the above observations, I feel that focusing on CREs and 

using TD-Seq might overcome the limitations of noncoding driver analysis and 

could lead to the identification of recurrently mutated regions regulating genes 

involved in tumorigenesis. 

 

 
Figure 1 | Cis-regulatory element. Schematic representation of somatic 
mutations (in red) in cis-regulatory element (in yellow) and its coding sequence 
(in blue). 
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1.3 Neuroblastoma 

Neuroblastoma is an early childhood tumor. It is the most common malignancy 

diagnosed in children during their first year of life. It counts 25-50 cases per 

million individuals [13]. The 90% of nauroblastomas are diagnosed in children 

less then 10 years old. Its median age of diagnosis is of 18 months [14]. 

This neuroendocrine tumor arises during the embryonal development of the 

Sympathetic Nervous System (SNS), which originates from the neural crest. 

During development, the neural crest gives rise to several cell types including 

peripheral neurons, enteric neurons, glia, melanocytes, Schwann cells, cells of 

the craniofacial skeleton and adrenal medulla [15] (Figure 2). As a result, 

neuroblastoma can arise at various anatomical sites along the SNS. 

 

 
Figure 2 | Cells of origin of neuroblastoma. Adapted from Matthay, KK. et 
al. (2016) [16]. 
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Nevertheless, in the majority of cases it affects the adrenal glands and the 

sympathetic ganglia (Figure 3) [16]. 

The pathologic classification of neuroblastoma is based on the differentiation 

grade of its cells; the lower the differentiation, the higher the aggressiveness. It 

shows high biologic (and genetic) heterogeneity and a wide range of clinical 

behaviors. Despite being among the most lethal childhood cancers, it is 

associated with one of the highest proportions of spontaneous and complete 

regression of all human cancers [17,18]. 

 

 
Figure 3 | Anatomical sites of neuroblastoma tumors. Adapted from 
American Society of Clinical Oncology 2005, cancer.net. 
 

 

1.3.1 Staging and stratification 

Diagnosis and staging criteria are based on the International Neuroblastoma 

Staging System (INSS), first published in 1988 (Figure 4). INSS staging has 

been used for more than 20 years. It is based on the localization of the primary 

tumor and on the possibility to eradicate it through surgery and/or therapy 
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approaches. The INSS system, together with the age at diagnosis, allowed 

physicians to determine patient’s risk and to plan treatment strategies [19]. 

Children older than 18 months with Stage 4 (metastatic disease) are at high risk 

for death from refractory disease. In contrast, infants younger than 12 months 

with localized tumors (Stages 1-2) are effectively cured, often without 

cytotoxic therapies. 

 

 
Figure 4 | INSS stages. The international neuroblastoma staging system 
(INSS). 
 

More recently, in 2009, the International Neuroblastoma Risk Group (INRG) 

elaborated an updated Staging System including INSS Stage, age at diagnosis, 

histology, tumor grade, MYCN status, 11q alteration status, and DNA ploidy 

[19]. Based on this system, neuroblastoma patients can be stratified in risk 

Localized tumor with complete gross excision, with or without
microscopic residual disease; representative ipsilateral lymph
nodes negative for tumor microscopically.

Localized tumor with incomplete gross excision; 
representative ipsilateral nonadherent lymph nodes negative 
for tumor microscopy.

Localized tumor with or without complete gross excision, with 
ipsilateral nonadherent lymph nodes positive for tumor. 
Enlarged contralateral lymph nodes must be negative 
microscopically.

Unresectable unilateral tumor infiltrating across the midline, 
with or without regional lymph node involvement; or localized
unilateral tumor with contralateral regional lymph node
involvement; or midline tumor with bilateral extension by 
infiltration (unresectable) or by lymph node involvement. The 
midline is defined as the vertebral column.

Any primary tumor with dissemination to distant lymph nodes, 
bone, bone marrow, liver, skin, and/or other organs, except as
defined for stage 4S.

Localized primary tumor, as defined for stage 1, 2A, or 2B, 
with dissemination limited to skin, liver, and/or bone marrow
in infants younger than 12 months.

Stage 1

Stage 2A

Stage 2B

Stage 3

Stage 4

Stage 4S
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groups (very low, low, intermediate, and high-risk) on the basis of 5 years 

survival probabilities (Figure 5). 

The overall 5-year survival rate in high-risk patients is lower than 40%, despite 

decades of considerable international efforts to improve the outcome [20]. 

 

 
Figure 5 | INRG classification. International Neuroblastoma Risk Group 
classification system. 
 

 

1.3.2 Genetic Predisposition to neuroblastoma 

Several germline mutations have been associated with a genetic predisposition 

to neuroblastoma, including mutations in ALK (Anaplastic Lymphoma Kinase) 

[21] and PHOX2B (Paired Like Homeobox 2B; Neuroblastoma Phox) [22]. 

The primary cause of familial neuroblastoma (about 1% - 2% of patients with 

neuroblastoma) is a germline mutation in the ALK gene (about 75% of familial 

cases) [21]. Further, also sporadic neuroblastoma shows a germline 

contribution, either with modest effect sizes for common polymorphic alleles 

or with greater effect sizes for rare pathogenic variants. As an example of the 



 
 

10 

latter, rare germline variants of BARD1 have been identified in children with 

high-risk neuroblastoma [23]. 

Recent studies have shown that disease-associated genomic variation is 

commonly located in regulatory elements in the human population [24]. Our 

genome-wide association studies (GWASs) on DNA from peripheral blood 

have revealed that many neuroblastoma susceptibility variants, lie in 

noncoding regions of the genome [25]. Functional investigations have shown 

that the cancer genes LMO1 [26], BARD1 [27,28], LIN28B [29], SLC16A1 [30] 

whose expression is affected by such risk variants, play a role in neuroblastoma 

tumorigenesis. 

 

 

1.3.3 Genomic features of neuroblastoma 

Neuroblastoma genomes are shaped by large chromosomal aberrations, low 

rates of exonic mutations and genomic alterations promoting telomere 

maintenance. 

In young children, MYCN amplification (defined as more than 10 copies per 

diploid genome) is one of the most common segmental chromosomal 

aberrations. Moreover, other chromosome arm level alterations such as 

deletion of 1q (30%) and 11q (45%) and unbalanced gain of 17q (60%) are 

reported as poor prognostic features [31]. In a recent work, with my research 

group, I demonstrated that children older than 6 years present unique structural 

variants with 19p loss and 1q gain among those more recurrent [32]. 

Recently, we and others highlighted that recurrent somatic coding mutations 

are infrequent in primary neuroblastoma with activating mutations in ALK and 

inactivating mutations in ATRX as the most frequently reported [33-35]. 

Moreover, rearrangements activating TERT locus [36] and mutations affecting 

genes in RAS and TP53 pathways occur in high-risk neuroblastoma [37]. 
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Together, these studies suggest that an increased understanding of genomic 

alterations of neuroblastoma could impact patient prognosis and response to 

therapies. Detailed genomic information leading to new drug targets is also the 

starting point to develop more effective and less toxic treatments [38]. 
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2. Aim 

Decades of international efforts have clarified the contribution of both 

germline and somatic coding mutations to neuroblastoma genesis. As most 

high throughput sequencing studies of cancer focused mainly on the protein-

coding part of the genome, little is known about the impact of somatic 

mutations in noncoding DNA. Furthermore, the growing interest towards 

noncoding cis-regulatory variants as cancer drivers is currently hampered by 

numerous challenges and limitations of variant prioritization and interpretation 

methods and tools. So far, no study has investigated the pathogenic 

implications of noncoding SNVs in neuroblastoma.  

 

I conducted this study with the hypothesis that mutated active regulatory 

elements could de-regulate genes involved in the tumorigenesis of 

neuroblastoma. In view of the above observations, I focused on CREs and 

exploited the TD-Seq approach to overcome the limitations of noncoding 

driver analysis. 

 

The main aim of this study was to identify somatic mutations in CREs involved 

in the genesis of neuroblastoma. 

 

With this aim, I set up an alternative method to identify regulatory driver 

mutations in neuroblastoma. First, I defined the CREs in neuroblastoma by an 

analysis of H3K27ac ChIP-seq peaks shared among 25 neuroblastoma cell 

lines. Then, I used this set of CREs as a target to perform TD-Seq of 56 

neuroblastomas and normal DNA sample pairs. Then, I tested these regions for 

an excess of somatic mutations using a global approach accounting for 

replication timing. Then, I validated the mutated CREs in whole genome 

sequencing data from 151 neuroblastomas. Finally, I verified if the somatic 

mutations significantly enriched in CREs can collectively affect specific 

biological processes. 
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3. Methods 

 

3.1 Analysis of public ChIP-Seq data and sequencing target selection 

H3K27ac Chromatin Immunoprecipitation Sequencing (ChIP-Seq) data of 

neuroblastoma cell lines, deposited in NCBI Gene Expression Omnibus (GEO) 

with accession GSE90683 [39], were downloaded and re-analysed as described 

in [30]. As reported by Boeva et al. [39], the landscape of super-enhancers in 

neuroblastoma cell lines could delineate 3 groups of cell lines with distinct 

characteristics. The first group, with a sympathetic noradrenergic identity, 

counted 18 cell lines. The second, with an NCC-like identity, included 3 cell 

lines. The third counted 4 cell lines of a mixed type. To select the target of my 

sequencing panel, I used the BEDTools suite [40] and proceeded as follows. 

First, I reduced the size of peaks larger than 1100 bp to the 80% of their length 

(40% up- and down-stream). Second, I obtained the intersections of H3K27ac 

peaks. Here, if one common region was shorter than 301 bp, I extended it up to 

301 bp. Finally, I merged overlapping, book-ended and close regions (up to 

100 bp) to get the final set of intervals (N = 13,667; Target length = 

9,804,818). 

 

3.2 Samples collection 

Neuroblastoma tumor DNA (primary tumors) and matched germline DNA 

(from peripheral blood) were obtained from Istituto di Ricerca Pediatrica, 

Padova, Italy and Hospital Sant Joan de Déu, (Barcelona, Spain). Primary 

tumor samples were verified to have > 75% viable tumor cell content by 

histopathology assessment. This study was approved by the Ethics Committee 

of the University of Naples Federico II. 

 

3.3 DNA extraction from peripheral blood and primary tumor tissues 

DNA from peripheral blood (PB) was extracted with QIAamp DNA mini kit 

(QIAGEN) according to manufacturer’s instructions. DNA from primary tumor 
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tissues was extracted with MasterPure DNA purification kit (Epicentre) 

according to manufacturer’s protocol. 

 

3.4 DNA quantification and library preparation for sequencing 

DNA quality was monitored on 1% agarose gels. Its purity was checked using 

the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA). DNA 

concentration was measured using Qubit® DNA Assay Kit in Qubit® 2.0 

Flurometer (Life Technologies, CA, USA). A total of 1.0μg of DNA per 

sample was used as input material for library preparation. Sequencing libraries 

were generated using Truseq Nano DNA HT Sample Preparation Kit (Illumina 

USA) following manufacturer's recommendations. Genomic DNA was 

sonicated to a size of 350bp, and then fragments were end-polished, A-tailed, 

and ligated with the full-length adapter for Illumina sequencing with further 

PCR amplification. At last, PCR products were purified (AMPure XP system) 

and libraries were analyzed for size distribution using the DNA Nano 6000 

Assay Kit of Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, 

USA) and quantified using real-time PCR. 

 

3.5 Detection of somatic mutations 

TD-Seq of 56 normal-primary neuroblastoma sample pairs was performed on 

an Illumina HiSeq1500 platform. The sequencing produced paired-end reads of 

150bp. Mapping BAM files were obtained with BWA and SAMTools [41,42] 

by aligning the reads versus the GRCh37/hg19 reference genome assembly. 

Somatic SNVs and small insertions and deletions (INDELs) were detected with 

MuTect [43] and Strelka [44], respectively. The functional annotation of 

somatic variants was performed with ANNOVAR [45] and FunSeq2 [46]. 

 

3.6 Filtering of somatic mutations 

From raw somatic mutation calls, I first discarded those that did not pass the 

variant callers (MuTect or Strelka) quality filters. To remove possible false 
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positives, I eliminated somatic mutations falling in genomic duplicated regions. 

I filtered out common polymorphisms (minor allele frequency > 1%) by using 

allele frequencies of non-Finnish European populations in 1000 Genomes 

Project, ExAC and gnomAD databases. I removed off-target mutations. 

Finally, I retained for downstream analyzes only somatic SNVs falling in 

DNase Hypersensitive Sites (DHS) of the SK-N-SH neuroblastoma cell line 

(ENCODE v3) as the DNA regions characterized by H3K27ac and DHS signal 

peaks are considered as transcriptionally active CREs (aCREs). 

 

3.7 Mutational enrichment in active CREs 

After applying stringent quality controls and filtering of somatic variants, the 

selected SNVs/INDELs were analyzed to distinguish driver ones from 

passengers using a global approach as previously described [7,8]. In brief, with 

this approach, I searched for an excess of noncoding mutations in aCREs by 

assuming that the observed number of tumor samples mutated in any specific 

region, follows a binomial distribution. This is dependent on the background 

mutation frequency that, in turn, depends on the effective length of the region 

and other genomic characteristics, such as the replication timing and the 

chromatin accessibility. Indeed, the significantly mutated aCREs were 

identified, by accounting for these factors, as follows. 

I assumed that the observed number of tumor samples mutated in any specific 

region followed a binomial distribution, binomial (n,pi), where n is the total 

number of samples with mutation data and pi is the estimated sample mutation 

rate for region of interest i under the null hypothesis that the region is not 

recurrently mutated. I therefore computed the following P value: 

 

𝑃(𝑋 ≥ 𝑘) = 1 − 𝑃(𝑋 < 𝑘) = 1 −∑(
𝑛
𝑗)

𝑘−1

𝑗=0

𝑝𝑖
𝑗(1 − 𝑝𝑖)𝑛−𝑗 
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I also assumed that pi depended on the effective length Li of the region and the 

estimated nucleotide mutation rate qi for the region under the null hypothesis as 

follows: 

 

𝑝𝑖~1 − (1 − 𝑞𝑖)𝐿𝑖 

 

I thus determined the background mutation frequency qi that was needed to 

compute a P value using the above equation. Furthermore, to account for 

genomic factors, such as the replication timing, that affect the nucleotide 

mutation rates, I corrected the nucleotide mutation rate using replication timing 

from HeLa, K562, HEPG2, MCF7 and SKNSH cell lines [10]. Briefly, I 

computed the mean replication times for each cell line across genomic 

windows (bins) of 100 Kb. Then, I assigned to each aCRE its corresponding 

mean replication time. Subsequently, for each aCRE, I identified the top 5% of 

aCREs with the most similar replication times across the cell lines, measured 

using the Euclidian distance between the vectors of times. The global 

background nucleotide mutation frequency was then estimated by dividing the 

total number of observed mutations in the top 5% of the regions of interest by 

the effective length of these regions. P values were computed using the 

equation above and adjusted for multiple testing with using the Benjamini-

Hochberg method. 

 

3.8 Gene expression data analysis 

Gene expression data (RNA-Seq) of neuroblastoma cell lines, deposited in 

GEO database with accession GSE90683 [39], were downloaded and analyzed 

as processed files. Gene expression was reported as Log2 transformed FPKM 

values. 
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3.9 DNA extraction, library preparation and HiC sequencing 

Cells were prepared as follows. The cell culture of a minimum of 2.5×107 cells 

was verified for its purity. The protocol does not allow DNA contamination. 

Cells were cross-linked with formaldehyde and lysed. Then, chromatin was 

digested with restriction enzyme. The resulting sticky ends were filled and 

marked in with biotinylated nucleotides. Ligation was performed under 

extremely dilute conditions to create chimeric molecules. The chromatin 

complexes containing the biotin-labeled ligation products were degraded by 

proteinase. Then genomic DNA was purified and randomly sheared into short 

fragments of 350bp by Covaris apparatus. Biotinylated junctions were isolated 

with streptavidin beads. Then DNA fragments were end polished, A-tailed, and 

ligated with adapter for Illumina sequencing, further PCR enriched by P5 and 

indexed P7 oligos. The PCR products were purified and the concentration of 

the library was determined by Qubit® 2.0 fluorometer. After dilution to 1 

ng/μL, the resulted libraries were analyzed for size distribution by Agilent® 

2100 Bioanalyzer and quantified using real-time PCR. The sequencing of the 

qualified libraries was performed on an Illumina® HiSeq platform. 

 

3.10 HiC data analysis 

The sequencing was performed on an Illumina® HiSeq platform. Paired-end 

reads with length of 150bp were mapped to the reference genome (build 

hg19/GRCH37) with Bowtie2 [47]. The alignment BAM file was then filtered 

to remove duplicates, re-ligation or self-circularization artifacts that can be 

introduced during Hi-C library preparation. Then I used HiCExplorer tool 

v2.1.4 [48] to (i) build the interaction matrix at a resolution of 10Kb (bin 

size=10Kb); [49] normalize the observed interaction matrix; (iii) determine 

Topologically Associating Domains (TADs, self-interacting genome regions) 

and their boundaries; and (iv) plot the results. Subsequently, I extended the 

target CRE regions of interest of 1Mb up- and down-stream and calculated the 

statistical significance of the interactions between bins with the FitHiC v1.1.3 
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program [50]. P-values were corrected for multiple tests by Benjamini-

Hotchberg method (False Discovery Rate, FDR) and the cutoff was set at 5%. 

Finally, I annotated those bins with ANNOVAR [45] in order to map genomic 

bins to gene coordinates. 

 

3.11 Validation data sets of whole genome sequencing (WGS) 

In order to validate the presence of somatic mutations in aCREs, I analyzed 14 

primary neuroblastoma whole genomes published in [9] and used public data 

of 137 whole genomes from the TARGET neuroblastoma project for which our 

lab had authorized access (Accession: phs000218.v21.p7; Project ID: #14831) 

[35]. Here, I searched for somatic mutations by extending the length of each 

aCRE of the 50% on both sides. 

 

3.12 Gene expression analysis, samples clustering and survival analysis 

I used the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl) 

to query transcriptomic data of 498 neuroblastoma samples (GSE62564). I 

used the k-means clustering algorithm, to divide samples in two groups based 

on expression levels of genes that significantly interacted with mutated aCREs. 

The overall (OS) and the event-free survival (EFS) probabilities were 

calculated by using the Kaplan–Meier method. The log-rank test statistical 

significance was set at 5%. 

 

3.13 Gene Ontology analysis 

The functional enrichment analysis was performed by using the web tool: 

WEB-based GEne SeT AnaLysis Toolkit [51]. The Gene Ontology database of 

non-redundant Biological Processes was used. Significantly enriched GO terms 

were considered for FDR ≤ 0.05. 
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4. Results 

 

4.1 Genome-wide map of CREs 

CREs such as promoters and enhancers, in accessible chromatin are commonly 

bookmarked by the acetylation of lysin 27 on histone 3 (H3K27ac). To define 

CREs in neuroblastoma, I used the H3K27ac ChIP-seq peaks (GSE90683) 

shared among 25 neuroblastoma cell lines (see Methods) that represent three 

different tumor identities: sympathetic noradrenergic, NCC-like and mixed 

type [39]. As outlined in Figure 6, I selected 13,437 common peaks (regions 

overlapping H3K27ac marker) with mean length of about 730 bp (min=300, 

max=8,265). This represented the target (of about 9.8 Mb) for the TD-Seq of a 

set of 56 tumor-normal pairs (Table 1). 
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Figure 6 | Schematic workflow describing the analyses steps. First, I defined 
active cis-regulatory elements in neuroblastoma by a re-analysis of public 
ChIP-Seq data of H3K27ac. I selected and adjusted the size of the common 
regions to get the final targets for sequencing of a set of 56 neuroblastoma 
samples with their matched control tissue. I processed these data and called 
somatic variants. After filtering the raw somatic variants, I mapped the variants 
to aCREs and obtained mutation counts for each aCRE. Then, I tested these 
regions for an excess of somatic mutations and assessed the statistical 
significance. Further, I searched for additional mutations in aCREs by using 
the WGS data of 151 neuroblastomas. Then, I identified the candidate target 
genes of each significantly mutated aCREs by analyzing our HiC-Seq data of 
the SK-N-BE neuroblastoma cell line. In parallel, I performed a TF binding 
motif analysis to identify the altered binding motifs of TFs targeting the 
aCREs. Finally, I focused on the impact on tumor development. On the basis of 
the expression of target genes I performed a K-means clustering of 498 
neuroblastoma samples of a public data set. In brief, I divided these samples in 
two groups and evaluated survival rates and clinical prognostic markers by k-
means group. In parallel, based on the TFs with altered binding motifs, I 
performed a GO enrichment analysis to find out which biological processes 
they were involved in. 
 

Table 1 | Clinical features of collected neuroblastoma samples. 

 
  

Clinical Parameters Samples (n=56) 

INSS stage 1 8/56 (14%) 
INSS stage 2 4/56 (7%) 
INSS stage 3 12/56 (21%) 
INSS stage 4 29/56 (52%) 
INSS stage 4s 3/56 (6%) 

    
Age >18 25/56 (45%) 
Age≤18 31/56 (55%) 

    
MYCN amplified 10/56 (18%) 

MYCN not amplified 46/56 (82%) 
    

High risk 27/56 (48%) 

Non High risk 29/56 (52%) 
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4.2 Somatic mutations in active (a)CREs 

I collected high quality sequencing data with, on average, the 1.94% of reads 

discarded for low quality (Figure 7A). 

 

 
Figure 7 | Descriptive statistics of the Targeted Sequencing of 56 normal-
primary NB sample pairs. (A) Box plot reporting the percentage of clean 
reads used for the alignment. (B) The percentage of bases with quality score 
above 20 (Q20). (C) The percentage of bases with quality score above 30 
(Q30). (D) Box plot reporting the average Depth of coverage obtained after the 
alignment. (E) Box plot reporting the average coverage of target regions and 
the percentage of target regions covered with at least 10 (F), 20 (G) and 50 
reads (H). (I) The bar plot shows the functional categories of the annotated raw 
somatic variant calls. The functional annotation was performed with 
ANNOVAR by using the NCBI-RefSeq database. 
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The percentage of bases with quality scores above 20 (Q20) and above 30 

(Q30) was 95.91% and 90.79%, respectively (Figure 7B-C). After the 

alignment I obtained a depth of coverage of 459x (Figure 7D) and I covered 

the 99.63% of the target regions (Figure 7E). Furthermore, the fraction of the 

target covered with at least 10, 20 and 50 reads, was, on average, the 96.24%, 

92.89% and the 85.31%, respectively (Figure 7F-H). This allowed me to 

obtain a highly reliable set of raw somatic variant calls. Indeed, I identified a 

total of 83,962 somatic SNVs/INDELs mainly mapping to intronic (36.80%) 

and intergenic (55.14%) regions (Figure 7I). I applied stringent criteria to filter 

raw somatic variant calls. As detailed in Methods, I discarded poor quality 

variants, off targets, common polymorphisms, and possible false positives 

mapping to problematic genomic regions. Here, I wanted to focus on somatic 

variants falling in transcriptionally active CREs (aCREs) characterized by the 

presence of DNase I hypersensitive sites (DHSs). Therefore, I further removed 

variants that did not map to these sites that indicate regions of open chromatin. 

 

After this multistep filtering, I retained a total of 1,296 SNVs/INDELs in 

aCREs (median per sample = 10). As reported in Figure 8A, I obtained 1.0183 

variants per Mb. The filtered somatic variants were mainly located in regions 

closer to genes (such as exonic, ncRNA exonic, UTR5, upstream) if compared 

to the raw somatic variants (Figure 8B). Indeed, whereas intergenic mutations 

drastically decreased from 52% (raw variants) to 7.10% (filtered variants), the 

percentage of intronic mutations remained comparable (42.50% and 43.60%, 

respectively). Furthermore, among the filtered variants, I observed an increased 

proportion of UTR (1.40% of raw and 15.70% of filtered variants, 

respectively), of exonic (0.84% of raw and 11.60% of filtered variants, 

respectively), and of upstream/downstream variants (3.30% of raw and 21.90% 

of filtered variants, respectively) (Figure 8B). Together, these data support the 

hypothesis that the selected somatic variants can affect DNA regions (aCREs) 

that regulate the transcription of neighboring genes. 
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Based on this hypothesis, I asked if gene expression could be influenced by 

neighboring aCREs. Overall, I found that the presence of the aCREs, identified 

herein, correlated with increased expression of proximal (up to 0.25 Mb away, 

mean=2.95) and distal genes (up to 0.5 Mb away, mean=2.82) when I analyzed 

RNA-Seq data from the same set of 25 neuroblastoma cell lines (GSE90683) 

(P<1.0x10-04) (Figure 8C). As reported in Figure 8D-E, the selected somatic 

variants showed significantly higher pathogenicity, assessed with CADD [52] 

and FunSeq2 [46] scores, when compared to the raw set of somatic variants; 

(P<2.2x10-16). I found 60 missense SNVs (83.33%) and 12 truncating 

SNV/INDELs (16.66%) (Figure 8F) but only three of these hit known cancer 

genes (reported in COSMIC catalog): ARID1A (1 inframe deletion) and 

ARID1B (2 inframe deletions in two different patients), GATA3 (1 missense 

SNV). Somatic deleterious mutations of the chromatin remodelers ARID1A and 

ARID1B have been already reported in neuroblastoma tumors [53]. This data 

further supports the reliability of the results obtained with the sequencing 

strategy. 
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Figure 8 | Characteristics of the selected somatic variants. 
(A) Box plot showing the median number of filtered somatic variants per 
Megabase (Mb). (B) Stacked bar plot reporting the location of Raw and 
Filtered somatic variants. (C) Bar plot with the median expression of “ALL” 
genes in the RNA-Seq dataset of neuroblastoma cell lines (GSE90683) 
compared to the median expression of aCREs proximal (up to 0.25 Mb away) 
and distal genes (up to 0.5 Mb away). (D) Box plot showing the median levels 
of CADD pathogenicity scores for Raw and Filtered somatic variants. (E) Box 
plot showing the median levels of FunSeq2 pathogenicity scores for Raw and 
Filtered somatic variants. (F) Lollipop plot reporting the mutated genes with 
number and type of somatic exonic variants. Gene names written in red 
indicate known cancer genes. P < 0.05 (°), P < 0.01 (*), P < 0.001 (**), P < 
0.0001 (***). P value was calculated by Mann-Whitney Test. 
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4.3 Mutational enrichment in aCREs 

To assess if aCREs could harbor more somatic variants than the expected, I 

tested these regions for an excess of noncoding mutations using a global 

approach that corrects the mutation rate for replication time as previously 

described [7,8] and detailed in Methods section. In total, 1151 individual 

aCREs contained at least one mutation. One aCRE was significantly enriched 

for mutations with FDR<0.05 and 8 with FDR<0.15 (Table 2). The validation 

performed on a set of 151 tumor normal pairs analyzed by WGS showed that 

two out of the 9 aCREs were respectively mutated in additional two patients 

(Table 2). 

 

Table 2 | Recurrently mutated CREs in 56 neuroblastoma samples. 

 
In bold: the top significant CRE and the validated CREs with somatic 
mutations found in WGS data set. Chromosomal locations and closest genes 
(as upstream, downstream) are also provided. 
 

By using our in-house generated HiC data on SK-N-BE cell line, I mapped 

noncoding regulatory mutations of the most significant aCREs to their 

candidate target genes. Then, I calculated the intensity and the significance of 

genomic interactions within a window of 1 Mb around the aCREs (see 

Methods). 

 

CRE region Closest genes Pathway Region
Target 

(bp)

Mutations 
TD-Seq 

(N)
Pvalue FDR

Mutations    
WGS   (N)

chr11:9385430-9386340 TMEM41B(dist=49770) 
IPO7(dist=20084)

Nuclear Import intergenic 910 4 3.70E-05 0.043 0

chr4:174440675-174448940 SCRG1(dist=125307) 
HAND2(dist=1728)

Heart Development intergenic 8265 3 3.65E-04 0.114 2

chr6:157099410:157101080 ARID1B Chromatin 
organization

exonic 1670 3 5.79E-04 0.114 0

chr2:198379730-198381565 HSPE1-MOB4 - intronic 1835 3 6.69E-04 0.114 0

chr19:925145-927105 ARID3A Regulation of TP53 
Activity

intronic 1960 3 6.69E-04 0.114 2

chr2:70370175-70370560 LINC01816(dist=17809) 
C2orf42(dist=6760)

- intergenic 385 3 7.68E-04 0.114 0

chr11:66085170-66085700 CD248 - upstream 530 3 7.81E-04 0.114 0

chr16:28874330-28875755 SH2B1 Neurotrophin 
signaling

upstream 1425 3 7.94E-04 0.114 0

chr12:110905620-110907360 GPN3, FAM216A - intronic 1740 3 9.42E-04 0.120 0
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Figure 9 | Genomic interactions for the IPO7-aCRE. 
The figure reports tracks named from top to bottom. (A) Genomic coordinates 
(hg19). (B) The interaction matrix for the chr11:9385430-9386340 region 
extended of 1Mb up- and down-stream. Black bordered triangles represent 
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TADs. (C) TADs boundaries. (D) Normalized number of interactions. (E) 
Minus Log10 transformed P value. (F) The aCRE region of 1960 bp. (G) The 
cluster of somatic mutations falling in the aCRE and its extended ends. (H) 
RefSeq genes (I plotted the longest isoform for each gene). (I) Zoom-in 
showing 100 Kbs up- and down-stream the aCRE. Here, in the listed order, I 
show the aCRE, the somatic mutations, the IPO7 gene, the DHS sites of the 
SKNSH neuroblastoma cell line in purple (ENCODE v3), the MYCN ChIP-Seq 
data of neuroblastoma cell lines in GSE80151 (in blue), and the H3K27ac data 
of neuroblastoma cell lines (GSE90683 and GSE65664). 
 

The most significantly mutated aCRE (Table 2 and Figure 9) mapped at 

chr11:9385430-9386340 (910 bp, carrying four mutations) between TMEM41B 

(distance = 49,770 bp) and IPO7 (distance = 20,084 bp). I named this aCRE as 

“IPO7-aCRE”. I found significant interactions with TMEM41B and IPO7 

(FDR=1.75x10-13). As reported in literature, IPO7 is regulated positively by c-

Myc and negatively by p53 [54]. Furthermore, I found that IPO7 is a target of 

MYCN (blue tracks of ChIP-Seq data in Figure 9) and its high expression 

correlates with MYCN amplification (P=1.60x10-26) as shown in Figure 10. Of 

note, one significantly (DENND5A) and two not significantly interacting genes 

(DENND2B and DENND7B), all located in the same TAD of the IPO7-aCRE, 

belong to DENN domain protein family. 

 

 
Figure 10 | IPO7 expression correlates with MYCN amplification status. 
The boxplot shows the expression of IPO7 stratified by MYCN amplification 
status in neuroblastoma samples of GSE62564 data set. MYCN Amp: n=406. 
MYCN non-Amp: n=97. P=1.6x10-26; Mann-Whitney Test. 
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Figure 11 | Genomic interactions for the HAND2-aCRE. 
The figure reports tracks named from top to bottom. (A) Genomic coordinates 
(hg19). (B) The interaction matrix for the chr4:174440675-174448940 region 
extended of 1Mb up- and down-stream. Black bordered triangles represent 
TADs. (C) TADs boundaries. (D) Normalized number of interactions. (E) 
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Log10 transformed P value. (F) The aCRE region of 8,265 bp. (G) The cluster 
of somatic mutations falling in the aCRE and its extended ends. (H) RefSeq 
genes (I plotted the longest isoform for each gene). (I) Zoom-in showing 100 
Kbs up- and down-stream the aCRE. Here, in the listed order, I show the 
aCRE, the somatic mutations, the HAND2 gene and its antisense, the DHS 
sites of the SKNSH neuroblastoma cell line in purple (ENCODE v3) and the 
H3K27ac data of neuroblastoma cell lines (GSE90683 and GSE65664). 
 

I found that the second aCRE (Table 2 and Figure 11), harboring 5 mutations, 

at chr4:174440675-174448940 (an intergenic region of 8,265 bp) significantly 

interacted with HAND2 (FDR=3.09x10-07) and its antisense RNA HAND2-AS1 

(FDR=1.17x10-04). I named this aCRE as “HAND2-aCRE”. I also found strong 

and significant interactions with two ncRNAs: LINC02269 (FDR=2.16x10-14) 

and LINC02268 (FDR=1.15x10-13) and with two protein coding genes: FBXO8 

(FDR=1.15x10-13) and CEP44 (FDR=1.15x10-13). Of note, I observed that all 

of the significant interactions were on the right of the aCRE and involved the 

majority of the HAND2 topologically associating domain (TAD). Notably, the 

5 mutations identified, are located in a super-enhancer region that regulates 

HAND2 gene [39]. 

 

The third aCRE (Table 2 and Figure 12), harboring 5 mutations, at 

chr19:925145-927105 (an ARID3A intronic region of 1,960 bp) mapped in a 

genomic region near the chromosome 19 telomere characterized by high gene 

density. This aCRE, that I named as “ARID3A-aCRE”, significantly interacted 

with ARID3A (FDR=4.68x10-09), a direct TP53 effector, and with other 24 

genes (mean FDR=4.38x10-03) mainly involved in the immune response as 

determined by GO functional enrichment analysis (Figure 13). 
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Figure 12 | Genomic interactions for the ARID3A-aCRE. 
The figure reports tracks named from top to bottom. (A) Genomic coordinates 
(hg19). (B) The interaction matrix for the chr19:925145-927105 region 
extended of 1Mb up- and down-stream. Black bordered triangles represent 
TADs. (C) TADs boundaries. (D) Normalized number of interactions. (E) 
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Log10 transformed P value. (F) The aCRE region of 1960 bp. (G) The cluster 
of somatic mutations falling in the aCRE and its extended ends. (H) RefSeq 
genes (I plotted the longest isoform for each gene). (I) Zoom-in showing 100 
Kbs up- and down-stream the aCRE. Here, in the listed order, I show the 
aCRE, the somatic mutations, the ARID3A gene, the DHS sites of the SKNSH 
neuroblastoma cell line in purple (ENCODE v3) and the H3K27ac data of 
neuroblastoma cell lines (GSE90683 and GSE65664). 
 

 

 
Figure 13 | Enriched Biological Processes of genes interacting with the 
ARID3A-aCRE. 
The Gene Ontology enrichment was performed with WebGestalt tool 
(www.webgestalt.org) using the non-redundant set of Biological Processes. 
The bar plot shows the -Log10 of the enrichment P value. The grey dashed line 
represents the cutoff for statistical significance (set at 0.05). 
 

4.4 Genes interacting with mutated aCREs are involved in neuroblastoma 

tumorigenesis 

The analysis of HiC data on SK-N-BE neuroblastoma cell line for each of the 

significantly mutated aCREs, returned their interacting neighboring genes (see 

above). Here, I wanted to assess the importance of significantly mutated 

aCREs in regulating nearby genes expression, and if the expression of these 

genes could be linked with the characteristics of the disease. With this aim, for 

http://www.webgestalt.org/
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each of the 3 selected aCREs, I performed a k-means clustering of 498 

neuroblastoma samples (GSE62564), based on expression levels of 

significantly interacting genes. 

For the genes interacting with the IPO7-aCRE (in Figure 9), I found that the k-

means Group 1 (n=216) showed higher expression as compared to Group 0 

(n=282) (Figure 14-A; P=5.96x10-15). As reported in Figure 14-B, the Group 

1 showed strong correlations with markers of poor outcome (MYCN-amplified 

vs. MYCN-non-amplified, P=7.79x10-10; Stage 4 vs. non-Stage 4 tumors, 

P=5.25x10-14; high-risk vs. non-high-risk tumors, P=6.92x10-15) and worse 

EFS (Event-Free Survival) and OS (Overall Survival) probabilities (Figure 14-

CD) (P=3.0x10-06 and P=4.0x10-09, respectively). 

For HAND2-aCRE (see Figure 11), I identified two groups characterized by 

low (Group 0; n=479) and high (Group 1; n=19) expression levels as shown in 

Figure 14-E (P=1.77x10-13). The Group 1 strongly correlated with markers of 

neuroblastoma aggressiveness (Figure 14-F) such as the MYCN amplification 

(P=2.26x10-09), the INSS stage 4 (P=2.64x10-04) and the high-risk patients 

(P=1.72x10-05). Furthermore, Group 1 patients showed inferior EFS and OS as 

compared to the Group 0 (Figure 14-GH) (P=4.0x10-08 and P=2.0x10-16, 

respectively). 

For the ARID3A-aCRE, interacting with ARID3A other 24 genes (in Figure 

12), the k-means clustering identified two groups characterized by low (Group 

1; n=241) and high (Group 0; n=257) expression levels as shown in Figure 14-

I (P=6.99x10-13). The Group 0 strongly correlated with markers of 

neuroblastoma aggressiveness (Figure 14-J) such as the MYCN amplification 

(P=2.74x10-04), the INSS stage 4 (P=1.25x10-06) and the high-risk patients 

(P=7.51x10-08). Furthermore, Group 1 patients showed inferior EFS and OS as 

compared to the Group 0 (Figure 14-KL) (P=1.0x10-09 and P=2.0x10-09, 

respectively). 
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Figure 14 | Results of the k-means clustering of neuroblastoma samples 
(n=498, GSE62564) based on aCREs interacting genes. 
The clustering was based on the expression levels of genes significantly 
interacting with the mutated aCREs as determined by analysis of HiC data. (A-
D) IPO7-aCRE. (E-H) HAND2-aCRE. (I-L) ARID3A-aCRE. Panels A, E, I: 
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box plots showing the median expression levels of K-means Group 0 and 
Group 1. Statistical significance was calculated with Mann-Whitney test. 
Panels B, F, J: Clinical features of neuroblastoma samples in Group 0 and 
Group 1. From top to bottom: MYCN amplification status; INSS stages; Risk 
groups. Statistical significance was calculated with Chi-Square test. Panels C, 
G, K: Event free survival of neuroblastoma samples in Group 0 and Group 1. 
Statistical significance was calculated with Log rank test. Panels D, H, L: 
Overall survival probabilities of neuroblastoma samples in Group 0 and Group 
1. Statistical significance was calculated with Log rank test. P < 0.05 (°), P < 
0.01 (*), P < 0.001 (**), P < 0.0001 (***). 
 

4.5 Somatic variants in aCREs alter TFs binding motifs 

I conducted a motif analysis with the R-Bioconductor package “motifbreakeR” 

to assess if the somatic variants within the selected aCREs could disrupt or 

create TF binding motifs. The results showed that the selected variants (n=14) 

altered the binding motif of 118 TFs: 41, 27, and 50 motifs for IPO7-aCRE, 

HAND2-aCRE and ARID3A-aCRE, respectively. 

 

4.6 Convergence of biological processes of the genes affected by somatic 

regulatory variants 

I assessed the biological processes in which the TFs with altered motifs were 

involved in, by Gene Ontology (GO) enrichment analysis (Figure 15). I 

observed that, for each mutated aCRE, the closest gene exerts the biological 

functions similar to those that I found to be enriched among the TFs whose 

motifs are altered by SNVs (Figure 15). In particular, regarding the IPO7-

aCRE, the GO terms enriched in the list of TFs “protein localization to 

nucleus” and “embryonic organ development” coincided with the functions of 

IPO7. Indeed, it mediates the nuclear import of proteins [55], and it is involved 

in the late stage of neural ectoderm differentiation [56]. Regarding HAND2-

aCRE, among the list of TFs there was an over-representation of functions 

related to the development of diverse tissues that reflects the HAND2 

functions. HAND2 is a transcription factor involved in the development of 

heart [57], limb [58], and neural crest derivatives [59]. Finally, the biological 

functions of the TFs targeting ARID3A-aCRE, were related to p53 signaling 
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pathway, embryonic development and differentiation of immune system cells. 

Accordingly, ARID3A is a DNA binding protein that is essential during early 

embryonic developmental stages [60,61]. Furthermore, it is also required in 

late stages of embryogenesis for normal erythroid lineage differentiation and 

hematopoietic stem cell production [62,63]. Moreover, ARID3A is a 

transcriptional target of p53 and cooperates with it to activate p21(WAF1) 

transcription [64]. 

 

 
Figure 15 | Gene Ontology of TFs with altered binding motifs. 
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Dot plot reporting the Gene Ontology enrichment analysis of the Biological 
Processes involving the TFs harboring somatic mutations in their binding 
motifs. Dot color scale is dependent on the Enrichment Ratio whereas dot sizes 
are proportional to the Log10 FDR. Statistical significance (FDR≤0.05) was 
calculated with Hypergeometric Test and Benjamini-Hotchberg correction. The 
lower part of the figure reports the biological functions of the aCRE target 
genes. Coloured arrows highlight the convergence of biological processes 
between the aCRE target genes and TFs, with mutated binding motifs, 
regulating the same aCRE. 
 

Of note, as represented in Figure 15, the GO term “myeloid cell 

differentiation”, a biological process that is commonly altered in cancer [65], 

was shared among the three lists of TFs. 

The comparison between the biological functions over-represented in the three 

lists of TFs with those of all target genes of mutated aCREs showed that most 

of the biological terms were related to processes of immune response and 

embryonic development (Table 3) suggesting that the combined effect of 

noncoding cancer driver mutations alters gene sets involved in specific 

molecular mechanisms underlying the tumorigenesis of neuroblastoma. 
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Table 3 | Biological functions of genes affected by regulatory somatic 

mutations. 

 
* The two columns report the enriched biological functions in the TF sets. 
° The two columns report the name of target genes involved in embryonic 
development and immune response. 
^ The DENND2B and DENND7B genes did not show significant interactions 
with the aCREs but localized in the same TAD and all belong to the DENN 
domain protein family. 
 
 
  

 *Transcription factors with motifs altered by SNVs °Target genes of mutated aCREs 

  Embryonic development Immune response Embryonic development Immune response 

IPO7-aCRE 

embryonic organ 
development, endocrine 

system development, 
animal organ formation 

type 2 immune response, 
myeloid cell 

differentiation 

IPO7 [56] 
DENND5A [66] 

DENND5A, 
^DENND2B, ^DENND7B 

[67] 

HAND2-aCRE 

mesenchyme 
development, pericardium 

development, cell fate 
commitment, neural tube 
development, respiratory 

tube development, in 
utero embryonic 

development 

myeloid cell 
differentiation, leukocyte 

differentiation 
HAND2 [57-59] - 

ARID3A-aCRE 

endocrine system 
development, animal 

organ formation, in utero 
embryonic development, 

muscle tissue 
development, coronary 

vasculature development 

myeloid cell 
differentiation, interaction 
with symbiont, response 

to antibiotic 

ARID3A [60-62], 
STK11 [68] 

ARID3A [62,63] 
Functional enrichment in 

24 genes (Additional file 2: 
Figure S4 and Additional 

file 3: Table S6) 
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5. Discussion 

 

To verify the role of noncoding variants in driving tumorigenesis, I performed 

a deep sequencing of a set of transcriptionally active CREs in 56 

neuroblastomas and normal sample pairs. The bioinformatic analyses and 

stringent filtering steps, led me to obtain a high reliable and potentially 

pathogenic set of somatic SNVs falling in aCREs. I observed that most of these 

mutations were mainly located in noncoding regions (UTRs and Introns) in 

proximity of genes. These data suggest that noncoding somatic variants can 

affect aCREs that regulate the transcription of neighboring genes. 

 

The mutational enrichment analysis showed that nine aCREs had a significant 

high rate of mutations. For two of these, I found additional somatic mutations 

in a set of 151 neuroblastoma WGS. Based on these data, I decided to perform 

additional investigation on the IPO7-aCRE showing the adjusted P-value less 

than 0.05 and on HAND2-aCRE and ARID3A-aCRE also found to be mutated 

in the independent set of 151 tumors profiled by WGS. 

 

The most significantly mutated aCRE, IPO7-aCRE, was of 910 bp on 

chromosome 11. It showed significant interactions with IPO7, TMEM41B and 

DENND5A. IPO7 is involved in nuclear import and export and it is upregulated 

in diverse tumors [39,40]. It is regulated positively by c-Myc and negatively by 

p53, and, under control of these two genes it mediates nuclear import of 

ribosomal proteins and export of ribosomal subunits, both required for 

ribosome biogenesis. IPO7 is a target of MYCN and its high expression 

correlates with MYCN amplification. One significantly interacting gene 

(DENND5A) and two (DENND2B and DENND7B) not significantly interacting 

genes but in the same TAD of the aCRE can regulate Rab GTPase pathways 

[69] that when impaired can promote diseases including immunodeficiencies, 

neurological disorders, and cancer [66]. Interestingly, upregulation of Trk 
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receptors (TrkA and TrkB), which play a critical role in development of 

neuroblastoma [70], due to DENND5A deficiency can lead to striking 

alterations in neuronal development [67]. TMEM41B (Transmembrane Protein 

41B) is required for autophagosome formation [71] and have been found 

mutated in pulmonary carcinoid tumors [72]. 

 

The second aCRE (HAND2-aCRE), was in an intergenic region of 8,265 bp on 

chromosome 4. It showed significant interactions with HAND2, its antisense 

long noncoding RNA (lncRNA) HAND2-AS1, FBXO8 and CEP44. HAND2, 

Heart and Neural Crest Derivatives Expressed 2, is highly expressed in neural 

crest-derived cells and encodes a transcription factor of particular importance 

during neuronal development [73,74]. It also has key roles in neuroblastoma, 

taking part in defining the core regulatory circuitries of the sympathetic 

noradrenergic cell identity [39]. HAND2-AS1 is found downregulated in 

numerous cancer types. It acts as a tumor suppressor by inhibiting cancer cells 

proliferation, migration and invasiveness [75-77]. 

 

The third, ARID3A-aCRE, was an ARID3A intronic region of 1,960 bp on 

chromosome 19. The chromosomal region is characterized by high gene 

density. This aCRE significantly interacted with ARID3A and other 24 genes 

that I found to be mainly involved in the immune response. ARID3A (AT-Rich 

Interaction Domain 3A) is a direct TP53 effector and is required for 

trophectoderm, hematopoetic and B cell lineage development [60,61,63]. 

Among the genes that showed most strong interactions with the ARID3A-

aCRE, I found the enzyme STK11, a tumor suppressor required by for normal 

embryonic development [68]. 

 

Based on the above reported results, I could comment that the identified genes 

regulated by the mutated aCREs show key roles in tumor development. 



 
 

40 

Additional experimental studies could highlight the functional roles of these 

genes in neuroblastoma. 

 

Having identified the significantly mutated aCREs and their interactions with 

surrounding genes, I wanted to assess the importance of these CREs in 

regulating surrounding genes expression, and if those genes could have a role 

in biology of neuroblastoma genesis. To this scope, I generated a gene 

expression signature based on the interacting genes of each aCRE by using a 

well-annotated RNA-Seq data set consisting of 498 neuroblastoma samples. 

Each of these gene signatures identified two groups of samples characterized 

by low and high expression levels. For IPO7-aCRE and for HAND2-aCRE, 

tumors were classified by the group of genes at high expression strongly 

correlated with markers of neuroblastoma aggressiveness and with poor 

survival rates of the patients. Conversely, for ARID3A-aCRE the low 

expression of the interacting genes correlated with aggressive disease and poor 

prognosis. I interpret these results by assuming that genes regulated by mutated 

aCREs form a signature reflecting the activity of key pathways in 

neuroblastoma. In addition, further clinical studies could assess the prognostic 

value of this signature for more refined patient stratification in risk groups. 

 

Afterwards, I asked if the somatic variants within the selected aCREs could 

disrupt or create TF binding motifs. Overall, the results showed that the 

selected variants altered the binding motif of 118 TFs. Next I assessed the 

biological processes in which TFs with altered motifs were involved in. The 

variants in the IPO7-aCRE modified 41 motifs for TFs controlling embryonic 

organ development and immune response that are biological processes also 

linked to the functions of the interacting genes IPO7, DENND5A, DENND2B 

and DENND7B. Indeed, IPO7 is a target of MYCN, required for normal 

embryonic development, and has been reported to play an essential role in 

mouse embryonic stem cells differentiation into neural ectoderm cells [56]. 
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DENND5A, DENND2B and DENND7B belong to DENN domain protein 

family that regulates Rab GTPase pathways [69] whose dysregulation can 

promote immunodeficiencies [66]. Moreover, DENND5A play a key role in 

neuronal development [67]. Furthermore, I found that the 27 binding motifs, 

altered in the HAND2-aCRE, were for TFs mainly involved in embryonic 

development that is the main biological role of HAND2 [60,61]. In the end, the 

most significant biological process that characterized the 50 motifs altered in 

the ARID3A-aCRE was myeloid cell differentiation and many biological terms 

linked with embryonic development were found. Again, I observed a 

convergence of biological functions of the target genes of a specific mutated 

aCREs and of TFs targeting the same aCRE. Indeed, as mentioned above, the 

target genes of ARID3A-aCRE were enriched for GO terms related to the 

innate immune system and response to infection and the same ARID3A is 

known to regulate the early embryonic developmental stages and contribute to 

immune system formation [63]. Another interesting significant GO term shared 

between ARID3A and TFs was the signal transduction by p53 class mediator. 

Taken together, these data suggest that somatic mutations enriched in diverse 

aCREs can collectively impact on the functions of the TFs and the aCRE 

regulated genes, which are involved in the same molecular mechanisms. 

 

Of note, myeloid cell differentiation, a biological process that is commonly 

altered in cancer [65], was shared between the three groups of TFs. The 

contribution of myeloid cells to tumor pathogenesis has been largely 

recognized and during the last years their crucial role in promoting tumor 

angiogenesis, cell invasion and metastasis has been appreciated. Mounting of 

evidence indicates that in cancer, myeloid cell differentiation is diverted. This 

hijacking, leads myeloid precursors to differentiate into potent 

immunosuppressive cells named myeloid-derived suppressor cells [78,79]. 

Indeed, in cancer, these cells negatively regulate anti-tumor immunity thus 

promoting tumor growth, metastasis and angiogenesis [80]. The activation of 
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abnormal myelopoiesis and recruitment of immature myeloid cells into cancer 

tissues is governed by diverse soluble factors and depends on the upregulation 

of STAT3 and other key TFs. Here, I found that aCREs in neuroblastoma 

tumors are enriched in multiple somatic SNVs altering the binding sites of TFs 

(including STAT3 and other STAT family members) that play a role in 

myeloid cell differentiation. Immunosuppressive tumor microenvironment, 

mediated by myeloid-derived suppressor cells, is one of the immune escaping 

pathways adopted by neuroblastoma cells. Targeting of myeloid-derived 

suppressor cells can potentiate the effect of checkpoint inhibitors for 

immunotherapy in human cancers, including high-risk childhood 

neuroblastoma [81]. 
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6. Conclusions 

 

In this work, I used an alternative approach to detect and study regulatory 

cancer driver mutations. My strategy led me to identify mutated regulatory 

regions that could have relevant implications in tumor development and 

immune escape. Further studies will be necessary to ascertain the functional 

roles in neuroblastoma of genes and regulatory regions that I identified. 

 

To conclude, my findings provide evidence that noncoding somatic regulatory 

variants can collectively fuel tumor initiation and progression by the alteration 

of genes involved in the immune response and embryonic development. 
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