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ABSTRACT 

 

BACKGROUND 

Graft survival is a critical endpoint in adult-to-adult living donor liver transplantation (LDLT), 

where graft procurement endangers the lives of healthy individuals. Therefore, LDLT must be 

responsibly performed in the perspective of a positive harm-to-benefit ratio. To define the 

likelihood of failure of an LDLT in the short-term, this study aimed to develop a risk prediction 

model of early graft failure after LDLT.  

METHODS 

Using 5201 LDLTs data available from the European Liver Transplant Registry, we studied donor 

and recipient factors associated with a 3-months graft failure. A risk prediction model of this event 

was developed using a dual approach, including the Least Absolute Shrinkage and Selecting 

Operator (LASSO) logistic regression and an artificial neural network (NNET) classification 

algorithm. Models were built on a training set of 2060 LDLTs and were validated on an 

independent random-split test sample (n=515). Model performance was assessed using 

discrimination measures, as the Area Under the Curve of the receiver operating characteristic 

(ROC) and discrimination slope, calibration plots, and decision curve analysis (DCA), which 

estimated the net benefit at different threshold probabilities. Prediction models were compared 

through reclassification indices and DCA.  

RESULTS 

A 3 months graft failure occurred in 913 of the 5201 LDLTs (17.5%). Multiple donor and recipient 

characteristics factors were associated with early LDLT failure, with the most important predictors 

selected (LASSO) being the type of graft, the graft weight, the UNOS status, and the severity of 

recipient liver disease.  The LASSO and NNET model showed similar AUC values, of 0.65 (95% 

CI, 57 to 70) and 0.67 (95% CI, 60 to 73), respectively.  However, the NNET model presented a 

higher discrimination slope(0.104 vs. 0.017), and compared to the LASSO model, yield a 

significant improvement in risk reclassification. Also, the NNET model was associated with a 

higher clinical benefit, resulting in a net reduction in early graft losses varying from 5 to 15 for 100 

LDLTs, according to the threshold probability. The NNET risk prediction model is available as an 

online web application (http://ldlt.shinyapps.io/eltr_app). 

CONCLUSIONS 

Multiple donor and recipient characteristics are associated with early graft failure. Using a panel of 

easily available donor and recipient characteristics, an NNET was able to predict this risk with such 

a performance as to be associated with a significant net clinical benefit. 
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INTRODUCTION  

Living donor liver transplantation (LDLT) is an effective therapeutic opportunity for 

patients with end-stage liver diseases. Due to the scarce availability of grafts from deceased donors,  

LDLT represents the first option for liver replacement in the eastern countries and remains the 

alternative to deceased-donor liver transplantation (DDLT) in the western countries, where it 

contributes to expanding the organ pool. Different from DDLT, LDLT has no problems with graft 

allocation priority and pauperization of the pool of organs. Nonetheless, graft survival remains a 

crucial ethical endpoint in LDLT, since grafts are procured risking the lives of healthy individuals. 

Indeed, LDLT remains associated with major donor morbidity
1
 and has also a significant 

psychological
2,3

 and financial impact
4
 on the donors’ lives. Therefore, LDLT must be carried out 

responsibly within the perspective of a favourable harm-to-benefit ratio.  

In the years, several factors related to both the donor and the recipient have been associated 

with poor graft survival following LDLT. Adequate graft size has been first described as a 

determinant of LDLT outcomes
5
. Later improvements in surgical techniques

6
, knowledge of 

physiopathology
7,8

, as well as accurate recipient selection, have contributed to reducing the impact 

of graft size on LDLT outcomes
9
. Additional factors, including donor age

10
, graft steatosis

11,12
, the 

severity of recipient liver disease
13

, and other characteristics of the donor-to-recipient matching
14

 

have been associated with graft survival over the years.   However, due to the large number and 

complex interaction of risk factors, it remains difficult for the clinicians to compute the overall risk 

of failure for each potential LDLT. 

A tool for an accurate assessment of this risk would be of clinical relevance considering its 

possible implications. Several risk prediction models have been developed in the field of DDLT, 

mainly to guide organ allocation and prioritize patients on the waiting list
15–17

. However, these 

models focus on specific characteristics of DDLT and ignore others relevant to LDLT
18

. In 2014 

Goldberg et al. published the “Living donor risk index”, a score to predict long-term graft survival 

in LDLT
19

. However, this prediction model was developed in a population of recipients with mildly 

severe liver disease and could not consider this important predictor. Also, the score stratification 

ability was limited, since the worst scores were associated with a graft survival of 82% and 60% at 

1 and 5 years, respectively. Although suboptimal, such predicted outcomes are unlikely to alter the 

decisional process.   

On this background, this study aimed to develop a risk prediction model of early graft 

failure, based on a panel of relevant donor and recipient characteristics, to aid clinicians to better 

estimate the likelihood of failure in the short term of an adult-to-adult LDLT.  
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MATERIAL AND METHODS 

STUDY POPULATION 

Data for the present study were obtained from the European Liver Transplant Registry 

(ELTR) with the consent of the board of the European Liver Intestine and Transplant Association 

(ELITA). All data available regarding adult-to-adult LDLT were extracted from the ELTR registry. 

Data regarding country and center of origin were anonymized. LDLT consisting of re-transplants 

after the failure of a previous DDLT or LDLT were excluded. All other available adult-to-adult 

LDLTs were included in the study, without any exclusion criteria based on donor and recipient 

characteristics. 

DATA ANALYSIS AND ENDPOINTS 

Donor characteristics analyzed were age, sex, height, weight, body mass index (BMI), and 

ABO group, while graft characteristics included the type of graft (right lobe, left lobe or left lateral 

lobe, or others), weight, and rate of micro- or macro-steatosis, characterized as none, mild (<30%), 

moderate (30-60%), and severe (>60%). Recipient factors analyzed were age, sex, height, weight, 

BMI, ABO group, date of transplant, the United Network for Organ Sharing (UNOS) status, 

transplant performed as urgent, multiorgan transplantation, need for dialysis (at list twice /week), 

presence of ascites or encephalopathy, the disease leading to LDLT, laboratory values regarding 

pre-transplant serum albumin, creatinine, bilirubin, international normalized ratio (INR), serum 

sodium, and pre-transplant Model of end-stage liver disease (MELD) score, MELD-Na score, Child 

Score and Child Class. Finally, follow-up data regarding graft and patient survival were also 

extracted, as well as the occurrence and time of re-transplantation.  

According to the ELTR instructions, the MELD score available in the database was used for 

the analysis. In the case of missing values, MELD was calculated based on the available laboratory 

parameters. MELD-Na, as well as the Child-Pugh score, were also calculated. The graft to recipient 

body weight ratio (GWBWR) was calculated and the status of ABO compatibility and gender 

mismatch was established for each LDLT. 

Centers were divided into quartiles according to the volume of LDLTs recorded into the 

ELTR. In addition, the early LDLTs for each centre, i.e. the first 15 cases recorded in the ELTR by 

each centre were identified for specific analysis, to control for a learning curve effect
20

.   

Graft loss was defined as recipient death or graft failure necessitating liver re-

transplantation. The occurrence of graft loss at 3 months was the primary endpoint.  

STATISTICAL ANALYSES 

 Categorical data are presented as frequency counts and percentages, and continuous data as 

medians and interquartile ranges (IQRs) in case of skewed distributions or as mean and standard 

deviation (SD) in presence of symmetrical distribution. Categorical variables were compared using 

Ӽ2
 tests, while continuous variables were compared using parametric o non-parametric tests, as 

appropriate. The shape of the association between predictors and outcome was modelled using local 

weighted regression (LOESS)
21

 between the variable and the probability of 3-months graft loss 

estimated using logistic regression.  

 For inference purposes, to study the independent association between variables and the 

outcome, a multivariable logistic regression model was fit with variables presenting a p-value < 
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0.10 at univariable analysis. In case of evidence of multicolliearity between two or more predictors 

(e.g. MELD and MELD-Na), to reduce statistical noise and avoid type II errors, only one was 

entered into the multivariable model. The strength of the association is reported as Odds Ratio  

along with a 95% confidence interval.  

 Model development was based on the following variables: donor and recipient age, sex, 

height, weight, BMI, ABO group, the type of graft, graft weight, the GWBWR, the liver disease, 

recipient UNOS status, urgent and multiorgan transplantation, the recipient Child Class, CHILD, 

MELD and MELD-Na scores and each item needed for their calculation.  

Missing data were considered as missing at random, as also confirmed by the evidence of an 

almost identical incidence of graft failure between complete and non-complete cases. Therefore, 

models were built on cases with complete data for the abovementioned variables. The dataset was 

randomly split into a training (80%) and test (20%) set. 

For prediction purposes, a dual approach was used for model development. As the first 

approach, we used the least absolute shrinkage and selection operator (LASSO) logistic regression, 

an extension of linear regression that automates the selection of a subset of variables and optimizes 

the predictive accuracy by adding a regularization penalty to the loss function during training
22

. The 

tuning parameter λ was selected using 10-fold cross-validation in the training set.  

As the second approach, we trained a feedforward artificial neural network classification 

algorithm with stochastic gradient descent using back-propagation.  Model tuning was performed 

using 10-fold cross-validation on the training set. Feature importance was calculated according to 

the method described by Gedeon
23

. 

 Model performance was assessed both in the training set, using cross-validation, and in the 

test set.  Model discrimination was measured as the area under the receiver-operating characteristic 

curve (AUC), which measures the concordance of predictions with actual outcomes, and by the 

discrimination slope, which measures how well subjects with and without the outcome are 

separated
24

. Discriminative capacity was also represented using box plots, showing the distribution 

of the predicted risks according to the actual occurrence of the event.   Sensitivity and specificity, 

positive and negative predictive values were calculated at different risk cut-offs. Calibration was 

evaluated by comparing the observed with the predicted rate of events and graphically represented 

by calibration bar plots.  

 Models were compared using net reclassification indices such as the integrated 

discrimination improvement (IDI) and the net reclassification improvement (NRI)
25,26

. The IDI 

measures the improvement produced by a second model as the percentage increase in the difference 

of the predicted risks between cases with and without the outcome
25

. The continuous NRI refers to 

the proportion of cases with and without the outcome correctly assigned by the second model to a 

higher or lower risk, respectively
25

.  

Also, we used decision curve analysis to assess and compare the usefulness of the developed 

models by quantifying the resulting net benefit at different threshold probabilities
27,28

. The net 

benefit is calculated as the number of total true positive classifications minus the total false-positive 

classifications weighted by the odds of the thresholds probability. For better comprehension, the net 

benefit was also expressed in terms of net reductions, that is the net number of graft failures avoided 

without missing any successful transplant.  

Although graft weight and GWBWR were used for model development, these data are 

accurately known only after graft procurement, and before surgery, only an estimate of the graft 

weight is available, subject to a variable error
29

. Therefore, we tested model performance using 
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these estimates. Since they were not available in the ELTR, starting from the actual graft weight, we 

backward simulated the estimate by applying the estimation errors observed in the daily practice
29

. 

Also, we developed and tested a simplified prediction model excluding graft weight and GWBWR 

from predictors.  Subgroups analyses were also planned to test model performance within specific 

categories of LDLTs, like those performed in high volume centers (3rd and 4th quartile), those 

representing “late cases”,  and those performed on recipients having a MELD score > 24, and a 

GWBWR <1 and < 0.8.  

The artificial neural network was developed within the h2o framework. The LASSO 

regression was performed using the glmnet package. All statistical analyses were performed using  

R version 3.6.1 (2019, The R Foundation for Statistical Computing). 
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RESULTS 
 

STUDY POPULATION AND PREDICTORS OF EARLY GRAFT FAILURE 

 Between Oct 20, 1996, and Dec 30, 2019, 88 transplant centers from 18 European countries 

recorded data of 6403 LDLTs into the ELTR. Thirty-six of these were excluded as they were liver-

retransplantation after the failure of a primary LDLT or DDLT. The 3-months graft survival status 

was known for 5201 LDLTs which were therefore included in the study. Table 1 summarizes 

donors' and recipients' characteristics. A 3-months graft failure occurred after 913 transplants 

(17.5%) and was associated with donor age, donor and recipient BMI, and left-sided grafts. Also, 

early graft failure was more frequent in recipients with more severe liver disease, with a higher 

UNOS status, higher MELD, MELD-NA, and CHILD scores, and in those necessitating urgent liver 

transplantation. Concerning the donor-recipient matching, graft failure was associated with ABO 

incompatibility, with gender mismatch (female donor and male recipient), and with a lower graft-to-

recipient body weight ratio.  Figure 1 shows the shape of the relation between continuous predictors 

and the probability of 3-months graft failure based on logistic regression.  The risk of graft failure 

was higher (inverse relation)  for GWBWR < 1, remained stable for GWBWR values between 1 and 

1.5, and rise again, with a milder slope, for higher GWBWR values. Similarly, the risk of a worse 

outcome increased in presence of low (BMI < 18) and high (BMI > 30) recipient BMI values. Also, 

the probability of graft loss increased in presence of donor BMI > 30. On the contrary, donor age, 

MELD, MELD-Na, and Child score were linearly associated with an increased probability of early 

graft loss over the entire range of values. Data on graft steatosis were missing for a high number of 

grafts (81.6%), and macro-steatosis was reported as absent or mild (<30%) in  88.3%  and 11.5% of 

the grafts, respectively.   Table 2 summarizes the occurrence of graft failure according to time and 

center related factors. No significant differences in the rate of occurrence were observed according 

to the year of transplant (p=0.88) and according to the center volume of LDLTs (p=0.103). On the 

contrary, a higher incidence of early failure was observed during the first 15 cases in each center 

(20% vs 17.1%, p=0.0409). Table 3 shows the results of the univariable analysis for each candidate 

predictor.  At multivariable analysis, MELD score, UNOS status (ICU bound or hospitalized), and 

graft weight resulted independently associated with early graft failure (Table 3).  

 

MODELS DEVELOPMENT AND VALIDATION 

 Models were built on LDLTs with complete data (n=2575). There was no difference in the 

incidence of graft failure between cases with and without missing values (p=0.99). The dataset was 

randomly split into a training set (n=2060) and a test set (n=515). As expected, no difference in 

baseline characteristics and event rate was observed between the training and test set (Table 4). The 

logistic LASSO regression model selected four predictors (Table 5), including Child score, right 

Graft, UNOS status (Hospital or ICU), and the graft weight. This model yielded a cross-validated 

AUC of 0.66, while, at validation on the test set the AUC was 0.65 (95%CI, 0.57 to 0.70) and the 

discrimination slope 0.017. Figure 2 shows the discriminative ability of the LASSO model. A 

calibration bar plot is reported in Figure 3.   

 The final NNET architecture consisted of 5 hidden layers of n neurons per layer with 

rectified linear unit activations and a logistic output.  The relative importance of each feature is 
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shown in Figure 4. The NNET model showed an AUC of 0.68 at cross-validation and of 0.67 

(95%CI, 0.60 to 0.73) at validation on the test set. The discrimination slope was 0.104 (Fig 2). 

Model calibration is presented in Figure 3.  

MODELS COMPARISON 

Compared to the LASSO regression, the NNET model significantly improved patient 

reclassification (p<0.001), with an NRI of 47.7% (95% CI, 26 to 69.5) and IDI of 8.75% (95%, 4.9 

to 12.5, p<0.001).  Also, the NNET model showed a higher discriminative ability, with an almost 

10-folds higher discrimination slope (0.104 vs. 0.017) and with a better risk distribution between 

LDLTs with and without graft failure (Figure 5).  

The decision curve analysis showed a higher, net clinical benefit for the NNET model 

compared to the LASSO regression model, over a wide range of threshold probabilities (Figure 6).  

Also, a net benefit was evident for the NNET model compared to the strategy “transplant all” (i.e. 

no risk assessment). The net benefit is also expressed in terms of net reduction in graft losses for 

100 LDLTs (Figure 6).  

INFLUENCE OF THE GRAFT WEIGHT ESTIMATION ERROR 

When predictions were made using the estimated rather than actual graft weights and 

GWBWR, changes in the individual patient risk estimation were -0.2% (-4.6%,4.3%) for the NNET 

model and +0.27% (0.18%,0.36%) for the LASSO model. No significant differences were observed 

in patient reclassifications (NRI), both for the NNET (p=0.46) and the LASSO (p=0.18) model, 

when compared to the respective predictions based on the actual values.  

DEVELOPMENT OF NNET PREDICTION MODEL WITHOUT GRAFT WEIGHT AND GWBWR 

An NNET was also trained with all, except graft weight and GWBWR, donor and recipient 

characteristics (simplified NNET model). Variable importance within this model is reported in 

Figure 7.  This model had a cross-validated AUC of 0.68 and an AUC of 0.66 (95% CI, 0.59 to 

0.73) on the test set. The discrimination slope was 0.116. Compared to the full NNET model, no 

significant changes were observed in terms of patient reclassifications (NRI and IDI, p=0.46 for 

both). Also, the decision curve showed a nearly equal net benefit (Figure 8). This model is made 

available as an online application at the web address http://ldlt.shinyapps.io/eltr_app 

MODEL PERFORMANCE IN SUBGROUPS OF LDLT 

 The simplified NNET model showed consistent performance when tested in specific 

subgroups of LDLTs within the test set. In particular, the AUC values remained unaltered (0.66, 

95% CI, 0.60 to 0.73) when the simplified NNET model was applied only to “late cases” (0.66, 

95% CI, 0.60 to 0.73). Moreover, the simplified NNET model showed an higher performance in 

presence of  recipients with a MELD > 24, with an AUC of 0.80 (0.67 to 0.93). Also, within the test 

set, performance tended to be higher in case of recipients presenting a GWBWR < 1 (n=174), with 

AUC of 0.67 (95% CI, 0.57 to 0.78) and in 39 recipients (test set) with a GWBWR < 0.8, AUC 0.81 

(95% CI, 0.65 to 0.98).   

http://ldlt.shinyapps.io/eltr_app
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RISK CUT-OFFS 

The simplified NNET model predicted the risk of graft failure < 5% in 21.5% of the LDLTs, 

and an early graft failure occurred in 3% of them. The majority of the LDLTs (50.7%) had a 

predicted risk of failure < 12%, with effective failure, observed in 6% of them. Five percent of the 

LDLTs had a predicted risk of failure ≥ 50%,  and the event occurred in 65% of them.  

The sensitivity and specificity of the simplified NNET model at different risk cut-offs are 

shown in Figure 9 and  Table 6.  A cut-off of 22.4% presented the highest Youden index, with 

values of specificity and sensitivity of 0.80 and 0.60, respectively. Risk cut-offs of 30% and 50% 

presented specificity values of 0.85 and 0.97, and positive predictive values of 0.41 and 0.65, 

respectively. Cut-offs of 5 % and 10% were associated with sensitivity values of 0.96 and 0.85, 

respectively. The Fagan nomogram shows changes in the individual probability of graft failure after 

risk assessment using the simplified NNET model(Figure 10).  
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DISCUSSION 
 

 This study aimed to develop a predictive model of the risk of early graft failure after LDLT. 

For this purpose, an artificial neural network classification algorithm was trained using a panel of 

donor and recipient characteristics available from more than two thousand LDLTs. The developed 

model presented fair discriminative ability and calibration, and, mostly, was associated with a net 

clinical benefit.  The developed neural network is deployed as an online risk calculator.  

Three-months graft failure occurred in 17.5% of LDLT recorded into the ELTR, an 

incidence not far from that reported in other series
30

.  The prediction of early graft failure has, 

therefore, a clinical relevance, also in consideration of the possible implications. Indeed, in the 

presence of multiple potential donors, a tool to identify the one that best matches the recipient and 

minimizes the risk of failure would be valuable. Furthermore, patients waiting for a DDLT could 

evaluate the likelihood of success of an LDLT, switching to this option in the presence of favorable 

conditions, or vice-versa.  Also, since graft procurement endangers the life of a healthy individual, 

living donation is allowed within the perspective of adequate benefits for the recipient. Undeniably, 

it is difficult determining how long a graft must survive to justify a living donation. However, it is 

unquestionable that a graft surviving only 3-months does not offer benefits worthy of the risks of 

surgery on a healthy subject such as a living donor. In accordance, most liver donors expect their 

donation to improve recipient survival by at least 6 months
31,32

.  In this perspective, an accurate 

estimate of the risk of early graft failure provides both the medical team and donors with objective 

data for making their decisions.   

Determinants of graft failure are multiple and pertain to the donor, recipient, and the result 

of their matching. The in-depth analysis performed on a large cohort of ALLDTs confirmed the 

importance of most of the predictors reported to the literature so far, describing the shape and 

strength of their association with the occurrence of graft failure. Of note, in the context of a 

controversial literature
33

, the present analysis confirmed that the severity of recipient liver disease is 

a determinant of  LDLTs results. A further substantial finding is that type of graft and graft weight 

independently predict graft failure, supporting the evidence that the superior outcomes achieved 

with right lobes do not depend only on the larger size of these grafts. Also, for both LASSO and 

NNET models, the rough graft weight was a better predictor of graft failure than the GWBWR 

(Figure 4). This suggests that the recipient body weight is a good, but probably not the best 

comparator for the graft weight. Consistently, the NNET found more informative the height rather 

than the weight of the recipient (Figure 4).   

The evidence that the NNET outperformed the LASSO regression model supports the 

presence of an intricate relation between the predictors and the outcome. Probably, the NNET could 

understand these complex, nonlinear interactions existing at multiple levels better than LASSO 

regression could. A further advantage is also that NNET can use all the information provided by a 

large set of clinical meaningful parameters,  without necessitating any a priori selection of 

predictors, which likely leads to a loss of information. The superiority of NNETs over other 

machine learning algorithms and linear regression in predicting transplant outcomes has been also 

confirmed elsewhere
34

.   

To ensure good applicability, the prediction model was built on parameters that are easily 

available before surgery. The graft steatosis rate was therefore excluded since the need for liver 

biopsy results would limit the model usability. Although donor’s liver biopsy is mandatory in most 
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transplant centres and the information gathered serves also to improve donor safety
35–38

, this 

procedure is usually performed at a late workup stage, and not during the initial screening phase 

where a prediction model would be more useful.  In addition, this information was missing for 80% 

of the patients. However, a surrogate for graft steatosis such as donor BMI was included in the 

model
39

.  Graft weight and GWBWR were at first included as predictors, although only an estimate, 

subject to error, is available before surgery
29

. Surprisingly, the model’s predictions remained 

accurate also when based on these estimates, possibly because the estimation error has a negligible 

impact on the overall risk computation. Nonetheless, a predictive model independent from graft 

weight (and GWBWR) was also developed. Even more surprisingly, this simplified NNET model 

hold the same performance as the full NNET model. This leads to hypothesize that the NNET, using 

donor’s  and recipient’s anthropometric data, can probably estimate the grade of the graft size to 

recipient size mismatch with such approximation to efficiently predict the risk even in absence of 

information regarding the graft. As confirmation of this hypothesis, after excluding the graft weight 

from predictors, the donor’s height gained a significant importance among the predictors of graft 

failure  (Figures 4 and 7).  The equivalence performance between the full and simplified NNET 

model is relevant, meaning that a risk assessment can be obtained even before performing any liver 

volumetric assessment on the donor.  

The NNET model showed a discriminative capacity comparable to those of other prediction 

models widely employed in liver transplantation
17,18

. In this setting,  suboptimal AUC values are 

probably due to the occurrence of unpredictable events, such as intraoperative and postoperative 

complications that also affect graft survival and distort the relationship between predictors and 

outcomes. In absence of alternatives, however, these tools remain the only valuable support to the 

clinical decision-making process in liver transplantation. Model calibration was also fair, 

particularly for risks < 50%, which encompassed most of the model predictions. Since 

discrimination and calibration do not fully account for the clinical utility of a prediction tool, we 

assessed this aspect using the decision curve analysis
27

. This quantified the resulting net clinical 

benefit over a range of threshold probabilities, each of these representing a different harm-benefit 

ratio, that is, a different weighing of risks versus benefits
40

. The higher the threshold, the more 

serious a graft loss is considered with respect to a successful transplant. For example, in DDLT, the 

goal of graft survival of 70% at 5 years is represented by a threshold probability of 0.7,  

corresponding to an accepted 7:3 odds of graft survival versus non-survival at 5 years. Indeed, it is 

difficult to identify such a threshold for LDLT, which also varies according to the clinical situations 

and donor’s expectations. Nonetheless,  a threshold less than 0.5 remains inadmissible, since it 

corresponds to an odds of 1, i.e. accepting one early graft failure for each non-failure. Remarkably, 

the NNET models were associated with a net clinical benefit for all threshold probabilities > 0.5. 

Since the model provides the risk of graft failure as a continuous value between 0 and 100%, 

adopting a cut-off for taking clinical decisions is needed. Graft failure increases significantly for 

risks > 30% and a cut-off value of 22.4% was found to optimizes both sensitivity (0.60) and 

specificity (0.80). However, cut-offs that maximize either the specificity or sensitivity might be 

more useful in specific settings.  For example, a high-sensitivity cut-off (e.g. 5%) might help in 

safely choosing between multiple donors minimizing the risk of false-negative predictions. On the 

contrary, a high-specificity cut-off (e.g. 40%) would select LDLTs at a very high risk of failure. 

This should prompt the evaluation of alternative options (e.g. DDLT), a careful discussion with the 

donor about the likelihood of a futile donation, or the decision to refraining from an LDLT due to a 

very unfavourable harm-to-benefit ratio. In this view, risk predictions would be best used as a 
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continuous value, rather than dichotomized in a low/high risk, and should be interpreted in the light 

of the specific clinical setting.  

This study has some limitations. Treatment effect on outcomes could not be assessed, as 

frequently occurs in risk prediction modelling. For example, the impact on outcomes of 

surgical
7,41,42

 or pharmacological treatments
43

 to moderate portal hypertension in presence of a low 

GWBWR could not be appraised,  since such procedures are not recorded in the ELTR. Similarly, 

the effect of target therapies in presence of ABO incompatibility could not be assessed
44

. As a 

consequence, the best available treatment options, either surgical or medical, should be ensured to 

patients despite the predicted risk of failure. The model was built on a large, representative cohort 

of patients from different centers and countries, and showed a consistent performance at validation 

in a random internal independent set. Albeit this suggests optimal performance in new cohorts of 

patients, external validation remains indispensable.  Finally, this model cannot compute that part of 

risk of failure depending on graft anatomy, e.g. the necessity of performing multiple biliary or 

arterial anastomoses, venous reconstructions, which needs to be evaluated case by case by the 

surgical team.  

Despite these shortcomings, this study has several strengths points and adds some valuable 

information to the literature. An unprecedented sample of LDLTs allowed a powered statistical 

analysis which confirmed most of the information individually reported so far to the literature. 

Compared to the living donor risk score
19

, this prediction model moves some steps forward, as it 

incorporates important predictors as the indices of liver disease severity (i.e MELD score, CHILD 

score). Furthermore, in contrast to the prediction of medium to long-term graft survival offered by 

the living donor risk score
19

, the present model focuses on a robust short-term endpoint which 

indisputably equates to zero benefits from LDLT. As such, this model provides consistent 

information for clinical decision making. Notably, the NNET showed a higher performance in those 

LDLTs traditionally judged to be at greater risk of failure, like those performed on recipients with 

high MELD scores or in the presence of a low GWBWR. Despite being based on a complex 

algorithm, this prediction model is made easily usable by everyone through a web application.  

In conclusion, several donor and recipient related factors determine the risk of graft failure 

following LDLT through a complex interaction. A comprehensive evaluation of all these 

parameters could improve donor and recipient selection and contribute to further improve recipient 

outcomes while avoiding at the same time futile surgery on healthy individuals.  Given the amount 

of information to process,  artificial intelligence can play a role by overcoming the limits of the 

human mind and conventional statistics. 
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Table 1.  Donor and recipient characteristics 

 Total  
(N=5201) 

 
3-months Graft loss 

 

 n† Summary 

measure a 

 No 

(N=4288) 

Yes 

(N=913) 

p value 

Donor age (years) 5073 33.0 (26.0, 42.0)  32.0 (26.0, 41.0) 34.0 (27.0, 44.0) < 0.001 

Donor gender (Female) 5059 2097 (41.5%)  1678 (80.0%) 419 (20.0%) < 0.001 

Donor BMI (kg/m2) 4580 24.3 (22.2, 26.6)  24.2 (22.1, 26.5) 24.5 (22.3, 26.9) 0.014 

Type of graft 4001     < 0.001 

   LLS  33 (0.8%)  21 (63.6%) 12 (36.4%)  

   Left  156 (3.9%)  102 (65.4%) 54 (34.6%)  

   Right  3807 (95.2%)  3231 (84.9%) 576 (15.1%)  

   Other  5 (0.1%)  2 (40.0%) 3 (60.0%)  

Graft weight (g) 3375 795.0 (690.0, 904.0)  800.0 (700.0, 910.0) 760.0 (650.0, 880.2)  

GWBWR 3317 1.1 (0.9, 1.3)  1.1 (0.9, 1.3) 1.0 (0.9, 1.3) 0.001 

≤ 0.8  265 (8.0%)  192 (72.5%) 73 (27.5%) < 0.001 

> 0.8  3052 (92.0%)  2585 (84.7%) 467 (15.3%)  

Recipient Age 5201 51.9 (42.0, 58.7)  51.9 (42.0, 58.7) 51.8 (42.0, 58.9) 0.778 

Recipient gender (Female) 5200 1796 (100.0%)  1456 (81.1%) 340 (18.9%) 0.059 

Recipient BMI 4500 25.3 (22.5, 28.4)  25.4 (22.6, 28.4) 24.9 (22.4, 28.0) 0.044 

Recipient ABO Group 5180     0.019 

   A  2212 (42.7%)  1863 (84.2%) 349 (15.8%)  

   AB  319 (6.2%)  259 (81.2%) 60 (18.8%)  

   B  811 (15.7%)  647 (79.8%) 164 (20.2%)  

   O  1838 (35.5%)  1501 (81.7%) 337 (18.3%)  

ABO incompatible (Yes) 5065 63 (1.2%)  44 (1.1%) 19 (2.1%) 0.009 

Liver disease 5201     < 0.001 

   Hep B  1430 (27.7%)  1231 (86.1%) 199 (13.9%)  

   Alcohol  1064 (20.6%)  853 (80.2%) 211 (19.8%)  

   HCC  690 (13.4%)  587 (85.1%) 103 (14.9%)  

   Hep C  658 (12.7%)  542 (82.4%) 116 (17.6%)  

   Cholestasis  387 (7.5%)  316 (81.7%) 71 (18.3%)  

   Metabolic  229 (4.4%)  189 (82.5%) 40 (17.5%)  

   Autoimmune  169 (3.3%)  135 (79.9%) 34 (20.1%)  

   Acute / Subacute liver failure  151 (2.9%)  94 (62.3%) 57 (37.7%)  

   Budd-Chiari  96 (1.9%)  69 (71.9%) 27 (28.1%)  

   Congenital biliary disease  33 (0.6%)  25 (75.8%) 8 (24.2%)  

   Other  257 (5.0%)  215 (83.7%) 42 (16.3%)  

MELD score 3758 15.0 (11.0, 20.0)  15.0 (11.0, 20.0) 17.0 (12.0, 22.0) < 0.001 

<24  585 (15.6%)  2640 (83.2%) 533 (16.8%) < 0.001 

≥24  3173 (84.4%)  441 (75.4%) 144 (24.6%)  

MELD-Na score 3422 18.1 (13.7, 23.8)  17.7 (13.0, 23.0) 20.6 (15.6, 26.2) < 0.001 

CHILD score 3448 9.0 (7.0, 10.0)  9.0 (7.0, 10.0) 9.0 (8.0, 11.0) < 0.001 

CHILD class 3448     < 0.001 

   A  555 (16.1%)  500 (90.1%) 55 (9.9%)  

   B  1552 (45.0%)  1326 (85.4%) 226 (14.6%)  

   C  1341 (38.9%)  1072 (79.9%) 269 (20.1%)  

Urgent transplant (Yes) 4836 191 (3.9%)  122 (63.9%) 69 (36.1%) < 0.001 

Multiorgan transplant (Yes) 5201 25 (0.5%)  22 (88.0%) 3 (12.0%) 0.464 

UNOS status  4603     < 0.001 

   ICU  181 (3.9%)  107 (59.1%) 74 (40.9%)  

   Hospitalized – Non-ICU  1082 (23.5%)  836 (77.3%) 246 (22.7%)  

   Continuous Medical care  2150 (46.7%)  1833 (85.3%) 317 (14.7%)  

   Home  1190 (25.9%)  1032 (86.7%) 158 (13.3%)  

Gender mismatch (Yes) 5058 2408 (47.6%)  1948 (80.9%) 460 (19.1%) 0.008 

Female-to-male  1376 (27.0%)  1103 (80.2%) 273 (19.8%) 0.011 

Male-to-female  1032 (20.0%)  845 (81.9%) 187 (18.1%) 0.602 

Number of observations available a Continuous data are reported as median and interquartile range. Percentage counts refers to rows for data 

regarding the occurrence of 3-months graft loss in case of multiple (>2) categories. BMI, body mass index; GWBWR , graft weight to recipient body 

weight ratio;  MELD, model for end stage liver disease; UNOS, United Network for Organ Sharing, ICU, Intensive Care Unit 
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Table 2.  Graft failure according to time and center specific characteristics 

 

.  

a According to the total number of cases reported to the European Liver Transplant Registry for each center 
b First 15 cases of LDLT for each center reported to the European Liver Transplant Registry for each center 

LDLT, adult-to-adult living donor liver transplantation  

 Total  

(N=5201) 

 
3-months Graft loss 

 

   No  
(N=4288) 

Yes  
(N=913) 

p value 

Transplant year     0.884 

≤2006 1519   1262 (83.1%) 257 (16.9%)  

2007-2010 813   667 (82.0%) 146 (18.0%)  

2011-2013 1643   1353 (82.3%) 290 (17.7%)  

≥ 2014 1226   1006 (82.1%) 220 (17.9%)  

Center Volumea     0.103 

1st quartile (≤3 LDLTs) 33   30 (90.9%) 3 (9.1%)  

2nd quartile (4-11 LDLTs) 130   98 (75.4%) 32 (24.6%)  

3rd quartile (12-62  LDLTs) 715   589 (82.4%) 126 (17.6%)  

4th quartile (>63 LDLTs) 4323   3571 (82.6%) 752 (17.4%)  

Early center cases b      0.049 

Yes 822   658 (80.0%) 164 (20.0%)  

No 4379   3630 (82.9%) 749 (17.1%)  
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Table  3. Univariable and multivariable analysis. 

 

† * Given the evidence of multi-collinearity and redundancy between these variables, solely the MELD and GWBWR </> 0.8 were entered into the 

multivariable analysis. BMI, body mass index, MELD,  model for end-stage liver disease; UNOS, United Network for Organ Sharing, ICU, Intensive 

Care Unit, GWBWR, graft weight to recipient body weight ratio 

 

  

  Univariable analysis Multivariable analysis 

 missing OR 95% CI p value AUC OR 95% CI p value 

Donor age (years) 128 1.02 (1.01, 1.02) < 0.001 0.546 1.00 (0.99-1.01) 0.326 

Donor gender (M) 142 0.76 (0.66, 0.88) < 0.001 0.534 0.77 (0.53-1.11) 0.167 

Donor BMI (kg/m2) 621 1.03 (1.01, 1.05) 0.006 0.527 1.00 (0.97-1.03) 0.930 

Type of graft (Left) 1205 1.08 (0.48, 2.33) 0.848 0.533 0.89 (0.29, 2.88) 0.854 

Type of graft (Right)  0.34 (0.24, 0.48) < 0.001  0.29 (0.10, 0.88) 0.022 

Recipient gender (M) 1 0.87 (0.75, 1.01) 0.059 0.516 0.92 (0.68,1.24) 0.587 

Recipient BMI (kg/m2) 701 0.99 (0.97, 1.00) 0.127 0.523    

Recipient blood group AB 21 1.24 (0.91, 1.66) 0.170 0.531    

Recipient blood group B  1.35 (1.10, 1.66) 0.004     

Recipient blood group O  1.20 (1.02, 1.41) 0.031     

Acute liver Failure  2.97 (2.11,4.14) < 0.001 0.521 0.87 (0.46,1.59) 0.657 

Metabolic  0.99 (0.69,1.39) 0.962 0.503    

Hep C  1.00 (0.81,1.24) 0.974 0.502    

Hep B  0.69 (0.58,0.82) < 0.001 0.546 0.85 (0.64-1.12) 0.261 

Budd Chiari  1.86 (1.17,2.88) 0.007 0.513 1.62 (0.84-2.96) 0.127 

Autoimmune  1.19 (0.80,1.72) 0.379 0.503    

Cholestasis  1.06 (0.80,1.37) 0.682 0.502    

Alcohol  1.21 (1.02,1.43) 0.031 0.516 1.18 (0.88-1.59) 0.249 

HCC  0.80 (0.64,1.00) 0.049 0.512 0.92 (0.57,1.43) 0.725 

Congenital biliary disease  1.50 (0.63,3.20) 0.317 0.501    

Other   0.91 (0.64,1.27) 0.592 0.502    

MELD score † 1443 1.04 (1.03, 1.05) < 0.001 0.577 1.03 (1.01,1.04) < 0.001 

MELD-Na score† 1779 1.05 (1.04, 1.06) < 0.001 0.602    

CHILD score† 1753 1.17 (1.12, 1.22) < 0.001 0.597    

Child-class (B) † 1753 1.55 (1.14, 2.13) 0.006 0.572    

Child-class (C) †  2.28 (1.69, 3.13) < 0.001     

Urgent transplant (Yes) 365 2.79 (2.05, 3.78) < 0.001 0.525 1.14 (0.66, 1.91) 0.634 

UNOS status (Hosp) 598 1.92 (1.54, 2.40) < 0.001 0.590 2.55 (2.02, 3.21) < 0.001 

UNOS status (ICU)  4.52 (3.21, 6.34) < 0.001  4.09 (2.44, 6.84) < 0.001 

UNOS status (Med)  1.13 (0.92, 1.39) 0.245     

Graft weight* 1826 0.99 (0,99-0,99) < 0.001 0.571    

GWBWR* 1884 0.61 (0.42, 0.86) 0.006 0.544    

GWBWR < 0.8* 1884 2.10 (1.57, 2.79) < 0.001 0.533 1.57 (1.08-2.27) 0.001 

ABO incompatibility (yes) 136 2.04 (1.16, 3.46) 0.010 0.505 1.95 (0.63, 5.40) 0.213 

Gender mismatch 143 1.22 (1.05, 1.41) 0.008 0.524    

Female-to-male 99 1.23 (1.05, 1.44) 0.011 0.521 1.11 (0.71, 1.73) 0.656 

Early center case - 1.21 (1.00, 1.46) 0.047 0.513 0.72 (0.42, 1.18) 0.220 



22 

 

Table 4.  Donor and recipient characteristics in the training and test set 

 Training set 

(N=2060) 

Test set  

(N=515) 

p value 

Donor age (years) 32.0 (26.0, 39.0) 32.0 (25.0, 39.0) 0.796 

Donor gender (Female) 779 (37.8%) 211 (41.0%) 0.188 

Donor BMI (kg/m2) 24.5 (22.3, 27.0) 24.8 (22.4, 27.4) 0.595 

Type of graft    0.134 

   Left 66 (3.2%) 10 (1.9%)  

   LLS 14 (0.7%) 1 (0.2%)  

   Right 1980 (96.1%) 504 (97.9%)  

Recipient Age 51.6 (41.7, 58.6) 51.8 (42.1, 58.9) 0.961 

Recipient gender (Female) 672 (32.6%) 153 (29.7%) 0.205 

Recipient BMI 25.8 (23.1, 29.1) 25.6 (23.0, 29.1) 0.609 

Recipient ABO Group   0.519 

   A 910 (44.2%) 246 (47.8%)  

   AB 150 (7.3%) 37 (7.2%)  

   B 339 (16.5%) 80 (15.5%)  

   O 661 (32.1%) 152 (29.5%)  

MELD score 16.0 (12.0, 21.0) 15.0 (12.0, 20.0) 0.278 

MELD-Na score 18.6 (14.0, 24.2) 17.8 (14.0, 23.4) 0.216 

CHILD score 9.0 (7.0, 11.0) 9.0 (7.0, 10.0) 0.182 

CHILD class   0.582 

   A 325 (15.8%) 90 (17.5%)  

   B 934 (45.3%) 234 (45.4%)  

   C 801 (38.9%) 191 (37.1%)  

Urgent transplant (Yes) 113 (5.5%) 26 (5.0%) 0.695 

Associated transplant (Yes) 13 (0.6%) 5 (1.0%) 0.408 

UNOS status   0.542 

   At home with normal function 486 (23.6%) 113 (21.9%)  

   Continuous hospitalization 508 (24.7%) 117 (22.7%)  

   Intensive care unit-bound 96 (4.7%) 25 (4.9%)  

   Continuous medical care 970 (47.1%) 260 (50.5%)  

GWBWR 1.1 (0.9, 1.3) 1.1 (0.9, 1.3) 0.608 

GWBWR <0.8 145 (7.0%) 38 (7.4%) 0.788 

ABO incompatible (Yes) 11 (0.5%) 4 (0.8%) 0.517 

Gender mismatch  943 (45.8%) 236 (45.8%) 0.984 

Female-to-male 525 (25.5%) 147 (28.5%) 0.158 

Male-to-female 418 (20.3%) 89 (17.3%) 0.124 

MELD score >24 357 (17.3%) 72 (14.0%) 0.068 

Graft loss 3 months 348 (16.9%) 96 (18.6%) 0.348 

Early center cases 104 (5.0%) 19 (3.7%) 0.196 

Center Volume   0.853 

1st quartile 58 (2.8%) 16 (3.1%)  

2nd quartile 425 (20.6%) 99 (19.2%)  

3rd quartile 495 (24.0%) 121 (23.5%)  

4th quartile 1082 (52.5%) 279 (54.2%)  

 

Continuous data are presented as median and interquartile range. 

BMI, body mass index, MELD, model for end stage liver disease; UNOS, United Network for Organ Sharing, ICU, Intensive Care Unit, GWBWR, 

graft weight to recipient body weight ratio   
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Table 5. Coefficients of predictors selected by the LASSO logistic regression 

 

 

Predictor Coefficient 

Graft weight       -0.020 

Type of graft = Right      -0.26 

UNOS Status = Hospitalized          0.25 

UNOS Status = ICU 0.63 

Child score 0.53 
Lamba 0.03 

 

UNOS, United Network for Organ Sharing, ICU, Intensive Care Unit 
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Table 6.  Sensitivity and specificity of the simplified NNET model at different risk cut-offs. 

 

 

 

 

 

 

 

 

 

 

 

PPV, positive predictive value, NPV, negative predictive value, LR+, positive likelihood ratio, LR-, negative likelihood ratio 

 

 

 

 

 

 

 

  

Cut-off Sensitivity Specificity PPV NPV LR+ LR- 

1% 1,00 0,01 0,17 1,00 1,01 0,00 

2% 1,00 0,05 0,18 1,00 1,05 0,00 

3% 0,99 0,12 0,19 0,99 1,13 0,05 

5% 0,97 0,25 0,21 0,97 1,29 0,13 

10% 0,86 0,50 0,26 0,94 1,70 0,29 

20% 0,64 0,76 0,36 0,91 2,66 0,48 

30% 0,50 0,85 0,41 0,89 3,40 0,59 

40% 0,41 0,90 0,47 0,88 4,25 0,66 

50% 0,21 0,98 0,66 0,86 9,24 0,81 

60% 0,14 0,99 0,77 0,85 16,02 0,87 

70% 0,09 1,00 0,82 0,84 21,97 0,91 

80% 0,06 1,00 0,95 0,84 96,11 0,94 
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Figure 1. Plots showing the shape of the relation between continuous variables and the probability of early graft loss 

modelled using local weighted regression (LOESS). 
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Figure 2. ROC curves showing the discrimantive accuracy of the LASSO regression model (a) and the NNET 

prediction model (b) on the test set. Box plots  showing the distribution of predicted risk between LDLTs with and 

without occurrence of the early graft loss for the LASSO (c) and the NNET (d) prediction model.  
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Figure 3. Calibration plots comparing for the LASSO prediction model (a) and the NNET prediction model (b) the 

predicted vs observed frequencies of graft loss occurrence for different risk groups.  
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Figure 4. Features importance within the neural network model  
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Figure 5. Density plots showing the distribution of the risks predicted by the NNET model (a) and the LASSO 

prediction model (b) 
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Figure 6.  Decision curves showing the net benefit (a) and net reduction in graft losses for 100 LDTs resulting from the 

adoption of the NNET and LASSO prisk prediction models. 
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Figure 7.  Variable importance within the simplified NNET prediction model 
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Figure 8. Decision curve comparing, at different threshold probabilities, the net benefit associated with the two 

developed NNET prediction models, including and not including the graft weight and the graft-to-recipient-body weight 

ratio as predictors. 
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Figure 9. Sensitivity (a) and specificity (b) of the simplified neural ntetwork (not including graft weight and the graft-

to-recipient-body weight ratio as predictors) risk prediction model at different risk-cut-offs. 
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Figure 10. A fagan nomogram showing changes in the probability of early graft failure (3 months) after risk assessment 

with the simplified NNET model. Starting from a test probability of  17.5% (incidence of 3-months graft failure in the 

ELTR), predicted risks higher than 30%,50% and 60% are associated with individual post-test probabilities  of graft 

failure at 3 months of 41.4%, 69% and 74.8%, respectively. On the contrary, predicted risks inferior to 10% and 5% are 

associated with  individual post-test probabilities  of graft failure at 3 months of 5.60% and 2.48%.  


