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Optimal Energy-Driven Aircraft DesignUnder
Uncertainty

Abstract

Aerodynamic shape design robust optimization is gaining popularity in the aeronautical

industry as it provides optimal solutions that do not deteriorate excessively in the pres-

ence of uncertainties. Several approaches exist to quantify uncertainty and, the disser-

tation deals with the use of risk measures, particularly the Value at Risk (VaR) and the

Conditional Value at Risk (CVaR).The calculation of these measures relies on the Empir-

ical Cumulative Distribution Function (ECDF) construction. Estimating the ECDFwith

a Monte Carlo sampling can require many samples, especially if good accuracy is needed

on the probability distribution tails. Furthermore, suppose the quantity of interest (QoI)

requires a significant computational effort, as in this dissertation, where has to resort to

Computational Fluid Dynamics (CFD) methods. In that case, it becomes imperative to

introduce techniques that reduce the number of samples needed or speed up theQoI eval-

uations while maintaining the same accuracy. Therefore, this dissertation focuses on in-

vestigating methods for reducing the computational cost required to perform optimiza-

tion under uncertainty. Here, two cooperating approaches are introduced: speeding up

the CFD evaluations and approximating the statistical measures.

Specifically, the CFD evaluation is sped up by employing a far-field approach, capable

of providing better estimations of aerodynamic forces on coarse grids with respect to a

classical near-field approach. The advantages and critical points of the implementation of

this method are explored in viscous and inviscid test cases.

On the other hand, the approximation of the statistical measure is performed by using

the gradient-based method or a surrogate-based approach. Notably, the gradient-based
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method uses adjoint field solutions to reduce the time required to evaluate them through

CFD drastically. Both methods are used to solve the shape optimization of the central

section of a Blended Wing Body under uncertainty. Moreover, a multi-fidelity surrogate-

based optimization is used for the robust design of a propeller blade.
Finally, additional research work documented in this dissertation focuses on utilizing

an optimization algorithm that mixes integer and continuous variables for the robust op-
timization of High Lift Devices.
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Introduction

During the last decades, the aviation industry has substantially grown. Despite the devel-
opments formore efficient aircraft, the pollution due to air transport has rapidly increased.
Hence, nowadays, the aeronautical community is called upon to enhance the environmen-
tal impact in the face of continuing expansion in demand for aviation. The Clean Sky 2
rationale states that the aviation sector is responsible for about 12% of transport emis-
sions and 2% of all human-induced CO2 emissions. The reduction of gas emissions and
noise has been, and still is, a crucial point in programs like Clean Sky 2, Horizon 2020

or Flightpath 2050 vision of the Advisory Council for Aeronautics Research and Inno-
vation in Europe. In particular, the target for 2050, compared to the year 2000 levels, is
to achieve a 90% decrease in NOx emissions and a 75% reduction in CO2 emissions per
passenger-kilometer. Also, the perceived noise emission of flying aircraft reduction target
is 65%.

To that end, theminimization of aircraft drag is a crucial point to diminish the emission
of pollutants. Classically, deterministic aerodynamic design optimization problems were
solved considering constraints in the aerodynamic performances and shape. However, the
aerodynamics performance in real-world applications is inherently uncertain due to man-
ufacturing tolerances, uncertain environmental conditions [1, 2], shape deformation un-
der loads, debris accumulation on the wing surface, and other physical phenomena like
the icing [3]. Therefore, uncertainties must be accounted for already during the design
of aerodynamic shapes. Thus, robust and reliability-based design optimization is gaining
popularity in the industrial context since this approach helps to obtain solutions that do
not deteriorate excessively in the presence of uncertainties.

The language of probability theory is used to model these sources of uncertainty re-
lated to the real world or future events and states that are not explicitly foreseeable. In
many approaches, random variables allow these types of uncertainty to be taken into ac-
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count in optimization processes. Random variables are formally defined as measurable
functions; consequently, objectives and constraints become functions that, in turn, must
be remapped into real numbers representative of performance to proceed with the opti-
mization process. Historically, several approaches have been used: the best estimate, the
worst case, or the expected values with safety margins [4]. Recently, it has been intro-
duced the use of risk measurement functionals, such as the Value-at-Risk (VaR) and the
Conditional Value-at-Risk (CVaR), for robust design optimization [5]. The financial field
introduced these measures to account for the risk of a portfolio. The focus of this dis-
sertation is the efficient calculation of these risk measure functionals (or risk measures,
for brevity). Their calculation requires evaluating the Empirical Cumulative Distribution
Function (ECDF) of the Quantity of Interest (QoI). To accurately calculate the risk mea-
sure from the ECDF, numerous function evaluations are needed. Specifically, for high-
fidelity aerodynamic shape design, the function evaluations require Computational Fluid
Dynamics (CFD) runs as the QoIs are the aerodynamic characteristics. Typically, these
CFDevaluations are expensive and burden the computational budget for the optimization
problem.

Therefore, the research activity focus is investigating methods to reduce the CPU time
for robust design optimization. To that end, two approaches to reduce computational time
are investigated:

1. speeding up the CFD evaluations;

2. approximating the statistical measure.

The speeding up of the CFD computational time relies on improving the estimation
error of aerodynamic forces on coarse meshes through a far-field approach. Indeed, CFD
solvers use a near-field approach for the aerodynamic force calculation, but this requires a
rather fine computational mesh to obtain acceptable results. Conversely, the introduction
of a far-field formula allows calculating the drag coefficient with a precision similar to the
near-field approach but using a coarser mesh. This result is possible because the far-field
approach allows the identification and filtration of the spurious drag sources (truncation
error and artificial dissipation). The far-field formula employed in the dissertation is based
on entropy variations and was developed by Paparone and Tognaccini [6]. The Entropy
Drag Concept was introduced byOswatitsch [7]. Besides, in the literature, other authors,
suchasDestarac andVanDerVooren [8] andGariépy et al. [9], also studied anddeveloped
formulas for drag breakdown.
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The approximation of the statistical measure relies on both intrusive and non-intrusive
surrogate modelling approaches. The intrusive approach requires using theRANS adjoint
solution to compute the gradient of the QoI with respect to the uncertainty sources. The
computed gradient allows building a 1st order approximation of the QoI empirical cu-
mulative distribution function (ECDF).The non-intrusive approach relies on an adaptive
Gaussian processes approach to compute the ECDF approximation. Nevertheless, many
other efficient uncertainty quantification methods are available in the scientific literature,
although their consideration is beyond this dissertation scope. However, it is worth men-
tioning some of these methods to allow correct placement of this work in the context of
the current state of the art of scientific research. Firstly, the Polynomial Chaos Expan-
sion (PCE) [10–12]. PCE has excellent efficiency performance compared to the classical
Monte Carlo (MC) sampling methods for industrial interest problems [13]. The major
limitation of this method is the ‘curse of dimensionality’. Indeed, for a large number of un-
certainty sources, the method becomes computationally expensive. Hence, PCE can be a
viable alternative to themethods proposed herewhen the number of randomvariables de-
scribing the uncertainty sources is low. Moreover, another non-intrusive method used for
quantifyinguncertainty is StochasticCollocation (SC)[14, 15]. A comparisonof Stochas-
tic Collocation and Polynomial Chaos Expansion techniques is provided in [16]. Fur-
thermore, other authors focused on developing advanced techniques based on theMonte
Carlo sampling to overcome its slow convergence rate while still taking the advantage of
its robustness and accuracy. An example of thesemethods is theMulti-LevelMonte Carlo
(MLMC) introduced by Heinrich [17] and Giles [18] and expanded to the computation
of arbitrary order central statistical moments byKrumscheid et al. [19]. Also, an improve-
ment of MLMC was presented by Pisaroni et al. [20] that introduced the Continuation
Multi-Level Monte Carlo (C-MLMC)methodology.

The last part of the thesis deals with a different topic, even if it is closely related to what
it is seen previously. In greater detail, the problem of robust design of High Lift Devices
(HLD) is addressed. Hence the focus of the work is on the treatment, in the same opti-
mization run, of configurations with a variable number of airfoil components. This im-
plies that the optimizer must take into account both integer or enumerative variables as
well as continuous variables. In particular, the discrete variables manage the topological
changes of the configuration and the continuous ones the dimensioning and the reciprocal
positioning of the components that make up the airfoil. Given the complexity and strong
non-linearity of the search space, the angle of attack is the only uncertain parameter with
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respect to which to test the robustness of the solution. Classically, the design of HLDs
is a two-steps procedure; first, a promising airfoil type (number of airfoil elements) is se-
lected, and second, the optimal position and shape of the elements are obtained through
an optimization run. Optimization algorithms that mix continuous and integer variables
can improve classical design strategies by including configurational decisions, in this case,
the airfoil type, in an automated optimization tool. The integration of these decisions,
usually taken a-priori based on previous knowledge, represents a step forward for themul-
tidisciplinary design optimization field. A surrogate-based approach is used to minimize
the computational optimization cost, and a quadrature approach is employed to quantify
uncertainty.

In summary, the dissertation follows the subsequent organization. Firstly, the advan-
tages of robust optimization and the use of riskmeasures for uncertainty quantification are
introduced inChapter 1. Chapter 2 summarizes the optimization algorithms used and the
tools needed for aerodynamicdesignoptimization, withparticular reference to the aerody-
namic shape parametrizations, grid generators, andCFDflow solvers. The differentmeth-
ods to reduce the computational effort for robust optimization are the object of Chapter 3
to Chapter 5. In particular, the speeding up of the CFD evaluations through a far-field
approach is discussed in Chapter 3. The statistical measure approximations through the
adjointmethod andGaussian processes are inChapter 4 andChapter 5. Finally, the robust
designofHighLiftDevices through anoptimizationprocess thatmixes continuous and in-
teger variables is in Chapter 6. It should be emphasized that, although the thesis is entirely
focusedon increasing the computational efficiency of robust optimizationmethodologies,
different paths have been explored which, however, are very interconnected and, in each
of these, an original research contribution was presented, as shown in the highlights of the
concluding chapter.

Summing-up, the key point addressed is the efficient use of novel and effective risk
measures based on the cumulative distribution function, namely CVaR, and VaR, for
robust aerodynamic design optimization usingRANS high fidelity flow solvers. This goal
is achieved through three converging strategies:

1. speeding up the CFD evaluation process using coarser grids while keeping reason-
able precision in aerodynamic quantities estimation;

2. development of intrusive and non-intrusive methodologies for risk measure ap-
proximation;
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3. reduction of the computational cost of robust aerodynamic optimization problems
that combine continuous and discrete variables.
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1
From deterministic to robust optimization

Thetheoretical backgroundof optimization under uncertainty is introduced in the present
chapter, starting from the classical deterministic optimization problem formulation. Sev-
eral approaches to face robust or reliability-based optimization are given. Besides, the use
of riskmeasures to solve these problems is addressed inmoredetail. In particular, the state-
of-the-art Value at Risk andConditional Value at Riskmeasures are introduced. At the end
of the chapter, a ‘toy’ design problem example is provided to show the advantages of ro-
bust optimization. The purpose is to illustrate these new risk functions advantages with a
practical example with issues very close to those of our interest. The chapter is based on
Chapter 13 of the bookOptimization Under Uncertainty with Applications to Aerospace
Engineering [21].
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1.1 Optimization under uncertainty

Classically, optimization problems aremathematically definedusing theminimization for-
mulation referred below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(z)
z ∈ S

s.to ∶

ci(z) ≤ 0 i = 1, . . . ,m

S ⊆ Rn

(1.1)

where, the objective function is f(z) and the vector z is referred to as the vector of de-
sign variables. Furthermore, the objective functionmay be subject to constraint functions,
expressed by ci(z). Constraints functions can be linear or nonlinear functions of the de-
sign variables, and these functions can be either explicit or implicit in z. A quite common
convention, which does not affect the generality of the formulation, is to represent all the
inequalities as non-positive ones. In addition, the problem (Eq. (1.1)) has been presented
as aminimization problem, but some optimization problemsmight requiremaximization.
Indeed, themaximizationoff(z) is always equivalent to theminimizationof−f(z) [22].

However, in most engineering problems, unknowns or future states must be consid-
ered. Moreover, they must account for the stochastic nature of the system and processes
to be designed. For example, industrial manufacturing processes and real operating con-
ditions inevitably introduce tolerances in the production and uncertainties in the working
conditions, respectively, that will lead to deviations from the considerations taken at the
design stage. Hence, randomvariables are introduced, and a stochastic optimization prob-
lem is defined to model the process under investigation correctly.

A random variable is defined as a measurable functionX ∶ Ω ↦ R that maps possible
outcomesΩ to ameasurable spaceR, with(Ω,F , P ) aproperlydefinedprobability space,
with ω ∈ Ω,F = 2

Ω, andP a probability measure [23].
Mathematically, thedirect introductionof randomvariables into theoptimizationprob-

lem (Eq. (1.1)) introduces a functional dependency that must be appropriately treated to
avoid inconsistencies. Indeed, the introduction of random variables leads to the following
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problem formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(z, X)
z ∈ S

s.to ∶

ci(z, X) ≤ 0 i = 1, . . . ,m

S ⊆ Rn

(1.2)

where the objective function and the constraints are now functions of functions. There-
fore, a way to recast the problem into an optimization one must be searched by remap-
ping these functions into real numbers representative of performance. Herein, several ap-
proaches are shown.

Best estimate: a particular outcome (ω̄ ∈ Ω) is chosen as the best estimate of the un-
known status. As a consequence, the problem is, then, reconstructed as a deterministic
optimization: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(z, X(ω̄))
z ∈ S

s.to ∶

ci(z, X(ω̄)) ≤ 0 i = 1, . . . ,m

S ⊆ Rn

(1.3)

Although this approach is attractive for its simplicity, this kind of alternative is very risky,
as the choice of the typical outcome ω̄ is somewhat arbitrary and might not reflect at all
what happens in reality.

On the other hand, this strategy can be extended by considering not a single outcome
but a set of them. Notably, by choosing this set ad hoc, possibly resorting to an optimiza-
tion process, it is possible to approximatemore rigorous approaches, such asMonte Carlo
sampling, while limiting the number of samples required. An example of this approach is
given in the chapter on Gaussian processes.

Worst case: contrary to the best estimate strategy, theworst possible outcomes are iden-
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tified for the unknown status. This leads to the following minmax problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min supf(z, X(ω))
z ∈ S ω ∈ Ω

s.to ∶

ci(z, X(ω)) ≤ 0 i = 1, . . . ,m

S ⊆ Rn

(1.4)

Twomain disadvantages of thismethod are thatminmax problems are generally very com-
putationally expensive and that the obtained solution is too conservative. In addition,
there is a high probability facing a non-feasible problem.

Expected values with safety margins: in this case, expectations, as well as standard devi-
ations, are introduced in a weighted sum. Therefore, the robust design problem is cast in
the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min E[f(z, X)] + λ0σ(f(z, X))
z ∈ S

s.to ∶

E[ci(z, X)] + λiσ(ci(z, X)) ≤ 0 i = 1, . . . ,m

S ⊆ Rn

(1.5)

In this formulation, weighted sums of standard deviations can be interpreted as safetymar-
gins. Furthermore, this approach is widely used, although it can lead to severe problems
such as the convergence to sub-optimal solutions due to the use of expectations that pe-
nalizes favorable and unfavorable candidate solutions in the same way.

Performance index on Cumulative Distribution Function (CDF): this approach is basedon
thedefinitionof an ad-hocperformance index (or riskmeasure) as a functionof theCumu-
lativeDistribution Function related to the quantity of interest under investigation. For the
sake of completeness, let us give the definition of the Cumulative Distribution Function
(CDF).TheCDFgives the area under the probability density function fromminus infinity
to x. It describes the probability that a real-valued random variableX with a given distri-
bution will be found at a value less than or equal tox. Mathematically, this is expressed by
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Eq. (1.6).
FX(x) = P (X ≤ x) (1.6)

Aperformance index (or riskmeasurement) allows the comparisonofdifferentCDFshapes
according to the risk criterion defined by the user. In this chapter, the risk measures used
are the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR), also known as
quantile and super-quantile, respectively (their definitions are given in Section 1.2).

1.2 Risk measures

When random events are modeled by random variables, as in the context of optimiza-
tion under uncertainty, a way to measure risk should be figured out. With this purpose, a
functional ρ(X) is going to be defined for risk level quantification. Subsequently, an ac-
ceptable level of riskC must be decided, considering that there will, inevitably, be adverse
events. Thus, the next inequality equation can be defined:

ρ(X) ≤ C (1.7)

Then, if the randomvariables representative of the cost dependon a deterministic decision
vector x of sizem, the following minimization problem can be stated.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min ρ0(X0(x))
x ∈ S ⊆ Rn

s.to ∶

ρi(Xi(x)) ≤ ci i = 1, . . . ,m

(1.8)

Within this framework, different definitions for risk functionals canbe established. This
will lead to different approaches to face optimization problems under uncertainty. The
most immediate and familiar alternative of risk measure is the expected value. This means
that, on average, it should beX ≤ C:

µ(X) ≤ C → ρ(X) = µ(X) = EX (1.9)

Being more stringent, a condition on the standard deviation or on variance could be im-
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posed if there is a need to reduce the variation range of the quantity of interest:

µ(X) + λσ(X) ≤ C → ρ(X) = µ(X) + λσ(X) (1.10)

µ(X) + λσ
2(X) ≤ C → ρ(X) = µ(X) + λσ

2(X) (1.11)

Indeed, the classical robust design problem formulation is based onmean,µ, and variance,
σ
2 [4], which can be treated as separated objectives in a multi-objective framework [24],

as a weighted combination, or even cast into a constrained optimization format. However,
the use of this classical approachmay often generate some problems, since mean and vari-
ance are not independent measures, and it might be challenging to decide how much the
mean must be penalized to get the desired reduction of variance.

Alternative risk measures offer better control on the desired features of the cumula-
tive distribution function of interest. Here, in particular, the Value-at-Risk (VaR) and
the Conditional Value-at-Risk (CVaR) are introduced and used. The main advantage of
using these statistical measures is that they work asymmetrically. This is clearly benefi-
cial for aerodynamic design optimization. For example, imagine that the objective of the
optimization problem is to minimize the drag coefficient of an aerodynamic surface. The
use of the mean value as a risk function penalizes any configuration that is far from the
mean. Thus penalizing, in the same way, configurations that provide an increase or de-
crease on drag. However, only configurations that provide an increase on it should be
penalized when dealing with the drag force. This can be done by using risk measures that
work asymmetrically with the CDF, such as theVaR andCVaR.

Therefore, let us define the Value-at-Risk and the Conditional Value-at-Risk. LetX be
a random variable and FX(x) = P (X ≤ x) the Cumulative Distribution Function of
X . Thus, the inverse CDF ofX can be defined as F−1

X (γ) = inf{x ∶ FX(x) ≥ γ}.
This function gives the minimum value of x that makes the CDF ofX to be greater than
or equal to γ. Hence, γ −VaR, i.e. the Value-at-Risk for a given γ ∈ (0, 1), is given by

ν
γ = F

−1
X (γ) (1.12)

In other words, VaR is the maximum loss that can be exceeded only in a (1 − γ)100%
of cases. In its definition, the infimum is used since CDFs are, usually, weakly monotonic
and right-continuous. The γ −VaR is shown in Fig. 1.2.1.
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1
0

Figure 1.2.1: Value-at-Risk

Thedefinition of Conditional Value at Risk is given below. LetX be a random variable,
the γ−CVaR ofX can be thought of as the conditional expectation of losses that exceed
qγ . From a mathematical point of view, CVaR is given by a weighted average between
γ −VaR and the losses exceeding it.

1
0

Figure 1.2.2: Conditional Value-at-Risk
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The comparison ofVaR andCVaR shows that the latter is more sensitive to the shape
of the upper tail of the cumulative distribution. Summing up, theCVaR is expressed as:

c
γ = 1

1 − γ
∫ 1

γ
ν
β
dβ (1.13)

The area measured by the integral of the γ − CVaR formula is highlighted in Fig. 1.2.2.
CVaR has the advantage, with respect toVaR, of being a coherent risk measure. The

definition of coherency for a riskmeasure is a rigorous andwell-definedmathematical con-
cept that the interested reader can find in [25].

The properties that a risk measure must fulfill for being coherent [25] are enumerated
below.

1. ρ(C) = C for all constantsC

2. Convexity: ρ(1 − λ)X + λ
′ ≤ (1 − λ)ρ(X) + λρ(X ′) for λ ∈ (0, 1)

3. Monotonicity: ρ(X) ≤ ρ(X ′) ifX ≤ X
′.

4. Closedness: ρ ≤ cwhenXk → X with ρ(Xk) ≤ c

5. Positive homogeneity: ρ(λX) = λρ(X) for λ > 0.

From this last condition, the subsequent properties are derived:

- Translation invariance: ρ(X + C) = ρ(X) + C .

- Sub-additivity: ρ(X +X
′) ≤ ρ(X) + ρ(X ′).

Coherency properties offer several advantages in a robust optimization problem, and
an actual robust aerodynamic shape design problem is used here to illustrate their mean-
ing. The problem regards the improvement of the drag performance of a natural laminar
flowwing and is described in detail in [26]. Monotonicitymeans that if the laminar perfor-
mance of a generic wingX2 is always better thanX1, then the risk ofX2 is always inferior
to the risk ofX1. Translation invariance condition implies that a global delay of laminar
to turbulent transition reduces the risk. Moreover, for a natural laminar flow wing-body,
sub-additivitymeans that having two independent sources of laminarity (upper and lower
wing surfaces) can only decrease risk. Summing up, coherency offers a way to consider the
effect of desirable physical features in the risk measure used to formalize the robust design
optimization problem to be solved.
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Conversely, the Value-at-Risk is not a coherent measure since it does not respect the
sub-additivity property.

1.3 Robust optimization problem using risk functions

Risk measures, likewise expectations and variance, are unknown parameters of a statisti-
cal model (estimands), which can only be approximated using estimators and finite sam-
ples of data. Consequently, the robust optimization problem has to be defined in terms
of estimates of the risk functions within the framework of multi-objective optimization.
Therefore, Eq. (1.8) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min ρ̂i;n(z) i = 1, . . . p

z ∈ Z ⊆ Rn

s.to ∶

ρ̂i;n(z) ≤ ci i = p + 1, . . . , p + q

(1.14)

where ρ̂i;n is an estimate of the generic risk measure ρi obtained using a sample of size n
and a proper estimator. Moreover, the constraints are also given taking into consideration
a set of inequalities which are defined in terms of q further risk measure estimates.

In addition, it must be mentioned that the quality of the risk function estimate will
directly influence the results of the optimization problem. Hence, some guidelines should
be followed when formulating a robust optimization problem [26]:

• when estimating risk functions, use the largest possible number of samples consid-
ering the computational budget;

• use advanced techniques for sampling (i.e. multilevelMonteCarlo or Control Vari-
ates);

• low accuracy of the estimate can be perceived by the optimization algorithm as
noise, thus select an optimization algorithm the least sensitive to noise as possible;

• employ advanced statisticalmethods for the evaluationof the estimate accuracy and
confidence intervals. In particular, the bootstrap method will be adopted here (see
Section 1.3.3).
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The estimates of risk functions are here made either using the Empirical Cumulative
DistributionFunction (ECDF)or theWeightedEmpiricalCumulativeDistributionFunc-
tion (WECDF), and the bootstrap is used to obtain accuracy and confidence intervals.

1.3.1 Estimation of risk functions using ECDF

TheEmpirical Cumulative Distribution Function (ECDF) is the distribution function as-
sociatedwith the empiricalmeasure of a sample. Moreover, it canbe seen as a step function
that jumps up by 1/n at each of then data points. It takes as value the fraction of observa-
tions of the variable that are less or equal to the specified value [27].

Mathematically speaking, letX ∶ Ω ↦ Rd a random variable, xi = (xi1, . . . , xid) a
random sample ofX , µ a probability measure, and t = (t1, . . . , td) a generic vector in
Rd. The ECDF is defined in Eq. (1.15) for n samples {x1

, . . . ,x
n}.

F̂
n
µ = number of elements in the sample ≤ t

n = 1
n

n

∑
i=1

1{xi ≤ t} (1.15)

where 1{A} is the indicator of eventA:

1A(x) ∶= { 1 if x ∈ A

0 if x ∉ A
(1.16)

and xi ≤ tmeaning xij ≤ tj , j = 1, . . . , d. The last relation defines a partial order and if
it is true, then xi is either dominated by t or equal to it.

The estimation of Value at Risk and Conditional Value at Risk by means of the ECDF
is explained in the following subsections.

Value at Risk (quantile) estimation using ECDF

Value at Risk for a scalar random variableX at a given confidence level γ can be directly
computed from Eq. (1.15). Hence, ifX1, X2, . . . , Xn aren independent and identically
distributed observations of the random variableX , then the estimation of the γ − VaR

ofX is given by
ν̂
γ;n = X⌈nγ⌉∶n = F̂

−1
n (γ) (1.17)
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whereXi∶n is the i-th order statistic from the n observations, and

F̂n(t) = n

∑
i=1

1{Xi ≤ t} (1.18)

is the empirical CDF constructed from the sequence X̃ of x1, x2, . . . , xn. Note that the
hat symbol (ˆ) indicates estimated quantities.

Cumulative Value at Risk (superquantile) estimation using ECDF

Regarding the estimation of the superquantile, according to [28], cγ can also be written as
a stochastic program:

c
γ = inf

t∈R
{t + 1

1 − γ
E[X − t]+} (1.19)

with [a]+ = max{0, a}. The set of optimal solutions to the stochastic program is T =[νγ , uγ]with uγ = sup t ∶ F (t) ≤ γ. In particular, νγ ∈ T , so

c
γ = ν

γ +
1

1 − γ
E[X − ν

γ]+ (1.20)

WhenX has a positive density in the neighborhood of νγ , then νγ = u
γ . Under these

conditions, the above formula can also be directly derived from Eq. (1.13). So, in the
case of a finite number of samples, with X1, X2, . . . , Xn independent and identically
distributed (i.i.d.) observations of the random variableX , the estimation of cγ is given
by:

ĉ
γ;n = ν̂

γ;n +
1

n(1 − γ) n

∑
i=1

[Xi − ν̂
γ;n]+ (1.21)

1.3.2 Estimation of risk functions usingWECDF

It was above stated that the ECDF is a step function that jumps up a fixed quantity, 1/n,
for each data point belonging to the sorted set of samples. Conversely, the WECDF can
be considered as a step function that has a variable size jump,wi:

F̂
n
µ;w(t) = n

∑
i=1

wi1{xi ≤ t} (1.22)
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with the related constraint
n

∑
i=1

wi = 1 (1.23)

The formula forVaR estimation starting from aWECDF is a generalization of Eq. (1.18),
and requires two steps. Firstly, the kγ index of the sorted sample set has to be chosen
according to the following inequalities:

kγ

∑
k=1

wk ≥ γ >
kγ−1

∑
k=1

wk (1.24)

then ν̂γ;n (γ −VaR) is simply given by choosing the kthγ element of ordered set:

ν̂
γ;n(x) = x(kγ) (1.25)

Similarly, ĉγ;n(x) (γ − CVaR) is given by

ĉ
γ;n(x) = 1

1 − γ

⎡⎢⎢⎢⎢⎢⎢⎢⎣⎛⎜⎝
kγ

∑
k=1

wk − γ
⎞⎟⎠x(kγ) + n

∑
k=kγ+1

wkx(k)⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1.26)

The use of WECDF becomes essential in cases in which the statistical sample has to
be corrected or re-elaborated with some post-processing steps. This, for example, is the
case of importance sampling, where the data set is sampled according to distributions that
may differ substantially from those of the underlying random variables. Indeed, one of
the possible approaches to the correct input distributions is the assignment of a different
weight to each sample. In statistics, this method is called change of probability measure.
In this field, several techniques have been developed [29], and, among these techniques,
the one based onWECDF is thoroughly described in [30].

1.3.3 Bootstrap error analysis

As was previously mentioned, the robust optimization problem results are influenced by
the quality of the risk function estimate. A possible approach to deal with this problem
is the use of computational statistics methods, like the bootstrap, developed by Efron in
1979 [31]. As a general term, bootstrapping can be defined as an operation that will al-
low a system to self-generate from its small subsets. Hence, confining the definition to the
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statistical field, it is a computational re-sampling technique that provides the confidence
intervals of statistics without a prior assumption about the type of the distribution func-
tion. In this work, it is used to assess the quality of the risk function estimates used in the
optimization process.

Givena statisticT (x1, x2, ..., xn) evaluatedona setof data{x1, x2, ..., xn}, themethod
consists of the following steps:

- Forming new sample sets {x∗1 , x∗2 , ..., x∗n}, also known as bootstrap samples, of
the same size of the real sample by performing a random selection of the original
observation with replacement. Usually, the same observation is introduced several
times in the bootstrap samples.

- Then, the statistic of interestT (x∗1 , x∗2 , ..., x∗n) is calculated for these new samples.

This statistic will show a probability distribution of its own. Thus, from this distribu-
tion, the confidence intervals of the risk functions, like VaR or CVaR, are obtained. In
other words, the evaluation of confidence intervals would require repeated samples of a
given population, but only one sample is available. Thus, the bootstrap method treats the
real sample as a population, and the repeated samples needed for confidence interval esti-
mation are obtained by re-sampling it with replacement.

Finally, it must be mentioned that, although very attractive for its simplicity, the boot-
strap technique also has several disadvantages, thoroughly discussed in the scientific liter-
ature. Maybe the main drawback is that the bootstrap samples are related to the original
(real) sample in the same manner that the original sample is related to the unknown pop-
ulation. Hence, if the original population sample is not sufficiently representative of the
whole population features, then the confidence intervals computed by bootstrapmight be
completely misleading.

1.4 Application example

This section is aimed to give a simple but significant example of a robust aerodynamic de-
sign optimization problem. The example demonstrates the importance of using CVaR
risk measure, one of the main points introduced in this dissertation for efficiently deal-
ing with robust design in aerodynamics. The problem is focused on an airfoil in incom-
pressible conditions subject to geometric and aerodynamic constraints. The goal is the im-
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provement of the airfoil performance by changing its shape. When a robust version of this
problem is faced, an optimal solution that is less vulnerable with respect to uncertainties
in operating conditions and geometric shape is obtained. The baseline airfoil is theNACA
2412. The free-stream design conditions assumed areM∞ = 0 andRe∞ = 0.5 × 10

6.

The airfoil performance is measured by a quantity of interestQ defined by drag coef-
ficient cd plus some constraints that are here considered as penalties. Consequently, the
robust optimization problem requires theminimization of the γ−CVaR ofQ, with γ set
to 0.9. The equality constraints are the lift coefficient (cl), which is fixed to 0.5, and the
maximum thickness (t), which is fixed to the 12% of the airfoil chord (c). The inequal-
ity constraints are the trailing edge angle (TEA), which must be greater than or equal to
13

◦, the leading edge radius (LER), that must be greater than or equal to 0.7% of the
chord, and the boundary layer transition point on the airfoil lower surface (XTRLOW )
that cannot be located at x/c greater than 0.95. A constraint on the pitching moment
was not considered. In addition, an ERROR variable is set to 1 when the solver does not
converge. In summary, the problem constraints are reported below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cl = 0.5

t/c = 0.12

XTRLOW ≤ 0.95c

TEA ≥ 13
◦

LER ≥ 0.007c

(1.27)

Hence, the robust optimization problem is formulated as:

min
z∈Z⊆Rn

CVaR(Q) (1.28)

with
Q = cd + p

+(TEA, 13
◦) + p

+(LER, 0.007c) (1.29)

In this case, the constraints regarding the leading edge radius and the training edge angle
are treated as quadratic penalties:

p
+(x, y) = { 0 if x ≥ y(x − y)2 if x < y

(1.30)
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Instead, the constraints on the cl and on the thickness do not appear because they are
automatically satisfied by the computation procedure by changing the angle of attack and
by re-scaling the airfoil thickness to the assigned value.

The robust optimization problem is built by introducing uncertainties in the airfoil sec-
tion shape that is parameterizedas a linear combinationof an initial geometry(x0(s), y0(s)),
and some modification functions yi(s). Moreover, to describe geometry uncertainties,
further zj(s) modification functions are introduced. So, the airfoil shape, including un-
certainties, is described by

x(s) = x0(s), y(s) = k (y0(s) + n∑
i=1

wiyi) + m∑
j=1

Ujzj (1.31)

where the airfoil shape is controlled by the design parameters wi and by the scale fac-
tor k. The uncertainty on shape and thickness of the airfoil is described by the Uj ran-
dom variables. In this optimization problem 20 uniform random variables, in the range[−0.1, 0.1], have been used. Moreover, the population is generated through a Monte
Carlo algorithm and it has a size equal to 100. It is important to note that the airfoil is
rescaled to the assigned thickness before the application of the random variables that de-
scribe the uncertainty in shape.

The performances of the parametric airfoil obtained by using Eq. (1.31) are computed
by an aerodynamic analysis code, namely Prof. Drela’s XFOIL code [32]. It is based on
a second-order panel method interactively coupled to a boundary layer integral module.
Moreover, the laminar to turbulent flow transition is predicted using the eN method [33].

The optimization algorithm selected for solving the described design problem is the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [34], which is a stochas-
tic optimization algorithm based on self-adaptation of the covariance matrix of a multi-
variate normal distribution. It is mainly used for design optimization problems up to a few
hundreds of design variables. The parameters used for the optimization algorithm are the
maximum number of allowed evaluations, the population size λ, and the initial standard
deviation σ. The parameters set for this problem are reported in Table 1.4.1.

Maximum evaluations Population size Initial standard deviation
7000 20 0.1

Table 1.4.1: Optimization Parameters for the optimization
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Furthermore, it was mentioned that in case of non-convergence of the solver, an ER-
ROR flag was set equal to 1. When robust optimization is faced, the treatment of theses
cases is crucial for the optimization process. The quantity of interest to be minimized,
CVaR, depends on the upper tail of the Cumulative Distribution Function. As a con-
sequence, assigning a high value to the objective in the cases where convergence is not
achieved implies a too high CVaR value that could be detrimental for the optimization
algorithm behavior. Hence, a proper value of the objective in these casesmust be decided.
In particular, in this optimization problem, the worst objective value selected between the
properly converged cases, is assigned to those in which the error flag is set. Numerical
tests lead to conclude that this was the setup with the lowest impact on the optimization
process behavior.

1.4.1 Results

The obtained results are here commented on and compared with the baseline airfoil and
the equivalent deterministic solution of the optimization problem. Firstly, in Fig. 1.4.1, the
airfoil shape of the robustly optimized airfoil (dotted line) is compared with the baseline
airfoil (solid line) and the deterministic optimized airfoil (dashed line).
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Figure 1.4.1: Airfoil shape comparison of the robust optimized airfoil (⋯), determin-
istic optimized airfoil ( ) versus the baseline NACA 2412 airfoil ( )

In addition, the Cumulative Distribution Function obtained by introducing uncertain-
ties in the airfoil shape is reported in Fig. 1.4.2 for the initial NACA 2412 airfoil (solid
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line), for the deterministic optimized airfoil (dashed line), and for the robustly optimized
airfoil (dotted line).
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Figure 1.4.2: CDF obtained by the variation in airfoil shape using the robustly opti-
mized airfoil (⋯), the deterministically optimized airfoil ( ), and the baseline NACA
2412 airfoil ( )

The comparison of the CDFs related to the deterministic and robust airfoils highlights
that the robust optimal solution is less vulnerable to uncertainties in geometric shapewith
respect to the deterministic one. The CVaR risk measure asymmetry allows a significant
improvement of the cumulative distribution function upper tail without deteriorating, in
the samemanner, the lower one. This is a decisive advantage ofCVaR compared to classi-
cal measures, such as mean or standard deviation. Working asymmetrically with the CDF
is extremely important for aerodynamic optimization, where the quantity of interest is of-
ten the drag coefficient. Specifically, only configurations that provide an increase of cd,
compared to the nominal condition, have to be penalized since a decrease of drag is bene-
ficial for the design. Moreover, the improve of the upper tail is also deduced by the obser-
vation of the value Value at Risk and Conditional Value at Risk with γ = 0.9 provided in
Table 1.4.2.
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0.9 −VaR ⋅ 104 0.9 − CVaR ⋅ 104

Baseline NACA 2412 airfoil 74.5 75.0
Deterministic optimized airfoil 63.4 64.8
Robust optimized airfoil 62.2 62.5

Table 1.4.2: Risk measurement based on the obtained Cumulative Distribution Func-
tions

While the advantages of CVaR are indisputable, it should also be noted that charac-
terizing a probability tail is oftenmuchmore challenging, from the point of view of the re-
quired samples, than estimating first and second-order moments. Here, for example, 100
samples are needed to get an acceptable description of the tail. Hence, this approach to
robust optimization is practically inapplicable when the cost of a single sample evaluation
is already expensive (as in the case ofRANS computational fluid dynamic solvers). Thus,
summarizing,CVaR based robust optimization is beneficial for aerodynamic design, but
it is computationally expensive. Therefore, original methods that reduce the computa-
tional cost associated with robust aerodynamic design optimization problems are studied
in this work.
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2
AerodynamicDesignOptimization

This chapter copes with the two main ingredients needed for solving Aerodynamic De-
sign Optimization (ADO) problems; a self-operating aerodynamic computational chain
and the optimizer. First of all, the optimizer employed in the solveddesign problems is dis-
cussed in Section 2.1, and later, the components required for an autonomous aerodynamic
computational chain are described in Section 2.2.

2.1 ADGLIB Library - Optimization algorithms

In this section, theADGLIB[35] library used to solve the aerodynamicdesignproblems in
the subsequent chapters is introduced. ADGLIB(ADaptiveGenetic algorithmLIBrary) is
an in-house developed evolutionary optimization software library based on the hybridiza-
tion concept. ADGLIB, indeed, allows to easily define evolutionary optimization algo-
rithms that combine, for example, classical bit-string-based genetic algorithms with hill-
climbing specialized operators. The choice is motivated by the need to improve the effi-
ciency of genetic algorithmswhile keeping their flexibility in searching large design spaces.
The specific implementation allows the use of the genetic algorithmhybridized eitherwith
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gradient-based operators, like BFGS, or other sophisticated evolutionary algorithms like
CMA-ES. These operators can also be used in a stand-alone fashion for a plain gradient-
based or CMA-ES optimization run. ADGLIB is fully parallel at the level of population
evaluation. The parallel programming model relies on shared memory multiprocessing,
and the parallelism is implemented at the thread level using the standard POSIX thread
interface. ADGLIB has a user interface that allows easy coupling with external codes, like
flow solver or, more generally, numerical computation procedures. The interface relies on
file templates that enable a fully automated customization of the input files required by
the coupled numerical analysis procedures. The procedure output is retrieved through a
flexible and parametric parsing interface that assigns the computation results to internal
ADGLIB variables. ADGLIB allows the definition of scalar and vectorial input/output
variables and constants. ADGLIB is capable of performing both single andmulti-objective
optimization.

Here, only two of the available optimization algorithms in the library are used, a clas-
sical Genetic Algorithm (GA) and the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). Both algorithms are Evolutionary Strategies (ES) that emulate the mecha-
nisms typical of biological evolution. These techniques date back to the 50s [36] and have
beenused inmanyfields such as biology, economy, and engineering. In very general terms,
evolutionary optimizers are loosely inspired by the biological principle of the survival of
the fittest that underlies natural evolution. Of course, natural selection cannot be recast as
an optimization process, but its principles work quite effectively to develop optimization
algorithms useful in engineering practice.

In Sections 2.1.1 and 2.1.2, a brief description of the genetic algorithm and the covari-
ance matrix adaptation evolution strategy algorithm is given.

2.1.1 Genetic Algorithm (GA)

Genetic algorithms (GAs) are population-based algorithms: they work with a population
of candidate solutions according to an intrinsically parallel paradigm. The practicality of
using the GA to solve complex problems was demonstrated by De Jong [37]. In Algo-
rithm 1, the pseudocode of a simple GA is provided.

Algorithm 1 states that from a starting initial population, a variation is performed to
create an offspring, then the whole combined population is evaluated, and finally, some
individuals are selected to be kept for the following generation. This procedure is repeated
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Algorithm 1Genetic Algoritm
1: t = 0.
2: P (t)← Initialize the population with size λ
3: EvaluateP (t)
4: while Stopping criteria not fulfilled do
5: P

′(t)← variationP (t)
6: EvaluateP ′(t)
7: P (t + 1)← selection fromQ ∪ P

′(t)
8: t = t + 1
9: end while

up to fulfilling the selected stopping criterion. A stopping criterion example is the maxi-
mum number of generations.

In a genetic algorithm, each individual is defined by a sequence of genes that form a
chromosome. The chromosome encodes the value of the design variables of the problem.
Classically, each design variable is encoded through a fixed-length binary number, and a
single string, namely the chromosome, is generated by linking all the coded variables.

The evaluation of the fitness of each individual of a population is done to obtain a rank-
ing based on a problem-dependent criterion.

The variation procedure allows the improvement of the individuals by means of two
operators, namely crossover and mutation. The crossover operator recombines the chro-
mosomes of two individuals (parents) to create offspring. Additionally, the mutation op-
erator consists of a random change of the chromosome within an individual. There are
several mutation and crossover operators, and their choice strongly influences the opti-
mization problem [38].

Finally, the selection process consists of choosing two parent individuals from the pop-
ulation that are going to be reproduced. The probability of selecting one individual of the
population will, generally, depend on its fitness. Therefore, the best individuals have a
better chance to reproduce while the less fit ones are discarded. The selection mechanism
implemented in the library is the random-walk [39, 40].

2.1.2 CovarianceMatrix Adaptation Evolution Strategy (CMA-ES)

The second optimization algorithm, and prevalently preferred in this dissertation, is the
“CovarianceMatrixAdaptationEvolutionStrategy” (CMA-ES).Thealgorithm implemented

21



in ADGLIB is the one developed by Hansen [34]. The CMA-ES is an evolutionary algo-
rithm for difficult non-linear non-convex black-box optimization problems in the contin-
uous domain. The CMA-ES algorithm is used for unconstrained or bounded constraint
optimization problems, in which the dimension of the search space lies between three and
a hundred.

As introduced in [41], at each generation of an Evolution Strategy (ES), a new popu-
lation (of size λ) is generated in agreement with a multivariate normal distribution inRn,
with n the number of design variables.

x
(i+1)
k ∼ µ

(i) + σ
(i)N (0, C(i)) ∼ N (µ(i)

, (σ(i))2, C(i)) k = 1,⋯, λ (2.1)

In Eq. (2.1), x(i+1)k indicates, inside the generation i+ 1, the k− th individual. More-
over,µ(i) denotes themean of the distribution at the generation i andσ(i)) is a scaling pa-
rameter or step-size. Finally,C(i) expresses a scaled covariancematrix of the distribution.
The covariance matrix represents the dependencies of the variables in the distribution.

At each generation, a recombination operator is used to update the mean value of the
distribution. For this algorithm, the CovarianceMatrix Adaptation (CMA) is themethod
used to update themean, the standard distribution, and the covariancematrix of themulti-
variate normal distribution at each generation. Particularly, to adapt the covariancematrix
in the CMA-ES algorithm only a ranking of the candidate solutions is needed. Further de-
tails on the sorting, recombination, selection, covariance adaptation, and step-size control
processes are, for example, in Pisaroni [41].

2.1.3 Robust optimization using ADGLIB

ADGLIB allows a relatively simple and flexible implementation of robust optimization al-
gorithms. It is possible to operate on two levels. At the upper level ADGLIB allows to
operate on the design variables and tomanage the chosen optimization algorithm. In con-
trast, in the lower level, it takes care of generating the sampling of the random variables
that characterize the uncertainty of the problem under examination. Therefore, according
to this two-level approach, the upper level view as single individuals entire subpopulations
of elements calculated at the lower level and defined by the sampling of random variables,
whose distributions can be precisely defined. This procedure allows obtaining the ECDF
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Figure 2.2.1: Aerodynamic design optimization (ADO) flowchart.

of theQoI to optimize. The performance of each individual subpopulation is calculated at
thehigher level through appropriately defined risk functions that operate on the aforemen-
tioned ECDF. Furthermore, it is also possible to evaluate the confidence intervals with the
bootstrap technique. Sampling generation at the lower level can be done in various ways.
In this thesis, the ECDF approximation modalities with the gradient-based method and
the Gaussian processes have been added to the pre-existingMonte Carlo sampling

2.2 Aerodynamic computational chain

A fully automated aerodynamic computational chain is essential to face aerodynamic de-
sign optimization problems. In particular, the input design variables coming from the opti-
mizer have to generate the geometric shape to be evaluated and, consequently, the related
computational mesh. Then, the aerodynamic flow solver must calculate the aerodynamic
performance of the candidate. Once the performance figures are obtained and did not
occur errors in the computational chain, these values are feed to the optimizer. This pro-
cess is depicted in Fig. 2.2.1, and each component is explained in depth in the following
sub-sections.
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2.2.1 Geometry parametrization

Depending on the chosen geometry parametrization, the number of shape design vari-
ables used for the optimization problem may vary. This block generates the candidate to
be studied from the given design variables of the optimizer. Here-in, the used parametriza-
tion tools are described.

Airfoil parametrization usingwg2aer tool

Thewg2aer tool is an in-house developed program that generates a candidate airfoil from
an initial geometry given some design parameters (optimization variables). When the de-
sign parameters are set to 0, the baseline airfoil is produced. This procedure works for
single/multi-component airfoils. In the subsequent paragraphs, the parametrization for
both types of airfoils is presented.

Regarding the single component airfoil, the shape description approach is derived from
those presented in [42, 43] and is tailored to deal with uncertainties in the description of
the airfoil shape. Particularly, the airfoil shape is parameterized as linear combination of
an initial geometry, defined parametrically by (x0(s), y0(s)), and a number of modifica-
tion functions yi(s) that may be defined analytically or by point distributions [44]. The
possible modification functions are shown in Fig. 2.2.2. Moreover, the same technique is
used to describe the uncertainties in the geometry introducing, additionally, zj(s)modi-
fication functions that are depicted in Fig. 2.2.3. So that, the airfoil is described as:

y(s) = k (y0(s) + n

∑
i=1

wiyi(s)) +
m

∑
j=1

Ujzj(s),
x(s) = x0(s) (2.2)

where the airfoil shape is controlled by the design parameterswi and by the scale factor k
for fulfilling the maximum thickness criterion. A maximum of 20 design parameters can
be introduced. The uncertainty on shape is controlled by theUj random variables.

Specifically, in order to consider the airfoil shape uncertainty,Hicks-Hennebump func-
tions are introduced and are reported in Fig. 2.2.3. In particular, geometrical uncertainties
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Figure 2.2.2: Modification functions that describe the variation of airfoil shape.

are modeled by means of the following expression:

zj(s) = sin
3 (πx log 0.5

log sbj ) (2.3)

where sbj is the position along the chord of the j-th bump. Note that the superscripts u
and l in Eq. (2.4) denotes, respectively, the upper and lower surface.

s
u
b = s

l
b = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8} (2.4)

Some examples of how the modification of the design parameters influences the shape
of the airfoil are now given. The baseline airfoil for these examples is theMartin Hepperle
MH114 airfoil.

One possibility is to use the design parameters to define a thickness mode. To do so, a
polynomial modification function is applied for the upper and lower airfoil surfaces. The
design parameters that control themodification function for the upper and lower surfaces
must have equal value but the opposite sign (wu = −wl). Moreover, a camber mode
can also be obtained by applying a polynomial function but this time making equal, in
value and sign, the design parameters (wu = wl). These airfoil modifications are de-
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Figure 2.2.4: Airfoil thickness and camber modification using wg2aer tool. The
baseline MH114 ( ) and the modified airfoil ( ).
picted in Fig. 2.2.4. Additionally, local airfoil modifications can be performed by using
Hicks-Henne bump functions along the airfoil chord. In Fig. 2.2.5, modifications applied
at different airfoil locations, x/c, are given.
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Figure 2.2.5: Airfoil local modification using wg2aer tool. The baseline MH114 ( )
and the modified airfoil ( ).

The presented tool can also be used to modify multi-component airfoils. In this case,
the shape of the airfoil is invariant and the design variables are the settings of each airfoil
component, which are the location in the 2-dimensional space and the rotation with re-
spect to the starting airfoil (∆X,∆Y, and,∆θ). The reference point for the rotation is
the leading edge of the corresponding element. Hence, the optimal position of the com-
ponents of an airfoil can be found for a given aerodynamic design optimization problem.

An example of how the airfoil components can be translated and rotated is shown in
Fig. 2.2.6. Thebaseline is amulti-component airfoil, obtainedmodifying the three element
McDonnell Douglas (MDA) 30P-30N airfoil. In detail, the slat and main component are
kept as the original, while the flap is modified into a triple slotted flap. The wg2aer tool
is then used to change the setting of the three flaps.

27



x/c
y
/c

0 0.2 0.4 0.6 0.8 1 1.2

­0.2

­0.1

0

0.1

Figure 2.2.6: Airfoil components translation and rotation example. The baseline ( )
and the modified airfoil ( ).
Non-Uniform Rational B-Splines

Another parametric airfoil shape representation is the Non-Uniform Rational B-Splines
(NURBS).This methodology allows the representation of complex geometries by means
of a set of control points and an associated weight to each control point. In particular, a
pth-degree NURBS curve can be mathematically defined by

C(u) = ∑n
i=0Ni,p(u)wiPi

∑n
i=0Ni,p(u)wi

a ≤ u ≤ b (2.5)

where wi are the weights, Pi are the control points, andNi,p(u) are the pth-degree
B-spline basis functions defined on the knot vector (U)

U = a, . . . , aÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
p+1

, up+1, . . . , um−p−1, b, . . . , bÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
p+1

(2.6)

For further details of the description of NURBS representation together with its math-
ematically properties refer to Ref.[45, 46]. The NURBS-Python library has been used¹.

Two examples of an airfoil (RAE 2822 and NACA 64(1) − 212) representation by
means of NURBSmethodology are provided in Fig. 2.2.7. It can be seen how the original
airfoil (in red) and the obtained airfoil (in blue) match perfectly. In addition, in Fig. 2.2.7,
the control points and their associated weight used to represent the airfoil are also given.
With this airfoil representation, the designoptimization variables canbe the control points
position (x/c and y/c) and their associated weights.

¹NURBS-Python Documentation: http://nurbs-python.readthedocs.io/en/latest/
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Figure 2.2.7: Airfoil parametrization by means of NURBS representation. Original
airfoil ( ), NURBS airfoil representation ( ), and NURBS control points (●). The
x-axis and y-axis are not dependent for visualization purposes.

2.2.2 Grid generation

Once the aerodynamic surface candidate is obtained, the computational gridmust be auto-
matically generated. Several grid generators are used in this dissertation and are explained
here in.

Grid generation usingGmsh

Anautomatic in-houseprocedure formeshcreation, suitable forReynolds-averagedNavier–
Stokes (RANS)simulations,wasdevelopedbasedon theopen-sourcegrid generatorGmsh
[47]. Themesh generationprocedure is able to create different types of unstructuredmesh
(O-grids and/or square grids) made of triangular and rectangular elements. The far-field
can be placed at a selected position that is given as an input to the procedure. In addition,
some peculiar features were also added. Particularly, the presence of a wake is considered,
and also, the height of the near wall area region is estimated by the flat plate theory. The
near wall area is made of rectangular elements, while the rest of the grid by triangles. In
Fig. 2.2.8, an example of a squared gridwith the far-field placed at 40c is shown. Moreover,
the refinement at the wake is also present.

A similar process to the near wall area, is applied to calculate the proper value of the
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Figure 2.2.8: Example of a complete grid using Gmsh.

non-dimensional wall distance of the first grid element (y+). Another control parameter
is the size ratio between the cells at the far-field and the cell on the body surface to obtain
coarser or finer grids.

x/c

y
/c

0.96 0.98 1 1.02 1.04 1.06

­0.04

­0.02

0

0.02

0.04

(a) Blunt Trailing Edge
x/c

y
/c

0.96 0.98 1 1.02 1.04 1.06

­0.04

­0.02

0

0.02

0.04

(b) Sharp Trailing Edge

Figure 2.2.9: Mesh detail at the trailing edge of an open and a sharp NACA 0012
airfoil using Gmsh.

Additionally, the procedure can manage airfoil with blunt (open) or sharp (closed)
Trailing Edge (TE), and single and multi-component airfoils. In Fig. 2.2.9, grids gener-
ated with the Gmsh procedure around an open and sharp NACA 0012 airfoil are shown,
particularly, a detail at the trailing edge of the airfoil. Furthermore, it is seen how the near
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wall area is made by rectangles, and after that, the triangular cells start.

Grid generation using Construct2D

The open-source grid generator Construct2D is designed to create 2D grids suitable for
CFDcomputationsonairfoils [48]. Thehyperbolic or elliptic grids are generated inPlot3D
format. However, this format is not appropriate for theflowsolvers used(seeSection2.2.3);
thus, the source codewasmodified to provide the grid in the needed formats. Construct2D
is able to generate grids with O topology or C topology recommended for airfoils with
blunt or sharp trailing edges, respectively. The generated grid is made of rectangular cells.
Moreover, it is possible to generate hyperbolic or elliptic grids.
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Figure 2.2.10: C-grid generated with Construct2D for the MH 114 airfoil.

The required input is a file containing the set of coordinates defining the airfoil geome-
try, and a file containing some user-defined control parameters. Some of these parameters
are the topology of the grid (C or O), the far-field position, the number of cells on the
body surface, in the far-field direction, and in the wake. In addition, a smooth airfoil sur-
face cell spacing can be controlled by setting the length of the cell at the leading edge and
at the trailing edge. Finally, the Reynolds number of the CFD simulation and desired y+

can also be given as an input, thus controlling the wall distance of the first grid element.
An example of C-grid generated with Construct2D is given in Fig. 2.2.10.
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Grid generation usingHypGen

HypGen is an in-housedeveloped automatic hyperbolic2Dgrid generator, suited for struc-
turedmeshes over a single component airfoil. It is able to generateC topology grids. It can
be used to generate grids for both Euler andRANS applications. Contrary to the previous
grid generators, HypGen only works with sharp trailing edge airfoils. If the airfoil has a
blunt trailing edge, the procedure collapses a point in order to close the airfoil. The col-
lapsing is performed automatically and with little control by the user.
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Figure 2.2.11: C-grid generated with HypGen for the SD 7003 airfoil.

In order to generate the mesh, the required inputs are the airfoil coordinates, and op-
tionally, some other grid information. The additional information is the far-field distance,
thenumberof grid levels formultigrid/multilevel approach, and thenumbersof gridpoints
on the body surface, in the far-field direction, and in the wake. Furthermore, the height of
the first cell can be selected as well. In Fig. 2.2.11, a grid generated using the explained
procedure is provided. The grid is generated over the SD 7003 airfoil.

2.2.3 Computational Fluid Dynamics flow solver

In the following paragraphs, the Computational Fluid Dynamics (CFD) flow solvers used
to calculate the aerodynamic quantities of interest for the optimization design problems
are presented.
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The Unsteady Zonal Euler Navier-Stokes flow solver

TheUnsteady Zonal EulerNavier-Stokes (U-ZEN), an in-house flow solver for Reynolds-
averagedNavier–Stokes (RANS) simulations, is a structuredmulti-block code for the anal-
ysis of complex configurations in the subsonic, transonic, and supersonic regimes [49].
The code is capable of simulating steady and unsteadyRANS, and several turbulencemod-
els are available.

The governing equations are discretized bymeans of a standard cell-centered finite vol-
ume schemewith blended self-adaptive second and fourth-order artificial dissipation. The
pseudo time-marching advancement is performed by using the Runge-Kutta algorithm
with convergence accelerators such as the multi-grid and residual smoothing techniques.
For unsteady simulations, the dual time stepping technique is adopted.

The turbulence equations areweakly coupledwith theRANSequations and solvedonly
on the finest grid level of a multi-grid cycle. Algebraic, one-equation, two-equations, and
non linear eddy viscosity turbulence models are available. Transitional flows can be sim-
ulated using a one-equation transition model coupled to the turbulence model or fixing a
transition line.

Stanford University Unstructured (SU2) tool suite

The Stanford University Unstructured (SU2) tool suite is an open-source computational
analysis and design software aimed to solve complex, multi-physics analysis and optimiza-
tion tasks using unstructured meshes. As described in Palacios et al. [50] and Economon
et al. [51], the core of SU2 is a collection of C++ software tools that discretize and solve
problems described by Partial Differential Equations (PDEs). Moreover, it is able to solve
PDE-constrained optimization problems, such as optimal shape design.

In references [50, 51], the main C++ software tools are described. For this disserta-
tion, the C++ modules of interest are the SU2_CFD (Computational Fluid Dynamics
Code), SU2_CFD_AD (Discrete Adjoint code), and SU2_DOT_AD (Gradient Pro-
jection Code) software. SU2_CFD (SU2_CFD_AD) solves direct (adjoint) (steady or
unsteady) problems for the Euler, Navier-Stokes, and Reynolds-Averaged Navier-Stokes
(RANS), plasma, free-surface, electrostatic, etc., equation sets. It can be run serially or in
parallel by using MPI. Moreover, explicit and implicit time integration methods are avail-
able with centered or upwinding spatial integration schemes. The software also has several
advanced features to improve robustness and convergence, including residual smoothing,
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agglomeration multigrid, linelet and low speed preconditioning, and Krylov space meth-
ods for solving linear systems.

Furthermore, SU2_DOT_ADprovides thegradient availability, which is used inChap-
ter 5. There are many applications such as optimization, response surface formulations,
uncertainty quantification, among others, in which it is important to obtain gradients of
the responses computed by SU2 to variations of design parameters. For this reason, SU2
relies on adjoint solver implementations that can be used to compute the necessary gradi-
ents. In this dissertation, the adjoint solver will be used for uncertainty quantification.
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3
Aerodynamic ShapeOptimisation using a

Far-Field Analysis of theDrag Force

This chapter is based on the work presented at the AIAA Scitech 2019 Forum [52]. In
particular, it is focused on the use of far-field analysis for drag prediction and decomposi-
tion in the context of aerodynamic shape design. Indeed, drag minimization is one of the
fundamental objectives of Aerodynamics.

The straightforward computation of the aerodynamic force by stress integration on the
body surface (near-field method) allows for the decomposition in friction and pressure
force but does not give any information on the splitting among viscous, lift-induced and
wave contributions which have a primary relevance for the aerodynamic designer. On the
contrary, a physical decomposition is obtainable by far-field methods, based on formulae
derived from the integral momentum equation. An additional feature of far-field tech-
niques is the possibility to identify the local flow structures responsible for the generation
of the aerodynamic force. Moreover, some of these methods showed the capability to im-
prove the accuracy in the calculation of total drag from a given CFD solution by removing
at least part of the so-called spurious drag implicitly or explicitly introduced by the artificial
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viscosity of the adopted numerical scheme. An extensive review of these far-fieldmethods
is reported in [53].

Nowadays, the methods developed for drag breakdown can be grouped into two fam-
ilies: thermodynamic-based and vorticity-based breakdown. The former is based on Os-
watitsch’s entropydrag concept and candecompose the irreversibledrag in its viscous, wave
and spurious components [6, 8]. Thermodynamicmethods are nowwidely adopted in in-
dustrial and research environment [54, 55] andalready contributed to thedesignof the last
generation of transonic transport aircraft. They are limited to the computation and analy-
sis of the force components of irreversible nature, therefore cannot compute and analyze
lift. The lift-induced drag can only be derived indirectly by subtracting the irreversible drag
to the near-field force.

More recent and less mature vorticity-based methods start from a general formulation
of the vortex-force theory introduced byWu et al. [56] and extract the reversible vortical-
dominated process, therefore separating the lift-induced drag from the profile contribu-
tion [57]. These methods highlighted the role of the Lamb vector field (the cross product
of vorticity times velocity) in the generation of the aerodynamic force. They have been
extended to the analysis of compressible flows [58, 59]. The breakdown of the irreversible
drag in viscous and wave component has also been proposed by Mele et al. [60], Ostieri
andTognaccini [61]. Thesemethods can also be adopted for unsteady analyses and thrust-
drag bookkeeping [62, 63]. Furthermore, these methods have also been applied to calcu-
late the aerodynamic force of innovative aircraft design [64].

The far-field methods can help the aerodynamic shape optimization in two different
ways:

1. The possibility to decompose drag in viscous, wave and lift-induced contributions
allows for a selection of the objective function among these three terms. This par-
ticular characteristic has already been considered in [65].

2. The detection of at least part of the spurious drag contribution can allow for a re-
liable drag calculation even on very coarse grids thus implying a substantial reduc-
tion of the computational cost of the optimization processwhich is still a significant
concern.

In this chapter, the second feature will be analyzed in detail.
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The underlying assumption is that far-field approaches allow a good estimation of the
aerodynamic characteristics of a given geometric configuration with a mesh size signifi-
cantly smaller if compared to the one needed by near-field methods.

On the other hand, it should be noted that the flow field convergence level required for
the correct estimation of the different sources of drag is higher for far-field methods with
respect to near-field ones.

Nevertheless, even if some care is needed in the formulation of the objective function,
the use of far-field methods allows a significant reduction of the computational effort re-
quired by the optimization loop. This advantage could be evenmore evident in robust de-
signproblemswhen theobjective function and related constraints canbe statistical quanti-
ties (like expected values, variances or generic riskmeasures [26]) which require a further
sampling step for their estimation. The present work will demonstrate the feasibility of
this approach to the modification of a symmetric airfoil for the reduction of wave drag in
inviscid transonic condition at zero angle of attack. In particular, the first application will
deal with the deterministic constrained problem described in [66] (AIAA Aerodynamic
Design Optimization DG), and already solved using the far-field approach in [65]. It will
be shown that the present far-field formulation, in conjunction with a suitable definition
of the objective function, allows further improvement of drag with respect to the given
reference obtained using a coarser computational mesh.

3.1 Far-Field Analysis of the Drag Force

The far-field method here described allows the decomposition of the drag force in three
components: wave, viscous, and spurious drag. In particular, this method is based on the
momentum integral balance applied to a control volumeΩ surrounding the body.

Thecentral idea of themethod is the development of a far-field formula of the drag force
based on entropy variations. In addition, the entropy drag is expressed as volume integral
which will allow the decomposition of the drag in the components formerly mentioned.
For that, the regions should be properly identified. A detailed description of the method
is given in [6]. The entropy drag can be expressed as:

D∆s = Dw +Dv +Dsp (3.1)

whereDw ,Dv , andDsp are the wave, viscous, and spurious contributions, respectively.
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Dsp is associated with the entropy introduced by the artificial dissipation and with the
truncationerrorof thenumerical schemeused in theComputationalFluidDynamics solver.
Therefore, amore accurate prediction of the drag coefficient for coarser grids is possible by
computing this numerical error,Dsp, and subtracting it from Eq. (3.1). This is a consider-
able advantage for optimization purposes since the use of coarser grids allows significant
computational time savings.

The three components of Eq. (3.1) are defined below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Dw = V∞ ∫Ωw

▽ ⋅ (ρgV) dΩ
Dv = V∞ ∫Ωv

▽ ⋅ (ρgV) dΩ
Dsp = V∞ ∫Ωsp

▽ ⋅ (ρgV) dΩ (3.2)

Being V∞ the free stream velocity, ρ the density,V the velocity vector, and g a function of
entropy variation∆s.

g (∆s/R) = −fs1 [∆s

R
] − fs2 [∆s

R
]2 (3.3)

where R is the gas constant and fs1 and fs2 are functions of the ratio between specific
heats of the fluid, γ, and the free streamMach number,M∞ and are computed as follows.

fs1 = −
1

γM2
∞

fs2 = −
1 + (γ − 1)M2

∞

2γ2M4
∞

(3.4)

Furthermore, the volumes related with each drag region must be identified. This iden-
tification is based on a proper definition of shock-wave and boundary-layer plus wake sen-
sors that are applied using the hierarchical criterion defined in [6]. The nondimensional
function defined below is used to select the wave regionΩw .

Fshock = V ⋅ ▽p

a∣▽ p∣ > Kw (3.5)

A cut-off value shall be decided for the particular problem under investigation. Usually, it
takes values around 0.85.
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Moreover, the viscous sensor (boundary-layer plus wake regions) must be defined:

Fv = µl + µt

µl
> KvFv∞ (3.6)

whereµl is the dynamic viscosity,µt is the eddy or turbulent viscosity,Fv∞ is the viscous
sensor value at the free-stream conditions, andKv is the selected cut-off value. Classically,
this sensor is used; however, it has been shown that it onlyworks in fully turbulent regimes.
Advanceddefinitions of the viscous sensor that alsowork in laminar and transition regimes
are introduced and discussed in [67].

Finally, the volume that it is not selected, firstly, as wave or, in a second step, as viscous
is going to be identified as spurious volume.

3.2 Advantages and disadvantages of using far-field methods

Some preliminary tests were performed in order to assess the proper implementation of
the method and to show possible advantages of using the far-field analysis. The first test
case was performed on the NACA 0012 airfoil, that will be used as baseline in the design
optimization example, too.

This test case regards a viscous flow, and working conditions are M∞ = 0.7 and
Re∞ = 9×10

6 atCl = 0. Themesh used is a single-blockC-type grid with four grid lev-
els: 224×64, 448×128, 896×256, and 1792×512 cells. For the test case, the selected
cut-off values areKw = 0.9 andKv = 2.7. The near-field and far-field drag coefficients
versus themesh size are shown in Fig. 3.2.1, as well as the pressure coefficient distribution
on the body surface at the different grid refinements. Particularly, the mesh size is given
by the square root of the ratio between the number of cells of the finest grid and the grid
under evaluation (h =

√
Nh=1/Ni). Therefore, a decreasing hmeans an increase in grid

size.
The pressure coefficient distributions on the airfoil obtained on all grids are proposed

in Fig. 3.2.1a; differences are hardly visible, showing a good local accuracy even on the
very coarse grid. In addition, Fig. 3.2.1b also shows that the near-field drag coefficient
converges as the mesh size h ⟶ 0; specifically, there is a variation close to 11% in the
computed near-field drag, which is clearly unacceptable if the coarse grids would be used
in an optimization loop in which drag minimization is one of the objectives. On the con-
trary, the removal of the spurious drag by using the far-field approach allows to obtain, in
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Figure 3.2.1: NACA 0012 test at M∞ = 0.7, Re∞ = 9×10
6 and α = 0. Left: Pressure

coefficient distribution on the body surface at h = 1 (■), h = 2 (●), h = 4 (◆) and
h = 8 (▲). Right: Near-field ( ■ ) and far-field ( ▲ ) drag coefficients versus mesh
size.

practice, a drag computation independent of the adopted grid. Taking into account that
in a three-dimensional calculation, doubling the grid size implies a number of grid cells
eight times lower, this example shows that a correct drag computation on grid levelh = 8,
in principle can lead to computational costs 512 times lower! Which is a clear advantage
when facing optimization design problems.

Nevertheless, it must be pointed out that a fruitful adoption of the far-field technique
in an optimization loop relies on two important requirements.

1. The local accuracy in the flow must be sufficient. In particular, if a coarse grid is
adopted, themain features of the flow should be already correctly detected. Indeed,
it is quite possible that some important characteristics of the flow, such as separated
regions, vortices, shock waves require a sufficient grid resolution in order to be cap-
tured. A problem appeared in present study will be discussed below.

2. A correct detection of the spurious drag requires a proper selection of the boundary
layer and shock wave regions. Significant progresses have been obtained towards a
robust automatic region selection [67]. However, it is very likely that during an
optimization loopwith thousands drag calculations the far-field drag algorithm can
fail as also discussed later. Clearly this possibility can lead to a wrong optimized
solution.
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Let us consider now an inviscid flow at M∞ = 0.85 and α = 0 around the airfoil
depicted in Fig. 3.2.2b. In this case, the shockwave cut-off sensor,Kw , is set equal to 0.85.
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(a) Pressure coefficient, cp
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(b) Airfoil

Figure 3.2.2: Inviscid test at M∞ = 0.85 and α = 0. Upper: Pressure coefficient
distribution on the body surface at two grid levels: h = 1 (■) and h = 4 (▲).

Thedrag coefficient has been computed using the far-field formula at the coarsest (h =
4) and finest (h = 1) grid levels and the obtained values, cdw have been compared with
the near-field results, cdnf

. An underestimation of the computed drag coefficient using the
coarsest mesh size is reported in Table 3.2.1. On the other hand, a good prediction of the
drag coefficient is found at the finest grid size.

Grid size cdnf
⋅ 104 cdw ⋅ 104

h = 4 112 × 32 180 30
h = 1 448 × 128 63 61

Table 3.2.1: Mesh sizes and computed drag coefficients. Inviscid test at M∞ = 0.85
and α = 0
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To understand why the far-field cd was underestimated, the pressure coefficient distri-
bution on the airfoil surface at both grid levels was plotted in Fig. 3.2.2a. It is seen how
the coarsest grid is able to capture the expansion at leading edge of the airfoil. However,
the shock wave at the trailing edge is not well simulated. Since a weaker shock wave was
predicted, the far-field formula also gives a lower prediction of the drag coefficient. Hence,
it is shown the importance of the detection of the main features of the flow by the grid to
properly compute the drag coefficient with a far-field method.

An additional key point for the well functioning of the formula is the flow convergence.
This issue is herein investigated. During an optimization test to solve the case study pre-
sented in Section 5.3 with a population based algorithm, a bad behavior of the drag coeffi-
cient calculation using the far-field formula was experienced. To explore the cause behind
this behavior, two candidate airfoils of the optimization were selected. The airfoils are de-
picted in Fig. 3.2.3.

x/c

y
/c

0 0.2 0.4 0.6 0.8 1
­0.05

0

0.05

0.1

0.15

Figure 3.2.3: Airfoil comparison. Airfoil 1 ( ) and Airfoil 2 ( ). The axis are not
dependent for visualization purposes.

The optimization test aims at the reduction of the cd of a propeller blade airfoil under
geometric and aerodynamic constraints. The starting airfoil is the Martin Hepperle MH
114. The operating conditions areM∞ = 0.2,Re = 4.97 × 10

6, and α = 2
◦. The lift

coefficient of the airfoil is required to be greater or equal to one (cl ≥ 1). To calculate
the aerodynamic performance, the flow solver used is SU2. A C-grid with 128 cells on the
body surface and 64 cells on the wake and on the far-field direction is used (total number
of cells equals to 16384). The convergence criterion used for the CFD analysis is that
the cauchy criterion on cd must be lower than 10−6. With the output flow fields, the cd
is calculated with the far-field formula (only viscous drag cdv is found) and the result is
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compared with the near-field cdnf
value on a fine grid. The grid has 512 cells on the body

surface and256on the far-field direction andon thewake (262144 total cells). The results
are provided in Table 3.2.2.

cdnf
⋅ 104 (coarse) cdv ⋅ 10

4
cdnf

⋅ 104 (fine)
Airfoil 1 145.9 88.6 124.4
Airfoil 2 138.8 117.8 120.6

Table 3.2.2: Far-field cdv
and near-field drag coefficient comparison.

From Table 3.2.2, it is observed that an underestimation on the cd is provided by the
far-field formula using the solution of the Airfoil 1, whereas a good estimation is found
when analyzing Airfoil 2. Both solutions were obtained after reaching the same conver-
gence criterion. To understand the problem, the residual reduction value of the density
was compared for both airfoils.
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c
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(a) Drag coefficient cd convergence.
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­4

­3

(b) Density (ρ) residual reduction.

Figure 3.2.4: Drag coefficient convergence and density residual reduction for Airfoil 1( ) and Airfoil 2 ( ).
In Fig. 3.2.4b, it is appreciated how the residual value for Airfoil 2 has further decreased

than Airfoil 1, although the same convergence on cd value (see Fig. 3.2.4a) is achieved.
Therefore, it can be stated that it is not sufficient to make a control on the drag coefficient
value. Particularly, it is observed that, for an accurate calculation of the drag coefficient
with the far-field method, the flow field must reach a higher level of convergence. The
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solutions provided by computational fluid dynamic solvers converge firstly on the body
surface and, only later, they converge far from the body. That is the reason why, although
an accurate cdnf

was found for the Airfoil 1, the far-field approximation provides a poor
result. Thus, this implies the need of a higher number of iterations.

3.3 Inviscid Airfoil Optimization Problem

The proposed design exercise is taken from [66], and it requires to find the symmetrical
airfoil with minimum wave drag in a transonic inviscid flow, modeled by Euler equations,
atM∞ = 0.85 and zero angle of attack. The baseline geometry is theNACA 0012 airfoil,
asmentioned in the previous section. The airfoil shape is represented parametrically using
Non-UniformRational B-Splines (NURBS).Thismethodology allows the representation
of complex geometries bymeans of control points and an associatedweight to each control
point (see Section 2.2.1). In this research, specifically, the airfoil upper surface is described
using a quadratic NURBS curve with six control points. The lower surface is obtained by
specular symmetry. Thebaseline shape is theNACA0012 airfoil. According to the chosen
parametrization, it is defined by the control points illustrated in Fig. 3.3.1.
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Figure 3.3.1: NURBS six control points for NACA 0012 airfoil representation. NACA
0012 upper surface ( ) and NURBS control points (●). The y-coordinate is magnified
and proportions are not respected.

In addition, the complete set of control points and weights needed for NURBS repre-
sentation of NACA 0012 airfoil is given in Table 3.3.1.
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The first and the last control points are the Trailing Edge (TE) and Leading Edge (LE)
respectively that are kept fixed during the optimization. The remaining control points de-
termine the shape variations during the optimization. In particular, x, y, and w parame-
ters are changed in control points two to four, while the fifth control point is constrained
to have the x-coordinate equal to zero in order to keep vertical the tangent at the leading
edge.

x ⋅ w y ⋅ w w

1 1 0 1
2 0.5948 0.0690 1.0735
3 0.3934 0.1243 2.1276
4 0.0494 0.0527 1.3551
5 0 0.0123 1.4271
6 0 0 1

Nodal vector
[0 0 0 0.4066 0.6748 0.9 1 1 1]

Table 3.3.1: NURBS representation of NACA 0012 airfoil

This leads to a total of 11 design variables for the optimization. The active design vari-
ables are those inside the box in Table 3.3.1.

A geometrical constraint is imposed requiring that the optimized airfoil completely in-
cludes the baseline. This is obtained imposing that, at each x-coordinate, the absolute
value of the abscissa has to be greater than the abscissa of the zero thickness trailing edge
NACA 0012 airfoil defined by Eq. (3.7).

ybaseline (x) = ±0.6 (0.2969√x − 0.1260x − 0.3516x
2 + 0.2843x

3 − 0.1036x
4)

(3.7)
Actually, coherently with [65], the constraint was relaxed by allowing the profile to

have, at a givenx-coordinate, a slightly smaller absolute value of the y-coordinate than the
NACA 0012 airfoil: c(x) = ∣y (x) ∣ − ∣ybaseline (x) ∣ > −5 ⋅ 10−4. The constraint is
expressed as a penalty, and consequently the optimization problem can bemathematically
expressed as

min
P

cd + p (y (x)) (3.8)

whereP is the set ofNURBScontrol points andweights, and thepenalty functionp (y (x))
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is given by

p (y (x)) = { 0 if ∣y (x) ∣ − ∣ybaseline (x) ∣ > −5 ⋅ 10−4 ∀x ∈ [0, 1]
0.5 otherwise.

(3.9)
A further check requires the full convergence of the CFD solutions.

The optimization algorithm chosen for this design exercise is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). A full description of the algorithm is provided
in Section 2.1.2.

3.3.1 Preliminary analysis and mesh converging study

The CFD analyses were performed using the Zonal Euler Navier-Stokes flow solver (see
Section 2.2.3) for an inviscid flow atM∞ = 0.85 and cl = 0. The mesh used is a struc-
tured C-grid with the far-field located at 100 chords. In the present test case, the shock
wave cut-off value adopted in the far-field drag calculation isKw = 0.85.

As in the previous viscous test, a grid convergence study was performed using three
grids of increasing size.
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Figure 3.3.2: NACA 0012, inviscid test at M∞ = 0.85 and α = 0
◦. Left: Pressure

coefficient distribution on the body surface at h = 1 (■), h = 2 (●), and h = 4 (▲).
Right: Near-field ( ■ ) and far-field ( ▲ ) drag coefficients versus mesh size.

Thecomparisonof theobtainedpressure coefficient distributionon this baseline geom-
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etry is proposed in Fig. 3.3.2a. Again, differences are hardly visible in the smooth part of
the flow. Some discrepancies are evidenced at the shock, but they are unavoidable because
the numerical shock thickness depends on the grid resolution. Anyway, the shock appears
sufficiently resolved on the coarse grid too. The comparison between the near-field and
far-field coefficient drag calculations are reported in Fig. 3.3.2b and in Table 3.3.2. Again,
the near-field drag converges as the mesh is refined and, as expected, the far-field formula
with the spurious drag removal correctly computes drag even on the coarse grid. This re-
sult suggests that the grid resolutionh = 4 canbe successfully adopted in the optimization
loop, but, as discussed in the following, the success is not straightforward.

The number of cells on the airfoil surface (Nb), along the far-field direction (Nj), and
in thewake (Nw), together with the drag coefficient value obtainedwith near-field (cdnf

)
and the far-field (cdw) methods are reported in Table 3.3.2.

Nb Nj Nw cdnf
⋅ 104 cdw ⋅ 104

h = 4 64 32 24 478 469
h = 2 128 64 48 469 468
h = 1 256 128 96 467 468

Table 3.3.2: Mesh sizes and computed drag coefficients

3.3.2 Results

Two different sets of optimization runs have been performed. The first one used the near-
field formulation to evaluate the drag coefficient, while the second one relied upon the
far-field method.

Optimization Using Near-Field Drag EvaluationMethod

Twooptimization problemswere solved inwhich the drag forcewas evaluated by the near-
field method. These were performed using the coarsest grid size, h = 4, and the subse-
quent mesh refinement h = 2. Several optimization processes were launched to assess
the robustness of the set-up of the optimization algorithm. Only the best performance re-
sults are here reported. The optimization parameters used for the first phase are reported
in Table 3.3.3.

The convergence histories of the two optimization problems performed are shown in
Fig. 3.3.3. Note that both optimizationswere stopped before reaching themaximumnum-
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Maximum evaluations Population size, λ Initial standard deviation, σ
36000 72 0.05

Table 3.3.3: Optimization Parameters for the optimization at h = 4 and h = 2

ber of evaluations since a further improvement of the objective value was not expected. In
particular, the optimization at the coarsest grid level, h = 4, was stopped after 19872
evaluations, and the optimization at h = 2 after 32184 iterations.
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(a) Optimization at h = 4
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(b) Optimization at h = 2

Figure 3.3.3: Convergence histories of the near-field optimizations

TheNURBS representation of both optimal airfoils is given in Table 3.3.4.
In addition, Fig. 3.3.4 shows the optimized airfoils at h = 4, at h = 2, as well as the

starting NACA 0012 airfoil. The resulting optimized airfoils have a nearly constant thick-
ness along the chord, the leading edge has been flattened, and the trailing edge is rounded.
Moreover, it can be appreciated, also from Fig. 3.3.4, that the main effect of mesh refine-
ment on the optimal airfoil solutions is located around the LE of the airfoil. The leading
edge is flatter in the optimal airfoil found by the optimization at a finer grid.

In addition, after each optimization, the performance of the obtained airfoils has been
evaluated by computing the drag coefficient at the finest mesh level h = 1. In Table 3.3.5,
the objective value of the optimization (cd calculated using the corresponding grid level of
the optimization) and the drag coefficient computed at h = 1 are given. Furthermore, in
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Optimization at h = 4 Optimization at h = 2
x ⋅ w y ⋅ w w x ⋅ w y ⋅ w w

1 1 0 1 1 0 1
2 4.0552 0.2014 4.0527 2.3032 0.1097 2.3051
3 0.7651 0.1889 2.7919 0.4020 0.0695 0.9702
4 0.0792 0.1747 4.1819 0.0009 0.0657 1.4720
5 0 0.0329 4.4046 0 0.0131 1.1963
6 0 0 1 0 0 1

Nodal vector
[0 0 0 0.4066 0.6748 0.9 1 1 1]

Table 3.3.4: NURBS representation of the optimized airfoils after the three optimiza-
tion steps

x/c

y
/c

0 0.2 0.4 0.6 0.8 1

­0.15
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­0.05

0

0.05

0.1

0.15

0.2

Figure 3.3.4: Comparison of NACA 0012 airfoil ( ) with the optimized airfoils ob-
tained at h = 4 ( ) and h = 2 ( ).
Table 3.3.5 the associated CPU cost of a single CFD evaluation at the specific grid level is
reported. Recall that the costs are calculated based on theCPUcost of theCFDevaluation
at the coarsest grid (h = 4). Besides, the associated CPU cost of a CFD evaluation at the
finest grid level, h = 1, is 19.5.

Objective value cd ⋅ 10
4 at h = 1 CPU cost

Optimization at h = 4 95 69 1
Optimization at h = 2 53 33 4.5

Table 3.3.5: Objective value and CFD Drag coefficient using h = 1 grid size

From Table 3.3.5, it can be observed that after the optimization using the coarsest grid
level a85.2%drag reduction is achieved(taking as referencevalue467d.c, seeTable3.3.2).
Performing anoptimizationwith the secondmesh size allows a further decreaseof thedrag
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coefficient (another 36 d.c), thus, reaching a 92.9% diminution from the starting NACA
0012 airfoil.

Figure 3.3.5 compares the pressure coefficient distribution on the body surface, cp, of
theNACA0012 airfoil (in black)with respect to the optimized airfoil usingh = 4 grid (in
red), andusingh = 2grid (inblue)during theoptimization. Note that thecp distributions
are calculated at the finest grid size (h = 1) for all airfoils. The NACA 0012 presents a
strong shock wave approximately at 3/4 of its chord length. In the optimized airfoil, the
shock wave hasmoved closer to the TE of the airfoil. Moreover, an expansion is present at
the leading edge of the airfoil. A stronger flow expansion is found in the optimized airfoil
using h = 2 that favors drag reduction. It is interesting to note that significant differences
appear using different grid resolutions during the optimization not only at the shock, as
was expected, but also in the suction peak in the leading edge region.

Amain result of this analysis is that the optimization loop performed with the gridh =
4 is clearly not acceptable since the one performed with h = 2 gives a far better result.

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­1.5

­1

­0.5

0

0.5

1

1.5

Figure 3.3.5: Comparison of the pressure coefficient distribution on the body surface
of NACA 0012 airfoil (▲) with respect to the optimal airfoils obtained doing an opti-
mization at h = 4 (■), and an optimization at h = 2 (●). Inviscid test at M∞ = 0.85
and α = 0.

In addition, Fig. 3.3.6 was provided to show the effect of grid refinement on cp for the
same airfoil. In particular, the pressure coefficient distribution on the airfoil surface is plot-
ted at the three mesh resolutions for the obtained optimized airfoil by using h = 2 during
the optimization process. The main difference is at the shock wave located in the trailing
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edge. In fact, the coarsest mesh (h = 4) is not able to capture properly this flow feature.
This will make the adoption of the far-field formula for the optimization at this grid level
not straightforward.

x/c

C
p

0 0.2 0.4 0.6 0.8 1

­1.2

­0.8

­0.4

0

0.4

0.8

1.2

Figure 3.3.6: Comparison of the pressure coefficient distribution on the body surface
of the optimized airfoil using h = 2 during the optimization at different grid levels:
h = 4 (▲), h = 2 (●), and h = 1 (■). Inviscid test at M∞ = 0.85 and α = 0.

Optimization Using Far-Field Drag EvaluationMethod

In this section, the far-field method introduced in Section 3.1 was used to estimate the
wave drag coefficient to be minimized. In this particular case, the selected shock wave
sensor is kw = 0.85. The optimization problems were done at grid level h = 4. The
objective is to check if the far-field method can provide more acceptable results at level
h = 4 than the near-field approach. Preliminary experiments evidenced that potentially
the far-field method was able to filter out the contribution of spurious drag effectively.
Nevertheless, the first optimization runs evidenced that when unfeasible airfoils, charac-
terized by numerical separations or instabilities, were generated by the design procedure,
the far-field method gave unreliable results. Therefore, to face this problem, a new con-
straint, based on the near-field drag calculation, less sensitive to this problem, was intro-
duced. This constraint is implemented as a step penalty function that is triggered when
the difference between far-field and near-field drag coefficients is greater than a problem-
dependent threshold. In addition, a check on the grid quality has also been introduced for
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avoiding anomalous behavior of the fluid dynamic solver. Thus, the optimization problem
is redefined as

min
P

cdw + p (y (x)) + p (cd comparison) (3.10)

with

p (cd comparison) = { 0 if cdnf
− cdw < 0.0150

0.5 otherwise.
(3.11)

The new optimization problem was run at the first grid level and using the algorithm
parameters given in Table 3.3.3. The robustness of the set-up was checked launching the
optimization process several times. In particular, five optimal solutions are here reported.
The objective function formulation was always able to distinguish between feasible and
unfeasible solutions, and the current optimization algorithm set-up was able to find a fea-
sible optimal solution. The convergence history of the optimization that found a better
performance airfoil is illustrated in Fig. 3.3.7.
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Figure 3.3.7: Convergence history of the far-field optimization

Analogously to the near-field study, the drag coefficient of the optimized airfoil was re-
computed at the finest grid level,h = 1. This value togetherwith the objective value (wave
drag coefficient calculated with the far-field method at h = 4) are given in Table 3.3.6.

Table 3.3.6 shows that a higher drag reduction is always achieved than in the optimiza-
tion made employing the near-field formulation at the same grid level, h = 4, which is
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Objective value cd ⋅ 10
4 at h = 1

Trial#1 29 39
Trial#2 36 46
Trial#3 28 39
Trial#4 29 37
Trial#5 30 39

Table 3.3.6: Objective value and CFD Drag coefficient using h = 1 grid size

85.2%. In the worst case (trial#2), a 90.1% reductionwas reached, whereas, in trial#4,
the best-case scenario, the drag coefficient is reduced by 91.6%. This shows the advantage
of using the far-field method in the optimization process since only the wave drag is min-
imized, contrary to the optimization cases where the near-field results of the drag coeffi-
cient are used where wave and spurious drag are optimized at the same time. In particular,
by using the far-field formula, an optimum comparable to the solution of the optimization
using the near-field approach and a denser grid (h = 2) is found. The potentiality of us-
ing the far-field formula are highly assessed, considering the good results obtained on a
coarse grid and the consequent CPU time savings, with reference to a classical near-field
approach.

The NURBS representation of the optimum airfoil of the best trial (Trial#4) is pro-
vided in Table 3.3.7.

x ⋅ w y ⋅ w w

1 1 0 1
2 2.4904 0.1292 2.4835
3 0.5910 0.1348 2.0143
4 0.0023 0.1118 2.6785
5 0 0.0012 1.2024
6 0 0 1

Nodal vector
[0 0 0 0.4066 0.6748 0.9 1 1 1]

Table 3.3.7: NURBS representation of the optimized airfoil of Trial #4

Theoptimized airfoil (in red) of the best trial (Trial#4) is compared in Fig. 3.3.8 with
the baseline airfoil NACA 0012 (in black) and the optimized airfoil obtained using the
near-field approach for drag evaluation (in blue). The optimized airfoil shows the same
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shape characteristics than those obtained using the near-field approach. The airfoil has
approximately a constant thickness along 3/5 of the chord. The trailing edge has been
rounded, and the leading edge is almost flat. Furthermore, it can be observed that the op-
timal airfoil foundwith the near-field approach (in blue) has a rounderTE(seeFig. 3.3.8b)
than the TE of the optimized airfoil using the far-field method (in red).
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Figure 3.3.8: Comparison of the optimized airfoil with the far-field approach ( ) with
the baseline NACA 0012 airfoil ( ) and the optimal airfoil with the near-field approach
using h = 2 ( ).

In addition, from the observation of Table 3.3.6, it appears that the value of the drag
coefficient recomputed at the finest grid level may be slightly different from the objective
function, while, in principle, a closer value should be expected. This possible mismatch
was already introduced in Section 3.1.

The pressure distribution on the body surface of the best trial at the coarsest (h = 4)
and finest (h = 1) mesh sizes are plotted in Fig. 3.3.9. Contrary to the near-field opti-
mization, the suction peak of the optimum solution is now correctly detected; however,
the coarse grid resolution is not sufficient to correctly resolve the shock: the optimization
problem here proposed is particularly critical because the main feature of the flow, the
shock wave, cannot be accurately reproduced, one of the main requirements for a proper
far-field drag analysis. The coarsest grid level is not able to properly capture the shockwave
located closer to the TE of the profile and the weakening of the shock unavoidably leads
to an underestimation of the wave drag coefficient, cdw .

To better understand the usefulness of the far-field method in aerodynamic shape de-
sign, it is necessary to focus not on the greater precision obtainable in the estimation of
drag force, with a given computational mesh, but on the reduction of spurious drag con-
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Figure 3.3.9: Pressure coefficient distribution on the body surface of the optimal airfoil
(Trial #4) at two grid levels: h = 1 (■) and h = 4 (●), and the pressure coefficient
distribution of the baseline NACA 0012 airfoil (▲). Inviscid test at M∞ = 0.85 and
α = 0.

tribution provided by this method. Indeed, for the convergence of an optimization pro-
cess, what counts is the ability to discriminate between two different candidate optimal
solutions, which of the two is better. If the optimization process aims to reduce the drag,
the major obstacle to the use of a coarse grid is the spurious drag term. Indeed, this term
adds a substantially randomand non-controllable contribution to the resistance value that
can deceive the optimizer, leading it to believe that an airfoil is better than another one in-
correctly. In other terms, this means that the result of the comparison is not confirmed
when the drag computation is performed using a denser mesh. Naturally, the use of a very
coarse mesh inevitably introduces an error in the aerodynamic characteristics and, like-
wise, the optimizer will proceed up to a level of solution improvement such that it will
no longer be possible to discriminate between two candidate configurations which one is
better. However, the far-field method, as it has been demonstrated in this work, thanks
to the elimination of the spurious contribution, allows a significant extension of the pre-
dictive and comparative capacity of a fluid dynamic solver for a given density level of the
computational mesh. So, as has shown in the examples presented, the use of the far-field
approach, even if not perfect, allows the optimization algorithm to reach to a significantly
better solution refinement than that obtainable with the near-field method. Obviously, if
grid density andquality increase, the use of the far-field approach in optimization becomes
less useful, at the denser mesh levels, near-field and far-field techniques provide substan-
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tially the same difference in estimating the resistance of two aerodynamic configurations.

3.3.3 Toward an affordable Robust Optimization

Robust design optimization aims to obtain optimal solutions less vulnerable to different
sources of uncertainties, such as operating conditions, here considered, or the shape of
the airfoil. In particular, the aircraft may operate at speeds and load conditions that differ
from the design ones, so that, they must be treated as uncertain parameters. These uncer-
tainties are considered by introducing random variables. Hence, the objective function
and the constraints of the problems will be functionals, and a method to map them into
the set of real numbers has to be found. Lately, risk measures have been introduced for
aerodynamic robust design. For an accurate calculation of these risk measures, a mini-
mum of 20 additional evaluations of our quantity of interest (QoI) is necessary, implying
a significant increase in the computational time. Here, the QoI is the airfoil drag coeffi-
cient in transonic inviscid flow conditions. Therefore, if the far-field method for the drag
force prediction, used in the deterministic optimization, is suitable for the cd calculation at
different operating conditions (a range of Mach numbers), the computational cost of the
robust optimization will be drastically reduced, making it affordable. Here, a preliminary
study in the range of Mach numbers 0.8 − 0.9 for the baseline airfoil and the optimum
solution shows how the far-field method behaves.

Figure 3.3.10 shows the sensitivity of the computed drag coefficient to the freestream
Mach number, for both the baseline and optimized airfoils. Dragmonotonically increases
with Mach number in the case of the baseline body, clearly due to the increasing of shock
strength with Mach number. On the contrary, for the optimized airfoil, there is a sharp
minimum atM∞ = 0.85, the design Mach number for the optimization. It is interest-
ing to note that the differences between the near-field and far-field drag calculations on
the coarse grid (the one used for the optimization) are much more evident for the opti-
mized airfoil, evidencing a much larger pollution introduced by the spurious drag in the
optimum region. The far-field drag analysis on the coarse grid is inmuch better agreement
when compared with the reference near-field value on the fine grid, in particular the drag
minimum at the design Mach number (0.85) is more clear. ForM∞ < 0.85 the near-
field drag on the coarse grid is substantially constant; therefore the optimum region is not
well detected. This absence of sensitivity to flow conditions (included geometry) is, very
likely, the reason why the optimization on the coarse grid by the near-field formula leads
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to an unsatisfactory result.
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Figure 3.3.10: Sensitivity of the computed drag to the freestream Mach number.
Near-field at h = 4 ( ■ ), near-field at h = 1 ( ● ), and far-field at h = 4 ( ▲ )
drag coefficients versus mesh size.

It can be noted that, for the higher Mach number, the far-field formula underestimates
drag on both the baseline and optimized airfoils. This is due to the reduction of shock
strength introduced by the unavoidable reduction of grid resolution. In the present work,
the problem is not serious, since the far-field formula correctly predicts the trends, but it
is a further warning on the adoption of far-fieldmethods: they are able to significantly im-
prove drag calculations provided that the local features of the flow are correctly captured.

3.4 Conclusions

In this chapter, a far-field method (based on entropy variations) for drag force evaluation
has been implemented within an optimization method. It allows the exclusion of the spu-
rious drag contribution unavoidably introduced by the numerical scheme. In this way a
better prediction of the cd is achievable for coarser grids; henceCFDevaluations costs can
be significantly saved. These possible advantages have been verified by trying an airfoil op-
timization in transonic inviscid flow, which used a very coarse grid resolution. The studied
case was the optimization of the NACA 0012 airfoil in an inviscid flow atM∞ = 0.85

subject to a geometrical constraint on the thickness. The adoption of the far-field formula
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allowed for an optimization result very near the best solution obtainable by amuch denser
grid. On the contrary, the optimization performed with the same resolution, but with the
objective function computed by the standard near-field formula did not provide a satisfac-
tory result. Indeed, the very large spurious drag present on the coarser grid can hide the
optimum region.

While adding this method inside the optimization loop, several problems were evi-
dencedand solved. Themost critical issue facedwas the applicabilityof the far-fieldmethod
only in physically feasible solutions. It was addressed by setting up a control, in the form
of a penalty in the objective function, on the near-field drag computation, which is more
sensitive to the physicality of the solution. In addition, a check on the grid quality has been
introduced to avoid anomalous behavior of the fluid dynamic solver.

From the presented results, it can be concluded that the use of a far-field method offers
several advantages for aerodynamic design optimization since it also allows the optimiza-
tionof only thephysical drag components, here thewavedrag, and avoids theoptimization
of the spurious drag inherent to the CFD calculations.

Asopposed to the adoptionof the standardnear-fielddrag formula, the far-field formula
allowed for a correct sensitivity analysis to Mach number variations, opening a road map
towards a practically feasible robust design analysis, in the cases in which drag is one of the
objective functions.

However, it should be noted that the possible grid coarsening is limited by the require-
ment that the local flow features, such as shock intensity in the present test, need to be
sufficiently well resolved.
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4
Adjoint based RobustAerodynamic Shape

Optimization

This chapter is based on the work presented at the journal article “Gradient based empirical
cumulative distribution function approximation for robust aerodynamic design” [68].

4.1 Introduction

The purpose of this chapter is to illustrate an approach to robust optimization in aero-
dynamic design problems of industrial interest. The method relies on the Conditional
Value at Risk (CVaR) function (see Sections 1.2 and 1.3), and it is applied to the robust
aerodynamic design of the central airfoil of a Blended-Wing-Body (BWB) aircraft at tran-
sonic cruise conditions. The choice of the BWB is in line with the scientific community’s
research trend towards reducing of the environmental impact of air traffic. For this rea-
son, in Europe, institutions like the Advisory Council for Aeronautics Research in Europe
(ACARE) identified the Blended-Wing-Body (BWB) aircraft as one of the most promis-
ing layouts for the reduction of gas emissions and noise [69, 70]. Hence, the realization
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of an aerodynamic design optimization problem of this type of aircraft is of particular in-
terest. A BWB aircraft has no clear dividing line between a central lifting-body that substi-
tutes the classical fuselage and the wing. Furthermore, it often lacks the tail, so the pitch
stability cannot be handled by elevators. Thus, regardless of the particular BWB or flying
wing considered, it is mandatory to optimize the aerodynamic performance of the central
airfoil, taking into account a constraint on the provided pitching moment coefficient cm.
Indeed, as remarked in [71], the static pitching stability of the whole BWB aircraft is usu-
ally accomplished by balancing a negative nose-downmoment, related to the outer-wing,
with a positive nose-up moment given by the central section.

In this applied researchcontext, robust and reliability-baseddesignoptimization is gain-
ing popularity since this approach helps to obtain solutions that do not deteriorate ex-
cessively in the presence of uncertainties on the airfoil contour or operating conditions.
The uncertainties on the wing surface are, for example, due to machining tolerances, to
shape deformation under load, or debris accumulation. Besides, the aircraft may operate
at speed and load conditions quite different from the design ones, so they can be also un-
certain parameters. Randomvariables are introduced to account for these unknown states.
Therefore, the objective of the optimization design problem, as well as the constraints, are
functionals. As a result, it is necessary to map them into the set of real numbers R. As
introduced in Chapter 1, several approaches are historically used like the worst-case [72]
or the expected values with safety margins [73]. However, in this study, the Conditional
Value-at-Risk (CVaR) estimator is considered to solve the presented robust design op-
timization (RDO) problem and it is estimated using an approach based on the empiri-
cal cumulative distribution function (ECDF). For further details on how to calculate the
CVaR using the ECDF refer to Sections 1.3.1 and 4.3. The robust approach based on risk
functions is, without doubt,more powerful and flexible than the deterministicmulti-point
methodology that is generally used in this type of problem, given that the high number of
uncertain operational parameters makes the definition of the multi-point design problem
quite tricky and cumbersome.

In the RDO problem here studied, the quantities of interest (QoI) of the risk function
are the aerodynamic characteristics of the airfoil, such as lift, drag, and pitching moment
coefficients, which are computed solving the compressibleReynolds-averagedNavier-Stokes
equations with the open-source fluid-dynamic solver SU2 [50, 51] (the flow solver is ex-
plained in-depth in Section 2.2.3). Using aRANS solver makes the calculation ofCVaR
costly from the computational point of view. Therefore, computational cost reduction
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is the characterizing aspect of this dissertation. Above all the different possibilities, in
this chapter, the estimate of the ECDF is here obtained by exploiting the QoI gradient
with respect to the uncertain variables computed through the discrete adjoint module of
SU2 [74]. Thus, the ECDF is approximated with a first-order series expansion using effi-
ciently calculated gradients from SU2, which, thanks to the adjoint method, are available
at almost the computational cost of one CFD solution whatever the number of uncertain-
ties is. Thus, the adjoint-based approach presented here allows a substantial reduction of
the computational cost needed to estimate the ECDF.

In synthesis, this chapter introduces amethodology for approximating theECDFbased
on the efficient computation of gradients and illustrates its potentialities by applying it to
an aerodynamic design problem of industrial interest. Specifically, a tailless BWB aircraft
central section is considered for robust design optimization in transonic cruise conditions.
The first step is the study of the aerodynamic characteristics of the baseline airfoil. Subse-
quently, an adjoint-based method aimed to reduce the computational cost of estimating
the Cumulative Distribution Function is introduced in Section 4.4.1. After that, two con-
secutive optimizations are done, a deterministic one first (Section 4.5.2) and a robust one
later (Section 4.5.3). In addition, before performing the robust optimization, a sensitivity
analysis of the optimumdeterministic airfoil to different uncertainty sources is done (Sec-
tion 4.5.4). Finally, the baseline, the deterministic optimum, and the robust optimum
airfoils are analyzed and compared from a robustness point of view.

4.2 Physical problem definition

As already introduced, the robust aerodynamic design problem of the central airfoil of a
Blended-Wing-Body (BWB) aircraft is here faced. This design exercise working condi-
tions are the typical cruise flight conditions for long-range commercial aircraft, which cor-
respond here to a free-stream Mach number M∞ = 0.8 at an altitude h = 12000 m.
The design problem is tailored on an airfoil, which is conceived to work at fixed incidence
α = 0

◦, providing aminimumamount of lift and a specific nose-upmoment. The airfoil in
question represents the central section of a BWBwith a chord of approximately 30meters.
Then, the Reynolds number at cruise condition isRec = 174 × 10

6.
In a real application, it is not possible to work constantly at the precise operating point,

and some deviations from the operating parameters are likely. Moreover, it is known that
some parameters would affect the airfoil performance more than others. Therefore, un-
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certainties in Mach number and Angle of Attack are introduced for taking into account
the deviations before mentioned. However, perturbations in atmospheric pressure and
temperature are assumed not to affect the airfoil drag consistently. The modeling of the
working conditions uncertainties is given in Section 4.5.3.

4.2.1 Baseline airfoil shape and characteristics

In the following paragraphs, the central BWB section is presented, together with its aero-
dynamic characteristics. Also, a grid convergence study is provided.

Figure 4.2.1 shows the baseline airfoil shape characterized by some geometrical quan-
tities that are crucial for the design process. One of the most important is the leading-
edge radius (LER). Indeed, a small value of LER might induce an early stall of the wing.
Hence, it is preferable to constraint it to safe values. Other geometrical quantities are the
thickness-to-chord ratio t/c, the trailing edge angle (TEA), and the thickness ratio at the
trailing edge (TAT).The latter is computed at 85% of the airfoil chord.
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Figure 4.2.1: Baseline airfoil. BWB central section. The y-coordinate is magnified
and proportions are not respected.

All these properties are specified for the baseline airfoil in Table 4.2.1. By controlling
t/c, TEA and TAT, it is possible to maintain the inner space necessary to load the aircraft.

Figure 4.2.2 reports the baseline airfoil polar curves atMach numbers representative of
the airfoil operating conditions, that is, at the nominal condition and at the uncertainty re-
gion the boundaries (M∞ = 0.78, 0.80, and 0.82). The compressibleRANS equations
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t/c LER TEA TAT
0.16 0.0156 27.57

◦
0.083

Table 4.2.1: Baseline airfoil geometrical parameters.

are solved using SU2 flow solver with the Spalart-Allmaras (SA) turbulence model [75].
For the spatial integration, JST central scheme with artificial dissipation coupled with an
implicit Euler method for the pseudo-time stepping is used.
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Figure 4.2.2: Baseline airfoil performance curves at the nominal Mach and at the
boundaries of the Mach uncertainty region.

Concerning the grid generation, an automatic self-developed procedure based on the
open source-grid generatorGmsh is used (more details of the procedure are given in Sec-
tion 2.2.2). Specifically, the grid generation procedure creates an unstructured O-grid
made of triangular and rectangular elements with a diameter of approximately 80 times
the airfoil chord and some peculiar features. The complete grid is shown in Fig. 4.2.3a.
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The rectangular elements build up a near-wall region whose thickness is estimated using
the flat plate theory (see Fig. 4.2.3b). Furthermore, a closed sharp trailing edge (TE) has
been adopted (see Fig. 4.2.3c). In sum, a whole grid has approximately 150000 elements
at the discretization level chosen for this problem.

(a) O-grid.

(b) Close view of the airfoil
leading edge.

(c) Close view of the airfoil
trailing edge.

Figure 4.2.3: Computational domain. Total number of grid elements ∼150000.

In the optimization process, the optimizer calls such a procedure after every shape per-
turbation to build a new grid from scratch. In the present work, the regeneration of the
computational grid is preferred over its deformation. Some of the authors have also used
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this approach for multi-block structured grids forRANS [76]. Indeed, the generation of
structured grids usually requires a computational effort comparable to that required for
deformation but allows tomaintain excellent control over the grid characteristics near the
wall even for extensive changes in shape. Conversely, unstructured grids can require a high
computational cost for their regeneration and make the deformation methods of existing
grids much more attractive. In the present case, given the relative simplicity of the con-
figuration considered, the regeneration of a 2D unstructured grid does not present com-
putational disadvantages compared to the deformation. It also offers better control of the
mesh quality near the boundary layer region. Furthermore, the optimization procedure
gains greater flexibility because it does not require a re-meshing in correspondence with
substantial airfoil shape changes.

The selected grid size is chosen after a mesh convergence study to ensure that the com-
putational meshes generated in the optimization process allow a sufficiently precise evalu-
ation of theQoI (cd). Table 4.2.2 andFigure 4.2.4 report the preliminary grid convergence
study results. In particular, Table 4.2.2 shows the drag coefficient expressed in drag counts
[dc] as a function of the total number of grid elements (N) and, for better readability, the
associated grid size (h). Grid size h is the square root of the ratio between the number of
cells of the most refined grid and the grid under evaluation (h =

√
Nh=1/Ni), and the

drag count is 1 dc = 10
−4
cd.

N Grid size, h cd [dc]
99524 2.34 315.5
114532 2.18 292.2

1477424 1.92 280.2
270434 1.42 270.4
545272 1.00 269.0

Table 4.2.2: Grid convergence on the deterministic optimum airfoil (see Fig. 4.5.2).
Test case: M∞ = 0.8, Rec∞ = 174 × 10

6 and cl = 0.1.

Additionally, in Fig. 4.2.4, the drag coefficient is plotted as a function of the grid size.
The selected grid refinement level (h = 1.92) introduces, at nominal conditions, a nu-
merical uncertainty (due to discretization error) of 10 drag counts, compared to the most
refined grid considered. This error is much lower than the variation in drag due to the op-
erating condition and shape uncertainties, which is one order ofmagnitude higher (∼ 200

dc), as the sensitivity studies reported in the following sections underline (see Fig. 4.5.4).
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Hence, the selected grid size provides an acceptable trade-off between the precision of the
risk function estimation and the computational cost.
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Figure 4.2.4: Drag coefficient (cd) versus grid size on the deterministic optimum airfoil.
Test case: M∞ = 0.8, Rec∞ = 174 × 10

6 and cl = 0.1.

4.2.2 Shape handling, including uncertainties

Amethod able to handle the shape under exploration is essential to carry on robust design
optimization problems, thus describing the shape as a function of both design and uncer-
tain variables. The shape description approach used in this study is thoroughly described
in Section 2.2.1. Particularly, the in-house developed tool wg2aer is utilized. With this
approach, the shape of the central section of the BWB aircraft is parameterized as a linear
combination of an initial geometry and a number of modification functions. The same
technique is used to describe the uncertainties in the geometry by introducing additional
modification functions. Equation (2.2) analytically describes the airfoil shape and the re-
lated uncertainty. Moreover, for the airfoil shape uncertainty, Hicks-Henne bump func-
tions are introduced (see Eq. (2.3)). The selected positions of the bumps along the chord
at the upper and lower surfaces are sub = s

l
b = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8}.

Finally, it must be mentioned that the uncertain geometrical parameters are all charac-
terized by uniform distribution and their range of variation is reported in Table 4.5.2.
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4.3 Risk measures for robust design optimization problems

Section 1.2 reports an extensive discussion of the possible riskmeasures employed to solve
robust design optimization. Here, for the sake of clarity, a short description of the sta-
tistical estimator used is summarized. Precisely, the Conditional Value at Risk (CVaR)
measure [77] is employed, and its definition is:

c
γ = 1

1 − γ
∫ 1

γ
ν
β
dβ (4.1)

TheCVaR can be thought of as a weighted average between γ-VaR [78, 79] (or Value-at-
Risk or qγ or νγ) and the losses exceeding it.

When dealing with a finite number of samples, that is, an ECDF [27] consisting of n
independent and identically distributed (i.i.d.) observations of the random variable X
(X1, X2, . . . , Xn ), then the estimator

ĉ
γ;n = inf

t∈R
{t + 1

n(1 − γ) n

∑
i=1

[Xi − t]+} (4.2)

is used to estimate the γ-CVaR ofL. So, easily, the direct estimate of cγ is obtained:

ĉ
γ;n = ν̂

γ;n +
1

n(1 − γ) n

∑
i=1

[Xi − ν̂
γ;n]+ (4.3)

4.4 ECDF estimation andUQ techniques

The presented approach to the uncertainty quantification (UQ) analysis relies on the cal-
culation of the cumulative empirical distribution (ECDF) [27] of the QoI (which in our
case is the cd or a function of cd and cm). The risk functions that define the optimization
problem are then calculated based on the samples that make up the ECDF. The approxi-
mation technique used to estimate the ECDF relies on the QoI gradient information and
is the key point that distinguishes the method described here.

The results, both in terms of accuracy of estimation and computational cost, are com-
pared with the directMonte Carlo sampling of the input random variables. The advantage
of Monte Carlo method is that it is simple to implement, but, on the other hand, it con-
verges very slowly (1/√N, beingN the number of samples). The latter can be a severe
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problem because often in optimization runs, it is necessary to use small sample sizes, and
this can induce significant errors in the estimation of the QoI statistics.

4.4.1 Adjoint+Gradient

Gradient-related information is often usefully employed in probability theory, as happens,
for example, in the First-order second-moment (FOSM) method [80, 81], and more in
general in perturbationmethods. Themaindifference compared to these types ofmethod-
ologies is that, in this case, the gradient and, possibly, the Hessian are not used to ap-
proximate the statistical moments, but to obtain an approximation of the ECDF directly.
Hence, the QoI (q) is approximated by a Taylor series at the nominal unperturbed vector
u0:

q(u) = q(u0) + n

∑
i=1

∂q(u0)
∂u(i) (u(i) − u

(i)
0 )+

1

2

n

∑
i=1

n

∑
j=1

∂
2
q(u0)

∂u(i) ∂u(j) (u(i) − u
(i)
0 ) (u(j) − u

(j)
0 )+

⋯

(4.4)

with u(i) the i-th component of vector u. Only the case in which the Taylor series stops
at the first order is considered in the present work. Second-order methods will be intro-
duced in the subsequent developments. The use of non-intrusive methods, such as finite
differences (FD), is not convenient for obtaining the QoI gradients with respect to the
uncertain variables at an acceptable computational effort. On the contrary, intrusive ap-
proaches [82], like the adjoint method introduced by Jameson [83] and widely used in
aerodynamic shape design [84–86], provide those gradients at a cost comparable to a flow
solution, regardless of the number of uncertain variables.

Consequently, the discrete adjoint method implementation based on Algorithmic Dif-
ferentiation (AD), added in SU2 by Albring et al. [87], is used here. In this particular
implementation, Duality-Preserving methods guarantee that the adjoint solution have the
same convergence rate as the flow solver. Furthermore, advanced AD techniques as ex-
pression templates and local preaccumulation provide efficiency to the code.

The adopted computational strategy is summarized in Fig. 4.4.1 and explained in the
following lines.
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Figure 4.4.1: Computational model chain.
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Figure 4.4.2: Example of discrete-adjoint gradients evaluated for the upper (1-6) and
lower (6-12) surface geometrical uncertainties of the baseline airfoil.

1. The RANS flow solver gives the QoI of the problem (cd) and additional aerody-
namic characteristics needed for the problem constraints (i.e., cm).

2. RANS adjoint solution returns the gradients of the QoI with respect to the uncer-
tainty variables almost at the cost of oneRANS flow solution.

3. A linear approximation of theQoI is built according to Eq. (4.4) using the extracted
gradients.
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4. Empirical Cumulative Distribution Function (ECDF) is then calculated.

5. Finally,CVaR is estimated from the ECDF by means of Eq. (4.3).

Figure 4.4.2 shows an example of the cd gradients related to the geometrical uncertain-
ties evaluated through the method mentioned above.(∂cd/∂M)0 (∂cd/∂α)0

0.6755454 0.0090269

Table 4.4.1: Example of discrete-adjoint gradients for operational uncertainties.

The result are in good agreement with the finite difference method. In addition, the
discrete-adjoint gradients related to theoperational uncertainties are reported inTable4.4.1.

Adjoint Solution Convergence Issues

It is clear that when many uncertain parameters affect only one or a few cost functions,
then the adjoint solution is the best choice for gradient evaluation, both in terms of effec-
tiveness and efficiency. Nevertheless, it is crucial to obtain a well-converged flow solution
before passing the solved flow field to an adjoint solver. Indeed, regardless of the particu-
lar adjointmethod (i.e., continuous or discrete), the adjoint equations intrinsically depend
on the flow field solution. Therefore, if an accurate evaluation of theQoI gradient through
an adjoint solution is sought, it is very likely that the convergence level of the flow solution
should reach a level much higher than the one usually suitable to compute the QoI only
with accuracy suitable for optimization. To put it another way, this means that the conver-
gence level, which is commonly proper for optimization purposes, would not be sufficient
to find a suitable QoI gradient with a successive adjoint solution.

This point is a hindrance to the introduction of adjoint-based optimizationmethods in
an industrial context where, often,RANS equations with complex geometries have to be
solved without the possibility to reach very high convergence levels. Indeed, even in the
2Ddesignapplicationhere studied, somegradient inaccuraciesdue toboth the incomplete
convergence of the flow field solution or to the divergence of the discrete adjoint solution
mayappear. Consequently, someextraCPUtime to improve the average convergence level
of the solutions has to be spent. For what concerns the presented strategy, it is mandatory

70



to check the convergence of both the flowfield and adjoint field solutions carefully to avoid
leading the optimizer in the wrong direction.

According to the tests carried out for typical airfoil shapes, the trend found in the resid-
ual of the adjoint variables is a rapid descent of the residual, which often tends to flatten.
These tests evidenced that an acceptable level of residual reduction is around 2.5 orders of
magnitude, provided that there is no oscillation in the calculated sensitivities.

4.5 Design application example

In this section, the physical problem described in Section 4.2 is translated into a single-
point constrainedoptimizationproblem. According to the engineeringpracticedeveloped
in previous works [88], the problem is first solved using a classic deterministic approach.
Subsequently, the risk function based method, usingCVaR, for robust design is applied.
Finally, the baseline airfoil, the deterministically optimized one, and the airfoil resulting
from the robust design loop are analyzed and compared from the point of view of uncer-
tainty quantification.

4.5.1 Optimization problem setup

This design optimization example studies the improvement of the BWBcentral airfoil (see
Fig. 4.2.1) performance by minimizing the drag coefficient (cd), subjected to geometric
and aerodynamic constraints. Regarding the geometrical constraints, the airfoil percent-
age thickness with respect to the chord is fixed at the base value (t%), while, to obtain real-
istic shapes, constraints on the leading edge radius (LER), the trailing edge angle (TEA),
and the airfoil percentage thickness with respect to the chord atx/c = 0.85 (TAT) are in-
troduced. In addition, considering the aerodynamic restrictions, special attention is ded-
icated to the airfoil pitching moment coefficient cm, which for BWB configurations is a
critical parameter due to the absence of the elevators. For this reason, two constraints for
the pitching moment coefficient are used in order to keep its value properly confined, as
required by trim aspects. For the sake of clarity, it has to be pointed out that the cm is
evaluated with respect to the aerodynamic center, and it is considered positive in the case
of “nose up” pitching moment. In mathematical terms, the design optimization example
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reads: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
w

cd(w)
subject to:

t% = 16.00

LER ≥ 0.00781

TEA ≥ 22.0
◦

TAT ≥ 0.06658

cl = 0.1

cm ≤ 0.04

cm ≥ −0.04

error = 0

(4.5)

The penalty approach is used to handle the constrained optimization problem as an un-
constrained one:

min
w∈W⊆Rn

cd(w) + P (w) (4.6)

with

P (w) = k
1
p
+(LER, 0.00781)+

k
2
p
+(TEA, 22.0◦) + k

3
p
+(TAT, 0.06658)+

k
4
p
+(cm, 0.4) + k

4
p
−(cm,−0.04) + k

5
p
+(error, 0) (4.7)

In this case, all the constraints except those regarding the lift coefficient and the airfoil
percentage thickness with respect to the chord are treated as quadratic penalties:

p
+(x, y) = { 0 if x ≥ y(x − y)2 if x < y

(4.8)

and

p
−(x, y) = { (x − y)2 if x ≥ y

0 if x < y
(4.9)

Instead, the cl and the thickness constraints do not appear because they are automati-
cally satisfied during the computation procedure by changing the angle of attack and by
re-scaling the airfoil thickness to the assigned value, respectively. The numerical values
chosen for the ki coefficients are: k1 = 5000, k

2 = 10, k
3 = 30, k

4 = 1000, k
5 =

1000. The transformation of a constrained optimization problem into an unconstrained
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one through the penalty approach is always a delicate process, as the choices of theweights
of the penalization terms profoundly change the shape and features of the search space.
Here, in particular, the violation of the constraint on leading-edge radius is highly penal-
ized, as it is well known the tendency of the optimization processes to gain performance
in these working conditions by reducing the leading edge radius. Unfortunately, this often
induces bad off-design stall behavior, especially near stall, and should be avoided. It has to
be also avoided that failed CFD computations may deceive the optimizer. Hence, a very
high weight to the related constraint (error in Eqs. (4.5) and (4.7)) is added. Finally, a stiff
penalty is also imposed on the pitchingmoment constraints, because a toomarked change
in this constraint would require a radical revision of the BWB’s planform. This is one of the
constraints that have the most significant impact on robust optimization.

4.5.2 Deterministic problem solution

Twenty design variables corresponding to the aforementionedwi weights in Eq. (2.2) are
used to describe the shape of the wing section. The parameters used for the CMA-ES [89]
optimization algorithm, described in Section 2.1.2, are the maximum number of allowed
evaluations, the population size λ, and the initial standard deviation σ.

This optimization task focuses on finding a starting point for robust optimization close
enough to a deterministic global optimum. Hence, the deterministic aerodynamic opti-
mization process efficiency is not a primary concern, even if the constraints connected to
the available computational resources are carefully considered and in line with previous
CFD-based evolutionary design work [76]. Table 4.5.1 reports the parameters set for this
problem.

Maximum evaluations Population size Initial standard deviation
3000 40 0.15

Table 4.5.1: CMA-ES parameters for the deterministic optimization run.

The CMA-ES setup aims at a broad exploration of the search space. Therefore, some
care is necessary to reduce the elapsed run time for the fluid dynamic solver. Since it is
necessary to work at fixed cl, SU2 works in the variable angle of attack mode for 5000
iterations. With this setup, each SU2 run requires about 35minutes of running time on 6
Intel (R) Xeon (R) cores E5-2670CPU at 2.60GHz. Considering that each generation is
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evaluated in parallel, using 240 cores, the optimization run has required approximately 44
hours. Considering that cd ismore sensitive than cl to the fluid dynamic field convergence
level, the optimal solution has been re-evaluated with a variable angle of attack loop of
20000 iterations.

Figure 4.5.1: CMA-ES convergence history for the deterministic optimization. The
blue line indicates the objective function value of the baseline airfoil ( ).

As shown in Fig. 4.5.1, after 3000 function evaluations, the convergence is not com-
pletely reached, but a substantial improvement is achieved, and the shape in Fig. 4.5.2 is
obtained. The objective function value for the optimized airfoil is 0.029409 (with the
penalty term P = 0), which corresponds to a 67.2% reduction with respect to the base-
line value of 0.089676 (cd = 0.049004, P = 0.040672). The refined fixed lift loop
re-evaluation led to cd = 0.028025. Furthermore, all the aerodynamic and geometrical
constraints are respected. Even if the absolute optimum is not reached, it was decided not
to spend more computational resources on this problem because the deterministic opti-
mization goal is to provide a good starting design for the robust optimization. Adopting
this strategy, a robust design that is not only less vulnerable to the uncertainties, but shows
a better aerodynamic performance too, is expected.
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Figure 4.5.2: Airfoil shape comparison of the deterministic optimized airfoil ( )
versus the baseline airfoil ( ). The y-coordinate is magnified and proportions are
not respected.

4.5.3 Robust DesignOptimization

After solving the deterministic optimization, a robust one must be carried out to improve
the airfoil performances under uncertainty. Only uncertainties in the airfoil shape and
the operating conditions are considered. The first uncertainty source has been introduced
in Section 4.2.2. In this particular case, 12 uniformly distributed random variables are
used to represent the airfoil stochastically perturbed shape. Moreover, the working condi-
tions that are considered uncertain are theMach number and theAngle of Attack. The just
mentioned uncertainties are modelled as four-parameter beta distribution, whose density
function is given by

f(y; η, θ) = γ(η + θ)(y)η−1(1 − y)θ−1
γ(η)γ(θ) (4.10)

with shape factors η, θ, and a scale and translation given by y = (x − loc)/scale. Mach
is characterized by

η = 2, θ = 2, scale = 0.08, loc = 0.76
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while the angle of attack is characterized by

η = 2, θ = 2, scale = 1.0, loc = −0.5

Table 4.5.2 reports the variation range of these uncertainties.

Uncertainty Range
Mach,M [ 0.78 , 0.82 ]
Angle of Attack,∆α [−0.15◦, 0.15◦]
Geometry,Uj [−0.0007 , 0.0007 ] , j = 1, . . . , 12

Table 4.5.2: Summary of uncertain parameter definition in the four benchmark cases.

Aspreviouslymentioned, by introducing randomvariables (in the airfoil geometry def-
inition and in the operating conditions) theQoI is now a functional. Hence, the risk func-
tion CVaR is used to map the chosen QoI into R. Specifically, the CVaR is estimated
with a confidence level γ equal to 0.9. In addition, it is interesting to assess the impact of
random perturbations only on the drag force. Thus, constraints are only computed at the
nominal values of the design parameters (without considering the effect of uncertainties).
These considerations led to the following choice for the objective function:

min
w∈W⊆Rn

CVaR
0.9 (cd(w,u)) + P (w) (4.11)

The procedure based on the adjoint method explained in Section 4.4.1 is used to solve
this optimization problem.

4.5.4 Deterministic optimum sensitivity analysis

Before starting with the robust optimization, it is appropriate to carry out a sensitivity
analysis for the sources of uncertainty [90], and it is necessary to use the same uncertainty
parameterization of the robust optimization phase to avoid ambiguities and allow a fair
comparison of robust and deterministic design. Given the availability of the gradient ob-
tainable with the adjoint method, a local method was preferred. The starting point is the
knowledge of the partial derivatives of the quantity of interest, in this case, the cd, with
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respect to the parameters that define the uncertainty in the robust design problem:

∂cd
∂ui

»»»»»»»u0

withu0 representing the nominal configuration, hence, without uncertainties both in the
operating conditions and in shape. The gradient obtained is shown in Fig. 4.5.3, while
Fig. 4.5.4 shows the maximum overall variation corresponding to the variation margins of
the uncertainties.

-0.400

-0.200

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

 1.200

M α u1 u2 u3 u4 u5 u6 u7 u8 u9 u10u11u12

c
d
 g

ra
d

ie
n

t

Figure 4.5.3: Gradient of the cd with respect to the parameters representing the
uncertainties for the baseline (deterministic optimum) configuration.

The choice of the range of variation of the uncertain parameters is linked to the phys-
ical plausibility of the robust optimization problem, and the information obtained from
the sensitivity study helps to understand how significant the role of each of the uncertain
parameters is. It is, immediately, observed that the preponderant effect is due to the uncer-
tainty on theMach number. However, the non-negligible effects due to uncertainty about
geometry are also evident, which, therefore, must be considered in the design process.
The contribution of the angle of attack uncertainty is smaller than that due to the other
uncertainty sources. Nevertheless, it is considered non-negligible since it corresponds to
a variation in drag counts of about 7, a significant variation for aerodynamicists.
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Finally, it is observed that the actual value of the derivatives of the variables that control
the shape of the profile directly depends on the scale of the modification functions that
they control, as appear evident from Eq. (2.2). However, the sensitivity to shape uncer-
tainty, as reported in Fig. 4.5.4, is not affected by this scaling effect.
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Figure 4.5.4: Linear approximation of the baseline (deterministic optimum) sensitivi-
ties.

4.5.5 Preliminary objective function tuning

Preliminary tests on this objective function have shown that the approximation technique
used does not always lead to consistent results. In particular, the approximation may lead
to an overestimation of the improvement of the objective function.

Figure 4.5.5 shows an example of this behavior. Indeed, the solution reported in blue
(Solution 2) and the one shown in red (Solution 1) lead to very similar CVaR values if
the approximate ECDF is used, while, when CVaR is recalculated using a classic Monte
Carlo sampling, the red solution is much closer to the black one (Solution 0). Overall,
the Monte Carlo estimate of the red solution turns out to be substantially worse than the
blue solution. An in-depth analysis of these solutions has allowed understanding that the
linear approximation implicit in the use of the gradient does not allow to model well the
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behavior of the airfoil when the Mach number is near the upper limit of the uncertainty
range.
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Figure 4.5.5: Comparison between approximated and ”true” ECDFs for the drag co-
efficient (cd).

Hence, before switching to a more precise and expensive second-order model, an ad-
hoc robust optimization problem redefinition is introduced to overcome the highlighted
problem. Considering that the part that is modelled the worst with the linear approxi-
mation ofCVaR is the one at high Mach numbers, it was decided to introduce a second
deterministic design point at these working conditions. Particularly, the drag coefficient
with nominal values of the design parameters without taking into account uncertainties at
a Mach number equal to 0.82, cd,M=0.82(w). Hence, the new robust optimization prob-
lem reads:

min
w∈W⊆Rn

CVaR
0.9 (cd(w,u)) + P (w) + cd,M=0.82(w) (4.12)

As for the deterministic optimization, the CMA-ES is the algorithm chosen for the op-
timization. The algorithm parameters are reported in Table 4.5.3. Smaller values for the
population size and initial standard deviation are selected with respect to the determinis-
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tic optimization setup. The aim is to perform a local search (exploitation) of the optimal
region found in the deterministic optimization. Moreover, when starting fromadetermin-
istic optimum design, a small value of the initial standard optimization may be preferred
since the design may be close to an unfeasible region. Hence, if large perturbations are
performed to the deterministic optimum design, the proposed designs might violate the
constraints. Thus, the initial populationmay be composed, in a large proportion, of unfea-
sible candidates, and this is undesirable.

Maximum evaluations Population size Initial standard deviation
3000 12 0.02

Table 4.5.3: CMA-ES parameters adopted for robust design optimization.

By the way, the optimization process was stopped after 2653 evaluations at the end of
the 221st generation because, after the optimal value found during the 160th generation,
therewere no further improvements. Theevolutionhistory of the optimization is reported
in Fig. 4.5.6.
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Figure 4.5.6: CMA-ES Evolution history for the robust optimization. The blue line
indicates the objective function value of the deterministic optimum (baseline) airfoil( ).
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4.5.6 Robust Optimization Solution

The optimization design problem is composed of two design points, namely, the riskmea-
sure CVaR

0.9 (cd(w,u)) and the drag coefficient at a different Mach number work-
ing condition cd,M=0.82(w) (the penalizing term p(w) vanishes for feasible solutions).
Hence, it is of special interest not only the study of the evolution history of the complete
objective function (see Fig. 4.5.6), but also, the evolution history of the different design
points (see Figs. 4.5.7 and 4.5.8). Moreover, both contributions are plotted together in
Fig. 4.5.9.
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Figure 4.5.7: CMA-ES Evolution history of the CVaR
0.9 (cd(w,u)) contribution. The

blue line indicates the CVaR
0.9 (cd(w,u)) value of the deterministic optimum (base-

line) airfoil ( ).
Observing the evolution of the evolutionary histories of the objective function and its

components allows us to infer, albeit limited to the problem under consideration, some
key features of the presented approach to robust optimization. Figure 4.5.6, related to the
complete objective function, shows that its improvement stops after about 2000 evalua-
tions. The comparison of Fig. 4.5.7, related only to theCVaR component, and Fig. 4.5.8,
related to the cd,M=0.82(w) component, shows that after the 2000 evaluation threshold
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Figure 4.5.8: CMA-ES Evolution history of the cd,M=0.82(w) contribution. The blue
line indicates the cd,M=0.82(w) value of the deterministic optimum (baseline) airfoil( ).

0.036

0.037

0.038

0.039

0.040

0.041

0.042

0.043

0.044

0.045

0.046

0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040

c d
, M

=
0.

82

CVaR0.9

Figure 4.5.9: CVaR
0.9 (cd(w,u)) and cd,M=0.82(w) contributions. The solutions

marked with a blue square are those corresponding to the best CVaR
0.9 (cd(w,u)),

the best objective value, and the best cd,M=0.82(w) ( □ ).

82



the barrier effect of the second design point prevails because, probably, the best CVaR
values that appear beyond this limit are excessively affected by the error related to the lin-
earity of the approximationmethod. Therefore, in the present case, the optimization trend
confirms that cd,M=0.82 behaves as a safety parameter for controlling the approximation
of the risk measure.

The ECDF comparison of the deterministic and robust optimal solutions are reported
in Fig. 4.5.10, with the plots of both the approximated and the exact distributions. The
ECDF based on gradient approximation is estimated with 1000 samples, while the “ex-
act” one is obtained using 120 samples. Specifically, the figure compares three different
solutions obtained from the optimization process previously reported. In particular, they
are the one with the lowest value of the objective function (SOL 1), the one with the best
cd,M=0.82 (x) (SOL 2), and, finally, the one with the best approximateCVaR (SOL 3).

Furthermore, the comparisonbetween the baseline (deterministic optimum)and these
three selected robust solutions in terms of approximated and “true”CVaR, the cd,M=0.82,
and the objective value is given in Table 4.5.4.

⟨ID⟩ Approx. CVaR0.9
cd,M=0.82 Objective TrueCVaR0.9 Comment

SOL 0 0.03388 0.04132 0.07520 0.03805 Determ. Opt.
SOL 1 0.02961 0.03693 0.06653 0.03408 Best Objective
SOL 2 0.03110 0.03640 0.06750 0.03313 Best cd,M=0.82
SOL 3 0.02749 0.04026 0.06776 0.03471 BestCVaR

Table 4.5.4: Approximated and “true” CVaR, cd,M=0.82, and objective value compar-
ison between the deterministic optimum and the three selected robust solutions.

The first thing to be observed in Fig. 4.5.10 is that the addition of the second control
point atM∞ = 0.82makes all three solutions acceptable, in the sense that all three have
an appreciable improvement in the Monte Carlo CVaR compared to the starting one.
However, the solution with the best approximateCVaR, despite having an overall excel-
lent performance in terms of cd reduction, has a deterioration in the high tail of the ECDF,
which worsens itsCVaR value calculated with Monte Carlo sampling. Finally, the inver-
sion in SOL 1 and SOL 2 between the approximateCVaR and “true”CVaR values (see
Table 4.5.4) is probably due to the effect of cd curve translation induced by the reduction
of cd,M=0.82.

Generally, the comparison shows an improvement of the upper tail shape, without de-
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Figure 4.5.10: ECDF comparisons of deterministic and robust optimal solutions.

terioration of the lower tail. This point is a definite advantage of the proposed method
compared to classical approaches based on mean µ and standard deviation σ computa-
tion. Despite a visible shift, the approximated solution captures the trendof the trueECDF
correctly, and therefore the approximated CVaR0.9 is seamlessly usable for robust opti-
mization.
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Figure 4.5.11: ECDF for the lift coefficient (cl) comparison between the deterministic
(SOL 0) and robust (SOL 2) optimal solutions.

From now on, the solution with the lowest value of cd,M=0.82 (SOL 2) will be referred
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to as the robust optimum since it provides the lowest “true” CVaR value, which is our
design target. On the other hand, it must be pointed out that a designer could prefer the
solution that has the best approximated CVaR (SOL 3) since, on average, it shows bet-
ter performance (lower cd). In particular, there is a probability less than the 10% that it
provides a worse performance than SOL 2. However, SOL 2 is here preferred since the
target of this design exercise is the improvement of the upper tail of the ECDF through
theCVaRmeasure.

Another significant result is shown in Fig. 4.5.11. Here, the true ECDF for cl of the de-
terministic and the robust solutions are compared. Indeed, although no risk measure was
applied to cl, the presented strategy reduces its variability remarkably. Thus, the optimal
ECDF for cl exhibits a higher slope, and this is more significant in the proximity of the cl
nominal value. Since it is clear the link between AoA and cl for an airfoil, this behavior is
due to the leverage of AoA variability effects, which indirectly influences the cl variability
too. Moreover, as a result of no applying a riskmeasure to the lift coefficient, the optimized
airfoil can provide a negative value of cl under the effect of the uncertainty.
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Figure 4.5.12: ECDF for the pitching moment coefficient (cm) comparison between
the deterministic (SOL 0) and robust (SOL 2) optimal solutions.

Likewise, the robust optimization formulation did not consider the uncertainty of the
pitching moment. Therefore the constraints on cm are fulfilled only in the nominal con-
dition. Hence, Fig. 4.5.12 shows that, under uncertainty, lower constraint (−cm ≤ 0.04)
is violated with a probability close to 20%. Indeed, the introduction of a risk measure ap-
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plied to the pitching moment coefficient might be beneficial, although it would likely re-
duce the margin of improvement of the airfoil performances. Incidentally, the cm ECDF,
although shifted, exhibits a reduced variation range with respect to the deterministic opti-
mum airfoil, as it occurs with the lift coefficient.
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Figure 4.5.13: Deterministic (SOL 0) and robust (SOL 2) optimum sensitivities com-
parison.

Finally, a linear sensitivity analysis of the robustly optimized airfoil has beenperformed,
and Fig. 4.5.13 shows the comparison with the deterministic optimum. The drag coeffi-
cient is reduced with respect to the baseline value. This behavior was expected since, as
already mentioned, the deterministic optimization did not reach the absolute optimum.
Specifically, the robustly optimized airfoil drag coefficient is 0.0261, which corresponds
to a 6.8% reduction compared to the deterministic optimum airfoil (cd = 0.0280). Fur-
thermore, all the aerodynamic and geometrical constraints are respected. As expected, the
cd variation due to all the sources of uncertainty (namely,Mach, angle of attack, and airfoil
shape uncertainties) is reduced after the robust optimization. More in detail, the variation
caused by the Mach number, although reduced, is still preponderant. Also, the effect due
to the angle of attack has nearly disappeared. Finally, the maximum overall variation of cd
as a result of a change in shape has increased. It seems that the variability contribution due
to the working conditions has shifted towards the uncertainty in shape. Hence, it could
mean that by improving themanufacturing procedures and reducingmanufacturing toler-
ances, the sensibility of the optimized airfoil to uncertainties in working conditions could
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be significantly reduced.
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Figure 4.5.14: Airfoil shape comparison of the deterministic optimized airfoil (SOL 0)( ) versus the chosen robust optimized airfoil (SOL 2) ( ). The y-coordinate is
magnified and proportions are not respected.

Figure 4.5.14 shows the shape comparison of the deterministic and robust optimal air-
foils.

Moreover, in Fig. 4.5.15-Fig. 4.5.17, the aerodynamic characteristics of the baseline, the
deterministic and robust optimumairfoils are compared at the nominalMachnumber and
at theMach uncertainty boundaries.

Besides, in Fig. 4.5.18, the drag coefficient is plotted against theMach number in its un-
certainty range for the original airfoil and both deterministic and robust optimumdesigns.
The CFD runs were performed at constant lift coefficient (cl = 0.1). The comparison of
the deterministic optimal and the robust one shows that the increase in drag is more grad-
ual and moderate in the latter one, and this is the kind of behavior expected from a robust
design. However, when analyzing the drag rise curves, what stands out is that at the nom-
inal design point, the cd of the robust solution is slightly better (20 dc) than the deter-
ministic one. Normally, it is reasonable to expect the opposite, i.e., that the deterministic
optimum is better than the robust one in the nominal condition. However, this behavior is
explainable because the baseline solutionwas quite far (209 dc) from the optimal solution
found. Indeed, the deterministic optimization process aimed to explore the optimization
landscape rather than refining the solution found. Therefore, it would have been appro-
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Figure 4.5.15: Aerodynamic characteristic curves of the baseline, deterministic opti-
mum and robust optimum airfoils at M = 0.78.

priate to continue the deterministic optimum research phase with a phase of refinement
and exploitation. Still, it was considered out of the scope for this research work since the
purpose of the deterministic optimization was mainly to provide an appropriate starting
point for the robust optimization process. Table 4.5.5 reports drag coefficient values at
the nominal Mach for baseline, deterministic optimum, and the three solutions extracted
from the robust optimization run for completeness.⟨ID⟩ cd,M=0.80 Comment

BASE 0.04890 Baseline
SOL 0 0.02803 Determ. Opt.
SOL 1 0.02640 Best Objective
SOL 2 0.02605 Best cd,M=0.82
SOL 3 0.02524 BestCVaR

Table 4.5.5: Comparison of cd,M=0.80 (nominal Mach) of baseline, deterministic opti-
mum and the three selected robust solutions.
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Figure 4.5.16: Aerodynamic characteristic curves of the baseline, deterministic opti-
mum and robust optimum airfoils at M = 0.80.

Finally, in Fig. 4.5.19 the pressure coefficient (cp) contours for the baseline, determin-
istic optimum, and robust optimum airfoils are given, together with, the comparison of
the cp on the body surface for the three airfoil. First of all, Fig. 4.5.19a shows that the base-
line configuration presents one shock wave on the upper side and three on the lower side.
Particularly, the second shock wave on the lower side is weak, whereas the other shocks
are quite strong. This is also visible in the pressure coefficient distribution on the body
surface. The two optimized airfoils provide a highly different distribution of shock waves.
The shockwavepresented at theupper surfacehas a similar structure for the twooptimized
airfoils. The contour fields (Figs. 4.5.19b and 4.5.19c) show a more extended structure of
shock wave on the upper side of the geometry compared to the baseline. By looking at
Fig. 4.5.19d, it can be appreciated that a sudden expansion on pressure coefficient pre-
cedes a plateau for the baseline airfoil and, then, a compression located at ∼ 60% of the
chord. Contrary, the optimal solutions have a steeper expansion atx/c = 0.1 followed by
a smooth compression up to the 40% of the chord where an expansion begins, followed,
eventually, by a strong compression at 70% approximately. On the lower side, a different
behavior is observed for the three airfoils. For the deterministic optimum airfoil, the three
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Figure 4.5.17: Aerodynamic characteristic curves of the baseline, deterministic opti-
mum and robust optimum airfoils at M = 0.82.
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Figure 4.5.18: Drag coefficient (cd) versus Mach number (M∞) for the baseline airfoil(■) and deterministic (●) and robust (▲) optimum airfoils. Test case: Rec∞ =
174 × 10

6 and cl = 0.1.

shockwaves presented at the lower surface in the baseline airfoil become two shockwaves.
Specifically, it has a strong expansion at the leading edge followed by a compression after
the40% of the chord. In addition, there is a secondweak shock atx/c = 0.75. Besides, in
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the robust optimum airfoil three shock waves are still present but with different structures
with respect to the baseline airfoil. There is an expansion at the leading edge of the airfoil
and a sudden compression at the 20% of the chord. After that, a smooth expansion starts
at x/c = 0.4 that is followed by a compression at x/c = 0.6. Finally, a third and weak
shock wave is located at the 75% of the airfoil chord.
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(a) Baseline airfoil.
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(b) Deterministic optimum airfoil.
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(c) Robust optimum airfoil.
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Figure 4.5.19: Figures (a) to (c) provide the cp contour for the baseline, deterministic
optimum, and robust optimum airfoils. Figure (d) shows the pressure coefficient on
the body surface for the baseline ( ■ ), deterministic optimum ( ● ), and robust
optimum ( ▲ ) airfoils. Nominal conditions (M∞ = 0.80, Rec∞ = 174 × 10

6, and
cl = 0.1).
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From the previous considerations, it can be stated that the reduction of the cd obtained
by the optimal airfoils is mainly due to the weakness of the shock wave located at x/c =
0.75 on the lower surface, and due to the downstream movement of the compression at
the upper surface shock wave.

4.5.7 Computational Cost

Finally, the following section reports a comparison of the computational effort for calcu-
lating the ECDF of both methods (simple Monte Carlo and gradient-based).

When using the plainMonte Carlo approach to estimateCVaR through the empirical
cumulative distribution, the number of samples needed to get a satisfactory accuracy can
be very high. In the problem here presented, a minimum of 20 samples is necessary to ob-
tain a barely acceptable estimation ofCVaR. In particular, the construction of the ECDF
requires a single fixed lift coefficient CFD run at the nominal condition point (M∞ = 0.8

and cl = 0.1) plus 20 fixed angle-of-attack CFD runs constructed by sampling the ran-
dom variables that describe the problem uncertainty. The computational cost is normal-
ized with respect to the average execution time of a fixedα run. The average cost of a fixed
cl run at proper convergence is instead roughly doubled with respect to the fixed α case.
The total cost of the Monte Carlo method is summarized in Table 4.5.6.

20 fixedα runs cl fixed run Total
Monte Carlo ECDF cost 20 2 22

Table 4.5.6: Computational cost of CVaR estimation using Monte Carlo sampling.

The adjoint-based ECDF approximation requires a first CFD run at fixed cl, like in the
MonteCarlo approach. After that, the discrete adjoint solver computes the gradient of the
cd respect to the uncertain variable. The computational cost of this run is equivalent to the
fixed lift coefficient run. Finally, the CFD run to compute cd,M=0.82 is carried out. The
convergence criterion of this run is relaxed. Thus, only one-tenth of the iterations of the
fixed cl run is necessary on average. InTable 4.5.7, the computational cost of the proposed
approach is given.

Theratioof the computational costs betweenMonteCarlo andgradient-basedapproaches
is 22/4.2. Hence, the gradient-based approximation for CVaR calculation provides a
CPU cost reduction of around 80%. This savings estimation is very conservative because
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cl fixed run Adjoint run cd,M=0.82 run Total
Adjoint based ECDF cost 2 2 0.2 4.2

Table 4.5.7: Computational cost of CVaR estimation using a gradient-based approxi-
mation.

theMonte Carlo samples used are just 20, which is the lowest allowable limit to get signif-
icant results in the current design problem.

4.6 Conclusions

In this chapter, a robust optimization approachbasedonCVaR riskmeasure has been suc-
cessfully employed for an aerodynamic design problem of industrial interest. TheCVaR
introduces the possibility of working asymmetrically on the ECDF, which allows improv-
ing the upper tail of the distribution without deterioration of the lower one. In other
words, the risk measure adopted introduces the possibility of working asymmetrically on
the ECDF, while this would not be possible with other classical techniques such as those
based on the mean value and the standard deviation. The gradient-based strategy for the
linearization of the QoI has allowed the effective use of UQ for an aerodynamic design
optimization problem because only one more adjoint-flow solution for each individual is
necessary to get an acceptable approximation of the risk function. However, it must be
borne in mind that the convergence level that the adjoint solver must reach to calculate
the gradient with sufficient precision is higher than that required by the field solver for a
sufficiently precise estimate of the overall aerodynamic characteristics. Add to this the fact
that the fluid dynamic field, which is an input of the adjoint solver, must also reach a higher
convergence level, again for the gradient calculation accuracy. However, even considering
this increase in computational time, the overall balance clearly leans in favor of themethod
presented here compared to the classicMonte Carlo, as is extensively discussed in the pre-
vious section. In addition, the shift found between the true ECDF and the gradient-based
approximation is a problem that will be the focus in subsequent developments, possibly,
using a second-order approximation of the QoI. To this end, various approaches are pos-
sible that range from approximated Hessian estimation using gradient information [91]
to algorithmic differentiation [92] and “tangent-on-reverse” methods [93]. In any case,
it is necessary to find a compromise between the need for accuracy in estimating the risk
function and the efficiency of the optimization procedure, given that the evaluation of the
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second derivatives considerably increases the computational load, even using an intrusive,
adjoint field-based approach. However, although a higher-order approximation is desir-
able, the presented method shows quite a good trade-off between cost efficiency and the
optimization process effectiveness.
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5
Surrogate-Based RobustOptimization of

Aerodynamic Shapes

This chapter addresses robust optimization efficiency froma complementary point of view
to that of the previous chapter. Indeed, the previous chapter focused on using an intrusive
method for reducing the computational time of robust optimization. However, it is not
always easy to have all the information needed to implement an intrusive method and, in
particular, as in our case, it might be difficult or expensive to obtain the derivatives of the
quantity of interest with respect to the uncertain variables. Thus, in this chapter, a new
non-intrusive and adaptive method is proposed that, although having a slightly lower ef-
ficiency than the gradient-based intrusive one, still significantly improves the robust opti-
mization process efficiency. Inmore detail, among all the possiblemethodologies, such as
PolynomialChaosExpansionorStochasticCollocation, this chapter investigates theuseof
surrogate models to perform robust optimization, and the focus is, in particular, on Gaus-
sian Processes regression. The first part is an introduction to Surrogate-Based Optimiza-
tion (SBO). The DLR’s SMARTy toolbox is used to illustrate the basic features of SBO.
DLRmade available SMARTy for this Ph.D. research work within the UTOPIAE project
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framework. Thanks to UTOPIAE, the author spent a research secondment at the Insti-
tute of Aerodynamics and Flow Technology. She joined the C2A2S2E (Center for Com-
puter Applications in AeroSpace Science and Engineering) group, where she learned to
use SMARTy. After giving some illustrative examples, two real-world problems are solved
in Sections 5.2 and 5.3. The work presented in Section 5.3 was performed in collabora-
tion with ESTECO and the University of Trieste. Both studies were presented at the In-
ternational Conference on Uncertainty Quantification& Optimization UQOP2020 (in
Press). In Section 5.2, the surrogate model is used to approximate the cumulative distri-
bution function to compute theCVaR, while a population-based optimization algorithm
searches the design space. Instead, a surrogate assisted search algorithm is used in Sec-
tion 5.3.

5.1 Surrogate-based optimization overview

A summary of surrogate-based optimization (SBO)methods is the subject of this section,
while more exhaustive reviews of SBO foundare in the following references: Queipo et al.
[94], Simpson et al. [95], and Forrester and Keane [96].

Aerodynamic optimization design problems of industrial interest require calculating
performance metrics (such as lift, drag, and pitching moment) of many candidate designs
that are usually very computationally expensive. The introduction of uncertain parameters
further increases these costs since they require estimating a statistical measure computed
on a population of candidates. This increment in required evaluationsmay easilymake the
problem unsolvable. Surrogate models, also called response surfaces, may substantially
reduce the computational budget and make the robust design approach viable.

The basics steps to perform surrogate assisted optimization are explained in the follow-
ing steps and depicted in Fig. 5.1.1.

1. Design of Experiments (DOE) or sampling plan: An initial sample of designs is
analyzed. There are several techniques for making a smart selection of the points.

2. Surrogate model construction. A wide variety of response surfaces exists, the most
suitable for each optimization must be selected. This dissertation only considers
the use of Gaussian Processes (GP).
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Figure 5.1.1: Surrogate-based optimization framework.

3. Infill criteria: acquisition strategy to determine where to sample next if the compu-
tational budget is not exceeded or some convergence criteria is achieved. Then, the
new point is evaluated.

The second and third steps iterated until the stopping criterion (computational budget
or convergence criteria) is satisfied.

The following sections report a brief introduction to each of theses steps. The illus-
trative examples here shown were obtained using the German Aerospace Center’s (DLR)
SMARTy toolbox (Surrogate Modeling for Aero Data Toolbox in Python). This toolbox
has beenwidely used for solving aerodynamic design optimization [97, 98]. The examples
are performed in test functions with one and two design variables.

For the 1-dimensional test case, the function is given by:

f(x) = x sin (x) + x cos (2x). (5.1)
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Moreover, to illustrate the 2-dimensional test case, Himmelblau’s equation is used:

f (x1, x2) = (x21 + x2 − 11)2 + (x1 + x
2
2 − 7)2 (5.2)

5.1.1 Design of Experiments (DOE)

Once the problem design space and the design variables are identified, the initial designs
to be evaluated are chosen. This process is referred to as the design of experiments or sam-
pling plan. A smart selection of this initial sampling must be made. Intuitively, a uniform,
non-regular spread of points across the search space is preferred. With this aim, several ap-
proaches have been developed, such as the Sobol sequences [99] or the Latin Hypercube
Sampling (LHS) [100] techniques. In the following figures, the initial sampling on the test
functions given in Eq. (5.1) and Eq. (5.2) is shown using Sobol sequences and LHS.
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(b) Latin Hypercube Sampling.

Figure 5.1.2: 1D test function ( ) (Equation (5.1)) and sampling points (■).
The initial sampling for the 1-dimensional test case is made by three points, whereas in

the 2-dimensional case, ten initial samples were selected.

5.1.2 Surrogate model construction - Gaussian Process

Nowadays, there is a wide variety of surrogate models. Radial Basis Functions (RBFs)
[101, 102] or Support Vector Regression (SVR) [103, 104] are just two of these possibil-
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(a) Sobol sequence. (b) Latin Hypercube Sampling.

Figure 5.1.3: 2D test function contour plot (Equation (5.2)) and sampling points (■).
ities. However, in this dissertation only Gaussian Processes (GPs) are studied. For an in-
depth discussion onGPs, please refer to the book of Rasmussen andWilliams [105]. Nev-
ertheless, the theoretical principles of Gaussian Processes are explained here [106, 107].

Let us consider a set of noisy data,D, which is composed ofN pairs ofL-dimensional
input vectors and scalar outputs ({xn, qn}N1 ). The objective of theGaussian process is to
provide a prediction of the output qN+1 at a new point (xN+1) by employing the current
available data. Besides, a prior to model the dataP (f∣ξ) and another to model the noise
P (υ∣ϕ) can be defined. Being ξ andϕ two sets of hyperparameters, and υ a noise vector.
Hence, the probability of the data is defined by Eq. (5.3).

P (qN ∣{xn}, ξ, ϕ) = ∫ dfdυ P (qN ∣{xn}, f, υ)P (f∣ξ)P (υ∣ϕ) (5.3)

Being,qN = (q1, . . . , qN). Moreover, bydefininga vectorqN+1 = (q1, . . . , qN , qN+1),
constructed with the vector qN and the prediction atxN+1 (qN+1), the conditional dis-
tribution of qN+1 can be determined.

P (qN+1∣D, ξ, ϕ) = P (qN+1∣{xn}, ξ, ϕ)
P (qN ∣{xn}, ξ, ϕ) (5.4)

Usually, the resolutionofEq. (5.3) is adifficult task. Hence amethodbasedonGaussian
Process priors was considered [107].
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AGaussianProcess canbedefined as a sample of normally distributed randomvariables
q = (q(x1), . . . , q(xn)) such that the joint distribution is a multivariate Gaussian. The
joint distribution is defined as:

P (q∣K, {xn}) = 1

Z
exp (−1

2
(q − µ)T K

−1 (q − µ)). (5.5)

WithZ a normalizing constant. TheGaussian Process is specified by amean vector (µ)
and a covariance matrix, or kernel, (K(xm,xn;θ)), where θ is a vector of parameters
that can be learned from data to obtain regression. The covariance matrix determines the
variance along each dimension (diagonal terms) and shows how the random variables are
correlated between them (off-diagonal terms). Moreover, it is positive semi-definite.

Now, let us define the vector of data qN defined by its covariance matrixKN , and a
zeromean vector (µ = 0). That is zero-meanpriorGaussiandistribution. Theconditional
Gaussian distribution of qN+1 can be obtained using Eq. (5.4).

P (qN+1∣D,K (xm,xn;θ) ,xN+1,θ) = P (qN+1∣K (xm,xn;θ) ,θ,xN+1, {xn})
P (qN+1∣K (xm,xn;θ) ,θ, {xn})

= ZN

ZN+1
exp (−1

2
(qTN+1K

−1
N+1qN+1 − q

T
NK

−1
N qN))

(5.6)

Defining Eq. (5.7) and Eq. (5.8),

q̂N+1 = k
T
N+1K

−1
N qN (5.7)

σ
2
iN+1

= κ − k
T
N+1K

−1
N kN+1 (5.8)

and being the vectorkT
N+1 = (K (x1,xN+1;θ) ,⋯,K (xN+1,xN+1;θ)) and the

scalar κ = K (xN+1,xN+1;θ), thus, Eq. (5.6) can be rewrite as:
P (qN+1∣D,K (xm,xn;θ) ,xN+1,θ) = 1

Z
exp(−(qN+1 − q̂N+1)2

2σ2
iN+1

) (5.9)
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Note that, q̂N+1 is the predictive mean at the new point and σ2
iN+1

the variance on this
prediction.

Finally, the selected covariancematrixmust be specified. In particular, the chosen form
for the covariance matrix is given in Eq. (5.10).

K (xm,xn;θ) = ν1 exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1

2

L

∑
l=1

(x(l)m − x
(l)
n )2

r2l

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + ν2 + δmnN (xm;θ) (5.10)

with x(ℓ) the ℓ-th component of vector x. The vector of hyperparameters is given by
θ = {ν1, ν2, r1, . . . , rL} andN defines the noise model.

Figures 5.1.4 and 5.1.5 show the first approximation of the 1 and 2-dimensional test
functions (Eqs. (5.1) and (5.2)) using the Sobol sequence approach to select the initial
sampling as depicted in Figs. 5.1.2 and 5.1.3a.

Figure 5.1.4: First 1D test function approximation (Eq. (5.1)) ( ), the true function( ), and the sampling points (■). The filled space is the area between the predicted
values plus and minus the standard deviation (q̂ ± σ).

5.1.3 Infill criteria

The evaluation of the true functionmust always confirm the results provided by the surro-
gate. Asmentioned, the true function evaluation is, usually, costly (such asCFDanalyses).
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(a) Function approximation. (b) Estimated error.

Figure 5.1.5: First 2D test function approximation (Eq. (5.2)) and the estimated error
contour plots and sampling points (■).
Therefore, a judicious selection of the new point (infill point) in which to evaluate the true
function is needed. The infill point is chosen based on some infill criteria. According to
this technique, known as adaptive sampling, the promising areas of the objective function
are sampled on a continually changing surrogate. Different types of infill criteria there ex-
ist depending on the aim of the search in the design space. The infill criteria are divided
into two main categories: exploration and exploitation.

Design space exploration means filling the gaps between the existing sampled points.
Infill criteria based on exploration have a role in producing a globally accuratemodel, pro-
viding the visualization and comprehension of the design space. However, this technique
could waste time modeling sub-optimal regions when the global optimum is required for
optimization purposes. Moreover, infill criteria based on the design space exploitation are
appealing methods only to perform local optimization. Thus, there must be a balance be-
tweenexploration andexploitationof thedesign space. Firstly, an explorationof thedesign
space is performed, followedby exploitingof themost promising area tofind theoptimum.

One technique that balances exploration and exploitation is the Expected Improvement
(EI) introduced by Jones et al. [108]. Before evaluating the true function at a point of the
design space x, its value q̂(x) is uncertain. The uncertainty of q̂(x) can be modeled by
treating it as a normally distributed random variable Q. The Gaussian process gives the
mean and standard deviation. Let us define fmin as the current minimum value. Hence,
there will be a probability that the value of the function improves the current best (fmin).
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Figure 5.1.6: Graphical interpretation of the probability of improvement. The 1D test
function (given in Eq. (5.1)) ( ), initial sampling points (■), infill point (●), first( ) second ( ) function approximation, and normal density function ( ). The
green filled area is the probability of improvement.

The probability of improvement is depicted by the green area of Fig. 5.1.6. The improve-
ment at a pointx of the design space is defined by I = max(fmin−Q, 0). To obtain the
expected improvement the expected value of this expression is taken. In other words, the
expected improvement can be seen as the first moment of the area enclosed by the normal
distribution and the current minimum value (green area in Fig. 5.1.6).

E [I(x)] = E [max(fmin −Q, 0)] (5.11)

Therefore, the infill point is selected where the expected improvement is maximum. In
Fig. 5.1.7b, the EI after the approximation of the 1D test function with the initial sampling
points is represented together with the point of maximum expected improvement. Fur-
thermore, Fig. 5.1.7a provides the new function approximation after the evaluation of the
infill point using the true function.

Moreover, the expected improvement obtained after the surrogate construction using
the initial ten samples of the 2-dimensional test function is shown in Fig. 5.1.8.

Thepointwithmaximumexpected improvement is placed at the lower boundary of the
two design variables (x = [−4.9994,−4.9987]). This infill point is now evaluated with
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Figure 5.1.7: The 1D test function (given in Eq. (5.1)) ( ), initial sampling points(■), infill point (●), second function approximation ( ). The green filled area is the
probability of improvement.

Figure 5.1.8: Expected Improvement contour plot after the GP construction using the
initial sampling point (■) and the calculated infill point (●).
the true function and added to the training samples to built up the new surrogate. Thenew
surrogate model for Eq. (5.2) is presented in Fig. 5.1.9a, and the estimated error obtained
is given in Fig. 5.1.9b.

By repeating this process of finding the new infill point, which maximizes the expected
improvement, and rebuilding the surrogatemodel, the value of theminimum function can
be found. The selection of infill points is repeated until reaching a convergence criterion,
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(a) Function approximation. (b) Estimated error.

Figure 5.1.9: Second 2D test function approximation (Eq. (5.2)) and the estimated
error contour plots. The initial sampling points (■) and the first infill point (●).
like maximum EI below a selected threshold, or the difference between the true value of
the function at the new infill point and the current best (fmin) is lower than a tolerance,
or the allocated computational budget is reached. In Fig. 5.1.10, the final surrogate model
for the 1D test function is presented.
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Figure 5.1.10: Final surrogate model ( ) of the 1D test function ( ) and the initial
function approximation ( ). The initial sampling (■) and the infill points (●). The
minimum point (▲).

The 1D test function given in Eq. (5.1) has a global minimum equal to −9.50835 at
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x = [4.79507]. With the surrogate-based optimization, the minimum is found at x =[4.7959012] and is equal to −9.5083475. Thus, an error of the 0.02% is made in the
location of the minimum, which leads to a negligible error in the value of the global mini-
mum.

Sometimes, after a first exploration of the search space based on an Expected Improve-
ment infill criterion, exploitation of the promising areas of the design space is done by
using an infill criteria based of the minimum provided by the surrogate model. In other
words, the new point to be evaluated with the true function is the predicted optimum by
the surrogate. An example of this two-step infill criteria is shown using the 2-dimensional
test function.

Equation (5.2) has four global analytical minima at x1 = [−3.77931,−3.283186],
x
2 = [3, 2], x3 = [−2.805118, 3.131312], and x4 = [3.584428,−1.848126]. The

value of the function at these points is equal to0. A surrogate-based optimization using the
two aforementioned infill criteria was performed. The initial sampling is performed using
the Sobol sequence techniquewith10 samples (see Fig. 5.1.3a). Later, new infill points are
chosen using the maximum expected improvement approach until the convergence crite-
rion is achieved. In this case, that the maximum expected improvement is below 0.0001.
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Figure 5.1.11: Current minimum convergence.

When convergence is reached, the infill points are selected at the locations where the
surrogate model predicts the lower value of the function. The stopping criteria, in this
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case, is that the absolute difference between the true value at the newpoint and the current
optimum is lower than a threshold and, at the same time, the absolute difference between
the design variables at this point and the design variables of the current best is below a
threshold. The convergence of the current minimum value is shown in Fig. 5.1.11. The
separation line in Fig. 5.1.11 divides the convergence into two parts: the first one uses the
maximum expected improvement, while the second one the minimum predicted value
infill criteria. Note that, thenumberof evaluations starts at eleven since the initial sampling
required ten function evaluations. Themaximumexpected improvement stopping criteria
was fulfilled after 19 iterations. The output Gaussian process and the associated error after
these iterations are shown in Fig. 5.1.12.

(a) Function approximation. (b) Estimated error.

Figure 5.1.12: 2D test function approximation (Eq. (5.2)) and the estimated error
contour plots after the maximum EI infill criteria. The initial sampling points (■) and
the infill points using EI criteria (●).

Then, additional 22 new points, obtained with the second infill criteria, are evaluated
until reaching convergence. In Fig. 5.1.13, the final surrogatemodel and its estimated error
are provided.

In Figs. 5.1.12 and 5.1.13, it is seen how the infill points provided by the maximum EI
criteria aim the exploration of the design, and a global approximation of the function is
obtained. After that, the infill criteria based on theminimum value predicted by theGaus-
sian process exploit the promising areas of the design space. The black circles (maximum
EI infill points) are placed along with the entire design space, whereas the black triangles
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(a) Function approximation. (b) Estimated error.

Figure 5.1.13: Final 2D test function approximation (Eq. (5.2)) and the estimated
error contour plots. The initial sampling points (■), the infill points using EI criteria(●), and the infill points using the minimum prediction criteria (▲). The optimum
point (▲).
(minimum prediction infill points) are only located at the areas where the global mini-
mums are located. Moreover, it must be mentioned that by locating more points on the
optimal regions, a better approximation of these areas is obtained at the expense of having
amore significant error estimation elsewhere. This is observed by comparing Figs. 5.1.12b
and 5.1.13b.

Finally, it must be mentioned that a trust-region method could also be employed af-
ter the two aforementioned infill criteria to prove that the convergence is not to a local
optimum.

These steps must be followed when the aim of the surrogate model is to find the opti-
mum in a design search space. This use of the surrogate model is applied in Sections 5.3
and 6.6. Despite this, if a globally accurate surrogate model is needed, an infill criterion
based on the estimated error given by theGaussian process has to be used. New points are
evaluated where the estimated error is maximum until a convergence criterion is reached.
This approach is shown herein for the 1-dimensional test function.

InFig. 5.1.4, it is observed that after the initial sampling, the estimatederror of the surro-
gate is atx = [10.0]. Thus, it is the first infill point. The resulting function approximation
and the estimated error after the addition of the first infill point is given in Fig. 5.1.14. New
points are, successively, selected until the maximum estimated error is below a threshold.
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Figure 5.1.14: 1D test function approximation ( ) after the first infill point given by
the maximum error criteria. True function ( ), sampling points (■), and the first infill
point (●). The filled space is the area between the predicted values plus and minus the
standard deviation (q̂ ± σ).

In this case, it is equal to 0.3. The final approximation is shown in Fig. 5.1.15. The differ-
ence between the approximated function and the true function is negligible by evaluating
only 13 times the true function.
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Figure 5.1.15: 1D test function final approximation ( ). True function ( ), sampling
points (■), and the infill points (●).
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Aglobally accurateGaussian process is needed in Section 5.2. Aparticular optimization
process is carried on (see Section 5.2.2) to select the sampling points to build the GP.

5.2 Gaussian processes for CVaR approximation in robust aerody-
namic shape design

One of the latest studies presented at the International Conference onUncertainty Quan-
tification& Optimization (UQOP2020) is introduced in this section. In particular, the
potential of Gaussian processes to reduce the computational load of robust optimization
problems faced with the risk function methodology is investigated. The focus is on the
Conditional Value-at-Risk function (CVaR), already presented in Section 1.2, and shows
howa reducednumberof samples canbeused toobtain an approximationofCVaRusable
in a robust optimization loop based on evolutionary algorithms.

As already mentioned, the disadvantage in the use of risk functions is all in their na-
ture as statistical estimators, in the sense that to obtain a sufficiently significant estimate of
the risk function, it is often necessary to carry out large samplings of the related quantity
of interest (QoI). Therefore, if the QoI requires significant computational effort to evalu-
ate it (such as CFD evaluations), the total computational cost of robust optimization can
quickly become unsustainable. Consequently, limiting the number of samples necessary
to obtain a reasonable estimation of risk functions is a research topic of paramount impor-
tance. Various approaches are possible for this purpose ranging from the introduction of
sophisticated sampling strategies such as multilevel Monte Carlo [109, 110], or the use of
advanced quadrature schemes [111, 112], to the use of the adjoint solution as presented
in Chapter 4.

Thus, the characterizing elements of this study compared to the current literature are
that the approximationobtainedwith theGaussianProcess is applied toevaluate theCVaR
function which gives greater importance to the tails of the probability distribution com-
pared to the first two statistical standard moments, and that the approximation with the
GPs aims at making the optimization process more efficient and quick. Therefore, the
number of QoI evaluations is minimized with very light training. An update strategy of
the GP training point is developed, hence the Gaussian Process is refined during the opti-
mization process.

The application used to illustrate the potential of the method is the optimization of the
aerodynamic shape of an airfoil in the transonic field. The QoI is the drag coefficient, cd,
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that is calculated by solving theRANS equations.

5.2.1 Robust design andCVaR risk function

In robust aerodynamic optimization problems, the Quantity of Interest (QoI) is a statis-
tical measure. As beforehand mentioned, the advantage of these types of problems is the
offer of an optimal design less vulnerable to different uncertainty sources. Here, an opti-
mization approach based on riskmeasures is employed. The riskmeasure, ρ(X), depends
on random variablesX that represent the uncertainty of the problem. At the same time,
these random variables can also depend on the design parameters, x. Thus, the optimiza-
tion problem can be written as in Eq. (1.8).

An approach based on the CVaR function is used here. The CVaR gives greater im-
portance to the probability distribution tails compared to the first two statistical standard
moments (µ and σ2). The approaches based on mean and variance penalize any config-
uration far from the mean value. For example, consider that the drag coefficient (cd) has
to be minimized. Hence, these measures penalize, in the same manner, configurations
that provide an increase in drag and configurations that decrease it. Instead, it is worth the
penalization of only configurations leading to an increase in (cd) since lower drag configu-
rations are desirable. Therefore, risk measures that work asymmetrically, likewiseCVaR,
are preferred. The Conditional Value-at-Risk is mathematically described in Eq. (5.12) (a
detailed description is given in Section 1.2).

c
γ = 1

1 − γ
∫ 1

γ
ν
β
dβ (5.12)

Figure 5.2.1 shows howCVaR relates to the distribution function. The two filled areas,
respectively in solid colour and squares, are proportional to theCVaR calculated for the
distribution that represents the robust optimum and for that related to the deterministic
optimum. The robust optimum, characterized by a more flattened distribution, is also the
one with the lowerCVaR.

5.2.2 Risk function approximation

Thework aims to introduce surrogatemodels to reduce the computational load associated
with the evaluation of the Empirical Cumulative Distribution Function (ECDF) needed
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Figure 5.2.1: Cumulative Distribution Function and related CVaR Risk Function at a
given γ threshold value (confidence level).

to calculate the CVaR. However, there are some considerations regarding accuracy and
precision obtainable in estimating the parameters of a population.

Before going intodetail on the use ofGaussianProcesses for approximating of risk func-
tions, it is necessary to reflect on what it means to use approximation techniques for the
calculation of statistical estimators. When a statistical parameter is evaluated, the main
problem is accuracy, intended as the proximity of the estimator obtained through a sam-
ple to the real population parameter.

Accuracy depends on the number of samples available to calculate the statistics. To
calculate it, however, it is necessary to know the actual value of the population parameter.
Realistically, a value obtained with a huge number of samples is considered as the true
parameter value. So, it should proceed according to the following steps:

1. Compute the quantity of interest as many times as possible as allowed by the com-
putational budget.

2. Consider the obtained estimate as being the true value of the parameter.

3. Consider a smaller population (realistically the smaller that one can afford in the
experiments) and do a high number of times (with different samples) the calcula-
tion of the estimator (one could also randomly extract subsamples from the large
initial population to avoid doing other calculations).

4. If the standard deviation or variance of the estimates obtained is calculated in this
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way, an estimate of the precision of the method is found, but not the accuracy. If
instead, the average valueof the estimates is replacedwith the true value, an estimate
of the accuracy is obtained.

Surrogate models allow high precision in estimating a statistical quantity because the
evaluation of a huge sample is computationally very cheap. On the other hand, they may
also introduce a non easily estimable bias error. This bias can be determined when exact
values are available for a large population sample. This study aims to reduce as much as
possible the bias error due to surrogate models using a limited number of exact samples.
Indeed, it is essential not to exceed the number of samples needed to train the approxima-
tor (in our case, the GPs) not to frustrate the advantages that surrogates offer in computa-
tional cost.

Therefore, a GP-based regression method is used to approximate the ECDF [27] for
the QoI (the cd in this benchmark case). After approximating the empirical cumulative
distribution function with the Gaussian Process, the statistical of interest, the CVaR, is
calculated. The particular Gaussian Process used in this study is explained in Section 5.1.

Training methodology

The training procedure followed to instruct the Gaussian processes to approximate risk
functions is the characterizing point of this work. The goal is to obtain a convenient com-
promise between the effort required for training and the Gaussian process predictive abil-
ity. The starting point is a set of ECDF calculated with a sufficiently large number of sam-
ples of the quantity of interest q. In particular, q is a function of a vector x ∈ X of de-
terministic parameters (design parameters) and a vector of random variablesu ∈ U that
model uncertainty:

qki = q (xk,ui) (5.13)

For this study, it is chosen and fixed once and for all a congruous number of samples
ui of the random vector according to the assigned joint distribution function, and this
set is always used when the distribution function of q is calculated for an assigned de-
terministic input vector xk . So, having fixed an assigned design vector xk , the set of
Qk

△= {q(xk,ui), i = 1 . . . n}, that is obtained with the random sampling of u, is
computed. This set of values constitutes the reference ECDF.The goal is to build a Gaus-
sian process capable of accurately approximating both the q values of the training set and
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those not belonging to it. The fundamental difference compared to the classic approach
is that instead of approximating the whole set of data globally, the focus is on a single
ECDF. In this way, a tiny and predetermined sample of the input CDF is evaluated, say
Uσ ⊂ U , and this subset is the training set. Then, theGaussian process that approximates
it q̂k = q

GP
k (u;xk,Uσ) is built, and the quality of the approximation depends on the

training set Uσ , the choice of which is a combinatorial optimization problem. Defining
with

∆(Qk, q̂k) (5.14)

a function that evaluates the distance between the complete ECDF and that obtained by
theGaussianprocess using theUσ training subset, for a given set sizem < n, the following
minimization is obtained:

min
Uσ⊂U

∆(Qk, q̂k) (5.15)

withUσ
△= {uσ1

, . . . ,uσm
} andσi ∈ {1, . . . , n}without repetitions. So it is a question

of finding the σi indices each in the range (1 . . . N) (without repetitions) that minimize
the distance function∆. In this work, a genetic algorithm (see Section 2.1.1) is used with
an appropriate encoding of the bit string. However, the solution obtained has the disad-
vantage of not being general. That is, for an arbitrary ECDFQp ≠ Qk , the approximation
obtained is not necessarily satisfactory. For this, it is necessary to expand the verification
set by adding more ECDFs. In this case, the objective function becomes:

min
Uσ⊂U

T

∑
k=1

∆(Qk, q̂⋆) (5.16)

The critical point is that the set of random input vectorsumust be the same for each deter-
ministic vectorxk . In this way, the optimal subset ofUσ⋆ points corresponds to different
values of q because it also depends on the deterministic vector, and it will be the opti-
mal choice for the approximation of the whole ECDF set. Therefore, once obtained the
optimal Uσ⋆ subset, the computation of a new ECDF approximation requires the exact
calculation of q only for the values of this subset. So, excluding the GP training time, the
computational cost of the new ECDF calculation is of the order ofO(m). If the cardinal-
ity of theUσ training set is increased, the time required to define the next optimal localGP
also increases, and the combination of GP training time increment and theO(m) evalu-
ations may render the GP usage no more convenient. To remedy, at least partially, this
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drawback, an objective function can be defined, which privilegesmore the approximation
of the ECDF in the areas essential for the variation of the risk function considered. In this
work, the objective function introduced to this end is the weighted sum of both ECDFs
and risk functions differences. The ideal size of the subset of samples to approximate an
ECDFmust respond to a tradeoff between the accuracy of the GP approximation and the
computational cost necessary to evaluate the quantity of interest at the input values of the
subset. It is certainly possible to introduce the satisfaction of this tradeoff as a further goal
of the training process, but, at present, the size of theGP training subset is decided through
empirical considerations and a process of trial and error.

As a final remark, theneed to keep the same sample for the input variables governing the
uncertainty is certainly a disadvantage of the method since it can introduce a bias in the
approximation process. However, this problem is mitigated by the fact that the training
samples, although they are all obtained with the same set of input variable samples, are
relatively large, and the GP training process allows to select a small set of samples which,
at least regarding the original training set, minimizes this bias effect.

5.2.3 Numerical analysis tools

For the aerodynamic design optimization problem faced in this work, the autonomous
aerodynamic computational chain is composed of the following blocks. Firstly, it gener-
ates the candidate airfoil through the wg2aer program that, from some input design vari-
ables, modifies a baseline airfoil considering a set of modification functions as Hicks–
Henne,Wagner, orLegendre functions. Afterward, anunstructured squaremesh is created
employinga self-developedprocedurebasedon theopen-sourcegrid generatorGmsh [47].
Finally, the aerodynamic solver is run. In this case, the open-source Computational Fluid
Dynamic (CFD)SU2 [113] solverwasused. It solves the compressibleReynolds-averaged
Navier-Stokes (RANS) equations using SA turbulencemodel [75]. Each of these compo-
nents is explained in Section 2.2.

5.2.4 Design application example

The proposed design application example is thoroughly introduced in Chapter 4 in Sec-
tions 4.2 and 4.5. A summarized problem recap is given here-in. In particular, the different
steps followed to transform the constraineddeterministic problem to anunconstrained ro-
bust design exercise are explained.
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Specifically, for this study, both aerodynamic and geometric constraints are used. The
airfoil percentage thickness with respect to the chord is fixed at the base value (t%), while
some constraints on the leading edge radius (LER), the trailing edge angle (TEA) and the
airfoil percentage thicknesswith respect to the chord atx/c = 0.85 (TAT) are introduced
to obtain realistic shapes. Moreover, special attention is dedicated to the airfoil pitching
moment coefficient cm, which for BWB configurations is a critical parameter due to the
absence of the elevators. For this reason, two constraints for the cm coefficient are im-
posed to keep its value properly confined, as required by trim aspects. The cm coefficient
is calculated with respect to the aerodynamic center, and it is considered positive in the
case of “nose up” pitching moment.

The deterministic optimization problem reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

cd(x)
subject to:

t% = 16.00

cl = 0.1

LER ≥ 0.00781

TEA ≥ 22.0
◦

cm ≥ −0.04

cm ≤ 0.04

TAT ≥ 0.06658

error = 0

(5.17)

The penalty approach is used to obtain an unconstrained problem:

min
x∈X⊆Rn

cd(x) + P (x) (5.18)

with

P (x) = k
1
p
+(LER, 0.00781)+

k
2
p
+(TEA, 22.0◦) + k

3
p
+(TAT, 0.06658)+

k
4
p
+(cm,−0.04) + k

4
p
−(cm, 0.04) + k

5
p
+(error, 0) (5.19)

All the constraints except those regarding the lift coefficient and the airfoil percentage

116



thickness with respect to the chord are treated as quadratic penalties:

p
+(x, y) = { 0 if x ≥ y(x − y)2 if x < y

and p
−(x, y) = { (x − y)2 if x ≥ y

0 if x < y

(5.20)
The cl and the thickness constraints are not included because they are automatically satis-
fiedby the computationprocedure by changing the angle of attack and re-scaling the airfoil
thickness to the assigned value.

The numerical values chosen for the ki coefficients are: k1 = 5000, k
2 = 10, k

3 =
30, k

4 = 1000, k
5 = 1000. The transformation of a constrained optimization problem

into an unconstrained one through the penalty approach is always a delicate process, as the
choices of the weights of the penalization terms profoundly change the shape and features
of the search space.

After solving the deterministic optimization, Section 4.5.2, the robust onemust be car-
ried out as in Chapter 4. The objective of the robust optimization is to improve the airfoil
performances under uncertainties in the airfoil shape and in the operating conditions.

To account for uncertainty, 12 uniformly distributed random variables were used to
represent the stochastically perturbed shape of the airfoil. Moreover, the Mach number
and the angle of attack are considered as the uncertain working conditions, and they are
modeled as four-parameter beta distribution, whose density function is given by

f(y; η, θ) = γ(η + θ)(y)η−1(1 − y)θ−1
γ(η)γ(θ) (5.21)

with shape factors η, θ, and a scale and translation given by y = (x − loc)/scale. Mach
is characterised by η = 2, θ = 2, scale = 0.08, loc = 0.76, while the angle of attack
is characterised by η = 2, θ = 2, scale = 1.0, loc = −0.5. Table 5.2.1 reports the
variation range of these uncertainties.

Uncertainty Range
Mach,M [ 0.78 , 0.82 ]
Angle of Attack,∆α [−0.15◦, 0.15◦]
Geometry,Uj [−0.0007 , 0.0007] , j = 1, . . . , 12

Table 5.2.1: Summary of uncertain parameter definition in the four benchmark cases.
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After introducing random variables, the QoI is a function. Thus, the risk functional
CVaR is used to map the chosen QoI into R. It is estimated with a confidence level γ
equal to 0.9. Note that, the constraints are computed only at the nominal values because
it is interesting to assess the impact of random perturbations only on the drag force.

So, the objective function of the robust optimization problem is:

min
x∈X⊆Rn

CVaR
0.9 (cd(x)) + P (x) (5.22)

5.2.5 Optimization process and robust design results

The robust optimization method is based on an adaptive surrogate model (GP) updated
in multiple cycles. Following the procedure explained in Section 5.2.2, the solution of
an optimization problem determines the training subset for the Gaussian process. Thus,
selecting the optimal sets of uncertain variables. In the first step, the selected points are
those thatminimize the distance between the ECDFof the deterministic airfoil calculated
with a sufficiently high number of CFD samples and the ECDF predicted by the Gaussian
process. This first optimal set is used to start the initial robust design optimization loop.

Subsequently, the “exact” ECDF is computed for the best solution of this initial robust
designoptimization, togetherwith theproposedcandidates that havemaximumEuclidean
distance with respect to the baseline airfoil and the up-to-now best solution. These new
ECDFs feed another GP training loop to determine the new sets of uncertain variables.
Nevertheless, after this step, it was observed that theminimization of the distance between
the predicted ECDFs and the “exact” ECDFs was not sufficient to obtain a good approx-
imation of the CVaR measure. Therefore, a new objective function to find the optimal
training set is introduced. It considers, both the distance between the ECDFs and the
difference between the “exact” and the approximated CVaR value. Moreover, a penalty
function is added to the objective function to fulfill an order relationship. Thus, after find-
ing the new GP training subset, a final robust optimization is carried out. Each step, here
summarized, is explained now in detail and the most significant results are provided.

Step 1 – First GP training

The initial step of the procedure requires the characterization of the deterministic solution
robustness. The deterministic optimization is given in Section 4.5.2. For this purpose,
the design variables that describe the uncertainty in the airfoil shape and the operating
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conditions are sampled using a classicalMonte Carlo technique. Subsequently, the ECDF
of the quantity of interest, which is the drag coefficient (cd), is built. In particular, an
ECDFwith 120 samples is used for the training. Each point calculated to build the ECDF
required, on average, 80 minutes of elapsed time to obtain a convergence solution using
SU2 V6.2.0 on eight cores of a cluster equipped with Intel (R) Xeon (R) cores E5-2670
CPU at 2.60GHz.

The minimization of the distance between the 120-sample hi-fi ECDF and its approx-
imation via the Gaussian Process was performed using a simple genetic algorithm. The
basic concepts of the genetic algorithm used are introduced in Section 2.1.1. Specifically,
the algorithmhad a population of 120 elements that evolved over 21 generations and used
a bit string encoding with Gray code. The crossover operator is the classic one-point bi-
nary with a triggering probability of 100%. Bit-mutation has a 2.4% chance of changing
the state of a single bit. The string of bits of the genetic algorithm encodes the selection of
five elements extracted from the hi-fi ECDF.The Gaussian process constructs a response
surface using these five elements and generates an approximated ECDF with a thousand
Monte Carlo samples. The objective function is the distance of this approximated ECDF
from the original one. The objective function evaluation process is very fast because the
setup of a Gaussian process with five elements is rapid. Also, the sampling of the approxi-
mating ECDF with a thousand samples is almost immediate.
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Figure 5.2.2: GP preliminary training — 5 variables — one design point.

The history of the evolution process is shown in Fig. 5.2.2a. The visual comparison be-
tween the120-samplesECDF(onwhich theGaussianprocesswas trained) and theECDF
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approximated with the Gaussian process using the five samples selected by the optimizer
is depicted in Fig. 5.2.2b.

Step 2 – First robust optimization run

The first robust optimization step used the resulting GP approximator. Each approxima-
tion of the ECDF requires five evaluations of the QoI with five fluid dynamics solver runs.
Of these five runs, the first is related to the nominal conditions (without random pertur-
bations) and is at constant cl. With the settings used, the constant cl run lasts about twice
as long as those with the assigned angle of attack. Although the GP setup does not require
the nominal point to be present in the training subset, this point must be calculated to
evaluate the initial angle of attack on which to apply the perturbations due to uncertainty
(∆α). Consequently, it is useful for the computational efficiency of the whole process to
force its inclusion in the GP setup subset.

Twenty design variables describe the airfoil shape, and CMA-ES is the algorithm cho-
sen for robust optimization. The CMA-ES algorithm is described in Section 2.1.2. The
algorithm parameters for this optimization phase are reported in Table 5.2.2.

Maximum evaluations Population size Initial standard deviation
129 8 0.02

Table 5.2.2: CMA-ES parameters adopted for the first robust design optimization step.

The evolution history of this first robust optimization step is reported in Fig. 5.2.3.
The GP approximation quality for elements that are not part of its training set must be

verified. For that, three additional elements are evaluated with the pre-defined dense sam-
pling (120 points). In particular, the selected solutions are the one that the GP classifies
as best, the population element having maximum Euclidean distance from the baseline
in the design variable space and the one with maximum Euclidean distance from the GP
best. The last two elements where selected because they represent a search space region
not widely explored by the search algorithm. The predicting capabilities of the first Gaus-
sian process are reported in Fig. 5.2.4.

The Gaussian process performance is relatively low and deteriorates quickly when the
distance from the baseline increases. Regarding the best candidate predicted by the GP, a
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Figure 5.2.3: First optimization run using the initial GP approximation.
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Figure 5.2.4: First optimization run using the initial GP approximation.

good approximation of the lower tail of the ECDF is found but, for theCVaR calculation,
the tail of interest is the upper one. Thus, the approximated CVaR value is underesti-
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mated. Moreover, the “true” value of CVaR not only provides a higher value than the
baseline but it has the worstCVaR in the verification set. Hence, the GP cannot give an
accurate prediction both in terms of distance between the ECDFs and ofCVaR. After all
these considerations, it is evident that a new GP training step is needed.

Step 3 – SecondGP training

In this second phase of the Gaussian process training, the goal is to choose a subset of in-
put elements that can guarantee a better approximation for a more significant number of
ECDFs. The 3 ECDFs that were not well represented with the old approximation scheme
are added to the training pool. The objective function is now constructed by adding the
distances between the High-Fidelity ECDFs and the ECDFs constructed with the Gaus-
sian process in the4 training cases. Therefore the same subset of input vectors of uncertain
variables will be associated with the corresponding values of the QoI that correspond to
the different training cases considered. Again, the process of evaluating the objective func-
tion is very fast since the quantities of interest were previously calculated in the evaluation
phase of the High-fidelity ECDFs.
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Figure 5.2.5: Evolution history – retraining step 5 variables.

The same genetic algorithm used for the first training phase is used here. However, in
this step, the algorithmhad a population of240 elements that evolved over95 generations.
The one-point binary crossover had a triggering probability of 80%, and the bit-mutation
had a 1.2% chance of changing the state of a single bit.
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Figure 5.2.6 compares, for each training point, the ECDF obtained with fine Monte
Carlo sampling and the approximated one with the Gaussian process.
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Figure 5.2.6: ECDFs comparison on the training set for the second GP training step.

A better overall approximation for the four ECDFs is found. However, the concern
about the approximation of the upper tail of the ECDF, themost important part for a good
CVaR prediction, is still present, as observed in Figs. 5.2.6b and 5.2.6c. Although the
underestimation of the Conditional Value at Risk is higher for the ECDF in Fig. 5.2.6c,
the situation most problematic from an optimization point of view is the one depicted in
Fig. 5.2.6b. The “true”CVaR value is the highest, while the predicted one is low. Thus, the
optimizer will prefer these types of candidates when, in reality, they should be discarded.

Step 4 – Third GP training

Two problems arose from the last Gaussian process training step. The first one concerns
the fact that, while obtaining a good overall agreement between the empirical distribution
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calculatedwith theGaussian process and theMonteCarlo sampleddistribution, the upper
tail of the distribution, which is the most critical part for a good estimate of theCVaR, is
not always well approximated.

Indeed, this second point is essential when comparing distributions that are very close
to each other. In this case, even in the presence of a good approximation, the error, even if
small, in the estimate of the CVaR can lead to the overturning of the order relationship.
In other words, it could happen that while theMonteCarlo sampling indicates, hypotheti-
cally,CVaR1 < CVaR2, the GP approximation indicatesCVaR1 > CVaR2, reversing
the order relation.

To remedy the first problem, it was decided to introduce a new term in the objective
functionproportional to thedistancebetween theCVaR computedwith theMonteCarlo
samples and theCVaR calculatedwith theGP.This term is added to theobjective function
for each of the training distributions. For the second problem, instead, it has been chosen
to introduce a penalty in the objective function, which is increased for each violation of the
order relation introduced by the Gaussian process compared to that defined by theMonte
Carlo sampling.

The calculation of the penalty value is immediate but involves the sorting and compar-
ison operation detailed below. Let us consider, for each element of the training set, the
pair (CVaR,CVaR) constituted by the values of the cumulative value at risk calculated,
respectively, according to the Monte Carlo sampling and according to the approximation
based on Gaussian processes. Then reorder the set of pairs so thatCVaRi ≤ CVaRi−1.
The penalty value is given by:

Ptset = w
n

∑
i=2

1C (CVaRi > CVaRi−1) (5.23)

wheren is the size of the training set,w aweight constant, and1C is the indicator function
of subset C: 1C(x) ∶= {1 if x ∈ C, 0 if x ∉ C}, with C the subset of all the true
inequalities among the set of all thepossible onesX between the training setCVaR values
calculated with the Gaussian process.

A new optimization run is done with the genetic algorithm. In this case, the genetic
algorithm had a population of 240 elements again and evolved over 50 generations. The
one-point binary crossover had a triggering probability of 80%, and the bit-mutation had
a 1.2% chance of changing the state of a single bit, as in the previous training run. The
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penalty termweightwwas set to0.01. In Fig. 5.2.7, the optimization run evolution history
is given.
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Figure 5.2.7: Evolution history – retraining step 5 variables.

Table 5.2.3 compares, for each trainingpoint, the conditional value at risk obtainedwith
fineMonteCarlo sampling (CVaR) and the approximated onewith theGaussian process
(CVaR). The table shows the CVaR values of the training set sorted in descending or-
der. This then allows evaluating the penalty term associated with the CVaR simply by
comparing its value with that of the table previous row.

Solution ID Distance CVaR CVaR penalty term
Best 5.312 × 10

−4
0.03892 0.03886 −

Baseline 9.824 × 10
−4

0.03860 0.03813 0

Max. distance w.r.t. best 8.495 × 10
−4

0.03783 0.03798 0

Max. distance w.r.t. baseline 1.553 × 10
−3

0.03769 0.03766 0

Table 5.2.3: CVaR and CVaR values comparison in the training set after the third
Gaussian process training step.

In addition, Fig. 5.2.8 compares the ECDF obtained with the Gaussian process using
the new training set and with the fine Monte Carlo sampling. It is observed how, after
adding thenew terms into theobjective function, theupper tail of the empirical cumulative
distribution function is better predicted. The new objective function introduced in this
training step allows a good calculation of the Conditional Value at Risk, at the cost of a
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slight deterioration of the overall agreement between the ECDFs.
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Figure 5.2.8: ECDFs comparison on the training set for the third GP training step.

Step 5 – Second robust optimization run

The robust optimization run is performed using the Gaussian process obtained after the
last training described above (Step 4). The starting point of the optimization is the up-to-
now studied best configuration. It is not the best obtained in the first robust optimization,
but the candidate which variables gave maximum Euclidean distance with respect to the
deterministic optimumairfoil variables. TheCMA-ES settings are not changed, except the
maximum limit of evaluations of the objective function (set at801). The evolution history
of this second robust optimization is given in Fig. 5.2.9.

The quality of the approximation of the GP must be verified. With this aim, the solu-
tion that the GP classified as best is evaluated with the pre-defined dense sampling of 120
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Figure 5.2.9: Second optimization run using the last GP approximation.

points. The “true” and the approximated ECDFs of the best are reported in Fig. 5.2.10.
Contrary to what happened at the first robust optimization run, the GP still shows a good
capability to predict the empirical cumulative distribution function. Therefore, it can be
stated that it is worth including the additional terms in the objective function, even though
the training step complexity increases.
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Figure 5.2.10: ECDFs comparison for the best using the third GP training step.

Theanalysis of the evolutionary history of Fig. 5.2.10 shows that a further improvement
of the objective function would be possible, even if an examination of Fig. 5.2.11 suggests
that a further phase of GP training is appropriate before restarting the optimization.
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Moreover, the results related to the approach based on the first-order approximation
(see Section 4.5.6) also confirm that a further reduction of the CVaR is possible. How-
ever, a possible increase in the number of samples to be given as input to the GP should
be carefully considered to improve the approximation, with a further increase in the com-
putational load of optimization.

On the other hand, it is believed that it is more useful to carry out an in-depth com-
parison of the robustness characteristics of the solution obtained with respect to the de-
terministic optimum used as a baseline. The ECDFs of the robust and the deterministic
optimum airfoils are shown in Fig. 5.2.11.
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Figure 5.2.11: ECDFs comparison for the deterministic and robust optimum. Nominal
conditions Rec∞ = 174 × 10

6, M∞ = 0.8, and cl = 0.1 and no uncertainty in shape for
the deterministic (●) and robust (▲) optimum airfoils.

Figure 5.2.11 shows the improvement of the upper tail of the robust ECDFwith respect
to the deterministic one. In this case, an improvement of the whole ECDF is found. In
addition, in Fig. 5.2.11, the point at nominal conditions for both airfoils is provided. When
working in conditions of uncertainty, the airfoil obtained with robust optimization has
a 40% probability of obtaining better performance than the nominal one (i.e., without
perturbations not known a priori) compared to the baseline inwhich this probability stops
at 15%. This is a clear advantage of robust optimization. Additionally, Fig. 5.2.12 shows
that the ECDF of cl relative to the robust optimum is much better centered around the
nominal value than the baseline.
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Figure 5.2.12: Lift coefficient ECDFs comparison for the deterministic and robust
optimum.

Conversely, the advantages of the robust optimum are not evident in terms of drag rise.
Basically, both the curves calculated at nominal cl (Fig. 5.2.13a) and those at a constant
angle of attack (Fig. 5.2.13b) show that the robust optimumperforms better than the base-
line only for values of theMach number lower than or equal to the nominal one.
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Figure 5.2.13: Drag coefficient (cd) versus Mach number (M∞) for the deterministic(●) and robust (▲) optimum airfoils. Test case Figure (a): Rec∞ = 174 × 10
6 and

cl = 0.1. Test case Figure (b): Rec∞ = 174× 10
6 and α = −2.86◦ for the deterministic

airfoil and α = −2.37◦ for the robust airfoil.

Figure 5.2.14 suggests a possible explanation for this behavior. Indeed, Fig. 5.2.14a
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shows the lift coefficient graph as a functionofMach for the elements used for theECDF. It
shows that lift is anticorrelated toMach and, similarly, Fig. 5.2.14b shows that it is also an-
ticorrelated with drag force. Therefore, the drag rise curve (Fig. 5.2.13a) shows an evident
criticality as the Mach number increases. This criticality also appears in the calculation
performed at a constant angle of attack (Fig. 5.2.13b), albeit to a lesser extent. This sug-
gests that if one wants to keep drag increment under control, it might be necessary to add
an additional design point, similar to what was done in Section 4.5.5.
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Figure 5.2.14: Deterministic (●) and robust (▲) optimum airfoils.

By the way, the robust optimization effectiveness appears evident in the reduction of
the cd expected value.

Finally, the deterministic and robust optimum airfoils are compared in Fig. 5.2.15a.
They present slight differences in shape, the most evident being in the leading edge region
on the upper side of the airfoil. This difference is clearly appreciated in the pressure co-
efficient distribution, where the deterministic optimum presents a greater expansion with
respect to the robust one, as shown in Fig. 5.2.15b. On the upper side of the airfoil, a
second difference, barely visible in the geometry, is evidenced from x/c = 40%, where
a second expansion begins, but with different slopes. On the lower side, the expansion
peak is higher for the deterministic optimum airfoil. In addition, a sudden compression at
x/c = 40% is presented at the deterministic optimum. The shock wave at x/c = 80%

is present on both airfoils, but it is weaker for the deterministic optimum airfoil. These
differences in the pressure coefficient are also visible in Figs. 5.2.15c and 5.2.15d. The data
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is calculated at the nominal conditions (M∞ = 0.80,Rec∞ = 174×10
6, and cl = 0.1).
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(c) cp contour deterministic optimum.
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(d) cp contour robust optimum.

Figure 5.2.15: Figure (a) provides the comparison of the deterministic ( ) and ro-
bust ( ) optimum airfoils (axis are not dependent), Figure (b) the comparison of the
pressure coefficient distribution on the body surface for the deterministic ( ● ) and
robust ( ▲ ) optimum airfoils, and Figures (c) and (d) the cp contour plots. The cp
is calculated at nominal conditions (M∞ = 0.80, Rec∞ = 174 × 10

6, and cl = 0.1).

5.2.6 Computational cost

Finally, analogously Section 4.5.7, a comparison of the computational effort for calculating
the ECDF of both methods, simple Monte Carlo and surrogate-based, is reported here.
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When using the plainMonte Carlo approach, the same CPU cost estimation as in Sec-
tion 4.5.7 is used for theCVaR calculation through the empirical cumulative distribution.
The number of samples needed to get a satisfactory accuracy of the risk measure can be
very high. Here, aminimumof20 samples is assumed to be necessary to obtain a barely ac-
ceptable estimation ofCVaR. Specifically, the construction of the ECDF requires a single
fixed lift coefficient CFD run at the nominal condition point (M∞ = 0.8 and cl = 0.1)
plus 20 fixed angle-of-attackCFD runs constructed by sampling the random variables that
describe the problem uncertainty. The computational cost is normalized with respect to
the average execution time of a fixed α run. The average cost of a fixed cl run at proper
convergence is instead roughly doubled with respect to the fixedα case.

The total cost of the Monte Carlo method is summarized in Table 5.2.4.

20 fixedα runs cl fixed run Total
Monte Carlo ECDF cost 20 2 22

Table 5.2.4: Computational cost of CVaR estimation using Monte Carlo sampling.

Regarding the surrogate-based ECDF, it requires a first CFD run at fixed cl, like in the
Monte Carlo approach. After that, 4 additional runs, at fixed α, are performed at the op-
timal points found in the training phase. Table 5.2.5 shows the computational cost of the
proposed approach.

4 fixedα runs cl fixed run Total
Surrogate-based ECDF cost 4 2 6

Table 5.2.5: Computational cost of CVaR estimation using Monte Carlo sampling.

The computational costs ratio between plain Monte Carlo and GP-based approaches
for building the ECDF is 22/6. Note that, the cost of calculating the four “true” ECDF
for the training phase must be added for the surrogate-based method. Furthermore, to
build a “true” cumulative distribution function, one cl fixed plus 119 fixed angle of attack
runs are needed. Therefore, the total cost of the training set is 4 × 121 = 484. This cost
is distributed among the whole robust optimization run, not only for the construction of
a single ECDF. Finally, the optimization costs related to the search of the optimal sets of
training points are negligible.

When including the true ECDF computation costs, the surrogate-based approach is
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more computationally expensive than the adjoint-based one. However, the method de-
scribed here is less intrusive and, since it does not depend on a linear approximation, it
is less subject to the need to introduce ad hoc corrections to take into account any non-
linearities. Moreover, the sample size used for the true ECDF used in the training process
is rather conservative, and in a further stepof thiswork, a smallernumberof sampledpoints
for the “true” ECDFs will be investigated.

5.2.7 Conclusions

In this study, an adaptive approach that allows an efficient implementation of robust op-
timization based on the use of risk functions and on Gaussian processes as a strategy for
constructing response surfaces was presented. In particular, CVaR was used in a robust
aerodynamic optimization loop to improve a transonic airfoil performance. The critical
point of the procedure was introducing an iterative approach in which the training phase
of the Gaussian process alternates with that of robust optimization, and the results of the
latter are then used in the next phase to improve the Gaussian process. One of the train-
ing phase peculiarities is that one can choose between different objective functions to be
optimized. In the most straightforward approach, the minimization of the distance be-
tween the cumulative distributions calculated with fine Monte Carlo sampling and those
calculated with the Gaussian process is required. The minimization of the distances be-
tween theCVaRmeasures calculated with the two different methods can then be added.
Finally, a penalty can be imposed if the Gaussian process fails to obtain the same order re-
lationship between risk functions as the reference solutions obtained by theMonte Carlo
sampling. At present, the switch between the various phases of the procedure is not auto-
matic. Still, it must be carried out manually based on the user’s empirical considerations
on the progress of every single step of the robust optimization. Further developments of
the methodology will consider constructing an integrated algorithm in which the transi-
tion between the robust optimization phase and the training phase of theGaussian process
can take place automatically. Despite the limitations indicated above, the presented pro-
cedure allowed the implementation of an effective and efficient robust design loop with a
level of computational resources that is a fraction of that required by risk function-based
approaches that do not approximate the objective function.
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5.3 Multi-fidelity surrogate assisted design optimization of an air-
foil under uncertainty using far-field drag approximation

In the previous section, Gaussian processes were employed to approximate the empirical
cumulative distribution function. Thus, reducing the computational cost of calculating
the risk measure of interest. Contrary, in this section, a surrogate-based optimization ap-
proach, as explained in Section 5.1, is used to solve a robust aerodynamic shapedesign case
study.

Robust optimization techniques provide optimal designs that are less vulnerable to the
presence of uncertainty. These techniques are already used at early stage of the design
process, since the aerodynamics performance of real-world applications is inherently un-
certain due tomanufacturing errors, uncertain environmental conditions [1, 2] and other
physical phenomena like icing [3]. Therefore, uncertainties should be considered already
during the aerodynamic design of airfoils. However, as already mentioned, such opti-
mization techniques require numerous expensive function evaluations since the quantity
of interest of the problem is a statistical measure. Notably, the quantities of interests in
aerodynamic shape design are calculated by solving the Reynolds-averagedNavier-Stokes
equationswith computational fluiddynamic solvers that heavily impact the computational
budget.

A multi-fidelity surrogate-based method is proposed here to reduce the computational
time required for robust design. The accuracy of a surrogate highly depends on the size
of its training data, as shown earlier in this chapter (Section 5.1). Therefore, when the
function evaluations are costly, such as aCFD simulationwith a very fine grid, the training
data can be complemented by function evaluations cheaper and with lower fidelity. The
information coming from various fidelity levels can be fused together with multi-fidelity
Gaussian process regression (MF-GPR).This technique was introduced by [114].

In this work, the drag coefficient (cd) of the MH 114 [115] propeller airfoil is min-
imized by a multi-fidelity surrogate assisted optimization technique. The open-source
fluid-dynamic solverSU2 is used for calculating thecd. SU2 solves the compressibleRANS
equationsnumerically and calculates cd by integrating the stress over thebody surfacewith
the so-called near-field method.

The drag coefficient cd can have different levels of fidelity by using diverse grid refine-
ments. A calculation with a fine grid provides a high-fidelity cd prediction. However, fine
meshes are very demanding from a computational point of view. Coarse grids are compu-
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tationally cheap, but they introduce a higher proportionof spurious drag. This numerically
introduced drag stems from the truncation error of the used numerical methods and the
artificial dissipation of solving theRANS equations with a coarse grid. The artificial dis-
sipation is added in the numerical schemes to boost the convergence of the flow and to
stabilize the scheme. Hence, the prediction of the near-field cd deteriorates.

Nevertheless, there are far-field methods for the estimation of the drag force that allow
the cd prediction with a level of accuracy similar to a fine grid by identifying the spurious
drag sources. A review of all these methods is given in [53]. In this work, the formulation
described in Chapter 3 has been implemented.

The prediction of the drag coefficient using the far-field method will be used for the
low-fidelity level on a coarse grid. This procedure will allow a better estimation of the drag
coefficientwith respect to the near-field value computedon the same grid, thus resulting in
an increased accuracy while preserving the computational cost. In addition, the near-field
cd estimation obtained with a fine grid will be used for the high-fidelity level.

5.3.1 Multi-fidelity Gaussian Process Regression

The multi-fidelity Gaussian process based optimization framework used in this research
work was made available by ESTECO within the UTOPIAE project framework. The ca-
pabilities of this approach have already been proven in [116, 117].

There are several strategies to obtain the different levels of fidelity of the drag coefficient
calculation. One can use various flow solvers that provide diverse accuracy of the cd value.
Besides, in this work, it was decided to introduce the levels of fidelity by using different
grid levels. Coarse grids provide, due to spurious drag, a low-fidelity prediction of the cd
at a low computational cost. Whereas, fine grids give an accurate prediction of the drag
coefficient but are computational expensive. In addition, to allow a better estimation of
the cd at the coarse grid, the far-field method introduced in Chapter 3 is used.

Therefore, the drag coefficients obtained with SU2 flow solver using a fine grid (high-
fidelity) and the far-field cd approximation using the coarse mesh (low-fidelity) are fused
together into a single surrogate by multi-fidelity Gaussian process regression (MF-GPR).
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The recursive formulation is adapted here as proposed by [118]:

f̃1(x) = h
T
1 (x)β1 + δ̃1(x), (5.24a)

f̃2(x) = ρ(x)f̃1(x) + h
T
2 (x)β2 + δ̃2(x), (5.24b)

ρ(x) = g
T (x)βρ, (5.24c)

where indices 1 and 2 denote the low and high-fidelity levels, respectively. Themean trend
of the fidelity level is formulated as a least-squares regression hi(x)βi with the vector of
regression functions hi(x) and the vector of regression coefficients βi. The local varia-
tions of themodel aremodeled as zero-meanGaussian distributions withσ2

i variance and
incorporated into δ̃i(x) ∼ N (0, σ2

i ). This recursive formulation, first, trains a standard
GPR surrogate using the low-fidelity samples calculated by the far-fieldmethod. Then, the
posterior of the low-fidelity GPR is combined with the high-fidelity observations of SU2
by training an additional GPR. This recursive formulation avoids the need to construct a
large covariance matrix containing the low- and high-fidelity designs as in [114]. Even if
the training cost of the surrogate is negligible compared to the aerodynamic design eval-
uation, the reduced covariance size is advantageous as the model is frequently re-trained
during the optimization process.

5.3.2 Aerodynamic computational chain

The self-operating aerodynamic computational chain, used in this work, takes as input
the design variables given by the optimizer and generates the candidate to be evaluated,
builds the computational mesh, and runs the computational fluid dynamic flow solver.
Finally, the obtained performance of the candidate is provided to the optimizer. In the de-
sign problem studied here, the performance of the candidate is the airfoil drag coefficient.
Moreover, for the low-fidelity runs, instead of providing directly the cd given by the CFD
solver, the drag coefficient is calculated with a far-field approach and later is provided to
the optimizer. This pipeline is shown in Fig. 5.3.1.

The candidate airfoils are generated using wg2aer that, from a set of input design vari-
ables values, modifies the starting airfoil MH 114 accordingly to somemodification func-
tions. The functioning of wg2aer is provided in Section 2.2.1. Specifically, ten design
parameters are considered. The first and second design parameters describe a thickness

136



High-fidelity
dataset

Multi-fidelity
surrogate 

assisted optimisation

Design 

variables (w)

Objective 
value (y)

Parametric

airfoil generation

(wg2aer)

Fine mesh

generation

(construct 2d)

Near-field drag,

near-field lift

calculation

CFD

evaluation

(SU2)

Penalised 

objective

calculation

Parametric

airfoil generation

(wg2aer)

Coarse mesh

generation

(construct 2d)

Far-field drag,

near-field lift

calculation

CFD

evaluation

(SU2)

Design 

variables (w)

Penalised 

objective

calculation

Low-fidelity
dataset

Objective 
value (y)

Geometrical

constraints

calculation

Geometrical

constraints

calculation

Figure 5.3.1: Aerodynamic computational chain

mode; hence they have the same value but opposite sign (w2 = −w1). Also, the third
and fourth design parameters represent a camber mode; thus both are equal (w4 = w3).
Therefore, this will lead to eight optimization design variables instead of ten. The range for
the design parameters are:

w1, w2 ∈ [−2, 2], w3, w4 ∈ [−2, 2],
w5, w6, w7, w8 ∈ [−1, 1], w9, w10 ∈ [−0.2, 0.2] (5.25)

Regarding themodification functions, the first four are polynomials affecting thewhole
airfoil, while the rest are Hicks-Henne bump functions that have the location of the bump
at different position of the airfoil chord. In Fig. 5.3.2, an example of airfoil modifications
is provided.

x/c

y
/c

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

Figure 5.3.2: Modified airfoils example. Baseline airfoil ( )
In addition, theopen-sourcegrid generatorConstruct2D is used tocreate the2Dmeshes.

In particular, given the coordinates of the modified airfoil, a C-type grid is generated. The
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number of cells of themesh depends on the level of fidelity that has to be run. Thepossible
mesh sizes are provided in Table 5.3.1.

Nb Nw Nj Ntotal

Low fidelity (LF) 96 48 48 9216
High fidelity (HF) 512 256 256 262144

Table 5.3.1: Mesh size parameters for low- and high-fidelity simulations. ( Nb: number
of cells on the body surface, Nw: number of cells in the wake, Nj : number of cells in
far-field direction, Ntotal: total number of cells)

For both grid refinements, the far-field is located at 500 airfoil chords. The possible
computational meshes are depicted in Fig. 5.3.3.

(a) Low-fidelity grid (b) High-fidelity grid

Figure 5.3.3: Possible grids depending on the fidelity level.

Finally, theCFD solver used for the aerodynamic shape design optimization problem is
the open-source fluid-dynamic solver SU2. The compressible Reynolds-averaged Navier-
Stokes (RANS) equations are solved. The turbulence model used is the Spalart-Allmaras
(SA) [75]. Furthermore, for the spatial integration, JST central scheme with artificial dis-
sipation coupled with an implicit Euler method for the pseudo-time stepping is used.

5.3.3 Far-field Drag Coefficient Calculation

The far-field method implemented in this work was introduced in [6] and exhaustively
explained inChapter 3. It allows thedecompositionof the drag force in three components:
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wave, viscous, and spurious drag. Specifically, the method is based on entropy variations.
The entropy drag is expressed as volume integral, which allows the decomposition of the
drag into the above components. Hence, a proper selection of each region is needed. The
entropy drag is defined as:

D∆s = Dw +Dv +Dsp (5.26)

whereDw ,Dv , andDsp are the wave, viscous, and spurious contributions, respectively.
Dsp is the drag source related to the entropy introduced by the truncation error and the

artificial dissipation of the numerical schemes used by theComputational FluidDynamics
flow solver. Hence, by identifying theDsp contribution and subtracting it fromEq. (5.26),
a prediction of the drag coefficient, with an accuracy close to fine grids, is obtained on a
coarser mesh. This implies a considerable advantage while facing aerodynamic optimiza-
tion problems since coarser grids allow a significant reduction of the required computa-
tional time. This advantage for optimization has also been shown in [65].

Furthermore, a test to verify this advantage for thedesignproblemof thepropeller blade
airfoil, here studied, has been carried out. In particular, a viscous flowwithworking condi-
tionsM∞ = 0.2,Re∞ = 4.97 × 10

6 and cl = 1.0 is performed on theMH 114 airfoil.
The compressibleRANS equations are solved using the SU2 flow solver with the SA tur-
bulence model. Five C-type grids of an increasing number of cells are studied. The grid
size is obtained by the square root of the ratio between the number of cells of the finest
grid and the grid under evaluation (h =

√
Nh=1/Ni). The number of cells on the body

surface (Nb), on the wake (Nw), in the far-field direction (Nj), and the total number of
cells (Ntotal), as well as the near-field value of the drag coefficient (cdnf

), and the far-field
value (cdv) are given in Table 5.3.2. Note that in this test case, the only drag contribution
is the viscous (Dv), and the drag values are expressed in drag counts (1dc = 10

−4).

Nb Nw Nj Ntotal cdnf
[dc] cdv [dc]

h = 10.7 96 48 48 9216 165.7 115.0
h = 8 128 64 64 16384 137.1 107.8
h = 4 256 128 128 65536 120.7 106.5
h = 2 512 256 256 262144 113.9 104.2
h = 1 1024 512 512 1048576 110.0 102.6

Table 5.3.2: Mesh sizes and computed drag coefficients. Viscous test at M∞ = 0.2,
Re∞ = 4.97 × 10

6 and cl = 1.0.
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In Fig. 5.3.4, the comparison between near-field and far-field drag coefficients versus
the grid size is given. In addition, the pressure coefficient distribution on the body surface
(cp) at the different grid refinements is also plotted.
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Figure 5.3.4: MH 114 test at M∞ = 0.2, Re∞ = 4.97 × 10
6 and cl = 1.0. Left:

Pressure coefficient distribution on the body surface at h = 1 (■), h = 2 (◆), h = 4(●), h = 8 (▶), and h = 10.7 (▲). Right: Near-field ( ■ ) and far-field ( ▲ ) drag
coefficients versus mesh size.

In Fig. 5.3.4a it can be observed that the differences between the cp on the body sur-
face are barely visible. Thus, a good local accuracy of the solution is also demonstrated
at the coarsest grid level. However, Fig. 5.3.4b shows how the near-field value of the drag
coefficient converges as the grid is refined (h ⟶ 0). The variation on cd between the
coarsest and finest mesh sizes is given by the spurious drag source introduced by the nu-
merical method and the artificial dissipation. Contrarily, using the far-field analysis of the
drag force, the spurious drag contribution is removed. Hence, a better estimation of the
cd is found, and applying Richardson extrapolation, at h = 0, the difference between the
two methods is approximately 6.6 dc.

Hence, with this method, the drag coefficient value for the lower fidelity of the multi-
fidelity surrogate model is improved in accuracy while keeping the same computational
time.
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5.3.4 Optimization design problem description

The shape optimization design problem aims at the minimization of the drag coefficient
(cd) of a propeller blade airfoil. Geometric and aerodynamic constraints are considered.
The baseline design is the propeller airfoilMartinHepperleMH 114. The flow conditions
areM∞ = 0.2,Re = 4.97×10

6, andα = 2
◦. The lift coefficient of the airfoil is required

to be greater or equal to one (cl ≥ 1). Geometrical constraints are imposed for obtaining
realistic shapes. The percentage thickness with respect to the airfoil chord (t%) is fixed to
the value of the baseline. The Leading Edge Radius (LER) and the Trailing Edge Angle
(TEA) are constrained byminimum values not to fall below their baseline values bymore
than 10%.

In mathematical terms, the deterministic optimization example reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
w

cd(w)
subject to:

cl(w) ≥ 1.0

t%(w) = 13.05

LER(w) ≥ 0.011377

TEA(w) ≥ 6.0
◦

(5.27)

A penalty approach is used to handle the constrained problem.

min
w∈W⊆Rn

cd(w) + pcl max (0, 1 − cl(w)) + pLERmax (0, 0.011377 − LER(w))+
+pTEAmax (0, 6 − TEA(w)) ,

(5.28)

where the pcl = 1000, pLER = 100000 and pTEA = 100. The equality constraint of the
thickness is imposed by scaling the modified airfoil shape to the given value, and this step
is directly fulfilled using wg2aer.

Furthermore, to improve the performance of the airfoil under uncertainty, a robust op-
timization must be performed. Here, the angle of attack is the only parameter considered
uncertain, thus representing uncertainty in the environmental conditions. Particularly,
the uncertainty has beenmodeled with a four-parameter beta distribution. The variability
range is αref ± 0.25. The statistical measure chosen to solve the robust design problem
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is the Conditional Value at Risk (CVaR) measure at a confidence level γ equal to 0.95.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
w

CVaR
0.95 (cd(w,u))

subject to:
CVaR

0.95
loss (cl(w,u)) ≥ 1.0

t%(w) = 13.05

LER(w) ≥ 0.011377

TEA(w) ≥ 6.0
◦

(5.29)

Therefore, the robust optimization problem reads:

min
w∈W⊆Rn

CVaR
0.95 (cd(w,u)) + pcl max (0, 1 − CVaR

0.95
loss (cl(w,u)))+

+pLERmax (0, 0.011377 − LER(w)) + pTEAmax (0, 6 − TEA(w)) ,
(5.30)

where CVaR0.95
loss (cl) = −CVaR0.95 (−cl) is the loss Conditional Value at Risk. The

random perturbations of the angle of attack impacts only the aerodynamic force require-
ments (cd and cl). The geometric constraints can be evaluated for each design configura-
tion (w) deterministically. The same penalty parameters have been used as in the deter-
ministic case.

5.3.5 Optimization pipeline

To reduce the computational cost of the shapedesign case studypresented inSection5.3.4,
a tailoredmulti-fidelity surrogate based optimization strategy introduced byKorondi et al.
[117] is applied here. Particularly, the far-field drag predictions are used to populate the
training dataset as the computational budget affords only few high-fidelityRANS simula-
tions. The proposed optimization pipeline is presented in Fig. 5.3.5.

In surrogate based optimization, an important step is the selection of the infill criterion
to update the response surface at each iteration. For this study, the acquisition methodol-
ogy is based on the constrainedExpected Improvement (cEI). It can be seen as a combina-
tion of the expected improvement of the objective and the probability that the constraint
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Figure 5.3.5: Optimization pipeline with multi-fidelity surrogate

on lift coefficient is not satisfied. The cEI is formulated as:

cEI = E [max (0, F∗
obj − Fobj(c̃d, c̃l))]P [c̃l ≥ 1]

= ((F∗
obj − Fobj(ĉd, ĉl))Φ(F∗

obj − Fobj(ĉd, ĉl)
σ̂2
cd

)+
+σ̂2

cdϕ(F∗
obj − Fobj(ĉd, ĉl)

σ̂2
cd

))Φ( ĉl − 1

σ̂2
cl

) ,
(5.31)

where σ̂cd and σ̂cl are the standard deviations of the drag and lift coefficient, respectively.
Fobj is the penalized objective given by Eq. (5.28) or Eq. (5.30), in order, for the deter-
ministic and robust optimization studies. The best evaluated objective value is given by
F

∗
obj . TheΦ and ϕ symbols denote the cumulative distribution function and probability

density function of the standard normal distribution, respectively. E is the expected value,
and P is the probability operator.

The new candidate to be evaluated by the true function is selected at the point where
the constrained expected improvement is maximum.

wnew = max
w∈W⊆Rn

cEI (5.32)

For multi-fidelity surrogate optimization, in addition to the acquisition methodology,
a strategy that chooses the fidelity level at which to evaluate the most promising design
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candidate wnew needs to be defined. In this work, the fidelity is chosen based on the
Scaled ExpectedVariance Reduction (SEVR)measure [117]. Specifically, SEVRbalances
the cost associated with evaluating a candidate with a given fidelity level and the expected
variance reduction.

l = max
LF,HF

SEVRl (5.33)

Where, the SEVR is defined as:

SEVRLF =
ρ
2(wnew)σ̂2

cd,LF(wnew)
cLF

, (5.34)

SEVRHF =
ρ
2(wnew)σ̂2

cd,LF(wnew) + σ̂
2
cd,δHF(wnew)

cHF
, (5.35)

where cLF = 1 and cHF = 10 are the costs of the low- and high-fidelity simulations,
respectively.

Regarding the robust optimization, the computational chains of low- and high-fidelity
have to be complemented by an additional step for computing the lift and drag coefficients
CVaR risk measures. Due to the fact that this process is computationally demanding, the
risk measure is calculated with a surrogate-based uncertainty quantification approach. At
the low fidelity level, for each design configuration, five LF samples are used for construct-
ing a local GPRmodel, while at the high-fidelity level, five LF samples and three HF sam-
ples are used for constructing a local MF-GPR model. These models can then be used to
draw a statistically significant number of samples to calculate the risk measure. The num-
ber of HF samples is set to the minimum required samples necessary for training the local
probabilistic model. Arbitrarily, it was decided to increase the number of LF samples by
20%w.r.t. the HF approximation.

The constructed local probabilistic models of the baseline configuration are presented
in Fig. 5.3.6. Furthermore, in Fig. 5.3.7, the convergence of the risk measure value of the
aerodynamic force coefficients in relation to the number of virtual samples is depicted.
Based on theCVaR convergence, 100000 virtual samples of the local probabilistic mod-
els are generated to calculate theCVaR values for both aerodynamic coefficients (cl and
cd) in the present work.

Note that the computational costs of the fidelity levels are set according to their true
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(a) Drag coefficient, cd (b) Lift coefficient, cl

Figure 5.3.6: Local probabilistic models of the aerodynamic force coefficients of the
baseline configuration.

(a) Lift Coefficient, cl (b) Drag Coefficient, cd

Figure 5.3.7: Convergence of the risk measure value of the aerodynamic force coeffi-
cients.

computational time required for the probabilistic optimization. The cost of running a low-
fidelity CFD evaluation is considered as 1. According to the computational time, the cost
for high-fidelity is 16 times greater than the low-fidelity runs. Considering that five LF
samples are needed to build the low-fidelity probabilistic model, the total cost of the LF
model is5. On the other hand, to construct the high-fidelity probabilisticmodel, threeHF
and five LF evaluations are required; thus, the total cost is 53. Therefore, a 1 to 10 cost-
ratio is used in this study. Note that the computational costs of training the surrogates
and calculating the acquisition function are considered negligible compared to the CFD
evaluations.
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Finally, the computational chainof the aerodynamic forceswith theprobabilisticmodel
is shown in Fig. 5.3.8.

5.3.6 Results

Themost promising obtained results are shown here-in. A two-step optimization was car-
ried out. Firstly, a deterministic optimization, and, later, a probabilistic one.

Deterministic optimization

The deterministic design optimization problem posed in Eq. (5.27) is solved with amulti-
fidelity and a single-fidelity surrogate-based technique, and, also, with a population-based
technique. A resume of all the optimization results is presented in Table 5.3.3.

cd
[dc]

cl TEA
[deg]

LER Samples
[LF, HF]

Cost

baseline (MH 114) 117.8 1.09 6.60 0.014324 [0, 1] 10
best MF-GPR 112.0 1.00 6.03 0.013228 [120, 18] 300
best GPR 117.6 1.08 7.76 0.011973 [0, 30] 300
best CMA-ES (h = 10.7) 117.1 1.02 6.17 0.018025 [1800, 0] 1800
best CMA-ES (h = 8) 115.6 1.02 6.34 0.020900 [1800, 0] 2700

Table 5.3.3: Comparison of multi-fidelity, single-fidelity surrogate-based and
population-based optimization results. (The cost of a single high- and low-fidelity sim-
ulations are 10 and 1 respectively.)

Thesamecomputational budget is used tocompare the single- andmulti-fidelitymethod-
ologies regarding the surrogate-based approaches. In both cases, 10 high-fidelity samples
are used for constructing the initial surrogate. In the case of MF-GPR, the surrogate is
complemented with 100 low-fidelity samples. Therefore, to keep the same computational
budget, only 20 additional samples are generated to complement the high-fidelity surro-
gate. In Table 5.3.3, it can be observed that the optimization that uses MF-GPR is able to
find a better solution. This is due to the fact that the computational budget was severely
limited, hence this did not allow us to have enough high-fidelity samples. The lack of HF
samples prohibits the construction of an accurate GPR model. However, by introducing
low-fidelity information obtained from computationally cheaper samples, the MF-GPR
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could better approximate the performance landscape. Clearly, this handful of new sam-
ples are not enough to find a sufficiently good design.

From an aerodynamic perspective, the optimal airfoil of the MF-GPR approach has a
lower drag coefficient since its camber line is lower than the camber lines of the other two
airfoils, the MH114 and the optimal airfoil obtained at the optimization using the GPR
approach. This can be observed in Fig. 5.3.9. Note that, for visualization purposes, the
axes in Figs. 5.3.9 and 5.3.10 are not dependent. Specifically, by decreasing the camber and
keeping the free stream angle of attack, the effective angle of attack that the airfoil actually
perceives decreases. Thus, a lower lift coefficient is obtained. This implies a reduction of
the lift-induced drag coefficient, hence of the total drag.
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Figure 5.3.9: Baseline and deterministic optimal airfoil comparison. MH114 ( ),
MF-GPR optimal airfoil ( ), and GPR optimal airfoil ( ). The dashed lines are the
camber of each airfoil. Axes are not dependent.

In addition, thepresenteddesignoptimizationapproach is comparedwith awell-known
population-based algorithm, namely CMA-ES (see Section 2.1.2). The optimization is
performed using only low-fidelity CFD evaluations. The evolutionary algorithm is not
able to find a similar optimal design to the one given by the MF-GPR approach. Con-
trarily, the airfoil is barely optimized. Therefore, it is decided to increase the mesh size to
h = 8 (instead of h = 10.7) and redo the optimization. In this case, the algorithm found
a similarly best design configuration to the presented method (MF-GPR). The cost of a
CFD evaluation on h = 8 grid size is 1.5 times the cost of a low-fidelity one. In addition,
to perform the population-based optimization, 1800 evaluations are needed. This implies
that the computational cost is significantly increased with respect to the multi-fidelity ap-
proach presented in this paper.

Therefore, the presented optimization method presents an advantage with respect to
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single-fidelity surrogate-based optimization since by adding low-fidelity samples, the per-
formance landscape is better approximated. This results in a better allocation of computa-
tional resources. Themulti-fidelity surrogate-based approach canfindbetter airfoil designs
compared to classical population-based optimization, and single-fidelity techniques as the
HF evaluations are performed only for promising design candidates.
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Figure 5.3.10: Baseline and deterministic optimal airfoil comparison. MH114 ( ),
MF-GPR optimal airfoil ( ), and CMAES optimal airfoil using h = 8 grid size ( ).
The dashed lines are the camber of each airfoil. Axes are not dependent.

Furthermore, Fig. 5.3.10 shows the comparison of the optimal airfoils obtained with
CMA-ES and with MF-GPR approaches with respect to the baseline. In addition, the
camber line of each airfoil is also plotted. In this case, both optimal airfoils have a simi-
lar camber line. However, the obtained optimal design with CMA-ES has the maximum
airfoil thickness placed at a forward position (x/c = 0.227) with respect to theMF-GPR
best design (x/c = 0.297). This implies that the effective angle-of-attack is greater than
the one perceived by theMF-GPR optimal airfoil. Hence, higher cl and, consequently, cd
are found.

ĉd ĉl F̂obj Fobj(ĉd, ĉl,TEA,LER) HF
iterations

MF-GPR 2.044% 0.71% 34.51% 5.43% 8
GPR 3.11% 5.65% 17.14% 11.53% 20

Table 5.3.4: Comparison of prediction error of multi- and single-fidelity surrogate
models. (Prediction error is defined as the arithmetic mean value of the relative error
of the high-fidelity predictions during the course of optimization.)

To evaluate the quality of the produced surrogate models, the mean prediction error
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is calculated. The results are summarised in Table 5.3.4. Particularly, the prediction error
was calculated for each HF iteration by using the prediction and true values calculated at
the new infill design point. It can be seen thatMF-GPR predicted the aerodynamic forces
of the new designs significantly better. The poor design configuration found by the GPR-
based optimization is also due to the penalized approach which was employed here. The
lift coefficient is not well predicted which drives the algorithm to waste computations on
unfeasible designs andhavehighobjective values. Moreover, inTable 5.3.4, it is also shown
that the objective cannot be accurately predicted by a surrogate directly. However, by in-
dependently predicting the aerodynamic forces and calculating the objective afterwards
based on these predictions, it was more accurately predicted.

Probabilistic optimization

After solving the deterministic problem, a probabilistic optimization is carried out to im-
prove the performance of the airfoil under uncertainty. Specifically, only uncertainty on
the angle of attack is considered. Taking into account that the advantages of using MF-
GPR are already shown in the deterministic optimization, the probabilistic one is made
using the proposed optimization approach.

The predicted lift and drag distributions of the optimal designs and the baseline airfoil
are shown in Fig. 5.3.11. Figure 5.3.11a shows that, if the angle of attack is perturbed, the
optimal design obtained in the deterministic problem violates the constraint imposed for
the lift coefficient. Contrary, by considering the uncertainty in the angle of attack during
the optimization using theMF-GPRapproach, the obtained design respects the constraint
imposed on the lift coefficient. Particularly, for the probabilistic design optimization, it is
decided thatCVaRloss(c̃l)must be greater or equal to one. To fulfill the constraint, the
robust optimumdesign has to increase the lift coefficient with respect to the deterministic
optimum, as shown in Fig. 5.3.11a. Consequently, the robust design has a higher drag (see
Fig. 5.3.11b).

In Table 5.3.5, a comparison of the baseline airfoil with the optimal designs is given in
terms of lift, drag, and shape characteristics. Besides, in order to calculate theCVaR, the
MF-GPR technique requires the computation of three high-fidelity samples. Hence, the
computational budget is triple. However, this is still limited as the size of the budget is
equal to the cost of only 90 high-fidelity simulations.
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(a) Lift coefficient distribution, cl

(b) Drag coefficient distribution, cd

Figure 5.3.11: Prediction of the distributions for the baseline and optimal designs.

Objective CVaR(c̃d)
[dc]

CVaRloss(c̃l) TEA
[deg]

LER Samples
[LF, HF]

Cost

baseline (MH 114) 119.07 119.07 1.063 6.60 0.014324 [5, 3] 35
deterministic opt. 136.55 112.87 0.976 6.03 0.013228 [5, 3] 35
probabilistic opt. 114.89 114.89 1.002 6.38 0.016937 [370, 51] 4880

Table 5.3.5: Comparison of the requirements considering environmental uncertainty.

The obtained optimal airfoils are compared in Fig. 5.3.12. It is appreciated that both
the deterministic and the probabilistic optimization resulted in a smaller camber line cur-
vature airfoil than the baseline. The MH 114 airfoil generates a significantly higher lift
coefficient than the required constraint value; hence the optimization tends to reduce the
camber curvature, so that the lift reduces, and so does the drag. Moreover, by comparing
the deterministic andprobabilistic optimal designs, it can be seen that the probabilistic op-
timum has a stronger S-shaped lower side. This increases drag and lift coefficient; hence,
resulting in a feasible airfoil design.

Finally, in Fig. 5.3.13, a comparison of the pressure coefficient distribution and friction
coefficient on the body surface of the baseline, deterministic and probabilistic optimal
designs is presented. Analysing both optimal designs, it can be observed that the deter-
ministic optimum presents a smoother expansion rate on the upper surface of the airfoil.
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Figure 5.3.12: Baseline, deterministic optimum, and robust optimum airfoil compari-
son. MH 114 ( ), deterministic optimum ( ), and probabilistic optimum ( ). The
dashed lines are the camber of each airfoil. Axes are not dependent.

Specifically, the maximum is reached at 30% of the chord, whereas the probabilistic opti-
mumhas the peak at10% of the chord. Comparing the pressure coefficient distribution of
the optimal airfoils, the contribution of pressure to drag coefficient is clearly higher for the
probabilistic optimum. Besides, for the contribution of friction on the drag coefficient, a
similar conclusion can be applied. Themaximumvalue of skin friction coefficient is higher
for the probabilistic optimum on the suction side of the airfoil and, also, to a minor extent
on the pressure side. Thus, the friction drag is higher for the probabilistic solution, mainly
due to the peak of maximum cf .
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(a) Pressure Coefficient, cp
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Figure 5.3.13: Pressure coefficient (left) and friction coefficient (right) on the body
surface comparison. MH 114 ( ), deterministic optimum ( ), and probabilistic opti-
mum ( ).
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5.3.7 Conclusion

In the presented study, a surrogate-based optimization under uncertaintyworkflow able to
solve expensive aerospace applications has been developed. The optimization pipeline is
employed to find an optimal propeller blade airfoil that minimizes the drag produced but
satisfying the requirement imposed on the lift coefficient, together with some geometrical
constraints to obtain feasible designs. To predict the aerodynamic forces, the compress-
ible Reynolds Averaged Navier-Stokes equations are solved using the open-source CFD
flow solver SU2. The computational time required to solve these equations is high; thus, a
multi-fidelity surrogate technique is used to decrease the computational effort. Two levels
of grid refinement are used to build the multi-fidelity surrogate. In addition, to increase
the correlation of the high- and low-fidelity drag predictions, the spurious drag at the low-
fidelity is compensated by performing the drag prediction using far-field formulation.

Themulti-fidelityGaussianprocess approachhasbeencomparedagainst classical single-
fidelity surrogate-basedandevolutionary algorithms. Theresults showed that single-fidelity
surrogatemethods could struggle to find significantly improved designs due to the limited
computational budget, that it is solved by introducing the information obtained at a lower
fidelity. Moreover, it has been demonstrated that the computation budget has to be in-
creased to obtain similar results with a population-based algorithm. Finally, the highest
potential of the multi-fidelity surrogate-based approach presented in this case study relies
on solving problems under uncertainty where the required numerous probabilistic sam-
ples can be efficiently obtained by introducing a multi-fidelity probabilistic model.
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6
Machine Learning Assisted for High-LiftDevices

Topology RobustOptimization

This chapter copes with the optimization under uncertainty of the topology of high-lift
devices. The chapter has two main parts. Firstly, a deterministic optimization contain-
ing continuous, integers, and nominal categorical variables is solved using an heuristic al-
gorithm, and, secondly, the same problem is carried on but introducing uncertainty. A
surrogate-based approachplus somemachine learning techniques are used tomake it com-
putationally treatable. This work was made in collaboration with the University of Strath-
clyde and Cologne University of Applied Sciences (TH Köln) and has been published
in [119] and presented at the International Conference on Uncertainty Quantification&
Optimization UQOP2020 (in Press).

6.1 Introduction

Recently, in the field of commercial aircraft design, the interest regarding the optimal de-
sign of High-Lift Devices has increased [120, 121]. High-Lift Devices (HLDs) are com-
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ponents located on the aircraft’s wing that aim to increase the lift force produced by the
wing during slow flight phases, mainly take-off and landing. A wide variety of HLD types
exists, and the most common are slats and flaps that are the object in this work. The slat is
located at the airfoil leading edge and has the effect of delaying stall by increasing the angle
of attack at which the maximum lift is attained. In contrast, the flap is a trailing edge de-
vice that increases the lift coefficient even at low angles of attack [122, 123]. The effects of
the mentioned HLDs are shown in Fig. 6.1.1. The black airfoil is the McDonnell Douglas
(MDA) 30P-30N airfoil, the blue airfoil is the 30P-30N with the slat not deployed, and
the red airfoil is the 30P-30N, but the flap has been split to make a double-slotted airfoil.
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Flap effect

Slat effect

(a) cl vs α (b) Multi-element airfoil

Figure 6.1.1: Slat and flap lift coefficient effect. 30P-30N airfoil ( ● ), double-slotted
flap ( ■ ), and 30P-30N airfoil with no slat ( ▲ ).

As discussed in [124], theHLDdesign is an arduous task because it ismultidisciplinary
(aerodynamics, structures, systems integration disciplines are involved), multi-objective
(generally in conflict) [125], and multi-point (designed for take-off, climbing, approach,
landing flight phases) [126]. Thus, HLD design is very demanding from a computational
point of view. One critical point is the proper convergence of the Computational Fluid
Dynamic (CFD) solver because configurations at high angles of attack, close to stall condi-
tions, must be simulated. Generally, these configurations lead to separate flows that make
the accurate prediction of the aerodynamic performance very challenging. As a conse-
quence, experimental results to validate the CFD are necessary.

Classically, the design of HLDs is a two-stage procedure. First, a promising configura-
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tion type (number of airfoil elements) is selected, and second, the position and shape of
the elements areobtained throughoptimization, oftenemployingheuristic algorithms[124].
Furthermore, becausemost of themare limited to continuous numeric variables and fixed-
length search spaces, optimization algorithms are assigned to solve a circumscribed part of
the original design problem exclusively. It is challenging to know beforehand which con-
figuration is optimal in terms of performance, weight, and cost. As a result, this approach
is likely to lead to sub-optimal solutions. This work aims to demonstrate the feasibility of
including the HLDs configuration as a design variable of the optimization phase. In par-
ticular, the optimizer explores theHLD search space changing the number of elements (or
configuration) and their position and rotation. For simplicity, the optimization objective
is limited tomaximize the lift generated by theHLD at a given angle of attack regardless of
its drag, weight, costs, and practical construction feasibility. Because of this, the problem
falls under the area of mixed-variable single objective global optimization.

Dealing with these kinds of problems implies tackling many challenges. Indeed, even
a proper definition of the design problem may be very difficult, as well as finding an effi-
cient mapping and encoding of the design variables to facilitate the optimizer efficiency.
This problem is even more critical when variables of a different type, like continuous (nu-
merical) and categorical (nominal), simultaneously encode topological and dimensional
features. Among the different algorithms, one of the most suited to face this particular
problem is Genetic Algorithms (GAs) [127].

Various strategies for facing variable-size global optimization are described in the liter-
ature [128, 129]. The hidden gene adaptation of GA for the optimization of interplanetary
trajectories is introduced in [129]. Here themaximum number of genes that can describe
a candidate is set. Each candidate is then represented using all the possible genes plus a
set of activation genes, indicating which genes to consider when computing the objective
function. However, in the cases where the activation of genes depends on the activation
of other ones or on the values they assume, defining an effective problem formulation can
be very tough or even impossible.

A more complex, but efficient and flexible adaptation of GA is proposed in [128]. In
this case, a hierarchical multi-level chromosome structure is adopted in place of the stan-
dard string-based one. Unlike the standard GA formulation, both vicinity and hierarchy
relationships link the genes of each chromosome. However, as presented in [130], the op-
erators implemented can result ineffective or even destructive because they act regardless
of the variable type.
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In the currentwork, amixed-variablewithdynamically varying search space global opti-
mizerbasedonagenetic algorithm, theStructured-ChromosomeGeneticAlgorithm[130–
133] is used. This approachconsists of anadaptationofGAthat allows structured-chromosomes
definitions. The algorithm takes advantage of hierarchical problem formulations and uses
revised operators that behave considering the type of variables and the history of the opti-
mization [130, 132, 133]. Moreover, this offers the possibility to define dynamic bounds
and dynamic variables dependencies, and this makes it suitable for a wide variety of prob-
lem formulations and applications.

This work aims to show that an appropriately crafted optimization algorithm can han-
dle configurational decisions that are usually the responsibility of experienced designers.
Indeed, this achievement can represent a turning point not only in the field of design op-
timization but also in multidisciplinary design optimization, structural optimization and
many other design disciplines.

6.2 Aerodynamic computational chain

As explained in Section 2.2, it is essential to have a complete autonomous aerodynamic
computational chain to solve aerodynamic design optimization problems. The computa-
tional chain used to solve this design problem is depicted in Fig. 6.2.1 and briefly explained
in the following paragraphs since all the tools are thoroughly described in Section 2.2.
Moreover, in Section 6.2.1 the CFD solver is validated. In Section 6.2.2, the design of
the different multi-element airfoil used as baseline configurations for the optimization are
generated.

During theoptimization, the candidate airfoils are generatedusingwg2aer. As explained
in Section 2.2.1, it is an in-house developed program that accepts as input a set of design
variable values and modifies a specified starting airfoil. For obtaining the baseline airfoil,
the design variable valuesmust be equal to 0. In this study, the introduced design variables
are the settings of each airfoil element, which are the translation in the2-dimensional space
(∆X and∆Y ) and the rotation (∆θ) with respect to the starting airfoil. The reference
point for rotation is the leading edge of the corresponding element.

After generating the candidate airfoil, the grid is automatically built using a self-developed
procedure based on the open-source grid generator Gmsh. It generates an unstructured
square grid combining triangular and rectangular elements. The far-field is located at 40
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Figure 6.2.1: Aerodynamic computational chain representation.

airfoil chords. An example of the computational mesh used for validating the CFD flow
solver is shown in Fig. 6.2.2.

Finally, the Computational Fluid Dynamic solver used for the HLD design optimiza-
tion is the open-source fluid-dynamic solver SU2 (see Section 2.2.3). The compressible
Reynolds-averaged Navier-Stokes (RANS) equations are solved using the SA turbulence
model [75]. Also, JST central scheme with artificial dissipation coupled with an implicit
Euler method for the pseudo-time stepping is used for spatial integration.

6.2.1 CFD results validation and design point selection

Before performing an optimization run, the CFD solver must be validated. This step is es-
sential when designing HLDs. During their design, configurations at high angles of attack
are studied. These configurations could present highly separated flows, hence, predicting
the airfoil performance is a challenging task for the solver. Therefore, a comparison with
experimental results is required.

A series of wind-tunnel experiments were conducted at NASA Langley Research Cen-
ter for the three-elements airfoil McDonnell Douglas (MDA) 30P-30N [134, 135]. Thus,
the 30P-30N airfoil (Fig. 6.2.3) was selected as the starting configuration for this design
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(a) Complete grid. (b) Three elements.

(c) Main element & slat. (d) Main element & flap.

Figure 6.2.2: Computational mesh.

optimization problem. These experimental data are used to validate the numerical results.
The considered working conditions are: free-stream Mach number M∞ = 0.2 and

Reynolds numberRec = 5×10
6 (based on the airfoil chord, c) at several angles of attack,

namely, α = [0◦, 4◦, 8.12◦, 16.21◦, 21.29◦, 22.5◦, 24◦, 25◦, 26◦]. A computational
mesh with∼ 200000 cells is used (see Fig. 6.2.2).
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Figure 6.2.3: 30P-30N airfoil.
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An important concern is to demonstrate the ability of the CFD solver to assess stall.
Thus, a comparison of experimental and numerical lift coefficient (cl) versus angle of at-
tack (α) curves is shown in Fig. 6.2.4a. It is observed that the computed lift is slightly
higher than the experimental data. In addition, the computed stall angle (α ≃ 24

◦) is
higher than the experimental (α ≃ 21

◦).
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Figure 6.2.4: SU2 ( ■ ) and experimental (•) data comparison.

Thedrag polar (Fig. 6.2.4b) shows that numerical simulations predict a higher drag co-
efficient (cd). This trend is expected since a fully turbulent approach was adopted while
the experiments were conducted in free transition. Finally, it must be mentioned that the
pitchingmoment cm is computed at 25% of the chord, and a negative value indicates that
it is a nose-down moment. Both, experimental and numerical results show a decrease of

161



the nose-down moment with increasing angles of attack. Moreover, computed pressure
distributions (cp) at the body surface for α = 8.12

◦ and α = 21.29
◦ are compared with

the experiments in Fig. 6.2.5. A satisfactory match between both is observed.
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Figure 6.2.5: Comparison of the pressure coefficient at the body surface. SU2 results( ) and experimental data (•).

Summing up, it can be concluded that the CFD solver is capable of predicting the air-
foil performance, although there are some variations between numerical and experimental
results.

6.2.2 Flap topology generation

The proposed design optimization aims to select the airfoil topology most suitable for the
considered working conditions. Hence, several multi-element airfoil configurations must
be considered as candidates for the HLD optimization. To do so, the 30P-30N airfoil was
set as the reference baseline to design four different flap configurations, in particular, three
different types of double-slotted flap and one triple slotted flap.

In order to split the single flap of the baseline airfoil in several flap components, the
multi-element airfoil manipulation program AIRSET [136] was used. Once the new ele-
ments were generated, XFOIL [32] was employed for smoothing the splitting surfaces.

Thus, during theHLDoptimization, five differentHigh-LiftDevice candidates are con-
sidered: a single flap configuration (SF), which is the 30P-30N airfoil, three types of
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(a) Double slotted flap type 1
(DS1) configuration ( ).
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(b) Double slotted flap type 2
(DS2) configuration ( ).
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(c) Double slotted flap type 3
(DS3) configuration ( ).
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(d) Triple slotted flap (TS) config-
uration ( ).

Figure 6.2.6: Illustration of all the configurations considered in the optimization.

double-slotted flap (DS1,DS2, andDS3), and a triple slotted flap (TS) (see Fig. 6.2.6).
Note that the slat and the main body parts are the same for all the configurations. In a
further step, configurations without slat can also be taken into consideration. However,
this study aims to demonstrate that the proposed optimization procedure is able to solve
topology selection design problems. Hence, a more challenging problem definition is led
to future works.

6.3 SCGA

In this work, the optimizer used is not the one explained in Section 2.1 since continuous
and discrete optimization variables must be treated. Therefore, a brief explanation of the
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optimizer, taken from [119], is here-in included.
The Structured-Chromosome Genetic Algorithm (SCGA) [133] is a heuristic algo-

rithm optimization that aims at coping with mixed-variable optimization problems with
dynamically varying search space. This algorithm aims at dealing with a class of problems
as broad as possible. Notably, it can effectivelymanage variable-size problem formulations
containing continuous, integers, and nominal categorical variables.

SCGA is a general-purpose optimizer, able to deal with problems from different fields
and whichmay present different specific characteristics. For this reason, it consists of a re-
visedversionof thepopularGA[137]. In thiswork, theflexibility of theSCGAis leveraged
to incorporate the decision about the HLDs topology in the optimization loop. Contrary
to standardGAs where the chromosomes are encoded as strings, so the variables are inde-
pendent, SCGAencodes the chromosomeas trees allowing thedefinitionof dependencies
between variables. This creates a hierarchy between variables. For instance, the value of
one variable can determine the presence or absence of other variables, or even their per-
missible values. This fact is advantageous in the cases where the optimizer is controlling a
configurational decision where each possibility requires the specification of different ad-
ditional parameters. In the presented HLD optimization, the variable selecting the type
of flap impacts the number of variables needed to specify the position and rotation of all
the flap elements. In light of these considerations, it is clear that standard genetic oper-
ators cannot be adopted. SCGA, makes use of genetic operators revised to handle hier-
archical problem definitions. The customized crossover and mutation operators permit
meaningful transformations that respect the interdependence between variables and per-
mit to take advantage of insights the user can have about the problem [130, 132, 133].
The crossover operation consists of swapping genes between two different chromosomes
(parents) to produce two new candidates (children). This operation aims at merging the
information contained in the parents into the children. In this way, hopefully, the children
inherit the characteristics that originated the performance of their parents and, combining
them, they can reach even better performances. The crossover implementation in SCGA
takes advantage of the hierarchy operating not only on the selected variables but also on
all the dependent variables. This operation is necessary to createmeaningful solutions and
preserve the overall information encapsulated by the selected variables and the associated
ones [130]. Themutation operator aims at avoiding premature convergence and increases
the diversity in the population. The variables that undergo mutation are perturbed from
their current state. The strength of the perturbation determines the quantity of random-
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ness introduced, and it should be varied during the optimization considering a variety of
factors, i.e., the diversity in the population and the type of variable [138, 139]. However,
this is strongly problemdependent and difficult to foresee without an in-depth knowledge
of the problem. The mutation operator employed in SCGA implements a self-adaptive
step size that aims to adjust the strength of the perturbations autonomously [133]. The
operation differs significantly depending on the type of the variable undergoing the mu-
tation. In the case of continuous or integer variables, the operator perturbs the value to
change with a small perturbation. A normal distribution generates the perturbation for
the continuous variables, while the difference of two geometrical distributions is used for
the integer ones [140]. In the case of nominal categorical variables, since all the possi-
bilities are equally likely, the mutation operator simply substitutes the current value with
another one. Particularly, this is re-sampled (uniform randomly) from the set of possible
values deprived of the current assumed (for further details, please refer to [140]).

6.3.1 SCGA validation

Before solving the High-Lift Device topology design problem, the algorithm has been
tested on a preliminary ‘toy’ problem to validate SCGA capabilities when solving airfoil
optimization problems. Indeed, although the potential of SCGAwas shown in references
[130, 132, 133], it has never been applied to problems with characteristics similar to those
ofHLDdesign. Inparticular, the purposeof this validation is to check the capacity of finely
tuning continuous variables. This prerequisite is inescapable for theHLD design problem
object of this study, where the continuous variables are predominant (see Table 6.4.1).

Another goal of this preliminary study is to test the robustness of the optimizer to dif-
ferent settings. Due to computational budget limitations, only one run of SCGA for the
mixed-variable optimization is possible. Consequently, an accurate algorithm parameter
tuning is out of the reach of this study. Nevertheless, some assessment work on a similar
problem is necessary to check the real performance of the algorithm.

Problem description

The ‘toy’ problem here presented was introduced in Section 1.4, and it is the deterministic
aerodynamic design optimization problem of an airfoil in incompressible flow conditions
and subject to geometric and aerodynamic constraints. The objective is to improve the
airfoil performance, drag minimization in this case, by modifying its shape. The chosen
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baseline airfoil is the NACA 2412, and the working conditions areM∞ = 0 andRec =
5×10

5 at fixed lift coefficient cl = 0.5. To obtain a fixed cl, the angle of attack is adjusted.
The airfoil parametrization is made using wg2aer tool explained in Section 2.2.1. In

particular, it is parametrizedbya linear combinationof an initial geometry(x0(s), y0(s)),
andmodification functionsyi(s). The airfoil shape is given byEq. (2.2). The shape is con-
trolled by the design parameters wi and the scale factor k used to scale the airfoil to the
required thickness. Specifically, in this optimization problem the number of design pa-
rameters is n = 20 in the rangewi ∈ [−5, 5]. Moreover, the maximum thickness (t) of
the airfoil is fixed to 12% of the chord (c).

The quantity of interest (QoI) J to be optimized is the drag coefficient, cd. The airfoil
optimization is subjected to some geometrical and aerodynamic constraints. In particu-
lar, the imposed constraints are: trailing edge angle (TEA) greater than or equal to 13◦,
leading edge radius (LER) greater than or equal to 0.7% of the chord, and the boundary
layer transition point on the lower surface (XTRLOW ) of the airfoil cannot take place
at x/c greater than 0.95. Furthermore, an Error flag, if equal to 1, will indicate the no
convergence of the solver. Bearing this in mind, the objective function is given by

J =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
cd ifError = 0& fulfilled constraints

p cd ifError = 0& no fulfilled constraints

p ifError = 1,

(6.1)

with p = 1000. Thus, the deterministic problem reads:

min J . (6.2)

The drag coefficient is computed using XFOIL aerodynamic analysis code [32]. In a
fully interactive way, it couples a high-order panel method with an integral boundary layer
code.

Experiment

Five different settings of SCGA have been tested on the ‘toy’ problem validate the capacity
of SCGA of tuning continuous variables finely. Specifically, the parameters varied are the
population size and the tournament size. The increase of the former helps to keep diversity
in the population and preventing from premature convergence. The latter is the size of the
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Figure 6.3.1: Best found solution history. All the instances are compared to the ADG
run.

pool of candidates tested during a selection operation. This size heavily impacts on the
diversity in the mating pool for the crossover operator [137]. The smaller the tournament
size is, the higher the chances for a low-fitness candidate to bequeath its information to
candidates of the next population. Therefore, the higher the tournament size, the higher
the pressure to select only the high-fitness candidates, with the possible drawback of let-
ting the population collapse toward a local optimum. The values tested for the population
size are [5, 10, 20] and for the tournament size are [2, 4]. However, the combination with
population size equal to 5 and tournament size equal to 4 cannot be run because of the tour-
nament selection implementation in SCGA. The number of maximum function evalua-
tions has been set to 7000 to match the reference run ones. The remaining parameters of
SCGA have been left to the default values [131].

The reference run is made using the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) available in the Adaptive Genetic algorithm (ADG) optimization library
(see Section 2.1). This library has already been tested for many aerodynamic design opti-
mization problems facing multi-element airfoils [124, 125]. The parameters for this opti-
mization algorithm are the maximum number of allowed evaluations, equal to 7000, the
population size (λ = 4), and the initial standard deviation (σ = 0.1). For each setting of
SCGA, 50 independent runs have been performed to have statistically significant results.
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All the tested instances perform adequately well, as shown in Fig. 6.3.1, and are summa-
rized in Table 6.3.1. Particularly, the values of the best solution found of each instance of

Population Size Tournament Size Min diff [%] Mean diff [%] Max diff [%]
5 2 0.17 1.08 7.44
10 2 0.21 0.66 1.50
10 4 0.33 1.07 3.00
20 2 0.14 0.72 1.68
20 4 0.12 1.84 20.9

Table 6.3.1: Results of the optimization runs.

SCGA are compared in terms of the relative difference between the minimum, the mean
and the maximum value found in the 50 independent runs with respect to the reference
value. The algorithm validation step is positive, also taking into account the differences
between the two classes of optimization algorithms considered. In addition, the initial
population of the ADG reference run was built by randomly mutating the solution rep-
resenting the nominal airfoil (NACA 2412), whereas with SCGA a totally random initial
population is generated.

Thus, after validatingSCGA, the robustness of the twomain ingredients needed to carry
on an aerodynamic design optimization problem (the CFD flow solver in Section 6.2.1
and, here, the optimizer) has been proven.

6.4 Optimization design variables

One of the many challenges of mixed-discrete variable-size optimization problems is to
implement the appropriate mapping between the design variables of the problem. The
HLD optimization degrees of freedom are the type of flap and the settings of each flap
component (position in the 2-dimensional space and rotation). The settings of the slat
are also considered. The optimizer receives this information encoded as a set of design
variables.

The SCGA allows the definition of hierarchical problem formulations. In this problem,
the top of the hierarchy is composed of four independent variables: one for indicating
the flap typology (SF ,DS1,DS2,DS3 and TS) and three variables indicating the slat
settings, namely∆θS ,∆XS , and∆YS . Specifically, they indicate the deviance of a pro-
posed position from the nominal one. The second level of the hierarchy is composed of all
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the variables determining the flap’s settings. They are all dependent on the flap typology
variable, and its value determines their presence. They are three in the case of the single
flap, six in the case of the double-slotted flap (whatever the type), and nine in the case of
the triple slotted flap. A graphical representation of the hierarchy of the variables is shown
in Fig. 6.4.1. Level 1 is constituted by the independent variables (referring to Table 6.4.1,
the variables 1-4). In addition,Level 2 ismade by all the remaining variables dependent on
variable 1. Solid lines indicate variables that are present in all the candidates. In contrast,
dashed lines indicate variables that can also not be present.

FΔ𝑋𝑆
′ Δ𝑌𝑆

′ Δ𝜃𝑆
′Level 1

Δ𝑋1
′ Δ𝑌1

′ Δ𝜃1
′

Δ𝑋2
′ Δ𝑌2

′ Δ𝜃2
′

Δ𝑋3
′ Δ𝑌3

′ Δ𝜃3
′

Level 2

Figure 6.4.1: Hierarchy of the High-Lift Device topology design optimization variables.

Furthermore, the description of each variable, its number for identifying it in the hi-
erarchy, its type, the possible value that it can assume (as possibility or bounds), and the
dependency of any variables to it are given in Table 6.4.1.

Concerning the encoding of the variables indicating the settings of the flap elements,
the most straightforward and naive problem formulation would be to use the same ap-
proach used for encoding the settings of the slat. However, this would imply significant
difficulties from the optimization perspective. For example, let us suppose that one can-
didate undergoes themutation operator and only the variable defining the type of the flap
is mutated. A desirable outcome would be an HLD with different elements but a similar
overall topology. However, the example of this transformation is given in Fig. 6.4.2a. Here,
two possible outcomes of the mutation operating on the flap type of a solution adopting
a double-slotted DS2 flap are shown. As one can see, by using naive problem formula-
tion (dashed blue airfoil components), the mutation of one single variable would result
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Description N Variable type Possibilities Dep

Flap type 1 Nominal discrete
[SF,DS1, DS2 ,

DS3, TS] [5 − 13]
Description N Variable type Lower Bound Upper Bound Dep

∆θ
′

S 2 Continuous −15 15 –

∆X
′

S 3 Continuous −0.1 0.1 –

∆Y
′

S 4 Continuous −0.025 0.025 –

∆θ
′

1 5 Continuous −15 15 –

∆X
′

1 6 Continuous −0.2 0.2 –

∆Y
′

1 7 Continuous −0.05 0.05 –

∆θ
′

2 8 Continuous −15 15 –

∆X
′

2 9 Continuous −0.1 0.1 –

∆Y
′

2 10 Continuous −0.025 0.025 –

∆θ
′

3 11 Continuous −15 15 –

∆X
′

3 12 Continuous −0.1 0.1 –

∆Y
′

3 13 Continuous −0.025 0.025 –

Table 6.4.1: Problem formulation.

in a considerable unwanted change in the HLD overall topology. The resulting topology
would even be unfeasible.

Another example is depicted in Fig. 6.4.2b. In this case, the variable determining the
x-coordinate of the first flap element is mutated. If the naive problem formulation is used
(dashed blue airfoil components), the second component of the resulting flap completely
loses its alignment with the first component, leading the first flap component to be over
the second. Therefore, the naive problem formulation may lead very often to undesirable
outcomes because a small variable perturbation can induce considerable topology trans-
formations.

In light of these considerations, another problem formulation has been proposed. Its
backbone is tomake the flap elements be logically connected to the preceding elements in
terms of rotation and translation. The absolute difference between the proposed solutions
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Figure 6.4.2: Examples of the mutation operator adopting the naive ( ) and the
proposed ( ) formulations.

and the nominal solutions is described as follows:

∆X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆XS = ∆X
′

S

∆YS = ∆Y
′

S

∆θS = ∆θ
′

S⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∆Xi = ∆X

′

i

∆Yi = ∆Y
′

i

∆θi = ∆θ
′

i

if i = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Xi = ∆X
′

i +∆X
′

i−1

+RXi−1 −X
LE
i

∆Yi = ∆Y
′

i +∆Y
′

i−1

+RYi−1 − Y
LE
i

∆θi = ∆θ
′

i−1 +∆θ
′

i

if i ≠ 1.

(6.3)

Where RXi−1 and RYi−1 are the translation due to the rotation of the previous ele-
ment:

[RXi−1

RYi−1
] = [XLE

i−1

Y
LE
i−1

] +
⎡⎢⎢⎢⎢⎢⎢⎢⎣cos(∆θ

′

i−1) − sin(∆θ
′

i−1)
sin(∆θ

′

i−1) cos(∆θ
′

i−1)
⎤⎥⎥⎥⎥⎥⎥⎥⎦ [dXdY ] (6.4)

171



anddX anddY are the distance between the leading edges of the i-th and i−1-th elements
along the two axes:

dX = X
LE
i−1 −X

LE
i

dY = Y
LE
i−1 − Y

LE
i .

(6.5)

FromFig. 6.4.2, the impact of this newproblem formulation (red components) on themu-
tation operations can be appreciated. In the example shown in Fig. 6.4.2a, if the proposed
formulation is used, the resulting airfoil presents somewhat similar overall settings to the
original one. Therefore, the changes are only due to the different type of flap adopted. In
the example shown in Fig. 6.4.2b, the relative alignment between the flap’s elements is pre-
served. In particular, the change in the topology is accompanied by a translation along the
x-axis of the HLD as a whole.

By using this new variable definition, the occurrence of unfeasible solutions is pre-
vented; thus, the waste of computational resources is also avoided.

6.5 Deterministic optimization

A deterministic mixed variable-size aerodynamic design optimization problem of a multi-
element airfoil hasbeen solved. Thebaseline configurations are those shown inSection6.2.2,
and the working conditions areM∞ = 0.2 andRec = 5 × 10

6 at a fixed angle of attack
α = 21.29

◦. The goal of the optimization is the improvement of themulti-element airfoil
performance, maximizing lift coefficient, by selecting the most suitable flap typology and
the settings (position and rotation) for the flap elements, as for the slat.

The quantity of interest to be optimized is the lift coefficient, cl. However, the failure
of the grid generation or the non-convergence of the CFD solver have to be treated. This
latter is considered to happenwhen the difference between the up-to-date cl and themean
lift coefficient in the last 1000 iterations of the CFD solver (clAV G

) is lower or equal to
0.005 (∣cl − clAV G

∣ ≤ 0.005). CFDanalysis of configurations close to stall or evenpost-
stall is notoriously a complex task, and the results present a high margin of uncertainty
even in the case of fully converged solutions. Consequently, it is not wise and appropriate
to use CFD results that have not reached full convergence because they would introduce
an unacceptable margin of uncertainty and imprecision. The aerodynamic computational
chain returns an indication of the occurrence of one of these errors as an error flag. This
flag is 1 in case of error, 0 in case of a successful evaluation. Only successful candidates
can return a correct prediction of cl. Therefore, the objective function is reformulated by
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introducing a step penalty as follows:

Q(∆X) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩cl ifError = 0

p ifError = 1,
(6.6)

with p = −1000 (to be noted that it is a maximization problem and values O(1) are
expected). Hence, the optimization problem reads:

maxQ(∆X) (6.7)

Finally, the optimization algorithm used is SCGA. A list of the algorithm parameters is
given in Table 6.5.1.

Table 6.5.1: SCGA parameters

size tournamentSize maxEvaluations elitism mutRate probability
19 3 1550 1 0.05 [3, 1, ..., 1]/16
Specifically, in Table 6.5.1, size refers to the population size, mutRate is the mutation

rate, and probability is the probability of a design variable to be selected by the opera-
tors. The remaining parameters of SCGAhave been left as default [131]. Theoptimization
stopped when the available computational budget was exhausted. In particular, this hap-
pened after 86 iterations.

6.5.1 Deterministic optimization results

Themost notable results are analyzed here. Firstly, the convergence history of the best so-
lution found is commented. From Fig. 6.5.1, it can be seen that, starting from a randomly
generated population, only 355 evaluations were needed to find an HLD topology that
performs better than the 30P-30N airfoil, and 505 to improveDS1 baseline airfoil. The
optimum airfoil is a double-slotted of type 1 (DS1). In particular, the airfoil typeDS1

prevailed as the best configuration after a short initial phase of exploration. The evolution
of the presence of the different flap types in the populations is represented in Fig. 6.5.2.
Here, it is shown that all the configurations are fairly equally represented in the initial pop-
ulation. Later, the good performance of candidates having the flap typeDS1 makes that a
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Figure 6.5.1: Best found objective function history. Airfoil types: DS1 (●), TS (■),
and DS3 (▲). Lift coefficient of the baseline airfoil of type DS1 ( ) and cl of the
30P-30N airfoil ( ).
significant part of the candidates assumes this airfoil type. However, the other configura-
tions never disappear; thus, the effect of the configurational variable is investigated during
all the optimization. Moreover, it must be specified that 41% of the evaluations returned
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Figure 6.5.2: Presence of candidates with different airfoil typology in every generation.

Error = 1. Themajority of these cases were due to the no convergence of the CFD anal-
ysis. This behavior is typical when studying near stall conditions. Although the failure rate
was high, the optimizer was able to find a configuration improving the airfoil performance
at the studied working conditions. This evidences the potential of SCGA.

In addition, Fig. 6.5.3 shows the history of each variable of the best element in each
population. If variables∆X

′

3, ∆X
′

3 or∆θ
′

3 are missing, then the best solution is not a
triple slotted configuration. Moreover, it is appreciated that part of the optimum values
were rapidly identified, others, i.e.,∆X

′

1 and∆θ
′

2, changed significantly during the whole
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optimization.
Thedeterministic optimalmulti-element airfoil is depicted inFig. 6.5.4 and is compared

with the baseline double-slotted airfoil of type one (DS1) and the starting airfoil, the30P-
30N airfoil. The lift coefficient of the optimized airfoil at α = 21.29

◦ is cl = 5.04838.
Therefore, at this angle-of-attack, the airfoil presents an increment of 16.18%with respect
to the 30P-30N airfoil and an 8.04% with regard to the baseline double-slotted airfoil of
type one (DS1). Regarding the increase of maximum lift coefficient, the deterministic
optimum airfoil provides an increment equal to 14.82% and 7.67%, respectively. More-
over, the aerodynamic performance of the optimal airfoil must be contrasted to the base-
line airfoils aforementioned. Thus, the polars of the three airfoils are given in Fig. 6.5.5a
and Fig. 6.5.5b. The comparison among the three configurations shows a clear improve-
ment, in terms of lift coefficient, for the optimal configuration.

x/c

y
/c

0 0.2 0.4 0.6 0.8 1 1.2

­0.2

­0.1

0

0.1

Figure 6.5.4: Airfoil comparison between the 30P-30N ( ), the baseline airfoil of the
double slotted flap of type one (DS1) ( ), and the optimum deterministic airfoil ( ).

Also, the optimized airfoil reaches the stall condition at a lower angle of attack. Notably,
the optimal airfoil shows a pronounced drop of cl at an angle-of-attack equals to24

◦ that it
is not present in the other two airfoils. This behavior could compromise the aircraftperfor-
mances in landing conditions. Therefore, the landing design condition should be explicitly
introduced in the optimization problem to overcome this problem. Indeed, the overcome
of this undesirable behavior is the objective of the optimization solved in Section 6.6.

Finally, in Fig. 6.5.6, the flow fields of the pressure coefficient, cp, of the double-slotted
airfoil of type 1 (DS1) and the deterministic optimum airfoil are given for the optimiza-
tion working conditions (M∞ = 0.2, Rec = 5 × 10

6
, and α = 21.29

◦). Besides, in
Fig. 6.5.7, the pressure coefficient and the friction coefficient, cf , at the body surface of
both airfoils are compared. Observing Fig. 6.5.4, it is seen that themain variation between
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Figure 6.5.5: Comparison of the aerodynamic performance between the 30P-30N airfoil( ■ ), the baseline DS1 airfoil ( ● ), and the deterministic optimum airfoil( ▲ ).
M∞ = 0.2 and Rec = 5 × 10

6.

the airfoils is the upstream shift of slat and the downstream movement of flaps that are
aimed to increase the actual surface of the airfoil, thus increasing the lift coefficient. Addi-
tionally, another output of the optimization is the clockwise rotation of the flap elements.
The rotation produces a higher expansion on the upper surface of the flap components
producing a rise on the cl. This is appreciated in Figs. 6.5.6 and 6.5.7a. Moreover, the cp
contributions of the main airfoil component and the slat are similar for theDS1 and the
deterministic optimum airfoil.

The drag coefficient of the deterministic optimum is remarkably penalized, and an in-
crease of 53% is obtained. This was an expected result because, inevitably, an increase in
lift leads to a rise in drag, and there was not an imposed constraint on the cd to control its
increment. Moreover, the growth in drag is also observed in Fig. 6.5.7. As mentioned,
Fig. 6.5.7a shows a greater cp contribution of the flap components, and in Fig. 6.5.7b,
higher skin friction values on the upper side of the flap elements are appreciated.

6.6 Machine learning assisted robust optimization

Previously, a deterministic optimization was performed where the objective function was
limited to the maximization of the lift coefficient generated by the HLD at a given angle-
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Figure 6.5.6: Pressure coefficient cp flow field for the double slotted airfoil of type 1
and the deterministic optimum. M∞ = 0.2, Rec = 5 × 10

6
, and α = 21.29

◦.
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Figure 6.5.7: Pressure cp and friction cf coefficients on the body surface comparison
for the double slotted airfoil of type 1 DS1 ( ) and optimum deterministic ( ) airfoils.
M∞ = 0.2, Rec = 5 × 10

6
, and α = 21.29

◦.

of-attack regardless of its drag, weight, costs and practical construction feasibility. The use
of CFD for predicting the aerodynamic performances of the airfoil is costly. However,
these kinds of analyses are affected by several uncertainties. In particular, the uncertainty
affecting the operational conditions, such as the angle-of-attack of the airfoil, must be con-
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sidered since a small change on the angle-of-attack may cause an abrupt stall of the airfoil.
On the other hand, the introduction of uncertainty variables canmake standard optimiza-
tion unaffordable in termsof computational costs. Thus, amethod to reduce theCPU time
is required. Therefore, the use of surrogate models is introduced to optimize the usage of
computational resources further.

The general idea is to adopt the search algorithm employed in the previous work in
an Efficient Global Optimization (EGO)-like optimization framework [108] enhanced
by data-driven models. Particularly, a classifier is used to predict the feasibility of the
proposed candidate. Moreover, the computational cost is further reduced by means of
a quadrature approach that makes the uncertainty quantification relatively inexpensive.

Themulti-element airfoils used in the deterministic optimization are employed as base-
line configurations for the optimization under uncertainty presented here in. The objec-
tive of the optimization is to design anHLD thatmaximizes the lift coefficient considering
the angle-of-attack as an uncertain parameter. Therefore, a quadrature approach [141] is
implemented to quantify the uncertainty. Hence, instead of maximizing the cl directly, a
statistical measure of it is maximized.

6.6.1 Machine Learning Assisted optimization

To solve this optimization problem, a method that accounts for the stochastic and expen-
sive nature of the problem is required. Hence, aMachine Learning AssistedOptimization
approach, which stems from the EGO strategy [108], is used. Specifically, this consists of
an iterative approach as shown in Algorithm 2.

Algorithm 2Machine Learning Assisted Optimization

1: t = 0. P (t) = SetInitialPopulation().
2: Evaluate(P (t)) on f .
3: while not TerminationCriterion() do
4: UseP (t) to build a modelM(t) and a classifierC(t).
5: Define objective functionF based onM(t) andC(t).
6: P

′(t + 1) =GlobalSearch(F (t)).
7: Evaluate(P ′(t + 1)) on f .
8: P (t + 1) = P (t) ∪ P

′(t + 1).
9: t = t + 1.

10: end while
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The first step in Algorithm 2 (Line 1) is the determination of the initial data-set that
is used to train the first surrogate modelM and classifier C . Once the first data-set has
been created and observed (in Line 2), it is used to train a surrogate modelM to replicate
the behavior of the objective function, and a classifier C to distinguish feasible and un-
feasible candidates Line 4. A composition ofC andM yields the objective function that
is optimized to propose a new promising solution in Lines 5 and 6. Finally, the data-set
is enlarged with the new proposed point and its observation on f Lines 6 and 8. Further
details are given in Section 6.6.3, and a representation can be found in Fig. 6.6.1.

Figure 6.6.1: Machine Learning Assisted Optimization Flowchart.

First, a Design of Experiment (DOE) is created and observed. The observation, objec-
tive function evaluation, consists of computing the cl coefficient of a candidate given three
different angles of attack through high fidelity CFD analyses. These values are used to es-
timate a robust measure of lift coefficient as described in Section 6.6.3. Once the data are
collected, two data-driven models are trained. One aims to mimic the objective function,
one at identifying feasible from unfeasible solutions. A combination of these two is used
as a target of the optimization algorithm SCGA to find a new promisingHLD design. The
actual performance of the proposed point is evaluated and stored. If the evaluation budget
is not exhausted, the process is repeated. Else, the best solution found is returned as the
optimal final design.
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SurrogateModel

To reduce the computational effort and efficiently pursue the identification of optimal
solutions, optimization is often enhanced by the use of surrogate models. These models
mimic and replace the original expensive objective function providing a cheap target for
the optimization routines. In this research, a Gaussian process model (or Kriging) [142]
has been chosen as a surrogatemodel. An appreciated feature of Kriging is that it also pro-
vides an estimate of its own prediction uncertainty. This estimate can be used to balance
exploration and exploitation by computing the Expected Improvement (EI) of candidate
solutions [143]. Kriging assumes that data follow a multivariate Gaussian distribution,
where errors are spatially correlated. This is encoded within a kernel function. To account
for the hierarchical nature of the search space, the Wedge kernel [144] is used. This ker-
nel employs a mapping function. With any standard kernel k(x, x), the mapping function
can be employed such that kwedge(x, x) = k(h(x), h(x)), where h(x) applies hi to each
dimension xi. Themapping function of theWedge kernel is

hi(x) = { [0 0]T , if δi(x) = false[θ1,i + v (θ2,i cos(ρi) − θ1,i) vθ2,i sin(ρi)]T , otherwise,

(6.8)

with the scaled variable value v = (xi − li)/(ui − li), and lower / upper bounds li, ui
in each dimension.

From a geometrical view, this function maps the variable values in each dimension of
the input vector x to a triangular shape (the Wedge) in a two-dimensional space. If the
hierarchical variable in that dimension is inactive (δi(x) = false), then xi is mapped to
the origin ([0 0]T ). Else, xi is mapped to a line segment. The parameters ρi ∈ [0, π],
θ1,i ∈ R+, and θ2,i ∈ R+, specify the angle and two adjacent side lengths of a triangle
(spanned by the origin, and the line segment).

When training a standard Kriging model, it is assumed that the uncertainty in the al-
ready sampled locations is zero. However, this does not hold in noisy problems in the
presence of uncertainty. One way to account for noise is to introduce the so-called nugget
effect. This essentially adds a constant value η to the diagonal of the kernelmatrix. The pa-
rameter η is determined by Maximum Likelihood Estimation. The nugget effect enables
themodel to regress theobserveddata, andhence smoothensnoisy observations. Further-
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more, it may now produce a non-zero estimate of the uncertainty at observed locations.

Classifier

In the developed framework, the surrogate model is fed only by solutions that did not re-
port any error. Thus, the landscape is not compromised by artificially assigned penalty val-
ues. Further details about the types of errors thatmight occur are given in Section 6.6.3. In
addition to the surrogatemodel, a classifier is used to predict and filter out candidates that
may produce an error in the CFD analysis. Hence, the unfeasible regions are, in principle,
detected and excluded in the new point selection step (Fig. 6.6.1).

The classification method adopted is the Random Forest model [145, 146]. This type
of model ensembles a learning method for classification that operates by constructing a
multitude of decision trees at training time. When predicting, the ensemble outputs the
class that is the mode of the classes predicted by the individual trees.

6.6.2 Quadrature Approach for Uncertainty Quantification

In this work, among all the possible uncertain parameters, only the uncertainty of the an-
gle of attack has been considered. Classically,MonteCarlo (MC)methods [147] are used
for uncertainty quantification. To accurately obtain the probabilistic distribution by using
MC methods, a large number of samples is required. Considering that only one uncer-
tain variable is introduced in this optimization design problem, a different approach was
thought to bemore suitable. Particularly, the integral of the cl coefficient over the interval
of angles of attack [21.29◦, 24◦] has been adopted as the measure of interest. Indeed, it
is a metric that expresses the overall quality in the whole range of the uncertain parameter.
To estimate the integral, the Simpson quadrature rule [141] has been used. One deriva-
tion replaces the integrand f(x) by the quadratic polynomial (i.e. parabola) which takes
the same values as f(x) at the end points a and b and the midpointm as follows:

P (x) = f(a)(x −m)(x − b)(a −m)(a − b) + f(m) (x − a)(x − b)(m − a)(m − b) + f(b)(x − a)(x −m)(b − a)(b −m) .
(6.9)

One can show that

∫ b

a
P (x)dx = b − a

6
[f(a) + 4f (a + b

2
) + f(b)], (6.10)
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introducing the step size h = (b − a)/2 can be rewritten as
∫ b

a
P (x)dx = h

3
[f(a) + 4f (a + b

2
) + f(b)]. (6.11)

Therefore, the quantity of interest can be estimated by computing only three cl values
at the extremes and midpoint of the considered range of the angle of attack.

6.6.3 Problem Formulation

Thegoal of the presented study is tomodify the airfoil topology of a baselineHLD through
a Machine Learning Assisted Optimization (MLAO) framework to improve the start-
ing performance. The three-elements airfoil McDonnell Douglas (MDA) 30P-30N [148,
149] has been adopted as a baseline.

For the present robust design optimization problem, the working conditions of the
multi-element airfoil areM∞ = 0.2 and Rec = 5 × 10

6 at a range of angles-of-attack
α = [21.29◦, 24◦]. The goal of the optimization is to find the multi-element airfoil con-
figuration which guarantees the best performance (maximum estimation of the integral
of the cl coefficient) in the full range of working conditions, by selecting the most suit-
able flap type and the settings (position and rotation) for the flap elements, as for the slat.
Hence, the aim of the design optimization problem is to improve the stall performance of
themulti-element airfoil with respect to thedeterministic optimum found inSection6.5.1.

Original Objective function

The purpose of this work is to maximize a robust measure of the lift coefficient: its inte-
gral with respect to the uncertain angle of attack over its range. The method presented in
Section 6.6.2 has been used to compute a robust measure of the lift coefficient c̃l .

With that said, using Eq. (6.11), the adopted objective function can be defined as:

c̃l = ∫ 24
◦

21.29◦
0.5[cl(21.29◦) + 4cl(24◦ − (24◦ − 21.29

◦)/2) + cl(24◦)]. (6.12)

When dealing with CFD analysis, two errors might occur. Firstly, the generation of the
computational grid might be impossible given certain HLD configurations such as inter-
sections between airfoil elements. Secondly, the CFD analysis might not converge. The
convergence of CFD is considered to happen when the difference between the up-to-date
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cl and the mean lift coefficient in the last 1000 iterations of the CFD solver (clAV G
) is

lower or equal to 0.005 (∣cl − clAV G
∣ ≤ 0.005). In addition, it must be mentioned that

Computational Fluid Dynamic analysis of configurations close to stall or even post-stall
is notoriously a complex task, and the results present a high margin of uncertainty even
in the case of fully converged solutions. Consequently, it is not wise and appropriate to
use CFD results that have not reached full convergence because they would introduce an
unacceptable margin of uncertainty and imprecision.

The aerodynamic computational chain returns an indication of the occurrence of one
of these errors as an error flag.

This flag is equal to−1when the mesh is not generated, equal to−2when the conver-
gence of the flow field is not achieved, and equal to 0 in the case of all successful evalua-
tions. Only candidates successfully tested at all angles of attack return a correct estimation
of c̃l.

Therefore, the objective function is reformulated as follows:

Q(∆X) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩c̃l, ifErrorF lag = 0

ErrorF lag, ifErrorF lag ≠ 0,
(6.13)

whereErrorF lag refers to the three possible values returned by CFD analyses used to
compute c̃l. Referring to Algorithm 2, it can be said thatQ ≡ f .

Artificial Objective function

In the presented framework, the search for optimal solutions relies on the application of
an optimizer to an artificial function that mimics the behavior of the original function. In
traditional Surrogate Based Optimization (SBO), this artificial function is the prediction
of a surrogate model trained with all the collected data.

Here, it is determined by the predictions of two distinctmodels. The first, the surrogate
modelM , aims at the prediction of c̃l. The second, the classifierC , identifies feasible and
unfeasible solutions. In particular, the classifier is trained to distinguish configurations
leading to mesh creation failures, CFD no convergence, or correct cl evaluations. This
is based on the reported ErrorF lag. To train the models, all configurations needed to
be mapped into a common rectangular data structure. Therefore, all the structured chro-
mosome have been flattened, and the ones containing less than the maximum number of
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possible variables (single and double slotted configurations) have been padded to match
the dimensionality of the triple slotted configuration.

Finally, the artificial objective function is reformulated by introducing a step penalty as
follows:

Qartificial(∆X) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩EIM(∆X), ifC(∆X) = 0

p, ifC(∆X) ≠ 0,
(6.14)

with p = −10 (note, that it is a maximization problem and valuesO(1) are expected),
EIM(∆X) is the EI computed by theM(∆X) prediction model and C(∆X) is the
prediction of the classifier. Referring to Algorithm 2,Qartificial ≡ F .

6.6.4 Optimization Setup

As a first step of the MLAO process, an initial design is generated. In this case, an ini-
tial DOE of 200 individuals composed of the 5 baseline configurations and 195 randomly
generated configurations has been evaluated. Then, new random individuals have been
generated until a total of 200 cases with successful grid generation have been proposed.
The cases with failure on the grid generation are computationally inexpensive, hence ig-
nored in the evaluations counting. The R CEGO package [150] is used to train the Kriging
model, while the R ranger package [151] is used to train the classifier. The optimization
has been stopped after 325 function evaluations (grid generation errors excluded) to as-
sign to the DOE and optimization respectively 60% and 40% of the total computational
budget. The new point selection step is entrusted to SCGA (also available as an R pack-
age). The list of adopted settings is given in Table 6.6.1. In particular, size is the population
size,mutRate is the mutation rate, and probability is the probability of a design variable to
be selected by the operators. The remaining parameters of SCGA have been left as default
[152].

size tournamentSize maxEvaluations elitism mutRate probability
200 3 50000 1 0.05 [3, 1, ..., 1]/16

Table 6.6.1: SCGA parameters
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Figure 6.6.2: Optimization convergence history.

6.6.5 Results

The most relevant information coming from the obtained results are presented and dis-
cussed. Firstly, the convergence of the optimization process is provided in Fig. 6.6.2. Par-
ticularly, in Fig. 6.6.2, the filled dots depict the true value given by the CFD analyses, and
the crosses and plus symbols indicate an artificial value assigned to the solutions in which,
respectively, the grid generation or the convergence of the CFD solution was impossible.
The solid black line separates the solutions composing theDOE and the ones proposed by
the algorithm. The dashed red line indicates the best solution found in the initial design.
Finally, the dashed blue linemarks the reference solution obtained using the deterministic
optimum found in Section 6.5.1. In addition, an important consideration, from this figure,
is that achieving flow field convergence is a severe problem for SU2 flow solver. Notably,
a considerable part of the DOE (21%) reported a convergence error in at least one simu-
lation. Moreover, the largest part of the solutions randomly generated in the DOE (47%)
proposes a multi-element airfoil that prevents the generation of the computational grid.
Hence, only 32%of the cases have converged in all the three CFD cases performed. These
results indicate how strongly the constraints shrink the feasible search space.
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It is alsoworth noting that, in the initial design, only one randomly generated candidate
performs comparably to the baseline solutions (firsts five in Fig. 6.6.2). This underlies the
difficulty of the investigated optimization problem.

When the evaluation of the randomly generated points is terminated, the optimization
process starts. Intuitively, in the very first iterations, the model’s landscape attracts the
optimizer towards the region of the best solution found so far. So the first points sug-
gested are all characterized by the double-slotted topology of type 1 (DS1). Then, the
concentration of points in that region and the consequent decrease of the model’s uncer-
tainty leads the search into a more exploratory optimization phase. Configurations with
different flap types alternate until a new best solution with triple slotted flap configuration
(TS) is found. From that point on, the searchmainly focused on exploiting this region of
the search space. It must be highlighted that the triple slotted flap is the most challenging
configuration to design because all the variables are active.

Another interesting observation regards the number of unfeasible solutions found in
the optimization process. The largest part (67%) of the suggested points have been cor-
rectly classified as feasible. Notably, only 10% of the solutions led to an error in the com-
putational grid generation. The remaining 26% reported a convergence error in at least
one simulation. These results testify the overall high quality of the trained classifiers and
show that it is relatively easy to identify configurationswith unfeasible geometry in respect
to the ones reporting CFD convergence anomalies. This behavior was expected since, the
flow conditions to be analyzed (high angles of attack at stall conditions) are characterized
by separated flows. Thus, representing an arduous task for any numerical flow solver.

In Fig. 6.6.3, the obtained robust optimum airfoil is compared with the deterministic
optimum found in Section 6.5.1 and the baselineMD 30P-30N airfoil. Regarding the slat
of the proposed airfoil, it has nearly moved with respect to the baseline, contrary to the
deterministic that has enlarged the gap with the main body.

Looking at the optimal HLD resulting from this process, one can see how this outper-
forms the deterministic optimum found in Section 6.5.1(see Table 6.6.2). Notably, this
is true for both the c̃l and cl(21.29◦) which was the objective of Section 6.5.1. This im-
portant achievement validates the MLAO framework and confirms the superiority of the
methods based on data-drivenmodels over plain optimization routines when very limited
computational budgets are available.

The lift curves of each airfoil are provided in Fig. 6.6.4 to compare their performance.

187



x/c
y
/c

0 0.2 0.4 0.6 0.8 1 1.2

­0.3

­0.2

­0.1

0

0.1

0.2

Figure 6.6.3: Comparison of the triple slotted robust optimum airfoil ( ), the double
slotted deterministic optimum ( ), and the 30P-30N airfoil ( ).
Both optimum airfoils provide higher cl than the 30P-30N airfoil. Comparing the ro-
bust optimum airfoil and its baseline TS airfoil, an increase of cl is observed over the
complete range of angle-of-attack. The maximum lift coefficient of the robust airfoil is
clmax

= 5.18466 and it is obtained at α = 20
◦, as for the TS airfoil, providing an incre-

ment of maximum lift coefficient equal to 13.96%.
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Figure 6.6.4: Polar curves (cl vs α) for the 30P-30N airfoil ( ● ), TS baseline
airfoil ( ■ ), deterministic optimum airfoil ( ▲ ) found in Section 6.5.1, and robust
optimum airfoil ( ◆ ).

Moreover, the performance of the deterministic and robust optimum airfoils must be
compared. The maximum lift of the deterministic optimum airfoil is achieved at 21.29◦,
since it was the α at which the deterministic optimization was performed. However, it
is observed that the cl at 21.29

◦ of the robustly optimized airfoil is higher than the one
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provided by the deterministically optimized airfoil. Thus, this demonstrates that the de-
terministic optimization gave a sub-optimal solution. Particularly, the robust airfoil has a
maximum lift coefficient 2.7% higher. Furthermore, the c̃l value for the MD 30P-30N,
the baseline TS, and robust and deterministic optimum airfoils is given in Table 6.6.2.
Regarding the measure of robustness, c̃l, the optimal robust airfoil found improves the
performance of the deterministic optimum and the baseline MD 30P-30N respectively
by a 3.1% and 15.4%.

Airfoil c̃l cl(21.29◦) cl(22.645◦) cl(24◦)
MD 30P-30N 4.376 4.345 4.379 4.396
Baseline TS 4.471 4.529 4.479 4.379
Deterministic optimum 4.899 5.048 4.973 4.451
Robust optimum 5.052 5.152 5.063 4.905

Table 6.6.2: Comparison of the c̃l and cl obtained for the MD 30P-30N, the baseline
TS and the deterministic and robust optimum airfoils.
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(a) Robust optimum airfoil
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(b) Deterministic optimum airfoil

Figure 6.6.5: Pressure coefficient cp flow field at 24◦ for the robust and deterministic
optimum airfoil. The black lines are the streamtraces.

Finally, the pressure coefficient (cp) flow field at 24◦ of the robust and deterministic
airfoil is given in Fig. 6.6.5. The streamtraces provided for the deterministic optimum air-
foil flow field show that there is a vortex over the slat of the airfoil. Although both airfoils
are after maximum lift condition at 24◦, the presence of the vortex determines a higher

189



decrease of lift coefficient in the deterministic optimum. Hence, by performing the ro-
bust optimization this behaviour is prevented, and stall and post stall performances are
improved.

6.7 Conclusions

In this chapter, a novelmethod to improve classical design strategies by including configu-
rational decisions in an automated optimization tool is presented. The integration of these
decisions, usually taken a-priori based on previous knowledge, could represent a step for-
ward for the multidisciplinary design optimization field. The potential of the method has
been shown in aHigh-LiftDevice design problem, an application that presentsmany diffi-
culties itself. Among the others, the considerable computational cost and the demanding
constraints of the design problem represented a challenge. Furthermore, it was quite chal-
lenging to obtain an adequately convergedComputational FluidDynamic solution for the
majority of population elements due to the near-stall conditions at which the airfoil had
to operate. An automatic estimation routine consisting of an aerodynamic computational
chain based on the SU2 solver has been adopted to cope with these problems. This pro-
cedure has been coupled with the Structured-Chromosome Genetic Algorithm for opti-
mizing the design of anHLD equippedwith slat and flap devices based on theMcDonnell
Douglas 30P-30N airfoil.

In the first part of the chapter, the goal of the optimization is to deterministically iden-
tify the typology, for the multi-element airfoil that maximizes the lift coefficient at a given
working near-stall condition (M∞ = 0.2, Rec = 5 × 10

6
, and α = 21.29

◦). The
results of the optimization show that, given an appropriate problem formulation, the op-
timizer was able to improve the reference performance (30P-30N airfoil) by 16.18% in a
very limited number of function evaluations. Nevertheless, the optimizer performed well,
although a significant amount of failed evaluations.

After solving the deterministic optimization, the HLD design problem is further ana-
lyzed, considering the angle of attack as an uncertain parameter. To cope with the conse-
quent growth of the computational effort, a completely novel automatedMachine Learn-
ing AssistedOptimization framework able to deal with configurational decisions has been
developed. The presented Machine Learning Assisted Optimization makes use of data-
driven models (Kriging, Random Forest) and the Simpson quadrature. The aim of the
optimization was to obtain the topology for the multi-element airfoil that maximizes a
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robust measure of the lift coefficient, c̃l. The results of the optimization show that the op-
timization process is able to improve the baseline 30P-30N performance, in terms of c̃l,
by 15.4% in few function evaluations.

For future research, some improvements are possible. Regarding the problem design
variables, the shape of each element can be introduced using the approaches described
in Section 2.2.1. This would lead to a significant increase in the number of variables and,
consequently, of the problem complexity. Furthermore, the optimization could consider
a higher number of performance indicators as the weight or the structural complexity.
Besides, a control on the drag coefficient can be added to satisfy the constraints during
take-off and climbing phases. This implementation would imply the resolution of multi-
objective optimization problems. Moreover, better tuning of the CFD analysis stopping
and convergence criteria may lead to an increasing number of successful evaluations.

Considering the robust design, a different quadrature approach able to estimate the
meanand standarddeviationof a distribution, as theone introducedbyPadulo et al. [112],
could be used in order tomaximize the expected performance whilemaintaining the stan-
dard deviationwithin a limiting interval. Additionally, a rigorous analysis of themodel and
classifier performances should be done. Therefore, ensuring that shortcomings in these
components of the Machine Learning Assisted Optimization framework do not compro-
mise the execution of the overall process. On the other hand, it should be investigated
whether different approaches are more suitable for the presented problem.

Finally, an assessment of the advantages offered by the presented approachwith respect
to traditional design strategies and optimizers need to be performed.
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Conclusions

In this dissertation, the advantages of optimization under uncertainty with respect to the
classical deterministic approach have been shown. In addition, state-of-the art risk mea-
sures, namely Value at Risk and Conditional Value at Risk, were introduced for aerody-
namic shape design. Finally, several methods for reducing the computational cost of ro-
bust optimization, which is the characterizing aspect of this dissertation, have been investi-
gated. Particularly, two approaches to reduce computational time were studied; speeding
up the CFD evaluations and approximating the statistical measure.

A far-field method (based on entropy variations) for drag force evaluation has been
implemented regarding the speeding up of the CFD runs. It allows the exclusion of the
spurious drag contribution unavoidably introduced by the numerical scheme and it is par-
ticularly suited for solutions on coarse grids, where it provides a better prediction of the cd
with respect to the near-field method on the same grid. The far-field analysis was adopted
for an inviscid test case and the optimization result was close to the best obtainable with
a finer grid using the near-field calculation, whereas the optimization with the near-field
evaluation of the drag force on the coarse grid did not provide a satisfactory result. In-
deed, the very large spurious drag present on the coarser grid can hide the optimum re-
gion. However, attention must be paid to two aspects for the proper functioning of the
far-field formula. Firstly, the grid can not be arbitrarily coarse but must be capable to cap-
ture all the physical aspects of the flow. Secondly, the far-fieldmethods need an adequately
solved field far from the body, implying that the solution must converge further. Indeed,
in a converged solution, disturbances dissipate firstly close to the body surface and, later,
far from it. Thus, additional iterations to the converged solution are needed with respect
to a near-field approach for a good calculation of the drag force.

To approximate the risk measure, intrusive and non-intrusive methods were explored.
The intrusive approach requires theRANS adjoint solution, which is used to compute the
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gradient of the quantity of interest (QoI) of the problem with respect to the uncertainty
sources. The gradients allow the 1st order approximation of the QoI empirical cumula-
tive distribution function (ECDF), and from this approximation, the conditional value at
risk,CVaR, is computed. This approach has been applied to solve the aerodynamic shape
optimization of a BlendedWing Body (BWB) central section at typical cruise flight condi-
tions (M∞ = 0.8, cl = 0.1 andRec = 174 × 10

6). Particularly, the drag coefficient of
the airfoil has to beminimized under aerodynamic and geometrical constraints. It was ob-
served that the partmodeled theworstwith a linear approximation is the one at highMach
numbers. Therefore, a second deterministic design pointwas introduced, in particular, the
drag coefficient with nominal values of the design parameters without taking into account
uncertainties at a Mach number equal to 0.82, cd,M=0.82(w). This is an ad-hoc problem
definition; thus, it must be revised for any other optimization study. Nevertheless, the ap-
proach provides a substantial reduction of computational time with respect to the Monte
Carlo method for the ECDF approximation. Specifically, if only 20Monte Carlo samples
are considered, a CPU cost reduction of around 80% forCVaR calculation is obtained.

The same aerodynamic problem was solved, but, in this case, a non-intrusive method
was employed. Precisely, Gaussian processes (GPs) are used to approximate the ECDF.
Only five true points are used for building the GP. The selection of these five points of
the design space is not random. Indeed their selection came from an optimization process
using a Genetic Algorithm. Firstly, the points are selected based on the minimization of
the distance between the true and the approximatedECDFs of the deterministic optimum
airfoil of this problem. After a first robust optimization, three true ECDFs are added to the
trainingphase, andnewpoints to build theGaussianprocess are selected. Again, the objec-
tive is tominimize the distance between ECDFs, but this time for the whole set. However,
it was appreciated that this objective was not sufficient for a proper approximation of the
CVaR. Thus, it was decided to include the distance between the approximated and true
risk measures and a penalty term to the order relationship. With this new set of points,
a robust optimization run was carried out. A good approximation of the ECDF and the
CVaRwas obtained for the optimal result. This approach provides reduction around the
70% with respect to the Monte Carlo method. In comparison with the adjoint method,
the cost reduction is lower, but the definition of the problem is independent of the case
study.

Moreover, surrogate models have also been applied to solve the aerodynamic shape
design optimization problem of a propeller blade at a viscous flow, typical for its work-
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ing conditions (M∞ = 0.2 andRec = 4.97 × 10
6). The drag produced by the airfoil is

minimized while satisfying the requirement imposed on the lift coefficient, together with
some geometrical constraints. Particularly, surrogate-based optimization was carried out
using amulti-fidelity Gaussian process. The levels of fidelity are introduced using different
grid sizes. In addition, at the low-fidelity level, the far-field formula has been included to
provide a better approximation of the cd. The method showed considerable advantages
with respect to classical single-fidelity surrogates and to population based optimization
algorithms from a computational cost point of view.

Finally, an optimization algorithm thatmixes continuous and integer variables has been
used for the robust design ofHigh LiftDevices (HLD) atM∞ = 0.2 andRec = 5×10

6.
The aim was to demonstrate that a crafted optimization algorithm can handle configura-
tional decisions that are usually the responsibility of experienced designers. A determin-
istic optimization was, in a first step, done to demonstrate the proper behavior of the al-
gorithm. Then, to make the robust problem treatable, a surrogate-based optimization ap-
proach was introduced, together with a classifier that aimed to predict if the candidate will
fulfill the convergence criteria beforehand. Thus, if the classifier predicts that the candidate
will not converge, the CFD evaluation is not performed, providing a saving of CPU time.
In addition, to quantify the uncertainty, a quadrature approach has been implemented.
Satisfactory results were obtained; hence it can be said that this approach for taking con-
figurational decisions by the optimizer can represent a turning point in multidisciplinary
design optimization.

For the sake of clarity, it is finally summarized what, in the author opinion, were the
innovative aspects in the field of robust design for aerodynamic configurations treated in
this thesis:

1. The applicability of far-field formulas to aerodynamic optimization problems, both
deterministic and robust, was shown. The main obstacle faced was that, especially
with very coarse grids, these formulas tend to give unreliable results for aerody-
namic configurationswith separate flows or characterized by geometries withmany
curvature changes, which often appear in evolutionary optimization processes. To
solve this problem, it was developed an ad-hoc formulation of the aerodynamic op-
timization problem that allows the recognition of such situations by introducing an
ad-hoc constraint.

2. The introduction of a new intrusive methodology for the quantification of uncer-
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tainty, based on the gradient calculation through the adjoint field, has allowed a cost
reduction of about 80%for the estimation of theCVaR risk measure compared to
theMonte Carlo sampling. It was also extensively discussed and demonstrated the
benefits of an asymmetrical risk measure, such as CVaR, in robust aerodynamic
design.

3. Anon-intrusive approachwasdeveloped, complementary to the intrusiveone, based
on a Gaussian process iterative training. The application of this methodology to
the same aerodynamic design problem has allowed us to show that, even with an
efficiency slightly lower than that obtainable with the adjoint-based method in the
CVaR approximation, an improvement of about 70% was obtained compared to
a typical implementation of theMonte Carlo method.

4. Amulti-fidelity surrogate-basedoptimization chain, proposed in collaborationwith
a Ph.D. candidate of Trieste University, showed significant advantages with respect
to classical surrogate-basedandpopulation-basedapproaches to robust aerodynamic
shape design.

5. Finally, in collaboration with a Ph.D. from the University of Strathclyde, it was ex-
plored how to extend robust optimizationmethodologies to complex aerodynamic
configurations, suchasmulti-component airfoils. Simultaneously solvingboth topo-
logical and dimensioning aspects required the introduction of new elements in the
optimization computational chain. In particular, we began experimenting withma-
chine intelligence and classifier systems to increase the effectiveness of our approx-
imators.
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