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Introduction

One of the main problems of particle’s physicists is to know the parameters of the Standard

Model which cannot be fixed by first principles. Between these, the elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix are very interesting because of their connection with the

Standard Model description of the observed CP violation effects.

The more simple way to fix some of these parameters, in particular their absolute values, is

studying weak semi-leptonic decays of mesons; in fact the probabilities of these transitions

are proportional to one of the CKM elements.

To evaluate the corresponding amplitudes we have to estimate the hadronic matrix elements

which describe mesons’s weak transitions. Generally, taking into account Lorentz invariance

and transformation properties under CP of these matrix elements, it is possible to express

them in terms of some functions of q2, said form factors. So the problem is deferred to the

evaluation of these new functions.

The Standard Model doesn’t give us a method to get their analytical or numerical expres-

sions. So it is necessary to introduce some approximation or models.

The simplest models we can talk about are the constituent quark models. These are inspired

to quantum mechanic; they consider a meson as a bound state of its valence quarks. These

models are not a direct consequence of QCD, nevertheless, the results they get are very good

from a phenomenological point of view.

Moreover, these models have allowed to understand new symmetries of QCD, that is the

heavy quark symmetry (HQS). And, as a consequence, the heavy quark effective theory

(HQET) has been construct. This theory is the QCD developed as a series of the parameter

ΛQCD/mQ, where mQ is the mass of an heavy quark.
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In this approach, it is possible to fix the form factors normalization in the zero recoil point.

So this represents a way to test models predictions and to justify them theoretically.

In our work we have studied a constituent quark model and we have applied it to evaluate

the form factors which describe the B decay into charmed meson states.

This thesis is organized as follows: in the first two chapters we review the theoretical infor-

mation necessary to study the semi-leptonic meson decay, the third chapter is centered on

the foundation of the model we use and we give the results on the transitions B → D(∗)lν,

in the fourth chapter we put our attention on the B decays in even parity charmed states, in

the fifth chapter we compare our model with HQET prediction, this comparison is completed

in the last chapter where we study the processes with a tensor charmed meson in the final

state.



Chapter 1

The Standard Model

1.1 Particles Classification

Accelerator particle physics experiments show the existence of hundreds of particles.

One way to classify them is using the interaction they are sensible to. This idea gives rise

to the classification below:

• hadrons: particles with strong interactions;

• leptons: particles without strong interactions;

• gauge bosons: particles which mediate the interactions.

While leptons and gauge bosons are believed fundamental particles, hadrons show a com-

posite nature. The building blocks they are made of are called quarks. In terms of the

number of quarks into the hadrons, we divide them into mesons (with two valence quarks)

and baryons (if the valence quarks are three).

In order to take into account the conservation of some quantum numbers, quarks and leptons

can be further classified into families structure.

Leptons are: (
e

νe

)
,

(
µ

νµ

)
,

(
τ

ντ

)
(1.1)
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8 The Standard Model

and quarks are classified in three families:(
u

d

)
,

(
c

s

)
,

(
t

b

)
(1.2)

To describe successfully the interactions between these particles, in particular to take into ac-

count the maximal parity violation in the weak interactions, it is useful to consider separately

left-handed isospin doublets:

L =

(
νlL

lL

)
; (1.3)

L1 =

(
dL

uL

)
, L2 =

(
cL

sL

)
, L3 =

(
bL

tL

)
(1.4)

and right-handed singlets:

νR, lR, (1.5)

uR, cR, tR, dR, sR, bR. (1.6)

The projector operator on left-handed and right-handed components are:

PL =
1

2
(1 − γ5) (1.7)

PR =
1

2
(1 + γ5) (1.8)

Applied to massless particles, these operators project them on elicity eigenstates.

In order to reflect the symmetries shown by the interactions under question, each particle is

characterized by some quantum numbers reported in tab.[1.1].

1.2 The Standard Model

The best theory developed to describe strong and elctroweak interactions between elemen-

tary particles is the Standard Model. It is a gauge quantum field theory.

The lagrangian of the Standard Model is made of two parts: one describes electroweak inter-

actions and is the Glashow-Weinberg-Salam model ([1],[2],[3]), and the other is the quantum
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I(isospin) I3 Q(electric charge) Y(hypercharge) B(barionic no)

νL 1/2 1/2 0 -1/2 0

νR 0 0 0 0 0

lL 1/2 -1/2 -1 -1/2 0

lR 0 0 -1 -1 0

uL, cL, tL 1/2 1/2 2/3 1/6 1/3

dL, sL, bL 1/2 -1/2 -1/3 1/6 1/3

uR, cR, tR 0 0 2/3 2/3 1/3

dR, sR, bR 0 0 1/3 -1/3 1/3

Table 1.1: Note that if neutrinos are massless, the right-handed one doesn’t exist.

chromo dynamics (QCD) for the strong interactions ([4], [5]).

Because of the low mass of the elementary particles, gravitation doesn’t give effects compa-

rable to the other forces; so the Standard Model does not include this interaction.

The symmetries that characterize the Standard Model are: SU(2) of isospin I, U(1) of

hypercharge Y and SU(3) of color C.

In particular, the part of the theory that describes the electroweak interaction has to be

invariant under SU(2)xU(1), while QCD has the symmetry SU(3).

In the following subsections we’ll see some details about the Standard Model.

1.2.1 The Glashow-Weinberg-Salam model.

Glashow-Weinberg-Salam have written the lagrangian reported below to describe electroweak

interactions is the following:

L =
3∑

k=1

i(L
k �DLk +R

k �DRk) − 1

4
W i

µνW
µν
i − 1

4
BµνB

µν + (Dµφ)+(Dµφ) −

µ2φ+φ− λ(φ+φ)2 −
3∑

j,k=1

[gkl(LlkφRlk + φ+RlkLlk) + h.c.] (1.9)

where

Dµ = ∂µ − i
g

2
σjW

j
µ − ig′Y Bµ (1.10)
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W j
µν = ∂µW

j
ν − ∂νW

j
µ + iεjklW k

µW
l
ν (1.11)

Bµν = ∂µBν − ∂νBµ (1.12)

and the σj (j=1,2,3) are Pauli matrices.

The term

L =
3∑

k=1

i(L
k �DLk +R

k �DRk) (1.13)

represents the free matter fields and their interactions with the gauge field, whose self inter-

actions are contained in the term:

−1

4
W i

µνW
µν
i − 1

4
BµνB

µν (1.14)

In the Standard Model the lonely way to introduce the field masses without lose the renor-

malizability of the theory and its gauge invariance is the spontaneous symmetry breaking

mechanism [6]. To implement it, we introduce the Higgs field:

φ =

(
φa

φb

)
(1.15)

which in general, after a gauge transformation, can be written as:

φ =
1√
2

(
0

v + σ

)
(1.16)

The charge conjugate of this field is defined as:

φ̃ = −ıσ2φ
∗ (1.17)

Using the Higgs field we can write the Higgs Lagrangian

LHiggs = (Dµφ)+(Dµφ) − µ2φ+φ− λ(φ+φ)2 (1.18)

which gives the masses of the gauge fields and of φ, and the Yukawa terms:

LY = −
3∑

j,k=1

[glk(LlkφRlk + φ+RlkLlk) + h.c.] (1.19)

to explain the masses of the matter fields respectively.

Developing the various terms of the Higgs lagrangian, we see that the massive fields are W1,2
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Figure 1.1: Interactions between gauge bosons.

and the combination gW3−g′B. So we understand that the physical particles are associated

to the fields:

Zµ = W3µcosθW −BµsinθW (1.20)

Aµ = W3µsinθW +BµcosθW (1.21)

where θW is the Weinberg angle [2].

Moreover we define:

Wµ =
1√
2
(W 1

µ − iW 2
µ) (1.22)

because this field, and its conjugate, are the ones connected to the charged currents.

The lagrangian shows that Aµ is massless, so we can associate it to the photon. This is a

constraint on the coupling constants:

gsenθw = g′cosθw = e (1.23)

because we know that the electromagnetic current and the photon are coupled by the constant

e (the electromagnetic electron charge).

The lagrangian we have considered describes the interaction’s eigenstates; it is more conve-

nient to rewrite it in terms of the mass eigenstates.

Then, for each state (left-right handed), we introduce a unitary matrix V(L,R) and we define

the Cabibbo-Kobayashi-Maskawa (CKM) matrix as:

VCKM = V +
L VR (1.24)

which is unitary.
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If N is the number of families of fermions, the VCKM has N2 − (2N − 1) independent param-

eters. In particular they can be separated into NA angles and Nph phases:

NA =
1

2
N(N − 1) (1.25)

Nph =
1

2
(N − 1)(N − 2) (1.26)

The existence of a phase in the CKM matrix means that CP violation can be described by

the Standard Model. So, if N ≥ 3, CP is not a symmetry of the theory.

With three generations of fundamental fermions, the CKM matrix can be parameterized

with four parameters: three Euler angles and one phase.

After the experimental observation that the b quark decays predominantly to the charm

(|Vcb| >> |Vub|), Wolfenstein [7] noticed that |Vcb| � |Vus|2 and proposed to use |Vus| = λ �
0.22 as an expansion parameter for the elements of the CKM matrix.

VCKM =

⎛
⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎠

�

⎛
⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

⎞
⎟⎟⎠ (1.27)

where A is of order unity and ρ and η should be smaller than one.

In this parametrization the role of the phase is played by η. Its non-zero value implies a CP

violation.

The unitarity condition of the VCKM can be represented by triangular relations. One of the

most interesting for us is the one related to the B decays:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.28)

Normalized to V ∗
ubVcd, this relation can be represented as the triangle in fig.[1.2].

Today it is interesting to measure with high precision the elements of the CKM matrix

because a test of the triangular relations should assure us about the right number of lepton

families in nature.
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Figure 1.2: Unitarity triangle.

A possible way to measure such quantities is looking at the weak semi-leptonic decays of

mesons.

The actual values estimated for the parameters A, λ, η and ρ are in tab. 1.2.

A 0.818+0.007
−0.017

λ 0.2272 ± 0.0010

ρ 0.221+0.064
−0.028

η 0.340+0.017
−0.045

Table 1.2: Parameters of the Cabibbo-Kobayashi-Maskawa matrix [10].

1.2.2 Quantum chromo dynamics.

Quantum chromo dynamics (QCD) is a non-abelian gauge theory (studied the first time by

Yang and Mills [9]) which explain strong interactions.

A lot of processes (e-p annihilation into hadrons, π0 decay,...) show that quark interactions

can be described using a new quantum number: the color. In particular each quark can

have three different colors; the transformation we do to change the color of a quark can be

represented by the group SU(3)color.
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The Lagrangian of the QCD is the following:

L = ψ̄(i �D −m)ψ − 1

4
Tr(FµνF

µν)

+
1

2a
(∂µA

µ)2 − i(∂µχ
a)∗(Dµ abχb) (1.29)

where ψ are:

ψ =

⎛
⎜⎜⎝

ψα

ψβ

ψγ

⎞
⎟⎟⎠ (1.30)

and each ψα is a bi-spinor and m is the mass of the particle associated to the field ψ.

Greek letters label different colors.

Dµ is the covariant derivative we need to make the theory invariant under a non abelian

gauge transformation, and is:

Dµ = ∂µ − igsA
c
µTc c = 1, ...8 (1.31)

where Tc are the generators of the SU(3)color group and Ac
µ are the fields which represent

the gluons (mediators of the strong interactions).

With this definitions the term

ψ̄(i �D −m)ψ (1.32)

represents free quarks and their interactions with gluons.

The second term of the Lagrangian

−1

4
Tr(FµνF

µν) (1.33)

takes into account all the dynamic of the gauge fields (see fig.(1.3)). The definition for the

tensor Fµν is:

Fµν = (∂µA
c
ν − ∂νA

c
µ)Tc + if c

abA
a
µA

b
νTc (1.34)

where f c
ab are the structure constants of SU(3)color.

The freedom of the gauge transformation lets the field Aa
µ be arbitrary. In order to make the

theory consistent it is necessary to fix the gauge, this is done introducing in the Lagrangian

the term:

+
1

2a
(∂µA

µ)2 (1.35)
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Figure 1.3: Self-interactions between gluons.

Figure 1.4: Interaction between ghosts (dotted lines) and a gluon.

Finally the fields χa are said ghosts. These fields are introduced to have a correct quantiza-

tion. The term:

−i(∂µχ
a)∗(Dµ abχb) (1.36)

give the interactions between ghosts and gluons (see fig.(1.4)).

1.3 Successes and limits of the Standard Model.

The Standard Model has predicted the existence of some particles and the value of some

constants before their experimental observation.

Of particular importance is, for example, the prediction of the ratio of the masses MZ/MW

that is in perfect agreement with the experimental measurements obtained later.

We can resume the success of the Standard Model saying that it give us a perfect knowledge

of the fundamental interactions up to energies of 100 GeV.
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Nevertheless, there are some reasons to look at something beyond it and to consider it as an

effective theory at energies below of 100 GeV.

The unification of the electromagnetic and weak forces obtained in the Standard Model let

us to hope that it exists a theory which unify all forces. This theory would reduce to the

Standard Model at low energies.

An other unsatisfactory peculiarity of the Standard Model is that it does not explain the

origin of the masses. In fact we can notice that the fermions have very different masses (we

move in the range delimited by neutrinos, which should be massless, to the top quark, whose

mass is about two hundred GeV) even if they are all fundamental particles, moreover the

nature of the mass of the Higgs boson (whose existence is already under investigation) is

different from the others: it should be the only particle with a mass which is not generated

by a symmetry breaking.

In any case, if after the investigation of phenomena at higher energy, we find that the

fundamental interactions are better described by a different theory, we can enjoy that the

Standard Model is a good approximation at low energy.



Chapter 2

Potential models and HQET

QCD seems predict the observed confinement: the fact that quarks are confined into hadrons.

However, no way to show from first principle this fact is known.

In order to evaluate the transition rates of meson decays, we should write the meson state.

The limit of our knowledge of QCD requires some models to describe meson states. A lot of

models exist. The simplest of them are the constituent quark potential models.

These models are inspired to quantum mechanic: a meson is considered as a bound state of

a fixed number of quarks (valence quarks) interacting instantaneously with a potential.

So we can suppose that the meson state is described by a wave function which depends just

by the valence quarks and the bounding potential.

In other words in this models we suppose that a meson is a quantum system in which

valence quarks interact by a potential, and we neglect all contributions coming from non-

valence quarks and sea gluons in the meson. This approximation is justified by the fact that

Fock’s state with the minimum number of constituents are prevalent.

The simplest potential models are non-relativistic, but, with a more complicated formalism

due to Jaus [19], it is possible to take into account relativistic effects.

From a theoretical point of view potential models are not justified, in fact a correct model

should be a relativistic and quantum field theory. Nevertheless they continue to be used for

their simplicity and because they work well, in the sense that they predict the decay rates in

agreement with experiments. Moreover, they allow to deduce some features of QCD which

17



18 Potential models and HQET

are not evident from the lagrangian.

In this thesis we’ll describe our non-relativistic potential model [11], [12]. But before, it

is useful we see briefly the main results and theoretical consequences of the most famous

potential model.

2.1 Isgur Scora Grinstein and Wise (ISGW) model

When the ISGW model was published [13], the experimental results about semileptonic B

decays were not so accurate as they are now.

At that time, the model [8] used to analyze inclusive semi-leptonic B decays was the parton

model. This model considered all quarks as free. It predicted the upper limit of the ratio

|Vub/Vcb|2 too low respect to the expectation of the Standard Model and of the experimental

data; it was difficult to realize if the data, the theory or the model were wrong.

ISGW understood that the problem was the use of the parton model in the region where

the lepton energy is at the maximum. In fact this region is populated of low mass hadronic

states and quarks cannot be considered free. Then, they implemented the new model we

describe below.

The aim of the model is to calculate the hadronic matrix elements. To get this result ISGW

give, for each decay, a Lorentz invariant decomposition of the hadronic matrix element

defining some relativistic functions we call form factors. For example for the semi-leptonic

decay B → Dlν, with both mesons pseudo-scalars, they define:

< D|jµ|B >= f+(t)(pB + pD)µ + f−(t)(pB − pD)µ (2.1)

where the form factors are f±(t), and t is the square of the momentum quarks change between

them in the transition, that means:

t = (pB − pB)2 (2.2)

Even if this definition is covariant, with models it is possible to calculate form factors only

in the non-relativistic limit.



2.2 Heavy quark symmetry 19

The starting point of the model is the hypothesis that it exists a correspondence between

this form factors fi and the ones calculated by the model, f̃i.

This correspondence is true when the energy between quarks is low or if we are near the rest

frame of the two mesons. Nevertheless, we can suppose that the extrapolation of our results

in the region
√
< p2 > �< mu >� ΛQCD is a good approximation. Some parameters of the

model, which have to be fitted, can partially adjust the deficiencies due to this approximation.

ISGW consider the extrapolation:

fi(p
2
X) = fi(0)(1 − (

1

6
r2
i +

a

m2
)p2

X) (2.3)

where ri is the radius of the hadron and m the mass of the heavy quark. The term of the

order p2
X is a relativistic correction.

In this model, to calculate the form factors, the meson state is described by:

|X̃(pxsx) >=
√

2m̃x

∫
d3p ΣCsxLS

mLmS
φxLmL

(p) χSms
ss̄ |qq̄ > (2.4)

where m̃x = mq + mq̄, considering the case we are in the weak binding limit. φ is the

eigenfunction fixed as a consequence of the choice of the binding potential between quarks.

If we use the typical QCD potential

V (r) = −4

3

αS

r
+ br + c (2.5)

with αS = 0.5, b = 0.18GeV 2 and c = −0.84GeV , the φ are gaussian functions depending

by a parameter we can fix with the variational method. This functions are different for each
2S+1JL, so the model is able to describe the decay of the B meson in every physical state.

Now it is straightforward to get the expression of the form factors in terms of φ.

ISGW model gives a realistic prediction of the ratio |Vub/Vcb|2. This is the reason of its

immediate success but this is not the lonely goal of the model. The model is very famous

also for the discovery of the heavy quark symmetry (HQS) of QCD we describe in the next

section.

2.2 Heavy quark symmetry

QCD is difficult to be treated analytically in the non perturbative regime. The best we can

do to get predictions from QCD is to use the symmetries of the theory.
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ISGW model has put the basis for the discovery of the heavy quark symmetry [14], [15].

Their model shows that if the mass of the quark is mQ > ΛQCD then the physics is insensible

to the non-perturbative dynamics. The idea of Isgur and Wise was then to expand the QCD

lagrangian respect to the parameter
ΛQCD

mQ
, obtaining an effective theory.

To see the results of such expansion consider a meson Qq with mQ >> mq, so we can apply

the effective theory, and rewrite the Feynman rules of QCD in the proper limit.

First of all we can note that we can express the momentum pQ as:

pµ
Q = mQv

µ + kµ (2.6)

where the momentum kµ is negligible respect to mQv
µ because we are in the limit mQ → ∞.

As a consequence, because of p2
Q = m2

Q, the four-velocity vµ respects the normalization

condition v2 = 1 .

The quark propagator in QCD is:

ı
� pQ +mQ

p2
Q −m2

Q

(2.7)

With the expansion (2.6) it becomes:

ı
(� v + 1)

2v·k (2.8)

In QCD the interaction vertex Q-gluon is

−ıgγµT
a (2.9)

where g is the strong coupling constant and T a is a generator of the group SU(3)color. In

the effective theory this vertex becomes:

ıgT a (� v + 1)vµ

2(v·k) (2.10)

This rules completely define the heavy quark effective theory.

It is useful see how to get the same rules starting from the QCD lagrangian.

L = Q̄(ı � D −mQ)Q (2.11)

We can write the field as

Q = e−ımQv·xhQ
v (2.12)
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with

� vhQ
v = hQ

v (2.13)

So the lagrangian is:

Lv = h̄Qıv·DhQ
v (2.14)

This lagrangian respects a law of conservation of quarks we can represent by the group U(1).

Moreover we see that gamma-matrices does not appear in the lagrangian, so the spin of

quarks cannot change. This is an other symmetry of the theory represented by the group

SU(2).

If we have N quarks with the same four-velocity the general lagrangian is:

Lv = ΣN
j=1h̄

jıv·Dhj
v (2.15)

The SU(2) symmetry now is a symmetry SU(2N). This group relies also quarks with very

different momentum, in fact, even if the velocity is the same, the lagrangian is completely

independent by the mass of quarks.

Now we know the lagrangian of the theory, we are ready to calculate the transition matrix

element for hadronic transition of the kind Qiq → Qjq.

We can give the definition of form factors f̃i:

< PQj
(v′)|h̄j

v′γµh
i
v|PQi

(v) >√
mPQj

mPQi

= f̃+(v + v′)µ + f̃−(v − v′)µ (2.16)

Comparing this relation to the usual definition of form factors in equation (2.1) it is straight-

forward to obtain the rules which connect the two sets of form factors. For example:

f± = ±1

2
(

√
mPQi

mPQj

±
√
mPQj

mPQi

)f̃+ ± 1

2
(

√
mPQj

mPQi

±
√
mPQi

mPQj

)f̃− (2.17)

The form factors f̃i are very simples. In fact using the relations:

� vhv = hv , h̄v′ � v′ = h̄v′ (2.18)

and the definition we can obtain

f̃− = 0 (2.19)
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Moreover if we put v = v′ and µ = 0 the matrix element is associated with a conserved

current for the SU(2)flavour symmetry whose value is known. So we realize:

f̃+(1) = 1 (2.20)

It is useful to define a new function ξ(v·v′), called Isgur and Wise function, which respects

the normalization

ξ̃(1) = 1 (2.21)

Because of the symmetry SU(2N)spin we can reason in the same way for a transition in an

excited state 1−. If we define the form factors as:

< P ∗
Qj

(v′, ε)|h̄j
v′γµγ5h

i
v|PQi

(v) >√
mP ∗

Qj
mPQi

= f̃ ε∗µ + (ε·v)(ã+(v + v′)µ + ã−(v − v′)µ) (2.22)

< P ∗
Qj

(v′, ε)|h̄j
v′γµh

i
v|PQi

(v) >√
mP ∗

Qj
mPQi

= ig̃εµνλσε
∗νv′λvσ (2.23)

(2.24)

we find

f̃ = (1 + v·v′)ξ (2.25)

ã+ + ã− = 0 (2.26)

ã+ − ã− = −ξ (2.27)

g̃ = ξ (2.28)

Analogously we can obtain the results of the form factors for every kind of final meson state,

we just need to adopt the correct Lorentz decomposition of the hadronic matrix element.

Until now we haven’t taken into account the differences between the operators of the effective

theory and the ones of QCD, then we cannot compare the form factors of the model with the

physical ones. The problem is that at each energy scale there are some graphs that diverges,

then the effective theory must be renormalized.

An accurate study [16] shows that all form factors must be multiplied for a factor:

Cji =

(
αS(mQi

)

αS(mQj
)

)−6/(33−2N)(αS(mQj
)

αS(µ)

)aL(v·v′)

(2.29)
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where

aL(v·v′) =
8

33 − 2N
(v·v′r(v·v′) − 1) (2.30)

r(v·v′) =
1√

(v·v′)2 − 1
ln
(
v·v′ +

√
(v·v′)2 − 1

)
(2.31)

and N is the number of flavors we see until the energy µ we are.

In this section we have described the results of the HQS, obtained developing the QCD

lagrangian in 1/mQ at the order zero. The heavy quark effective theory (HQET) gives also

more accurate results using the expansion at next orders.

2.3 An updated version of the ISGW model (ISGW2)

The discovery of the HQS and the development of the HQET give a method to test potential

models. In fact HQET divides the problem of the evaluation of hadronic matrix transition

into two factors: one depends by the energy scale and the other is known exactly thanks to

the HQS. In this context, a model is associated with a fixed energy scale µqm where hadronic

physics is dominated by valence quark.

Moreover HQET implies that every good model should respect some constraints in the right

limit. From this new point of view, the aim of models is to evaluate the deviation of form

factors from the HQET results.

In the rest frame of the two mesons involved in the semi-leptonic transition, ISGW model

respects the constraints of HQET; but this is not true if we change frame. Moreover this

model doesn’t impose the relativistic corrections in the right way. This is a first reason to

modify the model.

An other reason is that after some years from the born of ISGW model new or more accurate

experimental results were obtained, so the models should reproduce them.

In 1995, Isgur and Scora published an updated version of the ISGW model (ISGW2), [17].

We have seen that, for the form factors of the decay B → D(∗)lν, HQS implies the relations

f̃+ + f̃− = f̃+ − f̃− = g̃ = f̃
1+w

= ã− − ã+ = ξ(w) (2.32)

ã+ + ã− = 0 (2.33)
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where here we define w = v·v′.
ISGW model respects all this relations a part the one relative to f in which it doesn’t have

the factor 1+w. This factor results from relativistic correction to the order v2/c2 and is the

first modification to introduce in the model.

The currents in the heavy quark limit are not the ones of the complete theory, so the same

happens also for the form factors. HQET give us a the rule to evaluate the physical form

factor f
(α)
ji , of type α, relative to the quark transition Qi → Qj:

f
(α)
ji = Cij(w)

(
fα + β̃

(α)
ji (w)

αs(µji)

π

)
ξ(w) (2.34)

where f (α) = 1 for f̃+ + f̃−,f̃+ − f̃−, g̃, f̃ , ã− − ã+ and is 0 for ã+ + ã−, while

Cji =

(
αs(mi)

αs(mj)

)− 6
33−2Nf

(
αs(mj)

αs(µqm)

) 8(wr(w)−1

33−2N′
f

(2.35)

where N
(′)
f are the number of flavor the theory is sensible at the scale mi(f) and

r =
1√

w2 − 1
ln(w +

√
w2 − 1) (2.36)

The functions β̃ are the result of radiative corrections evaluated at an intermediate scale

between mi and mj. Their expressions are quite long, so we don’t report them here.

To connect the form factors f̃(w̃) with the f(t− tm), relative to the physical transitions, we

can start observing the relation between the variables w̃ and t− tm, where the last variable

is the difference between the 4-momentum that the quarks change in the decay and the

maximum of this value. In the decay PQ → XQlν we have:

w̃ − 1 =
tm − t

2m̄PQ
m̄XQ

(2.37)

The form factors in the non relativistic limit and in the approximation of low bounding

energy are connected to the real ones by a correction to the order 1/mQ. This is, in ISGW2,

a factor which takes into account the differences between the physical mass m̄H of each state

of the doublet of spin (indistinguishable by HQS) and the mass m̃H (sum of the valence

quark) used in the ISGW model.

To evaluate m̄H for multiplet of spin sl, Isgur and Scora propose

m̄sl
= (

sl + 1

2sl + 1
)mj=sl+1/2 + (

sl

2sl + 1
)mj=sl−1/2 (2.38)
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The last fundamental correction to do to the ISGW model comes from the evaluation of

relativistic corrections obtained from QCD sum rules. This implies a constraint on the slope

of the form factors near w = 1:

f(t) = f(tm)

(
1 − 1

6
r2(tm − t) + ...

)
(2.39)

with

r2 =
3

4mQmq

+ r2
wf +

1

m̄PQ
m̄Xq

(
16

33 − 2N ′
f

)
ln

(
αs(µqm)

αs(mq)

)
(2.40)

and rwf depends by the wave function used in the model.

The result obtained imposing this constraint is the same of the ISGW model without the

artificial introduction of the factor κ.

To have a good agreement with experimental results, in ISGW2 model, it is useful to play

on the choice of the wave function. The most commonly used are the gaussian and the

exponential ones.

For sake of brevity we don’t report the complete expression of form factors here.

2.4 Relativistic quark model

In the previous sections we have seen a non-relativistic potential model. This limitation

of models imply that form factors can be evaluated correctly just in a point, and their

dependence from the momentum transferred has to be imposed as we have seen in the

previous cases.

The method to calculate form factors in a covariant way is the light-cone approach. The first

author to implement the light-front formalism, due to Dirac [18], to the study of particle

decays was Jaus [19]. Then, the method has been often used and a lot of works can be cited

[20], [28].

This method allows to write the meson wave function in a covariant way and to construct

all spin states using Melosh rotation [21].

Studying particle’s decays it is natural to observe that a preferred axis exists. The basis of

light-front potential models is an appropriate change of variables to take advantage of this
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peculiarity of the problem.

The new variables are defined as:

(v0, v1, v2, v3) → (
v0 + v3√

2
, v1, v2,

v0 − v3√
2

) (2.41)

These new variables have the advantage to transform very simply under a boost along the

z-axis, which is chosen as the axis the final meson moves along.

These models give realistic results of the form factors in all the accessible kinematical range.



Chapter 3

A new potential model

The problem of non-relativistic quark models is that they cannot evaluate form factors in all

the kinematical accessible range. This limit is due to the fact that the state is not covariant,

then we cannot boost it, and that energy is not naturally conserved changing frame.

In our work, using results obtained in [22] and [23], we have developed a model which allows

to partially solve this problem imposing the energy conservation in a non conventional way.

Then, even if the model we have improved is not relativistic, we’ll dare to use it to evaluate

form factors at every momentum transferred in the transitions we’ll consider.

We can say that our model is an hybrid of the relativistic and non-relativistic ones.

Because of the non relativistic nature of our model, we attend that the decays which involve

just heavy mesons are better described then the others. In reality there are other features

of our model, we’ll see in the next sections, which prevent us to use it when light mesons are

involved in the decays.

For this reasons we’ll just apply our model to B(s) decays into charmed mesons.

3.1 Feynman rules

To define the model we have to give some Feynman rules to evaluate the matrix element of

transition we want to consider.

27
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Figure 3.1: H → H ′lν. In our work we’ll consider the case of mesons with a heavy and a light

quark. So q2 represent the light quarks (u, d or s) while q1 is a beauty and q3 a charmed quark.

To represent the hadronic part of a semi-leptonic decay of a meson H into H’, we refer to

the graph in fig.[3.1].

In our work we describe every meson as the Fock state:

|H >=
1√
3
ψH

� q1 +m1

2m1

ΓJH

− � q2 +m2

2m2

(3.1)

where q(1,2) and m(1,2) are respectively the momentum and masses of the two constituent

quarks of the meson H of mass MH , ΓJH is a matrix that depends from the meson state and

ψH is the wave function that describes the internal structure of H.

This decomposition is inspired to the transformation properties of the mesons as predicted

by HQET and has been written the first time in the paper [23].

We define the state < H| as:

< H| = −γ0|H >+ γ0 (3.2)

The normalization condition is:

< H|H >= 2MH (3.3)

realized fixing: ∫
d3k

(2π)3
|ψH(k)|2 = 2MH (3.4)

where k is the internal momentum of quarks.
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At each loop we associate an integration ∫
D

d3k

(2π)3
(3.5)

a trace over Dirac matrices and a color factor 3. In the next section we explain how to fix

the region D on which perform the integration.

Finally, at each quark (of massmi and energy Ei) involved in the transition, we let correspond

a factor √
mi

Ei

(3.6)

3.2 Energy conservation

From now on we consider only mesons with a heavy Q (b or c quark) and a light q (u, d or s

quark) constituent. For what it may concern light quarks, our model will be SU(2) invariant,

so we cannot distinguish between u and d quarks.

In non relativistic potential models the interactions between quarks are instantaneous, this

means that the time is fixed. As a consequence, also energy, which is the quantum cor-

respondent of the time, is fixed and then, during the process, energy conservation is not

respected.

Also our model is based on the approximation of instantaneous interactions, but we impose

energy conservation introducing the concept of running mass: we imagine that the interaction

between constituent quarks is reflected on the mass of the heavy quark Q.

This mass is fixed so that the condition EH = Eq + EQ is respected.

The energies of the constituent quarks are:

Eq =
√
m2

q + k2 (3.7)

EQ =
√
m2

Q + (�pH + �k)2 (3.8)

We consider these equations and the conservation of energy as definitions of the function

mQ(�k), while mq is a parameter of the model.

So we find:

mQ(�k) =

√
E2

H − E2
q − (�k + �pH)2 (3.9)
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The domain of existence of mQ(�k) is a limit over �k and then defines the domain D in equation

(3.5).

If we choose spherical coordinates (k, θ, φ) for �k and fix the direction of H as the z axis the

domain D is defined by the equations:

0 ≤ φ ≤ 2π (3.10)

cosθ ≥ 2EHEq −m2
H −m2

q

2kpH

(3.11)

k ≤ m2
H +m2

q

2m2
H

pH +
m2

H −m2
q

2m2
H

EH (3.12)

3.3 The wave function

A complete theory to describe mesons should be a quantum field theory, because inside

hadrons the number of quarks and gluons is not conserved.

In the contest of a potential model we neglect this aspect and imagine that a meson is

constituted just by two valence quarks bounded by a potential; so it should exist a wave

function that describes the internal structure of the meson and it is the solution of an

appropriate equation.

Any model gives us the complete equation to be solved nor the exact potential between

quarks, so we cannot calculate exactly this wave function.

There are a lot of different ways to obtain a reasonable approximation of the wave function

[24], the final result is that the most used in literature are gaussian or exponential.

In our case, taking into account the right normalization condition, this kind of functions are:

ψH(k) = 4π3/4

√
mH

ω3
H

exp{− k2

2ω2
H

} (3.13)

ψH(k) = 4π

√
mH

ω3
H

exp{− k

ωH

} (3.14)

where ωH is a parameter that can be fitted by the experimental data in the way we’ll see

after.

We suppose that mesons with the same constituent quarks are characterized by the same

value of ωH , independently from their JP state.
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3.4 Decays B → D(∗)lν

In this section we give all the ingredients to evaluate the branching fraction of the decay

B → Dlν and the partial decay rates of the process B → D∗lν, where the D(∗) here

considered are the pseudoscalar and the vector meson respectively.

This decays are particularly interesting for us because we have experimental results just

about this B decays, so we’ll use them to fix the free parameters of the model, as we will see

in the next section.

To compare the model with the experiments we have to evaluate the matrix transition ele-

ments of the decays.

To begin we must fix the vertices of the pseudo-scalar and vector meson.

A pseudo-scalar state (JP = 0−), because of the negative parity and of its angular momen-

tum, needs a vertex factor of the kind Γ0− = aγ5. The coefficient a can be evaluated using

the normalization condition of the state.

< 0−|0− >=

∫
d3k

(2π)3
|ψ|2Tr((� q2 +m2)(� q1 +m1))

|a|2
4m1m2

= 2M (3.15)

then

|a| =

√
m1m2

q1·q2 +m1m2

(3.16)

To determine the phase of a we evaluate the decay constant f , in the frame where the meson

is at rest, and use the condition that it is positive.

ifpµ =< 0|Aµ|H >=

∫
d3k

(2π)3

√
3ψ

√
m1m2

E1E2

a
q1µm2 + q2µm1

m1m2

(3.17)

In conclusion we find:

Γ0− = −iγ5

√
m1m2

q1·q2 +m1m2

(3.18)

Now we consider the state JP = 1−. To respect the parity and to take into account its

angular momentum, the vertex factor has the form:

Γ1− = a � ε+ 2bε·q2 (3.19)

where εµ is the polarization four vector which satisfies:

ε2 = −1 , ε ⊥ p (3.20)
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The basis of three independent ε1 we use is:

εµ(1) = (0, 1, 0, 0) (3.23)

εµ(2) = (0, 0, 1, 0) (3.24)

εµ(0) =
1

M
(|�p|, 0, 0, E) (3.25)

The normalization equation gives a condition that relates the coefficients a and b:

< 1−|1− > = −
∫

d3k

(2π)3
|ψ|2 1

4m1m2

(−a2(−2q2·ε2 + q1·q2 +m1m2)

−4ε·q2
2ab(m1 +m2) + 4b2ε·q2

2(−q1·q2 +m1m2))

= 2M (3.26)

that implies, after a sum over ε:

a2(q1·q2 +m1m2) = m1m2 (3.27)

−2a2 + 4ab(m1 +m2) − 4b2(−q1·q2 +m1m2) = 0 (3.28)

and then

|a| =

√
m1m2

q1·q2 +m1m2

(3.29)

|b|± =
|a|

m1 +m2 ±M
(3.30)

For b we chose |b|+ to avoid divergences of the form factors.

To fix the phases of a and b we use the condition that the decay constant is positive. It is

defined as:

< 0|Vµ|H >= fMεµ (3.31)

1The reader who would like to compare our model with others should note that our basis is different from

the one more often used in literature:

εµ(±) = ∓ 1√
2
(0, 1,±ı, 0) (3.21)

εµ(0) =
1
M

(|�p|, 0, 0, E) (3.22)
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So we obtain:

Γ1− =

√
m1m2

q1·q2 +m1m2

(� ε− ε·q1 − ε·q2
M +m1 +m2

) (3.32)

At this point we are ready to evaluate form factors of the decay B → D(∗)lν. We define

them as follows:

< D|γµγ5|B > = f+(q2)(p+ p′)µ + f−(q2)(p− p′)µ (3.33)

< D∗|γµ|B > = 2g(q2)εµνρσε
νpρp′σ (3.34)

< D∗|γµγ5|B > = if(q2)εµ + i(ε·p)
((p+ p′)µa+(q2) + (p− p′)µa−(q2)) (3.35)

In the rest of our work we’ll ever consider the B meson at rest, so the 4-momentum of the

particles involved are:

pµ = (M, 0, 0, 0) ; p′µ = (E ′, 0, 0,−|�q|) (3.36)

qµ
2 = (E2,−�k) (3.37)

qµ
1 = pµ − qµ

2 ; qµ
3 = p′µ − qµ

2 (3.38)

Using the Feynman rules given for our model we find:

f+(p+ p′)µ + f−(p− p′)µ =

∫
d3k

(2π)3
ψψ′
√

1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
[(m2m3 + q2·q3)q1µ + (m2m1 + q1·q2)q3µ + (m3m1 − q1·q3)q2µ] (3.39)

The extraction of f± from this relation can be done in various ways, for example fixing

different values of µ, this allows to write a system of two independent equations, or it is

possible to go on in the evaluation multiplying the last expression for two different four
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vectors. In all cases the final result is:

f+ =
1

2MB|�q|
∫

d3k

(2π)3
ψψ′
√

1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
[(c1 + c3)(|�q|(MB − E2) − (MB − ED)kcosθ)

+c2(|�q|E2 + (MB − ED)kcosθ)] (3.40)

f− = − 1

2ED|�q|
∫

d3k

(2π)3
ψψ′
√

1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
[c1(|�q|(MB − E2) − (MB + ED)kcosθ) + c3(|�q|(2MB − E2 + ED) − (MB + ED)kcosθ)

+c2(|�q|E2 + (MB + ED)kcosθ)] (3.41)

where

c1 = (m2m3 + q2·q3) (3.42)

c3 = (m2m1 + q1·q2) (3.43)

c2 = (m3m1 − q1·q3) (3.44)

(3.45)

As you can see doing reference to the fig.3.1, in the case we are interested, the quantities

labelled with 1 and 3 are referred respectively to the b quark and c quark while, with the

label 2, we indicate quantities related to the spectator light quark.

In an analogous way it is possible to evaluate the others form factors.

g(q2) =
1

|�q|MB

∫
d3k ψψ′

√
1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
(MBm2|�q| + (m3 −m2)MBkcosθ + (m2 −m1)

(kcosθED∗ − E2|�q|) + 2ksenθcosφε(1)·q2MB|�q| 1

MD∗ +m2 +m3

) (3.46)

f(q2) = −
∫
d3k ψψ′

√
1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
(c∗3(ε

(2)·q2)2 − c4) (3.47)
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a+(q2) + a−(q2) =
1

(ε(3)·p)2

∫
d3k ψψ′

√
1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
(c

(3)
1 ε(3)·p+ c∗3((ε

(3)·q2)2 − (ε(2)·q2)2)

+(m2 −m3)(ε
(3)·pε(3)·q2)) (3.48)

a+(q2) − a−(q2) =
1

(ε(3)·p)|�q|
∫
d3k ψψ′

√
1

E1E3(m2m1 + q1·q2)(m2m3 + q2·q3)
(|�q|c(3)

2 + kcosθc
(3)
3

+
ED∗

MD∗
c∗3(ε

(2)·q2)2) (3.49)

where the functions cλi (q
2) are given by the following expression:

c∗1 = (m2 +m3 + 2
1

MD∗ +m2 +m3

(q2·q3 −m2m3)

c1(λ) = c∗1ε
(λ)·q2

c∗2 = −m1 +m2 + 2
1

MD∗ +m2 +m3

(q1·q2 +m2m1)

c2(λ) = c∗2ε
(λ)·q2 −m2ε

(λ)·p
c∗3 = −c∗1 − c∗2 +m1 +m3 − 2

1

MD∗ +m2 +m3

(q1·q3 +m1m3)

c3(λ) = c∗3ε
(λ)·q2 + (m2 −m3)ε

(λ)·p
c4 = m2q1·q3 +m1q2·q3 +m3q1·q2 +m2m1m3 (3.50)

With λ we have indicated the polarization.

We will see that all form factors have the sign expected from heavy quark effective theory.

This confirms we have chosen the coefficients a coherently with the definitions used for the

decay constant and the form factors.

After the evaluation of the form factors we are ready to get the branching ratio of the decays

we are interested in.
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For the details regarding the evaluation of the branching ratios see appendix A. Here we

report just the useful relations.

If the final meson has zero total angular momentum the differential decay rate is:

dΓ

dq2
=
G2|Vcb|2f+

2(q2)

192π3MB
3 [(q2 −M2

B −MD)2 − 4M2
BM

2
D]

3
2 (3.51)

where G is the Fermi constant. So the branching ratio is:

Γ =

∫ (MB−MD)2

0

dq2 dΓ

dq2
(3.52)

Before to write the differential decay rates in the case of a final state with JP = 1−, we

introduce a different set of form factors: V, A1, A2, A3, A0, defined as:

< D∗(p′)| : c̄γµ(1 − γ5)b : |B(p) > =
2V (q2)

mB +mD∗
εµναβε

∗νpαp′β

−iε∗µ(mB +mD∗)A1(q
2)

+i(ε∗·q) (p+ p′)µ

mB +mD∗
A2(q

2)

+i(ε∗·q)2mD∗

q2
qµ[A3(q

2)

−A0(q
2)] (3.53)

with

A3(q
2) =

(mB +mD∗)

2mD∗
A1(q

2) − (mB −mD∗)

2mD∗
A2(q

2) (3.54)

This form factors are related to the ones calculated before by:

V (q2) = g(q2)(mB +mD∗) (3.55)

A1(q
2) =

f(q2)

mB +mD∗
(3.56)

A2(q
2) = −(mB +mD∗)a+(q2) (3.57)

A0(q
2) = a−(q2)

q2

2mD∗
+
f(q2)

2mD∗
+
m2

B −m2
D∗

2mD∗
a+(q2) (3.58)

We introduce this new decomposition at this point because the last form factors are more

common in literature and then a comparison of our results with other models will be faster.

With the new definitions the branching ratios can be obtained using the following equations:

dΓ

dq2
=
dΓ+

dq2
+
dΓ−
dq2

+
dΓ0

dq2
(3.59)
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where dΓi are:
dΓi

dq2
=
G2|V |2
(2π)3

P (q2)2

12M2
Bq

2
|Hi(q

2)|2 , i = 0,± (3.60)

with:

H± = −(MB +MD∗)A1(q
2) ∓ 2MBP

MB +MD∗
V (q2) (3.61)

H0 =
1

2MD∗
√
q2

[−(M2
B −M2

D∗ − q2)(MB +MD∗)A1(q
2)

+
4M2

BP
2

MB +MD∗
A2(q

2)] (3.62)

3.5 Parameters of the model

In the rest of our work we want to apply the model described here to semi-leptonic weak

decays of the B(s) pseudoscalar meson into D(s) states.

For the B and Bs mesons we have used the masses and lifetimes below2:

MB = 5.279GeV , τB = 1.60810−12s

MBs = 5.370GeV , τBs = 1.46110−12s

The experimental results for the processes we are studying are the branching ratio of the

decays B(−,0) → D(0,−)lν and the partial decay rate of the process B(−,0) → D(0,−)∗lν mea-

sured in the BABAR experiment [25].

The average of the branching fraction of the decays B(−,0) → D(0,−)lν reported by the PDB

(Particle Data Book, [26]) give:

Br(B → Dlν) = (2.14 ± 0.15)% (3.63)

The same average, for the ten points measured of the partial decay rate of the B decay into

vector D mesons, gives the results we report in fig.3.3.

We use these experimental values as constraints to fit the free parameters of our model.

2Because of the invariance of our model under the symmetry group SU(2), we don’t distinguish between

neutral and charged mesons, so for each experimental value which characterizes a state of definite charge

we’ll use an average.
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Table 3.1: Values of the parameters of the model using fitting the model on the experimental

constraints with the gaussian (gauss.) and exponential (exp.) wave function.

Parameter gauss. exp.

mq(MeV) 0.033946 0.023079

ωB(MeV) 107.55 101.38

ωD(MeV) 185.74 51.041

|Vcb| 0.0429 0.041212

They are mu,d (say mq), ωB, ωD, and the element of the CKM matrix Vcb.

The results of the fit are reported in tab.[3.1].

We can observe that our predictions of |Vcb| are both in agreement with the PDB value:

Vcb = (41.6 ± 0.6)10−3 (3.64)

In particular the exponential value and the experimental one are compatible within one σ.

This is a first goal of our model.

3.6 Numerical results

The values of the form factors we obtain at the extreme points of the kinematical range are

reported in tab.[3.2].

If we look at fig. [3.2] we see that the form factors can be described by polar functions:

f(q2) =
f(0)

1 − a q2

m2
B

(3.65)

We report the results about the branching fraction of the decays considered in tab.[3.3], they

agree with the experimental values [32].

The differential decay rate relative to the decay in D∗ is reported in fig.[3.3], we see that

there is a very good agreement between our result, even for gaussian than for exponential

wave function, and the experimental one.
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Table 3.2: Values of the form factors evaluated with exponential(gaussian) wave function. The

parameters a and b are the ones useful to describe the behavior of form factors as polar functions

of q2.

F(0) F (q2
max) (GeV ) a (GeV −2)

F0 0.64(0.61) 0.74(0.71) 0.31(0.31)

F1 0.64(0.61) 0.98(0.95) 0.16(0.86)

V 0.69(0.67) 0.99(0.97) 0.77(0.81)

A0 0.67(0.65) 0.97(0.95) 0.81(0.84)

A1 0.65(0.62) 0.75(0.72) 0.31(0.33)

A2 0.63(0.59) 0.91(0.85) 0.81(0.81)

Table 3.3: Branching ratios relative to the processes B → X l ν evaluated with exponen-

tial(gaussian) wave function. For the B meson we have used a mass of 5.279 Gev and a mean

life time τ = 1.610−12s; this values are obtained mediating the PDG values for the charged and

neutral B meson. The values of the mass of the final state are also obtained with the same kind of

average about the D meson.

X Br(%) MX (GeV)

D 2.00(2.01) 1.8693

D∗ 0.283(0.277) 2.308
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Figure 3.2: Form factors in function of q2 obtained using the exponential (on the top) wave

function, or the gaussian (on the down) one.

We can also give a prediction on the decay of the Bs into D
(∗)
s states. We just need substitute

ms to mq in all previous formulas. What we cannot do is to fix ms because a certain measure

of some branching fraction we can calculate doesn’t exist. So we can only see what happens

at different values of ms. We find that each branching fraction has a maximum for one

value of this mass (we’ll investigate more accurately this point in the next paragraph). In

tab.[3.4] we just report the results giving to ms the value which corresponds to the maximum

branching ratio we can obtain with the exponential function. We show this particular case

because, as an effect of the different phase spaces, we expect that the Br(Bs → Dslν) is

greater then the Br(B → Dlν).

3.7 Decay constants

To fix the vertices of the mesons we have taken advantage of the heavy quark predictions

about decay constants. Once fixed the vertices, the analytical expressions of the correspond-
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Figure 3.3: The B → D∗lν spectrum. The solid line corresponds to the exponential wave

function, while the dashed lines to the results obtained with the gaussian wave function.

The data are taken from Ref.[[25]].

Table 3.4: Results relative to the decays Bs(5.3696GeV ) → Xlν evaluated with exp.(gauss)

wave functions. The value of ms is fixed to 0.57GeV ; this correspond to the maximum of the

Br(Bs → Dslν), evaluated using exponential wave function.

X Br(%) MX (GeV)

Ds 2.29(2.21) 1.9685

D∗
s 2.78(2.61) 2.317
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ing decay constants are:

f(0−) =

∫
D

dkk2

2π2

√
3ψ

√
q1·q2 +m1m2

E1E2

m1 +m2

M2
(3.66)

f(1−) =

√
3

M

∫
D

dkk2

2π2
ψ(E1E2(q1·q2 +m1m2))

−1/2

(q1·q2 +m1m2 − 2

3

k2M

M +m1 +m2

) (3.67)

The integration domain is strictly dominated by the difference between meson mass (M in

eq.(3.66)) and light mass (m2). As a consequence of this, for charmed mesons the integration

domain is negligible compared to the region in which the integrands in eq.(3.66) give their

relevant contribution. So any reliable evaluation of decay constant is possible.

Form factors describing B → D processes are not too sensible to this problem because the

superposition of the two wave functions involved is great enough in the kinematical range

allowed for this decay. This means that the new function that derive from this effect allows

to take all necessary contributions of the integrand in the domain D.

However, this feature of our model unable us also to evaluate form factors of decays which

involve light mesons. For them, in fact, we haven’t found any wave function so that their

superposition compensate the smallness of the domain D.



Chapter 4

Semi-leptonic weak decays of the B

meson

The transitions of the B into charmed even parity mesons were studied in [13] and the heavy

quark symmetries was taken into account in [15]. More recently, other quark models [27],

also relativistic [28], studied the same topic.

The interest for the charmed states with JP = 0+, 1+ was born because the prediction of

their masses was believed, by theorists [29], significantly higher than observed [30].

In this chapter we want to study weak semi-leptonic decays of the B into charmed even

parity mesons and compare our results with other model calculations.

In the last paragraph we’ll give also some predictions about the decays of the Bs into the

Ds states.

4.1 Vertex’s factors

To fix the factors ΓJP for each state JP we proceed as in the cases of the 0− and 1− states.

We start with the 0+ state. Taking into account parity and angular momentum of the

state we need the vertex is just a constant, say Z0. To fix its absolute value we impose the

43
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normalization condition:

< 0+|0+ >=

∫
d3k

(2π)3
|ψ|2Tr((− � q2 +m2)(� q1 +m1))

|Z0|2
4m1m2

= 2M (4.1)

then

|Z0| =

√
m1m2

q1·q2 −m1m2

(4.2)

As in the cases studied before, we choose the phase of Z0 so that the decay constant f is

positive, as predicted by HQET.

We find:

ifpµ =< 0|Vµ|H >=

∫
d3k

(2π)3

√
3ψ

√
m1m2

E1E2

a
q1µm2 − q2µm1

m1m2

(4.3)

This quantity is positive if the phase of Z is −iπ
2
. Then the vertex factor has to be:

Γ0+ = −i
√

m1m2

q1·q2 −m1m2

(4.4)

A bit more complicated is the case of the state JP = 1+. In fact, this state can be realized

with two different combinations of the spin of the constituent quarks. To distinguish this two

states we introduce the formalism 2S+1LJ , where S is the total spin, L the orbital angular

momentum and J the total angular momentum. So we can refer to the states 1P1 and 3P1,

which are both pseudo-vector mesons.

In the heavy quark limit the spin of the heavy quark and the total angular momentum j of

the light one became the good quantum numbers, so, in this limit, it is more convenient to

indicate the states as Lj
J . In this formalism the interesting states are: P

1/2
1 , P

3/2
1 , P

1/2
0 .

P
1/2
0 represents exactly the scalar meson, while the other two are combinations of the states

1P1 and 3P1.

|P 1/2
1 > =

1√
3
|1P1 > −

√
2

3
|3P1 > (4.5)

|P 3/2
1 > =

1√
3
|3P1 > +

√
2

3
|1P1 > (4.6)

Moreover, we see that the states P
1/2
1 and P

1/2
0 form a doublet respect the quantum numbers

in the limit. Then we can say that in the heavy quark limit they will have the same behavior.
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In order to respect this theoretical constraint, we have realized that the two states have to

be the same global coefficient in the vertex factors.

So we conclude that the factors of vertices Γ1P1
and Γ3P1

have the general form:

Γ1P1
= Z1(ε·q1 − ε·q2)γ5 (4.7)

Γ3P1
= Z2(� ε− Z3ε·(q1 − q2))γ5 (4.8)

with

Z0 =
1√
3
Z1 −

√
2

3
Z2 (4.9)

Z1 is fixed just by the normalization condition

<1 P1|1P1 >=
∑

λ

∫
d3k

(2π)3
|ψ|2Tr((� q2 +m2)(� q1 +m1))

|Z1|2
4m1m2

ε(λ)·(q1−q2) = 3(2M) (4.10)

that implies

|Z1| =

√
3m1m2

(q1·q2 +m1m2)((q1·q2 +m2
2)

2 −M2m2
2)

M

4
(4.11)

To fix the phase of Z1 we use the condition, derived from HQET, that the decay constant is

negative. So we get:

Γ1P1
= ε·(q1 − q2)

√
6m1m2

M2 − (m1 +m2)2

M

M2 − (m1 −m2)2
γ5 (4.12)

and the decay constant is simply:

f = −
∫
dkk4

π2
ψ

√
2

(M2 − (m1 +m2)2)E1E2

m1 −m2

M2 − (m1 −m2)2
(4.13)

At this point we can fix Z2 using the condition (4.9). We then have:

Z2 =

√
3

2

√
m1m2

q1·q2 −m1m2

(4.14)

The last factor Z3 can be deduced using the normalization condition:

<3 P1|3P1 > =

∫
d3k

(2π)3
|ψ|2 1

4m1m2

(Z2
2(−2q2·ε2 + q1·q2 −m1m2)

+4ε·q2
2a3b3(m1 −m2) + 4Z2

3ε·q2
2(q1·q2 +m1m2))

= 2M (4.15)
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then

Z3 =
m1 −m2

−M2 + (m1 −m2)2
(4.16)

The final vertex:

Γ3P1
=

√
3

2

√
m1m2

q1·q2 −m1m2

(� ε− m1 −m2

−M2 + (m1 −m2)2
ε·(q1 − q2))γ5 (4.17)

respects also the expected condition that the decay constant

f =

√
3

M

∫
dkk2

2π2
ψ(E1E2(q1·q2 −m1m2))

−1/2

((q1·q2 −m1m2) +
2

3

Mk2

M +m1 −m2

)) (4.18)

is positive defined.

4.2 Form factors

At this point we can evaluate the form factors of the weak semi-leptonic decays of a bq

pseudo-scalar meson into cq states.

If the final meson is a scalar the definition of the form factors is analogous to the one used

in the case of a 0− → 0− process. We remember the explicit expression:

< P ′(p′)|jµ|P (p) >= F+(q2)(p+ p′)µ + F−(q2)(p− p′)µ (4.19)

On the contrary of what happens if the final meson is a pseudo-scalar, in the case the final

meson is a scalar, only the axial part of the current gives contribution to the form factors.

In our model we obtain:

F+(p+ p′)µ + F−(p− p′)µ =

∫
d3k

(2π)3
ψψ′
√

1

E1E3(m2m1 + q1·q2)(−m2m3 + q2·q3)
[(−m2m3 + q2·q3)q1µ + (m2m1 + q1·q2)q3µ − (m3m1 + q1·q3)q2µ] (4.20)

To extract F± separately we can multiply both members of the last equation for a four-vector

orthogonal to (p+ p′)µ, to evaluate F−, and to (p− p′)µ to obtain F+. The vectors we need
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are respectively:

χ−
µ = (

|�q|
M + E ′ , 0, 0, 1) (4.21)

χ+
µ = (

|�q|
M − E ′ , 0, 0, 1) (4.22)

In this way we get the expressions:

F+ =
1

2M |�q|
∫

d3k

(2π)3
ψψ′ 1

m2

√
m1m3

E1E3

ZIZF

[(c1 + c3)(|�q|(M − E2) − (M − E)kcosθ)

+c2(|�q|E2 + (M − E)kcosθ)] (4.23)

F− = − 1

2E|�q|
∫

d3k

(2π)3
ψψ′ 1

m2

√
m1m3

E1E3

ZIZF

[c1(|�q|(M − E2) − (M + E)kcosθ) + c3(|�q|(2M − E2 + E ′)

−(M + E)kcosθ) + c2(|�q|E2 + (M + E)kcosθ)] (4.24)

where

c1 = (−m2m3 + q2·q3) (4.25)

c3 = (m2m1 + q1·q2) (4.26)

c2 = (−m3m1 − q1·q3) (4.27)

and

ZI =

√
m1m2

q1·q2 +m1m2

(4.28)

ZF =

√
m3m2

q3·q2 −m3m2

(4.29)

To describe a decay into a 3P1 meson we define:

< P ′|γµγ5|P > = −2G′(q2)εµνρσε
νpρp′σ (4.30)

< P ′|γµ|P > = −i(F ′(q2)εµ + (ε·p)
((p+ p′)µA

′
+(q2) + (p− p′)µA

′
−(q2))) (4.31)
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With our model we obtain:

G′(q2) = − 1

2|�q|M
∫
d3kψψ′ 1

m2

√
m1m3

E1E3

ZIZF

(Mm2|�q| + (m3 +m2)Mkcosθ

+(m2 −m1)(kcosθE
′ − E2|�q|)

−2ksenθcosφε(1)·q2M |�q|Z ′
F ) (4.32)

F ′(q2) =

∫
d3k ψψ′

√
m1m3

E1E3

ZIZF

(c∗3(ε
(2)·q2)2 − c4) (4.33)

A′
+(q2) + A′

−(q2) = − 1

(ε(3)·p)2

∫
d3k ψψ′

√
m1m3

E1E3

ZIZF

(c
(3)
1 ε(3)·p+ c∗3((ε

(3)·q2)2 − (ε(2)·q2)2)

+(m2 −m3)(ε
(3)·pε(3)·q2)) (4.34)

A′
+(q2) − A′

−(q2) = − 1

(ε(3)·p)|�q|
∫
d3k ψψ′

√
m1m3

E1E3

ZIZF

(|�q|c(3)
2 + kcosθc

(3)
3

+
ED∗

MD∗
c∗3(ε

(2)·q2)2) (4.35)

where

c∗1 = (−m2 +m3 + 2Z ′
F (q2·q3 +m2m3))

c1(λ) = c∗1ε
(λ)·q2

c∗2 = −m1 +m2 + 2Z ′
F (q1·q2 +m2m1)

c2(λ) = c∗2ε
(λ)·q2 +m2ε

(λ)·p
c∗3 = −c∗1 − c∗2 −m1 +m3 − 2Z ′

F (q1·q3 −m1m3)

c3(λ) = c∗3ε
(λ)·q2 + (m2 −m3)ε

(λ)·p
c4 = −m2q1·q3 −m1q2·q3 +m3q1·q2 +m2m1m3 (4.36)

Z ′
F =

m2 −m3

M2
F − (m3 −m2)2

(4.37)
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In an analogous way, if the final meson of the decay considered is in a 1P1 state, we put:

< P ′|γµγ5|P > = −2G(q2)εµνρσε
νpρp′σ (4.38)

< P ′|γµ|P > = −i(F (q2)εµ + (ε·p)
((p+ p′)µA+(q2) + (p− p′)µA−(q2))) (4.39)

We find that our model predicts that this form factors have the same form of the ones referred

to the 3P1 state, with the substitutions:

c1 = q2·q3 +m2m3

c2 = −q1·q3 +m1m3

c3 = q1·q2 +m1m2

c4 = 0 (4.40)

ZF = 1

Z ′
F = − MF

M2
F − (m3 −m2)2

√
6

M2
F − (m2 +m3)2

(4.41)

and the G(q2) is formed just by the part proportional to Z ′
F .

Also for this form factors we can give an alternative definition, more often used in literature,

in the same way used in eq.(3.58). The right sign to use in the definitions of the form factors

is fixed by the HQET results.

In tab.[4.1] we report the results relative to the form factors useful to calculate the physically

interesting branching fractions.

As we can see in fig.[4.1] our form factors have a polar or a linear behavior in function of the

momentum transferred in the transition. In particular we can see that they can be fitted

using the functions:

fi(q
2) =

fi(0)

1 − a q2

M2

(4.42)

or

fi(q
2) = fi(0)(1 − cq2) (4.43)

The coefficients a and c are given in table [4.2].
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Table 4.1: We report the results of form factors relative to the semi-leptonic decays of a B pseudo-

scalar meson into some D exited states. Our results are confronted to the ones of the ISGW2 model

[17] and to the ones calculated with a light-front quark model [28].

Form Factor This work Ref. [17] Ref. [28]

F(0) F(q2
max) F(0) F(q2

max) F(0) F(q2
max)

F1 -0.32 (-0.30) -0.35 (-0.33) -0.18 -0.24 -0.24 -0.34

F0 -0.32 (-0.30) -0.025 (-0.036) -0.18 0.008 -0.24 -0.20

A
(1/2)
0 -0.25 (-0.23) -0.31 (-0.28) -0.18 -0.39 -0.075 -0.083

A
(1/2)
1 0.096 (0.088) -0.0018 (-0.0029) 0.070 -0.002 0.073 0.071

A
(1/2)
2 0.69 (0.63) 0.87 (0.79) 0.49 0.91 0.32 0.56

V (1/2) 0.67 (0.61) 0.84 (0.76) 0.44 0.81 0.31 0.55

A
(3/2)
0 -0.61 (-0.58) -0.81 (-0.77) -0.20 -0.46 -0.47 -0.76

A
(3/2)
1 -0.13 (-0.13) -0.016 (-0.023) -0.005 -0.008 -0.20 -0.26

A
(3/2)
2 0.70 (0.65) 1.27 (1.19) 0.33 0.72 0.25 0.47

V (3/2) -0.81 (-0.77) -1.09 (-1.03) -0.44 -0.71 -0.61 -1.24
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Figure 4.1: Form factors of the physical states , P
1/2
0 , P

1/2
1 , P

3/2
1 , from the top to the bottom, in

function of q2. The different results for each decay are obtained using the exponential (on the left)

wave function, or the gaussian one (on the right).

4.3 Numerical results on the branching fractions

At this point we are ready to evaluate the decay rates we are interested in.

Some numerical results we have obtained are reported in tab.[4.3].

To evaluate the branching fractions of the Bs’s decays we should fix the mass of the strange

quark. This is not possible as for the case of mq because there is not, until now, an experi-

mental datum on the semi-leptonic decay rate of Bs. What we have studied is the behavior

of our predicted branching fractions as a function of the ratio ms/mq; in this way we see,

fig.[4.2], that they increase with ms until a pick after which they decrease. Moreover we
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Figure 4.2:

observe that the value of the pick depends on the wave function used.

An important feature of the model is that with mq < ms < m̃s, we can obtain any value

between Br(B → Dlν) and the one in the tab.[4.4]. An experimental result would be suffi-

cient to fix the last free parameter of our model.

In the tab.[4.4] we report the results obtained using a value of ms, say m̃s, chosen arbitrarily,

supposing that the branching fraction of the decay of the Bs into a Ds(0
−) is bigger then

the one of the process B → D because of the enlargement of the phase space.

If we’ll have a measure of the Br(Bs → Dslν) and of the ratio ms/mq, all our parameters

will be fixed and the agreement between our predictions and experimental values will be

significantly dependent by the wave function used. This justifies strongly the necessity of

the study of the two cases, initially introduced for the different values of the single form

factors they bring to.

From all our results about the branching ratio, we can conclude that the model is in good

agreement with experiments for the decays B → D(∗)lν and that it predicts that the final

state D
3/2
1 is dominant respect to the D

1/2
1 . This is in agreement with what the Bakamjian-

Thomas quark model has demonstrated [33].
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Table 4.2: We report the results of the fit of the form factors on the functions of the form in

eq.[4.42] and [4.43] for exponential (gaussian) wave function.

Form Factor F(0) a c(GeV −2)

F1 -0.32 (-0.30) 0.263(0.233)

F0 -0.32 (-0.30) -0.109 (-0.103)

A
(1/2)
0 -0.25 (-0.23) 0.661(0.626)

A
(1/2)
1 0.096 (0.088) -0.12 (-0.12)

A
(1/2)
2 0.69 (0.63) 0.695(0.680)

V (1/2) 0.67 (0.61) 0.695(0.679)

A
(3/2)
0 -0.61 (-0.58) 0.846(0.834)

A
(3/2)
1 -0.13 (-0.13) -0.10 (-0.096)

A
(3/2)
2 0.70 (0.65) 1.53 (1.54)

V (3/2) -0.81 (-0.77) 0.872(0.873)

Table 4.3: Branching fractions of the processes B(5.279 GeV) → X l ν obtained using the expo-

nential (gaussian) wave function, in the case of a final lepton with negligible mass (l, µ) and when

the decay produces a τ .

X Br(%) MX (GeV)

D0lν̄l 2.00(2.01) 1.8693

D∗lν̄l 5.98(5.99) 2.0067

D∗
0lν̄l 0.283(0.277) 2.308

D
1/2
1 lν̄l 0.206(0.185) 2.427

D
3/2
1 lν̄l 0.830(0.827) 2.427

D0τ ν̄τ 0.54(0.54) 1.8693

D∗τ ν̄τ 1.61(1.61) 2.0067

D∗
0τ ν̄τ 0.018(0.018) 2.308

D
1/2
1 τ ν̄τ 0.015(0.013) 2.427

D
3/2
1 τ ν̄τ 0.057(0.057) 2.427
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Table 4.4: Branching fractions of decays Bs(5.3696 GeV) → X l ν evaluated using the exponential

(gaussian) wave function. The value ms = 0.57GeV used is the one for which the rate into the Ds0

state, evaluated with the exponential wave function, is maximum.

X Br(%) MX (GeV)

Ds0 2.29(2.21) 1.9685

D∗
s0 2.78(2.61) 2.317

D
1/2
s1 2.78(2.51) 2.457

D
3/2
s1 3.46(3.27) 2.457



Chapter 5

The model in the heavy quark limit

The consistency between quark models and theory can be checked studying the results of

the model in the limit of infinite heavy quark mass. We expect that, in this limit, the model

agree with the HQS predictions.

Moreover one of the most interesting feature of a model is how much its results deviate from

the HQS predictions.

In this chapter we will study these aspects of our model.

5.1 The method

The way to extract the heavy quark dependence from form factors is to expand in power of

mq/mQ, where mq is the light spectator quark in the transition and mQ is one of the two

heavy quarks. In this limit we imagine that the mass of each heavy meson corresponds to

the mass of the heavy constituent. So it is sensed to use, as small parameter, z = mq/M
′,

where M ′ is the mass of the final meson in the process under analysis.

The problem now is that to extract the form factors we have to perform an integration over

a domain D which depends by z. Moreover the integral cannot be evaluated analytically.

So the limit is not straightforward.

To do it we introduce a new variable of integration x = 2αk/M ′, with 0 < α � 1. So the

55
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domain of integration doesn’t depend anymore by the mass and the new variable x is small,

this allows us to expand the integrand also near x � 0; we’ll consider truncated series in x

truncated to the second order.

We know the results of HQET just near the cinematical point w = 1 (with w = v·v′), that

means at the maximum momentum transferred in the transition; so we need just to consider

the development of our form factors in this region.

w is related to q2 as shown by the following relation:

w =
M2 +M ′2 − q2

2MM ′ (5.1)

With w � 1 the domain of integration is simplified because the angle θ is free to vary in the

range (−π, π), then this integration is very simple.

Finally every form factor fi(q
2) takes the form:

fi(q
2) =

∫ α

0

dxψ(k(x))ψ′(k(x))f̃i(x, z, q
2) (5.2)

The integrand f̃i, after algebraic manipulations, will be a function proportional to x2 and to

the Isgur-Wise function.

Obviously, the results will depend on the wave function, but just by a factor.

5.2 Results and comparison with theory

With the method described in the previous paragraph we find for each form factor the

dependence from the mass of the heavy meson near the zero recoil point.

To connect our results with the theoretical prediction we report here the usual definition [14]
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in HQET of the matrix elements of the transition we are considering:

< D(v′)|Vµ|B(v) > = ξ(w)(v + v′)µ (5.3)

< D∗(v′, ε)|Vµ|B(v) > = −ξ(w)εµναβε
∗νv′αvβ (5.4)

< D∗(v′, ε)|Aµ|B(v) > = ıξ(w)((1 + w)ε∗µ − (ε∗·v)v′µ) (5.5)

< D∗
0(v

′)|Aµ|B(v) > = 2ıτ1/2(w)(v − v′)µ (5.6)

< D
1/2
1 (v′, ε)|Vµ|B(v) > = −ıτ1/2(w)((1 + w)ε∗µ + (ε∗·v)v′µ) (5.7)

< D
1/2
1 (v′, ε)|Aµ|B(v) > = −2τ1/2(w)εµναβε

∗νv′αvβ (5.8)

< D
3/2
1 (v′, ε)|Vµ|B(v) > = ı

1√
2
τ3/2(w)((1 − w2)ε∗µ − (ε∗·v)(3vµ + (2 − w)v′µ)) (5.9)

< D
3/2
1 (v′, ε)|Aµ|B(v) > =

1√
2
τ3/2(w)(1 + w)εµναβε

∗νv′αvβ (5.10)

So the relations between these form factors and the our ones are:

ξ(w) =
1

2
√
MM ′ ((M +M ′)f+(q2) + (M −M ′)f−(q2))

= − 1√
MM ′

f(q2)

1 + w
= −2

√
MM ′g(q2)

=
√
MM ′(a+(q2) − a−(q2)) , (5.11)

0 = a+(q2) + a−(q2)

= (M −M ′)f+(q2) + (M +M ′)f−(q2) . (5.12)

τ1/2(w) =
1

4
√
MM ′ ((M −M ′)F+(q2) + (M +M ′)F−(q2))

=
1

2
√
MM ′

f1/2(q
2)

w − 1
=

√
MM ′g1/2(q

2)

= −
√
MM ′

2
(a

1/2
+ (q2) − a

1/2
− (q2)) , (5.13)

0 = a
1/2
+ (q2) + a

1/2
− (q2)

= (M +M ′)F+(q2) + (M −M ′)F−(q2) . (5.14)

τ3/2(w) = −
√

2

MM ′
f3/2(q

2)

w2 − 1
= − 2

√
2

w + 1

√
MM ′g3/2(q

2)

= −
√

2M3

M ′
a

3/2
+ (q2) − a

3/2
− (q2)

w − 2

= −1

3

√
2M3

M ′ (a
3/2
+ (q2) + a

3/2
− (q2)) . (5.15)
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In the subsections below we report our form factors in the limit and we’ll see that the

relations written above are valid in the model.

5.2.1 B → D(∗)lν

The behavior in the infinite heavy quark limit of our form factors, for the processes B →
D(∗)lν, is summarized by the equations below:

f±(q2)|q2�q2
max

� M ±M ′

2
√
MM ′

⎧⎪⎪⎨
⎪⎪⎩

2
√

2
(

ωω′
ω2+ω′2

)3/2
ξ(q2) ; gaussian w.f.,

√
ω3ω′3

(ω+ω′)3 ξ(q
2) ; exponential w.f.

(5.16)

a±(q2)|q2�q2
max

� ∓ 1

2
√
MM ′

⎧⎪⎪⎨
⎪⎪⎩

2
√

2
(

ωω′
ω2+ω′2

)3/2
ξ(q2) ; gaussian w.f.,

√
ω3ω′3

(ω+ω′)3 ξ(q
2) ; exponential w.f.

(5.17)

g(q2) has the same behavior of a−(q2).

f(q2)|q2�q2
max

�
√
MM ′(1 + w)

⎧⎪⎪⎨
⎪⎪⎩

2
√

2
(

ωω′
ω2+ω′2

)3/2
ξ(q2) ; gaussian w.f.,

√
ω3ω′3

(ω+ω′)3 ξ(q
2) ; exponential w.f.

(5.18)

From this equations we see that each wave function characterizes the expression of the form

factor with a fixed factor. For the gaussian and exponential wave functions this factor is:

N =

⎧⎪⎪⎨
⎪⎪⎩

2
√

2
(

ωω′
ω2+ω′2

)3/2
; gaussian w.f.,

√
ω3ω′3

(ω+ω′)3 ; exponential w.f.

(5.19)

The Isgur-Wise function ξ we predict is:

ξ(w) = 1 − 11

12
(w − 1) +

77

96
(w − 1)2 + o((w − 1)3) (5.20)

Sum rules give a constraint on the slope [35] (Bjorken sum rule) and the curvature [31] of ξ,

they are:

ρ2 = −ξ′(1) ≥ 3

4
(5.21)

σ2 = ξ′′(1) ≥ 4

5
ρ2

(
1 +

3

4
ρ2

)
(5.22)
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Our model satisfy both constraints, in fact:

ρ2 =
11

12
≥ 3

4
(5.23)

σ2 =
77

48
≥ 4

5
ρ2

(
1 +

3

4
ρ2

)
=

99

80
(5.24)

5.2.2 B → D∗
0(D

1/2,3/2
1 )lν

For the form factors relevant in the B → D∗
0(D

1/2,3/2
1 )lν decays, our model predicts:

F±(q2)|q2�q2
max

� −M ±M ′
√
MM ′ Nτ1/2(w) (5.25)

where N is the same of eq.(5.19) and

τ1/2(w) =
1

3
− 1

4
(w − 1) +

19

96
(w − 1)2 + o((w − 1)3) (5.26)

The form factors G(′), F (′), A
(′)
± are not directly comparable with the ones of the effective

theory because they do not refer to the states considered by HQET. To compare our results

with the HQET we combine the functions G(′), F (′), A
(′)
± so to obtain the form factors of the

B transition into the states D
1/2,3/2
1 , which are the physical states in the heavy quark limit.

We use the relations:

f
3/2
i =

√
2

3
f1 +

1√
3
f ′

i (5.27)

f
1/2
i = −

√
2

3
f ′

1 +
1√
3
fi (5.28)

The heavy quark limit of this form factors are:⎧⎪⎪⎨
⎪⎪⎩

g1/2(q2)

f 1/2(q2)

a
1/2
± (q2)

⎫⎪⎪⎬
⎪⎪⎭ = N

⎧⎪⎪⎨
⎪⎪⎩

√
MM ′

2
√
MM ′(w − 1)

∓1/
√
MM ′

⎫⎪⎪⎬
⎪⎪⎭ τ 1/2(w) (5.29)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g3/2(q2)

f 3/2(q2)

a
3/2
+ (q2)

a
3/2
− (q2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= N

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1+w

2
√

2MM ′

−2
√

MM ′
2

(w2 − 1)

−
√

M ′
2M3

2(w−2)
w−3

−
√

M ′
2M3

6(w−2)
w+1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
τ 3/2(w) (5.30)
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where:

τ3/2(w) =
5

6
− 31

24
(w − 1) +

93

64
(w − 1)2 + o((w − 1)3) (5.31)

Our results about the decays into the states P
1/2
0,1 satisfy HQET constraints.

We cannot try any conclusion on the P
3/2
1 meson state because, until now, we have said

nothing about the tensorial state which, in the heavy quark effective theory, should be

characterized by the same Isgur-Wise function. We’ll see something more in the next chapter.

Uraltsev [34] has derived the relation:

∑
n

|τ (n)
3/2(1)|2 −

∑
n

|τ (n)
1/2(1)|2 =

1

4
(5.32)

where n is the radial excitation.

Moreover, we have an other sum rule, due to Bjorken [35], on the slope of the ξ, which

connects the form factors between them:

ρ2 =
1

4
+
∑

n

|τ (n)
1/2(1)|2 + 2

∑
n

|τ (n)
3/2(1)|2 (5.33)

Combining this equation with the eq.[5.32], we get:

ρ2 =
3

4
+ 3

∑
n

|τ (n)
1/2(1)|2 (5.34)

In our case n = 0 and eq.(5.32) is not an identity because we don’t take into account all

radial excitations, so it becomes:

|τ3/2(1)|2 − |τ1/2(1)|2 ≤ 1

4
(5.35)

Our model violates both sum rules.

We don’t know the reason; it is possible that the states with radial excitation bring the

necessary terms to get results in agreement with eq.(5.32) and (5.33).

We can compare our predictions of the τ functions with others results in different models

(tab.[5.1]). We can observe that our value of τ3/2(1) is higher than the others, but τ1/2(1)

and all the slopes are similar to these ones. For a discussion on sum rules results and the

findings of quark models, see the reference [40].
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Table 5.1: The Isgur-Wise functions τ1/2 and τ3/2 at zero recoil and their slope parameters.

τ1/2(1) ρ2
1/2 τ3/2(1) ρ2

3/2 Ref.

0.33 0.75 0.83 1.29 This work

0.34 0.76 0.59 1.09 [13]

0.22 0.83 0.54 1.5 [36]

0.31 1.18 0.61 1.73 [28]

0.13 ± 0.04 0.50 ± 0.05 0.43 ± 0.09 0.90 ± 0.05 QCDSR [37]

0.35 ± 0.08 2.5 ± 1.0 – – QCDSR(NLO)[38]

0.38 ± 0.04 0.53 ± 0.08 Lattice [39]

5.3 Deviations from HQET

To understand the order of the correction to the form factors in the heavy quark limit

deriving from the finite value of the mass of the light quark, it is interesting to look at the

differences between the form factors of the model evaluated in the limit and the exact ones.

We report in fig.5.1 the behaviour of such differences for the form factors f+, f− and A1.

This form factors are the more representative because each of them have a different relation

with the correspondent Isgur and Wise function.

Generally we see that the corrections for a finite value of mq are decreasing starting from

q2 = 0; in fact we know that the HQET is valid for q2 � q2
max. Moreover we can conclude

that the correction is at most of the order of the 10%.
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Figure 5.1: In this figures are reported, in function of q2(GeV ), the values of the percentage

difference between the exact values of the form factors and the ones in the heavy quark limit. The

form factors here considered are respectively, from the top to the bottom, f+, f− and A1. We have

considered the results obtained with the exponential wave function.



Chapter 6

Tensorial state

To complete the semi-leptonic decays of the B pseudo-scalar meson into D states without

radial excitation, it just fails us the case of a tensor in the final meson. This state is identified

by the quantum numbers 3P2. We’ll indicate the meson under consideration as D∗
2.

The mass of the D∗
2 is 2.460GeV .

In our model we can evaluate form factors also in this case.

6.1 Representation of the state in the model

As for the other mesons studied here, to represent the tensor meson (2S+1LJ =3 P2) in our

model, first of all we need to fix the vertex factor. To do this we observe that (3P2, P
3/2
1 )

form a doublet in the heavy quark limit, so they have the same behavior in this limit. To

realize this we impose that the global coefficient of the tensorial state is the same of the P
3/2
1

one. So we have:

Γ3P2
=

√
6m1m2

M2 − (m1 +m2)2

2M

M2 − (m1 −m2)2
εµν(γµ + Zq2µ)q2ν (6.1)
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The polarization tensors of this state are related to the vector polarization in the way shown

below ([41]):

εµν(±2) =
1

2
(εµ(1)εν(1) − εµ(2)εν(2) ± ıεµ(1)εν(2) ± ıεµ(2)εν(1)) (6.2)

εµν(±1) = ∓1

2
(εµ(1)εν(0) + εµ(0)εν(1) ± ıεµ(0)εν(2) ± ıεµ(2)εν(0)) (6.3)

εµν(±0) = − 1√
6
(εµ(1)εν(2) + εµ(2)εν(1)) +

√
2

3
εµ(0)εν(0) (6.4)

The factor Z can be fixed by the normalization condition for all polarizations and doing the

hypothesis that it is real:

2M =
1

5

∑
λ

∫
D

d3k

(2π)3
|ψ|2 6

M2 − (m1 +m2)2

4M2

(M2 − (m1 −m2)2)2
ε∗µν(λ)ερσ(λ)q2µq2ρ

((2 + Z2(−q1·q2 +m1m2) − 2Z(m1 +m2))q2νq2σ + gνσ(q1·q2 +m1m2)) (6.5)

and then:

Z =
2

M +m1 +m2

(6.6)

6.2 Form factors

The form factors which describe the transition B(1S0) → D(3P2) are:

< D|γµ|B > = g(q2)εµναβε
∗νλpλp

αqβ (6.7)

< D|γµγ5|B > = −ı{f(q2)εµνp
ν + εαβp

αpβ[(p+ p′)µa+(q2) + qµa−(q2)]} (6.8)
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In our model we have:

< D|γµ|B > = ı

∫
D

d3k

(2π)3
ψψ′
√

1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

4
((m3 −m2)(−k2

x

ME ′

M ′ +

ε(0)·q2kzM) − (m1 −m2)(−k2
xM

′ + ε(0)·q2(kzE
′ − |�q|E2)) +

|�q|Mm2ε(0)·q2 +
4

M ′ +m3 +m2

k2
xM |�q|ε(0)·q2) (6.9)

< D|γµγ5|B > = −ı
∫

D

d3k

(2π)3
ψψ′
√

1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

2
εαβ(λ)q2β

(c0gµα + c1q2αpµ + c2q2αp
′
µ + c3pαp

′
µ + c4q2αq2µ + c5pαq2µ) (6.10)

where

c0 = m2q1·q3 +m1q2·q3 +m3q1·q2 +m1m2m3 (6.11)

c1 = (m2 +m3 + 2
q1·q3 +m1m3

M ′ +m3 +m2

(6.12)

c2 = m2 −m1 − 2
q1·q2 +m1m2

M ′ +m3 +m2

(6.13)

c3 = −m2 (6.14)

c4 = 2(m1 −m2) + 2
q1·q3 +m1m3 + q1·q2 +m1m2 − q3·q2 +m3m2

M ′ +m3 +m2

(6.15)

c5 = m2 −m3 (6.16)

From these expressions, fixing the polarization and choosing different values of µ it is straight-

forward to evaluate the explicit expressions of all form factors.

g = ı

∫
D

d3k

(2π)3
ψψ′
√

1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

8

M ′

M2|�q|2 ((m3 −m2)(−k2
x

ME ′

M ′ + ε(0)·q2kzM)

−(m1 −m2)(−k2
xM

′ + ε(0)·q2(kzE
′ − |�q|E2))

+|�q|Mm2ε(0)·q2 +
4

M ′ +m3 +m2

k2
xM |�q|ε(0)·q2) (6.17)
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f =
1

ε(0)·p
∫

D

d3k

(2π)3
ψψ′
√

1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

2
εαβ(1)q2β(c0g1α − kx(c4q2α + c5pα)) (6.18)

a− − a+ = f
E ′

M ′|q|ε(0)·p − 1

|q|(ε(0)·p)2

√
3

2

∫
D

d3k

(2π)3
ψψ′

√
1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

2
εαβ(0)q2β

(c0g3α − |q|(c2q2α + c3pα) − kz(c4q2α + c5pα)) (6.19)

a− + a+ = f
|q|

M ′E ′ε(0)·p +
1

E ′(ε(0)·p)2

√
3

2

∫
D

d3k

(2π)3
ψψ′

√
1

E1E3(q1·q2 +m1m2)(M ′2 − (m3 +m2)2)

2M ′

M ′2 − (m2 −m3)2

1

2
εαβ(0)q2β

(c0g3α + c1q2αM + E ′(c2q2α + c3pα) + E2(c4q2α + c5pαq2µ)) (6.20)

6.3 Numerical results

In tab.[6.1] we report the numerical results of the form factors of the decay we consider in

this chapter. As we can see in fig.[6.1] these form factors show in general a pole in q2 as in

eq.[4.42]; only A0(q
2) has a different behavior: it is a linear function of q2, see eq.[4.43]. In

tab.[6.2] we write the constants we have introduced to describe the correct function to fit

each form factor.

Due to the phase space, the branching ratio of the decay B → D∗
2lν is smaller then the

others evaluated until now; the results are in tab.[6.3].

6.4 Limit in the heavy quark effective theory

Using the same method we have applied to the decays studied in the previous chapter, we

can obtain the heavy quark limit of the form factors for the process B → D∗
2lν.
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Table 6.1: We report the results of form factors relative to the semi-leptonic decays of a B

pseudo-scalar meson into D∗
2. Our results are confronted to the ones of the ISGW2 model [17] and

to the ones calculated with a light-front quark model [28].

Form Factor This work Ref. [17] Ref. [28]

F(0) F(q2
max) F(0) F(q2

max) F(0) F(q2
max)

A0 0.017 (0.016) 0.042 (0.041) 0.078 0.093 0.10 0.16

A1 0.040 (0.037) 0.053 (0.049) 0.077 0.082 0.10 0.14

A2 0.078 (0.072) 0.121 (0.112) 0.077 0.100 0.10 0.17

V 0.085 (0.082) 0.130 (0.125) 0.085 0.110 0.12 0.19

HQET allows to decompose the matrix transition element of the decays under consideration

as:

< D∗
2(v

′, ε)|Vµ|B(v) > =
√

3τ3/2(w)εµναβε
∗νγvγv

′αvβ (6.21)

< D∗
2(v

′, ε)|Aµ|B(v) > = −ı
√

3τ3/2(w)((1 + w)ε∗µνv
ν − ε∗αβv

αvβv′µ) (6.22)

From heavy quark effective theory the form factors are connected each other to the τ3/2(w)

by the following relations:

τ3/2(w) = 2

√
M3M ′

3
g(q2) =

√
M

3M ′
f(q2)

1 + w

= −
√
M3M ′

3
(a+(q2) − a−(q2)) (6.23)

Table 6.2: We report the results of the fit of the form factors over the functions of the form in

eq.[4.42] and [4.43] for exponential (gaussian) wave function.

Form Factor F(0) a c(GeV −2)

A0 0.017 (0.016) 0.16 (0.17)

A1 0.040 (0.037) 0.87 (0.88)

A2 0.078 (0.072) 1.26 (1.28)

V 0.085 (0.082) 1.24 (1.24)
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Figure 6.1: On the left we report the plot of the form factors in the case the vertex factor is

described by an exponential wave function; on the right there are the results obtained with a

gaussian wave function.

and

a+(q2) + a−(q2) = 0 (6.24)

So we see that these form factors are related also to the ones obtained for the other decays

(see eq.[5.15]).

We find that these relations are valid in our model; the value of the τ3/2 evaluated in this

case is exactly the one given in eq.[5.31]. This is a probe of the complete consistency of the

model respect to the theory.

On the other hand, this result confirms that the model violates the Bjorken and Uraltsev

sum rules. This remain our lonely problem in the heavy quark limit.

In future, we will study radial excitation of charmed mesons in our model, to compare results

with the ones by Bjorken and Uraltsev sum rules.

Table 6.3: Branching fractions of the processes B(5.279GeV ) → D∗
2(2460)lν obtained using the

exponential (gaussian) wave function, for all possible lepton produced.

Br(10−4)

D∗
2lν̄l 4.8(4.5)

D∗
2τ ν̄τ 0.39(0.36)



Conclusion

In this thesis we have discussed a constituent quark model adopted to evaluate the form

factors of weak semi-leptonic B decays into charmed states.

Constituents quark models are important because they allow to determine the Cabibbo-

Kobayashi-Maskawa matrix elements, which are free parameters of the Standard Model. In

particular, the decays we are interested in are related to the |Vcb| matrix element.

The model, as every kind of constituent quark model, is based on the simplified assumption

that mesons are bound states of two valence quarks. This is not a direct consequence of

QCD but it is justified by the dominance of the Fock states with the minimum number of

constituents.

In our model the meson’s state cannot be boosted and so all the calculations should be

obtained in a well defined reference frame: the no recoil kinematical point. However, in

order to have energy conservation and to obtain the q2 dependence of the form factors we

introduce the concept of running mass. In particular, we consider heavy quarks with a mass

which depends by the energy of the meson. So we can compare our results with the ones of

relativistic models and we find that the form factors have a comparable behavior.

Moreover, it is possible to perform the heavy quark limit on the form factors; the results

are in agreement with the ones dictated by the heavy quark effective theory. Only the sum

rules in this limit are not respected by the model, but this problem is probably solvable with

future works.

About the numerical results of our model we find a very good agreement with experimental

data, when available. In particular, we can see that our estimate of |Vcb| agree with the

experimental value published on the PDB.
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In view of the new experimental results our model can be used to analyze the data.



Appendix A

Branching ratio of the decay X → X’lν

We want to show how evaluate the branching fraction of a semi-leptonic decay of a pseudo-

scalar meson X.

We consider the transition X → X ′lν represented in fig.[A].

In the case of low energy respect to the masses involved the propagator of the W boson can

be approximated with the Fermi coupling constant:

G = 1.166 10−5 GeV −2 (A.1)

The general form of the transition matrix is then:

M =
G√
2
< lν|J lept.

µ |0 >< X ′|Jµ+

hadr.|X > (A.2)
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Using the decomposition of the hadronic matrix transition in term of form factors and

supposing that the final meson is also in the 0− state, we have:

M =
G√
2
V (f+(q2)(p+ p1)µ + f−(q2)(p− p1)µ)

u(p2)γ
µ(1 − γ5)v(p3) (A.3)

where

q = p− p1 = p2 + p3 (A.4)

�p2u = m2u (A.5)

�p3v(p3) = 0 (A.6)

If we neglect the masses m2 and m3 of the fermions, that is a good approximation if the τ

is not involved, then:

qµū(p2)γ
µ(1 − γ5)v(p3) = 0 (A.7)

Using p+ p1 = 2p− q we obtain:

M = 2
G√
2
V f+(q2)ū(p2) �p(1 − γ5)v(p3) (A.8)

Averaging on the spin of the final states and adding over the initial ones we get:

|M |2 = 2G2|V |2f+
2(q2)Tr{�p2 �p(1 − γ5) �p3 �p(1 − γ5)}

= 4G2|V |2f+
2(q2)Tr{�p2 �p �p3 �p(1 − γ5)} (A.9)

where we have used {γ5,γµ} = 0 e (1 − γ5)
2 = 2(1 − γ5).

γ5 is defined as

γ5 =
i

4
εµνρσγ

µγνγργσ (A.10)

so, taking into account that pµ �= 0 only if µ = 0 and that εµνρσ = 0 only if two indices are

equal, we have:

�p2 �p �p3 �pγ5 = 0 (A.11)

Finally, using the trace theorems, we conclude:

|M |2 = 32G2|V |2f+
2(q2)[2(p·p2)(p·p3) − p2(p2·p3)] (A.12)
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Usually it is more convenient to express the amplitude |M |2 as a function of three physical

invariants, for example q2, MX and:

m13
2 = (p1 + p3)

2 = (p− p2)
2 = M2

X − 2MXE2 (A.13)

To express |M |2 in term of this quantities we use the relations below:

p2·p3 =
q2

2
(A.14)

p2 = MX
2 (A.15)

p·p3 = (p2 + p3 + p1)·p3

= p1·p3 +
q2

2
(A.16)

p·p2 = p·(p− p1 − p3)

= p2 − p·p1 − p·p3 (A.17)

p·p1 = −q
2

2
+
MX

2

2
+
m1

2

2
(A.18)

p1·p3 =
m13

2

2
− m1

2

2
(A.19)

then

|M |2 = 32G2|V |2f+
2(q2)[(m13

2 −MX′2)(MX
2 −m13

2 − q2) +MX′2q2] (A.20)

The differential cross section is generally given by the expression:

dΓ =
|M |2

2MX(2π)5
δ(4)(p− p1 − p2 − p3)

d3p1d
3p2d

3p3

8E1E2E3

(A.21)

that, after the integration over d3p3, becomes:

dΓ =
|M |2

2MX(2π)5
δ(p− p1 − p2 − p3)

d3p1d
3p2

8E1E2E3

(A.22)

Now, to integrate over d3p2, we define spherical coordinate as in fig.[A]. So we can write:

d3p2 = dE2E2
2dφ2dcosθ2 (A.23)

In our case there is not dependence by φ2 of the integrand, so we can immediately perform

the integration over this variable: ∫ 2π

0

dφ2 = 2π (A.24)
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Figure A.1: Cartesian and spherical coordinates of a generic vector �p

To integrate over θ2 we write δ as a function of it. To do this we use:

MX = E1 + E2 + E3 ⇒ E3 = MX − E1 − E2 (A.25)

�p1 + �p2 + �p3 = 0 (A.26)

�p1·�p2 = |�p1|E2cosθ2 (A.27)

E3 =

√
E1

2 −MX′2 + E2
2 + 2

√
E1

2 −MX′2E2cosθ2 (A.28)

The last equations together implie:∫ 1

−1

dcosθ2δ(MX − E1 − E2 −√
E1

2 −MX′2 + E2
2 + 2

√
E1

2 −MX′2E2cosθ2)

=
E3

2E2

√
E1

2 −MX′2
(A.29)

Now we write d|�p1| as function of q2.

q2 = (p− p1)
2 = MX

2 +MX′2 − 2MX

√
|�p1|2 +MX′2 (A.30)

so
dq2

d|�p1| = −2MX2|�p1|
2E1

→ |�p1|d|�p1|
2E1

= − dq2

4MX

(A.31)
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and dE2 as function of m2
13:

dm13
2

dE2

= −2MX ⇒ dE2 = −dm13
2

2MX

(A.32)

so
dΓ

dq2
=

|M |2
322MX

3π3
dm13

2 (A.33)

The range of variation of m2
13 is:

(E∗
1 + E∗

2)
2 − (

√
E∗

1
2 −M2

X′ + E∗
3)

2 < m2
13 < (E∗

1 + E∗
2)

2 − (
√
E∗

1
2 −M2

X′ − E∗
3)

2 (A.34)

where

E∗
1 =

q2 −M2
X′

2q
; E∗

3 =
M2

X − q2

2q
(A.35)

while q2 varies in the region:

0 < q2 < (MX −MX′)2 (A.36)

Integrating over dm13
2:

dΓ

dq2
=
G2|V |2f+

2(q2)

192π3MX
3 [(q2 −M2

X −MX′)2 − 4M2
XM

2
X′ ]

3
2 (A.37)

and then we get the result:

Γ =

∫ (MX−MX′ )2

0

dq2 dΓ

dq2
(A.38)

The same result is valid in the case of a scalar final state.

Until now we have supposed null the mass ml of the lepton, this is valid in any case if the

lepton is not the τ . In this last case mτ = 1.778GeV is comparable to the other masses into

play, and we cannot neglect it.

In this case the useful result, for (pseudo)-scalar mesons is the following:

Γ =

∫ (MX−MX′ )2

ml

dq2 dΓ

dq2
(A.39)
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where

dΓ

dq2
= (1 +

m2
l

2q2
)
dΓ0

dq2
+ 3

m2
l

2q2

dΓt

dq2
(A.40)

dΓi

dq2
=

G2|V |2
(2π)3

P (q2 −m2
l )

2

12M2
Xq

2
|Hi(q

2)|2 , i = 0, t (A.41)

H0(q
2) =

2MXP√
q2

F1(q
2) (A.42)

Ht(q
2) =

M2
X −M2

X′√
q2

F0(q
2) (A.43)

P =
[(q2

+ − q2)(q2
− − q2)]1/2

2MX

(A.44)

q± = (MX ±MX′)2 (A.45)

Differently, if the final meson has total angular momentum J = 1, we must take into account

the various polarization it can have and sum over them.

In this way the result is that the differential cross section is:

dΓ

dq2
=
dΓ+

dq2
+
dΓ−
dq2

+
dΓ0

dq2
(A.46)

where
dΓi

dq2
=
G2|V |2
(2π)3

P (q2 −m2
l )

2

12M2
Xq

2
|Hi(q

2)|2 , i = 0,± (A.47)

with:

H± = −(MX +MX′)A1(q
2) ∓ 2MXP

MX +MX′
V (q2) (A.48)

H0 =
1

2MX′
√
q2

[−(M2
X −M2

X′ − q2)(MX +MX′)A1(q
2)

+
4M2

XP
2

MX +MX′
A2(q

2)

]
(A.49)

Ht =
MXP

MX′
√
q2

[−(MX +MX′)A1(q
2) + (MX −MX′)A2(q

2)

+
q2

MX +MX′
A3(q

2)

]
(A.50)

The last case we consider is when the final meson is in a 3P2 state. The expressions of the
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Hi now became the followings:

H± =
MX |�q|√
2MX′

(
f(q2)) ∓ 2MX |�q|g(q2)

)
(A.51)

H0 =

√
1

6

MX |�q|√
q2M2

X′

(
(M2

X −M2
X′ − q2)f(q2) + 4M2

X |�q|2a+(q2)
)

(A.52)

Ht =

√
2

3

M2
X |�q|2√
q2M2

X′

(
f(q2) + (|�q|2 + EX′q0 +MXq0)a+(q2) + q2a−(q2)

)
(A.53)

At the end of all this, to pass from the cross section to the branching ratio, we have to

multiply the Γ for:
τX
� h (A.54)

where τX is the lifetime of the meson X and � h is the Planck constant.
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Appendix B

Trace theorems

In this appendix we report some results about the evaluation of the trace of the Dirac

matrices we have used in all our work.

Tr(I) = 4 (B.1)

Tr(γµγν) = 4gµν (B.2)

Tr(γµγνγσγτ ) = 4[gµνgστ − gµσgντ + gµτgνσ] (B.3)

Trγ5 = 0 (B.4)

Tr(γ5γµγν) = 0 (B.5)

Tr(γ5γµγνγσγτ ) = 4iεµνστ (B.6)

The trace of an odd number of γ matrices is zero.
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