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Introduction

Important issues of fundamental physics and the numerous industrial applications
as well as the connections with biology have attracted the interest of the scien-
tific world on “complex systems” of soft matter, such as colloidal suspensions,
gels, biopolymers, glasses and granular media. Although these systems are very
different from each other they display several common features, as the slowing
down of the dynamics at high densities. In particular, gelling systems occupy a
relevant role in our everyday life (polymers, colloids, proteins,..) but the features
which characterize the transition from a liquid-like system to a disordered elastic
solid are not yet well understood. The burst of research activity on gels in the
80s was mainly aimed to describe the formation of the gel structure in terms of
percolation models [1, 2, 3] and produced a satisfying and coherent characteriza-
tion of a large number of polymeric materials. Such an investigation effort was
in prevalence concentrated on the characterization of the percolation transition
but did not really lead to a comprehensive understanding of the gel dynamics.
In particular, some analogies between the complex dynamics in polymer gels,
glasses and spin glasses are observed and suggested in the literature [4, 5], but
never conclusively interpreted. A necessary step to build a complete theory on
such complex systems would be therefore to deeper understand the microscopic
mechanisms underlying the analogies among these different systems. In order to
contribute to this issue, we attack the problem from two different sides. On one
hand we investigate by means of Monte Carlo simulations two specific problems
within an international collaboration with experimental groups. On the other
hand, we investigate the gel dynamics and its relations to structural properties
proposing a general model for irreversible gelation, whose properties are analyzed
by means of molecular dynamics simulations.

Among polymer gels, biopolymers play an important role for their numer-
ous application in food and pharmaceutical industries. Particularly interesting
is the case of gelatin, one of the main constituent of biological tissues, which is
extracted from collagen. If the temperature is sufficiently low, gelatin chains in
solution may form a physical gel, i.e. a reversible gel, due to the formation of
triple helix structures among gelatin chains. The gel is thermoreversible, i.e. by
raising the temperature the sol state is recovered. Biodiversity due to chemical
composition of the native collagen, molecular weight distribution, solution prop-
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erties such as concentration or pH, influences the temperature of helix formation
in the physical gel [6]. When the temperature is higher than the denaturation
temperature, gelatin chains behave as linear polymers in solution. In this case,
helices do not form, but a chemical gel, i.e. a permanent gel, may form due
to the reaction between amine groups along the gelatin chain and cross-linking
molecules, which in the following we will refer to as reactant agent, added to the
solution. Indeed, varying opportunely the parameters which characterize gelatin
solutions, the kinetics of reaction between chains and reactant may be tuned and
gels with a wide range of different structural and mechanical properties may be
obtained. In addition, gelatin solutions show an even richer phenomenology since
a combination of chemical and physical gelation can be observed. As a conse-
quence several structures may form, influencing the mechanical response and the
transport properties of the gel phase. Recently, the case of chemical gelation
has been investigated on gelatin solution with bisvinylsulphonemethyl (BVSM)
reactant agent [7], in which the reaction between gelatin chains and reactant has
been monitored. The kinetics of cross-link formation was found to follow a double
exponential decay with two characteristic times, which could not be explained.
In the experiments the direct measurements of microscopic cross-link kinetics
is not possible and therefore alternative investigations are required to achieve a
deeper comprehension of cross-link formation. In particular the primary ques-
tion is to understand how the two time scales controlling the kinetics depend on
the formation of single-bonds between cross-linkers and chains, bonds leading to
a bridge between two gelatin chains or else to loops within the chains. More-
over it would be crucial to understand how these time scales are related to the
properties of the gelatin solution (concentration, pH...) and of the cross-linking
molecules (concentration, reactivity...). By means of Monte Carlo simulations on
the lattice, we provide new insights into the main features of the kinetics of bond
formation in chemical gelation of gelatin chains. Our model consists in a solution
of chains diffusing on a cubic lattice: each chain is composed of effective units,
represented by elementary cells of the lattice, diffusing via bond fluctuation dy-
namics [8]. A fixed fraction of units in each chain is tetra-functional, representing
active sites which may link to reactant. The role of concentration, reactivity of
cross-linking molecules and rigidity of formed bonds on the kinetics is investi-
gated in simulations, complementing the experimental findings [9]. Within this
approach we follow the kinetics of the gel formation varying the gelatin concentra-
tion, the cross-linker concentration and its bonding probability (i.e. reactivity).
Our data reproduce extremely well the experimental findings about kinetics as
they are characterized by two time scales. The simulations moreover show that
the two time scales detected in the experiments correspond respectively to the
average time of forming single bonds “reactant-chain” and bridges “chain-chain”
via cross-linker. We give evidence that the ratio of these two characteristic times
controls the kinetics of the bond formation: variations of the concentration and
the cross-linker reactivity strongly affect this ratio and therefore the kinetics of
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the gelation process.
Gelatin gels play an important role also in a completely different phenomenon

based on degradation processes. In these processes a reverse gelation transition
may occur due to the breaking of chemical bonds as a consequence of enzyme
activity, the end result being a transition from a gel to a sol phase. Such reverse
gelation transition assumes a particularly important role in biology as the pro-
cess of dissemination of tumors in human body involves the degradation of the
extracellular matrix (ECM), a gel made of various proteins, including gelatin,
connected to form an elastic network that extends macroscopically. This gel is
normally impermeable to cell passage, and ensures organ integrity by insulat-
ing organs and preventing cell dissemination. However, during specific processes
the ECM can be degraded by a variety of proteolytic enzymes, that catalyze
the hydrolysis of the cross-links between peptide chains constituting the ECM,
increasing its permeability to the cell passage. At some point this degradation
process can solubilize the gel, realizing a “gel-sol” transition, and bringing the
ECM to a liquid state, in which cells are no longer confined and can freely diffuse.
In this view, beyond the biochemical processes involved at molecular level, the
understanding of the physical mechanisms of the ECM degradation is of great
importance. Recently, a series of interesting experiments have been realized to
study the in vitro degradation of protein gels by exogenous proteinases [10, 11].
By scattering measurements, the gel fraction has been monitored: as expected,
it is zero below the transition threshold and grows above it following a power
law behavior ∼ εβ, where ε is the distance from the threshold. With various gel-
enzyme combinations, and different enzyme concentrations, it was found that the
gel fraction power law behavior is governed by an exponent β ' 1. This result
is quite unexpected, because the sol-gel transition is usually well described by
random percolation, which is obtained when each bond between two monomers
is present with probability p, and there is no correlation between different bonds.
According to random percolation theory the gel fraction, i.e. the density of the
infinite cluster, which is zero below the transition threshold pc, grows as (p−pc)

β

for p > pc, with β = 0.41 in three dimensions quite different from the one mea-
sured in the gel degradation experiments. In order to explain the change in the
universality class with respect to random percolation, we introduce a very simple
model, which we call “pacman percolation model”, in which the protein gel is
schematized as a cubic lattice of N = L3 sites, where each site represents an
(hexavalent) monomer. At time t = 0 all the bonds between nearest neighbor
monomers are present. One or more enzymes are introduced in the system in
random initial positions. At each step, every enzyme moves from one site to a
nearest neighbor site, chosen randomly between the six possible neighbors, and
hydrolyzes (deletes) the corresponding bond if not yet hydrolyzed. Our results
indicate that, in the limit of zero density of enzymes, the model undergoes a
(reverse) percolation transition, which falls in a universality class different from
random percolation. In particular we measure a gel fraction critical exponent
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β = 1.0 ± 0.1, in excellent agreement with experiments on the real system. We
show that the deviation from the random percolation universality class is due to
the presence of long range correlations between bonds. If density of enzymes is
sufficiently high, the system falls into the random percolation universality class.
This is expected because, for very high density of enzymes, each bond is cut by
a different enzyme, so that there are no correlations between bonds.
In order to have information on the mechanical response of the system, we should
investigate the behavior of the viscosity and the elastic modulus. The theory of
critical phenomena, which can be used to describe the sol-gel transition, predicts
that, near the transition, the macroscopic quantities describing the system are
related to the distance from the transition (p−pc) by power laws. Hence, the vis-
cosity diverges as (p− pc)

−k below the transition p < pc, and stays infinite above
it, while the elastic modulus, that is zero below the transition, grows above it as
(p− pc)

f . Following the analogies proposed by de Gennes [12, 13], the exponents
f of the elastic modulus and k of the viscosity should be equal respectively to the
critical exponents t and s of the conductivity in the random resistor and random
super-conducting networks. In order to compute the conductivity and therefore
t, a present bond of the model is substituted with a resistor of unitary conduc-
tance, and an absent bonds is substituted with a resistor of zero conductance.
The total conductivity Σ of the model is measured as a function of bond density.
We obtain that it is zero for p < pc, while it grows as (p − pc)

t for p > pc with
t = 3.5± 0.1. In order to compute s, a present bond of the model is substituted
with a superconductor of infinite conductance, and an absent bonds is substi-
tuted with a resistor of unitary conductance. In this case the total conductivity
Σ diverges as (p − pc)

s for p < pc with s = 1.1 ± 0.1 as p approaches pc from
below, and is infinite for p > pc. These findings have stimulated more experi-
ments and interestingly enough preliminary results show a good agreement with
the predicted critical exponent t.

To summarize this part related to biological problems, we study by means of
computer simulations of lattice models both gelation reactions and degradation
processes of a common biopolymer, the gelatin, which has been extensively in-
vestigated experimentally. In both cases our results, obtained by Monte Carlo
simulations of simple lattice models, are directly compared to the measurements
made on these systems giving new insight into the processes involved in the con-
sidered reactions. Not only we interpret the experimental findings, but we also
obtain new predictions about physical quantities some of which have not been di-
rectly measured yet. Therefore our models, introduced to investigate gelation and
degradation processes, represent a powerful tool to describe the specific systems
investigated experimentally.

Nevertheless the gelation transition is relevant for a wide class of different
systems. Thus in order to investigate the typical features of gelation transition,
in the framework of transitions to a disordered out of equilibrium solid state, we
introduce a general model for gelling systems. Our aim is to analyze in details

6



the analogy between gelation transition and percolation transition, obtaining a
relation between thermodynamical observable and percolative properties. Fur-
thermore, a deeper investigation of gelation transition is proposed, in order to
clearly comprehend the analogies/differences among transitions involving struc-
tural arrest and slow dynamics, such as gelation, glass and jamming transitions.

By means of a 3d model, we analyze the analogies between gels and other
complex systems undergoing slow dynamics, such as supercooled liquids or spin
glasses by a molecular dynamics study of static and dynamical properties of the
system. We consider a system made of interacting soft spheres, using a truncated
Lennard-Jones potential in order to have only the repulsive part. At a certain
time quenched bonds are formed among particles whose distance is lower than a
certain fixed value R0, so that permanent clusters of particles are formed. The
bond interaction is represented by a finite elongation non-hookean spring (FENE)
potential [14], which has been widely used to study linear polymer chains. As the
particle density increases, a spanning cluster made of linked particles appears.
Due to the percolation of permanent bonds between neighboring particles, the
system undergoes a gelation transition in the universality class of random per-
colation. In fact we analyze the structural properties of the system within the
percolation approach. The viscoelastic response as the the gelation threshold is
approached, is investigated. The obtained results about the critical behavior of
viscosity and elasticity are compared to experimental findings and to the predic-
tions of different models. The dynamical behavior is studied measuring the self
intermediate scattering function, which measures the correlations between the po-
sitions of a given particle at two instant of time. We analyze its behavior varying
the density of the system and the wave number k. For the first time we analyze
the dynamical heterogeneities in gels, by means of fluctuations of the self inter-
mediate scattering function, representing a dynamical susceptibility. In the sol
phase close to the percolation threshold, we find that this dynamical susceptibility
is an increasing function of time, growing until it reaches a plateau. Approaching
the gelation threshold the asymptotic value of the susceptibility diverges with the
same exponent γ as the mean cluster size. Moreover, we demonstrate that the
asymptotic value of the susceptibility is equal to the mean cluster size. These
findings suggest an alternative way of measuring critical exponents in a system
undergoing chemical gelation, the self intermediate scattering function being re-
lated to the scattered intensity in light scattering experiments. Usually the study
of dynamic heterogeneity is extremely powerful to unravel the local dynamics and
its role in slow relaxation phenomena. In particular the presence of dynamic het-
erogeneities is considered as a peculiar feature of structural glasses and this tool
is firstly tested on polymer gels in our investigation. When the glass transition
is approached in the supercooled regime, there is no significantly growing static
correlation length. In spite of this, a dynamical correlation length [15], which is
related to the size of correlated domains and diverges approaching the transition
threshold, is observed. In our model for chemical gelation we observe a behavior
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very different from the one observed in glassy systems: no peak is present in
the susceptibility, which is instead a increasing function of time, growing until it
reaches a plateau. In the case of irreversible gels, our study elucidates the static
nature of the observed dynamical heterogeneities. Furthermore, we note that the
monotonic behavior of the dynamical susceptibility is similar to the one observed
in a spin glass model with quenched interactions, suggesting a possible common
description of the phase transition involved.

The thesis is organized as follows: In chapter 1 we define gels, making the
distinction among chemical gels, physical gels and colloidal gels. Furthermore, we
discuss a simple model for gelation: the percolation theory. In chapter 2 we we
review the fundamental aspects of the phenomenology of gelling systems and the
results of experimental investigations. As one of the most common biopolymer
gels is the gelatin, in chapter 3 we present the basic features of gelatin gels and
we present recent experimental results obtained from the study of both gelation
and degradation processes. In chapter 4 we introduce the model for chemical
gelation of gelatin chains and present our results about the kinetics of the re-
action between chains and reactant. The model for the degradation process of
extracellular matrix is described in chapter 5, where we analyze the non trivial
relation between the gelation transition and the reverse gelation transition. In
chapter 6 we introduce the model for irreversible gelation and discuss the results
for the structural and dynamical properties. The presence of heterogeneities in
irreversible gelling systems is discussed in chapter 7, stressing their static nature,
differently from structural glasses, and noting the analogy with spin glasses. Fi-
nally we make conclusive remarks and indicate the possible developments of this
work in the conclusive section.
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Chapter 1

Sol-Gel transition and critical
phenomena

Gelling systems occupy a relevant role in our everyday life (polymers, colloids,
proteins, etc.), from pharmaceutical applications to food industries. The sol-gel
transition is characterized by the passage from a viscous regime to an elastic
one. The change in the viscoelastic response of the system is determined by the
formation of a spanning interconnected network which can be due to chemical
bonds (chemical gels) or inter-particle interactions (physical gels and colloidal
gels). Within this picture, the formation of the gel structure may be described in
terms of percolation models and the macroscopic quantities describing the system
are related to the distance from the transition threshold by power laws. Several
measurements have been performed in order to determine the critical exponents
of such power laws, producing a satisfying and coherent characterization of a
large number of polymeric materials.
In this chapter we discuss the sol-gel transition, reviewing the nature of gels and
their microscopic structure. We make the distinction among chemical gels, physi-
cal gels and colloidal gels, presenting an overview of theoretical and experimental
results. We describe the main features of percolation theory and analyze some
experimental methods generally used to measure percolative properties.

1.1 Sol-gel transition and percolation theory

The gelation transition transforms a viscous liquid into an elastic disordered solid.
In general this process is due to the formation of a macroscopic molecule which
makes the system able to bear stresses. As the transition threshold is approached,
the liquid viscosity progressively increases with a power law behavior, until it di-
verges. At the onset of the gel phase, an elastic modulus appears which increases
near the gelation threshold following a power law behavior.
The chemical reaction may be induced in different ways [16, 17], for example by
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irradiating the system, by lowering the temperature or by introducing catalysts
in the solutions. In polymer systems, this is due to the polymerization process
during which chemical bonds form between monomers in solution.
The extent of the gelation process may be measured by the fraction p of bonds
which have been formed between monomers, i.e. the ratio of the actual number
of formed bonds to the maximum number of formable bonds. Also monomer
concentration φ, temperature T or the elapsed time t from the solution prepa-
ration time may be used to measure the polymerization extent. Nevertheless, in
general the polymerization extent p is used as the control parameter also in the
experimental characterization of the sol-gel transition, with the assumption that
the other parameters, like temperature T , concentration φ, or time parameters,
are proportional to it.

The gelation transition is a connectivity transition, hence the simplest way
to describe the gelation transition is to represent it as a percolation transition
[18]. As first suggested by Flory, the percolation model is considered as the ba-
sic model for the gelation transition due to formation of chemical bonds between
monomers: finite clusters of linked particles represent groups of linked monomers,
and the spanning cluster which form at the percolation threshold represents the
macromolecule constituting the gel phase. We denote the number of monomers
in a molecule by s and then call this molecule an s-cluster. An isolated monomer
is a 1-cluster. Within this approach, the sol phase corresponds to a solution of
finite clusters, and the gel phase is represented by the percolating cluster [19, 20].
In real systems it is observed that the gel usually coexists with the sol. Also
in percolating systems usually finite clusters are trapped in the interior of the
percolating cluster. As a consequence, in gelation there is no phase separation.
Indeed, in experiments the gel phase cannot be easily separated from the sol
phase, affecting the experimental determination of several quantities.
If the fraction p of formed bonds with respect to all the possible ones is p = 0,
no bonds have been formed and all monomers are isolated 1-clusters, whereas
for p = 1 all bonds have been formed and thus all monomers are linked into
one “infinite”1 network. For a particular critical value p = pc an infinite clus-
ter starts to appear: for p below pc only finite clusters are present in solution,
whereas above pc there is an infinite cluster. Hence pc is the percolation thresh-
old. Approaching pc clusters of all sizes s form. In fact the percolation theory
states that the number of s-cluster per site ns, i.e. the fraction of s-clusters,
follows a power law behavior at the percolation threshold: ns ∝ s−τ for s → ∞
at the transition threshold p = pc. The exponent τ is the Fisher exponent and in
a 3d random percolation model τ ' 2.2 [18]. In general for p → pc, the behavior
of the cluster size distribution ns is characterized by both the exponent τ and σ:
ns = s−τf [(p− pc)s

σ]. The exponent σ governs the behavior of the cutoff size

1The thermodynamical limit implies infinite systems, hence the percolating cluster which
spans the whole system is infinite.
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sξ ∝ |p− pc|−1/σ which marks the crossover behavior of f(z). The function f(z)
turns out to approach a constant value for |z| ¿ 1, i.e. s ¿ sξ, and to decay
faster than any power law for |z| À 1, i.e s À sξ.
According to the theory of critical phenomena [21], near the transition threshold
the macroscopic quantities describing the system are related to the distance from
the transition threshold p − pc by power laws. In particular, according to the
percolation theory the density of the percolating cluster P∞, which is the order
parameter of the transition, is zero below the transition and grows above it as
(p− pc)

β. The density P∞ corresponds to the experimental parameter Xgel, that
is the gel fraction, which measures the fraction of monomers forming the macro-
scopic stress bearing molecule. Another interesting quantity which characterizes
a percolating system is the connectedness length ξ, defined as follows:

ξ =

∑
s Rg(s)nss

2

∑
s nss2

, (1.1)

where the sum is considered over all finite clusters, ns is the fraction of s-
clusters and Rs(s) is the gyration radius of s-clusters. Approaching the transition
threshold, the connectedness length ξ diverges as |p− pc|−ν . From its definition,
such length ξ is the average cluster diameter. Setting the molecular weight of
monomers to unity in the theoretical approach, s represents also the weight of a
s-cluster. Hence χ =

∑
s nss

2, where the sum is considered over finite clusters, is
the mean cluster size. It diverges approaching the percolation threshold follow-
ing a power law behavior |p − pc|−γ. The mean cluster size corresponds to the
experimental parameter Mw, that is the weight average mass. In the percolation
theory, the mean cluster size plays the role of a static susceptibility, as it can be
shown that it behaves as the fluctuations of the order parameter P∞ [21].
It is important to point out that exponents ν, β, γ, etc. . . are universal, that
is they do not depend on the microscopic details of the system, but only on
global characteristics like the dimensionality of the system, or whether or not
there are long range correlations between particles and bonds. Systems with the
same values of such exponents are said to belong to the same universality class
[21]. Finally, we point out that not all the critical exponents are independent
variables, but they are related each others by several relations. For example ν,
β and γ must satisfy the relation 2β + γ = dν [18, 21], where d is the Euclidean
dimension of the embedding space. By means of computer simulations, the per-
colation threshold and critical exponents of percolating quantities may be easily
measured [22] and accurately determined, for example using standard finite size
scaling analysis [18], so that the universality class of the model under investiga-
tion may be clearly identified. Nevertheless, in experiments some difficulties in
the determination of critical exponents may arise, as we discuss in Sect.1.4.
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1.2 Percolation and thermal phase transitions

Percolation transition is a purely geometrical transition and as a consequence the
percolation theory focuses on geometrical properties of formed structures. Nev-
ertheless percolative quantities, such as the mean cluster size or the number of
clusters, may be put in correspondence with thermodynamical quantities charac-
terizing thermal phase transitions. In fact, percolation theory may be obtained
in the framework of a general spin model, the Potts model [23], which was in-
troduced to study magnetic systems. The Potts model describes an ensamble of
interacting spin variables, each of them having q possible states σ = 1, 2, ..., q.
When q = 2 we recover the Ising model [21]. The Potts model is defined by the
following Hamiltonian:

H = −J
∑

<ij>

(
δσiσj

− 1
)
− h

∑

i

(δσi1 − 1) , (1.2)

where σi is the spin variable of site i, J is the interaction energy and h is an
external magnetic field which favors alignment of all the spins in the state σ = 1.
The percolation quantities may be obtained from the Potts model Hamiltonian
in the limit q → 1 [24]. For every value of the spin variable σi we can write:

eJ(δσiσj−1) = e−J + (1− e−J)δσiσj

eh(δσiσj−1) = e−h + (1− e−h)δσi1.

Hence, the partition function may be written as:

Z = Tr{σi}
∑

C⊆E

p|C|(1− p)|D|
∏

<ij>∈C

[
e−h + (1− e−h)δσi1

]
, (1.3)

where E is the set of all the configurations of bonds in the lattice, C is a subset
of E, D = E − C with |C| and |D| being the number of bonds respectively in
the subset C and D, and p is defined as p = 1− eJ/kBT . In order to calculate the
partition function, we note that the trace over

∏
<ij>∈C is equal to 1 when all the

spins in the cluster C are aligned, otherwise is zero. In addition, the quantity in
square brackets is equal to 1 if σi = 1, and this case occurs only once, otherwise it
is equal to e−h, and this case occurs q − 1 times. Thus for the partition function
we obtain:

Z =
∑

C⊆E

p|C|(1− p)|D|
∏
r

[
(q − 1)e−hsr/kBT + 1

]
, (1.4)

where sr is the number of sites belonging to the r-th cluster in the configuration C.
Hence, introducing the brackets < ... > to indicate the configurational average,
we may write:

Z |h=0=< qNC >, (1.5)

12



where NC is the number of clusters. Starting from the expression of the partition
function in Eq. 1.4, we calculate the free energy defined as:

F = kBT lim
N→∞

1

N

d

dq
ln Z, (1.6)

where N is the number of sites in the lattice. Hence we obtain:

F |h=0= NC (1.7)

dkF

dqk
= (−1)k

′∑
skns, (1.8)

where the sum
∑′ is performed over finite clusters. There relations indicate that

using the Potts model, a connection between percolative properties, such as the
number of clusters, and thermodynamical variables, such as the free energy, may
be provided. In fact, the free energy may put in correspondence with the number
of clusters in percolating model, while the k-th derivative of the free energy may
be put in correspondence with the k-th momentum of cluster size distribution.

1.3 Chemical and physical gels

According to the nature of bonds between molecules, gels divide into two cate-
gories: chemical or strong gels and physical or weak gels.
Chemical gels are obtained when covalent bonds form between the molecules:
they may be produced by a rapid quench of the system or by irradiating it with
light. Formed bonds between particles cannot break anymore and the system
remains in the gel phase raising the temperature.
In physical gels, instead, bonds between particles are reversible, in the sense that
raising the temperature bonds between particles break and the sol phase is recov-
ered. Furthermore, in physical gels bonds between particles in solution form and
break continuously by the action of fluctuations of thermal energy. In physical
gels, gelation may be due to the formation of hydrogen bonds between molecules,
which easily break if the temperature increases.
While in the case of chemical gels we expect to have an evident transition from
a viscous regime to an elastic one, in the case of physical gels, in which bonds
continuously form and break, there is not a real transition from a regime to the
other one. On sufficiently long time scales, the system behaves as a liquid. The
differences between these two kinds of gels are evident when investigating the
behavior of the free energy approaching the transition threshold [25].

Let us investigate the case of a system made of identical particles, with func-
tionality ζ, that may link each other with probability p, distributed on the sites
of a lattice.
In physical gels bonds are not permanent and they can form and break in ther-
mal equilibrium. Let be Eb and Sb the energy and the entropy respectively of
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the bound state, and En and Sn the same quantities for the unbound state. The
probability p to form a bond at temperature T is given by:

p =
exp [(TSb − Eb)/kBT ]

exp [(TSb − Eb)/kBT ] + exp [(TSn − En)/kBT ]
. (1.9)

We may write the free energy in terms of the partition function, obtaining:

F = −kBT ln {p exp [(TSb − Eb)/kBT ] + (1− p) exp [(TSn − En)/kBT ]} .
(1.10)

From the previous equation it is evident that the free energy does not present
any singularity at the transition threshold pc. Therefore there is not any phase
transition in the ordinary sense at percolation threshold in physical gelation pro-
cesses. The presence of the percolating cluster does not necessarily produce a
sharp change in the viscoelastic properties of the system, so that the physical gel
is similar to a highly viscous liquid.
The presence of the percolating cluster strongly influences the properties of the
system if bonds are permanent, i.e. in chemical gels. In this case bonds between
molecules cannot be broken and may be treated as quenched variables. Any
realization of bonds generates a distribution of different species of molecules,
characterized by the number of monomers s and by the topology t. In the follow-
ing we shall indicate the distribution with n ≡ {nst}, a set of numbers indicating
the number of molecules belonging to the species s and t. The free energy of a
given realization {C} of bonds is given by:

F{C} = ln Z{n} (1.11)

where Z{n} is the number of configurations compatible with the distribution of
molecules n generated by the realization {C}. If w is the degeneracy of a finite
molecule, the partition function Z{n} is given by:

Z{n} = wNC , (1.12)

where NC is the number of molecules. The free energy F of the quenched system
is obtained averaging over the realizations {C}:

F =< ln Z{n} > (1.13)

where the brackets indicate the average over the bond realizations. In the case of
randomly distributed bonds, the probability P{C} for a given realization C can
be written as follows:

P{C} = pn(1− p)N−n, (1.14)

where n is the number of bonds in the configuration {C} and N the total number
of bonds in the lattice. Using this probability distribution and the results of Eq.
1.12, we obtain for the free energy of the quenched system:

F =< NC > ln w. (1.15)
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Hence the free energy of the quenched system is proportional to the number of
clusters. It follows that it has the same critical behavior of the average number
of clusters in the usual random percolation [18]:

F ∝ ε2−α (1.16)

where ε = |p − pc|/pc. It is worth to notice that approaching the transition
threshold the number of clusters Nc and hence the free energy F do not diverge,
but the second derivative is discontinuous. The presence of this singular behavior
of the free energy in chemical gels indicates that there is a transition in an ordinary
sense at the percolation threshold. As a consequence, in chemical gelling systems,
the appearance of a permanent percolating cluster crucially affects its properties
causing a sharp passage from a viscous regime to an elastic ones.

1.4 Experimental methods

Within the percolation approach to the gelation transition, the first step in the
investigation of gelling systems is to determine the universality class to which
the system belongs. To correctly determine the critical exponents, an accurate
measurement of the critical threshold is needed. The gelation threshold may be
measured by rheology experiments, as the intersection point of the loss modulus
G′(ω), which is related to the viscosity coefficient η, and the storage modulus
G′′(ω), which is related to the elastic response [26], where ω is the frequency
of the applied stress. In this case, the gelation threshold is measured as the
point that marks the passage from a dominant viscous regime to an elastic one.
However, the results obtained by this method may be not sufficiently accurate to
correctly determine the value of critical exponents. Moreover, the measurement
of critical exponents of percolating quantities, such as the mean cluster size or the
gel fraction, may request the manipulation of the gel itself, representing another
font of error. Manipulation of gel, as dilution or separation of gel and sol phases,
may cause not controllable modification of the formed structures or in some case
the breakage of clusters, strongly affecting experimental results.

Even if several difficulties arise in experimental determination of critical ex-
ponents, a coherent and complete characterization of a large number of poly-
meric materials has been provided [1, 2, 3]. As a matter of fact, several exper-
iments, performed on PDMS [27], polyester gels [28, 29], diisocynate/triol gel
[30], polyurethane [31], indicate that the percolation model well describes the
geometrical properties of gels, such as the molecule size distribution (Fig. 1.1).

In usual approaches, to determine percolating quantities as the weight average
mass, which corresponds to the mean cluster size in percolation approach, or
the average cluster diameter, which corresponds to the connectedness length,
light scattering measurements may be performed. In such measurements, the
sample needs to be dissolved in a known quantity of solvent in such a way that
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Figure 1.1: Data obtained by size exclusion chromotography experiments performed
on hydroxy terminated polyester gels [28]. From the fit τ = 2.20 ± 0.05 and σ =
0.452± 0.011 are obtained, in good agreement with random percolation results [18].

each cluster is separated from the others. Furthermore, both the experimental
determination of the density of the percolating cluster and the measurement of the
weight average mass can be performed by weighting the macromolecule. In order
to perform such measurement, the gel fraction must be separated by the sol phase.
Beyond the gelation threshold finite clusters, which are trapped in the holes of
the macromolecule, must be extracted from the gel phase. Such separation of the
sol and gel is very difficult to achieve experimentally, and clusters in this process
tend to break [20].

Let us discuss in detail light scattering technique generally used to measure
the weight average mass Mw. Assuming monodisperse molecules with radius of
gyration Rg and molecular weight M , the intensity of the scattered light I satisfies
the following relation:

cI−1
c→0 ∝

1

M

(
1 +

k2R2
g

3

)
for k2R2

g ≤ 1, (1.17)

where c is the concentration of the solution and k = 4π sin(θ/2)/λ is the mo-
mentum transfer, with λ being the wavelength of the incident light and θ the
scattering angle. For a polydisperse system it can be shown [32] that if k2R2

g ≤ 1,
the curve cI−1 = f(k2) has a slope proportional to ξ/Mw and an intercept in k = 0
proportional to 1/Mw. It is worth to notice that light scattering experiments must
be performed in dilute solutions. Since the size of clusters may increase during
the dissolution due to swelling, it is possible that the measurement of gyration
radius may be corrupted. These experiments have been performed with several
kinds of gelling system, as polycondensates of decamethylene glycol/benzene-
1,3,5-triacetic acid (DMG/BTA) [33], in copolymer of methyl methacrylate with
other methacrylates [1], and other copolymers [2]. For these systems, using the
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described method, the value of the exponent γ cannot be determined, because
within the studied range ∆p the weight average mass cannot be expressed by
any simple power law. This may be due to high inaccuracy in the determination
of pc. Actually, the precision of pc must be much higher than the range ∆p on
which measurements are performed. One way to overcome the inaccuracy in the
determination of the transition threshold is to compare the different quantities
ξ, Mw and Xgel, respectively the average cluster diameter, the weight average
mass and the gel fraction, and to measure the ratio ν/β and γ/β. These ratio

may be obtained plotting ξ and Mw versus Xgel as ξ ∝ X
−ν/β
gel and Mw ∝ X

−γ/β
gel .

However, one has to take into account that the gel extraction, which has to be
done in order to perform such measurements, may be achieved only incompletely,
as finite clusters may be trapped into the gel phase. Moreover, the cluster ra-
dius may increase by dissolution of the sample. These effects may increase the
experimental values of the ratio ν/β and γ/β. Finally, in high molecular weight
polydisperse samples, the choice of the fitting curve may be crucial for a correct
determination of the critical exponents.

1.5 Colloidal gelation

In colloidal suspensions mesoscopic particles are dispersed in another substance.
These systems, as also polymer solutions, possess structures at a mesoscopic level
that determine their macroscopic physical properties. In attractive colloidal sus-
pensions at low concentrations [34, 35] a structural arrest, called colloidal gelation,
is observed. Here the slowing down of dynamics is associated to the formation of
long-living compact structures with the change of viscoelastic properties.

Colloidal systems present a complex phase diagram [35, 36, 37] that may be
described using as parameters the volume fraction φ and the inverse of attrac-
tion energy (U/kBT )−1 (Fig. 1.2). At low volume fraction and high strength of
attraction, the system behaves as a chemical gel, since bonds formed between
particles may be considered permanent compared to observation time scales. As
the volume fraction increases and the attraction between particles decreases, the
viscoelastic behavior of the system resembles that of gels as it is characterized
by power laws. Nevertheless the rich phenomenology characterizing the behavior
of the system in this region of the phase diagram is not at all comprehended
and actually it is one of the most appealing subjects of investigation. If the
volume fraction increases further, particles become more crowded and a glassy
dynamics appears [38]: the system behaves as an attractive glass [39]. At higher
temperature, where kBT/U À 1, the attractive interaction no longer affects the
dynamics, and the system behaves as a repulsive glass. Particles are trapped into
cages made of neighboring particles and the dynamics is characterized by two
times: the first one is the typical time of diffusion inside the cage, whereas the
second one is the typical time for the cage to break and for particles to diffuse
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Figure 1.2: A schematic representation of the phase diagram of a colloidal suspension
with attractive interaction between particles.

Figure 1.3: A schematic representation of the aggregation process of particles in solu-
tion.

outside it.
For colloidal suspensions at low volume fractions and strong attractions be-

tween particles (i.e. the dashed region of the phase diagram in Fig. 1.2), the
kinetics of the gelation process may be characterized by diffusion and aggrega-
tion of particles [40, 41] (Fig. 1.3): particles in solution diffuse until they touch
and react getting bonded. As particles stick together to become clusters, the
clusters themselves continue to diffuse, collide and aggregate. The kinetics of
diffusion and aggregation of molecules may be different passing from a system
to the other one. Two limiting regimes of kinetics have been identified among
the various processes observed in different systems: rapid, diffusion-limited clus-
ter aggregation (DLCA) and slow, reaction-limited aggregation (RLCA). Each
regime exhibits distinct behaviors, characterized by different fractal dimension of
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Figure 1.4: Static light scattering from RLCA aggregates of gold (◦), silica (+) and
polystyrene (∗) [42]. The measured fractal dimensions are respectively D = 2.10,
D = 2.12 and D = 2.13.

the clusters, different shape of the cluster mass distribution, and different kinetics
of aggregation. It is worth to notice that this behavior does not depend on the
detailed nature of the colloid, provided that the essential physical interactions are
the same. Since in RLCA the sticking probability is very low, two approaching
clusters can, on statistical basis, sample all possible mutual configurations before
they finally stick together. Thus the smallest clusters in the polydisperse distri-
bution have a high probability of interpenetrating the large ones. This effect leads
to less tenuous clusters respect to DLCA. As a consequence the fractal dimension
in RLCA results higher than the one of DLCA [42]. The fractal dimension of
the macromolecule formed by diffusion aggregation processes may be measured
by light scattering experiments, investigating the behavior of the static structure
factor S(k) as a function of the wave number k [43]. This experimental tech-
nique is discussed in detail in App. A. Aggregates formed by RLCA from silica,
polystyrene latex, and gold have been studied with different methods, including
light scattering, small-angle x-ray scattering, transmission electron microscopy
(TEM), giving D ≈ 2.1 [42] (Fig. 1.4). Also aggregates formed by DLCA from
fluorinated polymer particles [44] have been investigated with different methods,
obtaining D ' 1.8 (Fig. 1.5).
When gel formation is due to DLCA or RLCA processes, the gelation process
corresponds to the formation of an interconnected network which evolves dynam-
ically, but the same approach as the chemical gelation holds within the appro-
priate observation time scale. The gelation transition may again be described in
terms of percolation theory.
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Figure 1.5: Static light scattering and small-amgle neutron scattering intensities for
DLCA aggregates in 18 mm cuvette (circles) and 0.1 mm cuvette (triangles) [44]. The
measured fractal dimension is D '= 1.8.

1.6 Conclusion

In this chapter we have reviewed the fundamental properties of gelling systems.
We have discussed the main features of percolation theory, stressing that it repre-
sents a good description of structural properties of gelling systems. The gelation
transition may be interpreted as a connectivity transition both in chemical gels
and in physical ones, the latter being characterized by non permanent bonds
among monomers. An overview of experimental methods and results has been
presented, in order to describe the phenomenology involved in gelation transition.
In the next chapter we present an overview of experimental results on the dynam-
ics of gelling systems, describing the main features of models used to interpret
and comprehend the rich phenomenology involved in gelation transition.
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Chapter 2

Gel: an elastic disordered solid

From an experimental point of view, the sol phase can be characterized by finite
viscosity, whereas the gel phase exhibits elastic behavior, due to the presence of
a macroscopic interconnected stress-bearing molecule. The formation and the
presence of such macromolecule strongly influence the relaxation functions of
gelling systems which exhibit a complex non exponential behavior.
In this chapter we present an overview of theoretical and experimental results
concerning the dynamics of gelling system, focusing on widely used models to
describe the viscoelastic response.

2.1 Viscoelasticity of gelling systems

In the previous chapter, using the percolation theory approach, we have de-
scribed the gelation transition analyzing the behavior of static properties, as the
mean cluster size, the size distribution and the fractal dimension of the formed
structures. Even if the percolation theory provides a coherent characterization
of different gelling materials, it cannot be used to describe the dynamical evo-
lution of gels and the changes in mechanical response due to the formation of
the spanning macromolecule. In fact it describes a purely static transition cor-
responding to topological changes of the system. Experimental findings reveal
that the macroscopic quantities characterizing the system follow power law be-
havior as the transition threshold is approached, in agreement with the prediction
of the theory of critical phenomena. In particular, the viscoelastic response of
chemical gelling systems is characterized by power law behavior: the viscosity
η ∝ (pc − p)−k, where p is the control parameter of the transition and pc is its
value at the threshold, and the Young elastic modulus E ∼ (p− pc)

f .
In experiments, approaching the transition threshold, the divergence of the

viscosity is observed. The critical exponent k is not unique but the obtained
values may be grouped into two families: k ∼ 0.8 (Fig. 2.1) observed in gelatin
gels [45, 46], in some silica gels (TEOS) [47], in pectin biopolymer gels [48],
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Figure 2.1: The divergence of the viscosity and the growth of elasticity for a gelatin
solution. ε is the distance from the gelation threshold. Black symbols: diffusion coeffi-
cient of probe particles in the sol phase, fitted by a power law ∼ ε0.85. Void symbols:
shear elastic modulus in the gel phase, fitted by ∼ ε1.9 [45].

and k ∼ 1.3 (Fig. 2.2) observed in PDMS [27], in polyester gels [28, 29], in
polyurethane gels [31], in some kind of end-linking gels [49], in tetramethoxysili-
con (TMOS) silica gels [50], in epoxy resins [51].

Also when studying the elastic response of gels, experiments give a wide range
of values of the critical exponent f that may be grouped into different families:
f ∼ 2 observed in gelatin gels [45, 46], in some silica gels (TEOS) [47], in agarose
gels [52], f ∼ 3 observed in polyester gels [28, 29], in epoxy resins [51], in some
branched polymer gels [53], or f ∼ 4 typically observed in colloidal gels [35, 36,
37, 54].

The different values of critical exponents k and f may be recovered within
different theoretical models. In particular within the Rouse model approxima-
tion [16, 55], in which hydrodynamic interactions and excluded volume repulsion
among monomers in a polymeric molecule are neglected, the viscosity critical
exponent k ' 2ν − β, where ν characterizes the critical behavior of the connect-
edness length and β is the critical exponent of the gel fraction. Using the random
percolation critical exponents for a 3d system, the previous relation gives k ∼ 1.3.
On the other hand, the de Gennes analogy between gelation problem and elec-
trical percolation network models, which is descried in Sect. 2.2, predicts that
the viscosity diverges at the gelation threshold as the conductivity in a random
superconducting network [13]. The conductivity of a random superconducting
network diverges as (p − pc)

−s approaching the transition threshold for p < pc

with s ∼ 0.7 in 3d, and stays infinite above it. Thus, within this analogy, k ∼ 0.7.
Following this electrical analogy, the elastic modulus in the gel phase grows above
the gelation threshold as the conductivity in a random resistor network [12]. In
this case, the conductivity, that is zero below the transition, grows above it as
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Figure 2.2: The divergence of the viscosity for epoxy resins. ε = (tgel − t)/tgel is the
distance from the gelation threshold measured as function of time [51].

(p−pc)
t with t ∼ 1.9 in 3d. Hence, in the limit of validity of this analogy, f ∼ 1.9.

By evaluating the entropic contribution of the percolating cluster in the gel [25],
it is obtained that the elasticity critical exponent f = dν, which in the case of
random percolation in 3d gives f ' 2.7. Higher values of f are obtained using
vulcanization models [16, 17, 56], which gives f ∼ 3.5 in 3d, or considering the
energy variation due to bond-bending [57]. In this case f ∼ 4.

2.2 The analogy between viscoelasticity and con-

ductivity

Elastic percolating networks may be described by the Born Hamiltonian for a
regular lattice of elastic elements [58]:

H =
1

2

∑

ij

kij

[
a(~ri − ~rj)

2
‖ + b(~ri − ~rj)

2
⊥

]
, (2.1)

where the sum is performed over the couples i, j of nearest neighbor particles.
The coefficients a and b of the two elastic terms weigh respectively the relative
displacement along the direction of the bond connecting i and j and the one
orthogonal to the direction of the bond. If they are equal, the Hamiltonian in
Eq. 2.1 describes a purely scalar problem, as the elastic energy depends only on
the modulus of the relative displacements. The equilibrium condition at each site
may be written as: ∑

j

kij(|~ri − ~rj|) = 0. (2.2)

Suppose to substitute each spring kij with a resistor with conductivity σij. Using
the analogy between Eq. 2.2 and the Kirchoff law for the current conservation at
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each site ∑

j

Iij =
∑

j

σij(Vi − Vj) = 0, (2.3)

de Gennes first proposed the analogy between the macroscopic elastic constant of
the spring network and the macroscopic conductivity of the resistor network [12].
Both the macroscopic conductivity and the macroscopic elasticity are due to the
percolating cluster. The macroscopic conductivity does not grow above the tran-
sition threshold as the mass of the percolating cluster, as there are dangling ends
that contribute to the mass but do not contribute to the conductivity. de Gennes
noticed as this is also true for the macroscopic elastic modulus of the percolating
cluster of a spring network. This analogy states a correspondence between the
elastic constants kij with the conductances σij of the resistors, and the position
~ri with the voltage Vi of each site. Hence according to this analogy, the critical
exponent f which governs the growing of the macroscopic elastic modulus should
be equal to the critical exponent t of the macroscopic conductivity. Nevertheless,
it is worth to notice that the elastic problems has a vectorial nature, and in many
cases the elastic response is determined by more than one elastic constant. In 3d
random percolating systems t ' 1.9: the conductivity critical exponent f ' 1.9
has been obtained for several gelling systems, such as gelatine gels [45, 46] and
agarose gels [52].

Pushing further the analogy with an electrical network, de Gennes suggested
the analogy between the viscosity and the conductivity of a super-conducting
network [13]. He considered a network in which bonds are substituted with a
super-conducting junction, whereas absent bonds are substituted with resistor
of finite conductance. At the percolation threshold of super-conducting bonds
an infinite macroscopic conductivity is observed. According de Gennes analogy,
conductive bonds with a non-zero end-to-end voltage difference correspond to
couples of particles with a finite mobility, which have non-zero relative veloc-
ity. Super-conducting bonds, instead, correspond to couples of blocked particles.
The percolating cluster of blocked particles would produce a macroscopic infinite
viscosity. Then the critical exponent k of the viscosity should be equal to the
critical exponent s of the macroscopic conductivity in the super-conducting net-
work. In a 3d random percolating system s ∼ 0.7 [59]. Within this approach,
the divergence of the viscosity is seen in terms of a progressive solidification of
the sol, corresponding to the blocking of the monomer movements, instead of
the idea of the divergence of relaxation time. In fact, the transformation in an
elastic solid does not necessarily implies the arrest of monomer movements. On
the other hand, the value of the critical exponent for the viscosity predicted by
this analogy is observed in several systems and in numerical studies [60].
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2.3 Entropic elasticity

Any deformation of solid systems usually produces a change in the internal en-
ergy. At temperature T ≥ 0 a deformation produces topological constraints
corresponding to an entropy reduction, which may be not negligible compared to
internal energy variation. As a consequence, the entropic contribution to the free
energy variation ∆F = ∆E−T∆S is dominant, thus the elastic response has also
a not negligible entropic origin. This is the case of the Gaussian chain, where the
length of each bond constituting the chain has a Gaussian distribution of mean
value b. The probability distribution function for the end-to-end distance r of a
Gaussian chain made of N of such bonds is given by:

Ψ(~r) =
(

3

2
πb2

)3/2

exp

(
− 3r2

2Nb2

)
, (2.4)

hence its free energy can be written as follows:

F = −kBT ln Ψ(~r) ∼ kBT
3r2

2Nb2
. (2.5)

When the chain is stretched and its end-to-end distance increases, the free energy
increases and a restoring force arises. As a consequence the chain has an elastic
behavior, due to the entropic contribution to the free energy. Accordingly an
entropic elastic constant K = 3kBT/Nb2 can be defined.

Let us consider the case of gelation. The gelation transition may be described
using the percolation theory so that the gelation threshold corresponds to the
percolation threshold, where the connectedness length ξ, defined in percolation
theory [18], diverges following a power law behavior ξ ∼ |p − pc|−ν . The elastic
free energy per unit volume can be written as

Fel =
∑

nodes

K(~Ri − ~Rj)
2, (2.6)

where the sum is restricted to nodes, which constitute the gel network, in the
unit volume and K is the elastic constant of the chain connecting i to j. The
percolating cluster may be seen as a macrolink of length ξ, hence |~Ri − ~Rj| = ξ
is the distance between two nearest-neighbor nodes and in a volume ξd there is
only one node. As a consequence the elastic free energy per unit volume is

Fel ∼ ξ−dKξ2 ∼ (p− pc)
f (2.7)

where f is the elasticity exponent. As K ∼ (p − pc)
ζ , we obtain f = (d −

2)ν + ζ. Assuming that K ∼ ξ−2, as it has been obtained in a Gaussian chain,
we obtain f = (d − 2)ν + 2ν = dν. The same result may be obtained with
an heuristic reasoning. Near the percolation threshold, the characteristic length
scale ξden of density fluctuations may be neglected with respect the connectedness
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diverging length ξ. The incipient spanning cluster may be described as a macro-
link whose end-to-end distance fluctuates under the effect of temperature, having
a certain distribution length scale which is presumably equal to the percolation
connectedness length ξ. Under a small shear deformation, each chain is slightly
stretched or compressed, thus contributing kBT to the elastic modulus. As there
are roughly ξ−d effective chains per unit volume, the elastic modulus should scale
as kBTξ−d ∼ (p− pc)

dν near the transition threshold.
Summing all the contributions to the free energy, we have F ∼ A(p−pc)

2−α +
B(p − pc)

f , the first term being the usual one for percolation [18]. When the
entropic contribution is dominant, f = dν, which using scaling relations [18] may
be written as dν = 2−α, then f = 2−α in any dimension. On the other hand, the
analogy proposed by de Gennes, discussed in the previous paragraph, predicts
f ' 1.9 in d = 3, hence the elastic term of the free energy will be dominant
compared with 2− α ' 2.6.

Interestingly, a renormalization group approach to the study of the critical
behavior of the elastic modulus [61] has demonstrated that, if excluded volume
interactions can be neglected, the critical exponent f is equal to that of the
random resistor network conductivity, as predicted by de Gennes. In contrast,
when excluded volume effects are relevant, the exponent should cross over to
dν, provided that the percolation connectedness length is much larger than the
density fluctuation length.

2.4 Decay of density fluctuations

The fundamental object that is used in the study of the dynamical behavior of
liquids is the time-dependent generalization of the equilibrium pair distribution
function, the so called van Hove function [62]. Given a system composed by N
particles in a volume V , in which the position of the α-th particle at time t is
rα(t), the density operator is given by [63]

ρ(r, t) =
N∑

α=1

δ3(r− rα(t)), (2.8)

whose mean value is < ρ(r, t) >= ρ = N/V . The van Hove function is the
autocorrelation function of ρ(r, t) in space and in time, and is defined as

G(r, t) =
1

ρ
< ρ(r, t)ρ(0, 0) >=

V

N

N∑

α,β=1

< δ3(rα(0))δ3(r− rβ(t)) > . (2.9)

It describes the probability of finding a particle around r at time t, given that
there is a particle in the origin at time t = 0. It separates naturally into two
terms, usually called the self part Gs(r, t) and the distinct part Gd(r, t), given
respectively by the sum over the diagonal terms α = β, and by the sum over the
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Figure 2.3: Typical van Hove function for a simple liquid, in the three time
regimes t ¿ τ , t ' τ , and t À τ , where τ is the structural relaxation time of the
liquid [62]. The dashed curve is Gs(r, t) and the dot-dash curve is Gd(r, t).

off-diagonal terms α 6= β. They describe respectively the probability that the
particle in (r, t) is the same that was in (0, 0), or a different one. For t = 0 one
has Gs(r, 0) = δ3(r) and Gd(r, 0) = ρg(r), where g(r) is the static pair correlation
function. For t →∞ or r →∞ one has

lim
r→∞Gs(r, t) = lim

t→∞Gs(r, t) =
1

V
' 0, (2.10)

lim
r→∞Gd(r, t) = lim

t→∞Gd(r, t) =
N − 1

V
' ρ. (2.11)

The typical behavior of Gs(r, t) and Gd(r, t) in the time regimes t ¿ τs, t ' τs,
and t À τs, is shown in Fig. 2.3, τs being the structural relaxation time of the
liquid.

The space Fourier transform of ρ(r, t) is the density fluctuation of wave num-
ber k,

ρk(t) =
∫

d3re−ikr ρ(r, t), (2.12)

whose mean square value is called static structure factor,

S(k) =
1

N
< |ρk|2 >=

∫
d3re−ikr G(r, 0) = 1 + ρ

∫
d3re−ikr g(r). (2.13)

The corresponding transform of G(r, t) gives the autocorrelation function of den-
sity fluctuations, also called intermediate scattering function or coherent scatter-
ing function,

F (k, t) =
< ρk(t)ρ−k(0) >

< |ρk|2 >
=

1

S(k)

∫
d3re−ikr G(r, t). (2.14)
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If we consider only the self part of the van Hove function, we obtain the self
intermediate scattering function or incoherent scattering function,

Fs(k, t) =
∫

d3re−ikr Gs(r, t) =
1

N

N∑

α=1

< expik(rα(0)−rα(t)) > . (2.15)

Finally, Fourier transforming over time we obtain the coherent dynamical struc-
ture factor

S(k, ω) =
S(k)

π
F (k, ω) =

S(k)

2π

∞∫

−∞
eiωt F (k, t) =

1

2π

∞∫

−∞
eiωt

∫
d3re−ikr G(r, t),

(2.16)
and the self or incoherent dynamical structure factor

Ss(k, ω) =
1

π
Fs(k, ω) =

1

2π

∞∫

−∞
eiωt Fs(k, t) =

1

2π

∞∫

−∞
eiωt

∫
d3re−ikr Gs(r, t),

(2.17)
that are (for classical systems) even functions of both k and ω.

The static and dynamic structure factors provide the most useful link between
theory and experiment, being proportional to the cross section for the elastic and
anelastic scattering of radiation from the system. The most used radiation in this
sense are slow neutrons [64], which for energies comparable with kBT at 300 K
have a wavelength of the order of 2 Å, that is approximately the distance between
neighboring particles. In this case the cross-section for the scattering of a neu-
tron, with momentum transfer h̄k and energy transfer h̄ω, is proportional to the
coherent dynamical structure factor S(k, ω). By varying the isotopic composition
of the nuclei in the liquid, or by using polarized neutrons, it is possible to measure
separately the coherent and incoherent cross-sections, and thus to separate the
contribution due to Ss(k, ω).

The scattering of light is also used to investigate the properties of liquids, but
there are two differences with the case of slow neutrons. First, the light scattering
is entirely coherent, so that no information on Ss(k, ω) can be gained. Second,
the wavelengths of light are of order 4000 − 8000 Å, so that one can apply the
phenomenological equations of hydrodynamics [65, 66] to calculate the spectral
distribution of scattered light. Thus scattering of light is not useful if one is
interested in the dynamics of the system outside the hydrodynamic region 1, that
is for wavelengths comparable with the inter-particle distance.

The static structure factor S(k) can be measured experimentally by scattering
of X-rays, electrons, or fast neutrons, that have energies much greater than kBT
for the wavelengths of interest. In this case the scattering can be treated, to a

1The hydrodynamic region corresponds to wave number k ' 10−3 Å−1, where the density
fluctuations vary very slowly in space compared with typical near-neighbor separations.
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Figure 2.4: Dynamic scattering function in silica gel (TMOS) [69]. As the gel point
is approached a stretched exponential slowing down is observed, with β = 0.65± 0.05.
At the gel point a power law decay becomes evident.

very good approximation, as being elastic, and the cross-section is proportional
to ∞∫

−∞
dω S(k, ω) = S(k). (2.18)

This relation is called elastic sum rule, and suggests a useful way of normalizing
S(k, ω). Interesting results have been obtained by dynamic light scattering exper-
iments in gelling systems [67, 68, 69, 70] showing a non-exponential behavior of
the intermediate scattering function F (k, t) approaching the transition threshold.
In general F (k, t) is well fitted by a stretched exponential decay (Fig. 2.4)

F (k, t) ∼ exp
[
(t/τ)β

]
. (2.19)

The values of the exponent β 2 may depend on the wave vector k considered and
on the particular system under investigation, for example in tetramethoxysilicon
(TMOS) silica gels β ∼ 0.65 [67], and in an interacting polymer gel β ∼ 0.4
[68]. The stretched exponential behavior of the intermediate scattering function
is a consequence of the widening of the molecule size distribution towards the
percolation regime. Therefore over sufficiently large length scales the behavior of
the intermediate scattering function is due to the contribution of different relax-
ation processes characterized by different relaxation times, whose superposition
produces a detectable deviation from an exponential law. It is worth to notice
that in fact the relaxation process is controlled by the growth of the connectivity
inside the system. Approaching the transition threshold, the mean molecule size

2This exponent must not be confused with the critical exponent of the order parameter in
percolation theory, i.e. the density of the infinite cluster.
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Figure 2.5: At the gel point the scattering function shows a power law behavior in
silica gels (TMOS) [67].

critically grows. As a consequence the onset of a power law decay (Fig. 2.5) of
the intermediate scattering function is observed [4, 67], indicating that the re-
laxation is controlled by the formation of the percolating cluster, with associated
relaxation times critically growing. In the gel phase the relaxation behavior can
be different, displaying complex behavior depending on the type of considered
gel.

These features of the dynamics are well reproduced by Monte Carlo simula-
tions of a lattice model [71] and by molecular dynamics simulations in continuum
space [72], which are discussed in detail in Chap. 6.

2.5 Conclusion

In this chapter we have presented an overview of experimental results on vis-
coelastic behavior of gelling system, reporting the most common observed values
of critical exponents of viscosity coefficient and of elastic modulus. We have fo-
cused on two different models for elastic response of gels: We have described the
analogy proposed by de Gennes between an elastic network and a random resis-
tor network, and we have discussed the role of entropy in the elastic response.
Furthermore, we have discussed the non trivial relaxation of gelling system, due
to the widening of size distribution of formed molecules in different gel types.
In the next chapter we discuss in detail gelatin gels, which have been deeply
investigated by means of experiments as they represent one of the most common
biopolymer gels. We present experimental results regarding two specific pro-
cesses, the first one is a gelation process and the latter is a degradation process.
Interestingly, experiments give new results, whose deeper comprehension requires
more extensive investigations.
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Chapter 3

Recent experimental results on
gelation and degradation
processes

Polymer gels have received great attention not only for their numerous techno-
logical and biological applications but also because they exhibit common features
with other complex systems, such as supercooled liquids, colloidal gels, and so on.
An important role is occupied by biological polymers, in particular gelatin, as it
is one of the main constituent of human tissues. Gelatin gels have been widely
investigated since 80’s, but recently new interesting results have been obtained.
In fact, while the main effort was devoted to investigate the physical gelation
process and the percolation properties of the gel phase, recently an increasing
interest on kinetics and on degradation processes has come out. Moreover, in-
troducing molecules in solution, able to bind to gelatin amine groups, chemical
bonds may form between gelatin chains and reactant, leading to the formation
of chemical gels. The mechanical properties of the formed gel strongly depend
on the parameters characterizing the reaction and may be finely tuned. Gelatin
degradation is also an interesting phenomenon to be investigated, as it occurs in
several biological processes. In fact, in tumor dissemination the degradation of
the extracellular matrix, a gelatin gel, is involved.
In this chapter we briefly describe gelatin. We present recent experimental results
on the chemical gelation process by the action of reactant molecules, analyzing
the kinetics of the reaction. Moreover, we discuss interesting results obtained by
the investigation of a degradation process due to the action of cutting molecules.

3.1 A bipolymer gel: the gelatin

Among physical gels, gelatin gels have been widely studied since 80’s [45] because
of their presence in collagen from various sources (fish or mammalian) and their
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CH N2 COOH
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H

Figure 3.1: The chemical structure of the amine group in the collagen chain.

Figure 3.2: The structure of the fibers of collagen at differen length scales: A) Fibers
of collagen; B) structure of one fiber; C) triple helix of collagen; D) conformation of a
left handed helix [74].

numerous applications in pharmaceutical, photographic and food industries.
Gelatin is denatured collagen: It is a linear chain of polypeptides, whose basic
unit is the amine acid (Fig. 3.1). The amine group is made of a central carbon
atom, to which an hydrogen atom H, a COOH group, a H2N and a radical
group R are linked. The sequence of acids in the chain determines its physical
and chemical properties, in addition to the structural ones. The radical group R
of the amine group may be hydrophobic, polarized not charged, which may form
hydrogen bonds with water, or polarized charged (NH+

2 , NH+
3 , COO−). The

effective charge of the latter type of groups depends on the pH of the solution.
In the native state, the collagen is in the form of a fiber [73] (Fig. 3.2 A),

made of rods of length about 2800 Å and diameter 15.3 Å (Fig. 3.2 B). Each rod
is constituted by a triple helix (Fig.3.2 C), in which each chain is a left handed
helix (Fig.3.2 D). The triple helix is right handed and its step is equal to 86 Å, ten
times the step of the chain helix, which is made of 1052 residues. The triple helix
is stabilized by hydrogen bonds [75], which are also responsible for its rigidity.

The formation of helices in gelatin solutions takes place when the temperature
is lowered below the denaturation temperature. The process of helix formation
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Figure 3.3: Formation of helices in gelatin solution [74].

begins in the region rich in proline and hydroproline. A given gelatin chain may
contribute to the formation of different helices, as it is shown schematically in Fig.
3.3. The gel resulting from the formation of triple-helix structures is a physical
gel: hydrogen bonds, which are reversible, stabilize the helices and break when
the temperature rises.

If the temperature increases above the denaturation temperature, about 36oC,
the hydrogen bonds are completely broken and the triple helices do not persist
in the system1. As a consequence, at higher temperature gelatin chains behave
as linear polymers in solution. Three different regime may be considered, de-
pending on the concentration of gelatin in solution, respectively a dilute regime
concentration, the overlap concentration C∗, defined as the concentration for
which polymer coils touch each other, and higher density regime concentration.
In the dilute regime, where the concentration is sufficiently low (C < C∗), the
gelatin in solution form independent coils. The radius of gyration Rg of coils
may be measured by light scattering measurements [76]: for gelatin of molar
mass Mw = 19 · 104 g ·mol−1 in aqueous solution, Rg = 350 Å. At the concen-
tration C∗ of gelatin chains, the coils start to touch each other. For gelatin with
Mw = 19 · 104 g ·mol−1 in aqueous solution it has been obtained C∗ ≈ 0.5% [77].
If the concentration increases further (C > C∗), the gelatin chains in solutions
are entangled and the motion is dominated by reptation, i.e. the chain moves
back and forth along itself.

Along the gelatin chain there are some chemical units that can react with
particular molecules forming covalent bonds. If these type of molecules, which
in the following we will refer to as cross-linkers, are present in solution, chemical
bonds between them and these chain units may form. As a consequence different
chains may be permanently linked together, so that as the concentration of bonds
between different chains increases the sol-gel transition takes place. The resulting
gel is a chemical gel. In particular in the next section we consider gelatin solutions
with the addition of bisvynilsulphonemethyl (BVSM) reactant [7], able to form

1The temperature at which triple helices disappear strongly depends on the acid composition
of the chains. Here we refer to the collagen of mammalian.
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Figure 3.4: Reaction of bond formation between gelatin chains and cross-linkers.

bonds with the lysine, the hydroxylysine, the histidine, and possibly with other
amine groups of gelatin chains (Fig. 3.4).

3.2 Microcalorimetry measurements and chem-

ical gelation

Physical gels made of gelatin helices have been widely investigated [6, 45, 46] and
a complete characterization of their viscoelastic properties has been provided.
Nevertheless the chemical gel obtained by bond formation between gelatin chains
and reactant molecules provides a new appealing system to be investigated in
order to analyze the relation between structure and mechanical response. The
influence of various parameters, such as gelatin or reagent concentration and so-
lution pH, on bond formation was investigated [7]. In experiments, the kinetics
of the reaction between amine groups of gelatin chains and BVSM has been mon-
itored by microcalorimetry measurements. The gelatin sample is a photographic
grade of gelatin extracted from lime processed ossein with an average molecular
weight Mw ∼ 165300g/mole, an index of polydispersity Ip = 2.06 and an iso-
electric point pI = 4.9. The granules contain approximately 10% humidity and
the concentrations are corrected accordingly. The size of BVSM molecule in the
considered solution is ≈ 9.5 Å. The BVSM can create covalent C − N bonds
with amine groups of gelatin chains, so that a permanent network is formed at
T ≥ 40oC, where the triple helix structure of gelatin gels does not form. The
influence of system parameters on kinetics of the reaction and elastic proper-
ties was analyzed [7]. Microcalorimetry measurements are able to monitor the
development of the chemical reaction in time by detecting the enthalpy change
during the exothermal formation of C − N bonds. If the pressure and the tem-
perature are kept constant, the enthalpy change corresponds to the heat flux
which is interchanged between a reference system and the sample in which the
chemical reaction takes place. Hence, using a differential calorimeter, the heat
flux as a function of time can be measured and the reaction extent can be easily
monitored. Several experiments have been performed at temperature T = 40oC,
using solutions with different concentrations of gelatin and reactant, for different
values of pH. In Fig. 3.5 the released heat Q(t) is plotted as a function of time
for a solution with gelatin concentration Cgel = 12%g/cm3, BVSM concentra-
tion CBV SM = 0.15%g/cm3 and pH = 6.7. Normalizing the released heat by
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Figure 3.5: Released heat during the chemical reaction between gelatin and reactant,
for a solution with Cgel = 12%, CBV SM = 0.15%, pH = 6.7 and T = 40oC.

the enthalpy change ∆H = −40kJ/mol due to the formation of a single C −N
bond, the curve represents at any time the total number of bonds formed be-
tween gelatin chains and BVSM. By writing Q(t) = A(1 − f(t)), where A is a
dimensional coefficient proportional to ∆H, we introduce the function f(t) which
represents the fraction of bonds that remain to form at time t. In Fig. 3.6 f(t) is
plotted as a function of time. Data are fitted with the sum of two exponentials:

f(t) = A1 exp(−t/τm
1 ) + A2 exp(−t/τm

2 ) (3.1)

with τm
1 = 520s, τm

2 = 9000s so that τm
2 /τm

1 = 17.31 (the apex ”m” is an
abbreviation for ”microcalorimetry”).

It is worth to notice that, when counting the number of cross-links binding
BVSM and gelatin, the method can not discriminate between bonds established
by free reactants with a chain and bonds leading to a bridge between two gelatin
chains, nor else bonds leading to a loop within a chain. This lack of information
on the kinetics leading to the gel formation crucially affects the characterization
of the gel structure and therefore its mechanical properties. Finally it may reflect
onto the location of the gelation threshold and the determination of the critical
exponent of the elastic modulus. In fact, the critical behavior of the shear mod-
ulus was measured at low frequency, giving a critical exponent f = 3.4 ± 0.3
[7], close to the expected value for the vulcanization of long chains. As a con-
sequence, a deeper comprehension of the bond formation kinetics is essential,
requiring alternative investigations. In particular the primary question is to un-
derstand how the two time scales controlling the kinetics depend on the formation
of single-bonds and bridges between the cross-linkers and the chains, or else to
loops within the chains. Moreover it would be crucial to understand how these
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Figure 3.6: The fraction of bonds of the BVSM that remain to form as a function of
time, for a solution with Cgel = 12%, CBV SM = 0.15, pH = 6.7 and T = 40oC. The
continuous line is the fit with Eq. 3.1.

time scales are related to the properties of the gelatin solution (concentration,
pH...) and of the cross-linking molecules (concentration, reactivity...). In the
next chapter we analyze the role of concentration and reactivity of cross-linking
molecules in the kinetics of bond formation, by complementing the experimental
observations with a numerical study.

3.3 The extracellular matrix and its degrada-

tion

The extracellular matrix (ECM) is a dense network made of various proteins in-
cluding collagen. In mammals it forms the basement of membranes, preventing
the cell dissemination and ensuring organ integrity. It is the support of cell adhe-
sion and thus regulates cell proliferation, differentiation and locomotion. During
specific processes some cells acquire the ability to traverse the ECM, disseminat-
ing into distant organs. In such processes, the ECM may be degraded by a variety
of proteolytic enzymes, especially metalloproteinases, that catalyze the hydrol-
ysis of the cross-links between peptide chains increasing its permeability. The
solubilizing process is due to a change of the environment of the ECM, with an
increase of its mesh size and a subsequent increase of its permeability. Moreover,
ECM proteolysis2 modifies not only the biochemistry of the cell environment,

2The proteolysis is the process of hydrolysis of proteins into peptides and amino acids by
cleavage of their peptide bonds.
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but also its mechanic characteristics, like porosity, stiffness and rigidity. These
mechanical properties in turn crucially influence cell adhesion, protein expression
or locomotion. This solubilizing transition is especially connected with tumor
invasiveness, in which some cells access the lymphatic and blood circulation, and
disseminate to distant organs (metastasis). Several studies indicate that invasive
cells produce proteolysis in the ECM, or induce proteinase3 secretion from sur-
rounding host cells. Nevertheless, the mechanisms whereby proteinase activity
permits tumor invasion through the matrix, are still unclear. To this extent,
interesting studies have been performed and the kinetics of gel proteolysis has
been investigated. The proteolysis was induced by the action of enzymes that
catalyze the hydrolysis of bonds leading to the solubilization of the ECM. In re-
cent experiments [10] the kinetics of gel solubilization has been monitored with a
spectrophotometric assay that measures the appearance of solubilized hydrolysis
products during the reaction. ECM and fibronectin gels were used, and three
types of enzymes were considered, thermolysin, trypsin and proteinase K. The
ECM is a gel formed by weak, non-covalent interactions, as attested by gelation
reversibility with temperature. Fibronectin is a large protein whose molar mass
is 5.5 105 g mol−1, which is present in the ECM, mediating cell adhesion. By
the addition of glutaraldehyde to concentrated fibronectin solution, a chemical
gel may be obtained.
The experimental system comprises two distinct areas (Fig. 3.7): the gel phase is
on the bottom of the cuvette, referred as the ”matrix area”. Above it there are
proteinases in solution; this area is referred to as ”liquid area”. As the reaction
begins some enzyme molecules diffuse from the liquid area to the matrix area,
catalyzing the formation of hydrolysis products in the matrix area. The solubi-
lized proteolysis products constituting the sol phase diffuse from the matrix area
to the liquid area. By light absorbance measurements, the fraction of solubilized
product in the liquid area Xsol(t) has been determined. The gel fraction Xgel has
been obtained using the relation Xgel(t) = 1 −Xsol(t). Measurements on differ-
ent samples confirm that enzymes are homogeneously distributed into the matrix
area before the reaction has proceeded to a notable extent. Hence the hydroly-
sis proceeds through volume degradation rather than surface degradation of the
matrix area. As the reaction proceeds, the gel is decomposed into small groups
of molecules, until the macromolecule constituting the matrix area disappears
and the sol phase is recovered. The gel-sol transition is reached at some time tc,
when Xsol(t) becomes equal to one, or when the gel fraction Xgel(t) = 1−Xsol(t)
becomes zero. With various gel-enzyme combinations, and different enzyme con-
centrations, it was found that Xgel ∝ |t − tc|β, with β ' 1, for t < tc (Fig.
3.8). In particular, for ECM gel and trypsin for example β = 1.01 ± 0.03 [10].
These results indicate that the exponent β does not depend on enzyme speci-

3The proteinase is any enzyme that catalyzes the splitting of proteins into smaller peptide
fractions and amino acids by proteolysis process.
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Figure 3.7: Schematic representation of the experimental system for ECM gel prote-
olysis [10]. The matrix area is 20 times less than the liquid area (upper, left). The
development of the reaction process is represented at three different points: initial con-
ditions of the sample (t0, upper left), diffusion of enzymes in the matrix area (upper
right), diffusion of proteolysis products in the liquid area (t, bottom).

ficity or on gel type, but it is related only to the degradation mechanism. As
the critical exponents are extracted from the behavior of the system near the
transition, and being the density of bonds p a regular function of time around
tc, we can make a Taylor expansion and take only the first order term, obtaining
(p − pc) ∝ (t − tc) near the transition. Therefore Xgel ∝ |p − pc|β, with β ' 1,
for p > pc. This result is quite unexpected, because sol-gel transition is usually
well described by random percolation [17], which is obtained when each bond
between two monomers is present with probability p, and there is no correlation
between different bonds. Random percolation in three dimensions gives a critical
exponent β = 0.41 [18], very different from the one measured in the gel degra-
dation experiments. This deviation from the random percolation universality
class may be due to the presence of a long range correlation in the distribution
of non-hydrolyzed bonds [11]. In order to verify this hypothesis and to deeper
investigate the influence of proteolysis on mechanical properties of ECM, further
characterizations of the degradation process are required. In chapter 5 we present
a 3d lattice model, investigated by means of Monte Carlo simulation, which gives
new insight into degradation processes.
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Figure 3.8: Gel fraction Xgel as a function of the distance ε = |t− tc|/tc from the tran-
sition threshold for thermolysin-degraded fibronectin (A) and trypsin-degraded ECM
(B) [10]. The different symbols refer to different concentrations of enzymes. The full
line is the fitting curve Xgel ∝ εβ with β = 1.

3.4 Conclusion

In this chapter we have described the main features of gelatin, one of the most
studied biopolymers. We have described the main results obtained by micro-
calorimetry experiments performed on a gelatin solution in which reactant agent
were added. Such experiments give information on the kinetics of bond formation,
stressing the relevance of two characteristic times in bond formation. To deeper
comprehend the nature of these two times, further investigations are needed. In
the next chapter we introduce our model for bond formation between gelatin
chains and reactant agents, which reveals to be a powerful tool to describe ki-
netics of bond formation. Furthermore, we have described the interesting results
obtained from light scattering experiments on a gelatin gel degraded by enzymes.
In chapter 5 we introduce our model for gel degradation process which is able to
interpret experimental results and give predictions about quantities which have
not measured yet.
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Chapter 4

Kinetics of chemical gelation

In gelling systems numerical approaches to the study of rheological and dynami-
cal properties have revealed to be extremely useful for a better understanding of
experimental data [71, 78, 79]. Both Monte Carlo and molecular dynamics sim-
ulation techniques (described in App. B) have been applied in the last years to
the study of different chemical gelation processes [79, 80, 81]. Here we use Monte
Carlo simulations on the cubic lattice of a simple model to analyze the kinetics
of bond formation in chemical cross-linking of a gelatin solution, considering so-
lutions of polymer chains at different concentrations. Reactant monomers can
diffuse in the solution forming bonds with the active sites along the chains and
producing the cross-linking. Within this approach we follow the kinetics of the
gel formation varying the gelatin concentration, the cross-linker concentration
and its bonding probability (i.e. reactivity). Our data reproduce extremely well
the experimental findings. They show that the two time scales detected in the
experiments correspond respectively to the average time of forming single bond
reactant-chain and bridge chain-chain via cross-linker. The ratio of these two
characteristic times controls the kinetics of the bond formation: varying the con-
centration and the cross-linker reactivity strongly affects this ratio and therefore
the kinetics of the gelation process.

In Sect. 4.1 the numerical study is described and the results on bond formation
are discussed. In Sect. 4.2 the kinetics of bond formation is analyzed and in Sect.
4.4 the dependence of “loops” on solution parameters is investigated. Finally
concluding remarks are given in Sect. 4.5.

4.1 Model and numerical study

We perform Monte Carlo simulations on a cubic lattice of a system made of bi-
functional monomers, i.e. the reactant, and linear chains, which are represented
by a sequence of n = 10 linked monomers. One monomer of the chain models a
Kuhn segment [82], which is defined as the length over which correlations in the
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Figure 4.1: A schematic representation of a chain with active sites (filled cubes) and
a reactant monomer (stripes filled cubes) linked to them.

direction of the chain tangent are lost. Hence a polymer chain may be modeled
as a sequence of Kuhn segments, i.e. freely joined segments. Therefore one
monomer of our chain represents more molecular units of the polymer. Using
light scattering and small-angle neutron scattering techniques, the length of a
Kuhn segment in a gelatin chain has been measured to be of the order of 20 Å
[83], corresponding to about 10 amino-acids along the polymer. As compared
to the experiments (described in Sect. 3.2), where gelatin chains containing 1000
amino-acids were used, our chains correspond to shorter gelatin chains, containing
only about 100 amino-acids. Each monomer occupies simultaneously the eight
sites of the lattice elementary cell and, to take into account the excluded volume
interaction, two occupied cells cannot have any site in common. Some monomers
along the chain are active sites which may bind to the reactant in order to compose
complex clusters of chains leading to the formation of a gel. The active sites are
tetra-functional: two bonds are formed with the neighbors along the chain and
two are not saturated at the beginning of the simulation. Active sites correspond
to amine groups along the chain able to react with cross-linking agents. The
number of active sites per chain, nas, corresponds to a fixed pH of the solution.
In fact, in experiments the increasing of the pH activates more amine groups able
to react with the BVSM along the chain, therefore in simulations nas could be
varied to study the effect of the pH. Although the number of amine groups in a
gelatin chain actually linked to reactant cannot be measured experimentally, it is
estimated that at most a fraction of about 20% can react. Therefore we perform
most of the simulations for nas = 5, which corresponds to a fraction of 10% of
active amino-acids in our chain.

Topological constraints play an important role in polymer conformation, strongly
influencing the entropy of the system in high density solutions. In such systems,
a crucial role is played by entanglement effects, arising from the fact that poly-
mer chains cannot cross each other. To take into account entanglements between
chains, de Gennes [16] proposed to model the polymer chain motion as confined
into a tube made of the other surrounding chains. He named this kind of motion
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“reptation”, from the Latin reptare, which means to creep. As it has been shown
in Ref. [84], for the explored density regime, reptating chains reach equilibrium
faster than chains moving with local movements. In our simulations, chains are
randomly distributed on the lattice and diffuse towards equilibrium reptating,
according the slithering-snake algorithm rules and the bond-fluctuation dynam-
ics [8], which are described in App. B.2 and App. B.3. The excluded volume
interaction and the self avoiding walk condition for polymer clusters restrict the
possibility of monomer movements: to satisfy these two requirements the bond
lengths vary into a set of permitted values according to bond-fluctuation dynam-
ics [8]. On a cubic lattice the allowed bond lengths are l = 2,

√
5,
√

6, 3,
√

10. At
each Monte Carlo step the time is increased by δt = 1 and one random movement
is selected on average for each chain: the move is executed only if it satisfies the
the bond-fluctuation dynamics rules and excluded volume conditions.

After chains have diffused and reached equilibrium, we add the reactant to
the system and let the solution diffuse towards the stationary state. Chains and
reactants diffuse via random local movements. At each Monte Carlo step the time
one random move is selected on average for each monomer: if the move satisfies
the bond-fluctuation dynamics and excluded volume conditions, it is executed,
otherwise it is rejected. These simple laws for local movements [8] give rise to
a dynamics which takes into account the main features of the real dynamics
of polymer molecules. Due to the diffusion of cross-linkers and chains, when a
reactant finds a nearest neighbor unsaturated active site, a bond may form. The
process goes on until all the possible bonds are formed.

The bond formation may request to overcome a free energy barrier, depending
on the nature of the solution, the active sites and the reactant. In particular, it
may depend on some specific local orientation of the molecules, some restriction
on the value of the angle between two bonds, due to the rigidity of the C−N link,
or else may be affected by variations of the effective reactivity of the cross-linker.
In our model we take into account these effects in the following way: the first
bond of a reactant monomer is formed along lattice directions as soon as there
is a neighboring active site. The second bond is formed with probability pb ≤ 1,
since a reactant monomer is expected to have less chance to react when is already
bonded to a chain, compared to when it is free. In the same spirit of reaction
limited aggregation models [41], pb is an independent parameter which influences
the time of formation of bridges between gelatin active sites. The value of pb

should be determined by the features of cross-linking reagent. Moreover, although
varying the bridge probability pb does not affect the gelation transition, it has a
crucial effect on the velocity of the reaction, which can be easily enlightened in
the numerical simulation as discussed later.

We perform numerical simulations of the model for different lattice sizes
(L = 50, 100, 200), where the unit length is the lattice spacing a = 1, with peri-
odic boundary conditions. The chain concentration C and the cross-linker con-
centration Cr are defined as the ratio between the number of monomers/reactant
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Figure 4.2: The phase diagram, obtained plotting the percolation probability Π as a
function of chain and reactant concentration C and Cr respectively, using a color scale.
The spanning probability has been averaged over 30 independent initial configurations
of a sample of size L = 100. The number of active sites per chain nas = 5 is kept
constant and pb = 1. The red region corresponds to Π = 1, the purple ones to Π = 0.
The percolation line can be identified with the locus Π = 0.5 which corresponds to the
green region.

and the maximum number of monomers Nmax = L3/8 in the system. Using the
percolation approach we identify the gel phase as the state in which there is a
percolating cluster, which spans the whole system [16, 17]. For a fixed set of
parameters we generate a number of configurations of the system and monitor
the reaction. In order to locate the gelation transition we analyze the percolation
probability Π, defined as the fraction of configurations leading to a percolating
cluster, and we identify the transition with the line Π = 0.5 [18]. We deter-
mine a qualitative phase diagram, shown in Fig. 4.2, by varying the chain and
cross-linker concentrations, C and Cr respectively, for a fixed nas = 5.

In experiments the total amount of reactant has been consumed at the end
of the reaction process, i.e. the amount of reactant is much lower than the
amount of active sites. The reaction stops when all the reactant is linked to amine
groups and the system is in the gel phase. Moreover the experimental system
[7] is investigated at gelatin concentrations Cgel above the overlap concentration
C∗

gel = 0.005 g/cm−3, defined as the concentration for which polymer coils touch
each other. In order to reproduce the experimental conditions the cross-linker
concentration has been fixed at C = 0.025, which corresponds to Cr ¿ C at the
sol-gel transition. Under this condition, in simulations the gel phase is located at
concentrations C above the overlap concentration which in our system is C∗ '
0.017. This choice of parameters guarantees that at the end of the reaction the
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Figure 4.3: Total number of bonds, number of bridges and number of single-bonds
normalized by the total number of possible bonds Nb as a function of time for C = 0.3,
Cr = 0.025, nsa = 5 and pb = 0.01. Inset: The same quantities for pb = 1. th indicates
the time corresponding to half of the reaction.

system is in the gel phase.
With finite size scaling analysis we obtain the percolation threshold, that for

the case Cr = 0.025 is Cc = 0.10± 0.05, the critical exponents ν = 0.9± 0.1 for
the percolation connectedness length ξ (∝ |C − Cc|−ν) and γ = 1.78 ± 0.10 for
the mean cluster size χ (∝ |C−Cc|−γ). These results are in good agreement with
the random percolation critical exponents [18]. The random percolating cluster
is characterized by a fractal structure: its mass M , i.e. the number of monomers,
scales with its linear dimension ξ with a power law behavior ξD, where D ' 2.5
[18]. The structure of the formed network may depend on model parameters and
may influence the rheological response of the system.

4.2 Kinetics of bond formation

In simulations we investigate the behavior of the number of bonds formed during
the reaction process and we distinguish between:
1. Bonds between a free reactant and an active site (we will refer to the latter
type of bond as single-bonds);
2. Bonds between a linked reactant and an active site of another chain;
3. Bonds between a reactant and two active sites of the same chain (which in the
following we will call loops).
We analyze the kinetics of bond formation for a system of size L = 100, with
Cr = 0.025 and nas = 5 varying the chain concentration C and the probability
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Figure 4.4: Function f(t) = 1− nb(t)/Nb as a function of time, where Nb is the total
number of possible bonds, for C = 0.3, Cr = 0.025, nas = 5 and pb = 0.01. The
full lines are the fitting curves ∼ exp(−t/τ1) with τ1 = 20, and ∼ exp(−t/τ2) with
τ2 = 166. Inset: f(t) with pb = 1. The full lines are the fitting curves ∼ exp(−t/τ1)
with τ1 = 34.4 and ∼ exp(−t/τ2) with τ2 = 57.8.

pb of bridge formation. The time is measured in Monte Carlo unit time δt.
Since Cr ¿ C, the total number of bonds at the end of reaction is equal to

twice the number of cross-linkers: Nb = 2CrL
3/8. In Fig. 4.3 the total number

of bonds nb(t) is plotted as a function of the time together with the number of
single-bonds ns(t) (bonds of type 1) and bridges nbr(t) (i.e. bonds of type 2 or
3) in the case pb = 0.01. The number of bonds has been normalized by Nb. As
the reaction begins, single-bonds form rapidly, then bridges start to form and
the degree of connectivity between chains increases. The behavior of the total
number of bonds versus time closely resembles the released heat experimentally
measured during the reaction reported in Fig. 3.5. The velocity of the reaction
is related to the probability pb of bridge formation. It governs the mean time of
bond formation between different chains and strongly influences the duration of
the reaction process. In the inset of Fig. 4.3 nb(t), ns(t) and nbr(t) are plotted
as a function of the time for pb = 1, showing that both single-bonds and bridges
form more rapidly as compared to the pb = 0.01 case.

The total number of bonds nb(t) = ns(t)+2nbr(t), and its time dependence can
be written as nb(t) =Nb(1− f(t)). In Fig. 4.4, the function f(t) = 1− nb(t)/Nb,
representing the fraction of bonds that remain to form, is plotted in a semi-
logarithmic plot for the case pb = 0.01. The data reproduce extremely well the
behavior observed experimentally (Fig. 3.6) and are well fitted by a sum of two
exponentials

f(t) = a1 ·e(−t/τ1) + a2 ·e(−t/τ2) (4.1)
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Table 4.1: Values of τ1 and τs obtained from direct measure for different values of pb

in systems with C = 0.3, Cr = 0.025. In the last column we report the ratio τ2/τ1

obtained by the fit of the function f(t) with Eq.(4.1).

pb τ1 τ2 τ2/τ1 τ2/τ1 (fit)
0.002 19.0± 0.1 658± 3 34.6± 0.3 20.8± 0.9
0.003 19.0± 0.1 459± 2 24.2± 0.2 18± 1
0.005 19.0± 0.1 299.5± 1.2 15.8± 0.1 10.7± 0.8
0.01 19.0± 0.1 175.6± 0.7 9.24± 0.06 6.6± 0.8
0.02 19.0± 0.1 110.6± 0.5 5.82± 0.04 5.2± 0.6
0.03 19.0± 0.1 87.8± 0.4 4.62± 0.03 4.3± 0.6±
0.05 19.0± 0.1 68.9± 0.3 3.63± 0.02 3.2± 0.7
0.08 19.1± 0.1 58.0± 0.3 3.04± 0.02 2.5± 0.9
0.1 19.2± 0.1 54.2± 0.2 2.89± 0.02 3.2± 1.2
0.2 19.0± 0.1 47.1± 0.2 2.48± 0.02 2.4± 0.2
0.3 19.3± 0.1 45.1± 0.2 2.34± 0.02 1.7± 0.2
0.5 19.0± 0.1 43.3± 0.2 2.28± 0.2 1.6± 0.1
0.8 19.0± 0.1 43.6± 0.2 2.29± 0.2 1.6± 0.1
0.9 19.2± 0.1 43.8± 0.2 2.28± 0.02 1.6± 0.1

in agreement with the microcalorimetry measurements (Eq. 3.1). From the fit
we obtain τ1 = 20 ± 2 and τ2 = 166 ± 5, for pb = 0.01 and C = 0.3, providing
τ2/τ1 = 8.3± 0.9.

If the bridge probability pb varies, the mean time of bridge formation τ2

changes, and so does the ratio τ2/τ1. In the inset of Fig. 4.4 f(t) is plotted
for pb = 1. From the fit we obtain τ1 = 34.4 ± 1.5, τ2 = 57.8 ± 1.5, and hence
τ2/τ1 = 1.68± 0.08.

In order to give a microscopic interpretation for these two characteristic times,
we directly compute the average time of formation of single bonds and bridges
respectively, which cannot be done by microcalorimetry measurements. These
two times are in agreement with the fitting parameters τ1 and τ2 within error
bars. In Tab. 4.1 we report the measured values of τ1 and τ2, their ratio and the
ratio of the values obtained from the fit with Eq. 4.1.

Next, we analyze the mean square displacement of the reactant monomers
when they are free (1) and when they have formed one single bond (2). In Fig.
4.5 we plot the mean square displacements of free reactant and reactant which
have formed one single bond for a solution with C = 0.3 and pb = 0.01. We
note that for t ' 100 all the reactant monomers have formed one single bond,
in fact no free reactants are present in the system. For reactants which have
formed one single bond, the mean square displacement increases linearly in time
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Figure 4.5: Mean square displacement of free reactant monomers (triangles) and reac-
tant which have formed one single-bond (circles) for a system with C = 0.3, Cr = 0.025,
pb = 0.01 and nas = 5. The full line are the fitting curves R2 ∝ D1(2)t.

only after all the possible bonds have formed (t ≥ 500 for data plotted in Fig.
4.5). Indeed, bond formation influences the mobility of single-bonded reactant:
as bridges between chains form, the mash size of the forming network decreases,
hindering chain diffusion so reducing the diffusion coefficient of single-bonded
reactant, which are forced to move together with the chain to which it is linked.
We have extrapolated the diffusion coefficient D1 and D2, obtaining D1/D2 ' 10,
which is consistent with the ratio τ2/τ1 (see Tab. 4.1). Interestingly we observe
that the ratio between the corresponding diffusion coefficients D1/D2 is of the
order of the ratio τ2/τ1 for all the analyzed concentrations of chains and cross-
linkers. This result suggests that τ1 and τ2 are related to the characteristic times
for diffusion of the free reactant and of the reactant linked to a gelatin chain,
respectively.

In agreement with this microscopic interpretation, our data (Fig. 4.3 and Fig.
4.4) show that, for the concentrations C and Cr explored, single-bonds form more
rapidly than bridges. This different velocity of formation is due, apart from pb, to
the different mobility of free cross-linkers with respect to linked ones, which are
forced to move together with the chains to which they are permanently bonded.
As a consequence τ1 ≤ τ2, i.e. the average time of formation of a single-bond, is
generally smaller than the average time of formation of bridges even for pb = 1.

4.3 Time scales and solution parameters

It is interesting to notice that in simulations we can easily vary the bridge proba-
bility pb, to see how the features of the cross-linking reagent could possibly affect
the kinetics of the bond formation. Remarkably, we find that this effect can be
crucial. Indeed, as pb governs the bridges formation, it influences the average time
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Figure 4.6: The ratio τ2/τ1 between the average time of formation of bridges and the
average time of formation of single-bonds as a function of bridge probability pb for
different concentrations C of chains, for Cr = 0.025 and nas = 5.

τ2: as pb decreases, the reaction slows down and τ2 increases. We systematically
analyze the behavior of τ2/τ1, as a function of bridge probability pb. In Fig. 4.6
we plot the obtained data: when the bridge probability pb increases, the average
time of bridge formation decreases, and so does the ratio τ2/τ1. For pb ≥ 0.3
we find that the ratio decreases more slowly apparently tending to a plateau.
In this regime, the bridge probability pb does not influence the kinetics of bond
formation, which is completely governed by the diffusion of the monomers and by
their concentration. The value of the ratio between the two characteristic times
obtained in the experiments at pH = 6.7 (see Fig. 3.6) corresponds to a reactant
with 0.005 ≤ pb ≤ 0.01 in our simulations.

The experimental findings show that the solution pH also affects the kinetics
of bond formation, i.e. the ratio τm

2 /τm
1 decreases as the pH decreases. This

is in agreement with the chemistry of reaction, where the non protoned form
of the amine is reactive. In fact, one could expect different regimes depending
on the chain concentration. Indeed, if a decrease of the number of active sites
will in general correspond to an increase of τ1, the effect of this variation on τ2

is likely to strongly depend on chain concentration. At high concentration of
chains, if the number of active sites per chain decreases below a certain level,
we expect that these will be surrounded by many other sites of the same chain
which are not active. As a consequence, due to excluded volume effects, they
will hardly be reached by partially linked cross-linkers, i.e. τ2 will increase as the
number of active sites decreases and so will the ratio τ2/τ1. On the other hand, τ2

strongly depends on the chain mobility and on the formation of loops. Therefore,
decreasing the pH at low concentrations leads to an increase of τ1 that may be
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Figure 4.7: The time of reaction end tf (dots), time of half reaction th (squares) and
their ratio (triangles) as a function of chain concentration C for Cr = 0.0025, nas = 5
and pb = 0.01.

balanced by a not so dramatic increase of τ2, due to the eventual formation of
loops. As a consequence one can observe a net decrease of the ratio τ2/τ1. We
would like to stress that, although the investigation of the role of pH could be in
principle done with this model by varying nas, one should use long enough chains
to be able to detect the different concentration regimes.
Conversely, when the number active sites increases up to nas = 10, in the analyzed
concentration range the average time τ1 does not change appreciably, while τ2

decreases due to the formation of loops. For bridge probability pb sufficiently
high (pb ≥ 0.8), the mean time of bridge formation becomes less than or equal to
the mean time of formation of single-bonds: in these cases, the number of bonds
nb(t) may be fitted by a single exponential with the characteristic time τ1.

To complete our study of the kinetics of bond formation, we measure the time
th of formation of half of the total bonds, and the duration of the reaction tf , i.e.
the average time needed to form all possible bonds. The data are presented in
Fig. 4.7 and show that the ratio tf/th decreases as the concentration increases,
tending to a plateau value for C ≥ 0.3. This behavior is in agreement with the
experimental findings: for CBV SM = 0.3% g/cm3 and Cgel ranging from 3% to
6%, the ratio tf/th decreases from tf/th ∼ 27 to tf/th ∼ 15. For Cgel ≥ 6%
the ratio remains constant with the concentration. Comparing the experimental
results with simulations, we conclude that the regime of concentration C ∼ 0.3
for the lattice model corresponds to Cgel ∼ 6% of the experiments [7]. This
correspondence is coherent with the behavior shown in Fig. 4.3, Fig. 4.4, Fig. 4.6
and support the suggested interpretation. It is worth to notice that tf/th À 1
for the explored range of parameters: this is a consequence of the fact that in the
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Figure 4.8: Number of loops normalized by the maximum number of bridges Nb/2,
as a function of gelatin concentration C for pb = 0.002, 0.01, 0.1, 1 for nas = 5 and for
pb = 1 with nas = 10, for Cr = 0.025. The full line is the power law fitting curve ∼ C−l

with l = 0.75.

first half of the reaction most of formed bonds are single-bonds. In the second
half, bridges between active sites are established, requiring a longer time to form.

4.4 “Loop” formation

We analyze the number of loops which are formed during the cross-linking re-
action and which may play a crucial role in the mechanical response of the gel.
Loops are not detectable in experimental measurements, but can be easily mon-
itored in simulations. Previous numerical simulations of polymerization process
in hexamethylene diisocynate-based polyurethane [85] indicate that the number
of loops plays different roles in the various concentration regimes. Indeed the
loss of elasticity due to loops may be outweighed by the increase of topological
entanglements, depending on the concentration.

At the end of the reaction we count the number of loops, normalized by the
maximum number of bridges Nb/2, and investigated its behavior as a function of
C. Data plotted in Fig. 4.8 refer to chain with nas = 5 and nas = 10. Our results
indicate that the number of loops decreases as the chain density C increases.
In the range of concentration explored the number of loops decreases following
a power law behavior ∼ C−l characterized by an exponent l = 0.75 ± 0.05.
The behavior appears to be independent of the bridge probability pb: this result
confirms that the bridge probability only influences the kinetics of bond formation
but does not strongly affect the morphology of the system. By opportunely tuning
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pb, i.e. changing the reactant, the velocity of the reaction may be adjusted
and the formation of single-bonds and bridges may be tuned in time, but the
final geometrical properties of the structure should not be modified. On the
other hand, the connectedness of the system may be influenced by the number
of active sites per chain nas. In particular, when nas increases, the number of
loops formed in the system increases and hence the degree of connectedness of
the system decreases (Fig. 4.8). Moreover, in the limit of very diluted solutions
of chains where all sites are active (nas = 10), loops represent about 80% of the
total number of bonds and, as a consequence, the viscoelastic properties can be
sensibly modified [85].

4.5 Conclusion

In conclusion, experimental results show that two different timescales affect the
kinetics of bond formation in our cross-linked gelatin solution. The numerical
data reproduce well the experimental ones and clarify the mechanisms involved
in bond formation. Our study shows that the two time scales detected in ex-
periments correspond to the average time of forming single bonds reactant-chain
and bridges chain-chain via cross-linker. These two times are related to the char-
acteristic times of diffusion of free reactants and reactants which have already
formed one bond. Their ratio controls the kinetics of the bond formation. Con-
centration variations, the cross-linker reactivity and the pH strongly affect this
ratio and therefore the kinetics of the gelation process. Our findings also show
that the probability pb to form a bridge between two active sites allows to finely
tune the kinetics of the reaction via the ratio of the two characteristic times. A
variation of pb in our interpretation corresponds to a variation of the free energy
barrier to be overcome in order to form the bond, or to different orientations of
bonds vectors. Hence to vary pb corresponds to change the reactant agent in the
gelatin solution. Moreover, our data indicate that the number of loops formed
between two active sites of the same chain, which has an important effect of the
viscoelastic properties of the system, increases when the pH of the solution in-
creases. This model represents a useful tool to investigate rheological behavior
of gelatin solutions and the relation between the kinetics of gel formation and gel
structures.

In conclusion, in this chapter we have investigated a gelation process. Also
degradation phenomena are relevant in polymer physics, hence in the next chapter
we analyze an interesting degradation process.
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Chapter 5

A degradation process

In the previous chapter we have introduced a lattice model to describe the kinetics
of bond formation in a gelation process. Now we analyze the degradation process
described in Sect. 3.3 and introduce a lattice model to study the solubilization of
extracellular matrix (ECM), a biological gel made essentially of collagen, due to
the action of enzymes. Enzymes diffuse in solution and catalyze the hydrolysis
of bonds between monomers constituting the extracellular matrix. The gel is
schematized as a cubic lattice, and the enzyme as a random walker, that cuts
the bonds over which it passes. The model undergoes a (reverse) percolation
transition, which for low density of enzymes falls in a universality class different
from the random percolation one.

In Sect. 5.1 we introduce and describe our model, investigating its proper-
ties within the percolation approach. In Sect. 5.2 the presence of long range
correlation between bonds is investigated. The critical behavior of mechanical
properties is studied in Sect. 5.3. In Sect. 5.4 the case of uniform density of
enzymes is discussed, and final remarks are presented in Sect. 5.5.

5.1 A lattice model

In Sect. 3.3 we have described recent experiments performed on extracellular
matrix degraded by enzymes present in solution. Unexpected results have been
obtained [10], which indicate that the system does not belong to the random
percolation universality class. Hence further investigations are required in order
to deeper comprehend the mechanisms involved in the degradation process. We
introduce a very simple model, which we call “pacman percolation model” [86],
in which the protein gel is schematized as a cubic lattice of N = L3 sites, where
each site represents an (hexavalent) monomer. At time t = 0 all the bonds
between nearest neighbor monomers are present. One or more enzymes are then
introduced in the system in random initial positions. At each step, every enzyme
moves from one site to a nearest neighbor site, chosen randomly between the
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pacman percolation experiment random percolation
pc 0.139± 0.001 0.2488
ν 1.8± 0.1 0.88
β 1.0± 0.1 1.0± 0.1 0.41
γ 3.4± 0.2 1.80
t 3.5± 0.1 2.0
s 1.1± 0.1 0.73
τ 2.3± 0.1 2.2
D 2.4± 0.1 2.5

Table 5.1: Percolation density and critical exponents in the pacman percolation
model and in random percolation in three dimensions.

six nearest neighbors, and hydrolyzes (deletes) the corresponding bond if not
yet hydrolyzed 1. Periodic boundary conditions are chosen. In Fig. 5.1a it is
shown the two-dimensional version of the model, with only one enzyme in the
system, after the enzyme has walked around for some time. It is evident how
the remaining non-hydrolyzed bonds are spatially correlated, with respect to
a random percolation model (Fig. 5.1b). At each time step, there will be a
distribution of clusters, where two sites belong to the same cluster if there is a
path of non-hydrolyzed bond between them. We measure as a function of the
bond density p: a boolean variable equal to one if there is a percolating cluster,
to zero otherwise; the size of the percolating cluster, if any; the mean cluster
size, that is 1

N

∑
s nss

2, where ns is the number of clusters of size s per site, and
the percolating cluster is excluded from the sum. We perform the simulation
many times, with different initial positions of the enzymes and random number
sequences, and average over all the runs the above mentioned quantities. In this
way, we obtain the percolating probability Π(p, L), the percolating cluster density
ρ(p, L) and the mean cluster size χ(p, L) as a function of the bond density p and
of the size L of the lattice. From these quantities, it is possible to evaluate the
percolation density pc and the critical exponents ν, β and γ [18]. Plotting the
percolating probability Π(p, L) as a function of p for different lattice sizes L, it
is possible to measure the percolation threshold density pc as the point in which
the different curves intersect, for L → ∞. Plotting then Π(p, L) as a function
of (p − pc)L

1/ν , one can measure the correlation length exponent ν as the value
that gives the best collapse of the curves. The error on the exponent can be
defined by looking for the largest interval of ν, such that the curves collapse
within the error bars. In the same way, plotting ρ(p, L)Lβ/ν and χ(p, L)L−γ/ν

1A complementary model, in which bonds are created rather than deleted by random walkers,
has been studied in Ref. [87].
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a)

b)

Figure 5.1: a) Pacman percolation model on a square lattice of size L = 64, with
a single enzyme and after 12000 steps, when the density of non-hydrolyzed bonds
is p = 0.42. b) The random percolation model with the same bond density. The
percolating cluster is the red one.
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Figure 5.2: Percolation probability Π(p, L) as a function of the bond density p,
with a single enzyme and for cubic lattices of size L = 30, 40, 50, 60. Upper
inset: the point of intersection of the curves. Lower inset: data collapse obtained
plotting Π(p, L) versus (p− pc)L

1/ν , with ν = 1.8 and pc = 0.139.

as a function of (p − pc)L
1/ν , one can measure the exponents β and γ. We first

study the “single enzyme” version of the model on the cubic lattice. In Fig. 5.2,
Fig. 5.3 and Fig. 5.4 we show the results for lattices of size L = 30, 40, 50, 60.
We find pc = 0.139 ± 0.001, ν = 1.8 ± 0.1, β = 1.0 ± 0.1 and γ = 3.5 ± 0.2.
The obtained value of the critical exponent β, controlling the behavior of the
percolating cluster density, is in excellent agreement with the experimental results
described in Sect. 3.3 [10], according to which β = 1.0 ± 0.1. In Tab. 5.1 the
found critical exponents are compared with those of random percolation. These
results show that the single enzyme version of the pacman percolation model falls
in another universality class with respect to random percolation, which we call
“pacman percolation universality class”.

To completely characterize the structural properties of our model, we measure
the Fisher exponent τ which governs the power law decay of the cluster size
distribution ns at the percolation threshold: ns ∼ s−τ for p = pc. In Fig. 5.5 we
plot the data for a lattice of size L = 100, obtaining τ = 2.3 ± 0.1. This value
is consistent with the 3d random percolation τ ' 2.2. Furthermore, using the
scaling relation D = d − β/ν, we obtain from our data D = 2.4 ± 0.1, which is
consistent within the error bars with the random percolation fractal dimension
D ' 2.5 [18]. Actually, both τ and the fractal dimension D only depend on
the ratio β/ν and γ/ν, as τ = d/(d − β/ν) + 1. In Ref. [88] it has been argued
that systems belonging to different universality classes, may indeed belong to
the same “weak” universality class, in the sense that the ratio β/ν and γ/ν are
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Figure 5.3: Density ρ(p, L) of the percolating cluster as a function of the bond
density p, with a single enzyme and for the same lattice sizes of Fig. 5.2. Inset:
data collapse obtained plotting ρ(p, L)Lβ/ν versus (p− pc)L

1/ν , with ν = 1.8 and
β = 1.0 and pc = 0.139.

Figure 5.4: Mean cluster size χ(p, L) as a function of the bond density p, with
a single enzyme and for the same lattice sizes of Fig. 5.2. Inset: data collapse
obtained plotting χ(p, L)L−γ/ν versus (p − pc)L

1/ν , with ν = 1.8, β = 3.4 and
pc = 0.139.
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Figure 5.5: Cluster size distribution as a function of cluster size for a system with
a single enzyme on a cubic lattice of size L = 100, near the percolation threshold
p ' 0.14. The full line is the fitting curve with τ = 2.3.

conserved. As a consequence, if the scaling and hyper-scaling relations between
critical exponents hold [18], all the critical exponents which depend on the ratio
β/ν and γ/ν (such as τ = d/(d − β/ν) + 1 and D = d − β/ν) are equal for
systems in the same weak universality class. Accordingly, our model belongs to
the random percolation universality class only in the weak sense.

5.2 Long range correlations

In order to explain the change in the universality class with respect to ran-
dom percolation, we investigate the presence of a long range correlation in the
distribution of non-hydrolyzed bonds. The correlation function is defined as
G(|r|) = 〈ρ(r′)ρ(r′ + r)〉 − 〈ρ(r′)〉2, where ρ(r) is the density of bonds, and the
average 〈. . .〉 is done over the reference position r′. It was shown by Weinrib
and Halperin [89] that if the correlation obeys a power law G(r) ' r−a at long
distances with a < d (where d is the Euclidean dimension of the system), then
the percolation transition falls in a universality class different from the random
percolation, in particular with a correlation length exponent ν = 2/a.

We have also verified the relation predicted by Weinrib and Halperin [89]
between the exponent ν and the power law governing the decay of correlations,
in the single enzyme model. We compute the correlation in the occupation of
the bonds i and j G(|i − j|) = 〈ninj〉 − 〈ni〉〈nj〉, where |i − j| is the distance
between the centers of the bonds, and ni is an occupation variable, equal to 1 if
the bond is present, 0 otherwise. In Fig. 5.6 G(|i−j|) is shown for a system of size
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Figure 5.6: Spatial correlation G(r) in the occupation of the bonds, with a single
enzyme on a cubic lattice of size L = 100, near the percolation threshold p ' 0.14.

L = 100 at the percolation threshold p = 0.139. We note that results are averaged
over many starting points of the enzyme, so that the system is translationally
invariant. The correlations obeys a power law G(r) ∼ r−a with a = 1.15±0.05,
with an exponential cut-off, presumably due to finite size effects, at distances
larger than r ' 30. The relation ν = 2/a predicted by Weinrib and Halperin, is
quite well verified within the errors. It has been recently argued [11] that for such
a model the correlations between bonds should decay as 1/r, implying a = 1 and
ν = 2. The prediction, however, is valid only if some conditions are verified, such
as long times and large distances. The discrepancy between this prediction and
our results may be due to the fact that these asymptotic regimes are not reached
in our simulations.

5.3 Viscoelastic response

Our model describes the degradation process due to the action of enzymes within
the percolation approach. The percolation theory is a purely static model, which
focuses on geometrical properties of structures. Hence, to study the mechanical
response of the system with our percolation model, we have to use an analogy
between static properties and the dynamical ones under investigation. In par-
ticular, we use the analogy proposed by de Gennes between an elastic network
and a resistor network, and a viscous fluid and a super-conducting network, de-
scribed in Sect. 2.2. We analyze the critical exponent t and s of the conductivity
in the random resistor and conductor-superconductor networks, that should be
in correspondence respectively with the exponents f of the elastic modulus, and
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Figure 5.7: Conductivity Σ(p, L) of the random-resistor network as a function of
the bond density p, with a single enzyme and for the same lattice sizes of Fig.
5.2. Inset: data collapse obtained plotting Σ(p, L)Lt/ν versus (p − pc)L

1/ν , with
t = 3.5, ν = 1.8 and pc = 0.139.

k of the viscosity [12, 13]. In the first case, each present bond of the model
is substituted with a resistor of unitary conductance, while absent bonds have
zero conductance. The total conductivity Σ of the model is then measured as a
function of bond density, and it is zero for p < pc, while it grows as (p− pc)

t for
p > pc. Using finite size scaling as usual we find t = 3.5 ± 0.1; data are plotted
in Fig. 5.7. In the second case each present bond of the model is substituted
with a superconductor, which has infinite conductance, while absent bonds are
substituted with resistors of unitary conductance. In this case the total conduc-
tivity Σ diverges as (p− pc)

s for p < pc, and stays infinite for p > pc. In this case
we find s = 1.1 ± 0.1 (see Fig. 5.8). Our results about the viscoelastic response
stimulated further measurements on the real sample investigated in Ref. [10, 11]:
preliminary results on the critical exponent of the elastic modulus give f ' 3.5,
in good agreement with our prediction.

5.4 Constant density of enzymes

To complete our study of the degradation process due to the action of enzymes,
we study the model with a uniform density ρE of enzymes. NE = ρEL3 enzymes
are distributed in random positions on the lattice, and at each step every enzyme
makes one random move. Critical exponents are extracted as described before,
performing finite size scaling analysis [18]. We find that, as long as the concen-
tration is ρE ≤ 0.5, the effective critical exponents measured are the same of the
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Figure 5.8: Conductivity Σ(p, L) of the conductor-superconductor network as a
function of the bond density p, with a single enzyme and for the same lattice sizes
of Fig. 5.2. Inset: data collapse obtained plotting Σ(p, L)L−s/ν versus (p−pc)L

1/ν ,
with s = 1.1, ν = 1.8 and pc = 0.139.

single enzyme model, that is those of the pacman percolation universality class.
For ρE ≥ 0.7 instead we measure exponents in agreement with random perco-
lation. This is expected because, for very high density of enzymes, each bond
is cut by a different enzyme, so that there are no correlations between bonds.
For intermediate values of ρE, intermediate values of the critical exponents are
obtained.

From a renormalization point of view, one may expect that the pacman perco-
lation universality class should be relevant only for a density of enzymes vanishing
in the thermodynamic limit, such as for the single enzyme model, while for any
finite density of enzymes the model should fall in the random percolation univer-
sality class. On the other hand, our results indicate that a slow crossover exists,
such that for finite but low density of enzymes effective critical exponents are
measured in the pacman percolation universality class. This may be true also for
the experimental observations.

To compare our numerical results with experiments, one has to express the
density of enzymes in the same manner. This can be done expressing the exper-
imental density as (dB/dE)3, where dE is the mean distance between enzymes,
and dB is the mean distance between the cross-links of the network. The latter
can be evaluated by dB ' (kBT/G)1/3, where G is the elastic modulus of the gel
(before enzyme degradation), and T is the temperature. In experiments of Ref.
[10], G ' 40 Pa and T ' 300 K, so that dB ' 40 nm, whereas dE is between
70 and 400 nm. The experimental concentration corresponds therefore to an en-
zyme density between 0.001 and 0.2, in the density region where the effective
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critical exponents measured in the simulations are those of the pacman percola-
tion universality class. This confirms the agreement of the value of the exponent
β measured in simulations and in experiments.

5.5 Conclusion

In conclusion, we have used a percolation model to study the degradation process
of ECM due to the action of enzymes. Our results show that, for low density of
enzymes, our model belongs to a different universality class from random percola-
tion. The change in the critical exponents may be due to long range correlations.
If the density of enzymes is sufficiently high, the correlation between bonds dis-
appears and there is a crossover to random percolation. Our results about the
elastic response of the system stimulated further experimental measurements.
Preliminary results are in good agreement with our predictions.

This model, as well as the one presented in Chap. 4, has been introduced
to investigate and comprehend the mechanisms involved into specific processes
regarding a particular real system. It reveals to be a powerful tool to investigate
degradation processes due to the action of enzymes. Nevertheless, it remains
strictly related to the particular system investigated in experiments. In order
to study the gelation transition from a more general point of view, in the next
chapter we introduce a general model for irreversible gels.
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Chapter 6

A model for irreversible gelation

In the previous chapters we have described two lattice models (Chap. 4 and
Chap. 5) which have been introduced in order to interpret the main features of
two typical processes of gel formation and gel degradation. These models provide
a powerful tool to investigate such phenomena, in order to clarify the relation
between structural and dynamical properties of gels. Nevertheless, our models
are intrinsically related to specific samples analyzed by experiments, i.e. gelatin
chains linked by reactant agents and gels degraded by the action of enzymes.
In order to study the general features of gelation transition, and in particular
the dynamical properties of gelling systems approaching the transition, we intro-
duce a more general model for irreversible gelling systems. We consider a system
made of interacting spheres, which represent monomers in solution. We study
the structure and the dynamics in chemical gels by means of molecular dynamics
simulations. In particular, we investigate the structural properties analyzing per-
colative quantities. The dynamics is investigated analyzing the self intermediate
scattering functions. Furthermore we study the viscoelastic response of the model
and compare our findings to experimental measurements and to results obtained
by different models.

In Sect. 6.1 we introduce the model and give the details of the numerical sim-
ulations whereas in Sect. 6.2 percolation properties are discussed. In Sect. 6.3 we
investigate the dynamical evolution of the system, analyzing the self intermediate
scattering functions. Finally, the viscoelastic response is discussed in Sect. 6.4
and in Sect. 6.5. In Sect. 6.6 concluding remarks are presented.

6.1 Model and numerical simulations

We consider a 3d system of N particles interacting via a Lennard-Jones potential,
truncated in order to have only the repulsive part:

ULJ
ij =

{
4ε[(σ/rij)

12 − (σ/rij)
6 + 1

4
], rij < 21/6σ

0, rij ≥ 21/6σ
(6.1)
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Figure 6.1: The truncated Lennard-Jones potential, the FENE potential and their
sum versus the distance r between particles.

where rij is the distance between the particles i and j.
After the equilibration, we introduce quenched bonds by adding an attractive

potential:

UFENE
ij =

{
−0.5k0R

2
0 ln[1− (rij/R0)

2], rij < R0

∞, rij ≥ R0
(6.2)

representing a finitely extendable nonlinear elastic (FENE). The introduction of
the FENE potential leads to the formation of permanent bonds among all the
particles whose distance at that time is lower than R0. The FENE potential was
firstly introduced in Ref. [90] and widely used to study linear polymeric systems
[14]. We choose k0 = 30ε/σ2 and R0 = 1.5σ with σ = 1 as in Ref. [14] in order to
avoid any bond crossing and to use an integration time step ∆t not too small. In
fact, increasing k0 would reduce the maximum bond extension further but would
require a reduction in ∆t.
We perform molecular dynamics simulations of this model. The equations of
motion are solved in the canonical ensemble (with a Nosé-Hoover thermostat)
using the velocity-Verlet algorithm [91, 92], which is described in App. B.4, with
a time step ∆t = 0.001δτ , where δτ = σ(m/ε)1/2 is the standard unit time for a
Lennard-Jones fluid and m is the mass of a particle. In the following we will use
reduced units where the unit length is σ, the unit energy is ε and the Boltzmann
constant kB is set equal to 1. The temperature is fixed at T = 2 and the volume
fraction φ = πσ3N/6L3 (where L is the linear size of the simulation box in units
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Figure 6.2: Static structure factor S(k) at φ = 0.12 for particles interacting via
Lennard-Jones potential (void triangles) and via Lennard-Jones plus FENE potential
(full triangles).

of σ) is varied from φ = 0.02 to φ = 0.2. We use periodic boundary conditions
and we average all the investigated quantities over 30 independent configurations
of the system.

We calculate the static structure factor S(k) = 1
N

∑
ij〈ei~k·(~ri−~rj)〉 [63], where

the average 〈. . .〉 is over independent configurations of the system, at stationarity.
In Fig. 6.2 we compare S(k) at the same volume fraction respectively before and
after the introduction of the bonds: The appearance of spacial correlations at
low wave vectors can be related to an effective attractive interaction due to the
presence of the bonds. The intensity of the low wave vector correlations increases
with the volume fraction but it is always small as compared to the number of
particles and no phase separation is observed. The deep change of the structure
factor is a clear evidence that the introduction of permanent bonds strongly
influences the static properties of the system, as well as the dynamical ones.

6.2 Gelation transition

In our model the onset of the gel phase corresponds to the formation of a perco-
lating cluster of permanent bonds [16, 17, 20] as typically observed in chemical
gelation. Varying the volume fraction φ, we calculate in the numerical simula-
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Figure 6.3: Percolation probability Π(φ,L) as a function of the volume fraction φ for
boxes of size L = 5, 8, 10, 20, 40. Inset: Data collapse obtained plotting Π(φ,L) versus
(φ− φc)L1/ν with ν = 0.88 and φc = 0.10.

tions the percolation probability Π(φ) (i.e. the average number of configurations
where a percolating cluster is found) and, from the cluster size distribution n(s),
the mean cluster size χ(φ) =

∑
s2n(s)/

∑
sn(s). For each volume fraction we use

simulation boxes of different sizes L = 5, 8, 10, 15, 20, 40. From a standard finite
size scaling analysis [18], we obtain the percolation threshold φc, and the criti-
cal exponents ν (which governs the power law divergence of the connectedness
length ξ ∼ |φ− φc|−ν as the transition threshold is approached from below) and
γ (governing the power law divergence of the mean cluster size χ ∼ |φ− φc|−γ).

Data are showed in Fig. 6.3 and in Fig. 6.4 and the obtained results are
φc = 0.10±0.02, ν = 0.88±0.05 and γ = 1.85±0.05. The obtained value of the
percolation threshold is in good agreement also with the results obtained in Ref.
[93], where the percolation of interacting soft sphere has been investigated. In
Ref. [93] the authors investigate the shift of the percolation threshold varying the
ratio r/R0, where r is the sphere radius and R0 is the maximum bond length, and
changing the probability pb of forming bonds between two spheres whose distance
is lower than R0. Our model corresponds to the case pb = 1 and r/R0 = 1/3.

In Fig. 6.5 we plot the cluster size distribution ns at the percolation threshold
for a system with N = 1000 particles. We find that at the transition threshold
the cluster size distribution follows a power law behavior ns ∼ s−τ [18] with a
Fisher exponent τ = 2.23± 0.02.
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Figure 6.4: Mean cluster size χ(φ,L) as a function of the volume fraction φ for boxes
of the same sizes of Fig. 6.3. Inset: Data collapse obtained plotting χ(φ,L)L−γ/ν versus
(φ− φc)L1/ν with ν = 0.88, φc = 0.10 and γ = 1.85.

Finally in Fig. 6.6 the radius of gyration Rg as a function of the mass s of
clusters is plotted for a system with N = 1000 particles. The data are well fitted
by a power law with exponent 1/df = 0.44± 0.03 (full line in figure) which gives
df = 2.3 ± 0.1 in agreement with the fractal dimension df ' 2.5 of the random
percolation clusters in a three-dimensional system.

The measured values of the critical exponents satisfy the hyper-scaling rela-
tions (2β + γ = νd, df = d − β/ν, and τ = 2 + (d − df )/df [18]) and are in
good agreement with those of the 3d random percolation (ν = 0.88, γ = 1.80
and τ = 2.18 [18]). Hence we conclude that our model belongs to the random
percolation universality class, in agreement with several experimental results per-
formed on gelling systems [28]. Thus, the geometrical properties of chemical gels
are well described by our model within the percolation theory.

6.3 Dynamical properties: self intermediate scat-

tering functions

We study the dynamics at equilibrium by measuring the self intermediate scat-
tering function Fs(k, t):

Fs(k, t) = [〈Φs(k, t)〉] (6.3)
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Figure 6.5: Average number (per particle) of clusters with mass s versus s for N = 1000
and φ = φc = 0.1. They are fitted with a power law s−τ with τ = 2.23 (full line).

Figure 6.6: Radius of gyration Rg as a function of the mass s of clusters for a system
made of N = 1000 particles and φ = φc = 0.1. The data are fitted with a power law
Rg ' s1/df with df = 2.3 (full line).
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Figure 6.7: Self intermediate scattering for different wave vectors at φ = 0.07 as a
function of the time t. For high wave vectors the decay is well fitted by an exponential
behavior; for the lowest wave vector k = 2π/L a stretched exponential decay appears
∼ e−(t/τ)β

.

where

Φs(k, t) =
1

N

N∑

i=1

ei~k·(~ri(t)−~ri(0)), (6.4)

and 〈. . .〉 is the thermal average for a fixed bond configuration whereas [. . .] is
the average over bond configurations. For very low values of the volume fraction
the self intermediate scattering function decays to zero following an exponential
behavior for all the wave vectors |~k| considered. As the volume fraction increases
towards the percolation threshold, a significant length scale dependence of the
dynamics is observed, which we systematically analyze in the following.

In Fig. 6.7 the self intermediate scattering function Fs(k, t) is plotted as a
function of the time for different wave vectors for φ = 0.07, i.e. φ < φc. For
high wave vectors k = |~k| the long time decay is exponential whereas for low

wave vectors it starts to follow a stretched exponential behavior ∼ e−(t/τ)β

, with
a stretching exponent β = 0.75± 0.01. For this volume fraction, the cluster size
distribution has already started to widen towards the percolation regime, and
therefore over sufficiently large length scales the behavior of Fs(k, t) will be due
to the contribution of different relaxation processes, characterized by different
relaxation times, whose superposition produces a detectable deviation from an
exponential law.
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Figure 6.8: Fs(k, t) for different values of the wave vector at φ ' φc as a function of
the time t. For the lowest wave vector a power law decay appears ∼ t−c. The full line
corresponds to the power law with the exponent c = 0.65± 0.03.

As the volume fraction is increased towards the percolation threshold, the
mean cluster size in the system critically grows. In Fig. 6.8 Fs(k, t) is plotted for
the percolation threshold φc as a function of time for different values of the wave
vector. For the lowest wave vector k = 2π/L the onset of a power law decay
is observed, indicating that over these length scales the relaxation is controlled
by the formation of the percolating cluster, with an associated relaxation time
critically growing. Finally, in Fig. 6.9 the self intermediate scattering function
Fs(k, t) for the lowest wave vector k ' 0.35 is plotted as a function of time for
different volume fractions φ approaching the percolation threshold, giving the
relaxation dynamics over length scales of the order of the system size. At very
low values of the volume fraction the self intermediate scattering function decays
to zero following an exponential behavior. As the volume fraction is increased
above the percolation threshold, we observe the onset of a stretched exponential
decay ∼ e−(t/τ)β

, with β decreasing as a function of the volume fraction (for
instance β = 0.75± 0.01 for φ = 0.07 and β = 0.58± 0.02 for φ = 0.085). At the
transition threshold the long time decay is characterized by a power law behavior
∼ t−c, with the exponent c = 0.65 ± 0.03. We note that the onset of the power
law regime of the self intermediate scattering function for the lowest wave vector
is observed for φ = 0.09, which is slightly smaller that the percolation threshold
φc measured performing finite size scaling analysis. This effect is due to the fact
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Figure 6.9: Self intermediate scattering function for different volume fractions φ and
k ∼ 0.35 as a function of time t. For φ << φc the decay is well fitted by an exponential
behavior; if φ approaches to φc a stretched exponential decay appears ∼ e−(t/τ)β

with
β = 0.75± 0.01 for φ = 0.07. At the percolation threshold the decay is well fitted by a
power law ∼ t−c with c = 0.65± 0.03. For φ > φc the decay become slower and slower.
The full lines are the fitting curves.

that the dynamics is studied for a finite system made of N = 1000 particles,
that is L ' 10. If the volume fraction increases further, the decay become slower
and slower, showing a logarithmic behavior until a two step decay appears. These
features of the dynamics well reproduce the experimental observations in different
systems [3, 4, 67, 69, 70]. Moreover they agree with previous results obtained via
Monte Carlo simulations of a lattice model [94].

6.4 Viscosity critical behavior

As it has been discussed in the previous section, the self intermediate scattering
function slowly goes to zero as the percolation threshold is approached for φ ≤ φc.
In fact, the dynamics of the system critically slows approaching the gel phase.
The widening of size distribution approaching the transition threshold reflects into
the superposition of different relaxation times, with the subsequent slowing down
of the correlations decay. The formation of the percolating cluster influences
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Figure 6.10: The relaxation time τ as a function of the distance from the percolation
threshold φc − φ. The full line is the fitting curve ∼ (φc − φ)−k with φc = 0.09 and
k = 1.22± 0.01.

dramatically the relaxation to equilibrium, inhibiting the dynamical evolution
and involving longer and longer relaxation times. As a consequence the viscosity
of the system increases, diverging as the transition threshold is approached. It
can be shown, that the viscosity coefficient η is proportional to the structural
relaxation time τ : η ∝ τ [26]. Indeed, the relaxation time can be expressed as
τ ∼ η/G, where G is the equilibrium value of the elastic response in the solid-like
behavior: G = σ/u0, σ being the stress and u0 the strain. Hence, the relaxation
time diverges approaching the gelation threshold following a power law behavior
with the same critical exponent of the viscosity coefficient.

We measure the relaxation time, defined as follows:

τ =

[〈∫ t
0 Fs(kmin, t

′)t′dt′∫ t
0 Fs(kmin, t′)dt′

〉]
(6.5)

where the time t is such that for t′ ≥ t and φ < φc, Fs(k, t′) = 0. The triangular
brackets 〈...〉 indicate thermal average for a fixed bond configuration, whereas
the square brackets stand for the average over bond configurations.

Our data, plotted in Fig. 6.10, are fitted with a power law τ ∝ (φc − φ)−k

with φc = 0.10± 0.02 and k = 1.22± 0.01. The value of the exponent is in good
agreement with the ones experimentally measured in PDMS [27], in polyurethan
gel [28] and in polyester gels [29]. Furthermore, it is in good agreement with the
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result obtained from Monte Carlo simulations on cubic lattice performed in Ref.
[71].

6.5 Elastic response

For volume fractions φ ≥ φc the onset of an elastic behavior is observed. The
spanning cluster makes the system able to respond to external stress with a
restoring force. The elastic constant K may be defined as the ratio between the
external force and the deformation. In an elongation experiment where δ = l−l0 is
the linear deformation of the system and the restoring force is a linear function of
the displacement δ, the elastic free energy is equal to F ∼ Kδ2. Using the Young
elastic modulus E, the free energy per unit volume is equal to F/V ∼ Eδ2/l20,
and hence K ∼ EV/l20. Then for a cube of size L we obtain K ∼ ELd−2. The
Young elastic modulus has a power law behavior governed by the critical exponent
f : E ∝ (φ − φc)

f ∝ ξ−f̃ , with f̃ = f/ν and ξ being the connectedness length
(∼ |φ− φc|−ν). As a consequence

K ∼ Ld−2ξ−f̃ . (6.6)

Hence, the elastic modulus presents the following scaling behaviors as a function
of the system size L and of the distance from the percolation threshold (φ− φc):

φ > φc (ξ finite) K ∝ Ld−2 (6.7)

φ = φc K ∝ L−z̃ (6.8)

fixed L K ∝ ξ−f̃ ∝ (φ− φc)
f (6.9)

where z̃ = z/ν = f̃ − (d− 2).
In order to determine the behavior of the elastic modulus K, we assume that
in the equilibrium configuration the free energy reaches its minimum, and we
perform a series expansion around the equilibrium configuration:

F ' 1

2

∑

α,iα

K(~riα − ~riα(0))2 + O(~∆r2), (6.10)

where ~riα(0) is the equilibrium position and ~riα is the position after the deforma-
tion of the i-th particle of the cluster α. In fact, when the system is at equilibrium,
the average free energy F is proportional to temperature:

[〈F 〉] = [〈1
2
K∆R2〉] ∼ kBT (6.11)

where ∆R2 is the fluctuation of the particle positions, and 〈...〉 is the thermal
average, whereas [...] is the average over bond configurations. Since the elas-
tic modulus K increases following a power law behavior above the transition
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Figure 6.11: Fluctuations ∆R2 of the radii of gyration of the percolating cluster
(squares) and of the finite clusters (circles) above and below the percolation threshold
as a function of the volume fraction φ; the lines are the curves obtained fitting the data
with a power law with exponent respectively f for the percolating cluster, zbelow and
zabove for finite clusters.

threshold, also 1/∆R2 has to behave in the same manner approaching the per-
colation point from above, in order to keep constant the product K∆R2. As
a consequence, the critical behavior of ∆R2 is characterized by the same criti-
cal exponent of K, with the opposite sign. Indeed, when the system is in the
gel phase, the calculation of the fluctuations ∆R2

p of the gyration radius of the
percolating cluster, with the subsequent determination of the critical exponent
f of the elastic modulus is not an easy task, as the dynamics is very slow. To
improve the statistics and in order to obtain independent determination of f and
z respectively, we also calculate the fluctuations ∆R2

f of the gyration radius of
finite clusters, performing a weighted average over the cluster size distribution:

∆R2
f =

∑
s ∆Rs

2nss
2

∑
s nss2

(6.12)

As the elastic modulus starts growing from zero at the transition threshold, in
order to keep constant the free energy in Eq. 6.11, we expect the fluctuations of
the gyration radius to diverge.
In Fig. 6.11 the fluctuations of the gyration radius are plotted as function of
volume fraction φ: both the fluctuations ∆R2

p of the percolating cluster, and that
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Figure 6.12: Fluctuations of the radius of gyration of the percolating cluster. The full
line is the fitting curve ∝ (φ− φc)−f with f = 2.8 and φc = 0.09.

∆R2
f of the finite clusters diverge as the transition threshold is approached. Data

are fitted with power law behavior. For φ > φc, where there is a spanning cluster,
we calculate the fluctuations ∆R2

p of the gyration radius of the percolating cluster.
In Fig. 6.12 ∆R2

p is plotted as a function of the distance from the percolation
threshold (φ−φc). We measure the critical exponent f using the scaling relation
reported in Eq. 6.9 and fitting our data with a power law behavior, and we
gain f = 2.8 ± 0.1. To obtain an independent estimation of z we calculate the
fluctuations ∆R2

f of the gyration radius of finite clusters. In fact, using the self-
similarity properties, the finite clusters may be considered as percolating clusters
of a system with size ξ, equal to the gyration radius, at the transition threshold:
The scaling relation to be used is Eq. 6.8 where L = ξ, i.e. ∆R2

f ∝ ξ−z̃ ∝
|φ − φc|−z. In Fig. 6.13 we plot ∆R2

f as a function of |φ − φc| for φ > φc and
φ < φc determining the critical exponent z. By fitting data below and above the
transition threshold with the function A |φ−φc|−z we obtain zbelow = 1.91± 0.16
and zabove = 1.9 ± 0.2 respectively. The two estimations coincide within error
bars: averaging the values obtained above and below the percolation threshold, we
obtain z = 1.9±0.2. The consistency of zbelow and zabove reflects the self-similarity
of the system at φ < φc and φ > φc. The power laws fitting data have distinct
prefactors, Abelow ' 3 · 10−5 and Aabove = 5 · 10−6 respectively. Indeed, even if the
critical behavior of the gyration radius fluctuations of finite clusters is the same
below and above the critical threshold, the amplitude of the fluctuations varies. In
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Figure 6.13: Fluctuations ∆R2 of the radii of gyration of the of the finite clusters above
(dots) and below (squares) the percolation threshold fitted with the curve A|φ− φc|−z

with φc = 0.1 and z = 1.91.

fact, above the percolation threshold, the amplitude of fluctuations is influenced
by the presence of the percolating cluster: due to excluded volume effects, the
presence of the infinite cluster inhibits fluctuations of gyration radius of finite
clusters. Nevertheless, the scaling behavior of fluctuations is not influenced by
the presence of the percolating cluster and the critical exponent zabove ' zbelow.
In addition, we note that the measured exponents z and f satisfy the relation
z = f − (d− 2)ν.

Our results well reproduce experimental findings obtained in several gelling
materials, such as polyurethane gels [28] and polyester gels [29]. We observe
that the viscosity critical behavior of these system is also in agreement with our
results. Furthermore, our findings are in good agreement with the theoretical
predictions presented in Ref. [25] and discussed in Sect. 2.3, where on the basis
of entropic considerations, f = dν has been obtained. In 3d random percolating
systems ν ' 0.88, and hence f ' 2.64. In a system belonging to the 3d Ising
model universality class, where ν ' 0.6, we expect to have f ' 1.8. If we consider
a system which undergoes phase separation, such as attractive colloids which at
low volume fraction and low temperature may form a gel, at the critical point
Ising critical exponents are obtained, as a consequence we expect f ' 1.8. The
latter value of f is in agreement with de Gennes prediction on elastic modulus
critical behavior [12], obtained using the analogy between a spring network and
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a conductive network (Sect. 2.2). Furthermore, recently by means of renormal-
ization group calculations it has been argued that f = dν ' 2.7 in systems where
excluded volume effects are relevant, while f ' 1.9 when excluded volume effects
may be neglected [61]. Indeed at the critical point compensation effects between
attractive and repulsive interactions, due to excluded volume effects, arise, thus
possibly making excluded volume interactions negligible. Actually, the critical
behavior of the elastic modulus at the critical point is a subject under investiga-
tion.

6.6 Conclusion

In conclusion, we have presented a molecular dynamics study of a model under-
going chemical gelation and we have investigated its structural and dynamical
properties. Due to the formation of permanent bonds between particles, the
gelation transition corresponds to the percolation threshold (random percola-
tion). We have found that the correlation functions in the sol phase and at the
transition threshold behave as observed in the experiments in a number of gelling
systems. In chemical gels the onset of a stretched exponential decay is typically
associated to the wide cluster size distribution close to the gelation threshold,
producing a wide distribution of relaxation times. At the percolation threshold,
the longest relaxation time diverges due to the critical growing of the percolation
correlation length, producing a long time power law decay. We have measured the
critical exponent of the elastic modulus computing the fluctuations of gyration
radius of both percolating and finite clusters. Our results are in good agreement
with experimental findings and theoretical predictions of different models.
Our model for permanent gels reveals to be a powerful tool to investigate gelling
systems, as it well reproduce the most common structural and dynamical proper-
ties of such systems. In the next chapter, we present an innovative investigation
on gelling system, analyzing the behavior of fluctuations of dynamics and its
relations to percolative properties.

77





Chapter 7

Static and dynamic
heterogeneities in irreversible
gels

In this chapter we analyze the heterogeneities in the model introduced in the
previous chapter, in terms of the fluctuations of the self intermediate scattering
functions. For the first time we apply the study of fluctuations of self inter-
mediate scattering function, usually applied in glass investigations, to gels. In
the sol phase close to the percolation threshold, we find that fluctuations, which
are a dynamical susceptibility, are a monotonically increasing function of time.
The asymptotic value of this dynamical susceptibility diverges at the gelation
transition as the mean cluster size. We find that the observed behavior of the
dynamical susceptibility is due to the static nature of the heterogeneities and it
is similar to the one observed in a spin glass with quenched interactions. These
findings suggest an alternative way of measuring the mean cluster size in a system
undergoing a chemical gelation.

In Sect. 7.1 we analyze heterogeneities in our model for irreversible gelling
systems. The analogy between the asymptotic value of the dynamical suscepti-
bility and the percolation correlation function is discussed in Sect. 7.2. In Sect.
7.3 our results about heterogeneities in chemical gels are compared to the results
obtained in a dilute spin glass models with quenched interactions. Finally, Sect.
7.4 contains the concluding remarks.

7.1 Dynamical susceptibility

We now analyze and discuss the behavior of the dynamical susceptibility χ4(k, t),
introduced and generally used in the framework of glass transitions, associated to
the fluctuations of the self intermediate scattering function Fs(k, t) = [〈Φs(k, t)〉]
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Figure 7.1: χ4(kmin, t) as a function of t for φ = 0.02, 0.05, 0.06, 0.07, 0.08, 0.085,
0.09, 0.095, 0.10, 0.11 (from bottom to top).

where

Φs(k, t) =
1

N

N∑

i=1

ei~k·(~ri(t)−~ri(0)), (7.1)

and 〈. . .〉 is the thermal average for a fixed bond configuration and [. . .] whereas
the average over bond configurations. The dynamical susceptibility is defined as:

χ4(k, t) = N
[
〈|Φs(k, t)|2〉 − |〈Φs(k, t)〉|2

]
(7.2)

For the first time we perform in a gelling system the analysis of this function,
commonly used in the investigation of glassy systems, such as supercooled liq-
uids. In supercooled liquids Fs(k, t) presents a typical two step behavior with a
stretched exponential decay at long times due to the cooperative rearrangements
of particles. In fact, in supercooled liquids, the motion of a particle depends to
some degree on the motion of its neighbors. The first decay of Fs(k, t) is due
to the diffusion of the particle inside the cage made of its neighbors. The sec-
ond step decay, which is slower, is due to the breakage of the cage and to the
cooperative rearrangement of particles. The rearranging movement of one parti-
cle is only possible if a certain number of particles also move. The average size
of such cooperative rearranging regions depends on the spatial extension of cor-
related thermal fluctuations. Each region rearranges into another configuration
independently of its environment. Thus in supercooled liquids dynamical hetero-
geneities are due to the presence of independent cooperative rearranging regions.
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In such systems χ4(k, t) grows in time towards a maximum, before decreasing for
long times as a consequence of the transient nature of dynamic heterogeneities.
The value of the maximum is expected to diverge as the dynamical transition
temperature is approached from above [15, 95]. We compute the dynamical sus-
ceptibility χ4(k, t) in our model for irreversible gels: For the smallest wave vector
k = 2π/L ∼ 0.35, the dynamical susceptibility χ4(k, t) has the behavior shown
in Fig. 7.1. Differently from the behavior typically observed in glassy systems,
we find that, for φ < φc, χ4(k, t) is a monotonically increasing function of time,
tending to a plateau whose value increases with the volume fraction. For φ ≥ φc

the system is out of equilibrium and χ4(k, t) always increases as a function of
time and does not reach any asymptotic value.

Indeed we demonstrate that in the thermodynamic limit, when k → 0 and
t →∞, χ4(k, t) tends to the mean cluster size.

Being limt→∞〈Φs(k, t)〉 = 0 at φ < φc, we have:

lim
t→∞χ4(k, t) = lim

t→∞
1

N

N∑

i,j=1

[
〈ei~k·(~ri(t)−~ri(0))e−i~k·(~rj(t)−~rj(0))〉

]

=
1

N

N∑

i,j=1

[∣∣∣〈e−i~k·(~ri−~rj)〉
∣∣∣
2
]
. (7.3)

In the last passage of Eq. 7.3 we have considered that, for large enough time

t, the term e−i~k·(~ri(t)−~rj(t)) is statistically independent of e−i~k·(~ri(0)−~rj(0)), being
~ri(t) − ~rj(t) independent of ~ri(0) − ~rj(0), so that we can factorize the thermal
average. In Eq. 7.3, we may now separate the sum over connected pairs (γij = 1,
that is pairs belonging to the same cluster), and disconnected ones (γij = 0, that
is pairs belonging to different clusters), so that

lim
t→∞χ4(k, t) =

1

N

N∑

i,j=1

[
γij

∣∣∣〈e−i~k·(~ri−~rj)〉
∣∣∣
2
]

+
1

N

N∑

i,j=1

[
(1− γij)

∣∣∣〈e−i~k·(~ri−~rj)〉
∣∣∣
2
]

(7.4)

Let us analyze separately the contribution of the disconnected particles, in-
troducing the pair correlation function hij(r) [63], defined as hij(~r) + 1 = gij(~r),
where (1/V )gij(~r) gives the probability density of finding the particle i in ~r, given
the particle j in the origin. The pair correlation function can be written as:

hij(~r) = gij(~r)− 1 = V 〈δ(~r + ~ri − ~rj)〉 − 1. (7.5)

Hence, we can write the delta-function in terms of the pair correlation function
hij(~r), obtaining the following expression:

〈δ(~r + ~ri − ~rj)〉 =
1

N
ρ[hij(~r) + 1], (7.6)
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where ρ = N/V . The delta-function can now be used to write the exponential of
Eq. 7.4 in an integral form:

〈e−i~k·(~ri−~rj)〉 =
∫

d3~r e−i~k·~r 〈δ(~r + ~ri − ~rj)〉. (7.7)

Hence, using Eq. 7.6, we can write:

〈e−i~k·(~ri−~rj)〉 =
1

N

∫
d3~r e−i~k·~r ρ[hij(~r) + 1], (7.8)

It is worth to notice that the pair correlation function hij(~r) decay to zero at
a finite distance if the particles i and j are disconnected [63]. We consider the
thermodynamic limit where N →∞ and L →∞ leaving the density ρ constant
and analyze the behavior of the integral in Eq. 7.8. The first term, the Fourier
transform of the correlation function hij(~r) multiplied by ρ, is finite when L →∞
since hij(~r) decays to zero at a finite distance. The second term, the Fourier
transform of ρ, is not larger in modulus than 8ρ/|kxkykz|, and again remains
finite when L →∞. As a consequence, the integral in Eq. 7.8 remains finite for
any finite fixed ~k, so that the l.h.s. of Eq. 7.8 is of order O(1/N).

As the disconnected pairs are at most of order N2, the second term in Eq. 7.4
is also of order O(1/N) and can be neglected in the thermodynamic limit. As a
consequence, χas(k, φ) ≡ limN→∞ limt→∞ χ4(k, t) is given by

χas(k, φ) = lim
N→∞

1

N

N∑

i,j=1

[
γij

∣∣∣〈e−i~k·(~ri−~rj)〉
∣∣∣
2
]

(7.9)

where only connected particles contribute. For φ < φc, clusters will have at most
a linear size of order ξ, so that the relative distance |~ri−~rj| of connected particles

will be |~ri − ~rj| ≤ ξ. Therefore, for |~k| ¿ ξ−1 the exponent ~k · (~ri − ~rj) will tend

to zero. Hence for γij = 1, i.e. connected particles, we have that 〈e−i~k·(~ri−~rj)〉
tends towards 1 and

lim
k→0

χas(k, φ) = χ (7.10)

where χ =
∑

i,j γij is the mean cluster size [18], introduced in Sect. 1.1.
In Fig. 7.2 χas(kmin, φ) calculated in the simulations is plotted as a function of

(φc−φ) together with the mean cluster size χ independently evaluated. We find a
good agreement between χ and χas(kmin, φ). We observe that, as the percolation
threshold is approached from below, χas(kmin, φ) displays a power law behavior.
The exponent, within the numerical accuracy, is in very good agreement with the
value of the exponent γ for the mean cluster size.

Our results open the way to a new method to measure critical exponents in
irreversible gels, in particular we suggest to measure the mean cluster size by
means of scattering experiments, as the dynamical susceptibility χ4(k, t) is re-
lated to the fluctuations of the scattered intensity in scattering experiments. In
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Figure 7.2: Asymptotic values of the susceptibility (full triangles), χas(kmin, φ) and
mean cluster size (open squares) as a function of (φc − φ), with φc = 0.10. The data
are fitted by the power law (φc − φ)−γ with γ = 1.8± 0.1.

usual approaches (Sect. 1.4) the sample needs to be dissolved in a known quantity
of solvent in such a way that each cluster is separated from the others and then
the mean cluster size is measured by light scattering measurements. Beyond gela-
tion threshold, finite clusters, which are trapped into the holes of the gel, must
be extracted from the gel phase, but such separation is very difficult to achieve
experimentally as clusters tend to break during this process [20]. Hence in the
existing procedures the sample has to be manipulated in order to extract infor-
mation on the cluster size distribution. On the contrary, the method proposed
on the basis of our results relates percolation quantities to directly observable
quantities, with no need to treat the sample.

In conclusion, our results lead to a correspondence between χas(kmin, φ), a
quantity defined starting from dynamics fluctuations, and the mean cluster size
χ, a purely percolative quantity.

7.2 Analogy with the percolation correlation func-

tion

In the previous section we have analyzed, for the first time in gelling systems, the
asymptotic behavior of the dynamical susceptibility, obtaining a close relation
between dynamics fluctuations and a percolative quantity. Pushing further this
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Figure 7.3: Asymptotic values of the susceptibility, χas(k, φc) as a function of the wave
vector k. At φc the data are fitted with a power law (full line) ∼ k−2.07, in agreement
with the exponent η − 2 of random percolation.

correspondence, we investigate the analogy between the behavior of χas(k, φ)
versus the wave vector and the Fourier transform of the percolation correlation
function g(r) [18]. The function g(r), known also as pair connectivity function,
gives the probability that, given a particle in the origin, a particle in r belongs to
the same cluster. The percolation correlation function decays following a power
law behavior for r ¿ ξ, with an exponential cutoff:

g(r) =
e−r/ξ

rd−2+η
. (7.11)

Hence its Fourier transform has the following power law behavior:

∫
ei~k·~r e−r/ξ

rd−2+η
dd~r ∼ kη−2. (7.12)

In Fig. 7.3 we plot χas(k, φ) as a function of the wave vector k for different φ
approaching φc. At the percolation threshold and for low wave vectors, χas(k, φc)
follows a scaling behavior as a function of k, with an exponent −2.07 ± 0.02,
consistent, within the numerical accuracy, with the prediction η − 2 of random
percolation [18]. This result indicates again that the dynamic susceptibility is
strongly affected by the critical properties of the percolation transition. It shows
that if one varies the wave vector k, and 2π/k > σ where σ is the particle diam-
eter, sufficiently close to the percolation threshold the measure of the dynamic
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susceptibility is able to detect the self-similarity of the structure of the system due
to the percolation transition. Finally it suggests that at the percolation threshold
the asymptotic value of the dynamic susceptibility at low k has the same scaling
behavior as the Fourier transform of the percolation correlation function [18].
Since to vary the wave vector corresponds to vary the length scale used to probe
the dynamics of the system, χas(k, φ) is expected to be a function of the rescaled
variable k(φc − φ)−ν and we can perform a standard finite size analysis.

Moreover, close to φc the plateau value χas(k, φ) ∼ (φc−φ)−γ for k = 0, hence
for finite small k we can write χas(k, φ) ∼ (φc−φ)−γg(kξ), where ξ = A(φc−φ)−ν

is the connectedness length, and g(z) has the following behavior:

g(z) =

{
constant z ¿ 1
z−γ/ν z À 1

(7.13)

Writing χas(k, φ) = k−γ/νkγ/ν(φc − φ)−γg(kξ), we finally obtain:

χas(k, φ) = kη−2f(kξ) (7.14)

where we have used the relation η − 2 = −γ/ν [18] and we have defined the
function f(kξ):

f(kξ) = (k)γ/ν(φc − φ)−γg(kξ) = A−γ/ν(kξ)γ/νg(kξ) (7.15)

using (φc − φ) = (ξA)−1/ν . Therefore we plot χas(k, φ)k2−η as a function of
the rescaled variable k(φc − φ)−ν in Fig. 7.4. The data support our scenario.
A good collapse onto a unique master curve is obtained at low wave vectors
and sufficiently close to the percolation threshold. As φ grows towards φc, the
collapse of the data is obtained over a wider interval of values of the rescaled
variable k−1/ν(φc−φ). All these results coherently show how in the present system
the dynamical correlated domains, signalled by the dynamical susceptibility in
Fig. 7.1, are indeed static and coincide with the clusters of particles connected
by bonds whose correlation length is the connectedness length ξ, diverging at
the percolation threshold. A similar behavior is observed in a dilute spin glass
model [96] with quenched interactions, where the heterogeneities have a static
nature and the asymptotic value of the dynamical susceptibility coincides with
the static non-linear susceptibility diverging at the spin glass transition threshold.
Interestingly enough, in the same model, by introducing interactions with a finite
lifetime, there is no divergence of the static susceptibility and one recovers the
behavior of the dynamic susceptibility which is typical of supercooled liquids. We
suggest therefore that also in our case glassy like dynamical properties should
appear by introducing a finite bond lifetime. This idea is also corroborated by
the results obtained via Monte Carlo simulations of a lattice model for gelling
system where the relaxation functions were studied in both cases of permanent
bonds and finite lifetime bonds [94]. The case of bonds with a finite lifetime is
more relevant to other gelation phenomena, as in the case of colloidal gelation,
where there is no chemical bonding [97, 98].
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Figure 7.4: Scaling plot showing χas(k, φ)k2−η as a function of k−1/ν(φc − φ).

7.3 Heterogeneities and quenched disorder

Our investigations indicate that heterogeneities in irreversible gels have a static
nature, due to the presence of permanent clusters of bonded particles. Bonds
between particles may be treated as quenched variables, which cause quenched
disorder.

The dynamical susceptibility, which we analyze for the first time in a model
for irreversible gels, is usually used to investigate the presence of heterogeneities
in glasses and spin glasses. Structural glasses are generally characterized by
annealed interactions, so that disorder is self-organizing. As a consequence, in
such systems dynamical heterogeneity has a different nature and the dynamical
susceptibility has a different behavior from the one we observe in our model.
Indeed, we note that the presence of quenched interaction strongly influences the
dynamical susceptibility, as it has been observed also in spin glasses.

Let us consider a dilute spin glass model with quenched interactions [99], in
which the dynamical susceptibility has been investigated [96].

The hamiltonian of the model is:

−βH = J
∑

〈ij〉
(εijSiSj − 1)ninj + µ

∑

i

ni, (7.16)

where Si = ±1 are Ising spins, ni = 0, 1 are occupation variables, and εij = ±1
are ferromagnetic and antiferromagnetic interactions between nearest neighbor
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spins. The variables εij may be quenched variables randomly distributed with
equal probability or annealed variables evolving in time.

In the limit µ → ∞ all sites are occupied, i.e. ni ≡ 1, and the model
reproduces the Ising spin glass. In the limit J → ∞ the model describes a
frustrated lattice gas with properties recalling those of a “frustrated” liquid. In
fact the first term of hamiltonian in Eq. 7.16 implies that two nearest neighbor
sites can be freely occupied only if their spin variables satisfy the interaction, that
is if εijSiSj = 1, otherwise they feel a strong repulsion. To make the connection
with a liquid, we note that the internal degree of freedom Si may represent
for example internal orientation of a particle with non symmetric shape. Two
particles can be nearest neighbors only if the relative orientation is appropriate,
otherwise they have to move apart. Since in a frustrated loop the spins cannot
satisfy all interactions, in this model particle configurations in which a frustrated
loop is fully occupied are not allowed. The frustrated loops in the model are the
same of the spin glass model and correspond in the liquid to those loops which,
due to geometrical hindrance, cannot be fully occupied by the particles.

In this lattice model the dynamical susceptibility is defined as follows:

χSG(t) = N
[
〈q(t)2〉 − 〈q(t)〉2

]
, (7.17)

where

q(t) =
1

N

∑

i

Si(t
′)ni(t

′)Si(t + t′)ni(t + t′). (7.18)

The square brackets [. . .] indicates the average over the disorder, the triangular
brackets 〈. . .〉 stands for the thermal average over a fixed disorder configuration.

The dynamical susceptibility of the dilute spin glass with quenched interac-
tion [96], reported in Fig. 7.5, behaves in a similar manner to the susceptibility in
irreversible gels obtained in our simulations, plotted in Fig. 7.1. It is a monotonic
function increasing in time, which tends to a plateau value. The asymptotic value
χ(∞) corresponds to the static susceptibility, and therefore has a divergence at
the critical threshold φc ' 0.62. This behavior is a consequence of quenched
disorder: the heterogeneities have a static nature, due to the presence of perma-
nent interactions. The analogy between dilute spin glass model with quenched
interactions and irreversible gels suggests a possible common description of the
involved transitions. Furthermore, we stress the analogy between the dynamical
susceptibility defined in Eq. 7.17 and the irreversible gel dynamical susceptibility
defined in Eq. 7.2 according to which the order parameter q(t) of the spin glass
transition may be put in correspondence with the self intermediate scattering
function Φs(k, t).

In the annealed version of the dilute spin glass model, where the interactions
εij in Eq. 7.16 are annealed dynamical variables evolving in time, the dynamical
susceptibility of Eq. 7.17 has a non-monotonic behavior. In Fig. 7.6 the dynam-
ical susceptibility of the annealed dilute spin glass is reported: it has the same
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Figure 7.5: Dynamical susceptibility for a dilute spin glass system of size L = 16 and
densities φ = 0.58, 0.59, 0.60, 0.61, 0.62 [96].

behavior of a Lennard-Jones binary mixture [100], presenting a maximum χ(t∗)
that seems to diverge together with the time of the maximum t∗ as the density
grows. The non-monotonic behavior of the dynamical susceptibility in these sys-
tems may be due to the annealed nature of disorder, which is self-organizing.
We expect that in physical gels, where there are not quenched interactions be-
tween particles, we recover the behavior of annealed dilute spin glass models,
which resembles the one of structural glasses. This in fact found in experimental
investigations of colloidal suspension forming colloidal gels [101]. Further inves-
tigations on physical gels are required to clarify this issue.

7.4 Conclusion

We have presented for the first time a study of the dynamical susceptibility cal-
culated from the fluctuations of the self-intermediate scattering function in a
chemical gel. This quantity is a monotonically increasing function of time. For
the lowest wave vector its asymptotic value diverges at the gelation transition as
the mean cluster size. We have argued that this finding can be generally expected
to hold in a sufficiently large system, at a low wave vector k such that 2π/k > ξ, ξ
being the linear size of the largest cluster. This result is supported by the scaling
behavior of the asymptotic value of the dynamical susceptibility as function of
the wave vector and of the distance from the percolation threshold. Interestingly
enough, these results allow to connect a structural feature of the gelling solution,
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Figure 7.6: Dynamical susceptibility for the annealed version of the dilute spin glass
model, for a system of size L = 16 and densities φ ranging from φ = 0.52 to φ = 0.61
with step δφ = 0.01 [96].

i.e. the mean cluster size, whose critical behavior signals the percolation transi-
tion, to a dynamical quantity which is measurable in light scattering experiments
[102].

Due to the static nature of heterogeneities we find a behavior very different
from the one observed in glassy systems where the divergence of the peak of the
dynamical susceptibility is interpreted as related to a divergence of a dynamical
correlation length, which can not relate to any static correlation length. In the
present case no peak is present: the observed behavior of the dynamical suscep-
tibility is similar to that observed in a dilute spin glass model with quenched
interactions [96], suggesting a possible common description of the involved phase
transitions. Moreover, the results obtained in the dilute spin glass model with
annealed interactions suggest that, in the investigation of physical gels one should
consider bonds with finite lifetime [94, 97] and should recover a behavior more
similar to structural glassy systems.
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Conclusions

In this thesis we have studied the gelation transition from different points of
view. We have introduced and investigated three different models in order to
stress and deeper comprehend relations between structural and dynamical prop-
erties of gelling systems. We have first introduced two models investigated by
means of Monte Carlo simulations on lattice, in order to describe two specific
processes of gelation and degradation. Later we have introduced a general model
for irreversible gelation, investigated by means of molecular dynamics simulations
in order to describe the gelation transition in the framework of transitions toward
a disordered solid state involving critical slowing down of dynamics.

Our lattice model introduced to study the kinetics of bond formation between
gelatin chains and reactant agents, describes and clarifies the principal mecha-
nisms involved in bond formation. By means of Monte Carlo simulations, we
have investigated the crucial role of two typical time scales in the kinetics. Our
results reproduce well the experimental data and indicate that the two time scales
detected in experiments correspond to the average time of forming single bonds
reactant-chain and bridges chain-chain via cross-linkers. These two time scales
are related to the characteristic times of diffusion of free reactants and reactants
which have already formed one bond. Their ratio controls the kinetics of the
bond formation. In fact, variations of the concentration, the cross-linker reactiv-
ity and the pH strongly affect this ratio and therefore the kinetics of the gelation
process. Our findings also show that the probability pb to form a bridge between
two active sites allows to finely tune the kinetics of the reaction via the ratio of
the two characteristic times. A variation of pb in our interpretation corresponds
to a variation of the free energy barrier to overcome in order to form the bond, or
to different orientations of bonds vectors; hence the variation of pb corresponds
to change the reactant agent in the gelatin solution. In conclusion, our simple
model allows to analyze in detail the kinetics of bond formation and provides a
good description of chemical gelation of gelatin chains. It represents therefore a
useful tool to investigate rheological behavior of gelatin solutions and the relation
between the kinetics and the gel structure. The viscoelastic response of the sys-
tem obtained at the end of the reaction between gelatin chains and cross-linkers,
is actually under investigation.

The degradation process due to the action of enzymes which catalyze the hy-
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drolysis of bonds between gelatin chains in the extracellular matrix has been also
investigated by means of Monte Carlo simulations of a lattice model. The reverse
sol-gel transition has been studied using the percolation theory. Our results show
that, for low density of enzymes, our model belongs to a universality class differ-
ent from random percolation. The change in the critical exponents is due lo long
range correlations between bonds. If the density of enzymes is sufficiently high,
the correlation disappears and there is a crossover to random percolation univer-
sality class. Our results on the viscoelastic response approaching the transition
threshold stimulated further experimental measurements. Preliminary results on
the elastic response are in good agreement with our predictions. Our simple lat-
tice model provides a good description of the degradation process, as it captures
the main features of real systems.

Finally, to complete our study of gelation phenomena, we have presented a
molecular dynamics study of a chemical gelling system and investigated its struc-
tural and dynamical properties. Due to the formation of permanent bonds, the
system undergoes a gelation transition in correspondence with the percolation
threshold. We have shown that the percolation transition belongs to the random
percolation universality class, and the correlation functions in the sol phase and
at the transition threshold reproduce the experimental results. We have analyzed
the viscoelastic response of the system, obtaining that the critical behavior of the
elastic modulus is governed by the exponent f = dν ' 2.6, where d is the Eu-
clidean dimension of the embedding space and ν ' 0.88 is the critical exponent
which characterizes the divergence of the connectedness length in random perco-
lation. We expect that for colloidal gels at the critical point, where the system
should belong to the Ising universality class with ν ' 0.6, one obtain f ∼ 1.8,
which coincides with de Gennes predictions. The elastic response at the critical
point is actually under investigations.
For the first time we have presented a study of the dynamical susceptibility in a
chemical gel, defined as the fluctuations of the self intermediate scattering func-
tion. We have observed that the susceptibility increases in time until it reaches
a plateau. This asymptotic value diverges approaching the gelation threshold
following a power law with the same critical exponent of the mean cluster size.
By analytical investigation, we have demonstrated that the asymptotic value of
the susceptibility corresponds to the mean cluster size. Our results suggest that
the percolation critical exponent γ in the sol-gel transition could be measured
directly via the fluctuations of the self intermediate scattering functions, without
the manipulation of the sample needed in usual methods. The observed behavior
of the susceptibility in our model for irreversible gelation is very different from the
non-monotonic behavior observed in structural glasses. In these systems, the sus-
ceptibility grows in time until it reaches a maximum and then decays to zero, due
to self-organizing nature of disorder. When the glass transition is approached in
the supercooled regime there is no significantly growing static correlation length.
In spite of this, a dynamical correlation length, which is related to the size of cor-
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related domains and diverges approaching the transition threshold, is observed.
Our findings suggest that one key difference between irreversible gelation due to
chemical bonds and supercooled liquids close to the glass transition is that in
irreversible gelation the heterogeneities have a static nature, due to the presence
of permanent clusters of molecules. These clusters, on the other hand, affect
the dynamics and as a consequence the dynamic transition coincides with the
static transition, characterized by the divergence of a static correlation length,
i.e. the linear size of the clusters. The behavior of the dynamical susceptibility
of our model is similar to the one observed in a spin glass model with quenched
interactions, suggesting a possible common description of the phase transition
involved. In fact, also in this case the dynamic transition is connected to the
divergence of a static length. In physical gels, where the clusters are not per-
manent due to finite bond lifetime, we expect that the dynamical susceptibility
behavior is analogous to the one of glass forming liquids. This is in fact found in
experimental investigations of colloidal suspension, forming colloidal gels, and in
some MD simulations. Interestingly enough, also in some spin glass models, by
introducing interactions with finite lifetime, there is no divergence of the static
susceptibility and one recovers the behavior of the dynamic susceptibility which
is typical of supercooled liquids. Further information on gelling systems, both
irreversible and reversible gels, may be obtained investigating the case of physical
gels, where the bonds between particles have a finite lifetime.
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Appendix A

Fractal dimensions and static
structure factor

The static structure factor of an aggregating system, defined as the Fourier trans-
form of the density correlation function, may be directly related to the intensity
of the scattered light in a scattering experiment. In particular, the fractal dimen-
sion of fractal aggregates may be measured by light scattering experiments. In
the followings, we recall the basic properties of fractal objects and discuss about
the method generally used to measure fractal dimension of aggregates.

A.1 Fractal geometry

Fractal objects are scale invariant systems, whose volume scales with the linear
size L following a power law with an exponent D lower that the Euclidean d
dimension of the space in which it lives. The volume V (L) may be measured
by covering the fractal with d-dimensional boxes or spheres of linear dimension
l with l ¿ L, therefore V (L) = N(L, l), where N(L, l) is the number of such
spheres. The exponent D is defined through the scaling of N(L, l) as a function
of decreasing L: for mathematical fractals N(L, l) diverges as L → ∞ following
a power law behavior characterized by a non integer exponent:

N(L, l) ∝ LD (A.1)

where

D = lim
L→∞

ln N(L, l)

ln L
. (A.2)

For fractals having a finite size and infinitely small ramifications, when the size
of the covering balls l → 0, N(L, l) ∝ l−D with

D = lim
l→0

ln N(L, l)

ln(1/l)
. (A.3)
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We note that the above definitions for non-fractals objects give a value of D
which coincide with the Euclidean dimensions d of the embedding space.

A.2 Experimental method

When measuring the fractal dimensions of growing structures, the given defini-
tions of D usually cannot be applied. Hence, quantities related to the fractal
dimensions have to be measured. The most widely applied methods divide into
four categories [103], namely

1. digital image processing of two-dimensional pictures,

2. scattering experiments,

3. covering the structures with monolayers,

4. direct measurement of dimensional-dependent physical properties including
measurements of current, electromagnetic power dissipation and frequency
dependence of impedance.

Scattering experiments provide a powerful method for the determination of
fractal dimension of microscopic structures. Most of the fractal structures studied
experimentally are made of small particles whose size exceeds the spatial resolu-
tion typical in small angle X-ray or neutron scattering measurements. Hence, it
is useful to separate the scattered intensity into two factors:

I(k) = ρ0P (k) [1 + S(k)] , (A.4)

where ρ0 is the average density of the sample, P (k) is a form factor and S(k) is
the interparticle structure factor. For kr0 ¿ 1, where r0 is the radius of particles,
the form factor is approximately constant.
The structure factor is defined as the Fourier transform of the density-density
correlation function g(r) [63], defined as

g(r) =
1

V

∑

r′
ρ(r + r′)ρ(r′). (A.5)

It can be shown that for fractal objects of gyration radius R, g(r) ∝ rD−df(r/R),
where f(x) ' constant for x ¿ 1 and f(x) ¿ 1 for x À 1. The scale invariance
of the fractal clusters ensures that the cutoff of the function f(x) only depends
on the ratio r/R. It follows that for an isotropic fractal system

S(k) = 4π
∫ ∞

0
g(r)r2 sin(kr)

kr
dr ∼ k−D

∫ ∞

0
zD−1f(z/kR) sin zdz, (A.6)
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Figure A.1: Schematic representation of scattering curve showing the three main
regimes which can be observed for an ensamble of fractal aggregates [103].

where we have changed the integration variable r = z/k. Since f(x) is approx-
imately constant up to large values of z, the integral only weakly depends on k
and we can conclude that I(k) ' S(k) ∼ k−D for 1/R ¿ k ¿ 1/r0.

In conclusion, in scattering experiments, three regimes may be distinguished,
as it is schematically shown in Fig. A.1:

- 1/r0 ¿ k ¿ 1/b
where b is the intermolecular distance. In this case the form factor P (k) ∼
k−4 (Porod’s law), and the scattered intensity I(k) follows the same behav-
ior.

- 1/R ¿ k ¿ 1/r0

In this regime the scattered intensity decay as k−D, hence the fractal di-
mension can be determined from the slope of ln I(k) vs ln k.

- k ≤ 1/R
In this limit the fractal object behaves as a single particle and the fractal
dimension D may be measured measuring the weigh average mass Mw and
the weigh average radius R.

A.3 An ensamble of polydisperse aggregates

In real experiments a polydisperse ensamble of aggregates is considered, as aggre-
gation processes involve cluster size distributions with finite width. The scattered
light intensity gives an effective structure factor for the ensamble, which may be
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written as follows [104]:

Seff (k) =

∫
s2nsS[kRg(s)]ds∫

s2nsds
, (A.7)

where ns is the number of clusters per unit volume with s monomers per cluster,
and S[kRg(s)] is the single aggregate structure factor. Let us consider the power
law regimes:

S(k) ' 1, k ¿ 1/Rg (A.8)

' (kRg)
−D, k À 1/Rg.

Then we define the i-th moment of the size distribution as

Mi =
∫

sinsds =< si > . (A.9)

Hence, using s = k0(Rg/a)D, where a is the monomer diameter and k0 a propor-
tionality constant, we can write Rg = (s/k0)

1/Da. Substituting this expression in
Eq. A.9 and calculating the integral in Eq. A.7, we obtain

Seff (k) ' 1, k ¿ 1/Rg (A.10)

' M1

M2

k0(ka)−D, k À 1/Rg. (A.11)

Since experiments deal with an ensamble of different sized aggregates, we require
S(k) as a function of k〈Rg〉, where 〈Rg〉 is the average of gyration radius. Hence
we introduce the z-average of the gyration radius

R2
g,z =

∫
s2R2

g(s)nsds
∫

s2nsds
, (A.12)

which may be written as [104]

R2
g,z = a2k

2/D
0

M2+2/D

M2

. (A.13)

Then, using Eq. A.13 we can write a in terms of R2
g,z and substituting on a−D in

Eq. A.11, we obtain:

Seff (k) ' 1, k ¿ 1/Rg (A.14)

' M1

M2

k0(
M2+2/D

M2

)D/2(kRg,z)
−D, k À 1/Rg. (A.15)

It is worth to notice that the coefficient of the power law is modified by the
polydispersity of the ensamble, but does not affect the power law decay of the
structure factor versus the wave vector. Nevertheless, if this factor strongly
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deviates from unity, using the single cluster structure factor on scattering data
could yield erroneous results. Finally we remark that the relation between the
structure factor and the intensity of scattered light is valid under the assumption
of no internal multiple scattering. Hence, when fractal dimensions are D ≥ 2
and multiple scattering may abolish the field coming from the interior scatters,
measurement results have to be analyzed with some caution.

Furthermore, we observe that the power law behavior considered in Eq. A.15
does not take into account the possibility of Mi to scale with the wave number
k. In fact, let us consider a polydisperse sample characterized by the distribution
ns = s−τh(εsσ), which is typical of percolating systems [18], where ε = p − pc

measures the distance from the transition threshold pc. The exponents τ and σ
are related to the critical exponent β of the order parameter and to γ of the mean
cluster size [18]:

β = (τ − 2)/σ

−γ = (τ − 3)/σ. (A.16)

The total scattered intensity from a polydisperse fractal sample is expressed as
an integration over the size distribution of the static structure factor S(k) [105].
The density-density correlation function g(r) be written as

g(r) =
f(r/s1/D)

rd−D
, (A.17)

hence the total structure factor can be written as follows:

Stot(k) =

∫
s2nsS(k)ds∫

s2nsds
=

1

M2

∫
s2s−τh(εsσ)ds

∫
ei~k·~rf(r/s1/D)rD−dddr. (A.18)

The scattered intensity I(k) is proportional to the structure factor: Itot(k) =
Bρ0vM2Stot(k), where B is a constant depending on the experimental apparatus,
ρ0 is the average density of the sample and v is the scattering volume. At the gel
point, where ε = 0, using Eq. A.18 we obtain

I(k) ∼ k−D(3−τ), (A.19)

which, using Eq. A.16 and the relation D = d− β/ν, can be rewritten as I(k) ∼
kd−2D.

In conclusion, the power law behavior of the static structure factor may be
strongly influenced by the polydispersity of the sample. Although it is well known
that for a single fractal object the static structure factor behaves as k−D as it is
shown in Fig. A.1, for a polydisperse sample is not obvious that the same result
should be still valid.
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Appendix B

Computer simulations

In the last years computer simulations have revested a fundamental role in the
investigation of complex systems. They let measure a wide class of properties,
ranging from local to macroscopic quantities, providing a direct comparison be-
tween model results and experiments. In this section we describe two different
simulation techniques: Monte Carlo simulation method and molecular dynamics
technique.

B.1 Monte Carlo simulations

The Monte Carlo method [106] results to be very useful when studying systems
whose motion equation are complicated and difficult to be solved. By means of
Monte Carlo simulations, the probability distribution which defines the ensamble
of system states is directly sampled introducing an “effective” dynamics.

The thermal average of an observable A(x), where x is a vector in phase space
describing the considered degrees of freedom, is defined as:

〈A(x)〉 =
1

Z

∫
exp [−H(x)/kBT ] A(x)dx, (B.1)

where
Z =

∫
exp [H(x)/kBT ] dx (B.2)

is the partition function, and H(x) is the Hamiltonian of the model. The normal-
ized Boltzmann factor P (x) = exp [H(x)/kBT ] /Z plays the role of a probability
density, representing the statistical weight with which the configuration x occurs
in thermal equilibrium. Within the Monte Carlo method, the exact Eq. B.1 is
approximated with the sum over a subset of phase space points {x1,x2, ...,xM},
which are used as statistical sample. Clearly, the discrete sum

A(x) =

∑M
l=1 exp [−H(xl)/kBT ] A(xl)∑M

l=1 exp [−H(xl)/kBT ]
(B.3)
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must approximate Eq. B.1 in the limit M → ∞. It can be shown that A =<
A > +O(N−1/2) [107].

The dynamics arising from Monte Carlo simulation moves along the discrete
set of phase space variables {x1,x2, ...,xM}: it takes place in discrete time steps,
each xi univocally determines the probability distribution of the successive state,
and such probability does not depend on time explicitly. Metropolis et al. [108]
advanced the idea to choose the successive states {xl} building a Markov process,
where each state xi+1 is constructed from the previous xi via a suitable transition
probability W (xi → xi+1). They pointed out that it is possible to choose the
transition probability W such that in the limit M →∞ the distribution function
P (xl) generated by this Markov process tends towards the desired equilibrium
distribution Peq(xl):

Peq(xl) =
1

Z
exp

(
−H(xl)

kBT

)
. (B.4)

To achieve this issue, it is sufficient to impose the principle of detailed balance:

Peq(xl)W (xl → xl′) = Peq(xl′)W (xl′ → xl). (B.5)

Using Eq. B.4 and Eq. B.5 we obtain:

W (xl → xl′)

W (xl′ → xl)
= exp

(
− δH

kBT

)
, (B.6)

where δH = H(xl′) − H(xl) is the energy variation. The latter equation does
not fix the transition probability uniquely, and some arbitrariness in the explicit
choice of W remains. One of the most common used expression of the transition
probability is the following:

W (xl → xl′) =

{
exp (−δH/kBT ) /τs if δH > 0
1/τs otherwise

where τs is an arbitrary factor, representing the unit of Monte Carlo time. Hence
W is the transition probability per unit time [106].

B.2 Bond fluctuation dynamics

Here we describe an algorithm that may be used to analyze the dynamical prop-
erties of polymers. Lattice algorithms [109] generally used to describe polymer
dynamics according the Rouse model [55] have several disadvantages: standard
algorithms do not allow for simulations of branched polymers, furthermore seri-
ous difficulties arise in simulations of very dense systems, as these algorithms are
not ergodic.

In the bond fluctuation dynamics, each polymer consists of N monomers.
We note that in a Monte Carlo simulation one monomers represents a Kuhn’s
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segment, i.e. an orientation independent segment of the polymer. Monomers
are implemented in a cubic lattice (square lattice in d = 2) with unit lattice
spacing: each monomer occupies a unit cell and two occupied cells cannot have
any site in common (self avoiding walk condition). Linked monomers are bonded
by a segment of length l, which in d = 3 must be smaller than or equal to

√
10.

Hence, in d = 3 the permitted bond lengths are l = 2,
√

5,
√

6, 3,
√

10; l =
√

8
must be excluded, to preserve ergodicity [8]. The condition on bond lengths
prevents bond cuts. At each step, a monomer is randomly chosen and a move
of one lattice unit is selected in one of the six (four in d = 2) lattice directions.
If the move complies with the self avoiding walk condition and the bond length
restrictions it is accepted, otherwise it is rejected. Hence, the bond fluctuation
dynamics algorithm is a lattice algorithm consisting of single beads moves. The
dynamics resulting from this algorithm is realistic, in the sense that it reproduces
the Rouse dynamics. In addition it may be used to simulate branched polymers
and it is ergodic. As a consequence, this algorithm solves the problems of the
other lattice algorithms for polymer simulations [109].

B.3 Slithering-snake algorithm

The dynamics of polymer chains may be simulated using the slithering snake
algorithm [84]. This algorithm implies moving the head of a chain one lattice
spacing in a lattice direction, with all other elements of the chain moving forward
along the chain contour. Possible moves of the head of one unit along the lattice
directions are selected at random. If the move complies the bond fluctuation
dynamics rules, it is accepted, otherwise the old configuration is retained and the
head is interchanged with the tail. The snake move along the existing backbone
of a chain is equivalent to removing an end monomer and connecting it to the
other end of the chain, leaving the lattice positions of the middle monomers
unchanged. Such a move corresponds to a global move of the chain, differently
from the standard bond fluctuation dynamics move, which is a local one. It has
been verified by Mattioni and coworkers [84] that, independently of the chain
length, global move acceptance rate is higher than local move acceptance rate for
volume fraction φ ≤ 0.5, where φ is defined as the ratio between the number of
present monomers and the maximum possible one.

B.4 Molecular dynamics simulations

In molecular dynamics simulations, equations of motion are solved. This method
provides a deterministic description of time evolution of the system under in-
vestigation: once fixed the initial conditions, the time evolution is univocally
determined. Different algorithms may be used to solve the equations of motion.

103



In our study we have used the velocity-Verlet algorithm, with the thermostat of
Nosé-Hoover, in order to keep the temperature constant.

B.4.1 The velocity-Verlet algorithm

The velocity-Verlet algorithm [92] calculates the new coordinates and velocities
at time t + δt, using the positions, the velocities and the accelerations at time
t, proceeding in two steps. At first it calculates the positions at time t + δt and
the velocities at time t+ δt/2 using the velocities and the accelerations at time t,
and then it determines the accelerations at time t + δt in order to calculate the
velocities at t + δt. Hence during the first step

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 (B.7)

v(t + δt/2) = v(t) +
1

2
a(t)δt

and during the second one

v(t + δt) = v(t + δt/2) +
1

2
a(t + δt)δt. (B.8)

Using this algorithm, the equations of motion are solved in the (NV E)-ensamble.
If the temperature T has to be kept constant, i.e. the ensamble to be considered
is the NV T we have to introduce a thermostat. The algorithm to be used is the
velocity-Verlet algorithm with thermostat [91]. A new variable s, representing
the thermal piston, is introduced with mass Q and as a consequence, in the
Hamiltonian an additional term appears, which is proportional to Q:

H =
mv2

2
+ V (r) +

Q

2

(
ṡ

s

)2

+ (1 + f)kBT log s (B.9)

where m is the mass of the particle, V (r) is the potential energy and f = 3N is
the number of degrees of freedom (N being the number of particles). To obtain
the dynamical evolution of the system, we have to solve the following equations:

a =
1

m
F− ṡ

s
v (B.10)

s̈ =
ṡ2

s
+

s

Q

[
mv2 − (1 + f)kBT

]
.

During the first step, the algorithm calculates the quantities in Eq. B.7, in addi-
tion to s(t + δt) and ṡ(t + δt/2) using ṡ(t) and s̈(t). During the second step, the
algorithm calculates the forces F (t + δt) and solves the following equations:

v(t + δt) = v(t + δt/2) +
1

2
a(t + δt)δt (B.11)
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a(t + δt) =
1

m
F(t + δt)− v(t + δt)

ṡ(t + δt)

s̈(t + δt)

ṡ(t + δt) = ṡ(t + δt/2) +
1

2
s̈(t + δt)δt

s̈(t + δt) =
ṡ(t + δt)2

s(t + δt)
+

ṡ(t + δt)

Q

[
mv(t + δt)2 − (1 + f)kBT

]
.

When initializing the simulations, we fix the total momentum to be zero. The
thermal piston is fixed to s = 1 with zero velocity ṡ = 0. The particle veloc-
ities are initially extracted from a gaussian distribution with variance equal to
kBT/m for each direction. The mean value < mv2 >= 3NKBT , where < ... >
indicates the temporal average, with fluctuations that depend on Q. If the mass
Q increases, the amplitude of fluctuations decreases, but their characteristic time

π
√

2Q/fkBT increases. The hamiltonian H is a constant of motion.
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