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Abstract

The use of Machine Learning (ML) techniques for EEG signal classification
is gaining increasing attention in Brain-Computer interfaces (BCI) applications
thanks to promising performances reported by many ML systems, from one side,
and the non-invasiveness and high time resolution of the EEG acquisitions from
the other one. However, several EEG-based BCI applications suffer the main
drawbacks of the EEG signals, such as their non-stationarity, which makes the
employing systems particularly sensitive to changes in users or time acquisitions.
Performance with different acquisition times or subjects remains low in several
applications. Therefore, such systems can be unreliable, particularly when used in
safety-critical domains. From the ML point of view, the non-stationarity of EEG
signals can be viewed as an instance of the well-known Dataset Shift problem,
where, training and test data can belong to different probability distributions,
leading ML systems toward poor generalisation performances. The research work
of this PhD thesis was conducted with the long-term goal of exploiting the knowl-
edge from eXplainable Artificial Intelligence (XAI) domain to develop EEG-based
classification systems which overcome the performance returned by the current
ones. XAI methods try to explain the behaviour of AI systems, such as ML ones,
by providing explanations about the response of an AI system, given a specific
input, in terms of relevant input features. More specifically, the contribution
of this PhD thesis is threefold: firstly, a study on BCI systems that relied on
EEG signals is made, leading to two different proposals for two different tasks:
EEG-based emotion recognition and SSVEP classification. These proposals ex-
plore advanced ML techniques such as convolutional neural networks and domain
adaptation methods on well-known EEG datasets. Secondly, a study on modern
XAI methods is made, converging toward a new method to build explanations
in an image classification task. Finally, on the basis of the results obtained in
the previous investigations, an experimental analysis of explanations produced
by several XAI methods on an ML system trained on EEG data for emotion
recognition is made. Preliminary results suggest the plausibility to develop ML
methods for BCI systems able to leverage on XAI methods to generalise across
different subjects and different times without further efforts.

Keywords: Machine Learning, EEG, BCI, XAI



Sintesi in lingua italiana

L’uso di tecniche di ML per la classificazione dei segnali EEG sta guadag-
nando sempre più attenzione nelle applicazioni BCI grazie alle promettenti prestazioni
riportate da molti sistemi ML e alla non invasività e all’alta risoluzione tempo-
rale dei segnali EEG . Tuttavia, molte applicazioni BCI basate su EEG soffrono
dei principali inconvenienti dei segnali EEG, come la loro non stazionarietà, che
rende i sistemi sensibili al variare degli utenti o del tempo durante le acquisizioni.
Le prestazioni con tempi di acquisizione o con soggetti diversi rimangono basse
in molte applicazioni. Pertanto, tali sistemi possono risultare inaffidabili, soprat-
tutto se utilizzati in ambiti critici per la sicurezza. Dal punto di vista del ML,
la non stazionarietà dei segnali EEG può essere vista come un’istanza del noto
problema del Dataset Shift, in cui, i dati di addestramento e quelli di test possono
appartenere a distribuzioni di probabilità diverse, portando i sistemi ML a scarse
performance di generalizzazione. Il lavoro di ricerca di questa tesi di dottorato
è stato condotto con l’obiettivo a lungo termine di sfruttare le conoscenze del
dominio XAI per sviluppare sistemi di classificazione basati su segnali EEG che
superino le prestazioni restituite da quelli attuali. I metodi XAI cercano di sp-
iegare il comportamento dei sistemi di ML fornendo spiegazioni sulla risposta di
un sistema di ML, dato un input specifico, in termini di caratteristiche rilevanti
dell’input. Più specificamente, il contributo di questa tesi di dottorato è triplice:
in primo luogo, viene effettuato uno studio sui sistemi BCI che si basano sui
segnali EEG, portando due proposte diverse su due compiti differenti: riconosci-
mento dell’emozioni basato su EEG e classificazione di segnali SSVEP. Queste
proposte esplorano tecniche avanzate di ML, come le reti neurali convoluzion-
ali e i metodi di domain adaptation, su noti set di dati EEG. In secondo luogo,
viene effettuato uno studio sui moderni metodi XAI, che converge verso un nuovo
metodo per costruire spiegazioni in un task di classificazione di immagini . Infine,
sulla base delle indagini precedenti, viene effettuata un’analisi sperimentale delle
spiegazioni prodotte da diversi metodi XAI su un sistema ML addestrato su dati
EEG per il riconoscimento delle emozioni. I risultati preliminari suggeriscono la
plausibilità di sviluppare architetture di ML in grado di sfruttare i metodi XAI
per generalizzarsi tra soggetti diversi e tempi diversi senza ulteriori sforzi.

Parole chiave: Machine Learning, EEG, BCI, XAI
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Chapter 1
Introduction

Brain-Computer Interfaces (BCIs) are an innovative technology able to
create a direct communication link between the human brain and external
devices, without the use of peripheral nerves and muscles, enhancing the
user’s ability to interact with the environment [155, 217].

Most common BCI systems use Electroencephalographic (EEG) signals
to record brain activity due to their non-invasive nature and high tempo-
ral resolution. Various BCI method solutions based on EEG signals are
gaining increasing appreciation from the scientific community due to their
implication in the medical environment [32], as well as in other fields such
as entertainment [165] and education [22].

In particular, BCI systems can be divided into two main categories:
passive BCI and active BCI [13, 247].
In the passive type, the measurement and monitoring of electrical brain
activity can be exploited to reveal precious information on the physiolog-
ical, functional and pathological state of the brain, as well as to quantify
a subject’s attention or emotion levels. An example of passive BCI being
used for the improvement of neuro-motor rehabilitation practices can be
found in [23] where an EEG-based BCI method for the classification of
engagement levels during therapy has been developed.
However, in the active BCI, EEG signals are detected to impose commands
on external devices, such as a robot or mechanical limbs. Considering the
need for high-performance BCI systems for online operation, special EEG
signals are used such as Steady-State Visually Evoked Potential (SSVEP)
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in which a specific physiological response occurs in the brain to the fre-
quency of the visual stimulus. An example of an active BCI can be found
in [21] where a single-channel SSVEP-based classification system was pro-
posed.

There are several BCI solutions in the literature that adopt Machine
Learning (ML) methods for the development of classifiers [151, 138, 137].
Typically, EEG data acquired from people subjected to known stimuli are
used in the training phase. These data are labelled following an established
protocol, which is task-dependent. For example, in an Emotion Recogni-
tion (ER) task, the stimuli may be images or videos which should induce
particular emotions, or, in a command classification task, the stimuli may
be visual stimuli that the person simply observes. Thus, labels can be
deduced from the stimuli or stated by the subject, who will say whether
or not he or she felt a particular emotion during the administration of the
stimulus.

However, EEG-based BCI systems suffer from the main inconveniences
that these signals have, such as their non-stationarity [196], in which the
statistical characteristics of EEG signals change continuously over the time.
In fact, also on the same subject as time changes, the EEG signal is subject
to high variations.

The problem of non-stationarity can be seen as an instance of a well-
known problem in the ML literature: dataset or Domain Shift (DS) prob-
lem [172], when there is a difference in probability distribution between
the dataset used for training step and that used outside the training phase
(evaluation or running phase). The standard ML assumption [194] of hav-
ing the same data distribution for both training and test set in this scenario
is not applicable. Consequently, standard ML approaches can produce ML
systems with poor generalisation performance. This difference in the EEG
data is even more pronounced because it is present also between examples
of the same set, as EEG signals are non-stationary even when time changes
on data from the same subject or in the same session.

A ML model should be able to generalise to new data taking into
account these high changes in the statistical characteristics of EEG signals.
Usually, many BCI systems have low performance, especially if they use
models with inter-subjective (or model-independent) approaches in which
an effort is made to generalise on EEG signals from new subjects.
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Therefore, advanced techniques that take into consideration the prob-
lem of non-stationarity of EEG signals are needed to improve the classifi-
cation performance of ML models in BCI systems.

In this thesis, both consolidated and emerging techniques such as Deep
Neural Networks (DNNs) and Domain Adaptation (DA) methods will be
explored to mitigate the dataset shift problem. DNNs make it possible to
absorb the feature extraction phase during signal processing. Thanks to
their different layers, these networks can receive as input the EEG signal in
raw format and recognise specific patterns useful for correct classification.
Instead, DA techniques are able to improve the performance in an ML
model, especially the ability to generalise to new data. This is possible
because DA methods reduce the effects of the dataset shift problem, and
in this specific context, the variability of data on different subjects due to
the non-stationarity of EEG signals.

An additional contribution is to use the explanations on the output of
the ML model, using new techniques of eXplainable Artificial Intelligence
(XAI). XAI is a sub-field of artificial intelligence (AI) that aims to explain
the behaviour of AI systems, such as ML systems. There are several XAI
methods in the literature that take into consideration creating good ex-
planations that can be comprehensible to humans. For example, here [27]
proposes an XAI framework for producing multiple explanations in terms
of middle-level input features.

As an instance, XAI methods are applied in the application context of
image recognition where the domain shift problem is slight or not present.
One of the objectives of this thesis is to analyse the behaviour of several
well-known XAI methods in the literature in explaining the decisions made
by an ML system based on EEG input. The long-term goal is to exploit
the explanations made by XAI methods to identify the main characteris-
tics of the input for any given output, with the aim of building ML systems
capable of generalising to different data from different probability distri-
butions, in this context, sessions and subjects.

This thesis is organised as follows: in the chapter 2, there is an in-
troduction to Machine Learning, including a description of the problems
that can be solved, some of the most important algorithms and techniques
present in the literature, and an analysis of particular problems; this is fol-
lowed by the chapter 3, in which the EEG signal, its main characteristics
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and the main signal processing phases are analysed.
After that, the thesis is divided into two parts:

• The first part is dedicated to Brain-Computer Interface in which
an overview of BCI systems is given and an in-depth study of two
specific problems solved by Machine Learning methods. This part is
divided as follows:

– in chapter 4, a general description of the main BCI systems is
made, describing the main application scenarios and some open
problems.

– in chapter 5, an EEG-based BCI method for classifying levels
of cognitive and emotional engagement is described. Different
oversampling methods were used on the training data to over-
come the data imbalance problem.

– in chapter 6, several SSVEP-based systems were developed us-
ing standard and advanced ML models such as Deep Neural
Networks and exploiting Domain Adaptation methods.

• The second part is dedicated to eXplainable Artificial Intelligence.
This part is divided as follows:

– in chapter 7, a brief overview is given describing the main XAI
methods.

– in chapter 8, a framework for producing multiple explanations
in terms of middle-level input features is analysed.

– in chapter 9 analyses the behaviour of different XAI methods
in explaining the outputs of an EEG-based ML system.

Finally, chapter 10 concludes the thesis work by summarising the work
carried out and the results obtained.



Chapter 2
Machine Learning

Our thinking machine possesses the
capacity to be convinced of anything
you like, provided it is repeatedly and
persistently influenced in the required
direction.

Georges Ivanovič Gurdjieff

Introduction

In this chapter, an introduction to machine learning will be made.
Solvable problems, algorithms, techniques, evaluation methods and some
special problems will be analysed.

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that
exploits the use of data and algorithms to mimic human learning. The
literature presents various definitions, for example, A. Samuel defined ML
as "a field of study that gives computers the ability to learn without being
explicitly programmed" [208]. E. Alpaydin defined ML as the field of "Pro-
gramming computers to optimise a performance criterion using example
data or past experience" [11]. These definitions share the basic concept of
performing a task in a smart way by learning from repeated examples.

The great success of ML algorithms is largely due to their adaptation
in different application contexts. Indeed, there are many problems that
an ML system can solve, such as image classification [29], speech recog-
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nition [75], recommendation systems [178], financial market and weather
forecasting [108, 112], customer segmentation [84] and many more.

2.1 Machine learning paradigms

Machine learning is usually distinguished into four main learning paradigms:
supervised learning, unsupervised learning, semi-supervised learning and
reinforcement learning. These paradigms differ in terms of the problems
they can solve and the way the data is involved. Usually, the problem to
be solved and the data directly determine the paradigm to be used.
This section provides an overview of what these learning paradigms are
and what they can be used for.

2.1.1 Supervised learning

Supervised learning is the most common learning paradigm. In su-
pervised learning, the ML model learns from a set of input-output pairs,
called examples or labelled points. In particular, the tasks that can be
solved with ML in this learning paradigm can be divided in classification
problems and regression problems.

In classification, the objective is to predict a discrete label (or class)
from a predefined list of possibilities. The class is usually represented as an
integer. If there are only two possibilities, a binary classification problem
occurs, otherwise, a multi-class classification problem when there are more
than two classes. For example, classifying e-mails as spam or not can be
considered a binary classification problem.

In regression tasks, on the other hand, the objective is to predict a real
number such as the financial market performance of a particular brand.
Both problems, classification and regression, fall under the supervised ML
approach, where a training stage involving labelled data is performed.
Therefore, this approach requires the presence of a supervisor who is able
to label the data properly. Models with supervised methods learn from
labelled points to infer a function associating the training data to the re-
spective output in order to generalise to new points.

Formally, there is a set of pairs:

D = {(x⃗(1), y(1)), (x⃗(2), y(2)), . . . , (x⃗(n), y(n))} ⊆ X × Y
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where X is the input space (usually X ⊆ Rd with d given) and Y (usually
Y ⊆ Z for classification problem and Y ⊆ R for regression problems) is the
desired output space, a supervised learning problem (see [233]) consists to
infer a mapping function f : X → Y (which is called a classifier, if the
output is discrete as in classification problems, or regression function if the
output is continuous).

2.1.2 Unsupervised learning

Unsupervised learning is the second most widely used learning paradigm.
It is not used as much as supervised learning, but it opens up different types
of applications. In unsupervised learning the data is just a set of examples
or points without labels. The objective is to determine patterns or hid-
den structural information such as groups of elements that share common
properties (clustering) or representations of data that are projected from
a high-dimensional space to a lower one (dimensionality reduction) [49].

One application of clustering could be to automatically separate a com-
pany’s customers to create better marketing campaigns. Clustering can
also be used as an exploration tool to gain insights into the available data
and make informed decisions.

While, the goal of dimensionality reduction is to reduce the number
of variables in a dataset while trying to preserve some properties of the
data, such as distances between examples. Dimensionality reduction can
be used for a variety of tasks, such as compressing the data, learning with
missing labels, creating search engines, or even creating recommendation
systems. Dimensionality reduction can also be used as an exploration tool
to present a dataset in a reduced space in order to facilitate visualisation
(see section 2.2.3).

Anomaly detection is another task that can be tackled in an unsuper-
vised way. Anomaly detection concerns the identification of unexpected
examples or events in dataset, which differ from the norm, considering
them anomalous, and are also known as outliers.

2.1.3 Semi-supervised learning

In semi-supervised learning, one part of the data is labelled, as in
supervised learning. Another part of the data, on the other hand, contains
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only points, as in unsupervised learning.
The goal is to learn a predictive model by exploiting both data sets.

Semi-supervised learning is thus a supervised learning problem in which
some training labels are missing.

Typically, the unlabelled dataset is much bigger than the labelled one.
One way to exploit this type of data is to use a different method between
unsupervised and supervised. Another way is to use a self-training proce-
dure in which a model is trained on the labelled data, missing labels are
predicted, then trained on the entire dataset, missing labels are predicted
again and so on [267].

2.1.4 Reinforcement learning

The third classical learning paradigm is called reinforcement learning,
especially used with autonomous agents. Reinforcement learning is differ-
ent from supervised and unsupervised learning since, the data from which
to learn are obtained during the interaction with an external system called
the environment. Reinforcement learning is used "to teach" agents, such
as robots, to learn a task. The agent learns by performing actions in the
environment and receiving feedback from this environment [119].

Typically, the agent begins the learning process by moving randomly
through the environment and then it gradually learns from its experience
to better perform the task, using a trial-and-error strategy. Learning is
usually driven by a reward that is given to the agent based on its per-
formance. More precisely, the agent learns a policy that maximises this
reward. A policy is a model that predicts what action to take based on
previous actions and observations. Reinforcement learning can be used,
for example, by a robot to learn to walk in an environment.

2.2 Machine Learning algorithms

In this section, some algorithms for ML will be introduced in particular
for supervised and unsupervised learning, such as k-nearest neighbour,
support vector machine, neural networks, k-means and various specific
architectures of neural networks.
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2.2.1 Supervised methods

In this section various supervised (see 2.1.1) methods will be intro-
duced.

k-Nearest Neighbor

K-Nearest Neighbor (k-NN) is a non-parametric ML method. It can
be described as follows: given a set of already labeled points, a positive
integer k, and a distance measure d (e.g., Euclidean), for a new input point
p, k-NN labels p as the most present class among its k neighbors (through
the measure d) that are in the labelled set.

Support Vector Machine

Support Vector Machine (SVM) is a binary classifier which separates
data through a decision hyperplane. SVM considers the inputs as points
in a vector space, finding an optimal hyperplane in order to maximize the
distance from the class boundaries. Given a set of examples for training,
each labelled with the class to which it belongs between the two possible
classes, SVM builds a model that assigns the new examples to one of the
two classes. An SVM model creates a representation of the examples as
points in space, mapped in such a way that examples belonging to the two
different categories are clearly separated by as large a space as possible.
New examples are then mapped in the same space and the prediction of
the category to which they belong is made on the basis of the side in which
they fall.

Artificial Neural Network

Artificial Neural Network (ANN) aims to simulate the brain’s activity
in solving problems by mimicking the low-level functions of biological neu-
rons. ANNs are widely used in pattern recognition and have the ability
to learn from training data. An ANN consists of a number of elements,
called neurons, arranged together into a structure. There are different ar-
chitectures of neural networks, the ones that will be used in the following
chapters are feed-forward networks. Networks in which there are the fol-
lowing properties:
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• there are no cycles, as it is always possible to associate integers (in-
dices) with inputs and nodes in such a way that each node only
receives connections from inputs or nodes that have a lower index;

• the activation sequence is asynchronous and follows the topological
order defined by the connections;

A sub-type of feed-forward networks are networks organised in layers. The
network can be layered to have nodes on different layers: l disjoint subsets
of layers l1, .., lL (figure 2.1). The nodes of the last layer form the output
layer while the other nodes make up the inner or hidden layers.

A particular architecture of layered feed-forward neural networks are
fully-connected networks where each neuron is connected to all the nodes
in the previous layer.

Usually, when than three layers (one for the input layer, one for the
output layer and more than one inner layer) a Deep artificial Neural Net-
work (DNN) model is defined. Each layer has weighted connections (W )
entering from the previous layer and outgoing in the next one, so the
propagation of the signal occurs forward without loops and without cross
connections. The goal of the learning phase is to find the weights W that
minimise the error function E(W ).

Figure 2.1. Example of an artificial neural network with several layers.

Convolutional Neural Network

Convolutional Neural Networks (CNNs), introduced by LeCun [142],
are composed of several structured layers. CNNs are characterised by
convolutional layers that have these features:
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• sparsity of connections: each neuron in the layer is connected to a
small number of neurons in the previous layer, so it performs local
processing and there is a reduction in connections.

• sharing of weights: the weights are shared, in this way neurons of
the same layer work on different points of the input and the number
of weights is reduced.

In a convolution layer, the input is divided into overlapping regions of fixed
size and each neuron is only connected to a single region of the input. The
overlap and distance between consecutive windows is determined by a pa-
rameter called stride. The weight-sharing mechanism is obtained through
the convolution operation [81]: the weights are stored in a matrix called
filter that acts locally on each individual input window through the con-
volution operator; the output of the convolution operation is then used as
the argument of an activation function; the final output is called feature
map. Each convolutional layer can have many filters, and thus can produce
many feature maps; thus, each filter can be seen as a group of neurons that
share the same weights and that, through a convolution operation, act on
different regions of the input. Usually, a pooling operation follows for each
convolutional layer, whose task is to extract useful statistics from the local
areas of the input.

Figure 2.2. The architecture of the LeNet-5 network [97].

Specific neural network architectures for EEG data

This section describes some ML architectures, available in the liter-
ature, used to classify Electroencephalographic (EEG) signals (refer to
chapter 3 for an analysis of EEG signal).
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Deep SSVEP Convolutional Unit. In Aznan et Al. [39], the Deep
SSVEP Convolutional Unit (SCU) neural network architecture was pro-
posed, showing promising results in classification tasks using Steady-State
Visually Evoked Potentials (SSVEP) signals (see section 3.1.2) as input.
This processing strategy adopts all the EEG samples acquired in the time
window. It consists of one or more neural network layers blocks (defined
SCU blocks). Each SCU block is composed of the following layers:

• 1D Convolutional layer :a 1D convolution is performed on the EEG
samples. The time window (kernel) scrolls along one dimension, re-
turning a feature maps on the basis of the number of filters chosen.

• Batch Normalization layer : a transformation is applied in order to
keep the average and the standard deviation of the output close to 0
and 1, respectively.

• Max Pooling layer : it down-samples the input representation of the
previous layer by taking the maximum value on a spatial window of
size equal to 2.

• Rectifier Linear Unit (ReLU ) activation function: it is applied at
the end of each SCU block. It is a function that returns 0 if it
receives negative input, otherwise it returns the received value, thus
increasing the sparsity in the output.

Finally, fully-connected (Dense) layers equipped with ReLU activation
functions are used as final layers of the network (see fig. 2.3).

PodNet. PodNet is a CNN developed by Podmore et Al. [192]. It is
constituted by a number of blocks (called Pods), each one made up of
a Convolutional layer, a Drop-out layer, a Batch Normalization layer, a
Rectifier Linear Unit (ReLU) layer, and a Max Pooling layer. The final
Pod contains a dense layer which outputs to a Softmax operation to classify
the EEG. In fig. 2.4 a sketch of the architecture is shown. All network
weights are initialized using the Xavier method [94] and updated following
the Adam optimization algorithm [129].
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Figure 2.3. SSVEP Convolutional Unit (SCU), highlighted in pink [39].

EEGNet. EEGNet is a convolutional neural network originally designed
to be applied to a wide variety of brain-computer interface paradigms (for
details, please refer to [140]). It is composed of three main blocks.

• In the first block, two convolutional steps are performed in sequence.
First, a number F1 of 2D convolutional filters are fitted. These con-
volutional filters output F1 feature maps containing the EEG signal
at different sub-bands. By properly setting the size of the temporal
kernel, it is possible to capture frequency information at the desired
resolution. The second step is a depthwise convolution of size C,
where C is the number of EEG channels. This helps (i) to reduce
the number of trainable parameters to fit, and (ii) to learn spatial
filters for each temporal filters, enabling the efficient extraction of
frequency-specific spatial filters. A depth parameter D controls the
number of spatial filters to learn for each feature map. Both these
convolutions are kept linear as no gains in performance when using
nonlinear activation functions have been observed. Also, each spa-
tial filter is regularized by using a maximum norm constraint of 1 on
its weights. Then, Batch Normalization is applied along the feature
map dimension, before applying the Exponential Linear Unit (ELU)
as activation function. An average pooling layer is used to reduce the
sampling rate of the signal. Finally, a dropout technique is adopted
to regularize the model.
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Figure 2.4. Diagram of PodNet configuration [192].

• In the second block, a separable convolution is used. It is a depthwise
convolution, followed by F2 pointwise convolutions. This helps to (i)
reduce the number of parameters to fit, and (ii) explicitly decouple
the relationship within and across feature maps. This operation is
particularly useful for EEG signals, since different feature maps could
represent data at different time-scales of information. After batch
normalization and ELU application, an average pooling layer is used
for dimension reduction. Finally, a dropout is applied.

• In the classification block, the features are passed directly to a soft-
max classification with N units, where N is the number of classes in
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the data. The use of a dense layer for feature aggregation prior to
the softmax classification layer is omitted to reduce the number of
free parameters in the model.

2.2.2 Unsupervised methods

In this section, a particular unsupervised (see sec. 2.1.2) method algo-
rithm will be introduced.

K-means

K-means [162] is one of the best known unsupervised learning algo-
rithms. The aim of the algorithm is to minimise the total intra-group
variance. Each group is identified by a centroid or midpoint. The algo-
rithm follows an iterative procedure: initially it creates k partitions and
assigns the entry points to each partition either randomly or using some
heuristic information. It then calculates the centroid of each group. The
algorithm then constructs a new partition associating each entry point
with the group whose centroid is closest to it. Finally, the centroids for
the new groups are recalculated, and so on, until the algorithm converges.

2.2.3 High-dimensional data visualisation techniques

The datasets used in machine learning are usually characterised by
high dimensionality. For example, the dimensionality of an image is the
number of pixels, or in an electroencephalographic trace are the number
of electrodes (channels) and the signal update time (sample rate) for each
channel. Since high-dimensional data, specifically data that require more
than two or three dimensions to represent, can be difficult to interpret, the
aim is to look for ways to effectively visualise such high-dimensional data
before moving on to a processing step or to consolidate certain properties
of the data.

To facilitate the visualisation of the structure of a dataset, it is neces-
sary to reduce the dimensions in some way. Several linear dimensionality
reduction algorithms have been designed such as Principal Component
Analysis (PCA) [3] and Independent Component Analysis (ICA) [143].
These methods can be powerful, but often do not take into account im-
portant non-linear structures in the data.
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Manifold learning can be seen as an attempt to generalise linear frame-
works to be sensitive to non-linear data structure. Although supervised
variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensionality structure of the data from the data itself,
without the use of labels.

Two methods will be reported below: t-distributed stochastic neighbor
embedding and isometric mapping.

T-distributed stochastic neighbor embedding

The t-distributed Stochastic Neighbor Embedding (t-SNE) [231] algo-
rithm consists mainly of two steps. First, t-SNE creates a probability
distribution over pairs of high-dimensional objects, associating similar ob-
jects with a higher probability and dissimilar points with a lower proba-
bility. Secondly, t-SNE defines a similar probability distribution on low-
dimensional map points and minimises the Kullback-Leibler divergence
(KL divergence) between the two distributions with respect to the posi-
tions of the points in the map. Although t-SNE plots often appear to
show clusters, visual clusters can be strongly influenced by the parameters
chosen and therefore a good understanding of the parameters of t-SNE is
necessary.

Isometric Mapping

Isometric Mapping (Isomap) [229] is a non-linear dimensionality re-
duction method that seeks to preserve geodetic distances in the lower di-
mension. Isomap starts by creating a proximity network. Then, it uses
the distance of the graph to approximate the geodesic distance between
all pairs of points. Through the decomposition of the eigenvalues of the
geodesic distance matrix, it finds the low-dimensional embedding of the
dataset. In non-linear manifolds, the Euclidean distance metric is valid if
and only if the neighbourhood structure can be approximated as linear. If
the neighbourhood contains holes, Euclidean distances can be highly mis-
leading. Conversely, if distance between two points is measured following
the structure of the manifold, a better approximation of how far or close
two points are will be obtained.
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2.3 Selection and evaluation of Machine Learning
models

ML models have to deal with two main issues: the search of optimal
values for hyper-parameters and the over-fit problem. These issues are
closely related to the validation phase.

2.3.1 Finding optimum values for hyperparameters

In addition to the weights or internal parameters that update during
the learning phase, ML models need multiple hyperparameters (or free pa-
rameters), such as the number of neurons in a specific layer in an artificial
neural network model or the regularization parameter in a SVM model.
The values of these parameters can heavily change the performance of the
model in a given task. It is good practice to find a good set of hyper-
parameters for a specific problem and model, but also good associated
values. The values of the hyperparameters are difficult to establish a pri-
ori, which is why a technique known as hyperparameters tuning is used: a
search mode for establishing the optimal values of hyperparameters. Dif-
ferent values can be arbitrarily chosen for each of these hyperparameters.
The two main techniques for finding optimal values for hyper-parameters
are as follows.

Grid search

For each hyper-parameter, a set of values in a given range is defined.
For example, if two hyper-parameters are chosen and for each there is
a set of 7 values, this will result in a 7x7 grid of possible values for a
total combination of 49 models. From the best model in the validation
phase, the values per hyper-parameter that will be the optimal ones will
be selected. Thus, a grid of values is used for each hyper-parameter to
be optimised and all models are tested with all possible combinations of
the chosen parameters. This approach is recommended if the number of
combinations is relatively low in relation to the time of the learning phase
for each model.
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Random Search

As reported in [46], a random approach in the selection of values per
hyper-parameter is more efficient than grid mode. This is because by
fixing values in a grid, the coverage of possible patterns is lower and less
significant than by randomly selecting values. Figure 2.5 compares the two
modes, where it can be seen that by having two hyper-parameters and 3
values per hyper-parameter, in the grid search these values generate only 3
significant models (it is also considered that on the x-axis there is a more
significant hyper-parameter than on the y-axis); whereas in the random
search, having the values randomly selected results in a greater number of
9 significant models. In other words, the point projections in the random
case provide better coverage.

Figure 2.5. Grid search and random search compared [46].

2.3.2 Over-fit

Usually, to evaluate the performance of an ML model, the dataset is
divided primarily into two parts, a training set Tr and a test set Te. As
will be seen 2.3.3, in the validation modes, there are several strategies to
partition the dataset according to the application domain as well.
A model is over-fit on the training set when it returns high performance
on training data and low performance on new or test data. As the authors
assert in [191] "when a model is chosen because of qualities exhibited by
a particular set of data, predictions of future observations that arise in
a similar fashion will almost certainly not be as good as might naively
be expected". Therefore, it is important to use methods to increase the
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generalisation of ML models to new data, and also to have strategies for
the accurate evaluation of this characteristic.

A classic example of how the over-fit problem is handled on neural
network-based ML models is to use a stop criterion during the learning
phase. In practice, an additional set, the validation set, subset of the
dataset and disjoint from the training and the test sets, is used only to
tune the hyperparameters of a classifier. It is useful to understand when
the network no longer generalise and thus stop the learning process. Figure
2.6 illustrates an example of the over-fit process and the point at which
training should be stopped so that the performance on the validation set
does not decrease.

Figure 2.6. Example of overfitting with the stop criterion on machine learning
models based on neural networks.

2.3.3 Model selection in cross-validation

Considering the problems analysed above, methods for correctly se-
lecting an ML model are necessary. A simple form of validation is called
hold-out validation [186], when the dataset is divided in two parts. It has
a major disadvantage in that the evaluation depends heavily on how the
dataset is split. One solution is to average the performance over several
splits, resulting in a cross-validation estimate.

Cross-validation (CV) techniques are indispensable to understand when
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a model is good in terms of generalisation and whether or not it should be
chosen [173]. There are several methods to perform a CV, such as:

• Leave-P-Out cross-validation: p example as the Te and the remaining
observations as the Tr. This is repeated on all ways to cut the original
sample on a Te of p examples and a Tr.

• Leave-One-Out cross-validation: particular case of Leave-P-Out CV
with p = 1.

• Leave-One-Group-out cross-validation: another particular of leave-p-
out cross-validation that provides to split data according to a group
information used to encode arbitrary domain specific stratification
of the samples. A simple variant of this is the Leave-One-Subject-
Out (LOSO) CV technique. It is widely used in the literature, for
example, to test the generalisation of classifiers in brain-computer
interface systems. It uses the subject information associated with
the sample as a group.

• K-Fold cross-validation: a k-partition P of the data is made; a set
from P is taken as Te, and the union of remaining set in P is taken
as Tr; the process is then repeated for every possible pair (Tr, Te) in
the partition.

CV is usually associated with the search of optimal values for hyperpa-
rameters (sec. 2.3.1) to determine the best model.

2.3.4 Metrics

In the ML, there are several metrics that help measure the effective-
ness of model training. For classification problems, the terms True Posi-
tives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN) are used to define metrics. The terms positive and negative refer to
the classifier’s prediction, while the terms true and false refer to the corre-
spondence of that prediction with the trusted values. The most commonly
used metrics in machine learning are:

Accuracy =
TP + TN

TP + TN + FP + FN
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Accuracy generally describes how well the model performs, calculating the
ratio of the number of correct predictions to the total number of predic-
tions.

Precision =
TP

TP + FP

Precision is calculated as the ratio of the number of correctly classified
positive samples to the total number of samples classified as positive (both
correctly and incorrectly).

Recall =
TP

TP + FN

Recall is calculated as the ratio of correct predictions for a class to the
total number of cases in which it actually occurs.

2.4 Special problems

This section will discuss some issues that can be encountered in ma-
chine learning, such as unbalanced data and domain shift.

2.4.1 Unbalanced data

In an ideal training set for a classification problem, there should be
the same number of instances for each class. It may occur, however, that
there is an imbalance per class. Creating a good model becomes a real
challenge due to the under-representation of minority classes instances.
Consequently, even if the overall classification model achieves high accu-
racy, minority class results can be poor [212].

An important cause of unbalanced class representations in data sets
is that some classes are difficult to collect or are rarely observed. This
commonly occurs in data acquired from healthcare fields. For example,
compared to healthy people, sick patients represent only a small part of
the total population. More serious diseases, such as cancer and AIDS,
have fewer cases compared to other less critical conditions. For example, if
we want to discriminate between cancer-affected and healthy patients on a
given dataset, the amount of healthy samples can be dominant, leading the
model toward to have a poor discriminating ability on healthy patient sam-
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ples. It is it is straightforward to say that identifying a cancer patients as
a healthy patient is a more serious mistakes than vice versa [147]. Another
example may be the number of subjects involved in the data acquisition
campaign, if the number of involved subjects is too small, it is hard to lead
the model toward a good generalization ability among different subjects.

Most solutions to this problem are data-level, in particular with under-
sampling and over-sampling methods. In the preprocessing phase, the data
are sampled to balance the distribution of samples per class. One of the
most frequently used technique in the literature is Synthetic Minority Over-
Sampling Technique (SMOTE) [59] and its variants: BorderlineSMOTE
[106], Adaptive Synthetic sampling (ADASYN) [103], SVMSMOTE [181]
and KMeansSMOTE [80].

SMOTE creates new synthetic data interpolating the data of the mi-
nority class. In particular, given a random sample point t belonging to
the minority class, a randomly selected neighbor t′ is chosen between the
h nearest neighbors of t. Thus, a synthetic data point between t and t′ is
created. The number h of neighbors was considered as an hyper-parameter
to be tuned during the validation procedure.

ADASYN expands the basic idea of SMOTE by adding a criterion to
automatically decide the number of data to generate in the neighborhood of
each minority sample. Relying on the assumption that data near the class
decision boundary could be misclassified, BorderlineSMOTE generates in-
stances in the border area between the classes. Similarly, SVMSMOTE
creates boundary data exploiting an SVM to approximate a good boundary
between the classes. Instead, with the help of the k-means [162] clustering
algorithm, KMeansSMOTE selects the best domain areas to over-sample.

Usually, only the training set is balanced and then different metrics to
validate the model on the test set are used. Indeed, in case of imbalanced
test data, established performance measures, as the standard accuracy, are
unreliable since they can be biased toward the dominant class [87]. Some
metrics used as performance scores are the Matthew Correlation coefficient
(MCC [42]) and the Balanced Accuracy (BA [54]).

Specifically, MCC and BA are defined as:

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)
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and
BA = 1

2

(
TP

TP+FN + TN
TN+FP

)
MCC showed to be particularly reliable in machine learning problems

with unbalanced data [53]. MCC is the correlation coefficient between the
observed data and the predicted classifications. It is defined in the range
[−1, 1], where a MCC value of 1 means a perfect prediction, 0 a random
prediction and −1 means a total misclassification. Balanced accuracy,
similarly to the standard accuracy , is defined in the range [0, 1], giving a
more intuitive performance measure of the proposed method in imbalanced
data condition.

2.4.2 Domain Shift problem

The Domain or Dataset Shift (DS) problem refers to the probability
distribution shift that is present between the training set and the test set
[172] in a given dataset. Most ML algorithms are based on the assumption
that the two sets, training and test, are independent and identically dis-
tributed, ignoring the out-of-distribution scenarios that commonly occur
in practice. This means that these models are not designed with the prob-
lem of domain switching in mind, and as a result, an ML model trained
only with training data will suffer a significant drop in performance on the
test set.

There can be several causes of dataset shift, the two most important
are: sample selection bias and non-stationary environments. In the first
case, the difference in the distribution is due to the fact that the data
of the training set was obtained by biased methods, and thus does not
truthfully represent the real operating environment. For example, due to
cost, examples of a class are sampled at a lower rate than what the reality
may be. Second, it appears when the training environment is different from
the test environment, due to a spatial or temporal change. For example, in
some scenarios, such as the medical one, where there are different patient
data, the probability distribution is also variable between the individual
subject data. On data of Electroencephalographic (EEG) signals due to
their properties, as will be seen in detail in section 3.1.3, the distribution
is even variable over time on the single subject. This property, called non-
stationarity, of the EEG signal can be seen as an instance of the dataset
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shift problem.

Domain adaptation

Possible solutions in the literature for this problem are based on Do-
main Adaptation (DA) [134] approaches. These solutions assume that
unlabelled test set data are also available during the training phase.

Simple methods, in which normalisation functions are used, have been
proposed in the literature in various works [62, 61]. In the preprocess-
ing phase, the data are usually transformed using normalisation functions,
such as re-scaling the data with respect to its mean and variance. The
choice and mode of normalisation can impact the performance of classifi-
cation in machine learning systems.

Considering a dataset, such as EEG data, consisting of data from dif-
ferent subjects and sessions for different subjects, different schemes to nor-
malise the data are possible to use, such as:

1. All subjects; the entire dataset is normalised. This is the most widely
used method where, however, if no test set data is available, it is not
considered a DA technique.

2. Per subject; each subject is normalised individually. Here, it is as-
sumed that each subject has a different distribution and therefore
exploiting this type of transformation leads to an improvement in
classification performance.

3. Per session; each session for each subject has its own normalisation.
A special case of the previous one, in which, even sessions per subject
can have different domains.

2.5 Conclusion

In some specific contexts the well-known DS problem leads ML systems
to poor generalization performances. Therefore, advanced techniques that
consider this problem are needed to improve the classification performance
of ML models. DA methods, which can also make use of DNN, can be used
to mitigate the dataset shift problem. DA techniques are able to improve
the performance of an ML model in case of different data distribution
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probabilities, leading the learned model toward the ability to generalise
on new data. This is possible because DA methods reduce the effects of
the dataset shift problem. DNNs, on the other hand, with their different
internal layers, recognise specific patterns on the inputs useful for correct
classification.

In several medical scenarios in which there are data from different pa-
tients, such as in an EEG dataset, data probability distributions change
drastically among different subjects. Therefore, the probability distribu-
tion is time-varying among different subjects. The non-stationarity of the
EEG signal, that can be seen as an instance of the dataset shift problem,
will be discussed in the following chapters.





Chapter 3
Electroencephalographic
Signals
Introduction

This chapter will introduce electroencephalographic signals, analysing
the main types, characteristic properties and the main steps after signal
acquisition.

3.1 Description

Electroencephalographic (EEG) signals measure the neurons’ electrical
activity in the brain. The collection of EEG signals requires electrodes to
be placed on the scalp of the human head. Since the current is measured
on the scalp, obstructions (e.g. the skull) greatly reduce the quality of
the signal: the fidelity of the collected EEG signals, measured as Signal-
to-Noise Ratio (SNR), is about 5% of that of the original brain signals
[43]. EEG signals have a low spatial resolution due to the limited number
of electrodes that can be placed. Whereas, the temporal resolution is
above 1000 Hz as the electrical activity changes rapidly. Electrodes are
usually installed in a headset, which makes the instrumentation portable
and accessible for most uses.

EEGs are of many different types, in particular: spontaneous EEG and
evoked potentials.
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3.1.1 Spontaneous EEGs

In spontaneous EEGs the brain signals are measured under a specific
state without external stimulation. For example, while the user is sleeping
or performing a mental exercise. In this specific class, the aim is to monitor
the user’s attentional or emotional level and engagement. Machine learning
models based on spontaneous EEG are a real challenge to train due to low
SNR and higher variability across subjects [189].

3.1.2 Evoked potentials

Another class of EEG signals are Evoked Potentials (EP). An EP usu-
ally has a higher amplitude and lower frequency than a spontaneous EEG
signal. This characteristic allows EP signals to be more robust across sub-
jects. These signals can be divided into Event-Related Potentials (ERP)
and Steady State Evoked Potentials (SSEP) based on the frequency of the
external stimuli. The stimuli in an ERP scenario are separated from each
other by long intervals, whereas in SSEP they are generated by repetitive
periodic stimuli at a constant frequency. Based on the type of stimulus,
SSEP can be divided into three categories: Steady-State Visually Evoked
Potentials (SSVEP), Steady-State Auditory Evoked Potentials (SSAEP),
and Steady-State Somatosensory Evoked Potentials (SSSEP).

Steady-State Visually Evoked Potentials

In particular, SSVEPs are a specific physiological brain response to
continuously flickering visual stimuli, typically inducted after a latency
varying from 80 ms to 160 ms [118]. Stimulation frequency bands usually
range from 6 Hz to 30 Hz, although the best Signal to Noise Ratio (SNR)
is achieved in the range 8-15 Hz [240]. Generally, the SSVEP shows a
sinusoidal-like waveform, with a fundamental frequency equal to that of
the gazed stimulus, and often higher harmonics [175], as shown in fig. 3.1.
In practical applications, different visual stimuli (at different frequencies)
are associated to specific commands: thus, such systems allow the user to
perform a selection by simply looking at the related flickering stimulus.
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Figure 3.1. Example of a SSVEP of a user staring at a 10 Hz-flickering
stimulus: EEG in the time domain (a); Filtered EEG in the time domain (b);
EEG in the frequency domain (c) [21].

3.1.3 EEG signal properties

There are problems related to the electrophysiological properties of
recorded EEG signals that include non-linearity, non-stationarity and noise.

The brain is a highly complex non-linear system in which chaotic be-
haviour of neurons can be detected. Therefore, brain signals can be charac-
terised better with non-linear dynamic methods than with linear methods.

The non-stationarity attribute of brain signals represents a major prob-
lem in the development of a machine learning model [196]. The signals ac-
quired change continuously over time, both between and within recording
sessions. Non-stationarity can be seen as an instance of a familiar problem
in the ML field known as ’domain shift’ (see section 2.4.2). The underly-
ing mental and emotional state in different sessions can contribute to the
variability of signals. Fatigue and concentration levels are also considered
factors of internal non-stationarity. Although, there are some types of sig-
nals, such as SSVEP signals, in which a stationary component of the signal
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is prevalent in addition to the non-stationary one [116].
Noise is also significantly another problem. It includes unwanted sig-

nals caused by alterations in electrode positioning and environmental noise.
Frequency band filtering helps remove noise and artefacts (see section 3.2).
It can also provide significant help in managing non-stationarity factors.
The advantage of using filtering is its simplicity, however, the effect of this
method is degraded if the uncorrelated signal overlaps or is in the same
frequency band as the signal of interest [268].

3.1.4 10/20 system

The 10/20 system is a universally recognised method that indicates
the position of the electrodes on the scalp [163]. The numbers 10 and 20
indicate that the distances between adjacent electrodes are 10 or 20 per
cent of the total front-to-back or right-to-left distance of the skull. At
each site, a letter is used to indicate the lobe, while the position of the
hemisphere is represented by a number. In the 10/20 system, the frontal,
parietal, temporal and occipital lobes can be indicated by the letters F,
P, T and O, respectively, as illustrated in figure 3.2. The letter Z (zero)
indicates that the electrode is positioned on the midline. Even numbers
(2, 4, 6, 8) are used to indicate right-hemisphere electrode positions, while
left-hemisphere electrode positions are indicated by odd numbers (1, 3, 5,
7).

3.1.5 EEG devices

This section describes the devices for acquiring EEG signals: Emo-
tiv Epoc+, Single-channel wearable and Neuroscan Synamps2 used in the
tasks described into chapters 5, 6 and 9.

Emotiv Epoc+. The Emotiv Epoc+ is provided with a rechargeable
battery and is able to transmit the data via Bluetooth. The electrodes,
arranged on the scalp according to the International Positioning System
10/20, are placed on: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, AF4. P3/P4 and CMS/DRL (reference electrodes). A felt pad is
placed on the electrodes coated with Ag/AgCl. The felts must be soaked
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Figure 3.2. (A) and (B) are the left and above view of the international
10-20 system [114].

with an hydrator fluid like saline solution. The technical specifications of
the Emotiv Epoc+ are reported in [1].

Single-channel wearable. In this device, only three Electrodes are
used: a pair of active and dry [68] electrodes are placed in Oz, Fz posi-
tions according to the 10-20 International System to capture the user EEG
signal; while a passive electrode (Driven Right Leg, DRL) is placed on the
earlobe and acts as a reference. In this way, a single-channel, differential
configuration is implemented, reducing the common mode interference.

Neuroscan Synamps2. A Synamps2 EEG acquisition unit (Neuroscan,
Inc.) was used to record EEG data at a sampling rate of 1 kSa/s. 64
electrodes, according to international 10–20 system, were used to record
whole-head EEG. The reference electrode was placed at the vertex of the
user scalp (Cz). A notch filter at 50 Hz was applied to remove the power-
line noise.

3.2 EEG signal preprocessing

Once the EEG signal data have been acquired, they are processed
through preprocessing, feature extraction and classification steps. In the
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first step, the signals are preprocessed in order to increase the SNR. The
preprocessing phase can contain several sub-steps.

3.2.1 EEG filtering

In the acquisition process, the signal is usually contaminated with noise
from various sources. The objective of this step is to eliminate or attenuate
the noise in order to have a cleaner signal free of artefacts. Filters are
applied so as not to introduce any change or distortion in the signals.
High-pass filters with a cutoff frequency of usually less than 0.5 Hz are
used to remove very low-frequency noise components, such as breath noise.
Instead, high-frequency noise is attenuated using low-pass filters with a
cutoff frequency of around 50-70 Hz. Notch filters with a null frequency of
50 or 60 Hz are often necessary to ensure the exclusion of the power line
that creates noise at that frequency [209].

Below is a description of two particular filters: Butterworth filter, used
for the task described in chapter 5 and the FIR filter exploited in the other
tasks on SSVEP signals.

Butterworth filter. The Butterworth filter is a standard first-order
low-pass filter, which can be modified to obtain a high-pass filter, and
combined in series with others to obtain band-pass filters, band-elimination
filters, and higher-order versions of these. The frequency response of these
filters in the pass band is as flat as possible, while out-of-band has a mono-
tonic transfer function, tending to zero. The Butterworth filter is the only
filter that maintains the same response even for higher orders, with the
steepest side slopes as the order increases.

Finite impulse response filter. Finite Impulse Response (FIR) filter
is a filter whose impulse response has a finite duration, because it stabilises
at zero in a finite time. This is in contrast to Infinite Impulse Response
(IIR) filters, which can have internal feedback and can continue to respond
indefinitely. An FIR filter has useful properties. FIR filters do not require
feedback. This means that any rounding errors are not aggravated by the
summed iterations. The same relative error occurs in each calculation.
This also simplifies implementation. They are inherently stable, as the
output is a sum of a finite number of finite multiples of the input values.
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The main disadvantage of FIR filters is that they require considerably more
computing power than an IIR filter.

3.2.2 Segmentation

It is common practice to divide the signal into smaller epochs in time.
This segmentation makes it possible to give the signal discrete stationary
properties and exploit them to produce online and real-time commands.
Typical signal segmentations, but which depend on the type of problem,
are 1, 2, 3, ..., 10 seconds.

3.2.3 Normalization

Another preprocessing step is that of normalization in which the sig-
nal is normalised for each signal channel along the time-axis. There are
several techniques to perform this normalisation such as: considering a
[minimum,maximum] interval usually equal to [0, 1] and re-scaling the
signals in this interval; or, computing the mean (u) and the standard devia-
tion (s) of the acquired signals along each features and applying a z−score
transformation to the signals x: z = (x − u)/s. Then, in this normalisa-
tion phase, the signal data are finalised to give them as input to a feature
extractor or to a machine learning model (deep learning).

Considering the non-stationarity of EEG signals, special normalisation
schemes as described in section 2.4.2 should be taken into account.

3.3 EEG feature extraction

In this second phase of signal processing, after preprocessing has been
performed, features are extracted from the data.

This part of data processing is done with specific algorithms that allow
the extraction of significant features or patterns from the signal. Fea-
tures are extracted according to two specific domains: time domain where
there are features such as mean, standard deviation, variance and others;
frequency domain where there are features such as, bands power, power
spectral density values and others.

In some machine learning models such as deep models, this phase could
be absorbed into the model itself. Indeed, within the different layers of the
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deep model, feature extraction is done and finally other layers or a final
layer will take care of the classification of the input signal.

Next, some techniques to extract features such as the common spatial
pattern, used in Chapter 5, and other methods exploited on SSVEP signals
in Chapter 6.

3.3.1 Common spatial pattern

The Common Spatial Pattern (CSP) is a procedure used in signal pro-
cessing to separate a multivariate signal into sub-components with the
highest variance differences between two windows [133]. The CSP method
can be applied to multivariate signals and, in general, is commonly applied
to EEG signals. In particular, the method is often used in brain-computer
interfaces to retrieve component signals that best transduce brain activity
for a specific task. It can also be used to separate artefacts from EEG
signals [188].

3.3.2 Power spectral density analysis

The Power Spectral Density Analysis (PSDA) [240] uses a Fast Fourier
Transform (FFT) on the EEG signal. Then, a PSD is performed in the
neighborhood of each frequency and eventually its multiple m harmonics.
This method requires a minimum time duration of the acquired EEG in
order to correctly discriminate the harmonics, since an appropriate fre-
quency resolution is required [66].

3.3.3 Canonical correlation analysis

Canonical Correlation Analysis (CCA) in time domain, is a multivari-
ate statistical method of correlating linear relationships between two sets
of data [156]. CCA is performed between the EEG data and a set of
sine waves having the same frequencies of the stimuli, and eventually its
multiple harmonics, and variable phase. A correlation coefficient ρmn is
extracted for each stimulus frequency fn and each harmonic m considered.
Therefore, these coefficients are used for SSVEP classification. For the
sake of example, in [156] the output of the classification was associated to
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the frequency with the highest correlation coefficient extracted. The clas-
sification performance achieved with the use of CCA are typically better
than PSDA [104].

3.3.4 Filter bank canonical correlation analysis

The Filter Bank Canonical Correlation Analysis (FBCCA) method is
an enhancement of CCA [65] and consists of three major procedures: (i)
filter bank analysis; (ii) CCA between SSVEP sub-band components and
sinusoidal reference signals; and (iii) signal classification. First, sub-band
decompositions are performed by the filter bank analysis by means of multi-
ple filters with different pass-bands. In this way, the sub-band components
from the original EEG are obtained. After the filter bank analysis, the
standard CCA is applied to each of the sub-band components separately.
This results in correlation values between the sub-band components and
the sinusoidal reference signals corresponding to the stimulation frequen-
cies. A correlation value is obtained for each frequency and each sub-band
according to. Finally, the signal classification is performed on the basis
that the observed frequency is that corresponding to the feature with the
maximum value.

3.4 EEG and Machine Learning

In the classification step, a given input signal has to be assigned to
a specific class. This step corresponds to determining target class using
feature vectors. These vectors may be low-dimensional, in which case
feature extraction is done on the data, or raw, in which the data has
usually only been preprocessed. The classification can be made simply by
setting thresholds per feature, or using more complex machine learning
algorithms. Many classification techniques have been introduced in recent
decades, as: SVM, ANN, CNN and many others (see section 2.2).

Unlike traditional machine learning models or shallow ANN models,
deep models are often used to run directly on raw EEG signal data with-
out the feature extraction phase, avoiding the time consumption for this
processing and the possible loss of information [254].

A robust technique to validate a classification model using a dataset
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composed of EEG signals is the Leave-One-Subject-Out Cross-Validation
(LOSO CV). This is a variant of the k-fold cross-validation approach but
with folds consisting of subjects. In LOSO CV, one subject is reserved for
the evaluation and the model is trained on remaining subjects. The process
is repeated each time with a different subject reserved for the evaluation
and results are averaged over all folds (subjects). The experiments demon-
strated the importance of using LOSO CV for estimating the performance
of an ML model for new users and the risks of accuracy overestimates
with traditional k-fold cross-validation [91]. This validation is applied in
an inter-subjective context where an attempt is made to generalise to new
subjects. In contrast, in an intra-subjective context, an attempt is made to
create a specific model for each subject. In this case, a validation technique
is the Leave-One-Session-Out, in which an attempt is made to generalise
on the subject’s sessions.
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Chapter 4
BCI: an overview
Introduction

In this chapter an overview of the brain-computer interfaces will be
made. After a general description, some application contexts and open
problems will be analysed.

4.1 General description

The use of brain signals to control prosthetic limbs was first developed
in the early 1970s [184]. Since then, a new area of research has emerged
that has been named Brain-Computer Interface (BCI). This research en-
deavours to improve the interpretation of brain waveforms in order to
establish increasingly accurate control towards external devices. Advances
made in recent years in both computer science, particularly in machine
learning, and biological brain science have made BCI a very influential
area of research in the applied sciences.

In general, a BCI system records brain activity and converts it into
commands for external devices. A BCI system usually consists of the
following key elements: signal acquisition, signal preprocessing, feature
extraction, classification and application interface [190] (fig. 4.1). The
acquired signals are sent to the preprocessing component for signal en-
hancement. Next, features are extracted from the preprocessed signals
and sent to the classifier, which recognises the signals and converts them
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into commands for external devices.

Figure 4.1. Components of a BCI system: signals from the user’s brain are
acquired and processed to extract specific features used for classification. The
classifier output is transformed into a device command, which, at the same
time, provides feedback to the user [190].

4.1.1 Signal acquisition

Brain waves are recorded with several methods that can be grouped
mainly into: invasive and non-invasive techniques. For instance, Electro-
CorticoGraphy (ECoG) and Electroencephalography (EEG) are the two
most widely used invasive and non-invasive technologies [183]. In inva-
sive methods, signals are collected via electrodes placed under the scalp
(fig. 4.2). Invasive methods allow a high quality of brain signals as the
electrodes are placed close to the neurons. In addition, they have a high
spatial and temporal resolution and a high Signal-to-Noise Ratio (SNR), so
they diminish artefacts such as eye blinking or movements. On the other
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hand, in non-invasive techniques, signals are recorded by external sen-
sors using electrical, metabolic or magnetic methods. Some non-invasive
methods are: Electroencephalography (EEG), functional Near-InfraRed
Spectroscopy (fNIRS), functional Magnetic Resonance Imaging (fMRI),
ElectroOculoGraphy (EOG), and MagnetoEncephaloGraphy (MEG). EEG
signals are the most widely used in BCI systems. For more information on
the EEG signal, refer to chapter 3.

Figure 4.2. Drawing depicting the signals for BCI and their locations relative
to the brain. Three general categories of signals are used for BCI applications
[145].

4.2 Application contexts

BCI systems are applied in many scenarios including health care, reha-
bilitation, security, smart environment, but also games & entertainment.

4.2.1 Health care

In health care, BCI systems mainly work on the detection and diagno-
sis of mental diseases such as sleep disorders, Alzheimer’s disease, epileptic
seizures and other disorders. With regard to the detection of sleep disor-
ders, most studies focus on the detection of the different sleep phases on the
basis of spontaneous EEG. BCI technology can also be used for the early
detection of abnormal brain structures and functions, examples of space-
occupying lesions (e.g. brain cancer, encephalitis) and abnormal neuronal
discharges (seizures). One study proposed a BCI system that identified
abnormalities detected in the EEG due to tumours and seizures with an
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accuracy of 98%, 93% and 87% for normality, epilepsy and brain tumour,
respectively [151]. Early diagnosis of seizure disorders and their control
using ANN have been proposed in [138]. Furthermore, BCI technology is
useful for diagnosing dyslexia [85], attention deficit hyperactivity disorder
(ADHD) [154] and a training program using BCI has been implemented
to improve ADHD symptoms [153]. kumar2014epileptic, 9224368

4.2.2 Rehabilitation

One important aspect in the medical field is rehabilitation, such as
the recovery of damaged motor functions or the ability to communicate
and more generally the improvement of quality of life. Neurorehabilitation
could be improved by using BCI systems for people suffering from motor,
communication and control problems due to neurological damage. Nu-
merous studies have suggested that neuroprosthetic devices, which utilise
motor imagery-based BCI technology, could be useful in restoring normal
levels of function to the hand of stroke patients who have not been able to
recover previous levels of movement [56].

Furthermore, in therapeutic rehabilitation sessions, it may be very use-
ful to know the engagement states of patients.

Engagement assessment

In rehabilitation context biosignals-based measurement methods are
emerging. They allow an automated and real-time engagement assess-
ment. In particular, eye-blinking [195], heart rate variability [90], and
brain activity [107, 83] were used to detect changes in patient’s engage-
ment. Among these, the EEG signal [47] offers good temporal resolution
and improves real-time performances.

Studies on EEG-based engagement detection were mainly conducted on
adults and focused only on cognitive engagement. In [137], a computational
framework was proposed for real-time cognitive engagement recognition
using EEG. A deep Convolutional Neural Network was used to extract
task discriminative spatio-temporal features and predict the CE level for
two classes: engaged vs. disengaged. Experiments were conducted on 8
subjects performing the Go/No-Go paradigm to induce cognitive fatigue.
An average inter-subjective accuracy of 88.13% was reached. In [187], the
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EEG signals were acquired for monitoring cognitive engagement in stroke
patients while they executed active and passive motor tasks. Event-related
desynchronization differences between tasks were observed during both
initial and post-movement periods. EEG data were used to classify each
epoch as involving the active or passive motor task. Average classification
accuracy was 80.7 ± 0.1% for grasping movement and 82.8 ± 0.1% for
supination movement.

Recently, a first study on engagement in pediatric rehabilitation was
proposed [72]. Positive/negative engagement of autistic patients was clas-
sified starting from EEG signals and gesture recognition. The EEG signals
were acquired through the single-channel MindWave; Kinect was instead
employed for gesture recognition. Five children (two with autism) under-
took the experiment. An inter-subjective accuracy of 95.8% was achieved
in classifying positive or negative engagement. However, the study does
not specify the explored engagement dimensions (i.e. emotional, cognitive,
or behavioral). To date, to the best of my knowledge, only one study is
present in the literature on this topic. The reasons could be: (i) the engage-
ment measure in the rehabilitation field has only recently become an object
of interest [187], and (ii) EEG-based engagement assessment in pediatric
rehabilitation requires the adoption of a respectful clinical protocol to pro-
tect the child and his psycho-physical integrity (i. e. a non-interventional
observational approach). Although such a protocol is more comfortable
for the children, it entails a general lack of control over the engagement
levels resulting in imbalanced data collections.

BCI in virtual reality

Several virtual and augmented reality-based BCI approaches have been
proposed for rehabilitation programs. A pilot study project suggests that
virtual reality-based BCI is effective in stroke rehabilitation [160]. Prelim-
inary results of a clinical study showed that the use of virtual reality and
BCI with the functional electrical stimulator have a good degree of satis-
faction, rapid adaptation to therapy and fast progress in user rehabilitation
[200]. Augmented reality, on the other hand, gives rise to a new rehabili-
tation approach. The results of a review, which evaluated the effectiveness
of augmented reality in shoulder rehabilitation, showed that augmented
reality has more advantages than the traditional program [234].
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4.2.3 Security

Security is a common area of interest for BCI researchers. The secu-
rity problem can be divided in two ways: identification (or recognition)
and authentication (or verification). The first is a multi-class classifica-
tion problem to recognise the identity of the person [253]. The second
is a binary classification problem to determine whether the person under
consideration is authorised or not [252].

Existing biometric identification/authentication systems are mainly based
on the intrinsic physiological characteristics of the individual (e.g. face,
iris, retina, voice and fingerprint). However, such person identification sys-
tems are vulnerable: e.g. prosthetic masks can interfere with face recog-
nition, contact lenses can fool iris recognition, vocoders can compromise
voice identification and fingerprint films can trick fingerprint sensors. Con-
sidering this, EEG-based biometric identification systems are emerging as
promising alternatives due to their high resistance to attack. An individ-
ual’s EEG signals are virtually impossible for an impostor to imitate, thus
making this approach less vulnerable. Koike et al. [132] adopted deep neu-
ral networks to identify the user based on VEP signals, while Mao et al.
[164] applied CNNs for person identification based on RSVP signals. In-
stead, the authors in [252] combined EEG signals with gait information to
introduce a dual authentication system with a hybrid deep learning model.

4.2.4 Smart Environment

The intelligent environment is a promising application scenario for BCI
systems in the future. With the development of the Internet of Things
(IoT), an increasing number of intelligent environments can be connected
to BCI. For example, an assistance robot can be used in smart homes [255],
where the robot can be controlled by brain signals.

The intelligent transport sector has also benefited from the BCI func-
tion of cognitive state monitoring. Driver behaviour has been studied in
numerous studies. The use of EEG signals for fatigue detection was anal-
ysed in [236], while [51] discussed the use of the workload index to assess
the driver’s mental state. In [241], different models for distinguishing dis-
tracted drivers were examined.
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4.2.5 Games & entertainment

Entertainment and gaming applications have opened up the market for
non-medical BCIs. Various games have been presented in the literature,
such as in [205], in which helicopters are flown in a virtual world. In [50],
players can participate in a football match by means of two BCI systems.
They can score goals by imagining left or right hand movements. On the
other hand, some serious games via BCI have been used for emotional
control and/or neuroprosthetic rehabilitation. In [227], Tan and Nijholt
described the game Brainball, a game that aims to reduce stress levels.
Users can only move the ball by relaxing, thus, the calmer player is more
likely to win and thus learn to control stress while having fun.

4.3 Open Problems

The main open problems in BCI systems are due to electrophysiolog-
ical characteristics of brain signals, the data collection and/or calibration
phase, the classifier training step and evaluation methods.

4.3.1 Intrinsic signal properties

BCI systems that acquire signals by invasive methods have certain
problems. Firstly, the implantation of electrodes requires a surgical proce-
dure, which is expensive and risky due to potential medical complications
such as transplant rejection. Secondly, the implanted electrodes are fixed
and thus can only measure brain signals from the same locations. For
these reasons, invasive BCI systems are mainly used in animals and people
with severe disabilities (e.g. ALS patients) [4], and therefore non-invasive
techniques are preferred.

Beyond the modalities of signal acquisition (invasive or non-invasive),
there are problems related to the electrophysiological properties of recorded
brain signals, analysed mainly on EEG signals (as seen in section 3.1.3).

4.3.2 Training

One of the initial processes in the implementation of a BCI system is
data collection. This phase for the user undergoing acquisition is a time-
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consuming activity considering the number of sessions required. Some BCI
paradigms can also be fatiguing for the user as the usage time increases as
seen in [213]. Furthermore, in subject-dependent BCI systems, a calibra-
tion is required before each session, increasing the user’s time of use even
more. For this reason, attempts have been made in recent years to develop
BCI models that are able to generalise to new subjects while avoiding the
calibration phase [235].

The training sets for learning classifiers in BCI systems are usually
small, also considering the usability problem in signal acquisition as dis-
cussed above. On the other hand, large training sets require higher learn-
ing times for classifiers. It would be necessary to balance the amount of
training data required with the technological complexity in interpreting
the user’s brain signals [10].

4.3.3 Evaluation methods

Classifiers of BCI systems should be evaluated online, as each BCI im-
plementation takes place in an online situation. Furthermore, they should
be validated to ensure that they have low complexity and can be calibrated
quickly in real time. Domain adaptation and transfer learning could be an
acceptable solution for the development of BCIs without calibration.
Various performance evaluation measures are used to evaluate BCI sys-
tems. However, when different evaluation metrics are used to evaluate
BCI systems, it is almost impossible to compare them. Therefore, the BCI
research community should establish a uniform and systematic approach
to quantify a particular BCI application or metric [197].



Chapter 5
Problem 1: Engagement
Detection

Introduction

Engagement assessment is fundamental in clinical practice to person-
alize treatments and improve their effectiveness. Indeed, patients involved
in healthcare decision-making tend to perform better and to be healthier.

The standard tools used in clinical practice for engagement assessment
are questionnaires or rating scales. Both take into account the patients’
awareness of their health and their therapeutic process. In adult rehabili-
tation, the most used are: Patient Activation Measure (PAM-13) [109] and
Patient Health Engagement (PHE) scale [96]. Recently, also in pediatric
rehabilitation, engagement assessment scales have been developed and vali-
dated. The Pediatric Rehabilitation Intervention Measure of Engagement-
Observation (PRIME-O) version [127] and the Pediatric Assessment of
Rehabilitation Engagement (PARE) scale [74] were designed to capture
signs of emotional, cognitive, and behavioral engagement for clients and
service providers and in the client-provider interaction.

In this chapter, a module for cognitive and emotional engagement
assessment, designed to be integrated into an automated [12] or semi-
automated [95] rehabilitation system, is presented.

The combined assessment of cognitive and emotional engagement could
lead a better adaptability of the therapy and an improvement in its effec-
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tiveness [127].
In section 5.1, the multidimensional nature of engagement is presented.

In section 5.2, the basic ideas, the architecture, and the data analysis of the
proposed method are highlighted. Then, in section 5.3, the experimental
validation is reported, by detailing the experimental setup, and the results
are discussed.

5.1 Background

The term engagement, derived from the verb "engager", is often used
as a synonym for commitment and/or involvement.

Several definitions have been provided over the years because of its
multi-dimensional and heterogeneous nature. In 1990, Kahn based the
definition of engagement on three broad dimensions: behavioural, cogni-
tive, and emotional [120]. Behavioral engagement is the set of observable
indicators (postures, gestures, actions, etc.) of persistence and partici-
pation. Cognitive engagement is the effort to extend one’s intellectual
commitment beyond the minimum required to complete the task. Finally,
emotional engagement is the positive emotional reactions of individuals to
a task.

In rehabilitation, Barello et al. [44], defined patient engagement as a
“multi-dimensional psycho-social process, resulting from the conjoint cog-
nitive, emotional, and behavioral enactment of individuals toward their
health condition and management” . The cognitive dimension refers to the
meaning given by the patient to the disease, its treatments, its possible
developments, and its monitoring. The emotional dimension consists of
the emotive reactions of patients in adapting to the onset of the disease
and the new living conditions connected to it. The behavioral dimension
is connected to all the activities the patient acts out to face the disease
and the treatments.

Lequerica et al. defined engagement in rehabilitation as "a deliberate
effort and commitment to working toward the goals of rehabilitation inter-
ventions, typically demonstrated through active, effortful participation in
therapies and cooperation with treatment providers" [144]. Moreover, the
authors highlighted the role of motivation in triggering and feeding engage-
ment. Motivation can be intrinsic or extrinsic. Deci and Ryan [73] defined
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intrinsically motivated behaviours as those "for which the rewards are in-
ternal to the person". Conversely, extrinsically motivated behaviours are
performed to obtain external reward such as money or praise. According
to the authors, intrinsic goals are more powerful motivators than extrin-
sic or externally imposed goals. Intrinsic motivational factors influencing
therapeutic engagement are: (i) perception of the need for treatment; (ii)
perception of the probability of a positive outcome; (iii) perception of self-
efficacy in completing tasks, and (iv) re-evaluation of beliefs, attitudes and
expectations [144].

In pediatric rehabilitation, it is difficult to achieve engagement by re-
lying only on intrinsic motivation. Therefore, the extrinsic motivation is
required. Children only react to what is real, concrete, present and imme-
diately satisfying.

5.2 Methods

5.2.1 Basic Ideas

The aim of this study is to propose an EEG-based engagement detec-
tion system in the field of pediatric rehabilitation. The basic ideas of the
proposed method are:

• The use of both the emotional and the cognitive engagement : an
overcoming of the reductionist approach based only on the cognitive
dimension, which is particularly unsuitable for children [127], is pro-
posed.

• Adoption of a subject-dependent approach: the low inter-individual
EEG reproducibility significantly influences the pattern classification
in the engagement detection systems [161].

• Support procedure for user calibration: the system needs a calibra-
tion. To this aim, the user executes a set of rehabilitation sessions on
different days. An observational non-interventional protocol is the
best choice for maximizing children’s comfort. However, this can lead
to unbalanced data and a more challenging classifier training phase
is required. The recent KMeansSMOTE method [80] is proposed to
manage the imbalance of data.
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5.2.2 Architecture

The proposed method is sketched in Fig. 5.1. The semi-wet 14 chan-
nel EEG device allows the EEG signals to be sensed directly from the
scalp of the child. Channels are referred to CMS/DRL. Analog signals
are conditioned by stages of amplification and filtering (Analog Filter and
Amplifier). Then, they are digitized by the Analog Digital Converter ADC
and sent by the Wireless Transmission Unit to the Data Processing block.
The Classifiers receive the feature arrays from two trained Common Spatial
Pattern procedures for detecting the cognitive and emotional engagement.

Figure 5.1. The proposed cognitive and emotional engagement detection
method.

5.2.3 Data processing

In this section, data preparation, training and classification are pre-
sented.

1. Data preparation and training : the EEG tracks are acquired at a
sample rate of 128 Sa/s into time windows of 9 s without overlap.
EEG signals are filtered through a 4th order Butterworth band-pass
filter, between 0.5 Hz and 45 Hz. During the calibration, data are
collected and properly labeled by the therapist. Both cognitive and
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emotional engagements are distinguished in two classes, high and low.
Two Common Spatial Pattern procedures (CSP [133]) and two fully-
connected feed-forward artificial neural network (ANN) classifiers,
are separately trained on cognitive and emotional engagement data.

2. Classification: the trained CSPs project multi-channel EEG data
belonging to different classes into a new space, where the differences
between the variances along the dimensions are maximized. The two
trained ANNs for emotional and cognitive engagement classification
are fed with the outputs of the previous stage (Fig. 5.1).

5.3 Experimental Setup

5.3.1 Sample

Four children, three males and one female aged between 5 and 7 years,
suffering from disturbances in motor-visual coordination, were selected
for the experiment. Each subject was affected at least by one among
the following diseases: double hemiplegia, motor skills deficit with dys-
praxia, neuropsychomotricity delay, and severe neuropsychomotricity de-
lay in spastic expression from perinatal suffering. Their main symptoms
were: lack of strength, motor awkwardness, difficulty in maintaining bal-
ance, inadequate postures, spatial disorientation, problems with laterality
(right, left confusion), difficulty in managing time, and learning difficulties.

5.3.2 Experimental setup

The experimental protocol was approved by the ethical committee of
the University Federico II. Families agreed to the experimental activities
by releasing a written informed consent before the experiment. Procedures
were carried out according to relevant guidelines and regulations [2]. An
observational non-interventional protocol maximized the children’s com-
fort. Therefore, part of the ordinary rehabilitation sessions was monitored
by EEG for a total of about thirty minutes per week for each subject. The
data acquisition took place in a room illuminated by natural light and
provided with air exchange.
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The adopted therapeutic approach was the Perfetti-Puccini method,
also known as Cognitive Therapeutic Exercise [57]. The method aims to
recover the injury and activate the brain circuits that govern movement.
The child was asked to perform a visual attention exercise while keeping the
correct posture of the trunk, neck, and head. An interactive environment
[52] was depicted on a screen placed at the eye level of the subject (Fig.
5.2). One of four characters (a bee, a ladybug, a girl, or a little fish) could
be chosen to make the game more interesting. The child had to stare at
the character on the screen to make it move while maintaining eye contact.
Dynamic tracking techniques were employed. The game allowed to set (i)
the direction of the character’s movement (from right to left and vice versa,
or from top to bottom and vice versa), and (ii) the background landscape,
to adapt the difficulty level to the patient’s needs. A background music
was inserted into the game to improve the child engagement. The game
provided some features to adapt the therapy to the state of the subject: (i)
a simplification of the exercise, (ii) the introduction of elements of novelty,
and (iii) a content change.

Figure 5.2. Neuromotor rehabilitation session.

The experimentation was conducted with the help of professional fig-
ures who contributed to the trial activity. Physiotherapists explained the
exercise to the child (before the first session only), supervised rehabilita-
tion, and helped the child maintaining eye contact and correct posture. A
software engineer was responsible for starting the system and saving the
data. A biomedical engineer was responsible for the EEG signal acqui-
sition system and, therefore, for the correct setting-up, placement of the
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device, and electrode-skin quality contact.

5.3.3 Experimental reference

Each session was video-recorded by two cameras (front and side fram-
ing).

The Pediatric Assessment of Rehabilitation Engagement (PARE) scale
was employed for labeling the EEG signals. The emotional, cognitive, and
behavioral components of engagement were expressed in terms of: partic-
ipation, attention, activation, understanding, positive reactions, interest
and enthusiasm, posture and movements of the child during the exercise,
on a scale from 0 to 4. The PARE scale allowed to assess the rehabilitation
session as a whole. The items of the scale were rearranged to be employed
in shorter time intervals with the aim of improving the temporal resolu-
tion of observations. The behavioral component of engagement cannot be
assessed starting from the EEG signal. Therefore, only the cognitive and
emotional components of engagement are considered for research purposes.
The items referring to the emotional and cognitive spheres were separately
grouped. The evaluations were made by a multidisciplinary team while
viewing the videos. The evaluators were asked to rate both the compo-
nents of the engagement on two levels: high/low emotional engagement
and high/low cognitive engagement. They also noted the status changes
of the emotional and cognitive engagement and the correspondent time
instants of occurrence. The consensus among the evaluators was statis-
tically analyzed. The results revealed a total consensus of 95.2 % [135].
Evaluations were used as ground-truth to label the EEG dataset.

5.3.4 Hardware

EEG data were acquired through the portable, high resolution, 14-
channel Emotiv Epoc+. See section 3.1.5 for more details.

5.3.5 Experimental validation

Each subject underwent five EEG recording sessions of 15 min. At the
end of each session, the assessment described in Section 5.3.3 was carried
out by the therapists. Only on the first day, an initial training phase was
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implemented. In Fig. 5.3, the experimental paradigm as whole performed
by the subjects is shown. A mean of 280 ± 46 epochs for subject was
acquired for a total of 1121 epochs. Each epoch lasted 9 s. The different
number of epochs was due to a less constrained experimental protocol,
adopted to ensure a greater comfort for the patients.

Figure 5.3. The experimental paradigm: only on the first day, a training
phase is implemented.

Preprocessing

The EEG signals were filtered through a 4th order Butterworth band-
pass filter between 0.5 Hz and 45 Hz. The full frequency spectrum was
already investigated in the EEG data analysis literature, as for example in
[9]. Next, the CSP (see section 3.3) was adopted. The optimal number of
CSP components was found through a grid search Cross-Validation (CV)
procedure, varying the number of components in the range [4, 14]. Due to
the different number of data for each class, data were oversampled by five
oversampling methods: SMOTE [59], BorderlineSMOTE [106], ADASYN
[103], SVMSMOTE [181] and KMeansSMOTE [80]. See section 2.4.1 for
more information on these techniques.

The impact of synthetic data was assessed by comparing the resulting
performances with and without oversampling. In Table 5.1 the hyperpa-
rameters values for each oversampling method are reported.
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Table 5.1. Oversampling methods, optimized Hyperparameters, and varia-
tion ranges.

Oversampling Method Optimized Hyperparameter Variation Range

SMOTE K Nearest Neighbours {5, 7, 11}
ADASYN K Nearest Neighbours {5, 7, 11}

SVMSMOTE K Nearest Neighbours {5, 7, 11}
BorderlineSMOTE K Nearest Neighbours {5, 7, 11}

KMeansSMOTE
k-Means Estimator {1, 2, 4}

Cluster Balance Threshold {0.1, 0.9}
K Nearest Neighbours {2, 4, 8}

Table 5.2. Classifiers, optimized Hyperparameters, and variation ranges.

Classifier Optimized Hyperparameter Variation Range

k-Nearest Neighbour (k-NN)
Distance {minkowski, chebychev, manhattan, cosine, euclidean}

Distance Weight {equal, inverse, squaredinverse}
Num Neighbors [1, 7] step: 1

Support Vector Machine (SVM)
C Regularization {0.1, 1, 5}
Kernel Function {radial basis, polynomial}

Polynomial Order {1, 2, 3}

Artificial Neural Network (ANN)
Activation Function {relu, tanh}

Hidden Layer nr. of Neurons [5, 505] step: 20
Learning Rate {0.0005, 0.0001, 0.001, 0.005, 0.01}

Classification

Three machine learning classifiers were used: k-Nearest Neighbors (k-
NN), Support Vector Machine (SVM), and Artificial Neural Network (ANN).
For each classifier, the best model was found through a grid search CV pro-
cedure. Specifically, the regularization term C, the kernel type (polynomial
or radial basis function) and the degree of the polynomial kernel function
(in case of polynomial kernel) were found for the SVM. ANN classifiers
were trained with the Adam learning algorithm [128], while the number
of neurons, the number of hidden layers, and the learning rate were found
using the CV procedure. For k-NN, the best number of neighbors and
the distance function were the hyperparameters considered during the CV
procedure. In Table 6.1, for each classifier model, hyperparameters values
are reported.

For each subject, the model was trained using the first 70 % of the
data of each session as a training set and the remaining 30 % as a test set,
for the evaluation phase. The data were processed in the same temporal
order of acquisition, so that the test set contains only data temporally
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subsequent to the training data. Such a subdivision into training and test
sets for intra-individual classification is widely used in literature for EEG
data [148, 224, 264].

Evaluation metrics

Data were classified according to cognitive and emotional engagement.
The oversampling procedure helped in the management of the imbalanced
training data. However, the problem still remained in the test data. To
have a fair evaluation of the proposed system, the Matthew Correlation
coefficient (MCC [42]) and the Balanced Accuracy (BA [54]) were used as
performance scores (see section 2.4.1).

5.4 Experimental Results

In Tables 5.3 and 5.4, the overall averages of the intra-individual bal-
anced accuracies and MCC scores, given by the adopted classifiers, are
reported for the cognitive engagement and the emotional engagement, re-
spectively. To better understand to what extend the oversampling strategy
can affect the results, the experiments were repeated with or without the
application of the oversampling method.

As regards cognitive engagement, the oversampling method gave a
slight improvement; as regards emotional engagement, the oversampling
method gave a significant improvement to the performances, especially
when the KMeansSMOTE method was employed.

The KmeansSMOTE is less likely to generate minority class data in
domain areas predominantly dominated by majority class data. Thus,
generated data are closer to the data of the minority class, as showed
in Fig. 5.4 where the training data of a highly-unbalanced subject are
shown using the t-SNE projection [231]. The data is oversampled with two
methods: SMOTE (Fig. 5.4 A) and KMeansSMOTE (Fig. 5.4 B). The
latter attenuates the noise thanks to clustering before data interpolation.

Figures 5.5 and 5.6 show the intra-subjective balanced accuracies ob-
tained both on cognitive and emotional engagement, respectively, using
the KMeansSMOTE oversampling method. The ANN classifiers returned
the better scores in most subjects, both in the emotional and cognitive
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Table 5.3. Overall mean of the intra-individual performances on cognitive
engagement using three different classifiers: the balanced accuracy (BA) and
the Matthews correlation coefficient (MCC) at varying the oversampling meth-
ods.

Oversampling Metric k-NN SVM ANN Mean

none BA
MCC

67.1
0.31

67.4
0.34

73.7
0.45

69.4± 3.0
0.36± 0.06

SMOTE BA
MCC

68.6
0.33

69.8
0.36

72.0
0.40

70.1± 1.4
0.36± 0.03

BorderlineSMOTE BA
MCC

70.3
0.36

70.9
0.38

73.6
0.43

71.6± 1.4
0.39± 0.03

ADASYN BA
MCC

68.1
0.33

68.3
0.33

72.5
0.42

69.6± 2.0
0.36± 0.04

SVMSMOTE BA
MCC

69.0
0.34

69.4
0.36

72.9
0.42

70.4± 1.7
0.37± 0.03

KMeansSMOTE BA
MCC

69.8
0.35

71.1
0.39

74.5
0.46

71.8± 1.98
0.39± 0.04

engagement.
Furthermore, the MCC and the BA values ensure that the results are

not affected by unbalancing bias in the test phase.

5.5 Discussion

Due to the covid-19 pandemic, only four children were selected for the
experiment. In this situation, an evaluation of inter-subjective models
is not statistically significant, so it was decided to develop and evaluate
intra-subjective models with the aim that the results obtained in this ex-
perimental phase may also be useful in the development of inter-subjective
models when more data become available.

The results reported in Tabs. 5.3 and 5.4 showed the improvement
given by the oversampling methods in the proposed setup. More in de-
tail, in the emotional engagement classification task, the improvements
are more significant (e.g., an increase in accuracy of about 10 %) with
respect to the cognitive engagement classification performance. This can
be due to the different unbalancing ratios between the classes in the two
tasks (i.e., a greater unbalanced data condition in the emotional engage-
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Table 5.4. Overall mean of the intra-individual performances on emotional
engagement using three different classifiers: the balanced accuracy (BA) and
the Matthews correlation coefficient (MCC) at varying the oversampling meth-
ods.

Oversampling Metric k-NN SVM ANN Mean

none BA
MCC

56.3
0.16

57.0
0.20

61.4
0.26

58.2± 2.2
0.21± 0.04

SMOTE BA
MCC

57.6
0.16

61.2
0.24

67.1
0.35

62± 3.9
0.25± 0.08

BorderlineSMOTE BA
MCC

57.3
0.15

60.2
0.22

66.5
0.34

61.3± 3.8
0.24± 0.08

ADASYN BA
MCC

57.0
0.15

60.0
0.21

67.4
0.36

61.5± 4.4
0.24± 0.09

SVMSMOTE BA
MCC

57.3
0.15

61.0
0.25

64.4
0.31

60.9± 2.9
0.24± 0.06

KMeansSMOTE BA
MCC

57.9
0.18

63.6
0.30

71.2
0.43

64.23± 5.4
0.30± 0.10

ment dataset with respect to the cognitive one). Indeed, in the proposed
setup, the SMOTE algorithms generated greater amounts of data in case
of strong unbalanced data condition having a greater impact on the classi-
fication performances. Therefore, also the cognitive dataset was artificially
unbalanced to validate this hypothesis. To this aim, the number of samples
was chosen so that the classes distribution was the same as the emotional
engagement data. Next, an ANN classification step with and without
KMeansSmote was carried out. The resulting performances without any
oversampling strategy were 58.73 % and 0.25 for BA and MCC, respec-
tively. Instead, BA and MCC increased to 65.14 % and 0.28, respectively,
with KMeansSmote oversampling. The improvement given by KMeansS-
mote showed that the used oversampling strategy is particularly suitable
for this type of data in case of imbalanced condition.
As concerns the data acquisition stage, Emotiv Epoch+ is only partially
adaptable to different head sizes. Nevertheless, among the children in-
volved in the experimental activity, the child with the smallest head ex-
hibited an inion-naison distance of 31.0 cm that is within the range of
variation in adults of [31,0 - 38,0] cm, well established in literature [177].
By assuming that the manufacturer optimized the product for an average
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Figure 5.4. t-SNE projection of unbalanced EEG data (subject 4) over-
sampled with two different methods. The SMOTE method (A) randomically
interpolates the data of the minority class. The KMeansSMOTE method (B)
realizes a clustering before interpolation, attenuating the noise.

Figure 5.5. Cognitive engagement balanced accuracies for each subject based
on KMeansSMOTE oversampling technique. Classifier performances are re-
ported.

value of the inion-nasion distance of 34.5 cm in adults, in the case of a
lower inion-nasion distance of 31.0 cm, the maximum electrode dislocation
is about 1.4 cm with respect to the 10-20 International Positioning System.
The maximum electrode position shift is appreciated in the frontal area



60 Chapter 5. Problem 1: Engagement Detection

Figure 5.6. Emotional engagement balanced accuracies for each subject
based on KMeansSMOTE oversampling technique. Classifier performances
are reported.

and it gradually decreases until its disappearance, moving from the frontal
area to the occipital area of the scalp. Therefore, the distance of each elec-
trode from the reference of the 10-20 International Positioning System is
to be considered in order to make reproducible the measurement. Despite
the Emotiv Epoc+ device has the largest number of electrodes among the
low-cost EEG devices available on the market, it does not guarantee a
dense coverage of the parietal area of the scalp. The signal acquired in
this area is particularly relevant for the assessment of the spatial attention
[115, 158]. However, the device is equipped with 2 electrodes in the pari-
etal areas (i.e., P7 and P8) and the spatial attention is only one component
of engagement.

Finally, the proposed approach is data driven. Thus, it can be applied
flexibly to different targets by identifying ad-hoc models suitable for dif-
ferent abled groups.

5.6 Conclusion

In this chapter, a EEG-based engagement (cognitive and emotional) de-
tection system is proposed for pediatric rehabilitation. A subject-dependent
approach is adopted and a specific easy calibration is provided for personal-
ized medicine. The proposed method, based on KMeansSMOTE and ANN,
showed experimentally a mean balanced accuracy of 71.2 % and 74.5 %
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for the emotional and cognitive engagement, respectively. Furthermore,
a comparison between several oversampling strategies was made, showing
that the KMeansSMOTE can be a promising oversampling method for un-
balanced EEG engagement datasets. The KMeansSMOTE method is the
core of the proposed calibration procedure, but also a promising technique
for researchers focused on the observation of the spontaneous children be-
havior. The distance of each electrode from the reference of the 10-20
International Positioning System was noted to make the measurement re-
producible, being reproducibility a quality parameter of the measurement
itself. In future works, new measurement solutions will be tested to guar-
antee more adaptivity to children’s head size and more dense coverage of
the parietal area.





Chapter 6
Problem 2: Enhancement of
SSVEPs classification

Introduction

Among the major BCI paradigms, Steady-State Visually Evoked Po-
tential (SSVEP) has rapidly gained interest for developing applications in
several fields, such as rehabilitation [259, 36], gaming [166], entertainment
[244], industrial inspection [14, 150], and health monitoring [35], since it
is characterized by easier detection and higher Information Transfer Rates
(ITRs) with respect to other available BCI paradigms [5, 257].
In particular, SSVEPs are a specific physiological brain response to con-
tinuously flickering visual stimuli, typically inducted after a latency vary-
ing from 80 ms to 160 ms [118]. Stimulation frequency bands usually
range from 6 Hz to 30 Hz, although the best Signal to Noise Ratio (SNR)
is achieved in the range 8-15 Hz [240]. Generally, the SSVEP shows a
sinusoidal-like waveform, with a fundamental frequency equal to that of
the gazed stimulus, and often higher harmonics [175], as shown in Fig. 3.1.
In practical applications, different visual stimuli (at different frequencies)
are associated to specific commands: thus, such systems allow the user to
perform a selection by simply looking at the related flickering stimulus.
In traditional SSVEP-based experimental setups, the SSVEPs are acquired
through a multi-channel EEG data acquisition device [245], while the flick-
ering stimuli are often visualized on a LCD monitor. However, this bench-
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top instrumentation limits the portability of the system. Recently, wear-
able solutions, based on single-channel acquisitions, have been proposed in
the literature [131, 30]. Additionally, the use of Augmented Reality (AR)
Head-Mounted Displays (HMDs), which are emerging devices of the 4.0
scenario [34], is establishing itself as a promising strategy to render the
flickering stimuli and guaranteeing, at the same time, more immersivity
and engagement in the fruition of BCI applications [123, 228, 33].
Nevertheless, the overall performance of combined AR-BCI instruments
strongly depends on the specifications of the HMD adopted; in particular,
on two characteristics that are. The former, the field of view (FOV) of
HMDs is generally limited to some tens of degrees: this limits the maxi-
mum number of flickering stimuli that can be rendered simultaneously on
the HMD. At the state of the art, good performance has been achieved
when, at most, two visual stimuli are simultaneously displayed [36]. The
latter, AR HMDs exhibit a significant non-predictability of the frame rate.
This uncertainty leads to a shift in the frequency values of the rendered
stimuli, reducing the classification accuracy of the SSVEP elicited on the
user’s EEG [35].
To preserve wearability of SSVEP-based AR-BCI instrumentation, and at
the same time ensuring acceptable performance, the challenge is to keep
the results obtained using HMDs close to performance achieved through
traditional setups [238].

Based on these considerations, in this chapter, an experimental charac-
terization of a highly-wearable, AR-based SSVEP BCI is performed. The
aim is twofold: firstly, evaluating the classification performance by com-
paring the adoption of the aforementioned classifiers (SVM, k-NN, ANN,
CNN) with the state-of-the-art Canonical Correlation Analysis (CCA) (see
section 3.3.3); to this aim, two framework were designed, implemented and
comparatively tested after four different experiments. Each experiment
was characterized by the use of a different AR HMD to generate the flick-
ering stimuli. Allowing to compare the impact of different AR technologies
in the elicitation of SSVEPs.
Secondly, two particular frameworks: i) custom ANN with a Variable Ac-
tivation Function (VAF) [28], ii) EEGNet (2.2.1), a well-know model for
EEG dataset, were tested on Benchmark data, a public dataset [238], com-
posed by 35 patients subjected to 40 simultaneous flickering stimuli, using
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different normalization techniques and exploit Domain Adaptation (see
section 2.4.2) methods.
The chapter is organized as follows. Section 6.2 describes the proposal
in detail. The experimental characterization is reported and discussed in
Section 6.3, while the obtained results are shown in Section 6.4. Finally,
in Section 6.5, conclusions are drawn.

6.1 Related works

In my knowledge, algorithms based on the CCA provide the best perfor-
mance in terms both of classification accuracy and time response [238, 67].
Another promising strategy is the adoption of Machine Learning (ML)
techniques [174], in particular: (i) classical ML classifiers, such as Sup-
port Vector Machine (SVM), k-Nearest Neighbors (k-NN) [221, 86], and
(ii) Artificial and Convolutional Neural Networks (ANN, CNN) [15, 182].
Indeed, recent works [182, 192, 199] showed that, for low-channel EEG
setups, these strategies outperform the results obtained through CCA. For
example, in [182] a one-dimensional CNN was realized for a single-channel
BCI instrument, tackling a five-class classification problem with an accu-
racy of 99 % at 4-s time response (whereas CCA reached 91 % in the
same conditions). A multi-layer CNN, called PodNet (see section 2.2.1),
was proposed in [192] for a three-channel setup: this CNN exceeded the
results obtained by CCA by about 5 % at 2-s time response. Therefore,
in a single-channel AR-based instrumentation, the adoption of traditional
Machine Learning classifiers and Neural Networks can represent an effec-
tive alternative to CCA.

6.2 Proposal

In this chapter, an enhancement of the SSVEP classification perfor-
mance for highly wearable BCI instrumentation is proposed. To this aim,
the architecture of the single-channel BCI developed in [14, 36, 35] was
considered. This measurement system is based on the real-time classifi-
cation of users SSVEPs elicited by AR HMDs. Such instrumentation is
particularly challenging for wearable applications as the number of elec-
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Figure 6.1. Architecture of the wearable BCI-SSVEP system used for testing
the proposed alogirithm.

trodes is very limited.
Fig. 6.1 summarizes the major blocks of the system architecture. In partic-
ular, an AR Display renders the flickering stimuli in the range 8-15 Hz for
the SSVEPs elicitation. The brain signal is digitized by a portable Acqui-
sition Unit, which sends the EEG Samples to a portable Processing Unit.
The signal is processed by adopting an Enhanced Classification Algorithm,
and the detected command is sent in real time to the BCI Application,
which actuates the received command and also provides a visual feedback
to the User to show the output of the selection made.

In this chapter, four strategies are used. The first two tested on four
different datasets obtained by using four AR devices:

1. Feature Reduction (FR);

2. Deep SSVEP Convolutional Unit (SCU).

The other two strategies tested on the Benchmark dataset:

1. Artificial Neural Network with Variable Activation Function (ANN
VAF);

2. EEGNet.
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In the following sections, all the strategies are presented and discussed in
detail.

Table 6.1. Classifiers, optimized Hyperparameters, and Variation Ranges

Classifier Optimized Hyperparameter Variation Range

k-Nearest Neighbour (k-NN)1
Distance {Minkowski, Chebychev, Manhattan, Cosine, Euclidean}
Distance Weight {equal, inverse, squaredinverse}
Num Neighbors {3, 5, 6, 7}

Support Vector Machine (SVM)1
C Regularization {0.01, 0.10, 1.00, 1.77, 5.00, 10.00, 15.00}
Kernel Function {linear, radial basis, polynomial}
Polynomial Order {2, 3, 4}

Artificial Neural Network (ANN)1
Activation Function {relu, tanh}
Hidden Layer nr. of Neurons [5, 505] step: 50
Learning Rate {0.0005, 0.0001, 0.0010, 0.0050, 0.0100}
Validation Fraction {0.2, 0.3}

Deep SSVEP Convolutional Unit2

Convolutional Layer nr. of Filters [16, 1024] step: x2
SCU Blocks [1, 7] step: 1
Kernel Size {10, 20, 30}
Dense Layer nr. of Neurons [60, 1260] step: 200
Dense Blocks {1, 2}
Learning Rate {0.0001, 0.0010}
Validation Fraction {0.2, 0.3}

1FR Algorithm
2Deep SCU Algorithm

6.2.1 Features Reduction (FR)

The main blocks of the proposed FR scheme, are shown in Fig. 6.2(a).
The EEG Samples are processed both in frequency and time domains, in
order to obtain a reduced number of significant features.

• In the frequency domain, first, a single-sided amplitude spectrum is
obtained by means of a Fast Fourier Transform (FFT). No windowing
is applied to the original samples. Then, the actual SSVEPs Peaks
are detected around the n rendered stimulus frequencies: given a
generic nominal frequency value fn, the interval [fn ·0.9, fn ·1.1] was
used to find the actual peak frequency fa. This interval was consid-
ered suitable in order to properly mitigate the uncertainty introduced
by the Frame Per Second (FPS) variations of the AR HMDs in the
rendering of the flickering stimuli. Consequently, the resulting Power
Spectral Density (PSDs) coefficients [14] are more accurate.
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• In the time domain, first, a Band pass Filtering between 5 and 25 Hz
is applied by means of a Finite Impulsive Response (FIR) filter with
linear phase response. Then, the Canonical Correlation Analysis be-
tween the filtered signal and a set of sinewaves, having the frequencies
of the n detected peaks and variable phase [36], is performed. In this
way, also the n canonical correlation coefficients obtained for each
frequency are more accurate.

Ultimately, for a given brain signal composed of a number fs ·N of EEG
samples and n classes (where fs is the sampling frequency, N is the num-
ber of seconds, and n is the number of stimulus frequencies), only 2n fea-
tures are extracted and normalized. Finally, the classification is compared
on three ML classifiers: in particular, Support Vector Machine (SVM),
k-Nearest Neighbor (k-NN), and Artificial Neural Network (ANN) are em-
ployed since they guarantee the best results with acceptable computational
effort [221, 86, 15].

6.2.2 Deep SSVEP Convolutional Unit (SCU)

The optimal number of SCU blocks (defined in 2.2.1), dense blocks, and
the optimal values of the hyper parameters are found through a grid-search
approach (see Table 6.1 for the parameters ranges used in the experiments).
In the grid search, the number of SCU blocks varies from a minimum of 1 to
a maximum of 7. In each sequential SCU block, convolutional layers with
a variable number of filters are considered. For the sake of the example,
with 7 SCU blocks the number of filters for each convolutional layer is the
following: [16, 32, 64, 128, 256, 512, 1024]. Similarly, for Dense blocks, in
which 1 or maximum 2 blocks were different combinations in the number of
neurons between the different dense (fully-connected) layers are considered.
In Fig. 6.2(b) an example of SCU architecture with one SCU block and
one full-connected layer is shown. With respect to the approach proposed
in [39], the Deep SCU architecture is now applied to a single-channel setup.
Furthermore, the EEG Samples are pre-processed by a FIR Band pass filter
between 5 and 25 Hz with linear phase response, and then normalized.
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(a) (b)

Figure 6.2. Block diagram of the Features Reduction (a) and DeepSCU
(b) classification algorithms. For the Feature Reduction architecture, the two
boxes represent a processing conducted in frequency (blue box) and time (yel-
low box) domain. For the DeepSCU architecture, the SCU and Dense blocks
are highlighted in green and red, respectively.

6.2.3 Artificial Neural Network with Variable Activation
Function (ANN VAF)

Taking advantage of the FR processing, instead of a standard ANN
model, a variant of it with learnable activation functions, is used as a
classifier. Table 6.2 shows the adopted grid search for the tuning of the
ANN VAF hyperparameters.
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Table 6.2. Optimized hyperparameters and variation ranges for ANN VAF
classifier.

Hyperparameter Range
Fixed Activation Function {ReLU, Tanh}
Hidden Layer Neurons [5, 505] step: 50
VAF Layer Neurons {3, 7, 11}
Learning Rate {0.0005, 0.0001, 0.0010, 0.0050, 0.0100}
Validation Fraction {0.2, 0.3}

6.2.4 EEGNet

The EEGNet model, as defined in section 2.2.1, exploits a random
search with a maximum of 20 models for the hyperparameters as specified
in table 6.3. For the length of the temporal kernel, the value as a function of
the segmentation seconds is also taken into account. The 2D convolutional
filters F1 and F2 utilise the same number of filters F . The other hyper-
parameters are fixed, such as: learning rate at 0.01 and using Adam [128] as
optimizer, batch size at 32, as activation function the Exponential Linear
Unit (ELU) [69] function and dropout rate at 0.5. Furthermore, during
the learning phase, in order to avoid the problem of over-fit on the training
set (refer to section 2.3.2), a stop criterion was used through a patience of
10 epochs.

Table 6.3. Optimized hyperparameters and variation ranges for EEGNet
classifier.

Hyperparameter Range
Temporal Kernel Length {250, 512, ⌊250 ∗ seconds⌋}
F 2D Convolutional Filters {96, 125, 150}
D Spatial Filters {1, 2}
Dropout Type {Dropout, SpatialDropout2D}

Domain Adaptation

For this ML model, some Domain Adaptation techniques were applied
on the Benchmark dataset:

1. Standardisation Schemes. With the test data available without
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labels, it is possible to normalise the data (i) per subject or (ii)
per block/session per subject. The normalisation is done by taking
into account the EEG channels and standardising time features by
removing the mean and scaling to unit variance. Thus, in (i) there
will be one mean and one variance for each subject, in (ii) there will
be n means and n variances for each subject (where n is the number
of blocks). In this way, the non-stationarity of the EEG signal is
reduced. For comparison, a canonical z-score normalisation will also
be made without the use of unlabelled test set.

2. Similarity between Subjects. However, it is important to high-
light that the SSVEP signal is not necessarily always clearly de-
tectable in the subjects. In fact, considering a sample of persons
subjected to these flashing light stimuli for the first time, what hap-
pens is that ’observable’ SSVEP occurs in about 90% of them [99].
Thus, it is reasonable to assume that 3 out of the 27 people who
were subjected to the experiment for the first time can be discarded
in the validation and test set.
To select these subjects, the similarity between the subjects was cal-
culated through Kullback-Leibler (KL) divergence [136]. KL diver-
gence was calculated by taking the EEG channels for subjects and
then averaging them:

∀Sa, Sb, chani, a, b ∈ {1−35}, i ∈ {1−10} : mean(KL(Sa
chani , Sb

chani))

In this way, the distances between the subjects in the dataset was
computed. It results that some subjects can be considered as outliers.
Three of these, who are also naive on the use of SSVEPs, were chosen
to be not present in the validation and test set, so they will be part
of the training set in the 10-run of 25-5-5 strategy.

6.3 Experimental Characterization

An experimental characterization of the proposed algorithm was per-
formed by conducting four experiments involving healthy adult volunteers.
For each campaign, a different AR HDM was adopted. These devices were
used to elicit the users’ SSVEPs in the range 8-15 Hz. Four distinct data
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sets for the testing of the SSVEPs classification algorithms were provided
(one for each HMD).

Successively, the ANN VAF and EEGNet algorithms were tested on
the Benchmark dataset.

6.3.1 Hardware and software

The AR devices used in this chapter are listed below:

• Epson Moverio BT-200 : Moverio BT-200 are AR Smart Glasses with
a 60 Hz Refresh Rate and a 23° diagonal FOV. They are equipped
with Android 4.0.

• Epson Moverio BT-350 : Like BT-200 version, Moverio BT-350 have
a 23° diagonal FOV; however, the refresh rate is limited to 30 Hz and
the operative system on board is Android 5.1.

• Microsoft Hololens 1 : Microsoft Hololens 1 is an Optical-See-Through
(OST) AR HMD with a 60 Hz Refresh Rate and a diagonal FOV of
34°.

• Oculus Rift S : Oculus Rift S is a HMD with 80 Hz Refresh Rate. It
is originally designed for Virtual Reality. Thus, the integration of a
HD Stereoscopic Camera (Zed Mini) allows to use the device as a
Video-See-Through (VST) AR HMD.

The software employed to realize the AR environment for the selected
HMDs are described as follows.

• Epson Moverio BT-200/350 : the AR applications running on the
Moverio glasses was developed in Android Studio. In particular,
the flickering squares were generated by means the Android library
OpenGL.

• Microsoft Hololens and Oculus Rift S : the AR environment for Hololens
and Oculus Rift was developed in Unity 3D.

In all these cases, the flickering frequencies were realized with a suitable
white/black pixels alternation. For instance, given a refresh rate of 60 Hz,
a 10-Hz frequency is generated with a white/black alternation each three
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Table 6.4. Details of the datasets.

Data Set Index #1 #2 #3 #4
AR Device BT-200 BT-350 Hololens Rift S
Volunteers 20 9 9 9
Classes 2 4 4 4
Signals/subject 24 20 20 20
Signal length (s) 10 10 10 10

frame [239], while not sub-multiple frequency values are obtained as a
rounded average of a variable frequency stimulus [237].
The wearable Acquisition Unit chosen to acquire the users’ brain signals
is the Olimex EEG-SMT, a 10-bit, 256 S/s, open-source Analog-to-Digital
converter. It was preferred to other consumer-grade EEG equipment such
as Emotiv Epoch or Neurosky Mindwave [210, 167, 232] since: (i) a recent
experimental characterization confirmed its suitability for BCI applications
[31], as it showed strong linearity and no long-term drift; (ii) it has a very
low cost (approximately 100 $). Finally, the digitized signal is processed
by a Raspberry Pi 4, a portable single-board PC.

6.3.2 Data sets descriptions and validation strategy

AR Devices

Four different data sets were obtained by using each of the considered
four AR devices. The algorithms were validated on each data set by means
of Leave One Subject Out Cross Validation (LOSO CV). This represents a
promising inter-individual validation approach aimed at increasing repro-
ducibility [91]. A grid search for the tuning of the models hyperparameters
was adopted. In Table 6.1, the hyperparameters values are reported for
each classifier model (for FR and Deep SCU algorithm).
Furthermore, in Table 6.4 the experimental details, regarding the four AR
devices, and the number of volunteers, classes, and signals acquired for
each subject, are provided. The number of classes indicate the number of
simultaneous flickering stimuli rendered by the AR Device. As visible, the
processing of the data set #1 is a binary classification problem, since only
two frequencies are used. Instead, data sets #2, #3, and #4 are charac-
terized by the adoption of four frequencies. In particular, the frequencies
chosen for each data set are listed below:
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• Data set #1 (BT-200): [10.00, 12.00] Hz

• Data set #2 (BT-350): [8.00, 10.00, 12.00, 15.00] Hz

• Data set #3 (Hololens): [8.57, 10.00, 12.00, 15.00] Hz

• Data set #4 (Rift S): [8.00, 10.00, 11.43, 13.33] Hz

The rendered stimuli are placed at the edges of the display to avoid inter-
ferences. For each trial, each volunteer was asked to focus at the selected
stimulus for 10 s.
The performance of the proposed method was assessed both on the accu-
racy and the related time response: the time response is the signal duration
T (also called epoch) extracted for each trial and then classified; on the
other hand, the classification accuracy is the percentage of data set cor-
rectly classified.

Benchmark

The Benchmark dataset has the following features:

• Subjects: 35 healthy subjects (17 females and 18 males, aged 17–34
years, mean age: 22 years), having normal or corrected-to-normal
vision, participated in this study. 8 subjects had previous experience
in SSVEP-based BCI. Each participant was asked to read and sign
an informed consent form before the experiment. This study was
approved by the Research Ethics Committee of Tsinghua University.

• Stimulus Presentation: An offline BCI experiment using a 40-target
BCI speller was designed. The 5 × 8 stimulus matrix was presented
on a 23.6-in LCD monitor (Acer GD245 HQ, response time: 2 ms)
with a resolution of 1920 × 1080 pixels, and a refresh rate of 60 Hz.
The viewing distance to the screen was 70 cm. The sizes of stimulus
and character were 140 × 140 and 32 × 32 pixels square, respec-
tively. The size of the whole matrix area was 1510 × 1037 pixels.
Both the vertical and horizontal distances between two neighbor-
ing stimuli were 50 pixels. The stimulus program was developed
under MATLAB using the Psychophysics Toolbox Ver. 3. The 40
characters were coded using a joint frequency and phase modulation
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(JFPM) approach. In particular, the chosen frequencies were in the
range [8.0-15.8] Hz with a 0.2 Hz step, while the phase values had a
0.5 π step. A sampled sinusoidal stimulation method was applied to
present visual flickers on the LCD monitor.

• Data acquisition: A Synamps2 EEG acquisition unit (Neuroscan,
Inc.) was used to record EEG data (see section 3.1.5). For each sub-
ject, the experiment included six blocks. Each block was composed
of 40 trials, corresponding to all 40 squares. Each trial started with
a 0.5-s target cue. Subjects were asked to shift their gaze to the indi-
cated target as soon as possible. After the cue, all stimuli started to
flicker on the screen concurrently for 5 s. Then, the screen became
blank for 0.5 s, before the start of the next trial. Subjects were asked
to avoid eye blinks during the 5-s stimulation duration. A rest for
several minutes between two consecutive blocks was foreseen. The
selected channels were PO8, PO7, PO6, PO5, PO4, PO3, POz, O2,
O1, and Oz.

The two algorithms were validated on the Benchmark dataset in two
ways: i) by means of Leave-One-Subject-Out Cross-Validation (LOSO
CV); ii) by means of 10 random run of 25− 5− 5 strategy. As reported on
[192] this strategy is characterised by: 25 subjects in the training set, 5 in
the validation set and 5 in the test set. The difference is that in [192] only
one run is performed and it is not indicated which subjects data compose
the training, validation and test sets. This is a very important informa-
tion, since the subjects have very different probability distributions. With
a single run of the 25− 5− 5 strategy, particular subjects in the validation
and test set may result in high accuracy and other subjects in low accuracy
on the test set. For this reason, it was decided to use 10 runs of this strat-
egy in order to have at each run randomly the subjects in the three sets,
also maintaining the constraint, as reported in [192]: "The network test
and validation datasets this study contain only, novel BCI-naïve subjects
to simulate real-world usage."

In addition, the ANN VAF algorithm will use FR processed data, while
EEGNet will use Raw data from the Benchmark dataset, with segmenta-
tions of 1.5 and 5 seconds.
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6.4 Results

6.4.1 AR Devices

Table 6.5 summarizes the results obtained through the proposed algo-
rithms, compared with those achieved through the CCA used in [36].

Table 6.5. Classification accuracy and corresponding 1-σ reproducibility on
the four datasets.

Data set #1 (Moverio BT-200)
T (s) CCA [36] (%) Deep SCU (%) FR* (%)
0.5 70.8 ± 10.0 74.4 ± 9.5 75.0 ± 9.5
1.0 74.8 ± 18.1 81.6 ± 9.6 82.1 ± 9.8
2.0 84.9 ± 12.1 87.5 ± 8.0 89.2 ± 7.8
3.0 91.0 ± 9.4 91.9 ± 7.3 93.7 ± 5.6
5.0 95.4 ± 5.6 95.7 ± 4.9 96.7 ± 3.9
10.0 - 97.7 ± 4.5 99.4 ± 2.7

Data set #2 (Moverio BT-350)
T (s) CCA [36] (%) Deep SCU (%) FR* (%)
0.5 - 30.9 ± 7.1 39.2 ± 13.5
1.0 - 35.8 ± 10.4 46.3 ± 19.2
2.0 51.9 ± 27.0 42.8 ± 13.2 53.9 ± 23.5
3.0 53.3 ± 25.6 43.5 ± 21.1 56.7 ± 24.9
5.0 56.7 ± 23.9 41.4 ± 17.9 57.5 ± 23.7
10.0 - 47.2 ± 23.0 62.2 ± 24.5

Data set #3 (Hololens)
T (s) CCA [36] (%) Deep SCU (%) FR* (%)
0.5 - 48.4 ± 11.3 44.9 ± 10.0
1.0 - 56.9 ± 13.9 66.8 ± 16.7
2.0 58.9 ± 20.6 72.3 ± 14.4 76.4 ± 16.9
3.0 70.5 ± 18.5 77.0 ± 15.8 82.6 ± 13.1
5.0 72.9 ± 28.3 80.0 ± 13.8 88.9 ± 8.6
10.0 - 75.0 ± 19.3 94.4 ± 8.3

Data set #4 (Oculus Rift S)
T (s) CCA [36] (%) Deep SCU (%) FR* (%)
0.5 - 36.7 ± 10.5 42.7 ± 16.8
1.0 - 40.6 ± 16.2 54.0 ± 21.5
2.0 56.1 ± 24.2 46.4 ± 18.6 62.3 ± 23.5
3.0 64.8 ± 20.9 56.3 ± 20.6 65.7 ± 25.3
5.0 68.5 ± 23.2 55.3 ± 18.6 70.6 ± 23.8
10.0 - 48.9 ± 21.2 72.2 ± 23.3

*Only the best result is reported for brevity.

It can be seen that the enhancement reached by the FR algorithm is
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significant on each dataset used. The main contribution to this improve-
ment is given by the peak detection block, which allows to obtain more
accurate features both in time and frequency domains, thus mitigating the
uncertainty caused by unpredictable FPS variation of AR devices.

On the other hand, Deep SCU algorithm outperforms CCA only on
data sets #1 and #3. However, in all the data sets, the CCA strategy
is characterized by a worse inter-individual 1-σ reproducibility. Thus, the
model built by CCA offers lower possibility to be generalized.

With regards to the comparison between the performance of each AR
HMD, it is visible that Epson Moverio BT-200 (data set #1) provides the
best classification accuracy (almost 90% at 2 s). The main reason is that
only two flickering stimuli were rendered simultaneously on the display.
When considering the four-stimuli data sets (i.e., data set #2, #3, and
#4) the performance are significantly worse. In fact, Microsoft Hololens 1
(data set #3) reaches a classification accuracy of about 76% at 2 s, while
Epson Moverio BT-350 (data set #2) and Oculus Rift S (data set #4)
achieve about 54% and 62%, respectively. Clearly, the larger field of view
of Microsoft Hololens 1 (with respect to Epson Moverio BT-350), and its
Optical See-Through technology (with respect to Oculus Rift) contribute
to this difference in the outcomes. Overall, it is evident the need of an
adequate field of view when the number of concurrent flickering stimuli in-
creases, in order to avoid interferences when users stare at the desired icon.

Table 6.6. FR algorithm results obtained for dataset #1 (BT-200) for each
considered model.

T (s) k-NN (%) SVM (%) ANN (%)
0.5 72.8 ± 9.3 74.8 ± 9.6 75.0 ± 9.5
1.0 80.7 ± 9.8 82.0 ± 9.8 82.1 ± 9.8
2.0 88.3 ± 8.8 89.2 ± 7.8 89.2 ± 7.8
3.0 93.3 ± 5.9 93.6 ± 5.2 93.7 ± 5.6
5.0 96.4 ± 4.8 96.4 ± 4.7 96.7 ± 3.9
10.0 99.0 ± 2.9 99.2 ± 2.8 99.4 ± 2.7

An overview of the results obtained through the FR algorithm on data
set #1 is provided in Fig. 6.4 and Table 6.6. In particular, Fig. 6.4 shows
the scatter plots of the features extracted by the FR algorithm. As visible,
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even with 1-s epochs, it is possible to discriminate the two classes. Clearly,
increasing the duration of the epochs leads to an easier patterns separation
and, thus, to an increase of the classification accuracy. Finally, Table 6.6
provides a focus on the obtained results for each model used. The best
performance are obtained by ANN classifier; however, even a more simple
classifier like k-NN reaches comparable accuracy levels.

Figure 6.3. Epson Moverio BT-350: measured and expected FPS (top);
measured and expected FFT peak of the relative user brain signal (bottom).

6.4.2 Benchmark

The obtained experimental results, considering a 5-s and 1.5-s acquisi-
tion times, are shown in bold respectively in Table 6.7 and 6.8 along with a
comparison with other state-of-the-art techniques [192]. The classification
accuracy is reported.

Since FR+ANN VAF processing on 1.5-s segmentation performed poorly,
it was decided to use Domain Adaptation strategies only on the EEGNet
model. The DA strategy is indicated with the δ symbol, in which, con-
sidering the similarity between the subjects, the 3 subjects considered as
outliers will be part of the training set as discussed in section 6.2.4. With
δ DA strategy, it can be seen how important the choice of subjects is in the
test set, if the SSVEP signal is not observable or to a lesser degree in any
of them, performance drops. The difference with the solutions found in the
literature, which only perform one run, is even more evident. Therefore,
using the two DA strategies of normalisation (i) and (ii) on sets created
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Figure 6.4. Scatter plots of the extracted features for data set #1 (BT-200)
with different time responses (epochs).

using the δ approach, gives a greater contribution in terms of accuracy,
whereas on sets created without considering the 3 outliers, the improve-
ment is negligible.
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Table 6.7. Classification accuracy on the Benchmark dataset with a 5-s
acquisition time.

Method Accuracy (%)
EEGNet δ norm(ii) 96.54 ± 2.15
EEGNet δ norm(i) 96.43 ± 2.07
EEGNet δ 95.98 ± 1.91
EEGNet norm(ii) 94.45 ± 2.97
EEGNet norm(i) 94.46 ± 2.77
EEGNet 93.77 ± 3.79
FR + ANN VAF 95.51 ± 7.65
1D SSVEP Convolutional Unit [192] 68.63
PodNet [192] 86.19
Filter Bank CCA [192] 97.92

Table 6.8. Classification accuracy on the Benchmark dataset with a 1.5-s
acquisition time.

Method Accuracy (%)
EEGNet δ norm(ii) 76.46 ± 6.28
EEGNet δ norm(i) 76.41 ± 6.69
EEGNet δ 75.40 ± 6.83
EEGNet norm(ii) 70.58 ± 4.55
EEGNet norm(i) 70.49 ± 5.28
EEGNet 70.03 ± 5.16
FR + ANN VAF 39.86 ± 17.53
1D SSVEP Convolutional Unit [192] 32.67
PodNet [192] 75.64
Filter Bank CCA [192] 84.00

6.5 Conclusion

This chapter proposed the adoption of ML techniques to enhance the
classification performance of a highly wearable, single-channel instrumen-
tation for BCI, based on the detection and classification of SSVEPs. In
this measurement system, AR HMDs are used to generate the flickering
stimuli necessary to SSVEPs elicitation; it guarantees greater immersivity
and engagement with respect to traditional LCDs.
Then, a custom ANN, which relies on the adoption of Variable Activation
Functions, and a Deep NN, EEGNet, with Domain Adaptation methods,
were proposed to improve the SSVEPs classification, in terms of classifi-
cation accuracy and time response. The proposed frameworks were tested
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on the Benchmark dataset based on a traditional SSVEP-BCI setup. The
obtained experimental results showed a significant enhancement of the per-
formance with respect to the traditional state-of-the-art methods.
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Chapter 7
XAI: a background
Introduction

In this chapter, an overview of eXplainable artificial intelligence will
be made. After a general description, the main methods in the literature
will be analysed.

7.1 Definitions

A large part of Machine Learning (ML) techniques – including Support
Vector Machines (SVM) and Deep Neural Networks (DNN) – give rise to
systems having behaviours often complex to interpret [6]. More precisely,
although ML techniques with reasonably well interpretable mechanisms
and outputs exist, as, for example, decision trees, the most significant part
of ML techniques give responses whose relationships with the input are
often difficult to understand. In this sense, they are commonly considered
as black-box systems. In particular, as ML systems are being used in more
and more domains and, so, by a more varied audience, there is the need
for making them understandable and trusting to general users [204, 37].
Hence, generating explanations for ML system behaviours that are under-
standable to human beings is a central scientific and technological issue
addressed by the rapidly growing research area of eXplainable Artificial
Intelligence (XAI).

Several definitions of interpretability/explainability for ML systems
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have been discussed in the XAI literature [78, 37], and many approaches to
the problem of overcoming their opaqueness are now pursued [180, 40, 18].
For example, in [170] a series of techniques for the interpretation of DNNs
is discussed, and in [157] the authors examine and discuss the motivations
underlying the interest in ML systems’ interpretability, discussing and re-
fining this notion.

In the literature, particular attention is given to post-hoc explainability
[37], i.e., the methods to provide explanations for the behaviours of non-
interpretable models after the training. In the context of this multifaceted
interpretability problem, it is noted that in the literature, one of the most
successful strategies is to provide explanations in terms of "visualisations"
[204, 251].

More specifically, explanations for image classification systems are given
in terms of low-level input features, such as relevance or heat maps of the
input built by model-agnostic (without disclosing the model internal mech-
anisms) or model-specific (accessing to the model internal mechanisms)
methods, like sensitivity analysis [219] or Layer-wise Relevance Propaga-
tion (LRP) [40], see figure 7.1. The main problem with such methods is
that human users are left with a significant interpretive burden. Starting
from each low-level feature’s relevance, the human user needs to identify
the overall input properties perceptually and cognitively salient to him
[18].

7.2 XAI Methods

To the aim of illustrating the heterogeneity of XAI approaches proposed
in the literature, the main XAI methods will be introduced and discussed
in the following subsections.

7.2.1 Saliency

Saliency method is one the of the simplest and more intuitive method to
build an explanation of a ML system. Proposed in [218], Saliency method
is based on the gradient of the output function of the ML system respect
to its input. In a nutshell, an explanation of the output C(x) of a ML
system fed with an input x ∈ Rd is built generating a saliency map lever-
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aging on the gradient ∂C
∂x of C with respect to its input computed through

backpropagation. The magnitude of the gradient indicates how much the
features need to be changed to affect the class score.

7.2.2 Guided BackPropagation

Guided BackPropagation (Guided BP) [225] can be viewed as a slighlty
variation of Saliency method proposed in [218]. The main difference is in
the value used as gradient in case of rectified activation functions (ReLU):
in Saliency method, the real gradient is used in computing the features
relevance. Instead, Guided BP starts from the hypothesis that the user
is not interested if a feature "decreases" (i.e., negative value) a neuron
activation, but only in the most relevant ones. Therefore, instead of the
true gradient, in guided BP a gradient transformation is used to prevent
backward flow of negative values, avoiding to decrease the neuron activa-
tions and highlighting the most relevant features. Obviously, Guided BP
can fail to highlight inputs that contribute negatively to the output due
to "zero-ing" the negative values.

7.2.3 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) associates a relevance value
to each input element (pixels in case of images) to build explanations for
the ML model answer. In a nutshell, the output C(x) of a ML system
on an input x ∈ Rd is decomposed as a sum of relevances on the sin-

gle features composing x, i.e. C(x) ≃
d∑

i=1
Ri where Ri is a score of the

local contribution of the i-th feature on the produced output. In par-
ticular, positive values denote positive contributions, while negative val-
ues negative contributions. Applied to ANN, this principle can be gen-
eralised across each pair of consecutive layers l and l + 1 of a network

composed of L layers such that
q∑

i=1
R

(l+1)
i =

q′∑
i=1

R
(l)
i where q and q′ are

the features of the layers l + 1 and l respectively. Since the final network
output C(x) of an ANN is the output of the L-th layer, it results that

C(x) = · · · =
q∑

i=1
R

(l+1)
i =

q′∑
i=1

R
(l)
i = · · · =

d∑
i=1

Ri. This rule can be in-
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terpreted as a conservation rule, and leveraging on that different methods
to compute the relevance have been proposed, depending on the type of
features involved. In case of densely connected layers, the most known rule
is the z−rule [41], which takes care of the neuron activations of each layer
to compute the final relevance of each layer.

Figure 7.1. Examples of predictions using LRP for the class "persons" [40].

7.2.4 Integrated Gradients

One of the main drawbacks of simple gradient-based method is that
the gradient respect to the input should be small in the neighbourhood of
the input features also for relevant ones. Instead of using only the gradient
respect to the original input, [226] proposed to average all the gradients
between the original input x and a baseline input xref (that is, an input s.t.
C(xref ) results in a neutral prediction). In this way, if features of inputs
closer to the baseline have higher gradient magnitudes, they are taken into
account thanks to the average operator. More formally, the importance of
each feature xi computed by Integrated Gradient (IG) is defined as:

IG(xi) = (xi − xrefi )

∫ 1

α=0

∂C
(
xrefi + α(xi − xrefi )

)
∂xi

dα

In other words, IG aggregates the gradients along the intermediate inputs
on the straight-line between the baseline and the input, selected as α ∈
[0, 1] changes.
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7.2.5 DeepLIFT

In [216] a method consisting in assigning feature relevance scores ac-
cording to the difference between the neurons activation and a reference ac-
tivation (such as the baseline for Integrated Gradient method) is proposed.
The authors proposed to compute for each feature a multiplier entity sim-
ilar to a partial derivative, but leveraging over finite differences instead of
infinitesimal ones. Each multiplier can be defined as m∆x∆t =

R∆x∆t
∆x and

represents the ratio between i) the contribution R∆x∆t of the difference
∆x = x − xref from the reference xref of each feature x to the difference
∆t = t − tref between the output t and the reference output tref , and ii)
the difference ∆x. Therefore, the authors proposed a set of rules to com-
pute the features relevance based on the proposed multipliers exploiting a
Back Propagation-based approach.

7.2.6 Local Interpretable Model-Agnostic Explanations

A popular method based on middle-level properties of the input is Local
Interpretable Model-Agnostic Explanations (LIME) [203], which returns a
set of image parts (superpixels), that could have driven the ML model
to the given answer (see figure 7.2). This set of superpixels can be then
considered as an explanation to the ML model response. This approach
can be classified as model-agnostic.

Model-agnostic approaches correspond to XAI methods which are in-
dependent of the ML model to be explained [6], i.e., model-agnostic so-
lutions are built relying only the relation between ML model inputs and
outputs, without any consideration about the ML model internal state.
Although this property ensures the applicability of these approaches to
any ML model, on the other hand, the explanations of the model-agnostic
methods could not be fully related to the actual causal relationships be-
tween model’s inputs and outputs which have contributed to the given
model response. For instance, LIME returns an explanation inspecting
the behaviour of the model in the neighbourhood of the input, but noth-
ing ensures that, for that particular input instance, the answer of the
classifier has a totally different explanation (for example, a particular on
the background of the specific input image which the model has already
seen during the training stage, making the model biased).
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Figure 7.2. Examples of predictions using LIME for the classes “Electric
Guitar”, “Acoustic guitar” and “Labrador” [203].

7.2.7 Prototypical Part Network

In contrast to the post-hoc methods seen so far, there are other meth-
ods in the literature that are part of ad-hoc approaches, where the network
architecture or the training process is changed for better interpretability.
In [60], the authors define a particular DNN: Prototypical Part Network
(ProtoPNet). They defined a form of of interpretability in image process-
ing ("this looks like that"). In fact, the model is able to identify several
parts of the image where it thinks that this part of the image looks like
that prototypical part of some class, and makes its prediction based on a
weighted combination of the similarity scores between parts of the image
and the learned prototypes. So, the model has a transparent reasoning
process when making predictions.
Examples of post-hoc visualization techniques, such as saliency or LRP,
do not explain the reasoning process of how a network actually makes
its decisions. In contrast, ProtoPNet has a built-in case-based reasoning
process, and the explanations generated by the network are used during
classification and are not created post-hoc. ProtoPNet relates closely to
works that build attention-based interpretability into CNNs [265, 261, 266].
Attention-based models can only tell us which parts of the input they are
looking at, they do not point us to prototypical cases to which the parts
they focus on are similar. On the other hand, ProtoPNet is not only able
to expose the parts of the input it is looking at, but also point to proto-
typical cases similar to those parts.
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7.2.8 Proxies Methods

To obtain the model-agnostic interpretability a surrogate or a simple
proxy model can be used to learn a faithful approximation of a more com-
plex model and black-box exploiting the outputs returned by the black-box
model. One of the first methods in which an attempt is made to approxi-
mate the black-box model using a simple interpretable model can be found
in [71] where the authors extracted comprehensible and symbolic represen-
tations from trained neural networks. The proposed method builds a deci-
sion tree that approximates the concepts represented by a given network.
It is able to produce decision trees that maintain a high level of fidelity to
the respective networks while being understandable and accurate.
In [55] a method for compressing large, complex ensembles into smaller,
faster models, without significant loss in performance. This approach was
a first example of knowledge distillation works [111].
The LIME method, described above 7.2.6, also falls into this type of ap-
proach. In fact, LIME builds explanation relying on a proxy model differ-
ent from the model to explain.

7.2.9 Twin systems using examples

The paper [124] exploits twin-systems models for providing good explanations-
by-example. In XAI, a twin system joins a complex black-box model with
more transparent white-box model, e.g., a k-NN or Case-Based Reasoning
(CBR) model, using the latter to explain the former by finding a mapping
between them. While twin-systems are usually considered as a class of
hybrid systems, in XAI they are be identified as a special case of a proxy
system.
The authors proposed a hybrid system where an ANN or a DNN model and
a CBR technique are combined together to meet the system requirements
of accuracy and interpretability. Feature-weights, feature-importance, or
predictive outcomes, learned from the ANN model, are mapped to the
CBR system. The ANN model provides predictions, and the CBR module
produces interpretability by explaining ANN outputs (in classification or
regression), using factual, counterfactual or semi-factual cases.
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7.3 Interesting for BCI

The interpretation of brainwaves is a fascinating challenge that many
scientists have undertaken to study [185]. An explainable approach is very
important in critical environments, such as hospitals, to understand which
part or feature of the input caused the system to classify it in a certain
way and which features on the other hand may cause misclassification
[171]. Furthermore, explainability is strongly demanded by governmental
institutions, such as the European Union’s new General Data Protection
Regulation (GDPR), which explicitly requires a ’right to explanation’ for
Artificial Intelligence (AI) algorithms [105].

According to researcher Kundu, AI in medicine must be explainable
[139]. AI algorithms used for diagnosis and prognosis must be explainable
and must not rely on a black box. Furthermore, interpretability should
always be present in AI models in medicine and developed at an early
stage.
Also in the opinion of the authors of [113], using XAI in the medical
field can contribute to relevant results by enabling medical professionals
to understand how and why an ML system made a certain decision.

7.3.1 XAI methods for BCI

In recent years, there has been an increasing amount of work in the
literature based on XAI techniques for the explainability of classifier out-
puts in BCI systems, particularly with EEG signals.
Y. Al Hammadi et al. [8] used an XAI approach by analysing a wide range
of physiological signals, including EEG, to score the importance of the fea-
tures used in the model that led to the classification of different emotional
states in 17 individuals using the AI algorithm.
Morabito et al. [171] proposed an XAI method to monitor individual
changes in EEG related to degeneration from Mild Cognitive Impairment
(MCI) to dementia due to Alzheimer’s Disease (AD), using high-density
electroencephalogram (HD-EEG). The study revealed which EEG chan-
nels (i.e. head region) and frequency ranges (i.e. sub-bands) are most
active in the progression from MCI to AD using Grad-CAM methods.
Li et al. [148] used a recurrent neural network model to process a public
EEG dataset of motor imagery in order to select the channels for motion
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intention recognition using Grad-CAM visualisation technology.
In an interesting and recent work, Giudice et al. [93] exploit the XAI
Grad-CAM and LIME techniques to visually explain with EEG traces and
regions of relevance, the most significant temporal parts during voluntary
or involuntary eye blink.





Chapter 8
XAI: Middle-Level input
Features

Introduction

An XAI approach should alleviate the weakness of low-level approaches
and overcome their limitations, allowing the possibility to construct expla-
nations in terms of input features that represent more salient and under-
standable input properties for a user, which will be called here Middle-
Level input Features (MLFs) (see Figure 8.1). Although there is a recent
research line which attempts to give explanations in terms of visual human-
friendly concepts [125, 92, 7] (Section 8.1), however it is noticeable that
the goal to learn data representations that are easily factorised in terms of
meaningful features is, in general, pursued in the representation learning
framework [45], and more recently in the feature disentanglement learning
context [159]. These meaningful features may represent parts of the input
such as nose, ears and paw in case of, for example, face recognition tasks
(similarly to the outcome of a clustering algorithm) or more abstract input
properties such as shape, viewpoint, thickness, and so on, leading to data
representations perceptually and cognitively salient to the human being.
Based on these considerations, in this chapter, the aim is to develop an
XAI approach able to give explanations for an image classification system
in terms of features which are obtained by standard representation learning
methods such as variational auto-encoder [64] and hierarchical image seg-
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Figure 8.1. Examples of Middle Level input Features (MLFs). Each MLF
represents a part of the input which is perceptually and cognitively salient to
a human being, as for example the ears of a cat or the wings of an airplane.
These features are intuitively more humanly interpretable respect to low-level
features (as for example raw unrelated image pixels), so a decision explanation
expressed in terms of MLF relevance can be easier to understand for a human
being respect to explanations expressed in terms of low level features.

mentation [88]. In particular, middle-level data representations obtained
by auto-encoder methods [58] is exploited to provide explanations of im-
age classification systems. In this context, in an earlier work [24] an initial
experimental investigation on this type of explanations exploiting the hi-
erarchical organisation of the data in terms of more elementary factors is
proposed. For example, natural images can be described in terms of the
objects they show at various levels of granularity [230, 223, 258]. Or in
[98] a hierarchical prototype-based approach for classification is proposed.
This method has a certain degree of intrinsic transparency, but it does not
fall into post-hoc explainability category.

To the best of my knowledge, in the XAI literature, however, there
are relatively few approaches that pursue this line of research. In [203],
the authors proposed LIME, a successful XAI method which is based, in
case of image classification problems, on explanations expressed as sets of
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regions, clusters of the image, said superpixels which are obtained by a
clustering algorithm. These superpixels can be interpreted as MLFs. In
[18, 17] the explanations are formed of elements selected from a dictionary
of MLFs, obtained by sparse dictionary learning methods [77]. In [100]
authors propose to exploit the latent representations learned through an
adversarial auto-encoder for generating a synthetic neighbourhood of the
image for which an explanation is required. However, these approaches
propose specific solutions which cannot be generalised to different types
of input properties. By contrast, in this chapter, the goal is to investigate
the possibility of obtaining explanations using an approach that can be
applied to different types of MLFs, which will be referred General MLF
Explanations (GMLF). More precisely, the aim is to develop an XAI frame-
work that can be applied whenever a) the input of an ML system can be
encoded and decoded based on MLFs, and b) any Explanation method
producing a Relevance Map (ERM method) can be applied on both the
ML model and the decoder. In this sense, a general framework insofar is
proposed as it can be applied to several different computational definitions
of MLFs and a large class of ML models. Consequently, multiple and dif-
ferent explanations can be given based on different MLFs. In particular,
the aim is to test a novel approach in the context of image classification
using MLFs extracted by three different methods: 1) image segmentation
by auto-encoders, 2) hierarchical image segmentation by auto-encoders,
and 3) Variational auto-encoders. About the points 1) and 2), a simple
method to represent the output of a segmentation algorithm in terms of
encoder-decoder is reported. However, this approach can be used on a wide
range of different data types to the extent that encoder-decoder methods
can be applied.

Thus, the medium or long-term objective is to develop a XAI general
approach producing explanations for an ML System behaviour in terms of
potentially different and user-selected input features, composed of input
properties which the human user can select according to his background
knowledge and goals. This aspect can play a key role in developing user-
centred explanations. It is essential to note that, in making an explanation
understandable for a user, it should be taken into account what information
the user desires to receive [125, 204, 16, 19]. Recently, it is becoming
more and more evident that new directions to create better explanations
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should take into account what a good explanation is for a human user,
and consequently to develop XAI solutions able to provide user-centred
explanations [125, 204, 152, 7, 126]. By contrast, much of the current XAI
methods provide specific ways to build explanations that are based on the
researchers’ intuition of what constitutes a "good" explanation [152, 168].

To summarise, the following novelties are presented:

1. a XAI framework where middle-level or high-level input properties
can be built exploiting standard methods of data representation
learning is proposed;

2. proposed framework can be applied to several different computa-
tional definitions of middle-level or high-level input properties and
a large class of ML models. Consequently, multiple and different
explanations based on different middle-level input properties can be
possibly provided given an input-ML system response;

3. The middle-level or high-level input proprieties are computed inde-
pendently from the ML classifier to be explained.

The chapter is organised as follows: Section 8.2 describes in detail the
proposed approach; in Section 8.1 differences and advantages of GMLF
with respect similar approaches presented in the literature are discussed;
experiments and results are discussed in Section 8.4. In particular, pro-
posed approach with LIME method and performed both qualitative and
quantitative evaluations of the results is compared; the concluding Sec-
tion summarises the main high-level features of the proposed explanation
framework and outlines some future developments.

8.1 Related Works

The importance of eXplainable Artificial Intelligence (XAI) is discussed
in several papers [242, 168, 207, 38]. Different strategies have been pro-
posed to face the explainability problem, depending both on the AI sys-
tem to explain and the type of explanation proposed. Among all the
XAI works proposed over the last years, an important distinction is be-
tween model-based and post-hoc explanaibility [176], the former consisting
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in AI systems explainable by design (e.g., decision trees), since their in-
ner mechanisms are easily interpreted, the latter proposing explanation
built for system that are not easy to understand. In particular, several
methods to explain Deep Neural Networks (DNNs) are proposed in the
literature due to the high complexity of their inner structures. A very
common approach consists in returning visual-based explanations in terms
of input feature importance scores, as for example Activation Maximiza-
tion (AM) [82], Layer-Wise Relevance propagation (LRP) [40], Deep Tay-
lor Decomposition[48, 169], Class Activation Mapping (CAM) methods
[265, 215], Deconvolutional Network [249] and Up-convolutional network
[248, 79]. Although heatmaps seem to be a type of explanation that is
easy to understand for the user, these methods build relevances on the
low-level input features (the single pixel), while input middle-level proper-
ties which determined the answer of the classifier have to be located and
interpreted by the user, leaving much of the interpretive work to the human
beings. On the other side, methods as Local Interpretable Model-agnostic
Explanations (LIME) [203] relies on feature partitions, as super-pixel in
the image case. However, the explanations given by LIME (or its variants)
are built through a new model that approximates the original one, thus
risking to loose the real reasons behind the behaviour of the original model
[204].

Recently, a growing number of studies [266, 125, 92, 7] have focused
on providing explanations in the form of middle-level or high-level human
“concepts” as intended in this chapter. In particular, in [125] the authors
introduce the Concept Activation Vectors (CAV) as a way of visually rep-
resenting the neural network’ inner states associated with a given class.
CAVs should represent human-friendly concepts. The basic ideas can be
described as follow: firstly, the authors suppose the availability of an exter-
nal labelled dataset XC where each label corresponds to a human-friendly
concept. Then, given a pre-trained neural network classifier to be ex-
plained, say NC, they consider the functional mapping fl from the input
to the l-layer of NC. Based on fl, for each class c of the dataset XC,
they build a linear classifier composed of fl followed by a linear classifier
to distinguish the element of XC belonging to the class c from randomly
chosen images. The normal to the learned hyperplane is considered the
CAV for the user-defined concept corresponding to the class c. Finally,
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given all the input belonging to a class K of the pre-trained classifier NC,
the authors define a way to quantify how much a concept c, expressed by
a CAV, influences the behaviour of the classifier, using directional deriva-
tives to computes NC ’s conceptual sensitivity across entire class K of
inputs.

Building upon the paper discussed above, in [7] the authors provide ex-
planations in terms of fault-lines[121]. Fault-lines should represent “high-
level semantic aspects of reality on which humans zoom in when imag-
ining an alternative to it”. Each fault-line is represented by a minimal
set of semantic xconcepts that need to be added to or deleted from the
classifier’s input to alter the class that the classifier outputs. Xconcepts
are built following the method proposed in [125]. In a nutshell, given a
pre-trained convolutional neural network CN whose behaviour is to be ex-
plained, xconcepts are defined in terms of super-pixels (images or parts of
images) related to the feature maps of the l-th CN ’s convolutional layer,
usually the last convolutional layer before the full-connected layer. In par-
ticular, these super-pixels are collected when the input representations at
the convolution layer l are used to discriminate between a target class c and
an alternate class calt, and they are computed based on the Grad-CAM
algorithm [215]. In this way, one obtains xconcepts in terms of images
related to the class c and able to distinguish it from the class calt. Thus,
when the classifier CN responds that an input x belongs to a class c, the
authors provide an explanation in terms of xconcepts which should repre-
sent semantic aspects of why x belongs c instead of an alternate class calt.

In [92] the authors propose a method to provide explanations related
to an entire class of a trained neural classifier. The method is based on the
CAVs introduced in [125] and sketched above. However, in this case, the
CAVs are automatically extracted without the need an external labelled
dataset expressing human-friendly concepts.

In addition, several works in literature build attention-based inter-
pretability in DNN, which aims to highlight parts of an input that the
network focuses on when making decisions [265, 261, 266]. By extending
these ideas, into [60] the input parts considered relevant by the method
are linked to similar prototype parts learned from the training set. Com-
pared to our approach where MLFs are part of the input images, in [60]
prototype parts are associated with other training images.
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Many of the approaches discussed so far focus on global explanations,
i.e., explanations related to en entire class of the trained neural network
classifier (see [92, 125]). Instead, in proposed approach, local explanations
are desired, i.e., explanations for the response of the ML model to each
single input. Some authors, see for example [125], provide methods to
obtain local explanations, but in this case, the explanations are expressed
in terms of high-level visual concepts which do not necessarily belong to
the input. Thus, again human users are left with a significant interpretive
load: starting from external high-level visual concepts, the human user
needs to identify the input properties perceptually and cognitively related
to these concepts. On the contrary, the input (MLFs) high-level properties
are expressed, in this approach, in terms of elements of the input itself.

Another critical point is that high-level or middle-level user-friendly
concepts are computed on the basis of the neural network classifier to
be explained. In this way, a short-circuit can be created in which the
visual concepts used to explain the classifier are closely related to the
classifier itself. By contrast, in proposed approach, MLFs are extracted
independently from the classifier.

A crucial aspect that distinguishes this proposal from the above-discussed
research line is grounded on the fact that an XAI framework is proposed
able to provide multiple explanations, each one composed of a specific type
of middle-level input features (MLFs). Proposed methodology only needs
that MLFs can be obtained using methods framed into data representa-
tion research, and, in particular, any auto-encoder architecture for which
an explanation method producing a relevance map can be applied on the
decoder (see Section 8.2.1).

To summarise, the GMLF approach, although shares with the above
describe research works the idea to obtain explanations based on middle-
level or high-level human-friendly concepts, presents the following elements
of novelty:

1. It is a XAI framework where middle-level or high-level input prop-
erties can be built on the basis of standard methods of data repre-
sentation learning.

2. It outputs local explanations.

3. The middle-level or high-level input proprieties are computed inde-
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pendently from the ML classifier to be explained.

Regarding points 2) and 3) note that a XAI method that has significant
similarity with proposed approach is LIME [203] or its variants (see, for
example, [260]). LIME, especially in the context of images, is one of the
predominant XAI methods discussed in the literature [76, 260]. It can
provide local explanations in terms of superpixels which are regions or
parts of the input that the classifier receives, as already discussed in Section
8. These superpixels can be interpreted as middle-level input properties,
which can be more understandable for a human user than low-level features
such as pixels. In this sense, there is a similarity in the output between
the approach GMLF and LIME. The explanations built by LIME can
be considered comparable with the proposed approach but different in
the construction process. While LIME (and other proxies methods, see
7.2.8) builds explanation relying on a proxy model different from the model
to explain, the proposed approach relies only on the model to explain,
without needing any other model that approximates the original one. To
highlight the difference between the produced explanations, in section 8.3
a comparison between LIME and GMLF outputs is made.

8.2 Approach

This approach stems from the following observations.
The development of data representations from raw low-level data usu-

ally aims to obtain distinctive explanatory features of the data, which are
more conducive to subsequent data analysis and interpretation. This criti-
cal step has been tackled for a long time using specific methods developed
exploiting expert domain knowledge. However, this type of approach can
lead to unsuccessful results and requires a lot of heuristic experience and
complex manual design [146]. This aspect is similar to what commonly oc-
curs in many XAI approaches, where the explanatory methods are based
on the researchers’ intuition of what constitutes a "good" explanation.

By contrast, representation learning successfully investigates ways to
obtain middle/high-level abstract feature representations by automatic
machine learning approaches. In particular, a large part of these ap-
proaches is based on Auto-Encoder (AE) architectures [58, 146]. AEs
correspond to neural networks composed of at least one hidden layer and
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logically divided into two components, an encoder and a decoder. From
a functional point of view, an AE can be seen as the composition of two
functions E and D: E is an encoding function (the encoder) which maps
the input space onto a feature space (or latent encoding space), D is a
decoding function (the decoder) which inversely maps the feature space
on the input space. A meaningful aspect is that by AEs, one can obtain
data representations in terms of latent encodings h⃗, where each hi may
represent a MLF ξi of the input , such as parts of the input (for example,
nose, ears and paw) or more abstract features which can be more salient
and understandable input properties for a user. See for example varia-
tional AE [130, 201, 149] or image segmentation [89, 63, 246, 256] (see
Figure 8.1). Furthermore, different AEs can extract different data repre-
sentations which are not mutually exclusive.

Based on the previous considerations, the goal is to build upon the idea
that the elements composing an explanation can be determined by an AE
which extracts relevant input features for a human being, i.e., MLFs, and
that one might change the type of MLFs changing the type of auto-encoder
or obtain multiple and different explanations based on different MLFs.

8.2.1 General description

Given an ML classification model M which receives an input x⃗ ∈ Rd

and outputs y⃗ ∈ Rc, this approach can be divided into two consecutive
steps.

In the first step, an auto-encoder AE ≡ (E,D) is built such that each
input x⃗ can be encoded by E in a latent encoding h⃗ ∈ Rm and decoded by
D. As discussed above, to each value hi is associated a MLF ξj , thus each
input x is decomposed in a set of m MLFs ξ⃗ = {ξi}mi=1, where to each ξi
is associated the value hi. Different choices of the auto-encoder can lead
to MLFs ξ⃗i of different nature, so to highlight this dependence this first
step is re-formalised as follows: an encoder E

ξ⃗
: x⃗ ∈ Rd → h⃗ ∈ Rm and a

decoder D
ξ⃗
: h⃗ ∈ Rm → x⃗ ∈ Rd are built, where h⃗ encodes x⃗ in terms of

the MLFs ξ⃗.
In the second step of this approach, an ERM method (an explanation

method producing a relevance map of the input) is used on both M and
D

ξ⃗
, i.e., by applying it to the model M and then use the obtained relevance
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Figure 8.2. A general scheme of the proposed explanation framework. Given
a middle-level feature encoder and the respective decoder, this last one is
stacked on the top of the model to inspect. Next, the encoding of the input is
fed to the decoder-model system. A backward relevance propagation algorithm
is then applied.

values to apply the ERM method on D
ξ⃗

getting a relevance value for each
middle-level feature. In other words, D

ξ⃗
is stacked on the top of M thus

obtaining a new model DM
ξ⃗

which receives as input an encoding u⃗ and
outputs y⃗, and uses an ERM method on DM

ξ⃗
from y⃗ to u⃗. In Figure 8.2

a graphic description of the approach GMLF is given, and in algorithm 1)
it is described in more details considering a generic auto-encoder, while in
algorithms 3 and 4 the approach (GMLF) is described in case of specific
auto-encoders (see Section 8.2.2 and 8.2.3).

Thus, the aim is to search for a relevance vector u⃗ ∈ Rm which informs
the user how much each MLF of ξ⃗ has contributed to the ML model answer
y⃗. Note that, GMLF can be generalised to any decoder D

ξ⃗
to which a ERM

method applies on. In this way, one can build different explanations for a
M ’s response in terms of different MLFs ξ⃗.

In the remainder of this section, three alternative ways (segmentation,
hierarchical segmentation and VAE) to obtain a decoder will be described
such that a ERM method can be applied to, and so three ways of applying
the approach GMLF. This framework is experimentally tested using all
the methods.
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Algorithm 1: Proposed method GMLF
Input: data point x⃗, trained model M , an ERP method RP
Output: Feature Relevances U

1 y⃗ ←M(x⃗);
2 build an auto-encoder AE ≡ (Eξ, Dξ);
3 h⃗← Eξ(x⃗);
4 define R : h⃗ 7→ x⃗−Dξ (⃗h);
5 define DMξ : h⃗ 7→M(Dξ (⃗h) +R(⃗h)) ;
6 U ← RP (DMξ, h⃗, y⃗) ;
7 return U ;

8.2.2 MLFs from image segmentation

Here the implementation of the GMLF approach is described to the
case of an auto-encoder built of the basis of hierarchical segmentation.
The approach is depicted in Figure 8.3, while an algorithmic formalisation
is given in algorithms 2 and 3.

Given an image x⃗ ∈ Rd, a segmentation algorithm returns a partition
of x⃗ composed of m regions {qi}mi=1. Some of the existing segmentation
algorithms can be considered hierarchical segmentation algorithms, since
they return partitions hierarchically organised with increasingly finer levels
of details.

More precisely, following [102], a segmentation algorithm is considered
hierarchical if it ensures both the causality principle of multi-scale analysis
[101] (that is, if a contour is present at a given scale, this contour has to
be present at any finer scale) and the location principle (that is, even
when the number of regions decreases, contours are stable). These two
principles ensure that the segmentation obtained at a coarser detail level
can be obtained by merging regions obtained at finer segmentation levels.

In general, given an image, a possible set of MLFs can be the result of
a segmentation algorithm. Given an image x⃗ ∈ Rd, and a partition of x⃗
consisting of m regions {qi}mi=1, each image’s region qi can be represented
by a vector v⃗i ∈ Rd defined as follows: vij = 0 if xj /∈ qi, otherwise
vij = xj , and

∑m
i=1 v⃗i = x⃗. Henceforth, for simplicity and without loss

of generality, v⃗i will be used instead of qi since they represent the same
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entities. Consequently, x⃗ can be expressed as linear combination of the
v⃗i with all the coefficients equal to 1, which represent the encoding of the
image x⃗ on the basis of the m regions. More in general, given a set of K
different segmentations {S1, S2, . . . , SK} of the same image sorted from the
coarser to the finer detail level, it follows that, if the segmentations have a
hierarchical relation, each coarser segmentation can be expressed in terms
of the finer ones. More in detail, each region v⃗ki of Sk can be expressed as a
linear combination

∑
j αj v⃗

k+1
j where αj is 1 if all the pixels in v⃗k+1

j belong
to v⃗ki , 0 otherwise. The same reasoning can be applied going from SK to
the image x⃗ considering it as a trivial partition SK+1 where each region
represents a single image pixel, i.e., SK+1 = {v⃗K+1

1 , v⃗K+1
2 , . . . , v⃗K+1

d }, with
vK+1
ij = xj if i = j, otherwise vK+1

ij = 0 .
It is straightforward to construct a feed-forward full connected neural

network of K + 1 layers representing an image x⃗ in terms of a set of K
hierarchically organised segmentations {Sk}Kk=1 as follows (see Figure 8.3):
the k-th network layer has |Sk| inputs and |Sk+1| outputs, the identity as
activation functions, biases equal to 0 and each weights wk

ij equal to 1 if
the v⃗k+1

j region belongs to the v⃗ki region, 0 otherwise. The last layer K+1

has d outputs and weights equal to (v⃗K+1
p )dp=1. The resulting network can

be viewed as a decoder that, fed with the 1⃗ vector, outputs the image x⃗.
Note that if one considers K = 1, it is possible to use the same approach

in order to obtain an x⃗’s segmentation without a hierarchical organisation.
In this case the corresponding decoder is a network composed of just one
layer. It is intended to clarify that the segmentation module described in
this section represents a way to build an auto-encoder which encodes latent
variables that are associate to image segments. These image segments are
candidate MLFs. Explanations are built by a selection of these candidate
segments in the second computational step of this approach. It is empha-
sised that the first step of the framework is to build an auto-encoder so
that each input can be decomposed in a set of MLFs where each latent
variable is associated to a specific MLF. These MLFs represent candidate
input properties to be included into the final explanation which is com-
puted by the second computational step of this approach. In this second
part, a number of candidate middle-level input features are selected by an
explanation method producing a relevance map of the input such as Layer-
wise Relavance Propagation method (LRP). However, different choices of
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Figure 8.3. A segmentation-based MLF framework. MLF decoder is built
as a neural network having as weights the segments returned by a hierarchical
segmentation algorithm (see text for further details). The initial encoding is
the "1" vector since all the segments are used to compose di input image. The
relevance backward algorithm returns the most relevant segments.
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the auto-encoder can lead to different MLFs of different nature.

Algorithm 2: Hierarchical segmantion-based Enconder-Decoder
Generator

Input: data point x⃗, hierarchical segmentation procedure seg,
hierarchical segmentation parameters λ⃗ = (λ1, λ2, . . . , λK)

Output: A Decoder Dξ, an Encoder Eξ

1 {S1, S2, . . . , SK} ← seg(x⃗, λ⃗);
2 SK+1 ← ∅;
3 for xj ∈ x⃗ do
4 let v⃗K+1 ∈ {0}d;
5 vK+1

jj ← xj ;
6 SK+1 ← SK+1 ∪ {v⃗K+1};
7 end
8 for 1 ≤ k ≤ K do
9 let W k ∈ {0}|Sk|×|Sk+1|;

10 let b⃗k ∈ {0}|Sk+1|;
11 for 1 ≤ i ≤ |Sk| do
12 for 1 ≤ j ≤ |Sk+1| do
13 if v⃗k+1

j belongs to v⃗ki then
14 Wij ← 1;
15 end
16 end
17 end
18 define identity : a⃗ 7→ a⃗;
19 Dξ ← generateNeuralNetwork(weights = {W k}K+1

k=1 ,

20 biases = {⃗bk}K+1
k=1 ,

21 activation function =
identity);

22 define Eξ : x⃗ 7→ e ∈ {1}|S1|;
23 return Dξ, Eξ;
24 end
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Algorithm 3: GMLF approach in case of Hierarchical
segmentation-based auto-encoder

Input: a data point x⃗ ∈ Rd, a trainedNeuralNet returning the
class scores given a data point, a hierarchical
segmentation procedure seg, hierarchical segmentation
parameters λ⃗ = (λ1, λ2, . . . , λK), a relevance propagation
algorithm RP returning a relevance vector for each
network layer given: i) a neural network, ii) an input and
iii) its class probabilities, a generateNeuralNetwork
function that returns a neural networks with weights,
biases and activation function given as parameters

Output: relevances for the first K layers {u⃗1, . . . , u⃗K}
1 y⃗ ←M(x⃗);

a) y⃗ ← TrainedNeuralNet(x⃗);
2 build an auto-encoder AE ≡ (Eξ, Dξ);

a) (Eξ, Dξ)← buildAE(x⃗, seg, λ⃗) ▷ see algorithm 2;
3 h⃗← Eξ(x⃗);
4 define R : h⃗ 7→ x⃗−Dξ (⃗h) :

a) let Wres ∈ {0}d×d;
b) r⃗ = x⃗−Dξ(x⃗);
c) b⃗res ← r⃗;
d) define identity : a⃗ 7→ a⃗;
e) R← generateNeuralNetwork(weights = {Wres},

biases = {⃗bres},
activation function =

identity);
5 define DMξ : h⃗ 7→M(Dξ (⃗h) +R(⃗h)) :

a) DMξ ← stackTogether(D,R,M);
6 U ← RP (DMξ, h⃗, y⃗);
7 return {u⃗1, . . . u⃗K};



110 Chapter 8. XAI: Middle-Level input Features

8.2.3 MLF from Variational auto-encoders

The concept of “entangled features” is strictly related to the concept of
“interpretability”. As stated in [110], a disentangled data representation is
most likely more interpretable than a classical entangled data representa-
tion. This fact is due to the generative factors representation into separate
latent variables representing single features of the data (for example, the
size or the colour of the represented object in an image).

Using Variational Auto Encoders (VAE) is one of the most affirmed
neural network-based methods to generate disentangled encodings. In
general, a VAE is composed of two parts. First, an encoder generates
an entangled encoding of a given data point (in this case, an image). Then
a decoder generates an image from an encoding. Once trained with a set of
data, the VAE output ⃗̃x on a given input x⃗ can be obtained as the compo-
sition of two functions, an encoding function E(·)and a decoding function
D(·), implemented as two stacked feed-forward neural networks.

The encoding function generates a data representation E(x⃗) = h⃗ of an
image x⃗, the decoding function generates an approximate version D(⃗h) = ⃗̃x
of x⃗ given the encoding h⃗, with a residual r⃗ = x⃗ − ⃗̃x. So, it is possible
to restore the original image data simply adding the residual to ⃗̃x, that is
x⃗ = ⃗̃x+ r⃗. Consequently, the decoder neural networks are stacked with a
further dense layer R(·) having d neurons with weights set to 0 and biases
set to r⃗. The resulting network R(E(⃗h)) generates x⃗ as output, given its
latent encoding h⃗.

In Figure 8.4 it is shown a pictorial description of GMLF approach
when the auto-encoder is built based on VAE, the algorithmic description
is reported in algorithm 4.

8.3 Experimental assessment

In this section, the aim is to describe the chosen experimental setup.
The goal is to examine the applicability of this approach for different
types of MLFs obtained by different encoders. As stated in Section 8.2.1,
three different types of MLFs are evaluated: flat (non hierarchical) seg-
mentation, hierarchical segmentation and VAE latent coding. For non-
hierarchical/hierarchical MLF approaches, the segmentation algorithm pro-
posed in [102] was used to make MLFs, since its segmentation constraints
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Algorithm 4: GMLF approach in case of VAE auto-encoder
Input: a data point x⃗ ∈ Rd, a trainedNeuralNet returning the

class scores given a data point, a getTrainedV AE
procedure returning a trained VAE, a relevance
propagation algorithm RP returning a relevance vector
given: i) a neural network, ii) an input and iii) its class
probabilities, a generateNeuralNetwork function
returning a neural networks with weights, biases and
activation function given as parameters

Output: relevances u⃗ of each latent variable
1 y⃗ ←M(x⃗);

a) y⃗ ← TrainedNeuralNet(x⃗);
2 build an auto-encoder AE ≡ (Eξ, Dξ);

a) (Eξ, Dξ)← getTrainedV AE();
3 h⃗← Eξ(x⃗);
4 define R : h⃗ 7→ x⃗−Dξ (⃗h) :

a) let Wres ∈ {0}d×d;
b) r⃗ = x⃗−Dξ(x⃗);
c) b⃗res ← r⃗;
d) define identity : a⃗ 7→ a⃗;
e) R← generateNeuralNetwork(weights = {Wres},

biases = {⃗bres},
activation function =

identity);
5 define DMξ : h⃗ 7→M(Dξ (⃗h) +R(⃗h)) :

a) DMξ ← stackTogether(Dξ, R,M);
6 u⃗← RP (DMξ, h⃗, y⃗);
7 return u⃗;
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Figure 8.4. A VAE-based MLF framework. The MLF decoder is built as
a neural network composed of the VAE decoder module followed by a full-
connected layer containing the residual of the input (see text for further de-
tails). The initial input encoding is given by the VAE encoder module. The
relevance backward algorithm returns the most relevant latent variables.

respect the causality and the location principles reported in Section 8.2.2.
However, for the non-hierarchical method, any segmentation algorithm can
be used (see for example [25]).

For the Variational Auto-Encoder (VAE) based GMLF approach, a β-
VAE [110] is used as MLFs builder, since it results particularly suitable
for generating interpretable representations. In all the cases, as image
classifier a VGG16 [220] network pre-trained on ImageNet is used. MLF
relevances are computed with the LRP algorithm using the α−β rule[40].

In Section 8.4 a set of possible explanations of the classifier outputs
on image sampled from STL-10 dataset [70] and the Aberdeen data set
from University of Stirling (http://pics.psych.stir.ac.uk) is shown. The
STL10 data-set is composed of images belonging to 10 different classes
(airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck), and the
Aberdeen database is composed of images belonging to 2 different classes
(Male, Female). Only for the Aberdeen data-set the classifier was fine-
tuned using an subset of the whole data-set as training set.
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8.3.1 Flat Segmentation approach

For the flat (non-hierarchical) segmentation approach, images from the
STL-10 and the Aberdeen data sets are used to generate the classifier
outputs and corresponding explanations. For each test image, a set of
segments (or superpixels) S are generated using the image segmentation
algorithm proposed [102] considering just one level. Therefore, a one-layer
neural network decoder as described in Section 8.2.2 was constructed using
the segmentation S. The resulting decoder is stacked on the top of the
VGG16 model and fed with the "1" vector (see figure 8.3). The relevance
of each superpixel/segment was then computed using the LRP algorithm.

8.3.2 Hierarchical Image Segmentation Approach

As for the non-hierarchical segmentation approach, the segmentation
algorithm proposed in [102] was used, but in this case, three hierarchically
organised levels were considered. Thus, for each test image, 3 different sets
of segments (or superpixels) {Si}3i=1 related between them in a hierarchical
fashion are generated, going from the coarsest (i = 1) to the finest (i = 3)
segmentation level. Next, a hierarchical decoder is made as described in
section 8.2.2 and stacked on the classifier (see Figure 8.3). As for the non-
hierarchical case, the decoder is then fed with the "1"s vector. Finally,
LRP is used to obtain hierarchical explanations as follows: 1) first, at the
coarsest level i = 1, the most relevant segment s⃗imax is selected; 2) then,
for each finer level i > 1, the segment s⃗imax corresponding to the most
relevant segment belonging to ⃗si−1max is chosen.

8.3.3 Variational auto-encoders

Images from the Aberdeen dataset are used to construct an explanation
based on VAE encoding latent variables relevances. The VAE model was
trained on an Aberdeen subset using the architecture suggested in [110]
for the CelebA dataset. Then, an encoding of 10 latent variables is made
using the encoder network for each test image. The resulting encodings
were fed to the decoder network stacked on top of the trained VGG16.
Next, the LRP algorithm was applied on the decoder top layer to compute
the relevance of each latent variable.
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8.4 Results

In this section is reported the evaluation assessment of the different re-
alisation of the GMLF framework described in the previous section. For the
evaluation both qualitative and quantitative results (see Section 8.4.5) are
shown. In particular, in the first part of this section are reported some ex-
amples of explanations obtained using flat and hierarchical segmentation-
based MLFs, and VAE-based MLFs. Thereafter, is shown an example of
explanation using different types of MLFs. Finally, in Section 8.4.5 is re-
ported a quantitative evaluation of the obtained results.

8.4.1 Flat Segmentation

In Figure 8.5 are shown some of the explanations produced for a set of
images using the flat (non hierarchical) segmentation-based experimental
setup described in Section 8.2.2. The proposed explanations are reported
considering the first two more relevant segments according to the method
described in Section 8.2.2. For each image, the real class and the assigned
class are reported. From a qualitative visual inspection, one can observe
that the selected segments seem to play a relevant role for distinguishing
the classes.

8.4.2 Hierarchical Image Segmentation

In figures 8.6 and 8.7 is shown a set of explanations using the hier-
archical approach described in Section 8.2.2 on images of the STL10 and
the Aberdeen datasets. In this case, the hierarchical segmentation organ-
isation is exploited to provide MLF explanations. In particular, for each
image, a three layers decoder has been used, obtaining three different image
segmentations S1, cS2 and S3, from the coarsest to the finest one, which
are hierarchically organised (see Section 8.2.2). For the coarsest segmen-
tation (S1), the two most relevant segments s11 and s12 are highlighted in
the central row. For the image segmentation S2 the most relevant segment
s21 belonging to s11 and the most relevant segment s22 belonging to s12 are
highlighted in the upper and the lower row (second column). The same
process is made for the image segmentation S3, where the most relevant
segment s31 belonging to s21 and the most relevant segment s32 belonging
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(a) STL10 (b) Aberdeen

Figure 8.5. Explanations obtained by GMLF using the flat strategy (second
columns), LIME (third columns) and LRP (fourth columns) for VGG16 net-
work responses using images from STL10 (a) and Aberdeen datasets (b). In
both (a) and (b), for each input (first columns) the explanation in terms of
most relevant segments are reported for the proposed flat approach (second
columns) and LIME (third columns). For better clarity, is reported a col-
ormap where only the first two most relevant segments are highlighted both
for MLRF and LIME.
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to s22 are shown in the third column. From a qualitative perspective, one
can note that the proposed approach seems to select relevant segments
for distinguishing the classes. Furthermore, the hierarchical organisation
provides more clear insights about the input image’s parts, contributing
to the classifier decision.

The usefulness of a hierarchical method can also be seen in cases of
wrong classifier responses. See, for example, Figure 8.8 where a hierarchi-
cal segmentation MLF approach was made on two images wrongly classi-
fied: 1) a dog wrongly classified as a poodle although it is evidently of a
completely different race, and 2) a cat classified as a bow tie. Inspecting
the MLF explanations at different hierarchy scales, it can be seen that, in
the dog case, the classifier was misled by the wig (which probably led the
classifier toward the poodle class), while, in the other case, the cat head
position near the neck of the shirt, while the remaining part of the body
is hidden, could be responsible for the wrong classification.

8.4.3 VAE-based MLF explanations

In Figure 8.9 a set of results using the VAE-based experimental setup
described in Section 8.3 is shown. For each input, a relevance vector on
the latent variable coding is computed. Then, a set of decoded images are
generated varying the two most relevant latent variables while fixing the
other ones to the original encoding values. One can observe that varying
the most relevant latent variables it seems that relevant image properties
for the classifier decision are modified such as hair length and style.

8.4.4 Multiple MLF explanations

For the same classifier input-output, the possibility to provide multiple
and different MLF explanations based on the three types of previously
mentioned MLFs is shown. In Figure 8.10, for each input, three different
types of explanations are shown. In the firs row, an explanation based on
MLFs obtained by a flat image segmentation is reported. In the second row,
an explanation based on MLFs obtained by an hierarchical segmentation.
In the last row, a VAE-based MLF explanation is showed. Notice that
the three types of explanations, although based on different MLFs, seem
coherent to each other.
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(a) Proposed approach (b) LIME

Figure 8.6. Examples of a two-layer hierarchical explanation on images clas-
sified as warplane, tobby, hartebeest, dalmatian respectively by VGG16. (a)
First column: segment heat map. Left to right: segments sorted in descending
relevance order. Top-down: the coarsest (second row) and the finest (third
row) hierarchical level. (b) LIME explanation: same input, same segmenta-
tion used in (a).
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(a) Proposed approach (b) LIME

Figure 8.7. Examples of a two-layer hierarchical explanation on images clas-
sified as Female and Male by VGG16. (a) First column: segment heat map.
Left to right: segments sorted in descending relevance order. Top-down: the
coarsest (second row) and the finest (third row) hierarchical level. (b) LIME
explanation: same input, same segmentation used in (a).
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(a) classified as poodle (b) classified as bow tie

Figure 8.8. Results obtained by Hierarchical MLF approach (described in
Section 8.2.2) using VGG16 network on STL10 images wrongly classified by
the model. (a) A dog wrongly classified as a poodle, although it is evidently
of a completely different race. Inspecting the MLF explanations at different
hierarchy scales, it can be seen that the classifier was probably misled by the
wig (which probably led the classifier toward the poodle class), (b) A cat
wrongly classified as a bow tie. Inspecting the MLF explanations at different
hierarchy scales, it can be seen that the shape and the position of the cat head
near the neck of the shirt, having at the same time the remaining of its body
hidden, could be responsible for the wrong class.

Figure 8.9. Results obtained by VAE MLF approach (described in Section
8.2.3) using a VGG16 network on Aberdeen image dataset. For each image,
a VAE is constructed. For each input, the resulting relevance vector on the
latent variable is computed. Then, decoded images are generated varying the
two most relevant latent variables while fixing the other ones to the original
values.
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Figure 8.10. For each input, three different types of explanations obtained
by GMLF approach are shown. In the first row, an explanation based on a flat
image segmentation is reported. In the second row, an explanation based on
an hierarchical segmentation. In the last row, a VAE-based MLF explanation
is showed.

8.4.5 Quantitative evaluation

A quantitative evaluation is performed adopting the MoRF (Most Rel-
evant First) and AOPC (Area Over Perturbation Curve) [40, 206] curve
analysis. In this chapter, MoRF curve is computed following the region
flipping approach, a generalisation of the pixel-flipping measure proposed
in [40]. In a nutshell, given an image classification, image regions (in this
case segments) are iteratively replaced by random noise and fed to the
classifier, following the descending order with respect to the relevance val-
ues returned by the explanation method. In this manner, more relevant
for the classification output the identified MLFs are, steepest is the curve.
Instead, AOPC is computed as:

AOPC =
1

L+ 1
<

L∑
k=0

f(x⃗(0))− f(x⃗(k)) >
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where L is the total number of perturbation steps, f(·) is the classifier
output score, x⃗(0) is the original input image, x⃗(i) is the input perturbed
at step i, and < · > is the average operator over a set of input images.
In this manner, more relevant for the classification output the identified
MLFs are, greater the AOPC value is.

To evaluate the hierarchical approach with respect to the flat segmenta-
tion approach, at each step, MLFs were removed from the inputs exploiting
the hierarchy in a topological sort depth-first search based on the descend-
ing order’s relevances. Therefore, the MLFs of the finest hierarchical layer
were considered. MoRF and AOPC are shown in Fig. 8.11 and 8.12. In
Fig. 8.11 MoRF curves for some inputs are shown. It is evident that the
MLFs selected by the proposed hierarchical approach are more relevant
for the produced classification output. This result is confirmed by the
average MoRF and average AOPC curves (Fig. 8.12), obtained averag-
ing over the MoRF and AOPC curves of a sample of 100 and 50 random
images taken from STL10 and Aberdeen respectively. To make an easy
comparison between the proposed methods and summarising the quanti-
tative evaluations, last iteration AOPC values of the proposed methods
and LIME are reported in Tables 8.1 and 8.2 for STL 10 and Aberdeen
dataset respectively.

In Fig. 8.14, the same quantitative analysis using the VAE strategy is
shown. Examples of MoRF curves using the VAE are shown in Fig. 8.13.
As in the hierarchical approach, the latent features are sorted following
the descending order returned by the relevance algorithm, and then noised
in turn for each perturbation step.

Due to the difference between LIME and VAE MLFs (the former corre-
sponds to superpixels, the latter to latent variables), no comparison with
LIME was reported. In my knowledge, no other study reports explanations
in terms of latent variables, therefore is not easy to make a qualitative com-
parison with the existing methods. Differently from perturbing the MLF
of a superpixel-based approach where only an image part is substituted by
noise, in a variational latent space perturbing a latent variable can lead
changing in the whole input image. Therefore, classifiers fed with decoded
images generated by different MLF types could return no comparable re-
sults, which may not be informative to make comparisons between MoRF
curves.
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(a) STL10 (b) Aberdeen

Figure 8.11. A quantitative evaluation of the hierarchical GMLF approach
on different input images. To evaluate the hierarchical GMLF approach respect
to the LIME approach, a most relevant segment analysis is made using MoRF
curves. MoRF curves computed with the proposed approach (red) and LIME
(blue) using the last layer MLF as segmentation for both methods are shown.
At each iteration step, a perturbed input based on the returned explanation
is fed to the classifier. On the y axis of the plot, the classification probability
(in %) of the original class for each perturbed input. On the x axis, some
perturbation steps. For each input image, the figures in the first and the
second row show the perturbed inputs fed to the classifier at each perturbation
step for the proposed explainer system and the LIME explainer, respectively.
More relevant for the classification output the identified MLFs are, steepest
the MoRF curve is.
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(a) STL10 (b) Aberdeen

Figure 8.12. average MoRF (first row) and AOPC (second row) computed
on a sample of 100 and 50 random images sampled from STL10 (first column)
and Abardeen (second column) respectively. Both the curves of the proposed
hierarchical approach (red) and LIME (blue) are plotted using as baseline the
removal of the Middle Level Features from the input images in a random order
(green). More relevant for the classification output the identified MLFs are,
steepest the MoRF curve is and greater the AOPC value is.
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Aberdeen

Figure 8.13. A quantitative evaluation of the VAE GMLF approach on
different input images. MoRF curves computed with the proposed approach
(red) perturbing the VAE latent variables in the order given by the explainer
are shown. At each iteration step, a perturbed input based on the returned
explanation is fed to the classifier. On the y axis of the plot, the classification
probability (in %) of the original class for each perturbed input. On the x axis,
some perturbation steps. For each input image, the figures show the perturbed
inputs fed to the classifier at each perturbation step for the proposed explainer
system. More relevant for the classification output the identified MLFs are,
steepest the MoRF curve is.
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Table 8.1. average AOPC of the proposed methods and LIME obtained
averaging over the last AOPC perturbation step on a sample of 100 random
images taken from STL10 dataset. Flat and hierarchical proposal are compared
with LIME, resulting better in both cases. Since the LIME MLFs structure is
hardly different from VAE MLFs (the former corresponds to superpixels, the
latter to latent variables), the AOPC reported has not to be compared with
the other results.

AOPC

LIME 0.042
Flat (proposed) 0.598
Hierarchical (proposed) 0.732
VAE (proposed) 0.595

Table 8.2. average AOPC of the proposed methods and LIME obtained
averaging over the last AOPC perturbation step values on a sample of 50
random images taken from Aberdeen dataset.

AOPC

LIME 0.014
Flat (proposed) 0.571
Hierarchical (proposed) 0.661

8.5 Conclusion

A framework to generate explanations in terms of middle-level features
is proposed in this chapter. With the expression Middle Level Features
(MLF), (see Section 8, means input features that represent more salient
and understandable input properties for a user, such as parts of the input
(for example, nose, ears and paw, in case of images of humans) or more
abstract input properties (for example, shape, viewpoint, thickness and so
on).

This approach can be considered a general framework to obtain hu-
manly understandable explanations insofar as it can be applied to differ-
ent types of middle-level features as long as an encoder/decoder system is
provided (for example image segmentation or latent coding) and an expla-
nation method producing heatmaps can be applied on both the decoder
and the ML system whose decision is to be explained (see Section 8.2.1).
Consequently, the proposed approach enables one to obtain different types
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average MoRF curve average AOPC curve

Figure 8.14. average MoRF (first column) and AOPC (second column)
computed on a sample of 50 random images sampled from Aberdeen dataset.
The curve proposed with the VAE approach (red) is plotted using as baseline
the removal of the Middle Level Features from the input images in a random
order (green). More relevant for the classification output the identified MLFs
are, steepest the MoRF curve is and greater the AOPC value is.

of explanations in terms of different MLFs for the same pair input/deci-
sion of an ML system, that may allow developing XAI solutions able to
provide user-centred explanations according to several research directions
proposed in literature [204, 152].

The aim is to experimentally tested (see Section 8.3 and 8.4) this ap-
proach using three different types of MLFs: flat (non hierarchical) segmen-
tation, hierarchical segmentation and VAE latent coding. Two different
datasets were used: STL-10 dataset and the Aberdeen dataset from the
University of Stirling.

The results were evaluated from both a qualitative and a quantitative
point of view. The quantitative evaluation was obtained using MoRF
curves [206].



Chapter 9
XAI: methods in EEG-based
systems

Introduction

In this research thesis, the final aim is to experimentally investigate
the performances of several well-known eXplainable Artificial (XAI) meth-
ods proposed in the literature in the context of Brain-Computer Inter-
face (BCI) problems using EEG input-based Machine Learning (ML) al-
gorithms to evaluate the possibility of alleviating the Dataset Shift prob-
lem. This is not a trivial issue as, differently from other signals, the non-
stationarity of EEG signals makes them hard to analyse.

However, as stated also in chapter 3 one of the main defects of the EEG
signal is that its statistical characteristics change over time. This implies
that even under the same conditions and for the same task, significantly
different signals can be acquired just as time passes. It is important to
highlight that this phenomenon can also occur using the same stimuli-
reaction (e.g., same emotions with the same stimuli) to the same subject
at different times, leading to substantially different EEG signals even for
the same subject. This problem is even more present among different
subjects, who, given the same stimuli and emotions, can produce very
different acquisitions between them. For these reasons, EEG is considered
a non-stationary signal [122].

On another side, a sub-field of Artificial Intelligence, eXplainable Ar-
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Figure 9.1. A general functional scheme of a Machine Learning (ML) archi-
tecture based on XAI methods to select and transform relevant input features
with the aim of improving the performance of ML systems in the context of
the dataset-shift problem.
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tificial Intelligence (XAI), wants to explain the behaviour of AI systems,
such as ML ones.

The general idea of this thesis is that outputs’ explanations of a trained
ML model on given inputs can help the setup of new models able to over-
come/mitigate the dataset shift problem, in general, and to generalise
across subjects/sessions in case of EEG signals, in particular.

More specifically, in this thesis, the goal is to focus on how several well-
known XAI methods proposed in literature behave in explaining decisions
made by an ML system based on EEG input features (Fig. 9.1). Notice
that several current XAI methods are usually tested on datasets, such as
image and text recognition datasets [202, 26], where the domain shift prob-
lem is slight or not present. Therefore, this thesis is a first step toward a
long term goal consisting in exploiting explanations made by XAI methods
to locate and transform the main characteristics of the input for each given
output, and to build ML systems able to generalise toward different data
coming from different probability distributions (in this context, sessions
and subjects). To this end, in this thesis, the aim is to evaluate and anal-
yse the explanations produced by a set of well-known XAI methods on an
ML system trained on data taken from SEED [262], a public EEG dataset
for an emotion classification task. The results obtained show, on oneside,
that only some well-known XAI methods produce reliable explanations in
the EEG domain in the analysed task. On another side, it is shown that
the relevant components found in the training data can only be partially
used on data acquired outside of the training stage. Notably, many rel-
evant components found in the training data are still relevant across the
sessions.

The chapter is organised as follows: In Section 9.1, a brief description
of the related works is reported. In Section 9.2 the proposed evaluation
framework is presented. In Section 9.3 the obtained results are discussed.
Finally, in Section 9.4 is devoted to final remarks and future developments.

9.1 Related works

In general, Modern ML approaches, as Deep learning, are characterised
by a lack of transparency of their internal mechanisms, making it not easy
for the AI scientist to understand the real reasons behind the inner be-
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haviours. In this case, the relationships of the classified emotion with the
EEG input are often challenging to understand. In the EEG-based appli-
cations, works based on simple features selection strategies to choose the
best EEG features are widely proposed in the literature, such as [243, 263].
These studies, however, are based on standard feature selection methods,
without exploiting information given by XAI methods. XAI is a branch of
AI concerned to “explain” ML behaviours. This is made providing methods
for generating possible explanations of the model’s outputs. XAI methods
are gaining prominence in explaining several classification systems based
on several inputs, such as images [202, 20], natural language processing
[193], clinical decision support systems [211], and so on. To the best of
my knowledge, however, the number of research works which attempt to
improve the performance of ML models on the basis of XAI’s methods is
enough limited, especially in the context of bio-signal classification prob-
lems. For example, in [141, 214] feature selection procedures are carried
out on biomedical data leveraging on Correlation-based Feature Selection
and Chaotic Spider Monkey Optimization methods. In [117] the authors
propose to use an occlusion sensitivity analysis strategy [250] to locate
the most relevant cortical areas in a motor imagery task. In [198] the use
of XAI methods to interpret the answer of Epilepsy Detection systems is
discussed.

9.2 Methods

Taking in mind that the aim is to use the XAI method to alleviate the
dataset shift problem in the BCI context, the target is to conduct a series
of experiments having the following goals: 1) testing the capability of the
selected XAI methods to find relevant components for this specific signal;
2) verifying how much relevant components are dependent on the single
sample of the dataset where the relevance are computed; 3) how much
relevant components can be considered shared among samples of the same
session, and finally 4) how much relevant components can be considered
shared between samples of two different sessions, where the data shift
problem is typically present.

In the remaining of this section is reported the investigated XAI meth-
ods, the used data and model descriptions. Finally experimental assess-
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ment and the evaluation strategy adopted are reported.

9.2.1 Investigated XAI Methods

In this thesis, the goal is to analyse XAI methods proposing explana-
tions in terms of relevance of the input components on the output returned
by a given classifier. More in detail, the following XAI methods are investi-
gated: Saliency [218], Guided Backpropagation [225], Layer-wise Relevance
Propagation (LRP) [41], Integrated Gradients [226], and DeepLIFT [216].
A description of these XAI methods can be found in section 7.2.

9.2.2 Dataset

The SEED dataset consists of EEG signals recorded from 15 subjects
stimulated by 15 film clips carefully chosen to induce negative, neutral
and positive emotions. Each film clip has a duration of approximately 4
minutes. Three sessions of 15 trials were collected for each subject. EEG
signals were recorded in 62 channels using the ESI Neuroscan System1.
During the experiments, the aim is to consider the pre-computed differen-
tial entropy (DE) features smoothed by linear dynamic systems (LDS) for
each second, in each channel, over the following five bands: delta (1–3 Hz);
theta (4–7 Hz); alpha (8–13 Hz); beta (14–30 Hz); gamma (31–50 Hz).

In this thesis, the relevant components of an EEG signal can be consid-
ered taking into account three different aspects of the signal: i) considering
each single feature composing the input, ii) considering each single band
composing the EEG signal, that are alpha, beta, theta, and delta, and iii)
considering each single channel/electrode from which the input EEG signal
was acquired. Cases ii) and iii) can be viewed as different aggregations of
fixed features of the EEG signals. In the following of this thesis, the term
"components" is referred to generically where it is not necessary to specify
whether one is talking about features, bands or channels.

9.2.3 Experimental assessment

To achieve the goals defined at the beginning of this section, the follow-
ing experiments are made: firstly, to evaluate the capability of the selected

1https://compumedicsneuroscan.com
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Figure 9.2. MoRF (first column), AOPC (second column), LeRF (third
column), and ABPC (fourth column) curves using the tested XAI methods
are reported for both intra-session (solid line) and inter-session (dotted lines)
considering features as signal components. Results scoring the input compo-
nents using effective relevance (blue lines) and averaged relevance computed
on training data (orange lines) are reported for each case and compared with a
random component scoring (green lines). On the x axis and y axis are reported
the iteration step in the curve generation and the accuracy level reached, re-
spectively.
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Figure 9.3. MoRF (first column), AOPC (second column), LeRF (third
column), and ABPC (fourth column) curves using the tested XAI methods
are reported for both intra-session (solid line) and inter-session (dotted lines)
considering delta, theta, alpha, beta, gamma EEG bands as signal components.
Results scoring the input components using effective relevance (blue lines) and
averaged relevance computed on training data (orange lines) are reported for
each case and compared with a random component scoring (green lines). On
the x axis and y axis are reported the iteration step in the curve generation
and the accuracy level reached, respectively.
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Figure 9.4. MoRF (first column), AOPC (second column), LeRF (third col-
umn), and ABPC (fourth column) curves using the tested XAI methods are
reported for both intra-session (solid line) and inter-session (dotted lines) con-
sidering the acquisition electrodes as signal components. Results scoring the
input components using effective relevance (blue lines) and averaged relevance
computed on training data (orange lines) are reported for each case and com-
pared with a random component scoring (green lines). On the x axis and y
axis are reported the iteration step in the curve generation and the accuracy
level reached, respectively.
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Figure 9.5. A first analysis of the discriminative power of the components
alone. Signals composed of only one component following the relevance order
given by the Explainer are fed to the ML system in an iterative manner. Re-
sults are reported for both intra-session (solid line) and inter-session (dotted
lines) considering features (first column), bands (second column), and elec-
trodes (third column) as signal components. Results scoring the input compo-
nents using effective relevance (blue lines) and averaged relevance computed
on training data (orange lines) are reported for each case and compared with
a random component scoring (green lines).
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XAI methods to find relevant components, explanations of model responses
on data from the same session as the training data were analysed; then,
in order to assess how relevant components could be considered shared
between samples from the same session, explanations of model responses
on data from a session other than the training session were analysed. Fi-
nally, to evaluate if relevant components can be considered shared between
samples of two different sessions and how much relevant components are
dependent on the single data sample where the relevance are computed,
the components’ average relevance of data coming from the training session
are used as sorting score and select the components belonging to another
session.

Summarising, the following cases are considered: i) intra-session case:
given a model C trained on data coming from a session str, explanations
of the responses on input data belonging to the same session str are built.
ii) inter-session case: given a model C trained on data coming from a
session str, explanation of responses on inputs belonging to a sessions ste
different from str are built. Each of these cases can be in turn evaluated
considering two different relevance: a) real relevance: it is assumed that it
is possible to compute the relevance of the input, since the classification
output is known; b) presumed relevance: it is assumed that the relevance
of the input is not available, because it is outside the training phase. In
this case, the average of the relevance of the same components obtained
on the training data is used as the component relevance.

9.2.4 Evaluation

For each case, the goal is to investigate the explanations returned by
the XAI method in order to analyse if the explanations built can correctly
identify the impact that they have on classification performance. Consid-
ering in terms of MLF (chapter 8): i) each input characteristic, MLFs are
not used ii) each electrode as MLF and iii) each frequency band as MLF.
To this aim, the relevance for each feature is considered the relevance score
returned by the XAI method, for each electrode the mean relevance score of
all the feature belonging to the electrode, and for each frequency bands the
mean average score of all the features belonging to the frequency band. the
relevance score returned by the XAI method is considered for each charac-
teristic, for each electrode the average relevance score of all characteristics
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belonging to the electrode and for each frequency band the average score
of all characteristics belonging to the frequency band. Therefore, the fol-
lowing evaluation strategies are then adopted and repeated considering
features, electrodes, and frequency bands as EEG components in turn: a)
analysis of the MoRF (Most Relevant First) curve, proposed in [41, 206].
In case of evaluating the components relevance returned by the explanation
method, the MoRF curve can be computed as follows: given a classifier,
an input EEG signal x and the respective classification output C(x), the
EEG components are iteratively replaced by zeros, following the descend-
ing order with respect to the relevance values returned by the explanation
method. In other words, performances were analysed by removing (i.e. set-
ting to zero) components in a decreasing order of impact on the predictions
supplied by the explanation. In this way, the expected curve is such that
more relevant the identified components are for the classification output,
steepest is the curve. Furthermore, the change in the AOPC (Area Over
Perturbation Curve) value is reported for each MoRF iteration. AOPC is
computed as

AOPC =
1

K + 1
⟨

K∑
k=0

C(x(0))− C(x(k)))⟩

where K is the total number of iterations, x(0) is the original input, x(k)

is the input at the iteration k, and ⟨·⟩ is the average operator over a set
of inputs. MoRFs and AOPCs are reported also considering channels and
bands as characteristics to analyse.

b) the analysis of the LeRF (Least Relevant First) curve, proposed in
[206]. Differently from the MoRF curve, in this case the EEG compo-
nents are iteratively removed following the ascending order with respect to
the relevance values returned by the explanation method. In the resulting
curve, the classification output is expected should be very close to the orig-
inal value when the less relevant components are removed (corresponding
to the first iterations), dropping quickly to zero as the process goes toward
the remotion of relevant elements. While the MoRFs report how much the
classifier output is destroyed removing highly relevant components, LeRFs
report how much the least relevant components leave the output intact.
These indications can be combined in the ABPC (Area Between Pertur-
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bation Curves, [206]) quantity, defined as:

ABPC =
1

K + 1
⟨

K∑
k=0

C(x
(k)
MoRF )− C(x

(k)
LeRF ))⟩

where x(k)
MoRF , x(k)

LeRF are the values of the MoRF and LeRF values obtained
at the k-th iteration step. ABPC is an indicator of how good the XAI
method is. The larger the ABPC value, the better the XAI method. LeRFs
and ABPCs are reported also for channels and bands analysis.

c) an analysis of the discriminative power of each component alone is
made. Signals composed of only one component following the relevance
order given by the XAI method are fed to the ML system in an iterative
manner, and the relative performance curves are plotted.

All the experiments were carried out only on correctly classified sam-
ples.

9.2.5 Classification model

The XAI methods are evaluated on a feed-forward fully connected multi
layered neural networks. Hyperparameters were tuned through bayesian
optimisation [222]: the number of layers was constrained to a maximum of
3; for each layer, the number of nodes was searched in the space {2n|n ∈
{4, 5, ..., 10}} having the ReLU as activation function. Each experiment
was run having early stopping as convergence criterion with 20 epochs
of patience. The 10 % of the training set was extracted using stratified
sampling [179] on class labels and considered as validation set. Network
optimisation was performed using Adam optimiser [129], whose learning
rate that was searched in the space {0.1, 0.01, ..., 0.0001}.

As a result from the model selection stage, the best setting consisted
in ANN having 3 layers with 128, 256 and 128 neurons respectively. The
learning rate was set to 0.01, and reduced to its 10 % whenever the loss
on validation set plateaus for 10 consecutive epochs.
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9.3 Results & discussions

Since the behaviour of the explored XAI methods resulted in being
similar across all the subjects, only the results obtained on just one subject
are reported. In Fig. 9.2, 9.3, and 9.4 MoRF and LeRF curves using the
tested XAI methods are reported for both intra-session and inter-session
cases, considering as components to remove at each step features (Fig.
9.2), bands (Fig. 9.3), and channels (Fig. 9.4), respectively. Results
related to the intra-session cases are reported with solid lines, while those
regarding the inter-session case are marked with dotted lines. On the x
axis and y axis are reported the iteration step in the curve generation and
the accuracy level reached, respectively. With blue lines, results scoring
the input components using effective relevance are reported; with orange
lines, results scoring the components using averaged relevance computed
on training data are reported; with green lines, results related to random
choice.

All the curves were compared with the random curve obtained by re-
moving the components in random order. Several interesting points can
be highlighted:

1) In all the cases, LRP, IG and Deep LIFT resulted in being more
reliable XAI methods with respect to Saliency and Guided BP. Indeed,
MoRF curves of LRP, IG and Deep LIFT have high slopes, however similar
to each other, differently from Saliency and Guided BP. In particular, the
latter is the only method among those tested whose explanations do not
always seem to capture the relevant components, especially in the case of
intra-session. These considerations seem consistent with what is reported
in LeRF, AOPC, and ABPC.

2) counterintuitively, in almost all the cases, explanations built in inter-
session cases seem to be more reliable with respect to intra-session cases.
This behaviour can be explained by a more significant "robustness" of the
trained classifier toward data from the same training session. Instead, data
coming from different sessions leads the classifier toward more borderline
class scores, and minimum perturbation of the input data can lead to
different classes, influencing the final performance.

3) Although the best XAI methods can locate relevant features/chan-
nels/bands for each input data sample, they don’t seem able to locate a
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set of relevant components for all the samples. In other words, the exam-
ined XAI methods fail to "generalise" to a set of general features/channel-
s/bands relevant to the most significant part of the possible inputs. Indeed,
removing the components following the average relevance (obtained in the
training stage) in reverse order (MoRF orange curves) does not lead to a
steep drop in performance, as in the other case (MORF blue curves). Even
in some cases, such as using bands as a component to assign the relevance
(Fig. 9.3), the obtained curves overlap with the random ones, highlighting
that removing bands in random order is almost the same that following
the relevance assigned by the XAI method. This is confirmed by the other
evaluation metrics adopted, i.e. MeRF, AOPC and ABPC curves.

In Fig. 9.5 a first analysis of the discriminative power of the compo-
nents alone is made. Signals composed of only one component following
the relevance order given by the XAI method are iteratively fed to the ML
system. The analysis is limited to only the best XAI methods identified in
the previous phase: DeepLIFT, IG and LRP. From the obtained results, it
is interesting to notice that the components considered most relevant for
each sample fed to the classifier are enough to reach high performances.
However, considering the average relevance detected during the training
stage, the best components do not seem to lead toward similar perfor-
mance, although they are still better than a random choice.

9.4 Conclusion

In this chapter, the performances of several XAI methods proposed in
the literature in the context of Brain-Computer Interface (BCI) problems
using EEG input-based Machine Learning (ML) algorithms are experi-
mentally evaluated. The focus was on how much the relevant components
selected by XAI methods be shared between different samples of the same
dataset (in this case, same session) or samples of different datasets (in this
case, different sessions). The final results show that the components con-
sidered most relevant for each sample fed to the classifier are enough to
achieve high performances. However, the components detected considering
the best average relevance during the training stage do not seem to lead
toward performance returned by components scored according to their ef-
fective relevance returned by the XAI method.



Chapter 10
Conclusions

This thesis proposed several Machine Learning and eXplainable Arti-
ficial Intelligence methods to improve classification in EEG-based Brain-
Computer Interface systems in terms of accuracy.
In the initial chapters, an overview was given on ML, chapter 2, highlight-
ing that the dataset shift problem can lead to a decrease in performance;
in chapter 3 the main properties of EEG signals were described.
In the part of the thesis dedicated to BCI, an introduction on the BCIs
was made in chapter 4. Subsequently, two different BCI system problems
were analysed.

In chapter 5, in a passive BCI, the experimental results showed how
cognitive and emotional engagement enables the monitoring of stress levels
and can help the automated rehabilitation platform with useful informa-
tion to better adapt to the user’s needs. In the described case, oversampling
methods (such as KMeansSMOTE), standard ML algorithms (k-NN, SVM
and ANN) and the combined use of feature extraction methods (CSP) en-
abled good performance on highly unbalanced datasets by class.

In chapter 6, regarding an example of an active BCI paradigm, four
different ML-based algorithms were implemented to improve SSVEP clas-
sification, in terms of classification accuracy and temporal response. The
first two ones, used on Augmented Reality-based datasets both in extracted
feature format considering standard ML models and in raw format apply-
ing Deep Neural Networks, showed a significant performance improvement
over the established CCA-based algorithm. The other two ones proposed
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algorithms, custom ANN and EEGNet with Domain Adaptation methods,
were tested on the Benchmark dataset. In particular, the combined use
of DNNs and DA methods showed an improvement in performance even
when using signal segmentations of a few seconds, an important compo-
nent for an online approach. These results show a significant improvement
over traditional state-of-the-art algorithms.

The second part of this thesis was devoted to XAI. In chapter 7, the
main XAI methods in the literature were analysed.

In chapter 8 a framework to generate explanations in terms of Middle-
Level Features for an image classification task is proposed. The use of
middle-level features is motivated by the need to decrease the human in-
terpretative burden in artificial intelligence explanation systems. The aim
was to test this approach experimentally using three different types of
MLF: flat (non-hierarchical) segmentation, hierarchical segmentation and
latent VAE coding. The results are encouraging, both under the quali-
tative point of view, giving easily human interpretable explanations, and
the quantitative point of view, giving comparable performances to the well
known XAI method LIME. Furthermore, it is proved that a hierarchical
approach can provide, in several cases, clear explanations about the reason
behind classification behaviours.

In chapter 9, the performances of several XAI methods proposed in
the literature in the context of BCI problems using EEG input-based ML
algorithms are experimentally evaluated. Results show that many relevant
components found by XAI methods are shared across the sessions and can
be used to build a system able to generalise better. However, relevant
components of the input signal also appear to be highly dependent on the
input itself.

This thesis is the first step toward developing a BCI system able to
exploit XAI methods to alleviate the dataset shift problem. However, in
this thesis, only data belonging to different sessions but acquired from the
same subjects are taken into account. In future work, the aim is to analyse
the behaviour of XAI methods with inter-subject classifiers.

Several benefits can be obtained in the EEG-based BCI applications by
the proposed solution. For example, a BCI system can work across different
subjects without retraining the model on each new unseen subject, leading
toward a subject-independent model. Furthermore, a better understanding



143

of the relationships between the system inputs and outputs provided by
XAI explanations can lead to the developing and producing more effective
EEG acquisition devices.
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