
PHD DISSERTATION

“FEDERICO II” UNIVERSITY OF NAPOLI

DEPARTMENT OF INFORMATION TECHNOLOGY
AND ELECTRICAL ENGINEERING

DOCTOR OF PHYLOSOPHY IN
INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

AUTOMATED OFFENSIVE SECURITY:
INTELLIGENCE IS ALL YOU NEED

FRANCESCO CATURANO

PhD coordinator Supervisor

Prof. Daniele RICCIO Prof. Simon Pietro ROMANO

Cycle XXXIV

iv

Acknowledgments

First and foremost, I would like to thank my PhD supervisor, Prof. Simon
Pietro Romano. When I was a student I used to visualize myself as one of his
collaborators and having the chance to become one was a wonderful experi-
ence, both workwise as well as personally.

Then, I would like to thank my partner in crime, fellow PhD student Gae-
tano Perrone, who teached me a lot and shared the doctorate path all along.
I am sure that your talent and passion will bring you success and happiness.
I would also like to thank all the people met within the research field during
the last three years, starting from the guys at ARCLAB. Each one of them has
represented a unique experience, allowing me to grow professionally and as a
human being.

My thanks also go to all other ITEE PhD students. Only them can truly
understand what it means to go through tough times and how to overcome
them.

My sincerest gratitude goes to professors, researchers, and postdocs at De-
partment of Information Technology and Electrical Engineering. They have
teached me so much and prepared me for the many more challenges to come
in the nearest future.

Thanks especially to ITEE PhD coordinator Daniele Riccio, who advised
PhD students throughout the doctorate.

Thanks to all the students that I got to meet, help and teach during the past
years. I enjoyed my time with you as if I still was one of you.

My biggest thanks to the guys at SecSI. We part ways at the end of this
PhD, with the promise of keeping in touch and still work together in the years
to come. I am sure that your passion and dedication will lead to great things
for cybersecurity in Naples.

Finally, huge thanks to my family and my friends. The best part of achiev-
ing something is that you get to share the results with the ones you love.

v

vi Acknowledgments

As usual, thanks to music and movies: the first one for keeping me
grounded, the second ones for making me dream.

Contents

Acknowledgments iv

List of Figures x

Abstract xiv

1 Introduction 1
1.1 Offensive Security . 1
1.2 Ethical disclaimer . 2
1.3 Penetration Testing . 3
1.4 Web Application Penetration Testing 4

1.4.1 Web Application Hacker’s Methodology 5
1.4.2 OWASP Testing Guide 6

1.5 Reinforcement Learning . 7
1.6 Contributions . 9

2 Related Work 11
2.1 Reinforcement learning environments 11
2.2 XSS vulnerabilities discovery 13
2.3 Penetration testing automation 14
2.4 Network Security Ontologies and knowledge graphs 20
2.5 Penetration testing datasets 27

3 Improvement of existing benchmarks 29
3.1 WAVSEP: Web Application Vulnerability Scanner Evaluation

Project . 30
3.2 WAVSEP 2.0 . 30

vii

viii CONTENTS

4 A semi-automated platform for penetration testing based on rein-
forcement learning 33
4.1 Reflected XSS discovery . 34

4.1.1 Reflection Context 35
4.1.2 Context Escape . 37
4.1.3 Attack string well-formedness 39
4.1.4 Filtering Policies . 40

4.2 Environment setup . 41
4.2.1 Background . 41
4.2.2 State space . 42
4.2.3 Action Space . 43
4.2.4 WAVSEP . 43
4.2.5 Training . 44
4.2.6 Simulated Gym environment 47

4.3 Agent orchestration through human interactions 47
4.3.1 Architecture . 48
4.3.2 Bringing it all together 50

4.4 Limitations and future research 52

5 Towards a fully automated intelligent agent: the Observer module 53
5.1 General Architecture . 53
5.2 Observer Interface . 55
5.3 Observer Domain Model . 57
5.4 Observer Execution Flow . 60
5.5 Design Decisions . 62
5.6 Implementation . 63
5.7 Class diagram . 63
5.8 ReflectionContext_observer class 66
5.9 Selenium Checker . 73
5.10 Deploy . 76

6 Fully automated reinforcement learning agent 81
6.1 Project design . 82

6.1.1 Agent . 83
6.2 Implementation . 88

6.2.1 Environment . 88
6.2.2 Agent . 90

6.3 Observation simulation . 95
6.4 Configuration . 97

CONTENTS ix

6.4.1 Hierarchical training optimization 98
6.4.2 Objective selection: module Observer 99

6.5 Test Driven Development . 102

7 Performance evaluation 105
7.1 State space explosion . 105
7.2 Automated scanners accuracy comparison 108

7.2.1 Number of requests 112
7.3 Algorithm comparison . 114

7.3.1 Comparison between hierarchical and unified training 121

8 Other approaches to security testing automation 125
8.1 A penetration testing expert system based on knowledge graphs 126

8.1.1 Design . 126
8.1.2 Entity Relationship diagram 126
8.1.3 Relation diagram . 132
8.1.4 Hacking Goal . 135
8.1.5 Rule diagrams . 135
8.1.6 Attack acquires knowledge 135

8.2 A toolset to build penetration testing datasets 135
8.2.1 Class Diagram . 140
8.2.2 Main functionality 140

9 Honorable mentions 143
9.1 Capturing flags in a dynamically deployed microservices-

based heterogeneous environment 143
9.1.1 Design . 144
9.1.2 OS Virtualization and Vulnerabilities 144
9.1.3 Hierarchical architecture overview 145
9.1.4 Networking configuration 146

9.2 A distributed security tomography framework to assess the ex-
posure of ICT infrastructures to network threats 147

Conclusion 153

x CONTENTS

List of Figures

1.1 Web Application Hacker’s Handbook PT Methodology 5
1.2 OTG v4.0 Testing Categories 7

4.1 State structure . 42
4.2 Intelligent Suggester architecture 48
4.3 Agent orchestration policy state machine diagram 50
4.4 Discovery of reflected XSS with reflection inside an HTML tag. 51

5.1 User input reflection . 54
5.2 JSON payload string . 55
5.3 Observer class . 56
5.4 Observer interface . 56
5.5 Observer Domain Model . 58
5.6 observe design sequence . 61
5.7 check_code_execution design sequence 62
5.8 Observer Implementation Model 64
5.9 Reflection contexts in detail 65
5.10 check_simpleHTML sequence diagram 68
5.11 check_HTMLTag sequence diagram 69
5.12 check_scriptTag sequence diagram 69
5.13 check_CSS sequence diagram 70
5.14 check_HTMLComment sequence diagram 70
5.15 check_attributeName sequence diagram 71
5.16 check_attributeValue sequence diagram 72
5.17 check_javascript sequence diagram 73
5.18 ultimate_check sequence diagram 75
5.19 micro-services architecture 76
5.20 Docker Compose output . 79

xi

xii LIST OF FIGURES

6.1 Environment - Design Class diagram 84
6.2 Agent - Design Class Diagram 87
6.3 Environment - ClassDiagram di implementazione 89
6.4 Application’s help message - supported parameters 92
6.5 Agent - Implementation class diagram 94
6.6 Objective selection - Sequence Diagram 100
6.7 Payload execution check - Sequence Diagram 101
6.8 Report Unit Testing . 103

7.1 Increase in training episodes and state space as the number of
objectives grows . 106

7.2 Cross-Site Scripting scanners precision and recall comparison 110
7.3 Cross-Site Scripting scanners score comparison 112
7.4 Automated scanners amount of requests comparison 113
7.5 QLearning (QL) Vs SARSA Vs SARSA(λ) Vs DeepQLearn-

ing (DQN) - Errori fase 1 (well-formedness) 116
7.6 QLearning (QL) Vs SARSA Vs SARSA(λ) Vs DeepQLearn-

ing (DQN) - Reward fase 1 (well-formedness) 117
7.7 QLearning (QL) Vs SARSA Vs SARSA(λ) Vs DeepQLearn-

ing (DQN) - Errori fase 2 (right order) 118
7.8 QLearning (QL) Vs SARSA Vs SARSA(λ) Vs DeepQLearn-

ing (DQN) - Reward fase 2 (right order) 119
7.9 Unified vs. hierarchical training - Rewards 122
7.10 Unified vs. hierarchical training - Errors 123

8.1 E-R Diagram . 127
8.2 Knowledge relationship with resource example 129
8.3 Composition of a Task . 130
8.4 Relation Diagram . 132
8.5 Rule for the relation Acquired-Fact among H-Attack and Re-

source . 136
8.6 Session recording protocol 137
8.7 Domain model class diagram 141
8.8 Recorder class diagram . 142

9.1 Virtual Scenario Architecture 146
9.2 Model definition: Entities and Attributes 149
9.3 Model definition: Measures and Metrics 149
9.4 Metrics definition: Threat Level 151

LIST OF FIGURES xiii

9.5 Metrics definition: Severity Average 152

xiv LIST OF FIGURES

Abstract

Offensive security is the practice of testing security measures from the adver-
sary’s perspective. Though it is constantly growing from a set of disorganized
hacking practices to a mature and separate engineering discipline, most of it
still relies on personal experience and skills. Tools that automate security test-
ing, perform well when they have to provide hints on what is the most promis-
ing attack plan to conduct. However, they heavily rely on inefficient business
logic models, such as brute force. These are far away from the way human
testers would work, who try to be as precise and efficient as possible. This
Thesis deals with offensive security, by exploring a few approaches to its au-
tomation that are inspired by the way security experts would act.
First, a Reinforcement Learning-based intelligent agent that performs discov-
ery of Cross-Site scripting vulnerabilities, is presented. In particular, the de-
sign and implementation of an interactive Reinforcement Learning environ-
ment are discussed. Such a framework allows the agent to learn autonomously,
through interactions with the environment, the policy that an expert penetration
tester applies to look for such vulnerabilities in a web application. The final
platform is evaluated with respect to other popular automated frameworks, in
order to show the improvements in terms of accuracy and efficiency.
Then, an approach to create an ontology for web application penetration test-
ing, representing the knowledge of such a context in the form of a knowledge
graph, is showed. The purpose of this work is to create an expert system that
recommends the best actions to perform during a penetration test, by making
inferences that output the most promising attack paths.
Finally, a toolset for collecting actions performed during a web application
penetration test, such as browser interactions as well as generated network
traffic, is presented. Such a platform is capable of creating hacking sessions
datasets, in order to promote research in the field of machine learning applied
to cybersecurity.

xv

Chapter 1

Introduction

1.1 Offensive Security

Over the years, the practice of exploitation has improved the understanding of
what it means for computers to be secure. It has grown from a set of disor-
ganized hacker conventions into a distinct engineering discipline that supports
an entire industry. Nowadays, it is an area that seeks for its own definition, in
order to be understood beyond its own confines, by makers of law and policy.
For instance, when the Computer Fraud and Abuse Act (CFAA, year 1986)
was written, each computer had its relatively small and well-defined set of
authorized users. The concept of “unauthorized” access had no point of exis-
tence, since no servers were meant for random members of the public. Then
the World Wide Web happened, and connecting to computers without any kind
of prior authorization became not just the norm but also the foundation of all
related business. Therefore, research in the field of Offensive Security is en-
couraged in order to find not only its definition, but also its place within the
industry, law regulation as well as schools and universities. This will avoid
policy-makers designing their own language, which would be disastrous to the
future state of computer security.
Exploitation is another kind of programming and computer security depends
on the understanding that we have of such a technique. This means that all
models of unintended execution need to be understood if one wishes to elimi-
nate them.
However, exploitation is only the core of an extended set of practices that ex-
pert hackers employ to perform attacks to high profile organizations. There-
fore, Offensive Security can be intended as the set of practices for testing com-

1

2 CHAPTER 1. INTRODUCTION

puter security measures from an adversary’s perspective. Many of these prac-
tices are discussed in the subsequent sections.

1.2 Ethical disclaimer

The New Hacker’s Dictionary [1] defines a hacker in one of the following
ways:

HACKER noun 1. A person who enjoys learning the details of
computer systems and how to stretch their capabilities—as op-
posed to most users of computers, who prefer to learn only the
minimum amount necessary. 2. One who programs enthusiasti-
cally or who enjoys programming rather than just theorizing about
programming.

Such definition was popular in the computer science community when intru-
sions did not represent actual threats, but were rather fairly benign. Over time,
though, such intrusions became progressively noticeable to the point of being
responsible for damages to the well being of entire organizations. Instead of
using the more accurate term of “computer criminal,” the media began using
the term “hacker” to describe individuals who break into computers for fun,
revenge, or profit. Since calling someone a “hacker” was originally meant as a
compliment, computer professionals prefer to use the term "ethical hacker" to
distinguish security enthusiasts from those hackers who turn to the dark side
of hacking. Organizations in search for a solution to ever increasing intru-
sions, realized that one of the best ways to evaluate their security measures
in response to intruder threats would be to have independent computer se-
curity professionals attempt to break into their computer systems, the same
way a company would hire independent auditors to verify its records. “Ethi-
cal hackers” reproduce the behavior of criminal hackers using their tools and
techniques, but being careful in neither damaging the systems under test nor
steal information. Instead, they would evaluate the target systems’ security
and report back to the owners with the vulnerabilities they found as well as
remediation instructions [2]. The author of the work discussed in this Thesis is
fully aware of the sensitivity of the covered topics and strongly adheres to the
principles of ethical hacking, believing in the improvements it can bring to the
security of our computers.

1.3. PENETRATION TESTING 3

1.3 Penetration Testing

The very first occurrence in the literature of the term Penetration referred to
software testing is in a paper by R.R. Linde [3] (year 1975), who says “pen-
etration tests are used to examine an implementation and from these analyses
infer areas of possible design weakness”. Nowadays, it is considered as the
set of computer security practices to uncover vulnerabilities, emulating real
attacks. It is also a process that consciously avoids the risks the exploitation
of the found vulnerabilities. Penetration testing is most powerful when fully
integrated into the development life cycle, so that findings can help improve de-
sign, implementation, and deployment practices [4]. There are several possible
approaches to perform penetration test, depending on the amount of informa-
tion provided to the security professionals, the defense mechanisms employed
as well as the position, relative to the target infrastructure, occupied by the
ethical hackers.

• White box: The attacker has detailed prior knowledge of the target. All
known hacking techniques are adopted and it is important to know how
to classify vulnerabilities according to their level of risk.

• Black box: The attacker has no prior knowledge of the target system.

• Overt: Employees are aware of ongoing tests. Therefore, some tech-
niques for gaining access to the system such as social engineering, which
tend to compromise users, instead of machines, are not performed.

• Covert: Employees are not aware of ongoing tests. The target system .

• External: The attacker is outside the target’s network and attempts to
access via the Internet.

• Internal: The attacker is inside the target’s network, therefore from a
position of advantage to test the target infrastructure.

Several are the phases that compose a penetration test. It is hard to find a
standardized methodology, since it is a process that still relies a lot on personal
experience and skills. However, many authors seem to agree on the following
lifecycle [5]:

• Planning phase: the objective of the assignment is defined. Agreements
like NDA (Non Disclosure Agreements) are signed by the parties in or-
der to avoid the leak of sensitive information. After the management

4 CHAPTER 1. INTRODUCTION

consent, the penetration testing team receives information according to
the type of activity that needs to be put into place. Such information can
include operational procedures, security policies as well as infrastruc-
tural details, in order to define the scope for the test.

• Discovery phase: also known as the information gathering phase. Such
phase is characterized by the penetration testing team scanning and enu-
merating the target system in order to capture as much information as
possible about the health status of the network, as well as the exposed
services. It can be carried out in both a stealthy way, looking only at
public information (e.g., public repositories, documents, mailing lists,
web profiles etc.) as well as a bit more intrusive (e.g., by performing
port scanning, discovering firewall rules, matching OS fingerprints, etc.)
The information captured during this phase constitutes a knowledge base
from which the team can derive an attack plan.

• Exploitation phase: It is a crucial phase that allows penetration testers
to accurately verify whether the suspected issues discovered in previous
phases are actually vulnerabilities that represent a danger for the organi-
zation. This is done by providing a proof-of-concept of the exploitation
process. Such proof has to be effective enough in order to convey the
damage that might be done after an actual exploitation. However, it
should not compromise the target system in the same way a real attack
would do.

• Reporting phase: The report writing usually begins in parallel with the
previous phases, although it is completed after the exploitation phase is
over. A successful report details all the findings and their impacts to
the organization. It takes into account both the technical and manage-
ment aspects, in order to let the target organization quickly prioritize the
remedy interventions. The report should be edited in a way that allows
people with poor security background to understand and even reproduce
the presented issues.

1.4 Web Application Penetration Testing

Nowadays, web applications are among the main targets of attacks and so this
has justified the creation of a dedicated branch of Penetration Testing, typically
referred to as Web Application Penetration Testing (WAPT). There are several

1.4. WEB APPLICATION PENETRATION TESTING 5

well established and famous methodologies that may drive a web application
penetration tester during his analysis. Regardless of the particular methodol-
ogy, the following are a set of security industry guidelines on how the testing
should be conducted.

1.4.1 Web Application Hacker’s Methodology

According to the famous Web Application Hacker’s Handbook [6], the process
is divided into a sequence of tasks organized according to the dependencies
among them.

Figure 1.1: Web Application Hacker’s Handbook PT Methodology

6 CHAPTER 1. INTRODUCTION

In figure 1.1 the first block includes two of the most critical phases because
they affect the subsequent ones: it defines a series of rules to map the applica-
tion structure such as setting a proxy that intercepts HTTP requests discovered
through the page browsing, heuristic probes for discovering hidden contents,
google dorks to find out public resources. It is also suggested to use automatic
web spidering tools such as DirBuster to increase the coverage factor of the
site map process. Once the application tree structure is discovered, the next
step is to: (i) analyze the pages to classify functionalities such as authentica-
tion and session management; (ii) identify the entry points that may represent
possible injection flaws (i.e., HTTP parameters that interact with the server);
(iii) discover underlying technologies (JavaScript, PHP, ActiveX, Python). Ac-
cording to the clues retrieved during these two phases, one or more blocks in
the second layer can be explored. This is the layer in which any vulnerabilities
emerge. This process must not be considered “waterfall”: each phase may dis-
cover important footprints that involve returning to the previous phases to be
successfully investigated.

1.4.2 OWASP Testing Guide

The OWASP testing guide is a de-facto standard, published by OWASP, used
to evaluate the security of a web application by methodically validating and
verifying the effectiveness of application security controls through the use of
tests. A web application security test is an action to demonstrate that an ap-
plication meets the security requirements. This process is split into 11 testing
subcategories and each one includes a set of specific tests identified by a unique
name (Figure 1.2). As mentioned, the most common web application security
weakness is the failure to properly validate input coming from the client or
from the environment before using it. This weakness leads to almost all of the
major vulnerabilities in web applications, such as XSS, SQL injection, Local
File Inclusion, Path traversal and Buffer Overflows.

OTG-INPVAL-001 - Testing for Reflected Cross Site Scripting

The Cross-Site scripting attack is a perfect example of how a very common
web vulnerability can become dangerous for users of a website. Its danger and
popularity justify, in this Thesis, the use of Cross Site scripting as an example
of the benefits we could obtain from an automated approach to its discovery.
OWASP suggests a methodology to test for Cross-Site scripting vulnerabilities
that consists of three phases:

1.5. REINFORCEMENT LEARNING 7

Figure 1.2: OTG v4.0 Testing Categories

1. Detect input vectors: the tester must determine all of the web appli-
cation’s user-defined variables and how to input them. This includes
hidden or non-obvious inputs such as HTTP parameters, POST data,
hidden form field values, and predefined radio or selection values.

2. Analyze each input vector: to detect potential vulnerabilities, the tester
uses specially crafted input data with each input vector. Non-exhaustive
examples of such input data are:

• <script>alert(1)</script>

• “><script>alert(document.cookie)</script>

• “ onfocus=”alert(document.cookie)

3. Analyze the results: the tester analyzes the results of each input vector
attempted in the previous phase and determines if it represents a vulner-
ability. Once found, the tester identifies any special character that was
not properly sanitized.

1.5 Reinforcement Learning

Reinforcement Learning is a machine learning model in which an agent is
trained to perform a task by interacting with an environment and receiving
a feedback signal for each action performed. Such signal, called reward, is
used by a Reinforcement Learning algorithm that allows the agent to improve
through trial and error. The more positive are the rewards the agent gets during

8 CHAPTER 1. INTRODUCTION

training, the closer it gets to the final goal.
From an implementation point of view, in order to interact with such an en-
vironment, agents have to be equipped with sensors that provide information
about the state of environment, actuators that allow them to perform actions
and a mechanism that decides which action to perform next.
The basic assumption behind a Reinforcement Learning model, is that the en-
vironment can be formally described as a Markov Decision Process, composed
by:

• S: is a set of states called the state space;

• A: is a set of actions called the action space (alternatively, As is the set
of actions available from state s);

• Pa(s, s
′): is the probability that action a in state s at time t will lead to

state s’ at time t+1:

Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) (1.1)

• Ra(s, s
′): is the immediate reward received after transitioning from state

s to state s’, due to action a.

The goal of the agent is to maximize the total amount of reward he receives
from the environment in the long term:

E

[∞∑
k=0

rt+k+1

]
(1.2)

The problem with equation 1.2 is the potentially infinite temporal horizon;
since the common problems refer to a limited time, to solve this issue, one
assumes to perform maximization over a fixed and limited time. So equation
1.2 becomes:

E

[
T∑

k=0

rt+k+1

]
(1.3)

We can use equation 1.3, but usually in the practice a new factor is added:

E

[∞∑
k=0

γk · rt+k+1

]
(1.4)

Equation 1.4 is commonly referred to as Expected discounted future sum
of rewards. Here γ is the discount factor satisfying 0 ≤ γ ≥ 1 and it represents

1.6. CONTRIBUTIONS 9

the interest of the agent about that reward in the future. If γ is close to 1 the
agent cares about this reward and it will be considered in the future; otherwise
if γ is close to 0 the agent will not consider that reward for next decisions.
After describing the environment, the goal for the agent is to find a policy
π(s|a) that maps a state s to a probability distribution over actions a in order
to maximize the long-run expected reward.
An interesting Reinforcement Learning algorithm is the so called Q-learning.
It allows to learn estimates for the optimal value of each action, as the expected
sum of future discounted rewards. Given a policy π, an estimate of the optimal
value of an action a in a state s is:

Qπ = E[R1 + γR2 + ...|S0 = s,A0 = a, π] (1.5)

where γ ∈ [0, 1] is the discount factor. The optimal value is

Q∗(s, a) = max
π

Qπ(s, a) (1.6)

Selecting the highest valued action in each state, determines an optimal policy.

1.6 Contributions

This Thesis deals with Offensive Security by proposing different approaches to
its automation. Such approaches take inspiration from the behavior of security
experts and attempt to transfer it to intelligent agents using technologies related
to the field of Artificial Intelligence. In particular, the contributions of this
work are the following:

1. Design and implementation of an intelligent agent able to learn a
methodology to discover Cross-Site Scripting vulnerabilities, using a
model-free Reinforcement Learning algorithm.

2. Implementation of an automated and interactive Reinforcement Learn-
ing environment suitable for the training of the XSS agent.

3. Comparison with other state-of-the-art tools that deal with the automa-
tion of Web Penetration Testing, showing the improvements made in
terms of accuracy and efficiency. Such improvements are attributable to
the use of Reinforcement Learning algorithms.

4. Realization of an Ontology for Web Penetration Testing.

10 CHAPTER 1. INTRODUCTION

5. Representation of such an Ontology in the form of a Knowledge Graph;

6. Design and early implementation of a Recommender System for expert
penetration testers based on the above-mentioned ontology.

7. Design and implementation of a toolset for collecting interactions with
the browser during a Web Penetration Test, as well as generated network
traffic, in order to create datasets of real-world hacking sessions.

The Thesis is structured as follows: chapter 2 reports a detailed analysis of the
current state of the art for attempts to automate offensive security practices.
Chapter 3 discusses improvements with respect to existing benchmarks. Chap-
ter 4 presents a platform, based on Reinforcement Learning, able to suggest
the best actions to a security tester during the process of discovering Cross-
Site scripting vulnerabilities. In chapter 5, the design and implementation
of a module that automates the interaction with a web application during the
analysis of Cross-Site scripting vulnerabilities is presented. In chapter 6, the
design and implementation of a fully automated intelligent agent for Cross-
Site scripting vulnerabilities discovery is described, showing the integration of
the previously presented modules as well as the realization of an interactive
Reinforcement Learning environment based on GymAI. Chapter 7 evaluates
the presented intelligent agent, by showing results in terms of accuracy and
efficiency. Chapter 8 presents other approaches to offensive security automa-
tion through the application of Artificial Intelligence techniques. [7] Finally,
in chapter 9 an architecture that combines infrastructure as code with differ-
ent virtualization techniques to leverage a lightweight cyber range instantiation
platform is proposed. Moreover, the design and implemetation of a security to-
mography that allows to assess the exposure of an ICT infrastructure to cyber
security attacks is showed. Both approaches are results of real world applica-
tions.

Chapter 2

Related Work

In this chapter, works in the fields of Reinforcement Learning, XSS vulnera-
bilities discovery and penetration testing automation, are analysed.

2.1 Reinforcement learning environments

The fundamental source of inspiration for this work comes from the literature
of Reinforcement Learning applied to Web Navigation tasks. Shi et al. in
[8] introduce the World of Bits (WoB), a platform in which agents complete
web navigation tasks by performing keyboard and mouse actions. After
developing a methodology to log demonstrations, the authors show that agents
trained via behavioral cloning and reinforcement learning can complete a
subset of the web-based tasks. As the authors did with the WoB, we also
collect a comprehensive list of test cases to support our penetration testing
methodology. To the purpose, we leverage WAVSEP1, the Web Application
Vulnerability Scanner Evaluation Project, which includes a number of com-
mon Web Application vulnerabilities. With regards to Cross-Site Scripting,
we upgraded WAVSEP by introducing new test cases, in order to cover all the
possible ways to discover such a vulnerability.
Liu et al. in [9] induce high-level “workflows” that constrain the allowable
actions at each time step to be similar to those performed during demonstra-
tions. This allows the agent to easily identify successful workflows and avoids
the stagnation of learning, that happens when the action space is big and the
reward function sparse. In our work the agent has to learn both the best action

1https://github.com/sectooladdict/wavsep

11

12 CHAPTER 2. RELATED WORK

to perform at each time step and the overall sequence of actions that allow
to eventually discover the vulnerability. The sequence of actions is inferred
by looking at expert demonstrations during a web penetration test and forms
a workflow allowing to dynamically adjust the objective to be pursued in the
environment, as well as apply separate techniques of discovery.
Of course, our work differs from [8] and [9] for the context, which is web
application security testing. In fact, in both of the cited papers, the web site
represents the environment upon which the agent takes actions and retrieves
observations. In our case, the environment is made up by attack strings that
can exist in different states of their formation, while the web application is
used as a means to collect observations that allow the agent to move to the
next step in the testing workflow.
Liu et al. in [10] propose the idea of Multi Objective Reinforcement Learning
(MORL), as a way to solve the scaling problem for sequential decision-making
frameworks. Compared to RL, MORL problems require an agent to be able to
learn a policy that optimises multiple objectives at the same time. A difference
can be made between related and unrelated objectives. In the former case, a
single objective can be obtained by combining multiple objectives together.
In the latter case, unrelated objectives can be separately optimised and a
combined policy can subsequently optimise all of them. In our environment,
we identify each attack string to be produced as a different objective. Since
each attack string is constructed in a different way, depending on some
parameters defined in section 4.1, we consider the objectives to be unrelated.
Thus, we optimise them separately and then use a policy to decide, at an
operational level, whether to pursue one objective or the other.
We deal with a parameterized action space, as defined by Masson et al. in [11],
in the sense that the agent must select, at each step, both the action and the
parameters to use with that action. However, our work differs from the cited
one because we consider a discrete parameter space, rather than a continuous
one.
Moreover, we do not use a single algorithm to learn a policy. We rather choose
to optimise the parameters separately, using two hierarchically activated
policies. This approach provides a decomposition of the reinforcement
learning problem into sub-problems, as introduced in [12] by Dietterich.

2.2. XSS VULNERABILITIES DISCOVERY 13

2.2 XSS vulnerabilities discovery

As for the testing methodology leveraged to discover reflected XSS vulnera-
bilities, few attempts in the literature recall our approach. In [13], Lekies et al.
propose an automated approach to discover DOM-based XSS vulnerabilities
that allows for context-sensitive exploit generation. Depending on the con-
text of reflection of the input, the attack string can be constructed in different
ways. Our approach, though, identifies more contexts of reflection and there-
fore a higher number of possible attack strings. Moreover, the deconstruction
of the attack string into several sub-strings, each with a specific semantics, is
something that we leverage as well in order to perform the definition of the
state. This allows to incrementally focus on specific parts of the attack string
and modify them according to the hints provided, at each time step, by the
application under test. However, we refine such deconstruction of the attack
payload, by identifying other parts of the string that need to be taken into ac-
count throughout the testing. Also, the purpose of the cited work is to provide a
taint-aware JavaScript engine, rather than a support tool for penetration testers.
The idea of constructing attack strings based on the feedback provided by the
web application, besides being employed by penetration testers for many years
[6], has also been explored, with regards to reflected XSS vulnerabilities, by
D’Amore et al. in [14]. The authors perform a categorisation of reflection
contexts, accompanied by the respective attack payloads that trigger the XSS
and propose snuck, a tool implementing the described methodology. Our ap-
proach, though, does not rely exclusively on the reflection context, but also
on other parameters that influence the construction of the final attack string.
Therefore, while the cited work employs a two-step testing (1. check the re-
flection context, 2. inject payload), our approach leverages a multiple step
methodology allowing to refine an attack string at a fine grain in each of its
constituent parts. Also, many more reflection contexts are taken into consid-
eration. Neither Lekies et al. in [13], nor D’Amore et al. in [14] consider
the use of reinforcement learning as an engine taking decisions in a specific
environment.
Fang et al. in [15] propose an XSS adversarial attack model based on reinforce-
ment learning, called RLXSS. The purpose is to optimize the detection of XSS
attacks based on adversarial attack models. To do so, a reinforcement learning
approach aims at identifying the most appropriate escaping technique. The au-
thors show how this approach improves the detection capabilities against XSS
attacks. We also leverage escaping techniques in our work, as they represent a
common attack pattern deployed by hackers in order to craft a working attack

14 CHAPTER 2. RELATED WORK

string. However, the purpose of the authors in [15] is to improve detection
models at recognising XSS adversarial attacks. Our purpose is to leverage
reinforcement learning to reproduce the attacker’s behaviour and build a tool
that supports penetration testers in the discovery of XSS vulnerabilities in web
applications. Moreover, though escaping represents a core technique to build
attack strings, we define a methodology that relies on other significant patterns
as well.

2.3 Penetration testing automation

Interpreting penetration testing as a decision making process is a path explored
in the past. In the last decade, reinforcement learning was the framework cho-
sen to model such a process. Sarraute et al. in [16] and in [17] treat penetration
testing as an attack planning model, namely in terms of a Partially Observable
Markov Decision Process (POMDP). They do so in order to intelligently nar-
row down the list of scans to be performed in a network. Although being a
thorough examination of how to face an incomplete knowledge of a network,
the approach does not scale. It also needs a decomposition algorithm to iden-
tify the best direction to take after performing scans and exploits. We tackle
this issue by reversing the perspective and starting directly from the end of a
penetration test, which is the application of a specific exploit model. By doing
so, we can simplify the actions and the states in order to make sure the ap-
proach scales better.
The same issue affects the work done by Ghanem et al. in [18] and [19]. They
propose the “Intelligent Automated Penetration Testing System (IAPTS)” as
a module that integrates with industrial PT frameworks to perform an au-
tonomous assessment of network security. However, the action and state space
is still too large and hence prevents the approach from scaling to real world
scenarios. In fact, the platform strongly relies on experts to perform penetra-
tion testing and adjust the learning in the early phases, as opposed to creating a
comprehensive model with clear actions that can be performed autonomously
by an agent, as it is in our case.
The work done by Schwartz et al. in [20] frames penetration testing as a
Markov Decision Process (MDP), includes the network configuration in the
state space and uses scans and exploits as actions. The authors prove that
Q-Learning can be a useful tool for finding the best attack paths. They also
propose the Network Attack Simulator (NAS) as a benchmark for intelligent
agents that perform scans and exploits on the network. It is a step forward in

2.3. PENETRATION TESTING AUTOMATION 15

the definition of a common ground against which different intelligent agents
can be tested. Yet, the lack of a thorough definition of actions and states limits
its applicability to real world scenarios.
Following the framework of a POMDP, Schwartz et al. in [21], take into ac-
count the defender’s behaviour as a source of uncertainty that can affect deci-
sions made by an autonomous penetration test agent. The authors show that
even a simple defender’s model can improve the capability of autonomous
pen-testing. We do not take into account techniques that web applications
might employ to defend against Cross-Site scripting attacks, such as character
filtering, input validation or Web Application Firewalls. Such improvements
represent one of the directions of our future work.
All of the cited approaches apply reinforcement learning to network penetra-
tion testing, in order to provide a means to simplify the attack plan in large-
scale environments. Our work is instead an attempt at creating an intelligent
agent that mimics the behavior of a penetration tester when applying a well
known exploit model to test a web application vulnerability.

Authors F.M. Zennaro et al. in [22], [23], [24] and [25], built the most
recent state of the art in terms of modeling penetration testing through rein-
forcement learning.

In particular, in [22] the authors observe these capture-the-flags type of
challenges experimentally across a set of varied simulations and study how
different reinforcement learning techniques may help addressing them. In this
way they show the feasibility of tackling penetration testing using reinforce-
ment learning, as well as highlight the challenges that must be taken into con-
sideration and possible directions to solve them.

In [23] the authors focus their attention on simplified penetration testing
problems expressed in the form of capture the flag hacking challenges and
analyze how model-free reinforcement learning algorithms may help to solve
them. They highlight how the biggest challenge for an agent is to discover the
structure of the problem at hand and show how this problem may be solved
relying on different forms of prior knowledge provided to the agent. By using
techniques to inject a priori knowledge, the authors show that it is possible to
better direct the agent and restrict the space of its exploration problem, thus
achieving solutions more efficiently.

In [24], the authors propose a formalization of the process of exploitation
of SQL injection vulnerabilities. They consider a simplification of the dynam-
ics of SQL injection attacks by casting this problem as a security capture-the-
flag challenge. The problem is modeled as a Markov decision process and

16 CHAPTER 2. RELATED WORK

implemented as a reinforcement learning problem. We then deploy reinforce-
ment learning agents tasked with learning an effective policy to perform SQL
injection. we design our training in such a way that the agent learns not just a
specific strategy to solve an individual challenge but a more generic policy that
may be applied to perform SQL injection attacks against any system instanti-
ated randomly by a problem generator. The results are analyzed in terms of the
quality of the learned policy and in terms of convergence time as a function of
the complexity of the challenge and the learning agent’s complexity.

In [25] the same authors present the Agent Web Model, that considers
web hacking as a capture-the-flag style challenge, and defines reinforcement
learning problems at seven different levels of abstraction. The complexity of
these problems in terms of actions and states an agent has to deal with, is
discussed. They also provide an implementation for the first three abstraction
layers, in the hope that the community would consider these challenges in
order to develop intelligent web hacking agents.

In [26], Chowdhary et al. propose an autonomous security analysis and
penetration testing framework (ASAP) that creates a map of security threats
and possible attack paths in the network using attack graphs. The framework
utilizes: (i) a state of the art reinforcement learning algorithm based on Deep-Q
network (DQN) to identify optimal policy for performing penetration testing,
and (ii) incorporates a domain specific transition matrix and reward modeling
to capture the importance of security vulnerabilities, as well as the difficulty
inherent in exploiting them. The ASAP framework generates autonomous at-
tack plans and validates them against real-world networks. The attack plans
are generalizable to complex enterprise network scenarios, and the framework
scales well on a large network.

In [27], Castiglione et al. define a modular semi-automatic approach,
which allows to collect and integrate data from various exploit repositories.
These data are then used to provide the penetration tester (i.e., the pentester)
with information on the best available tools (i.e., exploits) to conduct the
exploitation phase effectively. Also, the proposed approach has been im-
plemented through a proof of concept based on the Nmap Scripting Engine
(NSE), which integrates the features provided by the Nmap Vulscan vulner-
ability scanner, and allows, for each vulnerability detected, to find the most
suitable exploits associated with it. The proposed approach is focused on the
automatic finding of the exploits that can be used to take advantage of the
results achieved by the vulnerability scanning phase.

In [28], authors Maeda et al. propose a method of automating post-

2.3. PENETRATION TESTING AUTOMATION 17

exploitation by combining deep reinforcement learning and the PowerShell
Empire, which is a renowned post-exploitation framework. The presented re-
inforcement learning agents select one of the PowerShell Empire modules as
an action, whereas the state of the agents is defined by 10 parameters such as
the type of account that was compromised by the agents. This work is similar
to the one presented in this thesis, in fact it builds a training environment in
which an agent can be autonomously trained using exploration, in this case to
perform post-exploitation tasks. It uses also a similar definition of the state
as the one presented in the next chapters, because it represents the levels of
increasing privilege that an attacker gains by undergoing a sequential decision
making process. However, the usage of deep reinforcement learning might
seem appealing because it can ensure fast times of convergence, but it does
not make much sense in this case where the definition of the environment does
not encompass a feature representation of the states. In fact, the inputs are
completely categorical, therefore it would be advisable in this context to use a
more traditional approach, by leveraging tabular algorithms. This aspect will
be underlined in the thesis.

In [29], Bland et al. model cyberattacks using an extension of the well-
known Petri net formalism. The formalism models the attacker and defender
as competing players who may observe the marking of a subset of the net and
based on the observed marking act by changing the stochastic firing rates of
a subset of the transitions in order to achieve their competing goals. Then, a
reinforcement learning algorithm using an ϵ-Greedy policy was implemented
and set to the task of learning which actions to take, i.e., which transition
rates to change for the different observable markings, so as to accomplish the
goals of the attacker or defender. In terms of design, the choice of using a
formalism that captures the dynamics of the system, upon which implement
a reinforcement learning algorithm, is probably better than the one of using
tabular algorithms, or neural networks. In fact, the computational efforts of
storing a table and perform read/write operations are avoided as well as the
risks of having a neural network that approximates a tabular function.

The use of Petri Nets to model cyberattacks is well described in [30], which
shows that they can be useful to provide additional knowledge on the planning
stages of defense systems. The study introduces the formalism required to
compose individual Petri Nets with Players, Strategies, and Cost models from
a single system attack to a full system, which may include different methods of
attacks being attempted, modeling a more realistic situation. The model com-
position described includes the sequential and parallel possibilities of multiple

18 CHAPTER 2. RELATED WORK

attacks. An example of a possible attack scenario is described in order to
demonstrate the practical application of the results.

The same authors also define, in [31] and [32], ways to build on the pre-
viously generated petry nets to construct composite attack scenarios. They
also specify a way to start from the representation of a cyberattack via a petri
net and perform decomposition methods that identify fine-grained as well as
coarse-grained subnets, that can be reused to construct bigger cyber-attack
nets.

Elderman et al. in [33] focus on cyber-security simulations in networks
modeled as a Markov game with incomplete information and stochastic ele-
ments. A cyber attack is modeled as a game, in the form of an adversarial
sequential decision making problem played with two agents, the attacker and
defender. The two agents pit one reinforcement learning technique, like neural
networks, Monte Carlo learning and Q-learning, against each other and exam-
ine their effectiveness against learning opponents. The purpose of the work
is to create a defender agent able to dynamically adapt to the changes in the
network caused by the attacks and therefore efficiently pick the right actions.
Again, giving the categorical nature of the inputs to the problem, tabular-based
algorithms seem to perform better than those based on neural networks.

Kujanpää et al. in [34] present an agent that uses a state-of-the-art rein-
forcement learning algorithm to perform local privilege escalation. Our results
show that the autonomous agent can escalate privileges in a Windows 7 envi-
ronment using a wide variety of different techniques depending on the envi-
ronment configuration it encounters. The authors claim the agent is usable for
generating realistic attack sensor data for training and evaluating intrusion de-
tection systems. Because in cybersecurity it is easier to practically reproduce
the attacks than finding a representation of the inputs by means of features, as
done in other fields of artificial intelligence, reinforcement learning becomes a
good choice.

Microsoft [35] has developed a research toolkit called CyberBattleSim2,
which enables modeling the behavior of autonomous agents in a high-level
abstraction of a computer network . Reinforcement learning agents that operate
in the abstracted network can be trained using the framework. The objective
of the platform is to create an understanding of how malicious reinforcement
learning agents could behave in a network and how reinforcement learning can
be used for threat detection. Deep reinforcement learning can also be applied
to improving feature selection for malware detection.

2https://github.com/microsoft/CyberBattleSim

2.3. PENETRATION TESTING AUTOMATION 19

Walter et al. in [36] incorporated deceptive elements, including honeypots
and decoys, into the Microsoft CyberBattleSim experimentation and research
platform. The defensive capabilities of the deceptive elements were tested
using reinforcement learning based attackers in a capture the flag environment.
The attacker’s progress was found to be dependent on the number and location
of the deceptive elements. It is a promising step towards reproducible testing
attack and defense algorithms in a simulated enterprise network with deceptive
defensive elements.

Standen et al. in [37] introduce CybORG, a work-in-progress gym for
ACO (Autonomous Cyber Operation) research. CybORG features a simu-
lation and emulation environment with a common interface to facilitate the
rapid training of autonomous agents that can then be tested on real-world sys-
tems. They provide some promising test results that show the feasibility of
the approach. Their work should support the application of machine learning
algorithms to develop blue and read team decision-making agents.

Li et al. in [38] present CyGIL: an experimental testbed of an emulated RL
training environment for network cyber operations. CyGIL uses a stateless en-
vironment architecture and incorporates the MITRE ATT&CK framework to
establish a high fidelity training environment, while presenting a sufficiently
abstracted interface to enable RL training. Its action space and game design al-
low agent training to focus on particular advanced persistent threat (APT) pro-
files and to incorporate a broad range of potential threats and vulnerabilities.
It aims to leverage state of the art RL algorithms for application to real-world
cyber defence.

Nguyen et al. in [39] present a survey of Deep Reinforcement Learning
approaches developed for cyber-security. It shows how, among the several
applications, the modern human-on-the-loop model would be a solution for
a future human-machine teaming cyber security system. This model allows
agents to autonomously perform the task whilst humans can monitor and in-
tervene operations of agents only when necessary. How to integrate human
knowledge into DRL algorithms [182] under the humanon-the-loop model for
cyber defense is an interesting research question.

Mern et al. in [40] present techniques to scale deep reinforcement learning
to solve the cyber security orchestration problem for large industrial control
networks. The authors propose a novel attention-based neural architecture with
size complexity that is invariant to the size of the network under protection. A
pre-training curriculum is presented to overcome early exploration difficulty.
Experiments show that the proposed approaches improve both the learning

20 CHAPTER 2. RELATED WORK

sample complexity and converged policy performance over baseline methods
in simulation.

Niculae in [41] formalizes penetration testing as a security game between
an attacker who tries to compromise a network and a defending adversary ac-
tively protecting it. The thesis paper compares multiple algorithms for finding
the attacker’s strategy, from fixed-strategy to Reinforcement Learning, namely
Q-Learning (QL), Extended Classifier Systems (XCS) and Deep Q-Networks
(DQN). The attacker’s strength is measured in terms of speed and stealthiness,
in the specific environment used in our simulations. The results show that QL
surpasses human performance, XCS yields worse than human performance
but is more stable, and the slow convergence of DQN keeps it from achieving
exceptional performance. In addition, all the Machine Learning approaches
outperform fixed-strategy attackers.

In [42], Basori et al. use Reinforcement Learning to let a defense agent to
adapt and learn the attacker’s behavior or pattern.

Gangupantulu et al. in [43] present a novel method for crown jewel anal-
ysis3 named CJA-RL that uses reinforcement learning to identify key terrain
and avenues of approach for exploiting crown jewels. In their experiment,
CJA-RL identified ideal entry points, choke points, and pivots for exploiting a
network with multiple crown jewels, exemplifying how CJA-RL and reinforce-
ment learning for penetration testing generally can benefit computer network
operations workflows.

Also Gangupantulu et al. in [44] present methods for constructing attack
graphs using notions from IPB on cyber terrain analysis of obstacles, avenues
of approach, key terrain, observation and fields of fire, and cover and conceal-
ment. Authors demonstrate their methods on an example where firewalls are
treated as obstacles and represented in (1) the reward space and (2) the state
dynamics. They show that terrain analysis can be used to bring realism to
attack graphs for RL.

2.4 Network Security Ontologies and knowledge
graphs

Christian et al. in [45] present MalONT2.0 – an ontology for malware threat
intelligence. It allows researchers to extensively capture all requisite classes

3Crown Jewels Analysis (CJA) is a process for identifying those cyber assets that are most
critical to the accomplishment of an organization’s mission.

2.4. NETWORK SECURITY ONTOLOGIES AND KNOWLEDGE GRAPHS21

and relations that gather semantic and syntactic characteristics of an android
malware attack. Such an ontology forms the basis for the malware threat in-
telligence knowledge graph, MalKG. Here knowledge graphs are used to both
provide captivating visualization of the threat intelligence domain, as well as
to take advantage of graph theory in order to perform inferences that draw
associations among entities that would otherwise not be recognized.

Wang et al. in [46] propose a network attack path prediction method based
on knowledge graph and attack graph model, which uses CVSS’s quantitative
indicators for a single vulnerability, and combines the network security evalua-
tion method to calculate the possible path. Experimental results show that this
method can evaluate the security risk value of networks and nodes, which can
point out the possible attack path of the attacker and calculate the risk value of
the corresponding path. It can also rank the network node on the path and give
repair suggestions.

Wang et al. in [47] propose a method to construct cyber-attack knowledge
graphs based on CAPEC and CWE, using Neo4j as implementation platform.
The authors claim that the knowledge graph proposed in their paper can be
used as an intelligence source for multi-stage attack models known as Kill
Chains.

Cermak et al. in [48] present an application of graph-based network
forensics, a new approach to analyzing network traffic data utilizing modern
database technologies capable of storing large amounts of information based
on their associations. They introduce the GRANEF toolkit utilizing Dgraph
database that stores transformed information from network traffic captures ex-
tracted by the Zeek network security monitor. The stored data are presented to
the user via a web-based user interface that provides an abstraction layer above
the database query language and allows the user to efficiently query data, vi-
sualize results in the form of a relationship diagram, and perform exploratory
analysis.

Sarhan et al. in [49] present Open-CyKG: an Open Cyber Threat Intel-
ligence (CTI) Knowledge Graph (KG) framework that is constructed using
an attention-based neural Open Information Extraction (OIE) model to ex-
tract valuable cyber threat information from unstructured Advanced Persistent
Threat (APT) reports. Security professionals can execute queries to retrieve
valuable information from the Open-CyKG framework.

Qian et al. in [50] propose a novel ontology based BDI-agent RL auto-
matic PT framework. By combining SWRL penetration testing knowledge
base and RL in a BDI (belief-desire-intention) agent, the proposed model can

22 CHAPTER 2. RELATED WORK

make use of the ontology based knowledge base (prior knowledge) to opti-
mize the planning problem in the uncertain and dynamic environment. Finally,
the simulation on ASL simulation platform Jason proved the new BDI-agent
auto-PT model can improve the accuracy and speed up performance.

Hermanowski et al. in [51] proposed a method based upon the MulVAL
reasoning engine that identifies possible attack paths leading from an attacker
to pointed assets of an IT network. These paths create an attack graph used
for attack probability calculation. The method takes advantage of information
from vulnerability scanners and topology snapshot. In the paper, an enter-
prise network was examined and an attack graph based security evaluation
presented. The case study probability calculations were provided, including
possible remediation actions. Benefits and limitations of the proposed method
are also discussed.

Kurniawan et al. in [52] developed a vocabulary to extend a cybersecurity
knowledge graph with adversary tactics and techniques. Using this vocabu-
lary, we represent rich threat intelligence instance data from MITRE Adver-
sarial Tactics, Techniques, and Common Knowledge (ATT&CK) in a knowl-
edge graph. This knowledge can be used to contextualize indicators of com-
promise from log messages, identify potential attack steps, and link them to
cybersecurity knowledge. To demonstrate the benefits of the approach, we
link low-level threat alerts produced by community rules to the cybersecurity
knowledge graph.

Eliztur et al. in [53] presented the Attack Hypothesis Generator (AHG)
which takes advantage of a knowledge graph derived from threat intelligence
in order to generate hypotheses regarding attacks that may be present in an
organizational network. Based on five recommendation algorithms developed
by the authors and preliminary analysis provided by a security analyst, AHG
provides an attack hypothesis comprised of yet unobserved attack patterns and
tools presumed to have been used by the attacker. The proposed algorithms
can help security analysts by improving attack reconstruction and proposing
new directions for investigation. Experiments show that when implemented
with the MITRE ATT&CK knowledge graph, our algorithms can significantly
increase the accuracy of the analyst’s preliminary analysis.

Hemberg et al. in [54] link MITRE’s ATT&CK MATRIX of Tactics and
Techniques, NIST’s Common Weakness Enumerations (CWE), Common Vul-
nerabilities and Exposures (CVE), and Common Attack Pattern Enumeration
and Classification list (CAPEC), to gain further insight from alerts, threats and
vulnerabilities. Authors preserve all entries and relations of the sources, while

2.4. NETWORK SECURITY ONTOLOGIES AND KNOWLEDGE GRAPHS23

enabling bi-directional, relational path tracing within an aggregate data graph
called BRON. For example, BRON can be used to enhance the information
derived from a list of the top 10 most frequently exploited CVEs. Authors
identify attack patterns, tactics, and techniques that exploit these CVEs and
also uncover a disparity in how much linked information exists for each of
these CVEs.

Kriaa et al. in [55] propose a novel approach that leverages a combination
of both knowledge graphs and machine learning techniques to detect and pre-
dict attacks. Using Cyber Threat Intelligence (CTI), authors build a knowledge
graph that processes event logs in order to not only detect attack techniques,
but also learn how to predict them.

Kaloroumakis et al. in [56] created D3FEND, a framework in which they
encode a countermeasure knowledge base, but more specifically, a knowledge
graph. The graph contains semantically rigorous types and relations that de-
fine both the key concepts in the cybersecurity countermeasure domain and
the relations necessary to link those concepts between each other. To demon-
strate the value of this approach in practice, authors describe how the graph
supports queries that can inferentially map cybersecurity countermeasures to
offensive TTPs (Tactics, Techniques and Procedures). Authors also outline fu-
ture D3FEND work to leverage the linked open data available in the research
literature and apply machine learning, in particular semi-supervised methods,
to assist in maintaining the D3FEND knowledge graph over time.

The purpose of the work in [57] is to propose an ontology-based automated
penetration testing approach. The authors build their ontology basing on the
following taxonomy for penetration testing:

• Information Gathering attack: these are attacks aiming to collect infor-
mation about the target (IP address, opened ports, application informa-
tion, OS information, human or organization information, network in-
formation, defense mechanisms and so on);

• Configuration attack: attacks based on system administrator’s miscon-
figuration of the system under test; e.g. exposing the “robots.txt” file or
the private ftp area;

• Buffer Overflow attack: typically, a buffer overflow occurs due to a mis-
take in a software’s coding phase. Essentially, this vulnerability enables
the attacker to overwrite the memory of the system by injecting arbitrary
executable code;

24 CHAPTER 2. RELATED WORK

• Password attack: it is a brute-force attack that aims to guess the pass-
word of a user or of the administrator;

• Web attack: it is an attack against a web application; they include: XSS,
CSRF, SQLi and so on. The most dangerous web application attacks are
listed in the OWASP top 10;

• Sniffer attack: when the attacker gains access to a private network, they
can attempt to sniff traffic trying to catch some useful data;

• Social Engineering attack: they include Spear-Phishing Attacks by
email or link, Website forge Attacks or Spoofing Attacks;

• Denial of Service attack (DOS): it is an attack which aims to exhaust a
system’s resources, preventing users from access it.

The authors build an ontology using Protégé. The built ontology has three
main classes: attackers, target and attack methods. The target’s data prop-
erties are: OS, IP address, port, configuration, application, vulnerability and
current permission. The attack methods class consists of multiple levels of at-
tack methods, based on the above taxonomy. The specific attack actions are
defined as attack method’s instances with the following data properties: action,
precondition and post-condition. The authors define five object properties in
order to describe the relations between instances:

• hasPermission: represents that the attacker has a specific permission on
the target;

• isConnected: represents that the attacker instance can be connected to
the target;

• isNotConnected: represents that the attacker instance can not be con-
nected to the target;

• isSameSubnet: represents that the target instances which are in the same
subnet.

• exploitBy: represents that attacker can perform a specific attack.

Authors added SWRL (Semantic Web Rule Language) rules to the built
ontology. SWRL rules play a very important role in the reasoning process
that leads to the discovery of a vulnerability. To automate the attacks stored

2.4. NETWORK SECURITY ONTOLOGIES AND KNOWLEDGE GRAPHS25

(together with the knowledge) in the ontology, authors added a BDI agent to
the system. The latter, in fact, is performing actions such as load, query, up-
date classes and properties, as well as perform reasoning. Python (BDIPython
library) has been used to implement the BDI mechanisms. In this way, the
SWRL rules are used to determine the attack actions (basing on the target in-
formation stored in the ontology), while the BDI mechanism is used to perform
the attack. At the end of the attack, if a vulnerability is discovered, the ontol-
ogy will be updated. This tool performs everything automatically: it starts with
the information gathering phase and finishes with the exploit of the vulnerabil-
ity.
The touching points with this paper are clearly the ontology implementation,
the use of rules to perform reasoning and the creation of a knowledge base. The
dissonance here is in the automation reached by the authors’ tool: the scope of
this thesis is to support the penetration tester’s work, rather than automatically
launch pre-existing tools and use them “as they are”.

In [58], a large scale system, attempting to automate the penetration test-
ing (intended as black-box testing) of large-scale heterogeneous systems, is
presented. The paper’s purpose is to narrow the gap between information that
security experts obtain through their tools, and the knowledge they need in or-
der to make security assessments on the system. The used penetration testing
methodology is the following:

1. Collecting publicly available information: information is obtained
through search engines, web-sites that contain statistics and registra-
tion information (e.g., whois, domaintools), social networks and forums,
DNS name finders;

2. Automated testing: using automated tools, testing is performed on the
collected data;

3. Pruning false positives: the problem of automated tools is the generation
of false positives, which must be pruned off;

4. Unfolding found vulnerabilities and entry points: they look for entry
points and possible vulnerabilities in the system;

5. Business logic testing: trying to exploit the vulnerabilities to penetrate
the system.

The following steps have been followed to create the penetration testing
ontology:

26 CHAPTER 2. RELATED WORK

1. Form the dictionary of research domain and tasks: authors used a lot
of different standard taxonomies (ARF, CAPEC, CCE, CCSS, CEE,
CPE, CRF, CVE, CVRF, CVSS, CWE, CWSS, CybOX, IODEF, MAEC,
MMDEF, OCIL, OVAL, SWID, WS-Agreement, XACML, XCCDF)
and several general purpose ontologies;

2. Identify the concepts: The set of concepts could be divided into three
subsets: the subset representing the process of security analysis; the
subset representing the technical description of the system under test;
the subset representing the description of the system’s business logic;

3. Build hierarchy of concepts;

4. Identify non-hierarchical relations;

5. Develop rules;

6. Populate ontology by discovering new instances of concepts and rela-
tions;

7. Extend hierarchy of concepts.

Authors used OWL to create the penetration testing ontology and Protégé
to edit it. Their ontology contains 519 concepts. Ontology concepts are inter-
connected through different relations: one to many, one to one, has subclass.
Each relationship has its own name, to better explain it. In order to better ex-
plain the multi-dimensional ontology, authors give different views (intended as
a “smaller ontology derived from, but independent of, the source ontology”)
of it. In order to explain the multi-dimensional ontology, authors give differ-
ent views (intended as a “smaller ontology derived from, but independent of,
the source ontology”) of it. The given views are: host-centric, virtual identity-
centric, vulnerability-centric and organization-centric. Thus, they build a tool
for the automated penetration testing. The tool’s basic workflow is the fol-
lowing: the semantic net is built using the previously proposed ontology with
data from passive and active security scans, along with external data sources,
associated with the information system under test. Inference rules and map-
pings, among retrieved data and ontological database, are manually formed
by security experts. The built semantic net contains meaningful entities and
relationships extracted from data sources. At this point, the inference engine
automatically performs some penetration testing actions using manually built
attack vectors. The whole acquired knowledge is finally presented to the user.

2.5. PENETRATION TESTING DATASETS 27

The similarities with this paper are: the construction of an ontology, in order
to map security elements and relations among them; the ability to make infer-
ence through rules written by experts; the possibility to extend the tool to a
wide range of systems. The differences are: the use of OWL, the automated
use of security tools and the automatic data extraction.

2.5 Penetration testing datasets

Vsvabensky et al. in [59] present a dataset of 13446 shell commands from 175
participants who attended cybersecurity trainings and solved assignments in
the Linux terminal. Each acquired data record contains a command with its ar-
guments and metadata, such as a timestamp, working directory, and host iden-
tification in the emulated training infrastructure. The commands were captured
in Bash, ZSH, and Metasploit shells. The data are stored as JSON records,
enabling vast possibilities for their further use in research and development.
These include educational data mining, learning analytics, student modeling,
and evaluating machine learning models for intrusion detection. The data were
collected from 27 cybersecurity training sessions using an open-source logging
toolset and two open-source interactive learning environments. Researchers
and developers may use the dataset or deploy the learning environments with
the logging toolset to generate their own data in the same format. Moreover,
authors provide a set of common analytical queries to facilitate the exploratory
analysis of the dataset.

Vsvabensky et al. in [60] presented a modular toolset for logging com-
mands from Bash and Metasploit shell. It enables a data-driven understanding
of students’ approaches to practicing cybersecurity, system administration, and
networking. Authors deployed the toolset in two learning environments and
showed the value of the gained data by analyzing student approaches. Since
the toolset can be applied in many other contexts, it can foster further research
and development.

28 CHAPTER 2. RELATED WORK

Chapter 3

Improvement of existing
benchmarks

The first activity conducted to tackle the automation of tools for web pene-
tration testing is understanding how to evaluate their effectiveness when exe-
cuted against real web applications. In the ethical hacking community, begin-
ner students that are eager to become familiar with penetration testing activ-
ities, tend to perfect their skills using vulnerable applications, designed with
the purpose of creating virtual environments where hacking techniques can
be practiced safely. Nowadays, such environments have evolved into complex
cyber-ranges, which are used by companies to train security experts in both de-
fensive and offensive scenarios. The open source community has developed a
few of such platforms over the years1, however they usually lack the necessary
requirements to be employed as fully-fledged web application security bench-
marks in order to test Dynamic Application Security Testing (DAST) tools.
Such requirements, like having diversified test suites, support for automated
benchmark test’s execution and so on [61], seemed to have been fulfilled in the
past by an open source project called WAVSEP (Web Application Vulnerabil-
ity Scanner Evaluation Project), which was used as a benchmark platform to
test DAST tools. However, the project is no longer maintained. This chapter
describes the efforts made to take the old version of WAVSEP and bring it up
to date to the current state of the art of known web application vulnerabilities.

1https://owasp.org/www-project-vulnerable-web-applications-directory/

29

30 CHAPTER 3. IMPROVEMENT OF EXISTING BENCHMARKS

3.1 WAVSEP: Web Application Vulnerability Scanner
Evaluation Project

Web Application Vulnerability Scanner Evaluation Project (WAVSEP) is an
open-source project released by the researcher Shay Chen. It is an intentionally
vulnerable web application used mainly as a benchmark to evaluate the quality,
the functionality and effectiveness of DAST tools. Such a testing activity has
been conducted in the past on WAVSEP, evaluating 63 different DAST tools
in 2012, 2014 and 2016. Results of which are published in an understandable
format at http://sectooladdict.blogspot.com/, in order to allow
both researchers and users to use data for their own purposes. The project uses
the JavaServer Pages (JSP) technology to implement vulnerable web pages
that can be used as test cases. It also uses a MySQL database used to support
SQL-related attacks.

In 2014, version 1.5 of WAVSEP was released, which is also the latest ver-
sion available. It contains a total of 1191 vulnerable test cases as well as 40 test
cases made up by intentionally non vulnerable web pages, in order to test tools
under test’s tendency to produce false positives. The classes of vulnerabilities
present in WAVSEP 1.5 include SQL injection, Reflected Cross-site Scripting
(RXSS), DOM cross-site scripting, Local File Inclusion (LFI), Remote File
Inclusion (RFI) and information disclosure.

3.2 WAVSEP 2.0

Since the last update to WAVSEP 1.5 dates back to 2014, new test cases have
been added in order to update it to the current state of the art. In fact, over the
years new attack vectors for web applications have been discovered as well as
brand new classes of vulnerabilities. Therefore, an analysis of the vulnerable
training applications publicly available has been conducted, in order to identify
test cases that are representative of the current state of web application vulner-
abilities as well as their respective exploitation techniques. The list of vulner-
able web applications published by OWASP [62] as well as the PortSwigger
Academy interactive labs [63] were taken into account to enumerate the most
popular exploitation techniques. Other accredited sources, such as “OWASP
Top 10 2017” , “MITRE ATT&CK” , “AcunetixWeb Application Vulnerabil-
ity Report 2020”, “2020 CWE Top 25 Most Dangerous SoftwareWeaknesses”,
were considered to make sure that the classes of vulnerabilities considered
were up to date. WAVSEP already offered some test cases for most of the vul-

http://sectooladdict.blogspot.com/

3.2. WAVSEP 2.0 31

Vulnerability Added
test cases

Reflected XSS (RXSS)2 39
SQL Injection (SQLI) 23
Blind SQLI 6
Local File Inclusion (LFI) 1
OS Command Injection 8
XML External Entity (XXE) 12

Table 3.1: Amount of newly added vulnerability test cases

nerabilities, but numerous classes of vulnerabilities were found absent, such as
the case for SQL Injection exploited using obfuscation techniques as well as
blind SQL injection test cases. Cross-Site Scripting is the most covered cat-
egory in terms of amount of test cases. However, many attack vectors made
popular in recent years were not included. At last, entire classes such as OS
command injection and XML External Entities were absent. After a careful
study phase, vulnerability classes were selected and test cases to be added, all
of which have been deemed necessary in order to make WAVSEP an up to date
benchmark.

Many of the works examined have provided numerous ideas in order to
make this work of enlargement both robust and efficient. Among the most
recent ones, Munoz et al. in [64] provide a thorough analysis of vulnerable-
by-design web applications and list the desired requirements for a vulnerable
application that serves as a benchmarking platform:

1. High extensibility. Adding new vulnerabilities should be easy. The
source code of the application should be available, and it should be easy
to add new features without making drastic changes to the source code,
database and technologies used.

2. The application should use frameworks, databases and current lan-
guages, therefore be developed using current technologies and function-
ality.

3. The application should be of general use, having different types of vul-
nerabilities and not be focused on just a few selected ones.

4. Vulnerabilities should be well documented, with examples of exploita-
tion, as well as a description of their application range.

32 CHAPTER 3. IMPROVEMENT OF EXISTING BENCHMARKS

To fulfill the above mentioned requirements, a work of technologies refine-
ment has been performed as well. In fact, an update to the current version of
Java Server Pages (v11) as well as MySQL database (v8) was made. More-
over, the entire project has been made available in the form of container-based
microservices using Docker and docker-compose. A distributed testbed made
up by WAVSEP as well as many well known DAST tools in the form of Docker
containers has been provided3. In this way, it becomes easier for researchers
to conduct testing sessions for their own purposes. Container-based technolo-
gies, in fact, provide good portabilty among several operating systems as well
as high extensibility (it is easy to add or remove a container in order to enlarge
or modify the testbed).

3https://github.com/NS-unina/Reinforced-Wavsep

Chapter 4

A semi-automated platform for
penetration testing based on
reinforcement learning

Nowadays, web applications are among the main targets of attacks. This is
due to the ever-increasing level of dynamicity (and interactivity) they entail,
through a mix of approaches, leveraging both client-side and server-side pro-
gramming techniques. This has justified the creation of a dedicated branch of
Penetration Testing, typically referred to as WAPT (Web Application Penetra-
tion Testing).

Cross Site Scripting (XSS) is a specific attack to web applications. It lever-
ages so-called injection techniques, whereby malicious scripts are injected into
otherwise benign and trusted websites. Typically, attackers use a web applica-
tion to send malicious code, generally in the form of a client-side script, to a
different end user. The typical flow of execution of such attacks envisages that
some data are fed as input to a web application through an untrusted source
(e.g., a request carrying some externally-provided data) and subsequently in-
cluded in a dynamically built response that is sent to a web user without being
validated for malicious content.

Various types of XSS attacks do exist. Among them, Reflected attacks are
those where the injected script is reflected back by the web server, either in an
error message, or as a search result, or in any other form that includes at least
a portion of the input sent to the server as part of the request. Reflected attacks
are typically designed in such a way as to be delivered to victims via an alter-
native means, like, e.g., an e-mail message, or even within a website other than

33

34 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

the reflecting one. When a victim is tricked into clicking on a malicious link,
they typically unintentionally submit an ad hoc crafted form, thus allowing the
injected code to reach the vulnerable web site and get reflected back towards
the victim’s browser, which in turn executes the code because it came from
what is deemed to be a trusted server.

Much of the work presented in this thesis deals with Reflected XSS, by
proposing an automated approach to its discovery in web applications.

The main contributions are the following:

• refine a methodology to discover XSS vulnerabilities based on construct-
ing an attack string by small increments. With the proposed step-by-step
approach, each new increment is justified by the presence of specific pa-
rameters in the response of the web application. One such parameter is
the context of reflection of the string;

• train an intelligent agent to produce attack strings in an ad hoc reinforce-
ment learning environment;

• develop a human-in-the-loop tool, called Suggester, that sends attack
strings to the web application and collects observations, following the
recommendations of the trained agent;

• enrich the test coverage of the Web Application Vulnerability Scanner
Evaluation Project (WAVSEP), with reference to reflected XSS.

4.1 Reflected XSS discovery

The developed testing methodology revolves around the idea that, in order to
prove that the web application is affected by an XSS vulnerability, the goal is to
make some reflected javascript code be executed by the browser. Penetration
testers often attempt to get a Proof of Concept of the attack, by making the
browser pop up an alert message, using the string “alert(1)”.
After sending this string within an HTTP request, a vulnerable web application
provides observations that penetration testers use to their advantage in order to
build a proper attack payload, such as the popular <script>alert(1);</script>
or onerror=“alert(1);”.
Such a process is sequential in nature and has the purpose of unveiling, through
a series of requests, parameters that guide the penetration tester towards the
discovery of the vulnerability. Such parameters are the following:

4.1. REFLECTED XSS DISCOVERY 35

• the so called “context of reflection", i.e., the location inside the HTML
page where the injected parameter ended up;

• the fact that the current context of reflection does not allow for code
execution;

• the requirement that the injected string must keep some well-formedness
with respect to the context of reflection;

• the consideration that the application might implement filtering policies.

These parameters are leveraged by performing an injection and observing the
related application’s response.
In the next sections, we will better describe the aforementioned parameters and
the effect they have on the discovery methodology.

4.1.1 Reflection Context

Web applications often insert, inside the HTTP response, HTML code crafted
based on user provided inputs that get inserted at specific positions within the
Document Object Model (DOM). If such inputs are not sanitised correctly, an
attacker is able to inject strings that enable javascript code execution in the
client’s browser. The position within the DOM influences the way the attack
string is crafted.

HTML context

user input flows inside the body of an existing HTML tag.

1 <HTML_TAG> user_input </HTML_TAG>

In this case the javascript code must be surrounded by a valid HTML tag, in
order for it to be rendered by the browser. A popular choice among penetration
testers is to surround the “alert(1);” code with the <script> tag, but there are
other options.

HTML attribute field context

user input flows inside the opening of an HTML tag.

1 <HTML_TAG user_input tag_attribute>

36 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

In this context of reflection, it is quite common to have HTML events, that are
“things” that happen to HTML elements. Javascript code can react whenever
such events are triggered. Having the “alert(1);” code be surrounded by an
HTML event such as “onclick”, can make the browser render the injected code.

HTML attribute value context

user input flows inside the value field of an HTML tag attribute.

1 <HTML_TAG tag_attribute="user_input">

Depending on the type of attribute in which the input appears, the penetration
tester can act in different ways:

• HTML event attributes: as stated before, such attributes are already
contexts of javascript code execution, so the attack string does not need
to be modified;

• URL attributes: HTML tag attributes that accept a URL as value. Us-
ing the keyword “javascript:” might lead to code execution;

• Special URL attributes: HTML tag attributes that accept URL values
leading to security issues other than XSS are not taken into considera-
tion;

• Other attributes: these are not execution contexts. Any other HTML
tag attribute can be escaped in order to let the input code flow into a
different reflection context. For specific information on escaping the
current context we refer the reader to section 4.1.2.

HTML comment context

the user input flows inside an HTML comment area.

1 <!-- COMMENT_AREA user_input COMMENT_AREA -->

Neither is this a code execution context, nor a new context can be injected to
let it become one. In such cases the current context of reflection needs to be
escaped.

4.1. REFLECTED XSS DISCOVERY 37

Javascript context

user input flows inside a javascript code area. This is already an execution
context, meaning that the “alert(1);” code might be enough to let the browser
render it. Apart from the input falling directly inside a <script> tag, escaping
actions are usually needed when the actual context of reflection is one of the
following:

- javascript function input parameter;

- javascript variable;

- javascript single line comment area;

- javascript multiple line comment area;

CSS context

user input flows inside a CSS code portion of the HTML page, especially inside
an expression property:

1 css_selector
2 {
3 property_name: expression(user_input);
4 }

or inside CSS properties that take a URL as input value:

1 css_selector
2 {
3 property_name: javascript:user_input
4 }

Code execution within CSS areas is disabled in modern browsers [65]. Still,
such context is taken into account, considering that a target for penetration
testers might also be a system not up to date in terms of security patches [65].

4.1.2 Context Escape

As stated in Section 2, as opposed to early approaches that focused exclu-
sively on the analysis of the reflection context, we base our penetration testing
methodology on more parameters, like, e.g., how to switch from one context
to the other. Some contexts of reflection, in fact, do not allow for javascript
code execution. In these cases, the penetration tester, after figuring out in

38 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

which context of reflection the input flowed, might need to escape it. This
means switching to another context of execution where the injected code can
be rendered by the browser. Techniques that allow to do so, involve the usage
of sequences of characters that close the current context and open a new one.
These are characters that are already inserted, of course, by the application.The
penetration tester injects inputs that prove what happens if those characters are
not correctly handled or sanitised on the server’s side.
Every context of reflection that needs to be escaped is indeed characterised by
some sequences of characters that identify the beginning and end of that con-
text. Hence, the characters injected by the penetration tester aim to close the
current context.
In the following sections, a categorisation of these characters, with respect to
the various contexts of reflection, will be provided.

HTML context escape

whenever the input flows inside an HTML tag, in most cases there is no need
for escaping. A new context of execution, by injecting the <script> tag, is
enough to trigger the vulnerability. The only exceptions concern the reflection
inside tags that do not allow for rendering of javascript code. An example is
the <textarea> tag: strings inside this tag would be ignored by the javascript
engine of the browser. The solution is to escape this context by simply closing
the current tag: </textarea>. This would allow the user input to flow inside a
plain HTML context.

HTML attribute value context escape

for those attributes that are not execution contexts, escaping techniques must
be employed. Usually, a penetration tester would inject characters that al-
low to close the current context and land into the closest context of reflection.
However, if the application allows it, nothing prevents the tester from directly
closing the entire HTML tag and ending up in a plain HTML context.
Under this category fall all those characters that allow to close the context of
the value of a tag attribute:

- double quote character;

- single quote character.

Numerical attribute values are not surrounded by any character.

4.1. REFLECTED XSS DISCOVERY 39

HTML comment context escape

to escape this context, a penetration tester can simply close the HTML com-
ment, using the sequence of characters ‘- ->’. This will result in having the
input string flow into a plain HTML context.

Javascript context escape

escaping a Javascript context becomes necessary when specific sinks prevent
the injected code from being rendered by the browser.
In order:

- variable closing character (double quote or single quote) followed by a
semicolon to escape a javascript variable context;

- a semicolon to escape a numerical javascript variable context;

- function closing characters (double quote or single quote followed by
a closing parenthesis) followed by a semicolon to escape a javascript
function input parameter context;

- single line or multiple line javascript comment to escape a javascript
comment area context.

The non-mentioned contexts in this section are considered not necessary to be
escaped.

4.1.3 Attack string well-formedness

After checking the reflection context and, where necessary, escaping it, the
injected code might still not be executed by the browser. This might happen
because the string injected is not properly rendered by the HTML engine of
the browser. In some cases, in fact, some “fine tuning” on the attack string
becomes necessary. This can be done by injecting other characters that fix the
unveiled errors. Such characters depend both on the context of reflection and
on the escaping strings.
When a new tag is injected in the HTML code (for example, a <script> tag
needed to keep syntactic consistency), the tester typically injects the tag clo-
sure, after the “alert(1);” string. However, there are other cases where the
characters to inject are not as straightforward:

40 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

• when the tag attribute value context is escaped and a new context is in-
jected by inserting an HTML event, a new attribute opening character
(double quote or single quote) needs to be inserted before the javascript
code. This is because these characters are already in the HTML and,
when we escaped the context of reflection, they have been pushed fur-
ther. This causes a syntax error that we need to fix by performing a
balancing of the attack string;

• when the javascript code context is escaped, the injected input is sur-
rounded by javascript code already used by the application. In order to
let the code be executed, a javascript comment character “//" needs to
be used at the end of the attack string, to comment out whatever comes
after;

• when the input is inside a javascript single line comment area, the only
way to have the injected code be executed is to insert a couple of char-
acters, carriage return and line feed. This will make our javascript code
jump to the next line;

• when the javascript comment area is spread across multiple lines, the
context is escaped. In these cases it is necessary to make the code jump
to the next line by inserting carriage return and line feed characters.
Moreover, escaping such a context automatically uncomments the code
that was already present in the HTML page. In order to restore every-
thing to the state before the injection, a new opening javascript comment
(/*) character can be inserted after the “alert(1);” code.

4.1.4 Filtering Policies

At each step the application might implement filtering techniques that strip or
sanitise some of the characters described so far. This is not the best course
of action, because such policies can be eventually defeated. The only recom-
mendation which has proven to be effective against XSS attacks is to escape
the inputs provided by the user. However, the penetration tester can notice the
presence of such policies after sending the attack string to the application and
realising it did not have the expected outcome.
A thorough characterisation of filtering techniques is out of the scope of this
thesis. However, we do take into account some cases where the characters
described are treated differently by the application. For example, when the
penetration tester injects a double quote character but the attribute tag value

4.2. ENVIRONMENT SETUP 41

context is not escaped. In this case the next attempt would be to inject a single
quote character.

4.2 Environment setup

In this section we will describe the design of an ad hoc reinforcement learn-
ing environment that enables training of an intelligent agent to produce attack
strings, according to the guidelines outlined in section 4.1.

4.2.1 Background

In the standard reinforcement learning model, an agent interacts with an en-
vironment by performing actions. At discrete time steps, the agent receives
as input the current state of the environment and chooses an action. The ac-
tion changes the state of the environment: a value associated with the state
transition is transferred back to the agent using a reinforcement signal, called
“reward". The goal for the agent is to find a policy π(s | a) that maps a state
s to a probability distribution over actions a in order to maximise the long-
run expected reward. Reinforcement learning agents, especially in the field of
computer science, learn through trial-and-error, adjusting the policy based on
the results of so called episodes of training, which are sequences of state-action
pairs [66].
An environment is represented in the form of a Markov decision process and
algorithms to learn optimal behaviours come from the field of dynamic pro-
gramming [67].
Q-Learning is a type of model-free reinforcement learning, in the sense that it
does not rely on a representation of the environment in the form of a mathe-
matical model [68]. It allows to learn estimates for the optimal value of each
action, as the expected sum of future discounted rewards. Given a policy π, an
estimate of the optimal value of an action a in a state s is

Qπ ≡ E[R1 + γR2 + ... | S0 = s,A0 = a, π]

where γ ∈ [0, 1] is a discount factor that takes into account the trade off
between immediate and future rewards. The optimal value is Q∗(s, a) =
maxπ Qπ(s, a). Selecting the highest valued action in each state, determines
an optimal policy [69].
The purpose of the testing methodology defined in section 4.1, was to cut down
to pieces the way a penetration tester behaves and simplify actions enough in

42 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

order to let an intelligent agent learn them. Training an intelligent agent to
complete vulnerability detection tasks, requires modeling a novel state and ac-
tion space.

4.2.2 State space

The state consists of an attack string. An attack string is subdivided into five
sections, each of them having a direct reference to one of the steps in the
detection methodology. Sorted from the beginning of the string on the left, to
the end on the far right, the identified sections are listed below:

• PreContext: the section where the agent places the characters used to
perform context escaping;

• Context: the section where the agent places keywords responsible for
injecting a new context of reflection;

• PreExploit: a section that precedes the javascript code, in order to main-
tain well-formedness across the characters of the string;

• ExploitCode: the section where the agent places the javascript code to
be executed (e.g., “alert(1);”);

• PostContext: a section that comes after the javascript code, in order to
keep well-formedness across the characters of the string.

Fig. 4.1 is an example of the deconstruction of an attack string into the afore-
mentioned five sections. This preprocessing operation is performed before the
training for all the attack strings taken into consideration as part of the envi-
ronment.

Figure 4.1: State structure

4.2. ENVIRONMENT SETUP 43

4.2.3 Action Space

An action consists in the act of modifying one and only one of the five sections.
It can be considered as a function that accepts two input parameters: the sub-
string to insert and the section where to insert it. To identify the substrings that
fill each section of the state, a deconstruction of attack strings was performed.
The “empty string” is considered among the list of substrings that modify the
state. An action that places an empty string in a section of the state, signifies
that the attack string did not need to be modified.
Thanks to this definition of the action space, we allow the agent to modify only
one portion of the string at a time. In this way, we can correlate the feedback
provided by the application with the action performed on the string. The num-
ber of substrings found during the preprocessing directly influences the state
space dimensionality, that can be computed as

5∏
n=1

Sn

where S is the number of substrings and n is the number of sections. This
definition of the state and action space is prone to explosion. We tackle this
issue in the evaluation section and show how it can be taken under control with
the appropriate precautions.

4.2.4 WAVSEP

As thoroughly explained in Chapter 3, the Web Application Vulnerability
Scanner Evaluation Project is a vulnerable web application designed to help
assess the accuracy of automated vulnerability scanners. It covers multiple
types of injection vulnerabilities. For each one of them, it encompasses several
exploit techniques, providing also a technical explanation for the applied so-
lution. Regarding Reflected XSS vulnerabilities, the different exploit methods
are separated basing on the context of reflection. This approach adheres well
with the environment definition proposed in this work, reason why WAVSEP’s
test cases were chosen as training data for the reinforcement learning agent.
Although being an important open-source platform for the assessment of vul-
nerability scanners, the project is outdated. New test cases were introduced in
order to keep the training data up to date with the current state of the art.
The newly introduced test cases cover the following contexts of reflection:

• HTML Attribute Name (1 test case);

44 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

• HTML Attribute Value (7 test cases);

• Javascript code (1 test case);

• Javascript function (2 test cases);

• CSS (1 test case);

• CSS comment (1 test case);

A number of 13 new test cases is added to the previous 24, for a final amount
of 37.

4.2.5 Training

The first thing the agent has to do, in order to complete an XSS-reflected detec-
tion task, is to learn how to produce an attack string starting from the substrings
and the sections identified. To fulfil this requirement, we noticed that a pene-
tration tester performs different sequences of actions depending on the context
of reflection of the string. This happens because the causes for XSS vulnerabil-
ities are different and so are the attack strings needed to prove their existence.
We decided to identify each attack string as the goal to reach for an agent
during each training session. This results in a multiobjective environment: an
agent is trained to reach different objectives, on the same environment. Ta-
ble 4.1 shows some of the goals of the training sessions.
In section 4.3, we will discuss how the learned actions can be translated -
thanks to the support of a human - into sequences of actions against the web
application.

We apply standard Q-Learning to train the agent: the agent transitions
states, performing actions. Executing an action in a state provides the agent
with a reward. An ε-greedy exploration strategy was selected. The discount
factor γ is set to 0.98, to allow the agent to strive for long-term high rewards.
The learning rate α is set to 0.05.
Reward function. At this stage, we want the agent to:

- learn how to place a substring in the right section;

- learn how to perform a sequence of actions that lead to the construction
of an attack string.

The described good actions will belong to subset A1. In order to let the agent
learn the best actions autonomously, we need to provide:

4.2. ENVIRONMENT SETUP 45

Objective Final State

HTML {"PreContext": "", "Context": "<script>",
"PreExploit": "", "ExploitCode": "alert(1);", "PostContext":
"</script>"}

HTML tag {"PreContext": "</textarea>", "Context": "<script>", "PreExploit": "",
"ExploitCode": "alert(1);", "PostContext": "</script>"}

HTML
comment

{"PreContext": "–>", "Context": "<script>", "PreExploit": "", "Exploit-
Code": "alert(1);", "PostContext": "</script>"}

URL attribute {"PreContext": "", "Context": "javascript:",
"PreExploit": "", "ExploitCode": "alert(1);", "PostContext": ""}

tag
attribute

{"PreContext": ""̈, "Context": "onerror=", "PreExploit": ""̈, "Exploit-
Code": "alert(1);", "PostContext": ""}

attribute
filtering

{"PreContext": "’", "Context": "onerror=",
"PreExploit": "’", "ExploitCode": "alert(1);", "PostContext": ""}

javascript variable
single quote

{"PreContext": "’;", "Context": "",
"PreExploit": "", "ExploitCode": "alert(1);", "PostContext": "//"}

javascript variable
double quote

{"PreContext": "”;", "Context": "", "PreExploit": "", "ExploitCode":
"alert(1);", "PostContext": "//"}

javascript numeri-
cal variable

{"PreContext": ";", "Context": "", "PreExploit": "", "ExploitCode":
"alert(1);", "PostContext": "//"}

javascript single
line comment

{"PreContext": "", "Context": "", "PreExploit": "%0A%0D", "Exploit-
Code": "alert(1);", "PostContext": ""}

javascript multi
line comment

{"PreContext": "*/", "Context": "", "PreExploit": "%0A%0D", "Ex-
ploitCode": "alert(1);", "PostContext": "/*"}

Table 4.1: Some objectives of training

46 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

- a constant, positive reward when the agent places a substring in the right
section;

- a variable, positive reward, that increases as the string gets closer to the
objective.

Because there are five sections of the attack string to fill, the ideal scenario is
that the agent performs a sequence of five actions. Depending on the objective
to reach, the attack string might find itself in a range from zero to five steps
distant from the final one, with zero being the complete attack string and five
being a completely wrong attack string.
In addition, we need to:

- discourage the agent from performing an action that places the wrong
substring in a section, according to the attack string currently under con-
struction. These actions will belong to the subset A2.

- discourage the agent from distancing the string from the final one, by
performing an action that invalidates a good action performed in one of
the previous steps. These actions will belong to the subset A3.

This results in providing an agent with:

- a constant, negative reward when a bad action is performed, but does not
modify those sections that were already in their optimal state;

- a constant, negative reward when an action that makes the string regress
one step back from the final one, is performed.

Given an action a, the piecewise reward function (y) is represented as follows:
a ∈ A1 =⇒ y = 10 + 2x 1 ≤ x ≤ 5

a ∈ A2 =⇒ y = −µ1 µ1≫1

a ∈ A3 =⇒ y = −µ2 µ2 < µ1

where x is a variable that represents the number of sections already in their
desired state.

4.3. AGENT ORCHESTRATION THROUGH HUMAN INTERACTIONS47

4.2.6 Simulated Gym environment

The RL environment described in this section was implemented in a simulated
form, using the OpenAI Gym1 toolkit. Expert demonstrations were conducted
on WAVSEP test cases, in order to record observations. For each objective of
training, such observations were implemented in a simulated environment. In
particular, each section of the attack string has an associated observation:

• isEscaped, associated with the PreContext section. If true tells the agent
the escaping was correctly performed;

• isContextOfExecution, associated with the Context section. If true tells
the agent the current context allows execution of javascript code;

• isPreExploitFixed, associated with the PreExploit section. If true tells
the agent the attack string is well formed;

• isExploitCodePresent, associated with the ExploitCode section. If true
tells the agent the javascript code is present in the string;

• isPostContextFixed, associated with the PostContext section. If true
tells the agent the attack string is well formed;

In this environment, an agent modifies one section of the attack string at a
time. At first, the agent selects substrings more randomly and accumulates
rewards. Then, as ε decreases, the agent chooses correct actions that allow it
to get closer and closer to the objective.

4.3 Agent orchestration through human interactions

In this section, we discuss the development of a tool called Suggester, that sup-
ports penetration testers in the discovery of Reflected XSS vulnerabilities.
Woolridge in [70] makes a difference between Intelligent Agents and Expert
Systems on the basis of their autonomy: Intelligent Agents interact directly
with an environment and get their information via sensors, whereas Expert
Systems provide advice to users who act as middle men. However, the author
states that “despite these differences, some expert systems, (particularly those
that perform real-time control tasks), look very much like agents" [70]. Basing
on this definition, our approach, at first sight, seems to fall under the category

1https://gym.openai.com/

48 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

Figure 4.2: Intelligent Suggester architecture

of Expert Systems, having to rely on human interactions to collect observa-
tions from the real environment. However, the Suggester has been designed
with the rationale of solving a live task, with suggestions put into practice by
users who collect information that make the agent change its internal state.
This is opposed to an Expert System, which is inherently disembodied and
does not directly interact with an environment. Moreover, the architecture of a
so called Intelligent Agent, well adheres to the Reinforcement Learning frame-
work, where an agent explores an environment by directly interacting with it.

4.3.1 Architecture

Figure 4.2 shows the overall architecture of the Suggester. The agent rec-
ommends the first action, in the form of an attack string. Users translate the
suggested action in an HTTP request sent to the vulnerable web application.
Then, the agent provides a list of possible observations. Users inspect the
web application’s response and select the observation that matches the results
seen in the response. The selected observation allows the agent to set the right
attack objective. As discussed in section 4.2.5, the output of the training is

4.3. AGENT ORCHESTRATION THROUGH HUMAN INTERACTIONS49

represented by Q-tables, one for each attack objective. Each Q-table encodes
the agent’s desired behaviour for the respective objective. The next action to
suggest is selected by performing a lookup in the current Q-table.
In order to perform a lookup, the agent needs to know the following state in-
formation:

- the current attack string, which allows to select a row of the Q-table;

- the section of the attack string to be modified next.

The process that allows the agent to modify the right section of the string is
described in Figure 4.3. At each time step, the agent keeps track of the section
that is currently being modified. In fact, the name of each state corresponds
to a section of the attack string, with exception of the initial state, where the
string is still empty. The specific sequence of states is based on the method-
ology described in section 4.1. In fact, starting from an empty attack string,
penetration testers would

1. inject an exploit code, to check if the input flows in a reflection context
where javascript code is executed;

2. escape the current context of reflection, to let the input flow in a new
reflection context;

3. inject a parameter that represents a new context of javascript execution;

4. complete the injection of a new context of javascript execution;

5. fix any syntax error that compromises the well-formedness of the overall
attack string.

If filtering is detected, in any of the states, the Suggester remains in the current
state and provides users with observations that allow to set a new objective.
The described procedure is shared among the separate objectives.

50 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

Figure 4.3: Agent orchestration policy state machine diagram

4.3.2 Bringing it all together

Figure 4.4 shows how the combined action between the Suggester and the user
allows to build an attack payload that proves the existence of an XSS vulner-
ability. In this particular example, the reflection happens inside a “textarea”
tag.

1. The string is empty and has not been sent to the application yet. The
user tells the suggester there are no observations available;

2. The agent suggests to send the string “alert(1);”. The user tells the sug-
gester the reflection happened inside a <textarea> tag. In this reflec-
tion context, javascript code is ignored. Therefore, an escape action is
required, in order to let the injected code flow into one that allows exe-
cution of malicious code;

3. The tool suggests to send the string “</textarea>alert(1);”. In fact, clos-
ing the tag where the reflection happens allows to escape the current

4.3. AGENT ORCHESTRATION THROUGH HUMAN INTERACTIONS51

Figure 4.4: Discovery of reflected XSS with reflection inside an HTML tag.

context. After the string has been sent by the user to the application, the
tool is notified that the context has been escaped and the current reflec-
tion happens in the HTML area;

4. Inside the HTML area, the “alert(1);” code is not executed, unless
it is reflected in a tag where the javascript is not ignored, for exam-
ple a “<script>” tag. In fact the tool suggests to send the string
“</textarea><script>alert(1);” . The user inspects the response and
realises now the injected code is inside a context of execution. However,
the code is not executed yet, because the script tag needs to be closed.
So, the user informs the suggester that a well-formedness error occurred;

5. The tool correctly suggests to close the script tag, by recommending
the following string: “</textarea><script>alert(1);</script>”. After
sending such a string to the application, the user checks whether an alert
popped up in the browser. This represents the final proof that the attack
string worked and the vulnerability has been discovered.

52 CHAPTER 4. A SEMI-AUTOMATED PLATFORM FOR PT

4.4 Limitations and future research

The proposed agent was designed with a hybrid approach that relies on human
intervention just to translate the recommendations of the agent into practical
actions and observations.
However, future research could translate the human interactions into a fully
automated intelligent agent. In particular, a module that sends the suggested
attack strings inside HTTP requests and inspects the related HTTP responses,
looking for the observations defined in Section 4.1, could provide a meaningful
feedback and remove the human from the loop. The use of a headless browser
would allow for the simulation of those javascript events triggered when the
exploit code is executed, therefore ensuring to keep a low rate of false posi-
tives.
Moreover, the agent could also be trained to perform different sequences of
actions, as opposed to the current implementation requiring 5 actions, one per
each section of the attack string.
Since each action is associated with a corresponding HTTP request, such an
improvement would affect the amount of requests performed by the agent, es-
pecially for those attack strings that require minimum modification to reach the
objective. In order to accomplish this task, a way to optimize both parameters
of an action (substring and subsection) needs to be taken into account during
training.

Chapter 5

Towards a fully automated
intelligent agent: the Observer
module

This chapter describes the design and implementation of a module called “Ob-
server”, which is responsible for sending HTTP requests and analyze the re-
sponse looking for observations. It is a fundamental feature for a modern re-
inforcement learning environment, because it allows agents to interact with it
using a standard interface. It represents the first improvement to the archi-
tecture described in chapter 4, effectively enabling the realization of a fully
automated intelligent agent.

5.1 General Architecture

Once the agent is trained, it is able to provide the best action to be performed
in any given state. Since filtering policies and partial input sanitization could
affect the choice of the best action to perform (i.e., sub-string to insert and
the section where to insert it), it is necessary to have an observation module
that recognizes the effect of the payload inside the reflection context. It is
possible to see the Observation module as a sensor that provides the agent with
real world information in order to perform an action. The observation module
can return a positive feedback that means the payload properly worked, and
a negative one that means the payload did not work as it was supposed to
do. For example, after filling in the Pre-Context section in order to escape

53

54 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

the reflection context, the observation module checks if the Pre-Context string
properly worked and the remaining part of the payload flows in a new reflection
context. Based on the Observation feedback, the agent changes the state and
selects the next action.
The 5.1 summarizes this concept.

Figure 5.1: User input reflection

In order to understand whether the performed action was successful or not,
the observer module provides one out of the three following feedbacks:

• Green: positive feedback, action successful (e.g., original reflection
context closed, new JavaScript sink opened, no syntax errors hinder the
JavaScript execution, JavaScript code properly executed or JavaScript
sink properly closed).

• Orange: mixed feedback. The corresponding section of the state is in
the right state but the remaining sections are not correct as of yet.

• Red: negative feedback, action not successful. The corresponding sec-
tion is wrong and would never work in the current reflection context.

5.2. OBSERVER INTERFACE 55

Because a state id made up by 5 separate sections, each section requires its
own feedback signal. This structure represents an Observation. It is what the
agent expects to receive from the observer after every HTTP request is sent to
the web server under test.
The next paragraphs describe the Observer module design in detail.

5.2 Observer Interface

The main goal of the Observer module is to provide a feedback to the agent.
That feedback reports to the agent if its action had an impact on the web ap-
plication and if this impact can lead to the discovery of an XSS vulnerability.
In order to produce the observation, the Observer module offers the “observe”
function. The function needs two parameters from the environment:

• HTTP response: The HTTP response generated from the web applica-
tion to the agent’s request. This is provided to the Observer as a string;

• Payload: This is the state; that is the payload sent from the agent to
the web application. This must be provided to the Observer as a JSON
formatted string. The string is a JSON object with five fields, one for
each sub-section. An example is shown in fig. 5.2.

Figure 5.2: JSON payload string

The Observer interface will provide the following function:

ReflectionFeedback[] observe(String response, String payload);

Calling this function, the agent is able to check whether the changed section is
in a good state or not. If it worked, the agent can save the sub-section string
in the state and can move forward to the next section. Otherwise, if the sub-
section string did not work, the agent remains in the current state and performs
a new action until a positive feedback is returned. After all the sections are in
a good state, the Observer looks for a proof-of-work for the discovery of the
vulnerability. This is possible, thanks to the “check_code_execution” function.
The function needs two parameters from the environment:

56 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

• URL: The URL of the vulnerable page;

• Payload: The attack vector. This must be provided to the Observer as a
JSON formatted string. The string is a JSON object with five fields, one
per each section. An example is shown in fig. 5.2.

The Observer interface will provide the following function:

Boolean[] check_code_execution(String url, String payload);

After calling this function, the agent receives an array of two Boolean values:

• The first Boolean value is set to ’1’ if the payload worked on a Firefox
based browser; ’0’ otherwise;

• The second Boolean value is set to 1 if the payload worked on a
Chromium based browser; ’0’ otherwise.

Figures 5.3 and 5.4 show the complete Observer interface.

Figure 5.3: Observer class

Figure 5.4: Observer interface

5.3. OBSERVER DOMAIN MODEL 57

5.3 Observer Domain Model

According to the Software engineering principle of loose coupling and high
cohesion, the Observer module is devided in sub-modules. Since the Obser-
vation is composed of five feedbacks, it comes natural to divide the Observer
module into five sub-modules, each one responsible for the corresponding pay-
load section. Such five modules rely on a separate component that is able to
capture the reflection context of a string inside the HTML response. At last,
a dedicated component is responsible for the code execution checking. The
Observer Domain Model is shown in fig. 5.5.

58 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Figure
5.5:

O
bserverD

om
ain

M
odel

5.3. OBSERVER DOMAIN MODEL 59

Below, in table 5.1 there is a brief description of the classes:

Class Description
WAPT_Observer Class that exposes the methods to allow

the Agent to obtain a feedback from the
environment.

PreContext_observer Class that checks if the PreContext
string closed the current reflection con-
text, if needed.

Context_observer Class that checks if the Context string
opened a new reflection context.

PreExploit_observer Class that checks if the reflected string
caused a syntax error in the reflection
context.

ExploitCode_observer Class that checks if the ExploitCode
string ended in a JavaScript sink con-
text.

PostContext_observer Class that checks if the JavaScript sink
used is properly closed.

ReflectionContext_observer Class that looks for string reflection in
the HTTP response and returns a list of
Reflection objects.

Reflection Class that models a single Reflection.

Selenium_checker Class that looks for a proof-of-work. It
checks if the payload actually opened a
pop-up window in the browser.

Table 5.1: Observer Domain Model classes

60 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

5.4 Observer Execution Flow

Once we divided our Observer module in sub-modules, it is useful to explain
how sub-modules cooperate in order to achieve the goal that underlies the Ob-
server module interface. In this section, the following functionality is further
explained:

• create an observation according to the guidelines described in the Gen-
eral Architecture section;

• test the final payload string and create an XSS proof-of-work.

Two design level sequence diagrams are provied, one for each main feature
exposed in the Observer module’s interface.

5.4. OBSERVER EXECUTION FLOW 61

Fi
gu

re
5.

6:
ob

se
rv

e
de

si
gn

se
qu

en
ce

62 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Fig. 5.6 shows the high level sequence diagram of the “observe” function.
As we already said, there is a dedicated sub-module for each payload section
to check. The ‘observ” function stores a data structure containing the feedback
provided by the five sub-modules. This data structure is the final observation
returned to the agent.

Figure 5.7: check_code_execution design sequence

Fig. 5.7 shows the high level sequence diagram of the
“check_code_execution” function. This function instantiates a “Sele-
nium_checker” object for each supported browser. The “ultimate_check”
function of the “Selenium_checker” object is called in order to check whether
the browser actually opened a pop-up window.

5.5 Design Decisions

In this section the decisions undertaken during the design of the Observation
module as well as the motivation behind them are summarized.

• Test Driven Development: the module is developed using the Test Driven
Development approach.

• Training Set: a custom version of WAVSEP benchmark as training set
for the intelligent agent is used. The goal is to cover all of the reflection
contexts.

5.6. IMPLEMENTATION 63

• Number of reflections: One user input can be reflected in multiple points
of the web page and so in more than one reflection context. The module
takes into account all reflections of the user input. Therefore, it returns
a positive feedback if the payload worked for at least one reflection;

• The use of a headless browser: The reflection of user inputs is a nec-
essary yet not sufficient condition for the XSS vulnerability. Instead of
looking only for the reflected user input in a JavaScript sink, the observer
is able to supply a real proof-of-concept to the Agent by using a head-
less browser. This is handled by the “check_code_execution” function
by instantiating an object that, using Chrome or Firefox drivers, looks
for a pop-up window opened by the attack payload.

5.6 Implementation

The Observer module is implemented using python 3.6. The use of this pro-
gramming language allowed to adopt methodologies like Test Driven Devel-
opment and Continuous Integration. It is not mandatory to use python for Test
Driven Development and Continuous Integration; however, Python offers an
already mature development platform that allows to:

1. create virtual environments to manage all module’s dependencies. We
used Python venv.

2. run tests locally before committing to the mainline. For automated tests
we used python pytest.

5.7 Class diagram

Figure 5.8 shows the implementation level class diagram. In such a diagram,
the relations among classes remain the same as those of the design level. The
same is true for the interfaces. In particular, new private functions are added to
“ReflectionContext_observer”, one responsible for each supported reflection
context. The supported reflection contexts are explicitly indicated in their enu-
meration class, as well as the relative escape contexts techniques implemented.

64 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Figure
5.8:

O
bserverIm

plem
entation

M
odel

5.7. CLASS DIAGRAM 65

Figure 5.9: Reflection contexts in detail

66 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

5.8 ReflectionContext_observer class

The main class, upon which the entire module depends, is the ReflectionCon-
text_observer class. This class is used by other classes to detect if a section in
the payload was correctly filled. The class exposes three public functions:

• observe_perfect_reflection(response, payload);

• observe_reflection_context(response, payload);

• observe_escape_context(response, payload);

They all return a list of Reflection objects, but they carry different responses.
The “observe_perfect_reflection” function fills out a Reflection object for each
user input reflection found inside the web page response. Such objects sig-
nal the presence or absence of reflection and the reflection index. The “ob-
serve_reflection_context” function performs the same actions as the previous
function and it also reports the reflection context of the reflected user input.
The “observe_escape_context” function performs the same actions as the pre-
vious function and it also reports the escape context technique to use.
The main feature of the ReflectionContext_observer class is the ability to find
the user inputs reflected in the web page response and also to figure out the
reflection contexts.
In order to find reflection contexts, we used the XPath query language. This
language gives us the ability to find out not only the HTML node in which the
user input is reflected, but also its position inside the node. Table 5.2 shows
the XPath query used for basic reflection contexts:

Reflection Context XPath query

Simple HTML xpath="//*[contains(text(), ’"+input+"’)]"

HTML tag xpath="//*[contains(text(), ’"+input+"’)]"

HTML Attribute
Name

xpath="//*"

HTML Attribute
Value

xpath="//*[@*[contains(.,’"+input+"’)]]"

5.8. REFLECTIONCONTEXT_OBSERVER CLASS 67

HTML Comments xpath="//*[comment()[contains(.,"́+input+")́]]"

JavaScript Combination of XPaths

CSS Context Combination of XPaths
Table 5.2: XPath queries

Such XPath queries are used to retrieve the reflection context. Further
analysis is needed to retrieve the specific reflection context. Next sections will
explain this aspect.
In order to use the XPath queries, the “lxm” library was used. This library
gives us the ability to construct an HTML tree data structure from the web
page response. Once we have the tree data structure of the HTML page, we
can perform the XPath query on the HTML tree. The use of an XPath query is
shown in the following code snippet.

1 from lxml import etree
2 from lxml import html
3

4 def check_generic_reflection(self, response, payload):
5 answer = []
6 tree = html.fromstring(response)
7 xpath = "XPath_query_from_table"
8 search = tree.xpath(xpath)
9 for element in search:

10 if condition:
11 r = Reflection()
12 r.set_perfect_reflected(True)
13 r.set_reflection_tag(element.tag)
14 r.set_reflection_context(ReflectionContext.Generic)
15 answer.append(r)
16 return answer

Listing 5.1: Detection of generic reflection

In the snippet 5.1 the “ReflectionContext.Generic” and the “if condition” are
just examples since they are different for every reflection context. Let us
now take a look at the sequence diagrams of the private "ReflectionCon-
text_observer" functions.
In Fig. 5.10, Fig. 5.11, Fig. 5.12 and Fig. 5.13 we can see that the logic to

68 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

retrieve, respectively, a SimpleHTML, HTMLTag, ScriptTag and a CSS reflec-
tion context is quite similar:

1. First use the lxml library to obtain a tree-like representation of the
HTML page;

2. Use the respective XPath query according to the context we are looking
for;

3. For each element returned by the lxml library, check if the html tag
where the user input is reflected is respectively a “body” tag, a normal
tag, a “script” tag or a “style" tag;

4. If the element meets the condition, then a new Reflection object is cre-
ated and added to the answer list.

Figure 5.10: check_simpleHTML sequence diagram

5.8. REFLECTIONCONTEXT_OBSERVER CLASS 69

Figure 5.11: check_HTMLTag sequence diagram

Figure 5.12: check_scriptTag sequence diagram

70 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Figure 5.13: check_CSS sequence diagram

In Fig. 5.14 the sequence diagram shows how to retrieve the HTMLComment
reflection context. In this case the XPath query is accurate enough, so that an
additional check over the Element list returned by the lxml library is unneces-
sary. For each element of the list a new Reflection object can be created.

Figure 5.14: check_HTMLComment sequence diagram

5.8. REFLECTIONCONTEXT_OBSERVER CLASS 71

In Fig. 5.15 and Fig. 5.16 a different logic for attribute name and attribute
value contexts can be noticed. In such contexts, the reflection is not inside the
node text, but rather inside the node specification. In particular, the reflection
is respectively in the name or in the value of the node attribute. Since each
element returned by the lxml library is actually an HTML node, one more
“for” loop is needed in order to inspect all the attributes of the node.

Figure 5.15: check_attributeName sequence diagram

72 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Figure 5.16: check_attributeValue sequence diagram

In fig.5.17 we can see how to retrieve a JavaScript context. A JavaScript
context can be opened in two ways: through either a “script” tag or an
event handler of any HTML tag. This double check is visible in the
“check_javascript” sequence diagram.

5.9. SELENIUM CHECKER 73

Figure 5.17: check_javascript sequence diagram

Once the reflection context is identified, Regular Expressions (RegEx) al-
low to find the right pattern that allows to escape or to open an HTML context
inside the payload sections.

5.9 Selenium Checker

A dedicated class is used to provide proof of the effective execution of the
final attack payload. In order to achieve such a goal, a Headless browser is
needed. Among the available headless browsers, Selenium is the preferred
choice. In fact, it allows to emulate some human interactions with the browser
(e.g., mouse click, onmouseover, onresize, etc.). This feature allows to test all
of the available payloads and reduce the false negatives rate. Another feature
we appreciated is the opportunity to read the text inside an alert message. This
lets us reduce the possibility to fall in a false positive result.

74 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Since Selenium headless browser is used to perform such actions, the class is
called “SeleniumChecker”. This class implements the “ultimate_check” func-
tion that is called by the “check_code_execution” function of the Observer in-
terface. The “ultimate_check” function receives as input a URL and a payload
to test. For each supported browser (e.g., Chrome and Firefox), the function
performs an HTTP request to the web page. Before looking for a pop-up win-
dow, the function performs a mouse click on each button and a mouse-over
action over each HTML element with an “onmouseover” attribute. At this
point, if the payload worked, an alert pop-up should be visible. Figure 5.18
shows the sequence diagram of the "ultimate_check" function.

5.9. SELENIUM CHECKER 75

Figure 5.18: ultimate_check sequence diagram

76 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

5.10 Deploy

A container-based testbed, using Docker, to test the automated XSS scan-
ner against a benchmark platform was engineered. The advantages of using
Docker containers instead of virtual machines are the following:

• a more flexible environment;

• a lighter environment with a faster boot-up phase;

• high maintainability.

In particular, four docker containers are defined:

• one container for the Observer module;

• one container for the target web application;

• one container for a Chrome browser;

• one container for a Firefox browser.

The micro-services architecture we wanted to produce is shown in fig. 5.19.

Figure 5.19: micro-services architecture

5.10. DEPLOY 77

While the containers with Chrome and Firefox browsers and related Sele-
nium drivers are available, a container for the Observer was defined, as well as
one for the target web application, using the Dockerfile syntax. The following
code snippet is the Dockerfile used to build our custom WAVSEP container.

1 FROM ubuntu:14.04
2

3 # Update Ubuntu
4 RUN apt-get update
5 RUN apt-get -y upgrade
6

7 # Install Oracle Java
8 RUN apt-get -y install openjdk-7-jre
9

10 # Install wget
11 RUN apt-get -y install wget
12

13 # Install tomcat
14 RUN mkdir /opt/tomcat/
15 WORKDIR /opt/tomcat
16 RUN wget https://mirror.nohup.it/apache/tomcat/tomcat-8/v8

.5.54/bin/apache-tomcat-8.5.54.tar.gz
17 RUN tar xvfz apache-tomcat-8.5.54.tar.gz
18 RUN mv apache-tomcat-8.5.54/* /opt/tomcat/.
19

20 # Download WAVSEP
21 WORKDIR /opt/tomcat/webapps
22 COPY ./wavsep /opt/tomcat/webapps/wavsep/
23

24 # We connect to this application on port 8080
25 EXPOSE 8080
26

27 # Start Tomcat
28 CMD ["/opt/tomcat/bin/catalina.sh", "run"]

Listing 5.2: WAVSEP Dockerfile

A similar process was used to create the container for our tool.
1 FROM python:3
2

3 COPY ./WAPT_observer/ /usr/src/app
4 WORKDIR /usr/src/app
5

6 RUN pip3 install -r requirements.txt
7

8 CMD python3 wavsep_test.py

Listing 5.3: WAPT_Observer Dockerfile

78 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

In order to define the architecture, configure the application’s service depen-
dencies and run the entire architecture, docker-compose was used. docker-
compose is a tool for defining and running multi-container Docker applica-
tions. Once the containers configuration is defined, with a single command it
is possible to create and start the services.
The following code snippet describes the docker-compose architecture.

1 # docker-compse.yml
2 version: ’3’
3

4 services:
5 selenium-firefox:
6 image: selenium/standalone-firefox
7 expose:
8 - 4444
9 logging:

10 driver: "none"
11

12 selenium-chrome:
13 image: selenium/standalone-chrome
14 expose:
15 - 4444
16 logging:
17 driver: "none"
18

19 wavsep-xss:
20 image: rznanni/wavsep_xss
21 expose:
22 - 8080
23 logging:
24 driver: "none"
25

26 observer:
27 image: rznanni/wapt_observer_test
28 depends_on:
29 - selenium-firefox
30 - selenium-chrome
31 - wavsep-xss

Listing 5.4: Docker Compose architecture

Fig.5.20 shows a portion of the docker-compose output.

5.10. DEPLOY 79

Fi
gu

re
5.

20
:D

oc
ke

rC
om

po
se

ou
tp

ut

80 CHAPTER 5. INTERACTIONS WITH AN RL ENVIRONMENT

Chapter 6

Fully automated reinforcement
learning agent

This chapter describes the implementation of a reinforcement learning
environment for the discovery of Cross-Site Scripting vulnerabilities. It also
shows how to integrate the Observer module described in Chapter 5 with the
Suggester module described in Chapter 4 in order to create a fully automated
intelligent agent. At first, the design will be presented, then the low-level
implementation details will be shown. Everything will be documented using
the UML style of code documentation, both from a static point of view,
using Class Diagrams, as well as by showing the execution flow of the
main functions through Sequence Diagrams. Finally, a summary of the tests
performed will be shown.

The presented methodology is implemented in Python 3.8. The choice of
this programming language is linked to the use of Test-Driven Development
and Continuous Integration (CI). In addition, Python offers sophisticated
libraries and tools that allow to:

1. create a virtual environment in order to manage the module dependen-
cies in isolation. venv is the tool used to keep the development environ-
ment isolated from the underlying system;

2. run tests locally before committing to the main development branch.
pytest is the tool used to create and run automated test batches.

81

82 CHAPTER 6. FULLY AUTOMATED RL AGENT

6.1 Project design

The developed code is object-oriented with a design aimed at generality and
extensibility.

In the literature there is an archive of environments and respective agents
of RL called OpenAI Gym 1. This is a collection of games turned into
environments that Reinforcement Learning agents can interact with. Gym
environments have an object-oriented interface, so that, in many cases, they
can be used as a basis for the development of inherited environments. Many
works in the literature are based on Gym object-oriented definitions, including
those presented by Anderson et al. in [71] and by Wu et al. in [72] in the
field of malware detection. This enables integration with those algorithms
compatible with Gym.

In order to comply with the principles of software engineering, such as,
for example, loose coupling and high cohesion, the implemented classes
are self-dependent. Interaction with objects outside of the class is gener-
alized by using the Factory Pattern, a design pattern that parameterizes
the creation of an object, through the Factory Method. This makes the
object creation logic invisible to the class. Then the object is provided
to the class through a common interface. This allows to keep the main
classes independent from the implementation of the other classes used, and
from the management of external files. Core classes use factory methods
to get a generic instance of an element without knowing how it is implemented.

In the work presented, the external data sources are CSV (Comma-separated
value) files, these being easily manageable through the standard Python
libraries. Using the factory methods and intermediate interfaces, one can
easily add support to other formats without changing the rest of the code. This
is done by creating a class that implements the interface and uses the factory
method to create the object.

Figure 6.1 shows the design Class Diagram for the implementation of the
Environment. As a design class diagram, it only shows high-level features and
relationships.
The Environment class creates and manages the State and Objective classes.
In the model designed there is the elementary entity BasicElement which

1https://gym.openai.com/

6.1. PROJECT DESIGN 83

represents one of the sub-strings that can be inserted in a section. The related
class also maintains information about the description and test-coverage.

The sections to split the payload into are set via the SectionName enu-
meration type. This is the only object to modify if one wishes to add or
remove sections. A CSV file is provided for each section, representing the
tables shown in section 4.2.2: each row corresponds to a BasicElement. The
class that interfaces with external files is CSVSectionStrings, which uses the
Python libraries to handle CSV files. This has a ComposedElement object
which represents the set of substrings of the section.

The Environment class needs to know the sections and their substrings,
but it does not need to know how these data are represented in memory. Using
the SectionFactory class one gets a set of SectionStrings which represents a
set of sections with their substrings.

The environment has a state and this is represented by the State class.
This class is a composition of sections. The sections are implemented through
the class Section which represents the pair nameSection-substring.

The environment, upon creation, receives an objective as input parame-
ter. The objectives are provided via CSV files, one for each row of table 6.2
below. The logic is the same as presented for SectionStrings objects.
The Objective interface is a specialization of the State class. This is because
an objective is to be considered as a successful final state. The objective
also carries additional information, such as the reflection context and the
optimal sequence of sections to be modified. Such information is only used
to categorize the several available objectives. They are never provided to
the agent during training, as this would violate the very foundation behind
reinforced training.

6.1.1 Agent

Figure 6.2 shows the design Class Diagram for the Agent implementation.
As a design class diagram, again, it only shows high-level features and
relationships.

The Agent class constitutes the entry-point of the developed tool. It
corresponds to the application launcher. It has an Environment object and a

84 CHAPTER 6. FULLY AUTOMATED RL AGENT

Figure
6.1:

E
nvironm

ent-D
esign

C
lass

diagram

6.1. PROJECT DESIGN 85

Learner object.

The Learner object is an interface that must be implemented by the
used learning algorithms. The use of this standard interface and the relative
factory method allows to introduce further learning algorithms without having
to modify the rest of the code.
Since the Agent class is the launcher, it is the one containing the main()
method. Users can customize the execution of the application through the call
parameters. In this way a learning algorithm can be selected. Users can choose
to train an agent either on one specific objective or on all of the available
ones. Users can also decide to test only one policy or all the available ones. In
order to support new attack vectors found in the future, users can introduce a
new objective by following the command line wizard (CLI), and then train the
agent to reach it.

The considered learning algorithms are based on a State-Action func-
tion. This is represented by the StateActionSource interface. It will require
the implementation of the exploit() and explore() methods..

The class diagram shows only the QLearner class as an implementa-
tion of the Learner interface. This has all the parameters and functions to
manage ϵ-decay using the ϵ-greedy algorithm (getAction() method). The
qLearn() function corresponds to the QLearning update function. QLearning
needs the environment to interact with.

QLearning uses the QTable as a representation of the State-Action func-
tion. Therefore the QTable object implements the StateActionSource
interface.
A QTable can be represented in memory in various ways and, to maintain
the extensibility and low coupling of the developed application, the factory
pattern is used: the QTable object is an interface that it is implemented by the
CSVQTable class. The QLearner class will use the QTableFactory class to get
the reference to its QTable.

From a logical point of view, a QTable is a composition of QEntry en-
tities: each QEntry corresponds to a row of the table and is made up of a state
and the list of available actions.

86 CHAPTER 6. FULLY AUTOMATED RL AGENT

The Action class stores the section to be modified, the string to be modified
with and its value.

The Environment class, in addition to the methods seen in the previous
section, also carries the methods used by the agent to interact with the
environment.

6.1. PROJECT DESIGN 87

Fi
gu

re
6.

2:
A

ge
nt

-D
es

ig
n

C
la

ss
D

ia
gr

am

88 CHAPTER 6. FULLY AUTOMATED RL AGENT

6.2 Implementation

This section presents the implementation details of the design shown in the
previous sections.
For the management of CSV files, the CSVUtil class was introduced. This
static method class is used to read or write a CSV file and is used by any class
whose name carries the CSV word as a prefix.

6.2.1 Environment

Figure 6.3 shows the implementation class diagram for the environment.
The specializations of the CSVSectionStrings class, inherent to each section,
have been squashed in a single class, using the type attribute. In fact, the only
distinctive element between the two is the name.

One-to-many associations (1..∗) are replaced by set data structures.
The concrete entity ComposedElement disappears as it is represented by an
array containing the BasicElement objects associated with a section.

To implement the state as an aggregation of sections, a Python dictio-
nary was used, whose keys are the section names, whereas the values are
Section objects.
Similarly the SectionsStrings class was designed as an aggregation of Sec-
tionStrings. The environment has a Python dictionary whose keys are section
names and whose values are instances of the SectionStrings class.

6.2. IMPLEMENTATION 89

Fi
gu

re
6.

3:
E

nv
ir

on
m

en
t-

C
la

ss
D

ia
gr

am
di

im
pl

em
en

ta
zi

on
e

90 CHAPTER 6. FULLY AUTOMATED RL AGENT

6.2.2 Agent

Figure 6.5 shows the implementation class diagram for the realization of the
agent.

The QEntry entity disappears and is replaced by a Python dictionary
whose keys are strings representing states and whose values are lists of
actions. Here is an example:

Key: ’"PreContext": "</textarea>", "Context": "<script>", "PreEx-
ploit": "", "ExploitCode": "alert (1);", "PostContext": "</script> "’
Value: Action_1, Action_2, ..., Action_n

Where each action is composed of a Section, a String and a Value.
This representation is stored in memory via CSV files. Table 6.2.2 shows an
extract.

The reward function in the diagram corresponds to that described in
chapter 4. This is implemented by the getReward() function which uses the
constants and static functions defined within the Environment class. These
constants and functions correspond to the values used for the cases of the
above function. Snippet 6.1 shows the implementation of the reward function.

6.2. IMPLEMENTATION 91

1 def getReward(self, action):
2 if self.phase == 1: ##### REWARD PHASE 1 #####
3 if self.objective.getCorrectString(action.getSection()) ==

action.getString():
4 if action.getSection() in self.missingSections #A1
5 self.missingSections.remove(action.getSection())
6 reward = CORRECT_STRING_NOT_ALREADY_CORRECT_SECTION(len

(ActionName) - len(self.missingSections))
7 else #A2
8 reward = CORRECT_STRING_ALREADY_CORRECT_SECTION
9 else:

10 if not action.getSection() in self.missingSections: #A4
11 reward = WRONG_STRING_ALREADY_CORRECT_SECTION
12 self.missingSections.append(action.getSection())
13 else: #A3
14 reward = WRONG_STRING_NOT_ALREADY_CORRECT_SECTION
15 else: ##### REWARD PHASE 2 #####
16 if self.objective.getCorrectString(action.getSection()) ==

action.getString():
17 if self.missingSections and self.missingSections[0] ==

action.getSection(): #B1
18 self.missingSections.remove(action.getSection())
19 self.order += 1
20 reward = CORRECT_STRING_CORRECT_POSITION(self.order)
21 else: #B2
22 reward = CORRECT_STRING_WRONG_POSITION
23 else:
24 if self.missingSections and self.missingSections[0] ==

action.getSection(): #B3
25 reward = WRONG_STRING_CORRECT_POSITION
26 else: #B4
27 if not action.getSection() in self.missingSections:
28 self.missingSections.append(action.getSection())
29 self.missingSections.sort(key = self.objective.

getPosition)
30 if self.missingSections[0] == action.getSection():
31 self.order -= 1
32 reward = WRONG_STRING_WRONG_POSITION
33 ####### END PHASE 2 ######
34 return reward

Listing 6.1: function getReward()

92 CHAPTER 6. FULLY AUTOMATED RL AGENT

To take into account, during training, how the current state approaches to the
objective, the list missingSections is used, which contains the ordered list of
the sections that are not yet correct. Whenever a correct string is inserted
into a section, it is removed from the list. When a section not present in
missingSections(corrected) is changed to an incorrect string, the section is
reinserted and the sort is restored.
The order variable, used in step two, keeps track of the number of sections
correctly filled in, based on the sort order. This is incremented every time a
correct string is inserted in the section indicated by the first element of the
missingSections list. The variable order is decremented when an already cor-
rected section is modified and, by reinserting the section in missingSections,
it results in the first position.

The Agent class, as seen in paragraph 6.1.1, represents the application
launcher and provides the main() method. Using Python library Argu-
mentParser, the possibility for the user to customize the execution has been
implemented using the parameters shown in the figure 6.4:

Figure 6.4: Application’s help message - supported parameters

6.2. IMPLEMENTATION 93

St
at

e
Pr

eC
on

te
xt

:"
"

...
"C

on
te

xt
":

""
...

"P
re

E
xp

lo
it"

:"
"

...
"E

xp
lo

itC
od

e"
:"

"
...

"P
os

tC
on

te
xt

":
""

Pr
eC

on
te

xt
:"

",
"C

on
te

xt
":

""
,"

Pr
eE

xp
lo

it"
:"

",
"E

xp
lo

itC
od

e"
:"

",
"P

os
tC

on
te

xt
":

""
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
Pr

eC
on

te
xt

:"
",

"C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
"<

/s
cr

ip
t>

"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
Pr

eC
on

te
xt

:"
",

"C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
"/

/"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
Pr

eC
on

te
xt

:"
",

"C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
"/

*"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
Pr

eC
on

te
xt

:"
",

"C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
"’

"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
""

"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
al

er
t(

1)
;"

,"
Po

st
C

on
te

xt
":

""
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
al

er
t(

1)
;"

,"
Po

st
C

on
te

xt
":

"<
/s

cr
ip

t>
"

"0
"

...
"0

"
...

"0
"

...
"0

"
...

"0
"

"P
re

C
on

te
xt

":
""

,"
C

on
te

xt
":

""
,"

Pr
eE

xp
lo

it"
:"

",
"E

xp
lo

itC
od

e"
:"

al
er

t(
1)

;"
,"

Po
st

C
on

te
xt

":
"/

/"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
al

er
t(

1)
;"

,"
Po

st
C

on
te

xt
":

"/
*"

"0
"

...
"0

"
...

"0
"

...
"0

"
...

"0
"

"P
re

C
on

te
xt

":
""

,"
C

on
te

xt
":

""
,"

Pr
eE

xp
lo

it"
:"

",
"E

xp
lo

itC
od

e"
:"

al
er

t(
1)

;"
,"

Po
st

C
on

te
xt

":
"’

"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
",

"E
xp

lo
itC

od
e"

:"
al

er
t(

1)
;"

,"
Po

st
C

on
te

xt
":

""
"

"0
"

...
"0

"
...

"0
"

...
"0

"
...

"0
"

"P
re

C
on

te
xt

":
""

,"
C

on
te

xt
":

""
,"

Pr
eE

xp
lo

it"
:"

’"
,"

E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
""

"0
"

...
"0

"
...

"0
"

...
"0

"
...

"0
"

"P
re

C
on

te
xt

":
""

,"
C

on
te

xt
":

""
,"

Pr
eE

xp
lo

it"
:"

’"
,"

E
xp

lo
itC

od
e"

:"
",

"P
os

tC
on

te
xt

":
"<

/s
cr

ip
t>

"
"0

"
...

"0
"

...
"0

"
...

"0
"

...
"0

"
"P

re
C

on
te

xt
":

""
,"

C
on

te
xt

":
""

,"
Pr

eE
xp

lo
it"

:"
’"

,"
E

xp
lo

itC
od

e"
:"

",
"P

os
tC

on
te

xt
":

"/
/"

"0
"

...
"0

"
...

"0
"

...
"0

"
...

"0
"

...
...

...
...

...
...

...
...

...
...

Ta
bl

e
6.

1:
Q

Ta
bl

e
Sa

m
pl

e

94 CHAPTER 6. FULLY AUTOMATED RL AGENT

Figure
6.5:

A
gent-Im

plem
entation

class
diagram

6.3. OBSERVATION SIMULATION 95

6.3 Observation simulation

As mentioned in section 6.2, the observations obtained through the Observer
module in this work are simulated during training. This allows us to consis-
tently speed up training times. The downfall of this approach is that the test
cases need to be serialized into objects, which requires manual intervention.
The Objective object handles the test cases simulation. It consists of:

• a sequence of sectionName1: string1, sectionName2: string2, ...
which corresponds to the list of correct sub-strings for each section.
When the current state reaches the configuration expressed in the ob-
jective, it means that the payload is functioning correctly.

• an ordered sequence of sectionName1, sectionName2, ... represent-
ing the order of payload changes expected by a given methodology. This
represents the need to modify or add a substring in a section based on an
observation received.

• a reflectionContext representing the key attribute that allows the target
to be selected by the agent when it works in an unknown environment.

The first two elements allow users to simulate, for example, the need to
escape using the PreContext section; then, to inject a new context using the
Context section; to close the context injected via PostContext. In this example
the PreExploit section would be the last section to be modified as it is not
necessary to enter any characters. The exploit would have happened before
having to modify the PreExploit section.
For each test case, this information was manually extracted by applying the
correct exploitation model.

Table 6.2 shows all the objectives identified starting from the WAVSEP
test cases. Each row of the table represents a CSV file which, as mentioned
previously, is managed by the CSVObjective class.

Note that the developed tool allows the manual addition of new simu-
lated objectives, through the CLI interface.

96 CHAPTER 6. FULLY AUTOMATED RL AGENT

O
bjective

O
rder

R
eflection

C
ontext

PreC
ontext:"","C

ontext":"","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":""
E

xploitC
ode,"PreC

ontext","C
ontext","PreE

xploit","PostC
ontext"

JavaScriptC
ode

PreC
ontext:"","C

ontext":"onerror=","PreE
xploit":"’","E

xploitC
ode":"alert(1);","PostC

ontext":"’"
E

xploitC
ode,"C

ontext","PreE
xploit","PostC

ontext","PreC
ontext"

A
ttributeN

am
e

PreC
ontext:"","C

ontext":"<script>","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"</script>"
E

xploitC
ode,"C

ontext","PostC
ontext","PreC

ontext","PreE
xploit"

Sim
pleH

T
M

L
PreC

ontext:"</textarea>","C
ontext":"<script>","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","C

ontext","PostC
ontext","PreE

xploit"
H

T
M

LTag
PreC

ontext:">","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
A

ttributeV
alue

PreC
ontext:"–>","C

ontext":"<script>","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"</script>"
E

xploitC
ode,"PreC

ontext","C
ontext","PostC

ontext","PreE
xploit"

H
T

M
L

C
om

m
ent

PreC
ontext:"","C

ontext":"JavaScript:","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":""
E

xploitC
ode,"C

ontext","PreC
ontext","PreE

xploit","PostC
ontext"

U
R

L
A

ttribute
PreC

ontext:""","C
ontext":"onerror=","PreE

xploit":""","E
xploitC

ode":"alert(1);","PostC
ontext":""

E
xploitC

ode,"PreC
ontext","C

ontext","PreE
xploit","PostC

ontext"
U

R
L

A
ttribute

PreC
ontext:"">","C

ontext":"<script>","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"</script>"
E

xploitC
ode,"PreC

ontext","C
ontext","PostC

ontext","PreE
xploit"

JavaScriptE
vent

PreC
ontext:""","C

ontext":"onM
ouseO

ver=","PreE
xploit":""","E

xploitC
ode":"alert(1);","PostC

ontext":""
E

xploitC
ode,"PreC

ontext","C
ontext","PreE

xploit","PostC
ontext"

U
R

L
A

ttribute
PreC

ontext:"’>","C
ontext":"<script>","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","C

ontext","PostC
ontext","PreE

xploit"
JavaScriptE

vent
PreC

ontext:"’","C
ontext":"onerror=","PreE

xploit":"’","E
xploitC

ode":"alert(1);","PostC
ontext":""

E
xploitC

ode,"PreC
ontext","C

ontext","PreE
xploit","PostC

ontext"
U

R
L

A
ttribute

PreC
ontext:"’","C

ontext":"onM
ouseO

ver=","PreE
xploit":"’","E

xploitC
ode":"alert(1);","PostC

ontext":""
E

xploitC
ode,"PreC

ontext","C
ontext","PreE

xploit","PostC
ontext"

U
R

L
A

ttribute
PreC

ontext:">","C
ontext":"<script>","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","C

ontext","PostC
ontext","PreE

xploit"
JavaScriptE

vent
PreC

ontext:"’;","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
JavaScriptE

vent
PreC

ontext:"");","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
ScriptTag

PreC
ontext:"";","C

ontext":"","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"//"
E

xploitC
ode,"PreC

ontext","PostC
ontext","C

ontext","PreE
xploit"

JavaScriptE
vent

PreC
ontext:"’);","C

ontext":"","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"//"
E

xploitC
ode,"PreC

ontext","PostC
ontext","C

ontext","PreE
xploit"

ScriptTag
PreC

ontext:";","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
JavaScriptE

vent
PreC

ontext:"</style>","C
ontext":"<script>","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","C

ontext","PostC
ontext","PreE

xploit"
H

T
M

LTag
PreC

ontext:"*/</style>","C
ontext":"<script>","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"</script>"

E
xploitC

ode,"PreC
ontext","C

ontext","PostC
ontext","PreE

xploit"
H

T
M

LTag
PreC

ontext:"";","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
JavaScriptE

vent
PreC

ontext:"’;","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
U

R
L

A
ttribute

PreC
ontext:"";","C

ontext":"","PreE
xploit":"","E

xploitC
ode":"alert(1);","PostC

ontext":"//"
E

xploitC
ode,"PreC

ontext","PostC
ontext","C

ontext","PreE
xploit"

ScriptTag
PreC

ontext:"’;","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"//"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
ScriptTag

PreC
ontext:"","C

ontext":"","PreE
xploit":"%

0A
%

0D
","E

xploitC
ode":"alert(1);","PostC

ontext":""
E

xploitC
ode,"PreE

xploit","PreC
ontext","C

ontext","PostC
ontext"

JavaScriptSingleL
ineC

om
m

ent
PreC

ontext:"*/","C
ontext":"","PreE

xploit":"","E
xploitC

ode":"alert(1);","PostC
ontext":"/*"

E
xploitC

ode,"PreC
ontext","PostC

ontext","C
ontext","PreE

xploit"
JavaScriptM

ultiL
ineC

om
m

ent
PreC

ontext:"*/","C
ontext":"","PreE

xploit":"%
0A

%
0D

","E
xploitC

ode":"alert(1);","PostC
ontext":"/*"

E
xploitC

ode,"PreC
ontext","PreE

xploit","PostC
ontext","C

ontext"
JavaScriptM

ultiL
ineC

om
m

ent

Table
6.2:

O
bjective

extracted
from

W
AV

SE
P

testcases

6.4. CONFIGURATION 97

6.4 Configuration

This section illustrates the configuration of the parameters in order to setup
the training of the agent.

Snippet 6.2 shows the values used for the reward function discussed in
section 6.2.2.

1 #REWARD PHASE 1
2

3 BONUS_CORRECT_STRING = +2
4 WRONG_STRING = -100
5 CORRECT_STRING = +10
6

7 #A1
8 def CORRECT_STRING_NOT_ALREADY_CORRECT_SECTION(x):
9 return CORRECT_STRING + (BONUS_CORRECT_STRING * x)

10 #A2
11 CORRECT_STRING_ALREADY_CORRECT_SECTION = WRONG_STRING / 2
12 #A3
13 WRONG_STRING_NOT_ALREADY_CORRECT_SECTION = WRONG_STRING
14 #A4
15 WRONG_STRING_ALREADY_CORRECT_SECTION = 2 * WRONG_STRING
16

17 #REWARD PHASE 2
18

19 BONUS_CORRECT_POSITION = +10
20 WRONG_POSITION = -100
21

22 #B1
23 def CORRECT_STRING_CORRECT_POSITION(y):
24 return (CORRECT_STRING + BONUS_CORRECT_POSITION * y)
25 #B2
26 CORRECT_STRING_WRONG_POSITION = WRONG_POSITION
27 #B3
28 WRONG_STRING_CORRECT_POSITION = WRONG_STRING
29 #B4
30 WRONG_STRING_WRONG_POSITION = WRONG_POSITION + WRONG_STRING

Listing 6.2: Defining case values reward

Snippet 6.3 shows the configuration parameters used by the QLearner class.

1 class QLearner(Learner):
2

3 EPSILON_MIN = 0.005
4 ALPHA = 0.05
5 GAMMA = 0.98

98 CHAPTER 6. FULLY AUTOMATED RL AGENT

6

7 STEPS_FOR_EPISODE_1 = 5
8 STEPS_FOR_EPISODE_2 = 5
9

10 MAX_NUM_EPISODES_1 = 50000
11 MAX_NUM_EPISODES_2 = 80000
12

13 BALANCE_1 = 400
14 BALANCE_2 = 800
15

16 MAX_NUM_STEPS_1 = STEPS_FOR_EPISODE_1 * MAX_NUM_EPISODES_1
17 MAX_NUM_STEPS_2 = STEPS_FOR_EPISODE_2 * MAX_NUM_EPISODES_2
18

19 EPSILON_DECAY_1 = BALANCE_1 * EPSILON_MIN / MAX_NUM_STEPS_1
20 EPSILON_DECAY_2 = BALANCE_2 * EPSILON_MIN / MAX_NUM_STEPS_2

Listing 6.3: QLearner configuration

The parameters ALPHA and BETA are, respectively, the discount factor and
the learning rate. Set up in this way, they favor long-term rewards.

6.4.1 Hierarchical training optimization

In order to speed up the training, the option to split the training into two sepa-
rate, consequent phases, has been provided. We call it Hierarchical training.
In the first phase the agent takes care of learning how to correctly fill the five
sections of the attack payload, regardless of the sequence of sections being
modified. In the second phase, the agent learns the optimal sequence of ac-
tions to perform. Having already learnt, in the previous training phase, how to
correctly fill the 5 sections, the current training session should be easier and
converge faster. We will show, in the evaluation section, how this optimiza-
tion grants shorter training epochs. Some parameters are different for the two
training phases. In both phases, each episode consists of more than five steps.
This is because an agent must learn to perform at most five actions to get the
five correct sections. This number can be decreased if the initial random state
has already sections in their optimal state.
The number of episodes (MAX_NUM_EPISODES) for the second phase is
greater, having to consolidate both the knowledge acquired in the first phase
and that acquired in the second.
The parameters EPSILON_DECAY_1 and EPSILON_DECAY_2 are used for

6.4. CONFIGURATION 99

decaying linear ϵ. The parameters BALANCE_1 and BALANCE_2 have re-
spectively lower value for the first phase and higher for the second. In this
way exploration will be favored in the first phase, while in the second phase
exploiting will be favored.

6.4.2 Objective selection: module Observer

To obtain the high-level policy that allows you to select the correct target for
the agent when testing an arbitrary web application, the Observer module
developed in 5 is used.
The Observer module is used to obtain the reflection context (if any) of the
input sent to the web application under test. The agent sends, through the Ob-
server module, an initial payload containing only the ExploitCode(alert(1);).
The agent sends the HTML request to the application under test and receives a
response. This is parsed in order to identify the context of reflection. Starting
from this, as seen previously, the objective is selected to extract the optimal
policy. This policy will be used to build the final payload.
For each action performed, the Observer module, through the function
observe_reflection_context, returns an observation for each section of the
payload as seen in section 5. Once the final payload has been reached, the
Observer module allows you to check, through the “check_code_execution”
function, the actual execution of the payload using the Python Selenium
extension. This library, through the Firefox and Chrome drivers , allows you
to check the actual behavior of a browser upon receipt of an HTML response.

In figure 6.6 the execution flow for the choice of the objective is shown,
whereas figure 6.7 shows the way the final payload is produced.

100 CHAPTER 6. FULLY AUTOMATED RL AGENT

Figure
6.6:

O
bjective

selection
-Sequence

D
iagram

6.4. CONFIGURATION 101

Figure 6.7: Payload execution check - Sequence Diagram

102 CHAPTER 6. FULLY AUTOMATED RL AGENT

6.5 Test Driven Development

The work discussed in this thesis was developed with a Test Driven Develop-
ment (TDD) approach [73]. This approach allows to design the tests before
implementing the respective functionality. George et al. in [74] run some ex-
periments on two groups of programmers: one writing java code following
the TDD approach, the other (control group) following a standard waterfall
approach. Authors proved that, even though TDD programmers took much
more time to implement the same set of functions, a moderate statistical corre-
lation exists between time spent and the resulting quality. Also, the program-
mers in the control group often did not write the required automated test cases
after completing their code. Hence it could be perceived that waterfall-like
approaches do not encourage adequate testing. This intuitive observation sup-
ports the perception that TDD has the potential for increasing the level of unit
testing in the software industry. At first, tests are designed, then the code that
satisfies the test cases is written and only a final refactoring allows to clean
up and reorganize the code. Using this programming methodology allows to
focus on the essential functions that will be used. These functions are broken
down into simpler sub-functions to be able to work on simpler tasks. Once the
development of the individual parts is complete, they can be easily integrated.
Having already developed and structured the tests, these can be used as a basis
for Unit testing. In figure 6.8 the report of the tests carried out through pytest
is shown.

6.5. TEST DRIVEN DEVELOPMENT 103

Figure 6.8: Report Unit Testing

104 CHAPTER 6. FULLY AUTOMATED RL AGENT

Chapter 7

Performance evaluation

In this section we will evaluate our approach from three perspectives:

• analyse the growth of the state space and how it affects the training pro-
cess;

• show the improvements in terms of accuracy by comparing the Sug-
gester to XSS automated scanners;

• show how the amount of requests performed by each automated scanner
is affected by parameters that identify its level of ‘intelligence’.

7.1 State space explosion

The presented environment is very extensible, in the sense that new attack
strings can easily be added, as long as they comply with the defined state
structure. This can be useful whenever a new way to discover a vulnerabil-
ity is found.
Adding a new attack string means introducing a new objective, upon which
the agent needs to be trained. If the actions defined in the environment already
allow for the right construction of the new string, the only requirement is to
train the agent in order to reach the new objective. However, if new substrings
are included - for instance, a new context is found - the action and state space
grows. This means that the agent needs to be re-trained upon the separate ob-
jectives. We performed several experiments to analyse how the growth of the
state space influences the number of episodes needed for the training.
We added one objective at a time to our environment and repeated the training.

105

106 CHAPTER 7. PERFORMANCE EVALUATION

We noted down, for each experiment, the state and action space cardinality
and, of course, the number of episodes that allow the training to converge. We
consider the training to be complete whenever the columns of the q-table rep-
resentative of the five best actions to be performed in the five sections of the
string assume values that are greater than those of the remaining columns.
Training an agent involves two aspects of randomness. First, when an episode
of training is over, the environment is initialised with a random new state.
Second, depending on the exploration factor, in the early episodes of training,
actions are chosen more randomly than in the last ones. To deal with random-
ness, we employed an amortised analysis. We repeated the training 30 times;
then, at the end of each experiment, we computed the statistical mean upon the
number of training episodes. The results of each experiment are reported in
Table 7.1 and are plotted in Figure 7.3.

Figure 7.1: Increase in training episodes and state space as the number
of objectives grows

The plot in Figure 7.3 shows that the state space increases linearly as new
objectives are added to the environment. If we take into account the objectives
that cover all of the cases described in section 4.1, the final amount of states is
2560.

7.1. STATE SPACE EXPLOSION 107

Objective State Space Action
Space

Average Training
Episodes

HTML 8 8 1.166667
HTML tag 16 9 2.7
HTML comment 24 10 4.066667
URL attribute 36 11 7.066667
tag attribute 128 14 37.166667
attribute filtering 240 16 90.133333
attribute name +
event attribute quote-
less

360 17 144.566667

other attribute
single quote

432 18 189.6

other attribute
double quote

504 19 238.633333

other attribute
quoteless

576 20 292.833333

javascript variable
single quote

864 22 499

javascript variable
double quote

960 23 575.333333

javascript numerical
variable

1056 24 697.8

javascript single line
comment

1408 25 960.6

javascript multi line
comment

1920 27 1492.666667

code function single
quote

2080 28 1802.333333

code function single
quote

2240 29 1918.5

css 2400 30 2129
css comment 2560 31 2401.366667

Table 7.1: Increase in number of training episodes, state and action
space as the number of objectives grows

108 CHAPTER 7. PERFORMANCE EVALUATION

The curve highlighted in red, which represents the increase in the average
amount of episodes of training, also grows linearly with the number of ob-
jectives and follows the growth of the state space. However, we notice that the
curve of the training episodes increases at a rate that is always upper-bounded
by the one of the state space cardinality. This means that we need an amount
of episodes of training that is, on average, lower than the number of states
that make up the environment. In terms of asymptotic behavior, we can affirm
that the state space cardinality function is a big O for the amount of training
episodes:

S(n) = O(E(n))

where S(n) represents the function for the states and E(n) the function for the
episodes of training. This assures that no increase of the state space will cause
an unsustainable increase of the training episodes. In fact, in order to train an
agent, one does not need to undertake a number of episodes of training which
is greater than the amount of states in the environment.
We believe that this behavior is due to the agent being able to explore, in the
worst case, up to 200 actions, before the current episode of training ends. This
allows the agent to visit all the states in the environment a sufficient amount of
times and let the training converge. Furthermore, this signifies that the design
of the reward function is good enough to capture the desired behavior of the
agent under training.

7.2 Automated scanners accuracy comparison

To show that the implemented methodology results in an improvement in terms
of accuracy, the Suggester was compared to other open source tools. Six au-
tomated scanners were selected: four of them are specifically designed for the
discovery of XSS vulnerabilities, the remaining ones are modules of popular
web application scanners, such as wapiti1 and w3af 2.
The Yahoo Webseclab3 was chosen as evaluation platform. It encompasses
31 Cross-Site Scripting test cases: 20 are actual vulnerabilities, whereas the
remaining 11 are intentional false positives. In the case of Cross-Site Script-
ing, false positives are injected inputs that get reflected in the HTML of the
response, but do not lead to execution of code. Such test cases are particularly

1https://wapiti.sourceforge.io/
2http://w3af.org/
3https://github.com/yahoo/webseclab

https://wapiti.sourceforge.io/
http://w3af.org/
https://github.com/yahoo/webseclab

7.2. AUTOMATED SCANNERS ACCURACY COMPARISON 109

Scanner TP FN TN FP True
Positive
rate
(Recall)

False
Positive
rate

Youden
Index

Precision

Suggester 14 6 11 0 0,70 0,00 0,70 1,00
BruteXSS 4 17 7 3 0,19 0,30 -0,11 0,571
XSpear 6 13 10 2 0,316 0,167 0,149 0,75
XSSer 14 5 0 12 0,737 1,00 -0,263 0,538
XSSmap 6 13 12 0 0,316 0,00 0,316 1,00
w3af 14 5 4 8 0,737 0,667 0,007 0,636
wapiti 10 11 6 4 0,476 0,40 0,076 0,714

Table 7.2: XSS scanners confusion matrix

effective to show the accuracy of those automated scanners that only take into
account the reflection of a parameter in order to mark it as vulnerable.
Each of the selected tools was provided with the URLs of Yahoo Webseclab
test cases and then launched against them. Though different tools provide scan
results using different outputs, each of them reports whether the parameter was
marked as vulnerable or not. We analyzed the reports and categorized tools’
results into one of the following classes:

• True Positives (TP): vulnerable parameters correctly classified as vul-
nerable;

• True Negatives (TN): non vulnerable parameters correctly classified as
non vulnerable;

• False Negatives (FN): vulnerable parameters not classified as vulnera-
ble;

• False Positives (FP): non vulnerable parameters incorrectly classified as
vulnerable.

Table 7.2 summarizes the results of the experiments and reports some funda-
mental metrics. Precision and recall charts are reported in Figure 7.2
The Suggester reaches high levels of both precision and recall rates (higher
than 70%). High precision values ensure that the tool does not produce False
Positives. This is made possible by the fact that the tool recommends users to
check for the execution of the exploit code. On the other hand, high recall rates

110 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.2: Cross-Site Scripting scanners precision and recall comparison

ensure that the tool was able to discover the majority of vulnerabilities present
in the target benchmark. This is to be attributed to the number of discovery
techniques the tool is able to suggest, that in turn depend on the introduced con-
texts of reflection. The other tool that reached 100% of precision is XSSmap.
In fact, XSSmap has a set of hardcoded rules that allow to distinguish between
different contexts of reflection. Moreover, the use of a headless browser allows
to detect those javascript events triggered when the exploit code is executed.
Therefore, it truly allows to avoid false positives. However, the tool fails at
recognizing many reflection contexts, which explains the low recall values.
The remaining tools do not rely upon systems that allow to detect the execution
of javascript code, reason why they all report false positives. This explains the
lower precision values they attain. Such tools only take into account the reflec-
tion of the parameter under test, that is not a reliable way to decide whether
the application is vulnerable to XSS. In fact, many injected inputs are reflected
back after being correctly sanitized by the application, resulting in no vulner-
ability. This discovery technique results in a behavior that is close to random-
ness: in fact, such tools rightfully mark some parameters as vulnerable, but
they fail at identifying the attack string that enables the exploit. This explains
why tools like XSSer, w3af and wapiti have good recall values, although they
report low precision values. Penetration testers can rely on them just to obtain
a general idea of those request parameters that are reflected in the response af-
ter an injection. However, these would still need further manual inspection to
verify whether the reflections conduct to actual vulnerabilities. If tools report

7.2. AUTOMATED SCANNERS ACCURACY COMPARISON 111

a reflection, but fail at identifying the right attack payload, penetration testers
need to start over and craft their own attack strings.
The same reasoning applies also to tools like BruteXSS4 and XSpear5, which
do not perform checks on the execution of the exploit code. They only look for
reflection of injected request parameters, but they also fail at identifying many
vulnerabilities, hence resulting in a low recall value.
To underline random discovery behaviour in scanners’ performance, the
OWASP benchmark evaluation project (OWASP WBE) [75] proposes an ef-
fective evaluation system. It was used by Amankwah et al. in [76] as a scoring
solution to perform a comparison between open-source and commercial web
security scanners. It also provides a visual representation of a tool’s discovery
performance based on false positive and recall rates.
The benchmark is based on the computation of the so-called Youden In-
dex [77], a metric proposed to evaluate the performance of analytical (diag-
nostic) tests. It outputs values in the range [−1, 1]. A value of 1 indicates dis-
covery of all vulnerabilities, with no false positives. A value of −1 indicates
all false positives and no true positives (no actual vulnerabilities discovered).
A Youden index of 0 means the tool recorded the same result for a web appli-
cation with vulnerabilities and without vulnerabilities.
It is calculated with the following formula:

J =
TP

TP + FN
+

TN

TN + FP
− 1

Figure 7.3 shows the True Positive rates associated with the tools under eval-
uation, with respect to their False Positive rates. The red line that crosses the
plot represents the guessing line. Tools that fall along this line have a Youden
Index equal to 0, which means they have the same behavior with both vulner-
able and non vulnerable applications. The distance from this line is the actual
Youden Index.
The Suggester is the tool with the highest distance from the guessing line and
hence reaches the top score. XSSmap follows behind, with a lower score.
Tools like XSpear, w3af and wapiti perform better than random guessing, but
the low Youden Index signifies that penetration testers cannot completely rely
on their discovery capabilities. Finally, BruteXSS and XSSer fall in the red
area of tools that would have performed better if they randomly guessed.

4https://github.com/shawarkhanethicalhacker/BruteXSS-1
5https://github.com/hahwul/XSpear

https://github.com/shawarkhanethicalhacker/BruteXSS-1
https://github.com/hahwul/XSpear

112 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.3: Cross-Site Scripting scanners score comparison

7.2.1 Number of requests

The results discussed in Section ?? show that the improvements in terms of
accuracy depend on two parameters that signify the difference between a brute
force and a more intelligent approach:

- the ability to identify the context of reflection;

- the ability to recognise whether the exploit code was actually executed
by the browser.

Another performance indicator that is directly affected by such parameters is
the number of requests that a tool performs in order to discover a vulnerabil-
ity. Brute force tools tend to perform a high number of requests, depending
on the size of the word lists they rely upon. More intelligent tools apply rules

7.2. AUTOMATED SCANNERS ACCURACY COMPARISON 113

Figure 7.4: Automated scanners amount of requests comparison

that refine the actions triggered against the target application. The amount of
requests becomes important during penetration testing campaigns, which are
usually conducted when systems are already in production. Brute force scan-
ners certainly stress the system under test, incurring the risk, in some cases, to
perform actual Denial of Service attacks.
To show how the knowledge of the context of reflection affects tools’ behav-
ior, the total amount of requests performed to solve the Yahoo Webseclab’s
test cases was recorded. Results are shown in Figure 7.4. In order to correctly
interpret the results, a distinction between two categories of tools needs to be
made:

• context-blind tools: scanners that are not able to recognize the exact spot
in the HTML response where the reflection of the injected parameter
happens. They are BruteXSS, XSpear, XSSer and w3af;

• context-aware tools: scanners that are able to recognize the spot in the
HTML where the reflection of the injected parameter takes place. They
are wapiti, XSSmap and Suggester.

For context-blind tools, the amount of HTTP requests depends on the size
of the word list they employ. In fact, BruteXSS has the shortest word list,
reaching a total amount of 581 HTTP requests. XSSer reaches 14105 HTTP
requests, to solve all 31 Webseclab test cases.
Coming to context-aware tools, the amount of HTTP requests decreases as the
number of contexts encompassed by the scanner increases. As to “wapiti”, it

114 CHAPTER 7. PERFORMANCE EVALUATION

is still a brute force tool. Though, it categorizes the attack payloads on the
basis of three different reflection contexts and attempts to solve the 31 test
cases with 733 total HTTP requests. When “XSSmap” is able to recognize
the context of reflection, it automatically sends an associated attack string.
However, it falls back to a classical brute force attack tool, with a small word
list, when it is not able to recognize the context of reflection. This behavior is
able to ensure a lower amount of HTTP requests, namely 435. The Suggester
performs better than any other tool, with a total amount of 155 HTTP requests
across the 31 test cases. In fact, it is able to recommend up to 20 different
contexts of reflection. Moreover, it does not rely on a brute force approach,
but dynamically constructs the attack payload request by request, by analyzing
the feedbacks returned by the web application.

7.3 Algorithm comparison

This section shows how the developed methodology converges in a relatively
small number of episodes. By convergence we mean that the State-Action
function, for each state, has an action with a dominant value. In other words, an
algorithm reaches convergence when negative rewards are no longer received
and errors decrease dramatically.
Note that the errors will tend to zero but are unlikely to reach it, since the value
of ϵ, however small it gets, will never reset, continuing to allow exploration.
The results obtained through the following Reinforcement Learning algorithms
will be compared below.

• QLeraning (QL): Off-Policy algorithm (assumes that the agent follows
the best policy at all times). The State-Action function is represented by
a table structure (QTable).

• SARSA: On-Policy algorithm (the agent follows the current policy).
Also in this case the State-Action function is represented through a tab-
ular structure.

• SARSA (λ): Optimization of the SARSA algorithm in which the Eli-
gibility trace mechanism is used. The trace identifies the usability of a
state for training.

• DeepQLearning (DQN): Similar to QLearning where there is no tabular
structure for the Action-State function but this is approximated via a
neural network.

7.3. ALGORITHM COMPARISON 115

• MonteCarlo Tree Search (MCTS): Heuristic search algorithm for de-
cision making, especially in game theory. Represents sequences of
choices as paths in a tree.

The tests were carried out with the help of the following machine:

• CPU: Intel® Core i7 2600K

• RAM: 16 GB (4 x 4 GB - 1333 MHz)

• SSD: Samsung 840 EVO 250 GB

• GPU: Intel® HD 3000

• S.O .: Fedora 33 (Kernel 5.8.18-300)

• Python: 3.8.3

The implemented DQN is based on the version provided by OpenAI Gym,
developed through PyTorch. The following optimizations are used:

• Experience Replay

• Batch sampling

• Target Network

• epsilon -Decay Scheduler

Note that the experiments are conducted without using a dedicated GPU.

The MCTS algorithm is based on an open-source version compatible
with Gym 6 environments.

The results obtained during the training phase on all objectives are taken
into account. In particular, the following parameters will be analyzed as the
training episodes increase:

• Errors: The average number of errors made while training the agent on
all targets.

• Rewards: The average of the rewards received by the agent during the
agent’s training on all objectives.

6https://gist.github.com/blole/dfebbec182e6b72ec16b66cc7e331110

116 CHAPTER 7. PERFORMANCE EVALUATION

As expected, the reward will tend to increase and errors will tend to decrease
as the episodes increase.

The results are divided into the two phases of exploration. For the first
phase, as explained in the previous chapters, fewer episodes were used than
in the second phase: 500000 and 800000 (five hundred thousand and eight
hundred thousand) episodes.
The hyperparameters used for the algorithms are shown in appendix ??. These
have been obtained experimentally trying to speed up the convergence.

Figure 7.5 and figure 7.6 show the results obtained in the first training
phase, whose objective is to make sure the final payload is reached, regardless
of the sequence of actions performed. In figure 7.7 and figure 7.8 results
obtained in the second training phase are reported. In the second phase, the
reward function is designed to train the agent to perform the optimal sequence
of actions.

Figure 7.5: QLearning (QL) Vs SARSA Vs SARSA(λ) Vs Deep-
QLearning (DQN) - Errori fase 1 (well-formedness)

7.3. ALGORITHM COMPARISON 117

Figure 7.6: QLearning (QL) Vs SARSA Vs SARSA(λ) Vs Deep-
QLearning (DQN) - Reward fase 1 (well-formedness)

118 CHAPTER 7. PERFORMANCE EVALUATION

Figure 7.7: QLearning (QL) Vs SARSA Vs SARSA(λ) Vs Deep-
QLearning (DQN) - Errori fase 2 (right order)

7.3. ALGORITHM COMPARISON 119

Figure 7.8: QLearning (QL) Vs SARSA Vs SARSA(λ) Vs Deep-
QLearning (DQN) - Reward fase 2 (right order)

120 CHAPTER 7. PERFORMANCE EVALUATION

MCTS produced poor quality results. This is due to the fact that many
state-action pairs fail to be visited. This problem is related to the matter
of keeping exploration. Even using a high exploration rate, however, the
algorithm does not scale sufficiently in the environment presented in this
work, remaining locked in a single branch of the tree. In the literature this is a
well known problem and is described by Sutton et al. in [78].

The best results are obtained through the QLearning and SARSA algo-
rithms. In particular, the greater convergence speed of the SARSA algorithm
stands out. In both phases, errors in SARSA drop more abruptly than those
produced by QLearning which have a smoother trend. An opposite trend is
found when evaluating the rewards received: SARSA reaches the maximum
reward about 150,000 (one hundred and fifty thousand) episodes before
QLearning, with faster growth. This behavior is due to the fact that, once the
safest path has been identified, SARSA has a lower probability of choosing
wrong actions than QLearning. SARSA tends to consider the future more,
updating the QValue of the current action only after performing the next
action.
In the developed environment, for each state, the majority of the actions turn
out to be wrong. Therefore SARSA will tend to avoid those actions that would
lead to a state in which the probability of choosing the right action would be
even lower.

By applying the eligibility trace technique to the SARSA algorithm, re-
sults comparable to those of the traditional version are obtained, without
justifying the longer time needed for training. The increase in time comes
from having to manage an additional table for keeping track. This table has a
size equal to that of the QTable.
Using a neural network to approximate the State-Action function is not a good
choice. Deep-QLearning, in literature, is successfully used to tackle problems
whose state space is continuous and not manageable through QTable. In the
model presented, the state space is categorical. Analyzing the results, it can be
seen how the values are fluctuating and far from convergence. More stability
would probably be achieved by increasing the number of episodes. The main
problem with the use of DQN is that training times increase dramatically,
making the increase in the number of episodes unacceptable. This is due to the
fact that although a small number of internal nodes are used, the propagation
of the input and the updating of the weights take longer to compute than it

7.3. ALGORITHM COMPARISON 121

takes to update a QTable entry.
The results of the first phase are better than those of the second. This is be-
cause phase two uses the knowledge gained in the first phase as a starting point.

Since the results are reported in the form of arithmetic means, it is also
important to evaluate the standard deviation. As regards the errors of the first
phase, as the episodes increase, the standard deviation increases reaching a
maximum value between 40 and 50 around 150,000 episodes of training for
SARSA and SARSA (λ) and 300,000 episodes for QLearning. This is due
to the fact that the agent will initially choose an action at random. From this
point on, the standard deviation is lowered, stabilizing in a range between 15
and 20. This behavior is due to the strong decline in the number of errors
following the achievement of convergence.
In the second phase, the standard deviation trend mirrors that of the first phase,
reaching a maximum value between 25 and 35 near the 200,000 episodes for
SARSA and SARSA (λ) and 250,000 episodes for QLearning. From here the
standard deviation will tend to stabilize within a range between 2 and 5.

As for the reward values, these present a decreasing standard deviation.
Starting from a value between 3 and 5 for the first phase and between 15
and 20 for the second, the standard deviation will decrease until it stabilizes
around 0. This behavior is due to the fact that at the beginning of learning the
actions they are chosen randomly, producing reward values included in a very
large set; as the number of episodes increases, the reward values will tend to
stabilize following the achievement of convergence.

As far as Deep-QLearning is concerned, the standard deviation of the
errors, in both phases, underlines the profound instability of the data reaching
an ever increasing value and exceeding the 2000 threshold during the first
phase and 1500 in the second phase.
The reward values also have an ever-increasing standard deviation in both
phases, exceeding the 60 threshold.
Such a standard deviation is due to the fact that Deep-QLearning is far from
achieving convergence.

7.3.1 Comparison between hierarchical and unified training

This section illustrates the difference, in terms of performance, between the
two learning approaches described in chapter 6, section 6.4.1. For unified

122 CHAPTER 7. PERFORMANCE EVALUATION

training we use 800000 (eight hundred thousand) episodes with a standard “
balance ” value (500) for the ϵ-decay.

Figure 7.9: Unified vs. hierarchical training - Rewards

7.3. ALGORITHM COMPARISON 123

Figure 7.10: Unified vs. hierarchical training - Errors

124 CHAPTER 7. PERFORMANCE EVALUATION

Results are obtained from QLearning training. Hierarchical training takes into
consideration the second training phase in which errors are counted both in
the ordering and in the correctness of the payload.
It is noted how, even if the rewards are positive, the errors are high. These
derive from the lack of ordering (second parameter to be optimized). This
is due to the complexity of the reward function shown in ?? which does
not allow the agent to capture the desired behavior. Even by increasing the
number of episodes it is not possible to reach a stability equal to that obtained
with the hierarchical approach.

The standard deviation of the errors increases continuously when ex-
ceeding the 2000 threshold, as well as the standard deviation of the rewards
that exceeds the 90 threshold. This behavior is due to the difficulty in reaching
convergence through unified learning.

Chapter 8

Other approaches to security
testing automation

In this section, two promising approaches to provide automation to penetration
testing are described. Both of them follow the philosophy behind this entire
thesis, which is to create automated tools for security testing, improving their
intelligence. The first one explores one of the traditional ways known in Artifi-
cial Intelligence to design systems that support experts’ decisions, by creating
a penetration testing ontology and supporting it with an inference engine able
to relationships among entities of the domain. The novelty of the presented
approach is in the representation of the domain knowledge using knowledge
graphs. Such design choice is useful because it allows to take advantage of
graph theory to compute interesting measurements, as well as because it grants
good visualization of attack paths by means of nodes and their connections.
The second approach, on the other hand, leverages a very well known Artificial
Intelligence pattern, which is supervised learning. The purpose is to create a
platform which is able to capture a penetration testing session, create a feature
representation (e.g. network traffic, screenshots, browser events) and store a
dataset. Such dataset would enable the use of artificial neural networks for the
realization of intelligent agents for penetration testing.

125

126 CHAPTER 8. OTHER APPROACHES

8.1 A penetration testing expert system based on
knowledge graphs

Penetration testing can be very time-consuming and does not ensure that all
vulnerabilities in the system under investigation are found. It is also possible
that the penetration tester is asked to focus on a particular type of vulnerability
or a particular component of the computer system (e.g. database). In general,
the success of the penetration test depends on the skills and on time available
to the penetration tester. For this reason, many efforts have been made in re-
cent years to automate the penetration testing activity. In fact, the automation
of penetration testing can lead to significant advantages in terms of time, com-
pared to the activity manually performed. However, many tools that automate
penetration testing can suffer from the problem of false positives, i.e. vulnera-
bilities detected as such, but which are not so. Furthermore, sometimes, with
such tools, it is not possible to customize the penetration test to fit the cus-
tomer’s needs. Generally, results got by the tools, need to be reviewed by the
penetration tester and possibly deepened (based on his/her knowledge). The
Owasp Testing Guide [79] provides a standard approach, that the security ex-
pert can follow when carrying out penetration testing on a web application.
The purpose of this work is to provide a tool that assists the penetration tester
during his/her activity, recommending the best action to take based on his/her
needs. The methodology of the developed tool follows the one contained in the
OTG, used for testing web applications. It should be noted, however, that it is
possible to extend the range of use of the built system to other areas, simply
by adapting the data contained therein based on the area of testing.

8.1.1 Design

In this section, the design of the final developed tool is proposed. Its purpose
is to suggest to the user the sequence of security tasks to perform according
to the state of the system under test, in order to complete a Hacking Goal (a
testing objective). The core concepts are explained in detail and the choices
will be motivated with reference to the studied resources.

8.1.2 Entity Relationship diagram

This section primarily focuses on a high level view of data structure, building
an Entity Relationship (E-R) diagram. This will be the core part of the applica-
tion, since data must be compliant to this model in order to be correctly used.

8.1. PT EXPERT SYSTEM BASED ON KNOWLEDGE GRAPHS 127

Moreover, this view will be more “database” oriented, because, in this way,
it will be possible to retrieve data from a database and use them in the built
ontology. The following image shows the implemented E-R diagram:

Figure 8.1: E-R Diagram

Here a detailed explanation of entities and their attributes is given:

• Vulnerability: “an occurrence of a weakness (or multiple weaknesses)
within a product, in which the weakness can be used by a party to cause
the product to modify or access unintended data, interrupt proper exe-
cution, or perform incorrect actions that were not specifically granted to

128 CHAPTER 8. OTHER APPROACHES

the party who uses the weakness.” [80]. This entity has been modeled
following the CWE definition. The unique identifier of a vulnerability is
an id (or an Hacking-id, also h-id), which, for each vulnerability, can be
directly obtained from the CWE website, and must be an integer. The
Name is a string attribute, which gives a short explanation of the vul-
nerability, e.g. “Improper Neutralization of Special Elements used in
a Command”. The owasp-top-10 attribute is the vulnerability category,
e.g. the previously cited vulnerability belongs to the “Injection” cate-
gory. Thus, it is possible to search vulnerabilities basing on their id, or
search for a group of vulnerabilities that belong to the same category. A
vulnerability has a many-to-many relation with the entity “Scope” and
“Resource”, because: a vulnerability can violate multiple “Scopes” (e.g.
the ‘Improper Neutralization of Special Elements used in a Command”
violates “Integrity”, “Confidentiality” and “Availability”); a vulnerabil-
ity can use more resources (e.g. OS Command Injection can exploit the
“Operating System version” and the “Webserver ports” resources).

• Scope: “The Scope identifies the application security area that is vio-
lated” [80]. The “h-id” is the unique identifier for each instance of the
entity and the name gives a short explanation of the scope. The CWE
identifies five different scopes: “integrity”, “confidentiality”, “availabil-
ity”, “Non-Repudiation”, “Access Control”. Scope has a many-to-many
relationship with Vulnerability. In fact, a Scope can be violated by multi-
ple vulnerabilities, e.g. the “Integrity” can be violated by “OS command
injection” and “SQL Injection”.

• Resource: A Resource is whatever web application’s entity which can
be either used or discovered by an action performed on the application
itself. It can be considered as an application asset, whose knowledge
can be either provided by a task or used attempting to exploit a vulner-
ability. The unique identifier is the “h-id”, whereas the “Name” briefly
describes the resource. The “Resource-Reference” is the category the
resource belongs to, and allows for the coarse-grained queries. For ex-
ample, a resource named “Archived documents” has the “resource ref-
erence” field as “Sensitive information”; another resource, named “Ac-
count passwords and other credentials”, has the same “resource refer-
ence” value. Thus, it is possible to search for a vulnerability linked to
all “sensitive information” resources. The entity Resource has a many-
to-many relationship with Vulnerability and Task; it has a one-to-one

8.1. PT EXPERT SYSTEM BASED ON KNOWLEDGE GRAPHS 129

relationship with the Attack Entity. A Resource can be used by differ-
ent Vulnerabilities; a resource can be used by many different tasks, or
knowledge about a resource can be given/needed by many task. For
example:

Figure 8.2: Knowledge relationship with resource example

• Task: A task is the highest level type of action that can be performed
on the target. It may be the penetration tester’s final target (the “Goal”
task). In order to execute the “Hacking Goal”, the penetration tester has
to perform preliminary tasks, hence there are dependence relationships
among them, which will be well described in the Relation Diagram para-
graph. “Fingerprint Web Server” (i.e. try to understand the operative
system that runs on the Web Server), “Testing for Reflected Cross site
scripting” (i.e. perform a test to assess whether the Cross site scripting
vulnerability is present), “Identify application entry points” (i.e. appli-
cation’s parameters used in HTTP requests), are only three examples of
what a task is. The attributes are:

– “h-id”: unique identifier;

– “Name”: a brief description of the task;

– “owasp-top-10”: specifies the category the task belongs to (e.g.
“Testing for Reflected Cross site scripting” has owasp-top-10 cate-
gory “Injection”), allowing to the coarse-grained research of tasks
(e.g. search for all “Injection” tasks);

– “owasp-testing-id”: is used in compliance to the OWASP Testing
Guide, which sets a specific ID for each task (e.g. the task “Test-
ing for Reflected Cross site scripting” has “OTG-INPVAL-001” as

130 CHAPTER 8. OTHER APPROACHES

“owasp-testing-id”), allowing to use the standardized methodology
proposed in it.

A task (or Hacking Task) is composed by multiple attacks and is linked
to multiple resources. In fact, there may be different links among tasks
and resources, for example there’s a relationship of “acquired knowl-
edge”, when a task provides the knowledge about a resource (e.g. know-
ing the resource “Operating System” means having knowledge about the
specific type of Operating system that is running on the target; knowing
the resource “FTP area” means knowing whether the area really exists
in the target application and if it is reachable or not, which files are
contained in it, etc.), or “required knowledge”, when a task needs the
knowledge about a resource, or a “task-to-resource” when a task uses
a resource in order to be completed. Here’s an example of a task com-
posed by multiple attacks:

Figure 8.3: Composition of a Task

• Attack: An attack is a specific set of actions that can be performed on
the target; for example, “Web application spidering” is an attack which
includes many actions; it primarely represents a command that must be
executed by a tool. For example: the “OWASP ZAP” tool can perform
spidering of web applications, which consists of many HTTP requests
sent to the web application; each request has its specific parameters that
must be set by the tool. The “h-id” parameter is a unique identifier,
whereas the Name gives a brief description of the attack. The “t-id”

8.1. PT EXPERT SYSTEM BASED ON KNOWLEDGE GRAPHS 131

parameter is used to link an attack to its specific task, and contains the
“h-id” of the Task the Attack refers to. In this way, it is possible to adopt
a standard methodology, building its own set of tasks. In this work,
the tasks were composed using the methodology given by the OWASP
testing guide. The Attack entity has a one-to-many relationship with the
Action entity, since more actions compose a single attack. The attack
entity has also a one-to-one relationship with the Resource entity: when
an Attack is successfully carried on the system, it gives the knowledge
about one of the resources the corresponding Task has a relationship of
acquired-knowledge with.

• Action: An action is atomic, meaning that it is the smallest operation
that can be carried on the system. It has the following parameters:

– “h-id”: unique identifier;

– “verb”: it is the request method of the communication protocol
used by the system (for web applications may be GET, SET, PUT,
etc.);

– “path”: specifies the path the action has been carried on (it is the
URL in the web application scenario);

– “a-id”: it contains the “h-id” the action is linked with;

– “cookie”: represents the cookie contained in the action (it is ex-
pressed in a general form, independently from the used communi-
cation protocol);

– “payload”: it is the content of the action. It can also be empty (e.g.
in GET requests).

The Action entity is linked with a one-to-many relation with the Attack
entity, because an action is specific for a certain attack. Multiple actions
compose an Attack. An action is linked to its response, in fact there is a
one-to-one relationship with the entity Response, since each action has
its own response (and viceversa).

• Response: The entity Response is specific with one instance of the entity
Action (one-to-one relationship), and has the following parameters:

– “h-id”: unique identifier;

– “status-code”: it specifies whether the action has been successful
or not, and eventually why the action has been denied;

132 CHAPTER 8. OTHER APPROACHES

– “payload”: the optional payload that the system returned;

– “response-time”: the timestamp of the received response (may be
useful to detect time based attacks);

– “a-id”: it contains the h-id of the action the response is linked with;

– “verb”: the response phrase, used to emphasize the response result
(according to the used communication protocol).

8.1.3 Relation diagram

The following diagram highlights the relations among the previously listed
entities; here relations are described in an ontology-like fashion. Relations
play a crucial role in an ontology, in order to write rules that can enable the
inference process. In a relation, two or more entities are linked and each one
plays a role in it.

Figure 8.4: Relation Diagram

8.1. PT EXPERT SYSTEM BASED ON KNOWLEDGE GRAPHS 133

• Vulnerability-to-Scope: relation among Vulnerability and Scope entity.
A vulnerability can violate one or more Scope and a Scope is violated
by one or more Vulnerabilities. This relationship allows us to look for
a vulnerability which violates a certain scope and, eventually, find the
task that is linked to that specific vulnerability. This kind of relation
should be retrieved from stored data, rather than being created with some
inference rules.

• Vulnerability-to-Task: relation among a Vulnerability and a Hacking-
Task (also H-Task) entity. This relationship is used to retrieve a task
which is linked to a vulnerability in some way (e.g. a vulnerability and a
task use the same resource, hence they are related). This relation could
be directly generated by the inference engine thanks to the rules.

• Vulnerability-to-Resource: relation between Vulnerability and Resource
entity. A Vulnerability uses a Resource and a Resource can be used by
one or more Vulnerabilities. This kind of relation should be retrieved
from stored data, rather than being created with some inference rules.

• Depender-to-Dependee: relation among two H-Task entities. This rela-
tion allows the creation of an H-Task chain which are related in some
way (e.g. an H-Task needs the knowledge about a Resource which is
given by another H-Task) through the usage of Rules. This relation is
fundamental when the penetration tester sets a Goal Task to reach: the
system is able to calculate the chain of tasks which ends with the chosen
task and, going backward in the chain, it can suggest the first task that
must be executed by the penetration tester. The chain of tasks is updated
each time the penetration tester executes the first task of the chain, al-
lowing the system to guide the penetration tester to the execution of the
final Goal task.

• Required-Knowledge: relation between an H-Task and a Resource en-
tity. In order to be executed, an H-Task requires the knowledge of a
resource (e.g. the H-Task Identify application entry points” requires the
knowledge of the Resource “Web application map”), the task can be exe-
cuted only when the related knowledge is acquired. This kind of relation
should be retrieved by studying the covered Tasks (note that in this work
these relations have been modeled after the OTG methodology).

• Acquired-Knowledge: relation among an H-Task and a Resource entity.
A task, provides the knowledge about a Resource; in this way, it is pos-

134 CHAPTER 8. OTHER APPROACHES

sible to calculate the chain of tasks, in order to execute the final Goal
task. Anyways, this relation only highlights the fact that a task, when
is completed, gives the knowledge about a Resource; an additional in-
formation about the effective completion of the task is required, in order
to rightly suggest the next task to execute in the task chain. (e.g. the
H-Task “Identify application entry points” gives knowledge of Resource
“All application entry points”, but if the task has not been executed, then
the knowledge has not been acquired yet).

• Acquired-Fact (H-Task): relation among an H-Task and a Resource.
This relation states that the H-Task has been effectively executed, thus
the knowledge of the related Resource has been acquired. In this way, it
is possible to advance in the H-Task chain, suggesting the next H-Task
that must be executed (in order to execute the final Goal H-Task).

• Task-to-Resource: it is a relation between an H-Task and a Resource
entity, which states that an H-Task, in order to be completed, uses a
specific Resource entity. This relation can be used to link an H-Task to a
Vulnerability through a rule (if the H-Task and the Vulnerability use the
same Resource, then create the relationship Vulnerability-to-Task).

• Task-to-Attack: relation among an H-Task and an H-Attack entity. As
stated before, an H-Task is composed by more H-Attacks. This relations
are formed by studying the tasks presented in the OTG.

• Acquired-Resource: relation among an H-Attack and a Resource entity.
An H-Attack acquires knowledge about a Resource when it is executed.
The specific Resource is one of the Resources in the pool of H-Task
Resources the H-Attack is linked to.

• Acquired-Fact (H-Attack): relation among a Resource and an H-Attack
entity. This relation is used in order to state that an attack has been com-
pleted, and the knowledge about the related Resource has been acquired.

• Attack-to-Action: relation among an H-Attack and an H-Action entity.
As stated in the previous chapter, an Attack is composed by multiple
Actions.

• Action-to-Response: relation between an H-Action and a Response en-
tity. Each H-Action has its own Response.

8.2. A TOOLSET TO BUILD PENETRATION TESTING DATASETS135

8.1.4 Hacking Goal

It is important to define what an Hacking Goal is in our context: it is the final
aim that the penetration tester wants to reach during his/her activity. It can be
a task to be executed, such as “Testing for Local File Inclusion”, or it can be
a particular set of queries in order to Find all tasks related to vulnerabilities
that violate the integrity scope. It is clear that, basing on the Hacking Goal, the
system has to behave in a different way. In the first example, the system will
perform different queries to find the task chain and will suggest the task (and
attacks) that can be executed; in the second one, the system will give back to
the penetration tester a certain set of tasks.

8.1.5 Rule diagrams

In this section the most relevant rules used to obtain relationships are de-
scribed.

8.1.6 Attack acquires knowledge

This rule is implemented in order to form the relation Acquired-Fact between
an H-Attack and a Resource instance. The following is a flow chart explanation
of the rule:

In a more formal fashion, the rule is:

(AT1, is, H-Attack) (AC1, is, H-Action) (R, is, Resource) (AT1,
attack-to-action, AC1) (AT1, acquired-knowledge, R)

-> (AT1, acquired-fact, R)

8.2 A toolset to build penetration testing datasets

The purpose of the presented tool is to capture the interaction of a user with
a web application. It follows a client-server architectural style, with the in-
clusion of a middle-tier to serve as a proxy. Such proxy works, in fact, as an
intermediary for all HTTP protocol requests/responses which are exchanged
between client and server and is equipped with the business logic that allows
users to manage the recording of a penetration testing session performed by an
expert. The ability to make a dynamic recording of the interaction with any
web application chosen by an end user represents an advancement in the state
of the art and the main contribution provided by this work.

136 CHAPTER 8. OTHER APPROACHES

Figure 8.5: Rule for the relation Acquired-Fact among H-Attack and
Resource

To achieve this goal, a protocol that can handle the sequence of actions per-
formed by the user on any browser has been designed. Such protocol makes
the recording of the actions taken with the mouse and keyboard possible, with-
out knowing in advance how web pages are made. It also blends these actions
together with some information directly collected by the proxy.

The protocol introduced in this section was designed to enable recording of
those actions performed during a web application penetration test, as well as to
store the network traffic that flows through client and server. The module that
takes care of capturing both the actions and the network traffic is called “In-

8.2. A TOOLSET TO BUILD PENETRATION TESTING DATASETS137

Figure 8.6: Session recording protocol

terceptor”, which works as a proxy. To ensure that the actions recorded on the
client are forwarded to the interceptor, which is required to store all network
traffic by the end of the session , a specific exchange of messages has been
designed that in order to collect the necessary information. An optimization
has been made in order to store the actions only at the end of a session, in-
stead of sending data along with each http request, using cookies, for example.
Modern browser, in fact, allow to store a certain amount of data and send them
in a single message. The protocol is composed by the following messages:

1. start_recording_msg. A GET request, containing the parameter “record”
with value true. This message contains the page url from which the

138 CHAPTER 8. OTHER APPROACHES

recording of the episode provided by the expert will start. The message
has the following form:

1 http://vulnerable_webpage:port?record=true
2

2. deliver_response. It is the answer provided by the web application con-
taining the requested web page. After receiving this message, all inter-
actions with the web application, (e.g. mouse and keyboard actions or
new pages navigation), will be registered.

3. stop_recording_msg. A get request, with a parameter value “record” set
to false. The message has the following form:

1 http://vulnerable_webpage:port?record=false
2

4. deliver_end_msg. It is the message that informs the client that the reg-
istration is over. However, it does not represent the end of communica-
tions between client and interceptor. In fact, the client will send another
message, carrying the actions performed by the penetration tester on the
web page.

5. send_user_actions_msg. It is the last message of the protocol, expected
by the interceptor before being able to reconstruct the episode. It con-
tains the actions collected during the recorded session. This message is
forwarded autonomously by the client, unlike messages 1 and 3 which
are sent via manual user requests on the browser, through an http request
with the POST method.

The business logic of this system is effectively distributed between the
client and the interceptor. In fact, the client is not just the tool used by the actor
to interact with the web application but is equipped with a logic that allows the
implementation of the protocol just described. There strategy adopted consists
in manipulating the web pages through the interceptor. The latter, since it acts
as a proxy, has the ability to manipulate all traffic to and from the client and
can inject each web page directed to the user with javascript code necessary for
recording the actions as well as implementing the protocol. The functionality
of the client and interceptor components is hereby described:

• Client.

8.2. A TOOLSET TO BUILD PENETRATION TESTING DATASETS139

- Capture the interaction by mouse and keyboard on the page.

- Send the sequence of actions captured at the end of the recording.

• Interceptor.

- Intercept http traffic between Client and Server.

- Inject Javascript code into each HTML page directed towards the
Client.

- Generation of the episode on the file system after the end of the
exchange.

140 CHAPTER 8. OTHER APPROACHES

8.2.1 Class Diagram

The Recorder object, described in Figure 5.8, contains the necessary methods
to manage the recording of the events triggered by the mouse and keyboard. It
resides on the web page that will be forwarded by the proxy.

8.2.2 Main functionality

This section briefly present the implementation of the main functionality pro-
vided by the presented platform. The Interceptor was implemented as an ad-
don for mitmproxy, an open source interactive HTTPS proxy that provides a
python API. Such API exposes the request and response methods which allow
to modify messages, redirect traffic, visualize messages, or implement custom
commands. The main functions implemented are:

• run_interceptor. Main method that instantiates the mitmproxy addon and
sets up the reverse proxy.

• handle_request. Management of the requests coming from the client. It
handles the requests that identify the start and stop of the recordings.

• handle_response. Main functionality that takes care of code injection
that allow to capture the actions performed by the penetration tester.

• playback_episode. Functionality that allows to perform a playback, in
the form of a video, the entire penetration testing session.

8.2. A TOOLSET TO BUILD PENETRATION TESTING DATASETS141

Figure 8.7: Domain model class diagram

142 CHAPTER 8. OTHER APPROACHES

Figure 8.8: Recorder class diagram

Chapter 9

Honorable mentions

This chapter presents two additional contributions to the state of the art of
cyber security, not necessarily related to the creation of intelligent agents for
penetration testing. The first one regards the use of OS virtualization (con-
tainers) as building blocks to create cyber security exercises, usually hosted on
complex virtual environments known as cyber ranges. Such exercises are used
for educational purposes, for example in an university scenario, as well as for
training expert security professionals. Such work argues the technical benefits
that arise from the application of docker containers, discusses their limitations
as well as proposes a way to overcome them. The second work presented in
this chapter describes a distributed measurement solution to assess the cyber
security exposure of an ICT Infrastructure. A way to define cyber security
indicators through an automated and repeatable measurement process is pro-
vided. Results obtained in two different scenarios are discussed: a comparison
of networks with different characteristics and a real-time monitoring of the de-
fined metrics. Both works presented in this chapter are products of research
experiments done on real-world infrastructure.

9.1 Capturing flags in a dynamically deployed
microservices-based heterogeneous environment

The work presented in [81] tackle the challenges that from the introduction of
OS virtualization to support cyber security exercises. A solution that allows to
rely as much as possible on the use of containers is presented, as well as a way
integrate them with legacy virtualization approaches when the vulnerabilities
to be emulated do not lend themselves to a container-based implementation.

143

144 CHAPTER 9. HONORABLE MENTIONS

The Infrastructure-as-Code (IaC) paradigm is used, to enable automation of
both provisioning and configuration of the emulated scenarios, as well as inte-
grate heterogeneous virtualization technologies. After showing the design and
implementation of the proposed solution, follows a discussion on how such
approach leverages a cyber range instantiation platform, that can be designed
and tested on a single laptop, before being deployed on an enterprise system
infrastructure.

9.1.1 Design

9.1.2 OS Virtualization and Vulnerabilities

In this work, OS virtualization is considered as a mean to emulate vulnerable
environments that can be attacked during training exercises.
There exist different types of vulnerabilities, as well as several ways to cate-
gorize them from the adversarial point of view. In order to combine the need
for the trainees to learn common attack models and to familiarize with novel
vulnerabilities, an effective way to design a cybersecurity exercise is in the
form of a Capture The Flag (CTF) environment. In this sort of scenarios, users
need to take advantage of vulnerabilities that allow them to get a first access to
a remote system. Such vulnerabilities concern applications or remote services
like web servers and depend on either buggy implementations or misconfigu-
rations.
Once gained access to a remote machine, users look for vulnerabilities that
allow to acquire special privileges. Such vulnerabilities can depend on imple-
mentation and misconfiguration as well, but in this case they can occur both in
user and kernel space.
Gaining special privileges is representative of the fact that attackers are in com-
plete control of the system and can perform several other harmful operations,
such as data exfiltration and lateral movement. The latter, though, depends on
both the vulnerability of the machine and the configuration of the network in-
frastructure.
The choice of introducing OS virtualization, automatically rules out the emu-
lation of kernel space vulnerabilities. On the other hand, designing vulnerable
machines as microservices offers several advantages in terms of:

- decoupling: application dependencies can be installed and managed sep-
arately for each microservice;

- scalability: a single host can handle up to hundreds of containers;

9.1. HETEROGENOUS VIRTUAL ENVIRONMENTS FOR CTFS 145

- provisioning: container resources can be allocated taking into account
the requirements of the implemented services, as well as the scalability
needs.

The mentioned attributes are of course helpful during deployment. However,
they become very profitable during design and testing as well. In fact, the ac-
tivity that is proven to be the most resource consuming in the life cycle of a
cybersecurity exercise, is the preparation [82] of the vulnerable environments,
because it deals with the configuration and automation of heterogeneous sys-
tems. The designers of the scenarios can benefit from a technology that allows
them to deploy the implemented scenarios in lightweight testing environments.

9.1.3 Hierarchical architecture overview

Isolation among emulated scenarios is the first fundamental requirement to
ensure: this allows separate teams to perform training in a dedicated environ-
ment. With the term “Virtual Scenario”, the component that allows to imple-
ment and deploy the scenario is identified. It is made up by a type-2 hypervisor
and its guest virtual machines. The “Virtual Scenario” lands on what is called
a “Master Host”: it represents a bare-metal hypervisor that allows to replicate
the Virtual Scenarios, according to the amount of teams that are going to per-
form the training.
The choice of separating the two components allows the Scenario Designer to
create the exercises on a testing environment with much more limited resources
than the actual environment used for the final deployment. In fact, type-2 hy-
pervisors are common tools supported by any desktop operating system and
can be found on modern laptops.
The guest virtual machines inside the Virtual Scenario assume separate roles,
each of them justified by the need of having:

• an entry-point to provide each team with remote access to the emulated
scenario;

• one or more container hosts allowing to deploy the sections of the sce-
nario that use OS virtualization;

• one or more generic guest virtual machines allowing to reproduce the
sections of the scenario that can not use OS virtualization.

146 CHAPTER 9. HONORABLE MENTIONS

Figure 9.1: Virtual Scenario Architecture

9.1.4 Networking configuration

The integration among separate virtualization technologies also raises chal-
lenges for the network communications among components. In particular, the
following issues need to be addressed:

• users that get remote access must be forwarded inside the network of the
scenario, in order to start the training exercises;

• containers need to be able to communicate with other containers as well
as other guest virtual machines. This allows the designer to have com-
plete freedom over the network configuration of the scenario;

• basic routing configurations must be available to the designer, in order
to separate those network segments with different semantics (e.g., an
exercise with both a public and a private network segment).

To fulfill the first requirement, the entry point of the scenario corresponds to
a Virtual Private Network server. In this way, upon connection, users are pro-
vided access to a network and can start building an understanding of the infras-
tructure. As for the second issue, it is necessary to make sure all guest virtual
machines are part of the same VPN. Then, segments of the network have to
be populated with both containers and virtual machines. For instance, ideally,
some services would handled by containers in one segment of the network and

9.1. ASSESS THE EXPOSURE TO NETWORK THREATS 147

only by virtual machines in another. These design choices are made in order
to provide the scenario designers with enough flexibility. To tackle this issue,
the concept of “container as a router” is introduces. The expression refers,
in fact, to containers with multiple network interfaces:

- one or more interfaces are attached to container networks;

- one interface works as a bridge towards one of the physical network
interfaces of the guest virtual machine upon which the containers are
deployed.

With the proper routing configurations, a network composed by sole con-
tainers can exchange packets with virtual machines. This allows to fulfill also
an “information hiding” design principle: users that solve the exercise just see
network services, regardless of their implementation in the form of either a
container or a virtual machine.
Proper routing configurations allow to solve the last of the three requirements
as well.

9.2 A distributed security tomography framework to
assess the exposure of ICT infrastructures to net-
work threats

The work presented in [83], describes a framework to assess the exposure of
ICT infrastructures to network threats base upon a measurement model. The
purpose of the model is to provide the various assets of a company with a thor-
ough guidance towards the minimization of the ICT infrastructure’s exposure
level. To do so, the starting point is the evaluation of the attack surface in
order to extract metrics that will eventually become information needs. The
latter can be targeted to several recipients in a company to define the security
countermeasures to put in place. In fact, within a company, there is a need for
information at different levels:

• Executive level;

• Business/Process level;

• Implementation/Operations level.

148 CHAPTER 9. HONORABLE MENTIONS

The execution level provides the mission priorities, the available resources
and the overall risk tolerance to the business/process level, having a more di-
rect feeling of the health status of the system. That said, it usually lacks an
understanding of which risks are associated with a certain exposure profile. To
help overcome this issue, the information need will be in the form of a risk
assessment, by providing a finer granularity.
At the Business/Process level, the information need is the input for the risk
management process. This allows to create a direct channel with the Imple-
mentation level in order to share the business needs and build a Profile. The
Business level is constantly updated during the profile implementation pro-
cess, taking advantage of the technical interpretation of the information need
performed by the implementation level. This activity leads to the draft of an
impact assessment, which is of fundamental interest to both the executive and
the implementation level: it allows to keep the execution level updated about
the overall risk management, but also to make the implementation/operations
level aware of the business impact [84].
At this point, it is clear that the output of the model should be the informa-
tion need, that is an evaluation of the extent of exposure to potential attacks,
making specific references to the parts of the system involved. In this case,
the purpose is to provide a set of concrete metrics that reflect the exposure to
network threats.
The introduced model describes in a conceptual way how to quantify rele-
vant attributes acquired by real on-field probes and how to translate them into
the aforementioned metrics. Such measurement information model was con-
structed according to the guidelines proposed in [85], with the idea of keeping
it flexible and easy to implement.
The model is structured in five levels as presented in Figure 9.2. Starting from
the bottom, each level is characterized by a growing degree of information
aggregation, up to information need, which is the goal.

• On the first level there are entities, engineering tools that help extract
significant environmental attributes. Three sources of information are
taken into account: a signature-based Intrusion Detection System, Net-
Flows and the target network infrastructure specifications. The first two
provide files in JSON format and represent the sources of the measure-
ment model. By combining them with the infrastructure design specifi-
cation, the information needs of this work can be reached.

• The Attributes layer includes the relevant information selected by the

9.2. ASSESS THE EXPOSURE TO NETWORK THREATS 149

Figure 9.2: Model definition: Entities and Attributes

Figure 9.3: Model definition: Measures and Metrics

respective Entities. In the case of the NetFlow.json file: “IP address”,
“Flow State” and “Port Num”. “IP address” attribute includes the source
(“IP Src”) and the destination address (“IP Dest”) of each flow. “Flow
State” can assume three values: “New”, if the data flow has just begun,
“Established” if it is running, and “Closed”, if the flow is terminated.
“Port Num” is the indication of the source (“Port Num Src”) and destina-
tion (“Port Num Dest”) ports used for each detected flow. The IDS.json
file is the output of the IDS service, which refers to a database of sig-
natures of well-known violations. The signatures are characterized by
various attributes, among which the Signature ID and the Alert Sever-

150 CHAPTER 9. HONORABLE MENTIONS

ity have been selected. The Signature ID is the unique identifier of a
violation. The Alert Severity indicates the alarm criticality level, rang-
ing from 1 to 5 (Critical, Dangerous, Medium Hazard, Low-Priority,
Non-Priority).

• A base or derived measure is the result of a measurement method, that is,
a logical sequence of operations used to quantify one or several attributes
with respect to a specified scale. The Measurements Layer in Figure 9.3
is made up of different quantities, Active actions, Interactions, Ports,
Host alerts, Host alerts severity. It is important to note that all of the
processes specified in the model are carried out in a well-defined time
interval.

• Metrics are divided in two groups, as shown in Figure 9.3. The “attack
surface” group includes the metrics that measure the physical and logical
assets that could certainly be exploited by an attack. Such metrics have
been defined as follows:

- ‘Detected Active Hosts’ (DAH) quantifies the number of detected
active hosts in an established time frame;

- ‘Host-to-Host Interactions’ (HTHI) quantifies the number of host-
to-host (“IP-Source”, “IP-Dest”) interactions, differentiated ac-
cording to the flow state;

- ‘Ports’ quantifies the total number of detected open ports in a given
time interval. Well-known ports have been considered as server
ports (“Server Service” – SS), the remaining are considered as
client ports (“Client Service” – CS).

The second group is associated with “Network Susceptibility” since it
provides indications about weaknesses in the attack surface, not neces-
sarily leading to an attack. The group in question comprises the follow-
ing elements;

– “Threat level” (TL) is a severity degree indicator in the range be-
tween 1 (Critical) and 5 (Non Priority). It is better detailed in
Fig. 9.4;

– “Alert Number” (AN) is the total alerts number in which the de-
tected active hosts are involved in a well-defined time interval;

9.2. ASSESS THE EXPOSURE TO NETWORK THREATS 151

– “Severity Average” (SA) measures the average severity level of
alerts detected in a given period of time. It is basically a weighted
average of the alerts number based on their respective severity
level, as indicated in Fig. 9.5. Speaking about alerts’ severity,
the model relies upon two different measures:

1. “Host Alert Severity”: it quantifies each type of alert detected
for all the active hosts in a defined time interval, after a classi-
fication of the severity level for each alert has been performed;

2. “Host-to-Host Alert Severity”: it is similar to the previous
measure, with the difference that in this case the process is
done by host-to-host interaction and not by single host.

– “Alerted Hosts Percentage”, indicating the number of hosts in-
volved in an alert.

Figure 9.4: Metrics definition: Threat Level

Each metric provides useful information to measure network infrastructure
exposure. Through the interpretation of this set of metrics, security counter-
measures can be derived starting from the simplest ones, like the disposal of
unsafe applications, to the more sophisticated ones, like Firewall rules, ACL
lists and adoption of Intrusion Prevention Systems.

152 CHAPTER 9. HONORABLE MENTIONS

Figure 9.5: Metrics definition: Severity Average

Conclusions

This Thesis presented different approaches to the automation of offensive se-
curity practices, with the purpose of filling the gap between the way automated
tools perform and the behavior of a security expert. Such distance is especially
evident when one compares the results of the tests in terms of accuracy and
efficiency.
A first approach, based on the application of a Reinforcement Learning model,
shows that is possible to create an intelligent agent that performs discovery of
Cross-Site scripting vulnerabilities. In particular, the framework of reinforce-
ment learning allows agents to autonomously learn the same methodology that
expert penetration testers would employ. Performance evaluations prove the
accuracy in discovering such vulnerabilities can be significantly improved us-
ing an intelligent model that draws inspiration from human experience. The
same goes for efficiency levels, noticing how the number of interactions with
the target system consistently drops when the agent responds to a business
logic that is distant from standard brute force.
An approach based on an ontology for web application penetration testing has
been presented, with the same ontology being represented in the form of a
knowledge graph. A system built on top of such an ontology allows to provide
recommendations to a penetration tester, using predefined rules and an infer-
ence engine that outputs the most promising attack paths. Such an approach
allows to address the scalability, which becomes an issue with growing action-
state spaces.
Finally, a platform capable of creating datasets for web application penetration
tests, is showed. Such a platform is based on a toolset that allows to collect
ethical hackers’ actions, such as browser interactions as well as generated net-
work traffic. An encouragement to the research in the field of machine learning
applied to cybersecurity is supposed to come from the release of open source
datasets of hacking exercises.

153

154 Conclusion

Bibliography

[1] Eric S Raymond and Guy L Steele. The new hacker’s dictionary, 1991.

[2] Charles C. Palmer. Ethical hacking. IBM Systems Journal, 40(3):769–
780, 2001.

[3] Richard R Linde. Operating system penetration. In Proceedings of the
May 19-22, 1975, national computer conference and exposition, pages
361–368, 1975.

[4] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration test-
ing. IEEE Security & Privacy, 3(1):84–87, 2005.

[5] Kumar Shravan, Bansal Neha, and Bhadana Pawan. Penetration testing:
A review. Compusoft, 3(4):752, 2014.

[6] Dafydd Stuttard and Marcus Pinto. The web application hacker’s hand-
book: Finding and exploiting security flaws. John Wiley & Sons, 2011.

[7] Sergey Bratus, Iván Arce, Michael E Locasto, and Stefano Zanero. Why
offensive security needs engineering textbooks. Yale Law & Policy Re-
view, page 2, 2013.

[8] Tianlin Tim Shi, Andrej Karpathy, Linxi Jim Fan, Jonathan Hernandez,
and Percy Liang. World of bits: An open-domain platform for web-based
agents. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3135–3144. JMLR. org, 2017.

[9] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy
Liang. Reinforcement learning on web interfaces using workflow-guided
exploration. arXiv preprint arXiv:1802.08802, 2018.

155

156 BIBLIOGRAPHY

[10] Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement
learning: A comprehensive overview. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 45(3):385–398, 2014.

[11] Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforce-
ment learning with parameterized actions. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[12] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. Journal of artificial intelligence research,
13:227–303, 2000.

[13] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later:
Large-scale detection of dom-based xss. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1193–1204, 2013.

[14] Fabrizio D’Amore and Mauro Gentile. Automatic and Context-Aware
Cross-Site Scripting Filter Evasion. DIAG Technical Reports 2012-04,
Department of Computer, Control and Management Engineering, Uni-
versita’ degli Studi di Roma "La Sapienza", April 2012.

[15] Yong Fang, Cheng Huang, Yijia Xu, and Yang Li. Rlxss: Optimizing xss
detection model to defend against adversarial attacks based on reinforce-
ment learning. Future Internet, 11(8):177, 2019.

[16] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Pomdps make better
hackers: Accounting for uncertainty in penetration testing. In Twenty-
Sixth AAAI Conference on Artificial Intelligence, 2012.

[17] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Penetration test-
ing== pomdp solving? arXiv preprint arXiv:1306.4714, 2013.

[18] Mohamed C Ghanem and Thomas M Chen. Reinforcement learning for
intelligent penetration testing. In 2018 Second World Conference on
Smart Trends in Systems, Security and Sustainability (WorldS4), pages
185–192. IEEE, 2018.

[19] Mohamed C Ghanem and Thomas M Chen. Reinforcement learning for
efficient network penetration testing. Information, 11(1):6, 2020.

BIBLIOGRAPHY 157

[20] Jonathon Schwartz and Hanna Kurniawati. Autonomous penetration
testing using reinforcement learning. arXiv preprint arXiv:1905.05965,
2019.

[21] Jonathon Schwartz, Hanna Kurniawati, and Edwin El-Mahassni.
Pomdp+ information-decay: Incorporating defender’s behaviour in au-
tonomous penetration testing. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 30, pages 235–
243, 2020.

[22] Fabio Massimo Zennaro and Laszlo Erdodi. Modeling penetration testing
with reinforcement learning using capture-the-flag challenges and tabular
q-learning. arXiv preprint arXiv:2005.12632, 2020.

[23] Fabio Massimo Zennaro and László Erdodi. Modeling penetration test-
ing with reinforcement learning using capture-the-flag challenges: Trade-
offs between model-free learning and a priori knowledge. arXiv preprint
arXiv:2005.12632, 2021.

[24] Laszlo Erdodi, Åvald Åslaugson Sommervoll, and Fabio Massimo Zen-
naro. Simulating sql injection vulnerability exploitation using q-learning
reinforcement learning agents. arXiv preprint arXiv:2101.03118, 2021.

[25] László Erdődi and Fabio Massimo Zennaro. The agent web model: mod-
eling web hacking for reinforcement learning. International Journal of
Information Security, pages 1–17, 2021.

[26] Ankur Chowdhary, Dijiang Huang, Jayasurya Sevalur Mahendran,
Daniel Romo, Yuli Deng, and Abdulhakim Sabur. Autonomous secu-
rity analysis and penetration testing. In 2020 16th International Confer-
ence on Mobility, Sensing and Networking (MSN), pages 508–515. IEEE,
2020.

[27] Arcangelo Castiglione, Francesco Palmieri, Mariangela Petraglia, and
Raffaele Pizzolante. Vulsploit: A module for semi-automatic exploitation
of vulnerabilities. In IFIP International Conference on Testing Software
and Systems, pages 89–103. Springer, 2020.

[28] Ryusei Maeda and Mamoru Mimura. Automating post-exploitation with
deep reinforcement learning. Computers & Security, 100:102108, 2021.

158 BIBLIOGRAPHY

[29] John A Bland, Mikel D Petty, Tymaine S Whitaker, Katia P Maxwell, and
Walter Alan Cantrell. Machine learning cyberattack and defense strate-
gies. Computers & security, 92:101738, 2020.

[30] Katia P Mayfield, Mikel D Petty, John A Bland, and Tymaine S Whitaker.
Composition of cyberattack models. In Proceedings of the 31st Interna-
tional Conference on Computer Applications in Industry and Engineer-
ing, New Orleans, LA, pages 3–8, 2018.

[31] Katia P Mayfield, Mikel D Petty, Tymaine S Whitaker, John A Bland,
and Walter A Cantrell. Component-based implementation of cyberattack
simulation models. In Proceedings of the 2019 ACM Southeast Confer-
ence, pages 64–71, 2019.

[32] Katia P Mayfield, Mikel D Petty, Tymaine S Whitaker, Walter A Cantrell,
Scott M Hice, Jeremiah McClendon, and Pedro J Reyes. Component
selection process in assembling cyberattack simulation models. In Pro-
ceedings of the International Conference on Security and Management
(SAM), pages 168–174. The Steering Committee of The World Congress
in Computer Science, Computer . . . , 2019.

[33] Richard Elderman, Leon JJ Pater, Albert S Thie, Madalina M Drugan,
and Marco A Wiering. Adversarial reinforcement learning in a cyber
security simulation. In ICAART (2), pages 559–566, 2017.

[34] Kalle Kujanpää, Willie Victor, and Alexander Ilin. Automating priv-
ilege escalation with deep reinforcement learning. arXiv preprint
arXiv:2110.01362, 2021.

[35] William Blum. Gamifying machine learning for stronger security and ai
models, Apr 2021.

[36] Erich Walter, Kimberly Ferguson-Walter, and Ahmad Ridley. Incorporat-
ing deception into cyberbattlesim for autonomous defense. arXiv preprint
arXiv:2108.13980, 2021.

[37] Maxwell Standen, Martin Lucas, David Bowman, Toby J Richer, Junae
Kim, and Damian Marriott. Cyborg: A gym for the development of
autonomous cyber agents. arXiv preprint arXiv:2108.09118, 2021.

[38] Li Li, Raed Fayad, and Adrian Taylor. Cygil: A cyber gym for train-
ing autonomous agents over emulated network systems. arXiv preprint
arXiv:2109.03331, 2021.

BIBLIOGRAPHY 159

[39] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep reinforcement learning
for cyber security. arXiv preprint arXiv:1906.05799, 2019.

[40] John Mern, Kyle Hatch, Ryan Silva, Jeff Brush, and Mykel J Kochender-
fer. Reinforcement learning for industrial control network cyber security
orchestration. arXiv preprint arXiv:2106.05332, 2021.

[41] Stefan Niculae. Reinforcement learning vs genetic algorithms in game-
theoretic cyber-security. 2018.

[42] Ahmad Hoirul Basori and Sharaf Jameel Malebary. Deep reinforcement
learning for adaptive cyber defense and attacker’s pattern identification.
In Advances in Cyber Security Analytics and Decision Systems, pages
15–25. Springer, 2020.

[43] Rohit Gangupantulu, Tyler Cody, Abdul Rahman, Christopher Redino,
Ryan Clark, and Paul Park. Crown jewels analysis using reinforcement
learning with attack graphs. arXiv preprint arXiv:2108.09358, 2021.

[44] Rohit Gangupantulu, Tyler Cody, Paul Park, Abdul Rahman, Lo-
gan Eisenbeiser, Dan Radke, and Ryan Clark. Using cyber ter-
rain in reinforcement learning for penetration testing. arXiv preprint
arXiv:2108.07124, 2021.

[45] Ryan Christian, Sharmishtha Dutta, Youngja Park, and Nidhi Rastogi.
Ontology-driven knowledge graph for android malware. arXiv preprint
arXiv:2109.01544, 2021.

[46] Yifan Wang, Zhi Sun, and Ye Han. Network attack path prediction based
on vulnerability data and knowledge graph.

[47] Weilin Wang, Huachun Zhou, Kun Li, Zhe Tu, and Feiyang Liu. Cyber-
attack behavior knowledge graph based on capec and cwe towards 6g.

[48] Milan Cermak and Denisa Sramkova. Granef: Utilization of a graph
database for network forensics. 2021.

[49] Injy Sarhan and Marco Spruit. Open-cykg: An open cyber threat intelli-
gence knowledge graph. Knowledge-Based Systems, page 107524, 2021.

[50] Kexiang Qian, Daojuan Zhang, Peng Zhang, Zhihong Zhou, Xiuzhen
Chen, and Shengxiong Duan. Ontology and reinforcement learning

160 BIBLIOGRAPHY

based intelligent agent automatic penetration test. In 2021 IEEE Interna-
tional Conference on Artificial Intelligence and Computer Applications
(ICAICA), pages 556–561. IEEE, 2021.

[51] Damian Hermanowski and Rafał Piotrowski. Network risk assessment
based on attack graphs. In International Conference on Dependability
and Complex Systems, pages 156–167. Springer, 2021.

[52] Kabul Kurniawan, Andreas Ekelhart, and Elmar Kiesling. An att&ck-kg
for linking cybersecurity attacks to adversary tactics and techniques.

[53] Aviad Elitzur, Rami Puzis, and Polina Zilberman. Attack hypothesis gen-
eration. In 2019 European Intelligence and Security Informatics Confer-
ence (EISIC), pages 40–47. IEEE, 2019.

[54] Erik Hemberg, Jonathan Kelly, Michal Shlapentokh-Rothman, Bryn Re-
instadler, Katherine Xu, Nick Rutar, and Una-May O’Reilly. Linking
threat tactics, techniques, and patterns with defensive weaknesses, vul-
nerabilities and affected platform configurations for cyber hunting. arXiv
preprint arXiv:2010.00533, 2020.

[55] Siwar Kriaa and Yahia Chaabane. Seckg: Leveraging attack detection
and prediction using knowledge graphs. In 2021 12th International Con-
ference on Information and Communication Systems (ICICS), pages 112–
119. IEEE, 2021.

[56] Peter E Kaloroumakis and Michael J Smith. Toward a knowledge graph
of cybersecurity countermeasures. Technical report, Technical report,
2021.

[57] Ge Chu and Alexei Lisitsa. Ontology-based automation of penetration
testing, 2020.

[58] Taiana Stepanova, Alexander Pechenkin, and Daria Lavrova. Ontology-
based big data approach to automated penetration testing of large-scale
heterogeneous systems.

[59] Valdemar Švábenskỳ, Jan Vykopal, Pavel Seda, and Pavel Čeleda.
Dataset of shell commands used by participants of hands-on cybersecu-
rity training. Data in Brief, page 107398, 2021.

BIBLIOGRAPHY 161

[60] Valdemar Švábenskỳ, Jan Vykopal, Daniel Tovarňák, and Pavel Čeleda.
Toolset for collecting shell commands and its application in hands-on
cybersecurity training. 2021.

[61] Reza M Parizi, Kai Qian, Hossain Shahriar, Fan Wu, and Lixin Tao.
Benchmark requirements for assessing software security vulnerability
testing tools. In 2018 IEEE 42nd Annual Computer Software and Ap-
plications Conference (COMPSAC), volume 1, pages 825–826. IEEE,
2018.

[62] Owasp vulnerable web applications directory https://owasp.org/www-
project-vulnerable-web-applications-directory/, Oct 2013.

[63] Port swigger web security academy https://portswigger.net/web-security.

[64] Fernando Román Muñoz, Iván Israel Sabido Cortes, and Luis Javier Gar-
cía Villalba. Enlargement of vulnerable web applications for testing. The
Journal of Supercomputing, 74(12):6598–6617, 2018.

[65] Doug Rathbone. Doug rathbone. leadership and internet musings from
the perl generation..., Oct 2013.

[66] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285, 1996.

[67] Martijn Van Otterlo and Marco Wiering. Reinforcement learning and
markov decision processes. In Reinforcement Learning, pages 3–42.
Springer, 2012.

[68] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-
ing, 8(3-4):279–292, 1992.

[69] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI conference on artifi-
cial intelligence, 2016.

[70] Michael Wooldridge. Intelligent agents. Multiagent systems, 6, 1999.

[71] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil
Roth. Learning to evade static pe machine learning malware models via
reinforcement learning, 2018.

162 BIBLIOGRAPHY

[72] Cangshuai Wu, Jiangyong Shi, Yuexiang Yang, and Wenhua Li. Enhanc-
ing machine learning based malware detection model by reinforcement
learning. In Proceedings of the 8th International Conference on Commu-
nication and Network Security, pages 74–78, 2018.

[73] Kent Beck. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[74] Boby George and Laurie Williams. A structured experiment of test-
driven development. Information and software Technology, 46(5):337–
342, 2004.

[75] Owasp benchmark project. https://owasp.org/
www-project-benchmark/. Accessed: 2020-10-19.

[76] Richard Amankwah, Jinfu Chen, Patrick Kwaku Kudjo, and Dave Towey.
An empirical comparison of commercial and open-source web vulnera-
bility scanners. Software: Practice and Experience, 50(9):1842–1857,
2020.

[77] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35,
1950.

[78] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[79] Elie Saad and Rick Mitchell. Owasp web security testing guide, Dec
2020.

[80] Cwe glossary, Apr 2018.

[81] Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. Cap-
turing flags in a dynamically deployed microservices-based heteroge-
neous environment. In 2020 Principles, Systems and Applications of IP
Telecommunications (IPTComm), pages 1–7. IEEE, 2020.

[82] Jan Vykopal, Radek Ošlejšek, Pavel Čeleda, Martin Vizvary, and Daniel
Tovarňák. Kypo cyber range: Design and use cases. 2017.

[83] MA Brignoli, AP Caforio, F Caturano, M D’Arienzo, M Latini, W Matta,
SP Romano, and B Ruggiero. A distributed security tomography frame-
work to assess the exposure of ict infrastructures to network threats. Jour-
nal of Information Security and Applications, 59:102833, 2021.

https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/

BIBLIOGRAPHY 163

[84] Matthew P Barrett. Framework for improving critical infrastructure cy-
bersecurity. National Institute of Standards and Technology, Gaithers-
burg, MD, USA, Tech. Rep, 2018.

[85] International Organization for Standardization/International Elec-
trotechnical Commission et al. Systems and software engineer-
ing—measurement process. ISO/IEC 15939: 2007, 1, 2007.

	Acknowledgments
	List of Figures
	Abstract
	Introduction
	Offensive Security
	Ethical disclaimer
	Penetration Testing
	Web Application Penetration Testing
	Web Application Hacker's Methodology
	OWASP Testing Guide

	Reinforcement Learning
	Contributions

	Related Work
	Reinforcement learning environments
	XSS vulnerabilities discovery
	Penetration testing automation
	Network Security Ontologies and knowledge graphs
	Penetration testing datasets

	Improvement of existing benchmarks
	WAVSEP: Web Application Vulnerability Scanner Evaluation Project
	WAVSEP 2.0

	A semi-automated platform for penetration testing based on reinforcement learning
	Reflected XSS discovery
	Reflection Context
	Context Escape
	Attack string well-formedness
	Filtering Policies

	Environment setup
	Background
	State space
	Action Space
	WAVSEP
	Training
	Simulated Gym environment

	Agent orchestration through human interactions
	Architecture
	Bringing it all together

	Limitations and future research

	Towards a fully automated intelligent agent: the Observer module
	General Architecture
	Observer Interface
	Observer Domain Model
	Observer Execution Flow
	Design Decisions
	Implementation
	Class diagram
	ReflectionContext_observer class
	Selenium Checker
	Deploy

	Fully automated reinforcement learning agent
	Project design
	Agent

	Implementation
	Environment
	Agent

	Observation simulation
	Configuration
	Hierarchical training optimization
	Objective selection: module Observer

	Test Driven Development

	Performance evaluation
	State space explosion
	Automated scanners accuracy comparison
	Number of requests

	Algorithm comparison
	Comparison between hierarchical and unified training

	Other approaches to security testing automation
	A penetration testing expert system based on knowledge graphs
	Design
	Entity Relationship diagram
	Relation diagram
	Hacking Goal
	Rule diagrams
	Attack acquires knowledge

	A toolset to build penetration testing datasets
	Class Diagram
	Main functionality

	Honorable mentions
	Capturing flags in a dynamically deployed microservices-based heterogeneous environment
	Design
	OS Virtualization and Vulnerabilities
	Hierarchical architecture overview
	Networking configuration

	A distributed security tomography framework to assess the exposure of ICT infrastructures to network threats

	Conclusion

