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Abstract

Quantum technologies employ the laws and phenomena of quantum mechanics to ad-
dress different tasks in various technological fields such as, e.g., computation, cryptog-
raphy, or sensing. Specific quantum features empower quantum technologies to achieve
technological advantages over classical technologies. These features are often called quan-
tum resources. In this thesis, we study quantum resources from different viewpoints. We
delve into the identification of the central quantum resources in quantum computation,
we address the verification of specific quantum resources from experimental data, and we
apply quantum resources to develop new quantum technologies. The results of this thesis
are published in the papers [1, 2, 3, 4, 5].

The crucial quantum resources that enable a quantum advantage of quantum comput-
ers over classical ones for specific computational problems have been intriguing scientists
since the introduction of quantum computation. We focus on a specific quantum algo-
rithm, Grover’s algorithm, and examine quantum resources that are necessary for its com-
putational advantage over classical technologies. We find that the maximal trace speed
of the quantum state during the algorithm can be used to bound the quantum advantage
in different noisy versions of Grover’s algorithm. The trace speed can be interpreted as a
measure of the quantum resources of coherence or entanglement.

Verifying the presence of a certain quantum resource in an experimental setup is gen-
erally a difficult problem and requires specific techniques and strategies that depend on the
quantum resource in question. For instance, the verification of the quantum resource of
Bell nonlocality requires violations of Bell inequalities. These violations can be forged by
means of the selection bias if the observed data are postselected collaboratively by the dif-
ferent experimental parties. We prove conditions for partially-collaborative postselection
strategies that are valid for the verification of genuine multipartite nonlocality.

In the field of continuous-variable quantum technologies, a central quantum resource
is nonclassicality. The verification of nonclassicality is generally cumbersome and requires
large amounts of experimental data. We develop and train neural-network-based nonclas-
sicality indicators that predict nonclassicality directly from small amounts of experimental
data produced in different standard quantum-optical measurement schemes. The method
is applied to real experimental data from homodyne measurements.

Finally, we employ the toolbox of quantummechanics to develop a quantum algorithm
that performs Bayesian multiphase estimation at the optimal precision scaling, where we
take into account all physical resources that are used in the estimation protocol. The algo-
rithm can be implemented in state-of-the-art quantumoptical architectures and represents
a potential subroutine for technologies in quantum sensing and quantum computation.
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1.1 Quantum technologies

The development of the intriguing and counterintuitive concepts of quantum physics and
its applications can be coarsely divided into two sections [6]. The first quantum revolution,
describing the insights and applications of quantum physics since its discovery until the
end of the twentieth century, places research in a rather passive role: the ideas of quantum
physics were mostly used to explain phenomena that were observed, such as, e.g., black
body radiation, the photoelectric effect, the periodic table of elements, wave-particle dual-
ity, etc. The thereby-understood effects could then be used to obtain central technological
advances such as the transistor or the laser.

Currently, research is experiencing the second quantum revolution that is characterised
by an activemodeling or engineering of systems that are described by quantummechanics.
This motivated the widely used term quantum technologies, i.e., technologies that explicitly
control and use quantum properties at the elementary level in order to achieve a certain
technological task. The sparkling insight of this field was the realization that, by engineer-
ing and manipulating quantum systems, one can achieve an advantage over any classical
technology for resolving specific technological tasks, the so-called quantum advantage.

1
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The initial step toward quantum technologies was the realization by Einstein, Podolsky
and Rosen in 1935 that a perfectly prepared quantum system shows certain nonlocal cor-
relations that escape any possible classical and local description [7], an observation that
is since called the EPR paradox. This paradox was formalized and made testable by the
famous Bell inequalities introduced in 1964 [8, 9]. The first technological advantage of
these nonlocal phenomena was realized about two decades later, with the beginning of
quantum cryptography [10, 11, 12]. Around the same time, quantum technologies were
conjectured [13] (and later shown) to also yield computational advantages [14, 15], cul-
minating in Shor’s algorithm in 1994 [16] that gave the field of quantum technologies its
arguably largest boost. Independently, an increased performance of precision measure-
ments by the use of quantum features (squeezed light) was proposed in 1981 [17].

Today, quantum technologies can be roughly divided into four subfields.

• Quantum cryptography employs quantum systems to share unbreakable key distri-
butions (see, e.g., Ref. [18]) between distant parties.

• Quantum computation replaces classical bits by quantum bits (qubits) to perform
certain computations faster than classical computers (see, e.g., Ref. [19]). Depending
on the algorithm, the speed-up can be polynomial or even exponential.

• Quantummetrology builds on quantum systems as sensors to achieve ameasurement
precision that is inaccessible when using classical measurement techniques (see, e.g.,
Ref. [20, 21]).

• Quantum simulation enables the classically inaccessible simulation of complex
quantum systems by engineering and controlling other quantum systems (see, e.g.,
Ref. [22]).

Various questions concern the field of quantum technologies and quantum advantages
since their introduction. The central andmost practical challenge is how to use the toolbox
of quantum mechanics and its resources to develop new quantum technologies that show
advantages over classical technologies for specific tasks. Furthermore, ever since quantum
advantages were found, there has been a large and on-going discussion among scientists
about where these advantages stem from. What characteristics of quantum systems that
are inaccessible for classical technologies, make the formermore powerful for certain tech-
nological tasks? These characteristics are often referred to as quantum resources. Finally,
from an experimental or engineering point of view, once having defined an interesting
quantum resource, how can one detect and certify this resource from real experimental
data of measurements of a quantum system?

In this thesis, we will address and partially contribute to an answer (for specific prob-
lem settings) to the above questions. The following general introduction serves as a rough
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orientation for the basic ideas and conceptual difficulties that underlie the field of quantum
resources.

1.2 Origins of quantum advantage

Quantum systems behave differently than classical ones. From the mathematical point of
view, the possible states of a quantum system are described as unit-trace density operators
acting on complex Hilbert spaces [19], a description that is in contrast to the phase space
description of classical mechanics. As being described by different fundamental building
blocks, quite naturally, technologies that rely on quantum and classical mechanics will be
of dissimilar shape. However, it came as a surprise formany researcherswhen specific tech-
nological tasks were found that can be performed more efficiently with quantum systems,
and, still today, there exists a large community of “sceptics” that question the usefulness
of (some) quantum technologies. The big question arose about which features of quan-
tum mechanical systems and laws enable such an advantage. What is its resource? Some
commonly stated candidates for these resources are, to name a few, the exponential size of
the Hilbert space, or the phenomena of superposition and interference. The most famous
quantum feature that is widely thought to be responsible for the quantum advantage, and
that constantly amazes researchers is the quantum phenomenon named entanglement.

1.2.1 Multipartite entanglement

Imagine a quantum system that consists of two subsystems. Recall that according to the
laws of quantummechanics, the total Hilbert spaceH of the system is the tensor product of
the subsystemHilbert spacesHi,H = H1⊗H2. Pure quantum states are described by unit
vectors |ψ〉 ∈ H, and general (mixed) states by (unit-trace Hermitian) density operators
ρ : H → H (see, e.g., Ref. [19] for an extensive introduction to the axioms and definitions
of quantum mechanics). A pure quantum state |ψ〉 is called separable if it can be written
as |ψ〉 = |ψ1〉 ⊗ |ψ2〉 with |ψi〉 ∈ Hi. In other words, a pure state is separable if and
only if there are no correlations between the subsystems. If |ψ〉 is not separable, it is called
entangled. A general mixed entangled state shows correlations between the subsystems
that cannot be described by classical mixtures of separable states.

In the case of a quantum system consisting of n subsystems, entangled states show
further structure. A general pure state |ψ〉 can be written as

|ψ〉 =
⊗
j

|ψj〉 , (1.1)

where for each j, |ψj〉 is a pure state of a group of subsystems. If |ψ〉 can be written accord-
ing to Eq. (1.1) with a maximal group size of k, but not with a maximal group size of k−1,
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it is called k-partite entangled (for k = 1, it is called separable). A general state ρ is called
k-partite entangled if it can be written as a mixture ρ = ∑

l pl |ψl〉 〈ψl|, where each |ψl〉 is
at most k-partite entangled, but not as a mixture of (k− 1)-partite entangled states. Here,
|ψ〉 〈ψ| denotes the density operator corresponding to the pure state |ψ〉. An n-partite
state that is n-partite entanglement is also called genuinely multipartite entangled. For a
conclusive review of entanglement we refer to the literature, see, e.g., Ref. [23].

Entanglement represents the key difference between pure quantum and pure classical
systems in terms of the description of composite systems. In fact, while the degrees of
freedom (the number of parameters needed to uniquely describe a pure physical state) of
two classical systems equals the sum of the degrees of freedom of each subsystem, in com-
posite quantum systems, the degrees of freedom multiply. This results in the terminology
of an exponential size of the Hilbert space (as a function of the number of subsystems).
The overhead possibilities for pure quantum composite systems are precisely the entan-
gled states.

Many key developments of quantum technologies rely on (multipartite) entanglement.
For instance, in quantum communication tasks, one needs an entangled state to violate Bell
inequalities [24], and to perform superdense coding [25] or quantum teleportation [26].
All of the above represent basic building blocks for current advanced quantum commu-
nication technologies. In quantum metrology, multipartite entanglement is known to be
the key resource to surpass the classical shot-noise limit [21, 27, 28, 29, 30], i.e., to yield
a quantum advantage with respect to the possible precision of a sensing protocol. Many
quantum algorithms rely on multipartite entanglement [19] and, in the specific case of an
exponential classical complexity of pure state quantum computations, multipartite entan-
glement was proven to be necessary [31].

Yet, the general role of entanglement in quantum advantage is still unclear [32]. In
particular, in quantum computation, apparent quantum advantages have been found that
do not seem to rely on entanglement [15, 33]. Wewill discuss these observations in detail in
Sec. 2.1. A crucial obstacle in the resolution of the role of entanglement and other quantum
resources are the varying definitions of quantum advantage: in short, defining a quantum
advantage in different ways can lead to different answers about the origin and the resources
of the advantage, a problem that we will depict in the following.

1.2.2 Different contexts of quantum advantage

In order tomeaningfully talk about a quantum advantage, it is necessary to precisely define
its context, i.e., the precise technological task that we want to accomplish together with all
its boundary conditions. Changing these contexts might transform a quantum technology
from yielding a quantum advantage to not showing any benefits compared to a classical
technology. Furthermore, since advantageous and optimal quantum technologies change
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(a) (b)

Figure 1.1: (a) To specify the gate complexity of a quantum algorithm, one has to take account of all ba-
sic quantum gates that together implement the algorithm. (b) In query complexity, one simply counts the
number of applications of an oracle unitaryO, while additional gates of the quantum algorithm are ignored.

when we vary between these contexts, also the key quantum features of these technologies
might differ.

The best known example of this ambiguity is the definition of the quantum advantage
in quantum computation. In theoretical quantum computation, there are two main def-
initions of the complexity of a certain (quantum) algorithm [19]. On the one hand, gate
complexity is a measure of how many “basic” gates have to applied to implement a quan-
tum algorithm (cf. Fig. 1.1(a)). The set of basic gates also represents some freedom to
choose, but commonly it is some universal gate set of quantum computation consisting of
single- and two-qubit gates. The other complexity is query complexity (also called oracle
complexity). Here, the complexity is simply defined as the number of applications of one
specific gate, the oracle, even though other gates are needed to implement the complete
algorithm (cf. Fig. 1.1(b)). The number and complexity of the remaining gates as well as
the complexity of the oracle gate are not taken into account (the oracle is said to act as a
“black box”). The two complexities generally differ significantly. For instance, Grover’s
algorithm yields an advantage in terms of query complexity [34]. Furthermore, while the
importance of Shor’s algorithm [16] is due to its exponential advantage with respect to
gate complexity, it also yields an exponential advantage in query complexity1. The crucial
insight in Shor’s algorithm is that the number of additional gates as well as the number
of gates to implement the oracle is so small that an exponential advantage persists also in
terms of gate complexity. With respect to gate complexity, entanglement is generally be-
lieved to play the key role of the quantum advantage. In contrast, as we discuss in detail in
Sec. 2.1, taking only into account query complexity and not specifying any other boundary
conditions, entanglement cannot represent the resource for quantum advantage because
all quantum algorithms can be equivalently implemented in a single multilevel system.

A second field in which different definitions of quantum advantage led to disputes
is quantum metrology. Let us consider optical metrology as an example. The standard
definition of the technological task is the following: we are given an optical element that
induces an unknown phase shift θ that we want to measure. To measure the phase shift

1In particular, Shor’s algorithm to factor a numberN relies on the quantum algorithm for period finding
that is successful for O(1) oracle calls [19]. The best known classical algorithm for period finding requires
O(N1/4) oracle calls [35].
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(a) (b)

Figure 1.2: (a) In the standard setting of optical quantummetrology,N photons pass through an interferom-
eter that imprints an unknown phase shift θ. The optimal achievable phase sensitivity requires multiphoton
entanglement. (b) Counting only the number of times the phase shift is penetrated by a photon, one can
achieve the optimal sensitivity also by multipass interferometers and single photons.

we have to place the element in one arm of an interferometer (cf. Fig. 1.2(a)). Now we
are given N photons that can pass through the interferometer. Which N-photon state in
the interferometer results in the highest sensitivity to the phase shift? In this case, the op-
timal sensitivity (the so-called Heisenberg limit [36, 37]) is shown to require multipartite
entanglement [27]. However, instead of assuming thatN photons pass through the inter-
ferometer once, we can just assume that the unknown optical element can be penetratedN
times by a photon without further constraints. Then one can observe that the sensitivity of
the above strategy usingmultipartite entanglement can also be achieved by using just a sin-
gle photon that is traversing the phase shift multiple times [37, 38] (cf. Fig. 1.2(b)). Since
now we are using only a single photon, multipartite entanglement cannot be the resource
of the advantage. Entanglement is however still present [39] because the highly nonclas-
sical single photon results in an entangled state in the interferometer (see also Sec. 4.1).
A different quantum resource that is considered in this implementation is coherence. We
will revisit this formal equivalence between different these settings of quantum metrology
in Ch. 5, where we also add a third equivalent approach that is used in the quantum phase
estimation algorithm [40]. The different quantum resources will be discussed in Sec. 5.1.4.

To summarise, different definitions of a technological task (and its boundary condi-
tions) lead to different optimal strategies and quantum advantages, and possibly alter the
quantum resource that is necessary for the quantum advantage.

1.2.3 Quantum resources

After having specified the precise context of a quantum advantage, one can ask the ques-
tion of the quantum resource that is necessary for the advantage. In many quantum tech-
nologies, several quantum features are present, such that a unique identification of the
necessary resource is not straightforward [32]. Furthermore, resources can be largely de-
pendent such as, for instance, the quantum features of entanglement and quantum discord
[41, 42, 43] that generally represent different quantum correlations but coincide for the set
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of pure states. Finally, quantum resources can often be converted into each other. An ex-
ample is the conversion between nonclassicality and entanglement in continuous-variable
systems [44, 45]: a single-mode nonclassical state (that is not entangled) generates mode
entanglement after getting mixed with vacuum in a balanced beam splitter.

In contrast, as mentioned above, a clear identification of the quantum resource was
possible in the field of quantum metrology and precision measurements when considering
the standard setting of single-pass interferometers. According to the quantum Cramér-
Rao bound [46, 47], the ultimate precision limit of a measurement is closely connected to
the quantum Fisher information (QFI) [48, 49], see Ch. 5 and in particular Eq. (5.1) for
more details. The QFI is one among many quantum statistical speeds that quantify the
susceptibility of quantum states to parameter displacements [50], and will be introduced
in detail in Sec. 2.1.1. This quantum statistical speed, that is central to quantum-enhanced
precision measurements, serves furthermore as a detection of multipartite entanglement
[27, 28, 29]. Therefore, the necessary quantum resource in quantum metrology (in the
standard setting, see Sec. 1.2.2) is multipartite entanglement. In Ch. 2, we will discuss the
role of a different quantum statistical speed, the trace speed, in Grover’s search algorithm
[34].

Resource theories

In recent years, an operational approach to quantum resources has been developed [51].
Here, the main idea is that one defines some subset of all possible quantum operations
as the set of free operations. For instance, the free operations can represent all available
quantum operations implementable in a specific experimental setup. All states that can
be generated using free operations from some fixed initial state are called free states. A
state that is not part of the free states is thus called resourceful. Furthermore, the amount
of resourcefulness can be measured by a non-negative and convex function on the set of
states, that must vanish for free states and not increase under the free operations [51, 52].

For the traditional operational resource theory of entanglement, the set of free oper-
ations consists of local operations and classical communication (LOCC) [23, 53]. With
this choice, the set of free states coincides with the set of separable states, such that all en-
tangled states are resourceful. Different measures of entanglement can be chosen that are
compatible with this resource theory, for instance the relative entropy distance [51]. We
note that recently it was argued that in resource theories of entanglement, the set of free
operations should be chosen depending on the context [54]. For instance, in the standard
Bell scenario that we will further discuss in Ch. 3, a natural candidate for free operations
are local operations and shared randomness (LOSR). This is because, in the standard sce-
nario, several measurements are performed at a spacelike distance, such that the laws of
special relativity forbid any communication during the measurement procedure (the so-
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called no-signalling principle). While these different resource theories provide the same
classification of states into separable and entangled states, notions ofmultipartite entangle-
ment (and nonlocality) differ [54], see Sec. 3.1.2 for more details. Resource theories have
also been widely applied to other quantum features such as coherence [55, 56, 57], asym-
metry [58, 59], purity [60], nonclassicality [61], and more. For an overview of different
resource theories, we refer to Ref. [62].

1.3 Detection of quantum resources

After having identified a quantum resource of interest, the question arises of how to certify
that this resource is present in an experiment. In general, the detection of different quan-
tum resources may require completely dissimilar methods. Often, due to the dependence
of different resources, detecting one resource directly implies the presence of a second one.
The prime example is the classification of bipartite quantum states and correlations that we
want to explain in the following.

Consider many copies of a bipartite quantum state ρ that are shared between two par-
ties, Alice and Bob. By measuring their respective parts of the states and processing the
results, Alice and Bob want to decide what kind of quantum states or correlations they
share. Depending on the quantum resource they want to detect, they need to follow dif-
ferent strategies. For instance, if they want to decide if the state is separable or entangled,
one possibility is to perform full state tomography: they perform a series of measurements
that correspond to a basis for all possible states, and after collecting sufficient statistics,
they can estimate the state ρ. Now they can test different conditions for entanglement on
their estimated ρ. As an example, in the case of small local dimensions of theHilbert spaces
(d1 = d2 = 2 and d1 = 2, d2 = 3), the positive partial transpose criterion is a necessary
and sufficient criterion for entanglement [63]. For largerHilbert space dimensions ormore
than two parties, there are no efficient general conditions to decide if the state is separable
or entangled. It was even shown that the decision problem of whether a state is separable
or entangled is NP-hard if the state is close to the boundary between separable and entan-
gled states [64]. Alternatively, theoretical conditions that require full quantum state to-
mography may be out of reach for experimental tests, such that experimentally-accessible
entanglement detection methods have to be developed, see, e.g., Refs. [65, 66, 67]. Com-
monly, conditions are applied that, when fulfilled, allow the experimenters to conclude
that the state is entangled. These conditions are called entanglement witnesses [23, 68]. As
mentioned above, entanglement is central to many quantum technologies, such that the
detection of its presence is crucial to decide if an experimental setup can produce quantum-
technologically useful states.

A second quantum feature that the parties might want to demonstrate is Bell nonlo-
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cality2 [8, 9]. Here, Alice and Bob locally measure their subsystems, where in each round,
they have to choose their measurement randomly from a few measurement options. The
demonstration of nonlocality can then be achieved by a violation of Bell inequalities [24]
and will be discussed in more detail in Ch. 3. Nonlocality represents the central quantum
resource in security and cryptography [12, 18].

As a last example, there is a third class of quantum correlations that goes back to an
idea of Schrödinger in 1936 [70] (as a response to the EPR paradox [7]). In short, by Alice’s
choice of measurement she can steer the ensemble of possible states at Bob’s side. This phe-
nomenon is called EPR steering. In contrast to nonlocality, there is an asymmetry between
the parties in the sense of who steers whom. An exemplary problem setting that is solved
by steerable states is the task that Alice has to convince Bob that they share entanglement,
while Bob distrusts her. Therefore, Bob receives classical information fromAlice about her
measurement result, and can then measure his state to check certain steering conditions
[71, 72]. EPR steering was also identified as the necessary resource in several quantum
technologies such as, e.g., one-sided quantum key distribution (QKD) [73].

The different classes of quantum states that provide the above quantum resources (i.e.,
entanglement, nonlocality and steerability) have simple inclusion relations [71]. We ex-
emplify this by comparing separable states with local states (i.e., states that cannot give rise
to nonlocal correlations). A bipartite state ρ is called local if for any local measurement
performed by Alice and Bob, the resulting correlations can be described by a so-called lo-
cal hidden variable (LHV) model, see Ch. 3 for more details. Formally, ρ is local if, for any
local measurement, there exist probability distributions Pλ, Pa|xλ and Pb|yλ such that

Pab|xy = tr[Ea ⊗ Fbρ] =
∑
λ

PλPa|xλPb|yλ. (1.2)

Here, a (b) and x (y) label Alice’s (Bob’s) measurement outcome and setting, respec-
tively, and Ea (Fb) is a positive semi-definite operator (

∑
aEa = 1) on the Alice’s (Bob’s)

Hilbert space corresponding to the measurement choice x (y) and outcome a (b), see, e.g.,
Ref. [19]. The discrete variable λ is called a local hidden variable. For a separable state
ρs = ∑

l plσl ⊗ σ′
l, one immediately obtains

Pab|xy =
∑
l

pl tr[Eaσl] tr[Fbσ′
l] (1.3)

for any measurement operators Ea and Fb, which is of the form of Eq. (1.2). Thus, we see
that the set of separable states is included in the set of local states.

The converse is not true: there exist entangled states that cannot give rise to nonlo-
cal correlations for any local measurements [74]. Thus, the separable states form a strict
subset of the local states. Furthermore, similar considerations show that that the set of

2For simplicity, throughout this thesis, we will use the term nonlocality for this phenomenon. The right
designation and interpretation is still highly disputed, see, e.g., Ref. [69].
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Bell inequality

local

separable

non-steerable

general

Figure 1.3: Sketch of different convex classes of bipartite quantum states. The set of separable states (grey) is
included in the set of non-steerable states (red), i.e., states that cannot be used for EPR steering. The set of
non-steerable states is included in the set of local states (yellow), which are all the states for which the correla-
tions for any local measurement can be described by a local-hidden-variable model, cf. Eq. (1.2). All classes
of states are included in the set of general bipartite quantum states (blue). We also indicate that the nonlo-
cality of a state (i.e., the nonlocality of the state’s measurement correlations for some local measurement) is
detected by a Bell inequality.

non-steerable states includes the separable states but is included in the local states3, where,
again, the inclusions are strict [71].

All inclusion relations are sketched in Fig. 1.3, where we also indicate that the different
classes of “resourseless” states (i.e., separable, non-steerable, and local) are strict subsets of
the set of general bipartite quantum states. States outside the local set are detected when
the resulting measurement correlations violate Bell inequalities, as we will discuss in detail
in Ch. 3. Finally, all different sets are convex because, for any two states that are separable,
non-steerable, or local, the mixture of the states has the same feature as well.

The inclusion relations between these different classes of quantum resources highlight
that, while their demonstration might be possible using completely different strategies,
demonstrating the presence of one quantum resource often directly demonstrates the pres-
ence of a second one. As seen above, entanglement is necessary for steerability, and en-
tanglement and steerability are necessary for states that can show nonlocality. Therefore,
a demonstration of, say, nonlocality automatically demonstrates the presence of entangle-
ment and steerability.

3For completeness, a state ρ does not show EPR steering from Alice to Bob if for any measurement of
Alice there exists probabilities Pλ and Pa|xλ and states ρλ such that Bob’s state after Alice’s measurement
with measurement choice x and outcome a is given by

ρxa =
∑
λ

PλPa|xλρλ.

This model is called a local-hidden-state model. Clearly, any separable state ρs =
∑
l plσl ⊗ σ′

l results in a
local-hidden-state model for any measurement performed by Alice, and if Bob further performs measure-
ments on ρxa, the final correlations are of the form of Eq. 1.2.
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1.4 Outline

In this thesis, we will address the three topics of identification, verification and application
of quantum resources for different specific problem settings. As each situation requires
different theoretical backgrounds and literature overviews, we include extensive introduc-
tions to the respective topics at the beginning of each chapter. The different subjects of the
remainder of this thesis are summarized in the following.

Identification

In Ch. 2, we consider one of the first quantum algorithms, the Grover search algorithm
[34], and identify a necessary quantum resource for its quantum advantage. Grover’s al-
gorithm offers a provable quadratic speed-up for searching a large database for a marked
element, and represents one of the key building blocks for many modern quantum algo-
rithms. Different quantum resources have been considered to be crucial for this quantum
advantage, but no general consensus was reached. We show that in the pure-state ver-
sion of Grover’s algorithm as well as its pseudo-pure-state generalization, we can identify
a specific quantum statistical speed, the trace speed, as a necessary quantum resource. The
trace speed can be further interpreted as demonstrating coherence or, assuming an imple-
mentation with several qubits, multipartite entanglement. The results of this chapter are
published in Ref. [1].

Verification

An ubiquitousmethod in physics is the postselection of observedmeasurement data. Gen-
erally, postselection can corrupt the information of the data and lead to false conclusions,
by means of the postselection bias. In Ch. 3, we address this problem in view of the certi-
fication of the quantum resource of genuine multipartite nonlocality. By the postselection
bias, a general postselection can mimic nonlocal behaviour even if the complete corre-
lations show no nonlocality. It was long believed that the only “safe” postselection that
avoids the postselection bias is a locally decided postselection, e.g., that each party knows
whether to keep or discard their result without the need for communication with the other
parties. We show that even certain postselection strategies that require communication be-
tween several experimental parties can be used to verify genuine multipartite nonlocality,
by providing conditions on the postselection to exclude the postselection bias. To show our
results, we employ the statistical-inference tools of causal diagrams [75]. Furthermore, the
postselection strategy is used for an experimental proposal to create genuine multipartite
nonlocality with independent particle sources [76]. The results are published in Ref. [2].

InCh. 4, we developmachine learningmethods to detect the quantum resource of non-
classicality for different quantum optical measurement processes. Nonclassicality, defined
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as the negativity of a quasiprobability distribution representing the quantum state, is one
of the central quantum resources in continuous-variable quantum technologies. Typically,
the detection of nonclassicality employs full quantum state tomography as a first step, and
consequently requires large amounts of experimental data as well as advanced post pro-
cessing strategies. A direct and fast detection of nonclassicality from experimental data
that is applicable also for immediate amounts of measurement data has not been devel-
oped so far. We address this problem using machine learning methods. We train artificial
neural networks bymeans of supervised learningwith simulated data from (i) single-mode
homodyne measurements and (ii) multiplexed click-counting measurements of different
quantum optical states. The trained networks then operate as fast nonclassicality iden-
tifiers that can also be applied to small sets of measurement data. In case of homodyne
measurements, the performance of the network is tested on several types of experimental
data. The results are published in Ref. [3] for the homodyne measurements and in Ref. [4]
for the click-counting measurements.

Application

Finally, in Ch. 5, we apply the available quantum resources of quantum mechanics to de-
velop a new technique to perform quantum multiphase estimation. We introduce the
Bayesian quantummultiphase estimation algorithm that has potential applications in both
quantum computation and quantummetrology. The algorithm is shown to performmulti-
phase estimation, i.e., the parallel estimation of several phases, at the optimal scaling limit,
the Heisenberg limit4 with respect to the total number of resources used in the estimation
protocol. The algorithm consists of a basic quantum measurement circuit that simulta-
neously measures the different phases as well as a classical post-processing strategy that
is based on Bayesian inference. We show that, for a fixed number of total resources, the
Bayesian quantum multiphase algorithm can outperform optimal sequential single-phase
estimation protocols for severalmultiphase estimation tasks and can be further extended to
the presence of phase damping noise. Finally, we propose two experimental realizations
of the algorithm by either using generalized N00N states, or a multipass interferometer
that can be implemented in state-of-the-art quantum optical experiments. The results are
published in Ref. [5].

4The termination Heisenberg limit is usually used only in the standard quantum optical setting that does
not allow for multiple passes of the phase shifts, see Sec. 1.2.2. Due to the formal equivalence of the standard
setting to a multipass setting, we will use the term Heisenberg limit independently of the specific implemen-
tation of the algorithm, while the different implementations together with their respective advantages and
disadvantages will be discussed in detail in Ch. 5.
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In this chapter, we will discuss necessary quantum resources of Grover’s search algo-
rithm and demonstrate the crucial role of the trace speed in the algorithm’s pure-state and
pseudo-pure-state implementations. First, in Sec. 2.1, we provide a detailed introduction
to the quest of the identification of quantum resources of quantum computation and give
an overview of the literature. In Sec. 2.2, we focus on Grover’s algorithm and describe its
operating principle. Finally, in Sec. 2.3, we prove that the trace speed describes a necessary
quantum resource in Grover’s algorithm.

2.1 Quantum resources in quantum computation

As being the arguably most famous quantum technology, quantum computation enjoys
large attention from academics, industry and even public news coverage. An unavoidable
question asked by people with any level of expertise has been where the apparent power of
quantum computers comes from. As already indicated in Sec. 1.2, this problem has not yet

13
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been completely resolved. In this section, we will sketch the main difficulties and partial
resolutions to this question.

The question of where a quantum computational advantage comes from can be asked
in two depths: first, one can ask which quantum resource has to be present in a given
quantum algorithm, or to generally achieve a specific quantum advantage. This question
corresponds to a rather explanatory role of the quantum resource for the advantage. Sec-
ond, one can further ask for a quantitative attribution to the quantum resource: here, a
quantitative relation between the amount of the quantum resource and the amount of the
quantum advantage is sought-after. Most research has been attempting to answer the sec-
ond (quantitative) problem, and we will roughly overview it in Sec. 2.1.1. We will briefly
touch upon considerations about the first (explanatory) question in Sec. 2.1.2.

The quest for a quantitative attribution of a quantum resource to a quantum advantage
is highly complicated by the following obstacles. Most importantly, the situation that the
quantum advantage itself can be quantified is the exception. Even more, many quantum
advantages rely on complexity-theoretical conjectures that have not been proven. Take
the problem of integer factorization as an example. The classical hardness of factoring
(see, e.g., Ref. [77]) results in an apparent exponential advantage of Shor’s algorithm [16].
However, it has not been proven that no “efficient” classical algorithm exists that would
make the quantum advantage disappear [77]. A different computational task that was im-
pacted by a similar problem was discussed in Ref. [78], where a quantum algorithm for the
recommendation problem, that was thought to yield an exponential quantum advantage
over classical algorithms, was “dequantized” to yield a classical algorithm with a similar
performance as its quantum relative. Furthermore, more efficient classical methods for
factoring probably might be found that, while not touching the exponential advantage of
Shor’s algorithm, still change the exact quantitative advantage. In summary, one could say
that the main difficulty of proving quantum computational advantage is not to prove why
a quantum computer is fast (and of quantizing how much so) but to prove why a classical
one is slow and to what extend1.

There is an evenmore fundamental complexity-theoretic obstacle in the proof of an ex-
ponential advantage. The proof of an exponential gate-complexity advantage corresponds
to a proof that

P 6= BQP, (2.1)

where P is the complexity class of decision problems solvable by a classical computer (Tur-
ing machine) in polynomial time, and BQP is the class of decision problems solvable by
a universal quantum computer in polynomial time. Since it can be proven that BQP is
contained in the class PSPACE of decision problems solvable by a classical computer us-

1For a nice newspaper article that addresses this point, see https://www.quantamagazine.org/why-is-
quantum-computing-so-hard-to-explain-20210608/.

https://www.quantamagazine.org/why-is-quantum-computing-so-hard-to-explain-20210608/
https://www.quantamagazine.org/why-is-quantum-computing-so-hard-to-explain-20210608/


Chapter 2. Identification: Quantum resources in Grover’s algorithm 15

ing a polynomial amount of space [15], a proof of Eq. (2.1) would represent a proof of
P 6= PSPACE. This latter conjecture, similar to the famous P = NP problem, has not been
solved even despite decades of attempts of theoretical computer science, see, e.g., Ref. [79].
Therefore, without assuming complexity conjectures, an exponential advantage of quan-
tum computers cannot be proven.

The situation looks somewhat better for quantum advantages with respect to oracle
complexity, cf. Sec. 1.2.2. Even though the advantages are typically polynomial and not
exponential, they often can be proven. For instance, the quadratic advantage of Grover’s
search algorithm that we will discuss below is provable and even provably optimal [80, 81].
Recently, even an oracle separation between BQP and the polynomial hierarchy PH, a
superset of NP, has been proven [82].

In this context, we also want to note that the recent quantum computational advan-
tage results [83, 84] rely on sophisticated complexity-theoretical reductions. Essentially,
besides the fact that no efficient classical solutions to the corresponding computational
problems are known, the hardness of the corresponding computational problems was re-
duced to reasonable hardness assumptions similar to P 6= NP. For the quantum advantage
experiment using random circuit sampling [83], see Refs. [85, 86], and for the quantum
advantage experiment using boson sampling [84], see Refs. [85, 87, 88].

On the other hand, a second obstacle is the quantification of a given quantum resource.
For instance, there is an immense variety of entanglement measures or quantifiers that are
non-equivalent [23]. As we will see in Sec. 2.1.1, different entanglement measures yield
different answers to the question of the necessity of entanglement, which can easily lead
to confusion. The answer of the necessity of a quantum resource thus depend on which
measure of the resource is used, a fact that we have already seen in Sec. 1.2.3, where we
described entanglement as detected by the QFI as the key resource for metrology, and we
will see a similar result in Sec. 2.3.

2.1.1 Previous results on necessary quantum resources

In the following, we provide an overview of the key insights of the quest for quantum re-
sources for quantum computation.

Entanglement

Among the first attempts to answer the question of the origin of quantum computational
advantage was a result by Jozsa in 1997 [89] where he points out an essential role of entan-
glement. In particular, he discusses the (entanglement-requiring) exponential advantage
of the quantum Fourier transform with respect to the classical (fast) Fourier transform.
The important quantum algorithms of Deutsch–Jozsa [90], Simon [91] and Shor [16] are
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all based on the quantum Fourier transform (over different groups). This line of reasoning
was further deepened in Ref. [92].

Further insights were reached by a result of Linden and Popescu [93] who considered
noisy quantum algorithms instead of pure ones. In particular, the pure quantum state is
assumed to be mixed with uniform white noise, resulting in a so-called pseudo-pure state
(for a detailed definition anddescription, see Sec. 2.3 andEq. (2.22)), that naturally arises in
nuclearmagnetic resonance proposals for quantum computing [94, 95, 96]. Exponentially-
advantageous quantum algorithms implemented with pseudo-pure states are then shown
to only keep their advantage if the noise is not strong enough to remove the entanglement.
Also, using the same reasoning, they show that entanglement is not a sufficient resource
of the advantage: pseudo-pure states that are still entangled may not be sufficient for the
exponential advantage anymore.

The first rigorous proof concerning the necessity of entanglement in pure-state algo-
rithms yielding an exponential advantage was given by Jozsa and Linden in 2003 [31]. If
the quantum state during the algorithm admits a factorization in which the factors con-
sist of a bounded number of qubits, the final probability distribution of the algorithm can
be simulated classically in polynomial time. Therefore, for an exponential advantage in
a pure-state algorithm (assuming the usual complexity conjectures, see above), multipar-
tite entanglement has to be present. Furthermore, they show why the state during Shor’s
algorithm generally is multipartite entangled, and they explicitly state that the situation
for mixed-state advantages is not resolved by their results. Finally, they also argue why
claiming a necessity of entanglement for quantum advantage is misleading because which
resource is crucial depends on the formalismused to describe the state. For instance, by us-
ing the stabilizer formalism (see, e.g., Ref. [19]), a different quantum resource is important
that is called magic [97].

A similar but quantitative result was shown by Vidal in 2003 [98]. From the maximal
Schmidt rank2 χ with respect to all bipartitions of the qubits, one can construct the en-
tanglement measure Eχ = log2 χ. If Eχ scales as lnn (n is the number of qubits) during
the pure-state quantum algorithm, it can be simulated on a classical computer. This result
was then explicitly discussed for Shor’s algorithm [99]. Furthermore, Ref. [99] considered
an instance of a quantum adiabatic algorithm [100, 101] to solve an NP-complete problem
and gave numerical evidence that it shows a maximal scaling of entanglement.

2For a bipartite system with Hilbert spaceH = H1 ⊗H2, one can write any composite state |ψ〉 as

|ψ〉 =
d∑
j=1

αj |ψj〉 ⊗ |ϕj〉 ,

where {|ψj〉}j ({|ϕj〉}j) is a set of orthonormal vectors inH1 (H2), and the real and positive coefficients αj
are unique up to reordering [19]. The decomposition is called the Schmidt decomposition, and d is called
the Schmidt rank. For separable states along the bipartition, d = 1.
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On the other side, a few results were derived that question a general role of entangle-
ment in quantum computational advantage. First, the pure-state quantum algorithm pro-
posed by Bernstein and Vazirani in 1997 [15] (solving a special case of the Deutsch–Jozsa
decision problem), that achieves a polynomial quantum advantage in oracle complexity,
makes no use of entanglement3 [103]. This result was extended to the maximal subset of
Deutsch–Jozsa-type problems that allow for a quantum advantage without entanglement
[104]. Also, in Ref. [105], by using pseudo-pure separable states in the Deutsch–Jozsa and
Simon algorithm, it was argued that while a classical computer learns no information of
the answer after one step of the algorithm, a quantum computer learns a positive amount
(although exponentially small in the number of qubits). Here, the gained information is
quantified by the mutual information. See also Ref. [32] for a similar discussion.

Furthermore, in 1998, Knill and Laflamme proposed a computational model that only
requires a single pure qubit and n further qubits in the completely mixed state [106] (often
called the power of one qubit or deterministic quantumcomputationwith one quantumbit,
DQC1) and, while not representing a universal quantum computational model, achieves
an exponential advantage in the estimation the trace of a unitary acting on the n qubits.
Thismodel was then shown to only host very little amounts of bipartite entanglement [33],
and other appropriate quantum resources were proposed [107], see below.

Finally, a general result by Van denNest in 2013 questioned the quantitative role played
by entanglement in quantum computational advantage [108]: he shows that for many con-
tinuous measures of entanglement, an exponential advantage in pure-state quantum com-
putations can be achieved with polynomially small amounts (in the number of qubits) of
entanglement. This speaks against a quantitative role of entanglement measures in quan-
tum computational advantage. Here, we want to mention another result about the quan-
titative role of entanglement in a specific computational model: in measurement-based
quantum computation [109], states can be too entangled (with respect to the geometric
measure of entanglement) to offer a quantum computational advantage [110].

In this context, we should also mention the Gottesmann–Knill theorem that showed
that if a quantum computer is restricted to stabilizer circuits, the computation can be ef-
ficiently simulated on a classical computer [111]. Stabilizer circuits consist of Hadamard
gates, controlled-NOT gates and phase gates applied on (and measured in) the computa-
tional basis. They include highly entangled states and are sufficient for quantum advan-
tages in other quantum technologies such as quantum communication. Thus, we see that
entanglement cannot be a sufficient quantum resource of quantum computational advan-
tage, since a wide class of highly entangled quantum circuits can be efficiently simulated
on a classical computer.

3Here, we want to note that the advantage of the Bernstein–Vazirani algorithm was questioned in
Ref. [102] where a different classical oracle complexity of the problem is claimed.
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Other quantum resources

Due to the obscure significance of entanglement for quantum computational advantage,
other possible quantum resources have been extensively considered. As we discussed in
Sec. 1.3, different quantum resources are often dependent or are simultaneously present
in a quantum technology, so the following proposals do not rule out the importance of
entanglement.

The vanishing amount of entanglement in the DQC1 computational model [33, 106]
led to the investigation of the importance of a different quantum correlation, the quantum
discord [107]. Quantumdiscord describes nonclassical correlations of separable states that
arise in different quantum generalizations of the classical mutual information [41]. For
instance, take the bipartite mixed state.

ρ = 1
2

(|0〉 〈0| ⊗ |0〉 〈0|+ |1〉 〈1| ⊗ |+〉 〈+|) , (2.2)

where, |0〉 and |1〉 are orthogonal states for both subsystems, and |+〉 = (|0〉 + |1〉)/
√

2.
The state of Eq. (2.2) is separable but does not correspond to a classical mixture since |0〉
and |+〉 are not orthogonal, and it thus contains a positive amount of quantum discord. It
was shown that almost all randomly picked states from the Hilbert space show a positive
quantum discord [112]. Later, the role of quantum discord in DQC1 was questioned when
considering specific unitaries that result in zero quantum discord during the computation
but show the same apparent classical computational complexity (and thus quantum ad-
vantage) [113]. Finally, the necessary role of entanglement in the DQC1 model was shown
by constructing an efficient simulation of the computation whenever no entanglement is
present [114].

A different and recently much considered quantum resource is coherence [57]. In
Ref. [115], it was shown that, in the Deutsch–Jozsa algorithm, less coherence leads to a
larger error probability of the quantum algorithm and thus less quantum advantage. In
the DQC1 algorithm, coherence is consumed to generate the quantum discord [116] and
the precision of the computation can be quantified to the coherence measure of recov-
erable coherence [117]. The role of coherence in Grover’s algorithm was investigated in
Refs. [118, 119, 120] and will be further discussed in Sec. 2.3.

Recently, it was shown that nonlocality offers computational advantages in shallow
(low-depth) quantumcircuits [121]: a specific computational problem for binary quadratic
forms (that resembles the Bernstein–Vazirani problem [15] but does not require a black-
box oracle) can be solved with a constant-depth quantum circuit and local quantum gates,
independent of the problem size (i.e., the number of qubits). Being restricted to Bell-
inequality-type constraints, a classical circuit cannot solve the problem in constant depth.
Due to the focus on shallow quantum circuits, this result is interesting in view of near term
implementations that do not allow for arbitrary-depth circuits. Furthermore, in contrast
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tomany other results on quantum computational resources, it gives a clear answer to where
the quantum advantage (for this specific problem) originates: correlations in quantum cir-
cuits can spread faster due to entanglement and nonlocality.

Further quantum resources have been considered as well. Reference [32] highlights the
role of distinguishability (as measured by the relative entropy) for mixed-state quantum
computations such as the DQC1 or the Shor and Deutsch–Jozsa algorithm using pseudo-
pure states, but generally suggests that the origin of quantum computational advantage is
problem dependent. In Ref. [122], the phenomenon of quantum contextuality [123, 124]
was shown as the crucial quantum resource in the computational model of magic state dis-
tillation [97]. In the same computational model, the negativity of a Wigner representation
of the quantum algorithm’s state is necessary for quantum advantage [125, 126, 127]. In
Ref. [128], quantum algorithms with little amount of interference (measured by the capac-
ity of the algorithm’s quantum gates to generate interference) are shown to be efficiently
simulatable. In Ref. [129], it was shown that by using the quantum resource of indefinite
causal order for the arrangement of the gates in the quantum circuit, an advantage in oracle
complexity can be achieved for certain computational tasks. Finally, it was shown that in
the measurement-based quantum computational model, an exponential complexity of the
quantum states (measured by the so-called tree size) is essential for the quantum advantage
[130].

Quantum statistical speeds

A different approach to quantum resources that we will further pursue in Sec. 2.3, are
quantum statistical speeds [48, 50, 131, 132]. Quantum statistical speeds quantify the sus-
ceptibility of a parameter-dependent quantum state ρθ to variations of the parameter θ.
As being directly built upon the statistical character of quantum measurements, they rep-
resent an experimentally attainable measure of the state’s susceptibility. Different quan-
tum statistical speeds were shown to be crucial for different quantum technological tasks,
which highlights their potential as quantum resources. In the following, we briefly sketch
the main ideas of quantum statistical speeds and then discuss their potential application
in quantifying quantum resources.

A general measurement of a quantum state ρ is described by a positive-operator-valued
measure (POVM) consisting of elements {Ex}x where each Ex is positive semi-definite
operator and

∑
xEx = 1 [19]. Corresponding to a specific POVM, the quantum state ρ

induces a classical probability distribution

px = tr[ρEx]. (2.3)

Furthermore, two quantum states ρ and σ generally give rise to different probability distri-
butions {px}x and {qx}x, respectively. A distance defined on the space of classical proba-
bility distributions is called a classical statistical distance, and can measure the difference
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between the two distributions. Since the classical statistical distance between the distri-
butions induced by ρ and σ depends on the chosen POVM, a measurement-independent
quantum statistical distanceD is obtained by maximizing the classical statistical distance
over all possible POVMs (i.e., measurements). The quantum statistical distance then ful-
fils the axioms of a distance (non-negativity, symmetry, and the triangle inequality) on the
space of quantum states.

For a given quantum statistical distance D, the corresponding quantum statistical
speed QS of a parameter-dependent quantum state ρθ at θ0 is defined as

QS(ρθ0) = ∂θD(ρθ0 , ρθ0+θ)
∣∣∣
θ=0

. (2.4)

Intriguingly, if the state’s parameter dependence is induced by a unitary evolution,
ρθ = Uθρ0U

†
θ , the possible quantum statistical speed is limited depending on the amount of

entanglement of ρθ0 : generally, the speed that can be achieved by entangled states is strictly
larger than the possible speed that can be achieved by separable states. In other words, if
the state ρθ surpasses the quantum speed limit of separable states, entanglement of ρθ is
demonstrated [27, 50]. Thus, the QS represents an entanglement witness as described in
Sec. 1.3.

The most prominent example of a quantum statistical speed is the quantum Fisher in-
formation (QFI) [48, 49], also mentioned in Sec. 1.2.3. The QFI is the quantum statistical
speed of the Bures distance [49] that corresponds to the classical Hellinger distance [133]
defined asDH(px, qx) =

√∑
x(
√
px −

√
qx)2/2. For a unitary evolution Uθ = e−iHθ that

is generated by a HamiltonianH , the QFI of a quantum state ρ is given by [49]

QFI(ρ,H) = 2
∑
k,k′

(λk − λk′)2

λk + λk′
|〈k|H |k′〉|2 , (2.5)

where |k〉 label the eigenvectors of ρ with corresponding eigenvalues λk, and the sum is
taken over terms for which λk + λk′ > 0. The QFI has a direct operational importance in
quantum metrology by means of the Quantum Cramér–Rao bound [46, 47]

(∆θ)2 ∝ 1
QFI

, (2.6)

where (∆θ)2 is the frequentist variance of the estimated parameter θ, see, e.g., Ref. [134]
for a conclusive review, and also Ch. 5 and Eq. (5.1) for further details. Furthermore, the
QFI was shown to induce a hierarchy of speed limits that can be used as a witness of mul-
tipartite entanglement [27, 28, 29]: for a system consisting of n qubits and a Hamiltonian
H = ∑

iHi, whereHi acts locally on the ith qubitwith a spectrum spec(Hi) = {1/2, 1/2},
if one finds QFI(ρ,H) > nk, the state ρ has to be at least (k+ 1)-partite entangled. Here,
recall that the state ρ is called k-partite entangled if it is k-producible but not (k − 1)-
producible, where ρ is k-producible if ρ = ∑

l λl |ψl〉 〈ψl| and each |ψl〉 is a tensor product
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of different subsystems containing maximally k qubits. In this way, maximal sensitivities
in quantum metrology require multipartite entanglement that is captured by the QFI. In
other words, the key quantum resource of quantum metrology is multipartite entangle-
ment that is detected by the QFI, also called metrologically-useful entanglement. In this
context, we want to mention that the connection between the QFI and the multipartite
entanglement can be further refined by examining the Young diagrams corresponding to
the entanglement structure of the state [135]. In this way, the crucial resource of metro-
logical advantage is the Dyson’s rank that combines the notions of k-partite entanglement
(here referred to as entanglement depth) and k-separability (i.e., the maximal number of
separable blocks in any partition of the state) [136].

A second and less-known example of a quantum statistical speed is the trace speed that
is obtained from the trace distancewhich corresponds to the classical Kolmogorov distance
DK(px, qx) = ∑ |px − qx| /2 [19, 137]. The trace speed (TS) of a state ρθ = e−iHtρ0e

iHt

at θ0 is given by [50, 138]

TS(ρθ0 , H) = ‖∂θρθ‖1

∣∣∣
θ=θ0

= ‖[ρθ0 , H]‖1, (2.7)

where [·, ·] is the commutator and ‖·‖1 is the l1-norm defined as ‖X‖1 = tr
[√
X†X

]
. The

TS can be bounded by the QFI, TS(ρ,H) ≤
√

QFI(ρ,H) [139]. Consequently, as the QFI
acts as an entanglement witness, the TS can detect multipartite entanglement as well. In
particular, finding TS(ρ,H) >

√
nk (again, H = ∑

iHi with local HamiltoniansHi and
spec(Hi) = {1/2, 1/2}) is a witness of at least (k+1)-partite entanglement. Furthermore,
similar to the QFI, the TS represents an experimentally relevant measure of coherence
[57, 138]: a state that has no coherence with respect on a Hamiltonian H , i.e., a classical
mixture of the Hamiltonian’s eigenstates, does not change under displacements generated
by H , while larger coherences (off-diagonal entries) result in larger susceptibilities to the
displacements.

TheTSplays a central quantum technological role in distinguishing quantum states [19,
50, 140]. A single-shot measurement can only perfectly distinguish two quantum states ρ
and σ if the latter are orthogonal. In general, an optimal measurement can be found such
that the states can be correctly distinguished with probability P = [1 + Dtr(ρ, σ)]/2 [19,
140], whereDtr is the trace distance. Therefore, if the task is to findmost-distinguishable ρ0

and ρθ for a fixed small θ, states with large TS lead to higher performances [50]. As above,
we see again that multipartite entanglement gives advantages for this specific task, but this
time it is the multipartite entanglement detected by the TS. In Sec. 2.3, we will show that
the TS can be used to quantify the speed-up of different generalizations of Grover’s search
algorithm.

A key advantage of quantum statistical speeds with respect to many other candidates
of quantum resources is that the former can be measured or efficiently bounded in exper-
iments [141, 142]: for instance, by measuring ρθ for a given measurement observable for
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Figure 2.1: Formally, the Hilbert space describing a system that consists of n qubits is isomorphic to the
Hilbert space of a single 2n-level quantum system.

several (small) values of θ, one can estimate the resulting classical probability distributions.
A quadratic series expansion of the classical statistical distance of these distributions to the
initial one yields an estimate of the classical statistical speed (corresponding to the chosen
measurement observable). The classical statistical speed then serves as a lower bound on
the quantum statistical speed [50]. Depending on the quantum statistical speed of interest,
different classical statistical distances have to be used (e.g., the Hellinger distance for the
QFI, and the Kolmogorov distance for the TS).

2.1.2 Hilbert space equivalence

In this section, we want to briefly discuss the qualitative, or explanatory, origins of quan-
tum computational advantage. We first recall that the Hilbert space describing n qubits is
isomorphic to the Hilbert space describing a single 2n-level system (cf. Fig. 2.1),

n⊗
i=1
H2 ∼= H2n , (2.8)

by means of the isomorphic mapping |x1〉 ⊗ |x2〉 ⊗ · · · |xn〉 7→ |x1x2 · · ·xn〉. By this iso-
morphism, each state and each unitary in the n-qubit system correspond to a state and a
unitary in the single multilevel system, so all possible quantum algorithms formally also
work in the single multilevel system. Therefore, the answer to the question of why any
quantum algorithm works, and why it gives the correct answer, cannot be entanglement
but has to be a feature that also describes the single multilevel system. This feature is con-
structive anddestructive interference: in order to have a large probability to find the correct
answer, the amplitudes of this answer have to constructively interfere, while the amplitudes
of the wrong answers should destructively interfere.

The above reasoning answers the question about how a quantum algorithm works, but
not how efficient it can be implemented in the two respective platforms. Crucially, this
opens a large efficiency difference between the two: a 2n-level system naturally requires
some exponentially large physical resource to be implemented. If the levels have a con-
stant energy spacing, the total energy needed to implement a general unitary (say, to map
the lowest to the highest energy level), requires an exponential amount of energy (with re-
spect to the level spacing). If the energy levels are allowed to have a spacing that decreases
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exponentially with n, a finite amount of energy suffices, however, the resolution of the
energy levels requires an exponential precision (e.g., resulting in an exponential measure-
ment time or a necessary exponential spatial resolution). A second difference is that the
basic (easy-implementable) gates for both systems are very different. Say, the basic gates of
the n-qubit system are single and two-qubit gates, while the basic gates of the multimode
system act on a single or two modes (e.g., phase shifts and beam splitters, respectively, in
the case of a quantum-optical architecture). Then, the application of a basic qubit gate on
the first qubit is easily-implementable but the action of the corresponding gate in the mul-
tilevel system requires exponentially many basic gates because it has to act on all modes
[12]. Therefore, while quantum algorithms simply require interference as a working prin-
ciple, the n-qubit model offers an exponentially more efficient implementation of states
and operations.

The consideration of all physical resources underlines that the quantum advantagewith
respect to gate complexity originates from the tensor-product structure and (multipartite)
entanglement. However, as we discussed in Sec. 1.2.2, many algorithms offer a quantum
advantage in query complexity. Here, only the oracle unitaries, that are taken as black
boxes, are contributing to the complexity of the algorithm, and the number of additional
gates, even if exponential, does not matter. Furthermore, strictly speaking, no other phys-
ical resource such as, e.g., energy, is taken into account. This observation has led to pro-
posals about quantum advantage without entanglement [143] that were later implemented
using a Rydberg atom [144] and classical light waves [145] (the later is possible because in-
terference can also be present in some “classical” systems, e.g., in systems that are described
by classical electromagnetism). However, all results require certain exponential physical
resources as discussed in Refs. [103, 146].

In summary, we have seen that quantum advantages in query complexity formally do
not require entanglement since they can be implemented with a single quantum system.
However, an efficient (and thus realistic) implementation generallymakes use of the tensor-
product structure and entanglement. We will observe this situation for Grover’s algorithm
in Sec. 2.3.

2.2 Grover’s algorithm

In this section, we give an in-depth description of Grover’s search algorithm [34]. Grover’s
algorithm is one of the first and most famous quantum algorithms, which is mainly due
to the ubiquitous need for a fast search subroutine in computations. Furthermore, it is
not part of the “hidden subgroup” algorithms such as the Simon, Deutsch-Jozsa and Shor
algorithm (see, e.g., Ref. [19]). It serves as a key subroutine in many subsequent quantum
algorithms such as, e.g., quantum amplitude estimation [147], quantum counting [148],
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and the quantum singular value transformation [149], see also Refs. [150, 151, 152, 153]
for more applications. Its main critique is that its advantage is usually only discussed in
query complexity (cf. Secs. 1.2.2 and 2.1.2), and that the mere quadratic advantage cannot
compensate for realistic implementations using quantum error correction [154]. We also
want to note that Grover’s algorithm was conjectured to occur naturally in fermionic sys-
tems with topological defects [155], and it was even used to motivate why the genetic code
uses four nucleotide bases to encode information about 20 amino acids [156]. Also note a
surprising analogy of Grover’s algorithm to a problem of classical mechanics (“bouncing
billiard balls”), by which it provides a (extremely inefficient and fragile) way of measuring
the digits of π [157]. In the following, we first sketch the algorithm’s steps and then discuss
its quantum advantage. Finally, we briefly overview previous results on quantum resources
that play a role in Grover’s algorithm.

The algorithm

The computational task for which Grover’s algorithm was developed is the search of a
marked element in a large unstructured database. We consider a database of size N = 2n

and label each entry by x ∈ {1, . . . , N}. One of the elements, ω, is the marked element
that is also called target. We don’t know which element is marked but we are given an or-
acle function f that, given an input entry x, tells us if x is the marked element, f(x) = 1,
or not, f(x) = 0. As we explain below, Grover’s algorithm offers a quadratic advantage in
this task in terms of query complexity, when counting the average number of applications
of the oracle function.

In the quantum setting, the database corresponds to the computational basis vectors
of n qubits, where each vector is denoted as |x〉. Here, the oracle function f can be used
in two different ways. First, it can be used as a measurement observableMf acting on the
algorithm’s quantum state |ψ〉with outcomes−1 if |ψ〉 = |ω〉 and 1 if |ψ〉 = |x〉 for x 6= ω.
For a quantum state |ψ〉 that has a finite overlap with the target, measuringMf yields −1
with probability p = |〈ω|ψ〉|2 < 1, after which we can read out the target entry. On the
other hand, the oracle can be used as a quantum gateUf . Generally, the answer of an oracle
call is imprinted in an additional (ancilla) quantum system by Ũf (|x〉 ⊗ |y〉) = |x〉 ⊗
|f(x)⊕ y〉, where ⊕ denotes the addition modulo the dimension of the ancilla system.
For Boolean functions f (i.e., f(x) = 0 or f(x) = 1 for all x), the oracle unitary can be
equivalently expressed as a phase oracle4

Uf (|x〉) = (−1)f(x) |x〉 , (2.9)
4Explicitly, by preparing the ancilla state in |−〉 = (|0〉 − |1〉)/

√
2, one has

Ũf (|x〉 ⊗ |−〉) = 1√
2
|x〉 ⊗ (|f(x)〉 − |f(x)⊕ 1〉) = 1√

2
(−1)f(x) |x〉 ⊗ (|0〉 − |1〉) = Uf (|x〉)⊗ |−〉 .
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without the need of an ancillary quantum system.
Grover’s algorithm consists of preparing the initial quantum state in an equal superpo-

sition of all entries,

|ψin〉 = 1√
N

∑
x

|x〉 , (2.10)

and then alternatingly apply the phase oracle and the so-called Grover diffusion operator

Ud = 2 |ψin〉 〈ψin| − 1. (2.11)

The corresponding quantum circuit of the n-qubit implementation is shown in Fig. 2.25.
We use n Hadamard gates H (Hij = (−1)ij/

√
2 in the computational basis) to prepare

the initial state, |ψin〉 = H⊗n |0〉⊗n. During the algorithm, all amplitudes are real, so
we can easily sketch the first steps in Fig. 2.3. The initial state (k = 0) corresponds to
an equal superposition of all amplitudes. The action of the phase oracle Uf simply re-
verts the sign of the target state’s amplitude. On the other hand, the action of Ud re-
sults in a reflection of all amplitudes about the mean amplitude (in the computational
basis). This can be seen by writing the algorithm’s state as |ψ〉 = ∑

x αx |x〉 with a mean
ᾱx = ∑

x αx/N = 〈ψin|ψ〉/
√
N . Then,

Ud(|ψ〉) = 2〈ψin|ψ〉 |ψin〉 − |ψ〉 (2.12)

=
∑
x

(
2〈ψin|ψ〉√

N
− αx

)
|x〉 (2.13)

=
∑
x

(2ᾱx − αx) |x〉 , (2.14)

and the function r(x) = 2b − x describes a reflection about the value b. In this way, the
amplification during the algorithm can be qualitatively understood, see Fig. 2.3. Explicitly,
the state after k iterations of UdUf is given by (see Refs. [19, 158] for a detailed derivation)

|ψk〉 = (UdUf )k |ψin〉 = sin[(2k + 1)θN ] |ω〉+ cos[(2k + 1)θN ] |⊥〉 , (2.15)

where we defined θN = arcsin
(
1/
√
N
)

and |⊥〉 = ∑
x 6=ω |x〉 /

√
N − 1. |⊥〉 is the nor-

malized projection of the initial state |ψin〉 onto the subspace orthogonal to the target |ω〉.
In short, the evolution during the algorithm can be shown to be restricted to the two-
dimensional subspace spanned by {|ω〉 , |⊥〉}. In this subspace, the action of Uf acts as
a reflection along |⊥〉, while Ud acts as a reflection along |ψin〉. The concatenation of the
reflections results in a rotation about an angle 2θN .

From Eq. (2.15), we see that the probability of an outcome −1 when measuring the
observableMf , corresponding to a successful search, approaches 1 after a number of kGr

5During this thesis, we draw quantum circuits with the help of the Tikz subpackage Qunatikz, see
https://ctan.org/pkg/quantikz.

https://ctan.org/pkg/quantikz
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|0〉 H

Uf Ud Uf Ud

|0〉 H

|0〉 H
...
|0〉 H

Figure 2.2: The quantum circuit of Grover’s algorithm in the n-qubit implementation. The initial layer of
Hadamard gates H prepares the initial state |ψin〉. Then, the oracle unitary Uf and the Grover diffusion
operator Ud are alternatingly applied.

Figure 2.3: Sketch of the quantum state’s amplitudes αx during the first two iterations of Grover’s algorithm.
In each iteration, the amplitude of the target (blue) is flipped, after which all amplitudes are reflected about
the mean amplitude ᾱx (yellow).

iterations6 with

kGr = π

4θN
≈ π

4
√
N, (2.16)

where we have used that θN = arcsin
(
1/
√
N
)
≈ 1/

√
N for large N . Thus, Grover’s

search is successful after O(
√
N) oracle calls. Equation (2.15) also directly gives a qual-

itative hint of why Grover’s algorithm outperforms a classical search algorithm: while in
a classical search (assuming large N ), each oracle call initially increases the probability
of measuring the target by roughly 1/N (so O(N) oracle calls are needed), in the quan-
tum algorithm, each oracle call (initially) increases the target’s amplitude by 2/

√
N . Since

probabilities are squared amplitudes, only O(
√
N) oracle calls are needed to find the tar-

get.
We want to note that Grover’s algorithm also can be applied if M > 1 database en-

tries are marked and the task is to find any of the marked elements. In this case, one has
θN =

√
M/N and, thus, O(

√
N/M) oracle calls are needed. This still offers a quadratic

advantage to a classical search. For more details, see, e.g., Ref. [158]. In the following, we
will focus on the case that only one element is marked.

6Here and in the following, we assume that n and thusN are sufficiently large such that the discreteness
of the algorithm’s iterations are negligible. For instance, for n = 30, we have kGr ≈ 2.6 × 104. The exact
probability for a successful search after bkGrc iterations is p = 1 − O(1/N) [158], where b·c is the floor
function.
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Quantum advantage of Grover’s algorithm

In order to consistently quantify the advantage offered by Grover’s algorithm, one first
needs to define the complexity, or the cost, with respect to which there is an advantage,
see Sec. 1.2.2 for a discussion. Grover’s algorithm offers an advantage in query complexity,
so the consistent definition of the cost C is the average number of oracle calls (taken as a
measurementMf or as a unitary Uf ) to find the marked element [159].

In the classical search problem, an oracle call can be thought of as opening one of N
boxes to find a target object. By randomly opening the boxes, the probability of finding
the target is p = 1/N , so the average number of oracle calls is Ccl = N . By remembering
which boxes have been already opened, the average number of calls can be reduced to an
optimal7

Ccl = N

2
+O(1). (2.17)

In the quantum setup, the oracle can be applied both as a measurement (Mf ) or as a
unitary (Uf ). If we use k unitary oracle calls and then measure the state, we have used a
total of k + 1 oracle calls. If the probability of finding the target after this sequence is pk,
the average number of oracle calls needed to find the target is then (k+1)/pk. The optimal
cost of any quantum search algorithm is therefore

Cqu = min
k

k + 1
pk

. (2.18)

In Grover’s algorithm, we have pk = sin2[(2k + 1)θN ] (cf. Eq. (2.15)) after k Grover itera-
tions. The optimal number of iterations k̃Gr can be calculated by solving ∂k[(k+ 1)/pk] =
0, yielding8

k̃Gr ≈ 0.74× kGr. (2.19)
7After opening k− 1 boxes, there areN − k+ 1 remaining boxes, so the probability to find the target is

qk = 1/(N−k+1). The probability of finding the target in the kth oracle calls is thus pk = qk
∏k−1
l=1 (1−ql),

and average number of oracle calls is given by

Ccl =
N∑
k=1

kpk = N + 1
2

.

8One has

∂k
k + 1

sin2[(2k + 1)θN ]
= 1

sin2[(2k + 1)θN ]
{1− 4θN (k + 1) cot[(2k + 1)θN ]} .

We assume large N , so we have θN � 1. Furthermore, note that for kθN � 1 and using cotx ≈ 1/x for
small x, a solution to the above equation corresponds to solving 1− 4(k + 1)/(2k + 1) = 0, which has no
solution for positive k. Therefore, k̃Gr has to scale at least as θN , such that k̃Gr can be defined by the first
positive solution of

tan(2θNk) = 2θNk,

which we numerically solve to find k̃Gr ≈ 0.58×
√
N .
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We see that, according to the cost definition of Eq. (2.18), it is more efficient (on average)
to measure the algorithm’s state before reaching the highest success probability pkGr = 1
[81]. This is because the final maximal success probability is reached only very slowly with
an increasing number of iterations. The corresponding minimal cost is then given by

Cqu = k̃Gr + 1
sin2[(2k̃Gr + 1)θN ]

= KGr
√
N (2.20)

withKGr ≈ 0.69.
In summary, we see that the pure-state Grover algorithm leads to a quadratic quantum

speed-up S of

S = Ccl

Cqu
=
√
N

2KGr
. (2.21)

This speed-up was proven to be optimal: no quantum algorithm can perform the search
with less thanO(

√
N) oracle calls on average [80, 81]. Note that if there existed a quantum

algorithm that performs the search inO(lnN) = O(n) time, this would imply thatNP ⊂
BQP, i.e., that NP-complete problems can be solved efficiently on a quantum computer: a
straight-forward search among all possible solutions using the quantum search algorithm
would be efficient (since problems in NP can be efficiently checked).

We want to note that Grover’s algorithm not only offers a provable quantum advantage
in terms of query complexity, but is efficient in terms of memory and gate complexities:
it only uses n = log2 N qubits, so the necessary memory space is small, and the total
gate complexity is of the order O[

√
N(lnN)2]. The latter result comes from the fact that

an operation like the (n − 1)-qubit-controlled phase gate 1 − 2 |0⊗n〉 〈0⊗n| (that can be
converted to Ud and Uf by applyingO(n) single-qubit Hadamard and Pauli gates), can be
implemented byO(n2) basic gates [160].

Previous results on quantum resources of Grover’s algorithm

The question of which quantum resource gives rise to the advantage of Grover’s algorithm
has been the subject of several investigations during the last years. The mere presence of
genuine multipartite entanglement (see Sec. 1.2.1 for a definition) in Grover’s algorithm
after only the first step was noted in Ref. [161], and a specific efficiently-computable en-
tanglement measure during the algorithm’s evolution was considered in Ref. [162]. No
quantitative discussion of the role of entanglement in the quantum advantage was given.
In Ref. [163], the bipartite entanglement measure called concurrence [164] was examined
during the algorithm (for the reduced density matrix of any two qubits), and an analyt-
ical dependence between the concurrence and the success probability was found. Refer-
ence [165] considered the concurrence with respect to a bipartition of the qubits and found
a relation between the change of the success probability and the concurrence. Finally, in
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Ref. [166], entanglement during Grover’s algorithm was quantified by the multipartite ge-
ometric measure of entanglement [167] and was seen to be independent of the number of
qubits. In contrast, increasing amounts of entanglement in the initial state of the algorithm
were shown to decrease the success probability [168].

Further work has investigated the role of coherence during Grover’s algorithm. In
Refs. [118, 119], the success probability and the optimalmeasurement iterationwere shown
to be related to the consumption of coherence during the algorithm, where coherence is
quantified in terms of the relative entropy of coherence and the l1-norm of coherence [57].
Here, also the dynamics of entanglement and quantum discord were further studied. In
Ref. [120], it was shown that during each single iteration of the algorithm, coherence is
both first decreased and then increased, or vice versa.

While all above results shine light on the presence of different quantum resources
during the pure-state Grover algorithm, they do not touch on noisy mixed-state gener-
alizations. Conversely, the (loss of the) quantum advantage in different noisy versions of
Grover’s algorithm was investigated, using the noise models of Gaussian noise [169], sys-
tematic phase errors [170], depolarization noise [159, 171], bit-flip noise [172], unitary
noise [173], oracle errors [174, 175, 176] and decoherence between subspaces [177]. Fur-
thermore, in Ref. [178], it was shown that any constant noise rate per iteration (assuming
depolarization noise) inhibits the asymptotic quadratic quantum advantage, even in a gen-
eral quantum search algorithm. However, these results for noisy search algorithms did not
discuss the role of quantum resources.

2.3 Trace speed as a quantum resource in Grover’s algo-
rithm

In this section, we approach the question of quantum resources in mixed-state versions of
Grover’s algorithm from the viewpoint of quantum statistical speeds, see 2.1.1 for an intro-
duction. We first investigate a pseudo-pure initial state and a (noiseless) unitary algorithm
in Sec. 2.3.1 and connect the quantum advantage to a wide class of quantum statistical
speeds. In Sec. 2.3.2, we then consider a general pseudo-pure-state version of Grover’s al-
gorithm and observe that the maximal trace speed during the evolution represents a nec-
essary resource for the quantum advantage. The results of this section are published in
Ref. [1].

2.3.1 Unitary version of Grover’s algorithm

We first assume that the quantum algorithm can be implemented in a unitary way, i.e.,
without any noise, so the quantum state’s evolution is the one described for the pure-state
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algorithm in Sec. 2.2. However, we do not assume that the initial state is a pure state as
before, but rather that it is mixed with uniform noise. This initial state corresponds to a
so-called pseudo-pure state

ρϵ,ψ = ϵ |ψ〉 |ψ〉+ 1− ϵ
2n

1, (2.22)

where ϵ ∈ (0, 1] is the polarization of the pseudo-pure state. Note that from now on, we
will focus on the n-qubit implementation of Grover’s algorithm, so we identify the labels
x ∈ {1, . . . , N} used Sec. 2.2 with the labels x ∈ {0, 1}n. Note that, for ϵ < 1/(1+22n−1),
the pseudo-pure state is always separable independent of the entanglement of |ψ〉 [179].

The pseudo-pure state is widely used to model a noisy state of a quantum computer: it
is a simple noise model such that it does not render the computation intractable. Further,
it describes the quantum state during a noisy algorithm in presence of depolarising noise,
see Sec. 2.3.2. Finally, it is used to describe the quantum state in the computational model
of ensemble quantum computing using nuclear magnetic resonance [94, 95, 96]. Here,
Eq. (2.22) approximates the high-temperature Gibbs ensemble, where |ψ〉 corresponds to
the lowest-energy state.

Due to the linearity of quantum mechanics and the trivial action of the algorithm on
the noise part, the algorithm’s state after k iterations is given by

ρϵ,ψk
= ϵ |ψk〉 |ψk〉+ 1− ϵ

2n
1, (2.23)

where |ψk〉 is the state of the pure-state version of the algorithm, cf. Eq. (2.15).
Therefore, the probability of a successful measurement after k iterations is now
pk = ϵ sin2[(2k + 1)θN ] + (1− ϵ)/2n. We see that for ϵ � 1/2n, the probability of find-
ing the target state during any step of the algorithm is simply reduced by a factor of ϵ. In
particular, the cost Cqu (Eq. (2.18)) is minimized after the same number k̃Gr of iterations
as in pure-state algorithm, and takes the value

Cqu = KGr
√

2n
ϵ

, (2.24)

cf. Eq. (2.20).
For ϵ ∼ 1/

√
2n, the state is so noisy that a classical search is advantageous. We observe

numerically that the optimal step to measure the state is either k = 0 (for ϵ ∼ 1/
√

2n) or
k = k̃Gr (for ϵ � 1/

√
2n). More precisely, the critical amount of noise ϵcrit is defined by

the equality of quantum and classical costs, (KGr
√

2n)/ϵcrit = 2n/2, and is thus given by

ϵcrit = 2KGr√
2n
, (2.25)

where KGr ≈ 0.69. In the following, we will assume that the polarization is much larger
ϵ� ϵcrit, such that we are in the regime of a quantum advantage.
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By the above considerations, we can easily quantify the quantum speed-up S in terms
of the polarization ϵ,

S = ϵ
√

2n
2KGr

. (2.26)

At this point, the crucial parameter to quantify the speed-up is ϵ, and any quantum feature
or quantum resource that can be connected to ϵ can thus be used to quantify the speed-
up. Note that this will no longer hold true in the case of depolarization noise during the
algorithm, as we will see in Sec. 2.3.2.

In view of later results, we now want to focus on the role of quantum statistical speeds.
For a wide class of quantum statistical speeds, one can show that for ϵ� 1/2n,

QS(ρϵ,ψ, H) = ϵQS(|ψ〉 〈ψ| , H) (2.27)

for anyHamiltonianH . This is fulfilled, e.g., by the families of generalized quantum Fisher
information and the Schatten speeds [50] (of which the trace speed is a special case, see
below). For instance, one easily checks using the definition of the QFI, cf. Eq. (2.5), that

QFI(ρϵ,ψ, H) = 2
∑
k,k′

(λk − λk′)2

λk + λk′
|〈k|H |k′〉|2

= 4
∑
k 6=ψ

ϵ2

ϵ+ 2(1− ϵ)/2n
|〈k|H |ψ〉|2

= 4
∑
k 6=ψ

(ϵ+O[(1− ϵ)/2n]) |〈k|H |ψ〉|2

= ϵQFI(|ψ〉 〈ψ| , H) +O[(1− ϵ)/2n]. (2.28)

Here, recall that |k〉 label the eigenvectors of ρϵ,ψ with corresponding eigenvalues λk. In
the first line, we used that all eigenvalues but one (λψ) of ρϵ,ψ are degenerate.

By means of the polarization ϵ, any quantum statistical speed QS fulfilling Eq. (2.27)
can be used to quantify the algorithm’s speed-up S. As we discussed in Sec. 2.1.1, for a
local Hamiltonian H , a large QS(ρ,H) offers a witness of multipartite entanglement and
coherence of ρ. Therefore, we want to quantify the speed-up by the maximal statistical
speed QSmax that occurs during the algorithm, maximized over all possible local H . We
will explicitly perform this optimization for the trace speed below. Since the maximal QS
during the algorithm is reduced by a factor of ϵ with respect to the pure-state algorithm,

QSmax = ϵQSpure
max , (2.29)

we can quantify the quantum speed-up of the noiseless Grover algorithm with a pseudo-
pure initial state as

S =
√

2n
2K

QSmax
QSpure

max
. (2.30)

At this point, a wide class of quantum statistical speeds (again, and any other quantum
feature connected to the polarization ϵ) can be used to quantify the speed-up. In view of
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its role in Grover’s algorithm subject to depolarising noise that we will discuss in Sec. 2.3.2,
we now explicitly consider the trace speed as an example.

Trace speed in the unitary algorithm

The trace speed TS (cf. Sec. 2.1.1) is one possible candidate to quantify the speed-up in
the unitary version of Grover’s algorithm with a pseudo-pure initial state since, by using
its definition (Eq. (2.7)), it exactly fulfills Eq. (2.27),

TS(ρϵ,ψ, H) = ‖[ρϵ,ψ, H]‖1 =
∥∥∥∥ϵ[|ψ〉 〈ψ| , H] + 1− ϵ

2n
[1, H]

∥∥∥∥
1

= ϵTS(|ψ〉 〈ψ| , H).
(2.31)

In order to maximize the TS over all possible local HamiltoniansH (with restricted spec-
trum), we will use the fact for pure states, the trace speed is the square root of the QFI,
TS(|ψ〉 〈ψ| , H) =

√
QFI(|ψ〉 〈ψ| , H) [50]. Furthermore, if the state is restricted to the

completely symmetric subspace of n qubits9, the maximal QFI (and thus TS) is obtained
for collective local Hamiltonians Hi = n · σ(i)/2, where n is a three-dimensional unit
vector, σ(i) = (σ(i)

x , σ
(i)
y , σ

(i)
z ) are the Pauli matrices10 of the ith qubit and H = ∑n

i=1 Hi

[28]. In this case, the maximal QFI for pure states |ψ〉 is given by the maximal eigenvalue
of the matrix Γ with entries [28]

Γij = 4 (Re [〈JiJj〉]− 〈Ji〉〈Jj〉) , (2.33)

where Jk = ∑n
i=1 ek · σ(i)/2 is the coherent spin operator in k direction (ek is the unit

vector in k direction, k = x, y, z), and 〈·〉 is the expectation value with respect to |ψ〉.
In the following, we will assume that the target state |ω〉 is |ω〉 = |0〉⊗n which is com-

pletely symmetric. This can be seen as a simple relabeling of the basis vectors (if the ith
binary component of ω is 1, exchange the computational basis vectors of the ith qubit).
More formally, if the computational basis labeling is fixed (e.g., |0〉 should label the state

9A state |ψ〉 is in the completely symmetric subspace if permuting the qubits does not alter the state.
Formally, a state

|ψ〉 =
∑
l

αl

∣∣∣ψ(l)
1

〉
⊗ · · · ⊗

∣∣∣ψ(l)
n

〉
is in the completely symmetric subspace if

|ψ〉 =
∑
l

αl

∣∣∣ψ(l)
π(1)

〉
⊗ · · · ⊗

∣∣∣ψ(l)
π(n)

〉
,

for all permutations π : {1, . . . , n} → {1, . . . , n}. For instance, the state (|01〉 + |10〉)/
√

2 is completely
symmetric, but the state |01〉 6= |10〉 is not.

10In the computational basis, the Pauli matrices are defined as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, and σz =

[
1 0
0 −1

]
. (2.32)
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with lower energy), the state |ω〉 can be transformed to the state |0〉⊗n by applying σx (the
spin-flip operator) to some of the qubits. Since we maximize the TS over all possible lo-
cal Hamiltonians, this operation does not change the maximal TS11, so the dynamics of
the maximized TS coincide in Grover’s algorithm for any target state. Hence, we can as-
sume that the initial state |ψin〉 is completely symmetric, as well as the Grover operations
Ud and Uf (using again that |ω〉 = |0〉⊗n). Therefore, the state |ψk〉 during any iteration
of the pure-state algorithm is completely symmetric, and thus, at any step k, we can use
Eq. (2.33) to maximize the TS.

By using the exact expression for |ψk〉, cf. Eq. (2.15), the matrix elements Γij can be
straightforwardly calculated. For instance, we have

〈Jx〉 = 1
2

n∑
i=1
〈ψk|σ(i)

x |ψk〉

= n

2
〈ψk|σ(1)

x |ψk〉

= n

2
cos2[(2k + 1)θN ] +O(1/

√
2n). (2.34)

In the first line, we used that |ψk〉 is completely symmetric. In the second line, we used
〈ω|σ(1)

x |ω〉 = 0, 〈ω|σ(1)
x |⊥〉 = 1/

√
2n − 1 and 〈⊥|σ(1)

x |⊥〉 = (2n − 2)/(2n − 1).
Thequadratic terms ofΓij require a slightly longer calculation: for instance, to calculate

〈J2
x〉, we first observe that

〈J2
x〉 = 1

4

n∑
i,j=1
〈σ(i)

x σ
(j)
x 〉 = 1

4
(
n〈σ(1)

x σ(1)
x 〉+ n(n− 1)〈σ(1)

x σ(2)
x 〉

)
, (2.35)

because |ψk〉 is completely symmetric. We then use that σ2
x = 1, and calculate

〈ω|σ(1)
x σ(2)

x |ω〉 = 0, 〈ω|σ(1)
x σ(2)

x |⊥〉 = 1/
√

2n − 1 and (after a few lines of calculation)
〈⊥|σ(1)

x σ(2)
x |⊥〉 = (2n − 2)/(2n − 1), and find

〈J2
x〉 = 1

4
(
n+ n(n− 1) cos2[(2k + 1)θN ]

)
+O(1/

√
2n). (2.36)

After similar calculations, one obtains

Γ =


n+n(n−1) cos2 θk−n2 cos4 θk 0 −n2 sin2 θk cos2 θk

0 n 0
−n2 sin2 θk cos2 θk 0 n+n(n−1) sin2 θk−n2 sin4 θk

+O(1/
√

2n) (2.37)

where we defined θk = (2k + 1)θN .
11Explicitly, note that

max
localH

TS(σ(i)
x ρσ(i)

x ,H) = max
localH

‖[σ(i)
x ρσ(i)

x ,H]‖1 = max
localH

‖[ρ, σ(i)
x Hσ(i)

x ]‖1 = max
localH

‖[ρ,H]‖1,

where we have used that [σ(i)
x ρσ

(i)
x ,H] = σ

(i)
x [ρ, σ(i)

x Hσ
(i)
x ]σ(i)

x , and as unitary transformations (here σ(i)
x )

are basis transformations, they do not change the (basis-independent) trace norm of an operator.
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Figure 2.4: The trace speed TSk of the state |ψk〉 after k iterations of the pure-state Grover algorithm, max-
imized over all local Hamiltonians with restricted spectrum, see text. The dashed lines correspond to speed
limits imposed by separable states (

√
n), bipartite entangled states (

√
2n) and n/2-partite entangled states

(
√
n2/2). n = 30, kGr = (π

√
2n)/4, k̃Gr ≈ 0.74kGr.

Finally, the square root of the largest eigenvalue of Γ is given by

TSpure
k =

√
1
8
n
{

4 + n− f(k)n+
√

8[1 + f(k)] + n2[1− f(k)]2
}

+O(1/
√

2n)

n→∞−−−→
√
n+ n(n− 1)

2
sin2[(4k + 2)θN ], (2.38)

where we defined TSpure
k = maxlocalH TS(|ψk〉 〈ψk| , H) (the maximization over lo-

cal H is restricted to spec(Hi) = {−1/2, 1/2}, see above) and the auxiliary function
f(k) = cos 4θk = cos[4(2k + 1)θN ].

The TS during the pure-state algorithm is shown in Fig. 2.4. Initially (k = 0), the trace
speed TSk is

√
n, since the initial state |ψin〉 is separable. Then, TSk increases and detects

entanglement by surpassing the speed limit
√
n imposed by separable states (cf. Sec. 2.1.1

for how to use the TS as an entanglement witness). At k = kGr/2, it reaches its maximum

TSpure
max =

√
n(n+ 1)

2
, (2.39)

witnessing (n + 1)/2-partite entanglement. Then, TSk decreases until reaching
√
n for

k = kGr, since also the target state |ω〉 is separable. Note that this behaviour is similar to
what was seen in Refs. [162, 163, 165, 166] for different entanglement monotones during
Grover’s algorithm.

For the unitary algorithm with a pseudo-pure initial state, the maximal TS during the
algorithm can be used to quantify the speed-up, S ∝ 1/TSmax, cf. Eq. (2.30). In this case,
we have TSmax = ϵ

√
n(n+ 1)/2. Thus, TSmax does not detect entanglement anymore for

ϵ <
√

2/(n+ 1). Note that by using the QFI instead of the TS, entanglement is witnessed
until ϵ < 2/(n + 1) and thus for smaller polarizations. However, as we discussed before,
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Grover’s algorithm offers a quantum advantage for all ϵ > ϵcrit = 2KGr/
√

2n. Therefore,
the entanglement witnessed by the TS (or the QFI) is not a necessary quantum resource for
small quantum advantages of mixed-state versions of Grover’s algorithm. Note that it was
already noted in Refs. [32, 180, 181] that the advantage persists until ϵ ∼ 1/

√
2n. How-

ever, even for these exponentially small polarizations ϵ, the algorithm’s state is entangled
(even though the entanglement measure of multiplicative negativity in any bipartition is
exponentially small) [181].

We want to emphasize again that to derive our results, we have assumed both that
ϵ > ϵcrit (discussed above) and that n is sufficiently large such that the series expansions
for small 1/

√
2n are good approximations of the corresponding quantities. For small n,

the analysis has to be performed case by case. Take for instance Grover’s algorithm for
n = 2 qubits. It reaches the target state after only one iteration and, thus, the state |ψk〉
(cf. Eq. (2.15)) is always separable. However, after the application of the oracle unitary
Uf and before the application of the Grover diffusion operator Ud, the state is (maximally)
entangled.

2.3.2 Grover’s algorithm under partial depolarization

We now turn to the more realistic setting of a noisy version of Grover’s algorithm. For this
purpose, we consider the noisemodel of the totally depolarizing channel [19], such that the
state during the algorithm is always a pseudo-pure state, cf. Eq. (2.22), but the polarization
ϵk decreases during the algorithm. The algorithm’s state after k steps is then

ρϵk,ψk
= ϵk |ψk〉 |ψk〉+ 1− ϵk

2n
1, (2.40)

where |ψk〉 is the pure-state algorithm’s state, cf. Eq. (2.15), and ϵk encodes both initial po-
larization and depolarization during the algorithm. This noise model describes the situa-
tion that, during each step of the algorithm, the complete information about the quantum
state is lost with some probability. It thus represents a worst case scenario and is com-
monly used whenever the form of the noise is not known [182]. We also want to note that
the pseudo-pure noise model plays an important role in the analysis of quantum random
circuit sampling (see supplementary information of Ref. [83]).

As before, we assume that ϵk � ϵcrit ∼ 1/
√

2n such that we are in the regime of
quantum advantage. Thus, we can still use that TS(ρϵk,ψk

, H) = ϵk TS(|ψk〉 〈ψk| , H) and
pk = sin2[(2k + 1)θN ]/ϵk. Note that we again focus on the special case of the trace speed,
for reasons that we discuss shortly. Here, as we will see, the decreasing depolarization
complicates the computation of both the quantum speed-up and its quantification in terms
of resources.

First, one observes that due to the decreasing ϵk, the optimal iteration step kopt to mea-
sure the state (defined byminimizingCqu = mink(k+1)/pk, cf. Eq. (2.18)) is smaller than
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Figure 2.5: The trace speed TSk of the state ρϵk,ψk
after k iterations of the mixed-state Grover algorithm,

maximized over all local Hamiltonians. We consider depolarization models leading to a constant polar-
ization (blue), a linearly decaying polarization (yellow) and an exponentially decaying polarization (red),
plotted in the inset, that all lead to the same quantum cost and quantum speed-up. For each model, a dot-
ted line indicates the optimal iteration step kopt to measure the algorithm’s state. The dashed lines cor-
respond to speed limits imposed by separable states (

√
n) and bipartite entangled states (

√
2n). n = 30,

kGr = (π
√

2n)/4, k̃Gr ≈ 0.74kGr.

kopt = k̃Gr in the unitary algorithm [171]. This behaviour can be seen in Fig. 2.5. We show
the maximized trace speed TSk during the algorithm for three different polarization dy-
namics that all result in the same costCqu (and thus quantum advantage S). We consider a
unitary algorithm with initial pseudo-pure state as in Sec. 2.3.1 (blue), as well as an initial
pure state with a linearly decreasing polarization (yellow) and an exponentially decaying
polarization (red). The exponential decay of the polarization might best model realistic
noise because it corresponds to a constant depolarization rate during the algorithm. All
polarization dependencies are shown in the inset. For each model, the optimal step kopt is
marked as a dotted vertical line in the corresponding color and clearly varies for the differ-
ent models. Furthermore, observe that themaximal trace speed TSmax differs for the three
models, even though they provide the same quantum speed-up. Thus, a direct one-to-one
connection of the speed-up S with TSmax, as in Eq. (2.30), is not possible.

Even though there is no one-to-one connection between the speed-up S and TSmax,
we show in the following that TSmax can be used to bound the speed-up, thus representing
a necessary quantum resource. In particular, we can prove the following theorem.

Theorem 1. For a mixed-state version of Grover’s algorithm that is described by a pseudo-
pure state with dynamical polarization, cf. Eq. (2.40), the quantum speed-up S is bounded
by the maximal trace speed TSmax of the state during the algorithm,

S ≤
√

2n
2KGr

TSmax

TSpure
max

. (2.41)

Here, the trace speed TSmax is maximized over all local Hamiltonians with restricted spec-
trum and all steps of the algorithm, n is the number of qubits, TSpure

max =
√
n(n+ 1)/2 and
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KGr ≈ 0.69.

Proof. We divide the proof into two cases, kopt ≥ kGr and kopt < kGr, corresponding to
slow and fast depolarization dynamics, respectively. Note that we actually never use that
kopt is minimizing the quantum costCqu, so the results also hold true for any (suboptimal)
interruption of the algorithm at any step.

Case 1: kopt ≥ kGr/2

First, consider the case that the polarization during the algorithm is slow enough such that
kopt ≥ kGr/2 (see, e.g., the exponentially decaying polarization (red) in Fig. 2.5). Here,
note that after kopt steps, the corresponding pure-state version of the algorithm has already
reached its maximal trace speed TSpure

max (which is reached at k = kGr/2), cf. Fig. 2.4. As
ϵk is monotonically decreasing, we have ϵkopt ≤ ϵkGr/2. Further, the TSk at any step of the
algorithm is bounded by the maximal TS during the algorithm TSk ≤ TSmax. Finally, we
know that ϵkGr/2 = TSkGr/2 /TSpure

kGr/2 = TSkGr/2 /TSpure
max , and thus we find

ϵkopt ≤ ϵkGr/2 =
TSkGr/2

TSpure
max

≤ TSmax

TSpure
max

. (2.42)

On the other hand, if one could stop all depolarization at the step kopt, such that ϵk is
constant for k > kopt, the cost could be further reduced until reaching a minimal cost of
(KGr

√
2n)/ϵkopt at k = k̃Gr, cf. Eq. (2.20). Thus, the quantum cost when measuring the

state at step kopt is bounded as Cqu ≥ (KGr
√

2n)/ϵkopt . Finally, we obtain

S = Ccl

Cqu
≤ Ccl

KGr
√

2n
ϵkopt ≤

Ccl

KGr
√

2n
TSmax

TSpure
max

=
√

2n
2KGr

TSmax

TSpure
max

. (2.43)

Case 2: kopt < kGr/2

Now consider the case that the depolarization is so strong that it is advantageous to mea-
sure the state at kopt < kGr/2 (or that we prematurely interrupt the algorithm). The
first step of the above reasoning generally does not hold, i.e., TSmax generally cannot be
bounded by ϵkopt TSpure

max . Here, we have to make use of the explicit form of the TS dur-
ing the first half of the algorithm, cf. Eq. (2.38). We first recall that we have TSk =
ϵk TSpure

k for any step k, and that the quantum cost of stopping the algorithm at step k
isCk = (k + 1)/(ϵk sin2[(2k + 1)θN ]), cf. Eq. (2.18). We can then boundCk according to

Ck = k + 1
sin2[(2k + 1)θN ]

TSpure
k

TSk

≥ (k + 1) TSpure
k

sin2[(2k + 1)θN ]
1

TSmax

= f(k)
TSmax

, (2.44)
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where TSmax is the maximal TS of the algorithm’s state until the step k and we denote the
factors of the second line by f(k). To show Eq. (2.41), we have to show that f(k) is lower
bounded by the constant b = KGr

√
2n
√
n(n+ 1)/2. We use the explicit form of TSpure

k ,
cf. Eq. (2.38) and, after introducing r = k/

√
2n, we obtain for large n (and k � 1)

f(
√

2nr)− b n→∞−−−→
√

2nr sin[4r]n
sin2[2r]

−KGr
√

2n−1n

=
√

2n−1n

sin2(2r)
(
r sin[4r]−KGr sin2[2r]

)
. (2.45)

UsingKGr ≈ 0.69, one quickly checks that r sin[4r]−KGr sin2[2r] > 0 for r ∈ (0, π/8],
which corresponds to k ∈ (0, kGr/2]. Thus, f(k) > KGr

√
2n TSpure

max , and we finally obtain

S = Ccl

Ck
≤ Ccl

f(k)
TSmax ≤

√
2n

2KGr

TSmax

TSpure
max

. (2.46)

We want to make a few remarks about our results.

• Theorem 1 implies that the TS is a necessary and quantitative resource for the quan-
tum advantage in pseudo-pure-state versions of Grover’s algorithm: limiting the TS
below any fixed value automatically limits the possible quantum speed-up S. As we
discussed in Sec. 2.1.1, the TS offers an entanglement witness by surpassing certain
speed limits [27, 28, 29, 50], and also represents a widely used measure of coherence
[57, 138], see the next bullet point for a further discussion. In this context, we want
to recall the discussion of Sec. 2.1.2. Strictly speaking, considering only query com-
plexity (as we do with the average number of oracle calls), any quantum algorithm
can be implemented in a single multilevel system [92, 143], where no entanglement
is present. Note that by considering all physical resources, which corresponds either
to changing the definition of the cost, Eq. (2.18), or to restricting any quantum al-
gorithm’s implementation to multiple qubits (or qudits), entanglement was shown
to be present in the pseudo-pure Grover algorithm offering an advantage (see, e.g.,
Ref. [181]). Furthermore, as we have seen in the case of a unitary algorithm with
pseudo-pure initial states, the quantum advantage still remains for small polariza-
tions for which the TS does not detect entanglement anymore (even though it is
present). We conclude that while the TS is a necessary resource for the quantum
advantage in the pseudo-pure version of Grover’s algorithm, the entanglement de-
tected by the TS is not.

• To discuss the amount of coherence in Grover’s algorithm detected by the TS, we
want to compare our results to previous work. In Refs. [118, 119], the coherence
was shown to decay from a maximally coherent initial state to no coherence in the
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target state, where coherence was measured in terms of the relative entropy of co-
herence and the l1-norm of coherence. In contrast, the TS detects little coherence
for the initial and the target state, but large amounts of coherence halfway during
the algorithm, cf. Fig. 2.4. This contrasting behaviour is due to the use of differ-
ent coherence measures. For instance, the l1-norm of coherence is maximized by
the initial state |ψin〉 = (∑x |x〉)/

√
2n, while the TS is maximized for the state

|ψ〉 = (|0〉⊗n + |1〉⊗n)/
√

2. The two types of coherence are called speakable and
unspeakable coherence, respectively [183, 184]. Speakable coherence is insensitive
to which degrees of freedom (i.e., which computational basis vectors) encode the co-
herence. For instance, the state |ψ1〉 = (|00〉+ |01〉)/

√
2 holds the same amount of

speakable coherence as the state |ψ2〉 = (|00〉+ |11〉)/
√

2. In contrast, unspeakable
coherence is encoding-dependent, and distinguishes different degrees of freedom
of the Hilbert space regarding their coherence. This coherence measure is appropri-
ate for many quantum technological applications [185]. E.g., in quantum metrol-
ogy, the state |ψ2〉 offers a higher measurement precision than the state |ψ1〉. See
Ref. [185] for a discussion of speakable and unspeakable coherence. To summarize,
our results show that the amount of unspeakable coherence detected by the TS is a
necessary resource for the quantum advantage.

• The bound of Theorem 1 is tight. We have seen this explicitly in the case of a unitary
algorithm and a pseudo-pure initial state, cf. Eq. (2.30).

• In principle, Theorem 1 might hold also for other quantum statistical speeds QS, as
suggested by the fact that the unitary algorithm can be quantified by a wide class of
quantum statistical speeds, cf. Eq. (2.30). Furthermore, the reasoning of the theorem
in the case kopt ≥ kGr holds true for a general quantum statistical speed fulfilling
Eq. (2.27). However, in the case of an early measurement of the algorithm (kopt <

kGr), we have had to make use of the explicit form of the TS. Similar results do not
hold for a general QS. In particular, the QFI cannot be used in Theorem 1 in this
form.

• We want to briefly put our results in the context of previous work on noisy ver-
sions of Grover’s algorithm. Commonly, it is seen that a constant depolarization (or
noise) rate (independent of n) resulting in an exponentially decaying polarization
(cf. Fig. 2.5) leads to a loss of the quadratic speed-up [171, 173, 174, 175, 176, 178].
This loss is also present in our results: for a constant (n-independent) depolarization
rate, TSmax decreases exponentially with n, and by Theorem 1 so does the quantum
speed-up S.

• An open question is whether Theorem 1 can be generalized to other forms of noise
or even a general (noisy) search algorithm. We want to briefly comment why con-
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sidering a different noise model or even a general noise model renders the analy-
sis very cumbersome. First, most noise models render the calculation of the exact
quantum state during the algorithm intractable. Second, for large n, there may be
no efficient computation methods of quantities like quantum statistical speeds (see,
e.g., Ref. [134]). A common approach is to consider noise such that the quantum
state is always completely symmetric, as we also did in the pure-state algorithm in
order to make use the coherent spin operators to maximize the TS, cf. Eq. (2.33).
However, even though describing pure states and their dynamics only requires an
(n + 1)-dimensional Hilbert space (instead of a 2n-dimensional Hilbert space for
general pure states), completely symmetric mixed states cannot be described only
in this Hilbert space. E.g., for two qubits, the completely mixed state ρmix takes
the form 1/4 in any orthonormal basis and is thus completely symmetric, and thus
〈ψ| ρmix |ψ〉 = 1/4 for |ψ〉 = (|01〉 − |10〉)/

√
2 which is orthogonal to the (three-

dimensional) completely symmetric subspace of pure two-qubit states. Thus, even a
general symmetric noise model can strongly complicate the calculation of the state’s
evolution and the calculation of, e.g., quantum statistical speeds. See, for instance,
Ref. [171] for a treatment of the “simple” symmetric noise model of local depolar-
ization during Grover’s algorithm (instead of a totally depolarizing noise model that
was assumed in our analysis).

2.4 Conclusions and outlook

In this chapter, we have addressed and contributed to the topic of necessary resources for
quantum computational advantage. First, we have summarized previous results and com-
mon difficulties in the identification of central quantum resources in quantum computa-
tion. We have then focused on Grover’s search algorithm which is one of the rare quantum
algorithms that offers a provable and quantifiable quantum advantage (in terms of query
complexity).

For a general pseudo-pure-state version of Grover’s algorithm, we have found that the
quantum speed-upwith respect to a classical search is bounded by themaximal trace speed
(TS) that occurs during the algorithm, where the TS is optimized over all local Hamilto-
nians with bounded spectrum. The TS can further be used both as an entanglement wit-
ness and a coherence measure. The main result given in Theorem 1 states that for any
pseudo-pure-state version of Grover’s algorithm, the quantum speed-up S is bounded by
the maximal trace speed TSmax that occurs during the algorithm according to

S ≤

√
2n−1n(n+ 1)

2KGr
TSmax,

where n is the number of qubits andKGr is a constant. Thus, the TS is a necessary resource
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for the quantum speed-up in pseudo-pure-state versions of Grover’s algorithm. Note that,
as the TS is an example of a quantum statistical speed, it can bemeasured or bounded in ex-
periments, see Sec. 2.1.1. For small amounts of noise, the TS witnesses multipartite entan-
glement. However, the speed-up persists even when the TS does not detect entanglement
anymore. Also, implementing the algorithm in a single multilevel quantum system does
not use any entanglement (but requires exponential amounts of other physical resources
that are ignored in query complexity). On the other hand, for any implementation, the TS
represents a measure of coherence. Thus, our results can be interpreted in that the coher-
ence measured by the TS is a necessary quantum resource for the quantum speed-up of
pseudo-pure-state versions of Grover’s algorithm (when only considering query complex-
ity).

Different possible directions for future research are suggested by our results. First, can
one generalize our results to other noise models that cannot be described by pseudo-pure
states, or even to a general noisy quantum search algorithm? Second, can one prove similar
connections of quantum statistical speeds to the quantum advantage of other quantum al-
gorithms? A restricting factor is that the quantum advantage should be quantifiable which
is commonly not the case, as the best classical algorithm to solve the computational prob-
lem might not be known (e.g., in the case Shor’s algorithm [16]). Quantifiable quantum
advantages are known for other oracle-based algorithms like, e.g., Bernstein–Vazirani [15],
Deutsch–Jozsa [90] or Simon [91] algorithms.

To conclude, the quest for the origin of quantum computational advantage remains to
appear highly problem dependent [32]. The approach via quantum statistical speeds rep-
resents a new point of view that can potentially create new insights to this unresolved topic.
The importance of the TS in Grover’s algorithm, together with the role of quantum statisti-
cal speeds in other quantum technologies, shows that quantum statistical speeds represent
a promising candidate to recognize useful quantum features and quantum resources in
quantum technologies.
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In this chapter, we address the question of under what conditions one can postselect
measurement correlation data to verify genuine multipartite nonlocality (GMN). For this
purpose, we first give an extensive introduction to nonlocality in Sec. 3.1 covering a brief
introduction, themain definitions for the bipartite andmultipartite Bell scenario, some ap-
plications of nonlocality and different loopholes that hinder its validation in experiments.
In Sec. 3.2, we focus on the problem of postselecting measured data before using them in a
Bell nonlocality test, and prove conditions under which even a collective postselection can
be used to verify GMN. The proof relies on the methods of causal diagrams which we will
thus first introduce in Sec. 3.2.1. Finally, the result is applied in a specific scenario to show

43
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that one can create genuine three-partite nonlocality from independent particle sources in
Sec. 3.2.3.

3.1 Bell nonlocality

The phenomenon of Bell nonlocality (which we will simply refer to as nonlocality in the
following) and its implications [8, 9] have been among themost disputed topics in quantum
physics [69]. Nonlocality is demonstrated by the violation of Bell inequalities that can
be derived using a few assumptions that hold for “classical” physics. Due to the strong
conceptual consequences that arise from the violation of Bell inequalities, but also in view
of its practical applications, twomain questions have been driving discussions and research
about nonlocality:

1. Was a Bell inequality really violated in an experiment?

2. Assuming that Bell inequalities are violated, which of the initial assumptions was
wrong?

The first question (that constitutes the main focus of nonlocality research in recent
years) opens the field of so-called loopholes for nonlocality and loophole-free Bell tests.
It is mostly motivated from two different viewpoints. From a philosophical perspective,
one might not want to drop any of the initial assumptions that describe our intuitive
understanding of (classical) reality, and use these loopholes as an escape route to keep
them. More importantly, from a technological and application perspective, nonlocality
represents a central ingredient for many provably secure quantum technologies such as,
e.g., quantum key distribution (QKD). Loopholes create possibilities for malicious adver-
saries or eavesdroppers to corrupt the security promises of these quantum technologies.
In Sec. 3.2, we will address such a loophole, and we thus provide a brief overview of the
different loopholes in Sec. 3.1.4, see also Refs. [24, 186].

The second question illustrates that physicists have different preferences about which
of the classically fundamental principles is not correct in our universe. This decision is
strongly influenced by which “interpretation of quantum mechanics” is favoured. One
can roughly group the opinions in two camps [69]. The “operationalist” camp (see, e.g.,
Ref. [187]) identifies determinism and locality as crucial assumptions (besides the free will
assumption). Since quantum mechanics respects the no-signalling principle that can be
seen as an operational form of a locality condition, they usually conclude that determinism
is the faulty assumption. On the other side, there is the “realist” camp (see, e.g., Ref. [188])
that, demanding from physical theories to also give explanations of reality by means of
Reichenbach’s principle [189], argues that the only assumption (besides free will) is local
causality (confusingly often also termed locality). Consequently, this camp concludes that
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one necessarily has to discard the principle of local causality. A detailed comparison and
discussion of the two viewpoints as well as a possible agreement is given in Ref. [69]. In
the following, we will simply speak of nonlocality (as short for Bell nonlocality) whenever
Bell inequalities are violated.

3.1.1 Bipartite nonlocality

Both sets of initial assumptions mentioned above eventually lead to a local hidden vari-
able (LHV) model that should describe all experimentally observed correlations. We first
consider the simplest Bell scenario consisting of two measurement parties, Alice and Bob,
where we assume that each party can choose between two measurement settings that each
correspond to a two-outcome measurement. A preparation device creates two particles
that are then separated and sent to the different parties. On her particle, Alice (Bob) can
choose between measuring observables x1 and x2 (y1 and y2) and, without loss of general-
ity, obtains an outcome a = ±1 (b = ±1) 1. Note that the assumption that each party has
two measurement choices with two possible outcomes per measurement is not the most
general bipartite Bell scenario [24], as we will also briefly mention below. A general LHV
model for the joint probability for the outcomes is given by (compare Eq. (1.2))

Pab|xy =
∑
λ∈Λ

PλPa|xλPb|yλ, (3.1)

where λ is a discrete LHV and
∑
λ Pλ = 1. The LHV λ is called hidden because, in each

run of the measurement, its value is hidden from the experimental parties either through
experimental limitations or even in a fundamental sense. It can be thought of as a label of
the initially prepared two-particle state that is created with probability Pλ. This state, to-
gether with the measurement choice x of Alice, fully determines the probability that Alice
observes a, and similarly for Bob. This represents the locality assumption, as both parties
are supposed to measure simultaneously, and thus, assuming locality, Bob’s measurement
choice and his outcome cannot influence Alice’s outcome. By means of λ, Alice’s and Bob’s
outcomes can be correlated. However, this correlation is due to a local interaction in the
past (when the particles were prepared), and there are no direct nonlocal influences from
Alice’s measurement choice and outcome to Bob’s outcome and vice versa. Note that to
write Eq. (3.1), it was also assumed that Alice’s and Bob’s measurement choices are inde-
pendent from the LHV,Pλ|xy = Pλ, which is usually referred to as the free will assumption.

1Note that during this thesis, random variables will be denoted as capital letters (e.g.,X as Alice’s choice
of measurement setting, or A as her outcome) while their possible values as lowercase letters (e.g., Alice
measures observable x1 and observes the outcome a), independently of whether the variable is operator-
valued or real-valued. Furthermore, we write

Pa|x ≡ P (a|x) ≡ P (A = a|X = x)

because, later, this more compact notation proves advantageous.
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Correlations that can be described by the LHV model of Eq. (3.1) fulfill certain restric-
tions, the so-called Bell inequalities. For the bipartite case described above, the best known
and widely used example of such a restriction is the CHSH inequality [190]

|〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉| ≤ 2, (3.2)

where 〈AiBj〉 = ∑
a,b abPab|xiyj

is shorthand for the expectation value of the prod-
uct of Alice’s and Bob’s outcomes when they measure xi and yj , respectively. To show
that the correlations given by Eq. (3.1) fulfill the CHSH inequality, note that by insert-
ing 〈AiBj〉 = ∑

λ,a,b abPλPa|xλPb|yλ and using the triangle inequality, it is enough to
prove Eq. (3.2) for each λ separately. Furthermore, the set of possible probabilities is
convex, and thus, for any λ, maximal values are obtained with extremal probabilities
Pa|xλ ∈ {0, 1} [24]. Therefore, for a given λ, one can set Ai = ±1 and Bj = ±1, and
with |A1(B1 +B2) + A2(B1 −B2)| ≤ 2, Eq. (3.2) follows.

We want to mention that, in the above case that both parties have two measurement
choices with each two possible outcomes, the CHSH inequality (3.2) is the only nontrivial
Bell inequality (trivial inequalities correspond to positivity conditions such as Pa|xλ ≥ 0)
[24]. If themeasurement parties havemore than twomeasurement choices, or if the differ-
ent measurements have more than two possible outcomes, many non-equivalent Bell in-
equalities can be constructed. Furthermore, we note that every inequality can be “lifted” to
a Bell inequality for more parties, measurements, or outcomes by merging the latter [191],
a trick that is an important tool when dealing for finite detection efficiencies, cf. Sec. 3.1.4.
All non-equivalent inequalities have to be checked if one wants to show that the correla-
tions can be described by a LHV model. To the extreme, the problem of deciding whether
correlations are local or not in a bipartite setup with two outputs but many measurement
choices was shown to be a NP complete problem [192] (compare to the hardness-result of
the separability decision [64] mentioned in Sec. 1.3). For an overview of several bipartite
Bell inequalities we refer to Ref. [24].

If the observed correlations of Alice’s and Bob’s results violate a Bell inequality such
as Eq. (3.2), they can conclude that there is no LHV model that describes their system.
In this case, we say that they could demonstrate nonlocality. This conclusion can build
the foundation for several quantum technological tasks, cf. Sec. 3.1.3. Furthermore, as
discussed above, the demonstration of nonlocality has strong conceptual consequences
and also implies the presence of other quantum resources such as entanglement or EPR-
steerability, cf. Sec. 1.3.

3.1.2 Multipartite nonlocality

In a Bell scenario with more than two parties, there is a richer diversity of Bell tests that
can be performed by the experimental parties. For simplicity, here we consider the three-
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partite case, but all definitions can be easily generalized to the n-partite scenario. First,
the parties can ask whether their observed statistics show nonlocality in any form by the
exclusion of a LHV model, similar to the bipartite case. The general LHV model for three
parties is given by

Pabc|xyz =
∑
λ∈Λ

PλPa|xλPb|yλPc|zλ, (3.3)

where the third party Charlie measures z and obtains outcome c. Assuming Eq. (3.3), dif-
ferent three-partite Bell inequalities can be derived. As an example, the CHSH inequality
can be generalized to the Mermin inequality [193]

|〈A1B1C2〉+ 〈A1B2C1〉+ 〈A2B1C1〉 − 〈A2B2C2〉| ≤ 2. (3.4)

If the measured statistics violate Eq. (3.4), the experimental parties can again exclude
a description of their correlations in terms of a LHV model (3.3). In the multipartite case
though, there are different levels of possible nonlocal structures, in contrast to the bipartite
case: further distinctions about the amount of multipartite nonlocality are possible (simi-
lar to the discussion of k-partite entanglement, cf. Sec. 1.2.1). Say, for instance, that Alice
and Bob share a nonlocal state which is correlated to Charlie’s state only by a LHV. This
behaviour is surely nonlocal but not maximally so, and is called two-way local. If three-
partite correlations are more nonlocal than two-local, they are said to be genuinely mul-
tipartite nonlocal. Formally, genuinely multipartite nonlocal correlations are correlations
that cannot be written as a hybrid local-nonlocal hidden variable model

Pabc|xyz =
∑
λ1∈Λ1

Pλ1Pbc|yzλ1Pa|xλ1 +
∑
λ2∈Λ2

Pλ2Pac|xzλ2Pb|yλ2 +
∑
λ3∈Λ3

Pλ3Pab|xyλ3Pc|zλ3 .

(3.5)

Here, the complete set of LHVΛ is divided into three disjoint subsetsΛj (Λ = Λ1∪Λ2∪Λ3).
The setΛj dictateswhich twoparties can share bipartite nonlocal correlations, e.g., Bob and
Charlie forΛ1 in Eq. (3.5). If the probabilities cannot bewritten in this way, the correlations
cannot be described by any mixtures of two-way local correlations. We want to mention
that the bipartite nonlocal terms are often restricted to the no-signalling principle to make
the definition consistent in an operational framework [194]. For more details see below.

When assuming the hybrid local-nonlocal model (3.5), one can derive new Bell in-
equalities that test for genuine multipartite nonlocality (GMN). One example that we will
employ in Sec. 3.2.3 is the Svetlichny inequality [195]∣∣∣ 〈A1B1C1〉+ 〈A1B1C2〉+ 〈A1B2C1〉+ 〈A2B1C1〉

− 〈A2B2C1〉 − 〈A2B1C2〉 − 〈A1B2C2〉 − 〈A2B2C2〉
∣∣∣ ≤ 4. (3.6)

It can be proven by noting that it represents a combination of two CHSH inequalities (3.2)
conditioned on the third party’s measurement, see Ref. [24]. The violation of Eq. (3.6)
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demonstrates the maximal amount of nonlocality for this three-partite setup. GMN repre-
sents the building blocks for many proposals of multipartite quantum technologies such as
quantum networks and quantum conference key agreement, cf. Sec. 3.1.3 for more details.

Three-partite nonlocality can be classified even further [194, 196, 197]. In the hybrid
local-nonlocal model of Eq. (3.5), no restrictions on the bipartite nonlocal terms were
given. In particular, this allows correlations in which both parties not only share nonlocal
resources but also arbitrarily communicate (after their measurements). If each party has
to produce its output immediately after its measurement, one has to consider that either
(i) the parties’ measurements represent spacelike separated events, or (ii) the parties per-
form their measurements in a specific (not necessarily predetermined) timelike sequence.
In the case of spacelike-separated measurements, the resulting correlations have to fulfill
the no-signalling principle [198]. For instance, the bipartite nonlocal correlations Pbc|yzλ
in Eq. (3.5) now need to fulfill2

Pb|yzλ = Pb|yλ and Pc|yzλ = Pc|zλ, (3.7)

where Pb|yzλ = ∑
c Pbc|yzλ etc. Due to these restrictions, the hybrid local-nonlocal model

can describe less correlations and, therefore, GMN can be demonstrated in more cases.
In the case that the measurements are performed in a timelike sequence, signalling from
the earlier to the later experiments is generally allowed. Thus, the correlations are only
restricted by one of the no-signalling conditions in Eq. (3.7), for each two parties. As
imposing a weaker restriction on the possible correlations, its describing capacity is thus
between the general hybrid model Eq. (3.5) (that allows for two-way signalling) and the
model restricted by the no-signalling conditions.

It can be shown that the differences between the classes of no-signalling, one-way sig-
nalling and two-way signalling correlations can be observed in the data: the no-signalling
conditions can be employed to derive stricter Bell inequalities [197]. On the other hand, a
violation of a Bell inequality derived from the general hybridmodel Eq. (3.5) implies GMN
in all the above definitions. In Sec. 3.2, we will use the Svetlichny inequality, cf. Eq. (3.6),
to demonstrate GMN but we will use the no-signalling principle explicitly to prove results
on how experimental data may be postselected.

We want to mention that while a violation of the Svetlichny inequality (3.6) (or its no-
signalling generalizations) is needed to demonstrate genuine three-partite nonlocality (im-
plying also genuine three-partite entanglement), a demonstration of genuine three-partite
entanglement can also be achieved by the simpler Mermin inequality (3.4) [199]. This is

2This typically-used definition of no-signalling [194, 196, 197] actually says that, even if the LHV λ was
known, the no-signalling principlewould be fulfilled. It implies themore operational no-signalling condition

Pb|yz = Pb|y and Pc|yz = Pc|z

that does not include hidden variables.
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because in the demonstration of multipartite entanglement, it is assumed that all corre-
lations are created by measurements of quantum states. In particular, the nonlocal terms
of Eq. (3.5) have to be of the form, e.g., Pbc|yzλ1 = tr[EbFcρλ1 ], where Eb (Fc) is a POVM
element corresponding to the y-measurement of Bob (z-measurement of Charlie), and ρλ1

is a quantum state. This represents an even stronger restriction to the hybrid model than
the signalling conditions, making it possible to prove a Mermin-type inequality. Here, the
violation of the Mermin inequality (3.4) has to be stronger (2

√
2 instead of 2) [199]. This

insight has been used to create a device-independent verification of genuine multipartite
entanglement in Ref. [200]. In summary, the Svetlichny inequality is only needed when all
possible two-way local distributions have to be ruled out, even those that cannot be gen-
erated by local measurements on two-partite entangled quantum states. For a discussion
and further details, see Ref. [201].

Alternative definitions of genuine multipartite nonlocality

Before we move on, we want to mention recent developments towards an alternative def-
inition of GMN (and genuine multipartite entanglement) [54]. This line of reasoning has
originated from inconsistencies in the above (in the following called “original”) definitions
when considering a generalized Bell scenario. Here, the parties can share several indepen-
dent states among different subgroups of the parties, such that, eventually, the total quan-
tum state contains M > n subsystems which are distributed among the n parties. Each
party can then perform joint measurements on its subsystems. In contrast, in the standard
framework of the Bell scenario, there is one central source that distributes a quantum state
consisting of n fundamental subsystems among the n parties. In the generalized scenario,
it was found that one can generate the original GMN (i.e., violations of inequalities such as
Eq. (3.6)) from sharing merely bipartite entangled states between the parties [202]. Thus,
when allowing for the generalized scenario, the original definition of GMN does not cor-
respond to a resource that is closed under tensor products: a single maximally entangled
Bell state, |ψ〉 = (|00〉+ |11〉)/

√
2, shows no genuine three-partite nonlocality, but two

copies of it can be used to activate it, where one of the three parties holds a qubit of both
maximally entangled states in its lab [202]. Further, it was shown that any network that
distributes bipartite pure entangled states shows GMN [203]. We note that the same weak-
ness applies for the definition of genuine multipartite entanglement (cf. Sec. 1.2.1), which
again can be activated by distributing bipartite entangled states in a network [204].

The above weakness of the original definitions of GMN and entanglement led to the
proposal of alternative definitions, resolving some of the apparent paradoxes or inconsis-
tencies in the original definitions [54]. The crucial insight is that, in the original approach
to quantify entanglement [23], the class of free operations (i.e., the operations that do not
create resourceful objects; cf. Sec. 1.2.3) was taken to be the set of Local Operations and
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Classical Communication (LOCC).This is because the first investigations of entanglement
as a resource weremade in quantum communication tasks where classical communication
is usually allowed and often necessary. In contrast, in Bell scenarios, classical commu-
nication should not be a free operation because, by using only classical communication
and without sharing any quantum states, it is possible to violate Bell inequalities such as
Eq. (3.2). Also, classical communication is even forbidden by relativity if the measure-
ment results are produced in spacelike separation. Therefore, in a Bell scenario, the natural
free operations are Local Operations and Shared Randomness (LOSR). In order to consis-
tently combine the notions of entanglement and locality, the classification of entanglement
should then only treat LOSR operations as free. These considerations have motivated the
definition of the so-called genuine LOSR three-partite nonlocality (entanglement), which
are those correlations (states) that cannot be created by bipartite nonlocal correlations (bi-
partite entangled states) and shared randomness [54]. Note that the original definition
and classification of entanglement in terms of LOCC operations is still perfectly appro-
priate for other important quantum technologies that allow for classical communication
between the parties, such as, e.g., superdense coding [25] and quantum teleportation [26].

By means of the alternative LOSR definitions, several paradoxical situations can be
clarified. One example is the nonlocality demonstration by Hardy [205] that requires that
the quantum state is entangled but not maximally entangled. This constitutes an apparent
paradox since amaximally entangled state can be converted to a non-maximally entangled
state by means of LOCC. The paradox is resolved by noticing that maximally entangled
states cannot be converted to non-maximally entangled ones by means of LOSR, and thus
they represent nonconvertible resources. A different example of the same type is that less
entangled states allow for smaller detection inefficiencies in Bell experiments [206], see
Sec. 3.1.4, or that less entangled states can generate higher production rates of certified
random numbers [207].

A second clarification from the alternative definitions addresses the situation en-
countered above: in the original definitions, bipartite entangled states suffice to cre-
ate genuine multipartite entanglement and nonlocality. A specific paradoxical exam-
ple is that some correlations that can be created from measurements of the GHZ state,
|ψ〉 = (|000〉+ |111〉)/

√
2, cannot be created from measurements of two maximally en-

tangled states3 [208]. This is in apparent contradiction to the fact that, by means of LOCC,
the two pairs could first be converted to the GHZ state4 and then measured. This process

3Here we actually meet another class of operations, the Local Operations (denoted as LO; not to confuse
with the local oscillator), that are usually assumed to convert the quantum state in a Bell scenario to outcome
probability distributions. Thus, the above statement is that by means of LO, the GHZ can be converted to
certain correlations (termed the Mermin box [54, 208]), while two maximally entangled states can not.

4Say Alice shares a maximally entangled state with Bob and a second one with Charlie. After she locally
creates a GHZ state (allowed by LOCC and LOSR), she can use each entangled state to teleport one of the
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is not possible in terms of LOSR operations, and thus the paradox is resolved.

In the remainder of this chapter, we will return to the original setups and definitions
of GMN and entanglement, corresponding to one central source that distributes n funda-
mental subsystems among the n parties. A generalization of our results to the new defini-
tion of GMN is an interesting direction for future investigation.

Network nonlocality

In this context, we also want to mention a second alternative and recently widely pursued
notion of nonlocality, so-called network nonlocality [209]. Also here we consider the gen-
eralized Bell scenario, i.e., several independent sources that are shared between different
subgroups of the parties (see, e.g., Fig. 3.12 for the triangle scenario discussed later), and
each party can perform a jointmeasurement on its subsystems. If the observed correlations
cannot be described in a LHV model, such that each independent source is described by a
independent LHV (see Eq. (3.40) for an example below), the correlations are termed net-
work nonlocal. This kind of nonlocality was first considered in the entanglement swapping
protocol [210, 211], and then also examined in several other network structures, such as,
e.g., the triangle scenario [209, 212, 213] that we will discuss in more detail in Sec. 3.2.3, or
the instrumental scenario [214, 215]. Network nonlocality has been experimentally veri-
fied in specific networks [214, 216, 217, 218]. Network nonlocality has also led to intriguing
foundational results, e.g., that the Hilbert spaces that describe quantum mechanics need
to be complex Hilbert spaces [219].

The assumptions of independent sources is more restrictive than that of a central
source, such that network nonlocality can be proven for some correlations that can be
described with a LHV model in the standard Bell setting. For instance, some correlations
that do not take any measurement inputs can be shown to be network nonlocal [209, 212],
while they would always be describable by a LHV model in the standard setting. However,
while the notion of network nonlocality naturally captures the structure of many standard
experimental setups in quantum technologies such as quantum networks [220, 221], the
characterization and detection of network nonlocality has proven challenging. The main
difficulty is that, in contrast to the standard version of nonlocality, the set of network lo-
cal correlations is not convex. Therefore, proving the network nonlocality of a specific
scenario requires advanced methods such as, e.g., the identification of logical contradic-
tions of the probabilities with the network LHV model [212, 213]. For more methods and
introductions of network nonlocality, see Refs. [208, 222].

GHZ state’s qubits to a distant party by means of quantum teleportation [26]. This teleportation process
makes use of classical communication, so it is not a free operation in LOSR.
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3.1.3 Applications of nonlocality

In this section, we provide a rough overview of the importance of nonlocality and GMN
for quantum technologies. For a more detailed review we refer to Ref. [24].

The first application that comes to mind when considering nonlocal correlations is an
instantaneous transmission of information by means of these correlations. This applica-
tion is however excluded by the no-signalling principle (cf. Eq. (3.7), for a formal proof
see Ref. [198]). Note that a violation of the no-signalling principle in quantum mechan-
ics would represent an incompatibility with the concept of causality in special relativity.
Nevertheless, nonlocality can be used to reduce the communication complexity of certain
protocols. The standard scenario is that Alice and Bob receive two n-bit strings x and y,
respectively, after which Bob is asked to compute a function c(x, y). In the classical com-
munication setting, it is generally necessary that Alice has to send all her information x
(i.e., n bits) to Bob. In Ref. [223], it was shown that the amount of information that Alice
has to send to Bob can be reduced if the parties share nonlocal resources. This is achieved
by translating a thought experiment by Greenberger, Horne and Zeilinger (GHZ) [224]
to a communication problem of the above form. Building on the EPR paradox [7], the
GHZ thought experiment offers an alternative to Bell inequalities for demonstrating non-
locality [224, 225] and will be described in detail in Sec. 3.2.3. It was even shown that the
violation of any (multipartite) Bell inequality offers a quantum advantage in communica-
tion complexity, and thus nonlocality is the necessary and sufficient quantum resource for
these tasks [226]. We alsomention that nonlocality enables one to obtain a finite zero-noise
channel capacity from a noisy classical channel [227], a capability that can also be achieved
with the use of the quantum resource of indefinite causal order [228] (here, the channel
can even have a zero capacity to transmit quantum information [229]). For a review of the
role of nonlocality in communication complexity, see Ref. [230].

Themost prominent applications of nonlocality are found in the field of quantum cryp-
tography. Here, the establishment of a provably secure communication is reduced to the
task of sharing a secret key between the communication parties that cannot be corrupted or
intercepted by an eavesdropper. The seminal proposal that made use of nonlocality for this
task was provided by Ekert in 1991 [12]: in a slight generalization of the CHSH setup, two
parties sharemany copies of themaximally entangled state |ψ〉 = (|00〉+ |11〉)/

√
2, and in

each round each party can choose from three different measurement settings. After many
measurement rounds on their quantum states, the parties publicly share all measurement
settings. By comparing their settings, they observe which measurement rounds they can
use for a violation of the CHSH inequality, cf. Eq. (3.2), and publicly share the outcomes
of the corresponding measurements. A violation of the CHSH inequality then proves that
their shared quantum states were not intercepted by an eavesdropper, a conclusion that is
based on the no-cloning theorem [231]. Finally, they can use the measurement rounds for
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which they have chosen the same measurement setting to establish the secret key (if the
parties use the same measurement setting, their outcomes are perfectly correlated).

Later it was realized that the violation of Bell inequalities implies an even stronger state-
ment: not only can one exclude the presence of an eavesdropper, but one can even deduce
the state which was shared by the parties from only observing the correlations. This in-
sight was called self testing [232] and was first noted by the observation that a maximal
violation of the CHSH inequality proves that the measuring parties share a maximally en-
tangled state (up to local isometries) [233], see also Ref. [54] for a reformulation of self
testing in the context of LOSR resource theories. This result was later made robust (i.e.,
tolerant to experimental imperfections) [234] and represents the central building block of
device-independent quantum technologies. Most prominently, device-independent QKD
that requires no assumptions on the physical devices (other than that they behave accord-
ing to quantum mechanics) was developed [235, 236, 237] and made fully general and
noise resilient in Ref. [238]. A second famous application of this line of research is the
creation of quantum random number generators in which the randomness is certified by
Bell inequality violations [239].

In this context, we want to mention another surprising result in device-independent
quantum technologies. The field of delegated quantum computation addresses the prob-
lem of how a classical client can ever verify that a quantum computer (e.g., on the cloud)
correctly performs a given quantum computation that it is asked to do. Furthermore, one
can even ask for “blind” quantum computation inwhich the quantum computer cannot de-
duce which quantum computation it is performing. These seemingly impossible problems
can be solved by making use of nonlocality [240]: the classical client interacts with two
entangled quantum computers (that are not allowed to communicate, as usual in LOSR),
asking both of them for the (encrypted) quantum computation of interest and, at the same
time, performing a Bell test to verify that the quantum computers really use the correct
quantum states. By hiding which of the two tasks is demanded in a specific interaction,
the client forces the quantum computers to honestly perform the quantum computation,
as otherwise the client detects that the Bell inequality is not violated. Note that, eventually,
a direct verification of a single quantum computer by a classical client was proven based
on post-quantum cryptography (classical cryptography that cannot be broken by quantum
computers) [241].

There are also direct applications of nonlocality in the computational power of quan-
tum computers. In the measurement-based model of quantum computation [109], all
computational power is based on the nonlocal correlations of the initial cluster state [242].
In particular, the initial state is defined by means of eigenvalue equations of correlation
operators between the different cluster sites. Note that these defining equations resem-
ble (but generally differ from) the eigenvalue equations used in the GHZ-type verification
of nonlocality [224]. Also recall the role played by nonlocality in quantum advantage of
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shallow quantum circuits [121], cf. Sec. 2.1.1.

Applications of multipartite nonlocality

While multipartite nonlocality is ubiquitous in modern quantum technologies (similar to
multipartite entanglement), there are only few results that explicitly highlight its role in
quantum advantage. This might be due to its relatively short history, as well as the above
mentioned debates about its definition. Here, we give a short overview of quantum tech-
nologies that make explicit use of GMN.

The first example of an application is the protocol of quantum secret sharing [243],
where a classical secret is encoded in an n-partite GHZ state, |ψ〉 = (|0⊗n〉+ |1⊗n〉)/

√
2,

that is then shared between n parties. Note that a shared GHZ state always indicates the
presence of GMN for all definitions of GMN (see Ref. [201] for the original definition and
Ref. [208] for the LOSR definition). If all parties collaborate they can reveal the secret,
however, if any subset of parties tries to access the secret without consulting the remaining
parties, they will not gain any information about the secret. Furthermore, the presence of
an eavesdropping attack is made visible by comparing the final measurements. The prob-
lem of sharing a quantum secret is addressed in Ref. [244].

Similar to the bipartite case, multipartite nonlocality can be used to share a secret key
between n parties (see, e.g., Ref [245] for a device-dependent and Ref. [246] for a device-
independent protocol). This multipartite quantum key sharing is also called quantum
conference key agreement. While quantum conference key agreement can also be estab-
lished using only bipartite entanglement and nonlocality [247], a protocol that makes use
of genuine multipartite entanglement can achieve higher key rates [248]. Reference [249]
achieves a quantum conference key agreement that uses multipartite entangled states with
large local Hilbert space dimension, in contrast to the GHZ state approach of Refs. [246,
248]. See Ref. [250] for a review of quantum conference key agreement.

Another class of future quantum technologies that are recently attracting large atten-
tion and rely on multipartite entanglement and nonlocality are quantum networks and the
quantum internet [220]. Similar to quantum conference key agreement, many different
parties (also called nodes) share entangled quantum states in order to implement quantum
communication or quantum computation protocols. For realistic large-scale quantumnet-
works, two different building blocks are crucial. The first ingredient are quantum repeaters
(based on entanglement swapping) that enable the sharing of highly entangled quantum
states among many parties and along large distances, see Ref. [251] for the bipartite and
Ref. [252] for the multipartite proposal. The second ingredient are quantum memories
that represent the local quantum system at each node and that have to be connected by
means of quantum channels (usually photons) with the other nodes, see Refs. [253, 254]
for reviews of the state-of-the-art technology. For an overview of recent results and open
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questions about quantum networks see, e.g., Ref. [221].
Finally, similar to the discussion in Sec. 1.3, the detection of GMN is a direct witness

of genuine multipartite entanglement. This can easily be seen by observing that the set of
correlations that can be created by bipartite entangled states and local measurements can
be described by a hybrid local-nonlocal hidden variable model, cf. Eq. (3.5) (all proba-
bilities now need to stem from measurements of quantum states). We also want to note
that in many investigations of quantum resources, the main focus was placed on entan-
glement. However, finding that entanglement is a necessary resource does not rule out
that also nonlocality is a necessary resource (since the set of nonlocal states is included in
the set of entangled states). It might just be that the explicit role of nonlocality was not
considered. One example for an explicit consideration of multipartite nonlocality as a re-
source was offered in Ref. [255], where it is shown that a certain class of genuinely nonlocal
states can be used to achieve the optimal Heisenberg limit of quantum metrology. By the
large attention experienced by multipartite nonlocality recently, one can expect that other
explicit applications of multipartite nonlocality will be identified in the future.

3.1.4 Loopholes in nonlocality experiments

In this section, we provide a brief overview of different loopholes that can affect nonlocality
experiments. Loopholes have been shapingmuch of theoretical and experimental research
in Bell nonlocality in the last decades. In the following, we first address the two main
loopholes of locality and detection inefficiency that have to be checked in any loophole-
free nonlocality demonstration. Then, we focus on the specific loophole of postselection
that, while in theory only affecting a subclass of nonlocality experiments, practically is
always present in experiments, even beyond the ones that test for nonlocality. In Sec. 3.2,
wewill then discuss new results that address the postselection loophole. Formore extensive
reviews and for discussions of other loopholes in Bell experiments, we refer to Refs. [24,
186].

Locality loophole

One central ingredient of derivation and discussion of Bell inequalities is that the hid-
den variable model (cf. Eq. (3.1)) is “local”: if the measurement parties are far distant
from each other, special relativity dictates that their measurement choices and observed
measurement outcomes can have no causal influence on the measurement outcomes of
the other parties, since any future event can only be influenced by earlier events that have
happened in the event’s past light cone. If the measurement parties are not sufficiently
separated (the experiments have to be spacelike separated5), the measurement devices of

5Two points in spacetime are spacelike separated if neither of them is in the past light cone of the other,
or, in other words, if they cannot be connected by timelike (or null) paths. This means that any signal from
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the different parties could communicate (possibly in a hidden way) to produce any de-
sired correlation of measurement results, without violating causality and special relativity
[256]. Furthermore, not only must the different experiments be performed at spacelike
distance, but the decision of measurement setting also has to be done at spacelike distance.
Note that this further condition is connected to the assumption that measurement set-
tings are chosen independently of the LHV, called the free-will assumption [257] or the
measurement-independence assumption [258, 259].

The very first experiments on Bell inequalities [260] did not insist on distant measure-
ment parties and thus were affected by the locality loophole. The first experiment to ad-
dress the locality loophole was performed in 1982 by the group of Aspect [261] who used
fast-switching measurement settings to measure two entangled photons. This method,
however, did not represent a truly random setting and was vulnerable to the so-called
memory loophole, i.e., that due to the periodicity of the settings, detectors with memory
could predict future measurement settings [256]. Later, measurement settings were cho-
sen both locally and randomly by means of quantum random number generators6 [262],
cf. Sec. 3.1.3. Finally, both the measurement choices and the photon generators were put
in spacelike separation [257], addressing also the free-choice loophole. In this context, we
also want to mention recent Bell experiments that used random numbers generated by hu-
mans [263] or by cosmic light coming from distant stars in the Milky Way [264] or even
from quasars [265]. Strictly speaking, the free-choice loophole can never be closed com-
pletely but one has to rely on ever more complex machineries to explain why the settings
are not chosen randomly.

Detection loophole

The loophole that has been most extensively discussed is the so-called detection or effi-
ciency loophole. In all experiments, some parts of the measurement process of a quantum
system are not perfectly efficient, meaning that with some probability, the physical sys-
tem can either remain undetected or can be detected with a false output (e.g., in photon-
counting detectors, a single photon has a finite probability to be detected as no photon or
as two photons). Commonly, if only one of the parties produces an outcome of its detector,
the event is discarded. This kind of postselection of observed events opens the possibility
for LHV models that are able to describe the complete correlation of all data, even though
the postselected data violate a Bell inequality. This loophole was observed already in the
early days of nonlocality [266, 267]. While there are rigorous methods to close the detec-
tion loophole as we discuss below, the main approach in experiments is to assume that the

one point to the other would necessarily have to travel faster than light.
6Note that this approach actually relies on circular reasoning: the Bell inequality is violated if one assumes

that the measurement settings are chosen randomly, and the certification of randomness of a quantum ran-
dom number generator is based on the violation of Bell inequalities.
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detectors satisfy “fair sampling”: the postselected data that are observed by the experimen-
tal parties should fairly represent (i.e., show the same correlations etc.) the data that would
be observed when using perfectly efficient detectors [268, 269]. If, on the other hand, the
detection probability depends on the chosen detector setting, fair sampling is not fulfilled
and apparent Bell inequality violations can be described by a LHV model [266].

However, due to the key role of nonlocality for secure tasks and cryptography, closing
every loophole in nonlocality tests is of crucial importance. In particular, fair sampling is
not a condition that is necessarily fulfilled in real experiments: by implementing detection
schemes that do not satisfy fair sampling, fake violations of Bell inequalities have been
created in experiments, see, e.g., Refs. [270, 271] for violations of Bell inequalities using
classical optics. As a variation of the detection loophole, we also mention Ref. [272] for
a direct hack of commercial QKD devices using the implementation loophole, i.e., that
the physical implementation of the detection differs from the physical model used in the
security proof.

Theonlyway to rigorously close the detection loophole is to somehow take into account
the no-detection events. Two different approaches have been developed for this purpose.
First, one can include all measured data in the analysis of the Bell inequality, without ne-
glecting any undesired data, see, e.g., Ref. [273]. Here, the easiest approach is to merge the
no-detection events with one of the two initial outcomes and test the initial (two-outcome)
Bell inequality [191]. In this way, a detection efficiency of η > 2/(1 +

√
2) ≈ 0.83 is

required [274] (here, η is the probability of the detection of the incoming particle). Inter-
estingly, it was shown that non-maximally entangled states (i.e., two-qubits states whose
single-qubit reduced density matrices are not completely mixed) allow to close the detec-
tion loophole even for smaller detection efficiencies (η > 2/3) [206]. We also note that
by using higher dimensional states and more measurement settings, lower detection effi-
ciencies can be used (see, e.g., Ref. [275]). For multipartite Bell scenarios, even arbitrarily
low detection efficiencies allow for closing the detection loophole [276]. The second ap-
proach consists of postselecting double detections but, at the same time, sharpening the
Bell inequality (i.e., increasing the threshold value) accordingly. The threshold efficiency
for a demonstration of nonlocality in this approach is again η = 2/(1 +

√
2) (this thresh-

old was derived assuming symmetric detection efficiencies [267] or conditional detection
efficiencies [277]).

Experimentally, the only way to close the detection loophole is thus to use detectors
with sufficiently high detection efficiencies. While experiments with ions typically enjoy
high detection efficiencies and could be used to close the detection loophole earlier [278,
279], this was achieved only in the last decade for photonic implementations [280, 281].
These works were able to close the detection loophole without addressing the locality loop-
hole. Finally, in 2015, a series of experiments was able to simultaneously close locality and
detection loopholes, using experiments based on photons [282, 283] and on nitrogen va-
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cancy centers [284].

Postselection loophole

The final loophole that we touch upon in this short overview is the postselection loophole.
It strongly resembles the detection loophole that we have discussed above. In contrast
to the detection loophole though, it is not present in all experiments. Furthermore, this
loophole is not originating in technological or implementation limitations, but remains
even for a hypothetical ideal noiseless experiment (or, for the theoretical proposal), and
thus represents a different kind of loophole.

The postselection loophole principally affects any experiment in which some of the
collected data are neglected and thus the remaining data are postselected. Note that the
postselection that is performed due to inefficient detection is naturally included in this
loophole, however, in context of Bell experiments, one usually refers to the postselection
loophole whenever the postselection is not due to experimental imperfections. In the field
of statistical inference, postselecting data is long known to create the possibility to change
data structures and correlations. This is known as the selection bias. A famous example
of selection bias is Berkson’s paradox where two random variables become negatively cor-
related after postselecting the complete sample [285]. To give a contemporary example of
Berkson’s paradox, we highlight its role in false conclusions concerning possible influences
of COVID-19 risk [286]. For instance, there have been claims that smoking can protect
against COVID-19 infection. Obviously, both smoking and COVID-19 infection can lead
to hospitalization, see Fig. 3.1. However, by only considering hospitalized patients for
the study or the statistic, COVID-19 and smoking seem to be anti-correlated even though
they may have been independent in the full population. The reason is that if a hospitalized
patient does not have COVID-19, she necessarily has to suffer from a different disease, in-
creasing the probability for a smoking-related disease in comparison to the probability in
the total population. This highlights the importance of the selection bias in statistics and
why samples for medical studies have to be chosen carefully to correctly represent the full
population.

Since violations of Bell inequalities originate from correlations of the observed data,
Bell tests are especially susceptible to postselection. In particular, the selection bias opens

Hospital

COVID-19 Smoking

Figure 3.1: Illustration of Berkson’s paradox: both COVID-19 and smoking can lead to hospitalization. By
considering only hospitalized patients, COVID-19 and smoking thus seem anti-correlated even if they are
independent in the full population.
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the possibility that postselected measurement data violate a Bell inequality even though
the complete set of experimental observations can be described by a LHV model. In this
case, the conclusion that the experimental system demonstrates nonlocality is false. Until
recently, the only postselection that was considered to be provable safe from the selection
bias was a locally decidable postselection [273]: if each party can decide postselection by
observing its measurement result only (and not awaiting confirmation from the other ex-
perimental parties), and every party’s decision on postselection coincides, the postselected
statistics is valid for Bell tests. This is because if, say, Alice is able to decide the postselection
on her own, Bob’s measurement choices can have no influence on the postselection due to
relativity, as otherwise this would correspond to superluminal signalling. Recently, less
restrictive postselection strategies have been proven valid for the demonstration of multi-
partite (but not genuine multipartite) nonlocality [287]. In particular, it was shown that
in the multipartite Bell scenario, the postselection strategy is safe if it can be equivalently
decided by excluding any party, or, in other words, if it can be equivalently decided by any
all-but-one parties. We will further comment on these results in Sec. 3.2.2.

An important special case of the postselection loophole is the so-called time-
coincidence loophole [186, 288]. This loophole affects nonlocality demonstrations that
are created by so called time-bin entanglement originating from a proposal by Franson
[289]. Here, two particles are sent to two experimental parties but the exact emission time
of the particles is unknown. Therefore, when the parties detect the particles in coincidence,
there are different possibilities for the exact time that the particles have been created (and
for which path they have traveled). The corresponding probability amplitudes of these pos-
sibilities have to be added up enabling interference and also violation of Bell inequalities.
However, the violation is only visible if the events with a coincident detection are posts-
elected, a set that only represents a fraction of the complete set of observed events, even
if perfect detection efficiencies and a noiseless implementation are assumed. Leveraging
on the selection bias, a LHV model was developed that could describe all measurement
statistics of the initial Franson experiment [290]. Here, the trick was that the postselection
of an event was both dependent on the LHV and the local measurement settings of the
parties.

Since explicit LHV models have been found that describe Franson’s proposal, one has
to conclude that it cannot demonstrate nonlocality. However, different variations of the
proposal have been developed that are not affected by the postselection loophole. For in-
stance, a hugged version of Franson’s original setupwas proposed [291] and experimentally
implemented [292, 293] that, by means of causality, can rule out that the detector settings
influence the postselection, so a LHV as in Ref. [290] is forbidden. This new proposal is
very similar to an old idea by Yurke and Stoler [294] that has inspired the development
of the widely used methods of entanglement swapping. We will introduce and discuss the
setup by Yurke and Stoler in detail in Sec. 3.2.3.
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Finally, we want to note that postselection is an ubiquitous tool in physics and science
in general. In almost all experiments, undesired data or unsuccessful runs are neglected
before proceeding to the post-processing of data. In principle, each postselection should
be carefully analyzed to conclude that no selection bias alters the data. An example can
be given in the field of quantum metrology. In the last decade, much attention has been
enjoyed by the field of weak values, a phenomenon that creates paradoxically large mea-
surement outcomes bymeans of postselectingmeasurements [295]. This phenomenonwas
then argued to be beneficial for amplification in experiments (so-called weak-value ampli-
fication) [296, 297, 298, 299]. However, it was later shown that the average precision (in
particular, the average Fisher information) of a measurement cannot be increased with the
help of postselection [300, 301]. Exceptions to this resultmight arise if detectors are subject
to saturation limitations [298] or if the postselection is performed during themeasurement
process and not in the post-processing after the complete measurement procedure [302].
In the latter example, postselection can yield advantages if the final measurement is costly
and can be circumvented by postselection.

3.2 Postselecting statistics for genuine multipartite
nonlocality certification

We now address the postselection loophole for the specific task of demonstrating genuine
multipartite nonlocality (GMN). For this purpose, we first specify the problem setting.
Then, in Sec. 3.2.1, we insert a small digression to causal inference and causal diagrams,
methods that we build upon to show our later results. In Sec. 3.2.2, we provide the main
results of this chapter, showing that in a multipartite Bell scenario, even certain postselec-
tion strategies that require communication between the parties are valid to demonstrate
GMN. Finally, in Sec. 3.2.3, we apply the results to an old proposal by Yurke and Stoler to
show that one can generate genuine three-partite nonlocality from independent particle
sources. The results of this chapter are published in Ref. [2].

As we have seen in Sec. 3.1.2, GMN is a phenomenon that requires that the quantum
resource of nonlocality is shared in a collective way between all parties of amultipartite Bell
scenario. Furthermore, we have discussed that certain postselection strategies that make
use of communication between the parties can be used to fake nonlocality – rendering the
postselection strategy invalid for any nonlocality experiments. One is tempted to conclude
that, in order to demonstrate GMN, all kinds of postselection that require any amount
of communication should be invalid. Surprisingly, this is not true: as we show in this
section, there are postselection strategies that build on communication between (parts of)
the experimental parties which are valid to demonstrate GMN.

As an illustrative example, consider a group of experimental parties who have shared
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(a) (b) (c)

Figure 3.2: After three parties have performed a series of measurements, they come together to analyze their
results. Even if the whole set of data does not violate any Bell inequality (a), different kinds of postselection
can transform the data to violate Bell inequalities demonstrating general (non-genuine) three-partite non-
locality (b) or genuine three-partite nonlocality (c). Which kinds of postselection are safe for nonlocality
demonstration and cannot be affected by selection bias? The Figure is taken from Ref. [2].

a quantum state and who have performed a series of local measurements. After having
finished their measurements, they come together to analyze the results and search for cor-
relations, in order to eventually violate a Bell inequality that demonstrates GMN. Unfortu-
nately, from the complete set of measurement results, the corresponding Bell inequalities
are not violated. Can they do more?

As we have sketched in Sec. 3.1.4, they know that they are allowed to postselect parts
of the data if this postselection can be decided by each party only examining its own mea-
surement results and without consulting other parties about theirs. Of course, the mea-
surement runs that are postselected by each party in this way must coincide for all parties
(otherwise, correlations between different measurement runs, i.e., different independent
quantum states, are analyzed, so Bell inequalities cannot be violated). Asmentioned above,
this kind of postselection is called locally decidable (since the postselection could also have
been decided directly after recording the measurement, in a spacelike distance to all other
parties) and is known to be safe [273]. If locally postselected data still do not violate the
Bell inequalities, does it imply that their correlations will never demonstrate GMN?

Next, assume that a different postselection strategy that cannot be decided locally by
every party, but that requires some amount of communication between the parties after
the measurements, and that results in a set of data that violates the Bell inequality. This
situation is plausible since, generally, more postselection (andmore complicated postselec-
tion) creates or uncovers more extreme correlations in the data. However, as we discussed
above, postselection potentially opens the postselection loophole, i.e., the loophole that
nonlocal correlations are mimiced by means of a selection bias. In Sec. 3.2.3, we provide
a class of valid postselection strategies for GMN tests, where even partial communication
between the parties is allowed to decide the postselection.

The problem at hand is sketched in Fig. 3.2, for the smallest situation of three parties,
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Alice, Bob and Charlie. The parties perform measurements and obtain a series of out-
comes (here depicted as binary outcomes). By using different postselection procedures,
their joint data may demonstrate different levels of nonlocality. For instance, by consid-
ering all data, no Bell inequality is violated, cf. Fig. 3.2(a). Furthermore, by postselecting
same parts of the data, a Bell inequality that separates local from nonlocal behaviour (e.g.,
Eq. (3.4)) may be violated Fig. 3.2(b). However, as we discussed in Sec. 3.1.2, a violation
of such a Bell inequality does not demonstrate the strongest form of nonlocality, GMN,
as hybrid local-nonlocal models such as Eq. (3.5) can also lead to violations. Finally, the
parties postselect the data further such that a Bell inequality that tests for GMN is violated
(e.g., Eq. (3.6)), see Fig. 3.2(c). In Sec. 3.2.2, we introduce valid postselection strategies for
the demonstration of GMN and also mention previous results in the literature about valid
postselection strategies for general (non-genuine) multipartite nonlocality.

As can be seen from the introduction to Bell inequalities in Sec. 3.1.1 and Sec. 3.1.2,
the crucial ingredient for Bell inequalities are LHV models or hybrid local-nonlocal hid-
den variable models. These models can be conveniently illustrated as causal diagrams to
highlight the causal connections between different variables. Furthermore, the effect of
postselection on the statistics and causal structures can be analyzed by means of the causal
diagrams and the tool set of d-separation rules [75]. These rules constitute themethods we
use to prove the validity of postselection strategies in Sec. 3.2.2, and thus we first introduce
the central notions of and the rationale behind causal diagrams in the following.

3.2.1 Digression: Causal diagrams

In this section, we will briefly introduce the concepts of causal inference and causal dia-
grams. For an extensive introduction we refer to Ref. [75]. Causal inference is the task of
inferring causal structures from the observation of correlation data. It is built on Reichen-
bach’s principle which states that if two random variables are dependent (meaning that
their joint probability distribution does not factorize), then one is a cause of the other or
they share a common cause. The result of a causal analysis of the data is a directed acyclic
graph (DAG) that describes the causal influences between the different random variables.
Furthermore, having established a DAG, one can use the tool set of d-separation (not to
confuse with k-separability, cf. Sec. 2.1.1) to quickly infer conditional independence even
for complicated causal structures, a method that we will utilize in Sec. 3.2.2.

Consider the case of three ordered random variables (RVs), A, B and C . We want to
find a possible causal explanation of the joint probability distributionPabc, meaning thatwe
want to understand all causal influences between the variables. For the causal analysis, it is
important to assume that the distribution Pabc is stable, meaning that by slightly changing
the parameters describing the causal influences we do not alter the causal structure [75].
In other words, we impose that if some joint probability distribution factorizes, this is not
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Figure 3.3: Different directed acyclic graphs (DAGs) for three random variables (RVs) A, B and C . A joint
probability distribution that factorizes as Eq. (3.8) is compatible with both DAGs in (a) and (b), and merely
by the joint distribution one cannot tell which is describing the true causal influences. The DAGs in (a) and
(b) are equivalent because they have the same connected pairs of nodes and show the same v-structure (in
particular, they have no v-structure). This is in contrast to the DAG in (c) that has the same connected pairs
but a different v-structure, making it nonequivalent to the others and incompatible to the distribution of
Eq. (3.8).

due to a fine tuning of the causal influences.
To construct the DAG corresponding to Pabc, we need to introduce the notion of

(Markovian) parents. In short, the parents of the RV Xj are a minimal set of the pre-
decessor RVs (in the given order of the RVs) that renderXj conditionally independent of
the other predecessors. For instance, if we have that Pc|ab = Pc|a and Pc|a 6= Pc, the set
{A} constitutes the parents of C . Finally, to draw a DAG, one represents each RV as a
node and draws an arrow from the parent nodes to the corresponding RV. As an example,
if the joint distribution Pabc factorizes as

Pabc = PaPb|aPc|a. (3.8)

we draw the DAG shown in Fig. 3.3(a).
If the joint distribution Pabc is strictly positive (so all different configurations of RVs

have non-zero probability), the DAG is unique for a given ordering of the RVs [75]. But
how should one choose the correct ordering of the RVs? In fact, also the DAG shown in
Fig. 3.3(b) describes the same factorization as Eq. (3.8). This can be seen directly by using
Bayes theorem, PaPb|a = PbPa|b. In Ref. [303], it is shown that reversing an arrow always
leads to an equivalent DAG whenever the “v-structures” of the DAG remain the same,
where v-structures refer to nodes where two arrows end and the arrows’ beginning nodes
are not directly connected. For instance, the DAG shown in Fig. 3.3(c) is not equivalent
to the ones in Fig. 3.3(a,b) because it has one v-structure, whereas the former ones have
none. To summarize, given only the correlation data of RVs, the DAG can be uniquely
determined up to directions of some causal influences.

d-separation rules

The above motivation and application of DAGs is to find a (possible) causal explanation
and a corresponding visualization of correlated data. However, DAGs are also useful in
the inverse direction: if one is given a DAG that describes the causal influences between
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Figure 3.4: Illustration of the three d-separation rules for three random variables. The rules state that (a) a
collider along a path blocks the path, (b) conditioning on a non-collider blocks the path, and (c) conditioning
on a collider unblocks a path (selection bias).

different RVs, one can easily read off which RVs are conditionally independent of others.
This is formalized by a small set of rules known as the d-separation rules (“d” stands for
“directional”). In the following, we explain the rules with the simple set of three RVs as
above. For general proofs and more information, see Refs. [75, 303].

In short, to check if two nodes of a DAG are independent (also when conditioned on
other nodes) one has to consider all different paths connecting the two nodes. A path
consists of a series of arrows, for arbitrary directions of the arrows. The d-separation rules
then dictate whether a given path is blocked or not. If all paths connecting the two nodes
of interest are blocked, the nodes are independent. To understand the rules, we need to
introduce the notion of a collider, i.e., a node along the path where two arrows end head
to head. The d-separation rules are as follows.
Rule 1: A collider (that is not conditioned on) along a path blocks the path. We illustrate
this rule with the DAG of Fig. 3.4(a), corresponding to the joint probability distribution

Pabc = PbPcPa|bc. (3.9)

We can directly see that the path connectingB andC over the (unconditioned) colliderA
is blocked since

Pbc =
∑
a

Pabc =
∑
a

PbPcPa|bc = PbPc
∑
a

Pa|bc = PbPc. (3.10)

Rule 2: Conditioning on a non-collider blocks a path. Note that a non-collider is any
node along the path that is not a collider, e.g., a node where the two arrows originate
(fork, B ← A → C) or a node where one arrow ends and a second originates (chain,
B → A→ C). For instance, by conditioning on the fork A in Fig. 3.4(b) (a DAG corre-
sponding to Eq. (3.8)) blocks the path connection B and C , as can be seen by

Pbc|a = Pabc
Pa

=
PaPb|aPc|a

Pa
= Pb|aPc|a. (3.11)

Note that, commonly, conditioning on a node of aDAG ismarked by drawing a box around
the node, see the node A in Fig. 3.4(b).
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Rule 3: Conditioning on a collider unblocks a path. The easiest example is shown in
Fig. 3.4(c) and exactly describes the selection bias discussed before, see Fig. 3.1. An easy
example of this rule are two independent binary RVsB andC that determine the third RV
A as a = b ⊕ c, where ⊕ represents addition modulo 2 or “exclusive or”. Conditioned on
A, B and C are now perfectly correlated (a = 0) or anti-correlated (a = 1).

Before we move on to address postselection in Bell scenarios with the use of causal di-
agrams and d-separation rules, we want to mention that causal diagrams have been used
to derive several results about Bell scenarios. For instance, they have been used to quantify
the amount ofmeasurement independence and locality that have to be given up to describe
Bell inequality violations with classical causal diagrams [304, 305, 306]. Causal networks
also represent the central tool in examinations of network nonlocality [209], see the intro-
duction in Sec. 3.1.2. For instance, they have served to examine instrumental inequalities
that build on so-called intervention and can be violated by quantum systems [214, 215], an
effect that can be used to certify randomness [217] and that shines light on the interplay
of quantum mechanics and our traditional notions of causality.

3.2.2 Valid postselection strategies for genuine multipartite
nonlocality certification

Equipped with the tools of causal diagrams and d-separation rules, we are now able to
provide valid postselection strategies for the demonstration of GMN. Before we proceed
to the exact statements, we first sketch how directed acyclic graphs (DAGs) occur naturally
in the study of nonlocality and how they immediately highlight how postselection can lead
to problems. Then, we proceed by proving the results about valid postselection strategies
for GMN in the three-partite and, finally, in the general n-partite Bell scenario.

DAGs in the bipartite Bell scenario

For simplicity, before considering a multipartite Bell scenario, we briefly discuss causal
diagrams and postselection in the bipartite scenario. Recall that, according to the local
hidden variable (LHV) model, the joint probability distribution for Alice and Bob record-
ing outcomes x and y when measuring y and z is given by,

Pab|xy =
∑
λ∈Λ

PλPa|xλPb|yλ, (3.12)

where Λ is the set of LHVs, cf. Sec. 3.1.1; Eq. (3.1). Furthermore, the variables have causal
influences as depicted in Fig. 3.5(a). These causal influences originate from the structure
and the assumptions of the Bell scenario: first, both parties’ measurement choices should
be free, so nothing can causally influenceX and Y . Second, the parties might share some
common LHV Λ that can have causal influences on the parties’ measurement outcomes
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Figure 3.5: DAGs describing the causal structure of the LHV model of the bipartite Bell scenario (a) without
postselection, and (b) including postselection K that is decided after communication between the parties,
rendering it an invalid postselection strategy for the demonstration of nonlocality.

A and B. Finally, each party’s measurement choice can influence its outcome but not the
outcome of the other party because the corresponding events are spacelike separated. From
this causal structure, one directly derives the joint probability of Eq. (3.12).

Wewant to emphasize that, similar to the discussion in Sec. 3.2.1, starting from the joint
distribution of Eq. (3.12), theDAG in Fig. 3.5(a) is not the only possible causal explanation.
However, the DAG follows from the remaining assumptions and the structure of the Bell
scenario: first of all, to uniquely construct a DAG, recall that one has to fix the ordering
of the RVs. Here, the outcome variables (A,B) must be subsequent to the measurement
choice variables (X,Y ) and the LHV variable Λ. Further, the free choice assumptions (cf.
Sec. 3.1.4) essentially say that one has Pxyλ = PxPyPλ, i.e., the LHV and the measurement
choices are all independent. Finally, with the joint probability distribution of Eq. (3.12),
the DAG of Fig. 3.5(a) follows.

After having understood the intrinsic causal structure of the bipartite Bell scenario,
we can now easily discuss the influence of postselection. In the remainder of this section,
we will denote postselection by the binary RV K taking the values k = 1 for a positive
postselection and k = 0 if the experimental run is not postselected. As we discussed
above, different postselection strategies are possible that can either be valid for nonlocality
demonstration or not. In Fig. 3.5(b), we sketch a postselection that is decided when both
parties compare their results and then, together, decide if they postselect or not. Therefore,
the postselectionK is influenced by bothmeasurement outcomesA andB at the same time
(in general, they could even postselect due to different measurement choices, which we do
not assume here). To see that this kind of postselection is not valid for the demonstration
of nonlocality, note that, e.g., due to the postselection onK , there is an open path fromX

to B: the path X → A → K ← B is open since A is a non-collider (which is not con-
ditioned on) andK is a collider that we condition on. Therefore, the postselection opens
the possibility of signalling between the parties. If the parties are allowed to send signals,
it is known that without using any quantum effect, the CHSH inequality, cf. Eq. (3.2), can
be maximally violated (i.e., it can be violated even stronger than what is allowed by quan-
tum mechanics), see, e.g., Ref. [24]. Thus, a violation of the CHSH inequality after such a
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Figure 3.6: Causal diagrams showing the structure of the different hidden variablemodels in the three-partite
Bell scenario, for (a) the LHV model of Eq. (3.3), and (b,c) for the hybrid local-nonlocal hidden variable
model of Eq. (3.13). In (b,c), the direct causal influences between the parties’ measurement outcomes are
drawn as bidirected arrows and are subject to the fine-tuning condition of no-signalling. In (c), by condi-
tioning on the LHV Λ (indicated by the box), the causal diagram further simplifies because now only two
parties can share nonlocal correlations.

postselection does not demonstrate nonlocality.
In contrast, we can now easily see why locally decidable postselection is safe: the posts-

election can now be decided only from information about the outcomeA, or, equivalently,
from information about B. Hence, there are two valid causal diagrams that describe the
situation and that can be used to infer conditional independence: one whereK is decided
only byA (so there is just the arrow fromA toK and not the one fromB), and the second
one whereK is decided byB. In this case, there is no open path that allows for signalling,
and one can also rigorously proof with the d-separation rules that the postselected data is
a valid candidate to demonstrate nonlocality. The proof is analogous to (and much sim-
pler than) the proofs we provide later, so we do not give full particulars here. In short, by
means of the d-separation rules, the postselected statistics Pab|xyk factorizes in the same
way as the original LHV model (without postselection), Eq. (3.12), such that it can also be
used to derive the Bell inequality.

DAGs in the multipartite Bell scenario

We now consider the three-partite Bell scenario. The corresponding DAGs discussed here
can be directly generalized to the case of n > 3 parties. First, consider the three-partite
LHVmodel of Eq. (3.3). Here, the DAG is very similar to the DAG of the bipartite scenario
and is shown in Fig. 3.6(a): Each measurement party freely chooses its measurement set-
ting (X , Y , Z) which can influence the corresponding measurement outcome (A, B, C).
Furthermore, the measurement outcomes can be influenced by the shared LHV Λ.

Similar to the bipartite case, a local postselection is valid to demonstrate nonlocality,
while a postselection that requires communication between all measurement parties can
mimic any correlations including nonlocality even if no quantum state is shared. However,
since we have more than two parties, other postselection strategies can be considered. In
particular, in Ref. [287], it was shown that a postselection that can be equivalently de-
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cided by any all-but-one parties (by two parties in the three-partite scenario and by n− 1
parties in the n-partite scenario), without consulting the remaining party for its result, is
a valid postselection to demonstrate multipartite nonlocality. Note that this implies that
any postselection strategy that can be decided bym < n parties is a valid postselection to
demonstrate nonlocality, since it can be trivially extended to a postselection that is decided
by n − 1 parties. The proof of this result is very similar to the proof we provide later for
the demonstration of GMN, where we explicitly highlight the differences. We again em-
phasize that by means of the LHV model described by the DAG in Fig. 3.6(a), one can only
demonstrate general multipartite nonlocality, but not the stronger form of GMN.

To demonstrate GMN, the LHV model above must be relaxed to a hybrid nonlocal-
local hidden variable model, see Sec. 3.1.2 for a detailed discussion. For clarity, recall from
Eq. (3.5) that the joint probability distribution according to the hybrid model is given by

Pabc|xyz =
∑
λ1∈Λ1

Pλ1Pbc|yzλ1Pa|xλ1 +
∑
λ2∈Λ2

Pλ2Pac|xzλ2Pb|yλ2 +
∑
λ3∈Λ3

Pλ3Pab|xyλ3Pc|zλ3 ,

(3.13)

where the LHVΛ is divided into disjoint subsets dictatingwhich two parties can share non-
local correlations. Note that, additionally, we have the no-signalling conditions, Eq. (3.7),
which will play an important role later. The diagram that describes the causal influences
in this model is depicted in Fig. 3.6(b). We include the possible nonlocal influences be-
tween the parties’ outcomes by bidirected arrows (since nonlocal correlations do not have
a direction), so strictly speaking, we do not have a directed acyclic graph anymore. We
emphasize that this bidirected connection cannot be described by a common cause be-
tween the outcomes (this is exactly the definition of nonlocal correlations), in contrast to
the usual classical causal diagrams [75]. Even more, these correlations have characteristics
that make them hard to incorporate in classical causal diagrams as we discuss below. We
also recall that by only assuming Eq. (3.7) without the no-signalling principle, the bipartite
contributions generally allow for signalling, which has led to critique of and alternative def-
initions to the original definition by Svetlichny [194, 196, 197]. In the original definition
by Svetlichny [195], causal influences from, e.g.,X to B are allowed.

We now touch upon the difficulty of describing the model of Eq. (3.13) with a clas-
sical causal diagram. In Fig. 3.6(b), the no-signalling conditions represent a fine-tuning
condition on the causal influences: for instance, while there are causal influencesX → A

and, due to the nonlocal correlations, there may be influences A → B, there can be no
causal influences X → B. This follows from the no-signalling condition Pb|xyλ = Pb|yλ,
cf. Eq. (3.7). Therefore, the causal influences of any classical causal model have to be
fine tuned. In fact, it was shown that to describe nonlocal correlations in a classical causal
model, it is necessary to use fine tuning, independent of which explanation of nonlocality is
used (e.g., superluminal causal influences, or superdeterminism) [304, 307]. Asmentioned
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above, fine tuning is usually forbidden in classical causal models [75]. This challenges the
use of classical causal models and causal inference for the description of nonlocal correla-
tions in general, and for the hybrid nonlocal-local model of Eq. (3.13) in particular. In this
context, we want to mention recent ideas to study quantum causal models that naturally
include nonlocality without the use of fine tuning [208, 307], an approach that is still in
its beginnings. Nonetheless, in the following, we will work with the fine-tuned causal dia-
gram of Fig. 3.6(b) because, while general methods of causal inference should be checked
in the presence of fine tuning, we can still meaningfully use the d-separation rules to prove
the conditional independence between random variables and thus prove our the results on
safe postselection strategies.

If we condition on a specific LHV λ, the DAG further simplifies to show the deeper
structure of Eq. (3.13). For instance, if we condition on λ ∈ Λ3, we know that the outcome
C of Charlie’s measurement is only correlated to the outcomes of the other parties via the
LHV, cf. Fig. 3.6(c). Alice and Bob still share nonlocal correlations as indicated by the
bidirected arrow that, as we discussed above, are subject to the fine-tuning conditions of
no-signalling.

Postselection strategies in the three-partite Bell scenario

After having understood the causal structure and the causal diagram for the hybrid local-
nonlocal model of Eq. (3.13), we can now examine which kinds of postselection are safe for
the demonstration of GMN. For this purpose, we focus here on the Svetlichny inequality,
cf. Eq. (3.6), that demonstrates GMN, or equivalently any Bell inequality that is proven
by means of the hybrid model, Eq. (3.13). We emphasize that to derive the inequality, the
only requirement is that the joint probability distributionPabc|xyz factorizes as in Eq. (3.13).
Therefore, if the postselected distribution Pabc|xyzk (note that we have conditioned on the
postselection variable K) factorizes in the same way, the postselected distribution is also
valid to show the inequality. Consequently, if the postselected data violated the inequality,
the postselected distribution cannot be written in the hybrid form, implying that also the
original joint distribution without postselection does not factorize according to Eq. (3.13),
demonstrating GMN.

But how can we show that a given postselection preserves the factorization of the joint
distribution? First, we use the general chain rule to write

Pabc|xyzk =
∑
λ

Pλ|xyzkPabc|xyzλk. (3.14)

Now it is clear that the postselected distribution Pabc|xyzk factorizes in the correct way if
one can show the conditions

C1 Pλ|xyzk = Pλ|k ∀λ ∈ Λ,

C2c Pabc|xyzλ3k = Pab|xyλ3kPc|zλ3k ∀λ3 ∈ Λ3,



Chapter 3. Verification: Postselection strategies for genuine multipartite nonlocality 70

with analogous conditions C2a and C2b for conditioning on Λ1 and Λ2, respectively. If
these conditions are fulfilled and the original joint distributionPabc|xyz factorizes according
to Eq. (3.13), also the postselection distribution Pabc|xyzk factorizes in the same way, i.e.,
the postselection is valid for Bell tests based on the hybrid local-nonlocal model. Here, we
want to mention that if the Bell inequality of interest (see, e.g., Ref. [197]) is derived by
explicitly using the no-signalling conditions, Eq. (3.7), a safe postselection strategy must
also fulfill conditions such as

C3 Pb|yzλk = Pb|yλk ∀λ ∈ Λ. (3.15)

This assures that also the postselected model fulfills the no-signalling conditions that are
needed to derive the Bell inequality. If the conditions are not required to derive the in-
equality, as is the case, e.g., for Svetlichny’s inequality, Eq. (3.6), the condition C3 is not
necessary for a valid postselection.

In the following, we focus on a class of postselection strategies that can be equivalently
decided by any subgroup of the experimental parties of minimal size. For instance, in
the three-partite case, we consider a postselection that can be equivalently decided by any
two parties, meaning that one can write the postselection K as a function of any pair of
measurement outcomes, i.e.,

k = kAB(a, b) = kBC(b, c) = kCA(c, a). (3.16)

Note that this is exactly the all-but-one principle that was shown to lead to valid postselec-
tion strategies to demonstrate general (non-genuine) multipartite nonlocality [287]. For
more than three parties, we will later consider postselection strategies that do not follow
the all-but-one principle. We can now prove that a postselection following the all-but-
one principle is valid to demonstrate genuine three-partite nonlocality. The case of the
n-partite Bell scenario for n > 3 is discussed in the next subsection.

Theorem2. In the three-partite Bell scenario, a postselection strategy that can be equivalently
decided by any two parties is valid to demonstrate genuine three-partite nonlocality.

Proof. In the following, we use the d-separation rules introduced in Sec. 3.2.1 to show why
a postselection that can be equivalently decided by any two parties fulfills the conditions
C1 and C2. First, observe that due to the structure of the postselection, we can produce
several different causal diagrams that we can use in the proof. For instance, in Fig. 3.7(a),
the postselectionK is decided byAlice andBob. Two further diagrams of this type are valid
where the postselection is decided by other pairs of parties. Furthermore, by conditioning
on the LHV Λ, there are nine more possible causal diagrams that hold. For instance, in
Fig. 3.7(b), we condition on Λ3 and the postselection is again decided by Alice and Bob.
By conditioning on other subsets of Λ and by other postselection groups, we find the other
valid diagrams.
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Figure 3.7: Different causal diagrams of the hybrid model (cf. Eq (3.13) and Fig. 3.6) that include a postse-
lectionK that can be decided by any two parties. (a) Causal diagram for the unconditionedmodel where the
postselection is decided by Alice and Bob. Two similar diagrams are valid where the other pairs of parties
decide the postselection. (b) Conditioned on the LHV, one can construct further causal diagrams. Here,
we obtain the shown diagram when conditioning on Λ3 and for a postselection that is decided by Alice and
Bob. There are eight other possible combinations when conditioning on Λ1 and Λ2 and where other pairs
of parties decide the postselection.

Now consider the condition C1. In Fig. 3.8(a), we sketch the causal diagram to prove
that

Pλ|xyzk = Pλ|xyk. (3.17)

To show this conditional independence by means of the d-separation rules, we have to
check for all possible paths that connect Z and Λ when conditioning onX , Y andK . As
before, the conditioning is indicated by boxes. First, observe that the path Z → C ← Λ
is blocked because there is a collider (C , not conditioned on) along the path (d-separation
rule 1). Next, consider that path Z → C → A→ K ← B ← Λ. Note that here we write
C → A for the causal influence from C to A that is possible by the nonlocal correlations
shared by Alice and Charlie, even though in the diagram, we use a bidirected arrow. At
first sight, this path appears to be open because all chains along the path (C , A and B)
are not conditioned on (d-separation rule 2), and the collider K is conditioned on (d-
separation rule 3). However, we are helped by the no-signalling condition (that we sketch
as a dotted line in Fig. 3.8(a)): while the causal influencesZ → C andC → A are possible,
causal influences from Z to A are forbidden by the no-signalling principle, cf. Eq. (3.7).
Therefore, the complete path is blocked. In the same way, one argues that the remaining
path Z → C → B → K ← A ← Λ is blocked. Notice the crucial role played by the
no-signalling condition: if we had only assumed the hybridmodel of Eq. (3.13) without the
no-signalling conditions (as was done originally by Svetlichny [195]), we could not have
proven condition C1. Therefore, even if the Bell inequality of interest might not require
the no-signalling assumption, it is necessary to prove that the postselection strategy that
we discuss is valid.

In a similar way we can use the other causal diagrams, where theK is decided by other
combinations of parties, to show that Pλ|xyk = Pλ|xk and Pλ|xk = Pλ|k, and we obtain
condition C1.
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Figure 3.8: Causal diagrams that are used in the proof of condition C1 (a) and condition C2c (b-d). Below
the diagrams, we note the conditional independence relation that is demonstrated. In (a), we indicate one of
the no-signalling conditions with a dotted line.

Now let’s turn to condition C2c. First, we use the chain rule to write

Pabc|xyzλ3k = Pab|cxyzλ3kPc|xyzλ3k. (3.18)

Then, we use the causal diagram of Fig. 3.8(b) to prove that Pc|xyzλ3k = Pc|yzλ3k. All paths
that connect X and C pass through the collider Λ3 that is conditioned on and are thus
blocked. From the same diagram (but removing the condition on Y ), one also obtains
Pc|yzλ3k = Pc|zλ3k.

Next, we use the diagram shown in Fig. 3.8(c) to show that Pab|cxyzλ3k = Pab|xyzλ3k.
As before, every path from C toA orB passes through the collider Λ3 that is conditioned
on and is therefore blocked. We want to emphasize that, for this step, the factorization of
the hybrid model is crucial: If there was the bidirected connection between C andA or C
and B, the conditional independence would not hold. In contrast, one quickly observes
that all other steps required to obtain condition C2c can also be proven merely by the no-
signalling principle, without using the factorization structure of the hybrid model. Finally,
we use Fig. 3.8(d) to show thatPab|xyzλ3k = Pab|xyλ3k because all paths connectingZ withA
orB go through the conditioned collider Λ3 (and the unconditional chainC). Combining
all steps, we find that condition C2c is fulfilled. By using the corresponding diagrams, one
also shows conditions C2a and C2b (or simply note that the hybrid model is symmetric).
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A few comments are in order.

• We first want to emphasize that, if we want to keep the postselection strategy com-
pletely general, Theorem 2 provides the most collaborative kind of postselection
strategy that is still safe for the demonstration of GMN: if the postselection strat-
egy is more demanding, i.e., it can only be decided by communication between all
parties, the postselected data can mimic nonlocal behaviour even when the latter is
not present in the original data, similar to what we have discussed in Sec. 3.1.4 for
the bipartite case7. To see this, note that already the proof of condition C1 breaks
down because now there are open paths that hinder its demonstration: for instance,
the path Z → C → K ← A ← Λ (cf. Fig. 3.8) is open since the collider K is
conditioned on and the chains C and A not.

• As we mentioned above, one might also want to prove that the postselected model
still fulfills the no-signalling conditions, e.g., condition C3: Pb|yzλk = Pb|yλk. This
can be proven easily in a similar fashion as above: by conditioning on K , Y and Λ
in Fig. 3.8, one observes that all paths connecting Z and B are blocked due to the
no-signalling conditions between Z and B or between Z and A.

• Now we want to compare Theorem 2 to previous results on safe postselection strate-
gies for the demonstration of (non-genuine) three-partite nonlocality. In Ref. [287],
the above techniques of causal diagrams and d-separation rules have been used to
prove that postselection strategies are safe for (non-genuine) three-partite nonlo-
cality if they can be decided by any two parties (the all-but-one principle). This
condition coincides with our result above, which is surprising since Theorem 2 ad-
dresses postselection for demonstrating the stronger form of genuine three-partite
nonlocality. In particular, the original model to derive the Bell inequality is the LHV
model of Eq. (3.3) instead of the hybrid model of Eq. (3.13). Furthermore, since the
LHV explicitly implies the no-signalling condition (in contrast to the hybridmodel),
the direct role of the no-signalling principle was hidden in Ref. [287]. Thus, it is re-
markable that in the three-partite case, safe postselection strategies coincide for the
demonstration of multipartite nonlocality and the stronger GMN. As we will see in
the next subsection, this is no longer the case for the n-partite Bell scenario with
n > 3, as here the safe postselection strategies for GMN aremore restricted than the
ones found in Ref. [287] for general multipartite nonlocality.

• We want to briefly discuss possible applications of Theorem 2. Similar to what was
found in Ref. [287] (and for a specific experimental setups also in Ref. [309]), Theo-

7An example of such a postselection strategy in the bipartite case is the proposal by Franson (cf.
Sec. 3.1.4). For the multipartite case, see Ref. [308] for a discussion of fake (non-genuine multipartite) non-
locality by postselection in the n-partite generalization of Franson’s proposal.
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rem 2 can be applied in situations where each party has to obtain a certain number
of particles (e.g., one) and the total number of particles is conserved. Then, any two
parties can communicate if they received the correct number of particles and con-
clude whether also the remaining party has received the correct number or not. This
kind of postselection is ubiquitous in current quantum optical experiments, see, e.g.,
Refs. [310, 311]. We will discuss an intriguing example in detail in Sec. 3.2.3, where
we useTheorem2 to show that genuine three-partite nonlocality can be created from
independent particle sources.

• Finally, we have to emphasize that in all real experiments, one faces the additional
problem of finite efficiencies of the detectors (see the detection loophole discussed in
Sec. 3.1.4). This impedes the possibilities for postselection that can be decided when
excluding one party. In the example above (where each party should receive a certain
number of particles), even if two parties obtain the correct number of particles, they
cannot be sure that the remaining party does so as well. Therefore, the postselection
again has to be decided by all parties together. As we sketched in Sec. 3.1.4, rigorous
treatments of finite detection efficiencies are the inclusion of all experimental data
(so no postselection) or a sharpening of the Bell inequalities. Commonly though,
these rigorous approaches do not yield a violation of the Bell inequality, such that one
is forced to rely on the fair-sampling assumption (i.e., that the correlations that were
detected correctly represent the correlations that would occur when using perfect
detectors). A generalization of the above postselection strategies to situations with
finite detection efficiencies is an interesting direction for future work.

Postselection strategies in the n-partite Bell scenario

We now consider postselection strategies for demonstrating GMN in the n-partite Bell
scenario. In this case,many of the steps in the proof of safe postselection in the three-partite
case remain valid, with one important exception. Consider first the easiest case of n = 4
parties. Here, the hybrid local-nonlocal model consists of a mixtures of subensembles in
which either (i) three parties share nonlocal correlations and are classically correlated to
the last party, or (ii), two pairs of parties share bipartite nonlocal correlations, or (iii) all
parties are only correlated by a shared LHV. For the subensembles of type (i) and (iii),
one can easily show that a postselection of the previous type, i.e., a postselection that can
be equivalently decided by any three parties (all-but-one), preserves the factorization of
the respective subensemble. However, when there are two pairs of nonlocally correlated
parties, a postselection that is decided by three parties necessarily opens a path between
the two groups, and thus the postselected subensemble generally does not factor in the
same way.

This situation is sketched in Fig. 3.9. The jth party chooses measurement setting xj
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A1 A2 A3 A4

Λ

K

X1 X2 X3 X4

Figure 3.9: Causal diagram of the four-partite Bell scenario, corresponding to the subensemble of the hy-
brid local-nonlocal model where two pairs share nonlocal correlations (A1 with A2, and A3 with A4). A
postselection K that can only be decided by three parties does not preserve this pairwise structure, but a
postselection that can be decided by any two parties does. The critical causal influence from A2 to K is
marked with a dashed arrow.

and observes outcome aj . In the shown subensemble (that makes part of the hybrid model
because it does not show genuine four-partite nonlocality), the pair (A1, A2) and the pair
(A3, A4) exhibit nonlocal correlations, which we again sketch as bidirected arrows. Note
that we focus on this subensemble, so we condition on the corresponding LHV set Λ. Since
the postselection K is decided by three parties (here, e.g., A2, A3 and A4), conditioning
onK must open a path between the two pairs, see the dashed arrow connecting to groups
via the conditioned colliderK (all paths through Λ are blocked because it is a conditioned
fork). Note that if the postselection could be decided by any two parties (so one could
delete the dashed arrow from A2 toK), the groups could be again separated.

We see that safe postselection strategies are more restricted in the n-partite Bell sce-
nario. However, surprisingly, we can still show that certain postselection strategies that re-
quire communication between subgroups of parties are valid for the verification of GMN:

Theorem 3. In the n-partite Bell scenario, a postselection strategy that can be equivalently
decided by any dn/2e (d·e is the ceiling function) parties (“all-but-bn/2c”) is valid to demon-
strate genuine n-partite nonlocality.

Proof. In the n-partite Bell scenario, the hybrid local-nonlocal hidden variable model of
Eq. (3.13) has to be extended to include all possible subensembles of combinations of non-
local correlations that do not show GMN. Say that the kth measurement party can choose
themeasurement settingXk to observe an outcomeAk. Then, the hybridmodel states that
the conditional probability distribution that the parties observe the outcomes (a1, . . . , an)
when measuring (x1, . . . , xn) is given by

Pa1...an|x1...xn =
∑
j

∑
λj∈Λj

Pλj
Pa1...an|x1...xnλj

, (3.19)

where for each j, Pa1...an|x1...xnλj
factorizes in some way, e.g., as

Pa1...an|x1...xnλj
= Pa1...ak|x1...xkλj

Pak+1...an|xk+1...xnλj
. (3.20)
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As above, we furthermore demand the no-signalling conditions Pal|x1...xnλ = Pal|xlλ for
all l to be fulfilled.

Again, to show that a given postselection strategy is valid to demonstrate GMN, we
first write

Pa1...an|x1...xnk =
∑
j

∑
λj∈Λj

Pλj |x1...xnkPa1...an|x1...xnλjk, (3.21)

to see that a valid postslection strategy must fulfill the conditions

C1n Pλ|x1...xnk = Pλ|k ∀λ ∈ Λ,

C2n Pa1...an|x1...xnλjk = Pa1...ak|x1...xkλjkPak+1...an|xk+1...xnλjk ∀λl ∈ Λl,

and analogous expressions to condition C2n for all other subensembles j.
Now assume that the postselection K can be decided by dn/2e parties, where d·e is

the ceiling function. We first consider condition C1n. The causal diagram for the first
step of the proof is shown in Fig. 3.10(a). Here, no specific subensemble is considered, so
theremay be nonlocal correlations between any subgroup of theAk’s (compare Fig. 3.7(a)).
For the sake of visualization, this is sketched as a dashed round box around the Ak’s. In
this diagram, the postselectionK is decided by the last dn/2e parties (recall that it can be
equivalently decided by any dn/2e parties, so other diagrams are also valid). We want to
show that Pλ|x1x2...xnk = Pλ|x2x3...xnk, so we have to check all possible paths connecting Λ
to X1 given the conditioning. First note that the direct path Λ → A1 ← X1 is blocked
because A1 is a collider that is not conditioned on. Second, note that all remaining paths
are of the form X1 → A1 → Al → . . . for some l > 1 and are blocked because of the
no-signalling conditions (from the first to the lth party). The conditional independence of
Λ to the other Xl is proven in a similar way (for each l, a causal diagram has to be used
in which the postselectionK is not influenced by Al), and we obtain condition C1n. We
want to note again that this condition could also be proven in case of a postselection that
is decided by all-but-one parties (i.e., n− 1 parties), in contrast to the next condition.

Also the proof of condition C2n is similar to the one of the conditions C2 (cf. Theo-
rem 2), with one important difference, as we see in the following. We now first consider the
subensemble Λj0 for which the joint probability factorizes as in Eq. (3.20) with k = bn/2c:
the first k parties may share arbitrary nonlocal (but no-signalling) correlations, as well as
the remaining parties. This is again sketched as the dashed boxed in Fig. 3.10(b). Note that
permutations of this factorization can be treated in the same way. Again, we use the chain
rule to write

Pa1...an|x1...xnλj0k
= Pa1...ak|ak+1...anx1...xnλj0k

Pak+1...an|x1...xnλj0k
. (3.22)

Then, we use the causal diagram shown in Fig. 3.10(b)where the postselectionK is decided
by the last dn/2e parties. The diagram implies that

Pa1...ak|ak+1...anx1...xnλj0k
= Pa1...ak|x1...xnλj0k

. (3.23)
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A1 · · · Ak Ak+1 · · · An

Λ

K(a)

X1 Xk Xk+1 Xn

Pλ|x1x2...xnk = Pλ|x2x3...xnk

A1 · · · Ak Ak+1 · · · An

Λj0

K(b)

X1 Xk Xk+1 Xn

Pa1...ak|ak+1...anx1...xnλj0k
= Pa1...ak|x1...xnλj0k

Figure 3.10: Causal diagrams of the n-partite Bell scenario that are used in the proof of Theorem 3. (a) No
specific subensemble of Λ is selected, so there may be any kind of multipartite nonlocal (but no-signalling)
correlations in any subgroup of {A1, . . . , An}, as indicated with the dashed box. (b) By postselecting on
the specific subensemble Λj0 , there can be only nonlocal correlations in the group {A1, . . . , Ak} and in the
group {Ak+1, . . . , An}. In all diagrams, the no-signalling fine-tuning conditions are implied.

For this purpose, we need to check all paths from any Ai for i ≤ k to any Aj for j > k,
conditioned on all the measurement settings, Λj0 andK . It is clear from Fig. 3.10(b) that
every such path must pass through the fork Λj0 that is conditioned on, so it is blocked.
Finally, we can use the same causal diagram (with different conditioned nodes), or, equiv-
alently, the no-signalling principle, to show that Pa1...ak|x1...xnλj0k

= Pa1...ak|x1...xkλj0k
and

Pak+1...an|x1...xnλj0k
= Pak+1...an|xk+1...xnλj0k

, and we obtain condition C2n.
At this point, we want to highlight why a postselection that has to be decided by more

than dn/2e parties (e.g., by all-but-one parties) is not valid to show condition C2n. If any
other party needs to be included to decide the postselection K in Fig. 3.10(b), there has
to be at least one arrow connecting one of the A1, . . . , Ak toK . Thus, Eq. (3.23) does not
hold in general, since now there are open paths between the two groups {A1, . . . , Ak} and
{Ak+1, . . . , An} via the conditioned colliderK .

Finally, what about the remaining subensembles Λj with k < bn/2c or k > bn/2c?
If k < bn/2c, the information contained in {Ak+1, . . . , An} is actually redundant to de-
cide the postselection K because it contains more than dn/2e measurement outcomes.
Therefore, in Fig. 3.10(b), one can even cancel some of the arrows from {Ak+1, . . . , An}
toK , and condition C2n can be shown in the same way as above. If k > bn/2c, we have
k ≥ dn/2e, so the postselection can be decided by (parts of) the group {A1, . . . , Ak}, and
conditionC2n can be shown as abovewhen reversing the roles of the groups {A1, . . . , Ak}
and {Ak+1, . . . , An}.

We discuss Theorem 3 with the following comments.

• We first want to emphasize again why the result of Theorem 3 is surprising. As dis-
cussed in Sec. 3.1.4 and later, a postselection of bipartite measurement data that can
only be decided by a collaboration between the two parties is not safe to demon-
strate nonlocality. Furthermore, GMN requires nonlocal correlations between all of
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the parties, and not just between subgroups of parties. It is thus surprising that even
highly collaborative postselection strategies that require communication between
half of the parties are valid for the demonstration of GMN.

• The conditions on safe postselection strategies forGMNaremore restrictive than the
ones found in Ref. [287] for the demonstration of general (non-genuine) multipar-
tite nonlocality. This is because, in Ref. [287], the model to proof the corresponding
Bell inequality was the LHV model of Eq. (3.3) instead of the hybrid local-nonlocal
model of Eq. (3.13). Therefore, the proof of the factorization condition similar to
conditionC2n inTheorem3 allows less restrictive postslection strategies since there
are no nonlocal correlations between the differentAi’s (cf. Fig. 3.6(a) and (b)). Fur-
thermore, the LHV model automatically fulfills the no-signalling condition, so it
does not have to be required additionally as above.

A different way to see why the two hidden variable models allow for different post-
selection strategies is the following: The crucial property that decides which kind
of postselection is valid for a given hidden variable model is the size of the smallest
group that shares nonlocal correlations, maximized over all subensembles of the hid-
den variable model. This is because one has to use causal diagrams where the post-
selection is decided by excluding this smallest group. In the LHV model, this size
is always one (since there are no nonlocal correlations), so an all-but-one postselec-
tion is safe. On the other hand, in the n-partite hybridmodel, the size of the smallest
group sharing nonlocal correlation is bn/2c for some subensembles, so postselection
is only safe if it can be decided by all-but-bn/2c parties (which is the same as dn/2e
parties). Finally, this reasoning shows why in the three-partite case, the valid posts-
election strategies coincide: in all possible subensembles of the three-partite hybrid
model of Eq. (3.13), there is always one party that shares only classical correlations
with the others, so the smallest group sharing nonlocal correlations is again one.
Thus, the all-but-one postselection strategies are also valid in this case.

• An interesting open question for future research is whether the conditions on safe
postselection ofTheorem 3 are strict, or whether one can even prove than an all-but-
one postselection is safe to demonstrateGMN(bymeans of newor refinedmethods).
In particular, to prove that Theorem 3 represents strict limitations on safe postselec-
tion, one must find a hybrid nonlocal-local hidden variable model with a postse-
lection the can only be decided by m > dn/2e parties that, after the postselection,
violates a GMN Bell inequality. Finding models that use the selection bias to fake
nonlocality is a difficult problem already in the smallest Bell scenario of two parties,
see Refs. [290, 291, 308]. On the other hand, different approaches to demonstrate
conditions for safe postselection might even prove all-but-one postselection strate-



Chapter 3. Verification: Postselection strategies for genuine multipartite nonlocality 79

gies valid.

• Applications of Theorem 3 are more elusive than the ones of Theorem 2: previously,
for an all-but-one postselection, one needs one conserved quantity such as the total
number of particles such that (parts of) the information of the measurement out-
comes becomes redundant and one can exclude one of parties from the postselection
decision. For a more restrictive postselection, say one that is decided by all-but-two
parties, onemust exclude two parties, so there have to be two conserved quantities in
the measurement outcomes. Finding an all-but-m postselection strategy form > 1
is an interesting open question for future considerations.

Finally, similar to the discussion of Theorem 2, Theorem 3 cannot take into account
realistic finite detection efficiencies. See the final comment below Theorem 2 for a
discussion of this point.

3.2.3 Generating genuine three-partite nonlocality from independent
particle sources

In this section, we apply our results on safe postselection strategies to a proposal by Yurke
and Stoler (YS) to generate multipartite nonlocality from independent particle sources
[76]. For this purpose, we first sketch the setup of the YS proposal. Then, we discuss its
original demonstration of (non-genuine) three-partite nonlocality by means of the GHZ
effect [224]. Finally, we use Theorem 2 to show that the YS proposal also creates genuine
three-partite nonlocality.

Yurke–Stoler proposal

The YS proposal of Ref. [76] is sketched in Fig. 3.11. Three independent (but identical)
particle sources (S1, S2, and S3) each emit a single particle, a boson (e.g., a photon) or
a fermion (e.g., an electron). Each particle passes through a balanced beam splitter (BS)
whose outgoing modes are directed to two of the three measuring parties, Alice, Bob and
Charlie. As usual, the three parties are assumed to perform their measurement (i.e., freely
decide their measurement choice and record their measurement outcome) at a spacelike
distance to all other measurements. The measurement process consists of imprinting a
known control phase (ϕA, ϕB , and ϕC , respectively) in one of the two incoming modes,
placing a second BS to interfere the incoming modes, and finally, measuring the outgoing
modes with a number-resolving detector.

The final probability distribution of outcomes is calculated by summing the probabil-
ity amplitudes of all possible paths that the particles can take. Each particle passes two BS
and has thus four possible paths, so in the end the state |ψf〉 is a sum of 64 different ampli-
tudes (we will see shortly that some of the amplitudes add up constructively or cancel out
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Alice

Bob
CharlieS1

S2

S3

Figure 3.11: Proposal by Yurke and Stoler (YS) to generate three-partite nonlocality from independent par-
ticle sources [76]. The three identical particle sources S1, S2, and S3 each emit a particle that each enter
a beam splitter (BS) whose outgoing arms are directed to two of the experimental parties. The three par-
ties, Alice, Bob, and Charlie, combine their incoming modes in second BSs after having imprinted a control
phase (ϕA, ϕB , and ϕC) in one of the incoming arms. Finally, each party measures its outgoing modes with
number-resolving detectors. All events in which one of the parties detects two particles in one detector, and
a second party detects no particle, will be later sorted out in the postselection. The interesting events for the
demonstration of (genuine) three-partite nonlocality are the ones where each party detects only one particle,
which we call rβ (lβ) if party β obtains a detector click in its right (left) detector. The figure is taken from
Ref. [2].

destructively). The initial state is given by

|ψ0〉 = a†
3a

†
2a

†
1 |0〉 , (3.24)

where a†
j is the creation operator corresponding to the particle source Sj. The first BS at

Sj transforms the modes according tob†
βl

b†
αr

 = 1√
2

 1 −i
−i 1

 a†
j

ã†
j

 , (3.25)

with jβα = 1CB, 2AB, 3BA. Here, we use the notation that the operator b†
βl (b

†
βr) creates

a particle entering the apparatus of party β from the left (from the right), as seen by the
receiving party in the plane of Fig. 3.11. For instance, a particle created at source S1 results
in a superposition of a particle entering Charlie’s apparatus from the left (b†

Cl) and a particle
entering Bob’s apparatus from the right (b†

Br). The reflected mode at each BS experiences
a phase shift (represented by the off-diagonal entries of Eq. (3.25)). The operator ã†

j is a
creation operator for the other incoming mode of the initial BSs which is always assumed
to be in the vacuum state.

Next, at each measurement apparatus, the left incoming mode b†
βl experiences a phase
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shift,
c†
βl = e−iϕβb†

βl, (3.26)

while the right incoming mode does not, c†
βr = b†

βr. Finally, the particles pass a second BS,
so the final creation operators for party β are given byd†

βr

d†
βl

 = 1√
2

 1 −i
−i 1

c†
βl

c†
βr

 , (3.27)

where, for the operators d, the label l (r) labels the outgoing directions of the BS.
By combining Eqs. (3.25-3.27), we find (after simple matrix inversions), for instance,

a†
1 = 1√

2

(
b†
Cl + ib†

Br

)
(3.28)

= 1√
2

(
e−iϕCc†

Cl + ic†
Br

)
(3.29)

= 1
2
[
e−iϕC

(
d†
Cr + id†

Cl

)
c†
Cl + i

(
id†
Br + d†

Bl

)]
. (3.30)

After similar calculations for a†
2 and a†

3, and by inserting the results into Eq. (3.24), one
obtains the complete expression for |ψf〉. To find the probability for a specific outcome,
say that each party receives a particle in its right detector (rArBrC), one has to compute

P (rArBrC) = ‖〈0| dArdBrdCr |ψf〉‖2 . (3.31)

Notice that the only terms of |ψf〉 that contribute to Eq. (3.31) are the ones that include the
three creation operators d†

Ar, d
†
Br, and d

†
Cr. From Eq. (3.30) and the analogous expressions

for a†
2 and a†

3, we see that we have only two terms that contribute, yielding

P (rArBrC) = 1
64
∥∥∥〈0| dArdBrdCr [e−i(ϕA+ϕB+ϕC)d†

Brd
†
Ard

†
Cr − d

†
Ard

†
Crd

†
Br

]
|0〉
∥∥∥2

(3.32)

= 1
64
∣∣∣e−i(ϕA+ϕB+ϕC) − 1

∣∣∣2 (3.33)

= 1
16

sin2 ϕ, (3.34)

where we have defined ϕ = (ϕA + ϕB + ϕC)/2 and we have used that for both bosonic
and fermionic (anti-)commutation relations, we have d†

Brd
†
Ard

†
Cr = d†

Ard
†
Crd

†
Br. Similar

derivations hold for probabilities for the other events with one particle per party.
Now consider the events in which one party receives two particles and a second party

receives none. Say, for instance, we want to calculate the probability that Alice receives two
particles in the right detector, Bob detects one in the right detector, and Charlie detects no
particle (r2

ArB0). For this event, only one term of |ψf〉 contributes:

P (r2
ArB0) = 1

64
∥∥∥〈0| dArdArdBr [−e−iϕAd†

Ard
†
Ard

†
Br

]
|0〉
∥∥∥2

(3.35)

= 1
64
∥∥∥〈0| dArdArd†

Ard
†
Ar |0〉

∥∥∥2
(3.36)
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If the particles are fermions, we have d†
Ard

†
Ar = 0, so the eventwill never happen. This is the

fermionic generalization of the Hong–Ou–Mandel effect [312]. If the particles are bosons,
we have d†

Ard
†
Ar |0〉 =

√
2 |2〉 (|2〉 is the two-boson Fock state), so we find P (r2

ArB0) =
1/32.

Finally, a similar analysis shows that any event for which one party receives a particle in
both its detectors (e.g.,BArB0, whereBA means that both Alice’s detectors click) happens
for fermions with probability 1/16. For bosons, the Hong–Ou–Mandel effect dictates that
these events never occur [312].

In total, we can group the possible events into four groups: either

• one party observes two particles in one detector (D; for double), or

• one party observes one particle in each of its detectors (B; for both), or

• every party receives a particle and the total number of right detector clicks is even
(E), or

• every party receives a particle and the total number of right detector clicks is odd
(O).

We find the probability for an event e as P (e) = sin2(ϕ)/16 for e ∈ O and P (e) =
cos2(ϕ)/16 for e ∈ E. For fermions, we have P (e) = 0 for e ∈ D and P (e) = 1/16 for
e ∈ B, while for bosons, we have P (e) = 1/32 for e ∈ D and P (e) = 0 for e ∈ B.

The final step before discussing the nonlocality properties of the YS setup is to rec-
ognize the similarity of the above probabilities (for coincident particle detection between
all parties) to the ones produced by the GHZ state |ψGHZ〉 = (|000〉+ |111〉)/

√
2. Here,

observe that when restricting to the events of each party receiving one particle, the prob-
abilities are proportional to (reduced by a factor of 1/4) the ones produced by the GHZ
state, when party β measures the local observable cos(ϕβ)σ(β)

x + sin(ϕβ)σ(β)
y [224]. Here,

σ
(β)
x/y are the x and y Pauli matrices of party β (cf. Eq. (2.32) for a definition).

To see the analogy even clearer, note that when removing each party’s apparatus (the
phase imprinting and the second BS), the state (when postselected to the events when each
party receives one photon) is exactly |ψGHZ〉, where 0 corresponds to the particle in the
mode from the right and 1 corresponds to the mode from the left. We can now discuss the
original reasoning of YS [76] that the YS setup shows nonlocality, which is based on the
GHZ effect [224].

Nonlocality in the GHZ thought experiment and in the YS setup

We first sketch the thought experiment of the original GHZ demonstration of nonlocality
[224], and then see how this effect can be used for the YS proposal. Let us say that three
parties prepare a GHZ state |ψGHZ〉 and measure it, where the party β locally measures
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either σ(β)
x or σ(β)

y by choosing the measurement setting ϕβ = 0 or ϕβ = π/2, respectively.
After many measurements, the parties find that their results are perfectly correlated when
they measure specific combinations, e.g.,〈

σ(A)
x σ(B)

y σ(C)
y

〉
=
〈
σ(A)
y σ(B)

x σ(C)
y

〉
=
〈
σ(A)
y σ(B)

y σ(C)
x

〉
= −1. (3.37)

Each of these equations can be derived by noticing that for measuring, e.g., σ(A)
x σ(B)

y σ(C)
y ,

the parties need to choose ϕA = 0, ϕB = π/2, and ϕC = π/2, such that we have P (E) =
sin2 ϕ = 1 and P (O) = cos2 ϕ = 0. Here, E (O) are the set of events with an even (odd)
number of 1’s.

A LHVmodel that aims to describe these perfect correlations needs to contain instruc-
tions about which outcome each local measurement has to produce, given any combina-
tion of measurement settings [225]. Equation (3.37) implies that for the given settings,
this instruction has to be deterministic (otherwise, the expectation values would not be
one). Thus, for a given LHV λ, the instruction must be either 1 or −1 for each measure-
ment setting (i) at each party (β), and we can label the instruction as s(β)

i ∈ {−1, 1}
(the dependence on λ is implied). Crucially, the instructions need to fulfill Eq. (3.37),
e.g., s(A)

x s(B)
y s(C)

y = −1. Finally, we multiply the different instructions corresponding to
Eq. (3.37) for the given λ to find

−1 = s(A)
x s(B)

y s(C)
y s(A)

y s(B)
x s(C)

y s(A)
y s(B)

y s(C)
x = s(A)

x s(B)
x s(C)

x , (3.38)

where we have used that
(
s

(β)
i

)2
= 1. However, this is in conflict with what the parties will

observe whenever they measure σ(A)
x σ(B)

x σ(C)
x because then one has ϕA = ϕB = ϕC = 0

and thus P (O) = cos2 ϕ = 1, yielding〈
σ(A)
x σ(B)

x σ(C)
x

〉
= 1. (3.39)

In this way, the parties can conclude that their correlations cannot be described
by a LHV model, a method that is often called “nonlocality without inequalities”, and
that nonlocality is demonstrated “with a single experiment” (the single measurement of
σ(A)
x σ(B)

x σ(C)
x ). However, we want to note that, if the parties want to establish that share

someperfect correlations, e.g.,
〈
σ(A)
x σ(B)

y σ(C)
y

〉
= −1, they need to performa large number

of measurements (and even then they only know the correlations up to some confidence).
Since each party is required to randomly choose their measurement settings, actually, the
parties have alreadymeasuredσ(A)

x σ(B)
x σ(C)

x many times. Finally, in real experiments, noise
necessarily destroys perfect correlations, so a valid nonlocality demonstration again must
rely on (Bell-type) inequalities. Formore details, see the discussion in the original proposal
[224] or its experimental realization [313]. In summary, we can say that the GHZ demon-
stration of nonlocality is a logical demonstration in the ideal thought experiment, while
an experimental demonstration of nonlocality requires the violation of Bell inequalities.
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Building on the GHZ effect [224] and its elaboration in Ref. [225], it is merely a small
step to see that the YS proposal also demonstrates nonlocality. Even though the proba-
bility of the events of interest (every party receives one particle) is reduced with respect
to the GHZ thought experiment, the coincident outcomes for the measurement settings
of Eq. (3.37) are still perfectly correlated and lead to the same contradiction [76]. But
isn’t it dangerous to neglect all events in which one party detects two particles for the log-
ical contradiction? No, because in a LHV model, this postselection cannot depend on
the local measurement settings. This can be understood (i) by observing that, if the local
measurement setting had influence on the double detection, it would require superluminal
signalling between the measurement devices [273, 308], or (ii), by arguing that the paths
taken by the particles are EPR-elements of reality (since they can be remotely predicted)
and as such must be fixed with the LHV λ [314]. Again, as in the GHZ thought experi-
ment above, the nonlocality demonstration of the original YS proposal [76] corresponds
to a logical contradiction of the ideal probabilities with LHV models. For an experimen-
tal demonstration, a Bell inequality such as Mermin’s inequality (cf. Eq. (3.4)) has to be
violated.

At this point, we also want to mention that the YS setup of Fig. 3.11 is closely related to
the triangle scenario that is often examined in network nonlocality [209, 212], cf. Sec. 3.1.2.
Recall that for network nonlocality, several independent sources are shared between differ-
ent subgroups of the parties, and the observed correlations are termed network nonlocal if
at least one of the sources cannot be described by a LHV. In the YS setup, the LHV model
thus allows that each pair of parties shares a LHV to produce their respectivemeasurement
outcomes. Furthermore, as network nonlocality can be observed in experiments without
measurement inputs, we can now even fix the measurements for each party, such that we
do not include the measurement choice variables X , Y , and Z anymore. This scenario
corresponds to the causal diagram shown in Fig. 3.12, and any network-local correlation
can be described by the LHV model

Pabc =
∑

λ1,λ2,λ3

Pλ1Pλ2Pλ3Pa|λ2λ3Pb|λ1λ3Pc|λ1λ2 . (3.40)

As we have discussed before, the techniques to prove that a specific correlation is net-
work nonlocal are rather advanced. However, the ideal (loss-free) YS setup was shown to
create network nonlocality in a wide range of transmissivity parameters of the BSs in the
setup8 [213]. Here, themeasurement settingswere fixed such thatϕ = (ϕA+ϕB+ϕC) = 0,
yielding correlations that were shown to be in logical contradiction with the LHV model
of Eq. (3.40), similar to the methods used in Ref. [212]. Furthermore, in Ref. [213], it was

8Actually, for a transmissivity of t = 1/2 as was considered in the YS setup and our analysis above, there is
a network local model to describe the correlations [212]. This is not a contradiction because we have chosen
all measurement settings, so the produced correlations have more facility to be describable by a LHV model.



Chapter 3. Verification: Postselection strategies for genuine multipartite nonlocality 85

A

Λ3 Λ2

B C

Λ1

Figure 3.12: Causal diagram for the definition of network locality. In this model, the different measurement
results A, B, and C can only be correlated by the pairwise sharing of the LHVs Λj , j = 1, 2, 3. The most
general correlation that can be modeled by this diagram is given in Eq. (3.40).

argued by means of a machine learning oracle (cf. Ref. [315]; and a short explanation in
Sec. 4.2.2 for how the network-nonlocality oracle works) that the network nonlocality is
robust to small amounts of losses and detection inefficiencies.

Genuine three-partite nonlocality in the YS proposal

By means of the GHZ thought experiment, we have seen that the YS proposal creates mul-
tipartite nonlocality. What about GMN? There are a few subtleties when trying to argue
for GMN in the YS proposal along the lines of the GHZ thought experiment. First, the
assumption of a LHV model is central to the GHZ contradiction. If one allows for a hy-
brid local-nonlocal model instead, this reasoning cannot be applied anymore. Second, the
postselection used in the YS proposal was safe for detecting (non-genuine) multipartite
nonlocality because, here, the measurement settings cannot influence the postselection,
see the discussion above. For hybrid models, this reasoning cannot be applied anymore
because there may be (bipartite) nonlocal influences, and no EPR elements of reality can
be identified because the latter rely on locality.

Third, the measurement settings used in the GHZ thought experiment correspond to
the ones used in Mermin’s inequality, Eq. (3.4), that detects (non-genuine) nonlocality.
Now, we need to consider an inequality that tests for GMN such as Svetlichny’s inequality,
Eq. (3.6). Indeed, the GHZ correlations and thus the postselected YS correlations violate
Eq. (3.6) when changing the possible measurement settings [316]. To see this, say that
each party chooses from the following measurement settings: Alice measuresA1 (ϕA = 0)
or A2 (ϕA = −π/2), Bob measures B1 (ϕB = π/4) or B2 (ϕB = −π/4), and Charlie
measures C1 (ϕC = 0) or C2 (ϕC = −π/2). We rename the outcomes rβ and lβ to 1 and
−1, respectively. Then, given the postselected data (i.e., renormalizing the probabilities in
the YS proposal to the events in O and E), one has for instance

〈A1B1C1〉 = 4
(∑
e∈O

P (e)−
∑
e∈E

P (e)
)

= sin2 ϕ− cos2 ϕ = − 1√
2
, (3.41)

whereϕ = (ϕA+ϕB+ϕC)/2 = π/8 and the factor 4 stems from the renormalization of the
postselected probabilities (P (k = 1) = P (O∪E) = 1/4). The other terms of Svetlichny’s
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inequality, Eq. (3.6), can be computed in a similar way, and we finally obtain a value of 4
√

2
(each summand contributes 1/

√
2) for the left hand side of Eq. (3.6), which demonstrates

genuine three-partite nonlocality for the postselected data of the YS proposal.
Finally, we can use Theorem 2 to show that the postselection strategy that we used to

violate Svetlichny’s inequality is valid. Indeed, an event that is sorted out in the postse-
lection procedure can be recognized by two different measurement parties independently:
one party receives two particles (so either a double detection in one detector or a coincident
detection in both the party’s detectors) and a second party detects no particle. Therefore,
the postselection can always be decided by excluding any party, and by Theorem 2, the
postselection is valid to demonstrate GMN.

We want to briefly discuss the influence of experimental imperfections. As discussed
below Theorems 2 and 3, in the case of non-ideal detectors (i.e., detectors with finite effi-
ciencies or producing false detections) and finite transmission efficiencies of the channels
in the setup, the postselection cannot be decided by two parties anymore: for instance, if
Alice and Bob receive both a single particle, they cannot be sure that Charlie has also re-
ceived one. Thus, for realistic settings, one has to rely on the fair-sampling assumption or
one has to include all data without postselection9, see Sec. 3.1.4 for a discussion. Finally,
the three particle sources may be not perfectly identical, reducing the Hong–Ou–Mandel
effect. This imperfection does not hinder the postselection because the latter can still be
decided by any two parties. However, high distinguishability of the sources reduces the in-
terference such that at a critical distinguishability, the Svetlichny inequality is not violated
anymore. One could thus say that the indistinguishability of the single particle sources is
a critical quantum resource to generate GMN from independent particle sources.

3.3 Conclusions and outlook

In this chapter, we have entered the field of verifying the quantum resource of nonlocality.
Verifying nonlocality is a task that is addressed by means of testing the violation of Bell
inequalities. First, we have given an extensive introduction to the notions of bipartite,
multipartite, and genuine multipartite nonlocality, their corresponding Bell inequalities,
their applications and possible difficulties in their verification. Then, we have focused on
the question of underwhich conditions it is allowed to postselect data in the demonstration
of genuine multipartite nonlocality, meaning that we can exclude any postselection bias
that mimics nonlocal correlations.

The main result of the chapter is given by Theorem 3, stating that

9We want to note that the more limiting source of losses for applications of nonlocality, e.g., in device-
independent quantum key distribution, is a finite detection efficiency because finite transmission efficiencies
can be usually taken care of by heralding strategies, see, e.g., Ref. [317].
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In the n-partite Bell scenario, a postselection strategy that can equivalently be decided by any
dn/2e parties is valid to demonstrate genuine n-partite nonlocality.

This means that certain postselection strategies in which half of the parties have to com-
municate to decide the postselection are valid to demonstrate genuine multipartite non-
locality. This is surprising because collective postselection is known to potentially mimic
nonlocal correlations even when the complete data are local (e.g., in Franson’s original
proposal [289]), and the fact that genuine multipartite nonlocal correlations require that
all parties share common nonlocal correlations. Our results offer new and valid postselec-
tion strategies that go beyond locally decidable postselection which has been known to be
safe in nonlocality demonstrations. Furthermore, the probability of postselection can be
arbitrarily small as long as the above condition is fulfilled. We have proven the result with
the help of the methods of causal inference and causal diagrams that are common tools in
statistical analysis.

In the case of three measurement parties, our result can be applied to scenarios where
there exists some conserved quantity such as, e.g., the conservation of the total number of
particles. Then, partial information of one of the parties is redundant and the party may be
excluded from the postselection decision, rendering the postselection valid. An example
of such a situation is a proposal by Yurke and Stoler [76] that, before, could only demon-
strate (non-genuine)multipartite nonlocality. By postselecting the observed data (in a way
that fulfills the above condition), one can maximally violate the Svetlichny inequality that
demonstrates genuine three-partite nonlocality. For more than three measurement par-
ties, more than one party has to be excluded from the postselection. Thus, one needs two
conserved quantities and possible applications of our results are more difficult to identify.

There are several directions for future investigations originating from our results. First,
our results only hold in ideal situations with no experimental imperfections. In particular,
if the detectors have finite efficiencies such that some particles are not detected, a helpful
postselection may not be decidable when excluding one measurement party. It is an inter-
esting and challenging task to extend our results to these realistic situations and then finally
apply them for experimental demonstrations of genuine multipartite nonlocality. Also, an
extension of our results to new definitions of (LOSR) genuinemultipartite nonlocality [54]
is a clear direction for future research. Furthermore, we want to note that postselection is
an ubiquitous method in physics and in general science, and thus, in principle, a rigorous
account of the postselection should be demanded. Finally, the tools of causal inference
and causal diagrams that are mostly used in mathematics and statistics, represent valuable
techniques that have the potential to advance all fields of physics such as, e.g., quantum
information.
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In this chapter, we enter the field of continuous-variable (CV) quantum technologies.
In particular, we address the verification of one specificCVquantum resource, the nonclas-
sicality defined by the negativity of the Glauber–Sudarshan P function in different mea-
surement schemes of quantum optical experiments. For this purpose, we train artificial
neural networks to classify experimental data as classical or nonclassical.

In Sec. 4.1, we briefly review different quantum resources in CV systems and their ap-
plications, with a focus on quasiprobability distributions. Then, in Sec. 4.2, we give a short
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overview of machine learning (ML) methods that are applied in quantum information
and technology. Finally, we present our results of ML nonclassicality classifiers for exper-
imental data from homodyne detection (Sec. 4.3) and for simulated data of multiplexed
click-counting detection (Sec. 4.4).

4.1 Quantum resources in continuous-variable quantum
technologies

CV quantum systems differ from finite-dimensional (or discrete-variable) quantum sys-
tems such as qubits and qudits by the fact that their Hilbert space is infinite dimensional1.
The best known example of an infinite dimensional system is the quantum harmonic os-
cillator that naturally describes several systems in different areas of quantum physics such
as, e.g., quantum optics (i.e., the single-mode electromagnetic field) or superconducting
quantum technologies (i.e., the LC circuit). For extensive introductions to the quantum
harmonic oscillator in the context of quantum optics see Ref. [318], to CV quasiprobability
distributions see Ref. [319], and to CV quantum technologies see Ref. [320].

The framework of CV quantum technologies differs from the discrete variable one at
many levels: an infinite dimensional Hilbert space contains many more degrees of free-
dom (infinitely many so) and thus offers a larger playground for possible technologies. On
the other hand, the type of operations that can be implemented in experiments also dif-
fer significantly. For instance, while general (and entangling) operations between two and
more different qubits are efficiently implementable in many discrete-variable quantum ar-
chitectures, general operations between different CV quantum systems (and also within a
single CV system) can represent a significant challenge to implement in an experiment. In
CV systems, the natural operations can be grouped into passive elements like, e.g., beam
splitters and phase shifts, and active elements such as, e.g., nonlinear crystals, all of which
can be harnessed to approach the technological tasks.

Due to these differences, quantum technologies and characteristics in one description
do not necessarily find an equivalent counterpart in the other. Also, technologies that
correspond to the same task may require very different logical operations and descriptions
(see, e.g., the protocols for quantum teleportation in discrete variables [26] and in CV
[321]). Consequently, the role and identification of possible quantum resources for the
different technological tasks can disagree. As in the discrete variable case, one of the most

1Strictly speaking, infinite dimensional Hilbert spaces also allow a description by means of a discrete
(and infinite) basis, the Fock basis, while for many tasks, the description by CVs is more useful. On the
other hand, while mostly discussed in terms of discrete variables, finite dimensional systems can also be
understood by CV descriptions. Here, we simply identify finite dimensional systems with discrete variable
quantum technologies and infinite dimensional systems with CV quantum technologies. These (oversimpli-
fied) identifications are common in the literature.
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important quantum resources is entanglement2. Here, many notions like definitions or
different entanglement tests, as well as the general difficulty of deciding whether a given
state is entangled or not, resemble the corresponding notions in the discrete-variable case,
see, e.g., Ref. [23] for a review.

However, due to the richer structure and information capacity of merely a single (i.e.,
non-composite) CV system compared to, say, a single qubit, there are also several (single-
mode) quantum resources that play important roles in CV quantum technologies. In the
following, we will focus on the role of the quantum resources of nonclassicality defined by
negativity of quasiprobability distributions. In Sec. 4.3 and Sec. 4.4, we will address the
verification of one of these notions of nonclassicality.

4.1.1 Quasiprobability distributions

First, we want to briefly recall the notions of the quantum harmonic oscillator. For a de-
tailed technical introduction, see, e.g., Ref. [318]. The Hilbert space of the quantum har-
monic oscillator has a discrete orthonormal basis called number or Fock state basis that
is denoted as {|n〉 |n ∈ N≥0}. The state |0〉 is the ground state or vacuum state. Further-
more, there are annihilation operators a and creation operators a† acting on the Fock basis
as a |n〉 =

√
n |n− 1〉 for n > 0 and a |0〉 = 0, and a† |n〉 =

√
n+ 1 |n+ 1〉 for n ≥ 0.

These operators fulfill the bosonic commutation relation
[
a, a†

]
= 1.

The creation and annihilation operators play a central role inCVquantum technologies
because both the system’s Hamiltonians and measurement observables can be expressed as
functions of low-degree polynomials in a and a†. Therefore, a widely usedCVbasis is given
by the coherent states |α〉 defined as eigenstates of the annihilation operator, a |α〉 = α |α〉
forα ∈ C. This now continuous basis is not orthogonal anymore, |〈β|α〉|2 = e−|α−β|2 , and
is often called overcomplete,

∫
C |α〉 〈α| d2α/π = 1. In this basis, any systemdensity opera-

tor ormeasurement observable can be represented as a distribution of the two-dimensional
space (overR), the quantum-optical phase space. This strongly resembles classical notions
of probability distributions over the phase space of a one-dimensional system, spanned by
position and momentum. Given this analogy, the idea of quasiprobability distribution is

2Note that inCV systems, one often speaks of “mode” entanglementwhendifferentmodes, each described
by a quantum harmonic oscillator, are entangled. Here, the system is described in second quantization, i.e.,
the basic objects are the different modes of the CV system. In contrast, distinguishable discrete-variable
systems (such as qubits or atoms at different spatial locations) are usually described in first quantization,
where one speaks of different particles that are simply entangled, even though this entanglement can also be
thought of as entanglement of the spatial modes of the qubits. Finally, in the situation of indistinguishable
discrete-variable systems (such as cold atoms in a cloud), the notion of particle entanglement is commonly
used, a notion that also includes entanglement due to symmetrization of the particles that are described in
the first quantization picture. For a review and practical applications of entanglement of identical particles,
see, e.g., Refs. [322, 323, 324].
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to write the expectation value of a measurement observableO(a, a†) with respect to a state
ρ as [325, 326, 327, 328]

〈O〉 = tr[ρO] =
∫
C
P̃ρ(α)Q̃O(α)d2α, (4.1)

for some distributions P̃ρ(α) and Q̃O(α). Furthermore, for the specific observable
O(a, a†), a perfect classical analogy would be to simply use Q̃O(α) = O(α, α∗) (α∗ is
the complex conjugate of α), i.e., one would like to simply insert the complex numbers α
and α∗ instead of the operators a and a†, respectively. Here, one can already see why dif-
ferent definitions of quasiprobability distributions are possible: for instance, the operator
O = a†a can be written equivalently as O = aa† − 1 due to the bosonic commutation
relations. However, by simply inserting α for a and α∗ for a†, both expressions lead to
different functions over the state space. Thus, to generally describe the same expectation
value in Eq. (4.1), also the distributions P̃ρ(α)describing the state ρmust differ. Note that,
in contrast to P̃ρ(α) and Q̃O(α), only the expectation value is really observable in experi-
ments.

There are three major choices for these different possible function assignments. First,
one can use the bosonic commutation relations to write the operator O(a, a†) in its
normally-ordered form, meaning that one uses the commutation relations to bring all op-
erators a to the right of the operators a†3, and then inserts a 7→ α. In the above example,
the operator O = a†a is already in normally ordered form. The corresponding function
P̃ρ(α) is called the Glauber–Sudarshan P function [329, 330] that, as we explain below,
implies the definition of nonclassicality that our later results address. There are different
possible expressions for how to calculate the P function of a state ρ, for which we refer
to Ref. [318]. Here, we only want to note that the state ρ can be written in terms of its P
function P (α) as4

ρ =
∫
C
P (α) |α〉 〈α| d2α. (4.2)

3Note that this reordering of the operator O(a, a†) should not be confused with a different formal re-
ordering that we will meet later and that we denote as : O(a, a†) :. Here, one also brings all operators a to
the right of the operators a†, but this time without respecting the commutation relations. Thus, while using
the commutation relations to reorder the operators of O(a, a†) results in the same operator, the operator
: O(a, a†) : is generally different toO(a, a†).

4This can be seen easily by inserting Eq. (4.2) into Eq. (4.1),

tr[ρO] =
∫
C
P (α)tr[|α〉 〈α|O]d2α

=
∫
C
P (α) 〈α|O |α〉d2α

=
∫
C
P (α)ON(α)d2α,

where we have used that 〈α|O |α〉 = ON(α), where ON is the normally ordered version of O with inputs
a 7→ α and a† 7→ α∗.



Chapter 4. Verification: Detection of nonclassicality by neural networks 93

When the P (α) is non-negative, Eq. (4.2) describes ρ as a classical mixture of coherent
states. We note that the P function is generally not well behaved, for instance, the P func-
tion of a coherent state is a Dirac delta distribution.

The second and most famous example of a quasiprobability distribution is the Wigner
function [331] that was introduced to construct a phase-space description for the spatial
wave function ψ(x) and its evolution. The Wigner function is the appropriate quasiprob-
ability function if the operator O(a, a†) is written in its symmetrized form with respect
to a and a†, before inserting a 7→ α. For instance, in the above example, one writes
O = a†a = (a†a + aa† − 1)/2. The Wigner function can be obtained from the P func-
tion by a convolution with a Gaussian kernel, and is well behaved. In fact, it is bounded
but still can take negative values [318]. The Wigner function exhibits several useful char-
acteristics that let it stand out with respect to the other quasiprobability functions. For
instance, taking the marginal distribution along any line through the origin, one obtains
the (quadrature) probability distribution of a specific balanced homodyne measurement
setting [318]. These characteristics are the reason why for defining quasiprobability distri-
butions that describe discrete-variable systems, usually the Wigner function is generalized
[332].

Finally, we want to mention the HusimiQ function [333] that corresponds to an anti-
normal ordering of the operators in O(a, a†) (i.e., all operators a† should be to the right
of the operators a). Above, this corresponds to O = aa† − 1. The Q function is a further
convolution of the Wigner function with a Gaussian kernel, and shows no negative values
anymore. Still, it cannot be seen as a classical probability distribution over the coherent
amplitude α because states corresponding to different α are not orthogonal. The Q func-
tion is directly measurable in different quantum optical measurements. We also want to
note that there is actually a continuous spectrum of possible quasiprobability distributions
between the P and theQ functions, which trade off mathematical difficulties in the state’s
representation P̃ρ(α) (for the P function) or the observable’s representation Q̃O(α) (for
theQ function) in Eq. (4.1). We refer to Ref. [318] for more details.

There are further possible quasiprobability distributions considered in quantum in-
formation, especially in the case of discrete variable systems, that do not fall in the above
family of distributions between the P and the Q function, see Ref. [319] for the CV case
and Ref. [332] for the discrete case. We will mention some of these alternative quasiprob-
ability distributions below when we discuss applications.

Nonclassicality

As discussed above, the quasiprobability description of quantum systems is an attempt to
make an analogy to classical phase-space descriptions. In the latter though, the distribu-
tions on the phase space fulfill all conditions of probability distributions such as, e.g., pos-
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itivity. Therefore, a natural indicator of “quantumness” or “nonclassicality” of a quantum
system is the negativity of a quasiprobability distribution. Of course, this indicator cru-
cially depends on the type of quasiprobability distribution that we employ. For instance,
theHusimiQ function is always positive (since the negativity and all singularities are trans-
ferred to the distribution Q̃O(α) that describes the observable), and thus itself does not in-
dicate nonclassicality. A commonly used indicator of nonclassicality is the negativity of the
Wigner function, as we will also discuss below for different applications. However, since
the Wigner function is a smoothed version of the Glauber–Sudarshan P function, there
are states for which the P function is negative but the Wigner function is not. An impor-
tant example with many applications (see below) are squeezed states that have a positive
Wigner function but a negative and highly irregular P function.

In any definition of a quantum feature, some choice has to be made about which states
do not offer this feature. For instance, in the definition of entanglement, these “free” states
are the separable states (cf. Sec. 1.2.1). In the context of single-mode CV systems, co-
herent states are usually defined as the free or “classical” states. This is because coherent
states most closely resemble the states of classical electrodynamics because they exactly
reproduce the expectation values and variances of electromagnetic field operators in clas-
sical electrodynamics [334]. Then, in analogy to entanglement, a general classical state is
defined as an arbitrary convex combination of coherent states,

ρ =
∫
C
P (α) |α〉 〈α| d2α, (4.3)

with P (α) ≥ 0 describing the distribution of the mixture of the coherent states |α〉 〈α|.
As nonclassicality corresponds to the impossibility to express a quantum state by such a
mixture (i.e., by a convex combination of the “classical” coherent states), we see that it is
precisely corresponds to the negativity of P function in Eq. (4.3).

The definition of nonclassicality by means of the P function is the one we will use later
in this chapter. We again want to emphasize that nonclassicality can also be considered in
terms of negativity of theWigner function, which is the common approach in the context of
discrete variable systems. However, we note that since theWigner function is a convolution
of the P function with a Gaussian kernel, nonclassicality by means of the Wigner function
implies nonclassicality by means of the P function. This is because a positive P function
convoluted with a Gaussian kernel will necessarily lead to a positive Wigner function, so
the negativity of the latter implies the negativity of the former.

Finally, before we discuss different applications, we note that similar to quantum re-
sources in finite dimensional systems, the detection and verification of nonclassicality is
a difficult task. Since we address this point with ML methods in Sec. 4.3 and Sec. 4.4,
we will discuss and compare current methods for the verification of nonclassicality in the
respective sections.
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Applications

Wenowgive a brief overview about situationswhere nonclassicality is necessary for specific
quantum technologies. We note that many results are derived for nonclassicality defined
as negativity of the Wigner function, which, as discussed above, implies negativity of the
P function, and thus our definition of nonclassicality as well. In particular, if it is found
that the negativity of the Wigner function is necessary to reach some technological task,
also the negativity of the P function is necessary. In the following, we will thus only speak
of nonclassicality as the negativity of the P function, even though many results are derived
for the Wigner function.

In several quantum technologies, nonclassicality has been found to be central to quan-
tum advantages. For instance, as we discussed in Sec. 2.1.1, in the magic state distillation
model of quantum computation [97], nonclassicality is necessary for a quantum computa-
tional advantage [125, 126, 127]. Also, nonclassicality is necessary for quantum advantages
for distributed quantum computing [335]. Furthermore, in distributed (nonlocal) boson
sampling, even though input and output correlations may be classically correlated, non-
classicality of the output state can render the output distribution intractable for classical
computers, thus representing a quantum advantage [336]. The power of quantum net-
works (in the field of distributed sensing) was shown to require nonclassical states when
only passive optical elements are available [61]. Finally, nonclassicality as a quantum re-
source for metrology was quantified by means of a connection to the QFI [337]. Note that
this is a very compressed list of applications and many more can be found in the literature.

A central family of nonclassical states that many quantum technologies build upon
are squeezed states [320], see also Ref. [338] for a specific review of Gaussian quantum
information processing with different applications. In particular, we want to mention that
squeezed states have advanced the current technology offering the highest sensitivities in
precisionmeasurements. For instance, they have been used in the detection of gravitational
waves [339, 340].

As discussed in Sec. 1.3, different quantum resources can be converted to each other.
Here, the single-mode resource of nonclassicality was shown to be convertible to entan-
glement merely by means of passive optical elements such as beam splitters [44, 45, 341].
In particular, when mixing an incoming quantum state with the vacuum state on a bal-
anced beam splitter, the outgoing modes are entangled if and only if the incoming state
is nonclassical: for specific measures of nonclassicality and entanglement, the amount of
nonclassicality of the incoming mode is equal to the amount of entanglement of the out-
going ones [44].

Notions of nonclassicality have also been found to be deeply connected to quantum
foundations. For instance, nonlocality and Bell inequalities have been derived in terms of
quasiprobability distributions [342], and in Ref. [343], it was shown that nonclassicality
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and noncontextuality in measurements are equivalent. The negativity of quasiprobability
distributions has further been connected to the incompatibility of quantummeasurements
[344].

We also want to mention that different quasiprobability distributions that are general-
izations of the above introduced P , Wigner, andQ functions and do not fit in their family,
have been identified as crucial in quantum resources and quantum technologies. For in-
stance, the Kirkwood–Dirac distribution [345, 346] is a generalization of the Wigner func-
tion that cannot only take negative values but also complex ones. This distribution is deeply
connected to the explanation of weak values [295, 347] and is central for different quantum
technologies such as weak value amplification [296, 297, 298, 299], direct measurements
of wave functions [348, 349, 350], and the phenomenon of information scrambling [351].

Similar to all other quantum resources, the task of detecting nonlocality from experi-
mental data is difficult. We will explicitly discuss different verification possibilities of non-
classicality in Secs. 4.3 and 4.4 for specific measurement schemes of single-mode CV sys-
tems. Wewill then approach this task bymeans ofmachine learning techniques. Therefore,
in the following, we provide an overview of the methods of machine learning and their ap-
plications in different problems of quantum physics.

4.2 Machine learning methods in quantum physics

The increasingly active field of machine learning (ML) is becoming ever more important
in quantum physics and quantum technologies. In the following, we will list different
branches of modern ML and overview how they have been applied in quantum informa-
tion. For a detailed overview of the topic, we refer to Ref. [352]. We want to emphasize
that our introduction only comprises the applications of “classical” ML methods to quan-
tum physics (i.e., we use ML that is performed on a classical computer), whereas, recently,
much attention is given to the field of quantum ML, see, e.g., Refs. [353, 354].

The field of ML or artificial intelligence considers problems that are seemingly hard
to solve by computers but that are easily solved by humans. In particular, this includes
several learning tasks in which humans naturally learn to understand or deduce under-
lying information or patterns. There are many different methods and approaches to ML,
see Refs. [355, 356] for detailed introductions. In the following overview, we will restrict
ourselves to the topic of artificial neural networks due to their prevalence in modern ML
applications.

4.2.1 Artificial neural networks

Artificial neural networks (which we now simply call NNs) are inspired by the complex
structure of deeply connected neural networks in biological brains. The central idea is
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input layer hidden layers

output layer

Figure 4.1: Sketch of a deep neural network (NN) with an input layer (blue), three hidden layers (yellow)
and an output layer (red) consisting of only one neuron.

that, by modelling a biological neural network by means of a mathematical network with
simple functional dependencies between the nodes, the artificial network can be trained
with large amounts of data to learn in a similar fashion as real brains. In particular, differ-
ent parts of the network should correspond to regions that receive information, parts that
process information and compare it to previously seen situations, and parts that describe
the network’s answer to the learning task.

Themost commonmodel of NNs is that of a deep feedforward NN consisting of differ-
ent layers that are interconnected, see Fig. 4.1. Here, an input layer v0 consists of the data
that are given to the NN like, e.g., the pixels of a picture. The input layer is then connected
to the first hidden layer v1, after which some number of hidden layers may follow. The last
hidden layer is connected to the output layer vf that describes the output of the NN (in
Fig. 4.1, the output is merely a real number and thus the output layer consists of a single
neuron, but generally there might be many output neurons). Each layer is connected to its
previous layer as

vi = f (Wivi−1 + bi) , (4.4)

where Wi is a weight matrix, bi is a bias, and f is some nonlinear function that is evalu-
ated element-wise. The set of all weights and biases constitute the parameters of the NN
and will be changed during the training of the NN. The nonlinear function is fixed and is
usually chosen as a simple sigmoid function or a rectified linear unit [355]. It is crucial for
the expressive power of the NN: without the nonlinearities, all elements of the NN would
be linear, such that such a NN could only describe linear functions. On the other hand,
nonlinear NNs are universal in the sense that they can approximate any nonlinear function
between input and output layer to arbitrary precision if the number of hidden layers and
hidden neurons is chosen sufficiently large [357]. We want to note that the information of
the network’s parameters can be strongly compressed if the weights and biases fulfill some
symmetry conditions and act only locally on the next layer. In this case, one speaks of con-
volutional NNs that are also inspired by biological neurons. In the following, we describe
different ways to train the parameters of the NN that are appropriate in different learning
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situations.

Supervised learning

Supervised learning of the NN can be applied when one possesses a large number of input
data vectors v0 that each are equipped with a label y that should be learned by the NN.
Say, the output of the NN is r(v0) when given the input v0. After choosing an appropriate
distance measure d, the goal is thus to minimize the average cost

C = 〈d[r(v0),y]〉data , (4.5)

where 〈·〉data indicates the average over the whole data set. By means of the functional
structure of the NN, one can calculate the gradient of C with respect to its parameters
and update the parameters using a simple gradient descent. If the size of the data is large
(which is usually the case), this learning method is very slow. Instead, one approximates
the gradient using only a subset of the data, a so-called batch. The computation of these
approximate gradients can be performed very fast on computers by means of the so-called
backpropagation algorithm which essentially consists of fast matrix multiplications [355].
Therefore, in each training epoch, one splits the data into several batches each of which
is used to approximate the gradient and to update the NN’s parameters. This is called
stochastic gradient descent. There are a fewmore details of how to optimize the supervised
training such as, e.g., how fast onemoves along the gradient, or whether one includes some
memory of previous gradient approximations, and more [355]. Finally, we note that this
type of supervised learning is easy to implement due to a wide range of openly-available
programs and libraries, see, e.g., the python libraries keras and tensorflow.

An important obstacle that must be avoided in supervised learning algorithms is “over-
fitting”. Overfitting occurs when the size of the NN (i.e., the number of hidden layers and
the number of hidden neurons) is chosen too large for the specific task, and the NN is
trained for a very long time. In this case, since the NN is a universal function approxima-
tor, it perfectly learns by heart all the input-output relations of the data set. This is not what
the NN was trained for, since it should recognize general patterns or structure in the data,
and an overfitted NN does not generalize well to data that were never shown to it during
the training. An easy way to circumvent overfitting is to split the complete data set into
training data and validation data (e.g., in a ratio 80% to 20%). The NN will then be trained
with the training data and gets better over time. However, after each training epoch, one
checks the performance of the NN on the validation data set. Initially, the NN will have an
increasing performance on the validation data because it starts to see essential structures in
the data. Then, as soon as the performance on the validation data decreases, one stops the
training of the NN because this means that now the NN is overfitting as it is just learning
by heart the training data. Note that there are also other methods to fight overfitting such

https://keras.io/
https://www.tensorflow.org/
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as, e.g., including a dropout probability of neural connections [355]. Later, we will simply
work with the validation data method. There are other general difficulties concerning the
learning phase and the generalization performance of NNs that are addressed by compu-
tational learning theory, a topic that is beyond the scope of this introduction and we refer
to Refs. [352, 356] for more details.

We want to mention that in supervised learning, apart from artificial NNs, a second
widely applied ML technique are support vector machines that aim to find a linear high-
dimensional hyperplane that correctly separates binary-labeled data. This method consti-
tutes one of the approaches to implement ML on quantum computers [358], entering the
field of quantum ML. Furthermore, in supervised learning of NNs, we note that not all
networks are simple feedforward networks as described in Eq. (4.4). For instance, infor-
mation can also travel backwards in NNs in recurrent neural networks (modelingmemory
effects) or restricted Boltzmann machines which are used to approximate probability dis-
tributions. For more ML models and approaches in supervised learning, see Ref. [352].

Further ML approaches

A second important and commonly used ML technique is reinforcement learning. This
type of ML might be the one that most closely resembles artificial intelligence and human
learning. In short, the ML agent interacts with an environment by means of observing
the environmental state and then executing a set of possible actions that may influence
the state of the environment. The agent is either rewarded for specific steps during this
interaction, or is evaluated at the end of some fixed number of actions according to some
figure of merit. By trial and error, the agent then learns to adjust its actions for given
states of the environment, until it optimizes its final reward. Reinforcement learning is the
common ML method when computers teach themselves how to play games such as Tetris
or car racing, or when some computer model should learn a specific task such as walking
or jumping. We again refer to Refs. [352, 355] for a detailed introduction to reinforcement
learning.

Finally, we also want to mention the last major ML method, unsupervised learning.
Here, the NN is asked to find hidden structure in data, where the data are not labeled.
This method is important for classification and clustering analysis of large data sets with
no prior information. See Ref. [356] for details and specific applications.

4.2.2 Applications of ML in quantum physics

Various (if not all) fields of quantum information and technology have been tackled by
means of ML methods. Here, we give a brief (and very incomplete) overview of different
applications. For more extensive overviews, see Refs. [352, 356].
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The task of quantum state tomography that asks to construct the underlying density
matrix of a quantum state from many measurement results, has been very successfully ad-
dressed by ML. In Ref. [359], restricted Boltzmann machines were used for highly efficient
quantum state tomography of systems consisting of many qubits for which known tomog-
raphy methods are computationally demanding. The efficiency of the method is due to a
specific ansatz that restricts its general expressive power (even though it has proved suf-
ficient in the common models of real physical systems), similar to the expressive power
matrix product states [360]. This method has been used for tomography in many body
systems [361] and has even been generalized to homodyne detection schemes of quantum
optical states [362]. In the latter case though, the training of the NN could not be acceler-
ated sufficiently (which was possible in the case of many-body systems) such that it cannot
outperform standard tomography methods up to now5. For quantum optical states, su-
pervised learning of NNs using so-called auto encoders has been used for reconstruction
and classification [363]. Also, feedforward NNs were used to optimally include prepara-
tions and measurement noise in state tomography [364], and to observe and apply results
of computational learning theory in the tomography of systems consisting of few qubits
[365].

The study of quantum many-body physics and quantum phases of matter suffers from
exponential computational complexity in classical descriptions. Here, different ML ap-
proaches have been used to yield new insights or to offer powerful alternatives to standard
methods. For instance, reinforcement learning of restricted Boltzmannmachines has been
used to find the ground state and the time evolution in complex quantum systems [361].
Furthermore, unsupervised learning, that requires no physicalmodel of prior information,
could successfully identify different phases of a quantum system [366], and it was used in
the form of anomaly detection to search for interesting parameter ranges of possible new
phases of a quantum system [367]. Also, convolutional NNs have been trained with su-
pervised learning to recognize topological phases of matter [368].

The field of quantum error correction has also benefited from the use of ML methods:
NNs were trained by supervised learning to quickly decode error correcting codes [369],
reinforcement learning [370] and recurrent NNs [371] have been used to optimize specific
sets of surface codes, and new quantum error correction codes can be found from scratch
by reinforcement learning [372].

ML has also beenwidely applied in quantum control. In particular, feedbackMLmeth-
ods have uncovered previously unknown ways to prepare highly entangled states [373], an
approach that was strengthened by the use of reinforcement learning [374]. Reinforcement
learning has also been used to find fast, high-fidelity driving protocols from an initial to

5The author has been working on optimizing the training of restricted Boltzmann machines for
homodyne tomography, with open code available at https://github.com/thomaskoerber/RBM-quantum-
tomography-for-continuous-variable-systems.

https://github.com/thomaskoerber/RBM-quantum-tomography-for-continuous-variable-systems
https://github.com/thomaskoerber/RBM-quantum-tomography-for-continuous-variable-systems
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a target state in many-body systems [375]. Furthermore, photonic architectures for uni-
versal computation have been designed with the help of ML methods [376]. Also, the cer-
tification of quantum simulations [377] and of boson sampling [378] has been addressed
with ML.

ML methods have even proved helpful for quantum foundation tasks: using reinforce-
ment learning of restricted Boltzmann machines, maximal violations of Bell inequalities
for a given set of measurement observables have been found [379], andML methods could
even discover new kinds of nonlocality that previously have been inaccessible [380]. Fi-
nally, neural networks resembling the structure of local-hidden-variable models have been
used as an oracle for network nonlocality (cf. Sec. 3.1.2), in the sense that if the observed
behaviour cannot be learned by the NN, it is suspected to be nonlocal [315].

In the field of quantum metrology, ML has been applied in a wide variety of ways.
ML has been used to automatically adjust control parameters in adaptive measurement
protocols [381], which has been applied in experimental quantum metrology with single
photons [382]. NN estimators have been used as a fast subroutine in variational quan-
tum eigensolvers [383]. Furthermore, the supervised learning of NNs has been applied to
frequentist parameter estimation [384] and to Bayesian parameter estimation [385] (see
Ref. [386] for a comparison of frequentist and Bayesian parameter estimation). In this
context, we want to mention Ref. [387] which discusses that, while the ML task of classifi-
cation is a naturally Bayesian problem, the ML task of regression (that includes frequentist
parameter estimation) is a frequentist problem that is solved by a Bayesian estimator.

Finally, wewant tomention that the supervised learning of NNs has been applied to the
detection of nonclassicality from multimode homodyne detection data [388], an approach
that is similar to the onewewill employ in the following. In Ref. [388], the authors focus on
the negativity of multimode Wigner functions. We will now discuss results that contribute
to the detection of single-mode nonclassicality in different quantum optical measurement
protocols.

4.3 Nonclassicality detection with homodyne
measurements

We now focus on the task of detecting nonclassicality, defined as the negativity of the
Glauber–Sudarshan P function, in typical quantum optical measurement schemes. In this
section, we consider the widely used detection method of balanced homodyne detection.
In Sec. 4.3.1, we first give a brief background on single-mode homodyne detection and the
difficulty to verify nonclassicality. Then, in Sec. 4.3.2, we address the task with the help
of NNs. We present the efficiency of this ML approach to identify nonclassicality for real
experimental homodyne data of different quantum states. The results of this section are
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LO

Figure 4.2: Homodyne detection (HD) scheme. The quantum state ρ in mode a1 is mixed with the local
oscillator (LO) in mode a2 with a balanced beam splitter (BS). The phase shift ϕ acting on the LO is called
the quadrature angle and represents the measurement setting. The BSs outgoing modes (d1 and d2) are
measured using proportional photodetectors whose signals are subtracted and then amplified.

published in Ref. [3].

4.3.1 Homodyne measurements

Similar to what we have seen in the case of finite (discrete-variable) quantum systems in
Sec. 1.3, to obtain different types of insights about a quantum state at hand, different mea-
surement strategies are required. For instance, an ideal number-resolving detector mea-
sures the number operator n = a†a of the optical field operator a. This measurement can-
not extract all information from the quantum state because it is insensitive to the state’s
phase. In fact, phase-sensitive measurements must always rely on interference. The easiest
and widely used phase-sensitive detection scheme of a quantum-optical state is balanced
homodyne detection (HD).

In balanced HD, the quantum-optical state ρ to be measured is mixed with a reference
beam, the so-called local oscillator (LO), on a balanced beam splitter (BS), see Fig. 4.2. The
balanced BS converts the (annihilation operators of the) incoming modes a1 and a2 to the
outgoing modes d1 and d2 as d1

d2

 = 1√
2

1 i

i 1

a1

a2

 , (4.6)

cf. also Eq. (3.25). The two outgoing modes are measured by proportional photodetectors
(i.e., detectors that output a signal proportional to

〈
a†a

〉
) whose output is subtracted and

amplified. Thus, the measured operator is the difference of the number operators of the
two outgoing modes,

I− = d†
1d1 − d†

2d2 (4.7)

= 1
2

(a†
1 − ia

†
2)(a1 + ia2)−

1
2

(−ia†
1 + a†

2)(ia1 + a2) (4.8)

= i(a†
1a2 − a1a

†
2). (4.9)

The quantum state ρ that we want to measure is entering the measurement apparatus in
mode a1, while the LO entering in a2 is prepared in the coherent state

∣∣∣αLOe−i(ϕ+π/2)
〉
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(note that this already includes the phase setting ϕ that is depicted as a phase shift in
Fig. 4.2). Then, the measured homodyne current 〈I−〉 is given by

〈
I−
〉

= i
〈
a†

1αLOe
−i(ϕ+π/2) − a1αLOe

i(ϕ+π/2)
〉

= αLO 〈x(ϕ)〉 , (4.10)

where x(ϕ) = a1e
iϕ+a†

1e
−iϕ is the phase-rotated quadrature operator. If themean photon

number of the reference mode a2 (i.e., |αLO|2) is much larger than the state’s mean photon
number, the HD scheme yields a measurement of the quadrature distributions described
by marginal distributions of the Wigner function [318]. Here, the control phase ϕ, also
called the quadrature angle, dictates which marginal distribution is measured.

After performing a large number of HD measurements with different phase settings ϕ,
one obtains the complete information of the state ρ. The measurement results can be com-
bined using different advanced post-processing techniques (that we briefly discuss below)
to reconstruct the full Wigner function and thus the state ρ. Quantum tomography based
on balanced homodyne detection and Wigner-function reconstruction has been among
the standard tomography techniques in different quantum systems such as light [389],
molecules [390] or trapped atoms [391, 392].

Detecting nonclassicality in homodyne measurements

How can one experimentally verify that a quantum state is nonclassical in the HD scheme?
The straightforward method that comes to mind is to perform a full quantum state tomog-
raphy and then check for negativity of theP orWigner functions. This approach is possible
in principle and has also been used [389, 390, 391, 392]. However, quantum state tomog-
raphy with HD both demands a very large amount of measurement data and advanced
post-processing techniques to correctly reconstruct the Wigner function. This difficulty is
due to the fact that reconstructing the Wigner function from its marginals is a very intri-
cate operation [393]. Different regularization tools have been proposed such as, e.g., the
inverse Radon transform, pattern functions, or maximum-likelihood reconstructions, see
Ref. [393] for an overview.

An alternative approach to full quantum state tomography has been proposed in
Ref. [394], where nonclassicality of phase-randomized states (i.e., states that are not phase
dependent) was certified with the help of semidefinite programming, requiring signifi-
cantly less measurement HD data than a full quantum state tomography.

Recently, the decomposition of a classical state into a mixture of coherent states, cf.
Eq. (4.2), has been used to derive phase-space inequalities that hold for different quasiprob-
ability distributions at a specific point α in phase space [395, 396]. One example is the
inequality W (α) − 2πQ(α)2 ≥ 0 (W and Q are the Wigner and Husimi Q functions,
respectively) that holds for classical states [395, 396]. For experimental data from single-
photon-added thermal states (that are nonclassical), the inequality was violated resulting
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in the detection of nonclassicality in a larger detection-efficiency domain than previous
methods [397]. However, to calculate the Wigner function, also here quantum state to-
mography has to be performed that requires a large amount of measurement data.

We also want to note that the nonclassicality of a specific subset of nonclassical states,
the states that show a reduced quadrature variance for a HD measurement with a fixed
quadrature angle, can be easily detected by direct sub-shot-noise conditions on the vari-
ance of the quadrature distributions [318], as we will see in more detail in Sec. 4.3.2. How-
ever, we emphasize that the sub-shot-noise condition only detects nonclassicality for a
strict subset of the nonclassical states, as many important nonclassical states such as, e.g.,
single photon states, do not show a sub-shot-noise variance in HD measurements.

To summarize, we see that the identification of nonclassicality from quadrature data
usually relies on large amounts of measurement data and advanced post-processing tech-
niques such as, e.g., the reconstruction of quasiprobability distributions. In the following,
we provide a direct and fast nonclassicality identifier based on a trainedNN that also works
for comparatively small amounts of measurement data.

4.3.2 Identifying nonclassicality with NNs from homodyne measure-
ment data

We now examine the potential of NNs as fast nonclassicality identifiers. We first describe
in detail how to accordingly train NNs for this task, and then discuss their performance in
various settings.

Training the NN

To create a NN nonclassicality identifier, the main idea is to train a NN that, when given
experimental data frombalancedHDalong somefixed quadrature angleϕ as input, outputs
a nonclassicality prediction. As described above, theHDmeasurement current can be used
to infer the expectation value of the quadrature operator x(ϕ),

〈x(ϕ)〉 =
〈
aeiϕ + a†e−iϕ

〉
, (4.11)

where the measurement setting ϕ is called the quadrature angle. In general, the result of
this measurement can be any (unbounded) real number. After performing (or simulating)
many HD measurements with a given ϕ, one obtains a list of outcomes x that are sampled
according to the quadrature distribution p(x) of the state, see Appendix A for details and
Figs. 4.5, 4.7, and 4.9 for exemplary quadrature distributions. In order to standardize the
input of theNN,we bin themeasured or simulatedHDdata into 160 equally-sized intervals
that cover theHDoutcome rangex ∈ [−8, 8], and then convert themeasurement results to
a normalized histogram on this grid. A normalized histogram is useful because it enables
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the NN to process inputs from HD measurements of various sample sizes. The input layer
thus consists of 160 neurons and is given the HD measurement histogram. The output
layer is a single neuron that serves as the nonclassicality prediction. In our situation, we
have found optimal performances for a fully-connected NN with three hidden layers of
sizes 64, 32, and 16, cf. Fig. 4.1. The hidden-layer neurons are activated with rectified
linear units, and the output neuron is activated with a softmax function that bounds the
possible output r to the interval r ∈ [0, 1].

We note that by binning theHD data in the abovemanner, one has to restrict the quan-
tum states’ parameter ranges (in simulations and experiments) such that the probability of
an event outside the histogram grid is negligible. Here, we have chosen the parameters
such that P (|x| > 8) < 10−6. The corresponding parameter ranges to simulate the differ-
ent states is given in Appendix A. If the NN is applied to states that create results outside
of this range, the histogram grid has to be adjusted accordingly.

The NN is trained by means of supervised learning, cf. Sec. 4.2. For this purpose, we
simulate HD measurement data for different kinds of classical and nonclassical states and
equip the simulated datawith a label “0” for classical and “1” for nonclassical states. As clas-
sical states, we simulate measurements of coherent states, mixtures of coherent states6, and
thermal states. As nonclassical states, we simulate Fock states, squeezed-coherent states,
and single-photon-added coherent states (SPACS). The states’ parameters are randomly
chosen in specific ranges, cf. Appendix A. Furthermore, we only use squeezed states that
are squeezed along the optimal direction such that their quadrature distribution shows
a sub-shot-noise variance, see below. This is because in other quadrature directions, the
quadrature distribution of squeezed states coincide with or is even broader than the one of
coherent states (here one also speaks of anti-squeezed states), such that a correct nonclas-
sicality classification of the NN is impossible. Finally, also the range of SPACS is reduced
because, for large amplitudes of the initial coherent state, SPACS strongly resemble coher-
ent states, see below. To realistically simulate quantum-optical experiments, we include
a finite total detection efficiency7 of η = 0.6 [397]. The finite detection efficiency can be

6Here, there are different possibilities of which mixtures of coherent states to use. In the following, we
have focused on mixtures of the form

ρmix = 1
2

(|α〉 〈α|+ |−α〉 〈−α|).

The reason is that both coherent and thermal states have single-peaked quadrature distributions, such that it
was necessary to include a classical multi-peak distribution in the training for the NN not to identify many
peaks as a nonclassical feature. A different choice thatmay naturally occur in experiments are phase-averaged
coherent states,

ρav = 1
2π

∫ ∣∣αeiϕ〉 〈αeiϕ∣∣ dϕ.
Therefore, we see that specific experimental conditions must be considered when optimally choosing the
simulated states for the training data. We emphasize and discuss this point again below.

7In the literature, η is also called the quantum or system efficiency. We will simply use the term detection
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modeled by a beam splitter mixing the ideal quantum state (with a transmission coefficient
√
η) with vacuum noise. It can describe realistic detectors, lossy channels and noisy state

preparations. For a detailed discussion of how the HD measurement of the different states
is simulated, also including finite detection efficiencies, we refer to Appendix A.

For each family of states, we simulate 2 × 104 input data vectors, each consisting of
a histogram of HD measurements with a fixed quadrature angle ϕ. Here, the histogram
of each input vector is constructed by data from 16000 single HD measurement results.
The simulated data are then shuffled and divided into training data (80%) and validation
data (20%). In each training epoch, the training data are split into batches of size 20 which
are then used one after the other to train the NNs parameters. The NN is implemented
using the python libraries keras and tensorflow, whereweminimize themean squared error
using the optimization algorithm ADAM [398]. After each training epoch, we check the
performance of the NN on the validation data. If it decreases for more than 10 epochs, the
training is halted. As discussed above, this early-stopping strategy avoids overfitting [355].
For instance, the NN we discuss below (cf. Fig. 4.3) has been trained with 26 training
epochs.

NNs performance on training data

The output of the NN for a given input is a real number r ∈ [0, 1]. In order to use the NN
as a binary nonclassicality indicator, one must choose a threshold value t above which we
say that the NN predicts nonclassicality. Higher values of t will result in less states that are
identified as nonclassical but, importantly, also in less states that are falsely identified as
nonclassical. As for entanglement witnesses, cf. Sec. 1.3, a false negative (i.e., identifying
a nonclassical state as classical) is acceptable (and, in our case, unavoidable) while a false
positive should not occur. Therefore, in the following, we choose the threshold value t =
0.9, a choice that can be adapted according to specific situations.

In this context, we want to emphasize that the NN nonclassicality prediction only pro-
vides an indication of whether a state is classical or nonclassical. A robust certification and
verification of nonclassicality must necessarily rely on proven nonclassicality conditions
and an appropriate discussion of statistical errors (similar to violations of Bell inequalities
discussed in Ch. 3). Furthermore, even if the NN performs well on the states used in the
training, there is no guarantee that it correctly classifies a state that has not been seen in the
training. Here, again, a “pessimistic” NN is more valuable: false negatives are acceptable
while false positives are not. This behaviour can either be achieved by includingmore types
of classical states in the training (so more types of them must be recognized as classical),
or by increasing the threshold value t.

We can now discuss the performance of the NN nonclassicality prediction in and be-

efficiency in accordance with Ch. 3.

https://keras.io/
https://www.tensorflow.org/
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Figure 4.3: Nonclassicality prediction r of the neural network (NN) for the different families of states in the
training data, consisting of classical states (top; coherent, mixtures of coherent, thermal) and nonclassical
states (bottom; Fock, squeezed-coherent, single-photon-added coherent). α is the coherent amplitude, n̄
is the average photon number, and n is the number of photons. The grey line is the threshold value t =
0.9 above which the NN predicts nonclassicality. For the Fock states, each n is tested four times. For the
squeezed-coherent states, the randomly chosen squeezing parameter ξ ∈ [0.5, 1] is not shown in the plot.

yond the training set. In Fig. 4.3, we show the NN’s nonclassicality prediction r for the
different states that have been used in the training. For each family of states, we plot r for
24 different simulations of the HD measurement for different parameters of the states. We
see that the NN succeeds in correctly classifying all states used in the training phase.

NNs performance on experimental data from squeezed states

We now test the trained NN on data from real quantum-optical experiments. We first con-
sider the detection of nonclassicality for squeezed states. The experiment was conducted
in the group of B. Hage at the University of Rostock8.

A brief sketch of the experimental setup to generate and measure squeezed states is
shown in Fig. 4.4. A laser generates a coherent beam (532nm) that is split into a LO beam
and a frequency-doubled (FD) pump beam (1064nm). The frequency-doubled pump
beam enters an optical parametric amplifier (OPA).TheOPAconsists of a nonlinear optical
crystal (7%MgO:LiNbO3) that, when pumped in the strong regime, effectively acts as the
squeezing operator S(ξ) = e(ξa†2+ξ∗a2)/2 on the initial (red, not frequency-doubled) mode
that is in its vacuum state in the OPA [318]. For more technical details of the experimental
setup, we refer to Ref. [399].

The squeezed-state experimental data were recorded while continuously changing the
quadrature angle ϕ ∈ [0, 2π]. We have divided the data into 125 groups such that
each group consists of ∼ 16000 measurement points that were taken in the interval

8We thank B. Hage for kindly providing the experimental quadrature data for the measurement of the
squeezed states.
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laser OPA
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Figure 4.4: Experimental setup to generate and measure squeezed states with an optical parametric amplifier
(OPA). A laser generates a local oscialltor (LO; red) beam and a frequency-doubled pump beam (green).
The pump beam enters the OPA, a nonlinear crystal, resulting in a squeezing operation acting on the initial
mode (red, that is prepared in the vacuum state) [318]. Finally, using the LO beam, the outcoming mode is
measured in homodyne detection (HD). For technical details see Ref. [399].
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Figure 4.5: Bottom: The nonclassicality prediction r of the trained neural network (NN) for experimental
homodyne detection (HD) data of squeezed states for measurements along different quadrature angles ϕ
(blue), compared to the variance of the same data (yellow). Shaded areas indicate where the NN and the
sub-shot-noise condition for the variance predict nonclassicality. Top: Exemplary quadrature distributions
that are broader (left; ϕ = 0) or narrower (right; ϕ = π/2) than the vacuum quadrature distribution (dashed
line). The figure is taken from Ref. [3].

∆ϕ = 2π/125 (the small phase difference within each group is negligible with respect to
experimental phase fluctuations). From each group, we construct an input vector for the
NN and test its nonclassicality prediction r. The prediction r is shown as the blue points
in Fig. 4.4. We also include two exemplary homodyne distributions on top of Fig. 4.4 for
quadrature angles ϕ that result in a broader (left; solid line; ϕ = 0) and a narrower (right;
solid line; ϕ = π/2) distribution than that of the vacuum state (dashed lines).

Furthermore, we include the well-known nonclassicality criterion of sub-shot-noise
variance as yellow points in Fig. 4.4. This criterion says that any quadrature distribution
with a variance smaller than the vacuum variance, Var[x(ϕ)] < 1/4, can only stem from a
measurement of a nonclassical state. We observe that the NN prediction and the sub-shot-
noise criterion detect nonclassicality in the same parameter domain.

To summarize, we confirm that the NN (that was trained with squeezed states) is able
to correctly learn the sub-shot-noise criterion of nonclassicality and is able to correctly pre-
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Figure 4.6: Experimental setup to generate and measure single-photon-added coherent states (SPACS). A
laser produces a signal beam and a frequency-doubled pump beam. After branching off the local oscillator
(LO) with a beam splitter, the signal beam enters a parametric-down-conversion (PDC) crystal together with
a vacuum mode (dotted line). Heralded by the detection of a single photon in the trigger detector, the signal
beam is prepared in a SPACS and measured by homodyne detection (HD).

dict nonclassicality of experimental data from squeezed states. If one was only interested
in the sub-shot-noise feature of nonclassicality, the well-known sub-shot-noise condition
of the variance would suffice. However, as we see below, the NN also recognizes other
nonclassicality features beyond sub-shot-noise variance, making it advantageous for other
nonclassical states or for situations where the type of the state is not known.

We also note that for the NN nonclassicality prediction, there is no need to know the
exact parameters of the experiment such as the squeezing parameter |ξ| or the detection
efficiency η. This shows the easy applicability and practicability of the NN nonclassicality
identification, for instance when searching for optimal experimental parameters.

NNs performance on experimental data from SPACS

Next, we test the NN on experimental HD data from a second family of nonclassical states,
single-photon-added coherent states (SPACS).The experimental data were recorded in the
group of M. Bellini and A. Zavatta in the University of Florence.

SPACS represent an interesting class of states to test the performance of theNNbecause
they exhibit a variety of different nonclassical features. First, note that for any seed coherent
state |α〉, SPACS are nonclassical. However, for large seed coherent amplitudes α, they
strongly resemble slightly displaced coherent states (see below). For small seed amplitudes,
they show the nonclassical features of single photon Fock states such as the negativity of the
Wigner function. Finally, for intermediate amplitudes, they show quadrature squeezing in
optimal quadrature angles, as we also discuss below.

To create SPACS, one has to apply the creation operator a† on a coherent state |α〉.
The experimental setup to create and measure SPACS in HD is shown in Fig. 4.6. Again,
a laser produces a signal beam and a frequency-doubled pump beam. A BS is used to
branch off the LO reference beam. Then, the signal beam enters a type-I beta-barium
borate crystal that induces parametric down conversion (PDC), when pumped with an
intense frequency-doubled pumpbeam. ThePDCprocess acts on the two incomingmodes
a1 and a2 (of which one is the signal beam prepared in the coherent state |α〉, and the
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second is in the vacuum state |0〉 indicated as the dotted line) by means of [318, 400]

UPDC |α〉 |0〉 = eg(a†
1a

†
2−a1a2) |α〉 |0〉 (4.12)

= (1 + ga†
1a

†
2) |α〉 |0〉+O(g2) (4.13)

= |α〉 |0〉+ ga†
1 |α〉 |1〉+O(g2), (4.14)

where, in the second equality, we have assumed a small parametric gain, g � 1. Hence, we
see that if we detect a single photon in the additional outgoing mode, the signal outgoing
mode is prepared as a SPACS.We thus include a trigger photo detector after the PDCcrystal
to herald the creation of a SPACS which is finally measured using HD. For more technical
details of the experiment, see Refs. [3, 400].

The experimental data consist of HD measurements of SPACS with 14 different seed
coherent amplitudes α. For each α, the SPACS are measured along 11 different quadrature
angles ϕ, and data from 15963 measurements per quadrature angle and α are collected.
Each of these sets of results creates an input vector of the NN. Different sources of noise
such as a beam mismatch, optical losses, electronic noise, and detector efficiency all result
in an overall detection efficiency of η ≈ 0.6 (this is why we have simulated the training
data using a similar η).

In Fig. 4.7, we show the performance of theNNon the experimentalHDdata of SPACS.
In Fig. 4.7(a; bottom), we plot the binary prediction of the NN as a function of the seed
coherent amplitude α and the quadrature angle ϕ. Here, experimental data that are classi-
fied as nonclassical by the NN (i.e., data resulting in an output r > 0.9) are marked yellow,
while data that are classified as classical are colored in blue. Furthermore, in Fig. 4.7(b), we
explicitly plot the output of theNN, r, along sinϕ ≈ 0. We can identify different parameter
ranges: For small α, the NN correctly classifies the data as nonclassical. For intermediate
α, SPACS are only identified as nonclassical along sinϕ ≈ 0. For largerα, the NN does not
recognize the nonclassicality of SPACS anymore. For comparison, we show the prediction
of the NN for experimental data of (classical) coherent states for the same parameters as
in Fig. 4.7(c).

To better understand the performance and the difficulties of the nonclassicality iden-
tification by the NN, we include a few exemplary homodyne distributions p(x) on top
of Fig. 4.7(a). For small α < 0.5, the homodyne distributions resemble the ones of a
single-photon Fock state and are recognized as nonclassical (see the homodyne distribu-
tions for α = 0.32). Furthermore, for intermediate α, the quadrature distributions differ
from the ones of coherent states in the optimal directions (sinϕ = 0), while in other di-
rections, the distribution is very similar to the ones of coherent states. Finally, for larger
α > 3, SPACS start to resemble coherent states with a slightly displaced coherent am-
plitude [400, 401, 402] and are thus classified as classical in any direction. In the shown
homodyne distributions for α = 1.9 and α = 3.2, we see the resemblance to coherent
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Figure 4.7: (a) bottom: Binary nonclassicality prediction of the neural network (NN) for experimental homo-
dyne detection (HD) data from single-photon-added coherent states (SPACS) with different seed coherent
amplitudes α and measured along different quadrature angles ϕ. Data classified as nonclassical (classical)
are shown as yellow (blue) points. top: Exemplary quadrature distributions for different combinations of α
and ϕ. (b) Nonclassicality prediction r of the NN for SPACS measured along sinϕ = 0. (c) Nonclassicality
prediction of the NN for coherent states with the same parameters and measurement settings as in (b). The
figure is taken from Ref. [3].

state distributions and thus the difficulty of the classification task in this regime. Actually,
due to these similarities, we have only used SPACS for α < 3 and sinϕ = 0 in the training
because, otherwise, the NN is trained with similar distributions with different labels and
thus might falsely classify coherent states as nonclassical.

To summarize, we see that the NN is able to recognize different nonclassical features
of SPACS. In particular, in the optimal direction sinϕ ≈ 0, nonclassicality is identified
for a wide range of seed coherent amplitudes. This highlights the strength and flexibility
of the NN to identify optimal parameter settings for multiple nonclassical features. In
the following, we will see in detail that the NN learns to recognize different features as
nonclassical, even beyond sub-shot-noise variance or similarity to Fock states.
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Figure 4.8: Nonclassicality prediction rnoSPACS of a neural network (NN) that was trained without single-
photon-added coherent states (SPACS), on simulated measurement data of SPACS (blue) as a function of
the seed coherent amplitude α. For comparison, we show the variance of the same data in yellow. Shaded
regions indicate where the NN and the sub-shot-noise variance condition recognize nonclassicality. The
figure is taken from Ref. [3].

Beyond single-feature recognition

To examine which nonclassical features are recognized by the NN, we compare the output
r of the NN that we have discussed above, with the output rnoSPACS of a NN that is trained
with the same training states as above but excluding SPACS. We compare the two NNs on
simulated measurement data of SPACS along a quadrature angle ϕ = 0. The prediction of
the NN trained with SPACS was shown above in Fig. 4.3, where all simulated data in the
considered parameter regime was classified as nonclassical (r ≈ 1).

In contrast, the prediction rnoSPACS of the NN trained without SPACS in shown in blue
in Fig. 4.8. We see that the NN recognizes SPACS as nonclassical for small seed coherent
amplitudes |α| < 0.5 and again for intermediate amplitudes |α| ∈ [1, 2]. To understand
this behaviour, we also show the variance of the simulated data as yellow points in Fig. 4.8.
We see that, for |α| > 1, SPACS measured along ϕ = 0 show a sub-shot-noise variance,
Var[x] < 1/4. However, for increasing |α|, the variance approaches the variance of a
vacuum or coherent state (Var[x] = 1/4). Since coherent states are (and should be) clas-
sified as classical, the NN only identifies the sub-shot-noise variance in the intermediate
regime. Furthermore, for small α, SPACS resemble single-photon Fock states, as we dis-
cussed above, and are thus also recognized as nonclassical.

This analysis shows two points. First, as commonly seen in the training of NNs, theNN
exhibits some (but limited) generalizability beyond the data that were used in the training.
Here, this is due to similarities of the different families of states. Second, we see that the
NN trained with SPACS must learn to recognize different features as nonclassical: Beyond
sub-shot-noise and Fock state features, it also learns nonclassical features that cannot be
recognized by the latter. The nonclassicality feature in this case would be “similarity to
SPACS”. Note that this discussion also highlights the necessity of a deep NN architecture



Chapter 4. Verification: Detection of nonclassicality by neural networks 113

for the task of learning different nonclassicality features: simple models such as, e.g., linear
regression, are not able to recognize these different nonclassical characteristics.

To conclude, we see that the NN effectively learns to recognize multiple features of the
quadrature distributions as nonclassical at the same time. This can be advantageous be-
cause, usually, different tests must be conducted to see the different features. Furthermore,
we see that also states that were not used in the training phase can be correctly recognized
as nonclassical. Next, we will further elaborate and examine this second point.

NNs performance beyond training data

Now, we test the NN (that was trained with SPACS) on a further class of states that was
not used in the training. Due to their popularity in foundational questions and quantum
technological applications, we consider the class of the so-called (odd) cat states

|α−〉 = 1√
2− 2e−2|α|2

(|α〉 − |−α〉). (4.15)

As a superposition (and not a mixture) of two coherent states, cat states are nonclassical
for all α.

In Fig. 4.9, we show the NN’s prediction r as a function of α for the quadrature an-
gles ϕ = π/2 (a) and ϕ = π/4 (a). For both quadrature angles, cat states are recognized
as nonclassical in a wide range of α. In particular, cat states are seen as nonclassical in
the regions of small α. This behaviour can be understood by the fact that, in this param-
eter range, odd cat states resemble single-photon Fock states (in fact, one can show that
limα→0 |α−〉 = |1〉). For larger α, cat states are not classified as nonclassical anymore.
Surprisingly, the NN detects nonclassicality in a larger domain when measured in the
quadrature direction ϕ = π/4 (note that, for perfect efficiencies, cat states show the most
nonclassical features, i.e., fast oscillations, in their quadrature distribution along ϕ = π/2,
while along ϕ = 0, the distribution coincides with the one of a mixture of coherent states).

Again, to better understand the prediction of the NN, we show exemplary homodyne
distributions above the plots in Fig. 4.9. Here, we include the quadrature distribution with
a realistic detection efficiency η = 0.6 (solid lines; that was used in the simulation of the
measurement data) and the one of an ideal noiseless situation with detection efficiency η =
1 (dashed lines). In the noiseless case, the quadrature distribution shows fast oscillations
(indicating nonclassicality) for any α when measured in the optimal direction ϕ = π/2.
However, the finite efficiency effectively smooths away the interference pattern such that
the distributions approach the ones of a coherent state. In contrast, when measured along
ϕ = π/4, the distribution longer shows a double-peak structure that partially resembles
the distribution generated by a multi-photon Fock state. Thus, for ϕ = π/4, cat states are
recognized as nonclassical in a larger parameter domain.

At this point, we again want to emphasize an important caveat of the NN approach



Chapter 4. Verification: Detection of nonclassicality by neural networks 114

(a) (b)

Figure 4.9: Nonclassicality prediction r of the neural network (NN) for simulated measurement data of odd
cat states |α−〉 as a function of α, when measured along the quadrature angles ϕ = π/2 (a) and ϕ/4 (b).
Above the plots, we show exemplary quadrature distributions for a realistic detection efficiency η = 0.6
(solid lines; which was used in the simulation of the measurement data) and an ideal detection efficiency
η = 1 (dashed lines). The figure is taken from Ref. [3].

to identify nonclassicality. An optimal choice of the training data is crucial for a correct
operation of the NN nonclassicality prediction. This point can be easily understood by
means of an example: as we mentioned above, we have trained the NN with the mixture
of coherent states of the form ρmix = (|α〉 〈α| + |−α〉 〈−α|)/2. If we instead choose to
use only phase-averaged coherent states in the training, the NN classifies the states ρmix

and thus also cat states measured along ϕ = 0 as nonclassical for larger values of α. This
false classification of the classical states ρmix highlights the limit of the NN nonclassicality
identification: generally, there could always exist a classical state that is falsely classified as
nonclassical by theNN.This shows that the exact experimental conditions have to be taken
into account when choosing the optimal set of training states of the NN. Furthermore,
it highlights that the NN cannot be seen as a universal nonclassicality certification. For
such a certification of nonclassicality, proven nonclassicality conditions have to be checked
including a proper discussion of statistical errors.

Influence of the sample size and practical advantage

Finally, we briefly want to mention a last beneficial characteristic of the NN approach that
shows its applicability as a fast nonclassicality indicator requiring only small amounts of
measurement data. We again test the performance of the NN trained above on experi-
mental data of SPACS – but now we reduce the sample size that is used to construct the
normalized histogram used as an input. In Fig. 4.10, we show the NN’s prediction r for
experimental data of SPACS and coherent states for the parameters α = 0.32 and ϕ = 0,
as a function of the sample size. We see that the NN (that was trained using a sample size
of 16000, as indicated by the vertical line) correctly classifies both states even for largely
reduced sample sizes. Only for very small sample sizes (≤ 800), the NN shows a finite
error rate such that it cannot further be used as a NN classifier.

This analysis demonstrates that the NN is very flexible when applied to experimental
data, even once trained. Furthermore, its prediction holds valid until the sample size is
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Figure 4.10: Nonclassicality prediction r of the neural network (NN) for experimental data of single-photon-
added coherent states (SPACS; yellow) and coherent states (blue) for the parameters α = 0.32 and ϕ = 0, as
a function of the sample size that is used to construct the input vector of the NN. The vertical line indicates
the sample size that was used in the training phase. The figure is taken from Ref. [3].

significantly reduced. We thus see that the NN offers a very practical tool for fast online
classification during measurements or fast (pre-)sorting of measurement data. Finally, we
note that the performance of the NN on small sample sizes can be further improved by
training it with measurement data that are simulated using the same sample size.

4.4 Nonclassicality detection with click-counting
measurements

In this section, we consider a second commonly applied measurement method in quan-
tum optics, the technique of multiplexed click-counting measurements. In Sec. 4.4.1, we
first introduce this measurement protocol and briefly discuss how it can be used to certify
nonclassicality. Then, in Sec. 4.4.2, we again train a NN via supervised learning to identify
nonclassicality for different quantum-optical states from their simulated click-counting
measurement data. The results of this section are published in Ref. [4].

4.4.1 Multiplexed click-counting measurements

The technique of multiplexed click-counting measurements is similar to photon-counting
measurements that measure the observable n = a†a. However, instead of using a number-
resolving photodetector, the incoming mode is divided into several modes (i.e., it is multi-
plexed) that are each measured with an on-off detector, see, e.g., Refs. [403, 404, 405]. An
on-off detector is a photodetector that has a binary output, indicating either the presence of
(any number of) photons or the absence of photons. Ideally, an on-off detector is described
by the POVMelementsm = |0〉 〈0| (no photon detected; no click) andm⊥ = 1−m (click).

There are different ways to split the incoming mode into multiple detection modes.
Three possibilities are shown in Fig. 4.11: (a) the spatial profile of the incoming beam
can be widened by lenses and fed into different detectors, (b) the beam can be divided
into several temporal modes (in so-called time-bin multiplexing), or (c) the beam can be
divided into different spatial modes by means of beam splitters. Finally, each multiplexed
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Figure 4.11: Different techniques of multiplexing an incoming mode, by means of an (a) array detector,
(b) temporal multiplexing, or (c) spatial multiplexing. The multiplexed modes are measured with on-off
detectors. Here, the incoming beam is multiplexed into four modes.

mode is detected in an on-off detector. While in Fig. 4.11, we show these multiplexing
techniques for N = 4 multiplexed modes, similar constructions can produce N = 2n

(n ∈ N) multiplexed modes. Later in this section, we will focus on multiplexing with
N = 16 measurement modes.

The outcome of the multiplexed click-counting detection is the total number of
recorded clicks (indicated as the⊕-element in Fig. 4.11). In other words, we do not record
which detectors have produced the clicks. Thus, the measurement with N multiplexed
modes has N + 1 different outcomes k ∈ {0, . . . , N}. If we have balanced multiplexing
(i.e., the incoming beam is divided with equal intensities into the multiplexed modes), the
probability pk to observe k clicks is given by the generalized binomial distribution9 [406]

pk =
〈

:
(
N

k

)(
e−ηn/N

)N−k (
1− e−ηn/N

)k
:
〉
, (4.16)

where 〈·〉 = tr[ρ·] is the expectation with respect to the state ρ, n = a†a is the number
operator and η is the detection efficiency of the on-off detectors. Furthermore, : · : is the
normal-ordering operation that moves all creation operators a on the right of the annihi-
lation operators a† without respecting their commutation relations10 [318].

The multiplexed click-counting measurement technique represents a simplification of
the photon-number-resolving measurement because it only requires the simpler on-off

9To make the analogy to the binomial distribution even clearer, we note that the “no-click” POVM ele-
ment of the on-off detector is [406]

m = |0〉 〈0| =: e−ηn :,

where, as in Sec. 4.3.2, the finite detection efficiency η is modeled by a beam splitter with a transmission coef-
ficient√η before the on-off detectors, effectively resulting in the transformation a 7→ √ηa. Thus, Eq. (4.16)
can be informally understood as the binomial distribution

(
N
k

)
pk(1−p)N−k with p = 1−e−ηn/N represent-

ing the probability of a click, and the number operator n is divided by N due to the balanced multiplexing
intoN modes. For a rigorous derivation and a discussion we refer to Ref. [406].

10We emphasize that the normal-ordering operation : · : does not take into account bosonic commutation
relations and, therefore, results in a different operator. This is different to simply rewriting an operator in its
normally ordered form by means of the bosonic commutation relations, a technique that we have used in
Sec. 4.1.1.
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detectors (but, importantly, does not give access to the complete number distribution of
the state [406]). Furthermore, in contrast to the homodyne detection method discussed
in Sec. 4.3, it does not require a reference mode. This results in a phase insensitivity of the
click-counting measurements that shows that click-counting measurements do not form
a complete measurement basis that can be used for quantum state tomography. However,
similar to photon-number-resolving measurements, even the restricted information from
click-counting measurements can be used to certify nonclassicality, as we briefly discuss
in the following.

Certifying nonclassicality in click-counting measurements

Different nonclassicality-certification techniques for multiplexed click-counting measure-
ment have been developed. First, the Mandel QM parameter, that detects sub-Poissonian
statistics as a nonclassical feature of quantum states of light [407], has been generalized
to multiplexed click-counting measurements [406, 408], an approach that has proven suc-
cessful to demonstrate nonclassicality in experiments [409]. Furthermore, nonclassicality
conditions including higher moments of the number distribution have been derived [410]:
the so-called matrix of moments M that is defined as

Mij =
〈
: (1− e−ηn/N)i+j :

〉
, (4.17)

with i, j ∈ {0, . . . , bN/2c} (b·c is the floor function), has to be positive semidefinite if it
stems from the measurement of a classical state of light [410]. Furthermore, the elements
of M can be directly sampled inmultiplexed click-countingmeasurements [410, 411]. The
matrix-of-moments method has also been successfully applied in experiments to demon-
strate nonclassicality of several quantum-optical states [411, 412, 413].

Various nonclassicality conditions can be derived from the condition that Eq. (4.17) is
positive semidefinite. The easiest condition is the positivity the upper left submatrix of M,

M(2) =

 1
〈
: 1− e−ηn/N :

〉
〈
: 1− e−ηn/N :

〉 〈
: (1− e−ηn/N)2 :

〉
 . (4.18)

If the smallest eigenvalue xmom of M(2) is significantly negative, the measured state has to
be nonclassical. Later, in Sec. 4.4.2, we will compare the nonclassicality prediction of a NN
to this matrix-of-moments condition.

Finally, we note that nonclassicality conditions have also been derived for different
generalizations of balanced multiplexed click-counting measurement techniques, such as
a combination of click-counting and unbalanced homodyne measurements [414, 415], or
unbalanced multiplexed click-counting measurements [416], leading to a detector-device-
independent verification of nonclassicality in multiplexed measurements [417].
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4.4.2 Identifying nonclassicality with NNs from click-counting mea-
surement data

We now train an artificial neural network (NN) to recognize nonclassicality of typical
quantum-optical states from their multiplexed click-counting data. We will focus on the
regime of small sample sizes for which the NN approach outperforms other nonclassicality
conditions. Furthermore, we focus on detecting nonclassicality in the few-photon regime
(n̄ < 16, where n̄ is the mean photon number of the measured states) and thus choose
a multiplexing strategy with N = 16 final detection modes, cf. Fig. 4.11. We note that
for states that contain more photons, the state must be multiplexed into more detection
modes because, otherwise, the on-off detectors saturate and simply always register a click,
independent of the quantum-optical state. If the mean photon number in experiment is
further restricted, also a multiplexing in fewer modes can be sufficient.

Training the NN

As in Sec. 4.3, we train a NN using supervised learning with different classical and non-
classical states to learn nonclassical features of typical quantum-optical states. The input
data of the NN consists of a sampled estimation of the multiplexed click-counting proba-
bilities, Eq. (4.16). Recall that the outcome of a single multiplexed experiment is the total
number of clicks k ∈ {0, . . . , 16}. Thus, the input layers of the NN contains 17 neurons,
and an input data vector is a normalized histogram constructed with (simulated) data from
m repetitions of the multiplexed click-counting measurement. We want to primarily focus
on small sample sizes that highlight the advantages of the NN approach and hence con-
siderm = 1000 andm = 100. Furthermore, we first discuss the case of perfect detection
efficiency of the detectors (η = 1) and then investigate the case of a realistic detection
efficiency η = 0.6 (see also Sec. 4.3).

The optimal architecture of the NN slightly varies with the quality of the measurement
data (such as sample sizem and efficiency η). We have found a good performance of the
NN for three hidden layers containing each 50 neurons which are activated by the rectified
linear unit. The output is again only one neuron (here activated by a sigmoid function),
serving as the NN nonclassicality prediction. The NN is implemented with the python
libraries keras and tensorflow.

In the training phase, we have used simulated measurement data of coherent and ther-
mal states for the classical states (equippedwith the label “0”) and Fock and squeezed states
for the nonclassical states (label “1”). The training data consist of 1000 measurement his-
tograms per type of state, each of which is generated by the simulation of m single click-
counting measurements. For each histogram, the state’s parameters are chosen randomly
such that the mean photon number n̄ is distributed uniformly in n̄ ∈ [1, . . . , 16] (with a
discrete distribution for Fock states). Formore details of the simulation and the calculation

https://keras.io/
https://www.tensorflow.org/
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of the click probabilities for the different types of states using Eq. (4.16), see Appendix B.
The simulated data are shuffled and split into training data (80%) and validation data (20%)
to avoid overfitting (cf. Secs. 4.2 and 4.3 for discussions of overfitting). The NN is trained
byminimizing themean squared error via the optimization algorithmADAM [398]. After
each training epoch, the performance of the NN on the validation data is computed. The
training is halted after the validation error increases for 10 training epochs.

We finally want to note that, for the task of recognizing nonclassicality from multi-
plexed click-counting measurements, the complexity and curve-fitting potential of deep
NNs is required: taking a simple linear regression model as a baseline model for the same
task, the classification of nonclassicality in the training data is inaccessible (see Fig. 3 in
Ref. [4]).

NNs performance with perfect detectors

We now first consider a multiplexed click-counting measurement with ideal detection ef-
ficiency η = 1. In Fig. 4.12, we show the performance of the NN nonclassicality identi-
fication for sample sizes m = 1000 (a) and m = 100 (b). For this purpose, we simulate
100 input histograms for each family of states with mean photon numbers in n̄ ∈ [1, 16]
(note that for Fock states, we use n = bn̄c). As in Sec. 4.3, we choose a threshold value
of t = 0.9, indicated as the gray horizontal line. If the NN’s output r is larger than the
threshold, r > t, we say that the NN predicts nonclassicality. Recall that the choice of this
threshold is arbitrary. However, a high threshold value is sensible because, ideally, there
should be no false positives (i.e., classical states that are identified as nonclassical).

We see that for both sample sizes, theNNcorrectly learns to separate data from classical
and nonclassical states of the training families. Note that for the small sample sizes m =
100, the NN’s output begins to fluctuate. This shows that even smaller sample sizes result
in a finite probability for a false nonclassicality detection of a classical state, such that the
NN prediction is not reliable anymore. However, we want to emphasize that the sample
size ofm = 100 is already very small and it is surprising how well the NN can still separate
the classical and nonclassical states. Furthermore, we note that due to the normalized
form of the NN’s input (the normalized histogram of sampled frequencies), a NN that is
trained with a specific sample size also shows a very good performance for classifying data
generated with a different sample size.

Now, we want to compare the nonclassicality prediction of the NN to the well-
established nonclassicality condition of the matrix of moments, see Sec. 4.4.1 for an in-
troduction and Ref. [410] for details. For this purpose, for each input measurement data,
we compute the smallest eigenvalue xmom of the 2 × 2-submatrix M(2) of the matrix of
moments, cf. Eq. (4.18)11. To obtain a significant nonclassicality detection without false

11Actually, in the following analysis, we do not compute the smallest eigenvalue of Eq. (4.18) but the
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(a) (b)

(d)(c)

Figure 4.12: (a,c) Nonclassicality prediction r of the neural network (NN) for simulated multiplexed click-
counting measurement data with perfect detectors, η = 1, generated from the training states (coherent and
thermal states as classical and squeezed and Fock states as nonclassical) for input histograms constructed
from sample sizesm = 1000 (a) andm = 100 (c), depending on the mean number of photons n̄. For the
simulation of Fock states, we used a photon number n = bn̄c. For each state family, we have simulated 1000
input vectors. (b,d) Nonclassicality detection rmom of thematrix-of-momentsmethod (cf. Eq. (4.19)) for the
same measurement data as in (a) and (c). Gray horizontal lines indicate the (chosen) threshold value above
which nonclassicality is predicted.

positives, a proper investigation of error bars is necessary. Thus, we also compute the error
of xmom, ∆mom, and define the nonclassicality prediction using the matrix of moments as

rmom = − xmom

∆mom
. (4.19)

The calculation of the error ∆mom from measurement data is explained in detail in the
supplementary information of Ref. [411]. We say that the matrix-of-moments method
shows nonclassicality if rmom > 3, corresponding to an xmom that is negative by three

smallest eigenvalue of the matrix

M̃(2) =

[
1

〈
: e−ηn/N :

〉〈
: e−ηn/N :

〉 〈
: e−2ηn/N :

〉] .
Thecorresponding nonclassicality criterion is shown to be equivalent, i.e., the abovematrix fails to be positive
semidefinite whenever Eq. (4.18) does, see Appendix A of Ref. [418].
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standard deviations. Again, this threshold value can be chosen differently, depending on
how much one wants to suppress a false-positive rate.

The matrix-of-moment prediction rmom of nonclassicality is shown in Fig. 4.12 for
m = 1000 (b) and m = 100 (d). Note that if rmom < 0, we plot rmom = 0 for better
visualization. We see that the matrix-of-moments method is insensitive to the nonclas-
sicality of squeezed states and never detects them as nonclassical. For m = 1000, Fock
states are recognized for small photon numbers n < 8, while for m = 100, the negativ-
ity of xmom is not significant enough to detect nonclassicality. We also checked that the
nonclassicality detection of the matrix-of-moments methods only slightly increases when
considering higher moments (up to the full 8× 8 matrix of moments, cf. Eq. (4.17)), and
also here squeezed states are never detected as nonclassical. Thus, we see that the NN non-
classicality identification is more sensitive than the matrix-of-moments conditions (Fock
states) and even predicts nonclassicality for states for which the matrix-of-moments non-
classicality detection fails completely (squeezed states).

Next, we test the nonclassicality prediction of the NN for different kinds of states that
were not included in the training phase. In Fig. 4.13, we show the predictions of the NNs
trained above for two new kinds of states: we first consider the nonclassical states of n-
photon-added thermal states (NPATS), defined as ρNPATS = Na†nρtha

n (N is a normal-
ization constant), that are thermal states acted upon n times with the creation operator
(compare with single-photon-added coherent states in Sec. 4.3). We simulate measure-
ment data from NPATS for n = 1 (gray) and n = 2 (yellow). Second, we test the NN
on even coherent states |α+〉 = Ñ (|α〉 + |−α〉) (Ñ is a normalization constant) that are
similar to the cat states or odd coherent states tested in Sec. 4.3 and are also nonclassical
for all |α| > 0.

We see that NPATS are only recognized as nonclassical for small initial seedmean pho-
ton numbers of the thermal state. In this regime, they strongly resemble single-photon and
two-photon Fock states. For larger seed mean photon numbers, NPATS are very similar
to thermal states and are thus seen as classical. On the other hand, even coherent states
are recognized in a significant parameter range (|α| < 4), highlighting that the NN also
generalizes beyond data from its training phase. For larger values of |α|, the two coherent
states in the superposition of |α+〉 become increasingly orthogonal, such that the resulting
distribution approaches a mixture of the two coherent states. We also note that the per-
formance is similar for the sample sizes m = 1000 (a) and m = 100 (c), showing again
the surprising performance of the NN for small sample sizes. In comparison, we show the
methods-of-moments nonclassicality prediction rmom for the same data as in parts (a,c).
This method does only recognize nonclassicality in the regime where the NPATS coincide
with Fock states, and never recognizes nonclassicality for even coherent states.

Finally, we test the prediction of the NN for a mixture of a classical and a nonclassical
state. In particular, we consider a mixture of a Fock state |n〉 and a coherent state |α〉 with
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(a) (b)

(d)(c)

Figure 4.13: (a,c) Nonclassicality prediction r of the neural network (NN) for simulated multiplexed click-
counting measurement data with perfect detectors, η = 1, generated from nonclassical n-photon-added
thermal states (NPATS; n = 1 in gray and n = 2 in yellow) and even coherent states (both of which were not
included in the training of the NN) for sample sizesm = 1000 (a) andm = 100 (c), depending on the mean
number of photons n̄. For each state family, we have simulated 1000 input vectors. (b,d) Nonclassicality
detection rmom of the matrix-of-moments method for the same measurement data as in (a) and (c). Gray
horizontal lines indicate the (chosen) threshold value above which nonclassicality is predicted.

the smae mean photon number, |α|2 = n, given by

ρ = p |α〉 〈α|+ (1− p) |n〉 〈n| , (4.20)

where p ∈ [0, 1] parametrizes the weights of the mixture. In Fig. 4.14(a), we show the
nonclassicality prediction r of the NN as a function of the parameter p for three differ-
ent mean photon numbers, n = 3, 8, and 15. Here we only consider a sample size of
m = 1000. The NN prediction monotonically decreases when the mixture is tuned from
nonclassical Fock states (p = 0) to classical coherent states (p = 1). Furthermore, non-
classicality is recognized in a significant range p < 0.4, slightly dependent on the mean
photon number. This quite balanced transition of the NN prediction shows that the NN is
not biased towards a classification of classicality or nonclassicality after the training phase.
In comparison, the matrix-of-moments nonclassicality prediction rmom only significantly
identifies nonclassicality of the mixed state of Eq. (4.20) for p ≈ 0.

We also want to note that due to the similarity of the NPATS to thermal states and the
similarity of even coherent state tomixtures of coherent states for largemean photon num-
bers n̄, an inclusion of these nonclassical states in the training phase would lead to worse
performances of the NN: the NN would essentially see the same input vector with two dif-
ferent labels (classical and nonclassical), such that the probability of a false nonclassicality
classification of, e.g., thermal states increases.

To summarize, we have seen that the NN successfully learns to separate classical from
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(a) (b)

Figure 4.14: (a) Nonclassicality prediction r of the neural network (NN) for simulated multiplexed click-
counting measurement data with perfect detectors, η = 1, generated from a mixture of a nonclassical Fock
state |n〉 (p = 0; n = 3, 8, 15) and a classical coherent state |α〉 (p = 1; |α|2 = n), cf. Eq. (4.20), depending
on the mixture weight p. We use a sample size of m = 1000. (b) Nonclassicality detection rmom of the
matrix-of-moments method for the same measurement data as in (a).

nonclassical features for several typical quantum-optical states that aremeasuredwithmul-
tiplexing strategies using perfect detectors, even for significantly small sample sizes. In this
regime, the NN nonclassicality prediction clearly outperforms the method-of-moments
nonclassicality condition. Furthermore, the NN also achieves a good performance for
measurement data from different (mixtures of) states that have not been included in the
training phase. Similar to what was seen in Sec. 4.3, these results highlight the potential of
NNs to be used as a direct, fast, and easy-to-implement nonclassicality indicator in multi-
plexed click-counting measurements, which can be adventurous in real-time monitoring
or (online) presorting or pre-selecting measurement data. In this context, we note again
that for a proper certification of nonclassicality, a proven nonclassicality condition (such
as the matrix-of-moments condition) has to be violated with an appropriate analysis of
statistical errors.

NNs performance with realistic detectors

Finally, we train and test the NN with measurement data from multiplexed click-counting
measurements that make use of realistic detection efficiencies η = 0.6. As in Sec. 4.3,
we consider a detection efficiency η = 0.6 which can be modeled as a beam splitter with a
transmission coefficient√η in each outgoing detectionmode. The inclusion of η in the de-
tection probabilities pk is shown in Eq. (4.16), for more details we refer to Appendix B. We
first note that due the finite detection efficiency η, the NNs trained in the previous section
do not result in a good classification of measurement data with finite detection efficiencies.
This is different from the good generalization of the NN to data generated from different
sample sizes and highlights that, if the NN approach is to be applied in an experiment, the
experimental details should be taken into account. Therefore, in the following, we show
the performance of NNs that were trained with data from finite detection efficiencies. The
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Figure 4.15: (a,c) Nonclassicality prediction r of the neural network (NN) for simulated multiplexed click-
counting measurement data with realistic detectors, η = 0.6, generated from the training states (coherent
and thermal states as classical and squeezed and Fock states as nonclassical) for sample sizesm = 1000 (a)
andm = 100 (c), depending on the mean number of photons n̄. For the simulation of Fock states, we used a
photon number n = bn̄c. For each state family, we have simulated 1000 input vectors. (b,d) Nonclassicality
detection rmom of the matrix-of-moments method for the same measurement data as in (a) and (c). Gray
horizontal lines indicate the (chosen) threshold value above which nonclassicality is predicted.

training settings and NN architecture is the same as in the previous section. The training
of a single NN with data from different detection efficiencies, such that, eventually, data
from several detection efficiencies are correctly classified, is an interesting direction for
future investigations.

The performance of the NN trained with a realistic detection efficiency of η = 0.6
on the different training states is shown in Fig. 4.15 for sample sizes of m = 1000 (a)
andm = 100 (b). We see that in both cases, the NN correctly learns to classify the differ-
ent training states. However, while the prediction of the NN for m = 1000 is solid, for
m = 100, the prediction is largely fluctuating. While it is remarkable that the NN predic-
tion still works in the regime of noisy detections and very small sample sizes, we clearly see
the limits of the NN approach: when further decreasing the sample sizem, the nonclassi-
cality prediction of the NN is not reliable anymore because there is a finite probability of
false positives. The conditions of Fig. 4.15(c) are just at the limit of the applicability of the
NN nonclassicality identification. Note that the false-positive rate could not be removed
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Figure 4.16: (a,c) Nonclassicality prediction r of the neural network (NN) for simulated multiplexed click-
counting measurement data with realistic detectors, η = 0.6, generated from nonclassical n-photon-added
thermal states (NPATS; n = 1 in gray and n = 2 in yellow) and even coherent states (both of which were not
included in the training of the NN) for sample sizesm = 1000 (a) andm = 100 (c), depending on the mean
number of photons n̄. For each state family, we have simulated 1000 input vectors. (b,d) Nonclassicality
detection rmom of the matrix-of-moments method for the same measurement data as in (a) and (c). Gray
horizontal lines indicate the (chosen) threshold value above which nonclassicality is predicted.

by simply increasing the threshold value t of the NN output. We also see that, for finite de-
tection efficiencies, the NN nonclassicality identification requires a larger (but still small)
minimal sample sizem than for ideal detection efficiencies. In comparison, we again show
the methods-of-moments nonclassicality prediction rmom (cf. Eq. (4.19)) in Fig. 4.15(b,d)
and see that the finite detection efficiency η results in no nonclassicality detection for all
the training states.

Finally, in Fig. 4.16(a,c), we show the nonclassicality prediction of the NN with fi-
nite detection efficiency for simulated measurement data from NPATS and even coherent
states, which both have not been used in the training phase. While the performance on
NPATS is similar to the one for perfect detection efficiency (cf. Fig. 4.13), even coherent
states are only recognized as nonclassical for |α| ≈ 1. This is because the interference
pattern of the superposition |α+〉 is very fragile to noise for larger η, as we have already
seen in Sec. 4.3.2 for odd cat states |α−〉 (cf. Fig. 4.9). We also see in Fig. 4.16(b,d) that for
all considered states, neither does the matrix-of-moments nonclassicality condition detect
nonclassicality.

4.5 Conclusions and outlook

In this chapter, we have employed artificial neural networks (NNs) to act as a nonclassical-
ity indicator for different single-mode quantum optical measurement techniques. Both for
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the measurement method of balanced homodyne detection (Sec. 4.3) and for multiplexed
click-counting measurements (Sec. 4.4), the NNs were successfully trained by supervised
learning to recognize the (non)classicality several types of classical and nonclassical states.
These include coherent, thermal, and mixtures of coherent states as classical states, and
Fock, squeezed, photon-added coherent states, photon-added thermal states, and cat states
(even and odd coherent states) as nonclassical states. For homodyne measurements, the
correct operation and the pratical usefulness of the NN was confirmed on experimental
measurement data from coherent, squeezed and single-photon-added coherent states. In
both measurement settings, the NNs were able to recognize nonclassicality from differ-
ent features (e.g., sub-shot-noise variance, or similarity to Fock states), and could partially
also recognize the nonclassicality of states that were not seen in the training phase. The
main advantage of the NN approach to predict nonclassicality is the regime of small sam-
ple sizes: the NNs perform remarkably well even for very small sample sizes, such that they
require much less measurements than conventional nonclassicality-certification methods
such as, e.g., methods based on full quantum state tomography or themoments of the click
distribution.

The NN nonclassicality prediction does not constitute a certification or verification of
nonclassicality but can merely act as an indicator. For a proper certification, a nonclas-
sicality test or witness has to be employed, together with an analysis of statistical errors.
Furthermore, tomaximize the performance and the applicability of the NN nonclassicality
identification, the specific experimental conditions should be taken into account. These
include knowledge about the different states that could possibly be produced in the ex-
periment, or different noise factors such phase noise, amplitude noise, or finite detection
efficiencies.

The high performance of the NN approach for small sample sizes and its easy imple-
mentation points to several possible applications: large amounts of experimental data can
be quickly presorted, or the NN prediction can even be applied online during the mea-
surement acquisition, e.g., to search for optimal experimental parameter settings. The ad-
vantages become significant especially when the measurement rate is low. Furthermore,
in contrast to different advanced methods of nonclassicality certification, e.g., requiring
sophisticated post-processing techniques such as quantum state tomography, the NN ap-
proach is easy to implement with openly-available software and does not require profound
knowledge of the underlying physical theory.

Finally, we briefly want to mention possible future research directions that originate
from our findings. First, to increase the NNs general performance and applicability also
beyond training data, further classical and nonclassical states can be included in the train-
ing, as well as a fluctuating detection efficiency. Also, further machine learning methods
such as convolutional NNs or regularization, or even other learning models such as re-
inforcement learning, can be examined to increase the generalizability of the NNs. Sec-
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ond, the NN approach can be applied to multimode quantum optical measurements (both
with homodyne and click-counting measurements), in order to train the NNs to identify
cross-correlations such as entanglement between the incoming modes, cf. also Ref. [388].
Finally, one can consider other physical systems such as, e.g., cold atoms, that go beyond
single-mode continuous-variable systems.
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In this chapter, we address to the field of applications of quantum resources by describ-
ing a new quantum technology, the Bayesian quantum multiphase estimation algorithm.
This algorithm enables one to measure multiple phases simultaneously with a precision
that shows Heisenberg scaling with respect to the total number of resources1 used in the

1In this context, the term “resources” should not be confused with the term “quantum resources” that has
been central to the previous chapters and that entitles this thesis. As we will further discuss in more detail
below, estimation tasks are specified by counting the number of some resource, or “physical” resource, that
is used in the estimation, in order to consistently compare different estimation strategies. Depending on the
specific estimation task, these resources are commonly taken as, e.g., the total number of particles, the total
number of applications of the phase shift, or the total number of applications of specific gates. In contrast,
after having fixed the number of physical resources, one can additionally make use of quantum resources to
achieve a better performance to what would be possible without quantum resources, i.e., with only “classical”
resources. Thus, quantum resources can lead to a quantum metrological advantage that is quantified after

129
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estimation procedure and provides a subroutine for quantum metrological and quantum
computational tasks.

In Sec. 5.1, we will first give a brief overview over the state of the art and the basic
notions of quantum single-phase estimation, quantum phase estimation algorithms, and
quantum multiphase estimation. Then, in Sec. 5.2, we introduce the Bayesian quantum
multiphase estimation algorithm, analyze its performance compared to existing multi-
phase estimation strategies and discuss different possible implementations.

5.1 Quantum phase estimation

The field of quantum phase estimation (QPE) aims to develop quantum technologies that
enable one to achieve a measurement precision that is out of reach for measurements that
make only use of classical resources. Here, as always when identifying any quantum ad-
vantage (cf. Sec. 1.2), the available resources for the measurement task are fixed such as,
e.g., the number of measurements or the physical resources that are used in each mea-
surement such as the (mean) number of particles or the number of applications of a phase
shift, see below. In the general investigation of precision measurements, the measurement
task is commonly associated with a phase estimation task because, eventually, all preci-
sion measurements of a continuous variable reduce to a phase estimation measurement of
some kind. In both quantum and classical phase estimation measurements, the phase can
never be directly measured but has to be inferred bymeans of some kind of interferometer:
phases always represent relative quantities that are only defined with respect to some phase
reference. The fact that there is no direct quantum mechanical phase measurement, is also
fundamentally explained by the insight that there is no phase observable [419].

It has been known for a long time that a clever use of quantum resources can result
in increased measurement precision with respect to classical measurement strategies [17,
420, 421, 422]. These pioneering proposals mostly focus on the use of squeezed states to
reduce the amount of intrinsic quantum noise in the measurement output distribution.
In recent years, the metrological quantum advantage has been demonstrated in several
physical systems such as, e.g., optics [423, 424] or cold atoms [141, 425]. In the following,
we will sketch the main ideas of the theory of phase estimation.

5.1.1 Quantum single-phase estimation

The most common approach to study the precision in QPE is the use of the quantum
Cramér–Rao bound [46, 47, 426, 427]. For an extensive review of the notions and detailed
proofs of the methods that we describe here, see Ref. [134]. Let us consider an interfer-
ometer in which we have prepared a quantum state ρ0 (i.e., ρ0 is the quantum state inside

fixing the physical resources that are used in the protocol.
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the interferometer directly before the phase imprinting). The phase shift θ that should be
estimated is then imprinted by the unitary e−iHθ, whereH is the Hamiltonian generating
the phase shift. Then, the quantum Cramér–Rao bound bounds the frequentist variance
(∆θ)2 of the estimated phase around the point θ with the quantum Fisher information
(QFI) according to

(∆θ)2 ≥ 1
mQFI(ρθ, H)

, (5.1)

where we have defined ρθ = e−iHθρ0e
iHθ andm is the number of repetitions of the mea-

surement.
The central role of the QFI in phase estimation and why quantum resources can lead to

an increased precision can be informally understood by the following observations. As we
have discussed in detail in Sec. 2.1.1, the QFI is a quantum statistical speed, meaning that it
is ameasure of how fast a quantum state becomes distinguishable from its initial state when
displaced by a phase. This phase difference can only be resolved if it has led to a significant
distinguishability of the initial and the displaced state. Therefore, a largerQFI impliesmore
distinguishability, which results in a smaller minimal phase difference that can be resolved.
Furthermore, as we have also discussed in Sec. 2.1.1, the QFI is subject to different speed
limits for different classes of states [27, 28, 29]. Roughly speaking, for separable states of
M qubits, the QFI is bounded as QFI ≤ M , leading to the well-known shot-noise limit
(∆θ)2 ≥ 1/M [36, 37]. On the other side, entangled states ofM qubits can exhibit values
up to themaximumof QFI = M2, leading to the optimalHeisenberg limit (∆θ)2 ≥ 1/M2

[27, 28, 29, 37]. The most prominent example of an entangled state ofM qubits that leads
to an optimal sensitivity is the N00N state2 |ψN00N〉 = (|0〉⊗M + |1〉⊗M)/

√
2.

We want to comment on a few important caveats of the quantum Cramér–Rao bound
and the QFI-approach to phase estimation. First, the bound of Eq. (5.1) is an asymptotic
result: it generally holds only in the limit of largem, the number of repetitions of the mea-
surement. The optimal precision is scaling as (∆θ)2 ∝ 1/(mM2) but the total number of
used resources (here the number of qubits) is actually NT = m ×M and not M . Thus,
when taking into account the total number of resources that are used in the measurement,
the quantum Cramér–Rao bound does not imply (∆θ)2 ∝ 1/(N2

T ). To prove that a mea-
surement shows a precision scaling that scales at the Heisenberg-limit with respect to the
total number of resources, methods beyond the quantum Cramér–Rao bound have to be

2In the literature, the N00N state can be often found as

|ψN00N〉 = 1√
2

(|M, 0〉+ |0,M〉),

which is just the above state written in second quantization: the state is a superposition of the state in which
all particles are in the first mode (called 0 above) and the state in which all particles are in the second one
(called 1 above). In photonic experiments, the twomodes often correspond to two spatially separatedmodes
(the two arms of the interferometer).
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applied. More about this below.
Second, the quantum Cramér–Rao bound only characterizes the phase sensitivity of

the state ρθ at the point θ. Therefore, an optimal scalingmight only be possible for a specific
value of θ (i.e., at an optimal point). Furthermore, states that show the highest precision,
such as the N00N state from above, show a high local phase sensitivity but only provide a
highly ambiguous (M-fold) phase estimate in the total phase domain. Thus, to really make
use of the high precision of, e.g., N00N states, the prior knowledge of the phase must have
been already reduced to a range with a size proportional to 1/M [428].

One resolution of this phase ambiguity is to perform several measurements using dif-
ferent N00N states with varying photon numbers M . The measurements with larger M
provide a high local phase resolution while the measurements with small M resolve the
phase ambiguity. A common method to combine these different measurements is the
Bayesian approach to phase estimation [134], see also Ref. [386] for a comparison between
Bayesian and frequentist phase estimation. Here, the central object is the Bayesian proba-
bility distribution P (ϑ) that encodes the belief that θ = ϑ, where θ is the unknown phase.
Startingwith a flat initial distribution (corresponding to the complete absence or ignorance
of knowledge of the phase θ ∈ [0, 2π] before the first measurement), each measurement
results in an updated distribution by means of Bayes’ theorem, P (ϑ) ∝ P (o|ϑ)Pin(ϑ),
where Pin(ϑ) is the Bayesian distribution before the measurement, o is the measurement
outcome, and P (o|ϑ) is the likelihood (i.e., the probability) of observing o when the phase
is ϑ.

We show an exemplary case of the Bayesian approach that combines the information
from several measurements with different M in Fig. 5.1. In Fig. 5.1(a), we plot the prob-
ability distribution [see also Eq. (5.4)] after a first measurement using M = 4. It is clear
that the measurement has a good local precision (as can be seen in the fast oscillations of
the Bayesian distribution), but by itself any estimator will be highly ambiguous. On the
other hand, in Fig. 5.1(b), we show the Bayesian distribution after performing three mea-
surements with differentM . We see that the final Bayesian distribution (black) shows the
same resolution as the single measurement with the largest M (M = 4), while the mea-
surements with smallerM (M = 1 andM = 2) are used to resolve the phase ambiguity.

Finally, we want to recall an important observation that was already touched upon in
Sec. 1.2.1. There are different ways to count the physical resources in phase estimation.
The traditional resource counting assumes a fixed interferometer including a single phase
shift, and counts how many particles (e.g., photons) have been used in the measurement
protocol, i.e., one counts the total number of particles that have traversed the interfer-
ometer. On the other hand, in the QPE algorithm [40, 429], the counted resource is the
number of controlled-U operations that are applied in the quantum circuits of the mea-
surement, where the phase to be estimated is an eigenphase of U (see Sec. 5.1.2 for more
details). Similar to the second way of counting resources, without fixing the exact shape of
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Figure 5.1: Different Bayesian probability distributions P (ϑ) highlighting the high local sensitivity and the
phase ambiguity for the measurements of N00N state with largeM (a), and showing a strategy to resolve the
phase ambiguity (b). (a) The Bayesian distribution after a measurement of a N00N state with M = 4. (b)
The final Bayesian distribution (black) after performing three measurements with N00N states consisting of
M = 1 (blue),M = 2 (yellow), andM = 4 particles, respectively.

the interferometer, one can also count the number of times that the unknown phase shift
is penetrated by a particle, which gives rise to a so-called multipass protocol, in which a
single particle passes the phase shift multiple times.

All above ways of counting resources formally produce the same measurement prob-
abilities (see Sec. 5.1.2) and thus represent equivalent footings for the estimation strategy
that might reach the Heisenberg limit. However, they have different advantages and disad-
vantages. For instance, a multipass implementation requires that each measurement (and
its phase imprinting) can take an arbitrary amount of time (that is increasing with the
precision), while in an estimation protocol that makes use of N00N states, the phase im-
printing can be applied in a constant, short time. On the other hand, N00N states of a large
number of particles are harder to prepare in comparison to, say, single photon states, and
N00N-state implementations also require photon-number resolving detectors. For a tech-
nical discussion of the formal equivalence of the above resources, see, e.g., the Appendix
of Ref. [430]. Finally, as discussed in Sec. 2.1.1, we note that the different ways of count-
ing physical resources eventually also result in different quantum features (or quantum
resources) that are necessary to achieve the quantum advantage. We will briefly discuss
the quantum resources in the different setting in Sec. 5.1.4.

5.1.2 Quantum phase estimation algorithm

Before we introduce the QPE algorithm, we first explain the formal equivalence of the ba-
sic building block of the QPE algorithm and an interferometer (here, we focus on Mach–
Zehnder interferometers for simplicity). Imagine a single photon that enters the interfer-
ometer by passing through as beam splitter (BS), cf. Fig. 5.2(a), such that the photon is in a
superposition of the two arms of the interferometer, |ψ〉 = (|0〉+ |1〉)/

√
2. Then, a control

phase shift ϕ (i.e., a known phase ϕ) is applied to one of the arms, while the other is im-
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(a) (b)

Figure 5.2: AMach–Zehnder interferometer (a) and the basic circuit of the quantumphase estimation (QPE)
algorithm (b) which result in formally equivalent phase estimation protocols. (a) A single photon (|1〉) enters
the interferometer via a beam splitter. The control phase ϕ and the unknown phase θ are imprinted in the
two arms of the interferometer. After passing a second beam splitter, the photon is measured. (b) The basic
circuit of the QPE algorithm. The ancilla and register qubits are prepared in the state |0〉 ⊗ |u〉. Then, a
Hadamard gateH and a phase gate Zϕ are applied to the ancilla qubit, after which the controlled unitary Uc
is applied (imprinting the unknown (eigen)phase θ into the ancilla qubit’s state). After the application of a
second Hadamard gate to the ancilla, the ancilla qubit is measured in the computational basis.

printedwith the unknown phase θ. After passing a second BS, the probability ofmeasuring
the photon in the arm o is given by

P (o|θ, ϕ) = 1
2

[〈0|+ (−1)o 〈1|](e−iϕ |0〉+ e−iθ |1〉) = 1
2

[1 + (−1)o cos(θ − ϕ)], (5.2)

where o = 0 and o = 1 represent a photon detection in the upper and lower arm, re-
spectively. By repeating the measurement several times, the value of θ can be estimated by
means of Eq. (5.2) and the observed statistics.

In QPE algorithms, one assumes that one can prepare the eigenstate |u〉 of a unitary
U with a corresponding (unknown) eigenvalue eiθ that encodes the phase that we want to
measure. Furthermore, it is assumed that one can apply any number of controlled-U gates
Uc [19, 40, 429, 431, 432]. The basic circuit of the QPE algorithm is shown in Fig. 5.2(b).
The eigenstate |u〉 (also called the register state) is prepared together with an ancilla qubit
in the state |0〉. Then, a Hadamard gate H [〈m|H |n〉 = (−1)mn/

√
2] and a phase gate

Zϕ (〈m|Zϕ |n〉 = δmne
−iϕm where we identify ϕ1 = ϕ and set ϕ0 = 0) are applied to

the ancilla state, resulting in the state (|0〉 + e−iϕ |1〉)/
√

2 ⊗ |u〉. The central operation is
the controlled-U gate Uc that applies U on the register state if the ancilla is in the state |1〉,
Uc = |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗U . Given the intial register-ancilla state, the application of Uc
effectively imprints the eigenphase θ into the ancilla state,

1√
2
Uc(|0〉+ e−iϕ |1〉)⊗ |u〉 = 1√

2

[
|0〉 ⊗ |u〉+ ei(θ−ϕ) |1〉 ⊗ |u〉

]
= 1√

2

[
|0〉+ ei(θ−ϕ) |1〉

]
⊗ |u〉 . (5.3)

Finally, when applying a second Hadamard gate to the ancilla and measuring the ancilla in
the computational basis, one finds the same outcome probabilities as Eq. (5.2) and we thus
see that both basic measurement steps are formally equivalent.

Furthermore, one directly sees that when applying the phase shiftM times in the inter-
ferometer of Fig. 5.2(a), or when applyingUcM times in the quantum circuit of Fig. 5.2(b),
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|0〉 H

QFT−1|0〉 H
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|u〉 Uc U2
c U4

c

Figure 5.3: Quantum circuit of the QPE algorithm for the estimation of the phase θ up to three binary digits
(θ = 2π × 0.t0t1t2). Three ancilla qubits are prepared in the state |0〉⊗3, while the register is prepared in
the eigenstate |u〉. After each ancilla passes a Hadamard gate H , the kth ancilla is used as a control qubit
for the controlled gate UK−1−k

c acting on the register. Then, the ancilla qubits are acted upon by the inverse
quantum Fourier transform QFT−1 and are finally measured in the computational basis.

the corresponding output probability is given by

P (o|θ, ϕ,M) = 1
2
{1 + (−1)o cos[M(θ − ϕ)]}. (5.4)

Equivalently, one can apply the unknown phase shift θ only once (together with the control
phase ϕ/M ) to a N00N state withM photons, |ψN00N〉 = (|M, 0〉+ |0,M〉)/

√
2, to obtain

the state (e−iϕ |M, 0〉 + e−iMθ |0,M〉)/
√

2. When measuring this state by the projectors
|ψN00N〉 〈ψN00N| and 1− |ψN00N〉 〈ψN00N|, one finds the probability of Eq. (5.4) as well. As
discussed above, we see that when considering the different resources, i.e., the number of
applications of the phase gate, the number of applications ofUc, and the number of photons
used in a single-pass interferometer, as equivalent, all different implementations result in
the same performance for the estimation of θ.

After having understood that the basic measurement circuit of Fig. 5.2(b) resembles
a simple interferometric measurement, we can now continue to see how different such
circuits are combined in the QPE algorithm. As mentioned above, one of the problems of
the highly sensitive N00N states with large M (or, equivalently, M applications of Uc or
of the phase shift) is that the phase θ can only be resolved in an interval of size 2π/M . In
other words, for a completely unknown phase θ ∈ [0, 2π], the estimator isM-fold multi-
valued. In the QPE algorithm, this is circumvented by a combination of the basic circuit,
cf. Fig. 5.2(b), with different values of M . In particular, it is a combination of K basic
circuits, where, in the kth circuit (k = 0, . . . , K − 1), we set Mk = 2K−1−k to estimate
the (K − 1 − k)th binary digit of θ/(2π), see below. The standard version of the QPE
algorithm given in Ref. [40] is shown in Fig. 5.3 forK = 3 and explained in the following.

Let us assume for simplicity that θ = 2π × 0.t0t1 . . . tK−1, i.e., that the binary repre-
sentation of θ/(2π) consists of at mostK digits. In the QPE algorithm, one then prepares
K ancilla qubits in the state |0〉⊗K , acted upon byK Hadamard gatesH⊗K . Then, the kth
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ancilla qubit acts as the control qubit for an application ofU2K−1−k

c on the register state |u〉,
see Fig. 5.3. Similar to Eq. (5.3), this results in phase shifts on the ancilla states,

1√
2K

K−1⊗
k=0

(|0〉+ |1〉)⊗ |u〉 7→ 1√
2K

K−1⊗
k=0

(|0〉+ eiθ2K−1−k |1〉)⊗ |u〉 (5.5)

= 1√
2K

2K−1∑
x=0

eiθx |x〉 ⊗ |u〉 , (5.6)

where, in the second line, we have written x = x0 . . . xK−1 to label the combined state of
the ancilla qubits, and we have expanded the tensor product to simplify Πke

iθ2K−1−kxk =
eiθ
∑

k
2K−1−kxk = eiθx. Next, we apply the inverse quantum Fourier transform QFT−1

to the ancilla qubits that is defined as QFT−1 |x〉 = 1/
√

2K∑y e
−ixy2π/2K |y〉 [19]. This

results in a state of the ancilla qubits given by
1

2K
∑
y

∑
x

e2πix/2K(2Kθ/2π−y) |y〉 . (5.7)

Now we use that if n ∈ Z \ {0}, it holds that
∑2K−1
x=0 e2πixn/2K = 0. Finally, we have that

2Kθ/2π − y ∈ Z, and 2Kθ/2π − y = 0 if y = t0t1 . . . tK−1. This final step only holds
true if θ has a binary representation with at mostK digits, see below if this is not the case.
When measuring the final state of the ancilla qubits, Eq. (5.7), in the computational basis,
we measure the outcome y = t0t1 . . . tK−1 with unit probability and can thus directly read
off the phase θ from the measurement results.

If θ does not admit a binary representation withK digits, the measurement result does
not yield y = t0t1 . . . tK−1 with unit probability. However, the probability of a correct esti-
mation of the firstK (rounded) digits of θ is still large,P > 4/π2 ≈ 0.4 [40]. Furthermore,
by increasing the number of qubits used in the algorithm as O(ln 1/ϵ), the probability of
a correct estimation of the firstK digits can be increased to 1− ϵ [40].

We want to note that, while the QPE algorithm described above uses all different basic
circuits in parallel, the initial Kitaev algorithm (that was developed to solve the Abelian
stabilizer problem, of which phase estimation is just a special case) makes uses of the dif-
ferent circuits (starting from M = 2K−1) sequentially, by properly adjusting the control
phase for the next circuit [429]. This sequential adjustment of the control phases for the
next circuit is related to a “semiclassical” implementation of the inverse quantum Fourier
transform [433], an approach that is used in most applications of the QPE algorithm and
we will refer to as the “iterative” or “adaptive” version.

Applications and implementations

The QPE algorithm represents a central subroutine for a wide class of quantum algorithms
[19], such as, e.g., Shor’s factoring algorithm3 [16]. The iterative version of the QPE al-

3Here, we want to emphasize that while the QPE algorithm offers a quadratic quantum advantage, Shor’s
algorithm achieves an exponential one. This is because Shor’s algorithm is a special case of the QPE algo-
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gorithm was used in first proof-of-principle implementations of Shor’s algorithm, which
used two photons and feedforward control to factor the number 21 [434], and an ion trap
quantum computer to factor the number 15 [435].

A variation of the QPE algorithm has been used to find the eigenvalues and eigenvec-
tors of Hamiltonians [431], an approach that can be used in the computation of ground
state energies ofmolecularHamiltonians [432]. This algorithmwas implemented on quan-
tumcomputers using superconducting qubits to simulate the ground state energy ofmolec-
ular hydrogen [436]. Furthermore, theQPE algorithm is used as a subroutine in a quantum
generalization of the Metropolis algorithm [437]. Other quantum technologies that build
upon the QPE algorithm are used for reference-frame sharing [438], clock (and atomic-
clock) synchronization [439, 440], and frequency estimation [441, 442].

The most obvious application of the QPE algorithm is QPE [21, 30, 443]. Here, the
ultimate goal is to reach theHeisenberg limit of the precision scaling for the estimation of a
completely unknown phase θ ∈ [0, 2π], taking into account the total number of resources.
Even though the error probability of the QPE algorithm can be made arbitrarily small by
increasing the number of ancilla qubits, as we have mentioned above, the original QPE
algorithm can only reach a shot-noise-limited precision scaling of the variance (∆θ)2. This
is due to the fact that to compute (∆θ)2, the (squared) errors have to be taken into account4.
Repeating each round (i.e., the basic circuit for each M ) only once results in significant
tails of probability distribution of the phase such that a Heisenberg-limited precision is
not achievable [444].

This obstacle was resolved in Ref. [38] by repeating each round at least three times.
Here, the iterative version of the QPE algorithm was implemented in the optical mul-
tipass version to experimentally observe a Heisenberg–limited precision scaling5, using
a Bayesian post-processing technique. Note that in Ref. [445], single repetitions of the
rounds of the QPE algorithm were sufficient to reach the Heisenberg limit because it was
conducted at an optimal point (θ = 0, meaning the θ can be written exactly as a finite
binary string, see the discussion above). Later, it was shown that by using more repeti-
tions of each round (resulting in a larger constant overhead of the precision scaling with
respect to the Heisenberg limit), the QPE protocol could be rendered nonadaptive [430].

rithm in which the gates U2k

can be implemented efficiently, i.e., using only a polynomial number of basic
gates in terms of k and in terms of the number of qubits, which is achieved by a method called modular ex-
ponentiation [19]. In contrast, in the general QPE algorithm, the application ofU2k

requires 2k applications
of the gate U that cannot be circumvented.

4In order to calculate (∆θ)2, the magnitude of the error is crucial, and not just its probability. For in-
stance, in QPE, an error in the estimation of the first digit of θ is much more costly than an error for the last
digit.

5More precisely, the first six rounds of the algorithm were implemented (until a maximalM = 25 = 32),
corresponding to a total number of resources ofNT ≈ 300. In this range, the precision showed aHeisenberg
scaling.
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For an overview of the adaptive, nonadaptive and hybrid versions of the QPE algorithm,
see Ref. [444].

A similar QPE protocol as in Ref. [38] that makes use of N00N states instead of a mul-
tipass single-photon protocol, was proposed in Ref. [428]. See also Ref. [446] for a similar
proposal using the computational model DQC1 (cf. Sec. 2.1.1 and Ref. [106]). Recently,
an adaptive forward version of the QPE algorithm has been proposed that makes use of
Gaussian spin states [447]. Finally, a significant simplification of the QPE algorithm was
proposed in Ref. [448]. Here, the basic circuit of Fig. 5.2(b) is used sequentially, with
adaptively chosen values ofM . Furthermore, the Bayesian probability distribution ismod-
eled by a Gaussian which renders the computational post-processing much more efficient.
However, as we further discuss below, this simplification results in a significant probability
of an erroneous estimation.

Quantum-enhanced adaptive phase estimation has been experimentally demonstrated
with squeezed states [449], single and few-photon states [38, 430, 450], integrated photonic
devices [451, 452] and NV centers [453].

5.1.3 Quantummultiphase estimation

We now give a brief overview of the field of quantum multiphase estimation (QME) that
recently has been experiencing an increased interest. Here, most of the literature employs
a QFI approach (cf. Sec. 5.1.1 for the QFI approach to single-phase estimation). In QME,
the central object is the QFI matrix QFI that generalizes the QFI that corresponds to the
estimation of only one phase. Say that the initial quantum state is given by ρ0, which is
displaced by multiple phases according to ρ = e−i

∑d

l=1 Hlθlρ0e
i
∑d

l=1 Hlθl , where Hl is the
Hamiltonian generation the lth phase shift θl. The elements of QFI are then given by [46]

QFIab(ρ, {Hl}l) = 2
∑
k,k′

(λk − λk′)2

λk + λk′
〈k|Ha |k′〉 〈k′|Hb |k〉 , (5.8)

where |k〉 are the eigenvectors of ρwith corresponding eigenvalues λk and the sum is taken
over terms for which λk + λk′ > 0. In multiphase case, the quantum Cramér–Rao bound,
Eq. (5.1), is replaced by the matrix inequality

Σ ≥ 1
m

QFI−1(ρ, {Hl}l), (5.9)

where Σ is the (frequentist) covariance matrix of the estimated phases that is defined as
Σab = Cov(θa, θb) = 〈θaθb〉 − 〈θa〉 〈θb〉. The inequality of Eq. (5.9) means that the matrix
Σ−QFI−1(ρ, {Hl}l)/m is positive semidefinite, or, in other words, that one has

nTΣn ≥ nTQFI−1(ρ, {Hl}l)n
m

(5.10)

for any n ∈ Rd, where nTΣn = ∑d
a,b=1 nanb Cov(θa, θb) and nl are the components of n.

For instance, taking nl = 1 for all l, Eq. (5.10) implies a bound on the trace of Σ.
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Based on the QFI matrix, Eq. (5.8), and the Cramér–Rao matrix bound, Eq. (5.9),
the performance of different multiphase estimation protocols has been examined. In
Ref. [454], generalized N00N states [see Eq. (5.39) for a definition below] have been em-
ployed to argue for an advantage between a simultaneous estimation of all d phases with
respect to a sequential one in the case of commuting Hl: while generalized N00N states
show a scaling of the trace of the QFI matrix as d2/M2 (d is the number of phases to esti-
mate andM is the number of particles of the generalizedN00Nstate), a sequential protocol
that uses standardN00N states to estimate each phase separately shows a scaling of d3/M2.
We note that, recently, it was argued that this parallel-over-sequential advantage is actu-
ally only constant (and not scaling with d) when taking into account the total number of
resources, because the saturability of the bound Eq. (5.9), i.e., the value ofm that is needed
to reach the Cramér–Rao bound, depends on d [455].

If the different phase-displacement generatingHamiltoniansHl do not commute, there
is a trade-off between the precision of the estimation of the different parameters [456, 457,
458]. This can be understood by the fact that if theHl do not commute, the optimal mea-
surement to estimate each phase is different, so they cannot be optimally measured simul-
taneously. In specific cases, multiple phases can be estimated simultaneously even if the
Hl do not commute, if certain compatibility conditions are fulfilled [459].

As for the necessary quantum resources in QME in the traditional setting (i.e., when
counting the number of particles and resources and allowing only for single-pass inter-
ferometers), the role of useful (particle) entanglement has been discussed in Ref. [460].
Furthermore, in Ref. [461], it was found that for QME in quantum networks, a parallel
estimation protocol using entangled states only offers an advantage for specific estimation
tasks, while separable states are optimal in other estimation problems. The role of non-
classical states that are not entangled for QME was further considered in Ref. [462]. These
results highlight that a clear identification of appropriate figures of merit in QME estima-
tion tasks, and how to count the used physical resources, are crucial to discuss about the
quantum advantage in QME and its necessary quantum resources, see Refs. [463, 464] for
a discussion of this point. In Ref. [463], a systematic analysis of the quantum advantage
offered by particle entanglement and/or mode entanglement has been conducted, showing
that to achieve the optimal scaling of theQFImatrix, both particle andmode entanglement
have to be present. Building on these results, a QME protocol using entangled Gaussian
states has been developed in Ref. [465], and the concept of multiparameter squeezing pa-
rameters has been introduced in Ref. [466]. In Ref. [464], it was shown that in QME, there
are different nonequivalent choices of a reference mode that lead to different figures of
merit for the final precision scaling.

All above approaches to QME are based on the QFI matrix and the quantum Cramér–
Rao bound. In contrast to single-phase QPE, the quantum Cramér–Rao bound for multi-
ple phases is not saturable in general [445]. In Ref. [445], conditions are derived that imply
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that the bound can be saturated. Furthermore, as we have already discussed in Sec. 5.1.1,
any QFI-based approach suffers from the drawback that it only quantifies the precision
scaling at a specific point, and that the quantum Cramér–Rao bound might only be sat-
urable asymptotically, such that a Heisenberg-limited precision scaling with respect to the
total amount of physical resources cannot be proven. Here, we want to note that by opti-
mizing single-shot measurements, estimation strategies have been found that outperform
the QFI-based strategies in the non-asymptotic regime of finite measurement data [467].
Furthermore, advanced post-processing strategies that are based on a time-series analysis
have been introduced [468, 469]. Here, the same basic measurement circuit of the QPE
algorithm, Fig. 5.2, is used but the system is prepared in a superposition of eigenstates of
U corresponding to different eigenvalues, instead of a single such eigenstate. In this case, a
combination of phases are imprinted in the ancilla qubits state. By this technique, a small
number of eigenphases of U could be resolved [468], or a large number of eigenphases can
be categorized into several bins that cover the full range of possible eigenvalues [469].

In Sec. 5.2, we want to examine the total amount of resources that are used in a QME
protocol and thus focus on Bayesian QME protocols instead of a QFI matrix approach.
We will discuss an QME algorithm that shows a Heisenberg-limited precision scaling with
respect to the total number of physical resources, for the estimation of d completely un-
known phases θ ∈ [0, 2π]d.

Applications and implementations

Applications of QME have been suggested in several different quantum metrology sub-
fields. First, we want to emphasize that while in a specific estimation task, a parallel (si-
multaneous) estimation might be advantageous with respect to a sequential estimation or
not, there can be spatial or temporal constraints that only allow for a parallel estimation
strategy. This is why QME strategies have been proposed in the field of quantum imag-
ing [470], where the quantum Cramér–Rao bound has been discussed for different imag-
ing tasks [471, 472, 473]. Furthermore, QME protocols have been considered for optimal
sensing of the three spatial components of a magnetic field [456], for the estimation of
field gradients [474, 475], for distributed sensing using sensor networks [461, 462, 476],
and for the synchronization of atomic clocks [440]. Ideas of QME also promise potential
applications in biological sensing [477] or in the analysis of chemical processes [478].

QME strategies that simultaneously estimate two phases have been implemented us-
ing integrated photonic chips to observe a quantum enhancement of the precision in both
frequentist estimation tasks [479] and Bayesian approaches [480] of QME. Furthermore,
the estimation of the average of the phase shifts experienced by four nodes of a quantum
optical network has been performed using continuous-variable entangled states, resulting
in a precision that is beyond any achievable precision with separable states [476]. A quan-
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tum advantage for the estimation of a specific linear combination of phases at an optimal
point has also been observed in distributed discrete-variable quantum sensing networks
[481, 482].

5.1.4 Quantum resources in QPE

To place the current topic of QPE in the context of quantum resources that we treat in
this thesis, we want to briefly elaborate on the quantum resources that are required in the
different implementations of the QPE protocols. As we discussed before, in the traditional
setting of using a single application of the phase shift in the interferometer and counting
the number of particles that enter the interferometer as the physical resource, multipartite
entanglement is a necessary quantum resource for the quantum metrological advantage
[27, 28, 29, 37]. Similar insights have been derived in multiphase estimation strategies
[460, 463].

In contrast, in a single-photon multipass implementation, where we count the number
of applied phase shifts as the physical resource, the single-photon state is not multipartite
entangled (because there is only one photon). Since a single photon is a nonclassical state
though, there is mode entanglement between the different modes, and onemight conclude
that entanglement is still necessary for the quantum advantage [39]. However, it is easy
to see that by merely using a coherent state as one input of the interferometer, the phase
sensitivity shows the same optimal scaling with the number of applied phase shifts. Thus,
one could say that, in a multipass protocol, coherence is the crucial quantum resource
[483]. On the other hand, as we have discussed in detail in Ch. 4, in quantum optics,
coherent states are usually considered as “classical” resources. From this point of view, one
could argue that a multipass implementation can scale at the optimal scaling limit by only
using classical resources, which would imply that there is no quantum advantage (in the
multipass setting). This dilemma eventually boils down to the question of whether the
interferometric coherence of light is a quantum or a classical phenomenon.

A different viewpoint is the following. In the multipass implementation with M ap-
plications of the phase shift, the (M × θ)-dependence of the final probabilities stems from
theM-fold application of the phase shift, independent of the type of input state used (e.g.,
single photons or coherent states). In contrast, in the traditional setting, the dependence
stems from theM-partite entanglement between the incoming particles. As wementioned
earlier, theM-fold application of the phase shift requires that the experiments can take an
increasing amount of time for largerM . Thus, one could say that the quantum resource of
entanglement is replaced by the resource of time [37].

Finally, in the quantum-circuit implementation where we count the number of
controlled-U gates as the physical resource, we again have to use an increasing amount of
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time for eachmeasurement when increasingM 6. Coherence is also necessary here, both in
the ancilla state and in the register eigenstates, such that the phases are correctly imprinted
in the ancilla state. Furthermore, the quantum state during the different steps of the algo-
rithm is separable. However, we note that controlled-U gates usually create entanglement
(if we do not prepare an eigenstate ofU ), and specific realizations of the controlled unitary
gate, in terms of basic gates from a universal set, can also produce intermediate entangled
states during the execution of the gate.

5.2 Bayesian quantummultiphase estimation algorithm

In this section, we introduce the Bayesian quantum multiphase estimation algorithm
(BQMEA) for the simultaneous (parallel) estimation of d ≥ 1 (eigen)phases θ. In
Sec. 5.2.1, we describe the basic quantum circuit and the corresponding Bayesian post-
processing techniques that are used in the BQMEA. Then, in Sec. 5.2.2, we analyze the
precision scaling of the algorithm and its error rate, compare its performance to different
sequential multiphase estimation protocols, and discuss a generalization of the BQMEA
in the presence of noise. Finally, in Sec. 5.2.3, we propose different implementations of the
BQMEA in optical experiments. The results of this section are published in Ref. [5].

5.2.1 Estimation protocol of the BQMEA

The idea of the BQMEA is to generalize the key concepts of the single-phase QPE algo-
rithm to an estimation protocol to estimate d ≥ 1 phases. In particular, the aim is to
estimate d independent and completely unknown phases θ = (θ1, . . . , θd) ∈ [0, 2π]d with
optimal precision scaling with respect to the total number of used resourcesNT , whereNT

is quantified as the total number of controlled-U applications. In Sec. 5.2.3, we will dis-
cuss optical implementations for which NT corresponds to the total number of particles
used in a single-pass implementation, or the total number of applied phase shifts used in
a multipass implementation.

As we have discussed above, the standard assumptions in QPE algorithms is that one
is able to prepare an eigenstate |u〉 of a unitary U with (unknown) eigenphase eiθ, and that
one is able to apply controlled-UM gates withM ∈ N>0 [19, 40, 429, 431, 432]. Similarly,
we assume here we can prepare the eigenstates |ul〉 of a unitary U corresponding to the
(unknown) eigenvalues eiθl , l ∈ {1, . . . , d}. Furthermore, we can apply a generalized
controlled-UM operation (M ∈ N>0) that we specify below. In the following, we first

6Note that, as we discussed above, the exponential advantage of Shor’s algorithm is exactly due to the fact
that for the specific unitary of Shor’s algorithm, the time (or the number of gates we need) to implementM
controlled unitary gates only increases polynomially in lnM .
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|0〉 Hd+1 Zϕd+1 Hd+1

|u1〉

UM
c

|u2〉

...
|ud〉

Figure 5.4: The basic quantum circuit of the Bayesian quantum multiphase estimation algorithm (BQMEA).
An ancilla qudit is prepared in the state |0〉, while the register is prepared in the state

⊗d
l=1 |ul〉. The ancilla

is acted then upon by a (d + 1)-dimensional Hadamard gate Hd+1 [Eq. (5.11)] and a (d + 1)-dimensional
phase gate Zϕ

d+1 [Eq. (5.12)] that imprints the control phases ϕ. Then, we apply the generalized controlled-
U gate Uc [Eq. (5.14)] M times, imprinting the unknown phases θ onto the ancilla state. After a second
application ofHd+1, the ancilla qudit is measured in the computational basis.

discuss the basic quantum circuit of the BQMEA and then describe the corresponding
Bayesian post-processing technique.

Basic quantum circuit of the BQMEA

Thebasic quantum circuit of the BQMEA, shown in Fig. 5.4, is inspired by the basic circuit
of the single-phaseQPE algorithm, cf. Fig. 5.2(b). Instead of a register consisting of a single
state prepared in the eigenstate |u〉, the register of the BQMEA consists of d eigenstates of
U ,
⊗d

l=1 |ul〉. Furthermore, the ancilla qubit is replaced by a (d + 1)-dimensional ancilla
qudit prepared in the state |0〉 (we label the states of the ancilla qudits with bold letters for
better visualization). Note that in a practical implementation, the ancilla qudit might be
composed by several single qubits.

After the preparation, the ancilla qubit is acted upon by a generalized (d + 1)-
dimensional Hadamard gateHd+1 defined as

Hd+1 = 1√
d+ 1



1 1 1 · · · 1
1 ωd ωdd · · · ωdd

1 ω2
d ω4

d · · · ω2d
d

...
...

... . . . ...
1 ωdd ω2d

d · · · ωd
2
d ,


(5.11)

where ωd = ei2π/(d+1) is the (d + 1)th root of unity. After the application of Hd+1, the
ancilla state |ψA〉 is given as |ψA〉 = (|0〉+ · · ·+ |d〉)/

√
d+ 1. We note that for d = 2n−1

(n ∈ N>0),Hd+1 corresponds to the quantum Fourier transform QFT acting on n qubits7

[19].
7Actually, in the n-qubit implementation, we could replace the initial application of QFT by an op-

eration of n single-qubit Hadamard gates, H⊗n, since both gates transorm the initial ancilla state to
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Next, we apply the generalized phase gate Zϕd+1 given by

Zϕd+1 =


1

e−iϕ1

. . .
e−iϕd

 (5.12)

onto the ancilla qudit to imprint the control phases ϕ = (ϕ1, . . . , ϕd),

|ψA〉 = 1√
d+ 1

d∑
n=0

e−iϕn |n〉 , (5.13)

where we have set ϕ0 = 0.
We now apply the generalized controlled-UM gate UM

c , where Uc is given by

Uc = |0〉 〈0|⊗1⊗· · ·⊗1+|1〉 〈1|⊗U⊗1⊗· · ·⊗1+. . .+|d〉 〈d|⊗1⊗· · ·⊗1⊗U. (5.14)

If the ancilla is prepared in the state |0〉, the gate Uc acts as the identity on the register
states. If the ancilla qudit is instead prepared in the state |l〉 for l > 1, Uc applies U to the
lth register state that is prepared in |ul〉, imprinting the eigenphase eiθl as a relative phase
onto the ancilla state, similar to Eq. 5.3. Given the prepared ancilla state Eq. (5.13), the
application of UM

c thus effectively imprints the different eigenphases eiMθl onto the ancilla
state without altering the states of the register,

Uc
d∑

n=0
eiϕn |n〉 ⊗

d⊗
l=1
|ul〉 =

d∑
n=0

ei(Mθn−ϕn) |n〉 ⊗
d⊗
l=1
|ul〉 , (5.15)

where we have set θ0 = 0.
Finally, we apply a second generalized Hadamard gateHd+1, such that the final state of

the ancilla qudit is given by

|ψA〉 = 1
d+ 1

d∑
m,n=0

ei[Mθn−ϕn+2πmn/(d+1)] |m〉 . (5.16)

When measuring the ancilla qudit in the computational basis, we find that the probability
of observing the outcome o (o ∈ {0, . . . , d}) is given by

P (o|θ,ϕ,M) = 1
(d+ 1)2

∣∣∣∣∣
d∑

n=0
ei[θn−ϕn−2πmn/(d+1)]

∣∣∣∣∣
2

= 1
(d+ 1)2

{
d+ 1 + 2

∑
n

cos[Mθn + βn(o)] + 2
∑
m<n

cos[M(θn − θm) + γnm(o)]
}
,

(5.17)

where we have defined βn(o) = 2πon/(d+ 1)−ϕn and γnm(o) = 2πo(n−m)/(d+ 1)−
ϕn + ϕm.

|ψA〉 = (|0〉+ · · ·+ |d〉)/
√
d+ 1. However, the second QFT gate cannot be replaced by H⊗n without

changing the algorithm’s final state and the corresponding outcome probabilities.
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Bayesian post-processing of the BQMEA

The BQMEA consists of several rounds of repetitions of the basic quantum circuit that we
have described in the previous paragraph and in Fig. 5.3. In the kth round, we useMk = 2k

(k = 0, 1, . . . ,) such that the each phase θl can be resolved in an interval of size 2π/2k, see
Fig. 5.1(b), and the local sensitivity of the measurement increases each round. Similar to
the single-phase QPE algorithm, a single measurement per round results in large tails of
the Bayesian probability distribution such that a Heisenberg-limited precision cannot be
reached. In the following, we describe how to adaptively decide when to proceed to the
next round.

Since our algorithm should be able to estimate arbitrary phases θ ∈ [0, 2π]d, we use a
uniformprior Bayesian distribution,P (ϑ) = 1/(2π)d before the firstmeasurement. Recall
thatP (ϑ) represents the belief that θ = ϑ8. Then, after we have performed ameasurement
using M applications of Uc and the control phases ϕ (see below for how to choose the
control phases), we observe themeasurement outcome o and update the posterior Bayesian
probability distribution according to Bayes’ theorem,

P (ϑ|o,ϕ,M) = P (o|ϑ,ϕ,M)P (ϑ)∫
ddϑP (o|ϑ,ϕ,M)P (ϑ)

, (5.18)

where P (ϑ) is the prior Bayesian distribution before the measurement, and P (o|ϑ,ϕ,M)
is the probability (or likelihood) of the outcome o given by Eq. (5.17). The denominator
corresponds to a renormalization of the posterior distribution. After each measurement,
we

• update the Bayesian distribution P (ϑ) according to P (ϑ)← P (ϑ|o,ϕ,M),

• produce an estimate for each phase θl according to

θ̄l = arg
[∫

ddϑeiϑlP (ϑ)
]
, (5.19)

• and calculate the Bayesian probability

Phalf =
∫
C

ddϑP (ϑ) (5.20)

corresponding to the (estimated) probability to find the true phase θ in the hyper-
cube C =×d

l=1

[
θ̄l − π/2k+1, θ̄l + π/2k+1

]
centered around θ̄, for a measurement

in the kth round of the algorithm.
8Strictly speaking, P (ϑ) is a probability density, meaning that the (estimated) probability P (θ ∈ Ω) for

finding θ in some subset Ω ⊂ [0, 2π]d is given by

P (θ ∈ Ω) =
∫

Ω
ddϑP (ϑ).
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Input: {ϵ,K}
P (ϑ) = 1/(2π)d

for k = 0, . . . , K − 1:
M = 2k; Phalf = 0
while Phalf < 1− ϵ:
ϕ = generate_random()
o = measurement(M,ϕ)
P (ϑ) = Bay_update(P (ϑ), o,M,ϕ)
Phalf = compute(P (ϑ))

P (ϑ) = cut _grid(P (ϑ))
P (ϑ) = normalize(P (ϑ))

return: P (ϑ)

Table 5.1: The pseudocode of the Bayesian quantum multiphase estimation algorithm (BQMEA). The algo-
rithm consists ofK rounds, where in the kth round, we repeatedly run the basic quantum circuit, cf. Fig. 5.4,
withM = 2k and random control phases ϕ. After each measurement, the (initially flat) Bayesian distribu-
tion P (ϑ) is updated according to Bayes’ theorem, and the measurements are repeated until Phalf > 1− ϵ,
i.e., until the Bayesian distribution is localized enough to restrict the phase domain.

Next, if we find that Phalf ≤ 1− ϵ for some small ϵ (we call ϵ the “decision” parameter), we
choose new control phasesϕ and repeat themeasurement with the sameMk. On the other
hand, if Phalf > 1− ϵ, we restrict the possible estimation domain of θ to the hypercubeC9

and renormalize the Bayesian distribution such that
∫
C ddϑP (ϑ) = 1. We then proceed to

the next (k + 1)th round, i.e., we setM = 2k+1. In this way, we restrict the phase domain
of the estimation protocol whenever the Bayesian probability is sufficiently localized. The
parameter ϵ is called the decision parameter because it dictates how fast we proceed with
the next round of the algorithm: as we see below, smaller values of ϵ result in more mea-
surements per round, such that the error probability is reduced but the overhead constant
of the precision scaling with respect to the Heisenberg limit is enlarged. The pseudocode
of the algorithm (using random control phases ϕ, see below) is shown in Tab. 5.1.

The restriction of the phase domain whenever the Bayesian distribution P (ϑ) is local-
ized enough is important to limit to memory requirement of recording ϕ: for increasing
k, the distribution becomes very narrow such that a high resolution of the variable ϑ is
required. In particular, one usually records the Bayesian distribution on a grid over the
phase domain such that, if we were not restricting the phase domain during the algorithm,
the number of grid points has to be chosen very large if a high precision is required. Note
also that, for a given number of grid points in one dimension, the total number of grid

9Note that in the first phase restriction, we may have to use the periodicity of P (ϑ) to compute Phalf and
to define the Bayesian distribution on the domainC . For instance, if θ̄l = 0.9π, the lth dimension ofC covers
the interval [0.4π, 1.4π]. Forϑl > π, we then use thatP (ϑ1, . . . , ϑl+2π, . . . , ϑd) = P (ϑ1, . . . , ϑl, . . . , ϑd).
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points increases exponentially with d, the number of phases that we want to estimate. Fur-
thermore, we have observed numerically that a small grid size used to record P (ϑ) in the
according phase domain is not only advantageous with respect to memory requirements
but also serves as a coarse-graining and thus a smoothening of P (ϑ) that results in bet-
ter performances than larger grid sizes. In the following, we use a grid of size of 21d for
the recording of P (ϑ). On the other hand, the restriction of the phase domain after each
round introduces an error rate P (d)

err (ϵ) that the true phase θ is outside of the restricted
domain, θ 6∈ C . We will discuss and analyze P (d)

err (ϵ) in detail in Sec. 5.2.2.
In this context, we want to mention alternative approaches to record the Bayesian dis-

tribution. In the single-phase estimation protocols of Refs. [38, 430, 444], it was used that
in each update of the Bayesian distribution, Eq. (5.18), P (ϑ) is multiplied by terms of the
form e±i2kϑ, such that all information of P (ϑ) can be elegantly stored in finitely many
Fourier coefficients of P (ϑ). This recording is efficient for a “backward” estimation pro-
tocol, i.e., a protocol where K , the number of rounds, and the maximal number of mea-
surements per round is fixed, and the measurements start withM = 2K−1. This efficient
description is not possible for our “forward” protocol (that starts withM = 1, andK does
not have to be fixed in advance), and, furthermore, the update rule of the Fourier coef-
ficients, see Eq. (5.4) in Ref. [444], becomes increasingly complex for increasing d > 1.
A second and more recent approach to store the Bayesian distribution P (ϑ) is the use of
resampling algorithms [480, 484, 485]. Here, the phase domain is represented by a fixed
number of points ϑl that move to areas of high Bayesian probability by means of Monte-
Carlo sampling. Crucially, this approach is independent of d, the number of phases to
estimate, but a proper error rate analysis of this recording method must be conducted.
Applying resampling-type post-processing to the BQMEA is an interesting direction for
future research. Finally, the Bayesian distribution P (ϑ) can be simply approximated by a
(multivariate) Gaussian distribution [448, 468]. As we discuss further in Sec. 5.2.2, while
being very efficient in terms of memory space, this method introduces significant error
probabilities of biased estimation.

Choice of the control phases

The control phases ϕ that we have used in the BQMEA as described above are chosen
randomly in ϕ ∈ [0, 2π]d. Varying the control phases between the single measurements
is crucial to avoid any proliferation of significant tails in the Bayesian distribution P (ϑ).
This effect is shown in Fig. 5.5 for the BQMEA for d = 1 (i.e., for the estimation of a
single phase). If we use a constant control phase, say ϕ = 0, Eq. (5.17) shows that the final
Bayesian distribution after the first round of measurements will be a product of powers
of cos2(ϑ/2) and sin2(ϑ/2), depending on the measurement outcomes. This leads to a
double-peak structure of P (ϑ) that cannot be resolved by later measurements with higher
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(a)

(b)

Figure 5.5: Different snapshots of the Bayesian distribution P (ϑ) during the Bayesian quantum multiphase
estimation algorithm (BQMEA) after the nmeasth measurement of the kth round, in the case d = 1 and
using ϵ = 10−4, for (a) randomly chosen control phases ϕ ∈ [0, 2π], and (b) a constant control phase ϕ = 0.
The true phase θ is indicated by a vertical line. The figure is taken from Ref. [5].

M , resulting in a large probability of an erroneous estimation. This effect can be seen in
Fig. 5.5(b) wherewe showdifferent snapshots ofP (ϑ) during the BQMEAafter thenmeasth
measurement of the kth round for d = 1 and ϕ = 0. In contrast, in Fig. 5.5(a), we show
different snapshots of P (ϑ) during the BQMEA with randomly chosen control phases,
where no double-peak structure evolves.

In single-phase QPE algorithms, analytical strategies to optimally and adaptively
choose the control phase for each measurement have been developed [38, 444]. How-
ever, these approaches cannot straightforwardly be extended to an estimation algorithm
for d ≥ 2 phases, and advanced calculations of optimal control phases would also represent
a computational slowdown during the algorithm. How to efficiently choose optimal con-
trol phases for the estimation of d ≥ 2 phases is an interesting open question to improve
the performance of the BQMEA. We note that, for d = 1, an alternation of the measure-
ment settings between ϕ1 = 0 and ϕ2 = π/2 also prevents the proliferation of large tails
in P (ϑ) [430].

In the case d = 2, we have tested an alternative of random control phases by setting
the control phases ϕ in the nth measurement of each round as

ϕ =



(0, 0) for n = 0 mod 4

(π/2, 0) for n = 1 mod 4

(0, π/2) for n = 2 mod 4

(π/2, π/2) for n = 3 mod 4

(5.21)

This choice of control phases leads to a similar performance of the BQMEA as using ran-
dom control phases. For instance, for ϵ = 10−3, the control phases of Eq. (5.21) result in a
variance scaling of each phase as (∆θl)2 ≈ 113/N2

T with an error rate ofP (2)
err ≈ 7.1×10−4,

while for random control phases, we find (∆θl)2 ≈ 105/N2
T and P (2)

err ≈ 7.7 × 10−4, see
Sec. 5.2.2.
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(a) (b)

Figure 5.6: Exemplary snapshots of the Bayesian distribution P (ϑ) after completing five rounds of the
Bayesian quantum multiphase estimation algorithm (BQMEA) for estimating (a) d = 2 and (b) d = 3
phases, where we use ϵ = 10−4. The red point indicates the true phases θ, and the phase domains are shown
in a fraction of the hypercube C =×d

l=1

[
θ̄l − c, θ̄l + c

]
, where c = π/24 and θ̄l is the estimated value of

θl. (a) The color scale shows P (ϑ) normalized to the maximal value maxϑ P (ϑ). (b) The three color-scale
plots show each marginal Bayesian distribution,

∫
dθlP (ϑ), normalized to their respective maximal value.

An equiprobable surface is shown as the ellipsoid. The figure is taken from Ref. [5].

A second alternative for d ≥ 2 is the use of quasirandom control phases. Quasirandom
numbers in dimension d are sequences of tuples xl ∈ [0, 1]d such that for each L, the set
{x1, . . . ,xL} optimally covers the interval [0, 1]d, i.e., the set covers [0, 1]d more uniformly
than L random numbers on average for finite L, and cover [0, 1]d densely in the limit L→
∞ [486]. Using, e.g., the Halton sequence in the BQMEA for d = 2 and ϵ = 10−3, we
find (∆θl)2 ≈ 101/N2

T and P (2)
err ≈ 8.5 × 10−4, showing again a similar performance to

random control phases.

Running the BQMEA

In Fig. 5.6, we show two exemplary snapshots of the Bayesian distribution P (ϑ) of the
BQMEA with ϵ = 10−4 for (a) d = 2 and (b) d = 3. Both snapshots show P (ϑ) after
completing five rounds (k = 4) of the BQMEA.We see that, in both cases,P (ϑ) is localized
in a subset of the hypercube C =×d

l=1

[
θ̄l − c, θ̄l + c

]
, where c = π/24 (note that we plot

only a sector of C), such that we can further restrict the phase domain and continue with
the next round. We also see that P (ϑ) shows correlations between the different phases (
i.e., the equiprobable surfaces of P (ϑ) resemble ellipsoids instead of spheres), stemming
from the cross terms in Eq. (5.17). The consequences of these correlations will be discussed
in Sec. 5.2.2.

To gain more insight about how the BQMEA proceeds, we provide a few exemplary
details about the algorithm for the estimation of d = 2 phases in Fig. 5.7. In Fig. 5.7(a), we
show the average number ofmeasurementsnmeas per round k for a simulation of 1000 runs
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(a) (b) (c) (d)

Figure 5.7: (a) Average number of measurements per round, nmeas, during the different rounds of the
Bayesian quantum multiphase estimation algorithm (BQMEA) for d = 2 and ϵ = 10−4, estimated from
1000 simulations of the algorithm. (b,c) Histograms of the number of measurements used (b) in the fifth
and (c) in the 20th round of the algorithm, from the same 1000 simulations as in (a). (d) Average asymptotic
number of measurements per round, n̄meas, depending on the decision parameter ϵ. For 15 different values
of ϵ, n̄meas was estimated from 100 simulations of the algorithm for 25 rounds.

of 25 rounds of the BQMEA with ϵ = 10−4. Note that nmeas is related to the average total
number of measurements afterK rounds, Nmeas(K), asNmeas(K) = ∑K

k=0 nmeas(k). We
see that after completing the first round, the average number of measurements remains
constant in the remaining rounds. In the first round, more measurements are required
because the initially flat Bayesian distribution P (ϑ) has to be localized sufficiently before
one is able to restrict the phase domain and proceed with the second round. In contrast,
in the remaining rounds, the initial distribution at the beginning of the rounds is already
significantly localized such that less measurements are needed.

In Fig. 5.7(b,c) we show a histogram (from the same 1000 runs of the algorithm) of how
many measurements have been used (b) in the fifth round and (c) in the 20th round of the
BQMEA. We see that the distribution of the number of measurements remains similar
during the different rounds of the algorithm. Furthermore, due to the tail of the distri-
butions, we can see that using a fixed number of measurements per round (which would
render the algorithm nonadaptive) could be problematic: when using only a small num-
ber of measurements per round, P (ϑ) might not be localized enough to restrict the phase
domain, resulting in a large error rate. On the other hand, using a large number of mea-
surements per round increases the constant overhead of precision scaling with respect to
the Heisenberg limit.

Finally, in Fig. 5.7(d), we plot the average asymptotic number of measurements per
round, n̄meas, for different values of the decision parameter ϵ. Here, we approximate n̄meas

using rounds two to 25 of the algorithm, n̄meas ≈
∑24
k=1 nmeas(k)/24, for 100 runs of the

BQMEA (d = 2) for each ϵ. We see that, as expected, decreasing ϵ results in more mea-
surements per round. In particular, we observe that n̄meas = O(ln 1/ϵ), or, as we see
below, n̄meas = O(ln 1/Perr). This scaling is similar to what is seen in the original single-
phase QPE algorithm [429], where the phase θ is estimated up to an error of ε (with high
probability, see discussion in Sec. 5.1.2) using O(ln 1/ε) ancilla qubits.
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5.2.2 Precision scaling of the BQMEA

In this section, we discuss the performance of the BQMEA in the presence and the absence
of noise, and compare it to several single-phase and sequential multiphase estimation pro-
tocols.

Figure of merit and resource counting

Before we canmeaningfully discuss the performance scaling of the BQMEA and other esti-
mation algorithms, we must define an appropriate figure of merit and a correct account of
the physical resources used during the estimation. In single-phase estimation, the Bayesian
variance of the estimation protocol is given by [487]

V = 4
∫

dϑP (ϑ) sin2[(ϑ− θ̄)/2], (5.22)

where P (ϑ) is the Bayesian distribution and θ̄ is the estimate for the true phase θ. Note
that for a sufficiently sharp P (ϑ) (and by correctly regarding the periodicity of the phase),
V simplifies to the Bayesian mean-squared-error

∫
dϑP (ϑ)(ϑ − θ̄)2. We note also that

the Bayesian variance V does not necessarily coincide with the frequentist variance Vfre =
4〈sin2[(θ̄ − θ)/2]〉, where 〈·〉 is an average over many realizations of the estimation. Both
variances are known to coincide asymptotically formany repetitions of the estimation pro-
tocol [134, 386], but the frequentist varianceVfre can only be computedwhen the true phase
is known, which one could argue is never the case in real experiments. In our case, since
we perform simulations, we have access to the true phase θ and thus can compare both
variances. However, since we restrict the phase domain between the different rounds, we
introduce an error probability P (d)

err that does not affect the Bayesian variance but, when-
ever the phase restriction is erroneous, can be seen in the frequentist variance. We observe
numerically that when we only consider the realizations that do not show an error (rep-
resenting the vast majority of the realizations, see below), both variances coincide up to
statistical fluctuations. Since our estimation protocol is Bayesian, we will focus on the
Bayesian variance V in the following, but below also analyze in detail the error rates P (d)

err .
In a multiphase estimation protocol, we generalize the expression of V to obtain the

d× d Bayesian covariance matrix V with elements

Vab = 4
∫

ddϑP (ϑ) sin[(ϑa − θ̄a)/2] sin[(ϑb − θ̄b)/2]. (5.23)

The diagonal element Vll of the covariance matrix is the single-phase Bayesian variance V ,
Eq. (5.22), of the phase θl, while the off-diagonal elements quantify the correlations of the
distribution P (ϑ). According to Eq. (5.23), an arbitrary linear combination n ·θ (n ∈ Rd)
is estimated with Bayesian variance Vn·θ = ∑

a,b nanbVab.
To consistently account for the physical resources used in the BQMEA, we apply the

standard way of counting resources in QPE algorithms [19, 40, 429, 431, 432], and count
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the total number of applications of the controlled-U gate Uc, Eq. (5.14). We note that the
gate Uc of Eq. (5.14) is generally more difficult to implement (i.e., it requires more elemen-
tary gates) than the standard controlled-U gate that is used in single-phaseQPE algorithms,
see Eq. (5.3). However, as in single-phase QPE algorithms, the complexity to implement
Uc in terms of elementary gates is not included in resource counting. Furthermore, from
the form of Eq. (5.14), one might think that the application of Uc should correspond to d
applications of the unitary U . However, in each term of Eq. (5.14), the unitary U appears
only once such that, for any initial state, Uc can only imprint the single phases θl once and
never the phase d × θl. This is in contrast to, e.g., the gate U ⊗ · · · ⊗ U that should be
counted as d applications of U .

A second way to understand that the gate Uc should be counted as one application of
U is by means of the formal equivalence to optical implementations, see the discussion in
the end of Sec. 5.1.1. As we will see in detail in Sec. 5.2.3, theM-fold application of Uc is
formally equivalent to a single application of the phase-imprinting unitary on a generalized
N00N state withM particles,

|ψ〉 = 1√
d+ 1

(|M, 0, . . . , 0〉+ |0,M, 0, . . . , 0〉+ |0, . . . , 0,M〉) . (5.24)

Here, the accounted-for number of resources is the number of particles M , according to
the standard resource counting used in multiparameter quantum metrology. For several
recent experimental results that use this resource counting for multiphase estimation, see
Refs. [476, 479, 480, 481, 482, 488]. Therefore, via the formal equivalence, the M-fold
application of Uc should be counted asM applications of U (and not, e.g.,M × d).

Consequently, in the BQMEA, if we usemk single measurements in the kth round of
the algorithm, the total number of resources used inK rounds of the algorithm is given by
NT = ∑K−1

k=0 mkMk = ∑K−1
k=0 mk2k. The total number of measurements (that sometimes

is used as the accounted-for resource in estimation protocols, see, e.g., Ref. [448]) is given
byNmeas = ∑K−1

k=0 mk.

Sensitivity of the BQMEA in the absence of noise

We now discuss the performance of the BQMEA for d = 1, 2, and 3. Recall that in Fig. 5.6,
we have shown two exemplary snapshots of the Bayesian distributions P (ϑ) during the
algorithm for d = 2 and d = 3. In Fig. 5.8, we show numerical results of the scaling of
the elements of the Bayesian covariance matrix, Eq. (5.23), during the algorithm. For each
d, we have performed 100 simulations of the BQMEA for 25 rounds, corresponding to a
total resource count of NT ≈ 109 and about Nmeas ≈ 500 measurements, and use a deci-
sion parameter of ϵ = 10−4. In each simulation, a different uniformly-generated random
θ ∈ [0, 2π]d is estimated. In Fig. 5.8, we plot the Bayesian variances Vii and covariances
Vij (i 6= j) for (a) d = 1, (b) d = 2, and (c) d = 3. The points show the numerical results
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(b) (c)(a)

Figure 5.8: Scaling of theBayesian covariancematrixV (multiplied byN2
T ) as a function of the used resources

NT during the BQMEA for (a) d = 1, (b) d = 2, and (c) d = 3. Numerical simulations of the Bayesian
variances Vii and covariances Vij (i 6= j) are shown as blue dots and yellow dots, respectively. Each dot
corresponds to the simulated (co)variance after a specific round of the algorithm during the first 25 rounds
of the algorithm. For each d, we show the results of 100 simulations. The solid lines show average values
of the components of V that, for NT � 1, yield the corresponding asymptotic limit, shown as horizontal
dashed lines, that indicate a precision scaling as V ∝ 1/N2

T and are used to estimate the fitting parameters
C

(d)
H (ϵ), cf. Eqs. (5.25-5.27). In each simulation, we estimate a randomly chosen θ ∈ [0, 2π]d using the

decision parameter ϵ = 10−4. The figure is taken from Ref. [5].

of V after each round of the algorithm (i.e., after the last measurement of each round). We
emphasize that in Fig. 5.8, we have not ignored any erroneous runs of the algorithm. Also,
we indicate the averages and asymptotic limits of the Bayesian variances and covariances
as solid and dashed lines, respectively.

We see that, after an initial transient, the covariance matrix V scales as V ∝ 1/N2
T , so

it shows a Heisenberg-limited scaling behaviour. The reason for the transient is that in the
beginning of the estimation protocol, the initially flat Bayesian distribution P (ϑ) requires
more measurements with fixed M to become localized before one can restrict the phase
domain and continue with the second round (cf. Fig. 5.7). Thus, initially, V does not scale
as 1/N2

T but shows a shot-noise scaling 1/NT . The different simulated results of the ele-
ments of V fluctuate around the average mostly due to varying numbers of measurements
mk that are used before proceeding to the next round of the algorithm. For NT � 1,
we can use the average covariances to estimate the asymptotic behaviour of the precision
scaling of the BQMEA. The exact numerical scaling depends on the chosen value of the
decision parameter ϵ and can be fitted by

V = C
(1)
H (ϵ)
N2
T

for d = 1; (5.25)

V = C
(2)
H (ϵ)
N2
T

 1 0.47
0.47 1

 for d = 2; (5.26)

V = C
(3)
H (ϵ)
N2
T


1 0.45 0.45

0.45 1 0.45
0.45 0.45 1

 for d = 3, (5.27)

with a fitting parameterC(d)
H that depends on ϵ. In a second set of simulations with varying
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(a) (b) (c)

Figure 5.9: The fitting parameters C(d)
H (blue dots) of the scaling of the Bayesian covariance matrix V, cf.

Eqs. (5.25-5.27), and the error rates P (d)
err (orange squares), as a function of the decision parameter ϵ for (a)

d = 1, (b) d = 2, and (c) d = 3. Each value is estimated by an average of 105 repetitions (d = 1 and
d = 2), and 5 × 104 repetitions (d = 3), of the first 25 rounds of the BQMEA. The gray lines are fits that
correspond to Eqs. (5.28-5.30) for C(d)

H (ϵ) and Eqs. (5.32-5.34) for P (d)
err (ϵ). The error bars are estimated

standard deviations of the error rate, see the text. The figure is taken from Ref. [5].

ϵ (here we simulate the first 25 rounds of the BQMEA with 105 repetitions for d = 1 and
d = 2, and 5× 104 repetitions for d = 3), we estimate the dependence ofC(d)

H on ϵ, see the
blue dots in Fig. 5.9, to obtain

C
(1)
H (ϵ) = 3.13 + 2.50 ln 1/ϵ for d = 1; (5.28)

C
(2)
H (ϵ) = 10.8 + 13.8 ln 1/ϵ for d = 2; (5.29)

C
(3)
H (ϵ) = 40.1 + 26.2 ln 1/ϵ for d = 3. (5.30)

Note that for ϵ = 10−4, we obtain the values C(2)
H ≈ 138 and C(3)

H ≈ 281 that can be seen
in Fig. 5.8.

Next, we analyze and estimate the error rate P (d)
err depending on the decision parameter

ϵ. We say that an error has occurred whenever the phase restriction has been erroneous,
i.e., whenever the true phase θ lies outside the restricted phase hypercubeC , θ /∈ C . Then,
the error rate is P (d)

err is defined as the probability of an error per round. Before we estimate
P (d)

err , we observe that, after a larger error probability after the first round of the BQMEA,
P (d)

err remains constant (or even slightly decreases) for the remaining rounds, see Fig. 5.10.
This is due to the fact that, before the first round, the Bayesian distribution P (ϑ) is flat,
while in later rounds, P (ϑ) is already localized in the phase domain (cf. Fig. 5.6), such
that errors in the estimation are less probable.

To find a simple estimate of the asymptotic error rate P (d)
err , we assume a constant er-

ror probability for each round. As the error probability is higher in the first round, this
assumption results in a slight overestimation of the asymptotic rate P (d)

err . We count the
number of errors Nerr that have occurred in the simulation of Nsim runs of the BQMEA,
meaning the number of times that we find θ /∈ C after completing the 25 rounds of the
algorithm. This results in an estimated total error probability of P (d)

err,T = Nerr/Nsim after
k = 25 rounds of the algorithm, that can be used to estimate the error rate P (d)

err by means
of the relation

1− P (d)
err,T = (1− P (d)

err )k (5.31)
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(a) (b)

Figure 5.10: The error distribution nerr during the first 25 rounds of the BQMEA for d = 1 using a decision
parameter (a) ϵ = 10−2 and (b) ϵ = 10−3. Each distribution is estimated using 106 simulations of the
algorithm. The shown error bars are estimated standard deviations of the error counts according to the
Poissonian distribution, ∆nerr = √nerr. The figure is taken from Ref. [5].

corresponding the probability for no error in the first k rounds of the algorithm. In this
way, we find the error rate estimates that are shown as yellow squares in Fig. (5.9). The
estimated standard deviations of the error rates P (d)

err are obtained by error propagation
and assuming a Poissonian distribution of the error counts, ∆

P
(d)
err,T

=
√
Nerr/Nsim. We

note that in Fig. 5.9, the values of P (d)
err are estimated using the same simulations that were

used to estimate the values of C(d)
H .

After fitting the error rates P (d)
err by the simple model c × ϵ, shown as the gray lines in

Fig. 5.9, we can estimate the error rates as

P (1)
err = 0.94ϵ for d = 1; (5.32)

P (2)
err = 0.78ϵ for d = 2; (5.33)

P (3)
err = 0.58ϵ for d = 3. (5.34)

We note that for a more exact analysis of P (d)
err , one might use a more accurate model. For

instance, when fitting P (d)
err with the model c1 × ϵc2 , we find the parameters c1 = 0.57 and

c2 = 0.91 for d = 1, c1 = 0.94 and c2 = 1.04 for d = 2, and c1 = 0.64 and c2 = 1.02
for d = 3. Furthermore, a proper error rate analysis should also account for the larger
error probability of the first round of the algorithm (cf. Fig. 5.10). For our qualitative error
rate analysis that we will use to compare the performance of the BQMEA to other existing
estimation strategies in the literature, we will content ourselves with the simple estimations
of Eqs. (5.32-5.34).

Finally, we briefly mention that the precision of the BQMEA scales exponentially with
the number of total measurements Nmeas. This scaling can be seen for d = 2 in Fig. 5.11,
where we show results from 100 simulations of the algorithm for the first 25 rounds, using
a decision parameter ϵ = 10−4. The solid line indicates an exponential fit of Vii given
by Vii ∼ 0.61e−0.082Nmeas . For d = 1 and d = 3, one can also observe an exponential
dependence of the covariance matrix V with respect to Nmeas. We note that in the above
description of the BQMEA, Nmeas corresponds to the number of measurements (or the



Chapter 5. Application: Bayesian quantum multiphase estimation algorithm 156

0 100 200 300 400
Nmeas

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

V
ij

i = j

i 6= j

Figure 5.11: ComponentsVij of the Bayesian covariancematrix as a function of the total number ofmeasure-
mentsNmeas. The dots indicate results of the BQMEA for d = 2 during the first 25 rounds of the algorithm
using ϵ = 10−4. The solid line represents an exponential fit of Vii. The figure is taken from Ref. [5].

number of ancilla qudits) that are used during the estimation protocol, while in the optical
implementations that we will discuss in Sec. 5.2.3,Nmeas corresponds to the total number
of applications of the unknownphase shifts in theN00N-state protocol, or the total number
of single photons used in the single-photon multipass protocol.

Comparison of the BQMEA for d = 1 with existing single-phase estimation protocols

For the estimation of a single phase, d = 1, we can directly compare the BQMEA to dif-
ferent single-phase estimation protocols in the literature. The protocols can be divided
into the groups of “forward” protocols (initiating with M = 1 and thereupon increas-
ing M ) and “backward” protocols (initiating with M = 2K−1 and thereupon decreasing
M ). Direct applications of the original QPE algorithm (that we have discussed in detail
in Sec. 5.1.2) make use of the semiclassical implementation of the quantum Fourier trans-
form [433] and thus consist of a adaptive backwards measurement protocol [38, 444]: the
measurement protocol starts with the measurements using the largest value ofM = 2K−1

(recall thatK is the number of rounds of the estimation protocol) and then proceeds back-
wards until reachingM = 1, while always adaptively changing the control phase ϕ based
on the recordedmeasurement results. The adaptive strategy of Ref. [38] was used to reach a
Heisenberg-limited precision scaling of the Bayesian variance, V ∼ Cs/N

2
T , withCs = 23.

Due to the optimized adaptive adjustment of the control phases for each measurement,
the error rate is negligibly small. However, one cannot simply increase the precision of
the estimation procedure by adding more rounds: since one necessarily has to start with
the measurements of the round with the largest M , the number of rounds K has to be
known or chosen in advance because adding more rounds during the algorithm requires
a complete restart of the estimation protocol.

In contrast, the BQMEA is part of the class of forward estimation protocols [430, 447,
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448, 451, 468] that initiate with the measurements using M = 1 and generally do not
require fixing the number of rounds K in advance. Forward estimation protocols can be
adaptive, where different parameters such as number of measurements per round, control
phases, or the chosen values ofM may depend on previous measurement outcomes10. In
Ref. [430], a fully nonadaptive Heisenberg-limited measurement protocol was discussed
that increases the number of repetitions for the rounds with smallM , to obtain a negligible
error probability. The small error probability comes at the price of an increased constant
overhead in the Heisenberg-limited scaling, showing a precision scaling as V ∼ Cs/N

2
T

with Cs = 40.5.
Awidely applied Bayesian forward estimation protocol was introduced inRef. [448]. In

this so-called rejection-filtering phase estimation (RFPE), the Bayesian distribution P (ϑ)
after each measurement is approximated as a Gaussian distribution, reaching a precision
scaling of V ∼ Cs/N

2
T withCs = 22. The restrictive simplification of approximatingP (ϑ)

with by Gaussian distribution introduces a finite error probability, similar to the BQMEA.
However, the phase restrictions used during the BQMEA allow for the recording of more
information about P (ϑ), such that for similar precision scaling, the error probability is
below the one of Ref. [448]. Indeed, from Fig. 5.9(a), we see that the BQMEA reaches
C

(1)
H for a decision parameter ϵ ≈ 5.3 × 10−4 that corresponds to an error rate of P (1)

err ≈
5 × 10−4. For this ϵ, we compare the cumulative error distribution of the single-phase
BQMEA to the error distribution that was reached in the RFPE protocol of Ref. [448].
Both distributions are shown in Fig. 5.12, where they are estimated from 1000 simulations
of the estimation protocols each consisting of Nmeas = 200 single measurements. We see
that, in the BQMEA, larger errors are less probable in comparison to the RFPE protocol.

Comparison of the BQMEA to sequential multiphase estimation strategies

We now compare the precision scaling of the BQMEA for d = 2 and d = 3 to respective
sequential measurement protocols of the phases. A sequential multiphase estimation pro-
tocol interrogates each of the d phases individually, making use of single-phase estimation
schemes like the one shown in Fig. 5.2(b), where one prepares a single register state in one
of the d eigenstates and performs the measurement of each phase independently. We first
want to note that due to spatial or temporal boundary conditions of the multiphase esti-
mation task, such as time-varying signals, one might be forced to use a parallel sensing
technique such as the BQMEA. However, as we see now, even if a sequential protocol is
possible, a parallel measurement scheme may still outperform the sequential one for the
estimation of specific linear combinations of the phases.

10In contrast, any nonadaptive measurement protocol can be equivalently implemented in a forward or
backward fashion because the are no adaptive parameters that require knowledge of previous measurement
results.
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(a) (b)

BQMEA RFPE

Figure 5.12: Cumulative error distributions for single-phase estimation using (a) the BQMEA and (b) the
rejection-filtering phase estimation (RFPE) after 200 measurements of the protocols. For each protocol, the
error distributions are estimated using 1000 simulated phase estimations. For the BQMEA, we use ϵ =
5.3 × 10−4 such that both protocols show a precision scaling of V ∼ Cs/N

2
T with Cs = 22. The figure of

part (b) is taken from the Supplementary Material of Ref. [448] (Fig. 2; right).

We assume here for simplicity that we use the same amount of resources to measure
each of the d phases. Note that depending on the specific linear combination n · θ that
we want to measure, one can optimize the precision by accordingly distributing the to-
tal number of available resources,NT , over the individual measurements. Thus, we simply
perform d separate single estimation protocols each using theNT/d resources (for simplic-
ity, we assume that d divides NT ). Since the precision scaling of a single-phase BQMEA
using NT resources is Vθl

= C
(1)
H /N2

T , a sequential measurement scheme making use of
NT resources estimates the linear combination n · θ with a precision of

V
(seq)

n·θ =
d∑
l=1

n2
l Vθl

= C
(1)
H d2∑d

l=1 n
2
l

N2
T

. (5.35)

In order to meaningfully compare the sequential and parallel estimation strategies, we
have to fix the error probability Perr for both cases. For this purpose, we express the scal-
ing constants C(d)

H explicitly in terms of the error rates P (d)
err using Eqs. (5.28-5.30) and

Eqs. (5.32-5.34). For instance, we have that C(1)
H (Perr) = 3.13 + 2.50 ln 0.94/Perr.

As an example, we consider the measurement of the phase difference θ1−θ2 for d = 2.
According to Eq. (5.35), a sequential scheme measuring one phase after the other results
in a precision scaling of V (seq)

θ1−θ2
= 8C(1)

H (Perr)/N2
T . In contrast, with Eq. (5.26), a parallel

estimation of both phases results in a precision scaling of

V
(par)
θ1−θ2

= C
(2)
H (Perr)
N2
T

[
1 −1

]  1 0.47
0.47 1

 1
−1

 = 2(1− 0.47)C
(2)
H (Perr)
N2
T

(5.36)

with C(2)
H (Perr) = 10.8 + 13.8 ln 0.78/Perr. Taking, e.g, an error rate of Perr = 10−3,

the sequential protocol offers a sensitivity of V (seq)
θ1−θ2

= 162/N2
T while the parallel protocol

achieves a sensitivity of V (par)
θ1−θ2

= 109/N2
T . Analogously, one obtains that for d = 3 and
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Perr = 10−3, all mutual differences θl − θk between two of the three phases are measured
with a sensitivity of V (seq)

θl−θk
= 364/N2

T using the sequential protocol, and with a sensitivity
of V (par)

θl−θk
= 227/N2

T using the parallel protocol.

To summarize, we see that for a comparable error rate and a fixed amount of resources
NT , a parallel estimation offers a better sensitivity to measure specific linear combinations
n · θ such as the differences θl − θk11. This advantage stems from the correlations of the
Bayesian distributionP (ϑ), see Fig. 5.6: for instance, in Eq. (5.36), we see that the overhead
factor of the variance is reduced by the correlations ofP (ϑ). Note that this correlation also
results in a decreased performance for the parallel estimation of other linear combinations,
such as, e.g., the sum θ1 + θ2.

Sensitivity of the BQMEA in the presence of noise

We now introduce an extension of the BQMEA in the presence of noise. As a noise
model, we assume that the phase imprinting of the phase θl is accompanied by decoher-
ence characterized by a decoherence rate Γl. In particular, if we apply the basic circuit of
the BQMEA, Fig. 5.4, withM applications of controlled-U gate Uc, the state of the ancilla
qudit after the phase imprinting is given by

E(ρ) =
d∑
l=0

KlρKl. (5.37)

Here, ρ = |ψA〉 〈ψA| is the ancilla state of the BQMEA after the application of
Uc in the absence of noise [|ψA〉 is given in Eq. (5.15)], and E denotes the de-
phasing channel that is given in terms of the Kraus operators Kl that are defined as
〈m|K0 |n〉 = e−ΓlMδmn (we have defined Γ0 = 0 and δmn denotes the Kronecker delta)
and 〈m|Kl |n〉 =

√
1− e−2ΓlMδmlδnl for l > 0. This noise model generalizes the phase

damping channel for qubits [19] to a qudit phase damping channel. In the optical imple-
mentation that we discuss in Sec. 5.2.3, the noise model corresponds to a mode-dependent
dephasing that occurs during the phase imprinting. Furthermore, in the case d = 1, the
noisemodel leads to a decay of themeasurement probabilities towardswhite noise, amodel
that is often considered in single-phase estimation protocols, see, e.g., Ref. [448]. The final
probabilities [see Eq. (5.17) for the final probabilities in the absence of noise] are now given

11Note that, actually, in the above comparison, the error probability of the parallel estimation is even
smaller than the one for the sequential protocol because we have simply equated Perr, the error probability
per round. However, since the sequential protocol has to perform d separate estimations, more rounds (with
less single measurements per round) are required, resulting in a larger total error probability. Thus, equating
the total error probability would only increase the scaling advantage of the parallel scheme with respect to
the sequential one.
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Input: {ϵ,K,Γl}
P (ϑ) = 1/(2π)d

for k = 0, . . . , K − 1:
M = minl[2k, 1/Γl]; Phalf = 0
while Phalf < 1− ϵ:
ϕ = generate_random()
o = measurement(M,ϕ)
P (ϑ) = Bay_update(P (ϑ), o,M,ϕ)
Phalf = compute(P (ϑ))

P (ϑ) = cut _grid(P (ϑ))
P (ϑ) = normalize(P (ϑ))

return: P (ϑ)

Table 5.2: The pseudocode of the Bayesian quantummultiphase estimation algorithm (BQMEA) in the pres-
ence of noise. In contrast to the algorithm in the absence of noise, cf. Tab. 5.1, we bound themaximal number
M of applications of Uc by minl[1/Γl] according to the dephasing rates Γl.

by

P (o|θ,ϕ,M) = 1
(d+ 1)2

{
d+ 1 + 2

∑
n

e−ΓnM cos[Mθn + βn(o)]+

+ 2
∑
m<n

e−(Γn+Γm)M cos[M(θn − θm) + γnm(o)]
}
. (5.38)

The exponential increase of the noise withM effectively erases the information about
θl in measurements with M > 1/Γl. Thus, as soon as the noise becomes dominant, we
stop further increasingM . In particular, in the kth round, we chooseM = min[2k, 1/Γl],
while all other parts of the BQMEA remain the same as for the BQMEA in the absence of
noise. For a pseudocode of the BQMEA in the presence of noise, see Tab. 5.2. Note that
the strategy to halt increasingM as soon as the noise becomes dominant is similar to what
was proposed in Ref. [448].

We now examine the performance of the BQMEA in the presence of noise for the ex-
emplary case of d = 2, where we consider the dephasing rates Γ1 = 0.02 and Γ2 = 0.01.
In Fig. 5.13, we plot the components of the covariance matrix V (timesNT ) as a function
ofNT . While the precision of the BQMEA initially shows a scaling as 1/N2

T (here the noise
still has a little effect), forNT ≥ 104, the scaling approaches the shot-noise scaling 1/NT as
expected for measurements using constantM . However, we emphasize that even though
V is scaling as 1/NT , the precision is still far below the shot-noise limit that is indicated as
a dashed line. This is because during the initial part of the BQMEA that is not affected by
the noise, the precision is already strongly increased with respect to the shot-noise limit.
Furthermore, we also see that the precision of estimating θ2 is larger than the one of esti-
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Figure 5.13: Components of the Bayesian covariancematrix V during the BQMEA for d = 2 in the presence
of noise. The dots represent single results after each round of 100 simulations of the BQMEAusing ϵ = 10−4,
Γ1 = 0.01 and Γ2 = 0.02, and the solid lines are averages. The dashed line indicates the shot-noise limit
N−1
T . The figure is taken from Ref. [5].

mating θ1 because the latter is accompanied by the larger dephasing rate. Finally, note that
the correlations decrease in the final stage of the algorithm with respect to the initial stage.
This is because the correlations actually decay with the rate Γ1 + Γ2, see Eq. (5.38), and are
thus more sensitive to the dephasing noise.

We want to mention that an asymmetric noise such as the one above can be coun-
teracted by replacing the first Hadamard gate Hd+1 by an (M-dependent) unbalanced
Hadamard gate H̃d+1 such that the ancilla state’s components that correspond to the largest
dephasing rates have larger amplitudes.

5.2.3 Optical implementations

In this section, we will discuss two possible optical implementations of the BQMEA. Here,
instead of the estimation of d eigenvalues of a unitary matrix, we consider the usual multi-
phase estimation problem in quantummetrology. We restrict ourselves to optical quantum
interferometry, where the unknown phases θ correspond to the optical phase shifts act-
ing on the different modes of an interferometer. We first discuss an implementation using
generalized N00N states, and then focus on a single-photon multipass protocol that can be
implemented with start-of-the-art optical elements.

N00N-state implementation

The implementation of the BQMEAwith generalizedN00Nstates corresponds towhat one
could call the “traditional” interferometric setting of multiphase estimation. The problem
setting is depicted in Fig. 5.14. A preparation device prepares a state consisting ofM parti-
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Figure 5.14: The “traditional” interferometric setting ofmultiphase estimation. After a (d+1)mode state that
containsM particles is prepared, the lth mode experiences a control phase shift ϕl and the unknown phase
shift θl. The zeroth mode serves as a reference mode. Finally, the state of the interferometer is measured.

cles distributed among d+ 1 modes. The zeroth mode serves as the reference mode, while
the lthmode experiences the known control phase shift ϕl followed by the unknown phase
shift θl. The phases are imprinted by the unitaries ei(ϕl+θl)nl , where nl = a†

lal is the num-
ber operator of the lth mode. Finally, the state is measured in a measurement device. If we
use preparation andmeasurement devices that reproduce the probabilities of the BQMEA,
Eq. (5.17), we know from the above analysis that the setup performs Heisenberg-limited
multiphase estimation, where now the total number of resources, NT , corresponds to the
total number of particles that are used in the measurement protocol. As we discussed in
Sec. 5.1.1, this is the “traditional” way of counting resources in (multi)phase estimation,
that requires the quantum resource of (multipartite) entanglement, cf. Sec. 5.1.4.

To reproduce the probabilities of Eq. (5.17), we prepare the initial state as the general-
ized multimode N00N state [454, 461, 462, 463, 489]

|ψin〉 = 1√
d+ 1

(|M, 0, . . . , 0〉+ |0,M, . . . , 0〉+ · · ·+ |0, . . . , 0,M〉) , (5.39)

where M particles are distributed among the d + 1 modes (note that we write |ψin〉 in
second quantization). After the phases are imprinted according to ei(ϕl+θl)nl , we project
the final state in the interferometer onto the states

|ψo〉 = 1√
d+ 1

(
|M, 0, . . . , 0〉+ ei

2πo
d+1 |0,M, . . . , 0〉+ · · ·+ ei

2πdo
d+1 |0, . . . , 0,M〉

)
,

(5.40)
where o ∈ {0, . . . , d} is the measurement outcome. The resulting probabilities for the
outcome coincide with the main probability of the BQMEA, Eq. (5.17) upon replacing the
random control phases ϕl with ϕl/M . We finally want to note that N00N states are highly
susceptible to noisy environments [490, 491] and that, while generalizedmultimodeN00N
state have been long proposed [454, 461, 462, 463] and there is recent progress towards
their experimental realization [489, 492], generating them as well as projecting the final
state according to Eq. (5.40) requires advanced, non-linear optical elements and is thus
difficult to implement, especially for larger values ofM .
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Figure 5.15: Single-photon multipass implementation of the BQMEA. A single photon enters a multiport
beam splitter BSd+1. After the imprinting of the control phasesψ, the unknown phase shift θ is appliedM
times. The zeroth mode of the interferometer serves as a reference mode. After a second multiport beam
splitter, the photon is measured in one of the outgoing modes. The figure is taken from Ref. [5].

Single-photon multipass implementation

Now, we discuss a single-photonmultipass implementation of the BQMEA that can be im-
plemented with standard state-of-the-art optical elements [479, 493, 494]. This proposal is
a generalization of the multipass single-phase estimation protocol that was implemented
in Ref. [38]. The implementation is sketched in Fig. 5.15. A single photon enters a balanced
multiport beam splitter BSd+1 [493, 495] that corresponds to the generalized Hadamard
gate Hd+1 in the BQMEA, see Eq. (5.11). For d = 2 and for d = 3, the optical elements
are called tritters and quarters, respectively, and have been recently implemented with in-
tegrated optical circuits [479, 480, 494, 496]. Alternatively, the balanced multiport beam
splitter can be implemented using a cascade of balanced two-mode beam splitters [476].

The unitary operation of a tritter is given by [493, 496]

BS3 = 1√
3


1 1 1
1 ei2π/3 ei4π/3

1 ei4π/3 ei2π/3

 , (5.41)

which coincides with the expression for the generalized Hadamard gateH3, see Eq. (5.11).
For d = 3, the quarter is parametrized by a parameter γ that depends on the specific
implementation [495],

BS3 = 1
2


1 1 1 1
1 eiγ −1 −eiγ

1 −1 1 −1
1 −eiγ −1 eiγ

 . (5.42)
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For γ = π/2, we obtain the generalized Hadamard gateH4 of Eq. (5.11). For other values
of γ, one only needs to slightly adjust the final probability of Eq. (5.17).

In contrast to the single-pass N00N-state implementation, in the single-photon im-
plementation, the unknown phases θl are imprinted using multiple passes of the interfer-
ometric modes through the optical element, see Fig. 5.15. Together with the imprinting
of the control phases ϕl, the lth mode gets acted upon by the operator ei(Mθl+ϕl), where,
as above, nl is the number operator of the lth mode. Again, the zeroth mode serves as a
reference. Thus, in the multipass implementation, the phase sensitivityM × θl in the final
probability is achieved by means ofM applications of the phase shift θl, cf. Sec. 5.1.4. This
is similar to the initial description of the BQMEA, where the sensitivity is due toM appli-
cations of the controlled-U gateUc, and in contrast to the implementationwith generalized
N00N states, where the increased sensitivity is due to the multipartite entanglement of the
interferometric state [460, 463].

Finally, the interferometric modes enter a second balanced multiport beam splitter
BSd+1, and the photon is measured in one of the d+ 1 outgoing arms. This measurement
scheme again reproduces the outcome probabilities of the BQMEA, Eq. (5.17). Therefore,
it achieves a (multipass) Heisenberg-limited precision scaling V ∝ 1/N2

T , where NT is
quantified as the total number of applications of the phase shift θ.

5.3 Conclusions and outlook

In this chapter, we have entered the domain of quantum phase estimation algorithms
that play central roles in quantum computations and quantum metrology. After an ex-
tensive introduction to single-phase estimation, the original quantum phase estimation
algorithm and its variants, and an overview of recent literature about multiphase esti-
mation protocols, we have introduced the Bayesian quantum multiphase estimation al-
gorithm (BQMEA). The BQMEA combines different measurements consisting of a ba-
sic multiphase-estimation quantum circuit by means of an appropriate Bayesian post-
processing. It is able to simultaneously estimate d different and completely unknown
phases θ ∈ [0, 2π]d with a Heisenberg-limited precision scaling, V ∝ 1/N2

T , where V
is the covariance matrix of the Bayesian posterior distribution and NT is the total num-
ber of resources used in the estimation protocol. Here, NT corresponds to the number of
applications of a generalized controlled-U operation Uc, where the unitary U encodes the
unknown phases θ as eigenphases.

The BQMEA enables one to estimate any linear combination of the unknown phases,
n ·θ, with a Heisenberg-limited precision, ∆(n ·θ) ∝ 1/NT . Furthermore, due to correla-
tions that build up in the Bayesian distribution during the estimation, certain linear com-
binations can be estimated with better precision than sequential multiphase estimation
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protocols, i.e., protocols, that estimate each of the d phases separately using a single-phase
estimation protocol. We have also shown that the single-phase version of the BQMEA
performs similar to different current single-phase estimation strategies. Finally, we have
extended the BQMEA to a multiphase estimation protocol that is noise tolerant in the
presence of phase damping noise.

While the BQMEA is described in the standard quantum-phase-estimation-algorithm
language of quantum circuits and controlled unitary gates, we have also discussed two pos-
sible quantum optical implementations. In the standard multiphase estimation scheme of
quantum metrology, the BQMEA can be implemented by using generalized multimode
N00N states [454, 461, 462, 463]. Here, the total number of resources corresponds to the
number of particles that have traversed the interferometric setup, and the crucial quantum
resource of the quantum metrological advantage is multipartite entanglement. Further-
more, a single-photonmultipass version of the BQMEAcan be implementedwith standard
state-of-the-art optical elements [479, 493, 494] and is thus in reach of current experimen-
tal setups.

The Bayesian post-processing of the BQMEA makes use of a d-dimensional grid and
is thus only efficient for estimation protocols that estimate a small number of phases. If
a larger number of phases is to be measured, new post-processing strategies should be
considered. For instance, one can approximate the Bayesian posterior distribution during
the algorithm with a multivariate normal distribution [448, 468], or one can adaptively
update the grid points bymeans of resampling algorithms andMonte–Carlomethods [480,
484, 485].

The BQMEA is implementable in current experimental platforms. However, any im-
plementation is accompanied with different types of noise that most probably differ from
the simple phase damping noise model considered above. Thus, for any experimental re-
alization of the BQMEA, an adaptation of the algorithm to the experiment-specific noise
conditions is required.





Chapter 6

Conclusions

The central objects of study in this thesis have been quantum resources. Quantum re-
sources are specific features and characteristics of quantum systems that are not present
in classical systems, and that enable an advantage of quantum technologies over classi-
cal ones for different technological tasks, leading to the so-called quantum advantage. We
have touched upon several key questions that arise in the discussion of quantum resources,
and we have attempted to contribute to partial answers to these questions.

Identification

The first question about quantum resources, that we have addressed in Ch. 2, is how to
identify the key features of quantum systems that are responsible for specific quantum ad-
vantages. In this chapter, we have focused on the field of quantum computation and we
have seen that the question of which quantum resource is necessary for a quantum advan-
tage is highly dependent (i) on the particular computational problem that we have to solve
and (ii) on the specific model of quantum computation that we employ. Due to these ob-
stacles, the role of different quantum resources for a quantum computational advantage is
still highly disputed.

We have then focused on a specific quantum algorithm, Grover’s search algorithm. As
one of the first and most important quantum algorithms, Grover’s algorithm achieves a
provable quadratic speed-up in terms of query complexity for the task of searching a large
database. Inspired from the field of quantum metrology, we have then examined different
quantum resources that are captured by so-called quantum statistical speeds. We have
found that in the noiseless version and several noisy generalizations of Grover’s algorithm,
the maximal trace speed that occurs during the algorithm represents a necessary resource
for the quantum advantage. The trace speed can further be interpreted as an indicator of
entanglement or coherence.

Our results demonstrate that, similar to the role of the quantum Fisher information
in quantum metrology, quantum statistical speeds open a new perspective to the identifi-
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cation of central quantum resources in quantum computational advantage. In the future,
it would be interesting to further generalize our results to more general noise models in
search algorithms, or to other quantum algorithms that offer a provable quantum advan-
tage.

Verification

The second question that we have addressed in Ch. 3 and Ch. 4 is the question of how to
verify the presence of specific quantum resources from experimental data. This verification
is crucial in order to confirm the correct operation of experimental setups to provide the
quantum resources, such that the setups can be further used to create quantum technolo-
gies. Alas, the methods needed for the verification vary significantly for different quantum
resources.

In Ch. 3, we have focused on the verification of (genuine multipartite) Bell nonlocality.
Nonlocality is a central quantum resource for several quantum technologies, most promi-
nently in the field of quantum cryptography. To detect nonlocality, the observed experi-
mental data needs to violate the famous Bell inequalities. Here, we address the commonly
used practise of postselecting the experimental data in order to purify or amplify nonlocal
correlations. When performed incautiously, this postselection can distort the data via the
selection bias, such that the verification of nonlocality with the postselected data is invalid.
By using the tool box of causal inference and causal diagrams, we have provided valid post-
selection strategies for the verification of genuine multipartite nonlocality. Intriguingly,
we have found that even postselection methods that require partial collaboration between
the measurement parties can be used to verify genuine multipartite nonlocality. Finally,
the result is applied to the creation of genuine three-partite nonlocality from independent
particle sources.

The most direct direction for future research is the inclusion of finite detection proba-
bilities and noise, such that the results can be applied to real experimental. Furthermore,
there have been new approaches to nonlocality recently, such as, e.g., network nonlocality,
and it would be interesting to check for similar results about valid postselection strategies
in these new scenarios.

In Ch. 4, we have discussed the verification of nonclassicality (defined as the negativity
of the Glauber P function). This quantum resource of a single-mode continuous-variable
quantum system is central for several quantum technologies that build on continuous-
variable quantum systems. The verification of nonlocality is known to require a significant
amount of experimental data and large post-processing efforts. Here, we have developed a
neural-network nonclassicality indicator that is trained via supervised learning from sim-
ulated experimental data of different standard quantum-optical measurement schemes. In
particular, we have considered the common detectionmethods of balanced homodyne de-
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tection and multiplexed click-counting measurements for several typical quantum optical
states. We have found the neural-network prediction to perform well even for small sam-
ple sizes of experimental data, and to partially generalize beyond the states that are used
in the training phase. Finally, for homodyne detection, we have confirmed the correct
functioning of the neural-network approach on data from real experiments with squeezed,
coherent, and single-photon-added coherent states.

The neural-network prediction does not represent a complete verification of nonclassi-
cality, for which one has to rely on proven nonclassicality conditions that include an anal-
ysis of statistical errors. The neural network however serves a fast and easy-to-implement
nonclassicality indicator that can be used even during the data acquisition. In the fu-
ture, one could consider further experimental setups such as, e.g., multimode continuous-
variable systems, and one could strengthen the performance of the neural networks by
exploiting advanced machine learning techniques.

Application

Finally, in Ch. 5, we have addressed the third (and most common) question of how to em-
ploy quantum resources to build new quantum technologies. For this purpose, we have
entered the field of quantum metrology that employs quantum resources such as entan-
glement and coherence to achieve a high precision inmeasurement procedures, a precision
that is inaccessible for classical measurement techniques. We have focused on the task of
the simultaneous estimation of multiple parameters when taking into account the total
number of physical resources (e.g., the total number of particles) used in the estimation
protocol. For this task, we have developed the Bayesian quantum multiphase estimation
algorithm that combines different measurements of a basic quantum circuit by means of
Bayesian post-processing techniques. We have found that the algorithm scales with the
optimal precision scaling (the Heisenberg scaling) and that, for certain estimation tasks,
it outperforms sequential estimation protocols that rely on optimized single-phase esti-
mation subroutines. Furthermore, the algorithm can be made noise resilient and can be
implemented in state-of-the-art experimental setups with standard quantum-optical ele-
ments.

In the future, to apply themultiphase estimation algorithm to specific experiments, one
should consider the specific type of noise that is present in the given experimental setup to
adapt the algorithm accordingly. Furthermore, inspired by the importance of the single-
phase estimation algorithm in quantum computation, one could search for new quantum
algorithms that use the multiphase estimation algorithm as a subroutine.





Appendix A

Measurement distributions in homodyne
detection

In this appendix, we provide a detailed description of how to calculate the homodyne-
detection outcome distributions p(x) for several classes of quantum optical states that were
used in training and testing the neural-network nonclassicality identifiers in Sec. 4.3.

Calculation of quadrature distributions

As discussed in Sec. 4.3.1, when preparing the local oscillator in an intense coherent state
with relative phase −(ϕ + π/2) (with respect to the state of interest ρ), the homodyne
detection scheme shown in Fig. 4.2 results in a measurement of 〈I−〉 ∝ 〈x(ϕ)〉, where
x(ϕ) = a1e

iϕ + a†
1e

−iϕ is the phase-rotated quadrature operator. The corresponding
quadrature distribution p(x, ϕ) is given by the marginal of the state’s Wigner functionW
along a line through the origin with angle ϕ, defined as x sinϕ − y cosϕ = 0 [318]. For
instance, choosing ϕ = 0 results in the marginal of the Wigner function along the x-axis
(i.e., the y-direction is integrated over).

To include a finite detection efficiency η in the simulation of the quadrature distribu-
tions p(x), we recall the characteristic function of the state ρ that is given by [497]

Φ(β) = tr
[
ρeβa

†
e−β∗a

]
, (A.1)

representing the complex Fourier transform of theGlauber–Sudarshan P function. A finite
detection inefficiency η can be modeled as a simple beam splitter (BS) [318], where the
input mode ain is mixed with a loss mode aloss (that is prepared in the vacuum state) to
yield the output mode aout = √ηain +

√
1− ηaloss. This noise model results in a finite-

efficiency-including characteristic function Φη(β) = Φ(√ηβ) [497], by means of which
one can calculate the quadrature distributions in the presence of noise. In particular, the
quadrature distribution is obtained from the characteristic function as [318]

p(x, ϕ) = 1
π

∫
e−2ixy−y2/2Φ(i√ηye−iϕ)dy. (A.2)
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State Probability p(x, ϕ)
coherent

√
2
π
e−2(x−√

ηα cosϕ)2

thermal
√

2
π(1+2ηn̄)e

− 2x2
1+2ηn̄

Fock
√

2
π

∑n
k=0

(
n
k

)
ηk

2kk!e
−2x2

H2k(
√

2x)

squeezed-coherent
√

2
π[1−η(1−e2ξ cos2 ϕ/2−e−2ξ sin2 ϕ/2)]e

− 2(x−√
ηα cos ϕ)2

1−η(1−e2ξ cos2 ϕ/2−e−2ξ sin2 ϕ/2)

SPACS 1
1+α2

√
2
π
e−2(x−√

ηα cosϕ)2

×
[
η
(
2x cosϕ− 2η−1√

η α
)2

+ 4ηx2 sin2 ϕ+ (1− η)(1 + 4ηα2 sin2 ϕ)
]

cat
√

2
π

1
2−2e−2α2

{
e−2(x−√

ηα cosϕ)2

−2e−2α2 Re[e−2(x+i√ηα sinϕ)2 ] + e−2(x+√
ηα cosϕ)2

}
Table A.1: The homodyne-detection quadrature distributions p(x, ϕ) are for each of the different classes of
simulated states, where x is the measured quadrature value and ϕ is the quadrature angle that is used in the
balanced homodyne detection measurement. η is the detection efficiency, α is the coherent amplitude, n̄ is
the mean photon number, n is the photon number, and ξ is the squeezing parameter.

Thefinal quadrature probabilities for the different states that are used in the simulation
of homodynemeasurement data are summarized in Tab. A.1. Below, we provide exemplary
derivations for how to calculate the distributions p(x, ϕ) for coherent, thermal, and Fock
states.

Coherent states

For coherent states |α〉 (α ∈ R1), the characteristic function (including the detection ef-
ficiency η) is directly obtained as Φ(β) = e

√
ηα(β−β∗) = e2i√ηα Im[β]. By Eq. (A.2), this

yields

p(x, ϕ) = 1
π

∫
e−2ixy−y2/2e2i√ηα Im[iye−iϕ]dy (A.3)

= 1
π

∫
e−2iy(x−√

ηα cosϕ)−y2/2dy (A.4)

=
√

2
π
e−2(x−√

ηα cosϕ)2
. (A.5)

Note that we use unit of our quadrature data that results in a vacuum quadrature variance
of Var[x] = 1/4.

1Note that taking real amplitudes does not restrict generality because a coherent state with amplitude
|α|eiϕα measured along the quadrature angle ϕ results in the same quadrature distribution as a coherent
state with amplitude |α|measured along the quadrature angle ϕ− ϕα.
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Thermal states

For thermal states, the characteristic function is given by Φ(β) = e−ηn̄|β|2 [498], such that
we find

p(x, ϕ) = 1
π

∫
e−2ixy−y2/2e−ηn̄y2dy (A.6)

= 1
π

∫
e−2ixy−y2/2(1+2ηn̄)dy (A.7)

=
√

2
π(1 + 2ηn̄)

e− 2x2
1+2ηn̄ . (A.8)

Fock states

The characteristic function of a Fock state |n〉 is given by Φ(β) = Ln(η|β|2) [498], where
Ln is the nth Laguerre polynomial. By Eq. (A.2), one then obtains

p(x, ϕ) = 1
π

∫
e−2ixy−y2/2 Ln(ηy2)dy (A.9)

= 1
π

n∑
k=0

(
n

k

)
(−1)k

k!
ηk
∫
e−2ixy−y2/2y2kdy (A.10)

=
√

2
π

n∑
k=0

(
n

k

)
ηk

2kk!
e−2x2 H2k(

√
2x), (A.11)

where H2k is the Hermite polynomial of degree 2k and in the third line, we have used the
relation [499] ∫

yne−py2−qydy =
(
i

2

)n√
πp− n+1

2 e
q2
4p Hn(iq/2√p) (A.12)

for Re [p] > 0.

Squeezed states

For the squeezed-coherent states D(α)S(ξ) |0〉 (recall the squeezing operator
S(ξ) = e(ξa†2+ξ∗a2)/2 and the displacement operator D(α) = eαa

†−α∗a), we first cal-
culate the quadrature distribution of squeezed vacuum S(ξ) |0〉 for ξ > 0. Using the
Baker–Campbell–Hausdorff formula, one can derive [318]

S†(ξ)D(β)S(ξ) = D(β′) (A.13)

with β′ = β(eξ + e−ξ)/2 − β∗(eξ − e−ξ)/2. Then, after using eβa†
e−β∗a = D(β)e|β|2/2,

one finds after a few lines of calculation

Φ(β) = tr
[
ρeβa

†
e−β∗a

]
(A.14)

= e|β|2/2 〈0|S†(ξ)D(β)S(ξ) |0〉 (A.15)

= e|β|2/2+(β−β∗)2e2ξ/8−(β+β∗)2e−2ξ/8. (A.16)



Appendix A. Measurement distributions in homodyne detection 174

Next, using Eq. (A.2), we obtain the quadrature distribution of a squeezed vacuum state as

p(x, ϕ) = 1
π

∫
e−2ixy−y2/2Φ(i√ηye−iϕ)dy (A.17)

= 1
π

∫
e−2ixy−y2/2(1−η(1−e2ξ cos2 ϕ/2−e−2ξ sin2 ϕ/2)dy (A.18)

=
√

2
π[1− η(1− e2ξ cos2 ϕ/2− e−2ξ sin2 ϕ/2)]

e
− 2x2

1−η(1−e2ξ cos2 ϕ/2−e−2ξ sin2 ϕ/2) .

(A.19)

Finally, to obtain the quadrature distribution of a squeezed-coherent state D(α)S(ξ) |0〉
with ξ > 0 and α ∈ R, we simply replace x with x − √ηα cosϕ, see the calculation for
coherent states above, resulting in a distribution as shown in Tab. A.1.

SPACS and cat states

The quadrature distribution of a SPACS is given in Ref. [400], and the quadrature dis-
tribution of a cat state can be computed similarly to the one of coherent states (here, the
characteristic function consists of four summands that each resemble the one of a coherent
state).

State parameters for simulations

In the simulation of the training and test data for Sec. 4.3, we fix a quadrature angle ϕ = 0.
This setting is still general: Fock states and thermal states are phase-independent, such
that their quadrature distributions are independent of ϕ. Furthermore, the quadrature
distribution of a coherent state |α〉 (α ∈ R) along a quadrature angle ϕ coincides with the
quadrature distribution of a coherent state |α cosϕ〉measurement along ϕ = 0 (the same
holds for cat states). Finally, for single-photon added coherent states (SPACS) and squeezed
states, the choice of ϕ = 0 assures that the optimal quadrature angle is chosen to uncover
the nonclassical features of the corresponding states. For squeezed states, measuring along
ϕ = 0 means that we measure the squeezed states along the optimal quadrature angle, i.e.,
the angle for which the quadrature distribution has the smallest (sub-shot-noise) variance.
As discussed in Ch. 4, measuring squeezed states along other quadrature angles results
in distributions that coincide with the ones produced by coherent states, or even broader
distributions in the anti-squeezing regime.

As discussed in Ch. 4, we restrict the parameters of each state during the simulation to
a range such that P (|x > 8|) < 10−6. Furthermore, for squeezed states, we use random
squeezing parameters ξ ∈ [0.5, 1], where we use ξ ≥ 0.5 because for small ξ, the distribu-
tions of squeezed and coherent state become to similar, resulting in a finite probability of a
false positive nonclassicality classification of coherent states. Finally, for SPACS, the seed
coherent amplitude is further restricted because, also here, for |α| > 3, the distribution
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State Parameters
coherent (and mixtures) α ∈ [−5, 5]

thermal n̄ ∈ [0, 5]
Fock n ∈ {1, . . . , 6}

squeezed-coherent α ∈ [−5, 5], ξ ∈ [0.5, 1]
SPACS α ∈ [−3, 3]

Table A.2: The parameter ranges of the different states that are used to simulate the training data. In the
simulation, the parameters of each state are randomly sampled in the corresponding parameter range. α
is the coherent amplitude, n̄ is the mean photon number, n is the photon number, and ξ is the squeezing
parameter.

becomes too similar to the one of a coherent state, see Ch. 4. The corresponding parameter
ranges for the simulation of the different training states are summarized in Tab. A.2.





Appendix B

Measurement distributions in
click-counting detection

In this appendix, we provide a detailed derivation of the multiplexed-click-counting mea-
surement probabilities for the different classes of states that are used in the simulation of
the training and test data of Sec. 4.4.

Calculation of click-counting distributions

The initial point of the calculation of the click-counting measurement distributions is the
generalized binomial distribution [406] (that we recall from Sec. 4.4.1, see Eq. (4.16)),

pk =
〈

:
(
N

k

)(
e−ηn/N

)N−k (
1− e−ηn/N

)k
:
〉
, (B.1)

where pk is the probability that the click-countingmeasurement results in k detector clicks,
N is the number of measurement modes of the multiplexing scheme, η is the detection
efficiency, and n = a†a is the number operator of the incomingmode. In the following, we
derive the explicit expression for pk for the different classes of states thatwe have considered
in Sec. 4.4.1. The results are summarized in Tab. B.1.

Coherent states

The measurement distribution for coherent states |α〉 can be directly read from Eq. (B.1)
because, due to the normal-ordering operation, one can insert a 7→ α, resulting in

pk =
(
N

k

)(
e−η|α|2/N

)N−k (
1− e−η|α|2/N

)k
. (B.2)
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State Probability pk
coherent

(
N
k

) (
e−η|α|2/N

)N−k (
1− e−η|α|2/N

)k
thermal 1

nth+1
∑∞
j=0

(
nth
nth+1

)j
Dηk,j

Fock Dηk,n, cf. Eq. (B.9)
squeezed 1

cosh |ξ|
∑∞
n=0

(
tanh |ξ|

2

)2n (2n)!
(n!)2Dηk,2n

NPATS 1
(nth+1)nn

th

∑∞
j=n

(
j
n

) (
nth
nth+1

)j
Dηk,j

even coherent
(
N
k

)∑k
j=0

(
k
j

)
(−1)jg(N − k + j, α)

Table B.1: Multiplexed click-counting probability pk for the different states as a function of the state-specific
parameters. N is the number of on-off detectors (i.e., the number of detection modes) in the multiplexing
device and η is the detection efficiency of each detector.

Fock states

The calculation of the click counting statistics for a Fock state |m〉 is provided in Ref. [500].
We first factor out the operator in Eq. (B.1) to find

:
(
N

k

)(
e−ηn/N

)N−k (
1− e−ηn/N

)k
: (B.3)

=
(
N

k

)
k∑
j=0

(
k

j

)
(−1)k−j :

(
e−ηn/N

)N−k (
e−ηn/N

)k−j
: (B.4)

=
(
N

k

)
k∑
j=0

(
k

j

)
(−1)k−j :

(
e−ηn(1−j/N)

)
: . (B.5)

Next, using that any operator of the form : e−γn : results in

〈m| : e−γn : |m〉 = 〈m|
∞∑
k=0

(−γ)k

k!
(a†)kak |m〉 (B.6)

=
m∑
k=0

(−γ)k

k!
m!

(m− k)!
(B.7)

= (1− γ)m, (B.8)

we obtain the click counting probabilities

pk ≡ Dηk,m =
(
N

k

)
k∑
j=0

(
k

j

)
(−1)k−j

(
1− ηN − j

N

)m
, (B.9)

wherewe have defined the symbolDηk,m that wewill use below. Note thatDηk,m corresponds
to the symbolD1−η,η

k,m in Ref. [500].
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Squeezed vacuum states

For squeezed vacuum states |ξ〉, we use the state’s expansion in the Fock basis given by
[406]

|ξ〉 = 1√
cosh ξ

∞∑
n=0

(
tanh ξ

2

)n √(2n)!
n!

|2n〉 , (B.10)

to obtain, by Eq. (B.9),

pk = 1
cosh |ξ|

∞∑
n=0

(
tanh |ξ|

2

)2n (2n)!
(n!)2D

η
k,2n. (B.11)

Note that, in the simulations, we use a sufficiently large cut-off to approximate the infinite
sum.

Thermal states and NPATS

Thermal states with average photon number nth are defined as [498]

ρth = 1
1 + nth

∞∑
j=0

(
nth

1 + nth

)j
|j〉 〈j| , (B.12)

and n-photon-added thermal states (NPATS) are given as [498]

ρth+n = N (a†)nρtha
n = 1

(1 + nth)nnth

∞∑
j=n

(
j

n

)(
nth

1 + nth

)j
|j〉 〈j| , (B.13)

where N is a normalization constant. Using Eq. (B.9), we find the click-counting proba-
bilities for n-photon-added thermal states (for thermal states, insert n = 0) as

pk = 1
(1 + nth)nnth

∞∑
j=n

(
j

n

)(
nth

1 + nth

)j
Dη
k,j. (B.14)

Again, in the simulation, we use a sufficiently high cut-off to approximate the infinite sum.

Even coherent states

Finally, the click-counting probabilities for even coherent states |α+〉 = Ñ (|α〉 + |−α〉)
(Ñ is a normalization constant) can be derived directly from Eq. B.1. Defining [418]

g(λ, α) = 〈α+| : e−λn/N : |α+〉 = e−λ|α|2/N + e−(λ/N−2)|α|2

1 + e−2|α|2 , (B.15)

we obtain

pk =
(
N

k

)
k∑
j=0

(
k

j

)
(−1)jg(N − k + j, α). (B.16)
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State Average number n̄
coherent |α|2

thermal nth

Fock n

squeezed sinh2 |ξ|
NPATS nth(n+ 1) + n [501]

even coherent |α|2 1−e−2|α|2

1+e−2|α|2

Table B.2: Mean photon numbers n̄ for the different states as a function of the state-specific parameters. N
is the number of on-off detectors (i.e., the number of detection modes) in the multiplexing device and η is
the quantum efficiency of each detector.

Parameter ranges of the simulation

As discussed in Sec. 4.4.2, we simulate all states fromparameters that correspond to amean
photon number in the interval n̄ ∈ [1, 16] (16 because we use a multiplexing intoN = 16
measurement modes). The dependence of n̄ on the state’s parameters is shown in Tab. B.2.
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