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Introduction

The aim of this thesis is to describe the regularity results that I obtained during my Ph.D. for
the gradient of solutions to some classes of elliptic problems of the Calculus of Variations.
Actually, two different families of problems will be faced: unconstrained problems and
obstacle problems.
For what concerns unconstrained problems, as it is well known, studying the regularity
properties of their solutions means to study the solutions to the corresponding
Euler-Lagrange system. The solutions to all the unconstrained problems that will be faced in
this thesis are possibly vector-valued functions, i.e., they represent the solutions to a system
of partial differential equations.
Solutions to obstacle problems are, instead, scalar-valued functions, that minimize a
functional in a class of admissible functions, which values have to be (almost everywhere)
greater than those of a map, called obstacle, that will be usually denoted with ψ. Studying
the regularity properties of solutions to this family of problems means to try to understand
how the regularity of the obstacle influences the regularity of the solutions.
We will consider functionals whose energy density satisfies standard p-growth and p-ellipticity
conditions with respect to the gradient variable ξ.
More precisely, we will consider local minimizers of functionals of the following form

F (w,Ω) =
ˆ

Ω
f (x,Dw(x)) dx, (0.1)

where Ω ⊂ Rn, for n ≥ 2, is a bounded open set, and f : Ω× Rn×N → R, for N ≥ 1, is a
Carathéodory map, such that ξ 7→ f(x, ξ) is, at least, of class C1

(
Rn×N

)
.

We shall assume that there exist constants `1, `2, ν, L > 0 and a parameter µ ∈ [0, 1] such
that the map f satisfies the following p-growth and p-ellipticity conditions

`1
(
µ2 + |ξ|2

) p
2 ≤ f(x, ξ) ≤ `2

(
µ2 + |ξ|2

) p
2 , (0.2)

〈Dξf(x, ξ)−Dξf(x, η), ξ − η〉 ≥ ν
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 , (0.3)

|Dξf(x, ξ)−Dξf(x, η)| ≤ L
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 , (0.4)

for any ξ, η ∈ Rn×N and for almost every x ∈ Ω. Our main focus will be on the case
1 < p < 2.
As it is natural for this kind of problems, the solutions have to belong to the Sobolev space
W 1,p, and since all the results we will describe are local, in the following, with the notations
given above, we will always consider functions w ∈W 1,p

loc

(
Ω,RN

)
.

So, under this assumptions, when we deal with the regularity of solutions to homogeneous
elliptic systems, we are interested in the regularity properties of solutions to the following
problem:

iii
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min
{ ˆ

Ω
f (x,Dw(x)) dx : w ∈ u0 +W 1,p

0

(
Ω,RN

) }
,

with u0 ∈W 1,p
(
Ω,RN

)
a fixed boundary datum.

We also show some higher differentiability results for local minimizers of functionals of the
form

F (w,Ω) =
ˆ

Ω
[f (x,Dw(x))− F (x) · w(x)dx] , (0.5)

where the energy density f still satisfies (0.2)–(0.4).
Local minimizers of functionals of this form are solutions to non-homogeneous elliptic systems
and, as we will see in the following, their regularity properties also depend on the
assumptions on the datum F .

For what concerns obstacle problems, we are interested in the regularity properties of
solutions to problems of the form

min
{ ˆ

Ω
f (x,Dw(x)) dx : w ∈ Kψ (Ω)

}
, (0.6)

where Ω ⊂ Rn is a bounded open set, n > 2, f : Ω× Rn → R is a Carathéodory map, such
that ξ 7→ f(x, ξ) is of class C1 (Rn) for a.e. x ∈ Ω, ψ : Ω 7→ [−∞,+∞) belonging to the
Sobolev class W 1,p

loc (Ω) is the obstacle, and

Kψ (Ω) =
{
w ∈ u0 +W 1,p

0 (Ω,R) : w ≥ ψ a.e. in Ω
}

is the class of the admissible functions, with u0 ∈W 1,p (Ω) a fixed boundary datum.
Even when we face this family of problems, we will assume that the function f satisfies
growth and ellipticity conditions expressed in (0.2)–(0.4).

It is known that u ∈W 1,p
loc (Ω) is a solution to the obstacle problem (0.6) in Kψ (Ω) if and

only if u ∈ Kψ (Ω) and u is a solution to the variational inequality
ˆ

Ω
〈Dξf (x,Du(x)) , D (ϕ(x)− u(x))〉 dx ≥ 0 ∀ϕ ∈ Kψ (Ω) .

As you can notice by (0.1) and (0.5), the energy density of the kind of functionals we will
consider is characterized by a dependence on the x-variable and the nature of this
dependence is one the key points for the results we will present.
One of the main difficulties of our study relies in the fact that we will always consider
situations in which the map x 7→ Dξf (x, ξ) is possibly discontinuous.
Actually, we will assume the existence of a non-negative function g ∈ Lqloc (Ω) for some q,
such that, for any ξ ∈ Rn×N and for almost every x, y ∈ Ω, we have

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ (g(x) + g(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 . (0.7)

Assuming (0.7) is equivalent to assume that the map x 7→ Dξf (x, ξ) belongs to the Sobolev
space W 1,q

loc (Ω) (see [66]).
In Section 4.4, dealing with obstacle problems, we will also consider the weaker situation in
which (0.7) is replaced by

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ (gk(x) + gk(y)) |x− y|α
(
µ2 + |ξ|2

) p−1
2 , (0.8)
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where α ∈ (0, 1) and (gk)k is a sequence of non-negative functions belonging to L
n
α
loc (Ω) such

that, for some q ∈ [1,+∞) we have

∑
k

‖gk‖q
L
n
α (BR)

<∞,

for any ball BR b Ω.
In the same section, we will also consider the case in which (0.8) is replaced by

|Dξf (x, ξ)−Dξf (y, ξ)| ≤ (g(x) + g(y)) |x− y|α
(
µ2 + |ξ|2

) p−1
2 , (0.9)

where g ∈ L
n
α
loc (Ω) is a non-negative function.

The two conditions (0.8) and (0.9) represent some fractional-order differentiability properties
for the map x 7→ Dξf (x, ξ).
More precisely, inequality (0.8) means that the map x 7→ Dξf (x, ξ) belongs to a
Besov-Lipschitz space Bα

n
α
,q,loc (Ω) for 1 ≤ q <∞, while (0.9) means that the same map

belongs to Bα
n
α
,∞,loc (Ω).

We will prove fractional differentiability results for solutions to some obstacle problems, but
this kind of higher differentiability results are available also for solutions to some kinds of
elliptic equations (see, for example [2, 30, 31]).

There is a second key point for most of the results contained in this thesis: the value of the
growth exponent p.
Indeed, except for the obstacle problem considered in Section 4.2, where we have p ≥ 2, all
the other results deal with variational problems in which assumptions (0.2)–(0.4) hold for
1 < p < 2.
In case of sub-quadratic growth with respect to the gradient variable, new difficulties arise,
expecially when we try to prove higher differentiability properties for solutions, and this
issues also affect the results.
This kind of phenomenon was already known for variational problems and elliptic equations
with continuous coefficients or, in general, under more regular assumptions on them (see, for
example, the pioneering papers [1, 89]), but here we present some results where, for the first
time, the difficulties linked to the sub-quadratic growth and ellipticity conditions combine
with those that are due to the presence of possibly discontinuous coefficients.

A key tool to study higher differentiability properties of solutions to the wide family of
problems described above, is the use of the following auxiliary function of the gradient
variable that is usually involved in the study of regularity properties for solutions to p-elliptic
problems

Vp : Rk → Rk,

where

Vp (ξ) :=
(
µ2 + |ξ|2

) p−2
4 · ξ

for any ξ ∈ Rk (where k = n×N in case of variational problems with vector-valued
minimizers and k = n if we deal with problems with scalar-valued solutions), and it is
naturally linked to the ellipticity condition (0.3).
Moreover, for p-elliptic variational problems, if u ∈W 1,p is a local minimizer of the functional
(0.1), there is always a relation between the higher differentiability properties of u and the
properties of the functions Vp (Du).
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A key point, as we will see in what follows, is that, when we deal with sub-quadratic p-elliptic
problems, this kind of relations are, in some sense, reversed, with respect to what happens for
p ≥ 2.

The regularity properties of minimizers of such integral functionals have been widely
investigated in case the energy density f(x, ξ) is continuous as a function of the x-variable,
both in the superquadratic and in the sub-quadratic growth case. Actually, the partial
continuity of the vectorial minimizers can be obtained with a quantitative modulus of
continuity that depends on the modulus of continuity of the coefficients (see for example [1,
49, 58, 89] and the monographs [57, 63] for a more exhaustive treatment). For regularity
results under general growth conditions, that of course include the superquadratic and the
sub-quadratic ones, we refer to [34, 36, 37, 44, 45, 50, 75, 77, 82].
Recently, there has been an increasing interest in the study of the regularity when the
oscillation of f(x, ξ) with respect to the x-variable is controlled through a coefficient that
belongs to a suitable Sobolev class of integer or fractional order and the assumptions
(0.2)–(0.7) are satisfied with an exponent p ≥ 2.
Actually, it has been shown that the weak differentiability of the partial map x 7→ Dξf(x, ξ)
transfers to the gradient of the minimizers of the functional (0.1) (see [16, 40, 39, 62, 74, 84])
as well as to the gradient of the solutions of non linear elliptic systems (see [3, 26, 25, 28, 60,
76, 85]) and of non linear systems with degenerate ellipticity in case p ≥ 2 (see [60]).
It is worth mentioning that the continuity of the coefficients is not sufficient to establish the
higher differentiability of integer order of the minimizers.

The regularity of minimizers of functionals of the form (0.5) has been object of study under
many functional settings (see [87]), and higher integrability (see [19, 71]) and differentiability
results of integer and fractional order (see [20, 80, 81]) have been established even under
different kind of growth conditions, also for problems with measure data ([24]).
Lipschitz regularity results for solutions of non-homogeneous elliptic problems are proved, for
example, in [5, 27, 33].

The interest in the study of the regularity properties of solutions to obstacle problems has
been strongly increasing in the last decades as a research topic in Calculus of Variations and
Partial Differential Equations.
From the very beginning, obstacle problems were solved applying techniques of functional
analysis, and it was clear soon that the regularity properties of the solutions were strictly
connected to those of the obstacle.
In the linear setting it was observed that the solutions and the obstacle have the same
regularity (see [10, 15, 69]), but this is no longer true in the nonlinear framework for general
integrands without any specific structure.
This kind of phenomenon has been studied not only in the case of variational inequalities
modelled upon the p-Laplacean energy [22, 23, 83], but also in the case of more general
structures [13, 14, 38, 48, 52].
So, recently, there has been an intense research activity concerning the regularity properties
of solutions to obstacle problems in the nonlinear setting (see also [11] and the references
therein).
In many works about this topic, some extra regularity has been imposed on the obstacle to
balance the nonlinearity (see [7, 6, 23, 47, 48, 78]). For example, in some very recent papers,
the authors analyzed how an extra differentiability of integer or fractional order of the
gradient of the obstacle transfers to the gradient of the solutions (see [42, 43]).
This kind of problem is linked to similar studies about regularity of solutions to partial
differential equations, since it has been proved that solutions to the obstacle problem (0.6)
are solutions to an equation of the form
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divA (x,Du) = divA (x,Dψ) . (0.10)

It is well known that no extra differentiability properties for the solutions can be expected
even if the obstacle ψ is smooth, unless some assumption is given on the x-dependence of the
operator A.
As we mentioned above, many recent works deal with regularity properties of solutions to
variational problems in which the integrand depends on the x-variable through a function
that is possibly discontinuous, such as in the case of Sobolev-type dependence, under
quadratic (see [85]), and super-quadratic growth conditions (see [59, 74, 84]).
Therefore, inspired by recent results concerning the higher differentiability of integer ([39, 40,
41, 55, 60, 61, 62, 84]) and fractional ([3, 25]) order for the solutions to elliptic equations or
systems, in a number of papers the higher differentiability of the solution of an obstacle
problem is proved under a suitable Sobolev assumption on the partial map x 7→ A (x, ξ).
More precisely, in [42], the higher differentiability of the solution of an homogeneous obstacle
problem with the energy density satisfying p-growth conditions is proved; in [43, 64] the
integrand f depends also on the v variable; in [17, 21, 32, 65, 52, 51, 72] the energy density
satisfies (p, q)-growth conditions. The non-homogeneous obstacle problem is considered in [79,
12] when the energy density satisfies p-growth conditions, and in [90] under (p, q)-growth
conditions.
As we pointed out previously, even for unconstrained problems it is known that the
sub-quadratic growth conditions require specific tools and, in general, the expected regularity
of the solution, in the case 1 < p < 2 strongly differs from the case p ≥ 2 (for a detailed
explaination of this phenomenon see [4]).

Many previously known higher differentiability results have been obtained assuming that the
map x 7→ Dξf (x, ξ) belongs to a Sobolev space W 1,q, with q ≥ n but, both in case of
equations and in case of obstacle problems, it is possible to weaken these assumptions if we
deal with a priori bounded solutions.
Indeed, it is well known that the local boundedness of the solutions to a variational problem
is a turning point in the regularity theory. Actually, in [62] it has been proved that, when
dealing with bounded solutions to (0.10), higher differentiability properties hold true under
weaker assumptions on the partial map x 7→ Dξf (x, ξ) with respect to W 1,n. Moreover, in
[17], it has been proved that a local boundedness assumption on the obstacle ψ implies a
local bound for the solutions to the obstacle problem (0.6).
This kind of properties allow us to prove higher differentiability results, both for bounded
solutions to p-elliptic equations with 1 < p < 2, and for solutions to (0.6) with bounded
obstacle, assuming that the partial map x 7→ Dξf (x, ξ) belongs to a Sobolev class that is not
related to the dimension n, but to the growth exponent of the functional.

Let us give a description of the structure of this thesis.

In Chapter 1, we list results and properties of some spaces of functions, that will be useful in
the following. The last section of the first chapter is devoted to the properties of the function
Vp, with a focus on its relation with differentiability properties of solutions to p-elliptic
variational problems when 1 < p < 2, and the differences with respect to the case p ≥ 2.

Chapter 2 contains some results about regularity for solutions to unconstrained problems,
that is solutions to homogeneous elliptic equations.
As far as we know, no regularity results were available for vectorial minimizers nor to
establish their Lipschitz continuity, nor to prove the Ls-integrability of their gradient for
every finite s > 1, nor to prove higher differentiability, under the so-called sub-quadratic
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growth conditions, i.e. when the assumptions (0.2)–(0.7) hold true for 1 < p < 2 in case of
Sobolev coefficients, until the results we will present in Chapter 2 appeared.
In Section 2.1 we give the proof of an a priori estimate for the Lp norm of second-order
derivatives of solutions to some p-elliptic problems where 1 < p < 2, and the solutions are a
priori assumed to be in W 2,p (see [55]).
It is worth mentioning that, if (0.7) holds, the partial map x 7→ Dξf(x, ξ) needs not to be
continuous. Actually, if q = n, as in the case, for example, of some results contained in
Section 2.2, by the Sobolev embedding theorem, we have that it belongs to the space VMO
of function with vanishing mean oscillation (see [63] for the precise definition). The regularity
of solutions to PDEs with VMO coefficients goes back to [8, 68, 70].
In Section 2.2, the Lipschitz regularity, the higher integrability for the gradient, and the W 2,p

regularity results for minimizers of the functional (2.1) are described, whose proofs are
contained in [54].
For what concerns higher integrability of the gradient of minimizers, estimate (2.38) of
Theorem 2.2.2 can be interpreted as an extension of the result in [70] that concerns the
p-Laplace operator to more general operators with sub-quadratic growth.
Moreover, even for problems with sub-quadratic growth conditions, higher integrability for
the gradient of minimizers and Lipschitz regularity results have been previously proved,
respectively, in [29] and [40], but only for degenerate problems (with ellipticity conditions
only at infinity), not for possibly singular ones. Let us recall that degenerate problems are
variational problems where the minimal eigenvalue may be zero, while in singular problems
the minimal eigenvalue may go to infinity: an example of possibly singular problem is the
p-Laplace equation with 1 < p < 2.

In Chapter 3 we consider a class of non-homogeneous p-elliptic equations for 1 < p < 2,
proving the higher differentiability for their solutions.
Indeed, considering a local minimizer u ∈W 1,p

loc (Ω) of functional of the form (0.5), where the
behavior of the map x 7→ Dξf(x, ξ) is described by (0.7), we focus on the value of r such that,
if F ∈ Lrloc

(
Ω,RN

)
we get Vp (Du) ∈W 1,2

loc (Ω), provided g ∈ Lqloc (Ω) for some suitable q.
The result we prove in Section 3.1 is sharp, in the sense that we identify the largest Lebesgue
space Lr to which the datum F has to belong to get higher differentiability of minimizers of
the functional (0.5) withouth making stronger assumptions on the solutions themselves.
In Section 3.2 we prove a higher differentiability result for locally bounded minimizers of the
functional (0.5).
The results of Chapter 3 will be contained in an upcoming paper, written in collaboration
with A. Clop and A. Passarelli di Napoli.

In Chapter 4 we present the regularity results for solutions to some obstacle problems.
The aim of Section 4.2 is to describe a higher diffrentiability result for solutions to a class of
obstacle problems contained in [18], where the obstacle is assumed to be bounded, and
assumption (0.7) holds with q = p+ 2.
It is worth to stress that this result is the only one, in this Ph.D. thesis, dealing with
problems with super-quadratic growth and ellipticity conditions.
The result of this section is contained in [18], written in collaboration with M. Caselli and R.
Giova.
In Section 4.3 and Section 4.4, we move to the study of regularity of solutions to obstacle
problems under sub-quadratic growth conditions, extending some results proved in [42] for
the super-quadratic growth case (see [53]).
More precisely, in Section 4.3, under assumption (0.7) with q = n, we prove an integer order
higher differentiability result; then in Section 4.4 we prove two higher differentiability results
of fractional order, assuming (0.8) and (0.9) respectively.
In Section 4.5, the result of Section 4.2 is extended to the case 1 < p < 2, proving a higher
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differentiability result for solutions to a class of obstacle problems with sub-quadratic growth
conditions, assuming that the obstacle is locally in L∞.
This result will be contained in an upcoming paper, written in collaboration with R. Giova.

I want to conclude this introduction espressing my deep gratitude to my supervisor, professor
Antonia Passarelli di Napoli, for her precious guidance during these three years of studies.
I also wish to thank professor Albert Clop for his kind willingness in our online cooperation.
Many thanks to Raffaella Giova, who has been very kind and helpful every time we have
collaborated.
Finally, I wish to thank my tutor, professor Gioconda Moscariello.





Chapter 1

Some notations and general
properties

This opening chapter is devoted to the description of some general properties of functional
spaces and some known result that will be useful in the following chapters.

1.1 Notations and preliminaries
In this section we list the notations that we shall use and recall some tools that will be useful
to prove our results.
We shall follow the usual convention and denote by C or c a general constant that may vary
on different occasions, even within the same line of estimates. Relevant dependencies on
parameters and special constants will be suitably emphasized using parentheses or subscripts.
All the norms we use on Rn, RN and Rn×N will be the standard Euclidean ones and denoted
by | · | in all cases. In particular, for matrices ξ, η ∈ Rn×N we write 〈ξ, η〉 := trace

(
ξT η

)
for

the usual inner product of ξ and η, and |ξ| := 〈ξ, ξ〉
1
2 for the corresponding Euclidean norm.

When a ∈ RN and b ∈ Rn we write a⊗ b ∈ Rn×N for the tensor product defined as the
matrix that has the element arbs in its r-th row and s-th column.
For a C2 function f : Ω× Rn×N → R, we write

Dξf(x, ξ) · η := d
dt

∣∣∣
t=0

f(x, ξ + tη) and 〈Dξξf(x, ξ)η, η〉 := d2

dt2
∣∣∣
t=0

f(x, ξ + tη)

for ξ, η ∈ Rn×N and for almost every x ∈ Ω.
With the symbol B(x, r) = Br(x) = { y ∈ Rn : |y − x| < r }, we will denote the ball centered
at x of radius r and we shall omit the dependence on the center when it is clear from the
context. Indeed, since all the results we will discuss are local, proving them, we will denote
with Br any ball Br (x0) b Ω, where Ω ⊂ Rn is a bounded open set and x0 ∈ Ω. For any set
B and any function u ∈ L1 (B), the notation

uB = −
ˆ
B
u(x)dx,

stands for the integral mean of u over the set B.
The next lemma can be proved using an iteration technique, and will be very useful in the
following, where we will often refer to this as Iteration Lemma.

Lemma 1.1.1 (Iteration Lemma). Let h : [ρ,R]→ R be a non-negative bounded function,
0 < θ < 1, A,B ≥ 0 and γ > 0. Assume that

h(r) ≤ θh(d) + A

(d− r)γ +B

1
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for all ρ ≤ r < d ≤ R0. Then

h(ρ) ≤ c
[

A

(R0 − ρ)γ +B

]
,

where c = c(θ, γ) > 0.

For the proof we refer to [63, Lemma 6.1].
The following Gagliardo-Nirenberg type inequality is proved, in a more general form, in [86],
and can be also found in [46].

Theorem 1.1.2. Let Ω ⊂ Rn be a bounded open set, 1 ≤ q, r ≤ ∞ and

1
s

= 1
2

(1
q

+ 1
r

)
,

then the following implication holds

v ∈ Lq (Ω) ∩W 2,r (Ω) =⇒ v ∈W 1,s (Ω) ,

with the estimate
‖Dv‖Ls(Ω) ≤ c ‖v‖

1
2
Lq(Ω) · ‖v‖

1
2
W 2,r(Ω) ,

for a constant c(n, q, r, s) > 0.

The following inequalities are stated in [62]. For the proofs, see [16, Appendix A] and [56,
Lemma 3.5] (in case p(x) ≡ p, ∀x) respectively.

Lemma 1.1.3. For any φ ∈ C1
0 (Ω) with φ ≥ 0, and any C2 map v : Ω→ RN , for any p > 1

and µ ∈ [0, 1], we have
ˆ

Ω
φ

m
m+1 (p+2)(x) |Dv(x)|

m
m+1 (p+2) dx

≤ (p+ 2)2
(ˆ

Ω
φ

m
m+1 (p+2)(x) |v(x)|2m dx

) 1
m+1

·
[(ˆ

Ω
φ

m
m+1 (p+2)(x) |Dφ(x)|2

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+n
(ˆ

Ω
φ

m
m+1 (p+2)(x)

(
µ2 + |Dv(x)|2

) p−2
2
∣∣∣D2v(x)

∣∣∣2 dx) m
m+1

 , (1.1)

for any p ∈ (1,∞) and m > 1. Moreover
ˆ

Ω
φ2(x)

(
µ2 + |Dv(x)|2

) p
2 |Dv(x)|2 dx

≤ c ‖v‖2L∞(supp(φ))

ˆ
Ω
φ2(x)

(
µ2 + |Dv(x)|2

) p−2
2
∣∣∣D2v(x)

∣∣∣2 dx
+c ‖v‖2L∞(supp(φ))

ˆ
Ω

(
φ2(x) + |Dφ(x)|2

) (
µ2 + |Dv(x)|2

) p
2 dx, (1.2)

for a constant c = c(p).

This results will be useful both when dealing with systems of equations and obstacle
problems, when the solutions are bounded.
For further needs, we recall the following result, whose proof can be found in [9, Lemma 4.1].
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Lemma 1.1.4. For any δ > 0, m > 1 and ξ, η ∈ Rk, let

W (ξ) = (|ξ| − δ)2m−1
+

ξ

|ξ|
and W̃ (ξ) = (|ξ| − δ)m+

ξ

|ξ|
.

Then there exists a positive constant c(m) such that

〈W (ξ)−W (η), ξ − η〉 ≥ c(m)
∣∣∣W̃ (ξ)− W̃ (η)

∣∣∣2 .
for any η, ξ ∈ Rk.

1.2 Difference quotients

A key instrument in studying higher differentiability properties of solutions to problems of
Calculus of Variations and PDEs is the so called difference quotients method.
In this section, we recall the definition and some basic results.

Definition 1.2.1. Given h ∈ Rn, for every function F : Rn → RN , for any s = 1, . . . , n the
finite difference operator in the direction xs is defined by

τs,hF (x) = F (x+ hes)− F (x),

where es is the unit vector in the direction xs.

In the following, in order to simplify the notations, we will often omit the vector es, denoting

τhF (x) = F (x+ h)− F (x),

where h ∈ Rn.
We now describe some properties of the operator τh, whose proofs can be found, for example,
in [63].

Proposition 1.2.2. Let F and G be two functions such that F,G ∈W 1,p (Ω), with p ≥ 1,
and let us consider the set

Ω|h| := { x ∈ Ω : d (x, ∂Ω) > |h| } .

Then

(a) τhF ∈W 1,p
(
Ω|h|

)
and

Di (τhF ) = τh (DiF ) , for every i = 1, . . . , n.

(b) If at least one of the functions F or G has support contained in Ω|h| then
ˆ

Ω
F (x)τhG(x)dx =

ˆ
Ω
G(x)τ−hF (x)dx.

(c) We have
τh(FG)(x) = F (x+ h)τhG(x) +G(x)τhF (x).

The next result about finite difference operator is a kind of integral version of Lagrange
Theorem.
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Lemma 1.2.3. If 0 < r < R, |h| < R−r
2 , 1 < p < +∞, and F,DF ∈ Lp (BR) then

ˆ
Br

|τhF (x)|p dx ≤ c(n, p)|h|p
ˆ
BR

|DF (x)|p dx.

Moreover ˆ
Br

|F (x+ h)|p dx ≤
ˆ
BR

|F (x)|p dx.

The following result is proved in [63].

Lemma 1.2.4. Let F : Rn → RN , F ∈ Lp (BR) with 1 < p < +∞. Suppose that there exist
r ∈ (0, R) and M > 0 such that

n∑
s=1

ˆ
Br

|τs,hF (x)|pdx ≤Mp|h|p

for |h| < R−r
2 . Then F ∈W 1,p

(
BR,RN

)
.

Moreover

‖DF‖Lp(Br) ≤M,

‖F‖
L

np
n−p (Br)

≤ c
(
M + ‖F‖Lp(BR)

)
,

with c = c(n,N, p, r, R), and

τs,hF

|h|
→ DsF strongly in Lploc (Ω) , as h→ 0,

for each s = 1, . . . , n..

Before introducing Besov-Lipschitz spaces, we conclude this section recalling a fractional
version of Lemma 1.2.4, whose proof can be found in [74].

Lemma 1.2.5. Let F ∈ L2 (BR). Suppose that there exist r ∈ (0, R), α ∈ (0, 1) and M > 0
such that

n∑
s=1

ˆ
Br

|τs,hF (x)|2dx ≤M2|h|2α,

for |h| < R−r
2 . Then F ∈ L

2n
n−2β (Br) for every β ∈ (0, α) and

‖F‖
L

2n
n−2β (Br)

≤ c
(
M + ‖F‖L2(BR)

)
,

with c = c(n,N, p, r, R, α, β).

1.3 Besov-Lipschitz spaces

The idea of difference quotient can be used also to define some fractional differentiability
properties. In this section we introduce the definition of Besov-Lipschitz spaces and list their
basic properties.
Let us consider 0 < α < 1 and 1 ≤ p, q <∞ and, for a function v : Rn → R and h ∈ Rn, we
denote, as in the previous section, τhv(x) = v(x+ h)− v(x). We say that v belongs to the
Besov-Lipschitz space Bα

p,q (Rn) if v ∈ Lp (Rn) and
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[v]Ḃαp,q(Rn) =
(ˆ

Rn

(ˆ
Rn

|τhv(x)|p

|h|αp
dx

) q
p dh

|h|n

) 1
q

<∞. (1.3)

We define a norm in the space Bα
p,q (Rn) setting

‖v‖Bαp,q(Rn) = ‖v‖Lp(Rn) + [v]Ḃαp,q(Rn),

and with this norm Bα
p,q (Rn) is a Banach space.

Equivalently, we could say that a function v ∈ Lp (Rn) belongs to Bα
p,q (Rn) if and only if

τhv
|h|α ∈ L

q
(
dh
|h|n ;Lp (Rn)

)
. We can also observe that, in (1.3), one can simply integrate for

h ∈ B(0, δ) for a fixed δ > 0, thus obtaining an equivalent norm, because

(ˆ
{|h|≥δ}

(ˆ
Rn

|τhv(x)|p

|h|αp
dx

) q
p dh

|h|n

) 1
q

≤ c(n, α, p, q, δ) ‖v‖Lp(Rn) .

Moreover, for a function v ∈ Lp (Rn), we say that v ∈ Bα
p,∞ (Rn) if

[v]Ḃαp,∞(Rn) = sup
h∈Rn

(ˆ
Rn

|τhv(x)|p

|h|αp
dx

) 1
p

<∞, (1.4)

and we define the following norm

‖v‖Bαp,∞(Rn) = ‖v‖Lp(Rn) + [v]Ḃαp,∞(Rn).

Also in (1.4), the supremum can be taken over the set { |h| ≤ δ } for a fixed δ > 0, and the
norm that we obtain is equivalent.
By construction, Bα

p,q (Rn) ⊂ Lp (Rn). Moreover, the following Sobolev-type embeddings hold
for Besov-Lipschitz spaces.

Lemma 1.3.1. Suppose that 0 < α < 1.

(a) If 1 < p < n
α and 1 ≤ q ≤ p∗α = np

n−αp , then there is a continuous embedding
Bα
p,q (Rn) ⊂ Lp∗α (Rn) .

(b) If p = n
α and 1 ≤ q ≤ ∞, then there is a continuous embedding Bα

p,q (Rn) ⊂ BMO (Rn),

where BMO denotes the space of functions with bounded mean oscillations.

The following lemma describes the inclusions between Besov-Lipschitz spaces.

Lemma 1.3.2. Suppose that 0 < β < α < 1.

(a) If 1 < p <∞ and 1 ≤ q ≤ r ≤ ∞ then Bα
p,q (Rn) ⊂ Bα

p,r (Rn) .

(b) If 1 < p <∞ and 1 ≤ q, r ≤ ∞ then Bα
p,q (Rn) ⊂ Bβ

p,r (Rn) .

(c) If 1 ≤ q ≤ ∞, then Bα
n
α
,q (Rn) ⊂ Bβ

n
β
,q (Rn) .

For the proofs of Lemmas 1.3.1 and 1.3.2 we refer to [67].
We can also define local Besov-Lipschitz spaces as follows. Let Ω ⊂ Rn be a bounded open
set. We say that a function v belongs to Bα

p,q,loc (Ω) if, for any smooth function with compact
support in Ω, ϕ ∈ C∞0 (Ω), we have ϕv ∈ Bα

p,q (Rn). It is easy to extend the embeddings
described in Lemma 1.3.1 and 1.3.2 to local Besov spaces. The following Lemma is an easy
consequence of the definitions given above and its proof can be found in [3].
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Lemma 1.3.3. A function v ∈ Lploc (Ω) belongs to the local Besov space Bα
p,q,loc (Ω) if and

only if wwww τhv|h|α
wwww
Lq
(
dh
|h|n ;Lp(B)

) <∞
for any ball B ⊂ 2B ⊂ Ω with radius rB. Here the measure dh

|h|n is restricted to the ball
B (0, rB) on the h-space.

It is known that Besov-Lipschitz spaces of fractional order α ∈ (0, 1) can be characterized in
pointwise terms. Given a measurable function v : Rn → R, a fractional α-Hajłasz gradient for
v is a sequence (gk)k of measurable, non-negative functions gk : Rn → R, together with a null
set N ⊂ Rn such that the inequality

|v(x)− v(y)| ≤ (gk(x) + gk(y)) |x− y|α

holds for any k ∈ Z and x, y ∈ Rn \N are such that 2−k ≤ |x− k| ≤ 2−k+1. We say that
(gk)k ∈ `q (Z;Lp (Rn)) if

‖(gk)k‖`q(Lp) =

∑
k∈Z
‖gk‖qLp(Rn)

 1
q

<∞.

The following result is proved in [73].

Theorem 1.3.4. Let α ∈ (0, 1), 1 ≤ p <∞ and 1 ≤ q ≤ ∞. Let v ∈ Lp (Rn) . One has
v ∈ Bα

p,q (Rn) if and only if there exists a fractional α-Hajłasz gradient (gk)k ∈ `q (Z;Lp (Rn))
for v. Moreover,

‖v‖Bαp,q(Rn) ' inf ‖(gk)k‖`q(Lp) ,

where the infimum runs over all the possible α-Hajłasz gradients for v.

1.4 An auxiliary function
Here we define an auxiliary function of the gradient variable that comes out to be very useful
to treat regularity properties for solutions to p-elliptic problems.
The function Vp : Rk → Rk is defined as

Vp(ξ) :=
(
µ2 + |ξ|2

) p−2
4 ξ.

Of course, when we deal with variational problems whose solutions are scalar-valued
functions v : Rn → R, such as, fo example, in case of obstacle problems, the map ξ 7→ Vp (ξ)
is defined in Rk with k = n, while, in case of variational problems with vector-valued
minimizers v : Rn → RN , we have k = n×N .
As we will see in the following, many higher differentiability properties for solutions to the
problems we are considering can be expressed and treated in terms of the function Vp (Dv),
where v ∈W 1,p is a local minimizer of a p-elliptic problem.
A key point that we want to stress is that the role of this function in the study of higher
differentiability properties of solutions to elliptic problems changes when we move frome the
case p ≥ 2 to the case 1 < p < 2. This is the reason why the regularity results available for
solutions to super-quadratic problems don’t always hold true in the same way in the
sub-quadratic case.
The following results are proved in [1], and will be useful to estimate the Lp norm of D2v,
using the L2 norm of the gradient of Vp (Dv) .
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Lemma 1.4.1. For every γ ∈
(
−1

2 , 0
)
and µ ≥ 0 we have

(2γ + 1) |ξ − η| ≤

∣∣∣(µ2 + |ξ|2
)γ
ξ −

(
µ2 + |η|2

)γ
η
∣∣∣(

µ2 + |ξ|2 + |η|2
)γ ≤ c(k)

2γ + 1 |ξ − η| ,

for every ξ, η ∈ Rk.

Lemma 1.4.2. For every γ ∈
(
−1

2 , 0
)
we have

c0(γ)
(
1 + |ξ|2 + |η|2

)γ
≤
ˆ 1

0

(
1 + |tξ + (1− t)η|2

)γ
dt ≤ c1(γ)

(
1 + |ξ|2 + |η|2

)γ
,

for every ξ, η ∈ Rk.

Lemma 1.4.3. Let 1 < p < 2. There is a constant c = c(n, p) > 0 such that

c−1 |ξ − η| ≤ |Vp(ξ)− Vp(η)|
(
µ2 + |ξ|2 + |η|2

) 2−p
4 ≤ c |ξ − η| , (1.5)

for any ξ, η ∈ Rk.

Remark 1.4.4. One can easily check that, if 1 < p <∞, for a C2 function g, there exists a
constant C(p) such that

C−1
∣∣∣D2g

∣∣∣2 (µ2 + |Dg|2
) p−2

2 ≤ |DVp (Dg)|2 ≤ C
∣∣∣D2g

∣∣∣2 (µ2 + |Dg|2
) p−2

2 . (1.6)

In what follows, we shall use the following.

Lemma 1.4.5. Let Ω ⊂ Rn be a bounded open set, 1 < p < 2, and v ∈W 1,p
loc

(
Ω,RN

)
. Then

the following implication holds

Vp (Dv) ∈W 1,2
loc (Ω) =⇒ v ∈W 2,p

loc (Ω) , (1.7)

and the following estimate
ˆ
Br

∣∣∣D2v(x)
∣∣∣p dx ≤ c · [1 +

ˆ
BR

|DVp (Dv(x))|2 dx+ c

ˆ
BR

|Dv(x)|p dx
]

(1.8)

holds for any ball BR b Ω and 0 < r < R.

Proof. We will prove the existence of the second-order weak derivatives of v and the fact that
they are in Lploc (Ω), by means of the difference quotients method.
Let us consider a ball BR b Ω and 0 < R

2 < r < R.
For |h| < R−r

2 , we have 0 < R
2 < r < r1 := r + |h| < R− |h| =: r2 < R, and by (1.5), we get,

for any s = 1, . . . , n.
ˆ
Br

|τs,hDv(x)|p dx ≤
ˆ
Br

|τs,hVp (Dv(x))|p ·
(
µ2 + |Dv(x)|+ |Dv (x+ hes)|

) p(2−p)
4 .

By Hölder’s inequality with exponents
(

2
p ,

2
2−p

)
and the use of (1.5), we get

ˆ
Br

|τs,hDv(x)|p dx ≤
(ˆ

Br

|τs,hVp (Dv(x))|2 dx
) p

2
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·
(ˆ

Br

(
µ2 + |Dv (x+ hes)|2 + |Dv (x)|2

) p
2 dx

) 2−p
2

,

and since Vp (Dv) ∈W 1,2
loc (Ω), by Lemma 1.2.3 and Young’s inequality, we have

ˆ
Br

|τs,hDv(x)|p dx ≤ c

[
|h|2
ˆ
BR

|DVp (Dv(x))|2 dx
] p

2

·
[ˆ

Br

(
µ2 + |Dv (x+ hes)|2 + |Dv(x)|2

) p
2 dx

] 2−p
2

≤ c|h|p
[
1 +
ˆ
BR

|DVp (Dv(x))|2 dx+
ˆ
BR

|Dv(x)|p dx
]
.

Since v ∈W 1,p
loc (Ω) and Vp (Dv) ∈W 1,2

loc (Ω), then, by Lemma 1.2.4, we get v ∈W 2,p
loc (Ω), and

we have
ˆ
Br

∣∣∣D2v(x)
∣∣∣p dx ≤ c [1 +

ˆ
BR

|DVp (Dv(x))|2 dx+ c

ˆ
BR

|Dv(x)|p dx
]
,

that is (1.8).

Remark 1.4.6. If Ω ⊂ Rn is a bounded open set and 1 < p < 2, then one may use Remark
1.4.4 and Lemma 1.4.5 to show that, if v ∈W 1,p

loc (Ω) and Vp (Dv) ∈W 1,2
loc (Ω), then

v ∈W 2,p
loc (Ω) and (1.6) holds true with v in place of g.

Remark 1.4.7. If Ω ⊂ Rn is a bounded open set and p ∈ (1,∞), for any v ∈W 1,p
loc (Ω) such

that Vp (Dv) ∈W 1,2
loc (Ω) , if m > 1 and v ∈ L2m

loc (Ω), then, thanks to (1.1), Dv ∈ L
m(p+2)
m+1

loc (Ω).
Moreover, if v ∈ L∞loc (Ω), thanks to (1.2), we get Dv ∈ Lp+2

loc (Ω) .

Remark 1.4.8. For further needs we record the following elementary inequality(
µ2 + |ξ|2

) p
2 ≤ c(p)

(
µp + |Vp(ξ)|2

)
(1.9)

for every ξ ∈ Rn×N .
Note that this is obvious if µ = 0. In case µ > 0, we distinguish two cases.
If |ξ| ≤ µ we trivially have (

µ2 + |ξ|2
) p

2 ≤ 2
p
2µp

If |ξ| > µ, we have(
µ2 + |ξ|2

) p
2 =

(
µ2 + |ξ|2

) p−2
2
(
µ2 + |ξ|2

)
≤

(
µ2 + |ξ|2

) p−2
2
(
|ξ|2 + |ξ|2

)
≤ 2

(
µ2 + |ξ|2

) p−2
2 |ξ|2

≤ 2 |Vp(ξ)|2 .

Joining two previous inequalities we get (1.9).

Moreover, if Vp (Dv) ∈W 1,2
loc (Ω), by Sobolev’s inequality, we have Dv ∈ L

np
n−2
loc (Ω) = L

2∗p
2

loc (Ω).
Indeed, using (1.9), we get

ˆ
BR

|Dv(x)|
2∗p

2 dx =
ˆ
BR

∣∣∣|Dv(x)|
p
2−1Dv(x)

∣∣∣2∗ dx
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≤ µ
2∗p

2 |BR|+
ˆ
{ x∈BR:|Dv|>µ }

|Vp (Dv(x))|2
∗
dx

≤ µ
2∗p

2 |BR|+
ˆ
BR

|Vp (Dv(x))|2
∗
dx, (1.10)

which is finite by the Sobolev’s embedding Theorem, for any ball BR b Ω.

The following result is a fractional counterpart of Lemma 1.4.5, that will be useful to treat
regularity properties of solutions to variational problems with Besov-Lipschitz coefficients
(see Section 4.4.)

Lemma 1.4.9. Let Ω ⊂ Rn be a bounded open set, 1 < p < 2, α ∈ (0, 1) and 1 ≤ q ≤ ∞.
Then, for any function v ∈W 1,p

loc (Ω) the following implication holds

Vp (Dv) ∈ Bα
2,q,loc (Ω) =⇒ Dv ∈ Bα

p,q,loc (Ω) . (1.11)

Moreover, for any ball BR b Ω and 0 < r < R, the following estimate

[Dv]Ḃαp,q(Br) ≤ C
(

1 + ‖Dv‖Lp(BR) + ‖Vp (Dv)‖Bα2,q(BR)

)σ
(1.12)

holds true for 1 ≤ q ≤ ∞, where C and σ are positive constants depending on n, p, α and q.

Proof. Let us fix a ball BR (x0) b Ω and 0 < r < R.
Since Vp (Dv) ∈ Bα

2,q,loc (Ω), then, by definition, Vp (Dv) ∈ L2
loc (Ω), and so it’s easy to check

that Dv ∈ Lploc (Ω).
If we apply Remark 1.4.8, we easily get

ˆ
Br

|Dv(x)|p dx ≤ C
(ˆ

Br

|Vp (Dv(x))|2 dx+ 1
)
,

where the positive constant C depends on n and p.
Now, let us consider, first, the case 1 ≤ q <∞.
Using Hölder’s inequality with exponents

(
2
p ,

2
2−p

)
, Lemmas 1.4.3 and 1.2.3, we have

ˆ
BR

2
(0)

(ˆ
Br

|τhDv(x)|p

|h|pα
dx

) q
p dh

|h|n

=
ˆ
BR

2
(0)

[(ˆ
Br

|τhDv(x)|p

|h|pα

)
·
(
µ2 + |Dv(x)|2 + |Dv(x+ h)|2

) p(p−2)
4

·
(
µ2 + |Dv(x)|2 + |Dv(x+ h)|2

) p(2−p)
4 dx

] q
p dh

|h|n

≤
ˆ
BR

2
(0)

[ˆ
Br

|τhDv(x)|2

|h|2α
·
(
µ2 + |Dv(x)|2 + |Dv(x+ h)|2

) (p−2)
2 dx

] q
2

·
[ˆ

Br

(
µ2 + |Dv(x)|2 + |Dv(x+ h)|2

) p
2 dx

] 2−p
2 ·

q
p dh

|h|n

≤ c

[ˆ
BR

(
µ2 + |Dv(x)|2

) p
2 dx

] 2−p
2 ·

q
p

·

ˆ
BR

2
(0)

(ˆ
Br

|τhVp (Dv(x))|2

|h|2α
dx

) q
2 dh

|h|n

 , (1.13)
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and the right-hand side of (1.13) is finite since, as we proved above, Dv ∈ Lploc (Ω), and
Vp (Dv) ∈ Bα

2,q,loc (Ω) by hypothesis.
Let us consider, now, the case q =∞. Arguing as above, we have,

(ˆ
Br

|τhDv(x)|p

|h|pα
dx

) 1
p

≤ c

(ˆ
BR

(
µ2 + |Dv(x)|2

) p
2 dx

) 2−p
2 ·

1
p

·
(ˆ

Br

|τhVp (Dv(x))|2

|h|2α
dx

) 1
2

, (1.14)

and taking the supremum for |h| < R
2 , since, by hypothesis, Vp (Dv) ∈ Bα

2,∞,loc (Ω), we have
Dv ∈ Bα

p,∞,loc (Ω).
Recalling the definition of the norms in Besov-Lipschitz spaces, and applying Young’s
inequality to (1.13) and (1.14), for a suitable choice of C and σ, we conclude with the
estimate (1.12) holding true for 1 ≤ q ≤ ∞.

A key point we want to highlight is that, as we mentioned at the beginning of this section,
the role of the function Vp with respect to the regularity properties of variatonal problems
with standard p-growth conditions and p-ellipticity, changes with the value of the exponent p,
in particular when we move from the case p ≥ 2 to the case 1 < p < 2.
Indeed, with similar arguments, if p ≥ 2, it is easy to prove that the reverse of the
implications (1.7) and (1.11) hold.

Lemma 1.4.10. Let Ω ⊂ Rn be a bounded open set, p ≥ 2, and v ∈W 1,p
loc (Ω). Then the

following implication holds

v ∈W 2,p
loc (Ω) =⇒ Vp (Dv) ∈W 1,2

loc (Ω) ,

and the following estimate
ˆ
Br

|DVp (Dv(x))|2 dx ≤ c
[
1 +
ˆ
BR

∣∣∣D2v(x)
∣∣∣p dx+ c

ˆ
BR

|Dv(x)|p dx
]
.

holds for any ball BR b Ω and 0 < r < R.

This means that, while when p ≥ 2, if we assume Dv ∈W 1,p, we also have Vp (Dv) ∈W 1,2,
this doesn’t happen for 1 < p < 2.
This difference becomes crucial when we have to apply the ellipticity assumption in order to
prove regularity results, in particular for what concerns higher differentiability properties, for
solutions to p-elliptic problems, and also the results are different because of this reason.
The same phenomenon occurs for Besov-Lipschitz functions.

Lemma 1.4.11. Let Ω ⊂ Rn be a bounded open set, p ≥ 2, α ∈ (0, 1) and 1 ≤ q ≤ ∞. Then,
for any function v ∈W 1,p

loc (Ω) the following implication holds

Dv ∈ Bα
p,q,loc (Ω) =⇒ Vp (Dv) ∈ Bα

2,q,loc (Ω) .

Moreover, for any ball BR b Ω and 0 < r < R, the following estimate

[Vp (Dv)]Ḃα2,q(Br) ≤ C
(
1 + ‖Dv‖Lp(BR) + ‖Dv‖Bαp,q(BR)

)σ
holds true for 1 ≤ q ≤ ∞, where C and σ are positive constants depending on n, p, α and q.

It is obvious that, for p = 2, we have Vp (ξ) = ξ for any ξ ∈ Rk, and all the implications
discussed above become equivalences.



Chapter 2

Homogeneous systems

The aim of this chapter is to present some regularity results for solutions to unconstrained
variational problems where the energy density of the integral functional satisfies
sub-quadratic growth and ellipticity conditions.
Moreover, for what concerns the dependence of the integrand function on the x-variable, we
will assume that its derivatives with respect to the gradient variable belong to some suitable
Sobolev spaces.
In Section 2.1 a first example of this kind of problem is faced, with the aim to show an
estimate for the Lp norm of the second derivatives of solutions to some kind of problem
described above, that are a priori assumed to be, locally, in W 2,p.
This kind of a priori estimates are usually the first step in the study of regularity properties
of solutions to variational problems.
In fact, by means of known results available for solutions to problems with stronger
properties, which satisfy the a priori assumptions, and using some approximations arguments,
it is often possible to prove higher regularity results for solution to less regular problems,
starting from a suitable a priori estimate.
This kind of technique is used, in this chapter, in Section 2.2, where higher integrability,
differentiability and boundedness results are proved for the gradient of solutions to a class of
homogeneous equations.

In this chapter, we will consider integral functionals, whose minimizers are possibly
vector-valued functions, of the form

F (w,Ω) =
ˆ

Ω
f (x,Dw(x)) dx, (2.1)

where, for n ≥ 2 and N ≥ 1, Ω ⊂ Rn is a bounded open set, f : Ω× Rn×N → R is a
Carathéodory map, such that ξ 7→ f(x, ξ) is of class C1

(
Rn×N

)
.

For an exponent p ∈ (1, 2) and some constants `1, `2, ν, L > 0 and a parameter µ ∈ [0, 1] the
map f satisfies the following p-growth and p-elipticity conditions:

`1
(
µ2 + |ξ|2

) p
2 ≤ f(x, ξ) ≤ `2

(
µ2 + |ξ|2

) p
2 , (2.2)

〈Dξf(x, ξ)−Dξf(x, η), ξ − η〉 ≥ ν
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 , (2.3)

|Dξf(x, ξ)−Dξf(x, η)| ≤ L
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 , (2.4)

for any ξ, η ∈ Rn×N and for almost every x ∈ Ω.
In order to simplify the presentation, we will also denote

11



12 Chapter 2. Homogeneous systems

Aαi (x, ξ) := Dξαi
f(x, ξ), for all α = 1, . . . , N and i = 1, . . . , n. (2.5)

Assumptions (2.2), (2.3) and (2.4) imply, respectively

|A (x, ξ)| ≤ `
(
µ2 + |ξ|2

) p−1
2 , (2.6)

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ ν
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 , (2.7)

|A(x, ξ)−A(x, η)| ≤ L
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2 . (2.8)

Let us notice that, if the map ξ 7→ f(x, ξ) is of class C2
(
Rn×N

)
, conditions (2.3) and (2.4),

for constants L1, L2 > 0, can be replaced by

L1
(
µ2 + |ξ|2

) p−2
2 |η|2 ≤ 〈Dξξf (x, ξ) η, η〉 ≤ L2

(
µ2 + |ξ|2

) p−2
2 |η|2 , (2.9)

for almost every x in Ω, and for all ξ, η in Rn×N , i.e., with the notation (2.5),

L1
(
µ2 + |ξ|2

) p−2
2 |η|2 ≤ 〈DξA (x, ξ) η, η〉 ≤ L2

(
µ2 + |ξ|2

) p−2
2 |η|2 ,

for any ξ, η ∈ Rn×N and for almost every x ∈ Ω. The main novelty of the results given here is
that difficulties due to the fact that 1 < p < 2 combine with the presence of Sobolev
coefficients for the Euler-Lagrange equations of the functionals. Indeed we assume that the
map x 7→ Dξf(x, ξ), for any ξ ∈ Rn×N , belongs to the Sobolev space W 1,q

loc (Ω), and the
results we present also depend on the value of the exponent q.
Let us recall that this condition is equivalent to assume that there exists a non-negative
function κ ∈ Lqloc (Ω), such that

|Dξf(x, ξ)−Dξf(y, ξ)| ≤ (κ(x) + κ(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 (2.10)

for a.e. x, y ∈ Ω and for every ξ ∈ Rn×N , which is also equivalent to say that there exists a
non-negative function κ̃ ∈ Lqloc (Ω) such that

|Dxξf(x, ξ)| ≤ κ̃(x)
(
µ2 + |ξ|2

) p−1
2 (2.11)

for a.e. x ∈ Ω and for every ξ ∈ Rn×N .
As we will see in the following, (2.10) is useful when we use the difference quotient method.
In order to simplify the notations, if we define the function

g = max { κ, κ̃ } a.e. in Ω,

we have g ∈ Lqloc (Ω) and, in place of (2.10), we can use the condition

|Dξf(x, ξ)−Dξf(y, ξ)| ≤ (g(x) + g(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 , (2.12)

for a.e. x, y ∈ Ω and for every ξ ∈ Rn×N .
Similarly, in place of (2.11), we can use

|Dxξf(x, ξ)| ≤ g(x)
(
µ2 + |ξ|2

) p−1
2 , (2.13)

for a.e. x ∈ Ω and for every ξ ∈ Rn×N .
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With the notation (2.5), (2.12) becomes

|A(x, ξ)−A(y, ξ)| ≤ (g(x) + g(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 , (2.14)

for almost every x, y ∈ Ω and for every ξ ∈ Rn×N . For this point-wise characterization of
Sobolev functions we refer to [66].

2.1 An a priori estimate

The aim of this section is to show an a priori estimate for the Lp-norm of second derivatives
of local minimizers of the kind of functional described above. This result is contained in [55].
Here we consider the functional (2.1), for which, for n ≥ 2 and N ≥ 1, f : Ω× Rn×N → R is
a Carathéodory map, such that ξ 7→ f(x, ξ) is of class C1

(
Rn×N

)
.

For an exponent p ∈ (1, 2), we assume (2.2) and (2.3), for every ξ, η ∈ Rn×N and for almost
every x ∈ Ω. For what concerns the dependence of the energy density on the x-variable, we
shall assume (2.12).
The result we present here starts the study of the higher differentiability properties of local
minimizers of integral functional (2.1) under sub-quadratic growth condition. More precisely,
we shall establish the following a priori estimate for the second derivatives of the local
minimizers.

Theorem 2.1.1. Let u ∈W 2,p
loc

(
Ω,RN

)
be a local minimizer of the functional (2.1) under

the assumptions (2.2), (2.3) and (2.12) for a non-negative function g ∈ Lqloc (Ω), with q ≥ 2n
p ,

than the following estimatewwwD2u
www
Lp
(
BR

2

) ≤ C (‖Du‖Lp(BR) + ‖g‖Lq(BR)

)
(2.15)

holds true for every ball BR b Ω with C = C(ν, `1, `2, p, n,N,R) > 0.

The main tool to establish this result is the so called difference quotient method and a double
iteration to reabsorb terms with critical summability.

2.1.1 Proof of Theorem 2.1.1

It is well known that every local minimizer of the functional (2.1) is a weak solution
u ∈W 1,p

(
Ω,RN

)
of the corresponding Euler-Lagrange system, which, with the notation

(2.5), becomes

divA (x,Du) = 0. (2.16)

As we mentioned above, with the same notation, assumptions (2.2), (2.3) and (2.12) imply,
respectively (2.6), (2.7) and (2.14).

Proof of Theorem 2.1.1. Let us fix a ball BR (x0) = BR of radius R ∈ (0, d (x0, ∂Ω)), and
consider R

2 ≤ r < s̃ < t < t̃ < λr < R < 1, with 1 < λ < 2. Let’s test the equation (2.16)
with the function ϕ = τs,−h

(
η2τs,hu

)
, where η ∈ C∞0 (Bt) is a cut-off function such that η = 1

on Bs̃, |Dη| ≤ c
t−s̃ and

∣∣D2η
∣∣ ≤ c

(t−s̃)2 .
With this choice of ϕ, and by Proposition 1.2.2, we get

ˆ
BR

〈
τs,hA (x,Du(x)) , D

(
η2 (τs,hu(x))

)〉
dx = 0.
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Since we want to control difference quotients indipendently of the direction, from now on, we
simplify the notations dropping the direction s and the corresponding unit vector es.
So, recalling the definition of finite difference operator, and the notation
τhF (x) = F (x+ h)− F (x) from Section 1.2, we can write previous inequality as follows

I0 :=
ˆ
BR

〈
A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , η2D (τhu(x))

〉
dx

= −
ˆ
BR

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2D (τhu(x))

〉
dx

−
ˆ
BR

〈τhA (x,Du(x)) , 2ηDη ⊗ τhu(x)〉 dx

= −
ˆ
BR

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2D (τhu(x))

〉
dx

−
ˆ
BR

〈A (x,Du(x)) , τ−h (2ηDη ⊗ τhu(x))〉 dx

= −
ˆ
BR

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2D (τhu(x))

〉
dx

−
ˆ
BR

〈A (x,Du(x)) , τ−h (2ηDη)⊗ τhu(x− h)〉 dx

−
ˆ
BR

〈A (x,Du(x)) , 2ηDη ⊗ τ−h (τhu(x))〉 dx

=: I + II + III.

Previous equality implies

I0 ≤ |I|+ |II|+ |III| . (2.17)

In order to estimate the integral I, we use (2.14) and Young’s inequality, as follows

|I| ≤ c|h|
ˆ
BR

η2 (g(x) + g(x+ h))
(
µ2 + |Du(x)|2

) p−1
2 |Dτhu(x)| dx

≤ c|h|
ˆ
BR

η2 (g(x) + g(x+ h))
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−1
2

· |D (τhu(x))| dx

≤ ε

ˆ
BR

η2 |D (τhu(x))|2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 dx

+cε|h|2
ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx.(2.18)

Now, we estimate II by (2.6) and the properties of η and Proposition 1.2.2, thus obtaining

|II| ≤ c|h|
(t− s̃)2

ˆ
Bt

(
µ2 + |Du(x)|2

) p−1
2 |τhu(x− h)| dx

≤ c|h|
(t− s̃)2

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt

|τhu(x− h)|p dx
) 1
p

,

where, in the last inequality, we used Hölder’s inequality. By virtue of the first inequality of
Lemma 1.2.3, we obtain
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|II| ≤ c|h|2

(t− s̃)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx. (2.19)

The term III is estimated using (2.6) again, the properties of η and Hölder’s inequality as
follows

|III| ≤ c

t− s̃

ˆ
Bt

(
µ2 + |Du(x)|2

) p−1
2 |τ−h (τhu(x))| dx

≤ c

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt

|τ−h (τhu(x))|p dx
) 1
p

≤ c|h|
t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt̃

|τhDu(x)|p dx
) 1
p

, (2.20)

where, in the last inequality, we used Lemma 1.2.3 and Proposition 1.2.2.
By (2.7), we get

|I0| ≥ ν
ˆ
BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2dx. (2.21)

Inserting estimates (2.18), (2.19), (2.20) and (2.21) in (2.17), we obtain

ν

ˆ
BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

≤ ε

ˆ
BR

η2 |D (τhu(x))|2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 dx

+cε|h|2
ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

+ c|h|2

(t− s̃)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+ c|h|
t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p dx
) 1
p

.

Choosing ε = ν
2 in the previous estimate, we can reabsorb the first integral in the right-hand

side by the left-hand side, thus getting

ˆ
BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

≤ c|h|2
ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

+ c|h|2

(t− s̃)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+ c|h|
t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p dx
) 1
p

,

with c = c(ν, `1, `2, p, n,N).
Dividing previous estimate by |h|2 and using Lemma 1.4.1, we have



16 Chapter 2. Homogeneous systems

ˆ
BR

η2 |τhVp (Du(x))|2

|h|2
dx

≤ c

ˆ
BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2

|h|2
dx

≤ c

ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

+ c

(t− s̃)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+ c

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p

|h|p
dx

) 1
p

. (2.22)

Now, by Hölder’s inequality and Lemma 1.4.1, we get

ˆ
BR

η2 |τhDu(x)|p

|h|p
dx

≤
ˆ
BR

η2 |τhVp (Du(x))|p

|h|p
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p(2−p)
4 dx

≤
(ˆ

BR

η2 |τhVp (Du(x))|2

|h|2
dx

) p
2

·
(ˆ

BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

) 2−p
2

, (2.23)

and therefore, combining (2.22) and (2.23), we have

ˆ
BR

η2 |τhDu(x)|p

|h|p
dx

≤ c

{ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

+ 1
(t− s̃)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+ 1
t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p

|h|p
dx

) 1
p
} p

2

·
{ˆ

BR

η2
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

} 2−p
2

.

Using Young’s inequality with exponents 2
p and 2

2−p , which is legitimate since 1 < p < 2, the
properties of η, and Lemma 1.2.3, we have

ˆ
BR

η2 |τhDu(x)|p

|h|p
dx

≤ c

ˆ
BR

η2
(
g2(x) + g2(x+ h)

) (
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx

+c
(

1 + 1
(t− s̃)2

)ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx
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+ c

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p

|h|p
dx

) 1
p

≤ c

ˆ
Bλr

g2(x)dx+ c

ˆ
Bλr

g2(x) |Du(x)|p dx

+c
ˆ
Bt̃

g2(x) |Du(x+ h)|p dx+ c

ˆ
Bt̃

g2(x+ h) |Du(x)|p dx

+c
(

1 + 1
(t− s̃)2

)ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+ c

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p
(ˆ

Bt̃

|τhDu(x)|p

|h|p
dx

) 1
p

.

Using Young’s inequality with exponents p and p
p−1 to estimate the last integral in the

right-hand side, we obtain

ˆ
BR

η2 |τhDu(x)|p

|h|p
dx

≤ c

ˆ
Bt̃

g2(x)dx+ c

ˆ
Bt̃

g2(x) |Du(x)|p dx

+c
ˆ
Bt̃

g2(x) |Du(x+ h)|p dx+ c

ˆ
Bt̃

g2(x+ h) |Du(x)|p dx

+c
(

1 + 1
(t− s̃)2 + 1

(t− s̃)
p
p−1

)ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+1
2

ˆ
Bt̃

|τhDu(x)|p

|h|p
dx.

Recalling that η = 1 on Bs̃, we obtain

ˆ
Bs̃

|τhDu(x)|p

|h|p
dx

≤ 1
2

ˆ
Bt̃

|τhDu(x)|p

|h|p
dx+ c

ˆ
Bt̃

g2(x)dx+ c

ˆ
Bt̃

g2(x) |Du(x)|p dx

+c
ˆ
Bt̃

g2(x) |Du(x+ h)|p dx+ c

ˆ
Bt̃

g2(x+ h) |Du(x)|p dx

+c
(

1 + 1
(t− s̃)2 + 1

(t− s̃)
p
p−1

)ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx. (2.24)

Since the previous estimate holds for every R
2 ≤ r < s̃ < t < t̃ < λr, and the constant

appearing in (2.24) are indipendent of t, we can pass to the limit as t→ t̃, thus getting

ˆ
Bs̃

|τhDu(x)|p

|h|p
dx

≤ 1
2

ˆ
Bt̃

|τhDu(x)|p

|h|p
dx+ c

ˆ
Bt̃

g2(x)dx

+c
ˆ
Bt̃

g2(x) |Du(x)|p dx+ c

ˆ
Bt̃

g2(x) |Du(x+ h)|p dx+ c

ˆ
Bt̃

g2(x+ h) |Du(x)|p dx
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+c

1 + 1(
t̃− s̃

)2 + 1(
t̃− s̃

) p
p−1

 ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx. (2.25)

To go further, we have to estimate the three integrals in the third line of (2.25).
To this aim, we apply Hölder’s inequality with exponents

(
q
2 ,

q
q−2

)
and Lemma 1.2.3, thus

obtaining

ˆ
Bt̃

g2(x) |Du(x)|p dx+ c

ˆ
Bt̃

g2(x) |Du(x+ h)|p dx+ c

ˆ
Bt̃

g2(x+ h) |Du(x)|p dx

≤ c

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|
pq
q−2 dx

) q−2
q

, (2.26)

and the second integral in the right-hand side term of (2.26) is finite for pq
q−2 ≤

np
n−p , that is

q ≥ 2n
p .

So, estimate (2.25) becomes

ˆ
Bs̃

|τhDu(x)|p

|h|p
dx

≤ 1
2

ˆ
Bt̃

|τhDu(x)|p

|h|p
dx+ c

ˆ
Bt̃

g2(x)dx

+c
(ˆ

Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|
pq
q−2 dx

) q−2
q

+c

1 + 1(
t̃− s̃

)2 + 1(
t̃− s̃

) p
p−1

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx,

and by virtue of the Iteration Lemma, we have

ˆ
Br

|τhDu(x)|p

|h|p
dx

≤ c

ˆ
Bλr

g2(x)dx+ c

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|
pq
q−2 dx

) q−2
q

+c
(

1 + 1
r2(λ− 1)2 + 1

r
p
p−1 (λ− 1)

p
p−1

)
·
ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

and by Lemma 1.2.4, we get
ˆ
Br

|D2u(x)|pdx

≤ c

ˆ
Bλr

g2(x)dx+ c

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|
pq
q−2 dx

) q−2
q

+c
(

1 + 1
r2(λ− 1)2 + 1

r
p
p−1 (λ− 1)

p
p−1

)ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx. (2.27)

Now we distinguish between two cases.
Case I

(
q = 2n

p

)
.

In case q = 2n
p , the right-hand side of (2.26) becomes



2.1. An a priori estimate 19

c

(ˆ
Bλr

g
2n
p (x)dx

) p
n

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

)n−p
n

.

Now we observe that, if u ∈W 2,p
loc (Ω), then Du ∈W 1,p

loc (Ω) and, by Sobolev’s embedding
Theorem, W 1,p

loc (Ω) ↪→ Lp
∗

loc (Ω), where p∗ = np
n−p .

So, for a positive constant c = c(n, p), since λr < 1, we have

(ˆ
Bλr

g
2n
p (x)dx

) p
n

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

)n−p
n

≤ c

(λr)p

(ˆ
Bλr

g
2n
p (x)dx

) p
n
ˆ
Bλr

(∣∣∣D2u(x)
∣∣∣p + |Du(x)|p

)
dx. (2.28)

Since g ∈ L
2n
p

loc (Ω), by the absolute continuity of the integral, there exists R0 > 0 such that,
for every R < R0, we have

c

(ˆ
BR

g
2n
p (x)dx

) p
n

<
1
2 . (2.29)

For this choice of R, joining (2.27), (2.28), (2.29), we get:

ˆ
Br

∣∣∣D2u(x)
∣∣∣p dx

≤ c

ˆ
Bλr

g2(x)dx+ 1
2

ˆ
Bλr

∣∣∣D2u(x)
∣∣∣p dx

+c
(

1 + 1
r2(λ− 1)2 + 1

r
p
p−1 (λ− 1)

p
p−1

)
·
ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx. (2.30)

Since (2.30) holds for all R2 ≤ r < λr < R for λ ∈ (1, 2), setting R0 = R, γ = p
p−1 and

h(r) =
ˆ
Br

∣∣∣D2u(x)
∣∣∣p dx,

by Lemma 1.1.1, we havewwwD2u
www
Lp
(
BR

2

) ≤ c(ν, `1, `2, p, n,N,R)
(
‖Du‖Lp(BR) + ‖g‖Lq(BR)

)
. (2.31)

A standard covering argument yields the conclusion, with (2.15).
Case II

(
q > 2n

p

)
.

For q > 2n
p we have p < pq

q−2 <
np
n−p , and setting θ := 2n

pq < 1, we have

q − 2
pq

= 1− θ
p

+ θ(n− p)
np

,

and we can use the interpolation inequality to estimate the last integral in (2.26) as follows

(ˆ
Bλr

|Du(x)|
pq
q−2 dx

) q−2
q
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≤

(ˆ
Bλr

|Du(x)|p dx
) 1−θ

p

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

) θ(n−p)
np


p

,

and recalling the definition of θ, the right-hand side of (2.26) can be controlled by

c

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|p dx
) pq−2n

pq

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

) 2(n−p)
pq

.

Then, by Sobolev’s embedding Theorem, since λr < 1, we have

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|p dx
) pq−2n

pq

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

) 2(n−p)
pq

≤ c

(λr)p

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|pdx
) pq−2n

pq

·
(ˆ

Bλr

(∣∣∣Du2(x)
∣∣∣p + |Du(x)|p

)
dx

) 2n
pq

.

Now, since q > 2n
p , we can use Young’s inequality with exponents

(
pq

pq−2n ,
pq
2n

)
, thus getting,

for every ε > 0,

(ˆ
Bλr

gq(x)dx
) 2
q

·
(ˆ

Bλr

|Du(x)|p dx
) pq−2n

pq

·
(ˆ

Bλr

|Du(x)|
np
n−p dx

) 2(n−p)
pq

≤ c

(λr)p

(ˆ
Bλr

gq(x)dx
) 2
q

·
[
cε

ˆ
Bλr

|Du(x)|pdx

+ε
ˆ
Bλr

(∣∣∣D2u(x)
∣∣∣p + |Du(x)|p

)
dx

]
.

Now we choose ε such that

ε ·

c(ˆ
BR

gq(x)dx
) 2
q

 < 1
2 , (2.32)

so that we can obtain the estimate (2.30) again. The use of Iteration Lemma implies (2.31)
also in this case, and so we get (2.15) again.
We remark that, differently from the previous case, when q > 2n

p , we don’t need to use a
covering argument to conclude. In fact, in (2.32), we just choose a suitable value of ε, which
depends on the norm of g in Lq (BR), while the radius of the ball on which the integral in the
left-hand side is taken does not depend on the Lq-norm of g: here, differently from (2.29), we
don’t use the absolute continuity of the integral.
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2.2 Higher regularity results for solutions to a class of
homogeneous systems

In this section we present the regularity results contained in [54].
Let us consider the functional

F (w,Ω) =
ˆ

Ω
f (x,Dw(x)) dx, (2.33)

where Ω ⊂ Rn is a bounded open set, n > 2, f : Ω×Rn×N → R is a Carathéodory map, with
N ≥ 2, such that ξ 7→ f(x, ξ) is of class C2

(
Rn×N

)
for a.e. x ∈ Ω, and for an exponent

p ∈ (1, 2), assumptions (2.2) and (2.9) hold.
For what concerns the dependence of the energy density on the x-variable, we shall assume
that the map x 7→ Dξf(x, ξ) belongs to the Sobolev space W 1,q

(
Ω× Rn×N

)
, for some q ≥ n.

This is equivalent to assume that there exists a non-negative function g ∈ Lqloc (Ω) such that
(2.13) holds.
In order to avoid the irregularity phenomena that are peculiar of the vectorial minimizers (see
[35], [88]), we shall assume that

f(x, ξ) = k (x, |ξ|) (2.34)

with

k(x, ·) ∈ C2 (R) if µ > 0 or k(x, ·) ∈ C2 (R \ { 0 }) if µ = 0, (2.35)

for almost every x ∈ Ω.
It is worth noticing that (2.9), (2.34) and (2.35) imply (2.2).
The results we describe in this section involve both higher differentiability and higher
integrability properties of local minimizers of the functional (2.33).
For what concerns higher differentiability, we want to prove that, assuming g ∈ Lqloc (Ω), with
q ≥ n, any local minimizer u ∈W 1,p

loc (Ω) of the functional (2.33) is higher differentiable, that
is u ∈W 2,p

loc (Ω). Moreover, if q > n, we establish the Lipschitz continuity of the local
minimizers, and for q = n we prove that the gradient of u is in Lsloc (Ω) for any s ∈ (1,∞).
More precisely, our main results are the following.

Theorem 2.2.1. Let u ∈W 1,p
loc (Ω) be a local minimizer of the functional (2.33), under the

assumptions (2.9), (2.34) and (2.35).
Moreover, let us assume that, for q > n, there exists a non-negative function g ∈ Lqloc (Ω),
such that (2.13) holds.
Then u ∈W 2,p

loc (Ω) and Du ∈ L∞loc (Ω).
Moreover, there exist two constants c1, c2 > 0, depending on n,N, p, q, L1, L2, R, ‖g‖Lq(BR),
such that the following estimates hold:

‖Du‖
L∞
(
BR

2

) ≤ c1

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

, (2.36)

and
ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx ≤ c2 ·

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.37)

for every ball BR such that BR b Ω, with R < 1.

In the critical case q = n, we have the following.



22 Chapter 2. Homogeneous systems

Theorem 2.2.2. Let u ∈W 1,p
loc (Ω) be a local minimizer of the functional (2.33), under the

assumptions (2.9), (2.34) and (2.35).
Moreover, let us assume that, for q = n, there exists a non-negative function g ∈ Lqloc (Ω),
such that (2.13) holds.
Then, for any 1 < s <∞, Du ∈ Lsloc (Ω), and there exists a constant c1 > 0, depending on
n,N, p, s, L1, L2, R, ‖g‖Ln(BR), such that, for every ball BR b Ω with R < 1, the following
estimate holds

ˆ
BR

2

|Du(x)|s dx

 1
s

≤ c1 ·
(ˆ

BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

. (2.38)

Moreover, u ∈W 2,p
loc (Ω), and there exists a constant c2 = c2

(
n,N, p, L1, L2, ‖g‖Ln(BR)

)
> 0

such that
ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx ≤ c2 ·

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx. (2.39)

The proofs of our results are achieved combining suitable a priori estimates with an
approximation argument. First of all, making the a priori assumptions that u ∈W 1,∞

loc (Ω)

and Vp (Du) =
(
µ2 + |Du|2

) p−2
4 Du ∈W 1,2

loc (Ω), we will use Moser’s iteration technique (see,
for example, [29]) to find an a priori estimate for the L∞-norm of Du in case q > n, and an a
priori estimate for the Ls−norm of Du for any 1 < s <∞ if q = n. We will also find an a
priori estimate for the Lp-norm of the second derivatives of u that improves that established
in [55].
After that, by approximation, we will use these a priori estimates to prove that a minimizer
u ∈W 1,p

loc (Ω) is actually in W 2,p
loc (Ω) and, if q > n, then Du ∈ L∞loc (Ω), while, if q = n,

Du ∈ Lsloc (Ω) for all 1 < s <∞.
Let us notice that, here, we are making some stronger assumptions about the dependence of
f on the ξ-variable, if we compare them to those of the previous section, where we assume
that ξ 7→ f(x, ξ) is of class C1

(
Rn×N

)
and, instead of (2.9), we just assumed (2.3).

On the other hand, for what concerns the dependence of the coefficients on the x-variable, in
the previous section, instead of (2.13) with q ≥ n, we assumed (2.12) with q ≥ 2n

p > n (since
1 < p < 2). The possibility to weaken this condition is due to the fact that the a priori
assumption Vp (Du) ∈W 1,2

loc (Ω) is stronger than u ∈W 2,p
loc (Ω), by virtue of Lemma 1.4.5.

2.2.1 A priori estimates

Our first step is to prove the a priori estimates. More precisely, making a distinction between
the cases q > n and q = n in the assumption (2.13), we want to prove the following claims.

Lemma 2.2.3. Let u ∈W 1,∞
loc (Ω) be a local minimizer of the functional (2.33) such that

Vp (Du) =
(
µ2 + |Du|2

) p−2
4 Du ∈W 1,2

loc (Ω), under the assumptions (2.9), (2.34) and (2.35).
Moreover, let us assume that, for q > n, there exists a non-negative function g ∈ Lqloc (Ω),
such that (2.13) holds.
Then there exist two constants c1, c2 > 0, depending on n,N, p, q, L1, L2, R, ‖g‖Lq(BR), such
that the following estimates:

‖Du‖
L∞
(
BR

2

) ≤ c1

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

, (2.40)

and
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ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx ≤ c2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.41)

hold for every ball BR such that BR b Ω with R < 1.

Lemma 2.2.4. Let u ∈W 1,∞
loc (Ω) be a local minimizer of the functional (2.33) such that

Vp (Du) =
(
µ2 + |Du|2

) p−2
4 Du ∈W 1,2

loc (Ω), under the assumptions (2.9), (2.34) and (2.35).
Moreover, let us assume that, for q = n, there exists a non-negative function g ∈ Lqloc (Ω),
such that (2.13) holds.
Then, for any 1 < s <∞ there is a constant c1 > 0, depending on
n,N, p, s, L1, L2, R, ‖g‖Ln(BR), and there exists Rs ∈ (0, 1) depending on s, p, n, g such that,
for every ball BR b Ω, with 0 < R ≤ Rs, the following estimate holds

ˆ
BR

2

|Du(x)|s dx

 1
s

≤ c1

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

. (2.42)

Moreover, there exist a constant c2 = c2(n,N, p, s, L1, L2, R, ‖g‖Ln(BR)) > 0 and R0 ∈ (0, 1)
depending on p, n, g such that

ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx ≤ c2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.43)

for 0 < R ≤ R0 and BR b Ω.

Proof of Lemma 2.2.3. Our starting point is the the Second Variation of the functional F .
Let us consider a test function ϕ = Dψ, with ψ ∈ C∞0 (Ω), and put ϕ in the Euler-Lagrange
equation of F , so we have

ˆ
Ω

〈
Dξf (x,Du(x)) , D2ψ(x)

〉
dx = 0,

and an integration by parts yields
ˆ

Ω
〈Dx (Dξf (x,Du(x))) , Dψ(x)〉 = 0,

i.e.
ˆ

Ω

〈
Dxξf (x,Du(x)) +Dξξf (x,Du(x))D2u(x), Dψ(x)

〉
= 0. (2.44)

Now, for a ball BR b Ω and 0 < r < R < 1, we choose a cut-off function η ∈ C∞0 (BR) such
as 0 ≤ η ≤ 1, η ≡ 1 on Br, and |Dη| ≤ c

R−r for a constant c = c(n) > 0.

The the a priori assumptions u ∈W 1,∞
loc (Ω) and Vp (Du) =

(
µ2 + |Du|2

) p−2
4 Du ∈W 1,2

loc (Ω)

allow us to consider, for γ ≥ 0, the test function ψ = η2
(
µ2 + |Du|2

) γ
2 Du in equation (2.44).

Computing the derivatives of ψ, we get

Dψ = 2η
(
µ2 + |Du|2

) γ
2 Dη ⊗Du+ γ

2η
2
(
µ2 + |Du|2

) γ−2
2 D

(
|Du|2

)
⊗Du

+η2
(
µ2 + |Du|2

) γ
2 D2u,

and the equation (2.44) becomes
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0 = 2
ˆ
BR

〈
Dxξf (x,Du(x)) , η

(
µ2 + |Du(x)|2

) γ
2 Dη ⊗Du(x)

〉
dx

+γ

2

ˆ
BR

〈
Dxξf (x,Du(x)) , η2

(
µ2 + |Du(x)|2

) γ−2
2 D

(
|Du(x)|2

)
⊗Du(x)

〉
dx

+
ˆ
BR

〈
Dxξf (x,Du(x)) , η2

(
µ2 + |Du(x)|2

) γ
2 D2u(x)

〉
dx

+2
ˆ
BR

〈
Dξξf (x,Du(x))D2u(x), η

(
µ2 + |Du(x)|2

) γ
2 Dη ⊗Du(x)

〉
dx

+γ

2

ˆ
BR

〈
Dξξf (x,Du(x))D2u(x), η2

(
µ2 + |Du(x)|2

) γ−2
2 D

(
|Du(x)|2

)
⊗Du(x)

〉
dx

+
ˆ
BR

〈
Dξξf (x,Du(x))D2u(x), η2

(
µ2 + |Du(x)|2

) γ
2 D2u(x)

〉
dx

=: I + II + III + IV + V + I0. (2.45)

The integral V is non-negative by the assumption f(x, ξ) = k(x, |ξ|). Actually, it suffices to
calculate

D
ξαi ξ

β
j
f(x, ξ) = Dttk (x, |ξ|)

ξαi ξ
β
j

|ξ|2
+Dtk (x, |ξ|)

δαβδij
|ξ|

−
ξαi ξ

β
j

|ξ|3


and use the definition of the scalar product to deduce that

V ≥ 0.

So, from (2.45), we get

I0 ≤ I0 + V ≤ |I|+ |II|+ |III|+ |IV | . (2.46)

In the following, we will often use the trivial inequality

|ξ| ≤
(
µ2 + |ξ|2

) 1
2 , ∀ξ ∈ Rn×N . (2.47)

By the left inequality in the hypothesis (2.9), we get

|I0| ≥ c

ˆ
BR

η2
(
µ2 + |Du(x)|2

) p−2
2
∣∣∣D2u(x)

∣∣∣2 (µ2 + |Du(x)|2
) γ

2 dx

= c

ˆ
BR

η2
∣∣∣D2u(x)

∣∣∣2 (µ2 + |Du(x)|2
) p+γ−2

2 dx. (2.48)

To estimate the term I, we use (2.13) and (2.47), thus getting

|I| ≤ 2
ˆ
BR

η |Dη| g(x)
(
µ2 + |Du(x)|2

) p−1
2 |Du(x)|

(
µ2 + |Du(x)|2

) γ
2 dx

≤ 2
ˆ
BR

η |Dη| g(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.49)

Applying Young’s inequality in the right-hand side of (2.49), we get

|I| ≤ 2
ˆ
BR

η |Dη| g(x)
(
µ2 + |Du(x)|2

) p+γ
2
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≤ c

ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.50)

We use again (2.13) and (2.47) to estimate the term II as follows

|II| ≤ γ
ˆ
BR

η2g(x)
(
µ2 + |Du(x)|2

) p−1+γ
2

∣∣∣D2u(x)
∣∣∣ dx.

Since p+γ−1
2 = p+γ−2

4 + p+γ
4 , by Young’s inequality, we get

|II| ≤ ε

ˆ
BR

η2
∣∣∣D2u(x)

∣∣∣2 (µ2 + |Du(x)|2
) p+γ−2

2 dx

+cεγ2
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.51)

In order to estimate III, we use (2.13) and Young’s inequality as before:

|III| ≤
ˆ
BR

η2g(x)
∣∣∣D2u(x)

∣∣∣ (µ2 + |Du(x)|2
) p+γ−1

2 dx

≤ ε

ˆ
BR

η2
∣∣∣D2u(x)

∣∣∣2 (µ2 + |Du(x)|2
) p+γ−2

2

+cε
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 . (2.52)

We can estimate IV using (2.9) and (2.47) thus getting

|IV | ≤ 2
ˆ
BR

η |Dη|
∣∣∣D2u(x)

∣∣∣ (µ2 + |Du(x)|2
) p+γ−1

2 dx.

Using Young’s inequality, we have

|IV | ≤ ε

ˆ
BR

η2
∣∣∣D2u(x)

∣∣∣2 (µ2 + |Du(x)|2
) p+γ−2

2 dx

+cε
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.53)

Now, inserting (2.48), (2.50), (2.51), (2.52) and (2.53) in (2.46), and choosing ε sufficiently
small to reabsorb the first terms on the right-hand sides of (2.51), (2.52) and (2.53), we get

ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ−2
2

∣∣∣D2u(x)
∣∣∣2 dx

≤ c(1 + γ2)
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.54)

Now, we observe that
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(
µ2 + |Du|2

) p+γ−4
2

∣∣∣D (|Du|2)∣∣∣2 ≤ 4
(
µ2 + |Du|2

) p+γ−4
2 |Du|2

∣∣∣D2u
∣∣∣2

≤ 4
(
µ2 + |Du|2

) p+γ−2
2

∣∣∣D2u
∣∣∣2 , (2.55)

where we also used (2.47). So, using (2.55) in the left-hand side of (2.54), we get

ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ−4
2 ·

∣∣∣D (|Du(x)|2
)∣∣∣2 dx

≤ c(1 + γ2)
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.56)

One can easily check that, for any α ∈ R,

D

[(
µ2 + |Du|2

)α
2
]

= α

2 ·
(
µ2 + |Du|2

)α−2
2 ·D

(
|Du|2

)
, (2.57)

So, using (2.57) with α = p+γ
2 , we have

(
µ2 + |Du|2

) p+γ−4
2 ·

∣∣∣D (|Du|2)∣∣∣2 =
∣∣∣∣∣(µ2 + |Du|2

) 1
2 ·( p+γ

2 −2)
·
∣∣∣D (|Du|2)∣∣∣∣∣∣∣∣

2

=
∣∣∣∣∣ 4
p+ γ

·D
[(
µ2 + |Du|2

) p+γ
4

]∣∣∣∣∣
2

. (2.58)

Using (2.58) in the left-hand side of (2.56), we get

c

(p+ γ)2

ˆ
BR

η2
∣∣∣∣∣D
[(
µ2 + |Du(x)|2

) p+γ
4

]∣∣∣∣∣
2

dx

≤
ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ−4
2

∣∣∣D (|Du(x)|2
)∣∣∣2 dx

≤ c(1 + γ2)
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.59)

Before going further, since we want to apply Moser’s iteration technique, let’s observe that, if

Vp (Du) =
(
µ2 + |Du|2

) p−2
4 Du ∈W 1,2

loc (Ω), then
(
µ2 + |Du|2

) p
4 ∈W 1,2

loc (Ω).
Indeed, for any ball Br b Ω, if we recall (2.47) and (1.6), we have

ˆ
Br

∣∣∣∣D [(µ2 + |Du(x)|2
) p

4
]∣∣∣∣2 dx = p

2 ·
ˆ
Br

[(
µ2 + |Du(x)|2

) p
4−1
· |Du(x)| ·

∣∣∣D2u(x)
∣∣∣]2

dx

≤ p

2 ·
ˆ
Br

(
µ2 + |Du(x)|2

) p−2
2 ·

∣∣∣D2u(x)
∣∣∣2 dx

≤ p

2

ˆ
Br

|DVp (Du(x))|2 dx,
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and the last integral of previous inequality is finite since Vp (Du) ∈W 1,2
loc (Ω).

So, if we set

Gγ = η ·
(
µ2 + |Du|2

) p+γ
4 ,

by our a priori assumptions, for γ = 0, we have G0 ∈W 1,2
0 (BR), and denoting 2∗ = 2n

n−2 , by
Sobolev’s inequality we have

(ˆ
BR

|G0(x)|2
∗
dx

) 2
2∗

≤ c
ˆ
BR

|DG0(x)|2 dx.

So we have

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

)2∗· p4 dx

) 2
2∗

≤ c

(ˆ
BR

∣∣∣∣η ∣∣∣∣D [(µ2 + |Du(x)|2
) p

4
]∣∣∣∣+ |Dη| (µ2 + |Du(x)|2

) p
4
∣∣∣∣2 dx

)

≤ c

ˆ
BR

η2
∣∣∣∣D (µ2 + |Du(x)|2

) p
4
∣∣∣∣2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p
2 dx. (2.60)

What we just pointed out with (2.60) is the possibility to construct the first step of Moser’s
iteration, which consists in obtaining higher integrability for Du, starting from γ = 0: this is
possible because all the integrals in the right-hand side of (2.60) are finite.
Since the following steps of the iterations are based on the possibility to let γ increase and
eventually go to infinity, we rewrite (2.60) as follows

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

)2∗· p+γ
4 dx

) 2
2∗

≤ c

ˆ
BR

∣∣∣∣∣η
∣∣∣∣∣D
[(
µ2 + |Du(x)|2

) p+γ
4

]∣∣∣∣∣+ |Dη| (µ2 + |Du(x)|2
) p+γ

4

∣∣∣∣∣
2

dx


≤ c

ˆ
BR

η2
∣∣∣∣∣D (µ2 + |Du(x)|2

) p+γ
4

∣∣∣∣∣
2

dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.61)

Joining (2.61) and (2.59), we get

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

)2∗· p+γ
4 dx

) 2
2∗

≤ c (p+ γ)2
ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ−4
2

∣∣∣D (|Du(x)|2
)∣∣∣2 dx

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx

≤ c (p+ γ)2
[
(1 + γ2)

ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx
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+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx

]

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx

= c (p+ γ)2 (1 + γ2)
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c
[
1 + (p+ γ)2

] ˆ
BR

|Dη|2 ·
(
µ2 + |Du(x)|2

) p+γ
2 dx

≤ c (p+ γ)4
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

+c (p+ γ)2
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.62)

Now, recalling that g ∈ Lqloc (Ω), with q > n > 2, we can use Hölder’s inequality with
exponents

(
q
2 ,

q
q−2

)
, and we infer

ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

≤
(ˆ

BR

gq(x)dx
) 2
q
(ˆ

BR

η
2q
q−2

(
µ2 + |Du(x)|2

) p+γ
2 ·

q
q−2 dx

) q−2
q

. (2.63)

Since q > n, 1 < q
q−2 <

n
n−2 , and we can apply the Interpolation inequality to estimate last

integral in (2.63) with θ ∈ (0, 1) such that

q − 2
q

= θ + (1− θ)(n− 2)
n

.

One can easily check that

θ = q − n
q

,

and so

ˆ
BR

(
η2
(
µ2 + |Du(x)|2

) p+γ
2

) q
q−2

dx


q−2
q

≤ c

(ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ
2 dx

)θ

·

ˆ
BR

(
η2
(
µ2 + |Du(x)|2

) p+γ
2

) n
n−2

dx


(1−θ)(n−2)

n

,

that is

ˆ
BR

(
η2
(
µ2 + |Du(x)|2

) p+γ
2

) q
q−2

dx


q−2
q
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≤ c

(ˆ
BR

η2
(
µ2 + |Du(x)|2

) p+γ
2 dx

)θ

·
[ˆ

BR

(
η2∗

(
µ2 + |Du(x)|2

) p+γ
2 ·

2∗
2

)
dx

] 2(1−θ)
2∗

. (2.64)

Using (2.63), (2.64), and Young’s inequality with exponents
(

1
θ ,

1
1−θ

)
, we can estimate the

first term in the right-hand side of (2.62) as follows

c (p+ γ)4
ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

≤ cε

c (p+ γ)4
(ˆ

BR

gq(x)dx
) 2
q


1
θ (ˆ

BR

η2
(
µ2 + |Du(x)|2

) p+γ
2 dx

)

+ε
(ˆ

BR

η2∗
(
µ2 + |Du(x)|2

) p+γ
2 ·

2∗
2 dx

) 2
2∗

, (2.65)

for any ε > 0.
Now, plugging (2.65) into (2.62), we get

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) p+γ
2

2∗
2 dx

) 2
2∗

≤ ε

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) p+γ
2

2∗
2 dx

) 2
2∗

+cε

(p+ γ)4
(ˆ

BR

gq(x)dx
) 2
q


1
θ

·
(ˆ

BR

η2
(
µ2 + |Du(x)|2

) p+γ
2 dx

)

+c (p+ γ)2
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.66)

Now, for a sufficently small value of ε, we can reabsorb the first term of the right-hand side of
(2.66), thus getting

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) p+γ
2 ·

2∗
2 dx

) 2
2∗

≤ c

(p+ γ)4
(ˆ

BR

gq(x)dx
) 2
q


1
θ

·
(ˆ

BR

η2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

)

+c (p+ γ)2
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.67)

For γ = 0, recalling the explicit expression of θ, (2.67) gives

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) p
2 ·

2∗
2 dx

) 2
2∗

≤ cp
4q
q−n

(ˆ
BR

gq(x)dx
) 2
q−n

·
(ˆ

BR

η2
(
µ2 + |Du(x)|2

) p
2 dx

)
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+c
(
1 + p2

)(ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p
2 dx

)
.

Recalling the properties of η, since 0 < r < R < 1, we can write

(ˆ
Br

(
µ2 + |Du(x)|2

) p
2 ·

2∗
2 dx

) 2
2∗

≤ c · p
4q
q−n

(R− r)2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.68)

where c = c(n,N, p, q, L1, L2, ‖g‖Lq(BR)).
Now we choose r = R

2 and set

R0 = R, Ri = r + R− r
2i = R

2

(
1 + 1

2i
)
, ∀i ∈ N (2.69)

and

p0 = p, pi = 2∗

2 · pi−1 =
(2∗

2

)i
· p0, ∀i ∈ N. (2.70)

Observe that the sequence Ri is strictly decreasing, and pi is strictly increasing. Moreover, as
i→∞, Ri → R

2 and pi →∞.
Starting from (2.68), we can iterate (2.67), and recalling (2.47), we get, for every i ∈ N,

ˆ
BRi+1

|Du(x)|pi+1 dx

 1
pi+1

≤

ˆ
BRi+1

(
µ2 + |Du(x)|2

) pi+1
2 dx

 1
pi+1

≤

 c · p
4q
q−n
i

(Ri −Ri+1)2


1
pi (ˆ

BRi

(
µ2 + |Du(x)|2

) pi
2 dx

) 1
pi

≤

 i∏
k=0

 cp
4q
q−n
k

(Rk −Rk+1)2


1
pk

 ·
(ˆ

BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

= exp


i∑

k=0

 1
pk
· log

c · 2k+2p
4q
q−n
k

R2



 ·

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

(2.71)

where we used that 2
2∗ = pi

pi+1
, and Ri −Ri+1 = R

2i+2 .
Since the series

∞∑
k=0

 1
pk
· log

c · 2k+2p
4q
q−n
k

R2




converges, we can pass to the limit as i→∞ in (2.71), and we get the following estimate

‖Du‖
L∞
(
BR

2

) ≤ c1

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

,

where c = c
(
n,N, p, q, L1, L2, R, ‖g‖Lq(BR)

)
, i.e. (2.40).
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Moreover, by (2.59) for γ = 0, we get

ˆ
BR

η2
∣∣∣∣D [(µ2 + |Du(x)|2

) p
4
]∣∣∣∣2 dx

≤ cp2
[ˆ

BR

η2g2(x)
(
µ2 + |Du(x)|2

) p
2 dx

+c
ˆ
BR

|Dη|2 ·
(
µ2 + |Du(x)|2

) p
2 dx

]
. (2.72)

Using (2.63) and (2.64) again for γ = 0, with the same value of θ, (2.72) becomes

ˆ
BR

η2
∣∣∣∣D [(µ2 + |Du(x)|2

) p
4
]∣∣∣∣2 dx

≤ cp2
(ˆ

BR

η2
(
µ2 + |Du(x)|2

) p
2 dx

)θ

·
(ˆ

BR

η2∗
(
µ2 + |Du(x)|2

) p
2 ·

2∗
2 dx

) 2(1−θ)
2∗

·
(ˆ

BR

gq(x)dx
) 2
q

+cp2
ˆ
BR

|Dη|2 ·
(
µ2 + |Du(x)|2

) p
2 dx,

and now we use Young’s inequality with exponents
(

1
θ ,

1
1−θ

)
, thus obtaining

ˆ
BR

η2
∣∣∣∣D [(µ2 + |Du(x)|2

) p
4
]∣∣∣∣2 dx

≤ cp2

(ˆ
BR

η2
(
µ2 + |Du(x)|2

) p
2 dx

)(ˆ
BR

gq(x)dx
) 2
qθ

+
(ˆ

BR

η2∗
(
µ2 + |Du(x)|2

) p
2 ·

2∗
2 dx

) 2
2∗

+
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p
2 dx

]
,

and, by (2.67) with γ = 0,

ˆ
BR

η2
∣∣∣∣D [(µ2 + |Du(x)|2

) p
4
]∣∣∣∣2 dx

≤ cp
4q
q−n

(ˆ
BR

gq(x)dx
) 2
q−n

(ˆ
BR

η2
(
µ2 + |Du(x)|2

) p
2 dx

)

+c
(
1 + p2

)(ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p
2 dx

)
,

where we used that θ = q−n
q .

Recalling the properties of η, and choosing r = R
2 , we obtain the following estimate

ˆ
BR

2

∣∣∣∣D [(µ2 + |Du(x)|2
) p

4
]∣∣∣∣2 dx ≤ c

R2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.73)
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where c = c
(
n,N, p, q, L1, L2, ‖g‖Lq(BR)

)
.

Since 1 < p < 2, we also have, by Hölder’s inequality with exponents
(

2
p ,

2
2−p

)
,

ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx

=
ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p (µ2 + |Du(x)|2

)p· p−2
4
(
µ2 + |Du(x)|2

)p· 2−p4 dx

≤

ˆ
BR

2

∣∣∣D2u(x)
∣∣∣2 (µ2 + |Du(x)|2

) p−2
2 dx


p
2

·
(ˆ

BR

(
µ2 + |Du(x)|2

) p
2 dx

) 2−p
2

. (2.74)

Now we estimate the first integral in the right-hand side of (2.74) using (2.54) and (2.65)
with γ = 0, and (2.68), so we get

ˆ
BR

2

∣∣∣D2u(x)
∣∣∣2 (µ2 + |Du(x)|2

) p−2
2 dx ≤ c

R2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.75)

and plugging (2.75) into (2.74), using Young’s inequality with exponents
(

2
p ,

2
2−p

)
we get

ˆ
BR

2

∣∣∣D2u(x)
∣∣∣p dx ≤ c

R2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx, (2.76)

i.e. (2.41).

Proof of Lemma 2.2.4. Notice that, in this case, we are weakening the assumption on g,
since g ∈ Lnloc (Ω). Again, we assume that u is a local minimizer of the functional (2.33) such
that u ∈W 1,∞

loc (Ω) and Vp (Du) ∈W 1,2
loc (Ω).

First of all, we find an estimate for the Ls-norm of Du, for any 1 < s <∞, proving (2.42).
We can argue exactly as in the proof of previous Lemma, until the estimate (2.62). Next we
use Hölder’s inequality with exponents

(
n
2 ,

n
n−2

)
, as follows

ˆ
BR

η2g2(x)
(
µ2 + |Du(x)|2

) p+γ
2 dx

≤
(ˆ

BR

gn(x)dx
) 2
n

·
(ˆ

BR

η2∗
(
µ2 + |Du(x)|2

) 2∗
2 ·

p+γ
2 dx

) 2
2∗

. (2.77)

Plugging (2.77) into (2.62), we have

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) 2∗
2 ·

p+γ
2 dx

) 2
2∗

≤ c (p+ γ)4
(ˆ

BR

gn(x)dx
) 2
n

·
(ˆ

BR

η2∗
(
µ2 + |Du(x)|2

) 2∗
2 ·

p+γ
2 dx

) 2
2∗

+c (p+ γ)2
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx. (2.78)

In order to reabsorb the first term on the right-hand side of (2.78), we have to use the
absolute continuity of the integral and take R < Rγ , with Rγ such that
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(ˆ
BRγ

gn(x)dx
) 2
n

<
1

2c (p+ γ)4 . (2.79)

Observe that, if γ →∞, then Rγ → 0, and so, even if we can still use Moser’s iterative
technique, passing to the limit gives no information.
More precisely, if R < Rγ , plugging (2.79) into (2.78), we can reabsorb the first term of the
right-hand side of (2.78) to the left-hand side, thus getting

(ˆ
BR

η2∗
(
µ2 + |Du(x)|2

) 2∗
2 ·

p+γ
2 dx

) 2
2∗

≤ c (p+ γ)2
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p+γ
2 dx, (2.80)

and by the properties of η, for γ = 0 we get

(ˆ
Br

(
µ2 + |Du(x)|2

) 2∗
2 ·

p
2 dx

) 2
2∗

≤ c · p2

(R− r)2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx. (2.81)

Now we use again the sequence of exponents pi of defined by (2.70). Fixing s > 1, since pi is
streactly increasing and pi →∞, there exists i such that pī > s, and R̃ such that (2.79) holds
true with pi in place of p+ γ and R̃ in place of Rγ . Choosing R < R̃ and r = R

2 , recalling
(2.69), we can iterate (2.81), thus getting

ˆ
BR

i+1

(
µ2 + |Du(x)|2

) pi+1
2 dx

 1
p
i+1

≤

 c · p2
i(

Ri −Ri+1

)2


1
p
i

·

ˆ
BR

i

(
µ2 + |Du(x)|2

) pi
2 dx

 1
p
i

≤
i∏

k=0

[ cp2
k

(Rk −Rk+1)2

] 1
pk

 · (ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

= exp


i∑

k=0

[
1
pk
· log

(
c · 2k+2p2

k

R2

)] ·
(ˆ

BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

, (2.82)

and since s is arbitrary, the inequality (2.82) allows us to estimate the Ls norm of Du for
every 1 < s <∞. More precisely, for any finite s, there is i ∈ N such that pi > s, and for a
constant c1 = c1(s, p, n), recalling (2.47), we have

ˆ
BR

2

|Du(x)|s dx

 1
s

≤

ˆ
BR

2

(
µ2 + |Du(x)|2

) s
2 dx

 1
s

≤

ˆ
BR

i+1

(
µ2 + |Du(x)|2

) s
2 dx

 1
s
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≤ c1

ˆ
BR

i+1

(
µ2 + |Du(x)|2

) pi+1
2 dx

 1
p
i+1

≤ c1 · exp


i∑

k=0

[
1
pk
· log

(
c · 2k+2p2

k

R2

)] ·
(ˆ

BR

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

, (2.83)

and we get (2.42).
Let us prove, now, estimate (2.43). Recalling (2.72), using (2.77) with γ = 0, we get

ˆ
BR

η2
∣∣∣∣D [(µ2 + |Du(x)|2

) p
4
]∣∣∣∣2 dx

≤ cp2

4

(ˆ
BR

gn(x)dx
) 2
n

·
(ˆ

BR

η2∗(x)
(
µ2 + |Du(x)|2

) 2∗
2 ·

p
2 dx

) 2
2∗

+c
ˆ
BR

|Dη|2
(
µ2 + |Du(x)|2

) p
2 dx

]
,

and recalling the properties of η, with r = R
2 , by (2.81), we obtain

ˆ
BR

2

∣∣∣∣D [(µ2 + |Du(x)|2
) p

4
]∣∣∣∣2 dx

≤ cp2

R2

p2
(ˆ

BR

gn(x)dx
) 2
n

+ 1

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx.

therefore, using (2.79), with γ = 0, we get
ˆ
BR

2

∣∣∣∣D [(µ2 + |Du(x)|2
) p

4
]∣∣∣∣2 dx ≤ c

R2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx,

that is the same a priori estimate as (2.73) under weaker assumption on the coefficients.
In a way very similar to (2.74), using (2.54), (2.77) and (2.80) with γ = 0, , we get (2.75)
again, and then the same estimate for the Lp-norm of the second derivatives of u, thus
getting (2.43).

2.2.2 The approximation: proofs of Theorem 2.2.1 and Theorem 2.2.2.

The aim of this section is to prove that the a priori estimates proved in the Section 2.2.1 are
preserved in passing to the limit in a sequence of minimizers of a suitable approximating
problem, and this allows us to prove Theorem 2.2.1 and Theorem 2.2.2.

Proof of Theorem 2.2.1. Let us consider an open set Ω′ b Ω, and a function φ ∈ C∞0 (B1(0))
such that 0 ≤ φ ≤ 1 and

´
B1(0) φ(x)dx = 1, and a standard family of mollifiers {φε }ε defined

as follows

φε(x) = 1
εn
φ

(
x

ε

)
,

for any ε ∈ (0, d (Ω′, ∂Ω)), so that, for each ε, φε ∈ C∞0 (Bε(0)), 0 ≤ φε ≤ 1,´
Bε(0) φε(x)dx = 1.
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It is well known that, for any h ∈ L1
loc (Ω), setting

hε(x) = h ∗ φε(x) =
ˆ
Bε

φε(y)h(x+ y)dy =
ˆ
B1

φ(ω)h(x+ εω)dω,

we have hε ∈ C∞ (Ω′).
Let us fix a ball BR̃ = BR̃ (x0) b Ω′ and let us consider the functional

Fε
(
w,BR̃

)
=
ˆ
BR̃

fε (x,Dw(x)) dx, (2.84)

that is

Fε
(
w,BR̃

)
=
ˆ
BR̃

(ˆ
B1

f(x+ εω,Dw(x)) · φ(ω)dω
)
dx.

Let u ∈W 1,p
loc (Ω) be a local minimizer of the functional (2.33), and, for each ε > 0, let

uε ∈W 1,p
loc
(
BR̃
)
be the unique local minimizer of the functional (2.84) such that

uε − u ∈W 1,p
0
(
BR̃
)
.

It’s known that uε ∈W 1,∞
loc

(
BR̃
)
and Vp (Duε) =

(
µ2 + |Duε|2

) p−2
4 Duε ∈W 1,2

loc
(
BR̃
)
.

It’s easy to check that from (2.2), (2.9) and (2.13), the following properties hold for the
function fε:

`1
(
µ2 + |ξ|2

) p
2 ≤ fε(x, ξ) ≤ `2

(
µ2 + |ξ|2

) p
2 , (2.85)

|Dxξfε(x, ξ)| ≤ gε(x)
(
µ2 + |ξ|2

) p−1
2 (2.86)

L1
(
µ2 + |ξ|2

) p−2
2 |η|2 ≤ 〈Dξξfε(x, ξ)η, η〉 ≤ L2

(
µ2 + |ξ|2

) p−2
2 |η|2 , (2.87)

for all ξ, η ∈ RN×n, and for almost every x ∈ BR̃.
By the growth condition (2.85), and the minimality of uε, it follows

`1

ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx ≤

ˆ
BR̃

fε (x,Duε(x)) dx ≤
ˆ
BR̃

fε (x,Du(x)) dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx. (2.88)

Since u ∈W 1,p (BR̃), the sequence { uε }ε is bounded in W 1,p (BR̃) and so there exsists a
function v ∈W 1,p (BR̃) such that

uε ⇀ v weakly in W 1,p (BR̃) , as ε→ 0.

Since uε ∈W 1,∞
loc

(
BR̃
)
and Vp (Duε) ∈W 1,2

loc
(
BR̃
)
, we can use the estimates (2.73) and

(2.76), thus getting
ˆ
B r

2

∣∣∣∣D [(µ2 + |Duε(x)|2
) p

4
]∣∣∣∣2 dx ≤ c

r2

ˆ
Br

(
µ2 + |Duε(x)|2

) p
2 dx, (2.89)

and applying (2.75), we also have
ˆ
B r

2

∣∣∣D2uε(x)
∣∣∣2 (µ2 + |Duε(x)|2

) p−2
2 dx ≤ c

ˆ
Br

(
µ2 + |Duε(x)|2

) p
2 dx (2.90)
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for any ball Br b BR̃, and, by Lemma 2.2.3,
ˆ
B r

2

∣∣∣D2uε(x)
∣∣∣p dx ≤ cˆ

Br

(
µ2 + |Duε(x)|2

) p
2 dx, (2.91)

with a constant depending on ‖gε‖Lq(Br).
Let’s notice that, since

gε → g strongly in Lq
(
BR̃
)
, as ε→ 0,

we have

‖gε‖Lq(BR̃) ≤M ‖g‖Lq(BR̃) ,

and so (2.89) and (2.91) hold true with a constant independent of ε.
So, since the ball Br b BR̃ is arbitrary, the set

{ (
µ2 + |Duε|2

) p
4
}
ε
is bounded in W 1,2 (Br),

and { uε }ε is bounded in W 2,p (Br).
Then there exists a function w̃ ∈W 1,2 (Br), such that(

µ2 + |Duε|2
) p

4 ⇀ w̃ weakly in W 1,2 (Br) ,

so that (
µ2 + |Duε|2

) p
4 → w̃ strongly in L2 (Br)

and (
µ2 + |Duε|2

) p
4 → w̃ almost everywhere in Br,

as ε→ 0, up to a subsequence.
Since, by (2.91), { uε }ε, is bounded in W 2,p (Br), we have

uε ⇀ v weakly in W 2,p (Br)

and
uε → v strongly in W 1,p (Br)

and
Duε → Dv almost everywhere in Br,

up to a subsequence, as ε→ 0.
Moreover, since the function ξ 7→

(
µ2 + |ξ|2

) p
4 is continuous, we get

w̃ =
(
µ2 + |Dv|2

) p
4 (2.92)

almost everywhere, and by (2.89), we get
ˆ
B r

2

∣∣∣∣D [(µ2 + |Dv(x)|2
) p

4
]∣∣∣∣2 dx ≤ c

r2

ˆ
Br

(
µ2 + |Dv(x)|2

) p
2 dx.

Similarly, since the function ξ 7→ Vp (ξ) is of class C1, up to a subsequence, we have

∣∣∣D2uε
∣∣∣2 (µ2 + |Duε|2

) p−2
2 →

∣∣∣D2v
∣∣∣2 (µ2 + |Dv|2

) p−2
2 almost everywhere in Br,

as ε→ 0 and, by the dominate convergence theorem, we can pass to the limit in the left-hand
side of (2.90), thus getting
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ˆ
B r

2

∣∣∣D2v(x)
∣∣∣2 (µ2 + |Dv(x)|2

) p−2
2 dx ≤ c

ˆ
Br

(
µ2 + |Dv(x)|2

) p
2 dx,

and applying Young’s inequality with exponets
(

2
p ,

2
2−p

)
as we did in (2.74), we infer

ˆ
B r

2

∣∣∣D2v(x)
∣∣∣p dx ≤ cˆ

Br

(
µ2 + |Dv(x)|2

) p
2 dx. (2.93)

Now we want to prove that u = v almost everywhere in BR̃. Using the minimizing property
of u for F , Fatou’s Lemma, the lower semi-continuity of Fε (due to the convexity of fε), and
the fact that uε is the minimizer of Fε with boundary value u on BR̃, we have

ˆ
BR̃

f (x,Du(x)) dx ≤
ˆ
BR̃

f (x,Dv(x)) dx

≤ lim inf
ε

ˆ
BR̃

fε (x,Duε(x)) dx

≤ lim inf
ε

ˆ
BR̃

fε (x,Du(x)) dx

=
ˆ
BR̃

f (x,Du(x)) dx. (2.94)

So all the terms of (2.94) are equal, and in particular
ˆ
BR̃

f (x,Du(x)) dx =
ˆ
BR̃

f (x,Dv(x)) dx.

By virtue of the strict convexity of the functional (2.33), the local minimizer with boundary
value u, is unique, so u = v almost everywhere in BR̃, and therefore u ∈W 2,p

loc
(
BR̃
)
.

By (2.93), we also obtain the following estimate
ˆ
B r

2

∣∣∣D2u(x)
∣∣∣p dx ≤ cˆ

Br

(
µ2 + |Du(x)|2

) p
2 dx,

for any ball Br b BR̃ and, by a standard covering argument, we get (2.37).
Now, applying (2.40) to uε and recalling (2.88), we get

‖Duε‖
L∞
(
B r

2

) ≤ c

(ˆ
Br

(
µ2 + |Duε(x)|2

) p
2 dx

) 1
p

≤ c

(ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

,

for any ball Br b BR̃, and so, since the ball Br is arbitrary, there exists a function
w̄ ∈W 1,∞ (Br) such that uε

∗
⇀ w̄ in W 1,∞ (Br). So, up to a subsequence, uε → w̄ in

L∞ (Br), by which it follows that w̄ = u. By the weakly-* lower semicontinuity of the map
ξ 7→

(
µ2 + |ξ|2

) p
4 with respect to the L∞-norm, we get

‖Du‖
L∞
(
B r

2

) ≤ lim inf
ε
‖Duε‖

L∞
(
B r

2

)



38 Chapter 2. Homogeneous systems

≤ c · lim inf
ε

(ˆ
Br

(
µ2 + |Duε(x)|2

) p
2 dx

) 1
p

≤ c

(ˆ
Br

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

, (2.95)

so, using a covering argument, we have Du ∈ L∞loc (Ω), with the estimate (2.36).

Proof of Theorem 2.2.2. In order to prove Theorem 2.2.2, let us observe that, by the same
arguments given above, we immediately obtain that u ∈W 2,p

loc (Ω), with the estimate (2.39).
To prove the remaining part of the theorem, for 1 < s <∞, using (2.83) and (2.88), we have

(ˆ
Br

|Duε(x)|s
) 1
s

) ≤ c

(ˆ
Br

(
µ2 + |Duε(x)|2

) p
2 dx

) 1
p

≤ c

(ˆ
Br

(
µ2 + |Du(x)|2

) p
2 dx

) 1
p

,

for any ball Br b BR̃. Arguing similarly to how we did for (2.95), we get

ˆ
B r

2

|Du(x)|s dx

 1
s

≤ lim inf
ε

ˆ
B r

2

|Duε(x)|s dx

 1
s

≤ c · lim inf
ε

ˆ
B r

2

(
µ2 + |Duε(x)|2

) p
2 dx

 1
p

≤ c ·

ˆ
B r

2

(
µ2 + |Du(x)|2

) p
2 dx

 1
p

.

So, by means of a covering argument, we get Du ∈ Lsloc (Ω) , and estimate (2.38) holds, for
every s ∈ (1,∞).



Chapter 3

Non-homogeneous systems

In this chapter we discuss some higher differentiability results for local minimizers of
functional of the form

F (w,Ω) =
ˆ

Ω
[f (x,Dw(x))− F (x) · w(x)] dx, (3.1)

where, for n > 2, Ω ⊂ Rn, is a bounded open set, for N ≥ 1, F ∈ Lrloc

(
Ω,RN

)
for some

r ∈ (2, n) and f : Ω× Rn×N → [0,+∞) is a Carathéodory function such that ξ 7→ f(x, ξ) is
C2
(
Rn×N

)
for a.e. x ∈ Ω and, for an exponent p ∈ (1, 2), and a parameter µ ∈ [0, 1],

(2.2)–(2.4) hold, which, with the notation (2.5), imply (2.6)–(2.8).
The Euler-Langrange system of the functional (3.1) is non-homogeneous, due to the presence
of the datum F . The aim of this chapter is to describe the Lebesgue Lr space to which F has
to belong, in order to get higher differentiability for the solutions, provided the map
x 7→ Dξf (x, ξ) belongs to a suitable Sobolev space W 1,q, i.e., we shall assume that there
exists a non-negative function g ∈ Lqloc (Ω) such that (2.12) holds for some q, which is
equivalent to (2.14).
More precisely, in Section 3.1 we give a sharp result for the value of r, assuming q = n.
In Section 3.1.2, we also provide a counterexample that allows us to understand that we
cannot weaken the assumption on F in the scale of Lebesgue spaces, and this is due only to
the sub-quadratic growth condition of the energy density f with respect to the gradient
variable, and not to the regularity of the coefficients.
In Section 3.2 we give a similar result for a priori bounded minimizers of the functional (3.1),
showing that, as often happens to solutions to variational problems, assuming the a priori
local boundedness of minimizers allows us to get higher regularity properties, weakening the
assumptions on the datum and on the coefficients (we will face this kind of phenomenon also
in Chapter 4, in case of obstacle problems: see Sections 4.2 and 4.5).
All the results we describe in this chapter are contained in an upcoming paper, written in
cooperation with A. Clop and A. Passarelli di Napoli.

3.1 A sharp higher differentiability result for solutions to
some non-homogeneous systems

In this section, we prove the following result.

Theorem 3.1.1. Let Ω ⊂ Rn be a bounded open set, and 1 < p < 2.
Let u ∈W 1,p

loc

(
Ω,RN

)
be a local minimizer of the functional (3.1), under the assumptions

(2.2)–(2.4) and (2.12), with

F ∈ L
np

n(p−1)+2−p
loc (Ω) and g ∈ Lnloc (Ω) .

39
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Then Vp (Du) ∈W 1,2
loc (Ω), and the estimate

ˆ
BR

2

|DVp (Du(x))|2 dx ≤ c

Rβ(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+
ˆ
BR

gn(x)dx+ |BR|
]

(3.2)

holds true for any ball BR b Ω.

Let us notice that it is easy to check that

2 < np

n (p− 1) + 2− p < n,

for any n > 2 and 1 < p < 2.
Moreover

np

n(p− 1) + 2− p <
p

p− 1 ⇐⇒ 1 < p < 2.

3.1.1 Proof of Theorem 3.1.1

We prove Theorem 3.1.1, dividing the proof into two steps. The first step consists in proving
an estimate using the a priori assumption Vp (Du) ∈W 1,2

loc (Ω).
In the second step, we use an approximation argument, considering a regularized version of
the functional to whose minimizer we can apply the a priori estimate. Then we conclude by
proving that such estimate is preserved in passing to the limit.
Before entering into the details of the proof, we want to stress that the necessity to use an
approximation procedure is due to the assumptions on the function g and on the datum F . If
we had F ∈ L∞loc (Ω) and g ∈ L∞loc (Ω), it would be sufficient to apply the difference quotient
method to get Vp (Du) ∈W 1,2

loc (Ω) (see, for example, [1] and [89]).

Proof of Theorem 3.1.1. Step 1: the a priori estimate.
Our first step consists in proving that, if u ∈W 1,p

loc

(
Ω,RN

)
is a local minimizer of F such that

Vp (Du) ∈W 1,2
loc (Ω) ,

estimate (3.2) holds.
Since u ∈W 1,p

loc

(
Ω,RN

)
is a local minimizer of F , it solves the corresponding Euler-Lagrange

system, that is, with the notation (2.5), for any ϕ ∈ C∞0
(
Ω,RN

)
, we have

ˆ
Ω
〈A (x,Du(x)) , Dϕ(x)〉dx =

ˆ
Ω
F (x) · ϕ(x). (3.3)

Let us fix a ball BR b Ω and arbitrary radii R2 ≤ r < s̃ < t < t̃ < λr < R, with 1 < λ < 2.
Let us consider a cut off function η ∈ C∞0 (Bt) such that η ≡ 1 on Bs̃, |Dη| ≤ c

t−s̃ and∣∣D2η
∣∣ ≤ c

(t−s̃)2 . From now on, with no loss of generality, we suppose R < 1. For |h|
sufficiently small, we can choose, for any s = 1, . . . , n

ϕ = τs,−h
(
η2τs,hu

)
as a test function in (3.3) and, by Proposition 1.2.2, we get

ˆ
Ω

〈
τs,hA (x,Du(x)) , D

(
η2(x)τs,hu(x)

)〉
dx
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=
ˆ

Ω
F (x) · τs,−h

(
η2(x)τs,hu(x)

)
dx,

that is

I :=
ˆ

Ω

〈
A (x+ hes, Du (x+ hes))−A (x+ hes, Du(x)) , η2(x)τs,hDu(x)

〉
dx

= −
ˆ

Ω

〈
A (x+ hes, Du(x))−A (x,Du(x)) , η2(x)τs,hDu(x)

〉
dx

−2
ˆ

Ω
〈A (x+ hes, Du (x+ hes))−A (x,Du(x)) , η(x)Dη(x)⊗ τs,hu(x)〉 dx

+
ˆ

Ω
F (x) · τs,−h

(
η2(x)τs,hu(x)

)
dx

=: −II − III + IV.

Therefore

I ≤ |II|+ |III|+ |IV | . (3.4)

By (2.7), we obtain

I ≥ ν
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 |τs,hDu(x)|2 dx. (3.5)

For what concerns the term II, by (2.14) and Young’s inequality with exponents (2, 2), for
any ε > 0, we have

|II| ≤ |h|
ˆ

Ω
η2(x) (g(x) + g (x+ hes))

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−1
2 |τs,hDu(x)| dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 |τs,hDu(x)|2 dx

+cε |h|2
ˆ

Ω
η2(x) (g(x) + g (x+ hes))2

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p
2 dx.

Now, by the assumption g ∈ Lnloc (Ω), we can use Hölder’s inequality with exponents(
n
2 ,

n
n−2

)
and by the properties of η and Lemma 1.2.3, we get

|II| ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 |τs,hDu(x)|2 dx

+cε |h|2
(ˆ

Bt

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) np
2(n−2) dx

)n−2
n

·
(ˆ

Bt

(g(x) + g (x+ hes))n dx
) 2
n

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 |τs,hDu(x)|2 dx

+cε |h|2
(ˆ

Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

)n−2
n

·
(ˆ

Bλr

gn(x)dx
) 2
n

. (3.6)

Let us consider, now, the term III. We have
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III = 2
ˆ

Ω
〈τs,hA (x,Du(x)) , η(x)Dη(x)⊗ τs,hu(x)〉 dx

= 2
ˆ

Ω
〈A (x,Du(x)) , τs,−h [η(x)Dη(x)⊗ τs,hu(x)]〉 dx,

so, by (2.6), we deduce that

|III| ≤ c

ˆ
Ω

(
µ2 + |Du(x)|2

) p−1
2 |τs,−h [η(x)Dη(x)⊗ τs,hu(x)]| dx (3.7)

and since, for any x ∈ supp(η) such that x+ hes, x− hes ∈ supp(η), recalling the properties
of η, we have

|τs,−h [η(x)Dη(x)⊗ τs,hu(x)]| ≤ |τs,−hη(x) ·Dη (x− hes)⊗ τs,hu (x− hes)|

+ |η(x)τs,−hDη(x)⊗ τs,hu (x− hes)|

+ |η(x)Dη(x)⊗ τs,−hτs,hu(x)|

≤ c |h|
(t− s̃)2 |τs,hu (x− hes)|

+ c |h|
t− s̃

η(x) |τs,−hτs,hu(x)| . (3.8)

Inserting (3.8) into (3.7), we get

|III| ≤ c |h|
(t− s̃)2

ˆ
Bt

(
µ2 + |Du(x)|2

) p−1
2 |τs,hu (x− hes)| dx

+ c |h|
t− s̃

ˆ
Ω
η(x)

(
µ2 + |Du(x)|2

) p−1
2 |τs,−hτs,hu(x)| dx, (3.9)

and by Hölder’s inequality with exponents
(
p, p

p−1

)
and the properties of η, (3.9) becomes

|III| ≤ c |h|
(t− s̃)2

(ˆ
Bt

(
µ2 + |Du(x)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt

|τs,hu (x− hes)|p dx
) 1
p

+ c |h|
t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt

|τs,−hτs,hu(x)|p dx
) 1
p

.

Now, by virtue of Lemma 1.2.3, and using (1.5), we get

|III| ≤ c |h|2

(t− s̃)2

ˆ
Bt̃

(
µ2 + |Du(x)|2

) p
2 dx

+c |h|2

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p
2 dx

) p−1
p
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·
(ˆ

Bt̃

|τs,hDu(x)|p dx
) 1
p

≤ c |h|2

(t− s̃)2

ˆ
Bt̃

(
µ2 + |Du(x)|2

) p
2 dx

+c |h|2

t− s̃

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p
2 dx

) p−1
p

·
(ˆ

Bt̃

|τs,hVp (Du(x))|p ·
(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p(2−p)
4 dx

) 1
p

≤ c |h|2

(t− s̃)2

ˆ
Bt̃

(
µ2 + |Du(x)|2

) p
2 dx+ c |h|2

t− s̃

(ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

) 1
2

·
(ˆ

Bt̃

|τs,hVp (Du(x))|2 dx
) 1

2

, (3.10)

where, in the last line, we used Hölder’s inequality with exponents
(

2
p ,

2
2−p

)
.

Now, using Young’s inequality with exponents (2, 2) and since t− s̃ < 1 and t < t̃ < λr < R,
(3.10) gives

|III| ≤ σ
ˆ
Bt̃

|τs,hVp (Du(x))|2 dx+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx, (3.11)

for any σ > 0. For what concerns the term IV , by virtue of Proposition 1.2.2, we have

IV =
ˆ

Ω
η2 (x)F (x)τs,−h (τs,hu(x)) dx

+
ˆ

Ω
[η (x− hes) + η(x)]F (x)τs,−hη(x)τs,hu (x− hes) dx

=: J1 + J2, (3.12)

which yields

|IV | ≤ |J1|+ |J2| (3.13)

In order to estimate the term J1, let us recall that, by virtue of the a priori assumption
Vp (Du) ∈W 1,2

loc (Ω) and Sobolev’s embedding theorem, we have Du ∈ L
np
n−2
loc (Ω), which

implies Du ∈ L
np

n−2+p
loc (Ω). So, using Hölder’s inequality with exponents

(
np

n(p−1)+2−p ,
np

n−2+p

)
,

the properties of η and Lemma 1.2.3, we get

|J1| ≤
(ˆ

Bt

|F (x)|
np

n(p−1)+2−p dx

)n(p−1)+2−p
np

·
(ˆ

Bt

|τs,−hτs,hu(x)|
np

n−2+p dx

)n−2+p
np

≤ |h|
(ˆ

Bt

|F (x)|
np

n(p−1)+2−p dx

)n(p−1)+2−p
np

·
(ˆ

Bt̃

|τs,hDu(x)|
np

n−2+p dx

)n−2+p
np

(3.14)

To go further, let us consider the second integral in (3.14). Using (1.5), we get
ˆ
Bt̃

|τs,hDu(x)|
np

n−2+p dx ≤
ˆ
Bt̃

|τs,hVp (Du(x))|
np

n−2+p
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·
(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) 2−p
4 ·

np
n−2+p dx,

and, as long as 1 < p < 2, we can use Hölder’s inequality with exponents(
2(n−2+p)

np , 2(n−2+p)
(n−2)(2−p)

)
, thus getting

ˆ
Bt̃

|τs,hDu(x)|
np

n−2+p dx ≤
(ˆ

Bt̃

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) np
2(n−2) dx

) (n−2)(2−p)
2(n−2+p)

·
(ˆ

Bt̃

|τs,hVp (Du(x))|2 dx
) np

2(n−2+p)

. (3.15)

Inserting (3.15) into (3.14), and using Young’s inequality with exponents(
2, np

n(p−1)+2−p ,
2np

(n−2)(2−p)

)
, we obtain

|J1| ≤ |h|
(ˆ

Bt

|F (x)|
np

n(p−1)+2−p dx

)n(p−1)+2−p
np

·
(ˆ

Bt̃

|τs,hVp (Du(x))|2 dx
) 1

2

·
(ˆ

Bt̃

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) np
2(n−2) dx

) (n−2)(2−p)
2np

≤ cσ |h|2
ˆ
Bt

|F (x)|
np

n(p−1)+2−p dx

+σ |h|2
ˆ
Bt̃

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) np
2(n−2) dx

+σ
ˆ
Bt̃

|τs,hVp (Du(x))|2 dx. (3.16)

Recalling that t < t̃ < λr < R and by virtue of Lemma 1.2.3, (3.16) implies

|J1| ≤ cσ |h|2
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx

+σ |h|2
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

+σ
ˆ
Bt̃

|τs,hVp (Du(x))|2 dx. (3.17)

For what concerns the term J2, by virtue of the properties of η, we have

|J2| ≤ c

ˆ
Bt

|F (x)| |τs,−hη(x)| |τs,hu (x− hes)| dx

≤ |h| ‖Dη‖L∞(Bt)

ˆ
Bt

|F (x)| |τs,hu (x− hes)| dx

≤ c |h|
t− s̃

ˆ
Bt

|F (x)| |τs,hu (x− hes)| dx. (3.18)

Now, if we apply Hölder’s and Young’s inequality in (3.18) with exponents
(

np
n(p−1)+2 ,

np
n−2

)
,

we get

|J2| ≤
c |h|
t− s̃

(ˆ
Bt

|F (x)|
np

n(p−1)+2 dx

)n(p−1)+2
np

·
(ˆ

Bt

|τs,hu (x− hes)|
np
n−2 dx

)n−2
np
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≤ cσ |h|2

(t− s̃)
np

n(p−1)+2

ˆ
Bt

|F (x)|
np

n(p−1)+2 dx+ σ |h|2
ˆ
Bλr

|Du (x)|
np
n−2 dx, (3.19)

where we also used Lemma 1.2.3, since Du ∈ L
np
n−2
loc (Ω).

By virtue of (3.17) and (3.19), (3.13) gives

|IV | ≤ cσ |h|2
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ cσ |h|2

(t− s̃)
np

n(p−1)+2

ˆ
Bt

|F (x)|
np

n(p−1)+2 dx

+2σ |h|2
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx+ σ

ˆ
Bt̃

|τs,hVp (Du(x))|2 dx. (3.20)

Inserting (3.5), (3.6), (3.11) and (3.20) into (3.4), and choosing ε < ν
2 , we get

c (ν)
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 |τs,hDu(x)|2 dx

≤ c |h|2
(ˆ

Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

)n−2
n

·
(ˆ

Bλr

gn(x)dx
) 2
n

+2σ
ˆ
Bt̃

|τs,hVp (Du(x))|2 dx+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+cσ |h|2
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ cσ |h|2

(t− s̃)
np

n(p−1)+2

ˆ
Bt

|F (x)|
np

n(p−1)+2 dx

+2σ |h|2
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx,

for σ > 0 that will be chosen later.
So, by (1.5) and the properties of η, we have

ˆ
Bs̃

|τs,hVp (Du(x))|2 dx

≤ 3σ |h|2
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx+ cσ

ˆ
Bλr

gn(x)dx

+2σ
ˆ
Bt̃

|τs,hVp (Du(x))|2 dx+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+cσ |h|2
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ cσ |h|2

(t− s̃)
np

n(p−1)+2

ˆ
Bt

|F (x)|
np

n(p−1)+2 dx,

where we also used Young’s inequality with exponents
(
n
2 ,

n
n−2

)
.

Now, Lemma 1.2.3 implies

ˆ
Bs̃

|τs,hVp (Du(x))|2 dx

≤ 3σ |h|2
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx+ c · σ |h|2

ˆ
Bλr

|DVp (Du(x))|2 dx

+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx+ cσ

ˆ
Bλr

gn(x)dx
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+cσ |h|2
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ cσ |h|2

(t− s̃)
np

n(p−1)+2

ˆ
Bt

|F (x)|
np

n(p−1)+2 dx. (3.21)

Since (3.21) holds for any s = 1, . . . , n and, by virtue of the a priori assumption,
Vp (Dv) ∈W 1,2

loc (Ω), by Lemma 1.2.4, we get

ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ c · σ
ˆ
Bλr

|DVp (Du(x))|2 + 3σ
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

+ cσ

(t− s̃)2

ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx+ cσ

ˆ
Bλr

gn(x)dx

+cσ
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ cσ

(t− s̃)
np

n(p−1)+2

ˆ
BR

|F (x)|
np

n(p−1)+2 dx,

and since t− s̃ < 1, setting

β (n, p) = max
{

2, np

n (p− 1) + 2

}
,

we get
ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ c · σ
ˆ
Bλr

|DVp (Du(x))|2 + 3σ
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

+ cσ

(t− s̃)β(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx+

ˆ
Bλr

gn(x)dx

+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+
ˆ
BR

|F (x)|
np

n(p−1)+2 dx

]
. (3.22)

Now let us notice that, since np
n(p−1)+2 <

np
n(p−1)+2−p , we have

ˆ
BR

|F (x)|
np

n(p−1)+2 dx ≤ |BR|
p

n(p−1)+2

(ˆ
BR

|F (x)|
np

n(p−1)+2−p dx

)n(p−1)+2−p
n(p−1)+2

,

and using Young’s inequality with exponents
(

n(p−1)+2
n(p−1)+2−p ,

n(p−1)+2
p

)
, we get

ˆ
BR

|F (x)|
np

n(p−1)+2 dx ≤ c
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ c |BR| . (3.23)

Plugging (3.23) into (3.22), we get

ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ c · σ
ˆ
Bλr

|DVp (Du(x))|2 + 3σ
ˆ
Bλr

(
µ2 + |Du(x)|2

) np
2(n−2) dx

+ cσ

(t− s̃)β(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx+

ˆ
Bλr

gn(x)dx
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+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ |BR|
]
. (3.24)

Moreover, applying Sobolev’s inequality to the function Vp (Du) and recalling (1.10), for a
positive constant c = c(n, p) we get

ˆ
Bλr

|Du(x)|
np
n−2 dx ≤ c

ˆ
Bλr

|Vp (Du(x))|
2n
n−2 dx+ cµ

np
n−2 |BR|

≤ c

ˆ
Bλr

|DVp (Du(x))|2 dx+ c

ˆ
Bλr

|Vp (Du(x))|2 dx

+c |BR|

≤ c

ˆ
Bλr

|DVp (Du(x))|2 dx+ c

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

+c |BR| , (3.25)

where we also used the fact that µ ∈ [0, 1].
Now, plugging (3.25) into (3.24), and recalling that t− s̃ < 1 and λr < R, we get

ˆ
Bs̃

|DVp (Du(x))|2 dx ≤ c · σ
ˆ
Bλr

|DVp (Du(x))|2

+ cσ

(t− s̃)β(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

gn(x)dx+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ |BR|
]
,

and choosing σ > 0 such that
c · σ = 1

2 ,

we get
ˆ
Bs̃

|DVp (Du(x))|2 dx ≤ 1
2

ˆ
Bλr

|DVp (Du(x))|2

+ c

(t− s̃)β(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

gn(x)dx+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ |BR|
]
. (3.26)

Since (3.26) holds for any R
2 ≤ r < s̃ < t < λr < R, with 1 < λ < 2, and the constant c

depends on n,N, p, L, ν, ` but is independent of the radii, we can take the limit as s̃→ r and
t→ λr, thus getting

ˆ
Br

|DVp (Du(x))|2 dx ≤ 1
2

ˆ
Bλr

|DVp (Du(x))|2 dx

+ c

rβ(n,p) (λ− 1)β(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

gn(x)dx+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ |BR|
]
.
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Now, if we set

h(r) =
ˆ
Br

|DVp (Du(x))|2 dx,

A = c

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx+

ˆ
BR

gn(x)dx+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+ |BR|
]

and

B = 0,

and apply Lemma 1.1.1 with

θ = 1
2 and γ = β (n, p) ,

we get

ˆ
BR

2

|DVp (Du(x))|2 dx ≤ c

Rβ(n,p)

[ˆ
BR

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
np

n(p−1)+2−p dx+
ˆ
BR

gn(x)dx+ |BR|
]
, (3.27)

that is the desired a priori estimate.

Step 2: the approximation.
Now we want to complete the proof of Theorem 3.1.1, using the a priori estimate (3.27), and
a classical approximation argument.
Let us consider an open set Ω′ b Ω, and a function φ ∈ C∞0 (B1(0)) such that 0 ≤ φ ≤ 1 and´
B1(0) φ(x)dx = 1, and a standard family of mollifiers {φε }ε defined as follows

φε(x) = 1
εn
φ

(
x

ε

)
,

for any ε ∈ (0, d (Ω′, ∂Ω)), so that, for each ε, φε ∈ C∞0 (Bε(0)), 0 ≤ φε ≤ 1,´
Bε(0) φε(x)dx = 1.
It is well known that, for any h ∈ L1

loc (Ω), setting

hε(x) = h ∗ φε(x) =
ˆ
Bε

φε(y)h(x+ y)dy =
ˆ
B1

φ(ω)h(x+ εω)dω,

we have hε ∈ C∞ (Ω′).
Let us fix a ball BR̃ = BR̃ (x0) b Ω′, with R̃ < 1 and, for each ε ∈ (0, d (Ω′, ∂Ω)), let us
consider the functional

Fε
(
w,BR̃

)
=
ˆ
BR̃

[fε (x,Dw(x))− Fε(x) · w(x)] dx,

where
fε(x, ξ) =

ˆ
B1

φ(ω)f (x+ εω, ξ) dω (3.28)

and
Fε = F ∗ φε. (3.29)

Let us recall that
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ˆ
BR̃

fε (x, ξ) dx→
ˆ
BR̃

f (x, ξ) dx, as ε→ 0 (3.30)

for any ξ ∈ Rn×N .
Moreover, since F ∈ L

np
n(p−1)+2−p
loc (Ω), we have

Fε → F strongly in L
np

n(p−1)+2−p
(
BR̃
)
, (3.31)

and since np
n(p−1)+2−p >

np
n(p−1)+p = p∗

p∗−1 , we also have

Fε → F strongly in L
p∗
p∗−1

(
BR̃
)
, (3.32)

as ε→ 0.
It is easy to check that (2.2)–(2.4) and (2.12) imply

`1
(
µ2 + |ξ|2

) p
2 ≤ fε(x, ξ) ≤ `2

(
µ2 + |ξ|2

) p
2 , (3.33)

〈Dξfε(x, ξ)−Dξfε(x, η), ξ − η〉 ≥ ν
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|2, (3.34)

|Dξfε(x, ξ)−Dξfε(x, η)| ≤ L
(
µ2 + |ξ|2 + |η|2

) p−2
2 |ξ − η|, (3.35)

|Dξfε (x, ξ)−Dξfε (y, ξ)| ≤ (gε(x) + gε(y))
(
µ2 + |ξ|2

) p−1
2 |x− y| , (3.36)

for a.e. x, y ∈ BR̃ and every ξ, η ∈ Rn×N , where

gε = g ∗ φε. (3.37)

Since g ∈ Lnloc (Ω), we have

gε → g strongly in Ln
(
BR̃
)
, as ε→ 0. (3.38)

For each ε, let uε ∈ u+W 1,p
0
(
BR̃
)
be the solution to

min
{
Fε
(
w,BR̃

)
: w ∈ u+W 1,p

0
(
BR̃
) }

,

where u ∈W 1,p
loc (Ω) is a local minimizer of (3.1).

By virtue of the minimality of uε, we have
ˆ
BR̃

[fε (x,Duε(x))− Fε(x) · uε(x)] dx ≤
ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx,

which meansˆ
BR̃

fε (x,Duε(x)) dx ≤
ˆ
BR̃

[fε (x,Du(x)) + Fε(x) · (uε(x)− u(x))] dx,

and by (3.33) we get

`1

ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx ≤

ˆ
BR̃

fε (x,Duε(x)) dx

≤
ˆ
BR̃

[fε (x,Du(x)) + Fε(x) · (uε(x)− u(x))] dx
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≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

+
ˆ
BR̃

|Fε(x)| |uε(x)− u(x)| dx. (3.39)

If we use Hölder’s and Young’s inequalities with exponents
(
p∗, p∗

p∗−1

)
in (3.39) and apply

Sobolev’s inequality to the function uε − u ∈W 1,p
0
(
BR̃
)
, for any σ > 0, we get

`1

ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ cσ

ˆ
BR̃

|Fε(x)|
p∗
p∗−1 dx

+σ
ˆ
BR̃

|uε(x)− u(x)|p
∗
dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ cσ

ˆ
BR̃

|Fε(x)|
p∗
p∗−1 dx

+σ
(ˆ

BR̃

|Duε(x)−Du(x)|p dx
)

≤ cσ

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ cσ

ˆ
BR̃

|Fε(x)|
p∗
p∗−1 dx

+σ
(ˆ

BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

)
. (3.40)

Now, if we choose σ < `1
2 in (3.40), we have

`1

ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

≤ c

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ c

ˆ
BR̃

|Fε(x)|
p∗
p∗−1 dx. (3.41)

By virtue of (3.32), (3.41) implies that { uε }ε is bounded in W 1,p
loc
(
BR̃
)
. Therefore there

exists v ∈W 1,p (BR̃) such that

uε ⇀ v weakly in W 1,p (BR̃) ,
uε → v strongly in Lp

(
BR̃
)
,

and

uε → v almost everywhere in BR̃,

up to a subsequence, as ε→ 0.
On the other hand, since Vp (Duε) ∈W 1,2

loc
(
BR̃
)
, we are legitimated to apply estimate (3.27),

thus getting
ˆ
B r

2

|DVp (Duε(x))|2 dx ≤ c

rβ(n,p)

[ˆ
Br

(
µ2 + |Duε (x)|2

) p
2 dx

+
ˆ
Br

|Fε(x)|
np

n(p−1)+2−p dx+ c

ˆ
Br

gnε (x)dx+ |Br|
]
, (3.42)
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for any ball Br b BR̃.
By virtue of (3.31), (3.32), (3.38) and (3.41), the right-hand side of (3.42) can be bounded
independently of ε. For this reason, recalling Lemma 1.4.5, we also infer that, for each ε,
uε ∈W 2,p

loc
(
BR̃
)
, and that { uε }ε is bounded in W 2,p

loc (Br).
Hence

uε ⇀ v weakly in W 2,p (Br) ,

uε → v strongly in W 1,p (Br) , (3.43)

and

Duε → Dv almost everywhere in Br, (3.44)

up to a subsequence, as ε→ 0.
Moreover, by the continuity of ξ 7→ DVp(ξ) and (3.44), we get DVp (Duε)→ DVp (Dv) almost
everywhere, and since the right-hand side of (3.42) can be bounded independently of ε, by
Fatou’s Lemma, passing to the limit as ε→ 0 in (3.42), by (3.31), (3.38) and (3.43), we get

ˆ
B r

2

|DVp (Dv(x))|2 dx

≤ c

rβ(n,p)

[ˆ
Br

(
µ2 + |Dv (x)|2

) p
2 dx+

ˆ
BR

|F (x)|
np

n(p−1)+2−p dx

+c
ˆ
Br

gn(x)dx+ |Br|
n(p−1)+2

np

]
. (3.45)

Our final step consists in proving that u = v a.e. in BR̃.
First, let us observe that, using Hölder’s inequality with exponents

(
p∗, p∗

p∗−1

)
, we get

∣∣∣∣∣
ˆ
BR̃

[Fε(x) · v(x)− F (x) · v(x)] dx
∣∣∣∣∣

≤
ˆ
BR̃

|Fε(x)− F (x)| |u(x)| dx

≤
(ˆ

BR̃

|u(x)|p
∗
dx

) 1
p∗

·
(ˆ

BR̃

|Fε(x)− F (x)|
p∗
p∗−1 dx

) p∗−1
p∗

,

that, thanks to (3.32), implies

lim
ε→0

ˆ
BR̃

Fε(x) · v(x)dx =
ˆ
BR̃

F (x) · v(x)dx.

and recalling (3.30), we obtain

lim
ε→0

ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx =
ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx. (3.46)

The minimality of u, Fatou’s Lemma, the lower semicontinuity of Fε and the minimality of uε
imply

ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx
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≤
ˆ
BR̃

[f (x,Dv(x))− F (x) · v(x)] dx

≤ lim inf
ε→0

ˆ
BR̃

[f (x,Duε(x))− F (x) · uε(x)] dx

≤ lim inf
ε→0

ˆ
BR̃

[fε (x,Duε(x))− Fε(x) · uε(x)] dx

≤ lim inf
ε→0

ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx

=
ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx,

where the last equivalence follows by (3.46). Therefore, all the previous inequalities hold as
equalities and F

(
Du,BR̃

)
= F

(
Dv,BR̃

)
. The strict convexity of the functional yields that

u = v a.e. in BR̃, and since the map ξ 7→ Vp(ξ) is of class C1, we also have
DVp (Du) = DVp (Dv) almost everywhere in BR̃, and by (3.45), using a standard covering
argument, we can conclude with estimate (3.2).

Thanks to Lemma 1.4.5, it is easy to prove the following consequence of Theorem 3.1.1.

Corollary 3.1.2. Let Ω ⊂ Rn be a bounded open set, and 1 < p < 2.
Let u ∈W 1,p

loc

(
Ω,RN

)
be a local minimizer of the functional (3.1), under the assumptions

(2.2)–(2.4) and (2.12), with

F ∈ L
np

n(p−1)+2−p
loc (Ω) and g ∈ Lnloc (Ω) .

Then u ∈W 2,p
loc (Ω).

3.1.2 A Counterexample

The aim of this section is to show that we cannot weaken the assumption F ∈ L
np

n(p−1)+2−p
loc (Ω)

in the scale of Lebesgue spaces.
Our example also shows that this phenomenon is independent of the presence of the
coefficients, but it depends only on the sub-quadratic growth of the energy density.
For α ∈ R, let us set

β := (α− 1) (p− 1)− 1,

and consider the functional

Fα (w,Ω) =
ˆ

Ω

[
|Dw(x)|p − α (n+ β) |α|p−2 |x|β w(x)

]
dx,

where Ω ⊂ Rn is a bounded open set containing the origin, 1 < p < 2, u : Rn → R.
Using the classical notation for the p-Laplacian

∆pw = div
(
|Dw|p−2 ·Dw

)
,

a local minimizer of this functional is a weak solution to the p-Poisson equation

∆pw = Fα, (3.47)

with

Fα = α (n+ β) |α|p−2 |x|β .
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Before going further, let us notice that (3.47) is an autonomous equation, whose solution are
scalar functions, so the problem we’re dealing with is much less general with respect to the
assumption we considered in order to prove our result.
It is easy to check that, for any α ∈ R, the function

uα(x) = |x|α

is a solution to (3.47).
Indeed, since, for each i = 1, . . . , n, we have

Dxiuα(x) = α |x|α−2 xi,

we get

|Duα(x)| = |α| |x|α−1 .

So, for every i = 1, . . . , n, since β = (α− 1) (p− 1)− 1, we get

|Duα(x)|p−2Dxiuα(x) = α |α|p−2 |x|(p−1)·(α−1)−1 xi = α |α|p−2 |x|β xi
and

∂

∂xi

(
|Duα(x)|p−2Dxiuα(x)

)
= α |α|p−2 |x|β

(
1 + βx2

i

|x|2

)
,

so

∆puα(x) = div
(
|Duα(x)|p−2 ·Duα(x)

)
=

n∑
i=1

∂

∂xi

(
|Duα(x)|p−2Dxiuα(x)

)
= α |α|p−2 |x|β

n∑
i=1

(
1 + βx2

i

|x|2

)
= α |α|p−2 (n+ β) |x|β

= Fα(x)

Moreover, for further needs, we observe that∣∣∣D2uα(x)
∣∣∣ = c(α) · |x|α−2 ,

for a constant c(α) ≥ 0. Choosing
α− 1 = 2− n

p

we have
Fα ∼ |x|

(2−n)(p−1)
p

−1

and
|Fα|

np
n(p−1)+2−p ∼ |x|−n .

Therefore with such a choice of α, Fα doesn’t belong to L
np

n(p−1)+2−p (B1(0)). With the same
choice of α we have

|Duα(x)|p−2 ·
∣∣∣D2uα(x)

∣∣∣2 = c(n, p) · |x|p·(α−1)−2 = c(n, p) · |x|2−n−2 = c(n, p) · |x|−n ,

that doesn’t belong to L1 (B1(0)). Therefore we cannot weaken the assumption on datum F
in the scale of Lebesgue spaces and obtain the same regularity for the second derivatives of
the solution u.
Note that Fα ∈ L

np
n(p−1)+2−p−ε (B1(0)), for every ε > 0.
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3.2 A higher differentiability result for bounded solutions to
some non-homogeneous systems

This section is devoted to the proof of an higher differentiability result for a priori bounded
minimizers of functional (3.1).
The claim of our result is the following.

Theorem 3.2.1. Let Ω ⊂ Rn be a bounded open set and u ∈W 1,p
loc

(
Ω,RN

)
∩ L∞loc (Ω) be a

local minimizer of the functional (3.1) under assumptions (2.2)–(2.4) and (2.12) for
1 < p < 2, with

F ∈ L
p+2
p

loc (Ω) and g ∈ Lp+2
loc (Ω) .

Then Vp (Du) ∈W 1,2
loc (Ω) and the estimate

ˆ
BR

2

|DVp (Du(x))|2 dx ≤
c ‖u‖L∞(B4R)

R
p+2
p

[ˆ
B4R

(
µ2 + |Du (x)|2

) p
2 dx

+
ˆ
BR

gp+2(x)dx+
ˆ
BR

|F (x)|
p+2
p dx+ |BR|+ 1

]
(3.48)

holds for any ball B4R b Ω.

It is worth noticing that assuming F ∈ L
p+2
p

loc (Ω) is weaker than assuming

F ∈ L
np

n(p−1)+2−p
loc (Ω), if and only if

p+ 2
p

<
np

n(p− 1) + 2− p,

and since 1 < p < 2, this is equivalent to

n > p+ 2,

so, for n ≥ 4, the result we prove for a priori bounded minimizers improves the one we proved
in Section 3.1.
Moreover, for any n > 2 and 1 < p < 2, we have

2 < p+ 2
p

< n.

3.2.1 A preliminary higher differentiability result

In order to prove Theorem 3.2.1, we need an auxiliary result, concerning the regularity of
local minimizers of functionals of the form

Fm (w,Ω) =
ˆ

Ω

[
f (x,Dw(x))− F (x) · w(x) + (|w(x)| − a)2m

+

]
dx, (3.49)

where a > 0, m > 1, and the function f still satisfies (2.2)–(2.4) and (2.12).
It is clear from the definition and by our assumptions, that the functional in (3.49) admits
minimizers in W 1,p

loc (Ω) ∩ L2m
loc (Ω).

We want to prove the following higher differentiability result for local minimizers of the
functional Fm.
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Theorem 3.2.2. Let Ω ⊂ Rn be a bounded open set, m > 1, a > 0 and 1 < p < 2.
Let v ∈W 1,p

loc

(
Ω,RN

)
∩ L2m

loc

(
Ω,RN

)
be a local minimizer of the functional (3.49), under the

assumptions (2.2)–(2.4) and (2.12), with

F ∈ L
2m(p+2)

2mp+p−2
loc (Ω) and g ∈ L

2m(p+2)
2m−p

loc (Ω) .

Then Vp (Dv) ∈W 1,2
loc (Ω), and the estimate
ˆ
BR

2

|DVp (Dv(x))|2 dx

≤ c

R
p+2
p

[ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
, (3.50)

holds true for any ball B4R b Ω.

For further needs, we notice that

2m (p+ 2)
2mp+ p− 2 >

m (p+ 2)
mp+m− 1

for any m > 1 as long as 1 < p < 2, since it is equivalent to

2mp+ 2m− 2 > 2mp+ p− 2

i.e.
2m > p.

Let us also notice that
2m (p+ 2)

2mp+ p− 2 >
p+ 2
p

,

and
2m (p+ 2)

2m− p > p+ 2

for any m > 1 and p ∈ (1, 2).

Proof of Thorem 3.2.2. Step 1: the a priori estimate.
Our first step consists in proving that, if v ∈W 1,p

loc

(
Ω,RN

)
∩ L2m

loc

(
Ω,RN

)
is a local

minimizer of Fm such that
Vp (Dv) ∈W 1,2

loc (Ω) ,

estimate (3.50) holds.
Since v ∈W 1,p

loc

(
Ω,RN

)
∩ L2m

loc

(
Ω,RN

)
is a local minimizer of Fm, it is a weak solution of

the corresponding Euler-Lagrange system, that is, with the notation (2.5), for any
ϕ ∈ C∞0

(
Ω,RN

)
, we have

ˆ
Ω
〈A (x,Dv(x)) , Dϕ(x)〉dx =

ˆ
Ω

[
F (x)− 2m (|v(x)| − a)2m−1

+ · v(x)
|v(x)|

]
ϕ(x). (3.51)

Let us fix a ball B4R b Ω and arbitrary radii R2 ≤ r < s̃ < t < t̃ < λr < R, with 1 < λ < 2.
Let us consider a cut off function η ∈ C∞0 (Bt) such that η ≡ 1 on Bs̃, |Dη| ≤ c

t−s̃ and
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∣∣D2η
∣∣ ≤ c

(t−s̃)2 . From now on, with no loss of generality, we suppose R < 1
4 . For |h|

sufficiently small, we can choose, for any s = 1, . . . , n

ϕ = τs,−h
(
η2τs,hv

)
as a test function for the equation (3.51), and recalling Proposition 1.2.2, we get

ˆ
Ω

〈
τs,hA (x,Dv(x)) , D

(
η2(x)τs,hv(x)

)〉
dx

=
ˆ

Ω
F (x) · τs,−h

(
η2(x)τs,hv(x)

)
dx

−2m
ˆ

Ω
τs,h

[
(|v(x)| − a)2m−1

+ · v(x)
|v(x)|

]
· η2(x)τs,hv(x)dx,

that is

I + II :=
ˆ

Ω

〈
A (x+ hes, Dv (x+ hes))−A (x+ hes, Dv(x)) , η2(x)τs,hDv(x)

〉
dx

+2m
ˆ

Ω
τs,h

[
(|v(x)| − a)2m−1

+ · v(x)
|v(x)|

]
· η2(x)τs,hv(x)dx

= −
ˆ

Ω

〈
A (x+ hes, Dv(x))−A (x,Dv(x)) , η2(x)τs,hDv(x)

〉
dx

−2
ˆ

Ω
〈τs,h [A (x,Dv(x))] , η(x)Dη(x)⊗ τs,hv(x)〉 dx

+
ˆ

Ω
F (x) · τs,−h

(
η2(x)τs,hv(x)

)
dx

=: −III − IV + V.

So we have

I + II ≤ |III|+ |IV |+ |V | . (3.52)

By virtue of Lemma 1.1.4, we have

II ≥ c(m)
ˆ

Ω
η2(x)

∣∣∣∣(|v(x+ hes)| − a)m+ ·
v (x+ hes)
|v (x+ hes)|

− (|v(x)| − a)m+ ·
v(x)
|v(x)|

∣∣∣∣2 dx ≥ 0,

so (3.52) becomes

I ≤ |III|+ |IV |+ |V | . (3.53)

By (2.7), we get

I ≥ ν
ˆ

Ω
η2(x)

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p−2
2 |τs,hDv(x)|2 dx. (3.54)

For what concerns the term III, by (2.14) and using Young’s inequality with exponents
(2, 2), for any ε > 0, we have

|III| ≤ |h|
ˆ

Ω
η2(x) (g(x) + g (x+ hes))

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p−1
2 |τs,hDv(x)| dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p−2
2 |τs,hDv(x)|2 dx
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+cε |h|2
ˆ

Ω
η2(x) (g(x) + g (x+ hes))2

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p
2 dx.

By Hölder’s inequality with exponents
(
m(p+2)
p(m+1) ,

m(p+2)
2m−p

)
, the properties of η and Lemma

1.2.3, we get

|III| ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p−2
2 |τs,hDv(x)|2 dx

+cε |h|2
(ˆ

Bt

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

)m(p+2)
2(m+1) dx

)m(p+2)
m+1

·
(ˆ

Bt

(g(x) + g (x+ hes))
2m(p+2)

2m−p dx

) 2m−p
m(p+2)

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) p−2
2 |τs,hDv(x)|2 dx

+cε |h|2
(ˆ

Bt̃

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

) p(m+1)
m(p+2)

·
(ˆ

Bλr

g
2m(p+2)

2m−p (x)dx
) 2m−p
m(p+2)

.(3.55)

Let us consider, now, the term IV . We have

IV = 2
ˆ

Ω
〈τs,hA (x,Dv(x)) , η(x)Dη(x)⊗ τs,hv(x)〉 dx

= 2
ˆ

Ω
〈A (x,Dv(x)) , τs,−h [η(x)Dη(x)⊗ τs,hv(x)]〉 dx,

so, by (2.6), we get

|IV | ≤ c

ˆ
Ω

(
µ2 + |Dv(x)|2

) p−1
2 |τs,−h [η(x)Dη(x)⊗ τs,hv(x)]| dx.

We can treat this term as we did after (3.7) in the proof of Theorem 3.1.1, using (3.8) with v
in place of u, thus getting

|IV | ≤ σ
ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx, (3.56)

for σ > 0 that will be chosen later.
In order to estimate the term V , arguing as we did in (3.12), we have

V =
ˆ

Ω
η2 (x)F (x)τs,−h (τs,hv(x)) dx

+
ˆ

Ω
[η (x− hes) + η(x)]F (x)τs,−hη(x)τs,hv (x− hes) dx

=: J1 + J2,

which implies

|V | ≤ |J1|+ |J2| (3.57)
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Let us consider the term J1. By virtue of the properties of η and using Hölder’s inequality
with exponents

(
2m(p+2)
2mp+p−2 ,

2m(p+2)
4m+2−p

)
, we have

|J1| ≤
ˆ
Bt

|F (x)| |τs,−h (τs,hv(x))| dx

≤
(ˆ

Bt

|F (x)|
2m(p+2)

2mp+p−2 dx

) 2mp+p−2
2m(p+2)

·
(ˆ

Bt

|τs,−h (τs,hv(x))|
2m(p+2)
4m+2−p dx

) 4m+2−p
2m(p+2)

≤ |h|
(ˆ

Bt

|F (x)|
2m(p+2)

2mp+p−2 dx

) 2mp+p−2
2m(p+2)

·
(ˆ

Bt̃

|τs,hDv(x)|
2m(p+2)
4m+2−p dx

) 4m+2−p
2m(p+2)

, (3.58)

where, in the last line, we applied Lemma 1.2.3 since, by virtue of the a priori assumption

Vp (Dv) ∈W 1,2
loc (Ω) and recalling Remark 1.4.7, we have Dv ∈ L

m(p+2)
m+1

loc (Ω), which implies

Dv ∈ L
2m(p+2)
4m+2−p
loc (Ω) since, for any m > 1 and 1 < p < 2, we have 2m(p+2)

4m+2−p <
m(p+2)
m+1 .

Let us consider the second integral in (3.58). By virtue of (1.5), and using Hölder’s inequality
with exponents

(
4m+2−p
m(p+2) ,

4m+2−p
(2−p)(m+1)

)
, we have

ˆ
Bt̃

|τs,hDv(x)|
2m(p+2)
4m+2−p dx ≤

ˆ
Bt̃

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

) 2−p
4 ·

2m(p+2)
4m+2−p

· |τs,hVp (Dv(x))|
2m(p+2)
4m+2−p dx

≤
(ˆ

Bt̃

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

)m(p+2)
2(m+1) dx

) (2−p)(m+1)
4m+2−p

·
(ˆ

Bt̃

|τs,hVp (Dv(x))|2 dx
) m(p+2)

4m+2−p

. (3.59)

Inserting (3.59) into (3.58), we get

|J1| ≤ |h|
(ˆ

Bt

|F (x)|
2m(p+2)

2mp+p−2 dx

) 2mp+p−2
2m(p+2)

·
(ˆ

Bt̃

(
µ2 + |Dv(x)|2 + |Dv (x+ hes)|2

)m(p+2)
2(m+1) dx

) (2−p)(m+1)
2m(p+2)

·
(ˆ

Bt̃

|τs,hVp (Dv(x))|2 dx
) 1

2

,

Using Lemma 1.2.3 and Young’s inequality with exponents
(

2m(p+2)
2mp+p−2 ,

2m(p+2)
(2−p)(m+1) , 2

)
, we get

|J1| ≤ cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

+σ
ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx, (3.60)

for any σ > 0.
For what concerns the term J2, by the properties of η, as in (3.18), we have
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|J2| ≤
ˆ
Bt

|F (x)| |τs,−hη(x)| |τs,hv (x− hes)| dx

≤ c |h|
t− s̃

ˆ
Bt

|F (x)| |τs,hv (x− hes)| dx.

Now, if we apply Hölder’s inequality with exponents
(
m(p+2)
mp+m−1 ,

m(p+2)
m+1

)
, we get

|J2| ≤
c |h|
t− s̃

(ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx

)mp+m−1
m(p+2)

·
(ˆ

Bt

|τs,hv (x− hes)|
m(p+2)
m+1 dx

) m+1
m(p+2)

≤ c |h|2

t− s̃

(ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx

)mp+m−1
m(p+2)

·
(ˆ

Bλr

|Dv (x)|
m(p+2)
m+1 dx

) m+1
m(p+2)

, (3.61)

where we also used Lemma 1.2.3, since Dv ∈ L
m(p+2)
m+1

loc (Ω).
By virtue of (3.60) and (3.61), (3.57) gives

|V | ≤ cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

+σ
ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx

+c |h|2

t− s̃

(ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx

)mp+m−1
m(p+2)

·
(ˆ

Bλr

|Dv (x)|
m(p+2)
m+1 dx

) m+1
m(p+2)

≤ 2σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx+ σ

ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx

+cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ cσ |h|2

(t− s̃)
m(p+2)
mp+m−1

ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx, (3.62)

where we also used Young’s inequality with exponents
(
m(p+2)
mp+m−1 ,

m(p+2)
m+1

)
.

Plugging (3.54), (3.55), (3.56) and (3.62) into (3.53), and choosing ε < ν
2 , we get

ˆ
Ω
η2(x) |τs,hDv (x)|2

(
µ2 + |Dv (x+ hes)|2 + |Dv (x)|2

) p−2
2 dx

≤ c |h|2
(ˆ

Bt̃

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

) p(m+1)
m(p+2)

·
(ˆ

Bλr

g
2m(p+2)

2m−p (x)dx
) 2m−p
m(p+2)

+2σ
ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx
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+cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ cσ |h|2

(t− s̃)
m(p+2)
mp+m−1

ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx

+2σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

which, by virtue of Lemma 1.4.3, and using Young’s inequality with exponents(
m(p+2)
p(m+1) ,

m(p+2)
2m−p

)
implies

ˆ
Ω
η2(x) |τs,hDv (x)|2

(
µ2 + |Dv (x+ hes)|2 + |Dv (x)|2

) p−2
2 dx

≤ 2σ
ˆ
Bt̃

|τs,hVp (Dv(x))|2 dx+ 3σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx+ cσ |h|2

ˆ
Bλr

g
2m(p+2)

2m−p (x)dx

+cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ cσ |h|2

(t− s̃)
m(p+2)
mp+m−1

ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx. (3.63)

Applying Lemma 1.2.3, (3.63) becomes

ˆ
Ω
η2(x) |τs,hVp (Dv(x))|2 dx

≤ 3σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx+ c · σ |h|2

ˆ
Bλr

|DVp (Dv(x))|2 dx

+ cσ |h|2

(t− s̃)2

ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx+ cσ |h|2

ˆ
Bλr

g
2m(p+2)

2m−p (x)dx

+cσ |h|2
ˆ
Bt

|F (x)|
2m(p+2)

2mp+p−2 dx+ cσ |h|2

(t− s̃)
m(p+2)
mp+m−1

ˆ
Bt

|F (x)|
m(p+2)
mp+m−1 dx. (3.64)

Let us observe that, for any m > 1 and 1 < p < 2, we have

m (p+ 2)
mp+m− 1 ≤

p+ 2
p

,

hence
max

{
2, m (p+ 2)
mp+m− 1

}
≤ max

{
2, p+ 2

p

}
= p+ 2

p
.

Hence, since t− s̃ < 1, by (3.64) we deduceˆ
Ω
η2(x) |τs,hVp (Dv(x))|2 dx

≤ 3σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx+ c · σ |h|2

ˆ
Bλr

|DVp (Dv(x))|2 dx

+ cσ |h|2

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+
ˆ
BR

|F (x)|
m(p+2)
mp+m−1 dx

]
. (3.65)

Let us notice that, since m(p+2)
mp+m−1 <

2m(p+2)
2mp+p−2 , we have L

2m(p+2)
2mp+p−2
loc (Ω) ↪→ L

m(p+2)
mp+m−1
loc (Ω), and

using Young’s inequality with exponents
(

2(mp+m−1)
2mp+p−2 , 2(mp+m−1)

2m−p

)
, we have
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ˆ
BR

|F (x)|
m(p+2)
mp+m−1 dx ≤ c |BR|+ c

ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx. (3.66)

So, plugging (3.66) into (3.65), we get

ˆ
Ω
η2(x) |τs,hVp (Dv(x))|2 dx

≤ 3σ |h|2
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx+ c · σ |h|2

ˆ
Bλr

|DVp (Dv(x))|2 dx

+ cσ |h|2

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|
]
. (3.67)

Since, by our a priori assumption, Vp (Dv) ∈W 1,2
loc (Ω), and (3.67) holds for any s = 1, . . . , n,

Lemma 1.2.4 implies

ˆ
Ω
η2(x) |DVp (Dv(x))|2 dx

≤ 3σ
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx+ c · σ

ˆ
Bλr

|DVp (Dv(x))|2 dx

+ cσ

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|
]
,

and by the properties of η, we get

ˆ
Bs̃

|DVp (Dv(x))|2 dx

≤ c · σ
ˆ
Bλr

|DVp (Dv(x))|2 dx

+ cσ

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|
]

+3σ
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx. (3.68)

Let us remind that, since we choosed B4R b Ω, R2 ≤ r < s̃ < t < t̃ < λr < R, with 1 < λ < 2
and R < 1

4 , we also have λr < λs̃ < λt < λ2r < 4r < 4R < 1.
Choosing a cut-off function φ ∈ C∞0 (Bλt) such that 0 ≤ φ ≤ 1, φ ≡ 1 on Bλs̃ and
|Dφ| ≤ c

λ(t−s̃) , we have
ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx ≤ |BR|+

ˆ
Bλt

φ
m
m+1 (p+2) |Dv(x)|

m
m+1 (p+2) dx,

where we also used that µ ∈ [0, 1] and λr < R. Therefore, applying (1.1), we get
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ˆ
Bλr

(
µ2 + |Dv(x)|2

)m(p+2)
2(m+1) dx

≤ (p+ 2)2
(ˆ

Bλt

φ
m
m+1 (p+2) |v(x)|2m dx

) 1
m+1

·

(ˆ
Bλt

φ
m
m+1 (p+2) |Dφ|2

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+n
(ˆ

Bλt

φ
m
m+1 (p+2)

(
µ2 + |Dv(x)|2

) p−2
2
∣∣∣D2v(x)

∣∣∣2 dx) m
m+1

+ |BR|

≤ c (n, p)
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·

 1
λ2 (t− s̃)2

(ˆ
B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
(ˆ

Bλ2r

|DVp (Dv(x))|2 dx
) m
m+1

+ |BR| , (3.69)

where we used the properties of φ, (1.6), and the fact that λt < λ2r < 4R.
The elementary inequality

b
m
m+1 ≤ b+ 1, for any m > 1 and b ≥ 0,

implies (ˆ
Bλ2r

|DVp (Dv(x))|2 dx
) m
m+1

≤
ˆ
Bλ2r

|DVp (Dv(x))|2 dx+ 1. (3.70)

Now, if we recall that 1 < λ < 2, t− s̃ < λ (t− s̃) < 1 and p+2
p ≥ 2, thanks to (3.69) and

(3.70), (3.68) implies

ˆ
Bs̃

|DVp (Dv(x))|2 dx

≤ c · σ
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
ˆ
Bλ2r

|DVp (Dv(x))|2 dx

+λ2 + 1
λ2 · cσ

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]

≤ c · σ
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
ˆ
Bλ2r

|DVp (Dv(x))|2 dx

+ cσ

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx
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+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
,

which, if we choose σ > 0 such that

c · σ
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

<
1
2 ,

becomes

ˆ
Bs̃

|DVp (Dv(x))|2 dx ≤ 1
2

ˆ
Bλ2r

|DVp (Dv(x))|2 dx

+ c

(t− s̃)
p+2
p

[ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
, (3.71)

Since (3.71) holds for any R
2 ≤ r < s̃ < t < t̃ < λr < R, with 1 < λ < 2, with a constant c

depending on n,N, p, L, ν, `, but is independent of the radii, passing to the limit as s̃→ r and
t→ λr, we get

ˆ
Br

|DVp (Dv(x))|2 dx ≤ 1
2

ˆ
Bλ2r

|DVp (Dv(x))|2 dx

+ c

r
p+2
p (λ− 1)

p+2
p

[ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
,

and since 1 < λ < 2, we have

ˆ
Br

|DVp (Dv(x))|2 dx ≤ 1
2

ˆ
Bλ2r

|DVp (Dv(x))|2 dx

+ c

r
p+2
p (λ2 − 1)

p+2
p

[ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
.(3.72)

Now, if we set
h(r) =

ˆ
Br

|DVp (Dv(x))|2 dx,
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A =
[ˆ

BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
,

and
B = 0

since (3.72) holds for any λ ∈ (1, 2), we can apply Lemma 1.1.1 with

θ = 1
2 and γ = p+ 2

p
,

thus getting
ˆ
BR

2

|DVp (Dv(x))|2 dx

≤ c

R
p+2
p

[ˆ
BR

(
µ2 + |Dv (x)|2

) p
2 dx

+
(ˆ

B4R

|v(x)|2m dx
) 1
m+1

·
(ˆ

B4R

(
µ2 + |Dv(x)|2

) p
2 dx

) m
m+1

+
ˆ
BR

g
2m(p+2)

2m−p (x)dx+
ˆ
BR

|F (x)|
2m(p+2)

2mp+p−2 dx+ |BR|+ 1
]
, (3.73)

which is the desired a priori estimate.

Step 2: the approximation.
As we did in the second step of the proof of Theorem 3.1.1, let us consider an open set
Ω′ b Ω and, for any ε ∈ (0, d (Ω′, ∂Ω)), a standard family of mollifiers { φε }ε.
Let us consider a ball BR̃ = BR̃ (x0) b Ω′ with R̃ < 1 and, for each ε, the functional

Fm,ε
(
w,BR̃

)
=
ˆ
BR̃

[
fε (x,Dw(x))− Fε(x) · w(x) + (|w(x)| − a)2m

+

]
dx, (3.74)

where fε is defined as in (3.28) and Fε is defined as in (3.29).
With this choices, we have

ˆ
BR̃

fε (x, ξ) dx→
ˆ
BR̃

f (x, ξ) dx, as ε→ 0 (3.75)

for any ξ ∈ Rn×N .

Moreover, since F ∈ L
2m(p+2)

2mp+p−2
loc (Ω), then

Fε → F strongly in L
2m(p+2)

2mp+p−2
(
BR̃
)
, as ε→ 0. (3.76)

Let us observe that

2m (p+ 2)
2mp+ p− 2 ≥

2m
2m− 1

if and only if
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(2m− 1) (p+ 2) ≥ 2mp+ p− 2,

i.e.

2m ≥ p,

which is true for any m > 1, as long as 1 < p < 2.
For this reason, F ∈ L

2m
2m−1
loc

(
BR̃
)
, and we also have

Fε → F strongly in L
2m

2m−1
(
BR̃
)
, as ε→ 0. (3.77)

Again, as in the proof of Theorem 3.1.1, thanks to (2.2)–(2.4) and (2.12), for any
ε ∈ (0, d (Ω′, ∂Ω)), we have the validity of (3.33)–(3.36), where gε is defined in (3.37).

In this case, since g ∈ L
2m(p+2)
2mp−p

loc (Ω), we have

gε → g strongly in L
2m(p+2)
2mp−p

(
BR̃
)
as ε→ 0. (3.78)

Let vε ∈
(
v +W 1,p

0
(
BR̃
))
∩ L2m (BR̃) be the solution to

min
{
Fm,ε

(
w,BR̃

)
: w ∈

(
v +W 1,p

0
(
BR̃
))
∩ L2m (BR̃) } ,

where v ∈W 1,p
loc (Ω) ∩ L2m

loc (Ω) is a local minimizer of (3.49).
By virtue of the minimality of vε, we have

ˆ
BR̃

[
fε (x,Dvε(x)) + (|vε(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[
fε (x,Dv(x)) + Fε(x) · (vε(x)− v(x)) + (|v(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[
fε (x,Dv(x)) + |Fε(x)| · |vε(x)− v(x)|+ (|v(x)| − a)2m

+

]
dx. (3.79)

Now, using Hölder’s and Young’s inequalities with exponents
(
2m, 2m

2m−1

)
, we get

ˆ
BR̃

|Fε(x)| · |vε(x)− v(x)| dx

≤
ˆ
BR̃

|Fε(x)| |vε(x)| dx+
ˆ
BR̃

|Fε(x)| |v(x)| dx

=
ˆ
BR̃

|Fε(x)| (|vε(x)| − a) dx+
ˆ
BR̃

a |Fε(x)| dx+
ˆ
BR̃

|Fε(x)| |v(x)| dx

=
ˆ
BR̃∩{ |vε|≥a }

|Fε(x)| (|vε(x)| − a) dx+
ˆ
BR̃∩{ |vε|<a }

|Fε(x)| (|vε(x)| − a) dx

+
ˆ
BR̃

|Fε(x)| (|v(x)|+ a) dx

≤
ˆ
BR̃∩{ |vε|≥a }

|Fε(x)| (|vε(x)| − a)+ dx+
ˆ
BR̃

|Fε(x)| (|v(x)|+ a) dx

≤
ˆ
BR̃

|Fε(x)| (|vε(x)| − a)+ dx+
ˆ
BR̃

|Fε(x)| (|v(x)|+ a) dx

≤
(ˆ

BR̃

|Fε(x)|
2m

2m−1 dx

) 2m−1
2m

·
(ˆ

BR̃

(|vε(x)| − a)2m
+ dx

) 1
2m
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+
(ˆ

BR̃

|Fε(x)|
2m

2m−1 dx

) 2m−1
2m

·
(ˆ

BR̃

(|v(x)|+ a)2m dx

) 1
2m

≤ cσ

ˆ
BR̃

|Fε(x)|
2m

2m−1 dx+ σ

ˆ
BR̃

(|vε(x)| − a)2m
+ dx

+c
ˆ
BR̃

(|v(x)|+ a)2m dx, (3.80)

for σ > 0 that will be chosen later.
Plugging (3.80) into (3.79), and choosing a sufficiently small σ, we get

ˆ
BR̃

[
fε (x,Dvε(x)) + c (|vε(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[
fε (x,Dv(x)) + c (|v(x)| − a)2m

+

]
dx

+c
ˆ
BR̃

|Fε(x)|
2m

2m−1 dx+ c

ˆ
BR̃

(|v(x)|+ a)2m dx. (3.81)

Using the right-hand side inequality in (3.33) in (3.81), we have

ˆ
BR̃

[
fε (x,Dvε(x)) + c (|vε(x)| − a)2m

+

]
dx

≤ `2

ˆ
BR̃

[(
µ2 + |Dv(x)|2

) p
2 + c (|v(x)| − a)2m

+

]
dx

+c
ˆ
BR̃

|Fε(x)|
2m

2m−1 dx+ c

ˆ
BR̃

(|v(x)|+ a)2m dx. (3.82)

Now, by the left-hand side inequality in (3.33), we get

`1

ˆ
BR̃

(
µ2 + |Dvε(x)|2

) p
2 dx ≤

ˆ
BR̃

fε (x,Dvε(x)) dx

≤
ˆ
BR̃

[
fε (x,Dvε(x)) + (|vε(x)| − a)2m

+

]
dx

≤ `2

ˆ
BR̃

[(
µ2 + |Dv(x)|2

) p
2 + (|v(x)| − a)2m

+

]
dx

+c
ˆ
BR̃

|Fε(x)|
2m

2m−1 dx

+c
ˆ
BR̃

(|v(x)|+ a)2m dx, (3.83)

and this, by (3.77), means that { vε }ε is bounded in W 1,p (BR̃), independently of ε, so there
exists a function ṽ ∈W 1,p (BR̃) such that, up to a subsequence, we have

vε ⇀ ṽ weakly in W 1,p (BR̃) ,
vε → ṽ strongly in Lp

(
BR̃
)
,

and
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vε → ṽ almost everywhere in BR̃,

as ε→ 0.
Moreover, we have

ˆ
BR̃

|vε(x)|2m dx ≤
ˆ
BR̃∩{ |vε|<a }

|vε(x)|2m dx+
ˆ
BR̃∩{ |vε|≥a }

|vε(x)|2m dx

≤
ˆ
BR̃∩{ |vε|<a }

|vε(x)|2m dx+
ˆ
BR̃∩{ |vε|≥a }

(||vε(x)| − a|+ a)2m dx

≤
ˆ
BR̃∩{ |vε|<a }

a2mdx+ c

ˆ
BR̃∩{ |vε|≥a }

(|vε(x)| − a)2m dx

+c
ˆ
BR̃∩{ |vε|≥a }

a2mdx

≤ c

ˆ
BR̃

a2mdx+ c

ˆ
BR̃

(|vε(x)| − a)2m
+ dx, (3.84)

and since (3.82) implies

ˆ
BR̃

(|vε(x)| − a)2m
+ dx

≤ `2

ˆ
BR̃

[(
µ2 + |Dv(x)|2

) p
2 + (|v(x)| − a)2m

+

]
dx

+c
ˆ
BR̃

|Fε(x)|
2m

2m−1 dx+ c

ˆ
BR̃

(|v(x)|+ a)2m dx, (3.85)

by (3.77), and plugging (3.85) into (3.84), using dominate convergence theorem, we have

vε → ṽ strongly in L2m (BR̃) , as ε→ 0. (3.86)

Since vε is a local minimizer of the functional (3.74) and gε, fε ∈ C∞
(
BR̃
)
, we have

Vp (Dvε) ∈W 1,2
loc
(
BR̃
)
,

and we can apply estimate (3.73), thus getting

ˆ
B r

2

|DVp (Dvε(x))|2 dx ≤ c

r
p+2
p

[ˆ
Br

(
µ2 + |Dvε (x)|2

) p
2 dx

+
(ˆ

B4r

|vε(x)|2m dx
) 1
m+1

·
(ˆ

B4r

(
µ2 + |Dvε(x)|2

) p
2 dx

) m
m+1

+
ˆ
Br

g
2m(p+2)

2m−p
ε (x)dx+

ˆ
Br

|Fε(x)|
2m(p+2)

2mp+p−2 dx+ |Br|+ 1
]
,(3.87)

for any ball B4r b BR̃.
Applying Lemma 1.4.5, by (1.8) and (3.87), recalling (3.76), (3.78), (3.83), (3.84) and (3.85),
and by a covering argument, we infer that vε is bounded in W 2,p (B4r), which implies

vε → ṽ strongly in W 1,p (B4r) (3.88)

and
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vε → ṽ almost everywhere in B4r,

up to a subsequence, as ε→ 0.
By virtue of the continuity of the function ξ 7→ DVp (ξ), we also have

DVp (Dvε)→ DVp (Dṽ) almost everywhere in B4r, as ε→ 0.

For what we discussed above, and recalling (3.76), (3.78), (3.86) and (3.88), thanks to the
dominate convergence theorem, we can pass to the limit in (3.87) as ε→ 0, thus getting

ˆ
B r

2

|DVp (Dṽ(x))|2 dx

≤ c

r
p+2
p

[ˆ
Br

(
µ2 + |Dṽ (x)|2

) p
2 dx

+
(ˆ

B4r

|ṽ(x)|2m dx
) 1
m+1

·
(ˆ

B4r

(
µ2 + |Dṽ(x)|2

) p
2 dx

) m
m+1

+
ˆ
Br

g
2m(p+2)

2m−p (x)dx+
ˆ
Br

|F (x)|
2m(p+2)

2mp+p−2 dx+ |Br|+ 1
]
. (3.89)

Our next aim is to prove that ṽ = v a.e. in BR̃.
First, let us observe that, using Hölder’s inequality with exponents

(
2m, 2m

2m−1

)
, we get∣∣∣∣∣

ˆ
BR̃

[Fε(x) · v(x)− F (x) · v(x)] dx
∣∣∣∣∣

≤
ˆ
BR̃

|Fε(x)− F (x)| · |v(x)| dx

≤
(ˆ

BR̃

|Fε(x)− F (x)|
2m

2m−1 dx

) 2m−1
2m

·
(ˆ

BR̃

|v(x)|2m dx
) 1

2m

,

that, recalling (3.77), implies

lim
ε→0

ˆ
BR̃

Fε(x) · v(x)dx =
ˆ
BR̃

F (x) · v(x)dx,

and by (3.75), we get

lim
ε→0

ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx =
ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx. (3.90)

The minimality of v, Fatou’s Lemma, the lower semicontinuity of Fm,ε and the minimality of
vε imply

ˆ
BR̃

[
f (x,Dv(x))− F (x) · v(x) + (|v(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[
f (x,Dṽ(x))− F (x) · ṽ(x) + (|ṽ(x)| − a)2m

+

]
dx

≤ lim inf
ε→0

ˆ
BR̃

[
fε (x,Dṽ(x))− Fε(x) · ṽ(x) + (|ṽ(x)| − a)2m

+

]
dx
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≤ lim inf
ε→0

ˆ
BR̃

[
fε (x,Dvε(x))− Fε(x) · vε(x) + (|vε(x)| − a)2m

+

]
dx

≤ lim inf
ε→0

ˆ
BR̃

[
fε (x,Dv(x))− Fε(x) · v(x) + (|v(x)| − a)2m

+

]
dx

=
ˆ
BR̃

[
f (x,Dv(x))− F (x) · v(x) + (|v(x)| − a)2m

+

]
dx,

where the last inequality is a consequence of (3.75) and (3.90).
Therefore Fm

(
Dṽ,BR̃

)
= Fm

(
Dv,BR̃

)
and the strict convexity of the functional yields that

ṽ = v a.e. in BR̃. So (3.89) and a covering argument yield (3.50).

We conclude this section with some consequences of Theorem 3.2.2, which follow by Lemma
1.4.5 and Remark 1.4.7.

Corollary 3.2.3. Let Ω ⊂ Rn be a bounded open set, m > 1, a > 0 and 1 < p < 2.
Let v ∈W 1,p

loc

(
Ω,RN

)
∩ L2m

loc

(
Ω,RN

)
be a local minimizer of the functional (3.49), under the

assumptions (2.2)–(2.4) and (2.12), with

F ∈ L
2m(p+2)

2mp+p−2
loc (Ω) and g ∈ L

2m(p+2)
2m−p

loc (Ω) .

Then v ∈W 2,p
loc (Ω) and Dv ∈ L

m(p+2)
m+1

loc (Ω).

3.2.2 Proof of Theorem 3.2.1

The aim of this section is to prove Theorem 3.2.1.
As we will see below, the proof is achieved by using an approximation argument which is
based on the possibility to apply Theorem 3.2.2 and pass to the limit as m→∞.

Proof of Theorem 3.2.1. Arguing as in the second step of the proof of Theorem 3.2.2, let us
consider an open set Ω′ b Ω and, for any ε ∈ (0, d (Ω′, ∂Ω)), a standard family of mollifiers
{ φε }ε.
Let u ∈W 1,p

loc (Ω) ∩ L∞loc (Ω) be a local minimizer of the functional (3.1), and let us consider a
ball BR̃ = BR̃ (x0) b Ω′, with R̃ < 1.
For each ε and any m > 1, let us consider the functional Fm,ε, defined by (3.74), where fε
and Fε are defined by (3.28) and (3.29) respectively, and we fix

a = ‖u‖L∞(BR̃) . (3.91)

With these choices, we have (3.75) again, and since F ∈ L
p+2
p

loc (Ω), we have

Fε → F strongly in L
p+2
p
(
BR̃
)
, as ε→ 0. (3.92)

Again, thanks to (2.2)–(2.4) and (2.12), for any ε, we have (3.33)–(3.36), where gε is defined
like in (3.37).
In this case, since g ∈ Lp+2

loc (Ω), we have

gε → g strongly in Lp+2 (BR̃) , as ε→ 0. (3.93)

Let us observe that Fε ∈ L
2m(p+2)

2mp+p−2
(
BR̃
)
for any m > 1, and since

2m (p+ 2)
2mp+ p− 2 ↘

p+ 2
p

, as m→∞,
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we have

lim
m→∞

(ˆ
BR̃

|Fε(x)|
2m(p+2)

2mp+p−2 dx

) 2mp+p−2
2m(p+2)

=
(ˆ

BR̃

|Fε(x)|
p+2
p dx

) p
p+2

, (3.94)

for any ε.
Similarly, then gε ∈ L

2m(p+2)
2m−p

(
BR̃
)
for any m > 1 and for any ε, and we have

lim
m→∞

(ˆ
BR̃

|gε(x)|
2m(p+2)

2m−p dx

) 2m−p
2m(p+2)

=
(ˆ

BR̃

|gε(x)|p+2 dx

) 1
p+2

, (3.95)

for each ε.
Now, for each ε, and for each m > 1, let um,ε ∈

(
u+W 1,p

0
(
BR̃
))
∩ L2m (BR̃) be the solution

to

min
{
Fm,ε

(
w,BR̃

)
: w ∈

(
u+W 1,p

0
(
BR̃
))
∩ L2m (BR̃) } .

By virtue of the minimality of um,ε, recalling (3.91), we have

ˆ
BR̃

[
fε (x,Dum,ε(x)) + (|um,ε(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[
fε (x,Du(x)) + Fε(x) · (um,ε(x)− u(x)) + (|u(x)| − a)2m

+

]
dx

≤
ˆ
BR̃

[fε (x,Du(x)) + |Fε(x)| · |um,ε(x)− u(x)|] dx. (3.96)

Arguing as we did in (3.80) and exploiting (3.91), we get

ˆ
BR̃

|Fε(x)| · |um,ε(x)− u(x)| dx

≤
ˆ
BR̃

|Fε(x)| (|um,ε(x)| − a)+ dx+ 2a
ˆ
BR̃

|Fε(x)| dx

≤
(ˆ

BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p(2m−1)
2m(p+2)

·
(ˆ

BR̃

(|um,ε(x)| − a)
2m(p+2)

4m+p
+ dx

) 4m+p
2m(p+2)

+2a
ˆ
BR̃

|Fε(x)| dx, (3.97)

where, in the last line, we used Hölder’s inequality with exponents
(

2m(p+2)
p(2m−1) ,

2m(p+2)
4m+p

)
. Let us

notice that all the integrals in the last line of (3.97) are finite, since Fε ∈ C∞
(
BR̃
)
and

2m(p+2)
4m+p < 2m for any m > 1 as long as 1 < p < 2.

So, since um,ε ∈ L2m (BR̃) ↪→ L
2m(p+2)

4m+p
(
BR̃
)
, using Young’s inequality with exponents(

2m, 2m
2m−1

)
, we have

ˆ
BR̃

|Fε(x)| · |um,ε(x)− u(x)| dx

≤ c

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p(2m−1)
2m(p+2)

·
(ˆ

BR̃

(|um,ε(x)| − a)2m
+ dx

) 1
2m

+2a
ˆ
BR̃

|Fε(x)| dx
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≤ cσ

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p
p+2

+ σ

ˆ
BR̃

(|um,ε(x)| − a)2m
+ dx

+2a
ˆ
BR̃

|Fε(x)| dx, (3.98)

for any σ > 0.
Plugging (3.98) into (3.96), choosing a sufficiently small value of σ and recalling (3.33), we get

ˆ
BR̃

[(
µ2 + |Dum,ε(x)|2

) p
2 + (|um,ε(x)| − a)2m

+

]
dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ c

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p
p+2

. (3.99)

Now let us notice that, since

2m (p+ 2)
p (2m− 1) ≥

p+ 2
p

for any m > 1, and

2m (p+ 2)
p (2m− 1) ↘

p+ 2
p

, as m→∞,

we have

lim
m→∞

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p(2m−1)
2m(p+2)

=
(ˆ

BR̃

|Fε(x)|
p+2
p dx

) p
p+2

,

and so

lim
m→∞

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p
p+2

= lim
m→∞

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p(2m−1)
2m(p+2) ·

2m
(2m−1)

=
(ˆ

BR̃

|Fε(x)|
p+2
p dx

) p
p+2

, (3.100)

for any ε.
Hence, for any ε, the second integral in the right-hand side of (3.99) can be bounded
independently of m.
This implies that, for each ε, { um,ε }m is bounded in W 1,p (BR̃), and so there exists a family
of functions { uε }ε ⊂W 1,p (BR̃) such that

um,ε ⇀ uε weakly in W 1,p (BR̃) ,
and so

um,ε → uε strongly in Lp
(
BR̃
)
,

and

um,ε → uε almost everywhere in BR̃,
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as m→∞, up to a subsequence.
In particular, by (3.99), (3.92) and (3.100), the set of functions { uε }ε is bounded in
W 1,p (BR̃), and so there exists a function v ∈W 1,p (BR̃) such that

uε ⇀ v weakly in W 1,p (BR̃) , as ε→ 0.

So we have

uε → v strongly in Lp
(
BR̃
)

and

uε → v almost everywhere in BR̃,

up to a subsequence, as ε→ 0.
On the other hand, (3.99) implies

ˆ
BR̃

(|um,ε(x)| − a)2m
+ dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ c

(ˆ
BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p
p+2

, (3.101)

and this bound is independent of m by virtue of (3.100).
One can easily check that, for any m > 1, we have

ˆ
BR̃

|um,ε(x)|2m dx ≤
ˆ
BR̃

(|um,ε(x)| − a)2m
+ dx+ c

ˆ
BR̃

a2mdx,

and so, by virtue of (3.101), for any m > 1, we get

ˆ
BR̃

|um,ε(x)|2m dx ≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx

+c
(ˆ

BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p
p+2

+ c

ˆ
BR̃

a2mdx

and

(ˆ
BR̃

|um,ε(x)|2m dx
) 1

2m

= c

[ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx

] 1
2m

+ c

[ˆ
BR̃

a2mdx

] 1
2m

+c
(ˆ

BR̃

|Fε(x)|
2m(p+2)
p(2m−1) dx

) p(2m−1)
2m(p+2) ·

1
2m−1

. (3.102)

Now, if we pass to the lim sup as m→∞ at both sides of (3.102), recalling (3.91) and
(3.100), we get

lim sup
m→∞

(ˆ
BR̃

|um,ε(x)|2m dx
) 1

2m

≤ c ‖u‖L∞(BR̃) ,
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and similarly, for any ball B4r b BR̃, we have

lim sup
m→∞

(ˆ
B4r

|um,ε(x)|2m dx
) 1

2m

≤ c ‖u‖L∞(B4r) ,

which implies

lim sup
m→∞

(ˆ
B4r

|um,ε(x)|2m dx
) 1
m+1

≤ c ‖u‖2L∞(B4r) . (3.103)

Since, for any m > 1 and for any ε, um,ε ∈
(
u+W 1,p

0
(
BR̃
))
∩ L2m (BR̃) is a minimizer of a

functional of the form (3.49), which satisfies (3.33)–(3.36), gε ∈ L
2m(p+2)

2m−p
(
BR̃
)
and

fε ∈ L
2m(p+2)

2mp+p−2
(
BR̃
)
, we can apply Theorem 3.2.2, and by (3.50), we get

ˆ
B r

2

|DVp (Dum,ε(x))|2 dx

≤ c

r
p+2
p

[ˆ
Br

(
µ2 + |Dum,ε (x)|2

) p
2 dx

+
(ˆ

B4r

|um,ε(x)|2m dx
) 1
m+1

·
(ˆ

B4r

(
µ2 + |Dum,ε(x)|2

) p
2 dx

) m
m+1

+
ˆ
Br

g
2m(p+2)

2m−p
ε (x)dx+

ˆ
Br

|Fε(x)|
2m(p+2)

2mp+p−2 dx+ |Br|+ 1
]
, (3.104)

for any ball B4r b BR̃.
Moreover, we can use Lemma 1.4.5 and (1.8), thus getting

ˆ
B r

2

∣∣∣D2um,ε(x)
∣∣∣p dx

≤ c

r
p+2
p

[ˆ
Br

(
µ2 + |Dum,ε (x)|2

) p
2 dx

+
(ˆ

B4r

|um,ε(x)|2m dx
) 1
m+1

·
(ˆ

B4r

(
µ2 + |Dum,ε(x)|2

) p
2 dx

) m
m+1

+
ˆ
Br

g
2m(p+2)

2m−p
ε (x)dx+

ˆ
Br

|Fε(x)|
2m(p+2)

2mp+p−2 dx+ |Br|+ 1
]
. (3.105)

By virtue of (3.94), (3.95), (3.99), (3.100) and (3.103), all the integrals in the right-hand side
of (3.105) are bounded independently of m: for this reason, for each ε, the set of functions
{ um,ε }m is bounded in W 2,p

(
B r

2

)
, and since the ball B4r is arbitrary, a covering argument

implies

um,ε → uε strongly in W 1,p (B4r) , (3.106)

which gives

Dum,ε → Duε almost everywhere in B4r,

up to a subsequence, as m→∞.
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So, passing to the limit as m→∞, recalling (3.99) and (3.100), we also get
ˆ
B2r

(
µ2 + |Duε(x)|2

) p
2 dx

≤ `2

ˆ
BR̃

(
µ2 + |Du(x)|2

) p
2 dx+ c

(ˆ
BR̃

|Fε(x)|
p+2
p dx

) p
p+2

. (3.107)

Therefore, since, by virtue of the continuity of ξ 7→ DVp(ξ), we also have

DVp (Dum,ε)→ DVp (Duε) almost everywhere in B4r, as m→∞,

and we can apply Fatou’s Lemma passing to the lim sup as m→∞ in (3.104), using (3.94),
(3.95), (3.103) and (3.106), we get

ˆ
B r

2

|DVp (Duε(x))|2 dx

≤
c ‖u‖L∞(B4r)

r
p+2
p

[ˆ
B4r

(
µ2 + |Duε (x)|2

) p
2 dx

+
ˆ
Br

gp+2
ε (x)dx+

ˆ
Br

|Fε(x)|
p+2
p dx+ |Br|+ 1

]
, (3.108)

where we also used the fact that r < R̃ < 1.
Now, since, by virtue of (3.92), (3.93), and (3.107), all the integrals in the right-hand side of
(3.108) can be bounded independently of ε, arguing like in the proof of Lemma 1.4.5, it is
possible to prove that { uε }ε is bounded in W 2,p

(
B r

2

)
, and since r is arbitrary, a covering

argument implies

uε → v strongly in W 1,p (B4r) ,

and

Duε → Dv almost everywhere in B4r,

as ε→ 0.
Since, by virtue of the continuity of ξ 7→ DVp(ξ), we also have

DVp (Duε)→ DVp (Dv) almost everywhere in B4r, as ε→ 0,

using Fatou’s Lemma in (3.108), we get

ˆ
B r

2

|DVp (Dv(x))|2 dx

≤
c ‖u‖L∞(B4r)

r
p+2
p

[ˆ
B4r

(
µ2 + |Dv (x)|2

) p
2 dx

+
ˆ
Br

gp+2(x)dx+
ˆ
Br

|F (x)|
p+2
p dx+ |Br|+ 1

]
. (3.109)

The last step to get the conclusion consists in proving that u = v a.e. on BR̃.
Since we have
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∣∣∣∣∣
ˆ
BR̃

[Fε(x) · u(x)− F (x)] · u(x)dx
∣∣∣∣∣

≤
ˆ
BR̃

|Fε(x)− F (x)| · |u(x)| dx

≤ ‖u‖L∞(BR̃)

ˆ
BR̃

|Fε(x)− F (x)| dx,

by virtue of (3.92), we have

lim
ε→0

ˆ
BR̃

Fε(x) · u(x)dx =
ˆ
BR̃

F (x) · u(x)dx,

and then, by (3.75), we get

lim
ε→0

ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx =
ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx. (3.110)

Using the minimality of u, the lower semicontinuity of the functional F , the minimality of
um,ε for Fm,ε and the lower semicontinuity of this functional and recalling (3.91), we getˆ

BR̃

[f (x,Du(x))− F (x) · u(x)] dx

≤
ˆ
BR̃

[f (x,Dv(x))− F (x) · v(x)] dx

≤ lim inf
ε→0

ˆ
BR̃

[fε (x,Duε(x))− Fε(x) · uε(x)] dx

≤ lim inf
ε→0

lim inf
m→∞

ˆ
BR̃

[fε (x,Dum,ε(x))− Fε(x) · um,ε(x)] dx

≤ lim inf
ε→0

lim inf
m→∞

ˆ
BR̃

[
fε (x,Dum,ε(x))− Fε(x) · um,ε(x) + (|um,ε(x)| − a)2m

+

]
dx

≤ lim inf
ε→0

ˆ
BR̃

[fε (x,Du(x))− Fε(x) · u(x)] dx

=
ˆ
BR̃

[f (x,Du(x))− F (x) · u(x)] dx, (3.111)

where, for the last equality, we used (3.110). Therefore, all the inequalities in (3.111) hold as
equalities, and we get

F
(
u,BR̃

)
= F

(
v,BR̃

)
.

So, by virtue of the strict convexity of F with respect to the gradient variable, this implies
u = v a.e. on BR̃. By virtue of (3.109) and a standard covering argument, we get (3.48).

We conclude this section with some consequences of Theorem 3.2.1, that can be proved
applying Lemma 1.4.5 and estimate (1.2) rispectively.

Corollary 3.2.4. Let Ω ⊂ Rn be a bounded open set and 1 < p < 2.
Let u ∈W 1,p

loc

(
Ω,RN

)
∩ L∞loc

(
Ω,RN

)
be a local minimizer of the functional (3.1), under the

assumptions (2.2)–(2.4) and (2.12), with

F ∈ L
p+2
p

loc (Ω) and g ∈ Lp+2
loc (Ω) .

Then u ∈W 2,p
loc (Ω) and Du ∈ Lp+2

loc (Ω).
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Chapter 4

Obstacle problems

This chapter is devoted to the descriptions of some regularity results for solutions to a class
of obstacle problems, that is variational problems whose minimizers are forced to stay inside
an admissible class of functions whose value have to stay above a fixed map, called obstacle.
Of course, in this framework, the local minimizers are scalar-valued functions.
Studying this kind of problems means to figure out how the regularity of the obstale
influences the regularity of the solutions.
After giving some preliminary results about regularity properties of solutions to obstacle
problems in Section 4.1, in Section 4.2, a first obstacle problem is discussed, that is the only
one in this thesis where the integrand of the functional satisfies super-quadratic growth
conditions, instead of sub-quadratic ones.
In this kind of problems, the obstacle is assumed to be locally in L∞. This property transfers
to the solutions of the problem and allows to assume weaker Sobolev regularity on the
coefficients, if compared with the required regularity in case the obstacle is not assumed to be
bounded. As far as we know, this result is new both for the super-quadratic and
sub-quadratic growth case. This is the reason why we started from the case p ≥ 2 and then
we moved to the case 1 < p < 2.
As in the case of the unconstrained problems that have been faced in Chapter 2 and Chapter
3, a key point, here, is the dependence of the energy density of the functional on the
x-variable.
For what concerns the case of Sobolev coefficients under sub-quadratic growth conditions, we
describe a first higher differentiability result in Section 4.3, where the coefficients are assumed
to belong to the critical Sobolev space W 1,n.
In Section 4.4, assuming sub-quadratic growth conditions again, we consider the case of
Besov-Lipschitz coefficient, providing extra fractional differentiability results for the gradient
the solutions.
Finally, in Section 4.5, assuming that the obstacle is locally bounded and considering Sobolev
coefficients again, we discuss a higher differentiability result that, in some sense, extends to
the sub-quadratic case what is proved in Section 4.2.
We are interested in the regularity properties of solutions to problems of the form

min
{ ˆ

Ω
f (x,Dw(x)) dx : w ∈ Kψ (Ω)

}
, (4.1)

where Ω ⊂ Rn is a bounded open set, n > 2, f : Ω× Rn → R is a Carathéodory map, such
that ξ 7→ f(x, ξ) is of class C1 (Rn) for a.e. x ∈ Ω, ψ : Ω 7→ [−∞,+∞) belonging to the
Sobolev class W 1,p

loc (Ω) is the obstacle, and

Kψ (Ω) =
{
w ∈ u0 +W 1,p

0 (Ω,R) : w ≥ ψ a.e. in Ω
}

is the class of the admissible functions, with u0 ∈W 1,p (Ω) a fixed boundary datum.
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It is well known that u ∈W 1,p
loc (Ω) is a solution to the obstacle problem (4.1) in Kψ (Ω) if

and only if u ∈ Kψ (Ω) and u is a solution to the variational inequality
ˆ

Ω
〈A (x,Du(x)) , D (ϕ(x)− u(x))〉 dx ≥ 0 ∀ϕ ∈ Kψ (Ω) , (4.2)

where the operator A : Ω× Rn → Rn is defined, similarly to how we did in (2.5), as

Ai(x, ξ) = Dξif(x, ξ) ∀i = 1, . . . , n. (4.3)

We assume that A is a p-harmonic type operator, i.e. it satisfies the following p-ellipticity
and p-growth conditions with respect to the ξ-variable. There exist positive constants `, ν, L
and an exponent 1 < p < +∞ and a parameter 0 ≤ µ ≤ 1 such that

|A(x, ξ)| ≤ `
(
µ2 + |ξ|2

) p−1
2 , (4.4)

〈A(x, ξ)−A(x, η), ξ − η〉 ≥ ν |ξ − η|2
(
µ2 + |ξ|2 + |η|2

) p−2
2 , (4.5)

|A(x, ξ)−A(x, η)| ≤ L |ξ − η|
(
µ2 + |ξ|2 + |η|2

) p−2
2 , (4.6)

for all ξ, η ∈ Rn and for almost every x ∈ Ω.
Let us notice that, if the map ξ 7→ f(x, ξ) is of class C2 (Rn) for a.e. x ∈ Ω, i.e. the map
ξ 7→ A(x, ξ) is of class C1 (Rn), conditions (4.5) and (4.6), can be replaced, respectively, by

〈DξA(x, ξ)η, η〉 ≥ ν̃
(
µ2 + |ξ|2

) p−2
2 |η|2 ,

|DξA(x, ξ)| ≤ L̃
(
µ2 + |ξ|2

) p−2
2 , (4.7)

for any ξ, η ∈ Rn and for almost every x ∈ Ω.

For what concerns the map x 7→ Dξf(x, ξ), in Section 4.2, Section 4.3 and Section 4.5, we
shall assume that, for any ξ ∈ Rn, it belongs to a Sobolev space W 1,q

loc (Ω), and the results we
present also depend on the value of the exponent q.
Let us recall that this condition is equivalent to assume that there exists a non-negative
function κ ∈ Lqloc (Ω), such that

|A(x, ξ)−A(y, ξ)| ≤ (κ(x) + κ(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 (4.8)

for a.e. x, y ∈ Ω and for every ξ ∈ Rn, which is also equivalent to say that there exists a
non-negative function k ∈ Lqloc (Ω) such that

|DxA(x, ξ)| ≤ κ̃(x)
(
µ2 + |ξ|2

) p−1
2 (4.9)

for a.e. x ∈ Ω and for every ξ ∈ Rn.
As we will see in the following, (4.8) is useful when we use the difference quotient method.
In order to simplify the notations, if we define the function

g = max { κ, κ̃ } a.e. in Ω,

we have g ∈ Lqloc (Ω) and, in place of (4.8), we can use the condition

|A(x, ξ)−A(y, ξ)| ≤ (g(x) + g(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 (4.10)
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for a.e. x, y ∈ Ω and for every ξ ∈ Rn.
Similarly, in place of (4.9), we can use

|DxA (x, ξ)| ≤ g(x)
(
µ2 + |ξ|2

) p−1
2 , (4.11)

for almost every x ∈ Ω and for every ξ ∈ Rn.

For what concerns the case of obstacle problems with Besov-Lipschitz coefficients, see Section
4.4 below.

4.1 Some preliminaries
Here we recall some preliminaries that will be useful for some of the results contained in this
chapter, that haven’t been mentioned previously.
The following result is proved in [17] for obstacle problems with (p, q)-growth conditions with
2 ≤ p ≤ q, but the same proof works for any 1 < p ≤ q, and that suits with our ellipticity and
growth assumptions.

Theorem 4.1.1. Let u ∈ Kψ (Ω) be a solution of (4.2) under the assumptions (4.4) and
(4.5). If the obstacle ψ ∈ L∞loc (Ω), then u ∈ L∞loc (Ω) and the following estimate

‖u‖
L∞
(
BR

2

) ≤ [‖ψ‖L∞(BR) +
ˆ
BR

|u(x)|p
∗
dx

]γ
(4.12)

holds for every ball BR b Ω, for γ(n, p) > 0 and c = c(`, ν, p, n).

The following result (see [47, 48]) helps us to avoid some difficulties that come out when we
use (4.2) in the case of sub-quadratic growth conditions.

Theorem 4.1.2. A function u ∈W 1,p
loc (Ω), with 1 < p <∞, is a solution to the problem

(4.1) if and only if it is a weak solution of the following equation:

divA (x,Du) = −divA (x,Dψ)χ{u=ψ }. (4.13)

4.1.1 V MO coefficients

Here we recall the definition and some properties of VMO functions, since they come into
play in the proofs of the results contained in Sections 4.3 and 4.4 below.
This is due to the fact that, if an operator A satisfies (4.4)–(4.6) and (4.10) for a
non-negative function g ∈ Lnloc (Ω), or (4.72), or (4.74), then it is locally uniformly in VMO.
More precisely, for any a ball B b Ω, let us introduce the operator

AB = −
ˆ
B
A (x, ξ) dx.

One can easily check that AB(ξ) also satisfies (4.5), (4.6) and (4.4). Setting

V (x,B) = sup
ξ 6=0

|A(x, ξ)−AB(ξ)|(
µ2 + |ξ|2

) p−1
2

,

we will say that x 7→ A(x, ξ) is locally uniformly in VMO if, for each compact set K ⊂ Ω, we
have

lim
R→0

sup
r<R

sup
x0∈K

−
ˆ
Br(x0)

V (x,B) dx = 0. (4.14)
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It is known that, if the operator A satisfies (4.4)–(4.6) and (4.10) for a non-negative function
g ∈ Lnloc (Ω), then A is locally uniformly in VMO (see [68]), and this will be useful in Section
4.3 to prove Theorem 4.3.1.
The following two results allow us to apply the properties of VMO functions in the proofs of
Theorem 4.4.1 and Theorem 4.4.2 respectively, in Section 4.4.
Their proofs, for p ≥ 2, can be found in [25] (see [25, Lemma 4.1] and [25, Lemma 3.1],
respectively), but they works, exactly in the same way, also for 1 < p < 2.

Lemma 4.1.3. Let A be such that (4.4)–(4.6) and (4.72) hold. Then A is locally uniformly
in VMO, that is (4.14) holds.

Proof. Given a point x ∈ Ω, let us denote

Ek(x) :=
{
y ∈ Ω : 2−k ≤ |x− y| < 2−k+1

}
.

We have

−
ˆ
B
V (x,B) dx = −

ˆ
B

sup
ξ 6=0

|A (x, ξ)−AB (ξ)|(
µ2 + |ξ|2

) p−1
2

dx

≤ −
ˆ
B

sup
ξ 6=0
−
ˆ
B

|A (x, ξ)−A (y, ξ)|(
µ2 + |ξ|2

) p−1
2

dydx

= −
ˆ
B

sup
ξ 6=0

1
|B|

∑
k

ˆ
B∩Ek(x)

|A (x, ξ)−A (y, ξ)|(
µ2 + |ξ|2

) p−1
2

dydx

≤ 1
|B|2

∑
k

ˆ
B

ˆ
B∩Ek(x)

|x− y|α (gk(x) + gk(y)) dydx.

By Hölder’s inequality with exponents
(
n
α ,

n
n−α

)
, the last term of previous inequality can be

bounded by

(
1
|B|2

∑
k

ˆ
B

ˆ
B∩Ek(x)

|x− y|
n

n−α dydx

)n−α
n

·
(

1
|B|2

∑
k

ˆ
B

ˆ
B∩Ek(x)

(gk(x) + gk(y))
n
α dydx

)α
n

= I · II.

We have
I ≤ C (n, α) |B|

α
n .

for what concerns the term II, we have

II ≤ c

(
1
|B|2

∑
k

|B ∩ Ek|
ˆ
B
g
n
α
k (x)dx

)

≤
(

1
|B|2

∑
k

|B ∩ Ek|
αq

αq−n

)αq−n
αq
·α
n

·
(

1
|B|2

∑
k

(ˆ
B
g
n
α
k (x)dx

)αq
n

) n
αq
·α
n

= 1

|B|2
(
α
n
− 1
q

) (∑
k

|B ∩ Ek|
αq

αq−n

)αq−n
αq
·α
n

· 1
|B|

2
q

(∑
k

‖gk‖q
L
n
α (B)

) 1
q

≤ C(n, α, q) |B|
α
n

|B|2
(
α
n
− 1
q

) · 1
|B|

2
q

(∑
k

‖gk‖q
L
n
α (B)

) 1
q
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= C(n, α, q) |B|−
α
n

(∑
k

‖gk‖q
L
n
α (B)

) 1
q

,

so we have

−
ˆ
B
V (x,B) dx ≤ C(n, α, q)

(∑
k

‖gk‖q
L
n
α (B)

) 1
q

.

In order to conclude, we have to prove that

lim
r→0

sup
x∈K

(∑
k

‖gk‖q
L
n
α (B)

) 1
q

= 0,

on every compact set K ⊂ Ω. To this end, we can fix r > 0 small enough, and observe that
the function x 7→ ‖gk‖`q

(
L
n
α (B(x,r))

) is continuous on the set { x ∈ Ω : d (x,Ω) > r }, as a
uniformly converging series of continuous functions. As a consequence, there exists a point
xr ∈ K (at least for small enough r > 0) such that

sup
x∈K
‖gk‖`q

(
L
n
α (B(x,r))

) = ‖gk‖`q
(
L
n
α (B(xr,r))

) .
Now, from ‖gk‖Lnα (B(x,r)) ≤ ‖gk‖Lnα (B(xr,r))

, and since this belongs to `q, we can use
dominated convergence to get

lim
r→0
‖gk‖`q

(
L
n
α (B(xr,r))

) =

∑
k

lim
r→0

(ˆ
B(xr,r)

g
n
α
k (x)dx

)αq
n


1
q

.

Each of the limits on the term on the right-hand side are equal to 0, since the points xr
cannot escape from the compact set K as r → 0. This completes the proof.

Lemma 4.1.4. Let A be such that (4.4)–(4.6) and (4.74) hold. Then A is locally uniformly
in VMO, that is (4.14) holds.

Proof. Let us assume that (4.5), (4.6), (4.4) and (4.74) hold.
Using Hölder’s inequality with exponent

(
n
α ,

n
n−α

)
, we have

−
ˆ
B
V (x,B) dx = −

ˆ
B

sup
ξ 6=0

|A (x, ξ)−AB (ξ)|(
µ2 + |ξ|2

) p−1
2

dx

≤ −
ˆ
B

sup
ξ 6=0

ˆ
B

|A (x, ξ)−A (y, ξ)|(
µ2 + |ξ|2

) p−1
2

dydx

≤ −
ˆ
B

sup
ξ 6=0
−
ˆ
B

(g(x) + g(y)) |x− y|α dydx

= −
ˆ
B
−
ˆ
B

(g(x) + g(y)) |x− y|α dydx

≤
(
−
ˆ
B
−
ˆ
B

(g(x) + g(y))
n
α dxdy

)α
n

·
(
−
ˆ
B
−
ˆ
B
|x− y|

nα
n−α dxdy

)n−α
n

≤ C (α, n) |B|
α
n

( 1
|B|

ˆ
B
g
n
α (x)dx

)
,

thus (4.14) holds.

The following result is a Calderón-Zygmund type estimate for solutions to obstacle problems
with VMO coefficients, and its proof can be found in [11] (in the case p = p(x)).
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Theorem 4.1.5. Let p > 1, and q > p. Assume that (4.4)–(4.6) hold, and that x 7→ A(x, ξ)
is locally uniformly in VMO. Let u ∈ Kψ (Ω) be the solution to the obstacle problem (4.1).
Then the following implication holds

Dψ ∈ Lqloc (Ω) =⇒ Du ∈ Lqloc (Ω) .

Moreover, there exists a constant C = C(n, ν, `, L, p, q) such that the following inequality

−
ˆ
BR

|Du(x)|q dx ≤ C

1 +−
ˆ
B2R

|Dψ(x)|q dx+
(
−
ˆ
B2R

|Du(x)|p dx
) q
p

 (4.15)

holds for any ball BR such that B2R b Ω.

4.2 A first regularity result for solutions to some obstacle
problems

Here we present the result contained in [18].
We are interested in the study of the regularity of the gradient of the solutions to variational
obstacle problems of the form (4.1), where Ω ⊂ Rn, with n ≥ 2, is a bounded open set, and
the ostacle ψ : Ω→ [−∞,+∞) belongs to the Sobolev class W 1, p+2

2
loc (Ω), and the map

ξ 7→ f (x, ξ) is of class C1 (Rn) for almost every x ∈ Ω

With the notation (4.3), we will use assumptions (4.4)–(4.6), and the fact that u ∈W 1,p
loc (Ω)

is a solution to (4.1) if and only if u ∈ Kψ (Ω) and u is a solution to the variational inequality
(4.2).

For what concerns the dependence of the map A on the x-variable, we assume that it belongs
to the Sobolev space W 1,p+2.
More precisely, recalling the characterization of Sobolev functions proved in [66], we assume
that there exists a non-negative function g ∈ Lp+2

loc (Ω) such that (4.10) holds.

Our aim is to establish a higher differentiability result assuming that Dψ ∈W 1, p+2
2

loc (Ω) .
More precisely, we shall prove the following.

Theorem 4.2.1. Let A(x, ξ) satisfy the conditions (4.4)–(4.6) and (4.10) with g ∈ Lp+2
loc (Ω) ,

for an exponent p ≥ 2, and let u ∈ Kψ (Ω) be a solution to the obstacle problem (4.1). Then,
if ψ ∈ L∞loc (Ω), the following implication holds

Dψ ∈W 1, p+2
2

loc (Ω) =⇒ Vp (Du) ∈W 1,2
loc (Ω) ,

with the following estimate

ˆ
BR

4

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(BR) + ‖u‖2Lp∗ (BR)

)
R
p+2

2

·
ˆ
BR

[
1 +

∣∣∣D2ψ(x)
∣∣∣ p+2

2 + |Dψ(x)|
p+2

2 + gp+2(x) + |Du(x)|p
]
dx, (4.16)

for any ball BR b Ω.
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Note that, in the case p < n− 2, Theorem 4.2.1 improves the results in [42] and [43]. The
proof of Theorem 4.2.1 is achieved combining an a priori estimate for the second derivative of
the local solutions, obtained using the difference quotient method, with a suitable
approximation argument. The local boundedness allows us to use the inequality (1.2), which
gives the higher local integrability Lp+2 of the gradient of the solutions. Such higher
integrability is the key tool in order to weaken the assumption on g that in previous results
has been assumed at least in Ln.
Moreover, our result is obtained under a weaker assumption also on the gradient of the
obstacle. Indeed, previous results assumed Dψ ∈W 1,p while our assumption is Dψ ∈W 1, p+2

2

with p > 2.
Finally, we observe that the assumption of boundedness of the obstacle ψ is needed to get the
boundedness of the solution (see Theorem 4.1.1). Therefore if we deal with a priori bounded
minimizers, then the result holds without the hypothesis ψ ∈ L∞.

4.2.1 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 will be divided in two steps: in the first one, we will establish the
a priori estimate, while in the second one we will conclude through an approximation
argument.

Proof of the Theorem 4.2.1. Step 1: the a priori estimate. Suppose that u is a local
solution to the obstacle problem in Kψ (Ω) such that

Du ∈W 1,2
loc (Ω) and Vp (Du) ∈W 1,2

loc (Ω) .

By estimate (4.12) and Lemma 1.1.3, we also have Du ∈ Lp+2
loc (Ω). Note that the fact that

Du ∈ Lp+2
loc (Ω) implies that the variational inequality (4.2), by a standard density argument,

holds true for every ϕ ∈W 1, p+2
2

loc (Ω).
In order to choose suitable test functions ϕ in (4.2) that involve the different quotient of the
solution and at the same time belong to the class of the admissible functions Kψ (Ω), we
proceed as done in [42].

Let us fix a ball BR b Ω and arbitrary radii R2 ≤ r < s < t < λr < R, with 1 < λ < 2. Let us
consider a cut off function η ∈ C∞0 (Bt) such that η ≡ 1 on Bs and |Dη| ≤ c

t−s . From now on,
with no loss of generality, we suppose R < 1.
Let v ∈W 1,p

0 (Ω) be such that

u− ψ + τv ≥ 0 ∀τ ∈ [0, 1], (4.17)

and observe that ϕ := u+ τv ∈ Kψ (Ω) for all τ ∈ [0, 1], since ϕ = u+ τv ≥ ψ. For |h| < R
4 ,

we consider

v1(x) = η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)] ,

so we have v1 ∈W
1, p+2

2
0 (Ω), and, for any τ ∈ [0, 1], v1 satisfies (4.17). Indeed, for a.e. x ∈ Ω

and for any τ ∈ [0, 1]

u(x)− ψ(x) + τv1(x) = u(x)− ψ(x) + τη2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

= τη2(x) (u− ψ) (x+ h) +
(
1− τη2(x)

)
(u− ψ) (x) ≥ 0,

since u ∈ Kψ (Ω) and 0 ≤ η ≤ 1.
Hence we can use ϕ = u+ τv1 as a test function in inequality (4.2), thus getting



84 Chapter 4. Obstacle problems

0 ≤
ˆ

Ω

〈
A (x,Du(x)) , D

[
η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx. (4.18)

In a similar way, we define

v2(x) = η2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)] ,

and we have v2 ∈W
1, p+2

2
0 (Ω), and (4.17) still is satisfied for any τ ∈ [0, 1], since

u(x)− ψ(x) + τv2(x) = u(x)− ψ(x) + τη2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)]

= τη2(x) (u− ψ) (x− h) +
(
1− τη2(x− h)

)
(u− ψ) (x) ≥ 0.

By using in (4.2) as test function ϕ = u+ τv2, we get

0 ≤
ˆ

Ω

〈
A (x,Du(x)) , D

[
η2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)]

]〉
dx,

and by means of a change of variable, we obtain

0 ≤
ˆ

Ω

〈
A (x+ h,Du(x+ h)) , D

[
η2(x) [(u− ψ) (x)− (u− ψ) (x+ h)]

]〉
dx. (4.19)

Now we can add (4.18) and (4.19), thus getting

0 ≤
ˆ

Ω

〈
A (x,Du(x)) , D

[
η2 [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx

+
ˆ

Ω

〈
A (x+ h,Du(x+ h)) , D

[
η2 [(u− ψ) (x)− (u− ψ) (x+ h)]

]〉
dx,

that is

0 ≤
ˆ

Ω

〈
A (x,Du(x))−A (x+ h,Du(x+ h)) , D

[
η2 [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx,

which implies

0 ≥
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , η2D [(u− ψ) (x+ h)− (u− ψ) (x)]

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2ηDη [(u− ψ) (x+ h)− (u− ψ) (x)]〉 dx.

Previous inequality can be rewritten as follows

0 ≥
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , η2 (Du(x+ h)−Du(x))

〉
dx

−
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , η2 (Dψ(x+ h)−Dψ(x))

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , 2ηDητh (u− ψ) (x)〉 dx

+
ˆ

Ω

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2 (Du(x+ h)−Du(x))

〉
dx
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−
ˆ

Ω

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2 (Dψ(x+ h)−Dψ(x))

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x))−A (x,Du(x)) , 2ηDητh (u− ψ) (x)〉 dx

=: I + II + III + IV + V + V I,

so we have

I ≤ |II|+ |III|+ |IV |+ |V |+ |V I| . (4.20)

By the ellipticity assumption (4.5), we get

I ≥ ν
ˆ

Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx. (4.21)

By virtue of assumption (4.6), using Young’s inequality with exponents (2, 2), and then
Hölder’s inequality with exponents

(
p+2

4 , p+2
p−2

)
, by the properties of η, we infer

|II| ≤ L

ˆ
Ω
η2 |τhDu(x)|

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 |τhDψ(x)| dx

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+cε
ˆ

Ω
η2 |τhDψ(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+cε

(ˆ
Bt

|τhDψ(x)|
p+2

2 dx

) 4
p+2

·
(ˆ

Bλr

(
µp+2 + |Du(x+ h)|p+2

)
dx

) p−2
p+2

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+cε|h|2
(ˆ

Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

) 4
p+2

·
(ˆ

Bλr

(
µp+2 + |Du(x+ h)|p+2

)
dx

) p−2
p+2

, (4.22)

where we used Lemma 1.2.3.
Similarly, by Young’s and Hölder’s inequalities, by virtue of the properties of η, and Lemma
1.2.3, we can estimate the term III as follows

|III| ≤ 2L
ˆ

Ω
η |Dη| |τhDu(x)|

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 |τh (u− ψ)| dx

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+ cε(L)
(t− s)2

ˆ
Bt\Bs

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 |τh (u− ψ) (x)|2 dx

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx
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+ cε|h|2

(t− s)2

(ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx

) p−2
p+2

·
(ˆ

Bλr

|D (u− ψ) (x)|
p+2

2 dx

) 4
p+2

. (4.23)

In order to estimate the term IV , we use assumption (4.10), Young’s inequality with
exponents (2, 2) and the properties of η, thus getting

|IV | ≤ |h|
ˆ

Ω
η2 (g(x+ h) + g(x))

(
µ2 + |Du(x)|2

) p−1
2 |τhDu(x)| dx

≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+cε|h|2
ˆ
Bt

(g(x+ h) + g(x))2
(
µ2 + |Du(x)|2

) p
2 dx,

and using Hölder’s inequality with exponents
(
p+2

2 , p+2
p

)
, and the properties of η, we have

|IV | ≤ ε

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

+cε|h|2
(ˆ

Bλr

gp+2(x)dx
) 2
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p
p+2

. (4.24)

In order to estimate the term V , we use condition (4.10) again, then Hölder’s inequality with
exponents

(
p+ 2, p+2

p−1 ,
p+2

2

)
, the properties of η, and the properties of difference quotients of

Sobolev functions, so we get

|V | ≤ |h|
ˆ

Ω
η2 (g(x+ h) + g(x))

(
µ2 + |Du(x)|2

) p−1
2 |τhDψ(x)| dx

≤ |h|
(ˆ

Bt

(g(x+ h) + g(x))p+2 dx

) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bt

|τhDψ(x)|
p+2

2 dx

) 2
p+2

≤ |h|2
(ˆ

Bλr

gp+2(x)dx
) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

) 2
p+2

, (4.25)

where we used the assumption Dψ ∈W 1, p+2
2 and first estimate of Lemma 1.2.3.

For what concerns the term V I, using the condition (4.10), the properties of η, Hölder’s
inequality with exponents

(
p+ 2, p+2

p−1 ,
p+2

2

)
, and the properties of difference quotients of

Sobolev functions, we have

|V I| ≤ 2|h|
ˆ

Ω
η |Dη| (g(x+ h) + g(x))

(
µ2 + |Du(x)|2

) p−1
2 |τh (u− ψ) (x)| dx
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≤ c|h|
t− s

(ˆ
Bt

(g(x+ h) + g(x))p+2 dx

) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bt

|τh (u− ψ) (x)|
p+2

2 dx

) 2
p+2

≤ c|h|2

t− s

(ˆ
Bλr

g(x)p+2dx

) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bλr

|D (u− ψ) (x)|
p+2

2 dx

) 2
p+2

. (4.26)

Plugging (4.21), (4.22), (4.23), (4.24), (4.25) and (4.26) into (4.20), choosing ε = ν
6 , and

reabsorbing the terms with the same integral of the right-hand side to the left-hand, we get

ν

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

≤ c|h|2
(ˆ

Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

) 4
p+2

·
(ˆ

Bλr

(
µp+2 + |Du(x)|p+2

)
dx

) p−2
p+2

+ c|h|2

(t− s)2 ·
(ˆ

Bλr

(
µp+2 + |Du(x)|p+2

)
dx

) p−2
p+2

·
(ˆ

Bλr

|D (u− ψ) (x)|
p+2

2 dx

) 4
p+2

+c|h|2
(ˆ

Bλr

gp+2(x)dx
) 2
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p
p+2

+c|h|2
(ˆ

Bλr

gp+2(x)dx
) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

) 2
p+2

+ c|h|2

t− s

(ˆ
Bλr

g(x)p+2dx

) 1
p+2

·
(ˆ

Bt

(
µp+2 + |Du(x)|p+2

)
dx

) p−1
p+2

·
(ˆ

Bλr

|D (u− ψ) (x)|
p+2

2 dx

) 2
p+2

. (4.27)

Now we apply Young’s inequality with exponents
(
p+2

4 , p+2
p−2

)
to the first two terms of the

right-hand side of (4.27), Young’s inequality with exponents
(
p+2

2 , p+2
p

)
to the third one, and(

p+ 2, p+2
p−1 ,

p+2
2

)
to the last to terms, and since u ∈ Kψ (Ω), we have

ν

ˆ
Ω
η2 |τhDu(x)|2

(
µ2 + |Du(x+ h)|2 + |Du(x)|2

) p−2
2 dx

≤ ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

(t− s)
p+2

2
·
ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

gp+2(x)dx
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+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+ cε|h|2

(t− s)
p+2

2

ˆ
Bλr

gp+2(x)dx.

Recalling the right-hand side of the inequality (1.5) in Lemma 1.4.3, we get

ν

ˆ
Ω
η2 |τhVp (Du(x))|2 dx

≤ ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

(t− s)
p+2

2
·
ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

gp+2(x)dx

+ε|h|2
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε|h|2

ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+ cε|h|2

(t− s)
p+2

2

ˆ
Bλr

gp+2(x)dx.

Now we divide both sides by |h|2 and use the Lemma 1.2.4 so, passing to the limit as h→ 0,
we get

ˆ
Ω
η2 |DVp (Du(x))|2 dx

≤ 4ε
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε

ˆ
Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

+cε
ˆ
Bλr

|Dψ(x)|
p+2

2 dx+ cε

(t− s)
p+2

2

ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+cε
ˆ
Bλr

gp+2(x)dx+ cε

(t− s)
p+2

2

ˆ
Bλr

gp+2(x)dx,

which, thanks to the left-hand side of inequality (1.6) gives

ˆ
Ω
η2
(
µ2 + |Du(x)|2

) p−2
2
∣∣∣D2u(x)

∣∣∣2 dx
≤
ˆ

Ω
η2 |DVp (Du(x))|2 dx

≤ 4ε
ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx+ cε

ˆ
Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

+cε
ˆ
Bλr

|Dψ(x)|
p+2

2 dx+ cε

(t− s)
p+2

2

ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+cε
ˆ
Bλr

gp+2(x)dx+ cε

(t− s)
p+2

2

ˆ
Bλr

gp+2(x)dx. (4.28)

By virtue of Remark 1.4.7, using inequality (1.2) we have
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ˆ
Ω
η2
(
µ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ c ‖u‖2L∞(supp(η))

ˆ
Ω
η2
(
µ2 + |Du(x)|2

) p−2
2
∣∣∣D2u(x)

∣∣∣2 dx
+c ‖u‖2L∞(supp(η))

ˆ
Ω

(
|η|2 + |Dη|2

) (
µ2 + |Du(x)|2

) p
2 dx.

Hence, thanks to estimate (4.28), and the properties of η we infer

ˆ
Ω
η2
(
µ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ εc ‖u‖2L∞(Bλr)

ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx

+cε ‖u‖2L∞(Bλr)

ˆ
Bλr

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx+ cε ‖u‖2L∞(Bλr)

ˆ
Bλr

|Dψ(x)|
p+2

2 dx

+
cε ‖u‖2L∞(Bλr)

(t− s)
p+2

2

ˆ
Bλr

|Dψ(x)|
p+2

2 dx+ cε ‖u‖2L∞(Bλr)

ˆ
Bλr

gp+2(x)dx

+
cε ‖u‖2L∞(Bλr)

(t− s)2

ˆ
Bλr

(
µ2 + |Du(x)|2

) p
2 dx

+
cε ‖u‖2L∞(Bλr)

(t− s)
p+2

2

ˆ
Bλr

gp+2(x)dx.

Taking into account the properties of η again, since p ≥ 2 and t− s < 1, we obtain

ˆ
Br

(
µ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ εc ‖u‖2L∞(BR)

ˆ
Bλr

(
µp+2 + |Du(x)|p+2

)
dx

+cε ‖u‖2L∞(BR)

ˆ
BR

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx+ cε ‖u‖2L∞(BR)

ˆ
BR

|Dψ(x)|
p+2

2 dx

+
cε ‖u‖2L∞(BR)

(t− s)
p+2

2

[ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx+
ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

]

+cε ‖u‖2L∞(BR)

ˆ
BR

gp+2(x)dx,

and choosing ε such that ε · c ‖u‖2L∞(BR) ≤
1
2 , previous estimate becomes

ˆ
Br

|Du(x)|p+2 dx

≤
ˆ
Br

(
µ2 + |Du(x)|2

) p
2 |Du(x)|2 dx

≤ 1
2

ˆ
Bλr

|Du(x)|p+2 dx

+c ‖u‖2L∞(BR)

[ˆ
BR

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx+
ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx
]
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+
c ‖u‖2L∞(BR)

(t− s)
p+2

2

[ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx+
ˆ
BR

|Du(x)|p dx+ c(µ, p) |BR|
]

+c(µ, p) |BR| ,

where c = c(n, p, `, ν, L, µ) is independent of t and s. Since (4.29) is valid for any
R
2 ≤ r < s < t < λr < R < 1, and the constant c > 0 is independent on the radii, taking the
limit as s→ r and t→ λr, we get

ˆ
Br

|Du(x)|p+2 dx

≤ 1
2

ˆ
Bλr

|Du(x)|p+2 dx+ c ‖u‖2L∞(BR)

[ˆ
BR

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx

+
ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx
]

+
c ‖u‖2L∞(BR)

r
p+2

2 (λ− 1)
p+2

2

[ˆ
BR

|Dψ(x)|
p+2

2 dx

+
ˆ
BR

gp+2(x)dx+
ˆ
BR

|Du(x)|p dx+ c(µ, p) |BR|
]

+c(µ, p) |BR| .

Now, setting

h(r) =
ˆ
Br

|Du(x)|p+2 dx,

A = c ‖u‖2L∞(BR)

[ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx+
ˆ
BR

|Du(x)|p dx+ c(µ, p) |BR|
]
,

and

B = c ‖u‖2L∞(BR)

[ˆ
BR

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx+
ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx
]

+ c(µ, p)|BR|,

we can use Iteration Lemma, with

θ = 1
2 and γ = p+ 2

2 ,

thus obtaining

ˆ
BR

2

|Du(x)|p+2 dx

≤ c ‖u‖2L∞(BR)

[ˆ
BR

∣∣∣D2ψ(x)
∣∣∣ p+2

2 dx+
ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx
]

+
c ‖u‖2L∞(BR)

R
p+2

2

[ˆ
BR

|Dψ(x)|
p+2

2 dx+
ˆ
BR

gp+2(x)dx+
ˆ
BR

|Du(x)|p dx+ c(µ, p) |BR|
]

+c(µ, p) |BR| . (4.29)
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Since R < 1, estimate (4.29) can be written as follows

ˆ
BR

2

|Du(x)|p+2 dx

≤
c ‖u‖2L∞(BR)

R
p+2

2
·
ˆ
BR

[
1 +

∣∣∣D2ψ(x)
∣∣∣ p+2

2 + |Dψ(x)|
p+2

2

+gp+2(x) + |Du(x)|p
]
dx. (4.30)

Now, we consider the estimate in (4.28) choosing a cut off function η ∈ C∞0
(
BR

2

)
such that

η ≡ 1 on BR
4
; so that thanks to (4.30), we obtain

ˆ
BR

4

|DVp (Du(x))|2 dx ≤
c‖u‖2L∞(BR)

R
p+2

2

·
ˆ
BR

[
1 +

∣∣∣D2ψ(x)
∣∣∣ p+2

2 + |Dψ(x)|
p+2

2 + gp+2(x) + |Du(x)|p
]
dx.

By virtue of estimate (4.12), we conclude with

ˆ
BR

4

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(BR) + ‖u‖2Lp∗ (BR)

)
R
p+2

2

·
ˆ
BR

[
1 +

∣∣∣D2ψ(x)
∣∣∣ p+2

2 + |Dψ(x)|
p+2

2 + gp+2(x) + |Du(x)|p
]
dx. (4.31)

Step 2: the approximation.
Fix an open set Ω′ b Ω, and for a smooth kernel φ ∈ C∞0 (B1(0)) with φ ≥ 0 and

´
B1(0) φ = 1,

and for any ε ∈ (0, d (Ω′, ∂Ω)), let us consider the corresponding family of mollifiers { φε }ε.
Let us set

gε = g ∗ φε, ψε = ψ ∗ φε,

Kψε (Ω) =
{
w ∈ u+W 1,p

0 (Ω) : w ≥ ψε a.e. in Ω
}
,

and
Aε(x, ξ) =

ˆ
B1

φ(ω)A (x+ εω, ξ) dω (4.32)

on Ω′, for each ε ∈ (0, d (Ω′, ∂Ω)).
Assumptions (4.4)–(4.6) imply

|Aε (x, ξ)| ≤ `
(
µ2 + |ξ|2

) p−1
2 , (4.33)

〈Aε (x, ξ)−Aε (x, η) , ξ − η〉 ≥ ν|η − ξ|2
(
µ2 + |ξ|2 + |η|2

) p−2
2 , (4.34)
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|Aε (x, ξ)−Aε (x, η)| ≤ L |ξ − η|
(
µ2 + |ξ|2 + |η|2

) p−2
2 . (4.35)

By virtue of assumption (4.10), we have

|Aε (x, ξ)−Aε (y, ξ)| ≤ (gε(x) + gε(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 (4.36)

for almost every x, y ∈ Ω and for all ξ, η ∈ Rn.
Let u be a solution of the variational inequality (4.2) and let fix a ball BR̃ b Ω′. Let us
denote by uε ∈ u+W 1,p

0
(
BR̃
)
the solution to the inequality

ˆ
Ω
〈Aε (x,Dw(x)) , D (ϕ− w) (x)〉 dx ≥ 0 ∀ϕ ∈ Kψε (Ω) . (4.37)

Thanks to [42, Theorem 1.1] we have Vp (Duε) ∈W 1,2
loc
(
BR̃
)
and, since Aε satisfies conditions

(4.33)–(4.36), for a sufficiently small ε, we are legitimated to apply estimate (4.31) to get

ˆ
B r

4

|DVp (Duε(x))|2 dx

≤
c
(
‖ψε‖2L∞(Br) + ‖uε‖2Lp∗ (Br)

)
r
p+2

2

·
ˆ
Br

[
1 +

∣∣∣D2ψε(x)
∣∣∣ p+2

2 + |Dψε(x)|
p+2

2 + gp+2
ε (x) + |Duε(x)|p

]
dx. (4.38)

for every ball Br b BR̃ and for a constant c.

We recall that, since Dψ ∈W 1, p+2
2

loc (Ω) and ψ ∈ L∞loc (Ω), we have

ψε → ψ strongly in L∞
(
BR̃
)
, (4.39)

and
D2ψε → D2ψ strongly in L

p+2
2
(
BR̃
)
, (4.40)

as ε→ 0.
Moreover, applying Lemma 1.1.2, we get Dψ ∈ Lp+2

loc (Ω), which implies

Dψε → Dψ strongly in Lp+2 (BR̃) as ε→ 0. (4.41)

Since g ∈ Lp+2
loc (Ω), we have

gε → g strongly in Lp+2 (BR̃) , as ε→ 0. (4.42)

From (4.33), we have |Aε (x,Du)| ≤ `
(
µ2 + |Du|2

) p−1
2 , and since Aε (x,Du) converges to

A (x,Du) almost everywhere in BR̃, by the dominated convergence theorem we have

Aε (x,Du)→ A (x,Du) strongly in L
p
p−1

(
BR̃
)
, as ε→ 0. (4.43)

If we consider a cut off function η ∈ C∞0
(
BR̃
)
such that 0 ≤ η ≤ 1, η ≡ 1 on B R̃

2
and

|Dη| ≤ c
R̃
, and choose ϕ = uε + η (ψ − ψε) and ϕ = u+ η (ψε − ψ) as test functions in (4.2)

and (4.37) respectively, we have
ˆ
BR̃

〈A (x,Du(x)) , (Duε −Du) (x) +D [η (ψ − ψε) (x)]〉 dx ≥ 0, (4.44)
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and ˆ
BR̃

〈Aε (x,Duε(x)) , (Duε −Du) (x) +D [η (ψ − ψε) (x)]〉 dx ≤ 0. (4.45)

Using the ellipticity condition (4.34) and (4.44), we haveˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

≤
ˆ
BR̃

〈Aε (x,Duε(x))−Aε (x,Du(x)) , (Duε −Du) (x)〉 dx

=
ˆ
BR̃

〈Aε (x,Duε(x)) , (Duε −Du) (x)〉 dx

+
ˆ
BR̃

〈A (x,Du(x))−Aε (x,Du(x)) , (Duε −Du) (x)〉 dx

+
ˆ
BR̃

〈A (x,Du(x)) , D [η (ψ − ψε) (x)]〉 dx

−
ˆ
BR̃

〈A (x,Du(x)) , (Duε −Du) (x) +D [η (ψ − ψε) (x)]〉 dx,

and by (4.45), we getˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

≤
ˆ
BR̃

〈Aε (x,Duε(x)) , D [η (ψε − ψ) (x)]〉 dx

+
ˆ
BR̃

〈A (x,Du(x))−Aε (x,Du(x)) , (Duε −Du) (x)〉 dx

+
ˆ
BR̃

〈A (x,Du(x)) , D [η (ψ − ψε) (x)]〉 dx

−
ˆ
BR̃

〈A (x,Du(x)) , (Duε −Du) (x) +D [η (ψ − ψε) (x)]〉 dx

=
ˆ
BR̃

〈Aε (x,Duε(x))−A (x,Du(x)) , D [η (ψε − ψ) (x)]〉 dx

+
ˆ
BR̃

〈A (x,Du(x))−Aε (x,Du(x)) , (Duε −Du) (x)〉 dx (4.46)

Therefore from the inequality (4.46), using Hölder’s inequality with exponents
(
p, p

p−1

)
we

deduce ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

≤
(ˆ

BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|(Duε −Du) (x)|p dx
) 1
p

+
(ˆ

BR̃

|A (x,Du(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+
(ˆ

BR̃

|Aε (x,Duε(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

. (4.47)

Since p ≥ 2, we haveˆ
BR̃

|(Du−Duε) (x)|p dx
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≤
ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx,

and combining previous inequality with (4.47), we deduce
ˆ
BR̃

|(Du−Duε) (x)|p dx

≤
(ˆ

BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|(Duε −Du) (x)|p dx
) 1
p

+
(ˆ

BR̃

|A (x,Du(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+
(ˆ

BR̃

|Aε (x,Duε(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

,

and by Young’s inequality with exponents
(
p, p

p−1

)
, for any σ > 0 we get

ˆ
BR̃

|(Du−Duε) (x)|p dx

≤ cσ

ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx+ σ

ˆ
BR̃

|(Du−Duε) (x)|p dx

+
(ˆ

BR̃

|A (x,Du(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+
(ˆ

BR̃

|Aε (x,Duε(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

, (4.48)

and choosing σ = 1
2 , we can absorb the second integral in the right-hand side of (4.48), thus

getting
ˆ
BR̃

|(Du−Duε) (x)|p dx

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

+c

(ˆ
BR̃

|A (x,Du(x))|
p
p−1 dx

) p−1
p

+
(ˆ

BR̃

|Aε (x,Duε(x))|
p
p−1 dx

) p−1
p


·
(ˆ

BR̃

|D [η(x) (ψε − ψ) (x)]|p dx
) 1
p

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

+
[ˆ

BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p
2 dx

] p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx
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+c
[ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
BR̃

|(Du−Duε) (x)|p dx
] p−1

p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

, (4.49)

where we used (4.4) and (4.33).
By (4.49), applying Young’s inequality with exponents

(
p, p

p−1

)
, we get

ˆ
BR̃

|(Du−Duε) (x)|p dx

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

+c
[ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx

] p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+c
[ˆ

BR̃

|(Du−Duε) (x)|p dx
] p−1

p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

+c
[ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx

] p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+σ
ˆ
BR̃

|(Du−Duε) (x)|p dx+ cσ

ˆ
BR̃

|D [η (ψε − ψ) (x)]|p dx, (4.50)

and if we choose σ > 0 sufficiently small, (4.50) gives
ˆ
BR̃

|(Du−Duε) (x)|p dx

≤
ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

+c
[ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx

] p−1
p

·
(ˆ

BR̃

|D [η (ψε − ψ) (x)]|p dx
) 1
p

+c
ˆ
BR̃

|D [η (ψε − ψ) (x)]|p dx. (4.51)

Let us notice that, recalling the properties of η, we get
ˆ
BR̃

|D [η (ψε − ψ) (x)]|p dx

≤
ˆ
BR̃

|D (ψε − ψ) (x)|p dx+ c

R

ˆ
BR̃

|(ψε − ψ) (x)|p dx. (4.52)

Hence, thanks to (4.52), recalling (4.39), (4.41) and (4.43), the right-hand side of (4.51)
vanishes as ε→ 0, and we deduce

uε → u strongly in W 1,p (BR̃) ,
and so

uε → u strongly in Lp∗
(
BR̃
)
, (4.53)
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and, for a not relabeled sequence, we also have

uε → u and Duε → Du

almost everywhere in BR̃, as ε→ 0.
Moreover, since the function ξ 7→ Vp (ξ) is continuous, we also have

Vp (Duε)→ Vp (Du) almost verywhere in Br as ε→ 0.

For these reasons, we can to pass to the limit in (4.38) and, by virtue of the Fatou’s Lemma,
recalling (4.39), (4.40), (4.41), (4.42) and (4.53), we get

ˆ
B r

4

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(Br) + ‖u‖2Lp∗ (Br)

)
r
p+2

2

·
ˆ
Br

[
1 +

∣∣∣D2ψ(x)
∣∣∣ p+2

2 + |Dψ(x)|
p+2

2 + gp+2(x) + |Du(x)|p
]
dx.

Therefore, by means of a covering argument, we conclude, with the estimate (4.16).

4.3 A higher differentiability result for solutions to some
obstacle problems with sub-quadratic growth and Sobolev
coefficients

As in the previous section, we are interested in the regularity properties of solutions to
problems of the form (4.1), where Ω ⊂ Rn is a bounded open set, n > 2, f : Ω× Rn → R is a
Carathéodory map, such that ξ 7→ f(x, ξ) is of class C2 (Rn) for a.e. x ∈ Ω,
ψ : Ω 7→ [−∞,+∞) belonging to the Sobolev class W 1,p

loc (Ω) is the obstacle, and

Kψ (Ω) =
{
w ∈ u0 +W 1,p

0 (Ω,R) : w ≥ ψ a.e. in Ω
}

is the class of the admissible functions, with u0 ∈W 1,p (Ω) a fixed boundary datum.
As we noticed before, a function u ∈W 1,p

loc (Ω) is a solution to the obstacle problem (4.1) in
Kψ (Ω) if and only if u ∈ Kψ (Ω) and u is a solution to the variational inequality (4.2) where
the operator A : Ω× Rn → Rn is defined by (4.3).
Again, we assume that A is a p-harmonic type operator, that is it satisfies p-ellipticity and
p-growth conditions with respect to the ξ-variable (4.4)–(4.6) and , for all ξ, η ∈ Rn and for
almost every x ∈ Ω.
The main difference with respect to the problem we considered in Section 4.2 is that, here,
1 < p < 2.
The result we prove in this section is [53, Theorem 1.1], which, in some sense, extends to the
sub-quadratic growth case what is stated in [42, Theorem 1.1].
Indeed, we show that an higher differentiability property of integer order of the gradient of
the obstacle tranfers to the solution of problem (4.1), provided the partial map
x 7→ Dξf(x, ξ) belongs to a suitable Sobolev class, with no loss in the order of differentiation.
More precisely we assume that the map x 7→ A (x, ξ) belongs to W 1,n

loc (Ω) for every ξ ∈ Rn or,
equivalently, that there exists a non-negative function g ∈ Lnloc (Ω) such that (4.10) and (4.11)
hold.
Note that, since f , as a function of the ξ variable, is of class C2, then the operator A is of
class C1 with respect to ξ, and (4.6) implies (4.7), for all ξ ∈ Rn \ { 0 } and for a.e. x ∈ Ω.
The result we prove in this section is the following.
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Theorem 4.3.1. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1) under

assumptions (4.4)–(4.6) for 1 < p < 2. Moreover, let us assume that there exists a function
g ∈ Lnloc (Ω) such that (4.10) and (4.11) hold.
Then the following implication holds:

Vp (Dψ) ∈W 1,2
loc (Ω) =⇒ Vp (Du) ∈W 1,2

loc (Ω) .

Moreover, for any ball B2R b Ω, the following estimate holds

‖DVp (Du)‖
L2
(
BR

2

) ≤ C (1 + ‖Du‖Lp(B2R) + ‖Vp (Dψ)‖W 1,2(B2R) + ‖g‖Ln(BR)

)σ
, (4.54)

where C > 0 depends on n, p,R, ν, L and ` and σ > 0 depends on n and p.

4.3.1 Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. Since the condition Vp (Dψ) ∈W 1,2
loc (Ω) implies the existence of the

second order weak derivatives of ψ (see Lemma 1.4.5), and the map ξ 7→ f (x, ξ) is of class
C2, we are legitimated to apply Theorem 4.1.2, and this gives us the possibility to overcome
some technical difficulties that could come out if we start from inequality (4.2), due to the
fact that 1 < p < 2.
Let us recall that u ∈W 1,p

loc (Ω) is a solution to the equation (4.13) if and only if, for any
ϕ ∈W 1,p

0 (Ω),
ˆ

Ω
〈A (x,Du(x)) , Dϕ(x)〉 dx = −

ˆ
Ω

divA (x,Dψ(x))χ{u=ψ }(x)ϕ(x)dx. (4.55)

Let us fix a ball B2R b Ω and radii R2 < r < 3
4R < λr < R, with 1 < λ < 2. Let us consider a

cut-off function η ∈ C∞0
(
B 3

4R

)
such that η ≡ 1 on BR

2
, |Dη| ≤ c

R and
∣∣D2η

∣∣ ≤ c
R2 . From

now on, with no loss of generality, we suppose R < 1.
Let us consider the test function

ϕ = τ−h
(
η2 · τhu

)
.

For this choice of ϕ, using proposition 1.2.2, the left-hand side of (4.55) can be written as
follows:

ˆ
Ω

〈
A (x,Du(x)) , D

(
τ−h

(
η2(x)τhu(x)

))〉
dx

=
ˆ

Ω

〈
τhA (x,Du(x)) , D

(
η2(x)τhu(x)

)〉
dx

=
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , D

(
η2(x)τhu(x)

)〉
dx

=
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , η2(x)τhDu(x)

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2η(x)Dη(x)τhu(x)〉 dx

=
ˆ

Ω

〈
A (x,Du(x+ h))−A (x,Du(x)) , η2(x)τhDu(x)

〉
dx

+
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x+ h)) , η2(x)τhDu(x)

〉
dx



98 Chapter 4. Obstacle problems

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2η(x)Dη(x)τhu(x)〉 dx

:= I0 + I + II, (4.56)

where, for the finite differences, we used the simplified notation

τhF (x) = F (x+ h)− F (x),

with h ∈ Rn, in place of
τs,hF (x) = F (x+ hes)− F (x),

with h ∈ R and, in the following, we will specify the direction only if it will be necessary.
Since the right-hand side of (4.55) is not zero only where u = ψ, using the test function given
above, it becomes

−
ˆ

Ω
divA (x,Dψ(x))χ{u=ψ }(x)τ−h

(
η2(x)τhψ(x)

)
dx, (4.57)

and since the map x 7→ A (x, ξ) belongs to W 1,n
loc (Ω) for any ξ ∈ Rn, the map ξ 7→ A(x, ξ)

belongs to C1 (Rn) for a.e. x ∈ Ω and Vp (Dψ) ∈W 1,2
loc (Ω), we can write (4.57) as follows

−
ˆ

Ω

{[
Ax (x,Dψ(x)) +Aξ (x,Dψ(x))D2ψ(x)

]
χ{u=ψ }(x)

·τ−h
(
η2(x)τhψ(x)

)}
dx

= −
ˆ

Ω

{[
Ax (x,Dψ(x)) +Aξ (x,Dψ(x))D2ψ(x)

]
χ{u=ψ }(x)

·τ−h

(
η2(x) · h

ˆ 1

0
Dψ(x+ σh)dσ

)}
dx

= −
ˆ

Ω

{[
Ax (x,Dψ(x)) +Aξ (x,Dψ(x))D2ψ(x)

]
χ{u=ψ }(x)

· |h|2
ˆ 1

0

[
η2(x− θh)

ˆ 1

0
D2ψ(x+ σh− θh)dσ

+2η(x− θh)Dη(x− θh)
ˆ 1

0
Dψ(x+ σh− θh)dσ

]
dθ

}
dx

= −
ˆ

Ω

{[
Ax (x,Dψ(x)) +Aξ (x,Dψ(x))D2ψ(x)

]
χ{u=ψ }(x)

·
ˆ 1

0

ˆ 1

0
|h|2

[
η2(x− θh)D2ψ(x+ σh− θh)

+2η(x− θh)Dη(x− θh)Dψ(x+ σh− θh)
]
dσdθ

}
dx.

Therefore, the right-hand side of (4.55) is given by the following expression

− |h|2
ˆ

Ω
Ax (x,Dψ(x))χ{u=ψ }(x)

ˆ 1

0

ˆ 1

0
η2(x− θh)D2ψ(x+ σh− θh)dσdθdx

−2 |h|2
ˆ

Ω
Ax (x,Dψ(x))χ{u=ψ }(x)

ˆ 1

0

ˆ 1

0
η(x− θh)Dη(x− θh)Dψ(x+ σh− θh)dσdθdx
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− |h|2
ˆ

Ω
Aξ (x,Dψ(x))D2ψ(x)χ{u=ψ }(x)

ˆ 1

0

ˆ 1

0
η2(x− θh)D2ψ(x+ σh− θh)dσdθdx

−2 |h|2
ˆ

Ω
Aξ (x,Dψ(x))D2ψ(x)χ{u=ψ }(x)

·
ˆ 1

0

ˆ 1

0
η(x− θh)Dη(x− θh)Dψ(x+ σh− θh)dσdθdx

=: −III − IV − V − V I. (4.58)

Inserting (4.56) and (4.58) in (4.55) we get

I0 = −I − II − III − IV − V − V I,

and so

I0 ≤ |I|+ |II|+ |III|+ |IV |+ |V |+ |V I| . (4.59)

By assumption (4.5), we have

I0 ≥ ν
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx. (4.60)

Let us consider the term I. By assumption (4.10), and using Young’s inequality with
exponents (2, 2), Hölder’s inequality with exponents

(
n
2 ,

n
n−2

)
, and the properties of η, we get

|I| ≤ |h|
ˆ

Ω
(g(x+ h) + g(x))

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−1
2 η2(x) |τhDu(x)| dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 (g(x+ h) + g(x))2 dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2
ˆ

B 3
4R

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) np
2(n−2) dx


n−2
n

·
(ˆ

Bλr

gn(x)dx
) 2
n

. (4.61)

For the term II, if we denote again finite differences with respect to a precise direction
s = 1, . . . , n, with an integration by parts, we have

−II = −2hs
ˆ

Ω

〈ˆ 1

0

d

dxs
A (x+ θhes, Du (x+ hsθes)) dθ, η(x)Dη(x)τs,hu(x)

〉
dx

= 2hs
ˆ

Ω

〈ˆ 1

0
(A (x+ hsθes, Du(x+ θhes))) dθ,

d

dxs
(η(x)Dη(x)τs,hu(x))

〉
dx,

where, for each s = 1, . . . , n, es is the unit vector in the xs direction, and now h ∈ R.
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So we can estimate II as follows

|II| ≤ 2|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ hsθes))|

(
|Dη(x)|2 |τs,hu(x)|

+η(x)
∣∣∣D2η(x)

∣∣∣ |τs,hu(x)|
)
dθdx

+2c|h|
ˆ

Ω

ˆ 1

0
|A (x+ hsθes, Du (x+ θhes))|

(
η(x) |Dη(x)| |τs,hDu(x)|

)
dθdx

≤ 2c|h|
ˆ

Ω

ˆ 1

0
|A (x+ hsθes, Du (x+ θhes))|

(
|Dη(x)|2

+η(x)
∣∣∣D2η(x)

∣∣∣ )dθ |τs,hu(x)| dx

+2c|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ θhes))| η(x) |Dη(x)| |τs,hDu(x)| dθdx.

Now, recalling the properties of η, assumption (4.4), and using Hölder’s inequality with
exponents

(
p, p

p−1

)
, Lemma 1.2.3 and Young’s inequality with exponents (2, 2), we get

|II| ≤ 2c|h|
ˆ

Ω

ˆ 1

0

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2
(
|Dη(x)|2

+η(x)
∣∣∣D2η(x)

∣∣∣ )dθ |τs,hu(x)| dx

+2c|h|
ˆ

Ω

ˆ 1

0

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2 η(x) |Dη(x)| |τs,hDu(x)| dθdx

= 2c|h|
ˆ 1

0

ˆ
Ω

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2
(
|Dη(x)|2

+η(x)
∣∣∣D2η(x)

∣∣∣ ) |τs,hu(x)| dxdθ

+2c|h|
ˆ 1

0

ˆ
Ω

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2 η(x) |Dη(x)| |τs,hDu(x)| dxdθ

≤ c|h|
R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p
2 dx


p−1
p

dθ

·

ˆ
B 3

4R

|τs,hu(x)|p dx

 1
p

+ε
ˆ

Ω
η2(x) |τs,hDu(x)|2

(
µ2 + |Du(x)|2 + |Du (x+ hes)|2

) p−2
2 dx

+cε |h|2

R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

)p−1

·
(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) 2−p
2 dxdθ.

Now, if we use again the simplified notation for finite diferences, with h ∈ Rn in place of hes
where h ∈ R, by Lemma 1.2.3, we get

|II| ≤ c|h|2

R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p
2 dx


p−1
p

dθ
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·

ˆ
B 3

4R

|Du(x)|p dx

 1
p

+ε
ˆ

Ω
η2(x) |τhDu(x)|2

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 dx

+cε |h|2

R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p−1
2

·
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) 2−p
4 dx

]2

dθ. (4.62)

Let us consider, now, the term III. By (4.11) and the properties of η, we get

|III| ≤ |h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣ dxdσdθ.
Using Young’s inequality with exponents (2, 2), we get

|III| ≤ c|h|2
ˆ 1

0

ˆ 1

0

[ˆ
Bλr

g2(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p
2 dx

+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dx] dσdθ. (4.63)

Using Young’s inequality again, with exponents
(
n
2 ,

n
n−2

)
in the first integral of (4.63), we get

|III| ≤ c|h|2
[ˆ

Bλr

gn(x)dx+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) np
2(n−2) dx

]

+c
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dxdσdθ. (4.64)

We estimate the term IV using (4.11), thus getting

|IV | ≤ 2|h|2
ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

·
ˆ 1

0

ˆ 1

0
|Dψ(x+ σh− θh)| |Dη(x− θh)| dσdθdx. (4.65)

Let us consider, now, the term V . By (4.7), we get

|V | ≤ |h|2
ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
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·
ˆ 1

0

ˆ 1

0

∣∣∣D2ψ(x+ σh− θh)
∣∣∣ dσdθdx. (4.66)

In order to estimate the term V I, we recall (4.7) again, thus getting

|V I| ≤ 2|h|2
ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
·
ˆ 1

0

ˆ 1

0
|Dη(x− θh)| |Dψ(x+ σh− θh)| dσdθdx. (4.67)

Now, plugging (4.60), (4.61), (4.62), (4.64), (4.65), (4.66) and (4.67) in (4.59), recalling the
properties of η and choosing a sufficiently small value of ε, we get

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

≤ c|h|2
ˆ

B 3
4R

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) np
2(n−2) dx


n−2
n

·
(ˆ

Bλr

gn(x)dx
) 2
n

+c|h|2

R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p
2 dx


p−1
p

dθ

·

ˆ
B 3

4R

|Du(x)|p dx

 1
p

+c |h|2

R2

ˆ 1

0

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

)p−1

·
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) 2−p
2 dxdθ

+c|h|2
[ˆ

Bλr

gn(x)dx+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) np
2(n−2) dx

]

+c|h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dxdσdθ
+2|h|2

ˆ 1

0

ˆ 1

0

ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

· |Dψ(x+ σh− θh)| |Dη(x− θh)| dxdσdθ

+|h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣ dxdσdθ
+2|h|2

ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
· |Dη(x− θh)| |Dψ(x+ σh− θh)| dxdσdθ. (4.68)

By Lemma 1.4.3 and the properties of η, the left-hand side of (4.68) can be bounded from
below as follows
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ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx ≥

ˆ
BR

2

|τhVp (Du(x))|2 dx.

(4.69)
So, by (4.69) and (4.68), recalling the properties of η and using Lemma 1.2.3, we get

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|2
(ˆ

BR

(
µ2 + |Du(x)|2

) np
2(n−2) dx

)n−2
n

·
(ˆ

BR

gn(x)dx
) 2
n

+c|h|2

R2

ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

+c|h|2
[ˆ

BR

gn(x)dx+
ˆ
Bλr

(
µ2 + |Dψ(x)|2

) np
2(n−2) dx

]

+c|h|2

R

ˆ
BR

g(x)
(
µ2 + |Dψ(x)|2

) p
2 dx

+c|h|2
ˆ
BR

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣2 dx
+c|h|2

R

ˆ
BR

(
µ2 + |Dψ(x)|2

) p−1
2
∣∣∣D2ψ(x)

∣∣∣ dx.
Now we apply Hölder’s inequality with exponents

(
n, n, n

n−2

)
to the integral of the fifth line,

Young’s inequality with exponents (2, 2) to the last integral, and use Lemma 1.4.3, thus
getting

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|2
(ˆ

BR

(
µ2 + |Du(x)|2

) np
2(n−2) dx

)n−2
n

·
(ˆ

BR

gn(x)dx
) 2
n

+c|h|2

R2

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

)

+c|h|2
[ˆ

BR

gn(x)dx+
ˆ
BR

(
µ2 + |Dψ(x)|2

) np
2(n−2) dx

]

+c|h|2
(ˆ

BR

gn(x)dx
) 1
n

·
(ˆ

BR

(
µ2 + |Dψ(x)|2

) np
2(n−2) dx

)n−2
n

+c|h|2

R

[ˆ
BR

|DVp (Dψ(x))|2 dx+
ˆ
BR

(
µ2 + |Dψ(x)|2

) p
2 dx

]

for a constant c = c(n, p, ν, L, `). By Young’s inequality with exponents
(
n
2 ,

n
n−2

)
, we get

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|2
ˆ

BR

(
µ2 + |Du(x)|2

) np
2(n−2) dx+

ˆ
BR

gn(x)dx+
(ˆ

BR

gn(x)dx
) 1

2
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+
ˆ
BR

(
µ2 + |Dψ(x)|2

) np
2(n−2) dx

]

+c|h|2

R

[ˆ
BR

|DVp (Dψ(x))|2 dx+
ˆ
BR

(
µ2 + |Dψ(x)|2

) p
2 dx

]

+c|h|2

R2

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

)
. (4.70)

Let us observe that, since Vp (Dψ) ∈W 1,2
loc (Ω), by Sobolev’s inequality, Dψ ∈ L

np
n−2
loc (Ω).

Therefore, applying Theorem 4.1.5 with q = np
n−2 , we have Du ∈ L

np
n−2
loc (Ω) , with the following

estimate:

−
ˆ
BR

|Du(x)|
np
n−2 dx ≤ C

1 +−
ˆ
B2R

|Dψ(x)|
np
n−2 dx+

(
−
ˆ
B2R

|Du(x)|p dx
) n
n−2
 . (4.71)

Using (4.71), estimate (4.70) becomes

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|2

ˆ
B2R

(
µ2 + |Dψ(x)|2

) np
2(n−2) dx+

[ˆ
B2R

(
µ2 + |Du(x)|2

) p
2 dx

] n
n−2

+
ˆ
BR

gn(x)dx+
(ˆ

BR

gn(x)dx
) 1

2

dx


+c|h|2

R

[ˆ
BR

|DVp (Dψ(x))|2 dx+
ˆ
BR

(
µ2 + |Dψ(x)|2

) p
2 dx

]

+c|h|2

R2

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

)
.

Applying Sobolev’s embedding Theorem to the function Vp (Dψ), and exploiting the fact that
p < np

n−2 , we get

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|2

[ˆ

B2R

(
|Vp (Dψ(x))|2 + |DVp (Dψ(x))|2

)
dx

] n
n−2

+
[ˆ

B2R

(
µ2 + |Du(x)|2

) p
2 dx

] n
n−2

+
ˆ
BR

gn(x)dx+
(ˆ

BR

gn(x)dx
) 1

2

dx


+c|h|2

R

ˆ
BR

|DVp (Dψ(x))|2 dx+ c|h|2

R2

(ˆ
BR

(
µ2 + |Du(x)|2

) p
2 dx

)
.

So, applying Lemma 1.2.4, for positive constants C and σ, we get

‖DVp (Du(x))‖
L2
(
BR

2

) ≤ C (1 + ‖Du‖Lp(B2R) + ‖Vp (Dψ)‖W 1,2(B2R) + ‖g‖Ln(BR)

)σ
,

that is (4.54).
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Thanks to Lemma 1.4.5, we get the following consequence of Theorem 4.3.1.

Corollary 4.3.2. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1) under

assumptions (4.4)–(4.6) and let us assume that there exists a function g ∈ Lnloc (Ω) such that
(4.10) and (4.11) hold, for 1 < p < 2.
Then the following implication holds:

Vp (Dψ) ∈W 1,2
loc (Ω) =⇒ u ∈W 2,p

loc (Ω) .

4.4 Fractional higher differentiability results for solutions to
some obstacle problems with sub-quadratic growth and
Besov-Lipschitz coefficients

In this section we give the proof of [53, Theorem 1.2] and [53, Theorem 1.3] which, in some
sense, represent the "fractional counterpart" of Theorem 4.3.1.
Indeed, here we assume that the obstacle belongs to a Besov-Lipschitz space, provided we
assume a Besov-Lipschitz dependence of the operator A with respect to the x-variable.
First, instead of (4.10) and (4.11), we assume that, given α ∈ (0, 1) and 1 ≤ q <∞ there
exists a sequence of measurable non-negative functions gk ∈ L

n
α
loc (Ω) such that∑

k

‖gk‖q
L
n
α (Ω′)

<∞,

for any open set Ω′ b Ω and, at the same time,

|A(x, ξ)−A(y, ξ)| ≤ (gk(x) + gk(y)) |x− y|α
(
µ2 + |ξ|2

) p−1
2 , (4.72)

for each ξ ∈ Rn and almost every x, y ∈ Ω such that 2−kdiam (Ω) ≤ |x− y| ≤ 2−k+1diam (Ω).
We will shortly write, then, (gk)k ∈ `q

(
L
n
α (Ω)

)
. If A(x, ξ) = γ(x)|ξ|p−2ξ and Ω = Rn then

(4.72) says that γ ∈ Bα
n
α
,q.

It is worth noticing that, due to the sub-quadratic growth conditions, the Besov regularity of
the obstacle transfers to the solution with a small loss in the order of differentiations.

Theorem 4.4.1. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1), under the

assumptions (4.4)–(4.6) and (4.72), for 1 < p < 2. Then the following implication holds

Vp (Dψ) ∈ Bα
2,q,loc (Ω) =⇒ Vp (Du) ∈ Bαβ

2,q,loc (Ω)

for any q ≤ 2∗α = 2n
n−2α and β ∈ (0, 1).

Moreover, for any ball B4R b Ω, the following estimate holds

wwwwτhVp (Du)
|h|αβ

wwww
Lq
(

dh
|h|n ;L2

(
BR

2

))
≤ C

(
1 + ‖Du‖Lp(B4R) + ‖Vp (Dψ)‖Bα2,q(B4R) + ‖(gk)k‖`q

(
L
n
α (B2R)

))σ , (4.73)

where C > 0 depends on n, p,R, ν, L and ` and σ > 0 depends on n, p, q and α.

This result represents, in some sense, the extention to the case of sub-quadratic growth
conditions of [42, Theorem 1.2].
The second result of this section deals with the case of Besov-Lipschitz coefficients in the case
q =∞.
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In this framework, we have that a fractional differentiability property of the obstacle transfers
to the solution with a larger loss on the order of differentiation than the one we have when q
is finite. This is due to the fact that the regularity of the type Bα

p,∞ is the weakest one to
assume both on the coefficients and on the gradient of the obstacle in the scale of
Besov-Lipschitz spaces (see Lemmas 1.2.5 and 1.3.2 above).
More precisely, the second result we prove in this section is the following.

Theorem 4.4.2. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1), under the

assumptions (4.4)–(4.6) for 1 < p < 2. If there exists α ∈ (0, 1) and a function g ∈ L
n
α
loc (Ω)

such that

|A(x, ξ)−A(y, ξ)| ≤ (g(x) + g(y)) |x− y|α
(
µ2 + |ξ|2

) p−1
2 , (4.74)

for a.e. x, y ∈ Ω and for every ξ ∈ Rn, then, provided 0 < α < γ < 1 the following
implication holds

Vp (Dψ) ∈ Bγ
2,∞,loc (Ω) =⇒ Vp (Du) ∈ Bαβ

2,∞,loc (Ω) ,

for any β ∈ (0, 1).
Moreover, for any ball B4R b Ω, the following estimate holds

[Vp (Du)]
Ḃαβ2,∞

(
BR

2

)
≤ C

(
1 + ‖Du‖Lp(B4R) + ‖Vp (Dψ)‖Bγ2,∞(B4R) + ‖g‖

L
n
α (B2R)

)σ
, (4.75)

where C > 0 depends on n, p,R, ν, L and ` and σ > 0 depends on n, p, q and α.

This result represents an extension to the case of sub-quadratic growth conditions of [42,
Theorem 1.4].

4.4.1 Proof of Theorem 4.4.1

This section is devoted to the proof of Theorem 4.4.1. It is worth noticing that, in this case,
our starting point can’t be equation (4.13), since our assumption on ψ doesn’t allow to
calculate the divergence in the right-hand side.
For this reason, here we have to start from (4.2), and apply the same technique we used to
prove the result in Section 4.2.

Proof of Theorem 4.4.1. Let us fix a ball B4R b Ω and radii R2 < r < 3
4R < λr < R, with

1 < λ < 2. Let us consider a cut-off function η ∈ C∞0
(
B 3

4R

)
such that η ≡ 1 on BR

2
and

|Dη| ≤ c
R . From now on, with no loss of generality, we suppose R < 1.

Let v ∈W 1,p
0 (Ω) be such that

u− ψ + τv ≥ 0 ∀τ ∈ [0, 1], (4.76)

and observe that ϕ := u+ τv ∈ Kψ (Ω) for all τ ∈ [0, 1], since ϕ = u+ τv ≥ ψ. For |h| < R
4 ,

we consider

v1(x) = η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)] ,

so we have v1 ∈W 1,p
0 (Ω), and, for any τ ∈ [0, 1], v1 satisfies (4.76). Indeed, for a.e. x ∈ Ω

and for any τ ∈ [0, 1]
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u(x)− ψ(x) + τv1(x) = u(x)− ψ(x) + τη2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

= τη2(x) (u− ψ) (x+ h) +
(
1− τη2(x)

)
(u− ψ) (x) ≥ 0,

since u ∈ Kψ (Ω) and 0 ≤ η ≤ 1.
So we can use ϕ = u+ τv1 as a test function in inequality (4.2), thus getting

0 ≤
ˆ

Ω

〈
A(x,Du(x)), D

[
η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx. (4.77)

In a similar way, we define

v2(x) = η2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)] ,

and we have v2 ∈W 1,p
0 (Ω), and (4.76) still is satisfied for any τ ∈ [0, 1], since

u(x)− ψ(x) + τv2(x) = u(x)− ψ(x) + τη2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)]

= τη2(x) (u− ψ) (x− h) +
(
1− τη2(x− h)

)
(u− ψ) (x) ≥ 0.

By using in (4.2) as test function ϕ = u+ τv2, we get

0 ≤
ˆ

Ω

〈
A (x,Du(x)) , D

[
η2(x− h) [(u− ψ) (x− h)− (u− ψ) (x)]

]〉
dx,

and by means of a change of variable, we obtain

0 ≤
ˆ

Ω

〈
A (x+ h,Du(x+ h)) , D

[
η2(x) [(u− ψ) (x)− (u− ψ) (x+ h)]

]〉
dx. (4.78)

We can add (4.77) and (4.78), thus getting

0 ≤
ˆ

Ω

〈
A (x,Du(x)) , D

[
η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx

+
ˆ

Ω

〈
A (x+ h,Du(x+ h)) , D

[
η2(x) [(u− ψ) (x)− (u− ψ) (x+ h)]

]〉
dx,

that is

0 ≤
ˆ

Ω

〈
A (x,Du(x))−A (x+ h,Du(x+ h)) , D

[
η2(x) [(u− ψ) (x+ h)− (u− ψ) (x)]

]〉
dx,

which implies

0 ≥
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , η2(x)D [(u− ψ) (x+ h)− (u− ψ) (x)]

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2η(x)Dη(x) [(u− ψ) (x+ h)− (u− ψ) (x)]〉 dx.

Previous inequality can be rewritten as follows

0 ≥
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , η2(x) (Du(x+ h)−Du(x))

〉
dx
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−
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , η2(x) (Dψ(x+ h)−Dψ(x))

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x+ h,Du(x)) , 2η(x)Dη(x)τh (u− ψ) (x)〉 dx

+
ˆ

Ω

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2(x) (Du(x+ h)−Du(x))

〉
dx

−
ˆ

Ω

〈
A (x+ h,Du(x))−A (x,Du(x)) , η2(x) (Dψ(x+ h)−Dψ(x))

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x))−A (x,Du(x)) , 2η(x)Dη(x)τh (u− ψ) (x)〉 dx

=: I + II + III + IV + V + V I,

so we have

I ≤ |II|+ |III|+ |IV |+ |V |+ |V I| . (4.79)

By (4.5) we have

I ≥ ν
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx. (4.80)

Before going further, let us observe that, since Vp (Dψ) ∈ Bα
2,q,loc (Ω) with q ≤ 2∗α then, by

Lemma 1.3.1, Vp (Dψ) ∈ L
2n

n−2α
loc (Ω), and so Dψ ∈ L

np
n−2α
loc (Ω) and, by Theorem 4.1.5, we also

have Du ∈ L
np

n−2α
loc (Ω).

Let us consider the term II. By assumption (4.6) we have

|II| ≤ L
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)| |τhDψ(x)| . (4.81)

Now we set

E1 :=
{
x ∈ Ω : |Du(x)|2 + |Du(x+ h)|2 > |Dψ(x)|2 + |Dψ(x+ h)|2

}
and

E2 := Ω \ E1,

so (4.81) becomes

|II| ≤ L

ˆ
E1

η2(x)
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)| |τhDψ(x)|

+L
ˆ
E2

η2(x)
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)| |τhDψ(x)|

=: II1 + II2. (4.82)

Since 1 < p < 2, using Young’s inequality with exponents (2, 2), the properties of η and
Lemma 1.4.3, we get

II1 ≤ L

ˆ
E1

η2(x)
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
4 |τhDu(x)|
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·
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
4 |τhDψ(x)| dx

≤ ε

ˆ
E1

η2(x)
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε
ˆ
E1

η2(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2 |τhDψ(x)|2 dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε
ˆ
B 3

4R

|τhVp (Dψ(x))|2 dx. (4.83)

For what concerns the term II2, using Young’s inequality with exponents (2, 2), the
properties of η, and Lemmas 1.4.3 and 1.2.3, we have

II2 ≤ L

ˆ
E2

η2(x)
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−1
2 |τhDψ(x)|

≤ L

ˆ
E2

η2(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2 |τhDψ(x)|

≤ c

ˆ
B 3

4R

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2 |τhDψ(x)|2 dx

+c
ˆ
B 3

4R

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p
2 dx

≤ c

ˆ
B 3

4R

|τhVp (Dψ(x))|2 dx+ c

ˆ
Bλr

(µp + |Dψ(x)|p) dx

≤ c

ˆ
B 3

4R

|τhVp (Dψ(x))|2 dx+ cR2α
[ˆ

BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

, (4.84)

where we used the fact that Dψ ∈ L
np

n−2α , and since p < np
n−2α we have

ˆ
BR

|Dψ(x)|p dx ≤ (ωnRn)1−n−2α
n

(ˆ
BR

|Dψ(x)|
np

n−2α dx

)n−2α
n

,

where ωn is the measure of the ball of radius 1 in Rn.
Plugging (4.83) and (4.84) into (4.82), we get the following estimate for the term II:

|II| ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε
ˆ
B 3

4R

|τhVp (Dψ(x))|2 dx+ cR2α
[ˆ

BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

. (4.85)

Now we consider the term III. By assumption (4.6), Young’s inequality with exponents(
p, p

p−1

)
, the fact that 1 < p < 2 and the properties of η we have

|III| ≤ L

ˆ
Ω
η(x) |Dη(x)|

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)| |τh (u− ψ) (x)| dx
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≤ ε

ˆ
Ω
η

p
p−1 (x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 ·

p
p−1 |τhDu(x)|

p
p−1−2 · |τhDu(x)|2 dx

+ cε
Rp

ˆ
BR

|τh (u− ψ) (x)|p dx

≤ ε

ˆ
Ω
η

p
p−1 (x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+ cε
Rp

ˆ
BR

|τh (u− ψ) (x)|p dx,

and using Lemma 1.2.3 we get

|III| ≤ ε

ˆ
Ω
η

p
p−1 (x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|p

Rp

ˆ
BλR

|D (u− ψ) (x)|p dx

≤ ε

ˆ
Ω
η

p
p−1 (x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+ cε|h|p

Rp−2α

(ˆ
B2R

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n

, (4.86)

where, in the last line, we used the fact that D (u− ψ) ∈ L
np

n−2α , arguing like in (4.84).
Let us consider, now, the term IV . By (4.72), Young’s inequality with exponents (2, 2) and
recalling the properties of η we have

|IV | ≤ |h|α
ˆ

Ω
η2(x) (gk(x) + gk(x+ h))

(
µ2 + |Du(x)|2

) p−1
2 |τhDu(x)| dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2α
ˆ
B 3

4R

(gk(x) + gk(x+ h))2

·
(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 dx,

where 2−k R4 ≤ |h| ≤ 2−k+1R
4 for k ∈ N. Using Hölder’s inequality with exponents

(
n
2α ,

n
n−2α

)
and Lemma 1.2.3 we get

|IV | ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2α
ˆ

B 3
4R

(gk(x) + gk(x+ h))
n
α dx

 2α
n

·

ˆ
B 3

4R

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) np
2(n−2α) dx


n−2α
n

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx
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+cε|h|2α
ˆ

B 3
4R

(gk(x) + gk(x+ h))
n
α dx

 2α
n

·
(ˆ

BR

(
µ

np
n−2α + |Du(x)|

np
n−2α

)
dx

)n−2α
n

. (4.87)

Applying estimate (4.15) with q = np
n−2α , we have

−
ˆ
BR

|Du(x)|
np

n−2α dx ≤ C

1 +−
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(
−
ˆ
B2R

|Du(x)|p dx
) n
n−2α

 . (4.88)

Plugging (4.88) into (4.87) we get

|IV | ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.89)

In order to estimate the term V , we recall the properties of η, consider 2−k R4 ≤ |h| ≤ 2−k+1R
4

for k ∈ N and use (4.72), Young’s inequality with exponents (2, 2), and Lemma 1.4.3, thus
getting

|V | ≤ |h|α
ˆ

Ω
η2(x) (gk(x) + gk(x+ h))

(
µ2 + |Du(x)|2

) p−1
2 |τhDψ(x)| dx

≤ |h|α
ˆ
B 3

4R

(gk(x) + gk(x+ h))
(
µ2 + |Du(x)|2

) p−1
2 |τhDψ(x)|

·
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
4 ·

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) 2−p
4 dx

≤ c|h|2α
ˆ
B 3

4R

(gk(x) + gk(x+ h))2 ·
(
µ2 + |Du(x)|2

)p−1

·
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) 2−p
2 dx

+c
ˆ
B 3

4R

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2 |τhDψ(x)|2 dx

≤ c|h|2α
ˆ
B 3

4R

(gk(x) + gk(x+ h))2 ·
(
µ2 + |Du(x)|2

)p−1

·
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) 2−p
2 dx+ c

ˆ
BR

|τhVp (Dψ(x))|2 dx. (4.90)

By Hölder’s inequality with exponents
(
n
2α ,

n
n−2α

)
and then with exponents

(
p

2(p−1) ,
p

2−p

)
,

(4.90) gives
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|V | ≤ c|h|2α
ˆ

B 3
4R

(gk(x) + gk(x+ h))
n
α dx

 2α
n

·

ˆ
B 3

4R

(
µ2 + |Du(x)|2

)n(p−1)
n−2α ·

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) n(2−p)
2(n−2α) dx


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx

≤ c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·
(ˆ

BR

(
µ2 + |Du(x)|2

) np
2(n−2α) dx

) 2(p−1)
p
·n−2α

n

·

ˆ
B 3

4R

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) np
2(n−2α) dx


2−p
p
·n−2α

n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx

≤ c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·
(ˆ

BR

(
µ

np
n−2α + |Du(x)|

np
n−2α

)
dx

) 2(p−1)
p
·n−2α

n

·
(ˆ

BR

(
µ

np
n−2α + |Dψ(x)|

np
n−2α

)
dx

) 2−p
p
·n−2α

n

+ c

ˆ
BR

|τhVp (Dψ(x))|2 dx,

where we also used Lemma 1.2.3. Using Young’s inequality with exponents
(

p
2(p−1) ,

p
2−p

)
, we

get

|V | ≤ c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

(ˆ
BR

(
µ

np
n−2α + |Du(x)|

np
n−2α

)
dx

)n−2α
n

+
(ˆ

BR

(
µ

np
n−2α + |Dψ(x)|

np
n−2α

)
dx

)n−2α
n


+c
ˆ
BR

|τhVp (Dψ(x))|2 dx. (4.91)

Using (4.88) to estimate the second integral of the right-hand side of (4.91), we get

|V | ≤ c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx. (4.92)
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Now we consider the term V I. Recalling (4.72), taking 2−k R4 ≤ |h| ≤ 2−k+1R
4 for k ∈ N, the

properties of η and using Hölder’s inequality with exponents
(
n
2α ,

n
n−2α

)
, and

(
p, p

p−1

)
we get

|V I| ≤ |h|α
ˆ

Ω
η(x) |Dη(x)| (gk(x) + gk(x+ h))

(
µ2 + |Du(x)|2

) p−1
2 |τh (u− ψ) (x)| dx

≤ c|h|α

R

(ˆ
BR

(gk(x) + gk(x+ h))
n

2α dx

) 2α
n

·
(ˆ

BR

(
µ2 + |Du(x)|2

) n(p−1)
2(n−2α) |τh (u− ψ(x))|

n
n−2α dx

)n−2α
n

≤ c|h|α

R

(ˆ
BR

(gk(x) + gk(x+ h))
n

2α dx

) 2α
n

·

(ˆ
BR

(
µ2 + |Du(x)|2

) np
2(n−2α) dx

) p−1
p
·n−2α

n

·
(ˆ

BR

|τh (u− ψ) (x)|
np

n−2α dx

)n−2α
np

 .
By virtue of Lemma 1.2.3 we have

|V I| ≤ c|h|α+1

R

(ˆ
BR

(gk(x) + gk(x+ h))
n

2α dx

) 2α
n

·

(ˆ
BR

(
µ2 + |Du(x)|2

) np
2(n−2α) dx

) p−1
p
·n−2α

n

·
(ˆ

B2R

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
np


≤ c|h|α+1

R1−α

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

)α
n

·

(ˆ
BR

(
µ

np
n−2α + |Du(x)|

np
n−2α

)
dx

) p−1
p
·n−2α

n

·
(ˆ

BλR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
np

 , (4.93)

where we used the fact that, for any k ∈ N, gk ∈ L
n
α (Ω) ↪→ L

n
2α (Ω), with the following

estimate

‖gk‖L n
2α (BR) ≤ cR

α ‖gk‖Lnα (BR) .

Now, by Young’s inequality with exponents
(
p, p

p−1

)
and (4.88), (4.93) becomes

|V I| ≤ c|h|α+1

R1−α

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

)α
n
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·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α +
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.94)

Plugging (4.80), (4.85), (4.86), (4.89), (4.92) and (4.94) into (4.79), recalling the properties
of η and choosing ε = ν

6 , and using Lemma 1.4.3 to estimate the left-hand side, we get

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ cR2α
[ˆ

BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+ c|h|p

Rp−2α

(ˆ
BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n

+c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx+ c|h|α+1

R1−α

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.95)

Now, as in Theorem 6.1 in [43] we use a covering argument.
To this aim, we have to introduce some notations.
For any ball B b Ω of radius ρ, let us denote with Q1 (B) the largest cube with sides parallel
to the coordinate axis concentric with B such that Q1 (B) ⊂ B, and with Q2 (B) the smallest
cube with sides parallel to the coordinate axis concentric with B such that B ⊂ Q2 (B).
So we have

Q1 (B) ⊂ B ⊂ Q2 (B) ,

and
|Q1 (B)| ∝ |B| ∝ ρn.

Let us notice that, if we denote B̂ = 4B, we have

Q1 (B) ⊂ B b 2B b Q1
(
B̂
)
⊂ B̂ b Q2

(
B̂
)
.

Now let us observe that, for any β ∈ (0, 1), if we fix two arbitrary open sets set Ω′ and Ω′′
such that Ω′ b Ω′′ b Ω, for a suffinciently small value of |h|, we can find a finite number
K = K(h) ∈ N of balls of radius |h|β, B1

(
x1, |h|β

)
, . . . , BK(h)

(
xK(h), |h|β

)
, such that the

cubes Q1 (B1) , . . . , Q1 (Bk) are disjoint and∣∣∣∣∣Ω′ \
K⋃
k=1

Q1 (Bk)
∣∣∣∣∣ = 0,

and such that, if, for any k, we denote B̂k = 4Bk, Q2
(
B̂k
)
b Ω′′. In order to satisfy this

properties, the choice of |h| depends on n, β and the distance between the boundary of Ω′
and the boundary of Ω′′.
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It is worth noticing that each of the cubes Q2
(
B̂k
)
intersects at most a number of the other

cubes Q2
(
B̂j
)
, with j 6= k, that depends on n.

With this construction, for a constant C = C(n) that depends on n but is independent of h,
we have

∣∣Ω′∣∣ ∝ K∑
k=1

∣∣∣Q2
(
B̂k
)∣∣∣ = C(n)|h|nβ,

and the same kind of relation comes out when we consider integrals on this kind of sets.
If we apply this covering argument to the balls of the integrals in (4.95), whose radii are
proportional to R, we have R ∝ |h|β, and (4.95) becomes

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ c|h|p(1−β)+2αβ
(ˆ

BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n

+c|h|2αβ
[ˆ

BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+c|h|2α
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c|h|α−β+αβ+1
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx. (4.96)

Now, since α, β ∈ (0, 1), if we set

p1 = 2αβ ∈ (0, 2),

p2 = p(1− β) + 2αβ ∈ (0, 4),

p3 = 2α ∈ (0, 2),

p4 = α− β + αβ + 1 = (α+ 1)(1− β) + 2αβ ∈ (0, 3)

we have

min
i∈{ 1,2,3,4 }

pi = p1 = 2αβ.

Now let us divide both sides of (4.96) by |h|2αβ.
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ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx

≤ c

[ˆ
BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+c|h|p(1−β)
(ˆ

BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n

+c|h|2α(1−β)
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

+c|h|(α+1)(1−β)
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

, (4.97)

where we also used the fact that, if |h| < 1 and β, α ∈ (0, 1), then |h|−2αβ ≤ |h|−2α.
In order to conclude, we have to take the Lq norm with the measure dh

|h|n restricted to the ball
B
(
0, R4

)
on the h-space, of the L2 norm of the difference quotient of order αβ of the function

Vp (Du). Since we have to integrate with respect to the measure dh
|h|n on the ball B

(
0, R4

)
and, for each k ∈ N, the integral in the second-last line of (4.97) is taken for
2−k R4 ≤ |h| ≤ 2−k+1R

4 , it is useful to notice what follows

B

(
0, R4

)
=
∞⋃
k=1

(
B

(
0, 2−k+1R

4

)
\B

(
0, 2−kR4

))
=:

∞⋃
k=1

Ek,

and it is also worth noticing that the choice of the radius R = |h|β is possible for small values
of |h|, since, for k ∈ N, 2−k R4 ≤ |h| ≤ 2−k+1R

4 if and only if 2−
k+2
1−β ≤ |h| ≤ 2−

k+1
1−β .

We obtain the following estimate

ˆ
BR

4 (0)

ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx


q
2
dh

|h|n

≤ c

ˆ
BR

4 (0)

[ˆ
BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

] q(n−2α)
2n dh

|h|n

+c
ˆ
BR

4 (0)

|h|
qp(1−β)

2
dh

|h|n
·
(ˆ

BR

|D (u− ψ) (x)|
np

n−2α dx

) q(n−2α)
2n

+c
∞∑
k=1

ˆ
Ek

|h|qα(1−β)
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) qα
n dh

|h|n
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·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


q(n−2α)

2n

+c
ˆ
BR

4 (0)

(ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

) q
2 dh

|h|n

+c
∞∑
k=1

ˆ
Ek

|h|
q(α+1)(1−β)

2

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) qα
2n dh

|h|n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


q(n−2α)

2n

. (4.98)

Now, in order to simplify the notations, we set

Ñ =
ˆ
B2λR

(
1 + |Du(x)|p + |Du(x)|

np
n−2α + |Dψ(x)|p + |Dψ(x)|

np
n−2α

)
dx, (4.99)

and write (4.98) as follows

ˆ
BR

4 (0)

ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx


q
2
dh

|h|n

≤ C
∞∑
k=1

ˆ
Ek

|h|
q(α+1)(1−β)

2

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) qα
2n dh

|h|n

+C
∞∑
k=1

ˆ
Ek

|h|qα(1−β)
(ˆ

BR

(gk(x) + gk(x+ h))
n
α dx

) qα
n dh

|h|n

+C
ˆ
BR

4 (0)

(ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

) q
2 dh

|h|n

+C
ˆ
BR

4 (0)

|h|
qp(1−β)

2
dh

|h|n
, (4.100)

where the constant C now depends on ν, `, L, n, p, q, α,R, Ñ .
Applying Young’s inequality with exponents (2, 2) to the first and the second integral of the
right-hand side of (4.100), we get

ˆ
BR

4 (0)

ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx


q
2
dh

|h|n

≤ C
∞∑
k=1

ˆ
Ek

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) 2qα
n dh

|h|n

+C
∞∑
k=1

ˆ
Ek

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) qα
n dh

|h|n

+C
ˆ
BR

4 (0)

(ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

) q
2 dh

|h|n

+C
ˆ
BR

4 (0)

|h|
qp(1−β)

2
dh

|h|n
+ C

ˆ
BR

4 (0)

|h|2qα(1−β) dh

|h|n
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+C
ˆ
BR

4 (0)

|h|q(α+1)(1−β) dh

|h|n
. (4.101)

Now let us observe that, since α, β ∈ (0, 1) and 1 < p < 2, if we set p1 = p(1−β)
2 ,

p2 = 2α(1− β) and p3 = (α+ 1)(1− β) and, for each i = 1, 2, 3, qi = q · pi, we have

κ := min
i∈{ 1,2,3 }

qi > 0

and since |h| < 1 we can write (4.101) as follows

ˆ
BR

4 (0)

ˆ
BR

2

|τhVp (Du(x))|2

|h|2β
dx


q
2
dh

|h|n

≤ C
∞∑
k=1

ˆ
Ek

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) 2qα
n dh

|h|n

+C
∞∑
k=1

ˆ
Ek

(ˆ
BR

(gk(x) + gk(x+ h))
n
α dx

) qα
n dh

|h|n

+C
ˆ
BR

4 (0)

(ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

) q
2 dh

|h|n

+C
ˆ
BR

4 (0)

|h|κ dh

|h|n
= I1 + I2 + I3 + I4 (4.102)

Now we notice that

I3 ≤ ‖Vp (Dψ)‖Bα2,q(BR) , (4.103)

which is finite by hypothesis.
For what concerns the term I4, by calculating it in polar coordinates, we get

I4 = C

ˆ R
4

0
ρκ−1dρ = C(n, p, q, α,R), (4.104)

since κ > 0.
Now let us write the integral I1 in polar coordinates, so h ∈ Ek if and only if h = ρξ for
2−k R4 ≤ ρ < 2−k+1R

4 and some ξ in the unit sphere Sn−1 on Rn. Denoting by dσ(ξ) the
surface measure on Sn−1, we have

I1 = C
∞∑
k=1

ˆ rk−1

rk

ˆ
Sn−1

(ˆ
BR

(gk(x+ ρξ)− gk(x))
n
α

) 2αq
n

dσ(ξ)dρ
ρ

≤ C
∞∑
k=1

ˆ rk−1

rk

ˆ
Sn−1

‖τρξgk + gk‖2q
L
n
α (BR)

dσ(ξ)dρ
ρ
, (4.105)

where we set rk = 2−k R4 . Let us note that, for each ξ ∈ Sn−1 and rk ≤ ρ ≤ rk−1,

‖τρξgk + gk‖Lnα (BR) ≤ ‖gk‖Lnα (BR−rkξ)
+ ‖gk‖Lnα (BR) ≤ 2 ‖gk‖

L
n
α

(
B
R+R

4

) . (4.106)

So, recalling the continuous embedding `q
(
L
n
α (B2R)

)
⊂ `2q

(
L
n
α (B2R)

)
, by (4.105) and

(4.106), we get



4.4. Fractional higher differentiability results for solutions to some
obstacle problems with sub-quadratic growth and Besov-Lipschitz
coefficients

119

I1 ≤ C ‖{gk}k‖
2q
`q
(
L
n
α (B2R)

) . (4.107)

We can argue in a similiar way to estimate the term I2, thus getting

I2 ≤ C ‖{gk}k‖
q

`q
(
L
n
α (B2R)

) . (4.108)

Inserting (4.107), (4.108), (4.103), and (4.104) in (4.102), we havewwwwτhVp (Du)
|h|αβ

wwww
Lq
(

dh
|h|n ;L2

(
BR

2

)) ≤ C (1 + ‖Vp (Dψ)‖Bα2,q(BR) + ‖{gk}k‖
2q
`q
(
L
n
α (B2R)

)) .
Recalling explicitly the dependence of the constant C on the value of Ñ given by (4.99), for
an exponent σ = σ(n, p, q, α) > 0, using the fact that np

n−2α > p recalling (4.15) and using
Lemma 1.3.3 and Lemma 1.3.1, we can conclude with the estimate

wwwwτhVp (Du)
|h|αβ

wwww
Lq
(

dh
|h|n ;L2

(
BR

2

))
≤ C

(
1 + ‖Du‖Lp(B4R) + ‖Vp (Dψ)‖Bα2,q(B4R) + ‖{gk}k‖`q

(
L
n
α (B2R)

))σ ,
that is (4.73).

By virtue of Lemma 1.4.9, as a consequence of Theorem 4.4.1, we have the following.

Corollary 4.4.3. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1), under the

assumptions (4.4)–(4.6) and (4.72), for 1 < p < 2. Then the following implication holds

Vp (Dψ) ∈ Bα
2,q,loc (Ω) =⇒ Du ∈ Bαβ

p,q,loc (Ω)

for any q ≤ 2∗α = 2n
n−2α and β ∈ (0, 1).

4.4.2 Proof of Theorem 4.4.2

This section is devoted to the proof of Theorem 4.4.2, which is obtained using the same
arguments of the previous section, taking into account that, here, the assumption 4.72 is
replaced by the assumption 4.74.

Proof of Theorem 4.4.2. Since, by the hypothesis, Vp (Dψ) ∈ Bγ
2,∞,loc (Ω) with α < γ < 1

then, recalling definition (1.4) and using Lemma 1.2.5, we have Vp (Dψ) ∈ L
2n

n−2α
loc (Ω), and so

Dψ ∈ L
np

n−2α
loc (Ω). This proof goes exactly like the one of Theorem 4.4.1 until we arrive at the

estimate (4.79), and the terms I, II and III can be treated in the same way, using (4.80),
(4.85) and (4.86) respectively. We just need to use the assumption (4.74) instead of (4.72), in
order to estimate the terms IV , V and V I.
For what concerns the term IV , using the assumption (4.74), Young’s inequality with
exponents (2, 2), Hölder’s inequality with exponents

(
n
2α ,

n
n−2α

)
, and Lemma 1.2.3 we get, for

|h| < R
4 ,

|IV | ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx
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+cε|h|2α
ˆ

B 3
4R

(g(x) + g(x+ h))
n
α dx

 2α
n

·
(ˆ

BR

(
µ

np
n−2α + |Du(x)|

np
n−2α

)
dx

)n−2α
n

.

and using (4.88), we obtain

|IV | ≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2α
ˆ

B 3
4R

(g(x) + g(x+ h))
n
α dx

 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.109)

Let us consider, now, the term V to which we apply the assumption (4.74) in place of (4.72),
and by the same arguments that we used in the previous section in order to obtain (4.92), we
have, for all h ∈ BR

4
(0),

|V | ≤ c|h|2α
(ˆ

BR

(g(x) + g(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx. (4.110)

For what concerns the term V I, again, using the assumption (4.74), and the same arguments
we used in the previous section in order to get (4.94), for |h| < R

4 , we obtain

|V I| ≤ c|h|α+1

R1−α

(ˆ
BR

(g(x) + g(x+ h))
n
α dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α +
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.111)

Now we plug (4.80), (4.85), (4.86), (4.109), (4.110) and (4.111) into (4.79), choose ε = ν
6 ,

recall the properties of η and use Lemma 1.4.3 and Lemma 1.2.3, thus getting

ˆ
BR

2

|τhVp (Du(x))|2 dx

≤ cR2α
[ˆ

BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+ c|h|p

Rp−2α

(ˆ
BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n
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+c|h|2α
(ˆ

BR

(g(x) + g(x+ h))
n
α dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2 dx+ c|h|α+1

R1−α

(ˆ
BR

(g(x) + g(x+ h))
n
α dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

. (4.112)

Now let us notice that, since, for any β ∈ (0, 1), |h| ≤ |h|
β

4 if and only if |h| ≤ 2−
2

1−β .
We can recall the same argument that we used in the previous section, after (4.95), so we
have R ∝ |h|β, and dividing both sides of (4.112) by |h|2αβ, we get

ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx

≤ c

[ˆ
BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+c|h|p(1−β)
(ˆ

BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n

+c|h|2α(1−β)
(ˆ

B2R

g
n
α (x)dx

) 2α
n

·

1 +
ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


n−2α
n

+c
ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx+ c|h|(1−β)(α+1)

(ˆ
BR

g
n
α (x)dx

)α
n

·

1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α


n−2α
n

, (4.113)

where we also used Lemma 1.2.3 and that, for |h| < R
4 < R < 1, since α, β ∈ (0, 1),

|h|−2αβ < |h|−2α.
Using Young’s inequality with exponents

(
n
2α ,

n
n−2α

)
, (4.113) becomes

ˆ
BR

2

|τhVp (Du(x))|2

|h|2αβ
dx

≤ c

[ˆ
BR

(
1 + |Dψ(x)|

np
n−2α

)
dx

]n−2α
n

+ c

ˆ
BR

|τhVp (Dψ(x))|2

|h|2α
dx

+c|h|p(1−β)
(ˆ

BR

|D (u− ψ) (x)|
np

n−2α dx

)n−2α
n
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+c|h|2α(1−β)

ˆ
B2R

g
n
α (x)dx+ 1 +

ˆ
B2R

|Dψ(x)|
np

n−2α dx+
(ˆ

B2R

|Du(x)|p dx
) n
n−2α


+c|h|(1−β)(α+1)

(ˆ
B2R

g
n
α (x)dx

) 1
2

+ 1 +
ˆ
B2λR

|Dψ(x)|
np

n−2α dx

+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α

 . (4.114)

By Lemma 1.4.9, the hypothesis Vp (Dψ) ∈ Bγ
2,∞,loc (Ω) implies that Dψ ∈ Bγ

p,∞,loc (Ω), and
since 0 < α < γ < 1, by Lemma 1.3.2, Vp (Dψ) ∈ Bα

2,∞,loc (Ω) and Dψ ∈ Bα
p,∞,loc (Ω).

So we can take the supremum for h ∈ BR
4

(0) at the both sides of (4.114), thus getting

[Vp (Du)]
Ḃαβ2,∞

(
BR

2

)
≤ C

1 +
ˆ
B2R

g
n
α (x)dx+

ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α

σ

+C [Vp (Dψ)]Ḃα2,∞(BR) ,

where the exponent σ > 0 depends on n, p and α and the constant C > 0 depends on
n, p, α, ν, L, and R.
Recalling the definition of the norm in Besov-Lipschitz spaces and using Lemma 1.3.2, we
have

[Vp (Du)]
Ḃαβ2,∞

(
BR

2

)
≤ C

1 +
ˆ
B2R

g
n
α (x)dx+

ˆ
B2λR

|Dψ(x)|
np

n−2α dx+
(ˆ

B2λR

|Du(x)|p dx
) n
n−2α

σ

+C ‖Vp (Dψ)‖Bγ2,∞(BR) .

Recalling that, for 0 < α < γ < 1, we have p < np
n−2α <

np
n−2γ , we get

[Vp (Du)]
Ḃαβ2,∞

(
BR

2

)
≤ C

(
1 + ‖Du‖Lp(B2λR) + ‖Dψ‖

L
np

n−2γ (B2λR)

+ ‖Vp (Dψ)‖Bγ2,∞(BR) + ‖g‖
L
n
α (B2R)

)σ
,

and applying Lemma 1.2.5 to the function Vp (Dψ), we get

[Vp (Du)]
Ḃαβ2,∞

(
BR

2

)
≤ C

(
1 + ‖Du‖Lp(B4R) + ‖Vp (Dψ)‖Bγ2,∞(B4R) + ‖g‖

L
n
α (B2R)

)σ
,

that is (4.75).

By virtue of Lemma 1.4.9, we have the following consequence of Theorem 4.4.2.
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Corollary 4.4.4. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1), under the

assumptions (4.4)–(4.6) for 1 < p < 2. If there exists α ∈ (0, 1) and a function g ∈ L
n
α
loc (Ω)

such that (4.74) holds, then, provided 0 < α < γ < 1 the following implication holds

Vp (Dψ) ∈ Bγ
2,∞,loc (Ω) =⇒ Du ∈ Bαβ

p,∞,loc (Ω) ,

for any β ∈ (0, 1).

4.5 Higher differentiability for solutions to problems with
bounded obstacle under sub-quadratic growth conditions

In this section we will consider, again, solutions to problems of the form (4.1), under
assumptions (4.4)–(4.6), with 1 < p < 2, where we still use the notation (4.3) and the map
ξ 7→ A (x, ξ) is of class C1 (Rn).
Under these assumptions, as in Section 4.3, (4.6) implies (4.7), for all ξ ∈ Rn \ { 0 } and for
a.e. x ∈ Ω.
The result we discuss below can be seen as the sub-quadratic growth version of the result we
proved in Section 4.2.
Indeed, in this case we assume that the map x 7→ A (x, ξ) belongs to W 1,p+2

loc (Ω) for every
ξ ∈ Rn or, equivalently, that there exists a non-negative function g ∈ Lp+2

loc (Ω) such that
(4.10) and (4.11) hold, but now we are dealing with the case 1 < p < 2.
More precisely, we want to prove the following result.

Theorem 4.5.1. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1) under

assumptions (4.4)–(4.6) and let us assume that there exists a function g ∈ Lp+2
loc (Ω) such that

(4.10) and (4.11) hold, for 1 < p < 2.
Then the following implication holds:

ψ ∈ L∞loc (Ω) and Vp (Dψ) ∈W 1,2
loc (Ω) =⇒ Vp (Du) ∈W 1,2

loc (Ω) .

Moreover, for any ball B8R b Ω, the following estimate holds

ˆ
BR

2

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

R2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

, (4.115)

where c > 0 depends on n, p, ν, L and ` and σ1 > 0 and σ2 > 0 depend on n and p.

Let us notice that here, as in Theorem 4.2.1, the regularity of the coefficients does not
depend on the dimension n. Moreover, since we’re assuming 1 < p < 2, if we have p+ 2 < n
(i.e. if n ≥ 4), if the obstacle is bounded, we can assume less regularity on the coefficients, if
we compare this risult with Theorem 4.3.1, where the obstacle is not assumed to be bounded.
The same result can be obtained by removing the assumption of boundedness of the obstacle
if we consider a priori bounded minimizers.
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4.5.1 Proof of Theorem 4.5.1

Proof of the Theorem 4.5.1. Step 1: the a priori estimate.
Let us observe that, if Vp (Dψ) ∈W 1,2

loc (Ω) then, by virtue of Remark 1.4.7 and estimate
(1.2), we get Dψ ∈ Lp+2

loc (Ω).
Suppose that u ∈ Kψ (Ω) is a solution to the obstacle problem (4.1) such that

Vp (Du) ∈W 1,2
loc (Ω) .

Our first step is to prove the following a priori estimate

ˆ
BR

2

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

R2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

, (4.116)

for any ball B8R b Ω.
By estimate (4.12), since ψ ∈ L∞loc (Ω), we have u ∈ L∞loc (Ω).
Recalling Remarks 1.4.6 and 1.4.7, and Lemma 1.1.3, thanks to the a priori assumption
Vp (Du) ∈W 1,2

loc (Ω), we have u ∈W 2,p
loc (Ω) and Du ∈ Lp+2

loc (Ω).
In order to apply Theorem 4.1.2, as we did in the proof of Theorem 4.3.1, let us recall that
u ∈W 1,p

loc (Ω) is a solution to the equation (4.13) if and only if, for any ϕ ∈W 1,p
0 (Ω),

ˆ
Ω
〈A (x,Du(x)) , Dϕ(x)〉 dx = −

ˆ
Ω

divA (x,Dψ(x))χ{u=ψ }(x)ϕ(x)dx (4.117)

Let us fix a ball B8R b Ω and arbitrary radii R2 ≤ r < s̃ < t < t̃ < λr, with 1 < λ < 2. Let us
consider a cut-off function η ∈ C∞0 (Bt) such that η ≡ 1 on Bs̃ and |Dη| ≤ c

t−s̃ . From now on,
with no loss of generality, we suppose R < 1

4 .
For any s = 1, . . . , n and h ∈ R with |h| is sufficiently small, let us consider the test function

ϕ = τs,−h
(
η2 · τs,hu

)
.

For this choice of ϕ, using Proposition 1.2.2, the left-hand side of (4.117) can be written as
follows:

ˆ
Ω

〈
A (x,Du(x)) , D

(
τ−h

(
η2(x)τhu(x)

))〉
dx

=
ˆ

Ω

〈
τhA (x,Du(x)) , D

(
η2(x)τhu(x)

)〉
dx

=
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , D

(
η2(x)τhu(x)

)〉
dx

=
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x)) , η2(x)τhDu(x)

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2η(x)Dη(x)τhu(x)〉 dx
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=
ˆ

Ω

〈
A (x,Du(x+ h))−A (x,Du(x)) , η2(x)τhDu(x)

〉
dx

+
ˆ

Ω

〈
A (x+ h,Du(x+ h))−A (x,Du(x+ h)) , η2(x)τhDu(x)

〉
dx

+
ˆ

Ω
〈A (x+ h,Du(x+ h))−A (x,Du(x)) , 2η(x)Dη(x)τhu(x)〉 dx

:= I0 + I + II, (4.118)

where, for the finite differences, we used the simplified notation

τhF (x) = F (x+ h)− F (x),

with h ∈ Rn, in place of
τs,hF (x) = F (x+ hes)− F (x),

with h ∈ R and, in the following, we will specify the direction only if it will be necessary.
Since the right-hand side of (4.117) is not zero only where u = ψ, using the test function
given above, it becomes

−
ˆ

Ω
divA (x,Dψ(x))χ{u=ψ }(x)τ−h

(
η2(x)τhψ(x)

)
dx, (4.119)

and since the map x 7→ A(x, ξ) belongs to W 1,p+2
loc (Ω) for any ξ ∈ Rn, the map ξ 7→ A(x, ξ)

belongs to C1 (Rn) for a.e. x ∈ Ω and Vp (Dψ) ∈W 1,2
loc (Ω), we can argue exactly like in the

proof of Theorem 4.3.1, and using the same notations, we can write (4.119) as follows

−
ˆ

Ω

{[
Ax (x,Dψ(x)) +Aξ (x,Dψ(x))D2ψ(x)

]
χ{u=ψ }(x)

·τ−h
(
η2(x)τhψ(x)

)}
dx

= −III − IV − V − V I. (4.120)

Inserting (4.118) and (4.120) in (4.117) we get

I0 = −I − II − III − IV − V − V I,

and so

I0 ≤ |I|+ |II|+ |III|+ |IV |+ |V |+ |V I| . (4.121)

By assumption (4.5), we have

I0 ≥ ν
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx. (4.122)

Let us consider the term I. By assumption (4.10), and using Young’s inequality with
exponents (2, 2), Hölder’s inequality with exponents

(
p+2
p , p+2

2

)
, and the properties of η, we

get

|I| ≤
ˆ

Ω
|h| (g(x+ h) + g(x))

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−1
2 η2(x) |τhDu(x)| dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx
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+cε|h|2
ˆ

Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p
2 (g(x+ h) + g(x))2 dx

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2
(ˆ

Bt

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p+2
2 dx

) p
p+2

·
(ˆ

Bλr

gp+2(x)dx
) 2
p+2

≤ ε

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

+cε|h|2
(ˆ

Bt̃

(
µ2 + |Du(x)|2

) p+2
2 dx

) p
p+2

·
(ˆ

Bλr

gp+2(x)dx
) 2
p+2

, (4.123)

where we also used Lemma 1.2.3.
Let us consider the term II. If we denote again finite differences with respect to a precise
direction s = 1, . . . , n, with an integration by parts, we have

−II = −2h
ˆ

Ω

〈ˆ 1

0

d

dxs
A (x+ θhes, Du(x+ θhes)) dθ, η(x)Dη(x)τs,hu(x)

〉
dx

= 2h
ˆ

Ω

〈ˆ 1

0
(A (x+ θhes, Du(x+ θhes))) dθ,

d

dxs
(η(x)Dη(x)τs,hu(x))

〉
dx,

where, for s = 1, . . . , n, es is the unit vector in the xs direction, and now h ∈ R.
So we can estimate II as follows

|II| ≤ 2|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ θhes))|

·
(
|Dη(x)|2 |τs,hu(x)|+ η(x)

∣∣∣D2η(x)
∣∣∣ |τs,hu(x)|

)
dθdx

+2|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ θhes))|

· (η(x) |Dη(x)| |τs,hDu(x)|) dθdx

≤ 2|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ θhes))|

·
(
|Dη(x)|2 + η(x)

∣∣∣D2η(x)
∣∣∣) dθ |τs,hu(x)| dx

+2|h|
ˆ

Ω

ˆ 1

0
|A (x+ θhes, Du (x+ hsθes))|

·η(x) |Dη(x)| |τs,hDu(x)| dθdx.

Now, recalling the properties of η, assumption (4.4), and using Hölder’s inequality with
exponents

(
p, p

p−1

)
, Lemma 1.2.3 and Young’s inequality with exponents (2, 2), we get

|II| ≤ 2c|h|
ˆ
Bt

ˆ 1

0

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2



4.5. Higher differentiability for solutions to problems with bounded
obstacle under sub-quadratic growth conditions

127

·
(
|Dη(x)|2 + η(x)

∣∣∣D2η(x)
∣∣∣) dθ |τs,hu(x)| dx

+2c|h|
ˆ

Ω

ˆ 1

0

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2

·η(x) |Dη(x)| |τs,hDu(x)| dθdx

= 2c|h|
ˆ 1

0

ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2

·
(
|Dη(x)|2 + η(x)

∣∣∣D2η(x)
∣∣∣) |τs,hu(x)| dxdθ

+2c|h|
ˆ 1

0

ˆ
Ω

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p−1
2

·η(x) |Dη(x)| |τs,hDu(x)| dxdθ

≤ c|h|
(t− s̃)2

ˆ 1

0

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) p
2 dx

) p−1
p

dθ

·
(ˆ

Bt

|τs,hu(x)|p dx
) 1
p

+ε
ˆ

Ω
η2(x) |τs,hDu(x)|2

(
µ2 + |Du(x)|2 + |Du(x+ hes)|2

) p−2
2 dx

+ cε |h|2

(t− s̃)2

ˆ 1

0

ˆ
Bt

(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

)p−1

·
(
µ2 + |Du(x)|2 + |Du (x+ θhes)|2

) 2−p
2 dxdθ.

Now, if we use again the simplified notation for finite diferences, with h ∈ Rn in place of hes
where h ∈ R, by Lemma 1.2.3, we get

|II| ≤ c|h|2

(t− s̃)2

ˆ 1

0

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p
2 dx

) p−1
p

dθ

·
(ˆ

Bt̃

|Du(x)|p dx
) 1
p

+ε
ˆ

Ω
η2(x) |τhDu(x)|2

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 dx

+ cε |h|2

(t− s̃)2

ˆ 1

0

[ˆ
Bλr

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p−1
2

·
(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) 2−p
4 dx

]2

dθ. (4.124)

Let us consider, now, the term III. By (4.11) and the properties of η, we get

|III| ≤ |h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣ dxdσdθ.
Using Young’s inequality with exponents (2, 2), we get
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|III| ≤ c|h|2
ˆ 1

0

ˆ 1

0

[ ˆ
Bλr

g2(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p
2 dx

+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dx]dσdθ. (4.125)

Again by Young’s inequality with exponents
(
p+2

2 , p+2
p

)
in the first integral of (4.125), we get

|III| ≤ c|h|2
[ˆ

Bλr

gp+2(x)dx+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p+2
2 dx

]

+c|h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dxdσdθ. (4.126)

By (4.11), we can estimate the term IV , thus getting

|IV | ≤ 2|h|2
ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

·
ˆ 1

0

ˆ 1

0
|Dψ(x+ σh− θh)| |Dη(x− θh)| dσdθdx. (4.127)

Let us consider, now, the term V . By assumption (4.7), we get

|V | ≤ |h|2
ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
·
ˆ 1

0

ˆ 1

0

∣∣∣D2ψ(x+ σh− θh)
∣∣∣ dσdθdx. (4.128)

Recalling (4.7) again, we have

|V I| ≤ 2|h|2
ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
·
ˆ 1

0

ˆ 1

0
|Dη(x− θh)| |Dψ(x+ σh− θh)| dσdθdx. (4.129)

Now, inserting (4.122), (4.123), (4.124), (4.126), (4.127), (4.128) and (4.129) in (4.121),
recalling the properties of η and choosing a sufficiently small value of ε, we get

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx

≤ c|h|2
(ˆ

Bt̃

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p+2
2 dx

) p
p+2

·
(ˆ

Bλr

gp+2(x)dx
) 2
p+2

+ c|h|2

(t− s̃)2

ˆ 1

0

(ˆ
Bt

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) p
2 dx

) p−1
p

dθ
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·
(ˆ

Bt̃

|Du(x)|p dx
) 1
p

+ c |h|2

(t− s̃)2

ˆ 1

0

ˆ
Bt

(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

)p−1

·
(
µ2 + |Du(x)|2 + |Du(x+ θh)|2

) 2−p
2 dxdθ

+c|h|2
[ˆ

Bλr

gp+2(x)dx+
ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p+2
2 dx

]

+c|h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−2
2

·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣2 dxdσdθ
+2|h|2

ˆ 1

0

ˆ 1

0

ˆ
Bλr

g(x)
(
µ2 + |Dψ(x)|2 + |Dψ(x+ h)|2

) p−1
2

· |Dψ(x+ σh− θh)| |Dη(x− θh)| dxdσdθ

+|h|2
ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
·
∣∣∣D2ψ(x+ σh− θh)

∣∣∣ dxdσdθ
+2|h|2

ˆ 1

0

ˆ 1

0

ˆ
Bλr

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣
· |Dη(x− θh)| |Dψ(x+ σh− θh)| dxdσdθ. (4.130)

By Lemma 1.4.3 and the properties of η, the left-hand side of (4.130) can be bounded from
below as follows

ˆ
Ω
η2(x)

(
µ2 + |Du(x)|2 + |Du(x+ h)|2

) p−2
2 |τhDu(x)|2 dx ≥

ˆ
Ω
η2(x) |τhVp (Du(x))|2 dx.

(4.131)
So, by (4.131) and (4.130), recalling the properties of η and using Lemma 1.2.3, we get

ˆ
Ω
η2(x) |τhVp (Du(x))|2 dx

≤ c|h|2
(ˆ

Bλr

(
µ2 + |Du(x)|2

) p+2
2 dx

) p
p+2

·
(ˆ

B2r

gp+2(x)dx
) 2
p+2

+ c|h|2

(t− s̃)2

ˆ
B2r

(
µ2 + |Du(x)|2

) p
2 dx

+c|h|2
[ˆ

B2r

gp+2(x)dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

]

+ c|h|2

t− s̃

ˆ
B2r

g(x)
(
µ2 + |Dψ(x)|2

) p
2 dx

+c|h|2
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p−2
2
∣∣∣D2ψ(x)

∣∣∣2 dx
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+ c|h|2

t− s̃

ˆ
B2r

(
µ2 + |Dψ(x)|2

) p−1
2
∣∣∣D2ψ(x)

∣∣∣ dx.
Now we apply Hölder’s inequality with exponents

(
p+ 2, p+ 2, p+2

p

)
to the integral of the

fifth line, Young’s inequality with exponents (2, 2) to the last integral, thus getting

ˆ
Ω
η2(x) |τhVp (Du(x))|2 dx

≤ c|h|2
(ˆ

Bλr

(
µ2 + |Du(x)|2

) p+2
2 dx

) p
p+2

·
(ˆ

B2r

gp+2(x)dx
) 2
p+2

+ c|h|2

(t− s̃)2

ˆ
B2r

(
µ2 + |Du(x)|2

) p
2 dx

+c|h|2
[ˆ

B2r

gp+2(x)dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

]

+ c|h|2

t− s̃

(ˆ
B2r

gp+2(x)dx
) 1
p+2

·
(ˆ

B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

) p
p+2

+ c|h|2

t− s̃

[ˆ
B2r

|DVp (Dψ(x))|2 dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p
2 dx

]

for a constant c = c(n, p, ν, L, `), where we also used (1.6). By Young’s inequality with
exponents

(
p+2

2 , p+2
p

)
, for some ε > 0, we get

ˆ
Ω
η2(x) |τhVp (Du(x))|2 dx

≤ c|h|2
[
ε

ˆ
Bλr

(
µ2 + |Du(x)|2

) p+2
2 dx+ cε

ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

]

+ c|h|2

t− s̃

ˆ
B2r

gp+2(x)dx+
(ˆ

B2r

gp+2(x)dx
) 1

2


+ c|h|2

t− s̃

[ˆ
B2r

|DVp (Dψ(x))|2 dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p
2 dx

]

+ c|h|2

(t− s̃)2

(ˆ
B2r

(
µ2 + |Du(x)|2

) p
2 dx

)
,

and since η ≡ 1 on Bs̃, we get

ˆ
Bs̃

|τhVp (Du(x))|2 dx

≤ c|h|2
[
ε

ˆ
Bλr

(
µ2 + |Du(x)|2

) p+2
2 dx+ cε

ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

]

+ c|h|2

t− s̃

ˆ
B2r

gp+2(x)dx+
(ˆ

B2r

gp+2(x)dx
) 1

2


+ c|h|2

t− s̃

[ˆ
B2r

|DVp (Dψ(x))|2 dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p
2 dx

]

+ c|h|2

(t− s̃)2

(ˆ
B2r

(
µ2 + |Du(x)|2

) p
2 dx

)
.
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Thanks to Lemma 1.2.4, deduce

ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ c

[
ε

ˆ
Bλr

(
µ2 + |Du(x)|2

) p+2
2 dx+ cε

ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

]

+ c

t− s̃

ˆ
B2r

gp+2(x)dx+
(ˆ

B2r

gp+2(x)dx
) 1

2


+ c

t− s̃

[ˆ
B2r

|DVp (Dψ(x))|2 dx+
ˆ
B2r

(
µ2 + |Dψ(x)|2

) p
2 dx

]

+ c

(t− s̃)2

(ˆ
B2r

(
µ2 + |Du(x)|2

) p
2 dx

)
. (4.132)

Now, since µ ∈ [0, 1], we have

(
µ2 + |Du|2

) p+2
2 = µ2

(
µ2 + |Du|2

) p
2 +

(
µ2 + |Du|2

) p
2 |Du|2

≤
(
µ2 + |Du|2

) p
2 +

(
µ2 + |Du|2

) p
2 |Du|2 (4.133)

and, similarly,

(
µ2 + |Dψ|2

) p+2
2 ≤

(
µ2 + |Dψ|2

) p
2 +

(
µ2 + |Dψ|2

) p
2 |Dψ|2 . (4.134)

Since t̃ < λr < λs̃ < λt < λ2r < 4R < 1, if we use (1.2) with φ ∈ C∞0 (Bλt) such that
0 ≤ φ ≤ 1, φ ≡ 1 on Bλs̃ and |Dφ| ≤ c

λ(t−s̃) , recalling (1.6), thanks to (4.133) we get

ˆ
Bt̃

(
µ2 + |Du(x)|2

) p+2
2 dx

≤ c ‖u‖2L∞(B4R)

ˆ
Bλt

|DVp (Du(x))|2 dx

+
c ‖u‖2L∞(B4R)

λ2 (t− s̃)2

ˆ
B4R

(
µ2 + |Du(x)|2

) p
2 dx. (4.135)

Arguing in the same way, using (1.2) with φ ∈ C∞0 (B2t) such that 0 ≤ φ ≤ 1, φ ≡ 1 on B2s̃
and |Dφ| ≤ c

2(t−s̃) , thanks to (4.134), since r < s̃ < t < R < 1
4 , we get

ˆ
B2r

(
µ2 + |Dψ(x)|2

) p+2
2 dx

≤ c ‖ψ‖2L∞(B4R)

ˆ
B4R

|DVp (Dψ(x))|2 dx

+
c ‖ψ‖2L∞(B4R)

4 (t− s̃)2

ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx. (4.136)

Therefore, inserting (4.135) and (4.136) into (4.132), since 1 < λ < 2 and t− s̃ < 1, we get
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ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ c ‖u‖2L∞(B4R) · ε
ˆ
Bλt

|DVp (Du(x))|2 dx

+
cε ‖u‖2L∞(B4R)

(t− s̃)2

(ˆ
B4R

(
µ2 + |Du(x)|2

) p
2 dx

)

+
cε ‖ψ‖2L∞(B4R)

(t− s̃)2

ˆ
B4R

gp+2(x)dx+
(ˆ

B4R

gp+2(x)dx
) 1

2

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]
,

and recalling (4.12), we have

ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ ε · c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1
ˆ
Bλt

|DVp (Du(x))|2 dx

+
cε
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

(t− s̃)2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

, (4.137)

where σ1 and σ2 depend on n and p. Now, if we choose ε > 0 such that

ε · c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1 = 1
2 ,

(4.137) becomes
ˆ
Bs̃

|DVp (Du(x))|2 dx

≤ 1
2

ˆ
Bλt

|DVp (Du(x))|2 dx

+
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

(t− s̃)2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

, (4.138)

and since (4.138) holds for any R
2 ≤ r < s̃ < t < λr < R and for any λ ∈ (1, 2) and the

constant c is independent of the radii, we can pass to the limit as s̃→ r and t→ λr, thus
getting ˆ

Br

|DVp (Du(x))|2 dx
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≤ 1
2

ˆ
Bλ2r

|DVp (Du(x))|2 dx

+
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

r2 (λ− 1)2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

,

which also implies

ˆ
Br

|DVp (Du(x))|2 dx

≤ 1
2

ˆ
Bλ2r

|DVp (Du(x))|2 dx

+
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

r2 (λ2 − 1)2

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

. (4.139)

Now, setting
h(r) =

ˆ
Br

|DVp (Du(x))|2 dx,

A = c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

and

B = 0,

since (4.139) holds for any 1 < λ < 2, we can apply the Interation Lemma 1.1.1 with

θ = 1
2 and γ = 2,

thus getting
ˆ
BR

2

|DVp (Du(x))|2 dx

≤
c
(
‖ψ‖2L∞(B8R) + ‖u‖2Lp∗ (B8R)

)σ1

R2
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·
[ˆ

B4R

(
µ2 + |Du(x)|2

) p
2 dx+

ˆ
B4R

gp+2(x)dx

+
ˆ
B4R

|DVp (Dψ(x))|2 dx+
ˆ
B4R

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

,

that is (4.116), where c > 0 depends on n, p, ν, L and `, and σ1, σ2 > 0 depend on n and p.

Step 2: the approximation.
Fix an open set Ω′ b Ω, and for a smooth kernel φ ∈ C∞0 (B1(0)) with φ ≥ 0 and

´
B1(0) φ = 1,

and for any ε ∈ (0, d (Ω′, ∂Ω)), let us consider the corresponding family of mollifiers { φε }ε,
and set

gε = g ∗ φε,

Kε,ψ (Ω) =
{
w ∈ u+W 1,p

0 (Ω) : w ≥ ψ a.e. in Ω
}

and
Aε(x, ξ) =

ˆ
B1

φ(ω)A (x+ εω, ξ) dω

on Ω′, for each ε ∈ (0, d (Ω′, ∂Ω)). The assumptions (4.4)–(4.6) imply

|Aε(x, ξ)| ≤ `
(
µ2 + |ξ|2

) p−1
2 , (4.140)

〈Aε(x, ξ)−Aε(x, η), ξ − η〉 ≥ ν|η − ξ|2
(
µ2 + |ξ|2 + |η|2

) p−2
2 . (4.141)

|Aε(x, ξ)−Aε(x, η)| ≤ L |ξ − η|
(
µ2 + |ξ|2 + |η|2

) p−2
2 . (4.142)

By virtue of assumption (4.10) we also have

|Aε(x, ξ)−Aε(y, ξ)| ≤ (gε(x) + gε(y)) |x− y|
(
µ2 + |ξ|2

) p−1
2 (4.143)

for almost every x, y ∈ Ω and for all ξ, η ∈ Rn. Let u be a solution of the variational
inequality (4.2) and let fix a ball BR̃ b Ω′. Let us denote by uε ∈ u+W 1,p

0
(
BR̃
)
the solution

to the inequality
ˆ

Ω
〈Aε (x,Dw(x)) , D (ϕ− w) (x)〉 dx ≥ 0 ∀ϕ ∈ Kε,ψ (Ω) . (4.144)

Thanks to [53, Theorem 1.1] we have Vp (Duε) ∈W 1,2
loc
(
BR̃
)
and, since Aε satisfies conditions

(4.140)–(4.143), for ε sufficiently small, we are legitimated to apply estimate (4.116) thus
getting

ˆ
B r

2

|DVp (Duε(x))|2 dx

≤
c
(
‖ψ‖2L∞(B8r) + ‖uε‖2Lp∗ (B8r)

)σ1

r2

·
[ˆ

B4r

(
µ2 + |Duε(x)|2

) p
2 dx+

ˆ
B4r

gp+2
ε (x)dx
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+
ˆ
B4r

|DVp (Dψ(x))|2 dx+
ˆ
B4r

(
µ2 + |Dψ(x)|2

) p
2 dx

]σ2

, (4.145)

for a constant c = c(n, p, ν, L, `), for any ball B8r b BR̃.

Moreover, since and g ∈ Lp+2
loc (Ω), we have

gε → g strongly in Lp+2 (BR̃) , as ε→ 0 (4.146)

and, up to a subsequence, almost everywhere in BR̃.

Since by (4.140), |Aε (x,Du)| ≤ `
(
µ2 + |Du|2

) p−1
2 and since Aε (x,Du) converges almost

everywhere to A (x,Du), by the dominated convergence Theorem we have

Aε (x,Du)→ A (x,Du) strongly in L
p
p−1

(
BR̃
)
, as ε→ 0. (4.147)

Using the ellipticity condition (4.141), we have

ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

≤
ˆ
BR̃

〈Aε (x,Duε(x))−Aε (x,Du(x)) , (Duε −Du) (x)〉dx

=
ˆ
BR̃

〈Aε (x,Duε(x)) , (Duε −Du) (x)〉dx

−
ˆ
BR̃

〈Aε (x,Du(x)) , (Duε −Du) (x)〉dx

=
ˆ
BR̃

〈Aε (x,Duε(x)) , (Duε −Du) (x)〉dx

−
ˆ
BR̃

〈A (x,Du(x)) , (Duε −Du) (x)〉dx

−
ˆ
BR̃

〈Aε (x,Du(x))−A (x,Du(x)) , (Duε −Du) (x)〉dx (4.148)

Using u and uε as test functions in (4.144) and (4.2) respectively, we have
ˆ
BR̃

〈Aε (x,Duε(x)) , (Duε −Du) (x)〉dx ≤ 0 (4.149)

and

−
ˆ
BR̃

〈A (x,Du(x)) , (Duε −Du) (x)〉dx ≤ 0, (4.150)

therefore, thanks to (4.149) and (4.150), (4.148) implies

ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

≤ −
ˆ
BR̃

〈Aε (x,Du(x))−A (x,Du(x)) , (Duε −Du) (x)〉 dx

≤
(ˆ

BR̃

|(Du−Duε) (x)|p dx
) 1
p
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·
(ˆ

BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

) p−1
p

. (4.151)

Now let us observe that, by (4.149), using Hölder’s inequality with exponents
(
p, p

p−1

)
and

recalling (4.140), we get
ˆ
BR

〈Aε (x,Duε(x)) , Duε(x)〉dx ≤
ˆ
BR̃

〈Aε (x,Duε(x)) , Du(x)〉dx

≤
(ˆ

BR̃

|Aε (x,Duε(x))|
p
p−1 dx

) p−1
p

·
(ˆ

BR̃

|Du(x)|p dx
) 1
p

≤
(ˆ

BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) p−1
p

·
(ˆ

BR̃

|Du(x)|p dx
) 1
p

. (4.152)

Moreover, using Hölder’s inequality with exponents
(

2
p ,

2
2−p

)
and thanks to the ellipticity

condition (4.141), we have
ˆ
BR̃

|Duε(x)|p dx ≤
ˆ
BR̃

|Duε(x)|p
(
µ2 + |Duε(x)|2

) p(p−2)
4 ·

(
µ2 + |Duε(x)|2

) p(2−p)
4 dx

≤
(ˆ

BR̃

|Duε(x)|2
(
µ2 + |Duε(x)|2

) p−2
2 dx

) p
2

·
(ˆ

BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) 2−p
2

≤
(ˆ

BR̃

〈Aε (x,Duε(x))−Aε (x, 0) , Duε(x)〉 dx
) p

2

·
(ˆ

BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) 2−p
2

. (4.153)

We can notice that, since the ellipticity condition implies

〈Aε (x,Duε(x))−Aε (x, 0) , Duε(x)〉 ≥ 0,

and so
〈Aε (x,Duε(x)) , Duε(x)〉 ≥ 〈Aε (x, 0) , Duε(x)〉 ,

for a.e. x ∈ BR̃.
Hence, if we denote

E1 :=
{
x ∈ BR̃ : 〈Aε (x,Duε(x)) , Duε(x)〉 < 0

}
,

and
E2 :=

{
x ∈ BR̃ : 〈Aε (x,Duε(x)) , Duε(x)〉 ≥ 0

}
,

we have
|〈Aε (x,Duε(x)) , Duε(x)〉| ≤ |〈Aε (x, 0) , Duε(x)〉|
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for a.e. x ∈ E1, and

〈Aε (x,Duε(x))−Aε (x, 0) , Duε(x)〉 ≤ 〈Aε (x,Duε(x)) , Duε(x)〉+ |〈Aε (x, 0) , Duε(x)〉|

for a.e. x ∈ E2. Therefore (4.153) implies
ˆ
BR̃

|Duε(x)|p dx ≤
(
c

ˆ
E1

|〈Aε (x, 0) , Duε(x)〉| dx

+
ˆ
E2

(〈Aε (x,Duε(x)) , Duε(x)〉+ |〈Aε (x, 0) , Duε(x)〉|) dx
) p

2

·
(
c

ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) 2−p
2

≤
(ˆ

E1

µp−1 |Duε(x)| dx

+
ˆ
E2

(
〈Aε (x,Duε(x)) , Duε(x)〉+ µp−1 |Duε(x)|

)
dx

) p
2

·
(ˆ

BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) 2−p
2

, (4.154)

where, in the last line, we used (4.140).
Using Young’s inequality with exponents

(
2
p ,

2
2−p

)
, by (4.154) we deduce

ˆ
BR̃

|Duε(x)|p dx ≤ cσ

ˆ
BR̃

µp−1 |Duε(x)| dx+ cσ

ˆ
BR̃

〈Aε (x,Duε(x)) , Duε(x)〉 dx

+σ
ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

≤ cσ

ˆ
BR̃

〈Aε (x,Duε(x)) , Duε(x)〉 dx

+2σ
ˆ
BR̃

|Duε(x)|p dx+ cσ
∣∣BR̃∣∣ , (4.155)

where we also used Young’s inequality with exponents
(
p, p

p−1

)
and the fact that µ ∈ [0, 1].

Now, joining (4.152) with (4.155), we get

ˆ
BR̃

|Duε(x)|p dx ≤ cσ

(ˆ
BR̃

(
µ2 + |Duε(x)|2

) p
2 dx

) p−1
p

·
(ˆ

BR̃

|Du(x)|p dx
) 1
p

+2σ
ˆ
BR̃

|Duε(x)|p dx+ cσ
∣∣BR̃∣∣

≤ cσ

ˆ
BR̃

|Du(x)|p dx+ 3σ
ˆ
BR̃

|Duε(x)|p dx

+cσ
∣∣BR̃∣∣ , (4.156)

where we used Young’s inequality with exponents
(
p, p

p−1

)
and the fact that µ ∈ [0, 1] again.

Choosing σ < 1
3 , (4.156) implies

ˆ
BR̃

|Duε(x)|p dx ≤ c

ˆ
BR̃

|Du(x)|p dx+ c
∣∣BR̃∣∣ . (4.157)
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Let us observe that, using Hölder’s inequality with exponents
(

2
p ,

2
2−p

)
recalling (4.157), we

have

ˆ
BR̃

|(Duε −Du) (x)|p dx =
ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p(p−2)
4 |(Duε −Du) (x)|p

·
(
µ2 + |Du(x)|2 + |Duε(x)|2

) p(2−p)
4 dx

≤
(ˆ

BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

) p
2

·
(ˆ

BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p
2 dx

) 2−p
2

≤ c

(ˆ
BR̃

(
µ2 + |Du(x)|2 + |Duε(x)|2

) p−2
2 |(Duε −Du) (x)|2 dx

) p
2

·
(ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

∣∣BR̃∣∣
) 2−p

2

≤ c

(ˆ
BR̃

|(Du−Duε) (x)|p dx
) 1
p

·
(ˆ

BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

) p−1
p


p
2

·
(ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

∣∣BR̃∣∣
) 2−p

2

= c

(ˆ
BR̃

|(Du−Duε) (x)|p dx
) 1

2

·
(ˆ

BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

) p−1
2

·
(ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

∣∣BR̃∣∣
) 2−p

2

, (4.158)

where we also used (4.151).
By Young’s inequality with exponents (2, 2), (4.158) implies

ˆ
BR̃

|(Duε −Du) (x)|p dx ≤ σ

ˆ
BR̃

|(Du−Duε) (x)|p dx

+cσ

(ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

)p−1

·
(ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

∣∣BR̃∣∣
)2−p

,

for any σ > 0, and if we choose σ < 1
2 , we have

ˆ
BR̃

|(Duε −Du) (x)|p dx ≤ c

(ˆ
BR̃

|A (x,Du(x))−Aε (x,Du(x))|
p
p−1 dx

)p−1
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·
(ˆ

BR̃

(
µ2 + |Du(x)|2

) p
2 dx+

∣∣BR̃∣∣
)2−p

.

Hence, by (4.147), we deduce

Duε → Du strongly in Lploc
(
BR̃
)
,

which implies

uε → u strongly in Lp
∗

loc
(
BR̃
)

and, up to a subsequence

uε → u almost everywhere in BR̃,

as ε→ 0.
Moreover, by the continuity of the map ξ 7→ DVp (ξ), we also get

DVp (Duε)→ DVp (Du) a.e. in BR̃, as ε→ 0.

Therefore, recalling (4.146), if we pass to the limit in (4.145), by Fatou’s Lemma and a
covering argument, we conclude, proving (4.115).

As a consequence of Theorem 4.5.1, Lemma 1.4.5 and Remark 1.4.7, we get the following
result.

Corollary 4.5.2. Let u ∈W 1,p
loc (Ω) be a solution to the obstacle problem (4.1) under

assumptions (4.4)–(4.6) and let us assume that there exists a function g ∈ Lp+2
loc (Ω) such that

(4.10) and (4.11) hold, for 1 < p < 2.
Then the following implication holds:

ψ ∈ L∞loc (Ω) and Vp (Dψ) ∈W 1,2
loc (Ω) =⇒ u ∈W 2,p

loc (Ω) and Du ∈ Lp+2
loc (Ω) .
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