
MEASUREMENT INSTRUMENTATION IN
PASSIVE BRAIN-COMPUTER INTERFACES

PH.D. IN INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

EEG Passive Brain Computer Interfaces assess cognitive and
emotional condition of the user by means of electric signal acquired
from the scalp. In the framework of Industry 4.0, Passive BCI
represents a promising monitoring channel to improve human-
machine interaction and integration.
In this thesis, the prototyping and characterization of BCI
measurement instrumentation to detect basic and complex mental
states are presented. Both off-the-shelf instrumentation and CE-
marked devices for medical use are exploited to acquire brain signals.
The proposed solutions address the challenge of maximizing
hardware wearability (minimizing the number of channels and
employing dry electrodes) without penalizing accuracy and latency. To
this end, appropriate signal processing strategies based on data-
driven approaches are developed.
Semi-custom machine learning algorithms are implemented for
feature extraction and classification.
Emotional valence, rehabilitation distraction, learning engagement,
and work-related stress are the case studies proposed to
experimentally validate the measurement instrumentation.
Databases of EEG signals available online were consulted and
experimental campaigns were conducted for a total of more than 200
subjects.
Crucial metrological issues in the measurement instrumentation of
passive BCIs are explored: e.g., definition of the measurand and its
compatibility with the quantitative approach, experimental
reproducibility, as well as cross- and within-subject reproducibility.
The within-subjects accuracy exceeded 92 % and 95 % for distraction
and emotional valence, respectively. The cross-subject accuracy
reached 99 % in recognition of a stressful condition.
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Abstract

EEG Passive Brain Computer Interfaces assess cognitive and emotional condition
of the user by means of electric signal acquired from the scalp.

In the framework of Industry 4.0, Passive BCI represents a promising moni-
toring channel to improve human-machine interaction and integration.

In this thesis, the prototyping and characterization of BCI measurement in-
strumentation to detect basic and complex mental states are presented.

Both off-the-shelf instrumentation and CE-marked devices for medical use are
exploited to acquire brain signals.

The proposed solutions address the challenge of maximizing hardware wear-
ability (minimizing the number of channels and employing dry electrodes) with-
out penalizing accuracy and latency. To this end, appropriate signal processing
strategies based on data-driven approaches are developed. Semi-custom machine
learning algorithms are implemented for feature extraction and classification.

Emotional valence, rehabilitation distraction, learning engagement, and work-
related stress are the case studies proposed to experimentally validate the mea-
surement instrumentation. Databases of EEG signals available online were con-
sulted and experimental campaigns were conducted for a total of more than 200
subjects.

Crucial metrological issues in the measurement instrumentation of passive
BCIs are explored: e.g., definition of the measurand and its compatibility with the
quantitative approach, experimental reproducibility, as well as cross- and within-
subject reproducibility.

The within-subjects accuracy exceeded 92 % and 95 % for distraction and emo-
tional valence, respectively. The cross-subject accuracy reached 99 % in recogni-
tion of a stressful condition.

Keywords: Brain Computer Interface, Health Monitoring, Wearable Device,
Emotions Recognition, Attention Measurement, Stress Assessment, Engagement
Detection, Machine Learning, Experimental Reproducibility
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Sommario

La Brain Computer Interfaces (BCI) Passiva basata su EEG valuta la condizione
cognitiva ed emotiva dell’utilizzatore attraverso il segnale elettrico acquisito dal
cuoio capelluto.

Nella cornice dell’Industria 4.0, la BCI passiva rappresenta un promettente
canale di monitoraggio per migliorare l’interazione e l’integrazione uomo-macchina.

In questa tesi, vengono presentate la prototipazione e la caratterizzazione
della strumentazione di misurazione BCI per rilevare stati mentali di base e com-
plessi.

Per acquisire i segnali cerebrali, sono stati impiegati sia la strumentazione off-
the-shelf che i dispositivi a marchio CE per uso medico.

Le soluzioni proposte affrontano la sfida di massimizzare l’indossabilità dell’
hardware (minimizzando il numero di canali e impiegando elettrodi dry) senza
penalizzare la accuracy e la latenza. A tal fine, vengono sviluppate appropriate
strategie di elaborazione del segnale basate su approcci data-driven. In partico-
lare vengono proposti algoritmi di machine learning semi-custom per l’estrazione
delle caratteristiche del segnale e la classificazione.

Valenza emotiva, distrazione in riabilitazione, engagement nell’apprendimento
e stress legato al lavoro sono i casi di studio proposti per validare sperimental-
mente la strumentazione di misura prototipata. Sono stati consultati database di
segnali EEG disponibili online e sono state condotte campagne sperimentali per
un totale di più di 200 soggetti.

Nella tesi vengono affrontate questioni metrologiche cruciali nella strumen-
tazione di misura delle BCI passive: per esempio, la definizione del misurando e
la sua compatibilità con l’approccio di assessment quantitativo, la riproducibilità
sperimentale, così come la riproducibilità inter- ed intra-soggettiva.
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Introduction

Cyber-Physical Human Systems (CPHS) integrate the physical and human com-
ponents into a synthetic hybrid system [1]. In the context of Industry 4.0, human
does not just exercise a defined role in an organization, but becomes part of a
highly-composite automated system [2, 3]. In industry or in health care, the smart
machines, non-human components of CPHS, are more and more connected to the
physical environment through sensors of all kinds. Thanks to a distributed intel-
ligence, the non-human actors can elaborate information and make decisions, re-
sulting highly empowered by technology innovation. Also humans benefit from
the new technological opportunities: by interacting with new-generation user in-
terfaces, they obtain a strengthening of cognitive, sensorial, and motor skills [4].

Among biosignal-based interfaces, Brain-Computer Interface (BCI) allows both
monitoring and control. Humans can send messages or decisions to the CPHS
through intentional modulation of brain waves. However, through the same sig-
nal, the system (and therefore also the human being part of it) acquires informa-
tion on the status of the user.

Passive BCI (complementary to active BCI) is the paradigm adopted when
the user does not directly and consciously control his electrical brainwaves and,
therefore, when the goal is the monitoring of his/her current state. There are
many invasive and non-invasive techniques for understanding the brain signals
such as PET (Positron Emission Tomography), MEG (Magneto Encephalogra-
phy), NIRS (Near-infrared Spectroscopy), fMRI (Functional Magnetic Resonance
Imaging), EROS (Event-related optical signal), and EEG (Electroencephalogram).
Among the mentioned systems, EEG offers a better temporal resolution. More-
over, several portable and wearable EEG solutions are already on the market.

Currently, the wearability improvement of EEG-based BCI instrumentation is
a widely shared challenge. Dry electrodes [5, 6] and a low number of channels
are promising strategies to enhance user comfort. However, appropriate signal
processing algorithms must be developed to compensate for losses in the signal-
to-noise ratio and the number of sources.

In the context of Industry 4.0, monitoring of emotions, attention, engagement,
and stress are pressing issues in different application domains, both in terms of
the production process and product innovation. The ongoing technological trans-
formation introduces new oportunity and risk specifically connected to the new
framework of very high human-machine interaction. Passive BCI is a promising
channel to improve the adaptivity of cyber-physical system to human. Among
those emerging under Industry 4.0, five issues will be focused on in this thesis:
(i) Emotional valence in the CPHS, (ii) Attention in robotic motor rehabilitation, En-
gagement in adaptive Extended Reality instrumentation for neuro-motor re- habilitation,
Engagement in learning 4.0, and Stress 4.0.
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Emotional valence in the CPHS. Emotion is the response to imaginary or real
stimuli characterised by changes in individual’s thinking, physiological responses,
and behaviour [7]. In the Circumplex Model [8] of emotion, valence denotes how
much an emotion is positive or negative. Discrimination of emotional valence is a
broad issue widely addressed in recent decades, affecting the most varied sectors
and finding application in multiple domains. Currently, real time monitoring of
emotion is proposed in application fields such as: industry [9], health [10, 11], and
entertainment [12]. Several biosignals have been studied over the years for emo-
tions recognition: cerebral blood flow[13], electroculographic (EOG) signals[14],
electrocardiogram, blood volume pulse, galvanic skin response, respiration, pha-
lanx temperature[15]. In recent years, several studies have focused on the brain
signal in particulare based on EEG [16]. There are already some portable EEG
solutions on the market. Currently, the measurand definition is a fundamental
issue, because the quantity is not univocally identified and many relevant theo-
ries are incompatible with the adoption of an interval scale (ordered and propor-
tionated). Moreover, experimental reproducibility, as well as cross-subject and
within-subject reproducibility are open challenges.

Attention in robotic motor rehabilitation. The effectiveness of robotic therapy on
motor recovery is well assessed in literature [17]. Recently, its impact on cogni-
tive functions was also investigated [18] . In general, neuromotor rehabilitation
exercise induces neuronal neuroplasticity and promotes motor recovery [19]. In
particular, the repetition of the exercise induces a reorganization of the motor
cortex. However, the repetition of the same exercise may induce weariness in
the subject and prevent a careful focus on the performance of the exercise. Con-
versely, completing the exercise, while maintaining the attention focus in a sus-
tained and selective way, promotes neuronal plasticity and motor learning [20,
21]. The attention to the motor task has an enhanced effect on rehabilitation per-
formance[22]. Many studies deal with assessing the attention and its different
dimensions through the analysis of the brain signals using the electroencephalog-
raphy [23]. However, an appropriate approach for clinical application seems to
be currently missing [24]. The high number of channels and the use of wet or
semi-wet electrodes penalize the wearability, limiting the clinical usability.

Engagement in adaptive Extended Reality instrumentation for neuro-motor rehabili-
tation. Engagement assessment is fundamental in clinical practice to personalize
treatments and improve their effectiveness. Indeed, patients involved in health-
care decision-making tend to perform better and to be healthier.

The standard tools used in clinical practice for engagement assessment are
questionnaires or rating scales. Both take into account the patients’ awareness
of their health and their therapeutic process. Beyond standard tools, biosignals-
based measurement methods are emerging. They allow an automated and real-
time engagement assessment. In particular, eye-blinking [25], heart rate vari-
ability [26], and brain activity [27, 28] were used to detect changes in patient’s
engagement. Among these, the EEG signal [29] offers good temporal resolution
and improves real-time performances. In the rehabilitation field, studies on EEG-
based engagement detection were mainly conducted on adults and focused only
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on cognitive engagement [30]. The reasons could be: (i) the engagement mea-
sure in the rehabilitation field has only recently become an object of interest [31],
and (ii) EEG-based engagement assessment in pediatric rehabilitation requires
the adoption of a respectful clinical protocol to protect the child and his psycho-
physical integrity (i. e. a non-interventional observational approach). Although
such a protocol is more comfortable for the children, it entails a general lack of
control over the engagement levels resulting in imbalanced data collections dur-
ing experimental campaigns.

Engagement in learning 4.0. Man’s relationship with knowledge is increas-
ingly mediated by technology. Digital era [32], the period of the pervasive use
of information and communication technologies in every area of life, has heav-
ily impacted on learning starting from the second half of the last century. Cur-
rently, the ongoing fourth industrial revolution (Industry 4.0) expands the role of
technology in learning processes even further: automated teaching platforms can
real-time adapt to the user skills and the new generation interfaces allow multi-
sensorial interactions with virtual contents.

The 4.0 technologies are strongly impacting on the creation, the conserva-
tion, and the transmission of knowledge [33]. In particular, the new immer-
sive eXtended Reality (XR) solutions make possible to achieve embodied learning
by restoring the role of learning catalyst to bodily activities [34]. Furthermore,
wearable transducers and embedded Artificial Intelligence (AI) increase real-time
adaptivity in human-machine interaction [35]. In detail, in the Learning 4.0 con-
text, the adaptation is reciprocal: the subject learns to use the human-machine
interface, but also the machine adapts to human by learning from her/him [36].

The effectiveness learning process mainly depends on the engagement level of
the learner [37]. Therefore, the engagement monitoring is a fundamental aspect
allowing the machine to adapt to the user. As concerns the engagement mea-
surability, evaluation grids and self-assessment questionnaires (to be filled out
by the observer or by the learner autonomously) are traditionally the most used
methods for the behavioral, cognitive, and emotional engagement detection [38].
In recent years, measures based on biosignals are spreading very rapidly. Fur-
thermore, the use of physiological sensors able to detect cognitive and emotional
engagement allows the real-time machine adaptive strategies. Among the differ-
ent physiological biosignals, the EEG appears to be one of the most promising
technology thanks to its low cost, low invasiveness, and high temporal resolu-
tion. Moreover, the EEG contains a broader range of information about the state
of a subject with respect to others biosignals [39]. However, published EEG-based
studies still do not take into account the different engagement types (i.e., cogni-
tive, emotional and behavioural) [40].

Stress 4.0. Stress is a psycho-physical pathological response to emotional, cog-
nitive, or social tasks, perceived as excessive by an individual. Many stimuli of
different nature (physical, toxic, emotional), external to individuals, could disturb
their homeostasis and psychological well-being, bringing to an adaptive or non-
adaptive response [41]. In industrial work, stress has negative impact on safety,
on the quality of the outcome and, thus, on the cost of the production process as
a whole [42]. Technological innovation, indeed, has introduced new sources of
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stress (stress 4.0). Intelligent automated systems in their various configurations,
robots or cobots in collaborative meaning [43], interact continuously with indi-
viduals in a constant relationship of cooperation and, at the same time, of uncon-
scious competition [44]. In literature, different indicators of stress status are pro-
posed, arising from products of neuroendocrine reactions affecting sympathetic
and parasympathetic nervous systems [45]. Some biochemical and biophysical
markers are measured usually by invasive methods: (i) Cortisol Concentration in
blood or saliva; (ii) Galvanic Skin Response; (iii) Heart Rate; and (iv) Brain Activ-
ity. Some use cases of stress recognition based on EEG are given in the literature
[46, 47]. Significant is a wearable EEG device for construction workers [48]. High
vulnerability characterizes the activities on-site of the workers during a construc-
tion process; so, they suffer from load stress. By including an EEG device into
their protective helmet, brain waves are monitored and analyzed along the ac-
tivity, by highlighting possible emotional states and, therefore, actual attention
levels [49]. However, state-of-the-art solutions exhibit at least one of the follow-
ing weaknesses: (i) limitations for daily on-field use, e.g. due to a large number
of wet electrodes and use of wired systems; (ii) accuracy less than 90%, even in
case of simultaneous ECG and EEG measurements [50]; and (iii) high cost, up to
thousands of dollars [51].

This thesis presents feasibility studies on monitoring mental states in typical
industry 4.0 contexts, using reproducible measurements of EEG signals, acquired
by highly wearable devices. In particular, for emotion assessment, the reference
theory adopted allows the measurement of emotions arranging them along inter-
val scales. In the case of engagement, the combined assessment of cognitive and
emotional dimension allows a better adaptability of the automated system both
in therapy and in learning. In application involving children the instrumentation
is prototyped through observational non-interventional experimental activities
and a suitable unbalanced data management method is adopted. In case of stress
detection a very low-cost prototype is developed.

For all the proposed solutions, several machine learning algorithms were com-
pared to maximize the accuracy in detecting the desired mental state.

The work is divided into two parts: part I, Background, and part II, Proposal.
In part I, the definitions of basic and complex mental states are presented, to-
gether with the state of the art of their assessment. In part II, the instrumentation
prototyping and experimental validation are reported.

The structure of the Chapters is as follows:

• Chapter 1: BCI detectable mental states. Emotional valence, Attention,
Engagement, and Stress are defined according to the main theories of Psy-
chological Literature.

• Chapter 2: State of art and metrological problems. The state of art in mea-
suring the above described mental state is presented. Moreover, some cru-
cial metrological issues are discussed.
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• Chapter 3: Basic mental state assessment. The prototyping of instrumen-
tation to measure valence emotion and distraction is presented. Then, the
experimental validation, with the relative results, is reported.

• Chapter 4: Complex mental state assessment. The design and realization
of instrumentation to assess engagement and stress are illustrated. Finally,
the experiments to validate the proposed solution are reported and results
are discussed.
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Part I

Background
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Chapter 1

BCI-detectable mental states in the
framework of industry 4.0

In this chapter, basic and complex mental states relevant in the perspective of in-
dustry 4.0 are introduced. In particular, emotions, distraction are discussed in the
sessions 1.1 and 1.2, respectively. In this thesis, engagement and stress are labeled
as complex mental states because many theories combine at least emotional and
congnitive dimensions for their definition. Engagement is discussed in Session
1.3, and Stress in Section 1.4.

1.1 Emotions

Discrimination of emotional valence is a broad issue widely addressed in recent
decades, affecting the most varied sectors and finding application in multiple
domains. Currently, real time monitoring of emotion is proposed in application
fields such as: industry [9], health [10, 11], and entertainment [12]. A huge variety
of definitions of the term emotion has been provided over the years. According
to the highlighted characteristics, definitions can be: (i) affective (i.e., feelings of
pleasure/displeasure and excitement/depression), (ii) cognitive (i.e., appraisal
processes), (iii) Stimuli-Organism-Response (SOR) based (i.e., effects of external
stimuli on physiological mechanisms), (iv) adaptive/ disruptive, (v) multiaspect,
(vi) restrictive (i.e., attempt to differentiate emotions from other processes), (vii)
motivational, and (viii) skeptical (i.e., the usefulness of the concept of emotion is
denied). A definition encompassing all the aforementioned aspects was provided
by Kleinginna et al.:"Emotion is a complex set of interactions among subjective
and objective factors, mediated by neural-hormonal systems, which can: (i) give
rise to affective experiences such as feelings of arousal, pleasure/displeasure; (ii)
generate cognitive processes such as emotionally relevant perceptual effects, ap-
praisals, labeling processes; (iii) activate widespread physiological adjustments
to the arousing conditions; and (iv) lead to behavior that is often, but not always,
expressive, goal-directed, and adaptive" [7].
Also the nature of emotions is a strongly debated issue. The focus is mainly on
whether they are discrete or dimensional.
Discrete theories of emotions suggests the existence of few separate emotions, each
with specific characteristic patterns. Six basic emotions (i.e., anger, disgust, fear,
joy, sadness, and surprise) were proposed by Ekman [52]. Other discrete models
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include usually from 2 to 10 emotions. Basic emotions are also called primary
emotions. Secondary emotions, instead, result from the combination of the pri-
mary ones.
Dimensional theories of emotion propose the existence of underlying affective di-
mensions common to all emotions. Thus, emotions can be represented in a multi-
dimensional space. In the Circumplex Model of Affect [53], proposed by Russel and
Mehrabian, emotions are categorized according to valence (i.e., positive/negative
affect) and arousal (i.e., low/high level of activation) dimensions. A third dimen-
sion, dominance, represents the presence/absence of control over the situation.
Further highly accredited theories on emotions are those of appraisal [54]. The
evaluation an individual makes about a stimulus or a situation determines the
elicitation of an emotion. The significance of the event strongly depends on the
subject’s personal experiences and goals.
Largely studied in the field of emotion recognition are the theories about cortical
brain lateralization. The Theory of Right Hemisphere claims that each emotional ex-
pression and perception takes place in the right hemisphere [55]. The Theory of Va-
lence affirms that the right hemisphere is dominant for processing negative emo-
tions and the left hemisphere is dominant for processing positive emotions [56].
Similarly, the Approach-Withdrawal model posits the role of the left- and right-
anterior regions in processing emotional states in the government of approach
and withdrawal behaviors [57]. The Behavioral Activation System – Behavioral Inhi-
bition System (BAS/BIS) model states that the left and the right frontal activity re-
flects the strength of the BAS and BIS systems, respectively [58]. BAS/BIS are the
two anatomical paths governing the emotional/motivational systems. The BAS
is responsible for the activation of the behavior in response to rewarding stim-
uli and it associates emotions (which are generally positive, like hope and relief)
with these behaviors. The BIS, on the other hand, inhibits behavior in response to
stimuli that are new, feared, and adverse. BIS activates with behaviors of passive
avoidance and extinction and the related emotions are generally negative (e.g.,
anxiety, fear).

1.2 Distraction

In everyday life, many types of distracting effects (visual, auditory, and their com-
binations) sidetrack attention when performing any task, especially if it requires
engagement [59]. Diez et al. identified attention just as the ability to select inter-
esting stimuli, by ignoring other distracting stimuli in the surrounding environ-
ment [60]. These distractors play a fundamental role in analyzing the attentional
process [61]. Changes in cognitive processes related to attention activate different
parts of the brain. Concurrent distracting events deactivate certain brain areas by
activating other ones [62].

Ladvas and Berti describe attention as the function that regulates the filtering
and organization of the information received from a subject, allowing his/hers
adequate responses [63]. Sohlberg and Mateer propose a characterization of at-
tention in four different dimensions [64]: (i) the Arousal indicates the activation
level and defines the psychophysiological activation allowing the afference of the
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different stimulations; (ii) the Selective attention: points out the ability to focus
attention on a specific source or sensory channel; (iii) the Distributed attention is
the ability to simultaneously process information from multiple sources; and (iv)
the Sustained attention is the ability to direct and maintain cognitive prolonged
activity on a specific stimuli.

The attention monitoring is crucial in neuromotor rehabilitation. Ang et al.
prove that a neuromotor rehabilitation exercise induces neuronal neuroplasticity
and promotes motor recovery [19]. In particular, the repetition of the exercise in-
duces a reorganization of the motor cortex. However, the repetition of the same
exercise may induce weariness in the subject and prevent a careful focus on the
performance of the exercise. Conversely, completing the exercise, while main-
taining the attention focus in a sustained and selective way, promotes neuronal
plasticity and motor learning [20, 21]. The attention to the motor task has an
enhanced effect on rehabilitation performance[22].

The use of distracting stimuli during the execution of a motor task, as opposed
to the careful concentration, characterizes the experimental set-ups of the studies
on the measurement of motor attention [59, 65]. Many studies deal with assess-
ing the attention and its different dimensions through the analysis of the brain
signals using the ElectroEncephalography (EEG) [23]. EEG is the most used tech-
nique because of its high temporal resolution, non-invasiveness, and low cost.
Several studies have shown that the level of attention affects the EEG signal [66,
67]. Therefore, variations in the EEG signal can be used to detect corresponding
changes in attention levels [68]. Attention creates a variation in brain signals that
can be assessed both in the time and in the frequency domain [69].

1.3 Engagement

The term engagement, derived from the verb "engager", is often used as a syn-
onym for commitment and / or involvement.

Several definitions have been provided over the years because of its multi-
dimensional and heterogeneous nature. In 1990, Kahn based the definition of
engagement on three broad dimensions: behavioural, cognitive, and emotional
[70]. Behavioral engagement is the set of observable indicators (postures, ges-
tures, actions, etc.) of persistence and participation. Cognitive engagement is the
effort to extend one’s intellectual commitment beyond the minimum required to
complete the task. Finally, emotional engagement is the positive emotional re-
actions of individuals to a task. In what follows, engagement is analyzed in the
framework of learning activities (Subsection 1.3.1) and adaptive automated reha-
bilitation solutions (Subsection 1.3.2).

1.3.1 Engagement in learning 4.0

Man’s relationship with knowledge is increasingly mediated by technology. Dig-
ital era [32], the period of the pervasive use of information and communication
technologies in every area of life, has heavily impacted on learning starting from
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the second half of the last century. Currently, the ongoing fourth industrial rev-
olution (Industry 4.0) expands the role of technology in learning processes even
further: automated teaching platforms can real-time adapt to the user skills and
the new generation interfaces allow multi-sensorial interactions with virtual con-
tents.

In the pedagogical domain, the concept of "Learning 4.0" is emerging and it is
not just a marketing gimmick [71].

The 4.0 technologies are strongly impacting on the creation, the conserva-
tion, and the transmission of knowledge [33]. In particular, the new immer-
sive eXtended Reality (XR) solutions make possible to achieve embodied learning
by restoring the role of learning catalyst to bodily activities [34]. Furthermore,
wearable transducers and embedded Artificial Intelligence (AI) increase real-time
adaptivity in human-machine interaction [35]. In detail, in the Learning 4.0 con-
text, the adaptation is reciprocal: the subject learns to use the human-machine
interface, but also the machine adapts to human by learning from her/him [36].

Traditionally, learning to use a new technological interface was a once-in-a-
lifetime effort as a child. For many people this has occurred with learning to read
and write. Recently, the rapidity of technological evolution has been entailing the
need to learn how to use several interfaces. The joy-pad, icon, touch/multi-touch
screen, speech and gesture recognition are examples of the interface (hardware
and software components) evolution of new interfaces.

More specifically, learning to use an interface is an hard task which requires
complex cognitive-motor skills. When human beings learned to use the mouse
and touchscreen, as well as when they learned to write, read or speak, their minds
learned complex cognitive-body patterns [72, 73].

Regarding the human-machine interfaces of older generation, the user was
autonomously required to explore the different available resources and learn their
use. Currently, the interfaces 4.0 can adapt in real time to the user supporting the
learning process.

The effectiveness learning process mainly depends on the engagement level of
the learner [37]. Therefore, the engagement monitoring is a fundamental aspect
allowing the machine to adapt to the user.

In this context, Engagement stands for concentrated attention, commitment,
and active involvement in contrast to apathy, lack of interest or superficial partic-
ipation [74, 75].

In the learning context, Fred Newman, in his report "Student Engagement
and Achievement in American Secondary Schools", defines engagement as: "the
student’s psychological investment in and effort directed toward learning, under-
standing, or mastering the knowledge, skills, or crafts that academic work is in-
tended to promote" [76, 77].

Moreover, Frederiks defines the student engagement as a meta-construct that
includes: behavioral, emotional, and cognitive engagement [78].

In general, learning a new interface can be traced back to a classic learning
problem. In the constructivism framework learning consists in the construction
of the schemes: units of knowledge, each relating to different aspect of the world,
including actions, objects, and abstract concepts [79]. When a subject learns a



1.3. Engagement 13

specific pattern, the neuroplasticity process is activated modifying the neural brain
structure [80]. Once the process is learned, the brain builds a myelinated axon
connection system to automate that. The adjacent neurons fire in unison, and
more the experience or operation is repeated, more the synaptic link between
neurons becomes strong [81]. The automated use of all mental processes as well
as the understanding and use of new technologies occurs through the creation of
neural diagrams and maps [82, 83]. During life, humans learn new skills or mod-
ify the already learned ones by enriching the existing neural maps. Therefore, the
introduction of increasingly innovative technologies requires a continuous brain
re-adaptation to new interfaces [84]. This effort is more effective when the learner
is engaged. An engaged user actuates learning in an optimal way, avoiding dis-
tractions, and increasing the mental performance [85, 86].

In [87], three different types of engagement are proposed:
behavioural, emotional, and cognitive engagements. Behavioral engagement

focuses on the observable actions during the learning process [88, 89]. Emotional
engagement regards the impact of emotions on the cognitive process effectiveness
and the effort sustainability for the users [90]. Cognitive engagement refers to the
amount of cognitive resources spent by the user in a specific activity [89, 91].

1.3.2 Engagement and adaptive automated rehabilitation plat-
forms

Engagement assessment is fundamental in clinical practice to personalize treat-
ments and improve their effectiveness. Indeed, patients involved in healthcare
decision-making tend to perform better and to be healthier.

In rehabilitation, Graffigna et al. defined patient engagement as a “multi-
dimensional psycho-social process, resulting from the conjoint cognitive, emo-
tional, and behavioral enactment of individuals toward their health condition
and management” [92]. The cognitive dimension refers to the meaning given by
the patient to the disease, its treatments, its possible developments, and its mon-
itoring. The emotional dimension consists of the emotive reactions of patients in
adapting to the onset of the disease and the new living conditions connected to
it. The behavioral dimension is connected to all the activities the patient acts out
to face the disease and the treatments.

Lequerica et al. defined engagement in rehabilitation as "a deliberate effort
and commitment to working toward the goals of rehabilitation interventions, typ-
ically demonstrated through active, effortful participation in therapies and coop-
eration with treatment providers" [93]. Moreover, the authors highlighted the role
of motivation in triggering and feeding engagement. Motivation can be intrinsic
or extrinsic. Deci and Ryan [94] defined intrinsically motivated behaviours as
those "for which the rewards are internal to the person". Conversely, extrinsically
motivated behaviours are performed to obtain external reward such as money or
praise. According to the authors, intrinsic goals are more powerful motivators
than extrinsic or externally imposed goals. Intrinsic motivational factors influ-
encing therapeutic engagement are: (i) perception of the need for treatment; (ii)
perception of the probability of a positive outcome; (iii) perception of self-efficacy
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in completing tasks, and (iv) re-evaluation of beliefs, attitudes and expectations
[93].

In pediatric rehabilitation, it is difficult to achieve engagement by relying only
on intrinsic motivation. Therefore, the extrinsic motivation is required. Children
only react to what is real, concrete, present and immediately satisfying.

A fundamental extrinsic factor in supporting the child’s self-esteem and per-
ceived self-efficacy in rehabilitation activities, is the relationship with the thera-
pist. As in the educational field, this process is referred to as scaffolding [95] and
it is intended as cognitive and emotional support. Thus, pediatric engagement
is a complex construct "involving a connection, a sense of working together, and
particular experiences that influence emotions, feelings, and motivation in the
therapy process" [96].

1.4 Stress

Stress is a psycho-physical pathological response to emotional, cognitive, or so-
cial tasks, perceived as excessive by an individual. Many stimuli of different
nature (physical, toxic, emotional), external to individuals, could disturb their
homeostasis and psychological well-being, bringing to an adaptive or non-adaptive
response [41]. In industrial work, stress has negative impact on safety, on the
quality of the outcome and, thus, on the cost of the production process as a
whole [42]. Technological innovation, indeed, has introduced new sources of
stress (stress 4.0). Intelligent automated systems in their various configurations,
robots or cobots in collaborative meaning [43], interact continuously with indi-
viduals in a constant relationship of cooperation and, at the same time, of uncon-
scious competition.

In literature, different indicators of stress status are proposed, arising from
products of neuroendocrine reactions affecting sympathetic and parasympathetic
nervous systems [45]. Some biochemical and biophysical markers are measured
usually by invasive methods: (i) Cortisol Concentration in blood or saliva; (ii)
Galvanic Skin Response; (iii) Heart Rate; and (iv) Brain Activity.

Cortisol is a hormone produced by the adrenal glands with the aim of pre-
serving homeostasis in all conditions tending to alter the normal body balance.
Cortisol concentration in blood has been used as the first index of the individual’s
response to stress. It is measured through repeated blood samples, or through
saliva samples, by means of less invasive methods but with less significance [42].

Skin conductance is a further parameter associated to the activation of the
sympathetic nervous system and, therefore, to stress. Stress induces an increase
in the epidermis moisture and, therefore, a reduction in skin resistance.

Furthermore, stress generates peripheral vasoconstriction that causes a de-
crease in wave amplitudes of electrocardiogram (ECG) and an increase in the
heart rate [45].

Brain activity produces electrical signals as a response to all kind of internal
and external stimuli. The signals are recorded either through functional Magnetic
Resonance Imaging, Positron Emission Tomography, or electroencephalography
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(EEG). All these techniques detect brain activity changes in the limbic system and
frontal regions.

EEG is the most widely used because it is easy to implement and little in-
trusive; moreover, EEG signals can be classified effectively through a frequency
analysis. Some use cases of stress recognition based on EEG are given in the lit-
erature[46, 47]. Significant is a wearable EEG device for construction workers
[48]. High vulnerability characterizes the activities on-site of the workers during
a construction process; so, they suffer from load stress. By including an EEG de-
vice into their protective helmet, brain waves are monitored and analyzed along
the activity, by highlighting possible emotional states and, therefore, actual at-
tention levels [49]. However, state-of-the-art solutions exhibit at least one of the
following weaknesses: (i) limitations for daily on-field use, e.g. due to a large
number of wet electrodes and use of wired systems; (ii) accuracy less than 90%,
even in case of simultaneous ECG and EEG measurements [50]; and (iii) high
cost, up to thousands of dollars [51].
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Chapter 2

State of art and metrological
problems

In this chapter, the state of art of EEG-based measurement of mental states is
presented. Furthermore, fundamental metrological issues concerning emotion
detection are discussed in Section 2.1. Attention assessment is detailed in Section
2.2, while engagement and stress measurement are presented in Section 2.3 and
2.4, respectively.

2.1 Measurement of Emotion

Several biosignals have been studied over the years for emotions recognition:
cerebral blood flow[13], electroculographic (EOG) signals[14], electrocardiogram,
blood volume pulse, galvanic skin response, respiration, phalanx temperature[15].
In recent years, several studies have focused on the brain signal. There are many
invasive and non-invasive techniques for understanding the brain signals such
as: PET (Positron Emission Tomography), MEG (Magneto Encephalography),
NIRS (Near-infrared Spectroscopy), fMRI (Functional Magnetic Resonance Imag-
ing), EROS (Event-related optical signal), EEG (Electroencephalogram). Among
the mentioned systems, EEG offers a better temporal resolution. There are al-
ready some portable EEG solutions on the market. Currently, a scientific chal-
lenge is to use dry electrodes [5, 6] and increasingly reduce the number of chan-
nels to maximise the user comfort while maintaining high performances.

The measurement of emotions[97] is different from the emotion recognition
and it requires certain conditions to be met. The first condition concerns the
use of an interval scale besides the management of the reproducibility problem.
The well-assessed taxonomy given by Stevens [98] provided a fourfold classifi-
cation scheme of measurement scales: nominal, ordinal, interval, and ratio scales.
Nominal and ordinal scales represent non-additive quantities and, therefore, can-
not be considered for measurements according to the International Vocabulary of
Metrology[99]. Studies adopting the theory of discrete emotions [100] employ a
nominal scale providing only classifications. Conversely, the Circumplex Model
allows the measurement of emotions by arranging them along interval scales.
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As concerns the second condition, often, the same stimulus or environmental
condition does not induce the same emotion in different subjects (cross-subject re-
producibility loss). Furthermore, the same individual exposed to the same stim-
ulus but after a certain period of time, reacts in a different way (within-subject re-
producibility loss). In psychology research, suitable sets of stimuli were validated
experimentally by using significant samples and are widely used by clinicians
and researchers [101]. In particular, several stimuli datasets were produced refer-
ring to the Circumplex Model and their scores were arranged along an interval
scale. However, the problem of standardizing the induced response remains still
open, also considering, for example, the issue of the cross-cultural generality of
perceptions. The effectiveness of the emotion induction can be verified by means
of self-assessment questionnaires or scales. The use of the validated stimulus rat-
ing and the subject’s self-assessment can represent an effective strategy towards
the construction of a metrological reference for the EEG-based reproducible mea-
surement of emotions [102]. Furthermore, the use of assessment tools during the
sample construction can soften possible emotional bias caused by psychiatric dis-
orders.

As concerns the measurement model, older approaches predominantly made
use of a priori knowledge. Emotions studies, based on spatial distribution anal-
ysis of EEG signal, were principally focused on the asymmetric behaviour of the
two cerebral hemispheres[103, 104, 105]. Two theories, in particular, model the
relationship between emotions and asymmetry in a different way. The Theory of
Right Hemisphere posits that the right hemisphere is dominant over the left hemi-
sphere for all forms of emotional expression and perception. Instead, the Theory of
Valence states that the right hemisphere is dominant (in term of signal amplitude)
for negative emotions and the left hemisphere is dominant for positive emotions.
In particular the theory of valence focuses on what happens in the two areas of
the prefrontal cortex. The prefrontal cortex plays an important role in the control
of cognitive functions and in the regulation of the affective system[106]. The EEG
asymmetry allows to evaluate the subject’s emotional changes and responses and,
therefore, it can serve as an individual feature to predict emotional states [107].
The most common frequency index for emotion recognition is the so called frontal
alpha asymmetry (αasim)[108]:

αasim = ln(αPSDL
)− ln(αPSDR

) (2.1)

where the parameters αPSDL
and αPSDR

are the power spectral densities of the left
and right hemispheres in the alpha band. Frontal alpha asymmetry could also
predict emotion regulation difficulties by resting state EEG recordings. Frontal
EEG asymmetry effects are quite robust to individual differences [109]. Several
modern Machine Learning systems automatically carry out the feature extraction
procedure. Therefore, a very large number of data from different domains (i.e.,
spatial, spectral or temporal) can be used as input to the classifier without an
explicit hand-crafted feature extraction procedure.

Spatial filters usually enhance sensitivity to particular brain sources, to im-
prove source localization, and/or to suppress muscular or ocular artifacts [110].
Two different categories of spatial filters exist: those dependent on data and those
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not dependent on data. Spatial filters not dependent on data (i.e., Common Av-
erage Reference, Surface Laplacian spatial filters) generally use fixed geometric
relationships to determine the weights of the transformation matrix. The data-
dependent filters, although more complex, allow better results for specific appli-
cations because they are derived directly from user’s data. They are particularly
useful when little is known about specific brain activity or when there are con-
flicting theories (i.e., theory of valence and theory of the right hemisphere).

2.1.1 Related Works

In this subsection, a State of the Art of the principal works related to emotion
detection is reported. All the collected works exhibited at least an experimental
sample of 10 subjects. Samples with number of subjects below this threshold were
considered not statistically significant. The reported studies are organised in two
paragraphs according to the used dataset: public and self-produced. A further
paragraph collects analysis on the influencing factors of the experimental setup
for the emotion assessment.

Studies based on public datasets. Studies claiming the best accuracy on emo-
tional valence assessment are based on public EEG signal datasets: SEED [111,
112, 113, 114, 115, 116], DEAP [117, 118, 119, 120, 112, 113, 121, 122, 123, 124, 125,
114, 126, 127, 115], and DREAMER [124, 125, 116].

SJTU Emotion EEG Dataset (SEED)[128, 129] is a collection of EEG signals pro-
vided by the Center for Brain-like Computing and Machine Intelligence (BCMI
laboratory) of the Shanghai Jiao Tong University. EEG data were acquired while
15 participants watched 15 film clips, of about 4 minutes, eliciting positive, neu-
tral, and negative emotions. The videos were selected in order to be understood
without explanation, thus an implicit emotion recognition task was employed.
The experiment, made of 15 trials, was repeated in 3 different days and EEG sig-
nals were recorded through the 62-channel Neuroscan system. Participants filled
in the self assessment questionnaire immediately after each trial to report their
emotional reactions.
The Dataset for Emotion Analysis using EEG, physiological and video signals
(DEAP) [130, 131] is a multimodal dataset developed to analyse human affective
states. The EEG and peripheral physiological signals of 32 participants, watching
40 one-minute long music videos were recorded. The EEG signals were acquired
through the 32-channel BioSemi device. Participants were informed about the
purpose of the experiment, but not further instructions were given, indeed, the
emotion recognition task was implicit. Each video was rated in terms of arousal,
valence, like/dislike, dominance and familiarity.
The Database for Emotion Recognition through electroencephalogram (EEG) and
electrocardiogram (ECG) Signals from Wireless Low-cost Off-the-Shelf Devices
(DREAMER) [132, 133] is a multimodal database recorded during emotional elic-
itation by means of audio-visual stimuli. 18 film clips were employed to elicit:
amusement, excitement, happiness, calmness, anger, disgust, fear, sadness, and
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surprise. The film clips are long between 65 and 393 s. 23 participants under-
took the experiment. Details about the experimental procedure were provided to
participants and the rating scales used for emotional assessment were explained.
An implicit emotion recognition task was performed since the subjects were not
required to get into the target emotional state. Volunteers rated their affective
states in terms of valence, arousal, and dominance. EEG signals were captured
using the 14-channel Emotiv Epoc+.

A multichannel EEG emotion recognition method based on a Dynamical Graph
Convolutional Neural Network (DGCNN) was proposed by Song et al[116]. Ex-
periments were conducted on the 62-channels dataset SEED [134] and on the 14-
channels dataset DREAMER [132]. The average accuracies of 90.4 % and 79.95 %
were achieved on the SEED dataset for within-subject and cross-subject settings
respectively, in a three classes emotion recognition. The average accuracy of 86.23
% was obtained on valence dimension (positive or negative) of the DREAMER
dataset in the within-subject configuration.
A Multi-Level Features guided Capsule Network (MLF-CapsNet) was employed
by Liu et al. for a multi-channel EEG-based emotion recognition[124]. Valence
(positive or negative) was classified with an average accuracy of 97.97 % on
the 32-channels DEAP [130] dataset and 94.59 % on the 14-channels DREAMER
dataset. Within-subject experiments were performed. Comparable results were
obtained by applying an end-to-end Regional-Asymmetric Convolutional Neural
Network (RACNN) on the same datasets in a within-subject setup[125].

Studies based on self-produced datasets. EEG signal, acquired through ad hoc
experimental activities, are employed in further studies [118, 135, 136]. The main
stimuli used to elicit emotions in human subjects are: (i) projection of standard-
ized sets of emotionally arousing images; (ii) viewing audio visuals; (iii) listening
to music or sounds; and (iv) recall of autobiographical events. Below, the focus is
mainly on studies using standardized image sets (i.e. International Affective Pic-
ture System (IAPS)[101], and Geneva Affective Picture Database (GAPED)[137]).
The use of a set of normative emotional stimuli (each image is rated according
to the valence, arousal and dominance levels) enables to select stimuli eliciting a
specific range of emotions.
Mehmood et al. used stimuli from the IAPS dataset to elicit positive or negative
valence in 30 subjects[136]. The EEG signals were recorded via an 18 electrolyte
gel filled electrodes caps. A feature extraction method, using Hjorth parameters,
was implemented. A 70 % cross-subject accuracy was reached using a SVM clas-
sifier. Self-assessment tests were not administered to subjects.
More recently, several studies focused on channel reduction for improving the
wearability of the emotion detection systems [138, 139, 140, 141, 142, 143, 144,
145, 146, 147].
Marín-Morales at al. designed virtual environments to elicit positive or negative
valence[146] . Images from IAPS dataset were used as stimuli. The emotional im-
pact of the stimulus was evaluated using a SAM questionnaire. A set of features,
extracted from EEG and ECG signals, was input into a Support Vector Machine
classifier obtaining a model’s accuracy of 71.21 % along the valence dimension
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(binary classification problem). A 10-channel device was used to record the EEG
signal from 15 subjects. Sensors’ foams were filled with Synapse Conductive Elec-
trode Cream.

The EEG signals of 11 subjects were used to classify valence (positive and neg-
ative) by the authors[140]. Pictures from GAPED dataset were used as elicitative
stimuli. The accuracy rates of a SVM classifier were 85.41 % and 84.18 % using
the whole set of 14 channels and a subset of 10 channels respectively, in the cross-
subject setting. EEG signals were acquired through a wet-14 channels device and
no self-evaluation questionnaires were used.

Wei et al. proposed a real-time valence emotion detection system based on
EEG measurement realized by means of a headband coupled with printed dry
electrodes [147]. 12 participants undertook the experiment. Pictures selected
from GAPED were used to elicit positive or negative valence. Self-evaluation
questionnaires were employed. Two different combinations of 4 channels were
tested. In both cases, the cross-subject accuracy was 64.73 %. The highest within-
subject accuracy increased to 91.75 % from 86.83 % switching from one config-
uration to another. The latter two works [140, 147] both proposed the use of
standardized stimuli. However, in the first one[140], the concomitant use of
self-assessment questionnaires was missing. Moreover, in the second one[147],
self-assessment questionnaires were employed but the results were not compared
with the scores of the used stimuli. Failure to compare individual reactions with
the standardized stimulus scores, negatively impacted on the result of the exper-
iment.

Happy or sad emotions were elicited through images provided by the IAPS,
by Ang et al[144]. The EEG signals were acquired through FP1 and FP2 dry
electrodes. An Artificial Neural Network (ANN) classifier was fed with discrete
wavelet transform coefficients. The best detection accuracy was 81.8 % on 22 sub-
jects. Beyond the use of standardized stimuli, the subjects were also administered
self-assessment scales. Moreover it is unclear how the SAM scores were used and
whether the approach is within-subject or cross-subject.
Following two studies claiming a single-channel EEG based emotion recognition
achieved employing audio-visual stimuli. Ogino et al. developed a model to esti-
mate valence by using a single-channel EEG device[139]. Fast Fourier Transform,
Robust Scaling and Support Vector Regression were implemented. EEG signals
from 30 subjects were acquired and an average classification accuracy of 72.40 %
was reached in the within-subject configuration. Movie clips were used to elicit
emotional states and SAMs were administered to the participants for rating the
valence score of the stimuli.
A cross-subject emotion recognition system based on Multilayer Perceptron Neu-
ral Network was proposed by Pandey et al[143]. An accuracy of 58.5 % was
achieved in the recognition of positive or negative valence on DEAP dataset us-
ing the F4 channel.
A reduced number of channels implies a low spatial resolution. Traditional strate-
gies for EEG signal feature extraction, combined with a-priori knowledge on spa-
tial and frequency phenomena related to emotions, can be unusable in case of
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few electrodes. In a previous work of the Authors, for a single-channel stress de-
tection instrument, a-priori spatial knowledge drove electrodes positioning [148].
However, signal processing was based on innovative and not well-settled strate-
gies. Although proper psychometric tools were adopted for the construction of
the experimental sample, the reproducibility of the experiment was adversely af-
fected by the use of not standardized stimuli.
Further not standardized stimuli are personal memories. For example, the study
in [145] presents a very interesting data fusion approach for emotion classifica-
tion based on EEG, ECG, and photoplethysmogram (PPG). The EEG signals were
acquired through an 8-channel device. A Convolutional Neural Network (CNN)
was used to classify three emotions reaching an average accuracy for the cross-
subject case of 76.94 %. However, personal memories of the volunteers were used
as stimulus, compromising the reproducibility of the experimental results. More-
over, due to the adoption of the discrete emotion model, the study cannot be taken
into account for emotion measurement goal.

Influencing factors of the experimental conditions. In the field of emotion
recognition, the use of audio-visual stimuli guarantees higher valence intensity
(positive or negative) with respect to visual stimuli (pictures) [149]. Therefore,
the sensitivity of the measurement system increases and the accuracy in emotion
detection can be higher. However, currently there are no standardized audiovi-
sual datasets to employ for eliciting emotions. The only exception is the dataset
used by DREAMER, which contains a low number of stimuli (only 18), so penal-
ising their randomic administration and increasing the risk of bias. Not even the
most widely used EEG datasets SEED and DEAP employ a standardized stimu-
lus dataset to elicit emotions.
Also the use of explicit rather than implicit tasks affects the effectiveness of the
mood induction. Explicit instruction helps participants to get into the target emo-
tional state, but it can be a further source of uncertainty. However, the existing
standardized stimuli (IAPS, GAPED, OASIS, etc) are predominantly images char-
acterized in an implicit setup. In order to draw on this resource and make the
experiment reproducible, an implicit task, with static images, should therefore be
adopted. Among the reported studies, task information is generally omitted.
Another factor that can influence the effectiveness of the emotional state induc-
tion is the way of stimuli selection. Referring to the main standardized stimuli
datasets, images can be selected by choosing those with higher or lower valence
scores. Polarized stimuli could increase the intensity of a certain emotional state
with respect to random chosen stimuli.
For all the presented studies (i) type of stimuli, (ii) type of task, (iii) number of
channels, (iv) number of participants, (v) classifier, (vi) number of classes, (vii)
within-subject accuracy, and (viii) cross-subject accuracy are reported in Table
2.1.
The accuracy values are reported in both the within-subject and cross-subject
cases, when available. In the first case, classification was carried out using data
of a single subject both for training and test phases, while in the second one, clas-
sification was carried out employing the data set as a whole.
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TABLE 2.1: Studies on emotion recognition classified according
to the employed datasets (i.e. SEED, DEAP, and DREAMER),
stimuli (v="video", p="picture", m="memories"), task (i="implicit",
e="explicit", n.a.="not available"), #channels, #participants, #classes,

classifiers, and accuracies (n.a.="not available").

Dataset Study Stimuli Task #channels #participants Classifier #classes Within-subject Cross-subject
accuracy (%) accuracy (%)

SEED [111] v i 62 15 SincNet-R 3 94.5 90.0
[116] v i 62 15 DGCNN 3 90.4 80.0

[112] v i 62 15 DNN 3 n.a. 96.8
v i 32 32 2 n.a. 89.5

SEED &

[113] v i 62 15 SNN 3 n.a. 96.7

DEAP

v i 32 32 2 n.a. 78.0

[123] v i 62 15 SBSSVM 2 n.a. 72.0
v i 32 32 2 n.a. 89.0

[114] v i 62 15 CNN 3 90.6 n.a.
v i 32 32 2 82.8 n.a.

[115] v i 62 15 CNN 2 n.a. 86.6
v i 32 32 2 n.a. 72.8

DEAP

[117] v i 32 32 H-ATT-BGRU 2 n.a. 69.3
[119] v i 32 32 CNN 2 n.a. 77.4
[120] v i 4 32 LDA 2 n.a. 82.0
[122] v i 32 32 LSTM-RNN 2 n.a. 81.1
[126] v i 32 32 Kohonen-NN 2 76.3 n.a.
[127] v i 32 32 SVM + FCM 2 78.4 n.a.
[143] v i 1 32 MLP 2 n.a. 58.5

[121] v i 32 32 BioCNN 2 83.1 n.a.
v i 14 23 2 56.0 n.a.

DEAP & [124] v i 32 32 MLF-CapsNet 2 98.0 n.a.
DREAMER v i 14 23 2 94.6 n.a.

[125] v i 32 32 RACNN 2 96,7 n.a.
v i 14 23 2 97,1 n.a.

[116] v i 14 23 DGCNN 2 86.2 n.a.

SELF-

[118] v i 19 40 MLP, KNN, and SVM 2 n.a. 90.7

PRODUCED

[138] v n.a. 1 20 MC-LS-SVM 2 n.a. 90.6
[135] v n.a. 14 10 RVM 2 91.2 n.a.
[139] v n.a. 1 30 SVM 2 72.4 n.a.
[141] v i 1 19 k-NN 3 94.1 n.a.
[142] p e 3 16 SVM 6 n.a. 83.3
[140] p n.a. 10 11 SVM 2 n.a. 84.2
[136] p n.a. 18 30 SVM 2 n.a. 70.0
[144] p n.a. 2 22 ANN 2 n.a. 81.8
[146] p n.a. 10 38 SVM 2 n.a. 71.2
[147] p n.a. 4 12 LDA 2 86.8 64.7
[145] m e 8 20 CNN 3 n.a. 76.9

2.1.2 Statement of the metrological problem

The path towards the measurability of emotions still remains to be completed. In
this study, some important steps are carried out to achieve this goal:

• a theoretical model compatible with emotion measurability was adopted;

• people with high scores on the Patient Health Questionnaire (PHQ) were
excluded from the experimental sample in order to soften the bias of de-
pressive disorders;

• standardized stimuli were used jointly with self-assessment questionnaires
to reduce the intrinsic uncertainty of the measurand;

Nevertheless, there are still several aspects to continue working on:

• a more complete definition of an emotion model, which incorporates, for ex-
ample, appropriately adjusted analyses for confounders including the im-
pact of individual personality on the specific emotional response;
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• identification of a measurement unit (enhancing the important role played
in this direction by biosignals, including the EEG);

• an uncertainty analysis for identifying and weighing the sources in the mea-
surement processes. Just to remember a few: (i) the theoretical model, (ii)
the stimulus, (iii) the task, (iv) the specific individual emotional response,
(v) the peculiar relationship between the individual emotional response and
its manifestation in terms of neurosignal, (vi) the signal acquisition instru-
ment, and (vii) the algorithms for signal classification.

2.2 Measurement of attention

Many studies deal with assessing the attention and its different dimensions through
the analysis of the brain signals using the ElectroEncephalography (EEG) [23].
EEG is the most used technique because of its high temporal resolution, non-
invasiveness, and low cost. Several studies have shown that the level of attention
affects the EEG signal [66, 67]. Therefore, variations in the EEG signal can be
used to detect corresponding changes in attention levels [68]. Attention creates
a variation in brain signals that can be assessed both in the time and in the fre-
quency domain [69]. In what follows, the analysis focuses on measuring attention
during motor rehabilitation activities. In fact, Chapter 3 presents a solution for
robot-based adaptive motor rehabilitation.

Most of the studies in the rehabilitation sector adopted a within subject ap-
proach for training the classifiers in distraction detection. Asayb et al. in 2017
[59] proposed to assess the attention during the flexion-extension of the ankle in
presence of auditory distractors. Using a 18-channel system and wet electrodes
on 12 participants, they obtained an average accuracy of 71 %, by extracting time-
frequency features from 1.5-s epochs. Hamadicharef, Brahim, et al. [150] pro-
posed an interesting processing system (already widely used in the EEG field
for Motor Imagery) for assessing the attention, during a cognitive task with eyes
closed and opened. This processing involves a Filter-Bank in relation to the Com-
mon Spatial Pattern. A 15-channel EEG system achieves an average accuracy of
69.2 % on five subjects with a 2-s time window. Antelis, et al. [151] proposed
the distraction detection during robot-assisted passive movements of the upper
limb. Six patients were connected to a 32-channels EEG by wet electrodes and
to the robot‘s end-effector for assisted passive movements. They got an aver-
age accuracy of 76.37 % in classifying 3-s epochs, when mentally count back in
threes, starting in a self-selected random three-digit number, assured the distrac-
tion condition. In 2019 Asayb et al. [65] proposed an upgrade of their previous
work using a 28-channel EEG system and wet electrodes. Three different dis-
tractors characterized the experimental set-up. Signal processing was based on
spectro-temporal features extracted from 3-s epochs. The obtained average accu-
racy was 85.8 % by exploiting the motor-related cortical potential. However, in
this state of the art, an appropriate approach for clinical application seems to be
missing. The high number of channels and the use of wet or semi-wet electrodes
penalize the wearability, limiting the clinical usability.
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2.3 Measurement of engagement

Two applications field for engagement measurement are presented below. Sub-
section 2.3.1 focuses the learning contex, while in Subsection 2.3.2, the pediatric
neuro-motor rehabilitation application field is presented.

2.3.1 Engagement assessment during learning activities

In learning activities, evaluation grids and self-assessment questionnaires (to be
filled out by the observer or by the learner autonomously) are traditionally the
most used methods for the behavioral, cognitive, and emotional engagement de-
tection [38]. In recent years, measures based on biosignals are spreading very
rapidly. Furthermore, the use of physiological sensors able to detect cognitive and
emotional engagement allows the real-time machine adaptive strategies. Among
the different physiological biosignals, the EEG appears to be one of the most
promising technology thanks to its low cost, low invasiveness, and high temporal
resolution. Moreover, the EEG contains a broader range of information about the
state of a subject with respect to others biosignals [39]. In 1995, authors in [152]
proposed an engagement index to decide when to use the autopilot and when to
switch to the manual one during a fly simulator session. The engagement index
was E = β

θ+α
where α, β, and θ are the EEG frequency bands in (8-13) Hz, (13-22)

Hz, and (4-8) Hz respectively.
Several studies used this index as engagement estimator also in learning con-

texts [153, 38, 154]. However, the proposed index does not take into account the
different engagement types (i.e., cognitive, emotional and behavioural) proposed
by the theories previously reported in Section 1.3. Different methods for learn-
ing engagement detection are proposed in literature [154]. For the behavioral
engagement assessment, observation grids (used to support direct observations
or video analysis) were proposed [155, 156]. For the cognitive and emotional en-
gagement assessment, self-assessment questionnaires and surveys (compiled au-
tonomously by the user) were developed [157, 158]. In recent years alternative en-
gagement assessment methods based on physiological sensors have established:
heart-rate variability, galvanic skin response, and EEG. Among these biosignal,
the most promising for engagement assessment is the EEG. As already described,
the learning is based on a neurological changes set, and the EEG presents the pos-
sibility of studying these the neural modification [38, 29, 159, 31, 160]. The EEG
system is low-cost and non-invasive, and provides information on brain activ-
ity within milliseconds. It is now commonly used in many application [161, 24]
including the cognitive and emotion engagement assessment as well as the detec-
tion of the underlying elements: emotions recognition and cognitive load activity
assessment respectively [162, 163, 164, 165, 166, 167, 168].

To achieve a correct metrological reference of the EEG-based cognitive and
emotional engagement constructs, a reproducibility problem arises. From emo-
tional point of view, when eliciting a specific emotion, the same stimulus does
not often induce the same emotion in different subjects. The effectiveness of the
induction can be verified by means of self-assessment questionnaires or scales.
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The combined use of standardized stimuli and subject’s self-assessment ratings
can be an effective way to build a metrological reference for a reliable EEG-based
emotional engagement detection [102]. From the cognitive point of view, when
the subject is learning, the working memory identifies the incoming information
and the long-term memory constructs and stores new schemes on the basis of
the past ones. While the already built schemes decrease in the working memory
load, the construction of new schemes entails its increase [39, 169]. Therefore,
increasing difficulty levels allows to induce different cognitive states; the cog-
nitive engagement level grows up according to the proposed exercise difficulty
increases.

2.3.2 Engagement detection in pediatric rehabilitation

The standard tools used in clinical practice for engagement assessment are ques-
tionnaires or rating scales. Both take into account the patients’ awareness of
their health and their therapeutic process. In adult rehabilitation, the most used
are: Patient Activation Measure (PAM-13) [170] and Patient Health Engagement
(PHE) scale [171]. Recently, also in pediatric rehabilitation, engagement assess-
ment scales have been developed and validated. The Pediatric Rehabilitation
Intervention Measure of Engagement-Observation (PRIME-O) version [172] and
the Pediatric Assessment of Rehabilitation Engagement (PARE) scale [173] were
designed to capture signs of emotional, cognitive, and behavioral engagement for
clients and service providers and in the client-provider interaction. Beyond stan-
dard tools, biosignals-based measurement methods are emerging. They allow
an automated and real-time engagement assessment. In particular, eye-blinking
[25], heart rate variability [26], and brain activity [27, 28] were used to detect
changes in patient’s engagement. Among these, the EEG signal [29] offers good
temporal resolution and improves real-time performances.

In the rehabilitation field, studies on EEG-based engagement detection were
mainly conducted on adults and focused only on cognitive engagement. In [174],
a computational framework was proposed for real-time cognitive engagement
(CE) recognition using electroencephalography (EEG). A deep Convolutional Neu-
ral Network was used to extract task discriminative spatio-temporal features and
predict the CE level for two classes: engaged vs. disengaged. Experiments were
conducted on 8 subjects performing the Go/No-Go paradigm to induce cognitive
fatigue. An average inter-subjective accuracy of 88.13% was reached. In [31], the
EEG signals were acquired for monitoring cognitive engagement in stroke pa-
tients while they executed active and passive motor tasks. Event-related desyn-
chronization differences between tasks were observed during both initial and
post-movement periods. EEG data were used to classify each epoch as involv-
ing the active or passive motor task. Average classification accuracy was 80.7 ±
0.1% for grasping movement and 82.8 ± 0.1% for supination movement.

Recently, a first study on engagement in pediatric rehabilitation was proposed
[175]. Positive/negative engagement of autistic patients was classified starting
from EEG signals and gesture recognition. The EEG signals were acquired through
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the single-channel MindWave; Kinect was instead employed for gesture recog-
nition. Five children (two with autism) undertook the experiment. An inter-
subjective accuracy of 95.8% was achieved in classifying positive or negative en-
gagement. However, the study does not specify the explored engagement di-
mensions (i.e. emotional, cognitive, or behavioral). To date, to the best of our
knowledge, only one study is present in the literature on this topic. The reasons
could be: (i) the engagement measure in the rehabilitation field has only recently
become an object of interest [31], and (ii) EEG-based engagement assessment in
pediatric rehabilitation requires the adoption of a respectful clinical protocol to
protect the child and his psycho-physical integrity (i. e. a non-interventional
observational approach). Although such a protocol is more comfortable for the
children, it entails a general lack of control over the engagement levels resulting
in imbalanced data collections.

2.4 Measurement of stress

Several methods for stress assessment, like self-assessment scale, or question-
naires, follow a psychological approach [176]. As an example, in human-robot
interaction, questionnaires to analyze the psychological effect of cycle time on
operators [177] highlighted frustration, effort, and a dissatisfaction feeling about
own performance.

As more direct and objective tools for stress detection, biosignals have been
proposed in several studies [178]. Physiological parameters, as EEG signals,
blood volume pulse (BVP), electro-oculogram (EOG), salivary cortisol level (SCL)
[179], heart rate variability (HRV) [180], galvanic skin response (GSR), or elec-
tromyography (EMG) are assessed [45].

Compared to other biosignals, EEG proved better latency and robustness to
artifacts due to physical activity [47] [181]. In Industry 4.0 scenarios, EEG has
been widely applied to assess individuals’ stress in workplace in order to improve
workers’ safety, health, well-being, and productivity [48][182] [183]. Thanks to
the ease of application and removal, dry electrodes are increasingly used to re-
liably search human cognitive states in real-life conditions. They guarantee the
quality of the EEG signal which approaches the wet sensors, as demonstrated
in [5, 6]. Beside that, EEG is regarded as one of the most reliable and effective
techniques for identifying fatigue and monitoring stress level in drivers [184, 46,
185]. The strategies for EEG-based stress detection can be divided into two main
approaches: data-driven and based on handcrafted features. In the first approach,
the study is linked to the neurophysiological basis of the phenomenon. For data-
driven approaches, the brain remains a black-box. They learn the appropriate
features of the signal using EEG data according to the criterion of maximizing
the accuracy of the classification.
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2.4.1 Methods based on handcrafted feature for stress detection

Systematic alterations in frontal EEG asymmetry, in response to specific emo-
tional stimuli, can be exploited to analyze emotional response [109]. In par-
ticular, EEG asymmetry proved to be capable of predicting state-related emo-
tional changes and responses. For example, a greater self-reported happiness or
positively-valued stimuli might be expected to be associated with greater rela-
tive left frontal activity. Therefore, greater relative right frontal activity would be
expected in response to negative stimuli [186],[187]. However, fear or happiness
response to stimuli may either be attenuated or amplified according to any given
individual’s trait pattern of frontal EEG asymmetry [186].

Different models were presented: Baron and Kenney linear model may pre-
dict individual’s response to fear relevant stimuli. According to the relative dif-
ference between the left and right hemisphere, the EEG asymmetry may serve
both to amplify and attenuate the effect of the fear relevant stimuli. Some indi-
viduals show the increase of relative right versus left sided activity in response to
negative cues and the increase of left versus right sided activity to positive cues
[188]. Coan and Allen [107] presented another linear model to predict emotional
experience using emotion type and trait frontal EEG asymmetry. The frontal EEG
asymmetry may serve as a useful liability marker also for depression and anxiety
[189]. Many works, using EEG caps with a limited number of electrodes, demon-
strated that stress causes changes in regions of prefrontal and frontal areas [179]
[47] [186].

2.4.2 Data-driven methods for stress detection

Different classification methods try to face the main problems of EEG signals,
including the low signal-to-noise ratio, their non stationarity over time within
or between users, and the limited amount of training data typically available to
calibrate the classifiers[190].

A large number of informative and measurable properties (features) of EEG
signals, can be used both in time and frequency domains. Their accurate selec-
tion is crucial for the accuracy and the computational cost of classification [191].
Both types of features reap the benefit from being extracted after spatial filter-
ing. Independent Component Analysis and Canonical Correlation Analysis are
useful methods for muscle artifact removal in EEG data [192, 193]. Several super-
vised learning algorithms could be exploited to assess workers stress by using
subjects’ EEG signals. The classification can be assisted by: linear classifiers, neu-
ral networks, non-linear Bayesian classifiers, nearest neighbour classifiers, ran-
dom forest, naive bayes, and decision tree [194][195]. Linear classifiers are the
most popular algorithms for Brain Computer Interface (BCI) applications, such
as, Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM). The
LDA is used to assess mental fatigue in [196], it divides the data into hyperplanes
representing the different classes, with very-low computational burden. A dis-
crimination based on hyperplanes was also used in SVM, with recognition rate
of 75.2% to identify three different level of stress out of four, using EEG features
and six statistical features in [197]. Meanwhile a better prediction accuracy of
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TABLE 2.2: State of art of stress classification

Classifier Reference Reported Accuracy% Acquired Signals Classes n° Electrodes n° Subjects

Artificial Neural Network (ANN) [184] 76.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
[195] 79.2% EEG,SCL,BVP,PPG 2 levels of stress 5 Wet 15

Cellular Neural Network (CNN) [184] 92.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
Decision Tree [184] 84.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
Fisher linear discriminant analysis (FLDA) [185] 90.5% EEG,EOG 2 alert and fatigue states 32 Wet 8
Gaussian Discriminant Analysis (GDA) [48] 74.9% EEG,GSR 2 high or low stress level 14 Wet 11
K-Nearest Neighbors
(k-NN)

[48] 65.8% EEG,GSR 2 high or low stress level 14 Wet 11
[197] 76.7% EEG 2 levels of stress 14 Wet 9

Linear discriminant analysis (LDA) [196] 77.5% EEG 3 low, medium, high mental fatigue 16 Wet 10
[47] 86.0% EEG,ECG,EMG,GSR 3 stress,relax,and neutral 4 Wet 10

Naive Bayes (NB) [184] 77.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
[199] 69.7% EEG,ECG,GSR 2 mental workload and stress 2 Wet 9

Random Forest (RF) [200] 79.6% EEG,EMG,ECG,GSR 4 cognitive states 8 Wet 12
[194] 84.3% EEG,ECG,BVP 3 mental stress states 14 Wet 17

Support vector machine (SVM)

[197] 75.2% EEG 3 levels of stress 14 Wet 9
[48] 80.3% EEG, SCL 2 high or low stress level 14 Wet 11

[140] 85.4% EEG 2 positive or negative emotion 14 Wet 11
[50] 87.5% EEG,ECG,HRV 2 stress and rest 2 Wet 7

[198] 88.0% EEG 2 levels of stress 14 Wet 10
[199] 90.1% EEG,ECG,GSR 2 mental workload and stress 2 Wet 9

90.5% and 92%, combining different acquired signals, were reported in [184, 185]
for drivers. Various supervised machine learning algorithms, using sliding and
fixed windowing procedures, were tested in [48]: k-Nearest Neighbors, Gaussian
Discriminant Analysis, SVM with different similarity functions (linear, Gaussian,
cubic, and quadratic). Among the state-of-the-art classifiers, the SVM yielded the
highest classification accuracy of 90.1% [198], using a single-channel EEG. As well
as, the highest accuracy of 88.0% was reached by SVM in [199], where individu-
als’ stress was recognized by exploiting only EEG signal as input of the classifier.
Tab 2.2 summarizes the reported accuracy of different classifiers, including the
numbers and type of EEG electrodes, without reference electrodes, the numbers
of different classes according to the acquired bio-signals used as model input.
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Chapter 3

Basic mental state assessment

In this chapter methods and experimental validations for emotion and attention
assessment are presented

3.1 Emotional valence detection

This Section presents an emotional valence detection method starting from the
EEG signal acquired through few dry electrodes. The basic ideas,the architecture,
the data processing, and the experimental validation of the proposed approach
are presented.

3.1.1 Basic ideas

Below the basic ideas are reported.

• An EEG-based method for emotional valence detection: Emotional functions are
mediated by specific brain circuits and electrical waveforms. Therefore, the
EEG signal varies according to the emotional state of the subject. However,
using suitable algorithms, such a state can be recognized.

• Low number of channels, dry electrodes, wireless connection for a good ergonomics:
An 8 channel-dry electrode device does not require a burdensome installa-
tion. The absence of the electrolytic gel eliminates the problem of residues
in the hair. The good ergonomics of the instrument is also guaranteed by the
absence of connection cables and, therefore, by the wireless transmission of
the acquired signals. Both of them simplify the operator’s job.

• Multifactorial metrological reference: A multifactorial metrological reference
was implemented. Images belonging to a statistically validated dataset
were used as stimuli for eliciting emotions. Therefore, each image is scored
according to the corresponding valence value. The metrological reference
of the emotional valence is obtained by combining the scores of the stimuli
(statistically founded) with the score of the self-assessment questionnaires
(subjective response to the standardized stimulus).

The Bland-Altman and the Spearman analysis were carried out for com-
paring Self-assessment questionnaires (SAM) scores and the OASIS dataset
scores.
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FIGURE 3.1: The proposed valence-detection method (CSP: Com-
mon Spatial Pattern algorithm).

• 12–band Filter Bank: Traditional filtering, employed to extract the informa-
tion content from the EEG signals, is improved by a 12-band Filter-Bank.
Compared to the five typical bands for EEG analysis (alpha, beta, delta,
gamma, theta), narrowing the frequency intervals, the features resolution
increases.

• Beyond a priori knowledge: A supervised spatial filter (namely CSP) guaran-
tees automated feature extraction from spatial and time domains.

3.1.2 Architecture

The architecture of the proposed system is shown in Fig. 3.1. The conductive-
rubber dry electrodes allow the EEG signals to be sensed directly from the scalp of
the subject. Each channel is differential with respect to AFz (REF) and referred
to Fpz (GND). Analog signals are conditioned by stages of amplification and fil-
tering (Analog Filter and Amplifier). Then, they are digitized by the Analog Digital
Converter ADC and sent by the Wireless Transmission Unit to the Data Processing
block. A 12-bands Filter Bank and a Common Spatial Pattern (CSP) algorithm carry
out the feature extraction. The Classifier receives the feature arrays and detects
the emotional valence.

3.1.3 Data processing

In this section, the features extraction and selection and the classification procedures
of the proposed method are presented.
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Features extraction and selection

Finer-resolution partitions of the traditional EEG bands were proposed for emo-
tion recognition[201, 202]. In the present work, a 12-band Filter Bank version,
recently adopted in distraction detection [24], is employed.
Spatial and frequency filtering is applied to the output data of the filter bank. A
well-claimed Common Spatial Pattern (CSP), widely used in EEG-based motor
imagery classification [203, 204, 205, 206], is used as a spatial filter. For the first
time, the FB-CSP pipeline is here proposed in the field of valence emotion detec-
tion.
A previous study [207] showed that the CSP spatial filtering method entails the
relationship between EEG bands, EEG channels, neural efficiency and emotional
stimuli types. It demonstrated that CSP spatial filtering gives significant values
on band-channels (p < 0.004) combination. Spatial characteristics may provide
more relevant information to distinguish different emotional states. A feasibility
study demonstrated the CSP capability of applying spatial features to EEG-based
emotion recognition reaching average accuracies of 85.85 % and 94.13 % on the
self-collected and MAHNOB-HCI datasets. Three emotion tasks were detected
with 32 EEG channels[208].
In a binary problem, the CSP computes the covariance matrices of the two classes.
By means of a whitening matrix, the input data are transformed in order to have
an identity covariance matrix (mainly, all dimensions are statistically indepen-
dent). Resultant components are sorted on the basis of variance in order: (i) de-
creasing, if the projection matrix is applied to inputs belonging to class 1, and (ii)
ascending, in case of inputs belonging to class 2. In this way, according to the
"variance of each component", data can be more easily separable [209]. The CSP
receives as input 3D tensors with dimensions given by the number of channels,
filters, and samples.

Classification

In this study, the emotional valence is classified using a k-Nearest Neighbors (k-
NN) [210] for cross-subject case and full-connected Artificial Neural Networks
(ANNs) [211] for within-subject one. One of the main advantages of the k-NN
is that, being non-parametric, it does not require a training phase unlike other
Machine Learning methods. In a nutshell, given a set of unlabelled points P to
classify, a positive integer k, a distance measure d (e.g., Euclidean) and a set D of
already labelled points, for each point p ∈ P , k-NN assigns to p the most frequent
class among its k neighbours in D according to the measure d. The number of
neighbours k and the distance measure d were set using a cross-validation proce-
dure. Differently from k-NN, ANNs are classification models that require a train-
ing procedure. In general, an ANN consists of a set of elements (called neurons)
arranged together into several layers fully connected between them. Each neuron
performs a linear combination of its inputs usually followed by the application
of a non-linear function called activation function. It was demonstrated [212] that
an ANN can approximate arbitrarily complex functions, giving to the model the
ability to discriminate between different classes. The number of neurons, the
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number of layers and the activation functions are hyperparameters given a pri-
ori, while the coefficients of each linear combination are learned by the model in
a training stage.

3.1.4 Experiments and Results

Data acquisition setup

The experimental protocol was approved by the ethical committee of the Univer-
sity Federico II. Written informed consent was obtained by the subjects before the
experiment. All methods were carried out in accordance with relevant guidelines
and regulations. Prior informed consent for publication of identifying informa-
tion and images was obtained by all the participants. Thirty-one volunteers, not
suffering from both physical and mental pathologies, were screened by means of
the Patient Health Questionnaire (PHQ) for excluding depressive disorders [213].
Six participants were excluded from the experiment owing to their score in PHQ,
resulting in twenty five healthy subjects, (52 % male, 48 % female, aged 38 ± 14).
The experiments were conducted in a dark and soundproofed environment to
prevent disturbing elements.
The employed Mood Induction Procedure (MIP) was based on the presentation
of emotion-inducing material to participants to elicit suitable emotions. The sub-
jects were instructed on the purpose of the experiment. They had to passively
gaze at the pictures projected on the screen and, only after, to assess the expe-
rienced valence by two classes: negative and positive. Emotional stimuli were
presented without explicitly instructing subjects to get into the suggested mood
state and regulate their emotions. Nevertheless, the subjects were aware of both
the elicitation stimulus and the type of induced emotion (although it was not
explicitly stated, they could guess it starting from the self-assessment question-
naire). Thus, the employed task was of a type implicit-more controlled [214]. The
experiment was made of 26 trials. Each trial lasted 30 s and consisted of: (i) a
5-s white screen, (ii) a 5-s countdown frame employed to relax the subject and
separate emotional states mutually, (iii) a 5-s elicitative image projection, and (iv)
a 15-s self-assessment (Fig.3.2). The subject was required to express a judgement
on the positivity/negativity of his/her valence on a scale from 1 to 5 through
the self-assessment manikin (SAM) questionnaire. In each trial, different images
were projected, for a total of 26 images. 13 pictures for eliciting negative valence
and 13 for eliciting positive valence were employed. Positive and negative tasks
were randomly administered to participants in order not to create expectations in
the tested subjects.

Images were chosen from the reference database Oasis [215]. Oasis attributes
a valence level to each image on a scale from 1.00 to 7.00.

Only Italian volunteers participated the experiment, thus a pre-test on the
trans-cultural robustness of the selected images was administered to a different
group consisting of 12 subjects. Specifically, suitable pictures were shown and
was asked subjects to rate each image using the scale "self assessment manikin"
(SAM). Images with a neutral rating from at least 50 % of the subjects were ex-
cluded from the experiment. In fact, a stimulus strongly connoted in a specific
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FIGURE 3.2: Experimental protocol.

cultural framework, loses its strength out of that context. An emblematic exam-
ple are the symbols related to the Ku Klux Klan. Those have a different conno-
tative richness for a citizen of the United States of America compared to Euro-
pean people. The same pre-test revealed very low performances for detecting
valence level when the stimuli score was around the the midpoint value of the
valence scale. The sensitivity of the system was improved by selecting a suit-
ably polarised subset of Oasis images, as in [136] and [140]. First of all, images
with highest and lowest valence score were identified: respectively 6.28 and 1.32.
Then, 1.00 was the span chosen to guarantee the trade-off between the maximum
image polarization and an adequate quantity of images to build the experiment
(>100). Therefore, [1.32, 2.32] and [5.28, 6.28] were adopted as the scoring in-
tervals for negative and positive stimuli valence, respectively and 13 images per
group were randomly selected. For each image, the Oasis valence score and the
average scores (on all subjects) of the self-assessment are shown in Fig.3.3. The
maximum difference between the SAM and the stimuli scores is lower than the
average standard deviation (1.00) computed on the Oasis scores.

FIGURE 3.3: Oasis valence score and SAM average scores of the 26
images selected for the experiments. The Oasis score intervals used

to extract polarized images are identified by dotted lines.

The number of images per class was chosen in order to guarantee a trade-off be-
tween the amount of experimental epochs and the user comfort, by minimizing
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the duration of the experiment simultaneously. In this way, the experiment lasted
about 20 min per subject. About 2 min were required for the presentation of the
activity to the subject, other 5 min were required for the setting up of the EEG
device quality. 13 min were required for the completion of all the 26 trials.

Bland-Altman and Spearman analyzes were carried out to compare the exper-
imental sample with respect to the Oasis experimental sample. The agreement be-
tween the measurements expressed by the two samples is verified, as evidenced
by a qualitative analysis in Fig. 3.4 and the Spearman correlation index ρ = 0.799.

FIGURE 3.4: Bland-Altman analysis on the agreement between stim-
uli (OASIS) and volunteers perception (SAM)

Hardware

The position of the used channels was chosen by taking into account the well-
assessed theories of emotions already presented: frontal asymmetry and right
hemisphere asymmetry [103, 108, 104, 105]. The ab medica Helmate [216] was
found to fit the requirements of the previous mentioned theories because it is
equipped with 3 frontal, central, and occipital channels pairs. Indeed, the cov-
erage of almost all areas of the scalp ensured that both frontal and hemispheric
asymmetries were recorded, despite the low number of electrodes. The device
provided electrodes placed on Fp1, Fp2, Fz, Cz, C3, C4, O1, and O2, according to
the 10/20 International Positioning System. The Helmate is Class IIA certified ac-
cording to Medical Device Regulation (UE) 2017/745 (Fig. 4.6 A). It is provided
with a rechargeable battery and is able to transmit the acquired data via Blue-
tooth, without connection cables. This ultra-light foam helmet is equipped with
10 dry electrodes which 8 acquisition channels (unipolar configuration) and with
disposable accessories (under-helmet and under-throat). Electrodes are made of
conductive rubber and their endings are coated with Ag/AgCl. They have dif-
ferent shapes to pass through the hair and reach the skin (Fig. 4.6 B).



3.1. Emotional valence detection 39

FIGURE 3.5: (A) EEG data acquisition system Helmate8 and (B) Dry
electrodes from abmedica

The resulting signals are recorded differentially vs ground (Fpz), and then
referenced with respect to AFz, both placed in the frontal region. A dedicated
software measures the contact impedance between the electrodes and the scalp.
The acquired EEG signal, sampled at 512 Hz, is sent to the Helm8 Software Man-
ager. It allows both to display the signal directly on PC in real time and to ap-
ply a large variety of pre-processing filters. The device has an internal µ SD
for backup purposes. Helmate incorporates a Texas Instruments analog front-
end, the ADS1298 [217]. This is a multichannel, simultaneous sampling, 24-bit,
(∆Σ) analog-to-digital converter (ADCs) with built-in programmable gain ampli-
fiers (PGAs), internal reference, and an onboard oscillator. Main features of the
ADS1298 are: (i) eight Low-Noise PGAs and Eight High-Resolution ADCs; (ii)
input-Referred Noise: 4 µVPP (150 Hz BW, G = 6); (iii) input Bias Current: 200
pA; and, (iv) CMRR: –115 dB.

Data processing comparison

The EEG tracks were acquired at a sampling frequency of 512 Hz and filtered
between 0.5 and 48.5 Hz using a zero-phase 4th-order digital Butterworth filter.
In the processing stage, the used trials resulted to be 24 for each subject since
macroscopic artifacts corrupted one trial of three subjects. So, to keep the dataset
balanced, the number of trials was reduced by removing the compromised trial
and another one randomly chosen among those of the opposite class. Then, for
the remaining subjects, two trials of different classes were randomly removed to
guarantee the same amount of data for all the participants. The remaining arti-
facts were removed from EEG signals using Independent Component Analysis
(ICA) by means of the EEGLAB Matlab toolbox version 2019[218]. The recorded
EEG signals were divided into 2 s time windows overlapping of 1 s.

The traditional EEG bands delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30 Hz), and gamma (>30 Hz) were extracted. The proposed method was vali-
dated by comparing different approaches of features extraction and classification.
For EEG features extraction, two different methods were adopted: (i) with and (ii)
without a priori spatial-frequency knowledge provided by neurophysiology.

In a-priori spatial knowledge framework, frontal asymmetry feature was cho-
sen, computed by subtracting the left frontal (FP1) from the right (FP2) channel.
Moreover, the whole hemispherical asymmetry was also considered and the dif-
ferences of the three symmetric channel pairs were input to the classifiers. The
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analysis considered only spatial or both spatial and frequency features, accord-
ing to the different neurophysiological theories. A-priori frequential knowledge
led to the use of a [8-13] Hz (alpha band) pass-band filter (zero-phase 4th-order
digital Butterworth filter).

Without a priori knowledge, features were extracted via the PCA and CSP al-
gorithms. For PCA, we used a number of components which explains the 95 %
of the data variance. For CSP, all the 96 components returned by the algorithm
are used. Also in this case, only the spatial information and the combination of
spatial and frequency information were analysed. Input features were 8192 (8
channels * 1024 samples) when PCA and CSP were fed only by spatial informa-
tion.

The acquired EEG signal was filtered through 12 IIR band-pass filters Cheby-
shev type 2, with 4 Hz bandwidth, equally spaced from 0.5 to 48.5 Hz. In this
way, the traditional five EEG bands (delta, theta, alpha, beta, and gamma) are
divided into 12 sub-bands. Therefore, the features resolution is increased by the
narrowing of the bands. Thus, features increased to 98304 (12 frequency bands
* 8 channels * 1024 samples). The features were then reduced from 98304 to 96
using the CSP algorithm.

Subsequently, in the classification stage, two types of investigations were car-
ried out: within-subject and cross-subject. In the first case, data of a single subject
were employed for training and classification phases, while in the second one,
the data set as a whole was employed. In both cases, the proposed method was
validated through a stratified 12-fold Cross Validation (CV) procedure. Namely,
given a combination of the classifier hyperparameters values, a partition of the
data composed of K subsets (folds) is made, preserving the ratio between the
samples of different classes. A set T consisting of K− 1 folds is then used to train
the model and, when required, the CSP projection matrix; the remaining fold E
to measure the model performances using any metric scores (e.g., accuracy). The
whole process is then repeated for all the possible combinations of the K folds.
Finally, the average scores on all the test sets are reported. Furthermore, training
and test sets are made keeping together the epochs of each trial (consisting of 4
epochs each) in the same set, both in the cross-subject and in the within-subject
approach. In this way, the training and the test sets do not include parts of the
same trial. Finally, in a 12-fold scheme within-subject setup, 88 epochs for train-
ing and 8 epochs for testing are used. Of the 88 epochs used for the training set, 16
are exploited as validation set in the ANNs learning. Instead, in the cross-subject
case, considering that the experimental campaign involved 25 subjects, a total of
2400 epochs was used. This, in a 12-fold cross validation scheme, corresponds to
2200 epochs as training test and 200 epochs as test set. In the ANNs learning, 200
epochs are used as the validation set.

k-NN[210] and ANN [211] were compared with other four classifiers: Linear
Discriminant Analysis (LDA)[219], Support Vector Machine (SVM)[220], Logistic
Regression (LR) [211] and Random Forest (RF) [206]. LDA searches for a lin-
ear projection of the data in a lower dimensional space trying to preserve the
discriminatory information between the classes contained in the data. A SVM
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TABLE 3.1: Classifier optimized hyperparameters and variation
range

Classifier Hyperparameter Variation Range

k-Nearest Neighbour (k-NN)

Distance (DD)
{cityblock, chebychev, correlation, cosine,

euclidean, hamming, jaccard,
mahalanobis, minkowski,spearman}

DistanceWeight (DW) {equal, inverse, squaredinverse}
Exponent (E) [0.5, 3]

NumNeighbors (NN) [1, 5]

Support Vector Machine (SVM)

BoxConstraint (BC) log-scaled in the range [1e-3,1e3]
KernelFunction (KF) {gaussian, linear, polynomial}

KernelScale (KS) log-scaled in the range [1e-3,1e3]
PolynomialOrder (PO) {2,3,4}

Artificial Neural Network (ANN) Activation Function (AF) {relu, sigmoid, tanh}
Hidden Layer nr. of Neurons (HLN) [25, 200]

Linear Discriminant Analysis (LDA)
Gamma (G) [0,1]

Delta (D) log-scaled in the range [1e-6,1e3]

DiscrimType (DT) {linear, quadratic, diagLinear,}
{diagQuadratic, pseudoLinear, pseudoQuadratic}

Random Forest (RF)
Depth (D) [5,20]

Number of Trees (NT) [15,100]
Maximum Depth of the tree [5,30]

Logistic Regression (LR)
Penalty (P) {L2, elastic net}

Inverse of regularization strength (C) [0.25, 1.0]

defines a separator hyperplane between classes exploiting a subset of the train-
ing instances (support vectors). LR is a widely used classification method based
on the logistic function. In binary classification, it estimates the probability of a
sample x to belong to a class labelled as y = 1 as P (y|x) = exp(q+wx)

1+exp(q+wx)
where w

and q are learnable parameters. A RF combines several decision trees to make
classifications. The use of several decision tree helps in improving the accuracy.
Furthermore, to prevent possible over-fitting, regularization terms in the training
procedures were used for SVM learning using the SVM soft-margin formulation
[220], and for neural networks learning using a weight decay [221] during the
learning algorithm execution. ANNs were trained with the ADAM algorithm.
A maximum number of 1000 epochs with a patience of 50 epochs on the vali-
dation set was used to train the network models. Figure ?? shows the trend of
the accuracy during the first 40 iterations of a learning stage on a single subject
model. For all the classifiers, the hyperparameters used during the CV procedure
are reported in Table 3.1. Accuracy, precision, and recall are reported to assess
the classification output quality. Precision measures result relevancy, while recall
how many truly relevant results are returned. The F1 score, combining precision
and recall, was computed to assess the classification performance in minimizing
false negatives for the first class (negative valence) analysis. Considering many
use cases, the minimization of failure in recognizing negative valence is the main
issue.

Experimental results

Accuracy was related to the model’s ability to correctly differentiate between two
valence states. EEG tracks relating to the negative and positive image tasks were
associated to the first and the second class, respectively.
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The mean of the individual accuracies and standard deviations computed
on each subject (within-subject case) and the accuracies and standard deviations
computed on all subjects data as a whole (cross-subject case) are showed when a
priori spatial-frequency knowledge is used (Table 3.2) or not (Tables 3.3 and 3.4).

TABLE 3.2: Accuracy (mean and standard deviation) considering a
priori knowledge i.e. Asymmetry - Within-subject (Within) & Cross-

subject (Cross)

CLASSIFIER Entire EEG Band αBand

Within Cross Within Cross

k-NN 54.0±4.1 51.0±1.2 53.8±4.0 51.3±0.4
SVM 56.8±3.4 50.8±0.2 56.7±3.0 51.2±0.3
LDA 54.5±3.8 51.2±0.8 53.8±3.5 51.0±1.0
ANN 58.3±3.0 51.8±0.3 58.5±3.0 51.5±1.6

RF 55.7±3.9 50.7± 1.2 54.5± 4.5 50.9±1.3
LR 52.5± 4.1 51.4± 0.2 53.7± 4.3 51.2± 0.7

TABLE 3.3: Accuracy (mean and standard deviation) without con-
sidering a priori knowledge i.e. Asymmetry - Within-subject

CLASSIFIER Entire EEG Band Filter Bank

No PCA/CSP PCA CSP No PCA/CSP PCA CSP

k-NN 71.0±6.0 67.7±8.4 72.0±8.9 75.6±5.8 66.8±7.2 94.5±3.5

SVM 66.9±8.1 66.3±10.3 73.4±9.5 71.6±8.9 62.0±7.8 95.5±2.8

LDA 63.1±4.9 55.3±4.0 74.0±10.0 62.9±5.3 53.9±3.5 95.0±2.9

ANN 69.7±5.1 66.3±6.2 78.1±8.0 66.7±4.9 65.6± 5.6 96.1±3.0

RF 66.4± 4.1 58.9± 4.2 72.8± 9.4 67.4± 4.1 59.3± 5.0 94.2± 2.7

LR 62.7± 4.9 52.3± 2.9 72.6± 9.3 61.0± 5.0 51.2± 4.0 95.1± 2.9

Results are shown at varying the adopted classifier. Better performances are
obtained without a-priori knowledge and when features are extracted by combin-
ing Filter-Bank and CSP, both in within-subject and cross-subject case. In within-
subject analysis, the data subsets are more uniform and all the classifiers provide
very high accuracy. In Fig. 3.6 the data of four random subjects projected in the
CSP space, with and without the Filter Bank, are compared. The classes, after
using the Filter Bank, are easily separable with respect to the use of the only CSP,
as highlighted by the results. In Table 3.5, the accuracies in the within-subjects
experiments are reported for all the subjects.

In cross-subject analysis, when data from all subjects are merged, variabil-
ity increases and not all the classifiers give good results. Interestingly, in the
cross-subject approach, the k-NN classifier allows to achieve by far the best per-
formance, while the scores degrade using the other classifications setups. This
behaviour suggests that the data of similar classes are close together for different
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TABLE 3.4: Accuracy (mean and standard deviation) without con-
sidering a priori knowledge i.e. Asymmetry - Cross-subject

CLASSIFIER Entire EEG Band Filter Bank

No PCA/CSP PCA CSP No PCA/CSP PCA CSP

k-NN 68.4±0.2 62.1±0.9 56.8±0.5 70.1±1.0 61.1 ± 0.3 80.2±2.1

SVM 51.5±0.6 52.1±0.3 61.0±2.0 51.8±1.0 51.2±0.3 71.3±2.0

LDA 53.5±0.7 50.9±0.4 55.4±4.2 52.6±0.1 50.9± 0.2 63.7±2.1

ANN 59.9±1.0 54.5±0.2 58.1±1.1 57.4±0.1 53.7±0.1 63.3±2.7

RF 56.5± 0.6 55.3± 0.7 59.2± 1.9 57.8± 1.1 52.5± 2.9 65.0± 3.8

LR 50.5± 1.9 50.6± 0.5 55.7± 4.9 51.8± 0.9 50.9± 0.5 58.1± 1.5

FIGURE 3.6: t-SNE based data comparison of four random subjects
projected in the CSP space, without (first row) and with (second
row) the Filter Bank. Filter Bank improves the classes (blue and red)

separability.

subjects, but that in general they are not easily separable through classical Ma-
chine Learning methods. Moreover, a feature selection analysis using the Mutual
Information (MI) method, proposed in [150], was made using the best experi-
mental setups of both within-subject and cross-subject approaches. The results
reported in Table 3.6 show that just the 12.5 % of the FBCSP features are enough
to achieve accuracy performances over the 90 % in the within-subject case. There-
fore, the features extracted by the CSP in conjunction with Filter Bank resulted
effective in emotional valence recognition.

In conclusion, the proposed solution based on 12-bands Filter-Bank provides
the best performances reaching 96.1 % of accuracy with ANN in within-subject
analysis and 80.2 % using k-NN with k = 2 in cross-subject analysis. In the
within-subject case, for the ANN the best top-5 subjects reached the best per-
formances using ANN with one layer with less than 100 neurons equipped with
the classical tanh activation function, showing that networks with few parame-
ters can be sufficient to address this classification problem as long as a proper
set of features is provided. Precision, Recall and F1-score metrics are reported in
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TABLE 3.5: Accuracies obtained for each subject in the within-
subject experiments when a FC-CSP Pipeline is adopted

Subject k-NN SVM LDA ANN RF LR

#1 95.8 95.8 94.4 95.8 93.3 94.4
#2 95.8 92.2 92.2 93.1 92.2 95.8
#3 94.4 93.6 93.7 94.4 91.1 92.2
#4 95.8 98.6 98.1 99.0 94.4 94.4
#5 91.7 93.8 93.2 94.4 93.1 93.1
#6 97.2 96.2 95.8 97.2 93.9 95.8
#7 95.8 96.1 95.8 98.6 94.4 95.8
#8 97.2 98.6 97.2 99.0 97.2 97.0
#9 98.6 98.6 98.6 98.6 96.2 98.6
#10 92.0 94.6 94.4 97.2 95.8 94.5
#11 95.8 95.0 94.6 97.2 93.6 95.0
#12 94.4 94.7 94.4 97.2 92.3 94.4
#13 98.6 98.6 98.6 99.0 95.8 98.6
#14 95.8 95.7 95.8 95.8 97.2 94.4
#15 85.9 91.2 90.5 91.0 89.9 90.3
#16 95.4 97.2 96.7 98.2 97.2 97.0
#17 86.3 95.0 94.6 93.1 92.7 95.8
#18 93.1 91.4 90.2 92.0 92.7 93.0
#19 97.2 98.6 98.7 99.0 98.6 98.6
#20 94.4 98.5 97.2 95.8 95.4 97.2
#21 97.2 97.2 97.2 98.6 95.8 98.6
#22 98.6 97.9 97.4 99.0 95.4 97.2
#23 89.3 90.0 89.2 89.4 88.1 88.9
#24 95.2 97.9 97.3 98.7 98.6 98.3
#25 90.2 90.1 89.4 90.3 90.2 88.5
Average ± std. 94.4 ± 3.5 95.5 ± 2.8 95.0 ± 2.9 96.1 ± 3.0 94.2 ± 2.7 95.1 ± 2.9

Fig.3.7.

TABLE 3.6: Accuracy performances of the best processing solutions
for both within- and cross-subject approaches at varying the number
of input features selected through the Mutual Information strategy.

CLASSIFIER #Features

12 24 50 96

k-NN Cross 58.7± 1.0 65.1± 1.8 74.4± 0.9 80.2± 2.1
ANN Within 92.8± 4.1 93.0± 4.1 93.4± 1.0 96.1± 3.0

Discussion

In the previous Sections the measurability foundation of emotion was discussed.
In this thesis, results from the Self Assessment Manikin questionnaire confirmed
the compatibility of the experimental sample with that of Oasis thus improving
the reproducibility of the experiment and the generalizability of the outcome.
Moreover, the reference theory adopted allows the measurement of emotions ar-
ranging them along interval scales. In this framework, the preliminary binary
classification of the proposed system could be enhanced by increasing the num-
ber of classes. Thus, the number of valence states increase and a higher resolution
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FIGURE 3.7: F1-score (White), Recall (Grey) and Precision (Black) for
the best performance of each classifier - Cross-subject

metric scale can be obtained. Therefore, the Circumplex Model is compatible with
an upgrade of the proposed binary classification method. It is noteworthy that
the number of classes can increase if emotional valence states can be experimen-
tally induced at higher resolution. This is precisely what the standardized stimuli
datasets allow because their scores are organised according to an interval scale.
The novelty of this research is based on the compliance with different quality
parameters. In Table 3.7, this study is compared with the works examined in Sec-
tion 2.1.1, taking into account the following criteria: (i) classification vs measure-
ment, (ii) standardized stimuli, (iii) self-assessment questionnaires, (iv) number
of channels ≤ 10, (v) cross-subject accuracy > 80 % (vi) within-subject accuracy
> 90 %. As concerns the first quality parameter, the option between classification
and measurement is related to the reference theory adopted (i.e., discrete model
or circumplex model).

There are only two studies combining SAM and standardized stimuli ratings
for the construction of the metrological reference [144, 146]. Therefore, literature
concerning EEG-based emotion detection exhibits a lack of generalizability for
the presented results. Among all the examined works, the proposed study is the
only one that matches all the aforementioned criteria.
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3.2 Distraction assessment

3.2.1 Basic Ideas

The proposed method for detecting distraction during motor rehabilitation is
based on the following key concepts:

• EEG-based distraction detection: During a rehabilitation motor task, EEG trend
is influenced by the state of the patient attention or distraction to the task
itself.

• Attention vs distraction definition: Focusing on motor task means imagining,
with open eyes, the movement while its execution and trying not to think
about anything else. A distracting condition occurs when the patient per-
forms an entirely absorbing cognitive task while continuing to carry out the
rehabilitation movement. To the end of evaluating the phenomenon, a reha-
bilitative motor task is carried out. The assignment is run under conditions
of concentration on the action and in the presence of a distractor (auditory,
visual, and visuo-auditory) which engages the learner in a concurrent cog-
nitive task analogously as what done in Asayb et al [65].

• Metrology perspective: An applied metrological and instrumentation-aimed
approach is guaranteed, for the first time, in the EEG based distraction de-
tection.

• Feature extraction enhancement: After an artifact removal performed by an
Independent Component Analisys (ICA) based algorithm, a multiple band-
pass Filter-Bank, in combination with a Common Spatial Pattern algorithm,
selects spatial, temporal and frequency features. In particular, a 12-band
Filter-Bank is proposed for enhancing, the peculiar contribution of the delta,
theta, and alpha bands as fundamental in the analysis of attentional pro-
cesses [222], compared to previous 9-band approaches [150].

• High Wearability: The EEG acquisition system is realized in ultra-light foam.
The ergonomic and comfortable device is equipped with a rechargeable bat-
tery and transmits the acquired data via Bluetooth. Dry electrodes avoid the
inconvenient of electrolytic gel.

• Clinical applicability: wearability cannot be a prejudice for accuracies com-
patible with clinical use. A method with state-of-the-art accuracy (greater
than 80 % [65, 150]) is required.

• Validation based on wide comparison: Performance of the proposed method
are compared with different strategy of EEG feature extraction (including
the proposal of Hamadicharef et al. [150]), and different types of classifiers.

3.2.2 Method

The proposed method is depicted in Fig. 3.8. The EEG signals are acquired by
Active Dry Electrodes from the scalp. Each channel is differential with respect to
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AFz (REF), and referred to Fpz (GND), according to 10/20 international system.
Analog signals are first transduced by the Active Dry Electrodes and then condi-
tioned by the Analog Front End. Next, they are digitized by the Acquisition Unit
and transmitted to the Data Analysis stage. Here, after an artifact removal per-
formed by an ICA based algorithm, suitable features are extracted by the chain of
a 12-component Filter Bank and a Common Spatial Pattern (CSP) algorithm. Then,
a classifier receives the feature arrays and detects distraction.

FIGURE 3.8: The proposed distraction-detection method (CSP: Com-
mon Spatial Pattern algorithm).

Feature selection and extraction

The EEG signal, acquired through eight channels, was filtered through a 12 IIR
band-pass Filter Chebyshev type 2 filter bank, 4 Hz amplitude, equally spaced
from 0.5 - 48.5 Hz. In Hamadicharef et al.[150], a filter bank with 9 filters of 8 Hz
amplitude equal to [0-40] Hz, with a 4 Hz overlap, was proposed. This solution
subdivided the traditional EEG beta and gamma bands into sub-bands, however
combining other bands (delta and theta with the first filter between 0 and 8 Hz, as
well as theta and alpha with the second filter between 4 and 12 Hz). Considering
the relevance of the delta, theta and alpha bands in the analysis of the attention
highlighted in Graber et al.[223] and in Coelli et al.[222], the solution proposed in
this study allows to enhance their peculiar contribution.

The unit of analysis of the classification activity was identified in time win-
dows of 3 s with an overlap of 1.5 s. Considering a sampling frequency of 256
Sa/s, each of these record is therefore composed of 96 EEG tracks (obtained by
applying the 12 filters of the Filter Bank on each of the 8 channels), each one of
1536 samples.

A Common Spatial Pattern (CSP) was used as a spatial filtering algorithm.
CSP is one of the most used feature extraction methods for classifying EEG sig-
nals [150, 224]. In a binary problem, the CSP acts by calculating the covariance
matrices relating to the two classes. These two matrices are simultaneously di-
agonalized in a way that the eigenvalues of two covariance matrices sum up to
1. Through the subsequent use of a bleaching matrix, a suitable projection ma-
trix is identified in order to reorganize the input into a number of components
consistent with the dimensions of the input matrix. In a binary problem, these
components are sorted on the basis of variance in order: (i) decreasing, if the pro-
jection matrix is applied to inputs belonging to class 1, and (ii) ascending, in case
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of inputs belonging to class 2 [225]. In this thesis, the CSP receives the records
(epochs) as 3D tensors (channels, filters, and samples). It outputs 2D matrices
(channels, filters) reducing the dimensionality of the features by a factor of 1536
(number of sample).

Classification

A k-Nearest Neighbour (k-NN) classifier is used for classifying the CSP out-
put. Compared to other supervised machine learning methods, k-NN is a non-
parametric method (i.e., without a priori assumption on the data) which uses the
labelled data itself for the classification without any training. The behavior of k-
NN in its simplest version can be described as follows: given a set D of labelled
points, a distance measure (e.g., Euclidean, Minkowski) and a positive integer k,
when a new unlabelled point p is presented, the k-NN algorithm searches in D
for the k points nearest to p, so the most present class label along its k neighbors
is assigned to p. Thus, the only hyperparameters required to k-NN are a positive
integer k and the distance measure to use together with any parameters related
to the distance measure if needed. These hyperparameters were set using a cross-
validation procedure. k-NN has already been widely used in EEG signal analysis
showing interesting results (see for example [226] ).

3.2.3 Experimental validation results

In this section, the experimental assessment of our proposal is reported and the
results are discussed.

Experimental Protocol

The ethical committee approved the experimental protocol of the University of
Naples Federico II. A written informed consent was obtained from each volun-
teer before the experiment. All experiments were carried out in accordance with
relevant guidelines and regulations. A session was based on seventeen volun-
teers subjects (eleven males and six females, with an average age of 30.76±8.15).
All of them had a normal clinical history with normal vision and normal hearing,
and no neurological disease. The participants were seated in a comfortable chair
with armrests, in a very quiet room, about one meter away from a PC screen. Af-
ter wearing the EEG-cap, participants were requested to execute a squeeze-ball
exercise whenever a start command appeared on the PC screen. Squeeze-ball is
one of the most common hand rehabilitation exercises [227]. Following a period
of immobilization in plaster, after a surgical intervention or in the presence of
inflammatory or degenerative pathologies (e.g., arthrosis, rheumatoid arthritis),
hand-ball rehabilitation showed to be important in maintaining or restoring the
functional use of the hand [228]. Motor task execution consists of maintaining
attention focused only on: (i) the squeeze movement (attentive-subject trial), or
(ii) a concurrent distractor task (distracted-subject trial); in both trials the partici-
pant must perform the squeeze-ball movement. An aneroid sphygmomanome-
ters supported the user attention to motor task execution: volunteers were asked
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to focus the aneroid gauge, while squeezing the bulb and pumping air into the
cuff. The distractor task was based on the Oddball paradigm [229, 230]: the presen-
tations of sequences of repetitive stimuli, infrequently interrupted by a deviant
stimulus. The oddball paradigm is one of the most widely used methods to study
the neurophysiology of attention. In the proposed protocol, the volunteer was
asked to count the number of certain stimuli sequences. Three types of stimuli
sequences were proposed: (i) acoustic, played with a conventional headphone,
(ii) visual, displayed on a PC screen, and (iii) and visual-aucoustic combination
[231]. Each participant completed one session composed of 30 trials: 15 attentive-
subject trial and 15 distracted-subject trial. The trials sequences were randomly
chosen for minimizing the influence of task learning. Each trial consisted of: 2 s
task presentation, 9.5 s task execution and 5 s relax. Furthermore, a 15 s baseline
was acquired at the beginning of the session. In the following, trial contents are
detailed:

• Attentive-subject trial
An Attentive-subject trial notification appears for 2 s on the PC screen.

Then, a ball-squeezing image triggers the start of the motor exercise and a
new message on the screen asks the subject to focus on the squeezing move-
ment. At the end of the task execution, an image of a relaxing landscape is
shown for 5 s.

• Distracted-subject trial
A notification concerning the distractor task (Audio, Visual or Audio-Visual)
appears for 2 s on the PC screen. Then, an acoustic message notices the be-
ginning of the motor exercise; a distractor task (based on Oddball paradigm),
chosen among the followings, starts:

– The Audio Distractor is based on the auditory oddball paradigm. Eight
tones sequences sound through the earbuds. Tones range among three
different frequencies: low, 500 Hz, middle, 1200 Hz, and high, 1900 Hz.
The tone low has 50% probability of occurrence. The occurrence prob-
ability of the middle and the high tones is 25%. The target sequence is
the appearance of a diverted tone after the other more frequent one:
when the middle tone occurs immediately after the low, or when the
high occurs immediately after the low. Others combinations are not
considered as target occurrences.

– The Visual Distractor task is based on the visual oddball paradigm.
Three 2D-Gabor masks were used with different orientation: 90, 60,
and 30◦ (Fig.3.9). The 2D-Gabor mask is a Gaussian kernel function
modulated with sinusoidal plane wave. The most probable Gabor
(50% of probability) has orientation of 90◦ , while the diverted Gabor
(25% of probability) has 60 or 30◦ orientation. Eight Gabor sequences
occurred on the PC screen. The target sequence was the occurrence
of diverted Gabor mask (with orientation of 60 or 30◦ ) after the most
frequently with 90◦ orientation.
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FIGURE 3.9: Visual Distractor task elements based on visual Gabor
mask with different orientation: 90◦, 60◦, and 30◦.

– The Audio-Visual Distractor task is a combination of the previous odd-
ball paradigms. Eight between tone and Gabor sequences occur ran-
domly. The target sequence is the occurrence of any Gabor mask after
the tone. Others combination sequences are not target occurrences.

At the end of the task, a relaxing landscape is presented for 5 s. During
the relax period, the subjects are asked to give the number of the observed
targets.

EEG Instrumentation

In this thesis, the commercial EEG acquisition system AB-Medica Helmate [216] is
employed (Fig.3.10 A). The device, composed of ten dry electrodes, guarantees

FIGURE 3.10: (A) EEG data acquisition system Helmate8, and (B)
Different configuration of dry electrodes from abmedica. [216].

eight acquisition channels. The EEG signal is acquired by dry electrodes made
of conductive rubber with an Ag/AgCl coating at their endings [232]. Three dif-
ferent types of electrodes, with different shapes, are used to pass hair and reach
the scalp or join to the hairless areas (Fig.3.10 B). The output signal is recorded
as difference between each of 8 channels and the ground electrode (Fpz) [233].
Then, the difference is referenced with respect to the electrode (AFz). A dedi-
cated software (Helm8 Software Manager) allows to check the contact impedance
between the electrodes and the scalp. EEG signal is acquired with a sampling
rate of 512 Sa/s. The acquisition software allows to use several filters (e.g., notch
and IIR). This data acquisition system is a certified EEG system Class IIA (accord-
ing to Medical Device Regulation (EU) 2017/745) with accurate components. A
Texas Instruments analog front-end, the ADS1298 [217] with a 24-bit, ∆Σ analog-
to-digital converter (ADCs) with built-in programmable gain amplifiers (PGAs),
internal reference, and an onboard oscillator, are exploited. The device exhibits
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the following main metrological performances: (i) CMRR: -115 dB; (ii) eight low-
noise PGAs and eight high-resolution ADCs (ADS1298, ADS1298R); (iii) input-
referred noise: 4 µVPP (150 Hz BW, G = 6); and (iv) input bias current: 200 pA;
joined to the following operating performances: (i) low power: 0.75 mW/channel;
and (v) data rate: 250 Sa/s to 32 kSa/s.

Data Processing

During the experiments 4590 epochs composed of 8 channels of 512 samples were
acquired. In Table 3.8 number of (i) subjects, (ii) sessions, (iii) trials, (iv) epochs
per trial (v) epochs per subject, and (Vi) epochs as a whole are reported.

TABLE 3.8: Data-set composition

# Subjects # Sessions # Trials per Session # Epochs per trial # Epochs per subject # Total Epochs

17 3 30 3 270 4590

Half of the epochs were collected during the attentive-subject trials and were
labeled as belonging to the first class. The remaining part was acquired during
the distracted-subject trials and was labeled as belonging to the second class. The
recorded EEG was divided in 3 s epochs. Each epoch was filtered between 0.5
and 48.5 Hz using a zero-phase 4th-order digital butterworth filter. An inde-
pendent component analysis (ICA) algorithms - Infomax-ICA[234] - filtered out
artifacts from the signal. In particular the version implemented by Runica mod-
ule of EEGlab tool was adopted. Feature extraction was implemented either in
time domain and frequency domain. For the latter Relative and Absolute Power
Spectral Density at varying of frequency bands were considered. Three different
frequency bands articulation were examined:

• seven traditional EEG bands: delta [1–4] Hz, theta [4–8] Hz, alpha [8–12]
Hz, low beta [12–18] Hz, high beta [18–25] Hz, low gamma [25–35] Hz, and
high gamma [35–45] Hz; in this case, the number of features for each epoch
was 112 (7 bands * 2 PSD (relative and absolute) * 8 channels);

• nine 8 Hz bands, 4 Hz overlapped, in the range [1-40] Hz; the number of
features for each epoch was 144 (9 bands * 2 PSD (relative and absolute) * 8
channels);

• twelve 4 Hz bands, non-overlapped, in the range [0.5-48.5] Hz; the number
of features for each epoch was 192 (12 bands * 2 PSD (relative and absolute)
* 8 channels);

Regarding time domain, the feature extraction was based on four different ap-
proaches:

• only CSP: in this case, the number of features for each epoch was 8 (CSP
remaps the input information in a new space with dimensionality equal to
the number of channels);
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• CSP preceded by different types of Filter-Banks: three different types of
Filter-Banks were applied with the same band articulation proposed for the
feature extraction in the frequency domain. In these cases CSP remaps the
input information in a new space having dimensionality equal to the num-
ber of channels (8) multiplied with number of bands, obtaining 56, 72, and
96 number of features respectively.

Five supervised machine learning binary classifiers were used for discriminating
between attention or distraction conditions: k-Nearest Neighbour (k-NN), Sup-
port Vector Machine (SVM) [211], Artificial Neural Network (ANN) [211], Linear
Discriminant Analysis (LDA) [235], and Naive Bayes (NB) [236]. Regularization
terms were exploited in the training procedures for neural networks and SVM
learning processes, using a weight decay and the soft-margin formulation, re-
spectively. All the classifiers were tested on the seven features types described
above. For each subject, the hyperparameters of each classifier were selected by
a random search with Nested Cross Validation to mitigate possible bias induced
by the low sample size [237]. Differently from the classical k-fold cross valida-
tion, Nested CV is composed of two nested k-fold cross validation procedures:
the inner one finds the best model hyperparameters, and the outer one estimates
the performance of the inner search. Namely, in the classic k-fold CV, given a
combination of the hyperparameters values, a set of data is divided into a parti-
tion of k subsets (folds). Thus, a set TI composed of k − 1 folds is used to train
the model and the remaining fold EI is used for the performance evaluation by
computing the appropriate metric scores (e.g., accuracy). This process is repeated
for all the combinations of the k folds, by making different pairs of training set
TI and test set EI at each iteration. In this way, final average metrics scores be-
tween all the different test sets EI are computed. This process is then repeated
for each hyperparameters combination, finally returning the best average metrics
values together with the related hyperparameters. In this process, the model is
evaluated together with the hyperparameters tuning. Instead, in the nested cross
validation CV procedure, an outer CV makes a first division of the data into l
folds; then, a set TO composed of l− 1 folds is used as input to a classical inner k-
fold CV procedure, as above described (and therefore further divided into k folds
by the inner CV procedure). Then, the returned best hyperparameters values are
used to train the model on the TO set as a whole and tested on the remaining fold,
say EO. This process is repeated for all the combinations of the l folds and the
final average metrics on the EO sets are reported. In this way, the nested CV pro-
cess avoids a possible bias on the model, due to the use of the same data for the
model hyperparameters tuning and the model evaluation. In this thesis, a 10-fold
Nested CV was used. In the outer layer, 10% of the data was separated for test
and the rest of the data was used to develop a model. In the internal layer, the
remaining 90% of the data was used for tuning the hyperparameters. Training
and test sets were obtained without separating the trials consisting of 3 epochs
each. In this way, the training and the test sets do not include parts of the same
trial. The hyperparameters variation range are displayed in Table 3.9.



54 Chapter 3. Basic mental state assessment

TABLE 3.9: Classifier optimized Hyperparameters and variation
range

Classifier Hyperparameter Variation Range

k-Nearest Neighbour (k-NN)

Distance (DD)
{cityblock, chebychev, correlation, cosine,

euclidean, hamming, jaccard, mahalanobis,
minkowski, seuclidean,spearman}

DistanceWeight (DW) {equal, inverse, squaredinverse}
Exponent (E) [0.5, 3]

NumNeighbors (NN) [1, 5]

Support Vector Machine (SVM)

BoxConstraint (BC) log-scaled in the range [1e-3,1e3]
KernelFunction (KF) {gaussian, linear, polynomial}

KernelScale (KS) log-scaled in the range [1e-3,1e3]
PolynomialOrder (PO) {1,2,3,4}

Artificial Neural Network (ANN) Activation Function (AF) {relu, sigmoid, tanh}
Hidden Layer nr. of Neurons (HLN) [25, 200]

Linear Discriminant Analysis (LDA)
Gamma (G) [0,1]

Delta (D) log-scaled in the range [1e-6,1e3]

DiscrimType (DT) {linear, quadratic, diagLinear,}
{diagQuadratic, pseudoLinear, pseudoQuadratic}

Naive Bayes (NB)
DistributionName (DN) {normal, kernel}

Width (W) log-scaled in the range [1e-4,1e14]
Kernel (K) {normal, box, epanechnikov, triangle}

TABLE 3.10: Within-subject accuracy (mean and standard deviation
percentage of the 17 subject accuracy) at varying feature and classi-

fier

CLASSIFIER

FEATURE

FREQUENCY DOMAIN TIME DOMAIN

CSP
Filter-Bank + CSP

7 Traditional
EEG Bands

9 EEG Bands
Proposed in[150]

Proposed 12
EEG Bands

7 Traditional
EEG Bands

9 EEG Bands
Proposed in[150]

Proposed 12
EEG Bands

k −NN 77.5 ± 5.5 76.7 ± 5.5 80.2 ± 5.1 65.9 ± 5.0 87.4 ± 4.1 90.9 ± 3.2 92.8 ± 1.6
SVM 79.9 ± 5.6 76.0 ± 4.0 81.7 ± 6.9 69.2 ± 5.1 86.8 ± 4.5 89.8 ± 3.7 91.1 ± 3.2
LDA 76.7 ± 7.4 75.1 ± 7.2 78.3 ± 6.3 67.7 ± 4.8 82.9 ± 4.5 85.7 ± 6.2 86.6 ± 2.0
ANN 75.6 ± 6.3 73.6 ± 6.7 76.9 ± 6.4 67.2 ± 4.5 81.9 ± 4.5 85.1 ± 5.0 86.3 ± 3.5
NB 64.5 ± 6.2 63.8 ± 5.2 65.3 ± 7.8 65.2 ± 4.9 75.3 ± 7.3 77.0 ± 7.2 78.7 ± 7.5

Experimental Results

A within-subjects approach was realized. The accuracy (mean and standard devi-
ation) for each classifier was assessed at varying the type of input feature. Table
3.10 shows better performances in case of features extracted from the time do-
main by combining Filter-Bank and CSP.

In particular, the proposed solution based on 12 bandpass Filter-Bank pro-
vides the best performances for all classifiers except for LDA. In Table 3.11, the
accuracy of the proposed solution is shown for each subject at varying the classi-
fier. In case of k-NN, the mean accuracy reached the maximum value of 92.8±1.6
%. To the best of the authors’ knowledge, the accuracy obtained can be consid-
ered state-of-the-art when considering a within subjects approach. Regarding
rehabilitation goals, the minimization of failure in recognizing distraction is the
main issue. Therefore, an F-measure test was carried out to assess the classifica-
tion performance in minimizing false negatives for the second class (distraction)
analysis. Fig. 3.11 shows a k-NN mean Recall higher than 92 %.
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TABLE 3.11: Within-subject accuracy of the proposed solution based
on the 12 bandpass Filter Bank and Common Spatial Pattern at vary-

ing the classifier.

SUBJECT CLASSIFIER

k-NN SVM LDA ANN NB

#1 91.1 ± 5.3 90.3 ± 5.2 88.2 ± 5.3 86.3 ± 7.2 66.0 ± 9.7
#2 92.2 ± 2.2 90.1 ± 5.1 85.1 ± 6.2 83.5 ± 5.3 79,2 ± 9.9
#3 93.3 ± 5.5 92.2 ± 5.1 89.2 ± 7.1 80.3 ± 7.3 87.2 ± 7.3
#4 94.1 ± 4.2 95.0 ± 2.2 89.6 ± 5.5 92.4 ± 6.8 81.3 ± 4.4
#5 90.4 ± 4.3 89.2 ± 6.7 84.3 ± 9.2 84.5 ± 7.6 65.3 ± 9.7
#6 93.3 ± 3.1 96.5 ± 3.8 91.7 ± 6.8 89.7 ± 6.2 74.1 ± 7.3
#7 96.1 ± 3.2 92.3 ± 4.4 87.2 ± 6.8 87.6 ± 8.3 80.0 ± 9.8
#8 93.1 ± 5.2 91.2 ± 6.7 88.4 ± 7.3 87.6 ± 6.1 86.5 ± 6.3
#9 91.2 ± 4.5 89.1 ± 8.8 88.4 ± 9.1 87.6 ± 6.5 82.8 ± 6.2

#10 92.1 ± 4.4 85.2 ± 4.8 80.3 ± 5.7 82.3 ± 6.9 73.2 ± 9.9
#11 91.1 ± 5.3 90.2 ± 6.7 83.5 ± 8.5 82.5 ± 9.1 79.2 ± 7.1
#12 94.8 ± 4.2 93.8 ± 3.3 91.7 ± 6.6 87.6 ± 06 87.3 ± 3.5
#13 93.3 ± 6.2 92.2 ± 7.6 84.2 ± 5.9 86.8 ± 8.4 75.6 ± 8.4
#14 96.6 ± 4.5 96.3 ± 5.3 90.8 ± 5.8 90.4 ± 6.1 86.8 ± 8.2
#15 93.8 ± 6.2 94.1 ± 4.5 88.8 ± 8.1 86.2 ± 6.5 84.4 ± 5.6
#16 93.5 ± 7.3 91.8 ± 5.5 86.6 ± 2.2 87.2 ± 5.5 82.5 ± 5.6
#17 93.2 ± 4.1 84.8 ± 6.5 77.5 ± 1.6 77.8 ± 1.1 66.4 ± 8.0

MEAN 92.8 ± 1.6 91.1 ± 3.2 86.6 ± 2.0 86.3 ± 3.5 78.7 ± 7.5

FIGURE 3.11: F-Measure test results for the best performance of each
classifier: Precision (black) , Recall (gray), and F1-score (white).
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Chapter 4

Complex mental state assessment

In this chapter measurement methods and experimental validation for complex
mental state are presented. The word complex stands for multidimensional. Both
stress and engagement, indeed, are frequently described in terms of basic dimen-
sions, namely: cognitive, emotive, and behavioural. The proposed approach will
not address the behavioral dimension because other signals would be more ap-
propriate than the EEG (e.g., video and accelerometric data).

4.1 EEG-Based Stress Assessment

4.1.1 Design

In this Section, (A) the Basic Ideas, (B) the Architecture, (C) the Operation, and (D)
the Feature Extraction and Classification of the instrument are presented.

Basic Ideas The concept design of the real-time stress monitoring instrument
was based on the following main basic ideas.

• High wearability: a single differential channel allows the use of only two
frontal electrodes in the area FP1 e FP2 according to the EEG International
10–20 system for placement of EEG electrodes on the scalp. The reference
electrode is applied to the earlobe. These positions have been used in re-
ports of successful studies on stress [199]. Active dry electrodes avoid the
inconvenient of electrolytic gel. A wireless module allows the user to carry
out work activity during the EEG acquisition.

• High accuracy and low latency: Despite the use of a single differential acqui-
sition channel, a time-domain based machine learning algorithm brings to
an accuracy of 98.3 ± 0.4 in stress detection. A time window of 512 samples
guarantees a latency of 2 s.

• Off-the-shelf components: The measurement of frontal asymmetry by EEg at
very-low density (single channel) allows high wearability, maximum accu-
racy, and low latency by exploiting the lowest cost hardware on the market
(< 200 $) [51].
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FIGURE 4.1: Architecture of the real-time stress monitoring instru-
ment in Cobot interaction.

Architecture The architecture of the proposed instrument is highlighted in Fig.
4.10, in an example of interaction with a cobot. Prefrontal asymmetry is mea-
sured by two Electrodes as the difference of brainwaves from position FP1 and
FP2, according to 10/20 system. The differential signal is referred to the earlobe.
Analog signal is digitized by the Acquisition Unit and is sent, via wires, to the
Wi-Fi Transmission Unit. Digital data arrives at the Processing Unit through wire-
less communication for real-time elaboration. Suitable features are extracted from
each EEG record to compress data and increase significance. A Classifier receives
the feature arrays, detects the stress condition, and assess its level. The measured
stress is sent to the Cobot.

Operation The instrument allows to detect the onset and to assess the level of
the stress arising from the concurrence of high mental load and negative emo-
tional conditions, during the interaction with a Cobot. Once the worker fixes the
electrodes on the forehead and on the earlobe, the Processing Unit interface al-
lows to check signal quality both in time and in frequency domain. Subsequently,
the stress measurement starts and the acquired data are sent in real time to the
Processing Unit, by updating the user condition assessment every 2 s. Measure-
ment results are sent to the Cobot in order to adapt its behavior to the worker
stress conditions.

Feature extraction and classification Preliminary experiments in frequency do-
main highlighted poor accuracy results. Therefore, data analysis was carried out
in the time domain. According to the state of the art [188], a EEG time window of
2 s was chosen as the optimal solution.

Feature Extraction was carried out by a standard machine learning technique,
the Principal Component Analysis (PCA). This allows to compress data [238] and
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to approximate signals as a linear combination of a restricted number of orthog-
onal components. Therefore, data variance is most efficiently explained. Accord-
ingly, a multi-variable signal can be represented as a smaller number of coeffi-
cients of the linear combination of the components. PCA also performs a filter
function, because it highlights the components with maximum variance (infor-
mation) of the data. Therefore, selecting only the components with the greatest
variability improves signal-to-noise ratio.

For the classifier design, a linear separability test of the data was carried out by
an euclidean distance-based K-means algorithm with low computational burden
[239]. If a problem is linearly separable, a nonlinear classifier complicates the
model unnecessarily and makes the correct learning of the classifier parameters
less effective [240]. K-means algorithm estimates k means (centroids) in order
to partition data into k clusters where each observation belongs to the cluster
with the nearest mean. Then, in case of few outliers, a linear classifier is justified.
Therefore, a preliminary analysis was realized.

Preliminary Analysis Ten subjects were divided into two classes with differ-
ent stress level: (i) control group, only cognitive load, and (ii) experimental group,
cognitive load but with negative emotions. Data were recorded during all the
tests with a differential single-channel digitizer, sampling at 256 Sa/s. The signal
was elaborated in time domain and without artifact filtering according to [140].
For each volunteer, two EEG tracks of 20 s were processed and divided into 2–s
records of 512 samples. The resulting matrix 200x512 was divided in two clusters
using the standard K-means algorithm with K = 2. In Fig. 4.2, the result of the
clustering algorithm is reported. The two experimental groups were separated

FIGURE 4.2: K-means classification (white: class 1; black: class 2)
among the 2 different time phases according to subjects belonging

group.

by K-means almost cleanly: on the first five rows, the arrays of the experimental
group records, and on the other rows, the ones of the control group. These results
suggested that a linear classifier discriminates the points of the two groups ad-
equately. As a consequence, a successful and well-claimed method, the Support
Vector Machine (SVM), with linear Kernel was used.
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4.1.2 Realization

Hardware

Data Acquisition Unit It is based on the differential single-channel 10-bit
digitizer EEG-SMT by Olimex, with maximum sampling rate of 256 Sa/s, an
EEG amplifier, and an Atmel ATmega16 Alf and Vegard Reduced Instruction
Set Computer processor microcontroller. The gain of the analog-to-digital con-
verter (ADC) of the transducer was set to be 6427 V/V. A right-leg driver [driven
rightled (circuit) (DRL)] signal increases the common-mode noise rejection. Uni-
versal serial bus is used for both data communication and powering. Moreover,
the EEG-SMT has an analog three stages pass-band filter from 0.16 to 59.00 Hz.
A previous work proved its suitability for wearable, low-cost, and non-invasive
brain activity monitoring, by means of a single differential channel [51].

Dry Electrodes Brain signals are acquired by two dry active electrodes (Olimex
EEG-AE), coated with a thin layer of silver chloride to guarantee the best contact
impedance. The contact surface is extended by pins of conductive material. In
this way, the quality of the acquired signal is preserved even with the electrode
on a thick layer of hair. The reference passive dry electrode (Olimex EEG-PE) was
applied to the earlobe. The electrodes on the user’s forehead are fixed with a tight
headband. The electrode on the earlobe is fixed with a clip, to ensure electrical
connection.

Transmission unit A Wi-Fi communication channel was implemented to en-
hance wearability, throughout a Raspberry Pi 3 single-board computer, used as
server, connected via UART to the EEG-SMT. The Raspberry Pi 3 uses a BCM43438
wireless chip and operates at ISM frequency bands (2.4 GHz).

Signal processing and classification In time domain, EEG tracks are divided
into 2–s records of 512 samples. In this way, raw data are composed of 512 fea-
tures, i.e. each feature corresponds to just one sample. Then, a feature reduction
process is realized by PCA. The first four Principal Components are considered as
input in the successive classification step. A trained linear kernel SVM classifier
distinguishes records of a stressed or no stressed subject. The length of records
determines the latency of 2 s.

Software

Raspberry The EEG signals, digitized by the EEG-SMT Olimex, are acquired
by the Raspberry via UART by means of a dedicate software in C and installed on
the Raspberry Pi 3. The baud rate is set to 57600 bit/s, with packet size 8, with-
out parity bit. The Raspberry Pi 3 acts also as a Wi-Fi server, receiving from the
EEG-SMT the command of start of the acquisition, and sending to the computer
station the acquired data. This allows the users to freely move during real life. In
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view of a stand-alone device release, the computational power guaranteed by the
raspberry allows processing to be carried out directly on board.

Processing Unit A specifically designed Matlab graphical user interface (GUI)
allows easy interaction with Olimex EEG-SMT, through graphical icons and vi-
sual indicators. Moreover, by observing the display windows, EEG signal can
be monitored both in time and frequency domain. Meanwhile, a Matlab script
implements the linear kernel SVM.

4.1.3 Experimental Setup

Seventeen volunteers underwent an initial screening test administered by the
psychologist. Seven participants were excluded from the experiment owing to
excess in smoke, high score in anxiety and depression at questionnaires, and low
performance at short memory tests. Therefore, ten healthy young volunteers (av-
erage age 25 years) of whom five women and five men, participated in the study.
The informed consent, containing all the information about the experiment, was
provided and signed by the subjects. The protocol was explained by the psychol-
ogist. Participants were divided equally into control and experimental groups, to
complete a task, which induces mental load, together with (experimental group)
or without (control group) negative social feedback. In particular, the Stroop
Color and Word Test (SCWT) [241], a neuropsychological test extensively used
for both experimental and clinical purposes, aimed to challenge subject using a
complex cognitive task. In this test, subjects are required to read as fast as possi-
ble color-words printed in an inconsistent color ink, and to name the color of the
ink instead of reading the word. This is to be done in a limited time punctuated
by the psychologist who also gave information about errors during the perfor-
mance. Environment was specifically designed in order to stress participants, by
means of an attractive prize and an extremely out of range performance. Before
and after the Stroop Test, subjects were required to complete two questionnaires:
(i) STAI State form [242], to evaluate current anxiety state, and (ii) Rosemberg
inventory [243], to assess participants’ self-esteem. In them, they had to reflect
their emotions in the specific moments during their exercise. Moreover, at the
end of experimental tests, participants filled a rating of the experience in the Lik-
ert scale. The two groups, experimental and control, were subjected to the same
protocols, but only the experimental group was stressed emotionally. During the
experiment, the device did not annoy or distract the subject. After each trial,
the psychologist asked for feedbacks in order to ensure the safety of participants.
They did not experience any discomfort related to the electrode band; after a few
minutes, they no longer noticed the device. The most significant 40 s were ex-
tracted from each individual test of 180 s. The initial and concluding stages are
potentially the most inhomogeneous among them, that is, the most challenging
in order to find a regularity, intra individual and even more intra group. The first
10 s of the test, regarded as cognitive warm up, were excluded. Therefore, only
the later 20 s were deemed. The final 10 s were discarded, due to observations of
the psychologist. The specialist noticed that some subjects showed a renouncing
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attitude, once realized the impossibility to complete the task. Hence, the previ-
ous 20 s were considered. Subsequently, for each subject, the two 20-s EEG tracks
were divided in 2-s records. Each record is characterized by 512 time domain
features, i.e. the 512 samples contained in 2 s. The total number of records were
200, namely 20 records for 10 subjects of 2 s each. Five subjects were taken from
control group and five from experimental (stressed) group. In this way, the total
EEG-samples from each group were 51,200. A matrix with 200 records on the
rows was obtained by placing the first 100 records referred to the initial and final
20 s stress of control group and subsequently 100 records related to initial and
final 20 s of experimental group.

Psychological validation A unique stress index was estimated as sum of nor-
malized indexes to assess the general stress induced to participants. The indexes
of performance, anxiety, self-esteem, perceived stress, and motivation, were ob-
tained from parametric STAI and Rosemberg tests, as well as from task perfor-
mance. One-way ANOVA was used to evaluate stress and motivation indexes
on groups with a significance level α=0.05. The experimental group was more
stressed compared to the control group, as evidenced by the One-way ANOVA
(F=7.49; p=0.026). Instead, any significant difference between gender was no-
ticed. A relevant difference in motivation between groups (F=14.52; p=0.005)
showed that control group was more motivated than experimental group at the
end of the experiment. Tab. 4.1 shows that, once arranged the stress index in
decreasing order, the experimental group is more stressed than control one.

TABLE 4.1: Stress index distribution (descending sort)

Subject Stress Index Group
1 1,68 Experimental
2 1,66 Experimental
3 1,52 Experimental
4 1,38 Control
5 1,21 Experimental
6 0,77 Experimental
7 0,69 Control
8 0,54 Control
9 0,14 Control
10 -0,06 Control

Stress Classification Four different machine learning classifiers were used for
validating the proposed method, by distinguishing stressed subject signals from
no-stressed subject signals: (i) SVM (linear Kernel), (ii) k-nearest neighbors (n_neighbors
= 9), (iii) Random Forest (criterion = ’gini’, max_depth = 118, min_samples_split
= 49) , and (iv) ANN (one hidden layer, activation function for hidden node = hy-
perbolic tangent, loss function = cross entropy cost, post processing = soft max,
training algorithm = Resilient Propagation). In tab 4.2 the optimized iperparam-
eters for each classifier are reported.
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TABLE 4.2: Classifier optimized iperparameters and range of varia-
tion

Classifier Iperparameter Variation range
SVM Cost parameter (C) [0.1, 10.1] step = 1.0

Random Forest n_estimators {90, 180, 270, 360, 450}
k-NN n_neighbors [5, 15] step = 2
ANN number of internal node {25, 50, 100, 200}

The behavior of each classifier was also evaluated when the input was pre-
processed by PCA.

Importantly, a subject-wise leave-two-out cross-validation evaluation was uni-
formly conducted in all the experiments in order to build a model capable of
generalizing to new subjects. In case of small dataset according to [244], the
Leave-p-out cross-validation (LPOCV) guarantees better statistical significance
with respect to Leave-one-out cross-validation (LOOCV). Applying LOOCV to
our dataset, the cross-validation process is repeated for k = 10 times, i.e. k = n
(the number of subjects in the original sample). Instead, LPOCV requires train-
ing and validating the model Cn

p times, where Cn
p is the binomial coefficient, n

the number of subjects in the original sample, and p is the number of subjects
reserved only for the test. In our case (leave-two-out) the two subjects always be-
long to different groups (experimental vs control). In this way, a higher statistical
significance was obtained (k = 25), by keeping training and test datasets balanced
concerning the two classes. Therefore, for each iteration, one subject for group
was left out from training set and used in the test set.

FIGURE 4.3: Cumulative Explained Variance in the PCA.

PCA Analysis Each classifier was fed with both raw data (2-s EEG epoch) and
PCA pre-processed data. In particular, for each iteration of the LPOCV method
[244] the first p principal components were computed on the training set. Then
both training and test set were projected on them. Finally, the reduced represen-
tations of both data sets were input to the classifiers. The number of principal
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TABLE 4.3: Classifiers accuracy (mean and uncertainty percentage)
in Original Data (O.D.) and Principal Components Hyperplanes

SVM Random Forest k-NN ANN
O.D. 97.5 ± 0.6 98.5 ± 0.3 98.5 ± 0.4 99.2± 3.1
PC1 90.5 ± 5.3 98,6 ± 0.3 98,9 ± 0.3 98.5± 3.8
PC2 78.5 ± 7.1 98,8 ± 0.2 98,0 ± 0.5 98.8± 3.9
PC3 93.2 ± 3.4 98,4 ± 0.5 98,5 ± 0.4 98.7± 4.3
PC4 98.3 ± 0.4 98,9 ± 0.3 98,5 ± 0.4 99.1± 2.4
PC5 97.8 ± 0.4 98,8 ± 0.5 98,5 ± 0.4 99.2± 2.8
PC6 97.4 ± 0.6 98,4 ± 0.5 98,5 ± 0.4 98.9± 3.3
PC7 97.8 ± 0.5 99.0 ± 0.4 98,5 ± 0.4 98.9± 3.6
PC8 97.4 ± 0.6 98,6 ± 0.5 98,5 ± 0.4 99.0± 3.5
PC9 97.9 ± 0.5 98,9 ± 0.5 98,5 ± 0.4 98.9± 4.1

TABLE 4.4: F-measure test results for SVM (mean and uncertainty
percentage)

Precision (%) Recall (%)
O.D. Hyperplane 96,5 ± 1,0 98,4 ± 0,7

PC1 89,2 ± 5,1 92,2 ± 5,3
PC2 81,1 ± 6,2 81,1 ± 6,7
PC3 96,4 ± 1,5 93,6 ± 3,1
PC4 98,2 ± 0,5 98,5 ± 0,7

P.C. Hyperplanes PC5 97,2 ± 0,5 98,5 ± 0,7
PC6 96,4 ± 1,1 98,5 ± 0,7
PC7 97,2 ± 0,8 98,5 ± 0,7
PC8 96,4 ± 1,1 98,5 ± 0,7
PC9 97,2 ± 0,8 98,7 ± 0,6

components p was varied: p ∈ {0, 1, 2, . . . , 9}, where p = 0 corresponds to con-
sider original data without PCA. The cumulative explained variance by the first
nine components is greater than 99%, when PCA is applied on the dataset as a
whole (Fig. 4.3). Therefore, this result highlights an intrinsic dimensionality of
the data actually equal to no more than 9 (with respect to 512) and, in this case, the
use of PCA for features extraction is validated. The results of the cross-validation
strategy are shown in Tab. 4.3, as mean and uncertainty, with and without PCA.
The lowest average accuracy for data without PCA is obtained by SVM and is
equal to 97.5%. An F-measure test was carried out to assess the classification
performance of the worst classifier (SVM). Results are reported in Tab. 4.4.

SVM classification output when p=2 is shown in Fig. 4.4 in PCs space. The
PCs plot shows vectors distribution with respect to Support Vector. In that, the
diamonds are associated to the control group, while the circles represent the ex-
perimental group.

Even with a temporal resolution of 2 s, satisfying results can be obtained in
discriminating stress conditions. Generally PCA allows to obtain comparable or
better average accuracy when p > 3 and, correspondingly, a lower uncertainty.
This last result suggests a better noise robustness with PCA.

In bi-dimensional case, PCA highlights that the variance of the control group
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FIGURE 4.4: SVM data distribution in PCs space, p=2, 92,6% of ex-
plained variance.

is lower. Among the two groups, a significant difference in dispersion around
the mean value as well as amplitudes comes out. Results of Fig. 2 confirm the
data separability, even using only the first principal component, capable of ex-
plaining almost the 90% of variance. The good correlation between psychometric
data and the exposure to different experimental set up (emotionally stressful and
not) founds the experimental set up reliability in conditioning participants with
regard to the study variable. The high accuracy level suggests that the signal ac-
quired through a single channel preserves the information concerning the frontal
asymmetry elicited from an emotional stress condition.

Noise and Bias Robustness Noise robustness was tested on the worst classifier
(SVM) in order to assess the robustness of the proposed method. The subject-wise
leave-two-out cross-validation strategy was repeated but with a further noise pa-
rameter, both (i) to make more generic the proposed method, and (ii) to verify the
occurrence of possible bias during acquisition. The second evaluation is aimed
to test the noise robustness of classification accuracy after PCA. In particular, two
different kinds of noise were considered. In the first test, aimed at generalization,
a random Gaussian noise with zero-mean and σ ∈ {0.04, 0.08, 0.12, 0.16, 0.20},
multiplied by the absolute value of the data maximum, was added. Results are
reported in Tab. 4.5.

In the second test, aimed to verify bias, a constant value was added to each
subject signal of the test sets. In this way, the signal of each subject was treated
with a different random bias. Bias levels were chosen randomly within intervals
of increasing amplitude (σ ∈ [0.04− 0.20], step = 0.04). For this reason, the global
effect on the entire data set is noise. Results are reported in Tab. ??.
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TABLE 4.5: Accuracy (mean and uncertainty) in Original Data (O.D.)
and Principal Components Hyperplanes at varying amplitude of

random gaussian noise

Noise σ percentage value
4 8 12 16 20

O. D. 97.9 ± 0.5 97.0 ± 0.7 96.1 ± 0.8 95.2 ± 0.9 92.2 ± 1.2
PC1 90.1 ± 5.3 89.7 ± 5.2 88.2 ± 5.2 86.4 ± 5.1 84.1 ± 4.8
PC2 79.0 ± 7.0 77.9 ± 7.1 77.5 ± 6.7 74.7 ± 6.6 74.5 ± 6.5
PC3 93.2 ± 3.4 92.4 ± 3.5 88.7 ± 3.4 85.7 ± 3.3 84.4 ± 3.4
PC4 98.2 ± 0.4 97.1 ± 0.7 95.9 ± 0.7 92.7 ± 0.9 90.8 ± 1.1
PC5 97.6 ± 0.4 97.2 ± 0.5 94.6 ± 0.7 91.6 ± 0.1 89.9 ± 0.1
PC6 97.7 ± 0.6 96.6 ± 0.7 95.1 ± 1.0 93.3 ± 1.0 90.4 ± 1.1
PC7 97.9 ± 0.5 96.8 ± 0.7 96.2 ± 0.8 93.7 ± 0.9 91.6 ± 0.1
PC8 97.5 ± 0.6 96.8 ± 0.6 96.3 ± 0.7 93.5 ± 0.1 90.5 ± 0.1
PC9 98.1 ± 0.5 97.2 ± 0.6 96.6 ± 0.6 93.7 ± 0.9 91.9 ± 0.1

In both the cases, the instrument shows good noise robustness. The classifier
with PCA performs better if the noise level is less than 12% of absolute value
of the maximum of data. Performance degrades in any case with higher noise
levels. In this study, the differential channel and the PCA are exploited to face the
problem of artifacts. A differential channel intrinsically rejects the common mode
noise. PCA on the differential channel EEG acts like a pass band filter owing to its
intrinsic reduction of the signal dimensionality in the PC domain. The combined
effect of this two filtering effects improves the signal-to-noise ratio significantly.
The experimental analysis of noise robustness validated, ex post, the proposed
method.
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4.2 Engagement in rehabilitation

4.2.1 Basic Ideas

The aim of this study is to propose an EEG-based engagement detection system
in the field of pediatric rehabilitation. The basic ideas of the proposed method
are:

• The use of both the emotional and the cognitive engagement: an overcoming of
the reductionist approach based only on the cognitive dimension, which is
particularly unsuitable for children, is proposed.

• Employment of a low-cost, portable and wireless EEG device: the goal of engage-
ment assessment was realized using off the shelf components. The weara-
bility was guaranteed by wireless data transmission.

• Adoption of a subject-dependent approach: the low inter-individual EEG repro-
ducibility significantly influences the pattern classification in the engage-
ment detection systems [245].

• Support procedure for user calibration: the system needs a calibration. To this
aim, the user executes a set of rehabilitation sessions on different days. An
observational non-interventional protocol is the best choice for maximizing
children’s comfort. However, this can lead to unbalanced data and a more
challenging classifier training phase is required. The recent KMeansSMOTE
method [246] is proposed to manage the imbalance of data.

4.2.2 Methods

Architecture The proposed method is sketched in Fig. 4.5. The semi-wet 14 chan-
nel EEG device allows the EEG signals to be sensed directly from the scalp of the
child. Channels are referred to CMS/DRL. Analog signals are conditioned by
stages of amplification and filtering (Analog Filter and Amplifier). Then, they are
digitized by the Analog Digital Converter ADC and sent by the Wireless Trans-
mission Unit to the Data Processing block. The Classifiers receive the feature arrays
from two trained Common Spatial Pattern procedures for detecting the cognitive
and emotional engagement.

Data processing In this section, data preparation, training and classification are
presented.

[1] Data preparation and training: the EEG tracks are acquired at a sample rate of
128 Sa/s into time windows of 9 s without overlap. EEG signals are filtered
through a 4th order Butterworth band-pass filter, between 0.5 Hz and 45 Hz.
During the calibration, data are collected and properly labeled by the ther-
apist. Both cognitive and emotional engagements are distinguished in two
classes, high and low. Two Common Spatial Pattern procedures (CSP [247])
and two fully-connected feed-forward artificial neural network (ANN) clas-
sifiers, are separately trained on cognitive and emotional engagement data.
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FIGURE 4.5: The proposed cognitive and emotional engagement de-
tection method.

[2] Classification: the trained CSPs project multi-channel EEG data belonging to
different classes into a new space, where the differences between the vari-
ances along the dimensions are maximized. The two trained ANNs for emo-
tional and cognitive engagement classification are fed with the outputs of
the previous stage (Fig. 4.5).

4.2.3 Experimental Setup

Sample Four children, three males and one female aged between 5 and 7 years,
suffering from disturbances in motor-visual coordination, were selected for the
experiment. Each subject was affected at least by one among the following dis-
eases: double hemiplegia, motor skills deficit with dyspraxia, neuropsychomotric-
ity delay, and severe neuropsychomotricity delay in spastic expression from peri-
natal suffering. Their main symptoms were: lack of strength, motor awkward-
ness, difficulty in maintaining balance, inadequate postures, spatial disorienta-
tion, problems with laterality (right, left confusion), difficulty in managing time,
and learning difficulties.

Experimental setup The experimental protocol was approved by the ethical
committee of the University Federico II. Families agreed to the experimental ac-
tivities by releasing a written informed consent before the experiment. Proce-
dures were carried out according to relevant guidelines and regulations [248].
An observational non-interventional protocol maximized the children’s comfort.
Therefore, part of the ordinary rehabilitation sessions was monitored by EEG for a
total of about thirty minutes per week for each subject. The data acquisition took
place in a room illuminated by natural light and provided with air exchange.

The adopted therapeutic approach was the Perfetti-Puccini method, also known
as Cognitive Therapeutic Exercise [249]. The method aims to recover the injury
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and activate the brain circuits that govern movement. The child was asked to per-
form a visual attention exercise while keeping the correct posture of the trunk,
neck, and head. An interactive environment [250] was depicted on a screen
placed at the eye level of the subject (Fig. 4.6). One of four characters (a bee,
a ladybug, a girl, or a little fish) could be chosen to make the game more inter-
esting. The child had to stare at the character on the screen to make it move
while maintaining eye contact. Dynamic tracking techniques were employed.
The game allowed to set (i) the direction of the character’s movement (from right
to left and vice versa, or from top to bottom and vice versa), and (ii) the back-
ground landscape, to adapt the difficulty level to the patient’s needs. A back-
ground music was inserted into the game to improve the child engagement. The
game provided some features to adapt the therapy to the state of the subject: (i) a
simplification of the exercise, (ii) the introduction of elements of novelty, and (iii)
a content change.

FIGURE 4.6: Neuromotor rehabilitation session.

Several professional figures contributed to the experimental activity. Physio-
therapists explained the exercise to the child (before the first session only), su-
pervised rehabilitation, and helped the child maintaining eye contact and correct
posture. A software engineer was responsible for starting the system and saving
the data. A biomedical engineer was responsible for the EEG signal acquisition
system and, therefore, for the correct setting-up, placement of the device, and
electrode-skin quality contact.

Metrological reference Each session was video-recorded by two cameras (front
and side framing).

The Pediatric Assessment of Rehabilitation Engagement (PARE) scale was em-
ployed for labeling the EEG signals. The emotional, cognitive, and behavioral
components of engagement were expressed in terms of: participation, attention,
activation, understanding, positive reactions, interest and enthusiasm, posture
and movements of the child during the exercise, on a scale from 0 to 4. The PARE
scale allowed to assess the rehabilitation session as a whole. The items of the
scale were rearranged to be employed in shorter time intervals with the aim of
improving the temporal resolution of observations. The behavioral component of
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engagement cannot be assessed starting from the EEG signal. Therefore, only the
cognitive and emotional components of engagement are considered for research
purposes. The items referring to the emotional and cognitive spheres were sep-
arately grouped. The evaluations were made by a multidisciplinary team while
viewing the videos. The evaluators were asked to rate both the components of
the engagement on two levels: high/low emotional engagement and high/low
cognitive engagement. They also noted the status changes of the emotional and
cognitive engagement and the correspondent time instants of occurrence. The
consensus among the evaluators was statistically analyzed. The results revealed
a total consensus of 95.2 % [251]. Evaluations were used as ground-truth to label
the EEG dataset.

Experimental Results In Tables 4.6 and 4.7, the overall averages of the intra-
individual balanced accuracies and MCC scores, given by the adopted classifiers,
are reported for the cognitive engagement and the emotional engagement, re-
spectively. To better understand to what extend the oversampling strategy can
affect the results, the experiments were repeated with or without the application
of the oversampling method.

TABLE 4.6: Overall mean of the intra-individual performances on
cognitive engagement using three different classifiers: the balanced
accuracy (BA) and the Matthews correlation coefficient (MCC) at

varying the oversampling methods.

Oversampling Metric k-NN SVM ANN Mean

none BA
MCC

67.1
0.31

67.4
0.34

73.7
0.45

69.4± 3.0
0.36± 0.06

SMOTE BA
MCC

68.6
0.33

69.8
0.36

72.0
0.40

70.1± 1.4
0.36± 0.03

BorderlineSMOTE BA
MCC

70.3
0.36

70.9
0.38

73.6
0.43

71.6± 1.4
0.39± 0.03

ADASYN BA
MCC

68.1
0.33

68.3
0.33

72.5
0.42

69.6± 2.0
0.36± 0.04

SVMSMOTE BA
MCC

69.0
0.34

69.4
0.36

72.9
0.42

70.4± 1.7
0.37± 0.03

KMeansSMOTE BA
MCC

69.8
0.35

71.1
0.39

74.5
0.46

71.8± 1.98
0.39± 0.04

As regards cognitive engagement, the oversampling method gave a slight im-
provement; as regards emotional engagement, the oversampling method gave
a significant improvement to the performances, especially when the KMeansS-
MOTE method was employed.

The KmeansSMOTE is less likely to generate minority class data in domain
areas predominantly dominated by majority class data. Thus, generated data are
closer to the data of the minority class, as showed in Fig. 4.7 where the training
data of a highly-unbalanced subject are shown using the t-SNE projection [252].
The data is oversampled with two methods: SMOTE (Fig. 4.7 A) and KMeansS-
MOTE (Fig. 4.7 B). The latter attenuates the noise thanks to clustering before data
interpolation.
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TABLE 4.7: Overall mean of the intra-individual performances on
emotional engagement using three different classifiers: the balanced
accuracy (BA) and the Matthews correlation coefficient (MCC) at

varying the oversampling methods.

Oversampling Metric k-NN SVM ANN Mean

none BA
MCC

56.3
0.16

57.0
0.20

61.4
0.26

58.2± 2.2
0.21± 0.04

SMOTE BA
MCC

57.6
0.16

61.2
0.24

67.1
0.35

62± 3.9
0.25± 0.08

BorderlineSMOTE BA
MCC

57.3
0.15

60.2
0.22

66.5
0.34

61.3± 3.8
0.24± 0.08

ADASYN BA
MCC

57.0
0.15

60.0
0.21

67.4
0.36

61.5± 4.4
0.24± 0.09

SVMSMOTE BA
MCC

57.3
0.15

61.0
0.25

64.4
0.31

60.9± 2.9
0.24± 0.06

KMeansSMOTE BA
MCC

57.9
0.18

63.6
0.30

71.2
0.43

64.23± 5.4
0.30± 0.10

Figures 4.8 and 4.9 show the intra-subjective balanced accuracies obtained
both on cognitive and emotional engagement, respectively, using the KMeansS-
MOTE oversampling method. The ANN classifiers returned the better scores in
most subjects, both in the emotional and cognitive engagement.

Furthermore, the MCC and the BA values ensure that the results are not af-
fected by unbalancing bias in the test phase.

4.2.4 Discussion

The results reported in Tabs. 4.6 and 4.7 showed the amount of the improvement
given by the oversampling methods in the proposed setup. More in detail, in
the emotional engagement classification task, the improvements are more signif-
icant (e.g., an increase in accuracy of about 10 %) with respect to the cognitive
engagement classification performance. This can be due to the different unbal-
ancing ratios between the classes in the two tasks (i.e., a greater unbalanced data
condition in the emotional engagement dataset with respect to the cognitive one).
Indeed, in the proposed setup, the SMOTE algorithms generated greater amounts
of data in case of strong unbalanced data condition having a greater impact on the
classification performances. Therefore, also the cognitive dataset was artificially
unbalanced to validate this hypothesis. To this aim, the number of samples was
chosen so that the classes distribution was the same as the emotional engage-
ment data. Next, an ANN classification step with and without KMeansSmote
was carried out. The resulting performances without any oversampling strategy
were 58.73 % and 0.25 for BA and MCC, respectively. Instead, BA and MCC in-
creased to 65.14 % and 0.28, respectively, with KMeansSmote oversampling. The
improvement given by KMeansSmote showed that the used oversampling strat-
egy is particularly suitable for this type of data in case of imbalanced condition.
As concerns the data acquisition stage, Emotiv Epoch+ is only partially adapt-
able to different head sizes. Nevertheless, among the children involved in the
experimental activity, the child with the smallest head exhibited an inion-naison
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FIGURE 4.7: t-SNE projection of unbalanced EEG data (subject 4)
oversampled with two different methods. The SMOTE method
(A) randomically interpolates the data of the minority class. The
KMeansSMOTE method (B) realizes a clustering before interpola-

tion, attenuating the noise.

distance of 31.0 cm that is within the range of variation in adults of [31,0 - 38,0] cm,
well established in literature [253]. By assuming that the manufacturer optimized
the product for an average value of the inion-nasion distance of 34.5 cm in adults,
in the case of a lower inion-nasion distance of 31.0 cm, the maximum electrode
dislocation is about 1.4 cm with respect to the 10-20 International Positioning Sys-
tem. The maximum electrode position shift is appreciated in the frontal area and
it gradually decreases until its disappearance, moving from the frontal area to the
occipital area of the scalp. Therefore, the distance of each electrode from the refer-
ence of the 10-20 International Positioning System is to be considered in order to
make reproducible the measurement. Despite the Emotiv Epoc+ device has the
largest number of electrodes among the low-cost EEG devices available on the
market, it does not guarantee a dense coverage of the parietal area of the scalp.
The signal acquired in this area is particularly relevant for the assessment of the
spatial attention [254, 255]. However, the device is equipped with 2 electrodes in
the parietal areas (i.e., P7 and P8) and the spatial attention is only one component
of engagement. Therefore, the engagement was adequately monitored and the
measure was significant, as shown by the experimental results.
As regards the implications and applications of the proposed method, adaptivity
is currently based on performance monitoring in the rehabilitation field. Char-
acteristics not directly observable (such as patient engagement) are usually not
taken into consideration. Conversely, the monitoring and the proper stimulation
of patient engagement can strongly improve the effectiveness of the rehabilita-
tion intervention. For example, in the framework of neuromotor rehabilitation,
maintaining the attention focus on the exercises promotes neuronal neuroplastic-
ity and motor recovery [22]. Therefore, monitoring cognitive engagement allows
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FIGURE 4.8: Cognitive engagement balanced accuracies for each
subject based on KMeansSMOTE oversampling technique. Classi-

fier performances are reported.

FIGURE 4.9: Emotional engagement balanced accuracies for each
subject based on KMeansSMOTE oversampling technique. Classi-

fier performances are reported.

automated systems to adopt appropriate countermeasures when distraction is
detected [24].
Rehabilitation performance is also conditioned by the emotional engagement.
A low performance may depend, for example, on a state of boredom or worry,
rather than on a lack of skills. Chronic health disabilities are often stressors and
the stress management is a crucial issue in rehabilitation [256]. The assessment of
cognitive and emotional engagement allows to monitor stress levels [257] and to
provide the automated rehabilitation platform useful information to better adapt
to the user’s needs.
Finally, the proposed approach is data driven. Thus, it can be applied flexibly to
different targets by identifying ad-hoc models suitable for different abled groups.
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4.3 Engagement detection in learning

This Section describes an EEG-based cognitive and emotional engagement detec-
tion method during a learning task. In this section the basic ideas, the architecture,
and the adopted processing framework are outlined.

4.3.1 Basic Ideas

The proposed method is based on the following key concepts:

• EEG-based subject-adaptative system: new input channels (EEG) to the Intelli-
gent Teaching Systems enhance the adaptivity to the user in the context of
learning 4.0.

• Cognitive and emotional learning engagement detection: the assessment of stu-
dent engagement is realized considering both cognitive and emotional as-
pects, according to the Frederiks theory [78].

• Within and cross-subject designs: both the approaches are experimentally val-
idated in order to pursue accuracy maximization or calibration-time mini-
mization, respectively.

• Domain Adaptation procedure in cross-subject case: a Transfer Component Anal-
ysis (TCA) [258] allows to use knowledge acquired about other subjects to
simplify the system calibration on a new subject.

• Wearable system: an ultralight wireless EEG device with few and dry elec-
trodes maximizes the wearability.

• Multi-factorial metrological reference: the system is calibrated by using (i) stan-
dardized strategies for inducing different levels of cognitive load, and (ii) a
public acoustic stimuli dataset to elicit emotions. Moreover, the metrologi-
cal reference of emotional engagement was confirmed by statistical analysis
on the outputs of self-assessment questionnaires.

• Narrow EEG frequency intervals: the EEG features resolution is improved by a
12-band Filter-Bank, obtained by sub-dividing the traditional EEG six bands
(delta, theta, sigma, alpha, beta, and gamma).

4.3.2 Architecture

The architecture of the proposed system is depicted in Fig. 4.10. The eight Active
Dry Electrodes acquire the EEG signals directly from the scalp. Each channel is
differential with respect to AFz (REF), and referred to Fpz (GND), according to
10/20 international system. After transduction, analog signals are conditioned
by the Analog Front End. Next, they are digitized by the Analog Digital Converter
(ADC), and submit an Artifact removal block performed by an ICA based algo-
rithm. Then the signals are sent by the wireless Bluetooth transmission to the
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Data Processing stage. Here, the suitable feature are extracted by a 12-component
Filter Bank. The two Support Vector Machine (SVM) classifiers receive the features
array from two trained Common Spatial Pattern (CSP) algorithms for detecting the
Cognitive and the Emotional Engagement respectively. Only in the cross-subject
case, a baseline removal followed by a TCA procedure is provided during the
training stage of the classifier.

FIGURE 4.10: The architecture of the system for engagement assess-
ment; the white box is active only in the cross-subject case (ADC
- Analog Digital Converter, CSP - Common Spatial Pattern, TCA -
Transfer Component Analysis, and SVM - Support Vector Machine).

4.3.3 Processing Framework

In this section, (i) the feature extraction and selection, the (ii) baseline removal and
Domain Adaptation, and (iii) the classification are detailed.

Feature extraction and selection In this work, a novel Filter Bank version [24]
is adopted. EEG signals are acquired by an eight channels device with sample
rate of 512 Sa/s.

The acquired signals are then filtered by a filter bank composed of 12 infinite
impulse response (IIR) band-pass Chebyshev type 2 filters with 4 Hz amplitude,
equally spaced from 0.5 to 48.5 Hz. Then, epochs are extracted using a time win-
dow of 3 s with an overlap of 1.5 s.

Then, a Common Spatial Pattern (CSP) [39] is applied. In a binary problem,
CSP works by computing the covariance matrices related to the two classes, si-
multaneously diagonalized such that the eigenvalues of two covariance matrices
sum up to 1. Afterwards, a matrix is computed to project the input into a space
where the differences between the class variances are maximized. More precisely,
in a binary problem, the projected components are sorted by variances in a de-
creasing or ascending order: the former, when the projection matrix is applied
to inputs belonging to the first class, while the latter when inputs belong to the
second class [225].
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Baseline removal and Domain Adaptation A cross-subject approach has sev-
eral advantages with respect to a within-subject one, such as the reduction of
time for the initial calibration procedure. Unfortunately, the non-stationarity na-
ture of the EEG signal leads to a greater data variability between subjects. This is
a well-known problem in the literature, which makes the cross-subject approach
a very challenging task [259]. Currently, the Domain Adaptation methods [260]
are obtaining a great attention from the scientific community. In this work, the
Transfer Component Analisys (TCA) [258] is adopted. TCA is a well-established
technique of domain adaptation already used in the EEG signal classification lit-
erature with promising results [259]. In a nutshell, TCA searches for a common
latent space between data sampled from two different (but related) data distri-
butions by preserving data properties. More in detail, TCA searches for a data
projection φ that minimizes the Maximum Mean Discrepancy (MMD) between the
two distributions, that is:

|| 1

nS

nS∑
i=1

φ(~xSi)−
1

nT

nT∑
i=1

φ(~xT i)||2

where nS and nT are the numbers of points in the first (source) and the second
(target) domain set respectively, while ~xSi

and ~xT i are the i−th point (epoch) in
the two different sets. The data projected in the new latent space are then used as
input for the classification pipeline. However, TCA works with only two differ-
ent domains, differently from a multiple-subject environment, which can lead to
a domain composed of several sub-domains generated by the different subjects or
sessions. In [259], TCA was tested by considering for the first domain a subset of
samples fromN−1 subjects, whereN is the total number of subjects, and with the
data of the remaining subject for the other domain. However, this approach does
not take into consideration the fact that different subjects may belong to very dif-
ferent domains, leading to poor results. A simple solution consists in subtracting
to each subject a baseline signal recorded from the user, for example, in rest con-
dition. However, this last point requires new subject acquisition. Instead, in this
work, an average of the signals for each subject is used as baseline, thus avoiding
the need for new signal acquisitions.

Classification For the classification stage, Support Vector Machines (SVMs)[261]
are implemented. Considering inputs as points in a vector space, SVM is a binary
classifier which discriminates data according to a decision hyperplane. Differ-
ently from other hyperplane-based classifiers, an SVM finds the hyperplane max-
imizing the separation between the classes, i.e. the hyperplane having the largest
distance from the margins of the classes.

4.3.4 Experimental Setup

Twenty-one school age subjects (9 males and 13 females, 23.7 ± 4.1 years) par-
ticipated in the experiment. The ethical committee of the University of Naples
Federico II approved the experimental protocol. All methods were performed in
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accordance with the relevant guidelines and regulations. Before the experiment,
each subject read and signed the informed consent. All volunteers have no neu-
rological diseases. Each subject was seated in a comfortable chair at a distance
of 1 m from the computer screen. The location was sanitized before and after of
each acquisition as indicated in the COVID-19 academic protocols. Each subject
was equipped with a mouse to carry out the experimental test. After wearing
the EEG-cap, the contact impedance was assessed to guarantee optimal signal-
acquisition conditions. Each subject underwent an experimental session com-
posed by 8 trials. Various stimuli to induce high and low levels of emotive and
cognitive engagements were equally distributed among the trials. As stimulus
modulating the cognitive engagement level an updated and revised Continuous
Performance Test (CPT) [262] was administrated. In particular, a CPT version
based on a learning by doing activity on how an interface works was adopted.
Whereas, proper background music and social feedback was used to modulate
the emotive engagement level . More in details, the three different stimuli are
described as follows:

• Revised CPT: a red cross and a black circle on the computer screen were
presented to the subject. The red cross tends to run out from the circle on
the screen in random directions. The subject was asked to keep the cross
inside the circle by using the mouse. For each trial, a different difficulty
level was set by the experimenter changing the cross speed. The percentage
of the time spent by the red cross inside the black circle with respect to the
total time was reported to the subject at the end of the trial (Fig. 4.11).

• Background music: for each trial, a particular emotive engagement level was
favored by proper background music. The music tracks were randomly
selected from the MER [263] database where songs are organized according
to the 4 quadrants of the emotion Russell’s circumplex model [8]. The songs
associated with the Q1 and Q4 quadrants (cheerful music) were employed in
high emotional engagement trials, Q2 and Q3 for the low ones (sad music).

• Social feedbacks: during each trial, the experimenters gave proper social feed-
backs according to the emotive engagement levels under the experimental
protocol. The positive and negative social feedbacks consisted of encourag-
ing and disheartening comments respectively, given to subject on his/her
ongoing performance. The social feedback effectiveness was improved by
the simultaneous music background effects.

A well-founded metrological reference, is ensured by two assessment proce-
dures validating the stimuli effectiveness were used:

• performance index: an empirical threshold was used to confirm that an ap-
propriate CPT stimuli response was given by the participant. The threshold
changed according to the trial difficulty level.

• Self Assessment Manikin questionnaire (SAM): the emotional engagement level
was assessed by a 9-level version of the SAM. The lower emotional engage-
ment level was associated to the SAM score 1, while the greater one to 9.



78 Chapter 4. Complex mental state assessment

(A) Session Started (B) Session Finished

FIGURE 4.11: Screen shots from the CPT game. At the beginning of
the game (a),the cross starts to run away from the center of the black
circumference. Theuser goal is to bring the cross back to the center
by using the mouse. At theend of each trial (b), the score indicates

the percentage time spent by thecross inside the circumference.

The experimental session started with the administration of the SAM to get infor-
mation about the initial emotional condition of the subject.

Then, a preliminary CPT training phase to uniform all the participants start-
ing levels was realized. After this preliminary phase, each trial was implemented
by a succession of a CPT stage followed by a SAM administration.

Dataset building 45 s acquisition EEG signals were labeled according to two
parameters: i) high or low emotional engagement, and ii) high or low cognitive
engagement. More in detail, regarding the cognitive engagement, the trials were
labeled according to the CPT speed [264, 169], since the higher was the speed the
more the cognitive engagement increased [39, 169].

The trials having speed lower than 150 pixels/s were labeled as lowc whereas
highc, were assigned to the trials having speed higher than 300 pixels/s.

As concern the emotional engagement, the trials characterized by cheerful/sad
music and positive/negative social feedback were labelled as highe/lowe. For
each trial, the SAM results (normalized to the initial pre-session value) were con-
sistent with the proposed stimuli. In fact, a one-tailed t-student analysis revealed
in the worst case a 0.02 P-value.

4.3.5 Experimental Results

In this section, the experimental results obtained in within- and cross-subject
cases are reported. Firstly, to make a comparison with the classical literature ap-
proach, the engagement index proposed in [152] was used as feature for a classi-
fication of the cognitive engagement. Unfortunately, as highlighted by the results
reported in Tab. 4.8 accuracy performances were not optimal. In fact, this feature
is mainly used in non-predictive applications (e.g., [154]).

Instead, the best results both on cognitive and emotional engagements (Fig.
4.12) were achieved using features extracted by Filter-Bank and CSP.
Quantitative results related to the use of Filter Bank and CSP for each classifier
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TABLE 4.8: Within-subject experimental results. Classification ac-
curacies using the Engagement Index [152] for cognitive engagement

classifications are reported.

Method Cognitive Engagement
SVM 54.8 ± 4.9
k-NN 53.7 ± 5.7
ANN 53.1 ± 5.4
LDA 50.7 ± 6.2

(A) Cognitive engagement

(B) Emotional engagament

FIGURE 4.12: Within-subject performances of the compared pro-
cessing techniques in (a) cognitive engagement and (b) emotional
engagement detection. Each bar describes the average accuracy over

all the subjects.

can be observed in Tab. 4.9: among the different classifiers, SVM stands out with a
better performance than the others, reaching its best mean accuracies of 76.9±10.2
on cognitive engagement classification and of 76.7 ± 10.0 on emotional engage-
ment. Results are computed as the average accuracy over all the subjects.

The results reported in Fig. 4.12b show that the Filter Bank improves the clas-
sification performance in a significative way. This can be due to the use of several
sub-bands which highlight the signal main characteristics, allowing the CSP com-
putation to project the subject data in a more discriminative common space. In
Fig. 4.13, BCSP and FBCSP are compared through t-SNE [265] on the subject data
transformed using the two different methods. The figure shows that, for several
subjects, CSP applied after FB projects the data in a space where they are easily
separable with respect to the BCSP case. A t-SNE plot of the data first and af-
ter removing the average value of each subject is shown in Fig. 4.14. The data
without for-subject average removal (Fig. 6a) are disposed in several clusters
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TABLE 4.9: Within-subject experimental results. Accuracies are re-
ported on data preprocessed using Filter Bank and CSP for cog-
nitive engagement and emotional engagement classifications. The

best performance average values are highlighted in bold.

Method Cognitive Engagement Emotional Engagement
(proposed) (proposed)

SVM 76.9 ± 10.2 76.7 ± 10.0
k-NN 73.0 ± 9.7 74.2 ± 10.3
ANN 74.0 ± 9.2 73.9 ± 9.1
LDA 72.1 ± 11.4 71.6 ± 9.3

FIGURE 4.13: Filter Bank impact on the class (red and blue points)
separability. t-SNE-based features plot of five subjects randomly
sampled (first row: without Filter Bank; second row: with Filter

Bank).

over the t-SNE space, exhibiting a fragmentation tendency. Instead, after the for-
subject average removal (Fig. 6b), the data result more homogeneous, enhancing
the model generalizability. A comparison using TCA with and without the for-
subject average removal is made and the resulting performances are reported in
Tab. 4.10. The results show that removing the for-subject average from each sub-
ject boosts the performance with respect to using TCA alone (more than 3 % of
improvement in almost all classifiers, especially in Cognitive Engagement case).

Method With For-Subject Average Removal Without For-Subject Average Removal
Cognitive Emotional Cognitive Emotional

SVM 72.8 ± 0.11 66.2 ± 0.14 64.0 ± 0.11 61.7 ± 0.10
k-NN 69.6 ± 0.11 61.9 ± 0.09 57.1 ± 0.09 56.9 ± 0.10
ANN 72.6 ± 0.12 65.7 ± 0.14 69.7 ± 0.12 65.8 ± 0.15
LDA 69.5 ± 0.12 65.3 ± 0.14 69.6 ± 0.13 64.6 ± 0.13

TABLE 4.10: Cross-subject experimental results using FBCSP fol-
lowed by TCA. Accuracies are reported with and without for-subject
average removal for cognitive and emotional engagement detection.

The best performance values are highlighted in bold.
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(A) (B)

FIGURE 4.14: A comparison using t-SNE of the FBCSP data first
(a) and after (b) removing the average value of each subject, in the

cross-subject approach.





83

Conclusions

Different passive BCI solutions were described from the design phase to the ex-
perimental validation phase. Wearability was always ensured by a low channel
count and dry, or semi-wet electrodes. The main goals achieved are reported
below for emotional valence, attention, engagement, and stress detection, respec-
tively.

Emotional valence. The EEG-based system proposed for emotional-valence de-
tection exhibited an accuracy of 96.1 % and 80.2 % in within-subject and cross-
subject analysis, respectively. Important steps towards the measurability of emo-
tions were proposed: Firstly, the Valence detection occurs along the interval scale
theorized by the Circumplex Model of emotions. Thus, the current binary choice,
positive valence vs negative valence, could represent a first step towards the
adoption of a metric scale with a finer resolution. Secondly, the experimental
sample was collected by managing the bias of depressive disorders. Finally, re-
sults from the Self Assessment Manikin questionnaire confirmed the compatibility
of the experimental sample with that of Oasis. Hence, a metrological reference
was built taking into account both the statistical strength of the data set OASIS
and the collected data about the subject perception. The OASIS dataset was also
subjected to a cross-cultural validity check.

A priori information is not needed using algorithms capable of extracting fea-
tures from data through an appropriate spatial and frequency filtering. Classifica-
tion is carried out with a time window of 2 s. The achieved performances are due
to the combined use of a custom 12-band Filter Bank with CSP spatial filtering al-
gorithm. This approach is widely used in the motor imagery field and was proven
to be valid also for emotion recognition. The high ergonomics and accuracy are
compatible with the principal applications of emotional valence recognition.

Attention-Distraction. The method for detecting a state of attention and distrac-
tion during the execution of a motor act shows experimentally a state-of-the-art
mean accuracy of 92.8±1.6 % and a mean recall of 92.6%. Attention status clas-
sification is carried out on 3 s epochs. The level of performance achieved also
arise from the use of a 12-filter custom Filter Bank which enhances the contribu-
tions of the significant EEG bands for attention analysis. The method turns out
to be immediately usable in rehabilitation for offering to therapists: (i) a tool ca-
pable of assessing patients’ attention levels towards the proposed exercises; and
(ii) the possibility to implement strategies that, through the recovery of attention,
increase the rehabilitation effectiveness.

Engagement in pediatric rehabilitation. A low cost EEG-based engagement (cog-
nitive and emotional) detection system is proposed for pediatric rehabilitation. A
subject-dependent approach is adopted and a specific easy calibration is provided
for personalized medicine. Wearability is guaranteed by a wireless cap with
semi-wet electrodes and 14 data acquisition channels. The proposed method,
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based on KMeansSMOTE and ANN, showed experimentally a mean balanced
accuracy of 71.2 % and 74.5 % for the emotional and cognitive engagement, re-
spectively. Furthermore, a comparison between several oversampling strategies
was made, showing that the KMeansSMOTE can be a promising oversampling
method for unbalanced EEG engagement datasets. Effective management of un-
balanced dataset allows the implementation of observational non-interventional
protocol. The KMeansSMOTE method is the core of the proposed calibration
procedure, but also a promising technique for researchers focused on the obser-
vation of the spontaneous children behavior. The distance of each electrode from
the reference of the 10-20 International Positioning System was noted to make
the measurement reproducible, being reproducibility a quality parameter of the
measurement itself.

Engagement in learning. The proposed system can be used in the context of
Learning 4.0 as a new input channel of an adaptive automated teaching plat-
form to improve the learning effectiveness. The system is validated on students
during a training stage involving cognitive and motor skills and aimed to learn
how to use a human-machine interface. Standard stimuli, performance indicator,
and self assessment questionnaires were employed to guarantee a well founded
metrologically reference. The proposed method, based on Filter Bank, CSP and
SVM, experimentally showed the best performance. In particular, in the cross-
subject case, an average accuracy of 72.8 % and 66.2 % was reached for the cog-
nitive engagement and emotional engagement respectively by using TCA and
for-subject average removal. Instead, in the within-subject case, an accuracy of
76.9 % and 76.7 % was reached for the cognitive engagement and emotional en-
gagement, respectively.

Stress from interaction with cobots. A method to assess stress condition in real
time trough a high-wearable EEG-based device was proposed. EEG signal am-
plitudes variations between prefrontal right and left zone were acquired through
a single differential channel. The induced stress status was verified by a psychol-
ogist through (i) questionnaires administered before and after the stress test, and
(ii) performance assessment. Time domain features were used in the classification
procedure. Four standard machine learning classifiers (SVM, k-NN, Random For-
est, and ANN) reached more than 90% accuracy in distinguishing each 2-s epoch
of EEG. Generally, PCA allows to obtain a better noise robustness. The results
show the adequacy of the proposed solution based on a single-acquisition chan-
nel and time domain-based feature selection. In the worst case, the SVM Linear
-Kernel classifier succeeded in discriminating stress conditions with an accuracy
of 97.5 ± 0.6% and a latency of 2 s. For latency above 4 s the accuracy reaches
100%. Noise robustness was tested in order to exclude the impact of bias dur-
ing signal acquisition and to empower generality to the results. The proposed
method gives a new way to detect prefrontal asymmetry traditionally associated
to emotional stress condition.

Future developments of the research will be: (i) the development of the metro-
logical foundation of mental states measurement (theoretical model, measure-
ment unity, uncertainty analysis); (ii) a resolution improvement of the metric
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scale; (iii) combined use of different biosignals (besides EEG); (iv) a deep anal-
ysis on interactions among the number of electrodes, classifiers, and the accu-
racy; and (v) experiments on different processing strategies: in this thesis, the bi-
nary nature of the problems enhanced the classification performances of certain
classifier. In future works aimed at increasing the metric scale resolution, other
methods may result more effective ( full-connected neural networks, Convolu-
tional Neural Networks [145] etc.) for example in a regression-based perspective.
In future works, new measurement solutions will be tested to guarantee more
adaptivity to children’s head size and more dense coverage of selected scalp area.
Further future experimental activity with a larger number of subjects are neces-
sary to consolidate the statistical significance of these preliminary results. ). Elec-
trode scalp locations used in this study, FP1 and FP2, are considered as sensitive
to ocular artifacts. However, our experiments did not highlight this problem. In
any case, further experimental campaigns will be carried out on new areas of the
scalp. In this way, the impact on the classifier of the information produced by
both the EEG signals and the eye movements will be deepen.
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