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Introduction

C
ybersecurity is an increasingly important domain in Information Tech-
nology. In a time when each device is connected, cyber threats evolve

more and more. Companies need to be protected and to evaluate the potential
threats to their systems. There are several approaches to find flaws inside the
systems. A very effective one is to simulate the attacker’s activities to break
inside the environment, obtain access to sensitive information, and compro-
mise the internal network. This kind of activity is called Penetration Testing,
and its effectiveness lies in the ability to discover the most critical vulnera-
bilities. Despite its benefits, companies usually cannot meet their costs, as
it requires advanced security experts. Our research work aims to integrate the
knowledge of security experts inside an automated system that emulates a Pen-
etration Tester’s activities. To accomplish this, we bring three main research
contributions:

• We develop behavioural models of Penetration Testing activities;

• We develop a platform that integrates Behavioural Models and imple-
ments actions to send attacks;

• We develop several solutions in the so-called cyber-range domain to test
our platform in realistic virtual environments.

Chapter 1 describes offensive cyber-security concepts that are useful to un-
derstand the rest of the work. Chapter 2 gives an introduction to the proposed
behavioural models that allows automating Penetration Testing steps. We de-
fine Hacker Behaviour in terms of tasks, goals and actions, and then we give a
summary description of the realization of an Expert System based on Knowl-
edge Graphs. Chapter 3 describes the proposed automated system framework
that is designed with the flexibility of allowing free choice of the most suitable
offensive behavioural model to be adopted. Chapter 4 shows our contribution

ix



x Introduction

in the cyber-range domain, in particular the application of hybrid virtualiza-
tion techniques that leverage microservices-based virtualization without losing
anything in terms of vulnerability replication, by also relying on a cloud-based
model for the design of cyber-ranges.



Chapter 1

Offensive Cybersecurity

This Chapter gives an introduction to cybersecurity concepts with regard to
offensive security methodologies, to the definition of concepts like vulnerabil-
ity, security control, attack, and to related works. In Section 1.1 we describe
offensive security methodologies, particularly in the web application domain.
In Section 1.2 we describe useful related security contexts that can help in
understanding the proposed work.

1.1 Offensive Security Methodologies

Offensive Security is an approach that allows companies to effectively discover
their most critical vulnerabilities. In this Section, we discuss the main Offen-
sive Security Methodologies, as well as several Security Concepts that can be
useful to understand the developed framework.

Vulnerability Assessment is a process that aims to find and evaluate vulner-
abilities exposed by the analyzed application. It generally relies on the use of
automatic tools that are executed periodically. It represents the starting point
for prioritizing the vulnerabilities identified in an action plan to enhance and
raise the overall security level of an organization. However, the use of au-
tomatic tools to carry out the Vulnerability Assessment phase has significant
limits; in fact, these activities cannot discover zero-day vulnerabilities, that is,
the type of vulnerability previously unknown and for which security patches
have not yet been released. Another disadvantage is that they require constant
updates (often not foreseen in free releases) to stay aligned with the vulnera-
bilities identified periodically by security experts.

Penetration Testing (PT) is the process of finding IT security vulnerabilities

1



2 CHAPTER 1. OFFENSIVE CYBERSECURITY

in a system. In black-box PT, the team has no information about the target and
tries to sneak into the system by exploiting vulnerabilities. An introduction to
PT tasks and tools can be found in [1]. Different phases can be identified:

• Information Gathering: in this phase the attacker finds useful informa-
tion that can be used in subsequent phases, e.g., domain names, network
infrastructure owned by the target organization, systems that appear to
be ‘alive’ in the network. She/he uses publicly available information to
discover sensitive data that might be used to break the systems;

• Scanning: in this phase the attacker detects running TCP and UDP ser-
vices exposed by the target hosts. She/he performs scanning techniques,
like “syn scan” or “tcp-full scan” in order to detect open TCP and UDP
ports;

• Enumeration: in this phase the attacker enumerates running services.
The goal here is to detect versions of running services and look for vul-
nerabilities of exposed services by querying known cybersecurity vul-
nerability databases (like, e.g., CVE1); the attacker can also test the in-
frastructure through several black-box activities (i.e., fuzzing, Dynamic
Attack tools) to discover unknown vulnerabilities;

• Exploit: when the attacker has detected vulnerabilities in the system,
she/he tries to exploit them and get inside the target;

• Post-Exploitation: the attacker tries to obtain higher privileges and per-
sistence inside hacked systems, and performs lateral movement activities
to gain access to other internal systems.

Final deliverable of a PT activity is a detailed report, containing an executive
summary, i.e., a synthesis of detected vulnerabilities, as well as the list of
vulnerabilities ordered by risk level. Each vulnerability contains:

• a risk level, that is a combination of different factors (exploitability level,
impact, etc.);

• a Proof of Concept (PoC): all detected vulnerabilities should be easily
reproducible by the recipient of the report. In such a section, a step-by-
step guide is added to describe how to reproduce the attack;

1https://cve.mitre.org/
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• recommendations: countermeasures to be put in place to remove the
identified vulnerabilities.

Penetration Testing can be either white-box or black-box. In the white
box PT, tests are much more accurate, since in the attack phase the operator
can focus better on the specified target and bypass the preliminary information
gathering phase because he is already aware of the details of the system and,
therefore, test execution times are shorter and reports more detailed. The black
box approach represents a scenario closer to a real attack made by an external
attacker. It is the exact simulation of a malicious hacker who, from scratch, has
to commit himself to discover both the infrastructure and the services exposed
by the system. Therefore, the process takes longer and the resulting reports are
less detailed than in white box PT, yet more similar to real attack cases. Both
scenarios are useful to evaluate the security status of systems, of intrusion
detection software that may be present or, more generally, of anything that
represents the attack surface. Finally, it must be noted that the two approaches
are frequently combined to get a more complete vulnerability analysis.

Nowadays, experienced penetration testers are highly sought job titles. A
successful penetration tester is a professional figure who requires not just com-
puter and network security skills, but also intuition, lateral thinking and a lot
of experience. In the penetration testing cycle, it is also essential to write a
detailed report to the client that shows the services provided, the methodol-
ogy adopted, as well as testing results and recommendations. The reason why
organizations invest more and more in penetration testing, in addition to the
requirement to identify vulnerabilities in systems, is the necessity to determine
the effectiveness of the security measures that have been taken. Furthermore,
marketing reasons must also be considered: obtaining a safety certification by
a prestigious penetration test organization contributes to give an added value
to a product that can be purchased by third parties. Unfortunately, it must be
noted that a security certification does not guarantee the lack of vulnerabilities
in the analyzed system but certainly reduces a good part of them. Another fun-
damental aspect is to execute the tests periodically as the system changes. For
example, let’s suppose that a test is completed at time t0 and all the resulting
vulnerabilities are fixed at t1 > t0; a 0-day vulnerability is found at t2 > t1
and a security patch is released at t3 > t2. Besides, let’s suppose this patch
includes some vulnerabilities in a part of the system that previously was con-
sidered safe by the pen test completed at t0. It’s clear that the old test is not
valid anymore and a new test is needed in order to find the new flaws.

Penetration tests can be divided into the following five categories:
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1. Network Service Tests: aim to discover vulnerabilities and gaps in the
network infrastructure of the clients. Tests focus either on detection of
misconfigurations in the target network devices such as firewalls, prox-
ies, routers, DNS servers, or in vulnerable active services such as fin-
gerd, a demon that implements the finger protocol. An example of mis-
configurations in network devices is a DNS that allows a zone transfer,
exposing internal network topology to the attacker.

2. Web Applications Tests: aim to secure those applications that can be
accessed via web through the network (Intranet or Internet) in a client-
server architecture. It is more than just a series of tests; it is rather a more
detailed process that must take into account many difficulties such as the
differences among web applications (each web application is different
from others and may contain unique vulnerabilities).

3. Client Side Tests: the goal of these tests is to locate security threats that
may be found in client side software such as desktop applications. For
example, there could be a flaw in a software application running on the
userâs machine which a hacker can exploit. Furthermore, executing un-
certified open source software (without testing) may cause sever threats
that can’t be expected.

4. Wireless Network Tests: they aim to evaluate the security of wireless
infrastructures that implement protocols of the 802.11 family (access
points, hosts) to prevent third parties illegitimate access and Denial of
Service (DoS) attacks. There are many automatic tools that may be used
such as those of the Aircrack suite.

5. Social Engineering Tests: they attack the human part of a company.
They involve human handling tactics like Dumpster Diving, Phishing,
Imitation, Intimidation or techniques for inducing the target, via phone
calls, to snatch sensitive data.

In our research work we focused on the automation of Web Application
Penetration Testing, for several reasons:

• Trends show a growth of web vulnerabilities. All the companies ex-
pose a public website, that usually becomes the main entry point for the
attackers.
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• As it is complex to model the behaviour of a Penetration Tester, as well
as of the target system, we need to decrease the complexity of the prob-
lem, so we focused on Web Application Penetration Testing. Anyhow,
the results of our research can be extended to any other field of applica-
tion of Penetration Testing.

1.1.1 Web Application Penetration Testing

When trying to find a methodology for performing a Penetration Test against
a Web Application (meaning those accessed using a browser to communicate
with a web server), one should keep in mind that Hackersâ activities to find new
vulnerabilities always involve a great deal of creativity. It is possible, though,
to explore all the regions of the applicationâs attack surface and gain some
assurance to have found many issues, according to the available resources.

Figure 1.1: WAPT Methodology
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Figure 1.1 summarizes the methodology that a web application penetration
tester adopts when approaching the study of the target website.

It is divided in two phases:

1. The penetration tester attempts to create a “footprint” of the web appli-
cation. This includes:

• Gathering its visible content, exploring public resources as well as
discovering information that seems to be hidden. It is also possible,
even in this early stage, to identify those application functions that
are accessed by passing an identifier of the function in a request
parameter;

• Analyzing the application and identifying its core functions, espe-
cially those the web application was designed for. The purpose is
to have a map of all the possible Data Entry Points that the applica-
tion exposes, which are the main flaws that a hacker recognizes in
the target application. The penetration tester in this phase should
also be able to recognize the technologies that concur to create a
core functionality. At the end of this stage, the hacker usually has
a clear idea of the path to follow in order to carry out the attacks.

2. In the second phase, the penetration tester knows which road to take
and whether to focus on the way the application handles the inputs or
on probable flaws in its logic. To have a comprehensive understanding
of the applicationâs holes it is however important to explore all of the
following areas:

• Focusing on the application logic means studying the Client-Side
Controls to find a way to bypass them. Usually an attacker with
minimal skills and equipped with simple tools is enough to cir-
cumvent most controls. However, it is important to identify all
data being transmitted via the client to understand the validation
performed and test how the server responds. A completely differ-
ent matter is attacking the applicationâs logic, which involves a
great amount of lateral thinking. There are some basic tests, which
involve removing parameters from requests, using forced browsing
to access functions out of sequence and submitting parameters to
different locations within the application. How the application re-
sponds to these requests can be a sign of some defective behavior
that can lead to a malicious effect.
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• The stage that involves analyzing how the application handles ac-
cess to private functionality might be the one to focus on immedi-
ately, because authentication and session management techniques
are usually full of design and implementation flaws. Attacking
authentication can be done systematically, for example checking
for bad passwords, ways to find out usernames or vulnerability to
brute-force attacks. The session management mechanism is of-
ten a rich source of potential vulnerabilities. Its role is to identify
the same user across different requests. Breaking this mechanism
means jumping into a userâs session. If that user has administrator
privileges, this usually allows to compromise the entire applica-
tion. Less systematic is attacking access controls, because they
can manifest themselves in different ways and arise from different
sources. In many cases, finding a break in access controls can be
done by simply requesting an administrative URL and gain direct
access to the associated functionality. In other cases, it can be very
hard, mostly because these kinds of errors can derive from deep
application logic defects.

• Input Handling attacking techniques are definitely the most well-
known, because important categories of vulnerabilities are trig-
gered by unexpected user input. The application can be probed
by fuzzing the parameters passed in a request. See the next section
for insights on this topic.

• The website can represent an entry point that allows the attacker to
have a complete understanding of the targetâs network infrastruc-
ture. Defects and oversights within an applicationâs architecture
often can enable the tester to escalate an attack, moving from one
component to another to eventually compromise the entire appli-
cation. Shared hosting and ASP-based environments present a new
range of difficult security problems, involving trust boundaries that
do not arise within a single-hosted application. When attacking an
application in a shared context, a key focus of the efforts should be
the shared environment itself. One should try to ascertain whether
it is possible to compromise that environment from within an in-
dividual application, or to leverage one vulnerable application to
attack others. Furthermore, the web server represents a signifi-
cant portion of the attack surface via which an application may be
compromised. Defects in an application server can often directly
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undermine an applicationâs security by giving access to directory
listings, source code for executable pages, sensitive configuration
and runtime data, and the ability to bypass input filters.

1.1.2 OWASP Methodology

Over the years, great efforts have been made to try to categorize the security
risks that can affect web applications. OWASP (Open Web Application Secu-
rity Project) is an international foundation that works to improve the security
of the web applications. They periodically release a top 10 list of the major
risks affecting most of the web applications encountered on the web during the
analyzed period, together with issues and concise recommendations on how to
mitigate them. Although the original goal of the OWASP Top 10 project was
simply to raise awareness amongst developers and managers, it has become
the de facto application security standard.

Figure 1.2: OWASP Top 10 2017

1. Injection: is the most dangerous flaw. Injection attacks happen when
untrusted data are sent to a code interpreter through an input field or
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some other data submission methods to a web application. For example,
in SQL injection attacks, an attacker could enter some artfully crafted
SQL code into an input field that expects a plaintext username. If that
input is not properly ‘sanitized’, this would result in the execution of that
SQL code. Injection attacks can be easily prevented by validating and/or
sanitizing user-submitted data. Validation refers to rejecting suspicious-
looking data, while sanitization consists in cleaning up the suspicious-
looking parts of the data. It is also recommended to use bind variables
to manage information coming from outside rather than concatenating it
to a statement that is executed server side.

2. Broken Authentication: vulnerabilities in Authentication systems usu-
ally give attackers access to user accounts and even the ability to com-
promise an entire system if the attacker manages to access the system
as an admin user. For example, an attacker can take a dictionary con-
taining thousands of known username/password combinations obtained
during a data breach and use scripts or tools to try all those combinations
on a login system to see if there are any that work. Some strategies to
mitigate authentication vulnerabilities are limiting or delaying repeated
login attempts using rate limiting techniques. Another important secu-
rity measure is to make sure that session tokens and cookies expire after
a specific time interval, otherwise valid sessions can be created by an
attacker who can gain access to confidential data.

3. Sensitive Data Exposure: happens when web applications donât protect
sensitive data such as passwords, banking or user-specific information.
If these data are not protected, an attacker can gain access to them and
use them for malicious activities. One popular method for stealing sen-
sitive information is by implementing a man-in-the-middle attack. Data
exposure risk can be minimized by encrypting all sensitive data as well
as disabling the caching of any sensitive information.

4. XXE (XML eXternal Entity): this attack affects a web application that
parses XML input. This input can reference an external entity, attempt-
ing to exploit a vulnerability in the parser. An external entity usually
refers to a storage unit, such as a hard drive. A weakly configured XML
parser can be tricked into sending data to an unauthorized external entity,
which can pass sensitive data directly to the attacker. To prevent XXE
attacks, web applications should accept a less complex type of data, such
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as JSON, or at the least XML parsers should disable the use of external
entities in an XML application.

5. Broken Access Control: refers to a system that controls access to in-
formation or functionality. Broken access controls allow attackers to by-
pass authorization and use sensitive functions as if they were privileged
users such as administrators. For example a web application could allow
a user to change which account they are logged in simply by changing
part of a URL, without any other verification. Access controls can be se-
cured by ensuring that a web application uses authorization tokens and
sets tight controls on them.

6. Security Misconfiguration: includes all those unnecessary features that
are included in the web application such as default configurations, de-
velopment functionality that is mistakenly left in the production envi-
ronment or displaying excessively verbose errors. For instance, an ap-
plication could show overly-descriptive errors to users which may reveal
vulnerabilities. This can be mitigated by removing any unused features
in the code and ensuring that error messages are as generic as possible.

7. XSS (Cross Site Scripting): this flaw allows users to add custom code
into an URL path or onto a website that will be seen by other users.
This attack doesn’t target the web application itself but the clients of
the application. There are three different kinds of XSS which will be
discussed in details later. This vulnerability can be exploited to run ma-
licious JavaScript code on a victimâs browser which can hijack user ses-
sions, deface web sites, or redirect the user to malicious sites. Mitigation
strategies for cross-site scripting include escaping HTTP requests input
as well as validating and/or sanitizing user-generated content. Using
modern web development frameworks like ReactJS and Ruby on Rails
also provides some built-in cross-site scripting protection.

8. Insecure Deserialization: this threat targets the applications which fre-
quently serialize and deserialize data. Serialization means taking objects
from the application code and converting them into a format specified
by the application that can be used for other purposes. Deserialization
is the reverse process: converting serialized data back into objects the
application can use. An insecure deserialization exploit is the result of
deserializing data from untrusted sources, and can lead to serious con-
sequences like DDoS attacks and remote code execution attacks. While
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countermeasures can be taken to try to catch attackers, such as monitor-
ing deserialization and implementing type checks, the only secure way
to protect against insecure deserialization attacks is to forbid the deseri-
alization of data from untrusted sources.

9. Using Components With Known Vulnerabilities: web developers of-
ten use components such as libraries and frameworks in their web appli-
cations. These components are pieces of software that help developers
avoid redundant work and provide needed functionality according to the
reusability principle. Attackers look for vulnerabilities in these compo-
nents, which they can then use to carry out attacks. An attacker who
finds a security hole in one of these components could leave hundreds of
thousands of sites vulnerable to exploit. To minimize the risk of running
components with known vulnerabilities, developers should always keep
the components updated to the latest security patch.

10. Insufficient Logging And Monitoring: data breaches are often discov-
ered when attackers already caused damages to the application. There-
fore, OWASP strongly recommends to build sufficient logging and mon-
itoring infrastructure in order to be aware of the attacks made to the ap-
plications.

1.2 Security Context

The Internet Engineering Task Force (IETF) provides a rich glossary of defini-
tions applicable to the information security technology field. This information
is useful to model the attacker’s behaviour and design an offensive automation
tool.

According to RFC 4949 [2]:

• Threat: A potential for violation of security, which exists when there
is an entity, circumstance, capability, action, or event that could cause
harm;

• Flaw: An error in the design, implementation, or operation of an infor-
mation system. A flaw may result in a vulnerability;

• Vulnerability: A flaw or weakness in a system’s design, implementa-
tion, or operation and management that could be exploited to violate the
system’s security policy;
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• Attack: An intentional act by which an entity attempts to evade security
services and violate the security policy of a system. That is, an actual
assault on system security that derives from an intelligent threat;

• Attack Tree: A branching, hierarchical data structure that represents a
set of potential approaches to achieving an event in which system secu-
rity is penetrated or compromised in a specified way;

Our work is related to these security concepts: we find a way to discover
web vulnerabilities by automating the security tests in Web Applications. To
create an automatic system, we need to model an attacker’s behaviour, which
is strictly related to attacks and attack trees.

1.2.1 Attack Classification and Knowledge Graphs

Attack classification represents a crucial activity in different security areas.
During a security assessment, it makes it easier to define which attacks must
be performed. When conducting threat modeling activities, it simplifies the
definition of attack graphs. Many works have addressed the attack taxonomy
problem by introducing different ways to classify attacks. However, these clas-
sifications are based on vulnerabilities. They hence assume a ‘defensive’ per-
spective. Nowadays, companies have a growing interest in Penetration Testing
activities, as they have proven effective in detecting vulnerabilities. Penetra-
tion testers perform their activity by focusing on goals rather than attack types.
Our contribution in this field is to introduce a “goal-centric” methodology that
classifies attacks in terms of Hacking Goals. According to [3], an attack clas-
sification can be used to build secure systems, to identify vulnerabilities for
which security defences do not yet exist, to provide a uniform language for re-
porting incidents to response teams. These are all defence perspectives. There
is also an offensive perspective that is used to detect vulnerabilities by simu-
lating malicious activities. These activities follow known methodologies, such
as those mentioned in [4]. However, in the literature, there are just a few con-
tributions that try and formalize these methodologies.

Many authors have defined methodologies to classify attacks in computer
systems. V. M. Igure and R. D. Williams [3] give a formal definition of attack
taxonomies and offer a complete overview of the existing ones. In a crucial
section of their paper (“Properties of a Taxonomy for Security Assessment”),
the authors define basic properties that a taxonomy presents. Among them, an
interesting one is “Taxonomy must be layered or hierarchical”: authors suggest
to create a layered taxonomy providing an objective methodology to identify
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vulnerabilities. It is the essential hacking goal classification feature, as by us-
ing a goal-centric attack classification, it is possible to focus on hacking goals
dependencies. For instance, to perform “Exploit Cross-Site Scripting vulner-
abilities”, an attacker needs to find one such vulnerability. Thus, the “Ex-
ploit Cross-Site Scripting vulnerabilities” goal depends on the related “Detect
Cross-Site Scripting vulnerabilities” goal. It is a trivial example, but hacking
goal dependencies can be much more intricate than that.

Common Attack Platform and Enumeration (CAPEC) [5] is a community
resource for identifying and understanding attacks. It offers a search engine
that allows users to search for specific attacks. The classification is advan-
tageous because it reports descriptions and relationships between attacks. It
describes prerequisites to perform the attack. The main difference from hack-
ing goal classification is that CAPEC classifies attacks using a target-centric
approach, as some prerequisites depend on the target. For instance, CAPEC-
66 entry (SQL Injection) requires that the application does not correctly vali-
date “User-controllable input as part of SQL queries”. Prerequisites in hacking
goals are “attacker-centric”. in this case, “Attacker has chosen a target and a
path, the attacker has sent a valid HTTP request against a target, the attacker
has chosen a valid HTTP request parameter”.

Kotenko and Doynikova [6] have created a generator of attack scenarios
for network security evaluation. This could be one of the possible evolutions
of our work since a goal-centric classification simplifies the realization of at-
tack graphs while also defining a test result evaluation. Different authors have
explored security testing by leveraging planning models. Obes et al. [7] show
how it is possible to create a PDDL (Planning Domain Definition Language)
representation of an attack model. PDDL contains interesting properties such
as domain definition, action definition, preconditions required to perform an
action and its output. Goal-Centric classification can be used to define a hack-
ing methodology, so it is not only focused on PDDL representation. Each goal
could be implemented by using different approaches (PDDL, Markov Chains,
Reinforcement Learning, etc.).

1.2.2 Security Automation

In literature, there are several approaches that aim at automating the identifi-
cation of web application vulnerabilities. We identified three main areas that
will be further discussed: automated platforms, automated exploit models, in-
telligent agents for penetration testing.

Automated platforms. In [8], Djuric proposes a modular black box tool,
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WAPT, that aims at improving the detection of vulnerabilities, especially those
resulting from improper input validation such as SQLi, XSS and Buffer over-
flow. The tool is composed of a module that crawls the target application to
find web pages, a module that identifies the application’s entry points, a series
of attack generators and analyzers sub-modules that execute attacks towards a
target and analyze the results, and a report module that stores and presents the
results. XSS attack vectors are taken from a database that contains many at-
tack patterns, while SQLi flaws are detected according to a similarity criterium
between the HTML page resulting from the submission of a known valid input
and the HTML page resulting from malicious input. Our work shares with the
cited one the modular approach, allowing to clearly separate the phases the test
goes through, as well as to determine dependencies among them. However, it
differs in the way the vulnerabilities are detected. In fact, we introduce a way to
integrate open-source tools that implement well known exploit models. Xiong
et al. in [9], define a security model that enables functional separation among
the phases of a penetration test. This allows to automate the separate steps, as
well as represent the knowledge acquired about the system in a clear way, in
order to use it for the subsequent phases. The purpose of the work is to inte-
grate penetration testing into the secure software development life cycle. For
this reason, the tool relies on penetration testers’ experience and falls under
the category of grey-box tools, which means holding a partial knowledge of
the system under test. Our platform leverages as well a security model which
allows to define the tasks performed in a penetration test and present them as
functional modules of the architecture. However, in our platform, the security
model is shaped after the behavior of a penetration tester. In section 3.1 we
will describe such a testing methodology and how it affects the design of the
presented platform. Moreover, when facing the design of the automated plat-
form, we assume to have no previous knowledge of the target system, so the
approach is categorized as black-box.
Automated exploit models. Many related works tend to introduce automation
in the detection process of single vulnerabilities. The ones discussed here refer
to known exploit models that adopt the point of view of the penetration tester.
Aliero et al. in [10] propose an object-oriented approach to the development of
a tool for the detection of SQL injection vulnerabilities. The authors show that
applying a black-box strategy for testing allows to improve the detection accu-
racy, in terms of false positive and false negative results minimization. Some
preliminary phases are identified before the application of the automated scan-
ner takes place. Such phases have the purpose to identify prerequisites that
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need to be fulfilled, before starting to test the actual vulnerabilities. Aliero et
al. recognize that a full crawl of the target website is necessary, in order to
check for SQL injection vulnerabilities. The identification of the necessary
requirements before the execution of a task, is leveraged in our platform as
well. In fact, we introduce the concept of Hacking Task, as the testing activity
currently being conducted by the platform. We analyze the dependencies that
need to be fulfilled in order to complete a Hacking Task.

1.2.3 Cyber-Ranges

Cyber-ranges are virtual protected environments containing vulnerable sys-
tems. They are commonly used to study the performance of security assess-
ment tools [11]. We also have used cyber ranges to evaluate the performance
of the proposed automated system. To take advantage of microservices-based
virtualization, we explore the application of this kind of technology to real-
ize vulnerable environments. We also try to define a cyber-range model that
can help deploy hybrid environments (composed of several virtualization tech-
niques) in the cloud. Different works have explored the degree of realism
and the benefits of using cyber-ranges for training purposes. The literature re-
viewed by Yamin et al. in [12] shows that, despite their popularity, the usage
of microservices in cyber ranges platforms is somewhat underrated. In fact,
among those reviewed, only the work of Childers et al. in [13] is a first at-
tempt at introducing OpenVZ containers as a means to improve scalability in
large scale hacking competitions. Although this work can now be considered
outdated, since much has changed in the container technology, the authors al-
ready highlighted the core limitations of OS virtualization, especially when
reproducing many categories of vulnerabilities. We will address such issues
in this work by integrating containers with other virtualization technologies to
ensure a high degree of realism in the emulated scenarios.
Alangot et al. in [14] build a scalable and lightweight infrastructure for hack-
ing exercises using Docker containers. The authors also show how relying on
OS virtualization entails a performance improvement in memory consumption
and CPU usage, compared to standard virtual machines. However, their com-
parison does not consider the fact that container-based scenarios rule out those
vulnerabilities that can not be deployed in Docker containers.
Other works carried out by Chandra et al. in [15] and Pham et al. in [16],
propose, as future work, the idea of implementing containers as a means to
increase the scalability of their cyber ranges platforms. The author of [17]
focuses on leveraging cyber ranges in order to properly perform a security as-
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sessment of a distributed system. He stresses that such an approach naturally
lends itself to a holistic view of the security assessment procedures since it
looks at the target network as a whole rather than as a collection of loosely
coupled components. The paper’s focus is not on the possibility of leverag-
ing the cyber range for training purposes but rather on using it to reproduce
as closely as possible a system under test to spot out its potential vulnera-
bilities. In our work, we are not focused on replicating large, real-world and
complex systems. Rather, we are interested in covering all types of vulnerabili-
ties (kernel-space, user-space, OS-dependent) by taking advantage of different
virtualization techniques.

The authors of [18] underline the effectiveness of cyber-range platforms to
improve security skills. They claim that cyber training platforms play a cru-
cial role in improving the skills of any protection team, thanks to the fact that
they offer the possibility to develop new knowledge through practice. They
also observe that the current availability of system emulation and virtualiza-
tion platforms makes creating cyber training platforms an affordable process
in terms of both time and costs.

The work presented in [19] describes an interesting example of how
container-based virtualization can also be used in real-world operational envi-
ronments in order to increase the security level of networking infrastructures.
In the mentioned paper, the authors indeed propose to use the Linux Containers
(LXC) technology in order to implement a system of honeypots which mimic
the behaviour of real network services and act as decoys concerning potential
attacks. The approach is relevant since it demonstrates how virtualized envi-
ronments can, in some cases, come to the rescue of real deployments. Since
our goal is to reproduce all types of cybersecurity vulnerabilities, LXC tech-
nology is not sufficient in our case. We combine it with other technologies in
order to cover a broader range of vulnerabilities.

Cyber ranges can be used in many different contexts. As an example, the
framework presented in [20] proposes a three phases process aimed at prepar-
ing roles for EXCON (EXercise CONtrol) teams. The authors’ idea is to enable
full-scaled cyber-incident exercises.

The authors of [19] propose a cyber range for the power industry since
power grids (or, more generally, energy distribution systems) are potential tar-
gets in cyber warfare. They implement a service-oriented resource manage-
ment framework using OpenStack2. The physical architecture is divided into a
Management Network and a Business Network. The business network makes

2https://www.openstack.org/

https://www.openstack.org/


1.2. SECURITY CONTEXT 17

use of a firewall to manage user access to the service. They also implement
an evaluation component that performs load balancing, information logging,
and health monitoring operations. Finally, they focus on the main security
challenge to be faced, that is the separation between virtual resources and the
Internet.

Development methodologies are instead the main focus of [21]. The au-
thors describe a testbed design life cycle and propose a running example whose
implementation is based on OpenStack.





Chapter 2

Behavioural Model of an
Attacker

An automated system for Penetration Testing needs to coordinate several ac-
tions, and there are dependencies among actions. We develop a behavioural
attacker model that allows orchestrating our automatic system. To realise the
model, we needed an attack classification focused on attacks rather than on
defence strategies. We define a new goal-centric attack classification model
allowing to define a behavioural model. In a nutshell, we propose an attacker-
centric methodology for attacks classification. In Section 2.1 we describe our
Hacking Goal Attack classification strategy, and we show how it is possible
to combine several Hacking Goals to complete a Hacking Task. In Section
2.2 we illustrate the advantages and the disadvantages of using a Goal-Centric
classification. In Section 2.3 we show a practical example of Hacking Goal
classification. In Section 2.4 we show how it is possible to use Hacking Goal
Attack classification to model an attack Knowledge Graph.

2.1 Hacking Goals

Hacking Goal classification is composed of:

• Hacking Goal: a macro goal that the attacker is going to achieve. An at-
tacker targets different hacking tasks to fulfil her/his final goal. Depend-
ing on the chosen goal, value and metrics of hacking tasks can change.

• Hacking Task: a specific task that an attacker wants to reach. An at-
tacker performs different “hacking attacks” to arrive at this result.

19
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• Hacking Attack: a single action that an attacker performs to reach a
specific hacking goal: the attacker needs to carry out “actions” against
the target.

• Target Environment: A description of the target, composed of differ-
ent entry points (HTTP Requests for a web application target, running
services for a network) and vulnerabilities.

• Hacker Observations: When the attacker performs Hacking Actions,
she/he acquires knowledge about the target environment. For instance,
when the attacker makes a tcp scan against a target, she/he “observes”
which services are running on that target. As an example, if the system
blocks tcp requests, the attacker observes that the target is using an In-
trusion Detection System. The expressiveness of hacker Observations
depends on the complexity of the chosen Hacking Goal model: it could
be “TCP port 22 is open”, or “TCP port 22 is open with a confidence
level of 99.999%”. Hacker Observations are the expression of security
controls and vulnerabilities of the target environment, filtered based on
the perception of the attacker. Hacker Observations can influence the
attacker’s behaviour:

– During fulfillment of a Hacking Goal, observations can influence
subsequent Hacking Actions;

– Each Hacking Goal has an “output”. An output influences which
Hacking Goals the attacker can perform. Hacking Goal Output is
the analysis of the observations gathered during its execution.

There is a hierarchical dependency among these components.
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Figure 2.1: Hacking Goal, Hacking Tasks and Hacking Actions relationships

An attacker tries to achieve a hacking goal by executing different hacking
tasks. During the execution of a hacking task, the attacker performs hacking
attacks to obtain results for the current task. A Hacking Goal could be generic
(i.e., ‘find all the vulnerabilities in /24 range of the target network’) or specific
(i.e., ‘detect if an attacker is able to gain access to internal software source code
by attacking /24 range of the target network’). While a Hacking Goal depends
on the current security assessment activity, hacking tasks are independent from
the specific activity: a hacking goal guides in the choice of hacking tasks. A
hacking task is achieved by carrying out different actions. These actions could
be independent from the observations.

2.1.1 Hacking Task Properties

Table 2.1 summarizes the main properties of a Hacking Task, by also providing
a short description for each of them.

With respect to Hacking Task metrics, they strongly depend on the spe-
cific Hacking Goal the task in question is associated with. Companies might,
e.g., be interested in the effectiveness of their attack response strategies. In
such a case, they carry out Red Team campaigns, that are an evolution of the
Penetration Testing activity. While with standard Penetration Testing the tar-
get is aware of Penetration Testers attacks and purposefully disables security
controls (since there’s an interest in having vulnerabilities be disclosed), with
Red Team scenarios the attacker needs to evade security controls and thus must



22 CHAPTER 2. BEHAVIOURAL MODEL OF AN ATTACKER

Property Name Property Description
ID An identifier. This can either be cus-

tom or refer to a standard Security Test
classification methodology.

Name A name that helps understand what is
the intent of the current hacking task.

Description A brief description of the hacking task.
Prerequisites A list of prerequisites that a hacking

task must satisfy in order to be exe-
cuted. Prerequisites might be the out-
put of a previous hacking task.

Dependencies The list of hacking tasks that must be
completed before the execution of the
hacking task in question. For example,
before trying an anonymous FTP login,
the attacker should detect the presence
of a running FTP service inside the sys-
tem.

Category A phase of the ongoing security assess-
ment (e.g., Enumeration, Scanning,
Exploitation).

Results Output generated upon completion of a
hacking task.

Metrics A performance indicator that describes
how is it possible to evaluate the effec-
tiveness of hacking actions with respect
to performing a chosen hacking task.

Table 2.1: Hacking Task properties
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necessarily behave in a “stealthy” way. In this case, a Hacking Goal might in-
clude “stealthiness” requirements, and the related hacking tasks might assign
a higher weight to the actions that do not trigger Intrusion Detection Systems
alarms. Hacking Task metrics should in this case include such stealthiness
properties.

2.1.2 Hacking Tasks Tree

Hacking task dependencies generate a Hacking Tasks Tree.

Figure 2.2: Hacking Tasks Tree Example for Web Applications

Fig. 2.3 shows Hacking Task dependencies in a Web Application Penetra-
tion Testing model. Each box is a single hacking task. A Hacking Goal in the
example is “Find all injection vulnerabilities”. An injection vulnerability oc-
curs when a Web Application does not properly validate user input in an HTTP
Request. In the example, the Reflected XSS Test detects Cross-Site Scripting
vulnerabilities, the SQL Injection Test detects SQL Injection vulnerabilities,
the Local File Inclusion Test detects LFI vulnerabilities and the Remote File
Inclusion Test detects RFI vulnerabilities.

In order to find an injection vulnerability, the attacker must have chosen
a valid path, a valid HTTP request and a parameter of the HTTP request that
she/he wants to test. In order to choose a parameter, all forms inside HTML
pages have to be found by sending valid HTTP requests to the target. In the
model, the “Detect Valid HTTP Requests” hacking task is executed to the pur-
pose. In order to send valid requests, the attacker needs to know available paths
at the web server. So, before finding valid HTTP requests, she/he performs the
“Automatic Spidering” and “User Spidering” tasks in order to enumerate all
paths.



24 CHAPTER 2. BEHAVIOURAL MODEL OF AN ATTACKER

Hacking Goal Classification can use existing sources. As an example,
in the case of Web Applications useful resources might be the OWASP [22]
(Open Web Application Security Project) Testing Guide and the well-known
Web Application Hackers Handbook [23].

2.1.3 Hacking Goal Sources

Hacking Goal Classification can use existing sources. For example, Hacking
Goal classification can be used to create a Web Application taxonomy. In this
case, used resources to create the taxonomy are:

• OWASP [22] (Open Web Application Security Project) Testing Guide:
Open and collaborative Web Penetration Tester methodology;

• Web Application Hackers Handbook [23]: one of the best available re-
sources for web hacker methodologies;

• Penetration Tester experience: security experts providing custom Hack-
ing Goals.

OWASP Mapping

OWASP Testing Project offers a systematic methodology to test web applica-
tions. It provides a Testing Guide, containing different “testing controls”. Each
testing control is identified by an ID having the following syntax: OTG-CAT-
TEST_NUMBER.

It is possible to map testing controls with the Hacking Goals methodology:

• ID: testing controls [22] can be used as Hacking Task ID.

• Name: OWASP methodology provides a meaningful name for each test-
ing control (e.g., “Test HTTP Methods”). This can be used as name.

WAH Mapping

An excellent Web Penetration Testing methodology is offered by [23]. Au-
thors introduce a detailed methodology to perform Web Application Penetra-
tion Tests, and explore different categories of vulnerabilities, by describing in
details “Hack Steps”, i.e. hacker actions to be taken in order to detect vulner-
abilities.

Hacking Tasks can be identified by using the following syntax:
WAH_CATEGORY_INDEX where:
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• WAH is an identifier used for Hacking Tasks obtained from the Web
Application Penetration Testing methodology;

• Category is the Hacking Task Category (i.e., mapping, info, etc.);

• Index is an incremental number for Hacking Goals that belong to the
same category.

Penetration Tester experience

Penetration Tester experience can be used to provide further useful information
to model Hacking Tasks.

2.2 Strengths and weaknesses of goal-centric classifi-
cation

A goal-centric attack classification approach makes it easier to find a mapping
with Penetration Testing methodologies, since Penetration Testers use hacking
methodologies that are focused on goals rather than on the types of attacks
they can perform. Through goal-centric classification it is possible to formalize
metrics and evaluate attacks. For instance, if the goal is “Enumerate all Paths
of a Web Server”, a metric to estimate the effectiveness of performed actions
might be the ratio of the number of discovered paths to the number of HTTP
requests sent to the Web Server.

The proposed approach might also be used to design intelligent agents.
An intelligent agent performs actions inside an environment, and monitors the
environment through sensors. It is also important to define agent tasks. Rus-
sel [24] defines the concept of “task environment”, by using the PEAS (Per-
formance/Environment/Actuators/Sensors) model. In our case, Performance
refers to the metric used to evaluate the chosen Hacking Goal, Environment is
the target that the Penetration Tester is analyzing, Actuators are the tools and
techniques used by the tester and Sensors are the “observations” deriving from
the executed actions. As part of our ongoing activities, we are formalizing an
attacker model based on PEAS, with the aim of showing how it is possible to
create a link between Hacking Goal classification and an attacker’s behavioral
model.

On the downside, the formalization of a goal-centric attack classification
model requires proficiency in the security field, as well as specific efforts to
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properly define metrics that might change depending on the specific hacking
task to be performed.

2.3 Hacking Goal Usage

In this section we illustrate two examples of Hacking Goal classification. In
the former example our goal is to find Cross-Site Scripting vulnerabilities in a
target website. In the latter, our goal is to gain access to a company’s customers
information without alerting the company’s security staff.

2.3.1 Detect Cross-Site Scripting vulnerabilities

In this example, we suppose to have “hackme.org” as the target web site. Our
task is to find all Cross-Site Scripting vulnerabilities it suffers from.

According to [22]:

“Cross-SiteScripting (XSS) attacks are a type of injection, in which ma-
licious scripts are injected into otherwise benign and trusted web sites. XSS
attacks occur when an attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end user. Flaws
that allow these attacks to succeed are quite widespread and occur anywhere
a web application uses input from a user within the output it generates without
validating or encoding it. An attacker can use XSS to send a malicious script
to an unsuspecting user.”

1. Define Hacking Goal
The first step to use the methodology is to define a “Hacking Goal”. In
this example, Hacking Goal is:

• Detect all Cross-Site Scripting vulnerabilities in the “hackme.org”
target.

We make the assumption that the Hacking Task does not include stealthi-
ness requirements, because hackme.org owners want to discover all XSS
Vulnerabilities without testing Attack Response strategies.

2. Define Hacking Tasks
Once the Hacking Goal has been defined, we define Hacking Tasks to
complete the task:
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WAH-MAPPING-001

• Name: Automatic Spidering.

• Description: The task is to detect the structure of the target by
using Automatic Spiders;

• Prerequisites: None.

• HT Dependencies: None.

• Category: Enumeration.

• HT Output: The list of Web Pages found on the target site.

• Metrics: Total number of HTTP requests sent against the target,
total number of Web Pages found.

OTG-INFO-006

• Name: Identify application entry points.

• Description: Goal is to enumerate attack surface before testing, to
identify areas of weakness and detect valid HTTP requests to send
Injection Attacks. A valid HTTP request is defined as a request
that is answered with response code 20x.

• Prerequisites: The user knows the list of URLs.

• HT Dependencies: WAH-MAPPING-001;

• Category: Enumeration.

• HT Output: The list of valid HTTP requests. The list of HTTP
requests that contain a value of parameter reflected in the HTTP
response page.

• Metrics: The list of found valid requests, the list of invalid re-
quests (response code other than 20x), total number of emitted
HTTP Requests against the target.

OTG-INPVAL-001

• Name: Testing for Reflected Cross site scripting.

• Description: The task is to detect Reflected Cross-Site Scripting
Vulnerabilities. It is possible by testing each input vector with spe-
cially crafted input data, in order to verify if it’s possible to inject
executable code within an HTTP Response.
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• Prerequisites: The user has collected the list of valid HTTP re-
quests containing an input reflected in the associated HTTP Re-
sponse message.

• HT Dependencies: WAH-MAPPING-001, OTG-INFO-006
• Category: Injection.
• HT Output: List of parameters inside HTTP requests that are vul-

nerable to Cross-Site Scripting.
• Metrics: The total number of HTTP Requests sent to the target.

3. Hacking Tasks Tree
Hacking Tasks relate to each other through dependencies.

Assessor wants to find all Reflected Cross-Site Scripting vulnerabilities
(OTG-INPVAL-001). To find vulnerabilities, she/he needs to find In-
jection entry-points, that are parameters of valid HTTP Requests (OTF-
INFO-006). In order to find valid HTTP Requests, she/he needs to dis-
cover the structure of the target web site (OTG-MAPPING-001).

Figure 2.3: Hacking Tasks sequence to detect XSS
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2.3.2 Access to customers information without alerting Security
Team

In this example, we make the hypothesis that the company “hackme” stores
customers information inside an internal database. Our goal is to access such
information in a stealthy way, in order to test the effectiveness of the company’s
Security Operation Center.

1. Define Hacking Goal

We define as “Hacking Goal” the following:

• Access customers information stored inside internal hackme
databases without being detected by the Security Team.

2. Define Hacking Tasks Hacking Tasks to complete the task are the fol-
lowing:

PT-STEALTH-WEBHIDE-001

• Name: Create a proxy chains via Tor.

• Description: The goal aims to hide personal IP by using the Tor
network.

• Prerequisites: None.

• HT Dependencies: None.

• Category: Stealth.

• HT Output: Anonymized access to the Internet.

• Metrics: None

PT-ENUM-PASV_SERVICES-001

• Name: Enumerate the system to find vulnerabilities in passive
mode.
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• Description: The task consists in using information gathering
tools such as Shodan and Censys to detect and enumerate open ser-
vices in the target domain. The attacker starts with domain target
name, looks for IP subnets and enables enumeration with passive
tools, without any interaction with the target. The user also uses
tools to create a list of subdomains related to the target.

• Prerequisites: The user is connected to the Tor network.

• HT Dependencies: None.

• Category: Enumeration.

• HT Output: A list of open services with version and vulnerabili-
ties.

• Metrics: List of actual open services compared to open services
detected by solely relying on Shodan and Censys.

PT-AUTH-TESTDEFAULT-001

• Name: Test administrator default credentials on exposed public
websites that are associated with the target company.

• Description: The task is to enumerate attack surface before test-
ing, to identify areas of weakness and detect valid HTTP requests
to send Injection Attacks. A valid HTTP request is defined as a
request that is answered with response code 20x.

• Prerequisites: The user has detected public subdomains; the user
has detected open services.

• HT Dependencies: PT-ENUM-PASV-SERVICES;

• Category: Enumeration;

• HT Output: Web applications that use default credentials. Access
to administrative interface of web applications.

• Metrics: None

PT-PRIVESC-CMDEXEC-001
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• Name: Privilege Escalation by using administrative web applica-
tion access.

• Description: The task is to perform a privilege escalation by cre-
ating web pages that allow to send commands against the target.

• Prerequisites: The user knows the list of URLs.

• HT Dependencies: WAH-MAPPING-001.

• Category: Enumeration.

• HT Output: System Access to target machine.

• Metrics: None.

PT-POST_EXPLOIT-DATAEXFILTRATION-001

• Name: Data Exfiltration;

• Description: The task is to exfiltrate data from database. Attacker
looks for database credentials used by the application, connects to
database, dumps information and downloads it.

• Prerequisites: The user has obtained system access to the target.

• HT Dependencies: PT-PRIVESC-CMDEXEC-001.

• Category: Post Exploit.

• HT Output: Customer information.

• Metrics: None.

2.4 Beyond Hacking Goals: Attacker Knowledge
Graph

Hacking Goals is an approach created to classify the attacker’s goals. An ap-
plication of the proposed classification results in the realization of an attacker
knowledge graph. We have tried to extend the concept of behavioural Hacking
Goal by implementing an Expert System that uses a Knowledge Graph to sug-
gest the best path that an attacker can follow to find vulnerabilities. We use the
OWASP Methodology to create the Knowledge Base. The Knowledge Base
is publicly available on Github repository 1. Any security expert can hence

1https://github.com/NS-unina/HackingGoals

https://github.com/NS-unina/HackingGoals
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contribute in improving it with further information. In this Section, we give a
brief introduction to our work. We model the knowledge graph by designing
an Entity Relationship Diagram. This will be the core part of the application
since data must be compliant to this model to be correctly used. Moreover, this
view will be more “database” oriented because, in this way, it will be possible
to retrieve data from a database and use them in the built ontology. Figure 2.4
shows the implemented E-R diagram:

Figure 2.4: E-R Diagram

A detailed explanation of entities and their attributes is provided below:

• Vulnerability: “an occurrence of a weakness (or multiple weaknesses)
within a product, in which the weakness can be used by a party to cause
the product to modify or access unintended data, interrupt proper exe-
cution, or perform incorrect actions that were not specifically granted to
the party who uses the weakness.” [25]. This entity has been modelled
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following the CWE definition. The unique identifier of a vulnerability
is an id (or an “Hacking-id”, also “h-id”), which, for each vulnerability,
can be directly obtained from the CWE website and must be an integer.
The Name is a string attribute, which gives a short explanation of the
vulnerability, e.g. “Improper Neutralization of Special Elements used in
a Command”. The owasp-top-10 attribute is the vulnerability category,
e.g. the previously cited vulnerability belongs to the “Injection” cate-
gory. Thus, it is possible to search vulnerabilities based on their id, or
search for a group of vulnerabilities that belong to the same category. A
vulnerability has a many-to-many relationship with the entities “Scope”
and “Resource”, for several reasons:

– a vulnerability can violate multiple “Scopes” (e.g. the “Improper
Neutralization of Special Elements used in a Command” violates
“Integrity”, “Confidentiality” and “Availability”);

– a vulnerability can use more than one resource (e.g. “OS Com-
mand Injection” can exploit the “Operating System version” and
the “Webserver ports” resources);

• Scope: The Scope identifies the “application security area that is vio-
lated” [25]. The “h-id” is the unique identifier for each instance of the
entity and the name gives a short explanation of the scope. The CWE
identifies five different scopes: “integrity”, “confidentiality”, “availabil-
ity”, “Non-Repudiation”, “Access Control”. Scope has a many-to-many
relationship with Vulnerability. In fact, a Scope can be violated by multi-
ple vulnerabilities; e.g., the “Integrity” can be violated by “OS command
injection” and “SQL Injection”.

• Resource: A Resource is any web applicationâs entity that can be either
used or discovered by an action performed on the application itself. It
can be considered as an application’s asset, whose knowledge can be
either provided by a task or used to exploit a vulnerability. The unique
identifier is the “h-id”, and the “Name” briefly describes the resource.
The “Resource-Reference” is the category the resource belongs to, and
allows for coarse-grained research. For example, a resource named
“Archived documents” has the “resource reference” field as “Sensitive
information”; another resource, named “Account passwords and other
credentials”, has the same “resource reference” value. Thus, it is pos-
sible to search for a vulnerability linked to all “sensitive information”
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resources. The entity Resource has a many-to-many relationship with
Vulnerability and Task; it has a one-to-one relationship with the At-
tack Entity. A Resource can be exploited by different Vulnerabilities;
a resource can be used by many different tasks, or knowledge about a
resource can be provided/required by several tasks. For example:

Figure 2.5: Knowledge relationship with resource example

• Task: A task is the highest-level type of action that can be performed
on the target. It may be the penetration tester’s final target (the “Goal”
task). In order to execute the “Hacking Goal”, the penetration tester has
to perform preliminary tasks, hence there are dependence relationships
among them, which will be better described in the “Relation Diagram”
paragraph. Examples of tasks are:

1. Fingerprint Web Server: try to understand the operating system
that runs on the Web Server;

2. Testing for Reflected Cross site scripting: perform a test to assess
if the Cross site scripting vulnerability is present;

3. Identify application entry points: identify the application’s pa-
rameters used in HTTP requests.

The attributes are:

– h-id: unique identifier;

– Name: a brief description of the task;

– owasp-top-10: specifies the category the task belongs to (e.g.,
“Testing for Reflected Cross site scripting” has owasp-top-10 cate-
gory “Injection”), allowing for the coarse-grained research of tasks
(e.g., search for all “Injection” tasks);
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– owasp-testing-id: is used in compliance to the OWASP Testing
Guide, which sets a specific ID for each task (e.g., the task “Test-
ing for Reflected Cross site scripting” has “OTG-INPVAL-001” as
“owasp-testing-id”), allowing to use the standardized methodology
proposed in it.

A task (or Hacking Task) is composed of multiple attacks and is linked
to multiple resources. There may be different links among tasks and re-
sources. An acquired knowledge relationship occurs when a task pro-
vides knowledge about a resource. For example:

1. the knowledge of “Operating System” resource: our system knows
the type of Operating System that is running on the target;

2. the knowledge of “FTP Area” resource: our system knows that
FTP service exists in the target application and whether it is reach-
able or not, which files are contained, etc.;

A required knowledge relationship occurs when a task requires the
knowledge of a specific resource to be completed. Here is an example
of a task composed of multiple attacks:

Figure 2.6: Composition of a Task

• Attack: An attack is a specific set of actions that can be performed on
the target; for example, “Web application spidering” is an attack that
includes many actions; it mainly represents a command that must be ex-
ecuted by a tool. For example, the “OWASP ZAP” tool can perform the
spidering of a web application, which consists of many HTTP requests
sent to the web application; each request has its specific parameters that



36 CHAPTER 2. BEHAVIOURAL MODEL OF AN ATTACKER

must be set by the tool. The “h-id” parameter is a unique identifier, and
the Name gives a brief description of the attack. The “t-id” parameter is
used to link an attack to its specific task, and contains the “h-id” of the
Task the Attack refers to. In this way, it is possible to adopt a standard
methodology, building its own set of tasks. We have composed tasks
using the methodology given by the OWASP testing guide. The Attack
entity has a one-to-many relationship with the Action entity since more
actions compose a single attack. The attack entity also has a one-to-one
relationship with the Resource entity. When an Attack is successfully
carried on the system, it gives the knowledge about one of the resources
twith which he corresponding Task has a relationship of acquired knowl-
edge.

• Action: An action is atomic, meaning that it is the smallest operation
carried on the system. It has the following parameters:

– “h-id”: unique identifier;

– “verb”: it is the request method of the communication protocol
which the system uses (for web applications may be GET, POST,
PUT, etc.);

– “path”: specifies the path the action has been carried on (it is the
URL in the web application scenario);

– “a-id”: it contains the “h-id” the action is linked with;

– “cookie”: represents the cookie contained inside the action (it is
in a general form, independently from the used communication
protocol);

– “payload”: it is the content of the action and can also be empty
(e.g. in “GET” requests).

The Action entity is linked via a one-to-many relationship with the At-
tack entity, because an action is specific to a particular attack, and mul-
tiple actions compose an Attack. An action is linked to its response. In
fact, there is a one-to-one relationship with the entity Response since
each action has its own response (and vice-versa).

• Response: The entity Response is specific to one instance of the entity
Action (one-to-one relationship), and has the following parameters:

– “h-id”: unique identifier;
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– “status-code”: it specifies whether the action has been successful
or not, and possibly why the action has been denied;

– “payload”: the optional payload that the system returned;

– “response-time”: the timestamp of the received response (may be
useful to detect time-based attacks);

– “a-id”: it contains the h-id of the action the response is linked to;

– “verb”: it is the so-called “reason phrase”, used to emphasize the
response result (according to the used communication protocol).

2.4.1 Relation diagram

The diagram in Figure 2.7 highlights the relations among the previously listed
entities. Relations play a crucial role in an ontology aimed at writing rules that
enable the inference process by linking two or more entities. Each entity plays
a specific role.

Figure 2.7: Relation Diagram

• Vulnerability-to-Scope: relationship among Vulnerability and Scope
entity. A vulnerability can violate one or more Scope, and one or more
Vulnerabilities violate a Scope. This relationship allows us to look for
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a vulnerability that violates a specific scope and, possibly, find the task
linked to that specific vulnerability. This kind of relationship should
be retrieved from stored data [25], rather than being created with some
inference rules.

• Vulnerability-to-Task: relationship among a Vulnerability and a
Hacking-Task (also H-Task) entity. This relationship is used to retrieve
a task linked to a vulnerability in some way (e.g., a vulnerability and a
task use the same resource; hence, they are related). This relationship
could be directly generated by the inference engine thanks to the rules.

• Vulnerability-to-Resource: relationship among Vulnerability and Re-
source entity. A Vulnerability uses a Resource and one or more Vulnera-
bilities can use a Resource. This kind of relationship should be retrieved
from stored data [25], rather than being created with some inference
rules.

• Depender-to-Dependee: relationship among two H-Task entities. This
relationship allows the creation of an H-Task chain composed of related
tasks. For example, an H-Task needs the knowledge about a Resource
that another H-Task gives. The relations are generated through the usage
of Rules. This relationship is fundamental when the penetration tester
sets a “Goal” Task to reach: the system can calculate the chain of tasks
that ends with the chosen one task and, going backwards in the chain,
it can suggest the first task that the penetration tester must execute. The
chain of tasks is updated each time the penetration tester executes the
first task, allowing the system to “guide” the penetration tester to the
execution of the final “Goal” task.

• Required-Knowledge: relationship between an H-Task and a Resource
entity. In order to be executed, an H-Task requires the knowledge of
a resource (e.g., the H-Task “Identify application entry points” requires
the knowledge of the Resource “Web application map”). The task can
be executed only when the related knowledge is acquired. This kind
of relationship should be retrieved by studying the covered Tasks. We
model these relations with the OTG methodology [26]).

• Acquired-Knowledge: relationship among an H-Task and a Resource
entity. When it is executed, a task provides the knowledge about a Re-
source; in this way, it is possible to calculate the chain of tasks to execute
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the final “Goal” task. This relationship only highlights that a task, when
completed, gives the knowledge about a Resource. Information about
the completion of the task is required to suggest the next task to execute
in the task chain.

• Acquired-Fact (H-Task): relationship among an H-Task and a Re-
source. This relationship states that the H-Task has been effectively ex-
ecuted. Thus the knowledge of the related Resource has been acquired.
In this way, it is possible to advance in the H-Task chain, suggesting the
next H-Task that must be executed (to execute the final “Goal” H-Task).

• Task-to-Resource: it is a relationship between an H-Task and a Re-
source entity, which states that an H-Task uses a specific Resource en-
tity to be completed. This relationship can be used to link an H-Task to
a Vulnerability through a rule (if the H-Task and the Vulnerability use
the same Resource, then create the relationship Vulnerability-to-Task).

• Task-to-Attack: relationship among an H-Task and an H-Attack entity.
As stated before, an H-Task is composed of more H-Attacks. These
relations are formed by studying the specific used tasks [26].

• Acquired-Resource: relationship among an H-Attack and a Resource
entity. An H-Attack acquires knowledge about a Resource when it is
executed. The specific Resource is one of the Resources in the pool of
H-Task Resources linked to the H-Attack.

• Acquired-Fact (H-Attack): relationship among a Resource and an H-
Attack entity. This relationship is used to state the completion of an
attack and the knowledge acquisition of the related Resource.

• Attack-to-Action: relationship among an H-Attack and an H-Action
entity. As stated previously, an Attack is composed of multiple Actions.

• Action-to-Response: relationship between an H-Action and a Response
entity. Each H-Action has its own Response.

2.4.2 Hacking Goal

It is essential to define what a “Hacking Goal” is in our context: it is the
final aim that the penetration tester wants to reach during his/her activity. It
can be a task to be executed, as “Testing for Local file inclusion”, or it can
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be a particular set of queries to “Find all tasks related to vulnerabilities that
violate the integrity scope”. It is clear that, based on the “Hacking Goal”, the
system has to behave differently. In the first example, the system will perform
different queries to find the task chain and suggest the task (and attacks) that
can be executed; in the second one, the system will give back to the penetration
tester a specific set of tasks.

2.4.3 Relevant Rules

The following rules are the most relevant ones for our model:

Attack acquires knowledge

This rule is implemented in order to form the relationship Acquired-Fact be-
tween an H-Attack and a Resource instance. The following is a flow chart
explanation of the rule: The rule is formally defined as follows:

(AT1, is, H-Attack) ∧(AC1, is,H − Action) ∧ (R, is,Resource) ∧
(AT1, attack− to− action,AC1)∧ (AT1, acquired− knowledge,R)− >
(AT1, acquired− fact, R)

Task Acquires Knowledge

This rule is implemented in order to form the relationship Acquired-Fact
among an H-Task and a Resource instance:

(T1, is, H-Task) ∧(AT1, is,H −Attack) ∧ (R, is,Resource) ∧ (T1, task −
to − attack,AT1) ∧ (T1, acquired − knowledge,R) ∧ (AT1, acquired −
fact, R)→ (T1, acquired− fact, R)

Depender to Dependee relation

This rule is implemented in order to form the relationship “depender-to-
dependee” among two H-tasks instances:

(T1, is, H-Task) ∧(T2, is,H−Task)∧ (R, is,Resource)∧ (T1, required−
knowledge,R) ∧ (T2, acquired − knowledge,R)∧!(T2, acquired −
fact, R)− > (T2, depender − to− dependee, T1)
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Vulnerability to Task relation

This rule is implemented in order to form the relationship “vuln-to-task”
among an H-task and a Vulnerability instance:

(R, is, Resource) ∧(T, is,H − Task) ∧ (T, owasp − top − ten, owasp1) ∧
(V, is, V ulnerability) ∧ (V, owasp − top − 10, owasp2) ∧ (T, task −
to − resource,R) ∧ (V, vulnerability − to − resource,R) ∧
(owasp1, isEqualTo, owasp2)− > (V, vuln− to− task, T )





Chapter 3

An automated approach to
Pentest

In this Chapter, we present the design of an architecture for automated web
application penetration testing.
The main contributions of this part of the thesis are the following:

• refine a methodology for Web Application Penetration Testing (WAPT),
based on the orchestration of black-box testing units, called Hacking
Goals;

• design and implement a distributed platform to automate such method-
ology, whose main components are an operating unit that performs at-
tacks, called Executor and a control unit that orchestrates them among
consecutive phases, called Orchestrator;

• define a flexible way to integrate external tools to implement the Hack-
ing Goals;

• show an integration example to discover cross-site scripting vulnerabil-
ities;

3.1 Design

In this Section, we will describe the design of an automated platform for web
application penetration testing. We first summarize a methodology for WAPT
and then outline the aspects that are reflected in the architecture.

43
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3.1.1 Web Application penetration testing methodology

WAPT final objective is a comprehensive understanding of the security level
of a system under test, measured in terms of vulnerabilities exposed and the
indication of their severity.
Penetration testers perform several tasks to accomplish this goal. These tasks
help the pentester increase their knowledge about the target system and hence
discover vulnerabilities. For instance, enumerating the attack surface of a web
application outputs the list of available entry points. Such entry points will
be helpful in subsequent phases when the pentester is testing, for instance,
injection-based vulnerabilities. We call these “Hacking Tasks”.
A Hacking Task is a black-box testing activity that probes one or multiple
resources of a Web Application. Its purpose is to increase the notion of vul-
nerability that penetration testers hold about the resources under test.

It is possible to implement each Hacking Task in several ways. Penetration
testers often use either open source or commercial tools (or a combination of
the above) that help accomplish the objective of each Task.
When a tool is executed against a target, it performs attacks that might harm
the System under test. For this reason, a tool used to implement a Hacking
Task is considered as a separate attack.
The relation between Attacks and Hacking Tasks is in the form of a loose
aggregation. There is no direct correspondence between the two: a Hacking
Task might be carried out running either a single or multiple Attacks.
According to Security Experts’ experience, a well-established way to arrange
Hacking Task tasks into consecutive phases is the following:

1. Information Gathering: gain as much information as possible about
the target. In the case of web applications, the objective of this Task is
to analyze the attack surface and look for the available entry points;

2. Enumeration: identify any potential security weaknesses that could al-
low an outside attacker to gain access to the environment or technology
being tested;

3. Exploitation: apply specific exploit models, after having reviewed the
results of the previous phases;

4. Reporting: develop documentation that describes how to reproduce the
steps that lead to the discovery of the vulnerabilities.

A relation of dependency exists between Hacking Tasks that belong to consec-
utive phases. For instance, tasks that perform Enumeration are executed after
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the tasks that belong to the Information Gathering area. This allows concate-
nating tasks, ensuring that the previous Task’s output is presented as input to
the next one. When users wish to perform a full penetration test, this mech-
anism is leveraged to perform automated execution of subsequent classes of
tasks. It is important to underline that the specific communication protocol is
“task-logic” independent: it is possible to change the sequence of tasks com-
pletely.

3.1.2 High level architecture

Based on the analysis outlined in the previous paragraph, penetration testers’
primary ability is to orchestrate tools throughout several phases to complete
Hacking Tasks. To automate such a process, we propose the architecture de-
picted in Figure 3.1.

• the Executor holds the implementation of the attacks. It awaits instruc-
tions from the Orchestrator for the specific Attack to run. It also reports
back to the Orchestrator the results of Attacks;

• the Orchestrator tells the Executor which Attack to set off against a
target. It organizes Attacks into Hacking Tasks and determines the se-
quence of tasks to carry out penetration tests. It arranges the results of
the attacks to be presented to users;

• the Front-End allows users to initiate testing sessions. Users decide
whether the platform should execute a single Attack, a Hacking Task or
an entire set of penetration tests.

3.1.3 Offensive Web Application Data Model

Figure 3.2 shows the domain model.
Below are some considerations:

• A target has a base URL and several Urls (i.e. relative links, also called
Paths); each Path can be found by sending an HTTP Request;

• HttpInteraction is a couple composed of an HTTP Request and the cor-
responding HTTP Response. HTTP Attacks can send HTTP Requests
against the target and obtain HTTP Responses;
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Figure 3.1: High-level system architecture

• A Hacking Task depends on other Hacking Tasks, and it is composed of
several Attacks;

• Each Attack is linked with an Analyzer: it takes information about the
output of the executed Attack and parses observations;

• Analyzer generates a set of Observations that can be sent to an Anomaly
Checker to update the target’s knowledge and detect anomalies and vul-
nerabilities ( See Section 3.2.2 ).

A Hacking Task can be composed of one or more attacks, so it is possible
to integrate simple Web Attack tools or combine them to create more com-
plex attack logic. We refer to Attack Integration when the Hacking Task
is performed through a single Web Attack (for example, by integrating a sin-
gle web attack tool or by implementing a Fuzz Attack Module). We refer
to Behavioural Model Integration when the Hacking Task is performed by
combining several Web Attacks.

The more penetration testers get deep into the analysis of the System under
test, the more they refine the knowledge of its vulnerability status. For this
reason, tasks conducted in the early stages of testing are set off against all the
available application paths. Instead, towards the end of the activity, single web
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Figure 3.2: Domain Model

pages are tested. To handle this range, Hacking Attacks have been organized
in the following categories:

• WebServerAttack(base_domain_url): Attacks are sent against the Web-
Server base domain URL;

• PathAttack(path): Attacks are performed towards the provided path;

• ParameterAttacks(path, parameter): Attacks are sent against an input
parameter for the provided path.
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3.1.4 Orchestrator

The Orchestrator, depending on the Hacking Task category, provides instruc-
tions to the Executor to run the corresponding Attacks towards the provided
target. The functionality required by the Orchestrator correspond to the prin-
cipal activities conducted by a penetration tester:

• Information Gathering: gain as much information as possible about
the target. In the case of web applications, the objective of this Task is
to analyze the surface attack, looking for the available entry points;

• Vulnerability Assessment: identify any potential security weaknesses
that could allow an outside intruder to gain access to the environment or
technology being tested;

• Exploitation: apply specific exploit models, after having reviewed the
results of the previous phases.

The Orchestrator suggests to the Executor the best attacks depending on the
current environment state, so it provides a "Suggest Next Attack" endpoint
that can be used to ask which action should be performed. Vulnerability Detec-
tion is a complex task that depends on several factors, such as Response Time,
HTML Response Content, etc. It also depends on the acquired knowledge
of the System Under Test. For this reason, this analysis is performed by the
Orchestrator. The Executor interacts with the Target and sends Observations
to the Orchestrator that analyzes them depending on its Behavioural Models.
The Orchestrator uses an Anomaly Checker module to decide if there is an
anomaly or a vulnerability. Finally, the Orchestrator contains Modules that
might leverage Artificial Intelligence engines. For example, the Orchestrator
can use these engines to parse HTML responses and discover valid HTTP Re-
quests: a form containing a First Name and a Last Name, should generate a
request that contains two parameters with alphabetic characters. This Task is
performed through an HTML Analyzer module developed through a Natural
Language Processing algorithm. The Design Decision to keep behavioural and
AI models (Orchestrator modules) separated from the found vulnerabilities and
the interactions (Executor modules) is due to several reasons:

• Executor Performance: the Executor sends attacks against the target
and obtains attack outputs. It demands high performance, so it is advis-
able to keep it as simple as possible;
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• Models Intellectual Property preservation: it is possible to separate
and remotely distribute Orchestrator and Executor; in this way, it is pos-
sible to preserve all the information about the behavioural models;

• Security Issue privacy: it is possible to deploy the Executor inside the
customer environment and the Orchestrator separately. Found vulner-
abilities will be stored in the customer environment and protected by
privacy issues.

3.2 Communication Protocol

In this Section, we describe the Communication Protocol between the Executor
and the Orchestrator.

When users ask the platform to perform tasks, the Executor alone cannot
decide which attacks need to be set off against a target. Therefore, it asks the
Orchestrator for instructions. A protocol is defined in order to regulate the
communication between the two modules.

Figure 3.3: Hacking Task Communication Protocol
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Figure 3.3 shows the exchange of messages between the main modules to
perform a given Hacking Task. Users choose the HT that the automated plat-
form will execute on their behalf. Then, the Client asks the Executor to run the
HT. To start the interaction, the Executor asks the Orchestrator for instructions,
sending a “Get Hacking Task Information” message. The Orchestrator sends
information about the given Hacking Task, using a “ht_info” message. Such
message carries an object called Attack that identifies the specific Attack the
Executor will run. Then, a loop is repeated until there are no further attacks
to run, within the same Hacking Task. A “Suggest Next Attack“ message is
sent by the Executor to ask the Orchestrator whether there are other Attacks to
run before ending the current Hacking Task. The Orchestrator responds with a
“Next Attack” message, which carries the attack object. If all the Attacks have
been performed, the Attack identifier is equal to “END”, which signifies the
current Hacking Task is completed. If users wish to perform the entire pene-
tration test, the process described in Figure 3.3 is repeated for every available
Hacking Task.

3.2.1 Suggest Next Attack

When the Executor performs an attack, it obtains observations from the target
and asks the Orchestrator for the next Attack to be performed. Orchestrator
uses Observations to update its information about the target and to choose the
next action.

Listings 1 and 2 show Executor Next Attack message and Orchestrator’s
Response

{
"hg_id": string,
"action_name": string,
"current_state": string,
"observations": { "key_obs":
ObervationInstance, ...}

}

Listing 1: Orchestrator Request

3.2.2 Anomaly Checker

The main goal of the platform is to discover vulnerabilities. After that the
attacks are performed, the platform should verify the presence of vulnerabil-
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Key Description
hg_id A string identifying the Hacking Task that is

executed
attack_name A string identifying the attack just performed.

NULL in suggest_first messages
current_state A string identifying the current_state. NULL

in suggest_first messages and in those actions,
which do not require states evolution

observations A json object containing the observations ob-
tained by analyzing the responses to the ac-
tion just performed. Its structure changes as
the action changes. NULL in suggest_first
messages and in those actions, which do not
need to obtain observations

Table 3.1: Suggest Next Attack parameters

{
"key": "next_action",
"data": {

"next_action": string,
"next_state": string,
"action_properties": {...},

}
}

Listing 2: Orchestrator Response

ities. The Executor asks the Orchestrator to check for anomalies through the
Anomaly Checker Request ( Listing 3 ). The Orchestrator analyzes the obser-
vations acquired during the attacks and replies with a verdict ( Listing 4 ).

{
"key": "anomaly_check_output",
"data": {

"output": string
}

}

Listing 3: Anomaly Checker Request
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Key Description
key A constant identifier
data A JSON object containing the effective mes-

sage
next_attack A string identifying the next attack suggested

by Orchestrator. "END" means no further ac-
tions are required.

next_state A string identifying the next state the Execu-
tor will assume during Hacking Task

attack_properties A JSON Object whose structure depends on
next_attack. NULL if it is the END action.

Table 3.2: Suggest Next Attack parameters

{
"key": "next_action",
"data": {

"next_action": string,
"next_state": string,
"action_properties": {...},

}
}

Listing 4: Anomaly Checker Response

The Anomaly Checker Response can be:

• Normal: there is no presence of vulnerability;

• Anomaly: there is an anomaly that cannot be considered a vulnerability,
for example an error message;

• Vulnerability: the platform has detected a vulnerability

As described above, there are three types of attacks, each one is related
with a domain entity. Depending on the performed attack, the anomaly status
is associated with the related domain entity:

• for Web Server Attacks, the anomaly status is linked to the target server;

• for Path Attacks, the anomaly status is linked to the target path;
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• for Parameter Attacks, the anomaly status is linked to the tested param-
eter;

When the Hacking Task is performed through an Attack Integration, an
Anomaly Checker Module needs to be implemented. This is usually performed
by parsing the attack tool output or by analyzing the output of HTTP Re-
sponses.

3.2.3 HTML Analyzer

The platform needs to know how to interact with the target. The communi-
cation with the target is basically based on HTTP Requests. Sending HTTP
requests that contain valid parameter values is crucial as the application could
generate errors and compromise the attacks. HTML Analyzer module is used to
parse HTML pages and generate valid HTTP requests. [27] describes a method
to automatically fill in web forms in HTTP requests. We use a variant of this
approach that leverages Natural Language Processing techniques to identify
semantic similarity between textual information extracted from the attributes
of UI components and predefined data types ( string, number, fiscal code, etc.
). In this way, it is possible to create HTTP requests that the target web server
does not reject. The generated HTTP requests are used to fulfil web attacks.
The inner details of the model are beyond the scope of the current work.

Figure 3.4: Html Analyzer Module

Listing 5 shows the input schema.
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{
"id_req": integer,
"url": string,
"header": [

{string: string},
...

],
"body": string

}

Listing 5: Anomaly Checker Response

Key Description
key An integer identifying the current request an

integer identifying the current request
id_req The URL under analysis
url Tthe HTTP headers received while retrieving

the object, it is a list of dictionaries in the form
name: value.

body HTML content to be analyzed

Table 3.3: HMTL Analyzer input schema parameters

3.3 Implementation

In this section, we describe the implementation of the architecture devised in
Section 3.1.

3.3.1 Executor

The executor component is a web server developed in Django, a Python-based
open-source web framework. It uses a database to store the catalogue of im-
plemented Hacking Tasks and the Attacks that compose them. In particular,
PostgreSQL has been used for this implementation. An object-relational map-
ping layer (ORM) is used to support the interaction with application data, re-
gardless of the chosen relational database implementation. Users leverage the
Executor’s functionality through a frontend application, which acts as a client
towards the executor module. Frontend and Executor together adhere to the
REST architecture style. The Executor exposes RESTful APIs, which are used
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for two main purposes:

• CRUD functions for persistent storage on the database;

• imparts the execution of HTs and single attacks to the Executor.

In Table 3.4 are described some of RESTful APIs that allow running an HT or
a single attack. Choosing to run an HT implies that the platform autonomously
decides which attacks are necessary to complete the current objective. How-
ever, users can also choose to run a single Attack.

Name Method Description
/run-ht/<id_project>/
<id_hacking_task>/

POST execute the HT against the target
identified by id_project.

/projects/<id_project>/
attack/<id_attack>/

POST run an attack of category “web-
server” identified by id_attack
against the base URL of the
web server identified by the
id_project.

/paths/<id_path>/
attack/<id_attack>/

POST execute an attack of category
“path” with id equal to id_attack
towards the Path identified by
id_path.

/params/<id_param>/
attack/<id_attack>/

POST execute an attack of category
“parameter” with id equal to
id_attack using the parameter
identified by id_param.

Table 3.4: Executor Operations

Users create a project, which identifies a penetration testing session to-
wards a specific target, by recording its base URL. A project is assigned an
ID.

The Executor takes charge of a request for running an Attack or an HT
through the RESTful API. Upon finishing the execution, the Front-end is
notified asynchronously through an open-source message broker called Rab-
bitMQ. The Streaming Text Oriented Messaging Protocol (STOMP) was used
as a communication protocol, adopting a Publish/Subscribe interaction pattern.
The Executor works as the Publisher, while the Front-end represents the Sub-
scriber.
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The message broker is an essential component of the implemented architec-
ture, as it also serves other purposes. In fact, since attacks and tasks are time
consuming activities, the Executor has been implemented in order to provide
support for long running jobs, such as:

• run_hacking_task;

• run_attack;

• mitm_proxy_receiver;

In particular, Celery was selected to provide an asynchronous task queue based
on distributed message passing. Thanks to one or more workers, it can receive
tasks through a message broker and run them concurrently.
The Executor uses an HTTP proxy to intercept requests and responses made
during an HT or an attack. This component sends the requests and responses
intercepted to a Celery task, called mitm_proxy_receiver. Figure 3.5 shows
how the MITM Proxy intervenes in the execution of an HT. The Attack exe-
cuted is called “dirb”, an open-source web content scanner in the picture.

Figure 3.5: MITM Proxy component.

1. The Frontend sends the Executor a request to perform an HT.
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2. Celery creates a new asynchronous task, run_ht, which performs an at-
tack that consists of sending multiple requests to the target;

3. Requests performed during the attack, as well as their responses, are
collected by MITM Proxy;

4. MITM Proxy sends the collected requests and responses to the Celery
mitm_proxy_receiver task;

5. mitm_proxy_receiver stores the requests and responses within the
database. Requests and responses are later analyzed by the Orchestrator
module to look for anomalies or vulnerabilities.

The communication between MITM Proxy and the mitm_proxy_receiver task
takes place via the RabbitMQ message broker.

3.3.2 Orchestrator

The Executor needs to interact with the Orchestrator to orchestrate its actions
and update the environment’s information.

Endpoint Method Description
html-analyzer POST The Executor sends html pages to the

Orchestrator to identify the entry points
in the pages.

anomaly-checker/ POST This endpoint is contacted from the Ex-
ecutor to check for anomalies.

action-suggester/ POST This endpoint is contacted from the Ex-
ecutor to ask the Orchestrator for ac-
tions to be performed in order to com-
plete an HG or attack.

Table 3.5: Orchestrator REST endpoints

To provide these interactions, the Orchestrator exposes RESTful APIs.
Such endpoints are used by the Executor, which acts as a client towards the Or-
chestrator module. Table 3.5 outlines the REST endpoints exposed by the Or-
chestrator. The endpoints enable the communication with "Anomaly Checker",
"HTML Analyzer", and " Suggest Next Attack"
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3.4 Attacks Integration

In this Section, we show how it is possible to integrate several types of attacks
into our system.

It is possible to categorize several types of attacks and actions:

1. HTTP Request Attack: A simple attack is to just send an HTTP re-
quest against the target and obtain an observation. An Action contains
an Observable that analyses HTTP Response to verify a vulnerability or
an anomaly. These attacks are helpful when you build a custom attack
composed of several actions;

2. Command-Based attacks: these attacks are executed through a binary
executable on a terminal, for example, dirhunt is a binary used to per-
form spidering of web applications;

3. API-Based attacks: these attacks integrate tools that expose an API.
Several Security Scanners, such as OWASP ZAP, offer such a function-
ality.

Figure 3.6: Attack Domain Classes
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As described in Section 3.1, attacks can also belong to WebServer, Path or Pa-
rameter category. Figure 3.6 shows a class model for the attacks. We show how
it is possible to integrate different tools by extending the attack class described
previously.

class HttpSender:
reqMethods = {

"GET": requests.get,
"POST": requests.post,
"PUT": requests.put,
"DELETE": requests.delete

}
def send(self, r):
"""Send the http request """
req_function = reqMethods[r.method]
resp = req_function(r.url + ...))
obj_headers = HttpPart.to_obj(resp.headers)
return HttpInteraction(r, ..))

def send_multiple(self, reqs):
responses = []
""" Send multiple requests and take """
self.send(reqs[0])
return responses

def fuzz(self, r, p, vals):
fuzzer = FuzzerGen(r, vals)
fuzzer.choose_param(p)
reqs = fuzzer.gen_reqs()
return self.send_multiple(reqs)

class FuzzAttack(ParamAttack):
def __init__(self, name, data ...):
super().__init__(name, data, analyzer, notifier)
if ("values") not in data:
raise AttackNotParamException("values")

self.values = data["values"]
def send_attack(self):
# Send attack and return a json
responses = self.http_sender.fuzz(
self.base_request,
self.chosen_param["name"], self.values)
return responses

Listing 6: Fuzz Attack



60 CHAPTER 3. AN AUTOMATED APPROACH TO PENTEST

3.4.1 Fuzzing Attack

We can define a Fuzzing Attack as an extension of a Parameter Attack: it takes
a list of N payloads and sends N HTTP Requests against the target. Fuzzing
Attack (Listing 6) extends the ParamAttack class and uses the HttpSender util-
ity class to send a list of requests against the target. The Fuzzing Attack class
can be considered as the base class for implementing any injection attack .

3.4.2 Dirhunt attack

dirhunt is a spidering tool that allows the attacker to discover all urls inside a
web application. It is possible to integrate dirhunt in our system by extending
the Process Attack class.

class DirHuntAttack(ProcessAttack):
init(self, name, data, analyzer):

# Use Dirhunt attack as WEBSERVER TOOL
# data["path"] = "/"
super().__init__(name, data, analyzer)
self.command = "dirhunt"

def send_attack():
return super().send_attack()

Listing 7: Dirhunt Attack

When the attack is performed, the HTTP Responses are intercepted by the
Mitm Proxy Module and stored in the internal Database. Those HTTP requests
could be used for further attacks.

3.4.3 Zed Attack Proxy

Zed Attack Proxy is one of the world’s most popular free security tools. It is a
Dynamic Security Scan that can be used to automate Security Assessment. It
offers an API that allows to send scans and integrate the tool into other systems.
As API Authentication, ZAP uses an HTTP header ( X-ZAP-API-KEY ) that
should be sent during the scan request. It is possible to integrate ZAP in our
platform by extending the API-Based Attack class.
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class ZapAttack(ApiBasedAttack):
init(self, name, data, analyzer):
self.api_req = '<ZAP_URL>'
self.headers['X-ZAP-API-Key'] =

config.get('zap-api-key')
def send_attack():
return super().send_attack()

Listing 8: ZAP Attack

3.5 Behavioural Model Integration

This Section shows how it is possible to implement a Behavioural Model of a
Hacking Goal inside our solution. As Proof Of Concept we choose the follow-
ing Hacking Goal:

Detect Reflected cross site scripting

The Goal is to detect Reflected cross-site scripting vulnerabilities inside
a Web Page of the target system. In cross-site Scripting vulnerabilities, ma-
licious JavaScript Code is sent as part of the user’s input, and the input it-
self is reflected inside the response Web Page. The victim’s browser executes
JavaScript code. The attacker that sends a malicious payload can obtain the
victim’s session cookie, deface the website, control user actions, etc. A simple
flow to detect Reflected cross-site scripting vulnerability is the following:

1. Identify all the input parameters and submit a generic string that does
not appear anywhere within the application;

2. Verify that the generic string is reflected;

3. Detect the reflection context;

4. Depending on the reflection context, send different types of payloads.

5. If the vulnerable website applies filters to the received input, try to by-
pass them through smart encoding techniques.

3.5.1 Hacking Goal requirements

The user should choose an HTTP request with input parameters to start the
Reflected cross-site Scripting hacking goal. They should also choose the pa-
rameter that is going to be tested. Finally, the Executor should be able to send
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a valid HTTP request. These requirements could be satisfied by other Hacking
Goals. For example Spidering the Web Application, that traverses all hyper-
links in the Web Application Target and Detect valid HTTP Request that uses
the HTML Analyzer module to parse the HTML page, find valid parameters
and generate a valid HTTP Request.

3.5.2 Behavioural and Attack Model

We do not explain the used behavioural model in detail as the focus of this
work is to show how it is possible to integrate pre-existing models inside our
architecture. To the purpose, we leverage a simplified version of our work
about using Reinforcement Learning to discover reflected cross-site scripting
vulnerabilities [28]. The rationale is that an attacker starts by sending a simple
request containing a generic string to detect a reflection. Then, he/she tries
to send attacks and bypass filters depending on which input is reflected and
which filters the server applies. As it is possible to observe, it is a sequence of
attacks, depending on the acquired information.

It is possible to model a single attack with a PayloadManipulation attack.
PayloadManipulationAttack is an extension of a FuzzAttack: it accepts a list
of rules and generates a fuzzing list used to fuzz the parameter under test.

Some of the relevant rules in the model are:

• Payload type: the base payload to use for the manipulation;

• Double Quote Encoding: which encoding to apply on double quote
characters;

• Quote Encoding: which encoding to apply on single quote characters;

• Tag Encoding: which encoding to apply on bracket tags;

• AppendToPayload: which characters to append to the base payload;

• PrependToPayload: which characters to prepend to the base payload;

Some of the relevant observations in the model are:

• Reflect Location: where the string is reflected (inside the HTML code,
as an attribute of an HTML tag, etc.). It can influence the choice of the
attack payload;
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• Reflection Status: whether the string is perfectly reflected, encoded or
filtered;

• Single Quote Defense: whether quotes are filtered, encoded, escaped,
or left unchanged;

• Double Quote Defense: whether double quotes are filtered, encoded,
escaped or left unchanged;

• Bracket Tags Defense: whether bracket tags are filtered, encoded, es-
caped or left unchanged.

Figure 3.7 shows the details of the messages exchanged between Executor
and Orchestrator during the execution of the Goal.

next_attack field, suggested by the Orchestrator, is the PayloadManipula-
tion attack. attack_properties field inside next_attack message contains the
“manipulation” vector, i.e., the instructions on how to manipulate the value
of the parameter under test. In this simple flow example, the server does not
apply encoding or other defences, and the input is reflected inside the HTML
body.

1. The Executor asks for the first action when the Goal is Detect reflected
cross-site scripting;

2. The Orchestrator suggests to send a Generic String as the first payload;

3. The Executor sends the Generic String against the target, obtains infor-
mation about the reflection location and asks the Executor for the next
attack;

4. The Orchestrator, according to its internal behavioural model, knows
that if a string is reflected in HTML body, the best action to perform is
to send a script payload attack;

5. The Executor sends the attack and returns the observations back to the
Executor;

6. The Orchestrator knows that when the attacker sends a script payload,
and a perfect reflection occurs, it means that a cross-site scripting vul-
nerability is present. Hence, it notifies the Executor to stop.

At the end of this flow, the Executor can ask if the parameter is vulnerable to
cross-site scripting and the Orchestrator acknowledges this.
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Figure 3.7: Executor Orchestrator flow

3.6 Vulnerabilities, Attack Tools and Behaviours

Several works [29] [30] have committed to the Web vulnerabilities classifica-
tion. [31] describes 41 different types of Web vulnerabilities. We map each
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vulnerability onto an attack or behavioural integration to evaluate the cover-
age of vulnerabilities through our framework. Table 3.6 shows the mapping
between vulnerabilities, attack tools and behavioural models. Twelve vulnera-
bilities are covered by integrating an attack, thirteen vulnerabilities are covered
by using a behavioural model and two vulnerabilities are covered by a com-
bination of Attack Tools and Behavioural models. Fourteen vulnerabilities
cannot be covered by our framework:

• Cipher Transformation Insecure: these vulnerabilities can be detected
during the secure design phase;

• Credential Management: this vulnerability can be detected during the
secure design phase, as well as the secure code review phase;

• Insecure cryptographic storage: this vulnerability cannot be detected
without source code review. Hence, it can be detected during the secure
code review phase;

• Insecure deserialization: this vulnerability is pretty difficult to find
without looking at source code. It can be detected through secure code
review activities;

• Insecure digest : this vulnerability can be detected during the secure
design and secure code review phases;

• Insufficient logging and monitoring: this vulnerability can be discov-
ered by reviewing the source code and by analyzing internal server logs.
It is not possible to find it by using Web Application Penetration Testing
techniques;

• Injection Flaw: this vulnerability is too much generic. It is indeed cov-
ered by other types of vulnerabilities, such as Cross-Site Scripting and
SQL Injection;

• Missing PT_DENY_ATTACH is related with iOS mobile applications
and it is not covered by our system;

• Race Condition: the discovery of this vulnerability is difficult. It can
be detected by using approaches such as Manual Source Code Review,
or concolic testing [32];

• Security Misconfiguration: this vulnerability should be reviewed in
Web Server Hardening processes [33];
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• Sensitive data exposure: it is too generic a vulnerability, it should be
analyzed in several security phases;

• Remote Code Execution: this kind of vulnerability is more related to
the exploitation phase. Actually, our platform is focused on vulnerability
detection rather than exploitation;

• Unvalidated automatic library activation: this vulnerability is more
related to third-party library management processes.

Vulnerability Integration
Broken access control B
Broken authentication B

Carriage Return and Line Feed (CRLF) Injection A
Cipher transformation insecure O

Components with known vulnerabilities A
Cross-Origin Resource Sharing (CORS) Policy A

Credentials management O
Cross-site request forgery (CSRF) B

Cross-site scripting (XSS) A/B
Directory indexing B
Directory traversal A

Encapsulation B
Error handling B

Failure to restrict URL access B
HTTP response splitting A
HTTP verb tampering A

Improper certificate validation A
Injection flaw O

Insecure cryptographic storage O
Insecure deserialization O

Insecure digest O
Insecure direct object references (IDOR) B

Insufficient logging and monitoring O
Insufficient session expiration B

Insufficient transport layer protection A
Lightweight Directory Access Protocol (LDAP) injection A

Malicious code O
Missing function level access control B
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Missing PT_DENY_ATTACH O
Operating System (OS) command injection A

Race condition O
Remote code execution (RCE) A

Remote file inclusion (RFI) A
Security misconfiguration O
Sensitive data exposure O

Session ID leakage B
SQL Injection A/B

Unrestricted File Upload B
Unvalidated automatic library activation O

Unvalidated redirects and forwards A/B
XML External Entities (XXE) A

Table 3.6: Vulnerability and Integration Mapping

A = Attack tool Integration, B = Behavioural Integration, B/A =
Behavioural and Attack Tool Integration, O = Other

Table 3.7 maps the vulnerabilities onto the tools that are integrated in the
platform.

We cover ten out of fourteen vulnerabilities by using Open-Source tools.
Four vulnerabilities are discovered by implementing custom tools:

• Insufficient transport layer protection is detected by analyzing all target
endpoints and detecting if there is some unsecure plain-text communica-
tion. This can be performed by inspecting the used protocols (i.e., HTTP
instead of HTTPs);

• HTTP Response Splitting is implemented by sending several HTTP re-
quests and appending CRLF payloads as described in [44];

• LDAP, OS and XXE Injection attacks are implemented by extending the
Fuzz Attack class through common fuzz strings.

We implement Attack Behavioural Models by using Port Swigger [45] and
OWASP Testing Guide methodologies [46], as well as by implementing them
through the Communication Protocol.
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Vulnerability Attack Tool
Carriage Return and Line Feed (CRLF) In-
jection

CRLF-Injection-Scanner [34]

Components with known vulnerabilities Vulners API [35]
Cross-Origin Resource Sharing (CORS)
Policy

CORScanner [36]

Cross-site scripting (XSS) XSSMap [37]
Directory traversal LFISuite [38]
HTTP response splitting Custom
HTTP verb tampering nmap http-methods script [39]
Improper certificate validation MassBleed [40]
Insufficient transport layer protection Custom
Lightweight Directory Access Protocol
(LDAP) injection

Custom

Operating System (OS) command injec-
tion

commix [41]

Remote file inclusion (RFI) fimap [42]
SQL Injection SQLmap [43]
XML External Entities (XXE) Custom

Table 3.7: Vulnerability and Attack Tool Mapping.



Chapter 4

Vulnerable Environments for
Research and Education

To test the automation system described in the previous chapter, it is essential
to have a heterogeneous vulnerable environment, that should be virtualized
to avoid disruptions and data loss in real systems. In early research works,
we designed a microservices-based framework to train students in Network
Security, called Docker Security Playground [47]. The use of a microservices-
based technology led to several advantages in terms of scalability, performance
and usability [48]. During our exploration, we also ran into the limitations of
this kind of virtualization when applied to the cyber-range domain. In order to
overcome them, we implemented a hybrid system relying on different types of
virtualization. A further contribution has concerned the definition of a model
for cyber ranges, called “Cyber Range Environment” and the design of a secure
architecture for cyber ranges deployment in cloud environments. We show
how it is possible to integrate the Docker Security Playground in this model
by provisioning it in a cloud enviornment. We use the Amazon Web Services
cloud as a proof of concept to show our results.

4.1 A heterogeneous environment for cyber-ranges

IT security experts usually face problems that require across-the-board skills
in order to design secure infrastructures, test them to avoid vulnerabilities and
harden them against potential attacks. On the other hand, researchers try to ap-
ply ground-breaking solutions to well-known security issues. Indeed, a thor-
ough research process is always accompanied by a good educational activ-

69
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ity and vice-versa. Both research and training tasks require controlled envi-
ronments inspired by real-world operational facilities that work as spaces to
experiment new solutions as well as to practice technical skills. A “Cyber
Range” is a virtual environment for cybersecurity testing, aimed at assessing
defense methodologies and infrastructures countering modern threats. It is ex-
plicitly designed for training purposes. Everything that is needed for carrying
out the activities and completing the course is inside the architecture: virtual
machines, networks, tools, etc. Moreover, the environment must be well con-
trolled in order to provide secure access to students who take part to the train-
ing, as well as administrators looking after management tasks. To date, there is
no unique way to prepare cyber ranges and few solutions have been proposed
so far, to the point that most of them are created manually. This matter raises
several challenges, from the preparation of the vulnerable environment, to the
automation of the initial configuration. In this regard, modern virtualization
techniques play a fundamental role in the realization of effective cyber ranges.
In particular, container-based virtualization offers different benefits in terms
of scalability, performance and usability Though, this kind of virtualization is
not able to reproduce all types of vulnerabilities, as we will point out in Sec-
tion 4.1.1. To tackle this issue, we propose the design and implementation of a
hybrid solution for the realization of a fully-fledged cybersecurity playground.
The goal of our work is to provide a solution combining different virtualiza-
tion techniques and paradigms to create a cyber-range environment that allows
to take advantage of container-based virtualization without losing anything in
terms of cybersecurity vulnerabilities coverage. In the proposed solution, net-
works, virtual hosts and containers linked to different technologies seamlessly
co-exist.

4.1.1 Design

OS Virtualization and Vulnerabilities

In our work, we consider OS virtualization as a means to emulate vulnerable
environments that can be attacked during training exercises.
There exist different types of vulnerabilities, as well as several ways to cate-
gorize them from the adversarial point of view. In order to combine the need
for the trainees to learn common attack models and to familiarize with novel
vulnerabilities, an effective way to design a cybersecurity exercise is in the
form of a Capture The Flag (CTF) environment. In this sort of scenarios, users
need to take advantage of vulnerabilities that allow them to get a first access to
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a remote system. Such vulnerabilities concern applications or remote services
like web servers and depend on either buggy implementations or misconfigu-
rations.
Once gained access to a remote machine, users look for vulnerabilities that
allow to acquire special privileges. Such vulnerabilities can depend on imple-
mentation and misconfiguration as well, but in this case they can occur both in
user and kernel space.
Gaining special privileges is representative of the fact that attackers are in com-
plete control of the system and can perform several other harmful operations,
such as data exfiltration and lateral movement. The latter, though, depends on
both the vulnerability of the machine and the configuration of the network in-
frastructure.
The choice of introducing OS virtualization, automatically rules out the emu-
lation of kernel space vulnerabilities. On the other hand, designing vulnerable
machines as microservices offers several advantages in terms of:

- decoupling: application dependencies can be installed and managed sep-
arately for each microservice;

- scalability: a single host can handle up to hundreds of containers [48];

- provisioning: container resources can be allocated taking into account
the requirements of the implemented services, as well as the scalability
needs.

The mentioned attributes are of course helpful during deployment. However,
they become very profitable during design and testing as well. In fact, the ac-
tivity that is proven to be the most resource consuming in the life cycle of a
cybersecurity exercise, is the preparation [49] of the vulnerable environments,
because it deals with the configuration and automation of heterogeneous sys-
tems. The designers of the scenarios can benefit from a technology that allows
them to deploy the implemented scenarios in lightweight testing environments.

Hierarchical architecture overview

Isolation among emulated scenarios is the first fundamental requirement to
ensure: this allows separate teams to perform training in a dedicated envi-
ronment. With the term “Virtual Scenario”, we identify the component that
allows to implement and deploy the scenario. It is made up by a type-2 hy-
pervisor and its guest virtual machines. The “Virtual Scenario” lands on what



72 CHAPTER 4. VULNERABLE ENVIRONMENTS

we call a “Master Host”: it represents a bare-metal hypervisor that allows to
replicate the Virtual Scenarios, according to the amount of teams that are going
to perform the training.
The choice of separating the two components allows the Scenario Designer to
create the exercises on a testing environment with much more limited resources
than the actual environment used for the final deployment. In fact, type-2 hy-
pervisors are common tools supported by any desktop operating system and
can be found on modern laptops.
The guest virtual machines inside the Virtual Scenario assume separate roles,
each of them justified by the need of having:

• an entry-point to provide each team with remote access to the emulated
scenario;

• one or more container hosts allowing to deploy the sections of the sce-
nario that use OS virtualization;

• one or more generic guest virtual machines allowing to reproduce the
sections of the scenario that can not use OS virtualization.

Figure 4.1: Virtual Scenario Architecture
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Networking configuration

The integration among separate virtualization technologies also raises chal-
lenges for the network communications among components. In particular, the
following issues need to be addressed:

• users that get remote access must be forwarded inside the network of the
scenario, in order to start the training exercises;

• containers need to be able to communicate with other containers as well
as other guest virtual machines. This allows the designer to have com-
plete freedom over the network configuration of the scenario;

• basic routing configurations must be available to the designer, in order
to separate those network segments with different semantics (e.g., an
exercise with both a public and a private network segment).

To fulfill the first requirement, we decided to identify the entry point of the
scenario with a Virtual Private Network server. In this way, upon connection,
users are provided access to a network and can start building an understand-
ing of the infrastructure. As for the second issue, we first make sure all guest
virtual machines are part of the same VPN. Then, we want segments of the net-
work to be populated with both containers and virtual machines. For instance,
we would like some services to be handled by containers in one segment of
the network and only virtual machines in another. These design choices are
made in order to provide the scenario designers with enough flexibility. To
tackle this issue, we introduce the concept of “container as a router”. The
expression refers, in fact, to containers with multiple network interfaces:

- one or more interfaces are attached to container networks;

- one interface works as a bridge towards one of the physical network
interfaces of the guest virtual machine upon which the containers are
deployed.

With the proper routing configurations, a network composed of sole con-
tainers can exchange packets with virtual machines. This allows to fulfill also
an “information hiding” design principle: users that solve the exercise just see
network services, regardless of their implementation in the form of either a
container or a virtual machine.
Proper routing configurations allow to solve the last of the three requirements
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as well. In the implementation section we will underline how these con-
cepts are put into practice thanks to the introduction of known technologies
in the field of OS virtualization and by leveraging the Infrastructure as Code
paradigm.

4.1.2 Implementation

In this section we will describe the implementation of the architecture devised
in section 4.1.1.
OS Virtualization. For the implementation of the container-based segment of
the virtual scenario, our choice fell on Docker. With Docker, we can design
vulnerable Linux services using the Dockerfile syntax. On the other hand, we
can build networks made up by multiple containers by using docker-compose,
a tool providing orchestration functionality for multi-container applications.
As a popular OS virtualization technology, Docker inherits both the advan-
tages and the limitations identified in section 4.1.1. Although it is possible
to design Windows services as Docker containers thanks to the native support
introduced since Windows Server 2016, we decided to use Docker containers
only for Linux-based services, since the Docker for Linux community provides
a much richer support. The Windows-based vulnerable services will be imple-
mented in standard virtual machines.
In table 4.3, we identified the common categories of vulnerabilities used in
training exercises: for each of them, we reported whether they can be repro-
duced using Docker or not, according to the considerations made in section
4.1.1. This taxonomy will allow us to keep track of the actual vulnerabilities
covered in the final evaluation, provided in section 4.1.3.
Container as a router. In section 4.1.1, we introduced the concept of “con-
tainer as a router” as a means that allows containers belonging to separate
networks to exchange packets between each other. Such networks can be com-
posed of either docker containers, or other guest virtual machines. The latter
case is achieved using the so called “macvlan” driver, that creates a bridge be-
tween the network interface of a container and a provided physical network
interface. In this way we allow a container to exchange packets with a network
composed of guest virtual machines. Such solution is depicted in Figure 4.2.

Virtual Scenario Provisioner. The main advantage of many existing cy-
ber ranges instantiation platforms is that both configuration and deployment
of the scenarios are consistently automated. We provided a fair amount of
automation as well, by embracing the Infrastructure as Code (IaC) paradigm,
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Figure 4.2: Container as a router

that allows provisioning complex systems through machine readable files. In
particular, we want the scenario designers to be able to launch an architecture
made up by several virtual machines with minimum effort. The Vagrant soft-
ware allows to do so, thanks to the definition of a so-called Vagrantfile, that
contains the description of a virtual environment, together with its network
configuration. The Vagrantfile can be seen as the “Virtual Scenario file", as
it defines the list of guest virtual machines that form the training exercise. It
includes also information about the type-2 hypervisor of choice for the imple-
mentation of the exercise, as well as the definition of the network infrastruc-
ture.
The other aspect of the architecture that responds to the IaC principle, is of
course the orchestration of Docker containers inside the Docker virtual host.
Such orchestration is handled with a docker-compose file, that describes the
services deployed in the form of docker containers and the subnets they be-
long to. It also allows to specify the networking driver used, which is important
when the “container as a router” concept needs to be implemented. The two
files mentioned above must be provided by the scenario designers to leverage
the proposed architecture.

Other configurations. To properly configure a virtual scenario, the de-
signer also needs to provide scripts that allow, at the startup, to fully prepare
the vulnerable environment:

• Entrypoint Configuration Scripts to properly configure the scenario
entrypoint. For that, we rely on a PfSense virtual machine, which works
as a VPN server, whose initial configuration allows users to be directly
connected to the vulnerable network infrastructure of the training exer-
cise. The configuration is reusable by the designers;

• Network Configuration Scripts to allow containers belonging to sepa-
rate docker subnets to communicate with each other, as well as to com-
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municate with other virtual machines through the macvlan driver. In
the proposed architecture, the “container as a router” is a Linux-based
docker container. Its configuration is made with Linux common net-
work utilities such as ip, route and iptables. Such scripts are only par-
tially reusable by the designer, as they depend on the specific network
infrastructure required to reproduce the training exercise;

• Vulnerability Scripts to configure the vulnerable services. Such scripts
need to be customized by the designer as they depend on the training ex-
ercise being implemented. The configuration of the vulnerable services
is outside of the scope of our work.

4.1.3 Evaluation

In this Section we first show the variety of vulnerabilities that we are able
to reproduce using the proposed solution, by describing an ad-hoc emulated
scenario. Then, we discuss the benefits that derive from the usage of OS virtu-
alization.

Emulated scenario. To prove that our approach benefits from the intro-
duction of containers, whilst making sure that this choice does not affect the
realism required for a training exercise, we need to:

• implement at least one vulnerability per each category of vulnerabilities
identified in Table 4.3;

• create a configuration that closely mimics a real-world network infras-
tructure as well as enables communication among heterogeneous virtu-
alized environments.

In table 4.1 we summarize the elements that compose the virtual scenario we
implemented. Hypervisors are listed on the left side, while on the right side
are reported the guest virtual machines/containers that have been chosen to im-
plement the vulnerabilities. We use a PfSense guest virtual machine to work
as Scenario Entrypoint. Then, we have an Ubuntu 18.04 LTS guest virtual
machine that works as Docker Host. It runs 10 Docker containers: 8 of them
are service containers used to reproduce vulnerable machines; the remaining
2 play the role of “router containers” and are part of the network infrastruc-
ture. Then, we have the section of the scenario dealing with vulnerabilities
not reproducible using Docker containers. Namely, Windows machines and an
Ubuntu guest VM equipped with a vulnerable Linux Kernel.
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Figure 4.3: Virtual Environment Architecture
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Table 4.2 provides a complete list of the vulnerabilities covered in the scenario
and maps them onto the categories listed in Table 4.3. Using our solution, we
ensure that the identified categories of vulnerabilities can be reproduced, by
taking the benefits of the OS virtualization approach, while at the same time
overcoming its core limitations.
As for the second goal of the evaluation, we decided to recreate a scenario with
corporate network infrastructure, made up by: (i) a private segment, with in-
ternal hosts not accessible from unauthorized users; (ii) a DeMilitarized Zone
(DMZ) to provide external users with access to public services.

The complete virtual scenario is showed in Figure 4.3. During the training,
the purpose of the users is to get as deep as possible inside the network and
find vulnerabilities allowing them to acquire unauthorized access to the private
section of the network, a practice known as “lateral movement”.
Such a network infrastructure allows us to show the flexibility of the proposed
architecture, which provides many configurable options, by allowing the sce-
nario designers to realize cybersecurity exercises with a high degree of realism.

Discussion. The virtual scenario was first designed and tested on a laptop
with an Ubuntu 18.04 LTS (on a 64 bits processor) and 16GB of RAM. For
final deployment, a Vmware ESXi platform was used to replicate the scenario
for 10 separate teams. The architecture was leveraged as a training exercise
for the Italian “Joint Cybernetic Operations Command”1. Each team, formed
by expert penetration testers, was provided with a VPN certificate, in order to
connect to separate virtual scenarios. All of them reported a smooth user expe-
rience and the difference between vulnerable containers and virtual machines
was not spotted out by any of the participants.
We care to point out that, in order to implement the same scenario without
OS virtualization, an amount of virtual machines three times larger is needed.
In fact, using only type-2 hypervisors, each service container would be im-
plemented as a guest virtual machine, resulting in a total amount of 12 guest
virtual machines used for vulnerable services.
As future development, we plan to implement a Windows Docker Host, in or-
der to implement Windows services vulnerabilities as Docker containers. This
will allow us to remove the burden of the Windows virtual machines used in
this scenario.

1Italian: Comando Interforze Operazioni Cibernetiche (CIOC)
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VS Element Implementation
Bare-Metal Hypervisor Vmware ESXi Server

Hyper-V Scenario Entrypoint PfSense Virtualbox Machine
Container-Based Stack Machine Ubuntu 18.04 LTS Virtualbox Machine

Container-Based Stack Environment 10 vulnerable Docker containers
3 vulnerable networks,

1 public network,
1 internal network

Level-2 Hypervisor stack 1 Windows Server 2008 (Domain Controller),
2 Windows 7,

1 Ubuntu Xenial 16.04 64 bits

Table 4.1: Virtual Scenario Implementation Example Components

Type Vulnerability
WAV KikChat - LFI / RCE

MPEV passwd file World-Writable
LAV LFI - Local File Inclusion

SPEV Mysql UDF running as root
LAV Wordpress Vulnerability

LUPEV vim with bit suid
LAV Buffer overflow in custom application

MPEV Same password for separate users
LAV Shellshock on User-Agent header
LAV Bruteforce attack against a vulnerable service

SPEV Local Webserver with root privileges
LAV CVE-2017-5645
LKV Dirty-Cow vulnerability

NLAV Windows FtpShell Client Buffer Overflow
NLPEV Pass the Hash / SMB Relay via XSS

Table 4.2: Attack Scenario Vulnerabilities.
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ID Vulnerability Type Can use Docker?
WAV Web Application Vulnerabilities Y
LAV Linux-based Application Vulnerabilities Y

SPEV Privilege Escalation through services running with high privileges Y
LUPEV Linux-based User space privilege escalation Y
MPEV Privilege Escalation through Misconfiguration Y
LMV Linux Misconfiguration Vulnerabilities Y
SV Service Vulnerabilities Y

NLAV Non Linux-based Application Vulnerabilities N
NLRV Non Linux-based Remote Vulnerabilities N
LKV Linux Kernel-level Vulnerabilities N

NLPEV Non Linux-based Privilege Escalation Vulnerabilities N

Table 4.3: Vulnerabilities and Docker applicability.

4.2 Deployment and orchestration of Cyber Ranges in
the Cloud

Cyber ranges are evolving in more complex environments and simulations are
getting closer and closer to real world scenarios. These innovations bring with
them major technical challenges and complex problems to solve. To date, little
has been done to automate the process of creation of cyber security training en-
vironments. Moreover, cyber ranges are recently evolving into service-based
solutions. Remote Access Control, Credential Management, Automation and
Security are the aspects that nowadays require innovation in this field and this
is where our work focuses on. We propose a design of a services-based plat-
form for the dynamic deployment of cyber ranges, based on containers and
virtual machines. The goal is to manage the creation and termination of train-
ing environments in a dynamic, scalable and secure way. Moreover, the ar-
chitecture satisfies the property of portability, which allows to consider its im-
plementation with different cloud providers. In our case it was decided to use
the cloud-computing platform offered by Amazon (Amazon Web Services —
AWS), which is cheap, highly reliable and configurable. EC2 (Elastic Comput-
ing Cloud) instances are Virtual Machines configured with Amazon Machine
Images (AMI), a type of virtual appliance that runs on top of a hypervisor.
They play a central role in our work, as they are responsible for hosting Docker
Security Playground (DSP) [47], a microservices-based framework whose ar-
chitecture is based on docker2 and docker-compose3.

2https://www.docker.com/
3https://docs.docker.com/compose/

https://www.docker.com/
https://docs.docker.com/compose/
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Currently, DSP can be used only by a single user. The proposed solution
allows to implement DSP collaborative laboratories that involve interaction
between red (i.e., the attackers) and blue (i.e., the defenders) teams through
a shared environment. However, EC2 Instances do not only act as a mere
“host” for DSP. They are also an active entity in the reproduction of cyber se-
curity scenarios, since they can run several different Operating Systems, hence
allowing for the creation of complex and diverse virtual and hybrid environ-
ments. In such a scenario, environments separation and access control become
key to the success of the cyber range. A user shall be able to access only re-
sources that were assigned to him/her by the system. Moreover, these resources
must be isolated from the outside, so to prevent internet access and protect the
environment from known attacks to cloud infrastructures such as cryptojack-
ing. Scenarios range among hacking web applications, cracking telnet access,
buffer overflow, WiFi hacking, and many others. Users have access to a col-
lection of multidisciplinary laboratories, which brings many benefits from an
educational point of view. Much has been done also to automate creation and
management of resources, ensuring a dynamic and reliable environment.

4.2.1 Cyber Range Environment

The Cyber Range Environment is a set of virtual machines that are logically
divided into multiple subsets called, respectively, “Macro Ranges” and “Micro
Ranges”. A Macro Range Mr is a subset of the Cyber Range environment C
that contains one and only one Remote Access Controller r. The Remote Ac-
cess Controller is configured with a set of routing rules obliging users to gain
access exclusively to the assigned virtual resources. These rules are defined
inside the Remote Access Controller and cannot be modified by unauthorized
entities.

Mr ⊆ C

∃! r ∈Mr

A Macro Range contains zero or more Micro Ranges. Micro Ranges are
a non empty set of virtual machines whose usage is predisposed for either a
single user or a group of users.

n(mr) ∈ {1, 2...M}
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Where M is a positive integer representing the maximum number of eli-
gible Virtual Machines per Micro Range. All the Micro Ranges in a Macro
Range must be linked to the Remote Access Controller through a communica-
tion channel. A virtual machine cannot establish in any way a communication
channel with a virtual machine belonging to a different Micro Range.

A virtual machine u is reachable from a virtual machine v if a direct com-
munication channel can be established between them.

v −→ u

At least one element of a Micro Range must be reachable from the Remote
Access Controller.

∀ mr ⊆Mr ∃ v ∈ mr : r −→ v

Elements of different Micro Ranges must not be able to reach each other.
The same rule applies to elements belonging to different Macro Ranges.

Fig. 4.4 shows an example.
Let Q and S be two Micro Ranges with v and u virtual machines belonging

to Q and S respectively.

@ v ∈ Q : v −→ u ∀v ∈ Q,∀u ∈ S

@ u ∈ S : u −→ v ∀v ∈ Q,∀u ∈ S

Figure 4.4: Representation of a Macro Range.



4.2. DEPLOYMENT AND ORCHESTRATION OF CYBER RANGES IN THE CLOUD 83

Micro Ranges are divided into multiple categories depending on the type
of resources they are composed of:

- Virtual Micro Range: is a Micro Range composed only of full virtual-
ization VMs connected to each other;

- Containerized Micro Range: is a Micro Range composed of a single VM
whose kernel serves as the base for the execution of containers (Docker,
Linux Containers, Solaris);

- Hybrid Micro Range: is a Micro Range composed of both full virtual-
ization VMs and one or more VMs hosting containerized infrastructures.
Container Networks (based, e.g., on docker-compose) and other VMs are
connected to each other forming, de facto, a hybrid system;

- Shared Micro Range: this type of Micro Range can be accessed by sev-
eral users at the same time. A shared Micro Range is designed to simu-
late red/blue team scenarios that allow interaction between attackers and
defenders.

4.2.2 Back-end Resource Manager

The Back-end Resource Manager is responsible for:

- Resource allocation

Users send resource allocation requests through the front-end applica-
tion and the API. The Back-end Resource Manager receives such re-
quests and checks if all the required preconditions are met, such as eli-
gibility and accountability of the user who made the request. In case of
laboratory creation, it checks if there are sufficient resources for allocat-
ing a new Micro Range in any Macro Range inside the Cyber Range En-
vironment. If the maximum number of Micro Ranges per Macro Range
has been reached it will proceed to create a new Macro Range, including
a Remote Access Controller.

- Routing rules declaration

When a new virtual machine is created, or when the ownership of a
Micro Range passes to another user, the Back-end Resource Manager
launches commands inside the Remote Access Controller to enable the
new rules. A command is sent in order to establish a communication
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channel between the user who made the request and the assigned Micro
Range. In case of transfer of ownership to another user, the existing
rules are modified. If the system needs to revoke a user’s access to a
Micro Range, the Back-end Resource Manager sends a delete command
related to the rule that allows communication between such two entities.

The Back-End Resource Manager needs to be aware of the state of the
Cyber Range Environment before setting up a communication channel
between a user and a Micro Range. Before editing the virtual space,
it reads the current state from the Data Storage and updates it every
time a successful action on the Cyber Range Environment is performed.
This state control mechanism prevents overlap of resource allocation or
address assignment.

4.2.3 Cluster Security Controller

The Cluster Security Controller is responsible for interpreting events coming
from the Event Listener and performing security checks and actions on the Cy-
ber Range Environment. Security checks include verifying if there are anoma-
lies in the allocation of the instances, for example if a user manages to create
more resources than expected. The event record also includes information
about the Micro Range owners. Let us suppose that a user is authorized to
have access to only one Containerized Micro Range and, intentionally or due
to a system bug, manages to get ownership of an additional Micro Range of
the same type. The Cluster Security Controller is notified about this event
and, after performing security checks, detects the anomaly and destroys the
resources. The Back-end resource Manager tries to prevent this type of situ-
ations by performing controls before the resource allocation phase. Though,
it does not check the environment in real time, differently from the Cluster
Security Controller. The Cluster Security Controller, in fact, updates the state
of the overall system by updating the Data Storage if the performed actions
modify resources or communication channels in the Cyber Range Environ-
ment. The automated controls performed on the active resources in the Cyber
Range Environment constitute an additional security layer which is crucial for
architectures of such complexity.

4.2.4 Credential Manager

Accountability is one of the most important aspects in this type of systems.
The Credential Manager is responsible for providing authentication and access
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Figure 4.5: Cyber Range Environment implemented with AWS

control services to the users, who are in turn identified by unique attributes like
username, email or phone number. Additional security attributes are required
to set limits to the resources that can be requested and keep track of payments
history.

4.3 Implementation

We show a possible implementation of the proposed architecture using Ama-
zon Web Services. A potential scenario is shown in Fig. 4.5. There are four
users, each with an assigned Micro Range. All four users are assigned to one
Shared Micro Range that hosts a red/blue team laboratory. The Cyber Range
Environment is implemented with a Virtual Private Cloud (VPC), i.e., a virtual
network that allows to dynamically activate cloud resources in a controlled
fashion. A Macro Range is implemented by allocating a private subnet inside
the VPC. This subnet contains virtual machines, created as Elastic Compute
Cloud (EC2) Instances. EC2 Instances are virtual machines created with a spe-
cial type of virtual appliance called Amazon Machine Image (AMI). There are
plenty of available Operating Systems in AWS, ranging from Linux distribu-
tions (such as Ubuntu, Debian, Kali, Fedora) to different versions of Windows
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Figure 4.6: NAT Rules

Server. The Remote Access Controller has been configured trough a Ubuntu
20.04 EC2 instance running an OpenVPN server. The Server is responsible for
connecting users to the subnet and forwarding packets to correct destinations
through the policies and NAT rules described in a firewall local to the instance.
An example of NAT rule is shown in Fig. 4.6.

This rule means that all packets coming from the user whose virtual IP ad-
dress is 10.8.2.1 will be forwarded to the assigned virtual machine, belonging
to a Micro Range, whose private IP address is 172.31.89.138. POSTROUT-
ING means that this rule must be applied on packets that are leaving the Open-
VPN Server. In this way the user can access the services provided by the EC2
instance. The local firewall must leave ports 1194 and 22 opened, respectively
to allow users to connect to the OpenVPN server and to allow administrators
access to the server instance itself through a secure shell.

Containerized Micro Ranges are implemented with a Ubuntu 20.04 EC2
instance running the Docker Security Playground [47]. Some types of contain-
ers run vulnerable web applications that are accessible trough specific ports.
Users have access to all available ports in their personal instance and in this
way are able to launch hacking tools installed both in their local machine (the
one used to connect to the OpenVPN Server) and local to the EC2 instance.
In case of more complex scenarios requiring access to containers, the user can
take control of the shell of the instance trough a secure SSH tunnel.

Granting shell access to users could expose the entire architecture to at-
tacks and illicit actions. A user may perform network scanning and interfere
with the correct functioning of Cyber Ranges assigned to other users. The use
of these tools is only allowed inside the assigned Micro Range. AWS allows
us to equip EC2 instances with a virtual firewall called Security Group, that
ensures environment separation. A Security Group is set to accept or deny
packets coming from specific private IP addresses of the subnet. In case of
Containerized Micro Ranges the Security Group of the instance that hosts con-
tainers accepts incoming packets that have as source the private IP address of
the Remote Access Controller (OpenVPN Server in our case), which acts as a
relay for user traffic. In case of other types of Micro Range, this depends on
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the type of virtual scenario that has to be simulated. One might want to allow
incoming and outgoing traffic to a vulnerable EC2 instance and, after the user
has taken control, allow him/her to reach another instance of the Micro Range.
The other VM will have a Security Group set up to allow reachability only
from the hacked EC2 instance.

The use case to implement is the following: a user sends a request for a
trial Containerized Micro Range of 30 minutes duration and composed of a
virtual machine running the Docker Security Playground. A user can launch
only one trial Micro Range per account and after 30 minutes all the allocated
resources are terminated by the system.

The role of the Credential Manager is performed by Cognito, an AWS
service providing authentication, authorization and user management. When
a user registers to the service, their personal data will be saved in a Cognito
user pool. Access to the API for incoming requests is regulated by a Lambda
authorizer that fulfills the task of validating JSON Web Tokens (JWT) in the
request header and checking whether a user has already sent a request for a
trial Docker Security Playground Micro Range or not. If the JWT token is
correctly validated, the API adds the requester’s username to the body field
of the request and passes it to the back-end. If the user made the request for
the first time, the Lambda Authorizer sets a Cognito attribute for that user
as ‘false’, hence indicating that he/she cannot send another request for a trial
instance.

The component Back-end Resource Manager is implemented in Python3
with a Lambda Function that performs the following operations:

- Eligibility check: before allocating resources the Lambda function
checks if the request is valid and the user exists.

- Availability check: every Macro Range has a maximum number of
users and Micro Ranges that it can handle. The Lambda function checks
if a Macro Range exists that can host the new Docker Security Play-
ground EC2 instance. If all Macro Ranges are occupied, the Lambda
function generates a new one within the VPC (Cyber Range Environ-
ment), by creating a new subnet and a new OpenVPN server instance.

- Virtual IP and ClientID generation: once the OpenVPN server has
been selected, the Lambda function assigns a virtual static IP address to
the user. The assignment operation must take into account the already
assigned virtual addresses. To avoid assignment overlaps, the Lambda
function reads the current Cyber Range Environment state from the Data
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Storage. Once the virtual static IP address has been randomly generated,
it is marked as ‘assigned’ and the Cyber Range Environment state is
updated.

- EC2 instance allocation: the Lambda function creates the EC2 instance
using a custom Ubuntu 20.04 Amazon Machine Image with Docker Se-
curity Playground installed. The EC2 instance is tagged with an ad hoc
value indicating that it is a trial instance and must be terminated after 30
minutes.

- Commands execution on the OpenVPN Server: the EC2 instance has
a unique private IP address within the subnet that needs to be assigned to
the virtual static IP address of the user with the routing rules previously
discussed. The Lambda function sends configuration commands to the
OpenVPN Server through the AWS System Manager, so to enable the
iptables routing rule.

The Cluster Security Controller is implemented through AWS Step Func-
tion, a function orchestrator that allows for sequential execution of either
Lambda functions or other AWS Services. The Step Function execution is trig-
gered by AWS Cloudwatch, a cloud resources monitoring service acting as the
Event Listener. When a new instance is allocated or changes its state (for ex-
ample from Stopped to Running) within the VPC, Cloudwatch sends an event
description in JSON format, which is processed by the Step Function. The
Step Function invokes a Lambda Function that carries out security controls,
including checking the tags of the instance. If the tag ‘IsTrial’ of the instance
is set to ‘true’, the next step is to terminate the instance after 30 minutes, by in-
voking a Lambda Function that fulfills the purpose. The JSON event passed as
input to the Lambda Function includes all tags associated with the instance to
be terminated. After the DSP trial instance is terminated, the Step function up-
dates the Cyber Range Environment state within the Data Storage by marking
the virtual static IP address of the user as free, so that it can be assigned to an-
other user. Moreover, the routing rules are deleted from the OpenVPN Server,
once again by launching commands through the AWS System Manager.
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This Thesis describes our research works aimed to automate Web Application
Penetration Testing. The first research area that we explored was related to
the definition of an attacker’s behaviours. We define a goal-centric attack clas-
sification that simplifies the realization of Penetration Testing methodologies
in terms of “Hacking Goals”, “Hacking Tasks” and “Hacking Attacks”. We
use the goal-centric attack classification to realize a Web Attacker Knowledge
Graph. We use common standard methodologies such as OWASP to define
the “Hacking Tasks” of the Web Attacker Knowledge Graph. Future works
will concentrate on extending the application domains and improving usabil-
ity by providing an interface to interact with the knowledge graph database.
Our second contribution is in the Offensive Security Automation’s research
field. We describe the realization of a platform that enables automating the
Web Penetration Testing Activities. The “Executor Module” implements all
the actions to attack the web target, while the “Orchestrator Module” embeds
the attacker’s behaviours that combine and orchestrate the attacks. We define
a generic communication protocol that separates the attack execution from at-
tack orchestration and allows the flexibility of new behavioural models in the
platform. To assess the proposed platform, we show the integration of a be-
havioural model that discovers Reflected Cross-Site Scripting vulnerabilities.
We show that it is possible to cover 27/41 web vulnerabilities through a mixed
integration of Attack Tools and Attack Behaviours. The proposed architecture
can be considered as the base for the realization of distributed attack systems.
We have focused our scope on Web Application Penetration Testing. The sys-
tem can be extended by implementing other types of Attack Models, as the
architecture is flexible enough to allow easy implementation in different do-
mains. Future works will be focused on the realization of behavioural models
that leverage Artificial Intelligence and Natural Language Processing to auto-
mate any activity inside the current system. To test our platform, we need to
design innovative solutions for virtualization environments. In the cyber range
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field we give different contributions. As the first main contribution, we show
how it is possible to overcome microservices-based limitations in reproducing
vulnerable systems. As a second contribution, we propose a cloud model to
deploy and orchestrate cyber ranges. In particular, we develop an AWS plat-
form to demo-show the proposed architecture in a production-ready cloud en-
vironment. Future works in the cyber-range research area aim to improve our
models in supported functionality and ease of implementation. First, we plan
to evolve the architecture to dynamically deploy comprehensive Cyber Arenas
other than the classical Cyber Ranges, providing Internet protocols emulation
functionality. The Back-End Resource Manager will use orchestrators such as
AWS Cloudformation to deploy Virtual and Hybrid Cyber Ranges. Moreover,
we will harden the Cyber Range Environment perimeter by taking additional
security measures such as setting up both Intrusion Detection and Intrusion
Prevention systems. Another important work evolution can be related to the
integration of relevant frameworks in security training. We could widen the
scope of our platform by exploring the TIBER-EU framework [50], an impor-
tant reference in the area of cyber-security training for the financial domain.

Contributions

The thesis work has been carried out also in the frame of collaborations with
operational teams and/or industries. The cyber range has been evaluated and
used by the Comando Interforze per le Operazioni Cibernetiche (CIOC) del
Ministero della Difesa, whereas the automated pentesting platform, developed
in the frame of a joint project with NTT Japan, has been included in the set
of tools made available by NTT for its customers. During the PhD research
work, three accepted papers has been produced, plus a forth submitted for
publication; specifically:

• Hacking Goals: a goal-centric attack classification framework, pub-
lished at the 32nd IEEE Testing Software and System conference
(ICTSS 2020) [51]

• Discovering reflected Cross-Site Scripting vulnerabilities using a Multi-
objective Reinforcement Learning environment, published on the Com-
puter & Security Journal;

• On-demand deployment and orchestration of Cyber Ranges in the cloud,
presented at the CEUR Workshop 2021 [28] ;
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• Leveraging AI to optimize website structure discovery during Penetra-
tion Testing, currently under review at the Elsevier Big Data Research
Journal, and available on Arxiv [52]
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