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Abstract

In this thesis, an EEG-based method for the prevention of falls to be em-
ployed in daily-life application is proposed. According to The World Health
Organization (WHO), falls are a worldwide problem. They represent the sec-
ond cause of death from unintentional injuries, and produce significant costs
in charge to the healthcare system. Recent studies have shown that gait is
not a higher order automated process, but includes a much more elaborate
cortical involvement. The gait requires the use of complex cognitive abilities
such as: i) an adequate cognitive load related to an effective cognitive en-
gagement; ii) the use of the Executive Functions (EFs) during walking; and
above all iii) the ability to allocate attentional resources while performing
multiple concurrent activities during the walk. In order to develop a fall
prevention system to be used in daily-life applications, a wearable and high
portable EEG device was identified. The functional analysis of the EEG ab
medica R© Helmate was performed to verify its employability in the research
of the cerebral correlates during the gait. To monitor cognitive load, an
EEG-based method for cognitive engagement detection was realized in the
learning and rehabilitation contexts. To identify which EEG features are
mostly used in the literature for the evaluation of the EFs and their sub-
functions, a review was carried out. Finally, a study for the assessment of
attention/distraction during a dual-task oddball protocol was performed.

Thus, the detection of attention, cognitive engagement, and EFs during
dual-task walking allows to identify: i) a condition of impairment/overload of
the subject’s cognitive resources; and ii) the onset of a dangerous condition.
Therefore, an EEG-based system and method for fall risk prevention can be
implemented.

Keywords: fall prevention, gait, EEG, attention, executive functions,
cognitive engagement
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Introduction

In the Public Health the falls represent an important issue. According
to the WHO, more than six thousand fatal falls occur each year, making
the falls the second leading cause of death from unintentional injuries, after
road accidents [1]. The rise in life expectancy leads to an increase in people’s
comorbidity and frailty. The physiological changes caused by aging are over-
lap the symptoms of chronic degenerative diseases exposing the subject to
a greater risk of falling. According to the WHO, "The aging of the popula-
tion is a triumph of humanity but also a challenge for society" [1]. The fall,
in addition to creating an emergency situation within the Operating Unit
or the Health Service, can also cause serious damage to the patient. The
consequent injuries related to the falls involve high costs for Public Health:
medical treatment, examinations and specialist visits become necessary, and
the hospitalization times lengthen. The economic impact of falls is critical for
the families, the community, and the society. In America, each year about 50
$ billion is spent on medical costs for non-fatal fall injuries, and 754 $ million
is spent for fatal falls [2]. In 2007, WHO created a model for the prevention
of falls based on three fundamental pillars:

1. the awareness of the importance of falls prevention;

2. the recognition and the assessment of fall risk factors;

3. the identification and implementation of realistic and effective inter-
ventions.

Thus, the aim of the WHO is to implement strategies and introduce new
systems to reducing the probability of falling.

The phenomena underlying the cause of the loss of balance, of incorrect
gaits and therefore of falls are: i) the alterations in cortical activation linked
to aging, ii) the lower cortico-muscular coherence, iii) the greater allocation of
cognitive resources related to the cognitive engagement, iv) the impairment
in EFs, and v) the allocation of attention to multiple simultaneous tasks.
Until recently, gait has been considered as a largely automated motor act
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requiring only minimal higher-level cognitive input. The postural regulation
has been assumed to be under the control of the subcortical structures of the
brain and spinal cord. Recent studies identify a much more complex cortical
involvement in the postural response [3].

From a physiological point of view, the postural control of gait has been
extensively studied. The muscle activity is controlled by the Central Nervous
System (CNS) which acts by integrating the different musculoskeletal, visual,
and vestibular inputs [4]. The role of the CNS and the subcortical structures
for the adaptive feedforward and feedback adjustments in order to reduce the
risk of loss of balance is well documented [5, 6, 7]. However, although the
amount of information received by the brain is well known, the causes of falls
and how to reduce their occurrence are still under discussion. An impaired
gait adaptability (i.e., a reduced ability to change walking speed or direction
as required) reduces the ability to avoid obstacles and increases the risk
of falling. This situation becomes more critical in patients suffering from
specific diseases (e.g., post-ictus, Parkinson, idio-pathic fallers, Alzheimer,
brain injuries etc.) [8, 9, 10].

In this direction, it is necessary to identify: the mechanisms occurring in
the brain during gait, and the external inputs affecting cerebral correct func-
tioning. In gait evaluation, recent studies indicate the importance of complex
brain processes such as: the profuse cognitive engagement, the employed EFs,
and in particular the attention towards concurrent tasks [11]. These cogni-
tive processes appear to work together during walk. Therefore, through their
analysis, the systems capable to reduce the occurrence of falling, can be iden-
tified.

If the gait was an automated system of superior cortical order, walking
would not require attention. Therefore, performing a simultaneous task dur-
ing walk should not affect the gait or the other activity. Referring to this
issue, many researchers starting work on gait assessment during a dual-task
[12, 13, 14]. The neurological theories underlying the dual-task are based
on one assumption: people have a limited capacity for processing informa-
tion if they invest all them cognitive resources to perform a given task [15].
When a second task is introduced, these resources are no longer sufficient to
meet the new demand and there is a decline in performance in one or both
tasks. In particular, the dual-tasks deplete the cognitive resources in terms
of attention, EFs and cognitive engagement [16]. The identification of these
neural processes during a dual-task can: i) confirm the neurological hypothe-
ses of previous studies, and ii) be an important first alarm for a dangerous
situation.

Numerous studies are investigating the neural correlates underlying the
phenomena related to the gait, the balance, and the posture during walking
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[17, 18]. For this purpose, the most employed techniques are neuroimaging
(fMRI, PET, etc.) and electroencephalography (EEG). However, the imaging
techniques are very limited due to the time delays associated with the hemo-
dynamic response, and to the expense and limited mobility of the equipment
[19, 20]. The EEG is far less restrictive than the other imaging techniques.
The consumer-grade EEG caps promote the accessibility of the neural sig-
nal measurement with reduced costs and simpler configuration protocols. In
this thesis, all the aforementioned aspects related to the cerebral processes
of gait, are analyzed. In particular:

• Chapter 1 : Falls Prevention in Healthcare System. Firstly, a con-
textualization about the risk of falling and the importance of prevention
is provided. Secondly, the neural gait correlates and the EEG features
used in literature for gait evaluation are evidenced, in the background.

• Chapter 2 : Functional Analysis of the EEG System. Two EEG
systems for walk analysis are highlighted: the emotiv epoc+, and the
ab medica R© Helmate. Than, the employability of the new EEG system
Helmate in the gait is demonstrated. A functional analysis study was
carried out to highlight the advantages of using this system for detecting
EEG neural correlates related to gait.

• Chapter 3 : Cognitive Engagement in Learning and Rehabilita-
tion. The EEG-based detection of cognitive engagement in learning
and rehabilitation contexts was carried out as starting point for fall
prevention applications.

• Chapter 4 : EEG Features for Executive Function Identification.
A systematic review on EFs was realized with the purpose of identifying
the main EEG features employed for EFs detection. The found EEG
features can be exploited to evaluate some of the EFs more involved
during the walk, and supervise their overload.

• Chapter 5 : Attention Detection during Dual-task Execution.
An EEG-based method for motor rehabilitation is proposed to detect
the attention/distraction condition during an oddball paradigm. The
assessment of the attention condition during dual-task walking is fun-
damental to prevent the risk of fall.
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Chapter 1

Falls Prevention in Healthcare
System

1.1 Rationale
The fall is defined as an event producing a sudden and involuntary change

in posture that leads the subject to hit the ground or an inferior element with
any part of the body [1]. The problem of falls plays a fundamental role within
the health context. The International Classification of Diseases reserves 19
codes to identify problems related to falls (ICD-9 codifies the falls related
diseases from E880 to E888, the ICD-10 from W00 to W19). In the Public
Health falls represent an important issue. According to the WHO, more than
six thousand fatal falls occur each year, making the falls the second leading
cause of death from unintentional injuries, after road accidents [1]. About
28-35 % of people (aged 65 and over) fall each year [21, 22, 23] Fig. 1.1. This
percentage rises to 32-42 % in the over 70s [24, 25, 26].

The falls are the consequence of a complex interaction of risk factors af-
fecting the type and severity of the injury. The studies show that main risk
factors are: i) biological factors (age, sex, and especially changes related to
aging, such as the decline in physical, cognitive and emotional abilities, and
comorbidities associated with chronic diseases); ii) behavioral factor (taking
multiple medications, excess alcohol and a sedentary lifestyle); iii) environ-
mental factors of interaction with external elements (narrow steps, slippery
surfaces, loose carpets and insufficient lighting); and iv) socio-economic fac-
tors (low income, low level of education, inadequate housing, lack of social
interaction, limited access to social health services - especially in the most
isolated areas) Fig. 1.2.

The elderly people living in nursing homes fall more frequently than those
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(a) risk of falling by age for women

(b) risk of falling by age for men

Figure 1.1: Age and sex based percentage of the risk of falling: a) women
and b) men.

living in communities. About 30-50 % of hospitalized in long-term care
falls each year and 40 % of these are victims of recurrent falls [26]. The
hospitalization rates due to falls, in 60s and over, reach even 8.9 per thousand
people in industrialized countries. The falls lead to a 20-30 % of medium-
serious accidents and are the underlying cause of 10-15 % of all access to the
emergency room and more than 50 % of hospitalizations for injury [27]. The
main causes of hospitalization for fall accidents are the fracture of the femur,
head trauma and damage to the upper limbs. The increase in life expectancy
leads to a situation of comorbidity and fragility of the people.
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Figure 1.2: Risk risk factors and their interactions with falls and resulting
injuries.

The physiological changes caused by ageing, overlap the signs and symp-
toms of chronic degenerative diseases that expose the subjects most to risk of
falling. The falls and consequential accidents result in high costs for public
health due to the medical care required. As a result of the hospitalization
of patients, especially the elderly, the physical consequences (trauma and
fractures) compromise the quality of life and increase the risk of premature
death. The consequent injuries related to the falls involve also high costs for
Public Health: medical treatment, examinations and specialist visits become
necessary, and the hospitalization times lengthen. The economic impact of
falls is critical for the families, the community, and the society. The costs
caused by falls are organized according to two aspects:

• direct costs: include health costs incurred for drugs and adequate ser-
vices, for example medical visits for treatment and rehabilitation (also
involving various degrees of exposure to ionizing radiation with a con-
sequent increase in the probability of damage);

• indirect costs: these are company losses due to patients or family mem-
bers not being present at work.
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In the hospital environment, the falls are positioned in fourth place among
the causes for damages in the hospital: one out of ten are accidental falls
and lead compensation claims for 4.2 million euros per year. In the 97 % of
cases, accidental falls resulted in injuries, but in 2.4 % of cases they resulted
in death. In America, each year about 50 $ billion is spent on medical costs
for non-fatal fall injuries and 754 $ million is spent for fatal falls [2]. Among
the factors that influence the risk of falls, age is certainly one of the most
important, especially in relation to the increase in the life expectancy of
people.

According to the WHO, "The aging of the population is a triumph of
humanity but also a challenge for society" [1]. The number of over 60s is
increasing faster than that of any other age group. This number is estimated
to be at least two billion by 2050. For this reason, fall prevention is an
important challenge for the global population. In 2007, WHO created a
model for the prevention of falls based on three fundamental pillars:

1. the awareness of the importance of falls prevention: all sectors of society
need to contribute to raising awareness of the problem of fall prevention;

2. the recognition and the assessment of fall risk factors: is necessary
to improve the assessment and the identification of the critical factors
favoring the risk of falls;

3. the identification and implementation of realistic and effective interven-
tions: numerous studies have shown that interventions can be effective
in reducing falls in the elderly, so it is necessary to search for new
systems and technologies for the prevention of falls [28].

In this context, for example, the OU Risk Management since 2009 has ac-
tivated a surveillance system on patient falls, through the use of a specially
developed "fall detection cards". After the first six months of the survey, the
"Project for the prevention of accidental falls of patients-users and visitors
in the Asl Rm6 structures" was developed. The project was implemented
through information and training meetings with the health personnel of the
Asl Rm6. In line with the Ministerial Recommendation n.13 of November
2013 (Recommendation for the prevention and management of patient falls
in health facilities), all the UU.OO and the Hospital and Territorial Services
compile and send the "fall report form" to the Risk Management secretariat.
However, this example is limited to a reporting analysis. New strategies
must be implemented and new systems introduced to reduce the probability
of falling. This thesis focuses on these aims.
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1.2 Background
The phenomena underlying the cause of the loss of balance, of incor-

rect gait and therefore of falls are: (i) the alterations in cortical activation
linked to aging, (ii) the lower cortico-muscular coherence, (iii) the greater al-
location of cognitive resources related to the cognitive engagement, (iv) the
impairment in Executive Functions (EFs), and (v) the allocation of attention
to multiple simultaneous tasks. Gait, balance, and posture are inextricably
linked because one depends on the others and vice versa. Not only muscle
aging is responsible for people tumbling. Another possible cause is the slow-
ing down of reflexes making the movement more tiring and complex. Poor
posture and a bad gait can contribute to make the reflexes slow or ineffec-
tive, or even get an already critical situation worse. Until recently, gait has
been considered as a largely automated motor act requiring only minimal
higher-level cognitive input. The postural regulation has been assumed to be
under the control of the subcortical structures of the brain and spinal cord.
Different studies identify a much more complex cortical involvement in the
postural response [3]. Recent studies have shown how the vertical posture is
the product of a complex dynamic cognitive system based on the integration
of inputs received from multimodal sources, analyzed at a deep cortical level.
Mergner and Matari, documented through EEG and fMRI analyzes, the pos-
sible existence of neural detectors which intervene when postural instability
is correctly identified [29, 30]. Some studies found an interaction between
postural control and cognitive task performance, indicating that postural
control is not a fully automatic process but requires active cognitive processes
[16]; complex information processing [31]; and the perception, the decision
making and the motor control [32, 33]. The current theories transcend pre-
vious beliefs based on minimum input and consider gait as a complex system
influenced by several factors. Indeed, gait involves multiple areas such as
neurology, physiology, biomechanics, as well as physics and neuropsychology.
From a physiological point of view, the postural control of gait has been
extensively studied. Muscle activity is controlled by the Central Nervous
System (CNS) which acts by integrating the different musculoskeletal, visual
and vestibular inputs [4]. The role of the CNS and the subcortical structures
for the adaptive feedforward and feedback adjustments, in order to reduce
the risk of loss of balance, is well documented [5, 6, 7]. However, although the
amount of information received by the brain is well known, the causes of falls
and how to reduce their occurrence are still under discussion. An impaired
gait adaptability (i.e., a reduced ability to change walking speed or direction
as required) reduces the ability to avoid obstacles and increases the risk of
falling. This situation becomes more critical in old patients and patients
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suffering from specific diseases (e.g., patients with strokes, Parkinson, Ictus,
etc.) [8, 9, 10]. The aging process is associated with a neurophysiological
degeneration and multisensory inhibition and involves: i) the loss of motor
neurons, ii) the decreased nerve conduction, iii) the limited proprioception,
iv) the muscle weakness, and v) the impaired cognitive processing [34]. Ac-
cording to Horak [35], older individuals lack the ability to quickly re-weigh
sensory information and adapt to environmental changes due to a decline
in cognitive processing skills. The lack of ability to adapt efficiently and
effectively to environmental changes can be a contributing factor to gait in-
stability. In walk analysis, recent studies indicate the importance of complex
brain processes such as: the profuse cognitive engagement, the employed EFs,
and in particular the attention towards concurrent tasks [11]. These cogni-
tive processes appear to work together during walk. Therefore, through their
analysis, systems capable to reduce the occurrence of falling, can be identi-
fied. The term Executive Function refers to a series of top-down higher-order
cognitive processes which elaborate information coming from different sen-
sory systems. The EFs are necessary when people have to concentrate and
pay attention [36]. Generally, EFs are divided into three main components:
working memory, inhibition (i.e., behavioral inhibition, selective attention
and cognitive inhibition), and cognitive flexibility. Starting from to these
main components, EFs of a higher order such as reasoning, problem solving,
and planning [37, 38] are derived. According to Lezak [39], six high-order
EFs exist and intervene directly within the walk:

a) the Volition is the capacity for intentional behavior, for formulation of
a goal or intention, and for initiation of activity. Its impairment can
cause loss of mobility due to reduced motivation or the decrease in the
inner urge to move;

b) the Self-awareness is the ability to place psychologically and physically
in the physical environment and the ongoing. Its impairment can cause
an incorrect estimate of physical limits, can lead to an inadequate as-
sessment of environmental risks and increase the risk of falling;

c) the Planning is the identification and organization of the steps and el-
ements needed to carry out an intention, influencing also on the ability
to conceptualize changes from present circumstances, conceiving alter-
natives, weighing, and making choices, controlling impulses and using
memory. Its impairment can cause deficits in decision-making skills
while walking; inefficient, defective or even risky choices; loss of road
or time, or increased effort to get to the desired destination;
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d) the Response inhibition allows to ignore irrelevant sensory inputs, over-
come primary reflexes, and filter out distractions to solve problems. Its
correct functioning is essential during walking in complex everyday en-
vironments, and allows to focus on the walking;

e) the Response monitoring enables one to compare ongoing actions with
an internal plan and to detect errors. This component is important to
walk in complex environments and making correct choices.

f) the Attention during dual-task is the ability to adequately allocate
attentional resources when several concurrent activities are carried out
at the same time.

Therefore, impaired EFs can cause alterations in cognitive processes, pre-
venting the correct gait functioning of the walk, the gait, and the posture
movements and promoting the risk of falls. From an anatomical and phys-
iological point of view, many studies deal with the mapping of the brain
in order to identify the areas most involved in the processes related to the
EFs. Although in principle many studies identified the frontal and prefrontal
areas as the main areas involved in the cognitive processes related to EFs,
Stuss and Alexander refuted this hypothesis [40]. Some meta-analysis studies
based on three classic tests for EFs (stroop test, Wisconsin test and verbal
fluency test) showed that the performance of the test subjects was sensitive
above all to damages of the frontal lobe (results confirmed with poor perfor-
mance in the test) [41]. Today, the authors suggest that even if the frontal
lobes participate to a greater extent, the EFs involve different areas of the
brain. Therefore, a study allowing a simultaneous analysis of multiple brain
areas is needed in order to obtain complete and adequate information on the
phenomenon. As mentioned above, epidemiological studies show that age
certainly appears among the risk factors for falls. This is also confirmed on
a physiological level. Some studies indicate that even healthy elderly people
have on average a reduction in some components of EFs. Attention, abstract
thinking, mental flexibility tend to decrease with age. However, it is only
through the use of specific tests that it is possible to identify the degree of
this impairment. Impairment of the EFs does not represent the only cause
of falls in the elderly (the WHO indicated in addition to the biological risk
factor, the behavioral and economic ones). In the "InChianti" study carried
out on 900 non-demented elderly adult patients with an average age of 74.6
± 6.7 years, the walk at different speeds and on obstacle courses, was as-
sessed. The subjects filled in tests for EFs evaluation and were divided into
groups according to the achieved scores. The groups were asked to walk at
a moderate pace in both obstacle-free and obstacle walking conditions.
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The delta band power was then evaluated in the two different conditions.
The results clearly show that:

• The average speeds in obstacle-free walking conditions are the same for
the three symptom groups (in single task) and walking conditions do
not vary with EFs;

• during walking with obstacles, the speeds are significantly different in
the three groups and the different impairment level causes a change in
gait.

Other studies investigated the relationship between EFs, walking speeds and
stride times. Thus, the link between gait and EFs in a single task was con-
firmed, even though the correlation dynamics are still to be explored. On
the other hand, studies using only one specific EF during walking conditions
were mostly evaluated. Among the studied EFs, attention is the most widely
investigated. The term finds its theoretical roots in many previous theories,
from Functionalist, Behaviorist theories, to Gestalt theories up to the most
recent definition of Ladavas and Berti. These latter established: “If it is pos-
sible to define the cognitive activity of the human being as the processing by
the latter of information coming from the external environment, then Atten-
tion can be described: as that primary function that regulates this cognitive
activity and that, through the filter and organization of the information re-
ceived, allows the subject to issue adequate responses" [42]. Today, EFs
researchers insert aspects of attention within the concept of EF. The term is
linked to different processes related to how an organism becomes receptive
to stimuli, and how it begins to process incoming and outgoing information
[39]. However, there is no clear and comprehensive definition of the concept
of attention. Posner and Petersen classified attention as a set of separate
functions: selective or focused, sustained, distributed and alternated [43].
The focused or selective attention refers to the ability to filter information
and stimuli, to the suppression of distractors and is often called concentra-
tion; the sustained attention refers to the ability to maintain concentration
on a certain task for an extended period of time; the distributed attention
to the ability to perform multiple tasks simultaneously; and the alternated
attention to the ability of shifting attention from one task to another [44].
Therefore, according to Posner and Petersen, all the attentional functions are
recruited during the different phases of the gait. For example, during walk:
the divided attention plays an important role in multitasking and changing
conditions; the focused attention allows to be receptive in sudden dangerous
conditions; the sustained attention intervenes to complete the path correctly;
and the alternated attention is essential to perform concurrent tasks. These
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concepts reflect the relationships between EFs and gait. Problem solving,
inhibition, planning, visual-spatial working memory and reasoning, can be
compared to the attentional functions indicated by Posner and Petersen.

If the gait was an automated system of superior cortical order, walking
would not require attention. Therefore, performing a simultaneous task dur-
ing walking should not affect the gait (or the other activity). Referring to this
issue, many researchers started working on gait assessment during a dual-task
[12, 13, 14]. The neurological theories underlying the dual-task are based on
one assumption: people have a limited capacity for processing information
if they invest all the cognitive resources to perform a given task [15]. When
a second task is introduced, these resources are no longer sufficient to meet
the new demand and there is a decline in performance in one or both tasks.
Regarding these resources, there are three main theories: i) the models and
the theories of capacity sharing, ii) the bottleneck (task-switching), iii) and
those of cross-talk [45]. According to the theories of capacities each subject
is able to share the attention skills between multiple tasks [46]. The people
apparently perform several activities at the same time until one or more of
these become too difficult. When this happens, more effort is required and
therefore performance on one or both tasks can be degraded. Neurologically,
people appear to have control over the distribution of the limited available
resources across tasks; they may, for example, choose to allocate more skills
to a task even though both are largely automatic. In this sense, the presence
of an additional task during walking alters its execution (both the speed and
the amplitude of the stride reduce) or the execution of the second compet-
ing task. The bottleneck theory argues that only a single activity can be
correctly processed at a time [47]. For this reason, the second activity will
be delayed until the resource is freed from the first one. According to some
researchers, the delay occurs in the task response selection phase, while for
others it can occur at any stage. Therefore, according to this theory, carrying
out a concurrent task while walking must necessarily lead to either a slowed
pace or a delay in the execution of the second task (detectable through a
performance analysis). Finally, the multiple resource theory assumes that
the execution of different tasks may require a certain number of resources
[48]. When tasks require the same type of neurological resources, there is
a deterioration in performance in the execution of tasks. Even in this case,
therefore, walking while performing a concurrent cognitive task causes a de-
terioration in the performance of both or at least one of the two tasks. In
relation to the exposed theories, many studies compared the performance of
a walking task with and without the execution of concurrent cognitive tasks.
A dual-task paradigm involves the subject performing two tasks requiring
attention, competing for their cognitive resources [11]. An increase in the
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load of cognitive activity shows changes in the gait, such as slowing down,
or a compensatory action. The greater the cognitive load that the subject
experiences when performing a dual-task paradigm while walking, the more
the subject is at risk of falling [49]. The therm "dual tasking" means the
simultaneous execution of an active movement (motor skills) and a mental
task (cognition), e.g. walking and talking at the same time, or go up the
stairs and recognize the house key in a bunch of keys [16]. Many elderly
people find difficult to manage daily dual tasking situations, because of the
decrease of the cognitive reserves with age. For healthy young adults a pro-
cess of reducing attention to a task or competitor can occur. The ringing of
the telephone, the meow of the cat or the overflow of milk are able to capture
all the attention resources available, therefore lacking for the performance of
other contemporary signals, stimuli, and activities. It was shown that the
likelihood of falling during a dual-tasking situation in the event of an ab-
normal gait is five times greater [50]. A pioneering study from 1997 gave a
surprising result: the majority of subjects who stopped to answer the one
question during walking task, suffered a fall within six months [51]. Many
studies were carried out on healthy young adults and adults, healthy elderly
people, and on patients with pathologies in dual-task conditions to evaluate
the effects on gait. The analyzes performed on healthy young people and
adults showed a slowdown in gait in conjunction with a double task [52]. In
studies on healthy elderly people, the reduction in speed or a decrease in
response times to the dual secondary task became more pronounced, prob-
ably due to the fact that in the elderly there was a reduction in cognitive
engagement, EFs and attention due to aging [53, 54, 55]. The phenomenon
is even more evident in patients with pathology (post-stroke, Parkinson, id-
iopathic fallers, Alzheimer, and brain injuries). Most of these patients have
well-known deficits of EFs and attention. Patients with Parkinson’s have im-
paired gait and loss of automatism of the feet, linked to cognitive deficits in
working-memory, EFs and attention. When these patients were exposed to a
double task, the attentional resources were all directed towards the cognitive
task, causing an increase in gait anomalies [56]. The patients affected by
idiopathic fallers, post stroke, Alzheimer disease, attention deficit hyperac-
tivity disorder, and brain injuries, presented the same reduction in walking
activity in relation to poor performance in the execution of the concurrent
task [57, 58, 52]. The attentional and cognitive deficits affect mobility and
task performance. The simple task of maintaining a posture alone requires
greater attention due to the decrease in sensory information caused by the
stroke or by the hyperactivity pathology [59, 60, 52, 61]. These results would
confirm the hypotesis that the dual task increases the risk of falling among
healthy elderly people with pathology, because it reduces the ability to al-
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locate contemporary resources in terms of attention, cognitive engagement,
and EFs [62, 63, 64]. From a physiological point of view, a double task chal-
lenges brain priorities. According to Bloem et al [65], healthy subjects during
a dual task before keep the posture and then reduce the step to stabilize the
gait, and maintain performance on the competing cognitive task. This does
not happen in sick people. In this case, the subjects can not properly reduce
the pace and stabilize the gait but the double task creates an imbalance in
the use of attention, cognitive engagement, and EFs leading more easily the
risk of falling [66]. The neural response to dual-task walking conditions may
show a deficit not visible under single-task. The analysis of brain signals
combined with the performances of the dual-task can therefore be a sensitive
predictor for the risk of falls. For these reasons, the use of the dual-task
in walking, balance and posture measures is widespread in the literature.
There are many neuropsychological tests to solicit different EFs and atten-
tion: odball test, stroop test, verbal fluency, go-no-go test, tower of London,
wisconsin card sorting test, bell test, etc. According to Galit, the task must
be difficult enough to load the attention system, but not such as to cause
stress or anxiety [16]. Many studies exploit the visual or auditory version of
an oddball test as cognitive part in the dual-task during walking. [67, 68, 69].
The different above mentioned studies are all aimed at identifying how in the
presence of a dual task the performance in the test or gait parameters are
reduced or altered. The purpose of the present thesis is to confirm this hy-
pothesis and to identify a method able to correctly discriminate between the
conditions of simple walk and walk during a dual-task. The quick identifica-
tion of a dual-task situation causing reduction of cognitive resources in terms
of attention, EFs and cognitive engagement, can: i) confirm the neurologi-
cal hypotheses of previous studies, and ii) be an important first alarm for a
dangerous situation.

Numerous studies are investigating the neural correlates underlying the
phenomena related to the gait, the balance, and the posture during walking
[17, 18]. For this purpose, the most employed techniques are neuroimaging
(fMRI, PET, etc.) and electroencephalography (EEG). However, imaging
techniques have important limitations such as the time delays associated
with the hemodynamic response, and the expensive and limited mobility
of the equipment [19, 20]. The EEG is far less restrictive than the other
imaging techniques. Consumer-grade EEG caps promote the accessibility of
the neural signal measurement with reduced costs and simpler configuration
protocols. The high temporal resolution of the EEG allows immediate neu-
rological reactions to stimuli to be recorded. In a recent years, many studies
exploited the EEG as a system for assessing the neurocognitive conditions un-
derlying the problems of balance and posture in walking conditions. Rubega
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et al. acquired the EEG and EMG signals in healthy adults and young
people in conditions of static and dynamic equilibrium in presence of dual-
oddball-task. Main results were: a difference in the distribution of the EGG
signal during the execution of the task between adults and young people;
and a different distribution of the signal during the the oddball concurrent
paradigm [70]. The final aim of these studies was to verify the presence of
neural patterns during walk. Therefore, some important information on the
neurological conditions at the base of the gait can be obtained by processing
the features from the EEG signal. Based on existing literature, oscillatory
frequency of the EEG signal can provide insight into the functional networks
of the cortex as a defined range of frequencies are correlated with specific
brain activities. Five distinct frequency bands have been identified in the
human brain: δ, θ, α, β, γ, and µ. Studies carried out on the analysis of the
EEG signal during walk identified that multiple bands are involved in balance
and gait. Slobounov et al. [71] found a burst of gamma activity (especially in
the frontal area) when a specific neural detector is activated to avoid falling.
The γ waves are associated with attention; increased focus-attention provides
for a high range power. Therefore, an increase in γ activity before the fall
should lead to a recovery of equilibrium. The results of the study hypothe-
sized there is an important role of the upper cortices in regulating balance
during walking. Sipp et al., instead, [72] carried out an analysis on 26 healthy
young subjects walking on a treadmill and on a beam. The results showed
an increase in power in the θ band in multiple cortical areas, including the
sensorimotor, anterior cingulate, and anterior parietal regions during beam
walking. For the researchers, the increase in θ band power in the anterior
cingulate cortex may be related to its role in error detection [73]. In this way,
the neural system acts by identifying the error in the incorrect detection of
equilibrium and responds with an increase in power in the θ band. In this
study, as in the previous one, in-depth information is provided on the dy-
namism of human cortical brain substrates in gait and balance. The results
suggest the existence of a multifocal cortical network involved in detecting
and correcting loss of balance during walk. Khorev et al. [74] conducted an
experiment consisting of maintaining gait on a platform. The results showed
a decrease in the power in the α and β band when the subject maintains
the condition of equilibrium. This is a further evidence of the possibility
to detect complex neural signals underlining balance and gait through EEG
analysis. Finally, Wagner et. Al, [75] recorded the EEG signal of 18 partic-
ipants during walking on a treadmill in sync with an auditory signal. The
speed of the walk was marked by the rhythm of the auditory signal used.
Based on previous studies on brain activity, the researchers identified two
distinct bandwidth oscillatory cortical networks. These networks intervene
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Table 1.1: EEG systems, number and type of electrodes for the aforemen-
tioned articles.

Article Employed EEG system #channels Type
[71] Quick-Cap Electrode Helmet 25 gel
[72] Active II, BioSemi 256 gel
[74] Medicom MTD company 32 gel
[75] g.tec combined amplifiers + modify EasyCap 108 dry

in adapting to the changes dictated by the auditory stimulation during gait.
The µ rhythm [8-13] Hz and the power of the low β band [13–35] Hz de-
crease in the central and parietal cortex, while the power of the high β band
[14-20] Hz increases in the frontal brain areas. According to researchers,
two distinct patterns of band activity modulation lead gait adaptations: one
likely serving for initiation and execution of movement; and the other, for
the motor control and the inhibition. In the mentioned studies, EEG sys-
tems with a very large number of electrodes were employed. For the above
presented works, a summary of the EEG systems, the number and the type
of electrodes exploited, is showed in Table 1.1.

The described results offer various important opportunities of employing
the EEG signal in the analysis of the posture, the gait, and the balance during
walk. The EEG signal can be used for identifying the neurophysiological
underpinnings of gait and give important information for the fall prevention.
For the purposes of this thesis an easily wearable and daily-use system is
strictly required. The previous studies identified in the frequency analysis
(and in particular in the power spectral density) of the EEG signal, important
features to obtain information on the recovery of equilibrium and, therefore,
on the risk of falling. It was also highlighted the possibility to evaluate
the gait and the risk of falling with dual-task experiments since the dual-
tasks deplete the cognitive resources in terms of attention, EFs and cognitive
engagement [16]. The analysis of the cognitive phenomena underlying this
depletion, and the identification of specific EEG signal processing methods
to detect each of these cognitive resources, is the aim of this thesis.
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Chapter 2

Functional Analysis of the EEG
System

2.1 Overview
The commercialized EEG systems offer a more financially accessible and

"easier to use" option for obtaining EEG signals than the more complex
systems used in medical research laboratories [76].

In order to propose a truthfully daily-use system, an analysis of the dif-
ferent systems on the market is carried out. Considering the technical spec-
ifications and costs, two possible alternatives were identified: Emotiv Epoc+
and ab medica R© Helmate. The Emotiv Epoc+, produced by Emotiv Inc., is
a wireless headset measuring EEG signals at 14 different semi-wet electrode
in the sites: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF42,
using the Common Mode Sense (CMS) active electrode and the Driven Right
Leg (DRL) passive electrode as references in P3 and P4 (Fig. 2.1). In addi-
tion, the neuroheadset incorporates: a signal amplifier, a C-R high-pass filter
at 0.16 Hz, an analog low-pass filter at 85 Hz, a notch filter at 50 Hz to neu-
tralize the high frequency noise, and a simple Analog to Digital Converter
(ADC) to enable a sequential sampling at 128 Sa/s [78]. Although suit-
ability of the Emotiv Epoc+ is dependent on the research paradigm, many
evaluations have found the Emotiv Epoc+ performance to be satisfactory for
non-clinical applications [76]. Others technical specifications of the Emotiv
Epoc+ are reported in [79].

The Helmate, on the other hand, is a new system being validated by
the ab medica R© company. The system consists of 8 dry channels placed in
positions: Fp1, Fp2, Fz, Cz, C3 (or C5), C4 (or C6), O1, O2 (Fig.2.2).
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Figure 2.1: EEG data acquisition system Emotiv Epoc+ [77]

Figure 2.2: EEG data acquisition system Helmate [80]

The ten dry electrodes guarantees eight acquisition channels. The EEG
signal is acquired by dry electrodes made of conductive rubber with an
Ag/AgCl coating at their endings [81]. Three different types of electrodes,
with different shapes, are used to pass hair and reach the scalp or join to the
hairless areas (Fig. 2.3).
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Figure 2.3: Different type of Helmate dry electrodes [80]

The output signal is recorded as difference between each of 8 channels
and the ground electrode (Fpz) [82]. Then, the difference is referenced with
respect to the electrode (AFz). A dedicated software (Helmate Software
Manager) allows to check the contact impedance between the electrodes and
the scalp. EEG signal is acquired with a sampling rate of 512 Sa/s. The
acquisition software allows to use several filters (e.g., notch and IIR). This
data acquisition system is a certified EEG system Class IIA (according to
Medical Device Regulation (EU) 2017/745) with accurate components. A
Texas Instruments analog front-end, the ADS129832 with a 24-bit, analog-to-
digital converter (ADCs) with built-in programmable gain amplifiers (PGAs),
internal reference, and an onboard oscillator, are exploited.

The device exhibits the following main metrological performances:

(i) CMRR: -115 dB;

(ii) eight low-noise PGAs and eight high-resolution ADCs (ADS1298,
ADS1298R);

(iii) input-referred noise: 4 µVPP (150 Hz BW, G = 6);

(iv) input bias current: 200 pA;

and joined to the following operating performances:

(i) low power: 0.75 mW / channel;

(ii) data rate: 250 Sa/s to 32 kSa/s.

The major differences between the two systems emotiv epoc+ a) and
Helmate b), are reported in the Table 2.1.

A comparison between the positioning of the two systems is shown in
Fig.2.4.

Compared to the most employed and commercialized emotiv epoc+, the
Helmet has a reduced number of electrodes, greater durability and good
metrological performance. The Helmate is a new device, therefore, a first
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Table 2.1: EEG Helmate and Emotiv epoc+ differences.

EEG system Helmate Emotiv epoc+
Number and type 8 electrodes 14 electrodes

of electrodes Dry Semi-Wet

Electrodes positioning

Fp1, Fp2, Fz, Cz, C5/C3, Af3, F7, F3, Fc5, T7, P7,
C6/C4, O1, O2 O1, O2, P8, T8, Fc6,
AFz Ground F4, F8, Af4
Fpz Bias Reference P3/P4

Fc [Sa/s] 512 256 or 128

(a) Emotiv epoc+ electrodes position (b) Helmate electrodes position

Figure 2.4: A comparison between the positions of the EEG system are
evidenced in green: a) electrodes position of Emotiv epoch+, and b) the
electrodes position of Helmate

analysis to test its employability in daily application was carried out. One
study of a functional analysis to verify the metrological characterization was
realized and published. Some of the following information has been presented
at I2MTC 2021 – IEEE Instrumentation & Measurement Society Conference
and published in:

Leopoldo Angrisani, Pasquale Arpaia, Francesco Donnarumma,
Antonio Esposito, Mirco Frosolone, Giovanni Improta, Nicola
Moccaldi, Angela Natalizio, Marco Parvis, "Instrumentation for
Motor Imagery-based Brain Computer Interfaces relying on dry
electrodes: a functional analysis.", IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC), May
2020, (pp. 1-6). IEEE.
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2.2 Experimental design
The functionality of the system is evaluated by considering the discrim-

ination of different movement tasks, which are either executed or imagined.
The final aim is to distinguish between different motor imagery tasks.

2.2.1 Reference dataset

The performance of the employed device is compared to the performance
obtained by means of the same processing on a widespread dataset, namely
the Brain Computer Interface Competition IV dataset 2a [83]. This dataset
was created by means of a wearable cap with wet electrodes and, in this
work, it is assumed as a reference for the motor imagery measurement. The
dataset comprises EEG signals from 9 subjects, related to 4 classes of motor
imagery. Twenty-two Ag/AgCl electrodes with conductive gel were used to
record the EEG. All signals were recorded with the left mastoid serving as
reference and the right mastoid as ground. The signals were sampled at 250
Sa/s and bandpass-filtered between 0.5 Hz and 100 Hz. An additional 50 Hz
notch filter was applied.

2.2.2 Data processing

To distinguish between different tasks, two machine learning algorithms
are adopted in this work for signal processing. Both algorithms consist of
two steps, features extraction and classification. For the features extraction,
a Common Spatial Pattern (CSP) algorithm is employed to enhance the
signal-to-noise ratio of the EEG epochs [84]. The CSP was used as a spatial
filtering algorithm. CSP is one of the most employed [85, 86]. In a binary
problem, the CSP acts by calculating the covariance matrices relating to the
two classes. These two matrices are simultaneously diagonalized in a way
that the eigenvalues of two covariance matrices sum up to 1. Through the
subsequent use of a bleaching matrix, a suitable projection matrix is identified
in order to reorganize the input into a number of components consistent with
the dimensions of the input matrix. In a binary problem, these components
are sorted on the basis of variance in order: i) decreasing, if the projection
matrix is applied to inputs belonging to class 1, and ii) ascending, in case of
inputs belonging to class 2 [87] Then, two different classifiers are employed to
process the brain signals, namely the Support Vector Machine (SVM), and
the Random Forest. The idea behind SVM classifier is to find a hyperplane
that guarantees the best separation between data points of different classes
while maximizing the margin [88]. In order to deal with an eventual nonlinear
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separability of data, the input of the classifier is mapped to a features space
with higher dimension through a “kernel function”. Usually, a “Gaussian
kernel” is employed. This is also a suggested kernel for the analysis of non-
stationary signals like EEG ones. Errors are allowed during separation, and
the minimization of the separation error is the key for the training of this
classifier.

The Random forest classifier consists of a decision tree that uses a boot-
strap aggregation (bagging) ensemble procedure developed by Breiman [89].
A random forest is a collection of decision trees, each one considering a differ-
ent random sample of the input. Hence, each tree is grown using a different
random subset of the predictor variables to determine the binary splits. The
final decision is made by considering the majority among the decisions of
the trees. Usually, if p is the total number of predictors, about √p vari-
ables are selected for each tree. The advantages in using this classifier are
the low number of requested testing samples to achieve good performance,
if compared to other classification algorithms. Nonetheless, it is not easy to
interpret, and hence control, every aspect of the trees net [90].

2.2.3 Validation dataset

In this preliminary study, two subjects (a male and a female, both 26 years
old) were enrolled. The BCI paradigm consisted of different movement tasks,
either executed or imagined. Five exercises with executed and imagined
movements were considered: squeeze a soft ball, dorsiflexion of the ankle,
flex-extension of the forearm, finger mobilization by clenching a clothespin,
and flex-extension of the leg. Every exercise can be executed with the left
part of the body or the right part. In the protocol concerning the first session,
for each exercise, the BCI user had to execute different trials by alternating
10 s of movement and 10 s of relax. In total 8 movement trials and 8 relax
trials are executed for each exercise. The movement trials are divided by
alternating a “left movement” and a “right movement”. Furthermore, 30 s
of baseline are acquired at the beginning and at the end of the protocol
(Fig.2.5).

The protocol concerning the second session, instead, alternates for each
exercise 10 s of movement execution, 10 s of motor imagery with closed eyes,
and 10 s of relax. In total 8 executed movement trials, 8 imagined movement
trials, and 8 relax trials are carried on for each exercise (Fig.2.6).
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Baseline Baseline

Move
Relax

Figure 2.5: Experimental protocol of the first session: executed movement
and relax tasks.

Baseline Baseline

Move
Motor 
Imagery

Relax

Figure 2.6: Experimental protocol of the second session: executed move-
ment, imagined movement, and relax tasks.

2.3 Experimental results
In the present analysis, the signal processing is conducted by dividing

each 10 s trials of the first session into 4 trials which are 2 s long, while
the first and last second are discarded. This were done to achieve a higher
number of trials, and the 2 s window was chosen as a length compatible with
other experimental protocols, e.g. [83]. Thus, in this work, 64 trials are
available for each exercise. Instead, from the second session, only the trials
related to the imagined movements are extracted, and again each 10 s trial
is divided into 4 trials which are 2 s long. The remaining data will be useful
for further studies. The aim was using the Helmate to distinguish between
left and right movement with different classifiers. The Helmate with dry
electrodes allows the acquisition of EEG data through a dedicated software.
A .edf file is generated for each exercise of a session. Then, a MATLAB script
converts this into a .mat file by separating each trial and associating a label to
them. Five different labels are possible, though the discrimination is pairwise:
"relax" (R), "executed right movement" (ER), "executed left movement"
(EL), "imagined right movement" (IR), and "imagined left movement" (IL).
A 5-fold cross-validation was employed for the accuracy classification. The
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results are reported in the following tables. In Table 2.2, the distinction is
conducted between a "right executed movement" (ER) and a "left executed
movement" (EL).

Subject 1 Subject 2
CSP+RF CSP+SVM CSP+RF CSP+SVM

ex.1 71.7% 60.0% 57.5% 60.8%
ex.2 90.0% 72.5% 61.7% 55.8%
ex.3 72.5% 75.0% 65.0% 57.5%
ex.4 60.0% 55.8% 62.5% 59.2%
ex.5 74.1% 75.0% 70.8% 65.0%
all 70.0% 62.5% 69.4% 54.4%

Table 2.2: A right executed movement versus a left executed movement
(ER vs EL).

Instead, in Table 2.3, the discrimination is conducted between a "right imag-
ined movement" (IR) and a "left imagined movement" (IL).

Subject 1 Subject 2
CSP+RF CSP+SVM CSP+RF CSP+SVM

ex.1 72.5% 59.2% 65.8% 62.5%
ex.2 65.8% 60.0% 62.5% 36.7%
ex.3 65.0% 74.2% 63.3% 59.2%
ex.4 79.2% 55.8% 59.2% 46.7%
ex.5 79.2% 76.7% 58.3% 49.2%
all 71.9% 63.1% 64.4% 60.0%

Table 2.3: A right imagined movement versus a left imagined movement
(IR vs IL).

Some important considerations can be derived from Table 2.2 and Ta-
ble 2.3. The first is that, as a general trend, the two classifiers lead to
compatible performance, but the Random Forest is usually better. The sec-
ond important consideration is that the capability of discriminating between
executed tasks is compatible with the discrimination between imagined tasks.

The Fig. 2.7 shows the results for the executed movements in a graphic
way for the five different exercises. The worst exercise, in terms of accuracy,
is exercise 4 (finger mobilization by clenching a clothespin), while the best ex-
ercise is number 2 (dorsiflexion of the ankle) for subject 1, and number 3 and
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Figure 2.7: Classification accuracy for the five exercises with executed
movements, considered for the two different subjects and for the two clas-
sifiers. The random classification accuracy for two tasks is also shown (red
line).

5 (flex-extension of the forearm and flex-extension of the leg, respectively)
for subject 2. Moreover, also for subject 1, exercises 3 and 5 are associated
to a good performance. The accuracy for these tasks is about 65 % - 70 %.

The Fig. 2.8, instead, shows the results for the imagined movements for
the five exercises. The overall accuracy trend is decreasing with respect to
the executed movements, but some peculiarities are present. It can be seen
that the SVM leads to bad performance for subject 2, which was not trained,
while the Random Forest leads to almost the same accuracy value for all
the exercises, i.e. around 60 % - 65 %. Instead, for subject 1, the Random
Forest seems again to be preferred, and the best accuracy is reached for the
imagination of the finger mobilization (exercise 4) and flex-extension of the
leg (exercise 5). This accuracy is almost 80 %.

These results show that the accuracy performance depends both on the
exercise and on the subject. Though the reference dataset contains data from
22 wet electrodes, only the best 8 were considered. These are the 8 electrodes
that allow the best discrimination between the two abovementioned classes,
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Figure 2.8: Classification accuracy for the five exercises with imagined
movements, considered for the two different subjects and for the two clas-
sifiers. The random classification accuracy for two tasks is also shown (red
line).

and they were selected with an iterative procedure that aimed to maximize
the classification accuracy. Instead, it should be emphasized that it was not
possible to directly consider the same 8 electrodes of the helmet because the
reference dataset does not include the electrodes Fp1, Fp2, O1 and O2. The
5-fold cross-validation has been adopted for the 9 different subjects of the
reference dataset in order to distinguish the imagination of right hand versus
left hand with the Random Forest or the SVM. Depending on the subject, the
classification accuracy goes from 58.2 % to 90.2 %, with an average accuracy
equal to 67.5 % for the Random Forest and 71.9 % for the SVM. Moreover,
it is to report that the mean classification accuracy achieved with all the
22 wet electrodes of the reference dataset [91] is about 80 %, which is still
compatible with the best classification achieved with the 8 dry electrodes
of the helmet. With some preliminary results, it has been shown that the
achieved classification accuracy depends both on the subject and on the
movement task, either executed or imagined. This accuracy goes up to 80
%, and it is also compatible with the classification accuracy obtained, in the
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same conditions, on a reference dataset employing wet electrodes.
The results of this work suggest that the ab medica R© Helmate can be

employed for the EEG health application, even though some more questions
are left open for further research and development. The results of this study
aim at giving a contribution to the building of wearable BCIs. In this way, the
Helmate can be employed as a EEG system during motor task, and therefore
during walk in daily life applications.
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Chapter 3

Cognitive Engagement in
Learning and Rehabilitation

3.1 Overview
Numerous studies evidenced that gait stability and the risk for falling are

influenced by cognitive workload while walking [92]. There is a demonstrated
interdependence between the gait instability and the cognitive impairment
in older adults and this correlation are accepted as a factor in fall risk as-
sessment [49]. A healthy aging process will result in loss of motor neurons,
decreased nerve conduction, limited proprioception, muscle weakness, and
reduced cognitive processing abilities [34]. The ability to quickly re-weight
sensory information and adapt to environmental changes are significantly re-
duced in the older due to a decline in cognitive processing abilities[35]. A
lack of ability to adapt to environmental changes efficiently and effectively
may be a contributing factor in the gait instability among a geriatric popu-
lation. However, the differences between gait of younger and older adults are
manifold [34]. The factors behind the gait are various, and those described
above contribute only partially to the gait and the risk of falling. Gait is a
complex procedure and requires the naturally use of executive functions, high
attention in the presence of concurrent tasks, and also an increased working
memory (which in turn requires a significant cognitive engagement) [11]. It
has been shown that at an increased in load of cognitive activity, the subjects
tend to exhibit modifications to their gait (for example a slowing, or a reduc-
tion of the stride as a compensatory action). Montero et al. sustained that
the greater is the cognitive load the subject experiences while performing a
dual-task paradigm during walking, more the subject is at risk of falling [49].
In recent years, the literature has been opening up to the study of cognitive
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load in a broader context: the cognitive load associated to the concept of
engagement.

The term engagement, derived from the verb engager, and it is often
used as a synonym for involvement and/or commitment. The engagement
has a multi-dimensional and heterogeneous nature. Several definitions have
been provided over the years because of this reason. The engagement has
been analyzed in many different areas. In this thesis, we focused on two
fields: the engagement in pediatric rehabilitation, and engagement in the
learning. In rehabilitation, Graffigna et al. defined patient engagement as a
“multi-dimensional psycho-social process, resulting from the conjoint cogni-
tive, emotional, and behavioral enactment of individuals toward their health
condition and management” [93]. Gross et al. showed the effectiveness learn-
ing process mainly depends on the engagement level of the learner [94]. In
this context, engagement stands for concentrated attention, commitment,
and active involvement in contrast to apathy, lack of interest or superficial
participation [95, 96]. A difficult task will consume most of the cognitive
capacities and therefore make it difficult to perform successfully on other,
unrelated tasks. With a higher cognitive load, the effort expended on a diffi-
cult task can consume attention, reducing the cognitive capacity to process
painful stimuli [97]. In work, play, and social interaction, we may experience
varying levels of engagement as we talk, listen, observe, read, reflect, and
use our bodies [98].) In the learning context, Fred Newman, in his report
"Student Engagement and Achievement in American Secondary Schools",
defines engagement as: "the student’s psychological investment in and effort
directed toward learning, under-standing, or mastering the knowledge, skills,
or crafts that academic work is intended to promote" [98, 99]. Moreover, in
1990, Kahn based the definition of engagement on three broad dimensions:
behavioural, cognitive, and emotional [100]. Behavioral engagement is the set
of observable indicators (postures, gestures, actions, etc.) of persistence and
participation. Cognitive engagement is the effort to extend one’s intellectual
commitment beyond the minimum required to complete the task. Finally,
emotional engagement is the positive emotional reactions of individuals to
a task. Lequerica et al. defined engagement in rehabilitation as "a delib-
erate effort and commitment to working toward the goals of rehabilitation
interventions, typically demonstrated through active, effortfull participation
in therapies and cooperation with treatment providers" [101]. The cognitive
dimension refers to the patient understanding of his/her existing condition,
of the possible diseases course, of the necessary treatments and of its con-
tinuous monitoring. The emotional dimension is connected to the emotional
reactions of patients in adapting to the onset of the disease and to the possible
new life conditions related to it. T he behavioral dimension consists of all the
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activities that the patient decides to implement (together with the medical
team) to deal with the disease and treatment. As concerns the engagement
assessment, evaluation grids, and self-assessment questionnaires (to be filled
out by the observer or by the learner autonomously) are traditionally the
most used methods for the behavioral, the cognitive, and the emotional en-
gagement detection [102]. In recent years, measures based on biosignals are
spreading very rapidly. Furthermore, the use of physiological sensors able
to detect cognitive and emotional engagement allows the real-time machine
adaptive strategies. Among the different physiological biosignals, the EEG
appears to be one of the most promising technology thanks to its low cost,
low invasiveness, and high temporal resolution. Moreover, the EEG contains
a broader range of information about the state of a subject with respect to
others biosignals [103].

In 1995, authors in [104] proposed an engagement index to decide when to
use the autopilot and when to switch to the manual one during a fly simulator
session. The engagement index was E = β

θ+α
where α, β, and θ are the EEG

frequency bands in (8-13) Hz, (13-22) Hz, and (4-8) Hz respectively. Several
studies used this index as engagement estimator [105, 102, 106]. However, the
proposed index does not consider the different engagement dimensions (i.e.,
cognitive, emotional and behavioural) proposed by the theories previously re-
ported. Increased cognitive load, and therefore in the cognitive engagement,
leads to impaired mobility decisions and a risk for falls [107].

To evaluate the importance of cognitive engagement in these two contexts,
two studies were realized:

I Andrea Apicella, Pasquale Arpaia, Mirco Frosolone, Giovanni
Improta, Nicola Moccaldi, Andrea Pollastro, "EEG-based
Measurement System for Student Engagement Detection in
Learning 4.0.", submitted to Scientific Reports, 2021.

II Pasquale Arpaia, Fabio D’Asaro, Mirco Frosolone, Marco
Grazioso, Giovanna Mastrati, Nicola Moccaldi, Luca Raggioli,
Silvia Rossi, “Data-fusion based adaptive rehabilitation sys-
tem: a pilot study.”, to be submitted to User Modeling and
User-Adapted Interaction, 2021.

3.2 Cognitive engagement: Learning context
Some of the following information are available in I.

In the first study, a wearable system for the personalized EEG-based de-
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tection of engagement in learning 4.0 is proposed. The system can be used
to make an automated teaching platform adaptable to the cognitive load
and emotional conditions of the user, and the system proposed can be used
to detect cognitive engagement. When a subject learns a specific pattern,
the neuroplasticity process is activated modifying the neural brain structure
[108]. Once the process is learned, the brain builds a myelinated axon con-
nection system to automate that. The adjacent neurons fire in unison, and
more the experience or operation is repeated, more the synaptic link between
neurons becomes strong [109]. The automated use of all mental processes as
well as the understanding and use of new technologies occurs through the
creation of neural diagrams and maps [110, 111]. During life, humans learn
new skills or modify the already learned ones by enriching the existing neu-
ral maps. Therefore, the introduction of increasingly innovative technologies
requires a continuous brain re-adaptation to new interfaces [112]. The brain
synaptic structure is modified to learn new (or different) basic skills in order
to perform tasks previously performed differently. This effort is more effec-
tive when the learner is engaged. An engaged user actuates learning in an
optimal way, avoiding distractions, and increasing the mental performance
[113, 114].

To achieve a correct metrological reference of the EEG-based cognitive
and emotional engagement constructs, a reproducibility problem arises. From
emotional point of view, when eliciting a specific emotion, the same stimulus
does not often induce the same emotion in different subjects. The effective-
ness of the induction can be verified by means of self-assessment question-
naires or scales. The combined use of standardized stimuli and subject’s self-
assessment ratings can be an effective way to build a metrological reference
for a reliable EEG-based emotional engagement detection [115]. From the
cognitive point of view, when the subject is learning, the working memory
identifies the incoming information and the long-term memory constructs
and stores new schemes on the basis of the past ones. While the already
built schemes decrease in the working memory load, the construction of new
schemes entails its increase [103, 116]. Therefore, increasing difficulty levels
allows to induce different cognitive states; the cognitive engagement level
grows up according to the proposed exercise difficulty increases.

3.2.1 Experimental design

Twenty-one school age subjects (9 males and 13 females, 23.7 ± 4.1 years)
participated in the experiment. All volunteers have no neurological diseases.
The ethical committee of the University of Naples Federico II approved the
experimental protocol of this study. All methods were performed in accor-
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dance with the relevant guidelines and regulations. Before the experiment,
each subject read and signed the informed consent. Each subject was seated
in a comfortable chair at a distance of 1 m from the computer screen. The
location was sanitized before and after of each acquisition as indicated in the
COVID-19 academic protocols. Each subject was equipped with a mouse to
carry out the experimental test. After wearing the EEG-cap, the contact
impedance was assessed to guarantee optimal signal-acquisition conditions
(see 2). Each subject underwent an experimental session composed by 8
trials. Various stimuli to induce high and low levels of emotive and cog-
nitive engagements were equally distributed among the trials. As stimulus
modulating the cognitive engagement level an updated and revised Continu-
ous Performance Test (CPT) [117] was administrated. In particular, a CPT
version based on a learning by doing activity on how an interface works was
adopted. Whereas, proper background music and social feedback was used to
modulate the emotive engagement level . More in details, the three different
stimuli are described as follows:

• Revised CPT: a red cross and a black circle on the computer screen
were presented to the subject. The red cross tends to run out from the
circle on the screen in random directions. The subject was asked to
keep the cross inside the circle by using the mouse. For each trial, a
different difficulty level was set by the experimenter changing the cross
speed. The percentage of the time spent by the red cross inside the
black circle with respect to the total time was reported to the subject
at the end of the trial (Fig. 3.1).

• Background music: for each trial, a particular emotive engagement level
was favored by proper background music. The music tracks were ran-
domly selected from the MER [118] database where songs are organized
according to the 4 quadrants of the emotion Russell’s circumplex model
[119]. The songs associated with the Q1 and Q4 quadrants (cheerful
music) were employed in high emotional engagement trials, Q2 and Q3
for the low ones (sad music).

• Social feedback: during each trial, the experimenters gave proper social
feedback according to the emotive engagement levels under the experi-
mental protocol. The positive and negative social feedback consisted of
encouraging and disheartening comments respectively, given to subject
on his/her ongoing performance. The choice of social feedback to use
was made by a group of psychologists. The social feedback effectiveness
was improved by the simultaneous music background effects.
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(a) Session Started

(b) Session Finished

Figure 3.1: Screen shots from the CPT game. At the beginning of the game
(a),the cross starts to run away from the center of the black circumference.
The user goal is to bring the cross back to the center by using the mouse.
At the end of each trial (b), the score indicates the percentage time spent by
the cross inside the circumference.

A well-founded metrological reference, is ensured by two assessment pro-
cedures validating the stimuli effectiveness were used:

• performance index : an empirical threshold was used to confirm that an
appropriate CPT stimuli response was given by the participant. The
threshold changed according to the trial difficulty level.

• Self Assessment Manikin questionnaire (SAM): the emotional engage-
ment level was assessed by a 9-level version of the SAM. The lower
emotional engagement level was associated to the SAM score 1, while
the greater one to 9 [120].

The experimental session started with the administration of the SAM to
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Table 3.1: Trials description - for each trial the positiveness/negativeness
of the background music, the randomly movement speed of the cross, and
the duration in second are reported.

# Trial Background Music Speed [px/s] Duration [s]

1 Positive 50 50
2 Negative 75 120
3 Positive 100 45
4 Positive 150 45
5 Positive 300 45
6 Negative 700 45
7 Negative 800 45
8 Negative 900 120

get information about the initial emotional condition of the subject. Then, a
preliminary CPT training phase to uniform all the participants starting levels
was realized. After this preliminary phase, each trial was implemented by a
succession of a CPT stage followed by a SAM administration. The description
of trials organization is described in Table 3.1. The background music, the
movement speed of the cross, and the duration of each trial are shown. and
the music, speed and duration parameters are showed in Table 3.1.

The ab medica R© Helmate system is employed for the EEG signal mea-
surements [80] (Fig. 3.2).

Figure 3.2: EEG-signal acquisition device Helmate from ab medica[80]
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3.2.2 Data processing

Forty-five seconds of acquisition EEG signals were labeled according to
two parameters: i) high or low emotional engagement, and ii) high or low
cognitive engagement. More in detail, regarding the cognitive engagement,
the trials were labeled according to the CPT speed [121, 116], since the higher
was the speed the more the cognitive engagement increased [103, 116]. The
trials having speed lower than 150 pixels/s were labeled as lowc whereas
highc, were assigned to the trials having speed higher than 300 pixels/s. As
concern the emotional engagement, the trials characterized by cheerful/sad
music and positive/negative social feedback were labelled as highe/lowe. For
each trial, the SAM results (normalized to the initial pre-session value) were
consistent with the proposed stimuli. In fact, a one-tailed t-student analysis
revealed in the worst case a 0.02 P-value.

An artifact removal stage preceded the feature extraction and the clas-
sification stages. The Independent Component Analysis (ICA) was used to
filter out the artifacts from the EEG signals using the Runica module of the
EEGLab tool [122]. Then, data were normalized by subtracting their mean
and dividing for their standard deviation. EEG data were divided in epochs
of 3 s, overlapping by 1.5 s. Owing to the sampling rate of 512 Sa/s, for each
subject 232 epochs of 1536 samples per channel were extracted.

Five different strategies were compared:

1. Butterworth - Principal Component Analysis (BPCA): data were fil-
tered by a fourth-order bandpass Butterworth filter [0.5 - 45] Hz; then,
relevant features were extracted using Principal Component Analysis
(PCA)[123] selecting the components explaining the 95% of the total
variance;

2. Butterworth - CSP (BCSP): data were filtered using a fourth-order
bandpass Butterworth filter [0.5 - 45] Hz followed by a CSP projection
stage;

3. Filter Bank - CSP (FBCSP): data were filtered through a 12 IIR band-
pass Chebyshev filter type 2 filter bank with a 4 Hz bandwidth equally
spaced from 0.5 to 48.5 Hz, followed by a CSP projection stage.

4. Domain adaptation: only in the cross-subject approach, a baseline re-
moval and a TCA were adopted.

5. Engagement Index : to make a comparison with the classical litera-
ture approach, the engagement index proposed in [104] was extracted.
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Although the Engagement Index was not defined for a particular en-
gagement type, given the experimental setup proposed in [104], it can
be assumed compatible with the cognitive engagement proposed in this
work.

Two different approach was implemented: within-subject, and cross-subject.
A cross-subject approach has several advantages with respect to a within-
subject one, such as the reduction of time for the initial calibration proce-
dure. Unfortunately, the non-stationarity nature of the EEG signal leads to
a greater data variability between subjects. This is a well-known problem
in the literature, which makes the cross-subject approach a very challenging
task [124]. Currently, the Domain Adaptation methods [125] are obtaining
a great attention from the scientific community. In this work, the Transfer
Component Analisys (TCA) [126] is adopted. The TCA is a well-established
technique of domain adaptation already used in the EEG signal classification
literature with promising results [124]. In a nutshell, TCA searches for a com-
mon latent space between data sampled from two different (but related) data
distributions by preserving data properties. More in detail, TCA searches for
a data projection φ that minimizes the Maximum Mean Discrepancy (MMD)
between the two distributions, that is:

|| 1

nS

nS∑
i=1

φ(~xSi)−
1

nT

nT∑
i=1

φ(~xT i)||2

where nS and nT are the numbers of points in the first (source) and the
second (target) domain set respectively, while ~xSi

and ~xT i are the i−th point
(epoch) in the two different sets. The data projected in the new latent
space are then used as input for the classification pipeline. However, TCA
works with only two different domains, differently from a multiple-subject
environment, which can lead to a domain composed of several sub-domains
generated by the different subjects or sessions. In [124], TCA was tested by
considering for the first domain a subset of samples from N − 1 subjects,
where N is the total number of subjects, and with the data of the remaining
subject for the other domain. However, this approach does not take into
consideration the fact that different subjects may belong to very different
domains, leading to poor results. A simple solution consists in subtracting
to each subject a baseline signal recorded from the user, for example, in
rest condition. However, this last point requires new subject acquisition.
Instead, in this work, an average of the signals for each subject is used as
baseline, thus avoiding the need for new signal acquisitions. The output
of the classification stage can be "high" or "low" both for cognitive and
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emotional engagement. For each feature selection strategy shown in the
previous subsection, four different classifiers were compared: Support Vector
Machine (SVM), k-Nearest Neighbors (k-NN)[127], shallow Artificial Neural
Networks (ANN)[128], and Linear Discriminant Analysis (LDA)[127]. Each
combination of feature selection strategies and classifiers were used on both
emotional, and cognitive engagement.

The best model was selected by a stratified leave-2-trials out technique
in order to maintain a balancing among the classes in each fold. A Grid
search strategy was adopted as approach for hyperparameters tuning for
each classifier (Table 3.2).

3.2.3 Experimental results

Two different approach are evaluated in this work: a within-subjects,
and a cross-subject approach.

Within-subjects approach
Firstly, to make a comparison with the classical literature approach, the
engagement index proposed in [104] was used as feature for a classification
of the cognitive engagement. Unfortunately, as highlighted by the results
reported in Table 3.3 accuracy performances were not optimal. In fact, this
feature is mainly used in non-predictive applications (e.g., [106]).

Instead, the best results both on cognitive and emotional engagements
(Fig. 3.3) were achieved using features extracted by Filter-Bank and CSP.
Quantitative results related to the use of Filter Bank and CSP for each
classifier can be observed in Table 3.4: among the different classifiers, SVM
stands out with a better performance than the others, reaching its best mean
accuracies of 76.9 ± 10.2 % on cognitive engagement classification and of
76.7±10.0 % on emotional engagement. Results are computed as the average
accuracy over all the subjects.

The results reported in Fig. 3.3b show that the Filter Bank improves the
classification performance in a significant way. This can be due to the use of
several sub-bands which highlight the signal main characteristics, allowing
the CSP computation to project the subject data in a more discriminant
common space. In Fig. 3.4, BCSP and FBCSP are compared through t-SNE
[129] on the subject data transformed using the two different methods. The
figure shows that, for several subjects, CSP applied after FB projects the
data in a space where they are easily separable with respect to the BCSP
case.

Cross-subject approach
A t-SNE plot of the data first and after removing the average value of each
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Table 3.3: Within-subject experimental results. Classification accuracies
using the Engagement Index [104] for cognitive engagement classifications
are reported.

Method Cognitive Engagement
SVM 54.8 ± 4.9
k-NN 53.7 ± 5.7
ANN 53.1 ± 5.4
LDA 50.7 ± 6.2

(a) Cognitive engagement

(b) Emotional engagament

Figure 3.3: Within-subject performances of the compared processing tech-
niques in (a) cognitive engagement and (b) emotional engagement detection.
Each bar describes the average accuracy over all the subjects.

subject is shown in Fig. 3.5. The data without for-subject average removal
(Fig. 3.5 a) are disposed in several clusters over the t-SNE space, exhibit-
ing a fragmentation tendency. Instead, after the for-subject average removal
(Fig. 3.5b), the data result more homogeneous, enhancing the model general-
izability. A comparison using TCA with and without the for-subject average
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Table 3.4: Within-subject experimental results. Accuracies are reported on
data preprocessed using Filter Bank and CSP for cognitive engagement and
emotional engagement classifications. The best performance average values
are highlighted in bold.

Method Cognitive Engagement Emotional Engagement
(proposed) (proposed)

k-NN 73.0 ± 9.7 74.2 ± 10.3
SVM 76.9 ± 10.2 76.7 ± 10.0
ANN 74.0 ± 9.2 73.9 ± 9.1
LDA 72.1 ± 11.4 71.6 ± 9.3

Figure 3.4: Filter Bank impact on the class (red and blue points) sepa-
rability. t-SNE-based features plot of five subjects randomly sampled (first
row: without Filter Bank; second row: with Filter Bank).

removal is made and the resulting performances are reported in Table 3.5.
The results show that removing the for-subject average from each subject
boosts the performance with respect to using TCA alone (more than 3 %
of improvement in almost all classifiers, especially in Cognitive Engagement
case).

In this work, a wearable system for personalized EEG-based cognitive
and emotional engagement detection is proposed. The system can be used
in the context of Learning 4.0. The system is validated on students during
a training stage involving cognitive and motor skills and aimed to learn how
to use a human-machine interface. Standard stimuli, performance indicator,
and self assessment questionnaires were employed to guarantee a well founded
metrologically reference. The proposed method, based on Filter Bank, CSP
and SVM, experimentally showed the best performance. In particular, in the
cross-subject case, an average accuracy of 72.8 % was reached for the cogni-
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(a) (b)

Figure 3.5: A comparison using t-SNE of the FBCSP data first (a) and
after (b) removing the average value of each subject, in the cross-subject
approach.

tive engagement by using TCA and for-subject average removal. Instead, in
the within-subject case, an accuracy of 76.9 % was reached.

3.2.4 Proposed Method

The proposed method is depicted in Fig. 3.6. The eight Active Dry Elec-
trodes acquire the EEG signals directly from the scalp. Each channel is
differential with respect to AFz (REF), and referred to Fpz (GND), accord-
ing to 10/20 international system. After transduction, analog signals are
conditioned by the Analog Front End. Next, they are digitized by the Analog
Digital Converter (ADC), and submit an Artifact removal block performed
by an ICA based algorithm. Then the signals are sent by the wireless Blue-
tooth transmission to the Data Processing stage. Here, the suitable feature
are extracted by a 12-component Filter Bank. The two Support Vector Ma-
chine (SVM) classifiers receive the features array from two trained Common
Spatial Pattern (CSP) algorithms for detecting the Cognitive and the Emo-
tional Engagement respectively. Only in the cross-subject case, a baseline
removal followed by a TCA procedure is provided during the training stage
of the classifier.

These results are important steps for cognitive engagement detection and
to evaluate the related cognitive load in everyday conditions. This is an
important first step to be able to analyze the effect of the working memory
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and cognitive load during the gait analysis.

3.3 Cognitive engagement: Rehabilitation con-
text

Some of the following information are available in II.
In the second study, a wearable system for the personalized EEG-based

detection of engagement in in neuro-motor rehabilitation is proposed. En-
gagement assessment is fundamental in clinical practice to personalize treat-
ments and improve their effectiveness. The adaptivity in motor rehabilitation
traditionally concerns the possibility of an automated system to adequately
stimulate the residual motor skills of a patient: not a little otherwise it
does not strengthen, not too much otherwise the exercise becomes impracti-
cal. Often, the optimal level of stimulation is found by analyzing the user’s
performance in real time and adaptation techniques only focus on maximis-
ing effort during the rehabilitation session [130, 131, 132, 133]. Although
a significant amount of work has been done in the general area of motor
rehabilitation with promising results [134], there is still a need for develop-
ing personalised therapeutic scenarios. Recently, another way of looking at
adaptivity is emerging. The focus is not only on the user’s performance, but
also on her/his mental condition. For example, some studies have focused
on levels of cognitive engagement during robotic motor rehabilitation [135].
The basic idea is to adapt an automated rehabilitation system to the user’s
current condition, maximizing her/his sustained attention to the proposed
motor activity. The attention to the motor task, in fact has an enhanced ef-
fect on the rehabilitation effectiveness [136]. In the present work, a module for
cognitive and emotional engagement assessment, designed to be integrated
into an automated [137] or semi-automated [138] rehabilitation system, is
presented. This module is insert in a data-driven method. Data-driven
methods are effectively deployed to recognize complex activities. However,
they lack the capability of capturing important semantic relationships be-
tween sensor events and activities that could be easily expressed through the
use of knowledge-based approaches. The proposed framework allows multi-
ple data from heterogeneous sensors to be integrated by the combination of
data-driven and knowledge-based reasoning techniques.

3.3.1 Experimental design

Three males and one female aged between 5 and 7 years were selected
for the experiment. Each participant suffering from disturbances in motor-
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visual coordination (double hemiplegia, severe neuropsychomotricity delay in
spastic expression from perinatal suffering, neuropsychomotricity delay, and
motor skills deficit with dyspraxiam). The ethical committee of the Univer-
sity Federico II approved the experimental protocol. An informed consent
were signed by families agreed to the experimental activities. All the exper-
imental procedures were performed according to guidelines and regulations
[139]. The Perfetti-Puccini method (also known as Cognitive Therapeutic
Exercise) was adopted as therapeutic approach [140]. The aims of this meth-
ods is to recover the injury and activate the brain circuits governing the
movement. A visual attention exercise was performed by each participant;
the correct posture of the trunk, neck, and head were required. The partici-
pant were seated on a comfortable chair and a screen was placed at the eye
level of the subject (Fig. 3.7).

Figure 3.7: Neuromotor rehabilitation session.

The participants could choose four different characters before starting ex-
ercise: a bee, a ladybug, a girl, or a little fish. The child had to stare at the
character on the screen to make it move while maintaining eye contact. The
parameters setting during the game were: (i) the movement direction of the
character (from left to right or vice versa, or from up to down and vice versa),
and (ii) the background landscape. To improve the participant engagement,
a background music was played during the game. Several professional fig-
ures supervised to all phases of the experimental activity: physiotherapists,
bioengineers, software engineers, psychologists, doctors specialist.

48



The system architecture is shown in Figure 3.8. It is composed of a
Rehabilitation Game Platform and an Engagement Detection Component.

Figure 3.8: Three-dimensional system architecture

The content production module updates the audio-visual stimuli as a
function of three sets of inputs related to the evaluation of Behavioral, Cog-
nitive, and Emotional engagement. The first set of inputs is related to Be-
havioral engagement. It provides information about the user’s head pose and
is detected in real time by a body tracker on the basis of the images acquired
by the video camera. The second set of input contains the information about
the emotional engagement evaluated on the basis of the data supplied by
the camera and the EEG headset. Finally, cognitive engagement is detected
employing the EEG data. A data-driven approaches proved to be promising
for an effective processing of the EEG signal. Thus, an EEG-based system
for cognitive engagement detection is proposed. A wearable, low cost device
is adopted to acquire the EEG data: emotiv epoc+ (Fig. 3.7). Two cam-
eras video-recorded each session (by front and side framing). The Pediatric
Assessment of Rehabilitation Engagement (PARE) scale was employed for
labeling the EEG signals. The emotional and cognitive engagement were
separately examined. A multidisciplinary team evaluated each session by
viewing the videos. Two levels emotional engagement and cognitive engage-
ment are identified: high and low. The consensus among the raters was
statistically analyzed and reached the 95.2 % [141]. The teams evaluations
were employed as ground-truth to label the EEG dataset.
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3.3.2 EEG Data processing

Each subject underwent five EEG recording sessions of 15 min. The EEG
signal was divided in epochs of 9 s. A total of 1121 epochs were acquired,
and 280±46 epochs for each participant. The different number of epochs was
due to a less constrained experimental protocol, adopted to ensure a greater
comfort for the patients. Th k-Nearest Neighbors (k-NN), the Support Vector
Machine (SVM), and the Artificial Neural Network (ANN) were employed as
machine learning classifiers. A grid search CV procedure was implemented
to found the best parameters model. The hyperparameters values for each
classifier model are reported in Table 3.6.

The data were processed considering the same temporal order of acqui-
sition; the first 70 % of the data of each session was employed as a training
set and the remaining 30 % as a test set. Such a subdivision into training
and test sets for intra-individual classification is widely used in literature for
EEG data [142, 143, 144]. To manage the test data, in case of imbalanced
test data, the balanced accuracy (BA [145]), and the the Matthew correla-
tion coefficient (MCC [146]) were used as performance scores. In fact, the
standard accuracy are unreliable since they can be biased toward the domi-
nant class [147]. The BC provides a classification performance measure more
efficient in case of imbalanced data condition; the MCC gives a correlation
measure between the observed data and the predicted classifications [148].
In particular, MCC and BA are defined as:

BA = 1
2

(
TP

TP+FN
+ TN

TN+FP

)
(3.1)

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(3.2)

where respectively, TP are the true positives, TN are the true negatives,
FP are the false positives, and FN are the false negatives (where positive
and negative referred to the low and the high values of the engagement). The
BC is defined in the range [0, 1] (as accuracy); the MCC in the range [−1, 1],
where 1 means a perfect prediction, 0 a random prediction and −1 means a
total misclassification.

3.3.3 Experimental results

The overall means of the intra-individual balanced BC and MCC scores
for the three classifiers for the cognitive engagement are reported in Table 3.7.

As can be seen from the results, oversampling improved the results
achieved, especially when the KMeansSMOTE method was employed. The
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Table 3.7: Overall mean of the intra-individual performances on cogni-
tive engagement using three different classifiers (k-NN, SVM and ANN): the
balanced accuracy (BA) and the Matthews correlation coefficient (MCC) at
varying the oversampling methods.

Oversampling Metric k-NN SVM ANN Mean

none BA
MCC

67.1
0.31

67.4
0.34

73.7
0.45

69.4± 3.0
0.36± 0.06

SMOTE BA
MCC

68.6
0.33

69.8
0.36

72.0
0.40

70.1± 1.4
0.36± 0.03

BorderlineSMOTE BA
MCC

70.3
0.36

70.9
0.38

73.6
0.43

71.6± 1.4
0.39± 0.03

ADASYN BA
MCC

68.1
0.33

68.3
0.33

72.5
0.42

69.6± 2.0
0.36± 0.04

SVMSMOTE BA
MCC

69.0
0.34

69.4
0.36

72.9
0.42

70.4± 1.7
0.37± 0.03

KMeansSMOTE BA
MCC

69.8
0.35

71.1
0.39

74.5
0.46

71.8± 1.98
0.39± 0.04

BC performance of the three classifiers using the KMeansSMOTE method
for each subject are reported in Fig. 3.9.

3.3.4 Proposed Method

The proposed method is illustrated in Fig. 3.10. The emotiv epoc+
semi-wet 14 electrodes allows the EEG signals to be sensed directly from
the scalp of the child. The CMS/DRL referred all the channels. The
analog signal are firstly conditioned by an internal system amplification
and filtering (Analog Filter and Amplifier). Then, they are digitized by the
Analog Digital Converter ADC and sent by the Wireless Transmission Unit
to the Data Processing block. The Classifiers receive the feature arrays from
two trained Common Spatial Pattern procedures for detecting the cognitive
and emotional engagement.

The proposed method, based on KMeansSMOTE technique, showed ex-
perimentally a mean balanced accuracy of 74.5 % for cognitive engagement
detection. This method was then introduced into the game system. Based
on the information coming from the various sensors, a the decision making
block was implemented. The action language Epistemic Probabilistic Event
Calculus (EPEC for short) [149] was able to make online decisions as the
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Figure 3.9: Cognitive engagement balanced BC performance for each sub-
ject based on KMeansSMOTE oversampling technique. Classifier perfor-
mances are reported: k-NN (black), SVM (grey), ANN (white).

child is performing the exercise. An assessment of the acceptability of the
system was conducted by directly evaluating the cognitive and emotional
engagement levels of the child. The Fig. 3.11 shows the time-trends of the
cognitive engagement of one subject during all the sessions. The high levels
of cognitive engagement highlight the acceptability by the subjects of the
proposed method.
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Figure 3.11: Time-trend analysis of the observed conditions during the
entire therapy of cognitive engagement

These results are important steps for cognitive engagement detection and
to evaluate the related cognitive load in everyday conditions. This is an
important first step to be able to analyze the effect of the working memory
and cognitive load during the gait analysis.

These results are a further demonstration of the possibility of an EEG-
based cognitive engagement detection. The employ of a game in the rehabil-
itation field identifies new application contexts for this type of analysis. The
conjunction of a motor act (object pursuit) and a cognitive task its similar
to what happen wile walking. Therefore, being able to monitor the levels of
cognitive engagement allows to provide further information on the cognitive
condition of the subject during gait.
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Chapter 4

EEG Features for Executive
Function Identification

4.1 Overview
In the analysis of the gait, balance, and posture, the Executive Functions

(EFs) play a fundamental role. During the gait, low and high level EFs are
called up. Planning, inhibition, working memory, reasoning and problem
solving are necessary for the subject to be able to manage any condition
during the walk. The EFs are a set of neurocognitive processes involved in
goal-oriented problem solving [150]. According to Miyake and al., there are
three main areas of executive functions: inhibition, working memory, and
cognitive flexibility [151]. Inhibition is linked to the activation of networks
involving bilateral frontal, upper right temporal occipital and lower left, right
thalamic structures, and midbrain [152]; working memory involves dorsolat-
eral prefrontal cortex [153]; while flexibility relates to prefrontal and posterior
parietal cortex [151]. As concerns inhibition, Barkeley identifies three differ-
ent sub-processes: (i) the inhibition of the continuous response (interrupting
an ongoing response no longer effective); (ii) the cognitive inhibition (i.e. the
ability to suppress an initial overbearing mental representations); and (iii)
the inhibition of interference or inhibitory control of attention allowing to
participate selectively, concentrating on the stimuli and suppressing the at-
tention on the other [154]. The Working memory (WM) updates and keeps
in mind the information. Baddeley organizes WM in two sub-processes: (i)
phonological loop (deals with the phonetic and phonological treatment en-
suring the temporal properties preservation); (ii) visuo-spatial sketch-pad
(maintains and processes the visual-spatial information and it has the ability
to generate mental images); and (iii) episodic buffer (archive which contains
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episodes and it represents a bridge with long-term memory) [155]. The cogni-
tive flexibility represents creative and adaptive mindset to rapid circumstance
variations. It is the ability to switch from one set of stimuli to another ac-
cording to the context of a situation [156]. The combination of two or more of
these EFs gives rise to complex functions such as problem solving, planning,
and reasoning [37] [38].

These EFs are invoked in the processes involving gait, posture, and bal-
ance. Planning the way, identifying the sources of danger and reasoning on
alternative solutions, retrieving any previous situations in memory, are just
some of the most simple methods of the using of EFs during a gait. In re-
lation to the importance of EFs in the gait, the literature was analyzed to
identify which FEs are most investigated and evaluated through the EEG.
Currently, the relationship between executive functions and EEG features is
not uniquely defined. Moreover many studies examine the EEG signal with-
out clarifying which particular EF is investigated. In other studies the inves-
tigated EF is related to non-specific EEG features (i.e., already associated
to other EF in the literature). For this reason, it was decided to investigate
which EEG features were most employed in literature for the analysis of EFs.

Many studies analyze EFs in Attention Deficit Hyperactivity Disor-
der (ADHD) application. The ADHD is a neurodevelopmental disorder
characterized by inattention and/or hyperactivity-impulsivity. According
to the fifth edition of Diagnostic Statistical Manual of Mental Disorders
(DMS-5), symptoms of inattention and/or hyperactivity-impulsivity must
be present before age 12, in two or more contests, such as school and home.
Impairment contributes to academic, professional, or social dysfunction.
These symptoms must be present for at least 6 months and do not occur
exclusively during schizophrenia or another psychotic disorder and must not
be better explained by another mental disorder (mood disorder, anxiety
disorder, dissociative disorder, personality disorder). The attention deficit
hyperactivity disorder subjects present the same reduction in walking
activity in relation to poor performance in the execution of the dual-task
[52]. Thanks to collaboration with Villa delle Ginestre (neurorehabilitation
center) we investigated on the ADHD children. In complex pathologies,
such as in the case of children with ADHD, walking is often compromised.
The studies carried out in this context confirm what has been indicated: the
walking requires the use of executive functions and their impairment affects
the latter [157]. For this reason it was decided to investigate which are the
most used EEG features on children with ADHD. Some of the following
information are available in:

Pasquale Arpaia, Loredana Cristaldi, Mirco Frosolone, Ludovia
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Gargiulo, Francesca Mancino, Nicola Moccaldi, “EEG features of
executive functions employed in the diagnosis and treatment of
children with ADHD: a review.”, to be submitted to Topics in
cognitive science, 2021, Wiley-Blackwell.

The aim of this review is to verify if consistent EEG features are identi-
fiable for each EF and, in this way, contribute to the development of EEG-
based diagnosis and therapies of ADHD. Consequently, as far as EEG-based
studies associating ADHD to EFs deficit is concerned, the Research Questions
(RQs) of this review concern:

• (RQ-I) what resolution is adopted in executive function analyses among
high order-, basic-, sub-, and components of sub-executive functions;

• (RQ-II) what executive functions are the most attentioned and, there-
fore, considered the most significant for ADHD diagnosis and treat-
ment;

• (RQ-III) what EEG features are mainly linked to specific EFs.

4.2 Methods
For each paper included in this review, the hidden EFs are made ex-

plicit according to the tests adopted in the experimental protocol. Moreover,
in case of non-specific use of the EEG features, a comparison among the
accuracy and the effectiveness of the diagnosis and therapy solutions, respec-
tively, is proposed. The more appropriate correspondence between EF and
EEG features arises when the accuracy and effectiveness performances are
highest. Consequently, identifying an EEG signature of the compromised ex-
ecutive function will allow to improve the diagnosis and therapy of ADHD.
Moreover, the achieved results could be employed to verify the proposed link
between ADHD and the mainly involved EFs.

4.2.1 Database searches and inclusion/exclusion crite-
ria

101 articles are included in this review. The following query ADHD,
AND EEG AND NOT ADULT was employed to find the keywords within
the title and the abstract of the articles in three database: Pubmed, Scopus,
and IEEEXplore. In compliance with the PRISMA recommendations [158]
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(include the Kitchenham’s guide [159]) articles were included if respected
inclusion/exclusion criteria or selection criteria:

• Age of the experimental sample: 6 - 14 years;

• participants condition during EEG signal recording: studies focused on
resting state were excluded. Indeed, EFs selective activation requires
specific task execution;

• comorbidities: the concurrent presence of other pathologies in partici-
pants was reason for exclusion;

• drug treatment: drug assumption must be interrupted at least six
months before the execution of the experimental sessions.

As far as pharmacological treatment is concerned, if this information was not
specified the articles were excluded. Finally, journal and conference articles
were included, review, commentaries, and editorials were excluded.

474 articles were excluded basing on these criteria. In the eligibility phase,
the full text of the remaining 393 articles was analysed. The adherence of all
the articles was verified according to the criteria above indicated. After the
text reading, 101 articles were included: 86 from Scopus, and 15 article from
PubMed. A flow diagram representation of the database search above desc-
tribed is showed in Fig. 4.1 and carried out in compliance with the PRISMA
recommendations [158].
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Figure 4.1: PRISMA-flow of the articles selection process.

Each article was labelled by the main executive functions focused. When
the authors did not specify the EFs being investigated, the links between the
EFs and the articles were based on the experimental test performed. Specific
tests are administered to the subjects in order to evaluate the affected EF.
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Nevertheless, an exclusive link between a test and an executive function
cannot be guaranteed [160, 161]. Links among EFs and some of the main
used tests are shown in Table 4.1. The proposed method to identify links
among EFs and articles is articulated in mutually-exclusive successive steps
as follows: (i) standard tests are implemented, therefore, articles are labelled
based on the test-related executive functions; (ii) the article employed custom
tests but the authors clarified the investigated EFs,therefore, articles are
labelled based on the declared EFs; (iii) custom tests are used and the authors
did not declare to focus on specific executive functions, therefore, articles are
labelled based on EFs related to the most similar standard test.

Table 4.1: The table shows the FE investigated mainly in children with
ADHD and the main tests that allow their analysis

Basic Executive Function Sub-Executive Function Main Related Test

Inhibition Response Inhibition Go/No Go Task [162]
Interference Inhibition Flanker Test [163]

Working Memory Verbal Working Memory N-Back Task [164]
Visual Spatial Working Memory Corsi Block Test [165]

Cognitive Flexibility - Wisconsin Card Sorting Task [166]

4.2.2 EEG features identification

In the case of therapeutic articles, two features are often proposed, one
for treatment and the other for testing the effectiveness of the treatment. In
these cases, the EEG feature proposed for the treatment is considered. All the
features collected from the articles are organized according to a multi-level
schema (Fig. 4.2). The first level is the domain of definition: spatio-temporal,
spatio-frequency or spatio-time-frequency domain. In all cases it is possible
to consider the spatial domain given the distributed mode of recording the
EEG signal: it is acquired in certain region of the scalp depending on the
chosen headset. At this level the signal is treated by referring to peculiar pre-
processing (averaging) or transformation (Fourier, Welch,...). As far as the
second level is concerned, the sub-domain are adopted; namely, the temporal
sub-domains and the bands (alpha, beta, theta,...). Finally, in third level, the
features identification is completed by means to a synthetic value extracted
after a specific operation (mean, amplitude, power spectral density, . . . ).

In order to find the EEG features linked to the compromise of an executive
function, the number of studies considering a certain EEG feature is plot-
ted for each most investigated executive function. In the first analysis, the
number of articles linking inhibition and working memory (and related sub-
functions) to EEG features defined in the spatio-temporal, spatio-frequency,
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Figure 4.2: EEG features classification scheme.

or spatio-time-frequency domain was assessed. Then, separately for each do-
main, the specific EEG features is considered: the number of articles, centred
on a particular EF, is plotted as a function of the EEG features.

4.2.3 Quality assessment strategy

The Quality Assessment Tool for Quantitative Studies (QATQS), cre-
ated by researchers from Canada’s Efficient Public Health Practice Project
(EPHPP) was used for the quantitative assessment of the quality of the re-
views, as suggested by the PRISMA guidelines [167] [168].
All the included studies were statistically classified according to the six com-
ponents of QATQS: (1) selection bias, (2) study design, (3) confounders, (4)
blinding, (5) data collection methods, and (6) withdrawal and dropouts. The
quality of each of the six components was assessed by assigning a score from
1 to 3. If the analyzed paper reflects all the characteristic points of the sec-
tion, the score assigned to it is one (strong). If the paper partially reflects
these characteristic points, the score is two (moderate). If no point is met,
the score assigned is three (weak). The analysis results show 5 strong, 18
moderate and 78 weak. In particular, 4 strong, 14 moderate and 29 weak
diagnostic articles have emerged from the application of the above criteria, as
shown in Fig. 4.3 a). Regarding the therapeutic articles, 1 strong, 4 moderate
and 49 weak articles have arisen, as shown in Fig. 4.3 b). Regarding thera-

62



(a) diagnostic articles (b) therapeutic articles

Figure 4.3: Global Rating of: a) diagnostic, and b) therapeutic articles

peutic articles, 72 % of authors chose a control group, 9 % of authors have
performed a double-blinded study, 85 % of authors preferred to administer
evaluative questionnaires rather than the acquisition of further biomedical
signals and 9 % of authors argued the exclusion criteria in detail. Regard-
ing diagnostic articles, 92 % of authors considered a control group, 21 % of
authors have evaluated further biomedical signals and have administrated
evaluative questionnaires and 23 % of authors argued the exclusion criteria
in detail.

4.3 Results
The articles review results suggest that 96 % of the articles analysed

executive function without distinction between sub-function, the 71 % con-
sidered separately the sub-components of inhibition and working memory
while 4 % dwelled on high-order EFs (i.e. reasoning, planning and problem
solving), resulting from the simultaneous action of two or more Executive
functions [36]. The most investigated executive functions are inhibition and
working memory: the 64 % of the articles investigate the inhibition and its
sub-function and the 30% the working memory and its sub-function (Fig. 4.4.
In particular, as concerns sub-function, 26 articles focus on response inhibi-
tion, 47 on interference inhibition. Regarding working memory, visuo-spatial
working memory is investigated by 17 articles, verbal by 3 studies (Fig. 4.5).
The interference inhibition and visual-spatial working memory are the mainly
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studied sub-functions (51 % and 17 %, respectively compared to all inhibition
and WM sub-functions).

Figure 4.4: Percentage of Executive Function considering respect to all EFs
evaluated

Figure 4.5: Number of articles per Executive Function considering the level
of details in analysis of Executive Functions

Considering the definition domain of features: the features related to the
inhibition are evaluated at 52 % in the temporal, at 45 % in the frequency do-
main, and at 2 % in the tempo-frequency domain. The WM-related features
are evaluated at 28 % in the temporal, at 71 % in the frequency domain,
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and 1 % in the tempo-frequency domain. About the results of inhibition, the
domain of analysis of the EEG signal are both the temporal and frequency
domain. Regarding working memory, EEG features are analyzed predomi-
nantly in the frequency domains. In particular, for ADHD diagnosis or treat-
ment based on impaired inhibition, 44 studies consider temporal features, 39
frequency features while 6 articles analyse tempo-frequency features. Con-
cerning diagnosis during working memory tasks, most of the studies focus
on the features defined in the temporal and frequency domains (13 and 21
articles, respectively) and only 2 articles consider EEG features defined in
the tempo-frequency domain. In the case of inhibition, there is a slight trend
in considering the amplitude of the P300 and N100 components of the Event
related Potentials (ERPs) and the power spectral density in the α, and θ
band. In particular, several authors conclude that there is a difference be-
tween ADHD subjects and control in P3 and N1 amplitudes during inhibition
tasks (Fig. 4.6).

Figure 4.6: EEG features for inhibition in time domain. LZC: Lempel-Ziv
Complexity; EEGVR: Electroencephalogram Valid Rate. MSE: Multi-Scale
Entropy. SCP: Slow Cortical potentials

Other studies identify an higher α, and θ activity in the ADHD groups
compared with controls during inhibition tasks (Fig. 4.7).

Regarding WM, a trend emerges in frequency domain linking working
memory to power spectral density in α, β, and θ bands (Fig. 4.8. In the
time domain, as described above, WM is not much evaluated, and there is
no detectable prevalence of features (Fig. 4.9).

Concerning inhibition sub-function, the interference inhibition is not very
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Figure 4.7: EEG features for inhibition in frequency domain. MI: Modula-
tion Index. SMR: Senso-motor rhythm.

Figure 4.8: EEG features for working memory in frequency domain.
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Figure 4.9: EEG features for working memory in time domain. TBR: Theta
Beta Ratio. SMR: Sensorimotor rhythm. WPLI: Weighted Phase Lag Index

studied in the time-domain (Fig. 4.10), but a slight link emerges between
interference inhibition and spectral density in α, β, and θ bands in frequency
domain (Fig. 4.11).

Figure 4.10: EEG features for interference inhibition in time domain.

For the WM sub-functions, the visuo-spatial working memory are the
only one evaluated. The must investigate sub-domain are again the α, β,
and θ bands.
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Figure 4.11: EEG features for interference inhibition in frequency domain.
TBR: Theta Beta Ratio; MI: Modulation Index; CI: EEG Consistency Index;

Figure 4.12: EEG features for visuo-spatial working memory in frequency
domain.

As regards the sub-domain, the most employed is the ERP in time sub-
domain and the θ, β, and α (in descending order) in frequency domain. In
particular for the time sub-domain:

• about 85 % of articles consider features in the ERP sub-domain for
inhibition and its sub-function interference inhibition (Fig. 4.13 a and
Fig. 4.14 a);
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(a) Inhibition sub-domain percentage

(b) Working Memory sub-domain percentage

Figure 4.13: Percentage of number of articles employing features in sub-
domain respect to the time-domain for the: a) inhibition, and b) Working
Memory.
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(a) Interference inhibition sub-domain percentage

(b) visuo-spatial working memory sub-domain percentage

Figure 4.14: Percentage of number of articles employing features in sub-
domain respect to the time-domain for the: a) interference inhibition, and
b) visuo-spatial Working Memory.
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• about 88 % of articles consider features in the ERP sub-domain for WM
(Fig. 4.13 b) and 70 % for the visuo-spatial working memory (Fig. 4.14
b).

For the frequency domain, instead:

• about 30 % of articles consider features in the θ, and β and 20 % in
the α sub-domain for the inhibition and its sub-function interference
inhibition (Fig. 4.15 a and Fig. 4.16 a);

• about the same percentage of articles consider features in the θ, and
β for the WM (Fig. 4.15 b) and the visuo-spatial working memory
(Fig. 4.16 b).

For the visuo-spatial WM, an important consideration involves the em-
ploy of the γ sub-domain usually not used for the others EFs (Fig. 4.16 b).

Finally, about the most evaluated features with respect to all features in
the same domain, the results show:

• P300 amplitude is the most widely used feature in time domain. About
20 % of articles employed P300 amplitude for the evaluation of inhibi-
tion, working memory, and their sub-functions (interference inhibition,
visuo-spatial WM);

• in the frequency domain, the θ-, α-, and β-band power are the most
employed features. About 20 % of articles employed θ-, α-, and β-band
power, for the analysis of inhibition, WM and their sub-functions.

Starting from this analysis, the study of EFs must be thoroughly investi-
gated (especially employng the EEG system). The EEG features most exploit
in this area do not use recognition systems based on machine learning and
artificial intelligence but different data processing method. The most em-
ployed EEG features are not uniquely linked to the elicited EF but rather
to the literary indication or to the tools and instrumentation available. The
investigation becomes more complex if we talk about the analysis of all the
EFs involved during gait, posture, and balance. However, the knowledge of
how the literature investigates these phenomena is essential to recognize a
method of analysis of the gait. The confirmed employing of the EEG-features
in the frequency domain for all literature-investigated EFs, is an important
result to furthers ideas to: study the EFS and prevent the risk of fall during
walking.
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(a) Inhibition sub-domain percentage

(b) Working Memory sub-domain percentage

Figure 4.15: Percentage of number of articles employing features in sub-
domain respect to the frequency-domain for the: a) inhibition, and b) Work-
ing Memory.
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(a) Interference inhibition sub-domain percentage

(b) visuo-spatial working memory sub-domain percentage

Figure 4.16: Percentage of number of articles employing features in sub-
domain respect to the frequency-domain for the: a) interference inhibition,
and b) visuo-spatial Working Memory.
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Chapter 5

Attention Detection during
Dual-task Execution

In this chapter, an EEG-based method for attention assessing during the
execution of a dual-task has evaluated. A study on the distraction detection
during the execution of a rehabilitation task was carried out. Motor act dis-
traction was assessed by applying an oddball paradigm. The reported study
shows the possibility of exploiting a wearable and non-invasive EEG system
to discriminate attention to the motor act performed by the subject. The
possibility of obtaining information on attention during a dual-task execu-
tion is a fundamental element in gait analysis and especially in relation to
the risk of fall.

5.1 Overview
Among the cognitive processes contributing to falls, attention certainly

plays a fundamental role. Walking while performing one or more different
tasks depletes cognitive resources. The attention is focused on one task
while neglecting another. When the subjects are affected by pathology, this
condition becomes even more critical; the result of the action of multiple
concurrent tasks increases the risk of falls for the subject. The attention is
a highly studied construct in the literature in various different context. In
the last studies, the attention is increasingly considered a specific example of
EF [169]. Ladvas and Berti describe attention as the function that regulates
the filtering and organization of the information received from a subject,
allowing his/hers adequate responses [170]. Sohlberg and Mateer propose a
characterization of attention in four different dimensions [171]:

i the Arousal indicates the activation level and defines the psychophysi-
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ological activation allowing the afferent of the different stimulation;

ii the Selective attention: points out the ability to focus attention on a
specific source or sensory channel;

iii the Distributed attention is the ability to simultaneously process infor-
mation from multiple sources;

iv the Sustained attention is the ability to direct and maintain cognitive
prolonged activity on a specific stimuli.

In everyday life, many types of distracting effects (visual, auditory, and their
combinations) sidetrack attention when performing any task, especially if it
requires engagement [172]. Diez et al. identified attention just as the abil-
ity to select interesting stimuli, by ignoring other distracting stimuli in the
surrounding environment [173]. These distractors play a fundamental role in
analyzing the attentional process [174]. Changes in cognitive processes re-
lated to attention activate different parts of the brain. Concurrent distracting
events deactivate certain brain areas by activating other ones [175]. In recent
years, many studies have highlighted the concept that: gait/walking requires
attention [176, 177]. As already described above (1.2), the best method for
analyzing this link is dual-tasking. By "dual tasking" we mean the simul-
taneous execution of an active movement (motor skills) and a mental task
(cognition); for example walking and talking at the same time, or go up the
stairs (motor skills) and recognize the house key in the set of keys (cognition).
A very useful context for identifying the mechanisms underlying attentional
processes is an analysis of a motor gesture in the presence of a double task
during rehabilitation therapy. Therefore, a distraction detection EEG-based
system during a motor rehabilitation exercise are evaluated. The knowledge
of the most promising EEG features represents the starting point for the
preparation of a more complex study to be carried out in the field of walking
and gait.

Some of the following information are available in:

Andrea Apicella, Pasquale Arpaia, Mirco Frosolone, Nicola
Moccaldi, "High-wearable EEG-Based Distraction Detection in
Motor Rehabilitation.", Scientific Reports, 2020, 11(1), 1-9. Na-
ture.com. doi:10.1038/s41598-021-84447-8.
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5.2 Key concepts
Ang et al. prove that a neuromotor rehabilitation exercise induces neu-

ronal neuroplasticity and promotes motor recovery [178]. In particular, the
repetition of the exercise induces a reorganization of the motor cortex. How-
ever, the repetition of the same exercise may induce weariness in the subject
and prevent a careful focus on the performance of the exercise. Conversely,
completing the exercise, while maintaining the attention focus in a sustained
and selective way, promotes neuronal plasticity and motor learning [179, 180].
The attention to the motor task has an enhanced effect on rehabilitation
performance[136]. Many studies deal with assessing the attention and its
different dimensions through the analysis of the brain signals using the EEG
[181]. Several studies have shown that the level of attention affects the EEG
signal [182, 183]. Therefore, variations in the EEG signal can be used to
detect corresponding changes in attention levels [184]. Attention creates a
variation in brain signals that can be assessed both in the time and in the
frequency domain [185]. In this study a method for detecting distraction dur-
ing motor rehabilitation is proposed. The method is based on the following
key concepts:

• EEG-based distraction detection: During a rehabilitation motor task,
EEG trend is influenced by the state of the patient attention or dis-
traction to the task itself.

• Attention vs distraction definition: Focusing on motor task means
imagining, with open eyes, the movement while its execution and trying
not to think about anything else. A distracting condition occurs when
the patient performs an entirely absorbing cognitive task while continu-
ing to carry out the rehabilitation movement. To the end of evaluating
the phenomenon, a rehabilitative motor task is carried out. The as-
signment is run under conditions of concentration on the action and
in the presence of a distractor (auditory, visual, and visuo-auditory)
which engages the learner in a concurrent cognitive task analogously
as what done in Asayb et al [186].

• Metrology perspective: An applied metrological and instrumentation-
aimed approach is guaranteed, for the first time, in the EEG based
distraction detection.

• Feature extraction enhancement : A multiple bandpass Filter-Bank, in
combination with a Common Spatial Pattern algorithm, selects spatial,
temporal and frequency features. In particular, a 12-band Filter-Bank
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is proposed for enhancing, the peculiar contribution of the delta, theta,
and alpha bands as fundamental in the analysis of attentional processes
[187], compared to previous 9-band approaches [85].

• High Wearability : The EEG acquisition system is realized in ultra-
light foam. The ergonomic and comfortable device is equipped with a
rechargeable battery and transmits the acquired data via Bluetooth.
Dry electrodes avoid the inconvenient of electrolytic gel.

• Clinical applicability : wearability cannot be a prejudice for accuracies
compatible with clinical use. A method with state-of-the-art accuracy
(greater than 80 % [186, 85]) is required.

• Validation based on wide comparison: Performance of the proposed
method are compared with different strategy of EEG feature extraction
(including the proposal of Hamadicharef et al. [85]), and different types
of classifiers.

5.3 Experimental design
A session was based on seventeen volunteers subjects (eleven males and

six females, with an average age of 30.76±8.15). A written informed consent
was obtained from each volunteer before the experiment. All experiments
were carried out in accordance with relevant guidelines and regulations. The
ethical committee approved the experimental protocol of the University of
Naples Federico II. All of them had a normal clinical history with normal vi-
sion and normal hearing, and no neurological disease. The participants were
seated in a comfortable chair with armrests, in a very quiet room, about
one meter away from a PC screen. After wearing the EEG-cap, participants
were requested to execute a squeeze-ball exercise whenever a start command
appeared on the PC screen. Squeeze-ball is one of the most common hand
rehabilitation exercises [188]. Following a period of immobilization in plaster,
after a surgical intervention or in the presence of inflammatory or degenera-
tive pathologies (e.g., arthrosis, rheumatoid arthritis), hand-ball rehabilita-
tion showed to be important in maintaining or restoring the functional use
of the hand [189]. Motor task execution consists of maintaining attention
focused only on: (i) the squeeze movement (attentive-subject trial), or (ii)
a concurrent distractor task (distracted-subject trial); in both trials the par-
ticipant must perform the squeeze-ball movement. Attention to motor task
execution was supported by employing an aneroid sphygmomanometers: vol-
unteers were asked to focus the aneroid gauge, while squeezing the bulb and

77



pumping air into the cuff. The distractor task was based on the Oddball
paradigm [190, 191]: the presentations of sequences of repetitive stimuli, in-
frequently interrupted by a deviant stimulus. The oddball paradigm is one
of the most widely used methods to study the neurophysiology of attention.
In the proposed protocol, the volunteer was asked to count the number of
certain stimuli sequences. Three types of stimuli sequences were proposed:
(i) acoustic, played with a conventional headphone, (ii) visual, displayed on a
PC screen, and (iii) and visual-acoustic combination [192]. Each participant
completed one session composed of 30 trials: 15 attentive-subject trial and
15 distracted-subject trial. The trials sequences were randomly chosen for
minimizing the influence of task learning. Each trial consisted of: 2 s task
presentation, 9.5 s task execution and 5 s relax. Furthermore, a 15 s baseline
was acquired at the beginning of the session. In the following, trial contents
are detailed:

• Attentive-subject trial
An Attentive-subject trial notification appears for 2 s on the PC screen.
Then, a ball-squeezing image triggers the start of the motor exercise
and a new message on the screen asks the subject to focus on the
squeezing movement. At the end of the task execution, an image of a
relaxing landscape is is shown for 5 s.

• Distracted-subject trial
A notification concerning the distractor task (Audio, Visual or Audio-
Visual) appears for 2 s on the PC screen. Then, an acoustic message
notices the beginning of the motor exercise; a distractor task (based on
Oddball paradigm), chosen among the followings, starts:

– The Audio Distractor is based on the auditory oddball paradigm.
Eight tones sequences sound through the earbuds. Tones range
among three different frequencies: low, 500 Hz, middle, 1200 Hz,
and high, 1900 Hz. The tone low has 50% probability of occur-
rence. The occurrence probability of themiddle and the high tones
is 25%. The target sequence is the appearance of a diverted tone
after the other more frequent one: when the middle tone occurs
immediately after the low, or when the high occurs immediately
after the low. Others combinations are not considered as target
occurrences.

– The Visual Distractor task is based on the visual oddball
paradigm. Three 2D-Gabor masks were used with different ori-
entation: 90, 60, and 30◦ (Fig. 5.1). The 2D-Gabor mask is a
Gaussian kernel function modulated with sinusoidal plane wave.
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The most probable Gabor (50% of probability) has orientation of

Figure 5.1: Visual Distractor task elements based on visual Gabor mask
with different orientation: 90◦, 60◦, and 30◦.

90◦ , while the diverted Gabor (25% of probability) has 60 or 30◦
orientation. Eight Gabor sequences occurred on the PC screen.
The target sequence was the occurrence of diverted Gabor mask
(with orientation of 60 or 30◦ ) after the most frequently with 90◦
orientation.

– The Audio-Visual Distractor task is a combination of the previous
oddball paradigms. Eight between tone and Gabor sequences oc-
cur randomly. The target sequence is the occurrence of any Gabor
mask after the tone. Others combination sequences are not target
occurrences.

At the end of the task, a relaxing landscape is presented for 5 s. During
the relax period, the subjects are asked to give the number of the
observed targets.

The EEG signal was acquired using a Helmate8 of AB-Medica Helmate [80]
(Fig. 5.2 A) (for more information see 2).

5.4 Data processing
During the experiments 4590 epochs composed of 8 channels of 512 sam-

ples were acquired. In Table 5.1 number of (i) subjects, (ii) sessions, (iii)
trials, (iv) epochs per trial (v) epochs per subject, and (vi) epochs as a
whole are reported.

Half of the epochs were collected during the attentive-subject trials and
were labeled as belonging to the first class. The remaining part was ac-
quired during the distracted-subject trials and was labeled as belonging to
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Figure 5.2: (A) EEG data acquisition system Helmate8, and (B) Different
configuration of dry electrodes from abmedica. [80].

Table 5.1: Data-set composition

Subjects Sessions Trials Epochs Epochs Total
per Session per trial per subject Epochs

17 3 30 3 270 4590

the second class. The recorded EEG was divided in 3 s epochs. Each epoch
was filtered between 0.5 and 48.5 Hz using a zero-phase 4th-order digital
butterworth filter. An independent component analysis (ICA) algorithms -
Infomax-ICA[193] - was used for artifact removal. In particular the version
implemented by Runica module of EEGlab tool was adopted. Feature ex-
traction was implemented either in time domain and frequency domain. For
the latter Relative and Absolute Power Spectral Density at varying of fre-
quency bands were considered. Three different frequency bands articulation
were examined:

i) seven traditional EEG bands: delta [1–4] Hz, theta [4–8] Hz, alpha [8–12]
Hz, low beta [12–18] Hz, high beta [18–25] Hz, low gamma [25–35]
Hz, and high gamma [35–45] Hz; in this case, the number of features
for each epoch was 112 (7 bands * 2 PSD (relative and absolute) * 8
channels);

ii) nine 8 Hz bands, 4 Hz overlapped, in the range [1-40] Hz; the number
of features for each epoch was 144 (9 bands * 2 PSD (relative and
absolute) * 8 channels);

iii) twelve 4 Hz bands, non-overlapped, in the range [0.5-48.5] Hz; the num-
ber of features for each epoch was 192 (12 bands * 2 PSD (relative and
absolute) * 8 channels);
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Regarding time domain, the feature extraction was based on four different
approaches:

1) only CSP: in this case, the number of features for each epoch was 8
(CSP remaps the input information in a new space with dimensionality
equal to the number of channels);

2) CSP preceded by different types of Filter-Banks: three different types
of Filter-Banks were applied with the same band articulation proposed
for the feature extraction in the frequency domain. In these cases CSP
remaps the input information in a new space having dimensionality
equal to the number of channels (8) multiplied with number of bands,
obtaining 56, 72, and 96 number of features respectively.

CSP is one of the most employed feature extraction methods for classifying
EEG signals [85, 86]. In a binary problem, the CSP acts by calculating the
covariance matrices relating to the two classes. These two matrices are si-
multaneously diagonalized in a way that the eigenvalues of two covariance
matrices sum up to 1. Through the subsequent use of a bleaching matrix, a
suitable projection matrix is identified in order to reorganize the input into
a number of components consistent with the dimensions of the input matrix.
In a binary problem, these components are sorted on the basis of variance
in order: (i) decreasing, if the projection matrix is applied to inputs belong-
ing to class 1, and (ii) ascending, in case of inputs belonging to class 2 [87].
Five supervised machine learning binary classifiers were used for discrim-
inating between attention or distraction conditions: k-Nearest Neighbour
(k-NN), Support Vector Machine (SVM) [128], Artificial Neural Network
(ANN) [128], Linear Discriminant Analysis (LDA) [194], and Naive Bayes
(NB) [195]. Regularization terms were exploited in the training procedures
for neural networks and SVM learning processes, using a weight decay and
the soft-margin formulation, respectively. All the classifiers were tested on
the seven features types described above. For each subject, the hyperparam-
eters of each classifier were selected by a random search with Nested Cross
Validation to mitigate possible bias induced by the low sample size [196].
Differently from the classical k-fold cross validation, Nested CV is composed
of two nested k-fold cross validation procedures: the inner one finds the best
model hyperparameters, and the outer one estimates the performance of the
inner search. Namely, in the classic k-fold CV, given a combination of the
hyperparameters values, a set of data is divided into a partition of k subsets
(folds). Thus, a set TI composed of k−1 folds is used to train the model and
the remaining fold EI is used for the performance evaluation by computing
the appropriate metric scores (e.g., accuracy). This process is repeated for
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all the combinations of the k folds, by making different pairs of training set
TI and test set EI at each iteration. In this way, final average metrics scores
between all the different test sets EI are computed. This process is then
repeated for each hyperparameters combination, finally returning the best
average metrics values together with the related hyperparameters. In this
process, the model is evaluated together with the hyperparameters tuning.
Instead, in the nested cross validation CV procedure, an outer CV makes a
first division of the data into l folds; then, a set TO composed of l − 1 folds
is used as input to a classical inner k-fold CV procedure, as above described
(and therefore further divided into k folds by the inner CV procedure). Then,
the returned best hyperparameters values are used to train the model on the
TO set as a whole and tested on the remaining fold, say EO. This process is
repeated for all the combinations of the l folds and the final average metrics
on the EO sets are reported. In this way, the nested CV process avoids a
possible bias on the model, due to the use of the same data for the model
hyperparameters tuning and the model evaluation. In this study, a 10-fold
Nested CV was used. In the outer layer, 10% of the data was separated for
test and the rest of the data was used to develop a model. In the internal
layer, the remaining 90% of the data was used for tuning the hyperparam-
eters. Training and test sets were obtained without separating the trials
consisting of 3 epochs each. In this way, the training and the test sets do
not include parts of the same trial. The hyperparameters variation range are
displayed in Table 5.2.

5.5 Experimental results
A within-subjects approach was realized. The accuracy (mean and stan-

dard deviation) for each classifier was assessed at varying the type of input
feature. Table 5.3 shows better performances in case of features extracted
from the time domain by combining Filter-Bank and CSP. In particular, the
proposed solution based on 12 bandpass Filter-Bank provides the best per-
formances for all classifiers except for LDA. In Table 5.4, the accuracy of the
proposed solution is shown for each subject at varying the classifier. In case
of k-NN, the mean accuracy reached the maximum value of 92.8±1.6 %. To
the best of the authors’ knowledge, the accuracy obtained can be considered
state-of-the-art when considering a within subjects approach. Regarding re-
habilitation goals, the minimization of failure in recognizing distraction is
the main issue.

Therefore, an F-measure test was carried out to assess the classification
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Table 5.4: Within-subject accuracy of the proposed solution based on the 12
bandpass Filter Bank and Common Spatial Pattern at varying the classifier.

SUBJECT CLASSIFIER

k-NN SVM LDA ANN NB

#1 91.1 ± 5.3 90.3 ± 5.2 88.2 ± 5.3 86.3 ± 7.2 66.0 ± 9.7
#2 92.2 ± 2.2 90.1 ± 5.1 85.1 ± 6.2 83.5 ± 5.3 79,2 ± 9.9
#3 93.3 ± 5.5 92.2 ± 5.1 89.2 ± 7.1 80.3 ± 7.3 87.2 ± 7.3
#4 94.1 ± 4.2 95.0 ± 2.2 89.6 ± 5.5 92.4 ± 6.8 81.3 ± 4.4
#5 90.4 ± 4.3 89.2 ± 6.7 84.3 ± 9.2 84.5 ± 7.6 65.3 ± 9.7
#6 93.3 ± 3.1 96.5 ± 3.8 91.7 ± 6.8 89.7 ± 6.2 74.1 ± 7.3
#7 96.1 ± 3.2 92.3 ± 4.4 87.2 ± 6.8 87.6 ± 8.3 80.0 ± 9.8
#8 93.1 ± 5.2 91.2 ± 6.7 88.4 ± 7.3 87.6 ± 6.1 86.5 ± 6.3
#9 91.2 ± 4.5 89.1 ± 8.8 88.4 ± 9.1 87.6 ± 6.5 82.8 ± 6.2
#10 92.1 ± 4.4 85.2 ± 4.8 80.3 ± 5.7 82.3 ± 6.9 73.2 ± 9.9
#11 91.1 ± 5.3 90.2 ± 6.7 83.5 ± 8.5 82.5 ± 9.1 79.2 ± 7.1
#12 94.8 ± 4.2 93.8 ± 3.3 91.7 ± 6.6 87.6 ± 06 87.3 ± 3.5
#13 93.3 ± 6.2 92.2 ± 7.6 84.2 ± 5.9 86.8 ± 8.4 75.6 ± 8.4
#14 96.6 ± 4.5 96.3 ± 5.3 90.8 ± 5.8 90.4 ± 6.1 86.8 ± 8.2
#15 93.8 ± 6.2 94.1 ± 4.5 88.8 ± 8.1 86.2 ± 6.5 84.4 ± 5.6
#16 93.5 ± 7.3 91.8 ± 5.5 86.6 ± 2.2 87.2 ± 5.5 82.5 ± 5.6
#17 93.2 ± 4.1 84.8 ± 6.5 77.5 ± 1.6 77.8 ± 1.1 66.4 ± 8.0

MEAN 92.8 ± 1.6 91.1 ± 3.2 86.6 ± 2.0 86.3 ± 3.5 78.7 ± 7.5

performance in minimizing false negatives for the second class (distraction)
analysis. Fig. 5.3 shows a k-NN mean Recall higher than 92 %.

5.6 Proposed method
The proposed method is depicted in Fig. 5.4. The EEG signals are

acquired by Active Dry Electrodes from the scalp. Each channel is differ-
ential with respect to AFz (REF), and referred to Fpz (GND), according to
10/20 international system. Analog signals are first transduced by the Active
Dry Electrodes and then conditioned by the Analog Front End. Next, they
are digitized by the Acquisition Unit and transmitted to the Data Analysis
stage. Here, after an artifact removal performed by an Independent Com-
ponent Analisys (ICA) based algorithm, suitable features are extracted by
the chain of a 12-component Filter Bank and a Common Spatial Pattern
(CSP) algorithm. Then, a classifier receives the feature arrays and detects
distraction.

The EEG signal, acquired through eight channels, was filtered through
a 12 IIR band-pass Filter Chebyshev type 2 filter bank, 4 Hz amplitude,
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Figure 5.3: F-Measure test results for the best performance of each classi-
fier: Precision (black) , Recall (gray), and F1-score (white).

equally spaced from 0.5 - 48.5 Hz. A filter bank with 9 filters of 8 Hz am-
plitude equal to [0-40] Hz, with a 4 Hz overlap, was proposed. This solution
subdivided the traditional EEG beta and gamma bands into sub-bands, how-
ever combining other bands (delta and theta with the first filter between 0
and 8 Hz, as well as theta and alpha with the second filter between 4 and
12 Hz). Considering the relevance of the delta, theta and alpha bands in the
analysis of the attention highlighted in Graber et al.[197] and in Coelli et
al.[187], the solution proposed in this study allows to enhance their peculiar
contribution. The unit of analysis of the classification activity was identified
in time windows of 3 s with an overlap of 1.5 s. Considering a sampling
frequency of 256 Sa/s, each of these record is therefore composed of 96 EEG
tracks (obtained by applying the 12 filters of the Filter Bank on each of the
8 channels), each one of 1536 samples. A Common Spatial Pattern (CSP)
was used as a spatial filtering algorithm. In this study, the CSP receives the
records (epochs) as 3D tensors (channels, filters, and samples). It outputs 2D
matrices (channels, filters) reducing the dimensionality of the features by a
factor of 1536 (number of sample). A k-Nearest Neighbour (k-NN) classifier
is used for classifying the CSP output.

This study demonstrates the possibility of using an EEG-based method
already implemented in other contexts for the assessment of attention to a
motor act during the execution of a dual-task. Applying this method in a
walking context would provide important information for fall prevention.
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Conclusions

Due to the high costs in health care, and the high number of accidents
(including fatal ones) caused by this problem, is needed to intervene to pre-
vent falls. The gait is not an automated machanism but is the result of a
complex brain processes interaction such as: (i) the cognitive engagement,
(ii) the Executive Functions (EFs), and (iii) the attention. Furthermore, it
is widely demonstrated that the execution of a concurrent tasks during the
walk impoverishes the resources employed and contributes to enormously in-
crease the risk of falling. For this reason, in this thesis was analyzed the
neurological phenomena underlying the gait, in order to find an EEG-based
method for the prevention of falls. The information deriving from the anal-
ysis of the phenomena described becomes an important index for identifying
a dangerous situation for a high risk of falling.

Among EEG systems available on the market for daily use applications:
the new device abmedica R© Helmate, and Emotiv epoc + have been identified.
A functional analysis was carried out for the Helmate to demonstrate its
effective employability for the proposed applications.

A method for the detection of the cognitive load, intended as a pro-
fuse cognitive engagement in learning or rehabilitation activities has been
identified. The proposed method (based on EEG-signal processing) made
it possible to achieve a cognitive engagement detection on two levels (i.e.,
high and low): reaching an accuracy of 76.9 % in learning and 74.5 % in
rehabilitation.

Starting from a literature analysis of the most studied executive func-
tions, the employed EEG features for different EFs evaluation have been
identified. Inhibition, and working-memory (and their sub-functions) are the
most investigated EFs. The EEG features associated with most studied EFs
are extracted about 70 % from the frequency domain.

Finally, an EEG-based detection of attention/distraction during the exe-
cution of a dual-task has been proposed. The two conditions were discrimi-
nated against with 92.8 % accuracy.

The above mentioned results confirmed the applicability of the proposed
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EEG-based method for the evaluation of the phenomena underlying the walk.
Through this method it is possible: to identify a situation of overload of the
cognitive abilities and processing involved during the walk, and to activate
an alarm of probable danger of falling.
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Future developments

A further application of the proposed method consists of an EEG-based
analysis of the cognitive resources employed when a subject walk during dual-
task conditions. The study involves the enrollment of an experimental group
and a control group: 15 healthy subjects and 15 subjects with neuromotor
disorders. The participants are required to walk in four different conditions
5.5:

• free walk on the floor (fig.5.5 a);

• free walk on a planar beam (fig.5.5 b);

• free walk on the floor during dual-task execution (fig.5.5 c);

• free walk on a planar beam during dual-task execution (fig.5.5 d).

Two sessions with 5 repetitions for each task are proposed. Since the aim
is to induce the subject in cognitive overload conditions during the walk, the
dual-task chosen is the oddball test (see paragraph 5.3, Chapter 5). The
simultaneous execution of a walk motor task and a cognitive one of counting
the occurrences, allows to identify a possible condition of cognitive overload
and therefore of a high risk of falling. The oddball test can be proposed both
in the auditory and visual versions, in order to verify the effects on the path
of different stimuli. The subjects are firstly required to take a test for an
assessment of the cognitive functions. One of the possible employing test is
the: Trail Making Test (TMT) type A and B. The TMT is a visuo-motor
test used to verify the functionality of the subject. The TMT evaluates
the spatial planning capacity in a visual-motor type task. It is extremely
sensitive in detecting brain damage. Psychotic disorders, severe emotional
and anxiety disorders can negatively affect part B of the test. In Italy there
are two versions of the TMT:

1. AB version (the most widespread and well-known);

2. ABG version.
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Figure 5.5: Four different task: a) free walk on the floor, b) free walk on a
planar beam, c) free walk on the floor during a dual-task execution, and d)
free walk on a beam during a dual-task execution.

The TMT is made up of two or three parts, A and B, and G. The correct
execution of part A requires adequate visual processing skills, the recogni-
tion of numbers, the knowledge and reproduction of numerical sequences,
and the motor speed. The correct performance of part B, in addition to the
aforementioned skills, requires cognitive flexibility and a capacity for shifting
within the norm. Part G, if used, emphasizes the previous case B in manipu-
lating multiple stimuli simultaneously and in modifying the course of current
mental activity. The time difference between the two tests (B−A) and the
one (G−A) are also an index of cognitive flexibility and shifting ability.

Part A: The subject must combine the numbers from 1 to 25 in sequence
with a pencil. The participant must complete the task in the shortest
possible time.

Part B: The subject is presented a sheet showing 25 circles containing num-
bers from 1-13 and letters from A-N arranged randomly. The partici-
pant, to complete the test, must perform two tasks simultaneously: to
connect both in progressive and alternating order, numbers and letters
(i.e.: 1-A-2-B-3-C-, etc.), thus joining in alternating numbers (from 1
to 13) and letters (from A to N).The correct sequence is 1, A, 2, B, etc.
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Part G: The subject is presented a sheet showing 8 circles, 8 squares and 8
crosses, containing respectively numbers from 1 to 8. The participant
must connect the circle, the square and cross containing the number 1;
then the circle, the square and the cross with the number 2, and so on.

The score is based on the number of seconds employees to complete the
test. Three scores are obtained: (i) part A; (ii) part B; and (iii) difference
B−A or / and difference G−A). For each part, the raw score obtained is cor-
rected based on the subject’s age and education. In relation to the obtained
score, the participants are divided into two groups.

In order to assess the condition of greater risk of falling for the subject,
both the performance of the cognitive task and the parameters of walking
are analyzed. According to the literature, in the presence of concurrent tasks
the subject reacts: reducing the stride, increasing the number of supports,
obtaining worst performances in the cognitive test. ab medica R©Helmate can
be employed to collect the EEG signal (Fig.5.6 a). For the evaluation of
walking parameters the G-walk and the Smart-DX by Bioengeneering G-
walk can be used (Fig.5.6 b).

For the processing method part (see Fig. 5.7, the recorded EEG signal
is divided into epochs, filtered and processed using an removing artifact al-
gorithm (Independent Component Analysis) and a spatial-filtering based on
a 12-Filter-banks and Common Spatial Pattern. Within-subject and cross-
subject approaches can be implemented. Finally, the system can be validated
through a Nested Cross Validation using different classifiers: Linear Discrimi-
nant Analysis, Support Vector Machine, k-Nearest Neighbour, Artificial Neu-
ral Network. The Accuracy, the precision, the recall, and the F1-score are
employed as metrics to estimate the effectiveness of the method.
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(a)

(b)

Figure 5.6: The instrumentation for the EEG signal acquisition and the
gait pattern assessment: a) the Helmate provided by abmedica [80]; b)and
the Smart-DX and the G-Walk provided by BTS Bioengineering [198].
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Appendix A

Appendix on EEG functions

In this appendix, a small indication of the most used EEG features is
shown. This appendix arises from the review on the EEG features most
employed in the analysis of executive functions. This is not meant to be an
exhaustive source, but a useful reference and an important indication for the
abbreviations used in the chapter 4.

A.1 Time domain EEG features
A list of the most used EEG features in the time domain is shown below.

A.1.1 Event Related Potential - EPR

Event Related Potential (ERP) waveforms is composed of a sequence of
positive and negative voltage deflections,defined ERP components. Most
ERP components are named by a letter and a number. In particular, the
letter refers to the positivity (P) or negativity (N) of the waves amplitude
while the number indicates either the latency in milliseconds or the compo-
nent’s ordinal position in the waveform [199].
Some of main ERP components are shown in Fig. A.1 and are summarized
in the following sections.

N1

The N1 or N100 component of ERP is a negative-going peak. It is the
first substantial peak in the waveform and often occurs between 90 and 200
ms after a stimulus is presented.
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Figure A.1: ERP waveform

N2

The N2 or N200 ERP component is the second negative peak and occurs
200 ms after the stimulus.

P2

The P2 or P200 ERP component is the second positive peak and occurs
around 100-250 ms after the stimulus.

P3

The P3 or P300 ERP component is the third positive peak and has a
quite variable latency. Particularly, the peak of the P300 component may
occur between 250 ms – 700 ms.

N400

The N400 is a negative-going deflection that peaks around 400 millisec-
onds post-stimulus onset, although it can extend from 250-500 ms.
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P600

The P600 is characterized as a positive-going deflection with an onset
around 500-600 milliseconds after the stimulus and lasts several hundred
milliseconds.

Error-Related Negativity - ERN

Error-Related Negativity (ERN) is a negative component of the ERP
that occurs when subjects make errors in sensorimotor tasks. The negativity
peaks at around 150 msec after response onset (i. e. when one starts to make
the response).

A.1.2 Contingent negative variation - CNV

The contingent negative variation (CNV) is the negative portion of the
wave between the presentation of the warning and imperative stimuli.

Bereitschaftspotential - BP

The Bereitschaftspotential (BP), (from German, "readiness potential")
is an event-related potential reflecting cortical activity associated with the
initiation and preparation of voluntary motor actions. It is also called the
pre-motor potential or readiness potential (RP). The BP is a slow negative
EEG-deflection which develops beginning 1 to 1.5 s prior to the onset of a
self-paced movement.

Lateralized readiness potential - LRP

The lateralized readiness potential (LRP) is an event-related potential as-
sociated with the preparation of motor activity in contralateral motor areas.
The LRP reflect the preparation of motor activity on a certain side of the
body. It is a spike in the electrical activity of the brain that happens when a
person gets ready to move one arm, leg, or foot. The LRP is a special form
of bereitschaftspotential.

A.1.3 Slow cortical potentials - SCPs

Slow cortical potentials (SCPs) are shifts in the cortical electrical activity
lasting from several hundred milliseconds to several seconds. SCP might be
externally triggered or self-induced.
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A.1.4 Fractal Dimension - FD

Fractal Dimension (FD) is a measure of complexity degree and self-
similarity of time series. There are different complexity estimators such as
Higuchi, Katz, box-counting and Petrosian to calculate FD. The Higuchi’s
algorithm calculates FD as follows. Given an one-dimensional EEG discrete
time series x = {x1, ...xN} and the scale factor k, a new time series ykj is
calculated as:

ykj = {x(m), x(m+ k), x(m+ 2k), ...., x(m+ [
N −m
k

]k} (A.1)

for m = 1, 2, 3, ..., k. Where [.] indicates the integer part of series The
length Lkm is computed for ykj as:

Lkm =

∑
|y(m+ ik)− y(m+ (i− 1)k|(N − 1)

[ (N−m)
k

]k
(A.2)

where N is the number of samples in the time series. FD is calculated as
total average length, L(k), for k1 to kmax.

A.1.5 Multiscale Entropy - MSE

The multiscale Entropy (MSE) method has been used to quantifies the
complexity of signal by calculating the sample entropy (SampEn) over multi-
ple temporal scales which was realized by coarse-grained procedure (Costa et
al., 2005, Costa et al., 2002). Given an one-dimensional EEG discrete time
series x = {x1, ...xN} and the scale factor τ , the time series is calculated in
to consecutive and nonoverlapping time series yτj as:

yτj =
1

τ

jτ∑
i=(j−1)τ+1

xi; 1 ≤ j ≤ N

τ
(A.3)

And then calculates the SampEn of each series yτj as:

SampEn(m, r,N) = − ln
Cm+1

Cm
;Cm = numberofpairs(i, j), i 6= jwhere|ymi −ymj | < r

(A.4)
where |ymi − xmy | denotes the distance between vectors ymi and ymj , m is
dimension of vectors ymi and ymj and r is the tolerable distance between the
two vectors and N represents the length of the time series.
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A.1.6 Lempel–Ziv complexity - LZC

Lempel–Ziv complexity (LZC) is a popular measure for characterizing
the complexity of biomedical signals (Fernández et al., 2011; Méndez et al.,
2012; Nagarajan, 2002; Zhang, Roy, Jensen, 2001). To compute the LZC, the
oscillations of a time series have to be transformed into a binary sequence.
The simplest approach is to convert the time series x(k), k = 1, . . . n, into
a 0–1 sequence by comparison with a threshold Td as follows:

s(i) =

{
1 if x(i) < Td

0 if x(i) ≥ Td
(A.5)

A good choice for Td is the median value of the signal in each electrode,
because it is robust to outliers (Hu, Gao, Principe, 2006; Nagarajan, 2002).
Then, the sequence P is scanned, and a complexity counter, c(n), is increased
by one unit each time a new subsequence of successive characters is encoun-
tered in the scanning process. Finally, normalized LZC is defined by

CLZ =
log2 nc(n)

n
(A.6)

A.1.7 EEG valid rate - EEGVR

The EEG valid rate (EEGVR) is an index to investigate attention func-
tion in the subjects. It is the ratio of artifact-free EEG epochs divided by
total epochs.

A.1.8 Weighted phase-lag index - WPLI

The weighted phase-lag index (WPLI) is a measure of phase-
synchronization.It is defined as:

Φ =
|E{J(X)}|
E{J(X)}

(A.7)

where J(X) denotes the imaginary component of the cross-spectrum.

A.2 Frequency domain EEG features
In the frequency domain there are 6 different sub-domains identified by

the known bands of the EEG signal: δ [0.1 - 3] Hz, θ [4 - 7] Hz, α [8 -
12] Hz, β [16 - 31] Hz,γ [32 - 100] Hz, and µ [9 - 11] Hz (in sensorimotor
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cortex). The features described find applications in each of the sub-domains
or in combinations of them.The list of the most used EEG features in the
frequency domain is shown below.

A.2.1 Power spectral density/Relative power spectral
density

The power spectral density (PSD) represents the power distribution of
EEG series in the frequency domain. The power spectral density (PSD)
of EEG signal can be calculated into each six EEG sub-bands. In general,
Welch’s method (a modified approach of FFT), FFT method, and Burg’s
method may be regarded as the three most widely used methods for PSD
estimation within a frequency band in EEG. Relative PSD is defined as the
ratio of the PSD to the frequency band to be analyzed and the total frequency
band.

A.2.2 Modulation index - MI

The alpha modulation index (MI) is computed by subtracting alpha power
in right-cued trials from left-cued trials for each electrode. This subtraction
was subsequently normalized by dividing by half of the sum of these values:

MI =
(αleftcuedtrials − αrightcuedtrials)
(1
2
αleftcuedtrials + αrightcuedtrials)

(A.8)

A.2.3 The EEG Consistency Index - CI

Discrete spectra, including residual power, are calculated for all EEG
channels. Power change distances (PCD) between two contiguous tasks are
computed for each EEG band and channel. PCD undergo filtering to elimi-
nate changes below a noise threshold. The noise threshold works as follows:
the larger PCD of an absolute value than the threshold are marked by 1
or −1 depending on their direction, whereas all PCD below threshold are
marked by zero. This filtering transforms the PCD into a sequence of 1,0,−1
that indicates, for each EEG band and channel, whether a significant power
change was observed while the person shifted from one task to another. The
final pass of the computation is a simple addition of the filtered PCD below
and above the cutoff value. The the EEG Consistency Index (CI) is defined
as the absolute value of the difference between these two PCD-based sums,
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expressed as a percentage, i.e., computed using the formula:

CI = 100|1
2

(
∑

belowcutoff

δi −
∑

abovecutoff

δj)|% (A.9)

where δi, δj= −1,0,1

A.2.4 Asymmetry index - AI

The asymmetry index (AI) represents the balance between left and right
brain activities. it can be calculated for each of the frequency bands / sub-
domains of the EEG signal. As an example, we report the AI for the α band:

AI =
Alpha(RightHemisphere)− Alpha(LeftHemisphere)
Alpha(RightHemisphere) + Alpha(LeftHemisphere)

(A.10)

(This α-AI is the most used in EFs evaluation).

A.2.5 Theta-beta ratio - TBR

The Theta-beta ratio (TBR) is the ratio between the power spectral den-
sity in θ band and the power spectral density in β band.

AI =
PSDθ

PSDβ

(A.11)

A.2.6 Sensorimotor rhythms - SMR

Sensorimotor rhythms (SMR) are brain signals associated with motor
activities, e.g. limb movements. The SMR consist of EEG oscillations mea-
surable in the µ and β bands, typically corresponding to the 8 Hz to 13 Hz
and 13 Hz to 30 Hz ranges.

A.2.7 The EEG Concentration Index

The EEG Concentration Index in the EFS context, is defined as the sum
of sensory motor rhythms and β/ θ wave ratio.

Some of the previous informations has been available in:
Pasquale Arpaia, Loredana Cristaldi, Mirco Frosolone, Ludovia

Gargiulo, Francesca Mancino, Nicola Moccaldi, “EEG features of
executive functions employed in the diagnosis and treatment of
children with ADHD: a review.”, to be submitted to Topics in cog-
nitive science, 2021, Wiley-Blackwell.
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